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ABSTRACT

Human physiology is filled with examples of time-delayed feedback. In certain cases, such
as the hematopoietic system, the time lag between signal and response is variable and
distributed around a mean delay. In this dissertation, we derive a physiologically realistic
method of modelling these delays and apply the technique to model tumour growth in the
presence of immune surveillance.

We begin by deriving a general model of population renewal that includes a maturation
period. We initially consider an age structured partial differential equation model of a
population with a randomly distributed maturation period and variable maturation rate.
We reduce the age structured partial differential equation to a state dependent distributed
delay differential equation (DDE) and analyse the resulting model without specifying the
maturation density function. This general setting encompasses the common state depen-
dent discrete DDE and generalizes the linear chain technique to include variable transition
rates and concatenated ageing processes. To illustrate the utility of the distributed DDE
framework, we simplify two published models of hematopoiesis to their equivalent state
dependent distributed DDE and analyse their resulting form.

Next, we develop and analyse a mathematical model of tumour-immune interaction
that explicitly incorporates heterogeneity in tumour cell cycle duration by using a dis-
tributed DDE. Through linear stability analysis, we completely characterise the importance
of tumour-immune interaction through a necessary and sufficient condition for disease
remission. Consistent with the immunoediting hypothesis, bifurcation analysis of the
mathematical model shows that decreasing tumour-immune interaction leads to tumour
expansion through a transcritical bifurcation. By incorporating a model of viral therapy,
we show that immune involvement is crucial in determining long-term treatment out-
comes. Furthermore, to understand the effects of genetic variability in treatment outcome,
we perform a virtual clinical trial of viral therapy and immunotherapy. We quantify the
synergistic interaction between these two treatment techniques by simulating viral and
immunostimulating combination therapy. Finally, we exploit this synergy by using a
genetic algorithm to create an optimal dosing regimen that reduces treatment burden and
improves virtual prognosis.
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ABRÉGÉ

La physiologie humaine regorge d’exemples de dynamiques retardées. Dans certains
cas, tels que le système hématopoïétique, le décalage entre un signal et la réponse qu’il
induit est variable et distribué autour d’un délai moyen. Pour modéliser ces retards, nous
developpons une méthode physiologiquement réaliste que nous appliquons à l’étude de
la croissance tumorale sujette à l’immunosurveillance.

Nous commençons en considérant une population ayant une vitesse de maturation
variable et une durée de maturation aléatoirement distribuée autour d’une valeur moyenne.
Les dynamiques de cette population sont régies par une équation aux dérivées partielles
(EDP) structurées en âge. Nous réduisons l’EDP structurée en l’âge en une équation
différentielle à retard (EDR) variable et distribué. Nous analysons ce dernier modèle sans
spécifier la densité de probabilité de la maturation. Ce cadre général englobe les EDR aux
délais ponctuels et variables, et généralise la technique de la chaîne linéaire pour inclure
des vitesses de transition variables et des processus de vieillissement concaténés. Afin
d’illustrer l’utilité du cadre EDR à délai distribué, nous démontrons l’équivalence entre
deux modèles d’équations différentielles ordinaires et deux EDRs.

Ensuite, par le biais d’une EDR distribué, nous développons et analysons un modèle
mathématique de l’immunité antitumorale incorporant l’hétérogénéité dans la durée du
cycle cellulaire des cellules tumorales. Grâce à une analyse de stabilité linéaire, nous carac-
térisons l’importance de l’immunité antitumorale par l’ énoncé d’une condition nécessaire
et suffisante pour la rémission du cancer. Conformément à l’hypothèse d’immunoediting,
un analyse de bifurcation du modèle démontre que la diminution de l’interaction tumeur-
immunitaire induit l’expansion tumorale suite à une bifurcation transcritique. En intégrant
un modèle de virothérapie, nous montrons que l’efficacité du traitement à long terme est
déterminée par l’implication du système immunitaire. En outre, pour comprendre les effets
de la variabilité génétique sur l’efficacité du traitement, nous réalisons un essai clinique
virtuel de la thérapie combinée de virothérapie et d’immunothérapie. Nous quantifions
les interactions synergiques entre ces deux traitements en simulant la virothérapie en com-
binaison avec un immunostimulant. Enfin, cette synergie est exploitée pour déterminer
un schéma posologique optimal qui réduit le fardeau posologique du traitement tous en
améliorant le pronostic virtuel.
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CHAPTER 1

INTRODUCTION

Human physiology is filled with examples of time delays. These delays describe the
time-lag between signal and response, such as in cytokine control of the hematopoietic
system [Dale and Mackey, 2015; Mackey and Glass, 1977; Rubinow and Lebowitz, 1975];
in ageing processes, like the progression of a single cell through the cell cycle [Burns and
Tannock, 1970; Golubev, 2016; Mackey, 1978; Sandler et al., 2015]; or in systems exhibiting
a cyclic structure where feedback occurs between the beginning and the end of a chain
of sequential steps [Goodwin, 1965; Yildirim et al., 2004]. This dissertation develops a
mathematical framework to model both inter-individual heterogeneity and external control
of the delay time. We then apply this framework to develop a mathematical model of viral
oncology and optimize combination immuno- and viral therapies. As each chapter is a
self-contained manuscript, we now provide a higher level discussion of the overall theme
of the dissertation.

This dissertation is primarily concerned with the development and analysis of dis-
tributed delay differential equations (DDEs) in the context of human physiology. As
their name suggests, DDEs are a type of differential equation that explicitly incorporate
dependence on the past and current state of the system. When the time delay τ is fixed
and constant, a generic discrete DDE can be written as

d
dt
x(t) = F (x(t), x(t− τ)) .

We argue that the assumption of a constant and fixed time delay is overly restrictive in the
physiological context. To relax this assumption, we demonstrate how to incorporate popu-
lation level delay time heterogeneity through a distributed DDE. Informally, distributed
DDEs use a delay kernel K(t) to weigh the influence of the history of the system and,
generically, take the form

d
dt
x(t) = F

(︃
x(t),

∫︂ ∞

0
x(t− φ)K(φ)dφ

)︃
.

As we demonstrate in Chapter 3, replacing a discrete DDE by a distributed DDE increases
physiological relevance when modelling tumour cell reproduction. Through numerical
simulation, we show that the form of the delay kernel K(t) drastically changes model
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predictions. Thus, appropriately incorporating tumour heterogeneity in mathematical
models can aid in making accurate predictions.

However, heterogeneity is not limited to reproduction in malignant tumours. Rather, it
is reasonable to expect that every physiological process exhibits some form of random delay
time. It follows that mathematical models should properly account for this heterogeneity
in delay time. The development of appropriate modelling techniques to account for these
heterogeneous delay times is one of the main contributions of this dissertation.

FROM AGE STRUCTURE TO DELAYS

We begin by establishing the relationship between age structured partial differential equa-
tions (PDEs) and DDEs in Chapter 2. Age structured models made their first appearance
in mathematical biology in McKendrick’s modelling of infectious diseases [McKendrick,
1925]. By considering transition between two adjacent states and a mortality rate µ(t),
McKendrick [1925] derived the McKendrick age structured PDE

∂tn(t, a) + ∂an(t, a) = −µ(t)n(t, a). (1.1)

Equation (1.1) models the density of individuals1, n(t, a), with state a at time t (see the
thorough reviews by Gyllenberg [2007] and Metz and Diekmann [1986]). While the
variable a is often understood to be age, many authors have generalized the idea of
physiological state to include maturity, size, temperature or other measures of physiological
age [Fredrickson et al., 1967; Sinko and Streifer, 1967, 1971]. The McKendrick equation
naturally describes the progression of individuals through an ageing process that can, in
certain cases, be solved along the characteristic curves to yield a DDE. [Bélair et al., 1994;
Craig et al., 2016; Otto and Radons, 2017; Smith, 1993]. If individuals exit the ageing process
after achieving a threshold age (or size, maturity, temperature, etc.), the age structured
PDE can be reduced to a discrete DDE, where the fixed delay represents the time required
for individuals to reach the threshold.

Discrete DDEs have been used extensively in mathematical physiology, especially in the
models of hematopoiesis produced by Mackey and co-workers [Bélair et al., 1994; Bernard
et al., 2003; Colijn and Mackey, 2005a,b; Hearn et al., 1998a; Mackey and Glass, 1977].
These discrete delays represent a fixed time-lag between signal and response in blood
cell production. The use of a fixed delay implicitly assumes that progenitor cells progress
through the ageing and maturation process at a constant rate and ties physiological

1These individuals could be humans, insects, single cells, or a host of other organisms. In what follows,
it may be helpful to consider a single cell progressing through the cell cycle.
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age to chronological age. For example, in two consecutive papers, Colijn and Mackey
developed a discrete DDE model of hematopoiesis, or the production of blood cells, that
includes hematopoietic stem cells (HSCs), the red and white blood cell lineages and the
platelet lineage [Colijn and Mackey, 2005a,b]. HSCs, multipotent progenitor cells that
drive hematopoiesis, differentiate into a specific lineage and undergo a series of divisions
during a proliferative process. This proliferative process is responsible for a lineage
dependent delay between differentiation from the HSCs and appearance in circulation. By
fitting the model to patient data from periodic myeloid leukemia and cyclic neutropenia,
Colijn and Mackey hypothesised that these so–called “dynamical” diseases result from
mysregulation of apoptosis in HSCs. In the second of these papers, Colijn and Mackey
[2005b] fit their model to data from patients receiving treatment of cyclic neutropenia with
a cytokine, granulocyte colony stimulating factor (G-CSF). To replicate the well-known
G-CSF dependent increase in maturation speed, Colijn and Mackey [2005b] included the
neutrophil lineage delay time as a parameter to be fit to treated data. This G-CSF–mediated
increase in maturation speed illustrates a limitation of discrete DDEs: maturation delays
are often variable and subject to external control. This is clearly incompatible with the
fixed and constant delay length of discrete DDEs.

In fact, the physiological age of an individual is only weakly linked to the chronological
age. Further, the physiological age is often dynamically controlled by environmental
factors such as the availability of resources. It is possible to include this dynamic control
of the ageing process by adapting the McKendrick equation to include a variable ageing
velocity, V (t). This ageing velocity modulates how individuals accrue physiological age,
and the modified McKendrick equation becomes

∂tn(t, a) + V (t)∂an(t, a) = −µ(t)n(t, a). (1.2)

Once again, it is possible to solve (1.2) along the characteristics to yield a DDE. However, as
the ageing velocity is now variable, the time required to reach the maturity threshold is also
variable and depends on external control. As a result, the delay time in the resulting DDE
is no longer fixed. Thus, age structured PDEs such as (1.2) are reduced to state dependent
DDEs [Craig et al., 2016, 2015; Mahaffy et al., 1998]. In state dependent DDEs arising from
an age structured PDE such as (1.2), the delay time is sometimes determined implicitly
through an integral condition that generalises the maturation threshold of discrete DDEs.
While state dependent DDEs incorporate the external control of ageing that is present in
many physiological systems, their analysis is considerably more complicated than that of
a constant delay DDE [Câmara De Souza et al., 2018; Cooke and Huang, 1996].

Moreover, typical applications of state dependent DDEs and discrete DDEs implic-
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itly assume that individuals mature, or leave the ageing process, immediately once the
maturation threshold is reached. Given differences between individuals, it seems overly re-
strictive to assume that maturation occurs in this completely deterministic manner. Rather,
intraspecies heterogeneity is likely reflected through a randomly distributed maturation
age, i.e. the individual maturation age is not fixed but rather follows a stochastic process
and is described by a positive random variable. This random variable has a corresponding
probability density function (PDF), or delay kernel, K(t) that distributes the maturation
age of individuals across an interval of physiologically relevant delay times. Thus, the
use of this PDF generalises the deterministic maturation age to the randomly distributed
maturation age. DDEs that use these distributions of delays are called distributed DDEs.

In Figure 1.1, we illustrate the progression of a hypothetical cell towards division. The
accumulation of age is variable, and the ageing rate V (t) in (1.2) is given by the slope curves
at any point in time. If cells mature upon reaching the threshold age, as in the solid curves,
then the delay between birth and reproduction could be modelled as a state dependent
discrete DDE. However, if maturation were to occur randomly with the maturation density
as shown, then individual cells may mature following the dashed lines.

Time

Age

Maturation
age density

Threshold age

d

dt
a(t) = V (t)

Figure 1.1: Illustration of deterministic and random maturation age for individual cells.
Cells increase in age along the curves before maturing at the red dots. Solid curves
represent cells that mature once reaching a threshold age. Dashed curves represent cells
that mature randomly with probability given by the age density shown. The slope of these
curves gives the variable ageing rate V (t). Adapted from Metz and Diekmann [1986].



5

Typical examples of distributed DDEs employ a Erlang random variable for both
the simple biological interpretation and convenient mathematical formulation. Erlang
distributions, or gamma distributions with integer shape parameter j, have a simple inter-
pretation: the concatenation of j processes with exponentially distributed waiting times.
The biological interpretation of this maturation age distribution corresponds to individu-
als progressing through j stages before reaching maturation. This interpretation recalls
McKendrick’s derivation of (1.1) by considering the instantaneous transit of individuals
from one compartment to the next as illustrated in Figure 1.2

Figure 1.2: Transit of individuals between consecutive compartments as used in the
derivation of (1.1). The figure can be used to understand the concatenation of j ageing
processes in Erlang distributed DDEs. Figure from McKendrick [1925]. In the public
domain following A.G McKendrick’s death in 1943.

These gamma distributed DDEs are also mathematically convenient, as they are equiv-
alent to a finite dimensional transit compartment system of ordinary differential equations
(ODEs) through the linear chain technique [Diekmann et al., 2018; MacDonald, 1978; Smith,
2011; Vogel, 1961]. These finite dimensional ODEs model the transit of individuals through
a series of compartments which corresponds to the concatenation of processes with ex-
ponential waiting times. In traditional applications of the linear chain technique, transit
between the compartments must occur at a constant rate that is fixed throughout the
chain. ODE models demonstrating this chain like structure are common in the pharma-
ceutical sciences; however, the direct link between these transit compartment ODEs and
distributed DDEs is not always established. Câmara De Souza et al. [2018] demonstrated
the equivalence of the Friberg model of granulopoiesis with a distributed DDE [Friberg
et al., 2002].

Similar to the variable ageing rate of (1.2), it is possible to conceive of transit compart-
ment models with a variable transit rate between compartments. In fact, the Friberg model
was extended by Quartino et al. [2014] to include the effect of G-CSF on the development of
neutrophil cells through a variable transit rate. Câmara De Souza et al. [2018] established
the equivalence of the Quartino model with a distributed DDE by performing a non-linear
time rescaling to account for this variable transit rate. However, this time rescaling must
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be performed on a model-by-model basis and is not generalisable to transit compartment
models with multiple ageing processes. Transit compartment ODE models with multiple
ageing processes have been used extensively to study the administration of exogeneous
cytokines on the production of blood cells [Pérez-Ruixo et al., 2008; Roskos et al., 2006],
and have not previously been amenable to the linear chain technique, even after time
rescaling.

In Chapter 2, we show how to incorporate both external control of ageing processes and
the maturation heterogeneity in an ageing process by deriving a generic state dependent
distributed DDE. To derive the state dependent distributed DDE, we calculate the hazard
rate, or the rate at which individuals will leave the non-deterministic ageing process from
first principles. A similar expression was obtained through heuristic arguments by Gurney
et al. [1986] without considering the underlying maturation process.

Careful consideration of the maturation rate leads naturally to the “correction factor”
obtained by Craig et al. [2016] for a state dependent DDE. This correction factor ensures
that individuals are not erroneously created or destroyed upon crossing the maturation
threshold in a state dependent DDE. However, Craig et al. [2016] relied on the presence of
this deterministic maturation threshold to derive the correction factor. We generalise their
result to all state dependent distributed DDEs and elucidate the biological interpretation
of the correction factor. Finally, by specifying the PDF K(t), we obtain discrete state
dependent distributed DDEs, uniformly distributed DDEs and state dependent gamma
distributed DDEs. We show how to reduce these state dependent gamma distributed
DDEs to a variable rate transit compartment ODE models. Through two examples, we
show how our technique generalises to transit compartment models with multiple ageing
processes.

MODELLING TUMOUR HETEROGENEITY

Having developed a more general framework for distributed DDEs in Chapter 2, we
consider a more concrete example of hetereogeneity in ageing processes. Specifically,
malignant tumours are composed of a multitude of cancerous cells with distinct genotypes
and phenotypes [Bell and McFadden, 2014; Grzywa et al., 2017; Lawrence et al., 2013;
Lichty et al., 2014]. As with healthy cells, these malignant cells reproduce through mitosis
after successfully completing the cell cycle. The cell cycle duration reflects the intratumour
heterogeneity, as cells of different pheno- and genotypes will progress through the cell
cycle at different rates [Buczacki et al., 2018; Palm et al., 2018; Sandler et al., 2015; Sato
et al., 2016].
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Sato et al. [2016] measured the absolute doubling time of individual cervical cancer
cells from a single cell HeLa3 lineage. The distribution of absolute doubling time recorded
by Sato et al. [2016] is presented in Figure 1.3 (a). Sandler et al. [2015] used Fucci marking,
a fluorescent marker designed to indicate the presence of proteins that indicate progress
through the cell cycle, to study inheritance of the cell cycle duration between mother
and daughter cells. These authors demonstrated that this inheritance, and thus the cell
cycle duration, is governed by a stochastic process [Sandler et al., 2015]. The resulting
heterogeneity in cell cycle duration among parent-daughter pairs is shown in Figure 1.3
(b).

(a) (b)

Figure 1.3: Figure (a): The distribution of absolute doubling times of HeLa cells. The
doubling time is the difference between the the birth and division time of an individual
cell. Taken from Sato et al. [2016] under a Creative Commons Attribution 4.0 International
License. Figure (b): Cell cycle duration of daughter cells plotted against parent cells in a
population of cyanobacteria. Reproduced from Sandler et al. [2015] with permission of
Springer.

Interactions between cancerous and healthy cells are complex, and the immune system
has been tied to cancer progression through the immunoediting hypothesis [Dunn et al.,
2002; Swann and Smyth, 2007]. The immuno-editing hypothesis comprises of three distinct
stages [Dunn et al., 2004]. The first of these stages, the elimination phase, corresponds
to the beginning of cancer, where the immune system is able to effectively eliminate
malignant cells. This immune surveillance exhibits a selection pressure on tumour cells,
as malignant cells that are not susceptible to immune predation gain a fitness advantage
[Dunn et al., 2002, 2004]. The directed evolution of the tumour microenvironment leads to
the second stage, the equilibirum phase, where the immune system and cancerous cells
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co-exist in a delicate balance between immune pressure and selection of immune resistant
strains of tumour cells. Finally, in the escape phase, cancerous cells evolve to evade the
immune system. Here, tumours that have escaped immune pressure grow rapidly, leading
to clinical progression of the disease.

Recent advances in immunotherapy have attempted to reverse the immuno-editing
process by directly modifying the tumour microenvironment. Clinically approved im-
munotherapies include programmed death protein (PD-1) and programmed death ligant
(PDL-1) inhibitors [Mahoney et al., 2015; Sunshine and Taube, 2015]. These inhibitors pre-
vent immune evasion by targeting the binding between immune cells expressing PD-1 with
tumour cell produced PDL-1. Similarly, recent work has investigated the use of cytotoxic
T-lymphocyte antigen 4 (CTLA-4) inhibitors [Ganesh and Massagué, 2018; Rowshanravan
et al., 2017; Seidel et al., 2018]. CTLA-4 inhibitors block binding to the CTLA-4 receptor on
the surface of T-cells and therefore reduce the immuno-suppressive signalling resulting
from the activation of this pathway. An alternative approach is to directly stimulate the
immune system through the administration of pro-inflammatory cytokines that signal and
activate the immune system [Dranoff, 2004; Mellman et al., 2011].

Given the complexity of tumour-immune interactions, it is unlikely that treatment
strategies attacking only one axis will be successful. To this end, recent therapeutic
developments include the creation of genetically engineered viruses [Eissa et al., 2018;
Marelli et al., 2018]. These viruses are designed to prey upon the high reproductive rate
and decreased anti-viral defences characteristic of cancer to preferentially infect malignant
cells [Bartlett et al., 2013; Bell and McFadden, 2014; Bommareddy et al., 2017; Breitbach
et al., 2016; Marelli et al., 2018].

After infection, oncolytic viruses hijack the cellular machinery to reproduce and even-
tually kill the host cancerous cell through lysis [Cassady et al., 2016; Chaurasiya et al.,
2018]. Lysis releases viral progeny back into the tumour microenvironment, leading to
the re-infection of other tumour cells. It was initially thought that lysis would be the
primary mechanism of action of oncolytic viruses [Lichty et al., 2014], and that the immune
system would hinder their effectiveness through an adaptive anti-viral immune response
[Marelli et al., 2018; Russell et al., 2012]. However, oncolytic viruses have been shown to
shrink tumours that are uninjected, and therefore uninfected by the virus [Andtbacka et al.,
2015; Chesney et al., 2018]. This shrinking of the uninfected tumours indicates a systemic
immune response against tumour cells [Bell and McFadden, 2014; Breitbach et al., 2016;
Chaurasiya et al., 2018]. The mechanisms of action of oncolytic viruses are summarized in
Figure 1.4. Thus, to understand oncolytic viruses, it is crucial to understand the interplay
between oncolytic viruses and the in-host immune response.
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Mathematical modelling of tumour-immune interactions has a long history (see San-
tiago et al. [2017]; Walker and Enderling [2016] for reviews). In particular, Kuznetsov
et al. [1994] established a simplified model of tumour-immune interactions in the presence
of activated and de-activated immune cells. They showed that the inactivation of the
immune system can allow for small tumours to “sneak through” immune surveillance and
lead to the establishment of disease, while larger tumours are effectively cleared. Further,
Kirschner and Panetta [1998] modelled the influence of a pro-inflammatory cytokine, inter-
leukin 2 (IL-2), on immune cell function using a simple system of ODEs. Through an in
depth bifurcation analysis of the model, Kirschner and Panetta [1998] determined that IL-2
monotherapy cannot change disease progression. Rather, Kirschner and Panetta [1998]
proposed that combination therapy of IL-2 and adoptive immune cell therapy, namely the
injection of tumour suppressing immune cells, could influence disease progression. Both
Kuznetsov et al. [1994] and Kirschner and Panetta [1998] indicate that the activation of the
immune system against malignant tumours can improve clinical outcome.

To understand the dynamics of anticancer viral therapy, mathematical models of
oncolytic viruses and the immune system have been proposed [Eftimie and Eftimie, 2018;
Jenner et al., 2018; MacNamara and Eftimie, 2015]. Both MacNamara and Eftimie [2015]
and Eftimie and Eftimie [2018] use systems of ODEs to model evolution of the immune
response following cancer virotherapy. MacNamara and Eftimie [2015] demonstrated
the importance of the memory immune cell population in controlling tumour growth,
while Eftimie and Eftimie [2018] studied the influence of tumour promoting and tumour
suppressing macrophages in the tumour microenvironment.

Further, Jenner et al. [2018] used a simplified mathematical model of cancer virother-
apies to study the influence of therapeutic scheduling on disease progression without
including the immune response. In a PDE model of oncolytic virus therapy, Malinzi et al.
[2017] considered oncolytic virus and chemotherapy combination therapy. However, these
models did not explicitly model the subset of cancer cells that are susceptible to viral
infection.

Oncolytic viruses rely on the active portion of the cell cycle to successfully infect
malignant cells and to complete the viral life cycle [Bommareddy et al., 2017; Colao et al.,
2017; Yamashita and Emerman, 2006]. Thus, to study the effect of oncolytic viruses on
tumour cells, it is crucial to know how many cells are actively dividing and are therefore
susceptible to infection. Crivelli et al. [2012] developed a mathematical model of a oncolytic
virus that explicitly includes the susceptible population of tumour cells by using a discrete
DDE. However, as previously mentioned, the use of a discrete DDE implicitly assumes
homogeneity in the cell cycle duration of tumour cells. In Chapter 3, we address this
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Figure 1.4: The mechanism of action of oncolytic viruses. Infectious virions preferen-
tially infect and reproduce inside malignant tumour cells. Virions reproduce inside the
infected cell, leading to tumour cell lysis and the release of viral progeny into the tumour
microenvironment.

simplification by using a distributed DDE to model the cell cycle duration heterogeneity
inherent to the tumour cell population. We demonstrate that including cell cycle duration
heterogeneity drastically changes the model predictions, and quantify the importance of
cell cycle duration heterogeneity in disease progression.

Moreover, the Crivelli model does not include the immune system. To replicate the
ability of oncolytic viruses to cause disease remission, Crivelli et al. [2012] used a non-
differentiable function to model infection of tumour cells. Conversely, we explicitly include
the immune system and demonstrate that immune involvement determines the long-term
disease outcome. Specifically, by linearising the DDE about the disease free state, we
show that the local stability of the cancer free equilibrium is determined by the immune
involvement. Further, we establish that the cancer free equilibrium loses stability through
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a transcritical bifurcation corresponding to a transient decrease in immune recognition of
cancerous cells. Then, by including oncolytic virus therapy, we show that the degree of
immune involvement determines treatment success or failure.

USING MATHEMATICAL MODELLING TO OPTIMIZE ONCOLYTIC V IRUS THERAPY

While the use of viruses as a cancer treatment dates back to at least the 1950s [Hoster et al.,
1949], the first oncolytic virus, talimogene laherparepvec (T-VEC), was approved by the
United States Food and Drug Administration in 2015 for patients with late stage melanoma
[Andtbacka et al., 2015; Pol et al., 2016; Rehman et al., 2016]. T-VEC is a genetically
modified herpes virus that preferentially infects tumour cells. Cancerous cells typically
have defective anti-viral defences due to decreased protein kinase R (PKR) activity. In
normal cells, PKR activation terminates viral replication and wild-type herpes viruses
have evolved to counteract PKR activity through the infected cell protein 34.5 (ICP 34.5)
[Bommareddy et al., 2017; Rehman et al., 2016]. In T-VEC, the genes encoding for ICP 34.5
are replaced by the genes that encode the production of granulocyte-macrophage colony
stimulating factor (GM-CSF) [Andtbacka et al., 2015; Bommareddy et al., 2017; Kaufman
et al., 2014; Rehman et al., 2016]. Thus, lytic tumour cells release GM-CSF into the tumour
microenvironment to recruit and activate immune cells.

The clinical development of T-VEC began with a phase I trial in 2006 and culminated in
the OPTiM trial that led to the approval of T-VEC monotherapy in 2015 [Andtbacka et al.,
2015; Hu et al., 2006]. This trial compared T-VEC monotherapy against the subcutaneous
administration of GM-CSF and involved the recruitment of 437 patients from May 2009
to July 2011 [Clinical Trial Registry: NCT00769704]. The OPTiM trial demonstrated a
significantly increased durable response rate –the objective treatment response lasting
longer than 6 months– as well as a longer overall survival in patients receiving T-VEC
against GM-CSF [Andtbacka et al., 2015]. Further, patients receiving T-VEC demonstrated
indications of systemic anti-tumour immunity in the form of reduced uninjected lesions.

Given the mechanism of action of oncolytic viruses, it is reasonable to expect that
oncolytic viruses and immunotherapies may act synergistically to engender an anti-tumour
immune response [Bell and McFadden, 2014; Guo and Bartlett, 2014; Lawler and Chiocca,
2015]. Thus, recent work has studied possible oncovirus-immunotherapy combination
therapies [Chaurasiya et al., 2018; Chesney et al., 2018; Martin and Bell, 2018]. For example,
Chesney et al. [2018] investigated the combination of T-VEC with a immune checkpoint
inhibitor and showed improved patient outcomes against immunotherapy alone in a phase
II trial.
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However, these combination therapies can impose high treatment burden on patients
and increase overall treatment toxicity [Chesney et al., 2018; Martin and Bell, 2018]. Accord-
ingly, determining a reasonable treatment schedule is extremely important to maximize
treatment effect while minimizing therapy burden. However, testing all reasonable combi-
nation treatment schedules in humans is prohibitively expensive and optimal scheduling
of virotherapies and immunotherapies remains an open problem. In silico clinical trials
address this problem by using computational biology techniques to perform virtual clinical
trials [Agur, 2010; Allen et al., 2016; Schmidt et al., 2013; Walker and Enderling, 2016].

Virtual clinical trials mimic clinical trials by selecting a cohort of virtual patients and
studying the effectiveness of a proposed treatment on patient outcome [Allen et al., 2016;
Barish et al., 2017; Walker and Enderling, 2016]. The creation of a virtual population
attempts to combat uncertainty in parameter estimation in computational biology models
[Allen et al., 2016]. As shown in Chapter 4, in silico trials also allow researchers to test
the impact of different therapy strategies on the same virtual patient. Thus, these virtual
clinical trials can be used to investigate alternative treatment schedules, personalise therapy
and evaluate the toxicity of combination therapies [Agur, 2010]. However, translating the
results of an in silico clinical trial to the clinic has been difficult [Walker and Enderling,
2016].

The remarkable success of a simple evolutionary game theory model in deriving
an adaptive treatment schedule for patients with metastatic prostate cancer indicates
the possible power of mathematical modelling in oncology [Zhang et al., 2017]. Zhang
et al. [2017] modelled three separate populations of prostate cancer cells, including a
lineage resistant to anti-androgen therapy. Through the use of this model, they adopt a
treatment schedule that attempts to limit the development of a resistant population. In
short, treatment is suspended when the prostate specific antigen (PSA), a biomarker for
prostate cancer, reaches 50% of pretreatment value. Treatment is suspended until PSA
once again reaches pre-treatment levels and the cycle is repeated. In an on-going phase
I clinical trial, Zhang et al. [2017] report significant improvements when compared to a
similar cohort receiving the standard of care.

The success of the Zhang et al. [2017] trial indicates the ability of computational
biology models to explore novel treatment schedules. However, no one virtual patient
will precisely represent a human being. Rather, by using the insights gained through
mathematical modelling, we aim to identify the underlying themes of successful treatment
schedules and translate these themes into actionable therapeutic strategies. In Chapter 4,
we investigate the synergy between oncolytic viruses and the administration of GM-
CSF. We first simulate a in silico clinical trial following the same treatment scheduling
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as Andtbacka et al. [2015]. The cohort of virtual patients was comprised of 300 sets of
identical triplets and divided into three arms of 300 identical virtual patients. We then
used a genetic algorithm to create optimal treatment schedules for each of the 300 virtual
patients. As in reality, an optimal treatment schedule must both be effective and tolerable.
Thus, we constrained our treatment schedule to respect the maximum tolerated doses.

These optimized treatment schedules are personalised to each of the 300 virtual patients.
To test effectiveness and generalisability of our results, we created 200 new virtual patients
and used the optimized treatment schedules to create a predictive treatment schedule for
these new patients. This predictive treatment schedule significantly improves survival
time, but, as we discuss in Chapter 4, would be ethically questionable to implement in the
clinic. However, by investigating the distribution of dose size and frequency, we propose a
maintenance type treatment schedule that uses immunotherapy to maintain an immune
response between doses of viral therapy. This maintenance schedule has a reduced drug
burden and offers comparable survival to the predictive schedule without the ethical
considerations. The improved survival offered by the maintenance treatment schedule
underlines the ability of mathematical modelling to propose and test rational treatment
regimens.

SUMMARY

In short, we address the question of accurately modelling delayed processes that include
heterogeneity or stochastic effects through the development of distributed DDE models
of physiological processes. The following three chapters, each a distinct publication,
describe a method to include both external control and heterogeneity in mathematical
models of delayed physiological processes. Through a combination of analytical and
numerical techniques, each chapter illustrates the physiological relevance of distributed
DDE models. This work provides increased insight into hematopoietic cell production,
malignant tumour-immune interaction and the development of improved anti-cancer
strategies and indicates the importance of appropriately modelling the heterogeneous
and variable nature of physiological delays. Finally, in Chapter 5, we summarise our
contributions and indicate directions for future work.





CHAPTER 2

EQUIVALENCES BETWEEN AGE STRUCTURED MODELS AND STATE

DEPENDENT DISTRIBUTED DELAY DIFFERENTIAL EQUATIONS

In this chapter, we lay the theoretical framework for the remainder of this thesis and
develop a generic mathematical model that includes both heterogeneity in delay times
and external control of ageing velocity. Starting from the McKendrick age structured PDE
(1.2) and relaxing the assumption of a threshold maturation age, we derive a generic state
dependent distributed DDE. We show that the generic state dependent distributed DDE
is well defined as a population model and preserves non-negativity of initial data. By
performing a linear stability analysis of the scalar DDE, we study the qualitative behaviour
of the state dependent distributed DDE near equilibrium.

Finally, for a given maturation density KA(t), we show that the state dependent dis-
tributed DDE can be reduced to an equivalent formulation that is more suitable to numeri-
cal simulation. In this sense, we show that modellers can convert between state dependent
distributed DDEs, which are amendable to analytical investigation, and equivalent for-
mulations of the same model which are simpler to simulate numerically. To illustrate the
benefits of this equivalence, we consider two large systems of ODEs used in the pharma-
ceutical sciences and convert these models to their equivalent state dependent distributed
DDE formulation. This chapter appears in the special issue Recent Advances in Mathematical
Population Dynamics published in Mathematical Biosciences and Engineering.

There are a number of typos that persist in the published version of this chapter. Here,
we address these mistakes and show that they have no bearing on the conclusions of this
chapter.

1. On page 30, we define the expected delay time as

τ ∗ =
∫︂ ∞

0
tKA(V ∗

At)dt.

This definition confuses time and age and is incorrectly stated. Rather, the random variable
A represents the maturation age. Thus, the expected maturation age is

T =
∫︂ ∞

0
aKA(a)da.

As we state, the expected time delay τ ∗ should satisfy V ∗
a τ

∗ = T . Thus, the proper definition

15
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of τ ∗ is
τ ∗ = 1

V ∗
a

∫︂ ∞

0
aKA(a)da,

and using the natural change of variable a = V ∗
a t gives

τ ∗ =
∫︂ ∞

0
V ∗
a tKA(V ∗

a t)dt.

2. The integration variable used in the discussion of the correction factor is misstated.
Rather, the equation

∫︂ ∞

0
h(at(φ))n(t, at(φ))dφ =

∫︂ ∞

0
βx(t− φ) Va(t)

Va(t− φ) exp
[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
KA(σ)dφ.

should read∫︂ ∞

0
h(at(φ))n(t, at(φ))dφ =

∫︂ ∞

0
βx(t− φ) Va(t)

Va(t− φ) exp
[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
KA(at(φ))dφ.

This typo has no impact on any results or discussion in this chapter.

3. In Section 2.4.3, we scale the ageing velocity Va(t) by the homeostatic ageing rate
to define V̂ a(t). We then use V̂ a(t) in the derivation of Ag(t). The introduction of the
homeostatic scaling velocity leads to a series of typos, and is unnecessary.

After scaling, the ageing velocity of immature individuals is V̂ a(t). Therefore, the
gamma distributed DDE (2.39) should read

d
dt
x(t) = F

[︂
x(t), V̂ a(t)Ag(t)

]︂
− γ(x(t))x(t)

x(s) = ρ(s), s ∈ (−∞, t0].

This change should propagate to the finite dimensional representation of x(t). Thus,
Theorem 2.4.4 should also include the scaled ageing velocity and the correct differential
equation for x(t) is

d
dt
x(t) = F (x(t), V̂ a(t)xj(t)) − γ(x(t))x(t).

Similarly, the definition of xi(t) in (2.41) must include the scaled ageing velocity and
should read

xi(t) =
∫︂ t

−∞
giV ∗

a
(at(t− φ))βx(φ)

V̂ a(φ)
exp

[︃
−
∫︂ t

φ
µ(x(s))ds

]︃
dφ.

The corrected definition of xi ensures that xj(t) = Ag(t) as claimed. It is important to
mention that the neither the results nor the derivations of Section 2.4.3 are impacted by
these typos, nor is the age scaling necessary in Theorem 2.4.4.
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In fact, we now show it is simple to rederive those results without rescaling the ageing
velocity. Consider the generic gamma distributed DDE

d
dt
x(t) = F (x(t), Va(t)Λg(t)) − γ(x(t))x(t)

where
Λg(t) =

∫︂ ∞

0
gjb

(︃∫︂ t

t−φ
Va(s)ds

)︃
βx(t− φ)
Va(t− φ) exp

[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
dφ.

By defining

χi(t) =
∫︂ ∞

0
gib

(︃∫︂ t

t−φ
Va(s)ds

)︃
βx(t− φ)
Va(t− φ) exp

[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
dφ,

we immediately see that Λg(t) = χj(t). By repeating the proof of Lemma 2.4.3 verbatim, it
is clear that that

d
dt
χ1(t) = βx(t)

Va(t)
− bVa(t)χ1(t) − µ(x(t))χ1(t)

d
dt
χi(t) = bVa(t) [χi−1(t) − χi(t)] − µ(x(t))χi(t) for i = 2, 3, ..., j.

Thus, the scaled ageing velocity V̂ a(t) used in Section 2.4.3.1 is not necessary. However,
most transit compartment models with variable transit speed in the literature explicitly
write the velocity Va(t) and not the product bVa(t). In such cases, including the examples
considered in Section 2.5, it is simpler to use the scaled velocity V̂ a(t).
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Abstract

We use the McKendrick equation with variable ageing rate and randomly dis-

tributed maturation time to derive a state dependent distributed delay differential equa-

tion. We show that the resulting delay differential equation preserves non-negativity

of initial conditions and we characterise local stability of equilibria. By specifying

the distribution of maturation age, we recover state dependent discrete, uniform and

gamma distributed delay differential equations. We show how to reduce the uni-

form case to a system of state dependent discrete delay equations and the gamma

distributed case to a system of ordinary differential equations. To illustrate the benefits

of these reductions, we convert previously published transit compartment models into

equivalent distributed delay differential equations.
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2.1 INTRODUCTION

Age structured population models have been used extensively in mathematical biology
throughout the past 90 years [McKendrick, 1925; Trucco, 1965] (see Metz and Diekmann
[1986] for a review). These age structured models describe the progression of individuals
through an ageing process by using partial differential equations (PDEs), that can, in
certain cases, be reduced to a delay differential equation (DDE) [Craig et al., 2016; Metz and
Diekmann, 1986; Smith, 1993]. When individuals exit the ageing process in a deterministic
manner upon reaching a threshold maturation age, the age structured model is typically
reduced to a discrete DDE.

In many populations, the speed at which an individual matures is often only weakly
coupled to chronological time and is dynamically controlled by the availability of re-
sources. Consequently, when considering the age of an individual in a population, it is
the biological age – and not the chronological age– that is of interest. It is possible to
allow for this dynamic accumulation of biological age by including a variable ageing rate
in an age structured PDE model. PDE models with variable ageing rates and threshold
maturation rates can be reduced to state dependent discrete DDEs. State dependent delays
considerably complicate the study of these models, but incorporate external control of the
maturation process and increase physiological relevance.

However, imposing a threshold maturation age does not account for population het-
erogeneity and implicitly assumes a homogeneous maturation age. Given the importance
of individual differences in a population, it is important that intraspecies heterogeneity
is included in mathematical models. In light of these observations, we develop a tech-
nique to explicitly incorporate maturation age heterogeneity and external control of age
accumulation by providing a framework for state dependent distributed DDEs. State de-
pendent distributed DDEs account for a measure of population heterogeneity not present
in discrete DDE models while retaining external control of the ageing process. Therefore,
distributed DDEs offer a physiologically more realistic manner to model ageing processes
in populations [Cassidy and Humphries, 2019].

To derive a state dependent distributed DDE, we consider a general age structured
model with a variable ageing rate. We eschew a deterministic maturation process (which
would lead to state dependent discrete DDEs), and instead assume that maturation age
is a positive random variable A. This random variable defines a density function KA(t)
through

KA(t) = lim
∆t→0

P [t ≤ A ≤ t+ ∆t]
∆t , (2.1)
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which satisfies ∫︂ ∞

0
KA(t)dt = 1 and KA(t) ≥ 0 ∀t ≥ 0.

As shown by Craig et al. [2016], Otto and Radons [2017], and Bernard [2016], replacing
existing discrete delays with state dependent delays requires careful attention to how
solutions pass across the maturation boundary. Craig et al. [2016] derived a “correction”
factor to ensure that individuals are not spuriously created or destroyed during maturation.
Our work generalises the correction factor derived by Craig et al. [2016] for state dependent
discrete DDEs to any state dependent DDE. Specifically, our derivation does not rely on
a smoothness argument, but arises naturally from the age structured PDE after a careful
derivation of the maturation rate.

We show how the age structured PDE can be reduced to a state dependent distributed
DDE. For specific densities KA(t), we show equivalence between the state dependent
distributed DDE and state-dependent discrete DDEs with one or two delays or a finite
dimensional systems of ordinary differential equations (ODEs). These equivalences arise
from the explicit consideration of the ageing process modelled by the distributed DDEs. By
applying the linear chain technique to the age variable, instead of the time variable, we are
able to establish the desired equivalences. As there is not an available all purpose numerical
method capable of solving distributed DDEs, these equivalences allow for the model to
be analysed as a DDE and simulated using the highly efficient established techniques for
discrete DDEs or ODEs. To illustrate the benefits of the techniques developed here, we
consider two previously published models of hematopoietic cell production and show
how using distributed DDEs can simplify the analysis of the resulting model.

The structure of the article is as follows. In Section 2.2, we study the McKendrick
equation for a generic population with a variable ageing rate and random maturation
time. By solving the PDE using the method of characteristics, we derive a state-dependent
distributed DDE for the general density KA(t) in Theorem 2.2.1. We discuss the natu-
rally arising correction factor in Section 2.2.1. To illustrate the benefits of reducing age
structured models to DDEs, we show that the resulting DDE preserves non-negativity of
initial conditions and perform stability analysis to study the local stability of equilibria
in Section 2.3. By specifying KA(t) to be a degenerate distribution, we recover a state-
dependent discrete DDE in Section 2.4.1. Next, we consider uniform distributions and the
equivalent two delay DDE in Section 2.4.2. In Section 2.4.3, we study a gamma distributed
DDE. Through a generalization of the linear chain technique to include a variable transit
rate, we show how this gamma distributed DDE can be reduced to a finite dimensional
system of transit compartment ODEs in Section 2.4.3.1. In Section 2.5, we formalize the link
between variable transit rate compartment models and state dependent delayed processes
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by converting two previously published transit compartment models to the corresponding
distributed DDEs. Finally, we summarize our results with a brief conclusion.

2.2 FROM MCKENDRICK TYPE EQUATIONS TO STATE DEPENDENT DELAYS

Consider a population divided into immature and mature compartments in which only
mature individuals reproduce. Let n(t, a) denote the number of immature individuals at
time t with age a and x(t) denote the number of mature members of the population at time
t. The purpose of this section is to establish a state dependent distributed DDE model for
x(t).

We begin with an age structured PDE for the immature population, n(t, a). Immature
individuals progress through maturation with a variable ageing rate Va(t), where Va(t)
satisfies

0 < V min
a ≤ Va(t) ≤ V max

a < ∞.

Following McKendrick [1925], the PDE describing n(t, a) is

∂tn(t, a) + Va(t)∂an(t, a) = − [µ(x(t)) + h(a)]n(t, a)

Va(t)n(t, 0) = βx(t) t ≥ t0; n(t0, a) = f(a) ≥ 0 ∀a ∈ (0,∞).

⎫⎬⎭ (2.2)

The boundary condition Va(t)n(t, 0) = βx(t) that we impose links the creation of im-
mature individuals n(t, 0) with the birth rate βx(t). The presence of Va(t) in this boundary
term can be understood from the conveyor belt analogy [Bernard, 2016; Mahaffy et al.,
1998]. In the following, we assume β > 0. The initial conditions n(t0, a) = f(a) ≥ 0,
describes immature individuals with non-zero age at time t0.

The death rate of immature individuals is given by µ(x(t)) while transition from the
immature state to the mature state is modelled by h(a). It is important to note that the
transition rate is a function of the age of individuals at time t. Since we expect a link
between time and physiological age, we will write a(t). Later, we formalize the weakly
coupled relationship between biological and chronological age and justify this notation by
finding the characteristics of (2.2).

We begin by deriving the transition rate from immaturity to maturity, h(a(t)). As men-
tioned, we assume that the age at which an individual matures is a non-negative random
variable A with density function KA(t). The transition rate, h(a(t)), is the instantaneous
change in probability that an individual matures at age a(t+ ∆t), given that the individual
has not matured at age a(t). Formally, using the definition of conditional probability,

h(a(t)) = lim
∆t→0

P [a(t) ≤ A ≤ a(t+ ∆t) | A ≥ a(t)]
∆t = lim

∆t→0

P [a(t) ≤ A ≤ a(t+ ∆t)]
P[A ≥ a(t)]∆t .



22

Multiplying by unity gives

h(a(t)) = 1
P[A ≥ a(t)] lim

∆t→0

P [a(t) ≤ A ≤ a(t+ ∆t)]
[a(t+ ∆t) − a(t)]

[a(t+ ∆t) − a(t)]
∆t .

By (2.1) and the derivative of a(t), we obtain

h(a(t)) = KA(a(t))
1 −

∫︁ a(t)
0 KA(σ)dσ

d
dt
a(t). (2.3)

The transition (or maturation) rate, h(a(t)), is known as the hazard rate of the random
variable A and has applications in modelling failure rates [Cox, 1972; Kaplan and Meier,
1958]. The identical expression for h(a(t)) without considering the conditional maturation
probability was derived by Metz and Diekmann [1986].

It is possible that immature individuals create multiple mature individuals upon
transitioning to the mature compartment (i.e mitosis), so we model the influx rate into the
mature compartment as a function

F
(︃
x(t),

∫︂ ∞

0
h(s)n(t, s)ds

)︃
,

where the integral term ∫︂ ∞

0
h(s)n(t, s)ds (2.4)

is the number of immature individuals that reach maturity at time t. If mature individuals
are cleared at a population dependent rate γ(x(t)), then the mature population satisfies

d
dt
x(t) = F

(︃
x(t),

∫︂ ∞

0
h(s)n(t, s)ds

)︃
− γ(x(t))x(t)

x(0) = x0.

⎫⎪⎪⎬⎪⎪⎭ (2.5)

We are now able to establish equivalence between the system of equations describing
the populations x(t) and n(t, a) and a distributed DDE. To do this, we partially solve the
PDE (2.2) using the method of characteristics.

Theorem 2.2.1 (State-Dependent Distributed DDE). Let the immature population n(t, a) satisfy
the McKendrick age structured PDE (2.2) with the distribution dependent transition rate h(a(t))
(2.3). Assume that the mature population x(t) is given by (2.5).
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Then, the mature population x(t) satisfies the initial value problem (IVP)

d
dt
x(t) = F

(︄
x(t),

∫︂ ∞

0
βx(t− φ) Va(t)

Va(t− φ) exp
[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
KA

(︃∫︂ t

t−φ
Va(s)ds

)︃
dφ
)︄

− γ(x(t))x(t)
(2.6)

with initial data
x(s) = ρ(s) ∀s ∈ (−∞, t0].

Proof. The characteristics of equation (2.2) satisfy

d
dφ

t(φ) = 1, and
d
dt
a(t) = Va(t), (2.7)

and hence are given by

t = φ+ T0 and a(t) =
∫︂ t

T0
Va(x)dx+ a0.

Along the characteristics, the age structured PDE (2.2) becomes

d
dt
n(t, a(t)) = −

[︄
µ(x(t)) + KA(a(t))

1 −
∫︁ a(t)

0 KA(σ)dσ
Va(t)

]︄
n(t, a(t)). (2.8)

Equation (2.8) has solution

n(t, a(t)) = n(T0, a0) exp
[︃
−
∫︂ t

T0
µ(x(s))ds

]︃ (︄
1 −

∫︂ a(t)

0
KA(σ)dσ

)︄
.

If a0 = 0, we use the boundary condition of (2.2) to find

n(t, a(t)) = βx(T0)
Va(T0)

exp
[︃
−
∫︂ t

T0
µ(x(s))ds

]︃ (︄
1 −

∫︂ a(t)

0
KA(σ)dσ

)︄
, (2.9)

while, if a0 > 0, the initial condition of (2.2) gives

n(t, a(t)) = f(a0) exp
[︃
−
∫︂ t

t0
µ(x(s))ds

]︃ (︄
1 −

∫︂ a(t)

0
KA(σ)dσ

)︄
.

To establish an equivalence between the PDE (2.2) and the distributed DDE (2.6), it is
necessary to define suitable initial data x(s) = ρ(s) for s < t0 for the DDE. To do this, it
is natural to assume that an an immature individual with positive age a > 0 at time t0
was born at sometime s < t0. Since the PDE (2.2) is not defined for s < t0, we are free to
prescribe fixed values for Va(s) = V ∗

a and µ(x(s)) = µ∗ for s < t0. Then, imposing that
individuals born at time s < t0 evolved according to the McKendrick Equation, we have
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a = V ∗
a (t0 − s), or s = t0 − a/V ∗

a . Hence, the initial condition f(a) defines the history
function ρ through

f(a) = β

V ∗
a

ρ(t0 − a/V ∗
a ) exp

[︄∫︂ t0

t0−a/V ∗
a

−µ∗ds
]︄
. (2.10)

Therefore defining x(s) = ρ(s) this way, for s < t0, the solution (2.9) applies.

Now, we finalize the link between the age structured PDE and the distributed DDE
by following the characteristic curves until they intersect with the a = 0 axis. Along the
characteristic curves, at time t, individuals born at time T0 = t− φ have age

at(φ) =
∫︂ t

T0
Va(x)dx =

∫︂ t

t−φ
Va(x)dx

for φ > 0. So we have

n(t, at(φ)) = βx(t− φ)
Va(t− φ) exp

[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃ (︄
1 −

∫︂ at(φ)

0
KA(σ)dσ

)︄
.

At time t, the rate at which individuals mature is∫︂ ∞

0
h(at(φ))n(t, at(φ))dφ =

∫︂ ∞

0
KA(at(φ))βx(t− φ) Va(t)

Va(t− φ) exp
[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
dφ.

(2.11)

By defining, for any density KA(t),

AK(x(t)) :=
∫︂ ∞

0
KA(at(φ))βx(t− φ)

Va(t− φ) exp
[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
dφ, (2.12)

we have ∫︂ ∞

0
h (at(φ))n (t, at(φ)) dφ = Va(t)AK(x(t)).

Consequently, using (2.12) and defining the history ρ(s) according to (2.10), we have
established the equivalence between the system of (2.2) and (2.5) with the distributed DDE
(2.6).

2.2.1 Accounting for the Random Maturation Threshold

Further inspection of equation (2.11) reveals a ratio of ageing speeds Va(t)/Va(t− φ) in the
integral term

∫︂ ∞

0
h(at(φ))n(t, at(φ))dφ =

∫︂ ∞

0
βx(t− φ) Va(t)

Va(t− φ) exp
[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
KA(σ)dφ.
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The ratio of ageing velocities at the entrance and exit of the ageing process acts as a
correction factor. As shown by Bernard [2016] and Craig et al. [2016], models without
the correction factor allow for spurious creation of individuals during maturation and
some state-dependent DDEs have missed this important correction factor. Solutions of
models without this correction factor do not necessarily preserve nonnegativity of initial
data Bernard [2016].

Craig et al. [2016] derived the correction factor by carefully accounting for the number of
cells crossing the maturation threshold in a discrete state-dependent DDE. In discrete DDEs,
individuals mature following a deterministic process after accruing a specific threshold
age, so the maturation boundary is well-defined. The derivation of the correction factor
was based on the smoothness of the solution crossing the fixed maturation boundary.
However, the idea of a fixed maturation boundary does not extend to random maturation
ages. Consequently, the derivation of the correction factor by Craig et al. [2016] does not
generalise to generic distributed DDEs.

Our derivation of the state-dependent distributed DDE produces the same correction
factor through the instantaneous maturation probability, h(a(t)). The derivation of h(a(t))
in equation (2.3) produces the term Va(t) by accounting for the change of maturation
probability due to the variable accumulation of age at time t. For a degenerate distribution,
as shown in Section 2.4.1, we obtain precisely the same ratio as Craig et al. [2016].

2.3 PROPERTIES OF STATE DEPENDENT DELAY DIFFERENTIAL EQUATIONS

Replacing an age structured PDE by a DDE eliminates the need to explicitly model the
ageing populations, which can be difficult to measure experimentally. DDEs offer a natural
framework that explicitly incorporates delays and identifies the relationship between the
current and past states. This can facilitate communication between mathematical biologists
and biologists and physiologists. In particular, the explicit presence of the delay term
allows for simple calculation of mean delay time. As shown Câmara De Souza et al. [2018],
models of delayed processes without DDEs do not always accurately calculate the mean
delay time. However, DDEs typically define infinite dimensional semi-dynamical systems,
which can introduce mathematical difficulties.

As we have seen in Theorem 2.2.1, partially solving an age structured PDE may lead to
a DDE. As such, analysing these partially solved systems can be simpler than studying the
corresponding PDE. As an example, we analyse the state-dependent distributed DDE in
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equation (2.6). Define

x̄(t) = Va(t)AK(t) = Va(t)
∫︂ ∞

0
KA(at(φ))βx(t− φ)

Va(t− φ) exp
[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
dφ, (2.13)

and consider the IVP

d
dtx(t) = F [x(t), x̄(t)] − γ(x(t))x(t) t > t0

x(s) = ρ(s) s ∈ (−∞, t0],

⎫⎬⎭ (2.14)

where F (x, y) ∈ C1(R2,R) and γ(x(t)) ∈ C1(R,R) with

F (x, y) > 0 if x > 0 or y > 0, F (0, 0) = 0, and γ(x(t)) < γmax < ∞. (2.15)

We recall that A is the random variable representing the maturation age of immature
individuals. The history function, ρ(s), is chosen to belong to the space L1(A) where

KA(t) = dA
dλ

,

and λ is the Lebesgue measure on R. L1(A) satisfies the axioms for a phase space given
by Hale and Verduyn Lunel [1993] and Hino et al. [1991], so the solution of the IVP (2.14)
exists and is unique in L1(A). In population modelling, it is likely that any realistic history
is uniformly continuous and bounded. The space of bounded and uniformly continuous
functions is a subspace of L1(A) and is a suitable phase space.

The age structured PDE (2.2) describes population dynamics in the presence of a
maturation time. Consequently, solutions of (2.14) must represent a population, and in
particular, remain non-negative. However, the presence of delays in other models may lead
to solutions that do not remain non-negative, as noted by Liu et al. [2007]. We begin our
analysis by showing that the solution of the IVP (2.14), x(t), evolving from non-negative
initial conditions remains non-negative. This property is a natural requirement for models
of population dynamics.

Proposition 2.3.1. Let F (x, y) and γ(x(t)) satisfy equations (2.15). Moreover, assume that the
history function satisfies

ρ(s) ≥ 0 ∀s ∈ (−∞, t0].

Then, the solution of the IVP (2.14) remains non-negative for all time t > t0.

Proof. As ρ(s) ≥ 0, it is simple to see that

x̄(t0) = Va(t0)
∫︂ ∞

0
KA(at0(φ))βρ[t0 − φ]

Va(t0 − φ) exp
[︃
−
∫︂ t0

t0−φ
µ(x(s))ds

]︃
dφ ≥ 0.
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We have a series of cases.

1) If ρ(t0) = x(t0) > 0 then F (x(t0), x̄(t0)) > 0. Therefore,

d
dt
x(t) = F (x(t), x̄(t)) − γ(x(t))x(t) ≥ −γ(x(t))x(t) > −γmaxx(t)

and using Gronwall’s inequality, we have

x(t) ≥ ρ(t0) exp (−γmax[t− t0]) > 0.

2) If ρ(t0) = 0 and ρ(s) = 0 A-almost everywhere in (−∞, t0), then x(t) = 0 is the
solution of the IVP.

3) Finally, if ρ(t0) = 0 and ρ(s) > 0 on a set of A-positive measure in (−∞, t0) then
x̄(t0) > 0 and

d
dt
x(t)

⃓⃓⃓⃓
⃓
t=t0

= F (x(t0), x̄(t0)) − γ(t0)x(t0) = F (0, x̄(t0)) > 0.

Consequently, x(t) becomes positive immediately and Case 3 reduces to Case 1.

Therefore, solutions of the IVP (2.14) remain non-negative for all time t > t0.

2.3.1 Linearisation of the DDE

We continue the analysis of equation (2.6) by studying the local stability of equilibrium
solutions. To do this, let x∗(t) = x∗ ∈ L1(A) be an equilibrium of the IVP (2.14), so

F (x∗, x̄∗) = γ(x∗)x∗. (2.16)

At the equilibrium x(t) = x∗, Va(t) = V ∗
a , so

at(φ) =
∫︂ t

t−φ
Va(s)ds = V ∗

a φ and
Va(t)

Va(t− φ) = 1

then, by evaluating (2.13) with x(t) = x∗, the homeostatic delayed term x̄∗ in (2.16) satisfies

x̄∗ =
∫︂ ∞

0
βx∗KA(V ∗

a φ) exp [−µ∗φ] dφ = β

V ∗
a

x∗L[KA](µ∗/V ∗
a ),

where L[f ](s) is the Laplace transform of f(x) evaluated at s.

Hence, x̄∗ is a function of the density KA(t). However, if desired, it is possible to vary
the homeostatic death rate µ∗ to ensure that the equilibria value x∗ does not change for
different densities KA(t) as shown by Cassidy and Humphries [2019].

Set z(t) = x(t) − x∗, and for z(t) small– similar to the discrete state dependent delay
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case considered by Hartung et al. [2006]– freeze the ageing and clearance rates at their
homeostatic values, so Va(t) = V ∗

a and µ(s) = µ∗. By expanding exponential integral
to leading order following Cassidy and Humphries [2019], it is possible to relax the
assumption that µ(s) = µ∗. Now, define z̄(t) = x̄(t) − x̄∗ so that

z̄(t) =
∫︂ ∞

0
KA(V ∗

a φ)βx[t− φ] exp [−µ∗φ] − βx∗KA(V ∗
a φ) exp [−µ∗φ] dφ

=
∫︂ ∞

0
KA(V ∗

a φ)βz[t− φ] exp [−µ∗φ] dφ, (2.17)

and the equilibrium is translated to the origin. Then, the differential equation for z(t) is

d
dt
z(t) = F (z(t) + x∗, z̄(t) + x̄∗) − γ(x(t))z(t) − γ(x(t))x∗.

By making the ansatz
z(t) = Ceλt,

we compute the expression for z̄(t) from (2.17)

z̄(t) = Cz(t)
∫︂ ∞

0
KA(V ∗

a φ)βe−λφ [exp [−µ∗φ]] dφ

= Cz(t) β
V ∗
a

L[KA]([µ∗ + λ]/V ∗
a ).

Therefore

d
dt
z(t) = k1z(t) + k2

β

V ∗
a

L[KA]([µ∗ + λ]/V ∗
a )z(t) − γ∗z(t) + O(z2)

where γ∗ = ∂xγ(x(t))|x=x∗ , k1 = ∂aF (a, b)|(x,x̄) and k2 = ∂bF (a, b)|(x,x̄). Dropping nonlinear
terms, the linearised equation is

d
dt
z(t) = (k1 − γ∗)z(t) + k2

β

V ∗
a

L[KA]([µ∗ + λ]/V ∗
a )z(t). (2.18)

The characteristic equation corresponding to (2.18) is

0 = λ− (k1 − γ∗) − k2
β

V ∗
a

L[KA]([µ∗ + λ]/V ∗
a ). (2.19)

Through a standard analysis, we study the local stability of the equilibrium x∗ for a
density KA(t).

Proposition 2.3.2. 1) If

|k2|
β

V ∗
a

L[KA](µ∗/V ∗
a ) < γ∗ − k1,
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the equilibrium point x∗ is locally asymptotically stable.

2) If

k2
β

V ∗
a

L[KA](µ∗/V ∗
a ) > γ∗ − k1,

the equilibrium point x∗ is unstable.

Proof. 1) Let λ∗ be a root of (2.19) and assume for contradiction that ℜ(λ∗) ≥ 0. We
necessarily have

λ∗ = (k1 − γ∗) + k2
β

V ∗
a

L[KA]([µ∗ + λ∗]/V ∗
a ),

and we calculate

ℜ(λ∗) = (k1 − γ∗) + k2
β

V ∗
a

ℜ [L[KA]([µ∗ + λ∗]/V ∗
a )] .

We note that

k2
β

V ∗
a

ℜ [L[KA]([µ∗ + λ∗]/V ∗
a )] ≤

⃓⃓⃓⃓
⃓k2

β

V ∗
a

L[KA]([λ∗ + µ∗]/V ∗
a )
⃓⃓⃓⃓
⃓ .

While, for arbitrary ν = νr + iνi ∈ C,⃓⃓⃓⃓
⃓k2

β

V ∗
a

L[KA]([µ∗ + ν]/V ∗
a )
⃓⃓⃓⃓
⃓ = |k2|

β

V ∗
a

⃓⃓⃓⃓∫︂ ∞

0
exp [−(µ∗ + νr + iνi)φ]KA(V ∗

a φ)dφ
⃓⃓⃓⃓

≤ |k2|
β

V ∗
a

∫︂ ∞

0
exp [−(µ∗ + νr)φ]KA(V ∗

a φ)
⃓⃓⃓
e−iνiφ

⃓⃓⃓
dφ

= |k2|
β

V ∗
a

L[KA]([µ∗ + νr]/V ∗
a ).

Moreover, if νr ≥ 0,

|k2|
β

V ∗
a

L[KA]([µ∗ + νr]/V ∗
a ) ≤ |k2|

β

V ∗
a

L[KA](µ∗/V ∗
a ).

Therefore, using the assumption in 1), we find

ℜ(λ∗) = (k1 − γ∗) + k2
β

V ∗
a

ℜ[L[KA]([λ∗ + µ∗]/V ∗
a )] ≤ (k1 − γ∗) + |k2|

β

V ∗
a

L[KA](µ∗/V ∗
a ) < 0,

which is a contradiction, so no such λ∗ can exist. Therefore, all roots of the characteristic
equation have negative real part and the equilibrium is stable.

2) To show instability, we will prove that there must be one characteristic root with
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positive real part. Define

g(λ) := k1 − γ − λ+ k2
β

V ∗
a

L[KA]([λ+ µ∗]/V ∗
a ),

and note that g(λ) is continuous with

g(0) = k1 − γ + k2
β

V ∗
a

L[KA](µ∗/V ∗
a ) > 0 and lim

λ→∞
g(λ) = −∞.

Then, there must be a real λ∗ > 0 such that g(λ∗) = 0. The equilibrium is therefore
unstable.

We note that if k2 > 0, i.e. the production of mature individuals is controlled through
positive feedback with the number of maturing individuals at time t, then Proposition 2.3.2
completely characterizes the local stability of x∗. If k2 < 0, it seems likely that x∗ would
lose stability through a Hopf bifurcation, similar to the discrete delay case. A similar
analysis was done in the constant ageing rate by Yuan and Bélair [2011]. However, Yuan
and Bélair [2011] did not consider death of immature individuals, nor the linear clearance
of mature individuals which corresponds to µ = γ = 0.

2.4 D ISTRIBUTED DELAY DIFFERENTIAL EQUATIONS WITH SPECIFIC MATURATION

PROBABILITIES

Next, we study the DDE found in Theorem 2.2.1 for various density functions. By first
considering the characteristic equation (2.19) for specific densities KA(t), we motivate the
reduction of these population models to familiar discrete DDEs and transit compartment
ODEs. In the discussion that follows, we once again assume that x∗ ∈ L1(A) is an equilib-
rium point so that µ(x∗) = µ∗ and Va(t) = V ∗

a . Denote the homeostatic maturation time as
the first moment of the random variable A with constant ageing rate V ∗

a ,

τ ∗ =
∫︂ ∞

0
tKA(V ∗

a t)dt.

Consequently, the expected homeostatic maturation age is given by T = V ∗
a τ

∗.

We first consider the degenerate distribution concentrated at T and recover the familiar
state dependent discrete DDE. Next, we use a linear chain-type technique to reduce state
dependent uniformly distributed DDEs to a system involving two state dependent delays.
Finally, we show how to reduce a gamma distributed DDE to a transit compartment system
of ODEs.
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However, true equivalence between the distributed DDE and the reduced form does
not follow directly. We must take care when prescribing initial conditions and history
functions so that solutions of the different formulations are in fact equivalent. Only then
do these reductions allow for the use of the highly efficient numerical methods available
for discrete DDEs and ODEs available in most programming languages.

2.4.1 Deterministic maturation

Assuming that maturation is a deterministic process and occurs after achieving the thresh-
old age T implies that KA(t) is the degenerate distribution concentrated at T with

KA

(︃∫︂ t

t−φ
Va(s)ds

)︃
= δ

(︃∫︂ t

t−φ
Va(s)ds− T

)︃
. (2.20)

where δ(x) is the Dirac delta function. In the deterministic case, all individuals mature at
precisely the same age T . At the equilibrium x∗, using (2.19), the characteristic equation is

0 = λ− (k1 − γ∗) − k2
β

V ∗
a

exp [−(µ∗ + λ)T /V ∗
a ] = λ− (k1 − γ∗) − k2

β

V ∗
a

exp [−(µ∗ + λ)τ ∗] ,
(2.21)

which is exactly the characteristic equation of a discrete DDE. This is unsurprising, since
it is well known that threshold conditions lead to discrete DDEs [Otto and Radons, 2017;
Smith, 1993].

Returning to the DDE (2.6) with KA(t) given by (2.20), the threshold maturation age T
allows us to calculate when an individual that matures at time t began maturation. The
maturation time, τ(x(t)), must satisfy the implicit threshold condition

T =
∫︂ t

t−τ(x(t))
Va(s)ds. (2.22)

We use the definition of τ(x(t)) to evaluate the convolution integral given in (2.12) to find

Aδ(t) =
∫︂ ∞

0
δ
(︃∫︂ t

t−φ
Va(s)ds− T

)︃
βx(t− φ)
Va(t− φ) exp

[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
dφ

= βx[t− τ(x(t))]
Va(t− τ(x(t))) exp

[︄
−
∫︂ t

t−τ(x(t))
µ(x(s))ds

]︄
.

Consequently, the corresponding IVP to (2.6) with state dependent discrete delay is

d
dt
x(t) = F

(︄
x(t), βx[t− τ(x(t))] exp

[︄
−
∫︂ t

t−τ(t)
µ(x(s))ds

]︄
Va(t)

Va(t− τ(t))

)︄
− γx(t)

x(s) = ρ(s) s ∈ (−∞, t0].

⎫⎪⎪⎬⎪⎪⎭ (2.23)
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To implement (2.23) numerically, it is necessary to solve (2.22) to find the maturation
time τ(x(t)). This can be done by differentiating (2.22) to find

d
dt
τ(x(t)) = 1 − Va(t)

Va(t− τ(x(t))) , (2.24)

and imposing the correct initial condition so that the solution of (2.24) also solves (2.22).

In the case that ρ(s) = x∗, then it is simple to set τ(0) = τ ∗. However, for more general
initial data ρ(s), choosing an appropriate initial condition for (2.24) can be delicate [Otto
and Radons, 2017].

Then, we can solve the discrete state dependent DDE by solving the system of equations
given by (2.23) and (2.24). Hence the age structured PDE framework in Section 2.2 offers an
alternative to the “moving threshold” method to derive state dependent DDEs as described
by Otto and Radons [2017].

2.4.2 Uniformly Distributed Maturation

We consider uniformly distributed DDEs centered about the expected homeostatic mat-
uration age T . In the simplest case, the uniform distribution defines lower and upper
threshold ages and assigns equal weight to each age falling between the thresholds. The
probability density function corresponding to a uniform distribution centred at T is

KU(a) =

⎧⎨⎩
1

2V ∗
a δ

if a ∈ [T − V ∗
a δ, T + V ∗

a δ]
0 otherwise.

(2.25)

At the equilibrium x∗, with KA(t) given by the uniform density (2.25), the characteristic
equation (2.19) is

0 = λ− (k1 − γ∗) − k2

(︄
β

V ∗
a

)︄(︄
1

2δV ∗
a [λ+ µ∗]/V ∗

a

)︄ [︂
e−(λ+µ∗)(T −V ∗

a δ)/V ∗
a − e−(λ+µ∗)(T +V ∗

a δ)/V ∗
a

]︂
= λ− (k1 − γ∗) − k2

(︄
β

V ∗
a

)︄(︄
1

2δ(λ+ µ∗)

)︄ [︂
e−(λ+µ∗)(τ∗−δ) − e−(λ+µ∗)(τ∗+δ)

]︂
. (2.26)

T − V ∗
a δ and T + V ∗

a δ represent the minimal and the maximal ages at which an individual
can mature. Due to the variable ageing rate, the minimal and maximal delay times,
τmin(x(t)) and τmax(x(t)), are state dependent, and implicitly defined by

T − V ∗
a δ =

∫︂ t

t−τmin(x(t))
Va(s)ds and T + V ∗

a δ =
∫︂ t

t−τmax(x(t))
Va(s)ds.
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We note that, at homeostasis, Va(s) = V ∗
a so

T − V ∗
a δ = τmin(x∗)V ∗

a and T + V ∗
a δ = τmax(x∗)V ∗

a .

Recalling that T = V ∗
a τ

∗, the terms τ ∗ − δ and τ ∗ + δ in (2.26) correspond to the minimal
and maximal homeostatic delay times.

The presence of minimal and maximal delay terms in (2.26) hints that a uniformly
distributed DDE may be reducible to a discrete DDE with two distinct delays.

Inserting the uniform density (2.25) into the convolution integral (2.12) gives

AU(t) =
∫︂ ∞

0
KU

(︃∫︂ t

t−φ
Va(s)ds

)︃
βx(t− φ)
Va(t− φ) exp

[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
dφ

=
∫︂ τmax(t)

τmin(t)

1
2V ∗

a δ

βx(t− φ)
Va(t− φ) exp

[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
dφ.

Thus the state dependent uniform distributed DDE is

d
dt
x(t) = F (x(t), AU(t)Va(t)) − γ(x(t))x(t)

x(s) = ρ(s), s ∈ (−∞, t0].

⎫⎪⎪⎬⎪⎪⎭ (2.27)

2.4.2.1 Reduction to Discrete DDE

Next, we show that (2.27) can be reduced to an IVP with two state dependent discrete
delays. Once again, this is advantageous, as numerical algorithms for systems of state
dependent discrete DDEs are available in most programming languages.

We begin by formalizing the link between uniformly distributed DDEs and discrete
DDEs that was hinted at in (2.26). To do this, we show to write the delay kernel as the
solution of a differential equation. This strategy is also used in the well known linear
chain technique (see Smith [2011]), which we generalise in Section 2.4.3.1. However, unlike
the linear chain technique, we will not recover a system of ODEs, but rather a system of
differential equations with two state dependent discrete delays. The technique here can
also be adapted to “tent” like distributions (see Teslya [2015]).

Lemma 2.4.1. AU(t) satisfies the differential equation

d
dt
AU(t) = 1

2V ∗
a δ

[︄
βx[t− τmin(t)]
Va(t− τmin(t)) exp

[︄
−
∫︂ t

t−τmin(t)
µ(x(s))ds

]︄
Va(t)

Va(t− τmin(t)) (2.28)

− βx[t− τmax(t)]
Va(t− τmax(t))

exp
[︄
−
∫︂ t

t−τmax(t)
µ(x(s))ds

]︄
Va(t)

Va(t− τmax(t))

]︄
− µ(x(t))AU(t).
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Proof. Similar to the linear chain technique, we differentiate AU(t) using Leibniz’s rule to
find

d
dt
AU(t) = 1

2V ∗
a δ

[︄
βx[t− τmax(t)]
Va(t− τmax(t))

exp
[︄
−
∫︂ t

t−τmax(t)
µ(x(s))ds

]︄
d
dt
τmax(t)

− βx[t− τmin(t)]
Va(t− τmin(t)) exp

[︄
−
∫︂ t

t−τmin(t)
µ(x(s))ds

]︄
d
dt
τmin(t)

]︄

+ 1
2δ

∫︂ τmax(t)

τmin(t)

d
dt

(︄
βx(t− φ)
Va(t− φ) exp

[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃)︄
dφ.

We note that

d
dt

(︄
βx(t− φ)
Va(t− φ) exp

[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
dφ
)︄

= − d
dφ

(︄
βx(t− φ)
Va(t− φ) exp

[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃)︄

− µ(x(t))βx(t− φ)
Va(t− φ) exp

[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
,

so that, integrating by parts,

∫︂ τmax(t)

τmin(t)

d
dt

(︄
βx(t− φ)
Va(t− φ) exp

[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃)︄
dφ

=
(︄

− 1
2δ
βx(t− φ)
Va(t− φ) exp

[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃)︄⃓⃓⃓⃓
⃓
τmax(t)

φ=τmin(t)
− µ(x(t))AU(t).

Consequently, the derivative of AU(t) is

d
dt
AU(t) = 1

2V ∗
a δ

[︄
βx[t− τmax(t)]
Va(t− τmax(t))

exp
[︄
−
∫︂ t

t−τmax(t)
µ(x(s))ds

]︄(︄
d
dt
τmax(t) − 1

)︄

− βx[t− τmin(t)]
Va(t− τmin(t)) exp

[︄
−
∫︂ t

t−τmin(t)
µ(x(s))ds

]︄(︄
d
dt
τmin(t) − 1

)︄]︄
− µ(x(t))AU(t).

To finish the proof, we note that, similar to (2.24), τmin(x(t)) and τmax(x(t)) solve the
following differential equations

d
dt
τmin(x(t)) − 1 = − Va(t)

Va(t− τmin(x(t))) and
d
dt
τmax(x(t)) − 1 = − Va(t)

Va(t− τmax(x(t))) .
(2.29)

The identities in equation (2.29) give (2.28).

By writing the delay term AU(t) as a solution of a differential equation, we are able to
reduce the distributed DDE to a system with state dependent discrete delays. Once again,
this allows for simulation of the distributed DDE (2.27) using existing techniques. This
relationship is formalized in the following theorem.
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Theorem 2.4.2. The IVP (2.27) is equivalent to the IVP with the following system of discrete delay
differential equations

d
dt
x(t) = F (x(t), y(t)Va(t)) − γ(x(t))x(t)

d
dt
y(t) = 1

2δ

[︄
βx[t− τmin(t)]
V̂ a(t− τmin(t))

exp
[︄
−
∫︂ t

t−τmin(t)
µ(x(s))ds

]︄
Va(t)

Va(t− τmin(t))

− βx[t− τmax(t)]
V̂ a(t− τmax(t))

exp
[︄
−
∫︂ t

t−τmax(t)
µ(x(s))ds

]︄
Va(t)

Va(t− τmax(t))

]︄
−µ(x(t))y(t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.30)

with suitably chosen initial data.

Proof. Using Lemma 2.4.1, it is simple to see that

y(t)Va(t) = AU(t)Va(t), (2.31)

and the other terms in the differential equations are identical if the initial data are equiv-
alent. It therefore remains to show that we can choose suitable history functions for the
distributed and discrete DDEs. For the history function of the distributed DDE (2.27), ρ(s),
setting the initial data of (2.30) to be

x(s) = ρ(s)

and
y(t0) =

∫︂ τmax(t)

τmin(t)

1
2δ
βρ(t0 − φ)
V̂ a(t0 − φ)

exp
[︃
−
∫︂ t0

t0−φ
µ(ρ(s))ds

]︃
dφ.

gives the desired equivalence [Teslya, 2015]. To convert from (2.30) with history function
x(s) = η(s) to (2.27), y(t0) must satisfy

y(t0) =
∫︂ τmax(t)

τmin(t)

1
2δ
βη(t0 − φ)
V̂ a(t0 − φ)

exp
[︃
−
∫︂ t0

t0−φ
µ(η(s))ds

]︃
dφ. (2.32)

By taking the initial data for (2.27) to be x(s) = η(s), we see that this condition is
sufficient for equivalence of (2.30) and (2.27). Now, if (2.32) does not hold, then (2.31)
cannot be satisfied at t = t0, so (2.32) is a necessary and sufficient condition to be able to
convert the system of DDEs (2.30) into the distributed DDE (2.27) with x(s) = η(s).

2.4.3 Gamma distributed maturation and a generalized linear chain technique

Finally, we study gamma distributed DDEs and show how to reduce the state-dependent
gamma distributed DDE to a transit chain of ODEs. The probability density function of
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the gamma distribution is

gjb(x) = bjxj−1e−bx

Γ(j) , (2.33)

where j, b ∈ R.

Again, let T denote the mean maturation age and fix j > 0. Then, we have the following
relationships

T = j/V ∗
a , σ2 = j/(V ∗

a )2, and Kg(σ) = gjV ∗
a

(σ),

where σ2 is the variance of the gamma distribution and we set b = V ∗
a .

Calculating (2.19) for the gamma density in (2.33) gives

0 = k1 − γ − λ+ k2

(︄
β

V ∗
a

)︄(︄
(V ∗

a )j
(V ∗

a + [λ+ µ∗]/V ∗
a )j

)︄
. (2.34)

Now, we use the relationships V ∗
a = j/T and T = τ ∗V ∗

a to rewrite the characteristic
function as

k1 − γ − λ+ k2

(︄
β

V ∗
a

)︄⎛⎜⎝ 1
(1 + λ+µ∗

V ∗
a

2)j

⎞⎟⎠ = k1 − γ − λ+ k2

(︄
β

V ∗
a

)︄⎛⎝ 1
(1 + T (λ+µ∗)

V ∗
a j

)j

⎞⎠
= k1 − γ − λ+ k2

(︄
β

V ∗
a

)︄⎛⎝ 1
(1 + τ∗(λ+µ∗)

j
)j

⎞⎠ .
Using a common denominator gives

0 = (k1 − γ − λ)
(︄

1 + τ ∗(λ+ µ∗)
j

)︄j
+ k2

β

V ∗
a

. (2.35)

Now, we consider multiple cases for the parameter j. If j ∈ N, then (2.35) is a polynominal
of degree j + 1, with j + 1 roots. This is markedly different than the generic distributed
DDE, as the characteristic equation (2.19) is typically a transcendental function of λ with
infinitely many characteristic values. Now, with j = n/m ∈ Q, we can rearrange (2.35) to

(k1 − γ − λ)
(︄

1 + τ ∗(λ+ µ∗)
j

)︄j
= −k2

β

V ∗
a

,

and raising both sides of the equality to the power m gives

0 = (k1 − γ − λ)m(1 + τ ∗(λ+ µ∗)
j

)n +
(︄

−k2
β

V ∗
a

)︄m
. (2.36)

Not all solutions of (2.36) will necessarily satisfy (2.34). However, every solution of
(2.34) will satisfy (2.36). Moreover, (2.36) is a polynomial with m+ n roots, so (2.34) with



37

j = n/m ∈ Q has at most m + n roots. However, if the parameter j is not rational, then
(2.35) is once again a transcendental equation with possibly infinitely many roots.

The relationship between the number of characteristic values and the parameter j
leads to interesting questions. If j ∈ N increases by unit steps, then the characteristic
equation gains precisely one root. However, if j increases smoothly between j and j + 1,
do characteristic values spring in and out of existence depending on the rationality of j?
This question, while important, is outside the scope of the current work.

Having studied the characteristic equation of gamma distributed DDEs, we proceed to
write down the gamma distributed DDE. We have parametrized the gamma distribution
so that at homeostasis, the mean delay time is τ ∗. The variable ageing velocity must then
be scaled so that at homeostasis, individuals age chronologically. Therefore, we define the
scaled ageing velocity

V̂ a(t) = Va(t)
V ∗
a

, (2.37)

and will use V̂ a(t) throughout the remainder of our study. The scaled density function
gjV ∗

a
(at(φ)) is given by

gjV ∗
a

(︃∫︂ t

t−φ
V̂ a(s)ds

)︃
= (V ∗

a )j
Γ(j)

[︃∫︂ t

t−φ
V̂ a(s)ds

]︃j−1
exp

[︃
−V ∗

a

∫︂ t

t−φ
V̂ a(s)ds

]︃
.

By inserting gjV ∗
a

(at(φ)) into equation (2.12), we define

Ag(t) =
∫︂ ∞

0
gjV ∗

a

(︃∫︂ t

t−φ
V̂ a(s)ds

)︃
βx(t− φ)
V̂ a(t− φ)

exp
[︃
−
∫︂ t

t−φ
µ(x(s))ds

]︃
dφ. (2.38)

Then, the IVP with a state-dependent distributed DDE corresponding to equation (2.6)
is

d
dt
x(t) = F [x(t), Va(t)Ag(t)] − γ(x(t))x(t)

x(s) = ρ(s), s ∈ (−∞, t0].

⎫⎪⎪⎬⎪⎪⎭ (2.39)

As we show in Section 2.5, equivalent models to (2.39) have been used in pharma-
cokinetic modelling. However, these models typically take the form of finite dimensional
systems of ODEs and the direct link between these ODEs with variable transit rates and
(2.39) has not been established previously.

2.4.3.1 A Generalized linear chain technique

The finitely many roots of equation (2.34) for integer j ∈ N suggest that there is a finite
dimensional representation of the DDE (2.39). The link between gamma distributed DDEs
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and transit chain ODEs with constant transit rates has been known since at least 1961
[Vogel, 1961]. The method entered into the English literature in the works of MacDonald
[1978] as the linear chain trick or the linear chain technique.

Just as in Section 2.4.2, the linear chain technique consists of replacing the convolution
integral (2.38) by the solution of a system of differential equations. To do this, we will
exploit the fact that, for j ∈ N,

d
dx
g1
b (x) = −bg1

b (x) and
d

dx
gjb(x) = b[gj−1

b (x) − gjb(x)]. (2.40)

The linear chain technique has been used extensively in pharmacology to model delayed
drug absorption and action. However, typical applications of the technique require that
transition rates between compartments are constant and identical. Câmara De Souza et al.
[2018] developed an adapted linear chain technique that allows for variable transition rates
by rescaling time in a non-linear way. This non-linear time rescaling leads to difficulties in
establishing a link between time rescaled simulations and time series patient data [Câmara
De Souza et al., 2018]. Here, we provide an alternative technique that allows for variable
transition rates between compartments without rescaling time.

We first show how to write (2.38) as the solution of a system of ordinary differential
equations.

Lemma 2.4.3. For j ∈ N, Ag(t) = xj(t) where {xi(t)}ji=1 satisfies

d
dt
x1(t) = βx(t)

V̂ a(t)
− Va(t)x1(t) − µ(x(t))x1(t)

d
dt
xi(t) = Va(t) [xi−1(t) − xi(t)] − µ(x(t))xi(t) for i = 2, 3, ..., j.

Proof. We first note that

giV ∗
a

(︃∫︂ t

t
V̂ a(s)ds

)︃
=

⎧⎨⎩ V ∗
a if i = 1

0 if i = 2, 3, ..., j.

Then using (2.40) and (2.7), the chain and Leibniz rules show that

d
dt
g1
V ∗

a

(︃∫︂ t

φ
V̂ a(s)ds

)︃
= −V ∗

a V̂ a(t)g1
V ∗

a

(︃∫︂ t

φ
V̂ a(s)ds

)︃
= −Va(t)g1

V ∗
a

(︃∫︂ t

φ
V̂ a(s)ds

)︃
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while, for i = 2, 3, 4, ...,

d
dt
giV ∗

a

(︃∫︂ t

φ
V̂ a(s)ds

)︃
= V ∗

a V̂ a(t)
[︃
gi−1
V ∗

a

(︃∫︂ t

φ
V̂ a(s)ds

)︃
− giV ∗

a

(︃∫︂ t

φ
V̂ a(s)ds

)︃]︃
= Va(t)

[︃
gi−1
V ∗

a

(︃∫︂ t

φ
V̂ a(s)ds

)︃
− giV ∗

a

(︃∫︂ t

φ
V̂ a(s)ds

)︃]︃
.

Now we define,
at(x) =

∫︂ t

t−x
V̂ a(s)ds

and, for i = 1, 2, ..., j,

xi(t) =
∫︂ t

−∞
giV ∗

a
(at(t− φ))βx(φ)

Va(φ) exp
[︃
−
∫︂ t

φ
µ(x(s))ds

]︃
dφ, (2.41)

and note that, after making the change of variable u = t− φ in Ag(t),

xj(t) =
∫︂ t

−∞
gjV ∗

a
(at(t− φ))βx[φ]

Va(φ) exp
[︃
−
∫︂ t

φ
µ(x(s))ds

]︃
dφ = Ag(t).

Now, by differentiating (2.41) using the Leibniz rule, the transit chain xi(t) satisfies the
system of equations

d
dt
x1(t) = βx(t)

V̂ a(t)
− Va(t)x1(t) − µ(x(t))x1(t)

d
dt
xi(t) = Va(t) [xi−1(t) − xi(t)] − µ(x(t))xi(t) for i = 2, 3, ..., j.

Importantly, Lemma 2.4.3 ensures that

Va(t)Ag(t) = Va(t)xj(t). (2.42)

Now, we can use the relationship between equations (2.41) and (2.42) to establish the
following theorem:

Theorem 2.4.4 (Finite Dimensional Representation). The distributed state dependent
DDE (2.39) with j ∈ N is equivalent to the finite dimensional transit compartment ODE system
given by

d
dt
x(t) = F (x(t), Va(t)xj(t)) − γ(x(t))x(t)

d
dt
x1(t) = βx(t)

V̂ a(t)
− Va(t)x1(t) − µ(x(t))x1(t)

d
dt
xi(t) = Va(t) [xi−1(t) − xi(t)] − µ(x(t))xi(t) for i = 2, 3, ..., j.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.43)
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Proof. Lemma 2.4.3 ensures that the differential equations are equivalent. Therefore, we
need only construct appropriate initial data for the distributed DDE and ODE formulation.
For a history function ρ(s) of (2.39), we set, for i = 1, 2, ..., j,

xi(0) =
∫︂ 0

−∞
giV ∗

a
(a(−φ))βρ(φ)

Va(φ) exp
[︃
−
∫︂ t

φ
µ(ρ(s))ds

]︃
dφ. (2.44)

If µ(s) = µ∗ is constant and the initial conditions satisfy

xi(0) =
(︄

V ∗
a

V ∗
a + µ∗

)︄i
x1(0),

it is simple to choose ρ(s) = x1(0). However, in the more general case with µ(t) ̸= µ∗

and arbitrary ODE initial conditions xi(0) = αi of (2.41), we can use a similar method to
Cassidy and Humphries [2019] to construct one of the infinitely many appropriate history
functions.

A form of the expression for the variable age transit chain in equation (2.41) was derived
Krzyzanski [2011] to study the equivalence between lifespan and transit compartment
models in pharmacodynamics. However, the derivation did not include the underlying
age structured PDE and was specific to the gamma distribution. Gurney et al. [1986]
derived a similar expression for the density of individuals progressing through a specific
stage of maturation from a balance equation. However, they did not explicitly formulate
the underlying DDE nor did they derive the correct initial conditions for each of the
transit compartments. Consequently, they did not show equivalence between the transit
compartment formulation and the DDE.

Remark 2.1 (Recipe for equivalency between ODEs and gamma distributed DDEs). We
note that the finite dimensional representation of (2.39) with j ∈ N includes a transit
compartment chain. Due to the equivalence between (2.39) and (2.43), we are able to
identify the ingredients needed to transform a transit compartment ODE such as (2.43)
into a DDE such as (2.39). We first consider

d
dt
x1(t) = βx(t)

V̂ a(t)
− Va(t)x1(t) − µ(x(t))x1(t).

From the equation for x1(t), we can easily identify the ratio βx(t)/V̂ a(t) as the rate at which
individuals in the 1st compartment are created. Next, by considering the rate at which
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individuals enter the second compartment,

d
dt
x1(t) = βx(t)

V̂ a(t)
− Va(t)x1(t) − µ(x(t))x1(t)

d
dt
x2(t) = Va(t)x1(t) − Va(t)x2(t) − µ(x(t))x2(t),

(2.45)

we find the (possibly variable) transit rate between compartments. Then, a process of
elimination immediately yields the mortality rate µ(x(t)) (if µ(x(t)) < 0, then population
growth rather than decay is occurring through the transit chain). The creation and transit
rates also yield the homeostatic ageing rate via (2.37). Further inspection of (2.38) shows
that these rates are all that are needed to transform the transit chain ODE to a distributed
DDE.

We note that the classic linear chain technique (see Smith [2011]) is a special case of
Remark 2.1 where the ageing velocity, Va(t), is constant.

2.5 EXAMPLES FROM HEMATOPOIESIS

Sometimes, analysis of distributed DDEs is more tractable and simpler than that of a high
dimensional equivalent ODE system. For example, by rescaling time, [Câmara De Souza
et al., 2018] converted Quartino’s ODE transit compartment model of granulopoiesis into
a distributed DDE [Quartino et al., 2014]. The distributed DDE formulation proved to be
much more analytically tractable than the ODE case, and was used to show the positivity
of solutions and establish the local stability of equilibrium solutions.

However, due to the lack of a general numerical algorithm, simulation of distributed
DDEs must be handled on a case by case basis. Simulation of transit compartment ODEs is
routine in many programming languages and can be used for the calibration of models to
existing data. Once calibrated, mathematical models can be simulated and used in a pre-
dictive manner. Consequently, by converting models between the equivalent distributed
DDE or ODE formulations, researchers can use the form of the model that is most suitable
to their needs.

The hematopoietic system controls blood cell production and, through tight cytokine
control, is able to quickly respond to challenges, including infection and blood loss. Cy-
tokines control hematopoietic output by varying effective proliferation and maturation
rates in each hematopoietic lineage. As cells are not produced instantaneously, there
is necessarily a delay between cytokine signal and production response. Mathematical
models have been used to understand the complex dynamics observed in so-called dy-
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namical diseases since the 1970s [Glass, 2015; Mackey, 1978; Rubinow and Lebowitz, 1975].
Existing mathematical models of hematopoiesis have included discrete, distributed and
state-dependent DDEs [Colijn and Mackey, 2005a; Craig et al., 2016; Crauste and Adimy,
2007; Hearn et al., 1998b; Mahaffy et al., 1998] as well as transit compartment models
[Friberg et al., 2002; Krzyzanski et al., 2010; von Schulthess and Mazer, 1982].

Here, we use the equivalence between state dependent distributed DDEs and ODE
transit compartment models derived in Section 2.4.3.1 to convert two previously pub-
lished ODE models of hematopoietic cell production to their equivalent state-dependent
distributed DDEs. The ODE models specify the entrance rate of individuals into the matu-
ration compartment and the maturation speed, Va(t), which allows for the calculation the
birth rate β of immature individuals. As these models involve more than one population,
the birth rate β is no longer constant but is a function of other populations in the model.

In the first example, we show how a model of reticulocyte production can be reduced
to a renewal equation whose dynamics are completely characterized by a simple system of
ordinary differential equations.

In the second example, we extend the framework of Section 2.4.3.1 to include non-
identical transitions between ageing populations and a variable transition rate. This
example shows how the state dependent distributed DDE framework addresses the inabil-
ity of the linear chain technique to model dynamic ageing processes.

2.5.1 Pérez-Ruixo model of reticulocyte production

Pérez-Ruixo et al. [2008] studied the effect of recombinant human erythropoietin (EPO)
on red blood cell precursors using a mathematical model. EPO is the protein responsible
for controlling production of red blood cells and their precursors. The model arises
from pharmacokinetic and pharmacodynamic data from patients receiving one dose
of exogenous EPO. EPO was modelled through an open two compartment model of
exogenous dose absorption and homoeostatic endogenous production rate, kEPO, and
the blood serum level (BSL). The bioavailable exogenous EPO was modelled as a dose
dependent hyperbolic function satisfying

F = F0 + EmaxDose
ED50 + Dose

,

where Dose is the amount of EPO administered. Exogenous EPO was absorbed through
a dual absorption model into the depot and central compartments. The duration of
first order absorption into the depot and central compartments are given by D1 and D2,
respectively. A fraction of the bioavailable exogenous EPO, fr, was absorbed into the depot
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compartment before entering the central compartment at rate ka. The depot concentration
of EPO follows

d
dt
A1(t) =

⎧⎨⎩
DosefrF
D1

− kaA1 if t ≤ D1

−kaA1 if t > D1,
(2.46)

The remaining exogenous EPO, (1 − fr)F enters the central compartment following a
lag time tlag2 and is cleared linearly at the rate k20. The volume of the central compartment
is V1. The dynamics of exogenous EPO in the central compartment are given by

d
dt
A2(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dose(1−fr)F

D2
+ kaA1(t) + k32A3(t) − k23A2(t)

−k20A2(t) + kepo − VmaxA2(t)/V2
KM +A2(t)/V2

if tlag2 ≤ t ≤ D2

kepo − VmaxA2(t)/V1
KM +A2(t)/V1

if t > D2, t < tlag2,

(2.47)

Finally, EPO enters the peripheral compartment from -and returns to- the central compart-
ment linearly, so

d
dt
A3(t) = k23A2(t) − k32A3(t). (2.48)

The total bioavailable EPO is given by

C(t) = BSL + A2(t)/V1.

Pérez-Ruixo et al. [2008] considered 4 different pharmacodynamics models of erythrocyte
response to exogenous EPO (titled the A,B,C and D models). In each of the 4 different phar-
macodynamic models, the EPO dynamics are unchanged and described by equations (2.46),
(2.47) and (2.48).

Here, we describe the “B” model from Pérez-Ruixo et al. [2008]. Model B divides the
erythrocyte progenitors, P (t), into NP compartments further subdivided into two distinct
populations; EPO only affects the growth rate of the first population. Thus, the first NP/2
compartments constitute the EPO sensitive population. Progression through these NP

compartments represents the ageing process of the progenitor cells. Once erythrocyte
progenitors have reached maturity, they progress into the reticulocyte population. Once
again, the maturation process of reticulocytes is modelled through a series of NR transit
compartments that are not sensitive to EPO. In this manner, the Pérez-Ruixo et al. [2008]
model uses a concatenation of transit compartments to model the separate ageing processes
of reticulocytes.
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The Pérez-Ruixo B model of erythrocyte progenitor and reticulocyte production is

d
dt
P1(t) = kin − SmaxC(t)

SC50 + C(t)
NP

TP
P1(t)

d
dt
Pi(t) = SmaxC(t)

SC50 + C(t)
NP

TP
[Pi−1(t) − Pi(t)] for i = 2, 3, ..., NP/2

d
dt
PNP /2+1(t) = SmaxC(t)

SC50 + C(t)
NP

TP
PNP /2(t) − NP

TP
PNP /2+1(t)

d
dt
Pi(t) = NP

TP
[Pi−1(t) − Pi(t)] for i = NP/2 + 2, ..., NP .

d
dt
R1(t) = NP

TP
PNP

(t) − NR

TR
R1(t)

d
dt
Ri(t) = NR

TR
[Ri−1(t) −Ri(t)] for i = 2, 3, ..., NR.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.49)

By identifying the ingredients necessary from Remark 2.1, we will show how the
distributed DDE framework from Section 2.4.3.1 can account for these separate ageing
processes with distinct ageing velocities. Accounting for multiple ageing processes is not
possible by rescaling time so the approach of Câmara De Souza et al. [2018] cannot be
generalized to this case.

The most immature erythrocyte progenitors are modelled by P1(t) and are created from
multipotent progenitors differentiating into the erythrocyte lineage at a constant rate kin.
Transit between the first NP/2 compartments occurs at the variable rate

Ve(t) = SmaxC(t)
SC50 + C(t)

NP

TP
with V ∗

e = SmaxBSL
SC50 + BSL

NP

TP
.

Using (2.41), we define V̂ e(t) = Ve(t)/V ∗
e , so the birth rate of precursor cells into P2(t) is

Ve(t)P1(t) = βe(t)
V̂ e(t)

.

Further, we see that the only removal of cells from the compartment model is due to
transition to later compartments. Therefore, µ(t) = 0, and we have identified all the
ingredients necessary in Remark 2.1. Therefore, for i = 2, 3, ...NP/2,

Pi(t) =
∫︂ t

−∞

Ve(φ)
V ∗
e

P1(φ)giV ∗
e

[︃∫︂ t

φ
V̂ e(s)ds

]︃
dφ. (2.50)
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The NP/2 + 1st compartment satisfies

d
dt
PNP /2+1(t) = Ve(t)PNP /2(t) − NP

TP
PNP /2+1(t).

Erythrocyte progenitors enter the first non-EPO sensitive ageing compartment, PNP /2+1(t),
with appearance rate

β̃e(t)
Vp(t)

= Ve(t)PN/2(t),

and then progress through the remaining NP/2 compartments at a constant rate Vp(t) =
V ∗
p = NP/TP . Once again, we note that there is no removal of cells in any of the NP/2

compartments, so µ(t) = 0. Further, since the ageing velocity is constant, V̂
∗
p = 1. Therefore,

a simple application of Remark 2.1 for constant ageing velocity, and using (2.50) gives

PNP
(t) =

∫︂ ∞

0

β̃e(t− θ)
NP/TP

g
NP /2
NP /TP

(θ)dθ =
∫︂ t

−∞

β̃e(θ)
NP/TP

g
NP /2
NP /TP

(t− θ)dθ

=
∫︂ t

−∞

[︄
Ve(θ)
NP/TP

∫︂ θ

−∞
Ve(φ)P1(φ)gi−1

V ∗
e

(︄∫︂ θ

φ
V̂ e(s)ds

)︄
dφ
]︄
g
NP /2
NP /TP

(t− θ)dθ. (2.51)

Mature erythrocyte precursors enter into the most immature reticulocyte compartment,
R1(t). Given (2.51), the differential equation for R1(t) becomes

d
dt
R1(t) = NP

TP

∫︂ t

−∞

[︄
Ve(θ)
NP/TP

∫︂ θ

−∞
Ve(φ)P1(φ)gi−1

V ∗
e

(︄∫︂ θ

φ
V̂ e(s)ds

)︄
dφ
]︄
g
NP /2
NP /TP

(t− θ)dθ⏞ ⏟⏟ ⏞
PNP

(t)

− NR

TR
R1.

Hence, the Pérez-Ruixo B model of reticulocyte production is equivalent to

C(t) = BSL + A2(t)/V1

d
dt
P1(t) = kin − SmaxC(t)

SC50 + C(t)
NP

TP
P1(t)

d
dt
R1(t) = NP

TP

∫︂ t

−∞

[︄
Ve(θ)
NP/TP

∫︂ θ

−∞
Ve(φ)P1(φ)gNp/2

V ∗
e

(︄∫︂ θ

φ
V̂ e(s)ds

)︄
dφ
]︄
g
NP /2
NP /TP

(t− θ)dθ

− NR

TR
R1

d
dt
Ri(t) = NR

TR
[Ri−1(t) −Ri(t)] for i = 2, 3, ...NR.

Finally, we can use Remark 2.1 with the constant ageing velocity Vr(t) = V ∗
r = NR/TR to
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solve the transit compartment system for Ri(t) to find

Ri(t) =
∫︂ ∞

0

TR
NR

βR(σ)giNR/TR
(σ)dσ, (2.52)

where

βR(σ) = NP

TP

∫︂ σ

−∞

[︄
Ve(θ)
NP/TP

∫︂ θ

−∞
Ve(φ)P1(φ)gNp/2

V ∗
e

(︄∫︂ θ

φ
V̂ e(s)ds

)︄
dφ
]︄
g
NP /2
NP /TP

(t− θ)dθ.

Using the techniques developed in Section 2.4.3.1, we have transformed the differential
equations for the transit compartments for the erythrocyte progenitors and the reticulocytes
into renewal type equations given by (2.51) and (2.52) [Diekmann et al., 2018]. Since Pérez-
Ruixo et al. [2008] did not model reticulocyte mediated clearance of EPO, the cytokine
and early progenitor dynamics are independent of the PNP

(t) and RNR
(t) concentrations.

Consequently, the dynamics of equation (2.49) are completely determined by the dynamics
of

C(t) = BSL + A2(t)/V1

d
dt
P1(t) = kin − SmaxC(t)

SC50 + C(t)
NP

TP
P1(t),

and the EPO concentrations given by equations (2.46), (2.47), and (2.48). We are now able
to completely characterise the homeostatic behaviour of erythropoiesis by studying

d
dt
A1(t) = −kaA1(t)

d
dt
A2(t) = kepo − VmaxA2/V1

KM + A2/V1

d
dt
A3(t) = k23A2(t) − k32A3(t)

d
dt
P1(t) = kin − SmaxC(t)

SC50 + C(t)
NP

TP
P1(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.53)

To ensure that the initial value problem (2.53) is equivalent to the Pérez-Ruixo et al.
[2008], we re-use the initial conditions for A1(0), A2(0), and A3(0). Since µ = 0 and
the initial conditions P1(0) = Pi(0) are constant, we can set the history function for the
progenitors, ρp(s), to be ρp(s) = P1(0). The same can be done for the reticulocytes with
ρr(s) = R1(0).

We find the homeostatic concentration of EPO in the depot, central and peripheral
compartments by solving

d
dt
A1(t) = 0, d

dt
A2(t) = 0, d

dt
A3(t) = 0, and

d
dt
P1(t) = 0.
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This yields the following homeostatic EPO concentrations

A∗
1 = 0, A∗

2 = V1kepokM
Vmax − kepo

, A∗
3 = k23

k32
A∗

2, and C∗ = BSL + A∗
2,

while the homeostatic progenitor concentration is

P ∗
1 = kin(SC50 + C∗)

SmaxC∗
TP
NP

.

The simplified erythropoiesis dynamics (2.53) and homeostatic concentrations lead to the
following proposition:

Proposition 2.5.1. For positive parameter values, the homeostatic equilibrium point of equa-
tion (2.49) is locally asymptotically stable.

Proof. The linearisation matrix of equation (2.53) about the equilibrium x∗ =
(A∗

1, A
∗
2, A

∗
3, P

∗
1 ) is

J(x∗) =

⎡⎢⎢⎢⎢⎢⎢⎣
−ka 0 0 0

0 −Vmax/V1kM

(kM +A∗
2/V1)2 0 0

0 k23 −k32 0
0 1

V1
SmaxC∗

(SC50+C∗)2 0 − SmaxC∗

SC50+C∗
NP

TP

⎤⎥⎥⎥⎥⎥⎥⎦ .

The matrix J(x∗) is lower triangular with strictly negative diagonal entries, so the
eigenvalues are strictly negative and the equilibrium is locally asymptotically stable.

This example illustrates how Remark 2.1 can be adapted to include a series of concate-
nated ageing processes. In the age structured PDE interpretation, each ageing process
corresponds to a unique random variable modelling the transition between distinct stages.
As we do not a priori expect the transition ages to be independent, interpreting the resulting
ageing processes requires some care. The final renewal equation (2.53) includes a joint
multivariate distribution representing the concatenation of distinct ageing processes.

Further, Pérez-Ruixo et al. [2008] did not show that the homeostatic equilibrium is
locally asymptotically stable. For the ODE system (2.49), the Jacobian would be a (3 +NP +
NR) × (3 +NP +NR) matrix with a degree (3 +NP +NR) characteristic polynominal. In
general, analytically finding the roots of a large degree polynominal is difficult. Hence,
while the ODE (2.49) is obviously finite dimensional, it is analytically intractable.

Conversely, the equivalent renewal equation (2.53) is simple to analyse and a similar
argument to Proposition 2.3.1 shows that solutions of the renewal equation (2.53) evolving
from non-negative initial conditions remain non-negative. The “A”, “C” and “D” models
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can also be modelled as renewal equations through a simple application of the classical
linear chain technique and the technique shown here.

2.5.2 Roskos’s model of granulocyte production

Roskos et al. [2006] modelled the impact of exogenous administration of granulocyte colony
stimulating factor (G-CSF) on neutrophil proliferation and maturation speed. G-CSF is
a proinflammatory cytokine that binds to G-CSF specific receptors on mature neutrophil
cells and controls neutrophil kinetics through a negative feedback loop [Roberts, 2005;
Shochat et al., 2007]. G-CSF governs neutrophil production by increasing the effective pro-
liferation of neutrophil precursors, reducing the maturation time of non-mitotic neutrophil
precursors, and increasing release of neutrophil cells from the bone marrow into the blood.
The dynamics of neutrophil production have been well-studied from both a mathematical
and a pharmacometric point of view [Câmara De Souza et al., 2018; Craig et al., 2016;
Quartino et al., 2014]. These models have used different techniques to incorporate the
delays intrinsic to the system, such as discrete DDEs or transit compartment ODEs. Roskos
et al. [2006] model distinct stages of granulocyte production such as the bone marrow
concentrations of metamyelocytes, M(t); band cells, B(t); and segmented neutrophil cells,
S(t). The ageing and maturation processes for each of these cell types is modelled through
a series of three transit chains with NM , NB and NS compartments, respectively. Moreover,
band and segmented neutrophil cells can be shunted into circulation following the admin-
istration of G-CSF. We denote the metamyelocyte, band and segmented neutrophil cell
shunting rates as µm(t), µb(t) and µs(t)

Administration of G-CSF is modelled in a similar way to the EPO model of Section 2.5.1
using a first order delayed absorption model. However, Roskos et al. [2006] do not give
the differential equations for exogenous administration of G-CSF other than to state that
the clearance of G-CSF includes neutrophil receptor mediated clearance through the term

CLN/F = kcat/F (Bp(t) + Sp(t))
KM + C(t) ,

where Bp(t) and Sp(t) are the number of circulating band and segmented neutrophil cells,
respectively. Due to the feedback between the circulating neutrophil precursors and the
cytokine C(t), we are unable to completely reduce the Roskos model to a renewal type
equation as was done in Section 2.5.1.

The Roskos model for granulocyte production is

d
dt
M1(t) = S0 + EmitC(t)

EC50 + C(t) − NM

τmeta
(︂
1 − fmmtC(t)

EC50+C(t)

)︂M1(t)
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d
dt
Mi(t) = NM

τmeta
(︂
1 − fmmtC(t)

EC50+C(t)

)︂ (Mi−1(t) −Mi(t)) for i = 2, ..., NM

d
dt
B1(t) = NM

τmeta
(︂
1 − fmmtC(t)

EC50+C(t)

)︂MNM
(t) − NB

τband
(︂
1 − fmmtC(t)

EC50+C(t)

)︂B1(t)

− EbandC(t)
EC50 + C(t)B1(t)

d
dt
Bi(t) = NB

τband
(︂
1 − fmmtC(t)

EC50+C(t)

)︂ [Bi−1(t) −Bi(t)] − EbandC(t)
EC50 + C(t)Bi(t); i = 2, ...NB

d
dt
Bp(t) =

NB∑︂
i=1

EbandC(t)
EC50 + C(t)Bi(t) − (kλ + kbpmat)Bp(t)

d
dt
S1(t) = NB

τband
(︂
1 − fmmtC(t)

EC50+C(t)

)︂BNB
(t) −

⎛⎝ NS

τseg
(︂
1 − fmmtC(t)

EC50+C(t)

)︂ + EsegC(t)
EC50 + C(t)

⎞⎠S1(t)

d
dt
Si(t) = NS

τseg
(︂
1 − fmmtC(t)

EC50+C(t)

)︂ [Si−1(t) − Si(t)] − EsegC(t)
EC50 + C(t)Si(t); i = 2, ..., NS.

d
dt
Sp(t) =

NS∑︂
i=1

EbandC(t)
EC50 + C(t)Si(t) − (kλ + kbpmat)Sp(t),

and is an example of a transit compartment model with variable ageing speed and linear
clearance. The linear clearance terms are Hill type functions with a maximal clearance rate
Ej given by

µj(t) = EjC(t)
EC50 + C(t) .

Including these linear clearance terms in a transit compartment model is uncommon,
but allows for the direct modelling of G-CSF mediated shunting of immature cells into
circulation.

By converting the model into a distributed DDE, we underline the link between clear-
ance of cells in a transit compartment to the exponential decay present in the distributed
DDE. Once again, we will proceed by identifying the ingredients discussed in Remark 2.1.

As in Section 2.5.1, the most immature metamyelocytes (M1(t)) are produced from the
earlier progenitors at a constant baseline rate S0 with the G-CSF dependent recruitment
rate

βm(t)
Vm(t) = S0 + EmitC(t)

EC50 + C(t) .



50

Metamyelocytes progress through maturation at a G-CSF dependent rate

Vm(t) = NM

τmeta
(︂
1 − fmmtC(t)

EC50+C(t)

)︂ .
Metamyelocytes are not shunted into circulation following the administration of G-CSF, so
µm(t) = 0. Therefore, the metamylocyte transit compartment model can be reduced to a
distributed DDE using Remark 2.1 in an identical procedure to the Pérez-Ruixo model in
Section 2.5.1. The most mature metamyelocyte population is given by

MNM
(t) =

∫︂ t

−∞

βm(t)
Vm(t)g

NM
V ∗

m

[︃∫︂ t

φ
V̂ m(s)ds

]︃
dφ. (2.54)

Immature neutrophil band cells, B1(t), are created at the birth rate

βb(t)
V̂ b(t)

= NM

τmeta
(︂
1 − fmmtC(t)

EC50+C(t)

)︂MNM
(t).

These band cells progress through the maturation compartments at the G-CSF dependent
ageing rate

Vb(t) = NB

τband
(︂
1 − fmmtC(t)

EC50+C(t)

)︂ with V ∗
b = NB

τband
(︂
1 − fmmtC∗

EC50+C∗

)︂ ,
so the scaled ageing rate is V̂ b(t) = Vb(t)/V ∗

b . Inspecting the remaining terms in the
equation for B1(t) gives

µb(t) = EbandC(t)
EC50 + C(t) .

Therefore, using Remark 2.1, we find that the i-th band compartment satisfies

Bi(t) =
∫︂ t

−∞

βb(φ)
Vb(φ) exp

[︃
−
∫︂ t

φ
µb(s)ds

]︃
giV ∗

B

(︃∫︂ t

φ
V̂ b(s)ds

)︃
dφ (2.55)

for i = 1, 2, ...NB.

Mature band cells, given by (2.55) with i = NB, transition into the first segmented
neutrophil cell compartment S1(t) with creation rate

βs(t)
V̂ s(t)

= NB

τband
(︂
1 − fmmtC(t)

EC50+C(t)

)︂BNB
(t) = Vb(t)BNB

(t).

These cells transit through the segmented neutrophil population with G-CSF dependent
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ageing (Vs(t)) and clearance (µs(t)) rates

Vs(t) = NS

τseg
(︂
1 − fmmtC(t)

EC50+C(t)

)︂ and µs(t) = EsegC(t)
EC50 + C(t) .

Therefore, we have identified all the ingredients in Remark 2.1 for the segmented neu-
trophil precursors, S(t). The first segmented neutrophil cell compartment satisfies

d
dt
S1(t) =

βs(t)/V̂ s(t)⏟ ⏞⏞ ⏟
Vb(t)

∫︂ t

−∞

βb(φ)
Vb(φ) exp

[︃
−
∫︂ t

φ
µb(s)ds

]︃
gNb
V ∗

B

(︃∫︂ t

φ
V̂ b(s)ds

)︃
dφ

− Vs(t)S1(t) − µs(t)S1(t).

Therefore, it is possible to replace the transit compartment system of ODEs for Si(t) using
Remark 2.1 to find

Si(t) =
∫︂ t

−∞

βs(θ)/V̂ s(θ)⏟ ⏞⏞ ⏟
Vb(θ)

[︄∫︂ θ

−∞

βb(φ)
Vb(φ) exp

[︄
−
∫︂ θ

φ
µb(s)ds

]︄
gNb
V ∗

B

(︄∫︂ θ

φ
V̂ b(s)ds

)︄
dφ
]︄

× exp
[︃
−
∫︂ t

θ
µs(x)dx

]︃
giV ∗

s

(︃∫︂ t

θ
V̂ s(s)ds

)︃
dθ for i = 1, 2, ..., Ns. (2.56)

The initial value problem studied by Roskos et al. [2006] was equipped with initial
conditions for the cytokine equations as well as the NM + NS + NB + 2 compartments.
Since µ ̸= 0 in general, to create an equivalent renewal type equation, we use the same
initial conditions as Roskos et al. [2006] for the cytokine differential equations and follow
Cassidy and Humphries [2019] to construct appropriate history functions for M(t), B(t)
and S(t).

Therefore, we can reduce the ODE model of granulopoiesis to a renewal-type equation
with unchanged cytokine dynamics from Roskos et al. [2006] using the resulting DDEs for
Bp(t) and Sp(t). The resulting renewal equation is given by the equations describing the
cytokine dynamics and the system of distributed DDEs

d
dt
Bp(t) =

NB∑︂
i=1

EbandC(t)
EC50 + C(t)Bi(t) − (kλ + kbpmat)Bp(t)

d
dt
Sp(t) =

NS∑︂
i=1

EbandC(t)
EC50 + C(t)Si(t) − (kλ + kbpmat)Sp(t),

where Bi(t) and Si(t) are given by (2.55) and (2.56), respectively.

In this example, we have shown how to concatenate multiple ageing processes with
distinct ageing velocities, as well as how to include the loss of cells throughout the ageing
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process. Once again, we can use a similar argument to Proposition 2.3.1 to ensure that the
solutions evolving from non-negative initial data remain non-negative.

2.6 D ISCUSSION AND CONCLUSION

In this work, we have shown how to reduce age structured PDEs to possibly state-
dependent DDEs. Our derivation shows how the correction factor discussed in Sec-
tion 2.2.1 results naturally from considering the hazard rate at which cells exit maturation,
and generalises the derivation of Craig et al. [2016] to the non-deterministic case.

In Section 2.3, we analysed the general distributed DDE that arises from the age
structured population model. We showed, in Proposition 2.3.1, that populations evolving
from non-negative initial conditions remain non-negative, regardless of the density KA(t).
By linearising the distributed DDE, we showed, in Proposition 2.3.2, that stability analysis
of the general DDE is analytically tractable. We characterized the stability of a generic
equilibrium solution as a function of the linearisation of the growth function F (x∗, x̄∗).

Next, we considered the state-dependent DDE in the case of the degenerate, uniform
and gamma distributions. Choosing a degenerate distribution leads to the familiar state-
dependent discrete DDE, while uniformly distributed DDEs are reducible to discrete
DDEs with two state dependent delays. Finally, in the case of gamma distributed DDEs,
we explicitly related transit compartment models that include variable transit rates with
gamma distributed DDEs in Theorem 2.4.4. As shown by Câmara De Souza et al. [2018], it
can be simpler to analyse stability of equilibria and positivity of solutions of a distributed
DDE than the corresponding ODE. However, the ODE models may be simpler to simulate
numerically. The equivalence between the differential equations allows for the resulting
model to be analysed in the more convenient setting.

By the means of two examples, we showed how to express transit compartment models
as an equivalent DDE or renewal equation. First, we showed how to incorporate a variable
transit rate into a distributed DDE using a simple application of Theorem 2.4.4. Next, we
demonstrated that our method is capable of including multiple distinct ageing processes
in the form of a multivariate distributed DDE. Lastly, we showed how a linear clearance
term in each of the transit compartments can be included in the equivalent DDE model.
Analysis of the renewal equation was shown to be simpler than the corresponding ODE
system, and we were able to easily characterise the stability of the homeostatic equilibria.

This work emphasizes the link between transit compartment ODEs and delay differen-
tial equations. While this link has been known for over 50 years, we explicitly establish it
for compartment models with variable transit rates. We demonstrated that these transit
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compartment models are equivalent to state dependent distributed DDEs. The equivalence
between easy-to-simulate ODE models and the simpler to analyse distributed DDEs allows
modellers to use the formulation that is most convenient for their purposes. Consequently,
the framework developed in this article allows for researchers to incorporate both external
control of ageing rates and heterogeneous, non-deterministic maturation age into models
of physiological maturation processes.
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CHAPTER 3

A MATHEMATICAL MODEL OF VIRAL ONCOLOGY AS AN

IMMUNO-ONCOLOGY INSTIGATOR

Having demonstrated how to derive a distributed DDE from a physiological understand-
ing of an ageing processes in the previous chapter, we apply this technique to cellular
reproduction in malignant tumours. Specifically, we show that the mathematical formalism
of the previous chapter can be used to address a practical problem: cell cycle duration
heterogeneity in solid tumours. In this chapter, we develop and analyse a physiologically
realistic mathematical model of tumour-immune interaction that explicitly incorporates
the heterogeneity in reproductive speed present in solid tumours. Finally, we include
oncolytic viral therapy in our mathematical model.

We show that solutions of our mathematical model evolving from non-negative initial
data remain non-negative and completely characterise the importance of tumour-immune
involvement in tumour growth. Further, we show, both analytically and numerically,
that heterogeneity in malignant cell cycle duration increases tumour robustness against
therapy. This result implies that the common assumption of a constant cell cycle duration
can overestimate the impact of therapy and argues for the inclusion of more biologically
realistic delay kernels in mathematical models. This work will appear in Mathematical
Medicine and Biology.

This chapter is a reproduction of the published version. However, some small typos
persist. These typos do not impact the content of this article.

1. Equation (3.15) is missing the a2G1(t− σ)K(σ) term and should read

AR(t) = 2
∫︂ ∞

0
exp

(︂
−[d̂K + ψ∗

G]σ
)︂
a2G1(t− σ)K(σ)dσ + O(|U(t) − U∗|2).

This typo is corrected in (3.16) and does not impact the linearisation.

2. In the proof of Lemma 3.3.1, we argue that Q(t) ≥ 0. We begin by considering the
case where Q(0) = 0 and φG(s) = 0 K-almost everywhere in (−∞, 0]. Here, φG(s) = 0
K-almost everywhere is understood as∫︂ 0

−∞
φG(s)dµ = 0

where µ is a probability measure with corresponding Radon-Nikodym derivative K(s).
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Next, we consider the case when φG(s)K(−s) > 0 on some set of positive measure in
(−∞, 0]. However, it is possible that φG(s)K(−s) = 0 K-almost everywhere in (−∞, 0]
while ∫︂ 0

−∞
φG(s)dµ > 0.

Therefore, the second case should be that∫︂ 0

−∞
φG(s)dµ > 0.

In this case, Q(t) eventually becomes positive and the rest of the proof follows without
any change.

3. In Theorem 3.3.5, we show the existence of a positive equilibrium. On page 77, we
incorrectly state that this unstable equilibrium, or critical tumour size, acts as a separatrix
between tumour growth and extinction. In fact, it is the stable manifold of the equilibrium
acts as the separtrix, not only the equilibrium itself. The biological interpretation of
Theorem 3.3.5 does not change, and this misstatement does not impact our conclusions.

4. The Crivelli model given in (37) is missing an integral term and should read

d
dtQ(t) = 2

∫︁∞
0 exp

[︂
−
∫︁ t
t−σ d3 + η(U(x))dx

]︂
a2G1(t− σ)δτ (t− σ)dσ − a1Q(t) − d1Q(t)

d
dtG1(t) = a1Q(t) − a2G1(t) − d2G1(t) − η(U(t))G1(t)

d
dtI(t) = −δI(t) + η(U(t)) [G1(t) +

∫︁ τ
0 G1(σ) exp [−d3σ] dσ]

d
dtV (t) = αI(t) − ωV (t) − η(U(t)) [G1(t) +

∫︁ τ
0 a2G1(σ) exp [−d3σ] dσ] .

Evaluating the convolution integral against the degenerate distribution gives

d
dtQ(t) = 2 exp

[︂
−d3τ −

∫︁ t
t−τ η(U(x))dx

]︂
a2G1(t− τ) − a1Q(t) − d1Q(t)

d
dtG1(t) = a1Q(t) − a2G1(t) − d2G1(t) − η(U(t))G1(t)

d
dtI(t) = −δI(t) + η(U(t)) [G1(t) +

∫︁ τ
0 G1(σ) exp [−d3σ] dσ]

d
dtV (t) = αI(t) − ωV (t) − η(U(t)) [G1(t) +

∫︁ τ
0 a2G1(σ) exp [−d3σ] dσ] .

This typo does not impact the discussion of the Crivelli model in Appendix A.
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Abstract

We develop and analyse a mathematical model of tumour-immune interaction

that explicitly incorporates heterogeneity in tumour cell cycle duration by using a

distributed delay differential equation. We derive a necessary and sufficient condition

for local stability of the cancer free equilibrium in which the amount of tumour-

immune interaction completely characterises disease progression. Consistent with

the immunoediting hypothesis, we show that decreasing tumour-immune interaction

leads to tumour expansion. Finally, by simulating the mathematical model, we show

that the strength of tumour-immune interaction determines the long-term success

or failure of viral therapy. viral oncology, mathematical biology, delay differential

equations, cancer

3.1 INTRODUCTION

Malignant tumours contain a highly heterogeneous population of cells that have distinct
genotypes and reproductive abilities [Bell and McFadden, 2014; Lichty et al., 2014]. The
heterogeneous nature of tumours is mirrored in the reproduction speed of malignant
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cells. Most existing mathematical models greatly simplify the impact of heterogeneity
in cell cycle times by either neglecting the cell cycle or assuming that all tumour cells
have identical cell cycle durations. We will account for the range of cell cycle durations
by deriving a mathematical model of tumour growth using a delay differential equation
(DDE) with a distribution of delays. This is, to our knowledge, a novel way of considering
the heterogeneity present in malignant tumours and presents a physiologically realistic
model of tumour expansion.

Distributed DDEs model a continuum of cell cycle durations that belong to an interval
of physiologically realistic values, with durations distributed according to a probability
density function (PDF). This contrasts with discrete DDEs, where the discrete delay rep-
resents the cell cycle duration which is taken to be the same for all tumour cells. Thus
discrete delays implicitly assume homogeneity of the tumour cell cycle duration which
limits the physiological relevance of such models.

The human immune system attempts to eradicate malignant cells and inhibit tumour
establishment [Hallam et al., 2009; Hoos et al., 2011]. We study this phenomenon by
explicitly including tumour–immune interaction in our mathematical model. Analysis of
this model shows that there is a threshold tumour size below which the immune system
successfully prevents tumour establishment and quantifies the role of immune surveillance
in tumour establishment and growth.

Therapeutic strategies under development attempt to exploit the immune system to
eradicate malignant tumours via immuno-oncology and genetically engineered oncolytic
viruses [Cassady et al., 2016; Chiocca and Rabkin, 2015; Hoos et al., 2011; Lawler and
Chiocca, 2015]. Oncolytic viruses are designed to exploit the high reproductive rate
characteristic of malignant tumours and preferentially infect cancerous cells. Immune
regulated death of infected tumour cells releases tumour specific antigens that signal the
immune system [Breitbach et al., 2016]. We incorporate oncolytic viral therapy into our
mathematical model to study how these viruses can prime the immune system to eliminate
tumours.

The release of tumour specific antigens induces a long-lasting immune response
that causes tumour regression that persists after resolution of the infection [Bourgeois-
Daigneault et al., 2016]. Consequently, oncolytic viruses have recently been recast as
instigators of immuno-oncology and are being engineered to induce immune recruit-
ment. For example, in 2015, the United States Food and Drug Administration approved a
modified herpes virus that promotes granulocyte-macrophage colony-stimulating factor
production and resulting anti-tumour immunity for treatment of melanoma [Bommareddy
et al., 2017].
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Mathematical models have been used extensively to understand and predict tumour
growth and tumour-immune interactions (see Santiago et al. [2017]; Walker and Enderling
[2016]; Wodarz [2016] for reviews). Existing models range from formulations as ordinary
differential equations (ODEs) [Idema et al., 2010; Kim et al., 2015; Kirschner and Panetta,
1998; MacNamara and Eftimie, 2015], to partial differential equations [Hillen et al., 2013;
Malinzi et al., 2017] and discrete DDEs [Liu et al., 2007; Mahasa et al., 2017; Villasana and
Radunskaya, 2003].

Crivelli et al. [2012] developed and analysed a discrete DDE model of tumour growth
and viral oncology. The Crivelli model is simple enough to be analytically tractable while
retaining important physiological aspects of tumour growth and oncolytic viral therapy,
but neglects the role of the immune system in tumour eradication. Crivelli et al. [2012]
model the interaction of virions and tumour cells by using a non-differentiable function
which significantly complicates the analysis of the model. This contact function allows for
viral therapy alone to drive tumour remission in their model, without interaction with the
immune system.

We develop a novel tumour growth and viral oncology model which incorporates
immune recruitment to drive tumour clearance. Our model is partly based on the Crivelli
model but augments and generalises it in very significant ways. We explicitly model
phagocytosis of the tumour cells, and cytokine driven phagocyte recruitment. As men-
tioned, we also include a distribution of cell cycles times for the tumour cells which results
in a DDE with distributed delays. We show the explicit link between our work and Crivelli
et al. [2012] in Appendix A.

The duration of the cell cycle is crucial to the life cycle of many oncolytic viruses
[Bommareddy et al., 2017; Colao et al., 2017], and only actively dividing tumour cells can
be infected by the oncolytic virus. Therefore, in a model of viral therapy, it is crucial to
explicitly include the cell cycle duration of tumour cells. The inclusion of a heterogeneous
cell cycle duration is more realistic than models with a discrete delay, because a discrete
delay is equivalent to assuming that every cell in the tumour has a constant and identical
cell cycle duration.

The distributed DDE tumour-immune model is developed in full generality in Sec-
tion 3.2. In Section 3.3, we prove that solutions of the initial value problem evolving from
non-negative initial data remain non-negative. Next, in Theorem 3.3.3, we determine a
condition for treatment free extinction of the tumour that quantifies the link between im-
mune involvement and disease progression. Our results show that immune involvement is
crucial in controlling tumour growth. As a direct consequence, we show in Corollary 3.3.4
that homogeneous tumours are less robust than tumours with heterogeneous cell cycle
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durations. Finally, by showing the existence of a cancer-immune co-existence equilibrium
in Theorem 3.3.5, we establish a direct link between the minimal viable number of tu-
mour cells and the immune killing capacity that is consistent with the immunoediting
hypothesis of tumour progression [Mittal et al., 2014]. Our analytical results are derived
independently of the delay kernel chosen. In Section 3.4, by deriving a variant of the linear
chain technique, we prove that the distributed DDE is equivalent to a finite dimensional
ODE. We end Section 3.4 by simulating viral oncology treatment and illustrating the
previously derived stability results. Our simulations show the existence of a transcritical
bifurcation where the unstable nonzero equilibrium acts as a separatrix between tumour
extinction and growth. Biologically, this result implies that treatment strategies that force
the malignant tumour across the separatrix will eradicate the tumour. Moreover, we show
that sufficiently strong immune involvement can counteract aggressive tumour growth
and lead to tumour extinction without treatment. Finally, we discuss our results in Section
3.5.

3.2 MODEL DEVELOPMENT

Our model of tumour-immune interaction is given by the system of differential equations

d
dtQ(t) = 2

∫︂ t

−∞
exp

[︃
−
∫︂ t

σ
d̂K + η(U(x)) + ψG(U(x))dx

]︃
a2G1(σ)K(t− σ)dσ

−a1Q(t) − d1Q(t) − ψQ(U(t))Q(t)
d
dtG1(t) = a1Q(t) − a2G1(t) − d2G1(t) − η(U(t))G1(t) − ψG(U(t))G1(t)
d
dtI(t) = η(U(t)) [G1(t) +N(t)] − δI(t)
d
dtV (t) = −η(U(t)) [G1(t) +N(t)] + α[δI(t)] − ωV (t)
d
dtC(t) = Cprod(U(t)) − kelimC(t).
d
dtP (t) = ϕ(C(t)) − γpP (t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

In (3.1), Q(t) and G1(t) denote the quiescent and proliferative phase tumour cells. The
cytokine concentration is denoted by C(t), and the phagocyte concentration in the tumour
microenvironment by P (t). Finally, V (t) is the concentration of oncolytic virions and I(t)
is the number of infected tumour cells.

In (3.1), Q(t) corresponds to cells in the G0 phase of the Burns and Tannock [1970]
model of the cell cycle while G1(t) corresponds to the G1 phase. We model the active
phases of the cell cycle ( S, G2 and M ) as an ageing process that yields the integral term in
(3.1).
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We denote by N(t) the total number of cells in the active portion (the S,G2 and M

phases) of the cell cycle, given by

N(t) =
∫︂ ∞

0
a2G1(t− ξ) exp

[︃
−
∫︂ t

t−ξ
d̂K + ψG(U(x)) + η(U(x))dx

]︃ (︄
1 −

∫︂ ξ

0
K(σ)dσ

)︄
dξ,

(3.2)
as derived in Appendix B. In equations (3.1) and (3.2) the distribution of the duration of
the active phase of the cell cycle is described by the PDF K(t). We do not choose a specific
distribution in our model but rather derive our analytic results independently of K(t); see
Section 3.2.1 for a discussion of the properties of K(t).

The functions η(U(t)), ψQ(U(t)), ψG(U(t)), ϕ(C(t)), and Cprod(U(t)) in (3.1) are defined
in equations (3.8), (3.10), (3.11) and (3.13). To simplify notation, we denote the vector

U(t) = [Q(t), G1(t), I(t), V (t), C(t), P (t)].

The distributed DDE (3.1) is given initial data Q(t0), I(t0), C(t0) and [G1(s), V (s), P (s)] =
[φG(s), φV (s), φP (s)] for s ∈ (−∞, t0] for integrable functions φG(s), φV (s), φP (s) to create
an initial value problem. The time t0 can be thought of as the beginning of treatment; for
simplicity, we take t0 = 0.

We derive equation (3.1) in three steps. First, we consider tumour growth in the absence
of immune interaction and viral therapy in Section 3.2.1. Tumour heterogeneity is explicitly
accounted for by using a distributed cell cycle time length. The tumour growth equations
are derived keeping in mind the eventual use of the model to describe the impact of an
RNA oncolytic virus on tumour growth. Next, in Section 3.2.2, we derive the tumour-
immune interaction and incorporate immunosurveillance into the tumour growth model.
The graphical representation of the tumour-immune growth model is given in Fig. 3.1.
Finally, by including viral therapy and immune recruitment in Section 3.2.3, we arrive at
equation (3.1).

3.2.1 Tumour growth model development

RNA viruses replicate in infected cells during stages G1 through M of the Burns and
Tannock [1970] model of the cell cycle. As previously noted, we separately model the
quiescent (Q(t)) and G1 phase (G1(t)) tumour cell populations. Quiescent tumour cells
undergo apoptosis at a rate d1. We denote the transit rate between the quiescent and G1

population as a1. Cells in G1 undergo apoptosis at a rate d2, and enter into the active phase
of the cell cycle at a rate a2. We define the cell cycle duration as the time length of the
active portion of the cell cycle, calculated as the time a cell takes between exiting G1 and
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Quiescent
Q(t)

d1

a1

Gap 1
G1(t)

d2

a2

Active Portion

d̂K

ψQ

Phagocytes
P(t)

ψG

ϕ
Cytokine

C(t)

Cprod

Cprod

Figure 3.1: Pictorial representation of the tumour growth model. Popu-
lations are denoted by circles, processes by squares and rates by arrows.
Quiescent cells enter G1 at rate a1 and undergo apoptosis at rate d1. Cells
leave G1 and enter the active phase of the cell cycle at rate a2 while
undergoing apoptosis at a rate d2. The active phase death rate is d̂k and
cells re-enter quiescence after mitosis. Phagocytes interact with quies-
cent and G1 phase cells at respective rates ψQ and ψG. Tumour-immune
interaction drives cytokine production through the function Cprod.

re-entering Q.

We assume that the cell cycle time of tumour cells is a positive random variable with
PDF K(t) satisfying

K(t) ≥ 0 ∀t ∈ [0,∞),
∫︂ ∞

0
K(t)dt = 1.

We assume that cells have an expected mean cell cycle duration of τ , so the expected value
of K(t) satisfies

EK(t) :=
∫︂ ∞

0
tK(t)dt = τ < ∞. (3.3)

We will also use that
EK(f(t)) =

∫︂ ∞

0
f(t)K(t)dt, (3.4)

where in particular we note that the Laplace transform L[K](λ) of the PDF K(t) is equiva-
lent to EK(e−λt) since

L[K](λ) :=
∫︂ ∞

0
e−λtK(t)dt = EK(e−λt). (3.5)
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Let AR(t) denote the rate that successfully dividing cells re-enter quiescence at time
t. Such cells began the active portion of the cell cycle some time σ in the past at rate
a2G1(σ). The likelihood that these cells complete the cell cycle at time t is given by K(t−σ).
Disregarding immune interaction for now, cells in the active portion of the cell cycle
undergo apoptosis at a constant, distribution specific, rate d̂K . Consequently, cells that
spend more time in the active phase of the cell cycle are more likely to undergo apoptosis
instead of completing the cell cycle and returning to quiescence. Thus

AR(t) = 2
∫︂ t

−∞
exp

[︃
−
∫︂ t

σ
d̂Kdx

]︃
a2G1(σ)K(t− σ)dσ. (3.6)

Later, we will update AR(t) to include tumour-immune interaction and viral therapy. The
distributed delay expression AR(t) is a novel model of tumour cell reproduction that is
more physiologically appropriate than a discrete delay.

The discrete delay model considered by Crivelli et al. [2012] corresponds to K(t) =
δ(t − τ) and dδ = d3. The explicit link between (3.1) and the Crivelli model is shown
in Appendix A. The expected cellular output of the cell cycle with a discrete and fixed
duration is

Eδ[te−d3t] = τe−d3τ .

To ensure a consistent cellular output from the cell cycle for different distributions K(t),
we define d̂K > 0 as the distribution dependent unique positive value that solves

EK [te−d̂Kt] = τe−d3τ . (3.7)

The parameter d̂K must exist for a given distribution K as the function

fK(ζ) = EK [te−ζt] − τe−d3τ

is continuous and satisfies

fK(0) = τ(1 − e−d3τ ) > 0 and lim
ζ→∞

fK(ζ) = −τe−d3τ < 0.

The intermediate value theorem along with the fact that f(ζ) is strictly decreasing for ζ > 0
guarantees the existence and uniqueness of d̂K .

The resulting model of tumour growth without immunosurveillance is then

d
dt
Q(t) = AR(t) − a1Q(t) − d1Q(t)

d
dt
G1(t) = a1Q(t) − a2G1(t) − d2G1(t),
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where AR(t) is given by (3.6).

3.2.2 Immune model development

The tumour microenvironment is complex and contains a multitude of cytokines and cell
types [Bartlett et al., 2013; Cassady et al., 2016; Grivennikov and Karin, 2011; Hallam et al.,
2009]. To avoid overcomplicating the model by adding variables and creating equations
corresponding to each cytokine and signalling pathway, we instead model a general local
proinflammatory cytokine compartment C(t). We assume the cytokine is produced at a
variable rate Cprod(U(t)) with the homeostatic production rate C∗

prod. The viral and immune
mediated destruction of tumour cells results in increased cytokine production by releasing
tumour specific antigens [Bartlett et al., 2013; Bell and McFadden, 2014]. Conversely, we do
not consider apoptosis of tumour cells to be immunogenic [Bartlett et al., 2013]. Therefore,
Cprod(U(t)) is an increasing function of viral and immune destruction of tumour cells. The
resulting positive feedback loop is consistent with self activation of immune cells observed
experimentally [Mosser, 2003]. Finally, we assume that the cytokine is cleared linearly
at rate kelim, mimicking the dynamics of many endogeneous cytokines [Craig et al., 2016;
Krzyzanski et al., 2010; Piscitelli et al., 1997]. The simplified cytokine dynamics are thus
given by

d
dt
C(t) = Cprod(U(t)) − kelimC(t).

We assume that phagocytes can undergo phagocytosis multiple times, so phagocyte
clearance is linear, and we do not include a phagocytosis related death term. Inflammatory
cytokines drive phagocyte recruitment and activation [Bartlett et al., 2013; Cassady et al.,
2016; Hallam et al., 2009]. Consequently, we model the local phagocyte population in
a similar cytokine driven manner to Schirm et al. [2016] by using a Michaelis–Menten
growth function ϕ(C(t)) with maximal production rate kcp and half effect concentration of
cytokine C1/2. The phagocyte dynamics are therefore given by

d
dt
P (t) = ϕ(C(t)) − γpP (t), where ϕ(C(t)) = kcpC(t)

C1/2 + C(t) . (3.8)

The disease free equilibrium concentrations of (C(t), P (t)) represent the tumour-free
tissue concentrations of cytokine and phagocytes and are given by

C∗ =
C∗
prod

kelim
and P ∗ = 1

γp

kcpC
∗

C1/2 + C∗ . (3.9)
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We describe phagocyte-tumour cell interaction by

ψQ(U(t))Q(t) = kpP (t)
1 + kqQ(t)Q(t), and ψG(U(t))G1(t) = kpP (t)

1 + ksG1(t)
G1(t). (3.10)

For small tumour cell populations, the tumour–immune interaction follows mass-action
kinetics, while for large tumour cell populations, the phagocytosis rate is limited by the
phagocyte concentration as would be expected. We assume that cells in the active portion
of the cell cycle interact with the immune system in the same way as cells in the G1 phase.

The total immune mediated death is then

Ψ(U(t)) = ψQ(U(t))Q(t) + ψG(U(t))(N(t) +G1(t)).

Contact rates similar to (3.10) were derived by Imran and Smith [2007] using a handling
time argument.

3.2.3 Viral therapy model development

Viral infections are caused by virus specific particles, called virions, that infect and replicate
in host cells. Infected host cells die after undergoing lysis and releasing virions into the
surrounding tissue. To model the effect of oncolytic virus treatment, we consider the virion
population, V (t), and the number of infected malignant cells, I(t).

Infection occurs following contact of a virion and a susceptible cell. Susceptible cells
are cells in the G1, S,G2 and M phases of the cell cycle. We model the infection rate
between virions and susceptible cells by η(U(t)). Infection due to virion and susceptible
cell contact occurs in a similar manner to tumour-immune interactions. Consequently,
η(U(t)) is structured similarly to equation (3.10), with half effect concentration η1/2 and
maximal infectious rate κ, so

η(U(t)) = κ
V (t)

η1/2 + V (t) . (3.11)

As previously noted, disease remission following viral therapy is thought to result from
activation of the immune system against the tumour and increased antitumour immunity
[Bartlett et al., 2013; Bell and McFadden, 2014; Cassady et al., 2016; Fukuhara et al., 2016;
Rehman et al., 2016]. Therefore, introduction of viral therapy alone should not impact the
stability of the disease free equilibrium but rather immune response to viral therapy may
change the quantitative behaviour of solutions. This is in contrast to Crivelli et al. [2012],
who modelled contact between virions and susceptible cells using a non-differentiable
contact function. Their choice of contact function was motivated by noting that viral
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therapy has driven cancer into remission, which implicitly assumed that the virus alone
drives disease remission.

Infected tumour cells are produced following infection and undergo lysis at a rate δ.
Lysis of infected tumour cells releases α virions. Virions are only produced during lysis
and lose infectivity at a rate ω, leading to the differential equations for I(t) and V (t)

d
dt
I(t) = η(U(t)) [G1(t) +N(t)] − δI(t)

d
dt
V (t) = −η(U(t)) [G1(t) +N(t)] + αδI(t) − ωV (t).

Clearance of proliferating cells leads to exponential loss as the cleared cells no longer
divide nor return to quiescence. This is accounted for by updating (3.6) to include the loss
of mitotic cells due to immune and viral mediated death, giving

AR(t) = 2
∫︂ t

−∞
exp

[︃
−
∫︂ t

σ
d̂K + η(U(x)) + ψG(U(x))dx

]︃
a2G1(σ)K(t− σ)dσ. (3.12)

Finally, the link between the oncolytic virus and the immune system is cytokine pro-
duction, modelled by Cprod(U(t)). Both lysis of infected cells and immune killing are
immunogenic, leading to an increase in immune signalling. Therefore, we link virus and
immune mediated cell death by the cytokine production rate Cprod(U(t)), given by

Cprod(U(t)) = C∗
prod + (Cmax

prod − C∗
prod)

[δI(t) + Ψ(U(t))]
Ψ1/2 + [δI(t) + Ψ(U(t))] . (3.13)

We note that Cprod(U(t)) ≥ C∗
prod > 0 for nonnegative cell populations; the homeostatic

cytokine production rate is effectively the minimal cytokine production rate.

Combining the differential equations for each population with the PDF K(t) gives the
complete model in equation (3.1).

3.3 MODEL ANALYSIS

The mathematical model in (3.1) represents cell populations that are non-negative quanti-
ties. Consequently, we begin our analysis by showing that solutions of (3.1) evolving from
non-negative initial data remain non-negative.

Lemma 3.3.1. Assume that the parameters in (3.1) are strictly positive and that the initial condi-
tions are componentwise non-negative. Moreover, assume thatG1(s) = φG(s) ≥ 0 for s ∈ (−∞, 0].
Then solutions of the initial value problem corresponding to (3.1) are non-negative for all time
t ≥ 0.



69

Proof. By the assumption on the initial conditions, Cprod(U(0)) ≥ C∗
prod > 0, so

d
dt
C(t) > −kelimC(t)

in a neighbourhood t ∈ [0, εC ]. Gronwall’s inequality ensures that C(t) ≥ C(0)e−kelimt ≥ 0
for t ∈ [0, εC ]. In this interval,

−γpP (t) ≤ d
dt
P (t) ≤ kcp − γpP (t),

therefore

0 ≤ P (0)e−γpt ≤ P (t) ≤ kcp
γp

(1 − e−γpt) + P (0)e−γpt ≤ max
{︃
kcp
γp
, P (0)

}︃
= Pmax.

We now investigate the populations Q(t) and G1(t). If Q(0) = G1(0) = 0 and φG(s) = 0
K-almost everywhere in (−∞, 0], Q(t) and G1(t) remain identically zero for all time t > 0.
If Q(0) = 0 and φ(s)K(−s) > 0 on some set of positive measure in (−∞, 0], then Q(t)
eventually becomes positive for some t > 0. Therefore, we only need to consider the case
where Q(0) > 0 and φ(s) ≥ 0 for s ∈ (−∞, 0].

Now, let tg ∈ [0, εC ] be the first time that G1(tg) = 0. Then AR(t) defined by equation
(3.12) satisfies AR(t) ≥ 0 for all t ∈ [0, tg].

It follows from (3.1) that

d
dt
Q(t) ≥ −(a1 + d1 + kpP

max)Q(t) for t ∈ [0, tg].

Then Q(t) > 0 for t ∈ [0, tg] and

d
dt
G1(t)

⃓⃓⃓
t=tg

= a1Q(tg)−a2G1(tg)−d2G1(tg)−η(U(t))G1(tg)−ψG(U(tg))G1(tg) = a1Q(tg) > 0.
(3.14)

Thus G1(t) is strictly increasing at tg. If tg = 0, then G1(t) > 0 immediately. Conversely, if
tg > 0, then G1(t) must be nonincreasing at tg. This contradicts (3.14), so no such tg > 0
can exist and G1(t) > 0 for t ∈ (0, εC ]. Since AR(t) ≥ 0 while G1(t) ≥ 0, it follows from the
arguments above that Q(t) > 0 while G1(t) ≥ 0. Finally, it is simple to see that G1(t) > 0
for t ∈ (0, εC ] implies that N(t) defined by (3.2) satisfies N(t) > 0 for all t ∈ (0, εC ].

If V (0) = I(0) = 0, then the I(t), V (t) populations remain identically zero for all time.
Therefore, we consider V (0) + I(0) > 0 and we have three cases:

Case I If V (0) = 0 then I(0) > 0 and it is simple to calculate that

d
dt
V (t)|t=0 = αδI(0) > 0,
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so V (t) becomes strictly positive immediately.

Case II If I(0) = 0
If Q(0) = 0 and φ(s) = 0 almost everywhere in (−∞, 0], the tumour free case, then

Q(t), G1(t) and I(t) remain identically zero for all time t > 0 and V (t) decays exponentially
to 0.

Thus, as above, we need only consider Q(0) > 0 and G1(t) > 0 in (0, εC ]. Now, I(0) = 0
so V (0) > 0 and for all t ∈ (0, εC ], if I(t) = 0 then

d
dt
I(t) = η(U(t)) [G1(t) +N(t)] > 0

and I(t) > 0 for all t ∈ (0, εC ], otherwise a contradiction ensues.

Case III Thus, it only remains to consider the case where V (t) and I(t) are both strictly
positive immediately and remain positive in some neighbourhood of t = 0. While I(t) and
V (t) are non-negative, we compute

d
dt

(I(t) + V (t)) = −(δ − αδ)I(t) − ωV (t) ≥ − max[(δ − αδ), ω](I(t) + V (t)),

so
V (t) + I(t) ≥ [V (0) + I(0)] exp (− max[(δ − αδ), ω]t) > 0.

If there exists a time tv such that V (tv) = 0 then I(tv) > 0 and d
dtV (t)|t=tv ≤ 0, but arguing

as in Case I, we see that d
dtV (t)|t=tv > 0, and hence no such time tv can exist. Similarly, if

there exists a time tI such that I(tI) = 0 then V (tI) > 0 and d
dtI(t)|t=tI ≤ 0, but arguing

as in Case II, we see that d
dtI(t)|t=tI > 0, so no such tI can exist. Therefore, V (t) > 0 and

I(t) > 0 for all t ∈ [0, εC ].
Finally, for Q(t), G1(t), I(t), V (t), P (t) strictly positive, the cytokine production rate

satisfies Cprod(U(t)) ≥ C∗
prod, so

d
dt
C(t) ≥ C∗

prod − kelimC(t),

and C(t) ≥
(︃
C∗

prod

kelim
(1 − e−kelimt) + C(0)e−kelimt

)︃
> 0 for all t ∈ [0, εC ]. Then, each component

is positive at t = εC and the above argument extends from [0, εC ] to [0,∞).

3.3.1 Linearisation of the distributed DDE

The system (3.1) has the cancer free equilibrium (CFE), U∗ = (0, 0, 0, 0, C∗, P ∗). Although it
is often convenient to regard a trajectory U(t) of the system (3.1) as a parameterised curve
with with U(t) ∈ C(R,R6), it is important to realise that the DDE system (3.1) defines an
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infinite dimensional dynamical system. The infinite-dimensional phase space is

L1((−∞, 0],R6, µ) =
{︃
f : (−∞, 0] → R6

⃓⃓⃓ ∫︂ ∞

0
|f(−s)|dµ(s) < ∞

}︃
where | · | is the ℓ1 norm in R6, and µ is a probability measure whose Radon-Nikodym
derivative with respect to the Lebesgue measure is K(t). When K(t) is Riemann integrable
(such as in the case of the Gamma distribution that we will consider in Section 3.4) this
implies that

µ(t) =
∫︂ t

0
K(ξ) dξ.

This space satisfies the axioms given by Hale and Verduyn Lunel [1993]; Hino et al. [1991],
so there exists a unique solution to the corresponding initial value problem.

To investigate the long term behaviour of the model, we linearise the system around
the CFE in L1(µ). In a similar procedure to Câmara De Souza et al. [2018], we first linearise
the function AR(t), given in (3.12) around the CFE. Using the Taylor expansions of η(U(x))
and ψG(U(x)), with η(U∗) = 0, we approximate the inner integral

I = −
∫︂ t

t−σ
d̂K + η(U(x)) + ψG(U(x))dx

= −
∫︂ t

t−σ
d̂K + ψ∗

G + η′(U∗)(U(x) − U∗) + ψ′
G(U∗)(U(x) − U∗) + O(|U(x) − U∗

⃓⃓⃓2
)dx.

The full expansion of eI is

eI = e−[d̂K+ψ∗
G]σ exp

(︃
−
∫︂ σ

0
η′(U∗)(U(t− x) − U∗) + ψ′

G(U∗)(U(t− x) − U∗) + O(|U(t− x) − U∗|2)dx
)︃

= e−[d̂K+ψ∗
G]σ

[︃
1 −

∫︂ σ

0
η′(U∗)(U(t− x) − U∗) + ψ′

G(U∗)(U(t− x) − U∗)dx+ O(|U(t− x) − U∗|2)
]︃
.

Importantly, eI is multiplied by G1(t− σ) in AR(t) and any non-constant terms of U(t)
in the expansion of eI are consequently nonlinear. So we obtain

AR(t) = 2
∫︂ ∞

0
exp

(︂
−[d̂K + ψ∗

G]σ
)︂

dσ + O(|U(t) − U∗|2) (3.15)

We translate the CFE of (3.1) to zero by setting C̄(t) = C(t) −C∗ and P̄ (t) = P (t) −P ∗ with
C∗ and P ∗ given by (3.9). Then, noting that η(U∗) = 0 and using (3.15), the N(t) terms in
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the I(t) and V (t) equations are also nonlinear. Equation (3.1) becomes

d
dtQ(t) = 2

∫︂ ∞

0
exp

(︂
−[d̂K + ψ∗

G]σ
)︂
a2G1(t− σ)K(σ)dσ

− (a1 + d1 + kpP
∗)Q(t) + O(|U(t) − U∗|2).

d
dtG1(t) = a1Q(t) − (a2 + d2 + kpP

∗)G1(t) + O(|U(t) − U∗|2)
d
dtI(t) = −δI(t) + O(|U(t) − U∗|2)

d
dtV (t) = αδI(t) − ωV (t) + O(|U(t) − U∗|2)

d
dtC̄(t) =

(︃
Cmax

prod−C∗
prod

Ψ1/2+kpP ∗

)︃
[δI(t) + kpP

∗(G1(t) +Q(t))] − kelim(C̄(t)) + O(|U(t) − U∗|2)
d
dt P̄ (t) = kcp

C1/2+C∗ C̄(t) − γpP̄ (t) + O(|U(t) − U∗|2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.16)

We follow Smith [2011] to complete the linearisation. We define X(t) := U(t) − U∗ and
use Xτ to denote the linear delayed terms via

Xτ (t) :=
∫︂ ∞

0
e−[d̂K+ψ∗

G]σX(t− σ)K(σ)dσ.

By making the ansatz X(t) = Ceλt, we see that Xτ (t) satisfies

Xτ (t) =
∫︂ ∞

0
e−[d̂K+ψ∗

G]σX(t− σ)K(σ)dσ = Ceλt
∫︂ ∞

0
e−(λ+d̂K+ψ∗

G)σK(σ)dσ

= X(t)L[K](λ+ d̂K + ψ∗
G),

where L[K](λ) is the Laplace transform of K(σ) defined by (3.5).

Dropping the nonlinear terms in equation (3.16) and setting

ξc =
(Cmax

prod − C∗
prod)

Ψ1/2 + kpP ∗ ,

we obtain the linearised infinite dimensional DDE

d
dt

X(t) = AX(t) + BXτ (t) = (A + L[K](λ+ d̂K + ψ∗
G)B)X(t), (3.17)
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where

A+L[K](λ+d̂K+ψ∗
G)B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(a1 + d1 + kpP
∗) 2a2L[K](λ+ d̂K + ψ∗

G) 0 0 0 0
a1 −(a2 + d2 + kpP

∗) 0 0 0 0
0 0 −δ 0 0 0
0 0 αδ −ω 0 0

ξckpP
∗ ξckpP

∗ ξcδ 0 −kelim 0
0 0 0 0 kcp

C1/2+C∗ −γp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence (3.17) becomes

Cλeλt = (A + L[K](λ+ d̂K + ψ∗
G)B)Ceλt, (3.18)

From (3.18), the characteristic equation is

q(λ) := det
[︂
A + L[K](λ+ d̂K + ψ∗

G)B − λI
]︂

= 0.

Using the block nature of the linearisation matrix gives

q(λ) = ρ(λ)p(λ) = 0,

where

ρ(λ) = (δ + λ)(ω + λ)(kelim + λ)(γp + λ),

p(λ) = 2a1a2L[K](λ+ d̂K + ψ∗
G) − (a1 + d1 + kpP

∗ + λ)(a2 + d2 + kpP
∗ + λ).

⎫⎬⎭ (3.19)

Here ρ(λ) is the determinant of the lower triangular block and has strictly negative real
roots. The explicit roots of ρ(λ) imply that the stability of the CFE is determined by the
roots of p(λ).

To study the persistence of small tumours, we characterise the stability of the disease
free steady state. Typically, for DDEs, this involves solving a transcendental equation
with infinitely many roots. To simplify the following analysis, we first show that the
rightmost root of the characteristic equation is real. This result is unsurprising, as a
complex rightmost eigenvalue would give rise to spiralling solutions around the CFE,
which would become negative, contradicting Lemma 3.3.1.

Lemma 3.3.2. For strictly positive parameters, the rightmost root of q(λ) is real.

Proof. First, we note from (3.5) that the Laplace transform of a non-negative function f , is
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a decreasing function of λ. Similarly,

L[K](λ+ d̂K + ψ∗
G) =

∫︂ ∞

0
e−(λ+d̂K+ψ∗

G)σK(σ)dσ

is decreasing for real λ where it converges. Therefore, as a function of a real variable, p(λ)
is continuous and p(λ) is strictly decreasing for

λ > max[−(a1 + d1 + kpP
∗),−(a2 + d2 + kpP

∗)] := −Θ.

Moreover,

p(−Θ) = 2a1a2L[K](−Θ + d̂K + ψ∗
G) > 0 and lim

λ→∞
p(λ) = −∞,

so there is exactly one real root λ∗ of p(λ) that satisfies λ∗ > −Θ.

Since ρ(λ) has strictly negative real roots, any complex roots, ν = νr + iνi with νr ∈
(−Θ,∞) and νi ̸= 0, of the characteristic equation q(λ) must solve p(ν) = 0, which we may
rewrite as

(a1 + d1 + kpP
∗ + ν)(a2 + d2 + kpP

∗ + ν) = 2a1a2L[K](ν + d̂K + ψ∗
G). (3.20)

Taking the magnitude of the equality (3.20) gives

[︂
(a1 + d1 + kpP

∗ + νr)2 + ν2
i )((a2 + d2 + kpP

∗ + νr)2 + ν2
i

]︂1/2
= 2a1a2

⃓⃓⃓
L[K](ν + d̂K + ψ∗

G)
⃓⃓⃓
.

(3.21)
However,

(a1 + d1 + kpP
∗ + νr)(a2 + d2 + kpP

∗ + νr)

<
[︂
(a1 + d1 + kpP

∗ + νr)2 + ν2
i )((a2 + d2 + kpP

∗ + νr)2 + ν2
i

]︂1/2

and

2a1a2

⃓⃓⃓
L[K](ν + d̂K + ψ∗

G)
⃓⃓⃓
= 2a1a2

⃓⃓⃓ ∫︂ ∞

0
exp

[︂
−(νr + iνi + d̂K + ψ∗

G)σ
]︂
K(σ)dσ

⃓⃓⃓
≤ 2a1a2

∫︂ ∞

0

⃓⃓⃓
exp

[︂
−(νr + d̂K + ψ∗

G)σ
]︂
K(σ)

⃓⃓⃓⃓⃓⃓
e−iνiσ

⃓⃓⃓
dσ

= 2a1a2

∫︂ ∞

0

⃓⃓⃓
exp

[︂
−(νr + d̂K + ψ∗

G)σ
]︂
K(σ)

⃓⃓⃓
dσ

= 2a1a2L[K](νr + d̂K + ψ∗
G)

where the last equality comes from the nonegativity of the integrand. Substituting these
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bounds into (3.21) gives

(a1 + d1 + kpP
∗ + νr)(a2 + d2 + kpP

∗ + νr) < 2a1a2L[K](νr + d̂K + ψ∗
G),

from which we obtain
0 = p(νr + iνi) < p(νr).

Since p(λ) is strictly decreasing for λ > −Θ, we must have νr < λ∗. Then, the rightmost
root of q(λ) is either λ∗ or a root of ρ(λ) and is real.

The preceding result simplifies the analysis of the transcendental characteristic equation
by ensuring that the critical characteristic root is real. Therefore, the stability of the CFE, and
consequently, the persistence of small tumours, can be characterised using the intermediate
value theorem.

Theorem 3.3.3. The CFE U∗ of equation (3.1) is locally asymptotically stable if

2a1a2L[K](d̂K + ψ∗
G) < (a1 + d1 + kpP

∗)(a2 + d2 + kpP
∗) (3.22)

and unstable if

2a1a2L[K](d̂K + ψ∗
G) > (a1 + d1 + kpP

∗)(a2 + d2 + kpP
∗).

Proof. The condition for stability is equivalent to p(0) < 0. In this case, since p(λ) is strictly
decreasing for λ > max[−(a1 + d1 + kpP

∗),−(a2 + d2 + kpP
∗)], there can be no real root of

the characteristic equation with non-negative real part. Since the rightmost root must be
real, all roots of the characteristic equation must have negative real part and the CFE is
stable.

The condition for instability is equivalent to p(0) > 0. Since

lim
λ→∞

p(λ) = −∞,

the intermediate value theorem ensures that there is a root of the characteristic equation in
the positive half plane and the CFE is unstable.

Using (3.5) we can rewrite the stability condition (3.22) as

2a1a2 EK(exp
(︂
−[d̂K + ψ∗

G]t
)︂
) < (a1 + d1 + kpP

∗)(a2 + d2 + kpP
∗). (3.23)
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This can be rearranged as a basic reproduction number type condition

Rate into quiescence⏟ ⏞⏞ ⏟⎡⎣2a2EK(exp
(︂
−[d̂K + ψ∗

G]t
)︂
)

a1 + d1 + kpP ∗

⎤⎦
⏞ ⏟⏟ ⏞

Rate out of quiescence

Rate into G1⏟ ⏞⏞ ⏟[︄
a1

a2 + d2 + kpP ∗

]︄
⏞ ⏟⏟ ⏞

Rate out of G1

< 1.

Hence, the CFE is locally attracting if the product of the ratios of expected transit rates into
and out of the quiescent and G1 phases is less than one. Biologically, this corresponds to
each cell that transits out of either the quiescence or G1 phase not replacing itself through
mitosis. Clinically, while the CFE is unreachable in finite time, the local stability of the CFE
is crucial in determining treatment success or failure. If the CFE is locally asymptotically
stable, an effective treatment need only drive the tumour into the CFE basin of attraction
to be effective. Conversely, if the CFE is unstable, then the disease free state is repelling
and all treatments will ultimately be unsuccessful.

Finally, we can characterise the importance of heterogeneity in cell cycle duration as a
determining factor of disease progression. Let P be the parameter space of the distributed
DDE (3.1). Following Campbell and Jessop [2009], for each PDF K(t), we define the
stability region as

ΩK = {p ∈ P | The CFE of (3.1) is locally asymptotically stable} .

Then, we are able to define the stability region of the homogeneous cell cycle duration
case. The homogeneous cell cycle duration case corresponds to K(t) = δ(t − τ) with
stability region:

Ωδ =
{︂
p ∈ P | 2a1a2 exp

(︂
−[d̂K + ψ∗

G]τ
)︂
< (a1 + d1 + kpP

∗)(a2 + d2 + kpP
∗)
}︂
.

Then, we are able to characterise the stability regions for certain PDFs with respect to
the discrete DDE. For these PDFs, the tumour heterogeneity in cell cycle duration acts to
destabilise the CFE and leads to more a robust tumour. We formalise this relationship in
the following corollary.

Corollary 3.3.4. For any PDF K(t) which satisfies (3.3) and d̂K ≤ d3 we have the inclusion
ΩK ⊆ Ωδ.

Proof. Take p ∈ ΩK so that (3.23) is satisfied and the CFE is locally stable. Now, we define

hK(x) = exp
(︂
−[d̂K + ψ∗

G]x
)︂
.
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It is simple to see that hK(x) is convex. Jensen’s inequality gives

exp
(︂
−[d̂K + ψ∗

G]τ
)︂

= hK

(︃∫︂ ∞

0
xK(x)dx

)︃
≤
∫︂ ∞

0
exp

(︂
−[d̂K + ψ∗

G]x
)︂
K(x)dx = EK(exp(−(d̂K + ψ∗

G)t).

Now, using d̂K ≤ d3, we have

Eδ(exp(−(d̂K + ψ∗
G)t) = exp (−[d3 + ψ∗

G]τ) ≤ exp
(︂
−[d̂K + ψ∗

G]τ
)︂

≤ EK(exp(−(d̂K + ψ∗
G)t).

It follows that

Eδ(exp(−(d̂K + ψ∗
G)t) − (a1 + d1 + kpP

∗)(a2 + d2 + kpP
∗) < 0,

so the CFE is stable in the discrete DDE case and p ∈ Ωδ.

The condition d̂K ≤ d3 corresponds to∫︂ ∞

0
te−d3tK(t)dt− τe−d3τ ≤ 0,

which can be viewed as a measure of the skewness of the PDF K(t). Using (3.3), this
condition is satisfied if∫︂ τ

0
t
(︂
e−d3t − e−d3τ

)︂
K(t)dt ≤

⃓⃓⃓⃓∫︂ ∞

τ
t
(︂
e−d3t − e−d3τ

)︂
K(t)dt

⃓⃓⃓⃓
=
∫︂ ∞

τ
t
(︂
e−d3τ − e−d3t

)︂
K(t)dt.

It is important to note that the linearisation only determines local stability. So, while
small tumours may not grow, large tumours do not necessarily disappear. In fact, for
a given level of immune recognition of tumour cells, kp, there is a critical tumour size
above which the tumour grows unboundedly. The critical tumour size acts as a separatrix
between tumour extinction and growth and takes the form of a nonzero equilibrium
point where tumour growth and immune surveillance are balanced. In Theorem 3.3.5, we
show that such an equilibrium must exist. Transition across this equilibrium has been
hypothesised to occur as part of the cancer immunoediting process that allows tumours to
grow and corresponds to a transient decrease of kp [Bhatia and Kumar, 2011; Mittal et al.,
2014; Swann and Smyth, 2007].

To emphasise the biological interpretation of Theorem 3.3.5, we use the stability condi-
tion as written in (3.23) to characterise the existence of the non-zero equilibrium.



78

Theorem 3.3.5. Assume that the parameters in (3.1) are nonnegative. Let kcritp solve

2a1a2EK [exp
(︂
−[d̂k + kcritp P ∗]σ

)︂
− (a1 + d1 + kcritp P ∗)(a2 + d2 + kcritp P ∗) = 0.

Then, for kp > kcritp , there exists a strictly positive untreated equilibrium solution Ȳ
∗
1 =

(Q̄, Ḡ1, 0, 0, C̄, P̄ ) of (3.1) with Q1 and G1 strictly positive.

Proof. First, in the absence of viral treatment, V (0) = 0 and I(0) = 0, so (V ∗, I∗) = (0, 0).

To simplify notation in the proof, we set ξi = ai + di + kpP
∗ for i = 1, 2. We consider

the differential equation for G1(t) at equilibrium, so d
dtG1(t) = 0 and

a1Q
∗ = G∗

1

(︄
a2 + d2 + kpP

∗

1 + ksG∗
1

)︄
.

This can be rearranged as a quadratic equation in G∗
1,

(a2 + d2)ks(G∗
1)2 + (ξ2 − ksa1Q

∗)G∗
1 − a1Q

∗ = 0,

whose positive root is a function of Q∗ defined by

G∗
1(Q∗) =

ksa1Q
∗ − ξ2 +

√︂
(ksa1Q∗)2 + 2(a2 + d2 − kpP ∗)ksa1Q∗ + ξ2

2

2(a2 + d2)ks
. (3.24)

Now, inserting G∗
1(Q∗) into d

dtQ(t) = 0 gives

0 = 2a2G
∗
1(Q∗)

∫︂ ∞

0
exp

[︂
−
(︂
d̂K + η(U∗)) + ψG(U∗)

)︂
σdx

]︂
K(σ)dσ − (a1 + d1 + ψQ(U∗))Q∗.

Using (3.4) gives

F (Q∗) = 2a2G
∗
1(Q∗)EK [exp

(︂
−(d̂k + ψG(U∗))σ

)︂
] −

(︄
a1 + d1 + kpP

∗

1 + kqQ∗

)︄
Q∗ = 0.

We write
F (Q∗) = f(Q∗)

1 + kqQ∗
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where

f(Q∗) = kq

⎛⎝a1a2EK [exp
(︂
−(d̂k + ψG(U∗))σ

)︂
]

a2 + d2
− (a1 + d1)

⎞⎠ (Q∗)2

+
a1a2EK [exp

(︂
−(d̂k + ψG(U∗))σ

)︂
]

a2 + d2
Q∗ − ξ1Q

∗

+
a2EK [exp

(︂
−(d̂k + ψG(U∗))σ

)︂
]

ks(a2 + d2)

(︃
−ξ2 +

√︂
(ksa1Q∗)2 + 2(a2 + d2 − kpP ∗)ksa1Q∗ + ξ2

2

)︃
kqQ

∗

+
a2EK [exp

(︂
−(d̂k + ψG(U∗))σ

)︂
]

ks(a2 + d2)

(︃
−ξ2 +

√︂
(ksa1Q∗)2 + 2(a2 + d2 − kpP ∗)ksa1Q∗ + ξ2

2

)︃
.

The equilibrium concentration Q1 must therefore solve f(Q1) = 0. A simple calculation
shows that f(0) = 0, so we search for Q1 positive. Now, as Q∗ → ∞,

f(Q∗) =
(︄
a1a2EK [exp

(︂
−(d̂k + ψG(U∗))σ

)︂
]

a2 + d2
− (a1 + d1)

)︄
kq(Q∗)2

+ kqQ
∗a2EK [exp

(︂
−(d̂k + ψG(U∗))σ

)︂
]

ks(a2 + d2)
√︂

(ksa1Q∗)2 + 2(a2 + d2 − kpP ∗)ksa1Q∗ + ξ2
2

+ O([Q∗]3/2).

This is equivalent to

f(Q∗) =
[︂
2a1a2EK [exp

(︂
−(d̂k + ψG(U∗))σ

)︂
] − (a1 + d1)(a2 + d2)

]︂ kq(Q∗)2

(a2 + d2)
+ O([Q∗]3/2) as Q∗ → ∞,

so the sign of
[︂
2a1a2EK [exp

(︂
−(d̂k + ψG(U∗))σ

)︂
] − (a1 + d1)(a2 + d2)

]︂
determines the sign

of f(Q∗) as Q∗ grows infinitely large. Now,

2a1a2EK [e−(d̂k+ψG(U∗))σ] − (a1 + d1)(a2 + d2)

> 2a1a2EK [e−(d̂k+kcrit
p P ∗)σ] − (a1 + d1 + kcritp P ∗)(a2 + d2 + kcritp P ∗) = 0,

so f(Q∗) grows infinitely large with Q∗ and must be positive for large values of Q∗.

Next, as Q∗ → 0,

f(Q∗) =
a1a2EK [exp

(︂
−(d̂k + ψG(U∗))σ

)︂
]

ks(a2 + d2)

(︃
−ξ2 +

√︂
(ksa1Q∗)2 + 2(a2 + d2 − kpP ∗)ksa1Q∗ + ξ2

2

)︃

+
a1a2EK [exp

(︂
−(d̂k + ψG(U∗))σ

)︂
]

a2 + d2
Q∗ − ξ1Q

∗ + O([Q∗]3/2).
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Taylor expanding the square root about the point Q∗ = 0 gives

− ξ2 +
√︂

(ksa1Q∗)2 + 2(a2 + d2 − kpP ∗)ksa1Q∗ + ξ2
2

= −ξ2 +
√︂
ξ2

2 + (a2 + d2 − kpP
∗)

ξ2
ksa1Q

∗ + O([Q∗]2),

so for Q∗ near 0,

f(Q∗) =
a1a2EK [exp

(︂
−(d̂k + ψG(U∗))σ

)︂
]

a2 + d2
Q∗ − ξ1Q

∗

+
a2EK [exp

(︂
−(d̂k + ψG(U∗))σ

)︂
]

ks(a2 + d2)
(a2 + d2 − kpP

∗)
ξ2

ksa1Q
∗ + O([Q∗]3/2).

Crucially, a2 + d2 − kpP
∗ = 2(a2 + d2) − ξ2, so with f(0) = 0

f ′(0) = lim
Q∗→0

f(Q∗)
Q∗ = 1

ξ2

[︂
2a1a2EK [exp

(︂
−(d̂k + ψG(U∗))σ

)︂
] − ξ1ξ2

]︂
.

Thus, the sign of f ′(0) is determined by the sign of

g(kp) = 2a1a2EK [exp
(︂
−(d̂k + ψG(U∗))σ

)︂
] − ξ1ξ2.

The function g(kp) is strictly decreasing with g(kcritp ) = 0, therefore, f ′(0) < 0 for kp > kcritp .

Consequently, f(Q∗) is negative for Q∗ small and positive, and positive for large Q∗, so
there must be a positive root Q̄ with f(Q̄) = 0. This root defines a solution Ḡ1 = G∗

1(Q1) of
(3.24).

Finally, we can write an equilibrium solution of d
dtP (t) = 0 as a function of C(t) via

P̄ = ϕ(C(t))
γp

≤ kcp
γp
.

Given the upper bound of P̄ and the pair (Q̄, Ḡ1), the function Ψ(U(t)) is bounded. There-
fore, there must exist a solution C̄ > 0 to

0 = Cprod(Q̄, Ḡ1, ϕ(C̄)/γp) − kelimC̄.

Finally, using the value of C̄, we can calculate the corresponding equilibrium P̄ .

3.4 THE GAMMA DISTRIBUTION AND EQUIVALENT ODE SYSTEM

In this section we illustrate our previous results through numerical simulation. We will
show how (3.1) can be reformulated as a larger system of ordinary differential equations,
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and use numerical simulations of these to provide insight into the biological mechanisms
underlying the success or failure of viral therapy.

To translate our analytical results for a generic distribution into predictions of tumour
growth, we must specify a distribution of cell cycle durations, corresponding PDF K(t),
and death rate d̂K . The form of the PDFK(t) for a specific cancer patient could be estimated
from clinical data. In the absence of such data, we assume that cell cycle durations follow
a gamma distribution, so K(t) = gja(t). The function gja(t) is the PDF of the gamma
distribution with

gja(t) = ajtj−1e−at

Γ(j) with
d
dt
g1
a(t) = −ag1

a(t) and
d
dt
gja(t) = a[gj−1

a (t) − gja(t)], j ≥ 2.
(3.25)

Gamma distributions have been shown to be appropriate models of the heterogeneity in
cell cycle duration [Golubev, 2016; Yates et al., 2017].

The real positive parameters a and j in (3.25) define the shape of the gamma distribution.
The expected cell cycle duration is τ = j/a. For given τ we take j to be a strictly positive
integer and determine a by a = j/τ . The standard deviation, s2, of the gamma distribution
is given by s2 = τ 2/j. For fixed τ , larger values of j result in a more concentrated
distribution about τ . In Appendix A we demonstrate that in the limit as j → ∞ (with fixed
τ ) the gamma distributed model converges in distribution to a delta distributed model
with discrete delay τ .

To calculate d̂g, we note that the expected cellular output of the cell cycle is

Eg(σ) =
∫︂ ∞

0
σe

−
∫︁ t

t−σ
d̂gdx

gja(σ)dσ = aj

Γ(j)

∫︂ ∞

0
σj+1−1e−(a+d̂g)σdσ

= aj

(a+ d̂g)j+1
j =

[︄
a

a+ d̂g

]︄j+1
j

a
.

Imposing the equality (3.7) and τ = j/a gives

(︄
1

1 + d̂gτ/j

)︄j+1

τ = τe−d3τ .

Therefore, d̂g is given by

d̂g = j

τ

[︂
(ed3τ )1/j+1 − 1

]︂
. (3.26)

3.4.1 Equivalent ODE formulation

The link between gamma distributed DDEs and transit chain ODEs has been known since
at least the 1960s [Vogel, 1961]. The equivalence between infinite dimensional DDEs and
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ODEs is typically established through the linear chain technique. Among many other
areas, the linear chain technique has recently been used in the pharmaceutical sciences
[Câmara De Souza et al., 2018; Hu et al., 2018]. More generally, the equivalence between
distributed DDEs and ODEs was studied by Diekmann et al. [2018].

Typical applications of the linear chain technique involve a transit chain type ODE
without growth or loss throughout the chain. Here, we derive a variant of the linear chain
technique that accounts for the exponential decay of the mitotic cell population due to
apoptosis, immune pressure and lysis as modelled in equation (3.1). The resulting ODE
system is a compartment model with linear clearance throughout the transit chain.

By taking K(t) = gja(t) with j ∈ N and a = ktr = j/τ and setting

Ai(t) =
∫︂ t

−∞

a2

ktr
e−
∫︁ t

σ
d̂g+η(U(x))+ψG(U(x))dxG1(σ)giktr

(t− σ)dσ for i = 1, 2, ..., j,

we can reduce the distributed DDE model to a system of 6 + j ODEs. We show in
Theorem 3.4.2 that (3.1) is equivalent to the system of ODEs

d
dtQ(t) = 2ktrAj(t) − a1Q(t) − d1Q− ψQ(U(t))Q(t)

d
dtG1(t) = a1Q(t) − a2G1(t) − d2G1(t) − ψG(U(t))G1(t) − η(U(t))G1(t)
d
dtA1(t) = a2G1(t) − ktrA1(t)) − [d̂g + η(U(t)) + ψG(U(t))]A1(t)
d
dtAi(t) = ktr(Ai−1(t) − Ai(t)) − [d̂g + η(U(t)) + ψG(U(t))]Ai(t) for i = 2, 3..., j

d
dtI(t) = −δI(t) + η(U(t)) [G1(t) +N(t)]

d
dtV (t) = αδI(t) − ωV (t) − η(U(t)) [G1(t) +N(t)]
d
dtC(t) = Cprod(U(t)) − kelimC(t)
d
dtP (t) = ϕ(C(t)) − γpP (t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.27)

with identical initial conditions to the distributed DDE for Q(0), V (0), I(0), P (0), C(0) and

G1(0) = φ(0), Ai(0) =
∫︂ ∞

0

a2

ktr
e

−
∫︁ t

−σ
d̂g+η(U(x))+ψG(U(x))dx

φ(−σ)giktr
(σ)dσ,

where φ(s) is the history function of (3.1).

Lemma 3.4.1. For an integrable function G1(t) and j ∈ N with a = ktr = j/τ , the vector with
i-th component given by

Ai(t) =
∫︂ t

−∞
e−
∫︁ t

σ
d̂g+η(U(x))+ψG(U(x))dx a2

ktr
G1(σ)giktr

(t− σ)dσ for i = 1, 2, ..., j, (3.28)
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is the solution of the system of differential equations given by

d
dtA1(t) = a2G1(t) − ktrA1(t)) − [d̂g + η(U(t)) + ψG(U(t))]A1(t)
d
dtAi(t) = ktr(Ai−1(t) − Ai(t)) − [d̂g + η(U(t)) + ψG(U(t))]Ai(t) for i = 2, 3..., j

⎫⎪⎬⎪⎭
(3.29)

Proof. Using the Lebniz and product rules, we differentiate A1(t) to obtain

d
dt
A1(t) = a2G1(t) − ktr

∫︂ t

−∞

a2

ktr
e−
∫︁ t

σ
d̂g+η(U(x))+ψG(U(x))dxG1(σ)g1

ktr
(t− σ)dσ

+
∫︂ t

−∞

d
dt
e−
∫︁ t

σ
d̂g+η(U(x))+ψG(U(x))dx a2

ktr
G1(σ)g1

ktr
(t− σ)dσ. (3.30)

Computing the derivative of the exponential then gives

d
dt
A1(t) = a2G1(t) − ktrA1(t)) − [d̂g + η(U(t)) + ψG(U(t))]A1. (3.31)

Similarly for general i, differentiating the expression for Ai(t) from (3.28) gives

d
dt
Ai(t) = a2

ktr
e0G1(t)gia(0) +

∫︂ t

−∞

a2

ktr

d
dt

[e−
∫︁ t

σ
d̂g+η(U(x))+ψG(U(x))dxG1(σ)giktr

(t− σ)]dσ

= ktr(Ai−1(t) − Ai(t)) − [d̂g + η(U(t)) + ψG(U(t))]Ai(t).

Thus, the vector A(t) = [A1(t), A2(t), ..., Aj(t)] satisfies (3.29).

Comparing equations (3.30) and (3.31) shows that the exponential loss of cells during
the cell cycle in equation (3.1) corresponds to linear clearance in the equivalent transit
compartment system of ODEs.

We now show the equivalence of the ODE and DDE models by using Lemma 3.4.1 to
replace the integral terms in equation (3.1).

Theorem 3.4.2. The system of distributed DDEs (3.1) with K(σ) = gja(σ), d̂g as given in (3.26)
and initial conditions Q(0) = Q0, I(0) = I0, C(0) = C0 and history functions V (s) = φV (s),
P (s) = φP (s) and G1(s) = φG(s) for s ∈ (−∞, 0] is equivalent to the system of ODEs (3.27)
with initial conditions Q(0) = Q0, I(0) = I0, C(0) = C0, V (0) = φV (0), P (0) = φP (0),
G1(0) = φG(0) and

Ai(0) =
∫︂ ∞

0

a2

ktr
exp

[︃
−
∫︂ 0

−σ
d̂g + η(U(x)) + ψG(U(x))dx

]︃
φG(−σ)giktr

(σ)dσ. (3.32)
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Proof. Using Lemma 3.4.1, we see that

2ktrAj(t) = 2
∫︂ t

−∞
a2 exp

[︃
−
∫︂ t

σ
d̂g + η(U(x)) + ψG(U(x))dx

]︃
G1(σ)gjktr

(t− σ)dσ = AR(t).

Thus, the differential equations for Q(t) in (3.1) and (3.27) are equivalent.

The remaining terms in (3.27) are exactly those in (3.1). To finish the conversion from
the DDE (3.1) to the ODE (3.27), we must specify the initial conditions. Given the history
functions [φG(s), φV (s), φP (s)] from the DDE model, we chose the initial conditions Ai(0)
of (3.27) according to equation (3.32). This ensures that the solution of (3.27) is equivalent
to the solution of (3.1) [Smith, 2011].

To convert from the ODE (3.27) to the DDE (3.1), we must take care with the construction
of the history functions (φG(s), φV (s), φP (s)). The ODE is equipped with initial conditions
V (0) and P (0). For simplicity, we set φV (s) = V (0) and φP (s) = P (0).

The j initial conditions for each Ai(0) define j constraints on φG(s). There are many
history function that satisfy these constraints and the ODE reduction of the DDE defines
the same solution for each such history function. We show how to construct one such
history function φG ∈ L1((−∞, 0],R, µ). Let the ODE system have initial conditions

αi = Ai(0) for i = 1, 2, ..., j and αi ∈ R,

and chose a sequence of points

0 < x1 < ... < xj < ∞.

Now, we make the following ansatz for φG(s)

φG(s) =
j∑︂

n=1
bnδ(s+ xn), (3.33)

where δ(x) is the Dirac function. We will show that is possible to chose the {bn}jn=1 such
that ∫︂ ∞

0

a2

ktr
giktr(σ) exp

[︃
−
∫︂ 0

−σ
d̂g + η(U(s)) + ψG(U(s))ds

]︃
φ(−σ)dσ = αi. (3.34)

However, the histories φV (s), φP (s) and φG(s) appear in the integral term

I =
∫︂ 0

−σ
d̂g + η(U(s)) + ψG(U(s))ds,

so some care is needed. We have already set φV (s) = V (0) so η(U(s) is defined on (−∞, 0],



85

so we need only consider

ψG(U(s)) = kpP (0)
1 + φG(s) for s < 0

with φP (s) = P (0). Inserting (3.33) for φG(s) gives

ψG(U(s)) = kpP (0)

1 +
j∑︂

n=1
bnδ(s+ xn)

=

⎧⎪⎨⎪⎩
kpP (0) if s /∈ {−xi}ji=1

0 if s ∈ {−xi}ji=1 .

Since ψG only appears in a Lebesgue integral and differs from kpP (0) on a set of measure
0, the following holds∫︂ 0

−σ
d̂g + η(U(s)) + ψG(U(s))ds =

∫︂ 0

−σ
d̂g + η(U(s)) + kpP (0)ds.

Therefore, finding {bn}jn=1 such that (3.34) holds is equivalent to finding {bn}jn=1 such that∫︂ ∞

0

a2

ktr
giktr(σ) exp

[︃
−
∫︂ 0

−σ
d̂g + η(U(s)) + kpP (0)ds

]︃
φG(−σ)dσ = αi. (3.35)

Using the ansatz for φG in (3.35) gives the following system of equations for i = 1, 2, ..., j

αi =
j∑︂

n=1
bn
a2

ktr
giktr

(xn) exp
[︃
−
∫︂ 0

−xn

d̂g + η(U(s)) + kpP (0)ds
]︃
. (3.36)

To simplify notation, set

µn =
∫︂ 0

−xn

d̂g + η(U(s)) + kpP (0)ds

and note µn is independent of the unknowns {bn}jn=1.

Equation (3.36) defines a linear system of equations for the unknowns {bn}jn=1. Conse-
quently, there exists a unique solution to (3.36) if the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣

a2
ktr
g1
ktr

(−x1) exp [−µ1] · · · a2
ktr
g1
ktr

(−xj) exp [−µj]
a2
ktr
g2
ktr

(−x1) exp [−µ1] · · · a2
ktr
g2
ktr

(−xj) exp [−µj]
... . . . ...
a2
ktr
gjktr

(−x1) exp [−µ1] · · · a2
ktr
gjktr

(−xj) exp [−µj]

⎤⎥⎥⎥⎥⎥⎥⎦
is invertible. To show this matrix is invertible, we will show that det(A) ̸= 0. Using the
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definition of gjktr
(xi), the m-th column has a common factor of

a2

ktr
e−ktrxm exp [−µm] > 0

while, the n-th row has a common factor of kntr/(n− 1)! > 0 for n,m = 1, 2, .., j. Thus

det(A) =
⎡⎣ j∏︂
n,m=1

a2

ktr
e−ktrxm exp [−µm] kntr

(n− 1)!

⎤⎦ det(V ),

where

V =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 · · · 1
x1 x2 · · · xj
...

... . . . ...
xj−1

1 xj−1
2 · · · xj−1

j

⎤⎥⎥⎥⎥⎥⎥⎦
Since V is a Vandermonde Matrix and the {xi}ji=1 are distinct, det(V ) ̸= 0. Consequently,
det(A) ̸= 0 so A is invertible and we can uniquely determine the {bn}jn=1.

The equivalence between ODEs and gamma distributed DDEs has been used exten-
sively since Vogel [1961]. Some authors have shown how to convert ODE transit compart-
ment models to distributed DDE for specific initial conditions [Câmara De Souza et al.,
2018; Cooke and Grossman, 1982]. However, to the author’s knowledge this is the first
proof of direct equivalence between an ODE and a distributed DDE for arbitrary ODE
initial conditions established by explicitly constructing a suitable history function.

3.4.2 Numerical results

For the purpose of numerical simulation, the system of finite dimensional ODEs derived
in Section 3.4.1 is much more tractable than the distributed DDE. Numerically solving the
distributed DDE requires the development and implementation of a numerical differential
equation solver capable of accurately computing the semi-infinite convolution integral,
while there are numerous existing methods for solving systems of ODEs. To solve the DDE
given in (3.1), we simulate the equivalent ODE in (3.27) and calculate N(t) as shown in
Appendix B to illustrate the analytical results of Section 3.3.

For simplicity, we only present the dynamics of Q(t), as these dynamics are represen-
tative of the full model’s behaviour. The parameters used in these simulations are given
in Table 3.1. These simulations illustrate the analytical results of Section 3 and provide
insight into the mechanism by which viral therapy leads to disease remission. However,
the simulations are not meant to be representative of individual cancer patients.
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The smallest clinically detectable tumour size has been estimated to be roughly
230 ≈ 1 × 109 cells [Carlson, 2003; Schwartz, 1961]. As viral oncology has only been
approved for advanced melanoma, we consider tumours with approximately 1010 cells.
(This corresponds to viral treatment starting 4 tumour doublings after diagnosis.) To en-
sure that our numerical computations involve numbers of similar magnitude, we measure
the number of tumour cells in units of 1010 cells. Given the homeostatic approximation of
leukocytes (≈ 6 × 109 cells/L) and roughly 7 litres of blood, we measure the phagocyte
concentration in identical units, namely 1010 cells.

To illustrate the difference between distributed and discrete delays in the cell cycle
duration, we simulate (3.27) without viral therapy for j = 6 and the discrete delay case
in Figure 3.2 a). In Fig. 3.2 b), we show the discrete case and the gamma distributed case
when j = 50. These simulations show that the discrete delay case has a larger basin of
attraction than the distributed delay case. This is unsurprising, since for both j = 6 and
j = 50, the condition of Corollary 3.3.4 holds, so all parameter regimes leading to stability
of the CFE for the gamma distributed DDE also lead to stability of the CFE in the discrete
delay case. Biologically, this corresponds to increased cell cycle duration heterogeneity
leading to more robust tumours.

In Fig. 3.2, we also show the impact of including tumour-immune interaction by
comparing our model with that of Crivelli et al. [2012]. We compare the results of our
simulation with tumour-immune interaction (kp = 0.065) with the Crivelli model (kp = 0)
as written in Appendix A. This simulation underlies the importance of tumour-immune
interaction in determining disease progression.

In Appendix A, we show that the gamma distribution converges to the degenerate dis-
tribution as j grows infinitely large, with τ > 0 held constant. The case j = 1 corresponds
to an exponential distribution of cell cycle durations. In what follows, we assume that the
distribution of cell cycle durations is neither exponential nor degenerate, so 1 < j < ∞.
In the numerical simulations that follow, we illustrate a representative case of our results
with j = 6.

In Fig. 3.3, we simulate the finite dimensional representation of the distributed DDE (3.1)
for different levels of immune recruitment, kcp, during viral therapy. Fig. 3.3 shows that
changing kcp changes the long-term success or failure of viral treatment. Sufficiently large
values of kcp induce long-lasting remission while smaller values of kcp lead to eventual
tumour progression after oncolytic virus treatment.

Fig. 3.4 shows the impact of parameter variability on stability of the CFE. Fig. 3.4
(a) shows that increased immune interaction (kp) can counteract fast transit between
quiescence and mitosis (a1 and a2 respectively) to ensure stability of the CFE. Moreover,
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Parameter Value Biological Interpretation (Unit) Reference
a1 0.9 Quiescent to interphase rate (1/day) Crivelli et al. [2012]
d1 1 × 10−5 Quiescent death rate (1/day) Crivelli et al. [2012]
a2 0.7 Interphase to active phase rate (1/day) Crivelli et al. [2012]
d2 0.19 Interphase death rate (1/day) Crivelli et al. [2012]
d3 0.19 Active phase death rate (1/day) Crivelli et al. [2012]
d̂g 0.167 Active phase death rate (1/day) Calculated from (3.26)
κ 1.15 Virion contact rate (1/day) Crivelli et al. [2012]
η1/2 V (0)/10 Virion half effect concentration (virions) See caption
δ 1.119 Lysis rate (1/day) Crivelli et al. [2012]
α 1.65 Lytic virion release rate (virions/cell) Crivelli et al. [2012]
ω 0.75 Virion death rate (1/day) Crivelli et al. [2012]
kcp 6.63 Maximal phagocyte production rate ( 1010 cells/day) Schirm et al. [2016]
C1/2 0.87743 Phagocyte production half effect (ng/mL/day) Liu et al. [2007]
Ψ1/2 7 Cytokine production half effect (1010 cells/day) See caption
γp 1 Phagocyte death rate (1/day) Liu et al. [2007]
C∗
prod 0.014161 Homeostatic cytokine production rate (ng/mL/day) Craig et al. [2016]

Cmax
prod 1.4161 Maximal cytokine production rate (ng/mL/day) See caption
kelim 0.16139 Cytokine elimination rate (1/day) Craig et al. [2016]
kp 0.065 Phagocyte-tumour cell contact rate (1/day) Liu et al. [2007]
kq,s 1.75 Phagocyte cell digestion constant See caption
τ 2.13285 Expected cell cycle duration (day) Crivelli et al. [2012]

Table 3.1: The parameters used to simulate (3.27) in Fig. 3.3. C1/2 was calculated from the
homeostatic phagocyte production rate and kp was calculated from the mass-action tumour-
immune interaction from Liu et al. [2007]. Cmax

prod was calculated from G-CSF response to
infection [Pauksen et al., 1994]. η1/2 was chosen to ensure a high initial infectivity of viral
therapy while kq,s and Ψ1/2 were selected to ensure a physiologically realistic tumour
doubling time.

sufficiently slow entrance into the active phase of the cell cycle (small a2) also stabilises
the CFE. Fig. 3.4 (b) shows that immune recruitment (kcp) must grow infinitely large to
account for less efficient immune-tumour interaction (kp), while a large death rate during
the cell cycle (d̂g) can ensure stability of the CFE regardless of immune involvement. These
investigations confirm the impact of immune recruitment and clearance of tumour cells.
This result indicates that increasing immune involvement is important in developing
therapeutic strategies.

Finally, Fig. 3.5 shows the relationship between the nonzero equilibrium found in
Theorem 3.3.5 and the parameter kp. The diagram indicates that the CFE gains stability
through a transcritical bifurcation as kp increases. For kp > kcritp and initial conditions
straddling the unstable equilibirum, we see the dependence of asymptotic behaviour on
initial conditions. A similar relationship exists between the stability of the CFE and kcp.
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Figure 3.2: A comparison of simulation results for various distributions and immune
strengths with kcp = 2.65. Figure (a) shows the simulation of (3.1) with a gamma distribu-
tion for j = 6, a discrete delay, and the Crivelli model from Appendix A. Figure (b) shows
the simulation of (3.1) with a gamma distribution for j = 50 and the same simulations for
the discrete and Crivelli models.
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Figure 3.3: Simulated viral therapy with limited and sufficient immune recruitment. The
parameters used in sufficient immune recruitment are given in Table 3.1. Limited immune
recruitment occurs with kcp = 1.63 and other parameters as given in Table 3.1.
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Figure 3.4: Stability regions for the CFE for various parameter combinations. Fig. (a) shows
the relationship between the stability of the CFE and the parameters kp, a1 and a2. Fig. (b)
shows the relationship between stability of the CFE and the parameters kcp, kp and d̂g.
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Figure 3.5: The bifurcation diagram showing a transcritical bifurcation. Figure (a) shows
the transcritical bifurcation as kp increases past kcritp for the quiescent population. The
dashed lines represent unstable equilibria and the solid lines denote stable equilibria.
Figure (b) the dependence of asymptotic behaviour on initial conditions. The quiescent
initial populations used are shown in Figure (a) as crosses.

Biologically, Fig. 3.5 (b) shows that the same immune system can control small tumours
while large established tumours grow unboundedly.
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3.5 D ISCUSSION

Malignant tumours are comprised of an extremely heterogeneous population of malignant
cells. Oncolytic viruses combat this heterogeneity by exploiting two common characteris-
tics of malignant cells: weakened antiviral immunity and explosive growth rates. Once an
oncolytic virus has infiltrated a tumour, lysis of infected cells and immune recruitment
combine to eliminate the tumour. Past models of tumour growth and viral oncology have
used discrete DDEs to model the cell cycle duration and infection of susceptible cells.
However, discrete DDEs enforce a uniform and constant tumour cell cycle time and do not
incorporate any aspect of the inherent heterogeneity of malignant cells inside the tumour
microenvironment.

In this work, we produced a mathematical model of tumour cell growth that incorpo-
rates the heterogeneity of tumour reproduction speed by modelling cell cycle duration
as a random variable following a PDF K(t). This framework is a novel representation of
tumour growth and is more physiologically realistic than the discrete delay case. Specif-
ically, variation in tumour cell cycle duration can be seen as a measure of tumour cell
heterogeneity. Using linear stability analysis, we established the relationship between the
expected number of cells surviving the cell cycle and tumour remission. As we assumed a
constant death rate throughout the cell cycle, the expected number of cells surviving the
cell cycle is directly related to the distribution of cell cycle durations. The distribution of
cell cycle durations and disease progression are explicitly linked in our stability thresh-
old. The stability threshold determines the minimal anti-tumour immune response that
ensures that nascent tumours do not persist. This result shows that increasing immune
involvement can stabilise the tumour free state regardless of the cancer growth rate.

Our results indicate that lysis of infected cells and increased immune recruitment
act synergistically to eliminate tumour cells during viral therapy. Our simulations show
that the combination of viral therapy and the resulting immune recruitment function
by driving solutions across a separatrix into the basin of attraction of the tumour free
equilibrium. If immune recruitment is insufficient to control tumour growth, we predict
that viral therapy will drive initial tumour remission that is followed by disease recurrence.
Moreover, our results show that viral therapy can act as the external force required to shrink
tumours to a size manageable by the immune system, leading to long-term remission.
These observations are consistent with clinical results and suggest that oncolytic viruses
designed to maximise immune response may have clinical benefits.

Finally, our modelling techniques develop a novel mathematical treatment of tumour
cell growth by using a distributed DDE. The distributed DDE considered in this work
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incorporates the discrete delay case studied by Crivelli et al. [2012] and others for a
suitable choice of K(t) and kp. In the specific case of a gamma distribution, we derive
a novel linear chain technique that incorporates cellular loss throughout the cell cycle.
Using this technique, we reduce the infinite dimensional distributed DDE to an equivalent
finite dimensional ODE. Our derivation of the equivalent ODE formulation is easily
generalisable to physiological processes with exponential growth or decay. The reduction
of the distributed DDE to an ODE offers a method whereby models using discrete DDEs
can include more physiologically realistic distributed delays without losing the ability to
easily simulate the model.

Our modelling framework has certain limitations. The mathematical model greatly sim-
plifies immune recruitment and tumour-immune interactions in favour of an analytically
tractable model. The interactions between the legion of cytokines and immune cell types
in the tumour micro-environment are not considered in this work, nor have we studied
the effect of immune system selection of cancer cells.

This modelling work raises the interesting question of which distribution best models
tumour cell cycle durations. Most existing models either use the discrete or gamma
distribution to exploit the existing numerical methods to simulate these models. Without
data, it is difficult to determine which distribution most accurately models tumour cell
cycle durations. Nevertheless, our analytic results are valid for any distribution describing
tumour cell cycle durations. In summary, our model incorporates an aspect of tumour
cell heterogeneity, makes predictions that are consistent with clinical observations and
indicates future avenues of oncolytic virus development.
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A REDUCTION TO THE CRIVELLI MODEL AND THE DISCRETE DELAY CASE

We show that the Crivelli model [Crivelli et al., 2012] is a special case of the general
distributed DDE model (3.1) developed in Section 3.2 without immune recruitment. We do
this two ways: first by showing that the discrete DDE model corresponds to the distributed
DDE model with a degenerate distribution, then alternatively by showing that the discrete
DDE model can be recovered from the distributed DDE model in a suitable limit when
K(t) is taken to be a Gamma distribution.

Crivelli et al. [2012] do not consider tumour–immune involvement, so we take kp = 0 in
(3.1). Then, the immune recruitment has no impact on the tumour model, so we drop the
differential equations for P (t) and C(t). Crivelli et al. [2012] use a discrete DDE to model
the cell cycle duration. The simplest way to recover a discrete DDE from a distributed
DDE is to let K(t) = δ(t− τ). Then, (3.7) gives dδ = d3. Thus the model (3.1) becomes

d
dtQ(t) = 2 exp [−d3τ ] a2G1(t− τ)δτ (t− σ) − a1Q(t) − d1Q(t)

d
dtG1(t) = a1Q(t) − a2G1(t) − d2G1(t) − η(U(t))G1(t)

d
dtI(t) = −δI(t) + η(U(t)) [G1(t) +

∫︁ τ
0 G1(σ) exp [−d3σ] dσ]

d
dtV (t) = αI(t) − ωV (t) − η(U(t)) [G1(t) +

∫︁ τ
0 a2G1(σ) exp [−d3σ] dσ] .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(37)

Finally, evaluating (3.2) with K(t) = δ(t− τ) gives

N(t) =
∫︂ ∞

0
a2G1(t− ξ) exp

[︃
−
∫︂ t

t−ξ
d̂K + ψG(U(x)) + η(U(x))dx

]︃ (︄
1 −

∫︂ ξ

0
δ(σ − τ)dσ

)︄
dξ

=
∫︂ τ

0
a2G1(t− ξ) exp

[︃
−
∫︂ t

t−ξ
d̂K + ψG(U(x)) + η(U(x))dx

]︃
dξ,

and taking η(U(t)) to be the non-differentiable contact rate

η(U(t)) = κ
V (t)

V (t) + I(t) +G1(t) +N(t) +Q(t) ,

returns the mathematical model in Crivelli et al. [2012]. To illustrate that their results are
a special case of ours, we use Theorem 3.3.3 to determine the stability of the CFE for the
Crivelli model. With kp = 0 and K(t) = δ(t− τ), it is simple to calculate that ΨG1 = 0 and

L[δ(t− τ)](d3) = e−d3τ .

Then the stability condition (3.22) becomes

2a1a2e
−d3τ − (a1 + d1)(a2 + d2) < 0, (38)
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which is exactly the same as found by Crivelli et al. [2012].

We have shown that discrete DDEs can be modelled as degenerate distributed DDEs.
Next, we show a distinct method of reducing the general distributed DDE to a discrete
DDE by considering a gamma distributed DDE, i.e. K(t) = gjktr

(t), in the limit as j → ∞.
We parameterise the gamma distribution by choosing j ∈ N and setting aj = τ/j. Then,
for each integer j, the expected duration of the cell cycle is τ . Moreover, the standard
deviation is given by s2

j = τ 2/j with

lim
j→∞

s2
j = 0.

Heuristically, as j increases, gja(t) becomes increasingly concentrated about the expected
value, τ . Formally, the characteristic function of the gamma distribution converges in
distribution to the characteristic function of the δ(t− τ) distribution with∫︂ ∞

0
y(t− σ)gjj/τ (σ)dσ → y(t− τ) as j → ∞

for any test function y(t). From equation (3.26), d̂g is dependent on the parameter j via

d̂
j

g = j

τ

[︂
(ed3τ )1/j+1 − 1

]︂
.

To compute the limit of d̂
j

g as j → ∞, we first note that

lim
n→∞

n(a1/n − 1) = lim
n→∞

a1/n − 1
1/n = d

dt
at
⃓⃓⃓
t=0

= ln(a). (39)

Therefore,
lim
j→∞

d̂
j

g = lim
j→∞

j

τ

[︂
(ed3τ )1/j+1 − 1

]︂
= 1
τ

ln(ed3τ ) = d3,

so d̂
j

g converges to the death rate of the discrete DDE as j → ∞.

Finally, we compute the linearisation matrix for the linearised DDE (3.17) with K(t) =
gja(t):

A+L[Γ](λ+d̂jΓ+kpP ∗)B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(a1 + d1 + kpP
∗) 2a2

aj

(a+λ+d̂j
Γ+kpP ∗)j

0 0 0 0

a1 −(a2 + d2 + kpP
∗) 0 0 0 0

0 0 −γ 0 0 0
0 0 α −ω 0 0

ξkpP
∗ ξkpP

∗ ξδ 0 −kelim 0
0 0 0 0 kcpC1/2

(C1/2+C∗)2 −γp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and the corresponding characteristic function, once again using (3.19),

q(λ) = ρ(λ)
[︄
2a1a2

aj

(a+ λ+ d̂g + kpP ∗)j
− (a1 + d1 + kpP

∗ + λ)(a2 + d2 + kpP
∗ + λ)

]︄
.

Using Theorem 3.3.3, the condition for stability of the CFE is

2a1a2
aj

(a+ d̂g + kpP ∗)j
− (a1 + d1 + kpP

∗)(a2 + d2 + kpP
∗) < 0. (40)

Using a = j/τ , we rearrange this condition to find a cell cycle duration, τj , that ensures
local stability of the CFE

τj >
j

d̂
j

g + kpP ∗

⎡⎣(︄ 2a1a2

(a1 + d1 + kpP ∗)(a2 + d2 + kpP ∗)

)︄1/j

− 1
⎤⎦ .

Then, the minimal cell cycle duration for stability, τ ∗
j , is given by

τ ∗
j = j

d̂
j

g + kpP ∗

⎡⎣(︄ 2a1a2

(a1 + d1 + kpP ∗)(a2 + d2 + kpP ∗)

)︄1/j

− 1
⎤⎦

and is dependent on the parameter j. Once again, using equation (39), we see that

lim
j→∞

τ ∗
j = lim

j→∞

j

d̂
j

g + kpP ∗

⎡⎣(︄ 2a1a2

(a1 + d1 + kpP ∗)(a2 + d2 + kpP ∗)

)︄1/j

− 1
⎤⎦

= 1
d̂3 + kpP ∗

[︄
ln
(︄

2a1a2

(a1 + d1 + kpP ∗)(a2 + d2 + kpP ∗)

)︄]︄
.

Thus the critical cell cycle duration when K(t) = gja(t) converges to the critical cell
cycle duration time in discrete delay case. Moreover, when kp = 0, τ ∗

j converges to the
critical delay time found by Crivelli et al. [2012].

Consequently, the discrete DDE model considered by Crivelli et al. [2012] can be
considered a degenerate case of the distributed DDE or as a limit of a gamma type
distributions.

B NUMBER OF CELLS IN THE CELL CYCLE

Here, we detail the calculation of the number of cells in the active portion of the cell cycle
at time t. Fix ξ > 0, so the number of cells entering the active portion of the cell cycle at
time t− ξ is a2G1(t− ξ).
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Then, at time t, the probability that a cell that entered the active portion of the cell cycle
at time t− ξ has not completed the cell cycle is

∫︂ ∞

ξ
K(σ)dσ = 1 −

∫︂ ξ

0
K(σ)dσ.

Of the cells that have not exited the active portion of the cell cycle, the fraction that have
not died by time t is

a2G1(t− ξ) exp
[︃
−
∫︂ t

t−ξ
d̂K + ψG(U(x)) + η(U(x))dx

]︃
.

Integrating over all previous times ξ gives the total number of cells remaining in the cell
cycle. Consequently, the number of cells in the cell cycle at time t is

N(t) =
∫︂ ∞

0
a2G1(t− ξ) exp

[︃
−
∫︂ t

t−ξ
d̂K + ψG(U(x)) + η(U(x))dx

]︃ (︄
1 −

∫︂ ξ

0
K(σ)dσ

)︄
dξ.

(41)
By making the change of variable ν = t− ξ, we have the alternative form

N(t) =
∫︂ t

−∞
a2G1(ν) exp

[︃
−
∫︂ t

ν
d̂K + ψG(U(x)) + η(U(x))dx

]︃ (︃
1 −

∫︂ t−ν

0
K(σ)dσ

)︃
dν. (42)

Equation (42) is difficult to evaluate numerically. However, differentiating N(t) by using
the Lebeniz and product rules, we find the distributed DDE for N(t)

d
dt
N(t) = a2G1(t) −

[︂
d̂K + ψG(U(t)) + η(U(t))

]︂
N(t)

−
∫︂ ∞

0
a2G1(t− ξ) exp

[︃
−
∫︂ t

t−ξ
d̂K + ψG(U(x)) + η(U(x))dx

]︃
K(ξ)dξ (43)

which can be solved numerically. As we have shown in Proposition 3.4.1, we can replace
the distributed DDE (43) with the solution of the transit compartment ODE defined in
(3.29) when K(σ) = gja(σ). Therefore, in our simulations of equation (3.27), we calculate
N(t) by solving

d
dt
N(t) = a2G1(t) −

[︂
d̂K + ψG(U(t)) + η(U(t))

]︂
N(t) − ktr

a2
Aj(t), (44)

subject to the initial condition from evaluating (41) at t = 0 by using the lower incomplete
gamma function.





CHAPTER 4

DETERMINANTS OF COMBINATION GM-CSF IMMUNOTHERAPY

AND ONCOLYTIC VIROTHERAPY SUCCESS IDENTIFIED THROUGH

IN SILICO TREATMENT PERSONALIZATION

In this chapter, we combine the theoretical basis developed in Chapter 2 and the practical
application to tumour heterogeneity in oncolytic viral therapy in Chapter 3 to develop an
in silico clinical trial platform. By exploiting the equivalence between the physiologically
realistic distributed DDE and the numerically tractable ODE formulation, we systematically
explore possible treatment schedules. This chapter demonstrates that distributed DDEs
can be applied to address important questions in therapeutic development.

We adapt the mathematical model developed in the previous chapter to include a lin-
eage of immune-resistant cells and use the resulting model to study possible combinations
of oncolytic viral therapy and GM-CSF immunotherapy. We begin by parametrizing our
mathematical model to experimental data before generating a cohort of 300 virtual patients.
By simulating the treatment protocols of the OPTiM clinical trial, we show that our mathe-
matical model can replicate the trial results. We then create optimal and individualized
combination treatment protocols for each of the virtual patients. By studying these optimal
protocols, we infer a “maintenance” type therapy. Through a second in silico clinical trial,
we show that this maintenance type therapy outperforms naive combination scheduling
in both treatment burden and predicted survival.
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ABSTRACT

Oncolytic virotherapies, including the modified herpes simplex virus talimogene laher-
parepvec (T-VEC), have shown great promise as potent instigators of anti-tumour immune
effects. The OPTiM trial, in particular, demonstrated the superior anti-cancer effects of
T-VEC as compared to more traditional immunotherapy treatment using exogenous admin-
istration of granulocyte-macrophage colony-stimulating factor (GM-CSF). Theoretically,
a combined approach leveraging exogenous cytokine immunotherapy and oncolytic vi-
rotherapy would elicit an even greater immune response and improve patient outcomes.
However, regimen scheduling of combination GM-CSF and T-VEC therapy has yet to be
established. Here, we calibrate a computational biology model of sensitive and resistant
tumour cells and immune interactions for implementation into an in silico clinical trial
to test and individualize combination immuno- and virotherapy. By personalizing and
optimizing combination oncolytic virotherapy and GM-CSF therapy, we show improved
simulated patient outcomes for individuals with late-stage melanoma. More crucially,
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through evaluation of individualized regimens, we identified determinants of combina-
tion GM-CSF and T-VEC therapy that can be translated into clinically-actionable dosing
strategies without further personalization. Our results serve as a proof-of-concept for
interdisciplinary approaches to determining combination therapy, and suggest promis-
ing avenues of investigation towards tailored combination immunotherapy/oncolytic
virotherapy.

AUTHOR SUMMARY

The advent of biological therapies for anti-cancer treatment has had a significant impact on
patient outcomes. Targeted xenobiotics, including oncolytic viruses, in combination with
existing, more general, immunotherapies like exogenous cytokines show great promise for
continuing to improve cancer care. However, determining optimal combination regimens
can be difficult, given that testing proposed schedules would require large cohorts of
patients enrolled in clinical trials. Fortunately, computational biology can help to address
treatment scheduling while simultaneously helping to unravel the mechanisms driving
therapeutic responses. In this work, we integrate a mathematical model of GM-CSF and
talimogene laherparepvec (T-VEC) oncolytic virotherapy into a virtual clinical trial to
optimize their administration in combination. Using this platform, we inferred a clinically-
actionable combination schedule for patients with late-stage melanoma that significantly
improved virtual patient outcome when compared to GM-CSF and T-VEC monotherapies,
and a standard combination strategy. Our results outline a rational approach to therapy
optimization with meaningful consequences for how we effectively design and implement
clinical trials to maximize their success, and how we treat melanoma with combined
immuno- and virotherapy.

INTRODUCTION

Modern cancer treatments increasingly incorporate a broad class of biological therapies
known as immunotherapies to activate the immune system against cancer cells in a
generalized or targeted way [Mellman et al., 2011; Russell et al., 2012]. These therapies
seek to exploit existing tumour-immune interactions to more effectively recognize and
destroy tumour cells with the goal of minimizing off-target and detrimental side effects.
Current and investigational immunotherapies include immune-checkpoint inhibitors,
monoclonal antibodies, CAR-T cells, and the exogenous administration of cytokines.
One such cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF), is a
white blood cell growth factor responsible for stimulating granulocyte production, and
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orchestrating innate inflammatory responses. GM-CSF has been used to increase the
efficacy of monoclonal antibodies, and has also been administered during B-cell lymphoma
treatment to activate certain immune cell subsets [Mellman et al., 2011].

Another older idea, recently adopted in clinical applications, is to use oncolytic viruses
to destroy tumour cells [Fukuhara et al., 2016; Hoster et al., 1949] and activate an immune
response. Oncolytic viruses are genetically engineered to preferentially attack and infect
cancerous cells [Cassady et al., 2016; Chiocca and Rabkin, 2015], forcing infected cells
to undergo lysis and release tumour specific antigens that signal the immune system to
mount an anti-tumour response [Breitbach et al., 2016; Marelli et al., 2018]. This double
effect against tumour cells has propelled the study of oncolytic viruses as a treatment
against a variety of malignant solid tumours. In 2015, the modified herpes simplex virus
talimogene laherparepvec (T-VEC) was the first oncolytic virus to be approved by the
Food and Drug Administration in the United States for use in patients with non-resectable
melanoma[Andtbacka et al., 2015; Bommareddy et al., 2017; Rehman et al., 2016]. T-
VEC is specifically engineered to enhance expression of GM-CSF after viral infection of
tumour cells [Andtbacka et al., 2015]. However, despite much promise, the efficacy of
oncolytic virus monotherapy has been limited [Chesney et al., 2018; Marelli et al., 2018;
Mostafa et al., 2018]. As it is reasonable to expect that immunotherapy and virotherapy
could act synergistically to instigate an immune response against tumour cells [Bell and
McFadden, 2014; Guo and Bartlett, 2014; Lawler and Chiocca, 2015], recent efforts have
focused on determining the anticipated benefit to their use in combination with a variety
of immunotherapies [Chaurasiya et al., 2018; Martin and Bell, 2018]. To that end, GM-CSF
has been considered as an immune stimulant during oncolytic virotherapy [Mellman et al.,
2011].

Combination therapy can carry a high therapy burden and may increase overall toxicity
[Chesney et al., 2018; Martin and Bell, 2018]. Unfortunately, running clinical trials for all
possible (dose,time)-pairs of a proposed combined treatment to determine efficient and
safe scheduling is both time and cost prohibitive. As a consequence, regimen scheduling
of combination immuno-/oncolytic virotherapy remains an open problem. There is an
established history of applications of modelling-based, computational biology approaches
to the in silico determination of potential therapeutic schedules that concretely improve
patient outcomes [Agur, 2010; Allen et al., 2016; Love et al., 2017; Schmidt et al., 2013].
In a closely related recent paper, an in silico clinical trial approach to anti-CTLA-4 and
anti-PD-L1 scheduling in breast cancer demonstrated how systems pharmacology can be
leveraged for therapy individualization, subsequently increasing our understanding of
the optimization of combination immunotherapy treatment [Wang et al., 2019]. Similarly,
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by employing a straight-forward evolutionary game theory model to determine adaptive
treatment schedules, Zhang et al.[Zhang et al., 2017] report significant improvements to
prostate specific antigen in comparison to the standard-of-care in an on-going phase I
clinical trial. These and other [Gatenby et al., 2009] successes motivate the continued
application of interdisciplinary approaches in personalized oncology. Perhaps the most
significant impact made by quantitative methodologies is the identification and translation
of the underlying determinants of treatment success into actionable therapeutic strategies
[Bentele et al., 2004; Craig et al., 2016].

To that end, here we detail the rationalization of combination immuno-/virotherapy
scheduling for patients with late-stage melanoma by implementing an in silico clinical trial.
By integrating our previous computational biology model of sensitive and resistant tumour
cells and their interactions with the immune system into our virtual trial platform, we
generated identical virtual patient cohorts to determine optimal, individualized treatment
regimens for combined GM-CSF immunotherapy and T-VEC. We used the results of the
personalization to infer a logical and clinically-actionable dosing scheme that significantly
improved overall survival and progression free survival while substantially reducing
drug burden. Crucially, we identified key mechanisms that determine therapy success,
which allowed us to define a successful regimen in a new cohort of virtual patients.
Our results highlight the potential and potency of rational regimen prediction using a
computational biology approach, and serve as a proof-of-concept for future quantitative
studies in oncology.

METHODS

Computational biology model

To establish the synergistic interactions elicited between immunotherapy (exogenous GM-
CSF) and oncolytic virotherapy, we adapted our previous mathematical model [Cassidy
and Humphries, 2019] describing the instantaneous change in tumour size, phagocyte num-
bers and cytokine concentrations over time. The model tracks both immuno-susceptible
and immuno-resistant tumour cell populations as they progress through the cell cycle.
Quiescent immuno-susceptible tumour cells can be cleared through either random death
or immune pressure, or transit into the G1 phase to begin reproduction. Cells in G1 are also
subject to random death and immune clearance before beginning the mitotic process. After
completing division, susceptible cells return to quiescence. Mitotic cells may mutate at rate
µ into an immuno-resistant cell type with a low probability. This immuno-resistant lineage
maintains the same cell cycle behaviour of non-resistant tumour cells, but evades immune
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Figure 4.1: Pictorial representation of the tumour growth model. Quiescent cells activate
to begin division by transiting into the G1 phase of the cell-cycle. Cells exit G1 to enter
the active phase and complete division. Most susceptible cells in the active phase re-enter
quiescence after mitosis, however certain dividing cells may mutate into an immuno-
resistant lineage (red dotted arrow). Immune interactions are driven by phagocytes who
come into contact with quiescent and G1 phase susceptible cells (dashed yellow lines).
Tumour-immune interactions increase pro-inflammatory cytokine concentrations to recruit
additional phagocytes to the tumour site (blue dotted line). Cells and cytokine are denoted
by circles, processes by squares, and rates by arrows.

pressure and is therefore not subject to any immune interactions. We do not distinguish be-
tween different types of immune cells in the tumour microenvironment, but rather model
all phagocytes as a single population. These immune cells interact with the susceptible
tumour cell population and produce a pro-inflammatory cytokine (e.g. interleukin-12,
tumour necrosis factor, interferon gamma, GM-CSF etc.) to recruit other phagocytes to
the tumour site. Model predictions are obtained as previously described [Cassidy and
Humphries, 2019] (full details are provided in the Supplementary Information). The
various interactions described above are schematized in Fig. 4.1.



109

Generation of in silico individuals and patient cohorts

To calibrate the model of Cassidy and Humphries [Cassidy and Humphries, 2019] to
available data, we adopted a sequential fitting procedure to parameterize the mathematical
model. Briefly, we used time series data from a number of experimental settings to estimate
the different model parameter values. We began by determining the parameters of the
delay kernel using data from a cervical cancer cell line [Sato et al., 2016], before fitting
the remaining parameters in a sequential manner. First, data from tumour growth in
immuno-compromised mice was used to fit the tumour growth parameters a1, a2, and
d2[Dingli et al., 2009]. Next, we fit the viral parameters κ, η1/2, ω, δ, α using a combination
of in vitro data from Toda et al. and Randazzo et al.[Randazzo et al., 1997; Toda et al., 2000].
Finally, we used data from GM-CSF concentrations following administration of a T-VEC
precursor in mice to fit the parameters for the cytokine compartment. In each case, we
reduced the mathematical model to replicate the experimental set up, and minimized the
least-squares error between simulations and experimental data (for extended details, see
the Supplementary Information).

To reflect the interindividual variability and heterogenous nature of patient cohorts,
we individualized the model by generating a unique set of parameters to represent single
patients. To create individuals in the in silico clinical trial, we sampled each of the model’s
parameters from a generated normal distribution with mean µ̂ determined in the sequential
fitting procedure. We then defined p to be the vector of fitted parameter values [Cassidy
and Humphries, 2019] and parametrized the normal distributions so that 99.7% of patients
fall within [µ − 3σ, µ + 3σ] = [0.5p, 1.5p]. If empirical information about a parameter’s
distribution was available, this measurement was used in lieu of the previously described
procedure. Each individual is then created by sampling each model parameter from
this distribution. We confirmed that using this methodology created virtual patients
with parameter values following an approximately normal distribution about the mean
empirical or fitted value, as shown in Fig. 4.2. The distribution of parameters approximates
the empirical distribution used to define the virtual population, indicating that this virtual
patient generation procedure produces a representative sample of the possible virtual
population (and not multiples of the same individual).

To further protect against the creation of nonrealistic virtual patients, we imposed
selection and inclusion criteria on each generated individual by verifying that each virtual
patient responds in a physiologically-realistic way without and with treatment [Allen
et al., 2016]. Specifically, we compared the predicted response of each virtual patient to
currently approved oncolytic virotherapy for stage IIIb or IV non-surgically resectable
melanoma [Andtbacka et al., 2015; Marelli et al., 2018]. Moreover, we assessed whether
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the predicted tumour doubling time of each individual corresponded to clinically relevant
tumour doubling times [Carlson, 2003], and used this comparison as the sole inclusion
criterion for subsequent enrolment in silico clinical trial simulations. To ensure that we
were sampling from the entirety of the physiologically realistic portion of parameter space
[Allen et al., 2016], we performed a local sensitivity analysis to determine the impact of
parameter variation on model output (see the Supplementary Information).

We accepted a total of 300 virtual patients, generated by the parameter sampling and
selection processes outlined above. Each virtual patient was then reproduced into n

identical clones, and each resulting clone was subsequently assigned to one of n separate
cohorts (for example, a treatment free control group, a mono-immunotherapy group, and
an oncolytic virotherapy group, for a total of n = 3 cohorts). In this way, the total number
of participants is 300 times the total number of simulated investigational arms, or 300n.
The in silico trial generation process is schematized in Fig. 4.2. As cohorts are identical,
we are able to establish a causal relationship between changes in treatment strategy and
increased survival time.

Recapitulation of previous trial data

Using three identical cohorts, we evaluated patient outcomes when they received no
treatment (Cohort 1), immunotherapy (Cohort 2), or oncolytic virus monotherapy (Cohort
3) to mimic the T-VEC OPTiM trial, where individuals were randomized to receive either
intralesional T-VEC or subcutaneous GM-CSF [Andtbacka et al., 2015].

In both the in silico immunotherapy and oncolytic virus monotherapy cases, the dosing
schedules were identical to the ones used in OPTiM[Andtbacka et al., 2015]: patients in
the T-VEC arm received a priming dose of 106 plaque forming units pfu/mL, followed by
108 pfu/mL doses to a maximal total administration of 4 mL per treatment. T-VEC was
administered every 14 days. Patients in the GM-CSF arm received 125 µg/m2 of subcuta-
neous GM-CSF administered on 14 consecutive days followed by 14 days of no treatment.
In both arms, treatment continued for up to 12 months but could be discontinued due to
disease progression, intolerability, or the disappearance of injectable lesions. The median
treatment length for the T-VEC and GM-CSF arms were 23 and 10 weeks respectively.

We fixed an oncolytic virotherapy dose of 250 × 106 virions – corresponding to roughly
1 × 106 pfu [Klasse, 2015]– as the amount of virus administered the original trial varied
based on both patients and physicians [Andtbacka et al., 2015]. Note that the units between
the OPTiM trial [Andtbacka et al., 2015] and our in silico trial differ owing only to the units
of the mathematical model’s parameters and the conversion of pfu to infectious virions.
Individuals receiving GM-CSF immunotherapy in the in silico trial were administered 125
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Figure 4.2: Schematic representation of the in silico patient creation algorithm. Individ-
ual in silico patient parameter values are sampled from a normal distribution of values
based on an average parameterization [Cassidy and Humphries, 2019]. The model was
then simulated for each individual and tumour growth predictions (tumour doubling time)
were tested for physiological relevance. If the in silico patient’s tumour growth behaviour
was considered physiologically realistic, they were cloned n times and each clone was
assigned to n separate arms of the in silico clinical trial.

µg/m2 of GM-CSF daily for 14 days in 28 day cycles. For both arms, we simulated the
model over a fixed treatment time of 6 months.

Late stage melanoma has a low survival rate [Stadler et al., 2006]. Mortality as a
function of tumour doublings has been estimated to occur between 40 and 45 tumour
doublings [Carlson, 2003; Collins et al., 1956; Schwartz, 1961]. Given that roughly 30
doublings occur before clinical presentation [Schwartz, 1961], we estimated that there are
approximately 10 and 15 tumour doublings between diagnosis and death. In silico patients
were therefore removed from the simulated trial after their predicted tumour size reached
2λ, where λ denotes the removal number of tumour doublings for each individual. For
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each individual, λ was obtained by sampling uniformly from [10, 15], or the set of possible
tumour doubling values between diagnosis and death. The incorporation of different
disease stages within the OPTiM cohorts in our population approach is discussed in further
detail in the Supplementary Information.

Optimization routine for combined immuno- and oncolytic virotherapies

Adverse effects reported in the OPTiM trial including fatigue, chills and other flu like
symptoms. Grade 3 adverse effects occurred in 36% and 21% of patients receiving T-VEC
and GM-CSF, respectively. To provide maximal therapeutic benefit with the lowest possible
treatment burden, we defined individualized dosing regimens to be the schedule that
minimizes the cumulative tumour burden (the area under the total tumour curve) over an
individualization period of ten week and the cumulative dose (the total amount of therapy
administered over the treatment time). Thus, we sought to minimize the objective function

F (Dose) = Cumulative Tumour Burden + αCumulative Dose,

where the positive scaling coefficient α weights the importance of maximizing the thera-
peutic effect versus the need to minimize treatment burden. This weighting values takes
the need for a treatment to be simultaneously effective and tolerable into account.

Tolerability of combined therapy was attained by bounding the permissible dose size to
be four times the standard dose amount, consistent with the maximum dose for T-VEC in
the OPTiM trial. As it is only possible to administer discrete amounts of a drug, typically
limited to be some multiple of the available vial size, we constrained the dose size to be
1 − 4-times the standard dose size for both immunotherapy and virotherapy. We allowed
for daily immunotherapy dosing and restricted virotherapy administration to days 7, 14,
21, 28, 35, 42, 49, 56, 63, 70 so that virotherapy defined the beginning of a week-long
treatment cycle. In total, 300 virtual patients underwent ten treatment cycles meaning
there are 3000 total possible treatment cycles. Note that the schedule described above is
potentially denser than what was administered by Andtbacka et al. [Andtbacka et al., 2015].
We allowed for increased treatment frequency to measure its impact on improved clinical
outcomes, under the constraint that the cumulative dose administered in the optimal
treatment regimen must be less than the cumulative dose administered during the OPTiM
trial [Andtbacka et al., 2015].

To determine personalized dosing regimens, the optimal function F (Dose) was min-
imized over a ten-week treatment period using Matlab’s genetic algorithm function ga
[MATLAB, 2017]. Genetic algorithms are heuristic global optimization routines inspired
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by natural selection [Holland, 1975, 1992; McCall, 2005] that are frequently employed to
estimate parameters in computational biology models. They have also previously been
applied to study optimal dosing routines in immunology [McCall, 2005].

We then generated personalized schedules for each of the 300 individuals in the op-
timal combination cohort. These schedules determined an empirical distribution of the
probability of administering a dose of either immuno- or virotherapy on a given day of
the treatment period. Sampling from this empirical distribution, we next determined the
probability that immunotherapy, PI(Dayi), or virotherapy, PV (Dayi), is administered on
Day i of therapy to determine a probabilistic treatment schedule that replicated the results
of the treatment optimization on the population-level.

Inference and validation of optimal treatment schedule

We first determined whether a dose of immunotherapy was to be administered on the
i-th day of treatment by sampling from a Bernoulli distribution with probability given
by PI(Dayi) (see Table 4.1). If a dose was administered, we sampled from the empirical
distribution of dose sizes determined from the individualization (see previous section).
(i.e. the probability of giving a dose of size n given that immunotherapy is administered
on day i) to determine the size of the immunotherapy dose. If the i-th day is the beginning
of a new treatment cycle, virotherapy may be administered. If so, the same series of steps
determined whether virotherapy was administered, and if so, the size of dose, based on
PV (Dayi).

To test the effectiveness of the probabilistic dosing schedule, we created and cloned
200 new virtual patients, and separated them into three three trial arms. The first cohort
received the combined immuno- and virotherapy of 125 µg/m2 of GM-CSF daily for
14 days in 28 day cycles and 1 dose of virotherapy every 14 days corresponding to a
combination of the standard of care reported in the OPTiM trial [Andtbacka et al., 2015]. A
maintenance therapy schedule was derived from the results of the therapy optimization
and was followed for the second cohort (see Results). Finally, the probabilistic dosing
regimen determined from the population optimization was applied to the third arm. In the
all three arms, virtual patients received treatment for the median treatment duration of the
OPTiM trial. Mortality and removal from the trial followed the same procedure described
in the Model Calibration section above.
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RESULTS

Computational biology model successfully predicts existing therapy results

We first compared the model predictions to the OPTiM results [Andtbacka et al., 2015] to
evaluate the computational biology model’s ability to accurately represent the outcomes
for patients receiving either GM-CSF or the oncolytic virus monotherapy T-VEC (Fig.
3A) [Andtbacka et al., 2015; Rehman et al., 2016]. Unsurprisingly, no untreated virtual
patient survived to the end of the trial (not shown) and both of the treated cohorts display
increased survival when compared to no treatment. Patients receiving virotherapy were
the most likely to survive until the end of the in silico trial. The median survival time
for patients in the T-VEC cohort of the in silico trial was 39.0 months, as compared to the
reported median overall survival time of 41.1 months for patients with stage IIIB, IIIC, or
IVM1a melanoma in the OPTiM trial. The median survival time for patients in the GM-CSF
arm of the in silico clinical trial was 31.3 months, just outside of the 95% confidence interval
of 17.4 to 29.6 months of the OPTiM trial. The null hypothesis that T-VEC and GM-CSF
have the same efficacy was rejected with p < 0.001 using a log-rank test.

To measure the time from treatment initiation to failure, we considered the time from
beginning of treatment until the tumour contains twice the initial number of tumour cells.
The median time to treatment failure was then predicted to be 2.9 (OPTiM trial: 2.9 with
95% confidence interval of 2.8-4.0) and 13.9 months (OPTiM trial: 8.2 with 95% confidence
interval of 6.5-9.9) in the GM-CSF and T-VEC arms, respectively.

The relative treatment benefit of virotherapy vs. immunotherapy was established by
ordering virtual patients according to their untreated tumour doubling time (Fig. 3B), with
longer doubling time indicating slower disease progression and less aggressive disease. A
line of best fit with positive slope suggests that oncolytic virus therapy provided larger
survival gains in those with with longer doubling times when compared to GM-CSF,
consistent with the increased survival fraction of patients with stage 3 melanoma in Figure
4(f) of Andtbacka et al.[Andtbacka et al., 2015].

“All or nothing” virotherapy dosing strategy

We expected that treatment with GM-CSF would be used to either prime the immune
system before virotherapy, or to support the immune response directly following adminis-
tration of the oncolytic virus. However, as seen in Fig. 4.4, no structure is easily discerned.
To better understand the underlying distribution structure of the individualized treatment
schedules, we calculated the probability that any immunotherapy should be administered
on each of the seven treatment cycle days of the optimized therapy regimen, as described
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Figure 4.3: Treatment with oncolytic virus provides improves outcomes over im-
munotherapy in virtual clinical trial. A) Kaplan-Meier curves for patients in the im-
munotherapy and virotherapy arms of the virtual trial; B) The relative survival benefit for
identical virtual patients. The ratio of survival time on T-VEC against survival time on
GM-CSF for identical virtual patients (line of best fit, slope=0.0035) establishes a causal
relationship between treatment type and survival time, indicating that oncolytic virus
therapy provided slightly larger survival gains in those with with longer doubling times
when compared to GM-CSF.

in the Methods section (Optimization Routine for Combined Immuno- and Oncolytic Virother-
apy). If a dose was given, we computed the conditional probability of administering a
dose of one, two, three or four multiples of the standard dose (Table 4.1). We found that
the probability of administering a dose of immunotherapy for a given treatment day is
roughly constant at 20% throughout the treatment cycle. Interestingly, our results indicate
that the immunotherapy dose given is expected to be either the smallest or the largest
permitted, suggesting that immunotherapy is most useful as an additional instigator of
immune recruitment when virotherapy does not elicit a sufficient immune response, or to
otherwise maintain the immune response initiated by successful viral infection and lysis.

Contrary to the mono-immunotherapy dosing schedule, the conditional probabilities
PV (Dayi) for viral dose size reported in Table 4.2 are heavily skewed to the maximal
tolerable dose. Given the mechanism of action of virotherapy (namely, infecting tumour
cells), it is unsurprising that administering a larger dose of oncolytic virus should improve
clinical outcomes. Put differently, an “all or nothing” approach of dosing infrequently, but
for maximal therapeutic benefit, is optimal, in contrast to the logic of the immunotherapy
case.

These results suggest that administering immunotherapy between administrations of
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Figure 4.4: Optimal personalized dose scheduling for each of the 300 virtual patients.
Dose size presented as a multiple of the standard dose with immunotherapy in shades of
purple, and virotherapy in shades of green. The nth horizontal row corresponds to the nth
virtual patient, while the m-th vertical column corresponds to the dose administered on
day m.

virotherapy serves mainly to maintain immune recruitment [Aitken et al., 2017]. To test this
hypothesis, we defined Maintenance Therapy to be the administration of virotherapy once
every 14 days with immunotherapy administered evenly throughout on days 3, 6, 9, and
12 of each virotherapy treatment cycle. Dose size was calculated based on the cumulative
expected weekly dose of immunotherapy (8 doses over 14 days) from the optimized
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Dayi -3 -2 -1 Start of Cycle 1 2 3
PI(Dayi) 0.2043 0.2020 0.2037 0.2027 0.2200 0.2047 0.2057
PI(1|Dayi) 0.3719 0.3762 0.3519 0.3799 0.3803 0.3583 0.3387
PI(2|Dayi) 0.1599 0.1419 0.1702 0.1694 0.1439 0.1482 0.1929
PI(3|Dayi) 0.1550 0.1733 0.1637 0.1217 0.1348 0.1678 0.1378
PI(4|Dayi) 0.3132 0.3086 0.3142 0.3289 0.3409 0.3257 0.3306

Table 4.1: Inferred probability distribution for GM-CSF scheduling.The probability of
administering immunotherapy (PI(Dayi)) in each day of the treatment cycle and the
conditional probability PI(n|Dayi) of administering n doses of immunotherapy for n =
1, 2, 3, 4.

regimen. Two doses of immunotherapy were therefore administered on days 3, 6, 9, and
12 to replicate the total expected immunotherapy dose. The same procedure was used to
determine virotherapy doses.

PV(Day7) 0.5487
PV (1|Day7) 0.1592
PV (2|Day7) 0.1200
PV (3|Day7) 0.1597
PV (4|Day7) 0.5611

Table 4.2: Inferred probability distribution for T-VEC scheduling. The probability of
administering virotherapy on each 7th day of the treatment cycle (PV (Day7)) and the con-
ditional probability PV (n|Day7) of administering n doses of virotherapy for n = 1, 2, 3, 4.

Maintenance and predictive combination therapies improve virtual patient survival

Despite the shorter treatment period, both the maintenance and probabilistic combination
immuno- and oncolytic virotherapies improved overall survival times as compared to the
simulated OPTiM trial (Fig. 4.5). Maintenance therapy similarly significantly increased
mean survival time against mono-virotherapy (47.5 months vs. 35.36 months, two-sided
t-test p-value of 1.02 × 10−6). The maintenance therapy and optimal dosing regimens
also outperformed the standard combination therapy: on average, the mean survival
time for patients receiving standard combination therapy was 26.1 months, while patients
receiving the maintenance therapy or probabilistic dosing survived for 47.5 or 46.6 months
respectively (two-sided t-test p-values of p < 0.001 in both cases). The hypothesis that the
two treatments were equally efficacious was rejected with p < 0.001 using a logrank test.

To improve therapy tolerability, an additional criterion for regimen optimality is the
minimization of the number of treatment days. In the standard combination schedule,
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patients received 2 administrations of virotherapy and 14 doses of immunotherapy per 28
day cycle, thus requiring 15 total days of drug administration per 28 day cycle with one
simultaenous dose of virotherapy and immunotherapy. The maintenance therapy schedule
required a total of 11 treatment days per 28 day cycle (9 administrations of immunotherapy
and 2 administrations of virotherapy), whereas patients given the optimized treatment
schedule were administered an expected 5 immunotherapy doses and 2 virotherapy doses
per 28 day cycle, for a total of 9 expected treatment days.

Crucially, the results of the individualized therapy can be translated into a clinically-
actionable therapeutic strategy that significantly improves simulated clinical outcomes
(maintenance schedule). Mean survival times between patients receiving the maintenance
therapy and the probabilistic therapy were not significantly different (47.9 months vs 46.7
months, two-sided t-test p-value of 0.754). This is unsurprising, given that the maintenance
therapy was defined directly from the personalized regimens using the “naïve” constraint
that immunotherapy be equally spread throughout each virotherapy cycle. While, for a
given patient, it may be unsurprising that an optimized and individualized dose predict
improved outcomes, leveraging the insights gained from the individualized cohort to
produce population-wide improvements on a new cohort is a compelling achievement of
our approach.

In summary, in terms of both end-points and dosing burden, immune maintenance
therapy outperforms the standard-of-care combination therapy. The equivalency in mean
survival times between the maintenance and probabilistic schedules also further motivates
the rationalization of therapy scheduling via in silico clinical trials to better ascertain the
key mechanisms regulating to treatment success prior to clinical trial enrolment.

D ISCUSSION

Improving patient end-points and decreasing the drug burden during anti-cancer treat-
ment are crucial components of cancer care. The introduction of new and advanced therapy
modalities is critical to this goal. The approval of T-VEC, the first FDA approved, geneti-
cally modified oncolytic virus, was an important step forward for the treatment of late-
stage melanoma that significantly improved patient survival over mono-immunotherapy
GM-CSF administration. However, the question of whether combined immunotherapy
and virotherapy will provide further benefits for patients and, if so, the optimal strategy
for such combination therapy, remains. Running clinical trials is an expensive and onerous
process. Trial failures are disappointing for patients, clinicians, and researchers, and con-
tribute to overall attrition along the drug development pipeline. Here we have outlined a
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Figure 4.5: In silico clinical trial predicts improved outcomes for both probabilistic dos-
ing strategies and maintenance therapy versus standard combination therapy. Kaplan-
Meier curves for Arm 1: patients receiving Standard Combination Therapy (dotted
turquoise line), Arm 2: Maintenance Treatment (solid light blue line), Arm 3: Proba-
bilistic dosing regimen determined through the in silico clinical trial (dashed dark blue
line).

rational approach to therapy optimization that has significant consequences for how we
effectively design and implement clinical trials to maximize their success, and how we
treat melanoma with combined immuno- and virotherapy.

Leveraging our previous computational biology model, we developed an in silico clini-
cal trial by creating virtual individuals based on a realistic distribution of model parameter
values. Each generated individual was cloned and assigned to different trial cohorts. This
innovative strategy enabled us to analyze the effects of distinct therapy procedures on
the same person, something which is clearly infeasible in the real world. Personalization
of treatment regimens was achieved by simultaneously minimizing cumulative tumour
and drug burdens. A probabilistic dosing regimen was subsequently defined based on the
resulting personalized treatment schedules. Incorporating clinical realities, we determined
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that standard combination therapy was improved upon by both a maintenance strategy
(where immunotherapy is administered evenly throughout each virotherapy cycle) and
this probabilistic dosing strategy. It is worth noting that the maintenance type therapy per-
formed equivalently in terms of endpoints than the optimized scheduling, illustrating the
utility of model-based optimization techniques in identifying and developing improved,
clinically-actionable therapeutic strategies.

There are differences between the OPTiM trial and our in silico trial. First, while
we can broadly recreate the number of individuals in each stage of disease, we cannot
identically recreate the underlying distribution of patients. Accordingly, our results are
highly dependent on the virtual patients selected for participation based on their tumour
doubling time, and would be improved through the incorporation of detailed staging and
patient distribution data. Second, the administration of an oncolytic virus can lead to an
anti-viral adaptive immune responses and a decrease in treatment efficacy that is currently
not accounted for in the model. Last, our computational model simplifies tumour-immune
interactions by consolidating all immune cells into a single phagocyte population. We also
considered a single cytokine as a cipher for all pro-inflammatory responses induced by
tumour-immune communication. We believe that these considerations do not significantly
impact on our general results, but they should be addressed in future work to increase
the precision of the predicted personalized regimens. Ideally, empirically determined
distributions for the model’s parameter values would be available to strengthen the
model’s predictions. Fortunately, notwithstanding the general unavailability of such data,
our parameterization successfully recapitulated the OPTiM trial results.

Despite these limitations, our results underline the contribution of computational biol-
ogy to understanding the determinants of improved clinical care and support continued
efforts towards rational therapy design. Significantly, this computational biology study
suggests promising avenues of investigation towards tailored combination immunother-
apy/oncolytic virotherapy for patients with late-stage melanoma.

SUPPORTING INFORMATION

S1 Supplementary Information

S1 Fig. Parameter fitting results. A and B) Data (red circles) from Dingli et al. [2009] for
tumour growth in immunocompromised mice compared to model predictions (solid black
lines). C) Comparisons of model predictions (solid black lines) and the Toda et al. [2000]
data (red circles) for the number of viable cells following the administration of T-VEC.
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S2 Fig. Local parameter sensitivity analysis. Left: dependence of tumour burden on
the parameters shown on the y-axis. Right: dependence of tumour doubling time on the
parameters shown on the y-axis. In both cases, parameters were varied by ±10%. Tumour
doubling times of 0 indicate that the tumour did not reach twice the initial size.

S1 Table Mean parameter estimates. The vector p (see main section Generation of in-silico
individuals and patient cohorts) with biological interpretations. See Cassidy and Humphries
[2019] for detailed descriptions of each parameter.
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SUPPLEMENTARY INFORMATION

Determinants of combination GM-CSF immunotherapy and
oncolytic virotherapy success identified through in silico

treatment personalization

Tyler Cassidy, Morgan Craig

The computational biology model (described textually in Eq. (4.1)) was based on the model
of Cassidy and Humphries [2019] and explicitly included heterogeneity in tumour cell
reproduction velocity and tumour-immune interactions via a distributed delay differential
equation. The model describes both quiescent and G1 phase tumour cell populations while
modelling the remainder of mitosis as a delayed process, and incorporates a phagocyte
population and a proinflammatory cytokine that drives the tumour-immune interaction
through increased phagocyte recruitment.

LetQ(t) andG1(t) denote the quiescent and proliferative phase susceptible tumour cells,
respectively, C(t) denote the concentration of GM-CSF, P (t) the phagocyte concentration
in the tumour microenvironment, V (t) the concentration of oncolytic virions, and I(t) the
number of infected tumour cells. Infection of susceptible tumour cells occurred at rate η,
while tumour-immune interactions took place with rate ψQ,G.

To account for immune selection, we included a resistant strain of tumour cells unde-
tectable to the immune system (represented by QR(t), G1,R(t), analogous to the susceptible
population). We assumed that tumour cells successfully completing mitosis could ran-
domly mutate into the immune resistant strain with probability µ = 1 × 10−10, and we
assumed that the mutated strain of cancer cells reproduced identically to the non-mutated
strain.
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d
dtQ(t) = Mitotic Output − Transit to active phase

−Apoptosis − Immune Death
d
dtG1(t) = Transit from quiescence − Transit to Mitosis

−Apoptosis − Viral Infection − Immune Death
d
dtI(t) = Viral infection − Death of infected cells

d
dtV (t) = DoseV (t) + Lysis − Viral infection − Virion death

d
dtP (t) = Immune recruitment − Phagocyte death
d
dtC(t) = DoseC(t) + Cytokine Production − Renal clearance
d
dtQR(t) = Development of Resistance + Mitotic Output

−Transit to active phase − Apoptosis
d
dtG1,R(t) = Transit from quiescence − Transit to Mitosis

−Apoptosis − Viral Infection.
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(4.1)

The differential equations describing the progression of disease are

d
dtQ(t) = 2(1 − µ)

∫︂ t

−∞
exp

[︃
−
∫︂ t

σ
d̂K + η(U(x)) + ψG(U(x))dx

]︃
a2G1(σ)K(t− σ)dσ

−a1Q(t) − d1Q(t) − ψQ(U(t))Q(t)
d
dtG1(t) = a1Q(t) − a2G1(t) − d2G1(t) − η(U(t))G1(t) − ψG(U(t))G1(t)

d
dtQR(t) = 2µ

∫︂ t

−∞
exp

[︃
−
∫︂ t

σ
d̂K + η(U(x)) + ψG(U(x))dx

]︃
a2G1(σ)K(t− σ)dσ

−a1QR(t) − d1QR(t)

+2
∫︂ t

−∞
exp

[︃
−
∫︂ t

σ
d̂K + η(U(x))dx

]︃
a2G1,R(σ)K(t− σ)dσ

d
dtG1,R(t) = a1QR(t) − a2G1,R(t) − d2G1,R(t) − η(U(t))G1,R(t)
d
dtI(t) = η(U(t)) [G1(t) +G1,R(t) +N(t)] − δI(t)
d
dtV (t) = DoseV (t) − η(U(t)) [G1(t) +G1,R(t) +N(t)] + α[δI(t)] − ωV (t)
d
dtC(t) = DoseC(t) + Cprod(U(t)) − kelimC(t)
d
dtP (t) = ϕ(C(t)) − γpP (t).
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(4.2)

The total number of cells in the cell cycle is given by

N(t) =
∫︂ ∞

0
a2 exp

[︃
−
∫︂ t

t−ξ
d̂K + η(U(x))dx

]︃ (︄
1 −

∫︂ ξ

0
K(σ)dσ

)︄
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×
(︃
G1(t− ξ) exp

[︃
−
∫︂ t

t−ξ
ψG(U(x))dx

]︃
+G1,R(t− ξ)

)︃
dξ.

We modelled the subcutaneous administration of N doses of GM-CSF similar to Craig
et al. [2016] by

DoseC(t) =
N∑︂
i=1

kcaFcAdminci(t)
V ol

exp [−kca(t− ti)] , (4.3)

where the amount of GM-CSF administered at time ti is Doseci and

Adminci(t) =

⎧⎨⎩ 0 if t < ti

Doseci if t ≥ ti.

The parameter kca denotes the absorption rate of GM-CSF, and F the bioavailable fraction
of GM-CSF. Similarly, the intralesion administration of oncolytic viruses [Andtbacka et al.,
2015; Bommareddy et al., 2017; Johnson et al., 2015] was modelled as

DoseV (t) =
N∑︂
j=1

kvaFvAdminvi (t)
V ol

exp [−kva(t− tj)] (4.4)

where Dosevj is the amount of virus administered at time t = tj and

Adminvj (t) =

⎧⎨⎩ 0 if t < tj

Dosevj if t ≥ tj.

As we considered intralesional administration, FV = 1. Further, absorption into the
tumour was assumed to be much faster than cytokine absorption, so that kva >> kca. Model
predictions were obtained using the stiff ODE solver ode15s in Matlab [MATLAB, 2017]
after reduction to a finite dimensional system of ODEs obtained using the technique
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previously developed [Cassidy and Humphries, 2019]

d
dtQ(t) = 2(1 − µ)ktrAj(t) − a1Q(t) − d1Q− ψQ(U(t))Q(t)

d
dtG1(t) = a1Q(t) − a2G1(t) − d2G1(t) − ψG(U(t))G1(t) − η(U(t))G1(t)
d
dtA1(t) = a2G1(t) − ktrA1(t)) − [d̂g + η(U(t)) + ψG(U(t))]A1(t)
d
dtAi(t) = ktr(Ai−1(t) − Ai(t)) − [d̂g + η(U(t)) + ψG(U(t))]Ai(t) for i = 2, 3..., j

d
dtQR(t) = 2µktrAj(t) + 2ktrAj,R(t) − a1QR(t) − d1QR(t)

d
dtG1,R(t) = a1QR(t) − a2G1,R(t) − d2G1,R(t) − η(U(t))G1,R(t)
d
dtA1,R(t) = a2G1,R(t) − ktrA1,R(t)) − [d̂g + η(U(t)) + ψG(U(t))]A1,R(t)
d
dtAi,R(t) = ktr(Ai−1,R(t) − Ai,R(t)) − [d̂g + η(U(t)) + ψG(U(t))]Ai,R(t) for i = 2, 3..., j

d
dtI(t) = −δI(t) + η(U(t)) [G1(t) +N(t)]

d
dtV (t) = αδI(t) − ωV (t) − η(U(t)) [G1(t) +N(t)]
d
dtC(t) = Cprod(U(t)) − kelimC(t)
d
dtP (t) = ϕ(C(t)) − γpP (t)
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(4.5)

Model parametrization

To begin, we converted tumour volumes to cell numbers by assuming that 1mm3 = 1 × 106

cells [Dingli et al., 2009]. To accurately account for the heterogeneity in cell cycle time,
we integrated the intermitotic time of cervical cancer cells measured by Sato et al. [2016].
There, the intermitotic time was determined by calculating the division time of a HeLa
parent cell and then tracking the two daughter cells until their division. For each daughter
cell, the intermitotic time was given by the time difference between birth and division,
with a mean duration of 1.40 (standard deviation of s = 0.28 days). This measurement also
includes the G1 phase of the cell cycle. In (4.2), cells that divide spend, on average, 1/a2

days in G1. Thus, the mean of the delay kernel in (4.2), τ , satisfied

τ = 1.40 − 1/a2, (4.6)

which provided a lower bound on the value of a2. The gamma distribution has a density
given by

gjktr
(t) = kjtr

Γ(j)t
j−1 exp [−ktrt]
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with mean x̃ = j/ktr and standard deviation s2 = τ 2/j. Thus, for a given value of a2, we
parametrized the delay kernel in (4.2) by

j = τ 2/s2,

and
ktr = j/τ.

To use the linear chain technique [Cassidy and Humphries, 2019], we enforced that j ∈ N.

Dingli et al. [2009] administered myeloma cells to 6 week old irradiated and severely
immunocomprimised mice and measured the increase in tumour volume over 40+ days.
We digitized the data from their Figure 1 and used tumour growth in the absence of
immune pressure to fit the tumour growth parameters a1, a2 and d2. To reduce the number
of parameters to be estimated, we fixed the apoptosis rate of quiescent cells to be d1 = 0.
Since the mice in the Dingli et al. [2009] study were immunocomprimised and no viral
therapy was administered, we only considered the reduced system of Q(t), S(t) and N(t),
and then calculated the distribution parameters using (4.6) and b = j/τ . As only the initial
number of tumour cells (and not their distribution across the cell cycle) is known for each
mouse, we distributed the initial inncoulum of tumour cells across quiescent and the active
portions of the cell cycle according to the proportion of time spent in each phase. Then, for
each parameter set, we simulated the reduced mathematical model and minimized the
least-squares error

err =
N∑︂
i=1

(yi − ŷi)2

between model predictions (yi) and the data (ŷi) from Figures 1 (a) and (c) in Dingli et al.
using the fmincon function in Matlab (Fig. S1 A and B).

Viral and infected cell kinetic parameters were determined using in vitro and in vivo
studies of T-VEC kinetics and data from Toda et al. [2000]. In their study, Toda et al.
injected murine melanoma cells into mice and waited for the tumours reached 5 mm in
size. At that point, defective HSV virus encoding for GM-CSF was injected into the tumour.
The increase in tumour volume as compared with untreated control mice was measured
over 15 days. To fit this data, we fixed the tumour growth parameters a1, a2, d1 and d2 from
the Dingli et al. estimates and simulated tumour growth during 15 days. Then, for fixed
parameter set [κ, η1/2, ω, δ, α], we simulated the administration of one dose of oncolytic
virus (supplied in 1 mL vials with a concentration of 1 × 106 pfu/mL or 1 × 108 pfu/mL).
We then normalized the treated simulation against the control simulation.

To reduce identifiability issues, we also integrated data from Randazzo et al. [1997].
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Figure 4.6: Parameter fitting results. A and B) Data (red circles) from Dingli et al. [2009]
for tumour growth in immunocompromised mice compared to model predictions (solid
black lines). C) Comparisons of model predictions (solid black lines) and the Toda et al.
[2000] data (red circles) for the number of viable cells following the administration of
T-VEC.

There, an oncolytic HSV virus was mixed with tumour cells in vitro and the proportion
of viable cells was studied for different multiplicities of infection. As before, we fixed the
tumour growth parameters and, for fixed parameter set [κ, η1/2, ω, δ, α], simulated infection
and calculated the percentage of viable (non-infected) cells. For each of the Toda et al. and
Randazzo et al. datasets, we calculated the least-squares error between simulations and
data and minimized the sums of their errors (Fig. S1 C).

Due to the lack of PopPK/semi-mechanistic models of GM-CSF, we adapted a model
[Craig et al., 2016] for granulocyte colony stimulating factor (G-CSF), a similar protein,
that includes both neutrophil mediated and renal clearance of circulating G-CSF. Since we
were primarily interested in immune cells that do not have a G-CSF receptor (macrophages
and T-cells), we did not consider neutrophil mediated clearance and fixed kelim = 0.16139
1/day. The basal concentration of GM-CSF in healthy patients is 2.43 pg/mL [Lee et al.,
2008], given by

C∗ =
C∗
prod

kelim
,

at homeostasis. Thus,

C∗
prod = kelimC

∗ = 0.00039863ng/mL/day.

To calculate the maximal cytokine production, Cmax
prod , we considered experimental data
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from Liu [2013] from the injection of carcinoma cells into mice. Therein, different MOIs
of oncolytic HSV virus expressing GM-CSF was administered after a period of initial
tumour growth. Throughout, circulating GM-CSF was measured through ELISA. To
replicate the experimental set up, we simulated the administration of oncolytic virus
in and minimized the least-squares error between the simulation and the experimental
data for fixed parameter values [Cmax

prod , C1/2], while holding the tumour growth and viral
dynamics at their previously estimated values.

The parametrization of the immune compartment was based on Barish et al. [2017],
where a mathematical model of murine tumour growth in the presence of a competent
immune system and dendritic cell vaccine was developed. The structure of the Barish et al.
model of immune dynamics is quite similar to our differential equation for P (t). There,
the rate of conversion from dendritic cell activation to recruitment of active anti tumour
T-cells was given by χX = 4.6754, which we adopted directly (kcp = χX = 4.6754). We
also set the clearance rate of phagocytes to be the same as the clearance rate of T-cells, so
γp = δT = 0.35. The remaining immune involvement parameters, kp and kq = ks, were set
to ensure that the average patient had a tumour doubling time that fell near the center of
the range found in patients with late stage melanoma [Carlson, 2003]. Parameters values
for an average patient (see main section Generation of In Silico Individuals and Patient Cohorts)
are provided in Table 4.3.

Virtual population patient distribution and history function derivation

The distribution of disease stage in the OPTiM trial was a crucial component for considering
the overall survival statistics given the decreased 5 year survival rate for patients with
more advanced disease. The original trial registered patients with not surgically resectable
stage IIIB to IV melanoma. In the T-VEC cohort, 30% of patients had stage 3 melanoma. The
median progression time from first treatment to lymph metastases was 18 months, while
the median time to distant metastases was 24 months [Meier et al., 2002]. To reproduce
this distribution of disease stage in our virtual population, for each of the 30% of virtual
patients with stage 3 melanoma, we assumed that initial treatment was discontinued
sometime s0 in the past, where s0 was sampled uniformly from [16, 20]. Similarly, for the
70% of virtual patients with stage 4 melanoma, we sampled s0 uniformly from [22, 26].

To set the history function φG for (4.2), we assumed that there was a tumour of size
T0 > 0 at cessation of the initial therapy. We began by modelling untreated tumour growth
by

d
dt

[Q(s) +G1(s)] ≈ d
dt
T (s) = [2a2 exp[−d3τ ] − a2 − d2]T (s), s ∈ [s0, 0].
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Parameter Value Biological Interpretation (Unit)
a1 1.183 Quiescent to interphase rate (1/day)
d1 0 Quiescent death rate (1/day)
a2 1.758 Interphase to active phase rate (1/day)
d2 0.539 Interphase death rate (1/day)
d3 0.539 Active phase death rate (1/day)
d̂g 0.167 Active phase death rate (1/day)
κ 3.53 Virion contact rate (1/day)
η1/2 0.51 Virion half effect concentration (virions)
δ 4.96 Lysis rate (1/day)
α 0.00829 Lytic virion release rate (virions/cell)
ω 9.686 Virion death rate (1/day)
kcp 4.675 Maximal phagocyte production rate ( 1010 cells/day)
C1/2 0.739 Phagocyte production half effect (ng/mL/day)
Ψ1/2 5 Cytokine production half effect (1010 cells/day)
γp 0.35 Phagocyte death rate (1/day)
C∗
prod 3.98 × 10−4 Homeostatic cytokine production rate (ng/mL/day)

Cmax
prod 1.429 Maximal cytokine production rate (ng/mL/day)
kelim 0.16139 Cytokine elimination rate (1/day)
kp 0.05 Phagocyte-tumour cell contact rate (1/day)
kq,s 10 Phagocyte cell digestion constant
τ 0.8354 Expected cell cycle duration (day)
ktr 10.77 Transit rate in (4.5) (1/day)
j 9 Number of Compartments in (4.5)

Table 4.3: Mean parameter estimates. The vector p (see main section Generation of in-silico
individuals and patient cohorts) with biological interpretations. See Cassidy and Humphries
[2019] for detailed descriptions of each parameter.

Thus, at the beginning of treatment, the total number of tumour cells for each patient was

T0 exp [(2a2 exp[−d3τ ] − a2 − d2) s0] .

We distributed these tumour cells across the quiescent, G1, and mitotic populations accord-
ing to the expected fraction of time spent in each population.

Local sensitivity analysis

Particularly important physiological processes in disease dynamics were identified by
performing a sensitivity analysis on the mathematical model’s parameters. Each parameter
was varied one-by-one by 10%. The influence of each of these variations was measured by
comparing the predicted tumour doubling time and the tumour burden after 15 months to
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the model’s predictions without any parameter changes according to

% change in tumour burden = 100% × Tumour burden with parameter change
Tumour burden without parameter change

.

The parameters controlling the dynamics of mitotic cells were the most sensitive, with
the 10% change accounting for drastic changes in disease burden. For example, increasing
the rate at which G1 cells enter into mitosis results in a 60-fold increase in tumour burden,
while decreasing this rate decreased the tumour burden by a factor of 33 (Figure 4.7),
indicating that interventions that inhibit the specific transition from G1 into mitosis may
offer consequential therapeutic benefits.

Figure 4.7: Local parameter sensitivity analysis. Left: dependence of tumour burden on
the parameters shown on the y-axis. Right: dependence of tumour doubling time on the
parameters shown on the y-axis. In both cases, parameters were varied by ±10%. Tumour
doubling times of 0 indicate that the tumour did not reach twice the initial size.



134

Bibliography

Andtbacka, R. H. I., Kaufman, H. L., Collichio, F., Amatruda, T., Senzer, N., Chesney, J.,
Delman, K. A., Spitler, L. E., Puzanov, I., Agarwala, S. S., Milhem, M., Cranmer, L.,
Curti, B., Lewis, K., Ross, M., Guthrie, T., Linette, G. P., Daniels, G. A., Harrington,
K., Middleton, M. R., Miller, W. H., Zager, J. S., Ye, Y., Yao, B., Li, A., Doleman, S.,
Van Der Walde, A., Gansert, J., and Coffin, R. S. (2015). Talimogene laherparepvec
improves durable response rate in patients with advanced melanoma. J. Clin. Oncol.,
33(25):2780–2788.

Barish, S., Ochs, M. F., Sontag, E. D., and Gevertz, J. L. (2017). Evaluating optimal therapy
robustness by virtual expansion of a sample population, with a case study in cancer
immunotherapy. Proc. Natl. Acad. Sci., 114(31):E6277–E6286.

Bommareddy, P. K., Patel, A., Hossain, S., and Kaufman, H. L. (2017). Talimogene Laher-
parepvec (T-VEC) and Other Oncolytic Viruses for the Treatment of Melanoma. Am. J.
Clin. Dermatol., 18(1):1–15.

Carlson, J. A. (2003). Tumor doubling time of cutaneous melanoma and its metastasis. Am.
J. Dermatopathol., 25(4):291–299.

Cassidy, T. and Humphries, A. R. (2019). A mathematical model of viral oncology as an
immuno-oncology instigator. Math. Med. Biol. A J. IMA, To appear.

Craig, M., Humphries, A. R., and Mackey, M. C. (2016). A mathematical model
of granulopoiesis incorporating the negative feedback dynamics and kinetics of G-
CSF/neutrophil binding and internalization. Bull. Math. Biol., 78(12):2304–2357.

Dingli, D., Offord, C., Myers, R., Peng, K. W., Carr, T. W., Josic, K., Russell, S. J., and Bajzer,
Z. (2009). Dynamics of multiple myeloma tumor therapy with a recombinant measles
virus. Cancer Gene Ther., 16(12):873–882.

Johnson, D. B., Puzanov, I., and Kelley, M. C. (2015). Talimogene laherparepvec (T-VEC)
for the treatment of advanced melanoma. Immunotherapy, 7(6):611–619.

Lee, J., Kim, Y., Lim, J., Kim, M., and Han, K. (2008). G-CSF and GM-CSF concentrations
and receptor expression in peripheral blood leukemic cells from patients with chronic
myelogenous leukemia. Ann. Clin. Lab. Sci., 38(4):331–337.

Liu, H. (2013). Preclinical evaluation of herpes simplex virus armed with granulocyte-
macrophage colony-stimulating factor in pancreatic carcinoma. World J. Gastroenterol.,
19(31):5138.



135

MATLAB (2017). R2017a. The MathWorks Inc., Natick, Massachusetts.

Meier, F., Will, S., Ellwanger, U., Schlagenhauff, B., Schittek, B., Rassner, G., and Garbe, C.
(2002). Metastatic pathways and time courses in the orderly progression of cutaneous
melanoma. Br. J. Dermatol., 147(1):62–70.

Randazzo, B. P., Bhat, M. G., Kesari, S., Fraser, N. W., and Brown, S. M. (1997). Treatment
of experimental subcutaneous human melanoma with a replication-restricted herpes
simplex virus mutant. J. Invest. Dermatol., 108(6):933–937.

Sato, S., Rancourt, A., Sato, Y., and Satoh, M. S. (2016). Single-cell lineage tracking analysis
reveals that an established cell line comprises putative cancer stem cells and their
heterogeneous progeny. Sci. Rep., 6(1):23328.

Toda, M., Martuza, R. L., and Rabkin, S. D. (2000). Tumor Growth Inhibition by Intratu-
moral Inoculation of Defective Herpes Simplex Virus Vectors Expressing Granulocyte -
Macrophage Colony-Stimulating Factor. Mol. Ther., 2(4):324–329.





CHAPTER 5

CONCLUSION

As we have seen in the preceding chapters, time delays in human physiology are both
heterogeneous in length and often subject to external control. This dissertation has de-
scribed the development of mathematical models that explicitly incorporate both of these
characteristics. Here, we summarise the main contributions of the thesis and indicate
avenues of future work.

Chapter 2 provided the analytical framework necessary to derive a (possibly) state de-
pendent distributed DDE from an underlying ageing or maturation process. The resulting
distributed DDE preserves non-negativity of initial conditions and we demonstrated how
to linearise the system about an equilibrium point. By choosing specific delay kernels,
we recovered state dependent discrete DDEs, uniformly distributed DDEs and gamma
distributed DDEs from the general distributed DDE framework. In fact, we reduced
both the uniform and gamma distributed DDEs to formulations that are amendable to
numerical simulation. In the case of the gamma distributed DDE, we derived a linear
chain technique that incorporates variable ageing rates between successive compartments.
To demonstrate the utility of this linear chain technique, we considered two ODE models
of hematopoietic cell production used in the pharmaceutical sciences. We showed how to
use these ODE models to derive an equivalent state dependent distributed DDE and, by
using the equivalent DDE formulation, analysed the models. This linear chain technique
is also amenable to models displaying a cyclic formulation.

Future work along this axis could include formalising the relationship between cyclic
systems and possibly state dependent distributed DDEs. Moreover, numerical imple-
mentation of distributed DDEs requires the evaluation of a convolution integral which,
currently, must be handled on a model-by-model case as there is no general purpose
method available. To facilitate the use of state dependent distributed DDEs, an all-purpose
numerical solver could be developed to simulate distributed DDEs for arbitrary delay
kernels.

Next, in Chapter 3, we leveraged this understanding of heterogeneous reproductive
processes to study cellular reproduction in malignant tumours. We developed a mathemat-
ical model of tumour-immune interactions and explicitly incorporated reproductive time
heterogeneity. Analysis of the mathematical model indicated that immune recognition and
killing of tumour cells acts to stabilize the disease free state. Further, we illustrated the role
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of reproductive time heterogeneity in driving disease progression. By using the Erlang
distribution to model cell cycle duration, we reduced the infinite dimensional distributed
DDE to a finite dimensional system of ODEs. We demonstrated equivalence between these
formulations by explicitly constructing a suitable history function for given ODE initial
conditions–the first such direct construction to our knowledge. By incorporating oncolytic
viral therapy, we showed that the level of immune involvement determines the long term
success or failure of therapy.

However, the mathematical model developed in Chapter 3 drastically simplified the nu-
ances of anti-tumour immune responses. In our model, immune cells interact with tumour
cells without regard for the spatial distribution of immune and tumour cells, pro- and
anti-inflammatory cytokine gradients and other aspects of the tumour microenvironment.
Incorporating spatial effects into the model is a possible extension of this work that would
naturally lead to the development of an agent-based model more appropriate to study ex-
tinction events. Moreover, the model did not incorporate the impact of anti-inflammatory
cytokines which are critical for the modulation of the anti-tumour immune response.

Finally, we turned to the question of understanding and optimising combination viral
and immunotherapy scheduling in Chapter 4. Using the previously derived mathematical
model, we proposed a logical and rational approach to in silico clinical trials aimed at
addressing some issues faced by clinicians. We began by generating virtual patients that
reproduced clinically relevant aspects of late stage melanoma and cloned these patients
into a number of distinct treatment arms. In this way, we studied disease progression
under a number of different therapies in precisely the same virtual patient, which is
clinically infeasible. Next, we used the mathematical model to individualize treatment
strategies for each virtual patient. However, these treatment strategies are individualized
and optimized for the patient in question. To translate these optimized schedules to new
patients, we created a probabilistic dosing regimen with the expected dosing frequency
of the optimized strategy that is unlikely to reach the clinic. To avoid the ethical consid-
erations of the proposed optimized strategy, we studied the underlying principles of the
optimized therapeutic strategies and identified the mechanisms by which immunotherapy
can support oncolytic viral therapy. We designed a maintenance type regimen that uses the
administration of pro-inflammatory cytokines to maintain an immune response between
doses of viral therapy. By performing a second in silico clinical trial, we demonstrated
that both the maintenance and probabilistic therapeutic strategies outperform the current
standard of care while there is no significant difference between the probabilistic and
maintenance type strategies.

The virtual clinical trial in Chapter 4 provided a framework to utilize mathematical
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models to inform clinical treatment strategies. However, there are a number of important
questions raised by our work. Specific to oncolytic viruses, we did not incorporate an anti-
viral adaptive immune response, nor the development of viral resistance due to exposure
to numerous viral cycles. Both of these adaptive responses would function to decrease
viral infectivity and treatment efficacy, which may explain the discrepancies between our
virtual trial and the OPTiM trial [Andtbacka et al., 2015]. Future work should address
these shortcomings and study the possibility of alternating between different oncolytic
viruses to avoid the development of anti-viral effects.

In summary, this dissertation has addressed the issue of heterogeneity in ageing pro-
cesses through the development of mathematical models incorporating distributed DDEs.
The analytical and numerical results of this work indicate that incorporating distributions
of delays in mathematical models can drastically impact model predictions. It follows that
including delay time heterogeneity is crucial when developing mathematical models of
physiological systems.
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cyteâĂŞMacrophage Colony-Stimulating Factor. Mol. Ther., 2(4):324–329.

Trucco, E. (1965). Mathematical models for cellular systems. The Von Foerster equation.
Part II. Bull. Math. Biophys., 27(4):449–471.

Villasana, M. and Radunskaya, A. (2003). A delay differential equation model for tumor
growth. J. Math. Biol., 47(3):270–294.

Vogel, T. (1961). Systèmes Déferlants, Systèmes Héréditaires, Systèmes Dynamiques. In
Proc. Int. Symp. Nonlinear Vib., pages 123–130, Kiev. Academy of Sciences USSR.

von Schulthess, G. and Mazer, N. (1982). Cyclic neutropenia (CN): A clue to the control of
granulopoiesis. Blood, 59:27–37.

Walker, R. and Enderling, H. (2016). From concept to clinic: Mathematically informed
immunotherapy. Curr. Probl. Cancer, 40(1):68–83.

Wang, H., Milberg, O., Bartelink, I. H., Vicini, P., Wang, B., Narwal, R., Roskos, L., Santa-
Maria, C. A., and Popel, A. S. (2019). In silico simulation of a clinical trial with anti-
CTLA-4 and anti-PD-L1 immunotherapies in metastatic breast cancer using a systems
pharmacology model. R. Soc. Open Sci., 6(5):190366.

Wodarz, D. (2016). Computational modeling approaches to the dynamics of oncolytic
viruses. Wiley Interdiscip. Rev. Syst. Biol. Med., 8(3):242–252.

Yamashita, M. and Emerman, M. (2006). Retroviral infection of non-dividing cells: Old
and new perspectives. Virology, 344(1):88–93.

Yates, C. A., Ford, M. J., and Mort, R. L. (2017). A Multi-stage Representation of Cell
Proliferation as a Markov Process. Bull. Math. Biol., 79(12):2905–2928.

Yildirim, N., Santillán, M., Horike, D., and Mackey, M. C. (2004). Dynamics and bistability
in a reduced model of the lac operon. Chaos An Interdiscip. J. Nonlinear Sci., 14(2):279–292.

Yuan, Y. and Bélair, J. (2011). Stability and Hopf Bifurcation Analysis for Functional
Differential Equation with Distributed Delay. SIAM J. Appl. Dyn. Syst., 10(2):551–581.



154

Zhang, J., Cunningham, J. J., Brown, J. S., and Gatenby, R. A. (2017). Integrating evolu-
tionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat.
Commun., 8(1):1816.


	Abstract
	Abrégé
	Statement of contribution
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Equivalences Between Age Structured Models and State Dependent Distributed Delay Differential Equations 
	Introduction
	From McKendrick type equations to state dependent delays
	Properties of state dependent delay differential equations
	Distributed delay differential equations with specific maturation probabilities
	Examples from hematopoiesis
	Discussion and conclusion
	Bibliography

	A Mathematical Model of Viral Oncology as an Immuno-oncology Instigator
	Introduction
	Model development
	Model analysis
	The gamma distribution and equivalent ODE system
	Discussion
	Bibliography
	Reduction to the Crivelli model and the discrete delay case
	Number of cells in the cell cycle

	Determinants of combination GM-CSF immunotherapy and oncolytic virotherapy success identified through in silico treatment personalization
	Introduction
	Methods
	Results
	Discussion
	Bibliography
	Supplementary Information

	Conclusion
	Bibliography

