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ABSTRACT

An n-particle-irreducible (nPI) effective action Γ[φ̄, G, ...] is a functional whose

stationary points coincide with the exact Green’s functions of a quantum theory (for

n = 2 this is known as a Φ-derivable approximation). Any practical application

would necessitate a truncation of Γ at some finite loop order; then, the stationary

points of Γ[φ̄, G, ...] would correspond to a selective resummation to all orders in

a perturbative expansion. This thesis explores the application of these functional

techniques to non-abelian gauge theory in three spacetime dimensions.

3D gauge theories are physically relevant in that they provide an effective de-

scription of the non-perturbative sectors of high temperature 4D gauge theories. In

this work we focus our attention on two particular 3D models, pure SU(N) Yang-

Mills and Yang-Mills coupled to a scalar field. In our study of pure Yang-Mills theory

we address the technical and computational challenges associated with the resolu-

tion of the three-loop 3PI equations of motion; in the end obtaining solutions for the

fully resummed two and three-point functions of the theory. Subsequently, the study

of SU(N) Higgs theory is physically motivated, in that this field theory provides a

framework which can be used to compute gauge-invariant observables using the nPI

method. In determining the phase diagram of SU(N) Higgs theory (specifically in

the three-loop 2PI formalism) we address the overall accuracy and applicability of

these methods to the non-perturbative study of Yang-Mills theory.
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ABRÉGÉ

Nous utilisons le formalisme nPI pour calculer les propagateurs et les fonctions

de vertex de la théorie Yang-Mills en trois dimensions. Les solutions qui sont obtenus

de cette méthode peuvent être considérés comme la somme sélective mais infini sur

une certaine classe de topologies Feynman. Nous discutons d’une technique qui sert

à régulariser les analogues nPI des équations Schwinger-Dyson, et nous permet de

converger itérativement sur les solutions.

L’étude de Yang-Mills pur en 3D est réalisée dans une troncature du troisième

ordre de l’action effective 3PI. Dans l’exécution de ce calcul, nous sommes en mesure

de résoudre de nombreux défis techniques associés et en plus faire une comparaison

entre nos resultats et les résultats obtenus des études de réseau en jauge-fixé. .

Par la suite, nous utilisons le formalisme 2PI dans le but de résoudre le dia-

gramme des phases de la théorie SU(N) Higgs en 3D. En faisant ceci nous utilisons

la méthode pour mesurer directement des observables jauge-invariantes; nous per-

mettant ainsi de faire des commentaires sur l’exactitude et l’efficacité globale de la

méthode dans un contexte de théorie de jauge.
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CHAPTER 1
Yang-Mills theory and QCD

1.1 Introduction

Following the early stages of a heavy ion collision, hadronic matter briefly exists

in a deconfined state known as quark-gluon plasma (QGP), a state which was also

present in the early universe. This existence and properties of QGP is a field of

active research in experiments at RHIC and CERN [1, 2, 3, 4, 5, 6], as well as

theoretically on the lattice [7, 8, 9, 10, 11, 12]. What is known theoretically is that

this phase actually shares many features with an electromagnetic plasma [13], such

as Debye screening, Landau damping, plasma oscillations and so forth. However,

one major distinction between the two is the non-perturbative screening of static

magnetic fields, which remain unscreened to all orders in QED. Infrared divergences

lead to a failure of the perturbative expansion of static quantities; for the pressure

of hot QCD this break-down occurs at four-loops, or O(g6). This is the well-known

Linde problem [14], and it illustrates that a perturbative description of the underlying

physics is not possible at the energy scales of interest; for instance, those within the

vicinity of the conjectured QCD critical end point.

In QCD, the QGP phase appears in the vicinity of Tc ∼ ΛQCD and it coincides

with the approximate restoration of chiral symmetry (for reviews see [15, 16]). At

present, the details of this phase transition are poorly understood. In fact, referring to

it as a phase transition is a misnomer, since in nature it is believed that the transition
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to the QGP at vanishing chemical potential is in fact a cross-over. Studying the QCD

phase diagram is difficult due to the lack of first-principles analytic methods which

are effective at strong coupling. Furthermore a theoretical description based on the

lattice suffers from other challenges associated with the fermion sign problem of

QCD at finite chemical potential [17]. For example, the relationship between chiral

symmetry breaking and deconfinement is not fully understood [18].

Many groups are involved in the determination of the location of the QCD

critical end point both experimentally and theoretically [19, 20, 21, 22, 23, 24], the

existence of which is motivated by effective low temperature, high baryon density

models [25]. However, even the very existence of a critical end point is debated, as

it has also been shown that the nature of the phase transition arising from these

models is sensitive to the model parameters [26]. In addition, other phases which

are believed to occur at very high density have also been postulated [27], though no

experimental signatures of these phases have been observed.

QCD is defined by the Lagrangian

LQCD = −1

2
Tr F µνFµν +

Nf∑
i=1

ψ̄i(i /D −mi)ψi (1.1)
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with i summing over the six flavours that exist in nature: up, down, strange, charm,

bottom and top. The Yang-Mills field strength and gauge-covariant derivative are1

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (1.2)

Dµ = ∂µ − igAµ. (1.3)

In QCD the gauge group is SU(3), and the fermions transform in the fundamental

representation. One of the defining features of QCD and Yang-Mills theory in general

is asymptotic freedom [28], which results in the coupling αs = g2/4π becoming weaker

at higher energies. In 4 dimensions Eq. (1.2) describes a renormalizable field theory,

which naturally leads to a logarithmic scale dependence of αs. The scale dependence

is given perturbatively by the β-function

β(αs) =
dαs
d log µ

= −33− 2Nf

6π
α2
s −

153− 19Nf

12π2
α3
s −O(α4

s), (1.4)

an expression which is known up to four-loops [29]. Furthermore, the value of αs

at the scale of the Z boson mass has been measured experimentally (see [30] and

references therein), its value is

αs(µ = MZ) = 0.1185± 0.0006. (1.5)

1 The metric convention gµν = diag(−,+,+,+) is assumed in 4D.
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The growth of the coupling strength in the IR leads to the definition of the QCD

scale ΛQCD, as the energy at which αs diverges. For Nf = 5

ΛMS
QCD = 214± 7 MeV. (1.6)

The stated value is computed in the MS renormalization scheme, since the β-function

is scheme dependent at three and four-loops. It is not really a physical quantity, since

the divergence of the coupling is actually a byproduct of perturbation theory. In

nature αs grows to an O(1) value at which point the perturbative expansion breaks

down [31]. However, the significance of ΛQCD is that it gives a rough idea of the

scale at which the physics of the strong-force is non-perturbative. With massless

fermions we can identify it with the length scale on which colour confinement occurs.

In physical units, 1/ΛQCD ∼ O(1 fm), which is comparable to the size of a proton.

In other words, at length scales r � 1/ΛQCD only colour singlet bound states (like

mesons and baryons) are observed [32].

QCD is difficult to study analytically due to the non-linearity of the gauge field

self-interactions. However, to gain some insight into the dynamics of the strong force

in nature, in many situations it is favourable to study variants and generalizations

of QCD. This could potentially involve:

• altering the fermion content

• excluding fermions all together

• setting quark masses to zero

• modifying the gauge group

• changing the dimension or topology of spacetime
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• including scalars and other Standard Model fields;

this list is not exhaustive.

The underlying motivation to adopt any of these particular generalizations de-

pends on the physics one is interested in. To give a few examples, in studying the

chiral phase transition / cross-over, which occurs at Tc ∼ ΛQCD the up and down

(any perhaps also the strange) quark masses may be set to zero while excluding the

relatively heavy species since their masses are large compared to the relevant scales

of the problem, mc,mb,mt � Tc. The nature of the chiral phase transition (whether

it is first order, second order or a cross-over) is sensitive to the quark masses [33].

Thus varying the “light” quark masses leads to a determination of their effect on

the phase diagram. Alternatively, as a more specific example, if one is interested in

studying the gluon fusion gg → H process in the Standard Model, the amplitude

at one-loop will be dominated by the contributions from the heavy quarks which

couple strongly with the Higgs [34]. In this case light quarks can be neglected (in

fact, even including the bottom quark represents a minor correction to this particular

amplitude).

Concerning the dimensionality and topology of spacetime, there is some interest

in the study of QCD with multiple compact dimensions (e.g. [35]). In particular,

4D QCD with a single compact Euclidean time direction is essentially QCD at finite

temperature. An effect of the topology is that without matter fields present, varying

the radius of the compact dimension (i.e. changing the temperature) results in a

confinement / deconfinement phase transition. In the finite temperature context, 3D

Euclidean formulations of QCD are of interest since they offer an effective description
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of a hot 4D theory [36, 37]. Non-perturbative infrared physics can be studied on

the lattice with 3D Yang-Mills coupled to an adjoint scalar; this is known as electric

QCD (eQCD). Furthermore, the purely non-perturbative magnetic sector is described

by pure 3D Yang-Mills; this is magnetic QCD (mQCD). 3D Euclidean Yang-Mills

happens to be the primary focus of this work.

Pure Yang-Mills theory [38] is of particular relevance to the study of the mathe-

matical aspects of confinement; the finite temperature confinement / deconfinement

phase transition is related to ZN centre symmetry breaking [39] via a non-zero ex-

pectation value for the Polyakov-Loop.2 This feature has motivated the study of

Yang-Mills with, for instance, a G2 gauge group, due to it simultaneously being

non-abelian and having a trivial centre [40]. Confinement is manifested in QCD (i.e.

in nature) by an observable physical spectrum consisting entirely of colour singlet

states, for instance, protons, neutrons, pions etc. Furthermore, confinement is an

inherently non-perturbative phenomenon and it is a generic feature of Yang-Mills

theory in 4D due to the non-abelian character of the gauge-group (where gauge

fields self-interact). Throughout this work, it should be assumed that the discussion

is specifically centred around SU(N) gauge-groups.

To better understand QCD, it is helpful to consider what makes it so differ-

ent from QED. As a first example, the QED field strength Fµν is gauge-invariant.

Its components are observable and are identified with electric and magnetic fields.

2 Phase transitions can still in general occur with fundamental quarks present, but
then, the ZN symmetry is at best approximate; see Section 1.2.1.
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Furthermore, the current density operator Jµ = eψ̄γµψ is gauge-invariant. Electric

charge, which is specified by the J0 component, is also observable in effect. In QCD,

neither of these statements are true. For instance, the would-be colour charge oper-

ator Ja0 = gψ̄T aγ0ψ transforms non-trivially under a gauge-transformation ψ → Λψ

with Λ ∈ SU(N) since [Λ, T a] 6= 0. The gauge-invariance of the current and field

strength in QED is entirely due to it being an abelian theory.

What are generally regarded as signatures of confinement in pure Yang-Mills

theory are area-law behaviour of Wilson Loops [41] and the existence of a mass

gap [42]. However, this statement is not precisely rigorous; in fact, at the time of

writing the Yang-Mills existence and mass gap Millennium Problem remains unsolved

[43]. That being said, these two properties of confinement are generally accepted

by the physics community. The standard interpretation of area-law is that if two

heavy fundamental representation charges (i.e. test quarks) are introduced into the

medium, the energy required to pull them apart would grow linearly with separation.

Hypothetically, if this were attempted in nature, the energy in the “string” between

the quarks would grow until a point where a quark / anti-quark pair would form

out of the vacuum and bind to the 2 initially free charges. This is known as string-

breaking [44], and as a result, in a physical theory like QCD, the static potential

eventually levels off. As a direct consequence, with dynamical quarks present, area-

law for large Wilson loops is not observed. To complicate matters further, the order

parameter which defines the confinement / deconfinement phase transition in pure

Yang-Mills is not applicable in a strict sense to QCD due to the presence of fermions.

We will return to this point in Section 1.2.1, but before doing so it is best to start
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the next section with an overview of the situation in pure Yang-Mills, which has a

well defined phase transition. However, we will now comment briefly on the contents

of the remainder of this chapter.

1.1.1 Organization of the thesis

This thesis specifically explores the topic of resummation in non-abelian gauge

theory via the n-particle-irreducible (nPI) formalism (closely related to what are

known as Φ-derivable approximations). Technical details concerning the nPI for-

malism and a presentation and discussion of the results are contained throughout

Chapters 2, 3 and 4 and the appendices, whereas Chapter 1 serves as an introduc-

tion. There will be several recurring themes throughout this work, namely phase

transitions, gauge-fixing / gauge-invariance and the study of 3 dimensional effective

models. Essentially, we will be applying the nPI formalism to pure Yang-Mills and

SU(N) Higgs theory in 3D, which requires working in a fixed gauge. Our main goal

is to use the method to resolve the non-perturbative phase diagram of SU(N) Higgs

theory.

Therefore, the remainder of Chapter 1 is devoted to a review of each of these

topics, with a focus on certain key points that are relevant to the discussion later in

this work. Section 1.2 begins with a presentation of phase transitions in pure Yang-

Mills theory as well as Yang-Mills coupled to matter (particularly scalar) fields.

Section 1.3 introduces the necessity to fix a gauge perturbatively. The focus is

initially on covariant gauge; however, we eventually switch over to a discussion of

Vacuum Expectation Values (VEVs), Rξ gauge and spontaneous symmetry breaking.

Finally, in Section 1.4 we will go over the construction of an effective 3D description
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of thermal Yang-Mills that is valid in the infrared, which motivates our study of 3D

field theories. Chapter 1 ends with a simple example of a resummation.

In Chapter 2 we then present the nPI formalism as a resummation scheme via its

definition as the Legendre transform of the generating function of connected Green’s

functions. Furthermore, we discuss what are known as Φ-derivable approximations,

which form a subset of the nPI formalism. In Chapter 3 we express the 3PI effective

action for pure Yang-Mills theory (magnetic QCD) in covariant gauge; subsequently

we explicitly compute the resummed two and three-point Green’s functions. Finally,

in Chapter 4 we use the formalism to explore the phase diagram of SU(N) Higgs

theory which is related to the electroweak phase diagram. Since this final task

involves the computation of gauge-invariant observables, it serves as a definitive test

of the accuracy and overall usefulness of the method in general.

1.2 Phase transitions and confinement

At zero temperature, confinement in pure Yang-Mills theory occurs on a charac-

teristic length scale rC , known as the confinement radius. On dimensional grounds,

rC ∼ 1/ΛSU(N). The quantity ΛSU(N) is defined in an similar fashion to ΛQCD, except

that in a pure-gauge theory, ΛSU(N) is the only scale present. The spectrum at zero

temperature consists of colour singlet bound states of gluons [45], or glueballs, with

masses proportional to ΛSU(N), again on dimensional grounds [46]. At a heuristic

level, one could ask what would happen at high temperatures where the electric

screening length rD ∼ 1/gT becomes small so that rD < rC? The answer is that

eventually colour charges becomes deconfined, and in a sense they are liberated. In

fact, at very high temperatures, Yang-Mills theory resembles an ideal gas [47].

9



A more precise statement can be made by considering the behaviour of the static

potential Vqq̄(r) between two heavy fundamental sources [39]. At zero temperature,

consistent with the area-law signature of confinement, it diverges linearly at large

separation

Vqq̄(r) ∼ σr + constant, (1.7)

where the proportionality constant σ is known as the string tension and it has been

measured on the lattice [48]. At high temperature, Vqq̄(r) changes over to the form

of a screened Coulomb potential3

Vqq̄(r) ∼
g2e−mDr

r
+ constant. (1.8)

The gauge-invariant order parameter for this transition is the expectation value

of the Polyakov-loop

L(x) =
1

N
Tr P eig

∫ β
0 dτA0(τ,x) (1.9)

in the fundamental representation. This quantity is directly related to the low and

high temperature forms of the static qq̄ potentials (Eq. (1.7) and Eq. (1.8)) via the

thermal average of its two-point correlation function [50, 51, 52]

〈L(r)L†(0)〉 =
N2 − 1

N
e−βV

8
qq̄(r) +

1

N
e−βV

1
qq̄(r). (1.10)

A few remarks: the expressions Eq. (1.7) and Eq. (1.8) included constants which arise

due to the renormalization of the free energy; following renormalization we can make

3 This should not be taking as implying a perimeter law for large spatial Wilson-
loops. Rather, spatial Wilson-loops always exhibit area-law [49].
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a firm connection with Eq. (1.10). Thus, V 1
qq̄ / V 8

qq̄ can be physically understood as

the free energy associated with introducing a qq̄ pair into the system. On a technical

note, the superscripts 1 and 8 account for pairing in either the colour singlet or octet

states, viz.

3⊗ 3̄ = 1⊕ 8. (1.11)

Hence, the labelling 8 is proprietary to SU(3); however, 8 should really be understood

as N2 − 1 for SU(N).

Due to the cluster decomposition property, at large separation

〈L(r)L†(0)〉 → 〈L(r)〉〈L†(0)〉. (1.12)

Therefore, whether or not the one-point function 〈L(r)〉 vanishes distinguishes be-

tween the high temperature and low temperature forms of Vqq̄(r). When 〈L(r)〉 = 0,

the free energy associated with introducing a qq̄ pair into the system and separating

it to infinity is divergent.

The deconfining phase transition via a non-zero expectation value of L(r) in a

pure Yang-Mills theory is related to the breaking of centre4 symmetry of the gauge-

group [39, 53]. Consider the action for pure SU(N) Yang-Mills at finite temperature

SYM =

∫ β

0

dτ

∫
d3x

1

2
TrF µνFµν . (1.13)

4 The centre of a group is defined as the set of elements which commute with all
of the elements of the group.
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In addition to the usual periodic local gauge transformation

F µν(τ, x)→ Λ†(τ, x)F µν(τ, x)Λ(τ, x) (1.14)

with Λ(τ + β, x) = Λ(τ, x) the action is also invariant under transformations where

Λ(τ+β, x) = cnΛ(τ, x). For SU(N), c = e
i2π
N is an element of the group centre, which

is isomorphic to the cyclic group ZN . The Polyakov-loop (in the fundamental rep-

resentation), on the other hand, is not invariant under these centre transformations,

since we have L(x) → cL(x). Its non-zero expectation value serves as a true order

parameter for the deconfinement phase transition. For SU(3) this phase transition

is first order [54], while for SU(2) it is second order with Z2 universality [55, 56].

There have been claims that for N ≥ 4 the phase transition may revert to being

second order [57]. However, numerical evidence reveals the contrary [58, 59, 60], in

fact favouring a first order phase transition which strengthens with increasing N .

1.2.1 Phase transitions in non-abelian gauge theory with fermions

Consider what happens to adjoint Polyakov-loops, Ladj. in the pure gauge theory.

Under a centre symmetry transformation, Ladj. → cc†Ladj., so it is always invariant

(this can be understood from Eq. (1.11)). In effect, 〈Ladj.(r)〉 6= 0, which at low

temperature has the interpretation that if adjoint charges are sufficiently separated,

gluons will appear out of the vacuum and form colour singlet glueballs. This is

possible in SU(3) because adjoint matter is in the 8 representation and the product

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27 (1.15)
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contains a singlet. For general N , the product of two adjoint representations always

contains the singlet.

Consequentially, in QCD where dynamical quarks in the fundamental represen-

tation are present, 〈L〉 cannot be an exact order parameter for the confinement /

deconfinement phase transition. In fact, the presence of fermions in the QCD La-

grangian explicitly breaks the ZN symmetry. The potential between two quarks rises

linearly, up to the point where there is sufficient energy to form a qq̄ pair out of the

vacuum.

This does not necessarily mean that the deconfinement phase transition does not

occur with heavy quarks present. For N = 3 (where the deconfinement transition

is first order), sufficiently heavy quarks mq � ΛQCD enter as a perturbation which

weaken the strength of the phase transition [61]. In this case, the Polyakov-loop is

an approximate order parameter, which still exhibits a discontinuity at the phase

boundary [62]. However, the deconfinement phase transition for N = 2 as it is

second order can only persist in the limit mq → ∞, where the ZN symmetry is

exact. Moreover, in nature where there are light quark (relative to the scale ΛQCD)

this heavy quark limit is not physically realized [63, 64].

In spite of the explicit breaking of centre symmetry, on the other end of the

spectrum with light quarks present it is possible to have a phase transition result-

ing from the high temperature approximate restoration of chiral symmetry [15, 16].

Then, the order parameter (in the massless limit) is not the Polyakov-loop, but
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Figure 1–1: Schematic depiction of the Columbia Plot [65], which illustrates the
quark mass dependence of the QCD phase transition at vanishing chemical potential
with Nf = 3 and mu = md. The generic features depicted are the first order phase
transitions in the chiral (bottom left) and pure N = 3 Yang-Mills (top right) limits,
with a cross-over region in between. Additionally, the O(4) second order phase
transition with massless up / down quarks and a heavy strange quark is indicated
along the left-most axis. The plot is not to scale, but the physical point in the
cross-over region is depicted as being “close” to the chiral first order region, since
the possibility of a first order phase transition in nature has been considered.

rather the chiral condensate 〈ψ̄(1 + γ5)ψ〉. Chiral symmetry breaking is well be-

yond the scope of this work, so the remainder of this section is devoted to com-

menting on the contrast between the situation in pure Yang-Mills with that in
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QCD. Though Z3 symmetry is not present, the QCD Lagrangian with Nf mass-

less quarks possesses and SU(Nf ) ⊗ SU(Nf ) flavour symmetry5 (vector and axial-

vector rotations on the massless flavours). Chiral symmetry breaking is expressed as

SU(Nf )⊗ SU(Nf )→ SU(Nf ), yielding a multiplet of massless Goldstone bosons.

For models with an initial SU(2)⊗SU(2) symmetry, the chiral phase transition is

second order with O(4) universality. However, when that symmetry is SU(3)⊗SU(3)

the transition is first order [33]. The question is, does nature with three light quarks

(defined as mq � ΛQCD) approximately resemble either of these cases? The O(4)

second order phase transition could not be realized in nature with any finite quark

masses. However, since the Nf = 3 phase transition is first order, it will continue to

be first order even if it is perturbed by small non-zero quark masses. So, it would be

seemingly possible to have a first order phase transition in nature, except that it is not

clear that the assumption ms � ΛQCD holds for the physical value ms ∼ 100 MeV,

see Figure 1–1. Therefore, in this simplified model there are two possible scenarios for

the QCD phase transition at zero chemical potential (corresponding to the location

of the “physical point” in Fig. 1–1)

• the strange quark is indeed “light” (automatically so are the up and down

quarks). Then the Nf = 3 massless case is approximately realized and the first

order phase transition survives in nature.

5 There are additional vector and axial U(1) factors which we have not written;
the axial U(1) is anomalous and the vector U(1) is associated with baryon number
conservation.
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• The strange quark is “heavy,” meaning that the Nf = 3 massless case is not a

good approximation. Since a second order O(4) phase transition is not possible

with any finite up / down masses, there is a cross-over.

From a theoretical standpoint, the lattice has confirmed that at vanishing chem-

ical potential a cross-over occurs [7]. Hence there is not a true phase transition, and

nature more closely resembles the second of these two idealized scenarios above. Re-

cently published values of the cross-over temperature tend to lie in the approximate

range Tc ∼ 150 − 175 GeV [11, 12]. Variation in the theoretical estimates is pri-

marily due to different observables yielding different values of Tc (e.g. Polyakov-loop

susceptibility vs. chiral susceptibility).

1.2.2 Phase transitions in non-abelian gauge theory with scalars

Electroweak theory is similar to QCD in that it is a non-abelian gauge theory

coupled to fermions (except with an SU(2) gauge group instead of SU(3) and chiral

couplings). It can also undergo a phase transition, characterized by the symmetry

breaking [66]

SU(2)L ⊗ U(1)Y → U(1)EM. (1.16)

However, unlike in QCD, this phase transition (or cross-over) is mediated by a

scalar field, namely the Higgs boson [67, 68, 69]. This is often explained as an

SU(2)L ⊗ U(1)Y gauge symmetry that is “spontaneously broken” down to the elec-

tromagnetic U(1)EM that is observed in nature at low energies [70]. Some may object

to this statement, on the grounds that the notion of spontaneous breaking of gauge-

symmetry is inherently gauge-dependent, and hence unphysical [71]. However, for

a non-abelian gauge theory coupled to a scalar field, over a certain range of the

16



model parameters there is a first order phase boundary between a high temperature

symmetric phase with charge screening (analogous to QGP) and a low temperature

Higgs phase [72, 73, 74]. In this regime, we can distinguish between the two phases

via the discontinuities in thermodynamic variables at the phase boundary.

Therefore, a more precise statement is that electroweak theory possesses a phase

diagram on the temperature - Higgs mass6 plane. And in fact, a broader statement

is that SU(N) gauge theories coupled to scalars in representation R will posses non-

trivial phase diagrams (see [76]), which continues to be the case in three dimensions.

Lattice based studies of 3D effective models of electroweak theory have demonstrated

that high and low temperature phases are separated by a first order phase transition

which terminates at a critical end point [77]. These studies have further shown that

at physical values of the Higgs mass the electroweak “phase-transition” is in fact a

cross-over.

The characteristic scale of electroweak interactions is G
−1/2
F ∼ 293 GeV (several

orders of magnitude greater than ΛQCD). Since electroweak theory is non-abelian,

there is an additional scale denoted as ΛSU(2) which is associated with confinement

in the pure SU(2) gauge theory. What makes the QCD phase transition (or cross-

over) different from the electroweak phase transition (or cross-over) is that T cEW ∼

O(G
−1/2
F )� ΛSU(2) while in QCD, T cQCD ∼ ΛQCD. At T cEW the electroweak coupling

6 The electroweak phase diagram is also parametrized by the Weinberg angle; how-
ever, in the construction of certain effective models it is a reasonable approximation
to set it to zero, in effect decoupling the U(1) group [75].
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is still “weak,” gEW ∼ 2/3; that is, the transition cuts off the growth of the coupling

into the IR.7

The Higgs phase in electroweak theory is interesting in that it is analytically

connected with a low-energy confining phase [72, 79] which would be realized if

T cEW ∼ ΛSU(2) (as in QCD). In this phase, the physical spectrum is described by

gauge-invariant SU(2) singlet operators e.g. W0 = Tr Φ†Φ and Wµ = Tr Φ†DµΦτ i

(with the complex scalar field Φ expressed as a 2× 2 matrix).

Even though a gauge-invariant order parameter cannot be defined for the elec-

troweak phase transition, high and low temperature phases can still be distinguished

non-perturbatively by gauge-invariant condensates and their associated susceptibili-

ties [80]. Furthermore, these condensates would also resolve the cross-over over the

range of model parameters where it occurs, i.e. at physical values of the Higgs mass.

That being said, a lot can still be learned by applying a perturbative treatment of

the Higgs phase, which requires working in a fixed gauge. Then, perturbatively one

argues that the Higgs phase coincides with the scalar field taking on a non-zero vac-

uum expectation value (VEV). The topic of gauge-fixing happens to be the focus of

the next section; since the definition of a VEV is dependent upon the gauge-fixing

procedure, we will come back to the perturbative treatment of the Higgs phase in

Section 1.3.2.

7 This should not be interpreted as an implication that perturbation theory can
be applied in the vicinity of the phase transition. The critical end point, in fact,
must be resolved non-perturbatively; this has motivated a lattice determination of
its location (as in [77]; see also [78]).
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1.3 Gauge-invariance and gauge-fixing

Now that we have started to discuss the potential significance of gauge dependent

quantities (i.e. the vacuum expectation value of a scalar field coupled to gauge

fields), this is good place to introduce gauge-fixing, both in pure Yang-Mills and

Yang-Mills with scalars. An overview of the concepts of gauge-freedom and gauge-

fixing can be found in virtually every introductory quantum field theory textbook

(see for instance [81, 82]). As a consequence, the discussion that follows will be

for the most part review. However, since covariant gauge-fixing plays an essential

role in the calculations performed in Chapters 3 and 4, this section is included for

completeness. Additionally, since Chapter 4 involves the non-perturbative study of a

gauge theory in a symmetry broken, or “Higgs” phase, this is also appropriate place

to give an overview of spontaneous breaking of gauge-symmetry at the perturbative

level.

The starting point is the path-integral (where to be consistent with the calcu-

lations later in this work, a Euclidean convention is being adopted)

Z =

∫
D[Φ] e−S. (1.17)

For a non-abelian gauge theory coupled to matter fields, the action in D dimensions

can be written as

S =

∫
dDx

(
LYM + LM

)
(1.18)

where LYM and LM represent the pure Yang-Mills and matter field (fermion and/or

scalar) contributions. The path integral measure D[Φ] uses the generic label Φ to

indicate integration over all of the fields present in S. Let us now suppose that
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we have an SU(N) gauge theory coupled to a complex scalar φ in the fundamental

representation. The Lagrangian is

LYM =
1

2
Tr F µνFµν (1.19)

LM = (Dµφ)†(Dµφ) +m2φ†φ+
λ

2
(φ†φ)2. (1.20)

The Yang-Mills field strength and gauge fields can be expressed as elements of the

Lie algebra of SU(N), Fµν = F a
µνT

a and Aµ = AaµT
a, where T a are N ×N traceless

Hermitian generators that are defined to satisfy the normalization Tr T aT b = δab/2.

A local gauge transformation on the gauge and scalar fields takes the form

Aµ(x) → Λ(x)
(
Aµ(x) +

i

g
∂µ

)
Λ†(x) (1.21)

φ(x) → Λ(x)φ(x) (1.22)

where Λ(x) is an arbitrary matrix in SU(N)

Λ(x) = e−igθ
a(x)Ta . (1.23)

A gauge transformation acts on the Yang-Mills field strength and covariant deriva-

tives like a rotation,

Fµν(x) → Λ(x)Fµν(x)Λ†(x) (1.24)

Dµ(x) → Λ(x)Dµ(x)Λ†(x); (1.25)

from these expressions it is apparent that S is gauge-invariant. In other words, the

theory possesses a non-abelian gauge freedom. A well known consequence is that a

mass term of the form Tr AµA
µ would not be allowed in S.
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Physical observables cannot be affected by gauge-transformations of the type

Eq. (1.21). Since the operators from which S is constructed are individually gauge-

dependent, they do not have a one to one correspondence with the physical spec-

trum.8 Rather, observables must correspond with gauge-invariant operators; for in-

stance the correlators

〈Tr F µν(x)Fµν(x)〉 (1.26)

〈Tr{F µνFµν(x)}Tr{FαβFαβ(y)}〉 (1.27)

are indeed physical. Eq. (1.26) is the gluon condensate, and the long-range exponen-

tial fall-off of Eq. (1.27) tells us about the mass of the lightest P-even C-even spin

0 bound state. Recall from Section 1.1 that in QED, due to the abelian nature of

gauge-transformations, the field strength tensor is gauge-invariant; QED is special

in this regard. Its components are identified with physical electric and magnetic

fields. By contrast, in a more general non-abelian theory the would-be correlator of

colour-electric or colour-magnetic fields

〈Tr Fαβ(x)Fδγ(y)〉 (1.28)

8 In the sense that the mapping of gauge-dependent fields to the physical degrees
of freedom is not injective.
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is unphysical, as it transforms non-trivially under Eq. (1.21). A “physical” version

of Eq. (1.28) can be constructed with the inclusion of Wilson lines,

U(x, y) = Peig
∫
C dx

µAµ(x) (1.29)

where the path C connects the points x and y. Then,

〈Tr Fαβ(x)U(x, y)Fδγ(y)U †(x, y)〉 (1.30)

is gauge-invariant. Field-strength correlators of the form Eq. (1.30) are important

in the study of QCD in that they reveal information about the non-perturbative

structure of the vacuum and confinement [83].

In performing the path integral, gauge-equivalent configurations are summed

over by the measure D[Φ]. Accordingly, gauge-freedom manifests itself in the path-

integral as a divergent over-counting with respect to the physical degrees of freedom.

However, the resulting divergence in Z is not in and of itself a problem. If we were

interested in the expectation value of a gauge-invariant operator O, its expression as

a path integral would formally read

〈
Oij...(xi, xj, ...)

〉
=

∫
D[Φ] Oij...(xi, xj, ...) e−S∫

D[Φ] e−S
. (1.31)

The over-counting occurs both in the numerator and the denominator, hence in sim-

ply writing down Eq. (1.31), gauge-fixing is not required. To actually compute a

correlation function viz. Eq. (1.31) we would need to adopt some form of regulariza-

tion. One option is the lattice. The lattice formulation of Z and Eq. (1.31) involves

a functional integration over a finite number of link variables. This does not stop
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the lattice from sampling over gauge-equivalent configurations indiscriminately, but

due to the discretized spacetime, the overall normalization is finite. Hence the lattice

is naturally equipped to deal with the associated redundancy, due to the inherent

absence of a divergence in Z.

1.3.1 Covariant gauges

Summing over the gauge-freedom becomes a problem when we try to perform

perturbation theory, which is where we first encounter a necessity to fix a gauge.

Looking back at the action Eq. (1.18), the kinetic term for the A-field in momentum-

space reads

S ∼
∫

dDp

(2π)D

1

2
Aaµ(−p)(p2gµν − pµpν)Aaν(p). (1.32)

If we were to naively identify G−1
µν (p) = p2gµν − pµpν , we would immediately run into

a problem since G−1
µν is strictly transverse, and hence, not invertible. Consequentially,

the path integral sum over purely longitudinal configurations is undamped, leading

to the aforementioned divergence in Z. We can remedy the situation by working

in what is known as covariant gauge, which is actually a family of gauge-choices

parametrized by a number ξ. This leads to the well known tree-level expression for

the invertible gauge field propagator

G−1
µν (p) = p2gµν − pµpν +

1

ξ
pµpν −→ Gµν(p) =

1

p2

(
gµν − (1− ξ)p

µpν

p2

)
, (1.33)

where Gµν is assumed to be diagonal in colour indices. To show how this expression

comes about we will now go over the steps that are taken in fixing a gauge.

Going back to the path integral, the first thing that we want to accomplish is

factoring out the redundant integration over gauge-orbits so that the path integral
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to takes on the general form∫
D[Φ] −→

∫
Dθ

∫
D[Φθ]. (1.34)

Since we initially parametrized the gauge-transformation matrix Λ by the functions

θa(x), the integral over the gauge-freedom is denoted by
∫
Dθ. This should really be

understood as an integral over the group measure of SU(N). Then
∫
D[Φθ] indicates

the remaining path integral restricted to physical configurations, i.e. those which by

definition intersect each gauge-orbit only once. If we reconsider the generic gauge-

invariant correlation function that we had written down previously, we now have

〈
Oij...(xi, xj, ...)

〉
=

∫
D[Φθ] Oij...(xi, xj, ...) e−S∫

D[Φθ] e−S
. (1.35)

In the gauge-fixed setting its value is unaffected since both O and S are constant on

each orbit. However, if in fact the operator Oij...(xi, xj, ...) transformed non-trivially

(i.e. was θ-dependent), then the integral over the gauge-orbit would not factor out

entirely. Rather, we would be integrating an object that transforms in the non-

singlet representation of SU(N) over the group manifold; this is an integral that

must vanish. This reiterates the utility of gauge-fixing as a computational tool.

The factorization in Eq. (1.34) can be achieved by specifying a function G[A] so

that the condition G[A] = 0 occurs in principle once per gauge-orbit. This is known

as an ideal or complete gauge-fixing. For covariant gauges, the defining function is

G[A] = ∂µAµ(x)− g(x) (1.36)
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where we will assume for now that g(x) = ga(x)T a is arbitrary. The specific case

g(x) = 0 would result in an implementation of Landau gauge. It has been pointed

out that Eq. (1.36) does not in fact result in a complete gauge-fixing, in that this

condition does not have a unique intersection with each orbit [84]. These redundant

configurations are known as Gribov copies, and they occur at non-perturbatively

large values of A. Since perturbation theory relies on an expansion about the tree

level minimum A = 0, it is safe to proceed in covariant gauge as though it was in

fact complete [85].

The gauge-fixing is implemented via the Faddeev-Popov trick [86], which amounts

to picking out a particular configuration on each gauge-orbit by inserting a δ-functional

in the path integral. For a continuous function of one variable f(x) with one zero at

x = x0, we have

1 =

∫
dx δ(x− x0) =

∫
dx |f ′(x0)|δ

(
f(x)

)
. (1.37)

The generalization to the infinite variable case involves a functional determinant∫
D[Φ] −→

∫
Dθ

∫
D[Φ] det

∣∣∣∣δGδθ
∣∣∣∣
G=0

∏
a

δ(Ga[A]), (1.38)

with the derivative evaluated at the specific point on the gauge-orbit Aθ which sat-

isfies the gauge condition, i.e. G[Aθ] = 0. The result is

δG
δθ

= −∂µ(∂µ − igAaθµF a), (1.39)

which should be understood as a dA × dA matrix (for SU(N), dA = N2 − 1); F a
bc =

−ifabc are the generators of the adjoint representation. Upon inserting Eq. (1.39)
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back into the path integral we can drop the explicit dependence on θ since the

desired representative from each gauge-orbit is guaranteed to be picked out by the

δ-functional. Said differently, with the δ-functional present, the measure D[Φ] can

continue to sum over fields indiscriminately.

The determinant can be re-expressed as a path-integral over adjoint Grassmann

fields,

det

∣∣∣∣δGδθ
∣∣∣∣ =

∫
DcDc̄ e−

∫
dDx c̄(x)[δG/δθ](x)c(x), (1.40)

with an appropriate overall normalization implied. The δ-functional is eliminated by

introducing an additional normalized path-integral

1 =

∫
Dg e−

∫
dDx 1

2ξ
ga(x)ga(x) (1.41)

so that our final expression for Z reads

Z =

[ ∫
Dθ

] ∫
DcDc̄D[Φ] e−Sg . (1.42)

As a result of the gauge-fixing procedure, Sg contains the original invariant action

of the theory as well as additional “gauge-fixing” and “ghost” terms

Sg = S +

∫
dDx

1

2ξ
(∂µAaµ)2 + ∂µc̄Dadj

µ c . (1.43)

In Eq. (1.42) it should be understood that the redundant integration over the gauge-

orbits has now been completely factored out.

The Gaussian term which was included in the final step of the derivation effec-

tively performs a weighted average over gauge configurations, with a weight given by

ξ. This term directly leads to a damping of longitudinal modes, and thus, by taking
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the limit ξ → 0 (Landau gauge) we strictly enforce the gauge condition ∂µAµ = 0.

However, for non-zero values of ξ the Gaussian damping term appears alongside the

gauge field kinetic term∫
dDx

1

2ξ
ga(x)ga(x) ∼

∫
dDp

(2π)D

1

2ξ
Aaµ(−p)pµpνAaν(p). (1.44)

This precisely generates the longitudinal term in the tree-level propagator that was

introduced earlier. The gluon propagator has been rendered invertible.

The Feynman rules for perturbation theory in covariant gauge must be read from

the action Sg with a value of ξ chosen arbitrarily. In vacuum perturbation theory, a

common choice is Feynman gauge ξ = 1, a choice which drastically simplifies higher

loop calculation due to the resulting simple form of Gµν . Interactions between ghosts

and gluons must be properly accounted for at all values of ξ, and since the ghost

fields c̄ and c obey Grassman statistics, their loops enter with relative minus signs.

The appearance of ghost fields is a generic feature of gauge-fixing, as they arise from

the determinant that appeared alongside the δ-functional.

To recap, gauge-fixing was introduced to facilitate perturbative calculations (it

is not required on the lattice), so that one should opt to work in a gauge which leads

to tractable expressions for scattering amplitudes. In the study non-abelian gauge

theory in vacuum, covariant gauges have many desirable properties in this regard.

However, gauge-freedom implies that this choice is arbitrary.
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1.3.2 Generalized Rξ gauge

Switching over to a model of a non-abelian gauge theory coupled to a scalar

field, the matter contribution to the action is

SM = (Dµφ)†(Dµφ) +m2φ†φ+
λ

2
(φ†φ)2. (1.45)

Supposing that we were in a situation where λ is positive, but the tree-level squared

mass is negative. The potential would still be bounded from below due to the quartic

term, but it would no longer reach its minimum at φ = 0. Rather, the perturba-

tive ground-state would occur when the vector φ has a non-zero magnitude |φ| = φ̄.

Choosing a direction for φ results in spontaneous symmetry breaking and the quan-

tity φ̄ is the magnitude of the scalar field VEV.

If gauge fields were absent, Eq. (1.45) would be the Lagrangian of an O(2N)

symmetric model. In this case, a scalar field VEV would be a physical quantity, as it

would be an order parameter. However, with gauge fields present, we have run into

a contradiction; the statement |φ| = φ̄ > 0 suggests a non-zero one-point function

〈φ〉. But then, the operator φ transforms non-trivially under gauge-transformations

φ→ Λφ; we argued earlier that its expectation value necessarily vanishes. Rather, in

a gauge theory a constant scalar VEV should be understood as a gauge-choice [87].

It is not a physical quantity, as it cannot be defined in a gauge-invariant manner.

To do perturbation theory one must define a VEV, because perturbation theory

requires expanding fields around their classical minima. For example, the compu-

tation of perturbative corrections to scattering amplitudes in the Standard Model

assumes a VEV for the Higgs field. In this situation, however, it turns out that the
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covariant gauges introduced previously are not the best option. This leads to the

definition of “generalized” covariant, or Rξ gauges [88].

In an SU(N) gauge theory, a scalar field in representation R can be written as

a complex dR-component column vector. To specify a VEV, we can shift the scalar

field by a constant

φ(x)→ χ(x) + v (1.46)

so that the gauge-fixed one-point functions are 〈φ(x)〉 = v and 〈χ(x)〉 = 0. The

gauge fields interact with φ via the covariant derivative (with T aR now denoting a

generator of representation R), resulting in

Dµφ(x)→ Dµχ(x)− igAaµ(x)T aRv. (1.47)

We will now adopt the notation Fa = gT aRv; this is a quantity that is closely related to

the gauge-boson masses. If Fa 6= 0, the corresponding generator is said to be broken.

For example, with a fundamental scalar in SU(2), the defining representation is

T 1 =
1

2

0 1

1 0

 T 2 =
1

2

0 −i

i 0

 T 3 =
1

2

1 0

0 −1

 . (1.48)

All three generators are guaranteed to be broken for any orientation of v. However,

in SU(3), if we perform a global rotation on the fields resulting in the alignment

v† = (0, 0, φ̄), then the generators

T 1 =
1

2


0 1 0

1 0 0

0 0 0

 T 2 =
1

2


0 −i 0

i 0 0

0 0 0

 T 3 =
1

2


1 0 0

0 −1 0

0 0 0

 (1.49)
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survive, so that we are left with an SU(2) invariant subgroup. In this example, the

three corresponding gauge-bosons remain massless. In terms of Fa the gauge field

mass-matrix is given by

M2
ab = (F †bFa + F †aF b) = v†{T aR, T bR}v, (1.50)

which arises out of the expansion of the original kinetic term

(Dµφ)†(Dµφ)→ (Dµχ)†(Dµχ)− Aaµ∂µi(χ†Fa −F †aχ) +
1

2
M2

abA
aµAbµ. (1.51)

In Eq. (1.51) there is now a potentially troublesome gauge field scalar cross term.

To see how it is eliminated, recall that we had already assumed gauge-fixing. As a

result, our full Lagrangian is of the form

Lg = LYM + LM +
1

2ξ
gaga + c̄

δG
δθ
c. (1.52)

The covariant gauges that we had presented earlier resulted from the simple choice

Ga[A] = ∂µAaµ− ga. However, with scalars present, the cross-term can be eliminated

with the choice

Ga = ∂µAaµ − ξi(χ†Fa −F †aχ)− ga. (1.53)

As a result, an explicitly gauge-dependent mass term and ghost-scalar interactions

will appear in the ghost Lagrangian,

Lghost = c̄
δG
δθ
c = c̄ ∂µD

adj
µ c+ gξM2

abc̄
acb + gξ(χ†T bRFa + F †aT bRχ)c̄acb. (1.54)
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The gauge field and ghost mass matrices are identical up to an overall factor of ξ.

Thus, the same change of basis which diagonalizes the gauge fields also diagonalizes

the ghosts.

At this point without having specified N or the representation of the scalar field

the perturbative spectrum is difficult to read directly from the Lagrangian. This

is mainly due to the fact that the Lie algebra of SU(N) is not closed under anti-

commutation of the generators (see Appendix A); a generic expression for M2
ab is

not very helpful in this regard. However, as a general remark, the Feynman rules

will consist of gauge-scalar, gauge-ghost and ghost-scalar vertices.

The limit ξ → 0, which in Rξ is equivalent to covariant Landau gauge with a

VEV, offers drastic simplification in that the ghosts remain massless and the ghost-

scalar interactions vanish. Then, in Rξ “Landau gauge” the perturbative spectrum is

given by a combination of massless and massive scalar and gauge fields (the number

of each depending on which linearly independent generators are broken) as well

as massless ghosts. The opposite limit ξ → ∞ (unitary gauge) yields a different

spectrum in which fields with masses proportional to ξ decouple from the gauge

fields. According to Eq. (1.53), this includes the scalar Goldstone modes associated

with the symmetry breaking. The point is that the perturbative spectrum is gauge-

dependent. As in the symmetric phase, the operators in Sg do not directly correspond

to the observed particles and resonances in nature.

1.4 Thermal Yang-Mills

The study of phase transitions in a quantum field theory necessitates a set of

computational tools which can be applied at finite temperature [89]. One of these
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tools is dimensional reduction [36, 37], which provides a systematic procedure of

mapping a hot 4D field theory to a 3D Euclidean field theory in vacuum. For the

most part, computations at finite temperature are not directly performed in this

work as we are primarily interested in the 3D effective models. The purpose of this

section rather is to provide a conceptual overview of finite temperature Yang-Mills

theory leading to the construction of its effective description at high temperatures.

We know from statistical mechanics that static quantities such as the pressure

and entropy density of a system that is in thermal equilibrium can be derived from

the partition function

Z = Tr{ρ(β)} (1.55)

where ρ(β) = e−β(Ĥ−µiN̂i) is the thermal density operator and β = 1/T is the inverse

temperature. An important associated quantity is the free energy, F = −T logZ,

which carries all of the information about the system’s state. The density matrix

ρ(β)/Z also appears explicitly in the expression for the thermal average of an operator

〈 · 〉β,

〈O〉β =
1

Z
Tr{Oρ(β)}. (1.56)

As written, ρ(β) takes the form of an evolution operator in imaginary time

t = −iβ. This observation forms the basis of the imaginary time formalism (IFT),

in which static thermal correlation functions are obtained from a Euclidean path

integral

Z =

∫
D[Φ] e−

∫ β
0 dτ

∫
dD−1x L(τ,x), (1.57)
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that is, the path integral representation of the partition function. The fields in L

are evaluated on a compact dimension and must satisfy the following periodicity

conditions,

Bosons: φ(0, x) = φ(β, x)

Fermions: ψ(0, x) = −ψ(β, x).
(1.58)

One final remark is that the free energy, as it is proportional to the logarithm of Z,

is the finite temperature analogue of the generating function of connected correlators

in vacuum.

As a consequence of the compactness of the Euclidean time dimension, the fields

in L have discrete expansions in Matsubara modes indexed by an integer n

φ(τ, x) =
∑
ωn

φn(x)eiωnτ ωn = 2πnT (1.59)

ψ(τ, x) =
∑
νn

ψn(x)eiνnτ νn = 2π
(
n+

1

2

)
T. (1.60)

As in vacuum, these Matsubara frequencies appear in the bosonic and fermionic

propagators alongside the tree-level masses

Gφ(ω,p) =
1

k2 + ω2
n +m2

φ

(1.61)

Gψ(ω,p) =
mψ − p · γ − γ0

Eνn
p2 + ν2

n +m2
ψ

, (1.62)

where p2 = p · p. From the mode expansions Eq. (1.59) and Eq. (1.60), we can now

visualize a 4D thermal field theory in the IFT as a 3D Euclidean vacuum field theory

with an infinite number of fields. These fields have masses of the form ω2
n + m2

φ

(bosons) / ν2
n +m2

ψ (fermions).
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Potentially massless bosonic n = 0 modes may lead to IR divergences in a

perturbative expansion; this prompts us to adopt a nomenclature where bosonic

0-modes are “light,” while non-zero bosonic and all fermionic modes are “heavy.”

In certain circumstances, there is an effective decoupling between heavy and light

modes; when this is the case it is possible to integrate out the heavy modes all

together.9 The result would then be a 3D effective field theory with a finite number

of fields and non-renormalizable interactions. This is the essence of dimensional

reduction.

Despite the potential for IR divergences, thermal non-abelian gauge theory still

admits a weak-coupling expansion. At finite temperature, one is able to compute

the leading order correction to the Debye mass [90, 91]

mD =

√
N

3
+
Nf

6
gT, (1.63)

for an SU(N) gauge theory with Nf fermions. IR problems only arise if we try

to apply the perturbative treatment at NLO; for mD, the best that can be done

perturbatively is a determination of the coefficient at O
(
g2T log(1/g)

)
[92, 93].

The same calculation also reveals that at leading order static magnetic fields

are unscreened. In QED, this statement would remain accurate to all orders in

perturbation theory [94]. However, in QCD, the infrared divergences which appear

at NLO indicate a failure of the perturbative expansion. A transverse screening

9 However, see Section 1.4.1; this statement is intuitive but not entirely accurate.
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mass10 is an entirely non-perturbative effect, and it is conjectured to occur at [14]

mT = O(g2T ). (1.64)

For this reason, computing the full O(g2T ) correction to mD also happens to

be beyond perturbation theory. The scale g2T associated with magnetic screening is

known as the supersoft scale, and at length scales 1/g2T � 1/gT , non-perturbative

physics become dominant. The infrared divergences present in 4D continue to be

present in the 3D effective model obtained via dimensional reduction. Therefore, 3D

effective theories of this sort provide a suitable framework to essentially isolate and

study the non-perturbative physics. The lattice is well-equipped to investigate IR

phenomena, and the construction of an effective description offers the advantage that

3D Euclidean effective field theories are generically easier to implement on the lattice

over their 4D counterparts [80]. The lattice, for instance, can be used to determine

the O(g2T ) correction to mD [95].

1.4.1 3D effective models

As previously remarked, the construction of a three dimensional effective de-

scription of Yang-Mills theory begins with the observation that non-zero Matsubara

modes (fermionic and vector) are massive compared to the soft scales of the the-

ory. To illustrate the concept, let us suppose that we are interested in studying

correlations functions at some length scale l, or alternatively momentum p ∼ 1/l.

10 A transvserse screening mass should be understood in the sense that long range
correlations in the magnetic sector do not occur [51].
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Contributions arising from the summation over non-zero modes can be formally ex-

pressed in a power series of the dimensionless ratio p2/T 2; in a Green’s function

these naturally appear alongside other terms involving other mass scales present in

the theory. In an effective theory, p2/T 2 contributions manifest themselves as higher

derivative operators. If the scale of interest is p ∼ T , then these terms are O(1),

at which point it does not make sense to speak in terms of a “low energy” effective

model.

At weak coupling, which for simplicity11 we define as g2 � 1, the electric field

screening scale is mD ∼ gT � T . At length scales lD ∼ 1/gT � 1/T , the correla-

tions of the heavy modes are suppressed by their mass, so that relatively dominant

contributions arise from the 0-modes. Therefore, at weak coupling, an effective de-

scription is sensible at length scales l > 1/gT . This leads to the interpretation of the

effective model as a 3D theory of the light 0-modes of the original 4D theory [96].

If scalars are present in the 4D theory, the associated 0-modes will appear in 3D,

provided that their tree-level masses are small compared to the hard thermal scale

T ; in other words, they must also be “light.” Furthermore, fermionic fields would

never appear in the 3D description, as the lightest fermionic thermal mass is ∼ πT .

Dimensional reduction, when applied to non-abelian gauge theories, occurs on

two levels as a result of the scale hierarchy g2T � gT � T . These are respectively

the supersoft, soft and hard scales of the theory. The exact form of the expansion

11 In practice, the relevant expansion parameter would involve an additional overall
constant, i.e. g2/16π2.
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parameters (for instance, whether the hard scale is T vs. 2πT , or whether the

expansion parameter is g vs. g/4π) does not affect the overall construction. However,

in practice we must take this into account. The key property is the occurrence of

a separations of scales, which for Yang-Mills theory coincides with our previous

definition of weak-coupling. Then, the first step of dimensional reduction produces

a theory valid at soft scales (distances l & 1/gT ), while the second step results in an

3D model that is accurate at the supersoft scale (distances l & 1/g2T ).

Though it is intuitive to understand this procedure as “integrating out the heavy

degrees of freedom,” this statement is not entirely correct beyond one-loop. Non-local

terms generally appear in higher-loop corrections to Green’s functions, and when

they are present, an expansion in p2/T 2 would not be possible (see for instance [97]).

Rather, as advocated in [98], dimensional reduction should be really be understood

as a “matching procedure” between the parameters of a 3D and a 4D theory.

The matching procedure begins with writing down the most general 3D La-

grangian constructed out of operators consistent with the original symmetries of the

theory [99],

L3D =
1

2
Tr FijFij + Tr (Dadj

i A0)2 +m2
ATr A2

0 +
λA
2

(
Tr A2

0

)2
+
λ̄A
2

Tr A4
0

+ (Diφ)†Diφ+m2
φφ
†φ+

λφ
2

(φ†φ)2 + λAφ(Tr A2
0)φ†φ+ δL. (1.65)

For now we have neglected higher dimension operators on the assumption that they

are relatively suppressed. In Eq. (1.65), the adjoint scalar A0 is expressed as an

element of the Lie Algebra A0 = Aa0T
a, so that Dadj

i A0 = ∂iA0 − ig3D[Ai, A0] (a

slightly different convention from Section 1.3.1). The fields appearing in L3D have
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canonical dimension [mass]
1
2 as does the 3D gauge coupling; it is related to the 4D

coupling via

g2
3D = g2(µ4D)T +O(g4), (1.66)

where the leading order term is its tree-level expression. It may appear as though

g2
3D exhibits an uncontrolled dependence on the 4D renormalization scale µ4D; by

including the O(g4) term, that dependence is shifted up to O(g6). Upon including

the one-loop correction, it is consistent to say that g3D is independent of µ4D at that

loop-order. The full series for g3D is an RG invariant, and in general, the coupling

constants appearing in L3D do not renormalize. As a technical subtlety, there are

UV divergent two-loop self-energy graphs in the 3D model which lead to a scale

dependence in the mass parameters [100].

The accuracy of the effective description depends on the extent of the perturba-

tive matching of the two and four-point functions of the 3D theory to those in 4D.

Essentially, one carries out a perturbative calculation both in 3 and 4 dimensions,

and one insists that they match up to a desired accuracy in g. For instance, the

adjoint scalar mass has a series expansion

m2
A = T 2(c1g

2 + c2g
4 + ...). (1.67)

To determine the coefficients c1, c2 etc., we can compare the two-point function of

the 3D adjoint scalar to that of the 4D A0 0-mode (with ΠL(0, p) in 4D evaluated at

ω = 0)

1

p2 + ΠL(0, p)
←→ 1

p2 +m2
A + ΠA(p)

. (1.68)
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and insist that they agree (up to a specified order in g), which may additionally

require field redefinitions. Infrared divergences present in the perturbative expansion

do not interfere with the matching provided that IR regulators are employed in a

consistent manner. Then, IR divergences in 4D coincide with IR divergences in 3D.

Truncating this series at g2 and setting the coefficient c1 in Eq. (1.67) to the

one-loop expression for the Debye mass (suitably generalized to include scalar fields)

would result in a one-loop matching for the adjoint scalar mass. To achieve a two-

loop matching, we would need to keep terms up to O(g4). If we recall that the

matching procedure generally involves redefinitions of the 3D field, it is apparent

that at higher orders dimensional reduction becomes a non-trivial task. Precise

details of the matching of electroweak theory to 3D SU(N) Higgs theory beyond the

conceptual level can be found in [80, 98, 100].

Since the matching procedure will invariably involve a truncation, Green’s func-

tions computed in the 3D effective model will deviate from their 4D analogs with

relative errors expressed as powers of the coupling constant. As a concrete example,

it has been shown that with the 3D Lagrangian Eq. (1.65) and perturbative match-

ing at the two-loop level,12 an accuracy of O(g2/16π2) relative to 4D SU(N) Higgs

theory is attained [98].

Simply increasing the loop-order of the matching procedure with the objective

of improving the precision of the effective model does not work in practice, as there is

an inherent limitation arising from the exclusion of higher dimension operators in the

12 Specifically, a two-loop matching for masses and one-loop for coupling constants.
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3D Lagrangian. The contributions made by these operators are indeed suppressed,

but not necessarily by inverse powers of T . For instance, an operator of the form

h(6)g6(Tr A2
0)3 would yield a correction ∼ h(6)m2

Ag
6 ∼ h(6)g8T 2 to the adjoint scalar

mass. This is leading order in T , but O(g4) relative to the two-loop matching.

The inclusion of higher dimension operators in Eq. (1.65) becomes necessary when

constructing an effective model whose accuracy is better than O(g4).

As a final remark, suppose now that we were only interested in studying the non-

perturbative sector of the theory at length scales 1/g2T . Then, the adjoint scalar is

a “heavy” degree of freedom, and can be integrated out. This is the second level of

dimensional reduction which results in an effective Lagrangian that is absent of the

adjoint scalar,

L3D =
1

2
FijFij + (Diφ)†Diφ+m2

φφ
†φ+

λφ
2

(φ†φ)2 + δL. (1.69)

The matching procedure occurs in exactly the same manner as earlier, except that

odd powers of the coupling appear in expansions of the form Eq. (1.67) due to

contributions ∼ g2
√
m2
A from A0 loops.

To summarize, Yang-Mills theory at length scales ∼ 1/g2T is non-perturbative.

As a result, the weak coupling expansion exhibits poor convergence except at very

high temperatures. We have shown that the inherently non-perturbative physics

can be described by 3D effective models but that these 3D theories do not facilitate

a fully perturbative description as they are also afflicted with infrared divergences.

However, working in 3D streamlines the weak coupling expansion (since the effective

theories occur in vacuum without compact dimensions) up to the point where it

40



breaks down. Then, beyond that, non-perturbative corrections to static quantities

can be computed on the lattice, where the availability of a 3D description offers many

advantages over a direct study in 4D [101].

1.4.2 Resummation

Beyond the scope of thermal field theory, models like Eq. (1.69) are interesting

in their own right, as they are non-perturbative at low energies, and furthermore,

they exhibit confinement. This thesis is specifically intended to explore the topic

of non-perturbative resummation in Yang-Mills theory, which is indeed relevant in

the finite temperature context. But even though it is helpful to visualize these 3D

theories via their relationships to 4D, our primary motivation in studying 3D Yang-

Mills is that it cannot be described perturbatively. In addition to Eq. (1.69), we will

also be interested in the comparatively simpler model

LmQCD =
1

2
Tr FijFij, (1.70)

that is, magnetic QCD.

One-loop self-energy corrections in 3D SU(N) Higgs theory and mQCD can

be computed using perturbation theory; furthermore, these corrections are finite in

dimensional regularization. At large momenta, one-loop self-energies are parametri-

cally ∼ g2
3Dp, where p is the momentum. However, this is just about as far as you

can go. If you naively try to compute the two-loop O(g4
3D) correction, which on

dimensional grounds generates a mass, you encounter an IR divergence.

IR divergences indicate a limitation of the strict loop-expansion, and therefore

it may be possible to make progress with some form of a weak coupling expansion if
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we reorganize the perturbation series. This is often what resummation schemes set

out to achieve, of which there are many (for good reviews see [102, 103, 104]). In

fact, resummations are relevant to theories even with massive fields at tree-level, see

for instance [105].

In this thesis the specific focus is on the nPI approach, which will be presented

at a formal level in Chapter 2. For now we will end Chapter 1 with a heuristic intro-

duction to the overall concept. The specific goal here is to clarify why resummation

is a potentially viable solution to the infrared divergences of perturbation theory.

To illustrate what we mean by “reorganizing a perturbation series” we can con-

sider a very simple model where resummation plays a non-trivial role in the gen-

eration of the weak coupling expansion [106]. Namely, this is scalar φ4 at finite

temperature,

L =
1

2
∂µφ∂µφ+

1

24
φ4. (1.71)

We write the full propagator as

G(p) =
1

p2 − Π(p)
(1.72)

and then the lowest order correction to the self-energy is simply a tadpole diagram,

Π(1,tp) ≡ Π(1) = −λ
2
T
∑
n

1

µ̄2ε

∫
dDq

(2π)D

1

q2 + (2πnT )2
= − 1

24
λT 2. (1.73)

The integral is computed using dimensional regularization with D = 3 + 2ε. When

we write down the two-loop expression for the tadpole (labelled tp since there is also

a sunset graph which we are not considering), we encounter a formally IR divergent
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contribution from the 0-mode (as well as a UV divergence)

Π(2,tp) = − λT

2µ̄2ε

[∫
dDq

(2π)D

Π(1)

q4
+
∑
n6=0

∫
dDq

(2π)D

Π(1)(
q2 + (2πnT )2

)2

]
. (1.74)

This prompts us to also consider the m loop version of this diagram,

Π(m,tp) = − λT

2µ̄2ε

[∫
dDq

(2π)D

(
Π(1)

)m−1

q2m
+
∑
n6=0

∫
dDq

(2π)D

(
Π(1)

)m−1(
q2 + (2πnT )2

)2m

]
. (1.75)

These diagrams could naively be computed individually in dimensional regulariza-

tion, each of which making a contribution to the self energy proportional to λm.

As a consequence of doing the integrals in D dimensions, the formally IR divergent

0-mode contributions vanish at each order in the expansion. In this treatment, the

tadpole contributions to Π resemble a standard perturbation series; however, this is

in fact not the correct approach.

Rather, a much more interesting result is obtained by not discarding the IR

divergent 0-mode contribution, but instead resumming them

∞∑
m=1

Π(m,tp) = − λT

2µ̄2ε

∫
dDq

(2π)D

1

q2 − Π(1)
+ Π(1) +O(λ2), (1.76)

depicted diagrammatically in Fig. 1–2. This resummation is commonly known as

�
+

�
+

�
+

�
+ · · ·

Figure 1–2: Diagrammatic representation of the daisy sum, Eq. (1.76).

a ring-improvement or daisy sum [107, 108, 109]. An explicit computation reveals

that the higher order terms involving a summation over n 6= 0 modes generate a
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series containing only integer powers of λ, so we will set them aside. The 0-mode

resummation yields a contribution proportional to λ
3
2 ,

∞∑
m=1

Π(m,tp) = − 1

24
λT 2 +

1

16π
√

6
λ

3
2T 2 +O(λ2). (1.77)

Thus, by summing over an infinite series of diagrams, we have obtained a result

which would not have appeared in a standard perturbative expansion. Namely, the

NLO term is non-analytic in the coupling constant. The strict loop-expansion did

not yield the correct result since it assumed a massless form for the scalar propagator,

as it appears at tree-level. In other words, we could have arrived at the same result

by including the screening mass directly in the one-loop computation from the onset,

Π = −λT
2

∑
n

1

µ̄2ε

∫
dDq

(2π)D

1

q2 − Π(1)
+ higher order. (1.78)

In the scalar theory, the one-loop mass acts as a regulator for the previously

encountered IR divergences, but in a non-abelian gauge theory, the situation is sig-

nificantly more complex. Indeed we will continue to operate on the assumption that

the would-be IR divergences encountered in perturbation theory are regulated by a

screening mass ∼ g2
3D. However, unlike in the scalar theory, the leading order correc-

tion to the magnetic screening cannot be computed directly from the loop-expansion.

As a result, self-consistently accounting for magnetic screening in an attempt to con-

struct a weak-coupling expansion in Yang-Mills theory is a highly non-trivial task. In

the following chapters, we will proceed to address several of the technical challenges

associated with the application of resummations to gauge theories.
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CHAPTER 2
Φ-derivable approximations and the nPI formalism

2.1 Attempt at an exact solution in the Φ-derivable approximation

The previous chapter ended on the notion that massless fields can give rise to

infrared divergences in a perturbative expansion, but that these divergences may be

cured by implementing some form of resummation (see for instance [89, 110]). This

was illustrated with the very well known example of ring-improvement [108] which

involves the resummation of tadpole diagrams in massless 4D scalar field theory at

finite temperature via an application of the geometric series formula

1

1 + Π
= 1− Π + Π2 − Π3 + ... (2.1)

This is indeed a very basic example, but it nevertheless serves to illustrate the con-

cept. Resumming Feynman diagrams in a gauge theory will require a more sophisti-

cated approach and as a result we will turn to the nPI formalism [111, 112, 113, 114].

The nPI approach is centred around a mathematical object referred to as an nPI

effective action which respects the symmetries of the original quantum field theory,

to be generically denoted as Γ[φ̄, G, ...] throughout. By locating its stationary points,

an nPI effective action forms the basis of a resummation scheme by yielding integral

equations which encode a selective resummation in a quantum field theory (in terms

of diagrams summed over, we will see that nPI resummations are much more intricate

than the tadpole sum previously encountered). This approach allows us to abandon
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the perturbative notion of an expansion about a free theory, but rather solve for

correlation functions while self-consistently accounting for fluctuations in the field.

This way, the nPI approach is inherently non-perturbative. At the same time, in the

context of a gauge theory any selective resummation is guaranteed to violate abelian

or non-abelian Ward identities at some loop order; thus the application of the nPI

formalism to gauge theories brings about certain potential ambiguities concerning

gauge-invariance [115, 116, 117]. As a consequence, gauge-invariance is a topic that

has motivated and will be discussed throughout this work.

This chapter will begin with an introduction to the nPI formalism via a second

attempt at a resummation in scalar theory. Moreover, in this chapter we will also

start to adopt a diagrammatic notation and continue to steer the focus towards the

study of three dimensional field theories.

The nPI formalism is more commonly known in the literature as the Φ-derivable

approach [118, 119, 120, 121, 122, 123], especially in the context of thermal field

theory (see e.g. the reviews [102, 103, 104]). In fact, as we will see in Section 2.3.2,

a Φ-derivable approximation is equivalent to an nPI effective action for n = 2. The

integral equations resulting from nPI effective actions are analytically intractable

in many cases of interest [124], as they share many similarities with Schwinger-

Dyson (SD) equations [125, 126, 127].1 Exact solutions can only be obtained in

essentially the simplest possible models e.g. the two-loop approximation applied to

1 A derivation of Schwinger-Dyson equations can be found in many QFT texts,
for instance [128].
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O(N) scalar φ4 theory in the large N limit [107]. Relaxing the assumption of large

N and subsequently attempting to solve the three-loop Φ-derivable approximation

leads to a drastic increase in complexity. Some progress towards a solution can

then be made by considering series expansions [129, 130, 131] and certain other

approximation schemes [132, 133].

Let us suppose once again that we are interested in scalar φ4 theory, except now

at zero temperature2

S =

∫
dDx

1

2
∂µφ∂µφ+

1

2
(m2 + δm2)φ2 +

λ

24
φ4 (2.2)

(which is assumed to be in the symmetric phase, and since the spacetime is Euclidean,

there is no significance to the raising and lowering of indices). For D = 3 + 2ε,3 the

coupling constant and the field strength do not renormalize, but a mass counter-

term is required. In this set-up, the scalar field propagator is a function of a single

invariant, labelled as p2, and as usual, corrections to the two-point function beyond

2 Note that by “zero temperature” we are referring to a spacetime with no compact
dimensions. For a 3D theory, this does not preclude a possible connection to a finite
temperature 4D theory via dimensional reduction.

3 As an aside, the dimension of spacetime is labelled by D indicating that di-
vergences will be regularized within the framework of dimensional regularization
[134, 135]. As a convention throughout this work, integrals in D dimensions are
understood to be divergent when 1/ε poles appear in taking the limit D→ D0 with
D = D0 + 2ε and D0 ∈ N. However, when we occasionally refer to power-law di-
vergences, these should be understood as those that would arise with a momentum
cutoff. Accordingly, loop integrals in D = 3 + 2ε dimensions should appear with a

factor of the MS scale µ̄2ε,
∫

d3p
(2π)3 → 1

µ̄2ε

∫
dDp

(2π)D with µ̄2 = µ2eγ/4π.
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tree-level will be contained in a self-energy Π(p)

G(p) =
1

p2 +m2 − Π(p)
. (2.3)

It is now convenient to adopt the diagrammatic notation

G = � −λ = � −δm2 = � ; (2.4)

in expressingG as single line throughout this chapter we mean the dressed propagator

(but the vertex is taken to be at tree-level for now).

An n-loop Φ-derivable approximation is by definition the extremum of a poten-

tial that takes on the general form [118]

Γ[Π] = − 1

2µ̄2ε

∫
dDp

(2π)D

[
logG−1(p) +G(p)Π(p)

]
+

1

2
Φ[Π] (2.5)

where the functional Φ[Π] is non-linear “interaction” functional of the self-energy.

Since in practice Φ is expressed diagrammatically via a loop expansion (which deter-

mines the loop-order of the approximation), it is at times alternatively understood

as a functional acting directly on G. The assumption of a stationarity condition on

Γ[Π] yields an equation of motion for Π(p) and equivalently G(p),

δΓ[Φ]

δG(p)
=
δΓ[Φ]

δΠ(p)
= 0 −→ Π(p) =

δΦ[Π]

δG(p)
. (2.6)

This expression lies at the core of the Φ-derivable approach and the nPI formalism

in general, as it provides a self-consistent equation for the self-energy.

Without even having written an expression for Φ[Π], we can already start to

appreciate where two main challenges in solving an equation such as Eq. (2.6) will
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lie. First, in the context of our Euclidean study, Γ[Π] is a functional that acts on an

infinite dimensional vector space Π(p) ∈ D, namely, continuous functions Π(p) whose

domain is a real variable p ∈ (0,∞).4 Second, Eq. (2.5) is power-law divergent, and

needs to be regularized.

The simplest possible expression for Φ is trivially Φ[Π] = 0 so that the equation

of motion Eq. (2.6) yields Π(p) = 0. In other words, this is solved when G is equal

to its tree-level expression. The lowest non-trivial order is two-loops, where the

Φ-derivable approximation for scalar φ4 theory is given by

Φ[Π] = − λ

4µ̄4ε

∫
dDp

(2π)D

dDq

(2π)D

1

p2 +m2 − Π(p)

1

q2 +m2 − Π(q)
=

1

4�. (2.7)

This is commonly known as a “super daisy” approximation [137]. The resulting

equation of motion for Π(p)

Π(p) = − λ

2µ̄2ε

∫
dDq

(2π)D

1

q2 +m2 − Π(q)
=

1

2� (2.8)

fully resumms the one-loop tadpole graph to all orders, and when drawn, the dia-

grams have a fractal-like resemblance to daisy petals (see Fig. 2–1). The super daisy

sum can immediately be recognized as an extended version of the regular “daisy”

4 This statement is not applicable in general as a self-energy is often defined at
complex frequencies [136]; we are not specifically interested in an analytic continu-
ation to 2 + 1 dimensions, so the analyticity assumptions that we make about Π(p)
reflect the range of 3D Euclidean momenta that we study. The solutions we seek do
not have any poles at positive p2.
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sum encountered in Chapter 1, Section 1.4.2, in that the diagrams summed over

previously only form a subset of those encoded in Eq. (2.8).

Figure 2–1: Typical daisy (left) and super daisy (right) Feynman diagrams.

Eq. (2.8) is relatively straightforward to solve, since the tadpole does not depend

on the external momentum thus implying Π(p) = constant, which will be denoted

simply as Π. In 4D this expression would have been quadratically divergent. How-

ever, in 3D we can perform the integral in dimensional regularization, where the

would-be linear divergence is not realized. For Π we obtain the gap equation

Π =
λ

8π

√
m2 − Π. (2.9)

Had we been studying an O(N) scalar theory, the tadpole would have entered

with a prefactor of λ(N + 2). At large N , one observes that the diagrams in the

super daisy sum make the only leading order contributions in λN [107], so that the

perturbation series is equivalent to the super daisy sum, barring 1/N corrections. In

this limit, Eq. (2.9) is exact.

At finite N , the super daisy approximation is just that: an approximation.

Naturally, Γ[Π] could be improved by including the next higher-loop contribution to
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Φ[Π]. At three-loops, we have

Φ[Π] =
1

4�+
1

24� +� , (2.10)

yielding the following integral equation for Π(p)

Π(p) =
1

2	 +
1

6
 +�
= − λ

2µ̄2ε

∫
dDq

(2π)D
G(q) (2.11)

+
λ2

6µ̄4ε

∫
dDq

(2π)D

dDk

(2π)D
G(q)G(k − q)G(k − p)− δm2 . (2.12)

Since the two-loop sunset graph is logarithmically divergent in three dimensions,

invoking a counter-term prescription at this stage became unavoidable. To solve this

equation, a good place to start would be with applying what we already know about

Π(p); that is, it has a weak-coupling expansion. At large momentum, the ratio λ2/p2

is small so in this limit Π(p) must converge to its perturbation series5

Π(p) =
λm

8π
− λ2

192π2

(
6m

p
arctan

p

3m
+ log

p2 + 3m2

µ2
− 3

2

)
+O(λ3), (2.13)

Performing this expansion also serves to exactly fix the value of the additive counter-

term, as there are no higher-loop UV divergences.

5 In three dimensions (and odd dimensional spacetimes in general), due to the
availability of a representation in terms of half-integer Bessel functions, the massive
sunset graph with equal masses is relatively easy to compute analytically, see [138].
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This may prompt an attempt at solving Eq. (2.12) via a series expansion of

Π(p), but this essentially leads us right back to doing perturbation theory (in this

particular example). Furthermore, treating λ/p as a small parameter would not even

be accurate in the IR. We had originally sought out a resummation scheme due to

the inherent limitations associated with applying perturbation theory to massless

fields in 3D; therefore, we will avoid this route, since we soon intend to apply the

formalism to a massless gauge theory.

What Eq. (2.13) does serve to illustrate though is that at the two-loop pertur-

bative level, Π(p) is already a transcendental function of p that needs to be renor-

malized. Even if we simply inserted the perturbative expression for Π(p) back into

Eq. (2.12), it would not be possible to perform the integral analytically (notwith-

standing the challenges associated with obtaining its value in D dimensions). In

terms of obtaining an exact solution to Eq. (2.12), it is not apparent how to make

further progress analytically.

Therefore, at this point we will abandon our attempt at determining the exact

solution to the three-loop Φ-derivable approximation for scalar theory. However, as

an alternative approach it may be possible to obtain an approximate solution by

reformulating the equation of motion as a variational problem, along the lines of

[129, 130]. We can start by assuming a tractable form for Π(p), the simplest choice

being Π(p) = constant, and then reattempt to solve for the extremum of Γ. In

this approximation scheme, Γ[Π] becomes a function of a single variable Π, and the
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stationarity condition is reformulated as a variational equation

δΓ[Π]

δΠ(p)
= 0 −→ dΓ(Π)

dΠ
= 0. (2.14)

The extremal point on the right of Eq. (2.14) (that is, the root of the derivative with

respect to the variable Π) will not in general coincide with the extremal point on

the left. Therefore, the constant Π obtained from the recasted variational equation

is not the exact solution, but at best an approximation. The quality of this result

will depend on the amount by which Γ differs between its true extremum on D, and

that which lies on the subset of D containing only constant functions.

As a way of improving and controlling this approximation, we can consider an

extension in which we assume a momentum dependent Ansatz for Π(p) = Π∗(p),

parametrized in terms of a finite set of m coefficients {c1, ..., cm}. These functions

Π∗(p) ∈ D∗ span a subset of the original space D∗ ⊂ D, naturally being larger than

the set of constant functions. The variational equation now takes the form

δΓ[Π]

δΠ(p)
= 0 −→ ∇Γ(c1, c2, ...) = 0 (2.15)

effectively replacing the functional derivative with a gradient ∇ = ( ∂
∂c1
, ∂
∂c2
, ...). This

variational equation determines Γ(c1, ..., cm)’s extremum on the restricted space D∗.

The quality of such an approximation can now be controlled by redetermining the

variational extremum with increasing numbers of variational coefficients, in effect

converging iteratively to the true extremum. This is the approach that we will be

adopting in Chapters 3 and 4, so further technical details will be deferred until then.
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From a computational perspective, pure scalar theories are easy to work with

since their Feynman rules contain no tensor structures. For QED and QCD, the

potential Γ[Πµν ] has been worked out long ago [139]. Contrasted against a scalar

theory, QED is significantly more complex with fermionic field content, transverse

and longitudinal projectors in the gauge two-point functions as well as gauge field

to fermion interactions. Even this is mild compared to what one encounters in

Yang-Mills theory, where gauge fields self-interact, resulting in the appearance of

rank-three tensors in the Feynman rules. However, before discussing the situation in

a gauge theory, we will devote the remainder this chapter to presenting the Legendre

transforms from which the nPI formalism is derived.

2.2 1PI generating functions

To arrive at the expressions for the 2PI and 3PI effective actions, the best place

to start is by considering the well known 1PI formalism. The derivation of the loop

expansion of the 1PI effective action is available throughout the literature (see for

instance [81, 128, 140]), and to give meaning to the formalism we will go over some

of the key conceptual details in this section. The starting point is the generating

function of connected diagrams with a real single particle source

W [J ] = − log

∫
Dφ e−S[φ]−Jφ , (2.16)

keeping a sign convention that is consistent with a Euclidean spacetime. We will

assume that the systems of interest are spacetime translation invariant. As our focus

is specifically on the details of the Legendre transform, in the interest of being concise

a schematic notation will be used (taking the form of a real source J coupled to a
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real field φ). In general, the arguments of functions and integrations are suppressed

and should be inferred from context, for instance6

Jφ ≡
∫
dDx J(x)φ(x) S[φ] ≡

∫
dDx L

(
φ(x)

)
, (2.18)

also bearing in mind throughout that functional differentiation is defined via

δJ(x)

δJ(y)
= δD(x− y). (2.19)

By differentiation with respect to J , we formally obtain the connected one and

two-point functions of the theory in the presence of a source

φ̄ =
δ

δJ
W [J ] (2.20)

G = − δ2

δJ2
W [J ], (2.21)

and so forth for the higher n-point functions. In the language of the nPI formalism,

W [J ] is a 1PI generating functional; by definition, the 1PI effective action Γ[φ̄] is

6 In general we may encounter couplings of the form J†φ+φ†J for complex scalar
fields, JaµAaµ for gauge fields etc. For an extension to more elaborate field content,
we can understand the shorthand as

Jφ ≡
∫
dDx

∑
i

Ji(x)φi(x). (2.17)

with i representing Lorentz, colour, species etc. indices. These indices would then
need to be accounted for throughout the derivation, for instance δ/δJ → δ/Ji(x),
δJi(x)/δJj(y) = δijδ

D(x− y).
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obtained from the Legendre transform

Γ[φ̄] = Jφ̄−W [J ]. (2.22)

We have denoted φ̄ as the conjugate variable to J . As we are interested in expressing

J in terms of φ̄, we must now invert the relationship

φ̄− δW

δJ
= 0. (2.23)

The effective action Γ[φ̄] has a similar diagrammatic interpretation to W [J ]: just

as W [J ] is the sum of connected diagrams with an arbitrary number of single particle

source insertions, Γ[φ̄] is the expansion of one-particle-irreducible vertex functions

with field insertions. Taking derivatives of Γ with respect to φ̄ yields the 1PI vertex

functions of the theory,

δn

δJn
W [J ]

∣∣∣
J=0

=⇒ n-point connected Green’s function (2.24)

δn

δφ̄n
Γ[φ̄]

∣∣∣
φ̄=φ̄0

=⇒ n-point 1PI vertex function. (2.25)

Furthermore, in recovering the physical limit J = 0, Γ[φ̄] specifies the ground state

of the system φ̄0,

δΓ[φ̄]

δφ̄

∣∣∣
φ̄=φ̄0

= 0, (2.26)
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which can be used to infer the properties and existence of phase transitions. For

clarity, in this section we will explicitly define the effective potential as V (φ̄) =

−V−1Γ[φ̄] so that V (φ̄) opens upwards (V being the volume of spacetime).7

2.2.1 Saddle point evaluation of Γ[φ̄]

To directly compute the loop expansion of Γ, we will proceed with a saddle

point evaluation of the path integral. As is common in the literature, we will make

the assumption that φ̄ satisfies the classical equations of motion for the action S

with a source J . As we will see momentarily, this can be understood as invoking a

“counter-term” prescription for J . Using the notation

S ′φ̄ ≡
δS[φ]

δφ

∣∣∣
φ=φ̄

, (2.27)

a Taylor expansion of the action about φ̄ takes the following form

S[φ] + Jφ = S[φ̄] + Jφ̄+ (φ− φ̄)(S ′φ̄ + J) +
1

2
(φ− φ̄)2S ′′φ̄ + Sint

φ̄ [φ− φ̄]. (2.28)

Now, by virtue of φ̄ satisfying the classical equations of motion (with a source

J , the classical source being its tree-level component), the linear term in this series

is required to vanish at tree-level. So, we will define Y = S ′
φ̄

+ J and treat it as

a counter-term to appear alongside the other interactions in the Lagrangian (any

7 Elsewhere throughout this work we interchangeably use the term effective action
as a direct reference to the volume rescaled object. As we have assumed spacetime
translation invariance, the volume is simply an overall multiplicative factor, and, we
are not interested in directly evaluating Γ but rather locating its extrema. Moreover,
the overall sign is simply a matter of convention.
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other counter-terms present in S ′′
φ̄

are also shuffled into Sint
φ̄

). Since the path-integral

measure is invariant under the shift φ→ φ− φ̄, we can insert Eq. (2.28) directly into

Eq. (2.16) and obtain

W [J ] = S[φ̄] + Jφ̄− log

∫
Dφ e−

1
2
φS′′

φ̄
φ−Y φ−Sint

φ̄
[φ]
. (2.29)

Performing the Legendre transform is now simply a matter of subtracting the

Jφ̄ term.8 What we are left with is very similar to the original Eq. (2.16), except

with a modified tree-level propagator S ′′
φ̄

and vertices generated by the Taylor series.

A loop expansion of Γ[φ̄] follows naturally,

Γ[φ̄] = Γ(0)[φ̄] + Γ(1)[φ̄] + Γ(2)[φ̄] + ... (2.30)

or, explicitly matching these terms order by order

Γ[φ̄] = −S[φ̄]︸︷︷︸
Γ(0)

+ log

∫
Dφ e−

1
2
φS′′

φ̄
φ︸ ︷︷ ︸

Γ(1)

+ log

∫
Dφ

(
e
−Sint

φ̄
[φ]−Y φ − 1

)
e
− 1

2
φS′′

φ̄
φ︸ ︷︷ ︸

Γ(2)+...

. (2.31)

The familiar one-loop expression is recovered by integrating the middle term

Γ[φ̄] = −S[φ̄]− 1

2
Tr logS ′′φ̄ + Γ(2)[φ̄] + ... (2.32)

8 Though hidden, one may observe that J still explicitly appears in Y . As a result,
it may appear as though we have not actually eliminated the J dependence in Γ. In
terms of φ̄, J is fixed by the requirement that tadpoles vanish in the expansion of Γ;
therefore, Γ[φ̄] is in fact not explicitly dependent on J . See Section 2.2.2.
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and in general, higher-loop terms originate from the diagrammatic expansion of

Γ(2) + .... This path integral can still generate tadpole topologies, but these are

subtracted by a suitable choice of Y . Then, all that remains is a series of one-

particle-irreducible graphs with tree-level propagator S ′′
φ̄
, and interaction vertices

obtained from Sint
φ̄

[φ].

2.2.2 1PI effective action and symmetry breaking

As a concrete example, consider for simplicity the action S[φ] of a real scalar field

near three dimensions with m2 > 0 and tree-level propagator G(0)(p) = 1/(p2 +m2),

S[φ] =
1

2
φG(0)−1φ+ δm2φ2 +

λ

24
φ4. (2.33)

Then

S ′′φ̄ = G(0)−1 +
λ

2
φ̄2 (2.34)

Y φ+ Sint
φ̄ [φ] = Y φ+

1

2
δm2φ2 +

λφ̄

3!
φ3 +

λ

4!
φ4. (2.35)

To recover the perturbative expansion of one-loop vertex functions, we could expand

the logarithm in powers of λ,

−1

2
Tr logS ′′φ̄ =

1

2
Tr logG(0) +

1

2
Tr
∑
n=1

1

n

(−λφ̄2

2
G
)n
. (2.36)

Alternatively, we may as well just sum the whole series by directly evaluating the

Tr log in dimensional regularization

− 1

2VTr logS ′′φ̄ =
1

6π

(
m2 +

λφ̄2

2

)3/2

, (2.37)
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thus yielding the one-loop effective potential [107, 141, 142, 109]

V (φ̄) =
1

2
m2φ̄2 +

λ

24
φ̄4 − 1

6π

(
m2 +

λφ̄2

2

)3/2

+ two-loops. (2.38)
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Figure 2–2: One-loop effective potential for scalar theory in 3D. The m/λ = 0.039
curve indicates that the system is in the broken phase, with a phase transition
expected to occur between m/λ = 0.039 and m/λ = 0.042. As m is further increased,
the broken phase becomes completely unstable.

The significance of this expression is that even though at tree-level the ground

state (that is, the global minimum of V (φ̄)) occurs at φ̄ = 0, this may cease to be the

case upon the inclusion of the one-loop term. In fact this is precisely what we observe;

see Fig. 2–2. By including the one-loop correction, we infer that the configuration

φ̄ = 0 becomes unstable as m/λ crosses 1/8π ≈ 0.0397. The curve depicted in Fig.
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� �φ̄ φ̄ �φ̄ φ̄ �
φ̄ φ̄

�
φ̄ Y

�
Y Y

Figure 2–3: Two-loop topologies corresponding to Eq. (2.40), where φ̄ and Y vertex
insertions are labelled explicitly (note that in this section a single line is a tree-level
propagator, which is implicitly dependent on φ̄). The diagrams on the left are 1PI,
whereas the diagrams on the right vanish with a suitable choice of Y , which in turn
specifies J at one-loop.

2–2 is characteristic of a first order phase transition, as φ̄ is expected to make a

discontinuous jump from the broken phase minimum at φ̄ 6= 0 to the symmetric

phase φ̄ = 0 as m is increased.

As shown, the one-loop effective potential predicts a first order phase transi-

tion in a situation where it is known to be second order [143]. Thus, the one-loop

effective potential has failed to accurately describe the phase transition, which we

can attribute to certain non-perturbative effects associated with large contributions

from higher-order diagrams in vicinity of the phase transition [109]. As we will see

in Chapter 4, this is similar to the situation in 3D SU(N) Higgs theory where the

one-loop effective potential (which is gauge-dependent in this case [144]) predicts a

first order phase transition over a range of the phase diagram where a cross-over is

known to occur. We will return to this topic in Chapter 4.

For now, we will comment that in presenting the one-loop result we have skipped

over a few potentially significant considerations:

• Foremost, we have neglected any effects due to renormalization. In this particu-

lar example, the scalar mass renormalizes at two-loops which would necessitate
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the replacement of m2 with m2(µ) in Eq. (2.38). This may appear to intro-

duce an arbitrary dependence on the scale µ; however, certain cancellations

occur in the full two-loop calculation which cause the µ dependence to actu-

ally be shifted up to three-loops [100]. Nevertheless, in general V (φ̄) is scale

dependent, and hence is only defined up to a constant.

• Second, the function that we have plotted is non-convex, despite being defined

via a Legendre transform. This should be understood as a property of the

truncation rather than indicating a real problem; indeed the full expression for

V (φ̄) is convex (see for instance [145]).

• Finally, a solution φ̄0 6= 0 naively contradicts the assumption that φ̄0 satis-

fies the classical equations of motion with J = 0 on which the saddle point

evaluation of W [J ] was reliant. In fact, as we will see momentarily, it does not.

Up to this point, we have argued that locating the extrema of V (φ̄) determines the

ground state. Alternatively, we may proceed by directly evaluating J , for which we

will assume a loop expansion of the form

J = J (0) + J (1) + ... (2.39)

J (0) should immediately be recognized as the term which enters the classical equation

of motion. Now let us consider the two-loop correction to Γ[φ̄]

Γ(2)[φ̄] = log

∫
Dφ

(Y 2

2
φ2 +

Y λφ̄

3!
φ4 +

λ2φ̄2

2(3!)2
φ6 − λ

4!
φ4
)
e−

1
2
φ(G(0)−1+λφ̄2/2)φ, (2.40)

noting that there is also a mass counter-term from S[φ̄] floating about (the corre-

sponding topologies are shown in Fig. 2–3). As depicted, tadpole topologies are
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being generated, but a quick calculation shows that at this loop-order they can be

made to vanish by setting

Y =
λφ̄

8π

√
m2 +

λφ̄2

2
. (2.41)

This precisely determines J (1) (as a function of φ̄), hence, this is what was meant

earlier by “invoking a counter-term prescription” for J . The connection to the ground

state of the system is as follows: at non-zero values of J , we have δΓ[φ̄]/δφ̄ = J (which

can be obtained directly from the Legendre transform). Therefore, the ground state

is obtained by setting J = 0, which is not necessarily equivalent to J (0) = 0.

Indeed, the classical equation of motion is satisfied provided that J (0) = −S ′
φ̄
.

Supplementing this with the one-loop expression

J = −m2φ̄− λ

6
φ̄3 +

λφ̄

8π

√
m2 +

λφ̄2

2
+ two-loops, (2.42)

it is easy to verify that the values of φ̄ which cause J (0) + J (1) to vanish coincide

exactly with the extremal point(s) of Eq. (2.38). Clearly the symmetric phase φ̄ = 0

solves J = 0, corresponding to the classical solution that requires J (0) = 0. Upon

including the one-loop correction, φ̄ = 0 does not necessarily continue to be the

stable ground state. As observed in Fig. 2–2, values of φ̄ for which J = 0 can yield

stable, unstable and metastable extrema in general, depending on the curvature and

value V (φ̄) at that location. The ground state is said to occur at the infimum of

V (φ̄).

In the context of gauge theories, in spite of the effective potential being a gauge-

dependent quantity [144] (after all, a VEV is gauge-dependent), there remains a

physical significance to the solutions of J = 0. The value of the effective potential
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at its infimum, as it is related to W [0] via a Legendre transform, is necessarily

gauge-invariant [87, 146].

2.3 The 2PI effective action

The defining characteristic of a 1PI diagram is that if any internal line is cut,

the resulting graph remains connected. Two-particle-irreducible (2PI) graphs satisfy

a similar criterion, except involving the cutting of two lines.9 Imposing the 1PI con-

dition on vacuum graphs results in tadpole topologies being discarded; likewise, the

2PI condition yields diagrams that do not contain an internal self-energy insertions

(these are also known as skeleton diagrams [124]). When a graph is not 2PI, it is

said to be two-particle-reducible or 2PR.

��
2PI 2PR

(2.43)

The 2PI formalism was presented by Cornwall, Jackiw and Tomboulis in Ref.

[147] (closely related to the previous work in [118, 119, 148]), in which they derive

the 2PI effective action. In this section we will go over the formalism from a more

diagrammatic perspective, in the process illustrating the key result that the 2PI ef-

fective action is indeed an expansion in 2PI diagrams. The starting point is yet again

the generating function of connected diagrams Eq. (2.16), except now we will include

9 It should be noted that the definition of n-particle-irreducibility via the cutting
of n lines does not immediately generalize to n > 2.
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a two particle source, K(x, y) (adopting a schematic notation that is compatible with

the previous section)

W [J,K] = − log

∫
Dφ e−S[φ]−Jφ− 1

2
φKφ. (2.44)

The one and two-point functions φ̄ and G in the presence of both sources are still

obtained by differentiation with respect to J ,

φ̄ =
δ

δJ
W [J,K] (2.45)

G = − δ2

δJ2
W [J,K]. (2.46)

and additionally, we have

δ

δK
W [J,K] =

1

2
(G+ φ̄2). (2.47)

We will assume once again that the systems of interest are spacetime translation in-

variant (and as a consequence, G is diagonal in momentum space). The 2PI effective

action is by definition the double Legendre transform of Eq. (2.44),

Γ[φ̄, G] = J
δW

δJ
+K

δW

δK
−W [J,K], (2.48)

and as earlier, the conjugate variable to J is φ̄. Now we also have G as a conjugate

variable to K.

The Legendre transform can be performed sequentially; to eliminate the explicit

dependence on J we proceed with a saddle point evaluation as in the 1PI case. The

65



two-particle source adds an additional term to the “classical” equation of motion,

S ′φ̄ +Kφ̄+ J = Y, (2.49)

where it can again be assumed that Y vanishes at tree-level. The resulting counter-

term prescription for tadpole graphs is reminiscent of the 1PI case, in observing

that the additional Kφ̄ term in Eq. (2.49) coincides with the 2PI extended variation

δΓ/δφ̄, specifically

δΓ[φ̄, G]

δφ̄
= J +Kφ̄. (2.50)

For simplicity, we will omit future reference to Y under the assumption that tadpole

graphs are made to vanish. From Eq. (2.48) we have

Γ[φ̄, G] = −S[φ̄] +
1

2
KG+ log

∫
Dφ e−

1
2
φ(S′′

φ̄
+K)φ−Sint

φ̄
[φ]
, (2.51)

where the full dependence on G is still implicit in K.

2.3.1 Loop expansion

To derive a working expression for the 2PI effective action, we have to eliminate

the dependence on K in favour of G. What we will remark at this point is that

we have still have a 1PI generating function in Eq. (2.51) (with inverse propagator

S ′′
φ̄

+ K). However, we are claiming that the 2PI effective action is an expansion in

2PI vacuum diagrams. So, to see why this must be the case, we can express K in

terms of G via a loop expansion. As a starting point, Eq. (2.48) requires that

δΓ[φ̄, G]

δG
=
K

2
, (2.52)
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and, as in the previous section, our intention will be to recover the physical limit by

eventually setting K = 0. To keep track of the order, we will use the loop counting

parameter ~,10 so that

Γ[φ̄, G] =
1

~
Γ(0)[φ̄] + Γ(1)[φ̄, G] + ~Γ(2)[φ̄, G] + ... (2.53)

K[φ̄, G] = K(1)[φ̄, G] + ~K(2)[φ̄, G] + ... (2.54)

In terms of Eq. (2.53) and Eq. (2.54), Eq. (2.52) must be satisfied order by order

in ~. Γ(0)[φ̄] is the tree-level action, and therefore independent of G, resulting in an

expansion for K that automatically starts at O(~0). To arrive at the expression for

K, we can explicitly perform the variation of Eq. (2.51) with respect to G,

δ

δG
Γ[φ̄, G] =

K

2
+

1

2

δK

δG

(
G− 1

~

∫
Dφ φφ e−

1
2~φ(S′′

φ̄
+K)φ− 1

~S
int
φ̄

[φ]∫
Dφ e−

1
2~φ(S′′

φ̄
+K)φ− 1

~S
int
φ̄

[φ]

)
, (2.55)

so that Eq. (2.52) will dictate that the term in brackets must vanish. Defining

〈φφ〉K =
1

~

∫
Dφ φφ e− 1

2~φ(G−1+K)φ− g
3!~φ

3− λ
4!~φ

4∫
Dφ e− 1

2~φ(G−1+K)φ− g
3!~φ

3− λ
4!~φ

4
, (2.56)

we have

〈φφ〉K −G = 0. (2.57)

Expanding this path integral is a straightforward task as 〈φφ〉K is precisely a

two-point function, but this will require us to make some assumptions about the

form of the classical action. For simplicity, we will consider a real scalar field in

10 Not to be confused with a loop counting parameter that determines the order of
a perturbation series.
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three dimensions with cubic and quartic interactions, as this will generate the set of

topologies which would, for instance, appear in a non-abelian gauge theory. Since

we are primarily interested in the variation of Γ with respect to G and not φ̄ we will

adopt the following generic labelling for vertices

Sint
φ̄ [φ] =

1

2
δm2φ2 +

g

3!
φ3 +

λ

4!
φ4 (2.58)

S ′′φ̄ = G(0)−1. (2.59)

omitting explicit reference to a dependence on φ̄. If we were specifically interested

in the scalar φ4 theory from the previous section, then the dependence on φ̄ would

enter via the coupling g = λφ̄ and tree-level propagator G(0)−1(p) = p2 +m2 +λφ̄2/2.

Given the interactions, we can essentially read off the resulting diagrams. At

lowest order in ~,

〈φφ〉K =
1

G(0)−1 +K(1)
+O(~), (2.60)

so that K(1) = G−1 −G(0)−1. Substituting K(1) back into 〈φφ〉K , up to O(~)

〈φφ〉K =
1

G−1 + ~K(2)
+ ~G2

[
g2

2

∫
D

G2 − λ

2

∫
D

G

]
+O(~2), (2.61)

where
∫

D
is used to indicate an integration over internal loop momenta. It is more

intuitive to switch over to a diagrammatic notation, so we define

G = � −g = �
−λ = � −δm2 = �
K(2) = �2 K(3) = �3

(2.62)
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additionally, dots will be used to indicate the ends of non-amputated diagrams. Our

expression for the two-point function now reads

1

G(0)−1 +K
=	 − ~
2 + ~2

[�2 2 −�3
]

+O(~3). (2.63)

The O(~) expression for K is entirely determined by Eq. (2.61),

K(1) =
1

2
 +
1

2� . (2.64)

To obtain the full picture at O(~2) we have to start by accounting for all of the O(~)

corrections to the propagators in the one-loop term

~
(G−1 + ~K(2))2

(
g2

2

∫
D

1

(G−1 + ~K(2))2
− λ

2

∫
D

1

(G−1 + ~K(2))

)
=

~�2 − ~2

[
2�2 2 +�2

+
1

2�
2 ]

+O(~3). (2.65)

From this expression as well as Eq. (2.63) it is apparent that 〈φφ〉K contains 2PI

as well as 2PR diagrams. However, if we account for the remaining O(~2) terms

arising from the expansion of the path-integral as well as those from Eq. (2.63), it is

straightforward to verify that cancellations occur between Eq. (2.63), Eq. (2.65) and

the remaining terms in 〈φφ〉K in such a way that

K(3) =
1

2� +�+
1

6� +
1

4� +� .

These diagrams are all 2PI.
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2.3.2 Recovery of the Φ-derivable approximation

Going back to Section 2.1, the Φ-derivable approximation presented earlier is

obtained by initially truncatingK at a finite loop-order and then subsequently setting

K = 0 (to coincide with the stationary point δΓ/δG = 0), the end result being a

self-consistent approximation for the two-point function G. As earlier, we will define

the self-energy as Π = G(0)−1 −G−1, so that setting K = 0 yields

Π = ~K(2) + ~2K(3) + ... (2.66)

A one-loop truncation is solved by K(1) = −Π = 0, recovering the tree-level prop-

agator G(0)−1 = G−1; this is equivalent to the “trivial” Φ-derivable approximation.

Keeping the two-loop11 term K(2)

Π =
1

2� +
1

2� ; (2.67)

this is precisely the equation of motion from the two-loop Φ-derivable approximation

of Section 2.1 (suitably extended to include cubic interactions).

In general, an n-loop truncation of a 2PI effective action yields the corresponding

n-loop Φ-derivable approximation for the self-energy. For the action itself we can

write (reverting back to ~ = 1)

Γ[φ̄, G] = −S[φ̄] +
1

2
Tr logG+

1

2
Tr G(G−1 −G(0)−1) +

1

2
Φ[φ̄,Π] (2.68)

11 Two-loops refers to the fact that the expression for Γ contains two-loop diagrams
in this truncation.
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where the content of Φ reflects the loop-order of the truncation. At three-loops we

would have

Φ[φ̄,Π] =
1

6�+
1

4�+
1

12�+
1

24�+
1

4�+�. (2.69)

This expansion in terms of 2PI diagrams can be directly verified by inserting the

two-loop expression we had obtained earlier for K back into Eq. (2.48) and then

carefully collecting terms at each order in ~. In a practical computation we are able

to neglect divergent constants such as Tr GG−1 = Tr 1 in the expression for Γ as we

restrict ourselves to determining its variations.

2.3.3 Generalization to 3PI and higher n

Following the presentation of the 1PI and 2PI effective actions, the generalization

to higher n will now seem very natural. At higher n, an nPI effective action takes

the form ΓnPI[φ̄, G, V3, ..., Vn], where Vn denotes the n-point vertex functions of the

theory [149]. In analogy to the 1PI and 2PI cases, ΓnPI is defined via a Legendre

transform (with respect to higher point sources) and likewise, it obeys a similar set

of stationarity conditions

δΓnPI

δφ̄
=
δΓnPI

δG
= · · · = δΓnPI

δVn
= 0. (2.70)

As in the 2PI case, expressions for n-point functions at the extremum (which we will

often refer to as solutions) are fully resummed. Further analogously, a truncation at

m-loops necessarily dictates which topologies enter the resummation. Therefore, an

m-loop nPI effective action is said to describe a selective resummation of a pertur-

bation series.
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nPI effective actions also exhibit a hierarchy [113] (see also [149]). Recall that

we observed that the one-loop truncation of Γ2PI was trivially solved with G being

equal to its tree-level expression G(0); in other words, Γ2PI at one-loop is equivalent to

Γ1PI at one-loop. The general statement is that an nPI effective action truncated at

m-loops only contains non-trivial information about vertex functions Vn for n ≤ m.

Thus, a 3PI effective action requires at least a three-loop treatment.

In this work we opt to apply a three-loop truncation (of both the 2PI and 3PI

effective actions), so we will not proceed any further with derivations involving the

loop expansion, bringing Chapter 2 to a close. The presentation involving scalar

fields though illustrative may seem overly simplistic; however, we will see in the

next chapter that Γ[φ̄, G, ...] actually generalizes in a very straightforward manner to

more elaborate field content. In Chapter 3 we will present the specific details of the

extension to a gauge theory and formalize the definition of the 3PI effective action.

Following this we will switch the focus to the technical details concerning a practical

application (regularization, numerical challenges, Ansätze, etc.) eventually leading

to a resolution of the variational equations.
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CHAPTER 3
Three-loop 3PI effective action in 3D Yang-Mills theory

3.1 Resummation in a hot gauge theory

Many of the most interesting questions in the context of electroweak theory or

QCD have to do with dynamics or unequal time correlations. For instance, real-time

correlations and non-equilibrium currents are important in understanding whether

electroweak baryogenesis can occur at a first order electroweak phase transition [150,

151]. In the heavy ion context there are many dynamical quantities we would like to

know, such as the viscosity [152, 153, 154, 155], heavy quark diffusion rate [156, 157,

158], photon production rate [159, 160, 161], and so forth. Dynamical properties

of QCD are also important at much higher temperatures such as the electroweak

temperature, where they could play a role in baryogenesis and in various phase

transitions.

The problem is that we have no first-principles, intrinsically non-perturbative

technique for theoretically predicting such real-time properties, even in equilibrium

or linear response. We have models and phenomenological fitting (for instance, of

the viscosity using elliptic flow in heavy ion collisions [155]), but the only tool we

have which is close to first principles is perturbation theory. However, many of the

properties of QCD and Yang-Mills plasmas in general (for instance, the strength

of the electroweak phase transition, or the thermodynamics of QCD near the scale

ΛQCD) cannot be described perturbatively. This motivates their study via the lattice,
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both in the context of electroweak theory [162, 163] and QCD [164, 165]. The lattice

is limited in its applicability to real-time dynamics [166] or QCD at finite chemical

potential [167, 168], thus motivating the development of alternative non-perturbative

approaches.

Perturbation theory is notoriously poorly convergent when applied to hot gauge

theories. For instance, the expansion for the pressure of QCD as a series in αs is

known to order α3
s lnαs, but the series only appears to be useful at temperatures many

times the scale ΛQCD [47]. For real-time quantities, certain (Hard Thermal Loop or

HTL) resummations [169, 170] are necessary even to find leading order results for

transport coefficients [171, 172]. Even so, the perturbative expansion for real-time

quantities appears to be even worse behaved than it is for the pressure and other

thermodynamic quantities, at least if we restrict attention to transport coefficients,

which involve either zero frequency and momentum or lightlike momentum limits of

external 4-momenta. Only two such quantities are known beyond leading order; the

diffusion coefficient for a heavy quark [173] and the transverse momentum diffusion

for a fast charge [174]. In each case the first corrections enter at order g, not order

g2 as would be normal in a vacuum perturbative expansion, and the corrections

represent of order 100% shifts in the transport coefficients for αs ∼ 0.05, a value

obtained only at temperatures well above 1 TeV! Though it is a little dangerous to

extrapolate from two examples, it appears that even at the electroweak scale, the

QCD sector of the Standard Model is probably not well described by perturbation

theory, as far as dynamics are concerned.
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Figure 3–1: NLO heavy quark diffusion.
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Figure 3–2: Inclusion of additional HTLs.

Let us analyze the problem in a little more detail, for the case of heavy quark

diffusion [173]. The leading order diagram and the four next-to-leading order dia-

grams are shown in Fig. 3–1. Here the double line is the Wilson line heavy quark

trajectory, and hatched blobs represent Hard Thermal Loop (HTL) resummation.

In particular, the leading order diagram is already one-loop self-energy resummed.

The contribution from diagram A is 5 to 10 times as large as that of the other di-

agrams (in Coulomb gauge, the choice used in [173]). Therefore the physics which

is problematic for the perturbative expansion is presumably the physics represented

by this diagram. This diagram resembles the leading order diagram, except that in

the leading diagram the momentum in the self-energy loop is assumed to be large

compared to the propagator momentum, while in diagram A it is allowed to be of

the same order. When the momentum is soft, it is also necessary to include HTLs
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on the propagators and vertices of the self-energy in diagram A. The large size of

diagram A indicates that the soft loop momentum region in the self-energy is almost

as important as the region where the loop momentum is hard. This is a problem

because in this soft region, the HTL corrections must also be included on the prop-

agators and vertices in diagram A. But why shouldn’t these loops also receive large

corrections from their soft-momentum regions? Then we also need to include the

region where we replace the HTLs in diagram A with soft momenta, as suggested in

Fig. 3–2. But when these momenta are soft, there are new vertices and propagators

requiring HTL corrections. These may also have large soft corrections, bringing in

more diagrams – and we are “off to the races.”

The problem is that the low-momentum (gT ) region is not really a small part

of phase space, and it is not really weakly coupled. But the good news is that the

dominance of diagram A above suggests that it is really only the soft corrections to

the HTLs present in the previous order which are important. This leads to an infinite

number of diagrams contributing, but only a restricted (infinite) set of diagrams

being “most important” – those suggested in Fig. 3–2. If these diagrams could be

resummed somehow, then we would likely capture all the most important corrections,

and the range of validity of perturbation theory might be significantly expanded.

There is a procedure for performing an iterative resummation of all one-loop

self-energy and three-point vertex corrections, as suggested in Fig. 3–2. It is the

three-loop, three-particle irreducible (3PI) resummation scheme [113]. The above

discussion suggests that a 3PI resummation may capture the most important higher-

order physics and greatly improve the convergence of the perturbative expansion –
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even capturing some non-perturbative information. But this is by no means guar-

anteed, since the 3PI approach performs an incomplete resummation of higher-order

effects, which furthermore is not gauge-invariant [115, 116]. That is, a selective re-

summation would violate non-abelian Ward-Slavnov-Taylor identities at loop orders

beyond the specific order of the truncation.

As of writing, this work is the only known direct application of the 3PI technique

to a non-abelian gauge theory. In addition to performing the resummation, we would

also like to test whether or not the resummation technique is reliable in a somewhat

more controlled setting; this will be the focus of the study of SU(N) Higgs theory

in Chapter 4. For now we will consider a slightly simpler problem as a warm-up

exercise, and as a testing ground for whether or not the 3PI technique is potentially

effective in non-abelian gauge theory. Our focus now is primarily on developing the

tools necessary for resolving the 3PI (and hence also 2PI) equations of motion and to

do so, we will investigate the three-loop, 3PI resummation of 3D Yang-Mills theory.

Working in 3 Euclidean dimensions simplifies the problem in two ways. First, the

UV behaviour of 3D Yang-Mills theory is much milder than in 4D, since the theory

is super-renormalizable. The second simplification is that the vacuum Euclidean

theory has fewer Lorentz invariants than the finite temperature, Minkowski theory

(or the Euclidean theory with periodic time direction). For instance, in (vacuum)

Euclidean space the propagator Gµν is built from two tensorial structures and is a

function of one invariant; Gµν(p) = TµνGT (p2) + LµνGL(p2). In real time at finite

temperature, or in imaginary time with periodic boundary conditions, it has more

tensorial structures and is a function of two variables, p2 and the energy P 0.
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Note however that 3D Yang-Mills theory is far from trivial. The flip side of super-

renormalizability is that, since the gauge coupling is dimensionful, it establishes a

scale (momentum scale p ∼ g2 or length scale l ∼ 1/g2) where we expect strongly

coupled, non-perturbative behaviour. Therefore 3D Yang-Mills theory displays both

weak or strong coupling, depending on the energy scale. 3D Yang-Mills theory is

also physically interesting. Recall also from Chapter 1, Section 1.4.1 that at the

thermodynamic level, the infrared behaviour of thermal 4D Yang-Mills theory (with

any fermionic matter content) is 3D Yang-Mills with an adjoint scalar [36, 37, 99,

175]. The non-perturbative scale g2 ≡ g2
3D corresponds to the scale g2

4DT of the full

theory (at leading perturbative order). It is believed that the poor convergence of

perturbation theory at intermediate couplings in QCD is due to the non-perturbative

physics of the 3D theory. Therefore in a sense studying the 3D gauge theory by non-

perturbative means is treating most of the physics which makes thermal QCD poorly

behaved (at intermediate couplings).

The goal at this point is to produce a complete solution to the three-loop trunca-

tion of the 3PI effective action for 3D QCD. As outlined above, this should be viewed

as a warm-up problem to what we would really like to do, which is use the method to

directly compute gauge-invariant observables. Then, based on the outcome, it may

be interesting to consider an application in 3+1 dimensions in a thermal (or even

non-equilibrium) context, though this is presently beyond the scope of this thesis.

For now, this first step is well motivated. As already emphasized, the 3D theory is a

subset of the 3+1D theory (the theory we would really want to solve). And the 3D

theory can be studied non-perturbatively on a lattice, which means we will be able
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to test to a limited extent the 3PI resummation procedure in a non-perturbative

context by seeing whether its predictions are successful.1 Such a test is necessary

because the 3PI resummation captures only an incomplete and gauge-noninvariant

subset of diagrams, so there is no hard guarantee that it will successfully reproduce

the non-perturbative IR physics (though it is indeed possible that gauge-dependence

is small [117]). To emphasize again, this chapter will concentrate on the resumma-

tion; we will focus more on the comparison with non-perturbative lattice studies in

Chapter 4.

3.2 The 3PI effective action

The 3PI effective action is obtained by a Legendre transform of the generating

functional of connected diagrams

W [J,K, L] = − log

∫
Dφ e−

(
S[φ]+Jφ+ 1

2
Kφ2+ 1

6
Lφ3
)

(3.1)

with one, two and three-particle sources, J , K and L (the notation is schematic,

as in Chapter 2). Conjugate to J , K and L are the variables φ̄, G and G3, which

are labelled as such since they are equal to the connected one, two and three-point

functions at the stationary point of the effective action. The functional derivatives

1 To the extent that the study of pure Yang-Mills in this chapter is limited to the
computation of gauge-fixed quantities.
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of W are given by

δW

δJ
= φ̄ (3.2)

δW

δK
=

1

2
(G+ φ̄2) (3.3)

δW

δL
=

1

6
(G3 + 3Gφ̄+ φ̄3), (3.4)

and the 3PI effective action follows,

Γ[φ̄, G,G3] = J
δW

δJ
+K

δW

δK
+ L

δW

δL
−W [J,K, L].

In terms of Γ the equations of motion for φ̄, G and G3 read

δΓ

δφ̄
=
δΓ

δG
=

δΓ

δG3

= 0. (3.5)

We will now specialize this procedure to the case of mQCD. Since we consider

pure Yang-Mills there is no Higgs mechanism and we expect the one-point functions

to vanish at the extremum;2 hence we can set the VEVs of Aµ, c̄ and c to zero and

work only with the two and three-point functions. To write down the exact form of

Γ relevant to the Yang-Mills field content, it is useful to define Feynman Rules for

the propagators and vertex functions;3 see Table 3–1. The one-particle-irreducible

2 When Grassman fields such as ghosts are present, the extremum is generally a
saddle-point rather than a maximum, as the associated Tr log enters with an overall
minus sign relative to bosonic fields.

3 We will generally suppress colour indices as well as Lorentz indices when they
can be inferred from context. For instance, G = Gµν = Gab

µν , Vµνρ = V abc
µνρ etc.
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Resummed Bare

Gluon Propagator Gab
µν =� G

(0)ab
µν =�

Ghost Propagator ∆ab =� ∆(0)ab =�
Table 3–1: Feynman rules for the Yang-Mills propagators in the 3PI effective action.
Vertices are denoted by a large black dot whenever they are “resummed,” otherwise
they are bare. See also Appendix B.

three-vertex V is related to the three-point function via G3 = (G)3V ; extremizing

with respect to G and G3 is equivalent to extremizing with respect to G and V ,

which we find to be more convenient variables. The 3PI effective action is given in

terms of G, ∆, V and V by

Γ =
1

2
Tr logG− 1

2
Tr[G(0)]−1G− Tr log ∆ + Tr[∆(0)]−1∆

+
1

6� − 1

12� +
1

8�
−� +

1

2	
+

1

48
 +
1

24� +
1

8�
− 1

3
 − 1

4�, (3.6)
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(where we have explicitly written symmetry factors associated with diagrams and

signs associated with ghost loops for clarity, as we will throughout), from which we

have the following four equations of motion

δΓ

δG
=
δΓ

δ∆
=
δΓ

δV
=
δΓ

δV
= 0. (3.7)

To illustrate the physics of Eq. (3.7), consider δΓ/δG(p). Performing the varia-

tion using the expression in Eq. (3.6), we find

G−1(p) = G(0)−1(p)− Π(p) , (3.8)

Π(1)(p) =

�
− 1

2�
+

1

2�
−2

�
+

�
(3.9)

which we recognize as the resummed one-loop self-energy (with the superscript de-

noting the loop order, i.e. Π = Π(1) + Π(2); we have not shown the similar graphical

representation of Π(2)). It is worth noting that a three-loop truncation only resumms

planar graphs; a resummation involving a non-planar diagram would require a four-

loop treatment.

Similarly, variation with respect to V gives the vertex 3PI equation of motion

� =�+� +
3

2� − 2� (3.10)
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closely resembling a Schwinger-Dyson (SD) equation.4 The propagators appearing in

all diagrams in Eq. (3.8) and Eq. (3.10), as well as all vertices (except certain vertices

in the one-loop self-energies), are the full objects. Therefore these equations must

be solved self-consistently. The self-consistent solution of these equations represents

our main challenge. We face two chief difficulties:

• Decomposing the propagator into its transverse and longitudinal parts,

Gµν(p) = Gµν
T (p)Tµν +Gµν

L (p)Lµν ,

Lµν ≡ pµpν

p2
, Tµν ≡ gµν − Lµν , (3.11)

the propagators are determined in terms of three arbitrary functions of one

continuous variable, GT (p), GL(p) and ∆(p) with p =
√
p2. Similarly, the

vertex Vµ1µ2µ3(p1, p2, p3) (with p3µ = −p1µ−p2µ) can be expressed in terms of six

independent tensorial structures (see below), each multiplying an undetermined

function of the three invariants p2
1, p2

2, and p1 · p2 (or equivalently p2
1, p2

2, and

p2
3). The challenge is that we are not merely solving for a few numbers, but self-

consistently solving for unknown functions of one to three continuous variables.

4 The exact Schwinger-Dyson equations are derived in terms of the 1PI effective
action from the relations δΓ/δφ̄ = J and 0 =

∫
Dφ ( δS

δφ
+ J)e−S[φ]−Jφ. The exact SD

equations for the n-point function of a given theory are qualitatively similar to the
nPI equations of motion, except that they are not closed. For further background
material on SD equations, see e.g. [128, 176], and for a direct comparison to the nPI
formalism, see [113].
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• The one-loop gluon self-energy diagrams are linearly divergent, and the two-

loop gluon self-energy diagrams are individually logarithmically divergent. Di-

vergences of this sort must be regulated in a manner which respects gauge-

invariance,5 such as dimensional regularization. However since the propagators

and vertices appearing in the diagrams are general functions of momentum

which are presumably only known numerically and only in D = 3 dimensions,

we will have to perform these integrations numerically.

The issue of divergences in self-energies is a technical issue which can be han-

dled rather easily in 3 dimensions. The key fact is that at large momenta G,∆, V

and V approach their free values up to power suppressed corrections. We therefore

know the exact form of the UV divergences. If we can find an expression with the

same UV divergent behaviour which is simple enough to integrate using dimensional

regularization, we can add and subtract it. The subtraction renders the numerical

integration of the full self-energy expressions finite, while the added version is in-

tegrated using dimensional regularization. We will explain this procedure in more

detail in the next section.

In order to fit arbitrary functions of one or a few real variables, we will write

down a sufficiently flexible Ansatz for each function, with some set of variational

5 One might argue that, since the 3PI technique truncated to three-loops is not
gauge-invariant, the use of a gauge-invariant regulator is unnecessary. But we believe
that it is necessary; first, our approach at least retains gauge-invariance to low loop
order, which would be lost without a gauge-invariant regularization. And second, a
gauge non-invariant regularization at one-loop order would allow divergent masses,
which fundamentally damage the physics.
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parameters. That is, we take GT (p) = GT (ci, p) where ci are coefficients – in practice,

we take GT (p) to be a rational function of p, and the ci are coefficients of this

rational function. Extremization of Γ with respect to G(p) is then replaced by

its extremization with respect to the coefficients ci of each propagator and vertex

function. Under this procedure, some set of integral moments of the 3PI equations of

motion will be satisfied, rather than the equations being satisfied at every momentum

value. We can determine the quality and limitations of this approach by seeing how

the determined correlation functions change as the sizes of the variational Ansätze are

changed; and we can directly test how well the 3PI equations of motion are obeyed

by computing directly the self-energies and vertex corrections at various momenta

and comparing to the Ansatz, or measuring an integrated mean squared failure of

the equations of motion.

3.3 Divergences and regularization

As discussed above, variation of Γ with respect to a propagator gives rise to a

self-consistent equation involving self-energies written in terms of G and V . These

will be, in general, complicated functions. Yet the self-energies may be UV divergent

and so they must be regulated. Even after taming these self-energy divergences,

the variation with respect to a propagator or vertex Ansatz coefficient δΓ/δci may

lead to a divergent integral over the propagator momentum p. We must also ensure

that such divergences do not occur. We will handle these two problems in turn.

Throughout we denote the momentum entering a self-energy as p, and use k and q

for internal loop momenta.
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3.3.1 Divergences in self-energies

In 3 dimensions the only divergent subdiagrams are gluon self-energies. To

handle these divergences we must work in a regularization scheme which renders

the self-energy diagrams finite and preserves gauge invariance. Therefore we will

perform all integrals in dimensional regularization (DR), so
∫
d3q → 1

µ̄2ε

∫
dDq with

D = 3 + 2ε, µ̄2 = µ2eγ/4π. Unfortunately the self-energies contain the functions G

and V , which are complicated and are only known in 3 dimensions. However, for any

integral which is finite and well behaved in 3 dimensions, the ε→ 0 limit of the DR

value is the same as the value directly computed in 3 dimensions. Therefore we will

start with identifying the UV divergent behaviour of the full integrals containing G

and V so that we can subtract and add simple integrals with the same divergences.

We can then perform the (finite) subtracted versions numerically in 3 dimensions,

and finish off by adding back the simple integrals using DR.

Dressed vertices and propagators are well behaved in the IR, hence the only

divergences that we expect to see arise from the region of momentum space where

q is large. Therefore we need to determine the asymptotic behaviours of G and V .

Our theory is super-renormalizable, meaning that the coupling g2 carries dimension,

[g2] = [q]. For large q, g2 is small compared to the relevant scale q, so the large q

region is weakly coupled and has a perturbative expansion. Further, powers of g2 in

the expansion must be balanced against powers of q on dimensional grounds. There-

fore the leading and first subleading behaviour of the propagator in 3 dimensions

is

Gµν(q) =
1

q2

(
Tµν(q) + ξLµν(q)

)
+
g2π

(1,0)
YM

q3
Tµν(q) +O(q−4) . (3.12)
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Similarly, the vertex goes as

V ∼ q + g2q0 +O(q−1) (3.13)

with q generically denoting a single power of external momentum. The specific form

of the g2 correction to V is known, see Appendix D; but as we see in a moment we

do not need it here. The one-loop correction to the gluon self-energy is also known.

It is purely transverse and equals [36] (see also Appendix C)

Π
B(1,0)
YM;µν(q) =

g2N

64
p(ξ2 + 2ξ + 11)Tµν(q), (3.14)

hence π
(1,0)
YM introduced in Eq. (3.12) is6

π
(1,0)
YM =

N

64
(ξ2 + 2ξ + 11) . (3.15)

Now, consider the diagram

�
=

1

µ̄2ε

∫
dDq

(2π)D
VµαδVνβκG

αβ(p+ q)Gδκ(q), (3.16)

6 The notation used for the one-loop self-energy warrants a bit of explanation,
as it may seem overly cumbersome. In general, we write self-energy corrections as
Π

B(m,ε)
YM;µν(p); “B” indicates that we mean an object constructed out of bare (and not

resummed) tree-level propagators and vertices (to be distinguished from the labels
SD and NP to be used later in this chapter), “YM” indicates that all internals lines
are either gauge fields or ghosts (i.e. no scalars), m is used to count the loop order,
and ε refers to the analytic continuation to D = 3+2ε dimensions. With this notation
there is an exact correspondence with the symbols in Appendix C.
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where traces over internal colour indices are implied (and hence the overall diagram

is proportional to the colour identity). Expanding the integrand in powers of 1/q,

for D = 3 the large q region of the integral behaves as

�
∼ g2

∫
d3q

[
(q)2 1

(q2)2

+ 2g2(q)2π
(1,0)
YM

q3

1

q2︸ ︷︷ ︸
NLO propagator

+ 2g2(q)
1

(q2)2︸ ︷︷ ︸
NLO vertex

+ O(g4q−4)︸ ︷︷ ︸
NLO2+NNLO

+ ...

]
. (3.17)

The first term arises from the leading order (bare) terms in the vertices and propa-

gators, and the next two terms originate from the one-loop corrections (as marked).

These first three integrals diverge, so we will have to add and subtract something to

cancel their divergent behaviour.

Actually, the NLO vertex corrections above will cancel when we sum over the

one-loop self-energy corrections. To see this, consider the two diagrams, with one

and with two full vertices:

[
�

− 1

2�
]
q�g2

∼ 1

2�
∣∣∣∣∣
q�g2

(3.18)

The diagram with one full vertex enters with −2 times the weight of the diagram with

two full vertices. Therefore the NLO vertex contributions from these two diagrams

cancel, and the UV behaviour is the same at NLO as the behaviour of a loop with

no vertex corrections. Provided that we perform the two diagrams by adding their

integrands inside the integration, this cancellation takes place at the level of the
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integrand and does not lead to a log divergence in the integral in 3 dimensions.

(This cancellation does not mean that the NLO vertex correction disappears; instead

this correction will be accounted for explicitly when we include two-loop self-energy

corrections.)

Next consider the bare part of Eq. (3.17), which is linearly divergent in 3 di-

mensions. We will add and subtract a diagram made out of the bare vertex and

propagator functions,

�
= g2 1

µ̄2ε

∫
dDq

(2π)D
V

(0)
µαδV

(0)
νβκG

(0)αβ(p+ q)G(0)δκ(q) (3.19)

with G(0)’s are V (0)’s denoting bare propagators and vertices. The difference

1

2�
− 1

2�
(3.20)

is only logarithmically divergent in 3 dimensions. Moreover, Eq. (3.19) is finite when

computed in DR and its D→ 3 limit is

1

2	
∣∣∣∣∣
DR

=
g2N

64
p

(
(ξ2 + 2ξ + 11)Tµν(p)− gµν −

pµpν
p2

)
. (3.21)

This diagram, plus the bare ghost diagram which cancels the non-transverse piece

above, gives rise to Π
B(1,0)
YM;µν stated earlier.

Lastly, we must subtract something with the same NLO “propagator” behaviour

remaining in Eq. (3.17). Naively, we could do this by defining the one-loop corrected
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propagator7

GB(1,ε)
µν (p) = G(0)

µα(p)Π
B(1,ε)αβ
YM (p)G

(0)
βν (p) =

π
(1ε)
YM

µ2ε

1

p3−2ε
Tµν(p) (3.22)

with Π
B(1,ε)
YM;αβ(p) and π

(1,ε)
YM defined by Appendix C, Eq. (30) and Eq. (33), and then

“adding and subtracting” the following diagram:



Π

= g2 1

µ̄2ε

∫
dDq

(2π)D
V

(0)
µαδV

(0)
νβκG

(0)αβ(p+ q)GB(1,ε)δκ(q)

=
A
ε
gµν −

B
ε

(
gµν −

pµpν
p2

)
+ finite . (3.23)

The problem is that, as the above equation shows, the diagram is not only UV

divergent (as expected, with coefficient A which we give below), but also IR divergent

(with coefficient B, whose exact value will not be relevant). If we add and subtract

this diagram, we will cause an IR divergence where none should appear. Instead, we

will add and subtract an appropriately regulated self-energy corrected propagator,

GB(IR1,ε)
µν (p) =

π
(1,ε)
YM

µ2ε

1

(p2 + ω2
0)

3
2
−ε

(
gµν −

pµpν
p2 + ω2

0

)
(3.24)

so that the integration in

�
Π

= g2 1

µ̄2ε

∫
dDq

(2π)D
V

(0)
µαδV

(0)
νβκG

(0)αβ(p+ q)GB(IR1,ε)δκ(q) (3.25)

7 Note that since we anticipate a 1/ε divergence at two-loops, we now have to be
careful with the treatment of terms O(ε).
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can still be performed analytically in DR. Upon integration, this diagram has the

following form:

�
Π

∣∣∣∣∣
DR

=
A
ε
gµν + finite. (3.26)

The coefficient that multiplies the UV 1/ε,

A = − g
4N2

768π2

p4ε

µ4ε
(ξ + 4)(ξ2 + 2ξ + 11), (3.27)

is identical to that of Eq. (3.23) due to the simple fact that

lim
q→∞

GB(IR1,ε)
µν (q) = lim

q→∞
GB(1,ε)
µν (q). (3.28)

Naturally, the finite parts of Eq. (3.23) and Eq. (3.25) will differ.

It may worry some readers that we have introduced an IR mass regulator. But

we emphasize that we are not adding such a regulator to the full propagator Gµν(p).

We are only adding an IR mass regulator to a term which we add and subtract, for

reasons of computational convenience. Hence, the value of the regulator – in fact,

the effect of the whole term which we are adding and subtracting – exactly cancels

when we combine the (analytic) result of Eq. (3.25) and the (numerical) result of the

full but subtracted diagram in Eq. (3.30). We have naturally checked that the value

of the regulator in Eq. (3.24) has no effect on our results for the full self-energy and

therefore for the determined value of the full propagator.
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Returning to Eq. (3.17), we now have

[



− 1

2�
− 1

2�
−

�
Π

]

+

[
1

2�
+

�
Π

]
∼ A

ε
gµν + finite . (3.29)

The first line is the only part which contains full propagators; but it is finite at

D = 3. Therefore its value in DR in the D → 3 limit simply equals its finite

value in 3 dimensions, which we can find by numerical integration. The second line

is divergent in 3D but can be carried out relatively easily in DR. It gives rise to

the Agµν/ε contribution, and to some of the finite terms presented in Appendix C,

Eq. (58).8

The procedure for handling the two-loop graphs is similar. While the graphs

are more complicated, the procedure is simpler, since in every case the only UV

divergences arise when all components of the graph take their bare values. Further, no

two-loop graph we need, when built out of bare quantities, is IR divergent. Therefore

we may simply subtract from each two-loop graph, built using G and V , the same

graph built using G(0) and V (0). The bare two-loop graphs can be performed in

8 Appendix C, Eq. (58) is the sum of Eq. (3.25), a similarly IR regulated tadpole
diagram as well as a few topologically similar graphs involving scalars. Pure Yang-
Mills contributions (that is, diagrams which do not contain scalar loops) can be
recovered by setting TR = CR = 0 in Appendix C.
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DR and will also give rise to a gµν/ε divergence plus a finite part; the sum of these

diagrams is given by Appendix C, Eq. (57). In the end, we find that all of the 1/ε’s

cancel between two-loop diagrams: the O(g4) IR regulated gluon self-energy is UV

finite in DR (the complete expression for which is given by Appendix C, Eq. (54)).
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With this procedure in place, the self-consistent equation, Eq. (3.8), becomes

G−1(p) = G(0)−1(p)− Π(1)(p)− Π(2)(p), (3.30)

Π(1)
µν + Π(2)

µν =

� − 1

2� +
1

2� − 2�
+� − 1

2� −�
Π

− 1

2�
−1

2	
Π

+
 + 2�
+

1

6� +
1

2
 +� +
1

4�
−� − 2�
−1

6� − 1

2� −� − 1

4�
+� + 2�
+ lim

ε→0

(∏B(1,ε)

YM;µν

(
p
)

+ +
∏B(2,ε)

YM;µν

(
p
))
.
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where the ΠB(a,b)’s represent the sum all bare diagrams computed analytically in

dimensional regularization (their values can be read from Appendix C).9 In writing

this equation we have suppressed the Lorentz indices, as written one should take

1
2
TµνΠ

µν to get the transverse part of the self-energy needed to resum GT and LµνΠ
µν

to get the self-energy needed to resum GL.

All ghost self-energies are finite after angular averaging, and the vertex loops are

power-counting finite, so no similar subtractions are needed in these cases. Never-

theless, we will still encounter divergences when it comes time to integrate the ghost

equations of motion over propagator or vertex momenta.

3.3.2 Divergences upon p-integration

Our plan is to find an approximate extremum of Γ by writing variational Ansätze

for the propagators and vertices and to vary with respect to the Ansatz parameters.

For instance, one could assume that the transverse propagator GT (p) is the sum of a

set of test functions with unknown coefficients, GT (p) =
∑

i ciφi(p). More generally,

we choose GT (p) to have some functional form with a set of variational parameters

ci; we will give our specific choice in Section 3.4. Then variation of Γ with respect

9 As shown in [177] it is generally possible to alternatively express a self-energy
equation of this sort as a genuine Schwinger-Dyson equation by including the ver-
tex equation of motion. However, for our approach this representation offers the
advantage that regularization occurs on a diagram by diagram basis.
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to cj would yield

δΓ

δcj
=

∫
d3p

δGT (p)

δcj

δΓ

δGT (p)
=

∫
d3p

δGT (p)

δcj

(
G−1
T (p)−G(0)−1

T (p) + ΠT (p)
)
,

(3.31)

and similarly for GL and ∆. In the last section we ensured that the integrals involved

in all self-energies Π are finite. But this does not guarantee that the p integral above

will be finite. For instance, if we chose the Ansatz

GT [p, ci, example] =
c1

p2 +m2
+

c2

(p2 +m2)
3
2

+
c3

(p2 +m2)2
(3.32)

then δGT (p)/δc1 = 1
p2+m2 . And if c1 6= 1, then for large p, G−1

T (p) − G
(0)−1
T (p) +

ΠT (p) ∼ p2. In this case Eq. (3.31) would be cubically divergent. Physically this

means that if we allow G(p) to vary from its correct value in a way which does not

die away fast in the UV, then Γ will be divergently far from its extremum.

Continuing with the same example, if we fix c1 = 1, forcing the propagator to

have the correct free-theory limit in the UV, then the most severe UV divergence

arises from c2. For large p we have δGT (p)/δc2 ∼ p−3 and G−1
T (p) − G

(0)−1
T (p) +

ΠT (p) ∼ p (by virtue of the cancellation of the p2 terms in G−1
T and G

(0)−1
T ). In

this case the integral is ∼
∫
d3p(1/p3)(p) which is linearly divergent. This is better

but still unacceptable. To ensure a finite answer we must choose an Ansatz which

automatically enforces the right O(p2) and O(p) behaviour in G−1
T (p), namely,

GT (p) =
1

p2
+
g2π

(1,0)
YM

p3
+ (Ansatz starting at O(p−4)) . (3.33)

In this case, δG(p)/δci <∼ O(p−4) automatically, and G−1
T (p) − G(0)−1

T (p) + ΠT (p) ∼

O(p0). This is sufficient to ensure that the integral in Eq. (3.31) will be UV finite.
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The same argument applies to GL and ∆; in each case we must build in the correct

1/p2 and 1/p3 behaviour of the propagator (or O(p2) and O(p) behaviour in the

inverse propagator) into our Ansatz ; but having done so, the variations δΓ/δci will

all automatically be finite (unless there are IR problems).

Applying the same reasoning to the vertices, the variation of Γ with respect to

a generic coefficient di determining V gives rise to a correction of order (the phase

space is explained in Appendix E)

δΓ

δdi
∼
∫
pdp qdq kdk

δV

δdi
G(p)G(q)G(k)

(
V − Vbare − δV

)
. (3.34)

If we allow our Ansatz to change V on the scale of its leading behaviour ∼ p, k, q then

this expression is quadratically divergent. Therefore our Ansatz must be restricted

such that V takes on its correct (free) asymptotic limiting behaviour. Even so, in this

case δV/δdi and V −Vbare will be O(p0), giving rise to a log divergence. Therefore we

must compute and implement the first subleading behaviour of V and only allow our

Ansatz to change V at NNLO, O(p−1, k−1, q−1). This will ensure finite variations of

Γ with respect to the parameters di (again assuming there are no infrared issues).

It is not necessary to determine the NNLO behaviour of either self-energy or

vertex corrections in order to avoid potential divergences. This is a good thing,

because the O(p−4) propagator correction (or O(p0) self-energy correction) is where

non-perturbative physics first arises. To see this, consider the one-loop self-energy

diagram in Eq. (3.16). Let us estimate the contribution when the external momentum

p is large but one of the internal propagators is at a small momentum q ∼ g2.

There is a factor of g2p2 from the vertices, 1/p2 from the hard propagator, and
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∫
d3q/q2 ∼ q ∼ g2 from the momentum integration and soft propagator in the soft

region. So the contribution when one propagator is soft is of order Πsoft ∼ g4. This

contribution is non-perturbative because the behaviour of the propagator at small

momentum is. Therefore we actually cannot determine the NNLO behaviour of

the propagator at large momenta; the perturbative expansion we alluded to earlier

actually fails at this order. Fortunately, determining this order turns out to be

unnecessary to eliminate divergences and render our extremization problem well

posed.

Note that the elimination of divergences, both in subdiagrams and in the final

variation of Γ with respect to variational Ansatz parameters, is much easier in D = 3

spacetime dimensions than it would be in D = 4. In that case, self-energies would be

quadratically divergent at all loop orders and δΓ/δci would generically be quartically

divergent. It is therefore not completely clear as to how this procedure could be

extended to four dimensions without some changes or restrictions. However, the

focus here is on a 3D study, so we will not address this issue further.

3.4 Variational Ansätze

We will now start to actually solve, rather than discuss, the problem by writing

out the variational Ansätze used for all propagators and vertices. The only dimen-

sionful constant in 3D Yang-Mills theory is g. Moreover, a three-loop truncation

of Γ only contains planar diagrams, and the only subleading in N correction which

enters when evaluating them is an overall factor of (N2−1); that is, the coupling and

group theory factor for an m-loop bubble diagram is (N2−1)(g2N)m−1. Therefore,

to the loop order we work, the coupling expansion is strictly an expansion in the ’t
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Hooft coupling g2N . In D = 3 dimensions the ’t Hooft coupling has dimensions of

energy, and it therefore sets the natural energy scale in the problem. Therefore we

will factor out the overall (N2−1) and will scale all dimensionful quantities by the

appropriate power of g2N , i.e., quantities with dimension [mass]α, are expressed in

units of (g2N)α. For the most part, this eliminates any explicit reference to g2 or N

in the remainder of this chapter.

Variational coefficients will be generically denoted by ci. This is a slight abuse

of notation, and one should recall throughout that the ci are independent for each

function. For instance, it should not be interpreted from expressions like GT (ci; p)

and GL(ci; p) that GT and GL are defined by the same set of parameters. In practice

we will use rational functions (Padé approximants) for our variational Ansätze; we

distinguish coefficients in numerators from those in denominators by labelling the

former by ai and the latter by bi, so that {ci} = {ai, bi} (or {ci} = {aijk, bijk} for

vertex function coefficients). Finally, it is now always implied that when we refer to

a correlation function, we are specifically referring to its Ansatz. We will drop the ci

from the arguments of these functions, so G(p) implies G(ci; p).

Continuing on, G is first decomposed into transverse and longitudinal compo-

nents as per Eq. (3.11). From the arguments of the previous section, we know that

whatever we write down for GT (p) has to converge to Eq. (3.33) at large p (and

likewise for GL(p) and ∆(p)). Hence,

GT (p) = 1
p2−ΠT (p)

ΠT (p) = CTp+ (Ansatz starting at O(p0))

GL(p) = ξ
p2−ξΠL(p)

ΠL(p) = CLp+ (Ansatz starting at O(p0))

∆(p) = 1

p2(1−Σ(p)

p2
)

Σ(p)/p2 = C∆
p+ω0

+ (Ansatz starting at O(p−2))

(3.35)
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with

CT =
ξ2 + ξ + 11

64
, CL = 0, C∆ =

1

16
. (3.36)

We see that CT/L/∆ must be measured in units of g2N since [CT/L/∆] = [mass], while

[GT ] = [mass]−2.

The Ansatz for ∆ differs from GT and GL; namely, we assume that Σ(p) ∝

p2, and therefore ∆ ∝ p−2, at small p. This is a condition which arises due to

the structure of ghost vertices, which we will discuss in a little more detail when

we present the ghost vertices. The parameter ω0 is not treated as a variational

parameter; instead its value is fixed to ω0 = 1 (really ω0 = g2N). This choice should

not be important, provided the variational Ansatz is flexible enough.

We will use Padé approximants for the propagator Ansätze. The “order” of these

Ansätze will be denoted by NP
max, which refers to the highest power of momentum

appearing in the numerator and denominators. With this choice, the expressions in

Eq. (3.35) read

ΠT (p) = CTp+ ΠNP
T (p) = CTp+

∑NP
max

i=0 a
{GT }
i pi∑NP

max
i=1 b

{GT }
i pi + 1

(3.37)

ΠL(p) = CLp+ ΠNP
L (p) =

∑NP
max

i=0 a
{GL}
i pi∑NP

max
i=1 b

{GL}
i pi + 1

(3.38)

Σ(p) = C∆p+ ΣNP(p) =
C∆p

2

p+ ω0

+

∑NP
max

i=2 a
{∆}
i pi∑NP

max
i=1 b

{∆}
i pi + 1

. (3.39)

In each case we define ΠNP as the self-energy minus its one-loop perturbative (linear

in momentum) part. In the case of Σ this is not the same as the part determined by

the variational Ansatz.
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In constructing the most general gluon three-vertex V (where it is assumed

that momentum flows out of a vertex), six independent tensor structures require

consideration. We will adopt the basis used in [178, 179], which is

Aµ1µ2µ3 = gµ1µ2(p1 − p2)µ3

Bµ1µ2µ3 = gµ1µ2(p1 + p2)µ3

Cµ1µ2µ3 =
[
p1 · p2gµ1µ2 − p1µ2p2µ1

]
(p1 − p2)µ3

Fµ1µ2µ3 =
[
p1 · p2gµ1µ2 − p1µ2p2µ1

][
(p2 · p3)p1µ3 − (p1 · p3)p2µ3

]
Hµ1µ2µ3 = gµ1µ2

[
(p1 · p3)p2µ3 − (p2 · p3)p1µ3

]
+

1

3
(p1µ3p2µ1p3µ2 − p1µ2p2µ3p3µ1)

Sµ1µ2µ3 = p1µ3p2µ1p3µ2 + p1µ2p2µ3p3µ1 . (3.40)

Colour dependence can be factored out of the vertex function,

V a1a2a3
µ1µ2µ3

(p1, p2, p3) = F a1a2a3Vµ1µ2µ3(p1, p2, p3) (3.41)

where F abc = −ifabc is the adjoint representation matrix, satisfying F iabF jba = CAδ
ij,

CA = N for SU(N). In a similar fashion to the propagators, our Ansatz for V is

designed so that it can be easily made to converge to its perturbative form at large

momenta. We will separate the various contributions to V much like we did with

the propagators,

gVµ1µ2µ3 = g
(
V (0)
µ1µ2µ3

+ V B(1)
µ1µ2µ3

+ V NP
µ1µ2µ3

)
. (3.42)
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The tree-level and one-loop corrections are denoted by V (0) and V B(1), while V NP

denotes the non-perturbative correction to the vertex that has to solved for self-

consistently by finding the stationary point of Γ. The bare term, V (0) is simply

V (0)
µ1µ2µ3

= (p2 − p3)µ1gµ2µ3 + (p3 − p1)µ2gµ1µ3 + (p1 − p2)µ3gµ1µ2 (3.43)

which is expressed entirely in terms of cyclic permutations of the A tensor, i.e.

V (0)
µ1µ2µ3

= A(0)Aµ1µ2µ3 + cyclic perms. (3.44)

with A(0) = 1. The one-loop correction to the vertex V B(1) has a much more intricate

tensor structure

V B(1)
µ1µ2µ3

(p1, p2, p3) = AB(1)(p1, p2; p3)Aµ1µ2µ3 +BB(1)(p1, p2; p3)Bµ1µ2µ3

+ CB(1)(p1, p2; p3)Cµ1µ2µ3 + FB(1)(p1, p2; p3)Fµ1µ2µ3

+ HB(1)(p1, p2, p3)Hµ1µ2µ3 + SB(1)(p1, p2, p3)Sµ1µ2µ3

+ cyclic perms. (3.45)

and likewise for V NP. As we discussed above, we need the explicit forms of the

one-loop vertex corrections in order to eliminate logarithmic UV divergences in the

variational problem. We present explicit results for the one-loop vertices in Appendix

D and we use those results in the following.10 Note in particular that SB(1) = 0. How-

ever it remains to write variational Ansätze for V NP. Here we make no assumptions

10 Setting ωV = 1/4; this parameter serves an analogous purpose to ω0 as it appears
in the ghost propagator, see Appendix D, Eq. (85).
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about the vanishing of the coefficients for any of the tensorial structures. The func-

tions A, C and F are symmetric in their first two arguments, B is antisymmetric

in its first two arguments, H is fully symmetric and S is fully antisymmetric. We

respect these symmetry properties by choosing the following Ansätze:

ANP(p1, p2; p3) =
1

p2
1 + p2

2 + p2
3 + ω2

0

∑
i≥j a

{A}
ijk (pi1p

j
2 + pj1p

i
2)pk3∑

i≥j b
{A}
ijk (pi1p

j
2 + pj1p

i
2)pk3

(3.46)

BNP(p1, p2; p3) =
1

p2
1 + p2

2 + p2
3 + ω2

0

∑
i>j a

{B}
ijk (pi1p

j
2 − pj1pi2)pk3∑

i≥j b
{B}
ijk (pi1p

j
2 + pj1p

i
2)pk3

(3.47)

CNP(p1, p2; p3) =
1

p4
1 + p4

2 + p4
3 + ω4

0

∑
i≥j a

{C}
ijk (pi1p

j
2 + pj1p

i
2)pk3∑

i≥j b
{C}
ijk (pi1p

j
2 + pj1p

i
2)pk3

(3.48)

FNP(p1, p2; p3) =
1

p6
1 + p6

2 + p6
3 + ω6

0

∑
i≥j a

{F}
ijk (pi1p

j
2 + pj1p

i
2)pk3∑

i≥j b
{F}
ijk (pi1p

j
2 + pj1p

i
2)pk3

(3.49)

HNP(p1, p2, p3) =
1

p4
1 + p4

2 + p4
3 + ω4

0

∑
i≥j≥k a

{H}
ijk (pi1p

j
2p
k
3 + perms.)∑

i≥j≥k b
{H}
ijk (pi1p

j
2p
k
3 + perms.)

(3.50)

SNP(p1, p2, p3) =
1

p4
1 + p4

2 + p4
3 + ω4

0

∑
i>j>k a

{S}
ijk (εxyzp

i
xp

j
yp
k
z)∑

i≥j≥k b
{S}
ijk (pi1p

j
2p
k
3 + perms.)

(3.51)

which automatically have these symmetries built into them (εxyz is the permutation

symbol). Each sum is truncated so that (i+j+k) ≤ NV
max.

Notice that not all six tensors are of the same dimension; A and B have di-

mensions of [mass], C, H and S are [mass]3 and F is [mass]5. In every case the UV

behaviour of the vertex function must satisfy V B(1) ∝ 1 and V NP ∝ p−1. We enforce

the correct momentum scaling for the vertex functions by hand, so that the Padé

approximants are all O(1); this way, despite the individual dimensionalities of the

vertex functions, all of the Ansätze are the same “size.”
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The ghost-gluon vertex V is somewhat simpler. Factoring out explicit colour

dependence,

gVa1a2a3
µ3

(p1, p2, p3) = gF a1a2a3Vµ3(p1, p2, p3) (3.52)

with the outgoing ghost and gluon indexed by (a1, p1) and (a3, µ3, p3) respectively

(p1 flows outwards), we have

Vµ3(p1, p2, p3) = A(p1, p2, p3)p1µ3 + B(p1, p2, p3)p2µ3 , (3.53)

where

A(p1, p2, p3) = A(0) + AB(1) + ANP (3.54)

B(p1, p2, p3) = BB(1) + BNP, (3.55)

and

ANP =
1

p2
1 + p2

2 + p2
3 + ω2

0

∑
a
{A}
ijk p

i
1p
j
2p
k
3∑

b
{A}
ijk p

i
1p
j
2p
k
3

(3.56)

BNP =
1

p2
1 + p2

2 + p2
3 + ω2

0

p1

∑
a
{B}
ijk p

i
1p
j
2p
k
3 + (p2 − p3)

∑
a
{B}
ij pj2p

k
3∑

b
{B}
ijk p

i
1p
j
2p
k
3

(3.57)

In this case A(0) = 1, and as above, AB(1) and BB(1) are one-loop corrections (read

directly from Appendix D, Eqs. (86) and (87), modulo g2N).

The Ansatz for B is chosen so as to guarantee that limp1→0 B = 0, linearly in

p1. Let us briefly discuss this assumption, and our similar assumption that the ghost

self-energy Σ(p) ∝ p2 at small p. Both properties arise because the tree-level ghost

vertex V(0)
µ (p1, p2, p3) ∝ p1µ the outgoing ghost momentum. In any loop diagram

modifying V, with arbitrarily many loops, the outgoing ghost line, with momentum
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p1, always encounters a bare V, leading to a proportionality of the full diagram to

p1. This proportionality is automatic in the A term; we are also enforcing it in the B

term. One could argue that this argument assumes a strict diagrammatic expansion

and might be violated somehow when we fully resum. However, it is at least self-

consistent that B ∝ p1 (note that limp1→0(p2−p3) = 0 linearly in p1). And if it is,

this is enough to ensure that any vertex correction, with resummed as well as bare

vertices, is still always proportional to p1. Since the vertices are always proportional

to p1, the self-energy must also vanish at least linearly in p; but assuming that Σ(p)

is smooth at small p (which is true provided that there are no IR divergences in ghost

self-energy corrections), Σ(p) must in fact vanish quadratically in p. Building these

properties into our Ansätze improves the stability of the numerical extremization;

however we have also tried to solve the variational problem without these assumptions

(using Ansätze which allow B ∝ p0
1 and Σ(p) ∝ p0), with results which are consistent

with the assumed ∝ p1 and ∝ p2 behaviours.

3.4.1 Numerical implementation

Obtaining the solution in terms of the variational coefficients involves performing

three non-trivial tasks, which together can be referred to as the numerical implemen-

tation. These tasks are

• Tensor contraction and diagram generation

• Numerical integration over a 9D phase-space (three-loops)

• Using an extremization algorithm to locate the extremum of Γ.

Concerning diagram generation, the purely gluonic Mercedes-Benz is by far the

most complicated diagram. Each propagator has 2 tensorial structures, each vertex

105



has 14 (the permutations of the 6 structures described in the last subsection). An

inefficient tensor contraction would therefore contain 26144 = 2458624 terms. There-

fore it is important to perform the tensorial contractions carefully, building intermedi-

ate structures with the minimum number of terms. For instance, the Mercedes-Benz

can be regarded as

� =� ×� , (3.58)

which we will write as vertex contracted with triangle. The triangle can be rep-

resented in terms of a basis of 36 tensors (all three-index objects that can be con-

structed out of three momenta [two external and one loop] and the metric), and

likewise, the resummed vertex contains 14 distinct tensors (all three-index objects

that can be constructed out two momenta and the metric, due to momentum con-

servation). Specifically, the vertex after contracting the tensors associated with the

propagators is of the form

Vµ1µ2µ3
= Z001gµ1µ2

p1µ3
+Z010gµ1µ3

p1µ2
+Z100gµ2µ3

p1µ1

+ Z002gµ1µ2p2µ3+Z020gµ1µ3p2µ2+Z200gµ2µ3p2µ1

+ Z112p1µ1
p1µ2

p2µ3
+Z121p1µ1

p2µ2
p1µ3

+Z211p2µ1
p1µ2

p1µ3
+Z111p1µ1

p1µ2
p1µ3

+ Z221p2µ1
p2µ2

p1µ3
+Z212p2µ1

p1µ2
p2µ3

+Z122p1µ1
p2µ2

p2µ3
+Z222p2µ1

p2µ2
p2µ3

. (3.59)

With the vertex and triangle factored as such, standard algebraic packages can per-

form all of the remaining tensor contractions and simplifications.

In addition to drastically simplifying diagram construction, the use of these bases

allows for an economical use of floating point operations. The triangle is contained in

all gluonic derivatives of Γ; furthermore; the 36 triangle Z-coefficients are by far the
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largest polynomials contained within the problem. With the triangle expressed as

such, each of these 36 functions need only to be computed a single time at each point

in a 6D space of integration variables. This is important because high-dimensional

numerical integration will require of order 105 evaluations of each diagram per step

in the extremization procedure for Γ.

With the Lorentz algebra in hand, we turn to the problem of multidimensional

numerical integration. The first step is to choose a convenient basis for integration.

Our choice is described in Appendix E. Performing the global (Eulerian) angular

integrations, two-loop diagrams require a 3D integration and three-loop integrals

require a 6D integration. These happen to be the same as the number of propa-

gators in the bubble diagrams built with three-point vertices. And it is possible,

and convenient, to choose integration variables which are precisely the magnitudes

of the momenta on each propagator (this is a special feature of phase space integra-

tion in 3 dimensions, discussed in Appendix E). The most numerically challenging

integration is again the Mercedes-Benz topology. In the notation of Appendix E,

the three finite-range (angular) integrations, over k′, q′, and l, as well as the p in-

tegration, were performed using Gaussian quadratures, while the (infinite) k and q

momentum axes were rescaled into the unit interval and sampled using an array of
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points constructed with a quasi-random hopping Halton series [180].11 Our quadra-

tures procedure is symmetric over intervals, which ensures that certain cancellations

on angular integration are preserved, and it avoids edgepoint evaluations. Also, since

neither algorithm uses random or pseudorandom numbers or dynamic mesh refine-

ment, each integration evaluation is over exactly the same distribution of phase-space

points. This ensures that the effective action Γ is not “noisy” in the sense that it

does not fluctuate between evaluations with the same or almost the same choices of

propagator and vertex functions, a feature which is essential for conjugate-gradient

and other differential extremum seeking algorithms.

To test the stability of our algorithm against changes in the number of inte-

gration points, we computed the two-loop self-energy for particular values of full

propagators and vertices with varying numbers of integration points. As illustrated

in Fig. 3–3, the results converge when sufficiently many integration points are used.

Finally, as an additional check, our numerical procedure for performing three-loop in-

tegrals was tested against the known result for the bare massive three-loop Mercedes-

Benz in 3D [181], with which we find agreement.

Now that we have explained how numerical integrations can be performed, we

turn to the problem of extremizing the effective action Γ. One challenge is that,

because of gauge fixing and ghosts, the extremum is actually a saddle, rather than a

11 More specifically, we first write k = px/(1 − x) with x ∈ [0, 1). Then we write
x = 3y2−2y3 with y ∈ [0, 1) chosen with uniform weight. The former transformation
ensures that k, q, p are of comparable magnitude; the latter transformation increases
the sampling at the top and bottom relative to the middle of the range.
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Figure 3–3: Non-perturbative correction to ΠT . viz. Eq. (3.60), as a function of
the total number of integration points along the k, q, k′, q′ and l integration axes
(labelled in the bottom right corner).

maximum or minimum. This can be easily seen from the first line of Eq. (3.6), where

the gluon propagator G and the ghost propagator ∆ enter with opposite sign. With

the sign conventions chosen there, the extremum of the one-loop action with respect

to G is a maximum; with respect to ∆ it is a minimum. This rules out any straight-

forward application of the conjugate gradient algorithm. The Newton-Raphson al-

gorithm can find general extrema, but it is inefficient and tends to converge well only

in rather small basins of attraction. So some hybrid approach is needed.

Fortunately, despite it being not at all a priori obvious, one observes for the

most part that each individual function that makes up the extremization problem

has relatively little effect on the others. This opens up the possibility of iteratively

extremizing each constituent function (G, ∆, V and V). Our procedure was to
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start with vertices set to their one-loop values and propagators set to some naive

initial guess. Then we perform a conjugate gradient extremization with respect to

G, then a conjugate gradient extremization with respect to ∆ (with opposite sign on

the gradient).12 Iteratively extremizing G and ∆ solves the three-loop 2PI problem.

Then we use gradient descent to extremize Γ with respect to the three-gluon vertex

functions. Finally, the ghost vertex corrections are improved using the Newton-

Raphson method. Then the procedure is iterated (propagators and gluon vertices,

then ghost vertices) until convergence is achieved.

The convergence of the algorithm, when applied to the three-loop 2PI problem

in Landau gauge, is depicted in Fig. 3–4. The figure compares the Ansatz value for

the self-energies, ΠNP
T and ΣNP as defined in Eq. (3.37), Eq. (3.39), to the values

directly evaluated by summing the self-energy diagrams, ΠSD
T and ΣSD; in each case

we have removed the one-loop linear-in-p contribution. That is,

ΠSD
T ≡ Tµν(Π(1)

µν + Π(2)
µν )/(D− 1)− CTp, (3.60)

12 In practice we also accelerate this procedure as follows. We evaluate the self-
energy diagrams Π(p) at a sample of p values holding G fixed. Then we conjugate-
gradient extremize G in Eq. (3.31) but treating the self-energy Π as fixed. We
insert the new value of G into the evaluation of the self-energy and iterate. This
minimizes the number of evaluations of Π(p), the most numerically expensive part
of the procedure, needed to converge to the extremum. But the extremum obtained
by this procedure is the one which satisfies Eq. (3.31), as desired.
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Figure 3–4: Evolution of the self-energy under the gradient descent algorithm. Here
ΠNP is the non-perturbative self-energy according to the Ansatz, while ΠSD is the
value as determined by evaluating the self-energy diagrams. As the algorithm is
iterated, the Ansatz approaches a correct reproduction of the self-energy.
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and similarly for ΣSD (the notation SD is intended as a reminder that these quan-

tities are computed directly from the diagrams in the integral equations). The ex-

tremization procedure for the effective action with respect to one of the variational

coefficients in GT , Eq. (3.31), then corresponds to

δΓ

δcj
=

(D− 1)(N2 − 1)

2

∫
d3p

(2π)3

δGT (p)

δcj

(
−ΠNP

T (p) + ΠSD
T (p)

)
. (3.61)

Fig. 3–4 shows two things. First, even though the initial guess for the self-energy

falls quite far off the actual value, after relatively few iterations the fitted and true

values of the self-energy become similar, and the eventual convergence is excellent.

Second, the value of the self-energy ΠSD
T actually depends quite weakly on the precise

form of ΠNP
T (p). That is why our procedure of varying Γ with respect to individual

functions (rather than trying to do everything at once) works so effectively. The

presence of vertices definitely makes matters more complicated; however, it is also

observed that ΠSD
T (p) is fairly insensitive to their inclusion.

Eq. (3.61) should be interpreted as an Euler-Lagrange type of equation for Π,

and a vertex analogue can be defined as follows. For instance when ci belongs to the

gluon H-function, the variation of Γ takes on the following form

δΓ

δcj
=

∫
d3p

(2π3)

d3k

(2π)3

δHNP(p, k, x)

δcj

(
−H · V NP(p, k, x) + H · V SD(p, k, x)

)
, (3.62)

with

H · V NP(p, k, x) ≡

−(N2 − 1)Hµ1µ2µ3G
µ1ν1(p)Gµ2ν2(k)Gµ3ν3(x)

(1

6
Vν1ν2ν3 −

1

6
V (0)
ν1ν2ν3

)
(3.63)
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where the overall minus sign comes from the ordering of colour indices. H·V SD(p, k, x)

is defined in a similar manner, except that the term in brackets in Eq. (3.63) con-

tains all of the higher-loop terms in the vertex equation of motion, Eq. (3.10). The

values of H ·V SD(p, k, x) and H ·V NP(p, k, x) along the curve defined by k = p/4 and

cos θpk = 1/4 are plotted in Fig. 3–5. Fig. 3–6 contains plots of a similarly defined

set of quantities related to the ghost vertex.

The Ansätze in Figs. 3–4 - 3–6 correspond to NP
max = 3 and NV

max = 3, from

which we observe that the solution is well described by third order Padés. However,

the size of the Ansätze can have a major effect on the outcome of this technique.

With too few coefficients, the numerics are much simpler, but one is not able to

obtain the correct final answer. However, as the number of coefficients increases, the

problem becomes very numerically difficult (considering the relative ease with which

poles may form in the denominators of the Padé approximants). Furthermore, the

data will eventually be over-fitted as additional coefficients behave in a decreasingly

linearly-independent manner and the associated gradients become small. We find

that at NP
max = 3 and NV

max = 3 the problem is still not overly difficult to solve,

despite there being a total of 174 coefficients in Landau gauge (with an additional

33 in other gauges). At the same time we are not over-fitting. This choice is further

motivated by the general shape of functions we are attempting to converge to; the

presence of additional “wiggles” would necessitate larger Ansätze.

3.5 Results

The extremization procedure was carried out for several choices of the gauge

parameter ξ, namely 0.0, 0.5, 1.0 and 2.0. The resulting self-energies are shown in
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Figure 3–5: Vertex analog of Fig. 3–4 in Landau gauge, illustrating in this case
convergence of the H-function (see Eq. (3.62)) and the gluon vertex as a whole.
The values reside on the curve k = p/4 and cos θpk = 1/4. The figure on the left
corresponds to HNP = 0, whereas the figure on the right corresponds to HNP which
extremizes Γ. Note that the basis, Eq. (3.40), used for the vertex is not orthogonal,
so HNP = 0 does not imply that H · V NP 6= 0, as illustrated here.
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Figure 3–7: Transverse, longitudinal and ghost self-energies.

Fig. 3–7, and the gluon three-vertex functions A through S and the ghost three-

point functions ANP and BNP are plotted in Fig. 3–9, which shows the Landau gauge

results, and Fig. 3–10, which shows the results in Feynman gauge. The Landau gauge

variational coefficients are stated in Table 3–2. The results for ξ = 0.5 and ξ = 2.0

are qualitatively similar.

In Landau gauge, GL is zero, so it is not included in the variation; hence GL

and ΠL are depicted as zero in the plots. Furthermore, when the tensorial structure

Bµ1µ2µ3 is contracted against transverse propagators on all three legs, the result is

zero; therefore the coefficient B vanishes exactly in Landau gauge, though not in

gauges with nonzero ξ. The function S turns out to vanish in all gauges, consistent

with the claim in [182] that it should vanish at all loop orders.

The effect of including the vertices and allowing them to vary is shown in Fig. 3–

8, where we see a comparison between the 2PI and 3PI solutions. The inclusion of

the vertices only has a slight effect the resulting propagators.
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included) solutions. The correction to GT that we obtain when including the vertices
is indeed small (in Landau gauge). For reference, the strictly one-loop perturbative
result is shown in the middle panel in green.

The dependence of G, V , etc. on the choice of the gauge fixing parameter ξ does

not by itself indicate a breakdown or limitation on the 3PI approach. The relevant

question is, how dependent are gauge independent quantities on ξ, and how closely do

such quantities correspond to the non-perturbative values determined, for instance,

using lattice techniques? Any ξ dependence in gauge invariant quantities would be

an ambiguity, and any error in their value in comparison to lattice determinations

would be a failure, of the 3PI technique. We will further discuss this matter in

Chapter 4.

3.6 Discussion

3.6.1 Comparison with other approaches

The majority of the literature on this subject is centred around 4D Yang-Mills

theory; however, lattice studies (described shortly) have shown that Green’s functions

in 3D and 4D exhibit similar qualitative behaviour. Nevertheless, we will try our
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Figure 3–9: Vertex functions with ξ = 0.0, NP
max = 3, NV

max = 3, cos θp1,p2 = 1/4.

best to directly compare our results with those obtained in 3D, to the extent that

they exist.

The gluon propagator is an interesting quantity, despite not being directly re-

lated to any physical observable. GT as depicted in Fig. 3–8 violates reflection posi-

tivity, that is, it does not have a Källén-Lehmann representation in terms of a positive

spectral density. Hence, in (3+1) dimensions (or in our case (2+1) dimensions) GT
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Table 3–2: ξ = 0.0 variational coefficients

can not describe the correlations of physical particles. This violation of reflection

positivity is allowed despite its apparent contradiction with the Osterwalder-Schrader

axioms; after all, we are dealing with a confining theory, so there is no one-to-one

correspondence between fields and physical particles. This is further discussed in

greater detail in [183], but the main point is that it is been claimed this behaviour

signals confinement [184].
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The only propagating degrees of freedom that we can (in principle) observe are

colour singlet bound states, glueballs for instance. Hence, gluonic two and three-

point functions are not “physical,” and, in general the results we have presented are

ξ dependent, which is not necessarily a bad thing. Indeed our intention is to use the

formalism compute gauge-invariant observables.

However, in the mean time, we are can to an extent analyze 〈AA〉 and 〈cc̄〉 as

well as the vertices. Though arguably our best insight into IR QCD comes from the

lattice, there have been many notable first-principles based speculations about the

specific IR form of these functions. In general, the main point of contention is the

exact value of GT (0). The most popular schools of thought can be summarized as

follows:

The Gribov-Zwanziger confinement hypothesis

In his study on gauge-fixing and gauge copies in Yang-Mills theory [84], Gribov

proposed that at one-loop, the IR behaviour of the gluon and ghost propagators is

GT (p) ∼ p2

p4 +m4
, ∆(p)|p2→0 ∼

1

p4
. (3.64)

This form has the generic feature that GT vanishes at zero momentum, and moreover,

∆ experiences 1/p4 IR enhancement, which can possibly be interpreted as signalling

linear confinement (in 4D, of course). This form of GT and ∆ was later advocated

by Zwanziger, primarily because it vanishes at p = 0, which is in accordance with

his theorem that GT (0) (in Landau gauge) must vanish on any finitely spaced lattice

in the infinite volume limit [185].
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This proposal should be regarded as being fairly dated, and it is not in agreement

with any of the more recent lattice data. It also does not accord with the behaviour

we determine by solving the 3PI problem.

Schwinger-Dyson equations

These arguments [186] are based on obtaining solutions to a truncated set of

Schwinger-Dyson equations for the gluon and ghost propagators, and in a sense, are

very reminiscent of what we are doing here. If we assume power behaviour of the

gluon and ghost propagators in the infrared,

p2GT (p) ∼ (p2)κG , p2∆(p) ∼ (p2)−κ∆ , (3.65)

then [187] claims that κG, κ∆ must satisfy

κG = 2κ∆ + (4−D)/2 , (3.66)

and specifically in 3 dimensions κG = 0.2952, implying that the gauge field propaga-

tor goes to zero and the ghost propagator diverges more strongly than 1/p2. However

this result assumes that the loop integral giving rise to a self-energy at momentum

p is dominated by momenta of order p, whereas we find for small p that it is in-

stead dominated by momenta of order g2N . Therefore it is not clear to us that

this result of [187] is robust, see also [188]. It is also contradicted by more recent

studies [189, 190], which give results (in 4 dimensions) showing GT (p) going over to

a constant, and ∆(p) ∝ p−2, in the infrared. These studies are in at least qualitative

agreement with lattice investigations. However, since in general Schwinger-Dyson
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based approaches are reliant on many simplifying approximations, they have yet to

produce any quantitative agreement.

Observations from the lattice

There is a wealth of lattice data related to this subject, and fortunately, different

sources are generally in agreement. Simulations have been performed on very large

lattices (V = 964 [191, 192], V = 804 [193], V = 1284 and V = 3203 [194, 195, 196]),

from which one observes qualitative agreement between the results for 3D and 4D

(hence we will intermittently compare 3D and 4D data, but never 2D). The generic

finding is that p2∆(p)|p2→0 and GT (0) are finite and nonzero.

However, GT (0) is often seen to scale inversely with volume so it remains an

open question as to whether the Zwanziger hypothesis is observable, and it is not

known at what volume one should expect to see this effect. The results in Landau

gauge currently depict a 1/V α scaling for GT but it is generally not observed that

GT (0)→ 0 as V →∞.

All of the works cited above specifically employ the lattice implementation of

Landau gauge. In fact, it is only fairly recently that preliminary 3D and 4D results

in Feynman gauge have been made available [197].

In Fig. 3–11 our data is compared directly to the results in [194, 195, 196]. Their

calculation was performed for SU(2) on an 3203 3D lattice with β = 4/ag2 = 3.0. To

facilitate the comparison we have recast their results so momentum is scaled by g2N .

Their results are qualitatively similar to ours but differ quantitatively at the factor-

of-2 level in the deep IR. This might indicate a limitation of the large-N expansion,

or it might simply indicate a failure of the 3PI method.
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Figure 3–11: A comparison between the results of our calculation (GT (p) in Landau
gauge) and a reproduction of the plot of aD(p) (appropriately rescaled) in [196]. A
free 1/p2 propagator is shown for reference.

3.6.2 Slavnov-Taylor identities

Planar diagrams on their own form a gauge-invariant subset of the full loop

expansion [198]. One may hope that in resumming a “dominant” or “important”

set of planar diagrams (which is what we hope to be doing here) gauge-invariance is

approximately conserved. This can be measured seeing to what extent our resulting

two and three-point functions violate the Ward-Slavnov-Taylor (WST) identities.

For the gluon propagator, we have

pµpνGµν = ξ, (3.67)

with deviations from this identity shown in Fig. 3–12.
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In its most general form, the WST identity for the gluon three-vertex is

pµ1

1 Vµ1µ2µ3(p1, p2, p3) =
F (p1)

J(p3)

(
p2

3gαµ3 − p3αp3µ3

)
Vα
µ2

(p3, p1, p2)

−F (p1)

J(p2)

(
p2

2gαµ2 − p2αp2µ2

)
Vα
µ3

(p2, p1, p3), (3.68)

where F and J are defined in this context as J(p) = p2GT (p) and F (p) = p2∆(p). V

with two Lorentz indices is given by

Vα
µ3

(p1, p2, p3) = gαµ3
a(p3, p2, p1)− pα3p2µ3b(p3, p2, p1) + pα1p3µ3c(p3, p2, p1)

+ pα3p1µ3d(p3, p2, p1) + pα1p1µ3e(p3, p2, p1) (3.69)

which is related to the usual ghost-gluon vertex via Vµ3(p1, p2, p3) = p1αVα
µ3

(p1, p2, p3)

(following once again with the decomposition in [178]). From this identity one obtains

pµ1

1 p
µ2

2 p
µ3

3 Vµ1µ2µ3(p1, p2, p3) = 0. (3.70)

With p̂µ ≡ pµ/p, the deviation from the vertex Ward identity is show in Fig. 3–13

for Landau gauge. As previously, the vertex is a function of 3 variables, so to make

a 2+1 dimensional plot we have fixed an angular variable to cos θp1p2 = 1/4.

3.7 Concluding remarks for Chapter 3

In this chapter, the propagators and vertices which extremize the three-loop,

three-particle-irreducible action of Yang-Mills theory in 3 dimensions were obtained.

This was achieved by writing a nonlinear variational Ansatz for three propagators

(ghosts and the transverse and longitudinal components of gluons) and for eight

vertices (two tensor structures for ghost-gluon vertices and six tensor structures for

three-gluon vertices). To avoid divergences it was necessary to add and subtract
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terms to one and two-loop self-energies; the added terms are computed in MS, the

subtraction renders the remaining numerical integrals finite. It was also necessary

to compute the first loop corrections to two-point and three-point functions at large

momentum explicitly and to incorporate these corrections into our Ansätze for those

functions.

Now, the next task is to test the resulting resummation against exact non-

perturbative results in 3D QCD or Yang-Mills theory in general by comparing the

values of gauge invariant questions. As mentioned previously, this matter will be

approached by extending the treatment to include a fundamental representation

scalar with the goal of exploring the 3D SU(2) + Higgs phase diagram, which can

also be determined non-perturbatively on the lattice [163]. Based on the observation

that the inclusion of vertices results in comparatively small corrections to two-point

function (at the expense of significantly increased numerical complexity), we will

attempt to resolve the Green’s functions in SU(N) Higgs theory in the three-loop

2PI formalism. This is to be explained in detail throughout the next chapter, but

in short, a treatment of a symmetry broken phase using a similar approach to that

presented here will bring about a whole new set of numerical challenges; by using

the 2PI formalism we can focus on these issues.

It is worth remarking, though, that there are a few possible alternative routes

that could be taken involving a study of the pure gauge theory. For instance, one

could attempt an evaluation of the 〈F 2(x)F 2(0)〉 correlator, whose Fourier transform

gives the lowest glueball mass. It might also be possible to evaluate the correlator

of two field strengths connected by a Wilson line, which is of interest in evaluating
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the Debye screening mass in full QCD [95, 199]. Unfortunately it is not possible to

compute the pressure of 3D Yang-Mills theory at the 3PI level, because the nontriv-

ial contributions to the pressure arise at four-loops. Evaluating the pressure would

require a solution to the four-loop 3PI or 4PI problem. Extending this approach

to the four-loop 4PI treatment would not raise any new conceptual issues, since all

potential UV divergences in the extremization procedure are already encountered at

the level of the three-loop 3PI problem. It would be interesting to do so because the

non-perturbative contribution to the pressure of 3D Yang-Mills theory is needed to

compute the g6 term in the pressure for full QCD [47, 200]. However the extension

to four-loops and 4PI would be prohibitively difficult because the diagram genera-

tion and loop integration would become even more cumbersome and the number of

possible tensor structures for the four-point function is large.
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CHAPTER 4
2PI resummation in SU(N) Higgs theory

4.1 Introduction: the phase diagram of SU(N) Higgs theory

In Chapter 1, Section 1.4.1 we motivated the study of three dimensional non-

abelian gauge theories by their relationship to electroweak theory and QCD via

dimensional reduction [36, 80, 98, 99, 175]. To quickly summarize: QCD at high

temperature T � ΛQCD exhibits a natural separation of scales g2T � gT � T , so

that non-zero bosonic and all fermionic Matsubara modes become heavy compared

to the soft scales of the theory. These modes can be integrated out to obtain an

effective 3 dimensional description of the soft physics, which is precisely SU(3) Yang

Mills coupled to an adjoint real scalar with gauge coupling g2
3D = g2

4DT and mass

m2
A = g2(N/3 +Nf/6)T 2 (identified with the 0-mode of the A0 component of the 4D

gauge field). If one is only interested in physics at the supersoft scales, this can be

taken one step further by integrating out the A0 field to yield pure 3D Yang-Mills.

Yang-Mills theory, QCD and electroweak theory are known to undergo a phase

transition [33, 39, 72, 201] over certain ranges of the model parameters. Naturally,

for physical values of these parameters, one would ask whether we are in a first order,

second order or cross-over regime. 3D effective models could potentially shed some

light on this matter, except that for QCD, where the effective 3D description is an

SU(3) + adjoint Higgs theory, Tc ∼ ΛQCD. Thus, in the vicinity of the QCD phase

transition (or cross-over) the effective description breaks down, since the underlying
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assumption of weak 4D coupling and a separation of scales is not valid. A 3D effective

model is still useful for studying the non-perturbative infrared dynamics of hot QCD,

just not at temperatures in the vicinity of the scale ΛQCD. However, the situation is

different for electroweak theory near its phase transition.

The most general effective 3D description of electroweak theory is an SU(2) ×

U(1) gauge theory coupled to both fundamental and adjoint scalars. The adjoint

scalars arise via the dimensional reduction, while the fundamental scalar is identified

with the 4D Higgs field. In practice, an accurate study of the 4D theory does not

require such elaborate field content; rather, quantitative predictions can be made

by considering the much simpler SU(2) + fundamental case [77, 162, 163, 202, 203].

Then, as a further refinement, one may study the effects due to the inclusion of

an adjoint field [204, 205], as well as a U(1) gauge field [75]. Or, in the context of

GUTs, the model with an SU(5) or SU(3) × SU(2) gauge group may be of interest

[206, 207]. These models have received a fair amount of attention in the past due

to the significance of a phase transition on electroweak baryogenesis [150, 208]. For

the models considered, a first order phase transition at physical values of the Higgs

mass has been ruled out.

The phase diagram of SU(N) Higgs theory (as shown in Fig. 4–1) is often

parametrized by the dimensionless variables x and y. These are respectively the

ratios of the quartic coupling and scalar mass to the gauge coupling. Their values

are specified by the physical parameters of the 4D theory, which are essentially mH,

mW and T , as well as the 4D gauge coupling. Thus, a region in the 4D parameter

space maps directly to a region in 3D. In terms of the 3D vocabulary, for x . 1/10 the
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y

(xc, yc)
yc

yc+

yc−

Figure 4–1: Phase diagram for SU(N) Higgs theory, showing a first order line ter-
minating at a critical point. The dashed lines indicate the appearance of metastable
configurations in the effective potential.

theory undergoes a first order phase transition, and as x is increased, this becomes

a cross-over. Small “x” actually corresponds to small mH relative to the physical

value, so the analogous 4D statement is that for small mH (30 GeV for instance),

the electroweak phase transition is first order. For a physical value of mH, however,

we find ourselves in the cross-over region. In 3D we refer to these two phases as a

Higgs phase and a symmetric phase; when they are separated by a phase-boundary,

they are distinct.

At small x the phase transition can be studied perturbatively by computing the

one-loop effective potential for the Higgs VEV. Indeed one finds that in this region,

the phase transition is first order. However, the perturbative treatment then goes

on to predict a first order phase transition for all values of x! The limitation of

this approach becomes apparent when one considers the fact that the perturbative

spectrum for a spontaneously broken gauge theory is fully dependent on the choice

of gauge-fixing. Since a critical end point exists at a value of x ∼ 1/10, we can infer

that the perturbative description can only be valid for x� 1/10.
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Therefore, the end point and cross-over must be resolved non-perturbatively.

Since the lattice has already provided us with a very accurate determination of the

phase diagram, we are able to use these results to test the reliability and accuracy of

an alternative non-perturbative approach to the lattice, namely that of nPI resum-

mation [113, 118, 147] in a gauge theory setting. In this chapter we will study the

application of the nPI (specifically 2PI) formalism to SU(N) Higgs theory.

To quickly review, in the context of a hot gauge theory, the use of an nPI

based resummation scheme is primarily motivated by the extremely poor convergence

of a weak-coupling expansion [102], since it provides a systematic procedure for

reorganizing a perturbation series. In the past, resummations of this sort have been

applied to the computation of sub-leading corrections to transport coefficients and

thermodynamic quantities in QED [209, 210, 211, 212] and QCD [213]; in QCD

other previous applications include HTL resummation [170] and the potential study

of aspects of confinement [214]. Furthermore, of particular relevance to this work, the

2PI formalism has been used to study critical phenomena in scalar theory [215]. In

Chapters 3 and 4 we are approaching the subject along a different trajectory, in that

by applying the nPI formalism to SU(N) Higgs theory our goal is to directly solve the

resulting integral equations of motion, and then subsequently derive gauge-invariant

quantities from the solutions.

An nPI effective action Γ[φ̄, G, ...] generates equations of motion for n-point

resummed vertices by variation with respect to these n-point functions (reminiscent

of and closely related to SD equations). For reasons explained in Chapter 3, Section

3.7, we will specifically consider a three-loop truncation of the case n = 2, which
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in terms of diagrams can be interpreted as resumming one and two-loop self-energy

topologies. By solving the resulting self-consistent equations, we can subsequently

compute the gauge-invariant scalar condensate 〈φ†φ〉 as a function of the parameters

x and y on the phase diagram. Then, at a specific value x, from the behaviour of

〈φ†φ〉 over a range of y we can infer whether or not we are in the cross-over or first

order phase transition region. This will allow us to bracket and locate the critical

end point.

We will present the technical details of the computation for a single complex

scalar field in representation R of SU(N). Results will be given for N = 2 (funda-

mental representation) in Landau and Feynman gauges, however it should be noted

that the method straightforwardly generalizes to the inclusion of additional scalar

fields.

This chapter is organized as follows: in Section 4.2 we will present the three-loop

truncated 2PI effective action for SU(N) Higgs theory, as well as the self-consistent

equations that it generates. Additionally, some details pertinent to regularization

and renormalization will be reviewed here. In Section 4.3 we will present certain

extensions to the algorithm described in Chapter 3 which are needed to solve the

2PI equations of motion numerically. In Section 4.4 we will give an overview of the

results, as well as derived quantities such as the scalar condensate and the location

of the critical end point. Finally, in Section 4.5, we will discuss the properties of the

effective action, and comment on the overall effectiveness of the method.
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4.2 SU(N) Yang-Mills + Higgs theory in the nPI formalism

4.2.1 General remarks and notation

It is useful to begin by reviewing a number of the basic conventions that are used

throughout this chapter. It should be assumed that T aR is a generator of some rep-

resentation R of SU(N). The fundamental and adjoint representations are denoted

by F and A respectively, and dR is the dimension of R, for instance dF = CA = N .

We have

Tr T aRT
b
R = TRδ

ab (4.1)

T sRimT
s
Rmj = CRδij, (4.2)

and additional group theory identities needed in this computation can be found in

Appendix A. Following gauge-fixing, the Lagrangian can be divided into a Yang-Mills

component and a Higgs component,

LYM =
1

2
TrFµνF

µν +
1

2ξ
(∂µAaµ)2 + ∂µc̄

a∂µca − gfabc∂µc̄acbAcµ (4.3)

Lφ = (Dµφ)†(Dµφ) + (m2 + δm2)φ†φ+
λ

2
(φ†φ)2 (4.4)

so that L = LYM + Lφ (in general covariant gauge as written). We define the

dimensionless ratios

x =
λ

2g2
y =

m2

g4
, (4.5)

these quantities are equivalent to those specified in [162] which are commonly used

throughout the literature. In Eq. (4.4) an additive counter-term has been explic-

itly included to cancel the divergent two-loop self-energy graphs (its value is given
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in Appendix C). This leads to a scale dependence in m2 and y accordingly; for a

fundamental SU(2) Higgs we have

dy

d log µ
= − 1

16π2

(51

16
+ 9x− 12x2

)
. (4.6)

The renormalization scale is fixed at µ = g2 throughout. To compare our results to

those obtained from the lattice, we should state the relationship between the variables

x and y and the parameters of the 4D theory. Once again for SU(2), directly quoting

the result in [162],

x = −0.00550 + 0.12622
( mH

80.6GeV

)2

(4.7)

y = 0.39818 + 0.15545
( mH

80.6GeV

)2

− 0.00190
( mH

80.6GeV

)4

− 2.58088
m2

H

T 2
(4.8)

assuming a value of g4D = 2/3 for the 4D gauge coupling.

4.2.2 The three-loop 2PI effective action

The 2PI effective effective action Γ[Gij] is formally defined as the Legendre

transform of the generating function of connected diagrams W [Kij] with respect to

a two particle source [147]. Using the generic label Φi for fields, W [Kij] reads

W [Kij] = − log

∫
D[Φ]e−S−

1
2

ΦiKijΦj . (4.9)

Even correlation function can be obtained by differentiation with respect to Kij. For

instance,

δW [Kij]

δKij

=
1

2
Gij (4.10)

yields the two-point function Gij. For the two-point functions of SU(N) Higgs theory,

we can assume that Gij is proportional to the colour identity of the corresponding
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species, and hence so is Kij. Then, for a rotationally symmetric Lagrangian

〈Φi〉 =

∫
D[Φ] Φi e

−S− 1
2

ΦiKijΦj∫
D[Φ] e−S−

1
2

ΦiKijΦj
= 0. (4.11)

I.e., the presence of Kij does not alter the global rotational invariance of the original

Lagrangian. So in fact, Eq. (4.10) generates the connected two-point function. The

consequences of this statement in the context of a spontaneously broken gauge theory

will be discussed towards the end of this section, but for now we can proceed with

the Legendre transform

Γ[Gij] = Kij
δW [Kij]

δKij

−W [Kij]. (4.12)

In setting Kij = 0, equations of motion for Gij are obtained from the stationarity

condition

δΓ[Gij]

δGij

= 0. (4.13)

The solutions we seek correspond to extrema of Γ[Gij]. Specializing now to the field

content of SU(N) Higgs theory, we can write Γ = ΓYM + Γφ and explicitly state

the loop expansion, which we will truncate at three-loops. ΓYM is defined so that

it contains those diagrams encountered in the pure Yang-Mills problem while Γφ

contains the additional diagrams which arise when a single arbitrary representation

Higgs field is included. Using a diagrammatic notation compatible with the previous
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chapter (see Chapter 3, Table 3–1)

Dµν =� (4.14)

∆ =� (4.15)

G =� , (4.16)

for now we can assume a similar set of Ansätze to those used previously

Gµν(p) =
1

p2 − ΠT (p)
Tµν +

ξ

p2 − ξΠL(p)
Lµν (4.17)

∆(p) =
1

p2 − Σ(p)
(4.18)

D(p) =
1

p2 +m2 − Πφ(p)
. (4.19)

All vertices appearing in the 2PI effective action are at tree-level. These are drawn

as

�
p3, a3, µ3

p4, a4, µ4

p1, a1

p2, a2

= g2Va1a2a3a4
µ3µ4

(p1, p2, p3, p4) (4.20)

with the corresponding expressions given in Appendix B. Finally, the Higgs mass

renormalizes at two-loops; it is necessary to subtract the divergence with an additive

counter-term of the form m2 = m2
φ + δm2, with the corresponding vertex

� = −δm2. (4.21)
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Explicitly factoring out minus signs due to ghost loops, we have

ΓYM =
1

2
Tr logD − 1

2
Tr[D(0)]−1D − Tr log ∆ + Tr[∆(0)]−1∆

+
1

12� +
1

8� − 1

2�
+

1

48� +
1

24� +
1

8�
− 1

3� − 1

4� . (4.22)

For an n-loop pure Yang-Mills planar diagram, the tracing over internal colour indices

generically results in an overall colour factor of (N2−1)Nn−1. Furthermore, since an

n-loop vacuum bubble is also proportional to g2(n−1), one finds as earlier that factors

of g2 always appear in the form of ’t Hooft coupling g2N . Hence, for the pure gauge
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problem, the natural scale is not g2, but rather g2N . The Higgs contribution is

Γφ = Tr logG− Tr[G(0)]−1G

+
1

2� +
1

2� +
1

2�
+

1

8� +
1

4� +�
+

1

3� +
1

4� + 	 . (4.23)

These diagrams have a somewhat more complicated dependence on N (the associated

colour factors are stated in Table 4–1). In the previous chapter, as there was only a

single mass scale present in the planar pure Yang-Mills problem (namely g2N), we

opted to express all dimensionful quantities in units of g2N . With scalars present,

this is no longer the case, and as a result there is a significance to the specific value

of N . For clarity, units of g2N will be explicitly stated throughout this chapter.

The power of the 2PI formalism becomes apparent when we perform the vari-

ation of Γ with respect to GT , GL, ∆ and D. For instance, from δΓ/δD = 0, we

have

−D−1(p) +D(0)−1(p) = Πφ(p) (4.24)
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���
a b c

�����
A B C D E

(a) dATR
(b) 2dATR
(c) dR(1 + dR)
(A) dATR(CR − 1

2
CA)

(B) 1
2
dATRCA

(C) dATR(2CR − 1
2
CA)

(D) 2dR(1 + dR)
(E) dATR(4CR − CA)

Table 4–1: Colour factors for the two and three-loop Higgs topologies; see also
Appendix A.
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with (omitting charge arrows)

Πφ(p) =

�
+

�
+

1

2�
+

�
+

�
+ 2

�
+

1

2�
+

1

2�
+

	
+



.(4.25)

Equations of the type Eq. (4.24) / Eq. (4.25) have been generically referred to in this

chapter as 2PI equations of motion, and the topologies which appear in Eq. (4.25)

correspond to the loop order of the truncation of the effective action. By solving this

equation self-consistently in a three-loop truncation, we fully resum one and two-loop

self-energy topologies to all orders.

As in Chapter 3, Eq. (4.25) contains terms that are linearly and logarithmically

divergent; in dimensional regularization, only the logarithmic divergences appear ex-

plicitly as 1/ε’s, and these are subtracted by the counter-term. This implies that

the entire computation must be performed in MS, which requires the analytic con-

tinuation of these integrals to D dimensions. The regularization procedure which

we adopt is described at length in Chapter 3, Section 3.3; to quickly recap the key
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points, consider the tadpole graph

A = − 1

λ(dR + 1)

�
=

1

µ̄2ε

∫
dDq

(2π)D
D(q) (4.26)

with µ̄2 = µ2eγ/4π, and D = 3 + 2ε. Since D(q) is an arbitrary function of q, this

integral would need to be performed numerically; in doing so we must set D → 3.

To implement dimensional regularization, we adopt a procedure of “addition and

subtraction,” as follows,

A =
1

µ̄2ε

∫
dDq

(2π)D

(
D(q)− 1

q2

)
+

1

µ̄2ε

∫
dDq

(2π)D

1

q2
. (4.27)

The rightmost term is simple enough that it can be computed analytically (in MS

its value is zero), and the leftmost term is now only logarithmically divergent. Thus,

we have removed the linear divergence by subtracting 1/q2, and now the next step

is to remove the logarithmic one. At large momenta, and near 3 dimensions, D(q)

can be expanded as

D(q) ∼ 1

q2
+
g2CR

(
1 + ε(1− ξ − log 4)

)
4µ2εq3−2ε

+O
( 1

q4

)
(4.28)

where we have been careful to keep O(ε) corrections in the 1/q3 term. Now, we can

add and subtract the subleading term,

A =
1

µ̄2ε

∫
dDq

(2π)D

[
D(q)− 1

q2
− g2CR

(
1 + ε(1− ξ + log 4)

)
4µ2ε(q2 + ω2)3/2−ε

]

+
1

µ̄2ε

∫
dDq

(2π)D

1

q2
+
g2CR

(
1 + ε(1− ξ − log 4)

)
4µ̄2εµ2ε

∫
dDq

(2π)D

1

(q2 + ω2)3/2−ε . (4.29)
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The first line of Eq. (4.29) is finite, so we can set D = 3 and perform the integral

numerically. What we have effectively done is shuffled all of the ε dependence into

terms which can be integrated analytically. Thus the regularized expression for A

has the form

A =

∫
d3q

(2π)3

[
D(q)− 1

q2
− g2CR

4(q2 + ω2)3/2

]

+
g2CR

(
1 + ε(1− ξ − log 4)

)
4(4π)3/2eεγΓ(3/2− ε) Γ(−2ε)

(ω
µ

)4ε

. (4.30)

We can then subtract the 1/ε divergence with the counter-term, and take the limit

ε → 0. Note here that the subleading term appears with a mass ω. Its value is

arbitrary, but it must be included, otherwise one would introduce an IR divergence

where originally there was none. For simplicity, we can set ω = g2N noting that the

final results of the calculation are ω independent. Though it is certainly permitted,

it is not a requirement that ω be set to the scalar mass m (and our reasoning for not

doing so is explained in Appendix C).

Other diagrams which appear in Γ are regularized in much the same fashion. In

the end we need to compute all of the one and two-loop gluon and Higgs self-energy

diagrams which appear in perturbation theory (ensuring that IR divergent diagrams

are not introduced inadvertently); the results of this computation are contained

in Appendix C. Following regularization, full expressions for the 2PI equations of

motion will take on a similar form to e.g. Chapter 3, Eq. (3.30).

4.2.3 Remarks on gauge-fixing

Since the perturbative spectrum of the gauge-fixed action Eq. (4.3) and Eq. (4.4)

corresponds to the symmetric phase, the effective action as presented should at least
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be suitable to study that phase. One would then ask, what is the correct way to treat

the Higgs phase? In perturbation theory, this question essentially reads how should

we handle the appearance of one-point functions? This was addressed in Chapter 1,

Section 1.3.2 where we saw that the way to treat spontaneous symmetry breaking

perturbatively is to define a shifted scalar field, where the shift breaks a subset of

the generators of the gauge symmetry. The disadvantage there is that the resulting

perturbative spectrum depends on the gauge-fixing.

So, what we really mean to ask is, what is the correct way to treat the Higgs phase

non-perturbatively, from the perspective of the nPI formalism? Let us consider the

conventional definition of the one-point function; we would need to go back and

include a one-particle source in Eq. (4.9),

W [Ji, Kij] = − log

∫
D[Φ] e−S−JiΦi−

1
2

ΦiKijΦj (4.31)

keeping the “symmetric phase” action in W . The value of W [0, 0] is gauge-invariant

[146], and in simply stating the path integral, gauge-fixing is not required. However,

for non-zero values of Ji, gauge-invariance is explicitly broken. Supposing then that

we are in the Higgs phase in Landau gauge, the path integral will be dominated by

field configurations with Φi 6= 0. Furthermore, by introducing a finite Ji we have also

explicitly broken the global rotational invariance (which was maintained in Landau

gauge), and hence we have assigned a preferred direction to the scalar field. In this

set-up, we can interpret the gauge-fixed one-point function as a directional derivative

〈Φi〉 =
δ

δJi
W [Ji, 0]

∣∣∣
Ji→0(ϑ)

(4.32)

143



where 0(ϑ) means “zero is approached along a direction ϑ on the manifold of SU(N)

rotations.” In the symmetric phase, W is analytic at J = K = 0, so an approach

from any direction will yield the same result, consistent with a zero VEV. In the

broken phase, W is expected to develop a conical singularity, so the direction has a

significance.

The main point here is that a treatment of the broken phase involving VEVs

is inherently gauge-dependent, and hence perturbative. Since we are attempting to

tackle the problem non-perturbatively, we will opt to avoid introducing a one-particle

source altogether (reminiscent of the approach in [216]). As mentioned earlier, co-

variant gauge-fixing maintains rotational invariance. This is left undisturbed by the

non-zero values of Kij assumed in deriving the effective action, since the 2PI equa-

tions of motion are diagonal in colour indices. Kij commutes with global SU(N)

rotations, and we are taking the limit K → 0 along that direction. Hence there is no

preferred orientation in field space. The path integral Eq. (4.9) may be dominated

by field configuration with Φi 6= 0, but these are weighted over equally. So now, the

statement 〈Φi〉 = 0 in terms of Ji should be interpreted as

0 =

∫
Dϑ

[
δ

δJi
W [Ji, 0]

∣∣∣
Ji→0(ϑ)

]
(4.33)

and we can think of the constraint Dij(p) ∝ δij as a gauge choice. Then, the exis-

tence of a broken phase would rather be encoded in the connected scalar two-point

function. Neglecting gauge fields for the moment, the corresponding scalar correlator
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(schematically)

D(y − x) ∼
∫
Dϑ

〈(
φ†(y) + v∗(ϑ)

)(
φ(x) + v(ϑ)

)〉
(4.34)

approaches a constant at large separation in the broken phase. In momentum space,

this would correspond to the formation of a δ-function peak at zero momentum in

D(p). However, when gauge fields are present, the scalar propagator is not a gauge-

invariant correlator, as Eq. (4.34) does not contain a Wilson link (and therefore,

there is no parallel transport between the points x and y). We anticipate that D

in Landau gauge would exhibit potentially long (but not infinite) range correlations,

and in momentum space, this would correspond to a finite-width peak.

To study SU(N) Higgs theory in the Higgs phase via the 2PI effective action we

are essentially seeking solutions of Γ[D] which develop a peak-like structure, whose

width and height are determined self-consistently. In effect, we are observing the

phase transition directly from the scalar condensate, which is proportional to the area

under the peak in D(p). This approach is inherently non-perturbative, in spite of the

necessity to fix a gauge. Also, by construction the Higgs and symmetric phases are

analytically connected, consistent with [72] (assuming fundamental representation

matter). The procedure is very analogous to what is done in the 1PI formalism,

where one can infer the existence of stable or metastable configurations by seeking

out the extrema of the 1PI effective action computed to some loop order.

The main potential drawbacks of the nPI approach here and in general are com-

putational complexity and potential issues related to the gauge-fixing independence

of a selective resummation when applied to a gauge theory [115, 116]. Computational
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complexity arises from the sheer size of the algebraic expressions for the diagrams

involved following tensor contraction and reduction to scalar integrals. Whereas, the

issues related to gauge-fixing independence are the reason why we need to include

a longitudinal self-energy for the gauge fields. In resumming only a certain class of

topologies, we are guaranteed to omit diagrams at higher loop orders; this omission

leads to non-zero longitudinal contributions to the gauge field self-energy.

In performing this computation, we wish to mainly determine two things. First,

we would like to investigate the overall applicability of the 2PI method as presented

in studying Higgs phase. This involves resolving distinct symmetric and Higgs phase

solutions over a range of x and y on the phase diagram and determining the range

of x over which there is a phase transition or cross-over. Second, due to the gauge-

fixing requirement and finite loop order of the truncation, we are attempting to

determine the accuracy with which this method can be used to compute gauge-

invariant observables (i.e. the location of the critical end point) as well as the degree

by which these quantities depend on the gauge parameter.

4.2.4 The use of covariant gauge

Before proceeding onwards to the details of the computations, we should make

a few remarks on the choice of working in covariant gauge over specifically Rξ gauge

[88], which is often used in a perturbative treatment of spontaneous symmetry break-

ing. Recall from Chapter 1, Section 1.3.2 that Rξ gauge is based upon a redefinition

of the scalar field

φ(x) = χ(x) + v, (4.35)
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which we can visualize as a field which fluctuates about a constant background. The

quantity v is the scalar field VEV.

In a pure scalar theory, a configuration such as Eq. (4.35) with a non-zero

VEV is compatible with an ordered phase (analogous to the alignment of spins in

a magnetic system). In general, the existence of a broken phase for values of the

model parameters where classically the system is in a disordered phase (v = 0) can

be inferred from the existence of extrema at non-zero v of the effective potential of

the scalar theory, Γ[v]. Therefore, the quantity v is an order parameter.

However, in a gauge theory, we are free to perform a local gauge rotation on the

fields

φ(x)→ Λ(x)φ(x) (4.36)

which renders the VEV v physically meaningless. That being said, in a fixed gauge

we can still perturbatively construct an effective potential Γ[v], but it will be gauge-

dependent (so that we should really be writing Γ[v, ξ]) [87, 144]. Certain physical

quantities can be extracted from Γ[v, ξ], from which we can infer the existence of a

phase transition. For example, the value at its extrememum is gauge-independent

(though necessarily renormalization scale dependent); it is related to the generating

function W at vanishing source via Legendre transform. Γ[v, ξ] also contains infor-

mation about the scalar condensate [80]. However, the phases of the system should

not be inferred from the value of v at the extremum (which would imply that v is a

good order parameter), since v is not a physical quantity [217].

Gauge symmetry does not forbid a field redefinition of the form Eq. (4.35) though

such a shift results in a complicated perturbation theory, due to the appearance of
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crossed scalar / gauge field kinetic terms. The usefulness of Rξ gauge (perturbatively)

stems from the fact that it eliminates these cross-terms, which is achieved by defining

a gauge-fixing functional which is explicitly dependent on v.

The use of Rξ gauge in constructing an effective potential has been criticized

on the observation that one is effectively choosing a different gauge-fixing for each

value of v (see the discussion in Appendix A of Ref. [218]). Furthermore, the value

of v at the extremum is determined self-consistently via δΓ[vξ, ξ]/δvξ = 0. Since the

gauge parameter explicitly appears in the effective potential, v at the extremum will

in general depend on the gauge parameter ξ [87].

In the context of the nPI formalism, the use of Rξ gauge non-perturbatively may

present an ambiguity. That is, non-perturbatively, in addition to being dependent

on ξ, the VEV is determined via a self-consistency condition on the value of the

gauge-fixed one-point function obtained from the gauge-fixed path integral, viz.

v =

∫
D[Φ] φ e−S(ξ,v). (4.37)

In principle, this self-consistency condition does not have a unique solution.

Since we are seeking a non-perturbative resolution of the phase diagram, we

are motivated to simply sidestep the potential issues concerning the inclusion of a

VEV by working in covariant gauge [218, 219] and additionally not performing a

redefinition of the scalar field. We emphasize that the existence of a broken phase

should not be inferred from a non-zero value of v, but rather, should be determined

by gauge-invariant quantities.
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4.3 Extremization of the effective action

4.3.1 Variational Ansätze

In the previous chapter, we extensively described an algorithm which can be

used to extremize the effective action when only gauge fields are present. Now we

have to address the additional complications which arise due to the presence of a

Higgs field. In the symmetric phase, the presence of the Higgs does not really change

much at the technical level, and obtaining self-consistent solutions for the gauge field

and Higgs propagators proceeds much as earlier.

To begin, we will review the details of the functions which enter into the problem.

Since we have assumed a general covariant gauge, we are attempting to solve self-

consistently for the following 4 functions: GT (p), GL(p), ∆(p) and D(p), which

are respectively the transverse and longitudinal gauge field propagators, the ghost

propagator and the Higgs propagator. We can opt for the most part to simplify

the problem further by working in Landau gauge, where GL falls out of the picture;

however, computations in Feynman gauge do require a treatment of GL.

To realize the extremization, we will specify Ansätze for these functions in terms

of a set C = {ci} of variational coefficients, such that the variational equations

transform into

δΓ

δ{GT/GL/∆/D}
= 0→ δΓ

δci
= 0. (4.38)

In principle the set C needs to be infinitely large; however, in practice it suffices to

work with a finite number of coefficients. The size of C can be increased as needed

until convergence is attained. In terms of a finite number of coefficients, there are

many ways that we can specify an arbitrary function of p ∈ (0,∞). We will choose
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Padé approximants; for some {ai} ∪ {bj} ⊂ C, we will define

Rimax−jmax(p, {ai} ∪ {bj}) =
aimaxp

imax + ...+ a0

bjmaxp
jmax + g2N

. (4.39)

Then, for the symmetric phase two-point functions Eq. (4.17), Eq. (4.18) and Eq. (4.19),

we can parametrize the self-energies as follows

ΠT (p) = g2
(N(ξ2 + 2ξ + 11)

64
− TR

16

)
p+R0(p, {c{ΠT }i }) (4.40)

ΠL(p) = R0(p, {c{ΠL}i }) (4.41)

Σ(p) =
g2N

16

p2

p+ ωΣ

+R0(p, {c{Σ}i }) (4.42)

Πφ(p) =
g2CR

4

p2

p+ ωΠφ

+R0(p, {c{Πφ}i }), (4.43)

using third order Padé approximants as in the previous chapter.

The resulting self-consistent equations have the simple form ΠAnsatz
T (p) = Π2PI

T (p)1 (where

Π2PI
T (p) is the gluonic analogue of Eq. (4.25)) and similarly for ΠL, Σ and Πφ. Now,

to solve the problem in the Higgs phase, we can leave GT , GL and ∆ as is, and

introduce an additional term to the scalar two-point function as originally defined in

Eq. (4.19),

D(p) =
R0(p, {c{G}i })
pγ(p4−γ + ωG)

+
1

p2 +m2 − Πφ(p)
. (4.44)

1 Using the labels “Ansatz” and “2PI” to distinguish between the value of the Padé
approximant and self-energy functional constructed out of 2PI diagrams. This differs
from the previous chapter in that we are not explicitly subtracting the linear-in-p
one-loop self-energies.
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This Ansatz has the advantage that we can smoothly deform a Higgs phase solu-

tion into a symmetric one (where the leading term would vanish). This is a nec-

essary feature, as it allows us to demonstrate unambiguously when two distinct

solutions coexist, noting that we allow the leading term to vary even when we are

in the symmetric phase. In this expressions, γ could also be treated as a varia-

tional parameter, but we find that it works best2 to simply fix its value at γ = 2

(additionally, we fix ωG = g2N). The self-consistent equations for GT , GL and ∆

remain unchanged; however, for D we have −D−1(p) + D(0)−1(p) = Π2PI
φ (p) since

−D−1(p) +D(0)−1(p) 6= ΠAnsatz
φ (p) with the additional term.

The full self-energy should be interpreted in the UV as the sum of a one-loop

and additional non-perturbative higher loop corrections. Thus, the one-loop terms

appearing in Eq. (4.40) to Eq. (4.43) are specified by a perturbative calculation (the

exact details of which are given in Appendix C), and remain fixed throughout the

variation. This is actually a requirement; to see why this is the case, consider the

UV expansion of GT resulting from Eq. (4.40),

GT (p� g2N) =
1

p2
+

g2N(ξ2+2ξ+11)
64

− g2TR
16

p3
+O

( 1

p4

)
, (4.45)

as well as the variation of Γ with respect to c
{ΠT }
i

δΓ

δc
{ΠT }
i

= dA

∫
d3p

(2π)3

δGT (p)

δc
{ΠT }
i

(
− ΠAnsatz

T (p) + Π2PI
T (p)

)
. (4.46)

2 That is, upon variation γ is not observed to deviate to any significant degree
from γ = 2.
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As explained in Chapter 3, Section 3.3.2, by fixing the tree-levelO(1/p2) and one-loop

O(1/p3) behaviour in Eq. (4.45), the term in parentheses in Eq. (4.46) is automati-

cally O(1) at large momentum, while the derivative of GT is O(1/p4) (or milder, de-

pending on which coefficient we are differentiating with respect to). Hence, Eq. (4.46)

is finite. Finally, it is worth noting that at one-loop the inclusion of masses in bare di-

agrams is subleading in p relative to the massless diagrams; as we are not required to

impose any constraints on the two-point functions at O(1/p4), it suffices to compute

the one-loop corrections in the massless limit.

Since convergence to the perturbative limit is only necessary at large p, looking

back at Eq. (4.42) and Eq. (4.43), we opted to include the one-loop contributions with

an additional IR suppression factor of p/(p+ωΣ/Πφ). At sufficiently small momenta,

a linear term in the denominator of a propagator can lead to formation of a pole.

The gauge fields dynamically generate a mass that is sufficiently large to prevent this

sort of thing from happening so a suppression factor of this sort is not required. For

the Higgs and ghost this is not the case (in fact, the 2PI solution is consistent with

∆(p) ∼ 1/p2 as p→ 0). In solving the problem we will set, ωΣ = ωΠφ = g2N ; again

this is arbitrary, and does not affect the final result.

4.3.2 Initial conditions and root finding

To extremize Γ[GT , GL,∆, D], we employ and algorithm based on conjugate

gradient descent specialized to the problem at hand. We can visualize the root-

finding algorithm as a dynamical system where we choose an initial value for the

coefficients ci and subsequently follow a flow through the gradient field ∂Γ/∂ci until

we reach an attracting fixed point, which corresponds to a solution.
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For x below the critical end point, there is a region of metastability where two

attractors coexist; we will denote the corresponding solutions as D+ and D− (with

basins of attraction γ+ and γ− respectively). Solutions of theD+ variety are identified

with the symmetric phase, as they are characterized by vanishing R0 in Eq. (4.44);

i.e. they are essentially massive propagators with a self-energy. On the other hand,

the D− variety tend towards larger values of R0, and hence are characterized by a

peak at zero momentum. They are identified with the Higgs phase.

For an initial choice of ci in the region of (x, y) where two stable solutions

coexist, one does not necessarily evolve towards either the Higgs or symmetric phase

solutions. Due to the saddle-like behaviour of Γ, there is also a set of initial conditions

ci ∈ γ0 which evolve towards divergent values of D. This is to be discussed in greater

detail in Section 4.5 where we give an outline of the phase portrait of the system.

The number of iterations of gradient descent in the extremization procedure

(denoted by N ) can be thought of as time evolution, and we are interested in the

results at late times. We can observe convergence of the algorithm by plotting the

evolution of the LHS and RHS of the self-consistent equations with N ; this is shown

generically in Fig. 4–2. From this figure it is apparent that convergence is attained.

4.4 Analysis and results

We will from this point onwards carry out the analysis in Landau gauge (which

eliminates the longitudinal gluon propagator), and set N = 2 with the scalar field in

the fundamental representation. A comparison with the results in Feynman gauge

appears towards the very end, in Section 4.5.6. To summarize thus far, with the
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Figure 4–2: Evolution of the 2PI equations of motion under gradient descent, which
are solved when the points overlap in the above figures (the ghost equation is not
depicted, but it is qualitatively similar). The top panel corresponds to some initial
choice of variational coefficients, and at the bottom we see convergence at late times.
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Ansätze presented in the previous section parametrized by a set of variational coef-

ficients ci, the self-consistent solutions of the 2PI equations of motion

ΠAnsatz
T (p) = Π2PI

T (p) (4.47)

ΣAnsatz (p) = Σ2PI(p) (4.48)

−D−1(p) +D(0)−1(p) = Π2PI
φ (p) (4.49)

coincide with the node

∂

∂ci
Γ[GT ,∆, D] = 0. (4.50)

This equation in general is divergent, however, we have shown that potential diver-

gences are eliminated with a careful choice of Ansätze, and furthermore, those that

remain (which lead to renormalization) can be computed in MS. At this point, we

are ready to present the results and analyze the solutions of Eq. (4.50).

Solutions for the Higgs, gauge and ghost propagator are shown in Fig. 4–3

(Higgs) and Fig. 4–4 (gauge/ghost). These plots are generated for the specific value

of x = 0.125 (and a range of y); however, at generic values of (x, y) solutions (when

they exist) will take on either of these forms. On the bottom panel in Fig. 4–3,

we can distinguish between the divergent peak-like and massive behaviour of Higgs

(D−) and symmetric (D+) phase solutions. Furthermore, at x = 0.125, we observe

that Γ simultaneously admits two solutions over a range of y, which is evidence of

metastability. On the top panel of Fig. 4–3 we see that the symmetric phase D+

terminates. This occurs approximately at the value of y for which the difference

m2 − Πφ(0) changes sign. The gauge field propagator in Fig. 4–4 develops a non-

perturbative “mass”, and this is mainly due to the presence of the pure-glue diagrams.
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Figure 4–3: Evolution of the symmetric phase solution for Higgs two-point function
with increasing y at fixed x = 0.125 (top panel), and coexistence of symmetric and
Higgs phase solutions (bottom panel).
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Figure 4–4: Transverse gauge field and ghost two-point functions., showing non-
perturbative massive behaviour in GT .

Though difficult to read from the figure, for reference this mass3 in Landau gauge is

approximately m2
T ≈ g4N2/8.

Even though the most challenging and numerically intensive task that we face

is the direct computation of the propagators GT , ∆ and D from the self-consistent

equations (as in Chapter 3), these are no longer the objects that we are interested

in. Rather, what we are really interested in is the scalar condensate as a function of

x and y, which is an in principle gauge-invariant quantity derived from D(p). The

3 By this we simply mean the non-zero value of G−1
T (0) and not the location of a

pole. G−1
T (0) is gauge-dependent.
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bare scalar condensate is defined as

〈φ†φ〉 = − 1

V

d

dm2(µ)
log

∫
D[Φ] e−S, (4.51)

but since this expression is divergent it must be regularized with a counter-term.

For a given solution D(p) in either the Higgs or symmetric phase we will define the

subtracted condensate as

D±(x, y) =

∫
d3q

(2π)3

[
D±(q)

∣∣∣
x,y
− 1

q2
− g2CR

4(q2 + g4N2)3/2

]
. (4.52)

Due to the divergence in Eq. (4.51), D is dependent on the renormalization scale µ,

D(µ) =
3g2

32π2
log

µ

µ0

(4.53)

noting also the relative factor of 1/2 between Eq. (4.51) and Eq. (4.52). The value

of the renormalized condensate is therefore dependent upon the subtraction proce-

dure. However, the relative difference between the values at two points is neither

subtraction scheme dependent or scale dependent; i.e. it is observable.

Turning now to the phase diagram Fig. 4–1, the location of the critical end point

is denoted as (xc, yc). For x > xc the theory undergoes a cross-over; while for x < xc

there is a curve yc(x) along which a first order phase transition occurs (when x > xc,

yc(x) is still used to approximately indicate the middle-point of the cross-over). In the

vicinity of the first order line, there is a region of metastability yc−(x) < yc(x) < yc+(x)

(depicted in Fig. 4–1) where we would expect that Γ[D] simultaneously admits two

solutions. Returning to the dynamical system analogy, yc− and yc+ can be thought
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of as bifurcation points, leading the emergence and disappearance of attractors in

∂Γ/∂ci.

So, in terms of the condensate D, for the majority of the phase diagram D is a

single valued function of y, except in the region of metastability where it splits into

Higgs and symmetric phase branches. Plots of D(y) for x = 0.125 and x = 0.150

are shown in Fig. 4–5. In both cases we see a branch of symmetric phase solutions

which terminates at a critical value of y. Since the symmetric phase is not observed

below this value of y, we can identify this point with yc−. Additionally, at x = 0.125

there is a stable branch of Higgs phase solutions that does not exist above a different

critical value of y. For now we will identify this point with yc+.

While we observe the appearance of a stable Higgs phase solution at yc+ ' 0.120

on the x = 0.125 graph, at x = 0.150 this stable Higgs phase branch is not seen to

exist at all. Therefore, there is a value of x between 0.125 and 0.150 at which Γ makes

a change over between these two types of behaviours (said differently, at x = 0.125

there is an indication of metastability, whereas at x = 0.150 there is none). At a

qualitative level, we will associate this value of x with the critical end point. The

one peculiarity of Fig. 4–5 is that the stable D− branch terminates very abruptly at

the point yend, and before the point yc− is reached. For values of y < yend, the D−

attractor becomes unstable, i.e. there is a second bifurcation. Since this happens

smoothly, we can approximately locate the resulting saddle extrema for a small range

of y following this bifurcation, which as drawn in Fig. 4–5 is effectively the extension

of the D− branch to smaller values of y. When y > yend and consequentially, y > yc+,

unstable D− extrema are not observed. We will come back to this in Section 4.5.
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Figure 4–5: Evolution of D with y at fixed x, showing the appearance of stable
branch of Higgs phase solutions at x = 0.125. Unstable fixed points are drawn as
silhouettes.
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The curve in the top panel of Fig. 4–5 takes on a shape the resembles a hysteresis

plot. This hysteretic behaviour is not observed when x ≥ 0.150, and it is only

marginally existent at x = 0.140. In Fig. 4–6 we show the evolution of this hysteretic

behaviour for x = 0.100, 0.115, 0.125, 0.140 and 0.150 (noting that the corresponding

4D parameters are mH = 74, 79, 82, 86.5 and 89.5 GeV). The stable D− branch

exhibits a tendency to increases in size with smaller x.

Returning to Fig. 4–5, there are values of y where the Higgs and symmetric

solutions coincide. What we mean is that if we start with initial conditions which

resemble the Higgs phase, we will over time evolve towards to the symmetric phase

solution (noting that some initial conditions will also diverge). At values of y where

this occurs, we have evidence for the non-existence of a separate Higgs branch.

However, to reach this conclusion, we must ensure that the gradient descent algorithm

has converged, which in the vicinity of a critical end point, may in principle occur

very slowly. The N dependence of D− is shown in Fig. 4–7, with extrapolated values

of D(N ) obtained by fitting the curve

Dfit(N ) = A
e−N/τN

N δ
+ c . (4.54)

The graphs in Fig. 4–7 distinguish between the case where D+ and D− are

unique and the case where there is in effect only a symmetric phase D+ branch.

Convergence time depends on the initial conditions and in general the rate is affected

by the location (x, y). In some cases, it occurs very quickly (as in the top panel for

instance). However, when this is not the case, plots of D(N ) can be used to obtain

an estimate of the number of iterations needed to attain convergence. For instance,
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on the bottom panel, had we simply quoted the value at say N = 5 iterations, we

would have concluded that the D+ and D− solutions are distinct, when clearly this

is not the case.

4.5 Discussion

4.5.1 Location of the critical end point

The solutions of the 2PI equations of motion can be used to infer the properties

of the phase diagram in much the same manner as stationary points of the effective

potential. In both cases, we can identify stable extrema with the ground states of

the system. Then our location on the phase diagram can be read directly from the

content of plots like Fig. 4–5. For instance, along a fixed x trajectory with x < xc

and starting at y > yc+ we would be in the symmetric phase region of the phase

diagram, Fig. 4–1. In 2PI terms, this region is expressed by the convergence of

gradient descent to only a massive symmetric phase solution (or otherwise it may

diverge). I.e. for this range of y there is only one phase, as the effective action only

has one stable extremum.

Then as we cross yc+ from above, we enter the region of metastability. In 2PI, a

second stable extremum appears. One of these configurations would technically be

metastable, which provides evidence that a first order phase transition occurs at this

particular value of x.

The distinguishing characteristic that we observe between solutions with x .

0.150 and x & 0.150 is that for larger values of x, the second branch of a stable Higgs

phase solutions never appears. Thus there is a critical value of xc where the 2PI

effective action makes this transition. This is not a rigorous definition of the critical
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end point, but it is the primary qualitative evidence that the 2PI solutions provide

for the existence of critical end point in the underlying field theory, which appears

to be xc ' 0.150, (or mc
H ' 89.5 GeV).

The results presented nevertheless raise a few questions about what is actu-

ally taking place, since what we have observed in the 2PI formalism is not entirely

compatible with the layout of the phase diagram. To summarize the similarities

and differences between the known phase diagram of SU(N) Higgs theory and the

observed properties of the 2PI effective action:

• For x < xc we anticipate a stable symmetric phase solution which exists for all

values of y > yc−. This is precisely what we have observed.

• For x < xc we anticipate a Higgs phase solution which exists for all values of y <

yc+. We have observed a stable Higgs phase solution which exists only for values

in the range y ∈ (yend, yc+). The extremal point δΓ/δD = 0 corresponding to

the Higgs phase appears to continue to lower values y < yend, but it becomes

a saddle-node. The point yend does not have an analogue on Fig. 4–1.

• For x > xc we anticipate a stable symmetric phase branch that exists for all

values of y > yc which smoothly deforms into a stable Higgs branch when

y < yc, characteristic of a cross-over. Indeed we observe the first half of this

statement, but since Higgs phase solutions do not appear as stable attractors

for y < yc, it is difficult or impossible to smoothly resolve the cross-over. Higgs

phase solutions (stable or unstable) are not observed when y > yc.

• For x . xc, we expect to see a very weak first order phase transition and a

very small window of metastability, which is consistent with what we observe.
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• For x → 0 approaching the perturbative limit, we anticipate an increasingly

larger region of metastability and a strongly first order phase transition. We

find that the size of the metastability region and strength of the phase-transition

is weakly dependent on x (at least down to about x ≈ 0.075) and that the 2PI

method would not converge to the perturbative limit when x� 1/100.

So in fact, many of the properties of the 2PI solutions are compatible with the non-

perturbative region of the phase diagram in Fig. 4–1. The biggest issue though is

that solutions which should in principle be stable actually behave as saddle points.

The disagreement concerning convergence to the perturbative limit mentioned in the

last point and the saddle-like behaviour can be explained as an artifact of the loop

order of the truncation, as we will see.

4.5.2 Properties of the solutions

Throughout this chapter we have adopted the analogy that ∂Γ/∂ci is a dynam-

ical system with stable attractor(s) corresponding to the solutions. Then, initial

conditions generically evolve along the trajectories shown in Fig. 4–8, and the ap-

pearance and disappearance of attractors coincide with the points yc−, yc+ etc.

We can simplify this picture further by solely identifying solutions with their

corresponding values of D. Then, a flow through ∂Γ/∂ci would be projected to a

curve D(N ). Looking back at the x = 0.125 graph in Fig. 4–5, in this idealized

picture ∂Γ/∂ci behaves qualitatively like the 1D system in Fig. 4–9; some initial

conditions follow flows that converge to either of the attractors while others diverge.

The appearance and disappearance of the stable D− branch are shown as two back

to back subcritical pitchfork bifurcations, and the D+ branch ends in a saddle node
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Figure 4–8: Illustration of the basins of attraction for several ranges of y when x < xc.
Initial conditions in either the blue or white regions will evolve towards either the
symmetric or Higgs phase solution. As y is decreased, convergence is more difficult
to attain; eventually, all initial conditions diverge.
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Figure 4–9: Stability of the D+ and D− branches in the first order region, mimicking
the x = 0.125 graph in Fig. 4–5. Saddle nodes are drawn as dashed lines, while
stable attractors are solid. The evolution of D with N behaves qualitatively like a
1D system, where bifurcations cause the stable D− branch to appear and disappear.
Solutions which evolve downward below the y axis can be interpreted as having
formed a pole at finite p.
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bifurcation. We should remark as a cautionary note that in the 1D picture all saddle

nodes are necessarily stationary, which would imply that Higgs phase extrema exist

for y > yc+, where in fact, Higgs phase saddle points are not observed at large y. In

this regard, the visualization in Fig. 4–8 is more accurate.

The question remains, what exactly causes these solutions to appear, vanish or

change stability? Looking back at the self-consistent equations, at large momenta

the tree-level term is

Γtree[GT ,∆, D] =

Tr logD −DD(0)−1 +
1

2
Tr logGT −

1

2
GTGT

(0)−1 − Tr log ∆ + ∆∆(0)−1, (4.55)

which is solved trivially by D = D(0) etc. However, due to the alternating signs of the

ghost and gluon propagators, the solution even at tree-level actually corresponds to a

saddle point (the gluonic contribution opens downwards, and ghost opens upwards).

This situation remains unchanged upon the inclusion of higher loop diagrams.

In practice though, this does not present any additional challenges in solving

the problem. By observing that the ghost and gluon propagators are very weakly

dependent upon one another, this issue can be bypassed by iteratively adopting a

procedure of fixing one propagator and then extremizing with respect to the other,

and then vice versa. I.e., we fix GT , then solve for the corresponding ∆. We update

∆, fix its value, and then solve for GT , and so forth. This can be repeated until

convergence is attained.
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However, an actual challenge arises when we consider the contributions from the

pure scalar diagrams (omitting group theoretic factors),

−Γscalar[D] = −Tr logD +DD(0)−1 +
λ

2
DD − λ2

8
DDDD (4.56)

where we have flipped the overall sign to ensure that the tree-level term opens up-

wards. With the three-loop term present, Γ is unbounded from above and below.

To realize the latter, we simply have to make D arbitrarily large and positive as we

approach p = 0. But, this is precisely what we expect to eventually happen as we

evolve solutions deep into the Higgs phase.

As a remedy, if we assume that D has a relatively wide and small peak, then

the negative contribution made by the three-loop diagram is doubly suppressed;

it is suppressed by a relative power of x, and additionally, by what is essentially

the height-to-width ratio of peak. The two-loop diagram enters with the “correct”

overall positive sign and is not affected by the width of the peak, only its area. At

small x and D (which is proportional to the area under the peak) it can dominate.

This explains why the observed stability of D− only exists for a short range; as we

move further into the Higgs phase, the action will be extremized by solutions with

increasing D. Eventually this dominance will switch over to the three-loop graph,

resulting in saddle-like behaviour. This also accounts for a) why the stable branch

becomes slightly longer as x decreases and b) why at larger values of x the three-loop

diagram dominates for all y, driving the system to instability. This is essentially the

change in behaviour that takes place at xc.
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We will return to this point when we compare the results to the perturbative

limit. But for now, we will just comment that the main of consequence of a saddle-

shaped Γ is the existence of a region of parameter space (x, y) where there are no

stable solutions. For the D− branch, these were the points y < yend, and for the

D+ branch, y < yc−. This presents a computational challenge since there is actually

a relatively large set of initial conditions in a basin of repulsion γ0 where solutions

will diverge under evolution of gradient descent, corresponding to the trajectory

−Γ → −∞. Additionally, the basin of attraction of the Higgs phase solutions γ−

when it exists tends to be very small, further complicating matters.

4.5.3 Comparison with the lattice

Our original purpose in applying the 2PI formalism to SU(N) Higgs theory

was not specifically to determined the phase diagram (which is already known), but

rather, to test the accuracy with which nPI resummation is able to make predictions

about the non-perturbative sector of a non-abelian gauge theory. The nPI method

relies on approximating the effective action by its truncation at a finite loop order,

which results in a selective resummation to all orders of a certain class of topologies.

In a gauge theory, this induces gauge-fixing dependence [115, 116], since at least

perturbatively, one should include all diagrams at every loop order. This effect could

potentially be very mild, but a priori it is not clear that accurate results can be

obtained from this method anywhere on the phase diagram. The only way to test

the reliability of the approximation is to directly compute gauge-invariant observable

quantities.
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An overview of many of the pertinent results from 3D lattice studies of SU(2)

Higgs theory can be found in [78, 220]. In this section we will attempt a direct

comparison between lattice and 2PI determined values of xc, yc−(x) and yc+(x), citing

the results in [77, 162, 163, 202]. In doing so it is favourable to adopt the physically

motivated units of temperature T and 4D Higgs mass mH. To convert our values

of x and y to mH and T , we will make use of the relations Eq. (4.7) and Eq. (4.8)

(which we are adopting as a standard to keep the all conversions in this section uni-

form). We should remark though that not all authors use these exact conventions,

and furthermore, the quantities appearing in Eq. (4.7) and Eq. (4.8) are not strictly

speaking the physical pole mass of the Higgs field or physical temperature. How-

ever, in simply giving an outline of the 4D picture, the associated corrections are

unimportant.

Starting with the location of the critical end point, the authors of [163] make the

claim that it is bracketed by 70 GeV < mc
H < 95 GeV, and furthermore, they show

evidence for mc
H ' 80 GeV. In terms of x, this would correspond to 0.90 < xc < 0.17,

with xc ' 0.119. Ref. [202] improves this claim to xc = 0.102(2) with xc < 0.107(2),

corresponding to mc
H = 74.38 GeV, mc

H < 76.09 GeV. Finally, [77] offers the most

precise determination of xc = 0.0983(15), or mc
H = 73.09, by performing a careful

extrapolation to the continuum. The temperature at the critical end point is T c '

160 GeV.

The 2PI equations of motion (in Landau gauge) show qualitative evidence for a

critical point at 0.14 < xc < 0.15 with the corresponding range 86.5 GeV < mc
H <

89.5 GeV. Thus, the accuracy of the 2PI determined value of mc
H is comparable to
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x mH yc− T c−
0.100 73.68 GeV 0.1146 184.38 GeV
0.115 78.75 GeV 0.1156 193.10 GeV
0.125 81.96 GeV 0.1164 198.39 GeV
0.140 86.54 GeV 0.1177 205.62 GeV
0.150 89.46 GeV 0.1187 211.49 GeV

Table 4–2: Temperatures associated with the end points of the curves in Fig. 4–6.

that in [163]. Furthermore, the agreement with [77, 202] is at about the 20% level

in terms of the predicted value of mc
H, or, in terms of x, the associated error is 0.05.

Temperatures assigned to the end points of the symmetric phase solutions in Fig.

4–6 are listed in Table. 4–2. Since the associated values of T c+ are approximately 1

GeV greater than T c− (for the tabulated range of x), and furthermore T c− < T c < T c+,

values of T c− effectively give a prediction of the phase transition temperature T c to

within 1 GeV. As a comparison, in [162], the authors claim that with mH = 60 GeV,

T c = 138.38(5) GeV and mH = 70 GeV, T c = 154.52(10) GeV. The corresponding

values of y are yc = −0.00146 and yc = −0.0153. For larger values of mH = 120 GeV,

the lattice measured temperature rises to T c ' 213 GeV, according to [163]. We can

roughly extrapolate the trend in our data (Table 4–2) to higher mH, and we can

conclude that our results differ from the lattice data by about 20 − 50 GeV over

that range in mH. Similar to the 2PI determined values of mc
H, this represents an

accuracy of about 20% for predicted values of the phase transition temperature. In

terms of y, the associated error is about 0.12.
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We can also perform a rough comparison of the observed size of the metastability

window. For x = 0.125 (mH = 81.96 GeV), we have

(yc−, y
end, yc+) = (0.1164, 0.119, 0.120), (4.57)

with corresponding temperatures

(T c−, T
end, T c+) = (198.39 GeV, 198.98 GeV, 199.21 GeV). (4.58)

So, from our perspective, at an mH of about 6 GeV below the critical end point, the

metastability window is approximately 0.8 GeV wide. By comparison, at the much

smaller x = 0.064 (mH = 60 GeV, roughly 12 GeV below the actual critical end

point), the authors in [162] find (T c−, T
c
+) = (137.37(12) GeV, 138.72(15) GeV). Thus,

qualitatively speaking, the sizes of the windows of metastability that we observe are

comparable with those on the lattice over the non-perturbative range of x studied.

To summarize, the 2PI approach in Landau gauge shows evidence for critical

end point that differs from the true critical point with an error of about (∆x,∆y) ≈

(0.05, 0.12). Correspondingly, the predicted values of xc and T c are accurate to within

about 20%.

The discrepancy between the 2PI and lattice determined values of yc is poten-

tially an artifact of the gauge-fixing dependence. Recall that yc in the 2PI formalism

is roughly determined by the value of y where Πφ(0) −m2 changes sign. Moreover,

Πφ(p) is constructed out of diagrams that contain gauge field lines, which develop

a fairly large gauge-dependent mass mT . On dimensional grounds, for the values of

mT in the range we observe, Πφ(0) ∼ g2mT . This mass, as we have shown in the
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previous chapter, is dependent on the gauge parameter ξ, and hence the gauge-fixing

[221]. Since changing the mass of the transverse gluon propagator effectively shifts

the curve Πφ(p), the 2PI determined values of yc appear to carry the burden of the

gauge-fixing dependence inherent to the selective resummation. The dependence on

ξ via mT is quantitatively a mild effect, but then, any diagram that contains gauge

field lines will be in general explicitly dependent on the gauge parameter (recall that

the one-loop self-energy is proportional to ξ2 + 2ξ + 11). Since diagrams enter with

prefactors that are polynomials in the gauge parameter, this in general is not a small

effect. We will argue in the next section that the relevant Higgs diagrams which

affect xc do not contain any gauge field lines, and consequentially it appears the

corresponding dependence of xc should be very small, if not negligible altogether.

4.5.4 Comparison with perturbation theory

Going back now to Eq. (4.56), the three-loop diagram enters with a relative

minus sign so that it induces saddle-like behaviour in the effective action. However,

since it enters with the prefactor λ2, at very small x it becomes highly suppressed. It

would appear, then, that at small x solutions of the 2PI formalism should approach

the perturbative limit.

To see what happens perturbatively in Landau gauge, we can compute the one-

loop effective potential. For SU(2), parametrizing the VEV as

φ =
1√
2

 φ1 + iφ2

φ3 + gφ̄+ iφ4

 , (4.59)
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the effective potential reads

Γ[φ̄]

g6
=

1

2
yφ̄2 +

1

4
xφ̄4

− 1

12π

[
6

(
m2
T

g4
+
φ̄2

4

)3/2

+ 3
(
y + xφ̄2

)3/2
+
(
y + 3xφ̄2

)3/2

]
. (4.60)

We have explicitly included a mass term m2
T in the gauge field contribution; we will

come back to this, but for now in the perturbative treatment we assume that it is

zero. As x→ 0, Eq. (4.60) predicts that at small x

yc− → 0 (4.61)

yc+ → 9

1024π2x
(4.62)

φ̄0(yc+) → 3

32πx
. (4.63)

Looking back at Fig. 4–6, the first statement Eq. (4.61) is not quite what we observe.

Rather, in 2PI we have that yc− approaches an O(0.1) constant as x → 0. This dis-

agreement can possibly be attributed to the relatively large non-perturbative mass

m2
T ∼ g4N2/8 present in the gauge field propagator. This mass is generated indepen-

dently of the scalar diagrams; hence the limit x → 0 in the 2PI formalism does not

directly coincide with the limit x→ 0 in Eq. (4.60). Perturbatively speaking, gauge

fields are massless at tree-level in the symmetric phase. On dimensional grounds,
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the one-loop gluon tadpole diagram makes a contribution of order4

�
∼ +

1

2
g22CF (D− 1)

√
m2
T

4π
(4.64)

which enters with a positive overall sign into the Higgs self-energy and is non-zero

even when x = 0. Additionally, there are positive contributions coming from other

diagrams. Now, recalling that the end of the symmetric phase coincides approxi-

mately with the value of y where Πφ(0)−m2 changes sign, then we would anticipate

that the symmetric phase has to come to an end at positive y.

Following the suggestion in [222], we can attempt to quantify the non-perturbative

contributions due to the gauge field “mass” by explicitly including m2
T in the compu-

tation of Eq. (4.60) (we can think of this as including a three-loop term). It should

be noted that this procedure does not actually offer a correct description of the non-

perturbative physics, as the induced linear term in Γ[φ̄] enters with the wrong sign

as determined by the lattice. That being said, with m2
T ∼ g4N2/8 and x → 0, one

then finds that yc− approaches a constant, specifically,

yc− →
3

8π
√

2
(4.65)

4 Corresponding to the “zeroth” order approximation where the gauge field self-
energy is treated as a constant, i.e. Gµν ≈ 1

p2+m2
T
Tµν . Of course the full calculation

would involve a momentum dependent self-energy (which is linear-in-p); however,
it is easy to verify that this approximation at least serves to correctly estimate the
order of magnitude of the diagram, given the values of mT considered.
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which is exactly equal to the diagram Eq. (4.64) (computed in perturbation theory),

and comparable in magnitude to what we observe. In doing this, what we have

shown is that perturbation theory can be “modified” to match the 2PI result, and

that we can easily account for the discrepancy with Eq. (4.61). Similar to what we

found in the previous section, this is a place where the gauge-dependence of mT as

well as the diagrams themselves will affect the final results.

As for Eq. (4.62), even at the relatively small x = 1/100, the window of metasta-

bility is still not that large numerically as it extends from zero to about yc+ ' 0.1.

But eventually for x � 1/100, we expect the window of metastability to become

divergently large. The question now is, can we approach this limit using the 2PI

formalism, where solutions will be characterized by relatively large values of D? The

answer is no, and in this case the disagreement is not due to the dynamically gen-

erated gauge field mass, but rather, this limitation is due to the 2PI formalism’s

inability treat the broken phase in the small x limit.

4.5.5 Effectiveness of the 2PI formalism in the Higgs phase

Consider, for a moment, that the effective action had been truncated at two-

loops, and that we are at small enough values of x where Eq. (4.62) and Eq. (4.63)

should hold. Then, we expect that φ̄0 ∼ 1/x, which means that D would need to

become quite large. In this case, the peak in D(p) would also become quite narrow

(a condition that is enforced diagrammatically by the one-loop gluon self-energy

diagram with a Higgs in the loop). So we can approximately write

D(p) ≈ g2ν(2π)3δ3(p) +
1

p2 +m2 − Πφ(p)
(4.66)
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where ν ∼ 1/x2. At the one-loop level, we see that this would actually be necessary

to satisfy the self-consistent equation at zero momentum,

1

g4

1

2�
+

�

 ∼ √ν − xν ' −y (4.67)

since the contribution from the gluon tadpole
√
g4ν +m2

T ≈ g2
√
ν (roughly) now

also becomes large in this limit. These diagrams enter with equal and opposite sign,

and their approximate cancellation is only achieved with ν ∼ 1/x2. But now we have

revealed a problem with the nPI hierarchy in the broken phase; with a very large

and narrow peak in G(p), the three-loop diagram cannot be considered suppressed,

1

g4�
∼ x2ν3g6(2π)3δ3(p) (4.68)

as it yields a divergent contribution at zero momentum! But then if this is case, we

should also consider the next loop order

1

g4�
∼ −x3ν5

(
g6(2π)3δ3(p)

)2

(4.69)

which is even more divergent. So, at zero momentum, we obtain an alternating series

of the form

Πφ(p) ≈ −g4xν

(
c1 − c2xν

2g6(2π)3δ3(p) + c3

(
xν2g6(2π)3δ3(p)

)2

− ...
)

(4.70)
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indicating that we should actually be resumming the whole series of 2PI diagrams

(as well as considering the higher loop corrections to the four-vertex and so forth).

The situation is very analogous to what takes place with the 1PI formalism in the

broken phase. Recall that the 1PI effective action is a generating function for one-

particle-irreducible vertices Vn, so that

Γ[φ̄] = V0 +
1

2
φ̄2V2 +

1

3!
φ̄3V3 +

1

4!
φ̄4V4 + ... (4.71)

The vertex functions are then obtained by differentiation

δnΓ[φ̄]

δφ̄n

∣∣∣
φ̄=φ̄0

= V φ̄0
n (p2

1, p
2
2, ..., p

2
n). (4.72)

When φ̄0 6= 0 even the one-loop correction to V φ̄0
n in effect receives one-loop contribu-

tions from all orders of the sequence Vn! Due to the additional vertices, these higher

order terms are naturally suppressed by additional powers of coupling. Except, in a

3D theory the coupling constants carry dimension so in actuality we would need to

have suppression by a dimensionless ratio like x. But then higher order terms are

in turn enhanced by additional powers of φ̄0, which can be large (which is precisely

what happens in the x→ 0 limit). I.e., perturbative corrections to the n-point func-

tions in the broken phase can be non-perturbative in terms of the n-point functions

of the symmetric phase.

These arguments actually suggest that the 2PI formalism as presented is not

very suitable for studying the broken phase. However, we should recall what we

originally set out to do. We wanted to study a method that could reveal non-

perturbative features of the phase diagram (for instance, the critical end point), and
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it just so happens to be that this comes at the cost of being able to describe the

region of parameter-space where perturbation theory is valid. The problems with

the nPI hierarchy in the broken phase came about with the assumption that the

scalar two-point functions would take on the form Eq. (4.66). The fact that this

creates a problem should really be interpreted that the 2PI equations of motion

favour solutions with a wide peak; where the width is determined self-consistently.

Then, the 2PI formalism is limited to range of x and y where this is indeed the case

in the underlying field theory.

4.5.6 Comparison between Landau and Feynman gauges

Up to now, we have argued diagrammatically that critical values of y are ex-

pected to exhibit dependence on the gauge parameter ξ. However, since it is difficult

to quantify this effect without an explicit computation, we will now briefly present

a comparison between Landau and Feynman gauges. The results in Feynman gauge

are best summarized by a ξ = 1 analogue of Fig. 4–6, shown in Fig. 4–10.

In setting ξ = 1 and resolving the equations of motion (following the usual

procedure), we observe that qualitatively very little has changed. Feynman gauge

solutions exhibit similar features to those in Landau gauge, and once again we ob-

serve a disappearance of a stable Higgs branch somewhere between x = 0.125 and

x = 0.150. This is consistent with the observation that dependence on x enters

primarily through diagrams without gauge field lines. The biggest change though is

the observed shift in the critical range of y, which as we have previously argued, is

determined by diagrams with gauge field lines. In Landau gauge, critical values of

y were observed in the vicinity of yc ∼ 0.120 over the range of x considered. Now,
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Figure 4–10: Feynman gauge analogue of Fig 4–6, showing the evolution of the
D+ and D− branches with x. As in Landau gauge, the D− branch disappears by
x = 0.150, but the critical range of y has shifted.
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this range occurs in the vicinity of yc ∼ 0.250! To understand the origin of this

shift, let us reconsider the one-loop gluon tadpole, except now in Feynman gauge.

Schematically,

�
∼ +

1

2
g22CF

[
(D− 1)

√
m2
T

4π
+ ξ

√
m2
L

4π

]
(4.73)

treating the longitudinal self-energy approximately as a mass mL. Given the form of

ΠL(p) as determined in Chapter 3, the presence of a massive longitudinal propagator

clearly increases the already positive contribution made by this particular diagram.

4.6 Concluding remarks for Chapter 4

In this chapter we have directly solved the three-loop 2PI effective action and

obtained resummed correlators which correspond to both the symmetric and Higgs

phases of the theory. We found that these solutions coexist over a region of the phase

diagram, indicative of metastability and a first order phase transition. Subsequently,

we have also observed that there is a point x where the metastability ceases to be

observed, which we identified with the critical end point of the theory, xc. Based on

the solutions in both Landau and Feynman gauges and general diagrammatic argu-

ments, we were able to demonstrate that observed critical values of y are dependent

on the gauge-fixing.

Concerning the numerical accuracy of the predictions made in Landau gauge,

the location of the critical end point we inferred agrees with the lattice reported value

to an accuracy of about (∆x,∆y) ' (0.05, 0.12). In terms of the physical parameters
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of the 4D theory the accuracy is at about the 20% level. The resolution of xc does

not change in Feynman gauge.

Since the resulting 2PI equations of motion involve an infinite resummation, the

results are inherently non-perturbative. Even though in writing the effective action

we had to fix a gauge, we were not restricted by construction to the perturbative

spectrum of Rξ gauge, and furthermore, we were able to sidestep ambiguities con-

cerning the non-perturbative definition of a VEV. What we observed is that the

results from the 2PI formalism become increasingly reasonable as we approach non-

perturbative values of x. However, the whole set-up comes at a cost to our ability to

perform perturbation theory, which requires an expansion of the scalar field about its

tree-level minimum. Related to this limitation, and due to the saddle-like extrema

which we have observed in the effective action, it proves to be impossible to study

the broken phase whenever the scalar condensate is large.
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CHAPTER 5
Conclusions

Following the application of the 3PI formalism to Yang-Mills theory and a sub-

sequent comparison of the results to gauge-fixed lattice studies, we applied the 2PI

formalism to SU(2) Higgs theory in three spacetime dimensions. The goal through-

out was to learn about the usefulness and applicability of the nPI formalism to the

study of non-abelian gauge theories in 3 and potentially 4 dimensions. In this matter,

SU(2) fundamental Higgs theory provides an excellent testing ground since its prop-

erties have been studied extensively on the lattice. Furthermore, as a 3D theory it

is super-renormalizable so its structure in the UV is relatively easy to describe using

perturbation theory. In effect we could direct the focus towards non-perturbative IR

physics.

Since the nPI formalism provides a self-consistent resummation scheme it could

be particularly relevant to the study of hot 4D gauge theories. But its practical ap-

plication requires a truncation at a finite loop order and thus its results can only ever

be approximate. Consequentially, a truncated nPI effective action also suffers from

ambiguities related to gauge-fixing, introduced directly by this truncation (as one ef-

fectively removes certain diagrams from the perturbative expansion). The associated

limitations, and whether or not this renders the method unreliable in practice are
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difficult to predict theoretically. The best way to shed light on this matter is there-

fore to use the formalism to directly compute gauge-invariant observables, which we

have attempted.

Concerning the applicability of the nPI formalism to a gauge theory, the most

promising finding is the apparent qualitative evidence for a critical end point (xc, yc)

on the phase diagram of SU(N) Higgs theory, located within a close vicinity of its

measured value. This is a particularly interesting finding because the critical end

point cannot be resolved using perturbation theory. Therefore, this would indicate

that the 2PI and in general nPI approaches, which are based on Feynman diagrams

and require working in a fixed gauge, are able to identify some non-perturbative

phenomena. Unfortunately, based on the properties of the solutions, it is not clear

how the prediction of xc can be made mathematically robust through a study of the

two-point functions alone. This presents one ambiguity.

Furthermore, critical values of yc which are associated with the critical tempera-

ture in the 4D theory are inherently dependent on the gauge parameter (in covariant

gauge) through the gauge field propagator and self-energy. The gluon self-energy and

other diagrams involving gauge field lines are known from Chapter 3 to be (strongly)

gauge-fixing dependent. Due to the O(0.1g4N2) non-perturbative ξ dependent cor-

rection to the transverse and longitudinal self-energies obtained via the resummation,

observed values of yc are positive and consistently larger than their lattice measured

values in a three-loop truncation of the effective action. Varying the gauge parameter

has a direct effect on yc which presents another ambiguity concerning a measured

observable.
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The study of SU(N) Higgs theory has therefore revealed several limitations to

the nPI method in the context of a non-abelian gauge theory. In addition to the

described ambiguities in physical observables, the application of the formalism is

difficult numerically, especially if one wishes to consider higher-loop truncations or

higher n-particle-irreducibility. If qualitative predictions can be made at best, then it

may be hard to justify the numerical expense. However, this work does not preclude

the possibility that further refinements may be possible with the goal of obtaining

quantitatively accurate answers to non-perturbative and gauge-invariant questions.

This matter is left open for a future investigation.

Finally, having worked with the 3D theory, it appears that the extension to

4 or 3+1 dimensions would be extremely challenging. The problem in 4D is that

one is simultaneously solving non-perturbative infrared physics and (perturbative)

ultraviolet physics. The effective action is extremely sensitive to the ultraviolet

form of the propagators and vertices; a procedure along the lines of what has been

done here encounters quadratic UV divergences at every loop order when evaluating

self-energies, and quartic divergences when varying the propagators in a way which

changes their UV behaviour – at every loop order. It would be much harder to “cover

up” gauge non-invariance in 4D because divergently large gauge boson masses would

arise at every loop order, whereas in 3D we only encounter them at one-loop (where

they vanish in dimensional regularization); at two-loops there are 1/ε’s but they all

cancel. Thus it is not clear what additional techniques would have to be developed

to successfully extend the procedure that has been described here to 4 dimensions.

This is also left open for future investigation.
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Appendix A
Group theory for SU(N)

This appendix gives an overview of the group theoretic relations required for a

three-loop computation of vacuum diagrams in a non-abelian gauge theory coupled

to scalars (many additional identities and formulas for group invariants can be found

in [223]). To start, an irreducible and in general complex representation R of SU(N)

consists of N2−1 traceless dR×dR Hermitian generators T aR. These generators form

a Lie algebra

[T aR, T
b
R] = ifabcT cR (1)[

[T aR, T
b
R], T cR

]
+
[
[T bR, T

c
R], T aR

]
+
[
[T cR, T

a
R], T bR

]
= 0. (2)

The structure constants fabc are chosen to be completely anti-symmetric; they define

the dA × dA generators of the adjoint representation F a = T aA via

F a
bc = −ifabc. (3)

Since (F a)∗ = −F a, the adjoint representation is real. The Dynkin index of a

representation is denoted by TR,1 and it specifies a normalization of the generators

Tr T aRT
b
R = TRδ

ab. (4)

1 The notation TR for the Dynkin index and T aR for the generators may lead to
confusion; generator matrices are specifically indexed by a superscript.
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As a convention, the fundamental representation is chosen so that TF = 1/2. Fur-

thermore the quadratic Casimir is defined as

T sRT
s
R = CR1dR . (5)

From these two expressions, we obtain the well-known relationship

TRdA = CRdR. (6)

The totally symmetric anomaly coefficients dabc of the fundamental representation

are defined as

dabc =
1

TF
Tr T aF{T bF , T cF} (7)

so that in general

ARd
abc =

1

TR
Tr T aR{T bR, T cR}. (8)

The anomaly coefficients of representation R can be related to those of the funda-

mental representation with

AR = Tr
{

(T aR)3
}
/Tr
{

(T aF )3
}

(9)

for any a where the trace is non-zero; AF = 1 by definition. By specifying the

anomaly coefficients we can write down a general formula for the product of two

generators

T aRT
b
R =

TR
dR
δab1dR +

1

2

(
ifabc + ARd

abc
)
T cR +

1

2
Mab

R . (10)

In the fundamental representation, Mab
F = 0, and in general Mab

R is traceless, Her-

mitian, symmetric in a and b and satisfies Tr {T aM bc
R } = 0 [224]. Finally, a very
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usefully identity for the product of three generators with index s summed over is

T sT aT s =
(
CR −

1

2
CA

)
T a. (11)
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Appendix B
Euclidean space Feynman rules for Yang-Mills and SU(N) Higgs theory

The Feynman rules for covariant gauge perturbative calculations in SU(N) Higgs

theory are derived from the Lagrangian

L =
1

2
TrFµνF

µν +
1

2ξ
(∂µAaµ)2 + ∂µc̄

a∂µca − gfabc∂µc̄acbAcµ (12)

+ (Dµφ)†(Dµφ) + (m2 + δm2)φ†φ+
λ

2
(φ†φ)2 (13)

Gauge field, scalar and ghost propagators are denoted by the symbols G,D and ∆

throughout Chapters 3 and 4. In Euclidean space at tree-level these are

G(0)
µν (p) =

1

p2

(
Tµν(p) + ξLµν(p)

)
(14)

D(0)(p) =
1

p2 +m2
(15)

∆(0)(p) =
1

p2
(16)

where the gauge field propagator is specified by the transverse and longitudinal

projectors

Tµν(p) = gµν −
pµpν
p2

(17)

Lµν(p) =
pµpν
p2

. (18)
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With all momenta assumed to be flowing outwards, the bare Yang-Mills vertices are

gV (0)a1a2a3
µ1µ2µ3

=
g

3!
F a1a2a3

(
(p2 − p3)µ1gµ2µ3 + (p3 − p1)µ2gµ1µ3

+ (p1 − p2)µ3gµ1µ2

)
(19)

gV(0)a1a2a3
µ3

= gF a1a2a3p1µ3 (20)

g2V (0)a1a2a3a4
µ1µ2µ3µ4

=
g2

4!

(
F a1a2sF a3a4s(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+ F a1a3sF a4a2s(gµ1µ4gµ2µ3 − gµ1µ2gµ3µ4)

+ F a1a4sF a2a3s(gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)
)
. (21)

where (a1, p1) are the colour indices and momentum of the outgoing ghost in V. The

presence of a complex scalar results in the following additional vertices,

gV(0)a1a2a3
µ3

= gT a3
a1a2

(p1 − p2)µ3 (22)

g2V(0)a1a2a3a4
µ3µ4

= −g
2

2!
T {a3
a1s
T a4}
sa2
gµ3µ4 (23)

λV(0)a1a2a3a4 = − λ

2!2!
(δa1a2δa3a4 + δa1a4δa2a3). (24)

where the outgoing scalar(s) are indexed by (a1, p1) (Eq. (22) and Eq. (23)) and

a1, a3 (Eq. (24)).
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Appendix C
Self-energies computed in dimensional regularization

In regularizing the 2PI effective action, one makes use of one and two-loop self-

energy corrections computed in perturbation theory. In pure Yang-Mills, all one and

two-loop integrals are massless from the onset. However, the inclusion of a Higgs

field now in principle adds massive propagators to many of the diagrams. But, since

we really only need to know the UV limit of these diagrams, it actually suffices to

compute them with a massless scalar field.

In the following section, though some results are valid for arbitrary D, ε should

be treated as a small parameter; i.e. it is assumed that we are working at or near 3

dimensions, D = D0 + 2ε, with D0 = 3. Finally, since the Higgs mass renormalizes

at the two-loop level in three dimensions, it is useful to define the MS scale µ̄2 =

µ2eγ/4π. The master one-loop topology is

�p
p1

p2

= J
(D)
1 (n1,m1;n2,m2)

 p1 = q

p2 = q − p
(25)

with

J
(D)
1 (n1,m1;n2,m2) =

( 1

µ̄2

)D−D0
2

∫
dDq

(2π)D

1(
q2 +m2

1

)n1
(
(q − p)2 +m2

2

)n2
. (26)
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One-loop gluon self-energy

The presence of a scalar field adds two additional diagrams to the one-loop gluon

self-energy relative to the the pure Yang-Mills expression,

Π
(1,ε)

m2;µν =
1

2�
+

1

2�
−

�
+

�
+

�
. (27)

The result is strictly transverse; we will separate the Yang-Mills and Higgs contribu-

tions as follows,

Π
(1,0)

m2;µν = g2p
(
π

(1,0)
YM + π

(1,0)

m2

)
Tµν (28)

Π
(1,ε)
0;µν = g2

(
p1+2ε

µ2ε

)(
π

(1,ε)
YM + π

(1,ε)
0

)
Tµν . (29)

For Chapter 3, we also define the pure Yang-Mills contribution

ΠB(1,ε)
µν = g2

(
p1+2ε

µ2ε

)
π

(1,ε)
YM Tµν . (30)

The terms which appear in the limit D→ 3 are

π
(1,0)
YM =

CA
64

(ξ2 + 2ξ + 11) (31)

π
(1,0)

m2 = − TR
16π

(
−4m

p
+

4m2 + p2

p2

(
π − 2 arctan

2m

p

))
(32)
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and it is also useful to take the m→ 0 limit and keep terms O(ε),

π
(1,ε)
YM =

CA
64

(
(ξ2 + 2ξ + 11)(1− 2ε log 2) + ε(12− 12ξ − 2ξ2)

)
(33)

π
(1,ε)
0 = −TR

16
(1− 2ε log 2− ε) . (34)

One-loop Higgs self-energy

The calculation of the one-loop correction of the Higgs self-energy proceeds

forward in much the same manner,

Π
(1,ε)

φ;m2 =

�
+

�
+

1

2	
(35)

with

Π
(1,0)

φ;m2 = g2p π
(1,0)

φ;m2 (36)

Π
(1,ε)
φ;0 = g2

(
p1+2ε

µ2ε

)
π

(1,ε)
φ;0 . (37)

For the D→ 3 and massless limits we have

π
(1,0)

φ;m2 =
λ̃(dR + 1)

4π

m

p
+
CR
4π

(
(2− ξ)m

p
+

2(p2 −m2)

p2
arctan

p

m

)
(38)

π
(1,ε)
φ;0 =

CR
4

(1− 2ε log 2 + ε(1− ξ)) . (39)

where we have defined the dimensionless quartic coupling λ̃ = λ/g2, so that λ̃ = 2x.
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One-loop ghost self-energy

The one-loop ghost self-energy is constructed out of a a single diagram,

Σ(1,ε) =



(40)

for which in D = 3 + 2ε, ξ dependence only appears at O(ε),

Σ(1,ε) = g2

(
p1+2ε

µ2ε

)
σ(1,ε) = g2

(
p1+2ε

µ2ε

)
CA
16

(1− 2ε log 2 + ε(1− ξ)) . (41)

Two-loop topologies

The massless two-loop master topology is

�p
p1

p3

p2

p5

p4

= J
(D)
2 (n1, n2, n3, n4, n5)



p1 = q1

p2 = q2

p3 = q1 − p

p4 = q2 − p

p5 = q1 − q2

(42)

J
(D)
2 (n1, n2, n3, n4, n5) =

( 1

µ̄2

)D−D0
∫

dDq1

(2π)D

dDq2

(2π)D

1(
q2

1

)n1
(
q2

2

)n2
(
(q1 − p)2

)n3
(
(q2 − p)2

)n4
(
(q1 − q2)2

)n5
. (43)
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The remaining two topologies are related to J
(D)
2 by shrinking one or more of the

propagators to a point, for instance

J
(D)
2 (n1, n2, n3, n4, 0) = J

(D)
1 (n1, 0;n3, 0)J

(D)
1 (n2, 0;n4, 0) (44)

J
(D)
2 (n1, 0, 0, n2, n3) = J

(D)
2 (n1, n2, n3) (45)

J
(D)
2 (n1, n2, n3, 0, n4) = J

(D)
2 (n1, n2, n3, n4) (46)

where the number of propagators should be inferred from the arguments. In comput-

ing the two-loop self-energies we encounter UV divergences arising from the integrals

J
(D)
1 (n1, 0;n2,m) = (m2)D/2−α−βΓ(D/2− n1)Γ(n1 + n2 −D/2)

(µ̄2)
D−D0

2 (4π)D/2Γ(D/2)Γ(n2)

× 2F1

(
n1, n1 + n2 −

D

2
;
D

2

∣∣∣− p2

m2

)
(47)

J
(D)
2 (n1, n2, n3) =

Γ(D/2− n1)Γ(D/2− n2)Γ(D/2− n3)

(µ̄2)D−D0(4π)DΓ(n1)Γ(n2)Γ(n3)

× Γ(n1 + n2 + n3 −D)

Γ(3D/2− n1 − n2 − n3)
(p2)D−n1−n2−n3 . (48)

The massive one-loop scalar integral is needed since recursively one-loop diagrams

(i.e. the one-loop diagrams with a self-energy insertion in one of the propagators)

are IR divergent when they are massless.
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Two-loop gluon self-energy

At two-loops, a number of additional diagrams are present,

π
(UV2,ε)
YM;µν ∝ 1

6� +
1

2� +� +
1

4�
−� − 2� − 2� (49)

π
(IR2,ε)
YM;0;µν ∝	

Π
+

1

2

Π

(50)

π
(UV2,ε)
0;µν ∝� +� + 2
 + 4�

+� (51)

π
(IR2,ε)
0;µν ∝�

Π
+�

Π

(52)

using a notation where the subscript zero refers to the mass of the scalars in the

loops being set to m2 = 0. As mentioned at the start of this section, for the purpose

of regularizing this calculation genuinely two-loop topologies can be computed in the

massless limit. However, recursively one-loop diagrams (labelled with the superscript

IR2) will exhibit IR divergences without the inclusion of a regulator mass ω. We

have (retaining the superscript IR to indicate that the full expression involves the
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specifically IR regulated diagrams)

Π
B(2,ε)
0;µν = g4

(
p4ε

µ4ε

)(
π

(UV2,ε)
YM;µν + π

(IR2,ε)
YM;0;µν + π

(UV2,ε)
0;µν + π

(IR2,ε)
0;µν

)
. (53)

For Chapter 3, we also define the pure Yang-Mills contribution

Π
B(2,ε)
YM;µν = g4

(
p4ε

µ4ε

)(
π

(UV2,ε)
YM;µν + π

(IR2,ε)
YM;0;µν

∣∣
TR=0

)
, (54)

noting that it should not be interpreted that these expressions are transverse. The

IR regulated gluon and scalar propagators are defined as

GB(IR1,ε)
µν (q) = g2 π

(1,ε)
YM + π

(1,ε)
0

µ2ε(q2 + ω2)
3
2
−ε

(
gµν − qµqν

q2 + ω2

)
(55)

DB(IR1,ε)(q) = g2
π

(1,ε)
φ;0

µ2ε(q2 + ω2)
3
2
−ε . (56)

Now, regarding the notation: at this point there are two quantities which can be

regarded as masses, m2 and ω2. m2 refers to the Higgs mass which enters the

problem via the scalar propagator, which we have already set to zero. Whereas, ω2

is an unphysical regulator mass introduced to regulate IR divergences in some two-

loop diagrams. So, for instance, the diagrams which comprise π
(IR2,ε)
YM;0;µν are calculated

using finite ω2, but setting m2 = 0. One may ask why we do not simply regulate

the IR divergences by keeping the scalar field massive from the onset? The reason

for this is that a) a number of divergences arise from a 1/p3 gauge field propagator,

so this would not solve the problem entirely, and b) in general these diagrams are

introduced to regularize the UV divergences in the problem. To compute the leading

order UV behaviour, it is sufficient to set m2 = 0, which drastically simplifies the

majority of the diagrams which must be calculated. Then, the IR divergences which

would arise in the bare perturbation theory are handled with ω2, of which the final

results will be independent regardless.
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Defining χ = p/m, the individual components are

π
(UV2,ε)
YM;µν =

C2
A

16π2

[
(ξ + 2)(ξ2 + 2ξ + 11)

48ε
gµν

− 8(7ξ3 + 75ξ2 + 221ξ + 233) + 18ζ(2)(ξ2 + 3)(ξ2 + 2ξ2 + 17)

768
Tµν

− 7ξ3 + 32ξ2 + 79ξ + 42

48
Lµν

]
(57)

π
(IR2,ε)
YM;0;µν =

CA
16π2

[
−

4(ξ + 2)
(
π
(1,0)
YM + π

(1,0)
φ;0

)
3ε

gµν +

[4
(
π
(1,0)
YM + π

(1,0)
0

)
3

(
2(ξ + 2) log 4χ2

− 8(ξ + 2)χ6 + (20ξ + 42)χ4 + 3(5ξ + 11)χ2 + 4(ξ + 2)

χ3(χ2 + 1)
3
2

arcsinh(χ)

+
(5ξ + 16)χ4 + 5(2ξ + 5)χ2 + 4(ξ + 2)

χ2(1 + χ2)

)
+

(ξ + 2)(CA
(
ξ2 + 6ξ − 6

)
− 2TR)

24

]
Tµν

+

[4
(
π
(1,0)
YM + π

(1,0)
0

)
3

(
2(ξ + 2) log 4χ2 − 4(ξ + 2)χ4 + 2(ξ − 1)χ2 − 8(ξ + 2)

χ3(χ2 + 1)
1
2

arcsinh(χ)

+
(5ξ + 6)χ2 − 8(ξ + 2)

χ2

)
+

(ξ + 2)
(
CA
(
ξ2 + 6ξ − 6

)
− 2TR

)
24

]
Lµν (58)

π
(UV2,ε)
0;µν =

TR
16π2

[
4CR − (ξ + 2)CA

12ε
gµν

+
16 (18ζ(2)− 8(ξ − 3))CR +

(
18ζ(2)(ξ2 − 5) + 80ξ + 272

)
CA

96
Tµν

− 2(ξ + 5)CR − (3ξ + 4)CA
6

Lµν (59)

π
(IR2,ε)
0;µν =

TR
16π2

[
−

4π
(1,0)
φ;0

3ε
gµν +

[
4π

(1,0)
φ;0

3

(
2 log 4χ2 − 16(χ2 + 1)

3
2

χ3
arcsinh(χ)

+
22χ2 + 16

χ2

)
+

(ξ − 1)CR
2

]
Tµν +

[
4π

(1,0)
φ;0

3

(
2 log 4χ2 − 4(χ4 − 4χ2 − 8)

χ3(χ2 + 1)
1
2

arcsinh(χ)

+
6χ2 − 32

χ2

)
+

(ξ − 1)CR
2

]
Lµν . (60)
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Two-loop Higgs self-energy

The two-loop Higgs self-energy is specified by the diagrams

π
(UV2,ε)
φ;0 ∝� +� + 2�

+
1

2� +
1

2� +� (61)

π
(IR2,ε)
φ;0 ∝�

Π
+�Π

+
1

2�
Π

+�
Π

(62)

where once again IR divergences are handled with a regulator mass ω. Including a

counter-term, we have

Π
(2,ε)
φ;0 = g4

(
p4ε

µ4ε

)(
π

(UV2,ε)
φ;0 + π

(IR2,ε)
φ;0

)
− δm2 (63)
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with

π
(UV2,ε)
φ;0 =

1

16π2

[
CR
(
CA(ξ − 1)(ξ + 3) + 4CR(2ξ − 3)

)
− 4(1 + dR)λ̃2

16ε

+
CR

[
CA
(
12ζ(2) + 3ξ2 + 22ξ + 27

)
− 4CR

(
18ζ(2) + ξ2 + 6ξ − 1

)]
16

+
3(1 + dR)

2
λ̃2

]
(64)

π
(IR2,ε)
φ;0 =

λ̃(1 + dR)

16π2

[
2π

(1,0)
φ;0

ε
− 4π

(1,0)
φ;0

(
log 4χ2 − 1

)
+

(1− ξ)CR
2

]

+
CR

16π2

[
4
(
π
(1,0)
YM + π

(1,0)
0

)
− 2ξπ

(1,0)
φ;0

ε
−
[
8
(
π
(1,0)
YM + π

(1,0)
0

)
− 4ξπ

(1,0)
φ;0

]
log 4χ2

+

8

[(
π
(1,0)
YM + π

(1,0)
0

) (
8χ4 + 15χ2 + 6

)
+ 3π

(1,0)
φ;0 (χ2 + 1)

(
3ξ(χ2 + 1)− 1

) ]
3χ(χ2 + 1)

3
2

arcsinh(χ)

− 1

24

[
32
(
π
(1,0)
YM + π

(1,0)
0

) χ2 + 3

χ2 + 1
+ 96π

(1,0)
φ;0 (7ξ − 2)

+ 3CA(ξ2 + 6ξ − 6)− 6TR − 12CRξ(ξ − 1)

]
(65)

δm2 =
1

16π2ε

[
CR(7CA − 6CR − 2TR)

8
g4 +

CR(dR + 1)

2
g2λ− dR + 1

4
λ2
]

(66)

Due to the counter-term, the scale dependence of m2 is given by the RG equation

dm2

d log µ
= βm2(g2, λ) (67)

with

βm2(g2, λ) = −∂δm
2

∂g2

dg2

d log µ
− ∂δm2

∂λ

dλ

d log µ
= −2εg2∂δm

2

∂g2
− 2ελ

∂δm2

∂λ
. (68)

For instance, with an SU(2) fundamental Higgs in Landau gauge,

βm2(g2, λ) = − 1

16π2

[
51

16
g4 +

9

2
g2λ− 3λ2

]
. (69)
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Appendix D
Three-gluon and ghost-gluon vertices

In this appendix we will present our results for the one-loop corrections to the

three-gluon and ghost-gluon vertices valid for covariant gauge in 3D. The general-

ization to arbitrary D is available in the literature [179].

When working in covariant gauge, one encounters scalar integrals of the form

C0
αβγ =

∫
dDq

(2π)D

1[
(q − p2)2

]α[
(q + p1)2

]β[
q2
]γ (70)

where α, β and γ can take on values between −3 and 2 over the course of the

calculation. In three dimensions, all of the triangle integrals with integer α, β and γ

are finite in DR. Moreover, they can all be expressed in terms of

C0
111 =

1

8p1p2p3

(71)

C0
011 =

1

8p1

(72)

C0
101 =

1

8p2

(73)

C0
110 =

1

8p3

(74)

with p2
3 = (p1 + p2)2 and pi =

√
p2
i . The relations between triangle integrals with

different α, β and γ can be obtained from the generic expression for C0
αβγ which is

known in terms of Appel’s hypergeometric function [225]

F4(a, b; c, d|x, y) =
∞∑
i=0

∞∑
j=0

(a)i+j(b)i+j
(c)i(d)j

xi

i!

yj

j!
(75)
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making use of the Pockhammer symbol (a)i = Γ(a + i)/Γ(a). In any (Euclidean)

dimension, omitting the MS scale, the expression reads

C0
αβγ =

1

(4π)D/2Γ(γ)Γ(β)Γ(α)Γ(D− γ − β − α)

[
(p23)D/2−γ−β−αΓ(γ)Γ (γ + β + α−D/2) Γ (D/2− γ − β) Γ (D/2− γ − α)

× F4

(
γ, γ + β + α−D/2; γ + β −D/2 + 1, γ + α−D/2 + 1

∣∣∣p21
p23
,
p22
p23

)
+ (p22)D/2−γ−α(p23)−βΓ(β)Γ (D/2− α) Γ (D/2− γ − β) Γ (γ + α−D/2)

× F4

(
β,D/2− α; γ + β −D/2 + 1,D/2− γ − α+ 1

∣∣∣p21
p23
,
p22
p23

)
+ (p21)D/2−γ−β(p23)−αΓ(α)Γ (D/2− β) Γ (D/2− γ − α) Γ (γ + β −D/2)

× F4

(
α,D/2− β; D/2− γ − β + 1, γ + α−D/2 + 1

∣∣∣p21
p23
,
p22
p23

)
+ Γ(D− γ − β − α)(p21)D/2−γ−β(p22)D/2−γ−α(p23)γ−D/2

× Γ (D/2− γ) Γ (γ + β −D/2) Γ (γ + α−D/2)

× F4

(
D− γ − β − α,D/2− γ; D/2− γ − β + 1,D/2− γ − α+ 1

∣∣∣p21
p23
,
p22
p23

)]
. (76)

At the one-loop level, the three-gluon and ghost-gluon vertices have the following

form

gV B(1)a1a2a3
µ1µ2µ3

(p1, p2, p3) = gF a1a2a3
[
AB(1)(p1, p2; p3)Aµ1µ2µ3

+BB(1)(p1, p2; p3)Bµ1µ2µ3 + CB(1)(p1, p2; p3)Cµ1µ2µ3 + FB(1)(p1, p2; p3)Fµ1µ2µ3

+HB(1)(p1, p2, p3)Hµ1µ2µ3 + SB(1)(p1, p2, p3)Sµ1µ2µ3 + cyclic perms.
]

(77)

gVB(1)a1a2a3
µ3

(p1, p2, p3) = gF a1a2a3
[
AB(1)(p1, p2, p3)p1µ3 + BB(1)(p1, p2, p3)p2µ3

]
(78)
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with the tensors A through S as defined in Chapter 3, Section 3.4. The vertex

functions are as follows:

AB(1)(p1, p2; p3) = − g2N

1024p31p
3
2p3(p1+p2+p3)2

[
16p21p

2
2(p1+p2+p3)

[
4(p1−p2)2(p1+p2)

+ (5p21+6p1p2+5p22)p3 + 3(p1+p2)p23 + 6p33
]
− 4
[
(p21−p22)2(p41+2p31p2

+ 4p21p
2
2+2p1p

3
2+p42)− 2p1p2(p1+p2)(p41−4p31p2−2p21p

2
2−4p1p

3
2+p42)p3

− (p61−11p41p
2
2−16p31p

3
2−11p21p

4
2+p62)p23 + 8p21p

2
2(p1+p2)p33

− (p1−p2)2(p21+4p1p2+p22)p43 + 2p1p2(p1+p2)p53 + (p21+p22)p63
]
(1−ξ)

+ (p1+p2+p3)2
[
(p1−p2)2(p41+2p31p2+2p1p

3
2+p42)− 2(p1+p2)3(p21−3p1p2+p22)p3

+ 2(p41−p21p22+p42)p23 − 2(p31+p32)p33 + (p21+p22)p43
]
(1−ξ)2

]
(79)

BB(1)(p1, p2; p3) = − g2N(p1 − p2)

1024p31p
3
2p

3
3(p1 + p2 + p3)2

[
16p21p

2
2p

2
3

[
2(p1 + p2)3

− 9(p1 + p2)2p3 − 20(p1 + p2)p23 − 9p33
]
− 4
[
2p21(p1 − p2)2p22(p1 + p2)3

+ 4p21p
2
2(p21 − p22)2p3 − (p1 + p2)(p61 + 2p51p2 − 3p41p

2
2 − 4p31p

3
2 − 3p21p

4
2 + 2p1p

5
2 + p62)p23

+ 2p1p2(p1 + p2)2(p21 − 6p1p2 + p22)p33 + (p1 + p2)(p41 − 26p21p
2
2 + p42)p43 − 12p21p

2
2p

5
3

+(p1 + p2)3p63 − 2p1p2p
7
3 − (p1 + p2)p83

]
(ξ − 1)

+(p1 + p2 + p3)2
[
2p21(p1 − p2)2p22(p1 + p2)− (p1 + p2)(p41 + p42)p23

+ 2(p1 − p2)2(p21 + 3p1p2 + p22)p33 − 2(p1 + p2)(p21 + p22)p43

+ 2(p21 + p1p2 + p22)p53 − (p1 + p2)p63
]
(1− ξ)2

]
(80)

CB(1)(p1, p2; p3) =
g2N

512p31p
3
2(p1 + p2)p3(p1 + p2 + p3)2

[
48p21p

2
2(p1 + p2)2p3

+
[
(p1 − p2)2(p1 + p2)5 − 2p31p2(p1 + p2)2p3 − 2p1p

3
2(p1 + p2)2p3 − p41(p1 + p2)p23

− (+p1 + p2)p42p
2
3 − (p1 + p2)3p43 + 2p1p2p

5
3 + (p1 + p2)p63

]
(ξ − 1)(3 + ξ)

+ 2p21(p1 + p2)p22p
2
3(81 + 5[2 + ξ]ξ) + 4p21p

2
2p

3
3(29 + [6 + ξ]ξ)

]
(81)
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FB(1)(p1, p2; p3) = − g2N

512p31p
3
2(p1 + p2)p33(p1 + p2 + p3)3

[[
− (p1 − p2)2(p1 + p2)6

− 3(p1 − p2)2(p1 + p2)5p3
]
(ξ − 1)2(3 + ξ) +

[
(p1 + p2)p73(−3 + ξ)(3 + ξ)

+ (3 + ξ)(−20p31p2(p1 + p2)2p23 − 20p1p
3
2(p1 + p2)2p23 − p41(p1 + p2)p33(9 + ξ)

− p42(p1 + p2)p33(9 + ξ) + p41p
4
3(11 + ξ) + 4p31p2p

4
3(11 + ξ) + 4p1p

3
2p

4
3(11 + ξ)

+ p42p
4
3(11 + ξ)− p41(p1 + p2)2p23(7 + 3ξ)− p42(p1 + p2)2p23(7 + 3ξ))

]
(ξ − 1)

+ 2p21p
2
2(p1 + p2)2p23

(
− 113 + 3ξ(−1 + [−5 + ξ]ξ)

)
+ 2p21p

2
2(p1 + p2)p33

(
− 303 + ξ(−25 + [23 + ξ]ξ)

)
+ 2p21p

2
2p

4
3

(
− 215 + ξ(33 + [35 + 3ξ]ξ)

)
+
[
3(p1 + p2)3p53(ξ − 1)

+ 12(p1 + p2)(p21 + p22)p53 − p63
[
5p21 + 14p1p2 + 5p22

− 3(p1 + p2)2ξ
]]

(1− ξ)(−3− ξ)
]

(82)
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HB(1)(p1, p2, p3) =
g2N

1024p31p
3
2p

3
3(p1 + p2 + p3)3

[[
p91 + 6

[
p71p2p3 − p51p32p3 − p31p52p3 − p51p2p33

− p31p2p
5
3

]
+ 3p81(p2 + p3) + 3p1p

4
2(p2 − p3)2(p2 + p3)2 + 6p1p

3
2(p2 − p3)2p3(p2 + p3)2

+ 6p1p2(p2 − p3)2p33(p2 + p3)2 + 3p1(p2 − p3)2p43(p2 + p3)2 + p42(p2 − p3)2(p2 + p3)3

+ 2p32(p2 − p3)2p3(p2 + p3)3 + 2p2(p2 − p3)2p33(p2 + p3)3

+ (p2 − p3)2p43(p2 + p3)3
]
(ξ − 1)2(3 + ξ) +

[[
2p21p

5
2p3(p2 + p3)

+ 2p21p2p
5
3(p2 + p3)

]
(13− ξ) + 2

[
p31p

6
2 + p31p

6
3 + p61p

2
2(p2 + p3) + p61p

2
3(p2 + p3)

]
(7− ξ)

+
[
2p71p

2
2 − 4p51p

4
2 + 2p71p

2
3 − 4p51p

4
3 − 4p41p

4
2(p2 + p3) + 2p21p

6
2(p2 + p3)

− 4p41p
4
3(p2 + p3) + 2p21p

6
3(p2 + p3) + 6p1p

2
2(p2 − p3)2p23(p2 + p3)2

+ 2p22(p2 − p3)2p23(p2 + p3)3
]
(5 + ξ) + 2p61p2p3(p2 + p3)(11 + ξ)

−
[
2p41p

3
2p3(p2 + p3) + 2p41p2p

3
3(p2 + p3)

]
(23 + ξ)

]
(ξ − 1)(3 + ξ)

+ 4p41p
2
2p

2
3(p2 + p3)(78− 5ξ + 7ξ3)− 2

[
p31p

4
2p

2
3 + p31p

2
2p

4
3

](
− 225 + ξ(53 + [25− 13ξ]ξ)

)
− 4p31p

3
2p

3
3

(
− 217 + 3ξ(17 + [7− 5ξ]ξ)

)
+ 4p51p

2
2p

2
3

(
− 18 + ξ(13 + [20 + ξ]ξ)

)
+
[
2p21p

4
2p

2
3(p2 + p3) + 2p21p

2
2p

4
3(p2 + p3)

](
3 + ξ(−3 + [29 + 3ξ]ξ)

)
+ 4p21p

3
2p

3
3(p2 + p3)

(
111 + ξ(−25 + [−27 + 5ξ]ξ)

)]
(83)

SB(1)(p1, p2, p3) = 0. (84)

The regulator ωV mentioned in Chapter 3, Section 3.4 is included in the A function

by making the transformation

1

p3
1p

3
2p3(p1 + p2 + p3)2

−→
1

(p1 + ωV )3(p2 + ωV )3(p3 + ωV )(p1 + p2 + p3 + ωV )2
(85)
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and likewise for B through H. The one-loop ghost vertices are

AB(1)(p1, p2, p3) =
g2N

512p1p2p33(p1 + p2 + p3)

[
16p23

[
− p31 + p21(−p2 + p3)

− (p2 − p3)2(p2 + p3) + p1(3p22 + 2p2p3 + p23)
]

+ 4(p1 − p2 − p3)
[
(p21 − p22)2

+ 2p1(p1 − p2)(p1 + p2)p3 + (5p1 − p2)(p1 + p2)p23 + 2(p1 + p2)p33 − 2p43
]
(1− ξ)

− (p21 − p22 − p23)
[
(p1 − p2)2(p1 + p2) + (p1 − p2)2p3

+ (p1 + p2)p23 − 3p33](1− ξ)2
]
, (86)

BB(1)(p1, p2, p3) = − g2N

512p1p2p33(p1 + p2 + p3)

[
32p1p

2
3

[
(p1 − p2)p2 + p23

]
− 4(p21 − p22 + p23)

[
p31 + (p2 − p3)

[
(p2 + p3)2 − p1(p2 + 3p3)− p21

]]
(1− ξ)

+ (p21 − p22 + p23)
[
(p1 − p2)2(p1 + p2) + (p1 − p2)2p3

+ (p1 + p2)p23 − 3p33
]
(1− ξ)2

]
. (87)
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Appendix E
Phase space integrations

In performing numerical integrals over the vacuum diagrams encountered in

Chapters 3 and 4 we need efficient parametrizations of the phase space integrals.

At two-loops the most interesting diagram is the sunset, at three-loops it is the

Mercedes-Benz diagram. All other diagrams can be solved by being reduced to these

two (as we will describe), so we will concentrate on them.

In D dimensions an n-loop diagram involves nD real integrations. However the

symmetry group O(D) helps reduce this because certain angular integrations are

trivial. Namely, there are D(D − 1)/2 global angular integrations. Selecting n D-

vectors reduces O(D) to O(D − n) (for n ≤ D − 2) or reduces it completely (for

n ≥ D − 1). Therefore, for n ≤ D − 2, D(D − 1)/2 − (D − n)(D − n − 1)/2 =

nD−n(n+ 1)/2 of the integrals are global angular integrals which can be performed

immediately since none of the invariants depend on them. This leaves n(n − 1)/2

nontrivial integrations, for n ≤ D − 2. For n ≥ D − 1 there are nD − D(D − 1)/2

nontrivial integrations.

In an n-loop connected vacuum diagram built entirely with three-point vertices

there are 3n−3 propagators. For D = 3 and n ≥ 2 this happens to equal the number

of integration variables. Therefore, in D = 3 dimensions, in diagrams composed using

three-point vertices and where each propagator has a distinct momentum (which is

the case for 2PI or 3PI diagrams), it should be possible to arrange for the integration

variables to be precisely the magnitudes of the momenta on all propagators. This
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is a very convenient choice, provided that all dot products of propagator momenta

have simple enough expressions.

Two-loops: sunset

We apply these ideas first to the sunset diagram, that is, two vertices connected

by three lines:

�
k

p

q

The “natural” integration variables are∫
d3pd3k

(2π)6
=

8π2

(2π)6

∫ ∞
0

p2dp

∫ ∞
0

k2dk

∫ 1

−1

d cos θpk (88)

where we have performed the trivial integral over the Eulerian angles, in the form

of the direction of the ~p integral and the azimuthal angle of ~k if ~p is taken as the ~z

axis.

The dot product ~p · ~k = pk cos θpk and

q2 = (~p+ ~k)2 = p2 + k2 + 2pk cos θpk ⇒ cos θpk =
q2 − p2 − k2

2pk
. (89)

If we change variables from p, k, cos θpk to p, k, q we should differentiate the above

holding p, k fixed, giving

d cos θpk =
q

pk
dq . (90)
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Therefore we can rewrite the integration as∫
d3pd3k

(2π)6
=

1

23π4

∫ ∞
0

pdp

∫ ∞
0

kdk

∫ p+k

|p−k|
qdq =

1

26π4

∫ ∞
0

dp2

∫ ∞
0

dk2

∫ (p+k)2

(p−k)2

dq2

(91)

which are a convenient set of integration variables. In particular, all dot products

we will encounter can be written directly in terms of the integration variables using

−~p · ~q =
k2 − p2 − q2

2
, −~k · ~q =

p2 − k2 − q2

2
, ~p · ~k =

q2 − p2 − k2

2
. (92)

The remaining two-loop diagram, the figure-eight, can be performed using the

same integration variables; the two lines have momentum ~p and ~k, so the q integral

can be done directly,
∫
qdq = 2pk. This sort of reduction always works, because

we can always consider a four-point vertex to be two three-point vertices connected

by a propagator, with the propagator collapsed to a point. So diagrams containing

four-point vertices can be written with the same variables as the diagram containing

this “collapsed” propagator.

Three-loops: Mercedes-Benz

Now we seek a similar set of integration variables for the Mercedes-Benz diagram,

�
l

p

k′

k

q′

q

Note that ~l = ~k + ~q and similarly ~k′ = −~p− ~k and ~q′ = ~p− ~q. The phase space
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is determined by the triple integral∫
d3p d3k d3q

(2π)9
=

∫ ∞
0

p2dp k2dk q2dq
16π2

(2π)9

∫ 1

−1

d cos θpk

∫ 1

−1

d cos θpq

∫ π

0

dφpk;pq (93)

where φ is the azimuthal angle between the pk plane and the pq plane, we have used

the symmetry of the φ integration to reduce it from [0, 2π] to [0, π], and Eulerian

angles have again been performed.

Using the same trick as before, we can rewrite this integral as

1

25π7

∫ ∞
0

dp

∫ ∞
0

kdk

∫ ∞
0

qdq

∫ p+k

|p−k|
k′dk′

∫ p+q

|p−q|
q′dq′

∫ π

0

dφpq;pk . (94)

and we would like to rewrite the φ integral as an l integral. To do so, write out an

expression for l2:

l2 = (~k + ~q)2 = k2 + q2 + 2~k · ~q , (95)

~k · ~q = kq (cos θpq cos θpk + sin θpq sin θpk cosφ) =
l2 − k2 − q2

2
(96)

kq cos θpq cos θpk =
(p2 + q2 − q′2)(k′2 − p2 − k2)

4p2
(97)

kq sin θpq sin θpk =
√

(k2 − k2 cos2 θpk)(q2 − q2 cos2 θpq) (98)

and hence

cosφ =
p4 + 2p2l2 + k2q2 + k′2q′2 − (q2k′2+q′2k2)− p2(k2+q2+k′2+q′2)√

(2p2q2+2p2q′2+2q2q′2−p4−q4−q′4)(2p2k2+2p2k′2+2k2k′2−p4−k4−k′4)
.

(99)
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Since the range of cosφ is from −1 to +1, we find that the range of l2 at fixed

p, k, q, k′, q′ is between

1

2p2

[(
p2(k2+q2+k′

2
+q′

2
) + q2k′

2
+ k2q′

2 − p4 − k2q2 − k′2q′2
)

(100)

±
√

(2p2q2+2p2q′2+2q2q′2−p4−q4−q′4)(2p2k2+2p2k′2+2k2k′2−p4−k4−k′4)

]
,

where the +(−) sign represents the maximum (minimum) allowed value of l2.

Differentiating the expression for cosφ holding p, k, q, k′, q′ fixed, we find

sinφdφ =
4p2ldl√
(...)(...)

(101)

where
√

(...)(...) is the same long square root in the above expressions. Therefore

dφ =
4p2ldl

sinφ
√

(...)(...)
. (102)

Writing sinφ =
√

1− cos2 φ and after significant algebra we find

dφ =
2pldl√
X

, (103)

X = p2l2(k2+k′
2
+q2+q′

2−p2−l2) + q2k′
2
(k2+q′

2
+p2+l2−q2−k′2)

+k2q′
2
(q2+k′

2
+p2+l2−k2−q′2)− k2k′

2
p2−q2q′

2
p2−k2q2l2−k′2q′2l2 .(104)

Note that the expression for X has a symmetry, if hard to see. The momenta are in

three pairs; (p, l), (q, k′), and (q′, k) which are “opposite” momenta in the diagram

(momenta which do not touch at a vertex). The first terms involve pairs of “opposite”

momenta, the last terms involve triples of momenta meeting at a vertex.
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The total integration becomes

1

24π7

∫
pdp kdk qdq k′dk′ q′dq′ ldl√

X
(105)

with integration limits listed previously. We have not written the integration limits

in a symmetric way, but they are symmetric.

The dot product of a pair of momenta which share a vertex are of form

~p · ~k =
k′2 − p2 − k2

2
, ~p · ~q =

p2 + q2 − q′2
2

(106)

where the sign difference is because in the first case the momenta are both directed

out of the vertex while in the latter case one momentum enters and one exits the

common vertex. For momenta which do not share a vertex, the dot product is

~p ·~l = ~p · (~k + ~q) =
q2 + k′2 − k2 − q′2

2
(107)

and similarly for ~k · ~q′ and ~q ·~k′. (For a mnemonic, note that q, k′ are going from the

beginning of one line to the end of the other; k, q′ connect the beginnings of each line

or the ends of each line). We see that all dot products, including those for momenta

on lines which do not meet at a vertex, have simple expressions in terms of momenta

on lines.

As mentioned before, we can use the same integration variables for three-loop

diagrams with one or more four-point vertices. For instance, when the l propagator

is collapsed into a four-point vertex, one can immediately do the l integral;∫
ldl√
X

=
π

2p
. (108)
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However, if the integrand involves dot products which depend on l then we cannot do

the l integral immediately; we should instead interpret it as an angular integration

which does not change the magnitudes of any momenta on the remaining lines, but

which does affect some of their dot products.
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Appendix F
Remarks on the regularization of Γ[D+]− Γ[D−]

This appendix is included to address the divergences that one would encounter

when computing Γ[D+]−Γ[D−], where D+ and D− are the two-point functions of the

broken and symmetric phases, when they coexist. Even though Γ[D] is divergent,

when D is a solution such that δΓ/δD = 0, these divergences can by subtracted with

counter-terms that are computable perturbatively (in three dimensions). In other

words, the counter-terms are independent on the non-perturbative O(g4) correction

to the self-energies. As a result, the difference Γ[D+] − Γ[D−] is necessarily finite;

a computation of this sort could potentially be of interest as it would for example

determine the exact point at which a phase transition occurs.

To demonstrate the necessary cancellations, we will consider a symbolic 2PI ef-

fective action Γ[D] with a single two-loop and single three-loop diagram. Integration

of momentum p will be denoted by the the shorthand∫
p

=
1

µ̄2ε

∫
dDp

(2π)D
(109)

with D = 3 + 2ε as always. The effective action is

Γ[D] =

∫
p

[
logD(p)−D(p)(p2 +m2) +D(p)

(Π(1)(p)

s1

+
Π(2)(p)

s2

)
(110)

−D(p)(Z1 + Z2)

]
− ZΓ. (111)
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The symmetry factors si count the number of propagators in the corresponding

vacuum diagram (for instance, the Mercedes-Benz has s = 6). The counter-terms Z1

and Z2 render the one and two-loop self-energy diagrams finite in D = 3, since the

values of s1 and s2 are such that

δΓ

δD(p)
= D−1(p) + p2 +m2 + Π(1)(p) + Π(2)(p)− Z1 − Z2. (112)

Z1 and Z2 can be computed perturbatively from the leading order behaviour of Π(1)

and Π(2),

Π(1)(p) = c3/2p+ Z1
p4ε

µ4ε
+ non-perturbative O(1) (113)

Π(2)(p) = Z2
p4ε

µ4ε
+ non-perturbative O(1). (114)

To isolate the UV divergences in Γ, it is useful to work with the following large p

expansion of D(p)

D(p) =
1

p2 +m2
+

c3/2

(p2 +m2)3/2
+
c2 + d2 log p

(p2 +m2)2
+
c5/2 + d5/2 log p

(p2 +m2)5/2
+O

( 1

p6

)
. (115)

Let us start by considering the cancellations which occur between the logD and

D(p)(p2 +m2) terms.∫
p

logD(p)−D(p)(p2 +m2) ∼ Λ3 + Λ2 + Λ + log Λ + finite (116)
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diverges cubically, so to capture the subleading terms we must expand the integrand

to O(1/p3). The logarithm gives us

logD(p) ∼ log
1

p2 +m2
+ log

(
1 +

c3/2

(p2 +m2)1/2
+
c2 + d2 log p

p2 +m2
+
c5/2 + d5/2 log p

(p2 +m2)3/2

)
(117)

Integrating over the leading term, we have∫
p

log
1

p2 +m2
= −2Γ(1−D/2)mD

(4π)D/2D
. (118)

For large p, the rightmost term in Eq. (117) has the form log(1 + z) ∼ (−1)n−1zn/n

since z is small. The divergent terms that arise at each n in this expansion are

n = 1

∫
p

c3/2

(p2 +m2)1/2
+
c2 + d2 log p

p2 +m2
+
c5/2 + d5/2 log p

(p2 +m2)3/2
(119)

n = 2 −1

2

∫
p

c2
3/2

p2 +m2
+

2c3/2(c2 + d2 log p)

(p2 +m2)3/2
(120)

n = 3
1

3

∫
p

c3
3/2

(p2 +m2)3/2
. (121)

At this point, one should note that the log p terms in the numerator arise when we

take the limit D→ 3; they should really be interpreted in this context as 1
4ε

(p4ε− 1).

For a finite integral (in dimensional regularization), the resulting correction is O(ε).

Continuing on,∫
p

D(p)(p2+m2) =

∫
1+

c3/2

(p2 +m2)1/2
+
c2 + d2 log p

p2 +m2
+
c5/2 + d5/2 log p

(p2 +m2)3/2
+finite (122)

which cancel all of the n = 1 divergences in Eq. (119) from the logarithm. At this

point we are only left with the divergent integrals from Eq. (120) and Eq. (121), and
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of that lot, the only term which cannot be computed perturbatively is

−
∫

c3/2c2

(p2 +m2)3/2
(123)

since c2 is determined by the self-consistent solution. Let us now consider the con-

tribution from the one-loop diagram, by assuming that s1 = 3 (as would be the case

in a gauge theory). Using generic labels for momentum, on dimensional grounds

1

s1

∫
p

D(p)Π(1)(p) =
π1

s1

∫
p

∫
k

Q2D(p)D(k)D(q) (124)

where π1 is a constant with mass dimension 1, and Q indicates momenta associated

with the vertices. Referring back to the UV expansion of G,

D(p) =
∑
i=0

Di(p); Di(p) =
ci/2+1 + di/2+1 log p

(p2 +m2)i/2+1

∣∣∣
i≤3

(125)

and for i > 3 higher powers of log p will appear in the numerator. However, we do

not need to worry about the exact form of Di in that case. We have

1

s1

∫
p

D(p)Π(1)(p) =
∑
i,j,k≥0

π1

s1

∫
p

∫
k

Q2Di(p)Dj(k)Dk(q) =
∑
i,j,k=0

Iijk. (126)
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Divergent contributions only arise for specific choices of i, j and k. The relevant

cases are

I000 =
1

s1

∫
p

1

p2 +m2

(
c3/2p+O(1) +O(1/p)

)
(127)

I100 =
1

s1

∫
p

c3/2

(p2 +m2)3/2

(
c3/2p+O(1)

)
(128)

I110 =
1

s1

∫
p

c3/2

(p2 +m2)3/2

1

2

(
Z1
p4ε

µ4ε
+O(1)

)
(129)

I200 =
1

s1

∫
p

(c2 + d2 log p)c3/2p

(p2 +m2)2
(130)

In10 =
1

s1

∫
p

Dn(p)
1

2

(
Z1
p4ε

µ4ε

)∣∣∣
n≥2

, (131)

I000, I100 and I110 can be computed perturbatively (where it should be noted that

it would be necessary to account for O(ε) contributions to c3/2). For n ≥ 2 in

the last line, the constant can be dropped since the integral over p is finite. The

non-perturbative I200 cancels with one of the terms in Eq. (120),

−1

2

∫
p

2c3/2(c2 + d2 log p)

(p2 +m2)3/2
+ I200 + I020 + I002 = finite. (132)

For In01, we can permute the indices to obtain an overall factor of 2s1

In = In01 + 5 perms. =

∫
p

Dn(p)
(
Z1
p4ε

µ4ε

)∣∣∣
n≥2

. (133)

Looking back at Γ[D], this series is cancelled by the term proportional to Z1D(p),

−Z1

∫
p

D(p) +
∑
i≥2

In = −Z1

∫
p

1

p2 +m2
+

c3/2

(p2 +m2)3/2
+ finite. (134)
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At this point, all of the divergent integrals that we are left with are proportional to

coefficients which can be computed perturbatively, since the two-loop graph elimi-

nated the problematic divergence proportional to c2 that we had encountered earlier.

We should now see what arises from the three-loop graph (for simplicity we can

suppose that s2 = 4)

1

s2

∫
p

D(p)Π(2)(p) =
∑

i,j,k,l≥0

π2

s2

∫
p

∫
k

∫
q

Di(p)Dj(k)Dk(q)Dl(z) =
∑

i,j,k,l≥0

Jijkl (135)

where π2 is a coefficient with mass dimension 2. The interesting cases are

J0000 =
1

s2

∫
p

1

p2 +m2

(
Z2
p4ε

µ4ε
+O(1) +O(1/p)

)
(136)

J1000 =
1

s2

∫
p

c3/2

(p2 +m2)3/2

(
Z2
p4ε

µ4ε
+O(1)

)
(137)

Jn000 =
1

s2

∫
p

Gn(p)
(
Z2
p4ε

µ4ε

)
. (138)

J0000 and J1000 are perturbative, and for n ≥ 2, Jn000 cancels with Z2 mass counter-

term as earlier. Defining

Jn = Jn000 + 3 perms. (139)

we have

−Z2

∫
p

D(p) +
∑
i≥2

Jn = −Z2

∫
p

1

p2 +m2
+

c3/2

(p2 +m2)3/2
+ finite. (140)
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After putting everything together, the residual divergent terms are

a)

∫
p

−1

2

c2
3/2

(p2 +m2)
+

1

3

c3
3/2

(p2 +m2)3/2
(141)

b) −(Z1 + Z2)

∫
p

1

p2 +m2
+

c3/2

(p2 +m2)3/2
(142)

c) I000 + s1I100 + s1I110 + J0000 + s2J1000. (143)
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