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Abstract 

Infertility is a major clinical problem, affecting up to 10% of couples of reproductive age 

worldwide. Infertility can be caused by dysfunctions in many organs that normally ensure 

homeostasis of the reproductive system. The pituitary gland, a small endocrine organ situated at 

the base of the brain, synthesizes and releases two dimeric glycoprotein hormones (so-called 

gonadotropins) that regulate reproductive function: luteinizing hormone (LH) and follicle-

stimulating hormone (FSH). Abnormal production and secretion of LH and FSH by pituitary 

gonadotrope cells is commonly seen in infertile patients. Factors originating from the gonads 

(testicles and ovaries), the brain, and the pituitary regulate gonadotrope function. Among these, 

brain-derived gonadotropin-releasing hormone (GnRH) potently stimulates LH and FSH 

production and secretion. Activins, produced by the pituitary gland, selectively stimulate FSH 

synthesis. This effect is antagonized by gonad-derived hormones of the same family, inhibins. 

The mechanisms whereby gonadotrope cells transduce these various signals are poorly 

understood. In this thesis, I first used genetic tools in mice to probe the signaling mechanisms 

mediating activin regulation of FSH synthesis in vivo. Canonically, activins signal through the 

receptor-regulated SMAD proteins, SMAD2/3, which partner with SMAD4 to activate gene 

transcription in cooperation with interacting factors. Results from my gonadotrope-specific 

knockout studies indicate that FSH synthesis and fertility do not require SMAD2 or the DNA-

binding activity of SMAD3, but depend on the individual and collective activities of SMAD4 

and its cell-restricted interacting partner, forkhead box L2 (FOXL2). Then, using model cell 

lines, I explored the mechanism of GnRH-regulated human LH β subunit gene (LHB) 

transcription, and found that it is similar to other mammals. However, I observed that activin 

impairs GnRH-stimulated human LHB promoter activity, whereas the two hormones 

synergistically activate the murine Lhb promoter. The inter-species difference maps to divergent 

regulatory elements within the proximal LHB/Lhb promoters and involves physical and 

functional interactions between SMAD3 and a transcription factor crucial for LHβ synthesis, 

early growth response 1 (EGR1). Finally, by generating a knock-in mouse line, I found that a 

unique structural feature of the mammalian GnRH receptor is required for normal gonadotropin 

synthesis and female fertility. The novel insights obtained from this work contribute to our 

understanding of how gonadotropins are normally synthesized, and may guide the development 

of therapeutics to stimulate or inhibit their production. 
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Résumé 

L’infertilité est un problème clinique majeur qui affecte jusqu’à 10% des couples qui tentent de 

concevoir un enfant. L’infertilité peut être causée par la dysfonction de plusieurs organes qui 

régissent le fonctionnement du système reproductif. L’hypophyse, un petit organe situé sous le 

cerveau, produit et sécrète les hormones «gonadotropines» qui régulent le système reproducteur: 

l’hormone lutéinisante (LH) et l’hormone folliculo-stimulante (FSH). Une production anormale 

de LH et FSH par les cellules gonadotropes est souvent observée chez les patients infertiles. Des 

hormones provenant des gonades (testicules et ovaires), du cerveau et de l’hypophyse agissent 

sur les gonadotropes. Parmi ceux-ci, l’hormone de libération des gonadotropines (GnRH), 

provenant du cerveau, stimule la production et la sécrétion de LH et FSH. Les activines, 

produites par l’hypophyse, stimulent sélectivement la production de FSH, un effet supprimé par 

les inhibines provenant des gonades. Les voies de signalisation engagées par ces hormones pour 

transmettre leurs effets demeurent obscures. Dans cette thèse, j’ai d’abord utilisé des outils 

génétiques chez la souris pour étudier comment les activines régulent la synthèse de FSH. 

Habituellement, les activines transmettent leur signaux intracellulaires par les protéines SMAD2 

et SMAD3, qui se lient à SMAD4 et interagissent avec d’autres facteurs pour activer la 

transcription de gènes cibles. Les résultats d’inactivations génétiques restreintes aux cellules 

gonadotropes démontrent que la synthèse de FSH et la fertilité ne requièrent pas SMAD2 et la 

capacité de SMAD3 de se lier à l’ADN, mais dépendent des activités individuelles et concertées 

de SMAD4 et de son partenaire «forkhead box L2» (FOXL2). Par la suite, à l’aide de lignées 

cellulaires modèles, j’ai exploré les mécanismes par lesquels GnRH active l’expression du gène 

humain encodant la sous-unité β de LH, et observé que ceux-ci sont semblables aux autres 

mammifères. Par contre, l’activine inhibe l’effet stimulant de GnRH, au contraire de son effet 

chez la souris. Cela s’explique par des différences dans des éléments régulateurs du gène humain 

et de celui de la souris, impliquant une interaction physique et fonctionnelle entre SMAD3 et 

«early growth response 1» (EGR1), un facteur de transcription requis pour la synthèse de LHβ. 

Finalement, en générant un nouveau modèle de souris, j’ai observé qu’une particularité 

structurelle du récepteur de GnRH est requise pour la production normale des gonadotropines et 

la fertilité des femelles. Ensemble, ces travaux contribuent à notre compréhension de la fonction 

des gonadotropes et pourraient guider le développement de traitements visant à moduler la 

production des gonadotropines.  
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General introduction 

 

In vertebrates, the hypothalamic-pituitary-gonadal (HPG) (Fig. 1.1) axis controls 

reproductive function. This system relies on an intricate network of endocrine feed forward and 

feedback loops. At the “top” of the axis, gonadotropin-releasing hormone (GnRH), produced by 

neurons in the brain, acts on the gonadotrope cells of the pituitary gland to stimulate the 

production of the gonadotropin hormones: luteizining hormone (LH) and follicle-stimulating 

hormone (FSH). These factors enter the circulation and act on LH and FSH receptors (LHR and 

FSHR) in the gonads – the testes in males and the ovaries in females – to promote the production 

of fertilization-competent gametes (the spermatozoa in males and the oocytes in females). In 

addition, the gonads secrete hormones that feedback on the hypothalamus and pituitary to 

positively or negatively regulate their activity. The best characterized gonadal hormones are: 

estradiol (in females), progesterone (in females), testosterone (in males) and inhibins. Inhibins 

antagonize the action of activins or related ligands, which are produced within the pituitary and 

selectively stimulate FSH synthesis. Over the past century, an impressive amount of research has 

shed light on the function as well as dysregulation of the mammalian reproductive axis, from the 

systemic to the molecular level. The purpose of this introduction is to provide a comprehensive 

review of our current understanding of pituitary gonadotrope cell function and to emphasize the 

need for more research. First, I present an overview of the known causes of abnormal 

gonadotropin synthesis in humans as relates to infertility and their current treatment. Second, I 

outline the salient features of the main components of the HPG axis, starting with the 

hypothalamus, followed by the pituitary and the gonads. In the third part, I provide an in-depth 

description of mechanisms controlling gonadotropin hormone synthesis and release, with an 

emphasis on the signaling events directed by brain-derived GnRH and by the activin/inhibin 

hormonal system. I conclude by identifying specific gaps in our knowledge that are addressed by 

the experimental work presented in this thesis.  
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1. Abnormal gonadotropin production and its treatment 

 

Proper function of many organs and regulatory systems is necessary for normal pituitary 

gonadotrope function. Because of this complexity, a large number of genetic or acquired 

anomalies result in abnormal gonadotropin production, leading to infertility or subfertility (1).  

 

1.1. Hypogonadotropic hypogonadism 

 

 Mutations in several genes have been associated with central hypogonadotropic 

hypogonadism (HH), in which the primary defect is at the level of the brain or the pituitary 

gonadotropes (1, 2). HH is functionally divided in two main types: Kallmann syndrome, in 

which hypogonadism is associated with anosmia (absence of smell), and normosmic HH (2). 

Mutations found in Kallmann syndrome interfere with the maturation and migration of olfactory 

and GnRH neurons (described in Section 2.1.1.1.). By contrast, normosmic HH involves genetic 

anomalies that prevent normal function of gonadotropes, GnRH neurons, or upstream neural 

circuits (2). Among the genes mutated are components of the kisspeptin signaling system (see 

section 2.1.1.2.), which regulates the function of GnRH neurons (3-6). As well, rare mutations 

are found in the gene coding for GnRH (GNRH1) (7, 8) and for the GnRH receptor (GNRHR) 

(9). Some more recently identified genes, such as heparan sulfate 6-O-sulfotransferase 1 

(HS6ST1), ring finger protein 216 (RNF216) and OTU domain containing 4 (OTUD4), are 

associated with complex and variable phenotypes, and no definitive functional link with the 

central control of reproduction in mammals has yet been made (10, 11). Less than 50% of the 

cases of congenital HH have a known genetic cause, suggesting that many more factors remain 

to be identified (2). Also, a proportion of HH cases involve compound mutations in two or more 

genes, adding further complexity to genetic studies of HH (12). In general, HH is associated with 

failure to activate the reproductive axis (absence of puberty), and deficiency of both LH and FSH 

(2). Rare inactivating mutations in the genes coding for the β subunits of LH and FSH (FSHB 

and LHB - see section 2.2.2.) cause distinct forms of hypogonadism due to selective loss of FSH 

or LH stimulation of the gonads (13-17). Overall, insights obtained from mutations causing HH 

have identified key regulators of GnRH neuron and pituitary gonadotrope function, thus guiding 

investigations of the mechanisms underlying gonadotropin production.   
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1.2. Syndromic infertility 

 

 In addition to the congenital anomalies outlined above, many well-characterized 

disturbances of the reproductive axis or reproductive tract occur in women of reproductive age 

(1). Among others, cases of anovulation (18) and endometriosis (19) are frequently seen in the 

fertility clinic. While some of these conditions clearly have a genetic component, their 

development and severity is also heavily influenced by acquired endocrine disorders (1, 20). One 

well-known example is polycystic ovarian syndrome (PCOS), the most common cause of 

anovulation, which affects up to 10% of women worldwide (20, 21). The etiology of PCOS is 

complex, but is most often accompanied by hyper-secretion of LH relative to FSH by the 

pituitary gland. (22). As proper function of the female reproductive axis depends on tightly 

regulated cyclic changes in LH and FSH levels (described in section 2.2.3.), gonadotropin 

imbalance leads to ovarian dysfunction (20, 21). Therefore, studying mechanisms underlying the 

regulation of LH and FSH production by the pituitary gland is important for understanding both 

inherited or acquired causes of infertility in humans.  

 

1.3. Infertility treatments 

 

 One of the main goals of reproduction research is the development of treatments for 

infertility. Molecules that mimic or inhibit the activity of GnRH have been used clinically for 

several years. Native GnRH can be used to activate the reproductive axis in many cases of HH or 

delayed puberty (23-26). Synthetic analogues of GnRH are widely used to shut down GnRH 

signaling and downregulate the reproductive axis (27-31). These compounds are often used to 

induce “chemical castration” in cases of sex steroid-dependent cancer (e.g., prostate cancer) (32-

34) and disorders such as endometriosis (35, 36), or precocious puberty (23, 37, 38). 

Gonadotropins and gonadotropin analogues are also extensively used in the fertility clinic (39). 

These are extracted from the urine of post-menopausal women (40-42), or produced by 

recombinant methods (43-46). Gonadotropins or analogues can be used in the treatment of 

pituitary insufficiency (e.g (47)). By far, the largest clinical application of GnRH and 

gonadotropin analogues is in the context of ovarian stimulation protocols, which aim at 
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retrieving oocytes for in vitro fertilization (IVF - including intracytoplasmic sperm injection 

(ICSI)). These treatments, which have been directly derived from our understanding of 

mammalian reproductive physiology, essentially recapitulate a controlled version of the normal 

cyclic hormonal profile in women (see section 2.2.3.) (48). Thus, understanding the normal 

function of the reproductive system is critical for the development of effective treatments for 

infertility. However, less than 25% of IVF cycles are successful (49), and undesirable or even 

life-threatening side effects arising from these protocols are common (48, 50). Furthermore, the 

procedure is cumbersome (requiring up to dozens of injections of GnRH and gonadotropin 

analogues) and expensive (48). Drugs like clomiphene, an estrogen receptor modulator which is 

used to increase endogenous FSH levels (see section 3.3.2. for more details) in anovulatory 

women - particularly those with PCOS – have been used for dozens of years (51-54). However, 

precise control of FSH production is hard to achieve with such treatment (55). Thus, there is a 

clear need for better drugs to modulate gonadotropin synthesis, release or activity. Overall, 

infertility is a major clinical problem, and a better understanding of the mechanisms controlling 

gonadotropin production is required to identify new therapeutic targets and strategies for 

effective treatment. 

 

 

2. The mammalian reproductive axis from the top down 

2.1 The hypothalamus 

2.1.1. Gonadotropin-releasing hormone 

The fact that a factor secreted by neurons in the brain controls the production of 

gonadotropins by the pituitary was first suggested by classical experiments showing that 

electrical stimulation of the hypothalamus, a region of the ventral brain situated above the 

pituitary gland, could stimulate ovulation in female rabbits - observations which were 

subsequently extended to other mammals (56, 57). Decades later, seminal physiological 

experiments established that direct exposure of the pituitary gland to hypothalamic extracts could 

trigger gonadotropin secretion (58, 59). This set off a race for the discovery of the gonadotropin-

releasing factor, which was finally, after a herculean effort, purified in 1971 and identified as the 

10 amino acid protein (decapeptide), GnRH  (60, 61). The proof that GnRH not only stimulates, 
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but is in fact required for, gonadotropin production by the pituitary would come several years 

later following the discovery and analysis of a naturally occurring mutation in mice causing 

profound hypogonadism – the hpg mice (62, 63). Hpg mice carry a deletion on chromosome 14 

encompassing part of the the Gnrh1 gene (63). They completely fail to progress beyond infantile 

stages of reproductive maturation and produce extremely low levels of LH and FSH (62). These 

observations provided the first animal model of congenital hypogonadotropic hypogonadism and 

indicated that brain-derived GnRH is a master regulator of pituitary gonadotrope function.  

2.1.1.1. Anatomy and developmental ontogeny of GnRH neurons 

GnRH neurons are actually not born in the brain. Rather, they emerge from precursors in 

the nasal placode; the site of the future olfactory bulb (64-66). Indeed, as mentioned in section 

1.1., many patients with HH also lack the sense of smell (Kallmann Syndrome) (67, 68). Because 

GnRH neurons fail to be born or migrate properly in these individuals, it is thought that olfactory 

and GnRH neurons rely on a shared set of cues for their specification, development and 

migration (68). The migratory journey of GnRH neurons from their birth place to their final 

position in the preoptic area and/or ventromedial hypothalamus is a complex process. Several 

factors required for their proper navigation have been identified from studies of naturally 

occurring mutations in humans and genetically engineered mouse models. Briefly, GnRH 

neurons use receptors for ligands or chemoattractant molecules secreted by surrounding neurons 

and supporting cells. These include: fibroblast growth factor 8 (FGF8) and its receptor FGFR1 

(69, 70), prokineticin 2 (PROK2) and its receptor PROKR2 (71, 72), stromal cell-derived factor 

1 (SDF-1) and its receptor C-X-C chemokine receptor type 4 (CXCR4) (73)). Cell 

adhesion/guidance molecules such as Eph/Ephrins and Semaphorins also play a role in GnRH 

neuron migration (74-76). The final GnRH-producing cell population has a size of approximately 

800 neurons in mice and up to a few thousand in human (65, 77). Once in the hypothalamus, 

GnRH neurons extend long axons that reach the median eminence, adjoining the portal 

vasculature located at the interface between the ventral brain and the pituitary gland (78). There, 

GnRH neuron terminals release bursts of GnRH, which are transported over a short distance by 

the portal blood capillaries to their targets, the gonadotrope cells of the anterior pituitary gland. 
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2.1.1.2. GnRH synthesis and pulsatile release 

GnRH is released in pulses into the pituitary vasculature, both in males and females (e.g., 

(79, 80)). The critical importance of this mode of GnRH secretion was demonstrated in monkeys 

with hypothalamic lesions that blocked GnRH release, causing hypogonadotropic 

hypogonadism. In these animals, delivery of exogenous GnRH in a pulsatile, but not continuous, 

manner rescued gonadotropin secretion (81). LH secretion from pituitary gonadotropes is highly 

coupled with pulsatile GnRH secretion (82). Whereas GnRH also stimulates FSH synthesis and 

release, FSH secretion is less obviously pulsatile than LH (82, 83). The system that produces 

episodic GnRH release (the so-called GnRH pulse generator) is located within the network that 

controls GnRH neuron activity. Indeed, bursting electrical activity within mediobasal 

hypothalamic neurons immediately precedes and is highly correlated with LH release from the 

pituitary gland (84, 85). Despite decades of studies, the molecular nature of this GnRH pulse 

generator remains somewhat elusive (86). Neurotransmitters, such as glutamate and gamma-

aminobutyric acid (GABA) (87-89), as well as peptide hormones released from specialized 

neuronal populations, like kisspeptin (see below) (90, 91), and a variety of intracellular 

mechanisms (86) have been implicated in this process. Furthermore, GnRH neurons have 

intrinsic “pacemaker-like” activity, but how this rhythm is established and maintained remains 

unclear (86, 92, 93).  

Arguably, the most important physiological regulator of GnRH synthesis and secretion in 

females is ovary-derived estradiol (94). Estradiol production by the ovary varies across the 

female reproductive cycle (detailed in section 2.2.3.). When estradiol is low, it suppresses the 

amplitude and frequency of GnRH release (“negative feedback”) (94, 95). However, when 

estradiol is high, it enhances the amplitude and frequency of GnRH secretion (“positive 

feedback”) (94, 95). In mammals, the positive feedback effect occurs once per reproductive 

cycle, immediately before ovulation. Outside of this period, the negative feedback effect 

prevails. It is important to note that the pituitary gonadotropes are also subjected to negative and 

positive regulation by estradiol (detailed in section 3.3.2.) (96-99). Ultimately, it is the 

combination of negative and positive feedback effects of estradiol on the brain and on the 

pituitary which determines estradiol’s overall influence on gonadotropin production (95).  The 

mechanisms underlying regulation of GnRH secretion by estradiol are not completely 
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understood.  Canonically, estradiol influences target cell function through its cognate nuclear 

receptors, estrogen receptor (ER) α and β, which interact with the DNA and with co-factors to 

directly regulate gene transcription (100). Estradiol can also have rapid non-genomic 

(transcription-independent) action on GnRH neurons (101-103). In mice, both the positive and 

negative feedback effects of estradiol in the brain are mediated through ERα (104-106). 

However, GnRH neurons themselves do not express ERα (107, 108). Instead, the positive and 

negative feedback effects of estradiol appear to be mediated indirectly via kisspeptin neurons 

(109, 110). These cells release the peptide hormone, kisspeptin, and synapse onto GnRH 

neurons, which express the kisspeptin receptor (KISS1R or GPR54) (111). Mice or humans with 

inactivating mutations in the genes coding for kisspeptin or its receptor are profoundly 

hypogonadal (4, 5, 112). Overall, pulsatile GnRH secretion from hypothalamic neurons, which is 

dynamically regulated by estradiol, is a key stimulator of gonadotropin synthesis and release. 

2.2. The pituitary gland 

Gonadal homeostasis and the development of fertilization-competent germ cells is 

dependent on hormones secreted by the pituitary gland (Fig. 1.1), a fact established over 80 years 

ago by classical ablation/replacement experiments (113-115). Subsequently, it became evident 

that the pituitary gland produces two gonadotropin hormones, now known as LH and FSH (116). 

These hormones are exclusively produced by gonadotrope cells.   

2.2.1. Pituitary cell lineage specification and gonadotrope development 

Gonadotropes comprise a small proportion (around 5%) of the hormone-secreting cells of 

the anterior pituitary gland (Fig. 1.2A and  ref. (117)). The other cell types (corticotropes, 

lactotropes, somatotropes, thyrotropes) secrete important regulators of growth, metabolism and 

lactation (114). The different pituitary cell types are specified from common precursors through 

a series of specification steps (Fig. 1.2B and ref.(118)). 

2.2.1.1. Pituitary cell lineage specification 

Development of the pituitary gland depends on reciprocal signaling between the oral 

ectoderm (roof of the mouth), from which the anterior pituitary tissue is derived, and the 

overlying ventral diencephalon – or infundibulum (the floor of the hypothalamus) (118). Several 



33 

 

transcription factors have been implicated in the specification and patterning of the 

infundibulum, including homeobox expressed in ES cells 1 (HESX1), orthodenticle homolog 2 

(OTX2), sine oculis-related homeobox 6 (SIX6), ventral anterior homeobox 1 (VAX1) and Sex 

determining region Y-box 2 and 3 (SOX2 and SOX3) (119-124). Genes coding for at least three 

of these – HESX1, SOX2 and SOX3, are mutated in human Septo-Optic Dysplasia, a 

heterogeneous disorder involving so-called combined pituitary hormone deficiency (120, 121, 

124). Mechanistically, transcription factors regulating infundibulum development control the 

expression of secreted molecules of the fibroblast growth factor (FGF) and bone morphogenetic 

protein (BMP) families, which act in concert with other ligands emanating from the adjacent oral 

ectoderm, such as BMP2 and Sonic Hedgehog (SHH), to induce anterior pituitary cell fate 

commitment (125-129). Though the precise signaling cascades activated by these ligands in 

developing pituitary cells are poorly characterized, they appear to establish a dorsoventral 

gradient of morphogens that lead to the selective expression of transcription factors controlling 

pituitary cell lineage specification (118, 127). Two of these, LIM homeobox protein 3 (LHX3) 

and paired-like homeodomain factor 1 (PROP1), are expressed sequentially at embryonic day 

(E) 9.5-10 and are required for the development of all pituitary cell types except corticotropes, 

which rely instead on T-box 19 (TBX19) (Fig. 1.2B) (130-132). Although still incomplete, a 

simple model for the subsequent differentiation of pituitary progenitors into specific lineages has 

been proposed. Briefly, PROP1 controls the expression of POU domain, class 1, transcription 

factor 1 (Pouf1, also known as Pit1 ) (132), but a ventral-to-dorsal gradient of BMP2 induces 

GATA binding protein 2 (GATA2) expression, which then represses PIT1 activity when present 

in large amounts (133). GATA2 and PIT1 control the expression of cell-specific genes, including 

those coding for hormones or hormone subunits (133-137). Thus, GATA2+ cells become 

gonadotropes, GATA2+/ PIT1+ cells become thyrotropes, and PIT1+ cells become lactotropes 

and somatotropes (Fig. 1.2B) (118). Though this model provides an elegant mechanism for cell 

fate decision, it certainly does not account for all the events of pituitary lineage specification, 

which i nvolves many other factors (138, 139). 

2.2.1.2. Gonadotrope development 

The first cell-specific event characterizing the gonadotrope fate is expression of 

steroidogenic factor 1 (SF1, also known as NR5A1), an orphan nuclear receptor, at E13.5 in 
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mice (Fig. 1.2B) (140). Global or pituitary-specific Sf1 knockout mice have low or absent FSH 

and LH synthesis in the pituitary under basal condition (140, 141). Nevertheless, administration 

of exogenous GnRH to either mouse model increases gonadotropin synthesis, indicating that SF1 

is, in fact, not absolutely required for gonadotrope lineage specification (141, 142). As described 

above, GATA2 has also been implicated in gonadotrope development, yet pituitary-specific 

Gata2 knockout mice display only a mild hypogonadotropic phenotype (143). However, deletion 

of Gata2 in this model may occur only at E12.5-E14.5, which is later than the onset of GATA2 

expression (E10.5). (143). Other transcription factors are required for some aspects of 

gonadotrope maturation, such as selective synthesis of LH or FSH, but not for the full 

gonadotrope differentiation program ((144, 145) and see Section 3). To this day, no single factor 

has been identified that is absolutely and selectively required for commitment to the gonadotrope 

cell lineage (Fig. 1.2). It is quite possible that this process requires the cooperative activity of 

several factors, which may act redundantly. Therefore, although it is clear that the different 

pituitary lineages emerge from common precursors, the precise mechanisms governing terminal 

gonadotrope differentiation remain unknown.  

The pituitary is generally considered to be a fairly quiescent tissue with low self-renewal 

and proliferative activity (146). Indeed, only about 1% of gonadotropes are in a proliferative 

state at any given moment under basal conditions in adult rodents (147). That said, it has been 

appreciated for quite some time that the adult gonadotrope population is not static per se. For 

example, there are substantial changes in the number of proliferating pituitary cells, including 

gonadotropes, across different stages of the estrous cycle in rodents (146-150). Furthermore, a 

recently described population of pituitary progenitors, expressing the pluripotency marker SOX2, 

has been shown to continuously supply the adult pituitary with new cells from all the pituitary 

lineages (151-156). Whereas most gonadotropes synthesize both LH and FSH, subsets express 

either LH or FSH during embryonic development and post-natally, suggesting heterogeneitity in 

gonadotrope function (157, 158). The life-span of gonadotropes, the mechanisms underlying 

their replacement throughout life, and how this process is regulated across physiological and 

pathological conditions, all remain unanswered questions. Intriguing recent evidence has shed 

light on hitherto unrecognized dynamic behavior of gonadotrope cells: they appear to maintain 

organized networks with selected pituitary lineages (159) and to move closer to or further from 

blood vessels depending on the estrous cycle stage and GnRH stimulation (160, 161). 
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Collectively, these observations suggest that the gonadotrope population remains highly dynamic 

in adult mammals. 

2.2.2. Assembly, secretion, and bioactivity of the gonadotropins 

The gonadotropins are peptide hormones. LH and FSH are dimeric glycosylated proteins 

comprised of a common α subunit, noncovalently linked to a unique β subunit, which confers 

biological specificity. The gonadotropin subunits are synthesized in gonadotrope cells from 

independent genes, denoted Cga (common α subunit), Lhb (LH β subunit), and Fshb (FSH β 

subunit) in rodents.  In humans and primates, an additional gonadotropin, chorionic gonadotropin 

(CG), is synthesized by the placenta and comprised of CGA linked to a β subunit encoded by the 

CGB gene. CG has LH-like activity and is critical for corpus luteum maintenance and 

progesterone synthesis in pregnancy (162). Similar to other peptide hormones destined for 

secretion, the nascent gonadotropin subunit peptides have N-terminal signal sequences of 18-24 

amino acids, which are cleaved during protein synthesis in the rough endoplasmic reticulum 

(ER) (163-165). In the ER, the gonadotropin subunits are folded by formation of disulfide bonds 

between cysteine residues, effectively creating loops that confer their characteristic “cysteine 

knot” structure (163, 166, 167). This arrangement is critical for assembly of the dimeric 

hormones: complementary cysteine loops of the folded α and β subunits slide into each other in a 

head-to-tail configuration like matching pieces of a puzzle; an organization beautifully revealed 

by the X-ray crystal structures of dimeric gonadotropins (168-172). This confers the dimeric 

hormones’ remarkable structural strength, despite the non-covalent nature of the association 

between the subunits (173).  Because α subunits are produced in excess, it appears that the 

amount of β subunit synthesized dictates the quantity of bioactive hormone generated (174, 175).  

A hallmark of the gonadotropins is glycosylation of both the α and β subunits, which 

regulate their function. N-linked glycosylation of the gonadotropin subunits occurs in the ER, 

coincident with protein translation and folding (175-177). Two asparagine residues are N-

glycosylated in the α subunit, one in the LH β subunit, and two in the FSH β subunit (178).  

Further processing of the carbohydrate chains occurs in the ER and the Golgi apparatus, yielding 

a large array of mature glycoforms (178). Importantly, LH and FSH differ in the predominant 

terminal groups on their attached carbohydrates: N-acetyl-galactosamine/sulfate for LH, and 

galactose/sialic acid in the case of FSH (179-182). The distinct mature carbohydrate chains 
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present on LH and FSH are important determinants of their half-lives in circulation, which is a 

few hours for FSH, compared with > 30 min. for LH (183-185). Specific recognition of the 

sulfated carbohydrates attached to LH by a receptor located on hepatic endothelial cells appears 

to underlie the rapid clearance of LH from the blood (186). Indeed, mice lacking the gonadotrope 

sulfotransferase responsible for this unique LH modification display increased circulating LH 

levels and hyperactivity of the reproductive axis (187).  Because GnRH pulses stimulating LH 

secretion rarely occur more often than once every half hour (188) (see section 2.1.1.2.), rapid 

clearance of LH following its release likely explains the typical transient pulsatile pattern of 

circulating LH levels (186, 187). The glycosylation pattern of the gonadotropins varies with the 

reproductive cycles (see below) under normal conditions (189-191), and is disturbed in a number 

of pathological states (192-194). Thus, since the biological activity of the gonadotropins differs 

between glycoforms (195-198), abnormal glycosylation may contribute to the pathophysiology 

of infertility.  

Subsequent to carbohydrate maturation in the Golgi apparatus, the gonadotropins are 

packaged for release. Dimeric LH is sorted to the regulated secretory pathway, whereas FSH is 

constitutively secreted (199). Indeed, within gonadotropes, LH is predominantly packed in small 

electron-dense compartments associated with the secretogranin II; hallmarks of vesicles relying 

on calcium signaling for exocytosis (200). By contrast, FSH is found mostly in larger vacuoles 

decorated with chromogranin A, features that may direct the vesicles towards immediate 

secretion following budding from the trans-Golgi network after cargo maturation (199-202). 

These observations have contributed to a central dogma of gonadotropin biology; namely, that 

circulating FSH levels mainly reflect how much FSH is synthesized at a given moment, whereas 

circulating LH levels instead reflect the strength and frequency of the stimulus regulating its 

release (199, 203). The exact nature of the signals regulating the differential sorting of LH and 

FSH is incompletely understood, but a  seven amino acids stretch near the C-terminus of LHβ 

appears important for routing of LH to the regulated secretory pathway (204, 205). Thus, the β 

subunits of LH and FSH are differentially processed, modified and sorted during synthesis, 

impacting their secretion patterns and bioactivity. 

 

2.2.3. Patterns of LH and FSH secretion in males and females 
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The dynamics of gonadotropin synthesis and release vary substantially depending on the 

species, sex, and age of the animals. In rodents, the ability of the pituitary to synthesize 

gonadotropins follows the maturation of GnRH neurons during late embryonic development 

(206-208). Thereafter, initiation of GnRH pulsatile secretion drives the onset of LH and FSH 

secretion (208-210). In the early postnatal period, a robust increase in circulating FSH, and to a 

lesser degree LH, takes place in females (211, 212). In males, a similar phenomenon may occur, 

but to lesser extent (211, 213, 214). This preferential increase in FSH secretion is thought to be 

due to a slow GnRH pulsatile stimulation – which favors FSH over LH synthesis (see section 

3.2.1.) (215, 216) - coupled with a lack of negative feedback from ovary-derived estradiol (217, 

218). After a few days, an increase in the GnRH pulse frequency and the establishment of steroid 

negative feedback leads to a decline in circulating FSH levels, whereas LH remains low until 

puberty (213). The role of this neonatal gonadotropin surge is unclear, as early ovarian follicle 

development progresses during the immediate postnatal period in the absence of FSH, LH, or 

their receptors in mice (219-223). In males, FSH secretion ramps up during the juvenile period, 

peaks before puberty and subsequently declines and stabilizes for the rest of adult life (211, 214, 

224-226). Meanwhile, LH secretion remains highly pulsatile, with an increase in the frequency 

and amplitude of episodic LH release at puberty (211, 213, 224, 226-228).  

In females, puberty onset is accompanied by a major shift in the pattern of gonadotropin 

release; highly dynamic, cyclical, and stereotyped changes in the levels of FSH and LH are 

established, and remain fixed for the remainder of reproductive life (Fig. 1.3). During the late 

juvenile period in rodents, an increase in LH and FSH release from the pituitary occurs (229-

233). This “awakening” of the HPG axis is driven by increased hypothalamic GnRH secretion, 

though the exact trigger for this activation remains elusive (94, 234) (See section 2.1.1.2.). 

Increased FSH and LH levels induce the maturation of a cohort of “ovarian follicles”, the 

functional units of the ovary (described in details below, in section 2.3.2.3.), which in turn 

produce estradiol (229, 231, 232, 235). Eventually, the positive feedback effect exerted by high 

estradiol leads to the first GnRH-driven LH surge (see section 3.1.1.) which triggers ovulation 

(236). Thereafter, robust cyclicity in the pattern of gonadotropin release is established (Fig. 1.3). 

The periodicity of the cyclical changes in gonadotropins varies between species, being about 4-6 

days in rodents (the “estrous cycle”) and 28-30 days in women of reproductive age (the 

“menstrual cycle”) (237-239) (Fig. 1.3). LH is low during most of the cycle, except prior to 
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ovulation, when it dramatically peaks for a few hours in rodents (this day is called “proestrus”) 

and for longer in humans (240-245). At the same time, FSH also increases, driven by the large 

GnRH stimulus on pituitary gonadotropes (240-244). This episode of FSH release is widely 

considered to be an epiphenomenon, as blockade of LH alone at proestrus is sufficient to prevent 

ovulation in rats (246-248). On the morning of the following day (estrus), the so-called 

“secondary FSH surge” occurs, while LH returns to baseline (Fig. 1.3) (240, 242, 244). Increased 

FSH synthesis and secretion at that time drives the recruitment and maturation of a new cohort of 

ovarian follicles, for eventual ovulation during the next cycle. This was most elegantly 

demonstrated by classical experiments blocking the secondary FSH surge in rodents (249, 250). 

As discussed in more detail in section 3.2.1.4. , FSH production at this stage is driven by locally-

produced activins or related TGFβ superfamily ligands. In humans, an analogous selective 

increase in FSH occurs during the first few days of the menstrual cycle, driving ovarian follicle 

maturation (“follicular phase”) (241, 243). After the secondary FSH surge occurs in rodents, a 

period of relative pituitary restraint ensues during metestrus and diestrus, lasting typically 2-3 

days (Fig. 1.3) (240, 242, 244). During this time, ovarian follicles grow, secrete increasing 

amount of estradiol, which, on the day of proestrus, reach sufficiently high levels to trigger a 

new surge of LH and ovulation (Fig. 1.3). Overall, gonadotropin synthesis and release are highly 

regulated and dynamic processes which ensure proper function of the gonads. 

2.3. The gonads 

The main roles of the gonadotropins are to stimulate the production of gonadal hormones 

– especially sex steroids – and to promote the maturation of healthy fertilizable germ cells. The 

gonadotropins target somatic cells that surround the germ cells within the functional units of the 

gonads: the seminiferous tubules in the testes, and the ovarian follicles in the ovaries. The male 

and female gonads arise from common organ precursors which differentiate into either testes or 

ovaries during embryonic development (251).  

 

 

2.3.1. The male gonad 
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Early development of the male gonad is associated with the specification of the Sertoli 

cells, a critical supporting cell lineage in the testis (252). Sertoli cells congregate around 

primordial (early) germ cells, creating tubular structures called “seminiferous tubules” (251). 

Later, an additional type of somatic cell envelops the seminiferous tubules: the Leydig cells, 

which are responsible for the production of the steroid hormone, testosterone (see section 

2.3.1.2.). Thus, male germ cells are shielded in the specialized environment of the seminiferous 

tubules, where they will undergo replication and maturation.  

2.3.1.1. Gametogenesis in males 

Since the male and female gametes each contribute a complementary half of the genome 

to a developing embryo, mature spermatozoa and oocytes must carry a haploid genome (one 

copy of each chromosome) to yield diploid offspring after fertilization. Initially, though, early 

germ cells in the embryonic gonads are diploid, as they are derived from somatic cells. After 

their enclosure in tubular structures, male germ cells remain in a state of mitotic arrest as 

“spermatogonia” until postnatal day 10 (P10) in mice (253). Thereafter, germ cells undergo a 

series of maturation steps, which occur continuously throughout the life of the animal. This 

process, called “spermatogenesis”, is divided into several stages based on cytological and 

functional criteria (254, 255). A large number of factors produced by the supporting cells of the 

testes control the process of spermatogenesis (256). Some of these factors, such as androgens 

(e.g., testosterone) produced by Leydig cells in the testicular interstitium, are synthesized in 

response to pituitary-derived gonadotropin hormones. In mice that do not produce gonadotropins 

or lack a pituitary gland, meiosis and germ cell development is blocked at the spermatocyte stage 

(257-259).  

2.3.1.2. Somatic cell organization and function in the testis 

 In the testis, the Leydig and Sertoli cells provide the interface between circulating 

endocrine signals derived from the pituitary and developing germ cells in the seminiferous 

tubules. The main function of the Leydig cells is to produce testosterone (260). Testosterone is 

required not only for the maintenance of spermatogenesis, but also for the development of the 

male genital tract, maturation of secondary sexual characteristics, and the masculinization of 

behavior (260). Leydig cells increase production of testosterone late in embryonic development 
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in response to the onset of luteinizing hormone (LH) secretion by the pituitary gland (261). 

Testosterone is produced by the sequential enzymatic conversion of steroid precursors from 

cholesterol. Many of these steps occur in the mitochondria. LH induces the expression of 

Steroidogenic Acute Regulatory protein (StAR), which transports cholesterol from the cytoplasm 

to the mitochontria – the rate-limiting step in testosterone production (262). LH also stimulates 

the expression or activity of several steroidogenic enzymes (263-266). At puberty, the stronger 

LH stimulus (refer back to Section 2.2.3.) pushes testosterone production above the threshold 

required to drive full sexual maturation.   

 In addition to providing structural support to the germ cells in the seminiferous tubules, 

Sertoli cells provide a crucial link between the Leydig cells, the maturing gametes, and the 

pituitary gland. In particular, Sertoli cells are responsible for the delivery of testosterone 

produced by the Leydig cells to the germ cells via the androgen binding protein (ABP), which is 

expressed in response to follicle-stimulating hormone (FSH) (267-269). Another major product 

of Sertoli cells, in response to FSH stimulation, is the transforming growth factor β family 

member, inhibin B (270). In males, inhibin B may play some role in the negative endocrine 

feedback loop which controls FSH production by the pituitary, as detailed in section 3.2.1.3. In 

sum, Sertoli and Leydig cells respond to the gonadotropins to orchestrate the production of sex 

steroids and fertilization-competent male gametes.  

2.3.2. The female gonad 

 The functional organization of the male and female gonads is similar: in both cases, 

somatic cells receive gonadotropin stimuli and direct germ cell maturation. In female embryos, 

the gonad differentiates towards an ovarian fate (251). Somewhat analogous the enclosing of 

male germ cells by Sertoli cells in the embryonic testis, early oocytes form small clusters 

comprising a few germ cells surrounded by somatic cells (271). These so-called “germ cell 

cysts” will remain undisturbed in the ovaries until the early postnatal period in mice. At that 

point, germ cell clusters are broken down, and individual oocytes are enclosed by a single layer 

of specialized somatic cells, the granulosa cell precursors (272). Each of these structures 

represents the earliest form of the functional units of the ovaries, the ovarian follicles. At this 

stage, they are called “primordial follicles” (Fig. 1.4). Thereafter, under the influence of a large 

number of intrinsic and extrinsic factors, granulosa cells grow and proliferate (272). Eventually, 
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the follicles are surrounded by an additional layer of supporting cells, the steroidogenic theca 

cells (Fig. 1.4). Ultimately, some follicles will mature to the point where they have the ability to 

release a fertilizable oocyte (ovulation), in a cyclical process termed “folliculogenesis” (Fig. 1.4) 

(272). 

2.3.2.1. Gametogenesis in females 

 Unlike in males, where germ cells are mitotically arrested during embryonic 

development, oocytes enter meiosis immediately after ovarian fate commitment (273-276). 

However, they arrest at the prophase stage of meiosis I, and will not progress further until 

ovulation. Coincident with the release of the oocyte from its enclosing follicle at ovulation, 

meiosis resumes, but will not be fully completed until fertilization (277).  Nevertheless, between 

its early maturation steps during embryonic development and ovulation in adulthood, the oocyte 

does not remain idle; it is transcriptionaly and translationaly active, accumulating in its large 

cytoplasm proteins and mRNAs which are absolutely crucial for the early development of the 

embryo after fertilization (278). Until ovulation, the oocyte remains enclosed in the protected 

milieu of the follicle; therefore, it is entirely dependent on surrounding theca and granulosa cells 

for reception of endocrine signals that direct its maturation (Fig. 1.4). Reciprocally, the oocyte 

has an instructive role for the development and homeostasis of follicular somatic cells (279).   

2.3.2.2. Somatic cell organization and function in the ovary 

Analogous to the role of Leydig cells in the testis, theca cells in the ovary have a 

prominent steroidogenic function. Theca cells are recruited to the ovarian follicle only when the 

latter reaches a certain developmental stage in the postnatal ovary (Fig. 1.4 and section 2.3.2.3.). 

Just as seen in Leydig cells, theca cells synthesize androgens in response to pituitary-derived LH, 

which induces the expression and activity of StAR and several enzymes required for 

steroidogenesis (280, 281). The main steroid product of the theca cells, androstenedione, diffuses 

to adjacent granulosa cells, where it is converted to estrone, and then to estradiol under the 

influence of FSH (282). The first important function of granulosa cells is to communicate with 

and “nurse” the oocyte, ensuring its maintenance and health. In particular, granulosa cells 

produce factors that ensure that the oocyte remains arrested in the prophase of meiosis I until 

ovulation (283). The second critical role of the granulosa cells is to respond to gonadotropin 
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stimulation to produce factors that regulate follicle maturation and/or that feedback on the 

hypothalamus and pituitary to regulate further gonadotropin production (272). One key product 

of the granulosa cells is estradiol, converted from estrone, itself produced from theca-derived 

androstenedione by the granulosa cell enzyme aromatase (encoded by the gene Cyp19a1). The 

expression of Cyp19a1 is directly stimulated by FSH (284-286), which also plays a major role in 

stimulating granulosa cell proliferation through induction of Cyclin D2 (287-289). The feedback 

effects of estradiol on hypothalamic GnRH neurons have been described in section 2.1.1.2., and 

those on pituitary gonadotropes are detailed in section 3.3.2. Other important endocrine products 

of the granulosa cells are inhibins, which feedback on the pituitary gland to negatively regulate 

the synthesis of FSH (290), as described in section 3.2.1.4.  

2.3.2.3. Folliculogenesis 

Shortly after ovarian follicle formation in the early postnatal period, a few primordial 

follicles undergo initial recruitment and grow to the primary and secondary stages (Fig. 1.4). 

During this transition, the granulosa cells, which are initially arranged in a single layer of flat 

cells surrounding the oocyte, grow and proliferate to form about four layers of cuboidal cells 

(Fig. 1.4) (272). By the secondary stage, theca cells surround the follicle, thus enabling 

subsequent supply of androgens to the granulosa cells (291). The initial recruitment of primordial 

follicle is continuous through life, until cessation of folliculogenesis at menopause. Despite 

decades of study, the factors responsible for the “decision” of primordial follicles to enter the 

growing pool of primary and secondary follicles remain unknown (272). What is clear is that the 

pituitary gonadotropins are not required for this to occur, as secondary follicles are observed in 

the ovaries of rodents lacking GnRH, FSH, LH, or after complete removal of the pituitary gland 

(220, 221, 292). Though the rate of initial follicle recruitment varies throughout life, there might 

be up to 50 secondary stage follicles at any given time in the ovary of young adult female mice 

(292). These follicles have the ability to respond to FSH and, if the stimulus is strong enough, 

will further develop into antral follicles (Fig. 1.4). This classification refers to the presence of an 

“antrum”, a growing fluid-filled cavity within the follicle (293). From the antral stage onward, 

the follicles are absolutely dependent on FSH for their growth and maintenance (Fig. 1.4) (294). 

In response to FSH, the granulosa cells proliferate and secrete estrogens and other factors. If the 

follicles do not respond to FSH, or if the FSH stimulus is not sufficient, the follicles undergo 
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apoptosis and degenerate (a process called “atresia”) – and, indeed, this is the fate of most 

ovarian follicles (295, 296).  

During the formation of the antral follicle, the granulosa cells that do not stay associated 

with the oocyte line the antrum underneath the theca layer, and become “mural” granulosa cells 

(Fig. 1.4). These cells differ from the cumulus granulosa cells in their function, in their ability to 

respond to endocrine stimuli, and in the types of factors they secrete (297). Late in the antral 

follicle stage, mural granulosa cells up-regulate expression of the LH receptor – until then 

restricted to the theca cells – under the influence of FSH (298-301). Coincidently, increases in 

the amount of estrogens released in the circulation by the  preovulatory antral follicles (one in 

humans; up to 12-15 in mice) cause a surge of LH release by the pituitary gland (see section 

3.1.1.). In response to LH, mural granulosa cells synthesize and secrete the epithelial growth 

factor (EGF)-like ligands, amphiregulin and epiregulin into the antrum (302-304). These factors 

act on the cumulus granulosa cells to promote the synthesis and secretion of an hyaluronic acid-

rich extracellular matrix that intercalates between cumulus cells, thus causing “cumulus 

expansion” (272, 305, 306). At this stage, cumulus granulosa cells also produce a number of 

vasoactive factors and proteases required for ovarian follicle breakdown and the release of the 

oocyte (together with attached cumulus cells) from the ovary (Fig. 1.4) (272, 279, 283, 307-309). 

Following ovulation, and in response to LH, mural granulosa cells undergo dramatic 

morphological and functional changes, producing and releasing progesterone (310). Progesterone 

derived from these so-called “corpora lutea” (or the single “corpus luteum” in humans) (Fig. 1.4) 

is essential for embryo implantation and maintenance (311, 312). If the ovulated oocytes are not 

fertilized, the corpora lutea degenerate and cyclic ovarian follicle recruitment continues. Overall, 

theca and granulosa cells integrate LH and FSH stimuli to regulate ovarian follicle growth, 

oocytes maturation and ovulation.  

 

 

 

3. Hormonal control of gonadotropin synthesis 
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Three major classes of hormones act directly on the gonadotropes to regulate 

gonadotropin synthesis and secretion: GnRH, the activin/inhibin system, and sex steroids. In this 

section, the physiological and molecular mechansisms underlying their effects on gonadotropes 

are described. 

3.1. Gonadotropin-releasing hormone 

3.1.1. GnRH and the LH surge 

Arguably, the most remarkable event controlled by GnRH is the stimulation of the 

ovulation-inducing LH surge in females. Immediately prior to the LH surge, GnRH secretion 

dramatically increases (at least in rodents and sheep) and remains elevated for several hours (Fig. 

1.5) (80, 188, 313). This drives a correspondingly massive production and release of LH by 

pituitary gonadotropes, which lasts at least several hours in rodents and sheep (e.g. (188, 313, 

314)), and more than a day in humans (245). It is noteworthy that the LH surge is not exclusively 

driven by an increase in hypothalamic GnRH release. Indeed, there is substantial evidence 

showing that the sensitivity of the pituitary to GnRH dramatically increases at the time of the LH 

surge, an estrogen-dependent phenomenon probably attributable in large part to the up-regulation 

of GnRH receptors in pituitary gonadotropes (315-318). In fact, in humans with Kallmann’s 

syndrome or in monkeys with hypothalamic lesions, an invariant regimen of pulsatile GnRH 

stimulation (i.e., same concentration and pulse frequency) can rescue menstrual cyclicity, 

including ovulation (319, 320). These observations call into question the requirement for an 

increase in endogenous GnRH release for LH surge generation in primates and humans. It is 

nevertheless clear that the full extent of the LH surge requires enhanced GnRH release, at least in 

sheep and rodents (321).  

It is quite remarkable that the LH surge lasts for several hours, which has led many 

investigators to ask how much of the surge is actually required for ovulation. The LH surge 

regulates many events in the ovary required for ovulation of fertilization-competent eggs: 

resumption of meiosis in the oocytes, cumulus granulosa cell expansion, follicule rupture, and 

luteinization – processes that take several hours to be completed ((272, 307) and refer back to 

Section 2.3.2.3.). However, it is clear that the full extent of the LH surge (both in terms of 

amplitude and duration) is not required for ovulation and fertility. Indeed, mice with only 34% of 



45 

 

the normal complement of GnRH neurons exhibit normal fertility despite a blunted LH surge, 

whereas female mice with only 12% of the normal GnRH neuron number have poor fertility and 

essentially no LH surges (314).  Furthermore, fertility can be rescued by transplanting hpg mice 

with only a few dozen GnRH neurons, despite the fact that their GnRH and LH surges are 

presumably much smaller than in normal animals (322, 323). In sheep, modest GnRH 

stimulation at the time of surge is sufficient for ovulation (324). The duration requirement of the 

surge across species remains unclear. It seems that rodents require between 1 and 2 h, whereas 

primates require more than 14 h of LH release to induce ovulation, which is shorter than their 

respective endogenous surges (325-327). Overall, these observations indicate that GnRH and LH 

are produced in excess at the time of the LH surge. As mentioned above in sections 2.1.1 and 

2.2.3, GnRH is also a critical regulator of “baseline” LH and FSH synthesis and release during 

the rest of the estrous/menstrual cycle in females, and throughout life in males. 

3.1.2. GnRH signaling at the cell surface 

3.1.2.1. Structure and evolution of the GnRH receptor 

The signaling events underlying GnRH regulation of LH and FSH synthesis and release 

is initated at the cell surface, by binding of GnRH to its receptor. The GnRH receptor (GnRHR) 

is a member of the G protein-coupled receptor (GPCR) superfamily, characterized by their seven 

transmembrane domains and their coupling to heterotrimeric guanine nucleotide-binding protein 

(G protein) complexes (328). In addition to mammals, the GnRHR is conserved in birds, 

amphibians and fish, and some species have more than one GnRHR-encoding gene (9, 329). 

Orthologs have also been identified in flies and worms, though it is not clear whether they are 

involved in reproductive function in those animals (9, 330). Elucidation of the tertiary structure 

of the GnRHR has, thus far, relied on homology modeling based on the projection and X-ray 

crystal structures of rhodopsin (9, 331-334). The positioning of the various transmembrane 

domains, intracellular, and extracellular loops was guided by the identification of two disulfide 

bonds – between transmembrane (TM) domain 3 and extracellular loop (ECL) 2, and between 

ECL2 and the N-terminal tail (335). Further, amino acids mediating physical interactions 

between various transmembrane domains (TM) are highly conserved between the GnRHR and 

other GPCRs of the same class (Class A), and are required for GnRHR stabilization (9, 334, 

336). A ligand-binding pocket, involving direct contacts between the ligand and eight residues 
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within the extracellular loops or outer surface of TMs in GnRHR, has been defined by scanning 

mutagenesis studies (e.g., (9, 337-341)). Receptor activation likely involves changes in inter-

TMs interactions and a rotation of TM3, similar to rhodopsin and other class A GPCRs (9, 342, 

343). Finally, glycosylation of two extracellular residues in the murine receptor (and one in 

human) may affect receptor function and trafficking, though apparently not ligand binding 

affinity (344, 345). The recent description of the X-ray crystal structures of other class A GPCRs 

(346-349) will undoubtedly facilitate a refinement of GnRHR tertiary structure models, and 

perhaps pave the way for the experimental resolution of the GnRHR structure in the inactive and 

ligand-bound states. This could, in turn, facilitate the development of small molecule agonists or 

antagonists, which would be very useful clinically (refer back to section 1.3.). 

3.1.2.2. G protein coupling of the GnRHR 

 GPCRs exist in equilibrium between ligand-bound/unbound and G protein-

associated/dissociated states. The classical ternary model of GPCR function, to which the 

GnRHR appears to conform (9), proposes that agonist binding to the receptor promotes G protein 

association, and vice-versa (350, 351). Exchange of guanosine diphosphate (GDP) for guanosine 

triphosphate (GTP) bound to the G protein α subunit promotes G protein dissociation from the 

ligand-receptor complex (350, 351). Dissociated G protein subunits then activate downstream 

signaling mediators, and Gα hydrolyses GTP to return in the GDP-bound state (352). The nature 

of the signaling effectors activated varies between Gα subtypes, of which there are four main 

classes: Gαs, Gαq/11, Gαi and Gα12/13 (352).  Even before the primary structure of the GnRHR was 

known, pioneering studies using nonhydrosylable GTP analogs established that the effects of 

GnRH in gonadotropes are mediated by G proteins (Fig. 1.6) (353-355). Gαq/11 has consistently 

been identified as a crucial mediator of GnRHR signaling (356-360). Gαs and its canonical 

second messenger cAMP have also been implicated, but cAMP accumulation may occur 

downstream of Gαq/11 (356, 357, 361-363).  In heterologous cell lines, for example in prostate 

cancer cells, GnRH might signal through other Gα subunits – in particular Gαi – but it is not clear 

whether those pathways are also engaged in gonadotropes (364, 365). In vivo evidence 

supporting the involvement of any particular Gα subtype in GnRH signal transduction remains 

scarce. Mice lacking Gαq or Gα11 are fertile and have minimal defects in their response to GnRH 

agonists, strongly suggesting that they act redundantly, or perhaps that other Gα subtypes may 
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compensate in their absence (366). Thus, the G protein requirements for normal GnRH signaling 

in gonadotropes remain to be precisely defined.  

3.1.2.3. GnRHR downregulation, desensitization and signal termination 

 After prolonged and/or intense stimulation, gonadotropes cease to respond to GnRH 

(188, 321). Loss of responsiveness to ligands or agonists that signal through GPCRs is 

commonly observed. In a prototypical GPCR, phosphorylation of the intracellular C-terminal tail 

(C-tail) or the third intracellular loop at serine or threonine residues by GPCR kinases (GRKs) 

occurs after ligand binding (367-370). This leads to the docking of β-arrestins, the recruitment of 

adaptor and coating proteins such as adaptor protein 2 (AP-2) and clathrins, the internalization of 

the receptors into vesicles, and finally their degradation or recycling (371-375). This process 

effectively desensitizes (and in the case of recycling, resensitizes) the cell to extracellular ligands 

acting via these receptors. However, the mammalian GnRHRs lack C-tails, which are present in 

all other GPCRs and non-mammalian GnRHRs described to date (376) (9). The functional 

implications of this unique property of the mammalian GnRHR have been extensively 

investigated. Though the C-tail of GPCRs might serve diverse functions (e.g., (377)), its best 

understood role is as a mediator of receptor downregulation following agonist stimulation (371, 

378). Thus, the lack of a C-tail in GnRHRs was postulated to slow or impair receptor 

downregulation (379). This prediction was confirmed by a large number of studies in model cell 

lines. Mammalian GnRHRs internalize much more slowly and incompletely than their non-

mammalian counterparts in response to agonist binding, whereas the addition of a C-tail (from 

another GPCR or a non-mammalian GnRHR) to a mammalian GnRHR accelerates its 

internalization (e.g (380-385)). The consequences of attenuated internalization in terms of signal 

transduction are unclear. Very few studies investigating this have employed homologous 

gonadotrope cell lines, and their conclusions depend on the signaling mediator measured (379, 

380, 386, 387).  

The functional role of slow and incomplete GnRHR downregulation in the mammalian 

reproductive system is highly intriguing. As described in Section 3.1.1., ovulation in mammals is 

driven by a protracted GnRH-driven LH surge. Generation of this surge requires that 

gonadotrope cells retain high sensitivity to intensive GnRH stimulation for several hours. 

Interestingly, species such as the domestic chicken, which have a GnRHR with a C-tail, generate 
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much shallower and shorter LH surges than mammals (388, 389). These observations have led to 

the proposal that the evolutionary loss of the C-tail in mammals may have enabled the 

production of protracted LH surges, upon which the ovulation process may have become reliant 

(390). However, this prediction remains to be formally tested in vivo. It is nevertheless clear, 

from the observation that the GnRH surge lasts longer than the LH surge (Fig. 1.5), that  

gonadotropes eventually desensitize to GnRH stimulation (80, 188, 313). The mechanisms 

underlying this desensitization are still largely unclear. This process does not necessarily involve 

cell surface downregulation of the receptors, and may instead be caused by the turnover of 

downstream signaling mediators (391-393). Overall, the gonadotrope response to GnRH 

desensitizes slowly, enabling potent and prolonged GnRH stimulation.  

3.1.3. GnRH-regulated signaling patways in the cytoplasm 

3.1.3.1. GnRH signaling pathways regulating gonadotropin release 

 In gonadotropes, GnRH activates two primary immediate biological responses: 

gonadotropin release and the activation of gonadotropin subunit gene expression (Fig. 1.6). 

Perhaps the most robust and reliably observed immediate response upon GnRH stimulation of 

gonadotropes is the production of inositol 1,4,5-trisphosphate (IP3), which occurs within seconds 

after ligand binding to the GnRHR (394-399). IP3 is produced by the cleavage of 

phosphatidylinositol 4,5-bisphosphate (PIP2) into IP3 and diacylglycerol (DAG) by 

phospholipase C (PLC) enzymes, themselves activated by GTP-bound Gαq/11 proteins 

downstream of the GnRHR (Fig. 1.6) (353, 354, 400, 401). IP3 then binds IP3 receptors (IP3R) on 

the membrane of the endoplasmic reticulum (ER), triggering the rapid efflux of calcium into the 

cytosol (Fig. 1.6) (376, 402-404). In gonadotrope cells, IP3 production and intracellular calcium 

elevation is biphasic and oscillatory: a rapid phase of high-amplitude calcium release from the 

ER is followed by a prolonged and shallower phase, reflecting calcium influx from voltage-gated 

and voltage-independent calcium channels at the gonadotrope cell surface (405-408). As 

described in Section 2.2.2., LH is preferentially packaged in dense-core vesicles compared to 

FSH (200). Calcium binding to coat proteins induces vesicle priming and docking to the plasma 

membrane, followed by the extracellular release of luminal contents (Fig. 1.6) (409, 410). LH 

release and a large component of the FSH secretory reponse to GnRH are calcium-dependent 

(199). Remarkably, GnRH-induced LH secretion from gonadotropes is biphasic, precisely 
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following the pattern of IP3 production and intracellular calcium elevation (411-413). Activation 

of protein kinase C (PKC) family members by DAG and calcium contribute to the second phase 

of intracellular calcium elevation and the associated sustained LH secretion, possibly through the 

modulation of calcium channel activity at the plasma membrane (414-417). Thus, calcium 

mobilization and influx in gonadotropes mediate rapid induction of gonadotropin secretion by 

GnRH.  

3.1.3.2. Cytoplasmic GnRH signaling pathways regulating gene expression 

In addition to stimulating gonadotropin secretion, the immediate signaling events induced 

by GnRH engage signaling cascades that activate gonadotropin subunit expression. PKCs 

comprise a family of at least eleven subtypes, categorized into three groups (“conventional”, 

“novel” and “atypical”) (418), and are canonical signaling mediators downstream of Gαq/11. Their 

precise mechanism of activation and regulation varies between groups (418). In the case of 

conventional PKC isoforms, the enzymes are, basally, in an auto-inhibitory conformation, which 

is partially relieved by calcium binding (419, 420). This structural change facilitates cooperative 

binding of DAG (produced from PIP2 hydrolysis by the action of PLC - see above) and calcium 

to the regulatory domain of the protein (419, 421, 422). DAG association with PKC creates a 

complex with high-affinity to phosphatidylserine, a lipid component of the plasma membrane 

that is required for full activation of PKC enzymatic activity (423, 424). Subsequently, PKC 

phosphorylates a wide variety of targets. As a result of its mechanism of activation, PKC 

accumulates near membranes after agonist-induced signaling (419). Several PKC subtypes are 

expressed in gonadotropes, with the exact complement varying between species and primary or 

immortalized cells (425-427). PKCs rapidly re-distribute to the plasma membrane in response to 

GnRH, consistent with the immediate production of IP3 and the release of intracellular calcium 

stores after GnRHR activation (428-431). Several PKC subtypes are activated by GnRH, as 

defined by plasma membrane translocation and/or auto-phosphorylation (Fig. 6) (431-435). In 

addition, GnRH stimulates the expression of some PKC subtypes with varying kinetics (432). In 

gonadotrope-like cell lines and primary pituitary cell culture, PKC activation is required for 

GnRH-stimulated transcription of all three gonadotropin subunit genes (Cga, Fshb and Lhb) 

(436-439). Nevertheless, the identity of the PKC subtypes involved in regulating each of these 

responses remains unknown. Furthermore, there is as yet no in vivo evidence supporting a 
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necessary role for any PKC protein in gonadotrope function, though such studies would possibly 

be complicated by functional redundancy between subtypes [e.g. (440)].  

Among the major signaling mediators activated downstream of PKC, mitogen-activated 

protein kinases (MAPKs) have been extensively implicated in GnRH-regulated gonadotropin 

subunit synthesis (Fig. 1.6) (441). There are four distinct MAPK pathways: extracellular signal-

regulated kinases 1/2 (ERK1/2), cjun-N-terminal kinases (JNKs), p38, and big MAPK 

(BMK/ERK5) (442). All the MAPKs act downstream of linear phosphorylation cascades 

involving MAPK kinases (MAP2K) and MAP2K kinases (MAP3K) (Fig, 1.6) (442, 443). In the 

case of ERK1/2, well-characterized MAP2Ks and MAP3Ks are mitogen-activated protein kinase 

kinase 1/2 (MEK1/2) and v-raf-leukemia viral oncogene 1 (c-Raf or Raf1), respectively (443-

445). Activated MAPKs can phosphorylate a wide variety of substrates, including transcription 

factors, thus providing a link between cytoplasmic signaling events and gene transcription (446). 

All four MAPKs are rapidly activated after GnRH stimulation in gonadotropes (447-453), in a 

PKC-dependent manner (438, 447, 452, 453). The link between PKC activation and MAPK 

pathway engagement in gonadotropes remains somewhat obscure. An obvious candidate is c-Raf 

(445, 454). Indeed, constitutively active c-Raf expression promotes ERK1/2 phosphorylation in 

gonadotropes (455, 456). However, pituitary-specific c-Raf knockout mice have no reproductive 

phenotype, and pharmacological inhibition of c-Raf does not prevent GnRH-induced ERK1/2 

phosphorylation (455). Since MAPK pathways can be activated by a large number of effectors 

downstream of cell surface receptors (442), further studies are required to identify which ones 

couple GnRH receptor activation to MAPK phosphorylation. In primary pituitary cells and 

gonadotrope cell lines, GnRH-regulated Lhb expression depends on ERK1/2 and JNK, but not 

p38 (449, 457-459), whereas GnRH-induced Fshb expression appears to be dependent on 

ERK1/2, p38, and perhaps BMK, but not JNK (427, 448, 460-465) (Fig. 1.6). GnRH activates 

Cga expression through ERK1/2 (Fig. 1.6) (439, 466, 467). These cell-based findings were 

supported in part by the generation and analysis of pituitary-specific ERK1/2 knockout mice, 

which display low Cga and Lhb expression, impaired Lhb upregulation in response to 

gonadectomy or GnRH stimulation, and female infertility (468). These mice retain apparently 

normal basal Fshb expression and some Fshb upregulation in response to ovariectomy, but the 

interpretation of these results may be complicated by the crucial role played by activin signaling 

in the regulation of Fshb transcription (see Section 3.2.). Though these observations demonstrate 
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a necessary role for ERK1/2 signaling in mediating the effects of GnRH on gonadotropes in vivo, 

they do not rule out some contribution by other MAPKs, a possibility which has yet to be 

investigated.  

 In addition to MAPKs, GnRH activates other signaling pathways that may contribute to 

gonadotropin gene expression. For example, GnRH stimulation produces cAMP and activates 

PKA in gonadotropes (357, 362, 363, 469-474). This pathway has been implicated in the control 

of both Lhb and Fshb transcription (471, 473). Yet another pathway activated by GnRH 

signaling in gonadotropes is the calmodulin (CaM)/calmodulin-dependent kinase (CaMK) 

signaling cascade (475). When bound by calcium, CaM acts as a regulatory subunit for CaMKs 

and phosphatases such as calcineurin (476). By causing a large increase in intracellular calcium 

levels, GnRH stimulation activates CaM, and consequently CaMKs and calcineurin in 

gonadotropes (477-482). Both CaMKs and calcineurins regulate transcriptional responses to 

GnRH in gonadotrope-like cell lines (480-484). In the case of calcineurin, this may involve 

dephosphorylation (and, hence, activation) of the transcription factors nuclear factor of activated 

T cells 3 (NFAT3) and cyclic-AMP response element binding protein (CREB)-regulated 

transcription coactivator 1 (CRTC1) (483, 484). Overall, the evidence supporting roles for cAMP 

and CaM-dependent signals in mediating GnRH responses is preliminary, particularly in 

comparison to the well-established requirement for MAPKs. In vivo confirmation of their 

involvement, for example using appropriate knockout models, is required. Based on the most 

compelling evidence, GnRH regulation of gonadotropin subunit expression appears largely 

dependent on PKC and MAPK signaling in the cytoplasm.  

3.1.4. GnRH regulation of gene expression 

 Integration of the signals controlling GnRH-stimulated gonadotropin subunit synthesis 

occurs mainly at the transcriptional level (485), though GnRH also regulates protein translation 

(486). Thanks to the extensive use of gonadotrope-like cell lines and to a limited number of  in 

vivo genetic manipulations, major strides have now been made in our understanding of how Cga, 

Lhb, and Fshb are transcriptionaly activated downstream of GnRH-regulated cytoplasmic 

signaling cascades.   
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3.1.4.1. GnRH regulation of Cga transcription 

 The proximal Cga promoter contains several conserved cis-elements required for basal 

and GnRH-stimulated gene transcription (Fig. 1.7). A pituitary-specific element (PSE) (136), at -

344/-300 directs basal Cga promoter activity to gonadotrope/thyrotope-like cell lines (here and 

after: “+1” is the transcription start site; unless otherwise noted, the base-pair positions 

correspond to the murine sequence) (487-489). LIM homeodomain transcription factors bind a 

consensus sequence within this element (490-492). Both LHX2 and LHX3 can bind and activate 

the PSE in vitro, and Lhx3-knockout mice have profoundly disrupted pituitary development, 

including near-complete absence of mature gonadotropes (131, 490-492). Another well-

characterized and conserved basal gonadotrope-specific element (GSE), at -215/-207, is bound 

by SF1 (458, 488, 493, 494). Supporting the importance of this element, mice with global or 

pituitary-speficific deletion of Sf1 have very low pituitary Cga expression (140, 141). In the 

human promoter, two cAMP-response elements (CREs) are very important for basal CGA 

transcription in cell lines (487, 495-498). This sequence, which is bound by c-Jun and ATF2 

transcription factors (497, 499), is only partially conserved in other mammals (497, 500). A 

binding site for paired-like homeodomain transcription factors (PITX) at -398/-385 also 

contributes to basal Cga promoter activity (501). 

 GnRH responsiveness of the Cga promoter is conferred by the PSE described above (Fig. 

1.7) (491, 502) and  a GnRH response element (GRE) at position -406/-399, which contains a 

consensus binding site for E26 transformation-specific (ETS) transcription factors (Fig. 1.7) 

(439, 467, 502). Factors binding these two sites act cooperatively to mediate GnRH-stimulated 

promoter activity (502). One or more ETS family members act through the GRE downstream of 

GnRH and PKC/MAPK signaling (Fig. 1.7) (439, 467, 503, 504). However, the exact identity of 

the endogenous factor(s) involved remains unknown. One candidate is ELK1, an ETS 

transcription factor activated by ERK1/2 after GnRH stimulation (467, 505). Presumably, ETS 

factors bound to GRE physically (directly or indirectly) and functionally interact with LHX 

proteins bound to PSE in response to GnRH (485). The precise identify of the ETS and LHX 

transcription factors involved in this process remains unclear. A GnRH-responsive region has 

also been mapped in the human promoter (458, 487, 503). This CGA sequence comprises the 

conserved PSE, as well as an ETS transcription factor binding site (similar to the murine GRE) 
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(458, 485, 487, 503), suggesting that the general mechanism of GnRH-stimulated Cga/CGA 

promoter activation may be conserved. In sum, GnRH signaling appears to induce ETS proteins, 

which cooperate with LHXfactors to activate Cga transcription.  

3.1.4.2. GnRH regulation of Lhb transcription 

 The rate limiting step for GnRH-stimulated de novo gonadotropin synthesis is the 

transcription of their β subunit genes. Basal and GnRH-regulated Lhb promoter activity depends 

on a segment, convering approximately 100-bp, that contains a well-defined set of five 

transcription factor binding sites conserved across mammals (Fig. 1.8) (485). Two “GSEs”, 

located at -129/-122 and -57/-50, contain consensus binding sequences for SF1 (Fig. 1.8) (506-

508). These elements contribute to both basal and GnRH-stimulated Lhb promoter activity in cell 

lines and transgenic mice (437, 506-513). As mentioned in section 2.2.1.2., SF1 is not absolutely 

required for GnRH-induced LHβ synthesis in mice (141, 142). The closely related transcription 

factor, liver receptor homolog-1 (LRH-1, or NR5A2) can also bind the Lhb promoter and 

stimulate its transcription, but is dispensable for normal Lhb expression and gonadotrope 

function in vivo (514, 515). A PITX binding site (“PBE”) is located at -100/-95, and appears to 

be required for both basal and GnRH-stimulated Lhb promoter activation in immortalized 

gonadotropes and transgenic mice (Fig. 1.8) (510, 512, 513, 516-518). Two PITX proteins are 

expressed in gonadotropes (PITX1 and PITX2), and both can activate the Lhb promoter (516, 

518, 519). Pitx1 and Pitx2 knockout mice display abnormal pituitary development, a lower 

number of gonadotropes and impaired Lhb expression (520, 521). However, gonadotrope-

specific deletion of PITX2 in mice does not compromise LH synthesis or fertility, indicating 

either functional redundancy with PITX1, or a non-cell-autonomous role for the protein in 

gonadotrope function (522). 

 Two central elements, at -111/-103 and -48/-40, confer GnRH responsiveness to the Lhb 

promoter, and are located adjacent to the SF1 and PITX binding sites (145, 437, 509, 510, 513). 

These sites comprise a consensus binding sequence for the early-growth response 1 (EGR1) 

transcription factor (EBE) (Fig. 1.8). The unexpectedly critical role for EGR1 – a ubiquituously 

expressed transcription factor induced by a variety of stimuli (523) –  in Lhb transcription was 

revealed by the analysis of Egr1 knockout mice. These animals display female-specific infertility 

due to very low levels of LHβ synthesis and absence of ovulation (145, 524). Egr1 mRNA and 
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protein levels are rapidly induced in response to GnRH in gonadotropes, a process which appears 

to rely on MAPK-dependent activation of ELK1, a direct activator of Egr1 transcription (Fig. 

1.8) (437, 505, 512, 513). Indeed, mice lacking ERK1/2 in gonadotropes are unable to upregulate 

Egr1 expression in response to GnRH (468). EGR1 physically and functionally interacts with 

both SF1 and PITX1, which themselves also directly interact, to synergistically activate Lhb 

transcription (506, 509, 510, 512, 513). The proximity of the binding sites for all three factors 

within the Lhb promoter undoubtedlty facilitates their cooperative activity (485). Furthermore, 

the molecular link provided by EGR1 between SF1 and PITX1 likely explains the requirement of 

the later two proteins for GnRH-stimulated Lhb promoter activation, as they are not themselves 

induced by GnRH. EGR1 activity is potentiated by GnRH-induced CREB-binding protein (CBP) 

phosphorylation (p-CBP), and knock-in female mice lacking p-CBP are subfertile due to 

impaired GnRH-stimulated LH production and LH surge generation (525). 

In addition to the core EGR1/SF1/PITX module regulating Lhb expression, other 

promoter elements and factors have been implicated in basal and GnRH-stimulated Lhb 

transcription. In the rat, two distally-located  trans-acting transcription factor 1 (SP1) binding 

sites (also conserved in mouse) are required for the full basal and GnRH-stimulated induction of 

the Lhb promoter (Fig. 1.8) (439, 509, 526, 527). In cow, it is instead two NF-Y binding sites 

that are present at that location, one of which is required for basal promoter activity in transgenic 

mice (528). SP1 proteins might replace EGR1 binding to the more proximal EBE elements in 

some species (529). Similarly, the PITX element can be bound by orthodenticle homeobox 

(OTX) transcription factors (530). Nevertheless, roles for endogenous SP1 or OTX proteins in 

the regulation of Lhb transcription remain to be demonstrated. Finally, the co-activator β-catenin 

might be required for the full activity of the EGR1/SF1/PITX module, by physically associating 

with SF1 (531, 532). Overall, GnRH-stimulated Lhb expression is mainly mediated by ERK1/2-

dependent induction of EGR1, which cooperates with SF1 and PITX1/2 to activate Lhb 

transcription.  

3.1.4.3. GnRH regulation of Fshb transcription 

 Of the three gonadotropin subunit genes, Fshb is arguably the one whose regulation by 

GnRH is least understood, even though FSH synthesis is robustly GnRH-dependent in vivo (533, 

534). Several promoter elements and transcription factors have been implicated in basal Fshb 
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transcription (203). Two putative “GSE” elements, at -341/-334 and -239/-231, bind SF1 and, 

when mutated in combination with and imperfect nuclear factor-y (NF-Y) site at -79/-69, 

decrease basal Fshb promoter activity (535). Consistent with a role for SF1 in Fshb expression, 

Sf1 knockout mice have dramatically reduced pituitary Fshb and circulating FSH levels (140, 

141). That said, SF1 overexpression does not directly activate the Fshb promoter (514). Since 

gonadotrope-specific Sf1 knockout mice also have impared Gnrhr expression (141), the effect of 

loosing SF1 on FSH synthesis may be due to impaired GnRH signaling.  A well-conserved PITX 

binding site, at -53/-49, contributes to both basal and activin-stimulated (see Section 3.2.4.1.) 

Fshb promoter activity in cell lines and in transgenic mice (501, 518, 536-540). Furthermore, 

knockdown of endogenous PITX1 or PITX2 proteins in immortalized gonadotrope-like cells 

impairs Fshb transcription (537). Whole-body Pitx1 and Pitx2 knockout mice have lower Fshb 

expression; but, as discussed above (see section 3.1.4.2.), this may reflect abnormal gonadotrope 

specification in those animals (520, 521). Gonadotrope-specific Pitx2 knockout mice have 

normal Fshb expression (522), but definitive assessment of a role for PITX proteins would 

require removal of both Pitx1 and Pitx2. LHX3 can activate Fshb transcription through up to 

three putative binding sites in the porcine promoter, and at least one in the human promoter (541, 

542).  Finally, pituitary-specific Gata2 knockout mice have impaired FSH synthesis (143), but a 

direct role for GATA2 in regulating Fshb transcription remains to be demonstrated.  

 Unlike in the Cga and Lhb promoters, none of the “basal” Fshb elements outlined above 

have been clearly implicated in mediating the GnRH response. Many sequences required for 

GnRH activation are not fully conserved, which may reflect species-specific regulatory 

mechanisms (203). In the ovine promoter, two binding sites for activator protein-1 (AP-1) family 

members, at -120/-114 and -83/-77 (543), are required for GnRH induction in heterologous cells 

overexpressing GnRHR (544). Consistent with a role for AP-1 family proteins, GnRH stimulates 

the expression of the jun proto-oncogenes, CJUN and JUNB, as well as the FBJ osteosarcoma 

oncogenes, CFOS and FOSB, in immortalized gonadotropes (Fig. 1.9) (461, 462, 465). 

Heterodimers of FOS and JUN proteins form a functional transcription factor unit (545). GnRH 

appears to induce c-jun expression through activating transcription factor 2 (ATF2), and c-fos 

expression though serum response factor (SRF) and ELK1 (546, 547). Yet, mutation of the AP-1 

sites minimally affects GnRH-stimulated ovine Fshb promoter activity in gonadotrope-like cells, 

and an ovine promoter lacking both sites shows normal regulation in transgenic mice – even 
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though it has lower GnRH responsiveness in primary pituitary cultures from the same animals 

(427, 460, 548). One of the AP-1 sites (-117/-111) is conserved in the human FSHB promoter, 

binds AP-1 proteins, and is required for GnRH induction (465). An additional AP-1 half site, 

present in both the murine (-71/-68) and human (-83/-80) promoters, also contributes to GnRH 

responsiveness (462, 465). Functional analyses using dominant-negative proteins supports a role 

for endogenous AP-1 proteins in immortalized gonadotropes (462, 465), but their requirement in 

vivo remains to be established. Mechanistically, the ERK1/2 and p38 pathways have been 

implicated in GnRH-induced AP-1 protein expression (Fig. 1.9) (453, 456, 461, 462, 465, 477, 

547). However, mice lacking ERK1/2 in gonadotropes have normal basal, and midly impaired 

ovariectomy-induced Fshb expression, although the transcript or protein levels of AP-1 factors in 

the pituitary of these animals were not reported (468). NUR77 (also known as NR4A1), a 

transcription factor induced by GnRH (455, 549, 550) may also participate in GnRH-induced 

Fshb expression (482).  

A GnRH regulatory mechanism involving AP-1 or NUR77 protein induction implies an 

indirect Fshb transcriptional response to GnRH stimulation. However, at least in rats, Fshb 

transcription occurs within a few minutes of GnRH stimulation (551), suggesting more 

immediate mechanisms. In the rat promoter, the AP-1 site instead acts as a cAMP-response 

element (CRE), bound by CREB, and is required to mediate approximately 50% of the GnRH 

response (Fig. 1.9) (552). Immediately adjacent to this site, upstream stimulatory factor (USF) 

proteins bind and activate Fshb transcription in cooperation with CREB (552), although this 

might be a rat-specific mechanism (Fig. 1.9) (203). Mechanistically, GnRH rapidly induces 

CREB phosphorylation in a cAMP/PKA-dependent manner (Fig. 1.9) (473), leading to the 

recruitment of transcription activating factors such as CBP (552). Whether cAMP production in 

response to GnRH reflects Gαs activation (357, 361, 362), or rather occurs downstream of Gαq/11 

and PKC (356, 363), remains to be established. Overall, each of the putative mechanisms of 

GnRH-stimulated Fshb transcription accounts only for a fraction of the GnRH response, and 

none have yet been validated in vivo.  
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3.2. Activins and Inhibins 

3.2.1. The activin/inhibin system and the control of reproduction 

 As described in the previous sections, it is abundantly clear that GnRH potently 

stimulates the synthesis and release of both LH and FSH. However, LH and FSH are 

differentially regulated. For example, many mammals, including rodents and humans, display a 

period of selective FSH elevation during their estrous/menstrual cycles, which drives ovarian 

follicle maturation ((241, 243, 249, 250) ; see Section 2.2.3.).  Furthermore, FSH increases faster 

than LH after gonadectomy (553), and is elevated prior to LH in pubertal girls (554) and peri-

menopausal women (555, 556). Part of this differential regulation has been attributed to 

divergent sensitivity of LH and FSH synthesis to GnRH pulse frequency – with faster pulses 

favoring LH, and slower pulses favoring FSH (215, 216, 557-559). However, the importance of 

variations in GnRH pulse frequency for the regulation of FSH synthesis appears questionable: in 

hpg mice, continuous GnRH administration robustly rescues FSH synthesis (534). Also, in 

GnRH-deficient monkeys and humans, constant GnRH pulses allow the completion of 

folliculogenesis (319, 320). Furthermore, steady-state FSH synthesis does not depend as much 

on GnRH as LH synthesis does (560-563). These observations support the existence of a 

regulatory system, parallel to GnRH, controlling only FSH production. Such a system, involving 

inhibin and activin hormones, has now been well described (290, 564).  

3.2.1.1. Discovery and purification of inhibins and activins 

 The existence of inhibins was first postulated 90 years ago, when hypertrophic pituitary 

cells (presumably gonadotropes) were observed in rats after testes irradiation – a procedure 

which damages seminiferous tubules but leaves androgen production by Leydig cells intact 

(565). This effect could be reversed by a water-soluble substance extracted from normal testes, 

suggesting the involvement of a non-steroidal,  protein hormone (“inhibin”) (566). The evidence, 

however, remained circumstantial and somewhat controversial until the mid-1970s (290). Crucial 

observations made at that time included the demonstration that Sertoli cell secretions can 

suppress FSH release by cultured pituitary cells (567), and that administration of testicular fluid 

extracts to castrated rats selectively suppressed FSH levels (568). Up to this point, the “inhibin 

effect” was considered male-specific. Subsequently, it was shown that the early post-castration 
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FSH increase in males and the secondary FSH surge (refer back to section 2.2.3.) in females 

could be suppressed by injection of steroid-depleted ovarian follicular fluid, strongly supporting 

the existence of “inhibin” in females as well (569, 570).  

 Follicular fluid can suppress FSH synthesis and secretion by gonadotropes in primary 

pituitary cultures (571). This provided a simple assay for the biochemical identification of 

inhibin. Its purification revealed that there is not one, but rather two forms of inhibin (A and B), 

and that both are dimeric proteins comprised of a common α (product of the Inha gene) and 

either of two similar β subunits (βA for inhibin A, and βB for inhibin B, encoded by the inhba 

and inhbb genes) (572, 573). Identification of the amino acid sequence of the subunits facilitated 

the subsequent cloning of their respective genes (574-577). During the process of inhibin 

biochemical characterization, it was surrendipitously observed that a follicular fluid fraction 

could stimulate the release of FSH by primary pituitary cells (578). Unexpectedly, further 

purification revealed that the responsible substance is composed of dimers of β subunits (579-

581). The term “activins” was thus coined to describe these hormones (activin A, B or AB, 

depending on the identity of the two β subunits). The β subunits of inhibins and activins 

resemble those of transforming growth factor β (TGFβ), thus adding these proteins to the 

superfamily of TGFβ-related ligands (575). Overall, activins and inhibins are structurally related 

ligands which selectively and antagonistically regulate FSH synthesis and secretion. 

3.2.1.2. Inhibins and activins: endocrine, paracrine, and autocrine actions 

 Inhibins act as classical endocrine hormones, participating in a long-range negative 

feedback loop with the pituitary gland. First, the inhibin subunits are abundantly expressed in 

testicular Sertoli cells and in granulosa cells of antral follicles (582-584). Second, gonadal 

expression of the α subunit and serum levels of inhibins are up-regulated in response to 

gonadotropin stimulation (577, 585-587), and inversely correlate with FSH secretion during the 

estrous cycle (see section 3.2.1.4.). Third, bioneutralization of circulating inhibins elevates FSH 

levels (588-591). Fourth, mice with a targeted deletion of the α subunit (inha) have elevated 

serum FSH levels (592). In fact, inha knockout animals develop aggressive testicular and ovarian 

tumors whose development is at least partially dependent on elevated FSH, as additional deletion 

of Fshb reduces tumor burden (593). That said, inhibin subunits are also synthesized by the 

pituitary gland (583) and may have additional autocine/paracrine effects on gonadotropes (594).  



59 

 

Activins, unlike inhibins, appear to primarily regulate the synthesis of FSH by 

autocrine/paracrine action on gonadotropes (595).  Part of this view arose from the findings that 

follicular fluids contain another potent suppressor of FSH synthesis, follistatin (596, 597). 

Follistatin is not structurally related to inhibins or activins (596, 597) and binds almost 

irreversibly to activins, thus potently neutralizing their activity (598, 599).Thus, because they are 

bioneutralized by follistatin, gonad-derived activins are unlikely to provide an endocrine signal 

that regulates FSH levels under homeostatic conditions (600). Pituitary cells, including 

gonadotropes, express the activin βB subunit, in principle allowing autocrine/paracrine 

regulation of FSH synthesis (583, 601). Indeed, bioneutralization of activin B (dimers of βB 

subunits) released by primary pituitary cells inhibits the synthesis and secretion of FSH in culture 

(602). In addition, ovariectomy increases FSH synthesis by pituitary glands implanted under the 

kidney capsule of hypophysiectomized rats, and this effect is blocked by activin B antibodies, 

further supporting a role for autocrine/paracrine activin B in the regulation of FSH output in vivo 

(603). It is now well accepted that the potent FSH-suppressing effect of inhibins and follistatin 

observed in primary pituitary culture is not due to a direct signal induced by these factors in 

gonadotrope cells, but is rather explained by the blockade of locally-released activin B (595, 

600). That said, Inhbb knockout mice, which do not produce activin B and activin AB,  have 

normal-to-elevated circulating FSH levels (604). Complicating the interpretation of this 

phenotype, these mice also lack inhibin B, and activin A may compensate, though not from a 

gonadal source (604, 605). In fact, to this day, the identity of the activin or activin-related 

ligand(s) required for FSH synthesis in vivo, as well as their precise cellular origin, remains 

unknown.  In sum, activins or related ligands, likely produced locally within the pituitary, 

stimulate FSH synthesis and release, and this effect is antagonized by gonad-derived inhibins.  

3.2.1.3. Dynamics of the inhibin/activin system in males 

 Sertoli cells are the main source of inhibins in the circulation of male mammals (567, 

606, 607). Unlike females, males usually produce only inhibin B (608-610). In rodents and 

humans, serum inhibin B levels peak during the postnatal period, as a consequence of increased 

pituitary FSH secretion and Sertoli cell proliferation (611-613). In rats, removal of the testes or 

bioneutralization of circulating inhibins at this age rapidly up-regulates FSH levels, supporting 

the existence of a functional FSH/inhibin B endocrine feedback loop (553, 612). Later in life, 
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however, serum inhibin B levels decline to less than a third of their postnatal levels (611-613), 

and blockade of inhibin activity at this stage no longer affects FSH levels in rats (612). 

Nevertheless, there is a robust inverse relationship between serum inhibin B and FSH in adult 

men, arguing that the inhibin feedback loop operates throughout life in humans (611).  

3.2.1.4. Dynamics of the inhibin/activin system in females 

 In contrast to males, a critical role for the inhibin/activin system in the regulation of 

female reproductive function and fertility is well established (564). Inhibin production by the 

ovary and its feedback regulation of FSH synthesis begins at puberty (290, 553, 614). Thereafter, 

ovarian inhibin production is highly dynamic across reproductive cyles. In the rodent estrous 

cycle, inhibin A levels are low during metestrus and diestrus, peak at proestrus (coincident with 

the LH and primary FSH surge), and decline rapidly in the morning of estrus, at the time of the 

secondary FSH surge (Fig. 1.10)  (610, 615). Inhibin B, on the other hand, is high at 

metestrus/diestrus, drops at proestrus, and remains low during early estrus (Fig. 1.10) (610, 615). 

Thus, there is a strong negative correlation between inhibin B and FSH levels across the estrous 

cycle (Fig. 1.10). A similar, though not identical, pattern is observed in the human menstrual 

cycle, where inhibin levels are lowest at the time of the selective FSH elevation at the beginning 

of the follicular phase (610, 615-617). At the molecular level, expression of the α and βA 

subunits is robustly detected only in the mural granulosa cells of antral follicles, but not at earlier 

stages or in corpora lutea (618). Accordingly, inhibin concentrations are highest in the fluid of 

large antral follicles (e.g (619-621)). These observations agree with circulating hormone 

measurements and correlate nicely with the maturation stages of ovarian follicles across the 

estrous cycle (refer back to Sections 2.2.3. and 2.3.2.3.). The presence of high inhibin A 

simultaneously with the primary FSH surge is consistent with a prominent role for GnRH in 

stimulating FSH (together with LH) synthesis and secretion at that time of the cycle (561, 622). 

On the other hand, the fact that both inhibins are depleted on the early morning of estrus, when 

FSH is selectively increased, suggests that minimal inhibin negative feedback enables the 

secondary FSH surge, which drives ovarian follicle maturation beyond the pre-antral stage (Fig. 

1.10) (249, 250). Indeed, the estrus morning FSH surge can be blocked by inhibin-containing 

follicular fluid in rodents (570). Furthermore, the expression of inhibin/activin subunits in the 

pituitary shows little changes across the estrous cycle (623). Globally, these observations support 
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a model wherein low levels of inhibins provide a permissive environment for enhanced activin 

autocrine/paracrine action on pituitary gonadotropes in estrus (and early follicular phase in 

humans), thus leading to a surge in FSH synthesis that drives ovarian follicle maturation (203, 

595, 600).  

3.2.2. Activin signaling at the cell surface 

 The physiological observations outlined above have provided a clear incentive to 

elucidate the molecular mechanisms whereby activin signaling regulates FSH synthesis in 

gonadotropes. A model of activin signaling in gonadotropes, mostly based on in vitro 

observations, have now been described (203) (Fig. 1.11).  

3.2.2.1. The activin receptors and their activation 

Activins are members of the TGFβ superfamily, which comprises dozens of structurally 

related ligands including inhibins, bone morphogenetic proteins (BMPs) and growth and 

differentiation factors (GDFs) (624). Most of these proteins share a common signaling 

mechanism at the level of their receptors and intracellular signaling effectors (625). TGFβ and 

activin ligands first bind simultaneously to two type II receptors at the cell surface (Fig. 1.11) 

(626). The type II receptors are constitutively active serine/threonine kinases, and their 

engagement by ligands facilitates the recruitment of two type I receptors into the complex (Fig. 

1.11) (627, 628). The type II receptors phosphorylate a glycine/serine-rich region on the type I 

receptor, called the “GS box” (628-630). As a result, the serine/threonine kinase activity of the 

type I receptor is disinhibited, and the docking and phosphorylation of downstream effectors, the 

Sma and Mad-related (SMAD) proteins, is enabled (Fig. 1.11) (628, 631). BMP ligands serve as 

crucial platform for the interaction of type II – type I receptors, as revealed by structural analyses 

of BMP-bound receptor complexes (632). Activin A binding to type II receptors appears to fullfil 

a similar role (633, 634). Overall, the hexameric ligand-receptor complex is thought to form the 

functional signaling unit at the cell surface. Two type II receptors for activins have been 

identified: activin receptor type 2 A and B (ACVR2A and ACVR2B) (635, 636). As well, two 

bona fide activin type I receptors have been identified: the canonical receptor, activin receptor 

type 1B (ACVR1B, also known as ALK4), and activin receptor type 1C (ACVR1C, also known 

as ALK7), through which activin B can signal in gonadotropes (637-640). It is important to note 
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that these are not exclusive activin receptors, as BMPs and Nodal can also bind to and signal 

through some of these receptors (625). Furthermore, activins may signal through non-canonical 

type I receptors in some contexts (e.g. (641)) and through the BMP type II receptor BMPR2 in 

gonadotropes (642), providing additional complexity to the system.  

3.2.2.2. Activin receptor function in gonadotropes 

Acvr2a-null mice display female-specific infertility, low circulating FSH levels and low 

immunoreactivity for FSHβ in the pituitary (643). Thus, although both ACVR2A and ACVR2B 

are expressed in gonadotropes (644-646), ACVR2B is not able to fully compensate for the loss 

of ACVR2A. A potential contribution by ACVR2B in vivo has not be established so far, due to 

perinatal lethality resulting from global gene knockout (647). ACVR2A is also expressed in the 

ovary, where activins and related ligands have important functions, and the contribution of a 

gonad-autonomous defect in the sterility phenotype of Acvr2a mutant females cannot be 

excluded (648). Injection of the soluble ectodomain of ACVR2A, which bioneutralizes activins, 

robustly suppresses circulating FSH levels in post-menopausal women (649). Thus, activin 

signaling through ACVR2A appears to regulate FSH synthesis in humans as well. With respect 

to the type I receptor, activin induction of Fshb expression in immortalized and primary 

gonadotrope cells is mediated through one or a combination of ACVR1B, ACVR1C or 

transforming growth factor β receptor type I (TGFBR1) (644, 650-652). Acvr1b and Tgfbr1 

knockout mice die during embryonic development, thus precluding assessment of their pituitary 

function (653, 654). Acvr1c-null mice are viable and show mild reproductive dysfunction, 

including slightly lower circulating FSH in females (but normal pituitary Fshb expression), 

apparently due to ovarian and/or hypothalamic defects (655). Thus, gonadotrope-specific 

knockout of Acvr1b and Tgfbr1 will be required to identify the relevant type I receptor(s) in vivo. 

Finally, multiple factors  (e.g. Cripto, BMP and activin membrane-bound inhibitor (BAMBI) and 

SMAD7) act upstream, in parallel or downstream of the activin receptors to modulate ligand 

binding and/or receptor activity (reviewed in (625)), and their functional importance in 

gonadotrope cells remains ill-defined. In sum, activins regulate FSH synthesis via ACVR2A and 

one or more of ACVR1B, ACVR1C and TGFBR1.   
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3.2.3. Activin-regulated signaling pathways in the cytoplasm 

3.2.3.1. SMAD proteins 

 Downstream of type I receptor activation, the canonical mediators of TGFβ superfamily 

ligand signaling are the SMAD proteins (Fig. 1.11) (625, 656-660). The receptor-activated 

SMAD proteins (R-SMADs) are divided in two classes: SMADs 2 and 3 are activated 

downstream of ACVR1B, ACVR1C and TGFBR1, whereas SMADs 1, 5, and 8 are activated 

downstream of ACVR1, ACVRL1, BMPR1A and BMPR1B (625, 656-660). The amino acid 

identity of a small stretch of residues on the R-SMADs (the L3 loop) and on the type I receptors 

(the L45 loop) mediate specific R-SMAD/receptor pairing (661-663). All R-SMADs are 

composed of two functional domains, Mad homology 1 (MH1) and 2 (MH2), separared by a 

“linker” region (664). Whereas the MH1 domain mediates DNA binding, the MH2 domains 

brokers interactions with other SMAD proteins and with co-factors (664). Upon their recruitment 

to ligand-bound receptor complexes, the kinase domain of the type I receptor phosphorylates two 

serine residues at the extreme C-terminus of R-SMADs (657, 658, 665). This event enables high-

affinity interactions between R-SMADs, as well as their association with the “co-SMAD”, 

SMAD4 (659, 664-669).  The association of R-SMADs with SMAD4 facilitates SMAD complex 

accumulation in the nucleus, where they participate in transcriptional regulation of target genes 

(Fig. 1.11) (664, 665, 670, 671). Thus, SMAD4 is critically required for most of the biological 

responses downstream of TGFβ superfamily signaling (625). Interestingly, the full-length form 

of SMAD2 cannot bind DNA because of an extra amino acid stretch next to the β-hairpin 

structure that mediates MH1 binding to DNA (672, 673). However, a natural splice variant of 

SMAD2 (SMAD2Δexon3), which is expressed in gonadotropes (674), lacks these residues and 

can bind DNA similarly to SMAD3 (673).  

In immortalized gonadotropes, SMAD2, SMAD3 and SMAD4 mediate activin-induced 

Fshb promoter activation (Fig. 1.11) (463, 539, 674-679). Whereas activin-stimulated rat Fshb 

promoter activity depends on SMAD3 (463, 539, 677), the mouse promoter appears to be 

regulated by both SMAD2 and SMAD3 (674, 676, 678). Global Smad2 and Smad4 knockout 

mice are embryonic lethal (680-682), requiring cell-specific inactivation to assess their function 

in gonadotropes in vivo. Smad3 mutants, however, are viable (683-686). Several different Smad3 

knockout lines have been generated, with discordant phenotypes (683-686). Only one of these, in 
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which the 8
th

 exon (of 9) was deleted (Smad3
Δex8

), shows clear reproductive anomalies (684, 

687). Male mice homozygous for the Smad3
Δex8

 mutation have lower pituitary Fshb expression 

(688), yet the females have elevated circulating FSH levels (687). However, female Smad3
Δex8 

mice display intrinsic ovarian anomalies, consistent with a cell-autonomous requirement for 

SMAD3 in granulosa cell function (689), and complicating the interpretation of pituitary 

phenotypes (684, 687). Thus, the role of the canonical activin-regulated R-SMADs in 

gonadotropes, where they may very well act redundantly, remains unknown. In addition, 

SMAD1/5/8 proteins appear to mediate Fshb promoter activation downstream of BMP ligands in 

immortalized gonadotropes (690-692). Like SMAD2/3, their in vivo requirement remains to be 

established.  

3.2.3.2. Non-canonical activin signaling 

 In addition to SMAD-mediated signaling, TGFβ family members activate biological 

responses through a variety of other pathways, especially involving MAPKs (reviewed in (693)). 

One of them involves the kinase TGFβ-activated kinase 1 (TAK1, also known as MAP3K7), 

which activates MAPK signaling (694, 695). One group has reported that activin-induced Fshb 

promoter activation in immortalized gonadotropes is TAK1 and p38-dependent (696). Yet, it was 

subsequently found that the TAK1 inhibitor used in that study has non-specific effects at the high 

concentrations used, that p38 antagonists inhibit ACVR1B kinase activity, and that activin 

stimulation does not trigger p38 phosphorylation in gonadotropes (697). Thus, at this point, there 

is no solid evidence implicating non-canonical activin signaling in mediating biological 

responses in gonadotropes. Overall, activins appear to engage a SMAD (probably SMAD2/3/4)-

dependent pathway to regulate Fshb expression.  

3.2.4. Activin regulation of gene expression 

 In the nucleus, SMAD2Δexon3, SMAD3, and SMAD4 can bind to a minimal 4 base-pair 

(bp) recognition sequence, GTCT or AGAC, to regulate gene expression (664, 698, 699). A 

palindromic arrangement of two such elements, which can accommodate in principle two SMAD 

proteins (699) forms an optimal binding site (700). As the minimal GTCT motif is encountered 

on average every 256 bp in the genome, additional elements are required to target SMAD 

proteins to specific loci and form functional transcriptional activation complexes (625, 664). This 
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was first revealed by the discovery that a physical interaction between SMAD2 and the forkead 

protein FOXH1 (also known as FAST1), enables transcriptional activation through a composite 

DNA element on the Mix.2 promoter bound by SMAD4 and FOXH1 (670, 701, 702). Since then, 

a large number of additional SMAD-interacting transcription factor have been identified (703), 

and this general mode of regulation has been confirmed at the genome-wide level (704).  

3.2.4.1 Activin regulation of Fshb transcription 

 In the mouse Fshb promoter, An 8-bp palindromic SMAD binding element (SBE, 

GTCTAGAC), at -266/-259 (Fig. 1.11), is required for transcriptional activation by activins 

(463, 539, 676, 677, 705). This site can be bound by a complex of SMAD2/3/4 proteins (676), 

and its mutation  reduces – but does not abolish – activin induction of the Fshb promoter (463, 

676, 705). Thus, the identification and analysis of the 8-bp SBE suggested that additional 

elements mediate activin responsiveness. An important breakthrough was achieved in recent 

years following comparative studies of the porcine and human Fshb/FSHB promoters. While 

both lack the 8-bp SBE observed in the rodent promoters, the porcine promoter is much more 

activin-responsive than its human counterpart despite ~90% sequence conservation (541, 706). 

The difference in activin responsiveness was mapped to a single bp, located in a putative 

forkhead transcription factor binding site (FBE) (706). Indeed, the porcine Fshb promoter is 

regulated by FOXL2, whose expression is restricted to gonadotropes and thyrotropes in the 

pituitary gland (706-708). Further investigation revealed the presence of a second FBE in the 

porcine promoter, and that both FBEs are adjacent to minimal (4-bp) SBEs, thus forming 

composite elements that are cooperatively activated by FOXL2 and SMAD proteins (706, 708). 

In addition, SMAD3 physically interacts with FOXL2 (708, 709), thus providing a molecular 

link between activin signaling and FOXL2. The more proximal of the two porcine FBE/SBE 

composite elements is conserved in the murine and human promoters (-115/-107 in mouse) and 

required for activin-induced murine promoter activity (Fig. 1.11) (678, 706). Accordingly, 

endogenous FOXL2 proteins are required in immortalized gonadotropes for murine Fshb 

transcriptional activation (706). Mechanistically, FOXL2 and either SMAD3 or SMAD4 – but 

not both – are required to bind to the DNA for functional complex formation, consistent with the 

sufficiency of a minimal 4-bp SBE (Fig. 1.11) (678). Two additional putative FBEs have been 
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identified in the murine promoter, but they are not adjacent to SBEs and appear less important 

than the composite FBE/SBE element for activin regulation (Fig. 1.11) (678, 710).  

Humans with heterozygous germline mutations in the FOXL2 gene show complex eyelid 

malformations, sometimes accompanied by premature ovarian failure (711, 712). Consistently, 

Foxl2-null mice have lethal craniofacial defects and profound ovarian dysfunction (713-715). 

Interestingly, these animals also have pronounced pituitary FSHβ deficiency around birth (144). 

However, due to perinatal lethality, definitive assessment of the role of FOXL2 in gonadotrope 

function required a conditional knockout approach, which was achieved recently (716). Mice 

with a gonadotrope-specific deletion of the Foxl2 gene display a reduction in pituitary Fshb 

expression, low circulating FSH levels, and female subfertility (716). Collectively, these 

observations identified FOXL2 as a cell-restricted transcription factor critical for FSH synthesis. 

As mentioned above, an in vivo requirement for any of the SMAD proteins, alone or together 

with FOXL2, remains to be established.   

 In addition to the FBEs and SBEs, a binding site for PITX proteins, discussed in Section 

3.1.4.3. (PBE), also appears to be important for activin-stimulated Fshb promoter activation (Fig. 

1.11) (536, 537). Depletion of endogenous PITX proteins by RNA interference in immortalized 

gonadotropes impairs activin-stimulated Fshb transcriptional activation (537, 538). Because 

SMAD2/3/4 proteins can physically interact with PITX1 and PITX2, the PBE may serve as a 

platform for activation of transcription by an activin-induced SMAD/PITX complex (537, 538, 

688). Another Fshb promoter element was previously suggested to bind the homeodomain 

transcription factors, pre B cell leukemia homeobox 1 (PBX1A) and Pbx/knotted 1 homeobox 

(PREP1), which can physically interact with SMAD2/3/4 (717). However, it was later shown 

that this element overlaps with the composite FBE/SBE site discussed above, thus casting doubt 

on the importance of PBX/PREP proteins in Fshb regulation (678). Based on the most 

compelling evidence, activin induction of Fshb transcription appears to be largely mediated by 

SMAD proteins their interacting cell-specific factor, FOXL2, acting through imperfectly 

conserved SMAD and SMAD/forkhead composite binding elements.  
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3.2.4.2. Activin regulation of Gnrhr, Lhb, and Fst transcription 

 Given that activins are primarily thought of as stimulators of FSH synthesis, mechanisms 

mediating activin-stimuated Fshb transcription have received the most attention. Nevertheless, 

Fshb is only one of many activin-responsive genes in gonadotropes, which include well-known 

regulators of reproductive function (718, 719). The gonadotropin-releasing hormone receptor 

gene (Gnrhr) is transcriptionaly stimulated by activins in primary pituitary cultures and 

immortalized gonadotrope cells (720-724). At least two regions of the Gnrhr promoter mediate 

activin responsiveness (721, 724-726). The first one, the “GnRHR activation sequence” (or 

“GRAS”) is bound and activated by SMADs, AP-1 proteins, and FOXL2 (721, 724, 726). The 

second sequence, “downstream activin regulatory element” (or “DARE”) is bound by the 

homeodomain transcription factor LHX2 and cooperates with GRAS to mediate activin 

responsiveness (725). However, mice with a whole-body deletion of Avcr2a or a gonadotrope-

specific deletion of Foxl2 have normal pituitary Gnrhr transcript levels, despite clearly impaired 

Fshb expression (716, 727). Thus, it is at present unclear whether activin regulation of Gnrhr, 

observed in vitro, is physiologically relevant. Whereas activins are usually considered 

“selective” inducers of FSH secretion, activin stimulates LH synthesis and secretion in primary 

pituitary cultures, immortalized gonadotropes, and in vivo (645, 688, 719, 728-731). Three 

minimal SBEs within the proximal rat Lhb promoter appear critical for activin induction, and 

male homozygous Smad3
Δex8

 knockout mice have lower pituitary Lhb expression (688).  

 Follistatin, a well-described activin antagonist, is expressed in the pituitary gland, 

including in gonadotropes (732, 733). Pituitary follistatin (Fst) expression varies with the estrous 

cycle, peaking prior to the primary FSH surge, and precipituously declining before the secondary 

FSH surge (623). Furthermore, follistatin expression and FSH synthesis negatively correlate in 

pituitary cell culture, and follistatin-overexpressing transgenic mice have low serum FSH levels 

(734, 735). Therefore, a decline in pituitary follistatin expression may facilitate activin-

stimulated FSH production during the secondary FSH surge. Alternatively or in addition, since 

Fst is an activin-induced gene, its production may be part of a negative feedback loop that 

terminates the surge (acting along with increasing inhibin B – Fig. 1.10) (595, 736-739). The 

relevant intra-pituitary source of follistatin is unclear, as it is expressed in both gonadotropes and 

folliculostellate cells, which are abundant non-hormone producing pituitary cells (732, 740). 
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However, Fst expression might not be activin-regulated in folliculostellate cells (741), and 

further studies will be needed to address the cellular source and physiological importance of 

pituitary follistatin. Activin responsiveness of the Fst gene has been mapped to the first intron, 

which contains a minimal SBE (738). Interestingly, a nearby forkhead binding site is bound by 

FOXL2 (709). FOXL2 and SMAD3 act through the FBE and SBE to cooperatively activate Fst 

transcriptional activation (709). The relevance of this regulatory mechanism was validated, at 

least in part, by the analysis of global and gonadotrope-specific Foxl2 knockout mice, which 

show impaired pituitary Fst expression (144, 716). While this should, in principle, enhance the 

autocrine/paracrine activin effect on gonadotropes, the low Fshb expression in these animals 

indicate a dominant role of FOXL2 in Fshb transcriptional regulation (144, 716). In sum, in 

addition to Fshb, activin signaling regulates the expression of many genes important for 

gonadotrope function, including Lhb, Fst and perhaps Gnrhr.   

3.2.5. Mechanisms of activin antagonism by inhibins 

 As outlined in Section 3.2.1.4., cyclic fluctuations in inhibin production by the ovary 

provide a variably permissive or restrictive environment for activin autocrine/paracrine action on 

gonadotropes. Rather than inducing intracellular signaling (742), inhibins antagonize activin 

responses by blocking activin signaling at the receptor level (743).  

3.2.5.1 Inhibin competitive binding to activin receptors 

 Because inhibins share β subunits with activins, it is not suprising that inhibins are also 

able to bind to the activin type II receptors (636, 744, 745). Yet, in contrast to activins, this 

interaction does not lead to activation of type I receptors (746-748). This suggests a competitive 

mode of activin antagonism by inhibins: an inhibin molecule can bind a type II receptor via its 

single β subunit, but fails to engage a second type II receptor (which would require a second β 

subunit). This precludes the recruitment of a pair of type I receptors and the formation of an 

active signaling complex ((742), and refer back to Section 3.2.2.). Nevertheless, inhibins bind to 

ACVR2A with much lower affinity (Kd~6 nM – (636)) than do activins (Kd ~0.2nM - (636)). 

Therefore, effective blockade of activin signaling by the sole engagement of the type II receptor 

would require a large excess of inhibin molecules.  However, in rats, circulating inhibins are 

never higher than 10 pM for inhibin B, and 3 pM for inhibin A (610), which is much lower than 
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their Kd for ACVR2A. This has led to the proposal that high potency antagonism of activin 

signaling by inhibins may require the presence of a co-receptor, presumably engaged by the α 

subunit (742). So far, two candidate co-receptors have been identified (749, 750), but only one – 

TGFβ receptor type 3 (TGFBR3, also known as betaglycan) – has been validated as a bona fide 

inhibin co-receptor (750, 751).  

3.2.5.2. Role of TGFBR3 in inhibin antagonism of activin signaling 

 TGFBR3 was initially identified as a heavily glycosylated co-receptor for TGFβ (752, 

753). TGFβ binding to TGFBR3 enhances the affinity of ligand association for its type II 

receptor, and ectopic TGFBR3 expression potentiates TGFβ-induced biological responses (752, 

753). Because TGFBR3’s short intracellular tail lacks kinase activity – or any other recognizable 

signaling domain – present in other TGFβ superfamily receptors, it was concluded that TGFBR3 

enhances TGFβ activity mainly by increasing ligand binding affinity to type II receptors (751-

753). Several years after its cloning, TGFBR3 was identified as an inhibin co-receptor that 

enhances ligand binding to ACVR2A (Fig. 1.11) (750). Furthermore, TGFBR3 enables high-

potency inhibin antagonism of activin signaling (IC50 ~9 pM, which is within the physiological 

inhibin circulatin concentration – see above) when ectopically expressed in cells that are 

normally insensitive to inhibins (750). Inhibins and TGFβ use different binding interfaces on 

TGFBR3 (754-757), and inhibin binding is mediated mainly through its α subunit (Fig. 1.11) 

(758). TGFBR3 is expressed in gonadotropes, and appears enriched at the plasma membrane at 

times of high inhibin tone during the estrous cycles (615, 750). Recent knockdown and 

bioneutralization experiments in immortalized gonadotropes and primary pituitary cells have 

confirmed that endogenous TGFBR3 is required for efficient inhibin A suppression of Fshb 

promoter activity, Fshb expression, and FSH secretion (759, 760). These observations suggest 

that TGFBR3 is required for inhibin regulation of FSH synthesis, but the reproductive 

consequences of its loss in gonadotropes in vivo remain to be established. Assessing this will 

require a cell-specific knockout approach, as Tgfbr3-null mice die during embryonic 

development with hematopoietic and cardiovascular defects (761, 762). Interestingly, inhibin B 

suppresses FSH synthesis and release more efficiently than inhibin A, despite the fact that it 

binds less efficiently to TGFBR3 (763). Added to the fact that crosslinked inhibin B binds a 

unique protein on the surface of immortalized gonadotropes (763), these observations suggest 
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that TGFBR3 may not be the exclusive inhibin co-receptor. In sum, inhibins antagonize activin 

signaling via competitive binding to ACVR2A, a process which apparently requires a co-

receptor – most likely TGFBR3.  

3.2.6. Bone morphogenetic proteins 

BMPs, which are structurally similar to activins but signal through a distinct set of 

receptors and intracellular SMADs, are also candidate regulators of FSH synthesis, perhaps in 

synergy with activins or GnRH (644, 764-766). Several BMP ligands are expressed in the 

pituitary gland (644, 764), and they activate Fshb transcription to various extents, though less 

efficiently than activins in all cases (644). Furthermore, bioneutralization of BMPs in primary 

pituitary cell culture decreases FSH secretion (764).  Inhibins can antagonize BMP signaling, 

supporting a possible dynamic regulation of BMP activity within the pituitary, akin to that of 

activins (767). BMP2 stimulation of Fshb promoter activity requires BMPR1A in immortalized 

cells (690), but a requirement for the ligand or its receptor in FSH synthesis has not yet been 

demonstrated in vivo.  

3.3. Sex steroids 

 Steroid hormones produced by the gonads have long been recognized to exert context-

dependent positive or negative feedback on the activity of the reproductive axis (94, 260, 768). 

Androgens, estrogens, and progestogens act on the brain to modulate GnRH release (see Section 

2.1.1.2.), but also target gonadotrope cells to directly regulate gonadotropin subunit production.  

3.3.1. Androgens 

 Direct negative regulation of LH production by testosterone at the level of the 

gonadotropes has been demonstrated in isolated pituitary cells and in castrated male rats treated 

with a GnRH antagonist (and thus devoid of hypothalamic input) (769, 770). In these 

experiments, testosterone administration suppressed the expression of both the α (Cga) and β 

(Lhb) subunits of LH (769, 770). Mechanistically, the Cga/CGA promoter (at least in humans) is 

negatively regulated by the ligand-bound androgen receptor (AR) through physical interaction 

between AR and the ATF2 and c-Jun transcription factors occupying the “CRE” elements (see 

Section 3.1.4.1.) (499, 771, 772). A similar mechanism appears to underlie regulation of Lhb 
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promoter by androgens, where the repressive activity of ligand-bound AR involves direct 

interactions between AR and the transcription factors SF1, SP1, and EGR1 (see Section 3.1.4.2.) 

(773-775). In contrast to Cga and Lhb, androgens directly stimulate pituitary Fshb expression in 

rats (776, 777). Functional AR binding sites are present within the Fshb promoter, but the 

identity of the site(s) mediating the androgen effect may be species-specific (778, 779). 

Interestingly, androgens and activins synergistically activate Fshb transcription, an interaction 

that requires a SMAD-binding element (adjacent to the proximal FOXL2 binding site –see 

Section 3.2.4.1.) and could be mediated by SMAD3-AR physical contact (652, 778, 780, 781). 

The consequences of the loss of gonadotrope AR signaling in vivo remain to be determined.  

3.3.2. Estrogens 

 Extensive studies have sought to dissect the mechanisms underlying positive and 

negative feedback regulation of gonadotropin regulation by estrogens (782). Both the positive 

and negative feedback of estrogens are impaired in Esr1(encoding ERα)-null, but not (or 

minimally so) in Esr2(encoding ERβ)-null animals (104, 106, 783-786). Consequently, basal LH 

levels are dramatically elevated and LH surges are absent in Esr1 knockout females (104, 785, 

787). Mice lacking ERα in the brain (neuron-specific knockout) have impaired positive estrogen 

feedback (106). However, estrogen negative feedback appears largely intact in those animals. 

That is, they do not display the elevated basal LH levels and hypergonadotropic ovarian 

stimulation phenotypes seen in global Esr1 knockout females (106, 782, 787). These 

observations suggest that negative feedback regulation of LH by estradiol is mediated at least in 

part at the level of the gonadotrope cells, which expresse both ERα and ERβ (99, 788). Indeed, 

pituitary-specific Esr1 knockout mice show elevated basal LH levels and pituitary Lhb 

expression (99), and female subfertility (99) or infertility (97). That said, the increase in 

circulating LH in this model is not as high as in global Esr1 null mice (787). Further, a GnRH 

antagonist can decrease LH levels in Esr1 knockout animals (787) and the activity of an Lhb 

transgene in gonadectomized mice (775), pointing to a contribution of the brain to negative 

feedback as well. The molecular mechanisms underlying the negative regulation of  LH subunit 

expression by estrogens in gonadotropes remain elusive (485). Unexpectedly, primary pituitary 

culture and promoter-reporter studies in immortalized gonadotropes have reported a stimulatory, 
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instead of the expected inhibitory, effect of estradiol on Cga and/or Lhb transcriptional activation 

(769, 789, 790).   

Pituitary-specific Esr1 knockout females are unable to mount LH surges (99), suggesting 

that positive feedback may also require estrogen action in the gonadotropes. This could be due to 

a requirement for estrogen-enhanced sensitivity of the pituitary to GnRH, involving for example 

up-regulation of Gnrhr expression at the time of the surge (315-318), although the precise 

mechanism remains to be elucidated. With respect to FSH, studies in primary pituitary cultures 

have reported species-specific negative regulation (e.g. (791)) or no effect (e.g. (548)) of 

estradiol on Fshb expression. Also, whereas global Esr1 null mice may have elevated pituitary 

Fshb expression ((792), but see (104)), this is not seen in the pituitary-specific knockout models 

(97, 99). Thus, negative regulation of Fshb expression by estrogens may not occur in a cell-

autonomous manner.  

Despite our incomplete understanding of the mechanisms underlying estrogen regulation 

of gonadotropin synthesis, one of the most commonly used drugs to elevate FSH levels in PCOS 

women is an estrogen receptor modulator: clomiphene (refer back to Sections 1.2. and 1.3.). The 

effects of clomiphene have been attributed to moderate inhibition of estrogen receptor activity, 

which partially relieves the inhibitory effect of endogenous estradiol on LH and FSH synthesis 

and secretion at the hypothalamic and pituitary level (53, 793, 794). However, its precise 

mechanism of action remains somewhat elusive (48, 53, 795). A more recently developed class 

of drugs, the aromatase inhibitors, have a similar physiological effect, but instead act by blocking 

estradiol production by the ovarian granulosa cells (795, 796). To this day, clomiphene and 

aromatase inhibitors remain the only pro-fertility agents used clinically to specifically elevate 

endogenous FSH levels. In sum, both the positive and negative effects of estrogens on 

gonadotropin synthesis and secretion are mediated at least in part by direct actions on the 

gonadotropes, and this system can be targeted therapeutically to modulate gonadotropin levels. 

3.3.3. Progesterone 

 Progesterone exerts both positive and negative feedback regulation of gonadotropin 

synthesis, and its receptor (PGR) is expressed in the hypothalamus and in pituitary gonadotropes 

(797-799). In ovariectomized animals, progesterone replacement suppresses elevated LH release 
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(800-802), and Pgr-null animals have increased basal serum LH levels (803). Limited 

experimental evidence suggests that this negative effect of progesterone is mediated at the level 

of the brain (804). By contrast, progesterone stimulates gonadotropin synthesis and secretion 

during at least two critical periods of the estrous/menstrual cycle, and both of these appear to 

involve a direct effect on gonadotrope cells (798). First, progesterone plays a role in LH surge 

generation, at last in rodents. Indeed, progesterone administration can trigger an LH surge in 

estrogen-primed animals (805). In addition, progesterone production by preovulatory follicles 

precedes ovulation in rats (245), and a PGR antagonist can block the LH surge (806, 807). The 

progesterone requirement for pre-ovulatory LH surge generation appears to involve a direct 

pituitary effect (798). Indeed, estrogens stimulate pituitary Pgr expression (808, 809), 

progesterone enhances pituitary sensitivity to GnRH at the time of the surge (810, 811), and this 

“priming” effect is absent in Pgr-null animals (812). The molecular events mediating this 

positive effect of progesterone remain to be clarified.  

 Second, progesterone appears to participate in the generation of the secondary FSH surge.  

Progesterone levels are high just prior to the secondary FSH surge (Fig. 1.3), and PGR inhibition 

prevents this incease in FSH even in a context of declining inhibin levels (813-816). 

Interestingly, a requirement for gonadotrope PGR activity during the secondary surge may be 

independent of progesterone itself (816), and instead be mediated by cooperativity between 

activin signaling and PGR (817). Indeed, SMAD3 can physically interact with PGR in a ligand-

independent manner (652), providing a potential mechanism for activin signaling/progesterone 

receptor crosstalk.  Up to five elements within the proximal Fshb promoter may be bound by 

PGR and required for transcriptional activation by progesterone, one of them appearing to be 

particularly critical in mouse (779, 818). FOXL2 binding sites and a direct physical interaction 

between FOXL2 and PGR contribute to cooperative activation of Fshb transcription by 

progesterone and activins (819). Ultimately, a more complete understanding of the role of 

progesterone in the positive and negative regulation of gonadotropin synthesis will require the 

analysis of brain- and gonadotrope-specific Pgr knockout mice.  Overall, progesterone appears to 

have direct effects on the gonadotropes to regulate LH and FSH synthesis, and may play a 

critical role in driving the secondary FSH surge in rodents.  
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4. Rationale for the thesis 

 A better understanding of the molecular mechanisms controlling gonadotropin production 

and secretion is required for the identification of new therapeutic targets that can be exploited to 

effectively treat infertility. GnRH and the activin/inhibin system regulate LH and FSH synthesis 

and release. However, as outlined throughout the introduction, significant gaps remain in our 

knowledge of the underlying molecular mechanisms. The goal of this thesis is to address some of 

these outstanding issues. Specifically, this work focuses on activin regulation of FSH, and GnRH 

regulation of LH. Very little is known about the signaling pathways that mediate activin 

induction of FSH synthesis in vivo. In chapters 2 and 3, I examine the role of SMAD proteins 

and the cell-restricted SMAD co-factor FOXL2 in this process. While both GnRH and activin 

signaling regulate FSH, LH synthesis depends mostly on GnRH. GnRH regulation of LHβ 

subunit expression has been well-described, but it remains unclear if the prevailing model also 

applies to humans. In chapters 4 and 5, I assess the mechanisms underlying GnRH regulation of 

the human LHβ subunit gene transcription, and how it is modulated by activin signaling. GnRH-

induced LH synthesis might be most important for the generation of the LH surge, which drives 

ovulation in mammals. In chapter 6, I examine the possibility that a unique structural feature of 

the GnRH receptor is required for this to happen.   



75 

 

Figure legends 

 

Figure 1.1: Overview of the hypothalamic-pituitary gonadal axis. Gonadotropin-releasing 

hormone (GnRH), released from hypothalamic neurons, stimulates the synthesis and release of 

luteinizing hormone (LH) and follicle-stimulating hormone (FSH) by gonadotrope cells of the 

anterior pituitary gland. LH and FSH target the gonads, leading the production of the sex 

steroids: testosterone in males; estrogens and progesterone in females. The sex steroids exert 

context-dependent positive or negative regulation of GnRH, LH and FSH synthesis and release. 

As well, inhibins produced by the gonads antagonize the positive effect of intra-pituitary activins 

on FSH synthesis. 

Figure 1.2: Gonadotrope specification in the pituitary gland. A) Representative 

immunofluorescence staining for follicle-stimulating hormone β (FSHβ – top left) and 

luteinizing hormone β (LHβ – top right) subunits, as well as the nucleus-labeling DAPI stain 

(bottom left) and the merged image (bottom right) show the distribution of gonadotrope cells 

within the anterior pituitary gland in adult male C57Bl/6 mice. B) Schematic representation of 

transcription factor-driven fate-commitment and pituitary lineage specification. From common 

progenitors, (“pit stem cell”), T-box 19 (TBX19) induces the development of the corticotrope 

fate (expressing pro-opiomelanocortin; POMC), whereas LIM homeodomain transcription factor 

3 (LHX3) and paired like homeodomain factor 1 (PROP1) sequentially direct the differentiation 

towards other lineages. Expression of GATA binding protein 2 (GATA2), steroidogenic factor 1 

(SF1) and other factors (??) induce the development of gonadotropes (expressing luteinizing 

hormone; LH and follicle-stimulating hormone; FSH) from PROP1+ cells, whereas POU 

domain, class 1, transcription factor 1 (PIT1) directs commitment towards lactotropes 

(expressing prolactin; PRL), somatotropes (expressing growth hormone, GH) and, in conjunction 

with GATA2, thyrotropes (expressing thyroid-stimulating hormone; TSH).  

Figure 1.3: Schematic representation of circulating hormone profile throughout the rodent 

estrous cycle. Top panel: follicle-stimulating hormone (FSH). Second panel from top: luteinizing 

hormone (LH). Third panel from top: estradiol. Bottom panel: progesterone. M/D: 

metestrus/diestrus; P: proestrus; E: estrus. 1°: primary FSH surge. 2°: secondary FSH surge. 
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Figure 1.4: Overview of ovarian folliculogenesis. Follicle growth up to the secondary stage 

occurs in the absence of gonadotropins. FSH stimulates the recruitment of follicles to the early 

antral stage and beyond. The granulosa cells are depicted as round-shaped cells; the 

steroidogenic theca cells are square-shaped. In pre-ovulatory follicles, a large fluid-filled antrum 

separates two functionally distinct populations of granulosa cells: “cumulus” cells, which 

immediately surround the oocytes, and “mural” cells, which line the antrum. Following 

ovulation, the ovarian follicle becomes the progesterone-producing corpus luteum. 

Figure 1.5: The GnRH surge outlasts the LH surge. Schematic representation of GnRH (top 

panel) and LH (bottom panel) pulsatile release during the rodent estrous cycle. M/D: 

metestrus/diestrus; P: proestrus; E: estrus. Based on data from refs. (80, 313). 

Figure 1.6: Integrated model of gonadotropin-releasing hormone (GnRH) signaling pathways 

activating LH release and gonadotropin subunits expression. GnRH receptor activation causes 

the dissociation of the α subunit from heteromeric G proteins. The α subunit activates 

membrane-bound phospholipase C (PLC), which hydrolyses phosphatidylinositol 4,5-

bisphosphate (PIP2) into IP3 and diacylglycerol (DAG). IP3 stimulates efflux of calcium (Ca
2+

) 

from endoplasmic reticulum stores, leading to LH- and FSH-containing vesicle priming and 

exocytosis. DAG and Ca
2+

 activate protein kinase C (PKC), which in turn activates the mitogen-

activated protein kinase (MAPK) cascade by the sequential activation of MAPK kinase kinases. 

MAPK kinases, and the MAPKs: extracellular signal-regulated kinase 1/2 (ERK1/2), jun-N-

terminal kinase (JNK), p38 and big MAPK (ERK5). ERK1/2-mediated signaling activates the 

expression of the gonadotropin subunits, luteinizing hormone β (Lhb) and chorionic 

gonadotropin alpha (Cga) and, to a lesser extent, follicle-stimulating hormone β (Fshb). Lhb 

expression may also be partially JNK-dependent; whereas Fshb expression may also be partially 

p38-dependent. CGA subunits are produced in excess of LHβ and FSHβ subunits.  

Figure 1.7: Model of gonadotropin-releasing hormone (GnRH)-induced chorionic gonadotropin 

α (Cga) expression. A gonadotrope-specific element (GSE), bound by steroidogenic factor 1 

(SF1), and a pituitary-specific element (PSE), bound by LIM homeodomain transcription factor 

(LHX), contribute to basal Cga promoter activity. Extracellular-regulated kinase 1/2  (ERK1/2), 

downstream of a mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) cascade, 

phosphorylates an E26 transformation-specific (ETS) transcription factor which binds a GnRH-
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response element (GRE). The subsequent Cga promoter activation may involve an interaction 

between ETS and LHX factors.  

Figure 1.8: Model of gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone β 

subunit (Lhb) expression. Two gonadotrope-specific elements (GSE), bound by steroidogenic 

factor 1 (SF1), and a paired-like homeodomain (PITX)-binding element (PBE), bound by PITX1 

or PITX2, contribute to basal Lhb promoter activity. Extracellular-regulated kinase 1/2  

(ERK1/2), downstream of a mitogen-activated protein kinase (MAPK) and protein kinase C 

(PKC) cascade, activates the expression of early-growth response 1 (EGR1) via phosphorylation 

of the E26 transformation-specific (ETS) transcription factor ELK1 which activates Egr1 

transcription. EGR1 proteins bind to EGR1 binding elements (EBE) adjacent to the GSE and 

PBE site. Physical interactions between EGR1, SF1 and PITX proteins activate Lhb 

transcription. Distal elements bound by trans-acting transcription factor 1 (SP1) may also 

contribute to Lhb promoter activity.  

Figure 1.9: Model of gonadotropin-releasing hormone (GnRH)-induced follicle-stimulating 

hormone β subunit (Fshb) expression. GnRH-stimulated Fshb promoter activation may be 

partially mediated by dimers of jun proto-oncogene (JUN) and FBJ osteosarcoma oncogene 

(FOS) proteins. C-Jun and c-Fos expression is activated by GnRH signaling cascades involving 

p38 and extracellular-regulated kinase 1/2 (ERK1/2), downstream of a mitogen-activated protein 

kinase kinases (MAPKK) and protein kinase C (PKC). p38 activates c-jun transcription via 

phosphorylation of activating transcription factor 2 (ATF2). ERK1/2 and calmodulin-dependent 

kinase II (CamKII) activate c-fos expression via phosphorylation of serum response factor (SRF) 

and E26 transformation-specific (ETS) transcription factor ELK1, respectively. Through a 

putative protein kinase A (PKA)-dependent signal, GnRH activates cyclic-AMP response 

element binding protein (CREB) phosphorylation. CREB cooperates with upstream stimulatory 

factor (USF) proteins to activate Fshb transcription, although this might be a rat-specific 

mechanism. The functional importance of either JUN/FOS or CREB-mediated Fshb expression 

remains unclear (indicated by “?”). 

Figure 1.10: The secondary FSH surge correlates with a decline in circulating inhibin A and 

inhibin B levels. Schematic representation of circulating FSH (top panel), inhibin A (middle 

panel) and inhibin B (bottom panel) levels across the rodent estrous cycle. M/D: 
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metestrus/diestrus; P: proestrus; E: estrus. 1°: primary FSH surge. 2°: secondary FSH surge. 

Based on data from refs. (610, 615). 

Figure 1.11: Integrated model of activin signaling pathways regulating follicle-stimulating 

hormone β subunit (Fshb) expression in gonadotropes. At the cell surface, dimeric activin 

ligands engage two type II receptors (activin receptor type 2 - ACVR2A) and two type 1 

receptors (either activin receptor type 1 B – ACVR1B or type 1 C – ACVR1C). This leads to 

type I receptor phosphorylation, which in turn phosphorylates the Sma- and Mad-related 

proteins, SMAD2 and SMAD3. SMAD2/3 partner with SMAD4 and accumulate in the nucleus. 

A SMAD complex binds to an 8-bp SMAD-binding element (SBE), which can accommodate two 

SMAD proteins. As well, a SMAD complex binds a composite SBE/forkhead binding element 

(FBE) along with forkhead box L2 (FOXL2). In this complex, SMAD3 and FOXL2 physically 

interact. Two additional FBE sites may contribute to promoter activation via FOXL2, with or 

without the involvement of SMAD proteins. Finally, paired-like homeobox (PITX) proteins bind 

a proximal site that contributes to Fshb promoter activity. PITX proteins may serve as a platform 

for SMAD proteins through physical interactions.  
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Chapter 2  

 

In recent years, the mechanisms controlling FSH production and release have been the focus of 

intensive investigation (203). We know that both GnRH and activins regulate Fshb transcription 

and FSH synthesis, but their relative contributions are still unclear. One way to examine this is to 

define the signaling pathways mediating the response to GnRH and activin, and assess the effect 

of ablating components of these pathways on FSH synthesis. Mice with a global deletion of the 

Acvr2a gene, which encodes a canonical activin type 2 receptor, exhibit FSH-deficiency and 

female sterility (643). These observations suggest that signaling mediators acting downstream of 

this receptor are required for FSH synthesis and fertility in mice. Thus far, the identification of 

candidate signaling mediators has relied principally on in vitro studies in model cell lines 

(immortalized gonadotrope-like cells and others). Several of these studies have supported a key 

role for the canonical effectors of activin signaling, SMAD2 and SMAD3 (463, 539, 674, 676-

678, 708). Ultimately, a proof of their physiological importance must be obtained in vivo. In this 

chapter, I investigated the role of SMAD2/3-mediated signaling in FSH synthesis and fertility in 

a new mouse model. Because global Smad2 deletion is embryonic lethal and the four extant 

Smad3 knockout mouse lines have divergent phenotypes, including intrinsic ovarian defect in 

one of the lines (684, 687), I used a conditional knockout approach (Cre-lox system) to 

interrogate the function of SMAD2/3 specifically in gonadotropes. To do so, I employed a 

recently developed mouse line in which Cre expression is targeted specifically in gonadotropes 

(Gnrhr
IRES-Cre

; or “GRIC” – (820)), as well as conditional (“floxed”) alleles of Smad2 (821) and 

Smad3 (689). Here, I report the generation, validation, and phenotypic characterization of 

gonadotrope-specific Smad2/3 knockout mice.  
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Abstract 

 

The activin/inhibin system regulates follicle-stimulating hormone (FSH) synthesis and release by 

pituitary gonadotrope cells in mammals. In vitro cell line data suggest that activins stimulate 

FSH β subunit (Fshb) transcription via complexes containing the receptor-regulated SMAD 

proteins, SMAD2 and SMAD3. Here, we used a Cre-loxP approach to determine the necessity 

for SMAD2 and/or SMAD3 in FSH synthesis in vivo. Surprisingly, mice with conditional 

mutations in both Smad2 and Smad3 specifically in gonadotrope cells are fertile and produce 

FSH at quantitatively normal levels. Importantly, however, we discovered that the recombined 

Smad3 allele produces a transcript that encodes the entirety of the SMAD3 C-terminal Mad 

homology 2 (MH2) domain. This protein behaves similarly to full-length SMAD3 in Fshb 

transcriptional assays. As the truncated protein lacks the N-terminal MH1 domain, these results 

show that SMAD3 DNA-binding activity as well as SMAD2 are dispensable for normal FSH 

synthesis in vivo. Furthermore, the observation that deletion of proximal exons does not remove 

all SMAD3 function may facilitate interpretation of divergent phenotypes previously described 

in different Smad3 knockout mouse lines. 
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Introduction 

 

 Follicle-stimulating hormone (FSH), a dimeric glycoprotein secreted by pituitary 

gonadotrope cells, is a critical regulator of gonadal function and is required for fertility in 

mammals (16, 220). Multiple factors derived from the brain, the gonads, and the pituitary 

regulate the expression of the FSH β subunit (Fshb), the rate-limiting step in FSH synthesis and 

release (203). Classical studies identified inhibins and activins as critical negative and positive 

regulators of FSH synthesis (572, 580, 581, 822, 823). Activins, derived from the pituitary gland, 

bind to their cognate receptors on the cell surface of gonadotrope cells, initiating a signaling 

cascade that culminates in the activation of Fshb transcription (203, 824). In contrast, inhibins, 

secreted from the gonads, suppress FSH synthesis by competitively binding to activin type II 

receptors (825).  

Much effort has been directed toward the molecular dissection of the signaling pathways 

by which activins stimulate Fshb transcription. Canonically, activins signal through heteromeric 

assemblies of type I and type II receptors, which phosphorylate the effector proteins, SMAD2 

and SMAD3. These proteins then partner with SMAD4 and accumulate in the nucleus, where 

they act as transcription factors (625, 826). Several lines of evidence implicate SMAD2/3/4 

complexes as central components of activin-induced FSH synthesis. Studies in murine 

immortalized gonadotrope-like (LβT2) and heterologous cell lines indicate that SMAD2/3/4 

complexes directly bind to the Fshb promoters of several mammalian species, including mouse, 

and activate their transcription (465, 539, 674-677, 679). Furthermore, a number of SMAD2/3-

interacting transcription factors directly bind to the Fshb promoter and cooperatively activate 

Fshb transcription (537, 538, 678, 706). One such factor, forkhead box L2 (FOXL2), was 

recently confirmed to be a critical regulator of Fshb expression, FSH synthesis, and fertility in 

vivo in mice (144, 827).  

Despite the large amount of data indicating that activins operate through a canonical 

SMAD-dependent signaling pathway to stimulate Fshb transcription in vitro, evidence 

demonstrating necessary roles for SMADs 2 and/or 3 in FSH synthesis in vivo is lacking. Mice 

harboring a global deletion of the 8
th

 of the 9 exons in Smad3 have modestly decreased pituitary 

Fshb transcript levels (688). However, Smad3 is broadly expressed and these animals display a 

range of reproductive defects, including intrinsic gonadal dysfunction, making it difficult to 
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ascertain whether the Fshb deficiency is the result of cell-autonomous loss of SMAD3 function 

in gonadotropes (684, 687). To investigate the roles of SMADs 2 and 3 in FSH synthesis in vivo, 

we used a Cre-loxP approach to produce loss of function mutations in Smad2 and/or Smad3 

selectively in gonadotrope cells of mice. 
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Materials and Methods 

 

Mouse lines 

The Smad2
fl
, Smad3

fl
, Gnrhr

GRIC
 and ROSA26

eYFP
 alleles and corresponding genotyping 

primers (Table S2.1) were described previously (689, 820, 821, 828). To generate S2/3cKO 

mice, Smad2
fl/+

;Smad3
fl/+

;Gnrhr
GRIC/+

 females were mated with Smad2
fl/fl

;Smad3
fl/fl

 males, 

yielding S2/3cKO (Smad2
fl/fl

;Smad3
fl/fl

;Gnrhr
GRIC/+

) and control (Smad2
fl/fl

;Smad3
fl/fl

;Gnrhr
+/+

) 

mice at a frequency of 1/8 for each genotype. To generate mice with genetically labeled 

gonadotropes for subsequent FACS purification (see below), 

Smad2
fl/fl

;Smad3
fl/fl

;ROSA26
eYFP/eYFP

 males were mated with Smad2
fl/fl

;Smad3
fl/fl

;Gnrhr
GRIC/+

 

females to yield Smad2
fl/fl

;Smad3
fl/fl

;ROSA26
eYFP/+

;Gnrhr
GRIC/+

 offspring at a frequency of 1/2. 

Control gonadotropes were obtained from ROSA26
eYFP/+

;Gnrhr
GRIC/+

 mice. All animal 

experiments were performed in accordance with federal guidelines and were approved by McGill 

University’s Institutional Animal Care and Use Committee (Animal Use Protocol #5204). 

 

Puberty and estrous cycle assessment 

To determine the onset of puberty, female mice were examined daily for vaginal opening 

starting from the day of weaning (postnatal day 21). Estrous cyclicity was assessed for at least 21 

consecutive days starting at 7 weeks of age. Vaginal cells, obtained every morning (9h00-10h00) 

using a cotton swab dampened with sterile saline, were smeared on glass slides, stained with 

0.1% methyl blue and examined under a microscope. Stages were assigned following published 

guidelines (829). Because of high similarity in cell types, no distinction was made between 

metestrus and diestrus. A complete estrous cycle was defined as sequential mestrus/diestrus, 

proestrus, and estrus, regardless of the number of days spent in each stage. 

 

Breeding trials 

Mating trials were initiated one week after the completion of estrus cycle assessment. 

S2/3cKO or control females were paired with one 8 week-old C57BL/6J male for a period of 6 

months. Starting from 20 days after pairing, cages were examined daily for the presence of 

newborn mice. As soon as a new litter was observed, pups were counted. Pups were left in the 

cage for two weeks before removal.  
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Organ analyses and sperm count 

Reproductive organs were harvested from 10-week-old males (testes, seminal vesicles) or 

mestestrus/diestrus females (uterus, ovaries) and weighted on a precision balance. 

Homogenization-resistant epididymal sperm count was assessed as described (827). For ovarian 

histology, formalin-fixed tissues were paraffin-embedded and serial 5 μM sections collected after 

sectioning on a microtome. For corpora lutea (CL) counting, every 7
th

 section was Hematoxylin 

and Eosin (H&E)-stained and imaged by microscopy, which allowed tracking of individual CLs 

across several sections. One ovary was sectioned and analyzed per mouse. For testicular 

histology, testes were fixed in Bouin’s overnight and washed in 95% and 70% ethanol prior to 

paraffin embedding.  Seven μM transverse sections were obtained in the middle of the tissue, 

H&E-stained, and imaged by microscopy.   

 

Pituitary and ovarian RNA extraction and quantitative PCR 

 Pituitaries and ovaries were collected from 10-week-old males and metestrus/diestrus 

females and immediately frozen on dry ice. Individual pituitaries and ovaries were homogenized 

in 500 µl TriZol and RNA extracted following the manufacturer’s protocol (Invitrogen, 

Carlsbad, CA, USA). One and a half (pituitaries) or two (ovaries) µg of RNA were reverse-

transcribed using MMLV reverse transcriptase (Promega, Madison, WI, USA) as described 

previously (829) in a final volume of 40 µl. One µl of cDNA was assayed in triplicate qPCR 

reactions using Platinum qPCR Supermix-UDG (Invitrogen, Carlsbad, CA, USA) on a Corbett 

Rotorgene 6000 instrument. Gene expression was determined relative to that of the housekeeping 

gene Rpl19 using the 2
−ΔΔCt

 method (830) and the primers described in Table S2.1. 

 

Hormone assays 

 Blood was collected from 10-week-old males and metestrus/diestrus females by cardiac 

puncture, left to coagulate for 15 min at room temperature, and centrifuged at 3000xg for 10 min. 

Serum was collected and stored at -20
o
C. LH and FSH levels were measured by multiplex 

ELISA at the Ligand Assay and Analysis Core of the Center for Research in Reproduction at the 

University of Virginia (Charlottesville, VA, USA). 
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Ovariectomy 

 Adult (≥ 8 week-old) S2/3cKO and control females in metestrus/diestrus morning were 

injected subcutaneously with 5 g/g body weight of Carprofen. Mice were deeply anesthetized 

using isoflurane and placed on a heating pad. The back skin was shaved and cleaned, and a 

single midline incision was performed. Small incisions were made bilaterally through the muscle 

layer above the ovaries, through which the uterine horns were retrieved. The ovaries were 

removed by cauterization below the oviduct, and the incisions closed using Vicryl sutures 

(Ethicon, Blue Ash, OH, USA). Topical Carprofen was applied, and the skin incision was closed 

using wound clips (Reflex 7, CellPoint Scientific, Gaithersburg, MD, USA). The mice were left 

to recover on a heating pad. Sham-operated animals were processed in the same way, except that 

the ovaries were not removed. Mice were killed 7 hours post-surgery, and their pituitaries and 

serum collected for analyses.  

 

Primary pituitary cell culture 

 Adult (≥ 8-week-old) mice were killed by CO2 asphyxiation, and their pituitaries 

collected in M199 medium containing 10% fetal bovine serum (FBS). A single-cell suspension 

was prepared as previously described (514). Cells were seeded at a density of 4x10
5
/well in 48-

well plates. All treatment conditions were performed in duplicate. For viral transduction, 

adenoviruses expressing eGFP or Cre-IRES-eGFP [Baylor College of Medicine Vector 

Development Laboratory (Houston, Texas)] were added 24 h after plating at a multiplicity of 

infection of 60. Twenty-four hours later, virus-containing media was removed and replaced with 

media containing 2% FBS with or without 1 nM activin A (R&D Systems). After 24 h 

incubation, cells from duplicate wells were harvested using 0.25% trypsin and pooled. RNA and 

DNA were extracted using the Qiagen Allprep DNA/RNA kit. RNA was eluted in 25 µl RNAse-

free water and reverse-transcribed. The resulting cDNA was analyzed by qPCR.   

 

Fluorescence-activated cell sorting (FACS) 

 For FACS, pituitaries were dissociated as above and the resulting cell suspensions passed 

through a 40 μm nylon mesh to eliminate cell clumps. YFP+ and YFP- cells were isolated on a 

FACSAria cell sorter at the flow cytomery core facility of the McGill University Life Sciences 

Complex. Approximately 5000-10,000 YFP+ cells (3-5% of all sorted cells) were routinely 
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obtained from each pituitary in these experiments. RNA and genomic DNA were isolated from 

sorted cells as described above for mixed pituitary cultures.  

 

Cloning and expression vector construction 

 The primers used in the “primer walk” experiment are listed in Table 1. For expression 

vector construction, the full-length and truncated Smad3 transcripts were amplified by PCR from 

S2/3cKO pituitary cDNA, using a sense primer 120 bp upstream of the canonical translation start 

site in exon 1 and an antisense primer immediately after the STOP codon in exon 9 (see Table 

S2.1). The resulting fragments were digested with HindIII and BamHI (engineered onto the 5’ 

end of the primers) and ligated into the same sites in pcDNA3.0. To generate epitope-tagged 

constructs, the same strategy was used, except that the antisense primer replaced the stop codon 

with a ClaI restriction site. The resulting fragments were digested with HindIII and ClaI and 

ligated in-frame upstream of a 3X-HA tag in a previously modified pcDNA3.0 vector. 

Constructs were verified by sequencing (Genome Quebec, Montreal, Canada). The -846/+1 

mFshb-luc reporter, as well as the SMAD4 and FOXL2 expression vectors were described 

previously (676, 706).  

 

Cell lines culture, transfections, reporter assays, and western blotting 

 LβT2 cells (a gift from Dr. Pamela Mellon, UCSD) were seeded at a density of 125,000 

cells/well in 48-well plates one day prior to transfection. HeLa cells were cultured as previously 

described (514). Cells were transfected using Lipofectamine 2000 (Invitrogen) and reporter 

assays performed as described (465, 678, 706, 708). For protein analyses, confluent HeLa cells 

in 6-well plates were transfected with 2 g expression vector using Lipofectamine/Plus reagent 

(Invitrogen), and harvested the next day in RIPA lysis buffer prior to western blot analysis (674). 

Antibodies used were mouse anti-HA (Sigma H9658), mouse anti-β actin (Sigma A2228) and 

goat anti-mouse IgG-HRP conjugate secondary antibody (Bio-Rad 170-6515).   

 

Statistical analysis 

Serum hormones, pituitary and ovarian transcripts, estrous cycle frequency, sperm 

counts, corpora lutea counts, and organ weights were compared using unpaired t-tests. Estrous 

cycle stages, gene expression in sorted cells and reporter experiments were analyzed using two-
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way analysis of variance (ANOVA) followed by Tukey post-hoc tests. Ovariectomy experiments 

were analyzed using one-way ANOVA followed by Newman-Keuls multiple comparison test. 

Primary culture experiments were analyzed using one-way repeated measures ANOVA followed 

by Tukey post-hoc test. Data were log-transformed when variances were not equal between 

groups. Statistical analyses were performed using Systat 10.2 or GraphPad Prism 5. P-values < 

0.05 were considered statistically significant.  
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Results 

 

Generation of gonadotrope-specific Smad2/3 double knockout mice 

 To assess the role of SMAD2/3 signaling in FSH synthesis and fertility in vivo, we 

generated mice lacking the canonical forms of SMADs 2 and 3 in gonadotropes by crossing 

animals expressing Cre recombinase exclusively in gonadotropes [(Gnrhr-IRES-Cre, or 

Gnrhr
GRIC

 (820)] with mice carrying conditional (“floxed”) alleles of Smad2 and Smad3 (689, 

821). The resulting double-knockout mice have the genotype Smad2
fl/fl

;Smad3
fl/fl

;Gnrhr
GRIC/+

, 

and are hereafter referred to as Smad2/3 conditional knockouts or S2/3cKO. Control mice were 

littermates carrying homozygous conditional alleles (Smad2
fl/fl

;Smad3
fl/fl

). To assess the deletion 

efficiency of Smad2/3 in the double-knockout mice, we crossed in the conditional ROSA26
eYFP

 

reporter allele (828) on the S2/3cKO background (hereafter S2/3cKO-YFP). In these animals, 

Cre recombinase expression in gonadotropes triggers both recombination of Smad2/3 and 

expression of enhanced yellow fluorescent protein (eYFP), thus enabling the high efficiency 

purification of this cell population by fluorescence-activated cell sorting (FACS) (827, 831). 

PCR analysis of genomic DNA from sorted YFP+ and YFP- cells of S2/3cKO mice indicated 

essentially complete recombination of the Smad2 and Smad3 loci in gonadotropes (Fig. 2.1A-B). 

Consistent with this, quantitative PCR (qPCR) on cDNA prepared from the same cells, using 

primers directed at the deleted exons, showed a profound loss of Smad2 and Smad3 transcripts in 

S2/3cKO gonadotropes compared to those of Gnrhr
GRIC

;ROSA26
eYFP

 (GRIC-YFP) controls (Fig. 

2.1C-D). Interestingly, the same analysis indicated higher expression of both Smad2 and Smad3 

in gonadotropes (YFP+) compared with other pituitary cell types (YFP-). Furthermore, 

downregulation of Smad2 and Smad3 transcripts (by about 30%) in whole pituitaries from 

S2/3cKO mice far exceeded the values one would expect if the genes were uniformly expressed 

across all pituitary cells types, as gonadotropes [and Gnrhr
GRIC

-expressing cells (157, 820)] 

represent only 5-10% of the total cell population (Fig. S2.1A,B).  

 In addition to S2/3cKO mice, we also generated single gene knockout mice lacking either 

Smad2 or Smad3 in gonadotropes. As these mice showed no abnormalities in any of the 

experiments performed (data not shown), we focus here on the analysis of the double-knockout 

model. 
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Puberty and reproductive function in S2/3cKO females 

To evaluate the effect of gonadotrope-specific loss of SMAD2/3 on hypothalamic-

pituitary-gonadal (HPG) axis activity, we monitored reproductive maturation in S2/3cKO and 

control females. First, we assessed the day of vaginal opening (v.o.), an estrogen-dependent 

external marker of puberty onset in mice (829). S2/3cKO mice and control littermates showed a 

comparable onset of v.o. (Fig. 2.2A). Subsequently, we examined estrous cyclicity by daily 

vaginal smears in a cohort of seven S2/3cKO and seven control females over a period of three 

weeks. Mice of both genotypes exhibited cyclic variation in vaginal cytology, including several 

four- to five-days cycles, as is typical in mice (829). However, five out of seven S2/3cKO 

females showed one or more prolonged (four consecutive days or more) periods of estrus, 

whereas such events were never observed in control littermates (Fig. 2.2B). As a result, S2/3cKO 

females had a significant reduction in estrous cycle frequency and an increase in the proportion 

of time spent in estrus (Fig. 2.2C).  

Next, we monitored fertility in the same cohort of animals by pairing them individually 

with wild-type C57BL/6J male mice for a period of six months. Unexpectedly, S2/3cKO females 

showed normal fertility. They produced litters of similar sizes and at a comparable frequency to 

control females, which was reflected in the cumulative number of pups delivered over the period 

of the breeding trial (Fig. 2.2D). To gain a more comprehensive view of HPG axis activity, we 

examined the reproductive organs of an additional cohort of 10 week-old females. The uteri and 

ovaries of S2/3cKO females were comparable in morphology and weight to those of control 

littermates (Fig. S2.1C,D and data not shown). Ovaries of S2/3cKO mice were histologically 

normal, with follicles at all stages of development. Moreover, quantitative analyses revealed 

similar numbers of corpora lutea in S2/3cKO and control mice (Fig. S2.1E). Ovarian expression 

of the FSH-responsive genes, Ccnd2, Cyp19a1 and Lhr (832) did not differ between genotypes 

(Fig. S2.1F). Collectively, the data indicate that S2/3cKO females had increased variability in 

estrous cyclicity, but otherwise exhibited normal reproductive function. 

 

Reduced testes weights and sperm production in S2/3cKO males 

Although male mice do not require FSH for fertility, Fshb knockout males do exhibit 

gonadal dysfunction, most notably small testes and oligospermia (220). Furthermore, as the 

Gnrhr
GRIC

 allele is active in male germ cells (820), deletion of the SMAD proteins therein might 
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affect sperm function or survival (833, 834). We therefore examined the reproductive organs of 

S2/3cKO males. Double knockouts had significantly decreased testes weights relative to controls 

(Fig. 2.3A). This was accompanied by a reduction in epididymal sperm counts (Fig. 2.3B). 

Testicular histology was largely unremarkable, although some seminiferous tubules appeared 

smaller in diameter in the testes of S2/3cKO males compared with controls (Fig. S2.1G). 

Seminal vesicle weight, a marker of circulating testosterone levels, was comparable between 

S2/3cKO male and control littermates (Fig. 2.3C). Consistent with their minor reproductive 

organ anomalies, S2/3cKO males exhibited normal fertility (data not shown). 

 

Normal pituitary Fshb expression and FSH synthesis in S2/3cKO mice 

In light of their unexpectedly mild reproductive abnormalities and normal fertility, we 

next asked whether FSH synthesis was impaired in S2/3cKO mice, as we predicted a priori. 

Surprisingly, serum FSH levels were equivalent in S2/3cKO mice and control littermates of both 

sexes (Fig. 2.4A). Indeed, in metestrus/diestrus female S2/3cKO mice, there was even a trend for 

increased circulating FSH (71% increase; p=0.058) (Fig. 2.4A). Consistent with the serum FSH 

values, pituitary Fshb transcript levels, analyzed in the same animals, were not significantly 

different between the genotypes; though, again, there was a non-significant increase in S2/3cKO 

females (64% increase; p=0.159) (Fig. 2.4B). Similarly, circulating LH levels were normal in 

these 10 week old S2/3cKO mice (Fig. S2.2A). However, we observed significantly higher 

serum LH, but not FSH, in older S2/3cKO than control females (metestrus/diestrus) retired from 

the breeding trials (Fig. S2.2B,C). 

Next, we probed the ability of S2/3cKO females to up-regulate FSH synthesis following 

the removal of gonad-derived hormone negative feedback. In female rodents, an acute phase of 

increased FSH synthesis occurs within a few hours after ovariectomy. Because this increase is 

GnRH-independent, it is assumed to reflect increased activin-driven FSH production following 

the loss of ovarian inhibin feedback (835). Therefore, we ovariectomized (OVX) adult 

mestestrus/diestrus females and analyzed serum FSH and pituitary Fshb transcript levels after 7 

h. In both control and S2/3cKO mice, there was a significant increase in circulating FSH levels 

and pituitary Fshb expression in OVX mice compared with sham-operated littermates (Fig. 

2.4C). Collectively, these results suggest that activin-dependent Fshb expression and FSH 

synthesis are unimpaired in S2/3cKO mice. 
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Impaired Fshb transcription upon acute ablation of Smad2/3 in primary pituitary cells 

Given the unexpectedly intact FSH secretion in S2/3cKO mice, we re-visited the roles of 

SMAD2 and SMAD3 in activin-stimulated Fshb transcription. Most of the evidence implicating 

these proteins in Fshb transcription regulation comes from overexpression and knockdown 

studies in immortalized gonadotrope-like and heterologous cell lines (13-18). To assess whether 

SMAD2/3 are similarly important in primary gonadotropes, we prepared pituitary cultures from 

mice homozygous for the Smad2/3 conditional alleles (Smad2
fl/fl

;Smad3
fl/fl

) and infected these 

cells with Cre-expressing (Ad-Cre) or control (Ad-GFP) adenoviruses to induce recombination 

of Smad2/3 ex vivo. This procedure was highly efficient, as Smad2 and Smad3 mRNA levels 

were depleted by over 95% after transduction with Ad-Cre (Fig. 2.5A,B). Basal Fshb mRNA 

levels, which depend on autocrine/paracrine activin (or activin-like) signaling (602, 836), were 

reduced in Ad-Cre-infected male or female cultures (Fig. 2.5C). Furthermore, exogenous activin 

A stimulated Fshb expression in Ad-Cre-transduced cultures, but to a lesser extent than in Ad-

GFP-infected cell (Fig. 2.5C). This difference was especially striking in cultures prepared from 

female mice. Deletion of Smad2 or Smad3 alone had similar, but generally milder, effects on 

basal and activin A-stimulated Fshb mRNA levels (Fig. S2.3A,B). Together, these data suggest 

that activin regulation of Fshb expression is at least partially SMAD2/3-dependent in cultured 

pituitary cells. 

 

Retention of a transcript encoding a functional, truncated SMAD3 protein in S2/3cKO 

gonadotropes 

 The recombined Smad2 allele used in our study produces a truncated protein (821). 

However, this protein cannot be C-terminally phosphorylated and does not have activity in 

functional assays (685). We therefore questioned whether, in contrast, functional Smad3 

transcripts might be retained in gonadotropes of S2/3cKO animals. Indeed, qPCR analysis of 

YFP+ and YFP- cells sorted from the pituitaries of control (GRIC-YFP) and S2/3cKO-YFP 

animals indicated a 2-fold upregulation of Smad3 mRNA containing distal exons (exons 8 and 9) 

in S2/3cKO gonadotropes (Fig. 2.6A). This contrasted with a robust loss of Smad3 transcripts 

containing the deleted exons (exons 2 and 3; see Fig. 2.1D). We further characterized retained 

Smad3 transcripts in S2/3cKO gonadotropes using a “primer walk” PCR strategy on cDNA 
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obtained from FACS-sorted gonadotropes from control or S2/3cKO animals with an antisense 

primer in the terminal exon 9 and sense primers in exons 1 through 8. A single PCR product, of a 

smaller size than the full-length transcript (data not shown), was amplified from S2/3cKO (but 

not control) gonadotropes using the sense primer in exon 1. This transcript contained exon 1 

spliced to exon 4, and then proceeded normally to include all the remaining exons of Smad3 (Fig. 

2.6B).  

Translation of the SMAD3 protein normally initiates in exon 1 and the relevant 

translational start site (TSS) is retained in the truncated transcript. Removal of exons 2-3 

introduces a frame-shift in exon 4, thus preventing the production of a functional protein from 

the canonical TSS. However, as the TSS in exon 1 does not conform to a consensus Kozak 

sequence (837), we considered the possibility that an alternative TSS, downstream of exon 3, 

might exist and be utilized in the novel Smad3 transcript. We identified two potential AUG start 

codons in exon 4, one of which occurred in the context of a consensus Kozak sequence. This 

raised the possibility that the “knockout” transcript might encode a protein containing the 

entirety of the Mad homology 2 (MH2) domain in the event of leaky ribosomal scanning or 

translation reinitation (Fig. 2.6B).  

To assess this possibility, we generated expression vectors for the full-length and 

truncated transcript (both starting upstream of the canonical TSS in exon 1) fused to a 3X-HA 

epitope tag at the C-terminus, and transfected them into HeLa and LβT2 (immortalized 

gonadotrope-like) cells. Western blot analysis of cells transfected with the wild-type SMAD3 

expression vector revealed a protein product with a molecular mass of 55-60 kDa, consistent 

with the predicted size of full-length 3X-HA-tagged SMAD3 (Fig. 2.6C, lanes 2-6 and 9-13). In 

cells transfected with the truncated SMAD3 expression vector, the full-length protein was not 

observed; however, a novel, lower-abundance band, appeared at around 30 kDa (Fig. 2.6C, lanes 

1 and 8). The size of this product was consistent with translation initiation in exon 4. Because 

this protein is predicted to retain the SMAD3 MH2 domain, but lack all of the MH1 domain and 

most of the “linker” region, it is hereafter referred to as “SMAD3(MH2)”. Titration experiments 

indicated that a SMAD3:SMAD3(MH2) expression vector ratio of 1:5 in HeLa cells and 1:20 in 

LβT2 cells yielded comparable protein expression levels (Fig. 2.6C – compare lane 4 with lane 1, 

and lane 13 with lane 8, respectively). It should be noted that SMAD3(MH2) corresponds to a 



105 

 

naturally occurring variant previously described in murine pituitary and gonadotrope-like cells 

(838). This protein is phosphorylated and accumulates in the nucleus in response to activin A.  

 Using promoter-reporter assays, we assessed whether SMAD3(MH2) retains functional 

activity at the murine Fshb promoter. To directly compare the activity of SMAD3(MH2) and 

wild-type SMAD3, we transfected the amount of expression vector required to produce 

comparable levels of the two proteins, determined by our titration experiments described above 

(Fig. 2.6C). We previously reported that ectopic expression of FOXL2 and SMAD3 stimulates 

murine Fshb promoter activity in heterologous cells and that this effect is potentiated by SMAD4 

(678). We reproduced these results here in HeLa cells using a -846/+1 murine Fshb-luciferase 

reporter (Fig. 2.6D). SMAD3(MH2) synergistically activated the Fshb promoter with FOXL2 

and SMAD4 to the same extent as wild-type SMAD3 (Fig. 2.6D). To extend these analyses to a 

homologous system, we next employed LβT2 cells, which express endogenous FOXL2. Both 

wild-type SMAD3 and SMAD3(MH2) synergistically activated the -846/+1 murine Fshb-luc 

reporter with SMAD4 (Fig. 2.6E) and activin A (Fig. 2.6F). SMAD3(MH2) tended to show 

greater activity than wild-type in these assays, though this was not statistically significant. 

Collectively, these data indicate that the recombined Smad3 allele encodes a truncated transcript 

and protein capable of activating Fshb transcription in cooperation with SMAD4 and FOXL2.  
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Discussion 

 

 SMAD2 and SMAD3 are the canonical activin-induced signaling molecules and both 

were previously implicated in activin-regulated Fshb transcription. We were therefore surprised 

to observe quantitatively normal FSH synthesis and fertility in gonadotrope-specific Smad2/3 

conditional knockout mice. Though the most parsimonious explanation for these results might be 

incomplete or insufficient recombination of the floxed alleles, at least three lines of evidence 

argue against this possibility. First, we observe robust (>90%) suppression of full-length Smad2 

and Smad3 transcripts in genetically-labeled gonadotropes of S2/3cKO mice. Second, the 

Gnrhr
GRIC

 allele has demonstrated specificity and efficiency in other models (157, 820, 827). 

Third, we further decreased Smad2/3 gene dosage by globally deleting one allele each of Smad2 

and Smad3 such that only one floxed allele per gene required recombination in gonadotropes 

(Smad2
fl/-

;Smad3
fl/-

; Gnrhr
GRIC/+

), but failed to observe additional phenotypes (data not shown). 

In light of these observations, we consider three alternative explanations for the absence of FSH 

deficiency in S2/3cKO mice: 1) compensation by a residual, but truncated form of SMAD3, 

SMAD3(MH2), 2) compensation by activin-dependent, but SMAD2/3-independent signaling, or 

3) compensation by activin-independent signaling. We consider each of these possibilities in 

turn, with greatest emphasis on the first. 

Our data clearly rule out necessary roles for SMAD3 DNA-binding activity and SMAD2 

for quantitatively normal FSH synthesis in vivo. This result might have been anticipated for 

SMAD2 based on previous in vitro manipulations of SMAD2/3 levels (by knockdown or 

overexpression), which indicated a quantitatively more important role for SMAD3 than SMAD2 

in Fshb transcriptional regulation (539, 674, 677, 678, 708). Furthermore, FOXL2, which is 

required for FSH synthesis and fertility in vivo, interacts more strongly with SMAD3 than 

SMAD2 (708, 709). In contrast with in vivo observations, but perhaps more in line with prior cell 

line data, we observed significant impairments of basal and activin A-stimulated Fshb expression 

following acute ablation of  full-length Smad2/3 in primary pituitary cells. Two, non-mutually 

exclusive, possibilities may explain these apparently discrepant results. First, the short time-

frame of primary culture experiments may not have enabled the development of compensatory 

mechanisms similar to those established in vivo. Second, gonadotropes in dissociated cultures 

may rely more on ligand(s) signaling through SMAD2/3 to maintain Fshb expression than do 
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gonadotropes in the context of the intact gland and/or animal. Consistent with the first 

possibility, basal and activin A-stimulated Fshb mRNA expression were normal in pituitary 

cultures of female S2/2cKO mice (data not shown). 

These in vivo and in vitro discrepancies aside, the most parsimonious explanation for the 

absence of FSH-deficiency in S2/3cKO mice was the failure of our mouse model to ablate all of 

SMAD3 function. That is, the recombined Smad3 allele produces a transcript that encodes a 

truncated, but still functional SMAD3 protein: SMAD3(MH2). This protein is likely generated 

via translation re-initiation or leaky ribosomal scanning from the novel mRNA transcribed in 

these mice (837). The translation start site in exon 1, from which full-length SMAD3 is 

ordinarily derived, does not conform to a consensus Kozak sequence, with a thymine (uracil in 

the mRNA) rather than a guanine at the +4 position (with the adenine of the ATG/AUG denoted 

as +1). In the context of the mRNA lacking exons 2 and 3, translation appears to initiate at a 

consensus Kozak sequence in exon 4. Translation from this site is not unprecedented as an 

alternative Smad3 transcript initiating in the third intron (generating a novel “exon 3a”) was 

previously described in gonadotrope-like LβT2 cells (838). Though we were unable to confirm 

the presence of this particular transcript in control or S2/3cKO gonadotropes, the resulting 

protein would be indistinguishable from SMAD3(MH2) described here. As indicated above, the 

authors of the previous study showed that this truncated protein is phosphorylated and 

accumulates in the nucleus upon activin A stimulation. In contrast to what we report here, they 

suggested that the truncated protein acts as a dominant-negative when co-expressed with wild-

type SMAD3. However, its independent actions were not assessed in their experiments and we 

propose that their results might be alternatively explained by hypomorphic (rather than 

dominant-negative) activity, as we observed in our reporter assays. That is, SMAD3(MH2) is 

expressed at lower levels than wild-type SMAD3 when equivalent amounts of expression vector 

are employed. We had to titrate the amount of wild-type vector to achieve equivalent expression 

of the two proteins in order to demonstrate their similar activities in transcriptional assays. 

Based on previous observations, we predict that SMAD3(MH2) fulfills SMAD3 functions 

necessary for proper Fshb transcription. Indeed, we previously reported that either SMAD3 or 

SMAD4 (but not both) must bind DNA to stimulate murine Fshb transcription, suggesting that 

SMAD3 DNA-binding activity is dispensable for FSH synthesis (678). Furthermore, SMAD3 

physically interacts with SMAD4 and FOXL2 via its MH2 domain, which is preserved in the 
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truncated protein described here. Consistent with these observations, SMAD3(MH2) activates 

the murine Fshb promoter in cooperation with SMAD4 and FOXL2 in in vitro assays. 

Supporting the important functionality of the SMAD3 MH2 domain, Smad3
Δexon8

 knockout mice 

have reproductive anomalies and pituitary Fshb deficiency. It is important to note, however, that 

the reduction in Fshb expression in Smad3
Δexon8 

KO mice is quantitatively modest (around 30%) 

(688) and females actually have elevated serum FSH levels (687). However, these observations 

may be confounded by ovarian abnormalities (684, 687) and/or partial compensation by SMAD2 

in these mice. 

In our in vitro experiments, transfection of the same amount of truncated and full-length 

Smad3 expression vectors produced notably less SMAD3(MH2) than SMAD3 protein. This 

result is expected for proteins generated through leaky ribosomal scanning or translation 

reinitiation (837). Nevertheless, when expressed at the same protein level, SMAD3(MH2) was 

functionally equivalent to wild-type SMAD3. The implications of these observations for 

SMAD3(MH2)’s potential to compensate for the loss of full-length SMAD3 in vivo are hard to 

predict for at least two reasons. First, it is unclear what threshold level of SMAD3 activity 

(expression) is required to sustain quantitatively normal FSH synthesis in vivo. Second, we 

observed that transcripts containing distal exons were upregulated approximately 2-fold in 

S2/3cKO compared to control gonadotropes. Therefore, it is possible that the amount of 

SMAD3(MH2) protein in mutant gonadotropes is closer to wild-type levels than suggested by 

our in vitro over-expression studies. Unfortunately, due to the paucity of gonadotropes (we 

typically isolate 5,000-7,000 cells per pituitary), we are unable to obtain sufficient numbers of 

purified cells from GRIC-YFP and S2/3cKO-YFP mice for protein analysis. Therefore, 

establishing SMAD3’s necessity in pituitary FSH synthesis will require cell-specific removal of 

all protein function, likely with a novel conditional Smad3 allele. 

 Our observation that the recombined Smad3 allele encodes a functional protein may also 

clarify discrepancies in the phenotypes of existing Smad3 ‘knockout’ mouse lines. Indeed, global 

deletion of different Smad3 exons has produced divergent phenotypes, with the only common 

observation being smaller body size (683-686). Smad3
Δexon2 

knockout embryos produce an 

identical transcript (exon 1 splicing to exon 4) as the one reported here, presumably resulting in 

the production of the SMAD3(MH2) protein. Interestingly, this is apparently the only Smad3-

null strain that develops fully penetrant colorectal cancer (686, 839). Unique phenotypes reported 
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in other Smad3 knockout lines include mild forelimb malformation in Smad3
Δexon1 

mice (683) 

and immune system dysfunction and aortic aneurysms in Smad3
Δexon8

 mice (685, 840). The only 

allele that disrupts the coding sequence for the MH2 domain is Smad3
Δexon8

. In light of our 

results, it is perhaps not surprising that this is the only Smad3-deficient strain in which 

reproductive defects and pituitary Fshb deficiency have been reported (684, 687). However, 

Smad3
Δexon8

 mice also produce a truncated SMAD3 protein, comprising the MH1 domain, which 

can act as a dominant-negative in some contexts (685). Thus, as mentioned above, a novel 

conditional Smad3 allele, which completely removes protein function and lacks dominant-

negative activity, is needed to assess SMAD3’s role not only in gonadotropes, but in all cell 

types. Indeed, such a mouse model will enable, if not necessitate, repetition of investigations 

using other modified Smad3 alleles.  

Although it seems likely that the retention of SMAD3(MH2) explains, at least in part, 

normal FSH levels in S2/3cKO mice, other mechanisms of compensation may exist. Other 

receptor-regulated SMADs (R-SMADs), in particular SMAD8, can activate Fshb transcription in 

vitro (644, 690, 691). Further, activins can signal through non-canonical R-SMADs in some 

contexts (641); though, the extent to which this also occurs in gonadotropes is unknown. In 

addition, it was proposed that activins may regulate Fshb transcription via a SMAD-independent 

mechanism involving the kinases TAK1 and p38 (696). However, a subsequent study showed 

that the small molecule TAK1 inhibitor 5Z-7-oxozeaenol non-specifically blocks activin type I 

receptor (ALK4) activity. This and other studies also failed to confirm a role for p38 in this 

system (675, 697, 765). Therefore, in vitro studies do not, at present, demonstrate SMAD-

independent mechanism of FSH regulation by activins. This question could be definitively 

resolved, however, by disrupting all SMAD-dependent signaling by selectively ablating the 

common partner Smad4 in gonadotropes. Indeed, preliminary data along these lines from our lab 

appear to confirm a necessary role for SMAD signaling in Fshb expression in vivo (841). 

Signaling by hormones other than activins may regulate Fshb transcription and FSH 

synthesis in vivo, perhaps bypassing a requirement for SMAD2/3. For example, bone 

morphogenetic proteins (BMPs) regulate Fshb transcription and FSH synthesis in primary 

pituitary cells and gonadotrope-like cell lines (644, 690, 764-766). However, their contributions 

to FSH regulation in vivo remain to be determined. Another obvious candidate is gonadotropin-

releasing hormone (GnRH), a well-established and potent stimulator FSH synthesis (203, 842). 
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Indeed, mice that lack GnRH or the GnRH receptor exhibit profound FSH deficiency (62, 171). 

However, because GnRH also regulates the expression of follistatin (736, 843), an activin 

antagonist, FSH phenotypes in GnRH-deficient mice may be attributable, at least in part, to 

dysregulation of activin or activin-like signaling. The relative roles of activins and GnRH in FSH 

regulation in vivo have not been clearly established; however, it is possible that GnRH might 

assume a more important and compensatory role in the absence of signaling via SMAD2/3. 

Finally, compensatory regulation by steroids may help sustain normal FSH production. In 

rodents, on the morning of estrus, a selective rise in FSH synthesis and secretion drives ovarian 

follicle recruitment and maturation (249). Although this FSH surge is thought to be driven by 

increased activin signaling in the face of lower inhibin levels (595, 610), it is also blocked by 

progesterone and glucocorticoid receptor antagonists (813-816).  Thus, it is possible that the 

steroid milieu may enable appropriate FSH production in the absence of activin signaling.  

In conclusion, our results demonstrate, for the first time, that Fshb transcription and FSH 

synthesis can occur independently of SMAD3 DNA-binding activity and SMAD2 in vivo. 

Further, they reveal that deletion of exons 2 and 3 of Smad3 results in the production of a novel 

Smad3 transcript, which encodes a functional protein. This latter observation has important 

implications for investigations (past, present, and future) of SMAD3 function using existing 

Smad3 knockout mouse lines.  
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Figure Legends 

 

Figure 2.1: Generation and validation of gonadotrope-specific Smad2/3 knockout mice. A-B) 

YFP+ and YFP- cells were isolated from GRIC-YFP and S2/3cKO-YFP mice by FACS. 

Genomic DNA was extracted and analyzed by genotyping PCR for the wild-type (WT), floxed 

(flox) and recombined (rec.) alleles of Smad2 (A) and Smad3 (B). Data are representative from 

one of three sorting experiments. C-D) cDNA was prepared from total RNA from sorted cells 

and analyzed by qPCR using primers overlapping the deleted exons in Smad2 (C – forward 

primer in exon 10; reverse primers in exon 11) and Smad3 (D - forward primer in exon 3; reverse 

primer in exon 4). Smad2 and Smad3 transcript levels were normalized to the levels of the 

housekeeping gene Rpl19. Data represent the mean +SEM from three independent sorting 

experiments assayed in triplicate. Bars with different symbols differ significantly. 

 

Figure 2.2: Largely intact reproductive maturation and normal fertility in S2/3cKO females. A) 

Day of vaginal opening in S2/3cKO and control mice. Each dot represents an individual mouse. 

The horizontal line represents the group mean. B) Representative estrous cyclicity profile from 

two control (left) and two S2/3cKO (right) mice. M/D: metestrus/diestrus; P: proestrus; E: estrus. 

C) Proportion of time spent in each cycle stage (left) and estrus cycle frequency (right) for 

control and S2/3cKO mice (N=7 per genotype). D) Cumulative number of pups delivered per 

female over the course of a 6 month breeding trial, calculated at the end of each month. Data 

represent the means +/- SEM of 7 mice per genotype. *, significant at p ≤ 0.05 

 

Figure 2.3: Small reductions in testes weights and epididymal sperm counts in S2/3cKO males. 

A) Testes weight (sum of both testes), expressed as a percentage of body weight, in 10-week-old 

control and S2/3cKO male mice. Each point represents an individual mouse. The horizontal line 

represents the group mean. B) Caudal epididymal sperm count (per mL of homogenization 

buffer) in 10-week-old control and S2/3cKO male mice. C) Wet seminal vesicle (SV) weight, 

normalized to body weight, in the same animals as in A). n.s., not significant. *, significant at p ≤ 

0.05 
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Figure 2.4: Normal FSH synthesis and Fshb expression in S2/3cKO mice. A) Circulating FSH 

levels in 10-week-old control and S2/3cKO males (left) and metestrus/diestrus females (right). 

Data represent the mean +SEM of 12 mice per group. B) Relative pituitary Fshb mRNA 

levels,(with controls set to 1) assayed by qPCR in the same animals as in A). C) Adult 

metestrus/diestrus control and S2/3cKO females were ovariectomized (OVX) or sham-operated 

(sham). After 7 h, mice were killed, and their serum and pituitaries collected. Serum FSH (left) 

and pituitary Fshb mRNA levels (right) were analyzed in the same animals. Data represent the 

mean +SEM of 6-7 mice per group. Bars with different symbols differ significantly. 

 

Figure 2.5: Partial dependence of basal and activin-stimulated Fshb expression on full-length 

SMAD2/3 in primary pituitary cultures. A-B) Primary pituitary cultures were prepared from 

Smad2
fl/fl

;Smad3
fl/fl

 male (left) and female mice (right), and infected for 24 h with adenoviruses 

expressing Cre recombinase (Ad-Cre) or green fluorescent protein (Ad-GFP). Cells were 

stimulated for 24 h with 1 nM activin A, or left untreated (no ligand) prior to RNA extraction. 

Smad2 (A) and Smad3 (B) mRNA levels were assessed by qPCR. C) Expression of Fshb in the 

same samples as in A-B). In all panels, data represent the mean +SEM of five independent 

experiments measured in triplicate (n=5). Bars with different symbols differ significantly. 

 

Figure 2.6: Retention of a truncated Smad3 transcript coding for a functional protein in S2/3cKO 

mice. A) Distal Smad3 mRNA levels (forward primer in exon 8; reverse primer in exon 9), 

analyzed by qPCR in YFP+ and YFP- cells from the same experiment as in Figure 1. Data 

represent the mean +SEM of three independent sorting experiments measured in triplicate (n=3). 

B) Top: Schematic representation of the wild-type SMAD3 protein. Amino acids are numbered. 

MH1: Mad homology 1 domain; MH2: Mad homology 2 domain. The “SSVS” sequence at the 

C-terminus contains the serine residues phosphorylated by the type I receptor. Middle: Smad3 

gene structure with numbered exons. Splicing of the wild-type and recombined Smad3 alleles is 

depicted with dashed lines. Arrowheads indicate the start of translation in exon 1, and the 

putative alternative translation initiation site in exon 4. The nucleotide sequence surrounding the 

AUG sequence (underlined) of both sites is indicated. Bases which conform to the consensus 

Kozak sequence, -3RCCAUGG+4, at positions -3 and +4 are indicated in black italics. Bottom: 

Representation of the truncated protein, SMAD3(MH2), arising from the recombined Smad3 
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allele. C) Western blot analysis of whole cell protein lysates from HeLa (lanes 1-6) or LβT2 

(lanes 8-13) cells transfected with 2 μg expression vector encoding C-terminally tagged 3X-HA 

tagged truncated SMAD3 (SMAD3-MH2; lane 1 and 8) or differing amounts of wild-type 

SMAD3-HA expression vector (lanes 2-6 and 9-13: 1:1 – 2 μg ;  1:2 – 1 μg ; 1:5 – 0.4 μg ; 1:10 

– 0.2 μg; 1:20 – 0.1 μg). The blot was probed with anti-HA (IB: HA - top) and anti-β actin (IB: 

actin – bottom) antibodies. Arrows indicate the relative migration of full-length SMAD3 and 

SMAD3-MH2 products. D) HeLa cells were transfected with 225 ng/well of the -846/+1 murine 

Fshb-luc reporter, with 25 ng of FOXL2 and/or SMAD4 expression vectors, together with 25 ng 

of SMAD3 or 5 times more (125 ng) SMAD3(MH2) expression vectors. Whole cell lysates were 

subjected to luciferase assays. The amount of transfected vectors was balanced across all 

conditions with pcDNA3.0. E) LβT2 cells were transfected with 225 ng/well of the -846/+1 

murine Fshb-luc reporter, with 25 ng of SMAD4 expression vector, together with 25 ng of 

SMAD3 or 20 times more (500 ng) SMAD3(MH2) expression vector as indicated. The amount 

of transfected vectors was balanced across all conditions with pcDNA3.0. Whole cell lysates 

were subjected to luciferase assays. F) LβT2 cells were transfected with 225 ng/well of the -

846/+1 murine Fshb-luc reporter, along with 25 ng SMAD3 or 20 times more (500 ng) 

SMAD3(MH2) expression vector. The amount of transfected vectors was balanced across all 

conditions with pcDNA3.0. Cells were stimulated with 1 nM activin A for 24h, or left untreated, 

prior to assaying luciferase activity. Data represent the mean +SEM of seven (D) or three (E, F) 

independent experiments performed in triplicate. Bars with different symbols differ significantly. 

 

Supplementary Figure Legends 

 

Figure S2.1: Decreased pituitary Smad2 and Smad3 transcript levels and normal reproductive 

organs in S2/3cKO mice. cDNA was prepared from total pituitary RNA and analyzed by qPCR 

using primers overlapping the deleted exons in Smad2 (A – forward primer in exon 10; reverse 

primer in exon 11) and Smad3 (B - forward primer in exon 3; reverse primer in exon 4). Smad2 

and Smad3 transcript levels are shown relative to controls set to 1. Data represent the mean 

+SEM from 12 mice per group assayed in triplicate. *, significant at p ≤ 0.05. Mean ovarian (C) 

and uterine (D) weights of 10-week-old metestrus/diestrus females, expressed as a percentage of 

body weight. Each point represents an individual mouse. Means are shown with the horizontal 
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lines. The data are from the same animals used in Fig. 4. n.s., not significantly different. E) 

Ovarian sections (left) and corpora lutea counts (right) in ovaries from control and S2/3cKO 

females (n=6 per genotype; 1 ovary/mouse). Scale bars: 0.5 mm. n.s., not significantly different. 

F) Expression of Cyp19a1, Ccnd,2 and Lhr in the ovaries of control and S2/3cKO females, 

assessed by qPCR. Shown are means +SEM (n=6 per genotype). G) Testicular histology of 

control and S2/3cKO males. Shown are representative sections from n=3 males analyzed per 

genotype. Scale bars: 0.5 mm.  

 

Figure S2.2: Serum LH levels are normal in young adult S2/3cKO males and females, but 

elevated in older S2/3cKO females. A) Serum LH levels from 10-week-old male (left) and 

metestrus/diestrus female (right) control and S2/3cKO mice. The data are from the same animals 

used in Fig. 4 (N=12 mice per group). Serum LH (B) and FSH (C) from 10-month-old 

metestrus/diestrus females retired from the breeding trial (see Figure 2). Each dot represents an 

individual animal. Means are shown with the horizontal lines. 

 

Figure S2.3: Mildly impaired basal and activin A-stimulated Fshb transcription in primary 

pituitary cultures lacking Smad2 or Smad3. Primary pituitary cultures were prepared from 

Smad2
fl/fl

 (A) or Smad3
fl/fl

 (B) males (left) and females (right), and infected for 24 h with 

adenoviruses expressing Cre recombinase (Ad-Cre) or green fluorescent protein (Ad-GFP). Cells 

were stimulated for 24 h with 1 nM activin A, or left untreated (no ligand) prior to RNA 

extraction. Fshb mRNA levels were assessed by qPCR. Data represent the mean +SEM of five 

(male and female Smad3), four (male Smad2) and three (female Smad2) independent 

experiments assayed in triplicate.  Bars with different symbols differ significantly.  
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Primer and purpose Sequence 
Smad2flox genotyping, forward 5’-TACTTGGGGCAATCTTTTCG-3’ 
Smad2flox  genotyping, reverse 5’-GTCACTCCCTGAACCTGAAG-3’ 
Smad2recombined genotyping, forward 5’-GAGCTGCGCAGACCTTGTTAC-3’ 
Smad3flox genotyping, forward 5’-CTCCAGATCGTGGGCATACAGC-3’ 
Smad3flox  genotyping, reverse 5’-GGTCACAGGGTCCTCTGTGCC-3’ 
Smad3recombined genotyping, forward 5’-TCGTCGATCGACCTCGAATAAC-3’ 
Gnrhr WT genotyping, forward 5-GAACTACAGCTGAATCAGTC-3’ 
Gnrhr WT genotyping, reverse 5’-CTCTAACAAACTCTGTACA-3’ 
Gnrhr GRIC genotyping, forward 5’-GGACATGTTCAGGGATCGCCAGCC-3’ 
Gnrhr GRIC genotyping, reverse 5’-GCATAACCAGTGAAACAGCATTGCTG-3’ 
ROSA26 WT/eYFP genotyping, forward 5’-AAAGTCGCTCTGAGTTGTTAT-3’ 
ROSA26 WT genotyping, reverse 5’-GCGAAGAGTTTGTCCTCAACC-3’ 
ROSA26 eYFP genotyping, reverse 5’-GGAGCGGGAGAAATGGATATG-3’ 
Smad2 qPCR, exon 10, forward 5’-ATCAGCTAACCCGAATGTGC-3’ 
Smad2 qPCR, exon 11, reverse 5’-AAGGGGATCCCATCTGAGTT-3’ 
Smad3 qPCR, exon 3, forward 5’-CATTCCATTCCCGAGAACAC-3’ 
Smad3 qPCR, exon 4, reverse 5’-ATGCTGTGGTTCATCTGGTG-3’ 
Smad3 qPCR, exon 8, forward 5’-CATCCGTATGAGCTTCGTCA-3’ 
Smad3 qPCR, exon 9, reverse 5’-CATCTGGGTGAGGACCTTGT-3’ 
Fshb qpCR, forward 5’-GTGCGGGCTACTGCTACACT-3’ 
Fshb qpCR, reverse 5’-CAGGCAATCTTACGGTCTCG-3’  
Rpl19 qpCR, forward 5’-CGGGAATCCAAGAAGATTGA-3’ 
Rpl19 qpCR, reverse 5’-TTCAGCTTGTGGATGTGCTC-3’ 
Cyp19a1 qPCR, forward 5’-GACAGGCACCTTGTGGAAAT-3’ 
Cyp19a1 qPCR, reverse 5’-GAGGTTCACGCCACCTACTC-3’ 
Ccnd2 qPCR, forward 5’-AGCTGTCCCTGATCCGCAAG-3’ 
Ccnd2 qPCR, reverse 5’-GTTCACTTCATCATCCTGCTG-3’ 
Lhr qPCR, forward 5’-CGTCCCATTGAATGCATGG-3’ 
Lhr qPCR, reverse 5’-TGTAACACAGGCATCCGGA-3’ 
Smad3 primer walk, exon 1, forward 5’-AGTTGGACGAGCTGGAGAAG-3’ 
Smad3 primer walk, exon 2, forward 5’-CACAGCCACCATGAATTACG-3’ 
Smad3 primer walk, exon 3, forward 5’-CATTCCATTCCCGAGAACAC-3’ 
Smad3 primer walk, exon 3a, forward 5’-GTCAACGCGTTAGGATCCAG-3’ 
Smad3 primer walk, exon 4, forward 5’-CCTCCTGGCTACCTGAGTGA-3’ 
Smad3 primer walk, exon 5, forward 5’-TGTCCCCAGCACACAATAAC-3’ 
Smad3 primer walk, exon 6, forward 5’-CTGGGCCTACTGTCCAATGT-3’ 
Smad3 primer walk, exon 7, forward 5’-TGTGCGGCTCTACTAGACCG-3’ 
Smad3 primer walk, exon 8, forward 5’-CATCCGTATGAGCTTCGTCA-3’ 
Smad3 primer walk, exon 9, reverse 5’-CATCTGGGTGAGGACCTTGT-3’ 
Smad3 transcript cloning, forward 5’-GCAAGCTTTTCTCCAGAGTTAAAAGCGAAG-3’ 
Smad3 transcript cloning, reverse 5’-GCGGATCCCTAAGACACACTGGAACAGC-3’ 
Smad3 transcript cloning, HA tag, reverse 5’-GCATCGATAGACACACTGGAACAGCGGA-3’ 

 

Table S2.1
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Chapter 3  

 

In chapter 2, I showed that mice lacking SMAD2 and the DNA-binding domain of SMAD3 have 

preserved FSH synthesis and fertility. Thus, these results demonstrate that SMAD2 is 

dispensable for normal FSH synthesis and that SMAD3, if it is required, does not need to bind 

DNA to produce its actions. In the latter case, it seems that the residual truncated SMAD3 

protein (SMAD3-MH2) cooperatively activates Fshb transcription with SMAD4 and FOXL2. 

However, as detailed in the discussion of chapter 2, there are at least three other possibilities: 1) 

activin-stimulated Fshb expression is mediated by other receptor-regulated SMAD proteins 

(SMAD1/5/8); 2) activin-stimulated Fshb expression depends on a non-canonical, SMAD-

independent signaling pathway; or 3) activin signaling is altogether dispensable for FSH 

synthesis and fertility in vivo. All of these alternatives would challenge dogma and force a re-

consideration of the prevailing models of activin-regulated Fshb expression. The third possibility 

is particularly disconcerting: could we have been misled for more than 30 years in thinking that 

activin signaling is required for FSH synthesis in vivo? Thus, it is fundamentally important to 

verify whether SMAD-dependent signaling, of any kind, is necessary for FSH synthesis and 

fertility. All the receptor-activated SMADs function in association with the common SMAD, 

SMAD4, to regulate gene transcription (625). Therefore, deleting the Smad4 gene should block 

all SMAD-dependent signaling. In this chapter, I generated mice with a gonadotrope-restricted 

deletion of Smad4 and evaluated their FSH synthesis and fertility. The prevailing model of Fshb 

transcriptional regulation by activins predicts cooperative induction of Fshb expression by a 

combination of independent and interdependent activities of SMADs and FOXL2 (844). Indeed, 

mice with a gonadotrope-specific deletion of Foxl2 are FSH-deficient and subfertile, but still 

synthesize some FSH, presumably accounting for their partially preserved fertility (716). 

However, this may also reflect the maximal defect that can result from ablation of activin 

signaling components in gonadotropes, with the residual FSH synthesis (and fertility) being 

controlled by GnRH signaling. To discriminate between these possibilities, I generated mice 

simultaneously deficient in SMAD signaling and FOXL2 in gonadotropes (gonadotrope-specific 

Smad4/Foxl2 double knockout mice).    
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Abstract 

 

Follicle-stimulating hormone (FSH) is an essential regulator of gonadal function and fertility. 

Loss-of-function mutations in the FSHB/Fshb gene cause hypogonadotropic hypogonadism in 

humans and mice. Both gonadotropin-releasing hormone (GnRH) and activins, members of the 

transforming growth factor β (TGFβ) superfamily, stimulate FSH synthesis; yet, their relative 

roles and mechanisms of action in vivo are unknown. Here, using conditional gene-targeting, we 

show that the canonical mediator of TGFβ superfamily signaling, SMAD4, is absolutely required 

for normal FSH synthesis in both male and female mice. Moreover, when the Smad4 gene is 

ablated in combination with its DNA binding co-factor Foxl2 in gonadotrope cells, mice make 

essentially no FSH and females are sterile. Indeed, the phenotype of these animals is remarkably 

similar to that of Fshb knockout mice. Not only do these results establish SMAD4 and FOXL2 

as essential master regulators of Fshb transcription in vivo, they also suggest that activins may 

play more important roles in FSH synthesis than GnRH.  
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Introduction 

Approximately 10% of couples are infertile. Though both male and female factors 

contribute to the problem, the underlying causes are frequently unknown, stemming from our 

incomplete understanding of the physiological processes controlling reproduction. Gonadal 

(testicular and ovarian) function is regulated by hormonal signals from the brain and pituitary 

gland. Impairments in the synthesis, secretion, or action of these hormones can cause 

hypogonadotropic hypogonadism (HH), which usually manifests as delayed or absent puberty (7, 

8, 14, 16, 17, 845-848).  Though there are many causes of HH, impaired gonadal function 

ultimately results from insufficient stimulation by the gonadotropins, luteinizing hormone (LH) 

and follicle-stimulating hormone (FSH). Circulating LH and FSH levels are also perturbed in 

other forms of infertility, including polycystic ovarian syndrome and premature ovarian failure 

(20, 849). 

LH and FSH are dimeric glycoproteins produced by gonadotrope cells of the anterior 

pituitary. They share a common α subunit (now called chorionic gonadotropin alpha or CGA) 

noncovalently linked to hormone-specific β subunits (LHβ and FSHβ). Both the hypothalamic 

decapeptide GnRH (7, 8, 62, 441) and intrapituitary activins (203) have been implicated as the 

primary stimulators of FSHβ synthesis.  

Activins are members of the TGFβ superfamily and were discovered (and named) for 

their abilities to stimulate FSH secretion (203, 290, 580). Analyses in model cell lines have 

uncovered candidate mechanisms of activin action in vivo (203, 850). In brief, activins bind to 

receptor serine/threonine kinases on the plasma membrane of gonadotropes, leading to 

phosphorylation of the intracellular signaling proteins SMAD2 and SMAD3. Phosphorylated 

SMADs 2 and 3 dissociate from the receptors and associate with the obligate co-factor, SMAD4 

(625). SMAD complexes then accumulate in the nucleus and activate transcription of the FSHβ 

subunit gene (Fshb), the rate-limiting step in FSH synthesis (203, 674, 679). In vitro data 

indicate that SMADs partner with the cell-restricted forkhead transcription factor, FOXL2 (678, 

706, 708, 710), and perhaps other molecules (537, 538, 540), to regulate transcription via both 

conserved and species-specific cis-regulatory elements in the proximal Fshb promoter.  

Consistent with this model, gonadotrope-specific ablation of Foxl2 causes selective FSH-

deficiency and subfertility in mice (716). Conversely, however, mice lacking SMAD2 and the 

DNA-binding domain of SMAD3 have normal FSH levels and fertility (851). Thus, it is 
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presently unclear whether activins – or other TGFβ superfamily ligands – signal through SMADs 

or rather a non-canonical signaling pathway to regulate Fshb expression and FSH synthesis in 

vivo. To discriminate between these possibilities, we selectively ablated Smad4 in gonadotrope 

cells in vivo using conditional gene-targeting in mice. As SMAD4 mediates the actions of all 

TGFβ superfamily ligands (625), this approach enabled us to assess whether or not SMAD-

dependent signaling is required for FSH synthesis in the intact murine pituitary gland. 

Furthermore, we ablated Smad4 and Foxl2 in combination to determine whether the two proteins 

function cooperatively and/or independently to regulate FSH in vivo. 
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Materials and Methods 

 

Mice 

The Smad4
fl
, Foxl2

fl
, Gnrhr

IRES-Cre(GRIC)
,
 
and ROSA26

eYFP
 alleles, as well as corresponding 

genotyping protocols, were described previously (715, 820, 828, 852). To generate mice with the 

experimental genotypes, the Gnrhr
GRIC

 allele was always introduced from the females, due to 

germline Cre activity in males (157). To obtain S4cKO (Smad4
fl/fl

;Gnrhr
GRIC/+

) mice, Smad4
fl/fl 

males were crossed with Smad4
fl/+

;Gnrhr
GRIC/+

females. Smad4
fl/fl

 littermates were used as 

controls. To obtain S4F2cKO mice (Smad4
fl/fl

;Foxl2
fl/fl

;Gnrhr
GRIC/+

), Smad4
fl/fl

;Foxl2
fl/fl 

males 

were crossed with Smad4
fl/+

;Foxl2
fl/+

;Gnrhr
GRIC/+

 females. Smad4
fl/fl

;Foxl2
fl/fl 

littermates were 

used as controls. To obtain S4cKO-YFP mice (Smad4
fl/fl

;ROSA26
eYFP/+

;Gnrhr
GRIC/+

), Smad4
fl/fl

; 

ROSA26
eYFP/eYFP

 males were crossed with Smad4
fl/+

;Gnrhr
GRIC/+

females. To obtain GRIC-YFP 

mice (Gnrhr
GRIC/+

;ROSA26
eYFP/+

), ROSA26
eYFP/eYFP

 males were crossed with Gnrhr
GRIC/GRIC

 

females. All animal experiments were performed in accordance with institutional and federal 

guidelines and approved by the McGill University Institutional Animal Care and Use 

Committee.  

 

Fluorescence-activated cell sorting (FACS) 

Dissociated pituitary cell suspensions were prepared from adult (> 8-week-old) S4cKO-

YFP and GRIC-YFP mice as previously described (514, 716). Sorting was performed on a 

FACSAria cell sorter at the flow cytomery core facility of the McGill University Life Sciences 

Complex. RNA was obtained from the YFP+ and YFP- cell populations using the Total RNA 

Mini Kit (Geneaid) following the manufacturer’s instructions.  

 

Reproductive organ analysis, testicular/ovarian histology, and sperm and follicle counting  

 Reproductive organs were collected from adult mice at the indicated ages and weighed on 

a precision balance. Formalin-fixed ovaries were paraffin-embedded and cut in 5 μm sections. 

Every 5
th

 section was H&E stained and analyzed by transmitted light microscopy. This allowed 

tracking of corpora lutea and antral follicles across several sections. Follicle staging and counting 

was performed following published guidelines (853, 854). The number of pre-antral follicles in 

each section was estimated by counting the number of oocytes.  For testicular histology, testes 
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were fixed in Bouin’s with gentle motion overnight. The testes were then washed with 95% and 

70% ethanol and paraffin-embedded. Seven μm transverse sections were obtained in the middle 

of the tissue, H&E-stained, and examined by light microscopy. For sperm counting, cauda 

epididymides were dissected and immediately frozen on dry ice. Homogenization-resistant 

sperm count was performed as described (716). 

  

Fertility assessment 

 To assess fertility, 10-week-old male or female experimental and control mice were 

paired with C57BL/6J mice (Charles River) of the opposite sex. Starting from 20 days after 

pairing, the cages were inspected daily for the presence of newborn mice. As soon as a litter was 

present, pups (living or dead) were carefully counted and put back into the cage. Pups were 

separated from the mother at postnatal day 15 to avoid interfering with the following pregnancy. 

The mating trial was performed for 6 months in the case of S4cKO and control animals, and 4 

months in the case of S4F2cKO and control females. S4F2cKO females, who never delivered a 

litter, were carefully inspected at several time points for signs of pregnancy, which were never 

observed.  

  

Puberty and estrous cyclicity assessment 

 Starting from the day of weaning (postnatal day 21), females were inspected daily for 

vaginal opening following published guidelines (829). At 7 weeks of age, estrous cyclicity was 

assessed daily in the morning (~10 a.m.). A cotton swab wet with sterile saline was introduced 

approx. 5 mm into the vagina, and collected cells were smeared on a glass slide. The smears 

were stained with 0.1% methyl blue, and examined by light microscopy. Staging was assessed 

according to published guidelines (829). One cycle was defined as the sequential appearance of 

all estrous cycle stages, regardless of the number of days spent in each stage. For estrus morning 

experiments, cyclicity was first assessed for at least two complete cycles to facilitate stage 

assignment. Thereafter, blood and pituitaries were collected at 7 a.m. the day following a clear 

proestrous smear. 
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Superovulation 

 Juvenile (postnatal day 23-25) females were injected intraperitoneally (IP) with 5 IU 

pregnant mare serum gonadotropin (PMSG; Sigma) at 11 a.m. on day 1. On day 3, mice were 

injected IP with 5 IU of human chorionic gonadotropin (hCG; Sigma) at 7 a.m. Fourteen hours 

later, mice were killed, and cumulus-oocyte complexes (COCs) retrieved by puncturing the 

oviduct under a dissecting microscope. The COCs were transferred to phosphate-buffered saline 

(PBS). Oocytes were dissociated from COCs by a 10 min treatment with 2 mg/mL hyaluronidase 

in PBS at 37°C and counted under a light microscope.   

 

Hormone analyses 

 Blood was collected by cardiac puncture and left to clot at room temperature for 20 min. 

Serum was obtained following centrifugation at 3000 x g and stored at -20°C until analysis. All 

hormone assays were performed at the Ligand Assay and Analysis Core of the Center for 

Research in Reproduction at the University of Virginia (Charlottesville, Virginia). LH and FSH 

were measured by multiplex ELISA. Testosterone was measured by radioimmunoassay.  

 

Quantitative PCR 

 Pituitaries were frozen on dry ice immediately upon dissection and stored at -80°C. 

Single pituitaries were homogenized in 500 μL TriZol reagent (Invitrogen, Carlsbad, CA, USA) 

and RNA isolated following the manufacturer’s protocol.  One and a half µg of RNA were 

reverse-transcribed using MMLV reverse transcriptase (Promega, Madison, WI, USA) as 

described previously (674) in a final volume of 40 μL. For qPCR analysis, 1 μL of cDNA was 

used in triplicate reactions and assayed on a Corbett Rotorgene 6000 instrument using Platinum 

qPCR Supermix-UDG (Invitrogen, Carlsbad, CA, USA). Gene expression was determined using 

the 2
−ΔΔCt

 method (830) relative to the expression of the housekeeping gene Rpl19, using the 

primers described previously (514, 716, 851)    

 

Primary pituitary culture 

 Primary pituitary cultures were prepared as previously described by our lab (651, 716). 

Cells were seeded at a density of 400,000 cells/well in 48-well plates. For “in vivo 

recombination” experiments, cells from S4cKO or control littermates were cultured in 10% 
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serum-containing media for 24 h and then in 2% serum-containing media supplemented with 1 

nM activin A, where indicated, for an additional 24 h.  For “ex vivo recombination” experiments, 

pituitary cells from Smad4
fl/fl

  or Smad4
fl/fl

;Foxl2
fl/fl

 mice were cultured for 24 h after plating and 

then infected with adenoviruses expressing GFP (Ad-GFP) or Cre-IRES-GFP (Ad-Cre) [Baylor 

College of Medicine Vector Development Laboratory (Houston, Texas)] at a multiplicity of 

infection (MOI) of 60 in 10% serum-containing media for 24 h. Cells were further cultured for 

24 h in 2% serum-containing media in the presence or absence of 1 nM activin A. Cells were 

harvested with 0.25% Trypsin and RNA was extracted using the Total RNA Mini Kit (Geneaid) 

following the manufacturer’s instructions.  

 

Immunofluorescence 

 Deeply anesthetized adult mice were perfused transcardially with PBS, followed by 4% 

paraformaldehyde (PFA) buffered in PBS. The pituitaries were post-fixed in 4% PFA overnight 

at 4°C, transferred to PBS, and embedded in paraffin. Five μm pituitary sections were 

progressively re-hydrated using a graded series of ethanol solutions and subjected to antigen 

retrieval in boiling 10 mM sodium citrate (pH 6.0) for 35 minutes. Sections were blocked in 5% 

BSA-containing PBS supplemented with 1% Tween-20 (PBST) for 1 h at room temperature and 

incubated with primary antibodies overnight at 4°C in 5% BSA-PBST. After a series of washes 

in PBST, fluorophore-conjugated secondary antibodies were added in 5% BSA-PBST at a 

concentration of 1:500 and incubated at room temperature for 1 h. For the Cre antibody, sections 

were incubated with 1:150 biotinylated anti-rabbit IgG, washed in PBST, and further incubated 

in fluorophore-conjugated streptavidin at a 1:400 dilution. After another series of PBST washes, 

sections were mounted with DAPI-containing Prolong Gold reagent (Invitrogen) and imaged by 

epifluorescence on a Zeiss Axioplan 2 microscope. Primary antibodies used were: anti-FSHβ 

(NIDDK AFP7798-1289, 1:500, raised in rabbit), anti-LHβ (Santa Cruz sc-7824, 1:500, raised in 

goat) and anti-Cre (a kind gift from Dr. Jacques Drouin - Novagen 69050, 1:500, raised in 

rabbit). Secondary antibodies used were: Alexa fluor 594-conjugated anti-rabbit (Invitrogen, 

A21-207, raised in donkey), Alexa fluor 488-conjugated anti-goat (Invitrogen, A-11055, raised 

in donkey), Alexa Fluor 594-conjugated anti-goat (Invitrogen, A-11058, raised in donkey), 

biotinylated anti-rabbit (Vector, BA-1100, raised in horse), and Alexa fluor 488-conjugated 

Streptavidin (Invitrogen, S-11223). 
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Statistical analyses 

 Reproductive organ weights, sperm counts, ovarian follicle counts, ovulated oocyte 

counts, onset of puberty, estrous cyclicity, pituitary gene expression, litter size, and serum 

hormones were analyzed using unpaired t-tests. In the case of pituitary Fshb transcripts and 

serum FSH levels in S4F2cKO females, Mann-Whitney U tests were used due to high variability 

in the control group. Primary culture experiments were analyzed using two-way ANOVA, 

followed by Tukey post-hoc tests. Data were log-transformed when variances were unequal 

between groups. Statistical analyses were performed using Systat 10.2 or GraphPad Prism 5. P-

values < 0.05 were considered statistically significant. 
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Results 

Generation of gonadotrope-specific Smad4 knockout mice 

To generate mice lacking Smad4 specifically in gonadotropes (hereafter “S4cKO”), we 

crossed mice carrying conditional alleles of Smad4 (Smad4
fl/fl

) (852) with GnRHR-IRES-Cre 

(GRIC) mice, which express Cre recombinase in gonadotropes (820). To quantitatively assess 

the extent of Smad4 deletion in the gonadotropes of S4cKO animals, we crossed in the Cre-

dependent ROSA26
eYFP

 reporter allele (828) on the S4cKO background, generating 

Smad4
fl/fl

;Gnrhr
GRIC/+

;ROSA26
eYFP/+

 mice (S4cKO-YFP), thereby enabling purification of 

gonadotropes by FACS (514, 716, 851). Similar to what we reported in other models using the 

GRIC allele, there was a robust (~90%) loss of Smad4 mRNA in S4cKO-YFP gonadotropes 

(green bars in Fig. 3.1A) compared with gonadotropes from control mice 

(Smad4
+/+

;Gnrhr
GRIC/+

;ROSA26
eYFP/+

; white bars).  

 

Conditional Smad4 knockout mice are hypogonadal and subfertile 

S4cKO mice developed normally and appeared healthy. However, examination of the 

reproductive organs in adult (10-week-old) animals revealed hypogonadism. Male S4cKO mice 

had markedly decreased testicular weights (~40% less than controls), which was accompanied by 

a 50% reduction in epididymal sperm counts (Fig. 3.1B-D). Histology revealed grossly normal 

testicular morphology, though the seminiferous tubules were generally smaller, and many had 

narrow lumina (supplementary material Fig. S3.1A). In contrast, seminal vesicle weights and 

circulating testosterone levels did not differ between S4cKO and control mice (Fig. 3.1E and 

supplementary material Fig. S3.1B). S4cKO males also exhibited normal fertility (supplementary 

material Fig. S3.1C).  

In contrast, S4cKO females were subfertile (Fig. 3.2A), producing significantly fewer 

pups compared with control mice over the course of a 6 month breeding trial (supplementary 

material Fig. S3.2A). This was due to a smaller number of pups produced per litter (Fig. 3.2A); 

litter frequency was comparable between genotypes (supplementary material Fig. S3.2B). 

Comprehensive assessment of reproductive maturation in S4cKO females revealed normal 

puberty onset and robust estrous cyclicity (supplementary material Fig. S3.2C-E), indicating that 

the subfertility was unlikely caused by abnormal activation of the reproductive axis.  
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To identify the basis of the subfertility in S4cKO females, we first examined their 

reproductive organs. Adult S4cKO females had smaller ovaries, but normal uterine weights on 

diestrus compared to controls (Fig. 3.2B-C and supplementary material Fig. S3.2F). Histological 

analysis indicated that, while follicles at all stages of development were present, there was a 

significant decrease in the number of corpora lutea in the ovaries of S4cKO animals (Fig. 3.2Di). 

To gain further insight into this phenotype, we counted follicles at different stages of 

development in S4cKO and control ovaries. We noted a progressive decline in the number of 

follicles beyond the pre-antral stage in S4cKO mice, whereas there were no measurable 

differences in follicle numbers between genotypes at earlier stages (Fig. 3.2Dii-iv). To rule out 

intrinsic ovarian defects in S4cKO mice, juvenile females (post-natal days 23-25) were 

stimulated with PMSG to induce follicle growth and, 48 h later, with hCG to trigger ovulation. 

S4cKO and control females ovulated a comparable number of oocytes, demonstrating normal 

ovarian responsiveness to exogenous gonadotropins (Fig. 3.2E).  

 

Conditional Smad4 knockout mice are FSH deficient 

Next, we asked whether gonadotropin synthesis was impaired in S4cKO mice. Indeed, 

there was a profound (~90%) reduction in circulating FSH levels in S4cKO males compared with 

controls, along with a 50% reduction in LH (Fig. 3.3Ai, iii). We also observed FSH-deficiency in 

diestrous females, though the decrease was more variable and of a lower magnitude (~50%) than 

in males; LH was unaffected (supplementary material Fig. S3.3A). We therefore examined 

serum gonadotropins on the early morning of estrus, at the time of the activin-dependent 

(“secondary”) FSH surge (249). Mean serum FSH levels were reduced ~4-fold in S4cKO mice 

and robust secondary surges were absent (Fig. 3.3Aii). LH levels did not differ between 

genotypes (Fig. 3.3Aiv). Next, we examined whether the reduction in circulating gonadotropins 

was due to impaired gonadotropin subunit expression in gonadotropes. First, we analyzed 

pituitary sections doubly stained with antibodies directed against the LHβ and FSHβ subunits. 

There was a notable decrease in the intensity of FSHβ staining in both male and female S4cKO 

pituitaries compared with control littermates (Fig. 3.3B). LHβ staining appeared normal, 

suggesting that LH deficiency in S4cKO males does not result from impaired LHβ synthesis (see 

below) or gonadotrope specification (Fig. 3.3B). Next, we measured gonadotropin subunit 

mRNA levels by qPCR. Fshb expression was significantly lower in S4cKO males and females 
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(morning of estrus) compared with control littermates (Fig. 3.4A). In contrast, LHβ subunit (Lhb) 

expression was normal in S4cKO males and estrus morning females, but modestly increased in 

diestrous females (Fig. 3.4A and supplementary material Fig. S3.3B). Expression of Cga, which 

encodes the common gonadotropin α subunit, was unchanged in females but reduced in S4cKO 

males, perhaps contributing to the lower LH levels in the latter (Fig. 3.4A and supplementary 

material Fig. S3.3B). We also analyzed the pituitary expression of additional genes encoding 

important regulators of gonadotrope function. Interestingly, gonadotropin-releasing hormone 

receptor (Gnrhr) transcripts were up-regulated in both male and female S4cKO mice regardless 

of estrous cycle stage (Fig. 3.4A and supplementary material S3.3B). The activin antagonist 

follistatin (Fst) was modestly down-regulated, but only in estrous morning S4cKO females (Fig. 

3.4A and supplementary material S3.3B). Expression of the canonical activin type I and type II 

receptors (Acvr1b, Acvr2a) or the SMAD co-factor Foxl2 did not differ between genotypes (Fig. 

3.4A and supplementary material Fig. S3.3B). Collectively, these results strongly suggest that 

FSH-deficiency in S4cKO mice derives primarily from impaired Fshb mRNA expression.  

 

Activin regulation of Fshb expression is impaired in Smad4 knockout pituitaries 

The marked reduction of circulating FSH and pituitary Fshb mRNA levels in S4cKO 

females on estrous morning suggested that gonadotropes lacking SMAD4 may be impaired in 

their ability to up-regulate Fshb expression in response to activins. To directly address this 

possibility, we measured activin-stimulated Fshb expression in primary pituitary cultures from 

control and S4cKO mice. Basal Fshb mRNA levels were dramatically depleted (> 98%) in 

cultures from either male or female S4cKO mice (Fig. 3.4B). Basal Fshb expression in such 

cultures is heavily dependent on autocrine/paracrine activin signaling (602, 651). Note that the 

more profound reduction in Fshb transcripts observed in S4cKO pituitary cultures compared 

with S4cKO pituitaries in vivo (Fig. 3.4A) may reflect the absence of GnRH (or additional 

endocrine signaling) signaling in the former. Interestingly, exogenous activin A was able to 

stimulate Fshb expression in both control and S4cKO cells, but the absolute magnitude of Fshb 

induction was much lower in the latter (Fig. 3.4B). Therefore, the Fshb gene in S4cKO 

gonadotropes retains some ability to respond to activins, but this is insufficient to produce wild-

type levels of Fshb mRNA. 
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Conditional Smad4/Foxl2 knockout females are hypogonadal and sterile  

The reproductive phenotypes of S4cKO mice are remarkably similar, though not 

identical, to those of gonadotrope-specific Foxl2 knockout animals (F2cKO) (716). In both 

models, females are FSH-deficient and subfertile. This contrasts with the phenotype of female 

Fshb knockout mice, which completely lack the dimeric hormone and are sterile (220).  In both 

the S4cKO and F2cKO models, incomplete recombination of the floxed alleles could explain 

their residual FSH production. That said, both models show >90% reductions in the targeted 

mRNAs. It therefore seems likely that another mechanism accounts for the ability of these mice 

to produce sufficient FSH to stimulate modest follicle growth. We turned our attention back to 

the current model of activin-regulated Fshb expression (844), where SMAD4 and FOXL2 form 

part of the same transcriptional complex binding to a composite SMAD/forkhead cis-element at -

115/-107 of the murine Fshb promoter (678). In addition, SMAD4 binds an 8-bp SMAD binding 

element at -266/-259 independently of FOXL2 (676), whereas FOXL2 binds independently of 

SMAD4 at a non-canonical forkhead binding element at -350 (710). Therefore, residual Fshb 

production in the individual Smad4 and Foxl2 knockout models might reflect the fact that the 

two proteins have both interdependent and independent functions.  

 To test this hypothesis, we generated mice lacking both Smad4 and Foxl2 selectively in 

gonadotropes (Smad4
fl/fl

;Foxl2
fl/fl

;Gnrhr
GRIC/+

; hereafter S4F2cKO). S4F2cKO females exhibited 

pale and barely patent vaginas and smears were usually devoid of cells. Therefore, we could not 

reliably assess the onset of puberty or estrous cyclicity in these animals. In a four month 

breeding trial, S4F2cKO females did not produce any pups and none showed evidence of 

pregnancy. In contrast, control (Smad4
fl/fl

;Foxl2
fl/fl

) females showed normal fertility (Fig. 3.5A). 

Consistent with their sterility, S4F2cKO females had dramatically reduced ovarian weights and 

hypoplastic (thread-like) uteri (Figs. 3.5B-D). Ovarian histology revealed the complete absence 

of corpora lutea and pre-ovulatory follicles, and the presence of only a few early antral follicles 

in young adult S4F2cKO females (10-week-old) (Fig. 3.5E). In 6-month-old females, which we 

analyzed after the conclusion of the breeding trial, ovarian tissue was abnormal in S4F2cKO 

females, with few immature follicles and evidence of tubulostromal hyperplasia (supplementary 

material Figs. S3.4A-B). 

Male S4F2cKO mice were similarly hypogonadal, with a 50% reduction in testicular 

mass relative to controls (Figs. 3.5F-G). This was a greater decrease than observed in S4cKO 
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(Figs. 3.1B-C) or F2cKO mice (716). Testes of S4F2cKO mice showed normal histology, though 

their seminiferous tubules were smaller in diameter compared with controls (supplementary 

material Fig. S3.4C). In contrast, their seminal vesicle weights were normal (Figs. 3.5F and H).  

 

Conditional Smad4/Foxl2 knockout mice are FSH deficient 

Consistent with their reproductive phenotypes, S4F2cKO mice had dramatically impaired 

serum FSH levels, even more pronounced than observed in S4cKO or F2cKO mice. Values in 

males and in most females were near the detection limit of the assay (Fig. 3.6Ai/ii). Pituitary 

FSHβ immunoreactivity and Fshb mRNA were barely detectable in S4F2cKO mice (Figs. 3.6B 

and 3.7A). In control males and females, LHβ+ cells were all co-labeled with FSHβ (FSHβ+), 

whereas some cells were uniquely FSHβ+ (Figs. 3.6B). Strikingly, in both male and female 

S4F2cKO mice, LHβ+ cells were devoid of FSHβ staining (Figs. 3.6B). Therefore, gonadotropes 

lacking Smad4 and Foxl2 are specified normally, but synthesize very low, if any, FSHβ. That 

said, some FSHβ-only cells remained scattered throughout S4F2cKO pituitaries, and presumably 

account for the residual Fshb mRNA and serum FSH in these animals (Figs. 3.6Ai/ii and B). We 

explored the possibility that these cells continue to synthesize FSHβ because they do not express 

the Cre recombinase enzyme. However, the FSHβ + cells were also Cre+ (supplementary 

material Fig. S3.5). Moreover, some Cre+ cells were LHβ-, indicating that there is a 

subpopulation of FSHβ+/LHβ- gonadotropes that expressed Gnrhr (and hence Cre) at some point 

during their lifetime (supplementary material Fig. S3.5). Therefore, Fshb expression in these 

cells appears to be SMAD4/FOXL2-independent, but insufficient to maintain reproductive axis 

activity. 

 

Conditional Smad4/Foxl2 knockout mice show gender-specific alterations in LH secretion 

In contrast to FSH, serum LH levels were increased more than 5-fold in female S4F2cKO 

mice compared to controls (Fig. 3.6Aiv). However, LH was decreased by about 50% in 

S4F2cKO males (Fig. 3.6Aiii). In both sexes, pituitary Lhb mRNA levels were increased by 3-5 

fold (Fig. 3.7A). LHβ immunoreactivity appeared normal, if not elevated, in knockout pituitaries 

(Figs. 3.6B). Pituitary Cga mRNA levels were significantly depleted in S4F2cKO males, but not 

females, perhaps contributing to the sex difference in serum LH levels (Fig. 3.7A). Interestingly, 

Gnrhr expression, which was elevated in S4cKO mice, was normal in S4F2cKO animals (both 
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genders). Fst, Acvr1b, and Acvr2a mRNA levels did not differ between genotypes (Fig. 3.7A). 

Foxl2, as expected, was significantly reduced as in (716). 

 

Basal and activin regulated Fshb expression are abolished in Smad4/Foxl2-depleted pituitaries 

Above, we showed that Smad4 deletion impaired basal and activin-stimulated Fshb 

expression in primary pituitary cultures (Fig. 3.4B). We also observed a similar, albeit milder, 

effect upon acute deletion of Smad4 (supplementary material Fig. S3.6A-B) or Foxl2 (716) in 

primary pituitary cultures from Smad4
fl/f

 or Foxl2
fl/fl 

mice infected with a Cre-expressing 

adenovirus (Ad-Cre). Therefore, we tested the hypothesis that the residual activin response was 

FOXL2- or SMAD4-dependent, respectively, by examining the effects of acute recombination of 

both Smad4 and Foxl2 conditional alleles in pituitary cultures from Smad4
fl/fl

;Foxl2
fl/fl

 mice. In 

Ad-Cre infected cultures, we observed a dramatic decrease in basal Fshb transcription and the 

complete loss of activin responsiveness (Fig. 3.7B and supplementary material Fig. S3.7A-B). 

These results indicate that SMAD4 and FOXL2 are required for basal and activin-stimulated 

Fshb expression in adult gonadotropes. In Ad-Cre infected cultures, Lhb expression was normal, 

whereas Cga was mildly downregulated in males (supplementary material Fig. S3.7Aiii/iv and 

S3.7Biii/iv). This suggests that changes in Cga but not Lhb expression in S4F2cKO pituitaries 

(Fig. 3.7A) may be partially explained by cell-autonomous mechanisms. The increases in Lhb in 

contrast may represent endocrine (indirect) effects. 
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Discussion 

 

 Loss-of-function mutations in the FSHB/Fshb gene cause hypogonadotropic 

hypogonadism in humans and mice, demonstrating an essential role for FSH in reproductive 

development and fertility (14, 16, 220). GnRH and activins are regarded as the primary 

stimulators of FSH synthesis in mammals; yet, their relative roles and mechanisms of action are 

poorly understood, particularly in vivo. Here, we show that the canonical mediator of TGFβ 

superfamily signaling, SMAD4, is absolutely required for normal FSH synthesis in both male 

and female mice. Moreover, when the Smad4 gene is ablated in combination with the gene 

encoding its most thoroughly characterized DNA binding co-factor in gonadotrope cells, Foxl2, 

mice make essentially no FSH and females are sterile. The phenotype of these animals is 

remarkably similar to that of Fshb knockout mice.  Not only do these results establish SMAD4 

and FOXL2 as essential regulators of Fshb transcription, they suggest that activins (or related 

TGFβ ligands) may play more important roles in FSH synthesis than GnRH, at least in mice. 

Indeed, the normal or elevated Lhb and Gnrhr expression in these animals indicates that GnRH 

receptor signaling is intact in these animals. At present, there is no evidence that GnRH regulates 

Fshb transcription via SMAD4 or FOXL2 (679, 706). However, if GnRH requires underlying 

activin signaling to stimulate FSH, then the loss of SMAD4 and FOXL2 could impair both 

activin (directly) and GnRH (indirectly) action. 

Though both SMAD4 and FOXL2 can bind the Fshb promoter directly (463, 539, 676, 

678, 706, 708), neither is a direct target of activin or other TGFβ receptors. In addition, the two 

proteins do not directly interact (708, 709). Therefore, another protein (or proteins) must provide 

the link between receptor activation and SMAD4/FOXL2 at the level of the Fshb promoter. 

Although SMAD3, and to a lesser extent SMAD2, are the obvious candidates, we recently 

showed that SMAD2 and the DNA-binding activity of SMAD3 are dispensable for FSH 

synthesis and fertility in mice (851). We postulated that the C-terminal MH2 domain of SMAD3, 

which is retained in these mice, can provide the molecular link between activin receptor 

activation and Fshb expression in the nucleus (Fig. 8) because it is both phosphorylated by the 

activin type I receptor and interacts with SMAD4 and FOXL2 (678, 706, 708, 709). Indeed, in 

vitro data show that SMAD4’s DNA binding activity is sufficient to confer synergistic activation 

of Fshb transcription by DNA-binding-deficient SMAD3 and FOXL2 (678). Nonetheless, this 
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and other possibilities, such as non-canonical signaling through SMADs 1, 5, or 8 (690), require 

investigation using appropriate knockout models. 

SMADs require co-factors to bind target genes with high specificity and affinity (625). 

The first identified SMAD-interacting partner fulfilling this role was the forkhead transcription 

factor FOXH1 (701, 702). The data presented here demonstrate the functional synergism 

between SMAD4 and one of its forkhead protein partners in vivo. At the same time, because 

mice lacking both Smad4 and Foxl2 exhibit a more robust phenotype than mice lacking either 

alone [this study and (716)], the data suggest that the two proteins regulate Fshb expression both 

cooperatively and independently. Indeed, based on in vitro studies, our current model (Fig. 3.8) 

predicts that, in the absence of either SMAD4 or FOXL2, some activin signaling to the Fshb 

promoter can be maintained.  That is, without SMAD4, activin-regulated SMAD3 can still 

activate Fshb transcription in synergy with FOXL2 through at least two cis-elements in the 

proximal murine Fshb promoter (678, 706, 708, 710) (Fig. 3.8ii). In the absence of FOXL2, in 

contrast, SMAD complexes can still stimulate Fshb via an 8-bp SMAD binding element (Fig. 

3.8iii) (676). In both scenarios, the residual signaling can maintain FSH levels above a threshold 

required to drive maturation of some ovarian follicle to the pre-ovulatory stage (Fig. 3.8ii-iii).  In 

the absence of both SMAD4 and FOXL2, however, all activin responsiveness is lost, rendering 

animals incapable of generating threshold levels of FSH (Fig. 3.8iv). Consistent with this idea, 

the double knockout mice do not cycle and exhibit an arrest in follicle development at the 

preantral stage. 

Though our results clearly demonstrate necessary roles for SMAD4 and FOXL2 in FSH 

synthesis in mice, it is presently unclear whether the human FSHB gene is similarly regulated. 

Nonetheless, activins are indirectly implicated in human FSH secretion, as circulating inhibins 

negatively correlate with FSH levels (600) and a soluble ectodomain of ACVR2A suppresses 

FSH in women (649). Importantly, FOXL2 is expressed in human gonadotropes (855) and the 

composite cis-element through which SMAD4 and FOXL2 regulate murine Fshb is present in 

the human FSHB promoter (706). Therefore, it seems likely that we have identified a 

fundamental and conserved mechanism underlying FSH synthesis in all mammals.  
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Figure Legends 

 

Figure 3.1: Hypogonadism male S4cKO mice. A) YFP- and YFP+ cells were sorted from 

ROSA26
eYFP/+

;Gnrhr
GRIC/+

 (GRIC-YFP; controls) or Smad4
fl/fl

;ROSA26
eYFP/+

;Gnrhr
GRIC/+

 

(S4cKO-YFP) male and female mice by fluorescence-activated cell sorting (FACS). Smad4 

expression was assessed by qPCR and measured relative to Rpl19 expression. N=3 independent 

sorting experiments. Bars represent means +s.e.m. Bars with different symbols differ 

significantly. B) Representative testes from 10-week-old control and S4cKO mice. C) Testicular 

weights (expressed as % body weight) in 10-week-old control and S4cKO mice. Body weights 

did not differ. Here and below, individual data points are plotted as circles or squares and means 

are shown by horizontal lines. *: p < 0.05. D) Cauda epididymal sperm counts in adult control 

and S4cKO males (one epididymis analyzed per mouse). Bars represent means +s.e.m. *: p < 

0.05.  E) Seminal vesicle weights, expressed as % body weight (which did not differ), in 10-

week-old control and S4cKO males. n.s.: non significant. 

 

Figure 3.2: Subfertility and abnormal ovarian follicular maturation in S4cKO female mice. A) 

Average litter size delivered by control and S4cKO females during a 6 month breeding trial. Bars 

represent means +s.e.m. *: p < 0.05.  B) Representative H&E-stained histological sections from 

10-week-old control and S4cKO females ovaries. Scale bars = 0.5 mm. C) Diestrous ovarian 

weights, expressed as % of body weight (which did not differ), in 10-week-old control and 

S4cKO female mice. Each dot represents an individual animal; horizontal bars show means. *: p 

< 0.05 D) Corpora lutea (i), late antral/preovulatory (ii), early antral (iii) and pre-antral (iv) 

follicle counts in ovaries from 10-week-old control and S4cKO females (one ovary examined per 

mouse). Bars represent means +s.e.m. *: p < 0.05. n.s.: non significant. E) Number of oocytes 

recovered from both oviducts in response to PMSG/hCG stimulation in juvenile (P23-25) control 

and S4cKO females. 

 

Figure 3.3: Impaired FSH synthesis in S4cKO mice. A) Serum FSH (i, ii) and LH (iii, iv) in 10-

week-old male (i, iii) and > 10-week-old female (ii, iv; assessed on estrous morning) control and 

S4cKO mice. *: p < 0.05; n.s: non-significant.  B) Immunofluorescence for LHβ (green) and 
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FSHβ (red) in the pituitaries of 10-week old-control and S4cKO male (left) and female (right) 

mice. Scale bars = 25 μm.  

 

Figure 3.4: Fshb deficiency and impaired activin-stimulated Fshb expression in S4cKO 

pituitaries. A) Expression of selected genes in the pituitaries of 10-week-old male (top) and > 10-

week-old estrous morning female (bottom) control and S4cKO mice, assessed relative to the 

expression of the housekeeping gene Rpl19. The animals are the same as in figure 3A). Lhb: 

luteinizing hormone β subunit. Cga: gonadotropin α subunit. Gnrhr: gonadotropin-releasing 

hormone receptor. Fst: follistatin. Acvr1b: activin receptor type 1B. Acvr2a: activin receptor type 

2A. Foxl2: forkhead box L2. n=14 per group in males; n=9 per group in females. Bars represent 

means +s.e.m. *: p < 0.05; n.s: non-significant. B) Primary pituitary cells prepared from control 

or S4cKO male (left) or female (right) mice and treated for 24 h with 1 nM activin A or left 

untreated. Fshb transcripts were assessed by qPCR, relative to the expression of Rpl19. Males: 

N=4; females: N=3 independent experiments. Bars represent means +s.e.m. Bars with different 

symbols differ significantly.  

 

 

Figure 3.5: Profound hypogonadism and female sterility in S4F2cKO mice. A) Average litter 

size delivered by control and S4F2cKO females during a 4 month breeding trial. S4F2cKO 

females delivered no litters. Bars represent means +s.e.m.  B) Representative reproductive tracts 

from 10-week-old control and S4F2cKO mice. C-D) Ovarian (C) and uterine (D) weights, 

expressed as % body weight (which did not differ), in > 10-week old female control and 

S4F2cKO mice. *: p < 0.05. E) Representative H&E-stained histological sections from 10-week-

old control and S4F2cKO female ovaries. Scale bars = 0.5 mm. F) Representative testes and 

seminal vesicles from 10-week-old control and S4F2cKO males. G-H) testicular (G) and seminal 

vesicle (H) weights, expressed as % body weight (which did not differ) in 10-week-old male 

control and S4F2cKO mice. Each dot represents an individual animal; horizontal bars show 

means. *: p < 0.05. n.s.: non significant.  

 

Figure 3.6: Profoundly impaired FSH synthesis in S4F2cKO mice. A) Serum FSH (i, ii) and LH 

(iii, iv) in 10-week-old male (i, iii) and adult > 10-week-old female (ii, iv) control and S4F2cKO 
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mice. Each dot represents an individual animal; horizontal bars show means. *: p < 0.05; n.s: 

non-significant. B) Immunofluorescence for LHβ (green) and FSHβ (red) in pituitaries of 10-

week-old control and S4F2cKO male (left) and female (right) mice. Scale bars = 25 μm.  

 

Figure 3.7: Fshb deficiency in S4F2cKO pituitaries and loss of activin-stimulated Fshb 

expression upon acute deletion of Smad4 and Foxl2. A) Expression of selected genes in the 

pituitaries of 10-week-old male (top) and > 10-week-old female (bottom) control and S4F2cKO 

mice assessed relative to Rpl19. n=6 per group in males; n=9 and 7 for control and S4F2cKO 

female mice, respectively. Bars represent means +s.e.m.  *: p < 0.05; n.s: non-significant. B) 

Primary pituitary cells prepared from Smad4
fl/fl

;Foxl2
fl/fl 

 male (left) or female (right) mice, 

infected with Cre-expressing (Ad-Cre) or control (Ad-GFP) adenoviruses, and treated for 24 h 

with 1 nM activin A or left untreated. Fshb transcripts were assessed by qPCR, relative to the 

expression of the housekeeping gene Rpl19. N=3 independent experiments. Bars represent means 

+s.e.m.  Bars with different symbols differ significantly. 

 

Figure 3.8: Model of hormonal regulation of Fshb expression in gonadotropes in vivo. Left 

column: Proposed mechanisms of Fshb transcriptional regulation in (i) wild-type mice or mice 

lacking (ii) Smad4 (S4cKO), (iii) Foxl2 (F2cKO), or (iv) both Smad4 and Foxl2 (S4F2cKO) in 

gonadotropes. Middle column: Resulting circulating FSH levels across the estrous cycle (1°: 

GnRH-induced primary FSH surge; 2° activin-induced secondary FSH surge). Right column: 

Observed fertility outcomes in females of the indicated knockout strains. i) In wild-type mice, 

activin signaling through SMAD3 (S3) and its obligatory partner SMAD4 (S4) activate Fshb 

transcription in cooperation with FOXL2 (F2) via a composite SMAD/FOXL2 proximal binding 

site, an 8-bp SMAD-responsive element, and a distal FOXL2  binding site. Mechanisms of 

GnRH signaling to the murine Fshb promoter are poorly described and denoted by “?”. ii) In 

S4cKO animals, both FOXL2 binding sites can still confer some activin responsiveness, 

presumably via activin-regulated SMAD3. iii) In F2cKO mice, the activity of the 8-bp SMAD 

binding element should be preserved. In both cases, this results in a decrease in activin 

responsiveness of the Fshb promoter, a shallower secondary FSH surge, and reduced fertility. iv) 

In S4F2cKO mice, activin responsiveness is completely lost. As a result, these mice cannot 

generate a secondary FSH surge and are sterile. A primary FSH surge should also be absent due 
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to a block of antral follicle growth, resulting in the absence of an estrogen-stimulated GnRH 

surge.  

 

Supplementary Figure Legends 

 

Figure S3.1: Reduced testicular size, but normal fertility in S4cKO male mice. A) Representative 

H&E-stained histological sections from 10-week-old control (left) and S4cKO (right) male 

testes. Scale bar = 0.1 mm.  B) Serum testosterone levels in 10-week-old S4cKO and control 

males. Each dot represents and individual animals. Horizontal bars show means.  n.s.: non 

significant. C) Average litter size delivered by wild-type females paired with control and S4cKO 

males during a 6 month breeding trial. Bars represent means +s.e.m. n.s.: non significant. 

 

Figure S3.2:  Subfertility, but normal reproductive maturation in S4cKO females. A) Average 

cumulative number of pups delivered by control and S4cKO females over a 6 month breeding 

trial. Bars represent means +s.e.m. *: p < 0.05. B) Average (+s.e.m.) frequency of litters (number 

per month) delivered by control and S4cKO females over a 6 month breeding trial. C) Age at 

vaginal opening (“0” being the day of birth), used as a marker of puberty onset, in control and 

S4cKO females. N=20 and 25 for control and S4cKO animals, respectively. D) Representative 

estrous cyclicity profiles from two control (left) and two S4cKO (right) females. Individual 

points represent consecutive days. E) Quantification of the proportion of time spent in each 

estrous cycle stage in control and S4cKO females. Control: n=7. S4cKO: n=10. E: estrus. P: 

proestrus. M/D: mestestrus/diestrus. Bars represent means +SEM. n.s.: non significant F) Uterine 

weights, expressed as a % body weight (which did not differ), in 10-week-old control and 

S4cKO female mice. N=11 and 17 for control and S4cKO females, respectively. Each dot 

represents an individual animal; horizontal bars show means. n.s.: non significant.  

 

Figure S3.3: Reduced serum FSH levels and increased pituitary Lhb and Gnrhr expression in 

S4cKO diestrous females. A) Serum FSH (i) and LH (ii) in 10-week-old female control and 

S4cKO mice, assessed in diestrus. N= 13 and 17 for control and S4cKO animals, respectively. 

Each dot represents an individual animal; horizontal bars show means. *: p<0.05. n.s.: non 

significant. B) Expression of the indicated genes in the pituitaries of 10-week-old diestrous 
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control and S4cKO females, assessed relative to the expression of the housekeeping gene Rpl19. 

The animals are the same as used for hormone analyses in panel A. Lhb: luteinizing hormone β 

subunit. Cga: gonadotropin α subunit. Gnrhr: gonadotropin-releasing hormone receptor. Fst: 

follistatin. Acvr1b: activin receptor type 1B. Acvr2a: activin receptor type 2A. Foxl2: forkhead 

box L2. Bars represent means +s.e.m. *: p < 0.05. n.s.: non significant. 

 

Figure S3.4: Disrupted ovarian architecture and tubulostromal hyperplasia in 6-month-old 

S4F2cKO females. A-B) Representative low (2.5X; left panels) and high magnification (20X; 

right panels) H&E-stained histological sections from two 6-month-old retired S4F2cKO breeder 

ovaries (note that the animals were in breeding trials, but were sterile). The area shown in higher 

magnification is delineated by a box. Scale bars: 2.5X = 0.5 mm. 20X = 20 μm. C) 

Representative H&E-stained histological sections from 10-week-old control (left) and S4F2cKO 

(right) males. Scale bars = 0.1 mm.  

 

Figure S3.5: Cre expression in FSHβ-only gonadotropes in S4F2cKO mice. A-B) Representative 

immunofluorescence images of Cre (green; top), FSHβ (A - red; middle) or LHβ (B- red; 

middle) and merged Cre/FSHβ (A) and Cre/LHβ (B) staining (bottom) from 10-week-old 

S4F2cKO mouse pituitaries. Arrows in A) indicate Cre-positive, FSHβ-positive cells. Arrows in 

B) indicate Cre-positive, LHβ-negative cells. Scale bars = 0.1 mm. 

 

Figure S3.6: Lower basal and activin A-induced Fshb expression upon acute deletion of Smad4 

in primary pituitary cultures. Primary pituitary cells were prepared from adult Smad4
fl/fl 

 male (A) 

or female (B) mice, infected with Cre-expressing (Ad-Cre) or control (Ad-GFP) adenoviruses, 

and treated for 24 h with 1 nM activin A or left untreated. Fshb (Ai, Bii) and Smad4 (Aii, Bii) 

transcripts were assessed by qPCR, relative to the expression of Rpl19. N=10 (A) or 5 (B) 

independent experiments. Bars represent means +s.e.m. Bars with different symbols differ 

significantly. 

 

Figure S3.7: Effect of acute Smad4 and Foxl2 deletion on Smad4, Foxl2, Lhb, and Cga 

expression in primary pituitary cultures. Primary pituitary cultures from male (A) and female (B) 

Smad4
fl/fl

;Foxl2
fl/fl

 mice were infected with Cre-expressing (Ad-Cre) or control (Ad-GFP) 
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adenoviruses, and treated for 24 h with 1 nM activin A or left untreated. Smad4 (Ai, Bi), Foxl2 

(Aii, Bii), Lhb (Aiii, Biii) and Cga (Aiv, Biv) mRNAs levels measured by qPCR. Data are from 

the same experiments presented in Fig. 7B. Bars represent means +s.e.m. Bars with different 

symbols differ significantly. 
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Chapter 4  

 

In chapters 2 and 3, using conditional knockout mouse models, I identified a requirement for 

SMAD signaling and FOXL2 for activin-regulated Fshb transcription, FSH synthesis, and 

fertility. Female mice with a gonadotrope-specific deletion of Smad4 and Foxl2 are sterile and 

exhibit ovarian follicle growth arrest at the pre-antral stage, strongly suggesting that they are 

incapable of mounting a secondary FSH surge. These observations are consistent with an 

absolute requirement for FSH for female fertility, most clearly demonstrated in Fshb knockout 

mice (220). Equally important for mammalian fertility is the other pituitary-derived 

gonadotropin, LH. LH stimulates gonadal steroidogenesis, and a mid-cycle LH surge provides 

the critical trigger for ovulation in females. While FSH synthesis is both GnRH and activin-

dependent (the data presented in chapter 3 would argue that activin signaling might be more 

important), there is general agreement that GnRH is the primary regulator of LH synthesis and 

secretion in mammals (485). Mechanisms of GnRH-stimulated LH synthesis have been 

thoroughly investigated. Of particular importance, GnRH stimulates expression of the 

transcription factor EGR1, which then physically interacts with its cell-restricted partners SF1 

(NR5A1) and paired-like homeobox (PITX) proteins to stimulate Lhb transcription (485). 

Indeed, global Egr1 or gonadotrope-specific Nr5a1 knockout mice are profoundly LH-deficient 

and sterile (141, 145). Is this model useful at all for understanding normal and abnormal LH 

synthesis in humans? Answering this question has important therapeutic and clinical 

implications, but the mechanisms underlying GnRH-stimulated human LHB promoter activation 

have never been studied in details. In this chapter, using a combination of overexpression, 

knock-down, and promoter mutation analyses, I assessed to what extent the mechanisms of 

GnRH-stimulated Lhb transcription are conserved in the human LHB promoter.  
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Abstract 

 

BACKGROUND: Gonadotropin-releasing hormone (GNRH1) regulates pituitary luteinizing 

hormone (LH). Previous studies delineated a mechanism for GNRH1-induced LHβ subunit gene 

(Lhb) transcription, the rate-limiting step in LH production. GNRH1 induces expression of early 

growth response 1 (EGR1), which interacts with steroidogenic factor 1 (SF1) and paired-like 

homeodomain transcription factor 1 (PITX1) to regulate Lhb promoter activity. Though the cis-

elements for these factors are conserved across species, regulation of human LHB transcription 

has not been thoroughly investigated. METHODS and RESULTS: We characterized LHB 

transcriptional regulation by GNRH1 using promoter-reporter analyses in LβT2 cells. GNRH1 

stimulated LHB transcription via an ERK1/2 pathway. EGR1 bound to two binding sites and this 

binding was increased by GNRH1. Mutation of either site or knockdown of endogenous EGR1 

decreased basal and/or GNRH1-regulated promoter activity. The human LHB promoter contains 

low and high affinity SF1 binding sites. Mutation of these elements or depletion of endogenous 

SF1 impaired basal and ligand-induced transcription. Knockdown of PITX1 or PITX2 isoforms 

impaired GNRH1 induction, and endogenous PITX1 bound to the candidate PITX binding site. 

CONCLUSIONS: The mechanism described for GNRH1 regulation of Lhb in other species is 

conserved for human LHB. We also uncover a previously unappreciated role for PITX2 isoforms 

in this process. 
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Introduction 

 

Luteinizing hormone (LH) is a dimeric pituitary glycoprotein comprised of the unique 

LHβ (LHB) subunit and a common α subunit (CGA), which it shares with follicle-stimulating 

hormone (FSH), thyroid-stimulating hormone (TSH) and, in humans, chorionic gonadotropin 

(hCG). LH and FSH are produced and secreted by the same cells in the pituitary gland, 

gonadotropes, and expression of their β subunits is the rate-limiting step in their synthesis. The 

primary stimulus for both LH release and LHB transcription is pulsatile gonadotropin-releasing 

hormone (GNRH1) secretion from the hypothalamus. Lhb mRNA levels are increased within 

minutes after GNRH1 stimulation in immortalized gonadotropes (437, 464, 510, 513).   

Results from several groups working on the Lhb promoters in rat, cow, and horse, as well 

as data from knockout mouse models, have converged to suggest a general model of Lhb 

transcriptional regulation by GNRH1 [Reviewed in (485)]. GNRH1 rapidly stimulates early 

growth response 1 (Egr1) expression within 30 minutes (510). Upon translation, the EGR1 

protein then binds the proximal Lhb promoter via two conserved cis-elements (506, 529, 856), 

both of which are critical for induction of the Lhb gene in various species (437, 506, 509, 510, 

513, 856, 857). The importance of EGR1 in vivo was demonstrated in female Egr1 null mice, 

which are infertile due to the loss of Lhb expression (145, 524).  

EGR1 acts in concert with the nuclear receptor steroidogenic factor 1 (SF1, NR5A1), 

which binds to conserved elements occurring in tandem with the two EGR sites in the Lhb 

promoter from various species. Both SF1 sites are required for maximal induction of Lhb by 

GNRH1 (437, 506-510, 513). Targeted deletion of Sf1 in gonadotropes results in significant 

reduction of LH production in mice (141, 858), confirming the important role for SF1 in Lhb 

expression in vivo. Over-expression analyses in heterologous cells show that EGR1 and SF1 act 

together through their tandem response elements to stimulate Lhb transcription (506, 509, 510, 

513).   

Several observations suggest that a binding site for Bicoid-related homeodomain 

transcription factors (hereafter ‘PITX’ element), which occurs between the tandem EGR/SF1 

sites, is also important for maximal induction of the Lhb promoter by GNRH1 (510, 516, 517). 

The exact identity of the protein(s) binding this element has not be unequivocally determined 

(530), though evidence from several groups implicates paired-like homeodomain transcription 
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factor 1 (PITX1) or the related PITX2 (510, 512, 516-518). Mice with homozygous deletion of 

Pitx1 die after birth, precluding an assessment of PITX1 in LH synthesis in adult animals (521, 

859). Mice with gonadotrope-specific deletion of Pitx2 are fertile (860), though it is possible that 

PITX1 can compensate for loss of PITX2 in these animals. Nonetheless, several studies show 

that PITX1 and PITX2 isoforms can independently and synergistically regulate Lhb transcription 

with SF1 and EGR1 (437, 506, 508-510, 513, 517). Thus, the current model holds that GNRH1 

stimulates EGR1 expression, which then acts in concert with SF1 and PITX1 to regulate Lhb 

transcription through the proximal promoter, which contains a Pitx binding site flanked by 

tandem EGR/Sf1 elements (485) 

Most investigations on the transcriptional regulation of the Lhb gene have used the 

bovine or rodent promoters. In contrast, transcriptional regulation of the human LHB promoter 

has received considerably less attention. One report indicated that both EGR sites and the 

proximal SF1 site in the human promoter have higher affinity for their respective transcription 

factors than do the comparable sites in the rat or bovine promoters (529). In addition, the distal 

SF1 element in the human promoter was reported to be of much lower affinity than in other 

species (529). However, the functional relevance of these sites in the context of basal or 

GNRH1-regulated transcription were not reported. Further, the role of the putative PITX site in 

the LHB promoter and the identity of the protein(s) binding there are unknown. Sequence 

alignment of the LHB/Lhb promoters from several species reveals single base-pair differences in 

the EGR, SF1, and PITX elements (Fig. 4.1), which may be functionally significant. Therefore, 

we characterized transcriptional regulation of the human LHB promoter by GNRH1. 

Collectively, the data suggest that the primary mechanisms by which GNRH1 regulates the 

Lhb/LHB promoter are conserved between humans and other species. 
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Materials and Methods 

 

Reagents 

Dulbecco’s modified Eagle medium (DMEM) with 4.5 g/L glucose, L-glutamine and 

sodium pyruvate was from Wisent (St. Bruno, QC). DMEM/F-12 Ham’s media (1:1) with 2.5 

mM L-Glutamine, 15 mM HEPES was from HyClone (South Logan, UT). Fetal bovine serum 

(FBS), Lipofectamine, Lipofectamine 2000 and gentamycin were purchased from Invitrogen 

(Burlington, ON, Canada). Polyclonal anti-Flag (F7425) and anti-c-myc (M5546) antibodies, 

aprotinin, leupeptin, pepstatin, PMSF, GNRH1 (LHRH) and SP600125 were from Sigma (St. 

Louis, MO).  SB202190 was from Calbiochem (San Diego, CA). Deoxynucleotide triphosphates 

(dNTPs), T4 DNA ligase, T4 polynucleotide kinase, restriction endonucleases, 5X Passive Lysis 

Buffer (PLB) and U0126 were from Promega (Madison, WI). DNA polymerases (Pfu Ultra and 

Turbo) were purchased from Stratagene (La Jolla, CA). [γ-
32

P] ATP was from PerkinElmer 

(Boston, MA). Egr1 (D-040286-01, Sf1 (D-051262-01, Pitx1 (D-043250-03), Pitx2 (D-058287-

01) and control (D-001210-05) siRNAs were purchased from Dharmacon (Lafayette, CO). The 

SF1 rabbit polyclonal antibody (PA1-800) was from Affinity Bioreagents (Golden, CO). PITX1 

N-15 (sc-18922X) and EGR1 C-19 (sc-189X) rabbit polyclonal antibodies were purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA). Normal rabbit IgG (12-370) was from Upstate 

(Lake Placid, NY). Protease inhibitor tablets (Complete Mini) were purchased from Roche 

(Indianapolis, IN). Oligonucleotides were synthesized by IDT (Coralville, IA). ECL-plus reagent 

were purchased from Amersham Biosciences (GE Healthcare, Piscataway, NJ) 

 

Constructs 

The  LHB luciferase reporters were produced by PCR amplification from genomic DNA 

(for primers see Table S4.1) as described earlier for the 0.2 kb construct and ligated into pA3-luc 

(861). Mouse EGR1 (NGFIA) in pJDM464 and NR5A1 (SF1) in pCMV5 were generous gifts 

from Drs. Jeffrey Milbrandt (Washington University School of Medicine, St Louis, MO) and 

Keith Parker (UT Southwestern Medical Center, Dallas, TX), respectively. Murine PITX1, Flag-

PITX1, myc-PITX1 and PITX2 expression vector were described earlier (519, 537). To make 

Flag tagged EGR1 and SF1, the parental constructs were sub-cloned using strategies described 
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earlier for Flag-PITX1 (537). Constitutively active MKK6 was a gift from Dr. David Engelberg 

(Hebrew University, Jerusalem, Israel), and Raf-CAAX was from Dr. Linda Van Aelst (Cold 

Spring Harbor Lab). The mutant promoter-reporter and siRNA resistant expression vectors were 

constructed using the QuikChange protocol (Stratagene) using the primers described in Table 

S4.1. All constructs were verified by sequencing (Genewiz, South Plainfield, NJ). 

 

Cell culture, transfections, and reporter assays 

LβT2 cells were gift from Dr. Pamela Mellon (University of California, San Diego, CA). 

CHO and CV1 cells were provided by Dr. Patricia Morris (Population Council, New York, NY).  

All cells were cultured and transfected as described previously (537, 861). Briefly, LβT2 cells 

were transfected over-night with 450 ng reporter/well and the indicated amounts of plasmid 

DNA or siRNA. Total DNA transfected was balanced across all conditions.  Control siRNAs 

used in our experiments consistently had non-specific effects on reporter activity, and therefore 

could not be used as a valid negative control. Indeed, the manufacturer (Dharmacon) cautioned 

that several of their control siRNAs may have unwanted effects in some contexts 

(http://www.dharmacon.com/catalog/Item.aspx?Product=31197). The following day, transfection 

medium was replaced with serum-free DMEM, and cells starved overnight. Next, cells were 

treated with GNRH1 and harvested in PLB. Luciferase assays were performed as described 

previously (861). For experiments using pharmacological inhibitors, compounds were applied 30 

min before GNRH1 treatment. CV1 cells were transfected with the indicated plasmids using the 

calcium-phosphate method and harvested the following day for luciferase assays. All reporter 

experiments were performed a minimum of three times with duplicates or triplicates of all 

treatments.  

 

Electrophoretic mobility shift, DNA affinity pull-down, and immunoblot assays 

For EMSA and DNA affinity pull-down (DNAP) experiments, LβT2 cells were grown 

until confluent in 10-cm plates. Cells were stimulated or not with 10
-7

 M GNRH1 for 1 h prior to 

collection of nuclear or whole cell lysates. CHO cells in 10-cm plates were transfected with the 

indicated plasmid DNA using Lipofectamine, and cells harvested the following day. Nuclear 

extracts were prepared and gel shift assays were performed as described previously (676). 

Briefly, the binding reactions were composed of 10 mM KCl, 25 mM HEPES (pH 7.2), 5 mM 
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dithiothreitol (DTT), 20% glycerol, 500 ng of salmon sperm DNA and equivalent amounts of 

protein. Where appropriate, cold competitor probe or antibodies were added and reactions 

incubated 10 min at room temperature. Following the addition of 0.05 pmol of 
32

P-labeled 

double-stranded probe and incubation for 15 min at room temperature, protein:DNA complexes 

were resolved on 5% native polyacrylamide gels at 4˚C. DNA affinity pull-down assays using 

streptavidin-coupled Dynabeads® M-280 (Dynal, Invitrogen) were performed as previously 

described (537, 676) using the biotinylated probes. Following elution from the beads, proteins 

were resolved on 10% SDS-PAGE gels as described previously (674). Sequences of the probes 

used for gel shift and DNAP assays are described in Table S4.1. 

 

Statistical analysis 

The data presented are the mean (± SEM) of representative experiments. Differences 

between means were compared using one-, two-, or three-way analyses of variance (ANOVA), 

followed by pair-wise comparisons using the Tukey post-hoc test where appropriate (Systat 10.2, 

Richmond, CA). In some experiments, data were log transformed when the variances were 

unequal between groups. Significance was assessed relative to p < 0.05 
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Results 

 

The proximal LHB promoter is time- and dose-dependently stimulated by GNRH1 in LβT2 cells 

LβT2 cells express both the α and β subunits of LH as well as the GNRH1 receptor, and 

produce LH in response to GNRH1 stimulation (862). Because no human gonadotrope cell lines 

are currently available, we used LβT2 cells as a model system to study the regulation of the 

human LHB promoter. LβT2 cells were transfected with human LHB promoter-reporter 

constructs containing  approximately 0.2, 0.5 and 1 kb of 5’ flanking region cloned upstream of 

the luciferase reporter gene. GNRH1 (6 h at 10
-7 

M) stimulated reporter activity 15-21 fold with 

all three reporters (Supplementary Fig. S4.1A). The promoterless vector was not regulated by 

GNRH1 [data not shown and (861)]. Thus, the major elements mediating GNRH1 

responsiveness were contained within the proximal 200 base-pairs. GNRH1 regulation of the 0.2 

kb construct was time and dose-dependent (Supplementary Fig. S4.1B). At doses of 10
-7

 and 10
-6

 

M, the maximal GNRH1 response was observed at 8 h and declined thereafter. This suggested 

that sustained stimulation desensitized the response to GNRH1 in these cells. For further 

experiments, we used the 10
-7

 M GNRH1 concentration and 6 h treatment, which is on the rising 

phase of the promoter activity. 

 

GNRH1 stimulates transcriptional activity at the LHB promoter through an ERK, but not JNK or 

P38-mediated pathway 

GNRH1 activates the extracellular signal-regulated kinase 1/2 (ERK1/2), mitogen-

activated protein kinase 14 (p38) and c-jun N-terminal kinase (JNK) MAPK pathways in LβT2 

cells (449, 458, 863) (data not shown).  The ERK1/2 and JNK branches of the MAPK cascades 

have been implicated in the regulation of the rat Lhb promoter by GNRH1 (458, 459). To assess 

the requirements for GNRH1-mediated LHB promoter activation, we antagonized all three 

pathways using previously validated inhibitors at validated concentrations (861). The p38 

(SB202190) and JNK (SP600125) inhibitors did not affect the fold GNRH1 response 

(Supplementary Fig. S4.2A). In contrast, pre-treatment with the MEK1 inhibitor, U0126, 

markedly suppressed GNRH1-stimulated transcriptional activity by almost 70%. None of the 

inhibitors had a significant effect on basal transcriptional activity of the promoter.  
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To confirm a role for ERK (MEK1) signaling, we co-transfected the minimal LHB-luc 

construct with expression vectors for constitutively active (ca-) forms of MKK6 and Raf1 (Raf-

CAAX), upstream kinases of p38 and MEK1, respectively. Whereas Raf-CAAX potently 

stimulated reporter activity, ca-MKK6 had no effect when expressed alone and did not alter the 

Raf-CAAX effect (Supplementary Fig. S4.2B). Together, these data indicate that GNRH1 

stimulates expression of human LHB through an MEK1 (ERK1/2), but not p38 or JNK-

dependent pathway in LβT2 cells. 

 

Two Egr1 binding sites are critical to confer GNRH1 responsiveness to the LHB promoter 

Having mapped GNRH1 responsiveness of the LHB promoter to within the proximal 0.2 

kb, we next sought to identify critical cis-elements. Two conserved EGR response elements, at -

111/-103 (“distal”, d) and -49/-41 (“proximal”, p), are present in the human promoter (Fig. 4.1). 

These two elements, which mediate the GNRH1-induced trans-activation of the Lhb promoter by 

EGR1 in other species (510, 513, 856), are perfectly conserved with those in the bovine 

promoter, but differ from the rat’s proximal and distal sites at one and two base-pairs, 

respectively (Fig. 4.1). To assess the role of these sites in the human promoter, we mutated each, 

either alone or in combination. Corresponding mutations have been shown to functionally 

inactivate the conserved elements in the rat and bovine promoter (510, 513). Mutation of either 

the distal or proximal site decreased basal reporter activity (Fig. 4.2A). The proximal, but not 

distal site mutation also decreased the fold GNRH1 response. The mutations together further 

decreased the fold GNRH1 induction. These data indicated that the two conserved EGR1 sites 

are critical for basal and GNRH1-regulated human LHB promoter activity. 

 

Two SF1 binding sites and a PITX binding site are required for maximal induction of the LHB 

promoter by GNRH1 

In the rodent and bovine Lhb promoters, two binding sites for SF1 are located 5’ to the 

two EGR elements and are important for trans-activation (437, 506-510, 513). These sites are 

also present in the human promoter (at -130/-123 and -58/-51), although the distal element 

differs from those in the bovine or rodent promoters and diverges from the consensus binding 

sequence for SF1 relative to the other species (Fig. 4.1). Mutation of the distal SF1 site alone had 

no effect on either the basal or GNRH1-stimulated LHB promoter activity (Fig. 4.2B). In 
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contrast, inactivation of the proximal site decreased the basal reporter activity, without altering 

the fold induction by GNRH1. The two mutations in combination further decreased basal activity 

and significantly impaired the fold GNRH1 response.  

Between the two tandem SF1/EGR elements, at -100/-95, is a binding site for paired-like 

homeodomain transcription factors, which has been implicated in transcription of the Lhb 

promoter of various species (510, 516, 517, 530). This site is also present in the human promoter; 

but, unlike in the other species, perfectly matches the consensus site for Pitx proteins (GGATTA 

(864)) (Fig. 4.1). Introducing a mutation in the element dramatically decreased the basal, but not 

GNRH1-induced transcriptional activity (Fig. 4.2C). These results indicate that none of the SF1 

or PITX elements alone are required for GNRH1 responsiveness, but all contribute to basal 

activity and therefore maximal induction of transcription by GNRH1. At the same time, GNRH1 

induction of the promoter requires at least one intact SF1 site. 

 

EGR1 and SF1 interact with the LHB promoter via two tandem elements 

We examined the proteins binding to the putative EGR, SF1, and PITX sites. First, we 

performed gel-shift assays using two probes containing the distal or proximal tandem SF1/EGR 

elements and nuclear extracts from LβT2 cells treated or not with GNRH1 for 1 h. We detected 

four specific complexes (Fig. 4.3A, lane 1, labelled ‘a’ through ‘d’) binding the proximal 

SF1/EGR tandem element, which were competed by 100-fold excess cold homologous probe 

(lane 3). GNRH1 stimulation markedly increased the intensity of complex a (lane 2), which was 

competed by 100-fold excess wild-type probe (lane 3), but not by a probe containing the 

inactivating mutation in the presumptive EGR site (lane 5). This complex was super-shifted by 

an EGR1 antibody (lanes 8 and 9) but not by control IgG (lane 6) or an SF1 antibody (lane 7). A 

strong complex (complex ‘d’) present under both basal and GNRH1-stimulated conditions (lanes 

1 and 2) was competed by 100-fold excess of homologous cold probe (lane 3), but not by a probe 

containing the inactivating mutation in the putative SF1 element (lane 4). This complex was 

super-shifted by an SF1 antibody (lane 7), but not by control IgG (lane 6) or the EGR1 antibody 

(lanes 8 and 9). There was a slight increase in intensity of the SF1-containing complex with 

GNRH1 treatment (compare lanes 1 and 2). Binding by complexes ‘b’ and ‘c’ was competed by 

100-fold excess of probe with an mutant EGR (lane 5) but not SF1 site (Lane 4). The intensity of 
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both complexes was mildly decreased by an SF1 antibody (lane 7), but their identities remain to 

be determined. 

We next performed a similar analysis with the distal SF1/EGR tandem element. Using 

nuclear extracts from LβT2 cells stimulated or not with GNRH1, we could not clearly detect any 

complexes containing SF1 or EGR1 (not shown). To determine whether these observations 

related to differences in affinities of the proteins for the distal versus proximal sites, we 

performed competition assays with the radio-labeled proximal probe and varying amounts of 

cold homologous and distal probes. As little as 10-fold excess cold homologous probe markedly 

inhibited binding of both SF1 and EGR1 to the proximal SF1 and EGR elements (Fig. 4.3B, lane 

3), and complex formation was completely abolished by 50-fold excess cold probe (lane 4). In 

contrast, although increasing amounts of cold distal probe were able to compete for binding of 

both SF1 and EGR1 to the proximal elements, complex formation was incompletely abolished 

even in the presence of 500-fold excess cold probe (lanes 7 through 10). Nonetheless, 

introduction of the inactivating mutations in the distal elements blocked their abilities to compete 

for binding to SF1 (compare lanes 10 and 13) and EGR1 (compare lanes 10 and 14). Together, 

these data indicate that the proximal SF1 and EGR elements are higher affinity binding sites for 

their respective transcription factors in the LHB promoter than are the more distal sites.  

 

Endogenous PITX1 binds to the LHB promoter 

The putative PITX element in the Lhb/LHB promoter could potentially bind several 

homeodomain transcription factors, and studies in others species have yielded conflicting results 

regarding the identity of the endogenous proteins occupying this site (530). In EMSAs, we 

detected the formation of two specific complexes (Fig. 4.4A, lanes 1 and 2, labelled ‘a’ and ‘b’) 

under both basal and GNRH1-stimulated conditions with a probe containing the PITX element. 

Complex binding was competed by 100-fold cold homologous probe (lanes 3 and 4), but not by a 

probe containing the inactivating mutation in the PITX site (lanes 5 and 6). Further, complex 

formation was disrupted by a PITX1 antibody (lanes 9 and 10), but not by control IgG (lanes 7 

and 8). To confirm that these two complexes contained PITX1 proteins, we incubated the probe 

with nuclear extracts from CHO cells transfected with a myc-tagged PITX1 construct (lanes 12-

14). We observed the formation of two complexes co-migrating with the two complexes obtained 

with the LβT2 nuclear extracts, and both were super-shifted by an anti-myc antibody (lane 14).  
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To confirm these results, we performed DNA affinity pull-down experiments using a 

biotinylated probes (Fig. 4.4B). We pulled down endogenous PITX1 from lysates of control and 

GNRH1-treated LβT2 cells with a wild-type probe more readily than with a probe containing the 

inactivating mutation in the PITX site.Together, these results indicate that endogenous PITX1 

can bind the LHB promoter. 

Because PITX2 proteins bind the same consensus sequence as PITX1 and all known 

PITX2 isoforms are expressed in LβT2 cells (519), we next evaluated the possibility that these 

proteins might be recruited to this element. Using nuclear extracts from transfected CHO cells, 

we detected binding of all five PITX2 variants to the LHB promoter (not shown). However, none 

of the complexes clearly co-migrated with the endogenous complexes observed using LβT2 

nuclear extracts in gel shifts. Also, we no longer have PITX2 antibodies of sufficient quality to 

use in the DNAP analyses.  

 

EGR1, SF1, PITX1, and PITX2 mediate trans-activation of the LHB promoter 

To confirm the roles for EGR1, SF1, PITX1, and PITX2 (isoforms) in the basal and 

GNRH1-induced LHB transcriptional activity, we first knocked down expression of the proteins 

in LβT2 cells using short interfering RNAs (siRNA). siRNAs targeting Egr1 or Sf1 mRNAs 

markedly decreased both basal reporter activity and fold stimulation by GNRH1 (Fig. 4.5A).  

Depletion of PITX1 markedly decreased GNRH1-induced activity and also appeared to inhibit 

basal reporter activity, but the latter effect was not statistically significant (Fig. 4.5B).   

Notably, knockdown of PITX1 had less of an effect on reporter activity than did the mutation of 

the PITX response element (Fig. 4.2C). This could be attributable to incomplete knockdown 

and/or to functional compensation by PITX2 proteins. We therefore knocked down PITX2 

expression using two siRNAs, one (#1) targeting the first coding exon (exon 2) [expected to 

affect the PITX2A, B1 and B2 isoforms] , and the other (#2) targeting the 3’ end of the coding 

region (exon 6) [common to all five PITX2 isoforms] (519). Pitx2 siRNA #2 had a more 

dramatic effect on LHB promoter activity than Pitx2 siRNA #1 (Fig. 4.5C). Whereas Pitx2 

siRNA #2 consistently decreased basal transcriptional activity, this did not reach statistical 

significance. The GNRH1-stimulated activity, in contrast, was significantly reduced. Together, 

these results suggested that endogenous PITX1 and PITX2 proteins in LβT2 cells participate in 
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the trans-activation of the LHB promoter. Control experiments confirmed the efficacy and 

sequence specificity of the siRNAs (Fig. S4.3). 

Finally, we used over-expression in heterologous CV-1 cells to examine functional 

cooperation between EGR1, SF1 and PITX1 at the LHB promoter. Expression of EGR1 or 

PITX1, but not SF1, by themselves stimulated transcriptional activity of the 0.2 kb promoter-

reporter (Figs. 4.6A and B). Further, PITX1 synergistically induced reporter activity with either 

EGR1 or SF1. SF1 did not further potentiate the combined effects of PITX1 and EGR1, but 

instead partially inhibited their actions (data not shown). These results indicate that the 

transcription factors binding the proximal LHB promoter can cooperate to enhance 

transcriptional activity. 
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Discussion 

 

Previous studies delineated a mechanism by which GNRH1 signaling induces Lhb 

transcription. Here, we show that this mechanism is largely conserved in the human LHB 

promoter.  GNRH1 signals through the ERK1/2 MAPK signaling cascade to regulate LHB 

transcription and does so primarily through the proximal 200 base-pairs. As in rodents, cow, and 

horse, basal and/or GNRH1-regulated human LHB transcription is dependent upon the 

coordinated activities of EGR1, SF1 and PITX1 acting through conserved cis-elements within 

this proximal promoter region. RNA interference experiments confirmed roles for the 

endogenous proteins in basal and/or GNRH1 regulated promoter activity and further suggest a 

potential role for PITX2 isoforms. 

 The data show that GNRH1 induces transcriptional activity of the LHB promoter 

primarily through an ERK1/2-mediated pathway. Although both the ERK1/2 and JNK MAPK 

cascades have been implicated in GNRH1 regulation of the Lhb promoter in other species (458, 

459), a more critical role has been attributed to ERK1/2 (449, 464). GNRH1 stimulates Egr1 

expression through the ERK1/2 pathway (505, 865), and EGR1 appears to be the primary 

transducer of the GNRH1 signal to the Lhb promoter (510, 513). Indeed, our data confirm a 

critical role for EGR1 in regulation of the human LHB promoter through two conserved cis-

elements. 

 In the rat Lhb promoter, a distal region containing at least two Sp1 sites (-450/-441 and -

410/-402) contributes significantly to GNRH1 induction (509, 526, 527, 857). Only one of the 

putative Sp1 sites is partially conserved in the human promoter. Though we noted differences in 

basal activity between the 1 kb, 0.5 kb and 0.2 kb LHB promoter-reporters, the fold-induction by 

GNRH1 was similar among the three. This suggests that distal elements do not significantly 

contribute to GNRH1 induction of the human LHB gene, at least under the experimental 

conditions used here. 

 As in other species, the EGR, SF1 and PITX1 sites are required for maximal induction of 

the LHB promoter by GNRH1. Mutation of the proximal EGR element or both SF1 sites strongly 

attenuated the GNRH1 response. We confirmed binding of EGR1 and SF1 binding to their 

respective sites. Binding to the proximal elements was potentiated following GNRH1 treatment, 

particularly for EGR1. These results are consistent with the fact that EGR1 levels are markedly 
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increased in gonadotropes upon GNRH1 stimulation (510, 513) (data not shown). Although it 

has been reported that SF1 levels are unaffected by GNRH1 stimulation in gonadotropes, (510, 

513) we observed a slight increase in intensity of SF1 binding to the proximal promoter element 

upon GNRH1 treatment.  Therefore, this change in binding might reflect post-translational 

modifications in SF1 induced by GNRH1 signaling, such as phosphorylation (866, 867), and/or 

potentiation of binding through cooperation with induced EGR1. The data show that the 

proximal SF1/EGR elements have higher affinity for their respective transcription factors and 

contribute more than the distal SF1/EGR sites to overall cis-activation of the LHB promoter. Fold 

GNRH1 induction was decreased when the proximal EGR site was ablated, but was maintained 

in the presence of a mutated distal EGR element. Inactivation of the distal SF1 site did not affect 

transcriptional activity either basally on in response to GNRH1. Therefore, this site is likely 

dispensable for LHB promoter activation. In contrast, inactivation of this element alone prevents 

normal GNRH1 induction of the bovine Lhb promoter in transgenic mice (508), though this was 

not the case in LβT2 cells (510). In the rat Lhb promoter, this site contributes significantly to 

basal activity and shows similar affinity for SF1 compared with the proximal element (506, 508, 

513, 529). In cow and rat, the distal SF1 element is a perfect match to the consensus site, 

whereas the human element differs at positions 3 and 6 (Fig. 4.1). Nevertheless, our data suggest 

that the distal EGR and SF1 elements can partially compensate for the loss of the proximal sites. 

Indeed, mutation of the two EGR1 or SF1 elements impairs transcriptional activity to a greater 

extent than inactivation of the proximal sites alone. 

In transgenic mice, there is a clear requirement for the Pitx binding site for activation of 

the bovine Lhb promoter by GNRH1 (517). Results from mutation analyses reported here 

similarly indicate a critical role for this site in maximal induction of the human LHB promoter. 

We also showed binding of endogenous PITX1 to the LHB promoter by gel shift and DNA 

affinity pull-down assays, which has not been unequivocally demonstrated in other species (516, 

517, 530). This may be explained by the fact that the human PITX binding site conforms 

perfectly to the consensus site [5’-GGATTA-3”, (864)], whereas the corresponding sites in the 

rodent or bovine promoters do not (5’-AGATTA-3’). Structural analyses indicate that the GG 

nucleotides are critical for PITX2 binding to the PITX response element (868). Because the 

homeodomains of PITX2 and PITX1 are 97% identical (869), this requirement most likely also 

applies to PITX1.  
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Though several studies have implicated PITX1 in the regulation of the Lhb promoter 

(510, 512, 516, 517), possible roles for PITX2 isoforms have been largely overlooked despite the 

observations that they can trans-activate the bovine Lhb promoter in heterologous cells (518). 

Results from RNA interference experiments shown here suggest roles for both PITX1 and 

PITX2 proteins in basal and GNRH1-regulated LHB promoter activity. However, it was recently 

reported that targeted deletion of Pitx2 in terminally differentiated gonadotropes had no effect on 

Lhb expression and fertility in mice (860), suggesting either that PITX2 proteins play no role in 

Lhb regulation in mice or that PITX1 can compensate for their loss. Additional experiments in 

which Pitx1 is ablated alone or together with Pitx2 in differentiated gonadotropes will be needed 

to address these ideas.  At the same time, the difference in the PITX binding site between mice 

and humans leaves open the possibility that different proteins may bind these elements in the two 

species or that the same proteins may bind with different affinities. As such, results in mice may 

not be entirely predictive of what occurs in humans. Though the siRNA experiments here 

suggest a role for PITX2 proteins in regulation of the human LHB gene, we were unable to 

confirm binding of any endogenous PITX2 protein isoforms in our analyses.  Unfortunately, we 

exhausted the PITX2 antibody we used previously (519), which precluded super-shift and DNA 

affinity pull-down analyses of the kind we employed with PITX1. 

In summary, our results indicate that the primary mechanisms of GNRH1-induced LHB 

transcription are conserved between humans and other species. This contrasts with what we have 

reported for regulation of the FSHB/Fshb in humans and other species (676, 861).  In the latter 

case, we argued that inter-species differences in transcriptional regulation may relate to observed 

differences in FSH dynamics in different organisms. When viewed in this light, one might 

predict conservation of LHB/Lhb transcriptional regulatory mechanisms.  That is, in all 

mammalian species studied to date, GNRH1 pulses are followed faithfully and rapidly by LH 

pulses.  Given the slower kinetics of increases in LHB transcription, one might view this 

response as a compensatory mechanism to replenish intracellular LH stores in advance of 

subsequent GNRH1 pulses. This may be particularly important in the context of the LH surge, 

where GNRH1 pulse frequency and amplitude are elevated, increasing the demand for releasable 

LH. Given that the dynamics of LH surge generation are common among mammalian species, it 

is perhaps not surprising that the mechanisms for LHB/Lhb trans-activation would be similarly 

conserved.  
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Figure Legends 

 

Figure 4.1: Aligment of proximal Lhb/LHB promoters from human, rat, and cow. In all cases, +1 

refers to the transcription start site. Nucleotides that differ from the consensus are shaded. The 

conserved SF1, EGR and PITX elements are boxed. ‘d’: distal, ‘p’: proximal. 

 

Figure 4.2: Schematic representations of the proximal LHB promoter are shown at the left of 

each graph. The SF1, EGR, and PITX elements are represented by squares, triangles and a circle, 

respectively. Black symbols indicate mutated sites. A) LβT2 cells were transfected with 450 

ng/well of the indicated LHB-luc reporters. (WT, wild-type; xdEGR, mutated distal EGR site; 

xpEGR, mutated proximal EGR site; 2xEGR, both EGR elements mutated). Cells were treated or 

not with 10
-7 

M GNRH1 for 6 h. B) LβT2 cells were transfected as above with either WT 0.2 kb 

LHB-luc reporter or mutant constructs with the inactivated distal (xdSF1), proximal (xpSF1) or 

both (2xSF1) SF1 sites. Where indicated, GNRH1 treatment was given for 6 h. C) LβT2 cells 

were transfected as above with either WT LHB-luc reporter or a construct with a mutated PITX 

element (xPITX). Differences in reporter activity were measured after 6 h GNRH1 treatment. 

The fold induction by GNRH1is indicated at the bottom of the graph. Bars with different 

symbols differ significantly. N=3 for all treatments. 

 

Figure 4.3: A) Nuclear extracts from LβT2 cells treated (+) or not (-) with 10
-7 

M GNRH1 for 1 h 

were incubated with a radio-labeled probe corresponding to -66/-33 of the LHB promoter. Where 

indicated, the binding reactions contained 100-fold excess of cold homologous wild-type probe 

(WT; lane 3) or probes with mutated proximal SF1 (xpSF1; lane 4) or EGR (xpEGR; lane 5) 

elements. Control IgG (lane 6), or SF1 (lane 7) or EGR1 (lanes 8-9) antibodies were added as 

indicated. Asterisks denote supershifted complexes. B) Nuclear extracts from LβT2 cells treated 

(+) or not (-) with 10
-7 

M GNRH1 for 1 h were incubated with a radio-labeled probe 

corresponding to the -66/-33 region of the LHB promoter. Ten, 50, 100 or 500-fold excess 

homologous cold probe (-66/-33; lanes 3-6), cold probe containing the putative distal SF1 and 

EGR elements (-134/-103; lanes 7-10), or cold probe with mutated proximal or distal SF1 or 

EGR elements (500x only; lanes 11-14) were added where indicated.  

 



185 

 

Figure 4.4: A) Nuclear extracts from LβT2 cells treated (+) or not (-) with 10
-7 

M GNRH1 for 1 h 

(lanes 1-10), or nuclear extracts from CHO cells transfected with empty vector (pcDNA3; lane 

11) or Myc-PITX1 (lanes 12-14) were incubated with a radio-labeled probe corresponding to the 

-104/-79 region of the LHB promoter. Where indicated, the binding reactions contained 100-fold 

excess of cold homologous WT probe (lanes 3-4) or probe with a mutated PITX site (PITX mut; 

lanes 5-6), control IgG (lanes 7-8, 13), PITX1 antibody (lanes 9-10) or Myc antibody (lane 14). 

B) DNAP was perfomed using the probes described above. Whole cell lysates (Total) or proteins 

interacting with the probes were subjected to immunoblot (IB). Cells were treated (+) or not (-) 

with 10
-7 

M GNRH1 for 1 hour. 

 

Figure 4.5: A) LβT2 cells were co-transfected with 450 ng/well of WT 0.2 kb LHB-luc reporter 

and 10
-8 

M of A) Egr1 or Sf1, B) Pitx1, or C) Pitx2 siRNAs. In all cases, 1X siRNA buffer was 

used as control. Cells were treated or not with 10
-7 

M GNRH1 for 6 h prior to collection of 

lysates for luciferase assays. Fold induction by GNRH1 is indicated at the bottom of the graphs. 

Bars with different symbols differ significantly. N=3 per treatment.  

 

Figure 4.6: A) CV-1 cells were transfected with 900 ng/well of the 0.2 kb LHB-luc reporter along 

with 30 ng/well of EGR1 and/or PITX1 expression vectors or empty vector (pcDNA3). After 

overnight recovery, reporter activity was measured. The average fold stimulation, indicated at 

the bottom of the graph, was normalized to the reporter activity measured in presence of only the 

empty vector. B) CV-1 cells were transfected as in panel A with 30 ng/well of SF1 and/or PITX1 

expression vectors or empty vector (pcDNA3). Reporter activity was measured and normalized 

as above. Bars with different symbols differ significantly. N=3 per treatment. 

 

Supplementary Figure Legends 

 

Figure S4.1: A) LβT2 cells were transfected with 450 ng/well of the indicated LHB-luc reporters 

and treated for 6 h with 10
-7 

M GNRH1. Fold induction by GNRH1 for each reporter is indicated 

at the left of the graph. Bars with different symbols differ significantly. N=3 for all treatments. 

B) The 0.2 kb LHB-luc construct was transfected in LβT2 cells as above. Cells were treated with 

10
-8

 (closed circles), 10
-7

 (open circles) or 10
-6

 M (closed triangles) GNRH1 for 2, 4, 8 or 24 
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hours. N=2 for all treatments. Experiments were repeated three or more times with similar results 

each time. 

 

Figure S4.2: A) LβT2 cells were transfected as in Fig. 2B. After overnight starvation in serum-

free DMEM, cells were pre-treated with 5 x 10
-6

 M of the MEK inhibitor U0126, 10
-5 

M of the 

p38 inhibitor SB202190 or 2.5 x 10
-5

 M of the JNK inhibitor SP600125 for 30 min followed by 

treatment with 10
-7 

M GNRH1 for 6 h. The fold induction by GNRH1 is indicated at the bottom 

of the graph. B) LβT2 cells were transfected with 450 ng/well 0.2 kb LHB-luc reporter and 200 

ng/well of constitutively active Raf1 (Raf-CAAX) and/or ca-MKK6 vectors. Bars with different 

symbols differ significantly. N=3 for all treatments. 

 

Figure S4.3: CHO cells were transfected with WT or siRNA-resistant (Res.) forms of Flag-

tagged EGR1 (A), SF1 (B) or Pitx1 (C), with 10
-8 

M control, Egr1, Sf1 or Pitx1 siRNAs or 1X 

siRNA buffer. Whole-cell lysates were collected and subjected to anti-Flag western blot 

analyses. Arrowhead and asterisk in panel A indicate specific and non-specific bands, 

respectively. 
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 Figure 4.1
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Promoter-reporter cloning#

-197/-178.hLHB.F GCGGGTACCCTCACCTCTGGCGCTAGACC

+8/-12.hLHB.R CGGAAGCTTCTTGGTGCATCCCCTGCCTC

-500/-481.hLHB.F CGGGGTACCCATCTGGGTCAAGTGGCTTC

-1068/-1049.hLHB.F CGGGGTACCGCCCTGTCTCTGGCTCAGGA

Reporter mutagenesis†

hLHB.xdSF1.F CCTGCGCCTCCCTGGaatTGTGCACCTCTCGCC

hLHB.xdEGR.F CTGCGCCTCCCTGGCCATGTGCACCTCTtagtaCtcGGGGGATTAGT

GTCCA

hLHB.xPITX.F CTCTCGCCCCCGGGGGttgTAGTGTCCAGGTTACC

hLHB.xpSF1.F TCACCTCCTGGTGGaaTTcCCGCCCCCACAACC

hLHB.xpEGR.F CTATCACCTCCTGGTGGCCTTGCgGttCttAtAACCCCGAGGTATAA

AGCCAGAT

gel shift†

-134/-103 LHB TCCCTGGCCATGTGCACCTCTCGCCCCCGGGG

-134/-103 xdSF1 LHB TCCCTGGaatTGTGCACCTCTCGCCCCCGGGG

-134/-103 xdEGR LHB TCCCTGGCCATGTGCACCTCTtagtaCtcGGG

-104/-79 LHB GGGGATTAGTGTCCAGGTTACCCCAG 

-104/-79 PITX mut LHB GGGttgTAGTGTCCAGGTTACCCCAG 

-66/-33 LHB CTCCTGGTGGCCTTGCCGCCCCCACAACCCCG

-66/-33 xpSF1 LHB CTCCTGGTGGaaTTcCCGCCCCCACAACCCCG

-66/-33 xpEGR LHB CTCCTGGTGGCCTTGCgGttCttAtAACCCCG

# Restriction sites are underlined.

† Only sense strand is shown. Mutations are in lowercase.

Table S4.1
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Chapter 5  

 

In chapter 4, I demonstrated that the mechanisms of GnRH-stimulated Lhb/LHB transcription are 

largely conserved between humans and other mammals, at least in vitro. This is great news, 

because it suggests that model species like rodents can offer insights into aberrant LH synthesis 

in humans and can provide a valuable pre-clinical platform for the development of therapeutics 

that modulate LH production. While it is clear that GnRH is the primary stimulator of LH 

synthesis and secretion, other hormonal inputs may regulate Lhb/LHB transcription, either alone 

or through modulation of GnRH signaling. Such roles have been described for sex steroids and 

activins (824). Indeed, studies in immortalized gonadotrope-like cell lines and primary pituitary 

cells indicate that murine Lhb is an activin-responsive gene (645, 688, 728, 731). In apparent 

contrast, activin treatment has no effect of the human LHB promoter by itself, and antagonizes 

GnRH-stimulated LHB promoter induction (465). Resolving this discrepancy is crucial to 

understand the extent to which studying mice can tell us about the mechanisms regulating LH 

synthesis in humans. In this chapter, building on the analysis of GnRH regulation of the human 

promoter performed in chapter 4, I use a comparative approach to elucidate the mechanistic basis 

for the interspecies difference in activin modulation of GnRH signaling. 

  



198 

 

Title: SMAD3 and EGR1 physically and functionally interact in promoter-specific fashion 

 

Short title: SMAD3-EGR1 interaction 

 

Authors: Jérôme Fortin and Daniel J. Bernard 

 

Department of Pharmacology and Therapeutics, McGill University 

 

Corresponding author: 

Daniel J Bernard, Ph.D. 

Department of Pharmacology and Therapeutics, McGill University 

 3655 Promenade Sir William Osler, Room 1315 

Montréal, QC 

H3G 1Y6, Canada 

Tel: (514) 398-2525 

Fax: (514) 398-6705 

e-mail: daniel.bernard@mcgill.ca 

 

 

mailto:daniel.bernard@mcgill.ca


199 

 

Abstract 

 

Gonadotropin-releasing hormone (GNRH1) stimulates luteinizing hormone  subunit (LHB/Lhb) 

transcription. The transforming growth factor  superfamily ligand activin A partially inhibits 

this effect on the human LHB promoter while potentiating GNRH1-induction of the murine Lhb 

gene. Here, we investigated the mechanisms underlying the species-specific modulation of the 

GNRH1 response by actvin signalling. GNRH1 stimulates LHB/Lhb transcription via induction 

of early growth response 1 (EGR1), which binds to the proximal promoter of both species. 

Activin A decreased GNRH1-induced recruitment of EGR1 to the human, but not murine, 

promoter. We hypothesized that the activin A signaling protein, SMAD3, might play a role in 

this system. Indeed, we observed both physical and functional interactions between SMAD3 and 

EGR1. The two proteins interacted via the SMAD3 MH2 domain and the EGR1 DNA binding 

domain. Analogous to the species-specific activin A effect on the GNRH1 response, SMAD3 

over-expression partially inhibited EGR1-induction of the human promoter, while potentiating 

EGR1-induced murine Lhb promoter activity. The proximal murine Lhb promoter contains three 

minimal SMAD binding elements (SBEs) that are absent from human LHB. Introduction of the 

SBEs into the human promoter converted SMAD3 from an inhibitor to a stimulator of EGR1-

induced transcription. The converse was observed when the SBEs in the murine promoter were 

replaced by the corresponding human sequences. Together, our results suggest a model in which 

activin A inhibits GNRH1-induction of human LHB transcription via an interaction between 

SMAD3 and EGR1 that inhibits the latter’s recruitment to the proximal promoter. In contrast, in 

mouse, the presence of SBEs in the promoter allows SMAD3 and EGR1 to function 

synergistically to regulate Lhb transcription. The basis for their functional cooperativity is not 

completely clear, but may involve enhancement of EGR1’s physical interaction with other 

important co-factors, including paired-like homeodomain transcription factor 1 (PITX1). 
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Introduction 

 

Activins play essential roles in the control of reproductive and other biological processes 

(604, 870, 871). Like other transforming growth factor β (TGFβ) superfamily ligands, activins 

signal through hetero-oligomeric complexes of type I and type II serine/threonine kinase 

receptors (625). In the canonical activin signalling cascade, type II receptors phosphorylate and 

activate type I receptors, which then phosphorylate the receptor-regulated SMADs (R-SMADs), 

SMAD2 and SMAD3. The R-SMADs then homo- and hetero-oligomerize with the co-SMAD, 

SMAD4, and accumulate in the nucleus where they regulate gene transcription through DNA 

binding and protein-protein interactions (703, 872-874). In many instances, SMAD proteins and 

interacting factors bind adjacent promoter elements to activate gene transcription (e.g. (702, 

875)). In some contexts, this type of interaction leads to the recruitment of co-repressor 

complexes and, hence, transcriptional repression (e.g., (876)). SMAD proteins can also repress 

transcription by interfering with the recruitment of transcription factors to their target promoters 

(e.g., (877)).  

One important site of activin action is the pituitary gonadotrope cell (564, 600, 878, 879). 

In these cells, activins regulate the transcription of several cell-specific genes, including the 

follicle-stimulating hormone (FSH) and to a lesser extent luteinizing hormone (LH) β subunits 

(539, 645, 674, 688, 728, 731). Expression of the FSHB/Fshb and LHB/Lhb genes is rate-limiting 

in the synthesis of the mature dimeric glycoprotein hormones. The primary stimulus for 

LHB/Lhb expression is the hypothalamic decapeptide gonadotropin-releasing hormone 

(GNRH1). GNRH1 induces LHB/Lhb transcription via the immediate-early gene, early-growth 

response 1 (EGR1) (145, 510, 524, 880). In vivo studies clearly demonstrate the necessity for 

EGR1 in LH synthesis and fertility (145, 524). EGR1 binds to and activates the proximal 

LHB/Lhb promoter in cooperation with other transcription factors, such as paired-like 

homeodomain transcription factor 1 (PITX1) (reviewed in (485)).  

Previously, it was demonstrated that GNRH1 and activin A synergistically activate the rat 

Lhb promoter (485). In contrast, we recently reported that activin A partially inhibits GNRH1-

stimulated activation of the human LHB promoter (465). Here, we examined the mechanism 

underlying species-specific modulation of GNRH1-stimulated LHB/Lhb promoter activity by 
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activins. The data suggest that functional and physical interactions between SMAD3 and EGR1 

may underlie activin A modulation of GNRH1 signalling to the LHB/Lhb promoter.   

 

Materials and Methods 

 

Reagents 

DMEM with 4.5g/liter glucose and L-glutamine, with or without sodium pyruvate, was 

from Wisent (St-Bruno, Quebec, Canada). Lipofectamine, Plus reagent, Lipofectamine 2000, 

gentamycin,
 
SYBR green quantitative PCR master mix,

 
and fetal bovine serum were obtained 

from Invitrogen (Burlington,
 
Ontario, Canada). Anti-FLAG antibody (F7425), EZview Red M2 

FLAG affinity beads, FLAG peptide and chemicals were from Sigma (St.
 
Louis, MO). Taq 

polymerase, T4 DNA ligase, restriction endonucleases, deoxynucleotide triphosphates and 5X 

Passive Lysis Buffer (PLB) were purchased from Promega (Madison, WI). ECL-plus reagent and 

protein markers were from GE
 

Healthcare (Piscataway, NJ). Protease inhibitor tablets 

(Complete-Mini) were from Roche (Indianapolis, IN). Oligonucleotides were synthesized by 

Integrated DNA Technologies (Coralville, IA). Anti-SMAD2/3 antibody (07-408) and normal 

rabbit IgG (12-370) were from Millipore (Billerica, MA), anti-SMAD3 (51-1500) was from 

Invitrogen (Burlington,
 
Ontario, Canada), anti-phospho-SMAD2 (3101) was from Cell Signaling 

(Danvers, MA), anti-nucleoporin p62 (610498) was from BD Biosciences (San Jose, CA) and 

anti-calnexin (SPA-860) was from StressGen (Assay Designs, Ann Arbor, MI). Anti-EGR1 C-19 

antibody (sc-189) and Protein A/G PLUS-Agarose beads were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA). 

 

Constructs 

The murine -232/+5 Lhb luciferase reporter was produced by PCR amplification of 

murine genomic DNA and ligated in pA3-luc, as described earlier for the human -196/+9 LHB-

luc reporter (465). Mutant promoter-reporter constructs were generated using the QuikChange 

system (Stratagene). Murine EGR1 (NGFIA) in pJDM464 was a generous gift from Dr. Jeffrey 

Milbrandt (Washington University School of Medicine, St Louis, MO). Full-length FLAG-

tagged EGR1 in pcDNA3 was described earlier (880). To generate FLAG-tagged truncated 

EGR1 constructs, the regions corresponding to previously-delineated functional domains (881) 
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were amplified by PCR, using the full-length murine EGR1 as template. The amplicons were 

cloned in-frame downstream of a FLAG tag coding sequence in pcDNA3. Full-length murine 

SMAD2 and SMAD3 expression vectors were described previously (674), and full-length human 

FLAG-SMAD3 and FLAG-SMAD2 in pCAGGS were gifts from Dr. Elizabeth Roberston 

(Oxford University, UK). FLAG-tagged SMAD3 sub-domains were obtained from Addgene 

(Cambridge, MA), and are described in detail in (671). Primer sequences are available upon 

request. All the constructs were verified by sequencing (Genewiz, South Plainfield, NJ, or 

GenomeQuebec, Montreal, Canada). 

 

Cell culture, transfections and reporter assay  

LβT2 cells, a gift from Dr. Pamela Mellon (University of California, San Diego, CA), 

were cultured as previously described (674). Briefly, for reporter experiments, cells were seeded 

in 48-well plates, and transfected with 225 ng reporter per well, along with the indicated amount 

of expression plasmid DNA using Lipofectamine 2000. The next day, transfection media was 

replaced with serum-free media, and cells cultured overnight before ligand treatment as 

indicated. HEK293 cells (a gift from Dr. Terry Hébert, McGill University, Montréal, Canada) 

were cultured in DMEM without sodium pyruvate, supplemented with 10% FBS. Cells were 

seeded in 48-wells plate at a density of 30,000 cells/well, and transfected the next day as 

described for the LβT2 cells. Twenty-four h later, transfection media was replaced with serum-

free media, and cell lysates were harvested the next day. Total DNA transfected was balanced 

across each condition using the appropriate empty vector. Whole cell lysates were assayed for 

luciferase activity as previously described (465). CHO cells (gift from Patricia Morris, 

Population Council, New York, NY) were cultured in DMEM/F12 supplemented with 10% FBS. 

 

Co-immunoprecipitation analyses and western blotting 

Lysates from CHO or LβT2 cells were cultured, transfected, and processed for co-IP 

using anti-FLAG M2 agarose affinity beads as previously described (537). Nuclear and 

cytoplasmic extracts were prepared following published methods (882). Western blotting was 

performed as described in (674). 
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Chromatin immunoprecipitation 

LβT2 cells in 10-cm dishes were transfected with the human -196/+9 LHB-luc construct, 

and treated for 2 h with 10
-7

 M GNRH1 and/or 25 ng/mL activin A. After treatment, 

formaldehyde was added to a final concentration of 1%, and crosslinking performed for 10 min 

at room temperature. The crosslinking reaction was quenched with 125 mM glycine for 5 min. 

Cells were then lysed in 1 mL lysis buffer [1% SDS, 1 mM EDTA, 50 nM Tris-HCl (pH 8), 

protease inhibitors]. Half of the lysate was sonicated with six 5-sec pulses at power 0.5 using a 

Misonix Sonicator 3000 (Misonix, Farmingdale, NY). The sonicated chromatin was spun for 10 

min at 13,000 rpm to pellet cellular debris. Two hundred µL of sonicated chromatin was added 

to 1800 µL dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris pH 8, 

16.7 mM NaCl, protease inhibitors) and pre-cleared for 30 min at 4°C with 75 µL protein A/G-

agarose bead slurry (1:3 volume of protein A/G-agarose beads in a solution containing 10 mM 

Tris, 1 mM EDTA, 0.1% BSA, 0.27 µg/µL salmon sperm DNA). Beads were pelleted at 3,000 x 

g for 5 min at 4°C. One-twentieth of the volume of pre-cleared chromatin was removed and kept 

as “input” chromatin. The remaining chromatin was divided in two, and each half incubated 

overnight with 60 µL of the protein A/G-agarose beads slurry (see above) and 5 μg anti-EGR1 

antibody or normal rabbit IgG. The next day, beads were sequentially washed with low salt 

buffer (0.1%SDS, 1% Triton X-100, 2 mM EDTA, 20 nM Tris pH 8, 150 mM NaCl), high salt 

buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 nM Tris pH 8, 500 mM NaCl), LiCl 

buffer (250 mM LiCl, 1% Nonidet P-40, 1% sodium deoxycholate, 1 mM EDTA, 10 mM Tris 

pH 8), and twice in TE buffer (10 mM Tris pH 8, 1 mM EDTA). Each wash was performed for 5 

min at 4°C, followed by a 30-sec spin at 3,000 x g. DNA was eluted for 15 min at room 

temperature in 480 µl elution buffer (1M NaHCO3, 1%SDS). NaCl was added to a final 

concentration of 0.3 M and protein:DNA complexes were reverse-cross-linked overnight at 

65°C. The next day, samples were incubated for 30 min at 37°C with 20 ng/µl RNase A. Tris-

HCl (pH 6.8) and EDTA were added to final concentrations of 400 mM and 100 mM, 

respectively, and samples incubated at 45°C for 2 h with 20 ng/µl proteinase K. DNA was 

extracted with phenol:chloroform and precipitated with ice-cold ethanol for 30 min in presence 

of 30 pg/µl tRNA at -80°C. DNA was pelleted at 13,000 rpm at 4°C for 15 min, washed with 

75% ethanol, dried, and dissolved in clean water. One-thirtieth of each immunoprecipitation 

product and 1/15,000 of each input sample was analyzed in triplicate by real-time quantitative 
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PCR with SYBR Green qPCR Master Mix using a Corbett Rotor-Gene 6000 instrument. Primer 

sequences are available upon request. For quantification, the calculated chromatin concentration 

(determined with the relative standard curve method) obtained with IgG was subtracted from that 

obtained with anti-EGR1, and divided by the input chromatin specific for each condition. 

 

Statistical analysis 

The data presented are the mean (+/- SEM) of at least three independent experiments. 

Differences between means were compared using one-, two- or three-way analyses of variance 

(ANOVA), followed by pair-wise comparisons using the Tukey post-hoc test where appropriate 

(Systat 10.2, Richmond, CA).  Data were log-transformed when variances were unequal between 

groups. Significance was assessed relative to p<0.05.  
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Results 

 

Species-specific modulation of GNRH1-stimulated LHB/Lhb promoter activity by activin A  

Similar to previous reports for the rat Lhb promoter (688, 731), we observed that activin 

A stimulated a small, but significant 1.5- to 2-fold increase in murine -232/+5 Lhb promoter 

activity in immortalized LβT2 murine gonadotropes (Fig. 5.1A). Further, activin A and GNRH1 

synergistically stimulated the murine promoter (Fig. 5.1A). In contrast, but consistent with our 

previous findings (465), activin A treatment had no effect by itself on the activity of the human -

196/+9 LHB reporter, but inhibited GNRH1-stimulated promoter activity by about 25% (Fig. 

5.1B).  

Based on the observation that activin responsiveness of the rat Lhb promoter is mediated 

by three minimal SMAD binding elements (SBEs) (688), we hypothesized that the synergistic 

action of activin A and GNRH1 on the murine promoter may require the same elements, which 

are conserved in mouse, but not human (double underlined sequences in Fig. 5.1C). To test this 

idea, we mutated the three SBEs to the corresponding sequence in the human promoter (Fig. 

5.1C). In contrast with the wild-type (WT) murine reporter, activin A neither independently nor 

synergistically (with GNRH1) stimulated the mutant promoter (3SBEmut) (Fig. 5.1A). Next, we 

tested whether the absence of the three SBEs in the human promoter explained the antagonism of 

the GNRH1 response by activin A. To this end, we introduced the three rodent SBEs into the 

human promoter (3SBE+). Though this manipulation did not confer activin A responsiveness to 

the human promoter, it abolished the partial inhibition of GNRH1-stimulated reporter activity by 

activin A seen with the WT construct (Fig. 5.1B).  

 

SMAD3 and EGR1 functionally interact at the LHB/Lhb promoter 

To explain the observed modulation of the GNRH1response by activin A, we 

hypothesized that one or both of the canonical transducers of activin signalling, SMAD2 and 

SMAD3, may modulate GNRH1 signalling. Indeed, over-expression of SMAD3, and to a lesser 

extent SMAD2, partially inhibited GNRH1-stimulated human LHB promoter activity in LβT2 

cells (Fig. S5.1B). There was a trend for SMAD3 to potentiate GNRH1 induction of the murine 

Lhb promoter, but this was not statistically significant (p=0.09) (Fig. S5.1A).  
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Because induction of the LHB/Lhb promoter by GNRH1 is largely EGR1-dependent  

(145, 510, 524, 880)., we hypothesized that SMAD2 and/or SMAD3 might functionally interact 

with EGR1. To address this possibility, we examined the effects of over-expressed SMAD2 or 

SMAD3 on EGR1-stimulated murine or human reporters in LβT2 cells. Transfection of EGR1 

stimulated both promoters (Figs. 5.2A and 5.2B). Neither of the SMAD proteins alone 

significantly modulated the activity of either promoter. However, SMAD3 co-transfection 

potentiated or partially inhibited the effect of EGR1 on the murine (Fig. 5.2A) or human (Fig. 

5.2B) promoter-reporters, respectively. Similarly, SMAD2 enhanced activation of the murine 

promoter and inhibited activation of the human promoter by EGR1, albeit to a lesser extent than 

SMAD3 (Figs. 5.2A and B). To determine whether the observed effect of SMAD2/3 on EGR1-

mediated LHB/Lhb promoter activation is dependent on the presence or absence of the SBEs, we 

employed the mutant human (3SBE+) and murine (3SBEmut) promoters described above. 

Strikingly, in both species, the effect of SMAD3 on EGR1-stimulated promoter activation was 

completely reversed in the mutant promoters. That is, SMAD3 markedly enhanced EGR1 

induction of the 3SBE+ human promoter (Fig. 5.2D), whereas SMAD3 attenuated EGR1-

stimulated 3SBEmut murine promoter activity (Fig. 5.2C).  SMAD2 had no significant effect on 

EGR1-stimulated activation of either the mutant murine or human promoter (Fig. 5.2C and D),  

To further explore functional interactions between SMAD proteins and EGR1, we 

employed HEK293 cells. This system avoided possible confounding effects of endogenous 

EGR1- and SMAD-interacting factors regulating the proximal LHB/Lhb promoter in homologous 

cells, such as paired-like homeodomain (PITX) transcription factors (510, 537, 539), Expression 

of EGR1 was sufficient to activate both the murine and human Lhb/LHB promoters in HEK293 

cells (Figs. 5.3A and B), though to a lesser extent than in homologous cells. Co-expression of 

SMAD3, but not SMAD2, enhanced EGR1-mediated activation of the murine promoter (Fig. 

5.3A). In contrast, SMAD3 partially inhibited EGR1-mediated activation of the human LHB 

promoter (Fig. 5.3B). SMAD2 failed to modulate EGR1-mediated activation of the human 

reporter.  

 

SMAD3 physically interacts with EGR1 

To gain greater insights into the mechanism(s) underlying the functional interaction 

between EGR1 and SMAD3, we asked whether the two proteins can physically interact. We first 



207 

 

performed co-immunoprecipitation (co-IP) experiments in CHO cells. Cells were transfected 

with FLAG-tagged SMAD2 or SMAD3 along with untagged EGR1 or empty vector (pcDNA3). 

SMAD proteins and EGR1 were expressed at similar levels across conditions (Fig. 5.4A, ‘Total’ 

panels), and both SMAD proteins were immunoprecipitated with similar efficiency (Fig. 4A, 

second panel, lanes 1-2). Importantly, EGR1 was co-precipitated with FLAG-SMAD3, but not 

FLAG-SMAD2 (Fig. 5.4A, top panel, compare lanes 1 and 2). EGR1 was not detected in the 

immunoprecipitates from cells co-transfected with empty vector (Fig. 5.4A, top panel, lane 3). 

Similar results were obtained when we performed the reverse co-IP experiment. That is, FLAG-

EGR1 was able to co-IP untagged SMAD3, but not SMAD2 in transfected CHO cells (Fig. 5.4B, 

first panel, compare lanes 1 and 2). To assess whether the interaction between EGR1 and 

SMAD3 was preserved in the context of the homologous gonadotrope cell line, LβT2 cells were 

transfected with FLAG-SMAD3 or empty vector and stimulated with GNRH1 to induce 

expression of endogenous EGR1 (510). GNRH1 treatment for 1 h led to robust induction of 

EGR1 protein expression (Fig. 5.4C, third panel, compare lanes 1 and 3 with lane 2). 

Endogenous EGR1 was co-precipitated with FLAG-SMAD3, confirming that the two proteins 

can interact in LβT2 cells (Fig. 5.4C, top panel, lane 3).  

Next, we mapped the sub-domains of each protein mediating their interaction. Co-IP was 

performed with lysates of CHO cells transfected with FLAG-tagged SMAD3 sub-domains along 

with full-length untagged EGR1. EGR1 was detected in the immunoprecipitates from cells co-

transfected with each of the SMAD3 sub-domains (Fig. 5.5A, top panel, lanes 2-6), but not from 

cells co-transfected with empty vector (Fig. 5.5A, top panel, compare lane 1 to 2-6). However, 

the interaction was strongest with fragments containing the SMAD3 C-terminus (i.e., the MH2 

domain; Fig. 5A, top panel, lanes 5 and 6). For some of the SMAD3 sub-domains (L-MH2 and 

MH2), western blot analysis of total cell lysates and of the immunoprecipitated fraction revealed 

multiple, rather than single bands (Fig. 5.5A, second and fourth panels, lanes 5-6). Though the 

exact nature of these products is currently unknown, the pattern we observed is consistent with 

previous results with the same constructs (671).   

We performed a similar analysis to determine which domain(s) of EGR1 mediates its 

physical interaction with SMAD3 (Fig. 5.5B). To this end, we generated constructs coding for 

FLAG-tagged fragments of EGR1 corresponding to its main functional sub-domains (881). 

SMAD3 interacted most robustly with the isolated DNA-binding domain (DBD) of EGR1 (Fig. 
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5.5B, top panel, lane 4), and to a lesser extent with a fragment comprising the DBD and the AF2 

domain (Fig. 5.5B, top panel, lane 5). A very faint interaction between SMAD3 and the N-

terminal portion of EGR1 encompassing the AF1 domain and the DBD was detected (Fig. 5.5B, 

top panel, lane 3). No SMAD3 was detected in the immunoprecipitates from cells co-transfected 

with the isolated FLAG-tagged AF1 domain or empty vector (Fig. 5.5B, top panel, lanes 1-2). In 

this experiment, interaction between SMAD3 and full-length EGR1 or the isolated C-terminal 

AF2 domain could not be compared to other EGR1 trunctations because these constructs were 

expressed at much lower levels in CHO cells, even when an excess of expression vector was 

transfected (data not shown). Taken together, these co-IP analyses indicated that SMAD3 and 

EGR1 interact predominantly through the SMAD3 MH2 domain and the EGR1 DBD.  

 

Effect of activin A on GNRH1-stimulated EGR1 recruitment at the LHB/Lhb promoter 

Because we observed that SMAD3 and EGR1 physically and functionally interact, we 

hypothesized that activin signalling may modulate the function of endogenous EGR1 in LβT2 

cells, resulting in the observed changes in GNRH1-stimulated LHB/Lhb transcription. First, we 

verified whether activin A co-administration modulates the expression, stability, or sub-cellular 

localization of EGR1 produced following GNRH1 stimulation in LβT2 cells. However, up to 6 h 

after GNRH1 application, there was no effect of activin A on the magnitude or kinetics of EGR1 

protein induction or on its nuclear accumulation (Fig. S5.2). GNRH1 induction of LHB/Lhb 

transcription is dependent on EGR1 protein expression and binding to the proximal promoter 

(510, 880, 883).  Therefore, we asked whether activin A signalling modulates the recruitment of 

EGR1 to the murine and human promoters. To assess this possibility, we performed chromatin 

immunoprecipitation (ChIP) assays in LβT2 cells transfected with the human LHB promoter and 

treated with GNRH1, activin A, or the two in combination. GNRH1 substantially enhanced 

EGR1 binding to both the transfected human LHB promoter and the endogenous murine Lhb 

promoter, whereas activin A had no effect by itself on EGR1 occupancy of either promoter (Figs. 

5.6A and 5.6B). Interestingly, in all four replicates of the experiment, EGR1 binding to the 

human promoter was lower when the cells we co-stimulated with GNRH1 and activin A 

compared with GNRH1 alone (Fig. 5.6A). In contrast, there was no difference in the occupancy 

of the murine Lhb promoter by EGR1 in cells stimulated with GNRH1 alone compared with cells 

stimulated with GNRH1 plus activin A (Fig. 5.6B). Thus, activin A attenuated EGR1 recruitment 
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to the human but not murine promoter, perhaps explaining its partial antagonism of GNRH1-

stimulated human LHB promoter activity. 

 

SMAD3 enhances the association between EGR1 and PITX1 

As activin A did not appear to enhance GNRH1-stimulated EGR1 recruitment to the 

murine Lhb promoter, we examined alternative mechanisms for activin A potentiation of 

GNRH1-induced murine Lhb promoter activity.  EGR1 acts in concert with paired-like 

homeodomain transcription factor 1 (PITX1) to regulate LHB/Lhb transcription in a variety of 

species (510, 880). Interestingly, PITX1 can physically interact with both EGR1 and SMAD3 

(510, 537, 688). We therefore hypothesized that SMAD3 might enhance the association between 

EGR1 and PITX1. CHO cells were transfected with FLAG-tagged PITX1 along with untagged 

EGR1 and untagged SMAD2, SMAD3, or pcDNA3 (empty vector). Consistent with previous 

observations (510, 537, 688), both EGR1 and SMAD3 were co-precipitated with FLAG-PITX1 

(Fig. 5.7, top panel, lane 2 and second panel, lane 3). Importantly, in presence of SMAD3, but 

not SMAD2, the interaction between FLAG-PITX1 and EGR1 was enhanced (Fig. 5.7, top 

panel, compare lanes 3 and 4 with lane 2).  
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Discussion 

 

Using murine and human LHB/Lhb promoters as a model, we report species-specific 

modulation of GNRH1-stimulated promoter activation by activin A. In particular, we describe 

novel functional and physical interactions between SMAD3, a canonical transducer of activin 

signalling, and EGR1, a mediator of GNRH1-stimulated LHB/Lhb promoter activation. Globally, 

our data indicate that: 1) species-specific modulation of the GNRH1/EGR1 response by activin 

A/SMAD3 is dependent upon the presence or absence of three non-conserved SMAD binding 

elements (SBEs) in the proximal promoter; 2) addition or removal of the SBEs reverses the 

effect of SMAD3 on EGR1-induction of the LHB/Lhb promoters; 3) SMAD3 physically interacts 

with EGR1 and has a more pronounced effect on EGR1 function than SMAD2; and 4) activin A 

signalling modulates GNRH1-stimulated EGR1 binding to the human LHB, but not to the murine 

Lhb promoter. 

 Whereas activin potentiates GNRH1-stimulated murine Lhb promoter activation, it 

inhibits induction of the human promoter by GNRH1. Our data suggest that this difference 

stems, at least in part, from the presence of three SBEs within the proximal murine promoter, 

which are not conserved in human. Indeed, mutation of the murine SBEs to the corresponding 

human nucleotides abolishes the synergy between activin A and GNRH1. Conversely, 

introduction of SBEs into the human promoter prevents inhibition of the GNRH1 response by 

activin A. Interestingly, although these mutations block the activin A effect on both promoters, 

they do not confer one species-typical response to the other. Therefore, the SBEs are necessary 

but not sufficient for activin A potentiation of the GNRH1 response. At the same time, the SBEs 

are sufficient to prevent antagonism of the GNRH1 stimulation by activin A signalling when 

introduced in the human promoter. These results suggest that additional elements within the 

murine promoter, apparently absent (or different) in the human promoter, are required for 

synergism between activin A and GNRH1 signalling. Identifying these elements will further our 

understanding of the mechanistic basis for species-specific responsiveness to the combined 

action of GNRH1 and activin A. 

 Our data suggest that the effect of activin A on  the GNRH1 response is mediated, at least 

in part, by an interaction between SMAD3 (an activin A effector) and EGR1 (a GNRH1 

effector). That is, SMAD3 (and SMAD2 to a lesser extent) modulation of EGR1-stimulated 
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LHB/Lhb promoter activity recapitulates the effect of activin A on the GNRH1 response. 

However, unlike the case with ligand-stimulated promoter activity, the SBE manipulations 

completely reverse the effect of the SMAD3 on EGR1 function. Indeed, SMAD3 inhibits EGR1-

stimulated induction of the  murine promoter lacking SBEs whereas it potentiates EGR1-

induction of the human promoter possessing SBEs. These results indicate that the SBEs are both 

necessary and sufficient for SMAD3 potentiation of the EGR1 response. Importantly, the 

responses of the wild-type and mutant constructs were similar, though not identical for 

SMAD3/EGR1 versus activin A/GNRH1. Further investigation is required to explain the 

different transcriptional responses. At a minimum, it seems likely that the modulation of GNRH1 

signalling by activin A includes factors in addition to SMAD3 and EGR1, which directly or 

indirectly regulate the LHB/Lhb promoters, possibly in species-specific fashion. 

 At a mechanistic level, one way whereby activin A signalling could modulate GNRH1-

stimulated LHB/Lhb promoter activation is by regulating EGR1 function. In the case of the 

human promoter, our previous data (880) predicts that reduced EGR1 activity or binding would 

attenuate the GNRH1 response. We observe that activin A fails to modulate GNRH1-stimulated 

EGR1 expression or nuclear translocation. Rather, the chromatin immunoprecipitation (ChIP) 

analyses indicate that activin A partially inhibits recruitment of EGR1 to the proximal human 

promoter. Perhaps, in the absence of SBEs, a physical interaction between SMAD3 and EGR1 

may interfere with the binding of EGR1 to the human promoter. That the interaction occurs 

through the EGR1 DNA binding domain makes this a distinct possibility. In the murine 

promoter, the presence of SBEs may enable collaborative binding of EGR1 and SMAD3 to 

adjacent promoter elements and/or a means for SMAD3 to tether EGR1 to the promoter in the 

event that direct EGR1 binding is impaired. Though the ChIP data indicate that GNRH1-

stimulated EGR1 association with the promoter is the same in the presence or absence of activin 

A, the analysis does not permit an assessment of the nature of the binding (i.e., direct vs. 

tethering).   Nonetheless, these data do suggest that the synergism is not explained simply by 

enhanced EGR1 binding to the murine promoter.  

How, then, might activin A potentiate GNRH1-induced promoter activity? One possibility is 

activin A enhancement of EGR1 cooperation with other transcription factors that regulate the 

Lhb promoter (reviewed in (485)). Consistent with this possibility, we observe that SMAD3 

potentiates the physical interaction between EGR1 and PITX1. Because all three factors can bind 
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adjacent elements in the murine promoter (Fig. 5.1C), its activation may be amplified as a result. 

This could involve enhanced recruitment of co-factors, such as p300 (884). 

 Although both SMAD2 and SMAD3 modulate EGR1-mediated trans-activation of the 

LHB/Lhb promoter, the effect of SMAD2 over-expression is weaker than that of SMAD3, and 

SMAD2 has no effect on EGR1 induction of the SBE mutant promoters. Further, in heterologous 

HEK293 cells, SMAD3, but not SMAD2, was able to functionally interact with EGR1. The 

absence of functional interaction between SMAD2 and EGR1 in these cells was not due to the 

lack of DNA-binding activity of SMAD2, because a DNA-binding splice variant, SMAD2
Δex3

 

(673), was similarly ineffective (data not shown). Instead our novel observation that SMAD3, 

but not SMAD2, can physically associate with EGR1 may explain their different activities. The 

structural basis for this selectivity is not yet clear as SMAD3 interacts with EGR1 principally via 

its MH2 domain, which is highly conserved in SMAD2 (97% identity in mouse). Nonetheless, 

our observations indicated that SMAD2 and SMAD3 are distinct in their abilities to modulate 

EGR1 function. This is consistent with a large body of evidence showing that SMAD2 and 

SMAD3 can each serve distinct roles in transcriptional regulation by interacting with a unique 

complement of transcription factors (703, 885). 

 The results of the experiments described here may have significance beyond regulation of 

the LHB/Lhb gene. Indeed, crosstalk between SMAD-mediated signalling and EGR1-regulated 

gene transcription has been reported in other contexts. For example, TGFβ signalling up-

regulates EGR1 expression via SMAD3 in primary human fibroblasts (however, we did not see a 

similar effect by activin A in LβT2 cells), enhancing EGR1-mediated type I protocollagen gene 

transcription (886). Recently, it was reported that EGR1 can repress TGFβ-stimulated smooth 

muscle α-actin transcription by competing for SMAD2 and SMAD3 binding to the gene 

promoter (887). Our results demonstrate that SMAD3 and EGR1 can physically associate in cells 

and this interaction leads to either potentiation or attenuation of target gene transcription 

depending on the nature of the promoter. Because SMAD3 and EGR1 are activated by a range of 

stimuli and regulate transcription of a large number of genes, we speculate that uncovering their 

physical and functional interaction will be of broad interest. 
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Figure Legends 

 

Figure 5.1: Modulation of GNRH1-stimulated LHB/Lhb promoter activation by activin A. A) 

LβT2 cells were transfected with 225 ng/well of the wild-type murine -232/+5 Lhb-luc reporter 

(WT) or the same reporter with the three SMAD-binding elements mutated to the corresponding 

bases found in the human promoter (3SBEmut). Cells were treated for 6h with 10
-8

 M GNRH1 

and/or 25 ng/mL activin A. Ligand-stimulated reporter activity was normalized to basal activity 

(‘control’) specific for each construct, and data from the WT and 3SBEmut reporters were 

analyzed separately. Bars with different symbols differ significantly. Data represent the mean +/- 

SEM of six independent experiments conducted in triplicate. B) LβT2 cells were transfected with 

225 ng/well of the wild-type human -196/+9 Lhb-luc reporter (WT) or the same reporter mutated 

to introduce the three SMAD-binding elements of the murine promoter (3SBE+). Cells were 

treated for 6h with 10
-8

 M GNRH1 and/or 25 ng/mL activin A. Ligand-stimulated reporter 

activity was normalized to basal activity (‘control’) specific for each construct, and data from the 

WT and 3SBE+ reporters were analyzed separately. Bars with different symbols differ 

significantly. Data represent the mean +/- SEM of seven independent experiments conducted in 

triplicate. C) Alignment of proximal LHB/Lhb promoters from human and mouse. Bases are 

numbered relative to the transcriptional start site (+1; not shown). Nucleotides that differ 

between the species are shaded. The conserved EGR1, SF1 and PITX binding sites are boxed. 

SMAD-binding elements (SBEs) are numbered according to (688) and double-underlined. ‘p’, 

proximal; ‘d’, distal.  

 

Figure 5.2: Functional interaction between SMAD3 and EGR1 at the LHB/Lhb promoters in 

LβT2 cells. LβT2 cells were transfected with 225 ng/well of the murine -232/+5 LHB-luc (A) or 

human -196/+9 Lhb-luc (B) reporters along with 50 ng/well EGR1 expression vector and/or 50 

ng/well FLAG-SMAD3, FLAG-SMAD2,  or empty vector (pcDNA3). Bars with different 

symbols differ significantly. Data represent the mean +/- SEM of four (A) or six (B) independent 

experiments conducted in triplicate. LβT2 cells were transfected with 225 ng/well of the murine -

232/+5 LHB-luc (C) or human -196/+9 Lhb-luc (D) reporters along with 50 ng/well EGR1 

expression vector and/or 50 ng/well FLAG-SMAD3, FLAG-SMAD2, or empty vector 
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(pcDNA3). Bars with different symbols differ significantly. Data represent the mean +/- SEM of 

four independent experiments conducted in triplicate. 

 

Figure 5.3: Functional interaction between SMAD3 and EGR1 at the LHB/Lhb promoters in 

HEK293 cells. HEK293 cells were transfected with 225 ng/well of the murine -232/+5 Lhb-luc 

(A) or human -196/+9 LHB-luc (B) reporters along with 50 ng/well EGR1 expression vector 

and/or 0.5 µg/well FLAG-SMAD3, FLAG-SMAD2 or empty vector (pcDNA3). Bars with 

different symbols differ significantly. Data represent the mean +/- SEM of three independent 

experiments conducted in triplicate. 

 

Figure 5.4: Physical interaction between SMAD3 and EGR1. A) CHO cells were co-transfected 

with 4 μg EGR1 along with 4 μg FLAG-SMAD2 or FLAG-SMAD3 expression vectors or empty 

vector (pcDNA3). Whole-cell lysates were collected and subjected to FLAG 

immunoprecipitation (IP) using anti-FLAG M2 affinity beads. Eluted proteins or whole cell 

lysates (Total) were analyzed by immunoblot (IB) using the indicated antibodies. B) CHO cells 

were co-transfected with 4 μg FLAG-tagged EGR1 or empty vector (pcDNA3) along with 4 μg 

SMAD2 or SMAD3 expression vectors. Whole cell lysates were processed and analyzed as in 

(A). C) LβT2 cells were transfected with FLAG-SMAD3 or empty vector (pcDNA3) and treated 

where indicated with 10
-7

 M GNRH1 for 1 h. Whole cell lysates were processed and analyzed as 

in (A).  

 

Figure 5.5: Sub-domains of SMAD3 and EGR1 mediating their physical interaction. A) CHO 

cells were co-transfected with EGR1 expression vector along with empty vector (pcDNA3), full-

length FLAG-tagged SMAD3 (full) or the indicated truncated FLAG-SMAD3 expression vectors 

(MH1, N-terminal MH1 domain; L, linker region; MH2, C-terminal MH2 domain). Whole-cell 

lysates were subjected to FLAG IP and immunoblotting as in Fig. 3. B) CHO cells were co-

transfected with SMAD3 expression vector along with empty vector (pcDNA3) or the indicated 

truncated FLAG-tagged EGR1 expression vectors (AF1, N-terminal AF1 domain, amino acids 1-

281; DBD, DNA-binding domain, amino acids 275-425; AF2, C-terminal AF2 domain, amino 

acids 420-533). The amount of vector transfected was titrated to achieve similar expression 
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levels. Total DNA transfected was balanced with pcDNA3 across all conditions. Whole cell 

lysates were processed and analyzed as in Fig. 3. 

 

Figure 5.6: Effect of activin signalling on GNRH1-stimulated EGR1 recruitment to the LHB/Lhb 

promoters. A and B) LβT2 cells were transfected with the human -196/+9 LHB-luc reporter, and 

stimulated where indicated with 10
-7

 M GNRH1 and/or 25 ng/mL activin A for 2 h. After ligand 

treatment, cells were cross-linked and harvested. Sonicated chromatin was immunoprecipitated 

with IgG or EGR1 antibody. Input and precipitated DNA were analyzed by quantitative PCR 

using primers amplifying the transfected proximal human LHB promoter (A) or the endogenous 

murine Lhb promoter (B). The qPCR signal was normalized within each condition as described 

in the Materials and Methods. Data represent the mean +/- SEM of the binding observed for each 

condition relative to the GNRH1-stimulated condition in four independent experiments.  

 

Figure 5.7: SMAD3 enhances the association of EGR1 and PITX1. CHO cells were co-

transfected with 4 μg EGR1 along with 4 μg FLAG-PITX1 and 4μg SMAD2 or SMAD3 

expression vectors or empty vector (pcDNA3). Whole-cell lysates were collected and subjected 

to FLAG immunoprecipitation (IP) using anti-FLAG M2 affinity beads. Eluted proteins or whole 

cell lysates (Total) were analyzed by immunoblot (IB) using the indicated antibodies. 

 

Supplemental Figure Legends 

 

Figure S5.1: Effect of SMAD2/3 overexpression on GNRH1-stimulated LHB/Lhb promoter 

activation. LβT2 cells were transfected with 225 ng/well of the murine -232/+5 Lhb-luc (A) or 

human -196/+9 LHB-luc (B) reporters, along with 50 ng/well SMAD2 or SMAD3 expression 

vectors, or empty vector (pcDNA3). Cells were treated for 6 h with 10
-8

 M GNRH1. Bars with 

different symbols differ significantly. Data represent the mean +/- SEM of five independent 

experiments conducted in triplicate. 

 

Figure S5.2: Effect of activin signalling on GNRH1-stimulated EGR1 protein expression, 

stability, and sub-cellular localization. LβT2 cells were stimulated with 10
-7

 M GNRH1 and/or 

25 ng/mL activin A for the indicated times, or left untreated. Cells were collected, and the 
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cytoplasmic and nuclear fractions separated. The fractions were analyzed by immunoblot using 

the indicated antibodies. 
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 Figure 5.7
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Chapter 6  

 

In chapters 2 and 3, I showed that SMAD4/FOXL2-dependent FSH synthesis is required for 

ovarian follicle maturation in females. Once mature (pre-ovulatory) follicles develop, the high 

levels of estradiol they secrete positively feedback on the hypothalamus and pituitary to 

stimulate GnRH release and/or action. This results in a surge of LH synthesis and release, 

triggering ovulation. These protracted LH surges occur in all mammals, including humans. In 

chapter 4, I showed that the mechanisms underlying GnRH-stimulated Lhb/LHB transcription are 

conserved between humans and other species. Such conservation suggests that GnRH-stimulated 

LH synthesis is similarly important in all mammals. Yet, it is well known that a given GnRH 

pulse releases only a small fraction of the pool of available LH packaged in dense-core secretory 

granules (888-890). Therefore, gonadotrope cells can probably respond to many GnRH pulses 

before becoming depleted of LH stores. Why, then, is GnRH-stimulated Lhb/LHB transcription 

and LH synthesis so important? At the time of the LH surge, robust GnRH induction of Lhb/LHB 

transcription may be required for rapid replenishment of intracellular LH stores and to increase 

the amount of releasable LH (891). Thus, during the LH surge, it may be necessary to keep  

GnRH signaling capability intact for a long period of time. The GnRH receptor (GnRHR) is a 

member of the G protein-coupled receptor (GPCR) superfamily, which typically internalize 

rapidly after ligand binding (371). However, the mammalian GnRHR lacks an intracellular C-

terminal “tail”, a critical requirement for receptor internalization. Interestingly, non-mammalian 

species, in which no – or attenuated – LH surges occur, have C-tails on their GnRHRs. Was the 

loss of the GnRHR C-tail an evolutionary adaptation enabling prolonged gonadotrope 

responsiveness to GnRH at the time of the LH surge? In this chapter, I explored this intriguing 

question by generating and analyzing a new conditional knock-in mouse line expressing a 

chimeric GnRHR fused to the C-tail of the chicken GnRHR. 
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Abstract 

Gonadotropin-releasing hormone (GnRH) is a critical regulator of reproductive function and 

fertility in vertebrates. The hormone is released in pulses by hypothalamic neurons and acts on 

pituitary gonadotrope cells to stimulate the synthesis and release of luteinizing hormone (LH) 

and follicle-stimulating hormone. In females, once per reproductive cycle, GnRH triggers a 

protracted LH surge, which in turn acts on the ovaries to induce ovulation. The LH surge 

depends on enhanced GnRH release, augmented pituitary sensitivity to the hormone, or some 

combination of the two. Regardless, it is clear that the GnRH receptor (GnRHR) can continue to 

signal in response to sustained agonist stimulation. Indeed, clinically, long-term agonist 

treatment is required to downregulate GnRHR signaling. Mammalian GnRHRs, unlike their non-

mammalian counterparts, lack intracellular carboxyl tails (C-tails). This domain mediates 

homologous desensitization of other G protein-coupled receptors. We therefore hypothesized 

that the absence of a C-tail on their GnRHRs may enable mammals to generate large LH surges. 

To test this idea, we generated a knock-in mouse line, in which the endogenous Gnrhr gene 

encodes a chimeric GnRHR fused to the chicken GnRHR C-tail. In vitro, this receptor was 

impaired in its ability to mediate agonist-induced extracellular regulated kinase 1 and 2 

signaling, which underlies GnRH-induced LH synthesis. Knock-in females displayed abnormal 

estrous cyclicity and subfertility. Importantly, they appeared impaired in their ability to generate 

estrogen-induced LH surges. Collectively, our results suggest that the loss of the GnRHR C-tail 

may represent an evolutionary adaptation enabling robust LH surge generation and maximizing 

reproductive success in mammals. 
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Introduction 

 The hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), is a critical 

regulator of vertebrate reproduction (441). Mice and humans with inactivating mutations in the 

genes encoding GnRH or its receptor (GnRHR) are hypogonadal and sterile (7, 8, 62, 63, 846, 

848, 892). GnRH is released in pulses from nerve terminals in the median eminence and travels 

via the portal vessels to the anterior pituitary gland (893, 894). There, the hormone binds the 

GnRHR on pituitary gonadotrope cells, initiating signaling events that culminate in the synthesis 

and secretion of the heterodimer glycoproteins, luteinizing hormone (LH) and follicle-

stimulating hormone (FSH) (9, 441). LH and FSH (collectively known as the gonadotropins) 

travel via the systemic circulation to regulate gonadal function, including gametogenesis and 

steroid hormone production. 

GnRH stimulates LH release from secretory granules via Ca
2+

-dependent exocytosis 

(412). Though a typical GnRH pulse triggers the secretion of only a small proportion of the 

available hormone, (888, 889, 891) it simultaneously promotes de novo LH synthesis (441), 

presumably to replace what was secreted. GnRH induces the production of the transcription 

factor, early growth response 1 (EGR1), via an extracellular regulated kinase 1/2 (ERK1/2)-

dependent pathway (145, 449, 457, 468, 505, 510, 524). EGR1 then forms complexes with 

steroidogenic factor 1 (SF1 or NR5A1) and paired-like homeodomain transcription factors 

(PITX1/2) to stimulate transcription of the LHβ subunit gene (Lhb) via conserved proximal 

promoter cis-elements (437, 506-510, 513, 516, 517, 880).  

GnRH-regulated LH synthesis may be most critical at the time of the preovulatory LH 

surge. That is, in females, GnRH stimulates a massive release of LH, which in turn drives several 

periovular events, including resumption of meiosis, expansion of cumulus granulosa cells, 

luteinization of mural granulosa cells, and ultimately follicle rupture (307). In rats, pituitary LH 

content remains stable throughout the LH surge, despite the marked increase in hormone 

secretion (895). This suggests that the pituitary upregulates LH synthesis to compensate for the 

increased secretion. Indeed, Lhb mRNA levels increase in association with (if not before) the LH 

surge (895). Surge generation depends upon increased GnRH secretion (at least in some species) 

as well as enhanced sensitivity of pituitary gonadotropes to the hormone. The latter is due, at 

least in part, to up-regulation of the GnRHR (80, 188, 313, 315-317). Regardless, given the 
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length of the LH surge, lasting several hours in sheep and rodents and more than a day in humans 

(188, 245, 313), it is surprising that gonadotropes remain sensitive to protracted GnRH signaling. 

Though the underlying mechanisms are poorly understood, a unique characteristic of the GnRHR 

may provide some insight.   

 The mammalian GnRHR is unusual among G protein-coupled receptors (GPCRs) in that 

it lacks an intracellular carboxyl-terminal tail (C-tail) (9). In other GPCRs, ligand-dependent 

phosphorylation of the C-tail by GPCR kinases promotes the recruitment of adaptor proteins that 

direct receptor internalization, diminishing cellular sensitivity to further agonist exposure (so-

called homologous desensitization) (368, 371-373, 896). By virtue of lacking C-tails, 

mammalian GnRHRs internalize slowly in response to agonist (379, 390). In contrast, non-

mammalian GnRHRs (e.g., in birds, fish, and amphibians) have C-tails and show rapid agonist-

dependent desensitization (384, 897-900). Fusion of a C-tail, either from a non-mammalian 

GnRHR or from unrelated GPCRs, to mammalian GnRHRs accelerates their ligand-induced 

internalization (380, 381, 383-385, 393). These observations suggest that the absence of a C-tail 

on GnRHRs may endow mammalian gonadotrope cells with the capacity to respond to sustained 

GnRH stimulation, as it occurs at the time of the LH surge.  

As the GnRHRs of non-mammalian vertebrates possess C-tails (as do all other GPCRs), 

it is likely that the mammalian GnRHR lost its tail (e.g., due to the acquisition of a nonsense or 

frame-shift mutation) during evolution. Since all mammals have a tailless receptor, this change 

may have conferred some advantage over the ancestral form of the receptor. It seems possible 

that slow GnRHR desensitization kinetics enable the generation of high amplitude, long duration 

LH surges. These characteristics of the surges may be required for ovulation. Here, using a novel 

conditional knock-in mouse line, we tested the hypothesis that the addition of a C-tail to a 

mammalian GnRHR will disrupt LH surge generation and thereby impair fertility.  
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Materials and Methods 

 

Plasmid construction, cell culture, and transfection 

 To construct the flag-tagged murine GnRHR and GnRHR-Ctail expression vectors, the 

coding sequence of the murine Gnrhr gene was amplified by PCR from immortalized 

gonadotrope (LβT2 cells a generous gift from Dr Pamela Mellon, UCSD) cDNA, using a 

forward primer introducing an EcoRI restriction site and omitting the translation initiation codon 

and reverse primer introducing an XbaI restriction site (Table S6.1). The resulting fragment was 

ligated in-frame downstream of a flag tag coding sequence preceded by a translation initiation 

codon in pcDNA3.0, yielding Flag-GnRHR. To generate Flag-GnRHR-Ctail vector, the STOP 

codon in Flag-GnRHR was replaced with a ClaI restriction site by site-directed mutagenesis. The 

C-tail coding sequence from the chicken Gnrhr gene was amplified by PCR from chicken 

embryonic genomic DNA (extracted from a chicken embryo provided by Dr Aimee Ryan, 

McGill University) using primers incorporating ClaI sites at both ends. This fragment was 

inserted into the ClaI site created at the end of the Gnrhr coding sequence. Correct orientation 

determined by sequencing. Chinese hamster ovary (CHO) cells (a gift from Dr. Patricia Morris, 

The Population Council, New York, NY) were cultured in DMEM-F12 media supplemented 

with 10% fetal bovine serum (both from Gibco, Life Technologies, Carlsbad, CA, USA). Cells 

were seeded at a density of 1.5 X 10
5
 cells/well in 6-well plates two days prior to transfection.  

One µg of Flag-GnRHR or the Flag-GnRHR-Ctail expression vector was transfected in each well 

using Lipofectamine (Invitrogen, Life technologies, Carlsbad, CA, USA). The next day, the 

growth medium was replaced with 1 mL serum-free medium per well, and GnRH (human 

GNRH1, Sigma, St Louis, MO, USA) was added to each well for the specified amount of time at 

a final concentration of 60 nM.  

 

Western blotting 

 Following GnRH treatment, whole cell lysates were prepared on ice using 

radioimmunoprecipitation assay (RIPA) buffer supplemented with protease inhibitors (Complete 
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Mini, Roche Applied Science, Indianapolis, IN, USA). Protein concentrations were assayed 

using the BCA protein assay kit (Pierce, Thermo Scientific, Waltham, MA, USA). Equal 

amounts of protein per sample were denatured in 50 mM Tris (pH 6.8), 2% SDS, 1% glycerol, 

0.04% bromophenol blue, and 2% β-mercaptoethanol for 5 min at 99°C and loaded on 10% 

37:5:1 polyacrylamide gels overlayed with 5% polyacrylamide stacking gels. Gels were 

subjected to electrophoresis at 90 volts for 30 min followed by 150 volts for 90 minutes in 25nM 

Tris, 250mM glycine and 0.1% SDS. Proteins were transferred to nitrocellulose membranes 

(Optitran BA-S 85, Whatman) at 25 volts for 90 minutes in 25 mM Tris, 192 mM glycine and 

20% methanol. The membranes were then blocked for 1 h at room temperature with gentle 

agitation in Tris-buffered saline + 1% Tween-20 (TBST) containing 5% non-fat powdered milk. 

Membranes were then incubated overnight in primary antibodies (see below) in TBST-5% milk. 

Following three 15-min washes in TBST, membranes were incubated in 1:3000 secondary 

antibody diluted in TBST-5% milk at room temperature for 1 h. Following three more washes in 

TBST, protein-antibody complexes were revealed by adding ECL-Plus reagent (GE Healthcare, 

Little Chalfont, Buckinghamshire, UK) and exposing to film (Hyblot CL, Denville Scientific, 

Metuchen, NJ). Quantification was performed using Image J (National Institutes of Health, 

Bethesda, Maryland). Primary antibodies used were: Anti-Flag (1:2000, antibody #F3165, 

Sigma), anti-phospho ERK1/2 (1:1000, antibody #9102, Cell Signaling, Danvers, MA, USA), 

and anti-ERK1/2 (1:1000, antibody #05-1152, Millipore, Billerica, MA, USA). The secondary 

antibody was goat anti-rabbit IgG-HRP conjugate (antibody #170-6515, Bio-Rad, Hercules, CA, 

USA).  

 

Targeting vector construction 

 To generate the downstream chromosomal (DCA) arm, a 6.7 kb DNA fragment starting 1 

kb upstream of exon 3 was amplified by PCR using the Expand Long Template PCR System 

(Roche) from 129SvEv genomic DNA using primers incorporating 5’ XmaI and 3’ NotI 

restriction enzyme sites (all primers listed in Table S6.1). The fragment was cloned in pGEM-T 

easy. The STOP codon in exon 3 was replaced with a ClaI restriction enzyme site by site-

directed mutagenesis. The ClaI-flanked C-tail coding sequence from the chicken Gnrhr (also 

used for the Flag-GnRHR-Ctail construct described above) was inserted, and correct orientation 
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was verified by sequencing. The whole DCA containing the chimeric exon 3 was ligated 

between the XmaI and NotI sites, 3’ of the Frt flanked neomycin (neo) selection cassette, in 

pKOII (901). We used a two-step process to generate the upstream chromosomal arm (UCA) and 

the “floxed” exon 3 regions. First, a genomic DNA fragment starting 1 kb upstream of exon 3 

and terminating immediately after the STOP codon in exon 3 was amplified by PCR using a 5’ 

primer introducing a XmaI restriction site and a loxP site, and a 3’ primer introducing a PmeI 

restriction site. This amplicon, along with a PmeI-XhoI fragment comprising the bovine growth 

hormone (BGH) polyA sequence (obtained by PCR from the pcDNA3.0 cloning vector) were 

ligated in a 3-part ligation between the XmaI and XhoI restriction sites of pBluescript II KS. To 

complete the UCA, a 3.6 kb fragment spanning exon 2 and terminating 1 kb upstream of exon 3 

(the position of the upstream loxP site) was amplified by PCR using primers incorporating 5’ 

KpnI and 3’ XmaI sites, and joined to the XmaI-XhoI construct (in pBluescript II KS) described 

above. The whole UCA was then ligated into the KpnI and XhoI restriction sites in the pKOII 

vector containing the DCA, 3’ of the negative selection cassette diphtheria toxin A (DTa). 

Sequencing was performed to ensure the integrity of the targeting vector and the absence of 

mutations in and around exons and splice-junctions (Genome Québec, Montreal, Canada). The 

targeting vector was linearized with KpnI, phenol-chloroform extracted, and resuspended at a 

final concentration of 1 μg/μl in Tris-EDTA. 

 

Targeting in ES cells and knock-in mouse generation 

Twenty-five μg of linearized targeting vector were electroporated into 10 million R1 ES 

cells (129/SvEv-derived) in triplicate, and each electroporated sample plated on primary mouse 

embryonic fibroblasts in two 10-cm dishes. The following day, culture media was supplemented 

with 200 μg/mL G418 for positive selection of clones incorporating the targeting vector. After 8 

days of selection, 420 clones were picked manually under a dissecting microscope, dissociated in 

trypsin, and transferred to individual wells of 96-well plates. Cells were cultured for 5 days and 

then split into three separate plates. Two of plates were frozen at -80°C after the addition of 10% 

DMSO. Cells in the remaining plate were grown to confluence. Genomic DNA was extracted, 

cleaned with a series of 75% ethanol washes and digested overnight with XmaI. Homologous 

recombination events were screened by Southern blot using sequential hybridization with 5’ and 
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3’ probes external to the homology arms (see Table S6.1 for the primers used to generate the 

probes). C57BL/6J blastocysts were microinjected with cells from two correctly targeted clones 

and transferred into pseudopregnant mothers at the Transgenic Core Facility of the Life Science 

Complex at McGill University. Resulting chimeric males were bred to C57BL/6J females and 

germline transmission of ES cell-derived DNA monitored by coat color. Brown pups were 

genotyped by PCR for the presence of the modified allele (denoted Gnrhr
CtailfloxNeo

) and later 

confirmed by Southern blot. The neo cassette was removed in vivo by breeding Gnrhr
CtailfloxNeo/+

 

mice to “flp deleter” mice (B6.129S4-Gt(ROSA)26Sor
tm1(FLP1)Dym

/RainJ, obtained from The 

Jackson Laboratory (902)). The resulting Gnrhr
Ctailflox/+

 mice were bred to EIIa::Cre transgenic 

mice (B6.FVB-Tg(EIIa-cre)C5379Lmgd/J, obtained from the Jackson Laboratory (903)) to yield 

Gnrhr
Ctail/+

 mice. Experimental (Gnrhr
Ctail/Ctail

) and control littermates (Gnrhr
+/+

) mice were then 

obtained by crossing heterozygotes. Mice were maintained on a 12 hours light/dark cycle (lights 

on: 7 a.m.; lights off: 7 p.m.). All animal experiments were performed in accordance with 

institutional and federal guidelines, and approved by the McGill University Institutional Animal 

Care and Use Committee (protocol #5204).  

 

RT-PCR 

 Pituitaries from adult (> 8-week-old) male mice were quickly dissected and immediately 

frozen on dry ice. Total RNA was isolated using TriZol (Invitrogen) and quantified using a 

nanodrop spectrophotometer. One μg of RNA was treated with 1 U of RQ1 DNase I (Promega) 

for 30 min at 37°C. The RNA was incubated 100 µg of random primers for 10 min at 70°C. 

First-strand cDNA synthesis was then performed at 37°C for 60 min and 70°C for 5 minutes in a 

40 μl reaction containing 100 U of MMLV-RT, 20 U of RNAsin, 400 μM dNTPs. and 1X 

MMLV-RT buffer. One μL of cDNA was then used for PCR using the primers listed in Table 

S6.1. Each 50 μl PCR reaction contained 1X Green GoTaq Flexi Buffer (Promega), 1.5mM 

MgCl2, 200 µM dNTPs, 5% DMSO, 400mM of each primer and 2.5U of GoTaq Flexi 

polymerase (Promega). The PCR cycle was: 5 min at 95°C, 35 cycles of (30 sec at 95°C, 30 sec 

at 60°C and 1 min at 72°C), and 10 min at 72°C.  
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Puberty, estrous cyclicity, and fertility assessment 

 Puberty onset was determined by daily examination of vaginal opening starting from 

weaning (postnatal day 21). For estrous cyclicity assessment, vaginal smears were collected daily 

(~ 10 a.m.) for at least three consecutive weeks starting at postnatal day 50, using a cotton swab 

wetted with sterile saline. Cells were smeared on glass slides, stained with 0.1% methyl blue in 

saline, and examined by light microscopy. Stages were assigned following published guidelines 

(829). Fertility was monitored by pairing individual 10 week old females with age-matched 

control C57BL/6J male mice for a period of 6 months. Starting from day 20 after pairing, cages 

were inspected daily for the presence of newborn pups. As soon as a litter was observed, pups 

were carefully counted and placed back in the cage. Pups were separated from the mother 15 

days after birth to avoid interference with the subsequent litter.  

 

Reproductive organ dissection and blood collection 

 Mice were euthanized with CO2 and blood collected by cardiac puncture. Blood was left 

to clot at room temperature for 20 min and spun at 3000 x g for 10 min. Serum supernatant was 

recovered and frozen at -20°C until analysis. Seminal vesicles, testes, uteri and ovaries were 

dissected and weighted on a precision balance. 

 

Ovariectomy and experimental LH surge induction 

 Ovariectomy and estrogen replacement were performed with modifications of published 

protocols (904, 905). For ovariectomy (“day 0”), mice were injected subcutaneously with 5 μg/g 

body weight with carprofen and deeply anesthetized using isoflurane (Abbott Laboratories, 

Abbott Park, IL, USA). The back skin was shaved and cleaned, and a single midline incision was 

performed. Small bilateral incisions were made in the muscle layer, through which the ovaries 

and tip of the uterine horns were exposed. The ovaries were removed by cauterization at the level 

of the oviduct, and the incisions were closed using Vicryl sutures (Ethicon, Blue Ash, OH, 

USA). A subcutaenous pocket was created rostral to the mindline skin incision by separating 

tissues using a haemostat. Alzet osmotic minipumps (model 1007D, Durect, Cupertino, CA, 
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USA) filled with a 7.5 ng/μl 17β-estradiol (Sigma) in 1X phosphate-buffered saline (prepared 

from a solution of 750 ng/μl 17β-estradiol dissolved in ethanol) were implanted in the pocket. 

Topical carprofen was applied and the skin incision closed with surgical wound clips (Reflex 7, 

CellPoint Scientific, Gaithersburg, MD, USA). The animals were left to recover on a heating 

pad. Mice received carprofen (5 μg/g body weight) on the morning of day 1 and day 2 after 

ovariectomy. On day 2, 50 μl of blood was collected by submandibular venipuncture at 11 a.m., 

4 p.m., and 6 p.m. Terminal blood collection (by cardiac puncture) was performed at 8 p.m (1 

hour after lights off). Serum (approximately 20-25 μl) was isolated and stored as above. LH and 

FSH multiplex ELISA assays were performed at the Ligand Assay and Analysis Core of the 

Center for Research in Reproduction at the University of Virginia (Charlottesville, Virginia).  

 

Statistical analysis 

Estrous cycle and fertility parameters, reproductive organ weights and serum hormones 

were analyzed using unpaired t-tests. LH levels at 11 a.m. and 8 p.m. in individual animals were 

compared with paired t-tests. Western blot quantification data were analyzed by separate one-

way ANOVAs on the “Flag-GnRHR” and “Flag-GnRHR-Ctail” conditions, followed by 

Dunnett’s post-hoc test to compare all groups with the “no ligand” condition. Statistical analysis 

was performed using GraphPad Prism 5 or Systat 10.2. p < 0.05 was considered statistically 

significant. 
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Results 

Addition of a C-terminal tail to the murine GnRHR decreases GnRH-induced ERK1/2 

phosphorylation  

 To probe the functional significance of the absence of a C-tail on mammalian GnRHRs, 

we first set out to identify a species whose GnRHR C-tail could modify the signaling properties 

of the murine GnRHR in response to agonist. We selected the domestic chicken (Gallus gallus) 

for several reasons. First, birds are the vertebrates that are evolutionarily most closely related to 

mammals (906). Second, the genome of the chicken has been fully sequenced, and the Gnrhr 

gene characterized (907, 908). Third, chickens generate shorter and shallower GnRH surges than 

mammals (388, 389). Finally, addition of the chicken GnRHR C-tail to the human GnRHR 

dramatically accelerates the receptor’s internalization kinetics upon agonist stimulation in 

heterologous cells (384). However, the effects of fusing the chicken C-tail to the closely related 

murine GnRHR had not been investigated.  

ERK1 and 2 are rapidly phosphorylated after GnRH treatment and are absolutely required 

for GnRH-stimulated LH synthesis in mice (468). We assessed the amplitude and kinetics of 

ERK1/2 activation after GnRH stimulation of heterologous CHO cells ectopically expressing 

Flag-tagged wild-type murine GnRHR or a Flag-tagged chimera of the murine GnRHR fused to 

the chicken GnRHR C-tail. The chimeric GnRHR was expressed to a similar level as the wild-

type receptor (Fig. 6.1A and S6.1A-B). In several independent experiments (Fig. 6.1A and 

S6.1A-C), GnRH rapidly (within 5 min.) stimulated ERK1/2 phosphorylation in cells transfected 

with either the wild-type or the chimeric GnRHR (lanes 2 and 9 in Fig. 6.1A and S6.1A-C; 

quantification in Fig. 6.1B). In the absence of transfected receptors, GnRH did not induce 

ERK1/2 phosphorylation (data not shown). In cells transfected with the wild-type GnRHR, 

phospho-ERK1/2 remained elevated for at least 4 h after ligand treatment (lanes 3-6 in Fig. 6.1A 

and S6.1A-C; quantification in Fig. 6.1B). In contrast, in cells expressing the chimeric GnRHR, 

phospho-ERK1/2 returned to baseline levels 1-2 hours after GnRH treatment (lanes 10-13 in Fig. 

6.1A and S6.1A-C; quantification in Fig. 6.1B). Thus, addition of the chicken GnRHR C-tail to 

the murine GnRHR accelerates ERK1/2 signal termination following receptor activation.  
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Generation and validation of a conditional knock-in mouse model expressing murine/chicken 

chimeric GnRHR 

 The results above are consistent with earlier in vitro observations showing that the 

addition of various C-tails modifies mammalian GnRHR signaling properties (380, 381, 383-

385, 393). Neither those nor our analyses, however, provide insight into the functional 

consequences of C-tail attachment in vivo. To address this shortcoming, we generated a novel 

conditional knock-in mouse model. Specifically, we modified the endogenous murine Gnrhr 

gene on Chr. 5 in embryonic stem (ES) cells. We flanked the terminal exon (exon 3) of Gnrhr 

with loxP sites and introduced an additional, but modified form of exon 3 downstream (3’) of the 

second loxP site (Fig. 6.2A). The modified exon contained the murine exon 3 coding sequence 

with the transcription termination codon removed and the coding sequence for the chicken 

GnRHR C-tail fused in-fame. In principle, this allele allows conditional removal of the 

endogenous exon 3 by the action of Cre recombinase, and its replacement with the modified 

exon 3. To prevent transcriptional read-through after the endogenous exon 3, we also introduced 

a strong transcriptional STOP cassette (from the bovine growth hormone gene) immediately after 

the STOP codon in the endogenous exon 3 (Fig. 6.2A). Two of 420 ES clones surviving 

positive/negative selection showed correct targeting, as revealed by Southern blotting with both 

5’ and 3’ probes. Both clones were injected into blastocysts and generated high-grade chimeras; 

one chimera transmitted the modified allele (Gnrhr
CtailfloxNeo

) via the germline when crossed to 

C57BL/6 mice (Fig. 6.2B).  The neomycin resistance cassette (Neo+), which was flanked by Frt 

sites, was excised in vivo by breeding Gnrhr
CtailfloxNeo/+

 mice to “deleter” mice expressing the 

flippase recombinase (902), yielding Gnrhr
Ctailflox/+

 mice.    

 To determine whether these mice could produce the chimeric GnRHR following Cre-

mediated recombination, we crossed Gnrhr
Ctailflox

 animals with the EIIa::Cre deleter strain, 

which expresses Cre early in embryonic development (903) (Fig. 6.2A). The resulting 

Gnrhr
Ctail/+

 mice were then interbred to produce Gnrhr
+/+

 (control), Gnrhr
Ctail/+

, and 

Gnrhr
Ctail/Ctail

 (experimental) mice. Genotyping (Fig. S6.2A) indicated that Gnrhr
Ctail/Ctail

 animals 

were obtained at a normal mendelian ratio (Fig. S6.2B). In RT-PCR analyses, we observed wild-

type Gnrhr transcript in Gnrhr
+/+

 and Gnrhr
Ctail/+

 pituitaries (Fig. 6.2C, top panel, lanes 2-3). As 

expected, the chimeric transcript was observed in Gnrhr
Ctail/+

, but not in Gnrhr
+/+

 pituitaries 
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(Fig. 6.2C, bottom panel, lanes 2-3). No PCR product was observed when mock reverse-

transcribed (“RT-”) samples were used as templates (Fig. 6.2C, top and bottom panels, lanes 4-

5). Thus, the Gnrhr
Ctail

 allele encodes the chimeric transcript. 

Female Gnrhr
Ctail/Ctail

 mice display normal puberty onset, but disrupted estrous cyclicity  

 To probe the potential effects of the Gnrhr
Ctail

 modification on reproductive axis 

function, we first examined vaginal opening, a marker of puberty onset (829, 909), in a cohort of 

control and experimental females. The mean day of vaginal opening did not differ significantly 

between genotypes, suggesting that puberty onset is unaffected by the Gnrhr
Ctail

 allele (Fig. 

6.3A). Next, we assessed estrous cyclicity by examining vaginal cytology in Gnrhr
Ctail/Ctail

 and 

Gnrhr
+/+

 control littermates over a period of at least three weeks, starting at seven weeks of age. 

Mice of both genotypes exhibited cytology characteristic of all estrous cycle stages (Fig. 6.3B). 

However, most Gnrhr
Ctail/Ctail

 females exhibited prolonged periods of vaginal cornification 

(indicative of estrus), ranging from three to 15 consecutive days (Fig. 6.3B). A total of 26 such 

events were observed in 12 of 15 Gnrhr
Ctail/Ctail

 mice, whereas only three cases (once in each of 

three mice) were seen in 10 control mice. As a result, Gnrhr
Ctail/Ctail

 mice had reduced estrous 

cycle frequency (Fig. 6.3C) and spent significantly more time in estrus (and less in the other 

stages) than control mice (Fig. 6.3D). This phenotype, though even more pronounced, was also 

observed in older females retired from breeding studies (see below). Indeed, four of seven 

females assessed at that age (9-month-old) exhibited persistent vaginal cornification, lasting from 

one to three months uninterrupted (as long as we assessed them). This was not observed in any of 

the controls. Together, these data suggest that estrous cyclicity is perturbed in Gnrhr
Ctail/Ctail 

mice.  

Gnrhr
Ctail/Ctail

 females are subfertile and have reduced ovarian weight  

 To assess the impact of the Gnrhr
Ctail

 modification on fertility, we entered Gnrhr
Ctail/Ctail 

and control females into 6 month long breeding trial with wild-type C56BL/6J male. Whereas 

mice from both genotypes were fertile, the Gnrhr
Ctail/Ctail

 females produced significantly smaller 

litters than control littermates (Fig. 6.3E). This phenotype varied in severity, but all Gnrhr
Ctail/Ctail 

females delivered litters of a smaller average size than all but one of the control females (Fig. 

S6.3A). Furthermore, the significant difference between genotypes was preserved even if one 
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infertile Gnrhr
Ctail/Ctail 

mouse and another that delivered only a single pup were removed from the 

analysis (Fig. S6.3B). The inter-litter interval was not significantly different between genotypes 

(Fig. S6.3C). Analysis of the reproductive organs of retired breeders revealed significantly 

smaller ovaries in Gnrhr
Ctail/Ctail 

females compared with controls (Fig. 6.4A). Uterine weights did 

not differ significantly between the two groups, although the four Gnrhr
Ctail/Ctail  

females that 

were in persistent estrus had relatively bigger uteri than other mice (Fig. 6.4B).  Ovaries from 3-

6 month old females, removed at ovariectomy (see below), were also smaller in Gnrhr
Ctail/Ctail 

 

compared with control mice (Fig. S6.3D).  

Gnrhr
Ctail/Ctail

 males have reduced testes weights 

 Although the Gnrhr
Ctail

 modification was predicted to disrupt GnRHR function only in 

the context of persistent GnRH stimulation (i.e., at the time of the GnRH/LH surge), we also 

examined reproductive axis activity markers in Gnrhr
Ctail/Ctail

 males. The external genitalia of 

Gnrhr
Ctail/Ctail 

males appeared normally masculinised at weaning and in adulthood, indicative of 

normal reproductive maturation (data not shown). Next, we examined the reproductive organs of 

adult (10-week-old) Gnrhr
Ctail/Ctail

 males. Compared with control or heterozygous littermates, 

Gnrhr
Ctail/Ctail

 mice showed a significant reduction in testicular weight, though the decrease was 

quantitatively small (~ 13%) and not fully penetrant (Fig. 6.4C). However, seminal vesicle 

weights were normal, suggesting a normal testosterone tone (Fig. 6.4D). Given that mice with 

null mutations in Gnrh or Gnrhr display profound hypogonadism (62, 892), these observations 

suggest the presence of a functional GnRH signaling system in Gnrhr
Ctail/Ctail

 males.  

Impaired LH surge generation Gnrhr
Ctail/Ctail

 females  

 To evaluate whether gonadotrope cells expressing the chimeric GnRHR are impaired in 

their capacity to respond to persistent GnRH stimulation, we assessed the ability of Gnrhr
Ctail/Ctail

 

and control females to generate LH surges. To do so, we employed a well-established paradigm 

of experimentally-controlled LH surge generation (904, 905). In ovariectomized mice receiving 

estrogen replacement, robust LH surges are observed around the time of lights off for several 

consecutive days (904). Therefore, we ovariectomized Gnrhr
Ctail/Ctail

 and control females, and 

implanted them subcutaneously with osmotic minipumps delivering a high dose (90 ng/day) of 

estrogen (Fig. 6.5A). On the second day after ovariectomy, we collected small volumes of blood 
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for serum LH analysis from the animals at 11 a.m. (baseline) and at the presumed time of the 

surge in late afternoon/evening (Fig. 6.5A). Surprisingly, Gnrhr
Ctail/Ctail

 mice had significantly 

higher baseline LH levels compared with controls (Fig. 6.5Bi). Closer inspection of the data 

indicated that this was attributable to 5 Gnrhr
Ctail/Ctail

 animals that displayed much higher LH 

levels than the 5 other Gnrhr
Ctail/Ctail

 and all the control mice (Fig. 6.5Bii).  Previous reports 

using a similar paradigm have reported a measurable LH surge before lights off (314, 904). In 

our experiments, most animals in both groups failed to display a clear LH surge 3 h and 1 h 

before lights off (data not shown). However, LH levels measured 1 h later (8 p.m.) were 

significantly higher than at 11 a.m in both Gnrhr
Ctail/Ctail

 and control mice (Fig. 6.5Bii/iii). The 

absolute LH levels did not differ between genotypes at 8 p.m. (Fig. 6.5Biv). However, when 

normalized to their individual baseline (11 a.m.) circulating LH levels, the mean magnitude of 

LH “surges” generated by Gnrhr
Ctail/Ctail

 mice was considerably smaller than controls (about 4-

fold - Fig. 6.5Bv). This may have been explained in large part by the 5 Gnrhr
Ctail/Ctail

 mice that 

had high LH levels at 11 a.m. (Fig. 6.5Biii). Unexpectedly, in the same animals, serum FSH 

levels were markedly lower in Gnrhr
Ctail/Ctail

 animals compared with controls at all time points 

(Fig. 6.5Ci/ii). Together, these results suggest that Gnrhr
Ctail/Ctail

 mice are impaired in their 

ability to generate LH surges and have defective FSH synthesis. 
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Discussion 

 GnRH signaling is required for gonadotropin synthesis and release, and fertility in 

mammals, including humans (7, 8, 62, 63, 846, 848, 892). In females, GnRH stimulates the LH 

surge that drives ovulation at mid-cycle. The functional effects of the lack of a C-tail on the 

mammalian GnRHR have been extensively documented in vitro (380, 381, 383-385, 393). 

However, the physiological role of this feature, unique among all known GPCRs, remains 

unknown. It has been proposed that slow desensitization of the GnRHR due to the absence of the 

C-tail enables the generation of an LH surge (390). Before the present study, this prediction 

remained untested. Here, by generating a new knock-in mouse line, we show that addition of a 

C-tail to the endogenous GnRHR may impair, but does not preclude, LH surge generation and 

fertility in female mice.  

 Both male and female Gnrhr
Ctail/Ctail

 mice show apparently normal reproductive axis 

maturation and puberty. Because inactivating mutations in Gnrh or Gnrhr cause complete failure 

of reproductive maturation in mice (62, 892), addition of a C-tail to the murine GnRHR does not 

prevent GnRH signaling. That said, GnRH action is altered in these mice. Gnrhr
Ctail/Ctail

 females 

display abnormal estrous cyclicity, characterized by prolonged periods of estrus. The 

physiological basis for this phenotype remains unclear. Intriguingly, half of the Gnrhr
Ctail/Ctail

 

females subjected to E2-induced LH surge experiments had higher baseline LH levels than 

controls. In principle, this could be due to ineffective E2 replacement by the osmotic minipumps 

in this subset of mice, a possibility that can be addressed my measuring their serum E2 levels. 

Alternatively, this could reflect abnormal estrogen feedback on the hypothalamus or pituitary in 

Gnrhr
Ctail/Ctail

 mice. It is also possible that these animals just happened to be sampled at the time 

of an LH pulse.  It will be important to verify whether gonadotropin levels are also dysregulated 

in intact Gnrhr
Ctail/Ctail

 animals. In E2-induced LH surge experiments, most Gnrhr
Ctail/Ctail

 mice 

appeared able to generate an LH surge. Consistent with these observations, Gnrhr
Ctail/Ctail

 females 

are fertile, indicating that they secrete sufficient LH to stimulate ovulation. However, the 

amplitude of the LH surges generated by Gnrhr
Ctail/Ctail

 mice appeared diminished compared with 

controls. Because the LH levels measured at one time point (8 p.m.) may not represent the peak 

of the surge, the extent by which the LH surge is disrupted in Gnrhr
Ctail/Ctail

 females is unclear. 

Could impaired LH surges account for the subfertility of Gnrhr
Ctail/Ctail

 females? A shallow LH 
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surge is sufficient for normal fertility in mice (314). However, how long the surge must last is 

somewhat unclear. It seems that rodents require a surge lasting at least 1 h, but less than 2 h, 

which is shorter than the duration of the endogenous surge (325, 326). That said, the surge may 

need to last longer if its amplitude is decreased. Unfortunately, the results of our E2-induced LH 

surge experiments do not reveal whether the duration of the LH surge is altered in Gnrhr
Ctail/Ctail

 

females. Our in vitro experiments suggest that addition of the C-tail to the GnRHR affects both 

the amplitude and the duration of GnRH-induced ERK1/2 signaling. It is conceivable that 

Gnrhr
Ctail/Ctail

 mice may exhibit both shallower and shorter LH surges than control. This, in turn, 

may drive the ovulation of fewer oocytes.  

 Intriguingly, in E2-induced LH surge experiments, Gnrhr
Ctail/Ctail

 females had markedly 

lower FSH levels compared with controls. In rats, the immediate post-OVX rise in serum FSH is 

GnRH-independent, but is attenuated by a GnRH antagonist 2 days later (835). Therefore, lower 

FSH levels in ovariectomized Gnrhr
Ctail/Ctail

 females may reflect impaired GnRH signaling. It 

will be important to measure FSH levels in intact Gnrhr
Ctail/Ctail

 females, as lower FSH could 

contribute to the subfertility phenotype. However, the secondary FSH surge, which determines 

the number of ovarian follicles growing to the pre-ovulatory stage, depends on activins (or 

related ligands) rather than GnRH (203, 570). Decreased circulating FSH levels could also 

contribute to the reduction in testicular weights in Gnrhr
Ctail/Ctail

 males.  

Based on the available data, it is difficult to identify the precise molecular defect(s) 

causing the observed phenotypes. The C-tail functions first and foremost as a mediator of 

homologous desensitization, but has other roles as well. For example, deletion of the CXCR4 C-

tail affects both ligand-induced internalization and G protein coupling in mice (377). In other 

GPCRs, residues in the C-tail are required for proper maturation and trafficking after receptor 

synthesis in the endoplasmic reticulum (910). At present, it is unknown whether the addition of 

the chicken GnRHR C-tail alters the signaling properties of the murine GnRHR independently of 

its effect on ligand-induced internalization. There might be reduced receptor expression at the 

cell surface of gonadotropes; for example, because of enhanced constitutive internalization, or 

defects in recycling to the membrane or in anterograde trafficking after de novo synthesis. Also, 

we cannot rule out effects of the targeted modification on expression of the Gnrhr gene. To 
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clarify these issues, it will be important to assess the pituitary mRNA and protein expression of 

the chimeric GnRHR, as well as GnRH binding to pituitary membranes from Gnrhr
Ctail/Ctail

 mice.   

The absence of a C-tail in all mammalian GnRHRs, coupled with its presence in non-

mammalian species suggests that it underlies divergent reproductive processes between these 

animal classes. The loss of the C-tail may have been caused by a spontaneous nonsense mutation 

at the end of the coding sequence for the last transmembrane domain in the Gnrhr gene. Such a 

mutation could have been positively selected because it increased responsiveness of the pituitary 

gonadotropes to GnRH, and hence conferred robustness to the reproductive system. Over time, 

mammals may have become more reliant on this evolutionary adaptation. For example, a larger 

and/or longer LH surge may have become required for successful ovulation. That said, it is clear 

that the simple addition of a C-tail to the mammalian GnRHR is insufficient to completely block 

reproduction – at least in mice. In the evolutionary time since mammals lost their GnRHR C-tail, 

the Gnrhr genes in other species have undergone changes as well. Thus, it is likely that the 

chicken Gnrhr has evolved in parallel, while maintaining the reproductive requirements of this 

species. Because chickens do generate LH surges, it would be interesting to study the functional 

consequences of modifying the murine GnRHR with the C-tail from other species that may have 

even lower LH requirements for ovulation, such as amphibians or fish. 

In conclusion, we show that the addition of a C-tail to the mouse GnRHR alters its 

signalling properties in vitro and reproductive physiology in vivo. Notably, females expressing 

the chimeric receptors may be impaired in their ability to mount normal LH surges, have 

defective FSH synthesis, display abnormal estrous cycles, and are subfertile. Thus, the loss of a 

C-tail on the GnRHR, a unique property among GPCRs, appears to have been co-opted during 

evolution to confer robustness to the mammalian reproductive system. 
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Figure legends 

 

Figure 6.1: Addition of a C-tail to the murine GnRHR impairs ERK1/2 activation. A) 

Representative western blot analysis of whole cell lysates from CHO cells transfected with the 

wild-type Flag-tagged murine GnRHR (lanes 1-6) or the chimeric murine/chicken GnRHR (lanes 

8-13). Cells were treated for 5 min (lanes 2 and 9), 1 h (lanes 3 and 10), 2 h (lanes 4 and 11), 4 h 

(lanes 5 and 12) or 6 h (lanes 6 and 13) with 60 nM GnRH, or left untreated (lanes 1 and 8). The 

blots were probed with anti-phospho-ERK1/2 (top) or anti-Flag (bottom) antibodies. The smeary 

pattern detected with the Flag antibody is expected because of receptor glycosylation. B) 

Quantification of the intensity of the phospho-ERK1/2 signal, relative to the Flag signal 

(indicative of the level of receptor expression) in the blot shown in A) and in supplementary 

Figs. S1A-B. Bars represent the means (+SEM). N=3 independent experiments for the “no 

ligand”, “5 min”, “1h” and “2h” time points, and N=2 for the “4h” and “6h” time points (which 

were absent in the experiment shown in Fig. S1B) *: significantly different (p<0.05) from the 

“no ligand” condition.  

 

Figure 6.2: Generation and validation of Gnrhr
Ctail/Ctail 

conditional knock-in mice. A) Targeting 

strategy. The wild-type locus (i), the targeting construct (ii), the targeted locus (iii), and the 

outcomes of Flp-mediated (iv) and Cre-mediated recombination (v) are shown. Exons are shown 

as white boxes, with their corresponding numbers above. The asterisks (*) indicate STOP 

codons. “X” refer to XmaI restriction sites. The positions of the 5’ and 3’ Southern blot probes 

are shown below the wild-type locus (i) and targeted allele (iii). The sizes of the XmaI restriction 

fragments detected by the 5’ and 3’ Southern blot probes are indicated above the wild-type locus 

(i) and below the targeted allele (iii). The loxP sites are indicated with open triangles, and the Frt 

sites with black (leftward-facing) triangles. “3+C-tail”: chimeric murine exon 3 fused to the 

coding sequence of the chicken GnRHR C-tail.  “pA”: bovine growth hormone polyA signal 

sequence. “neo”: neomycin resistance cassette. “DTa”: diphtheria toxin A chain negative 

selection marker. B) Southern blot analysis with the 5’ and 3’ probes depicted in A) on genomic 

DNA obtained from a wild-type mouse (Gnrhr
+/+

) and a mouse carrying the targeted allele 

(Gnrhr
CtailfloxNeo/+

).  C) PCR analysis on reverse-transcribed (RT+; lanes 2-3) or mock reverse-

transcribed (RT-; lanes 4-5) RNA from Gnrhr
+/+

 (lanes 2 and 4) and Gnrhr
Ctail/+

 (lanes 3 and 5) 
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adult male mouse pituitaries. PCR was performed with primers amplifying the Gnrhr
+
 transcript 

(top panel) or the Gnrhr
Ctail

 transcript (bottom panel).  Shown on top are schematics of the 

relevant portions of the Gnrhr alleles, using the same symbols as in A).  

 

Figure 6.3: Abnormal estrous cyclicity and subfertility in female Gnrhr
Ctail/Ctail

 mice. A) Day of 

vaginal opening in Gnrhr
+/+

 and Gnrhr
Ctail/Ctail

 females (postnatal day 21 is the day of weaning). 

Each dot represents an individual animal; means are shown with horizontal bars. n.s.: non 

significant. B) Representative estrous cyclicity profiles from three Gnrhr
+/+

 (left) and three 

Gnrhr
Ctail/Ctail

 females. Each dot represents one day.  C) Quantification of the estrous cycle 

frequency in Gnrhr
+/+

 and Gnrhr
Ctail/Ctail

 females. *: p<0.05. D) Quantification of the proportion 

of time spent in each estrous cycle stage in Gnrhr
+/+

 and Gnrhr
Ctail/Ctail

 females. In panels B and 

D, M/D: metestrus/diestrus. P: proestrus. E: estrus. *: p<0.05. E) Average litter size delivered by 

Gnrhr
+/+

 and Gnrhr
Ctail/Ctail

 females over a 6 month breeding trial. *: p<0.05. 

 

Figure 6.4: Reduced ovarian and testicular weights in Gnrhr
Ctail/Ctail

 mice. A-B) Ovarian (A) and 

uterine (B) weights in Gnrhr
+/+

 and Gnrhr
Ctail/Ctail

 retired breeders (10-month-old), normalized to 

body weights (which did not differ). Each dot represents an individual animal. Horizontal bars 

show means. The four Gnrhr
Ctail/Ctail

 mice in persistent estrus are indicated. *: p<0.05. n.s.: non 

significant.  C-D) Testicular (C) and seminal vesicle (SV) (D) weights in 10-week-old Gnrhr
+/+

, 

Gnrhr
Ctail/+

 and Gnrhr
Ctail/Ctail

 males, normalized to body weights (which did not differ). Each dot 

represents an individual animal. Horizontal bars show means. *: p<0.05. n.s.: non significant. 

 

Figure 6.5: Impaired LH surge generation in Gnrhr
Ctail/Ctail

 females. A) Schematic representation 

of the ovariectomy (OVX) and estrogen (E2) replacement procedure (left) and experimental 

protocol (right) for LH surge induction and assessment. B) i) Mean (+SEM) serum LH levels at 

11 a.m. in Gnrhr
+/+

 (grey bars) and 10 Gnrhr
Ctail/Ctail

 mice (black bars) subjected to the OVX +  

E2 replacement paradigm described in A. ii-iii) Serum LH levels at 11 a.m. and 8 p.m. in 

individual in Gnrhr
+/+

 (ii) and Gnrhr
Ctail/Ctail

 (iii) mice. Connecting lines link the data points from 

each animal. iv) Mean (+SEM) serum LH levels measured at 8 p.m. in the same animals at in i-

iii). v)  LH surge magnitude, computed as the ratio of serum LH levels at 8 p.m. to the levels at 

11 a.m. in each animal. *: p<0.05. n.s.: non significant. N=10 mice per group. C) Serum LH 
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levels were measured at 11 a.m. (i) and 8 p.m. (ii) the same animals as in B). *: p<0.05. n.s.: non 

significant. 

 

Figure S6.1: Addition of a C-tail to the murine GnRHR impairs ERK1/2 activation. A) Western 

blot analysis of whole cell lysates from CHO cells transfected and treated as described in Fig. 

1A. B) Western blot analysis of whole cell lysates from CHO cells transfected as described in 

Fig. 1A and S1A, but treated for different periods of time: 5 min (lanes 2 and 9), 10 min (lanes 3 

and 10), 30 min (lanes 4 and 11), 1 h (lanes 5 and 12), 2 h (lanes 6 and 13) or left untreated 

(lanes 2 and 8). C) Western blot analysis of whole cell lysates from CHO cells transfected and 

treated as described in Fig. 1A and S1A. The blots were probed with anti-phospho-ERK1/2 (top) 

or anti-ERK1/2 (bottom) antibodies. The blots in A) and B) and the blot shown in Fig. 1A were 

used for the quantitative analysis shown in Fig. 1B.  

 

Figure S6.2: Gnrhr
Ctail/Ctail

 mice are obtained at the expected Mendelian ratio. A) Genotyping 

strategy to identify the Gnrhr
+ 

and Gnrhr
Ctail

 alleles. Top: schematic of the wild-type (Gnrhr
+
) 

and targeted (Gnrhr
Ctail

) alleles, along with the position of the genotyping primers (arrows) and 

the expected size of the amplicons. XmaI restriction sites (“X”), a loxP site (open triangle) and an 

Frt site (leftward-facing black triangle), remnant of the targeting and Flp/Cre-mediated 

recombination events, are shown in the Gnrhr
Ctail

 allele (see also Fig. 2A). Bottom: 

representative genotyping results from a litter of 10 pups obtained from a Gnrhr
Ctail/+

 X 

Gnrhr
Ctail/+

 cross (lanes 2-11). The genotypes are indicated above the gel image. Lane 1: ladder. 

B) Number, observed proportion (% observed) and expected proportion (% expected) of 

Gnrhr
+/+

, Gnrhr
Ctail/+

 and Gnrhr
Ctail/Ctail

 mice, from crosses of Gnrhr
Ctail/+

 X Gnrhr
Ctail/+

 parents, 

genotyped at weaning (postnatal day 21). 

 

Figure S6.3: Subfertility and reduced ovarian weights in Gnrhr
Ctail/Ctail

 females. A) Average litter 

size delivered by Gnrhr
+/+

 and Gnrhr
Ctail/Ctail

 females over a 6 month breeding trial. Each dot 

represents an individual female. These data are presented in bar graph format in Fig. 3E.  *: 

p<0.05. B) Same data as in A), but with one infertile Gnrhr
Ctail/Ctail

 female and one that delivered 

a single pup removed from the analysis. *: p<0.05. C) Inter-litter interval in Gnrhr
+/+

 and 

Gnrhr
Ctail/Ctail

 females during the 6 month breeding trial. n.s.: non significant. D) Ovarian weights 
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in Gnrhr
+/+

 and Gnrhr
Ctail/Ctail

 adult females (> 10-week-old) at ovariectomy. These ovaries were 

retrieved from females subjected to the LH surge induction protocol detailed in Fig. 5. Each dot 

represents an individual animal. Horizontal bars show means. *: p<0.05. 
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Primer Purpose Sequence

GnrhrCtail_geno_F genotyping 5’-CATGGAGATCCTTGCTGACA-3’

GnrhrCtail_geno_R genotyping 5’-CACCTGGGGGCTAGTCTGT-3’

Gnrhr_WTtranscript_ex3_F RT-PCR 5’-CTCGGCTGAGAACGCTAAAG-3’

Gnrhr_WTtranscript_ex3_R RT-PCR 5’-CCCATATATGAGTGGGTCGAA-3’

Gnrhr_Ctailtranscript_ex3_F RT-PCR 5’-TTCGCTACCTCCTTTGTCGT-3’

Gnrhr_Ctailtranscript_Ctail_

R

RT-PCR 5’-TGTTAACGGTTGTCCCATTG-3’

Gnrhr__UCA_F cloning 5’-CGGGGTACCTATAACTCATTAGCTGATTCAAACTT-

3’

Gnrhr_UCA_R cloning 5’-CGGCCCGGGCAGTTCTGACAGACTAGCCCCC-3’

Gnrhr_floxedregion_F cloning 5’-

CGGCCCGGGCGATAACTTCGTATAATGTATGCTATACG

AAGTTATCAGGATTCACCTCACCATGG-3’

Gnrhr_floxedregion_R cloning 5’-CGGGTTTAAACCTACAAAGAGAAATACCCAT-3’

Gnrhr_DCA_F cloning 5’-CGGCCCGGGCAGGATTCACCTCACCATGG-3’

Gnrhr_DCA_R cloning 5’-CGGGCGGCCGCAATTGAAGATCACAGTGTTTGGA-

3’

ChickenCtail_F cloning 5’-CGGATCGATCGTTTCGGGAGGACGTGCAA-3’

ChickenCtail_R cloning 5’-CGGATCGATTCAGCACACCGTGTTAACGG-3’

BGHpolyAtail_F cloning 5’-TAAGTTTAAACCGCTGATCAGC-3’

BGHpolyAtail_R cloning 5’-CGGCTCGAGCCATAGAGCCCACCGCATC-3’

Gnrhr_STOP-to-

ClaImut_sense

mutagenesis 5’-

TGCACCCACTCATATATGGGTATTTCTCTTTGATCGAT

GGAGACTACACAAGAACTCAGATAGAAATAAG-3’

Gnrhr_STOP-to-

ClaImut_antisense

mutagenesis 5’-

CTTATTTCTATCTGAGTTCTTGTGTAGTCTCCATCGAT

CAAAGAGAAATCACCATATATGAGTGGGTCGA-3’

Gnrhr expression vector_F cloning 5’-CGGAATTCGCTCACAATGCATCTCTTGAG-3’

Gnrhr expression vector_R cloning 5’-ACTCTAGATCTCCAAAGAGAAATACCCATATA-3’

Gnrhr_expression 

vector_STOP-to-

ClaImut_sense

mutagenesis 5’-

GACCCACTCATATATGGGTATTTCTCTTTGATCGATTA

GAGGGCCCTATTCTATAGTGTCACCTA-3’

Gnrhr_expression 

vector_STOP-to-

ClaImut_antisense

mutagenesis 5’-

TAGGTGACACTATAGAATAGGGCCCTCTAATCGATCA

AAGAGAAATACCCATATATGAGTGGGTC-3’

Gnrhr 5’ Southern probe_F Southern blot 5’-CTTCAACCCGCCCTCTAGT-3’

Gnrhr 5’ Southern probe_R Southern blot 5’-AGCCGGTCTAAGAATCCTCTC-3’

Gnrhr 3’ Southern probe_F Southern blot 5’-CAAAGTGCCCACAGATTTTG-3’

Gnrhr 3’ Southern probe_R Southern blot 5’-GCCTGGTGTTCTGAGAGACTG-3’

Table S6.1
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Chapter 7: general discussion 

 

The experimental work presented in this thesis provides new insights into the molecular 

mechanisms underlying GnRH and activin-regulated gonadotropin synthesis. Below, the 

implications of these results and some outstanding questions are discussed. In the first part of the 

thesis, I assessed the importance of some intracellular activin signaling components in regulating 

gonadotrope function, using conditional gene knockout in mice. The results show that Fshb 

expression, FSH synthesis and fertility do not require SMAD2 and the DNA-binding activity of 

SMAD3 (chapter 2), but are absolutely dependent on the individual and concerted actions of 

SMAD4 and FOXL2 (chapter 3). These observations extend previous in vitro data and establish 

SMAD4 and FOXL2 as critical regulators of Fshb transcription in vivo (see section 7.1.1.), a role 

which may be conserved in humans (see section 7.1.2.). The FSH-deficiency and hypogonadism 

phenotypes observed in mice lacking Smad4 and/or Foxl2 in gonadotropes are presumably 

caused by impaired signaling by activins or related ligands, which are yet to be precisely defined 

(see section 7.1.3.). Importantly, the results suggest that activin signaling is a least as important – 

if not more so – than GnRH in regulating FSH in vivo (see section 7.1.4.). Loss of Smad4 and 

Foxl2 may affect other aspects of gonadotrope function, but FSH-deficiency is clearly the main 

contributor to the hypogonadal phenotype (see section 7.1.5.). The second experimental part 

focused on elucidating the mechanisms underlying GnRH-regulated human LHB promoter 

activity, which appear to be conserved with other species (chapters 4). These results suggest a 

similar role for GnRH-induced LH synthesis in all mammals, which might be particularly 

important at the time of the pre-ovulatory LH surge in females (see section 7.2). By contrast, 

activin differentially modulate GnRH-induced mouse and human Lhb/LHB promoter activity 

(chapter 5), hinting at species-specific fine-tuning regulation of LH synthesis (see section 7.2). 

Finally, I studied the functional significance of a unique characteristic of the mammalian GnRH 

receptor – the lack of an intracellular C-terminal tail – in a new knock-in mouse model (chapter 

6). Mice expressing a chimeric receptor harboring the chicken GnRHR C-tail show female 

subfertility, and possible defects LH surge generation. These results suggest that the loss of a C-

tail might have conferred an evolutionary advantage to the mammalian reproductive system (see 

section 7.3).  
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7.1 Activin regulation of FSH synthesis 

7.1.1. SMADs and FOXL2 as master regulators of Fshb transcription 

 Gonadotropes lacking SMAD4 and FOXL2 show very little – if any – pituitary Fshb 

expression and FSH synthesis. Because the Gnrhr
GRIC

 allele is transcriptionally activated as early 

as E12.75 in mice (157), the gonadotropes of S4F2cKO animals lost SMAD4 and FOXL2 prior 

to their terminal differentiation. Thus, it is possible that SMAD4/FOXL2-deficient gonadotropes 

develop abnormally, precluding Fshb expression. If this is the case, the effect is very specific 

because robust LHβ expression remains. Nevertheless, it will be important to investigate whether 

SMAD4 and FOXL2 are required for Fshb expression during a defined developmental time 

window, or whether they are necessary for ongoing FSH synthesis throughout life. The fact that 

acute deletion of both factors blocks activin induction of Fshb transcription in primary pituitary 

cultures strongly supports the latter possibility. This prediction could be formally tested in vivo 

by selectively deleting the Smad4 and Foxl2 genes in adult animals. However, a mouse line 

enabling temporal control over Cre-mediated recombination in gonadotropes has yet to be 

described.      

 While FSHβ is markedly diminished or absent in the LHβ-positive gonadotropes of 

S4F2cKO mice, it is retained in some LHβ-negative cells. In principle, this could be due to a lack 

of Cre activity in some FSHβ-positive cells. However, in juvenile Gnrhr
GRIC

 mice, essentially all 

the FSHβ-positive cells show Cre activity (157). Accordingly, we found that Cre is expressed in 

all the remaining FSHβ-positive cells in adult S4F2cKO mice. Thus, rather than incomplete Cre-

mediated recombination, it seems more likely that there is a minor population of “FSHβ-only 

gonadotropes” in which SMAD4 and FOXL2 are not required for FSH synthesis. The existence 

of molecularly distinct populations of gonadotropes has been suggested by several observations 

(144, 157, 158). In particular, a small subset of gonadotropes retains intense FSHβ expression in 

juvenile Foxl2 knockout mice (though these cells are also LHβ-positive) (144). Also, pituitary 

cell ablation directed by an Lhx3 enhancer eliminates LHβ/FSHβ-double positive cells, while 

sparing the FSHβ-only cells (158). Thus, it is possible that FSHβ-only gonadotropes have 

distinct transcriptional requirements for Fshb expression, or do not respond to activins. The 

molecular basis for this heterogeneity would be an interesting focus for further investigation. 
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Nevertheless, it is clear that the vast majority of Fshb expression depend on SMAD4 and FOXL2 

in mice.  

7.1.2.Relevance of SMAD4/FOXL2 in the regulation of FSHB transcription in humans 

 Can the observations made in S2/3cKO, S4cKO and S4F2cKO mice be extended to 

humans? Several physiological and clinical observations support a role for the activin/inhibin 

system in FSH regulation in humans (e.g., (616, 617, 649, 911, 912)). However, activin 

regulation of the Fshb/FSHB promoter appears to differ significantly between species (203). 

Notably, the porcine and murine promoters are much more activin responsive than the human 

promoter in immortalized gonadotropes (676, 706). Indeed, the 8-bp SMAD binding element 

(SBE) in the proximal murine Fshb promoter is absent in humans, and its ectopic introduction in 

the human promoter increases activin responsiveness (676). The porcine promoter also lacks the 

8-bp SBE, yet is very activin responsive. This was the basis for the identification of the 

composite forkhead/SMAD binding sites that mediate activin induction of the porcine and 

murine Fshb promoters (678, 706, 708). Limited promoter-reporter studies suggest that FOXL2 

also regulates the human FSHB promoter (710). Indeed, mutation of two FOXL2 binding sites in 

the FSHB promoter (different than the composite elements found in the murine or porcine 

promoters) impairs basal and (weak) activin-stimulated transcriptional activation (710). Coupled 

with the fact that FOXL2 is expressed in human gonadotropes (855, 913), these observations 

suggest a possible role for FOXL2 (and perhaps SMADs) in human FSHB expression and FSH 

synthesis.  

FOXL2 mutations are found in humans with blepharophimosis-ptosis-epicanthus inversus 

syndrome (BPES), which is characterized by complex eyelid malformations, sometimes 

accompanied by premature ovarian failure (711). FSH levels appear normal – or even elevated – 

in BPES patients; however, those individuals almost invariably carry heterozygous mutations, 

and the few reported homozygous mutations produce proteins that retain some transcriptional 

activity (914-916). Furthermore, heterozygous loss of Foxl2 in the gonadotropes does not impair 

FSH synthesis in mice (716). Heterozygous germline mutations in SMAD4 cause juvenile 

polyposis syndrome (JPS), associated with pre-malignant growths (polyps) in the intestinal tract 

(917). No homozygous mutations have been reported, consistent with a requirement for SMAD4 

in early embryonic development (682). Thus, we cannot reach any definitive conclusions 
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regarding the role of SMAD4 or FOXL2 in human FSH synthesis from the described BPES or 

JPS patients. 

 Might the inter-species differences in activin regulation of Fshb/FSHB transcription 

explain evolutionary divergence in reproductive physiology? The selective FSH increase that 

drives ovarian follicle maturation - at estrus in rodents, following estrus in pigs, and at the 

beginning of the follicular phase in humans - is arguably of greater magnitude in mice and pigs 

compared to humans (243, 244, 918). Experimental (in mice and pigs) or correlative (in humans) 

evidence indicates that the selective FSH increase is activin-driven in all three species (570, 616, 

617, 919). FSH levels during the secondary surge correlate with the number of ovulated oocytes 

or pups delivered in mice and pigs (chapter 3 and (249, 918)). Similarly, there appears to be a 

dose-dependent effect of circulating FSH on the number of ovulated oocytes in humans: First, 

multiple pregnancies are observed in ~10% of women taking clomiphene, a drug designed to 

increase FSH levels in the follicular phase (55, 796). Second, administration of supra-

physiological doses of FSH in IVF or ovulation induction protocols drives the maturation of 

several (up to dozens) of preovulatory follicles (48). Thus, the interspecies differences in the 

magnitude of activin-dependent FSH surge may explain, at least in part, why mice and pigs 

deliver much larger litters (10 pups and more) than humans (typically a single baby). Taking all 

this evidence together, it is tempting to equate greater activin responsiveness of the Fshb 

promoter with greater FSH levels and higher number of follicles recruited per cycle. If this is 

true, the human FSHB gene should not be able to sustain normal FSH synthesis and fertility in 

mice. However, a human FSHβ transgene can fully rescue fertility in Fshb knockout females 

(920). This transgene comprises the region upstream of the transcription start site, that is 

regulated by SMADs and FOXL2 in other species, as well as the entire gene and some 3’ 

flanking sequence (921). Does this mean that human FSHB can be induced by activin signaling 

just as well as the mouse gene? Not necessarily. These animals carry multiple copies of the 

transgene (921), so it is possible that the fertility rescue occurs in the context of lower activin 

induction of a larger number of FSHB “genes”. The consequences of the lower activin 

responsiveness of the human FSHB gene, observed in vitro, on FSH synthesis in vivo might be 

best studied by generating knock-in mice carrying a “humanized” FSHB promoter. When 

coupled with cell-specific inactivation of SMAD proteins and/or FOXL2, such a model (or the 

transgenic rescue model mentioned above) could also be used to verify the requirement for 
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SMADs and FOXL2 in FSHB transcriptional regulation. In addition, the development of a 

human gonadotrope cell line, from a gonadotrope adenoma or immortalized primary 

gonadotropes, would be very valuable for these studies.  

7.1.3.Signaling pathways upstream of SMAD4 and FOXL2 

 A critical role for SMAD4 and FOXL2 in the regulation of FSH synthesis in vivo implies 

a requirement for activin/activin-related ligands, their cell surface receptors, and intracellular 

signaling mediators acting upstream of SMAD4 and FOXL2. However, their identities remain 

ill-defined. Perplexingly, while activins have been purified almost 30 years ago, it is still unclear 

whether they are actually required for normal FSH synthesis in vivo. Cultured pituitary cells 

produce one or many ligand(s) that stimulate FSH synthesis and secretion, and that are 

antagonized by inhibin, follistatin and a pharmacological inhibitor of ACVR1B/ACVR1C/ 

TGFBR1 (SB-431542) (572, 573, 596, 597, 651, 652). The source of the ligand(s) may be the 

gonadotropes themselves, because SB-431542 suppresses Fshb expression in isolated primary 

gonadotropes (X Zhou et al, unpublished observations). If so, the relevant ligand may be activin 

B, but not activin A or activin AB, as gonadotropes express the βB, but not the βA activin 

subunit (601, 644). In support of this possibility, an activin B bioneutralizing antibody 

suppresses FSH secretion by cultured pituitary cells (602) and circulating FSH levels in rats 

(603). However, the relevant ligand(s) regulating FSH, at least in vivo, are not necessarily 

activins. Indeed, mice with a targeted disruption of the gene encoding the activin βB subunit 

(inhbb) have normal FSH levels (604).  There are at least three possible explanations for this 

observation: First, the ligand(s) regulating FSH may come from other pituitary sources than the 

gonadotropes cells. Activin A and various members of the TGFβ superfamily (including several 

BMPs) are expressed in the pituitary (644). They may exert paracrine effects on gonadotropes 

and compensate for the absence of activin B. Second, the relevant ligand(s) could be derived 

from extra-pituitary sources. If the ligands are activins, they do not come from the gonads in 

females because simultaneous ablation of inhbb in the whole body and of the gene encoding the 

βA subunit (inhba) in the ovary causes increased FSH levels (605). Third, FSH synthesis may 

not require an extracellular activin/activin-related ligand at all. Activin signaling is thought to be 

important for the generation of the secondary FSH surge in rodents. However, in rats, the 

secondary FSH surge can be suppressed by a progesterone receptor antagonist (813-816). 
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Because SMADs and FOXL2 physically and functionally interact with the progesterone receptor 

(PGR) to activate Fshb transcription, their involvement in regulating FSH synthesis could be 

activin-independent (652, 819).  Alternatively, the secondary FSH surge may be induced by the 

synergistic actions of activin and progesterone signaling (652, 817).  

 Although it is formally possible that activin/activin-related ligands are not required for 

normal FSH synthesis, at least one key observation suggests an important role for ligand-

regulated signaling: mice lacking the activin type II receptor, ACVR2A, have clear FSH-

deficiency (643). That said, the reduction in circulating FSH levels in Acvr2a-null mice is 

apparently milder (50-60% in males and females (643, 727)) than in S4cKO (90% in males; 75% 

in estrus morning females) and S4F2cKO (97% in males; 80% in females) mice (chapter 3)). The 

milder phenotype observed in Acvr2a-null mice could be due to partial compensation by 

ACVR2B. Alternatively, the differences between the models may indicate that SMAD4 and 

FOXL2 have activin-independent roles in regulating FSH synthesis, as mentioned above. In any 

case, a role for ACVR2A in the regulation of FSH strongly suggests that a ligand is required. 

The question is: which one? No less than 19 TGFβ superfamily ligands can signal through 

ACVR2A (922). A ligand-independent function for ACVR2A in gonadotropes cannot be 

excluded, but such a mechanism of action has not yet been described.  

Because of the large number of ligands and the broad range of possible cellular source, it 

might be simpler to start by identifying the type I receptor(s) requirement in gonadotropes. As 

mentioned above, signaling through ACVR1B, ACVR1C and/or TGFBR1 is necessary for 

normal Fshb expression, at least in primary pituitary culture (651). Targeted inactivation of 

Acvr1b and Tgfbr1 result in embryonic lethality (653, 654), and their roles in gonadotropes have 

yet to be assessed. Global Acvr1c-null mice have normal pituitary Fshb expression and slightly 

reduced circulating FSH levels, but also show hypothalamic and ovarian defects (655). 

Therefore, gonadotrope ACVR1C plays only a minor role, at best, in the regulation of FSH 

synthesis. It is possible that the type I receptors may act redundantly, in which case genetic 

inactivation of either type I receptor alone may not have a major impact on FSH levels and 

fertility. The same could be true for the ligands. Ultimately, the complexity of ligand-receptor 

and receptor-receptor pairing in the TGFβ superfamily (625, 922) is likely to make their 

functional dissection in gonadotropes challenging. For example, if ACVR1B is required for FSH 
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synthesis, its ligand could be any of activin A, activin B, GDF1, GDF3, GDF9, GDF11, 

myostatin, BMP3B or nodal (922). If TGFBR1 is required, its ligand could be any of TGFβ1, 

TGFβ2, TGFβ3, GDF11 or myostatin (922). Redundancy between the receptors and between the 

ligands would further increase the number of possibilities. Nevertheless, as demonstrated in this 

thesis, double or even triple conditional genetic knockout, which may be necessary to assess type 

I receptor requirements, is feasible with the Gnrhr
GRIC

 allele. Then, assessing the expression 

pattern of the TGFβ superfamily members that can signal through this/these receptor(s) (for 

example, determining which ones are expressed in gonadotropes and in the pituitary) may help 

narrow down the list of possible ligand(s). 

In addition to the ligands and receptors, the identity of the intracellular signaling 

mediators acting upstream of SMAD4 and FOXL2 remains to be established. Based on several in 

vitro overexpression and knockdown studies, SMAD2 and SMAD3 are the most likely 

candidates (463, 539, 674-678). Of these two proteins, SMAD3 may play a more important role, 

at least in rodents (674, 677). Indeed, compared with SMAD2, depletion of endogenous SMAD3 

has a stronger effect on activin-induced murine Fshb promoter activation in immortalized 

gonadotropes (674). Furthermore, SMAD3, but not SMAD2, physically interacts with FOXL2 

(708, 709). Accordingly, SMAD3, but not SMAD2, synergistically activate the murine Fshb 

promoter with SMAD4 and FOXL2 (678).  The experiments performed in chapter 2 could not 

confirm the predicted requirement for SMAD3 due to incomplete inactivation of its function, so 

the development of a true conditional null allele of Smad3 will be required. Although SMAD2 

appears dispensable by itself, it will be interesting to see if it can compensate (partially or 

completely) for the loss of SMAD3. SMAD1/5/8, which regulate Fshb transcription in vitro 

(690-692), may compensate for the loss of SMAD2/3. However, since they do not interact 

physically or functionally with FOXL2 ((708) and N Zhu et al, unpublished), and do not usually 

signal downstream of ACVR1B, ACVR1C or TGFBR1, this seems unlikely. Overall, the 

identification of the ligand(s), type I receptor(s) and receptor-regulated SMAD protein(s) acting 

upstream of SMAD4 and FOXL2 should be considered high priority experiments that will 

provide key insights in the mechanisms underlying FSH synthesis.  

7.1.4. GnRH versus activin/activin-like regulation of FSH synthesis 
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 In addition to activin/activin-like signaling, there is little doubt that GnRH is important 

for normal Fshb transcription and FSH synthesis. This is perhaps best demonstrated by GnRH-

deficient hpg mice, which have low circulating FSH levels (62). In chapter 6, I observed that 

addition of a C-tail to the GnRHR blunts the ovariectomy-induced FSH increase in mice, most 

likely as a result of altered GnRH signaling. In fact, GnRH is widely considered to be the 

primary physiological regulator of FSH synthesis and release (842). In principle, the differential 

sensitivity of LH and FSH to GnRH pulse frequency could account for most of the selective FSH 

or LH synthesis: faster pulses favor LH at the time of the pre-ovulatory surge, and slower pulses 

favor FSH in estrus (or early follicular phase in humans) (842, 923). However, as outlined in the 

Introduction (section 3.2.1.), the GnRH pulse frequency may not be critical for FSH regulation.  

The data presented in this thesis support the view that activin/activin-like signaling (regardless of 

the ligand requirement) is at least as much – if not more – important than GnRH in the regulation 

of FSH synthesis. While the mechanisms underlying GnRH regulation of Fshb transcription 

remain obscure (203), there is no evidence that SMAD4 or FOXL2 play a role in this process 

(679, 706). Thus, their deletion likely affects only activin/activin-like signaling. GnRH 

stimulation appears insufficient to overcome the effect of loss of SMAD4 and FOXL2. What 

then is the role of GnRH in FSH synthesis? There are at least 3 possibilities: 1) GnRH is required 

for developmental activation of FSH synthesis; 2) a GnRH stimulus provides a baseline level of 

Fshb transcription, which is potentiated by activins; 3) GnRH pulses modulate the local synthesis 

of follistatin and/or activin subunits, permitting activin-driven selective FSH surges (924). 

Further investigations are required to discriminate between these possibilities, and to identify the 

intracellular signaling pathways engaged by GnRH to regulate Fshb transcription and FSH 

synthesis. 

7.1.5. SMADs and FOXL2 regulation of other gonadotrope genes 

Other than Fshb, S4cKO (chapter 3), F2cKO (716), and S4F2cKO (chapter 3) mice have 

altered  expression of additional genes important for gonadotrope function. Lhb expression was 

dramatically increased in S4F2cKO mice, and moderately elevated in diestrus S4cKO females. 

Though Lhb is positively regulated by activins in vitro (645, 688, 719, 728, 731), a likely 

explanation for increased Lhb expression is a lower negative feedback by gonad-derived sex 

steroids on the pituitary and/or on GnRH release by the hypothalamus (99, 770, 787). That said, 
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estradiol and testosterone levels appeared unchanged in both S4cKO and S4F2cKO animals 

(chapter 3 and data not shown). However, measurement of sex steroids at a single time point may 

not be very useful to determine whether the animals have impaired steroid production. That is, 

the highly pulsatile patterns of sex steroid production, which explains the very variables 

measurements between animals, may have obscured chronic changes in their circulating levels 

(925). Altered sex steroid levels and/or enhanced GnRH stimulation might also explain elevated 

Gnrhr mRNA in S4cKO mice, even though activins stimulate its expression (at least, in vitro) 

(720-724). Interestingly, Gnrhr expression was normal in S4F2cKO mice. This could reflect the 

opposing effects of enhanced GnRH signaling and loss of FOXL2, a positive regulator of Gnrhr 

promoter activity (726), though the F2cKO mice show normal Gnrhr expression (716). The 

increased circulating LH levels in S4F2cKO females probably contribute to certain aspects of the 

phenotype. For example, older S4F2cKO females show evidence of ovarian tubulostromal 

hyperplasia, with hypertrophic luteal cells, a sign of LH hyperstimulation (926). Nevertheless, 

FSH deficiency appears to be the primary cause of ovarian failure, leading to increased LH and 

further ovarian anomalies. 

In contrast with females, S4cKO and S4F2cKO males have decreased serum LH levels. 

This likely reflects lower Cga expression, which, in the case of S4F2cKO animals, offsets the 

Lhb increase. The striking sex-specific change in Cga expression suggests the involvement of 

sex steroids. Indeed, the Cga promoter is bound and regulated by the androgen receptor, but not 

by the estrogen receptor (771). While there have been conflicting observations regarding how 

activins might regulate Cga expression, FOXL2 stimulates Cga transcription in vitro (645, 696, 

707, 722, 728). It is possible that, since the Cga promoter is regulated by androgens but not 

estrogens, loss of SMAD/FOXL2 signaling affects Cga expression only in males - whether or 

not testosterone levels are altered.  

Follistatin (Fst) expression is decreased in S4cKO (estrus morning) and F2cKO females. 

This is consistent with activin stimulation of Fst expression being SMAD and FOXL2-dependent 

(709, 738). Fst downregulation in S4cKO females in estrus morning, but not in diestrus, may 

reflect activin sensitivity of Fst expression (595, 737). Indeed, no change in Fst expression was 

detected in S4F2cKO females when compared with diestrous controls. Because Fst is an activin 

antagonist, its downregulation would be expected to facilitate activin signaling. Therefore, it is 
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unlikely that the observed changes in Fst expression contribute to the FSH-deficiency phenotype. 

Are there other genes whose altered expression in the absence of SMAD4 and/or FOXL2 might 

affect gonadotrope function? Although no obvious candidate comes to mind that would 

selectively affect FSH synthesis, an unbiased screen for gene expression changes in the 

pituitaries or purified gonadotropes from S4cKO, F2cKO, or S4F2cKO mice would reveal the 

complete transcriptional program regulated by SMAD4 and FOXL2.  

7.2. Regulation of the human LHB promoter by GnRH and activin signaling 

 In contrast to FSH, the mechanisms underlying GnRH regulation of LH synthesis and 

release have been well described (441). The data presented in chapter 4 suggest that GnRH 

activates the human LHB promoter in a similar manner as in other species: GnRH induces EGR1 

expression, which then synergizes with SF1 and PITX proteins to directly activate the Lhb/LHB 

promoter. This suggests that GnRH-stimulated LH synthesis (Lhb/LHB expression being the 

rate-limiting step) may play similar roles in all mammals. How important is LH synthesis in the 

regulation of circulating LH levels? Since a given GnRH pulse appears to release a fraction – as 

opposed to a fixed amount - of the LH pool available for secretion (96, 888-891), smaller LH 

stores might result in a lower amount of LH released by GnRH. If this is true, defects in 

Lhb/LHB expression (and, hence, LH synthesis) should result in lower circulating LH levels. 

Unfortunately, serum LH measurements have not been systematically reported in mice with 

defective GnRH-regulated Lhb expression. Pituitary-specific male Sf1 knockout mice have low 

serum LH (measurements in females were not reported) (141), whereas LH levels are low in 

many, but not all, Egr1 null males (again, no female data) (145, 524, 927). In pituitary-specific 

Erk1/2 knockout mice, serum LH appears normal under basal conditions, but the gonadectomy-

induced upregulation is impaired (468). Globally, these observations suggest that impaired 

GnRH-dependent regulation of Lhb expression results in lower LH in the circulation. In females, 

GnRH-regulated LH synthesis may be particularly important at the time of the LH surge. At that 

time, the amount of LH that can be released by a GnRH pulse increases substantially (889). In 

this context, de novo LH synthesis may be important to replenish LH stores – which, in fact, 

remain constant across the surge (895) – and meet the demand for increased secretion.  Thus, it is 

possible that EGR1/SF1/PITX-driven Lhb/LHB transcription ensures rapid and efficient LH 

production, which might be critical for ramping up circulating LH levels and generate a surge. 
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The fact that all mammals generate an LH surge may explain why the mechanism underlying 

GnRH-regulated Lhb/LHB transcription has been well conserved. 

 In contrast with the largely conserved mechanism of GnRH stimulation, activin 

modulation of GnRH-induced Lhb/LHB promoter activity is divergent between mouse and 

human (chapter 5). The presence of three minimal SMAD-binding elements within the proximal 

murine promoter, and their absence in the human promoter, contribute to the difference. Because 

SMAD3 and EGR1 physically interact, it seems that the two factors can cooperate to activate 

transcription when binding adjacent DNA elements in the mouse Lhb promoter. However, in the 

human LHB promoter, SMAD3 cannot bind the DNA and may instead interfere with EGR1 

recruitment. What might be the physiological relevance of crosstalk between the GnRH and 

activin pathways? In rodents, based on the circulating inhibins pattern (610, 615), substantial 

activin/activin-like signaling probably occurs only in the morning of estrus. At that time, 

pituitary LH contents are lower than the previous day, during the LH surge (928). Thus, 

synergistic induction of Lhb transcription by activin and GnRH may help replenish LH stores 

after the surge. Whether there might be a need for increased LH synthesis in estrus is unclear 

because LH secretion (which, as explained above, likely depends on the size of the LH stores) 

remains relatively low until the next LH surge, 2-3 days later (240, 244). S4cKO and S4F2cKO 

mice have normal and elevated Lhb expression, respectively (chapter 3), although a positive role 

for SMAD proteins in Lhb regulation may have been masked by possible changes in the steroid 

milieu and/or in the intensity of GnRH stimulation. Unfortunately, the conditional Smad3 

knockout model presented in chapter 2 cannot be used to probe the functional significance of the 

EGR1/SMAD3 interaction, because these mice retain SMAD3’s MH2 domain, which meditates 

the physical interaction with EGR1. A new conditional null allele of Smad3 is required for these 

investigations. In humans, it is conceivable that antagonism of GnRH signaling by activins in the 

early follicular phase might keep LH levels “in check” while enabling a selective increase in 

FSH, but this remains speculative. Pharmacological manipulation of the inhibin/activin system in 

humans – which has not yet been reported – may help to probe this further.  

7.3. Functional significance of the lack of a C-tail in the mammalian GnRHR 

 While GnRH regulation of LH synthesis and release is well described, the mechanisms 

surrounding GnRH-induced LH surge generation and termination remain somewhat obscure. The 



270 

 

work presented in chapter 6 provides a platform to gain new insights into the signaling 

requirements for the production of the surge. That is, the unique absence of the C-tail on the 

mammalian GnRHRs, which slows down receptor downregulation after agonist stimulation (380, 

381, 383-385, 393) has been predicted to enable the generation of a protracted LH surge (390). 

This hypothesis can now be tested using the new Gnrhr
Ctail/Ctail

 mouse line. Based on the data 

collected so far, it seems that addition of a C-tail on the mouse GnRHR may impair LH surge 

generation. However, the extent to which the surge might be disrupted is unclear. While the 

ovariectomy and estradiol replacement experiment was designed to obtain measures of the 

amplitude and duration of the surge, the results provided neither. Evidence for an LH surge was 

seen only 1 hour after lights off (8 p.m.), which is later than what others have reported using 

similar protocols (314, 904, 905, 929). Notably, however, the three groups that described 

complete LH surge profiles in mice used silastic implants to deliver estradiol (314, 904, 929), 

whereas another group that used osmotic minipumps (like us) reported data for a single time 

point (905). It is possible that the mode of estradiol delivery influences LH surge generation 

(930). The light/dark cycle (14 h light/10 h dark in (904, 905, 929); 12 h light/12 h dark in (314) 

and in our experiments) may also have contributed to the timing difference. Because the surge 

was observed only at 8 p.m., it is unclear whether LH levels measured at that time represent the 

peak of the surge. Therefore, the available data may under-represent the real difference between 

the Gnrhr
Ctail/Ctail

 and control mice. Notably, the magnitude of the difference between LH levels 

at 8 p.m. and those at 11 a.m. were much lower in the Gnrhr
Ctail/Ctail

 mice than controls, but this 

appeared to be explained by a subgroup of Gnrhr
Ctail/Ctail

 mice that had high LH at 11 a.m. This 

may represent a real effect of the GnRHR modification, or a technical limitation of the 

experiment (LH pulsatility, or inefficient estradiol replacement). Therefore, it will be important 

to measure baseline LH levels in intact males and females, and to verify whether all animals 

subjected to the LH surge induction experiment achieved similar levels of circulating estradiol. 

As a complementary experiment, natural LH surges could be measured in intact proestrus mice. 

Reliably assessing estrous cyclicity in mice based on vaginal cytology can be challenging, but 

post-hoc examination for the presence of oocytes in the oviducts and corpora lutea in the ovaries 

would confirm that the mice were indeed in proestrus. As well, the ability of the Gnrhr
Ctail/Ctail

 

mice to respond to GnRH stimulation could be assessed by measuring the amount of LH released 

in response to a GnRH/GnRH agonist challenge.  
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Interestingly, after ovariectomy, Gnrhr
Ctail/Ctail

 mice have lower FSH levels compared 

with controls. In rats, the increase in circulating FSH levels observed two days after ovariectomy 

is clearly GnRH-dependent (835). Therefore, Gnrhr
Ctail/Ctail

 mice may have defective GnRH-

induced FSH synthesis. How might the addition of a C-tail to the GnRHR affect GnRH 

regulation of FSH? One possibility is that the Gnrhr
Ctail/Ctail

 mice simply have fewer GnRH 

receptors. In fact, this might also affect GnRH-regulated LH synthesis and release, and explain 

potential defects in LH surge generation. At this point, whether the targeted mutation affected 

Gnrhr expression in Gnrhr
Ctail/Ctail

 mice is unknown. Regardless of the Gnrhr mRNA levels, it 

will be important to compare the number of GnRH receptors at the cell surface of gonadotropes. 

This can be achieved by performing binding experiments with a radio-labeled GnRH analogue 

on pituitary membrane preparations (931). The extent to which decreased Gnrhr expression or 

receptor number may affect LH or FSH synthesis is unclear. Heterozygous Gnrhr-deficient mice 

are fertile and overtly normal (932), but comparisons of serum gonadotropins with wild-type 

animals in that model, or in other point-mutants (892, 933) have not been reported. Another 

possibility is that the GnRH-dependent FSH up-regulation after ovariectomy requires sustained 

signaling through GnRHR, akin to the generation of the LH surge at the time of ovulation. 

Addition of a C-tail could cause higher receptor down-regulation in that context, thus impairing 

FSH synthesis and release. Finally, the C-tail might affect the signaling properties of the GnRHR 

– for example, G protein coupling – which, in turn, could impair GnRH-dependent FSH 

regulation.   

Despite possible defects in gonadotropin synthesis and LH surge generation, female 

Gnrhr
Ctail/Ctail

 females display only mild sub-fertility. What might be the evolutionary advantage 

of having a “tailless” receptor? It is possible that the production of protracted LH surges confers 

a high degree of robustness to the reproductive system. The activity of the reproductive axis 

depends on a number of environmental factors, for example stress or nutritional status (e.g. (934, 

935)). All the experiments described in chapter 6 were conducted in the well-controlled 

environment of an animal care facility, where mice have access to food and water ad libitum, and 

do not have to actively defend a territory or seek a mate.  In less optimal conditions like those 

found in the wild, a higher gonadotrope response to GnRH might be particularly beneficial. This 

idea could be tested by challenging Gnrhr
Ctail/Ctail

 mice, for example with different dietary 
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conditions. These experiments could provide clues about why the lack of a C-tail, a unique 

feature among all known GPCRs, might have been positively selected during evolution. 

 

 

Conclusion 

 These are exciting days for students of gonadotrope biology. While much has been 

learned about the role of gonadotropins in reproduction through physiological studies, many 

questions remain regarding the molecular mechanisms that regulate their synthesis and release. 

Answering these questions is critically important to understand both normal function and 

dysfunction of the reproductive axis. In turn, this will enable the development of more efficient 

treatments for infertility – a major unmet clinical need. In particular, the advent of sophisticated 

mouse genetic tools now affords unprecedented opportunities to probe the inner workings of 

gonadotrope cells in vivo. New insights obtained from these models may reveal new therapeutic 

targets that can be exploited to design effective pro- or anti-fertility drugs that selectively target 

FSH or LH synthesis.  
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