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ABSTRACT

The main objecri\-e of this thesis is tO in\-estigare the effects of rurbulent flowon the

random dynarnics of strUcrurally nonlinear airfoil. _\ secoocWy objective is ro articulare a more

comprehensive picrure of the contribution of the longitudinal component of turbulence~ as

experienced by the mfoiL be it linear or nonlinear. In dUs rega.rcL a systematic and derailed

numerical analysis of the airfoil e:-..-perienàng random flutter/Hopfbifurcation is presenred. Sorne

aspects of the di,-ergence/pitchfork problem are also discussed.

The airfoil is modelled as a tlexibly mounred rigid fiat plate with degrees-of-freedom in

pitch and heaye. The principal nonlinearity considered is a hardening cubic torsional spring. The

aerodynamics is incompressible and linear. Cnsteady aerodynamic effects due tO arbitrary motion

and turbulence are modelled. Both longitudinal and v-ertÏcal components of the Gaussian

rorblÙence are considered. Longitudinal turbulence aets as a parametric excitarion~ whereas the

latter represents an e.':temal forcing.

_-\ ~fon[e Carlo simularion is performed tO solve numerically the system of random

differenrial equations. The cime history solurions are !hen studied in terms of their mean-square~

probabiliry densiry funcrion and power spectral densiry. The largesr Lyapunov- exponenr is aIso

calculated.

The bifurcation. srability and response characrerisrics of the airfoil are examined. For the

Iin~ar airfoiL it is found that the coalescence flutrer speed is always advanced by the longitudinal

component of rorbulence~ and generally dominared by the very low frequency range of the

e.,:ciration. Divergence can be cither advanced or posrponed, but the magnitude of the shift is not

significant compared \vith flutrer. Furthermore, it is shown that in generallongitudinal rorbulence

decreases the overall stability of the airfoiL be it linear or nonlinear.

For the nonlinear airfoiL it is the yerrical component of turbulence that determines the

essential fearures of the jtochartic bijinratiorr and the qualitative charaeteristics of the response. The

interplay between turbulence and nonlinear stiffness has a significant impact on the probabiliry

structure of the aeroelastic response. Cni-, bi- and double bi-modal distributions are observecL
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and found ra occur at differenr aïrspeeds depending on wruch stare variable is considered.

FurL.~ennore~ the specrral conrent disp1ays noise-conrro/led, and l1oise-indJ,ced~ rime scales.
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ABRÉGÉ

Le but principal de nOtre recherche est l'érode des effets d'un écoulement rnrbulent sur la

dynamique aléatoire d'un profil d'aile ayant une nonlinéarité stnlcturalle. Un but secondaire est

d'articuler un pOrtrait d'ensemble de la contribution de la composante longitudinale de la turbulence,

comme en témoigne le comportement du profil, soit linéaire ou nonlinéaire. Une analyse systématique

et détaillée du profil en condition de flottement/bifurcation de Hopf aléatoire est présentée. Quelques

aspects du problème de diyergence/pitchfork sont aussi abordés.

Le profil d'aile est modélisé comme une plaque plane et rigide, avec deu..x degrés-de-liberté en

tangage et en déplacement vertical. La nonlinéarité étudiée consiste principalement en un ressort en

torsion qui se durcit selon une loi cubique. Les forces aérodynamiques sont incompressibles et linéaires.

Les effets non-stationnaires dûs au mouvement du profil et à la turbulence sont modélisés. Les

composantes longirudinale et verticale de la rnrbulence Gaussienne sont considérées. La turbulence

longitudinale agit comme une e-"<citation paramétrique, tandis que la verticale représente une force

externe.

Cne simulation de type !\.fonte Carlo est effecmée afin de solutionner numériquement le systè...~e

d'équations différentielles aléatoires. Les solutions temporelles sont ensuires étudiées en terme de leur

carré-mo~·en, fonction de densité de probabilité et densité speCtrale. Le plus grand e)..1'0sant de

Lyapunoy est aussi calculé.

Les caractéristiques de bifurcation, stabilité et réponse du profil d'aile sont e-"<aminées. En ce qui

à trait au profil linéaire, il est observé que la vitesse de flottement de coalescence est toujours avancée

par la mrbulence longirudinale, et est généralement dominée par la gamme de trés basses fréquences de

l'excitation. La '\~resse de diyergence peut être avancée ou retardée, mais la grandeur du déplacement

n'est pas imponanre en comparaison avec celle du flottement. De plus, il est démontré qu'en général

la composante longitudinale de la turbulence réduit la stabilité d'ensemble du profil, qu'il soit linéaire

ou nonlinéaire.

1ll
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Pour le profil nonlinéaire, c'est la composante v·erticale de la rurbulence qui détermine les

particularités éssentielles de la bifurcation stochastique et les caractéristiques qualiratiyes de la réponse.

L'intéraction réciproque encre la turbulence et la rigidité nonlinéaire a un impact impOrtant sur la

scrucrure de probabilité de la réponse aéroélastique. Des disttibutions uni-, bi- et doublement bi-modales

sont obsen·ées, et se manifestent à différentes vitesses d'écoulement dépendament de quelle variable

d'érat est considérée. De plus, le contenu spectral présente des échelles de temps dites contro'lies-par-/e-bruit

et provoquées-par-/e.lmlit.
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• STATEMENT OF CONTRIBUTION

_\11 in-depth and systemaric analysis of the random dynamics of an airfoiL linear and

nonlinear, in rurbulent tlow has been performed. To the author's knowledge, this is the tirSt rime

that this problem has been reporred. Speàfically, the following aspects have been solved.

• It is determined that the supercritical Hopf and pitchfork bifurcations are fundamenr.ally

modified by pure longirodinal rorbulence. In both cases, Dynamitai (D-) and

Pbenomenoiogical (P-) bifurcation types are observed. \\'11en vertical turbulence is

considered, ,-vith or 'W-ithour the longitudinal component, the D-bifurcation disappears and

a single P-bifurcation remaÏns. Furthermore, the post-Hopfbifurcarion motion type is not

unique and depends on turbulence ,rariance. This is also the fust rime that an aeroelastic

problem has been studied 'W"Ïthin the framework of stochastic bifurcation theory.

•
• It is determined that the tlutter point is advanced br the longitudinal component of

turbulence, due rruùnly to parametric, combination difference type, resonances with the

very low frequency range in the e.,àration. Furthermore, the nature of the sillEr of the

random tlutter point is similar to detenninistic classical Butter, in mat ir is mainly stiffness

conrrolled and assoàated 'W-irh an advancement of the frequency coalescence. On the

other hand, the divergence airspeed can be cither posrponed or advanced by longitudinal

turbulence, but the rnagnirude of the sbift is not significant in comparison with the

advancement in fluner speed.

• In general, it is shown that the nonlinear aeroelastic response, both qualirarivdy and

quantirariyely, is highly dependent on the vertical turbulence charaCteristics and magnitude

of the nonlineariry. For the linear airfoil and/or small nonlinear effecrs, longitudinal

turbulence ma) become significant mainly because of its destabilizing effect.

•
• The nonlinear aeroelastic response exhibits complex beha,,-iour due purely to the

nonlinear-random interaction. This original dynamics is evideoced in both the uni

dimensional and bi-dimensional probabilisric strUcrure of the response and in its spectral

conrent where noise-contro/led and noise-induced rime scales are idenrified.
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From the more general and fundamenral perspective of random dynarnical s~~stems, this

thesis also adds ta the T."ery short list of published simulared data on nonlinear dynamical systems

excited by multiplicati'\""e and additive coloured noise. More specifically, we believe it is the tirst

rime that the robusmess of the random bifurcarion exhibired with mu1riplicative noise is critiqued

e..xplicitly in light of the ubiquitous additive noise component.
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• NOMENCLATURE

ai ourput of congruenrial generaror (uniform random nurnber)

ah distance berween mid-chord and elasric axis normalized by semi-chord

At, Az, bl• b2 \~ragner's function coefficients

Ay A.v b3J b~ Kûssner's funetion coefficients

b semi-chord

c chord

C multiplier for congruenrial generator

C(k) Theodorsen function

Dh structural damping coefficient in heave

D8 struCtural darnping coefficient in pitch

• E~rl mean-square ofx (x is a dwnmy variable)

F(k) real part of Theodorsen function

G(k) imaginary parc of Theodorsen funcrion

G- Gaussian white noisewn

h heave

i imaginary unit number, 1-1

lE.". airfoil mass moment of inertia about elascic a.xÏs

k reduced frequeney, UJbIUm

kt. k'2 system eigenfrequencies

k3 non-dimensional nonlinear cubic sriffness coefficient, K3/Ke

k f (deœnninistic) flutter reduced frequency

• kp PSD peak reduced frequency
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• Kh linear heave sriffness coefficient

Ka linear pitch sriffness coefficient

K3 nonlinear cubic stiffness coefficient

L- scale of turbulence

L non-dimensional scale of turbulence, L-/ b

Lc circularory lift

L,:,c non-circularory lift

L", lift due tO vertical turbulence

LV' lift due to arbitrary morion and longitudinal turbulence

m airfoil mass per unit length

M modulus

• A1E-\ aerodynamic moment about elastic axis (E-\.)

ME-\V' aerodynamic moment about EA due ta arbitrary motion and longitudinal
turbulence

A1E.\1/' aerodynamic moment about EA due to vertical turbulence

ME.\C circulatory aerodynamic moment about EA

J.'vfE.\':'c non-circulatory aerodynamic moment EA

N nwnber of sready state iterations

Nm: nwnber of data pointS to perform a Fast Fourier Transfonn

P probability densiry (function)

Ps sready stare, or stationary, probability densiry

p probabiliry

r central frequency of narrow band excitation

• .,
radius of gyration squared, IE.\ /mb'2r -a
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CHAPTERl

INTRODUCTION

• 1.1 Aeroelasticiry Fundamentals

•

The discipline of aeroe1asricity ancL more generaJly, fluide1asticity deals essenrially with the

interaction of srrucrural and aerodynamic (or fluid) forces. One main area of interest is the

structural deformations induced by aerodynamic forces, due ta turbulence for example. This is

generally known as a response problem. In many instances, the struCtural defonnatÏons also affect

significancly the aerodynamic forces, thus leading ra a feedback mechanism between the rwo sets

of forces. The response of the aeroelastic system, for example an airfoiL ta any e-xtemal forcing

will depend on dUs feedhack mechanism. Ir may alse lead to a stability problem since the feedback

mechanism can be negarive or positive depending on the value of the system parameters, in

particular the airspeed. For low airspeeds, the feedhack is generally negative. In this case, the

system will rerum tO its irùtial stare after being disrorbed; it is said to be stable. Past a critical

aïrspeed, the feedback becomes positive. :\ny disrurbance will in theory grow to infiniry if the

system is linear. In practice, nonlinearities are present thus restraining the growing motion.

Consequendy, the system settles on a new stare or attractor. The change in dynamïcs experienced

by the nonlinear system as the airspeed is increased wough the instabiliry point is tenned a

bifurcation.

1
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_\ simple but e..nremely useful made! for undersranding the fundamentals of aeroelastic

dynamics is the flexibly mounted~ rwa-dimensianal rigid airfail known as the !JPicai section. It is

illusrrated in Figure 1.1 with degrees of freedom in torsion (pitch) and translation (hea\-e). _\Isa

shawn is the airspeed, u.

airspeed, fJ· ..

Figure 1.1 - The typical section.

This model has been, and still is used extensively far research~ see Lee et al. [1999] far

example, as weil as far pedagagicaI purpases in standard aeraela.sticity text books~ for example

Fung (195j]. The dynamics of the linear mode! is weil knawn and documented. One of the

classical problems concems the stabiliry of the system. The airfoil generally encounters (WO types

of insrabiliry, divergence and binaryfiUfter. Divergence is a Static insrability and is solely dependent

on the sysrem's torsionaI (strllcmraI and aerodynarnic) stiffness properties. Bringing the a..'CÎs of

roration (elastic a.."cis) of the airfoil fOf\\tard has a srabilising effect.

FJutter is a more complex problem. It is a dynamic insrability meaning mat the unsrable

motion grows in an oscillatory fasmon. There e-'CÎsts different types of tlutrer mechanisms but the

most common one for this aeroelasric mode! is binary flutter. Ir requires the coupling between

the rwo degrees of freedoffi. Funhermore, for this coupling to be able to e..xtract energy from the

airflow, the rwo vibrarory motions must have closely spaced frequencies (Le. frequency

coalescence) such mat a desired phase difference is maintained. The dependence of coalescence

flutter on the system frequencies makes this type of insrabiliry very sensitive tO the system

2
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stiffness properties. In contrasr.. structural damping does not h:lve a significant impaa [Fung,

1955]. Binar: fluner is aIso called dassic:J.4 coupled, coalescence or two-degree-of-freedom

(2DOF) Burrer.

On the other haneL the nonlinear (srrucrural or aerodynamic) airfoil is still a rich source

of unexplored dynamic behayiour. For instance, research on the airfoil with srruCtural oon

linearities is currendy being underraken at various institutions [I.e..\lighanbari and Priee, 1996;

Lu and Zhao, 1992; Lee and Desroehers, 198ï] where a nwnber of Ïnteresting phenomena have

been prediered. For example, regions of limit cycle oscillations below the main flurrer boundary

haye been preclieted, and for eertain airfoil parameters the existence of chaotic oscillations was

suggesred and then demonstrated via calcularion of the Lyapunov- e..'\.l'0nents [_\lighanbari and

Priee, 1996].

However, it must be admirred mat the system being eonsidered in previous investigations

is an idealization of the real problem. One particular idealization is that the airfoil is generally

assumed tO be free of any sources of perrurbarion, such as mechanical vibrations or turbulent

flow, whir-.h in realiry are always present. This raises, from both a practieal and theoretical point

of 'r,tiew, the question of the presence of random noise.

Turbulence is felt by the airfoil ,,-la two basic forms, as an e..'\.-remal forcing and as a

parametric exciration. Due to irs three-dimensional nature, the rurbulent e-~cirarion is not ooly felt

as an e..~temal forcing by way of its \-errical and lateral components, which is the usuaI approach

in classicallin~ aeroelasric analysis, but as a parametric e..-xcitation as well due tO its longirodinal

component. As we 'Will see in more detail in the next chapter, the in-plane, or longitudinal,

rnrbulence excitation aas direcdy on the aerodynamic damping and stiffness terros via the

airspeed, as for example r..r (t) = ifm + U eT(!), where ifm is the mean airspeed equivalent tO the

deterministic airspeed. This component of rorbulence is a source of difficulty for the

mathematieal treatment of the problem, because it makes the equation of motion time-varying,

and is also the origin of a porenrially rich pool of dynamic behaviour.

3



• For the rypical secrio~ being a t\Vo-dimensional problem, lateraI turbulence is not

considered; see Figure 1.2 for a Nlo-dimensional represenration of turbulence. U "T represenrs

longirudinal turbulence and W"T is the vertical componenr.

W " T(t) , vertical component

•

•

U • T(t), longitudinal component

Figure 1.2 - Turbulence componenrs in 2D flow.

The interaction berween turbulence and aeroelastic forces (structural and aerodynamic)

is represented functionaIly in Figure 1.3. The airfoil-strUcrure block relates aerodynamic loads (and

any e~ï:emal forcing) as inpUtS with struCtural deflecrions as output. Notice mat the aerodynamics

is broken down intO (WO blocks. One black relates the vertical component of turbulence as input,

W"T, to aerodynamic load as output. For the other block the input is the srrucrural deflection and

the output is the load. This second block is a funcrion of the longirudinal component of

turbulence, u"T"

_\ detailed description of the airfoil strUcrure and of the (WO different types of

aerodynamic load is given in Chapter 2. For e-"{ample. the aerodynamic black relating vertical

turbulence ta aerodynamic load is represented by equations (2.14) for the airfoil in incompressible

inviscid arrached flow. The other black relating structural deflection and aerodynamic load is

e-'\.-pressed as equarions (2.16). From this diagr~ it is shown mat U"T affectS directly the srabiliry

of the system since it is embedded in the feedback loop, whereas W"T has a direct impact on the

response.
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Aerodynamics -
( funetion of u •T (t) )

....

Airfoil -
Structure

--.

·1 1

Structural

Aerodynamics • deflections
:

~~

External forcing

•

•

Figure 1.3 - 4\erociasticity-rurbulence functiooal diagram represeoration.

Note mat we consider the rurbulent e..'\:citation yelocicies to he independent of the

structural deformations. Hence, in many cases the physical origin of the rurbulence is not the

aeroelasric body itself, such that irs characreristics may be detennined (Jpnari. This type of random

e..xcitarion is referred ta as extemal noise in the physics literature (not tO be confused \vith e..nemal

forcing in engineering œrminology).

In other circumstances which will not he treated in dUs thesis, the rurbulence is creaœd

by the aeroelastic body itself, hence self-induced turbulence. This is sim..ili.r [0 interna! noise

described in the physics lirerarure. For instance, this is the case in separaœd flow over an airfoil

",,·here the turbulence characterisrics detennine, and are determined by, the buffecing motion of

the airfoil.

1.2 Conceptual Framework

In the pas! [Wc decades, physicists have studied the problem of stochastic flucruations in

light of the recent inœrest and undersranding of chaoric behaviour and related nonlinear
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dynamics. They ha\~e revlsed the classicaL inruitiye reasoning chat considers randomness in a

system as a secondary effecr. In fact, it can no longer be argued chat stochastic flucruations should

automatically be a\~eraged~ or filtered OUt of signals arising from nonlinear deterministic s~~stems.

Funhermore~ it 15 no\v realised that a nonlinear system excited by random noise can produce

original bifurcation phenomena and organized beha\;our, sorne of wruch have no anaIog in their

deterministic counrerpans. These phenomena have been designated as noise-induced transitions!

[Horsthemke and Lefever, 1984]. They are a product of the interplay between stochastic

fluctuations and nonlinear dynamics. Examples of the effect of random nonlinear dynamics

include either postponement or advancement of the bifurcation points, an increase or decrease

in the amplimde of arrractors, and more dramatically, completely new rypes of attractors and

bifurcations, the so-called pure noise-indJiCed transitions [Fronzoni et al, 1987].

The rerm stochastic biftrcation is aIso now commonly used although its interpretation and

strict definition remain an open question [_-\mol~ 1995; 1998]. Two schools of though4 with their

own perspective and background, have opposite points of ,,;ew. On one hand, we have the

mathematicians and dynamical system theorisrs, found mainly at the Institure for Dynamical

Systems, Bremen Cniversity, Germany. On the other han~ there are the physicists, engineers and

other scienrists whose approach relies more on obsen-ation and physical inrerpreration

[..:\ria.ratn~ 1994]. The debare is exemplified by the twO basic types of Stochastic bifurcation

being proposed: dynamical and phenomenologica/ bifurcations. The dynamical (D-) bifurcarion~

advocared by the first group, is related tO the Lyapunov exponents. The phenomenological (P-)

bifurcation is determined by the shape of the response probability density function (pDF). For

a detenninistic system these {wo inrerpretations coincide (for example the bifurcation of a fi.....œd

point inta a limit cycle oscillation), but not necessarily for a randomly e-~cited problem.

In the modelling and inrerpretarion of fluctUating systems, ~1illonas [1996] has identified

four basic leyels of sophistication. The first leyel, labelled the deterministicparadigm, neglecrs totally

the effect and presence of noise; hence, it considers solely the determinisric dynamics. The next

1In this work., a distinction ~-ill be made beNreen tranntion and IJifimation. Although the refereneed authors use
the terro trantition.. we belie~:e they acrually mean biftrraJion in the sense of a qualitative ehange of the system
dynamies as a control paramete.r is changed. Their use of tranntion perhaps stems from their specifie areas of
research in physics and ehemisrry. For our case. the 'JtOrd transition ~-ill be used te describe a superficiù and te a
certain extent artificial, as opposed ta fundamental. change in me system dynamics. The distinction \Nill be made
clearer in the analysis of marginal PDFs.
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leye4 which he calls the equilibrium paradigm, considers noise but pure!y as a source of disorder

about the deterministic stable attr:lctor. Next in line is the passive noùe paradigme .\ clear e.'\:ample

is found 00 a mulri-srable system. In rhis ose, the system may e.ilibit an irregular, nois)~, morion

with jumps between the different determinisric multiple stable attractors, hence basin hopping. _4ctive

noise paradigm is the highest level. This is the leve! of sophistication which is generally associated

\vith the pre\~ously menrioned pure noise-induced transition phenomena..\ltemative!y, the

attractors are not pure detemùnistic objects but are defined by the noise as welle

The equilibrium and passive noise paradigms are related to additive noise, or random external

forcing in engineering tenninology. The active noise paradigm is mainly associated with multiplicative

noise, or rondom parametric e.~citation. These (wo types of noise can be classified as t!Jnamical noise

because they affect and determine the dynamics of me system. On the other hand, observational,

or measurt!ment noise, does not affect the system dynamics, but is simply superimposed (added

literally) on the response. It characterises the noise in the measurement system.

.\s pointed out b:· Schreiber [1999], "The description of a parricular rime series byan

empirical mode! 'Will of course be guided by the paradigm adopted for the smdy". .\n

inappropriate choice of noise mode! tO analyse a noisy rime series may hence lead tO erroneous

conclusions with regards to me type of dynamics which this rime series represenL For e.'\:ample,

Casdagli [1991] discusses the case of a randomly beha'\.wg rime series. He mentions mat in trying

to discinguish between randomness and chaotic motion, sorne researchers concluded the dara tO

be chaotic on the basis that it could not be adequatdy described by a lirnit cycle with additive

noise..\s remarked by Casdagli, a more plausible alternative ta chaos could have been found by

using the multiplicative noise instead of the additive noise mode!.

Sclu:eiber also defines a set of paradigms in the nonlinear-stochastic space. Schematized

in Figure 1.4, two of its antipodes represent the usual paradigms: oonlinear deterministic and

linear stachastic. Embedded in a solid mathematical framework and nourished by a strong cultural

bias, they essentially detennine how we choose ta analyse and interpret a particular problem. For

example, with respea ta the linear stochastic perspective, which is equivalent tO ~fillonas's

equilibrium paradigm, randornness is addressed within the framework of linearity. Put mother

way, It 15 common ta mode! the dvnamics by a mean value, defined by the deterministic

7



• component of the linearized modeL on which are superimposed random fluctuations .

Randomness is implicidy considered as seconda!)'· effect. _-\gain, Schreiber arriculates that these

underlying par:ldigms must be generalized in order to expand our knowledge and grasp of

obser~"ed dynamic behaviour. _\pplied tO the problem of aeroelasticity, it is in this context that

the present thesis is conducred.

Multiplicative
(pmmetric)

~~;:~;~~~hf:~:J2-~:.:!
~--~- - ------- - -~~---

•
Linear Nonlinear

•

Figure 1.4 - The nonlinear-stochastic paradigm space.

Stepping back in rime, let us mennon that the shift from a linear to a nonlinear

detenninistic conception of aeroelastic dynamics seems to have been formally effeeted in the mid

19ïO's br Dowell's book [1974] on panel flutter, Brietbach's pioneering paper [19ï8] on the

effects of structural nonlineariries on aircraft vibration and auner, and more subcly by Holmes

[1977] in his proposed alternative definitions for Butter and divergence within the framework of

nonlinear theory which takes intO accouat the post-insrabiliry behaviour.

-\long chis train of thought, we point out that in many instances a linear description of

2To remove any ambiguity, chis comment shouId not be interpreted in the sense mat nonlinear aeroelastic
behaviour had been discarded before mat rime. Indeed, nonlinear effects have been rreared eartier, namely u.i.th
regard co panel flutter [Fung. 1955] or wing and control surface flurrer ~roolston et al, 195i]. However, we
believe chat the mid 19iO's mark a higher level of maturiry in this regard.
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divergence cannat capture the proper beha'\-;our of the system in the v;ciniry of the bifurcation

point, even ae pre-divergence airspeeds, nor ics insrabiliey point. Divergence, or piechfork

bifurcation in nonlinear dynamics eerminology, is a strUcrurally unsrable bifurcation..-\5 illuscrared

in Figure 1.5, in rhe presence of a bias (due for example ta gnviry or c3IIlber) the pre-di\·ergence

nonlinear fi.xed point solution does not bifurcare, and an additional saddIe-node bifurcation

appears at a higher airspeed, whereas for the linear mode! the insrability point for the perturbed

and non-perturbed problems are the same.

Figure 1.5 - The divergence bifurcation scenario; a) linear case; b) nonlinear case.

(Dark lines: without a bias; Thin lines: with a bias)
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• 1.3 Theoretical Background

1.3.1 Probabilistic, and sratistical, analysis and noisy bifurcations

In esrablishing the theorerical background for chis inyesrigarion, let us examine the

following fust-order differenrial equarion:

:é = fi.x) =h(x) + À.: g(x) = hÇt) + À.q(x) + À.: g(x) (1.1)

•

where hÇ-r), q~) and gç-r) are general nonlinear funcrions ofx. À. is constant and À.! is a parameter

wruch is allowed tO flucroate randomly as:

(1.2)

ç; is a srarionary random process of zero mean value and unit intensiry; the intensity of À.r is (J~•

Hence, equation (1.1) cao be expressed as:

:é = h(x) + À. q(x) + (Jg(x) ft (1.3)

•

_-\ssuming the random process is \vhire and Gaussian, we cm use Stratonovich3 calculus

formularion for the stochasric differenrial equation

dt = [h(x) + À. q(x) ]dt + (Jg(x) 0 d~ =/;. (x) dt + a g(x) 0 dWt (1.4)

The fust tenn on the right is called the drift (veetor) and the second tenu is the diffusion (matri.'C).

J\Vithour getting losr in the mathematical subcleties of srochastic differential equation theory, ir is appropriare
ro mention mat Sttatonovlch calculus is normallv used for &Creai" white noise, i.e. the white-noise limit of:L
colored-noise process, whereas 1ro's fonnulatio~ is useful for tre:uing the more theoretical "trUe" white noise
idealiz3.tion. Both formulations are coherent. Ir is a question of how [0 interprer the results. Finally, we add chat
the 5'N-irch beN,'een the N,'O formulations cm be easily implememed by a simple transformation in the drift
vector [Horsthemke and Lefever, 1984].
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• ~ is the Wiener process4
• For this case, based on the Fokker-Planck equation5

, the probabiliry

density funcrion (pDF) at steady state,plx) = limpÇ'r, t-oo), can generally be obrained by solving

the follo\ving equation [Horsmemke and Lefeyer, 1984]:

(1.5)

The e."\:tr~ or peaks of the steady sure PDF, which we argue are in sorne sense the stochastic

analogue of the deterministic equilibrium pointS are men given by the condition:

\Ve can immed.iately recognize the deterministic idealization, Le. \Vith g(x) =0, giving the

weil known definition for a fi..'{ed point: /;..(x) =O. In the more general stochasric scenario, there

are essenrially two cases, mtÙtiplicative and additive noise. :\5 inrroduced earlier, additive noise,

known as random extemal forcing in the engineering literamre, is independent of the state of the

system. In the second case, multiplicative noise or parametric noise actS directly on the

parameters, thus itS intensity effecrivdy varies with the system states.•\ccording tO equarion (1.3),

the type of noise is defined by· the diffusion tertn g as:

•

Hence,

p/ =dp/dx =0

fi(x) - g(x) g'(x) ~/2 = 0

(1.6)

(1.7)

•

g = g(x), multiplicative noise;

g =1 *' gÇ'r), additive noise.

~e \~ïener process has zero mean and is Gaussian distribured, \Vith continuous but highly irregular sample
!

path. Ir is related ro the ~'hite noise process br the following: Wc =f ~ds . See Arnold [1974] or Horsthemke
o

and Lefever [1984] for derails.

s-rhe Fokker-Planck eqw.tion governs the evolution of the transition probabilicy density funcnon, p(x.r). See
:\rnold [19ï4] or Horsthemke and Lefever [1984] for details.
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For the case of additive noise, i.e. g' =0, \ve are again left with!tex) =O. This automarically leads

[0 the conclusion that me deterministic equilibrium pointS are equivaIent [0 the extrema ofPs(x)

for a first-order sysrem excited by additi''"e noise, mus supporting our previous anaIogy.

\'fim parametric e.xciration, the zeros ofequarion (1.7) are no longer independent of the

noise intensity. In addition, depending on the relative order of the polynomials ofgçt") and/i(x),

not only the position of the zeros but their number can change. This dramatic new "order

through fluctuations", or pure noise-induced transitio~ requires the e.xcirarion tO be directly

acting on a nonlinear tenD. In the conte.:« of this research, the random excitation which originares

from turbulence e..xpresses itself in pan as a rime-varying airspeed, thus random aerodynamic

forces. Since we will only consider !inear aerodynamics, the number of zeros will not change.

Nevenheless, the multiplicative excitation will play a fundamenral role in the dynamics of the

aeroelasric system.

1.3.1.1 Detenninistic Landau equation

T0 illustrate the problem desc.ribed above in a simple fo~ consider the Landau equation

G\Iackey et al., 1990], where À. acrs as the control paramerer on the !inear cerro:

:é = f(x) = lx - .~ (1.8)

~ote that in deterministic nonlinear dynamic theory, it represents both the pitchfork bifurcation

and the r-component (\vhen expressed in polar coordinares) of the nonnaI form for a Hopf

bifurcation. The dererministic equilibrium points are:

•

x =0, x =± lÀ.

\Ve can aIso define the porenrial, V(x):

V(x) =-f f(x) dx =-1:2-;2 + x~ / 4

(1.9)

(1.10)

The stable equilibrium pointS gi,·en byequation (1.9) correspond tO the valleys of the potenrial

12



• weIL as shown in Figure 1.6..-\.t steady stare, for À. < 0 the s~tstem will Stay permanendy at x = 0

since this is the only stable position, while for À. > 0 it will remain in cimer of the twO wells as

dictared by their respecti,-e basin of attraction and the initial condirions.

8-

6-

4-
V(x)

2-

x

/ l

/1.5
/:1

/: Â.

//'::.5

•
Figure 1.6 - Porenrial for the Landau equation.

1.3.1.2 Landau equation with additive noise

For the stochasric case, again we decompose the problem intO additive and multiplicative

excitation. For the additive problem, g =1, we have the following equation:

:é = Àx -.~ + Ar = Àx - .~ + (7 { =/;.(x) + (J ft (1.11)

The sready stare probabiliry densiry is obtained by solving equation (1.5) and gives the general

solution [Horsthemke and Leyefer, 1984]:

•

Ps(X) =lVexp [2/ (J1 (ffix) dx) ] =N exp [2/ (J1 (-V(x») ]

and in particular for the potential given in equation (1.10):

(1.12)

(1.13)
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• where N is a normalization constant such mat lPs(x) d"C =1. Imagining the system state to be

represenred by a ball in a porentiaI weIL under the random extemal pertUrbations it will jiggle

about the single equilibrium point for;' < O. For À. > 0, it \\-ill aIso initially jiggle about one of me

twO equilihrium points, but will in cime jurnp over the energy barrier intO the second welL and sa

on. In generaL the amount of cime spent in each weil can be characterized by pJ't). We

immediately see the correspondence between potenrial and steady stare PDF. Hence, the valleys

of the potential correspond ta the peaks of me PDF, and in'~ersely, as sho'\vn in Figure 1.7.

Qualirari,·ely speaking, the steady stare PDF is the inverse image of the porencial.

•
·2 -1 0

B
2

x

-2 -1 o

B x

2

-2 -1 o 1

x

2

Figure 1.ï - Comparison of potential and PDF for the Landau equation with additive noise.

1.3.1.3 Landau equation with multiplicative noise

\\te now consider the Landau equation under multiplicative excitation, i.e. \vith g =x

The extrema of the steady stare PDF can be obtained easily from equation (1.7). For this•
:é =lx - x3 + À.r X = lx - x3 + a xfr =/;.(x) + a x(, (1.14)
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• particular problem, we ha\~e: !tex) =Àx -.~

g(x) =x

g'(x) =1

which when introduced into equation (1.7) give:

The zeros, i.e. e.~trema, are

Note that the second set of zeros appears for;' > (71/2, indicative of a shift in the bifurcation

according tO the e.xtrema of the PDF. The steady stare probabiliry densiry funcrion is also

obtained by solving equarion (1.5) and gives the general solution [Horsthemke and Levefer, 1984]:

•
and in parricular:

x = 0, x = ±.f (À. - a 2 /2)

pl") =N exp [2/OZ Cffix)li(x) dx - a:!/2 ln g(x)) ]

(1.16)

(1.17)

(1.18)

•

Under this forro, Ps(x) is only defined for yalues of ;, > O. For ;, ~ 0, pl"') cannor be

normalized6
, and is represented by the delta Dirac generalized function, Ps(x) = Ô(x). Figure 1.8

shows the steady state probability densiry function for three ranges of the control parameter. In

this example, the noise intensity is set at a 2 = 1 such mat the bifurcation in PDF occurs for a

value of the control parameter ;, =0.5, as per equarion (1.16) .

~n other words, P1(X) is integrable over (_=,00) only for l > o. Expressing equarion (1.18) as P1(X) =Nxl )lu}·{

e:\.-p[ -rlq:], we cm norice mat for 1= 0, the power term 2 )j(]: -1 =-1. This makes the improper integral.
fpJ(x) dx, diverge at x = o.
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Figure 1.8 - PDFs for the Landau equation with rnultiplicati,,·e noise.

Three distinct regions of dynamic behaviour are obsented. For À. < 0, there is no

dynamics. The system does not move; it is fi..xed at zero. For a 1/2 > À. > 0 (for e."WD.ple À. = 0.2

in Figure 1.8), the dynamics is also concentrated about the zero axis, but there is sorne diffusion

about this point. For;' > a 1/1 CÀ. = 2.0 in Figure 1.8), there are two peaks, also wim movement

about these rwo extrema.

For this first-order system, the tirSt rransirion point, at À. = 0, corresponds tO the

detenninistic insrability. However, for the stochastic (multiplicative) case, it cannot be picked up

by monitoring the e.xtrema of the PDF, even though a qualirari.\-e change in its shape has

occurred. In the very recent and quickly evolving theory of stochastic nonlinear dynamical

Systems, this transition has been termed Dynamitai or D-bifùrtation [Arnold, 1995; .-\mold and

Kedai, 1994]. :\5 we will see larer it is associated ~-ith a critical slowing down phenomenon, and

is purely derermined by the linear tenIlS, hence the linear bifurcation point. The D-bifurcation is

detennined by a change in sign of the largest Lyapunov exponent of the linearized system.

The second transition occurs at;' = a 1/2, where the qualitative change from single to

double peak densiry is observed..\s argued earlier, the peaks are in sorne sense the stochastic

analogues of the dererrninistic tLxed points and correspond to the most probable values the

system stare will have. This noise-induced transition is labelled as a Phenomenologicalor P-biftrcation,

and is also sometimes calleà the nonlinear bifurcation point in contrast with the first. It is

posrponed compared \vith the deterministic bifurcation. In rhis case, no change in sign or
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disconrinuity in the behaviour of the largest Lyapuno,· e.'\.l'0nent is e.xhibited (.\mold [1998]).

To recap, for dUs single variable (fust-order) sYSt~ we have found that additive

Gaussian white noise does not moclify the bifurcation portrait: there is a single bifurcation point

and it occurs for the same value of control parameter as the deterministic case. On the oilier

hand, multiplicative noise creates a second bifurcation which is posrponed compared urith the

deterministic one; the first stochastic bifurcation and the deterministic bifurcation occur at the

same point. Without proof.let us mention inruitively that a system excited by both additive and

multiplicative noise will not show any indication of a dynamical bifurcation. Hence, as pointed

out by .-\I:Îaramam [1994J, a real system ",-il! not display an abrupt bifurcation, but ramer a graduai

and conrinuous increase in response amplitude. In this sense, the concept ofP-bifurcation may

be more appropriare for sorne applications. However, using the phenomenological concept in

isolation of the dynamical concept, and nce Yers~ may be ta the detriment of a more profound

undersranding of the dynamics and its fundamental tenets.

1.3.1.4 Multi-variable systems

~'vlultiplicativenoùe

We will now e.xamme briefly the case of multi-variable stochastic systems, more

specifically the (stochastic) Hopf bifurcation problem, whose complexîty is magnified in tenns

of its analytical creacrnent. \XTithout going intO the same level of detail as for the previous case, let

us mention that similarly ta the Landau dynamics, the Hopf bifurcation e."ÙÙbited from a multi

variable system excired by multiplicative noise \\till also be characterized by three distinct regions

of dynamic behaviour, hence two bifurcation points. The fust region has 00 dynamics and can

be represeored as a Dirac delta functioo at the equilibrium point, the second region is also

concentrated about the equilibrium point with sorne diffusion (we may then speak of a stochasfÏc

eqllilibrillT!lpoin!), and ilie third regioD is characterized by a crater-like shaped PDF (stochastic limit

cycle oscillation).

The similarities stOP mere. In effect, it bas been shown that the first bifurcation point no

longer coïncides automatically with the deterministic insrability point (.\riaramam, 1994;
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Knobloch and \'Çeisenfeld~ "1983]. For example~ _-\riaratnaIn and Tarn [1979] obtained de

srabilization of a stable deterministic 1DOF s~·stem~ while Prussing (1981] showed that physical

white noise could srabilize an unsrable 1DOF system. Similarlyythe second (nonlinear) bifurcation

point has also been obsen·ed ta require cimer higher or lower values of the control parameter.

_\.lthough Fronzoni et al. [1987] noted chat only postponements have been observed in laboratory

e..xperiments [Kabashima and Kaw~"Uboy1979] and numerical simulations, sorne authors [Lefever

and Tumery 1986] have predicred advancements, which is conrrary tO e..~ting e~"perience for

single variable systems.

In this respe~ Nicolis and Nicolis [1986] have clearly illustrated the dependence of the

shift not ooly on the coupling between the noise and the slow variable e..xperiencing the critical

slowdown, but also on the coupling with the fast variables. Critiquing the universality of the

normal forms in the presence of noise~ they use the e.."{ample of che Hopf bifurcation by

comparing the solutions obtained from [\vo different approaches. First, they discuss the approach

of starting with the deterministic nonnaI form of the r-componenr.,': = ar + br"3, and then adding

phenomenologically a random component to a - a + (7(,. The resulring equation is similar tO the

Landau equation (1.14-) excited by mtÙtiplicative noise. We have seen that no shift in D

bifurcation is possible, and ooly a postponement in the P-bifurcation is realizable. On the other

hand, chey derive a normal form by considering the coupling berween the noise and the slow and

fast variables, thus, as they put i~ maintaining the sensitivlty of the stOchastic Hopf bifurcation

tO the specific strucrure of the system. Finally, mey obrain an e..xpression of the noisy normal form

of the radial variable in terms of a starionary PDF which exhibits a dependance on the rotation

variable, i.e. the LCO frequeng·. Ir is chis dependance, originating from the coupling with the

noise~ that enables a shift in the D-bifurcarion and an advancement in the P-bifurcation. For

example, Lefever and Turner [1986] have shawn that for their specifie two-dimensional system

exhibiting a Hopf bifurcarioOy postponement of the P-bifurcation occurs when the period of the

LCO is smaller than the noise correlation rime, whereas advancemenr happens when the noise

is the fastest process. Note that advancement of the P-bifurcation necessarily implies

advancement of the D-bifurcarion. Knobloch and Weisenfeld [1983] also touch upon the

sensitiviry of the normal forro on the structure ~f the noisy system and obtain a shift in D

bifurcation even for the pitchfork problem. They go further and show that if the initial system

is limited tO a single variable by eliminating the inertia te~ the shift is no longer possible.
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Additive noise

E"{cepr for the single variable system excited by additive Gaussian white noise, for which

we have argued that the bifurcation is not influenced by the noise, at least when simple local

bifurcation types, such as pitchfork, are considered, published literarore on eimer multi

dimensional and/or coloured noise excited systems is contradicrory. For e.."{:lIIlple, Knoblock and

Weisenfe1d (1983] address the case of a single DOF (i.e. rwo-dimensional) system e.."{cited by

additive Gaussian white noise, which has no effecr on the bifurcation point. On the other hand,

cases where additive white and coloured noises influence the bifurcation scenario of rwo

dimensional nonlinear systems are discussed by Schimansl-y-Geier et al. [1985]. Similarly, the same

is argued by Lugiato et al. [1989] for a single ~tariable system e.."{cited by additive coloured noise,

and by Longrin [1991] and Longtin et aL [1990] for a single variable delay-differenrial equation"7

excited by additive white and coloured noise. These issues will be further discussed in Chapter

4 in light of our results.

.-\.rguing that additive noise can influence the bifurcation scenario may in sorne sense be

counter-intuitiYe considering chat our inmition is in many respectS nourished by the classicallinear

problem, one of Schreiber's (wo antipodes paradigms. It is weil known that an e."nemal forcing

function does not modify the stability behaviour of a linear rime-invariant system. Take for

example the Lyapunov e..'q)onents (to be discussed larer) which are determined by the behaviour

of the variational (pertUrbation) variables. For the linear problem the variational system does not

depend on the reference crajecrory, hence it is independent of the e."'Ctemal foràng. However, the

influence of the e..xtemal forcing, via the behaviour of the reference rrajecrory, can be felt by the

,-ariarional scates if a nonlinearity is considered. On a more physical note, rhe influence of an

extemal forcing on the srability behaviour can be observed with the divergence problem as

discussed earlier, and shown in Figure 1.5. However, this detenninisric example is complicated

by the unsrable nature of the pitchfork bifurcation. Take me case of flutter leading to a Hopf

bifurcarion, which is strUcrurally stable [.,:\rgyris et aL, 1994], the linear system williose srability

at an airspeed whose value does not depend on any e.."{[emal forcing, be it constant, harmonic or

random. The nonlinear system will aIso bifurcate at this same airspeed ifno forcing is present. On

the other hancL the Hopf bifurcation -will be shifted ta anorner value of airspeed if, for example,

':\ dday-differential equarion cao be considered to be infinire dimensional [Longrin, 1990, 1991].
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a constant forcing is imposed [Sipcic and ~Iorino, 1991].

This discussion serves tO highlight, and gain sorne insight intO, sorne of the particularities

and fundamental differences for bifurcation phenomena that a noisy system can e.~bit in

comparison with irs usual deterministic counterpart. _-\ccordingly, wc have restricred the topic tO

the simplest cases. Howeyer, for the system under investigation in this mesis, its specific strUetW'e

does not lend itself te a "simple" analysis as described above. For e..xample, we will see that it is

excited by both additive and multiplicative coloured noise. Other complications, for multiplicative

noise, are the nature of the e."{citatio~ which takes different forms and the number of parameters

which are excited. We will have parameters e."{cited '\\rith Iinear noise, say u·r<t), and others wirh

quadratic noise, u·rz(t). Ob,,~ously, the quadratic excitation will not be Gaussian d.istribute~ and

irs mean will not be zero. Finally, the system is high-dimensional.

1.3.2 Resonance considerations and spectral analysis

Tuming our attention ra the more traditional and dassical frequency analysis, let us briefly

introduce the problem of resonance in the conte..'Ct of e..nern.aL and parametric, excitations.

Resonance in an e..\.L:emally forced system usually occurs when the forcing frequency, Q, is close

to one of irs natura! frequencies. For a Iinearized n-degree-of-freedom system, with naroral

frequencies w:u' i =1 to n, the condition for resonance is e."qlressed as Q :: Wru) and is the primary

or main resonance. If nonlinear effeets become impO!W1t, the system may exhibit secondory (harmonie)

resonances, and combination (extema/) resonanees for the multi-degree-of-freedom case, which depend

on the order and type of the nonlinearity. For example, consider a cubic nonlineariry, secondary

resonance may occu! at Q = 1/3 W:U' or 3 W:u and combination resonance with the extemal

e.."{cirarion might e."{ÎSt at Q :: Wru ± wnl ± WnIt, Q :: W:u ± 2 w n,' Q :: 2 Wni ± wnl ' Q = (w:u ± w nl )/2

[Nayfeh and ~1oo~ 19ï9]. •-\nomer type of combination resonance is possible between a naroral

frequency and combÎrultory harmonic e.."{[ema! e..~citations in the case ofmultifrequency e.."{ciration.

•-\gain for the cubic sYStem, the condition is, Wn :: Q 1 ± Q ~ ± Q 3' Wn =Q 1 ± 2 Q ~ UJn :: 2 Q 1

± Q :;, Wn :: (Q 1 ± Q ;)/2.

Contrary to the previous probl~ a system which is parametrically e.xciœd will resonate

at a forcing frequency close to nvl.ce one of its natural frequencies. The condition, Q :: 2 W ni) is
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• called principalparame/ric reSOl1ance. Omer resonance frequencies are given b~· the more general

condition, Q == 2 WlU / m. where ID is an inreger, ie m =1, 2, 3, ... [i\fcLachlan, 1964]. Taking for

example the archerypal :'.lathieu's equation in irs damped form:

.i· + 2(UJ" x+ (w/ - 2q cosJ4) x =0 (1.19)

the stabiliry chan is schemarized in Figure 1.9. Centered about (2 UJn/ D/" =1 is me principal

parametnc ~ne. We see that, contrary tO the weil known extemal resonance case where me

presence of damping renders the system always srable, for parametric forcing damping modifies

me srability chan by enlarging the srabiliry region; Otherwise in the unsrable region, the system

will grow ra infiniry even in the presence 0 f posimre ciamping (or in pracrice until sorne nonlinear

effect takes over). The system is also subjeet ro combination resonance berween combinarory

harmonic pararnetric e.."{citations and twice one of irs namral frequencies (Camnell, 1990].
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Figure 1.9 - Damped i'.fathieu'5 equarion schematized stabiliry chart (jYIcLachlan, 1964].

(shaded regions are unsrable; dashed lines mark the undamped srability boundary)

.\nomer paniculariry of parametric e,.xciration is that under certain candirions, it may

srabilize an otherwise unsrable system, as e."<emplified again with l\Iathieu's equarion under a more

general form, and where the constant stiffness term, k, is negatiye:

• X + ex + (k - 2q cosQ/) x =0 (1.20)
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The schemarized subiliry chart far negative values afk is shown in Figure 1.10. For a non-exciœd

syst~ ie q =0, the fi.xed point is unsrable. However, as the magnitude of the periodic forcing

is increased, a relari~;ely small region of stabiliry is possible. Ir is indicaœd by the unshaded region

left 0 f the y a.~.

q

k

Figure 1.10 - Damped ~fathieu's equarion schemacized stabiliry chan, far k < o.
[Nayfeh and ~fook, 1979]. (shaded regions are unstable)

:\fulti-degree-of-freedam parametrically exciœd systems cao alsa e..xhibit resonance when

the excitation frequency is close tO a combinarion of the system natura! frequencies. The

condition, Q = (wru ± wnJ/m, where m is an integer is called combination (parametn"c) resonance. As

poinred out by Canmell [1990], combinatian resonances are not limired tO pairs ooly, however

higher combinarory orders are more elusiye and require stronger e..~citation levels ro materialize.

Xore, as weil, that contrary ta the single-degree-of-freedom system where V'Ïscous damping is

always stabilizing, Nayfeh and ~!ook [1979] discuss its possible desrabilizing effect on

cambinatian resanances with parametric excitatian.

Other types of resonance, such as internai and autoparametric, are also possible far

nonlinear multi-degree-of freedom systems [Nayfeh and Maak, 1979]. However, for the type of

nonlinearity considered in this resear~ we will not be concemed \\Ii.th them.

In many respects, resonance behaviour under random excitation is a narural e..'Ctension af

the previous discussion. In this case, the input and output specrra are in general braad, depending
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on the noise modeL In other words, the system responds to a conrinuous range of frequency

inputs. Resonance effects are characterized by a sensitivÎty of the response at frequencies \vhich

correspond ro the primary resonanee (Q ::: wJ for the exremal e.."{cirarion, tO the principal

resonanee (Q :: 2 euJ for the parametric problem, and ra any secondary and combinarion

resonanees for the nonlinear and mulri-degree-of-freedem cases, respeeti'\~ely. The intensity of the

noise exciration is a c.ritical factor at these resonant frequencies. For e..umple. for a tw'o-degree-of

freedo~ linear system e.."<cited parametrically by coloured n:urow band noiseS, Lin [1996] reports

reduced srabiliry regions when the excitation peak corresponds tO twice the frequency of the

mode e,..~eriencing critical slow down (2 wJ, or tO the difference berween the slow and tasr mode

frequencies (w, - w0. The principal parametric resonanee condition e..xhibirs the grearer effec4

followed by the difference combination.

Considering the linear problem, but parametrically excited u."Ïrn broad band noise cither

ln stiffness, or damping or both, a number of authors ha"ire reporred analytieal resultS

demonstrating the role of the noise power spectral density at twÏce the system natural frequency

for itS srabiliry condition. For example, .\.riaramam and Tam [1979] srudied the single-degree-of

freedom system 'W"Ïth randomly e.."{cired sriffness and damping, in addition ra an extemal random

eXCltaUon:

(1.21)

•

They obtained desrabilisation of the system, and derived the condition \\-~here the deterministic

damping must be greater than a cenain crirical value, (> 'en for srability. They showed mat (cr

depends on the yalue of the e.."{ciration ((,1 and '-J spectral and cross-spectral densities at 2eun, and

at zero frequency" for (,1' the darnping e..xciration. They aise showed mat for this linear syste~ the

additive te~ (,3' had no effect.

Inversely, srabilization of an unsrable, oegative stiffness type, deterministic system by

parametrie white noise \Vas also obtained for a linear single.degree-of-freedom system [prussing,

1981]. Larer, Prussing and Lin [1982] artributed the srabilizing effect tO '"a change in system

ilL"nless specified otheruise, the noise is considered Gaussian '\\-ith zero mean.
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darnping in a parricular manner"..~thoughno physical e.'l'lanation was given, ~1itchell and Kozin

[19ï4-) also reported srabilizarion of a negarive sriffness type insrability. Bath sets of authors

modelled damping and sriffness random excitario~ but Prussing used the same noise excitation.,

\\i-ith different inrensities, for rus srudy.

Nore that Katafygiotis et al. [199ï] and Khasminskii [1980] ha'~;e shown thar a one

dimensional unsrable deterministic system cannot be srabilized by parametric noise. 1-Iore

generally, the srabiliry of a one-dimensional (first-order) deterministic system is not affeeted by

parametric noise [_\mold, 1974]. This result is coherent with the probabilistic analysis of the

Landau equarion discussed earlier; see Figure 1.8.

For the nonlinear problem, in addition ro the resonanee phenomena described earlier.,

other types of behaviour are e.~ected to accu!..\s pointed our by Cai and lin [1997] for the case

of a nonlineariry in stiffness, localized broadening of the specrrum may be obseI"\red due to a

varying natura! frequency of the system. Consider the ease of a cubic sriffness:

(1.22)

one may imagine an effective linear sriffness ta be UJn
1 .r, henee varying with the square of the

response amplirode.

Reeentl~, the notion of rtochastic resonance bas been introduced ra describe situarions when

a weak periodie force in a nonlinear system cm be amplified by exrernal noise. The initial

definition requires mar all three fearures, namely nonlinearity, periodic exremal forcing and

random exciration, be present simultaneously [Dykman et al. 1994]. However, sinee its tirst

interpretarion, a number of related phenomena ha'\·e been observed and the concept of stochastic

resonanee has been generalized. For instance, Ditzinger et al. [1994] define stochastic resonance

without periodic force. In clùs case, the periodiciry in the signal originaœs not from an e.'{temal

forcing, but from eimer a monostable limit cycle oscillation or from the jumping action benveen

wo stable attraetors. Ditzinger et al. [1994] studied the response spectrorn of a determinisric

'J_-\ccording te Dykman et al [1994]. the concept of stochastic resonance dates back to 1982 and is due te

~icolis [1982] and Benn et al [1982].
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nonlinear (cubic) system subjecr ra additive white noise, ~-ithout any e.."{temal periodic forcing, and

e..wbicing a bi-stability (i.e. rwo stable fi."{ed points). They found that for low noise intensity the

spectrum has one dominant peak at zero frequency, typical of a srrong attraction of the system

toward one of its fi."{ed points. For increasing noise inrensity, the peak broadens and mo\·es

toward noo-zero frequencies, indicative of a coherent oscillation, termed pseudo·regrdar oscillation

by Sigeti and Horsthemke [1989], due to hopping between the [wo basins of attraction. For larger

intensity noise, the peak moves back roward UJ =0 and loses its distinctive shape; the 5pecrrum

is nearly Bat. _\s chey put ir, "the coherent oscillation stimulated by the noise is desrroyed by the

noise itself almost complerely".

_\5 suggested by many authors, chis noise-induced frequency peak cao be relared ro a

period of oscillation which cao be defined either as the mean sojOJl17l fime from an artractor, or mean

exifing time, a concept used by ~fcClinrack and ~foss [1989}, or meanftrst passage fime (Hanggi et aL,

1985]. o thers, such as Sigeri and Horsthemke [1989}, prefer tO use the mostprobable fime.

1.3.3 Stochastic srability

ContIary ro the detenninistic problem, where the observation of a signal often leaves

(relatively) ve!1-little room for interpretation, the determinarion of stochastic stabiliry is in general

not a trivial affair due in part ta the different approaches or concepts one may use. We are

however very caurious in this starement, since deterministic srabiliry is not ahv-ays a simple

problem1o
• The choice of a srability concept depends on its rdevance tO the problem at hand. This

means specifically the type of morion one is concerned with, the ease of implemenrarion of the

method, and finally its pertinence for any useful, engineering application. In other words,

determining the srability of a sYStem, or a rrajectory, serves no purpose if it is not done within a

context. For example, this has led to conrradicrory comments in the literarure. Bucher [1991]

states ms preference for sample stabifj~, or almost sure stabili!y (probabilisric concept), over mean-

Ic>-rhe first example mat cornes tO mind is for a chaoric traiecrory which is defined as locally unsrable (ie Àmu >
0; see nat section) but cao be interprered to be globally stable (Le. chaoric :lttracror)..-\.nomer e..umple, perhaps
more subtle, concems the limit cycle whose srability depends on the memod chosen. Using the kinemaric
concept of Lyapunm·. hence (kinematic) Lrapunov e.'lCponents. the limit cycle is not stable due to a vanishing
Àmu, On the other hand., this closed trajeaory is stable according to the orbital concept of Poincaré because it is
nct concemed with the phase difference between rwo reference points along the ttajecrory. This concept leads
to the term orbital Lyapllnov txponmt [D 'Souza and Garg, 1984; Wedig. 1991J.
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square stability (sraristical concept) in engineering applications, due ta the fact that the former

concept is "related ta directly observable evenrs while mean-square srabiliry requires averaging

over an ensemble which, in realiry, cannot be observed". On the other hand, Lin and Prussing

[1982J appear ta favour the mean-square srability, arguing chat the known techniques ta derermine

sample srabiliry are "very difficult ta apply for complicated systems...", while the "techniques for

moment stability are more versatile ... and appear jUSt as adequate for engineering design as almosr

sure stability". This dichotomy is sympromatic of the complexiry of the treatment of stochastic

srabiliry.

Due ro the innate random narure of a stochastic system. the most viable approaches are

obv'"Ïously sraristical and probabilistic. Hence, in an effort tO creare a manageable approach to the

problem, the differenr concepts of stochastic srability have been defined along these lînes. The

wo main, fundamenral, concepts are sample srabiliry and moment srabiliryll. Sample srability (aIso

tenned almosr sure srability, or alm05t certain srability, or stability withprohabiliry one) describes the

srabiliry in terms of probability and ensures the stabiliry of ail sample functions e..'"'Ccept for sorne

whose probabiliry of occurrence is negligible. As we will furrher discuss in the ne..n section, a1mOSt

sure stabiliry is conrrolled by the value of the largest Lyapunov exponent. For a more detailed

discussion on sample srability, see the following references: Lin and Prussing [1982], Ibrahim

[1985], Pugachev and Sinitsyn [1985], Arnold [1974J, Sri Namachchivaya and Doyle [1994],

~fitchell and Kozin [1974]. \Ve wish to emphasize the meaningful physical insight given by Un

and Prussing in their description of the concept, as weil as the very complete discussion by

Ibrahim.

The other main notion used ta describe stochastic srabiliry is in terms of a statistical

funcrional of samples. Here, we inrroduce the older concept of moment srability. According ta

.-\.riaramam and Tarn [1979], the system is considered asymproticaily srable in the nth-moment if

the following condition is met:

IIThere exist omer basic types such as subility in distribution, subiliry in probability [Sri Namachchivaya and
Doyle, 1994; Lin and Prussing. 1982; Ibrahim, 1985] and entropy srabiliry [Ib~ 1985]..-\ccording ro the
authors, mey are eimer roo weak or unpracticaL•

lim E [llx (t) Il'' ]~ finite value
1_ :e

(1.23)
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where II .t(t) Il is the Euclidian oorm of the d·dimensional trajecrory, and E [] is the e.~ecration

or the ensemble average. :\lthough n can cake different values, we will concentrate on the

traditional second moment (n = 2) which provides a better physical insighr. For this reason, as

weIl as ease of implemenration, mean-square stabiliry appears tO be the preferred choice for a

number of engineering analyses [Lin and Prussing, 1982; Sri Namachchivaya and Doyle, 1994;

Ibr~ 1985].

:\ccording tO Sri Namachchivaya and Doyle [1994J, sample and moment srability of a

linear system do not irnply each other. For e."<ample, rvfitchell and Kozin [1974] present results for

a parametrically e."{cited linear system which e.IDibits sample stability but is unsrable in the sense

of the second moment. It has been pointed out by sorne authors that chis phenomenon is one of

kng,e deviations [Arnold et al.; 1997J. 10 contrase, numerical restÙts for our nonlinear system

(parametrically excired) have shown that the sample and mean-square stability points coincide.

1.3.4 Lyapunov exponents

The Lyapunov exponents e."{press the srabiliry characteristics of a reference trajectory, and

more specifically its sensitivity tO small penurbations in the initial conditions. Implicit in this

description is the linear nature of the concept. :\lthough they may characterize any trajectory

whose origin is a linear or a nonlinear system, they depend only on the linear part of the flow.

Hence, the Lyapunov exponents are a generalization of the real part of the eigenvalues, defined

for a fi."{ed poine, tO anyarbirrary solution. We may then speak ofe."q)onential divergence (negative

srabiliry) or convergence (positive srahility).

Given a d-dimensional continuous ergodic system, Osedelec [.Argyris, 1994; Xie, 1990]

has demonstrated the e."<Îsrence of d non-random exponents, sorne of which could coincide.

Similarly tO the eigenvalue problem, it is the value of the largest e.'q)onent, given as Àaux, which

determines the stability of the crajectory, such chat a negative À.max implies a convergence of

inirially close trajectories, while a positive Àmu; defines diverging rrajectories. Local (trajectory)

instability is not necessarily associated with a more global (attractor) insrability. For example, a

stable chaotic attractor has at least one positive Lyapunov exponent, thus expressing a local

insrability. However, given a dissipative system, the summation of all n exponenrs is negative,
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ensuring mat the trajectories will be limited ta a confined~ but fractaL region in sure space.

.-\nomer char.lcteristic of the Lyapuno\~exponenrs is the invariance of their respective magnitude

for (almOSt) any reference trajectory within a given attractor.

No assumpnon has been made in the preceding on the detenninism~ or inversely

randomness, of the dynamical system. In fact, the concept of Lyapuno\" e.~onenrs has been

defined within the framework of random dynamical systems, where the deteunioistic problem is

considered as a particular case of the more general random problern [Arnold and Craue1, 1991,

~\mold and Chueshov, 1998]. Examining the d-dimensionallinear dynamical system, .r = A(t) x,

where A is a randomly time-\Tarying d x d matri.x., it has been shown analytically that a qualitative11

change in stability, hence bifurcation, of the random fi"{ed point occurs when the largest

Lyapuno,,· exponent changes sign. More specifical1y, a vanishing .,tmu is indicative of a D

bifurcation [.Arnol~ 1995]. This change of sign of .,trou is aIso associated with the probabilistic

concept of sample stability [Baxendale, 1991; .\mold et al 1986] .

.-\.nother interpretarion of the largest Lyapunov e.~onent refers [0 irs magnitude, which

defines the rime scale with which [wo inirially close rrajeetories converge or diverge with respect

to each other. Relatively speaking, a large, but negarive, largest Lyapunov e.'\l'0nent is associated

with the fast convergence ofa srrongly stable attractor. On the other han~ a small negarive largest

Lyapunov e.~onent indicates a stable system, but highly susceptible to e."{citations~ hence the

potencial problem of large deviations inrroduced earlier..\s the magnitude of Âmu decreases

towards zero \vith a change of control parameter, a critical slow down is e."<Perienced up tO the

bifurcation point where Àmu \·anishes.

In practice there exist different means for obtaining the largeS! Lyapunov e."<P0nent. One

approach is the so-cal1ed rangent space method [Schreiber, 1999], in reference probably to the

linearization process of the system tO a reference trajeetory. The largeS! Lyapunov e.~onent

obtained by thi.s method matches its theorerical definirion smce ir calls for the calculation of the

Jacobian~ and subsequently the solution of the variational equarions (see Schenk-Hoppé [1996]

for a rigorous theorerical definition of the largest Lyapunov ~'q>onent)..Although this approach

I~Here a distinction is made between a qualitative and quantitative description of stabiliry. Qualitative refers

to the sign of À., while quantitative expresses the magnitude .of À. hence the degree of smbiliry.
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• has been applied tO calculate the Lyapunov exponenrs from rime series [for e."<:ample Eckmann

et al., 1986], it is panicularly well suited for the case where the equarions of motion are available.

There are essenrially [WO av·enues tO derermine the large~t Lyapunov e."<:ponent via the

rangent space methad. One is tO directly linearize the system by calculating the]acabian about

the reference, random trajectory, hence the requirement ta simultaneously numerically integrnte

the linearized and nonlinear sers of equarions. The largest Lyapunov e.xponent is then obtained

from

•
where .i(t) is the solution of

x = af (x, t ) l.r (t) x
ax '

(1.24)

(1.25)

and xr(t) is a solution of _~ =f (x, t) which, in general, contains both parametric and external

random excitations. Take for e."<:ample the case of a cubic nanlinearity withf(x,t) =A(t)x +A~

+ B(t), then

~ af(x,t) - [AC) ~ 1],
X = .... 1.r,(I) x = t + JAjx .r,(r) X

ex
(126)

•

The parametric e.xcitarion is directIy feh by the linear term A(t), and indirectly by the nonlinear

rerm \;a the reference trajeetory, whereas the influence of the extemal excitation B(t) is purely

determined by the latter.

The second avenue to detennine the largest Lyapunov e.\.1>anent accarding tO the tangent

space method consists of mi.ce solving the same system of nonlinear equarions, with different but

close initial conditions, but with the same noise realisation. In this case, the largest Lyapunov

29



• e.'\.1Jonent is given by:

= lim lin(liJ
t-+~ l ""0

where " II, is the Euclidian norm berween the two solutions at rime t

(

J )1/2
1111, = ~(Yi -xJ ,

(1.27)

(1.28)

•

•

.\nother series of methods, known as real space or direct methods, search for pairs of

initially close trajectories and monitor divergence or convergence. This is the idea behind the

algorithm developed by Wolf et al. [1985], and more recencly by Kantz [1994}, for rime series

analysis. For the case where the dynamical system is known, the spirit of the real space methods

is followed by solving the equations twice, \Vith different initial conditions and with different

noise realizations.

1.3.5 Final remarks

\Ve conclude this seetÏon on (\Vo notes. Firsr, it transpires from the vast majoriry of the

published lirerature on random nonlinear dynamical systems, more specifically on the subject of

bifurcation, that the preferred e."<ercise in trying tO elucidate the D- versus P-bifurcation problem

is tO develop a formalism based on either the presence of multiplicative noise (most cases) or of

additive noise (somerimes), but rarely with bath noise components acting simultaneously. In face,

we are aWare of only a few publications where the combined, additive and multiplicative, noise

problem is sysrematically and explicitly addressed (Sri Namachchivaya, 1988; Sri Namachchivaya

and Liang, 1996]. In chis conrext, it is refreshing and stimularing that Arnold (1995] poses the very

relevant question: "the real challenge for Stochastic bifurcation theory is ta e.xplain and analyse

what stochastie Hopfbifurcation could mean". We believe however that chis question is rooted in a

more fundamental one, which should me into account the universal property of nature where
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both mu1tiplicariye and addirive noise co-exist. Essentially, creating the multiplicative noise

problem in exclusion of its additive counterpart, and as a goal in icse1f, may he in sorne regards

a limited exercise, especially for the nonlioear case. In chis sense, .-\.rÏaramam [1994] has alluded

to the quesrion by sutïng -'In any physical system, in addition tO parametric stochastic

fluctuations, there is also present stochastic dismrbances of an additive nature. In such systems,

an abrupt bifurcation does not occur, but rather a graduai cransirion ta higher and higher response

amplitudes as the bifurcation point is crossed. Hence, from a physical viewpoinr, the concept of

bifurcation of probabiliry density rneasure may be more realistic."

Second, it seems appropriate in closing ta mencion the very nice and relevant paper

\vritten by Yoon and Ibrahim [1995] on nonlinear coupled oscillators excited by parametric

random noise. Relevant to this thesis not 50 much in depth as sorne other previously referenced

papers, but in terms of breadth. It has the dual merit of investigaring the problem with a

combined analyticaL numerical and experimental approach, and bringing together a number of

concepts, sorne of which were discussed earlier.

1.4 Aeroelasticity in Turbulent Flow - History and Current Status

1.4.1 Preamble

Of the [wo fundamental problems treated in chis thesis, random exatanons and

nonlinearities, the latter has cerrainlv been addressed with much more drive and vigour in recent

years from an aeroelastic point of view. Two recent review papers in the Journal of Aircraft

confirm chis unbalance. Friedmann [1999] on the '~enaissance of Aeroelasricity and Its Future"

idenrifies nonlinearities as being one of the major areas of interest, but makes relatively lime

reference tO mrbulent, or random, e..xcitations. Perhaps, he justifies indirectly chis posirion in the

context of rocary-wing aeroelasticiry by stating that "Time-varying wake geometty, which is an

important source of unsteady loads, vibration, and noise, is excruciatingly compl~"(.". The other

paper, by Livne [1999] on ''Integrated Aeroservoelasticiry Optimization: Sratus and Direction",

offers a classification system of "space-cime" behaviour which distinguish for e.xample between

linear and nonlinear problems, or between steady and unsteady (dynamic) problems. The random

versus detenninistic distinction is not offered. However, the gust-excitation situation is discussed
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but ooly in terms of (quantitative) response, thus indireetly neglecting the more fundamenral

aspects of the random-nonlinear interaction such as stochastic bifurcation~ or basin hopping.

These operational1y oriented positions are cenainly motivated, and explained tO a degree,

by the combined influence of requirements, tools and paradigm bw. In this sense, it can be

argued that the CUITent stare of technology of flighr vehicles does not requite a more detailed and

up-front tackling of turbulent (random) e.xciration, which in any case is not possible due tO the

state of analysis tools available. In counterpoise ro this view is the rapidly increasing rate of

computer technology, the quickly evolving theory of random nonlinear dynamical systems,

experienced and accelerated by other scientific disciplines 13, and the seemingly ever intensifying

operarional environment of tlight vehicles.

For e.xample on this last point, the early days of aeroelasticity were largely dominated by

fixed-wing aircraft technology, with an emphasis on linear behaviour, where turbulence was

mainly ofgeo-thennal (atmospheric) origin [see Fung, 1955; or Bisplinghoff and Ashley, 1962J.

With the ad\'ancement of aircraft capabiliries, both in speed and manoeuvres, came a higher

intensity turbulence created by flow separation. The shock stail and abrupt pull-up staIl on the

main wing impacted the taR hence tail buffering. The 1960's and 70's marked a shift in interest

from fixed- ta rotary-wing technology. Along \Vith mat shift came the appreciarion of the

intrinsically nonlinear (srrucrurally and aerodynamically) nature of rorary-wing aeroe1asticiry, along

\Vith the highly turbulent flow caused by the rotaring blades cutting thraugh their own shed wake

and vartices [Friedmann~ 1999; Done, 1996]. Then came the even higher turbulent flow intensity

attributed te leading edge vortex breakdown, associated with current generation fighter aircraft

at high angle of arrack leading tO fin buffeting [AG_\RD-LS-121, 1982; AGARD-CP-483, 1990].

For example, Lee et al. [1993; 1990] measured the mrbulent flowfield with a vOrte.x rake in the

vicinity of the F-IS vertical fin..-\t subsonic speeds and angles of attack in the neighbourhood of

35 0
, R.'\fS values of pressure fluctuations, normalised with the freestream dynamic pressure, in

l~"e are making reference ra the disciplines of mathematics and physics which usually precede any
engineering applications, and aIso ro adYarlcements in biology or chemistry norably by Horsthemkc: and Lefever
[1984}. Howeyc:r, we wish to point Qut that close1y rela.ted ra the phenomenon of random dynamics is the
probabilisric approach tO the analysïs and design of systems. In this lighr, the 40dI American Insriture of
:\eronaurics and :\stI'onautics (."\1.:\..:\) Srrucrures, Stl'Ucrural Dynamics, and Ma.rerials Conference [1999} may
ha\·e been an imPOrt:Ult turning point for the (North :\merican) aerospace communiry as jt was hdd in
coojuncrion with the Mt Forum on Non-Detenninisric :\pproaches. Funhermore. it is aIso worth painting out
the creation in 1986 of the Journal of Probabilisric Engineering Mechanics.
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the order of 004 ro 0.5 were obtained.

Toillly's fighrer aireraft also experience nonlinear aeroelasric dynamics within their

published operational envelope, and somerimes ar airspeeds lower man the published flurrer speed

[poire! and Landry, 1993; Lee and Tron, 1989]. In particular, limir cycle oscillations are being

e.~erienced [Trame et al., 1985; ~Ieijer and Cunningham, 1991]. If there is a trend that emerges

from chis short hisrorieal perspective, it is the increasing practical importance of nonlinearities

coupled with an intensifying turbulenr operational env-ironment.

1.4.2 Classical approach

The bulk of the published literarure on aeroelasticiry in turbulent flow concentrates on

the response of the sysrem. ~Ioreover, the system is either linearized or sometimes quasi

linearized. Quasi-linearization in a random conte.xt is known as the equivalent gain method. Ir is

analogous ro the describing function memod for deterrninistic harmonic signals, hence ir is nor

limited ro small amplitudes bur requires, or assumes, mat me response is Gaussian distributed

[Lusebrink and Sonder, 1991]. In addition, the rorbulenr excitation is considered in its verticaL

and lareraI for a 3D analysis, components only. The longitudinal component is almost always not

considered e.xplicitly. The consequences of these simplifications are mat the impact of turbulent

flow on the stabiliry and dynamics of the aeroelastic system is nor known, and more generally the

srochastic-nonlinear interaction is not weil understood.

Let us add mat in the design and certification of aerospace systems, the rorbulenee

excitation is onen rreated as a detenninistic input, known generally as the discrete gust mode! as

opposed ro the conrinuous turbulence model The detenninistic approach has been formulated

in a practical fonn by Pratt in 1953 under the ruune of the 1-c05 pulse mode! [pratt and Walker;

1954]. The advanrage of this model, which is still being used e..'\.ï:ensively to treat the response tO

aanospheric turbulence, lies in its empirical 5implicity cultivated by an immense source of flight

data [see for example AGARD-R-i34, 1986]. Ir is ooly in the 1980'5 that the conrinuous

turbulence mode!, with sorne of its limitations as described above, has been used for design in

parallel with the discrere gusr method [Saucray et al., 1991; Anon. (DOT), 1996].
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Of the large number of published works following the elassical approach, we wish ta

discuss rwo rmjor contributions. Houbolt et al. [1964] in 'cnynamic Response of ~-\irplanes to

_\rmospheric Turbulence Induding Flighr Data on Input and Response" is particularly signifiant,

in mat it provides an exhausti,-e description of almospheric turbulence as resolved from flight test

data, and a discussion on the determination of the dynamic response of aircraft with a spectral

approach. In conjunction with the research headed by Hoblit in the early 1960's, this report is the

origin of the more rational continuous rurbulence modd used in airerait design. The specific case

of the longitudinal component is described initially in the context of the description of

annospheric turbulence. However, and symptomatic of mos!, if not aIL publications, the

contribution of longitudinal turbulence is totally discarded in the analysis of the aircraft dynamic

response, 'W'Ïth no explanation being given. The aircraft is aIso linea.rized.

The second work is Hoblit's book [1988] titled "Gust Loads on _-\ircraft: Concepts and

_-\pplications". It is the authorirative reference, and pro'\"Ïdes a comprehensive tteattnent of the

subject, again from a desÎgn point of view. Remaining coherent with the classical approach that

considers rorbulence e..~citation onlyas an exremal forcing, he stresses the importance of properly

moddIing the frequency mid-range of the turbulence spectrU1Il, in the same breath neglecting the

contribution of the low frequencies. His argumentation is on firm theoretical grounds from the

classical approach perspective, as the low frequencies rypically excite only the aircraft rigid modes

which have a struill secondary and indirect influence on the elastic modes. On the other hand, as

shO'wn by Lin [1996] for e.."Cample, in the context that the parametric excitation is considerecL the

turbulence low frequency range becomes imporunr due to combination paramerric resonance and

the condition at zero frequency. This book is the only source found which proposes, although

indirectly, a rationale for neglecring the longitudinal componenc (called head-on turbulence in bis

book). The argument is based on a very simple comparison between the lift increments due tO

head-on and yertical gusts..Among the simplifications used, the gusr is discrete and of small

intensity, the reaetion of the aircraft is not considered and the aerodynamics is assumed as steady.

Ne,~ertheless, Hoblir mentions that longitudinal gusts can be importan~but makes no mention

of it in the rest of the book. The treannent of nonlinearities is aIso extremely narrow and

superficial, i.e. (WO pages.
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1.4.3 Non-classical initiatives

On the fringe of the classical analysis of aeroelastic response tO turbulence are a relatively

small number of individual and punctual initiatives. They appear to take their motivation from

the specificity of the subjecr treated or frOID a more fundamental research interest. In dUs regar~

these initiatives broaden the span of interes~ usually limited ro wings, control surfaces and

fuselage in aonospheric turbulence described above, to other types of strUcmral componenrs,

other sources of turbulent e.xcitation and more generally random e.xcitation, and/or to other types

of fluid excitation.

In aeroe1asticity, there seems to be one main subjecr which is directly concemed with the

nonlinear-random interaction, that is panel flutter. Although an aeroelastic problem, it differs

mainly from the airfoil case in mat chordwise (streamwise) deformations are important, and

supersonic flow is required [Fung, 1955; Dowell et al, 1978]. Neverthdess, it is similar ro classica!

binary flutrer of airfoils in that its instability mechanism is also a coalescence of two aeroelastic

natura! frequencies [Dowell et al., 1978]. A recent survey paper on nonlinear panel flutter is given

by ~fei et al. [1999J. Due to the very large number of papers published on me subjecr, the specific

case of random e.xcirations is exposed in a few lines, and brings in evidence the work of Ibrahim

et al. [1990J with regards tO in-plane random forces.

The initial works on stochastic panel flutter aimed at invesrigaring the effect of low

intensity excitation of the turbulent boundary layer, originating and acting on the same pane4 ie

self-induced turbulence. One of me tirst tO observe e.~erimentallyand report such an effect was

Dowell [Dowell, 1970; Dowell and Voss, 1965]. Wind tunnel e."{periments showed that the

turbulent excitation had relatively more effect on the plate response at pre- rather than at post

Butter airspeeds. In the wake of the experimental observations came efforts ro mode! analyticaIly

the phenomenon [for e.xample Dowell, 1970; Eastep and McIntosh, 1971]. Eastep and J\{cIntosh

approached the problem by tirst assuming a phenomenological random pressure field based on

known experimental data. The pane! motion was then modelled as a previously determined

deterrninistic response on which a smal1 random response is added.
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_-\ significant shift in the appreciation of panel flutter followed shortly after '\vith the use

of a Monre Carlo technique, thus taking advam:age of increasing computing power capabiliries.

Vaicaitis et al [19ï4] integrated the stochastic nonlinear equarions ofmotion in the rime domain.

The random e-"(cirarions due tO the rurbulent boundary layer were, similarly ta Eastep and

~fclntosh'smodeL considered independenr of the panel response and detennined from prev-ious

e:-"l'erimental dara. The e-~erimentally generared rurbulence pressures, characterized by their

po\v'er spectral densities (PSD) and assumed Gaussian distribution, were treated as an exrernal

forcing and simulated in the rime domain. No parametric random e-~citationswere modelled. In

terms of the panel deflecrion, sorne releyant results are the follo\\-ing. The response PDF is uni

modal, and tending ro a Gaussian strUcmre at pre-Butter speeds, while it is bi-modal afrer the

flutrer point. From a physical point of ,,-iew, the aumors have attributed this behaviour tO the fact

that the rate of response is large when the panel goes waugh the neutral position, and is then

slowed down as nonlinear effeets become more important for large deflecrions. _-\nother

inreresting observation is chat the peak of the nonlinear response PSD, characterizing the LeO,

occurs at a frequency slightly lower than the second mode (aeroelastic) natural frequency of the

panel. It is not clear however if this change in frequency is due strictly to nonlinear effecrs or ro

the nonlinear-random interaction.

Csing a very similar approa~ the analogous problem of nonlinear panel flutter subjected

tO acoustic excitations is an:acked by _-\bdel-~fotagaly et al [1999]...\.lthough a number of their

restÙrs match Vaïcaitis et aL's, a notable e.~ceprion is the non-zero root-mean-square (RMS) panel

response at zero dynamic pressure, whereas for the latter the Fu.\1S response rends ta zero \Vith

dynamic pressure. This difference is not e.\.-plained, but can be attribured ta the source of the

random e-~citarionwhich for _\bdel-Moragaly is independent of airspeed. On the other hand, a

random excitation having an aerodynamic origin changes with airspeed.

_-\ seemingly increased farnj]jariry with semi-analytical probabilistic methods14 in random

dynamïcal systems based on the Fokker-Planck equario~ enabled Ibrahim et al. [1990; 1991] to

rackle stochastic panel flutrer in this manner, in addition to including the effect of parametric

random pressure loading on the aerodynamic sriffuess. No random excitation of the aerodynamic

damping tenns was considered. They e.'q1ressed the problem in terms of response suristics, thus

l~For an in-depth description of me method, see the e.'{cellenr book by Ibrahim [1985].
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generaring a set of first-order nonlinear differenrial equarions describing the rime evolution of the

moments. These equarions were men numerically inregrared. Using the second-arder momen4

they were able ta detennine that, due to its in-plane component, the random rorbulenr boundary

layer reduces the stabiliry (i.e. mean-square stability) region of the sysrem.

_\nother notable problem is the stability and response of rotor blades. In this case, the

equations of morion are usually linearized about a periodic motion obtained from the

detenni.nistic nonlinear equations of motion. The turbulent e.."{citation is men included in the

linearized equarion. The periodicity of the dererministic motion is a direct consequence of the

roraring blades in forward flight. This problem is obviously physically different than the one under

consideration in this thesis. Mathemarically, one difference is e..~ressed by a random parametric

eyclostatiooary process e..xcitation15
• However, in conditions ofhover, the parametric e..xcirarion

becomes srationID.y, representative of atmospheric turbulence e.."{cirarion, due to the loss of the

inherent deten:ninisric periodicity. This case has been smdied by Un et al. [1979] and Pmssing and

Lin [1982; 1983]. Sorne of the simplifications used are quasi-steady aerodynamics, linear (i.e. no

quadraric noise uor=(t) ) and physical white noise e..xcitation, and three degrees-of-freedom. Both

damping and stiffness tenns were randomly e..xcited. Based of stochasric differential equation

theory, they obtained closed-form solutions for the mean-square srability of the system. They

showed that turbulence had a destabilizing effect on the uncoupled fiapping motion. Introducing

a coupling with other degrees of freedom, they further showed mat turbulence could be

srabilizing for the flap-lag problem. They initially speculated mat the origin of the srabilizing effeet

of the parametric turbulence was the same as the one reporred for the single-degree-of-freedom,

negativ-e sriffness type instability [prussing, 1981], which is "a change in the system damping in

a particular manner" [prussing and Lin, 1982]. Later, they interpreœd the origin of the

stabilisation as an increase in damping of the lead-lag motion due to turbulence [Prussing and Lin,

1983]. On the other hand, the flap-pitch stability was always reduced by turbulence.

More recencly, Tang and Dowell [1995] have smdied analyrically, and complemented this

with e..xperimenration, the response of a linear airfoil in a sinusoidal pulsaring flow with

longitudinal armospheric turbulence. Although rheir prablem is significantly different from the

present one, in the sense that they atternpt ta simulare the periodic free-stream of a rotor blade

15Gaonkar [1981] prO\'Ïdes a discussion on the response of rotors tO noosmtionary gust excitation.
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in forward motio~ it is relevant te highlight one of their aerodynamic modelling assumptions..'\5

discussed later in the ne..~ chapter~ an ambiguiry e.."cists with regard tO what has been called an

unsready free-srream vdocity 'Versus fore-an morion. In the later case~ the unsteadiness in the

airspeed is creared by the fore-aft (chordwise) motion of the airfoiL whereas in the former case

the origin of the fluctUations in airspeed is not the airfoil morion, but sorne ather outside factor,

for e..xample~ annospheric rurbulence. One consequence of this difference (others u-ill be

discussed in Chaprer 2) bas ta do with addirianal added mass terms proporrional ta if (for

instance 1tpb2.[ja in the lift force) mat appears in the aeradynamic mode!, as for e..xample in

Greenberg's mode! used by Tang and Dowell. The appearance of this term is certainly valid for

the fore-art motion. On the other band, our inmirion suggests mat for the unsteady-free stream

case~ the only added mass terms should be due ta arbitrary morion of the airfoil in pitch and

heave, since there is no accelerated motion chordwise. It is interesring ta nore mat it appears mat

Tang and Dowell have not modelled this addirional apparent mass t~ not for the reason

discussed abO'~ie, but pure!y for marters of "simplicity". Otherwis~ no ratianale for neglecting this

Other, non-aeronautical aeroelasric prablems include wind-e.xàred bridges. For e.xample~

Bucher and Lin [1988; 1988; 1989] srudied the srability of linear bridges randomly excited by

wind. Bath stiffness and damping tenns were randomly exàted. Based on a one-mode analysis,

they abrained destabilisarian in the mean-square sense due to longitudinal turbulence, whereas

the system became more stable with the addition ofother modes of ....."ibrarion which had no effect

on the determi.nisric srability. They argued mat although longitudinal turbulence may desrabilize

indi",idual modes acting separatdy, introduàng a coupling with other modes hdps in rransferring

the energy from the least stable te the more stable modes, thus stabilizing the overall system16.

For a discrere model, the same conclusion was obtained for a IDOF pitch mode~ as compared

with a 2DOF pitch and hea.......e modd forwhich it was shown mat turbulence could ha\~e a slight

srabilizing effect [lin and 1-4 1993; Li and Lin, 1995; Lin~ 1996]. The same authors also

highlighted the significance of the e.'t:ciration speettallevd at frequenàes corresponding ta twice

the B.utter frequency (principal parametric resonance) and in candirions of combinarion

16~ore that the fluner mechanism in this case is one-mode damping-conttolled. as opposed to the classical
tw'o-mode coalescence airfoil flutter. This should be kepr in minci before any hasty conclusions are drawn for
classical fluITer since coupling is an essenrial clement for this insr.abiliry [Q occur, but ir could be of sorne
significance for divergence even though divergence is a n~riYe stiffness type instabiliry.
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parametric resonance for the 2DOF case ti
. Le y!aicre et al. [1999] have given a more e:{otic

flavour tO the aeroelastic problem by in~tesrigating, in the cime domain using a Runge-Kutta

scheme~ the nonlinear interaction of atmospheric turbulence and a sail.

From a more general perspective~ Heo and Ibrahim [Heo, 1985; Ibrahim and Heo~ 198ïJ

have e..xamined the stochastic response of a nonlinear (quadraric) saucrure, consisting of t\Vo

coupled beams with rip masses, under parametric and e..uemal white noise e..xcitarion. Although

they claim their mode! is represenrarive of an aeroelastic syst~ there is no attempt tO cake into

account the specifie nature of the aerodynamic forces...-\.mong others, one consequence is that

the relative magnitude of vertical ta longitudinal excitations does not appear ta have been

considered per se; the same can be said about the relative proportion of random e..xciration

intensity on the damping and stiffness temlS. Without losing sight of this essential fact, sorne of

their results are nevertheless relevant tO this thesis. Using the same exciration magr:itude for bath

stiffness and damping, mey show that the random e.."(citatioo of the stiffness terms generally has

more impact on the system mean-square response than the random e.."{citation of the damping

tem1S. In addition~ they conclude that the mean-square response is mainly govemed by the

extemal exciration in comparison with the influence of the parametric excitation.

Finally~ the more general tluid-srrucrure interaction scenario lends itself ta the srudy of

fle.."(Ïble tubes in cross-flow, a topic which has seen and is still receiving a lot of attention. This is

an exrremely v'ast tapic and no attempt will be made tO pro'\'ide even a modest overview of the

problem. We JUSt want to highlight me recent paper by Romberg and Popp [1998] which brings

an e~l'erimental perspective ta the stochastic aeroelastic question. Using a grid of variable

geomerry mey were able to create upsrream turbulence with intensity ranging from 1O~/O tO 23%.

The~ mey investigated the srabiliry behaviour of a single fle-'tibly mounted tube in an otherwise

fi..xed array, and determined that the turbulence, even at the lower inrensiry level (10~/o), had a

significant srabilization effeet on the tube. This is relevant in that this controlled experimental

investigation provides credence tO the physical manifestation of the more fundamenral influence

mat turbulence can have on an aeroelastic system.

I~The combination parametric resonance condition, ""1 -~, could be a contributing factor in the shift of the
classical i:Wo-mode flutter instabiliry point. :\s the flurrer point is approached. the coalescence of the ru"O modal
frequencies makes dUs resonance condition tend ro zero, which is in its ou~ right another deremllnanr for
instabiliry [Lin, 1996; .\riar:1mam and Tarn, 1979].
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_\-iotivations

_-\.s introduced earlier, the interest of the engineering communiry in the interaction of

random e..'{cirarions with detenninisric chaos and related nonlinear dynamics is relarively recent.

We have also seen mat aeroelastic systems offer a potenrially impOrtant domain of stochastic

nonlinear dynamic phenomena. In thi.s conte..'{t, we are morivared by both the ubiquitous nature

of turbulence, coupled with the ever increasing practical importance of nonlinearities, as well as

the theorerical challenge and inte1lecrual significance that the combined problem of random

e..xcirations and nonlinearities offer.

Objectives

Except for sorne recent contributions [poird and Price, 1996; 1997; 1999; submitted for

publication], published work on the effect of turbulence on the idealized 2D airfoil (the typical

section) has concentrated mainly on the linear e..'\.l:emally e.."{àted (Le. no longitudinal turbulence)

problem. Conversely, the yast majoriry of smdies on the nonlinear airfoil have been treared from

a deterministic point of view. Accordingly, chis thesis ha.s two objectives:

1. The principal aim ofthis them is to e>..plore, desmobe and analYse some ofthe efficts of fIIrbulence on the

dynamic characteristics ofaf7exible airfoil with a structural nonlineari!).

2. _4 secondary objective is to articulate a more detailed and comprehensive pieture ofthe contribution ofthe

longitudinal component ofturbulence, as experienced by an airftil, be if linear or nonlinear.

Scope

Chapter 1 bas esrablished the conceptual framework, and theoretical backgrouncL upoo

which r.his thesis is constructed. The novelty and relevance of the undenaking have aIso been put

forward through a discussion of random nonlinear dynamical systems theory, and with an

historical perspective of turbulent aeroe1asricity, linearized and nonlinear. In Chapeer 2, the ID
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airtoil-turbulence modd used for chis investigation is described. Particular emphasis is put on the

aerodynamic mode!, since the turbulence e..xciration aets on the airfoil via the aerodynamic force

and momen~considered ta be linear and incompressible for chis work. The modd simulation and

analysis methodology are chen described in Chaprer 3. Sorne parricularities of rime discrerization

and numerical integrarion of random differenrial equations are discussed. ~\ discussion on the

generarion of (pseudo) random numbers is also provided.

The main results of this thesis are given in the ne..xt five chapters. The first four deal with

the airfoil experiencing binary flutter. These four chaprers forrn the hean of this thesis. Chapte!

4 inrroduces the problem by tirst esrablishing the deterministic baseline~ non-excired dynamics,

and men providing a bifurcation analysis of the random Butter/supercritical Hopf bifurcation.

Chapter 5 is concemed \vith the mechanism of the random insrabiliry and Chapter 6 discusses the

nonlinear response. In Chapter 7, the second objective of this thesis is specifically addressed

where the relative influence of the longirodinal component of turbulence, in the o,·erall more

realistic combined e..,:ciration probl~ is e.umi.ned.

Sorne aspects of the turbulence e.."{cited diverging airfoil are then discussed in Chapter 8.

We conclude with Chapter 9.
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Chapter 2

PROBLEM DESCRIPTION AND MODELLING

• 2.1 The Typical Section (Airfoil)

•

:\s shown in Figure 2.1, the airfoil is modelled as a rigid flat plate with [wo degrees of

freedom in h~ve and pitch, h and 8 respectively. Scrucrural t1e-xibility is pro\-ided by torsional and

rranslational springs at the elastic axis, E \. By definirion, the airfoil is a [wo dimensional modeL

hence three dimensional effecrs are not considered.

The semi-chord is given by b. The Staric unbalance, xf}t is the distance from me e1asric a.XÏ5

tO the airfoil center of mass as a fraction of semi-chord. It is defined positive for the center of

mass aft of the E \. ah is the distance, also as a fraction of semi-chord, from the mid-chard point

to the E-\.. Ir is defined positive for the EA arr of the mid-chord point. .-\lso shown are the mean

airspeed, cl'm' and the longitudinal and vertical components of rurbulent ve1ocities, respecrively

U -T(t) and W -T(t) .
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W•T(t)

----~. .t
U•T(t)

mean pOSlOOn

h

Figure 2.1 - _-\.i.rfoil mode! schemacic.

2.2 Elastic (Structural) Equations of j\;fotion

The scrucrural equarions are obrained from Fung [1955], and modified tO inc1ude viscous

"structUral" damping and a strUcroral type nonlinearity in the fonn ofa cubic hardening torsional

spring. Note that this is the only source of nonlinearity, except for a few cases discussed in

Chapter 8 where a cubic nonlinearity on the translational spring is also considered . Other

nonlinearities, such as those of geometric origin ha'~;e been neglected. Thus, oscillations are

limited tO small amplitudes, typically e< 10°, such that sine:::: eand cose::: 1. The pitch is defioed

as positive nose up, and the heave as positive downward.

•
(2.1 a)

(2.1 b)

43



•

•

•

In addition tO the parameters and variables shown in Figure 2.1, IE.\ represents the mass

moment of inertia about the elastic a.."cis, and m is the airfoil mass. Da and DiJ are the torsional and

translational damping coefficients respectively. Similarly, Ke and Kir are the linear spring

coefficients, and K3 is the cubic nonlinear torsional spring coefficient. The uncoupled natura!

frequencies in heave and pitch, respecrively, are UJh =(Kh/m) 1
i':. and CùtJ =(Ke/ IE.~YI'1·.

Coupling berween the rwo degrees of freedom arises from the inertia terms in the case

where the elastic a.xis and centre of mass do not coincide (xe ~ 0), and otherwise from the

aerodynamics. On the right hand side of the pitch and heave equarions are the aerodynamic

moment and lift force, respecrively.

2.3 Aerodynamics

_-\s opposed tO pre,,;ous works on linear or nonlinear airfoil systems, which for the most

pan modelled the aerodynamics as steady or quasi-steady in the presence of longitudinal

turbulence, notably [prussing and lin, 1983; Heo, 19851
], unsready aerodynamics is considered

in this thesis.

2.3.1 Unsteady aerodynamics due to arbitrary motion of the airfoil

The aerodynarnics is considered to be linear as the motion is restticred to small amplitude

oscillations, and compressibility effeas are neglected. The 2D unsteady aerodynamics accounting

for memory effecrs is modelled, assurning incompressible inviscid arrached flow, via Duhamel's

integral and the rwo-state represenrarion ofWagner's function, f/i...t), given byJones [Fung, 1955].

This is usually referred te as arbitrary-motion theory. Classical1y it considers motion in the

structural degrees of freedom only, where the downwash is taken at the three-quaner chord

position, w·3/~(t). Realizing that because of the pitch morion, the downwash is nat uniform along

the chard, w·3/4(t) represents the effective downwash on the airfoil. Due tO itS significance in

unsteady aerodynamics, the three-quaner chord point is called the rear aerodynamic center [Fung,

1

.\s we mentioned earlier in Chapter 1. Heo clairned tO invesrig:ue the flutter behaviour of an aeroelastic body
representing an airfoil, in nonlinear stochastic conditions. However, there is no atternpt [0 modd the specifies of
aerod~-ruunies.
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• 1955]. This effecti\·e dO'.\."tlwash is giyen by:

(2.2)

•

Note that for the static problem, the downwash is simply w· = Usina =Ua. For the similar

siruario~ aerodynamically speaking7 of a steady downward translation, an effective angle of anack

can be defined as aeff = h!U. In this case, the downwash is w· = [J a + H.

\Vagneis function [Wagner, 1925] represents the growth ofcirculation about a. chin airfoil

at an angle of anack starting impulsively from rest tO a uniform VelOciry7 U, or equivalendy for

a sudden increase in angle of arrack (Sears, 1940; Fung, 1955]. It can be interprered physically as

being due to the diminishing influence of the starting (shedding) vone."<, which induces a

downward vertical vdociry 00 the airfoil, as it is convected downsrream with vdocity U; see

Figure 2.2. In this case, known as Wagner's probl~ the circulatory lift, per unit spau, is given

bv:

(2.3)

The e."<act form of ~'agner's function can be e."<Pressed in terms of modified Bessel

functioos [Fung, 1955]. A widdy used approximation, wruch offers a good compromise berween

simpliciry and accuracy, is Jones' [1938] two-stare representation:!:

9'Ct) = 1- 0.165 e .l).0455i.:"r! b _ 0.335 e .l13U·u b (2.4)

•

Note that as the distance from the airfoil ta the starting vonex tends ta infinity (Ut - 00),

f/X.t) - 1, such that the circulatory lift tends towards the familiar sready state e.xpression.

.\ number of authors have examined the validity of chis approximation, either ciirectly in the rime domain in
comparison with its exact form and \lTith higher number of States [Dowell, 1980}, or in the frequency domain
~1.th Theodorsen's function [peterson and Crawley, 1988].
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t' b

time = t cime = 0

•

Figure 2.2 - Schematic ofWagner's problem (adapred from Fung [1955]).

The circulatory lift given by equarion (2.3) for Wagner's problem can be applied tO

arbitrary motion, in heave and pitch, in the conrexr of linear aerodynamics with the help of the

superposition principle in the forro of Duhamel's inregral and the effective downwash at the

three-quaner chard point. Hence, the elementary lift increment, dl, due to an elemenrary

increment in the effective downwash at rime t =0 is

(2.5)

The circulatory lift, per unit span, for an arbitrary motion, :md assuming the morion srarrs at cime

t =0, is chus the summation of these elements:

• {. r dw·3/~(S)]
Le(t) =1/2 pU c 2 W 3i~(O) ~t) +f rp(t-s) ds

1) ds
(2.6)

•
Similarly for the aerodynamic moment, using the fact that for the uncambered chin airfoil

the moment at the aerodynamic center, located at the quarrer-chord point, is zero, we have:

(2.7)
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• In addition ta the circulatory airloads, associated \Vith the creation of vorriciry, are

apparent mass rerms. Loosely speaking, these non-circulatory terms physically represent the

reaetion force of the air displaced by the accelerated morion of the airfoil They have been derived

by Theodorsen [1935] and are expressed for the lift and moment about the elasric a..~s:

L~c (t) = iTpb2 [ii + u· a-b a ft a] (2.8 a)

(2.8 b)

•

For most pracrical purposes, except for very light stIUcmres, these terms are usually neglected as

the ainnass is often very small compared with the airfoil's. This is typified by the non-dimensional

airfoil/air mass ratio, Ji = mltrpb2, which is ahvays much greater chan one. In addition, and as

pointed out by Fung [1955], and von .Karrrui.n and Sears [1938], the apparent mass terms lose

their imponance for small reduced frequencies. In any case, the total lift and moment for arbittary

morion are the summarion of the circulatory and non-circulatory loads.

For simple harmonic morion, the circulatory loads are aIso given in te.rms ofTheodorsen's

function, C(k), which expresses unsteady aerodynamics for chis type of motion [Iheodorsen,

1935]. The relarionship between the twO functions was tirst shown by Garrick [1938] in the

frequency domain, and larer by Sears [1940] in the more general Laplace domain, hence the term

generalized Theodorsen's function. In the frequency domain, we have:

7I~t)] =C(k)/ik = {F(k) + iG(k)}/ik (2.9)

where .jT[~t)] is the Fourier transfonn of ~t), and k is the reduced frequency. In chis sense,

Wagner's funetion is somerimes referred tO as a step response, whereas Theodorsen's funcrion

as an impulse response. Theodorsen's function in the Jones approximation is given as:

•
0.165 ik

C(k)=I-
ik + 0.0455

0.335 ik

ik + 0.3
(2.10)
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For example~ the lift is:

Nore that since C(k) is a comple..x funcrion, which physically introduces a lag between the

morion and the lift force (and aerodynamic moment), the aerodynamic stiffness is not ooly

composed of the displacement te~ a, but of velociry terms, li and a, as well. Similarly, the

aerodynamic chmping is also a funcrion of the displacement and veIocities.

2.3.2 Unsteady aerodynamics due to vertical turbulence

.-\erodynamic forces and moments are also generared by the presence of vertical

rurbulence~ which in effeet changes the local angle of attack on the airfoiL This is represenred in

Figure 2.3 for the case of a sharp-edged gusr.

rrm •
W G

•

Figure 2.3 - Schematic of airfoil entering a sharp-edged vertical guS!.

Due ra the finire rime associated with penetration of a discrete gust around the airfoil., the

aerodynamics exhibit a graduai increase in magnirode. These unsteady effects are expressed in

terms of 1/J(t)~ Küssner's funcrion. This gust-penetrarion function represents the growth of

circulation as a sharp-edged gust strikes the leading edge of the airfoil in incompressible flow

[Küssner~ 1936; Fung, 1955; \"on Karrnân and Sears, 1938]. Similarly tO Wagner's function~ ir cao
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• be expressed by a rwo-sure represenrarion~ taken from Leishman (1994]:

V/Ct) = 1- O.5ï92e oÙ. 1393 COr. b _ 0.420Se-!.S02 L'·fi b

The lif4 per unit span, due ta a sharp-edged 'Vertical gust is giyen by:

(2.12)

(2.13)

Bath Wagner~s and Küssner's funcrions, in their two-stare represenrations, are shown in Figure

2.4 as a funcrion of distance tra\-elled in semichords, equiyalent te the non-dimensional cime, 1:

=Ut/b.

1.0 - .. ----_ .... . .. - ..

• 0.4 -

. . ... -
- Wagner's funetion

. .. -. Kussner's funetion

O, _:.- ,

0.0 ------------------------

o 2 4 6 8 10 12 14 16 18 20

•

non-dimensional cimet r

Figure 2.4 - Two-srare represenrarions ofWagner's and Küssner's functions

as a funcrion of distance rravelled in semichords.

Csing Duhamel's superposition integraL the force and moment due ta vertical rorbulence

can be derived in the same manner as that used for the lift and aerodyoamic moment due ta

arbitrary motion. Differences between the NtQ set of expressions are the downwash at the

three-quaner chard, wruch is replaced by the ~..-ertical rorbulence (equivaleot ta the downwash on

the airfoil in the region where the gust has penerrared), W -T' and the absence of apparent mass

rerms; i.e. no air mass is displaced by the airfoil morion in this case. In effect, Duhamel's
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• superposition integral enables the use of Küssner's function, origina]J~~ deri~"ed for a discrete gus~

W -G' to be employed for the problem of canrinuous rurbulence~W -T' The resulting e.."{pressions

are:

L,.(t) = 2 ;,PbU'[W'T(O) lf/(t) +[ lf/(t-s) dw~(s) ds]

[

l -]
., _ .• _ dwTs

.Iv!E.< ..(t) =2 ;rpb- [a" +O.)] U W T(O) lf/(t) + f If/(t-s) ds( ) ds

(2.14 a)

(2.14 b)

•

•

Note that similarly tO the arbirrary motion circulatory lift, the gust-penerration lift aIso acrs at the

quarter chord [Sears, 1938].

2.3.3 Unsteadyaeradynamics due ta unsready free-stream Qongirudinal turbulence)

In this thesis, arbir.rary-motian theory (equarians (2.6), (2.ï) and (2.8») is e..TIended ro the

case of a random time-\-arying airspeed, Uer), based on re1arively recent developments made in

helicopter aerodynamics theory, more specificaily on the works of Friedmann [Friedmann and

Robinson, 1990; Dinyavari and Friedmann, 1986;Frie~ 198ï] and ofvan der Wall [van der

Wall and Leishman; 1994; van der Wall, 1991].

Friedmann exrended Greenberg's theo~·, originally derived ro capture unsteady

aerodynamics for simple harmonie motion ofboth the airfoil and airspeed, tO the general case of

arbitrary airfoil morion and time-varying velociry. He obtained an expression for the circulatory

lift very similar tO the one for pure arbitrary motion (equarion (2.6), e.."{cept essentially for (wo

differences. One difference is cosmetic in nature, as the latter is expressed in the traditional

integro-differenrial form, whereas Friedmann makes use of the t'Wo-state Wagner's function tO

represent the circulatory lift in pure differential forIn, with an additional second order ODE. The

equivalency between the inregro-differential and differential, with augmenœd states, formulation

\'lill be demonstrated later in tbis section, and is derived in .\ppendi.~ A.

50



• The other difference is fundamental, as it accounts for flucruations in the airspeed.

Expressing Friedmann's generalized Greenberg theory for arbitrary motion of the 2D airfoil in

integro-differenrial form gives:

• {. r dw·3/~(S)]
Lc(t) =1/2pU(t)c2 W3i~(O)~t)+frA..t-s) ds

o ds
(2.15)

•

•

Notice that compared tO equacion (2.6), the airspeed terms are now rime dependant in terms of

both the present rime, f, and the historical cime, s, in the integral ([/ (s) is hidden in w·3lls) in the

form of [/ (s) a (5)). In other words, the circu1atory lift at rime, ft is a function of the instanraneous

value of the airspeed and its hisrory. Unsready effecrs due ra airspeed variations defined by U (s) a

in the integral consider airspeed flucmacions at the rime chey occur on the airfoil.

An aspect that requires further discussion in the above mode!, and which is not

immediately obvious, concems the airspeed cerm in Wagner's functi.on, which is assumed tO be

constant and set ar the mean airspeed, U m. In effeC4 this assumption defines the distance

rra't,re1led by the yortices in the wake as a mem distance, U m t, thus neglecting airspeed

fluctuations in the trailing wake. In suPPOrt of this assumption, an herirage from Greenberg's

original theory, Friedmann argues that unsteady airloads are much more sensitive ta the ~...elociry

of the wake \·ortices chan their position. 'Xie are, however, more satisfied with the justifications

offered by yan der Wall and Leishman. They argue mat for a combination oflow frequency and

small amplitude airspeed variations, the assumption is jusrified. This makes physical sense,

considering that in these conditions, the distance covered by the shed vortices is determined, in

large pan, by the mean air flow speed.

In addition, van der Wail and Leishman ofEer more concrete and effective evidence ta

support rhis simplification, as well as providing comparative e.~ples between different theories,

sorne less e.~act than others. Their basis of comparison is Isaacs' theorf and results from a CFD

Euler code. Comparison of circulatory lift values between these twa models indicates no

~ote char Isaacs considered oaly periodic fore-an and pirch oscillations. Isaac's theory \VaS e..'ttended by van der
\X.al! [1991] ta include he:m: motion as w~ and can he considered exact in the sense char no simplification rD a
mean airspeed is made.
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significant differences. They further show that circulatory lift values obrained u.-ith Greenberg's

and Isaacs' theories compare very well for a harmonically oscillaring flow and angle of arrack, at

low frequencies and amplitudes (for example, k =0.2 and amplitude of flow oscillation/mean

airspeed =0.4). At higher amplitudes of airspeed oscillation differences appear between the twO

theories, but their behaviour remams qualirativdy the same. This simplification is hence retained

for chis work, and is coherent \Vith twO other assumprions required for chis thesis as weil, namely

chordwise flow uniformity, justified by an e..xciration specrrum concentrated in the low frequency

range; and Taylor's hypothesis. These [\VO assumptions will be discussed in detaillater.

It is also relevant to nore mat fore-aft movement of an airfoil in an uniform stream is not

physically the same as fluCtuations of the free-stream vdocicy. This is schemarized in Figure 2.5.

In the first case, which is treated by Isaacs and Greenberg, the airflow is uniform along the chor<L

and airmass is displaced by rhe accelerating airfoil. On the other hand, which is the case

invesrigared in chis thesis4
, a chordwise velociry gradient exists for a varying free-stream, and

similarly for vertical turbulence no airmass is displaced by the moving airfoil. Accordingly, the

difference affects both the non-circulacory force and moment, as well as the bound vorticiry of

the circulatory rerms. However, the free VOrte..x sheet in the airfoil wake is the same in both cases.

For small reduced frequencies, van der Wall and Leishman argue that fore-aft movement

aerodynamics is equivalent co the unsteady free-stream problem. Their argument is based on twO

faces. First, \vith regards tO the circulatory loads, the flow velociry gradients along the chard are

small for small reduced frequencies, hence a relarively chordwise uniform flow exists. Second,

conceming the non-circulatory loads, as pointed out earlier (Fung, 1955; von Karman and Sears,

1938], the apparent mass terros are significant mainly at high frequencies. The assumprion of

chordwise uniformity of the airflow is employed here, and is e.,"{tended co the case of random

fluctuations. This is supponed by the longitudinal turbulence velocity spectrurn being

concentrated in the low frequency range.

:\ccording ra van der W'all and Leishman [1994], ail theories, including Isaacs', published on the prablem of a
pulsating flow daim to handle unsteady free~stream, whereas strietly speaking, they shouid apply ta the case of
an airfoiI maving fore and an.
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u· (t)

fore-aft airfoil movement

~--...;...~
U•T(r)

unsteady free-stream

•

Figure 2.5 - Fore-an airfoil mo\-ement ,rersus unsteady free-stream aerodynamics.

Based 00 the above discussion, aerodynamic forces due tO turbulent variations of me free

stream \-elocity, and accounting for arbitrary pitch and heave motions, are modelled by the

following equations:

where

and

mr )-1 0 16- -o.~55l/lIl(ros:lb 0 ...... - -Q.3L··",\to.s)/b
~ -5 - - . ~e - •.J.J~e

w' 3/~(S)=h(s) + U· (s) a(s) + b (0.5 - ah) a(s)

(2.16 b)

(2.17)

(2.18)

•
The fust tenns in the lift and aerodynamic moment expressions represeot the 000

circulatory forces associated \Vith the fluid inertia. Note mat had we considered fore-an

movemeo~ the additional apparent mass temlS, :rpb:'rJa and -1rpb'!.[j«belz-a':;, would have

appeared in the lift and moment expressions, respectively. The circulatory forces, given by the
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second remlS, modd the effects of the bound ~;orticiry and the shed wake. These equations are

the same as equations (2.6), (2.i) and (2.8) e-"<cept that they have been integraœd by partS, and

more fundamentally, the airspeed is now allowed ro vary in rime.

Ta show more specifically the effect of the longitudinal excitation, the airspeed and

downwash rerms are expanded for the lift, which gives:

T r" • fI r· T r" • ] d rAt-s)
-2;,'T~[u m+U T(t)] lh+[u m+U T(S)]a+-b(O.S-ah ]a ds

1) ds

The history of the longitudinal turbulence is represented by the ueTCS) term in the inregral. By

examioing this equarion, it is also relevant to realize that the airfoil is e-"<cired by longitudinal

turbulence in more than one way. They are the ueTCt), U eT=-Ct) and ueTCt) U eTeS) terms. The twO

nonlinear noise rerms make the problem exrreme!y difficult ta resolve, if not unsolvable,

analytically, but are easily handled numerically.

These expressions are v'ery similar tO the airloads devdoped by Bucher and lin [1988] for

the analysis of \\ind turbulence 00 bridges, with ewo notable e-xceprions. One difference is that

the insranraneous airspeed, U(t), outside the inregral in equation (2.16) is taken inside their

integraL This is done without justification. It can be attributed ta the fact mat chey have

inaoduced the airspeed fluctuations not at the source, but at the end of their derivation,

essentially made under a constant airspeed assumption. This formulation is chus theorerically

questionable. We have, however, in the course of this chesis run a few test cases with cheir mode!

and found no important differeoces with ours, which indicates a certain robusmess of the

aerodynamic mode!. The second difference is mat chey neglected ail quadraric noise terros, u eT:!'

in arder to be able ta obtain an analytical solution. An analytical solution, in the form of a stability

analysis, is possible is chis case given that their structural and aerodynamics models are linear.

Finall~·, combining the airloads due tO arbitrary monoo, the unsteady free-stream

(longitudinal turbulence) and che \~errical turbulence, the total lift and aerodynamic moment are:
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• L(t) = LrpCt) + LIt) (2.20 a)

(2.20 b)

•

\\iben these aerodynamic force and moment e.~ressionsare combinecl u.-ith the suucrural

equarions of morion., and realizing mat 8 =tr~ equation (2.1) becomes a set of Ïntegro-differential

equarions as shown in Section 2.5. The numerica.l integrarion of this system can be fucilirated by

rransforming the integral terms intO differencials with the additian af [wo new second-order

differential equations, also shown in Section 2.5. Each addirional second-arder equarion

corresponds ta two augmenred stateS, given by Z-h Z-I. z-! and i!, a consequence of the chosen

rwo-state representarion far Wagner's and Küssner's funcrions, respectiv·ely. This derivation is

given in _-\.ppendi..x _-\.. See also Edwards et al. [19i9], Leishman [1994J and Friedmann [1987].

The aeroelasric system of equations becomes an 8th order random differential system

which chen can be expressed in stare space forro:

{x} = [ACt)] {x} + [A 3] {i>} + {B(t)} (2.21)

•

The ",,"ector {x} contains the faur structural states and the four aerodynamic stateS, {x} = {8, h

8, li, Z-I' =1. Z-!, z-:;} T. Note that the matrLx [A(t)] is time-varying, as it cantains the longitudinal

rurbulence terms u·T(t) and u-/(t). This is where the parametric e."'{ciration appears. The other

matri.x [A 3], which defines the nanlinear struCtural rerms, is rime-invariant since the random

e..xcirarion originateS from the aeradynamics. Had we madelled nonlinear aerodynamic effectS, this

matrix wauld have also been time-v-arying. Finally, the V'ertical turbulence excitation appears as

an extemal random forcing in {B(f)}. The vector {B} and matrices [A] and [A j ] are developed in

:\ppendi..x C in nan-dimensianal forro.

2.4 Turbulence Model and Dynamics

In aeronautical applications, rurbulence models can generally be categorized within t\Vo

different approaches [Barnes, 1994]. The methods associated with a discrete guS! represenration
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are usually of a deterministic narure., such as Küssner's sharp-edged gust problem. On the other

hand., conrinuous turbulence merhods allow for a stochastic (random) treannent and perspective.

Hybrid merhods also e...~st., such as the srarisrical discrere gust. Each of rhese merhods has

particular advanrages and disadvanrages, depending on the specific requirements and narure of

the problem. In the present analysis the mterest lies in the effect of nonlineariries from a

dynamical and theorerical perspective, as opposed tO design load requirements. It thus requires

a more refined model of rurbulence, which is given by the random conrinuous approach.

Neyenheless, the randorn rrearment of rorbulence still requires a number of simplifications which

depend on the degree of realism one is looking for, balanced by the requirement tO make the

problem manageable and traCtable. In the follouring paragraphs, the simplifications used in dùs

work are described. Sorne of them are intimately linked ta., and defined by, the aerodynamic

modeL

2.4.1 Taylor (and von Karman)'s hypothesis, or the frozen gust assumption

This simplification has particular relevance ta the analysis of moving objeCts, such as an

airfoil., through a field of rorbulent velocities. In general, rurbulence is a funcrion of both rime and

space. However, if a relarively hrge mean free-stream velocity, V:, is superimposed on the field

of fluctuations, V'-r = {u·T(t), v·T(t), w·T(t)} , it is assumed that for a coordinate system attached

tO the mean free-srream v-elociry the temporal gradients of rorbulent velociry flucroations are small

compared ta the spatial gradients. Thus, remporal changes can be negleetecL and turbulence is

treated purely as a random field., ie ilr = ilr (xm, Ym' zrJ. This is known as Taylor's hyporhesis

[Costello et al., 1992; Houbolt et al., 1964] or the frozen guSt assumption [Dowell et al, 19ï8].

In this work we funher assume chat the airfoil is moving along the x, xm axis with a

constant velociry, which corresponds ta the mean free-stream velociry, ie v: = ifm ï. Since

temporal gradients are neglected for the reference frame fixed ta the mean flow, a conversion

from a spatial to a rime system of coordinates is pennitted rhrough a Galilean rransformation. In

this sense the rurbulence model is trarlsformed from a random field ta a random process, and is

expressed as VT =VT (xm , Ym' zJ =~ (x - [fm t, y, z) where x, y and z forro the airfoil-fi..~ed
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system of eoordinares. Henee, at any point ti.'œd on the airfoil, turbulence is considered as a

functioa of cime only. Nore that (x, y, z) fOIm an inenia.l reference frame since the fluctuations

in airspeed do not originare from the airfoil but from turbulence.

2.4.2 Isorropy, homogeneiry and srationarity

.\!lomer widespread simplification is ta asswne isotIopyS of the turbulence field, which

loasely means mat irs properties are independent oforientation 3.t any point in space. The meo!}

of isotropie stochastic eonrinuous turbulence has been pioneered by Taylor and von IG.nnin

[Houbolt et al., 1964; Fung, 1955]. Isotropy also implies homogeneiry [Lin, 1961]. Homogeneity

refers ta invariance of starisrieal properties in space. Due tO the spatial ra temporal conversion

discussed above, homogeneiry of the randam field is cranslated intO a stationary random process,

which refers tO inYariance of staristical properri.es in rime. General correlation funccions of

turbulent vdocities are hence dependant on rime (or space) intervals, not on their absolure rime

(or location).

2.4.3 Drvden model

It is common ta represent an isotropie turbulent field by irs double v·elocity correlation

matri..~, where due tO isotIopy only the diagonal terms are non-zero [Lin, 1961; COStello et al,

-1992]. In 3-D flaw, the three diagonal temlS represent the longimdinal and transverse (vertical

and lateraI) components of turbulence. From these correlation functions, power specr.ra cao be

developed as these (wo enrities forro Fourier rransfoan pairs. In general, the spectral conrent of

the turbulence is provided by either the von IG.nnin or Dryden models, which are presencly the

!wo most \videly accepted models. The Dryden mode! is used in this work since it is easier ta

handle mamemarically, while still retaining an appropriate degree of refinement. One important

refinernent is tO allow a different modelling for the longimdinal and transverse components.

_-\.nother refinement is that chis mode! cakes ioto accouat the non-white noise characterisric of the

excitation. These factors are usually neglecred in more '~rute force" type analyses; see, for

~ote mat isotropy is a reasonable assumption for our problem sinee we are modelling free, as opposed to self
indueed., turbulence..More specitîcally, self~indueed turbulence is often associated u.-ith random fluctUations in

the boundary layer where the flow is non-isotropie [White, 19i4].
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• e.xample, Prussing and Lin [1983], md Heo and Ibrahim [Heo, 1985; Ibrahim and Heo, 198ï].

In tenns of the temporal radian frequency, the one-sided PSD Dryden longirodinal and

\-errica1 turbulent vdoàry represenrarions are given, respectivdy, as [Fung, 1955; Hoblit, 1988]:

(2.11 a)

_~ ( L- )
O"T -

ml-m
1+ 3 [f Cù / U· m ]1

[1 + [L· Cù/ u·m f f
(2.22 b)

•

•

They are shown, in non-dimensional faon, in Figure 2.6 for the range of scale of rorbulence

considered in this work. A first observation is mat, depending on the value ofL, but for the same

YaDance, the shape and relative magnirode of the [wo e.xcitations at any given frequency vary

significandy..\nocher observation is chat ae low frequencies, the power spectral densiry of the

longitudinal excitation is roughly twice as large as for the vertical excitation.

Ir can he shown [Houbolt et al, 1964] that the scale of turbulence, L -, divided by the

mean free-stream vdocity, [fm' is equal to the correlation rime of the longitudinal random

excitatio~whereas the correlation rime of the vertical random excitation is half that ratio, that

is 1/2 L -/ r.!m' Hence, the scale of turbulence detennines the spectral content of the e."<ciration. We

see from Figure 2.6 that the lower the scale of rorbulence, the closer we are tO the white noise

idealisatian.

In pracrice, the excitation is considered to be ''white'' if the system cime scales are much

larger than the noise correlation rime, or similarly if the e.xcitation spectmm remains relatively flat

(constant) for a frequency range which encompasses the naroral frequencies of the airfoil.. As

menrioned earlier, the white noise idealisarion has been used for the most part in the analyrical

treaanent of systems in loogirodinal turbulence; rotor blades for example [Prussing and lin,

1983]. This is mainly because it simplifies significandy the analysis, and enables closed-form

solurions ta be obtained (If allowed by' other factors such low dimensionality and/or linearity of

the problem both for the system and e.~citation).On the other hand, a larger value of scale of
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• turbulence dietates the excitation tO be distributed in the lower frequencies, which for aeronautical

applications is often more realistic, as discussed by Hoblit [1988] for example.
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Figure 2.6 - Closed-form solution of the non-dimensional Dryden turbulence PSD

for different values of scale of turbulence, L; ar2 =1.

•

Sînce the problem will be solved in the cime domain, the turbulent velociry PSDs must

be transformed accordingly. This is done essentially by finding an appropriate transfer function

which relates a white noise process acting as an input ta the Dryden turbulent velociry as the

output. In addition, tO satisfy the Gaussian narore of turbulence, the input white noise must also

be a Gaussian distribution. The deriV'arion is given in :\ppendLx B, and the final e..~ressions are

shown at Section 2.5.
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2.4.4 Chord\Vise uniforrriry

In the context of this wor~ a physical interpreration of the scale of turbulence is the

"average" distance rravelled by the airfoil during which the turbulent \-e1ocities can be considered

as being uniforme Thus, the larger the scale of rorbulence, the further, in average, the airfoil

cravds before experiencing a change in rurbulence velocities. In this light, it may he assumed that

for relatively large magnirodes of scale of turbulence the "relocity over the aïrtâil is nearly unifonn

at any instant in rime. .-\.ccordingly, the assumption of uniform velocity, norably chordwise,

enables the circu1atory aerodynamic model developed for fore-aft motion of the airfoil to be

applied tO the unsready free-scream problem as discussed in Section 2.3.

Note chat chordwise uniformity with regards to vertical turbulence requires a scale of

turbulence twice as large as chat for longitudinal turbulence, as discussed abo\--e in terms of noise

correlation rime. Howe\--er, in face this is not required. Variations of vertical ve10cities along che

chord cao be easily handled by Küssner's function. Spanwise unifomllCY is implicitly assumed due

tO the 2-D nature of the problem. Changes along che vertical a..,Qs are also neglected, since che

amplitude of the vertical motion is considered relatively small.

2.4.5 Gaussian distribution

The final major assumption is che Gaussian distribution of the fluctuations. Tlùs is a

commonly used assumption [Hoblit, 1988], supported by various experimenral dara (Lin, 1961].

In principle, this distribution allows extremely large deviations from the mem, but with very small

probabiliry. In other words, the larger the insranraneous value of u·TCt) for e.'{ample, the less often

chis particular value will appear. One significanr consequence of the appearance of large

de~.riations in the flucruarion velocities is flow reversaL for which the aerodynamic mode! breaks

down.

In our problem, the likelihood that flow reversal occurs depends on both the mean

airspeed, about wruch the flucruations occur, and the variance (or its standard deviarion) of u·TCt) .

This is exernplified in Figure 2.7. Take the case of a mean airspeed, [fm = 4, for example. For the

given rurbulence variance, dT2 = 1, and mean zero, flow reversal occurs for ail values of the

60



• longirudinal rnrbulent \"elocity smaller than -4 (i.e. U·T < -4), thus \vith a probability P(u·T < -4)

=0.00003. If ifm =3, the probabilicy of flo\\-· reversal is: P( u·T < -3) = 0.00135. The probabiliry

of flow reversal is 0.0??8 and 0.1587 for Um =2 and 1, respecti.vely. These probabilities are given

by the area under the curve of the Gaussian probability densiry function as shown bdow for P(u·T

< -1).

0.5 - •
P (u T)

.
U T

Figure 2.7 - Gaussian probability densiry representing U•T(t) for ciT
2 =1.•

-4 -3 -2 a 2 3 4

•

Thus, for mean airspeeds greater than 3, the probabiliry of flow reversal is 50 low ( < 0.1%) mat

it is a non-issue. At this particular value of rorbulence variance, flow reversai Start5 to become an

issue for airspeeds lower than 2, Le. P(flow reversai) > 2%), but remains a secondary factor until

the mean airspeed is much lower. For values of rorbulence variance Iowa than 1, flow reversa!

startS to become imPOrtant at even lower airspeed. Nore that for the case of the quadraric noise

teml, u·/(t), its probabiliry density funcrion e-mts only for u-/(t) > o.

2.5 Aeroelastic-Turbulence System Equations of ~Iotion

2.5.1 Inregro-differential formulation - Dimensional form

The following equarions represent the integro-differential formulation of aeroelastic

rurbulence system in dimensional form. Equations (2.23 a) and (2.23 b) are the pitch and heave

equations of motion, respecrively. They are the combination of equations (2.1), (2.14) and (2.16).
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mÏz+mxeb &+Dir h+KIr h=- ;rpb:' [Ïz+U· a-balra]

•[ • ft. d f/J (t-s) ]-2~,pbU W3i4f/J(0)- W3/4(S) ds
o ds (2.23 b)

• [ • ft. d VI' (1-5) ]-2;rpbU m W T ~(O)- 0 W T(S) ds ds

• where

and

Ç'(t-s)=l- O.165e -O.0455U·lI)(t-s)/b _ O.335e-O·3l/mU-S)/b

~(t-s)=l- 0.5792 e -0.1393 (;· ... U-sil b _ 0.4208 e°I.802l;·ra(t-Sl/b

Equations (2.24 a) and (2.24 b), derived in Appencli"{ B, are the cime domain equarions

of motion for the longitudinal and vertical turbulent velociries, respectivelyo G·wn represents a

Gaussian distributed white noise with a power spectral density, lbv,T1 =1.

•

.. . ifm • (2lf m )1,'2 .
li T +U T-.- = O"T --.- G VIn

L KL

· .2 t ( .3 Jln t
('" • JlI.:!.• • 2U rn U m • • U m •• 3Um •

W T +W T -.- =---:T""fW T dt+ O"T --.3 fG wn dt+ O"T --.- G wn
LLo J'fL 0 /tL

(2.24 a)

(2.24 b)
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2.5.2 Differentiai fonnulation - Dimensional form

Transforming the pitch and heave integro-differential equaoons (2.23) intO pure

differential equarions by introducing four aerodynamic states gives the following equarions. The

detail of the transformation 15 presented in .-\ppendL~ .t\.

lE.". 8+m Xghh+De 8+K(J &r-IÇ &j = /rpb;' [b q iz -b(O.s..a,,)U a_b1 (d;, +l/SP1

+2Jipli (a" +Osf/ [W3/4 <DCO)T-Z·l~~(.~ +~)+.fl (~~ +~~)] (2 ?5 a)

+2Jipb1 (a" +O.5)l1m [w\ {ll(O}tz·1b);.l~ +~)+.f1 (AA +~b4)]

mh+ mXfJb &t-D"h+Khh=- Jrpb1[h+U·a-bah~
-2/rpbu [W·3/4~O)+Z·1~b:!(~+~)+Z·l(~~ +.~b;)J (2.25 b)

-2/rpbifm [w·TVJ(O)+z·:b;~(~ +.{)+z·: (~~ +~~)]

Z·l' il andz·:!, i:! in equations (2.26 a) and (2.26 b) represent the four aerodynamic stateS

due tO the lag terms in \~iagner's and Küssner's funcnons respectively. Al, A 1, ~ (mulriplied by

bl [fJ and ~ (mulriplied by bl [frJ are the coefficients in Wagner's function; Similarly, A 3, A",

03 (multiplied by b1ifJ and ~ (mulriplied by b/ [Jm) are the coefficientS in Küssner's function:
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• 2.5.3 1fatri~ differential formulation - Non-dimensional fOrIn

In order tO ger a better physical insight inro equations (2.25) and (2.26), chey are expressed

ln matrLx form, as a sranch1rd mechanical engineering problem..-\Iso, the following non

dimensional parameters are introduced:

,i =1,2

•

Heave displacement:

_woillair mass rario:

Radius ofgyration (squared):

Frequency ratio:

Damping ratio in heave:

Damping ratio in pitch:

Cubic nonlinear torsional spring coefficient:

Scale of turbulence:

Variance of turbulence:

:\irspeed and velocity fluctwltions:

Time:

_-\erodynamic states (1ag rerms):

(= hIb

f.l =mlp 1dJ2

r,/ =IE.\lmb1

6J = Cù/Cùo

ç;, = DhI2(mKJ 112

(0 = DoI2(1E.\KèJl/'2

k3 = K:/Ko

L = L-Ib

"1 - "1 lb" "1ar;- = a T- ·Cùo-

Um= [Jm/bCùO' UT =U-T/bCùe,

W T = W -TIbCùO

r= [Jm lib

~. - .,.- b2/ T
"

-t - - i U m

•

The fusr matri.~ is the mass matri..x, [J4], and is rime-invariant. The second matri.'<: is the

damping matrix, [D( Z;], which is time-varying due to the random airspeed fluctUations (I.e.

longitudinal turbulence). Similarly with the third matri.~, [K(Z;], representing the linear stiffness.

The fourth matrix is the nonlinear sriffness matri..x, [K3], originaring from the structure of the

airfoiL Ir is cime-invariant because the turbulence acts directly on the aerodynaIIÙcs, modelled as

linear. The vector on the right of the equation represents the vertical turbulence, acting as a

random extemal forcing. .-\ccordingly, in condensed farm, we have:
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ln devdopcd (onn, e<'ll1ation (2.27) bccomcs:

al ... I/H "'"0 ah () 0

rJ"1
t h 2 -2 - --2

l' r0 ,. (1 l' ,. (1

1:"1 ~ +_ li h
1 +- () ()

"
X (J

ZIl' l'
() 1 () "0

Z2

0 00

• •

2 ~, unf(1 /2 - ah) 2(a" + ]/2)(1/2 -tl,.)unf ~(O)
-

2(Clh + ]/2)unf fIJ(O)
- 2(lIh + 1/2)( Alhl + A2h2 )unf 2(ah + J /2)( Alh] + A.. h.. )

(J'-+ - -
li m /Ir; /1":' 1',.2 2

/l''~(1 /1"0
unf 2(1/2 - (lh )lInf fO(O) 2 ç;;, 7iJ 2unf fO(O) 2(A l h l + A2h1 )lInf 2(A,h] + A~b.. ) 1:'

~ L +-+ --+
l' /1 li". /1 l' l' z'

-(t/2-Clh ) -1 hl +h2
1

0
z'

0 0 0 h) +h..
2

2( li h + 1/2)unsf {D(O)
0

(ah + 1/2) b,b 2 unf
-

2( a h + 1/2) b) b .. k\ 0 1 0-
l' ,.;

f ~) +

0 0 0U 2 l' ,. ~ l' ,.;
m u 2

ç) 0(iJ 2 h l h 2 unf 2b)b .. III2unsf fO(O)
0 0 () () = ~ (2.28)

0l' li 2 l' l' lz 1 0 () () 0
Zlm

1
~- unf 0 bl b2 0

Z2 Z 1
0 0 0 () 2 U m0 0 0 b)b~
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• where

and

.\lso given is the non-dimensional form of the rime domain turbulent velocity equarions,

equation (2.24). The longitudinal and vertical turbulent velocities are, respecrîvely:

•

•

(2.29 a)

(2.29 b)
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Chapter 3

MODEL SIMULATION AND ANALYSIS METHODOLOGY

This chapter is divided inro m'o pans. In the fust part, we are concemed \\--ith the

numerical solurion of the equarions of morion~ derived in Chapter 2, which generate the airfoil

dynamics in tenus of rime senes. In the second part, we deal with the transformation of these

rime series into functionals, such as probability density funcrion (pDF) or power spectral densit:,

(PSD). In the context of nonlineariry and randomness these (\va aspects are not trivial and

warrant proper attention.

No general analytical solution techniques e.."Ost for nonlinear random differenruù

equations, particularly when the paramerers are also randomly changing. There are, however,

sorne cases where analytical solutions can be obtained. These solutions are usually expressed

directly in terms of PDF, moments or srability boundaries for example. Nevertheless, their use

is \"ery limited since they are govemed by a number of restrictions and simpli.fying assumptions.

Sorne simplifications are, for example, small noise intensiry, white noise or Gaussian response.

Perhaps, the grearest restriction in the context of our problem is the requirement for a low

dimensional system. From this point ofview, our sYSte~which bas four strUctural states and four

aerodynamic states, can be considered ta be high dimensional.

67



•

•

The use of numerical inregrarioo techniques is more versatile, and has been applied

successfully tO a number of nonlinear random problems. Comparisons between numerical and

analogue simulations, and \vith analyrical solutions where availible, are discussed in detail by

~fannella [1989J, Fronzom [1989] and ~fcClintOckand ~foss [1989], for example. Furrbermore,

according ta ~1annella., numerical simulation should be thought of as a rneoretical tool and a.

natural complement of the system modelling for stochastic dynamical systems. His position is

jusrified considering the great number of limitations imposed on currently available analyrical

techniques, as weil as the practical difficulties in conducting e~l'eriments.

3.1 Numerical Time Domain Simulation

3.1.1 Runge-Kurra algorithm

The primary solution methad far this analysis is based on the commanly used fourrb

arder Runge-Kurra inregration scheme. The equations of morion (equations 2.27) must fust be

cast into a system of fust-order clifferential equations, as given by the ne..xt equation (in 000

dimensional form) , and \\there the \-ector {B(r)}, and marrices [A(zJ] and [A 3], are given in

_-\ppendi.x C:

\.vhere

{X'} = {fix, r)} + {B(r)} =[A(i)] {x} + [A 3] {x3} + {Be zJ}

{ } -{e.Ç{)'Ç'- ~'- _'}T.t" - ,~, t ~ t -1' -1 ' ..:.~ "'2 .

(3.1)

(3.2)

The inregration is then performed ~i.th me following rime discreriza.rion:

{x(r+~:)}= {xC:)} + ({k1} + 2{k2} + 2{k3} + {k4})~r/6 + ~r{B(r)} (3.3)

•
where {kl} ={f(x, rJ}

{k2} =(ftx + kL~r/2, r + ~r/2)}

{k3} = (ftx + /c2.1 :/2, r + ~ ri2) }

{k4} ={ftx + k3Ar, =- + ~rJ}

(3.4 a)

(3.4 b)

(3.4 c)

(3.4 cl)
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The same procedure is follo,"ved at each rime srep for the t\\70 rurbulent velacity equatians

(equation 2.29). These twO differential equations aet effecrivdy as filters for the white noise befare

it enrers the aeroelastic system. By raïsing the correlation rime of the excitations, away from white

noise, the turbulence sample path is smoothened. Nore chat the integrals in the \-errical rurbulent

\-elociry differential equation (equation 2.29 (b) are performed using a simple rrapezoidal rule. To

rninimize round-off errors, all simularions were performed in double-precision. The algorithm far

the full simulation is given in appendi.x D.

3.1.1.1 Time step

Because the Runge-Kurra method is e:-..-plicit the rime step af the integrarion is, in part,

gavemed by numerical srabiliry considerations. For an oscillator type system, the classical

minimum requirement is tO insure that the rime step meets the fallowing [far e..xample, D'Souza,

1984]:

(3.5)

k=.,,< represents the highest undamped frequency of the linear sYStem., or the highest aeroelastic

modal frequency for a coupled aeroelaric system. In corollarJ., TmJn is the shorresr period.

In the more general case where nonlinearities and parametric excitation are considered,

and far non-oseïllator type systems such as the turbulent velocity differential equarions, the

concept of kmn, or TmJn' must he generalized tO the notion of system rime scale (symbolized by

n. For e..xample in the nonlinear case, the period af the limit cycle osàllation (LeO) is a new rime

scale. Ir is generally of the same order of magnitude as one of the linear system narural periods.

The parametric e..xcirarion introduces a new rime scale as well which is represenred by the naise

correlarion rime. Ir is equivalent ta the scale of turbulence in its nan-dimensional represenration1.

The scale of turbulence is also generally of the same arder of magniruàe as the system rime scales

excepr in the limit of white noise, where it becames relarively very small. We must alsa consider

:\5 discussed in Chaprer 2, the noise correlation rime of the longitudinal turbulence, {cor" is equal tO the scale of
turbulence dh--ided by the me:m airspeed: {t;DC =Lïûm' \Xben the non·dimensional paramerers are introduced.
the relation becomes: rc.or =L.
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• the noise correlation rime of the vertical e..'{ciration~ specifically in terms of the numerical

integrarion of its differenrial equarion. It is half the correlation rime of the longirudinal

componenr. _\ccording tO :\Iannella [1989}, the general stability requirement becornes:

The other requirement that the rime Step must meet is the accuracy of the response. _\

small cime step insuring numerical srabiliry cloes not guarantee an accurate response and may lead

ta imponant auncarion errors if it is tOO large. For e.u.rnple, we have found chat using a tao large,

but stable, rime Step wOLÙd result in a skewed PDF of the rurbulenr velocities compared to the

e.'"{aet zero mem Gaussian shape. _\ccordingly, we have limited the ma.~um value of the rime

Step te 1/Eth the noise correlation rime of vertical rurbulence, which is equal ro 1/som the scale

of turbulence. For example, we have the following conditions for L = 0.5 and 50.0:

•

.1 -: « T':T1Jn

where Trrun represents the shonest rime scale of the system.

~r ~ 0.01 for L = 0.5

~r ~ 1.0 for L = 50.0

(3.6)

(3.ï a)

(3.ï b)

•

The srabiliry and accuracy requirements must be balanced \vith the need for efficiency. In

our case, efficiency is dicrated by the sratistical and probabilistic nature of the problem, which

requires a very large sample rime. We have found that smoothness of the probability density

distribution and con\·ergence of the mean-square were more a funcnon of the physical sample

cime, T =lv .ct r, rather than the nurnber of iterarioos,lv. For a given probl~ steady stare in PDF

and in mean-square are reached at a smaller number of iterations for a simulation with a larger

rime Step, compared with a smaller .1r. .\ccordingly, a simulation mth a larger rime step requires

less iterations. This is meaningful considering that a rypical ~ for one set of parameter

conditions, requires N - 20 X 106 ta 50 x 106 iterations to obrain a smooth PDF. On a 233~

Pentium II. \vith 128 ~{eg of R:\J.\1, it means between 6 and 15 hours real rime.

For the nonlinear aeroelastic system, it has been found chat numerical srability is DOt a
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concerne The choice 0 f a rime step is primarily dicrated by accuracy balanced by efficiency

requirements. We ha,;e taken the rime srep tO be 1/128th the smallest natural uncoupled period

of the system. For the lo'\ver ,.·alues of scale of turbulence, generally L ~ 5.0, the limiting criterion

has been the noise correlarion rime, since we haye used the same rime srep tO inregrare both the

equarions of motion of the aeroelasric system and the turbulent velocities.

On the other band, the linear system is much more sensitive ta the choice of the cime step

due ta the parametric excirntion. Funhennore, we have nored an enhanced sensiriviry for large

scales of turbulence and for airspeeds close ta the flutrer speed. We have adjusted the rime step

accordingly tO smaller ,,'-alues than permitted by the nonlinear problem. ~ote that this problem

does not occur for the linear sysrem \\rithout longitudinal turbulence, and we repear, nor for the

nonlinear system in combined excirntion.

3.1.2 Houbolr's method

The second inregrarion method we used, essenrially for ,.·alidarion purposes, is Houbolr's

method wruch is an implicit scheme based on bad--ward differences at three pre,.;ous rimes. It was

developed by Houbolt [1950] tO determine the aeroelasric rransient response of aireraft to

(,.-enical) gusts. .-\s applied tO a rwo-dimensional nonlinear airfoil, me method is described in detail

by Lee and Leblanc [1986] or _-\lighanbari [1995]. ~ore mat in general, the method needs a special

starting procedure since the integrarion requires yalues at three pre\l;ous rimes. However~ because

we are dealing \vith a randorn process, we have chosen not ta be specifically concemed by the

acrual sample path of the motion but by averages or funcrionals of itS rime history. This approach

\vill be further discussed later. Consequently, for our analysis the initial condirions are not a

concerne ~Ote. as well, that this rnethod has been applied only ta the integrarion of the aeroelastic

equations of motion, not ta the turbulent velociries which we have integrated using the R-K

method. The algorithm for our system is given in .-\ppendi.."i: E.

Houbolt's method is generally considered ta be more srnble than the R-K method.. This

is sa since it is an implicit scheme whereas the Runge-Kuna. integration is e.'\.~licit. For a linear

system with constant coefficients, it is unconditionally stable, as demonsrrated byJones and Lee

[1985] for ~~ample. However, it has been shawn it could be unsrnble for sorne nonlinear systems,
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while the R-K method was subIe for the same rime step [D'Souza., 1984-]. Sînce our system is

nonline:lI'. the rime srep far this procedure must also consider porenrial numerical srabiliry

problems.

.-\s far the R-K, the other consideration is the accuracy of the result. For a IDOF linear

system e."{cited by simple harmonic forcing, Jones and Lee [1985] have compared the rransient and

steady stare behavioW' of numerical results from Houbolt's scheme \Vith the exact analytical

solution. They derermined that the high frequency transient behaviour was accurarely modelled

far a cime srep smaller than 1/256th the natura! periad af the system. _\0 accurate sready state

response required a Iess stringent 128 rime sreps per cycle. For a nanlinear aeraelastic sYStem,

--\lighanbari [1995] showed that the rime histories presented no differences when obrained with

256 aI' 512 steps/cycle, whereas the solution based an 64 sreps/cycle exhibited a slight phase

shift. For rhis thesis, smce the purpose of using Houbolt's scheme is tO esrablish a validation basis

for the R-K method, the rime step has been chosen tO match the R-K integrarion which is 128

sreps/cycle for mosr cases.

3.1.3 Gaussian distributed \vrute random noise

\X~e have produced Gaussian distribured white randam naise according tO the memod

used in the physics lirerarure. This is a rbree-step process starting \vith the generarian of uniformly

distributed random numbeI'S. These uniform de"~tes are men rransformed inta Gaussian

numbers and cast intO a rime dependant form, resulring in a white naise process.

3.1.3.1 Random number generator

Throughout this research, we have been forced ta change compurers at a number of

occasions. This has been beneficial in the sense mat we have had ta use differenr types of random

number generator, thus indirectly ~·alidating OUI' results since chey proved tO be independent of

the origin of the pseudo-randam numbeI'S.

One generaror used is taken from an International Mathemarical and Staristical Library

subroutine [n15L, 198ï]. Ir generates uniformly distributed pseudo-random numbers on the
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• inren-al (0,1] based on a multiplicative congruenrial generaror inremally programmed in machine

language. Ir produces the sequence of non-negative integers:

al =C al_1 mod (lYl), i =1,2,3, ... (3.8)

The sequence is iniriared '-'rith a seecL ao, chosen between 1 and the ma..ximum value which can

be generatecl by the generaror. The ma..~umvalue of the sequence is called the period of the

generaror, and is dererrnined by the combination of the modulus, }J, and multiplier, C. :\n

apprOprnte choice of lv! and C ""ill give a ma.'cimum period equal tO the modulus (also modulol,

chus providing a uniform distribution within che inten~al [1, A1]. The distribution is chen

normalized by diviàing each generared number by the modulus:

Ut = ai /.~ i = 1,2, 3, ... (3.9)

•

•

The bigger the modulus the denser the points are in the unit interval (0, 1]; in the limit the

distribution becomes continuous. Other desirable properries of this method are related tO the

independence berween numbers and also between sequences ofnumber. These have been shown

ta be porenrially a problem for the congruenrial generator if che multiplier-modulus combinarion

is not chosen carefully (Fishman and Moore, 1986]. In cheir paper, Fishman and ~1oore provide

a detailed analy-sis of different multipliers used in conjuncrion with the multiplicative congruenrial

generator of modulus 231
- 1. .-\ barrery of Statisrical tesrs is applied tO different sequences of

pseudo-random numbers, and the best multipliers are derermined. For our research, Mis taken

as 231
- 1, and C is chosen as 950706376 which is considered the "best" multiplier according tO

Fishman and ~[oore [1986]. This multiplier also ensures a period equal tO the modulus, mat is 

.2 X 109
•

The same mulriplier-modulus combinarion will always gi\-e the same sequence for sirnilar

seeds. Thus, this is obviously a deterministic process, and it is the reason why the numbers are

described as pseudo-random as opposed to being truly random. The fact that the sequence of

For me reader who is nor f:uniliar \\-ith the modulo. ie gener.ltes the residue of me rario of [\vo integers. For
example cake a == 5 mod 3, me residue of5/3 is a =2 (i.e. 5/3 == 1 + 2/3).
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numbers originates from a detenninistic process is in itself not relevant. It can be argued chat

randomness is a way to account for variations which cannot be conrrolled or which we do not

choose tO controL In this light randomness may not ha\·e any physical basis, but this is a

philosophical question. Wbat matters 15 that the sequence of nurnbers possesses sorne basic

sratistical properties, and that the solution of the problem is independent of the origin of these

random numbers.

We examined the "randomness" of the pseudo-random number sequence [Q ensure

independence of the results with respeer tO the generator. For the same modulus, a multiplier of

1680ï was tesred in comparison with the "best" multiplier. No significant differences were nored

In addition. a shuffled version of the pseudo-random oumber sequence was aIso rested, and again

00 difference in the system dynamics was noticed.

The other random number generator we have used cornes from Press et al. [1996], who

propose several different types of random number generator. They all have the nice fearure of

being portable, since they are programmed in Fortran and are machine independent. We have

chosen the routine RA.l'J1 which offers a good compromise between validity and e:"Cecution rime.

R.:\.;.~ 1 is based on the same principle as the ThfSL generator with a multiplier C = 16807 and

maduIus lv!=231
- 1. The output of the multiplicari"\'"e congruential generator is then shuffled. The

period is in the order of 108
, .\ccording tO Press et al" R.:\J.'Jl passes ail sraristical tests, where

other simpler generatars fail3
• ~{ost results shawn in this thesis are based on R--LN1. Sorne typical

resu1rs have been compared with the Th1SL based rourine; no differences in response mean

square, PSD or PDF ha\·e been noted.

3.1.3.2 Box-Muller algorithm

The uniform deviates are then rransformed inta Gaussian distributed numbers using the

Box-~{uller algorithm [Knuth, 1998]. According to Kouch, this technique must be credired to G,

Box, ~I. ~luller and G. ~farsaglia. Ir takes [wo random numbers, u1 and u2 which are uniformly

~ot~ mat this generaror is nm tO be canfused ~-ith morner generator bearing the sarne nam~ R.~'\J"1 in the
pre\"10us edirion of dUs book [press ~[aL, 198ïJ. \Ve haV'e med this aIder generator and have observed arrificial
peaks in the turbulence and airfoil response PSDs. Hence. ,.'e have disorded iL
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• distributed on the unit intervaL as input:

(3.10)

and outputS a Gaussian sequence, whose series has a ~rariance oG~.

3.1.3.3 White noise process

In order tO implement clùs algorithm mto a nume.rical rime integrarion scheme as a white

noise process, we consider that me \""ariance of the Gaussian numbers is equal ro the area under

the white noise (single sided) PSD curve:

(3.11)

•
kmu, which could also be referred tO as the Nyquist radial frequency, since a Gaussian number is

generated at each rime step, ~ r, of the numerical integrario~ is given by~

(3.12)

Combining equations (3.11) and (3.12) into (3.10) gÏves a Gaussian distribured white noise

process:

(3.13)

•

whose intensity is detennined by its PSO, tAx~. This algorithm is the heart of a number of 1'Ionte

Carlo simulations, white or coloured noise, in the physics literarure [Sancho et al., 1982; Fox et

aL, 1988; Fox, 1989].

_-\t each rime step of the simulation, four starisrically independent uniform deviates are

produced, which in turn generate (WO different Gaussian white noise processes. Thus, the

longirudinal and vertical rorbulent velocity differential equarions (equations 2.29) are each fed by

different Gaussian numbers. This is jusrified physically by the hypothesis of isotropy of the
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• turbulent field, which leads tO a cfu1gonal double velociry correlation matrix, hence, uncorrelated

,telocity components as discussed in Chapter 2. Furthermore, from a practical perspective, it was

obsen-ed chat using the same unifonn deviates for both turbulence components lead tO a ske\ved

PDF in heave, which is not reasonable due tO the symmerry of our problem. The o\"erall

simulation process is sehemarised in Figure 3.1 .

2 Gaussian random numbers

..\ r each rime step:

... unifann random numbers

r-------------------------------------------~1
1
1

R-r-.:. inregnrion, ...rn arder :,,
1

Dryden aeroelasne: e(r)
.. i:. turbulence ~ equations of -----:--+.: ~~~ r

tuters a motlon
, : : d éld r

1 1
l ,

1 1
1 1

I ---------------~---------------------~

Box-;\t[ullerr algorithm

random
number

generator

•
Figure 3.1 - Functional diagram of the numerical simulation.

3.1.4 Validation procedure

•

~umerieal simulation is not wiehoue risks, specifically due ta random perturbations...\s

pointed out by sorne auehars [Kloeden and Platen, 1992; ~fannella, 1989], the rime discretization

and nurnerical integration of stochastic differential equations must be rreated with much more

eare than for deterministic ODEs. In chis respect, [wo broad types of numerieal integration

schemes have been defined. One is called the strong approximation, and is concemed with path

wise convergence of the simulated process to the true t..~eorerical process. The second type,

referred tO as the weak approximation, ooly requires convergence tO functionals of the rrue

solution, such as probabiliry densities or moments; hence, ir considers a global dynamics, as

opposed tO a local dynamics, point of view.
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Inruirively, it could be advanced that the dichotomy between weak and strong

approximations loses some of its rdevance for coloured noise, ,"vhich generally characœrizes

rurbulence, because of its smoother sample parne However many praetical applications, namely

in engineering, do not necessitate close sample path approximations, as long as the ,"veak

convergence is obrained. This is the approach followed for dûs mesis. Only in a fe,"v instances will

reference ra sample paths be made. 1-loreover in these cases, it will be clear mat the interest does

not lie with the acroal path-\~,.ise validiry in the strong sense, but rather from a qualitari,re point

of view and in comparison with other simulated paths. It is sound ta be primarily concemed with

a numerical integration scheme that meets the weak approximation criterion, but whose sample

paths give a reasonable qualitative representation of the system dynamics. The validation will

therefore concentrate on funetionals of the sample rime history response.

3.1.4.1 Validation of turbulent velocities

The validation of the numerically simuIated longitudinal and vertical turbulent velocities

is performed b)T comparing their mean, mean-square, PDF and PSD ta the analytical solurions

from which these nwnerical solutions are derived. Ta chat effecr, we choose rwo values of scale

of turbulence which correspond ta a high value, L = 50.0, and ta a low value, L = 0.5, the later

effectively modelling white noise, and a variance Gr::! =1.0.

LtJngitudina/ turbulence

In comparison with a unit variance, zero mean, exact Gaussian distribution, the PDFs of

the longitudinal componeat of turbulence for the rwo values of scale of turbulence are shown in

Figure 3.2. The numerical mean and mean-square are also given in the figure.
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Figure 3.2 - PDF of longirudinal turbulent velocity from R-K numerical solution (-),

in comparison with Gaussian cunre ( - - - ); u.r1 =1.0.

Next, the rime evolurion of the mean-squares is presenred in Figure 3.3. Only the first

4,000,000 steady sute iterations are shawn. The case for L =50.0 converges tO E[u/J =1.006

\vith an accuracy of ± 0.0005 after 20,000,000 iterations. The case for L =0.5 converges to E[ui]

=0.999 \Vith an accuracy of ± 0.0001 after 40,000,000 irerarions. Note as well the two differenr

rime steps used. They are chosen in accordance \vith the value of scale of turbulence and in view

of the requiremenrs for the integrarion of the aeroelastic equarions of motion, as discussed earlier.

1.5 - L = 50.0 1.5 - L = 0.5
E[UT:!] .J. = 0.2 t U

/

1 .1. = O.Ol

1.0 Y 1.0

0.5 - 0.5 -

0.0 0.0
200000 1200000 2200000 3200000 4200000 1000000 2000000 3000000 4000000 5000000

iteration iœration

Figure 3.3 - Time (iterarion) evolurion of R-K simulated longitudinal turbulent

\?elocity mean-square; a/ = 1.0.
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• Finally, the numerical solution PSDs of longitudinal turbulence, in comparison with the

closed-form PSDs (non-dimensional), are shown in Figure 3.4.

L = 0.5
..1, = 0.01
N = 40000000

reduced frequency. k

0.10 -
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1.0
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.1. = 0.05
N = 7000000
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redUCèd frequency. k

1.00 ~-'\.'W----------

O!O

0.10 -

0.01 -

100.00 

tPLrtk ) ~\

10.00 -~.
: ~

•
Figure 3.4 - PSD of longitudinal turbulent velocity from R-K numerical solution (-), in

comparison with closed-form solution (solid white line); a..;'!. = 1.0.

~'értical turbulence

The exact same comparisons are presenred for the vertical turbulence componenc in

Figures 3.5 to 3.7.
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.J. = 0.2
N = 20000000

0.3 
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., :
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N = .wOOOOoo

0.3 1
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.., ./
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,

-4.0 -2.0 0.0 2.0 4.0 -4.0 -2.0 0.0 2.0 4.0

• Figure 3.5 - PDD of vertical turbulent '~,relociry from R-K numerical solution (-),

in comparison \vith Gaussian cun.·e ( - - - ); Or-~ = 1.0.
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Figure 3.6 - Time (iteratioo) evolution of R-K simulated vertical turbulent

\·elocity mean-square; ay.2 = 1.0.
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Figure 3.ï - PSD ofverrical mrbulent velociry from R-K numerical solution (-),

in comparison \vith closed-form solution (solid white line); Or: =1.0.

3.1.4.2 Validation of aeroelastic response

•
In contrast, the validation of the aeroe1astic response cannot be done directly since we do

not have an analytical solution acting as a basis of comparison. :\n indirect approach must be

used. This is weIl swnmarized by Farmer [1982]: '~or nonlinear equations that cannat be solved

analytically, there is no rigorous method ra make cenain that a simulation is faithful ra the
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equations. There are, ho\vever, certain indications: The behaviour of the simulared system must

agree for any cases where analytical solutions are kno\\tn; the behaviour of the simulation should

converge as the resolution of the simulation increases; ancL simulation by severa! different proper

methods should ail give similar resulrs." \Ve add anorner indication which is coherence of the

results with expecred beha'\-iour dictared by cither the physics of the proble~or other resulrs for

similar problems. The validation of the aeroelastic response is approached in accordance \vith

these four principles.

Companson with ana!Jticaf Job/tions

Perforrning a standard eigenvalue proble~ using routine EL\fHES from Press et al.

[1996], we have checked the flutrer airspeed, the frequency of oscillation of the slow (unstable)

mode ar the neutrally stable flutrer point, and the modal frequencies and damping at pre-autte!

speed of the linear numerical solution. The flutrer point is obtained by cracking the real pan of

the eigenvalues as mey change \Vith airspeed. Hurrer occurs at the airspeed at which [wo ofthe~

since we have a complex coojugate pair, cross the imaginary axis. At lower airspeeds, the oon

excited numerical (R-K) solution displays a converging oscillation to zero. At higher speeds the

numerical solution exhibirs diverging oscillations.

The imaginary part of the eigenvalue gives the modal frequency. At the flurrer speed,

where the solution is neutrally stable, the irnaginary parr of the unstable pair of eigenvalues is used

to check the frequency of the non-excited nwnerical solution once the effect of the fast (stable)

mode has disappeared. The pre-Butrer eigenvalues can also be used tO check the modal damping

and frequencies of the numerical solution. This is performed by calcularing the PSD of the linear

response tO pure vertical turbulence. Since the damping is small, the wo peak frequeocies in the

PSD correspond ta the imaginary parts of the NtO conjugate pair of eigenvalues. Similarly, the

damping (multiplied by the eigenfrequency) calculared from the half-power point of each mode,

assuming the [wo modes are weil separared, correspond ta the real part of the eigenvalue.

The calculated PSD of the numericallinear response ta pure vertical rorbuleoce can aIso

be checked againSt the frequency domain analytical solution. The closed-form PSD is obtained

by multipl~-ing the square of the norm of the transfer funcnon, relating the linear aeroelasric
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• system response ra vertical rorbulence, by the \"erncal turbulence PSD:

(3.14)

The (WU funcrions, F8 and F" represenr the aeroelastic system charaeteristics and the aerodynamic

external moment and force, including Kussner's function. They are given in .-\ppendi.."{ F along

\vith their deri\-ation. The vertical rurbulence PSD, fAï, is given in equation (2.22 (b)) in

dimensional forrn.

•

Two cases are shown, for coloured (L =50.0) and effective white noise (L =0.5)

excitations, and at different airspeed in Figures 3.8 and 3.9, respectively. In both cases, the dosed

forro and numerical solution PSDs are indisringuishable, e."{cept for the higher spectral densiry at

the peaks of the numerical based specrrum. The small difference is attribured tO the discretisation

process of the Fourier rransform and can be diminished by taking more averages. The Fourier

rransforrn analysis is described later. Not given, but note chat in both cases, the difference in pitch

mean-square berween the nurnerical and closed-forrn solutions is less chan 10/
0 •

Figure 3.8 - Comparison of numerical ( -) and dosed-form ( - ) solution PSDs

of pitch linear response to coloured \~errical turbulence; a.r1 =La, L =50.0 and

(J = 2.0. (;j = 0.6325, x 8 = 0.25, r8 = 0.5, tU = 100.0, ah = -0.5, (8 = 0.0, Gr = 0.0.
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Figure 3.9 - Comparison of numerieal (-) and closed-form (-) solution PSDs

of pitch linear response tO white ~rertieal rurbulence; Gr1 = 1.0, L = 0.5 and

U = 4.0, cij =0.6325, xa =0.25, ra =0.5, J..l =100.0, ah =-0.5, (a =0.0, (;, =0.0.

Finally, we have also eompared the nonlinear detenninistie numerical solution \vith results

from the describing funetion method; see Figure 4.2. In applying this method, the response is

assumed ta be simple harmonie. Furthermore for our problem where the nonlinearity is a cubic

torsional stiffness, the nonlinear resroring force is expressed by this equivalenr linear sriffness

force:

(3.15)

•

where A is the amplitude of the nonlinear pitch oscillation. The equivalent linear force is then

included in the originallinear problem and a standard eigenvalue analysis is performed. Sinee A

is not knO\\~ a ,,·alue is assumed. With dUs assumed value ofA, the problem is solved by iterating

on the airspeed until a fust set of eigenvalues e..'!CPeriences a change in sign in their real part. This

is the airspeed corresponding tO the assumed LCO amplitude, A. Its frequency is given by the

imaginary pan of the eigenvalue. For further details on this method, see Gdb and Vander Velde

[1968] .
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• Convergence with lime step

_-\s discussed in sub-Secrion 3.1.1.1, we ha\·e found mar con\·ergence of the nurnerical

solurion depends in a large pan on the excited aeroelasnc sysrem being linear or nonlinear. Firsr

presented is the nonlinear case. Figure 3.10 shows the rime (m terms of iterarion) ev·olurion of the

pirch angle mean-square for rhree different cime steps. For che scale of rurbulence in chis e."Cl!Ilple,

L =50.0, the rime srep penIÙtted by the integrarion of the rurbulent v·elocity equarions of morion

is larger chan the value used. The value of rime step, ~r=0.2, is chosen ta meer the requiremenr

of the aeroelasric equarions of morion.

•

It is obsen'ed char convergence tO che long term '~steldy stare" beha\-lour is reached faster

for the larger rime steps, which indicares that it is more a properry of the real rime, ~V ~=-, rather

chan the number of iterarions, N. _-\fter 20~1 iterarions, the difference berween the chree solurions

flucmates slightly, but remain berween ± O.SO/O of each other. Not sho~ but note that changing

the initial candirions, and the input noise sample by using different seeds in the random number

generator do not modify the long rerro dynamics, in the sratisncal and probabilisric sense, of the

system. Sïmilar convergence is also exhibited for the pure longirodinal turbulence excired case.
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Figure 3.10 - Pitch angle mean-square iterarion evolurion for three differenr rime steps;

i\onlinear airfoil excited by combined turbulence; L =50.0, C1-r'1 = 1.0 and

[./m = s.a, cJ = O.6325~ x (J =0.25, r8 = 0.5, !J = 100.0, ah = -0.5, (8 =0.0, (;, =0.0, k3=400.0.
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• In cornparison to the nonlin~syst~ convergence of the linea.r solution e.....;:cited by both

turbulence components is much slower and mare sensitive tO the choice af rime Step. This is due

ta the parametric e.."{ciution and can be prablemaric for the higher values of scale of turbulence

and for airspeeds clase to the flutter point. ~\ccordingly far the linear e.....;:cired airfoiL we have had

ta run the simulations for a larger number of iterations, as weil as adjusting the rime step [0

smaller values.

Figure 3.11 sho\vs chat can,·ergence far the linear airfoi! requires a much smaIler rime

step, ~Z'" = 0.01, than is the case far the previausly discussed nanlinear airfoil. :\frer 30ivI

iterations, the differeoce berween the wa salurions with rime StepS ~r =0.01 and .:.3r =0.005

remains between ± 1% of each other and canverging tO E[el = 10.1. For the smiller scale of

turbulence, L = 0.5, at the same turbulence ~lariance and airspeed, a similar canvergence accuracy

is a btained much earlier at 4M iterarians.
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Figure 3.11 - Pitch angle mean-square iteration evalutian for three different rime sreps;

Linear airfail excited by combined turbulence; L = 50.0, 0=/ = 1.0 and

Um = 2.0, cJ = 0.6325, xe = 0.25, re=0.5, J.l = 100.0, ah = -0.5, (e = 0.0, " = 0.0, k3=0.0.
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• Comparison zvith HOl/boltsfinit! difference scheme

The solutions from the Runge-Kuttl and Houbolt methods are nearly idencicaL except

for the transient part, as demonsrrared bdow. The initial differences are due tO the special srarring

procedure required for Houbolt's method, but which have not been considered in dùs analysis

for reasons staœd earlier. The fact chat convergence exisrs between the two solutions validaœs dùs

omission. Furthermore, we obserre weak and strong convergence types. The weak convergence

type is displayed by the bem'viour of the mean-square, for example, and is shO\\l"Il in Figure 3.12.

.-\t 4~I iœrations, the difference berween the t\\I-O solutions is less than 0.5~/o.

•
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Figure 3.12 - Pitch angle mean-square iterarion evolution for R-K (-) and Houbolt ( - - - )

methods; Nonlinear airfoil in combined turbulence; L = jO.O, (J-/ = 1.0, .âr =0.2, and

Um = j.O, cV = 0.6325, x (] = 0.2j, r(] = O.j, fi = 100.0, ah = -O.j, (a = ç;, = 0.0, k3 = 400.0.

•

.\s shown in Figure 3.13, a strong convergence type aIso exisrs between the solutions of

the t\VO methods since the sample cime histories tend ta converge as weil. Although this is not

of direct mœrest ta us, since, for this thesis, we are more concemed Vlith global aspects of the

dynamics than in sample paths, it does reinforce our confidence in the simulation procedure.

~ote as weil that the transient behaviour of the pitch rime history, indicared by the difference

between the Houbolt and R-K solurions, appears ta die down very quickly (ar about 2000

iterations). This observation supportS our previous sutement conceming the insignificant impact

of transients and initial conditions.
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Figure 3.13 - Pitch angle rime (iterarion) history for Runge-Kuru (-) and Houbolt ( - - - )

methods; ~onlinear airfoil in combined turbulence; L = 50.0. (1./ = 1.0, ~r =0.2, and

Um =5.0, W=0.6325, xe =0.25, re = 0.5, J.I =100.0, ah =-0.5, (e = ~ =0.0, k3 =400.0..

•
~\lso shO\\TI for comparison in Figure 3.1-l are the sample rime histories of the turbulent

\·elocities. Note that in the Houbolt simulation procedure, we have integrated the turbulent

,-e1ocities using the R-K algorithm and the aeroe1astic equarions 'W-ith Houbolt's method. Sïnce

we have already '\ralidated directly and e.~licitly the numerical rnrbulent ve10cities in comparison

\\--ith their closed-form solutions. this approach permits us tO foeus on the numerical integrarion

of the aeroelasric equations because they have the e.'i:act same "random" excitation input in bath

methods.

Figure 3.14 - Turbulent ,-e1ociries rime (iterarian) hisrory; L =50.0, o.r2 =1.0;

Runge-Kuna method, ~r =0.2.

longiwdinal. li T

----~·I
vertical. WT

7000

iœrarion

600050004000

.. ,. ...

30002000

4.0 -

o 1000

•
Bi



•

•

•

Coherence with expected reSJlftI

The las! element we have used ta esmblish the validity ofour numerical results is to check

their coherence with e.xpected results. In many ways this CUl be a tricky, subjective and intuitive

process. Hence, by itself this check is not sufficient., bu! ir solidifies me o~reral.lvalidation process.

There are rwo avenues. One is concerned with the consisteocy (or self-consistency as used by

Dowell and IIg.unov [1988}) of the results v..ith the equatioos of morion. For e..xample, does it

make physical sense tO ha'~e a skewed PDF when 00 asymmerry is modelled. The answer is not

obvious and may depend on whether or not there is more than one underlying detenninisric

attractor.

The second a'\""enue is ta compare our results ~vith chose of similar problems. Sïnce mere

are degrees of similarity, we have based che comparison on the identification of the areas where

the problems differ from each other, and by searching for physical e.."q)lanarions for these

differences. These comparisons are discussed throughout the thesis.

Time Series Analysis

The output of the numerical rime integration is assumed tO be ergodic, such that all the

dyruunic information is contained in one sample path. Ergodicity refers to the equivalency of rime

and ensemble a'~erages. Specificaily, it means chat averaging one sample over a long period of rime

is equivalent to averaging many samples, with each hav-ing randomly picked initial conditions, at

one point in rime. In this regard, the initial conditions for this analysis will be inconsequential.

.A necessary condition ta ensure ergodiciry is 5tationarity. This is a properry of the

turbulence mode!, and is also assumed ta be valid for the aeroelastic response. In mm, smcionariry

of the signal requires that steady state, in the smtistical sense, has been reached. Although we do

not be.lieve mat for chis analysis the transients, in the smtisrical sense, have any significant effect

00 the calculatioo of averaged results, such as the moments, PDF and PSD, we have not included

them in the calcularion of averages. The transient rime was simply determined from visua!

inspection of the nonlinear non-exàred system.
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3.2.1 Probability densiry function

The probability densiry funcrion of the system response is analysed using both the

marginal and the bi-dimensional represenrarions. The marginal PDF represents the probabiliry

density ofa single variable for a multi-dimensional process. Hence, in effecr it is a uni-dimensional

PDF. .-\dapted to our problem, its theoretical definition is given byequation (3.16) for the pitch

angle for example, where p(e, (, 8~ (: ZI' z[ : Z~. Zz ') is the joint probabiliry density function. The

integration is performed on ail remajning seven variables, lea~ting fJ as a free ,"ariable:

x:

p( fJ) =fpC fJ, ç, fJ', {', zl' z[' ~ Z2' z:') d çd fi' d ç' dZ1 dz[' dz: dz:' (3.16)

In pracrice, the integrarion is carried out by first dividing the expecred range of pitch angle inta

101 inten·als. Subsequently, the number of rimes the pitch angle v-isits each interval during a

simulation is recorded. This number of inten"aIs is chosen because it provides a good compromise

between resolution of the numerical PDF and simulation rime. The result is an histogram which

is then normalised tO provide a unit area under the PDF curve, i.e.

:x;)

P(-œ < &<00 )= f p(&)d8=1 (3.1 ï)

•

The bi-dimensional PDF is a joint densiry limired ra ewo v·arïables, as shawn far the pitch

angle and pitch rate for example:

x:

p(fJ. fJ') = fp(fJ, q, fJ', q',Zl'z[',z~,z~')d;d;'dzl dz['dz~ dz~' (3.18)

In its implementatian and due to pracrical considerations, we have divided the range of the free

yariables inta 51 by 51 ( =2601) iotervals, compared with the 101 for the marginal PDF. The

resolurion of the bi-dimensional PDF is therefore half the resolution of the marginal PDF, but

irs calculation cakes a much longer rime. The rest of the procedure is essentially the same.
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• 3.2.2 ~foments

The assumprion ofergodici.ry enables the tirst t'.vo moments, respectiyely mean and mean

square, ra he e.."qJressed as sho\\l"Il below:

~ 1 T

E[x] == f rp(x)dx = F(t) = Tf x(t)dt
-lX: 0

, ~, ---:;- Ir ..
E[x-] == fx- p(x)dx =x-Ct) =Tf x-(r)dr

~ 0

(3.19)

(3.20)

•

•

where X represencs any of che system State 'irariables. The rime integral equarions are chen

discrerized and easily implemeneed in the numerical simulation algorithm.

3.2.3 Largest Lyapunov e.~onent

The largest Lyapunov exponent is numerically calculated based on the tangent space

method as described in Chapeer 1. \Vith chis method, the nonlinear equarions of morion can be

linearized by calculating the Jacobian abour che reference random trajecrory. Both sers of

equarions, nonlinear and linear, are then solved simultaneously and the norm of the linear solution

is monitored..\lternatively, insread of directly linearizing the equarions of motion they are solved

twice with differenr but close initial condirions and with the same noise realisation. In chis case,

the Euclidian norm between the twO nonlinear solutions is monitored. We have tested both

techniques. They gi'\-e the same v-alue for the largest Lyapunov exponenr.

_-\.n imponanr properry of the largest Lyapunov e.xpanent is its invariance for any

reference crajecrory '\N-ithin a given attractor. In Figure 3.15 chis properry is verified by calculating

Ànux for rwo sets of initial conditions and noise realisarion. In the longt~ bath e.:lCponents tend

rowards the same value, chus confirming che invariance propeny. Also shawn is the impact of the

rime Step. Similarly with che mean-square, a smiller cime srep requires more ite.rations for

conyergence.
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Figure 3.15 - Time evolurion of the largest Lyapunov e.."qJonenr for nvo sets of initial

candirions and noise realisarion, and rwo rime steps, for nonlinear airfoil in pure longitudinal

turbulence; tangent space method; Um = 4.3, Gr~ = 1.0, L = 50.0, k3 = 400.0.

For the sake of cornpleteness, note that we haye also calculated the largest Lyapunov

exponent using the direct or real space method. Recall chis method, applied to a problem ,"vhere

the equarions of morion are known, giv·es À,mu by soh;ng the nonlinear equarions twice, but

contrary \\Ii.th the rangent space method, v....ith different noise realisarions. We hav·e noriced that

in general rhis method does not seem tO be useful since it indicates neutral convergence of the

trajectories. For example, rake the case where the reference rrajectory is a random LeO, the

Euclidean norm according to the real space method remains on average constant and flucmates

randomly about the average \Vith the same intensity. Since the norm remains constant on average,

Àmu tends to the trivial solution. In contrast, the rangent space method gives a non-zero À. aux

Only for the case where the attractor is a deterministic fi.xed point have we found chat the (WO

methods, rangent and real space, give the same (non-zero) largest Lyapunov exponent.

•
3.2.4 Spectral analysis

The spectral analysis of the output dam from the numerical integration is performed using

a Fast Fourier Transform (FFI) algorithm [Kabaner et al, 1989]. The ma..'<Ïrnum number of data
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pointS the computer cm handle at once ro perform the transform is limited to NFFT =216 =
65536. This is much smaller than the number of dau points required by the PDF analysis for

example. \Y/e ha,,·e thus performed sequential ayerages of the transforms made over 65536 data

points. The number of averages done \Vere chosen based on the criricality of the problem at han~

and ranged from 20 tO 150.

In performing the averages, we have also monitored the srationarity of the process and

the represenrariveness of each 65536 dara points sample by calcularing the response mean-square

of each sample. A srarionary process implies that no evolurive trend is displayed by the sample

mean-squares. Furthennore, proper esrimates of the "infinitely" long process by the samples

require that their mean-squares do not vary significandy in comparison tO their mean value, which

represents the mean-square of the full process.

In order tO minimize aliasing effecrs, potenrially causing high frequencies tO appear as low

frequencies, we hav·e chosen the Nyquist frequency to be much larger than any physical frequency

suspected ra appear in the speetrum. The Nyquist (radial) frequency is given by k::-:~-q' = tri~T

where ~T is the sampling rime interval ro perform the FIT. Ir is not necessarily chosen to be

equal ro the integrarion rime step, ~r, but cao be Larger. Hence, the smaller the sampling rime, the

larger the Nyquist frequency. For mast spectral analysis perfonned in chis work, we have used a

sampling cime ~T = 0.25, which gives a Nyquist frequency, k~yq' = tri~T= 1[/0.25 =12.6. This

is well above the frequency range where the system displays any dynamics.

Choosing a roo small sampling rime may however have a detrimental effect on the FFI'

frequency resolurion .jk = 'L,/ (NFFT ..11) = ;ri (2 15
..1 1). This aspect is also considered in the choice

of an appropriate sampling rime. There is no exact recipe for the choice of ..1T. Per set of dara,

we have changed its value and examine the resulting PSDs in light of the expecred physical

spectral content.

We have aIso been concerned \vith potenrial leakage problems which may cause a

broadening and flattening of the PSD peaks, or more specifically a rransfer of the power at sorne

particular frequency into nearby frequencies. This issue has been evaluated by changing the

frequency resolution of the FFI and by performing dara windowing. We have used the Welch
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• \vindow wruch appears tO be slighdy preferred by Press et al. [1996] over other commonly used

\vindow shapes. The \~ÇeIch \vindow is given b~· equatian (3.21) and shown graprucally in Figure

3.16.

w = l _(j -O.5(NFFT -1)):
) O.5(lVFFI" + 1)

(3.21)

where j = 0, 1,2, ... 65535, and w, is multiplied tO each \ialue of the rime series tO be rransformed.
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Figure 3.16 - \~'elch window far NFFT = 65536.

•
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Chapter 4

RANDOM BIFURCATION ANALYSIS

- Binary Flutter Conditions

\\'e have twO motives tO srudy the bifurcation scenario experienced by the flurrering airfoil

under turbulent excitation. First, a good appreciation of the bifurcation scenario is required ta

undersrand the airfoi! srability and response characteristics. In this regard, the llyesrigation of the

random fluner/ supercritical Hopf bifurcation sets the stage for the analysis of other aspects of

the airfoil dynamics..\nother motive tO srudy the bifurcation scenario is grounded in a more

fundamental undertaking tO investigare the problem of noise-indueed transitions or stochostie

bifiircation. 1

The emphasis will be put on the global (sready stare in the probabilistic sense) dynamics.

Sorne localized (in rime) aspects of the dynamic behavioUI' will aIso be discussed, but no major

conclusions will be drawn from them.

_-\ccording ra .\rnold [1998}, the qualifying cerro "srochastic" applies ra problems where the excitation is white,
whereas "random" refers ra coloured noise excired problems. Because dUs thesis dea.ls rnainly u-ith coloured
excitation, reference co random bijllrration seems more appropriare. However and in che specifie conrext of a
bifurcation analysis, ic appears chat stochasric bifurcation is in general accepced terminology for either white or
non·white excitation. :\.lso note chat che renn "noisy" is sometÏmes used as a neutral appellation.
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• 4.1 Deterministic Baseline

Throughout this chaprer, unless othenvise srated, results are giyen for the following set

of airfoil non-dimensional parameters: cJ = 0.6325, xt} = 0.25, r 8 = 0.5, ,u =100.0, ah = -0.5, (t}

= 0.0, (;, = 0.0. The nonlinearity is a hardening torsional stiffness and has the following

coefficient, k} =.wO.O. \~Tith these condirions, the baseline deterministic (non-e..xcired) bifurcation

type is of the supercritical Hopf type. Csing the airspeed as the control parameter, this bifurcation

type is first characrerized by a loss of srabiliry of the stable fi..'i:ed point which is then followed at

higher airspeeds bya stable LeO centred about the unsrable fi.."{ed point at the Origine

4.1.1 Binary t1urrer

•
The los5 of stability of the fi"{ed point, which is located at the origin since no bias is

modelled, occurs at the fluner speed, Ut' It is solely detennined by the linear sYStem. Shown in

Figure 4.1 (a) and 4.1 (b) are the real and imaginary partS of the eigenvalues, respectiyely.

0.04 -

0.02 - Uf=4.31~.~
0.00 :::::::;;::;==. .

- 3!Om-~J"""I'.':---.J"'.4---'3r-:. ()~---:3;-:.8:r--4~.0~-4~. 2 4,4 4.6 4.8 5.0
~ -0.02': - - - . - • - - - • - - - - - • - - • - - - - - - •. _

..0.04 -

.--
-0.06 ~
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0.30 -
.. - (b)
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~ -... --.
::: 0.20 -:------ ~-.:..:--.:.--::.-.:..:--:.:.-.:..;_.~..:...=-:.~

, --- ....
.~

§ 0.10-
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3.0
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Figure 4.1 - Beha\;our of (linear and non-excired) aïrfoil eigenvalues \Vith airspeed;

Ca) real part; (b) imaginary part.•
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Rutter occurs at Ut = 4.31, as given by the real part of the comple..'C conjugate pair wruch

changes sign. The figure also illustrares the coalescence of the t\vo eigenfrequencies, whose \~alue

are given by the imaginary pan. The Hutter frequency is kf =0.182.

4.1.2 Posr-insrability behav-iour

For the linear airfoil and for airspeeds above the Butter speed, any disrurbances on the

airfoil will in theory grow to infirùty. \'7ith the nonlinearity, the oscillations srabilize on a limit

cycle whose steady state amplirude is independent of initial conditions. These oscillations

represenr a balance bet\veen the (unstable) linear forces and the restraining mechanism of the

hardening spring whose effective stiffness increases with the LeO arnplirude. For the POSt

insrabiliry airspeed range of inrerest, the LeO is the only stable attractor in the state space. Its

amplitude in pitch as a function of airspeed is shawn in Figure 4.2. Bath the numerical and

describing funcnon method CDRtf) solurions are given.

DFNl solution
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"'=
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0.5 "7"

0.0

3.0 3.5 4.0

R-K solution

4.5 5.0 5.5
airspeed. U

6.0 6.5 7.0

•
Figure 4.2 - _-\mplitude of the LeO as represented by the pitch motion for the non-e..'Ccited

nonlinear airfoil, as a function of airspeed; R-K and DF1-f method solutions; k3 = 400.0.

_-\s described in Chapter 3, the D~I assumes simple harmonic motion. Accordingly, the

increasing difference in LeO amplitude with airspeed bet\veen the twO solurions can be
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inrerpreted as an indication of the enhanced relati\ye importance of harmonies of the fundamental

frequency in the "true" nurnerical solution.

_\1so of interest is the change with airspeed of the pitch response mean-square compared

with the heave response mean-square. From Figure 4.3, \vhich compares the amplitude of

oscillation and response mean-square of the pitch and heave, it is observed chat the pitch

dynamics remains close tO the simplest expression of the Hopf normal forro, which is

characterised by a linear mean-square response - airspeed relacionship. Indeed, the radius variable

of this normal fonn expressed in polar coordinates, r =a r + aJ r 3, is essenrially characterised

by twO terms, a Iinear and a cubic renn [.-\rgyris et al., 1994]. Consequently, at steady stare (i.e. r

=0) the radial variable increases linearly with the square root of the control parameter a, or

similarly, its mean-square is a linear funcrion of the control parameter, ie r 2 =-a/aJ, where ais

positive and a function of U, and a J is negative for the supercritical Hopf bifurcation. On the

other hand, the heave dynamics depans from rhis behaviour \yery early after the fluner point. The

likely physical e..xplanation for this observation is the location of the nonlinearity, which directly

affects the pitch response but onl~' indirectly affects the heave.
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Figure 4.3 - Diagrarn of pitch and heave amplitude of oscillations and response mean-square

of non-excited nonlinear airfoil, as a function of airspeed; k3 =400.0.
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• 4.2 Interpretative and Practical Considerations

•

•

In the broad sense, a bifurcation means a qualitative change in the dynamic behaviour of

a system as a parameter is \·aried. In mm, a change in behaviour implies the identification of che

behaviour in question. This is a relarively easy and srraightforurard rask for a deterministic SYSt~

whereas in the random case it is a much more comple..~ and equivocal, venture. \ve have argued

in Chapter l that the most narural representation of the stochastic (and random) dynamics is the

probabiliry density function (pDF), where for e..xample the peaks, or extrema, are the stochastic

analogue of the deterministic arnplirodes of mation. We have aIso argued that the PDF defines

the type of dynamic beha\;aur. _\ccordingly, 'Noe consider the PDF ta be an appropriare tool ta

identify any qualitative change in the dynamics of the random problem.

Due ta pracrical considerations, a clarification with regard ta the use of the PDF is in

arder. Sînce a bifurcation refers ta a change in the dynamical behaviour of the system as a whole,

a strict interpreration of the beha,,;our for our multi-dimensional system requires a joint PDF of

at least the four dimensions associated with the srrucmral degrees-of-freedom, ie Ps(8, fJ~ (, (').

The subscript "s" represents steady-srare beha",riour in the srarisricaI sense. \~'e are, however,

practically restricred ta the marginal and bi-dimensional P_DF projections, for example Ps(fJ) or

pJ fJ, (). This is cause for care in the interpreratian of the results, and we need ta define a proper

rerminology tO differenriate berween a change of behaviour of the system from that of an

observed change in the marginal PDF of astate. Accordingly, in situations \vhere we are positive

mat a qualitative change in the dynamical beha\;our of the whole system has occurred, we will

use the terrn bifilrcation. Othenvise, and unril we feel reasonably confident that a bifurcation has

occurre~ the ObSeIyarion of a change in shape of a marginal PDF, for example frOID a unî- to a

bi-modal, will bare the name transition.

Haying said mat, based on the deterministic behaviour we expect to witness dynamic

beha,;our whose fundamental fearures can be captured by a rwo-dimensional picrure, or a bi

dirnensional PDF. For example, the essence of a detenninisric LeO, being a one-dirnensianal

object, can be seen on a phase plane. The equivalent representarion of the phase plane for the

random case is the bi-dimensional POF. Both representations are shawn in Figure 4.4 for the

detenninistic airfoil dynamics. \çe see that the phase plane is the projection of the bi-dimensional
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• PDF looking dO\Nil the probability a:<Ïs. In the case of the zero-dimension equilibriurn point, its

basic topology': is e:-..-pected to remain unchanged in PDFs of any dimension j
.

0.3 -

Figure 4..+ - Bi-dimensional PDF and phase plane of the pitch pitch-rare

of the non-excired nonlinear airfoil at U = 5.0~ kj =400.0.
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•
The representation of the d~mamics in the form of the PDF leads ta the concept of a P

bifurcation. \\e haye discussed thar the interpretation of the P-bifurcanon as being a "real"

bifurcation is a source of argument berween physicisrs and engineers on one hand and

marhematicians and dynarnics theoreticUns on the other. The former generally favour the P

bifurcation notion, while the latter advocate the D-bifurcanon interpreration, which is associared

with the concept of largesr Lyapunm.. e..'q)onenr. Thus, we also use the largesr Lyapunov exponent

as a measure of the dynamic beha'i.iour, and in particular for the D-bifurcauon. _\5 weil we make

use of the response mean-square as an indicator of the D-bifurcation point. We have found that

•
:We borrow the very simple words of .\rgyris [1994} and define ropology as the srudy of qualitative geometry.

Howe\·er. for higher dimensional dynamical objectS such as a chaocc arrractor. the phase plane projection is nO[
sufficienr. For example. the torus ~'hich represenrs a quasi-periodic attr:lctor requires a 3-D sure space
projection. This is possible in rhe dererministic case, but impossible in the random case due to the need for an
additional dimension represenring me probabiliry densiry a..'CÏs.

99



•

•

•

for our nonlinear problem with pure longitudinal rurbulence, the D-bifurcarion point could aIso

be identified \vith the (nonlinear) response mean-square.

The bifurcation scenario is discussed in three phases, according tO the source of

excitation. In a tirSt analysis, the problem is analysed for pure longitudinal turbulence. This

excitation source is paramerric, hence, makes the mathematical mode! time-varying. The pure

v-ertical rorbulence excitation, acting as an e.."{temal forcing, is then treared. AErer hanng broken

down the nonlinear airfoil-rurbulence mode! in its rwo e..\:citation components, in the hope of

obraining a more fundamental undersranding of its dynamics, a synthesis is then offered by

discussing the more realistic case of combined Gongïtudinal and \-emca1) turbulence e.."(a.ration.

4.3 Pure Longitudinal Turbulence Excitation

4.3.1 The t\vo-step bifurcation

The PDF of the dynamics of the flurrering nonlinear airfail in pure longitudinal

rorbulence (UT: 0, WT =0) is presenred in Figure 4.5, sho\\lwg the marginal steady stare densiry

in pitch as a funcrion of mean airspeed. Nore that the PDF is multiplied by the pitch respanse

mean-square to facilirare the \-isual interpreration of the dynamics. This is especially so far the

equilibrium poin4 which far a pure PDF wauld ather\\l"Îse be represented by a Dirac delta

functian centred at zero pitch angle, instead af a flat density.

Figure 4.5 rypifies the dynamics of the system since the other 5trucrural states, pitch rate,

heaye and hea\'"e rate, also e.wbit the same marginal PDF portrait characterized by t'Wo transition

points. The fust transition poin4 at Um1 , separares a region with a flat densiry from a uni-modal

one; the second transition point, at U~ separares the uni-modal frOID a bi-modaI densiry.

_\s e.."{{>ecred, Figure 4.5 resembles the bifurcation landscape experienced by the Landau

equation under multiplicative noise, as described in Chapter 1. We are cautious in this statement

since we ha~-e not concluded yer that the observed behaviour indicaœs a bifurcation. In addition,

because the Landau system is ane-dimensional its bi-modal density represents a stochastic

pitchfork, while we e.."{{>ect a Hopf bifurcation in our case. However, we are led tO believe rhat
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these obsen-ed transitions are acmally bifurcations since the twO transition points occur at the

same airspeeds for aU marginal PDFs. These airspeeds are locared at Uml =3.64 and Um1 =4.75

for this e.,"(ample.

mean airspeed. U:Il

Figure 4.5 - ~rarginal PDF diagram of the airfoil pitch angle \Vith pure longitudinal turbulence

as a function of mean airspeed; Gr:!. = 1.0, L =50.0, k3 =400.0.

The same values of crinca! airspeed are aIso obsen-ed in the bi-climensional PDF

representation shown in Figure 4.6. Um ! separates a region \Vith no dynamics from a single peaked

density centred at zero, \.vhile Um2 separates the single peaked shape from a crater-like shaped

PDF.

The double peaked shape of the marginal PDF is sho\.vn as a crater in the bi-dimensional

density. This is comparible \Vith the dynamics of a limit cycle oscillation, hence, it indicates a

coherence of the results with the mode!. It also reconciles the obser~tedresemblance between the

one-dimensional Landau system pitchfork bifurcation \Vith the Hopf bifurcation represented with

the margina! PDF. Therefore, since we have aIso found chat aU marginai PDFs present the same

double transition landscape, and that the [wo crinca! speeds are the same for aIl states, we

conclude thar a bifurcation exisrs. Ir is in faet a Iwo-Jlep bifurcation with three distinct regions of

qualitatively differenr dynamic behaviour.
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Figure 4.6 - PDFs in pitch pitch-rate \vith pure longirudinal rurbulence; a/ =1.0, L =50.0,

k3 =400.0; Ca) for second region, 3.64 ~ Um $ 4.i5; (b) for third regio~ 4.iS ~ Um•

4.3.2 J\Iotion types and characreristics

The first region, [Jm $ [lm! =3.64, represents an equilibrium point in the detemllnistic

sense, or a determinùticfixedpoint since it is charaeterized by a fiat density, indicating no dynamics.
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~Ot shawn here, but for the pure PDF the Dirac ddra funcrion indicates chat the equilibrium

point is at zero pitch angle. The second region~ Um1 = 3.64 ~ Um ~ Um1 = 4.ïS, is denoted by a

sharp single peaked PDF, with sorne diffusion about its mean which occurs at zero pitch angle.

Notice that the basic ropology of the single peaked dynamics remains unchanged bet\veen me

marginal and bi-dimensional PDFs. E.\.Lending the notion of dimensionaliry of deterrninistic

dynamic objects to random ones, the dynamics of the second region is interpreted also as an

equilibrium point but in the random sense, hence a randomftxed point.

It is only in the third region, L~rn ~ [}m2 = 4.75~ Wt we recognize the double-peaked shape

of the marginal PDF representation, and more specifically the crater-Iïke shape of the bi

dimensional PDF represenration, that characrerizes rhe LeO motion. The contour of the densirr

gives the most probable value chat the system states \vill cake during the motion. In other words,

the system spends most of irs rime in the viciniry of the crater contour. Looking down the

probabiliry density axis of the bi-dimensional PDF, the contour is the random equiyalent of the

non-e."\:cired LeO in the phase plane. The apparent irregulariry of the contour is due tO the fÏ.nite

size of rbe sample (N = 40,000,000). Increasing the sample size would give a smoother contour.

The third region represents a random limil cycle oscillation.

Time bistory andjrequenry content aspects

To gain a bener physical insight the dynamics is now discussed from the perspectiye of

a rime history. Ir has obyious limitations for a random process, but is a more familiar conceprual

tooL _-\1so cliscussed is the frequency content of the response. Figure 4.Î compares the motion of

the randorn fi..xed point and LeO. The data presented is for sready stare motion, in the

probabilistic sense.

The rime history of the motion of rbe stochastic fi..xed point (shown in Figure 4.ï (a))

indicates sustained dynamic behaviour, but no full! developed oscillations. It is ooly in the third

region, defining the random LeO (Figure 4.7 (b)), mat the response demonstraresful!y developed

periodic oscillations, an e.'-l'ression apparencly inttoduced by Sttatonovich [1967] and later

adopted by Yoon and Ibrahim [1995]. Howeyer, the distinction between the twO types of

oscillation is not clear in the cime domain, and we must refer ta the PDF for a clean demarcation.
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Figure 4.7 - Pitch dynamics of the nonlinear airfoil in pure longirudinal turbulence; {7./ =1.0,

L =50.0. kj =400.0; (a) random tLxed poin~ Uml < u,-n < Um2; (b) random LeO, Um > Urn1•

•

The description of the rime history becomes eveo more blurry if one considers a fourth

type of dynamic beha\"iour, introduced and labelled uncertain motion by Yoon and Ibrahim [199St,

which appears for airspeeds very close tO the first bifurcation point at Uml • _\5 they put i~ the

morion is characterized by an on-off intermittency type beha''lour. For e..xample, as shawn in

Figure 4.8 at Um =3.ï (recall Um1 = 3.64), loca.lized bursts of relatively large amplirude arise and

then die out. These are followed by long periods of no visible morion before any dynamïcs

become visible again.

4

In their u.-ork., Yoon and Ibrahim modelled the pararnetric excitation as a narrow band centIed at one of the
system narural frequencies.
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Figure 4.8 - Sample rime history of the pitch motion of the nonlinear airfoil

in pure longitudinal turbulence; a-/ =1.0, L =50.0, k3 =400.0, Um =3.7.

The key word is "visible", since changing the scale of the amplitude a..xis displays

dynamics, but at a different scale. In fact, this motion is not qualiratively different chan the

dynamics of the random tixed point, in the sense that it is represenred by a sharp single peaked

PDF. Essenrially, the origin of this beha'\;our is the fluctuations in the parameters, which in the

close \;ciniry of the bifurcation point makes the system altemate between momenrary· stabiliry and

instabiliry. The SaIne fundamental phenomenon occurs at higher mean airspeeds. but is not as

preponderanL :\ccordingly, our results suggest chat the notion ofuncenain motion is quesrionable

in the theoretical description of the system long rerm dynamics, although it may have sorne

practical significance.

_\nomer common perspeCtive of the steady state dynamics is prov'ided by e.xamini.ng the

frequency content of the signal _-\gain, no fundamental clifference is noted between the random

fi..xed point and LeO. ~:e note, however, a sharper peak in the PSD of the LCO, i.e. for Um >

Um1, a sign of a more dominant periodic oscillation, as observed in the rime histories. A similar

observation has been nared by Franzoni et al. [1987] far a rwo-dimensional system.
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• 4.3.3 Bifurcation types

In this secrion~ the nature of the Nm bifurcation points is discussed. \ve Stan \Vith Uml

which separates a region \Vith no dynamics from another region where there is sustained morion

as given by the response mean-square. Figure 4.9 demonsrrates that Uml appears to be insensitive

tO the nonlinearity in che sYStem. Ir men seems rational ra associare [lml 'W-ith aD-bifurcation.

2.5 -

1.0 -----~
. Um1 = 3.64'

•

2.0 -

1.5 -

0.5 -

3.5 3.6 3.7 3.8 3.9 4.0 4.1

mean airspeecl Um

4.2 4.3 4.4 4.5

•

Figure 4.9 - Longitudinally e..~cired pirch response mean-square

for different magnirudes of nonlinearity of the airfoil; a/ =1.0, L =50.0.

This conclusion is affirmed by the largesr Lyapunov e),.1Jonen~ which exhibits a

disconrinuiry at Umb see Figure 4.10. Recall that the strict definition of the D-bifurcation requires

a change of sign of the largest Lyapunov e..\.-ponent. In Figure 4.10, there is no change of sign per

se because we are caleularing 1= about the new stable bifurcaring nonlinear solution. For the

linear airfoil À= becomes positive at exactly the same airspee~ chus confirming chat Um1

represents aD-bifurcation. 5ince Um1 is purely defined by the linearized system, and having

argued earlier that Butter is a linear insrabiliry mechanism, we suggest that from an aeroelasric

perspective Uml may be interpreted as the randomj1utterpoint.

~ote that the largest Lyapunov e:-"1Jonent has been re-norrruùized by multiplying it by

Uml fJ.r in order tO get rid of its arrificial direct dependence on airspeed, a consequence of our
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• choice of non-dimensional parameters (recall that the unit of À.= is 1/ rime~ and rime in the

standard non~dimensionalspace is r =L":rI (lb). This change enables a better physic~ insight on

the inrerpretarion of the behanour of À,=. •\utomarically, the tendency of À,mu tO go to zero at

lower airspeeds appears. This is a direct consequence of neglecting srrucrural damping. The

damping is solely pro\-ided by the aerodynamics.
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•
Figure 4.10 - Largest Lyapuno\· exponent for the longirudinally excited airfoil;

0-/ =1.0, L =50.0, k3 = 400.0

No disconrinuiry in the beha'\-lour of the largesr Lyapunov e.'\.l'0nenr is observed ar Um:/.

:\ccordingly, we conclude that the qualitative change in dynamic behaviour observed ar Um2,

defined by a change of shape of the PDF from uni- to bi-modal, is a P-bifurcation. We also define

Um2. as the onse! of the random LeO. Funhermore~ and contrary to the D-bifurcation~ the

phenomenological bifurcation is a result of the interaction between the noisy and nonlinear nature

of the system.

• This non-vanishing behanour of the largeSt Lyapunov exponent for the range of control paramecers past the D
bifurc:uion has also been obsc:rved numeriolly by Shenck.Hoppé [1996] for the noisy Duffing-\<Ul der Pol
c:quation in the Hopf scenario, and subsequenrly discussed on the theoretical and analyticalleyel by .\mold
[1998].
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• We must clarify this last surement since the next graph (Figure 4.11)~ concrary tO intuitio~

does not indic:lte a dependence of the P-bifurcarion point on the degree of nonlineariry. The

onser of the random LCO occurs ar Um2 =4.75 for all rhree v~alues ofk3 shawn. Ir is noticed thar

the effecr of changing the magnirode of the nonlinearity is only felt by the pitch angle ar the

maxima of the marginal PDF..\n e-'\.1Jlanation of this behaviour is found in more simple systems

where analytical solutions e-"'ÙSr. Take the one-dimensional Landau equation under multiplicatiye

white noise (equation 1.14), which we have generalized for any rnagnirude of the nonlinear

coefficien~k3:

(4.1)

•

•

Follo\\img the same procedure as that presenred in Chapter 1~ the e-"'{rrema of the steady

srare PDF are found ro be:

(4.2)

which means that the nonlinear coefficient is required for the e-'=.istence of the non-zero e-xtr~

but that its magnitude does not affect the point where th~se e-xtrema first appear on the À. a.."cis.

In other words, their e..xistence depends on the system being nonlinear~ but their appearance on

the conrrol paramerer a..~~ À., depends only on the noise intensity as defined by (À. - a l /2) which

must be positi\~e. The same conclusion can also be derived from a paper by .\rÏararnam [1980] ~

where a IDOF (i.e. t\Vo-dimensional) problem is investigated.

~/e conclude by suggesting mat the single-peaked region, berween Uml and Um2~ is more

a property of the longirudinal e-'Ccirarion chan a consequence of the nonlineariry. This idea is

developed in Chapter 7 where we discuss one effect of longitudinal e.'Ccirarion which is ta organize

or force the airfoil dynamics ta be centred around the origin.
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Figure -1-.11 - Extrema of the pitch PDF as a funcrian of mean airspeed axis far different

magnitudes of nonlineariry of the airfoil in pure langitudinal turbulence; a/ =1.0, L = 50.0.

_-\.s a laSt point on the discussion of the bifurcation type, we wish tO mention that there

does not seem to e.x.iSt a consensus, yet, on the meaning af the Hopf bifurcation in the random,

or stochastic, sense. For example, and symptomatic of the debare beeween dynamicists and

physicists, the former use the term stothastie Hopf bifurcation tO describe the complete ewo-srep

bifurcation scenario [Arnold, 1996 and 1998]. On the other hand, P-bifurcation advocates such

as Levefer and Turner [19861 or Fronzoni et al. [1987] tend ta use stoehastie Hopf bifurcation to

strictly define the second bifurcation (p-bif.).

4.3.4 Bifurcation shift

•

The bifurcation landscape can be represented in a different manner by plotting the steady

stare motion mean-square and the location of the peak of the marginal PDFs a function of mean

aïrspeed, and in comparison with the unique determinisric auner/Hopf bifurcation point at Uf

=4.31. \YIe want to draw [wo conclusions from Figure 4.12. One is that the random fluner point

is advanced with respect to the deterministic fluner speed, occurring at Um1 = 3.64 for this

particular case. The second is that the anser of the random LeO is posrponed, occurring at Um2

= 4.iS.
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Figure 4.12 - Bifurcation diagram far the nan-excited and longitudinally excited nonlinear

airfoil as represented by the pitch (a) and heave (b); a../" = 1.0, L = 50.0, k3 = 400.0.

•
These t\Vo conclusions are generalized tO other values of turbulence characteristics. Figure

4.13 shows that regardless of the turbulence variance and scale, the Butter point is always

advanced and the LeO onser is always pasrponed in pure longitudinal turbulence excitation. The

mechanisms of the advancement of the fluner point \\rill be discussed in Chapter 5.
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Figure 4.13 - D- and P-bifurcation airspeeds of the longitudinally excired nonlinear airfoil

as a function of rurbulence variance and for different l;alues of scale of mrbulence; k3 = 400.0.

4.4 Pure Vertical Turbulence Excitation

In this section~ we analyse the case where the .vertical component of turbulence is

considered and the longitudinal component is disabled, chat is WT "* 0 and UT =O. The airspeed

does not vary in rime, hence it is kept constant. In the more general mechanical conrext, this

problem is equivalenr tO an exremally forced sysrem ,-"ithour any parametric excitation.

4.4.1 Preamble

•

In contrast 'With the previous case, the visualisation of the PDF of the nonlinear airfoil

motion excired by \TerOCal rurbulence does nat prov-ïde a straightforward picrure of the bifurcation

scenario. The reason is mat the airspeed at which a transition is observed in the PDF depends on

which srare(s) is cansidered. This is 50 for cither the one-dimensional, marginal, PDF or the bi

dimensianal projection, as exemplified by Figures 4.1-1- and 4.15, respectively.
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5.0

Figure 4.14 - ~Iarginal PDF diagrams of the airfoil pitch angle and heave displacement

in pure vertical turbulence, as a function of airspeed; 0./ =1.0, L =50.0, k3 =400.0.
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•
From Figure 4.14, we observe that the pitch transitions at a much lower airspeed chan the

hea,re. In fact, the pitch angle transitions from a uni- co a bi-modal PDF at U =3.6, while the

hea',;e displacemenr e..'\.1'eriences the same type of transition but ar a much higher airspeed, given

by U = 30. _\lthough nOt sho\vn, it should be noced that the pitch-rate and heave-rare marginal

PDFs also exhibir a uru- co a bi-modal transition, and also at differenr airspeeds. We also retain

from Figure 4.14 that, contrary to pure longitudinal rorbulence, the probabiliry densiry Iandscape

exhibits only one transition point, since only t'wo different density shapes are observed.

•

Sirn.ilirly for the bi-dimensional PDF projection, we have noted different transition

airspeeds between different States. For e..xample, and using the same system parameter values and

turbulence conditions as for Figure 4.14, we have found that the pitch pitch-rate bi-dimensional

PDF transitions at U = 4.1, while the heave heave-rate densiry changes at a much higher airspeed.

Figure 4.15 shows that at U = 4.30, an airspeed just before the deterministic flutter point, the

pitch pitch-rate PDF is bi-modal, whereas the heave heave-rate has a uni-modal beU shape.
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Figure 4.15 - Bi-dimensional PDF of the airfoil pitch pitch-rate and heave heave-rare

in pure v·ercical rurbulence for U = 4.30; a/ = 1.0, L = 50.0, k3 = 400.0.

Since we are fundamentally restricted ra a bi-dimensional PDF projection, our abilicy ta

obtain a global perspective of the airfoil dynamics as e..Wibired by its probability density is limited.

In dUs respect, there is room for interpreration, especially conceming the location of bifurcation

point on the airspeed axis.

•

_-\ccordingly, ta make the analysis tractable we have chosen to base our interpreration of

the bifurcation on the dynamics of the pitch DOF. In SUPPOrt of dUs approach are the following

arguments. One argument is the observation of the non-excited pitch dynamics which behaves

as a function of airspeed very similarly to the radial component of the Hopf bifurcation normal

forme We have attributed chis behaviour tO the location of the nonlinearity which aets directly on

the pitch DOf..-\nother argument is based on the vertically excited airfoil PDFs. The densities

exhibit transition in pitch and pitch-rare at values of airspeed which appear r:o be physically much

more representati,·e of the bifurcation point than the heave and heave-rare transition airspeeds.

Consequently, we are lead te believe mat the random bifurcation scenario is dietated in a large

parr by the pitch DOF.
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•

•

Another important limitation imposed on us is the relati,·ely fragile theoretical

foundations of nonlinear dynamics when the system is subjecr tO additive noise. This is reflecred

by the concradicrory results found in the literarure. Sorne of them will be discussed at the end of

chis section. Surprisingly, the multiplicative noise problem appears tO have reached a higher le\"el

ofmaturity in its theorecical rreatment. Nevertheless, sorne aspects of the bifurcation scenario cm

still be addressed with a degree of certainty. Speculative interprerations will he suggested for other

aspects which cannot be demonsrrated dearly.

Before discussing our results funher, we believe it is relevant tO fust describe the expecred

dynamics. This is done in arder tO facilitate the analysis of the resulrs, which, as described above,

do not lend themselves ta a srraightforward inrerpreration. What we are looking for is basically

a bell-shaped (Gaussian like) bi-dimensional PDF at pre-flurrer airspeeds, representing a fixed

point, and a crater-like shape at post-flutter airspeeds characterizing the random LeO. The

equivalent represenrarions in the marginal PDF projection are respectively uni- and bi-modal

shapes.

Nore from Figure 4.15 that the bell-shaped curve, shown in the heave response for

example, corresponds tO our expecrations. We cannot say the same for the t\Vo-peaked shape

displayed by the pitch pitch-rate bi-dimensional PDF, since this distribution does not correspond

tO either a fi..xed point or an LeO. \"'{:e will discuss chis in the ne.xt sub-secnon.

4.4.2 The P-bifurcarion

\\'e ha'\·e found mat under \-ertica! turbulence, the bifurcation scenario depends on the

turbulence level. The discussion is diyided along chis line. There are the low and the high

turbulence level cases.

4.4.2.1 Case 1 - low turbulence level

For 10w values of turbulence variance, the bifurcation scenario is represented in Figure

4.16. _\t pre-bifurcation airspeeds, we are able tO distinguish a uni-modal bell-shaped bi

dimensional PDF which bifurcares direct1y intO a crater-lïke shaped densiry. In chis example, the
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• pitch pirch-rare bi-dimensional PDF transirions at U =3.9.

The obseryed densiry shapes correspond tO our e..'\.1>ecrarions. First, the unequivocal uni

madal bell-shaped bi-dimensianal PDF is interpreted as a rondomfi:-:edpoint, since the motion is

distributed about the arigin. N orice however that its topalogy is different than far the random

fi.xed point in longimdinal e..xcitario~ since for the latter the randam fixed point has a sharp peak.

The bell shape of this random fixed point is a direct contriburion of the e..'\."ternal forcing Gaussian

distribution. SeconcL after the bifurcation point, we recognize the expected crater-shaped PDF

represencing a random LeO. It remains crater-like far higher airspeeds, withau! changing in!a a

rwo-peaked shape.
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Figure 4.16 - Bi-dimensianal PDF of the airfoil pitch pitch-rate in pure vertical turbulence

at U = 2.5 and U =5.0; CJ.r: = 0.01, L = 50.0, k j = 400.0.

For this parricular nonlinear airfoil and scale of turbulence, dUs bifurcation scenario is

retained up tO a turbulence variance, CJ.r:' =0.06. For higher rorbulence levels, the bifurcation

changes ra the case described in sub-section 4.4.2.2.
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• 4.4.2.2 Case 2 - high turbulence Ievel

The fundamenral difference at high \,alues of rurbulence variance concems the shape of

the probabiliry densiry ar post-bifurcation airspeeds. In chis case~ the crater shape disappears in

favour of a rwo-peaked bi-dimensional PDF. This is illusrrared in Figure 4.1 i for a turbulence

varUnce, a-.;2 =0.1 and airspee~ U =5.0. Nore that the pre-bifurcation bi-dimensional PDF

(shown for U =2.5) has the e.."1'ected bell shape.
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5.0
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Figure 4.1 ï - Bi-dimensional PDF of the airfoil pitch pitch-rate in pure vertical turbulence at

C" =2.5 and U =5.0; (J../" =0.1, L =50.0~ k3 =400.0.

~-\r this turbulence variance, the pitch pitch-rate PDF transitions ar U = 3.0. For higher

airspeeds we have tried tO find a crater, indicatiye of an Lee in its random fonD, with no success.

In fac4 the bi-dimensional PDF e..wbirs a V"ery complex pieture ar the higher airspeeds, which

we attribure ro the contamination of the expecred Lee dynamics by other types of underlying

deterministic dynamic behaviour. Hence, the salienr fearures of the posr-bifurcation high

rorbulence le\·el dynamics, as represenred by the pitch pitch-rare bi-dimensional PDF, are the [\VO

peaks, with a saddle appearing at the origin insread of the expecred crater.
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• We funher argue mat for large ,·alues of e."{cirarion variance, ,·enicai turbulence destroys

the LCG. The destructive effecr of turbulence is reinforced by, or associated with, a greater

contriburion of super-harmonics and a skewing, and deformarion, of the otherwise well behaved

ellipricai shape of the underlying determinisric LeG. We will discuss these aspects in detai! in

Chapter 6 and show that this behaviour cm be attribured tO large nonlinear effectS.

4.4.2.3 Loss of the D-bifurcation

For both cases, low and high turbulence Levds, it is demonstrated that the nature of the

bifurcation is of the P-type by showing thar it is not of the D-rype. Figure 4.18 disp1ays no

disconrinuous behaviour of the largest Lyapunov e.'.1Jonent as a function of airspe~d.

Consequently, there is no dynamical bifurcation according to irs definition [.\rnold, 1998]. It is

a phenomenologica/ bifurcation. In support of this argument, we aIso add mat sorne authors [Leng et

al, 1992] have shown that for simple systems under e."{ternal noise, a qualiurive change in the

PDF was not indicated by a disconrinuiry in the Lyapunov e."{}Jonenr.
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Figure 4.18 - Largest Lyapuno,· e)",l'0nent for the verrically excired nonlinear airfoil

as a funcnon of airspeed, for wo ,·alues of turbulence ,,·ariance; L = 50.0, k3 = 400.0.

We cao further interpret this LaSt obsen-arion by staring mat under additive noise the D

bifurcation of the underl~i.ng detenninistic system appears as a P-bifurcarion. We also note that

strictly speaking for a nonlinear aeroelasric system the Loss of the D-bifurcarion indicates that the
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flurrer point no longer exists. This is a consequence of the combined effect of the nonlinearity

and the vertical rorbulence. This argument does not hold for the linear syst~ as will be shown

in Figure Î.l, since in this case the dynamical bifurcation (D-bif.) exists.

On the question of the location of the P-bifurcation point on the airspeed axis, we cm

oaly speculate. L;nforrunately, we hav'e no means tO pro,,-ide any definirive remarks since the

airspeed at which the pitch and hea"-e PDFs structure changes do not coïncide. Moreover, and

as mentioned earlier, conflicring results appear in the literarure. Nevertheless, our results based

on the pitch dynamics suggest that the P-bifurcation is ad~"anced by vertical turbulence in

comparison with the non-e."{cited flurrer/Hopf bifurcation.

4.4.3 Literarure survev - Contradictorv results
~ ~

In light of the uncenainties discussed above, we add that no fully sarisfying answer can

be obtained from the theoreticalliterarure. As introduced in Chapter 1 we found contradicrory

results on the rwo issues of the location of the bifurcation point and of the type of motion (as

exhibired by the PDF) after the bifurcation. For e..xample and in partial support of our findings,

Schimansky-Geier et al. [1985] and Ebeling et al [1986] reported analyrical results, verified by

computer simulations, of rwo-dimensional nonlinear systems experiencing a Hopf bifurcation in

the detenninistic case. Cnder additive white noise e..xcitation chey observed a two-step bifurcation

'N-ith three types of dynamic behaviour. For low values of the control parameter they argued mat

the system exhibired a single probability densiry ma.~um at the origin. At a larger value of the

conrrol parameter, but lower man for the deterministic Hopfbifurcatio~ the bi-dimensional PDF

showed (wo off-centred ma.:cima and a saddle point at the origin. For srilllarger values of the

conrrol parameter, greater than for the deterministic Hopf bifurcation, a crater appeared. On the

contrary, Schenk-Hoppé [1996] reports ooly t\VO different types of qualitative behaviour for the

same type of problem. The bell-like shape of the Duffing-van der Pol equation excited by additive

\vhire noise bifurcates direcrly intO a crater-like shape, and apparently at the same value of contIol

parameter as the deterministic Hopf bifurcation.

Other results of simple systems which re-enforce the interpretation of an advancement

of the P-bifurcation point by additive noise are the following. :\s mentioned in Chapter 1, Lugiato
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et al. [1989] have discussed the case of a one-dimensional sYStem, excited by pure additive

coloured noise, which e..xhibits an early transition from a uni- ro bi-modal shape. In their case the

shift is attributed ro the colour of the noise. The physical rationale is the following. Consider the

colour of the noise being re1ared ro the scale of turbulence, hence its correlation rime (recall the

relationship between scale of turbulence and correlation rime discussed in Chapter 2), such mat

the larger its correlation rime in comparison with the s~~tem rime scales, the slower the flucruaring

response rerurns to its deterrninistic starionary value. This enables the system to remain for a

relarively long period of cime away from its non-e.'\i:cited solution, sayat the origin, thus giving rise

ro a bi-modal PDF centred ar this value. Longrin et al. [1990] finds the same behaviour for a

single \·ariable delay-differenrial equarion..\ similar observation can also be deduced from the

theorerical work offered by Sri Namachchivaya [1988] on the noisy Hopf bifurcation. In this last

work. Sri Namachchivaya does not specifically address the bifurcation point, but shows mat the

e.xtrema of the motion is not zero at values of the control parameter smaller than the detennioisric

point.

In contrast tO the observations discussed above, with regards specifically ro the influence

of additive noise on the P-bifurcarion are the following. Knoblock and Wiesenfiel [1983],

Schumaker [198ïJ and :Yfackey et al. [1990] discuss basically the same problem of the normal forro

of cither the pitchfork or Hopf bifurcation for a system uncler additive white noise. They ail argue

that the additive noise excitation does not shift the point on the control parameter a.xis where a

qualitative change in PDF is observed. Their argument howev'er is questionable in the sense chat

their deriyed normal form is e."qJressed as a one-dimensional system, similar to the detenninistic

case, \\--ith an additive white noise tenn. Recall that \ve have discussed in Chapter 1 chat such a

system (one-dimensional under additive white noise) did not allow for a shift in bifurcation point.

l t then makes sense that given their derived normal form, thei.r interpretation does not support

a shift due ta additive noise of a higher dimensional system. The more puzzling result, however,

cames from Schenk-Hoppé [1996] which, as discussed earlier, suggesrs that the bell-shaped PDF

bifurcates at the same point as the determinisric case. He obtains this result, not by reducing bis

system tO its normal form, but by calculating the t\Vo-dimensional srationary Fokker-Planck

equanon.

Wïth regards tO the location of the P-bifurcation point, we cannat explain the
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contradiction bernreen Schenk-Hoppé's [1996] result on one hand and the resulrs from

Schimansk-y-Geier et al [1985], Ebeling et al. [1986], Sri Namachchivaya [1988], Lugiato et al.

[1989] and Longrin et al. [1990} on the other hand. \"\7e caa oaly say mat our resulrs seem tO better

match the latter.

However, in terms of the PDF shape, and specifically in reference to the works of

Schimansky-Geier et al [1985], Ebeling et al. [1986] and Schenk-Hoppé [1996], we can offer the

follo\\ting inrerpretarion in light ofour results. We believe mat the t\Vo-srep bifurcation observed

by the two former works is shown in our case as a one-srep bifurcation for the following reason.

Consider our problem with the turbulence variance a.r2 = 0.1 shown in Figure 4.1 Î. The bell

shaped PDF bifurcares directly into a rwo-peaked PDF, and remains rwo-peaked for higher

airspeeds. Hence, contrary to the reference works, the two-peaked PDF does not change into a

crater-lïke PDF as the control parameter is increased. In their case, the e.~ema1 forcing Jepends

only on the noise leveL which remains constant as the control parameter is varied. However, for

the airfoil problem, although we keep the turbulence level constant with airspeed, the

aerodynamic forcing due tO vertical turbulence increases with airspeed (chis will be discussed in

more detail in Chapter 6). It has the effect mat the rnio-peaked PDF cannot transform intO a

crater-lïke shape at higher airspeeds.

\XOe also believe that in light of Our results, the results of Schimanslq"-Geier et al. [1985]

and Ebeling et al [1986] on one hand, and Schenk-Hoppé [1996] on the other, cao be recoaciled,

in 50 far as the PDF shape is concemed. We argue that it is likely mat the latter could have

exhibited a rwo-peaked PDF instead of a crarer-like PDF given a larger noise level.

4.5 Combined 01ertical and Longitudinal) Turbulence Excitation

In discussing the combined rorbulence e..xciration problem (wT "* 0, UT * 0), we intend tO

show chat the bifurcation scenario of the nonlinea.r airfoil is largely detennined by the vertical

component of turbulence. This is the main result of this section. It enables us te draw a number

of conclusions regarding the bifurcation in combined turbulence, from the analysis of the pure

\·ertical e."{àration. Hence, we cannot interpret the behaviour of the combiaed mode! as the simple

addition (qualitative or quantitative) of the contribution of the twO separate excitations. One
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• rationale is that the principle of superposition (used in a conceptual sense) does not hold for dUs

problem. It does not hold for two r~ons. One~ is thar the system is nonlinear~ and secondly, one

of the excitation is parametric..-\nother rationale is mat the two turbulence componenrs act on

the airfoil in rwo fundamenrally different ways. The vertical componenr acrs as an extemal

forcing, hence it directly affects the response of the airfo~ while the longitudinal components acrs

on its paramerers, hence, affecring its stability. \Vith this aim in min~ we proceed by simply

comparing the PDFs and the beha,,;our of the largest Lyapunov exponent for the three cases of

e.xatanon.

4.5.1 PDF representation

The marginal PDF in pitch for the combined turbulence case is sho"i.\n in Figure 4.19.
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Figure 4.19 - ~larginal PDF diagram of the pitch angle for combined turbulence e.~citation,

as a function of airspeed; a../" = 1.0, L =50.0, k3 =400.0.

Comparing Figure 4.19 with Figure 4.5, for pure longitudinal turbulence, and Figure 4.14,

for pure ,·ertical turbulence, it is cleM mat the pure vertical and the combined turbulence

excitation cases have the same qualitative behaviour. We ha"·e nored me same similariry for the

other airfoil states, as weil as 'With the bi-dimeosional PDF projection.
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• From chis point of view, the ooly difference between the pure vertical and combined

e.."{cirarion is quantir:u:iye. :\5 we 'Will discuss in more derail in Chapter 7, the combined excitation

disp!ays a shift in airspeed of the transition from a uni- tO a bi-modal PDF compared with the

pure \~errical turbulence excitation problem. We attribute the shifr tO a desrabilisarion effeet of

longitudinal turbulence. The logic is the following. _-\ decrease in the srability of the airfoil induces

a greater response to the vertical e.."{ciration~ which in mm puts a greater demand on the

nonlinearity, thus a shifr in transition airspeed.

4.5.2 Largest Lyapunov exponent

The other imPOrtant measure for the bifurcation is the largest Lyapunov e..~onent. It is

~hown in Figure +.20 for three cases of e..-..:::citarian and for the non-excited airfoil.
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----'-longirudinal excitation

........ _. no excitation
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Figure 4.20 - Largest Lyapunov e..xponent for pure langituciinaL pure vertical and cambined

turbulence, and non-excited cases, as a funetion of airspeed; CJr2 = 1.0, L =50.0, k3 =400.0.

W·e notice that the D-bifurcatian that existS far the pure longitudinal case and far the

non-excired proble~ does not appear when vertical turbulence is considered. From this point

of vievl, the aoly difference between the pure vertical and combined turbulence e..xcirarion is also
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• quanriraoye. The dynamics of the nonlinear airfoil in combined turbulent e.."<citarion e..ilibits a

~gest Lyapunov exponenr closer tO the zero a.xis, hence a decrease in srabiliry due ra its

longirudinal componenr. From these twO series of obseryations, we conclude that for the

nonlinear airfoil the effecr of the longirudinal component is relatively minor, whereas the

dominant behaviour is determined by the vertical component.

.-\ccordingly, we can summarize the current discussion by stating that our results suggest

thar the P-bifurcation landscape of the fluttering nonlinear airfoil excited by (combined)

rnrbulence depends on the rurbulence Leve!. Ir is cha.racrerized by a bell-shaped PDF representing

a random fi."{ed point, bifurcaring intO cithet a crater-like PDF for low turbulence variance, or ioto

a rwo-peaked PDF for high turbulence \rariance. This is schematized in Figure 4.21 .

•
low turbulence levels

P-bifurcation

•
high turbulence levels

Figure 4.21 - Schemaric of bifurcation scenario for nonlinear airfoil in combined turbulence.
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• 4.6 Concluding Remarks

From the preceding anal~~is, we retain a number of points \Vith regards tO the bifurcation

scenario of the nonlinear airfoi! under (combined) turbulent excitation:

1. The dominant fearnres of the random fluner/Hopf bifurcation scenario are essentially

dicrated by the \.-ertical component of turbulence, whereas the effecr of the longitudinal

component appears to be re1aô,·ely minor in that it decreases the srability of the airfoiL

hence, possibly affecnng the location of the bifurcation point.

•

2. Secondly, the bifurcation scenario is charaete.r:îzed bya qualitative change in the PDF,

while no disconrinuity in the largest Lyapunov e.'\.l'0nent is observed. In chis sense, the

D-bifurcation obtained for the deterministic nonlinear airfoil appears ta be ttansfonned

intO a P-bifurcation. This is a consequence of the vertical component of turbulence.

Furthermore, we say chat turbulence desttoys the D-bifurcaôon such, chat strictly

speaking the flutter point no longer exises. This does not apply tO the linear airfoil.

3. On the topic of a shift of the P-bifurcation pc:>int due tO turbulence, we can oaly

speculate. It appears chat the P-bifurcation may be advanced. First, \Vith regard to the

effecr of the vertical turbulence we belie,"e that the early transition of the pitch pitch-rate

bi-dimensional PDF represenes an advancement of the bifurcation point. This speculative

argumenr is based mainly on the assumption that the bifurcation is determined by the

pitch DOF, since chis is where the nonlinearity is acting directly, and nor 00 the heave

DOF which transitions much larer. With regard ro the effecr of the longitudinal

component, the rationale supporting an advancemenr of the P-bifurcatioo is a de

stabilisation of the mfoi!, which in rom induces larger nonlinear effectS. This aspect will

be discussed in Chapter ï.

•
4. The P-bifurcation scenario depends on the turbulence leve!. Ir is characrerized by a bell

shaped, or uni-modal, PDF transforrning intO a crarer-lîke shape PDF for low values of

turbulence. For higher turbulence levels, the bell-shaped bi-dimensional PDF bifurcates

into a twO-peaked density, \Vith a saddle ar the origin. Furthermore, we say chat rorbulence
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• tends ro desrroy the underlying structure of the detenninistic LCO in favour of a new

type of motion. This will be discussed in Chapter 6.

\\~th regards specifica1ly tO the bifurcation scenario in pure longitudinal mrbulence~ which

is not \Vithout significance~ we retain three points:

1. The random bifurcation is a rwo-step bifurcation characre!Ïzed by, first, a D-bifurcarian

followed by a P-bifurcation. The dynamic response at airspeeds between the D- and P

bifurcations displays a uni-modal PDF with a sharp peak cenrred at zero. At post-P

bifurcation airspeeds, the LCO structure is observed via a crarer-like shape of the pitch

pitch-rate bi-dimensional PDF.

2. The Butter point (D-bifurcation) is advancecL and more generally the srabiliry of the airfail

is decreased. This aspecr will be discussed in more detail in Chapeer 5 for the flutrer point,

and in Chapter 7 for the general destabilisation.

• 3. Longitudinal turbulence has a rendency to force the dynamics tO be centred around the

origin. This aspect will be discussed in Chapter 7 as an organising effect.

•

•-\5 a laSt remark, we generalize our findings ta a more universal randomly excited

nonlinear dynamical system. Since we have determined that the bifurcation scenario of the

turbulent e..xcired airfoil is essenrially dicrated by the vertical component of rorbulence, and since

in any real system, both multiplicative and additive noise are present, we question the robuscness

of the bifurcation scenario under pure multiplicative noise. We are chen tempted ta e..'"{tend the

concept ofbifurcation robuscness and struCtural stability applied ta deterministic systems (see for

example Guckenheimer and Holmes [1990] or .-\rgyris et al. [1994]), and propose that, because

bath multiplicative and additive noise are present in reality, the bifurcation scenario generally

observed for pure multiplicative noise is qualitatively not rabust. We go further and argue that

chis applies regardless of the relative intensity ofboth noise components, since any small amount

of additive noise should desrroy the D-bifurcarion.
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Chapter 5

DYNAMIC INSTABIUTY MECHANISM(BINARY FLUTTER)

This discussion is in part complementary to the works ofLin et al. [Bucher and~ 1988,

1988, 1989; lin and II 1993; Li and Lin, 1995; Lin, 1996] on bridges. The vast majoriry of their

work on stochastic (and random) aeroelastic bridge instabiliries has concentrated on the analytical

treatment of single-degree-of-freedom type instabiliries, mainly negative clamping flutter. They

found that longitudinal turbulence is generally destabilizing on the basis of a single-degree-of

freedom mode~ whereas it could have a stabilizing effect if coupling with additional modes of

vibration is introduced. "\l/e have found only one clear instance where the coalescence (binary or

t\vo-mode) autter is treated [Bucher and Lin, 1988], albeit very superficially. Their analysis

showed a destabilizing effect, in the mean-square sense, of longitudinal turbulence on this type

of flutter. Furthennore, the degree of destabilisation appears to be essentially proportional to the

excitation spectral densiry.

The present work also complements the work on helicopter rotor blades of Lin et al. (lin

et al, 19ï9; Fujimori et al, 19ï9; Prussing and Lin, 1982, 1983], where different types of blade

dynamics haye been considered. Of particular interest is the torsion-flap probl~which is similar

to the binary fluITer experienced in this thesis [Done, 1996] except for the added periodic

parametric excitation originating from forward flight [Fujimori et al, 19ï9]. Considering the
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e."<àrarion as white noise, modelling che aerodynamics as quasi-steady and neglecting che quaciraric

noise componenc, u/" it was also found by Fujimori et al [19ï9] mat in-plane turbulence had a

desrabilizing effect, also in the mean-square sense, on this type of fluner.

Our discussion also adds tO the work of Ibrahim et al. [1990, 1991] on stochastic panel

(two-mode) fluner. Using a strUcroral mode! with [WO or three modes, assuming quasi-steady

supersonic aerodynamics, and considering a parametric white noise exàtarion originating from

structural in-plane loads and only acting on the stiffness tenns, they found that the parametric

exàrarion was always destabilizing in the mean-square sense. Their work is simiIar tO ours in 50

far as the nacure of the deterministic flutrer mechanism is concerned. It is different because their

mode! is not the same, and because their analysis did nor address specifically the topics discussed

later in this chapter. In summary, the effect of longimdinal turbulence on binary flutrer remains,

for a large part, an open question.

Stabili!] criteria

The identification process of the random insrability (fluner) point is implemenred

practically using the mean-square response of the nonlinear airfoil in pure longirodinal rorbulence.

~"e have also rnonitored the behaviour of the largeSt Lyapunov e.xpooent for sorne represenrative

cases, and found that both criteria, nonlinear mean-square respoose and largest Lyapunov

e.'\.~onenc,gave the same flutter speed. See for e.."<ample Figures 4.9 and 4.10 discussed earlier. In

this sense, the numerically calculared flutrer speed can be considered tO correspond tO the concept

of sample srabiliry. Ir thus follows the strict definition of me D-bifurcation.

5.1 Aspects of Frequency Coalescence

In this secoon we ann specifically tO determine if the phenomenon of frequency

coalescence plays a role in the advancement of the random flutter point, more particularly if the

longimdinal exàtation modifies me coalescence.
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• 5.1.1 iYIodificarion of modal frequencies

5.1.1.1 Nonlinear airfoil

For the nonlinear baseline airfoi! in pure longitudinal turbulence we have observed, for

airspeeds close te the random fluner point, a shift of the dominant peak in the response PSD

rowards higher frequencies. The dominant peak represents me mode losing srabiliry in the linear

regime, and which coalesces \vith the second linear mode at a higher frequency. _-\. shift of the first

modal frequency, induced by the longitudinal rorbulence, towards the second modal frequency

suggests an advancement of the coalescence phenomenon. This is presented in Figure 5.1 for one

parricular airspeecL Um =3.8. We observe that the PSD peak is locared at kp =0.196, compared

with k1 = 0.187, which is the tirSt modal frequency of the non-excited linear airfoil at the same

airspeed.

• k 1 = 0.187 :~
non-exciœd airfoil

linear mode 1

kp = 0.196

longirudinally excited airfoil
dominant peak

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28

reduced frequency,k

0.32 0.36 0.40

•

Figure 5.1 - PSD of the nonlinear airfoi! pitch response in pure longitudinal turbulence,

at Um =3.8; Gr" =1.0, L =50.0, k3 =400.0.

In Figure 5.2, this result is generalized to other airspeeds. It shows the location of the

dominant PSD peak as a function of mean airspeed. Note mat the example chosen has a random

fluner 5peed at Umt =3.64..-\.150 notice that the frequency has been re-normalized ta ger cid of
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• the artificial dependence on mean airspeed, as was done for the Lugest Lyapunov e.-q>onent. In

this manner, the frequency coalescence is more clearly observed.

It cao be noted that for airspeeds approxirrutely above the determinisric flutrer speed, Ut>

the re'\-erse situation exists. At these higher airspeeds the frequency of the random response is

lower than both the non-excired tirst modal frequency and the more physically relevant LeO

frequency. \ve have observed the same tendency (shift of frequency towards smaller values) for

the nonlinear airfoil in combined e.'Ccitation (see for example Figure 6.26), which we have

attributed ta the nonlinear-random interaction. It may be chat this nonlinea.r-random effect is aIso

present for pure longitudinal turbulence and becomes important at higher airspeeds where the

response is larger. For airspeeds closer to the random fluner point, Um1 = 3.64, the airfoil

response mean-square is relatively small. In this case, nonlinear effects are less important such

that the dominant pe~ kp, is mainly deœnnined by the effect of the longitudinal excitation.
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Figure 5.2 - Dominant PSD peak of the nonlinear airfoil pitch response in pure longitudinal

turbulence in comparison with the two linear dererministic modal (eigen) frequencies and

LeO frequency, as a function of mem airspeed; Or2 =1.0, L =50.0, kJ =400.0.
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5.1.1.2 Linear airfoil

The observed PSD signal shown in Figures 5.1 and 5.2 is fundamenrally nonlinear, since

the sysœm is operaring at post-random Butter airspeeds. In order to 'irerify the hypothesis of an

advancement of the coalescence we want to ensure that the random modal frequency is not

corrupted by the nonlineariry, chus we need tO in'itestigate the linear dynamics. This approach,

however, has [wO drawbacks. Ir limirs the range of investigation ta pre-random flutrer airspeeds,

where the coalescence is not yet fully active as can be seen for e-"<ample in Figure 5.2 for the

deterministic eigenfrequencies. Second, the linear airfoil cannot have susrained behaviour unIess

it is excited by an exœmal forcing.

.-\ccordingly, we now consider the system 'W-ith vertical turbulent excitation, not tO

investigate the effect of vertical turbulence but as a means to e-"{cite the system and probe irs

dynamics, and in parricular its random eigenfrequencies which we are rrying tO capture. In using

the term random eigenfrequency, we are rnaking reference ta irs companion in the eigenv-alue duo

which is expressed by the Lyapunov e:-"l'0nent, Le. the real part of the eigenvalue. Since the

concept of Lyapunov exponent bas a meaning in the random (and srochasric) sense, it is likely

that the norion of randorn eigenfrequency aIso has sorne significance. In fact, the notion of an

eigenfrequency, in the random sense, bears the name rotation nlimber in the theory of random

dynamical systems [..c-\mold, 1998]. It has been predicted theoretically that mu1riplicativ-e noise

modifies the value of the eigenfrequencies [Sri Namachchivaya and Van Roessel, 1993].

The use of ,·ertical turbulence to excite the modal frequencies has irs own limitations tor

airspeeds close to the flutrer point. Sïnce the system is very lighdy damped in chis region it

responds with a large amplitude, hence violaring the linear aerodynamic assumption. However,

since the specific inœresr of this discussion is the possible shift in modal frequency, the response

amplitude should not be an irnmediate concem. ~1ore imporrancly, the response amplimde of the

linear airfoil does not modify its modal characrerisrics1
•

TItis is e.."(emplified by the behaviour of the largest Lyapunov e."q>onent (representing the real part of the
eigemyalue for mode 1) which is independem of the vertical e.'"tciration for the linear problem. :\nalytically, i[ is
explained by realizing mat for the line:l! airfoil the ...-ariarional equarion (equarion 1.26) used for the caleu1ation of
""mu does nor depend on the response or reference tr.ljecrory, xr(l), but ooly on the srate transition matrix. Vt(l)].
""'hich is rime-varying in our case due [0 the longitudinal e.'"torarion.
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• Randol!1 eigenjrequendes

T0 demonstrate the shift in modal frequencies of the linear airfoil in combined rurbulent

excitation we choose an example which has a random tluner speed at Uml = 4.25. \Ve first

examine the pitch response PSD for an airspeed, Um = 4.0, shown in Figure 5.3. In comparison

with pure vertical e."{citatio~ as represented by the closed-fOrIn solution, we observe a narrowing

of the dominant mode accompanied by an increase in its peak frequency, hence towards the

second mode. This dominant mode represents the slow linear mode (mode 1). We add that for

this example the shift in frequency is small, wmch we attribute tO the smallness of the shift in

flutrer speed (from Ui =4.31 tO Um1 =4.25) for chis parricular set of turbulence conditions. Aiso

sho\\on is the width of the dominant mode at the half-power point, wlùch will be discussed later.
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Figure 5.3 - PSD plot of the linear airfoil pitch response ta combined excitation turbulence

(numerical solution, -) and pure vertical rurbulence (closed-fonn solution, -)

at Um =4.0; a..r2 =1.0, L =0.5, k3 =0.0.

•
Furthermore, Figure 5.3 hints at a shift towards lower frequencies of the faster mode

(mode 2), hence towards coalescence. We do not think, however, mat this is convincing since at

this airspeed the PSD is dominated largely by the mode losing srability. To that effeet, Figure 5.4

is presented sho'\V"Îng the same information as Figure 5.3, but for a lower mean ~irspeed, Um =
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• 3.5. In compaPson u.i.th the PSD of the response ta pure vertical rurbulence, we observe a

narrowing of the second mode and a shift of irs peak frequency towards lower frequencies, hence

rowards coalescence. Note as weil the narrowing of the fust mode and its shift tO the right.

•
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Figure 5.4 - PSD plot of the linear airfoil pitch response ta combined e.xcitarion rorbulence

(numerical solutio~ -) and pure vertical rorbulence (closed-form solution, -)

at Um = 3.5; (1../ =1.0, L =0.5, k3 = 0.0.

Figure 5.5 - Determin.istic and random modal frequencies for linear airfoil; a/ =1.0, L = 0.5.
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• Figure 5.5 summarizes our findings on this topic for the linea.r airfoiL W~e conclude br

arguing chat the observed increase of the fust modal frequency combined with a decrease of the

second modal frequency is an indication chat longitudinal turbulence advances the frequency

coalescence. ~re can aIso inrerpret this observation in the sense that longirodinal turbulence

increases the coupling between the pitch and heave motion.

Random eigenvalues

The PSD of the linear response tO combined turbulence excitation contains not only

information on the system natural frequencies, but also on its modal damping. By visuaI

inspection we note chat the width of che dominant mode (i.e. mode 1) in Figures 5.3 and 5.4 is

smaller for combined e..'<{citation compared with pure T.:ertical turbulence, thus indicaring a Lower

damping ratio tor the former excitation which characrerizes a closer distance ta the ïnsrabiliry

point. ~fore precise1y, using the halE-power point method for the dominant mode in Figure 5.3,

we calculate the equivalent of the real pan of the eigenvalue of random mode 1 tO be:

• -(;k1 =-.ak li:! PSD / 2 =-0.009 / 2 =-0.0045 (5.1)

•

This value is compared with the largest Laypunov e..~onent at the same speed, À.m:u (Um =4.0)

=-0.0047, thus showing e..xcellent agreement. See Figure 5.6. It demonstrates a level of coherence

berween the rwo sets of results, and prov'ides a physical meaning tO the concept of the largest

Lyapunov exponent in the context of longitudinal excitation. Note, chat the real part of the

equivalent detenninistic eigenvalue is calculated tO be À,1 =-0.0055, thus indicating more damping

for the non-excited airfoil.
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Figure 5.6 - Time (iteration) e\--olucion of the larges! Lyapunov e..'\.-ponent of the linear airfoil

in combined e......:ciration turbulence ar Um = 4.0; ar2 = 1.0, L =0.5, k3 = 0.0.

•
5.1.2 Sensirivity ta random stiffness and damping terms

In an attempt ta further elucidate the frequency coalescence question, we cry anorner

route bye..~ the sensitiviry of the advancement of the Butter point tO the modom stiffness

terms, and in carollary ta the random damping terms. Due to the inherent sriffness-conrralled

nature of the frequency coalescence phenomenon associated with classical binary flutter, it is

anticipated that the random stiffness terms u--ill. prove tO be essential contributing factors, wherea.s

the latter are nat e..\.-pected tO significancly influence the shifr of the flutter point.

•

~-\.s oppased to quasi-steadyaerodynamicsz, the concept of aerodynamic sriffness and

damping is not immediately evident in the conte..~t of unsteady aerodynamics in arbitrary motion.

Physically this is due tO the lag intraduced by unsteady effecrs, and is especially problematic

accorcling to the integro-differential formulation (see equation 2.23). However, in the differential

formulation (see equations 2.25 and 2.26) the replacement of the integral by two new stare

variables, =·1 and Z·I' enables one ta obtain aerodynamic damping and stiffness terms. In spiri~

this is the interpretacion used when analysing bridge flutter [Dowe1L 1978], and single-degree-of-

:

This is the modelling used b~- Ibrahim et al. [1990] and in spirit br Ibrahim and Heo [198ï].
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freedom torsional flutte~.

The problem is approached by considering the nonlinear airfoil in pure longimdinal

turbulence, and using the response mean-square as an indicator of the flutrer point. In a fust tes~

all the random terros in the damping macri.".;: (equations 2.2ï or 2.28) are disabled. Specifically the

"unf' terros in matrLx [D(:)J are set to one (1), such that the damping man".;: becomes time

in~raria.nt, Le. [Dt. For the particular example chosen., the auner speed is then found tO be Um =
3.85.

In the second tes~ the random tenns in the stiffness matrLx, "unf" and "unsf", are now

set tO one (1\ i.e. [K(r)J becornes [K]. In chis case, the autrer speed becomes Um = 4.27.

Comparing these speeds with the actual random and deterministic fluner speeds, [Jml =3.64 and

Uf =4.31, respective1y, it is clear that the random terms in the aeroe1astic system stiffness marri".;:

have much more impact on the advancement of the fluner speed than the random damping

terms. This is best shown in Figure 5.Î.

We condude by arguing that this observation confirms the nature of the shift in flutrer

speed to be stiffness controlled, as is the case for the deterministic part. In this sense, chis is an

indirect indication of an advancement of the frequency coalescence. _-\s a final point, Ibrahim and

Heo (198ïJ have aIso noœd a predominant effect of random stiffness terms mrer random

damping terros on the response of thei! system. Ho,\\rever, they have not discussed their relative

influence on the srabiliry, which we ha"'~e done.

See alse the discussion in Chaprer 2 with regards ro the harmonie motion aerodynamies in terms of
Theedorsen's function.

Reeall unfis defined as unf =lïL:m =(Urn .... uT)/Um =1 + uT/Um. Simi.larly, unsf =(LW};/" =l + '2uT /Um +
(uT/Uai

135



no random

damping "
"-,

full random
~xcitarion

no random

sriffness

non-t:xcited

mean airspeecL Um

3.6 ~ 3.7

Um1 = 3.64

3.8 3.9 4.0 4.1 4.1 4.3', 4.4

Ur = 4.31

4.5

•

•

Figure 5. Î - Longiruclinally excited pitch response mean-square of the nonlinear airfoil,

,"vith random damping and sriffness terms s'-VÎtched on and off; Gr: = 1.0~ L =50.0~ kj =400.0

5.1.3 Sensirivity ta airfail parameters

In this secnon, 'we show that changing the airfoil parametf::rs does not affect the

advancemenr of the binary flutter point by longitudinal turbulence, nor the advancemeot of the

frequency coalescence. In Figure 5.8, the random and determinisric (Buner) srability boundaries

are compared for varying frequency rario, i:J, srarie unbalance, X(J, and distance berween the mid

chord and elasric a..~s, ah, respecrively. The rest of the parameters remains as per the baseline

values given in Chapter 4.

From Figure 5.8, it is obsenred mat the flurrer point is advanced by the random e.'i:ciratlon

for ail combinations of parameters analysed. We have aIso confirmed mat the advancement of

the frequency coalescence is present for omer values of frequency rano, namely for the case

where the heave is stiffer than the pitch ( (;j > 1.0 ). For e.'lCample, as opposed ta the baseline

airfoil ( i:J =0.6325 ) which loses srability \"Ïa mode 1, the mode losing srabiliry for the airfoil with

i:J = lA is the second mode. In chis case as indicated by the PSD of the linear airfoil response in

combined turbulence excitario~ mode 2 is shifted roward smaller frequencies, hence toward

coalescence.
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5.2 Influence of Dryden Turbulence Level and Spectral Content

•
.\nother relevant problem is the influence of the turbulence level as defined by irs

variance, and spectral content as defined by its scale. A preliminary overview of their effect on

the flutter point was discussed in Chapter 4 and shawn in Figure 4.13.
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5.2.1 Effecr of rorbulence level

Focussing firsr on the effecr of turbulence ,,-ariance, Figure 4.13 suggests that a linear

re1arionship generally exists between the advancement of the fluner point and turbulence variance

(see aIso Figure 5.9). We can observe, however, a slight deparrure from lineariry for the larger

,,-alues of scale of turbulence, i.e. away from the white noise idealisarioo, which we will attribure

to a non-uniform excitation spectral content.

Based on an analyrical approach, the rudimenrary results on bridge binary flurter from

Bucher and Lin [1988] seem ro indicare a linear relarionship as weIl Nor.able differences between

their analysis and ours, however, are mat, in addition tO rreating a different aeroelastic application,

their parametric noise e:~citarion is purely linear, i.e. the UT
1 terms ha\-e been neglected.

Furthennore, their e.."<ciration is modelled as white noise while we modelled coloured noise.

One consequence ofconsidering a whire noise excitation instead of coloured noise is mat

the turbulence le~rel in the conte..xt of white noise is defined by its (unifonn) power spectral

densiry, tPwrP whereas it is defined by its V'ariance, ar1, for the latter. Whire noise, as an idealised

marhematica! notion, has an infinire vari3.nce since its spectral densiry is uniform:

Xl ::0

Jwn =f rA.-ndk=<4.nf dk~oo
o 0

(5.2)

In practice, however, the system does not resonare ro the full frequency specrrum, such

that the excitation can be limited tO a broad band ~vith a cut-off frequency, say ko which is much

larger than the system natura! frequencies. The system Hsees" white noise as long as the power

spectral density is uniform over the range of frequencies ro which it is sensitive. The variance of

the Hphysical" whire noise is effecrively finire:

•
*e /cc

~ = f pwndk = ~wnf dk = tA.-nkc
o 0

(5.3)
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Sïnce che variance of the "physical" white noise is directly proportional to its po\ver

spectral density, an observed linear relacionship between advancement of flutter speed and

rurbulence po\ver spectral densiry is equivalent tO a linear relationship wim turbulence variance.

This discussion shows that our resulrs are coherent with chose of Bucher and Lin [1988].

Ta e.'"qllaïn the slighr deparrure from the linear re1arionship for the higher values of scale

of turbulence, it must be kept in mind chat the system naroral frequencies, along with combination

frequencies which are important for parametric resonance, change with airspeed. :\ccordingly, the

more the flutter speed is advanced, the more the frequencies at the fluner speed change. In

conjunccion ta changing frequencies it must also be realized chat che e."<ciration spectral canrent

is not unifarm for coloured noise. In effecr chis means that for a given fluner speed, the e."<ciraoan

at any particular critical frequency is different than chat for another Butter speed since chis critical

frequency is changed.

TIUs beha\;our is arnplified for large scales of turbulence since the shift in Burrer speed

is the largest and the e."{ciration PSD changes rapidly with frequency (see Figure 2.6). In the case

of white noise, a change in the system frequencies makes no difference since the e."{cirarion is

unifarm over ail frequencies (of interest).

The ro1e ofthe quadratic turbulent term, u/

\{~ith regards ta the influence of the quadratic noise term, UT~' we argue that it pIays a

secondary raIe in the advancement of che fluner point. One argument is based on che observation

chat me same trend in Butter speed advancement is dispIayed by Bucher and Lin's [1988] results

and ours. This is especially so considering chat even for relatively high turbulence levels (for

example at a-/ = 1.0 which is equivalent ta an intensity, Tu = 23~/o, when normalised with the

detenninistic flutter speed), the linear relationship is maintained for the case with a low value of

scale of turbulence which effectively models white noise (see Figure 4.13 or Figure 5.9 for L =
0.5). This term was neglecred by Bucher and Lin on che basis of low turbulence intensity.

Pursuing dUs argument, we have neurralized chis tenn in our mode! by dropping it from

the quadraric airspeed terro, i.e. we have set unsf = 1 + 2uT / Um, hence, dropping (uT / UrrJ2 in

139



• equation (2.28). Ta generalize our interpreration ta larger scales of turbulence, we have chosen

the following set of turbulence candirions, L =50.0 and Gr'!. =1.0. \Ve have found mat the fluner

speed increased from Um1 =3.64 tO Um1 =3.7. In chis specifie case, it chen shows that UT
2

accounts for approximately 8~/O of the shift in flutter speed from the dererministic proble~ Vf

= 4.31.

4-\t fust glance, it may appear surprising chat the quadratic noise term plays a secondal'Y

raIe in the advancement of flutter at lùgh turbulence inrensiry, especially considering that it acts

on the stiffness rerms which, as we have discussed, are the dominant factors for the srabilitv..-\.0

arder of magnitude analysis demonsrrares that the calculated 80
/0 contribution in fluner shiEt is

compatible with irs relative importance in the quadraric airspeed, U'!.. Hence, taking the square

of the airspeed:

W'e want to compare the rwo random rerms, 2UmuT and UT'!.' Since Ur is random, we need tO find

an appropriare equi~ralent deterministic basis of comparison. The mean is not adequate since it

cancels the linear noise contribution. Accordingly, we take the root-mean-square of these rwo

terms, which gives for the linear noise and quadratic noise terms respectively:

•
U ., U ., U" ur .,-=( + U )- = -+" U + U -m T. m - m T T (5.4)

(5.5)

and

(5.6)

Knowing the probability density function of UT' which is Gaussian, E[UT
4

] can be deriyed:

•
(5.7)
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• For the turbulence variance levd used, arz =1.0, we find that E[u/] =3.0. Finally, using a mean

airspeed equal to the flutrer speed, Um =4.31, the relaove contribution of these wo tenns is

approx:imated to be the ratio of equations (5.6) over (5.5):

J"E[u/] / (2Um ar) =J"3 / (2 x 4.31 x 1) =1.73 / 8.62 =20°10 (5.8)

_\ccording tO this simple estimate, the linear noise term in the quadratic airspeed is five rimes

more impOrtant than the quadratic noise rerro for a turbulence intensity, Tu =23°/0 •

Effictive variance

•

Investigating Figure 4.13 in more detail, which is reproduced in Figure 5.9 for the D

bifurcation only and with added information, we are looking for a better understanding of the

rapport berween turbulence level and spectral content, and the advancement of the flutrer speed.

We choose a given random fluner spee~ say Uml = 3.85, and examine the turbulence

characreristics which correspond ta this advancement.
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Figure 5.9 - Turbulence conditions corresponding tO a flutter airspeed, Um1 =3.85,

for the longitudinally excited airfoil.
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• Drawing a horizoncal line at that particular speed across the figure indicates that this

flutter speed is obtained for either of these sets of conditions;

(a/ =0.67, L =50.0)

(a/ =1.0, L =10.0)

(a/ =1.43, L =5.0)

Not shown but the following condirions, (a/ = 0.76, L = 25.0), aIso advances the fluner point

tO Um1 =3.85. We have found that the commonaliry beeween chese four sets of turbulence

condirions was not the value of the e.."{cirarion density at sorne particular frequency, but the

cumulated power under the excitation PSD curve up to a frequency close tO the determinisric

fluner frequency (recall kf =0.182). The cumulated power may be ioterpreted as an effectiye

turbulence variance, defined by equarion (5.9).

•
le

a:if(k) = f ~T(K)d K
o

(5.9)

This effective ,,-ariance is e..xemplified in Figure 5.10 for the second set of turbulence conditions

discussed above (a./, = 1.0, L = 10.0) with k = 0.17. The four turbulence excitations giving a

random fluner speed, Um1 =3.85, have approximately the same effective variance, (7eif
2 = 0.7, at

this frequency.
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Figure 5.10 - Closed-form solution of the non-dimensional Dryden longitudinal turbulence

PSD and effective variance for k = 0.17; ar2 = 1.0, L = 10.0.
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The same analysis done for other random fl'utter speeds aIso exhibics an apprmcimate

meeting point of the four cumulated power curves. Not surprisingly, chis meeting point

corresponds ro a different value ofeffective variance, a lower variance for a smaller shift in flutrer

speed for e.....;:ample. Perhaps not so obvious is the observation chat the frequency ar which the

cumulated power curves meet is also slighdy different, but remains close tO the flutrer frequency.

There is, however, one notable exception to these observations and interprerations. Ir is

for the smalIer scale of turbulence, L =0.5, which actS effectively as a white noise excitation. In

dUs case, the previous discussion does not hold. For this scale of turbulence, the same effective

variance as for the larger scales is reached at a much higher frequency, thus hinting te a sensitiviry

of the airfoil ta a broader range of frequencies past the auner frequency.

In summary for chis discussion, we say that the advancement in flutrer speed is

approximately proportional tO the area under the longitudinal excitation PSD curve up to the

flutter frequency. This is 50 far a realisric turbulence specrrum, i.e. away from the white noise

idealisarian. Nonetheless, we want to stress that the proposed analysis is relarively crude as it

rrears the influence of the turbulent excitation via an effective variance. This approach does not

consider per se the excitation spectral density at specific critical frequencies, but as a lumped

continuous band..-\. more profound undersranding cao be obtained by investigating the sensirivity

of the linear srability to a narrow band parametric e."<ciration. This will be the subjecr of the

discussion on parametric resonance.

5.2.2 Effect of spectral content

Figure 5.9 cao be turned around ta show the effecr of scale of turbulence more clearly.

In this regard, Figure 5.11 indicates an asymptotic behaviour of the advancement in flutter speed

as the scale of turbulence is increased past L =50.0..-\.t this value of scale of turbulence, 95°/0 of

the turbulence power is located at frequencies lower chan k = 0.18, which is the B,Utter frequency.

.\gain, the detenninistic flutrer frequency appears co act as a useful reference frequency in cerms

of defining the region for very low frequencies that affect the srabiliry.
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Figure 5.11 - D-bifurcation (flutter) airspeeds of the longitudinally e.'{cited airfoil

as a function of scale of turbulence and for different values of turbulence variance.

The observation that the very low frequencies of longitudinal turbulence govem the

stability of the airfoil is conrrary to the effect of turbulence on the response of the airfoil where

mid-range frequencies of the vertical e.xciration, generally in the vicinity of the fluner frequency,

are impOrtant. We thus put our findings in contrast tO Hoblit's [1988], who mentions that the

exact shape of the excitation specrrum in the very low frequencies is not important since the

aircraft does not respond tO mem. This is rme for the response to turbulence, but not for its

effect on stabilitv.

~-\ physical explanation of the enhanced sensiriviry of the airfoil tO law frequency

parametric excitation is as follows. At large values of scale of turbulence, for which most of the

excitation power is located in the low frequency range, and which is equivalent ta a large noise

correlation rime in comparison with the system rime scales, the system bas more rime tO react and

adjust ta the e.xcirarion. In other words, the excitation is temporarily frozen in rime for the airfoil.

Conversely, for small values of scale of turbulence the white noise idealizarion is approached. In

this case, the noise varies 50 quickly that the system has no rime ta adjusr, heoce ie is less affected

by it.

Lastly on the effect of the Dryden turbulence scale and variance, the following table

shou--ing the percenrage shift in flutrer speed for different values of turbulence conditions is
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presented. For the coloured excitation the decr~e in Butter speed stans to become significant

(i.e. ~ 10~/o) for a turbulence variance, ar~ = 0.5, which corresponds tO a turbulence intensity Tu.tf

= 16°/0• For the effective white noise, the shift in flurter speed is not SignifiCUlt for the rorbulence

le\9els examined. 10 rhis case, a Lu-ge part of the excitation energy is located at high frequeocies

wrueh do not influence the stabiliry of the airfoil.

Table 5.1 - Percentage shift in flutter air5peed for different values of turbulence variance.

We will see in Chapter Î mat the pereenrage shift in flutrer speed due tO the longirodinal

component of rurbulence does not retlecr fully the effect of this instabiliry 00 the airfoil. When

vertical mrbuleoce is consideree!, the 1055 of stabiliry associated with the advancement in Butter

speed induees a much larger percenrage increase in response mean-square than in flutrer speed.

5.3 Parametric Resonance

The specifie specrrum of the Dryden turbulence mode! does not allow for a rargeted

analysis of the system sensitiviry tO a particular frequency band. Ir is essentially a low band

excitation. In arder ta excite specific frequencies, we ha'''e removed the Dryden rurbulence

specnum in favour 0 f the following narrow band model for the longitudinal excitation. 1tS

analytical expression is given by the following equation: D controIs the intensity (for a given (and

r), (defines the \\I-idth of the excitation band (for a given r), and the peak frequency is denoted

bvr.

• where [Newland, 19ï5]:

(5.10)

(5.11)
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• The rime domain solurion is deri~"ed in _-\ppendix B. Equation (5.10) is represenred graphically

in Figure 5.12.

120 -

LOO ~

ifJLT (k) 80 ~

60 ~

40-

~ kp=r =0.2

20 ~

0.40.1 0.2 0.3
reduced frequency. k

o ..:....-.-------.....:::::.-/:::...-'-';-.....~-------~
o

•
Figure 5.12 - Closed-fonn solution of the narrow band e.xcitation PSD;

(= 0.015, r =0.2~ CJ.r2 = 1.0.

For an e.xcitation variance~ t:J.r2 =1.0, while keeping the band width constant at & =2(r

=.005 defined at the half-power poin~ the peak frequency, r, is swept from 0.01 tO 0.60. The

sensitivity of the system srabiliry tO this excitation is shown in Figure 5.13.

Before discussing che results it is relevant to point Ollt che pateotial parametric resonance

conditions. Based 00 the deterministic flutter frequencies (kf == k1 = 0.182, k2 = 0.221), we are

searching primarily far the follou.'ing resonances. N ore~ a general observation is chat the principal

resonances are more likely to be present chan the secondary resonances, and 50 on [Ib~ 1985;

CamneIL 1990; Lin~ 1996].

Principalparametric resonances, (kt ± kJ 1m where 4 j =1, 2 and m =1:

•
r =2 kt - 0.36

r = 2 k., - 0.44

r = ~ + k1 - 0.40

r =k: -k1 - 0.04

(combination addition type)

(combination differeoce type)
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• Seeondary parametrie resononees, (k. ± kiJ/m where ~ j =1,2 and m = 2:

r =k1 - 0.18

r =k, - 0.22

r =(~ + kt)/2 - 0.20 (combination addition type)

r =(k: - k1)/2 - 0.02 (combinarion difference type)

In light of these porenrial resonance condirions we examine Figure 5.13 shown below.

Note that the solid thick line separares the stable region below the curve from the unsrable

airspeeds above it. In reference ta the detennioistic flutter speecl, Uf =4.31, we denote essenrially

si.~ regions of particular sensitivity. They are discussed as follows.

5.0 -

• ~.O -

........-

o
'"g 3.0-

1 secondary, r = k\, r = k:

principal r = (k:. - k !l/l

principal. r = Ck: + k \)11

principal r = 2k \

2.5 - secondary, r = Ck: - kd/2 ;

stable region

0.55 0.600.05 0.10 0.15 0.20 0.25 0.30 0.35 OA·O OA5 0.50

narrow band excitation peak frequency, r

Figure 5.13 - Autter boundary of the parametrically excired airfoil

as a function of narrow band excitation peak frequency; a/ =1.0.

2.0 -------------------~-------~----__....;

0.00

•
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Principalparamc!ric resonance, 2kt

The largest advancement in flutter speed occurs at r ::: 0.42. This e.xcitation frequency

appears ta correspond tO approximately m"'Ïce the frequency of the second mode~ ~ ::: 0.44.

However~ the value for Is in the above potenrial resonances is taken at the detenninistic Butter

speecL Ut" =.+.31. At the random flutter spee~ Umt =3.1~ its value has changed ta le: ::: 0.36, while

kt ::: 0.21. .-\ccordingly, this resonance is more likely due to twice the frequency of the tirst mode,

2k1 ::: 0.42.

This excitation at 2k1 meers the condition of principal parametric resonance with the

narural frequency of the flutrer mode. It is the main cause of the sensirivity of the system tO high

e."\:citation frequencies or why the system is effectively e.xcited by "physical" white noise, L =0.5,

which we discussed earlïer. For the larger values of scale of turbulence, this condition of principal

parametric resonance still e."\:Ïsts, but is much less dominant since the PSD of the e.xcitarion at dUs

frequency Ck ::: 0.42) is re1ari'\"e1y small compared with the excitation spectral densiry in the low

frequencies.

Principalparamefric resonancc, combination addition !ype, (k1 + k.J / 1

For frequencies slighcly greater than r =0.42 another region of parricular sensitivity

appears to be centred around r ::: 0.47.•-\t this parricula.r tlutter speed (Uml =3.8), the possible

principal re50nances are: r =~ = 2 x 0.275 = .55 and r = ~ + kt =0.275 + .187 = 0.462.

Consequently, the 10ss of srabiliry in this region is more likely due tO the principal parametric

combinarion (addition type) resonance.

Ir is possible that the other principal n::sonance condition at~ is aIso affecting the

srabiliry, but we believ-e its eifect is 50 small compareci to r...'le other principal resonances at 2k~ and

k: + k1 that it i5 hidden within that large instability region centred around r ::: 0.42.
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Principalparametric resonance, combination difference type, C/s - kt) / 1

.-\t r =0.09, another st!ong resonance occurs. This is aIso a condition of principal

parametric e.xciration, but a combination difference type, C~ -k1)/1. As for the resonance at r =

0.42, interpreting chis result as being relared to the difference of the (\,VO eigenfrequencies, it

should be realised that their value is more likely tO be determined by the random flutter speed

than the dererminisric one. At Uml = 3.35, the difference between the deterministic

eigenfrequencies is: k'l - kt = 0.325 - 0.20 =0.125 compared with 0.04 ar the Uf =4.31.

Secondary parametnc resonances, 2k/2 and 2k!/2

Tuming our attention to the secondary parametric excitation frequencies, \ve note a small

region ofdesrabilization centred at r =0.18, and to irs right, a hint of resonance at r =0.22. These

condirions correspond to the t\vo secondary (non-combinarion) parametric resonances. It is not

surprising that their strengths are smaller than the principal parametric resonance discussed

earlier. In SUPPOrt of this point, Ibrahim [1985] discusses the problem of a single-degree-of

freedom system in candirions of random parametric e.xciration, where the 1055 of srability for the

principal parametric resonance, lüpu. oc. =2lün, is much more imPOrtant than for the secondary

parametric condition, Cùpar. ac. =lüo' In our case, and comparing these [WO secondary resonances,

we point out that the srrongest of the t\Vo appears at kt which is the flutter frequency.

Secondary parametric resonance, combination diffirence !YjJe, (~- kI)/2

The last region of sensiti\r:Ïry is relatively broad and covers the range of very small

frequencies. lts existence can be explained by twO causes. There exists a condition of secondary

combination difference resonance, which based on the random flutrer speed, Um1 = 3.6, gives (~ 

k1)/2 = (0.29 - 0.19)/2 = 0.05. The other cause is the value of the spectral density at zero

frequency. It has been shown analyrically that this condition is a determinant in the srability of a

single-degree-of-freedom system [Lin, 1996; .A.riaratnam and Tarn, 1979]. However, it was also

shown that the 1055 of srabiliry at this condition originated from the random damping term. In

our case, since we have discussed that the damping terms have a secondary effect in the random

flutter mechanism, the first cause may be the more important.
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Detuned exâtation

We also nate a relatively small regian of srabilizarian at r :: 0.50. It cannat be associated

with any natura! frequencies or combination types. Such behaviour has been reported by Lin and

Li [19931, Li and Lin [19951 and Lin [1996], but for the single-degree-of-freedom negative

damping type insrability of a bridge section. They showed mat the srabilizing effect was greatest

for a narrow-band detuned e-'Cciration. For a turbulence intensiry, Tu.Uf = 23%, chosen tO

correspond to our e-'UIIlple shown in Figure 5.13, they obtained a 3% postponement in flutrer

speed for an e.."{cirarion frequency centred slightly greater man the principal parametric resonance.

Stabilisation due tO longitudinal turbulence also occurred for a wide-band spe~ but ta a

smaller degree. Ir was thus considered negligibly small by Lin and Li. For the narraw-band

detuned excitarian Un and.Jj's results are similar ta ours except far the even smaller magnirude

of stabilizarian mat we have in our problem. On the other hand, far the wide-band e.."{ciration our

results and theirs taraily differ. In our case, we lose the stabilization effecr of the deruned narraw

band as the e..xcitarion band is widened (as shown for e..~ple in Figure 5.9 for L =0.5, which

represents effectively white noise) .

For the wide-band (effective white noise) e.."{cirarion, although the reported stabilisatian

by Un and Ii [lin and Ii, 1993; Ii and lin, 1995; lin, 1996] and the observed desrabilisation that

we haye observed for the airfoil are both small in magnirode, the qualitative difference bet'W'een

the twO sets of result warrants an explanarion in light of the t\N·o different types of flutteI'. First

we consider coalescence flutter. The inherent nature of coalescence flutter is tO have t'WO ciosely

spaced frequencies, Le. Js :: k1 (le.. ::; kô. One impOrtant consequence for parametric resonance is

that the conditions of principal parametric resorumce at 2k,.~ and ~ + Ie.., are therefore in close

proximiry tO each other (the other principal parametric resonance at ~ - kt is close to zero for

coalescence B,Utter). In effect and as sho\'\rn in Figure 5.13, these condirions combine tO form a

large region of destabilization due ta principal parametric resonance. We believe that this large

region of desrabilizarion undermines any stabilizing effect inrroduced by other (deruned)

e.."\:citation frequencies when a wide-band is considered.

In the case of single-degree-of-freedom flutter reporred by Lin and ~ there is no

frequency coalescence. For this instabiliry type there e..xists only one condition of principal
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parametric resonance at 2kf, or possibly at 2kl' and combinarion resonances, if a coupling is

inrroduced with mother degree-of-freedom. Since there is no coalescence~ the frequencies are in

general well separared and the region(s) of principal parametric resonance is(are) narrow. For a

2DOf analysis, results from lin and Ii indicate a narrow unsrable region cenrred at 2k1, none at

2k2, and a relatively smaller unsrable region at kt - k2• Their results also suggest a light principal

parametric combination (addition type) resonance, k1 + kt.

In summary, we ha,,-e shown mat the spectral content of the e.'"{ciration for small and very

small frequencies are important contributors to the advancement of the flutter point under

parametric random excitation. This has a parricular significance for the coalescence flutter

mechanism where the e.....-:::ciration originares from turbulence, since these twO specific elemenrs

(difference combination resonance of rwo closely spaced frequencies and large e.."{ciration in the

small frequencies) combine to essenrially detennine the magnimde of the advancement. We have

also shown mat in the idealized white noise e."'{ciration, the condirions of principal parametric

resonance, 2 kt and ~ + lG, also become determioiog factors of desrabilization. Furthermore, this

more refined trearment of the coalescence flutter problem (I.e. from the perspective ofparametric

resonance and narrow band e..'"{ciration) e..xplains the resulrs previously obrained from the coarser

approach, but more realistic Dryden rorbulence model, of the preceding discussion.

5.4 Nonlinearirv and Vertical Turbulence Considerations

The following discussion purs the question of the advancement of the flutter point in the

context of the more general nonlinear problem in combined turbulence. This is an issue for the

following reason. We have argued in Chapter 4 chat the cubic nonlinearity plays no role in the

shift in flutter airspeed. However, this sratement implicitly assumed that the flutter point e.....-;;:Ïsts.

It does exist when pure longitudinal rorbulence is considered for a linear or a nonlinear airfoil.

le aIso e.xists when combined turbulence is consideree!, but only for a linear airfoil. Recall that in

the linear case the vertical turbulence plays no role in the advancement of the flutter point.

'When nonlinear effecrs and combined turbulence excitation are consideree!, a strict

interpretation of flutter (and irs post-insrability behaviour) as being aD-bifurcation leads tO the

conclusion thac the flutter point disappears (see discussion in Chapter 4). This is so since the D-
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• bifurcation (recall this concept is directly relared to a crossing of the origin of the largest

Lyapunoyexponent) is lost. In this situation, the airfoil experiences a decrease of srabiliry over

a broad range of airspeeci, which ca.n be inrerprered as a legacy of the advancemenr of the flurter

point. The decrease in srabiliry, due ro longirodinal turbulence, is e..'\.-pressed as an increased

response mean-square tO '~.terrical turbulence and by a higher value Oess negative) of the largest

Lyapunov e..~onent (see Figure 4.20 for e.."\:ample). The general desuhilizing effect of the

longirodinal camponeat of turbulence will he treated in more detail in Chapter 7.

5.5 Concluding Rernarks

The follm.ving conclusions are retained with regards ro the analysis of the binary flutrer

problem:

•
1. It appears thar the modal frequencies of the woil, strictly speaking the aeroe1astic sYStem,

are modified by the longitudinal turbulence in such a way that the frequency coalescence

is advanced, producing flurter at lower airspeeds.

2. The advancement of the flurter point is determined essentially by the random

aerodyruunic sriffness, not the damping terms. The nature of the shift of the flutter point

is thus stiffness related, cypical of the detenninistic c1assical binary flutte!' problem.

3. The quadratic nelse tenIl, UT:!' plays a secondary raIe in the shift in flurter point.

--\ccordingly, the linear noise terms (m the sriffness matrix), UT' are the principal cause of

105s of srabilirr.

4. The re1ationship berween flutrer speed and turbulence level (as defined by its "rariance)

is linear for the "physical" white noise e.."\:citarion, and approximately linear for the

coloured specrra.

•
5. For a reilisric turbulence specrrum, i.e. away from the white noise idealisation, the

advancement in fluner speed is approxima::ely proportional to the area under the

longitudinal e..xcitarion PSD curve up ta the flutrer frequency.
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6. ~'!ore precisely, the value of the parametric e.."<cirarion PSD at frequencies corresponding

ro the principaL le: - k., and secondary, C/s -k,)/~ combination difference type parametric

resonances are criricaL This has a parricular significance for the coalescence fluner

mechanism where the e..xciracion originares from turbulence, since these twO specifie

elements (difference combination resonance of t~VO close frequencies and large excitation

in the small frequencies) combine ro essenrially determine the magnirode of the

advancemenr. For the "physical" white noise spectrUIIl, the twO parametric resonance

condirions at 2kt and k~ + kt also become important.
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Chapter 6

NONLlNEAR AIRFOIL RESPONSE ANALYSIS

- Binary Flutter Conditions

The response of the nonlinear airfoil tO combined turbulence is analysed next. The

dynamic response is e.."{amined according tO different points of view in order to present a global

perspective. Firsr, the mean-square response is discussed. Observations and analyses are relatively

srraightfonvard. :\ discussion on the probability srrucrure of the response fo11ows. From mis

point of view, une..'\1Jected beha'\-1our is exhibited and interprered. This forros the most significant

part of this chapter. Finally, the frequency content of the response is treared. Its main purpose

is to pro\-1de information in suPPOrt of the interpreration of the PDF response. It is also shawn

that rurbulence when interacting with the nonlineariry, induces noise-conrrolled rime scales.

Ir is stressed that in this section turbulence is treared in its more realistic, cambined

represenration. Hence, the relative effects of each of its two components are not considered

explicitly. However as discussed in Chapter 4, and subsequencly in Chapter 7, we point out that

the nonlinear response, in ail of its forms whether mean-square, PDF, PSD, phase plane or rime

history, is deterrnined mainly by the vertical component of turbulence. On the other hancL note

that for the linear airfoil, longitudinal turbulence has a much more significant impacL Tbis is aIso
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• discussed in Chapter ï .

6.1 :J\Iean-Square Response Analysis

6.1.1 General trends and effect of turbulence variance

In esrablishing general trends of the mean-square response, we retain twO observations

from Figure 6.1, which shows the mean-square of the pitch response for five values of turbulence

variance as a function of mean airspeed and in comparison with the non-excired airfoil. One

general obselvation is that the response increases with airspeed. We aIso note mat the rate of

increase \Vith airspeed rends tO srabilize on a constant yalue.

•
14.0 -;-

12.0 - - - - - - : non-exciœd

•.~Uf=4.31i

l.0 2.0 3.0 4.0
mean airspeed., Um

5.0 6.0 7.0

•
Figure 6.1 - ~Iean-square pitch response of the nonlinear airfoil in combined excitation

for different values of turbulence variance, as a function of airspeed; L = 50.0, k3 = 400.0.

Two imPOrtant factors exist that contribure ta the increasing mean-square response \Vith

increasing airspeed. One is the aerodynamic exremal force, due ta vertical turbulence. This
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• influence is in one way counrer intuitive considering that the effective angle of anack due tO a

veniCli gust or turbulence, W"T/U, gi'ven here in dimensional forIn, (which could be conceprually

represented as a"TI ifm in the random mrbulence conte-xt) decreases with airspeed since the

turbulence \:'"ariance is kept constant. The effective angle of attack is schematized in Figure 6.2.

However, chis effecr is more than balanced by an increase in dynamic pressure, 1/2pifm
1
, which

multiplies the effective angle of attack, and other temlS, ta give the acmaI aerodynamic force due

to vertical rurbulence. Recall the e-xpression of the incompressible lift (equation 2.13) in

dimensional form, per unit span, due tO a sharp edged (vertical) gust, w"GJ as it strikes the leading

edge of the airfoiL e-"{pressed in terms of Kussner's function:

(2.13)

•
Althaugh chis equation is anly strictly valid far a gust, it serves to demonstrate the proportional

dependence between airspeed and turbulence. In other words, mrbulence with a constant strength

sees its effect amplified with airspeed. This factor applies tO both pre- and post-flutter airspeeds.

~! w"T(or(J#T) .-
c:::::= .. __ ..: '!: .

U" (or U" rrJ

a cff = a + w"TI U"

or

a + (J# TIU· m

•

Figure 6.2 - Schematic of effective angle of arrack due tO vertical turbulence.

The other factor which has a direct influence on the increasing response is the underlying

dererministic LCO. _-\t post-flutter airspeeds, the stable LCO attracts the flow. Since its amplitude

increases with airspeed, it forces the random response ra increase as well. This behaviour is re

enforced by the repelling action of the unstable fi..xed point at the origin.

ReIated ta the presence of the underlying deterministic LCO is the second general trend
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rerained from Figure 6.1. The relationship beNreen the pitch response mean-square and airspeed

in the post-flurrer region tends tO be linear~ a direct consequence of the underlying dererministic

LeO. \ve have seen that the pitch bifurcation Iandscape for the detenninistic non-excited

problem remains close tO the simplest expression of the Hopf normal fo~ which we attributed

tO the location of the nonlinearity in the pitch DOF. This is characrerised by a linear mean square

response - airspeed relationship. For the excired airfoi4 it is then relevant tO point out that this

relarionship is also maintained.

Not sho\\-n, but \\-·e have noted the same resemblance in the heave beha,.;our between the

e.'lcited and non-excited responses. In dUs case~ however, the rate of increase of the excired and

non-excired responses mean-square with airspeed is not linear, but behaves like a quadratic. The

difference between the heave and pitch responses is aIso attribured to the location of the

nonlineariry. The pitch and heave non-excited responses mean-square are compared in Figure 4.3.

Effict ofturbulence variance

_\.1so of interest is the magnitude of the slope of the response which increases with

increasing rurbulence variance. For the lower ,.·aIues of turbulence variance, the rate of increase

of me response rends tO folIow the non-excited slope. Past a certain turbulence leveL however,

(7T
1 =0.2 in this example~ the slope becomes larger man the deterministic case such that the

rurbulent response diverges from the non-e.xcited case. This level of turbulence indicares a

permutation of strength between twO opposing mechanisms, e.xtemal random excitation and

restraining nonlineariry. Take for example the turbulence variance, 0/ =0.5, the mean-square

response is inrerpreted as an indicator mat of these twO mechanisms, the turbulence induced

aerodynamics forcing is the srrongest. In the second next tapie, and in line with this discussion~

we show that changing the magnitude of the nonlineariry has an influence on chis pivoraI value

of turbulence level.

5lructura/ damping considerations

It is noted that for the higher values of turbulence variance, me mean-square response

does not tend ta zero as the airspeed is decreased. This is unexpected since the aerodynamic
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exrernal forcing decreases proportionally with airspeed as discussed earlier. This beha'\"Îour is

attribured tO the presence of the longitudinal component of turbulence, whose effect becomes

relatively more impOrtant as the nonlineariry loses its influence.

~Iore specifically, the presence of longitudinal turbulence is combined with the lack of

structural damping which at Low speeds becomes an imPOrtant consideration. As the airspeed

decreases past Um CIO 2.5 (see Figure 4.10 for example and the re1ated discussion on the largest

Lyapunov exponent), the aerodynamic damping decreases as weIl and rends ta zero, hence the

airfoil becomes much more sensitive ta perrurbations. This is true for bath the vertically and

combined excited cases. For the latter, however, one may interpret the Lyapunov exponent as a

mean damping since the aerodynamic damping terms flucroate according ta a Gaussian

distribution due tO the 10ngirudinaI excitation. In chis sense, it is conceivable that temporarily

(locally in rime) the damping becomes zero or negative as the ratio Um/ CJr goes ta zero, such that

the respoose to a decreasing e..xtemal forcing with airspeed may still increase.

In realiry, structural damping would be present and the respoose would not increase at

such a rare as the airspeed is decreased tO zero. This is confirmed by introducing a small amount

of pitch srrucrural darnping..\s shawn in Figure 6.3, the [wo pitch mean-square responses stan

tO diverge significantly for low airspeeds, hence as structural damping becomes relatively more

unPOrtant.
5.0 -

4.0 -

:... 1.0 -

no structural
damping. Ça = 0.0

with structural
damping, ç f) = 0.01

•
0.0 ---------------------------

0.0 0.5 1.0 1.5 2.0 2.5 3.0

mean airspeed. Um

Figure 6.3 - ~[ean-square of the airfoil pitch response for the combined excitation case,

with and \vithout structural damping; a-/ =1.0, L = 50.0, k3 =400.0.
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• 6.1.2 Effect of scale of turbulence

We remain on the topic of the effecr of the turbulence~ but naw concentrate on the effecr

af its speCtral shape or cantent as detennined by the scale of turbulence. This is sha~'TI in Figure

6A far three values of scale of turbulence. Here again~ all cases present either a linear rare of

increase of the respanse~ ar rending ta~ far the higher speeds. The specific interest lies in the

different overall response levels and rates of increase. The origin af these two observations is the

same. It is essentially due ta the turbulence PSD level at any given (e.xtemal) resonant frequency

which differ from one scale of turbulence tO mather.

•

16.0 i

! - - - - - : non-excited
1

12.0 7
!

8.0

4.0 +

L = 5.0

L=50.0~

- L = 0.5 ....

7.06.05.03.0 4.0
mean airspeed. Um

2.01.0

0.0 ---~--------..-;.-----=---------

0.0

Figure 6.4 - ;\Iean-square pitch response of nonlinear airfoil in cambined excitation

far different values of scale of turbulence, as a funcnon of airspeed; a/ =1.0, k3 =400.0.

Consider far exarnple the case at Um = 5.0. Since chis is a post-Butter airspeed~ the

dynamics must be considered as being fundamentally nanlinear. In this case, the (extemal)

resonant frequency is taken as the LeO frequency, k '" 0.16. The vertical turbulence spectral

densities at chis frequency are:

•
: -:

, _ j._rA"!.-~~.~..9.:~~! .
i L =0.5 ~ 0.16 ~
r·····························1············..········ ···..··.. ··1

~ ~.~..~.:~ ~ ~.:!.~ ~

L~..~..?~:~ L ~:!.~ j
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• The vertical turbulence with a scale of turbulence, L = 5.0, pro~...ides the greatest

excitation. The nex! greater e..~citation is given by the turbulence with L = 50.0, follo\ved by the

case with L =0.5. The immediate conclusion is that the relative magnitudes of these excitation

spectral densities are reflected by the mean-square responses, since for e..~ampLe the response

mean-square at Um =5.0 for L =5.0 is the largest.

\Ve have followed the same process for the smaller airspeeds, namely in the pre-fluner

regime, and found the same correspondence between response leve1 and excitation PSD at

resonant frequencies. However, at these airspeeds and for small response levels, we may assume

that the airfoil responds approximate1y as a linear system.•-\ccordingly, the resonant frequencies

are determined by bath natura! (aeroelasric) frequencies.

•
With respect tO the different rates of increase in the response with airspeed, chis is

explained by the combined effect of the airfoil frequencies (natura! and LeO) changing with

airspeed, and the non-uniform shape of the vertical turbulence spectral density. In Chapter 4, we

have seen that the (reduced) frequency, k, of bath the eigenfrequencies and limit cycle decrease

\Vith airspeed. For example, mey range from k::: 0.3 and 0.6 at Um =2.0 to k == 0.16 at Um =5.0.

Furthermore as sho\vn in Figure 6.5, the rate of increase in the excitation spectral densiry as the

frequency is decreased appears ta dicrate the rate of increase of the response with airspeed.

4.0 -:-

-E-- L = 50 0
3.0 - .

>-

1.81.61.4

L = 0.5

= 5.0

0.40.2
0.0 -==========:====:::::::::======~=====;;;;;;;;;;~

0.0 0.6 0.8 1.0 1.2

reduced frequeocy. k

Figure 6.5 - Closed-farm solution of the non-dimensiona! vertical turbulence PSD

for three values of scale of rurbulence; OT2 = 1.0.•
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• 6.1.3 Effect of nonlinearity

V·arying the magnirude of the nonlin~ coefficient, k3, has an important and direct effect

on the respanse level as is shawn in Figure 6.6. As e.."qJectecL the larger chis coefficient is, the

smaller the mean-square pitch response. Similarly, the rate ofchange of the response mean-square

with airspeed decreases as k3 is increased.

7.06.05.04.03.02.01.0
0.0 ---QooI!!!~~~~~=~~---=--~------:

0.0

Lü.O -:-

k 3 = 50.0

5.0 -

20.0 ~

15.0 ;-

• mean airspeed. Um

Figure 6.6 - Pitch respanse mean-squares of the oonlinear airfoil in combined e..~cirarion

for different values of the oonlinear coefficient, as a functian of airspeed; a/ =0.1, L =50.0.

•

The effect of the nonlinearity can also be examined by comparing the excited and noo

excited responses. From this perspective, we are nat concemed wim the absolute value of the

response tO rorbulent e..xciration, bu! by its relative value compared with the non-excited response

for differenr srrengths of the nonlinearity. W·e expect tO see the excited mean-square pitch

response canverging ta the oon-e..xcired response as the magnitude of the nanlineariry is increased

while maintaining the same level of turbulence at U-r2 =0.1. However, as illuscrated in FÏgure 6.7

for four different magnitudes of the nanlinear torsianal stiffness coefficient, k3, the reverse is

obsen-ed. The e..xcited mean-square pitch respanse tends ta diverge from the nan-e..~citedvalue

as the nonlineariry is increased. ~fare specifically far this example, for values of the nonlinear

coefficient ~ 400.0, the excited response tends ta the non-excited response as the airspeed is

increased. For k3 ~ 800.0, the e..xcited response diverges from the non-excited response. This is
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• similar tO the etIecr of turbulence variance discussed earlier where~ depending on its magnirode~

convergence or diyergence of me e.xcired response tO or from the non-excired response could be

obsen·ed as the airspeed is increased.
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Figure 6.ï - i\fean-square pitch responses of the non-excited nonlinear airfoil ( -- )

and in combined excitation ( ...... ) for four values of the nonlinear coefficient,

as a function of airspeed; a..;'1 =0.1, L =50.0.

•
The following explanation tO this observation is provided. Consider the smaIler

nonlineariry, k3 =50.0, where a convergence of the excited and non-excited responses with

airspeed is observed. The smaller nonlineariry does in facr induce a smaller restraining mechanism

since the absolure response level is the highest. However, the e."'{citation has also an influence on

the nonlinear restIaining force. Due to the nature of the hardening cubic stiffness nonlineariry,
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• a larger response tO the e..~citarion, permitted by the smaller nonlinear coefficient k3 = 50.0,

produces in rom a much greater restoring force. To make the e..'-1'Ianarion ciear, we caIl upon the

concept of an effective linear stiffness inrraduced in Chapter 1. Writhout a 1055 of the

fundamenuls, assume a IDOF system with the follo'-"'ing sriffness terms;

and reViTItten as

(6.1)

(6.2)

In the random case, tf is always \.aI!IDg. _\ssume that we can obtain a determinisric represenration

of dUs stiffness force by using the mean-square of the pitch response. \Ve get:

(6.3)

•

•

The second term in brackets may be interpreted as an effective linear stiffness coefficient. Hence,

we see that although the nOI".Jinear coefficient, k3, has an impact on the restoring force, a large

response via the a.? r:erm has an even bigger impact. In ather words, the smaller k3 is, the larger

a.:' becomes and the final outcome is a larger effective sriffness, k3 a2
• This is why a smaller

nonlinear coefficient enables a larger absolure response but a smiller relative response in

comparison \Vith the non-excired case, and conversely far a larger nonlinear coefficient.

In surnrna.ry~ twO effecrs from the nonlinearit:y on the mean-square response are retained.

_\n increase in the nonlinear coefficient decreases the absolute value of the e..~cired mean-square

response, and rate of increase with airspee~ but increases their relative value compared with the

non-excited respanse.

6.2 Probability Structure of the Response

The probability srrucnu:e of the aeroelastic respanse &splays perhaps a more inreresting

and perplexing behaviour man its mean-square. ~~e ha\·e seen in Chapter 4 that the basic shapes

exhibired by the ane-dimensional marginal PDFs projection appeared to be cither uni-modal at

lo\v speeds, or bi-modal at high speeds. Howe\·er, loaking more closely into the behaviour, we
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•

•

can denote variations in these ewo basic shapes. Furthermore, we find mat the nature of the

observed bi-modaliry is not unique and depends strongly on the turbulence level.

Similarly, the bi-dimensional PDF projection e.'àlibits comple."< behav""iour. Ir aIso prov""ides

sorne answers tO the intricacies of the uni-dimensional marginal PDF. In the following discussion,

bath projections are e."<amined and interprerations of the airfoil dynamic behav""iour are also

propased.

6.2.1 General characreristics and effects of turbulence variance

6.2.1.1 Uni-dimensional, marginal, PDO projection

To invesrigare this aspect we have 100se1y defined three leve1s of turbulence variance as

discussed below.

Case 1 - /olll IeveJ tllrbulence

For low leve1 turbulence, defined approximate1y by the folloUTing range of turbulence

1.:ariance 0.0 ~ fJ.r1 ~ 0.02 for this particular nonlinear airfoil, the change in the pitch marginal

PDD (rnultiplied by the pitch response variance) with airspeed is represenred by the case a-/ =
0.01, ShO'-\ll1 in Figure 6.S.•\lso shown is the more tradirional perspecri'i:e, similar tO a bifurcation

diagram, where only the peaks of the probabiliry densiry are displayed as a funcrion of airspeed.

This is illustrated in Figure 6.9.

We obsen"'e the e:-"l'ected uni-modal tO bi-modal transition, followed by the appearance

of a third peak at higher airspeeds, shown here at Um =7.0. This third peak located at zero pitch

angle is a direct consequence of the shape of the underlying deterministic LCO, which deforms

significantly with airspeed. (The underlying detenninistic LCO will be discussed in more derail

from the point of v""iew of the bi-dimensional projection.) The determini.sric LCO marginal PDF

is illustrared in the inset of Figure 6.8 for an airspeed U = 7.0, where the third peak is shown.

Nore that the relative importance of this third peak is enhanced by the turbulence, but remains

a second order effeet.

164



• Consider as well the distribution at Um = 5.0. Irs basic shape is strictly bi-modal and is

mus qualirarivdy similar tO the non-e."'{cired PDF, also shown in the inset of Figure 6.8. For rhis

case of low leve! rurbulence, the pitch dynamics is mus interpreted as being defined basically by

the underlying dereunioisric LeO about which random motion appears as a secondary effect.

•

-5.0

-:.0

non-èxciœd
at U = 7.0

0.0

non-excired
at U = 5.0

0.0
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:.0

mean airspeed,
Um -4.5
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4.5
2.3

pitch angle. 8 (deg)

Figure 6.8 - Marginal PDF diagram of the nonlinear airfoil pitch angle,

in combined turbulence, as a function of mean airspeed; a/ = 0.01, L = 50.0, k3 = 400.0.
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Figure 6.9 - Diagram of the peaks of the nonlinear airfoil pitch angle marginal PDF,

in combined turbulence, as a function of mean airspeed~ Ch;~ =0.01, L = 50.0, k3 =.+00.0.
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Case 2 - intermediate /eue' turbliience

In the intermediate range of turbulence variance, 0.02 ~ O-r'1 $ 0.2, another behaviour is

obsenred. It rnkes the form ofa double bi-modal density at the higher airspeeds. This is illusrrated

in Figures 6.10 and 6.11 for a rurbulence leY~ al' = 0.05. _\ll other parameters remain the same

as for case 1. What we have in this case is a competition between the underlying dererministic

LeO and higher order effects of the noise, in combinarion with the nonlinearity, which stans ro

become dominant. For example, again consider the probability density at Um :::: 7.0, the mode at

the origin (i.e. third peak locared at zero pitch angle) has become dominant and is srarting ra split

intO t\V'o inner modes. Nore, as welL the distribution at Um =5.0 which is now uni-modal, as

opposed tO the previous case which exhibits a strietly bi-modal shape. This is an indication that

the underlying deterministic LeO is starring tO become ovenvhelmed by the rurbulence. The

prima.ry contribution of the LeO is displayed mainly by the t'Wo humps at low speeds, or ollter

modes at high speeds. Ir is the turbulence which is the direct cause of the inner bi-modal

distribution. In this regard, it will be shown later that as turbulence variance is increased, the

subsequent increase in response level enhances nonlinear effeets, which in rom deforms the basic

struCture of the LeO.
inner

.....---i modes

outer

modes '----....

9.0 ,1.~\\~~\\~\ i~'i\\\\\\\\'~\\\~~
8.0 '

mean airspeed.

Um

l 6 3.2 4.8 6.4 8.0
3 2 -1.6 0.0 .

-6.4 4.8 -.
piteh angle, () (deg)

Figure 6.10 - ~farginal PDF diagram of the nonlinear airfoil pitch angle,

in combined turbulence, as a function of mean airspeed; a.r'1 =0.05, L :::: 50.0, k3 :::: 400.0.
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Figure 6.11 - Diagram of the peaks of the nonlinear airfoil pitch angle marginal PDF,

in combined turbulence, as a function of mean airspeed; ar'!. = 0.05, L = 50.0, k3 = 400.0.
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Case 3 - high Ievel turbulence

The direct influence of the underlying detenninisric LeO is lost at the higher turbulence

le\-els, 0.2 :5 a../, as shown in Figure 6.12.

Figure 6.12 - ~farginal PDF diagram of the aïrfoil pitch angle, in combined turbulence,

as a function of mean airspeed; G-r2 = 0.3, L = 50.0, k3 = 400.0.

pitch angle, 8 (deg)

•
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The t'Wo outer peaks (modes) exhibited for intermediate turbulence variances have

disappeared. The noise is essentWly dictaring the shape of the density, whose main feature is again

charaeterized by the simple bi-modaliry. From rhis point of view, the pitch PDF of the low and

the high turbulence levds are similar. However, chis is a superficial observation since the

fundamenral origin of the bi-modality is differenr for bath cases. It u.'Îil be e..~lainedwith the bi

dimensional projection.

_\5 a summary on the effect of the turbulence variance on the pitch rruuginal PDF, Figure

6.13 presents the density at an airspeed, Um = 7.0, for four values of turbulence v·ariance in

addition te the non-e.."{cited case, which defines the underlying strUcmre of the deterrnioistic LCO.

From dUs point of view, the change in the origin of the bi-modaliry of the probability density is

evidenced by the t\Vo peaks due ta the LCO which fade away and tend towards lower values of

pitch angle as the turbulence variance is increased from aco 0.05. Simulraneously, the peak at the

origin gets stronger and splirs iota t\Vo as the turbulence variance is increased through 0.05. At

this poin~ the t'Wo new peaks move further ap~ as e.."{emplified by the densiry for turbulence

variances, ar"!. = 0.1 and a.r:' = 1.0.

.~.,

non-excued '

/ ' .

Figure 6.13 - ~ginal PDF of the nonIinear airfoil pitch angle, in combined turbulence,

at Um =7.0 and for different values of turbulence variance; L = 50.0, k3 =400.0.•
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• .-\lso acting as a sUIIlIIW:izing picrure is Figure 6.14 showing a diagr:un of the peaks of the

pitch marginal PDF for the nonlinear fluttering airfoil, where the control parameter is DOW the

turbulence variance instead of the usual (mean) airspeed. Here, the mean airspeed is set at Um =

7.0.

1.00.90.80.70.6

inner peaks

0.50.40.30.20.10.0

1.5 -

1.0 -

2.0 -

0.5 ~

wrbulence variance. crT
2

Figure 6.14 - Diagram of the peaks of the nonlinear aïrfoil pitch angle marginal PDF, in

combined turbulence, as a function of rurbulence variance; Um =7.0, L = 50.0, k3 =400.0.
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•
The same types of probabiliry densiry have been observed for the other system stateS, but

not necessarily at the same airspeed. In other words, the pitch could be bi-modal while the hea.ve

uni-modal ar the same airspeed. This aspect is ShO'-\Ll \Vith more focus in Figure 6.15. Preseoted

is the transition airspeed (from um- tO bi-modal marginal PDF) for all four srrucroral stateS as a

funcrion of turbulence variance, and for one panicular scale of turbulence. Under each curve, the

densiry is uni-modaL and it is bi-modal (or double bi-modal arouod the kink) above the curve.

•

From Figure 6.15, it is first observed that none of the states transition at the same

airspeecL e.."{cept of course for zero turbulence variance where the deterministic flutter/Hopf

bifurcation occurs. Secondly, it is observed that both pitch states, displacement and rate, transition

at a smaller airspeed than both heave states for ail values of turbulence variance. Furthermore, the

transitions of the heave states are delayed significantly with respect to the detenninistic bifurcation

airspeed. We belie\"e that this is a direct consequence of the location of the nonlinearity. Sînce the
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• nonlineariry is located on the torsional spring, the pitch DOF feels the nonlinearity more strongly

than the heaye. In corollary, the Gaussian-like density of the heave is presen;ed for a longer range

of airspeeds. See for e..xarnple Figure -+.14, where the hea'ge probability density of the e..xcited

airfoil appears Gaussian-like at U =10.0, a post-flutter airspeed (recall Ui =4.31).

30.0 -
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::,.. "50:~ _. -

c 20.0-

-- 15.0-
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d;/dT
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5.0 '-7~ _ _ ..
pitch, e •

turbulence variance. O'T
2

1.00.90.80.70.60.50.40.30.20.1

0.0 --~-----~--.o----~--~-------___,

0.0

Figure 6.15 - Diagram of transition airspeed of strUcrui:al stare marginal PDFs as a function of

turbulence variance; nonlinear airfoil in combined e..'"{citatian; L = 50.0, k3 = 400.0.•
~fost interesting is the third observation which concerns the non-monotonie behaviour

of the transition airspeeds of the piteh states in comparisan with the monotonie increase of the

heaye States. Note that in eomparison \virh the detenninistic flurrer speed (Ur = 4.31), there is a

posrponement in pitch angle cransition airspeed for law turbulence levels, changing intO

advancement for the larger values of turbulence variance. The initial postponement corresponds

to the fading away of the underlying structure of the determinisric LeO, which is then supplanted

by the other type of bi-modaliry originating from the more dominant turbulence effecrs.

•
Moreover, the change in transition airspeed of the pitch angle appears ta be ried tO the

transition airspeed of the pitch rare in such a way that one is roughly the mirror image of the

other. :\s will be shown larer in Figures 6.20 to 6.22, chis apparent interdependence berween pitch

angle and pitch rate transition airspeeds, hence benveen their respective marginal PDFs, is

reflecred on the piteh pirch-rate bi-dimensional PDF by a rotation of the densiry about ies

170



•

•

•

probabiliry axis as the rorbulence V"arUnce is varied.

6.2.2.2 Bi-dimensional PDF projection

The analysis of the bi-dimensional PDFD is very revealing and instructive in sorne of the

elusive questions raised from the investigation of the marginal PDF projection. Hence, the

following discussion is in part an attempt to provide an e..~lanation for the beha"~our of the pitch

angle and pitch rare transition airspeeds \Vith turbulence variance, as well as ducidaring the narore

of the second type of bi-modaliry observed for the higher turbulence levels. Our argumentation

and reasoning are based in pan on a qualitative description and analysis of the observed dynamics.

This is supplemented by the knowledge of the non-excited, derennioistic, dynamics which we

have found provides impOrtant physieal cIues as weIl. \Ve srarr by proposing a non-traditional

perspective of the determ.inistic dynarnics.

Probability sin/dure andphaseplane ofthe non-exated aiifôil

Take the non-e.."{cited airfoil at an airspeed of U =5.0. Its phase plane and bi-dimensional

PDF, for piteh and piteh rate, are shown in Figure 6.16. The phase plane is evidence of a well

defined ellipse, which is indicative oflimit cycle with one frequency [Argyris, 1994]. In this regard,

the presence of super-harmonics, which one would e..'"q'ecr tO e:cist for a nonlinear response, does

not appear tO have much signifieanee on the pitch response at that airspeed. The presence of

super-harmonies is a large deflecrion phenomena, and at chat airspeed the response amplitude is

relatively low such mat the morion is essentially simple harmonie. Note mat the same conclusion

can be deduced from a eomparison of the numerically simulated response with the analyrical

solution obtained \ü the describing function method. Hence, as mentioned by.:\lighanbari [1995],

a depanure of the analytieal solution from the numerical solution as the airspeed is increased ean

be attribured [0 the increasing effecr of the nonlinearity. More precisely, the describing function

method assumes simple harmonie motion whieh is valid for a small nonlinearity, chus small

deflections.
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Figure 6.16 - Bi-dimensional PDF and phase plane

of the non-e."{cired nonlinear airfoil pitch pitch-rate for U =5.0; k3 =400.0

The bi-dimensional PDF representation of the deterministic response at U = 5.0 provides

more information. Contrary to the marginal PDFs, where the (wo peaks are locared at the

ma..x.imum amplitude of pitch, and pitch rate, the bi-dimensional PDF exhibits four peaks (twO

of them are shown with 0 and , on the phase plane). These peaks are located at intermediate

values ofpitch and pitch rate, and have approximate!y the same leve! ofprobabiliry densiry. They

represent the system states, in pitch and pitch rate, where the airfoil spends the most rime. Notice

also the slighdy higher leve! of probabiliry density at zero pitch angle compared \vith the densiry

at zero pitch rate. Except for a small asymmetry, the general features of chis probability densiry

shape are representative of simple harmonic morion.

•

In the ne."<t ewo figures, Figures 6.17 and 6.18, the same !WO projections are presented for

higher airspeeds, namely U = 7.0 and 9.0 respecrlvely. At this point we remark that for this

discussion, the value of the airspeed is of no direct consequence. It serves ta enable conditions

where the transfer of energy from me airl10w tO the airfoil can be modified. Accordingly, the

main interest is in the increase of the response amplitude, and mus on the increasing influence

of the nonlinearity and its effect on the probabiliry density function.
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Figure 6.17 - Bi-dimensional PDF and phase plane

of the non-excired nonlinear airfoil pitch pitch-rate for U = 7.0; k
3
= 400.0.

Figure 6.18 - Bi-dimensional PDF and phase plane

of the non-excited nonlinear airfoil pitch pitch-rate for U = 9.0; k
3
= 400.0..'
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• From the more familiar phase plane projection~ it is seen chat the Leo has lost its

elliprical shape. This is an indication of stronger nonlinear effeets~ directly due to the greater

response. Consequendy at these higher airspeeds, compared with U = S.O, we expecr a greater

contribution of super-harmonies, as discussed by Argyris for the more general problem of the

Duffing equarion [19941. \Ve note as well a skewing of the response.

Looking DOW at the bi-dimensional PDFs, another set ofpeaks appear locared at reIa.tively

low values of pitch and high values of pitch rare. They are an e..xrension of the slight increase in

probabiliry densiry identified at zero pitch angle for U =5.0. At U =7.0, chis new set of peaks

stans ta dominate the four other peaks. On che phase plane plots, they correspond to the (wo

kïnks. Only one is identified by •. We believe chey are directly related ta the appearance of the

super-harmonies and the stronger effecrs of the nonlinearity. At U = 9.0, chese peaks in the PDF

are even more dominant.
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0.8 T pitch rate,

1 d 8/d r
1
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Figure 6.19 - Phase plane plots and location of the bi-dimensional PDF dofiÙnant peaks

of the non-e.'"{cited nonlinear airfoil pitch pitch-rate for U = 5.0, 7.0, 9.0 and 12.0; k3 = 400.0.

Of interest is also the movement of the bi-dimensional PDF peaks as the airspeed is

increased. This is shown in Figure 6.19 usiog the phase plane projection of the these three

airspeeds, in addition tO U = 12.0, superimposed on each other.
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_-\lthough each bi-dimensional PDF displays more than one set ofpeaks, or most probable

value, only the dominant set is shown. First illusttated in dUs figure is the appearance of the new

set peaks, in combination with the fact that me four other peaks are fading away relarivdy, as the

airspeed is increased from U =5.0 to U =i.O. In other words, the large nonlinear effects impose

a change in the hierarchy of the dominant peaks due to the creation of a new set inirially locaœd

close ro the pitch rare a.~. This is followed by a councer clock'Wise rotation, i.e. a\vay from the

picch rare a.'cis, of the new set of dominant peaks for a funher increase in airspeed tO U = 9.0 and

subsequendy to U = 12.0.

Probabiliry strudure and random phase plane ofthe excited aiTfôil

The change of behaviour of the non-~"{cited airfoil with airspeed is significant in terms

of ~xplainingthe effect of turbulence. From me knowledge of the dynamics as a function ofone

control paramete!, namely U, the dynamics as a function of anomer control parameter, (J../" is

interpreted. In suppon of this approach, it is argued that it is not the conrrol parameter, U or al,
which directly detennines the dynamics we are rrying to elucidate, but the nonlinear effects. The

effeets of the nonlineariry are stimulated by cimer airspeed or turbulence. In dUs light, Figures

- 6.20, 6.21 and 6.22 present the same representations of the dynamics as was shown in Figures

6.16, 6.1 i and 6.18, where the dependence was on airspeed, whereas the dependence is now on

turbulence variance. This is done at one particular airspee~ Um = 5.0, and for turbulence variance,

CJ.rl = 0.01,0.1 and 1.0. Note that the lines shown in the random phase planes represent lines of

equal probabiliry density.

:\s inrroduced in Chapte! 4 in terms of the bifurcation scenario, the obvious behaviour

observed from these figures is the rransition from a crarer-lîke shape for CJ.r1 = 0.01 (see Figure

6.20) co a two-peaked shape, and a saddle at the origin, for the two other turbulence levds

(Figures 6.21 and 6.22). In dUs sense, these two last bi-dimensional PDFs are qualirativdy sirnilar,

and they are different from the first. However, for this discussion me interest lies in an additional

aspect of the dynamics, namely the deformation and skewing of the probabiliry structUre due to

impOrtant nonlinear effects.
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of the nonlinear airfoil pitch pirch-rate in combined turbulence for Um =5.0;

Gr:: =0.01, L = 50.0, k3 =400.0.
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T0 undersrand the change in the probability strUcrure as the turbulence variance is ,"'arie~

we must refer to the probabiliry strucrure of the non-e..~cited response as airspeed is raisecL since,

as suted earlier, it is the increasing nonlinear effects which clicrare the shape of the distribution.

In order ta ma.ke the process clear, we have clivided the sequence of e,renrs according to three

le".-e1s of turbulence as exemplified in Figures 6.20,6.21 and 6.?? Note that these three levels do

not correspond e..'"'ï:act1y ta the levels defined for the pirch angle marginal densiry, since for the bi

climensionai representation the pitch rare yariable is also considered.

Care 1 - /ou; leve/ turbulence

The low leyel turbulence is e.."{emplified by Figure 6.20, where the variance is a/ =O.Ol.

The bi-dimensional PDF displays a crater-like shape. We define the crarer-like shape as being a

fust arder effect of the nonlineariry since it is also the main f~ture of the non-e..xcited LeO at

dùs same airspee~ see Figure 6.16. However, conrrary ra the detenninistic LeO at this airspee~

Um = 5.0, there is a well defined build-up of probability located ar low values of pitch angle and

high ,raiues of pitch rate. The origin of this build-up of probability cao be deduced from the

observation of the dereanioistic LeO at a higher airspeecL U = i.O, sho~'TI in Figure 6.1 i. It is

due tO larger nonlinear effecrs wlùch are enabled by the rurbulenr excitation. This is accompanied

by the disappearance of the four original peaks of the underlying detenninistic LeO wmch are

smoothed by the noise! ..-\.t this levd of turbulence, we define this specific fearure in the PDF as

a second arder effecr of the nonlineariry.

In terms of the marginai PDFs, the result is a bi-modal marginal PDF in both pitch and

pitch rare. W'e qualify the bi-modali~' of the pitch angle PDF asw~ since its [WO peaks are not

high compared \Vi.th the probability density at the origin. Ir is an indication that the transition

airspeed from uni- ta bi-modal has just occurred. The transition in pirch occurs at Um = 4.6. On

the contrary the pitch rate bi-modality is strong. 1ts transition airspeed is locared funher away, at

Um = 4.0.

_-\.ll other effects remaining the same, ir is a general propeny of (extema1) noise [Q smooth the dynamics, as
pointed our by Eckmann and Ruelle [1985] for er.ample. 1bis properry can aIso be exemplified by the behaviour
of the largest Lyapuno\' exponenr which does not exhibir any discontinuiry when ven:i.cal turbulence is
considered, see Figure 4.18.
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Case 2 - intermediate Itvel IIIrbulence

_-\t an intennediate level of turbulence e.."{citation, shown in Figure 6.21 for ar'1 =0.1, the

topology of the bi-dimensional PDF is fundamentally trarlsfonned. It displays a Nlo-peaked shape

whose peaks are locared at low values of pitch angle and high values of pitch rare. Although it

is difficult tO pinpoint graphically the e..uct value of turbulence variance ar which chis change in

shape occurs, it is found mat it happens in the vicinity of ar'1 =0.06.

The rurbulent e.."{ciration has destroyed me crater-like shape in rwo ways. Firscly, it has

forced sorne of the dynamics ta occur near the origin, thus in effect fiIling the probability crater.

This is somerimes referred to as plane- or phase-filling [Grassberger and Procaccia, 1983].

Secondly, by inducing larger nonlinear effecrs, the rurbulent e..xcitation has enhanced the relative

importance of the t'Wo inner peaks. It is then said mat the second arder effeet of the nonlinearity

becomes dominant due tO the rurbulent excitation. This second aspect can be understood by again

referring back to the deterministic LCO as the airspeed is raised from U = 5.0 tO 7.0 and 9.0, and

where the inner peaks become srronger in comparison with the original four. At ar'1 = 0.1, the

combined result is srill a uni-modal marginal PDF in pitch and a bi-modal marginal PDF in pitch

rate.

Case 3 - high feve/ turbulence

The destrUction of the LCO srrucrore is accompanied by arrother type of re-distribution

of the probabiliry densit}" between the pitch and pitch rate. At the previous value of rurbulence

\-ariance, ar= =0.1, the [WO peaks rend to be aligned with the pitch rate a..xis. As me turbulence

\-ariance is funher increasecL for example to Or"!. = 1.0, as sho'-V"n in Figure 6.22, the alignment

moves toward the pitch angle axis. In other words, the basic shape of the bi-dimensional PDF

does not change but it is effectively rorared about the probability a..'tis. This rotation is better seen

on the random phase plane where the contours represent lines of equal probability density. Again,

this is aIso a general observation of the non-excited case as shown in Figure 6.19 as the airspeed

is raised from U = ï.O ta 9.0 and 12.0. The counter clockwise rotation of the {WO peaks towards

higher \9alues of pitch angle and lower values of pitch rare resulrs in a bi-modal marginal PDF in

pitch and a uni-modal marginal PDF in pitch rare. This is an opposite result from the lower
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turbulence leveL and expIains the observed interdependeoce and mirroring mo\-ement of the pitch

and pitch rate marginal PDF transition airspeed shown in Figure 6.15.

In summary, a smoothing of the underlying derennioistic LeO structure accompanied by

a transfer of probabiliry to t\Vo new regions in the state space have been noted as immediate

consequences of turbulent e.xàrarion. These are foilowed by a general skewing of the bi

dimensional PDF, and random phase plane, and the counter clod-wise rotation of the two oew

peaks as the turbulence variance is furrher increased. The practical result is postponement of the

pitch angle and adv-ancement of the pitch r2.te at low values of turbulence variance, and conversely

for high turbulence leveL

We ha\-e explained and interpreted the initial probability transfer, followed by a general

ske"WIDg and roration, Mth the following rational Similar to the effect of changing the aîrspeed,

which enables a greater transfer of energy from the airflow tO the airfoil and hence a greater

demand on the nonlinearity as observed from the determi.nisric behaviour, the increase in

turbulence variance also enhances nonlinear effectS. In rum~ the greater demand on the

nonlinearity should be reproduced by the response spectral content. Henee, parallelling the effeet

of the nonlineariry on the PDF and phase plane for the non-exàted airfoil as the airspeed is

raised, we have also observed an increase in the contribution of the super-harmonies with

turbulence \-ariance. The spectral response will be discussed in more detail in Section 6.3.

In attempting tO provide an e~"Planationof the probability strUcrure of the response, the

problem has been simplified by focussing on the dynamics of the pitch DOf. In this line, the

analysis is pursued and other influential factors, such as scale of turbulence and nonlinear

torsional sriffness, are e..xamined as experienced by the pitch marginal PDF transition airspeed.

6.2.2 Effecrs of nonlinear rorsional stiffness

This next topie briefly considers the effeet of varying the nonlinear torsional stiffness

coefficient, k3, on the transition airspeed of the pitch marginal PDF. Figure 6.23 shows the

transition airspeed boundary for three 'ralues of turbulence variance, a.r1 =0.01,0.1 and 1.0. Each

dara point is identified aecording tO the nature of the pitch uni-modal tO bi-modal transition. The
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• description outer, idenrified by the unfilled symbols 0, 0 and Il, refers to the appearance of the

LCO displayed by the PDF in the case where the turbulence levd is considered to be low. The

other description inner, identified by the fiIled symbols ., • and Â, refers tO the case described

earlier as the high level turbulence, where the basic strUcture of the LCO is lost in favour of the

appearance of inner peaks close to the origin. The [wo dara points labelled as inner but where the

ollter transition airspeed is also shown in parenthesis refer tO the intermediate levd turbulence. In

this case, there is a double bi-modality where transition of the outer peaks occurs earlier than the

inner peaks, but it is the inner peaks which are dominant.

•

Some observations and interpretations are the following. For the ollter um- ro bi-modal

transition type, an increase in nonlinear coefficient delays the transition to higher airspeeds....-\

further increase in k3 changes the nature of the bi-modaliry. At chis point, there is a range of

coefficient values where the basic strUcture of the LCO is compering with the inner pea.k(s) which

are getting srronger. _\t stilllarger values of the nonlinear coefficient, the post-tranSition PDFs

are back tO being purely bi-modal, but their nature is different from the one at small values of k3•

This is referred ra as the inner type bi-modality. Further increases in k3 have the opposite effect

which is the advancement of the transition airspeed.

..
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/
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Figure 6.23 - Transition airspeed of pitch marginal PDF of nonlinear airfoil in combined

excitation, for different turbulence variances, as a funcrion of the nonlinear coefficient;

L =50.0; Cl, 0 and l:.. : outer mode transition; ., • and. : inner mode transition.
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• 6.2.3 Effecrs of scale of turbulence

Figure 6.24 presents the pitch marginal PDD transition airspeed as a funcrion of

turbulence variance for rhree different sca1es of nrrbulence, one ofwhich, L = 50.0, is reproduced

from Figure 6.15. The overall behaviour for the rhree cases is the same. There is posrponement

of the transition airspeed at low values of turbulence variance, chaoging intO advaocement at high

~...alues. Not shown but nore that the case VJith L = 0.5 changes to advancement for a turbulence

variance, C1r1 = 15.0. In all cases, the region where the Iargest postponement airspeeds occur

corresponds to the conversion zone where the nature of the bi-modality is changing as described

earlier. The nomenclature for the dara points is the same as defined for the previous figure.
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Figure 6.24 - Transition airspeed of pitch marginal PDD of nonlinear airfoil in combined

exciration, for different v-alues of scale of turbulence, as a funcrion of turbulence variance;

k3 =400.0; a, 0 and ~ : outer mode transition; ., • and. : inner mode transition.

With regards to the quantitative differences, it is believed !hat they are mainly dicrated by

the value of the excitation PSD at sorne critical (extemal) resonant frequencies, which have a

direct effect on the mean-square response. For e."<:ample, e..~amine Figure 6.4 which shows the

pitch response mean-square for the same three values of scale of turbulence, as a function of

airspeed. The response mean-square generally indicates that the scale of turbulence, L =5.0 case,
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• responds the greates!, followed by the case ofL =50.0, and thirdly by the effective white noise

case (L =0.5): ReaIising that the e..~citarionvariance level (Gr: =1.0) used tO produce the data for

Figure 6.4 corresponds to the series of results on the far righr of Figure 6.24, it is nored mat this

hierarchy of response is reproduced by the same hierarchy in transition airspeed.

The observed relarionship between response mean-square and transition airspeed makes

physical sense since an overall larger response level will induce a greater demand on the

nonlineariry. Furthermore, the turbulence level for this e..~ample corresponds ro post-rransition

motions characterised by the rwo-peaked bi-dimensional PDF. We have seen char in chis case,

larger nonlinear effeas are associared with a counrer clod-wise rotation of the probability densiry

abour its a..~, which tends ro separate the peaks in the one-dimensional pitch marginal PDF,

hence an earlier transition airspeed in pirch. In chis sense, the relationship berween transition

airspeed and nonlinear coefficient is the same as the one with turbulence variance which in effect

enhances nonlinear effecrs.

• 6.3 Frequency Content of the Response

•

6.3.1 Importance of super-harmonie peaks

The main relevance of presenting the spectral content of the response is in suppon of the

previous discussion concerning the deformarion and skewing of the bi-dimensional PDF due tO

enhanced nonlinear effeets with turbulence variance (Section 6.2.1). In doing so, it will. be

demonstrated chat the relative imponance of the super-harmonies is accrued as the turbulence

variance is raised.

To mat effect Figure 625 compares the pitch PSD for three values of turbulence variance.

Ir is observed chat in addition ro an overall increase in power speCtral densiry with turbulence

variance, the third and fifth harmonies beeome srronger in comparison with the fundamental

frequency. This observation accounes for the depanure of the basic LeO strUcrure in the bi

dimensional PDF representation with increased turbulence variance, and echoes the increasing

relative imponanee of the super-harmonies of the detenninistie response '\vith airspeed.
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• The appeuance of an additional fearure, not directly accounted for by the deterministic

airfoil, is also shown in Figure 6.25. Ir is discussed in the sub-Section 6.3.2.2.
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Figure 6.25 - PSD of nonlinear pitch response ta combined excitation at Um =5.0,

for three values of turbulence variance; L =50.0, k3 =400.0.
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6.3.2 Omer distinctive spectral fearures

Other distineti.Ye~and une..~eeted feacures are displayed by the specrrum. They are pure

productS of the interplay between the nonlinearity and random e.."{ciration~ since they do not

appear when either of these t'Wo ingredients are missing. Ta do full justice to these observed

phenomena would require a much more in-depth analysis. In this regards~ we will not atrempt

such an endeavour and restricr ourselves ta briefly describe our obset"Yarions and propose sorne

directions for further srudy.

6.3.2.1 Shift of the fundamental resonant frequency

The tirst aspect concems the dominant peak, which represents the fundamental harmonic

of the random LCG. At pre-flutrer speeds, Ît represents the slow mode or the mode losing

srabiliry. We have observed that it is shifted to a smaller frequency compared with the

determin.istic value which is ar kLCO =0.164 far U =5.0. Funhennare, the magnitude of the shift

depends on the turbulence variance; see Figure 6.26.

_-\lthaugh we cannat provide any ratianal e..\.-planatian far this shift in frequency~we can

say Ît is not due ta the Longitudinal component af turbulence. We have shawn and discussed in

Chapter 4 mat the longitudinal component af turbulence has an opposite effecr on this mode

,"lhen nonlinear effects are either small or not considered at all. 1-foreover, we have run testS

without the longitudinal camponent. No change in the Location of the dominant peak in the PSD

W2.S noted. Consequencly, we believe the shift in frequency, in comparison with the non-e..,,<cited

airfoil LCO frequency, is a consequence of the combined effect of turbulence (mainly vertical)

and of the nonlineariry.

_-\ shift in frequency is by itself not totally unexpected since the nonlinearity is acting on

a stiffness tenn. In mis case and as pointed out by Caî and Lin [1997], the narural period of the

system is not canstant but changes with the amplitude of the morion. Note, however, that this

interpretation is usually associated with a broadening of the peaks. Hence~ a nonlinear stiffness

oscillatar is disposed ta a shift in frequency. This was alse nated by Roy and Spanos [1993]. In

contrast, Roy and Spanos have also discussed the case of the yan der Pol oscillator e.."<ternaily
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• ~"{cited by noise where no shift in the resonant peak is observed. The surprise in our resulrs

cornes from the obsenration that the shift is toward me lower frequencies, considering chat

nonlineu effects {due tO a hardening spring) are usually accompanied by an increase in che

resonant frequencies of a system. For e."<aIDple, both the Duffing equation, with a hardening

spring, e."<tema1ly forced by a hannonic e.'{ciration [Nayfeh and iYlook, 1979], and a coupled 2DOF

system with a hardening cubic stiffness nonlinearity also excited by a harmonie forcing [Lee et al,

1997], present a resonance CUITe tilted to the right.

•

Nevenheless, and in support of our observation, we mention mat an experimenral

manifestation of a shift towards smaller frequenàes bas been reported in the physics literature for

simple nonlinear systems driven by additive noise [Dykman and McClintock, 1992J. In addition,

these cases have been shawn tO e.ilibit what is called noise-indJIced narrowing, as defined for exarnple

by the diminishing rario of the bandwidth at the halE power point over the peak power, which is

in total contrast with the more familiar broadening observation. Dykman and NIcClintock seem

to suggeSt mat noise-induced narrowing is a large noise phenomena since it is preceded by a peak

broadening at smaIler noise intensiry. Our results, presented in Figure 6.25 do in fact ~ilibit a

narrowing of the fundamental frequencyp~ 1bis is better seen on a Iinear scale in Figure 6.26,

which aIso includes the frequency response for (Wo additional turbulence ~'{citacion variances.

Figure 6.26 - PSD of nonlinear pitch response ta combined e."{citation

for fiye values of mrbulence variance; [lm =5.0, L = 50.0, k3 = 400.0.
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Nore thar a broadening of the peak occurs as the turbulence variance is varied from a/
= 0.001 ra 0.01. Further increases of che turbulence variance, to Or! = 0.05, 0.1 and 1.0, induce

a reverse rreneL hence a peak narroTW-ing. We nore thar the value of turbulence variance at which

chis reversai in trend is observecL 0.01 < ar'!., seems ro correspond approxllnare1y to the variance

at which the inner peaks in the pirch marginal PDF srarrs ro become dominant.

6.3.2.2 New resonant peak

4\ ratally new rime sca1e, not present in the deterministic probl~ is obsenred in the

specrrum. In Figure 6.25, ir is besr seen for the case with turbulence variance, OT! = 0.1, where

it appears as a broad band peak centred at k ::: 0.3. For the [WO other rorbulence variances, ar2

=0.01 and OT'!. =1.0, chis new resonance appears as a hump in the vicinity of k :: 0.25 and k ::

0.5, respeetively.

The appearance of a new peak in the specrrum IS a known peculiarity of oonlinear noisy

systems, bur for which there is a bi-stabiliry. In the bi-stable case, the physical grounds for a new

rime scale can be easily understood since the noise triggers jumps between [wo stable artractors.

At a certain value of noise intensity, coherent oscillations, in the probabilistic sense, occu!

between the twO states. We have no such bi-srabiliry in our case. Accordingly, chis ~'q)lanation

cloes not seem tO apply.

From Figure 6.25, we notice chat the location of this new peak appears tO be turbulence

variance dependent, and occurs ar higher frequencies for larger excitation levels. The same

observation is retained from Figure 6.27, which compares the spectral responses of the airfoil for

pure vertical and combined turbulence e..~citation. A shift of the new resonant peak towards

higher frequencies for combined turbulence is nored as well. Both cases are responding tO the

same value of turbulence '\..ariance, but their mean-square responses are different, the latter being

larger. Ths greater response tO vertical mrbulence is eaabled by the longimdinal componear of

rurbulence which has a desrabilising effecr, as will be discussed in Chapter 7. For rhis case, there

is a 12~/o increase in mean-square pirch response due ro longimdinal turbulence. Nore as well that

00 fundamental differences are noticed between the spectral responses of Figures 6.25 and 6.2ï

\vruch correspond ro post-insrability and pre-insrabiliry regimes, respectively.
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Figure 6.27 - PSD of the nonlinear pitch response to pure vertical and combined rurbulence,

at Um =2.0; L = 50.0, a.r"! =1.0, k3 =400.0.

Hence, it is believed that the location of the peak is not directly due tO the turbulence

leve4 but tO the airfoil mean-square response. In this light, we are tempted tO propose a simplisric

phenomenological interpretation in the form of an effective stiffness. Recall equation (6.3) where

this concept is defined more explicitly in the conte..xt of a lDOF system '"vith a cubic sriffness

nonlinearity:

(6.3)

•
In an analogy tO the linear system, the tenn k3 ~ ~ represents effecrively a stiffness coefficient. In

this sense, a larger mean-square response, ~ 2, corresponds ta a sriffer system, hence a

displacement of this effective stiffness peak towards a higher frequency on the response
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spectrWn. The concept ofan effective linear stiffness has been shown tO have ment in the conte..~

of predicti.ng the mean-square response of noisy nonlinear systems. This is usually formalised

under the approach of equivalenc linearization, and has for its dererministic counterpart the

describing function mechod. However, the use of an effective stiffness in the conrext of the

frequency response is probably more equivocal.

Finally, we add chat since it is a general observation chac nonlinear random dynamical

syscems which possess a noise-conrrolled rime scale are susceptible co e..wbit stochasric resonance

[Silchenko et al., 1999; .\nishchenko and Neiman, 199ïJ, it is likely that these [WO observations

in our aeroelastic system are associated wich an increase in che signal-to-noise rario at sorne

optimal value of turbulence variance:!.

6.4 Concluding Remarks

The response of che nonlinear airfoil tO turbulent flow (longitudinal and vertical) cakes

different forros. \Ve have chosen co concenrrate on the mean-square and probability density

densiry represenrations, and touch upon sorne aspectS of the frequency response. The main points

we reram are:

1. The e.xàted response mean-square increases with airspeed. This is mainly attribured to the

combined influence of an increasing aerodynamic foràng and growing amplirode of the

underlying detenninistic LeG.

2. Depending 00 turbulence variance and magnitude of the nonlinear stiffness coefficient,

the excited mean-square response may tend ra or diverge from the non-excited,

deterministic response as the airspeed is raised. In chis regard, increasing the turbulence

variance or the oonlinear coeffiàeot have the same effeet in that the excited response

tends ta depart frOID the non-e.xcited one.

:\lrhough scochastic resonance is usua1ly identified with the amplification of a weak extemal periodic forcing,
similar amplification observations have been reported \l,-here the periodic signal is not e."'Ctemal but originates
from the system itself in the fOrIn of a limit cycle [Dirzinger et al. 1994). In chis case, it is tenned !/o,hartÎc
f?.fOl1al1a lVi/holl/ txtmtalptriodùJom. 1t corresponds co our problem.
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• 3. As introduced in Chapter 4, the transitions in the marginal PDFs occu.r at smaller

airspeeds for the pitch and pitch rate as compared co both heave states. We have

attributed this behaviour to the location of the oonlinearity which acrs directly 00 the

pitch stiffness. :Nforeoyer, the transition airspeeds in the heave and heave rates are always

delayed with respect to the reference non-e.,<cited flutter/Hopf bifurcation point, and

increase monotooously with airspeed.

4. 00 the contrary, the transition airspeeds of the pitch states display a non-monotonie

behaviour. In comparison with the dererministic flutter/Hopf bifurcation airspeed, the

transition airspeeds are initially (i.e. for small values of turbulence variance) postponed in

pitch angle and advanced in pitch rate. As the turbulence leve! is increased, the trend is

invened such that the pitch angle transitions at a smaller airspeed and the pitch rare at a

larger airspeed.

•
5. The initial postponement in pitch angle transition airspeed, from uni- to bi-modal,

corresponds ta the fading away of the underlying structure of the detenninistic LCO. At

intermediate levels of turbulence, a competition occurs between the LeO strUcrure and

more dominant turbulence effecrs interacting with the non-lineariry. The result is a double

bi-modality of the pitch marginal PDF where the outer peaks correspond tO the

underlying detenninistic LCO and the inner peaks ta the latter effecrs. .:\ further increase

in turbulence variance destroys completely the LeO structure. This is represented in the

pitch marginal PDF by another type of bi-modality. Accordingly, the nature of the bi

modality of the marginal PDF projection is not unique.

6. The nature of the bi-modaliry depends on turbulence leve~ and on the magnitude of the

nonlinear coefficient as weIL The dependence is the same for both. For example, a small

turbulence variance or small nonlinear coefficient correspond ta the LCO based bi

modality.

•
7. .-\ssociated with the destruCtion of the basic LeO structure, and the appearance of the

inner peaks in the marginal PDFs, is the increased contribution of the super-harmonics

relative ta the fundamental frequency. It is a manifestation of the enhanced nonlinear
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8.

effeets induced by the mrbulence, and parallels the change in the dynamics of the non

e."t:cired airfoi! with airspeed.

Finally, the interaction of the turbulent excitation wirh the nonlinear torsional stiffness

induces [wo noise-conrrolled cime scales. One is a shift towards smaller frequencies and

narrowing of the dominant fundamental frequency peak. The second is the appearance

of a new resonant peak, located in the intermedi.are frequency range.
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Chapter 7

CONTRIBUTION OF LONGITUDINAL TURBULENCE

EXCITATION - Binary Flutter Conditions

Specifically in response ta the second objective of this thesis, wmch is tO aniculate a

detailed and comprehensive picmre of the contribution of the longirudinal component of

rurbulence as e::-..~erienced by the airfoil, we e-,,{anllne its effecrs mainly frOID the point of view of

its relative importance in the overa,R more realistic, combined rurbulence problem. Recall that in

the introductory chapeer, we mentioned that no sysremaric and rational investigation could be

found in the lirerature conceming chis question, for the linear nor the nonlinear airfoil. This

discussion intends tO bridge that gap.

During the course 0 f this research, we have found mat longirudinal rorbulence has

essentially t\vo effects of a seemingly opposite nature. One is destabilising, and the other is

organising. By organising, we mem a tendency tO force the dynamics tO be centred around the

origin, as manifested by a sharpening of the response probability density. These !wo effects are

discussed in the following sections, tirst separately and then in combination. They are also

discussed from the point of vie\v of their overall contribution relative to the importance of the

v·ertical camponenr a f turbulence.
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The effect on srability has been discussed in pan in Chapter 5 with regards lO the

ad'~"ancement of the Butter point. The other facet of the desrabilising raIe of the longitudinal

component of rurbulence has a more global effeet since it affectS more than the immediare region

of the tlutter point. This global consequence of desrabilisation is the enhanced sensiti\;ry of the

airfoil ta e......-rernal e..xcirarions. It has been introduced in Chapter 4, for e..xample Figure 4.20 which

sho'ws that the dynamics of the nonlinear airfoil in combined rnrbulent e..,:citation e..~bits a largest

Lyapunov e..\.-ponent closer ta the zero a..xis compared with pure vertical rurbulence, thus indicating

a decrease in srabiliry due tO longitudinal turbulence.

E\.l'ressed tangibly by the response mean-square, the decrease in srabiliry due tO the

longitudinal component of turbulence affectS both the fi....œd point and the LCO which respond

with more ngour ta vertical turbulence. We examine this question for the nonlinear and linear

airfoil (only the stable fixed point in this case), and use the response mean-square, more precisdy

the difference between the combined and pure vertical turbulence e..xcirarion, and the largest

Lyapunov exponent as the main measures.

7.1. 1 Linear airfoil

The desrabilisarion of the linear airfoil, strictly speaking the equilibrium point, is

considered. Figure ï.1 compares bath the largest Lyapunm..• e..~onent and pitch response mean

square as a functi.on of mean airspeed for combined and pure vertical coloured rurbulence. Nore

that in examining the linear airfoil, we are restricted tO pre-Butter airspeeds, as defined by the

random Butter speeds given in Chapeer 5. For the case shawn belaw, the random Butter speed

is Uml = 3.95.

From Figure Î.1 (a), it is obsenred mat in addition tO the advancement of the flutter point,

the largest Lyapunoy exponent is, for ail airspeeds, closer tO the neutral stabiliry axis due to

longitudinal turbulence in comparison with the non-e.-..:::cired case given by the real part of the

eigenvalue of the slow mode. If we consider the interpreracion that the magnitude of the largest

Lyapuno\· e..xponent is an e.\.l'ression of the degree of stability of rrajeetories, we may say mat
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• longitudinal excitation decreases the srabiliry of the syst~ strictly speaking the fi.xed point, on

rwo accounts. ~Ot only does it adyance the flutrer point, it also decreases the damping or the

srrength of the attraction~ hence a longer rime tO reach sready state~ in the probabilistic sense. On

the other han~ we note mat the loss ofdamping associared \Vith the approach of the flutrer speed

is slighdy more graduai and less e."{plosive with longitudinal turbulence than withour.
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Figure ï.l - Comparison of the largest Lyapunov e.."q>onent (a)~ and pitch response mean-

• square (b), of linear airfoil for combined and pure vertical turbulence,

as a function of airspeed; a-/ =0.5, L =50.0, k3 =0.0.
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Ir is aIso observed tllilt the difference between the excited and non-excired cases is

signifiant in the viciniry of the Butter poin4 wmch we attribute tO the direct consequence of irs

shift in airspeed. The difference then diminishes with decreasing airspeed up uncil it reaches

approximarely Um :::: 2.5. For airspeeds below Um :::: 2.5, the difference in the ,;;alue of Àmax remains

relarively small and constant. \\·e inrerprer this range of airspeed as being 00 longer influenced

br the shift in Butter poin4 but rather by a more general destabilising effect of longitudinal

turbulence. In this respect, the shift in flutter speed seems to haye an effect on the response for

a relarively large airspeed range, 2.5 $ Um < Um1 =3.95.

The same trends are observed for the pirch response mean-square shown in Figure 7.1

(b). The delta respoose due ro the presence of longitudinal turbulence (i.e. the difference in

response between the combined and pure vertical e.."ï:citarioo cases) increases with increasing

airspeed for Um ~ 2.5, hence as the instabiliry point is approached. On the other hand, the delta

response stays re1atively constant at the lower speeds, Le. away from the flutter poinr.

_-\nother observation is that the increase in response mean-square due tO longitudinal

turbulence appears ra be more significant than the smft in fluner point. In other words, the

longitudinal component of turbulence appears tO have relarively more influence on me response

mean-square than on the shift in flutter speed even for airspeeds well ahead of the flutter point,

as ShO'WLl for e.."i:aIl1ple for Um = 3.0 in Figure 7.1. These general sratements are given a more e.."i:act

mea.ning in the Table ï.1, where the percenrage difference (mcrease) in response mean-square for

!\va rypical airspeeds are compared. _\150 presented are results for other turbulence levels, as weil

as the percenrage shift in flutter speed as reproduced from Table S.1.

In order ta establish a meaningful description, and comparison, of the respanse mean

squares, the [WO typical \-alues of airspeed are defined in accordance with an operational point of

v'Ïew. One corresponds ro an operational design airspeed, Uo, and the other tO a limit airspeed, UL• In

the establishment of an operarional usage envelope, ir is a common design practice to use a 1.2

safery factor for flutrer. In other words, UL is typica1ly defined according ra Uf = 1.2 Ur.> thus in

our case UL =4.31/1.2 ::z 3.S. On the omer hand, the definirion of the design airspeed (i.e. the

airspeed at which the system is normally used) does not usually follow a similar universal srandar~

bur is lower than UL• We choose a factor of saferr in the arder of2, which translates inro Uo ""2.0.
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\'ie can also arrach to these (wo airspeeds anorner interpretarion. We consider the design

airspeed~ Uo = 2.0, ta be representarive of the response level associated \vith the general

destabilising effect of the longitudinal cornponent of turbulence and where the shift in flutter

speed has lost its influence. On the other hand, we consider the limit airspeed, UL = 3.5 to be

representatLve of the response levd associated directly, and specifical1y, with the advancement of

the fluner point.

T 0 each value of turbulence variance, we ha\"e associated turbulent intensiries based on

the limit and determinisric flutter speeds. This pro'\'-ïdes a basis of comparison with a reallife

envl.ronment. For example~ the lower turbulence ~rariance corresponds roughly tO aanospheric

conditions. Houbolt et al. [1964] have given R...'f.S turbulence \·elociries ranging from 2 mlsec for

clear air, to 6 mis in cumulus douds and 12 rn/sec in severe weather. Assuming a typical aircraft

fluner speed of 250 mlsec~ turbulence intensities based on chat airspeed ~ralue range frOID 1~/O,

2~/O tO 5%1, respecrivdy.

The [WO larger values of turbulence variance may correspond ta a turbulent environment

created by flow separarion in the wake of a body as pointed out, for e..'"{ample~ by Fujimori et al.

[1979] in the conte..'"{t of rotor blades. As rernarked in Chapter 1, the higher turbulence level may

represent the case of leading edge vortex breakdown of fighter aircraft at high angle of anack.

Table ï.1 - Percenrage shift in flutrer airspeed and percenrage increase in linear pitch response

mean-square; CT: combined turbulence, V1: pure vertical turbulence; L = 50.0, k3 =0.0.

197



•

•

•

From Table ï.1, and supplemented by the previous discussion, \ve retatn three

obser~,""ations and conclusions. They are brietly discussed.

Relative importance oflongitudinal/urbI/fente as afimction ofairspeed

Firsr, it is rerained that for ail turbulence le'tels presented, the response mean-square is

much more sensitive tO the presence of longitudinal turbulence at UL =3.5 than at UD =2. That

is, as the airspeed is increased and the flutter point is approached, the decrease in srabiliry due [Q

longitudinal turbulence becomes more pronounced.

Effeet ofturbufence level

\"\1e also note mat the percenrage difference in response mean-square, (ifcr - if"....-r)/"&2\-r,

increases \vith turbulence variance. TIùs means chat from a response mean-square point of view,

the relative contribution of longitudinal turbulence increases with rorbulence Level This trend

follows the percenrage shift in flutter speed.

The rational for this beha'V;our is the sensitiviry of the airfoil tO vertical turbulence which

is increased as the turbulence variance is raised. We clarify this srarement by mentioning mat

augmenting the turbulence level does rwo things. One, it increases the magnitude of the e-~ternal

forcing (i.e. the vertical e-"{citation). This applies tO both the combined turbulence and pure

vertical turbulence problems. Second, it increases the destabilising effect of longirudinal

turbulence. Of course, this onlyapplies tO the combined excitation problem, hence the larger

percentage difference in response mean-square.

Increase in response level versus advancement offlutter speed

TIùrdly, we note mat although the shift in Butter speed becomes significant for turbulence

variances ~ 0.5. the impact of the longitudinal e-"{ciration on the response mean-square may be

impOrtant at lower turbulence leyels, i.e. ar: ~ 0.1. The percenrage difference in response mean

square is in general more significant than the percentage difference in flutter speed. This is

especially 50 at the limit airspeed, UL =3.5, which is defined in principle tO prevent, with a
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reasonable degree ofconfidence, an: non-intentional usage in the unsrable region1. From a design

point of \;ew in the case where the main limiring aspect is due tO turbulence, the limit airspeed

should not only be defined in accordance \vith the advancement in flutter airspeed, bu! perhaps

more significantly considering the increase in response leve!.

To make the relevance of th.is point clear, it must be realized that invesrigaring the

question of the shift in flutter airspeed, in isolation from the presence of the vertical component

of turbulence, although a ,,·alid e....œrcise, gives only a partial pierore of the situation of the more

general combined turbulence problem. As opposed tO a generic parametric excitation, this is a

parriculariry of the turbulence excitation because its longitudinal and vertical components,

although in general staristically uncorrelated, must in a final analysis be considered together since

one does not come ~"'Îthout the other. In contrast, given the case for e.."{ample where the

parametric excitation would originate primarily from the airfoil srrucrural supporr, whereas the

e..'\.ï:emal e..~citation would be due ta low inrensity turbulence, this immediate discussion would lose

its applicabiliry.

Effict ofturbulence spectral content and 'pl?Ysica/" white noise excitation

We now mm our attention ta a second set of results sho\vn in Figure 7.2 and

subsequently in Table 7.2, which models the e.."{citation effectively as a wide-band (physical white

noise) excitation. We notice mat the relative impact of the longitudinal componenr of turbulence

on the response mean-square is in generalless impOrtant than for the former case. This difference

is e::-..-plained by a change of shape of the excitation specrrum for bath turbulence componentS.

~on-inrentionaloperation of the airfoil in posr-insrabiliry conditions may be due ra bad design or manufacture,
non-eompliance v..-irh operarional procedures or an unconrrolled operational environrnent, i.e. gusr or turbulence.

This is the case studied by- Ibrahim er al. [1990, 1991] on panel Butter.
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Figure ï.2 - Pitch response mean-square of the linear airfoil in pure v-errical and combined

turbulence e..xciration, as a function of airspeed; CJr'!. =1.0, L =O.S, k3 = 0.0.
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Table 7.2 - Percenrage shift in flutter airspeed and percenrage increase in linear

pitch respanse mean-square; L = 0.5, k3 = 0.0.

•

At this small v-alue af scale of turbulence, L = 0.5, the energy in the e..\:àration is

distributed equally amongst ail resonant (parametric and e..nemal) frequencies. Accordingly, given

a specific turbulence variance, the high energy which was locared in the law frequency range for

the former case, L =50.0, has been redistribured in part to the high frequency range far L = 0.5.

.-\ schematic of the redistribution in e..xcitation frequencies fram a large tO a small value of scale

of turbulence is presented in Figure Î.3 (see also Figure 2.6).
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Figure 7.3 - Schematic of change in shape of longitudinal and V"errical turbulence specrra

from a large ( -) tO a small ( --- ) value of scale of turbulence.

1bis redistribution has t\Vo cumulative effectS. Due to the decrease in the e.."{ciution leyel

of the low and very low frequencies, speci.fically for the longirodinal turbulence speetrum, Oyerall

the parametric resonances lose their srrength. As a consequence, the stabiliry of the airfoil is

increased relatiye ta the case L = 50.0 as directly e..'\.-pressed by the srruùler percenrage shift in

flutrer speed. The second effect concems the e.xrernal resonances, which are srrengthened by the

increase of the e.xcitation level in the inrermediate and higher frequency band, specifically for the

vertical turbulence spectrum. These rwo effects, smaller decrease of srabilit)? and increased

extemal forcing, when combined together diminish the relative contribution of the longitudinal

component of turbulence as the scale of turbulence rends ta zero.

ï .1.2 Noolinear airfoil

When the nonlineariry is inrroduced, sustained stable motion is exhibited pas! the fluner

point. The restraining mechanism of the nonlinearity applies to the response to vertical turbulence

whether or not longitudinal turbulence is modelled. This is shov..n in Figure 7.4, where both the

pitch response mean-square and larges! Lyapuno\? e.~onent for combined turbulence excitation
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• and pure vertical turbulence, as a funcrion of mem airspeed, are compared. The principal

difference is quantitative, and generally small. The response mean-square for the combined

e.~citaùoncun+e is al\vays larger than for the pure vemcal turbulence e.xciratioo. Similarly, Ànux for

combined rnrbulence is doser tO the no damping a:as.
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Figure ï.4 - Comparison of the pitch response mean-square Ca), and largest Lyapunov

e..'..l'0nent (b), of nonlinear airfoil for combined and pure vertical turbulence,

as a funcrion of airspeed; Gr~ =1.0, L =50.0, k3 =50.0.
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Ir is also noticed from Figure 7A chat the delta response (ie. the difference in response

between the combined and the pure vertical e."{cirarion cases) increases slowly as the airspeed is

increased wough the fluner point, given by Uf = 4.31. Relating the delta response to the

desrabilizing effect of longitudinal turbulence, the same conclusion can be inferred from the

examinarion of the behaviour of the largest Lyapunov e.'q)onenr as a function of airspeed since

the difference between the [wo e."\:P0nents increases as weIl.

In respect of the parricular behaviour in the very low airspeeds, namely for Um ~ 1.5,

where the mean-square of the response ra combined turbulence appears to diverge from the pure

vertical turbulence C:lse, we attribute this ohserv'ation ta the lack of strucrural damping which

stans to become apparent for airspeeds close ta zero. This was shown in Chapter 6.

Effect ofthe nonlinear torsionaJ .rtiffness coefficient

\X~e have observed mat increasing the magnitude of the nonlinear coefficient, k3, has for

effect that the respanse mean-square far cambined rurbulence tends ta the respanse ta pure

vertical exàtation. We interpret this tendency as a decrease of the influence of the langirudinal

rurbulence \vith increasing nonlineariry.

Table 7.3 compares the percenrage difference in pitch response mean-square for the linear

and nonlinear airfoil, far t\.VO \·alues af k3, at three clifferent airspeeds. In addition ta the t'Wo

rypical airspeeds used far the linear case, a post-flutter airspeed is used as weil.

r·······~~··=··~~~·······r···~~··=··~~·.·~····T···~~··~··~~~~····l

r..(~~··~ ..~~~;·ï·i~~·~~ ..;:·=;· ~..········;·;··~~~····· ··..·r···..···~·~··~·;~·· ......·r········~·;··~·;~ ..····..·l
;.__ __ -: : _...•...................~ _ :
~ (Ff'-cr-if!\-r)/7t\TatUL=3.5 ~ >1000~/o j 9% 1 4°10 1
.........................................................................4 4 - .4 .

L~~~..~..~~~~t~.~~.~~ ..~~~:~ L _ L.._~..~~ ~ ~..~~~ ..J

Table 7.3 - Percenrage increase in pitch response mean-square for different values

of the nonlinear pitch cubic stiffness caefficient; L =50.0, a/ =1.0 (Tu=5 =20 ~/o) .
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From this table, it is also deduced chat the relative effect of longitudinal turbulence

diminishes with airspeed. This is conrrary tO the linear case, and cm be relared tO the fact that

strictly speaking the tlutrer poinr no longer exisrs when both combined turbulence and

nonlinearity are considered, as discussed in Chapter 4. What remains is a general desrabilisarion

due tO longitudinal rurbulence. Funhermore, for small magnirudes of nonlinearity, the difference

can be relarively important. Ir, however, diminishes as the magnirude of the nonlinearity increases.

Effict offl/rbll/ence variance

The larger relative influence of longitudinal turbulence on the response mean-square

which has been observed for the linear airfoil as the turbulence level is increased, see Tables 7.1

and 7.2, is aIso noticed for the nonlinear airfoil. As shown in Table 7.4, an increase in turbulence

variance is associated with an increase in the percenrage difference in response mean-square for

ail airspeeds e..xamined.

~.._ _"._ _ _ ":" ": - __._ __ ~

, _ _...J..._.~~..~.9.:.~ _j..._~~.~._?:? i ~~.~._~.:~ .i
1 ({rer - &\-r)/E\~ at UD=2 1 2 % ~ 8 ~!o ~ 15 % ~
; ·········:·················..·············1-·..········· : '!

~ (if!er - if!\ï)/~\-r at UL=3.5 ~ < 2 % ~ 5 ~/O ~ 9 ~/o ~; ~ _ ~ ~ ~

L.~~0:..~..~:2~.(~.\~.~~ ..~.~.?:9 1 ~..~..::.~ L ~.~~~.._ L ~..~:.~ 1

Table 7.4 - Percenrage increase in the nonlinear pitch response mean-square

for different \·alues of turbulence Yariance; L =50.0, k3 =50.0.

In closing dùs discussion we mention thar although the longirudinal component of

turbulence desrabilises the airfoil, hence enhances its sensitivity to e.."{ternal excitations, the

nonlinear response mean-square is overall goyemed by the vertical component of turbulence.

Accordingly, we say thar, in general, longitudinal rurbtÙence pIays a secondary role in renns of the

system response levd.

\Xle add chat this general observation has also been nored by Heo [1985] bur for a more

generic problem. Furthermore, and in contrast to our analysis, he considered white noise

e..xciratLon only and apparendy observed the dynamics away from the (stochastic) instability point.

204



•

•

In chis respect, these results add ro Heo's analysis as we have shown wt the degree of the relative

influence of the parametric e..xcitation~ namely longirudinal rurbulence~ depends on a variery of

parameters which include rurbulence variance and scale, airspeed and magnitude of nonlinearity.

7.2 Organisation

\YJe change perspective and address a seemingly opposite consequence of longitudinal

turbulence which is re\pealed by the probability structUre of the response. This organizing effecr

is addressed by fust considering the nonlinear airfoil excited by pure longitudinal rnrbulence.

Î.2.1 Nonlinear airfoil (in pure longitudinal turbulence)

Recall we have obsen"ed a region of dynamical behaviour charaeterized by a single peaked

densitY' cenrred at the origin, and located ar airspeeds between the random flutrer and LCO onser

airspeeds (for example see Figures 4.5 and 4.6). We have labelled chis behaviour as being a

random fixed point. The organising effect is expressed by the tendency of the longirudinal

turbulence to force the dyoamics ro occur in the viciniry of the origin. Ir becomes apparent by

comparing the PDF of the longirodinally excited airfoil with the non-excited case at an airspeed

above the deterministic flutrer/Hopfbifurcarion speed (Ur =4.31) but below the random LCO

anser, as shown in the inset of Figure ï.5 far Um =4.4.

This effect can aIso be represented by the prababiliry of e..xceedance of the pitch angle,

in ather wards the probability chat the absalute value of the pitch angle e.xceeds a specific value.

It is a cumulative distribution and is expressed mathematically as:

8

P(pirchangle> 181 ) == PC 8) = 1-fPs( a)da
-8

(7.1)

•
In Figure 7.5, a camparison is shown between the probabiliry of exceedance of the pitch

angle for the deterministic and pure longirodinally e..xcited nonlinear airfoil at the same airspeecL

Um = 4'+.
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Figure Î.S - Probabiliry of e.xceedance of pitch angle of nonlinear airfoil

\vith pure longitudinal turbulence at Um = 4.4; ar2 = 1.0, L = 250.0, k3 = 400.0.

•
We note that although the variance of the response is la.rger for the e..'"<cited case compared

with the non-excited case, a consequence of the destabilizing effecr, most of the dynarnics is

concentrated about the zero pitch angle which we consider tO be an organizing effect. In this

e..'"<ample, for pitch angles bdow 0.5 degrees, the probabiliry of e.'"<ceedance of any of these angles

is smiller for the excited airfoil.

For a set of nonlinear coupled oscillators e.xcited by parametric noise, Yoon and Ibrahim

[1995] have also observed a sharpening of the PDF in comparison with the Gaussian nature of

the e.xcitation. They attribured this beha\1.our tO the system nonlinearity. However, our results

suggest, and we belie\·e that it is the case for any general system, that the sharpening of the

probability density is more a consequence of the parametric excitation than of the nonlinearity.

•

In support of this argument, recall our discussion in Chapter 4 where we showed that the

nonlinearity is required tO enable the existence of the dynamica! region located between the

random fluner point and the random LCO onset. However, we further sho"red and argued that

the magnitude of the nonlineariry plays no pan in determining the range of airspeed for which

the PDF displays a sharp single-peaked shape, labelled as a random fi.."'{ed point. The size of chis

region is detennined br the longitudinal turbulence conditions, for example its variance. For the
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• problem where the e-"{ciration is purely parametric, the nonlinearity is therefore required tO enable

sustained motion past the (random) instahility point, but its role in defining the shape of the PDF

is mainly supportive.

-?? Lin . J: il1._.- ear alrl.O

The investigation of the linear airfoil requires that vertical turbulence he also considered,

in addition to longiroclinal turbulence, since wimaut an external forcing no steady stace dynamics

(far airspeeds below the tlutter point) is possible. The influence of the longitudinal companenc

of turbulence can be inferred by platting the PDF of the respanse ta combined turbulence against

the corresponding Gaussian cun-e. This is shown in Figure 7.6 which compares the pitch angle

marginal PDF of the linear airfail in cambined turbulent e-"<ciratian with a Gaussian curve having

the same variance. We observe a (small) sharper densiry function for the e."<cited airfoil response.

•
0.14 ~

0.12 -;-

0.10 -

~-;;; 0.08 ~

..:.. 0.06-

0.04 -

0.02 -

combined excitation

•

0.00 _-.:~:::::::::'.o...---_- -~---"""";""'-~-~~==--~

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

pitch angle. 8 (deg)

Figure 7.6 -l\farginal PDF of the linear airfoil pitch response ro combined turbulence

in comparison with a Gaussian densiry; Um =2.0, Gr! =1.0, L =50.0, k3 =0.0.

The Gaussian curve used as a basis of comparison rypifies the PDF of the airfoillinear

response to pure vertical excitation since the excitation is Gaussian distributed. Ir is therefore

releyanr ra point our that in choosing the variance of the Gaussian curve tO he equal ta the mean

square of the response to combined turbulence, instead of the mean-square af the respanse ra
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pure ~lertiCal turbulence, we ha',-e tried tO isolate the probability strUcmre from any effecr other

than organizing. In this regard, it is ternpring tO interpret the sharpening of the PDF shown in

Figure 7.6 as a (small) organizing effect of longitudinal turbulence on the linear airfoiL However,

dUs organizing effecr on che linear woil may only be apparent, since, as we u.ill discuss in Section

Î .3.1, larger deviations from the origin are che overall consequence of longitudinal turbulence, due

ro its dominant desrabilisation effecr.

Effict of fcale ofturbulence and mean airspeed

Not shawn bur we have observed a stronger deparrure from normaliry (Gaussian shape)

for larger scales of rorbulence. This result appears tO be coherent with the pure longitudinally

excited nonlinear airfoil dynamics, for which we have observed a larger range of airspeed

e.ilibiting a single-peaked PDF with increasing scale of turbulence (see Figure 4.13). Note as well

that we have also obser,,-ed a sharpening of the probabiliry density with increasing airspeed, chat

is as the flutter speed is approached.

7.3 Destabilisation Versus Organisation

In the previous [wo sections, we have analysed these wo seemingly opposite effecrs in

isolation from each other. In doing so, we have obtained an undersranding of each mechanism,

thus giving us the rools ra better grasp the m,-erall influence of the longirudinal component of

turbulence. In this section we consider the combination of these [WO effects. This topic is fust

treated \vithout considering the nonlineariry. The effect of the nonlineariry will be added next.

7.3.1 Linear airfoil

The approach taken is tO examme bath the measures of desrabilisation and of

organisation, respectively, the response mean-square and PDF, with one unique projection that

represents both effecrs. This is possible by plotting the same data shown in Figure 7.6 against a

Gaussian curve wlùch has a variance equal tO the response mean-square tO pure vertical

turbulence. In other words, we compare the marginal PDF of the responses to combined

excitation and ta pure vertical excitation. This projection enables us tO compare the relative
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• strength ofbom effeets, mat is orgarusing and desrabilising.

This is shown in Figure 7.7. The predominant effecr ofdesrabilisarion, over organisation,

is clearly demonstrared by the flatter densiry of the combined excitation. :\ flatter densiry, hence

a sttonger diffusion about its mean, is indicative of a more imPOrtant destabilizing effect since a

relatively important part of the dyoamics occurs at high amplitude.

combined
excitation

•

0.16 ~
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0.12 i-

- 0.10 .l-
~-", 0.08 ~

~-
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-12.0 -10.0 -8.0

pure vertical
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pitch angle. () (deg)

•

Figure 7.7 - Comparison of the marginal PDF of the linear moil pitch response to combined

and pure vertical turbulence; Um =2.0, ar1 =1.0, L =50.0, k3 =0.0.

7.3.2 Nonlinear airfoil

The quesrion of the destabilising ,,-ersus organising effects of longitudinal turbulence in

the context of the nonlinear airfoil in combined turbulence can be parrially represented by the

transition point from a uni- to bi-modal marginal PDF in pitch angle, as shown in Figure 7.8. The

position of the e..xtrema of the marginal pitch PDF are displayed as a function of airspeed for the

(wo cases of combined and pure vertical e.xcitarion. The difference between the twO behaviours

shows the contribution of the longitudinal component of turbulence, and displays an early

transition point.
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Figure 7.8 - Transition diagram (location of the marginal PDF ma.'rÏma) of the pitch angle

for pure vertical and combined rorbulence; (J../" =1.0, L =50.0, k] =400.0.

Not shown, but longirudinal turbulence (with same variance and scale) has the opposite

effect on the pitch rate marginal PDF since the transition point is delayed compared \vith pure

vertical turbulence. *-\lthough apparendy contradictory results, these t\Vo observations are

coherent with the discussion in Chapter 6 conceming the probabilistic scrucrure of the nonlinear

response tO (combined) rurbulence. In particular, Figure 6.15 displays, for L =50.0 and a/ =1.0,

an ad\·ancing transition airspeed in pitch and a rerarding transition in pitch rate with increasing

turbulence ,,..ariance. --\ccordingly, we argue that by destabilising the airfoil, longirudinal e.."{cirarion

induces a greater response to vertical rurbulence, which in rom purs a greater demand on the

nonlinearity. The final effect on rhe probabilisric srructure of the response is the same as obtained

from an increased turbulence variance.

In corollary to this observ'ation is the realisation that rhe airspeed at which the PDF

transitions is largely determined by the vertical excitation. .-\5 e.."{emplified by Figure 7.8,

longitudinal turbulence plays a minor role. This is consistent with our observations of the

respon5e mean-square. \Y/e have found the same observation for most cases inllestigatecl, such

mat, in general, the shift in transition airspeed is e..'\'Perimenrally difficult ta identify due ta the

requirement te have very smooth PDFs, hence the need for a very large sample size.
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• 7.4 Concluding Remarks

In sUI11II1aI"Y, we have the follo\\J-ing remarks. The tirst set are in regard ro the effects of

longirudinal turbulence, without considering the relative importance of longitudinal turbulence

in comparison with \-errical turbulence. _-\ccordingly, we ha\-e found:

1. Longirudinal turbulence has t\Vo effects of a seemingly different narure, which we have

interprered as being destabilising and organising. We have interpreted the tendency of

longirudinal rurbuIence to force the dynamics to occur about the origin as an organizing

effect. Ir is characterised by a sharpening of the marginal PDF about its mean. This

organizing effect is clearly exhibired by the nonlinear airfoil in pure longirudinal

turbulence for the range of airspeed bet\Veen the detenninistic and random LCO onsets.

For the linear airfoiL this effect is questionable.

•
2. In opposition ta organisation is destabilisation, which in mm is characre.rized also by [wo

effeetS. One is an advancemenr of the flutter point, strictly speaki.ng e."q)erienced only by

the linear airfoil. 1-fore general is the second effect wruch is an enhanced sensitiviry to

e.xtemal e..xcitation, specifically vertical turbulence in our case. This last effect translates

inro a larger response mean-square at any airspeed. For the linear airfoil, the percencage

increase in response mean-square is generally more imPOrtant than the percenrage shift

in fluner speed. This is particularly relevant for airspeeds relatively close tO the flutrer

pomr.

3. Of these [WO competing effects in the presence of vertical rorbulence, destabilisation,

which induces a diffusion of the dynamics about the origin, is felt much more strongly

by the airfoil, linear and nonlinear, than the organisation, whose result is opposite.

~ow, conceming the relative influence of the longirudinal camponent of turbulence in

the overall combined e.."{citation problem, we have found:

• 1. The relative importance of longitudinal turbulence in the cambined excitation problem

depends in parr on the magnitude of the nonlinearity. Where nonlinear effectS are
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2.

3.

imPOrtant, longirndinal turbulence becomes less significant. _\long dUs line, and as a

general mIe for the nonlinear airfoiL longirndinal turbulence is more of a concero at pre

flutrer airspeeds than in the post-t1urrer regian. \Ve then say that the respanse of the

turbulent e-xcited airfoil is dominated in the low speed range (pre-flutrer airspeeds) by the

combined effect of longitudinal and vertical turbulence, whereas at high speeds (post

flutrer) the contribution of longirnclinal turbulence makes way ta a greateI" influence of

the nonlineariry.

For the linear airfoil, the relative imponance of longirndinal turbulence cau be significant

for low airspeeds, depending on the turbulence variance and scale, but more 50 for high

airspeeds as flutrer is approached.

The relative importance of longirndinal turbulence in the combined e-xciration problem

depends aIso, in pan, on the overall turbulence charaeteristics, namely its intensity and

spectral content. For low turbulence variance levels, as defined in the conte-~ of this

thesis (for example of atmospheric origin), irs impact does oOt appear ta be significant.

It becomes imPOrtant, relative tO the vertical component, for higher turbulence levels

relared ta flo"r separation and vorre-x breakdown for example. With regards ta the

influence of the spectral content, the higher the scale of turbulence (ie. specrrum

concenrrated in the low frequencies) the more important is the relative contribution of

longirndinal turbulence. This is due to panmetric resonance conditions (with longirodinal

turbulence) which are the scrongest at small frequencies, whereas the airfoil resonares

(extemally) ta venical turbulence at higher frequencies.

•

4. Overall we have found that the dynamics of the airfoil is mainly govemed by venical

turbulence. Longitudinal turbulence generally plays a minor role, although it may be

significant depending on turbulence variance and scale, magnirode of nonlinearity and

closeness of flutrer point (stricrly for the linear airfoil) .
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Chapter 8

ASPECTS OF NONLINEAR RANDOM DIVERGENCE

In many regards, the dynamics of a diverging nonlinear airfoil in turbulent flo\V is

different than for Butter. Under turbulent excitation, the main potential sources of difference

between these [wo insmbility types are as follows. For a hardening nonlinear spring, the fi"{ed

point of the diverging airfoil bifurcates intO t\Vo new stable fixed points. This bi-stabiliry leads to

basin hopping under the influence of turbulence. Funhennore, contrary te the Hopfbifurcation,

the pitchfork bifurcation is not a srruCturallyl stable bifurcation. As discussed in Chapter 1, any

small external bias stOpS the fLxed point from bifurcating, and an addirional sadd.le-node

bifurcation appears. Third.ly, deterministic di\"ergence (and pitchfork) is a static problem. lts

nature changes, however, as it becomes a dynamic problem due tO the influence of turbulence.

In comparison tO the non-excited case, the complexity of the behaviour introduced by

turbulent e..xcitation renders the investigation of nonlinear divergence complicated and its

autcome much richer. For thase reasons and for sake of succincmess, we cannat treat chis

prablem at the same depth and as systematically as we have done far nonlinear tlutter.

The tenn ItnlctZlra/!y is taken here in the conrext of bifurcation theory. It does not refer tO the structure of the
airfoil.
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• _\ccordingly, we restrict oursdves to sorne aspectS of randam nanlinear divergence. The analysis

is mainly descriptive; however, in sorne cases a physical explanarion is given for the airfoil's

beha\"1our. In many ways. this chaprer opens the door for further research.

8.1 Dererminisric Baseline

Contrary ra fluner, divergence of the non-excired airfoil is a 1DOF sraric insrability. Ir is

soldy determined by the pirch DOF, and specifical1y its tarsianal (structural and aeradynamic)

stiffness properries. Keeping aoly the linear sriffness temlS, the divergence condition is obtained

trom equarions (2.25 a) and (2.26 a). _-\t the divergence :airspee~ Ud, the stable strUctUral sriffness

moment is equal ro the desrabilizing aerodynamic stiffness mamenr as shown in equarion (8.1).

The divergence airspeed is gi-.'"en in dimensional and non-dimensianal farms in equarions (8.2 a)

and (8.2 b), respecrivdy.

•
thus

~1)

(8.2 a)

Tr _
L. d -

2( ah + .5)

(82b)

•

_-\ necessary condition for divergence ro OCCU!' is mat a negative aerodynamic stiffness

e..~ts. The elasric a...~ must then be aft of the aerodynamic centre, or ah > - 0.5 (since the AC is

located at the quaner chard point for the airfoil in incompressible flow). For airspeeds belaw Ud,

the rotal sriffness is weakened by the negarive aerodynamic stiffness, but the fi..xed point, lacated

at the origin when no bus is considered, is stable. For airspeeds above Ud, the magnitude of the

negati\-e aerodynamic sriffness is grearer than the structural stiffness resulting in the fi..xed point

being unstable.

214



• ~ore that since UJ is soldy dependent on the strUcrural and aerodynamic sriffness

properti.es in pitc~ other parameters such as starie unbalance or frequency ratio have no

int1uence.

In the post-instabiliry regime, the flow is attracted tO rwo ne~· stable fi..~ed points. Their

location is determined by a new balance of moments which include the nonlinear resroring

moment, flK3, as given by equarion (8.3).

The location in pitch of the rwo ti"{ed points is then given by equation (8.4) in non-dimensional

form. Similarly, theix locarion in heave is obtained by solely considering the stiffness rerms in the

hea'\·e equarion of morion (equarions 2.25 band 2.26 a). The oon-dimensional heave is given by

equation (8.5). The heave rate and pitch rate are zero.

•
;
':' -

(8.4)

(8.5)

•

The supercritical pitchfork bifurcation is shown in Figure 8.1 as represented by the pitch and

heave. Gnl: one of the [wo post-instability fi..xed points is illustrared. The chosen airfoil baseline

paramerers for this analysis are as follo\\-~: k3=400.0, GJ/UJe =0.6325, Xe =-0.25, re =0.5, p =
100.0, ah =0.0, and no strUcrural damping Note that the divergence airspeed occurs at Ud =5.00.
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Figure 8.1 - Supercritical pitchfork bifurcation of the non-e."ii:cited nonlinear airfoil

as represented by the pitch and heave.

8.2 Random Bifurcation

8.2.1 Pure longitudinal turbulence excitation

Sho\\lTI in Figure 8.2 is the sready stare marginal PDF (multiplied by the pitch Yariance)

of the pitch angle in pure longirodinal turbulence (L =50.0 and ar1 =0.5) as the mean airspeed

is 5W"ept slowly thraugh divergence. Not sho~ the heave displays the same pornai4 whereas the

pitch rate and heave rare marginal PDFs exhibit a single sharp peak centred around the origin.

•

Of specific interest is the region of tri-modality located between Um2 and Urrû' i.e. for 5.5

~ Um ~ 6.4, since it is differenr from the fluITer case and is not predicted by the theoretical

analysis of the Landau equation under multiplicative white noise given in Chapter 1 (see Figure

1.5). This type of behaviour bas been obtained, numerically or analytically, by Sancho et al. (1982],

Stocks et al. [1989] and Horsthemke and Lefever [1984]. It has been attribured by these authors

ta the coloU!' of the multiplicative noise since in the limit tO white noise, they observed that the

central peak disappeared in fa,·our of the off-cenrred peaks.
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Figure 8.2 - Steady state marginal PDF diagram of the nonlinea.r airfoil pitch angle

in pure longitudinal turbulence as a function of mean airspeed;

Gr"!. = 0.5, L = 50.0, k3 = 400.0; N = 10,000,000, ..:1" = 0.2.

WTe have verified this interpretation for our system and found mat for a srruùler scale of

turbulence, L =5.0, a tri-modal PDF is also displayed, but for a shoner range of airspeed. At L

=0.5 which is very close tO the white noise limit relative ta the system rime scales, the tri-modal

densiry has tOtally disappeared.

'W'e conclude that the existence of the tri-modal densiry is caused by the slowness (large

noise correlation rime) of rurbulence. 'Xre also conclude that the (steady stare) bifurcation of me

di'\~erging airfail in pure longirudinal (coloured) turbulence is a three-step bifurcation. 1t is

charaererized by fust aD-bifurcation, shown as Um1 in Figure 8.2, which we associate tO the

rando!'11 divergence airspeed. This is followed by [wo P-type bifurcations separating a single-peaked

from a triple-peaked region and the triple-peaked fram a double-peaked PDF, represented in

Figure 8.2 as Um2 and UrnJ , respectively. Not shown, but in support of this conclusion we have

abserved that the larges! Lyapunov e.."q'onent e..~bits a disconrinuity at Um1, but remains

cantinuaus through Um2 and UmJ'

217



• Transient dynamics consideration

Due to the bi-stabili~· of the proble~ the transient dynamics may be significant in that

the motion may be caughr 'Nithin one porenrial well for a relative long cime before it jumps inro

the other well. Hence, Wlder certain conditions the transient PDF represenring the motion wirhin

one weIL i.e. inrra-well motion, may haV'e rime ra reach sorne type of steady state2 before basin

hopping occurs. We haV'e observed "sready stare" intra-well morion for low rorbulence variance

and/or for high airspeeds.

3.02.41.81.2-1.2-1.8

__ oo_···o. 5,000,000 iterations

--- 10.000.000 iterations

-2.4

---20,000,000 iterations

0.8 -

0.7 

0.6 

0.5 

0.4 -

0.3 -

0 1 -

0.1 -

0.0 -----~-----------------~---~

-3.0 ~.6 0.0 0.6

pitch angle, e (deg)

Figure 8.3 - Pitch marginal PDF of nonlinear airfoil in pure longitudinal turbulence

at three different rimes; Um =5.25, L =50.0, a/ = 0.1, k3 =400.0; ~ T =0.2.

Figure 8.3 shows the pitch PDF at three different rimes (given in terms of number of

iterarions) for a turbulence \-ariance ar2 =0.1 and airspeed Um =5.25. Ir is observed thar after

5,000,000 irerarions the morion has e\-olv'ed within ooly one well, and mat the probability density

appears to have nearly reached inrra-well "steady stare". After 20,000,000 iterarions, inter-well

motion has occurred, but probably relativeIy scarcely since steady state has nor been reached.

p(8,.}•

• :!Steady stlte of the PDF is defined when its shape does not change and becomes smooch wich rime.
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Of parricular interest is the observation mat there is a build-up of probability at zero pitch

angle for the long tenIl inter-weil case as weil as for the pure inm-weIl morion. For this re2son,

this peak cannot be attribured to basin hopping. We men believe that the origin of the peak at

zero pitch angle for pure mtra-weil motion is the same as of the central peak of the tri-modal

PDF shown in Figures 8.3 and 8.2 for a higher level turbulence. Ir is due tO longitudinal

turbulence and irs rendency tO arganize (force) the dynamics at the Origine

Nore alsa thar in comparison with Figure 8.3, the densiry shawn in Figure 8.2 is, for all

practical purposes, symmetric. This is due ro the higher turbulence Leve! (~2 = 0.5) which forces

the morion tO jump more frequently between the ewo wells. In this case, inter-weil steady state

is reached after 10,000,000 iterations.

8.2.2 Combined (and pure vertical) turbulence excitation

When vertical rorbulence is considered, with or without the longitudinal componen4 the

three-srep bifurcation for pure longitudinal turbulence does not appear. Insread, a single P

bifurcation is observed. Not shown but similarly '\N-ith the tlutter problem, the D-bifurcarion is

lost as corroborated by the behav-iour of the largest Lyapunov e..~onent,which does not e..xru.bit

a discontinuiry.

The P-bifurcacion is represenred in Figure 8.4 by the pitch marginal PDF transition

diagram. Ir is observed mat a uni-modal Gaussian-like densiry, which represenrs the random fixed

poinr ar theo~ transitions intO a bi-modal densiry, which represenrs the twO nonlinear random

fi.."{ed points. Nore that the heave displays also the same transition, unî- tO bi-modal, but at higher

airspeed.

On the other hand, the he2ve rare and pitch rare stay uni-modal and centred at zetO. This

observation is coherent with the interpretation that the dynamics is represented by a random fixed

point (or t\ll0 in the post-bifurcation regime). _-\ zero mean uni-modal pitch rate probability

densiry is the random equivalent of a zero pitch rate far the non-excited airfoil; similarly for the

hea'\~e tate.
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Figure 8.4 - Sready state marginal PDF diagram of the nonlinear airfoil pitch angle

in combined turbulence, as a function of mean airspeed;

th;2. =0.1, L =50.0, k3 =400.0; N =5,000,000, .â t' =0.1.

The bi-dimensional PDF of the pitch-heave displays aIso a uni- to bi-modal transition, as

schematized in the inset of Figure 8.5 for pre- (below the CUIVe) and post-bifurcation (above the

cunre) regimes. Note their elongated S-like shape. Assuming mat the peaks in the pitch-heave

probabiliry space correspond tO the randomfixedpoints, it follows rationally that the P-bifurcation

point should correspond to the airspeed at which the bi-dimensional PDF transitions. A.ccording

tO chis interpreration, Figure 8.5 suggests that the P-bifurcarion, which corresponds to the

divergence/pitchfork bifurcation in the dererminisric case, is advanced by turbulence, namely its

vertical component.

We have observed the same pre- and post-bifurcation motion for other turbulence

variances and scales. Therefore, contrary to the auner/Hopf bifurcation in rorbulent flow, the

bifurcation scenario of the turbulence e..~cited divergence/pitchfork appears to be the same for

ail rurbulence conditions. It is emphasized that this conclusion is only true when vertical

turbulence is considered. As discussed earlier in Section 8.2.1, the divergence/pitchfork

bifurcation in pure longitudinal turbulence depends on the scale of turbulence.
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Figure 8.5 ~ Cm- ta bi-modal transition mean airspeed of steady scare bi-dimensional PDF

in pitch-heave of nonlinear airfoil in combined turbulence,

as a function of turbulence variance; L =50.0, k3 =400.0.

Conln·bution oflongitudinal Il,rbulente

Similarly with the Hopf bifurcation in combined turbulence, the longitudinal component

of turbulence does nOt change the random bifurcation which is essentially determined by the

vertical component. We have made a number of simulations with and without longitudinal

turbulence and confirmed that its effect on the bifurcation is basically quantitative.

•
Funhermore, our results have shawn a small but systematic delay of the pitch PDF

transition airspeed for combined turbulence in comparison with pure vertical turbulence. Ir is

speculated mat this observation may be relared ta an organizing effect oflongirudinal turbulence,
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•

which is clearly exhibited for pure longitudinal turbulence via the appearance of the central peak

in the response PDF (see Figure 8.2 and Figure 8.3).

8.3 Divergence Instability

In this section, it is shown that contrary to random fluner, the random divergence

airspeed, Um1 , is not always advanced by longitudinal turbulence. Ir may also be postponed. It is

also shown that the ratio of heave to pitch frequencies (frequency ratio, ;;:; =eù-n/ CJ.JfJ), which has

no influence on divergence of the deterministic airfoiL plays a role in the shift of the random

instabiliry. Finally, our results indicate that, in general, turbulence has a much smaller impact 00

the shift in divergence airspeed than is e..xperienced for fluner.

8.3.1 Influence of turbulence parameters

The divergence airspeed is illustrated in Figure 8.6 for differenr turbulence conditions.
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Figure 8.6 - Divergence airspeed as a funetion of turbulence variance

and for different scales of turbulence.

These results indicate mat for the small and large scales of rurbulence, longitudinal

turbulence is destabilizing, whereas it is srabilizing for L =5.0. Funhermore, the relationship

222



• berween divergence airspeed and turbulence ,,.ariance does not appear ta be as straightforward

as is the case for the binary flutrer instabiliry. From a quantitative point ofvie,"v, the advancement

or postponement of the divergence airspeed is small eyen ar the higher turbulence va.rumce.

Consider the case for L =50.0 and a/ =1.0, which corresponds ra a rnrbulence intensity Tu.L'd

=1.0/5.0 =20 ~/O , divergence is advanced by 5 0/0 •

Figure 8.ï, which shows the effect of scale of turbulence., also suggests a comple."<

dependance of the divergence aîrspeed on (longitudinal) turbulence spectral conrent. The

magnitude of the shift is also small.
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sca1e of turbulence. L

Figure 8.ï - Divergence airspeed of airfoil as a funcrion of scale of turbulence; a-/ =0.5.

8.3.2 Influence of airfoil parameters

The airspeed at which divergence occurs is also dependent on the airfoil parameters.

Equation (8.1) shows mat for the non-excited case, U·d depends on the airfoillinear torsional

stiffness coefficient, the distance between the EA and the AC and on the semi-chord. For the

longirudinally excited airfoiL we observe an additional dependance on the frequency ratio, ~ =
~/ UJ9't as shown in Figure 8.8.
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•

•

Figure 8.8 indicares a particular sensiti'V'Ïry of Um1 on wfor small values (of frequency

ratio), Le. when the pitch is stiffer than the heave. For large frequency ratios, the rare of change

of Umt with ~ is small. Furthermore, for large values of ~ the system tends ta the single DOF

dynamics. Hence, in the limit of a large frequency ratio, the heave is so srifE that the pitch

dynamics is effecrively decoupled from the heave. As we can deduce from Figure 8.8 a decoupling

of the pitch DOF from the heave can be srabilizing or destabilizing, depending on scale of

rurbulence and on the frequency ratio of the original coupled (2DOF) system. Our results are put

in contrast with the results from Bucher and Lin [1988; 1988; 1989] and Lin [1996] for single

degree-of-freedom negative damping flutter; Bucher and Lin argued that although longitudinal

rurbulence may desrabilize individual modes acting separarely, introducing a coupling with other

modes helps in transferring the energy from the least stable to the more stable modes, thus

srabilizing the overall system. For divergence, our findings show that it is not necessarily the case.

For our baseline 2DOF airfoil (Le. with UJ/We = 0.6325), Figure 8.9 shows mat decoupling

the heave from the pitch is desrabilizing since the divergence airspeed of the pitch IDOF system

is smaller than for the 2DOF system for ail turbulence conditions shown. However, we want to

be clear mat this is not a generaI observation as illustrated in Figure 8.8. Observe as well that bath

divergence airspeeds at CJ.r2 =0.5 for the IDOF system corresponds ta the (Wo asymptotic values

for large frequency ratio in Figure 8.8.
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Figure 8.9 - Comparison of divergence airspeed of IDOF (in pitch) and 2DOF airfoil,

as a function of mrbulence variance and for two scales of turbulence.

•
Note that we have also investigated the effect of the staric unbalance, Xe, by changing its

value for different locations of the CG ahead of the EA. No significant shift in divergence

airspeed has been obsenred. On the other hand, bringing the CG aft of the EA. destabilises

considerably the airfoil, but this is attributed ro the airfoil e..xperiencing fluner and no longer

divergence.

.\s a final commen~ we add that the observed dependance of the random divergence

airspeed on frequency ratio and coupling with the heave DOF indicates that the mechanism

accounting for the sbift in divergence airspeed due to longitudinal rurbulence is different from

the mechanism defining the deterministic instability. As shawn earlier, these parameters do not

intervene in detenninisric divergence since it is a purely staric torsional stiffness problem. The fact

that wplays a role is due ta the heave coupling terros in the pitch equarion of motion (equation

2.28). Furthermore, realising mat this coupling acrs via the inertia and damping terms, while there

is no coupling with heave stiffness, wc say chat random divergence is a dynamic instability.

•
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• 8.4 Nonlinear Response

Two aspects of the nonlinear response ta combined turbulence have retained our

attention. They are briefly discussed.

8.4.1 Probabilirv structure

The probability structure of the response depends on which state(s) is(are) considered.

4-1.5 introduced in Section 8.2 and similarly with the flunering airfoil, the pitch marginal PDF

transitions from a uni- tO a bi-modal shape at a smaller speed than does the heave. Contrary tO

autter, however, the heave rate and pitch rate do not transition. They stay uni-modal with zero

mean.
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Figure 8.10 - Transition airspeeds afpitch and heave marginal PDFs,

and of the bi-dimensional PDF of nanlinear airfoil in combined turbulence,

as a function of turbulence variance; L =50.0, k3 =400.0.

•
Shown in Figure 8.10 is the transition airspeed for both pitch and heave as a function of

turbulence variance. It shows a strong dependance of the probability structUre of the aeroelastic

response on rurbulence variance, especially at lawer levels. Furthermore, the heave is always

postponed and the pitch is always advanced relative ta the detenninistic pitchfork bifurcation.
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• The latter observation on the pitch is different from the fluttering airfoil since for fluner we

observed postponemenr of the pitch t.."'Wsirion at small and inrermediare levds of rurbulence,

followed by advancement for high le,-d rurbulence. _\Iso shown for comparison purposes is the

pitch-heave bi-dimensional PDF transition airspeed wmch is reproduced from Figure 8.5. \v'e

deduce from chis comparison that the pirch-heave probability densiry is essentially dicrared by the

pitch dynamics.

The mechanism ofuni- tO bi-modal tranSition of the diverging pitch and heave is different

than from the flunering problem; although the fundamental cause is the same in both cases,

which is the vertical rurbulence-nonlinear interaction. It CUl be appreciated from the srudy of the

bi-dimensional PDF, as sho'wn in Figure 8.11.
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Figure 8.11 - i\1arginal and bi-dimensional PDF of nonlinear airfoil pitch-heave

in combined turbulence; [lm = 6.0, a../ = 0.5, L = 50.0, k3 = 400.0.

The example chosen exhibits a bi-modal density in pitch-heave. The S-shape of the bi

dimensional PDF is a direct consequence of nonlinear-turbulence interaction. We have also

obsen-ed an S-shape at smaller airspeeds, where the bi-dimensional PDF is uni-modal. It is
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•

belie\·ed mat the curvature towards a limit value in pitch cm be attributed tO the location of the

nonlineariry on the rorsional spring. Physically, the restraining mechanism of the nonlinear

torsional spring is felt more srrongly by the pitch motion man by the h~ve, especiall~" for large

amplitudes since the nonlinear stiffness loses its srrength for small amplitude. This translates intO

a siowing down of the pitch morion at large amplitude which is more imponant than the slowing

do\\'!l of the hea"·e motion, hence an accumulation of probabiliry at re1atively high pitch angle

whereas the heave probabiliry is distributed more homogeneously. The final outcome at this

airspeed is a bi-modal pitch ma.rginal PDF and a uni-modal heave PDF bi-modal, as shown also

in Figure 8.11.

Also note that the random fixed points, as defined by the peaks of the bi-dimensional

distribution are located at fJ ::: 4.0 deg, ç::: -0.25 and f) ::: -4.0 deg, f::: 0.25. In comparison the

deterministic fixed points are located at fJ = 1.90 deg, (= -0.06 and 8 = -1.90 deg, (= 0.06. They

are displaced significantly by rurbulence.

Effict oft1 non/ùrear pring in heave

We briet1y discuss the impact of adding a strucrural non-linearitj· in heave via a hardening

cubic spring. Note that the non-linearity on the torsional spring is maintained The heave stiffness

tenn in the aeroelastic equations of motion (equation (2.28)), is modified according ta equation

(8.6). k3h is defined as the (non-dimensional) nonlinear cubic sriffness coefficient in heave.

(8.6)

•

Figure 8.12 shows the transition airspeed of the marginal PDF of the heave response for

three values of k3h• In comparison \vith the linear spring (in heave), k3h =0.0, which is the case

also shawn in Figure 8.10, a hardening of the nonlinear spring in heave has for effecr tO advance

the uni- to bi-modal transition of its corresponding motion. This result supports the

argumentation that the location of the non-linearity, be it purely on the torsional spring or on the

translational spring as weR dicrates the advancement of the transition airspeed of their respective

monon.
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Figure 8.12 - Uni- tO bi-modal transition airspeed of heave marginal PDF of nonlinear airfoil

in combined turbulence for three values of the nonlinear cubic sriffness coefficient in heave,

as a function of turbulence variance; L =50.0, k3 =400.0.

8.4.2 Basin hopping

There e.~tmany forms ofbasin hopping like the bi-modal PDF and the rime history plot

exhibiting low frequency coherent oscillations, but perhaps its most distinctive signature is the

PSD. Sho\\--n in Figure 8.13 is the heave response PSD tO combined turbulence at Um =9.0 for

three turbulence levels. The deterministic divergence/pitchfork occurs at U = 5.0. _-\1so shown,

in Figure 8.14, are the corresponding sample rime histories in heave, and pitch, for the same

airspeed and turbulence condirions.

•

The PSD at each of the three turbulence variances is typical of a certain type of dynamic

behaviour described as follows. For the smaller variance, Gr! =0.01, the twO imponant fearures

in the PSD are the high sharp peak at zero frequency followed by a low density flat specttUtn at

higher frequencies. This is indicative of a dominant intta-well motion. The turbulence level is

relatively small, such that the dynamics is caught within one domain of attraction for a relatively

long period of rime, as e.-..::emplified by the sample rime history, and steady sure inrra-well motion

is e~l'erienced. Basin hopping occurs but very rarely and irregularly.
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Figure 8.13 - PSD of heave response of nonlinear airfoil in combined turbulence,

for three turbulence variances; L = 5.0, k3 = 400.0, Um =9.0; N =100,000,000, 4t"= 0.1.

•
Jumping ahead tO the high turbulence level, 0/ =1.0, a much different type of dynamics

is obsenred, since it is dominated by inter-well motion. The PSD displays a flat specrrum, similarly

with the low level rurbulence, but no peak at the zero frequency. The latter observation mat there

is no peak at k = 0.0 indicates that the motion does not have the rime to settle within one domain

of attraction as it is hopping becween the cwo attracrors. From the former observation that the

spectrum is flat, we conclude that the hopping is highly irreguIar and white noise like.

•

Stepping back to the intermediate level turbulence, shown as a/ = 0.12 in Figure 8.13,

we make three observations. First, there is a peak at zero frequency which indicates intra-well

motion. Second, the spectral densiry of the non-zero frequencies is of the same order of

magnitude as of the zero frequency peak. From these two observations, we rerain the

interpreration that both intra- and inter-weil motions are e.'"qJerienced with approximately the

same degree. This interpreration can also be appreciated by looking at the rime history of sample

heave and pitch responses, Figure 8.14. The phase plane plot is also shawn in Figure 8.15 for chis

turbulence variance.

The third observation concems the small, but nevertheless present, hump centred at k ::;

0.0005. This hump indicates coherent oscillation, or pseudo-regularoscillation (see Chapter 1), due
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• ta basin hopping. We have observed chat increasing or decreasing the turbulence variance moves

this hump toward higher or lower frequencies, respectivdy. However, we have aIso observed mat
the range of turbulence variance for which it can be derected is small, 0.05 ~ C1T: ~ 0.15.
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Figure 8.14 - Sample rime histories of nonlinear airfoil heave ( -- ) and pitch ( -) responses

in combined turbulence, for three rorbulence variances; L =5.0, k3 =400.0, Um =9.0.
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Figure 8.15 - Sample phase plane plot of nonlinear airfoil heave and pitch responses

in combined mrbulence; L =5.0, 0:/ = 0.12, k3 =400.0, Um = 9.0.

Keeping the same turbulence variance but changing me mean airspeed has a similar effecr.

For CJr1 =0.12, we have deteeted pseudo-regular oscillations for only a small range of airspeeds,

8.5 ~ [lm ~ 9.5. For smaller airspeeds, inter-well motion becomes more dominant; for higher

airspeeds, the dynamics tend tO be dominated by inrra-well motion since me zero-frequency peak

becomes srronger. We point out rhat this observation is not trivial in the sense that me magnitude

of the aerodynamic forcing increases with airspeecL even though we have kept the turbulence

va.ria.nce COnstant. It indicates mat the attraction towards either of the two random fLxed points

is srronger man the increasing random e..xtemal aerodynamic forcing. This interpreration was also

indirectly corroborared by observing the rime tO reach sœady state in the response PDF. We

noticed chat steady State, as indicated by the PDF, was reached in less iterations at lower airspeeds

than at higher airspeeds.

•
The difficulty in derecting pseudo-regular oscillations due to the lack of sharpness of the

hump, as well as due tO the small range of parameters (airspeed and rurbulence variance) for

which it is obser"ired may be an indication mat this phenomena is not the norm for this aeroe1astic

problem. Consequently, it is likely mat basin hopping occurs on a very irregular basis. Finally, it

is noted that basin hopping is a V"ery small frequency phenomena and is a pure product of the
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• nonlinear-turbulence interaction. Not sho\\ln, but in compariso~ the PSD of the airfoil response

displays other (sharper) peaks at rnuch higher frequencies whose origin an be craced back to the

underlying determinisric system.

8.5 Concluding Remarks

In summary, the following remarks are presented.

1. The nonlinear airfoil in pure longirudinal turbulence experiences a three-step bifurcation

characterized by, tirst, a dynamical bifurcarion followed by (WO P-bifurcarions. The

airspeed region between the D- and the tirst P-bifurcation displays uni-modal pitch and

heave probability densities with a sharp peak centred at zero. The region between che two

P-bifurcations is tri-modaL Finally, the second P-bifurcarion separates the tri-modal from

a bi-modal PDF region, thus is defined by the disappearance of the central sharp peak.

The heave rate and pitch rate densiries stay uni-modal wough out this airspeed range.

•

•

2.

3.

When vertical turbulence is considered, with or without longitudinal rurbulence, the D

bifurcation disappears and ooly one P-bifurcation remams. The pre-bifurcarion motion

is represemed by a uni-modal pitch-heave bi-dimensional probabiliry density. In the POSt

bifurcation regime, the bi-dimensional pitch-heave PDF is bi-modal. Funhermore, we

argued mat the P-bifurcarion is adyanced by rorbulence, namely its vertical component.

This point applies strictly tO the linear airfoil in combined turbulence and to the nonlinear

airfoil in pure longitudinal turbulence. This is 50 since the O-bifurcation which indicates

the loss of stability of the fi~ed point, hence divergence, does not exist for the nonlinear

woil in combined turbulence. Divergence cao be advanced or postponed by longitudinal

turbulence. We have observed a comple.."{ dependence on turbulence variance and scale,

as well on the frequency ratio. This latter dependence indicates chat the coupling wich the

heave OOF plays a role in random divergence. In tum, we have interpreted this

observation as an indicarion chat random divergence is a dynamic insrahility. Finally, our

results indicate chat, in generaL the shift in di\'"ergence airspeed is relatively small.
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•

4.

5.

WTe have observed thar the probabiliry snucrure of the aeroelastic response is st!'ongly

dependent on turbulence v·a.riance, especially ar low leyels. Funhermore, the pirch PDF

transitions from a uni- ta a bi-modal shape at a smaller airspeed tha.n the hea\"e, whiIe the

pitch rare and heave rate rema.in uni-modal. We haye explained the difference in transition

airspeed bet\Veen the pitch and heaye via their bi-dimensional PDF projection which

e.ilibirs a S-like shape leading ta a build-up ofprobabiliry for high pitch angles. Physically,

we have argued that the specific form of the S-shape, and related advancemenr of the

pitch transition airspeed, can be attributed ta the location of the non-lineariry on the

torsional spring. In suPPOrt of this argumentation, we have shown that adding a non

lineariry on the heave spring can advance the heave transition airspeed.

Coherent, or pseudo-regI/far, oscillations due ta basin hopping were derecred for a small

range of turbulence variance and airspeed. These coherent oscillations cake the faon of

a small hump in the very low frequency range of the aeroelastic response PSD. The lack

of sharpness of the hump, coupled with the small range of paramerers for which ir is

derected, indicate that in general basin hopping is likely ta occur on a very irregular basis

for the diverging nonlinear airfoiL

•

6. For hrge turbulence variance, we have found that basin hopping occurs frequendy such

that the dynamics is derennined in a hrge pan by inter-well morion. In conttast, for small

turbulence variance intra-well motion becomes dominant.
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Chapter 9

CONCLUSION

• 9.1 Synthesis

•

In this thesis we have applied the ideas of Random Dynamical Theory, and specifica.l1y

the principles of the still maturing discipline of random bifurcation, pioneered by Arnold (for

dynamical bifurcations) and Horsthemke and Lefever (for phenomenological bifurcations), to me

problem of a flexible nonlinear airfoil in t\Vo-dirnensional turbulent flow. The D-bifurcation is

defined according tO a change in sign of the largest Lyapunov e:q)onent of the linearized system.

The P-biturcation corresponds a qualitative change in the probability density of the motion.

The archerypal typical section mode!, in its dererminisric idealization, is relativeIy simple.

Ir cao however generare complex behaviour in the nonlinear regime, as demonstIated by various

authors. Re1axing the deterministic idealizarion by introducing a "reality" clement, in the form of

random turbulence, increases the complexity of the mode!, and its analysis, significantly. In rom,

its random dynamics become highly intricare, even when the underlying detenninistic attracror

is a simple fi."œd point or a limit cycle oscillation. New types of dynamic beha~iour appear which

require a different conceprual approach, as formalised by random bifurcation theory, and which
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•

•

aIso necessirate an accrucd reliance on their probabilistic and suristical represenration.

Turbulence enters the problem in t'wo forros. One is vertical and acrs as an extemal

random forcing, or additi\-e noise in dynamical rerms. The second forro is the longitudinal

componeat which acrs direcdy on the parameters, hence parametric random e..xcirarion or

multiplicative noise. A fundamental attribute of our treattnent of the problem is che deliberate

choice tO consider the turbulent e..xciution not as a perturbation noise of the otherwise

deterministic system and dynamics, but as an essentiaI element like any other (deterministic)

parameters or e..xtemal forcing. In chis ligh4 we have ultimately been searching for random

dynamical objects in the sense of ~Iillooa's passive and active noise paradigms. le would have

made 00 sense to proceed omerwise, since the underlying determinisric dynamics was known

from the StaIt.

In the pursuit of our two objectives we have made full use of the flexibilicy and highly

cootrolled research environment of the numericallaboratory. We have done so by switching on

or off, at will, the longirudinal and vertical turbulent excitations, as well as their more specific

contribution on the system parameters, in order tO gain a more profound undersranding of the

overall turbulent problem. We have aIso been able ta easily conrrol and mod.ify the turbulence

specrral content, via the scale of turbulence, and its intensity via irs variance, thus assessing their

effects. These conrrolled actions would have been e..w:emely difficult, ifnot impossible, tO realize

in a physicallaboratory.

Nonetheless, the multi-dimensionality of the aeroelastic system has inrroduced an element

of unconrrollabilitv due tO the random nature of the dvnamics which could not be fullv overcome. . .
by the numerical experimenration. Ir has been argued char the most narural represenration of the

random dynamics is its probabiliry density function, which ideally should be of the same

dimension as the system from which it is generated. We are, however, fundamentally restricred

tO a rwo-dimensional PDF, with the third dimension representing the probabiliry density. This

has, in generaL resulted in a caurious ïnterpreration of the results, and specifically with regard tO

the identification of the bifurcation and associated pre- and post-bifurcation motion types.
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~Te have concenrrared our effortS on the investigation of the random fluaering airfoil

e~-periencing a supercritical Hopf bifurcation in its nonlinear detenninistic represenution. As a

second probl~we have also rreated the divergence/supercritical pitchfor~ but in less detail

These t\Vo problems have been studied with the principal aim of capturing their bifurcation,

stability and response characteristics when e.~cited br turbulent flow. Essentially, this bas been our

tirst objective. A secondary objective has been tO e..~amine the relative contribution of the

longitudinal component of turbulence, since it is often negleeted in more rraditional aeroe!astic

analyses. At the end ofChapters 4 tO 8, we have presented the results ofour research in the form

of detailed summarizing remarks. In what follows, emphasis is put on what we believe are the

most significant results of chis thesis. Broad conclusions are also drawn.

\Yle have found chat bifurcations in the airfoil's aeroelastic response are fundamentally

modified by the presence of turbulent flow in a number of ways. This is true for both the Hopf

and pitchfork bifurcations. In the dererministic case, the D- and P-bifurcation coiacide at the

instability point. The loss of stability of the fixed point indicated by the D-bifurcation, where the

largest Lyapunov e.~onent becomes zero, corresponds exaetly tO a change in qualitative

behaviour of the dynamics. For the e.'{cited nonlinear airfoil, due to vertical turbulence, the D

bifurcation disappears since the largest Lyapunov e."q)onenr does not e.-q>erience any discontinuity.

The P-bifurcation remains, but its location on the mean airspeed axis changes, seemingly toward

smaller airspeeds. For reasons mentioned earlier with regard to the theoretical requirement tO

have a multi-dimensional PDF, we cannot, however, ascertain that the P-bifurcarion is aetually

advanced.

..-\nother aspect of the bifurcation concerns the pre- and post-bifurcation types of motion.

We have observed different random morions and tried, in a fust effort, to interpret them

according to a determinisnc point of \~ew. Based on the probability density funcrion

representation, this bas been possible fur the fi.~ed point type of motion. It is characteri2ed by a

uni-modal Gaussian-like shape in the marginal PDF and a uni-modal bell shape in the bi

dimensional PDF of the displacement displacement-rate. With regard ta the LCO, the crater-lîke

features of the bi-dimensional PDF supports the interpretation of a random LCO for low level

turbulence. In conrrast, we haye observed that at intermediate and high leye! turbulence the basic

LCO srrucmre is lost, and a new type of motion appears which has no apparent deterministic
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analogue. Nevertheless, we have been able tO account for sorne of ies fearures in light of the

detenninistic motion. \\'e have argued mat me observed random morion at one particular airspeed

and turbulence variance is relared to the detenninistic motion ac a higher airspeed. The

e..'q)lanarion is mat increasing the turbulence variance or airspeed have the same effect in chat the

response amplimde is increased, in mm increasing nonlinear effecrs. Tlùs e..xplanation has been

corroborared by the observation and interpretation of the aeroelasric spectral content, which

displayed an increase in the relative strength of the super-harmonies, in comparison with the

fundamental frequency, with increasing turbulence variance. The same phenomena e..-ci5ts for the

dererministic LeO as the airspeed is increased.

For the linear airfoil, the tradirional nonlinear concept of bifurcation is noc required

although the D-bifurcation, defined by the largest Lyapunov e.."q)onent, does exise for both the

e..'Cciced and non-e..'Ccited (linear) airfoil. We have associared the notion ofD-bifurcation tO flurrer

and divergence, since these two insrabiliry types correspond to a 105s of srabiliry of a fi"{ed point,

as indicared by the D-bifurcarion, without regard to the post-insrabiliry, hence, nonlinear

beha,,'1our. We have argued chat the flutrer insrabiliry is always advanced by turbulence, due to its

longirodinal companent. A parametric resanance analysis, using a narrow-band excitation, has

provided a numbers of answers in chis regard. Specifically, it has shawn mat the longitudinal

turbulence speCtral density in the low and very low frequency range, coupled with principal and

5ecandary combinarion difference type parametric resonances, accaunt, for the most part, far the

ad-ç-ancement in flutrer speed. On the other hand, we have found that longitudinal rorbulence may

advance aI' posrpone divergence. Furtbermore, the magnitude of the slùft in divergence airspeed

is generally much less significant than for flutrer.

In addition, since the D-bifurcation disappears for the (vertical turbulence) e.."<cited

nonlinear airfoil, we have proposed the theoretical interpreratian that flutrer and divergence no

longer exists in chis case. This is in sorne ways reminiscent of deterministic divergence where a

bias is considered as introduced in Chapter 1 (Figure 1.5). Divergence of the linear airfoil is not

affecred by a bias; although the response increases as the divergence airspeed is approached,

divergence exises and its airspeed does not change. For the nonlinear airfoil with a bias,

divergence disappears since the fixed point does not lase srability.
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From perhaps a more practical point of view, we have obse!"'ted that the probabiliry

structure of the nonlinear aeroelasric response, in both flurrer!Hopf and divergence!pitchfork

condirions, is strongly dependent on which stare variable is considered. The uni- to bi-modal

transitions do not occur at the same airspeed for pitch, heave and their rime derivatives..Although

the specific mechanism of the transition is different for the diverging and fluttering airfoil, their

root cause is the same, that is the interplay between nonlinearity and turbulence, specifically

vertical turbulence.

In chis light, ir is interesring ra briefly compare chis effect of vertical turbulence with the

longitudinal componenr. Vertical turbulence appears to effecrively "decouple" the state variable

morions. In contrast, longitudinal turbulence tends tO have a coupLing effecr, as was discussed for

coalescence flutter and divergence. For the former, we have argued that the observed

advancement of the random modal frequency coalescence could be interpreted as being due tO

a coupling effect of longitudinal turbulence. For the latter, the impact of the frequency rario on

the shift in random divergence shows that the heave motion plays a role for chis insrabiliry type,

which in the deterministic case is a IDOF pitch problem for which heave motion has no effecr.

With our second objective in mind, we have obsen·ed other effects of longitudinal

turbulence and systematically analysed them in the context of the flutter/Hopf problem. They are

a general destabilisarion and a tendeney tO force the dynamics to be centred around the origin,

the latter effect being especially e\-ident for the nonlinear airfoil in pure longitudinal turbulence.

Of these [WO competing effects, we found that desrabilisarion is, in general, the srrongesc.

Furtherrnore, it affects the dynamics of the airfoil at all airspeeds, not necessarily just in the

viciniry of the insrabiliry or bifurcation point.

The general decrease in srability of the airfoil due tO longitudinal turbulence is embodied

by a larger mean·square response to extemal e..'Cciration and specifically co vertical turbulence.

Depending on scale of turbulence, turbulence variance and airspeed, the increase in response level

can be significanr for the linear airfoil. For the nonlinear airfoil, the contribution of the

longirudinal compenenc of turbulence diminishes as nonlinear effecrs increase. Overall, we have

noted mat longitudinal turbulence piays a minor rele relative tO vertical turbulence in the aidai!

dvnamics.
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_-\Iso of interest are the noise-induced and noise-conrrolled peaks that are exhibited by the

nonlinear response PSD. Sorne of these observations were not e..~ected. For instance, contrary

ta intuition we observed a shift of the fundamental peak, representing the randorn LCO, towards

smaller frequencies, as \Vell as irs narrowing, subsequent tO a \Videning, \Vith increasing variance.

No physical e..~lanation was proposed but we noted sorne similar observations in the physics

lirerarore. In contrast, we e.."q'ected to observe a clear peak in the divergj,ng nonlinea.r airfoil

response spectrurn, indicative of coherent or pseudo-regular oscillation due tO basin hopping

bet\\7een the (WO stable fi..xed points. Rather, a small hump at very low frequencies was observed

and for only a small range of airspeed and rorbulence 'iariance. This lead us to think that, in

general, basin hopping for the di,,·erging nonlinear airfoil is likdy to cake place on a very irregular

basis.

9.2 Theoretical Perspectives

The bifurcation analysis in the specific contea: of the airfoil in rurbulent flow has enabled

us to shed sorne additional light on the problem of a general randomly e..xcited nonlinear

dynamical system. \Ve have argued that the theoretical basis of the general problem has not yet

reached a mature leveL In suPPOrt of dùs statement, we have offered the example of the debate

conceming the D- versus P-bifurcations in terms of the more rdevant and rigorous bifurcation

theory. Furthermore, we have discussed areas where contradictory results, and subsequent

interprerations, e..xist in the literarure. They concem the motion type and shift in the bifurcation

point for additive noise excitation. With regard ta these points of discord and based on our

investigation, we ha,,·e proposed the follo~-ing remarks.

First, related to the D- versus P-bifurcations we have deterrnined that the D-bifurcation

is destroyed by v-ertical rorbulence in favour of a single P-bifurcation. In other words, the

bifurcation scenario of the turbulent excited airfoil is essentially dictated by the vertical

component of turbulence. We have therefore questioned the robusmess of the bifurcation

scenario under pure multiplicative noise and e..xtended the concept of bifurcation robusmess and

structural srability applied to deterministic systems in this manner. Because both multiplicative

and additiye noise are present in any real system, the bifurcation scenario generally observed for

pure multiplicative noise is qualitativdy not robust.
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\Ve have also suggested chat this applies regardless of the relati\.·e intensity of both noise

components, since an\· small amount of additi,,·e noise will destrov the D-bifurcanon. This is a. .
question tharwacranrs funher attention, from both a theoretical and practical point of view. We

ha\·e just alluded ra the theorencal tenets of chis question. In practice, it may become relevant

when the parametric and e."<terna! e.xcirations have different sources, and when the intensity of the

parametric excitation is much larger chat the intensiry of the latter. In this case, the interest lies

in how much of the bifurcation characteristics in pure parametric e."<citanon remain when a small

amount of extemal noise is added.

On the second point of discord, we have in part reconciled apparent conflicting results

obtained by sorne authors. We have argued mat the observed differences in motion type could

be accounted for due tO additiye noise intensity, as e."q)lained earlier with regard to the POSt

bifurcation LCO dynamics for low level turbulence in comparison with intermediate and high

level rurbulence. The question of the shift of the P-bifurcarion due tO vertical turbulence remains

open, alchough we haye speculated on an advancement.

_-\ccordingly, we believe that the results of this research go beyond the specifie context

of the rurbulent excited flexible airfoil. Our research is relevant in two ways for the general

random nonlinear problem. It provides results from a systematic analysis of a nonlinear system

e.xcited by multiplicati\·e and additiye noise and for which the specific contributions of both noise

components were investigated in isolation and in combination. It also provides results from a

highly controlled research environment of a "real" system. In this sense, this research helps tO

bridge the gap beween analytical treaanents, which are limited by a number of simplifying

assumprions such as low-dimensionality, white noise and/or Gaussian response, and real physical

experimenration where random e..xciration and response are very difficult to control and monitor.

9.3 Recommendations for Future Research

Potential for future research exists in both depth and breadth. Depth-wise we have,

throughout this thesis, aiready pointed out a number areas which require funher attention.

•\lthough the flutter/Hopf problem has been investigated in detail, sorne questions are left

unanswered. Specifically, the peculiar behaviour abserved in the aeroelastic spectral response

241



•

•

•

would benefit from a rargeted analysis. Furthennore, an investigation of other rypes of

nonlinearicies would also be important.

Certainly our treaanent of the divergence/pitchfork problem has been less systematic and

more descriptive than for the flutter/Hopf case. In this sense, a number of questions remains

open. In parricular, we believe that a more profound and e."(haustive investigation of basin

hopping is warranrecl. Since the spectral signature ofpseudo-regI/for oscillations appears to be lacking

the sharpness that we were 100king for, we believe that the response PDF represenration is

perhaps a more fertile ground tO better undersrand dUs phenomena. The analysis of the response

probability density function could be parricularly useful for the problem with a bias since the t\Vo

competing fixed pointS, and their respective basin of attraction, will have different properties.

~fore generally, the PDF is a useful tool to visualise and analyse the structure of

competing attractors. Random noise can be exploired to probe the dynamics of the multi-srable

system.•-\s introduced in Chapter 1, the probability structure may be used as an indication of the

relative strength of attractors. The relatiye height of each modal PDF peak and their respective

\vidth are relevant characterisation parameters. This is the basic idea behind the approach taken

by sorne researchers. For example, Kaneko [1998] studied the structure and relative strength of

attractors, as well as their basin volume, by considering their retum rare (probabiliry) after being

penurbed with a randomly selected input. Note that probability density functions are also used

to characterize detenninisric chaouc anractors (Hsu and Kim, 1985].

In rerms of breadth, numerous problems are porentially significant cither from a

theoretical point of view or for their practical implications. :\ logical e.xtension tO the nvo

problems treared in this thesis is the nonlinear airfoil experiencing a subcritical Hopf bifurcation

in its deterministic mode!. This problem is panicularly relevant from the point of view of basin

hopping where the !wo stable competing attractors are a fi.."{ed point and a limit cycie osàllation.

Accordingly, a study of the PDF of the response may pro\--ide sorne important ciues on the

strUcrure of the basin of attraction of these !wo attraetors. .-\lso of interest is the fact mat basin

hopping is possible at pre-flutter speeds, hence, strongly nonlinear dynamics is expected to be

observed at airspeeds 10""'er than the autrer speed. It may have important implications with

regards ta the undersranding of relatively recent aeroelastic insrabilities e.xperienced by the CF18
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aircraft (Dickinson, 1996].

_-\nocher problem that cornes tO mind is nonlinear panel flutrer excited by very low le,·el

turbulence, wrueh implies a very small vertical turbulence intensity, and parametrically e-xcited

\vith a high level structural ,,~brarion. This is a pracrical form of the theorerical problem raised in

Section 9.2. Of interesr may be the probability structUre of the response and its potenrially

beneficial impact on panel strUcrural fatigue, considering that for pure parametric excitation the

Le0 dynarnïcs is e-'\.~eCted ta be forced to occur dose co the origin.

The dual problem of chaos and randomness is certainly an e-"{rremely complex and

challenging one. _-\ great number of papers have been published in the physics literature for the

general problem. Ir could be worthwhile co apply the ideas developed in physics ta the specifie

case of the nonlinear woil.

In thenry, the turbulent e."{cited airfoil operaring in dyruunic stall condition is also

potentially significant. This is so since the nonlinearity, which originares from the aerodynamics

for a stalled airfoil, is directly (parametrically) e-xcired by turbulence, chus enabling the appearance

ofpure noise-indNced transitions. In practice, one impo~..ant aspect may alter the significance of chis

research topic. We know of no validated aerodynamic model capable of reproducing arbirrary

morion in dynamic srall condirions. To our knowledge, the proven applicabiliry of e-"{Îsring models

is limited tO simple harmonie morion.

Finally, the resulcs of chis thesis may senre tO establish a database of simulated aeroelastic

data. We believe chat the enclosed data, and analysis, cao be useful tO teSt and validate, similar ta

a test bench, aeroelasric tlight test data analysis techniques. In those terms, chis thesis directly

addresses one of the recommendarions from the last North AWnric Treaty Organizarion (NATO)

.-\d\-isory Group for .\erospace Research & Development C.-\G:\RD) specialist meeting 00

aeroelasticiry flight resting [AGARD-CP-566, 1995].
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• APPENDIXA

TRANSFORMATION OF INTEGRO-DIFFERENTlAL

EQUATIONS INTO DIFFERENTlAL EQUATIONS

We Stan with the circularory portion of the lift.. or moment, rdarions due ro arbirrary·

morion of the airfoil and longitudinal rnrbulence shown as e.~ression (A.1), and simiIarly due ro

\~ertical turbulence shown as e.."{pression (.-\.2). These t'NO e.xpressions are obtained directly from

. ('" "'''')equanon _._.:> .

•
[ · fl. d rp (I-s) ]w 3/4 (t) tp(O) - 0 W 3/4 (5) ds ds

[ · Jl. d V(t-s) ]
W TCt) V(O) - W T(S) ds

a ds

(A.1)

(.:\2)

The only differences between the twO are that expression (A.1) is e."q)ressed in renns of

the down\vash at the three-quarrer chard point and Wagner7s function, whereas as expression

(_-\.2) is e:-.-pressed in terms of the vertical turbulent velociry and Küssner's function. Otherwise,

their form is the same, and we can consider the following expression ta represent both:

8(t), which represents Wagner's or Küssner's function, 15 approximated by a two-stare

represenration (see equation 2.4 and 2.12) as follows:

•

[ · fl · de (t-s) ]w (t) e(O) - w (s) ds
o ds

8(t)=1- Ae·Qt - Be-lx

(A.3)

(.:\.4)
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•

Taking the derivaci'\-e, and subscituring it in expression (:\.3) gives:

de (t-s) _ A -a(l-S) Eb -b(l-s)
-~~-- ae - e

ds

[w"Ct)~O)+lw"Cs)[Aae 4(1-<) + Bbe-b<r.')]dI-]

'W~e rhen take the Laplace transform of expression (A.6) .

= w·(d.)e;:O)+ 4w.(6) (Aa+ Bb) +w·(d.)(A +B)ab

(d.+a)(d.+b)

(.\.6)

(A.7)

Defining • w·C4-)
z (d.) =--~~

(6+a)(d.+b)
(A.8)

•

and substituting z·(d.) inm equation (A.ï) gives:

Finally, we take the inverse Laplace transform (and putting z·(t =0) = 0 as is usually done since

initial conditions have effeetively no impact on rhe long term steady stare behaviour), such thac
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•

e..'\lJression (_\.6) becomes:

=w'Ct)EXO)+z'(t)(Aa+Bb) + z'(t)(A +B)ab (A.9)

where ='Cf) and z' Ct) are the [\vo new stare ,rariables which represenc the two aerodynamic lag states

in Wagner's or Küssner's functi.on approximations. Th~y are obtained from the inverse Laplace

transform of equarion (.\.8) in chis manner. Equation (.A.8) is fuse re-arranged

z' C~)(~ + a)(~ + b) = w' (~)

and neglecting the initial conditions (ie. z'CO) =0 and z'(O) =0), we finally have the following

differential equation that represents the aerodynamic lag states:

t (t) +z' (t)(a +b) + z' (t)ab = w' (t) (.\.10)

•

With the proper variable substitution for a, b and w'Ct), equation (A.10) becomes equation (2.26

a) for Wagner's lag states and equation (2.26 b) for Küssner's lag states. With similar variable

substitution, equation (A.9) is substiroted back intO equarions (2.23 a) and (2.23 b) to give

equations (2.25 a) and (2.25 b).
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APPENDIXB

TRANSFORMATION OF TURBULENCE SPECTRUM

INTO TIME DOMAIN

Dryden Vertical Turbulence

The Dryden vertical turbulent ve10city PSD is given in equarion (2.22 b)

•
\vhich can also be written as:

C1>\ï ( aJ) = 1He aJ) 1.2<f>",:,

where cP~ is the PSD of a Gaussian white noise of intensity, <P~~ = 1.0, and

(2.22 b)

(13.1)

(B.2)

(B.3)

•
We are 100king for a transfer funcrion~ H(UJ), which relates Gaussian white noise, G·~,

as an input and \·ertical turbulence, W-T(UJ), as an output, thus satisfying equation (B.3). This is

sho\vn in equation (BA).
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• (BA)

Hoblit [1988] gives the follo'WIDg transfer function expressed in the Laplace domain:

(B.S)

•

Nore that by using 4. = iCJJ, we have verified that the norm, or modulus, of H(4) , i.e. IH(iCù) 1,

sarisfies equarion (B.3). _\1so noce that if becomes ifm for the more general problem when

longitudinal tw:'bulence is also considered.

The rime domain vertical t1.1I"bulent velocity is obtained by substiruring equation (B.S) into

the Laplace domain represenrarion of equation (BA), and then taking its inverse Laplace

trarlsform as follows:

(B.6)

•
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• We cake the inyerse Laplace rransform equarion (13.7), assuming ail initial candirions ta be zero.

Finally, re-arranging equation (B.8) gives:

(B.9)

By definirion, since white nOISe is nowheie continuous, ir is not differentiable

[Horsthemke and Lefeyer, 1984]. Accordingly, equarion (B.9) is integrated once before it is

numerically modelled. The final e.~ression is equarion (2.24 b) reproduced below.

• ., [ ... .-J Jl/2 [JI/::!.•• 2I.fm [/;"r. • Um r • :I.lm
WT+WT-.-=--;z fWTdt+r.7T ---:J fG~t+a-T --. Gws

L t o HL 0 /l'L

B.2 Dryden Longitudinal Turbulence

(2.24 b)

The same process is followed for rhe longitudinal component of the Dryden turbulence

mod~ except that Hoblit [1988} does not give a transfer funcnon. Based on the form of the

transfer function for vertical turbulence, we have tried different e.'q'ressions for longitudinal

turbulence and found the follo\\lmg appropriare function:

H(4) = (
. )1/::!• 2 L 1

o:r /l'V· m -l-+-L-·4-/-U-·m-

(B.I0)

• The squared modulus of H(4) must sarisfies the longitudinal turbulence PSD (dinded by (/)~ =

1.0) given in equanon (2.22 a)..\ccordingly, let 4. =iCeJ in equarion (B.10):
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• HU (j)) = (
· J1.'l• 2I 1

Cl[ -- •. •
Rf.Jrn l+L 1(v/U m

H(~=

IH(~2 =
2

1 1-L-i(1)/rfm

1+L- i (1)/ ifm 1-t i (1)/ ifm

•
:\fter sorne algebra we get equacion (B.II) which demonstrates dut the transfe:r function,

equation (B. ID), satisfies the Dryden longitudinal turbulent velociry PSD in equation (2.?? a).

(B. Il)

~ote that ([)~ = 1.0. The Laplace domain represenrntion of longitudinal turbulence is given in

equation (B.12).

• • ( 2 L- J1!1 l _
UT(4.)= or -Jr- - if G~:~(4.)

ln) m l+L 4./ m

(B.12)

From the in\~e:rse Laplace transfonn of equacion (B.12), the rime domain longitudinal turbulence

is obtained, as shown in equation (2.24 a):

•
_ (_ )1/2.- .U m 2Um •

UT+UT-.-=Oj- --.- Gwo
L ll'L

(224 a)
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• B.3 Narro\v Band Parametric Excitation

In this case the transfer functio~ mat relates Gaussian white noise tO an e-xciunon

yelociry whose PSD is given by equarion (5.10), cm be obtained from Yoon and Ibrahim [1995]

and Newland [1975]. It is given in equation (B.l3) in non-dimensional fo~ ~'here here 4. =ik.

H(4-) =
O"T (2 (r 3

/ l') 1/1

4- 2 +2(r4+r 2
(B. 13)

•

•

~ore mat we have also verified mat the modulus squared of the transfer funcrion satisfies

equation (5.10).•vter taking the inverse Laplace transform of u(4.) = H(4) G~(4), the rime

domain e~l'ression is as follows:

(B.14)
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APPENDIXC-

STATE SPACE MODEL

(VECTOR AND MATRIX) COEFFICIENTS

The coefficients of the '..ecror and maaices in equation (3.1) are the following:

r 0 0 1 0 0 0 0 0

o 0 0 1 0 0 0 0

-[T\IS.\JI [KSA] -[MS_\jl[DS.\] -[~1SAfl[KD\\1 -[j\1SAf'[KDK)
[A( rj] = 0 0 0 0 0 1 0 0

unf 0 (l/2-ah ) 1 -b/J'l -bl -b'l 0 0

l 0 0 0 0 0 0 0 1

o 0 0 0 0 0 -J..b -b--bv:; 4 ~-I

(C.l)

(C.2)

•

[k lu' ~]
0 0 0 0 0 0

- [)lSAJ -1 ~ 0 m

0 0 0 0 0 0

0 0 0 0 0 0 0 0

[.4;]= 0 0 0 0 a 0 0 0 (C.3)
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

264



• ~vhere

1
a~ + 1/8

+ .,
pr&-

(?\IS·".l =
ah

Xf)--
p

Xf)_~
., ...

rë prë
1

1+-
,Li

•

[KSAJ=

[D5A] =

1 (1/2 - ah) 2(a h + 1/2)unsf ÇJ(O)
-., + ., - .,
lJ; prô pro

1 2unsf flJ(O)-+--....:...-.;......:....
p p

2.(8 unf(1/2-ah ) 2(ah +1/2)(1/2-ah )unfÇ'(O)
-+., .,
Um prB prë

unf 2(1/2-ah)unf~O)- + ---:...._--:.:...:-----=-.....:......:..

l' p

o
_"1

tir
u 1

m

2(ah +1/2)unf9'(0)

JO;
2 ç;, al 2unf Ç1(O)
--+----.,;.,.~

Um P

•

[KD\\1=

[KDK]=

2(ah + 1/2)b1b::unf (Al + A~)
.,

prB
2.b1b1unf (~ + A~)

p

.,
prô

2b3b~(A3 + A4 )

p

.,
pra

2(~bl + ~b1)unf

l'

2(ah + 112) (A3b} + A..bJ
.,

pro
2(A3b3 + A~b-t)

l'
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• APPENDIXD-

RUNGE-KUTTA PROGRAM LISTING

c
c BASIC PROGRA.M; RUNGE-KUTTA (FO(}RTH-ORDER) ALGORITHM
c
c TInS PROGRAM CALC1JLATES THE DYNAMIC BEHA.VIOR Of AN
c OSCILLATING AIRfOIL IN" PITCH AND REAVE AS A. FUNCnON Of
c AIRSPEED.
c
c THE AERODYNAMIC IS UNSTEADY INCO~RESSIBLEAND LlNEAR (lE
c TWO TERMS WAGNER FUNCnON). THE STRUCTURE RAS A
e NONLINEAR rORSIONAL STIFFNESS DUFFING TYPE.
e
e ALL PARAMETERS ARE NONDIMENSIONAL. HOWEVER, THE INPUT
e A.1'ID OUTPUT OF THE PITCH ANGLE IS IN DEGREES.
c
c THE INTEGRAL Of THE AERODYNAMIC CIRCULATORY TERMS HAS
c BEENMODIFIED TO NEW STATE VARIABLES. THE VAN DER WALL
c MODELLING IS USED.

• c
c THE INTEGRAL OF THE KUSSNER GUST ENTRY FUNCTION RAS BEEN
c MODJFIED TO NEW STATE VARIABLES. TWO TERM:S ARE ALSO USED
c FOR KUSSNER FlJNCnON.
c
c EIGHT STATES (lE STRUCTURAL AND AERODYNAMICS) ARE
c CALCULATED SThfULr ANEOUSLy USIN"G AN EIGHT BY EIGID !\-1ATRIX
c A.('r), \VHILE THE TURBULENCE STATE EQUATIONS ARE SOLVED ON
c THEIR. OWN AT EACH TThŒ STEP.
c
c THE TWO TURBULENCE COMPO~lSRECEIVE RANDOM NUMBERS
c FROM DIFFERENT RANINEW ROUTIN"ES; RENCE ARE UNCORRELATED.
c USES RANlNEW.fOR IE RANI FROM "Numerical Recipes", 20d edition,page
c 271. THESE UNIFORMLy DISTRIBUTED RANDûM NUMBERS ARE THEN
c TRANSfûRMED INTO GAUSSIAN NUMBERS WITH THE BOX-MUELLER
c ALGORITHM AND INTO WIllTE NOISE. THE rwo WInTE NOISE
c PROCESSES ARE FINALLY FED INTO NUMERICAL Ffi..TERS THAT
c REPRESENT THE VERTICAL AND LONGITIJDINAL DRYDEN
c TURBULENCESPECTRA
c
c THE DATACAN BE SAVED INFIl.E "ana.in" FORFURTHERANALYIS.
c THE FILE "infa.in" CONTAINS THE VALUES OF THE PROGRAM• c VARIABLES AJ-ID SYSTEM PARAMETERS WHICH DEFlNE THE DATA
c
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nmax = MAXIMUM NUMBER OF ITERATIONS
nrss = ITERATION AT STEADY STATE
um =AIRSPEED
a = ALPHA (PITCR)
s = SIGMA (REAVE)
ap = d ALPHA! dt
sp = d SIGMA! dt
iduml, idum2, idum3, idum4 : SEEDS fOR RANDOM NUMBER GENERATOR

•

•

•

c***********************************************************************
c
c DEFINlTION OF PROGRAM VARIABLES AND AEROELASTIC-TURBULENCE
c SYSTEM PARAMETERS TYPES
c

parameter (idim=8, idims=4, idimw=2, idimk=2, idimg=2)
character*60 noise, component, ainfa
real*S x(idim), kl(idim), k2(idim), k3(idim), k4(idim),

* mu, pi, ita, its, lw, Is, 19, ldg, lkwn, lwn, vwn,
* msa(idims/2,idirns/2), dsa(idims/2,idims/2), ksa(idirns/2,idims/2),
* mksa(idims/2,idirns/2), mdsa(idirns/2,idims/2), msadw(2), msakw(2),
* a(id~idim), an(idirn,idim), kn(idims/2,idims/2), kalpha, ksigma,
* mksan(idirns/2,idims/2), kqw, dwn, sumvwn, sumvgint,
* k1vg, k2vg, k3 vg, k4vg, k llg, k2lg, k3lg, k41g,
* kw(2), dw(2), k33, lUI, k44, kk(2), dk(2), msadk(2), msakk(2)

c
c INPUT AND DEFINITION OF PROGRAM VARIABLES
c
c

c
c
c
c
c
c
c
c

pi=3.1415927
dtr=pi/I80.
rtd= ISO./pi
write (6, *)'What is maximum number ofiterations, nmax=?'
read (6, *)nmax
write (6, *)'What is the steady state response iteration, nrss?'
read (6,*)nrss
write (6, *)'What is the airspeed, um?'
read (6,*)um
write (6,*)'Ofwhat state variable do you want info? a, 5, ap

* or sp?'
read (6,67)ainfo
itna=l
iduml=-2
idum2=-3
idum3=-4
idum4=-5
sumvwn=O.
sumvgint=O.
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A. STRUCTURAL PARAMETERS

xalpha =DISTA1\TCE FROM EA TO CG DIVIDED BY SEW-CHORD
ah = DISTANCE FROM EA TO MID-CHORD DIVIDED BY SEMI-CHORD
wbs = RADIAL FREQUENCY RATIO
ssigma =NONDIMENSIONAL DAMPING HEAVE COEFFICIENT
salpha = NONDIMENSIONAL DAMPING PITCH COEFFICIENT
balphal = NONDIMENSrONAL LINEAR STIFFNESS PITCH COEFFICIENT
balpha3 = NONDIMENSrONAL CUBIC STIFFNESS PITCH COEFFICIENT
ralpha = RADIUS Of GYRATION

mu = AIRFOILJMASS RATIO
lw, alw, a2w, b1w, b2w : WAGNER FUNCTION COEFFICIENTS
a 1le, a21e, bIle, b2k : KUS SNER FUNCTION COEFFICIENTS

•

•

•

vwn=O.
lwn=O.
Idg=O.
vdg=O.

c
c INPUT OF AEROELASTIC-TIJRBULENCE SYSTEM PARAMETERS
c
c
c
c
c
c
c
c
c
e
e
e

write (6, *)What is the statie unbalance, xalpha?'
read (6,*)xalpha
write (6, *)'What is the distance between EA and C/2, ah?'
read (6, *)ah
write (6, *)What is the frequency ratio, wbs?'
read (6,*)wbs
ralpha=.5
ssigma=O.
salpha=O.
balphal=l.
write (6, *)'What is the non-linear stifIhess parameter, balpha3?'
read (6, *)balpha3

c
e B. AERODYNAMIC PARAMETERS
e
c
c
c
e

mu=lOO.
lw=l.
alW=.165
blW=.0455
a2W=.335
b2w=.3
alk=.5792
b lk=.1393
a2k=.420S
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b2k=1.802

no =NO TURBULENT EXCITATION
dg =DRYDEN GUST(TURBULENCE) EXCITATION
Ig =LONGITUDIN"AL GUST
vg =VERTICAL GUST
bg =BOTH GUST COMPONENTS
Is = SCALE Of TURBULENCE
dgvar = DRYDEN GUST VARIANCE

•

•

•

c
c C. TURBULENCE PARAMETERS
c
c
c
c
c
c
c
c
c

write (6, *)'What noise input do you want - no or dg?'
read (6,67)noise

67 format(a2)
if(noise.eq.'dg') then

write (6, *)'What noise component do you want - Ig, vg or hg?'
read (6,67)component
write (6, *)'What is the scale of turbulence, Is?'
read (6, *)Is
write (6, *)'What is the Dryden gust variance?'
read (6,*)dgvar
spsd=l.
lkwn=(dgvar*2.1(pi*ls»**.5
dwn=(dgvar/(pi*1s/3.»**.5
kqw=(-1.l1s**2)
vkwn=(dgvar/(pi*ls**3»**.5

end if
c
c INPUT OF AEROELASnC SYSTEM STATE INlTL~ CONDITIONS, AT t=0, i=l
c

write (6,*)What is the initial alpha (in deg) ?'
read (6,*)alphado
alphao=alphado*dtr
x(1)=alphao
write (6,*)What is the initial alphap(in deg) ?'
read (6,*)alphapdo
alphapo=alphapdo*dtr
x(3 )=alphapo
write (6,*)'What is the initial sigma ?'
read (6,*)sigmao
x(2)=sigmao
write (6,*)'What is the initial sigrnap 7'
read (6,*)sigmapo
x(4)=sigmapo
do 304 i=idims+ 1,idim
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dtalpha =TIl\JŒ STEP BA5ED ON NATURAL UNCOUPLED PITCH
AEROELASTIC MODE
dtsigma = TIl\JŒ STEP BASED ON NATURAL UNCOUPLED HEAVE
AEROELASTIC MODE
dtdg = TThtIE STEP BASED ON DRYDEN GUST CORRELATION TIME
dt = eHOSEN TIME STEP

•

•

•

x(i)=O.
304 continue
c
c CALCULATION Al'lD INPUT Of TIME STEP
c
c
c
c
c
c
c
c

kalpha=«( l.1um**2)-2. *(ah+.5)*(lw-a1w-a2w)/(mu*ralpha**2»/
* (l.+(I.18.+ah**2)/(mu*ralpha**2»)**.5

ksigma=(wbs/um)/( 1.+1./mu)**.5
talpha=2. *pilkalpha
tsigma=2. *pilksigma
dtalpha=talpha/I28.
dtsigma=tsigmal128.
dtdg=Is/50.
write (6, *)'dtalpha =', dtalpha
write (6, *)'dtsigma =', dtsigma
write (6, *)'dtdg =', dtdg
write (6, *)What is dt?'
read (6,*)dt

c
c DEFINITION OF OUTPUT VARIABLES
c
c na = RATE AT WIlleH DATA POINTS ARE SMAPLED FOR STORAGE. FOR
c EXAMPLE
c na = 1 MEANS THAT ALL DATA POINTS ARE STORED, OR na = ID MEANS
c THAT EVERY 10 DATA POINTS ARE STORED.
c isana = ITERATION AT WIllCH THE DATA STARTS Ta BE STORED.
c imana = ITERATION AT wmCH THE DATA STOPS TO BE STORED.
c

open (9, file='info.in')
write (6,*)'What is the sampling rate to save data, na?'
read (5,*)na
write (6,*)'What is the tirst and last iter to be saved?'
read (5, *)isana, imana
open (13, file='ana.in')

c
c OUTPUT Of PROGRAM VARIABLES, SYSTEM P ARAMETERS AND
c STATE INITIAL CONDITIONS
c

write (9, *)
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•

•

write (9,*)'The recorded state variable is " ainfo
write (9,29)nmax

29 format('nrnax=',ilO)
write (9,30)nrss

30 format('nrss=',i7)
write (9,37)ls

37 format('ls=',~.5)

write (9, 19)dgvar
19 format('Dryden gust variance=', f6. 3)

write (9,38)ah
38 formatCah=',fS.2)

write (9,36)wbs
36 format('wbs=',tï.4)

write (9, 56)ralpha
56 format('raIpha=',f6.4)

write (9,40)xalpha
40 format('xalpha=',f6.4)

write (9,41 )saIpha
41 formatCsaIpha=',f6.4)

write (9,44)ssigma
44 fonnat('ssigma=',f6.4)

write (9,43)balphal
43 format('balphal =',fS.2)

write (9,42)balpha3
42 format('baIpha3=',5).2)

write (9,46)mu
46 format('mu=',f6.1)

write (9,48)alphado
48 format('alphado=',f7.3)

write (9,49)alphapdo
49 format('alphapdo=',fS .2)

write (9,54)sigmao
54 formatCsigmao=',t7.3)

write (9,55)sigmapo
55 formatCsigmapo=',fS.2)

write (9,50)um
50 fonnatCum=',f6.2)

write (9,*)'The time step is, dt =', dt
write (9,*)'The noise component is " component
write (9,*)
write (9,*)
write (9, *)

c
c AEROELASTIC SYSTEM MA.TRIX CALCULATION (TThŒ-INVARIANT PART)
c

do 300 i=l,idim
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•

.~

do 301 j=1,idim
a(~j)=O.

an(ij)=O.
30 1 continue
300 continue

ita=-2. *(ah+.5)/(mu*ralpha**2)
its=2.1mu
msa(l, 1)=1.+«1./8.+ah**2)/(mu*ralpha**2»
msa(1,2)=(xalphalralpha**2)-(ahI{mu*ralpha**2»
msa(2,1)=xalpha-(ahlmll)
msa(2,2)=1.+( l./mu)
k33=b1w*b2w
d33=b 1w+b2w
d31=-(.5-ah)
d32=-1.
k44=blk*b2k
d44=blk+b2k
kn(l,2)=O.
kn(2,1)=0.
kn(2,2)=0.
ksa(I,2)=O.
îh==idimsl2
deta=rnsa(1,1)*nnsa(2,2)-msa(I,2)*nnsa(2,1)
tempmsa Il=msa( l, 1)
msa(1,1)=msa(2,2)/deta
msa(I,2)=-msa(I,2)/deta
msa(2, 1)=-msa(2, 1)/deta
msa(2,2)=tempmsa ll/deta
kn( 1,1 )=balpha3/11m**2
ksa(2,2)=(wbs/um)**2
a{l,3)=1.
a(2,4)=1.
a(5,6)=1.
a(6,3 )=-d31
a(6,4)=-d32
a(6,5)=-k33
a(6,6)=-d33
a(7,S)=1.
a(S,7)=-k44
a(S,S)=-d44

c
c ITERA.TION IN TIME OF EQUATIONS OF MOTION
c

do 10 it=2, nrnax
t=dt*t1oat(it-l )

c
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•

•

c CALCULATION OF WHITE NOISE AND DRYDEN TURBULENCE
c

if (noise.eq.'no') then
um=l.
unsf=l.
vg=O.

else if (noise.eq.'dg') then
19=1dg
vg=vdg
spsd=l.
wnvar=spsd*pildt
surnvgint=surnvgint+vdg
vgint=surnvgint*dt
surnvwn=sumvwn+vwn
vwnint=sumvwn*dt
b=vkwn*vwnffit+dwn*vwn+kqw*vgmt
um1=ran1(idum1)
um2=ran2(idum2)
urn3=ran3(idum3)
um4=ran4(idum4)
Iwn=cos(2. *pi*uml)*(-2. *log(um2)*wnvar)**.5
vwn=cos(2.*pi*um3)*(-2.*log(um4)*wnvar)**.5
um= 1.+lglum
unsf=l.+(2. *lglum)+(lg/um)**2
if (component. eq.'vg') then

unf=1.
unsf=l.

else if (component.eq. 'Ig') then
vg=O.

end if
end if

c
c AEROELASTIC SYSTEM MATRIX CALCULATION (TIME-VARYING PART)
c

dsa(l, 1)=(2. *salpha/urn)+«.5-ah)*unt7(mu*ralpha* *2»
* -(2. *(.5+ah)*(.5-ah)*(lw-a1w-a2w)/(mu*ralpha**2»*unf

dsa(l ,2)=-2. *(.5+ah)*(lw-a1w-a2w)*unf7(mu*ralpha**2)
dsa(2, 1)=(1.*unf7mu)+(2.*(.5-ah)*(lw-al w-a2w)*unf7mu)
dsa(2,2)=(2. *ssigma*wbslurn)+(2.*(lw-a1w-a2w)*unf7mu)
ksa(l, 1)=-2. *(.5+ah)*(lw-a1w-a2w)*unst7(mu*ralpha**2)

* +(balphal/um**2)
ksa(2, 1)=2.*(lw-a1w-a2w)*unsf7mu
dw(l )=ita*(al w*b 1w+a2w*b2w)*unf
dw(2)=its*(al w*b 1w+a2w*b2w)*unf
kw(1)=ita*b1w*b2w*.5*unf
kw(2)=its*b1w*b2w*.5*unf
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xl=alpha
x2=sigma

•

•

•

k31=-unf
dk( 1)=ita*(al k*b 1k+a2k*b2k)
dk(2)=its*(alk*b 1k+a2k*b2k)
kk( 1)=ita*b1k*b2k
kk(2)=its*blk*b2k
msadk( 1)=msa( l, 1)*dk(1)+msa( 1,2)*dk(2)
msadk(2)=msa(2, 1)*dk(l )+msa(2,2)*dk(2)
msakk( 1)=msa(1,1)*kk( 1)+msa(1,2)*kk(2)
msakk(2)=msa(2,1)*kk(I)+msa(2,2)*kk(2)
mksa( l, 1)=msa( l, 1)*ksa( l, 1)+msa(1,2)*ksa(2, 1)
mksa(I,2)=msa(l, 1)*ksa( 1,2)+msa(1,2)*ksa(2,2)
nlksa(2,I)=msa(2,1)*ksa(I,I)+msa(2,2)*ksa(2,1)
mksa(2,2)=msa(2,1)*ksa(I,2)+msa(2,2)*ksa(2,2)
mksan(I, I)=msa(l, 1)*kn(l, 1)+msa(I,2)*kn(2, 1)
mksan(I,2)=msa(I,I)*kn(l,2)+msa(I,2)*kn(2,2)
mksan(2, 1)=msa(2, 1)*kn(l, 1)+msa(2,2)*kn(2, 1)
mksan(2,2)=msa(2, 1)*kn( 1,2)+msa(2,2)*kn(2,2)
mdsa( l, 1)=msa( l, 1)*dsa( l, 1)+msa(1,2)*dsa(2, 1)
mdsa( 1,2)=msa(1,1)*dsa( 1,2)+msa(1,2)*dsa(2,2)
mdsa(2,1)=msa(2,1)*dsa(l,I)+msa(2,2)*dsa(2,1)
mdsa(2,2)=Tnsa(2,1)*dsa(l,2)+msa(2,2)*dsa(2,2)
msadw(l )=rnsa(l, 1)*dw(l )+msa(I,2)*dw(2)
msadw(2)=Tnsa(2,1)*dw(I)+msa(2,2)*dw(2)
msakw( 1)=rnsa(l, 1)*kw(1)+msa(1,2)*kw(2)
msakw(2)=rnsa(2, 1)*kw(1 )+msa(2,2)*kw(2)
do 302 i=1,idims/2
do 303 j=l,idimsl2
a(i+idims/2j)=-mksa(ij)
a(i+idirns/2j+idims/2)=-mdsa(ij)
an(i+idimsl2j)=-mksan(ij)

303 continue
302 continue

a(3,5)=-msakw(1)
a(3,6)=-msadw(1)
a(4,5)=-ms~(2)

a(4,6)=-msadw(2)
a(6, 1)=-k31
a(3,7)~~msakk(I)

a(3,8)=-msadk(1)
a(4,7)=-msakk(2)
a(4,8)=-msadk(2)

c
c RI( SCHEME INTEGRATION
c
c
c
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• c x3=alpha'
c x4=sigma'
c x5=ZI (Wagner funetion)
c x6=Zl'(Wagner funetion)
c x7=Z2 (Kussner function)
c x8=Z2'(Kussner function)
c ldg=longitudinal Dryden gust
c vdg=vertical Dryden gust
c

•

•

do 320 i=l,idim
kl(i)=O.
do 330 j=l,idim
k 1(i)=a(ij)*xG)+an(ij)*xG)**3+k1(i)

330 continue
320 continue

do 340 i=1,idim
k2(i)=O.
do 350 j=l,idim
k2(i)=a(ij)*(xG)+klG)*dt/2.)

* +an(ij)*(xG)+k1G)*dtJ2. )**3+k2(i)
350 continue
340 continue

do 360 i=l,idim
k3(i)=O.
do 370 j=l,idim
k3(i)=a(ij)*(xG)+k2G)*dtJ2.)

* +an(ij)*(xG)+k2G)*dtJ2.)**3+k3(i)
370 continue
360 continue

do 380 i=l,idim
k4(i)=0.
do 390 j=l,idim
k4(i)=a(ij)*(xG)+k3G)*dt)

* +an(ij)*(xG)+k3G)*dt)**3+k4(i)
390 continue
380 continue

do 400 i=l,idim
x(i)=x(i)+(dt/6.)*(kl(i)+2. *k2(i)+2. *k3(i)+k4(i»

400 continue
x(8)=x(8)+vg*dt/um
if (noise.eq. 'dg') then

k1vg=(-2.115)*vdg+b
k2vg=(-2.l1s)*(vdg+kl vg*dt/2.)+b
k3vg=(-2.l1s}*(vdg+k2vg*dt/2.)+b
k4vg=(-2.l1s)*(vdg+k3vg*dt}+b
vdg=vdg+(dt/6.}*(kl vg+2. *k2vg+2. *k3vg+k4vg)
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kllg=(-l./ls)*ldg+lwn*lkwn
k21g=(-1.l1s)*(ldg+kllg*dtl2.)+lwn*lkwn
k31g=(-1./ls)*(ldg+k2lg*dtl2.)+lwn*lkwn
k41g=(-l.l1s)*(ldg+k3lg*dt)+lwn*lkwn
ldg=ldg+(dtl6. )*(k 11g+2. *k21g+2.*k3lgT k41g)

end if
c
c OUTPUT OF AEROELASTIC SYSTEM STATE TIME mSTORIES
c

if (ainfo.eq.'a') then
sv=x(l)*nd

else if (ainfo.eq.'s') then
sv=x(2)

else if (ainfo.eq.'ap') then
sv=x(3)*nd

else if (ainfo.eq. 'sp') then
sv=x(4)

end if
if (it.le.imana .and. it.ge.isana) then

if (itna.eq.na) then
write (13,*) t, sv
ima=O

end if
itna=itna+1

end if
c
c RETURN FOR ITERATION
c

10 continue
c
c mE CLOSURES A1'ID PROGRAM TERMINATION
c

cIose(9)
cIose(13)
stop
end

c
c RA.NDOM NUMBER GENERA.TORS
c

FUNCTION R.Au1\Il (IDUMl)
INTEGER IDUMI, lA, lM, IQ, IR, NTAB, NDIV
REAL R->\Nl, AM, EPS, R-"NMX
PA.RAMETER (IA=16807, I1v1=2147483647, AM=l./IM, IQ=127773, IR=2836,
*NTAB=32, NDIV=l+(IM-l), EPS=1.2E-7, RMv1X=l.-EPS)
INTEGERJ, K IV(NTAB), IY
SAVE IV, IY
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DATA IVINTAB*O/, IV/OI
IF (IDrJMl.LT.O.OR.IY.EQ.O) THEN

IDUM1=MAX(-IDUM1,1)
DO Il J=NTAB+8,1,-1
K=IDUMIIIQ
IDUMI =IA*(IDUMI-K*IQ)-IR*K
IF (IDUM1.LT.O) IDUMl=IDUMl+IM
IF (J.LE.NTAB) IV(J)=IDUMI

Il CONTINUE
IY=IV(I)

ENDlF
K=IDUM:l/1Q
IDUM:I=IA*(IDUMl-K*IQ)-IR*K
IF (IDUMI.LT.O) IDUMI=IDUMI+IM
J=l +IYINDIV
IY=IV(J)
IV(J)=IDUMI
RANI =MIN(A...M*IY,RNMX)
RETURN
END

c
FUNCTION RAN2(IDUM2)
INTEGERIDUM2, R lM, IQ, IR, NTAB, NDIV
REAL RAN2, AM, EPS, RNMX
PARAMETER (IA=I6807, IM:=2147483647, AM=l.lTh1, IQ=127773, IR=2836,
*NTAB=32, NDIV=I+{IM-l), EPS=1.2E-7, RNMX=l.-EPS)
INTEGERJ, K IV(NTAB), IY
SAVE IV, IY
DATA rvINTAB*O/, IY/OI
IF (IDUM2.LT.O.OR.IY.EQ.O) THEN

IDLl!\12=MAX(-IDUM2, 1)
DO Il J=NTAB+8, 1,-1
K=IDlJM2/1Q
IDU~=IA*(IDUM2-K*IQ)-IR*K
IF (IDUM2.LT.O) IDUM2=IDUM2+M
IF (J.LE.NTAB) IV(J)=IDillvl2

Il CONTINUE
IY=IV(l)

ENDIF
K=IDUM2/1Q
IDUM2=IA*(IDUM2-K*IQ)-IR*K
IF (IDUM2.LT.O) IDUM2=IDUM2+IM
J=l +IYINDIV
IY=IV(J)
IV(J)=IDUM2
RAN2=MIN(AM*IY,RNMX)
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RETURN
END

c
FUNCTION RAi\I3(IDUM3)
INTEGER IDillvO, lA,~ IQ, IR., NTAB, NDIV
REAL RAN3, ML EPS, Rm1X
PARAMETER (IA=16807, IM:=2147483647, AM=l.fTh.L IQ=127773, IR=2836,

*NTAB=32, NDIV=l+(IM-l), EPS=1.2E-7, RNMX=l.-EPS)
INTEGERJ, K, IV(NTAB), IV
SAVE IV, IY
DATA IVINTAB*O/, IY/OI
IF (IDUM3.LT.O.OR.IY.EQ.O) THEN

IDUM3=MAX(-IDilldJ, 1)
DO Il J=NTAB+8, 1,-1
K=IDUM3/IQ
IDUM3=1A*(IDUM3-K*IQ)-IR*K
IF (IDUM3.LT.O) IDUM3=IDUM3+IM
IF (ILE.NTAB) IV(J)=IDUM3

Il CONTINUE
IY=IV(I)

ENDIF
K=IDUM3/IQ
IDUM3=IA*(IDUM3-K*IQ)-IR*K
IF (IDUM3.LT.O) IDUM3=IDUM3+IM:
]=l+IYINDIV
IY=IV(J)
IV(J)=IDUM3
RAN3=MIN(AM*IY,RNMX)
RETURN
END

c
FUNCTION RAN4(IDUM4)
INTEGER IDUM4, lA, lM, IQ, IR, NTAB, NDIV
REAL RAN4, AM, EPS, RN1vfX
PARAMETER (IA=16807, IM:=2147483647, AM=l.JTh.1, IQ=127773, IR=2836,
*NTAB=32, NDIV=1+(Th1-1), EPS=1.2E-7, RNMX=1.-EPS)
INTEGERJ, ~ IV(NTAB), IY
SAVE IV, IY
DATA IVINTAB*O/, IY/OI
IF (IDUM4.LT.O.OR.IY.EQ.O) THEN

IDUM4=MAX(-IDUM4, 1)
no Il J=NTAB+8,1,-1
K=IDUM4/IQ
IDUM4=IA*(IDUM4-K*IQ)-IR*K
IF (IDUM4.LT.O) IDillvl4=IDUM4+IM
IF (ILE.NTAB) IV(J)=1DUM:4
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Il CONTINUE
IY=IV(l)

ENDIF
K=IDUM4/IQ
IDUM4=IA*(IDUM4-K*IQ)-IR.*K
IF (IDUM4.LT.O) IDUM4=IDUM4+llvI
J=l+IYINDIV
IY=IV(J)
IV(J)=IDUM4
RAN4=MIN"(AM*IY,RNMX)
RETURN
END
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BASIC PROGRAM; HOUBOLT ALGORITHM:

THE ALGORITHM rs AN EIGHT-ORDER HOUBOLT FINITE DIFFERENCE~

EXCEPT FOR THE TURBULENCE EQUATIONS Of MOTION wmCH ARE
SOLVED USING A FOURTH-ORDER RUNGE-KUTTA

•

•

•

APPENDIXE

HOUBOLT PROGRAM LISTING

c
c
c
c
c
c
c
c
c***********************************************************************
c
c DEFTh1TION OF PROGRAM: VARIABLES AND AEROELASTIC-GUST SYSTEM
c PARAMETERS TYPES
c

parameter (idim==8, idims=4, idimw=2~ idimk=2, idimg=2)
charaeter*60 noise~ component, ainfo
real*8 x(3), p(3,3), pz2, xz2,

* mu, p~ ita, its, lw, 15, 19, ldg,
* msa(idims/2, idirns/2), dsa(idims/2,idims/2), ksa(idims/2~idirnsl2),

* lm, vwn, lwn, kqw, dwn, SUffi\'WIl, sumvgint~

*~ kl vg, k2vg, k3vg, k4vg, kllg, k2lg, k31g, k41g,
* hv(2), dw(2), k33, k3l, k44, kk:(2), dk(2)

c
c INPUT A.1'ID DEFINITION OF PROGRA..M: VARIABLES
c

pi==3.1415927
dtr=pi/180.
rtd==l80./pi
write (6,*) What is maximum number of iterations, nmax==?'
read (6, *) nmax
\\Inte (6,*)'\Vhat is the steady state respon5e iteration, nrss?'
read (6,*)nrss
write (6, *)'What is the airspee~ um?'
read (6, *) um
write (6,*)'Ofwhat state variable do you want info? ~ s, ap

* or sp?'
read (6,67)ainfo
itna=l
idum1=-2
idum2=-3
idum3=-4
idum4=-5
surnvwn=O.
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surnvgint=O.
\iwn=O.

Iwn=O.
Idg=O.
vdg=O.
N=3
NP=3
M=l
MP=1

c
c INPUT OF AEROELASTIC-TIJRBULENCE SYSTEM PARAMETERS
c
c A. STRUCTURAL P.i\R.AMETERS
c

write (6,*)'What is the static unbalance, xalpha?'.
read (6,*)xalpha
write (6,*)'What is the distance between EA and C/2, ah?'
read (6, *)ah
write (6,*)'What is the frequency ratio, wbs?'
read (6, *)wbs
ralpha=.5
ssigma=O.
salpha=O.
balphal=l.
write (6, *)'What is the non linear stifIhess parameter, balpha3?'
read (6, *)balphaJ

c

c B. AERODYNAMIC PARAMETERS
c

mu=IOO.
lw=l.
alW=.165
blW=.0455
a2W=.335
b2w=.3
alk=.5792
blk=.1393
a2k=.4208
b2k=1.802

c
c C. TURBULENCE Pi\R...uŒTERS
c

write (6,*)'What noise input do you want - no or dg?'
read (6,67)noise

67 formatea2)
if (noise.eq.'dg') then
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write (6,*)'What noise component do you want -lg, vg or hg?'
read (6,67) component
write (6, *)What is the scale of turbulence, Is?'
read (6, *)ls
write (6,*)'What is the Dryden gust variance?'
read (6, *)dgvar
spsd=l.
lkwn=(dgvar*2./(pi*ls»**.5
dwn=(dgvar/(pi*1s/3 .»**.5
kqw=(-l./ls**2)
vkwn=(dgyar/(pi*ls**3»**.5

end if
c
c INPUT OF AEROELASTIC SYSTEM STATE INITIAL CONDITIONS, AT t=O, i=l
c

write (6, *)'What is the initial alpha (in deg) ?'
read (6,*)alphado
alphao=alphado*dtr
alphai=aIphao
write (6,*)'What is the initial alphap(in deg) ?'
read (6,*)alphapdo
alphapo=alphapdo*dtr
alphapi=alphapo
write (6, *)'What is the initial sigma l'
read (6, *)sigmao. ..
slgmaI=slgrnao
write (6,*)'What is the initial sigmap 11

read (6,*)sigrnapo. ..
slgmapl=slgmapo
aeroi==O.
z2=O.

c
c CALCULATION AND INPUT Of TIME STEP
c

kalpha=«(1./um**2)-2. *(ah+. 5)*(lw-alw-a2w)/(mu*ralpha**2»/
* (1.+(1./8.+ah**2)/(mu*ralpha**2»)**.5
ksigma=(wbs/um)/(l.+1./mu)**.5
talpha=2. *pi/kalpha
tsigma=2.*pilksigma
dtalpha=talphal128.
dtsigma=tsigmal128.
dtdg=Is/50.
write (6, *)'dtalpha =', dtalpha
write (6,*)'dtsigma =', dtsigma
write (6,*)'dtdg =" dtdg
write (6,*)'What is dt?'
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read (6, *)dt
c
c DEFINITION Of OUTPUT VARIABLES
c

open (9, file='info.in')
write(6,*)'What is the sampling rate to save data, na?'
read (S,*)na

write(6,*)'What is the tirst and last iter to he saved?'
read (S, *)isana, imana

open (13, file='ana.in')
c

c OUTPUT OF PROGRAM VARIABLES, SYSTEM PARAMETERS AND
c STATE INITIAL CONDITIONS
c

write (9,*)
write (9, *)'The recorded state variable is " ainfo
write (9,29)nmax

29 format('nmax=',iIO)
write (9,30)nrss

30 format('nrss=',i7)
write (9,37)ls

37 fonnat(1s=',f9.S)
write (9, 19)dgvar

19 format('Dryden gust variance=', f6.3)
write (9,38)ah

38 format('ah=',fS .2)
write (9,36)wbs

36 format('wbs=',tï.4)
write (9,S6)ralpha

56 format('ralpha=',f6.4)
write (9,40)xalpha

40 format('xalpha=',f6. 4)
write (9,41 )saJpha

41 format('saJpha=',f6.4)
write (9,44)ssigrna

44 format('ssigma=',f6.4)
write (9,43)balphal

43 format('baJpha1=',fS.2)
write (9,42)balpha3

42 format('baJpha3=',~.2)

write (9,46)mu
46 format('mu=',f6.1)

write (9,48)aJphado
48 format('alphado=',f7.3)

write (9,49)aJphapdo
49 format('alphapdo=',fS.2)
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write (9,54)sigrnao
54 fonnat('sigmao=',ti.3)

write (9,55)sigmapo
55 fonnat('sigrnapo=',5.2)

write (9,50)um
50 formatCum=',f6.2)

write (9, *)'The time step is, dt =', dt
write (9, *)'The noise component is " component
write (9, *)
write (9,*)
write (9, *)

c
c AEROELASTIC SYSTEM MATRIX CALCù1..ATION (TIME-INVARIANT PART)
c

ita=-2. *(ah+.5)/(mu*ralpha**2)
its=2./mu
msa{l, 1)=1.+«l.l8.+ah**2)/(mu*ralpha**2»
msa(1,2)=(xalpha/ralpha**2)-(ah/(mu*ralpha**2»
msa(2,I)=xa1pha-(ah/mu)
msa(2,2)=1.+(I./mu)
k33=blw*b2w
d33=b 1w+b2w
d31 =-(.5-ah)
d32=-1.
k44=blk*b2k
d44=b1 k+b2k
ksa(1,2)=O.
kn=balpha3/um**2
ksa(2,2)=(wbsium)**2
ih=idims/2
c3=1.
c2=O.
cl=O.
b3=O.
b2=msa( 1,1)
b l=msa(I,2)
a3=O.
a2=msa(2,1)
al=msa(2,2)
c9=-k33
c6=-d33
c7=O.
c5=-d31
c4=-d32
b7=-ksa( 1,2)
a7=-ksa(2,2)
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c
c ITERATION IN TThtIE Of EQUATIONS Of MOTION
c

do 10 it=2, nrnax
t=dt*tloat(it-l)

c
c CALCULATION OF WIDTE NOISE AND DRYDEN TURBULENCE
EXCITATION
c

if (noise.eq. 'no') then
unf=l.
unsf=l.
vg=O.

else if (noise.eq.'dg') then
Ig=ldg
vg=vdg
spsd=l.
wnvar=spsd*pildt
sumvgint=sumvgint+vdg
vgint=sumvgint*dt
surnvwn=sumvwn+vwn
wvgint=sumvwn*dt
b=vkwn*wvgint+dwn*vwn+kqw*vgint
um1=ranI (idum1)
um2=ran2(idum2)
urn3=ran3 (idum3)
um4=ran4(idum4)
lwn=cos(2. *pi*urnl )*(-2. *log(urn2)*wnvar)**.5
vwn=cos(2. *pi*urn3)*(-2. *log(um4)*wnvar)**.5
unf=1.+lg/um
unsf=I.+(2. *lg/um)+(lglum)**2
if(component.eq.'vg') then

unf=l.
unsf=l.

else if (component.eq. 'lg') then
vg=O.

end if
end if

c
c AEROELASTIC SYSTEMMATRIX CALCULATION (TIME-VARYINGPART)
c

dsa(l, 1)=(2. *salphalum)+«(.5-ah)*unfï(mu*ralpha**2»
* -(2.*(.5+ah)*(.5-ah)*(lw-alw-a2w)/(mu*ralpha**2»*unf
dsa( 1,2)=-2. *(.5+ah)*(1w-alw-a2w)*unfI(mu*ralpha**2)
dsa(2, 1)=(1.*unfi'mu)+(2.*(.5-ah)*(lw-a1w-a2w)*unf7mu)
dsa(2,2)=(2. *ssigma*wbslum)+(2. *(lw-a1w-a2w)*unflmu)
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ksa(l, 1)=-2. *(.5+ah)*(lw-alw-a2w)*unst7(mu*ralpha**2)
* +(balpha l/urn**2)

ksa(2, 1)=2. *(lw-a1w-a2w)*unst7mu
dw(I)=ita*(alw*b 1w+a2w*b2w)*unf
dw(2)=its*(al w*b 1w+a2w*b2w)*unf
kw( 1)=ita*b 1w*b2w*.5 *unf
kw(2)=its*b 1w*b2w*.S*unf
k31=-unf
dk( 1)=ita*(al k*b 1k+a2k*b2k)
dk(2)=its*(al k*b 1k+a2k*b2k)
kk(1)=ita*b 1k*b2k
kk(2)=its*b 1k*b2k
b5=-dsa(I,I)
b4=-dsa( 1,2)
b6=-dw(l)
a5=-dsa(2, 1)
a4=-dsa(2,2)
a6=-dw(2)
b8=-ksa(I,I)
b9=-kw(I)
a8=-ksa(2, 1)
a9=-kw(2)
c8=-k31
all=-kk(2)
bll=-kk(1)
al0=-dk(2)
b lO=-dk(l)

c
c AEROELASTIC SYSTEM INTEGRATION, HFD
c

p(l, 1)=2. *aIldt**2-11.*a4/(6. *dt)-a7
p( 1,2)=2. *a2/dt**2-11.*a5/(6. *dt)-a8
p( 1,3)=2. *a3/dt**2-11.*a6/(6. *dt)-a9
p(2, 1)=2. *b IIdt**2-11.*b4/(6. *dt)-b7
p(2,2)=2. *b2/dt**2-11.*b5/(6. *dt)-b8
p(2,3)=2. *b3/dt**2-11. *b6/(6. *dt)-b9
p(3,l)=2. *cl/dt**2-11.*c4/(6.*dt)-c7
p(3 ,2)=2. *c2/dt**2-11.*c5/(6.*dt)-c8
p(3,3)=2. *c3/dt**2-11.*c6/(6.*dt)-c9
alphab=2. *a1phai-alphaiml
x( 1)=sigmai*(5.*al/dt**2-18.*a4/(6. *dt»

* +alphai*(5. *a2/dt**2-18.*a5/{6.*dt»
* +aeroi*(S. *a3/dt**2-18.*a6/(6.*dt»
* +sigmairnl *(-4. *al/dt**2+9. *a4/(6. *dt»
* +a1phaiml *(-4. *a2/dt**2+9. *a5/(6.*dt»
* +aeroiml *(-4.*a3/dt**2+9.*a6/(6.*dt»
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* +sigmaim2*(al/dt**2-2. *a4/(6.*dt»
* +aIphaim2*(a2/dt**2-2.*a5/(6.*dt»
* +aeroim2*(a3/dt**2-2. *a6/(6. *dt»
* +z2*all+aIO*(ll. *z2-18. *z2ml+9. *z2m2-2.*z2m3)/(6*dt)

x(2)=sigmai*(5. *b 1/dt**2-18.*b4/(6. *dt»
* +alphai*(5.*b2ldt**2-18.*b5/(6. *dt»
* +aeroi*(5. *b3/dt**2-18.*b6/(6.*dt»
* +sigmaiml *(-4. *b l/dt**2+9. *b4/(6. *dt»
* +alphaiml *(-4. *b2/dt**2+9.*b5/(6.*dt»
* +aeroiml *(-4. *b3/dt**2+9.*b6/(6.*dt»
* +sigmaim2*(b l/dt**2-2. *b4/(6.*dt»
* +aIphairn2*(b2/dt**2-2. *b5/(6. *dt»
* +aeroim2*(b3/dt**2-2. *b6/(6.*dt»
* -kn*alphab**3
* +z2*b 11+b 10*(11. *z2-18. *z2ml+9.*z2m2-2: *z2m3)/(6*dt)

x(3)=sigmai*(5. *c1/dt**2-18.*c4/(6.*dt»
* +alphai*(5. *c2/dt**2-18.*c5/(6. *dt»
* +aeroi*(5. *c3/dt**2-18.*c6/(6.*dt»
* +sigmaiml *(-4.*c l/dt**2+9.*c4/(6.*dt»
* +alphairnl *(-4. *c2/dt**2+9.*c5/(6.*dt»
* +aeroiml *(-4. *c3/dt**2+9.*c6/(6.*dt»
* +sigmaim2*(cl/dt**2-2. *c4/(6.*dt»
* +alphaim2*(c2/dt**2-2.*c5/(6. *dt»
* +aeroim2*(c3/dt**2-2. *c6/(6.*dt»
cali GAUSSJ(p,N,NP,X,M,MP)
sigmaim3=sigmaim2
alphaim3=alphaim2
aeroim3=aeroim2
sigmaim2=sigmaim1
alphaim2=a1phaim1
aeroim2=aeroim1
sigrnaim1=sigmai
alphaim1=alphai
aeroim 1=aeroi
sigmai=x(l)
alphai=x(2)
aeroi=x(3)
alphapi=(ll. *alphai-18.*a1phaiml+9. *alphaim2-2.*alphaim3)/(6.*dt)
sigmapi=(11.*sigmai-18.*sigmairnl+9.*sigmaim2-2.*sigmaim3)/(6. *dt)
pz2=2./dt**2+Il. *d44/(6. *dt)+k44
xz2=z2*(5./dt**2+18. *d44/(6. *dt»

* +z2ml *(-4./dt**2-9.*d44/(6. *dt»
* +z2m2*(l./dt**2+2.*d44/(6. *dt»
* +vg/um

z2m3=z2m2
z2m2=z2ml
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• z2ml=z2
z2=xz2/pz2

c
c TURBULENCE EQUATIONS INTEGRATION, RK
c

if (noise.eq.'dg') then
k1vg=(-2./15)*vdg+b
k2vg=(-2./15)*(vdg+k1vg*dtl2.)+b
k3 vg=(-2./15)*(vdg+k2vg*dtl2. )+b
k4vg=(-2./1s)*(vdg+k3vg*dt)+b
vdg=vdg+(dt/6.)*(kl vg+2.*k2vg+2.*k3vg+k4vg)
kllg=(-l./ls)*ldg+lwn*lkwn
k21g=(-I./1s)*(ldg+kllg*dt/2.)+lwn*lkwn
k31g=(-1./ls)*(1dg+k21g*dt/2.)+lwn*lkwn
k41g=(-1./ls)*(ldg+k31g*dt)+lwn*lkwn
Idg=ldg+(dt!6.)*(k Ilg+2. *k21g+2.*k31g+k41g)

end if
c
c OUTPUT OF AERDELASTIC SYSTEM STATE TIME mSTORŒS
c

if (ainfo.eq. 'a') then
sv=alphai*nd• eise if (ainfo.eq.'s') then
sv=sigmai

eise if (ainfo.eq. 1ap') then
sv=alphapi*rtd

else if (ainfo.eq. 1Sp') then
sv=sigmapi

end if
if (it.le.imana .and. it.ge.isana) then

if (itna.eq.na) then
write (13, *) t, sv
itna=O

end if
itna=itna+1

end if
c
c RETURN FOR ITERATION
c

la continue
c
c FILE CLOSURES AND PROGRAM TERMINATION
c

• close(9)
close( 13)
stop
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end
c
c RANDOM NillvffiER GENERATORS
c

FUNCTION RANl(IDillvIl)
INTEGER IDUMl~ ~ llvf, IQ, IR, NTAB, NDN
REAL RANI, AAL EPS, RNMX
PARAMETER (IA=16807, IM=2147483647, AM=1./IM, IQ=127773, IR=2836,
*NTAB=32, NDIV=l+(IM-l), EPS=1.2E-7, RNMX=l.-EPS)
INTEGERJ, K IV(NTAB), IY
SAVE IV, IY
DATA IVINTAB*OI, IV/DI
IF (lDUMI.LT.O.OR-N.EQ.O) THEN

IDUMl=MAX(-IDUMl~ 1)
DO II J=NTAB+8, l~-l
K=IDUMI/IQ
IDUMI=IA*(IDUMl-K*IQ)-IR*K
IF (IDUMl.LT.O) IDUM1=IDUMl+W
IF (J.LE.NTAB) IV(J)=IDUMI

Il CONTINUE
IY=IV(l)

ENDIF
K=IDillv11IIQ
IDUMI =IA*(IDUMI-K*IQ)-IR*K
IF (IDUMI.LT.O) IDUMI=IDUMl+IM
J=I+IY/NDIV
IY=IV(J)
IV(J)=IDUMI
RANI =MlN(AM*IY,RNMX)
RETURN
END

c
FUNcnON RAN2(IDUM2)
INTEGERIDUM2, ~~ IQ, IR NTAB, NDIV
REAL RAN2, AM, EPS, RNMX
PARAMETER (IA=168D7, IM:=2147483647, AM=l./Thf, IQ=127773, IR=2836,
*NTAB=32, NDIV=l+(IM-l), EPS=1.2E-7, RNMX=l.-EPS)
INTEGERJ, K IV(NTAB), IY
SAVE IV, IV
DATA IVINTAB*OI, IY/OI
IF (IDUM2.LT.O.ORIY.EQ.O) THEN

IDUM2=MAX(-IDUM2, 1)
DO Il J=NTAB+8,1,-1
K=IDUM2IIQ
IDUM2=IA*(IDUM2-K*IQ)-IR*K
IF (IDUM2.LT.O) ID~f2=IDm.f2+IM:
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•

•

IF (ILE.NTAB) IV(J)=IDUM2
Il CONTINUE

IY=IV(l)
ENDIF
K=IDUM2/IQ
IDUM2=1A*(IDUM2-K*IQ)-IR.*K
IF (IDUM2.LT.O) IDUM2=IDtThtl2+IM
1=1+IYINDIV
IY=IV(J)
IV(J)=IDUNf2
RAN2=MIN(AM*IY,RNMX)
RETTJRN
END

c
FUNCTION RAN3(IDUM3)
INTEGER IDUM3, lA, lM, IQ, IR, NTAB, NDIV
REAL RAN3, AM, EPS, RNMX
PARAMETER (IA=16807, IM=2147483647, AM=1.fTh.1, IQ=127773, IR=2836,

*NTAB=32, NDIV=l+(IM-l), EPS=1.2E-7, RNMX=l.-EPS)
INTEGER J, K, IV(NTAB), IY
SAVE IV, IY
DATA IVINTAB*OI, IY/OI
IF (IDUM3.LT.O.OR.IY.EQ.O) THEN

IDUM3=MAX(-IDUM3, 1)
DO Il J=NTAB+8,1,-1
K=IDUM3/IQ
IDUM3=L~*(IDUM3-K*IQ)-IR.*K
IF (IDUM3.LT.O) IDUM3=IDUM3+llvI
IF (lLE.NTAB) IV(J)=IDUM3

II COI\T~

IY=IV(l)
ENDIF
K=IDUM3/IQ
IDUM3=IA*(IDUM3-K*IQ)-IR.*K
IF (IDUM3.LT.O) IDUM3=IDUM3+llvI
1=1+IY/NDIV
IY=IV(J)
IV(J)=IDUM3
RAN3=l\1IN(AM*IY,RNMX)
RETTJRN
END

c
FONCTION RAN4(IDUM4)
INTEGER millvl4, lA, lM, IQ, IR, NTAB, NDIV
REAL RAN4, AM, EPS, RNMX
PARAMETER (IA=16807, M=2147483647, AM=l./IM, IQ=127773, IR=2836,
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*NTAB=32, NDIV=l+(Thf-l), EPS=1.2E-7, RJ.'JMX=l.-EPS)
INTEGER J, K, IV(NTAB), IV
SAVE IV, IY
DATA IV/NTAB*OI, IY/OI
IF (IDUM4.LT.O.OR.IY.EQ.O) THEN

IDUM4=MAX(-IDUM4, 1)
DO Il J=NTAB+8,1,-1
K=IDUM4JlQ
IDUM4=IA*(IDUM4-K*IQ)-IR*K
IF (IDUM4.LT.O) IDUM4=IDUM4+IM
IF (J.LE.NTAB) IV(J)=IDUM4

Il CONTINUE
IY=IV(l)

ENDIF
K=IDUM4IIQ
IDUM4=IA*(IDUM4-K*IQ)-IR*K
IF (IDUM4.LT.O) IDUM4=IDUM4+IM
J=l+IYINDIV
IY=IV(J)
IV(J)=IDUM4
RAN4=~flN{AM*IY,~~

RETURN
END

c
SUBROUTINE GAUSSJ(A,N,NP,B,M,MP)
PARAMETER (NMAX=50)
REAL*8 A(N"P,NP),B(NP,:MP)
DIMENSION IPIV(NM-\X),INDXR(NMQ),INDXC(NMAX)
DO Il J=l,N
IPIV(J)=O

Il CONTINUE
DO 22 I=l,N

BIG=O.
DO 13 J=I,N

IF(IPIV(J).NE.l )THEN
DO 12 K=I,N

IF (IPIV(K).EQ.O) TIIEN
IF (ABS(A(J,K».GE.BIG)THEN
BIG=ABS(A(J,K»
IROW=J
ICOL=K

ENDIF
ELSE IF (lPIV(K).GT.1) THEN

PAUSE 'Singular matrix'
ENDIF

12 CONTINUE
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• ENDIF
13 CONTINUE

IPIV(ICOL)=IPIV(ICOL)+1
IF (IROW.NE.ICOL) THEN
no 14 L=I,N

DUM=A(IROW,L)
A(IROW,L)=A(ICOL,L)
A(lCOL~L)=DUM

14 CONTINUE
DO 15 L=I,M

OlJM=B(IROW,L)
B(IROW,L)=B(ICOL,L)
B(ICOL,L)=DUM

15 CONTINUE
ENDIF
INDXR(I)=IROW
INDXC(I)=ICOL
IF (A(lCOL,ICOL).EQ.O.) PAUSE 'Singular matrix.'
PIVINV=1./A(ICOL,ICOL)
A(ICOL,ICOL)=I.
DO 16 L=I,N

A(ICOL,L)=A(ICOL,L)*PIVINV

• 16 CONTINUE
DO 17 L=I,M

B(ICOL,L)=B(ICOL,L)*PIVINV
17 CONTINUE

DO 21 LL=I,N
IF(LL.NE.ICOL)THEN

DUM=A(LL,ICOL)
A(LL,ICOL)=0.
DO 18 L=I,N

A(LL,L)=A(LL~L)-A(ICOL,L)*Dillvi
18 CONTINUE

DO 19 L=I,M
B(LL,L)=B(LL,L)-B(ICOL,L)*DUM

19 CONTINlJE
ENDIF

21 CONTINUE
22 CONTINUE

DO 24 L=N,I,-1
IF(lNDXR(L).NE.INDXC(L))THEN
DO 23 K=I,N

DUM=A(K,ThIUXR(L))

• A(K,INDXR(L))=A(K,ThIDXC(L))
~INDXC(L))=DUM., ... CONTINUE-.)
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~TIIF

24 CONTINUE
RETURN
END
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• APPENDIXF-

TRANSFER FUNCTION RELATING VERTICAL

TURBULENCE TO PITCH AND HEAVE MOTION

~re stan with equations (2.23), without the nonlinearity nor longitudinal turbulence,

which are then transformed in the Laplace domain and non-dimensionalised. This is given in

equation (F.l).

[G(S)~~} =
(F.I)

•
where

•

G ) - (x o ah J :: ( 2(ah + 1/2) ~O) 2(ah + 1/2) ( ~b1 ~b! JJ(S - --- S + - +-- S
1:: r;,ur; pr; pr; s+b1 s+b:

(F.2b)

(F.2c)
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•
Thus,

{;} =[G(S)t (F.3)

(FA)

• (F.S)

E.'Cpressed in candensed faon \vith the tra!1sfer functions, Foand F;, equation (F.S) gives:

•

(F.6)
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