A USER INTERFACE FOR A PROGRAMMING
ENVIRONMENT

Sami Boulos

School of Computer Science
McGill University, Montréal

July 1990

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

(© Sami Boulos, 1990

Abstract

Poor user interfaces in programming environments detract from environments’ power and
ineffectively communicate with users. Moreover, specification, development, testing, and
modification of these usually large, complex, and handcrafted user interfaces are difficult,
error prone, slow, and costly. An alternative is user-interface generation. This thesis deals
with two primary 1ssues: rmupe2, a user-friendly user interface for the MUPE-2 program-
ming environment. and user-interface generation. Implemented in Modula-2 and C for the
X Window System, zmupe2 shows MUPE-2’s character with: windows tailored to program-
fragments, textual and graphical representations of fragments” contents, and editing com-
mands fired by context-sensitive mouse-based menus. Secondly, and because of the ef
fort in handcrafting zmupe?, the thesis introduces MUISL, an experimental event-driven
user-interface specification language. MUISL defines user-interface objects with inheritable
classes, attributes, and actions. Then presented is muigen — a flexible, table-driven, and
MUISL-based user-interface generator. Both MUISL and muigen simplify user-interface

development, as exemplified in the thesis.

Résumé

Dans les enviror nements de programmation, de pauvres interfaces usager atténuent la puis.
sance des environnements et communiquent J’une maniére inefficace avec les usagors De
plus, la spécification. le développement, le test et la modification de ces généralement larges,
complexes et artisanales interfaces usager sont non seulement difficiles mais tout a la for
sources d’erreurs, lents et couteux. Une alternative réside dans la génération d'interfaces
usager. Cette these traite de Jeux sujets principaux. rmupe.l une interface usager con
viviale pour 'environnement de programmation MUPE-2 et la génération d'imterfaces us
ager. Xmupe2 qu est implémenté en Modula-2 et C pour le systeme X Window visu
alise les caractéristiques de MUPE-2 4 P'aide: de fenétres adaptées aux fragments de pro
gramme, de représentations textuelles et graphiques du contenu des fragments et de comn
mandes d’éditions exécutées par I'intermédiaire de menus dépendents du contexte, basés
sur I'utilisation d’une souris. D’autre part, cette these présente MUISL. un sous produn
de la conception de zmupe2. MUISL est un langage de spéufication diinterfaces usage
expérimental controlé par des évenements. MUISL défimt des objets d'interface usage
avec des classes héritables, des attributs et des actions. Puis. nous présentons muwgen or
générateur d’interfaces usager, basé sur MUISL, flexible et controlé par tables MUIS)
et muigen, comme exemplifié dans cette thése, simplifient le développement d interfaces,

usager.

-
—
[

A cknowledgements

[am indebted to my supervisor, Professor Nazim H. Madhavji. for his constant assistance,
advice, and encouragement. His guidance was indispensable in innumerable instances.

I have had the support and friendship of the members of the MUPE-2 team: Jules
Desharnais, Yuan Xiang Gu, Kamel Toubache, and Mingjun Zhang. They were always
willing to spend the time to assist me in any way. For the French version of the abstract,
[thank both Jean-Frangois Girard and Kamel Toubache. For his assistance with the X
Window System. I thank Alan Emtage. I also appreciate the technical and administrative
support of the School of Computer Science Finally, I thank my family for their unflagging
support and encouragement throughout all my vears of study; I especially thank my sister,
Yola. for proofreading the initial versions of this thesis.

This work was financially supported by a scholarship from the Natural Sciences and

Engineering Research Council of Canada.

iv

Contents

Abstract
Résumé
Acknowledgements

1 Introduction

1.1 Problem Definition
1.2 Thesis Area and Goals . . .
1.3 Contributionsof the Thesis«

1.4 Methodology . . .

2 Background and Related Work
2.1 User Interfaces in Programming Environments
2.2 Architectural Models of User Interfaces
2.3 User Interface Guidelines
2.4 The MUPE-2 Programming Environment

3 The MUPE-2 User Interface: An Overview
3.1 User-Interface Requirements
3.2 Xmupe2: The X Window System MUPE-2 User Interface
3.2.1 Window Structures . .
3.2.2 Design . .

3.2.3 Implementation

4 Unparsing and the User Interface

in

v

0
22
24
29

32

91

8

4.1 Textual Unparsing

4.2 Graphical Unparsing

Cursors and the User Interface

51 Cursors in Xmupe2 .

5.1 1 The Mouse and Textual Cursors
5.1.2 The Structured Cursor
5.1.3 Design and Implementation

5.2 Cursor Movements
5.2.1 User's View
5.2.2 Design and Implementation

Menus and the User Interface

61

6.2 Menus in Xmupe?
6.2.1 Using the Menus . .
6.2.2 Designo 0oL
6.2.3 Implementation . .

Editing Commands and the User Interface
7.1 Editing Scenarios
7.1.1

1.2

=]

-t
(%

Design and Implementation
2.1

2.2 Delete

T

General Strategy for All Commands

-1

.23 Drag. . ..o oo
7.2.4 Group/UnGroup
7.2.5 Inspect/TextEdit
7.2.6 Insert Lo

User Interface Generation

Background and Related Work
8.1.1
S.1.2

S.1

Methods of Controt

.........

vi

Programming-in-the-Large.

.................

An Introduction to User Interface Tools

...............................

....................

..........................

.......................

.......................

Menu Design Issues o oo oo o e e

................................

.................................

Programming-in-the-Small

................

..................

..................

..................

..................

..................

..................

..................

................

..................

33
35

kY]

o4
i

38
38
40
42
43
46

49
49
50
51
52
54

b7
5
58
68
7
‘1
12
72
73
74
76

77
78
78
81

8.1.3 Approaches to Specification and Generation . . .

8.2 MUISL: The McGill User Interface Specification Language . . .
8.2.1 Assumptions and Scopeof Work
8.2.2 The Language

8.3 Muigen: The MUISL-Based User-Interface Generator .

8.3.1 Definitions 0L, e e e
8.3.2 IninalizationFies
8.4 Evaluation of MUISL and Muigen

9 Conclusions

A Xmupe2 Architecture

B MUISL Lexical Rules and Grammar
B.l MUISL Lexical Rules.
B.2 MUISL Grammar v v v i v v i ii e i

C Muigen Architecture and File Generation
C.1 Muigen Architecture L.

C.2 Tile Generation v v v v v v v o i v i
D Initialization Files

E Sample MUISL Specifications
El Examplel.,

Bibiliography

vil

135

15]
1h]

1o

168

List of Tables

..............................

DS I L IR 1
t
-
p—
o
=1
<
< <
=
=,
2
<
oe}
=
ot
t
o
=
wn

._.
=
e
=
o}
=
[a
o
@)
=
-
wn
e}
=
173
w2
=
I~

o)
[¢]
7

Cursor Movement Keys for Program Structures

(=1
= N

Xmupe2 Menus L
6.2 EditOps Menu Structure oo i v
81 Reserved Wordsin MUISL
8.2 Special Symbols in MUISL
8.3 Special Prefixesin MUISL R
D.1 Attribute-Name Prefixes,
D.2 clRoot Attributes L
D.3 cButton Attmbutes L L
Dt cMenu Attributes L L
D.5 clSimpleWindow Attributes
D.6 clToggleButton Attributes,
D.7 cMenuButton Attributes
D.8 cISimpleMenu Attributes.
D.9 cllistMenu Attributes

D.16 cIDialogueWindow Attributes
D.17 cdlltemSimpleMenu Attributes L 0oL
D.18 Attribute Values

D.19Mouse Buttons

D.20 Keys

.....................................

D.21Event Names . . . v v v v v vt e e e e e e e e e e e e e

ix

List of Figures

The Secheim Model

An Overview of Ymupe?'s Window Structures

The Creation of Fragments

Algorithm to Update the Textual Structured Cursor .

(Cursor Movements in a PIS Window
Cursor Movements in a PIL Window . .
Algonthm to Move the Structured Cursor .
EditOps Menus,
Programming-in-the-Small Editing Scenarios
Programnung-in-the-Small Editing Scenarios
Programming-in the-Small Editing Scenarios

Programming-in-the-Small Editing Scenarios

Grouping and Deleting Program Structures

Programmung-in-the-Large Editing Scenarios
Programming-in-the-Large Editing Scenarios
Algorithm to Drag L_- Mouse

Algonthm to Gioup by Mouse

ULMS Architectare . . .

Class Hherarchy

Non-Operation Imtialization-File Grammar (..
Operation Initialization-File Grammar

The User Interface and Computational Component

A2 Xmupel Modular Decomposition

.1
E 1

Murgen Modular Decomposition

Example 1 Interface

69

73
75
79
98

115
128
129
136
152

E.2 Example2 Interface v ... 156

Chapter 1

Introduction

A user interface, or human computer interface, is the user’s view of a system and the domain
of discourse between a user and machine [38]. Nievergelt [59] defines a user interface as
consisting of an input language (user’s input) and an output language (what the user sees).
Hartson and Hix [27] view a user interface as t.e software and hardware through which a

human compurter dialogue. or observable two-way exchange of symibols and actions. occurs.

1.1 Problem Definition

Poor user irterfaces in programming environments detract from environments’ power and
ineffectively communicate with users. These interface: often fail to answer basic questions
such as [59]: Where am I? What can I do here? How did I get here? Where else can 1 go
and how do I get there? Other characteristics include a complex input language with convo-
luted and cryptic commands: a user-hostile output language having useless error messages
and little or no help; a recovery me.hanism lacking undo facilities azd failing to confirm
dangerous commands (such as a delete); an inconsistent use of windows, menus, and other
objects interacting with a user; and/or incorrect state information related to tae current
command and data environments. An example of the final characteristic is a user inverface
that does not correctly reflect internal programming environment changes affecting the user
interface.

In addition, another major problem is that the specification, design, implementation,
testing, and modification of the usually large, complex, and handcrafted user interfaces for

programming environments are difficult, error prone, often slow, and costly. Consequently,

CHAPTER 1. INTRODUCTION 2

prototyping is sometimes used to develop such user interfaces. Moreover, an alternative to

handcrafting these user interfaces is generating them.

1.2 Thesis Area and Goals

This thesis deals with two different, yet related, aspects of the author’s work: a user-friendly
user interface for a programming environment and a specification language to generate
similarly styled interfaces that are not necessarily limited to programming envitonments

The first goal was to design and build a user-friendly user interface that tulhilled the
requirements of the current state of the MUPE-2 programmung environment [13.16] Thuw
thesis presents the result of this work, zmupe? (The X Window System MIU'PE-2 Uses
Interface) — a user interface tha* successfully interacts with mnternal non-user mterface
MUPE-2 code previously developed by others and incorporates the priaciples of good use
interface design.

This goal is significant because an effective user interface for a programming environment
should simplify the learning and use of the environment, better communtcate with the user,
and reflect the internal state of the environment in a manner comprehen ible at a glance. In
addition, the proper design of user interfaces is essential to any programming environment,
This is because a user interface is a critical component of an environment: a nser often
judges the environment’s quality by its user interface. A poor user inteiface can rmn a
programming environment and effectively thwart the environment’s goals of. providing
better software tools, producing better quality software using these tools, and simplifying
the process of software development. As a result of a mediocre user interface. a user will
reject a programming environment -— regardless of its underlying power and features that
the user is unable to exploit; commit numerous and unnecessary errors; become confused
and frustrated; and waste time and effort.

The second goal was the result of the slow, difficult, and tedions work of handcrafting
zmupe?. A simpler and quicker method of specifying, building, and testing user interfaces
is to generate them from specifications in a user-interface specification language Conse
quently, the goal was to use the valuable experience and knowledge gained from building
zgmupe? in devising an experimental language for the specification of user interfaces, simular
to an zmupe2-style of interface but not limited to programming environments. The langnage

is experimental, and not a comprehensive production language. because of time and scope

CHAPTER 1. INTRODUCTION 3

constraints. The intention was only to experiment with key characteristics of a language
capable of specifying user interfaces. A secondary goal was to build a sample generator
of user interfaces from specifications in this language. This thesis also presents the results
of author’s work 1n these areas, mainly MUISL (The McGill User Interface Specification
Language) — a programmer’s language for the specification of user interfaces, and muigen
(The MUISL-Based User Interface Generator) — a program to generate user interface code
from MUISL specifications.

The second goal is significant because traditional user interface software is often large,
complex, and difficult to create, debug and modify. A user interface specification language
and the generation of a user interface from this language have positive implications for
the developers of user interfaces. The first is to remove the concern with low-level details
of user interaction and permit the concentration on the design of the high-level form and
functionality of a user interface. The second is to simplify and speed-up the implementation,
testing, and modification of user interfaces.

Thus thesis does not deal with human-computer dialogue in depth, general man-machine
communication issues, behavioral and cognitive aspects of user interface development, psy-
chological models of users. user interface evaluation, command languages, detailed descrip-
tions of MUPE-2 concepts, and descriptions of internal (non-user interface) MUPE-2 algo-
rithms and data structures (referred to as the computational component, in the rest of this
thesis) Although this thesis gives a brief overview of MUPE-2 concepts, further details can

be found in the relevant papers cited in later sections.

1.3 Contributions of the Thesis

The first contribution of this thesis is in the complete design and implementation of zmupe?2.
The work on this user interface reflects the current state of the MUPE-2 computational
component.! Xmupe?2 shows the character of a user interface for MUPE-2. This characte:
is part of the program’s contributions, and any extensions to the program would add to the
implementation, and not to the results of the thesis: the author has laid the foundations
in the current version of zmupe?. Xmupe2 has validated MUPE-2 concepts and illustrates

that they are effective, practical, and easy to use. Some of these concepts include: multiple

"The author did not implement any portion of the computational component, but solely designed and
implemented rmupel.

CHAPTER 1. INTRODUCTION !

windows tailored to program-fragments, the association of screen objects to internal MUPL

2 data structures, the graphical display of node hierarchies and their textual representations,
the textual display of other internal program structures, the display of textual and graphical
cursors, the management of cursor movements on textual and graplical structures. and
editing commands fired by context-sensitive mouse-based menus.

The approximately 14,000 lines of rmupe? are written in the programming languages ¢
[40] and Modula-2 [85], using the X Window System [70] (Version 11, Release f. with the
Athena Widget Set [7] and X Toolkit Intrinsics [50]), and running on a Sun-3/50 workstation
with Sun UNIX 4.2. The program is consistent in its design and implementation, and
consists of a window-system-independent Modula-2 layer that acts as a buffer between the
remaining code of user interface and internal (non user-interface) MUPE-2 coder and €
code that interfaces with both Modula-2 layer and the window system. ' was chosen for
its flexibility in interfacing with the X Window System, and because of the local lack of
Modula-2 libraries for interfacing with this window system. The X Window System was
chosen for its flexibility, portability, availability, and widespread use.

The second contribution of this thesis is the design of MUISL. Though user interface
specifications have existed for a number of years, MUISL was designe ! with the requirements
of a typical window-based user-interface, such as zmupe2, in mind It is mtended for a
programmer and can be used by software developers such as those in the MUPE-2 gronp
MUISL combines some ideas from other languages and systems. such as Smalltalk [23], the
University of Alberta UIMS [25], and the Sassafras UIMS [33], among others Features of
the language include definitions of user interface objects (windows, menus, buttons, and »o
on), attributes for these objects, and actions that act on them. It also includes powerful
features such as classing, and inheritance of attributes and operations. However, MUISI
is only an experimental language intended to illustrate basic features of a speafication
language for user interfaces.

Part of the second contribution of this thesis is to show the viability of MUISL as an
experimental specification language, by using it to generate samples of user mterface code
This generation is a result of the modular design. and implementation of mwgen, whose
approximately 8,000 lines are written in C and run under Sun UNIX 1.2, Although muzgenis
table driven and is intended to generate code independent of a target programming langnage
or window system, the implemented version was tested for C and the X Window System

as the sample target programming language and window system, respectively. Sample user

CHAPTER 1. INTRODUCTION 5

interface specifications were written in MUISL, passed through muigen, and the resultant

user interface source code was successfully tested.

1.4 Methodology

Why was zmupe? handcrafted instead of generated? The further development of MUPE-2
was dependent on the immediate design and implementation of a user interface. There
were real, practical constraints and requirements that necessitated the development of a
“real” system such as zmupe?: its building could not wait until the possible realization
of MUISL and implementation of muigen. The solution was to simultaneously handcraft
rmupe? and learn about user interface generation. As a consequence, zmupe? was not
delayed, and the experience and knowledge gained from rmupe2 about user interfaces was
useful in designing MUISL and implementing muigen. Another factor was the amount of
interaction that rmupe? required with MUPE-2’s internals. About half of zmmupe?’s code
acts as an interface to the rest of MUPE-2; the other half deals directly with the window
system. The first half of zmupe? could not have been generated because of its interaction
with MUPE-2.

Chapter 2 presents background and related work on user interfaces and programming
environments; Chapter 3 discusses user interface requirements and overviews zmupe?; Chap
ter 4 covers unparsing issues relevant to zmupe?, Chapter 5 examines the role of cursors
and their movements in zmupe2; Chapter 6 investigates the role of menus in zmupe?2; Chap
ter 7 discusses MUPE-2 editing commands in the context of zmupe?2; Chapter 8 presents an
overview of user interface generation, discusses MUISL and muigen, and evaluates them;

and Chapter 9 concludes the thesis.

Chapter 2

Background and Related Work

Because this thesis mostly deals with a user interface for the MUPE-2 programumung ¢ um
ronment, it is necessary to present related work for user interfaces of programming envi-
ronments, architectures of user interfaces, user interface guidelines, and a brief overview of
the MUPE-2 programming environment. Relevant MUPE-2 concepts not covered tn this

chapter are presented in other chapters.

2.1 User Interfaces in Programming Environments

This section surveys the user interfaces of selected programming environments ‘The survey
is not exhaustive; other papers such as Normark’s [60], discuss programming enviromments
in more depth.

Smalltalk [81] is an environment for Smalltalk-80, an object-oriented language |23
This graphical, integrated, and interactive programming environment incorporates a win
dow manager and a mouse-based user-interface that contains pop-up menus to execute
operations. The environment is user friendly because it considered user interface issues
in its design. For example, the environment provides “explain” and “example” facibities
and on-line documentation. The basis of integration in the Smalltalk enviroument 1s its
conceptual model of the screen as a desk with sheets of paper represented by one window
per program. Easy movement among windows facilitates activities such as mouse-based
modeless editing, browsing, debugging, and program execution.

XS-1 (An E.Xperimental Integrated Interactive System. Version 1) [2] has facilities such

as a tree editor, tree file-system, and a kernel with a front-end central dialogue-processor

CHHAPTER 2. BACKGROUND AND RELATED WORK 7

that handles and redirects user input to other components. The result is a simple and
uniform user interface that can answer questions such as “Where am I?7” and others posed
in Chapter 1 XS-1 utilizes a bit-mapped screen divided into five size-adjustable and non-
overlapping windows always visible in any part of the screen. Data in these screens answer
the previously poused questions.

Fmily [26] 15 o template-based and syntax-directed editor — an editor that ensures
the syntactic integrity of a program by tightly adhering to a grammar. The user interface
permits & user to select a programming-language construct from a menu that contains all
possible derivations of the current nonterminal. The system then substitutes this construct
for the program structure on which the cursor is located. Although Emily is not a program-
ming environment. it 1s the precursor of systems such as the Cornell Program Synthesizer
and MENTOR [13].

The Cornell Program Synthesizer (CPS) [77] is a syntax-directed editor and program-
ming environment for PL/CS. CPS is a hybrid of a pure syntax-directed editor and text
editor: expressions are treated as text instead of tree elements (after the expression is edited
as text, 1t is parsed), and templates are used to generate program constructs that are filled
by templates or text. The user does not choose templates from a menu. as in Emily, but
displays them by typing the dot character followed by the construct name. Placeholders
identify locations where insertions (in templates) are permitted. The first character of the
cursor’s current position is highlighted: cursor movements use function keys; and editing
operations tnclude delete, insert, and clip. The syvntax-directed editor is the core of the pro-
gramming environment and creates an internal representation that can be used by multiplc
tools such as a compiler and debugger.

PECAN [68], a prograruming environment generator for block structured languages,
exploits the graphics facilities of workstations. PECAN has features such as semantic and
syntactic checking while editing, template- or text-based syntax-directed editing, menus
for most commands, and multiple overlapping windows to visualize different processes
The environment uses multiple views of programs and data structures including: a pretty-
printed view, Nassi-Schneiderman structured flowchart [57], or graphical module-interaction
interconnection diagram.

Cedar {79] is a programmung environment whose sophisticated user interface is visually

ortented. Design principles [12] underlying this environment include: the Law of Least

e

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Astonishment (the user, who is usually right, should be able to predict a program’s be
havior), The Principle of Non-preemption (the system should not usurp a user’s attention
and prerogatives), and fast turnaround (think-bound. not compute-bound. programmine 1
preierable). Icons emphasize user interactions and represent: data structures, text docu
ments, tools and services. The screen is divided into tiles — non-overlappme windows
called viewers A viewer, which can be closed into a labeled icon, contains a fixed menu ol
buttons that invoke associated operations. Viewers allow concurrency: the nser can start
one task (per viewer) before finishing the current task, and switch back and forth amour,
tasks such as editing and compiling. Cedar's user interface supports multiple charactes
fonts and graphics faalities, similar to those of the Xerox Star [75] ‘The environment also
contains a structured editor that uses templates and the mouse.
IPSEN’s (Integrated Programming Support Environment) [13] user interface {1 4] reflects
i the environment’s support of the software development process. Unlihe other environments,
its tools (such as those for static analysis. execution, and editing) are not centered around
the syntax-directed editor. Instead, they are a highly integrated set of equivalent tools
having a common internal representation [41], which supports the mtegration and ease of
use of these tools. IPSEN atoids overloading the screen by using as few windows as possible
in its structured screen layout. A tool in IPSEN presents one or more views {cutouts of
external representations of an internal representation), each of which is represented by o
window. For example. there are views for execution and editing. A structureld cursor
highlights the current internal structure of interest. called the internal increment Cursor
movements use the ouse, instead of the keyboard. TPSEN uses menu windows to display
the list of valid commands. The keyboard can also be used toinput commands By allowing,
the application of textual editing at all syntactical levels, the syntax-directed editor increases
its user-friendliness.

Like other environments, Magpie (Magnolia Pascal Integrated Environment) [11] has o
user interface based on a bit-mapped display. Code Browsers — overlapping windows 1o
which the user can develop programs — display a program’s declarations and statements
Editing follows the test model and avoids the often inflexible nser iterface of the template
model. The simplicity and uniformity of the user interface reflect the small number of

editing commands. Each of the debugging facilities 1s window based.

The Display-Oriented Programmer’s Assistant [73] provides a user-fiendly interface for

Interlisp [80] (a programming environment for a dialect of LISP). espectadly in terms of the

CHAPTER 2. BACKGROUND AND RELATED WORK 9

editor. The user interface consists of multiple overlapping windows and pull-down menus
for editing, electronic mail, program debugging and execution, and other tasks. The mouse
is used to choose menu 1tems and select parts of structures to delete, copy, or insert,

The toolkit-based UNIX programming environment [39] has a multitasking capability,
a combrnation of tools with redirection and pipes, and a file system that supports directory
hierarchies and treats files uniformly as a sequence of bytes. The shell, UNIX's command-
language interpreter. interacts with the user. In spite of its extensive set of powerful tools,
UNIX’s unfriendly user interface, manifested by the shell’s cryptic commands, has been
viewed by some as a drawback of the environment. However, others view UNIX’s current
uscr interface as an advantage of the environment.

Xomnupe2 has been 1nfluenced by some environments, such as Cedar, IPSEN. and Mag-
pie, however. i1t has novel features of MUPE-2. Like most systems, zmupe.) exploits a
worhstation's bit-mapped capabilities to display multiple and independently manipulable
windows that can be resized. moved, (de)iconized. and so on. Moving the mouse from one
window to another allows the user to effortlessly move from one task to another. Window
structures reflect the underlying internal environment structures. Some windows show both
textual and graphical views of program structures, whereas others display only textual
views. Constantly-displayed menus and pull-down menus are used for non-editing tasks
Context-sensitive and mouse-based pop-up menus display lists of valid editing commands
Most commands operate on the structured cursor and are selected from editing menus
Some commands require additional mouse or keyboard input. Xmupe?2 supports both the
structured and textual models of editing that MUPE-2 espouses. By highlighting a cwisor
per relevant window, amupe? focuses the user’s attention on program structures. Finally,
rmupe? permits hey-based cursor movements to support both the editing and browsing of

these structures.

2.2 Architectural Models of User Interfaces

Architectural models of user interfaces relate user interfaces to the rest of the application.
One of these is the Seeheim model [65.25,24], a run-time architectural model of human-
computer dialogue. Figure 2.1 [25] shows the three components of this model. The presen-
tation component 1 responsible for the physical representation of the user interface and deals

with device dependencies and interaction styles. The dialogue control component controls

CHAPTER 2. BACKGROUND AND RELATED WORK 10

the processing, sequencing, and structure of the dialogue between the user and the apph
cation program. This component acts as a mediator between the other two components.
by interpreting events in the presentation component and translating them into events for
the application interface model. and vice versa. The application interface mode ! defines he
interface between the user interface and the rest of the application Communication to the

application is via procedure calls and data structures.

Presentation [Dialogue { Application

|
e - > Woaee = s
User Component Control I "1 Interfac: ik‘
' Component ! Mode! i
/;
\ ‘.
Nmppmgl ’

L

Figure 2.1: The Seeheim Model

The Seeheim model allows the interface to be independent of its application. This imde
pendence promotes coarse-grained control over the narrow communication paths between
components. In this type of control, an application and its interface rarely communicate
Applications that require frequent fine grain communication may not be suited to thi
model. For example, a direct manipulation [73] application that tracks a mouse m or
der to determine semantically legal operations on tie object under it, requires constant
interface-application communication to provide this semantic feedback.

The Dialogue Management System [28] provides « different architectural model) he
system logic of an application in this system has an architecture centered about a global
control component which has bidirectional communication with each of a dialogue component
and computational component. The global control component 1s responsible for the correct
sequence of invecations of the other two components. The computational component does
not deal with dialogue, but deals with the semantic computations of an application ‘The
dialogue component is responsible for dialogue control, dialogue transactions. dialogue-
related computations (such as input validation), display of output messages, and so on.

The dialogue socket model [9] is centered about a dialogue socket --- a gh-level ab-

straction that connects to one or more dzalogue handlers, on one side, and one or more

CHAPTER 2. BACKGROUND AND RELATED WORK 11

applications on another. The user deals with one of these handlers, which is designated to
be the current dialogue handler. The dialogue socket acts as a virtual user to an application
and maps the lexical and syntactic elements of a dialogue (gathered by the current dialogue
handler) to the application’s operations.

Xmupe follows the Seeheim model. The presentation component of zmupe?2 is responsi-
ble for the creation and management of windows, menus, and text and graphics with which
the user interacts. Part of the dialogue control component consists of X Window System
library routines that detect user events, sequence them, and call user interface routines asso-
clated with these events. Other routines of this component call the appropriate application
interface component routine and communicate information to presentation component rou-
tines that update the display, The application interface component is the only one that
directly calls non-user inter;ace MUPE-2 code, the computational component. which deals
with internal computations.

The Seeheim muodel 15 well suited to rmupe. because the actions of responding to a user
event, interacting with the computational component. and updating the display, correspond
to the components of the model. An important advantage of the model is that it isolates,
in one layer, the user-interface code dependent on the computational compenent. This
madel also simplifies the front end of the user interface, which displays information without
concern for its semantics. The semantics are ensured with the correct calls to the compu
tational component. Appendix A describes rmupe?2’s architecture in terms of its modular

decomposition.

2.3 User Interface Guidelines

What makes a good user interface? A good user interface should make a pregram easy to
learn and use Schneiderman [72] presents some rules for user interface design. some of which
are: consistency at all levels, such as in commands, terminology, menu and display layout,
and responses: shortcuts. such as abbreviations, special keys, and macros to accommodate
expertenced users; undo facilities to reverse actions and protect users from their mistakes;
sumple error handling and design of the system to prevent users from making a serious error
(this includes features such as the confirmation of dangerous commands — delete, erase,
and so on); informative feedback for every action; and reduction of short-term memory load

by using simple displays, on-line access to relevant documentation, and so on.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Hansen [26] discusses user engineering principles that apply to the design of user wter
faces and illustrates them with examples from the Emily system Some principles mdlude
know the user, minimize memorization, optimize operations, and enmneer for errors N
mizing memornzation involves: selection instead of entry (select, instead of having to type .
character string or operation name), names instead of numbers (be able to select from o hist
of items by name), predictable behavior, and access to system nformation Optimization
of operations stresses the modes and speeds of user interactions and attempts to reduce
the user’s interaction effort. This optimization includes the rapid execution of common
operations, the display of status messages for lengthy operations, and display inertia which
changes the display as little as necessary when carrying out a request lo engineer for errors
includes: good error messages to train the novice and remind the expert. the abihity to engy
neer out the common errors. reversible actions, redundancy (back up a powerful operation
with combinations of simpler operations), and data structure integrity to guard against loss
of valuable user data.

Other authors [59.10.29] provide guidelines for information densitv. state knowledee
command languages. and color, among other features of user interfuces For example, they
recommend the display of information only necessary to the user Interim data. such as
some messages. should be removed from the screen once no longer needed. Knowledge of the
current state 1s also critical: the user should know the current data environment (what data
are affected by the commands entered currently) and the current command envitonment
(what commands are active).

A good command language should accommodate both the novice and expert by pro
viding full menus, or typeaheads and abbreviations to menus. The input language. or set of
commands, should be simple and consistent. For example. there should be consistency
the behavior of commands to quit a system The oulput language. or the sy stem’s responses
communicates with the user at the key-press level (by echoing). lexical level (for example
recognizing a parameter of type string), syntactic level (for example, recognizing 4 certarn
command), and semantic level (for example, processing or completing a command) A sys
tem's responses should be informative and tell the user what 1t is doing and why Clear and
consistently placed error messages and different help levels are also recommended

Color, if possible to use, allows the inclusion of much more data1n a single mage without
confusion — if it is presented in controlled dosages, rather than in a mosac For example

colors, such as red, can be used for dangerous situations.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

Dialogue independence in user interfaces [27] involves separation of the software that
deals with the human-computer dialogue — the dialogue component — from the computa-
tional component, which deals with an application’s internal computations. The computa-
tional component needs only a set of valid inputs, and is neither concerned with the method
of their collection. nor with user interaction. The result is easier modification and main-
tenance of software. especially if the user interface is developed using iterative refinement
techniques. The dialogue component can concentrate on human factors, be changed with-
out affecting the computational component, and provide multiple interfaces for the same
compntational component.

Separation has its drawbacks: 1t is not always easy to achieve. :an result in decreased
efficiency as o result of increased inter-component communicatio . and may need separate
duata structures for the dialogue component. For providing semantic feedback, the dialogue

component may sometimes have to be aware of an application’s semantics.

2.4 The MUPE-2 Programming Environment

MUPE-2 15 a fragment-based. integrated programming environment [43,46] for Modula-2
The environment focuses on the design., documentation, coding, testing, implementation,
and maintenance phases of reasonably large modular programs. MUPE-2 falls into the
category of programming environments, such as IPSEN and Smalltalk, that enable the
imtegerated development of software in an incremental and modular fashion, by using various
tools and techniques.

MUPE-2 supports programming-in-the-small and programming-in-the-large activitiesin
a umform manner [11], and integrates them in an enlarged scope, called programming
the-all [13] Programmung-in-the-small (P1S) deals with activities concerned with smaller
granules of a program. as declarations, and program flow. Programming-in-the-large (PIL)
deals with activities concerned with program units or modules and their interrelationships.

A\ primary feature of MUPE-2 is its view of a program as a composition of program
Jragments X fragtype is a specific type associated with a fragment [45,42]. TFragtypes,
showa in Table 2 1, form the building blochs of software: appropriately typed fragments
can be used to assemble well-formed software. Fragments are retrieved from and saved to
Fraglab, an integrated library of fragments

MUPE-2 enforces rules geared towards software development; for example, it allows

CHAPTER 2. BACKGROUND AND RELATED WORK it

the building of isolated Declarations or Statements fragments. Because fragtvpes form the
basis of compatibility rules that drive the machinery to build a program. thewe rules define
the legal set of operations on a typed fragment. For example. they can permit fragtype
transitions that change the type of a fragment. Not only do such rules permit flexityhiny
in software development, but they also provide a user with protection durmng software
development since they ensure only a legal set of operations.

A recent detailed description of fragtypes has appeared in [12]. However, the rest of
this section explains relevant parts of Table 2.1, which shows all the fragtypes currently
supported by the computational component. In this table, a phrase v « natural lanenage
statement. Commands [44] that operate on fragments — in the conteat of a frapment-based
editor, are explained in later chapters, as part of the user interface’s view of them.

The structure of a fragment has significant implications on zmupe2. .\ window reprosent
ing a fragment must correspond to the structure dictated by the fragtype For example a
PIS fragment requires a simple window-representation, the multiple portions of a PIL node
necessitate a multi-paned window to represent each portion, and the hierarchv of nodes 1
a PIL fragment requires a graphical display of this hierarchy.

Fragments of fragtype Abstract, Declarations, Exports, Expression, Header. Imports,
and Statements are programming-in-the-small (PIS) fragments, whereas fragments of other
fragtypes are programming-in-the-large (PIL) fragments. Nodes such as SuperModule,
DefImpModules, ProgramModules. and Procedures are referred to as PIL nodes

The DeflImpModule encapsulates a Modula-2 DEFINITION and IMPLEMENTATION
module pair. Its DeflmpHeader contains the module’s name, the DeflmpDescription any
number of comments; the Deflmport, the DEFINITION module’s import lists, the Deffs
port, the DEFINITION module’s export lists; the DefDecls, the DEFINITION module «
declarations; the ImpImport, the IMPLEMENTATION module’s import lists; the ImpDects
the IMPLEMENTATION module’s declarations; and the ImpStats. the INPLEMENTA
TION module’s statements.

Tn a SuperModule, the SuperModuleHeader contains the module’s name; the SuperMod
uleDescription, any number of comments; the SuperModulelmports, the module’s import
lists; and the SuperModuleExports, the module’s export lists.

A ProgramModule’s Progtieader contains the module’s name and priority; the ProgDe-
scription, any number of comments; the Proglmports, the module’s import lists: the Progde-

cls, the r odule’s declarations; and the ProgStats, the module’s statements

Notation
{z}

|

Fragtypes
Abstract
Declarations
Erports
Ezpres.::on
Header
Imports
Slatements
Modules
Procedures
Program
Nodes
DefImpModule
SuperModule

Program Module

Procedure

(O I A T TR T TR TR T

i

CHAPTER 2. BACKGROUND AND RELATED WORK

is composed of
0 or more occurrences of
OR

{Phrase}

{Declaration}

{Export}

Expression

DeflmpHeader | SuperModuleHeader |
ProgHeader | ProcHeader

{Import}

{Statement}

SuperModule | DeflmpModule | ProgramModule
Procedure

ProgramModule {SuperModule | DeflmpMaodule}

DefImpHeader DeflmpDescription Deflmport DefExport,
DefDecls ImpImport ImpDecls ImpStats
SuperModuleHeader SuperModuleDescription
SuperModuleImports SuperModuleExports

ProgHeader ProgDescription ProgImports

Proglsecls ProgStats

ProcIleader ProcDescription ProcImports

ProcDecls ProcStats

Table 2.1: MUPE-2 Fragtypes

15

CHAPTER 2. BACKGROUND AND RELATED WORK 16

In a Procedure, the ProcHeader contains the procedure’s name, parameter hst, and
possibly, the function type; the ProcDescription, any number of comments; the Proclm
ports, the procedure’s import lists; the ProcDecls, the procedure’s declarations: and the

ProcStats, the procedure’s statements.

Chapter 3

The MUPE-2 User Interface: An

Overview

Xmupe? was decigned and implemented with a number of requirements, some of which in-
clude purely MUPE-2-related ones, and others apply to the design of any user interface. The
first secticn of this chapter deals with such requirements: the second presents an overview

of zmupe?2.

3.1 User-Interface Requirements
A list of requirements for zmupe? is as follows:

1. Multiple fragments

a. Requirement: Create and operate on multiple fragments. Keep track of each
window representing a fragment and associate it to the proper computational
component structure,

Rationale: A program can be incrementally developed by synthesizing fragments
of various fragtypes.

b. Requirement: Manipulate window representations of fragments (resize, move,
(de)iconize, hide/unhide, and scroll).

Rationale: Each fragment is independent of another. Screen space is limited.

2. Information associated with a fragment

17

CHAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIEW IR

Requirement: Maintain and be able to quickly retrieve the information assoa
ated with a fragment window (text or graphics displayed. editing menu, window
coordinates of a location to highlight, and so on) Update the mformation a
ter any fragment-window manipulation or change in the state of the underlving

fragment.

Rationale: The information associated with a fragment is not static: operations
on a fragment change its internal state (as maintained by the computational
component), and consistency between this state and the window representation

is essential.
3. Structure of fragment windows
a. Requirement: Properly label a fragment window with the fragtype and a unique
identifier.
Rationale: A fragment should be unique and easily identifiable.
b. Requirement: Represent a PIS fragment as a simple window with text
Rationale: A PIS fragment contains just text of PIS program structures.

¢. Requirement: Represent a PIL fragment as a complex window, with a graphical
hierarchy of internal PIL nodes, and a container of windows defining the testnal

representation of each node.

Rationale: A PIL fragment contains one or more PIL nodes arranged i o hies

archy.

d. Requirement: Represent the textual representation of a PIL node as a mnult
paned window with each pane corresponding to the parts of a PIL node, and

containing the proper textual program structures.

Rationale: Each textual representation of a PIL node has subdivisions, based on

the type of node (see Section 2.4).

e. Requirement: Restrict the textual representation of a PIL node to the window

representing the parent PIL fragment.

Rationale: The PIL node is a child of a PIL fragment and is not an independent
entity.

4. Location of internal structures from the screen

CHAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIEW 19

Requirement: Based on the window in which the mouse cursor is positioned,
locate the corresponding computational component fragment or PIL node; this
is straightforward for the simple window representing a PIS fragment but more
difficult for the PIL nodes, because the screen presents a flat representation of

the internal hierarchy of these nodes.

Rationale: The user should always be operating on the correct fragment or PIL

node.
5. Display of text and graphics

a. Requirement: Map to linear text (compatible with window-system routines to
display text), the computational component’s flat representation of program
structures in windows representing PIS fragments or textual representations of
PIL nodes.

Rationale: The computational component’s representation of textual program
structures is not suitable for quick display nor is it compatible with window
system routines.

b. Requirement: Support the creation, update, and display of a graphical hierarchy
of ob jects representing PIL nodes. Manipulate graphics primitives such as lines
and rectangles in order to draw simple diagrams. Associate a graphical object
representing the PIL node with the corresponding computational component
node.

Rationale: The computational component’s representation of a node hierarchy is
not suitable for display on the screen — it has no window-relative coordinates

per node.
6. Display of structured cursors

a. Requirement: For each fragment, map the internal coordinates of and display in
reverse video, a structured cursor, which refers to a program structure instead

of fine-grained constructs such as characters.

Rationale: The coordinates of a structured cursor refer to internal, hierarchical

program structures, and cannot directly be highlighted on a flat screen.

CHAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIEW 20

b. Requirement: Distinguish between structured cursors referring to textual pro
gram structures, and others referring to PIL nodes having graphical sereen rep

resentations.

Rationale: The type of screen coordinates and display of each type of structured
cursor is different — textual display expects rows and columns, but graphical

display expects initial (z, y)-coordinates and the dimensions of a rectangle
7. Display of the mouse cursor

Requirement: Vary the shape of the mouse cursor based on the location of the

mouse, and the type of system activity.

Rationale: The user should be given mouse-location and system status feedback

8. Cursor movements

Requirement: Support the screen movement of a structured cursor on program
structures represented either textually or graphically. Detect the press of legal
cursor-movement keys and call their respective computational-component cursor
movement routines. After a successful internal cursor movement, unhighlight the

old cursor and highlight the new one.

Rationale: The computational component implements movements of the struc-

tured cursor, based on the press of certain keys.
9. Editing menus

Requirement: For each fragment and textual representation of a PIL node mamn
tain a window-system-specific hierarchical menu of legal editing commands A«
sociate the items of this menu to those of the corresponding menu mauntained by
the computational component. For every cursor movement or editing command
properly update the former menu to maintain the correctness of this assocation.
Use each menu item to fire the appropriate computational-component editing

command.

Rationale: For each fragment and part of a PIL node. the computational compo-
nent maintains a window-system-independent editing menu that fires the appro-
priate editing command and is updated with every editing command or cursor

movement.

CHUAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIEW 21

10. Editing commands

2. Requirement: Fire and interact with the editing commands of the computational
component’s structured editor. Reflect editing command changes, whether they

are textual, graphical, or changes of the fragtype of a fragment.

Requirement: For editing commands requiring mouse or keyboard manipula-

tions, translate the results into a form understandable to the computational
component
Rationale: Editing commands manipulate computational component structures
not visible to the user.
b. Requirement: Provide a pop-up window with textual editing capabilities.
Rationale: The TextEdit command supports the textual editing of PIS program
structures.

¢. Requirement: Provide a readonly pop-up window with the capability to view

program structures stored in a computational component buffer.

Rationale: The Inspect command requires that the user be able to view this

buffer.
11. Modifiability

Requirement: Make the user interface easily modifiable by using a modular de-
sign and localizing the user interface — computational component communication

to a few modules.

Rationale: The computational component does not remain static and changes in

it should not affect the whole user interface.
12. Portability

Requirement: Encapsulate window-system-specific code to certain modules, and

use a window system that is portable across different architectures.

Rationale: The user interface should be able to run on different architectures.
13. User interface guidelines

Requirement: Follow the user interface guidelines in Section 2.3.

Rationale: A user interface should make software easy to use and learn.

CHAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIEW »

3.2 Xmupe2: The X Window System MUPE-2 User Inte:-

face

This section presents an overview of zrmupe?: Section 3.2.1 discusses the windows 1n rrup

Section 3.2.2, issues in the design of zmupe?; and Section 3.2 3. 1ssues in the implementation
of zmupe?2. Reference to requirements enumerated i Section 3 1 is made with the notation
(R#), where # indicates the number of a requirement enumerated in that section Ior
example, (R 6) applies to all the requirements of the sixth item and (R 6 a) applies ouly to

requirement a of the <ixth item.

3.2.1 Windovs Structures

As a result of the multiple-fragment requirement, zmupe. can display multiple windows
(R l.a). Each is created dynamically, represents a fragment (R 1.b), and is independently
movable, resizable, scrollable. and iconizable. The ability to resize or reduce a window
into a shrunken representation. or icon, allows the user to reduce screen clutter. decreases,
time to find a cert..n window, and saves screen space - - a valuable resource in light of the
multiple windows that zmupe?2 can create (R 13). Other manipulations of a window, such
as its movement, also assist the user in managing screen space. Systems such as the Xerox
Star [75] and Cedar programming environment [79], also use 1cons.

All independently-manipulable windows contain a top title-bar with the name of the
window (R 13) and two squares for iconizing/moving/resizing the window. Boih the titl
bar and window border are highlighted when the mouse moves within the window 'I'hs
highlighting assists the user in indicating the current focus of interest (R 1:3). It 1s especially
helpful if the mouse cursor is within a window which is partly obscured by another.

Table 3.1 enumerates the different types of windows that zmupe.? can display. Names
followed by an asterisk (*) indicate multiply-occurring windows Literal names are shown
in italics. The initials C.M. indicate the CreateFragment Menu; £.M. indicate an EditOps
Menu which is used to fire editing commands (R 9). Section 6.2 further discusses menus
zmupel.

Figure 3.1 presents an overview of most of the types of windows in zmupe2. The top left
window, labeled AfUPE-2,is the Main Window. Below it are two PIS Windows representing
Statements and Declarations fragments, respectively. To the right of the Main Window are

two PIL Windows, representing Modules and Program {ragments, respectively. Note the

CHAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIEW

[Name | Title | Contents [Creation |
Mamn Window MUPE-2 Main Button Window zmupe?

Main Messages Window

Main Button Window Command &
menu buttons
Main Messages Window Messages R

LI’IS Window”

1 Fragmenl # Frar;typeJ

PIS structures

TCO.

23

Inspect Viewing Window

PIL Window* Fragment # Fragtype | PIL Graphics Window CM
PIL Container Window
PIL Graphics Window PIL-node hierarchy
PIL Container Window PIL-Node Text Windows
PiL-Node Text Window™ | PIL-node name DeflmpModule, E.M
SuperModule,
ProgramModule, and/or
Procedure
TextEdit Window Text Edit TextEdit Button Window | E.M.
TextEdit Editing Window
TextEdit Button Window Command buttons ’
Textldit Editing Window Structured-cursor :
Inspect Window Inspect Inspect Button Window | E.M. i

Inspect Button Window

Command buttons

Inspect Viewing Window

I

Anonymous Buffer

Table 3.1: Xmupe? Window Structures

CHAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIEW 21

two titled icons at the lower right corner of the figure. These represent o PIL Window
(a Procedures fragment) and a PIS Window (a Statements fragment). The contents of
each type of window are explained further on. The TextEdit and Inspect Windows which
are associated with PIS Windows, are not shown in this figure They are explamed n
Section 7.1.1.

& =pE-2 T Q) Fragrent 43 ° Moduies

oo e o] See— L

- | -
| i
=

Prograntindule
Progilesior

Proglescr st {on
[~ WNILE W <> 0 00
Hue (¥ N - 1)

{» 8

el itant Beodaratli 51
<t tud el arstion s}
¢ Varlshie buelsretisn 31

Fragment 48 ¢« ProWedurss

Figure 3.1: An Overview of Xmupe2’s Window Structures

The Main Window, shown in Figure 3.1 as the wiadow labeled MUPE-2, s the putial
window that appears when zmupe?2 is invoked. This window acts as zmupel’s “contiol
center” to: drive the creation of fragments, obtain general help. and quit the program
The Main Messages Window has vertical and horizontal scrollbars for viewing messages
not fitting the window. Using the Main Messages Window as a central location for all
of zmupe?’s user-directed messages, focuses the user’s attention and avoids a plethora of
confusing messages scattered among different windows (R 13). A new message first erases
the currently displayed message.

Table 3.2 explains the function of each button in the Main Button Window Menu

buttons pop up a menu, when pressed with any mouse button; command buttons carry out

CHAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIEW 25

an action, when pressed with the left mouse button.

Title Type Purpose

Create | Menu Button Pop-up CreateFragment Menu

Fraglib | Command Button | Retrieve fragment from fragment library
Hook Command Button | Save fragment to fragment library

Help Menu Button Pop-up Help Menu

Quit Menu Button Pop-up Quit Menu

Table 3.2: Main Window Buttons

Windows representing fragments are of two types (R 3.b, R 3.c): those for PIS fragments
— PIS Windows. and those for PIL fragments (Modules, Program, Procedures) — PIL
Windows. Each of these types of fragment windows is created and pops up when the user
selects the corresponding item in the CreateFragment Menu. A newly created window js
labeled with the fragtype name and a unique number identifying the fragment (R 3.2). Such
a labeling allows the user to distinguish among different fragments. especially those of the
same fragtype. After the independent manipulation of each type of fragment-window on
the screen, its associated contents are refreshed (R 2). Note that zmupel’s screen layout
supports MUPE-2 activities: PIS and PIL fragments are created independently and thus
require independent windows. Each type of window reflects the data associated with the
underlying fragment.

Movement of the mouse inside a window changes the shape of the mouse, based on the
type of window. The shape of the mouse cursor also changes when zmupe? is performing,
an internal activity (R 7).

Figure 3.2 ammates a series of actions to create fragments. Frame (a) shows the Man
Window with a pull-down menu (the CreateFragment Menu), and the Statements item
selected. The resnlt. in Frame (b), displays the created Statements fragment (the PIS
Window labeled with Fragment #1 : Statements). This frame also shows that the user
intends to create a Modules fragment. The next frame (Frame (c)) contains the newly

created Modules fragment (the PIL Window labeled with Fragment #2 : Modules).

Windows for Programming-in-the-Small

A PIS Window is the container of linear text representing PIS program structures (R 5.a).

Hotzontal and vertical scrollbars allow the display of text that does not fit the window.

CHAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIEW 26

R wi-2 2

Croocairroniidi[Host 1[Mein ijOuit} A

Wasages

E Frowment 81 ! Stetesentia

T AP D
Creotel[Fraelid|itmon i{Nain | Buit |

(b)

Figure 3.2: The Creation of Fragments

CHAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIEW 27

Each PIS Window displays, in reverse video, the external representation of a structured
cursor referring to textual program structures (R 6). Certain keys are used for cursor
moverments on program structures (R 8). For each window, mouse buttons are used to
pop-up contained WindowOps and EditOps Menus (R 9). Editing commands (R 10) that
change the contents of a PIS Window are fired with the EditOps Menu; some, such as the
Group and Drag commands, can also be completed with the mouse or keyboard.

Part of Figure 3.1 shows two PIS Windows representing Statements and Declarations
fragments. respectively. The former is labeled as Fragment #! : Statements and the latter,
as Fragment #2 : Declarations. Both windows contain PIS program structures. The
highlighted area in each represents a structured cursor: in the Statements PIS Window, it
is on an internal program structure (the LOOP statement); however, in the Declarations

PIS Window, it is on the entire fragment.

Windows for Programming-in-the-Large

A PIL Graphics Window contains a graphical representation of the PIL node-hierarchy
(R 5.b) contained in the PIL fragment and represented by its parent PIL Window. Because
the graphical hierarchy can become intricate, horizontal and vertical scrollbars in the PIL
Graphics Window respectively permit horizontal and vertical scrolling of the contained
diagram. A PIL Graphics Window also displays in reverse video, the external representation
of a structured cursor referring to a PIL Node (R 6.a). Certain keys move this cursor from
one PIL node to another (R 8). Editing commands (R 10) to insert or delete PIL nodes
from a PIL Graphics Window use the EditOps Menu (R 9) for that window.

A PlL-Node Text Window is the textual representation of its respective PIL node dis
played in a PIL Graphics Window (R 3.c). The former window is a multi-paned window
in which the panes correspond to the divisions of a PIL node (R 3.d). Each pane, or sub
window, contains' scrollbars to control the display of text representing internal program
structutes, an EditOps Menu, and square grips to resize one pane at the expense of the
other. A PIU Graphics Window and PIL Container Window can also be similarly resized.
The capability to resize windows allows the user the flexibility to hide one subwindow while
viewing the other (R 13). Because it is a child of the PIL fragment represented by a PIL
Window, a PIL-Node Text Window is restricted in movement (R 3.e) to its parent PIL
Container Window. When a structured cursor is on a certain PIL node in a PIL Graphics

Window. the corresponding PIL-Node Text Window appears in the PIL Container window

CHAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIEW 2

of the current PIL Window.

Part of Figure 3.1 shows two PIL Windows representing Modules and Program frag-
ments, respectively. The former is labeled as Fragment #3 : Modules and the latter, as
Fragment #4 : Program. Both windows contain a hierar 1y of PIL nodes in the upper
PIL Graphics Window of each. The highlighted area of each PIL Graphics Window repre-
sents a structured cursor: in the Modules PIL Window, it is on an internal PIL node (the
ProgramModule node); however, in the Program PIL Window. it 15 on the PIL Graphics
Window. Note the display of the PIL-Node Text Window corresponding to the lughhghted
ProgramModule node of the Modules PIL Window. If the user changes the size of the
Modules PIL Window, the size of this PIL-Node Text Window automatically changes to fit
the parent PIL Container Window. The figure shows that the Modules PIL Window has

been resized to exhibit this effect.

3.2.2 Design

The modular architecture of zmupe2 permits easy modifiability of the programn (R 11) by
isolating one set of functions per module layer. One set of modules is solely responsible
for the display of windows and menus on the screen; another. for handling user 1nput and
firing the proper routines in other modules; and the final, for directly interacting with
the computational component. Xmupe?’s routines, which need to communicate with the
computational component, make calls to the appropriate routines in its sot of modules ihat
is responsible for direct calls to the computational component. Changing the interface to
a computational component routine necessitates change(s) just to the call(s) made in one
set of modules, without affecting the other modules outside this set Further details ot
zmupe?’s architecture are in Appendix A.

Xmupe?2 attempts to be as ignorant as possible about the semantics of the computa
tional component routines it calls. This ignorance simplifies zmupe2 and also isolates it
from changes in the computational component. For example, zmupe simply maps compu
tational comrponent text and graphics into a form suitable for window display (R 5) and
displays them without regard for the significance of their contents. Another example 1s
zmupe?’s interaction with cursor movements: zmupe2 updates the display of its representa
tion of a cursor, based on the success of an internal cursor movement and on the cursor’s
coordinates retrieved and translated from the computational component. A1 no time 1s

zmupe? cognizant about the reasons for the success or failure of a cursor movement in the

CHAPTER 3. THE MUPL-2 USER INTERFACE: AN OVERVIEW 29

computational component, nor does it care about the rationale behind the current position
of the structured cursor. Note that rmupe? only acts as a driver of the computational
component Xmupe? then reflects the internal changes, based on the information retrieved
from the computational component.

User interaction with zmupe? is based on event handler and callback procedures that
respond to 1nput events or actions such as the press of a key, and call the appropriate
routines 1n other zmupe?2 modules. There is no need to poll constantly for events and
dispatch them to the correct procedure: the window system is responsible for this polling
and other facets of event management. Xmupe? thus uses an ezternal method of control,
explained in Section 8 1.2, An advantage is to simplify the coding of the user interface and
reduce its dialogue-control routines to a collection of event handlers and callbacks.

Shifting responsibility to +he window system is not only used with event handlers and
callbacks, but also used with the display of text or graphics. Once zrnupe? sends it dis-
playable text or graphics. the window system is responsible for their proper display and
fitting within a window. The result is simpler code in zmupel.

Xmupe does not take control of the screen, but coexists with other X Window System
applications that the user may be runmng. The coexistence of independent programs is
in accordance with the style of typical X Window-System applications, such as zman (a
manual-page browser), and zterm (a terminal emulator). Some advantages of this style are
that the user can interact with other programs and manipulate windows to manage screen

space.

3.2.3 Implementation

NXmupe2 1s implen. nted to run in the X Window System, a widely available and portable
window system (R 12). The capability to manipulate windows (R 1.b) requires that a
window manager be running under the X Windo~ System, before invoking zmupe2. Using,
an available window manager saved considerable time in the implementation of zmupe?.
To locate fragments or PIL nodes displayed in windows (R 4), zmupe? maintains a list
of nodes, called the Window List. Each window, which represents a PIS or PIL fragment
or subwindow of a PIL-Node Text Window, has such a ncde. A pointer to the fragment’s
abstract syntax tree (AST) structure is associated with each node, and consequently, window
descriptor. The usage of a node per subwindow of a PIL-Node Text Window effectively

linearizes the hierarchical structure of the corresponding PIL nodes. This was done to

CHAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIEW 30

simplify the implementation and search of the Window List Each node in the Window L+t
also contains attributes associated with its respective window such as (R 2): the window
descriptor, window name, text (for a PIS Window, and subwindow of a PIL-Node Test
Window), coordinates of the structured cursor as displayed on the window, menus assocrate d
with each mouse button, and graphics tree (for a PIL Graphics Window)

The invocation of rmupe? calls routines to initialize variables and data structures, and
creates the Main Window. Callbacks. associated with the menus and buttons of the Man
Window, are procedures that are automatically called by the window system when the u-er
selects a menu item or presses a button, respectively. Xmupe2 then releases control to o
X Window System main interaction loop that detects events and dispatches them to the
appropriate event handlers or callbacks. Once these routines finish execnting, control 1y

| returned to the main interaction loop.

For the creation of a fragment, zmupe? creates the window corresponding to this frag
ment and a Window List node associated with this window It also defines the event handlers
to trap the pressing of the mouse buttons and keys, the mampulation of the window, and
the entrance of the mouse nside the window. It then calls the computational component
routine to create a {ragment internally, retrieves the coordinates of the structured cursot
from the computational component. and displays the contents of the fragment in its window

Mauipulations of a window result in a call to event handlers that refresh the curent
contents of a window. These contents are stored in the Window List node for that window
Recall that zmupe? itself does not make this call — the main inferaction loop in the \
Window System is responsible for the call.

Whenever the user moves the mouse into a PIS Window, PIL Graphics Window, or o
subwindow of a PIL-Node Text Window, rmupel searches the Window List for the node
whose window descriptor is equal to that in which the mouse is located. Once it finds the
node, it informs the computational component of the associated current AST node. The
drawback of this method is the search of a linked list. which can grow with an increased

number of windows.

Whenever the user presses the right mouse-buttoa while the mouse cursor is in a frag
ment window, zmupe? pops-up the associated EditOps Menu. If a menu rtem s selected and
an editing command is to be executed, zmupe? calls the computational component editing
routine. Xmupe.? then retrieves the program structures to be displayed in the fragment,

maps them to a suitable form, and shows them. It also retrieves the current structured

CHAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIEW 31

cursor and uses it to display the representation of this cursor. Finally, smupe?2 updates the
EditOps Menu based on the corresponding menu structure in the computational component.
Control is then released to the main interaction loop.

A legal keystroke in a fragment window results in a call to the appropriate cursor-
movement routine in the computational component. If this routine returns a successful
result, zmupe? retrieves the structured cursor’s new coordinates from the computational
component. unhighlights the old cursor (whose coordinates are stored in a Window List
node), paints the new cursor, and stores its coordinates.

Specific requirements not mentioned in this section are shown to have been satisfied in
the following chapters that deal with unparsing, cursors, menus, and editing commands in

the user interface. However, references to specific requirement numbers are not made.

Chapter 4

Unparsing and the User Interface

An unparser is a program that maps an internal abstract structure to text on a phytcal
area [52]. The internal abstract structure is an object, such as an AST, which 1s hierarchical
and intricate: its pictorial representation is not suitable for display on a screen. The text
to be displayed is the flat representation of the AST’s concrete syntax. Problems such as
screen size and display formats must be addressed, in order to provide the user with a clea:
view of the edited program. Screen size problems can be alleviated with the use of scrollbars
that give the user a movable viewport into the full texr.

The unparser usually has some arbitrary rules for i1ts display format. For example 1t
could place only one statement per line and keywords in certain positions. and decide the
spacing between entities. The user interface is not concerned with issues, such as formatting
unparsed text, which are the computational component’s responsibility.

Unparsers can be nonincremental or incremental. A nonincremental unparser regenc
ates the unparsed form of the whole program, for every change. This method is reasonable
for small programs, but is less efficient for larger programs. The Cornell Program Synthe-
sizer has such an unparser. An incremental unparser regenerates ouly the relevant parts
of the AST for every change. This is more efficient, but more complex to implement than
nonincremental unparsing Rice University’s Programming Environment for Fortran {4] has
an incremental unparser.

Unparsing internal MUPE-2 structures is a critical operation that provides the user
with a correct view of the edited internal structures. The AST in MUPE-2 is unparsed
into two kinds of buffers: a tertual unparsed buffer and a graphical unparsed buffer. The

former is used for PIS fragments and the textual representations of PIL nodes, and the

32

CIHIAPTER 4. UNPARSING AND THE USER INTERFACE 33

latter, for PIL fragments. Although the computational component is responsible for main-
taining these two kinds of buffers, a brief discussion is necessary to explain how zmupe2
iteracts with them lowever, the algorithms to translate the AST to any of the unparsed
buffers are of no concern to rmupe? and thus are not discussed. The structure of the AST
and other computational component data structures of MUPE-2 are extensively treated in
[66]. Because the computational component maintains an unparsed buffer for each frag-
ment, rmupe? maintains its representation of the unparsed buffer corresponding to each
computational component’s unparsed buffer.

‘The rest of this chapter discusses relevant issues in textual and graphical unparsing,

within one fragment and from zmupe?’s perspective.

4.1 Textual Unparsing

Performed for PIS fragments and the textual representations of PIL nodes, textual un-
parsing results in a textual display of internal program structures. For example, part of
Figure 3.1 shows two PIS Windows with the results of textual unparsing. The Statements
PIS Window exhibits statements formatted by the unparser of the computational compo-
nent and displayed by rmupe2. The Declarations PIS Window shows similarly displayed
templates of declarations.

In the computational component, the window-system-independent textual unparsed
buller consists of a doubly linked list of Line nodes, with each Line pointing to a dou
bly linked list of Line-part nodes, each of which contains items such as reserved words,
expressions, and start/end columns of text. Each AST points to the first and last Line
nodes of its textual unparsed buffer; conversely, each Line-part node points to its related
AST node. As aresult, the structured cursor (discussed in Section 5.1) moving on the AST,
can be easily mapped to the corresponding unparsed puffer nodes, and consequently to row
and column coordinates within a window Some editing commands need a reverse mapping:
screen coordinates are first associated to corresponding unparsed buffer nodes, and thus,
‘o AST nodes. In such a mapping, the window containing a representation of the textual
unpatsed buffer, 1s viewed as a two-ditaensional virtual array of rows and columns.!

The computational component must maintain consistency between the AST and tex-

tual unparsed buffer. For example. for partial modifications of a line, the computational

'“Virtual” because there 15 no real array data structure.

CHAPTER 4. UNPARSING AND THE USER INTERFACE 31

component unparses only the appropriate parts of the AST, and replaces the corresponding
parts of the textual unparsed buffer.

The computational component’s textual unparsed buffer 1s not directly suitable for
window-display by X Window System routines. These expect a continuous string, whereas
the unparsed text is spread over Line-part nodes scattered among Line nodes. To laaili-
tate the quick initial display and efficient refresh of the textual unparsed buffer rmupc2
maintains its own representation of the buffer of each PIS Window and subwindow of the
PIL-Node Text Window. This representation is a dynamically-changing, vontinuous. one
dimensional C array of characters — a string, to be called the C stnng

The zmupe2 algorithm that translates, or maps. the contents of a tectual unparsed
buffer to this C string, traverses this buffer from a starting Line node to n ending Line
node, both retrieved as parameters from the computational component For cach Line node
the algorithm retrieves the text within each Line-part node and transfers it to the current
position in the C string. The algorithm adds blanks at the start of cach line and within a
line, based on the starting and ending column numbers it obtains from each Line-part node

The traversal of the textual unparsed buffer and retreval of text, and column informa
tion from each Line-part node. depends on results returned by calls to zmupe.) Modula 2
routines. Only these routines directly interact with the computational component code
dealing with the textual unparsed buffer. Consequently. C code is insulated from the de
tails of this buffer, the interface between zmupe.? and the computational code 15 a clean one
and it is easier to modify one part of caode without affecting the other.

Xmupe?2 calls its tevtual-unparsed-buffer mapping algonthm after the completion of
each user-initiated editing command that 1s successful and alters this buffer. Xmupe2 ha
no knowledge of the nature of the changes in, nor the contents of, this buffer, its only
function is to display the unparsed buffer in a form suitable for a window. The nitia
costs of this algorithm are in the traversal of the appropriate parts of the textual unparsed
buffer, and the transferral of text in each Line-part nodes to the € string Nonetheless,
this algorithm was chosen for its simplicity, not its efficiency. [t eaaly allows rmaupe’
to maintain cousistency between the textual unparsed buffer and the test displayed m a
window. Although the algorithm is parameterized to unparse a range of Line nodes, 1t 1s
used to map the whole textual unparsed buffer. When there are no editing commands that
change the textual unparsed buffer, the window displaying a mapping of this buffer, may

still have to be refreshed as a result of manipulations such as a window’s resizing or serothing

CHAPTER 4 UNPARSING AND THE USER INTERFACE 35

Usage of the C string enabies a quick refresh of the window, without having to re-map the
textual unparsed buffer. This refresh, and the origina! drawing of just-mapped unparsed-
buffer text, do not concern themselves with whether or not the text fits the containing
window Xmupel simply informs the X Window System of the text it wishes to display,
and the window svstem handles the actual display and fitting of the text onto a window —
including when the window is scrolled. The shifting of responsibility from zmupe? to the

window system has greatly ssmplified implementation of the display of unparsed text.

4.2 Graphical Unparsing

Performed for PIL fragments, graphical unparsing results in a graphical display of the PIL-
node hierarchy specific to a PIL Graphics Window. For example, part of Figure 3.1 shows
two PIL Windows with the results of graphical unparsing in their respective PIL Graphics
Windows. Representing a PIL node, a rectangle contains the node’s type. Lines connect
erther immediate siblings to each other or a parent toits first child. Any other children of this
parent node are connected to their siblings. instead of the parent. This was done to simplify
the algorithm that positions the rectangles. In the figure, the Modules PIL Window contains
three PIL nodes: a SuperModule, ProgramModule. and a DeflmpModule. The first two are
siblings and the SuperModule is the parent of the DeflmpModule. If the SuperModule had
a second child, it would have been shown as a sibling of the DeflmpModule. The figure also
shows a Program PIL Window with DeflmpModule and Procedure nodes as siblings.

The computational component’s graphical unparsed buffer is a tree, each of whose nodes
contains a pointer to the corresponding P1L AST node, the name (such as DeflmpModule,
SuperModule. and so on) to display for that node, and pointers to the left and right nodes
in the tree. Unlike a textual unparsed bufler, it has no formatting details, because the
coordinates of the graphical objects to be displayed depend the limensions of these objects
and other factors specific to the window system. However, the position of each node in the
buffer mdicates the hierarchical position of the node in a window.

For each hierarchy to be displayed, zmupe2? recursively traverses the computational
component’s graphical unparsed buffer and maps it to a corresponding tree, the rmupe2
graphical tree. The latter tree contains formatting details such as the (z,y)-coordinates of
the top left corner of the rectangle representing each PIL node Each node in this tree also

contains a pointer to the corresponding PIL AST-node; this pointer is critical in associating

CHAPTER 4. UNPARSING AND THE USER INTERFACE 36

a PIL Graphics Window screen location with a PIL AS7-node. This association is needed
for graphical cursor movements. discussed in Chapter 5. To locate a PIL AST-node lom o
window location (z,y) relative to a PIL Graplics Window, zmupe. traverses the associated
graphical tree until it finds a tree node whose corresponding rectangle coordinates cont.un
(z,¥).2 If no such node is found, the search fals; otherwise. rmupe returns the graphical-
tree node-field containing a pointer to the PIL AST node.

The mapping from a computational-component graphical unparsing buffer to the assoc
ated zmupe2 graphical tree is done at the end of each editing command on PIL nodes within
a PIL fragment. The disadvantage of the timing of the mappingis that it is nomincremental,
however, it need not worry about how and when the computational component’s graphical
unparsed buffer is extracted from the AST. As with the mapping of the textual unparsing
bnffer, zmupe.2 code is also not directly cognizant of the names of the computational com
ponent’s buffer fields. Refresh of a PIL Graphics Window, which is triggered by events such
as scrolling or resizing of the window, uses the associated zmupe2 graphical tree. instead of
re-mapping the computational component’s graphical unparsing buffer.

Once zmupe. builds a graphical tree, it draws it in the corresponding PIL Graphices
Window. As with textual unparsing, zmupe2 draws without worrying about which graphical
structures are visible in the window: the X Window System clips them to the size of the
window. The window system manages scrolling, but zmupe2 must traverse a graphical trec

in order to refresh it in a PIL Graphics Window.

2To simplily implementation, zmupe2 assigns all rectangles the same width and height

Chapter 5

Cursors and the User Interface

An image on the display screen, the cursor is used to select information and provide loca
tion and program-activity feedback. Programming environments view the cursor in different
ways. In Emily, a purely syntax-directed system. the cursor can only represent a program
structure, such as a statement. In Magpie, whose editor follows a text model. the cur-
sor represents just characters, instead of structures. The cursor in the Cornell Program
Syuthesizer. whose editor 1s a hybrid between a tree editor and text editor, can represent
both characters or structures. In this editor, templates are in.erted with commands and
expressions and assignments are typed character by character. MUPE-2’s structured editor
supports both the structured and textual editing of program structures. Accordingly, its
cursor can represent both structures and text.

This chapter first examines the types of cursors the user sees in zmupe?. It then discusses

cursor movements as applied to zmupe2.

5.1 Cursors in Xmupe2

The cursor takes on different shapes in zmupe?: the mouse cursor, the teztual cursor, and
the structured cursor. The first two types of cursors concern the user interface; refer to
text or a screen position, respectively; and are not affected by the computational compo-
nent. The third type of cursor reflects a program structure, which is maintained by the

compntational component and is displayed and translated by rmupe?.

37

CHAPTER 5. CURSORS AND THE USER INTERFACE 38

5.1.1 The Mouse and Textual Cursors .

The mouse cursor refers to the shape of the image that corresponds to the absolute pinel
screen-position given by the mouse. This type of cursor serves several purposes in rmupe’
the first of which is to provide the user with visual location feedback: moving the mouse
changes its screen location. The mouse cursor can also be used to select information
For example, the mouse cursor is useful in assisting the user to select a menu item. In
highlighting successive items as the mouse 1s moved.

Feedback describing a system’s current activity is also important mn a user iterface
One method of such feedback 1s by changing the shape of the mouse cursor when a certain
action is being performed. For example. immediately after the user selects an item from an
EditOps Menu, rmupe? displays a watch cursor, which is restricted to the current window
and indicates that the user needs to wait. After the internal zmupe? computations ae
completed, the mouse cursor reverts to its original shape and is freed from any restrictions
of movement.

The mouse cursor also changes its shape, depending on the type of object — such as o
window, menu, or button — in which it is positioned. For example, in the TextEdit Editing,
Window, the mouse cursor is pencil-shaped, indicating that the user can directly input teat
using the keyboard. Because the InspectBuffer Viewing Window is readonly. the mouse

I’-shaped to indicate no action possible within the window In a scrollbar, the

cursor is
mouse CUrsor assumes an arrow pointing to the appropriate direction. Table 3.1 shows the
’ o : -
mouse cursor’s shapes associated with different menus, windows. and buttons.
The second type of cursor. the textual cursor, refers to a character position within a
TextEdit Editing Window and 1s shown as a caret-like structure. This cursor provides ihe

point at which the user can edit text: it moves either b, typing or by the mouse

5.1.2 The Structured Cursor

MUPE-2’s structured editor uses the structured cursor to manipulate program structures
Whereas the structured cursor in the computational component, denoted by the internal
structured cursor, is of one type, zmupe? distinguishes between textual and graphical struce
tured cursors, both of which are displayed in reverse video. The internal structured cursor
points to an internal program-structure within a fragment (for example, to a simple expres-

sion or a program statement), an entire fragment (for example, to a Statements fragment),

CHAPTER 5. CURSORS AND THE USER INTERFACE 39

Object Mouse Cursor Purpose

PIS/PIL Window Watch Wait

Menu Button N Pull-down a menu

Command Button AN Execute action

Man Messages Window T No action 1n window

PIS Window N Pop-up menu(s)
Crosshair Execute Drag/Group

PIL Graphics Window N Pop-up menu(s)

PIL-Node Text Window N Pop-up menu(s)

Resizing Grips t/d/«<=/ =/1 Resize window

Any label T No action 1n window

EditOps Menu & Select menu item

InspectButfer Viewing Window | T’ No action in window

TextEdit Editing Window Pencil Edit text

Scrollbars t/4/«</ =/3/< | Scroll

Table 5.1: The Mouse Cursor’s Shapes

or PIL node (for example, to a Supermodule node). A textual structured cursor highlights
textual program structures on which the internal structured cursor is located. A graphical
structured cursor highlights a (graphical representation of a) PIL node in a PIL Graphics
Window and causes the display of the corresponding PIL-Node Text Window in a PIL
Container Window.

Each type of structured cursor focuses the user's attentjon to a certain area (of a PIS or
PIL window) which corresponds to a program structure. The structure is either program
text, 1n a PIS Window or subwindow of a PIL-Node Text Window, or a PIL node represented
by a graphical node1n a PIL Graphics Window. Another function of the structured cursor is
to act as the operand for many of the MUPE-2 structured editor’s commands. For exampie,
when the cursor 1» on an assignment statement. and the user selects the Delete command
from an EditOps Menu. the program structure to which the structured cursor refers, is
deleted.

Figure 3.1 shows two textual structured cursors: one for the Statements PIS Window
and another for the Declarations PIS Window. In the former window, the textual structured
cursor highlights the LOOP statement: in the latter window, the cursor highlights the entire
fragment, represented by the Declarations PIS Window.

In addition, Figure 3.1 shows two graphical structured cursors: one for the Modules PIL

Window and another for the Program PIL Window. In the former window, the graphical

CHAPTER 5. CURSORS AND THE USER INTERFACE (o

structured cursor highlights the ProgramModule node in the PIL Graphics Window Note
the appearance of the node’s corresponding PIL-Node Text Window in the PIL Container
Window. A PIL-Node Text Window appears only for the PIL node on which the graphical
structured cursor is positioned. Consequently, the user can focus on a «inele P Node
Text Window instead of being confused with a cluttered PIL Container Window AMUPJ 2
semantics also dictate that the user be able to edit only the node on which an internal
structured cursor is located.

The other graphical structured cursor of Figure 3.1 is shown positioned on the entie
Program fragment. Only the PIL Graphics Window is blackened because it is the one which
represents the PIL fragment; the PIL Container Window is a container of windows and hax

no corresponding representation in the computational component.

5.1.3 Design and Implementation

Mouse cursors are easily implemented: the required types of cursors are created when
rmupe? performs its initializations. The appropriate mouse cursor is attached to each
newly created object such as a window, menu, or button. The X Window Svstem is then
responsible for displaying the correct mouse cursor shape when the mouse moves in an
object, whether or not a shape was previously associated with that object. Textual cursors
displayed in a textual editing window are created and managed by the window system
Note how rmupe. avoids managing the mouse and textual cursors by tahing advantage of
the window system’s capabilities.

Xmupe?’s design strategy for structured cursors is simular: let the computational com
ponent do the work. Xmupe2 is only aware that after each editing command or cnrsm
movement, it must: retrieve the internal structured cursor’s cocrdinates from the computa
tional component, associate them with the zmupe2-maintained text or graphics to display,
and display them. At no time is zmupe.? aware of the rationale for an internal structured
cursor's coordinates.

In the implementation, zmupe? contains code that acts as a buffer between two data
structures. the computational component’s data structure that records the coordinates of
the internal structured cursor and zmupel's corresponding data structure recording the
window-specific coordinates of this cursor This code maps an internal structured cursor’s
position to a window posttion. Recall that the movement of the mouse mside a window such

as a PIS Window or PIL Window, triggers a search of rmupel’s Witdow List; this search

CHAPTER 5. CURSORS AND THE USER INTERFACE 41

results in an association between the current window and corresponding AST structure
of the computational component. The internal structured cursor’s coordinates are then
guaranteed to apply to the correct window.

Each window containing a textual structured cursor has a data structure giving the
crsor’s window-relative coordinates, a boolean value to indicate if the cursor is on the
entire window, and pointer to the contents of the window text to be highlighted. Figure 5.1
shows the algorithm to update a textual structured cursor after each editing command
or cursor movement. In this figure, the current window is that in which the mouse is
located, and the initials (CC) indicate a call to a computational component routine. The
computational component translates the locations of the Line and Line-part nodes, which
the internal structured cursor spans, to numerical coordinates. When zmupe?2 retrieves
these coordinates, it receives numbers giving the cursor’s first row, number of rows it spans,
initial column in the first row, final column in the last row, and a boolean value indicating
whether the internal structured cursor is on the entire fragment. Xmupe?2 then uses these
coordinates to retrieve the corresponding text from the Window List node of the window in
which the mouse cursor 1s located. This text is highlighted as the cursor; highlighting draws
the text, from a stari row and column to an end row and column, in reverse video. The
structured cursor’s window-coordinates are saved in the current Window List node because
they are used tn refreshing a cursor, after a window is manipulated. The advantage of this
approach is to obviate the need for constantly requesting the internal structured cursor’s

cootrdinates from the computational component.

Retrieve numerical internal structured cursor’s coordinates (CC)
Retrieve cursor text to which new coordinates point
If old cursor is not on whole fragment

Unhighlight old cursor in current window
Else

Paint waindow background white; and its text, black
If new cursor is not on whole fragment

Highlight new cursor in current window
Else

Paint window background black; and its text, white
Save new window-coordinates of cursor

Figure 5.1: Algorithm to Update the Textual Structured Cursor

CHAPTER 5. CURSORS AND THE USER INTERFACE W

The cursor coordinates of each graphical structured cursor include the window 1elative
(z,y)-coordinates of the top left corner of the rectangle representing the PIL node. Becauco
the width and height of all rectangles are equal, there is no need to store these values per
node. Recall that each graphical PIL node is associated with a corresponding AST node,
as a result, it is straightforward to map an internal structured cursor, which is on an AST
node. to the correct graphical node. The process of highlighting/unhighlighting o graphical
structured cursor is similar to the textual structured cursor’s. except that a rectanele 15
highlighted. This highlighting draws a rectangle starting from the above (z,y) coordimates
and spanning the rectangle’s width and height. When the structured cursor 1s on the entire
PIL fragment, zmupe? draws the background of the corresponding PIL Graphics Window

in black. and the contained graph. in white.

5.2 Cursor Movements

Cursor movements aim to position the structured cursor on the desired structure. for editing,
browsing, and so on. Moving the structured cursor through textual program structures
presents its problems since program structures are represented as an AST that has heen
unparsed into a flat representation on the screen. The objectives in cursor movements on
the textual representation of a program are to: make the cursor movements on the AST
look natural on the screen. and minimize the number of movements to a destination,

Some programming environments support purely structured movements matchimg the
program’s syntactic structure, others support purely textual movements. and yet others
combine both. Systems, such as MENTOR [13] or Gandalf [61], use highly structured, or
hierarchical, cursor movements that seem unnatural in editing or browsing the flat cceeen
representation of a program. The Cornell Program Synthesizer, which treats expressions
textually, uses textual non-hierarchical cursor movements on expressions, and structured
movements on program structures that it views structurally. In contrast and by treating
programs textually, Magpie has cursor movements similar to a text editor’s. Some systems
such as Magpie and PECAN use both the keyboard and mouse for cursor movements
Others, such as IPSEN, provide cursor movements just by the nouse.

MUPE-2’s cursor movements {47,48] are keyboard-based and centered on two types of
structures: either the graphical PIL-node hierarchy in a PIL Graphics Window; or o textual

display showing details of program structures in a PIS Window or PIL-Node Text Window

CHAPTER 5. CURSORS AND THE USER INTERFACE 43

Cursor movements on the graphical hierarchy are highly structured movements from node
to node. Decause the textual displayv is a flat representation of an AST, textual cursor
movements in MUPE-2 share the goals for such movements, which were mentioned at the
besinning of this section

Although the rest of this section mainly concentrates on cursor movem: ts on the textual
representation of a program. it gives a brief example of movements on graphical structures.
Detaled theoretical principles of cursor movements are further discussed in [47]. The author
participated in the strategy for cursor movements in the computational component, but did
not implement these internal movements. The author’s contribution is in the complete

design and implementation of the user interface to internal cursor movements.

5.2.1 User’s View

Structured tree-like cursor movements on program structures may seem unnatural or diffi-
cult. and purely flat textual-movements may not conform to a program’s syntactic structure.
MUPE-2 attempts to solve this dilemma by using semi-structured cursor movements (48|,
which move on fine-grained program constructs. such as expressions and CASE labels, and
avoid their individual characters, or entire program structures.

Cursor movements in MUPE-2 need to consider program partitions (parts of a program
on which the cursor can be positioned), and streams (paths or sequences of partitions tiat
a cursor follows), The movements intend to simplify and assist the user in both the editing,
and browsing of a program. Partitioning the program according to the grammar results
in highly structured movements; for example. placing the cursor on the reserved words
POINTER TO 1 a record declaration is difficult. The user would be unable to easily delcte
these two words, Thus, tool requirements may dictate that some cursor positions make
editing or browsing more efficient. For example. MUPE-2 deviates from the grammar and
allows the cursor on the above two heywords, but is careful to preserve syntactic correctness

MUPE-2 selects streams in such a way as to avoid unlikely candidates for editing (such
as entire partitions). and to permit the user to move on partitions more likely to be edited
or browsed, such as identifiers. Vertical streams include identifiers on the left hand side
it dedlarations or statements, or labels in a CASE statement; horizontal streams include

paititions in dedarations or procedure declarations.

The user moves the cursor within a window by using one of two sets of keys, the first for

o

CHAPTER 5. CURSORS AND THE USER INTERFACE i

structured movements, and the second for semi-structured movements. Structured move
ments move the cursor either next or previous along outermost constructs within the par
ent construct, out onto the parent, or in on the first construct enclosed within the parent
Semi-structured movements move the cursor onto partitions along one of four directions
Table 5.2 shows zmupe?'s binding of cursor movements to specific hevs The notation etrl-
<key> means: press the control key with the specified < key > For both PIS and PIL
fragments, respective cursor-movement keys are the only ones that affect the state of the

displayed fragment; other keys are ignored.

Category Key Cursor Movement
Structured movements Ctrl-n | Next

Ctrl-p | Previons

Ctrl-o | Out

Ctrla | In
Semi-structured movements | «— Left

— Right

T Up

1 Down

Table 5.2: Cursor Movement Keys for Program Structures

Figure 5.2 shows how zmupe? displays cursor movements used in browsing a sequence
of statements in a Statements PIS window. These movements were accomplished using the
| key. They show the cursor following a downward stream, without concern for a prograwm’s
AST, and cutting through construct boundaries (such as the keywords) to allow positioning,
on structures most likely to be browsed. As a result of cutting through such boundanes
browsing program structures is faster.

Cursor movements in MUPE-2 also support editing. For example, the cursor is moved

with the — key when initially on the left hand side of the following declaration:
TextArray = ARRAY [1..10] OF CHAR;

The second movement is from the left side to the subrange within the right side, instead of
the entire right side. This is an example of a tool’s requirements overriding the program’s
syntactic structure: the user is more likely to edit the innards of the right hand side, instead
of the entire side. Editing of the entire right hand side is still possible, by using the control-o

key.

CHAPTER 5. CURSORS AND THF. USER INTERFACE

EPZAT

) FirstLine s Firstline* Hexty

UNTIL FlrstL{)nn = Cury entlines

HumLines = 0}

FES Line:=FirstLine TO Lasiline DO
Huml fnes :» Humlines ¢ 1)

jatis}} -

SRLNONVSIN
o) Frageen: sl Staween.® ou I
]

T FirsiLine = PtreFirstLines
s = Ptrelastiines

A
Epgllsu.ln- en FlratlIne* . Nexts

UNTIL FirstLine « Curventlines

Y]
'SEQL{T;::-;rmUn- 10 Lasitine DO

Husllpes :o Huelines + 18

(310
’ »

& Fragrens 81 ¢ Scatenents ISR 2

T Flrsttine “Ptr Firstline
Lastline = Ptrolastiines
REFEAT

sw FirstLine® Hext)
INTIL Firstline s CurrentLine)
Humlines := Q)
FOR Line:sFirsiline 7O Lastline DO
mNunLln-l i Hunlines ¢ 13
}

»

&) Fragrent #1 : Statenents TGN =
[
Filrstline := Ptr .Firstiine)
Lastline :» Pte,lastliines
REPEAT
FirstLine = FiratLine*.Next}
IIRF irstLine = Currentt |t

Nusllnes iz 0Oy

FOR Line:sFir stline TO Lastline DO
Nuslines t= Huslines ¢ 1)

END)

A3

[Fragment #1 : Statements NN 2
]

FirstLine = Ptr~.FirstlLines
LastLine = Ptr~.Lastline)
REPERT

Firsitine s Firstiine*.Next)
UNTIL FirstLine = Currentlines

Emsnrg = 0)
OR Line:xFirstLine 70 Lasttine DO
mNunLlnn i» HumLines + &7

’

A

B Fragaent 81 @ Stavenencs NN &

FirstLine :» Ptr~.FirstLine)
LastiLine :# Ptr~.lastiline)
REPEAT

Firstline := FirstLire~, Next)
UNTIL Firsiline » CurrentlLine)
Nusl fnes :s 0}

FOR MI:aFlrstline 70 Lastline DU
nNunLln“ is Numtines ¢ 1
1

Ad

N Fragment 41 ¢ Scatemerts FONNNENE T
oot Si0 TP 03 TR i

(G A T
i H - ti
RFPE?T N |as Linej

ratline s Firatiline® Hext
UNTIL Firsiline = CurnntLlnc,j(!
Huml ines .= 0)
FOR Line'zFirstlLine TO Lastline OO
oo L] i® Humiines ¢ 13

x

ek

Figure 5.2: Cursor Movements in a PIS Window

45

CHAPTER 5. CURSORS AND THE USER INTERFACE to

The highly structured graphical cursor movements can only use the structured movemen
keys of Table 5.2. Figure 5.3 animates such graphical cursor movements. Each frame show-.
in the PIL Container Window, the PIL-Node Text Window corresponding to the PIL node of
the current structured cursor. In Frame (a), the structured cursor is on the entire Module:
PIL Window (that is, on the entire fragment) Two ctrl-i key sequences first move the
cursor inside and position it on the SuperModule node (see Frame (b)) and then on it
immediate child. the DeflmpModule node (see Frame (c)). Frame (d) shows the cuisor
back on the SuperModule node. as a result of a ctrl-o. Moving the cursor from this node to
the next adjacent node, the ProgramModule node, requires the ctri-n keys (see Frame {e})
Similarly, to move the cursor from the ProgramModule node to the SuperModule node, the

user must press the ctrl-p keys together.

5.2.2 Design and Implementation

Xmupe?2 is responsible for mapping the results of successful (internal) window-independent
cursor movements onto the the window in which the mouse cursor is located. Xmupe2s main
design strategy for cursor movements, as previously mentioned. is not to be aware of the
significance of a particular cursor movement. It is the responsibility of the computational
component to determine the success or failure of a cursor movement.

The rmupe?2 algorithms to drive cursor movements in a window are not concerned with
the visibility of the structured cursor as the result of a successful movement. The X Window
System determines the visibility of a cursor: this is because a window acts as a scrollable
viewport into the displayed text or graphics: the user can use the scrollbars to view a cursor
not immediately visible. Resizing each window displaying a cursor can also usually achieve
the same effect.

The computational component’s internal cursor movements are independent of any win
dow system, but zmupel’s algonthm that drives cursor movements on text differs shghtly
from the one that drives graphics movements: the former paints a cursor containmg just
text, whereas the latter paints a graphical object Otherwise. both algorithms are essen
tially similar and are outlined as one algorithm shown in Figure 5.1 (hnes marked with
(CC) indicate calls to computational component routines). When the mouse cursor 15 1
a PIS Window, PIL Graphics Window, or subwindow of a PIL-Node Text Window and
the user depresses a hey, the X Window System detects this event. It antomatically calls

zmuped’s correct cursor-movement driver routine.

CHAPTER 5. CURSORS AND THE USER INTERFACE

N fragnemt 1L i Yooyl ve_dESESRNRPAEEPIMRCIN - (c)

m S —
*

Panmpmoinle

K .
| - %
X |

Supertiodulalercr it lon

Superfiodulelroort s

i . - Progineort E

(b.d) (e)

Figure 5.3: Cursor Movements in a PIL Window

47

CHAPTER 5. CURSORS AND THE USER INTERFACE

success = false /*boolean*/

Retrieve key pressed

If key is for a legal cursor movement
success = Perform cursor movement (CC)

If success /*successful cursor movementx/
Retrieve internal structured cursor’s coordinates (CC)
Paint cursor
Update editing menu for this fragment (CC)
Update window’s Edit0Ops Menu

Else
Inform user that cursor movement failed

Figure 5.4: Algorithm to Move the Structured Cursor

I8

Chapter 6

Menus and the User Interface

The problem with command-line user interfaces is that the user has to remember the syntax
and semantics of commands. Such interfaces are prone to er-ors in the entry of sometimes
cryptic or complex commands and data. Menus, however. display the appropriate com-
mands and options. encouraging a structured approach. They rely on recognition rather
than recall, eliminate memorization of complex command sequences. require little or no
prior knowledge or training, and hasten the learning of a system. In user interfaces of pro
gramming environments, menus provide cognitive assistance to different types of users: the
novice user is unlikely to remember all system options and invocations, and the expert user
may forget infrequently used commands and options. By ensuring properly structured and
parameterized commands, menus act as a shield between the user and the system. But, an
expert user may sometimes find menus a hindrance, and instead prefer menu accelerators
or a command-language interface.

This chapter first discusces 1ssues in menu design. It then examines the usage, design,

and 1mplementation of menus in zrupe2.

6.1 Menu Design Issues

Two menu design issues are menu organization and item presentation sequencing. Schnei-
derman [71] classifies menus according to semantic organization. Some types include single
menus, linear sequences of menus, and tree structured menus.

Single menus contun multiple items and can extend to more than one screen. Linear

seque neesof menus consist of a series of interdependent menus which guide the user through

49

CHAPTER 6. MENUS AND THE USER INTERFACE H0

a series of choices. Presenting one decision at a time. these types of menus should allow the
user to go back and view the results of previous choices. Tree-structurcd menus partition
collections of items into groups — usually of logicallv similar and mutually exclusive ttems
— of menus at different levels. Such menus must consider the depth (number of levelsy of
the menu tree versus its breadth (number of menu items per level) Decieasing the number
of items per menu reduces the display time and screen clutter of the menu, but adding more
items per menu reduces the number of menus and deepens a menu hierarchy However
deeper menu hierarchy increases search time or navigation of a menu

Menus that appear with a mouse click and that are navigated by the mouse, seemy to
offer a compromise: they save screen space by appeanng when needed and are guichly
traversed. Yet. the user must remember which button to depress keep it depressed, move
the mouse to select a menu item, and then release the button. Expert users mav become
annoyed with this multi-step process and instead prefer accelerators or menu ty peaheads
which use a mouse click or keystroke to execute the same command.

Items in a menu can be ordered in various methods, such as chronologucal, atphabetical
numerical, by similanty (functional grouping), or by frequency /importance of nee {71,
Functional grouping is ideal for programming environment menus: for example, dedaration

templates can be grouped in one menu, statement templates in another, and so on

6.2 Menus in Xmupe2

Menus used in structured or syntax-directed editors contain the commands apphcablc a
any point. For example. Emily uses a fixed menu to display the legal constructs that can be
inserted at any point of editing a program. The user uses a light pen to select a constrnc
Smalltalk extensively uses menus for execution of operations. PECAN uses menus for most
commands, and IPSEN uses menu windows for the same purpose

Xrmupe? uses: fixed single menus in the form of a list of menu and command buttons
single pull-down menus, and tree-structured pop-up menus for editing commands Al menus
have clear and understandable titles and 1tem names. The user utilizes the appropriate
mouse buttons to display a non-fixed menu and traverses it by moving the mouse cursor
over the items. Pop-up and pull-down menus appear only when needed, saving screen space
Releasing the mouse button on a lighlighted menu item selects that item, for herarchical

menus, selection of an item occurs when the release is over a leaf menu item. All non-fixed

CHAPTER 6. MENUS AND THE USER INTERFACE

menus pop down when the depressed mouse-button is released; releasing the mouse button
when the mouse cursor is outside the menu does not select any item in that menu. This
hehiavior allows the user to gracefully exit from a menu.

Table 6.1 enumerates the different menus available in zmupe2. An asterisk (*) following
a menu name indicates the menu can have multiple occurrences. The first three menus are

pull-down menus, and the rest are pop-up menus. [talicized names are literal ones used in

the menus,

Name Parent Contents
CreatelFragment Menu | Main Button Window Fragtype names
Help Menu Main Button Window Help 1tems
Quut Menu Main Button Window Cancel, Confirm
WindowOps Menu® PIS Window/ Help
PIL Graphics Window
EditOps Menu® PIS Window/ Editing commands
PIL Graphics Window/
i PIL-Node Text-Window subwindows

Table 6 1: Xmupe2 Menus

6.2.1 Using the Menus

A pull-down menu 1s displayed by depressing a menu button in the Main Button Window.
Pull-down menus are used for the creation of fragments, help, and quitting zmupe2. The
CreateFragment Menu. as shown in Figure 3.2, allows the user to create a fragment of the
appropriate fragtype. The Help Menu of the Main Button Window, Help Buttons in ihe
TextEdit and Inspect Winlows, and Help item in each WindowOps Menu, illustrate the
principle of providing help at all levels. The Confirm item in the Quit Menu shows the
principle of allowing the user to confirm dangerous commands. Quitting zmupe? destroys
all associated windows and the structures maintained by the computational component.

A tree-structured EditOps Menu pops up with a mouse-button press and allows the
user to execute an editing command, such as the insertion of PIS program structures or
PIL nodes. There is an EditOps Menu for every PIS Window, PIL Graphics Window, and
subwindow in a PIL-Node Text Window. To indicate that the menu is active, the mouse
cursor has a temporary left-arrow shape while an EditOps Menu is visible. A menu item

tm an EditOps Menu has a submenu 1if a night-arrow 1s displayed at the rightmost side of

CHAPTER 6. MENUS AND THE USER INTERFACE H

that item; menu items with no arrows are terminal or leaf items, which fire commands
Popping-up a submenu requires that the mouse cursor be moved to t s arrow. The user
is alerted to the existence of an EditOps Menu by a message that appears i the Main
Messages Window, when a fragment is created.

A novel feature about an EditOps Menu is that its contents chanue after an editiny
command or cursor movement, as determined by the corresponding menu structure 1 the
computational component. The rationale behind these context-sensitive changes v a prop
erty of the computational component: zmupel only reflects these changes

Figure 6.1 shows two different EditOps Menus resulting from cursor movements cach
frame shows the complete set of options per menu An interesting aspect of Frames {a)
and (b), is how each EditOps Menu reflects the context of the structured cursor In Frame
(a), the structured cursor 1s on the WHILE statement. The EditOps Menu shows that the
user can Delete. Drag. Fold. Group. or Textually edit the WHILE statement. Inspeet the
(unpzrsed) contents of the Anonymous Buffer (to which deleted AST»> ate moved), or Inser!
other statement templates around. after. be fore. or inside the WHILE statement In Frame
(b), the cursor has been moved to the expression placeholder of thie WHILE statement
Only the Delete. Inspect. and TextEdit options are shown in the EditOps Menu

Note how each menn of Figure 6.1 has a title, separated from 1ts menu ttems by a
line, which clearly indicates the purpose of the menu An EditOps Mena currtently doe
not support the interruption of a selected editing command. Aborting a selected editime
command is possible only if the command itself provides for this: for example. the Drag and

Group commands can be aborted, after they have been selected from an FditOps Menu

6.2.2 Design

Each pull-down menu contains items organized alphabetically to allow a menu item to he
quickly located. One alternate ordering of a CreateFragment Menu's items would have
been to group items by PIS or PIL fragment type, instead of alphabetically. Noitem 1n a
pull-down menu is used more frequently than another, this s why an ordennyg of items by
frequency »f use was not considered.

Item presentation sequence in each EditOps Menu is not controlled by rmupel. but
is a function of the sequence in a corresponding computational component menu, whch
is organized by editing commands and their options. Xmupe2, howe ver. does reflect thys

functional organization: related items are grouped together in a menu, and items per menu

CHAPTER 6. MENUS AND THE USER INTERFACE

S ———————
0] Fraquent 41 Staresenis ENUNENEEER

NIl DO

3,
F1veitiina_ s dies Firatlines
Lastl _tdiops TR getline
RESER Boirte
Florng
U’(H’ull
Geuey
et
Intnest
Toaregit

testiioe” Hawt)
Currentline)

ne ID lnlllm oo
i ire

For 1
ear

—dr
: _rioment) , Sisemen:s _ 3

lv. ,

)
Fi7atlioe 2 2ter Firattine
Lastt _Venoan B agilfne
REFL(Datera

fiony fratiine” Newty

‘lfl'r(l: reit Currentlines

10D Lrasa.
V1 Cemmintarie HJ lnlle oo
b d

L
-
[-

] Froement 41 S stasanis TIERIEEE &
—a
.Flrllllml

nes

bt uuo[u I""‘

daiste
ratline” laxts
wrrentl ines

TO Lastline 00
Ines ¢)

Qafaen
Iutirst

}Q Tragment 31 : S mvesenis SEAPRINPEW &

ir". ba)

Flratiines
Lastiines

iratiine~ Hexts
“urrentlinet

10 Lasntline DO
ines ¢ 1y

(a)

b el
3 F~sgment 81 * Statesents RNNNNE <

WHILE T2 00
tatamemt >34

Flratline *» Pir~ Firetlines
Laxiline ts PLr~ Lastlineg

Firstllne o Firstline~ Hext}
TIL FI le o Currentline}

lrnle 10 lnlle]
Nl inas = Husllne

Fdl10pmm

Figure 6.1: EditOps Menus

53

- e a3
R ‘rageent 81 : Statements SNNVEERSEN 7

414]

Firs Firstiines
L-sn__‘_‘ﬂr_‘__ Lastline)
REPE(Ceiste

Figrag 2tline* Haxts
UNTI(ssfere_optiewm~-furrentline)
Huml. {wiiie

T0 LastLine DO
Ines ¢ 3}

I “cssrent 81 Sta‘emeny

1y i

~ Firsilires

teroy Lasitine)
mg‘ Deiste
[0y Irsiline” Hexty
um reld “arentl {ne)
Hual

10 Lastline DO

Srevp,
1airst_owtiesd
e flmee ¢ 1

|

CHAPTER 6. MENUS AND THE USER INTERFACE 51

are organized alphabetically. For example. options to a first level item are grouped i second
and third level submenus of this item. Items in an EditOps Menu are not organized m an
alternate ordering, such as frequency of use, because this menu 15 constincted on the iy

EditOps Menus were designed without typeahead or accelerator capability The use
has to navigate through the entire menu hierarchy in order to select a menn item, Neves
theless. these menus are easy to use, quickly popped up, displayed. navigated, and popped
down. Because an EditOps Menu dynamically changes after cursor movements or editing,
commands, a pop-up menu. not visible to the user, is the best type of menu to use

Table 6.2 contains the list of all possible 1items in an EditOps Menn, as determined
by the computational component. The first level, in this tree structured menu, is that of
editing commands. The second and third levels contain options to the corresponding first
level item. An editing command is fired when the user selects that command, with all its
options, from an EditOps Menu.

An EditOps Menu usually does not contain all the items of Table 6.2, but only those
retrieved from the corresponding computational component menu The computational com
ponent — not rmupe.] — performs the role of context-sensitive menu filtering and prevents
errors in program entry. An alternate method of display would have been to show all pos
sible items. and gray out the illegal ones. A problem with that method is that the set of
all editing-command options 1s large. and the resulting EditOps Menu could not possibly
fit on the screen. The user would be frustrated with navigating through many 1llegal grav
menu-items and could be confused.

Xmupe? has simple, general routines to set an arbitrary hierarchical menu structure for
display. This structure is independent of the organization of a computational component
menu and thus insulates zmupe2 from the computational component. PFurthermore 1
building an EditOps Menu from the corresponding conmputational component menu, rimupe’
is not aware of the reasons underlying the legality of menu items Xrmupe’s construction of

a menu becomes a simple mechanical process.

6.2.3 Implementation

The zmupe. data structure to store each EditOps Menu is a tree of dynamically created
nodes. Each node represents a menu item and contains: pointers to the next/previous
nodes. a pointer to the submenu tree for that item, a back pownter to the parent menn f

it exists, the name of the item to display, a pointer to the function to be fired (1f item 15 0

CHAPTER 6. MENUS AND THE USER INTERFACE

Command | Options Options
Delete
Drag
Fold
Group
Insert (After,
Around,
Before,
InsideFirst,
InsideLast) | (While, Repeat,
Loop, Assignment,
If, IfElement,
Elself, Case,
CaseElement, ElseCase,
With, Call,
Exut, Return,
Comment, Phrase,
ConstBlock, TypeBlock,
VarBlock, ProcedureHeading,
ConstDecl, TypeDecl,
VarDecl, Opaque,
Export, Import,,
RenameClause, Id,
Qualident, Subrange,
Enumeration, ProcedureType,
Pointer, Record,
Array, Set,
FixedField, CaseVariant,
CaseVariantElement, CaseLabel,
Expression, ActualParameter
SuperModule, DefImpModule,
ProgramModule, Procedure)
Inspect
TextEdit
UnTold
UnGroup
Table 6.2: EditOps Menu Structure

55

CHAPTER 6. MENUS AND THE USER INTERFACE 56

leaf item), and a window-system window structure, among other fields. Xmupe's window

system-specific data structure is more space efficient than the corresponding window-svstem

independent computational-component data structure storing the menn. The latter struc

ture is a fixed three-dimensional array, structured similarly to Table 6 2. This stricture alun
contains a field to indicate if a menu item is valid; the computational component sets ths
flag, based on its internal information. In contrast, zmupe's menu structure stores only
the legal menu items. Xmupe2 needs its own menu structure because the computational
component menu structure is not suitable for display on the screen.

After a cursor movement or editing command, zmupe? calls computational component
code to update its editing menu; and then calls rmupe? routines to translate this computa
tional component menu to an EditOps Menu. The translation ensures that zmupe. provides
the user with displayable menus that correctly reflect currently legal editing commands It
also ensures that zmupe? calls the correct computational component routine to fire the edit
ing command: in fact, selecting a menu item calls an intermediate zmupel routine which
then calls the appropriate computational component routine. Tlus buffering provides a

modular structure, and prevents changes in one layer of code, from affecting others.

Chapter 7

Editing Commands and the User

Interface

The user edits a fragment and its contents by using the MUPE-2 structured editor [8],
which is implemented by the computational component. For programming-in-the-small.
the editor supports both the structured and textual editing of program structures. Editing
programming-in-the-large structures 1s purely structured.

The computational component currently :mplements a subset of MUPE-2’s editing com-
mands [12]. Most implemented commands are for the manipulation of program templates
or PIL nodes. Xmupce2's role 1s to fire editing commands from EditOps Menus ~d reflect
the commands’ results 1n the appropriate window. Thus, its contribution is to show the
character of these commands and present a user-friendly interface to them.

This chapter first presents scenarios illustrating the effects of editing commands on
the user interface These scenarios serve to explain tle cditing commands, from a user’s
perspective, and to display the user’s actual interaction. with them. Secondly, the chapter

discusses design and implementation issues facing the user interface of editing commands.

7.1 Editing Scenarios

Programming-in-the-small editing scenarios are presented in Section 7.1.1; Section 7.1.2
discusses scenarios for programming in the large. The scenarios in these sections do not
show one aspect of rmupel's interaction with editing commands: while zmupe?2 performs

the internal computations associated with an editing command. it changes the shape of the

57

CHAPTER 7. EDITING COMMANDS AND THE USER INTERFACE o

mouse cursor to a watch, writes a suitable message in the Main Messages Window. and
restricts the mouse cursor to the invohing window. The first two actions serve to remind
the user that an internal program calculation is in progress and that wating is necessary
The third action prevents the user from executing another command while the current one
is being completed, and focuses the user’s attention to the current command. Once the
current command completes its execution, zmupe. releases the mouse cutsor which returns

to its original shape.

7.1.1 Programming-in-the-Small

Currently implemented commands for programming-in-the-small include: Group/t nGroup.
Fold/UnFold. Delete. Inspect. Insert, TextEdit, and Drag. Figure 7.1 ammates editing

commands operating on a Statements fragment labeled as Fragment #1.

Group/UnGroup

Frame (a) shows the structured cursor on an entire FOR-loop. The user has depressed the
right mouse button. chosen the Group item from the EditOps Menu. and 1s about to execnre
the command by releasing the button. The Group commanu combines adjacent structures
starting from the intial position of the structured cursor to a target structure. The uver
selects a target structure by moving the mouse cursor to a window row on or within thi
structure and by clicking the left mouse button

In Frame (b), the user 1s ready to perform the Group command Xmupel has printed a
help message in the Main Messages Window and the mouse cursor has changed shape to a
crosshair that is restricted within the Statements fragment. The help message indicate . that
rmupe.? suppoits grouping by key or mouse: the former .s less user {friendly than the latter
and is thus not discussed. Note also that the user 1s able to abort the Group command by
depressing the middle or nght mouse buttons. In such a case. a swtable message appears
in the Main NMessages Window.

Frame (b) also shows that the user has positiored the mouse cursor on the window
row of the assignment statement EndCol := LinePart™.SlartCol, ' Pressing the left mounse
button executes the Group command. the source and target operands are the first FOR-

statement (the current structured cursor) and the above assignment statement, respectively

'Any window column 1s pernutted

CHAPTER 7. EDITING COMMANDS AND THE USER INTERFACE

5 Frosent

Lire a Firatiines
WHILE Line 8 HIL DO
REPER

» 1=4 10

Endlol # Linedert™ Start
FOR t*«1 10 Exiol ~ Star
HunSpeces ® Humspaces
Mok #f1 * Hurdaft -}
[als]]
NI TH MerulCndTypel 00
WITH [Meru{Cnalype) DO
MITH CotloneiCelya
Hused | ke n

[2,4]]
EMD)y

10y
NYIL LirePart » HILy
Line .o Lire" Hextline)
el J)

 Steterents IR

CneCal ~ Ce 00}
nePort~. Tewt i) v SocwialChert

sStartCol s LiraPert* EndCols
LinePart ‘s Linevasrt* HewtPort}

L) mlnm.l .- :_-mlrlnlhn
bAd

{Dainre

Col)

ttol * 1 DO
* it

H

100

larent
nipery
Testzon

(a)

Hoow | MHHML}

Ressepee

K row by KLY

Praas "N OEXT) ar P (PREVIOUS) te nove

arsor ta emi—of ~brog strcture

Ts anscite grow opersiion
Press RETURN oy

ot {rom Lhe (nitisl cursar position \s

Gwp wwd will be rowed
Te abort irows operation
Pruea £50 hoy

roup by noute

Nave nouse Cursor ta end-of ~roup structirs

To anecuta groee cperatton,
Fross LEFT mmsse tutcan

fo sbort Grous operation
Fress aw other souse butlom

UL

s

23 Fragaent 81

stariCot o= Lir Part~ EndCal}
LinePary = Lh Jart”® NewiPartd
EndCol = Linek £t~ Startloly +
FOR t.o1 TQ EnaCol - Startiol +71 DO

Huabpaces = Huasoaces ¢
Honi aft .® Homlgft - L

(2,01
UITH MenulCadTypel DO
WITH [PMenul lrpul bo

Y]

diTH Detlons(DpTumel OO
Husdlanks ,» Nuad)anks ~ Regul arinden

[2f *}}
)

(2]
(HTIL LinefPart » HIL)
Line .o Line™ Nexillines
]

(b)

Line = Firstiinel
WILE Line @ NIL 00
REFEAT

By
WITH MerulCadType} DO
RIS
ons. upe
tamdianks 1# Nod] anks ~ Regul arlnden

Py

[a, o]
ANTIL LinePart o HILS
Line .= Line” HextlLinws
t

2 Fragamnt 81 1 Stateasnts SENEEENEEIAICAIMGLAN

Line .3 Firstline)
WHILE Line & HIL DO
REPEAT

[
FOR { =1 10 Endal - StartCal * 1 DO
Linedart” Textlll .» SpecislChar,

(20 o]

StartCol .» LinwPart™ . En"oly
LincPars o LinePart® HewtPart)
Er Lol 3 Lircfart® StariColit™
o EnaiCal 0

KiTH OptiomiDpiypel DO
Husillarms o Hual] arss - Regulacinds,

EXD

(2]
WNTIL LinePart « HIL)
Line .= Lina™ Hextline)
¥

(d)

Figure 7.1: Programming-in-the-Small Editing Scenarios

CHAPTER 7. EDITING COMMANDS AND THE USER INTLR FACE

& Fragoent 8 ° Statesents et A

Lire e FirstLines
WHILE Lire & HIL D0
HEFERT

{:sl 10 Enal - StartCol + 1 0O
sces (¢ Huaspaces ¢ {J
Hapu eft iv Nusieft - 1)

€N
BIIH Merw.{CadTyps! DO
LK lHtm(Cnlw-l o0
WlTH OotlonsiOplype) DO
Husmllanks = Mm@l anks = Rewul arinden

L2,]
EHD Y
(214
WMTIL Linefart = HILy
|;lr- te Line~ Nexilirm}

B Fragmnt 51 : Stateseris SRR

T Ltne 'e Firstline
WHILE llr- 0 HIL

-: % ig
Wl 1H MermslCmilypel DO

UIIN lmml »alype] DO
Dullum(h(\pnl oo
Husdlaris i= Musdlanka « Regul arinden

uun. L\m9r| » WL} (et

lln- e Line=.HentLines

oray
sotd
Grasy
fagert [
agpect
Tanitdn

ey

(0

": Fregeent 2§ ° Statesants

Lirm v Firgtlines
WHILE Line @ NIL 0O
REPERT

5“!;%? o TrEE T
[YY)

Tearpen

E

[

lno w\'ﬂa\l

FOR Lot) fmlnl -~ Hattol » * 0

ﬂ Fraanent I\

(g)
RN AT LIS CR T SRR

snspec
e ent

Wm parer W Muniwscer ¢ 1)
rdalt 8 S eit - 0

__Statenents

Line = Flraiirmet
WHMILE Line B XIL 00
REPEAT

>~

A‘Euﬁabﬂ‘na NIRER

1.
CHEIL LlrePart o HILY
Line » Line Hewttioer
[aL+]]

()

Figure 7.1: Programming-in-the-Small Editing Scenarios

CHAPTER 7 EDITING COMMANDS AND THE USER INTERFACE

Line = firsiline
MHILE Line 8 HIL
REPEAT

t)]
INTIL LinePart s MiLy
Line te {ine” HexiLine?
'

(i)

Line
WHILE Line 8 KIL OO
REPEAT

= Flratlline)

Eny
UNTIL LinePart & NILS
Lire o Line™ Hextiine)
HD»

I
Teient) Care

ey T

arseat | rant

. '

laftesy fotern

(smment
['i!nl'

b .

()

{SFer 1 8l 8

Line 'a FlratL

Irmi
WHILE Line 8 HIL 00
REPEAT
{ooe
Wﬂ re (€ Dar M)
Farul Cralyps) DO

<< Casignator)

s (K Dapr)
VITH [Mernullmalype) 0O

TH Optl T 1 00
e o mateke Rewta e
DODO'
’ 1eno
003 e

Balste
Teipecy

(2]
UNTIL LinePurt o NiLY
Line i= Line~ Hextiline)
3, 1]

D 1 ‘v (¢ Evpw 33
M rermat Tupe} 0O

€¢ Dewignator 3y jm ¢ Bxpe NI
VITH IMernulCndType] DO
VITH Oetlom(Oelyesl 00
Inmd] aks 0 HumBl mdn = Rega!a-irg
TH
EHD)
'
any
UHTIL LinePart = NIL)

Line = Line™ Hextlline)
oy

()

Figure 7.1: Programming-in-the-Small Editing Scenarios

61

CHAPTER 7. EDITING COMMANDS AND THE USER INTERIFACK

6

5 Fr.?_n_c_nl :1-:“?(;'!:--«\.- =
S - Line *» Firsiline)
Line := Firsil WHILE Line 2 HIL
WILE Line o N REPEAT
REPEAT
Looe Lefthm = << Expr >3y
HunIRE KSR 2% 9] | VITH Menul Cadiypel {0
Hatwl CadType] 00 (Jewignator) s (¢ fipa 33|
(¢ Dentgnator 3> (v & Depe 3} M. el Congl) X
syl) o | A N rocn
tions we
Hsoinbiid lanks - Regulerl i oy funitarmn - Rrauiseingeni

00y
)

*
MDY

)
UMTIL LirePart o NILY
Line 18 Line” Hexilines
)

(204}
UNTIL LinePurt » HILY -
Line & Uliw MNextiines
2l J]

(m) . — (o)

& WPE-:

Tresce fromis ' foox
\Ernece: fromio, doo,

Nes 2 PN
To abart dray overstion YW
Praee «SC soy or XNUAE nouaw tamlon Snd g

or RIGHT mouse butron

Te drey by HOIST
TMove noure te desired rulum
and prees LLFT noume ilon

Te drog by KEY*

Preet & succtezsion of wm or more [EFT
or XVH! mrow keys

Enecita dreg by presaing AN bay

T Lire ‘e Firste
WILE Line 8 K
REPEAT

form W 1 D O30
TH PenuiCedl goel DO
1¢ Nevianstar Y
b3l — T

Le
vl

v Expr)33
4) il

1
WHTIL LinzPart » NILj
Ling *s Liow" Heuliney
[

(n)

Figure 7.1: Programming-in-the-Small Editing Scenarnios

CIAPTER 7. EDITING COMMANDS AND THE USER INTERFACE 63

Frame (c) shows the stiuctured cursor positioned on the resultant grouped structure, now
surrounded by braces. The structured cursor has been moved to the second FOR-statement
(see Frame (d)) in order to show the distinctive gray font of the grouped structure

To reverse the effects of the Group command. the user can choose the UnGroup com

mand, tahing Frames (a) and (¢) in reverse shows the ungrouping effect of the latter com-

mand

Fold/UnFold

\ powerful feature of a grouped structure (see Frame (c)) is that it can act as a single
entity, which can be the operand of another command, such as a Fold. Frame (e) shows the
effects of the Fold command on the structured cursor of the Frame (c).

The rold command elides (holophrasts or selectjvely hides) program structures refer
enced Ly thestructured cursor In Frame (e). the ellipsis indicates folded program structures
and represents more than one line. Elision 1s useful for condensing large programs and makes
space a premium. unlike unparsing which stresses format.

The sequence of the Frames (c) and (e) shows user controlled elision. the user can
elide (or unelide) program structures at will. COPE and the Cornell Program Synthesizer
also feature this type of elision. The latter has CONDENSE (condenses the innermost
expanded unit contaning the cursor line) and EXPAND (expands the outermost condensed
unitidentified by the cursor line) commands. In contrast, PDEIL — a program development
enviroument for PL/1[33], has automatic elision. In PDEIL. the system identifies one or
more focr of interest: text in the neighborhood of the foci is displaved. but text at some
distance away 1s elided.

The UnFold command ic the reverse of the Fold: the contents of a folded structure are
unclided and appear as they were before folding. For example, taking Frames (c) and (e)

tn reverse shows the effects of the UnFold command.

Delete

Frame () shows the structured cursor on the FOR-loop and the Delete command about
to be executed. The Delete command destroys the contents of the structured cursor. For
example, to delete an entire fragment. the structured cuisor first has to be moved on the
whole fragment. In IFrame (g), the FOR-loop has been deleted and the structured cursor

has moved to the WITH-statement.

CHAPTER 7. EDITING COMMANDS AND THE USER INTERFACE 61

Most commands. such as tiie Delete, operate on the structured cursor, which can endlowe
structures within a fragment or an entire fragment. This is bow commands can operate
uniformly and offer the user a simple interface.

A method of quichly deleting multiple adjacent structures is to first group them thon
delete the grouped structure, when referenced by the structured cursor. s an aside. con
sider Frames (a)-(d) of Figure 7.2. These successively show. the selection of the Group item
from the EditOps Menu, the positioning of the crosshair on the correct window row. the

successful execution of the Group command. and the deletion of the grouped stracture

Inspect

The computational component moves a deleted PIS structure. except an entire fragmen

to the Anonymous Buffer. For example, Frame (g) shows that the user has deleted the
FOR-loop. but now wants to use the Inspect command toview the contents of this buffer

Choosing the Inspect menu-item causes the pop-up of the Inspect Window . shown i Frame
(h) and labeled with Inspect: this window consists of an upper Inspect Button Window
(containing Help and Done buttons) and a lower readonly and scrollable Inspect Miewing
Window. The Help Button directs a help message to the Main Messages Window The
Inspect Viewing Window displays the current contents of the Anonymous Bufler. a FOR

loop. Frame (h) also shows the shape of mouse cursor as an T indicating the lack of editing
actions in the Inspect Viewing Window. This cursor is also restricted withi the Inspea
Window until the user selects the Done button. Such a selection pops down the window

and does not affect the contents of the Anonymous Buffer

Insert

Frames (i)-(k) animate some variations of the Insert command. This command 5 four van
ations correspond to adjacent (Insert After and Insert Before). top-down (Insert Inwde
First/Last), and bottom-up insertions (Insert Around). All Intert commands center about
the structured cursor structures are inserted after, before, inside, or around, the stru
ture referenced by the structured cursor Inserted structures are either PIL nodes (see
Section 7.1.2) or templates of PIS program structures.

Insert InsideLast and Insert After are not shown here. The top-down Insert Insidelast

is similar to the Insert InsideFirst, except that the former inserts a structure as the last

CHAPTER 7 EDITING COMMANDS AND THE USER INTERFACE 63

Lire *» Flret
WHILE Line # N
REPEAT

Emly
UNTIL LinePart = NIL}
n\.lr- * Lirm® Hextliney
1

& Froyment 04 °

tine » Firstliner
WILE Lire ¢ HIL DO
REPEAT

Looe
';'ulgum Expr

‘e ¢
bt Lnd

LHOY
IMTIL LirePart » NIt}
Line s Line* Hexttines
(2137}

(b)

Furare
vy
e

Is1en
ey
Tartgdst

[TECTT

>

g

w

T Line s Flrstl
WILE Line 8 N
REPERT

1410w
[310]]

INTIL LinePart = Hily

Line te Lina*,Heniliney

]

Fola
Greey
1ntant b
usgrevp

4]

Line *s Flrstline i
WHILE Line @ NIL
REPEAT

b0
“;ﬁ
WL TinePort » NIL)

|'.Im iv Lira™ Hextl iney

(d)

Figure 7.2: Grouping and Deleting Program Structures

CHAPTER 7. EDITING COMMANDS AND THE USER INTERFACE 06

one inside the container structure referenced by the structured cursor. The adjacent Tnsert
After is analogous to the Insert Before. except that it inserts structures after the structuied
CUrsor.

Frame (1) shows the result of the insertion of a LOOP template around the WITH ~tate
ment. The structured cursor remains on the WITH statement before and after the LOOP
insertion. Frame (i) also shows the selection of an Insert Insidelirst command to fire the
insertion of an assignment-statement template inside the WITI statement. As a result, the
WITH statement then contains, asits first statement. an assignment template with Desiena
tor and Expr placeholders on the lefi and right sides of the assignment symbol, respectively
(see Frame (j)). This frame also shows the selection of the Insert-Before (Asstgnment) item
from the EditOps Menu. The result of this selection is to insert an assienment-statement,
template before the structured cursor. currently on the WITI statement. After this inser
tion. the structured cursor moves onto the newly inserted assignment-statement template
In Frame (k), the user has then moved the structured cursor inside this tomplate and onto
the Designator placeholder. This frame also shows the selection of the ", \tIdit ttem from
the EditOps Menu.

TextEdit

The TextEdit command allows the user to textually edit the program structure referenced by
the structured cursor. Such a command is useful either for the replacement of placeholders
with identifiers or expressions or for circumventing the rigidness of pure structured-editing,

In Frame (k), the user intends to textually edit the Designator placeholder and replace
it with a variable. After selecting the appropriate item of the EditOps Menu. the Textldu
Window appears (see Frame (1)). Labeled with a TeztEdit. this window consists of an
upper TextEdit Button Window (containing Help. Done, and \bort Buttons) and a lower
TextEdit Editing Window (containing a mouse-based scroitable text-editor) The latter
window displays the contents of the structured cursor, the Desigrator placeholder, and th

textual cursor (the). The user can textually edit the Text Edit Fditing Window’s contents
and press the Done Button to indicate that the result is to be passed to the jncremental
compiler. If there are no detected errors. the structured cursor is replaced with edited
text. Unlihe msertion by templates, which automatically maintans program integrity. an
incremental compiler is needed to ensure the syntactic integnty of program test Using

the Abort Button abandons the textual editing session, and leaves the structured cursor s

CHAPTER 7. EDITING COMMANDS AND THE USER INTERFACE 67

contents — the Designator placeholder in the Statements fragment — untouched. Pressing
the [elp Button displays a help message in the Main Messages Window.

Note that during a textual editing session, the mouse cursor changes its shape to an
inclined pencil and is restricted to the TextEdit Window, until the user presses the Done or
Abort Buttons. The restriction of the mouse cursor’s movements is intended to focus the
user’s attention on the current session and prevent multiple simultaneous textual editings
of the same structured cursor.

Frame (i) shows that the Designator placeholder has been replaced with the identifier
LeftNum. Between Frames (1) and (m), the user had typed the identifier LeftNum in the

TextEdit Editing Window and had pressed the Done button.

Drag

In a PIS fragment, the computational-component’s unparsing algorithm may either split a
construct mnto separate lines for formatting purposes or display decp indentation. The user
may not like the unparser’s formatting, and the Drag command’s purpose is to accommo-
date individual formatting tastes. This command allows the user to horizontally move the
structured cursor contents a number of spaces leftward or rightward.

In Frame (m), the nested WITH-statements are deeply indented. and the right side
of the assignment to the identifier NumBlanks is not completely visible. There are three
methods of dealing with this. scroll to the right. resize the Statements window, or use
the Drag command. In Frame (n), the user has pouaitioned the structured cursor on the
WITH-IMenu statement and has chosen the Drag item from the EditOps Menu A help
message has been shown in the Main Messages Window and the mouse cursor has changed
shape to a crosshair that is restricted within the Statements fragment. As with the Group
command, a Drag can be performed by mouse or key. The latter, for similar reasons as
with the Group. ate not discussed. The Drag command. like the Group command. can be
abortted

Note the position of the crosshair in Frame (n): the user has moved it to the target
column.® which is the first O of the LOOP identifier. A press of the left mouse button then
display s the result of the Drag command: the WITH statement referenced by the structured

cursor has been horizontally displaced to the left (see Frame (0)).

“Which window row is irrelevant because the drag applies to the structured cursor.

CHAPTER 7. EDITING COMMANDS AND THE USER INTERFACKF 6

7.1.2 Programming-in-the-Large

The computational component currently supports just the Insert and Delete commands for
PIL structures. The scenario in this section, shown in Figure 7.3, is based firstly on the
structured insertion of PIL nodes and secondly, on their deletion As with PIS editing, both

the Insert and Delete commands operate on the structured cursor

Insert

Frames (a) to (e) of Figure 7.3 animate a series of insertions in a Modules fragment, labeled
as Fragment #1.

Frame (a) shows the structured cursor initially on the entire empty Modules fragment
and the PIL Graphics Window is blachened to reflect this. By pressing the right monse
button. the EditOps Menu appears and the user can execute an Insert Insidelir-t of o Su
perModule. Release of the mouse button displays a SuperModule node yn the PIT. Graphics
Window and the structured cursor remains on the Modules fragment.

In Frame (b), the user has first moved the structured cursor iside the PIL. Graplics
Window and onto the SuperModule . Note that this module’s corresponding PIL Node
Text Window appears in the PIL Container Window. The insertion of a ProgramModule
after the SuperModule is shown in Frame (¢) Becanse the ProgramModule was iserted
adjacent to the SuperModule. both nodes are displayed as siblings at the same horizontal
level. If the user had chosen an Insert Before command, the positions of the nodes in Frame
(c) would have been reversed.

After choosing an Insert InsideFirst of a DeflmpModule. the user sees a Deflmpiodule
node displayed below the SuperModule node (see Frame (d)). The DeflmpModule node
shown one vertical level below the SuperModule node because the former was imserted as
child of the latter. Frame (c) shows the result of a final insertion: an Insert Insidelast of
a SuperModule node. The newly-inserted SuperModule node and the DeflmpModule node
are both siblings because they were inserted inside the SuperModule node of the structured

cursor.

Delete

If certain nodes, or their children, are to be removed, the Delete command can be used

Frames (f) to (h) animate a sequence of deletions within the same Modules fragment

CHAPTER 7.

T BT T M B ST S
) Fragment 81 ¢ Hooul es EPEERERERARNEDEENND E’J‘
N .

(a)

EDITING COMMANDS AND THE USER INTERFACE

e
2 Fragaent 81 . foouies SENEEEEEERNCR.JCHNENEN

Tasent _CemmandOpi |

after

-
deforn -
[TLI]
fotastl_ '1Lait OBUess

| ostimprednia

Superfodule {
Superfiodu] shesder

(b)

(d)

Figure 7.3- Programming-in-the-Large Editing Scenarios

69

S Fragaent 31 % Modules

(oo | [| .

Superfioduls

Superflodul e Inporta

(e)

Im Froment 811 Fosuiss EEEORCMRSEE 1 |

r.‘.. H R ‘

Superfioduls |

Superfiodu] eHescer _

CHAPTER 7. EDITING COMMANDS AND THE USER INTERFACE

 Fragasnt 1 ; focules AR | {

____roedescrirtion .
| N

Progiroart

Pt oetec |

(f)

(h)

Figure 7.3: Programming-in-the-Large Editing Scenarios

CHAPTER 7 EDITING COMMANDS AND THE USER INTERFACE 71

Frame (f) shows that the SuperModule node (and all its children) are to be deleted.
The result,in Frame (g). displays only the ProgramModule node — the sibling of the just-
deleted SuperModule node. Deleting a hierarchy of nodes by removing their root makes
Dolete o powerful and flexible editing command. Because the structured cursor of fFrame
(g) 15 on the ProgiamModule node. the node's textual representation is displayed in the
PIl Contaner Window. Finally. Frame (h) shows the deletion of the ProgramMlodule node
The stinctured cursor 1s now on the entire Modules fragment. as represented by a blackened
PHL Graphics Window To delete the fragment. the user can choose the Delete item from

the EdurQps Menu.

7.2 Design and Implementation

Nmupe?s general strategy for the design and implementation of its interface to all editing
commands is first discussed 1n Section 7.2.1. The subsequent sections investigate other inter-
esting design and/or implementation issues specific to some commands. Not all commands

ate mentioned because the interface to them is simular.

7.2.1 General Strategyv for All Commands

Xmupe2 fites an editing command by calling the appropriate computational component
editing routine. Such a routine does not only execute the appropnate editing command.
but also updates the coordinates of the internal structured cursor. Xmupe? then: (a) calls
computational component code that updates the component’s internal editing menu, (b)
updates the current EditOps Menu based on this internal menu. (c) retrieves either the
unparsed text o1 PIL graph. (d) obtains the internal structured cursor’s coordinates, and
(o) updates the proper window

In genetal. rmupel’s design strategy for interfacing with editing commands is to be
unaware of the nature of the resulting changes This is accomplished by relying on the
mformation retrieved from the computational component after each editing command For
example, whether or not the cursor moves as a result of an editing command 1s determined
solely by the computational component. Xrnupel only has to reflect the current position of
the structured cursor. Another example is the interface to the I'old command: zmupe2 is
not aware that a folded structure exists — it just updates its representation of the textual

unparsed buffer. This update shows the folded program structures replaced with an ellipsis.

CHAPTER 7. EDITING COMMANDS AND THE USER INTERFACT

-
.

Ensuring the integrity of options to a command. reflected in the correet ttems of wn
EditOps Menu. 1s critical. For example. textual editing of the structured cursor’s contentae
possible when the structured cursor 1s inside a PIS fragment. and located on an appropnatre
structure. The computational component 1s responsible for this cheching and provids
the correct options to its editing menu Xrnupel 1s only aware that the computationa
component’s editing menu must be updated per command. By updating an FditOps Mews,
based on this internal menu. zmupe ensures the presentation of proper commands and

their options at any point.

7.2.2 Delete

In the computational component, the Delete command is uniform becanse 1t removes pit
AST nodes. However. rinupe? must treat the deletion of an entire fragment (that i~ whe
the structured cursor is on the entire fragment) differently from the deletion of 1its content -

For the deletion of progrem structures inside a PIS fragment. rrmupe? <imply update. n

representation of the computational component’s textual unparsed bufler and s not awarem
the deleted structure. Deletion of a PIL node is similar. with respect to the sraplical displan
in & PIL Graphics Window: however. zmupe2? must also delete the PIL-Node Text Windows
representing the PIL node and its children. and all their associated data structures. Deletion
of an entire PIS fragment requires the destruction of the corresponding PIS Window, siomla
deletion of a PIL fragment requires the destruction of all PIL-Node Text Window« within

the PIL fragment.

7.2.3 Drag

Part of .Xmupe2's implementation of the mouse-based D rag command is in an event handles

routine that traps the press of a mouse button. Figure 7.4 outlines rmuped’s algorithm to
Drag by mouse. Part o.'it shows the C event handler that is called when the X Window Sy
tem detects a mouse-button press. Once the mouse-cursor pixel-column position has heen
translated to a character-column number, the result becomes a horizontal offset (the drag,
count) that is passed as a parameter to the computational component routine executing the
Drag command. The drag count is positive for a rightward move and negative for o leftward
one. There is no need to access the computational compouent’s unparsed buffer bhecanse
the internal structured cursor already points to the current unparsed buffer Line node(s)

only the horizontal position of the underlying text must be changed The algorithm shown

CIHAPTER T EDITING COMMANDS AND THE USER INTERFACE 73

is an amalgamation of € and Modula-2 code: lines marked with (C) denote C code and
those with a (CC) indicate calls to a computational component routine. Horizontal offset
ts an integer variable indicating the net horizontal offset Button_ris an integer variable in-
dicating the pixel y oordinate in which the mouse button was pressed. .Xmupe2? maintains.
for each window, a cursor_z_position value, which is the pixel r coordinate of the top left
corner of the internal structured cursor. Xmupe translates one of the internal structured

cutsor’s coordinates to this pixel value after each cursor movement.

horizontal_offset = O
status = fail (C)
Gat the pressed mouse button (C)
If mouse button == Left mouse button (C)

/*Get column from pixel */

status = success

horizontal _offset =

(button_x - cursor_x_position) / width of text font displaying text

If status == success and horizontal_offset <> 0
Drag with drag-count == horizontal_offset (CC)
Refresh window text /*call to C code, made from Modula-2%/

Figure 7.4: Algorithm to Drag by Mouse

7.2.4 Group/UnGroup

Xmupel does not understand the significance of a grouped structure because this structureis
a property of the computacional component. Nonetheless, it knows that any text enclosed
within braces must be displayed in a gray font. As a result. rmupe? does not have to
remember which text is to be displayed in gray. The computational component inserts the
braces around a grouped structure and is knowledgeable about their purpose.

When the Group command fails, an error message appears in the Main Messages Win-
dow, and the contents of the PIS Window are unaflected TFalure can be the result of a
uset’s abc rting of the command or an mvalid end-of-group specification. The computa-
tional component does not allow the grouping of non-adjacent structures (those which are
at different nesting levels) such as a WIHILE statement and a statement inside an adjacent

REPEAT statement. Xmupel only acts as the messenger of the command’s source and

CHAPTER 7. EDITING COMMANDS AND THE USER INTERFACTE i

target operands: it is not aware of the legality of grouping.

The implementation of grouping by mouse presents the problem of cortecthy mappiny,
a window’s flat coordinates to the corresponding structures of the computational compo
nent. Figure 7.5 shows elements of rmupel's algorithm to group by mouse 1his aleonthim
spread over tworoutines: the first 1s a C routine that handles retrieval of the mouse cursor
position in a PIS Window: and the second, a Modula-2 routine that uses this position to
interact with the computational component code. Lines marhed with a (C) indicate € code
those marked with a (CC) are rmupe?’s calls. in Modula-2 code. to computational conpo
nent routines, and unmarked lines represent rmupe 2code written in Modula 2 Currentle
is a pointer to the current textual unparsed-buffer Line node. done. a hoolean vanable ani
window_row. an integer variable that translates a mouse cursor’s y-prvel-coordinate to
text row. The algorithm returns a boolean result toits (" caller if the return value 1 rroe
the Group command succeeded in the computational component In this case, rriupe 2 fin
updates its translations of the unparsed buffer and structured cursor, and then refiesh the
screen: otherwise, rrmupe? makes no changes to 1ts displayed text.

The algorithm in Figure 7.5 does not maintain any complex screen maps it sumplh
relies on taking advantage of the computational component’s textual unparsed bhutfer Tt
also does not necessarily traverse every unparsed buffer Line node, but jumps from each
se* of Line nodes referenced by the temporary movement of the structured cursor If every
Line node contains a different construct that does not contain any other constructs (for
example, an assignment statement), the algorithm degrades to a linear traversal of the
internal unparsed buffer

Finally, zmupe2’s interface to the UnGroup command is simple, because the conpu
tational component is responsible for removing the surrounding brackets When s
displays its translation of the unparsed text, ungrouped text is shown in o normal font

because of the disappearance of the brackets.

7.2.5 Inspect/TextEdit

Both the Inspect and TextEdit Windows are created once: displayed when the Inspect and
TextEdit commands are invoked, respectively, and hidden when the user chooses to end
the textual editing or inspecting sessions. An alternative would have been to dynamically
create and destroy each window. The first method is faster, but requires more space than

the second. A further consideration is the user’s interaction with both commands a neem

CHAPTER 7 EDITING COMMANDS AND THE USER INTERFACE 73

While there 1s no mouse-button press (C)
If there 1s a middle or right mouse-buttcn press (C)
Return false (C)
Else /*there 1s a left mouse-button press*/
window_row = y pixel coordinate of mouse/height of text font (C)
/#*No need for column*/
If window_row 1s within current internal structured cursor’'s coordinates
Return true /=grouping current internal structured cursorx/
If window_row > first row of current internal structured cursor
Remember to use move-previous cuUrsor movement routine
Currentline = first unparsed-buffer Line-node to
which 1nternal structured cursor points
Else
Remember to use move-next CUrscr movement routine
Currentline = last unparsed-buffier Line-node to
which internal structured cursor points
done = false
While not done and Currentline 1s not NIL
If 1internal cursor movement 18 successful (CC)
Get Line node(s) to which internal structured curcor points (CC)
If window_tow 1s withan current internal structured
cursor’s cocvrdirates
done = true
Else 1f using move-previous
Update Currentline to point to Line node just beforae
first Line-node of internal structured cursor
Else /*using move-nextx/
Update CurrentLine to point to the Line just after the
last Line of 1nternal structured cursor
Else /*Internal cursor movement failed*/
Currentline = NIL
Return done

Figure 7.5: Algorithm to Group by Mouse

CHAPTER 7. EDITING COMMANDS AND THE USER INTERFACF TH

often needs to textually-edit structures such as placeholders or to delete program ~tiuctures

and 1nspect them later.

Of course. zmupe? ensures the correspondence of the Inspect and Textldo Window
contents with the Anonymouns Buffer and the current structured cursot. 1o pectively R
resenting the contents of the structured cursor and the Anonvmous Bufler 1vessentially
process of textual unparsing (see Section 4 1)

The Anonvmous Buffer. a structure of the computational commponent. 15 initially empt.
The compuiational component fills this buffer with a structure just deleted fronca 'L
fragment. Successive deletions of PIS structures destrov the current Anonymons Buwih
and replace it with the newly deleted structure Commands such as Insert Butler e
vet implemented by the computational component — could then 1nsert the content.of the
Anonymous Buffer into another locationin the current fragment, or into another fraement

This usage of the Anonymous Buffer is envisioned to allow wte rfragment opcrations

7.2.6 Insert

MUPE-2’s computational component uniformly views the insertion of IS and PIL strue
tures: there is no barrier between PIL and PIS insertions. which are both manpilations of
the AST representing a program. However. rrnupe must ¢ ‘“‘nguish between the m-ertion
of PIS structures and PIL nodes, because the former involves textual updating of window
contents, whereas the latter requires a graphical updating

In the context of a single fragment. rmupe. cares httle about the difference between
an Insert InsideFirst or InsideLast. It only needs to fire the correct rontine falready bonna
to the correspording EditOps Menu item) and redisplay the unparsed text or praphis ot

the execution of an Insert command.

Chapter 8
User Interface Generation

[~er mterface software can be difficult to create, modify. test. and maintain. A user in
terface must control or respond. as quickly as possible, to devices such as the keyboard
and mouse The programmer must effectively choose from an increasingly diverse array of
eraphics, window systems, interaction styles. input devices, among others. For example,
dercet manpulation [73] interfaces. in which the user can select and raanipulate the visual
representation of an object — typically by using a mouse, are easier to use. but more difficult
to create than command-line based user interfaces. The user interface also communicates
with two entiuest the user, and the application's computational component. which contains
mternal code with which the uset does not come in contact. A successful user interface
must be both user friendly and correctly reflect the internal state of an application.

Nonupe 215 an example of the difficulties encountered when creating handcraited usex
imterfaces Conssting of approximately 14,000 lines of code, 1ts intricacy and coding partly
mvolved knowledee of the coinputational component’s structures. their manipulations, and
teflections of these mampulations on the screen. Considerable effort was put into insulating
one laver of rmupe? code from another and from details of the computational component
1here were wnumerable challenges to overcome, such as: the graphical representation of
P nodes, the translation and display of unparsec text, the creation and updating of
the PditOps Menus, management of the contents of multiple windows, and the location
of intetnal -~ often hierarchical — fragments as a result of the mouse’s movement into a
window

Despite the effort of creating a user interface following the guidelines of good user

interface design, there is no guarantee that the resultant interface is easy to use or learn.

-1

-1

—

CHAPTER 8. USER INTERFACE GENERATION N

For example. an interface that is easy to use for cne user, may be a cause of frustration tor
another. This may lead to repeated modification of user interface software as 1t 1 doveloped
Such an iterative design methodology relies on testing prototypes with nsers and moditying,
the design of an interface based on user feedback.

Modification of complex user interface code is not always a simple tash and may often
require substantial effort. For example. although modifications and extensions to rmupe
are not difficult per se. they do require knowledge of boun the X Window Svstem and
interaction between the user interface and the computational component code

The time and effort expended in the design and tuplementation of rrmupe 2 were the
motivations for the author’s work in the design of MUISL ¢ The Mc Gl b wer Tnterface Spes
ification Langnage) — a programmer’s expennmental langiuaee for the specification of user
interfaces. and the design and 1mplementation of muige re ¢ The WUISL-Based ser lutertac
Generator) — a program to generate user mtetface code from MUIST specifications s
work attempts to answer the following questions: (a) Is 1t possible 1o eastly design a stmple
experimental language for the speafication of user interfaces” (b Can a toal be devel
oped to generate code from this specification” and (¢) Can the combination of specification
language and generator facilitate the aevelopment of sample user tnterfaces?

The rest of us chapter is organized as follows, Section 8.1 presents badchground and
related work: Section 8.2 discusses MUISL's features, Section 8 3 describe s muge n and

Section 8.4 evaluates both MUISL and rmugen.

8.1 Background and Related Work

This section introduces user interface tools. discusses control methods i tools and wure,

selected approaches and tools to the speafication and generation of user interface,

8.1.1 An Introduction to User Interface Tools

User interface tools [55,27] attemp? to automate or ease the representation. design. iuple
mentation. execttion, and modification of user interfaces. Some tools ontput execntable
user interface program code or declarative descriptions. such as database records, that are
interpreted to produce a user interface. A User Interfuce Management Systom (UINS)
[65,27) is a tool or set of tools to help a programmer design. prototy pe, execute, and maun-

tain a user interface. A UIMS usually integrates these activities under a single development

CHAPTER 8. USER INTERFACE GENERATION 79

interface The intent is to allow a user-interface specifier to concentrate on the higher level
awpect, of o user interface. instead of the low-level details. Typical functions of a UIMS
mchide handling and validation of input, display of cutput, performing screen management,
and retresh, and handling errors.

Lahen from [27], Figure 8.1 shows the basic structure of a typical UIMS and 1ts interac-
tion with the proper developers. The application programmer implements the application’s
computational component. Interacting with this programmer is the dialogue developer. who
ey dralogue development tools to implement the dialogue component. This component
conducts an internal dialogue with the computational component and handles interaction
techniques and event sequencing. To analyze and evaluate the user interface, the evaluator
relies on data from stored guidelines. saved user interactions (for example. mouse button
and Rey presses). and so on. Note that the dialogue developer and application programmer

ueed not be different people.

r CDmIogueL Internal C&mr%umuontaj
omponent F-----—---- ornpunen
po Dualogue P

N N
| |
] |
|]
1 I
H t
End-User : !
| |
Dialogue "ogmmrri]ng
Dev%xoﬁmem nvironmen{

-
Quamr
ol

i N

Feedback for
Iterauve

Refinement

L\ Inter-role /-—-
ogue licanon

evelo r) r grammel
pe Communicauon

/

Figure 8.1: UIMS Architccture

\mony the requirements for a user interface tool, such as a UIMS, are [27] its function-

alety, or what a tool can do. in terms of produced interfaces and techniques, and usable

CHAPTER 8. USER INTERFACE GENERATION ~

input/output devices in these interfaces. The greater the functionality the better Anothe
requirement is a tool’s ease of use or usability: tools more usable and casier to understand
than others simplify a developer’s task. The completeness requirement 1~ a difficult e to
satisfy. For example, the complete specification of a date field requires numerous detaids
such as leap year information. The ertensibility requurement allows a tool or the itertace
representations it produces. to be easily modified. Such a requitement compensates for
the inability to attain absolute completeness in a tool. .\ tool laching certam features and
not providing for extensibility should be escapable: the tool should allow the devel per 1o
use regular programming when its features do not suflice Given a et of user tetface
tools. an integrated and uniform interface to these toolsis a desirable regmitement \nothes
requirement is localty of definition, in which a local defimition applies to most or all ol
the interface. For example. window title format can be represented once, yet apply to all
instances of created windows. Changing the window title format in one focalized defimtion
automatically changes those of all created windows.

User interface tools can produce better. more extensible and mantanable mterfaces
[55]. These tools support rapid prototyping, allow separation of user interface code from
an application’s computational component. and can result in multiple interfaces per anph
cation. Some tools used for the specification and design of user interfaces, generate wwer
interface code from these specifications. Specifications can be verified and vahdated ond
non-programmers can be involved in the design of a user interface the emphasis v not
purely on implementation details.

User interface tools are not a panacea and exhibit problems. Firstly. the tools themalves
may not be easy to build. Secondly, the advantage of consistercy m mnterfaces may not
appeal to those designers who seek control over all aspects of software tequinng « g
feel and look. In addition. a user interface tool adds another layer of software that as
slow down a program. Moreover, some tools are neither portable nor commeraally avatlable
others are not easy to use and learn. Graphical tools are the ecasiest ones to use, especially fog
non-programmers, but many are mostly experimental. Finally, althoug! many tools excel
at providing fancy menus. windows, and other methods of interaction, their functionahty

may extend little beyond that.

CHAPTER S USER INTERFACE GENERATION 81

8.1.2 Methods of Control

Communication between a user interface tool and an application may follow internal, ex-
ternal, or mixed methods of control [69.27).

In wnternal (application) control. the application calls dialogue, or user interface, func-
tions for output and imput Compared to others, this model of control 1s efficient in execu-
tion, but difhcult to modify a system’s sequencing because of the application’s control.

Litcrnalontertace) control relies on user interface, not application. control. Sequencing
i~ « {unction of user mputs, consequently, it is the user interface that calls application
rontines and handles this sequencing and scheduling. The application is viewed as a set of
semantic routines, appropriately called by the interface. For these reasons. external control
is prevalent among UINSs,

In contrast to mternal control. axternal control is better able to exploit prototyping
[lus 15 because external control gives a dialogue-oriented simulation of an application’s
behavior, and the programmer can easily provide application procedure stub. while the
interface is being prototyped. But, lexical and syntactic handling are sometimes interleaved
with global control code in the dialogue component. which invokes an application’s routines.
I'his 1ntetleaving makes the separation of dialogue and computational code more difficult.

User tnterface tools utilizing external control, communicate with the application using
methods such as callbach procedures. event handlers, and shared memory. Callback proce-
dures are appheation procedures that are registered with a user interface tool. The interface
calls the callback procedure at an appropriate time, such as the selection of a menu item

Frvent handlers are procedures called when certain device-dependent events occur. such

as the motion of a mouse cursor over an object. Event handlers specific to an application

usa v boooro be registerea with a user interface tool. The interface calls the appropriate
apy tines once a specific event occurs.
A piess v with using event-based mechanisms is the need for often incorporating ap-

plication semantics in a user interface. This is a problem because of the violation of the
separation between interface and application components. A classic example of application
semtantics 1 a user interface is in direct manipulation interfaces such as the Macintosh’s [34]
or NeXT% [1] . In such interfaces, a file can be deleted by pressing the mouse button and
drageing the file’s 1con to the trash can icon. The dragged file icon can pass over a folder
icon, which 1s then hughlighted to indicate a semantic relationship between folders and files.

To highhght the folder icon, the interface must be aware of this 1elationship. Releasing the

CHAPTER 8 USER INTERFACE GENERATION

mouse button over the folder icon deposits the file in the folder

Shared memory between the user interface tool and the application is another method o
communication. The application and interface poll the shared memory in order to check 4o
changes. Alternately. changes can automatically notify the approptiate code he shai
memory method can be efficient. at the cost of extra m:mory.

Another method of control 1s muzed control, in which both the user 1ntertace tool and’
computational component can call another. For example, dialogue can be invoked frow e on
of the computational or interface components. Although mixed control 1s flexthle. dialoe .
independence is difficult to maintain. Mixed control adds more requirements to an imtert «

and makes it more complex.

8.1.3 Approaches to Specification and Genczration

Methods and tools for the specification and generation of user interfaces vars “The puipo.
of this section is to survey language-based. graphically-based. and other methods and 100l

(55.27).

Language-Based Methods

Language-based methods utilize specification languages for user mterfaces Varants of
these encompass grammars in the form of BNF, state transition diagrams. object onented

languages. declarative languages, ar.d event-based languages.
BNF

Backus-Naur Form (BNF') {58] is one of the language-based methods for the specificanion
of dialogue and user interface syntax [67). Terminals in the grammar are the input tohen,
representing a user's actions. Terminals combined by grammar productions, form nouter
minals. Collections of productions in the grammar define the langunage the user employs i
interacting with a computer. Attachment of program actions with each of the grammar «
productions is also possible.

BNF has some disadvantages: 1t cannot explain the nature of hwman computer m
teractions, is restricted to context-free languages. has a fan-out problem because of therr
highly-structured nature, and is sometimes difficult to understand. However, BNEF has heen

used as a syntactic notation to represent instances of human-computer dialogues

CHAPTER 8 USER INTERFACE GENERATION 83

The SYNGRAPH (SYNtax directed GR.APHics) [63] automatic generator of interactive
svstems uses an extended LL(1) grammar for interface representation. Input to SYN-
GRAPIH are an extended BNF grammar describing the interface and the Pascal routines
that are to be called to perform semantic actions. SYNGR.APH output., in Pascal. a screen
manager, scanner, and recursive descent parser for the interface representation language.

The Abstract Interaction Tool (AIT) [82] 1s a language model for the specification of
UIMSs. Based on the interaction herarchy paradigm, AITs generate a dialogue language
for a UIMS, by specilyving dialogues and subdialogues. Consequently, AITs define a gram-
mai for this language. Input expressions are the notational tool for this grammar and are

hierarchically ordered to form a system of grammatical productions controlled by expres-

S10n8.
State Transitwon Dwagrams

Unlike BNT descriptions. which are usually created textually, state transition diagrams
(6] - or firute state machines — can graphically represent human-computer dialogue. The
tvpical transition diagram is a set of states connected by arcs, each of which is labeled with
an input token, output to display, or application procedure to call. Movement from one
state to another involves traversal of the connecting arcs.

Capable of representing an interactive system. the RAPID/USE system [84,83] executes
transition diagrams descubing this system. A diagram’s nodes represent messages to he
displayed its arcs. transitions caused by events or user input; and its boxes, executable
application-actions

The State-Diagram Interpreter System [36] represents the time sequence of dialogue,
based on lexical, syntactis, and semantic levels [19]. These levels view a user interface
from a linguistic viewpoint: the lexical level is concerned with the structure of tokens; the
syntactic level, with sequences of tokens and output form and content; and the semantic
level, with output presentation techniques and input operations. The interpreter system
has one diagram per level, and arcs can have recursive calls to other diagrams. Either an
input or output token 1 exclusively associated with a transition. The system produces
desiceaindependent representations that provide control of the cursor and screen.

With each state representing a mode, transition diagrams are useful for multi-moded
interfaces. Intetfaces requring detaled syntactic parsing can benefit from transition di-

agrama. Jacob [37] demonstrates that transition diagrams more directly show the time

CHAPTER 8. USER INTERFACE GENERATION N

sequence of human-computer dialogue and are a better structured representation of 4w
interface than BNF.

However, transition diagrams exhibit some problems. For example, descriptions can gt
large and arcs are needed for all input and commands, leading to wmcreased complesits o
partial solution is to use subdiagrams. Furthermore, mode-free interfaces prosenting the et
with multiple choices at any time or interfaces requiring concurrent operations on various
objects. can result in an intricate web of arcs out of a state. Tne Interaction Objects system
[35], 2 combimation of state-transition diagrams and event languages. attempts to deal with
some of these problems and can support some form of direct-manipulation iuterfaces

Although both BNTF-based techniques and transition diagrams show the srammatical
relationships in. say command sequences. they alone cannot show' the means by which a
command is gathered (for example. menus. windows, and so on) and entered (for example
by typing or mouse selection); and the semantic feedbacks resulting from users” actions (for

example. feedback during the movement of an icon).
Object-Oriented Languages

Object-oriented languages allow the interface developer to define interfaces in terms of
abjects. These are entities which are classified into classes having attributes and default
behavior embodied by methods (procedures for performing activities). Communication
between objects causes all activity and inleritance of classes 1s typical of object-oriented
systems. One advantage of object-oriented systems is that they faalitate building comples
objects by combining simpler ones. Another is that the process of ereating a wser intefore
is often simpler, because of a tendency to view a user interface in terms of the charactenstie
and behavior of objects such as windows, and menus.

The George Washington University UIMS (GWUIMS) [74] 15 based on an object-oriented
design paradigm. It incorporates the lexical, svntactic, and semantic levels of aninteraction
language, by embodying the boundaries between levels within object classes. Object classes
consequently represent different levels of abstraction In addition, GWUIMS supports in

herntance. attributes, and methods.
Declarative Languages

Declarative languages concentrate on what should happen, rather than how it shoukd

happen. UIMSs based on declarative languages do not concerr themselves with event

LAl

CHAPTER 8. USER INTERFACE GENERATION

o
poe)

sequences, but instead concentrate on the information passed, such as global variables
linking interface to application. Such UIMSs usually support only form-based interfaces, in
which the user fills fields with information. The types of supported interactions are usually
limited to preprogrammed fixed ones, usually with no support for graphical manipulation
of objects — except for graphical areas used for application output.

The COUSIN (COoperative USer INterface) system [30.32,31] provides a form-based
interface definition in an interpreted language. Each definition consists of a form declaration
with attributed field definitions. User-application communication is accomplished with
abstractions called slots — each slot represents a value of information. An example 15 o
slot per parameter of an application: before executing a command, the user specifies 1ts
parameters by filling the appropriate fields in the form, each of which corresponds to a slot

in the interface definition.
Event-Based Languages

Event-based systems contain event handlers, each defined by a procedure or module,
that are triggered on the receipt of the event(s) to which they have been attached. Each
input token is considered to be an event, and the event handler that traps it can call the
appropriate application routine(s), perform some computations, call other event handlers,
or cause other relevant changes. Thus, events can be generated either by input devices are
other event handlers.

An advantage of UIMSs based on event languages is their ability to handle multiple pro-
cesses, including multi-thread dialogue that presents multiple task paths available to o user
at any point of a dialogue. Consequently, multiple interactions are easier to program How
ever, control flow in event-based languages is not localized (with changes easily propagated)
— making it more difficult to create, understand, and debug code.

A Language for Generating Asynchronous Event Handlers (ALGAE) [16] 1s event hased
and supports message passing in a multiprocessing environment. Event specifications, writ-
ten in a special-purpose Pascal-like language, form an interface specification ALGAE
generates event handlers from this specification.

The University of Alberta UIMS [25], based on the Seeheim model, also uses event
specifications, written in a C-like event language, to generate event handlers. Instances of

an event handler are created at run-time.

CHAPTER 8. USER INTERFACE GENERATION 86

Other event-based systems include Squeak [6] — a textual language for mouse-based user
interfaces, and the Sassafras UIMS [33], which incorporates the Event-Response Language

— an event-based language that can support parallel dialogues.

Graphical Methods

Direct manipulation interfaces, which have a highly interactive nature and allow the use of a
mouse to select and manipulate screen ob jects, are difficult to specify with language-oriented
representations. In fact, such representations are not well suited for direct manipulation
interfaces. Easier to use are graphical specification methods that use a pointing device, such
as a mouse, to manipulate objects on the screen. This manipulation allows the definition
of part or all of the interface. Some systems can even be used by a user, as opposed to
a designer. But, ease of use complicates building the UIMS itself. Moreover, graphical
techniques may not always support an extensive variety of interaction techniques.

MENULAY [3] is a preprocessor serving as the front end of a UIMS. MENULAY allows
the designer to specify the graphical and functional relationships within and among the
displays making up a menu-based system. It allows the placement and drawing of objects
such as icons and other images on the screen. When the user selects that object, a semantic
routine, written in a conventional programming language and linked to that object, is
called. MENULAY code is compiled and linked to the run-time system that executes the
user 1nterface and handles user interactions.

The Dialog Editor [5] supports building user interfaces by direct manipulation. The
designer can directly place interaction techniques, such as dialogue boxes and menus, on
the screen: and designate places for input and output areas. It is up to the designer to
specify, by typing, the name, of action routines called when previously created interaction
objects are user-executed.

Peridot [56,54] allows a designer to graphically create interaction techniques, such as
scrollbars and menus, by manipulating lines, text, and other primitives. The paradigm used
by Peridot is programming by ezample: by showing how a device or interaction object is
manipulated, the user gives the system examples of how they should behave, By inference,
Peridot can generate parameterized object-oriented code, from a designer’s actions and
sample parameter values.

The NeXT Interface Builder [1] uses a graphics editor to permit the graphical definition

CHAPTER 8. USER INTERFACE GENERATION 87

of user interfaces. Consequently, a user-interface designer can construct a graphical user

interface by the on-screen selection and manipulation of objects, such as menus and buttons.,
from an object library. The Interface Builder also allows the specification of actions for
objects to perform, in response to user actions. For example, a designer can select a certam
kind of button object from the Interface Builder’s on-screen inventory of objects, move it
to the desired screen location, label it, and attach an action to to be performed when the
user clicks on it. Moreover, a designer can create a custom object by first selecting a similar
object and customizing its behavior and appearance. The interface specification developed
using the Interface Builder is saved to an interface file. The compilation of this file places
its interface data in an executable file. Such a binary description of an interface allows 1ts

integration into programs.

Other Methods

Having a knowledge-based representation of a user interface, the User Interface Develop-
ment Environment (UIDE) [20,18] supports user-interface design and implementation. This
representation consists of a class hierarchy of objects, object properties and actions. and
preconditions (predicates that must be true for an action to occur) and postconditions (ex
ist after an action has been executed). The knowledge base can generate a description of a
user interface in Interface Definition Language [22]. Generation o. different, but function
ally equivalent interfaces, is possible by transforming [17,21] the interface represented in the
knowledge base.

The Menu Interaction Kontrol Environment (MIKE) [62] permits a programmer 1o
provide a list of application procedures and their parameter names and types. A menu i
created from this list and then displayed to provide a simple interface. The user selects a
procedure by typing a prefix unique to a procedure name. If the procedure has parameters
the system prompts the user for each parameter. Once all parameters have been specificd,
the application’s semantics are executed. MIKE allows icons to be used for some commands,
and permits the designer to interactively change the interface with a graphical interface
editor. The editor acts as a specification guide and obviates the need to learn new notational

forms.

CHAPTER 8. USER INTERFACE GENERATION 88

8.2 MUISL: The McGill User Interface Specification Lan-
guage

Based on the definition and manipulation of user interface objects, MUISL is the author’s
experimental language for the specification of event-driven user interfaces. A component of
MUISL, a user interface object is an entity that describes a certain user-interface interaction
method. Examples of objects include a text window, a window containing other objects, a
menu, a command button, and so on. Classes of objects describe a group of similar types
of objects and contain default object-attributes and operations. Defining an object requires
that it be assigned a class; it then has available for its use, the attributes and operations of
that class. An object’s attributes define characteristics such as its dimensions, contents, and
so on. QOperations are requests to carry out a command on an object, usually to retrieve
information from the object, or change certain aspects of the object. Operations can em-
body the behavior of an object, allow inter-object communication, and specify relationships
among objects. The set of an object’s class-operations and attributes acts as the external
interface of the object. Whereas a class identifies the type of the object, its superclass is
the class from which it inherits attributes and operations.

An MUISL object-definition is based on the spacification of the object’s class, and
optional: superclass, local variables, attributes, and actions. Actions contain a statement
sequence consisting of MUISL statements, legal operations, any user-defined programming-
language statement, and callback and event handler procedure-definitions. By using the
proper operation, previously defined objects can be instantiated, or created, one or more
times. Instantiation allows the srcuiication of parent-child relationships because an object
is instantiated as a child of another. Instantiation also makes active any defined event
handlers o1 callbacks for that objects. Only then can these procedures receive events for

that object.

8.2.1 Assumptions and Scope of Work

[t is assumed that a MUISL specification is the input of a MUISL tool, currently muigen,
which scans and parses the specification and generales user interface code if there are no
errors. The generated code, in a target programming language, is to be compiled and runin a
target window system. The MUISL tool is responsible for: the definition and implementation

of classes, attributes, operations, and so on; and their mapping to an equivalent target

CHAPTER 8. USER INTERFACE GENERATION 89

programming language and window system structures and statements.

MUISL assumes an underlying event-driven target window system and model of execu-
tion. Run-time aspects, such as low-level device interaction and management of events, are
assumed to be handled by the target window system. It is assumed that the target wan
dow system supports the specification (to be called registration), .nanagement. and timely
invocation of callbacks and event handlers. For example. MUISL allows the specifier to
attach one or more procedures (event handlers) to a particular event, for a particular ob
ject. When the target window system detects the event on this object, 1t calls the attached
event handler(s). For events not specified, it is assumed that the target window system has
default event handlers.

MUISL also assumes that the target window system is responsible for flow of control and
contains a main interaction loop that detects events, and calls appropriate routines. There
is no need for the program represented by a MUISL specification to do any kind of polling I
is assumed that a MUISL tool generates one or more calls to target window system routines
implementing this loop, after generating code specified by the MUISL specification A
window system such as the X Window System, satisfies the above conditions. and is well
suited as a target window system; accordingly, C is appropriate as a target programming
language because of its easy interface to the X Window System.

Although MUISL assumes an event-driven run-time model, it does not mandate a certaun
target programming language or window system. These are functions of the MUISL tool At
present, muigen uses the X Window System and the C programming language., respectively

MUISL is intended fcr a programmer (to be called a MUISL specifier) and not auser It
does not assume that this programmer is knowledgeable in the target programming language
and window system. However, if the generated code is to be modified and linked with
other code, such knowledge is useful. Accordingly, the best user of MUISL 15 a programmer
knowledgeable in both the target programming language and window system. Nevertheless
a window and menu-based interface can be built, on top of MUISL. in order to guide a user
in the MUISL-based specification of a user interface. Implementation of such an interface
was not investigated, since the emphasis was to design MUISL and test 1ts viability with
muzigen.

MUISL is an ezperimental, and not a production, language for the specification of user
interfaces. Its current state is intended to show the basic characteristics of a speafication

language. Similarly, muigen is a sample tool to show the ..efulness of MUISL The work

CHAPTER 8. USER INTERFACE GENERATION 90

done for this thesis represents initial steps towards future work; MUISL and muigen can
easily be expanded to support more complex interactions.

Accordingly, MUISL is textual. not graphical. The intention was not to design a graph-
ical language As a result, MUISL does not support the specification of graphical objects
such as lines and polygons.

Moreover, the classes. attributes, and operations (see Appendix D) that muigen cur-
rently supports are basic and limited. The objective for this thesis was to present a usable
subset of interactions and not to provide for a multitude of fancy interactions. Given
muigen’s architecture (see Appendix C), the addition of new classes, attributes, and oper-

ations is easily accomplished.
How does MUISL compare to current languages? This question is answered as part of

an evaluation of MUISL, in Section 8.4.

8.2.2 The Language

The section is intended to discuss features of MUISL, whose lexical rules and grammar are
provided in Appendix B.

A M UISL specification is created with a conventional text editor, and subsequently
resides in an ASCII file. This specification has three main blocks: an optional global-
variable declaration-block, object definitions,! and the initialization block. The following
is an outline of a minimal MUISL specification, with ... indicating omitted specifications,

and comments preceded with a #:

O0BJECT
. #object definition contents here
END #of object definition
INIT #start of initialization block
#may be empty
END #of initialization block

Lexical Restrictions

MUISL is a case sensitive language, and its reserved words (see Table 8.1) are in upper

case so that they are prominent in a specification. The type identifiers mentioned in that

YAt least one object defimition 1s required, because the purpose of a specificaticn is to provide for the
defunition of objects

CHAPTER 8. USER INTERFACE GENERATION 91

table are: INTEGER, REAL, CHAR, CARDINAL. OBJECT._ID, STRING, BUT'TON_1D
BOOLEAN, KEYCODE. DIMENSION, and POSITION.

Word Purpose

ACTIONS Starts actions section

ATTRIBUTES | Starts attribute defimition

BUTTON Identifies a button stitement

CALLBACK Defines a callback procedure

CASE, OF Start key/buttun statements

CLASS Precedes object’s class

ELSE Starts else portion 1n
conditional/}ey/button statements

END Ends initr~iization block.

object definition, and
some statements

EVENT Defines an event handler
IF, THEN Start conditional statement
INIT Starts 1mitialization block
KEY Identifies a key statement
NAME Precedes object’s name
OBJECT Starts object defimition

SUPERCLASS | Precedes object’s superclass
Type identifiers | Define a type
VARIABLES Starts declaration block

Table 8.1: Reserved Words in MUISL

Special MUISL symbols are shown in Table 8.2. The arithmetic symbols of that table are
<, >, <, >, == (equality), <> (inequality), —, +, |} (or),! (not). *, and && (and) Usage
of punctuation symbols is kept to a minimum in order not to burden the MUISL speafier
with too many syntactic details. Punctuation 15 used when necessary. such as 1 a hst of
variables, in which a comma separates identifiers of the same type No semtcolon separates
different variable declarations or statements: a typical MUISL specification would have each
on a different line. One use of the colon is after a reserved word. snch as VARIABIES
order to indicate that a sequence of items is contained after this reserved werd

Special identifiers are those with a special prefix. Special prefives, shown i Table 8 3
ensure consistency in naming. The special identifiers named atident/Cc/allbachs” and
atident/Ee/ventHandlers? respectively denote callback and event handler attnibute-names #

Other identifiers preceded by special prefixes are not mandated by MUISL. but a property

2The notation used s explained in Appendix B

"

CHAPTER 8. USER INTERFACE GENERATION 92

Symbols Purpose
Follows some reserved words, or
precedes an operation’s argument value
= Assigns values to variables or attrnibutes
, Separates items 1n a list
() Enclose items 1n some lists
] Enclose an operation
@ Indicates an external declaration or action

" Encloses a string
Arithmetic symbols | Indicate arithmetic manipulation

7

Table 8.2: Special Symbols in MUISL

of the MUISL tool: it is this program which is responsible for defining such names and

ensuring that a MUISL specification adheres to them.

Prefix | Usage Example

AT Certa:n attribute values ATwhite

arg Operation argument names | argObject

at Attribute names atButtonCursor
button | Button names buttonLeft

el Class names clTextWindow
event, Event names eventKeyPress

key Key names keyA

ob) Operation names objRootInstantiate

Table 8.3: Special Prefixes in MUISL

Variables and Scope

Global vaniables used within any object definition or the initialization block are declared in
a global-variable declaration-block. However, each object definition and the initialization
block forms its local scope. variables declared within each of these are visible only within
that object defimtion or initialization block. In an object definition, a local variable of the
same name and type as a global one, takes precedence over the global variable. Object
names, which form part of an object definition, are considered as implicitly declared global
vartables,

Avanable declaration block is preceded with the token VARIABLES. The block consists

CHAPTER 8. USER INTERFACE GENERATION 93

of any combination of zero or more external declarations or types: cach type 15 followaed
by a comma-separated list of identifiers. Preceded with a @, an erternal declarat:on 1
a declaration in the target programming language. This type of declaration acts as an
escape mechanism, allowing the MUISL specifier to declare variables whose type mav not
be available in MUISL. Note that any characters after the @ are copied verhatim, without

any checking. The following example contains two consecutive external declarations

VARIABLES :
Qchar xstr;

Qint a(10];

No semicolon separates (non-external) declarations of variables of different types For es

ample, the following is a legal declaration:

VARIABLES :
INTEGER a, b
0BJECT_IJ Somelbject

MUISL types are limited to those considered to be most useful in defining a user inter
face. For example, OBJECT _ID declares a variable that identifies an object; BUI'TON ID
a variable used as the identifier of a mouse button: KEYCODE. ¢ variable used as a hey

identifier; DIMENSION, a variable used for the dimensions of an object: and POSITION

a variable used to identify a mouse cursor’s z- or y- coordinate.

Object Definitions

The reserved words OBJECT and END surround an ubject definition, which provides an
object’s class and optional: superclass, local variables, attributes. and actions

An object used by another, must have been instantiated erther in the inttialization block
or in the definition of another object (which itself was previously instantiated). Instantiation
creates an instance of the object, and an object defined once. can have many instances This
shortens the amount of specification needed: one defimtion can apply to different places
For example, a text window can be defined once, but instantiated multiple times f an
interface requires text windows in more than one place. This obviates the need for defining
different text window objects, each with a different name. but performing essentially the

same function.

LY

CHHAPTER 8. USER INTERFACE GENERATION 94

Instantiation allows the specification of parent-child relationships: an object is instanti-
ated as a child of another. The object instantiated before any other must be instantiated as
the child of a special top level object, whose name is a property of the MUISL tool and is
assumed to have been created as the first object.® In the above example, the text window
is instantiated as a child of multiple objects.

An object is uniquely 1dentified by the object name — the identifier following the NAME
token. Identifving the object being acted upon, the object name is essential when manipu-

lating objects. The following example outlines an object definition and its name:

O0BJECT
NAME : SomeName

. #The rest of the object definition is here.
END #of object definition

#0ther objects or the initialization block can use SomelMme.

As previously mentioned. an object name defined in one object definition can be used in
other ohject definitions or in the initialization block. In fact, the object name is an implicitly
globally declared variable of type OBJECT _ID: explicitly declaring it as an object variable

in the global-variable declaration block is allowed, but redundant.

Classes

An object’s class, indicated by the identifier after the CLASS token, denotes an object’s
type. This class makes available to the object, default attributes and operations for that
class. MUISL does not dictate class names, except for the requirement that they be preceded
with the ¢l prefix. Class names, and their properties are defined by the MUISL tool. For
example, an object defined as a text window must declare its class as that of a text window

as follows:

OBJECT
NAME : TextObject
CLASS: clTextWindow
. #rest of the definition;
#attributes and operations of clTextWindow can be used

END #%object

*In mugen, this top level object 1s called ATtopObject.

CHAPTER 8. USER INTERFACE GENERATION B

Classes form the inheritance hierarchy: an object’s superclass, the wdentifier after the
SUPERCLASS token, is the class from which an object’s class inhents attnbutes and op
erations. Except for the highest class, each class has a default superclass This allows
superclasses to contain attributes and operations that apply to the lower lasses Super
classing reduces the number of attributes and operations that a lower class needs to declare
because its superclass has already declared them.

MUISL supports only single inheritance: a class can be a superclass to many classes, but
it can only have one superclass. Although a class inherits attribuces and operations from
its superclass. the class’s attributes and operations override those of the same name, but
belonging to its superclass. A class can also inherit attrnibutes wnd operations from dasses
that are its distant superclasses. but the attributes and operations of the Josest superclass
override similar ones of more distant superclasses. Thus, when an object uses an attribote
or operation, its class is first searched: if nerther attribute nor operation name 15 found.
the object’s superclass (either default superclass of the object’s class. or the name after the
SUPERCLASS token) is searched. This upward process continues until the attribute or
operation is found. or the root of the class hierarchy 1s reached and the weardh fauls

For example, if the class ciVindowis a superclass to the class clTert W indow. and clhoot
is a superclass to clWindow. then clRoot1s a distant superclass to elTert Window. Objects
of class clTeztWindow inherit attributes and operations of elWindow, and then. those of
clRoot. When the object of class e¢lTertWindow uses an attribute named r. the attnbute
names of clTextWVindow are searched for one called z. If it is not found. those of elWindou
are searched for the attribute z. If this search fails. the attribute names of elloot ae
then searched. Because of this method of inheritance. a class has the same number of o
more attributes than its superclass, but never fewer. A superclass groups attributes and
operations common to all of its subclasses — classes that it 1s a superclass of Sibling classe
are those with the same immediate superclass: attnbutes and operations of a class are not
visible to its sibling class. An attribute or operation is vwsible to a class, if the attnbute
or operation can be used in that class. Visibility is possible for attnbutes and operations
defined in current class of an object, or any of that class’s superclasses

If the superclass name is not included 1n an object definition. the search for attrbutes
and operations not found under the object’s class (defined after the CLASS token) com
mences in the object’s default superclass. Default superclasses are dernived from the class

hierarchy shown in Figure 8.2. Occasionally, an object of class .\ would need to use an

ol

CHAPTER 8. USER INTERFACE GENERATION 96

attribute or operation of class B, where class B is 10t a superclass (immediate or distant)
of class A. In this case, the specifier can override the default superclassing mechanism by
specifying a class name after the SUPERCLASS token. For example, an interface is to
consist of a form box window F with two viewport windows, V1 and V2 as children, where
172 15 placed to the right of V'1. To indicate that V2 is to be placed to the right of V1, an
attribute of the class clFormBozWindow must be used in the definition of V2. However, the
class hierarchy shows that clViewport Window and clPanedBozWindow are sibling classes:
the form box child placement attribute (called atFormBozWindowLeftNeighborObject), is
not normally visible to an object of class cIViewport Window. For example, the following

object definition does not allow any attribute or operation of clFormBoz Window to be used:

0BJECT

NAME : V2

CLASS: clViewportWindow

#Attributes and operations follow. None of clFormBoxWindow’s can be
#used here because the immediate superclass is clCompoundWindow, and

#none of its subsequent superclasses are clFormBoxWindow.

END
The solution is to override the default superclassing as follows:

0BJECT
NAME : V2
CLASS: clViewportWindow
SUPERCLASS: clFormBorWindow #overrides default
ATTRIBUTES. #Here, attributes of clFormBoxWindow can now be used.
atFormBoxWindowLeftNeighborObject = V1
#V1 is the left neighbor of V2.

END

The drawbach of the above scheme is when an object A needs to use attributes or
operations of two or more classes, both of which are not superclasses to A’s class. One
solution to this problem would be to allow multiple inheritance [51]. Another would be to
provide some mechanism to override the default superclassing, at the level of each attribute

definition or statement. A third solution would be to make certain class-specific attributes

%

CHAPTER 8. USER INTERFACE GENERATION 97

and operations, globally available in a common superclass. But, this dilutes the power of
classing, in which attributes and operations are only associated with a certain class, and its
subclasses.

Figure 8.2 shows the class hierarchy that muigen defines.* Classes shown at the right of
the figure are leaf classes that inherit from their superclasses, shown to the left of the figure.
Class names used in a specification are translated, or mapped, to names understandable by
the target window system. The class name following the CLASS token is required to be a
leaf class, because leaf classes are the only ones that are presently mapped to target window
system names. Most of the leaf classes were chosen because of their ease of mapping to X
Toolkit widgets [49], which are objects providing user interface abstractions. This ease of
mapping simplified the implementation because no new types of leaf objects were needed,
the goal was to show a workable language that would simplify and speed up specification of
user interfaces and not just to define classes. The current mapping of leaf classes does not
restrict MUISL to objects in the X Toolkit: class names and their mappings can be altered

to any ones that can be supported in an event-based window system.

First and Second Level Classes

The topmost class is c¢/Root, which has no superclass, but is the immediate superclass
to clWindow, clButton, and clMenu. Being the top class, clRoot contains attributes and
operations common to all classes and inherits no attributes and operations from other
classes, Attributes such as the height and width of an object are common for all objects,
operations such as object instantiation and destruction are also common for all objects

The other second level classes — c{Window, clButton, and clMenu — divide interars tion
styles into windows, buttons, and menus, respectively. These were chosen because o window
based user interface usually consists of windows, buttons, menus, or any combination of

them.
Windows

Windows are either simple (class clSimple Window) — containing no other objects such
as subwindows, or compound (class c/Compound Window) — containing one or more ob jects.
For compound windows, these objects can be other compound windows, or simple abjects

such as buttons and menus.

*Classes clGraphicsWindow and clProgramW indow are currently not supported

CHAPTER 8. USER INTERFACE GENERATION

clTextWindow
/ ¢lGenericWindow
[IbarW:
cISimpleWindow ciScrollbarWindow
clGraphicsWindow
cIProgramWindow
clWindow
ciBoxWindow
clCompoundWindow clPanedBoxWindow
clFormBoxWindow
clViewpontWindow
I iBut
cIRoot = ¢ CommandButton cIDialogueWindow
iToggleButtor
clButton clioggleSunon
IMenuButton
clLabelButton
clSimpleMenu ————> clltemSimpleMenu
ciMenu

clListMenu

Figure 8.2: Class Hierarchy

98

CHAPTER 8. USER INTERFACE GENERATION 99

Buttons

Class clButton is a superclass to classes such as command buttons (class clCommand
Button), toggle buttons (class clToggleButton), menu buttons (class clMenuButton), and
label buttons (class cl/LabelButton). All buttons are selectable rectangular screen 1egrons
that display a title. When the mouse cursor is over a button, the button’s border is usually
highlighted, indicating that it is the current focus of interest.

A command button is selected with the press of the left mouse button. The button’s
foreground and background colors are reversed, one or more programmer-speafied actions
are then executed, and the button reverts to its original state when the mouse button i
released. Release of the mouse button, when the mouse cursor is outside of the command
button, aborts the execution of actions associated with the latter button. Command buttons
are useful for specifying a choice of different items to execute, as in a fixed menu

A toggle button contains state information: the button is either set or not set by succes
sive presses of the left mouse button. A radio group consists of a group of toggle buttons
such that only one button can be set at any time. For example. a window containing printer
options can have a toggle button for each type of printer, with only one printer being en
abled at any instance. User interaction with toggle buttons is similar to that of command
buttons.

A label button is a readonly button that displays a title or label. A menu button is a
button that pops up a menu object of class clSimpleMenu, when the mouse cursor 1s 1nwde

the button, and any mouse button is pressed.
Menus

Third level classes whose superclass is clMenu. are simple-menu classes (class ¢lSunple-
Menu) and list-menu classes (class c/ListMenu). A list menu is a list of strings orgamzed as
a menu of columns or rows. Selecting any string, by pressing the left mouse button while the
mouse cursor is over that string, calls one or more programmer-specified callbacks ‘These
procedures are the same for each string.

A simple menu is a menu that contains one or more simple menu itemns, each of class
clltemSimpleMenu. Simple menus are either pull-down menus (e g. appeanng when o
mouse button is pressed) or pop-up menus (e.g. appearing for a crtain combination of
keys and/or mouse cursor clicks). Selecting a simple menu item executes one or more

programmer-defined procedures.

CHAPTER 8. USER INTERFACE GENERATION 100

Simple and Compound Windows

The fourth level of classes includes subclasses for clSimple Window and clCompoundWin-
dow. Subclasses for the former include text windows (class ¢lTezt Window), generic windows
(class clGeneric Waindow), graphics windows (class clGraphics Window), program windows
(class ¢lProgram Window), and scrollbar windows (class clScrollbar). Subclasses for thelatter
include box windows (class c/Boz Window), paned box windows (class c/PanedBoz Window),
form box windows (class clFormBoz Window), viewport windows (class c/Viewport Window),
and dialogue windows (class clDialogueWindow).

Text windows can be used to display text and allow a user to edit that text. These
are text editors whose windows can contain optional scrollbars. Generic windows are the
simplest types of windows and allow the MUISL specifier to manipulate them in any way.
Graphies uindows, currently not implemented, are to contain graphical objects, such as
lines and polygons. which a specifier can create and manipulate. Also not implemented are
program wwindouws — windows executing a certain program, such as a UNIX shell. Program
windows are often useful in interfaces such as window-based debuggers; for example, one
subwindow can contain the text of the current source file, and another can be executing the
debugger itself. Scrollbar windows can be used to provide scrollbars, at the programmer’s
control. For example, a scrollbar window can be used as a slider indicating the percentage
done of a certain action.

A boz window displays its children objects in an arbitrary fashion, left to the target
window system. For example, a box window can have two immediate children: another box
window containing command buttons, and a text window. For the display of vertically or
horizontally tiled panes, a paned boz window is useful. Each pane can be an object of any
type, and is resizable, by default. In a form boz window, the programmer can specify the
location of one child with respect to another, unlike a box window. Containing a frame
window with one inner window and one or two scrollbars, the viewport window acts as a
viewport into the data of the inner window. The frame window clips non-visible data, and
scrolling, which is managed by the viewport window, displays the appropriate part of the
data. The MUISL specifier can manually create the equivalents of the graphics and text
windows by proper management of a viewport window’s contents. A dialogue window acts
as a dialogue box., prompting the user for input. It usually consists of a text label, a text

input area, and one or more buttons.

-

CHAPTER 8. USER INTERFACE GENERATION 101

Attributes

Following the ATTRIBUTES token, attributes define the characteristics of the current
object. The attributes whose values are set in an attribute definition override the default
values set by the target window system and specific to the object’s class.

Attributes are of three types: regular attributes, callback attributes, and event handler

attributes. In an attribute definition, all kinds of attributes are set as follows:
< leftside > = < rightside >

The left side of an attribute definition contains the attribute name, which 1s a spedial
identifier, prefixed with an at. This prefix is MUISL’s only restriction: the rest of the
attribute name is dependent on the names defined by the MUISL tool. For example, muigen

uses the following convention for attribute names:
at< class identifier>< attribute name >

For example, a typical attribute name is atRootBackground.
Regular Attributes

Regular attributes define object characteristics such as width and height. An exiernal
attribute, preceded by a @ and spanning a line, acts as an escape mechanism into the target
window system: it allows any attribute definition allowed by the target window system
In an external attribute definition, it is assumed that the attribute name and valve are
valid in the target window system. It is the MUISL specifier's responsibility 1o ensure the
correctness of attribute names and values in such an instance.

Non-external regular attribute definitions differ in the type of value spedified on the
right side: it can be a MUISL-defined attribute value, number, identifier, or string. MUISL-
defined attribute values are special identifiers prefixed with an AT. These identifiers are
defined by the MUISL tool. Muigen’s attribute names and values are tabulated 1 Ap-
pendix D.

The following object definition shows various types of regular attributes:

0BJECT
NAME: CommandButtonl
CLASS: clCommandButton

CHAPTER 8. USER INTERFACE GENERATION 102

ATTRIBUTES:
#external attribute --- valid in the target window system
@XtNinternalWidth = 6
#MUISL-defined attribute value is on the right side.
atButtonJustifylLabel = ATjustifylLeft
#Right side is a value (number or identifier).
atRootWidth = 20
atRootHeight = 10
#right side is a string
atRootLabel = "Quit"

END

Callback Attributes

Callback attributes, containing a list of ocne or more callbacks, are procedures called
when certain actious (events) occur. As such, callbacks are a special case of event han-
dlers. One use of callbacks is to contain calls to application procedures; for example, an
application procedure can be called when the user presses a command button. The target
window system is responsible for invoking callbacks, in the sequence of their specification,
or registration, when the specific event happens. The MUISL specifier, however, only needs
to specify them. without being concerned about how callbacks are invoked.

There are different kinds of callbacks associated with certain classes. A destroy callback
is called when an cbject is destroyed, and is valid for all object classes. Button and menu
em callbacks are called when the buttons or menu items are selected with a mouse click.
Menu callbacks are called for the pop-up and pop-down of simple menus. A tezxt callback is
called for any change in a text window (class c/TextWindow). Scrollbar callbacks are called
for scrolling actions in a scrollbar object (class clScrollbar Window).

Callback attributes are specified as a parenthesized list of one or more procedure names,
each separated by a comma. The target window system calls them in the sequence of
their declaration (from left to right). The current version of MUISL does not support the
specification of parameters for procedure identifiers in a callback attribute. The following
shows destroy and button callbacks for the command button object. MUISL allows a

singular or plural version of the callback attribute name:

OBJECT

CHAPTER 8. USER INTERFACE GENERATION 103

NAME : CommandButtonl

CLASS: clCommandButton

ATTRIBUTES:
#Proci and then proc2 are called when this object is destroyed.
atRootDestroyCallbacks = (procl , proc2)
#Proc3 will be called when the cbject is pressed with a mouse.
atButtonCallback = (proc3)

END

Event-Handler Attributes

Whereas callback attributes are high-level methods of specifving procedures automati
cally called for standard user actions, event-handler attributes allow a lower leve] of speaify
cation: they consist of event names and associated procedures — event handlers - called
when that event occurs. The MUISL specifier registers an event handler for a certain event,
and the target window system is responsible for calling that procedure once the event occurs
In MUISL, registration of event handlers is accomplished with the event-handler attribute
that consists of one or more parenthesized event rupies. each separated by commas An
event tuple® is a pair of comma-separated event and procedure names: the procedure ts
automatically called whenever the target window system detects the event. for the current
object. MUISL does not support specification of an event handler’s parameters Fvemt
names are special MUISL identifiers with the event prefix (see Appendix D) As with
attribute names, event names are defined by the MUISL tool.

In the following example, procedure proc! is registered for the KevPress event, and
procedure proc?, for the ButtonPress event. This imnlies that the target window system
calls proc! every time it detects the press of a key in the object Genere Window. and proc?
each instance it detects the press of a mouse button :n that object. In this example, proct

and proc? are assumed to be procedures the MUISL specifier defines elsewhere

OBJECT

NAME: GenericWindow
CLASS: clGenericWindow
ATTRIBUTES:

® Tuple 1s used to mean a 2-tuple.

CHAPTER 8. USER INTERFACE GENERATION 104

atRootEventHandlers = ((eventKeyPress, proci),
(eventButtonPress, proc2))

END

If no callback or event handler is specified, the target window system calls its default
procedures. If the c atents of the specified callback or event handler are not respectively
defined with the callback or event-handler statement, no procedure template is generated.
It is the responsibility of the MUISL specifier to create such procedures in the generated
file. Callback and event-handler attributes are well suited to MUISL’s assumption of an
underlying event-based target window system that detects events, manages them, and sub-
sequently calls the appropriate callbacks or event handlers. Both types of procedures are

powerful methods of controlling the behavior of objects in response to events.

Actions

Preceded by the ACTIONS token, the actions section of an object definition consists of zero
or more statements. Simple statements can be ezternal statements, operations, assignments.
or conditional statements. Procedure statements, which can either be callback statements
or event-handler statements, are usually containers of one or more simple statements. A
callback statement generates a (callback) procedure template filled with simple statements
specified in the body of this statement. An event-handler statement generates an event-
handler template with the statements specified in the body of this statement. Simple
statements not enclosed by a procedure statement, are generated in the procedure that
defines the object in which they are specified. Simple statements in the initialization block

are generated in a separate procedure.
Erternal Statements

Prepended with a @, external statements act as an escape mechanism into the target
programming language: they allow the specification of any statement in that language.
Usage of external statements not only makes MUISL an escapable language, but also adds

flexibility to it. The following partial object definition shows an external statement:

OBJECT
#object name, class,etc.

ACTIONS :

CHAPTER 8. USER INTERFACE GENERATION 105

#MUISL does not have print statements.
Qprintf("Creating object");
... #rest of actions

END

Operations

An operation is a request to execute a command on an object. Surrounded by left
and right square brackets, an operation is denoted by the operation name (indicating what
operation to execute), and a sequence of one or more arguments (indicating what values an
operation should use).

MUISL requires that operation names contain a leading 0b), but it does not dictate the
specific names of operations. Operation names are dependent on the names defined by the

tool implementing MUISL. Muigen uses the following convention for operation names
obj<class identifier><operation name>

For example, a typical operation name is objRootInstantiate. Operations are defined for
certain classes, and are valid only for the class for which they are defined. or any subclasses
of that class. The objRootInstantiate operation, for example, is valid for any object of dlass
clRoot or any subclass of c/Root. In this case. the operation is valid for all classes of olijects
since clRoat is the top class. Further details of operations are in Appendix D

Each argument of an operation consists of an argument name and value, separated by
a colon. As with operation names, MUISL does not place restrictions on argument names
except that they start with a arg prefix. Semantically, the recerver of an MUISL operation
(that is, the object to which the operation applies} must appear as an argument In the
current implementation of muigen, the receiver of an operation is the argument value whose
argument name is argObject. The receiver was made as an argument, instead of 4 separate
value after the operation name, in order to keep the syntax of operations umform

Corresponding to an argument name is an argumnent value, which 15 the value used by
the operation, for that argument name. Argument names are needed to identify argument
values, and to allow arguments to be specified in any order Argument values can be
identifiers (such as a pre-declared variable identifier), numbers, strings (such as a file name),

attribute names. or attribute values.

CHAPTER 8. USER INTERFACE GENERATION 106

The following example shows a partial specification using operations. The object is
defined, then one instance of it is created in the initialization block. The resulting user

interface will display a string in a text window.

OBJECT
NAME: TextObject
CLASS: clTextWindow
ATTRIBUTES:
atTextWindowUpdate = ATeditable #default is ATreadOnly
ACTIONS:
#This wi1ll be generated in the same procedure that defines the object.

[objTextWindowMessage argObject: TextObject argText: "Hello world"]
] g gub] J g

END

INIT #initialization block
#Create an instance of the text object; the parent object of the top
#MUISL object is given by the attribute value, ATtopObject. The
#object is created as a fixed window always visible on the screen

#(ie. ATnoPopup).

[objRootInstantiate argObject: TextObject argParent: ATtopObject
argPopupType: ATnoPopup]
END

Assynment Statements

Assignment statements allow variables to be set either to values of expressions or results
of operations ® For example, because MUISL does not currently support operations as parts
of expressions, an operation returning a value can be assigned to a variable which can later
be used,

Expressions on the right side of an assignment statement are a subset of typical ex-
pressions found in a programming language. The MUISL grammar in Appendix B shows

a precedence among operators in an expression: this precedence is only to simplify parsing

% Murgen gnaranters that an operation returning a value and used 1n an assignment generates a single

statement returning a value

Ll

CHAPTER 8. USER INTERFACE GENERATION 107

by the MUISL tool. The precedence rules of the target programming language apply to the

generated code.
Conditional Statements

A conditional statement allows the selective execution of two sets of statements, depending
on the value of a condition. Note that conditionals can be nested.

The following example shows a conditional statement and an assignment, both i the
context of a callback for a list menu. The index of the selected menu item 15 retrieved, and

an action is taken, based on a condition:

OBJECT
NAME: ListMenuObject
CLASS: cllistMenu
ATTRIBUTES:
#Set the appropriate attributes.

VARIABLES:
INTEGER index
ACTIONS:
CALLBACK (atListMenuCallback, #attribute name for callback
procl)
#Defines a callback called when a list menu item is pressed

#The CALLBACK statement will be explained later.

#Get the index of the menu item pressed.
index = [objListMenuGetCurrentItemIndex argObject:ListMenuObject]
IF index == 1 THEN

#Do something with the index value.

ELSE

#Do something else.

END # of if statement
END #of callback

“

~

CHAPTER 8. USER INTERFACE GENERATION 108

END #of object definition

#rest of the specification

Procedure Slatements

The MUISL specifier can provide the contents of a callback or event handler in one of
two methods: either as a MUISL procedure statement; or as a target programming language
procedure added to the generated file, or linked with it. The procedure statement allows the
specifier to concentrate on the contents of the callback or event handler, instead of having
to worry about their syntax in the target programming language. Because MUISL assumes
an underlying cvent-based target window system, callbacks and event handlers are usually
heavily used in interactions with an object. Callbacks and event handlers are associated

only with the object in which they are defined.
Callback Statements

Identified by the leading CALLBACK token, the callback statement is used to specify
the contents of a callback. Recall that a callback is a procedure automatically called by the
target window system, under certain conditions. A callback statement is not allowed for
classes of objects (or their superclasses) which do not have corresponding callback attributes.
For an object, a callback statement can be uniquely identified by the tuple following the
CALLBACK token. The first element of the tuple is the name of the callback attribute for
which the procedure is a callback. This name is used to check if a callback is allowed for
the class of the object being defined. The second tuple-element contains the name of the
callback.

Legal callback statements without corresponding callback attributes set in the attributes
section, do not only generate a callback, but also a callback attribute for the object in which
the statements are defined. Consequently, there is no need to define callback attributes if
the corresponding callback statements are specified.”

One or more different callback statements are allowed for the same callback attribute (as
is the case for callback attributes). The order in which callbacks are called, in the case of

no defined callback attributes, corresponds to the lexical order of the callback statements.

"It 1s redundant, but not illegal, to do so.

CHAPTER 8. USER INTERFACE GENERATION 109

An example of a callback statement was previously shown when the conditional state
ment was discussed. In that example, the callback statement for the list menu callback
named procl. was defined. There is no need for the following statement in the attributes

section:
atListMenuCallback = (proct)

Generated is a callback. named proc!, and containing the simple statements within the
MUISL callback statement. These statements are mapped to the corresponding statement -
of the target programming language. The callback’s title. default parameters, and othes

syntactic details, are automatically generated.

Fvent-Handler Statements

The EVENT token identifies the start of an event-handler statement. A tuple of event
and procedure names uniquely identifies an event handler statement within an ohject defi
nition. This statement is used to specify the contents of an event-handler which the targe
window system automatically calls. once it detects the event for the current object

There is no need to specify a corresponding event handler attribute for an event-handler
statement. Such an attribute is automatically generated. if it does not exist, but there is
an event-handler statement. Unlike callback statements, only one event-handler statement
per event, per object, is allowed.

An event-handler statement not only registers a procedure as an event hanaler for an
event (i.e. it sets an event-handler attribute if it that has not already been set). but alvo
generates the event handler itself. Other than the standard template code generated lor
an event handler, statements within the MUISL event-handler statement are mapped to
statements in the target programming language. and are included as part of the event
handler. When an event occurs, the target event-based window system automatically calls
the event handler specified for the event. If an event handler has been specified either 1
an event-handler attribute or statement, it is the procedure invohed, otherwise, the invohed
procedure is a default target window-system procedure.

Statements within an event handler are a sequence of zero or more simple statements
key statements, or button statements. ldentified with starting CASE and KLY tokens. a
key statement is a case statement whose case labels are key names Semantically, such a

statement can be included in an event-handler statement for a keyboard event. such as a

T

CHAPTER 8. USER INTERFACE GENERATION 110

key press or release. Each element of this case statement contains the name of a key, and
zero or more simple statements that are executed if the keyboard event involved that key.
A simple statement sequence labeled by two or more key names is executed if a keyboard
event 1s detected for any of those keys. If no key matches the key activated. the statement
sequence 1n the optional ELSE-part of the key statement, is executed.

Identified with starting CASE and BUTTON tokens, button statements are syntactically
and semantically similar to key statements, except that the case labels are names of mouse
buttons. A case element is selected if the button activated matches that of a case label.

MUISL does not dictate the names of keys or buttons. except that they be respectively
preceded with a key or bulton tohen. It is the responsibili.y of the MUISL tool to map
key or button names to those supported by the target window system. Muigen’s names are
tabulated in Appendix D.

Key and button statements were included as part of MUISL event statements because
they allow an easy-to-understand and natural method of performing actions based the type
of key or button involved. Each key or button statement generates a corresponding case
statement 1n the target programming language.

The following example combines various types of event statements. The first event-
handler statement will cause an event handler, named handle_button_press, to be generated
An event-handler attribute for the mouse button press event will also be added as an
attribute of GenericObject. Handle_button_press will be called by the target window system
whenever a mouse button is pressed while the mouse cursor is inside GenericObject. The
other two event statements will respectively generate event handlers for a key press and the

entrance of the mouse cursor into GenericObject.

OBJECT

NAME : GenericObject

CLASS: clGenericWindow

ACTIONS:

EVENT (eventButtonPress, handle_button_press)
CASE BUTTON OF
buttonLeft : #left mouse button
buttonMiddle: #middle mouse button
Oprintf("Left or middle button");

#other actions here

CHAPTER 8. USER INTERFACE GENERATION 11

buttonRight: #right mouse button
¢printf("Right button");
... #other actions here
ELSE @printf("Button not recognized");
END #case button
END #event handler

EVENT (eventKeyPress, handle_key_press)
CASE KEY OF
keyA:
.. #actions based on key pressed
ELSE Q@printf("Button not recognized");
END #case key
END #event handler

EVENT (eventEnter, handle_enter_window)
@printf ("Entered window");
... #other actions here
END #event handler
END #object

Initialization Block

The final portion of a MUISL specification consists of the initialization block which is iden
tified by the leading INIT token. The initialization block is intended to be used as the
container of statements that create instances of previously defined objects. The block 15 not
limited to these statements, though. An initialization block generates a procedure with 'ts
contents mnapped from the enclosed MUISL statements, This procedure is called within the
generated code. Variables used in the initialization block can be declared after the VARI-
ABLES token and colon symbol. An exampie of the initialization block was previously
given.

It is assumed that the program generated from a MUISL specification passes control
to a main interaction loop implemented by the target window system, and called after the

initialization block.

CHAPTER 8. USER INTERFACE GENERATION 112

Examples of complete MUISL specifications and their resultant user interfaces are shown

in Appendix E.

8.3 Muigen: The MUISL-Based User-Interface Generator

This section briefly describes muigen. a tool that scans, and parses a MUISL specification
file. If there are no errors, it generates user interface code, using C as the target pro-
gramming language. and the X Window System (Version 11, Release 4, with the X Athena
Widget Set, and X Toolkit Intrinsics) as the target window system. Muigen itself consists
of about 8.000 lines of C code. using lex and yacc.

Mugen was designed and implemented with the purpose of providing a sample MUISL-
based user interface generator which would demonstrate the viability of MUISL as a user
interface specification language. Muigen’s architecture and method of generating files are

described in Appendix C.

8.3.1 Definitions

Some definitions used include:

e Mapping: the process of translating from a MUISL name to one or more target

programs ning language and window system names.
e Specification File (SF): a file containing a MUISL specification.

o Generated File (GF): the output user interface file generated by muigen; this file
coutains source code in the target programming language and is to be compiled and

run under the target window system.
o MUISL tool: a program that accepts an SF as :nput and outputs a GF.
o MUISL specifier: the programmer writing an SF.
o Muigen developer: the programmer who codes, modifies, or modifies muigen.

e Initialization Files (IF's): files containing MUISL or internal muigen names and their
mappings to target programming language and window system code, and other inter-

nal muigen names.

CHAPTER 8. USER INTERFACE GENERATION 13

Steps in creating a user interface using MUISL and muigen are to: create an SI with
any text editor; create the GF by invoking muigen on the SF; using a compiler and linker
for the target programming language, compile and link the GF with any other source code

files (for example, application source code files in the target programming language), and

7

run the resultant user interface in the target window system.

8.3.2 Initialization Files

An important aspect of muigen is its use of IFs: it reads these files at the start of execution
and dynamically binds their contents to tables. A MUISL name read by the parser 1
mapped to target programming language code by finding its enfry in an appropriate table
IFs make muigen a table-driven program. thus minimizing the use of hard-wired information
and facilitating changes of the target programming language and window syvstems. 1Fs also
allow the /nuigen developer 8 the ability to modify mapping information without the need
for recompilation of muigen.

IFs are used to: initialize class names; define table names; map class names, attnbute
names, attribute values, methods, variable types, and event/key/button names to names
in the target programming language; construct the class hierarchy; and provide target
programming language code templates to be used in the generated-code file Contents of
IF's are further explained in Appendix D.

Based on grammar, the two types of IFs are: Operation IFs (OIFs), and Nou peration
IFs (NOIFs). The former map MUISL operation names into target programnung language
code and include information on the position and number of parameters of operation-names
The latter files map a name (such as a MUISL class name) to another entity, such a< 2
target programming language code-template; or serve to dynamucally initialize a mugen

data structure.

Non-Operation Initialization-File Format

The grammar of NOIF's is shown in Figure 8.3. Notation and some tokens used are snnilar
to those of Appendix B. Nonterminals are shown in italics; terminals are in bold, and
integer denotes an integer value.

A typical NOIF consists of one or more definitions; each definition contains a logically

related set of mappings, with each mapping consisting of a record. The unique identifier

8Imtialization files are not intended for use by the MUISL specifier

CHAPTER 8. USER INTERFACE GENERATION 114

definition list = { definition }+

definition ~ ident integer record_list
record_list = { record }+

record { ident , string }

string * { character\ *} ’

Figure 8.3: Non-Operation Initialization-File Grammar

in a record, identifies the name to be mapped; and the string provides the mapping of this
identifier. A string is used because some mappings consist of more than one name.

Each definition is identified by a uni:que name, followed by an integer indicating the
number of records in this definition. Muigen allocates a table for each definition, and the
size of this table is given by the integer for that definition. If the integer is smaller than
the actual number of records, muigen prints an error message, and exits. The last record in
each definition must be a null record; “empty” definitions must have this record. Reserved
words in NOIFs include NULL (for a null record element), and UNSUPPORTED (for an
element not yet supported by muigen).

The following example shows part of the IF that maps MUISL’s attribute names to
corresponding X Window System names. Comments, preceded with a # character, cause

the remainder of the line to be ignored:
“ clMenuAttributeTable 3 #number of records for this example
{ atMenuCursor, ’XtNcursor’ }
#Description: Menu’s default cursor
#Values: AT*Cursor
{ atMenuForeground, ’XtNforeground’ }
#Description: Menu’s foreground color
#Values: ATwhite, ATblack; default: ATblack

{ NULL,’NULL’ } #last record must be null

“ clCompoundWindowAttributeTable 1

CHAPTER 8. USER INTERFACE GENERATION 115

{ NULL, ’NULL’ } #last record must be null

Operation-Initialization-File Format

The grammar of OIFs is shown in Figure 8.4. The notation used is similar to that of
Section 8.3.2. The main difference between NOIFs and OIFs is the format of each record:;
otherwise, these types of files are similar. A NOIF record is structured as such, in order to
allow muigen to check operation arguments. The record elements from the second onwards
are strings since they may contain more than one identifier. In Figure 8. 1. the first record
element identifies the operation name; the second element, the mapping of tlus name (%'
indicate places for argument values); the third, a list of MUISL argument names whose
values will respectively replace the %s's; the fourth, a list of MUISL argument names present
in the MUISL operation; the fifth, the return type (NULL if none). Lists in record-element,

strings consist of identifiers separated by one or more spaces.

I

definition_list { definition }+
definition u= ~ identinteger record.list

record_iist := { record }+

record := { ident, string, string,
string , string }

string = { character\ '}’

Figure 8.4: Operation Initialization-File Grammar

The following is an example of a small part of an OIF:

clRootMethodTable 3 #for demonstration purposes

{ objRootInstantiate, ’ %s = createis(is,%s);\n’,
'argObject argObject argParent argPopupType’,
‘argObject argParent argPopupType’, ’NULL’ }
[objRootInstantiate argObject:<ident> argParent:<ident>
* argPopupType: <attribute_value>]
Valid attribute values: ATnoPopup, ATmenuPopup, ATobjectPopup,
* ATdialoguePopup

CHAPTER 8. USER INTERFACE GENERATION 116

{ objRootDestroy, ’XtDestroyWidget(%s);\n’, ’argObject’,
‘argObject’, 'NULL’ }
[objRootDestroy argObject:<ident>]

{ NULL, °NULL’, °’NULL? , ’NULL’, ’NULL’} #last record must be null

~ clButtonMethodTable 1 #last record must be null
{ NULL, °NULL’', °NULL’ , ’NULL’, ’NULL® }

8.4 Evaluation of MUISL and Muigen

This section evaluates both MUISL and muigen by examining the following issues: ease of
use, ease of understanding, support for prototyping, separation of the interface from the
application, underlying concepts and syntax, completeness and correctness. extensibility and
escapability, locality of definition, functionality, portability and availability, programmer
control, ease of design and implementation, and the relation to zmupe2. When appropriate,

comparisons are made to other systems.
Ease of Use

The first issue to be examined is usability, or ease of use. Being textual, a MUISL
specification is created as an ASCII file, using any text editor. The specification is easily
modifiable by editing the SF. Muigen accepts this SF and generates the resultant user
interface code This code is then compiled and linked with other application code, and
executed by the target windo v system.

However, MUISL 1s less easy to use than graphical systems such as Peridot [56,54], or
the Dialog Editor [5] These systems can permit even users to specify user interfaces. A
disadvantage of using MUISL is that there is no interface editor — such as that in the
Dialog Editor, MIKE [62] , or MENULAY [3] — to simplify the process of building an
interface specification. However, the author’s intention was not to build one, but instead
concentrate on the design of MUISL and the design and implementation of muigen.

Except for the lack of an interface editor, usage of MUISL and muigen is similar to
that of other systems. For example, in MIKE, the generated user interface is compiled and

linked with application and library code. MENULAY is also similar in that the result of a

CHAPTER 8. USER INTERFACE GENERATION 117

session with the interface editor is a specification stored in a file. which is generated mto €

code, compiled, and run.
Ease of Understanding

MUISL is a textual language and the MUISL specifier must invest time to learn aspects
of the language. However, MUISL is easy to understand and learn. For example, there ate
few parts to an object definition, standard names follow a certain convention, and notation
of operations is consistent. MUISL clearly is less difficult to understand than its target
window system.

Although the language is not complex, it places certain limrtations that the MUISI
specifier must be aware of. For example, MUISL has some lexical limitations on some types
of identifiers: key names must be preceded with key; attribute names. with at: standard
attribute value identifiers, with AT; and so on. But, these prefixes add uniforty and
consistency to the usage of certain names. An advantage of such a naning scheme s 1t
flexibility: the same names can be mapped to names in different target window systems and
programming languages. MUISL is also case sensitive and requires reserved words such as
OBJECT, CLASS, and so on, be in upper case

The event- and object-based model, in which objects can be defined with optional at
tributes and operations, enhance MUISL’s understandability. Inheritance of class attributes
and operations reduces the need for repetition of common attributes and operations Cre
ation of objects is accomplished with one or more instantiations. Finally, by assunnng,
an event-based model, whose run-time aspects are handled by the target window system
the MUISL specifier need not understand how events within objects are handled Thew
are the responsibility of the target window system. Bv incorporating event handlers and
callbacks, MUISL assumes an external (user interface) instead of an internal (application)
model of control: the user interface is responsible for calling application routines One of
the previously mentioned advantages of external control is its support for protots ping

A possible disadvantage of MUISL is that it is intended only for a prosrammer This
person must also understand the underlying object and event bases of MUISL. Grapiical
systems such as Peridot or the Dialog Editor obviate the need for learning any language.

are easier to understand than MUISL, and can be used by users.

Support for Prototyping

-

CHAPTER 8. USER INTERFACE GENERATION 118

Using MUISL and muigen allows the rapid prototyping of user interfaces, and facilitates
the specification, design, and implementation of user interfaces. The MUISL specifier can
use this langnage to completely specify a user interface, without necessarily having to write
supporting code in the target programming language. The user interface is then compiled
and run: if changes are required, the MUISL specifier can easily change the MUISL speci-
fication, generate new user-interface code. compile it, and re-run it. The MUISL specifier
saves time and effort and achieves a quick turnaround time, because there is usually no
need to repeatedly write or modify lengthy or intricate user interface code in a conventional
programming language Modification of the smaller SF is typically easier and quicker. The
result is a concentration on the functionality of a user interface, rather than on imple-
mentation details specific to a window system. As with other systems, the emphasis is on
providing tools to assist the user interface specifier.

For example, each of the examples in Appendix E was initially constructed in fewer than
twenty minutes. The equivalent time to construct them from scratch, using a conventional
programming language, would have taken over an hour each.® The reduction of effort and
time also extended to the testing and modification of the MUISL specification files, and
proved to be easier and more convenient than an equivalent modification of conventional
programming language code. The author was capable of easily experimenting with different
aspects of the user interfaces in each example, and rapidly customizing the final result with
no difficulties. MUISL specifications in this appendix were six to eight times smaller than
the generated code.

In supporting rapid-prototyping, MUISL and muigen are similar to other UIMSs. For
example. the Sassafras UIMS [33] also supports the rapid development of user interfaces by
using the 1terative development approach — testing of the interface is possible independently
of the application. Another example is the Dialog Editor, which also permits the quick

building, and modification of a user interface, without affecting the application.
Separation of the Interface from the Application

MUISL allows the separation of the user interface from the application for which the
interface is intended. By stressing the form and interactions within a user interface, MUISL

abstracts the design of a user interface from application code. But, MUISL provides hooks

*Both timnes assume a specifier knowledgeable in MUISL or the target window system, respectively The
latter, of course, 15 mruch harder

CHAPTER 8. USER INTERFACE GENERATION 119

into the application. For example, callback procedure statements can contain calls to ap
plication code. The result is a user interface that is a separate-modular entity

UIMSs such as Sassafras also support user interfacc and application routines to he
separated without limiting their ability to exchange data. Other systems also encontage
dialogue independence. For example. COUSIN s slots [30.32.31] encourage thinking in terms

of data exchanged by the application and user, instead of how they are displayed or modihed
Underlying Concepts and Syntax

MUISL includes concepts and resulting syntax similar to those of other systems ‘I'he
object-oriented paradigm is similar to GWUIMS’s [74]. MUISL has classes, attiihutes
operations (corresponding to methods), and inheritance — concepts embodied in GWUINS
GWUIMS identifies an object with tohens such as Class. Attributes, M thads MUISL alvo
has similar tokens to identify respective parts of an object definttion. Like GGWUIMS,
MUISL allows communication with an object by specifying the object’s name or 1d (as an
argument), the name of the operation, and a list of other arguments MUISL' use of a class
hierarchy, objects, their attributes, and actions is also similar to their use i UIDE [20.18]
Some syntax used in both systems. such as the use of parenthesized lists of comma-separated
items, is identical.

MUISL’s use of an event-based paradigm is similar to that of event-based svstems such
as the University of Alberta UIMS [25]. The model in both assumes that when an event
occurs, it is sent to the proper event handler(s). In the above UIMS. only active cvent
handlers can receive events; an event handler is made active by using an expliat statement
to create it. In MUISL, simply defining an event handler in an object definition 1s insuflicien:
to make it active. An event handler is made active by the instantiation of the object i
which it is a handler. MUISL similarly assumes a conceptual model of active event handlers
executing concurrently and processing events as they come in. There 15 nothing in MUISI
which prevents an event handler from invoking another event handler, or deactivate an
active event handler: this ability is a function of the available operations defined by the
MUISL tool. Note that MUISL allows the definition of the same event handler for different
events, or different objects.

The usage of tokens such as EVENT, VAR , IF, and INIT, and assignment statements in
MUISL is similar to their usage in the University of Alberta UIMS. In both, event handlers

are defined for particular events. In the latter system, a file named as an event handler

CHAPTER 8. USER INTERFACE GENERATION 120

file, contains sections defining: parameters to the event handler, its local variables, events
it can process, and bodies of procedures, each of which responds to a particular event. In
MUISL, event handlers are also attached to a particular object and make use of local and
global variables and supported statements.

Some of the syntax of MUISL’s operations was inspired by Smalltalk’s messages, but
there are some differences: in an operation, the operation name is listed first and as previ-
ously mentioned, the receiver of an MUISL operation must appear as an argument. More-
over, the syntax of Smalltalk-like messages is unconvantional, and operation syntax seems
more natural to those used to procedure calls. However, an MUISL operation is not nec-
essarily a procedure call, although it may generate such a call. An MUISL operation can
generate one or more statements in the target programming language. Like a Smalltalk mes-
sage, an operation serves as a modularity mechanism: it specifies what command should be
carried out, but not how it is accomplished. The latter is achieved by mapping the operation

to the generated target programming-language code.
Completeness and Correctness

Can muigen guarantee that a MUISL specification is correct or completely specifies a
user interface? Completeness is a difficult requirement that remains an open question with
many user imterface tools. Muigen attempts to assess correctness as much as possible: lexical
and syntactic errors are easily detected. Semantic errors, such as type clashes in assignment
of operations’ results to variables, and bad arguments to a operation, are flagged. However,
some errors, such as those in external statements, are beyond the scope of muigern and
are left to the compiler of the target programming language. Muigen can only guarantee

correctness to a certain degre~. The onus is on the MUISL specifier to guarantee the rest.
Extensibility and Escapability

By including external statements and declarations, MUISL is escapable. Both allow
the inclusion of arbitrary target programming language statements and declarations that
MUISL does not support. The generated file resulting from a specification file also gives the
MUISL specifier both the ability to modify user interface code, and the flexibility to extend
or tailor this code according to the particular application. This is because the generated file
is essentially a program in the target programming language. The only proviso is that the

MUISL spedifier be familiar with the target programming language and window system.

CHAPTER 8. USER INTERFACE GENERATION 121

A program driven by tables dynamically initialized from initialization files (11°s), muuyje n
is easily extensible. IFs al.o enhance the power and flexibility of mugen, and permit the
modification of features such as operations and attributes. For example. the class hierarchy
shown in Figure 8.2 is stored in one IF. To change this hierarchy, the MUISL developer
must only update this IF. No muigen code has to be altered. and recomplation of muwgen
is not necessary. However, adding a new class requires modification of several TFs This
is presently a manual job. but is an excellent candidate for automation IIs also facilitate
the alteration of the target window system or programming language. because only IF
manipulation is required. The time to read [Fs and initialize the corresponding tables 15
negligible.

MUISL's classing mechanism and inhentance of attrnibutes and operations support lo-
cality of definition. A change in the attribute or operation of a particular class applies to all
inheriting classes. Recall that objects can use the attributes section to change the defauit
attribute values of their classes. A system such as the Dialog Editor is simular in that it
shares resources, such as a default background color, that apply to multiple user-interface

interaction-objects. Changing a shared resource applies to all objects sharing that resource
Functionality

Given its limitations. MUISL can still produce useful, viable and functional usernter-
faces. The MUISL specifier can use the generated file, as is, or modify it. to produce the
user interface. MUISL is powerful enough to specify both the attrnibutes and aperations of
an interface, in addition to the hierarchy of objects. Usage of objects as bmlding blocks of
a user interface adds to MUISL's usable power (set of user interfaces that can be bnlt),
by allowing the construction of complex objects from simple ones (see the examples in Ap
pendix E). GWUIMS also has this feature. A drawback of this is the mcreased amount
of specification entailed; for example, to create a window of command buttons. a containe:
window and each of the command buttons must be defined separately. Then. this contamer
must first be instantiated. and each command button has to be instantiated as a child of
this container.

The current version of MUISL does support a number of interactions, such as windows.
menus, buttons, scrollbars, dialogue boxes, and so on — many of which are similar to those
of the Dialog Editor. Numerous usable user interfaces can be built solely from these types of

interactions. MUISL also allows the creation of user interfaces that handle input from, and

CHAPTER 8. USER INTERFACE GENERATION 122

ontput to, objects. This is possible because the run-time aspects of input and output are
assumed to be handled by an event-based target window system. For example, operations
to write to a window generate equivalent window-system code which handles output into
the proper screen area.

All UIMSs are restricted in the forms of user interfaces that they can generate [76].
MUISL, as a specification language is no exception. Other systems, such as Peridot, are
easier to use. provide more functionality than MUISL, and are aimed at producing graph-
ical, direct-manipulation interfaces. But, Peridot cannot help with the textual command

interfaces, or with the coding of the semantics of an application [56].
Portability and Availability

Not constrained to a certain target programming language or window system, MUISL
is portable 1Y The current target programming language, C, ‘s widely available; the current
target window system, the X Window System. has been ported to a wide variety of archi-
tectures, and is a popular system. There are a number of similarities in MUISL to window
systems, such as the X Window System, but at a higher level of abstraction. This is readily
apparent in the choice of some attributes and operations: MUISL attempts to shift as much
responsibility as possible to the target window system, and to concentrate on the form of,
and interaction within, a user interface.

Some UIMSs are based on possibly non-portable run-time or window systems. Systems
such as MENULAY, or SYNGRAPH [63], generate code in conventional programming lan-
guases such as C and Pascal, respectively. Muigen, however. can easily change the target

window system or programming language.
Programmer Control

MUISL does enforce a particular style of interface: that based on objects, their at-
tributes, operations, and events. By mapping MUISL specifications to the target window
system with its standard object attributes and operations, muigen provides the programmer
with uniformity across all interfaces. But, the programmer is free to change the generated
code, which usually has to be linked with the programmer’s application code. The ability

to modify the generated code allows the programmer considerable control.

PHowever, the target window system must have an event-based run-time model.

CHAPTER 8. USER INTERFACE GENERATION 123

Ease of Design and Implementation

The most difficult part of the work was the design of MUISL: the current language is
the last of numerous earlier versions. Usage of objects. classing, attributes. operations, and
an event-based model introduced consistency and simplified the work. Ounce MUISL was
relatively stable, the desizn and implementation of muigen were mechanical exetcises and
proceeded rapidly. Implementation was speeded and simplified by the use of tools such as
lez and yacc, and the presence of an event-based target window system that reduced the

amount of programming. The IFs that fill muigen’s tables. also simplified coding
Relation to Xmupe2

A natural question to ask is whether MUISL can specify zmupe and muigen, be used
to generate it. The answer is a qualified yes. Using MUISL and muigen would have reduced
the amount and effort of coding parts of zmupe2. The windows. menus. event handlers, and
callbacks can be specified and generated. For example, event handlers for heyboard or mouse
events. can be written in MUISL. The complex window structures of fragments and other
windows is not difficult to specify with MUISL, nor is the display of text and highlighting of
certain portions. Examples in Appendix E attest to the ability to define and interact with
complex window structures. However, other portions of zmupe2 which directly interact with
the comyutational component, draw graphics, or are written in Modula-2. cannot be cus
rently generated. The capability to draw graphics can be added as aun extension to MUISL
The Window List of zmupe2 cannot and could not be written in MUISL. Calling Modula 2
code 7s possible in MUISL, by using the external statement, but interacting with Modula 2
code and its data structures presents a problem, and cannot be supported by MUISL Tasues
such as traversal of the unparsed buffers, and computational component menu structures
are best written in a conventional programming language since they interface directly with
MUPE-2 internals. As previously mentioned, about half of zmupe2’s approximately 1.1.000
lines of code, interface with the computational component: this half could not have been

generated.

Chapter 9

Conclusions

This thesis has dealt with two key issues: (a) a user interface for the MUPE-2 programming
environment. and {b) generating similarly styled-user interfaces, not necessarily limited to
programming environments, from a new specification language.

The first issue deals with zmupe2, a user interface for MUPE-2 in its current state.
This environment introduces a number of novel features which have been reflected in its
user interface. Xmupe2 successfully reflects the internal state of MUPE-2 at all times and
supports: both programming-in-the-small and large; the creation, location, display, and
manipulation of multiple fragments; the unparsing of both text and graphics; the display
and updating of structured cursors: structured and semi-structured cursor movements; the
management and firing of computational component editing commands; interaction with
user events and communicating the required ones to the computational component; and the
update context-sensitive mouse-based menus.

A user-friendly program, zmupe?2’s implementation on a bit-mapped screen and its use
of menus and the mouse both allow the user to easily and quickly use MUPE-2’s commands.
Interaction methods such as windows, buttons, and menus offer an intuitive, yet powerfui,
method of communication with the user. Help is offered at all junctures, and some opera-
tions can be aborted — when possible. All of zrmupe2’s user-directed messages are displayed
in one window, and an old message is erased before showing the new one. Windows and
menus have clear titles and the latter have understandable item names. Mouse-based pop-
up and pull-down menus save screen space and permit a quick traversal and selection of
an item. User feedback is accomplished by changing the mouse cursor’s shape: the shape

changes for different locations of the mouse cursor and for certain internal system-activities.

124

Eal

CHAPTER 9. CONCLUSIONS 125

Finally, windows can easily be manipulated on the screen and be iconized or resized to save
space.

Using the widely-available X Window System enl.ances the portability and flexibility of
rmupe?. The modular architecture of zmupe? isolates its window-system dependent code
from other code and facilitates modification of the program. Much care was taken to keep
a clear interface between the C and Modula-2 portions of the user interface Modula-2 was
chosen for part of zmupe?2 in order to interact with MUPE-2’s computational component
C was chosen for interaction with the window system because it simplified tmplementation
and obviated the need for an intricate window-system — Modula-2 interface.

Xmupe?2 is extensible: it is not difficult to add support for new commands implemented
by the computational component. For example. zmupe2’s menus are created by general
purpose routines that simply create a menu based on the parameters passed to them. \n
other example is the method zmupe?2 interacts with MUPE-2 commands: it first calls the
appropriate computational component routine and then uses the same steps to display the
results of a command. These steps are to: update the editing menu, map the unparsed
buffer, and display the structured cursor.

Requiring considerable effort to design and code, the handcrafted rrmupe? took about
seven months to design and implement and resulted in approximately 14.000 lines of code
The continual problem that faced zmupe? was ensuring its correct interaction with the
computational component — itself a large and complex program.

Xmupe? has clearly achieved the goals set forth in this thesis. It is a workable, user
friendly user interface for a programming environment. Xmupe?2 also satisfies the require
ments enumerated in Section 3.1. Especially important is that zmupe simplifies the ma
nipulations of fragments.

As seen with zmupe?, a user interface is often a significant part of an application s
code. Moreover, handcrafting a user interface, such as zmupe?, is often a complex, tedious,
and time consuming process. Given that user interfaces are often developed and tested
by prototyping, many changes usually have to made to the first implementation of a user
interface. As a result, the second issue with which the thesis deals is the generation of user
interfaces from a specification language. This thesis shows that it is possible to* design
MUISL, a simple experimental language for the specification of user interfaces; build a tool,
muigen, to generate code from this specification; and use the language and generator to

facilitate the development of sample user interfaces.

CUAPTER 9. CONCLUSIONS 126

MUISL is an event-based language that views a user interface as a set of objects. The
language uses an object class hierarchy, with each class containing attributes and operations
which subclasses can inherit. Each object is uniquely identified by its name and class.
The MUISL specfier can override default attributes for that class in an attributes section,
and also indude variable definitions and a statement sequence applicable to each object
definition. One type of statement allows the specification of the contents of callbacks or
event handlers applicable to each object. An object used in a statement sequence must be
instantiated as a child of another previously instantiated object. Instantiation allows the
creation of object hierarchies and the single definition of a multiply instantiated object.

To test the viability of MUISL as a specification language, the author designed and
implemented muigen. a table-driven MUISL-based generator of user-interface code. Con-
sisting of about 8000 lines of C code implemented in 2.5 months, muigen uses C as the
target programmung language, and the X Window Syst .n as the target window system. A
flexible feature of muigen is the dynamic initialization of its tables from initialization files.
These files contain information on class names and their hierarchy, attribute names and
values. operations, and code templates, among others. Using initialization files allows the
alteration of target programming language, target window system. class names, and so on,
without having to modify muigen.

MUISL and muigen have allowed the auvthor to quickly define, execute. and modify
sample u.er interfaces. such as those of Appendix E. The equivalent process without spec-
ification language and generator would have taken much longer and required significantly
mote coding It is clear that generation. when possible, is much easier than handcrafting.
For example, sample interfaces that the author specified with MUISL and generated with
nuge n, took fewer than twenty minutes each. Generated files were also typically four to
siv times the size of the specification files. The MUISL specifications were easier to design.
test. and modify than equivalent handcrafted ones which would have taken a programmer
more than an hour each to code. Moreover. handcrafting the sample user interfaces would
have required proficiency in the X Window System, a task considerably more difficult than
mastering the relatively simple MUISL.

The wotk carried out in this thesis can be expanded in a number of ways. The MUPE-2
computational component has yet to be finished and zmupe? should be upgraded to support
future features of MUPE-2. For example, support for an incremental compiler can be easily

added to rmupel. MUISL is currently a textual language that is suitable for a programmer,

CHAPTER 9. CONCLUSIONS 27

not a user. A window-based interface to MUISL, such as an interface editor. could be
built in order to allow a more user-friendly method of writing a MUISL spedification. The
language does not support the specification of graphics in user interfaces. among other
interaction methods, and should be altered to do so. Finally, MUISL and muge n conld he
used as the nuclei of a graphical UTMS providing a yet more powerful and imtuitive method

of user-interface specification.

Appendix A

Xmupe2 Architecture

The relation of the user interface to the rest of MUPE-2 is shown in Figure A.1.

User Computational
Imersace ggmponem

Figure A.1: The User Interface and Computational Component

Amupe? has the modular decomposition shown in Figure A.2. The rest of MUPE 2’s
architecture is not shown because it is not relevant to this thesis. The communication
between rmupe? and the computational component (shown in Figure A.1) occurs only
through one layer of rmupe?’s modules.

Except for the Modula-2 Interface, all code is written in C. The three main Jayers of

zmupel are:

e The Application Interface (AI) acts as the intermediary between zmupe?2 and the

computational component which is written in Modula-2.

—~ The C Interface (CI) contains the C language interface to: manage the display
of cursors (Cul), drive the creation of fragments (FI), and interact with the
unparsed buffer (UI).

— The Modula-2 Interface (MI) is the only layer that directly interacts with the
computational component. This layer contains code that: retrieves the struc-

tured cursor's coordinates and interacts with the movements of the structured

128

APPENDIX A. XMUPE2 ARCHITECTURE

itte)

ORNOIO Ké@x

COROIO
(@) =)

(NN

Sbe

Node Abbreviations and Meanings

Al
PC
MI
WS
PG
Us
FI

DB
MB
UB
SF

Application Interface
Presentation Component
Meodula-2 Interface
Window System

PIL Graphics
Utilities System
Fragments Interface
Cursor Buffer Layer
Driver Buffer Layer
Menu Buffer Layer
Unparser Buffer Layer
Simple Fragments

ER
CI
MS
WL
IR
Cul
[9)
2B
EB
GB
CF
WwID

Event Response

C Interface

Menu System

WiLdow List
Initializer

Cursor Interface
Unparser Interface
Modula-2 Buffer Layer
EditOps Buffer Layer
General Manager Buffer Layer
Complex Fragments
Widgets

Figure A.2: Xmupe2 Modular Decomposition

129

APPENDIX A. XMUPE2 ARCHITECTURE 130

cursor (CB), defines the C-Modula-2 interface (M2B), contains the main Modula-
2 program module (DB), interacts with editing commands (EB), interacts with
internal editing menus (MB), communicates with the General Manager (GB) —
a manager of internal fragment structures, and retrieves information from the

unparser (UB).

e The Event Response (ER) system acts as the dialogue control component, responding
to user events and calling other zmupe? code. Code in this layer directly interfaces

with the X Window System.

— The Menu System (MS) contains event handlers and callbacks for menus.

—~ The Window System (WS) contains event handlers and callbacks for windows
representing PIL fragments (CF), PIS fragments (SF), and other non-fragment
windows called widgets (WID).

e The Presentation Component (PC) system performs the role of initializing and dis
playing windows and menus. Some code in this layer directly interfaces with the X

Window System.
- The Window List (WL) system manages the Window List. which contains infor-
mation on windows representing fragments and PIL nodes.

- The PIL Graphics (PG) system creates and manages the graphics data structures
displaying the PIL node hierarchy in a PIL Graphics Window.

— The Initializer (IR) initializes zmupe2’s variables and data structures and calls
the X Toolkit’s main interaction loop. This loop is responsible for the manage-

ment and dispatching of events to zmupe?’s event handlers and callbacks.
— The Menu System (MS) contains code to create menus.

— The Window System 1 WS) contains code to create windows.

The Utiities System (US) contains various utilities used by zmupe?2.

Appendix B

MUISL Lexical Rules and

Grammar

Notation: (... indicates contents)

is composed of

X is a terminal

z is a nonterminal

z is optional

0 or more occurrences of z

1 or more occurrences of z

group the contents

match any one character in list

match 0 or more occurrences of the preceding
match 1 or more occurrences of the preceding
match any character

do not match the character(s) following
newline character

specifies a range

&
now

—~
8
—
|

{z)
(-.)

min

-+ ~
~
ton o

—
on

B.1 MUISL Lexical Rules

comment ::= #.+\\n
digit ::= 0-9
letter ::= (a-z | A-Z)

131

APPENDIX B. MUISL LEXICAL RULES AND GRAMMAR 132

character 1= .

B.2 MUISL Grammar

interface_definition ::= [variables | { object_definition }+ initialization_block
inatialization_block ::= INIT [variables | [ACTIONS : { simple_statement }] END
object_definition ::=
OBJECT object.name class | superclass | [attributes] | variables] | actions] END
object_name := NAME : ident
wlent = letter { letter | digat | . }
class == CLASS : class_.name
class.name ::= clident
superclass ::= SUPERCLASS : class.name
altributes ::= ATTRIBUTES : { attribute_definition }
altribute_definition ;=
reqular_attribute_definition
| callback_attribute_definition
| cvent_handler_attribute_definition
reqular_attribute_definition 1=
erternal
| attribute_name = (attribute_value | value | string)
callback_attribute_definition ::= attribute_callback.name = (ident_list)
event.handler_attribute_defi~ition ::= attribute_event_name = (event_tuple_hst)
attribute_name = atudent
attribute_value ::= ATident
value = wdent | number
nuwmber = { digit }+ [{ digat Y+] [/Ee/ [+ | -] { digit }+]
string = " { character\ " } "
attribute_callback_name ::= atident/Cec/allback(s]
went list ::= wlent { , ident }
attribule_event.name ::= atident/Ee/vent/Hh/andler[s)

eventtuple_list = event_tuple { , event_tuple }

APPENDIX B. MUISL LEXICAL RULES AND GRAMMAR 133

event_tuple == (event.name , ident)
event.name := eventident
variables ::= VARIABLES : decl.block
decl block ::= { type ident_list | ezternal }
type i:=
INTEGER | REAL | CHAR | CARDINAL | BOOLEAN | STRING
| OBJECT._ID | BUTTON_ID | KEYCODE | DIMENSION | POSITION
ezternal ::= @.«
actions ::= ACTIONS : { statement }
statement ::= simple_staternent | procedure_statement
simple.statement ::= external | operat.on | assignment | conditional
operation 1= [operation_name argument_list]
operation_name ::= objudent
argument_list ;= { arqument_name : argument_value }+
argumeni_name ::= argident
argument_value ::= value | string | attribute_name | aitribute_value
assignment 1= ident = (operation | ezpression)
ezpression ::= simple_expression | relation simple_ezpression)
relation := < | > | < | > | == <>
simple_ezpression ::= [-] term { add_operator term }
add_operator ::= + | - | ||
term ::= factor { mul_operator factor }
mul_operator u=* | / | &&

factor ::= value | ¥ factor| (ezpression)

conditional ::=
IF exzpression THEN { simple_statement } ELSE { simple_statement } KND
procedure_statement ::= callback | event_handler

callback ::=

CALLBACK (attribute.callback.name , wdent) { stmple_statement } END
event.handler ::= EVENT (event.name , udent) { event_statement } END
event_statement ::= key.staternent | button_statement | simple_statement
key_statement := CASE KEY OF { key.case_element } + [else_part] END

key_case_element ::= keycode : { sumple_stutement }

APPENDIX B. MUISL LEXICAL RULES AND GRAMMAR 134

keycode ::= keyident
else_part .= ELSE { simple_statement }
button_statement ::=
CASE BUTTON OF { button_case_element }+ [else.part] END
button_case_element ::= button_name : { simple_statement }

button_name ::= buttonident

Appendix C

Muigen Architecture and File

Generation

This appendix first discusses muigen's architecture, then gives a brief overview of the steps

muigen uses to produce a GF.

C.1 Muigen Architecture

Muigen has a modular architecture which greatly simplified and speeded implementation,
testing, and maintenance of the program. For example, the modular architecture cases

muigen’s expansion and enhancements. Definitions used later include:

o The Mapping Table (MT) is a table of pointers to other tables. each of which either
contains code templates (the Template Table), or maps most MUISL names to target
programming language and window system names, the MT and tables to which 1t

points are initialized from the contents of the IFs.

e The Class Table (CT) is a table that stores information about each class —its MUISL

name, mapping, attributes, operations, and superclass.

e An Object-Defimition Structure (ODS) is a data structure storing information specific
to an object definition; information includes the object name, object class, superclass,
local variables, attributes, and actions (including the code of local callbacks and event

handlers).

APPENDIX C. MUIGEN ARCHITECTURE AND FILE GENERATION 136

o The Object-Definition Structure List (ODSL) is the list of ODSs from which code for

each defined object is generated.

Muigen’s modular decomposition is graphically shown in Figure C.1. The modules perform

the following functions:
e The Drwer is the main module that calls other modules.

¢ The Initwalizer reads and parses IFs, initializes the MT and CT from the IFs, initjalizes

other muigen data structures, and performs other initializations.

o The Checker performs lexical analysis, parsing, and semantic checking of the SF. This

module uses lez and yace.
o The Builder accepts tokens from the Checker and builds the ODSL.

o The Generator creates the GF from the ODSL and MT.

Figure C.1: Muigen Modular Decomposition

The Driver first calls the Initializer which aborts muigen if there is any error in the IFs.
Information passed from the Initializer to the Driver includes the CT and MT. These tables
are used by the Checher as it reads and parses the SF. While parsing, the Checker calls the
Builder at the appropriate tokens. The Builder creates an ODS for each object definition
and fills it with information gleaned from an object definition, with the assistance of the

data in the MT and CT. If there are no errors detected by the Checker, the Driver then

APPENDIX C. MUIGEN ARCHITECTURE AND FILE GENERATION 137

calls the Generator, and passes to it the ODSL created by the Builder. The Generator uses
the ODSL and code templates in the Template Table to create the GF.

C.2 File Generation

When the Generator creates the GF, its general algorithm is:

Generate header (include-statements, macros,non-MUISL globals, etc.)
Generate global procedures
Generate global variables
For each 0DS in the ODSL
Generate event handlers
Generate callbacks
Generate object definition procedure
Generate instantiation procedure

Generate main()

Generation of the object definition procedure, which will contain the attributes, actions.
and non-procedure statements of an MUISL object definition. uses the information from

the current ODS to do the following:

Generate procedure header
Generate local variables

Generate regular attributes
Generate object creation procedurs
Generate callback attributes
Generate event handler attributes
Generate actions

Generate procedure trailer

Generation of the event handlers, callbacks, and the instantiation procedure is essentially

similar (except tor the different procedure headers). and follows these steps:

Generate procedure header
Generate local variables
Generate actions

Generate procedure trailer

-

Appendix D

Initialization Files

This appendix describes the contents of Initialization Files (IFs) read by muigen to initialize
its tables. The IFs contain mappings to the current target programming language and
window system. C and the X Window System, respectively. The purpose of this appendix
is not to show the mappings. but to explain the names that a MUISL specifier can use.
For identification purposes, IFs contain an .ini suffix. Prefixes have been chosen to indicate
a non-code mapping (mappng), or non-mapping initialization of a table (init), or code
template mapping (template). Of the IFs shown below, all but mappingOperation.ini are
NOIFs. The contents of the IF's whose names are followed by an asterisk (*) are explained

later in this appendix:

initClassTable.ini Contains class names used in initializing the CT data structure. The

class names in this file are those shown in Figure 8.2.

initMappingTable.ini Initializes the MT data structure, which points to tables to be
filled by the rest of the IFs. Entries in this file include names to point to tables
of variable types, attribute names, attribute values, key mappings, mouse button
mappings, event names, code templates, and so on.

mappingAttributeName.ini * Maps MUISL attribute names to X Window System at-
tribute names.

mappingAttributeValue.ini * Maps MUISL attribute values to X Window System at-
tribute values.

mappingButtonNames.ini * Maps MUISL button names to X Window System mouse

button names.

138

APPENDIX D. INITIALIZATION FILES 139

mappingKeyNames.ini * Maps MUISL key names to X Window System key names.

mappingClass.ini Maps MUISL class names, already initialized in the C'T from -

ClassTable.ini, to X Window System names.

mappingEventMasks.ini Maps internal muigen event-handler masks to X Window Svs

tem event mask names.
mappingEventNames.ini * Maps MUISL event names to X Window System eveat names

mappingOperation.ini * Contains MUISL operation mappings to C/X Window System

routines.
mappingSuperclass.ini Contains class hierarchy of MUISL object-types.
mappingVariable.ini Maps MUISL variable names to C/X Window System names
templateCode.ini * Maps internal muigen names to C/X Window System code-templates,

The rest of this appendix first explains the contents of the II's previously marked with
an asterisk (*). Table D 1 gives the prefixes to be appended to the attribute names of the
corresponding attribute-name tables. For example, the prefix atRoot 1s to be appended to
the names of class clRoot’s attributes. listed in Table D.2. The resulting attribute names
would be atRootBackground, atRootBorderVidth, and so on. Tables D.2, D3, D 1. D5
D.6, D.7, D.8, D.9, D.10, D.11, D.12, D.13, D.i4, D.15. D.16. and D.17 deseribe
the attribute names that can be used on the left side of an attribute definttion Table) 11X
describes the attribute values that can be used on the right side of an attribute definition
Table D.19 lists legal mouse names, and Table D.20 gives a partial hst of legal key names
(the full list is too long to enumerate here). In the latter table. an ellipsis indicates lusther
elements. Event names are shown in Table D.21.

Notation used includes: capitalized type names that indicate a value or varnable of that
type, non-italicized terminals, and italicized nonterminals. The initials TWS denote targel
window systemn; an asterisk (*) matches any character. Other notation 1s similar to that of

Appeundix B.

APPENDIX D. INITIALIZATION FILES

Class Attribute-Name Prefix
clRoot atRoot

clButton atButton

clMenu atMenu

clSimnle Window atSimpleWindow
clToggleButton atToggleButton
cIMenuButton atMenuButton
clSimpleMenu atSimpleMenu
clListMenu atListMenu
clTextVWindow atText Window
clScrollbarWindow | atScrollbarWindow
clBoxWindow atBoxWindow
clPanedBoxWindow | atPanedBoxWindow
clFormBoxWindow | atFormBoxWindow
clViewportWindow | atViewportWir.dow
ciDialogueWindow | atDialogueWindow
clltemSimpleMenu | atltemSimpleMenu

Table D.1: Attribute-Name Prefixes

Name Description Values Default
Backzround Background color ATblack, ATwhite | ATwhite |
Border Width Border width DIMENSION 1 B
Callback Callback(s) ("tdent_list) NULL
Destroy Callback Destruction callback(s) (tdent_list) NULL
EventHandlers Event handler(s) (Event_tuple list) | NULL
Hewght Heizht DIMENSION 0

Width Width DIMENSION 0

MapW henlnstantiated | Display when instantiated? | A'Lyes, ATno ATyes
IsSensttive Recelve events” A Lyes, ATno ATyes
PositionX Parent-relative x coordinate | POSITION 0
PositionY Parent-relative y coordinate | POSITION 0

Label Label to display STRING NULL

Table D.2:

clRoot Attributes

140

APPENDIX D. INITIALIZATION FILES

Name Description Values Default 7
Callback Button-press callback | (1cent list) NULL
Cursor Mouse-cursor shape | AT*Cursor TWS i
Font Text font AT*Font” TWS
Foreground | Foreground color ATwhite. ATblack | AThlack
JustifyLabel | Label’s alignment ATjustify Lett,
ATjustifyCenter,
ATjustifyRight AT fyCenter
Table D.3: clButton Attributes
Name Description Values Default
Cursor Mouse-cursor shape | AT*Cursor TWS
Foreground | Foreground color ATwhite, ATblack | ATblack
Table D.4: clMenu Attributes
Name Description Values Default
Cursor Mouse-cursor shape { AT*Cursor TWS
Foreground | Foreground color ATwhite, ATblack | ATblack
Table D.5: clSimpleWindow Attributes
Name Description | Values Default ‘
RadioGroup | Toggie button 1n radio group | ident NULL
ButtonState | Set button? ATyes. ATno | Ayes
Table D.6: clToggleButton Attributes
Name Description Values | Default
SimpleMenuName | ciSimpleMenu to pop up | string | TWS

Table D.7: ciMenuButton Attributes

APPENDIX D. INITIALIZATION FILES

142

Name Description Values Default
PopdownCallback Popdown-callback(s) | (tdent_list) | NULL
PopupCallback Popup-callback(s) (wdent_list) | NULL
PopupltemOnEntry | Detault menu 1tem (tdent) TWS
Table D.8: clSimpleMenu Attributes
Name Description Values Default
Callback cllistMenu 1tem-callback(s) | (:dent.ltst) | NULL
Font Text font AT*Fonu* TWS
DefaultColumns | Menu column number CARDINAL |2
ForceColumns Force columns? ATvyes, ATno | ATno
[temStrings Menu items STRING NULL
Numberltems Menu 1item number CARDINAL |0
Table D.9: clListMenu Attributes
Name Description Values Default
BreakLine Break line? ATyes, ATno ATno
UpperDisplayPosition | Character position at]
top-left corner POSITION 0
Display NonPrintables | Display nonprintables? | ATyes, ATno ATves]
EchoChars Echo characters? ATyes, ATno ATyes 1
Update Text update-type ATreadOnly,
ATappendOnly,
ATeditable ATreadOnly
Fount Tevt font AT*Font* TWS
Scrollllonz Horizontal scrollbar? ATscrollAlways, 7]
ATscrollNever,

ATscrollWhenNeeded

ATscrollNever

ScrollVert Vertical scrollbar? ATscrollAlways,

ATscrollNever,

ATscrollWhenNeeded | ATscrollNever
FromString Stning to display string NULL
Fromlile File to display string NULL
Ty pe Text from string/file? ATstringText,

ATfileText ATstringText

Table D.10: clTextWindow Attributes

APPENDIX D. INITIALIZATION FILES

113

Name Description Values Default T
JumpCallback Scroll Jump-callback(s) (tdenilisf) | NULL T
WindowLength Vertical scrollbar height/ —
Horizontal scrollbar length DIMENSION | 1
MinThumbSize Minimum thumb pixel-size DIMENSION | 7 i
Orientation Scrollbar orientation ATvertical,
AThorizontal | ATvertical
DownCursor Vertical backward-scrolling T
cursor AT*Cursor ATdownArrowCursor
UpCursor Vertical torward-scrolling/ T
horizontal thumbing cursor AT*Cursor ATupArrowCursor
RightCursor Hornzontal backward-scrolling/ o
vertical thumbing cursor AT*Cursor ATroight Arrow Cursot
LeftCursor Horizontal forward-scrolling AT*Cursor AlTettArrow Curcor
VertCursor Vertical tnactive cursor AT*Cursor AlvertDoubleXrrow
(Cursor
HornzCursor Horizontal inactive cursor AT*Cursor AThorizDoublevrrow
Cursor
ScrollCailback | Scrolling cailback(s) (wdent_list) | NTLL
ShownThumbSize | Percentage thumb-size REAL 00 o
Thickness Vertical width/
Horizontal height DIMENSION § 1t
ThumbTop Percentage thumb-top
location REAL 00
Table D.11: clScrollbarWindow Attribntes
Name [Description Values Default
HorizSpaceBetweenChildren | Horizontal pisel-space o
between children DIMENSION 1
VertSpaceBetweenChildren | Vertical pixel-space)
between children DIMENSION 4
Shape Box shape ATtallAndNarrow,
ATshortAndWide | ATtallAndNarrow

Table D.12: clBoxWindow Attributes

J e

APPENDIX D. INITIALIZATION FILES

Name Description Values Default
Cursor Mouse-cursor shape AT*Cursor TWS
Orientation Pane-stacking orientation { ATvertical,

AThorizontal | ATvertical
MaxSize Maximum child size DIMENSION | Infimty
MinSize Minimum child size DIMENSION | Grip size
AllowResize Allow child resizing? ATyes, ATno | ATyes
ShowGripBetweenPanes | Show grip between panes? | ATves, ATno | ATno

Table D.13: clPanedBoxWindow Attributes

Name Description Values Default
DefaultDistance Default inter-children spacing CARDINAL | 4
LettNeighborObject | Left-neighbor OBJECT_ID | NULL
TopNeighborObject | Top-nerghbor OBJECT.D | NULL
HorizDistance Horizontal inter-children spacing | CARDINAL | TWS
Vert Distance Vertical inter-children spacing CARDINAL | TWS

Table D.14: clFormBoxWindow Attributes

Name Description Values | Default
AllowlorizScrollbar | Allow horizontal scrollbar | ATyes,]

when needed? ATno ATno
AllowVertScrollbar | Allow vertical scrollbar ATyes,

when needed” ATno ATno
ForceScrollbars Force allowed scrollbars? | ATyes,

ATno ATno

UseBottomEdge Place horizontal scrollbar | ATyes,

on bottom edge? ATno ATno
UseRightEdge Place vertical scrollbar ATyes,

on top edge? ATno ATno

Table D.15: clViewportWindow Attributes

144

APPENDIX D. INITIALIZATION FILES

Name Description Values Dofuultﬂ.‘]
Text Input text STRING NULL
DefaultDistance Default inter-children spacing CARDINAL | T
LeftNeighborObject | Left-neighbor OBIECTAD | NULL
TopNetghborObject | Top-neighbor OBJECTID | NULL
HorizDistance Horizontal inter-children spacing | CARDINAL | 'TWS
VertDistance Vertical inter-children spacing | CARDINAL | TWS

Table D.16: clDialogueWindow Attributes

Name

Description

Va' ies

Default

Callback

Menu 1tem cailback(s)

(1 nthst)

NULL

Table D.17: clltemSimple?

au Attributes

L5

When necessary, target programming language and window system code templates in

template Code.ini contain %s characters that are replaced with the appropnate names such

as object names, mapped class names. and so on

This file contains code templates for

information such as include files. global definitions, procedure templates. and so on Some

examples of entries in this file are.

{ templateEventHandlerHeader,

#%s is filled with specifier’s event handler name

*void %s(widget, client_data, event)

caddr_t client_data;\n XEvent *event;\n {’ }

{ templateAssignment, ' %s = %s ;\n’}

{ templateExternal, ’Ys’}

{ templatelastantiateProcedureHeader,

'\n void Instantiate()\n{\n’}

Operation names and arguments specified in mappimngOperation.an are summarized be

low. The notation used for operation names is: objClassOperationName

The notation

— type indicates a return type associated with an operation. The argument argQbyect 1s

the receiver of an operation — the object to which the operation applies; except for the

APPENDIX D. INITIALIZATION FILES

Name Description
ATwhite White color
ATblack Black color
ATyes True

ATno False
ATreadOnly Readonly text
ATappendOnly Appendonly text

ATeditable
ATscrollNever
ATscrollAlways
ATscrollWhenNeeded
ATstringText
AThleText
ATvertical
AThorizontal
ATsmaliFont
ATsmallFontBold
ATmediumFont
ATmediumFontBold
ATlargeFont
ATlargeFontBold
ATupArrowCursor
ATdownArrowCursor
ATrnight ArrowCursor
ATleft ArrowCursor
AThorizDoubleArrowCursor
MATvertDoubleArrowCursor
ATdotCursor
ATecircleCursor
ATcrosshairCursor
ATupDownArrowCursor
ATneArrowCursor
ATuwArrowCursor
ATwatchCursor
ATquestionCursor
ATyustafy Left
ATjustfyCenter
ATjustify Right
ATtall.AndNarrow
ATshortAndWide
ATnoPopup
ATmenuPopup
A'T'dnloguePopup
ATobjectPopup
ATtopOhject

Editable text

No scrollbar

Always a scrollbar
Scrollbar, if needed
Displayed string

Displayed file

Vertical scrollbar
Horizontal scrollbar

6x13 font

6x13 bold font

8x13 font

8x13 bold font

9x15 font

9x15 bold font

1} cursor

{} cursor

= cursor

< cursor

4 cursor

{ cursor

e cursor

o cursor

+ cursor

] cursor

/' cursor

\\ cursor

Watch-shaped cursor

? cursor

Left-justified label
Center-justified label
Right-justified label

Tall & narrow clBoxWindow
Short & wide c|BoxWindow
One-time popup

Menu popup/popdown
Dialogue-box popup/popdown
Non-menu/dialogue popup/popdown
Top parent object.

Table D.18: Attribute Values

146

APPENDIX D. INITIALIZATION FILES

Name Description
buttonLeft Left mouse button
buttonMiddle | Middle mouse button
buttonRight Right mouse button

Table D.19: Mouse Buttons

Name | Description

keya a key

keyA A key

keyz = key

keyZ Z hey

keyl I key

Table D.20: Keys

Name Event
event KeyPress Key pressed
eventKeyRelease | Key released
eventButtonPress | Button pressed
event Motion Mouse moved
eventEnter Object entered
event Leave Object exited
eventExpose Object exposed
event Visible Object visible
eventCreate Object created
event Destroy Object destroyed
event Unmap Object undisplayed
eventMap Object displayed
eventConfigure Object mantpulated
event Resize Object tesized

eventCirculate

Object hidden/unhidden

Table D.21: Event Names

APPENDIX D. INITIALIZATION FILES 148

operation objRootInstantiate, objects are assumed to have been instantiated. Recall that

an operation’s arguments can be specified in any order.
Operations associated with class clRoot are:

o [objRootInstantiate argObject:ident argParent:ident
argPopupType: (ATnoPopup | ATmenuPopup | ATobjectPopup | ATdialoguz”opup)]
Purpose. Instantiate a previously defined object.
o [objRootDestroy argObject:ident]
Purpose: Destroy an ATnoPopup object. Will exit the program if destroyed
object 1s the parent of all others.
o [objRootDestroyPopup argObject:ident]
Purpose: Destroy an ATmenuPopup. ATobjectPopup, or ATdialoguePopup ob-
ject.
o [objRootDestroyExit argObject::dent]
Purpose: Destroy an object and exit the program.
o [objRootSetAttribute argObject:zdent argAttributeName:attribute.name
argAttnibuteValue: (ident | string | attribute_value)]
Purpose. Set an object’s attribute to a value.
e [objRootGetAttribute argObject:ident argAttributeName:attribute name
argAttributeValue:ident]

Purpose. Retrieve an object’s attribute-vzlue to a variable.

[objRootMove argObject:ident argX:value argY :value]

Purpose- Move an object to an (z,y) location.

[objRootMap argObject:ident]

Purpose: Display an undisplayed object.

[objRootUnMap argObject:ident]

Purpose: Undisplay a displayed object.

Operations associated with class ¢l Toggle Button are:

APPENDIX D. INITIALIZATION FILES 11y

o [objToggleButtonAddToGroup argObject::dent argToggleButtonluGioup.wdent]

Purpose: Add a toggle button to the group of toggle buttons wdentitied by the
value of argToggle ButtonInGroup.

o [objToggleButtonRemoveFromGroup argObject:ident]

Purpose: Remove the toggle button from its group of toggle buttons
Operations associated with class clListMenu are:

o [objListMenuPopUp argObject:dent]

Purpose: Pop-up a list menu.

[objListMenuPopDown argObject:ident]

Purpose: Pop-down a list menu.

[objListMenullighlightItem argOb ject::dent argltemIndex:CARDINAL]

Purpose: Highlight a list-menu item at a certain index.

[objListMenuUnhighlightItem argQOb ject.:dent]

Purpose: Urhighlight the currently highlighted list-menu 1tem

[objListMenuGetCurrentItemString argObject:zdent] — STRING

Purpose: Get the string of the highlighted list-menu item.

[objListMenuGetCurrentItemIndex argObject:ident] — CARDINAL

Purpose: Get the index of the bist menu item currently hughlighted ndices sturt

at zero.
Operations associated with class clTezt Window object are:

o [objTextWindowLoadFromFile argObject:udent argFilename:string]

Purpose: Load a file into a text window.

e [objTextWindowSaveToFile argOb ject.:dent]
Purpose: Save a text window’s displayed text to the file from which 1t was read
e [objTextWindowSaveToNamedFile aigObject.ident argFileName string]
Purpose: Save a text window’s displayed text to the named file

APPENDIX D. INITIALIZATION FILES 150

[objTextWindowHasTextChanged argObject:ident] — BOOLEAN

Purpose: Return TRUE if a text window’s contents have changed.

[objTextWindowReplaceText argOb ject:ident argText:string
argStartPosition:CARDINAL argEndPosition:CARDINAL]

Purpose Delete text from the absolute character positions starting from the
value for argStart Position to the value for argEndPos:tion. Replace deleted text with
new text, given by the value of argTezt.

[objTextWindowGetText argObject::dent] — STRING

Purpose: Get text displayed in a text window.

[objTextWindow HighlightText argOb ject:ident argStart CharIndex:CARDINAL
argEndCharlndex:CARDINAL]

Purpose: Highlight text between starting and ending absolute character posi-
tions, inclusive.

[objTextWindowUnhighlightText argObject:ident]

Purpose: Unhighhight highlighted text.

[objTextWindowMessage argObject:ident argText:string]

Purpose: Display text in a text window, erasing any previous messages.

The operation associated with class ¢lDiwalogue Window is:

[objDialogueWindowGetText argObject:ident] — STRING

Purpose: Get a dialogue window’s text.

The number of the above operations, attribute names, and values, may be currently

limited. but is well suited to simple experimentation with a specification language. New

operations and attributes can be added to the IFs, without having to recompile muigen.

Appendix E

Sample MUISL Specifications

This appendix describes sample MUISL specifications, and shows the user interfaces that
muigen generated from these specifications. The generated files are not shown because of

space limitations.

E.1 Example 1

The first example specifies a single window having multiple children. The resultant interface
is shown in Figure E.1. It consists of a window with buttons and two text windows I'he
upper text window is for messages and the user’s communication with the program The
lower text window is for text editing. Frame (a) of the figure shows the initial window
that appears when the program is invoked. The lower text window contains the contents
of a file called temp. In Frame (b), the user has typed the name of a file in the upper texi
window and has clicked the Load button to load this file. The lower text window contains
the contents of the loaded file. Frame (c) shows the results of cliching the felp bution a
message appears in the upper text window.

The complex hierarchy of windows includes: an outer paned box surrounding all windows
(OuterPanedBocr) and three box windows (InnerBoz, InnerUpperTest. and InnerLower Text)
as children of the outer paned box. InnerBoz acts as the container of the command buttons
SaveButton (for saving the current file), LoadButton (for loading a file whose name is typed
in InnerUpperTert), HelpButton (for help messages in Innerlpper l'ezt), and QuitButton
(for quitting).

The specification of Example 1 first defines each object with its attributes and actions

151

APPENDIX E. SAMPLE MUISL SPECIFICATIONS

hia is the file tens

()

¥ #(0)Legin 1.1 86/07/09 SHL

Jdegin file

Read in sfter the .cotwre file vhun you log in,
Mot road In for eubsewusrt. shaile, Fer aotling up
terninal v global envirerment cherscteristics,

1f (1IN0 @ "san”) then
b

|balow soks for torn tupe

/0/grad/emml/, Jogin,

8 A(NiLagin 1 1 06/07/09 Sni

Jdogtn file

Resd in after the cabre Fils when you log in,
Wot read {n for nbremmrt sholle, For setting w
terninal and global smvirerment cheracteristice.

U ternlnal chersctaristice far renste Lernlnaist

] Loeve Lines for oll bt o remets tarninal connentod
) ot (e add 2 rew Line If ymsr Lorninel dees net mppesr).

11 (OTERN 1o “oun’} Lham
(L)

ol

oval ‘Last ~o0] <n gandallI1 V100 ~n rotuard:PVL108 -n dmbitve 100 §
Walow eske for Lare Lupe

Soval ‘Lost 401 ~a gorcdolf*TVL100 - AanktP100 STENM®

$elow dus net sek far Lurn tipe

(b)

Figure E.1: Example 1 Interface

] terninal charsctorintics for renats tarninele:

oove 1i; for all Wt yowr ressis torninal conmented
: lezl-v'-umuﬂml“_m).

::.'A ‘Lot o] =n gandalf3TWE100 —u matuwrdPI00 o dodtT 100 ¢4

Sovel ‘test o0l «n gandall PAIN -a dudINL10G STEM
oelow des net ask for tern Lype

152

APPENDIX E. SAMPLE MUISL SPECIFICATIONS

Objects that need to override the default classing include the SUPERCLASS token in therr
definition. The specification instantiates the objects in the correct order to pop up the

window. This example also shows the usage of callbacks and operations:

Description: Shows clPanedBoxWindow, clBoxWindow, clTextWindow,

clCommandButton

#Define the outermost paned box
OBJECT
NAME: OuterPanedBox
CLASS: clPanedBoxWindow
ATTRIBUTES:
atRootHeight = 500
atRootWidth = 500
END #OuterPanedBox

#Define the children of COuterPanedBoxWindow
#Define the box containing buttons
OBJECT
NAME: InnerBox
CLASS: clBoxWindow
ATTRIBUTES:
atRootHeight = 25
END #InnexrBox

#Define the text windows

#Upper Text window for messages

OBJECT

NAME: InnerUpperText

CLASS: clTextWindow

ATTRIBUTES:
atRootHeight = 100
atTextWindowlUpdate = ATeditable
atTextWindowScrollHoriz = ATscrollAlways
atTextWindowScrollVert = ATscrollAlways

END #InnerUpperText

OBJECT

NAME: InnerLowerText

CLASS: clTextWindow

ATTRIBUTES:
atRootHeight = 375
atTextWindowlUpdate = ATeditable
atTextWindowScrollHoriz = ATscrollAlways
atTextWindowScrollVert = ATscrollAlways
atTextWindowType = ATfileText
atTextWindowFromFile = "temp"

APPENDIX E. SAMPLE MUISL SPECIFICATIONS 154

END #InnerLowerText

#Define children of InnerBox
0BJECT
NAME+ SaveButton
CLASS clCommandButton
SUPERCLASS' clTextWindow
ATTRIBUTES
atR-~otCallback = (callback_save) #not needed if CALLBACK statement
#1s below
atRootLabel = "Save'
VARIABLES
STRING str
ACTIONS
CALLBACK (atRootCallback, callback_save)
#atRootCallback 1s used because default superclass 1s overridden
[objTextWindowSaveToCurrentFile argObject: InnerLowerText]
END #callback
END #SaveButton

0BJECT
NAME. LoadButton
CLASS: clCommandButton
SUPERCLASS. clTextWindow
ATTRIBUTES.
atRootLabel = "Load"
#no need for callback attribute if CALLBACK statement is below
VARTABLES
STRING str
ACTIONS
CALLBACK (atRootCallback, callback_loai)
str = [objTextWindowGetText argOb_ect:InnerUpperText]
[objTextWindowLoadFromFile argObject: InnerLowerText
argFileName: str]
END #callback
END #LoadButton

OBJECT
NAME HelpButton
CLASS. clCommandButten
SUPERCLASS clTextWindow #to allow usage of objTextWindow messages
ATTRIBUTES.

atRootLabel = "Help"

#no need for callback attribute 1f CALLBACK statement 1s below
ACTIONS.

CALLBACK (atRootCallback, callback_help)

#atRootCallback 1s used because default superclass is overridden

APPENDIX E. SAMPLE MUISL SPECIFICATIONS

[objTextWindowMessage argDbject: InnerUpperText
argText: "This is all the help you’ll get\n"]
END #callback
END #HelpButton

OBJECT

NAME: QuitButton

CLASS: clCommandButton

ATTRIBUTES:
atRootLabel = "Quit"

#no need for callback attribute 1f CALLBACK statement 1s below

ACTIONS:
CALLBACK (atButtonCallback, callback_quit)
[objRootDestroyExit arglbject: ATtopObject]
END #callback
END #QuitButton

INIT
ACTIONS:

[objRootInstantiate argObject:OuterPanedBox argParent:ATtopObject

argPopupType:ATnoPopup]

[objRootInstant:ate arglbject:InnerBox argParent: QuterPanedBox

argPopupType:ATnoPopup]

[objRootInstantzate argObject:InnerUpperText argParent

argPopupType:ATnoPopup]

[objRootInstantiate argObject:InnerLowerText argParent: OuterPanedBox

argPopupType:ATnoPopup]

#children of Innerdox

{ objRootInstantiate argObject:SaveButton argParent: InnerBox

argPopupType.ATnoPopup]

[objRootInstantiate argObject: LoadButton argrarent: InnerBox

argPopupType: ATnoPopup]

[objRootInstantiate argObject: HelpButton argParent' InnerBox

argPopupType ' ATnoPopup]

[objRootInstantiate argObject: QuitButton argParent. InnerBox

argPopupType:ATnoPopup]
END #INIT

OuterPanedBox

.-

[

APPENDIX E. SAMPLE MUISL SPECIFICATIONS 156

E.2 Example 2

The second example shows the ability to instantiate multiple independent windows, at the
user's request. Figure E 2 displays the results of the user’s creation of multiple windows It
consists partly of a window (labeled with a.out) containing command and menu buttons,
that 1s the only one that nitially appears. The other windows — text and generic windows,
and a dialogue box — were created by clicking the appropriate item from the menu attached

to one of the buttons. Also shown is a pull-down menu titled WindowMenu.

g a.ou. g & Textdlnoow Taxtl! nuow
Choose One helle X
Hindags
3 Hindouitenu .
S TextHindow
Y Genericlindou ¢ §
3 DialogueBox \
3!
'
!
1
3
Generia DialogueBoxd £

Chooss One

Conflrm lCancsl
E 2.1,

Figure E.2: Example 2 Interface

The window of buttons (OuterBoz) includes LabelButton (for displayving a title), Quut-
Button (for quitting), and MenuButton (for pulling down the menu WindowMenu). This
pull-down menu consists of items to create different windows: Menultem! to create an in-
stance of the text window, TertWindow: Menultem? to create an instance of the genenc
window, (GenericWindow; and Menultemd to create an instance of the dialogue box, Dia-
logueBor. The dialogue box contains a text area and two command buttons (CancelButton
and ConfirmButton).

All objects are defined with their attributes and actions, but not all are immediately in-

stantiated. QutcrBor. its children buttons, and WindowMenu are first instantiated. ¥When

APPENDIX E. SAMPLE MUISL SPECIFICATIONS 157

a menu item is clicked. the appropriate window (GenericWimndow, lTestWndow, ot D
logueBor with its buttons) is instantiated. Note that this example shows the usage of event

handlers (see the definition of Generic Window):

Description : Shows clCommandButton, clDialogueWindow,

clMenuButton, clLabelButton, clSimpleMenu,

clItemSimpleMenu, clGenericWindow, clText¥indow,
clBoxWindow

Define the outermost box

OBJECT

NAME: OuterBox
CLASS: clBoxWindow
END #0uterBox

#Define children of OuterBox
0BJECT
NAME : LabelButton
LASS: clLabelButton
ATTRIBUTES:
atRootLabel = “Cheoose One"
atRootBorderYidth = 0
END #LabelButtou

0BJECT
NAME : QuitButton
CLASS: clCommandButton
ATTRIBUTES:
atRootLabel = " Quit "
ACTIONS:
CALLBACK (atButtonCallback, callback_quit)
[objRootDestroyExit argObject: ATtopObject]
END #callback
END #QuitButton

OBJECT
NAME : MenuButton
CLASS. clMenuButton

ATTRIBUTES:
atRootLabel = " Windows "
atMenuButtonSimpleMenuName = “WindowMenu"
END #MenuButton v

Define the simple menu

OBJECT

APPENDIX E - SAMPLE MUISL SPECIFICATIONS 158

NAME: WindowMenu
CLASS- cl3impleMenu
ATTRIBUTES

atRootLabel = "WindowMenu"
END #WindowMenu

Objects created from the simple menu
The text window

CBJECT
NAME TextWindow
CLASS clTextWindow
ATTRIBUTES
atRootWidth = 200
atRootHeight = 200
atTextWindowUpdate = ATeditable
atTextdindowScrollVert = ATscrollilways
END #TextWindow

#Generic window
OBJECT
NAME GenericWindow
CLASS clGenericWindow
ATTRIBUTES
atRootWidth = 200
atRootHeight = 200
ACTIONS
EVENT (eventButtonPress, handle_key_press)
CASE BUTTON OF
buttonLeft :
[objRootDestroyPopup argObject: GenericWindow]
ELSE
@fprintf(stderr,*Button pressed\n");
END # case
END Revent

EVENT (eventEnter, handle_enter)
Qfprintf(stderr,"Entered window\n");
END #event
END #GenericWindow

Define the children of the dialogue box
0BJECT

NAME ConfirmButton

CLASS clCommandButton

SUPERCLASS clDialogueWindow

ATTRIBUTES

APPENDIX E. SAMPLE MUISL SPECIFICATIONS

atRootLabel = "Confirm"
VARIABLES:
STRING str
ACTIONS:
CALLBACK (atRootCallback, callback_confirm)
str = [objDialogueWindowGetText argObject: DialogueBox]
Q@fprintf (stderr, "Retrieved: %s\n",str);
[objRootDestroyPopup argObject: DialogueBox)
END
END #ConfirmButton

OBJECT
NAME: CancelButton
CLASS: c¢lCommandButton
ATTRIBUTES"
atRootLabel = "Cancel"
ACTIONS:
CALLBACK (atRootCallback, callback_cancel)
[objRootDestroyPopup argObject: DialcgueBox]
END
END #CancelButton

Define the dialogue box
OBJECT

NAME: DialogueBox

LLASS: clDialogueWindow

ATTRIBUTES:
atRootLabel = "Choose One"
atDialogueWindowText = "Sample"
ACTIONS:

[objRootInstantiate arglbject:ConfirmButton argParent DialogueHox
argPopupType: ATnoPopup]

[objRootInstantiate argObject:CancelButton argParent DialogueHox
argPopupType: ATnoPopup]
END #DialogueBox

Define simple menu 1tems

OBJrCT
NAME: Menultemi
CLASS: clltemSimplelenu
ATTRIBUTES:
atRootLabel = "TextWindow"
atItemSimpleMenuCallback = (callback_itemi)
ACTIONS:
CALLBACK (atItemSimpleMenuCallback, callback_itemi)

[objReotInstantiate argObject. TextWindow argParent ATtopObject

1549

APPENDIX E SAMPLE MUISL SPECIFICATIONS 160

argPopupType: ATobjectPopup]
END #callback
END #Menultemi

OBJECT
NAME. MenulItem2
CLASS clItemSimpleMenu

ATTRIBUTES
atRootLabel = "GenericWindow"
atItemSimpleMenuCallback = (callback_item2)
ACTIONS.

CALLBACK (atItemSimpleMenuCallback, callback_item2)
[objRootInstantiate argObject: GenericWindow argParent: ATtopObject
argPopupType.ATobjectPopup]
EWD #callback
END #MenuItem2

OBJECT
NAME: MenuIteml
CLASS clItemSimpleMenu
ATTRIBUTES -

atRootLabel = "DialogueBox"

atItemSimpleMenuCallback = (callback_item3)
ACTIONS

CALLBACK (atItemSimpleMenuCallback, callback_item3)

[objRootInstantiate argObject:DialogueBox argParent: ATtopObject
argPopupType:ATobjectPopup]

END #callback
END #MenuItem3

INIT
ACTIONS:
[objRootInstantiate argObject:OuterBox argParent:ATtoplUbject
argPopupType: ATnoPopup]

[objRootInstantiate argObject: LabelButton argPavent: OuterBox
argPopupType: ATnoPopup]

[objRootInstantiate argObject: QuitButton argParent: OuterBox
argPopupType:ATnoPopup]

[objRootInstantiate argObject MenuButton argParent: OuterBox
argPopupType.ATnoPopup]

[objRootInstantiate argObject:WindowMenu argParent: MenuButton

APPENDIX E SAMPLE MUISL SPECIFICATIONS 101

argPopupType: ATmenuPopup]

[objRootInstantiate argObject:Menultemi argParent:WindowMenu
argPopupType: ATnoPopup }

[objRootInstantiate arglbject:Menultem2 argPzrent:WindowMenu
argPopupType:ATnoPopup 1]

[objRootInstantiate argObject:Menulten3 argParent WindowMenu
argPopupType: ATnoPopup]
END #INIT

Bibliography

(1] The NeXT System Reference Manual (Release 1.0 Preliminary Edition). NeXT Inc.,
1989,

[2] H B. Beretta and et al. XS-1: An Integrated Interactive System and Its Kernel.
In Proceedings 6th International Conference On Software Engineering, pages 340- 319,

1982,

(3] W. Buxton and et al. Towards a Comprehensive User Interface Management System.

Computer Graphics. 17(9):35-42. July 1083.

[4] M. Caplinger and R. Hood. An Incremental Unparser for Structured Editors. In
Proceedings of the Nineteenth Annual Hawau International Conference on System Sci

ences, pages §3-74, 1986.

[5] L. Cardelli. Buwlding User Interfaces By Direct Manipulation. Research Report 22,
Digital Equipment Corp. Systems Research Center, Palo Alto, Calif., 1987.

[6] L. Cardelli and R. Pike. Squeak: A Language for Communicating with Mice In
SIGGRAPH 85 Conference Proceedings. pages 199-204, July 1985.

[7] Peterson. C.D .\thena Widget Set - C Language Interface. MIT X Consortium, 1989.

(8] S. Choudhury. A Fragment Based Program Editor. Master’s thesis, School of Computer
Science, McGull University, Montreal, August 1986.

[9] J. Coutaz. Abstractions for User Interface Design. IEEE Computer, 18(9):21-34,
September 1985

[10] E.G. Davis and R.W. Swezey. Human Factors Guidelines in Computer Graphics: A
Case Study. Int J. Man-Machine Studies, 18:113-133, 1983.

162

BIBLIOGRAPHY 163

[11] M. Delisle, D.E. Menicosy, and M.D. Schwartz. Magpie — An Interactive Programnung
Environment for Pascal. Technical Report CR-83-4, Computer Research Laboratory,

Applied Research Laboratories, Tektronix Inc., 1983.

[12] L.P. Deutsch and E.A. Taft. Requrements for an Erperimental Programming Enviion
ment. Technical Report CSL-80-10. Xerox PARC, 1980

[13] V. Donzeau-Gouge and et al. Programming Environments Based on Stiuctured
tors: The MENTOR Experience. In H. Schrobe D. Barstow and E. Sandwell, editors.,

Interactive Programmuing Environments, McGraw-Hill Book Company. 1981

[14] G. Engels, T. Janning, and W. Schafer. A Highly Integrated Tool Set For Program
Development Support. In Proc. ACM SIGSMALL Conference. pages 110, May 198K

[15] G. Enge'.. M. Nagl, and W. Schafer. On the Struct. re of Structure-Oriented Fditor.
for Different Applications. Proceedings of the ACL" SIGSOFT/SIGPLAN Softwar
Engineering Symposium on Practical Software Develo, ..nt Environments, ACM SIG

PLAN Notices, 22(1):190-198, January 1987.

[16] M.A. Flecchia and R.D. Bergeron. Specifving Complex Dialogs in Algae In Proe
SIGCHI+GI87, pages 229-234, 1087,

[17] J. Foley. Transformations on a Formal Specification of User-Computer Interfaces
Computer Graphics. 109112, April 1987.

[18] J. Foley and et al. Defining Interfaces at a High Level of Abstraction [ELEF Software,
6(1):25-32, January 1989.

(19] J.D. Foley. The Structure of Interactive Command Languages [n Proccedugs of
the IFIP Workshop on the Methodology of Interaction, pages 227 231, North Holland
Publ., Amsterdam, 1980.

[20] J.D. Foley and et al. A Knowledge-Based User Interface Management System In
Proceedings of the ACM CHI'SS Conference on Human actors i Computing Systems
pages 67-72, May 1988,

[21] 1.D. Foley, W.C. Kim, and C.A. Gibbs. Algornithms to Transform the Formal Speaih
cation of a User-Computer Interface. In Human-Computer Interaction - INTER ("]

'87, pages 1001-1006, 1987.

iy

BIBLIOGRAPHY 164

[22] C.Gibbs, W.C. Kim, and J. Foley. Case Studies in the Use of IDL: Interface Definition
Language. Technical Report GWU-IIST-86-30, Dept. of EE & CS,George Washington
University, Washington, D.C., 1986.

[23] A. Goldberg and D. Robson. Smalitalk 80: The Language and Its lmplementation.
Addison-Wesley, 1983,

[24] M. Green. Report on Dialogue Specification Tools. In G.E. Pfaff, editor, User-Interface
Management Systems, pages 9-20, Springer-Verlag, 1985.

[25] M. Green. The University of Alberta User Interface Management System. In SIG-
GRAPH "85 Conference Proceedings. pages 205-213. July 1985.

[26] W.J Hansen User Engineering Principles for Interactive Systems. In AFIPS Fall

Jowmnt Computer Conference Proceedings, pages 523-532, 1971.

[27] H.R. Hartson and D. Hix Human-Computer Interface Development: Concepts and

Systems for its Management. ACM Compulting Surveys, 21(1):5-92. March 1989.

[28] H.R Hartson. D. Hix, and R.W. Ehrich. A Human-Computer Dialogue Manage-
ment System. In Proceed:ings of INTERACT °84, First IFIP Conference on Human-

Computer Interaction, pages 57-61, International Federation for Information Process-
g, 1984,
[29] P Hayes. E. Ball, and R. Reddy. Breaking the Man-Machine Communication Barrier.

IEEL Computer, 14(3)19-30. March 1981.

[30] P Hayes and P. Szekely. Graceful Interaction Through the COUSIN Command Inter
face. Intcrnational Journal of Man-Machine Studies, 19(3):285-305, September 1983

(31] P.J. Hayves Executable Interface Definitions Using Form-Based Abstractions. In R H.
Hartson. editor, Advances in Human Computer Interaction, Volume 1, pages 161-190,

Ablex Publishing Corporation, Norwood, New Jarsey, 1985.

[32] P J. Hayes. P AL Szehely, and R.A. Lerner. Design Alternatives for User-Interface Man-
agement Systems Based on Experience with COUSIN. In Proc. SIGCHI 85, pages 169-
175, 1985.

(33] R.D Il Supporting Concurrency, Communication, and Synchronization in Human-
Computer Interaction — The Sassafras UIMS. ACM Transactions on Graphics,

5(3)179-210, July 1986.

BIBLIOGRAPHY 165

(34]
(35]

[36]

[37]

(48]

(46]

Apple Computer Inc. Inside Macintosh, vol. I. Addison-Wesley, Reading, Mass , 1085

R.J.K. Jacob. A Specification Language for Direct-Manipulation Interfaces Ac¢'M
Transactions on Graphics, 5(4):283-317, October 1986

R.J.K. Jacob. A State-Transition Diagram Language for Visual Programming 11} F
Computer, 18(8):51-59, August 1985.

R.J.K. Jacob. Using Formal Specifications in the Design of a Human-Computer Inter
face. Communications of the ACM, 26(4):259-264, April 1983.

Richards. J.N.J and et al. On Methods for Interface Specification and Design Infer
national Journal of Man-Machine Studies, 24:545-568, 1986.

B.W. Kernighan and J.R. Mashey. The UNIX Programming Environment [FEE
Computer, 14(4):12-24, April 1981.

B.W, Kernighan and D.M. Ritchue. The C Programming Language. Prentice-1lall,
1978.

C. Lewerentz and M. Nagl. A Formal Specaification Language for Software Systems
defined by Graph Grammars. In Proceedings of WG’84 Workshop on Graphtheoretic
Concepts in Computer Science, pages 224-211, Linz, 1984

N.H. Madhavji. Fragtypes: A Basis for Programming Environments. (LELE Transae

tions on Software Engineering, 14(1):85-97. January 1983.

N.H. Madhavji. Operations for Programming ia the all. In IKEE Sth International

Conference on Software Engineering, pages 15-25. August 1985,

N.H. Madhavii, S. Choudhury, R. Robson, and N. Friedman. On Commands for an ln
tegrated Programming Environment. In K. Hopper and LA. Newman, editors, founda-
tions for Human-Computer Communication, pages 407-423, North-Holland Publishing
Co., 1986.

N.H. Madhaviji, N. Leoutsarakos, and D. Vouliouris. Software Construction Usiug
Typed Fragments. In Proceedings of the International Jomnt Conference on Theory
and Practice of Software Development (TAPSOFT), pages 163-178, Springer Verlag,
1985.

N.H. Madhaviji, L. Pinsonneault, and K. Toubache. Modula-2/MUPE-2 Langnage and

Environment Interactions. [EEE Software, 3(6):7-17, November 1986,

BIBLIOGRAPHY 166

[47]

(58]

5]

N.H. Madhavji, L. Pinsonneault, K. Toubache, and J. Desharnais. A New Approach
to Cursor Movements in User Interfaces of Integrated Programming Environments.

Information and Software Technology, 30(9):535-546, November 1988.

N.H. Madhavji, M. Zhang, S. Boulos, and G. Yuan Xiang. Semi-structured Cursor
Movements in MUPE-2. Software Engineering Journal, 4(6):309-317, November 1989.

J. McCormack and P. Asente. X.11 Toolkit for the X Window Manager. In Proc.
ACM SIGGraph Symp. User-Interface Software, pages 46-55, 1989.

J. McCormack, P. Asente. and R. Swick. X Toolkit Intrinsics - C Language Interface.
MIT X Consortium, 1989.

B. Meyer. Reusability: The Case for Object-oriented Design. IEEE Software, 4(2):50-
64. March 1987.

B. Meyer, J. Nerson, and S.H. Ko. Showing Programson a Screen. Science of Computer

Programmang, 5:111-142, 1985.

M. Mikelsons. Prettyprinting in an Interactive Programming Environment. In Proc.

SIGPLAN/SIGOA Symposium on Text Manipulation, pages 108-116, June 1981.

B.A. Myers. Creating Interaction Techniques by Demonstration. IEEE Computer
Graphics and Applications, 51-60, September 1987.

B.\. Myers User-Interface Tools: Introduction and Survey. IEEE Software, 6(1):15—
23, January 1989.

B.\. Myers and W. Buxton. Creating Highly-Interactive and Graphical User Interfaces
by Demonstration. In SIGGRAPH '86 Conference Proceedings, pages 249-258, August
1986

[. Nassi and B. Schneiderman. Flowchart Techniques for Structured Programming.

ACM SIGPLAN Notices, 8(8), August 1973.

P. Naur. Revised Report on the Algorithmic Language ALGOL 60. Communications
of the ACM. January 1963.

J. Nievergelt. Errors in Dialogue Design and How to Avoid Them. In Document

Preparation Systems, pages 1-10, North Holland, 1983.

BIBLIOGRAPHY 167

[60] K. Normark. Programming Environments — Concepts, Architectures, and Tools. Tech
nical Report R 89-5, Institute of Electronic Systems, Aalborg University, Denmark,
1989.

[61} D. Notkin. The Gandalf Project. The Journal of Systems and Software, 5(2) 91 105,
May 1985.

(62] D.R. Olsen. MIKE: The Menu Interaction Kontrol Environment ACM Transactions
on Graphics, 5(4):318-344, October 1986.

{63] D.R. Olsen and E.P. Dercpsey. SYNGRAPH: A Graphical User-Interface Generator.
In SIGGRAPH ’83 Conference Proceedings, pages 43-50, July 1983.

[64] D.L. Parnas. On the Use of Transition Diagrams in the Design of a User Interface for
an Interactive Computer System. In Proc. 24th National ACM Conference, pages 319
385, 1969.

[63] G.E. Pfaff(ed.). User-Interface Management Systems. Springer-Verlag, 1985.

[66] L. Pinsonneault. Data Structures for a Programming Environment. Master's thesis,

School of Computer Science, McGill University, Montreal, July 1987.

[67] P. Reisner. Formal Grammar and Human Factors Deaigu of an Interactive Graphics
System. IEEE Trans. Software Eng., SE-7(2):229-240, March 1981.

[68] S.P. Reiss. Graphical Program Development with PECAN Program Development Sys-
tems. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Enginecring Sumnpo-

sium on Practical Software Development Environments, pages 30-41. April 198

[69] D. Rosenthal and A. Yen. User Interface Models Summary. Computer (fraplucs.
17(3):16~20, January 1983.

[70] R.W. Scheifler and J. Gettys. The X Window System. ACM Transactions on Graphices,
5(3):79-109, April 1986.

[71] B. Schneiderman. Designing Menu Selection Systems. Journal of the Amerwan Society

for Information Sciences, 37(2):57-70, March 1986.

72] B. Schneiderman. Designing the User Interface. Addison-Wesley, Reading, Mass .
1987.

BIBLIOGRAPIHY 168

[73] B. Schneiderman. Direct Manipulation: A Step Beyond Programming Languages.
TEEE Computer, 5769, August 1983.

[71] J.L Sibert. W D. Hurley, and T.W. Bleser. An Object-Oriented User Interface Man
agement Svstem, In SIGGRAPH ‘86 Conference Proceedings. pages 259-267, August
19¥6.

[75) D.C. Siuth and et al. Designing the Star User Interface. BYTE, 7(4):242-282, April
1982,

[76] P P. Tanner and W.A.S. Buxton Some Issues in Future User Interface Management
System (UIMS) Development. In G.R Pfaff, editor. User Interface Management Sys-
tems, pages 67-79. Springer-Verlag, 1935.

[77] T. Teitelbaum and T. Reps. The Cornell Program Synthesizer: A Syntax Directed
Programming Environment. Communications of the ACM, 24(9):563-573. September
1981

[78] W Teitddman. A Display-Oriented Programmer’s Assistant. International Journal of
Man Machine Studres, 11(2):157-187. March 1979.

[79] W Teitelman. A Tour Through Cedar. In 7th International Conference on Software
Engineering, pages 131-195. March 1984.

[30] W. Teitelman and L. Masinter. The Interlisp Programming Environment. JEEF Corn-

puter, 11(4):25-33. April 1981.
[81] A. Tesler. The Smalltalk Environment. BYTE, 7(4), 1981.

(82] J. Van Den Bos. Abstract Interaction Tools: A Language for User Interface Man-
agement Systems. ACM Transactions on Programming Languages and Systems,
10(2).215-2147, Apul 1988.

(83] A.I. Wasserman. Extending Transition Diagrams for the Specification of Human-

Computer Interaction. IEEE Trans. Softw FEng., SE-11(8), August 1985.

(81} AT Wasserman and D.T. Shewmake. Rapid Prototyping of Interactive Information

Systems SIGSOFT Software Engincering Notes, 171-180, December 1982.

[85] N. Witth. Programmung m Modula-2 (Third Corrected Edition). Springer-Verlag, 1985.

