
1

A USER INTERFACE FOR A PROGRANIl\tHNG

ENVIRONNIENT

Sami Bou/os

School of Computer Science

McGill University, Montréal

July 1990

A TIIESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR. THE DEGR.EE OF

MASTER OF SCIENCE

© Sami Boulas, 1990

.

Abstract

Poor user interfaces in programming environments detract from environments' power and

inefTectively COfl1mUllicate with users. Moreover, specification, development, testing, and

modification of thef'e usually large, complex, and handcrafted user interfaces are difficult,

error prone, ~low, and costly. An alternative is user-interface generation. This thesIs deal~

wIth two pflmary Issues: .r:mupe:J, a user-friendly user interface for the MUPE-2 program­

ITllng cnvlronment. and user-interface generation. Implemented in .Ylodula-2 and C for the

X Window Systrm, xmupf'i! shows MUPE-2's character with: windows tailored to program­

fragments, textual and graphical representations of fragments' contents, and editing com­

mands fired by context-sensitive mouse-based menus. Secondly, and because of the ef

fort in handcraftmr; xmupe:J, the thesis introduces MUISL, an experimental event-drivrT!

IIsf'r-interfacc Spl'ClficatlOn language. MUISL defines user-interface objects with inheritable

cla::,,,cs. attflbutcs, and actions. Then presented is muzgen - a fleXIble, table-driven, dnel

MUISL-based user-interface generator. Both MUISL and muzgen simplify user-interfact?

development, as exemplified in the thesis.

ii

RésUlllé

Dans les envir0r nements de programmation, de pauvres interfaces usager att(;l1uellt I.L 1'111',

sance des environnements et communiquent J'une manière inelTIcace ,1\'CC 1 .. ., IIS;J[!/,f" DI'

plus, la spécification. le dé\oeloppement.le test et la modification de ces génér,lkllll'Ilt lar~" ... ,

complexes et artisanales interfaces usager sont non seul .. nH'nt difficile~ mal" tOIlt. à la fOI'

sources d'erreurs, lents et coutetL'C Une alternative ré~lde d,U1~ 1.1 Q,;(;npf,LllOll d'lIltp!f,lI P'>

usager. Cette thèse traite de ~eux sujets pnncipa.ux, rmlLpe2 une Illt.erf,t(e \ls,tl~l'r (nll

viviale pour l'environnement de prog:.1rnmatlOll :-VH;PE-2 et la g';nér,ltlnn d'llItl'l'f.HP" LI"

ager. Xmupe2 q1ll est implémenté en ~lodula-2 et C ponr le ~y.,ti'lIl" X \\'11lt!OW VI'">II

alise les caractéristiques de :-VI"CPE-2 à l'aide: de fenêtres adaptp,~~ ail). fr,I!!;IIWnb dl' pro

gramme, de représentations textuelles et graphiques du contenu dc!> fr,lgments Pt. dl' rOlll

mandes d'éditions exécutées par l'intermédiaire de menus dépendent,> du CI)lltl''\t ... b.I~I·'"

sur l'utilisation d'une souris. D'autre part, cette thèse prf!sente ~[llSL Illl ')(lll'> PWdlll1

de la conception de xmupe:J. MUISL est un langage de Spl"U!i\ a,t Ion d'Intl'rfau'~ U'>,H!,PI

expérimental cOlltrolé par des évènements. :-VIUISL définit de~ obJcts d'IlltPfface Il:-,<tl~l''

avec des classes héntables, des attributs et des actions. Puis. nOlis pn;~enton., 11l11llil'T/ Il'

générateur d'interfaces usager, basé sur MUISL, tleXlb1e pt controlé par t.abl('~ .\lt,J~J

et muzgen. comme exemplifié dans cette thèse, simplifient le développement d'Illtf~rf,u (",

usager.

iii

'1
1

1

Acknowledgements

l am indebted to my supervisor, Professor ~azim H. Madhavji. for his constant assistance,

advice, and encouragement. His guidance was Illdispensable in innumerable instances.

1 have had the support and friendship of the members of the MUPE-2 team: Jules

Desharnais. Yuan Xiang Gu. Kamel Toubache. and Mingjun Zhang. They were alway!.

wllling to ~pend the time to assist me in any way. For the French version of the abstracto

r thank bot h Jean-François Girard and Kamel Toubache. For his assistance \Vith the X

Willdow Sy~tem. 1 thank Alan Emtage. 1 also appreciate the technical and administrative

support of the School of Computer Science Finally, 1 thank my family for their unflagging

,>upport ,tll,1 "Ilcollra~ernent througltout aIl my years of study; 1 espeClally thank my sister.

Yol,L. for proofreading the initiai versIOns of this thesls.

Thi:, work \\015 financially supported by a scholarship from the Xatural Sciences and

En!!;lll{,PfllIg Rescarch CouncJ! of Canada.

iv

Contents

Abstract

Résumé

Acknowledgements

1 Introduction

1.1 Problem Definition

1.2 Thesis Area and Goals

1.3 Contributions of the Thesis

1.4 Methodology

2 Background and Related "Vork

2.1 User Interfaces in Programming Environments

2.2 Architectural J,fodels of User Interfaces

2.3 U "er Interface Guidelines

2.4 The MUPE-2 Programming Environment

3 The l\IIUPE-2 User Interface: An Overview

3.1 User-Interface Rcquirements

3.2 Xmupe2: The X Window System MUPE-2 User Interface

3.2.1 Window Structures.

3.2.2 Design

3.2.3 lm plemcnt ation .

4 Unparsing and the User Interface

v

Il

III

IV

(\

f'

"

Il

:!!)

32

4.1 Textual Ullpar~ing .

,I.:! (;raphlc,tl C'nparsing

5 Cursors and the User Interface

;) 1 Cur,>ors III Xrnllpe~ .

.'5.1! 'l'hl' .\IOll~e and Textllal Cursors

.').1.2 The Structured Cursor

5.1.:~ Desl!~n and Implementation

'3.:! Cur.,or ~[ovem(,llt5

.'5.2.1 (!~f>r's View

Dflsl~n and Implementation

6 lVlenus and the User Interface

fi 1

G.:!

Menu Dp.,ign hSlles .

Mpnll~ in Xmnpe2 .

(>'2.1 USlIlg the),[enus

(>'2.2 Dp'iign

6.2.:3 Implementation.

7 Editing Commands and the User Interface

Î.l EditJllg Scenarios

- ')
I.~

1.1.1 Programming-in-the-Small.

1.1.2 Programming-in-the-Large.

D('~ign J.nd Implementation

1.2.1 GellPral Strategy for AlI Commands

j.2.:~

7.2..l

- .) r: 1._.,)

7.2.G

Detete

Dr.l!~ .

Group/unGroup

Inspect jTextEdit

8 User Interface Generation

~.l B.lckground ,lnd Related Work

H.I.I An Introduction to User Interface Tools

S.l.:! ~I('thods of Control

vi

33

35

3'1

38

38

40

4?

43

46

49

49

50

51

52

54

57

::/1

58

68

7J.

'Il

'(2

72

'73

74

76

77

78

78

81

8.1.3 Approaches to Specification and Generation ...

8.2 MUISL: The ~IcGill User Interface Specification Languagp .

8.2.1 Assllmptions and Scopp of \York

8.2.2 The Languat;~

8.3 Muigen: The :'fnSL-I3a'ied C"ser-Interface Gpnerator .

8.3.1 Definitlon~

8.3.2 InitlalizatlOn FIles

8..1 EvaluatIOn of :'lnSL and Muigen

9 Conclusions

A Xmupe2 Architecture

B MUISL Lexical Rules and Grammar

B.l MUISL Lexical Rules .

B.2 MUISL Grammar ...

c rvIuigen Architecture and File Generation

C.1 Muigen Arcllltecture

C.2 File GeneratIOn

D Initialization Files

E Sample MUISL Specifications

E.l Example 1 .

E.2 Example 2 .

Bibiliograp hy

vii

11:)

1 I~)

1 1.\

11ft

]21'!

III)

168

List of Tables

:! 1 MU P E-2 Fragtypes

:~ l Xmupt:::! Wmdow Structures

:32 Uam Wmdow Buttons ...

.5.1 The),Iou!>e Cursor"s Shapes

52 Clirsor :vlovement Keys for Program Structures

6.1

8 1

X mllpe.! :vlentlS

EditOps :Vlenu Structure.

Re&ened Words in MUISL .

8.2 Special Symbols III MUISL

8.:3 Special Prefixes in MUISL

D.1 Attnbute-Name Prefixes

D.2 clRoot \ttributes ..

D.3 clButton Attnbutes

DA clMenu Attributes .

D.5 clSimpleWlI1dow Attributes

D.l) clToggleButton Attributes

D.Î clMenulllltton Attributes

D.S clSilllpleMenu Attributes .

D.!) clLlst~Ienu Attributes ..

D.lO clTextWindow Attributes

D.ll clScrollbMWmdow Attriblltes

D.12 clBox\Vindow Attributes ...

D.13 clPanedI3oxWindow Attributes

D.l·1 c1FormlloxWindow Attributes .

D.15 rlViewport Window Attributes ..

viii

J5

23

25

39

44

51

5b

91

92

9?

140

140

141

J4J

J4)

141

141

14?

142

142

143

143

144

144

144

D.16 clDialogueWindow Attributes

D.I ï clItemSimpleMenu Attributes

D.IS Attribute Values

D.191Iouse Buttons

D.20 Keys

D.21 Event Names

IX

1 1:1

l Ir)

1·lfi

1 l,

1 17

)·11

List of Figures

2.1 The Seencim 1[odE'1

3.1 An Overview of Xmupe::'s Window Structures

:l.~ The CreatIOn of Fragments

. ') 1 Algorithm to Cpdate the Textua.l Structured Cursor

.1.2 Cur,or :-.rO\PIllents In il. PIS \Vindow

'):J ClJr~()r :-.rowllwnts in a PIL \Vindow

,'j·1 Alc;orlthrn tü :-.rO\e the Structured Cursor

(LI EdltOps ~[en\l'i ...•...........

1.1 Pro~r,tll\ming·tn-the-Small EÙltmg Scenarios

1 1 Proe,r,tlIlIl:lIlg-tn-the-Small Editing Scenarios

,.1 Progr,lIllollIlC;-11l the-Small Editing Scenarios

7.1 Progr,tlllIllIIH~-ln-the-Small Editing Scenarios

ï 2 Grollpill~ and Dpletlllg Program Structures .

ï:1 Progr,tlIlIlung-ln-the-Large Editing Scenarios

ï:l Proc;r'll\\llllnlS-m-the-Large Editing Scenarios

ï 1 AlgoritlllIl to Drag L; ~vlouse .

ï.) A1C;()flthlll to Croup by 110llse

S 1 UI~IS ArclllterLllre

~ 2 Cla:'b lIH'rarchy ..

8.:1 ~()ll-Oppratioll Iruti.l.lization-File Grammar .

S.I Op(lr,ttion Illltialtzation-File Grammar

:\.1 Thl' Uspr Intl'rface and Computational Component

:\.2 Xmllpe': ~lodllLH Df'composition

C.l .\fll/Ut'Il :-'lndlll,lf Decomposition.

f: 1 Exalllpip 1 IntPrface

x

10

24

26

41

45

4ï

48

ô3

59

60

61

62

65

6tl

'(0

73

7ô

79

98

114

115

128

129

136

152

E.2 Example 2 Interface I.')(j

xi

1

1

l

Chapter 1

Introduction

A u~er interface, or human computer interface, is tbe user's view of a system and thp domain

of discollrse between a user and machine [38]. Nievergelt [59] defines a user interface as

conslsting, of dn input language (user's input) and an output language (what the user sees).

Barbon and Hix [2ïJ view a user interface as t,le software and hardware through which a

human cornpl'ter dialogue. or observable two-way exchange of symbols and actions. occurs.

1.1 Problem Definition

Poor lIser irterfaces in programming environments detract from environments' power and

ineffecti\ely communicate with users. These interface.:: often fail to answer basic questions

~l1ch a~ [.59J: Where am I? n'hat can 1 do here? How dià ! get here? Where else can J go

llnd IWIlI do 1 gel thcl'e? Other characteristics include a comple'{ input language with convo·

lutl'd and cryptlc commands: a user-hostile output language having useless error messagc!s

and little or 110 help; a recovery mer,hanism lacking undo facilities al~!l failing to C'Jnfirm

dangNolIs comm,Uld& (~uch as a delete); an inconsistent use of windows, menus, aad other

ohJPcb llltt'f(lcting with a u~er; and/or incorrect state information related to t.le current

cOlllllland and d,lt,l environments. An example of the final characteristic is a user interface

th,lt doe~ not corr('ctly reflect internaI programming environment changes affecting the user

interf.u'p,

ln adlh tion, another major problem is that the specification, design, irnplementation,

te:-.ti ng, and rnodific,1 t iOIl of the usua.lly large, complex, and handcrafted user interfaces for

prohralllllllIlg l'Ilvironments are difficult, error prone, often slow, and costly. Consequently,

1

CHA.PTER 1. INTRODUCTION

prototyping is somet:mes used to develop sucll user interfaces. Moreovcr. an altNnatiw 10

handcrafting these user interfaces is generating them.

1.2 Thesis Area and Goals

This thesis deals with two different, yet related, aspects of the author's work: a. Il!>l'r-frÎplldly

user interface for a programming environment and a spenficatlOn language to gpnt'I.\ 1 ('

similarly styled interfaces that are not necessarily Umited to programming envi IOlllllPil h

The first goal was to design and build a user-friendly uspr interface that, llllhlkd t III'

requirements of the r.urrent state of the MUPE-2 programmlll~ I!llvironmcnt [Cl. IIi] 'l'hl"

thesis presents the result of this work, xmupe2 (The X WindO\v S~st('m Jrrï>E-! U'>I'I

Interface) - a user interface tha+; successfully intf'racts wlth lIlte rn ,11 IlOIl-lIs!'r III!prLlI('

MUPE-2 code previously developed by others and incorpora.te., the Pfld! lpl(',> of)!;o()(1 \1',('1

interface design.

This goal is significant because an effective user interface far a progralllllllll!!; 1'1lVlrOllllJ('llt

should simplify the learning and use of the environment, better corn mlllIH .ltp WI t Il tht' uSt'r,

and reflect the internai state of the environment in a manner campreh('n 1 bic dt a ~!.U\(P. III

addition, the proper design of user interfaces is essential to any programIllil\~ ('IlVIrolllllPnl.

This is because a user iTlterface is a critical component of an €'llvlrunment.: d, l1'>('r of1 l'II

judges the environment's quality by its user interface. A poor u~er lI11prf,l<:P L.lll fllIII ,t

programming environment and effectively th/art the enviranrnent's go,lh of. provIdJIII~

better software tools, producing better quality software using these too!!> , and '>1 III pli fVll11'

the process of software development. As a result of a mediocre user intprfacf'. a 11:'(,[WIll

reject a programming environment - regardless of its underlying PO\\N and [p,lI,urI':' th,lI

the user is unable to exploit; commit numerous anù unnecessary error~; berolIlP col1fu'ôf'd

and frustratedj and waste time and effort.

The second goal was the result of the slow, difficult, and tediolls worh of h.lIldc raft III 1',

xmupe:!!. A simpler and quicker methad of specifying, building, and te~till)!; u,>pr Jl1tPffac<,,>

is to generatt them from specifications in a user-interface spprification l(l/Ip;u<I!!,I' ('on,>/,

quently, the goal was to use the valuable expenence and J..nowledp;c gain!'d froll! bllildillg

xmupef! in devising an experimental language for the specificatIOn of user Intprf.tcl'~. ~1lI111a.r

to an xmttpe:!!-style of interface but not limlted to programmin~ Pl\VirOllllH'lll<.. 'l'hl' l'lII).'.,Il<lJ.!,I'

is experimental. and not a comprehensive production language. bPC<Llh(' of tinw ancl '>COI'"

CIlAPTER 1. INTRODUCTION 3

constraints. The intention was only to experiment with key characteristics of a language

capable of specifying user interfaces. A secondary goal was to build a sample generator

of IIher interfaces from specifications in this language. This thesis also presents the results

of author's work In these areas, mainly MUISL (The McGill User Interface Specification

Language) - a progmmmer's language for the specification of user interfaces, and muigen

(Thl' MUrSL-I3ased User Interface Generator) - a program to generate user interface code

from ~lnSL sppcIfications.

Tltp second goal is sigIIlficant because traditional user interface software is often large,

(omplex. and difficult to create, debug and modify. A user interface specification language

and the generation of il user interface from this language have positive implications for

the developers of user interfaces. Tile first is to rem ove the con cern with low-Ievel details

of user interactIon and permit the concentration on the design of the high-level form and

funrtIOnality of a user interface. The second is to simplify and speed-up the implementation)

tpstIng, and modificatIOn of user interfaces.

TIIl~ thesis does nat deal with human-computer dialogue in depth, general man-machine

comIllunication issues, behavioral and cognitive aspects of user interface development, psy­

cholùgical models of llsers. user interface evaluation, command languages, detailed descrip­

tions of MUPE-2 concepts, and descriptions of internal (non-user interface) MUPE-2 algo­

fi tl\lns and data structures (referred to as the computational component, in the rest of this

the~b) Although tlus thesis gives a brief overview of MUPE-2 concepts, further details can

tH' round in the relevant papers cited in later sections.

1.3 Contributions of the Thesis

The first contribution of this thesis is in the complete design and implementation of xmupe2.

The work on this user interface reflects the current state of the MUPE-2 computation al

compollent. 1 Xmupe:2 shows the character of a user interface for MUPE-2. This charactel

il, pMt of tltt' prograrn 's contributions, and any extensions to the program would add to the

implellwntatioIl, and Ilot to the results of the thesis: the author has laid the foundations

in the cllrn'Ilt versioll of xmupe2. Xmupe2 has validated MUPE-2 concepts and illustrates

th.tt they are effective, practical, and easy to use. Sorne of these concepts include: multiple

ITI\(' a.uthor JIll not lnlplrment any portIOn of the computational component, but solely designed and
IlIIplt'lItl'nted .rmupe2.

CIIAPTER 1. INTRODUCTION

windows tailored to program-fragments, the association of scrcen object~ tn int\'rtl,d ,\[{i Pl-'

2 data structures, the graphical display of node hierarchies and their t t'xt u.J r('prp~('l1 t ,\ t ion".

the textual display of other internai program structures, the display of textu,tl and).!;r.\phu.1l

cursors, the management of cursor movements on textual and graplucal stmct 11rt'.., •• ll\tI

editing commands fired by context-sensitive mouse-based menu~.

The approximately 14,000 lines of xmupe2 are written in the progr.lIllllllllg 1.1II~lJ,I!~(,'" ('

[40] and Modula-2 [85], using the X Window System [70J (Version 11, H('!P,lse 1. \VIt h IIIf"

Athena Widget Set [7] and X Toolkit Intrinsics [50]), and running on a Slln-:~/.'i() \\orh,>I.lIIllll

with Sun UNLX 4.2. The program is consistent in its de~jgn and impl('!Ilt)lll.lIloJ\ .. \IIt!

consists of a window-system-independent Modula-21ayer that ads ,u., a bnlrl'f bl't\\Pl'1l tilt'

remaining code of user interface and internal (non user-interface) ,\1 G P E- ~ (od('; ,III d ('

code that interfaces with both Modula-2 layer and the wmdow systf'Hl. (' \\,I~ (h<)'>('ll f'lI

its flexibility in interfacing with the X Window System, and b('GlIIbC of tl)(' 11)(.11 Lu k 1)(

Modula-2 libraries for interfacing with this window system. Th(' X Window Sy,>1 ('fll W,I:-'

chosen for its fiexibility, portability, availability, and widesprc,Hj u,>c.

The second contribution of Hus thesis is the deSIgn of ~IUISL. ThOll!!,h Il'>('f intl'rr,u('

specifications have existed for a number of years, ~lUISL was design~ 1 \\ 1 th tlw rpqui fI'ml'lll:-,

of a typical window-based user-interface, su ch as xmupe2, in mllld It is Illtf'Il\\pd for"

programmer and can be used by software developers such as those in the ;..[C PE-2 ~lOlIp

MUISL combines some ideas from other languages and systems. slleh Sm,dlt,dl-. [:!:l], th!'

University of Alberta UIMS r25], and the Sassafras Un .. lS [33], arnong ot ber'> Ff',tl url", IIf

the language include definitions of user interface objects (window:o, menu,>, button'l, ,tIld :,(1

on), attributes for these objects, and actions that act on them. It abo lllrllldf''> powl'ff\ll

features such as classing, and inheritance of attri butes and 0pPr.Ltlon:-,. 1l0\\l'vPr. \[t'Il) 1

is only an experimental language intended to illustrate b,t~IC fc,Lt ur!'!> of ,L '>J)('(1 fil .dlOll

language for user interfaces.

Part of the second contribution of this thesis is to show the viability of \IGrSL ,1'> ail

experimental specification language, by using it to generate .,am pIc,> of lI:-.!'r lIIu'rf,lu' (odl'

This generatlOn is a result of the modular design, and imph'lIlcnLttloll of mrllfJCTI, wltmf'

approximately 8,000 tines are written in C and mn under Sun U)lIX ·1.2. A!th()lI~h mlLl!}! Tl 1'>

table driven and is intendeù to generate code independent of a targl't pr()l!;fallllllill~ l,wgllagl'

or window system, the implcmented version was tested for C and th!' X \VIlIdow Sy,>t('1JI

as the sample target programming language and window system, re!>pl'ctivdy. S<lIllpl p IIM'r

ClIl\PTER 1. INTRODUCTION 5

interface specifications were written in MUISL, passed through muigen, and the resultant

u~cr interface source code was successfully tested.

1.4 Methodology

Why was xmupe2 handcrafted instead of generated? The further development of MUPE-2

was dependent on the immediate design and implementation of a user interface. There

were rea.l, practical constraints and requirements that necessitated the development of a

"re,tI" 1>y~tern 1>uch as xmupe2: its building could not wait until the possible realization

of M UISL and implementation of muigen. The solution was to simultaneously handcraft

xTl!upe2 and learn abou t user interface generation. As a consequence, xmupe2 was not

dclayed, and the experience and knowledge gained from .xmupe2 about user interfaces was

u"eful in deslgmng ~IUISL and implementing muigen. Another factor was the amount of

interactIOn that xmllpd required with MUPE-2's internaIs. About half of xmupe2's code

aets as an interface ta the rest of MUPE-2j the other half deals directly with the window

SystP.lll. The first half of xmupe:2 could not have been generated because of its interaction

with i\IUPE-2.

Chaptc~r 2 presents background and related work on user interfaces and programming

cnvironnlPnt:,; Chapter 3 discusses user interface requirements and overviews xmupe2; Chap

tcr <1 caver:, unparsing issues relevant to xmupe2; Chapter 5 examines the role of cursors

and thcir movements in xmupe2j Chapter 6 investigates the raIe of menus in xmupe2j Chap

ter ï dbcu~s('s 1IUPE-2 eùiting commands in the context of xmupe2j Chapter 8 presents an

overview of u:,er interface generation, discusses MUISL and muigen, and evaluates them;

and Chapter 9 concludes the thesis.

,

Chapter 2

Background and Related Work

Because thls thesis mostly deals with a user interface for the ~IUPE-2 progm11!lI!l1Ig 11Ll11

ronment, it is necessary to present related work for user interfaces of prograrnllllll)!; cnVI­

ronments, architectures of user interfaces, user interface guideEnes, and a brief oH'rvÎI'W of

the MUPE-2 programming environment. Relevant MUPE-2 concepts Ilot roven'd III t III',

chapter are presented in other chapt ers.

2.1 User Inter-faces in Programming Environments

Tlùs section surveys the user interfaces of selected programming ënvironments The ~lHV(,y

is not exhaustive; other papers such as Normark's (60], discuss p,ogramming (>nviiOl\m(>IIt.~

in more depth.

Smalltalk [81] is an environment for Smalltalk-80, an object-oricnled langu.lge p:1]
This graphicaI, integrated. and interactive programming environment 11Irorporat~·~ .1 WHI

dow manager and a mouse-based user-interface that contains pop-up menus to exectlt!'

operations. The enVlronmeIlt is user friendly becallse it conl,idpred 1lM'r interf.l< e Î1>~I)(H,

in its design. For exarnple, the environ ment provides "explalll" and "examplp" f.lrilJtip~

and on-Ene documentation. The basis of integra.tion in the Smalltalk ('I\VlrOIlllwnt If.. lb

conceptual model of the screen as a desk wlth sheets of paper rq}re'>('Illed by one window

per program. Easy movement among windows farilitates activitlP!l ,>uel! a:-. Il1ol!:-.(>-ba~(~d

modeless editing, brawsing, debugging, and program exeeution.

XS-l (An EXperimental Integrd.ted Interactive System. VerslOlI 1) [2] hai> facilities slleh

as a tree editar, tree file-system, and a kernel with a front-end central dialogue-pro(Chhor

6

C/f..\PTER 2. BrtCI\GROUND AND RELATED WORK 7

that handles and redirects user input to other components. The result is a simple and

uui form u~er 1 n terface that can answer questions such as "Where am 17" and others posed

III Ch.l.pter 1 XS-l utllizcs a bit-mapped screen divided into five size-adjustable and non­

uvp rJ.lppllll!; wllldows always visible in any part of the screen. Data in these screens answer

tlip prf'violl'ily posrd questions.

Ellldy [2G] I~ ,1 templ.1.te-based and syntax-directed editor - an editor that ensures

the :-.yntactlc integrity of a program by tightly adhering to a grammar. The user interface

I)prInl t ':> .1 user to select a programming-Ianguage construct [rom a menu that contains all

po.,~ihl(' den\ations of the current nonterminal. The system then substitutes this construct

for the prog,ram structure on which the cursor is located. Although Emily is not a program­

InIlll; enVlronment. it JS the precursor of systems such as the Cornell Program Synthesizer

and ~IE~TOR [13J.

The Cornpll Program Synthesizer (CPS) [ïï] is a syntax-directed editor and program­

HlIng (lHVlronment for PL/CS. CPS is a hybrid of a pure synta...x-directed editor and text

ecli tor: expre5S1ons are treated as text instead of tree elements (after the expression is edited

as text, Il is parsed), and templates are used to generate program constructs that are filled

by t<.'mplates or tt'xt. The user do es not choose templates from a menu. as in Emily, but

displays them by typing the dot character followed by the construct name. Placeholders

identify locatIOns where insertions (in templates) are permitted. The first character of the

cllr~or's cnrrent pO'iit.lOn is highlIghted: cursor movements use function keys; and editlllg'

opNatlOns Hlclllde delete, insert, and clip. The syntax-directed editor is the core of the pro­

gra.rnrning environrnent a.nd creates an internaI representation that can be used by muhlpk

tools ~Ilch <l~ a compIler and debugger.

PECA.:'-l" [G8], cl. prograrnming environment generator for black structured languages,

exploits the gr<lphlc5 fanlities of workstations. PECAN has features such as semantic and

synLlctlc che('kmg wlllie editing, template- or text-based synta...x-directed editing, menus

for 1Il0~t COIllIl1é111(J:." and multiple overlapping windows to visualize different processes

The 1'1lvlronllH'nt U~l'S lllultlple views of programs and data structures including: a preUy­

prilltpd VIl'W. N.\~;'l-S('hl1eiderman structured flowchart [5ï], or graphical module-interaction

interlonnection dbgram.

CCllar [79] is a progra,mmmg environment whose sophisticated user interface is visually

orwl\ted. Dl'~igll principles [12J undcrlying thiS environment include: the Law of Least

CHA.PTER 2. BACKGROUND AND REL.ATED WORI\

Astonishment (the user, who is usual\y right. ~hould bl:' able to pfedlct .l prol!;f.llll\ III'

havior), The Principle of ~on-preemption (the system sholll<1 not Il.,mp .1 Il''1'[''' .llll'lItlllll

and prerogatives), and fast turnaround (think-bound. not computl'·houlld. pl(ll.!,rdJllllllJlI~ l',

preiE'rable). Icons emphasize user interactions and rf'prcscn t: d.ILl., t fi\(\ 111 l'''. 1 p\ \ dPI Il

ments, tools and services. The screen is divided into tlk" -- !lnll·tl\'prI.lppllli!; \\ ludo\\',>

called viewers A viewcr, w hich can be closed into a labeled icon. COll 1.\111'" .1 fi \('d Itll'llll () 1

buttons that invoke associated operations. Viewers allow COllClHfl'llCy- th" IhN 1.1\1 .,\ d Il

one task (per viewer) before finishing the current task. and switcl! h.\(h .lIld forl h .11ll1l1IL',

tasks such as editmg and compiling, Cedar's user interface '\upporh llI\1ltlpk 1 h.lr,ll III

fonts and graphies faCllJtie:" similar to those of the Xerox Star [,",1 '1 h" l'II\'lrOJlIJlPllt ,d..,o

contains a struetured edltor that uses templates and the IJ\OI1.~I',

IPSE~'s (Integrated Programming Support Environrnent) [1:)] U"Pf inl('rf.lt.p [1 1] rdl!'! t"

the environment 's support of the software devclopment procP!o'>. li lIlihp 01 h4'r PJI\ Il OIlIlH'1I f '"

its tools (such as those for static analysis. execution, and editing) <!w 1101 rl'ltlNl'd arollnd

the syntax-directed editor. Instead, they are a highly integrated ~et nf P(pllv,lll'llt ton\-'

having a corn mon internaI representatlOn [41], whlch supports t 1((' ll\tpu;r.lt Inl\ ,11\<1 ('a~(' of

use of these tools. IPSE~ a\ oids overloading the screen by USIn~ ,1:-' f('w \"IJldow~ 01., po~~ibk

in its structured scr~en layout. A toolm IPSEN presents one or TllOf(' \'\('w~ ("lllollb nf

external representations of an internal representation), each of \',IIICh is rppfP <,('l\I.pd Ily .l

window. For example. there are views for execution and editing. A strl\! t lIrl',1 rl\r~(Jr

highlights the current internai structure of interest. called the i Il tNllal i Il(n'lIll'll 1 ('1I1~(Jf

movements use the I.ilOUSe, instead of the keyboard. IPSEN uses menu wllldnw~ tn dlhpl.lY

the list of valid cornrnands. The keyboard ca.n also be used to input comm,\.IIds Dy allowlllV.

the application of textuJl editing at all syntacticallevels. the 5yntiLx-dlrecll'd l'dltor in(r(',l"p"

its user-friendUness.

Like other environments. 1Iagpie (MagnolIa Pascal Integr,lted Envlron!Iwnt) [11] h,\" d

user interfa.ce based on a bit-mapped displ,lY. Code Browsl'rs - ovcrlappil1~ wlndem~ 1I1

which the user can develop programs - dbplay a progr,l\II', c!fl!larallonh and .,t.ltPrT!Pllb

Editmg follows the text model and avoids the often infleXIble U"N IlItprf.lC P of 1 he· tplllpl;ttl'

mode!. The simpliClty and I1niformity of the u~rr intNfacp rf'flpd tl\l' sm,dl numlHlf of

editing commands. Each of the debugging faeIlltlC!l 15 Wllldow ha'il'd,

The DIsplay-Onenteu Programmer's .\ssist ant [ï3] provldp :, a l\,>n·frH~\1dly int.r!rfa! e fOf

Interlisp [80] (a programming environment for a dial(l('t of LISP). (,hPpu.t1ly in termh of tltp

CJlrtPTER 2. BACKGROUND AND RELATED WORK 9

pditor. The u~er interface consists of multiple overlapping windows and pull-down menus

for l'dJl,lIlg, (~h'ctronlc mail. program debugging and execution, and other tasks. The mouse

i" \\',l'd lo choo,>e menu Items and select parts of structures to delete, copy, or insert.

'l'hl' toolklt-h.hl'J L"~IX programming environ ment [39J has a multltasking capability,

,t «()flllJlll,llloll of toob \VIth redirection and pipes, and a file system that supports directory

1\lI'r.lrlhlf'~ and 1 [(',LI s file!:> uniformly as a sequence of bytes. The sht>ll. U~IX's command­

l,lnt!,u.l~« interpr!'ter. II1teracts wlth the user. In spite of its extensive set of powerful tools,

UN rX\ 1lldriP lldly user interface, manifested by the shell's cryptic commands, has been

VIPwpd by :,ome a:, a drawback of the environment. However, others view UNL'C's current

US(r interf.tC{, .l~ an advantage of the environment.

Xmllpt'': ha~ becn mflllenced by some environments, such as Cedar, IPSE~. and),,1 ag­

pie, hO\ ... ever. It lias nove! features of 1IüPE-2. Like most systems. xmupe.J exploits a

\\001 h..,t,ltIon \; blt-mapped c:apabiIitJes to display multIple and independently manipulable

Windows that can be f(",ILed. moved, (de)iconized. and sa on. Moving the mouse from one

window to another allows the user to effortlessly move from one task to another. \Vindow

structures rpIleet the underlyrng internaI environment structures. Sorne windows show both

tcxtU.ll and gr.lplueal VICWS of program structures, whereas others display only textual

VIPWS. COllstantIy-displayed menus and pull-down menus are used for non-editing tasks

Context-~l'n~itlvc ,lIld mOllse-based pop-up menus display Hsts of valid editing commands

r.,.[ost comll\and~ operate on the structured cursor and are selected from editing menus

SOll1e comIll<l,nd~ req1llre additional mouse or keyboard input. Xmupe:!! supports both the

strllctllr(>d and U'xtual models of editing that MUPE-2 espouses. By highlighting a (UJ &or

pcr r('levant window, xml/pd focuses the ubcr's attention on program structures. Finally,

.r:mupeJ permit:; hpy-bascd cursor movements ta support both the editing and browsing of

t he~e strurture~.

2.2 Architectural Models of User Interfaces

Arehi tee! ural models of user interfaces relate user interfaces to the rest of the application.

One of thCM> is the St:ehezm mode! [65.25,24], a run-time architectural mode! of human­

computer dw.lot;ul.'. Fi)!;ure 2.1 [25] shows the three components of this model. The presen­

(ilium ('011l1'0/1I'lIf I~ r('~pom,ible for the physical representation of the user interface and deals

witl! dl'\,I(,(' (!t>pPIllll'[\(ics .Uld interaction styles. The dialogue control component controls

CIfAPTER 2. BACKGROUND AND RELATED WORK III

the processing, sequencing, and structure of the dialogue between the Hwr ,ml! llll' ,lpplI

cation program. This component acts as a mediator between the other t\\O com!10l!Pllh.

by interpreting events in the presentation component and tranblati ng tlH'1ll i Il t () t'Wl! h fpr

the application interface model. and vice versa. The applzmtum mtcTjw'(' I/wt!t 1 dd1111'-' t II"

interface between the user interface and the rest of the applic,ltloll C01ll1lll1tl11 .llloll ln lit.'

application is via procedure caIls and data structures.

J Presentation 1< 1 DIalogue LI Appllc3110n 1

User <
1 :i

1 _

>' .,--~ -- - - #

1

Component

1

---~troI Intcrbc.! 1

1 Componenc Moud 1

ïl\

II'
1 1 L-. _______ , MaPPIr.g

l
""<~ _____ _

Figure 2.1: The Seehelm),Iodt>l

The Seeheim model al!ows the interface ta be independent of its appltcatl01l. T111'. 111111'

pendence promotes coarse-grained control over the narrow communication path~ lJl'\ W"pu

components. In this type of control. an application and ils interface rarely COmllllll1\! ,III'

Applications that require frequent fine grain communication may Ilot 1)(' ,.tlltl'd 10 till'.

mode!. For example, a direct manipulation [ï3] application th,tt traeb il IllOl1,>e trI (If

der ta determine semantica.lly legal operations on tiw abject und(lr 1 t. ["/l1l1f"'> (,(}1l~1.11l1

interface-application communication ta provide this sernantic f{'{'dback.

The Dialogue ~IaIlagf'mellt System [28] provldes ~. dIff"rent Mdlltpct ur.d mOtlPl '1 Ii\

system logic of an application in this ::,ystem ha::, an afdlltf'cttIrf' ('(ll1tPfpd <lbOl1t. ,1 yloh(J1

control component which has bidirectional communication with l',lel! Of.1 dU/lm/w' ('olllJ1o/llllf

and computational eomponcnt. Tht global control cOmpOI1Pllt h rp~poll~lbl .. for thp tOfP'{ t

sequence of invocations of the other two cornponents. 'Ille COTlljll1t.ltioIlal rOIlIf)()Il P flt dw".

Dot deal with dialogue, but deals wlth the sernantic COTllpllt,ltl011-' of an ,tpplH allo/l 'J'h,·

dialogue componellt is responsible for dialogue control, dI<tlOgl\P !,ran..,;u llllll!>. di,t1O!f,lll'­

related computations (such as in pu t validation), diS play of 011 t pu t IIl!'~:-,ag(\'.. and ~o OH.

The dialogue soeket mode! [9] is centered about a dIO/agile s{)('kd --- a hl~b-I('~(ll ab­

straction that cannects ta one or more dUlloglle handlers, on OIH' ::'Idl', and one or Illon'

CIl.\PTER 2. B.\CI':GROUND AND RELATED WORK 11

applU:fltums on another. The user deals with one of these handlers, which is d2signated to

Ill! tllf' cllrrl'nt di,dogllc handJer. The dialogue sorket acts as a virtual user to an application

,U1d OJ.l[)'> the lexic;t/ and syntactic elements of a dialogue (gathered by the current dialogue

h.tlHI!,'r) to the appli(atloll'" operations.

Xmll!w.! fol1o\\s the Sceheim mode!. The presentation eomponent of xmupe:! is responsi­

bl,' for thi' erp,d,JOll and man.Lgement of windows, menus, and text and graphies with which

tht' u~('r Înteracts. P.ut of the dialogue control component consists of X Window System

library routllles that detect User events, sequence them, and calI user interface routines asso­

CI.lLPd \VI th tll('::,(' events. Other routines of this component calI the appropriate application

II1terface compollcnt routIne and commUfilcate information to presentation component rou·

LÏJH'S t,lt.lt lIpdate the dlsplay. The applIcation interface component is the only one that

direct.ly (',db non-user IIltel. :ace),[UPE-2 code, the computation al component. which deals

\VIth lIltern,d computatlons.

T!t(' S('f'hf'im mouel IS weIl suited to .rmupe.! because the actions of responding to a user

eVPllt, interJ.ctin~ with the computational component. and updating the display, correspond

to the cumponents of the mode!. An important advantage of the model is that it isolates.

in one l.Lyer. the user-lllterface code dependent on the computational component. This

model ,d~o simplifies the front end of the user interface, which displays information without.

COllU'f1I for ib semantics. The semJ.ntics are ensured with the correct calls to the com}Ju

t.tlIOI\;t1 coll1poncnt. Appendix A describes xmupe:!'s architecture in terms of its modular

<1('(0/11 p()~i tlon.

2.3 User Interface G uidelines

Wh,tt m.ü,es a good user interface? A good user interface should make a prügram easy to

lCMIl a.Bd Il~e Schn(:'iderman [72] presents sorne rules for user interface design. sorne ofwhich

art': rOll~islpncy a.t all!('vp!s. such as il! commands, terminology, menu and r.isplay layout,

a.nt! r('~p()n~p!:>: !>hortcuts. snch as abbreviations, special keys, and macros to accommodate

(':-'(H'f1f'llu'd u~prs; undo faClltties to reverse actions and protect users from their mistakes;

simpip (!rror h,UldllIlg .tnd design of the system ta prevent us ers from making a serious error

(thls IndIHI('~ fca.tures sl1ch as the confirmation of dangerous commands - delete, erase.

and Ml on); ll1formativc fcedb.lCk for every action; and reduction of short-term memory load

by u~in~ 'iimp!p di:.ph.ys, on-Hne access to relevant documentation, and so on.

CHAPTER 2. BACKGROUND AND REL.·\TED lVORI\ \'2

Hansen [26] discusses user engzneermg prmcipler; th.lt apply tü 1 hl' <!(H,(e;!l Ilf Il..,1'1 Il\tpr

faces and illustrates them wlth examples from the Emily hystl'Ill SOIllI' IHlnl ipk" Illt 1 1ltl "

know the user, minimize memorization, optimize operation~ .. 1I1d pn~llIf' .. r for l'rror., \11111

mizing memonzation involves: selection instead of entry (~('l(,lt. ill~I('.lIl (jf h.l\lll!.!, t() t,\ Pl' ,\

character stnng or operatIOn name), names i llstpad of Il umlwr" (Ill' d hl" 1" ,,l'\I'I! ! 111111 .1 il" 1

of items by name), predictable behavior. and access to ~ystelTl IIlfnrlll.Jlloll OpIPlIl/.lII()lJ

of operations stresses the modes and speeds of user interactIon'> .Inti .tUI'IIIpl., Il) Il'dllll'

the user's interaction effort. This optimlzation incIude'5 tht' r.lpid p,l'cHIIOIl (lf 1 ()I1LIlIllIl

operations, the display of status messages for lengthy ow'r.ttlon,>, .wd dhpl.\! IIlf'rt 1.1 Whll Il

changes the display as little as necessary when carrylng out a rt'qu",>t '10 f'1I~1111'I'r fil 1 l'rro!,,

incIudes: good error messages to train the novIce and remind the f!xpl.'rl. tlll' .tilIllt,! to l'II!.!,!

neer out the common errors. reversible actIOns, redllndancy (back up a pO\\prflll O(lI'r.ltl()!I

witii combinations of simpler operations), and data structufI' intp!.!;rIt.\ tn glI.lfd .tl!;.IIII'" lo~',

of "aluable user data.

Other authors [5D.1O.2!J] provide guideünes for i nformat IOH dPlhl t \-, 'J Lit l' k!lOwlf'dL',"

command languages. and color, among other featares of Hiler int('rf.l(p" Fm 1'\.llIlp/P. llwv

recommend the display of informat;on only n~ce~sary ta the \J'Jer In! PrIlll d.lt:1. ,,1)(li .1,>

sorne messages. should be removed from the screen once no longer m·eded. Knowll'dgl' of tif('

current state IS aiso cri tical: the user should know the currrll t clat a l'Il VI rorll Il l'II t (\\' 1i.1I (\" 1 d

are affected by the commands entered currently) and the carn'Ilt coIllfll.tnd f'I1\ 1 10 Il Illf'lI 1

(what commands are active).

A good command language should accommodate bath the nov/(p ,tIlt! p:-,pl'rl. by plO

viding full menus, or typeaheads and abbreviations ta men\l~. The wjJut fWlfjWlUI. Of "01'1 /)1

commands, should be simple and consistent. For example. tlH're .,I!ould ll(' ClJn"l~tf'lJ(y III

the behavior of commands ta quit a system The output Iflllgualjf'. or the "} ~t(,lll') rp'>pOllhP"

communicates wi th the user at the key-prc'>S le\ el (by l'choi ng). lexJ(al 11'\ ,,1 (for !''\.un pif'

recognizing a paramcter of type string), syntactic level (for PX.lIllpl('. rf'('O/!,IlII.IIlg; .1 [('rUIl!

command), anù semantlc level (for examplc, procchslllg or r()lJ\pIl'tln~ a, CO/IIIII.llId) :\ ~y~

tem 's response~ should be informative anù tell the \lser wh,tt It i" d()in~ .\.IId \~ l,y CI('.lr .Lnd

consi~tently placed error messagr<; anù different help lev!'!:' arl' aho n'! oll1l1lpnt!l't!

Color, if pOSSI ble ta lise, aJlows the inclUSion of murh morp d.L1 ,L Hl .t 'lI II ~l" 1 IIl.ll!;" WI t. hOIl t

confusion - if it is prescllted III con trolled dOhac;es, rat!J('r th.ll\ i Il a Il!O"o:LI< For 1';'\.UIl plI'

colors, such ah ret!, can be used for da.ngerous SI tuatloIlh.

CIl.\P'J'ER 2. BACKGROUND AND RELATED WORK 13

Dialogtll! i rlllr~()('ndence in user interfaces [2ï] invoives separation of the software that

d(·,t1 ... \VIth titi' hurnan-computer dialogue - the dialogue component - from the computa­

tiofl,d (om porll'nt. \\ JlIch deals with an application's internaI computations. The computa­

tioll.d (\lm pOlH'nt Il<'l'ds only a set of valid mputs, and is nelther concerned with the method

of tllf'lf collectloll. Ilor \Vith user interaction. The result is easier modification and main­

t"ll.lfl(f' of ... oftw.lrp. esppcially if the user interface is developed using iterative refinement

U'(hflHjIlP'>. 'l'hl' (h.Llo~ue component can concentrate on human factors, be changed with­

out afr('(t II1~ the computJ.tional component, and provide multiple interfaces for the samE:'

(()!Jlplltatlonal (,olllponent.

Sep,tr.ttlOll h.t::. i ts drawbacks: lt is not always easy to achieve . .:an result in decreased

('ffi<ï!'nry ,t:-i .1. fP'>lIlt of Inrreased inter-component communicatio i. and may need separa,te

d.L! a "tfllcturC!:l for the dialogue component. For providing semantic feedback, the dialogue

cUIllponent m.1Y sometime~ have to be aware of an applicatiop's semantics.

2.4 The MUPE-2 Programming Environment

M U PE-~ IS a fragment-ba~ed, integrated programming environment [43,46] for Modula-?

The t'Ilvironnu'nt focuses on the design. documentation, cading, testing, implementation,

.llld 1ll,II[ltenance ph,u,c~ of reasonably large modular pragrams. MUPE-2 fails into the

(',\ !t'~()r\' uf pfo)1;r,tlnmin~ envuonments, such as IPSEN and Smalltalk, that enable the

1111 "~filt('d dp\,p\opment of software in an incremental and modular fashion, by using varions

tool,> ,HuI t('(hIllqtle~.

I\W P E-:.! supports program ming-in-the-small and programming-in-the-large activi ties in

,1 IlIllform Ill.tnl1!'f [.11], and integrates them in an enlarged scope, called programmmg Hl

tht'-llil [1.1] Pr'()(JnlT/wllng-in-lhe-srnali (PIS) deals with activities concerned with smalleI

gran\ll(,~ of ,t pro~fam, a~ declarations, and program ftow. Programming-in-the-large (PIL)

cll'aI::. \\llll .1ctl\'lt\('~ cOllcNned with program units or modules and their interrelationsrups .

. \ prIm.if}- [('alun-' of i-vIUPE-2 is its view of a program as a composition of program

jmy T/I('7!/S • \ jmg/ypf' b J. specific type associated wi th a fragment [il5,4 2]. Fragtypes,

~h()\\ 11 in T.lbll' :! 1. form the building blocks of software: appropriately typed fragments

(,Ill IH' Il,>('1/ tn a~~l'Illbl(' wl'll-formed software. Fragments are retrieved from and saved ta

Fmgl.tll .• Hl intl'gr,tted llbrary of fragments

~1 FPE-'2 ~lIfnrn's rulPs gea:ed towards software development; for example, it allows

CHAPTER 2. BACKGROUND AND RELATED WORK Il

the building of isolated Declarations or Statements fragments. Becallse fr'lgtypt·., forlll (h~

basis of compatibility rules that drive the machinery to build a program, the~.p rllk~ dpI;!\(,

the legal set of operations on a typed fragment. For example. they Cctll jwrlllit fmI/II/pt'

transitlOns that change the type of a fragment. Not only 0.0 snch ru!('!> pP !'l!\ ! t !I1'\ 1 bill t \

in software development, but they also provide a user wlth protection dllrtn~ "llft".tfp

development Slfice they ensure only a legal set of operations.

A recent detailed description of fragtypes has appeared 1Il [12]. lIo\Vpwr, t hp !(':-.I. of

this section explains relevant parts of Table 2.1, which shows ail thp frae;typP'i cllflpntly

supported by the computational component. In this table, a phrrz,>t' l~ ,t l\,tlnr,tlla!W;ll,lgl'

statement. Commands [44] that operate on fragments - in the conlp",t of ,\ fral!,lllt'llt-h.l""d

editor, are explained in later chapters, as part of the user interface":' V{('W of t!tP[\1.

The structure of a fragment has significant implications on .mwpe.! . . \ \Vllldnw f1'prp"l~'llt

ing a fragment must correspond to the structure dictated by the f:;-.lC;tYIH' For e,alllpip cl

PIS fragment requires a sImple window-representation, tilt' m1lltiple portlO!l"l of ,t l'IL !lod!'

necessitate a multi-paned wlfidow to represent each portion, and thl' hlC'rarchv of lllldp., III

a PIL fragment requires a graphical display of tlus hierarchy.

Fragments of fragtype Abstract, Declarations, Exports, Expres5101l, Hpader. llllport"

and Statements are programming-in-the-small (PIS) fragments, whereas fragmellt, of othl'r

fragtypes are prograrnrning-in-the-Iarge (PIL) fragments. Nodes such as SlJper~[()dIlJ(",

DefImpModules, ProgramModules. and Procedures are referred to as PIL nod,'.~

Thp. DefImpModule encapsulates a Modula-2 DEFINITION and D.IPLE:"I E:iT \ 1'I(J:'-4

module pair. Its DefImpHeader contains the rnodule's name, the DefImpDe"l(npt IO!l .lIly

number of comments; the DefImport, the DEFINITION module's import li:,,,,, t]ll' J)pff.\

port, the DEFINITION module's export lists; the DefDccls, tht' DEFI~ITJO:i module'

declarationsj the Implmport, the IMPLE1IENTATION module'~ impart lb!:'; t!te Illlpf)pch

the IMPLEMENTATION moduIe's declarà.tions; and the ImpStab, the I~IPLE.\rENT\

TION module's statements.

Tn a SuperModule, the SupHModuleHeadcr contains the module'" IlaIllC; thp SU!)I'r'\-fod

uleDescription, any number of comments; the SuperMod1l1eImporh, the !llodlllp\ import.

lists; and the SuperModuleExports, the module's export lists.

A ProgramModule's Progileader contains the module's nel.me and priority; th(' ProgDe­

scription, any number of comments; the ProgImports, the module'., Irllport Ibt:-.: 1.11(' ProgDp·

ds, the TI odule's declarations; and the ProgStats, the mod nie \ 'it,ttprIlcnts

CIlAPTER 2. BACKGROUND AND RELATED WORK

Notation

{.z:}
1

Fragtypes

Abstract
DeclaratIOns
EJ:ports
Expres.:;on
Header

lmports
Slate"71ents
Mo(lu/es
Procedures
Program

Nodes

DeflmpModuJe

Super:'.! adule

ProgramM odu/e

Proredure

=

=

is composed of
o or more occurrences of z
OR

{Phrase}
{Declaration}
{Export}
Expression
DeflmpHeader 1 SuperModuleHeader 1

ProgHe<l.der 1 ProcHeader
{Impart}
{S tatement}
SuperModule 1 DefImpModule 1 ProgramModule
Procedure
ProgramModule {SuperModule 1 DefImpModule}

DeflmpHeader DeITmpDescriptioD DeITmport DefExport.
DefDecls Implmport ImpDecls ImpStats
SuperModuleHeader SuperModuleDescription
SuperModuleImports SuperModuleExports
ProgHpl\der ProgDescrirtion ProgImports
Progvecls ProgStats
ProcIIeader ProcDescription ProcImports
ProcDecis ProcStats

Ta.ble 2.1: MUPE-2 Fragtypes

15

CHAPTER 2. BACKGROUND AND RELATED WORK

In a Procedure, the ProcHeader contains the procedure's name, paramct~r Itht, ,LI\d

possibly, the function type; the ProcDescription, any number of comments; the Prod III

ports, the procedure's import lists; the ProcDecls, the proccdure's declarat.ions: ,ln(1 1 hr

ProcStats, the procedure '5 statements.

Chapter 3

The MUPE-2 User Interface: An

Overview

Xmu}Jcz was dedgned and irnplemented with a number of requirements, sorne of which in­

clude purely MUPE-2-related ones, and others apply to the design of any user interface. The

first sec tien of this chapter deals with sueh requirements: the llecond presents an overview

of .xnwpe2.

3.1 User-Interface Requirements

A list of requir('ments for xmupe2 is as follows:

1. Multiple fragments

a. Requirement: Crèate and operate on multiple fragments. Keep track of each

winùow representing a fragment and associate it to the proper computational

component structure.

Rationale: A program can be incrementally developed by synthesizing fragments

of variolls fragtypes.

b. Requirement: Manipulate window representations of fragments (resize, move,

(de)iconize, hide/unhide, and seron).

Rationale: Each fragment is independent of another. Screen space is limited.

2. Information associated with a fragment

17

CHAPTER 3. THE MUPE-2 USER JNTERFA.CE: AN OVERFlEW

Requirement: Maintain and be able to quickly rctneve tlH' inform.ttioll .t~~()(t

ated with a fragment window (text or graphies di~playcd. editÎlI~ menti, wintlo\\'

eoordinates of a location to highlight, and so on) Uptlatp the IIlform.ttlOll .Il

ter any fragment-window manipulation or change in the 'lt.ttl' of t.ht' IIlldprl\III".

fragment.

Rationale: The information associated with a fragment is not ~t.lti(: I)p('ratl()l1~

on a fragment change its internai state (as maintained by the comput.tt IOIl.1I

component), and consistency between trus state and the window repr('~el1tdtl()11

is essential.

3. Structure of fragment windows

a. Requirement: Properly label a fragment window with the fragtypp .1Ild .l IJ1I)(1111

identifier.

Rationale: A fragment should be unique and easily identiliable.

b. Requirement: Represent a PIS fragment as a simple wmdow wil h trxt

Rationale: A PIS fragment contains just text of PIS program structures.

c. Requirement: Represent a PIL fragment as a cornplex window, wlth a gl.Lpl!u.1I

hlerarchy of interual PIL nodes, and a container of windows defining tl\(' f,P\ t.11.J1

representation of each node.

Rationale: A PIL fragment contains one or more PIL nodcs arrangctlill ,L 111('J

archy.

d. Requirement: Represent the textual representation of a PIL node <i~ il Wlllf,

paned window with each pane correspo/lfling to the parts of a PlI, nod('. d Jld

containing the proper textual program structures.

Rationale: Each textual representation of a PIL nodc has sllbclivlslon~, h.1Spd 011

the type of node (see Section 2A).

e. Requirement: Restrict the textual representatlOn of il PIL node tü the Wl/ldow

representing the parent PIL fragment.

Rationale: The PIL no de is a child of a PIL fragment and is not an ind"pPT!ùl'/It

enti ty.

4. Location of internaI structures from the screen

CIlAPTER 3. TIIE MUPE-2 USER INTERFACE: AN OVERVIEW 19

RequirE:ment: Based on the window in which the mouse cursor is positioned,

locate the corre!>ponding computational component fragment or PIL nodej thls

is strai~htforward for the simple window representing a PIS fragment but more

difficult fOl the PIL nodes, because the screen presents a fiat re!)resentation of

the intern.lll1Jerarchy of these nodes.

Rationale: The user should always be operating on the correct fragment or PIL

node.

5. Display of text and graphies

a. Requirement: Map to !inear text (compatible with window-system routines ta

display text), the computational component 's fiat representation of program

structures in windows representing PIS fragments or tex';ual representations of

PIL nodes.

Rationale: The computational component's representation of textual program

structures is not suitable for quick display nor is it compatible with window

system routines.

b. Requirement: Support the creation, update, and display of a graphical hierarchy

of objects representing PIL nodes. Manipulate graphies primitives such as llncs

and rectangles in order ta draw simple diagrams. Associate a graphical object

represcnting the PIL node with the corresponding computational component

node.

Rationale: The computational component's rp.presentation of anode hierarchy is

not suitable for display on the screen - it has no window-relative coordlnate::;

per no(le.

6. Display of struetured cursors

a. Requirement: For each fragment, map the internai coordinates of and display in

reVNSP \"l<]Po. a structured cursor, wlùch refers to a program structure instead

of fine-grained constructs sneh as characters.

Rationale: The coordinates of a structured cnrsor refer to internaI, hierarchicaI

program structures, and cannot directly be highligltted on a fiat sereen.

CHAPTER .1. THE MUPE-2 USER INTERF.4.CE: A.V OVERnEH' '20

b. Requirement: Distinguish between structureù Cllrsors f('ferring tu t('"{t Il,tI pro

gram structures. and others referring to PIL nodes having graplncal srn'pl\ l'l'!>

resentations.

Rationale: The type of screen coordinates anù display of earl! type of s! ru(11111·(1

cursor is different - textual display expects rows and columns, lm! p;r.tphll.1i

display expects initial (x, y)-coordinates and the dimensIons of a. rpct.tIIglp

7. Display of the mouse cursor

Requirement: Vary the shape of the mouse cursor based on t.1ll' IOC.tllOll (II tilt'

mouse, and the type of system activity.

Rationale: The user should be given mouse-Iocation and 'lyst.em ~t.ttll:, [l'('dll.u·\''

8. Cursor movements

Requirement: Support the screen movement of a structurel! cur"or OI! plOl!,r.Ull

structures represented either textually or graphically. Detect the prpo,., of }l'g.LI

cursor-movement keys and calI their respective computatlona.l-component rursor

movement routines. After a successful internal cursor movement, 1lllhighlight t.he

oid cursor and highlight the new one.

Rationale: The computational component implements movemenb of thp ~trll(·

tured cursor, based on the press of certain keys.

9. Editing menus

Requirement: For each fragment and textual representation of a PIL node 111;1111

tain a window-system-specific hierarchical menu of legal editing rOlYlmand.., '\'.

sociate the items of this menu to those of the corrr'lponding menu malll! ai Il f'd by

the complltational component. For every cur~or movernent or editlIlr.'; cOfllm.lIld

properly llpdate the former menu ta maint.u n the correctness of t hi., .u ... "!)(I.tt iOIl.

Use each menu item to fire the appropriate complltational-COlllpOIlf'Ilt. l'lhtJng

commando

Rationale: For each fragment and part of a PIL node, the complltal.ional (ompo·

nent maintains a window-system-independent editmg menu tltal. fire.., the appro·

priate editing command and is updated with every editing cornrnand or (lIr~()r

movement.

CllAPTER. .1. TUE .\fUPE-2 USER INTERFACE: AN OVERVIEW 21

10. Editing commands

a. Requirement: Fire and interact with the editing commands of the computational

component's structured edit or. Reflect editing command changes, whether they

are text uaI. graphical, or changes of the fragtype of a fragment.

Requirement: For editing commands requiring mouse or keyboard manipula­

tlOn~. trall~late the results jnto a form understandable to the computational

cornponent

Rationale: Editing commands manipulate computational component structures

not vis) ble to the user.

b. Requirement: Provide a pop-up window with textual editing capabilities.

Ratiollale: The TextEdit command supports the textual editing of PIS program

structures.

c. Requirement: Provide a readonly pop-up window with the capability to view

program structures stored in a computational compone nt buffer.

Rationale: The Inspect command requires that the user be able to view this

buff('r.

11. Modifiability

Requirement: ~·:Iake the user interface easily modifiable by using a modular de­

sign and localizing the user interface - computational component communication

to a few modules.

Rationale: The computational component does not remain static and chanr,es in

it ~holild not affe,-t the whole user interface.

12. Portability

Requirement: Encapsulate window-system-specific code to certain modules, and

me a window system that is portable across different architectures.

Rationale: The liser interface should be able to run on different architectures.

U. User interface guidelines

Reqllirement: Follow the user interface guidelines in Section 2.3.

Rationale: A Il~rr interface should make software easy to use and learn.

•

CIIAPTER 3. THE lVIUPE-2 USER INTERF.4.CE: AN OVERl/IEW

3.2 Xmupe2: The X Window Systelll MUPE-2 User Int('!·

face

This section presents an overview of xmupe2: Section 3.2.1 dbcusses the wlnd()w~ III J'TlIIII'! ,

Section 3.2.2, issues in the design of xmupe2; and Section 3.2 3. IS~lleS in tlll' Illlplplll{,llt.tt 1011

of xmupe:!!. Reference ta requirements enumerated III SectIOn a l i:-. m.ule wi th t ltt' noI.JI,)()1l

(R#), where # indicates the number of a reqllirement enumeratcd in tltat s('(tioll For

example, (R 6) applies to aU the requiremrnts of the sixth item and (R (j .1) appli('~ Oltlv to

requirement a of the <;ixth item.

3.2.1 WindoVi Structures

As a result of the multIple-fragment requirement, xmupeJ can display mtlltlpl(' willd(lw~

(R La). Each is created dynamically, reprcsents a fragment (Il 1.h), and is In<tf'pendelltly

movabte, resizable. scrollable. and Ïconizable. The abiLity tn re-;ize or redtlcp a wlJldow

into a shrunken representation. or icon, allows the user to rcduce scrcen dut ter. d('cr(>'l~p',

time ta find a cert : n wlIldow, and saves screen space - - a valuable re~ource in ligltt of thl'

multiple windows that xmupe:2 can ereate (R 13). Other manipulations of (1 window, ~1Hh

as its movement. also assist the user in managing screen space. System,> such .15 the Xprox

Star [75J and Cedar programming environmelt [79], aL:.o use ICOll~.

AlI independently-manipulable willdows conta.Ïn a top tiUe-bar with the lIamp of th,'

window CR 13) and two squares for iconizingjmoving/resizing the wln<low. Bolh tltp tIti!

bar and window border are highlighted when the mou~e move~ wlthin tlt(' willdow 'l'lw,

highlighting assists the user in indicating the eurrent focus of interpst (Il l:J). Il lb p!>pcnally

helpful if the mon se cursor is within a window whie!' Îb partly ob'iC1!rpd by iwot,]H'r.

Table 3.1 enumerates the different types of windows that xmupFJ can dlsplay. NanJ('~,

followed by an asterisk (*) IIldieate multiply.oceurring windows Llteral nalllPS ar(~ shown

in italics. The initials c.Jr. indieate the CreateFragment)'lenu; t;.JI. iIlll!e.Üe an EdltOp~)

Menu which 1S used ta fire editing commands (R 9). Section 6.2 further discus~ef> nH'lIl1:-' III

xmupe:J.

Figure 3.1 presents an overview of most of the types of windows in xmllJ1f':!. The top Il'ft.

window, labeled MUPE-i, is the Main vVindow. Below it are two PIS Wind()w~ r('[)fp~clltjll~

Statements and Declarations fragments, respeetively. Ta the right of the ;"{.tin Window arl'

tWQ PIL \Vindows. rcprcsenting Modules and Program fra~mpnts, fP<,jH'(tivP)Y. :-intI' LIli-

CIlAJ'TER.1. TUE i\.IUPE-2 USER INTERF.4.CE: AN OVERVIEl-V 23

Name 1 Title Contents Creationl

Malll Wmuow MUPE-2 Mam Button Wmdow xm,~ Main Messages Wmuow
~Iam BuLlou WllIdow Command &

menu buttons
~Ialll Nlessages Wllldow Messages

,
1 PIS Wllldow' 1 Fragment # Fra~tvpe 1 PIS structures 1 C ~I. .

PIL Wmdow' Fragment # Fragtype PIL Graphlcs Wmdow CM
PIL Contamer Window

PlI. Graphlcs \\'l\1dow PIL-node hlerarchy
PlI, Contamer Wllldow P:L-Node Text Wmdows
PIL-Node Text Wmdow' PIL-node name DellmpModule, E.~1

SuperModule,
ProgramModule, and/or
Procedure

TextEdlt Wmdow TextEdlt TextEdlt Button Wmdow E . .M. -:~I

TextEdit Editmg Window - .-
Tt~xtEdlt Button Wmdow Command buttons -
Te'(t~dlt EUltlIl~ WlIldow Structured-cursor

.-
IIl~pelt W lllUOW Inspect Inspect Button Wmdow E.M. J Inspect Viewmg Window
IlI;,p('(t l3utton WlIldow Command buttons
In;,pt-'ct Vlewlll~ WIrIUOW

1
Anonymous Buffer

Table 3.1: Xmupe2 Window Structures

CHAPTER 3. THE MUPE-2 USER INTERFACE: AN OVERVIE\V '2 1

two titled icons at the lower right corner of the figure. These repn'<;pnt .~ l'IL \\'111110\\

(a. Procedures fragment) and a PIS Window (a Sta.tements fra~nH'nt). Tl\{, fOntpl\h (If

each type of window are explained further on. The TextEdit anù Insppct Windnw~ \\ h\(li

are associated with PIS \Vindows, are not shown in this figure TIH'y <If(' P~pt.IJJll'd III

Section 7.1.1.

Figure 3.1: An Overview of Xmupe2's Window StructuH'~

The Main \Vindow, shown in Figure 3.1 as the w~üdow labeled .\lUP/ .. '-J, If> tht' lJutl<l1

window that appears when xmupe::? is invoked. This window a.ets .te, nnupeJ\ "control

center" to: drive the creation of fragments, obtain general hel]). and quit the prograrn

The Main Messages Window has vertical and horizontal scrollbar,> for viewing m('·,,,.ll',('~

not fitting the window. Using the Main l\fe!:>sages \Vindow a!:> a cPlltr.l1 I(Hation for .dl

of xmupe:2's user-directed messages, focuses the user 's attplltlOTI ,wd avojd~ ,1 p!ethora of

confusing messae;ps scattered among different wllldows (R 1:J). A Ilew mp~sage first ('raM''>

the currently displayed message.

Table 3.2 explains the function of each button in tltt' M.lin Buttolt Window Menil

buttons pop up a menu, when pressed with any mouse button; cOllllIland hllttOll~ Carl) (Jllt

CIlAPTER 3. TIlE MUPE-2 USER INTERFACE: AN OVERVIEW 25

an action, when presspd with the left mouse button.

Title Type Purpose
Create .\lf'llU Button Pop-up CreateFragment Menu
FragLlb Command Button Retneve fragment from fragment library
Hook Command Button Save fragment ta fragment hbrary
[[('Ip Menu Button 1 Pop-up Help Menu
QllIt ~Ienll Button Pop-up QUIt Menu

Table 3.2: Main Window Buttons

\Vindows rppresenting fragments are of two types (R 3.b, R 3.c): those for PIS fragments

PIS WlTIdows. and tItose for PIL fragments CModules, Program, Procedures) - PIL

Windows. Eaeh of these types of fragment windows is created and pops up when the U&eI

selects the corr('~pondiIlg item in the CreateFragment Menu. A newly created window i&

l.lbpled with the fragtype name and a unique number identifying the fragment (R 3.a). Such

a l.tlwliIl~ .l.lluw~ the llspr to dlstinguish among different fragments. especiaIly those of thE'

S.lrne fragtype. After the mdependent manipulation of each type of fragment-window on

the SCf(len, its ,tt>suci,lted contents are refreshed (R 2). Note that xmupe2's screen layout

support::. ~lUPE-~ actlvities: PIS and PIL fragments are created independently and thus

n'quire lIldependent vnndows. Each type of window reflects the data associated with the

t1nd('rlylll~ fragmpnt.

~[overrll'nt of the mOtlbe inside a window changes the shape of the mouse, based on the

type of wlIldow. The shape of the mouse cursor aIso changes when xmupe2 is performlTlp;

an intp['Jl,ll actlVlty (R ï).

Figure 3.2 êlIlllllatcs a series of actions to create fragments. Frame (a) shows the M aJI!

Window with ,1 J>ull-down menu (the CreateFragment Menu), and the Statements ïtem

hdect<'d. The rc!>ult. III Frame (b), displays the created Statements fragment (the PIS

Window l.lbeled wlth Fmymenl #1 : Slatements). This frame also shows that the user

illlends to crp.tte ,1 ~rOdllles fragment. The next frame (Frame (c)) contains the newly

Cfe.tted ~Iod\lb; fragment (the PIL Window labeled with Fragment #3: Modules).

\Vindows for Programming-in-the-Small

A PIS Window i!> the container of lincar text representing PI') program structures (R 5.a).

IIolllOnt..tl ,Hui \'('rlic,tl ~crollbars allow the display of text that does not fit the window.

CHAPTER 3. THE .\IUPE-2 USER INTERF.·\CE: AS OVERVIEW

er. •• l "."-"11 -.iftw.l" !1Ju,~9
rr -.

u.c1 ... U_
(-'<
t i_ .. -
'-'

........
1

(a)

· ~

\ .

1.--__________________ _

(c)

(b)

Figure 3.2: The Creation of Fragments

ClI.tPTER :J. TIlE AIUPE-2 USER INTERFACE: AN OVERVIEW 27

E.Lch PIS \VlIIdow displays, in reverse video, the external representation of a ctructured

cursor rpfernng to textual program struc~ures (R 6). Certain keys are used for cursor

lTJo'verr.Pllts on program structures (R 8). For each window, mouse buttons are used ta

pOp-lIp contained WindowOps and EditOps Menus (R 9). Editing commands (R 10) that

changr! the contents of a PIS vVindow are fired with the EditOps Menu; sorne, sueh as the

GlOllp and Drag cornmands. can also be completed with the mouse or keyboard.

Part 1)[Figure 3.1 shows two PIS Windows represènting Statements and Declarations

fragrnpnts, rC':lpeetivcly. The former is labeled as Fragment #1 : Statements and the lattt'r,

a.s Fragment #:J: DeclaratlOns. Both windows contain PIS program structures. The

higltlip;ht('d Mecl in each represents a structured cursor: in the Statements PIS Window, it

i., on an internaI plOgram structure (the LOOP statement); however, in the Declarations

PIS \V1Ildow, it it> on the entire fragment.

Windows for Programming-in-the-Large

A PIL Graphies Window cantains a graphical representation of the PIL node-hierarchy

(R 5.b) contained in the PIL fragment and represented by its parent PIL Window. Because

the graphieal hierarchy ean become intricate, horizontal and vertical scrollbars in the PIL

Graphies Wiudow respectively permit horizontal and vertical scrolling of the contained

di.tgram. :-\ P IL Graphies Window also displays in reverse video, the external representatian

of a ~trll('turcd cursor referring to a PIL ~ode (R 6.a). Certain keys move this cursOI from

one PIL nodt' to another (R 8). Editing commands (R 10) to insert or delete PIL nodes

from a PIt Graphiu, \Vindow use the EditOps Menu (R 9) for that window.

A PIL-Node Text \Vindaw is the textual representation of its respective PIL node (US

plcl.yed in it PIL Graphies \VÏndow (R 3.c). The former window is a multi-paned window

in which the P,LIlCt> correspond to the divisions of a PIL node (R 3.d). Each pane, or sub

Willdow, cont,l.lIlS· !>crollbars to control the display of text representing internai program

structlllPs, .Ul EditOp::. ~'Ienu, and square grips ta resize one pane at the expense of the

01 !ter. :\ l'IL Graplllc~ Window and PIL Contamer Window ean also be similarly resized.

'l'hl' cap.tblll ty tü fl\~jze windows allows the user the flexibili ty to hide one subwindow while

vil'wiIl~ tht' otlll'r (R 13). Heeanse it is a child of the PIL fragment represented by a PIL

Window, a PIL-Node Text Window is restricted in movement (R 3.e) to its parent PIL

Contailll'r Window. \\'hen a structured cursor is on d. certain PIL node in a PIL Graphies

Windo\\'. tht' corrp~ponding, PIL-Node Text Windowappears in the PIL Container window

ClIAPTER 3. THE lVIUPE-2 USER INTERFACE: AN OVERVIEW

of the current PIL Window.

Part of Figure 3.1 shows two PIL Windows repr~senting Modul('s a.nd Prop;r.tlll fra\!;­

ments, re~pectively. The former is labelcd as Fragment #.J : Modules a.nd tl}(' l.ttl('f .. t ...

Fragment #4 : Program. Bath windows contain a hierar' 'lY of PIt nnd('", in th!' 111'1'<'1

PIL Graphies vVindow of each. The highlighted ar('a of each PIL Craplllc~ Wlndow rp!,I1'­

sents a structured cursor: in the Modules PIL Window, it is on .Ul int!'rtIal PfL nod" (t hl'

ProgramModule node); however, in the Program PIL Window. it I~ on th!' l'fI, Cr.lphw,

vVindow. Note the display of the PIL-Node Text Window corre~pOndll1!!; ta th.' hll!,hli\!,llt pd

ProgramModule node of the Modules PIL \Vindow. If the u~(>r ch.tn\~p., thl' '11/1' of t IH'

Modules PIL Window, the size of this PIL-Node Text Window autom.ttlcallv (hall1-.!;('~ 10 lit

the parent PIL Container Window. The figure shows that the :-'IodllI0'> PIf, \\ï lIdow h.l~

been resized to exhibit this effect.

3.2.2 Design

The modular architecture of xmupe2 permits easy modifiability of the program (R 11) by

isolating one set of functions per module layer. One set of modales is solply re<;pon~ible

for the display of windows and menus on the screen; another. for handltng IIhf'f IIlput dlld

firing the proper routInes in other modules; and the final. for directly illtl'f.lctill~ wlth

the computational component. Xmupe:2's routines, which need ta commllnicatp with 1.111'

computation ai component, make caUs ta the appropriate routines in ib ~('t of 1\10t!111(,<, Î Il.1l

is responsible for direct cails to the computationaI component. Chall!jing tlH' illlptf.ul' 10

a computational component routine necessÏtates change(s) just to tlte cal1(~) 1I!.tde III (1)('

set of modules, without affecting the other modules outslde this set Furt!tPf dpt.L11s nI

xmupe:2's architecture are in Appendlx A.

Xmupe2 attempts to be as ignorant as possible about the semantlcs of th!' computa

tionaI component routines it cails. This ignorance SImplifies xmllpeJ and <l!~o I~OI<lt!'S 1 t

from changes in the computational component. For example, xmupeJ sim ply m.t!':> (Olll!>"

tationaI corrponent text and graphies into a form sllitable for wlllclow di"pl.lY (Il .')) .lfld

displays them without regard for the significance of their contents. Anot!tpr ("{<lIllple I~

xmupe2's interaction with cursor movements: xmupe2 updates tl\(' .IISpl.ly of if', r('pf(,~l'lIt a

tion of a cursOI, bascd on the success of an internaI C1Wior mov('lllpnt and Oii tl,,' cllr~()r'"

coordinates retrieved and translated from the computational COmpOllPlIt. 1\ 1 110 tiu1l' I~

xmupe2 cognizant about the reasons for the succcss or failure of a cllr~or mOVlllllPnt III tllP

CIlAPTEH:J. TIIE MUPE-2 USER INTERFACE: AN OVERVIEl-V 29

computational component, nor does it care about the rationale behjnd the current position

of t.he ~trllctured cursor. Note that xmu.pe2 ::mly acts as a driver of the computational

cornponent Xnwpe2 then refleds the internal changes, based on the information retrieved

from thl' corn pli Lltiollal corn panent.

U~('r IIlteraction wlth xmupe2 is based on event handler and callback procedures that

f(",puud tu IIIpU t evenb or actions such as the press of a key, and calI the appropriate

rOlltlllt''> III otlter xmupe:J modules. There is no need to polI constantly for events and

di~p.ll(h tltent 1.0 th(' correct procedure: the window system is responsible for this polHng

and ot h('r f.lcets of event management. Xmupe2 thU5 uses an external mcthod of control,

explaincJ. Il\ Section S 1.2. An advantage is to simplify the coding of the user interface and

[peluce it::, dialogue-control routines ta a collection of event handlers and callbacks.

Shiftlng respoTlslbility to ~he window system is not only used with event handJers a.nd

caIlb.teks, but aiso used with the display of text or graphies. Once xmupe:J sends it dis­

play.Lble te:-..t or graphies. the window system is responsible for their proper display and

fitting wlthin a window. The resuIt is simpler code in xmupe2.

Xmllpc.! dops Ilot take control of the screen, but coexists with other X Wil1dow System

apphra lIOns that the user may be rUl1ml1g. The coexistpl1ce of indèpendent programs is

in acrord.l11w with the ~tyle of typical X Window-System applications, such as xman Ca

IlI.lOnal-page browser), and xterm (a terminal emulator). Sorne advantages of this style are

th.tL the us('r can interact \Vith other programs and manipulate windows ta manage screen

~p.lce.

3.2.3 Implementation

Xmllpe:J IS implpll. nted to run in the X Window System, a widely available and portable

window ~ystPIl1 (R 12). The capability to manipulate windows (R l.b) requires that a

wintlnw mall.l/!,pr hl' rllIlnJilg under the X \Vindo"" System, before invoking xml.lpe2. Using

an a\-;tilahle WlIldow manager saved considerable time in the implementation of xmupe2.

To lor.de fragnH'nts or PIL nodes displayed in windows (R 4), xmupe2 maintains a list

of noll(''>. c.llled thp Window List. Each window, which represents a PIS or PIL fragment

or ~l\bwilldo\V of a PIL-Nodl' Text \Vindow, has such a nodc. A pointer ta the fragment's

ab~t ract :-ynLtx trcl' (AST) structure is associated with each node, and consequently, window

des< riptor. The US.l[.!;(, of a. node per subwindow of a PIL-Node Text vVindow effectively

linl'.lfll.(':' t hl' IlJN.lfrlllC;t! structure of the corresponding PIL nodes. This was done to

.. ~-------------------------_._--- -

CHAPTER 3. THE MUPE-2 USER INTERF.J.CE: AN OVERVIE\\" ,Hl

simplify the implementation and search of the Window List Each node ill thl' \\'llldO\\ 1,1' f

also contains attrihutes associated with its respective wllldow ~uch as (H :2): the wllldow

descriptor, window namc, text (for a PIS \Vindow, and subwindow of a. PIL-:--;od,' '1'1''\ t

vVindow), coordinates of the structured cursor as displayed on the Wllldo\\. 1'lf'1l1I,> ,1~,>(J(1.1 1. Il

with each mouse button, and graphies tree (for a PIL Grapluc'l \\ïndow)

The invocation of xmupe:J caUs routines to initlalize va.riable,> and da!.. ~I [lI{ 1 \HP'> • .111<1

creates the Main Window. Callbacks. associated with the menu'i and butlolls of th .. .\Lttll

Window, are procedures that are automatically called by the window :,y..,tcm wh.,!! 1 h,' 1/' f'[

selects a menu item or presses a button, respectively. Xmllpf'2 tllt'Il reh',l~p., roll 1 roI 1(1 ,\

X \Vindow System main interaction loop that detects events and dispa,U hl''> t \tf'1I\ t (J (II(

appropriate event handlers or callbacks. Once these routines finish eXPclI(ill!!;. (Olll roi 1,>

returned to the main interaction Ioop.

For the creation of a fragment, xmupd creates the window correspo!ldinr!; tu tlti~ h;}l~

ment and a Window List node associated with tl1ls windo\'v [t .1150 ddillC''> thl' ('\'plII h,llldlp!<,

ta trap the pressing of the mouse buttons and keys, the m,ullpulation of Ih(' \\'Indow. ,1I](l

the entrance of the mouse mside the window. It then ca.lJ~ tilt' COlllpllt ,1I,loltal (ompolll'lIl

routme to create a fragment internally, retneves the coordinate.., of the 'itrllc!llfl'd (lIrf>O!

from the computational component. and displays the contents of the fragment in it.., wlltdlm

Manipulations of a wmdow reslllt in il caB to event handlers th,ll r('frrsh tlll' ClIrll'lIl

contents of a window. These contents are stored in the \VIfiJow Li~t lIodl' for th,lt. \~Il\dqw

Recall that xmupe:J itself does not make titis calI - the main Intpr,Ict.HHI 100[' in th\' \

Winclow System is responsible for the calI.

Whenever the user moves the mouse into a PIS \VIIlJoW. PIL Gr,lphll ~ Window. or d

subwindow of a PIL-Node Text \Vindow, .r:mupe.'! searchps the Wl/ldow LI~t. for LlIP Illide

whose window descriptor is equal to that in which the mOllsP ih Joc,lted. Once It finds thl'

nocle, it informs the computational component of the a,..",so!'lated ClIrrpIIt AST lIode. '1'1)(·

drawback of thlS method is the search of a linked list. wluel! ('an g,row wlth an illCf{'ac,,,d

number of windows.

\Vhenever the user presses the right mOllse-butto.l while th!' 1Il0tlSP CUf',(Jr h in a fr,l~

ment window, xmupe2 pops-up the associated EditOps :-'lenu. If a menu Itpl\} I~ ,piPI tl'd ,iIlel

an editing commalld is to be executed, xmupe::! c..llls the complltatioll,d compoIll'ut. editin~

routine. XmupeJ then retrieves the program structures to 1)(' dl~pl,lypd ln thl' fr,l[~tlll'lIt,

maps them to a suitable [orm, and shows them. It a1:,0 rl'triev(l~ the CUI rl'Ilt ~trtJ(tUf pc!

C'IIAPTER:J. TIlE MUPE-2 USER INTERFACE: AN OVERVIEW 31

C1lf~or and uses it to display the representation of this eursor. Finally, xmupe2 updates the

EditOps Menu based on the corresponding menu structure in the eomputational component.

Control is then released to the main interaction Ioop.

A lcgal keystroke in a fragment window results in a calI to the appropriate cursOf­

movclllcnt routine in the computational component. If this routine returns a sueeessfui

f(~"ult, XnlUP/:;:J retricvcs the strur.tured cursor's new coordinates from the computational

componcnt. unlughlights the oid cursor (whose coordinates are stored in a Window List

nodn), paints the new cur~or, and stores its coordinates.

Specifie requirements not mentioned in this section are shown ta have been satisfied in

the following chapters that deal with unparsing, cursors, menus, and editing commands in

the user interface. However, references ta specifie requirement numbers are not made.

Chapter 4

U nparsing and the User Interface

An unparser is a program that maps an internai abstract structure to text on ,t phy"((al

area [52]. The internaI abstract structure is an abject, such as an AST, wlllch IS hicrardllC<lJ

and intricate: its pictorial representation is not suitable for display on a scrp('n. Thl' t.t'xt

ta be displayed is the flat representation of the AST's concrete syntax. Problem~ :'lIcll as

screen size and display formats must be addressed, in arder to provide thf~ u:,cr with ft cle,lI

view ofthe edited program. Screen size probIC'ms can be allcviated with the use of scrollha rf,

that give the user a movable viewpart into the full texr.

The unparser usually has sorne arbitrary rules for Its dlsplay format. For exalllplf~ II.

could place only one statement per Une and keywards in certain pasition~. and dcddl' li\(,

spacing between entities. The user interface is not concerned with issues, such af. fOlIll,ttt.lnr,

unparsed text, which are the computational component's respansibility.

Unparsers can be nonincremental or incremental. A nonzncremenlalllTl/mrMT f!'gt'Ij('l

ates the unparsed form of the whole program, for every change. Thi~ me! holi b rf~a~Olld bIt'

for small programs. but is less efficient for larger programs. The Cornell Prol!;ralll Synthl'·

sizer has such an unparser. An incremental u.nparser regenerates only the r"levant P,Ht"

of the AST for every change. This is more efficient, but more cornplex ta impl p men1. than

nonincremental unparsing Rice UnivcfSlty's Programming Environment for Fortran [.1] h,t~

an incremental unparser.

Unparsing internaI MUPE-2 structures is a critical operation tbat proviJes the llf,er

with a correct view of the editeJ internaI structures. The AST in ;"IUPE-2 is 1lllp.tr!-Jed

into two kinds of buffers: a lextuaI unparsed buffer and a gmphiml lmpm's('(l !JujJer. T"(~

former is used for PIS fragments and the textual representa.tion~ of PlI. nod('~. and tll<'

32

CIL\ PTEH ·1. UNPARSING AND THE USER INTERFACE 33

1,lt1.er, for PIL fragments. Although the computational component is responsible for main­

taininl-!; the~e two kinds of buffers, a brief discussion is necessary ta explain how xmupe2

11Iter;tct~ wlth them IIowever, the a.lgorithms to transla.te the AST ta any of the unparsed

b1lff"fS MI' of no COllcern to .rmupe2 and thus are not discussed. The structure of the AST

and other computational component data structures of lIUPE-2 are extensively treated in

[()(jJ. 13('c.lU~e the cornputatlOnal component maintains an unparsed buffer for each frag­

IlIpnt, .wlllpe::J maintains its representation of the unparsed buffer corresponding to each

cornputationaJ componcllt's unparsed buffer_

'l'hl) re»t of thl» cha.pter discusses relevant issues in textual and graphical unparsing,

wllhm olle fragment a.nd from xmupe2's perspective.

4.1 Textual Unparsing

Performed for PIS fragments and the textuaJ representations of PIL nodes, textual un­

parblllg fI~~llltS in a textuaJ display of internaJ program structures. For example, part of

Figure 3.1 shows two PIS Windows with the results of textual unparsing. The Statements

PIS Window exhibits statements formatted by the unparser of the computational compo­

IH'nt. <tilt! dl~plttyed by xmupe:'!. The Declarations PIS Window shows similarly displayed

tCll1plt1Le~ of dechrations.

ln the compu tatlOnal component, the window-system-independent textual unparsed

bufrer consists of a doubly linked list of Line nodes, with each Line pointing ta a dou

bly llllked list of Line-part nodes, each of which contains items snch as reserved words,

cxpfl's~ions. and startjend columns of text. Each AST points to the first and last Line

nod{'s of its textllal unp,lrsed buffer; conversely, each Line-part node points to its reldterl

AST Hode. lb a r('~IlIt. the ~tructured cursor (disrussed in Section 5.1) moving on the AST,

can IH' pasily mapped to the corresponding unparsed ouffer nodes, and consequently to row

and rolull1ll coordinates witllln a window SOIllP editing commands need a reverse mapping:

str(l('H r()()rdill.tt('~ are first associated to corresponding unpMsed buffer nodes, and thus,

t" AST nodes. III 'Juch a TI1.l.pping, the window containing a representatlOIl of the textual

Illlp.llSl'd buIrer. IS "iewed as ,L two-dll,lensionaJ virtllal array of rows and columns.l

The comput.tllot",,1 compoI\('nt musl maintain consistency between the AST and tex­

tua.! unpar~l'd buffer. For (lxample. for parti;ù modifications of a line. the computational

l"Vtrln.u" b"l.all~e tl!pn' 1., no rcal array da.ta structure.

CHAPTER 4. UNPARSING AND THE USER INTERF:4.CE 3\

component unparses only the appropriate parts of th'! AST, a.nd n'pIM{'s t lit' corr('spondln~

parts of the textual un parsed buffer.

The computational component's textual unparsed buffer IS Ilot dir0ctly slIit.thlt, for

window-display by X \Vindow System routines. Tlwse f'xpect a continuous st.rin~, \\'ltt'IPd'>

the unparsed text is spread over Line-part nodes sC.tttered .WlOnlj Line !l()d('~. To f.H IIi­

tate the quick initIal display and efficient refresh of the te'l:tu.l.l unpM~pd btlff!'f nI11l/)(.!

maintains its own representatlOn of the bulfer of each PIS Wmdow and ..,ubwindO\'v of th!'

PIL-Node Text \Vindow_ This repre~entation is a. dyn:lIll1Cally-dlallg,in~, ,-ontiIl1l0\l:->. OHP

dimensional C array of characters - a string, to be cal1ed the C strIng

The xmupd algorithm that translate~, or maps. the conteIlts of iL tei:t n.1I ll11PM,>('d

buffer to this C strIng, traver~es this buffer [rom d. startilw; LlllP node to LII !'lllliIlg Lill!'

node, both retrieved as paramcters from the computatlOnal COmpOIH'lIt For (ach LiI1(, !Joel!'

the algorithm retrieves the text within each Line-petrt node and trall~f('f,> it tu t ht' {'ufl('nl

positIOn in the C string. The algorithm ados blanks at the start of <"t(h luit' ,llld \\;\thlll <1

line, based on the starting and endmg column numbers it obtalIl~ from PM Il Lil\l'-potrt nOlk

The traversai of the cextl1al unparsed buffer and retncval of tex!. and colulIln illforlll,t

tion from each Line-part node. depends on result~ retllrned by caUs to ,rmllJ)('J).,[O<!IlI.l:.!

routines. Only these l'Outines directly interact with the complltational componf'nt cod ..

dealing with the textual unpar~ed buffer. Consequently. C code h, ill~lllated fWIll thl' dl'

tails ofthü-, buffer. the interface between xmupe': and :te computatlOll,d COdl' 1'-> ,1 (lp,uI Oll!'

and it is easier to modify one part of code without affecting th(' otlH'r.

Xmupe.2 calls its te':tual-unparsed-buffer mappin!!; algonthm ,lftpr thl' «()l\lpl(~t I()n (Jf

each user-initiated editing command that IS successful and "ltprs tlll~ bllffer_ XTIlIl])('.! ll,l'

no knowledge of the nature of the changes in, nor the contents of, tlm buffpr. it:, OIdv

function is to display the unparsed buffer in a forrn suitable for a window_ Thp lllitl,lI

costs of this algorithm are in the traversaI of the appropnate pctrt" of tlte textu,d 1JnI><lr~('d

buffer, and the transferral of text in each Line-part llodes ta th\' C striIlf!; :\'oJlpth('I(",~),

this algorithm was chosen for ItS simplicity, not its efIiciency. It (la~t1y allnw,> Jm1LW~.)

to maintain consbtency oetwf'en the tf'xtual lIrlp.usf'd bllf[pr etlld thp tf''\t dl,>pl.lyl'd III ,l

window. Although the algonthm is pctrarneterized to I1npe1r~(' ,1 r,UI!!;!' of Li/\!' 1I0dr·'), If. I~

used to map the whole textual llnparsed buITer. When there ar(' no ('(lI tl/II!; (o/lllll.LTld" tltat

change the textuàl unparsf'd buffer, the window di~pl.lyll1g ,1 m'.PPIIl)!, of thl'> buffpr, 111.1)'

still have ta be refreshed as.t result of manipulatIons ~IJch ab a. wlIldow\ r(''>II.I/I~ or ')noIIIlI)!,

CII,1PTEn -1 UNPARSING AND THE USER INTERFACE 35

U'Sage of the C string ena.b:es a quick refresh of the window, without having to re-map the

tf'xtllal unparsed }mffer. This refre~h, and the origin'll drawing of just-mapped unparsed­

bllffpr text, do not concern themselves with whether or not the text fits the containing

WIrldow XmuJif'J ~llnply informs the X Window System of the text it .vishes ta display,

.1Ild the wlIldow system hanllles the actual display and fitting of the text onto a window­

incluoin).!; whclI the windo\v is scrolled. The shifting of responsibility from xmupd to the

wllldow ~y~telH h.t~ gre.ltly ~Irnplified irnplementation of the display of unparsed text.

4.2 Graphical Unparsing

Performed for PIL fragments, graphicaI unparsing results in a graphical display of the PIL­

llode hierarchy specIfie to a PIL Graphics Window. For example, part of Figure 3.1 ShOW5

two PIL Windows with the results of graphical unparsing in their respective PIL Graphilb

Windows. HepresPIlting a PIL node, a rectangle contains the node's type. Lines connect

el th!!r immediate ~Iblings to each other or a parent to its first child. Any other children of this

parent noJe are cOIlIleeted to theu siblings. mstead of the parent. This was done to sirnplify

the ,llgoflthm that po~itions the rectangles. In the figure, the ~rodules PIL \VIndow cantains

three PIL nodl'~: ,1 Super'\Iodule, Program:"Iodule. and a DefIrnpModule. The first two are

siblings and the SuperModule is the parent of the DefImp?\Iodule. If the Super:'Iodule had

a :,econd duld. it \\ould have been shown as a slbling of the DefImp?\Iodule. The figure also

shows a Progrclm PIL Wmdow wlth DefIrnp:VIodule and Procedurp- nodes as siblings.

The corn put,tllOIJ éU component's graphicai unparsed buffer is a tree, each of whoile nodef..

contain:, a pointpr to the correspondlllg PIL AST node, the name (s11ch as DefIrnp1Iodule,

Sllper~Iodule, cllld 50 on) to display for that node, and pointers to the left and right node5

ln tht' trpe. Unlihe a textllal unparseJ buffer, it has no formatting details, because the

coordill,tte~ of the graplllcai objects to be displayed depend the iimensioll~ of these objects

.tnd olher factors specIfie to the window sy~tem. However, the position of each node in the

bllffN IIIdic.ltes the hierarchical positIOn of the node III a window.

For e.teh hlCrarchy to be displayed, xmupe2 recufslvely traverses the cornputational

eompollcnt '5 graphicaI unparsed buffer and maps it ta a corresponding tree, the xmupe2

gr.tphical trep. The latter tree contains forrnattmg details such as the (x, y)-coordinates of

the top Il,ft COIII('r of t he rectangle representlIlg each PIL node Each node in this tree also

rnllLlill~ .t pointpr to the corresponding PIL AST-node; this pointer is criticaI in associating

CHA..PTER 4, UNPARSING AND THE USER INTERFACE :w

a PIL Graphies Window screen location with a. PIL ASr.l'-node. 'l'lus as,>ori,1tion i~ 1ll'l'dl,tI

for graphical cursor movements. discussed in Chapter .5. To locate ,1 PIL AST-l\O<!" flOm ,t

window location (x, y) relative to a PIL Graplucs \Vindow, xml/p('.] t raver~es tilt' ,l~!->O(I,lt('d

graphical tree until it finds a tree node whose corre~pondlilg rectalll!;lf' ('oardin,Llp,> ront.ulI

(x, y).2 If no such node is found, the search falls; othcrwlse. xml/pt'.] retUnts thr> gr.lphl< ,d­

tree node-field containing a pOInter to the PIL AST node.

The mapping from a computational-component graphie al Unp,tf;,lIlg h1lfrer 10 t he .lS~(lCl

ated xmupe:: graphieal tree is done at the end of each editing COI1nlldnd on PIL Ilodpo.; \~it !II Il

a PIL fragment. The ùisadvantage of the timing of the mapping 1" tha t it is nnIlllICrPlIlP1I t,Il,

however, it need not \Vorry about 110w and when the eomputatlOnal COIll]H1Il011t'" gr.l]lhl< ,li

unparsed buffer is extractcd from the AST. As with the mapping of the tpxtual 1Jnp,H'iIllg

b'lffer, xmupe.J code is also not direetly cognizant of the na.me~ of the computatio!l,11 CnlJl

ponent's buffer fields. Refre'ih of a PIL Graphies \Vinùow, whiclt is triggered by P\('llt:-, ;,lI(li

as scrolling or resizing of the window. uses the a~sociated .r:mupe': gr<lplue.l! tH't', ill~I!'.l<1 of

re-mapping the computational cornponent's graphical unparslIlg buffer.

Once xmupe': bnllùs a graphical tree. it draws it in the corre~pondillg PIL Cr,lphic..,

Window. As with textuaJ. unparsin~, xTTlupe2 draws without worryint; about which gr.lphlc.ll

structures are visible in the window: the X Wmdow System clips thern to the sizp of tl]l'

window. The window system manages scrollIng, but .r:mupe2 must traverse a p;raphi!.Lllr p (,

in arder ta refresh it in a PIL Graphies Window.

lTo simplify ImplementatIOn, xmupe2 assigns ail rectangles the same width and hClght

Chapter 5

Cursors and the User Interface

An image on the display screen, the cursor is used to select information and provide loca

tion and program-activity feedback. Programming environments view the cursor in different

W.LyS. In Emily, a purely syntax-directed system. the cursor can only represent a program

structure. such as a statement. In Magpie, whose editor follows a text model. the cur.

sor represents just characters. instead of structures. The cursor in the Cornell Program

Synthpsizer. whose editor 15 a hybrid between a tree editor and text editor, can represent

both charactels or structure,>. In this editor, templates are inJerted with commands and

expressions and aS!:llgnments are typed character by character. MUPE-2's structured editor

supports both the strnctured and textual editing of program structures. Accordingly, its

cur~or Cd,n represent both structures and text.

This chapter first examines the types of cursors the user sees in xmupe2. lt then discU!ises

C1lr::,or movements as applied to xmupe2.

5.1 Cursors in Xmupe2

The CtIrsor takes on different shapes in xmupe2: the mouse cursor, the textual cursor, and

tlll' st1'llcfllred cursor. The first two types of cursors con cern the user interface; refer to

tl'xt or a screen position, respectively; and are not affected by the computational compo­

nent. The thini type of cursor reflects a program structure, which is maintained by the

compntatiol1al component and is displayed and translated by xmupe:2.

37

CHAPTER 5. CURSORS AND THE USER INTERFACE

5.1.1 The Mouse and Textual Cursors

The mouse cursor refers to the shape of the image that corresponds to the .11>solll t (' II\"\(,}

screen-position given by the mouse. ThIs type of cursor serves ~ever;tl purpm\('" in .r71!11ll/' 1

the first of which is to provide the user \Vith visual location feeclback: mOVllIl!, t III' III(}II~(,

changes its screen location. The mouse cursor can abo oe lbPd ta st>\('ct informalio!l

For exampIe, the mou se cursor is useful in assisting the user to ~el('ct a lllPllll itl'Ill. \n

highlighting successive items as the mouse IS movcd.

Feedback describing a system's current activity is also important III a u~l'r llltprf,l(l'

One method of such feedback IS by changing the shape of the mOIl'){' cllr<,or whell a ('l'rl.l11l

action is bemg performed. For example, Immedlately after the u~er ~e1ecb <Ill Itl'Ill from .111

EditOps ~Ienu, xmupe:J dlsplays a watch cursor, which Îs restncted to the ellrrent \"lll(lo\V

and Îndicates that the user needs to waJt. After the lllterndl xmupe.! comput.ttloll" .t!<'

campleted, the mouse cursar reverts ta its ariglllal shape and i~ frceli from .llly fI"-.trictlolh

of mavement.

The mause cursor also changes Hs shape, depending on the type of obj<'ct - ~Il(h itê, ..

window, menu, or but ton - in which it is positioned. For exarnple, III the Tc'{tE(lit Edltin/!,

vVindow, the mouse cursor is penClI-shaped, indicating that the n~er can directly input tl';..1

using the keyboard. Decause the Inspectlluffer Viewing Window is reitdonly, th" m()1J~t'

cursor Îs 'l'-shaped to indicate no action possible within the windO\\' In a ~rrollb.H, 1 hl'

mause cursor assumes an arraw painting ta the appropriate dm'cllOll. T,tbl .. 0,1 ~h()w:... tilt>

mause cursor's shapes assoddted wIth dlfferent menus, willdows. and blittOIl~,

The second type of cursar, the textual cursor, refers to a charitcter [>o~itlOn wltllllJ d

TextEdit Editing \Vindow and IS shown as a carct-like structure. TIll~ cur'ior plovid p " LIli

paint at which the user can edit text: it moves either h: typing or by the rnoll~(,

5.1.2 The Structured Cursor

1tIUPE-2's structured editor uses the structurcd cursor to m,Ulipul.1te progr.tlll ... tru 1 ture~

\Vhereas the structured cursor in the computational compollmt, d('I1oted I>y tht' intpfll.d

structured cursor, is ofone type, xmupe:'J disting,Ul::.hcs betW(,PIl tpxtll,tl and ~r.tphiral ,,>truc

tured cursors, both of wlllch are displayed in rever~c video. TI\l~ IHlt'rTwl . .,t1'llrlU7ft[('111',,0/

points to an internaI program-'itructure with:n a fragnH:'nt (for '!x.tIlIplt>, tn a élllnpll' l'xprl'~­

sion or a prograrn stat('ITlcnt), an entire fragment (for exarnple, to iL St.ll('1JJf'Ilt~ fr.lf.!;rllcnl),

C'JIjlP'I'ER.5. CURSORS AND THE USER INTERFACE 39

Object Mouse Cursor Purpose

PIS/PIL \\'l/ldow Watch Walt
Mp-Illl I3utton "- Pull-clown a menu
Cornm<lnd B1Itton " Execute actlOn
~I am \1 ('~<;ag;es WmJow '1' No action III wmdow
PIS Wmdow " Pop-up menu(s)

Crosshair Execute Drag/Group
PIL Cr.\plllCS WlI1dow " Pop-up menu(s)
PIL- "Jode Text WlIldow " Pop-up menu(s)
Re!>lzlIlg Gnps itlJ;./{:/ ::;.-/fJ. Reslze wmdow
Any label 'l' No actIOn ln wlndow
EdltOp;, ~lenu <= Select menu item
IIl~peLtBlltfer Vlewmg Wlndow 'l' No action in window
TextEdlt EJltIng Wmdow Pendl Edit text
Scrollbars ît / J;. / {: / ::;.- /fJ./ {:;} Scroll

Table 5.1: The Mouse Cursor's Shapes

or PIL Ilode (for cxample, to a Supermodule node). A textual structured cursor highlights

tcxtual progr,tUl ~tructures on wlùch the internaI structured cursor is located. A graphical

slrucLured cursor highhghts a (graphical representation of a) P1L no de in a PIL Graphies

Wimlow and C,luse" the (hsplay of the corresponding PIL-~ode Text Window in a PIL

Conta.iner \\ïndow.

E,lCh type of btruct1lfl.'U cursor focuses the user's attention to a certain are a (of a PIS or

PIL wlTldow) \vhich corresponds to a program structure. The structure is either program

tc'xt, III a PIS WlIldow or SUbWllldow of a PIL-Node Text Window, or a PIL node repres('ntt'd

by ,l grapllica.l Ilode tn <1 PIL Graphies \Vindow. Another functlOn of the structured cursor is

tu a.et .t~ the o~wr.U\d for many of the ~lUPE-2 structured editor's commanùs. For example,

w IU'11 t1ll' (1lr!-lor I~ Oll an ,t~signmcnt statement. and the user selects the Delete command

from ,ln EdltOp~ i\kIlU. tlH' program structure to which the structured cursor rcfers, is

dl'leU'd.

I·'i~ure 3.1 sh()w~ two tcxtua.l structureu cursors: one for the Statements PIS Window

and anot.!H'r for tltt' D('d.tr,ttIOII~ PIS Wtndow. In the former window, the tcxtual structured

cursor highl1!;ht~ t hl' LOO P statement: in the latter window, the cursor highlights the entire

fragment. rep r(,~l'l1ted by t he DeclaratIOns PIS \Vindow.

In ,llltlitlOll, Figure :3.1 shows two graplllcJ.l structured cursors: one for the ~Iodules PIL

\\'indow ,\luI .1llot!tpr for the Program PIL Window. In the former wlIldow, the graphical

CHAPTER 5. CURSORS AND THE USER INTERFACE 10

structured cursor highlights the ProgramModule node in the PIL GraphIes WU}(!ow :',ll!'

the appearance of the node's corresponding PIL-Node Text \VlIldow in titI' l'Il. ('U!lt,Ull1'l

Window. A PIL-Node Text vVindow appears only for the PIL nod~ on WhH h 1 hl' ~r.\ph!l .ll

structured cursor is positioned. Consequently, the user can f()(,ll'i on <1 ~III!.'..J.. PlI. :-;"df

Text Window instead ofbeing confused wlth a. cluttered PIL ContdinPf \\'lIldnl\' ~ltIPV ~

semantics also dictate that the user be able to edit only the nodf' OII wlllch .111)1I1t'fll,Li

structured cursor is located.

The other graphical structured cursor of Figure 3.1 is shown positio)H·d on Ih!' l'lit III'

Program fragment. Only the PIL Graphies Window is blackened becall~e il, is tlll' n!\(' whlf It

represents the PIL fragment; the PIL Container \Vindow is a contail\l~r of Willd()\\~ ,1Ild Il.1:-'

no corresponding representation in the computationaI component.

5.1.3 Design and Implementation

Mouse cursors are easily implemented: the requlred types of cur~ors are ('n·;t!,pd Wl\l'li

xmupe2 performs its initiahzations. The appropriate manse cur,>or is ,ttLlcllPd \0 e,l(Il

newly created abject such as a window, menu, or button. The X \\ïlldO\~ Sy.,tt'm j-.; thf'!!

responsible for displaying the correct mouse curbor shape when the mouse mOVf':, in an

abject, whether or not a shape was previously associated with that ObjPlt. Tpxtll.tl rllr~()r~

displayed in a textual editing wtndow are createu and mana~ed by 1 he winuow "oy!:>te Il 1

Note how xmupeJ avoids managing the mouse and textual cursors by tahlllg; .1dv,llttd!.';l' I)f

the windaw system's capabilities.

Xmupe2's design strategy for structured cursors is sinular: let the romputatiolld.l (om

panent do the work. Xmupe2 is only aware that after each editlllg COIIlIll<lIId or Cllf"oOI

movement, it must: retrieve the internai structured curbor's coordmate~ from the com(>ul.l

tional component, a.ssoclate thern with the xmupc.!-rn,tintamed tl'~t or graphic~ to dJbplay,

and display thern. At no time is xTnupe.:! aware of the rationa.h· for Ml int ('rn.ll ~t fil(t Uff'd

cursor 's caordinates.

In the impl('rnentation, xmupe2 conta.ins code that .tets a~ a bllff<'f l)('tW("'1I lwn d.lt.t

struct ures. the compu tational cornponent 's data. struct ure th.tt ff't'onh tllf' coordillatp., of

the internaI structureu curwr and xmllpeJ's corresponding fl.lt.t 'lI rllct IJfI~ fPcordlng; tllfl

window-specdic coordinates of this cursor ThiS code maps an intprnaJ structufI·d ('Ilr~or\

position ta a wludow pObltion. Recall that the rnovpment of the lIlou,>e !Il~ide a. windo\V '>\lrh

as a. PIS Window or PIL Window, tngger!> a "edfch of :r;rrwp('J'.~ W!l,dow LI~t; titi!'> .,'!M(h

CIlAPTER 5. CURSORS AND THE USER INTERFACE 41

rc!>ults in an as!>ocicüioIl between the eurrent window and corresponding AST structure

of the computatlonal component. The internal structured cursor's coordinates are then

guarantl'I'd to <lpply to the correct window.

Ea(h wlndow containing a textual structured cursor has a data structure giving the

ulr:,or'., Wllldow·[(·latlve coordinates, a boolean value to indicate if the cursor is on the

l'liUre wllldow, and pointer to the contents of the window text to be highlighted. Figure 5.1

~"n\\s the algonthm to update a textual structured cursor after each editing command

or cur~or movement. In this figure, the current wmdow is that in which the mouse is

locateJ, and the initiais (CC) indicate a cail to a computational component routine. The

comput atlOnal component translates the locations of the Line and Line-part Hodes, which

lite internal structured cursor spans, to numerical coordinates. Wh en xmupe2 retrieves

thcse coordinates, it receives numbers giving the cursor's first row, number ofrows it spans,

initial column in the first row, final column in the last row, and a boolean value indicating

whcthcr the internai ~tructured cursor is on the entire fragment. Xmupe2 then uses these

coordinates ta retrieve the corresponding text from the Window List node of the window in

which the manse cur"or IS loc(Lted. This text is highlighted as the cursar; lnghlighting draws

the text, from a. "tan row and column to an end row and column, in reverse VIdeo. The

strnctllred cllr~or'~ windO\'v-coordinates are saved in the current \Vinclow List Tlode because

they MC u"ed Hl refre:,hing a curwr, after a window is manipulated. The advantage of this

appro.l<:h i~ ta onvlate the need for constantly requesting the internaI structured cursor's

rooldinates [rom the computatJOnal component.

Retrleve ntL~erical internaI structured cursor's coordinates CCC)
Retrleve cursor text to which new coordlnates point
If old cursor is not on whole fragment

Unhlghlight old cursor in current window
Else

Palnt wlndow background white; and its text, black
If ne'iJ cursor is not on whole fragment

Hlghllght new cursor in current window
Else

Palnt windo'iJ background black; and its text, white
Save new window-coordinates of cursor

Figure 5.1: Algorithm to Update the Textual Structured Cursor

CHAPTER 5. CURSORS AND THE USER INTERFACE

The cursor coordinates of each graphical structured cursor inrlllde the wl\Idow Icl,ltl\P

(x, y)-coordinates of the top left corner of the rectangle repre~cntlllg tl\(' PlI, nodp. B(\('.III'\\

the width and height of ail rectangles are equal, there is no nppd 1,0 storp the.,p V,Ihlt'S ppr

nocle. Recall that each graphical PIL nocle is aswciated \VIth .t COI r(,"IHHldill~ .\ST !lotit',

as a result, it is straightforward to map an internaI structnred C1Ir"'OI. whl< h I~ on ,U1 ,\S l'

nod':!, to the correct graphical node. The pro cess of highlightiIlf.;/lll\hi~hlil!,htlll!.!; d ~r.lphl(.lI

structured cursor is similar to the textual structured cur!'>or\. (-'xcPpt tltal .l f<'(1 all~lp 1..,

highlighted. This highlighting draws a rectangle starting from tltt' (1I>oV(' (x. '1) (Onrdlll.1 t l''''
and spanning the rectangle's wiclth and height. vVhen the structurpd cursor l~ 01: t.he ~\1\t11('

PIL fragment, xmupe:2 draws the background of the corre~pondin~ PIL (;r,tplll(è! WIIHlnw

in black. and the contamed graph, in white.

5.2 Cursor Movements

Cursor movements aim to position the structured cursor on the desirpd structure. for editilll~,

browsing, and so on. Moving the structured cursor through textual prograIll ~trllctllre~

presents its problems since program structures are represented as an AST tint ha.s h(>('11

unparsed into a fiat representation on the screen. The objectives in CllfSOr rnovPllwnh on

the textual representation of a program are to: make the CUfwr movC>lllcJlb on th" .\ST

look natural on the SCrE'en. and minimize the number of movemenls tü il d.}slIIliltIOIl.

Some programrning envirnnments support pureIy structllred mOVClI1l'nts rn.tI< 11J1l~ t!Jf>

program's syntactic structure, others support purely textua.I movemeIlh. a.nd ypt o!'h"rc,

combine both. Systems, such as MENTOR [13] or GandaIf [61], use hie,ldy ')tru(t1Jf!'d, or

hierarchical, cursor movements that seem unnatural in editing or brüwsl!w; th.\ fI,1I ',U('('ll

representation of a program. The Cornell Prograrn Synthesizer, v .. hilh trl',th P'\J>rl'.,~IOIl',

textually, uses textual non-hierarlhical cursor müvements on expre".,ion'). a nel "lI 11< t lIT1'd

movements on program structures that it view~ structuraIly. In contr.1S!, and by tr/!,ttin!!,

programs textually, Magpie has cursor movements similar tü a text eJltor''i. SOIJlt' ')ystplm.

such as Magpie anù PECAN use both the keyboard and mOll~e for cllr~nr TlIt)\'PlIlPlIb

Others, such as IPSEN, provide cursor movements jll~t by the mOllè!e.

MUPE-2's cursor movements [47,48] are keyboa.rd-bas('J and centerrd on two typl''i of

structures: either the graphical PIL-noùe hierarchy in iL PIL Graplllcs Window; or .J t('xtllal

display showing details of program structures in a PIS Win<!ow or PIL·.:'Jode 'l'pxt Window

ClI.lPTER.5. CURSORS AND THE USER INTERF.4CE 43

Cllr~()r movcments on the graphical hierarchy are hlghly structured movements from node

t.o node. Dela use the textual display is a flat representation of an AST, textual cursor

movcmcntb in ~l GPE-2 share the goals for such movements, wruch were mentioned at the

hl~!',inlling of tlll~ 'iPctlOll

Altltull~h the rest ofthls section rnainly concentrates on cursor movern('lts on the textual

r('prp~entilti()n of il program, it gives a brief example of movements on graphical structures.

Dd,1I1ed theorctlcal prlllciples of cursor movernents are further discussed in [4 iJ. The author

partlcÎpated in the str,Ltegy for cursor movements in the computational cornponent, but did

Ilot IlTlpJpmellt these IIIternal movements. The author's contribution is in the complete

d('~ign and implementation of the user interface to internaI cursor movements.

5.~.1 User's View

Strllctllred trec-likE' cursor rnovements on program structures may scem unnatural or diffi­

cult. and pnrely Uat textual-movements may not conform to a program's syntactic structure.

~l GPE-:2 attempts to solve this dilemma by using semi-structured cursor movements [48J,

wlüch move on fine-grained program constructs. such as expressions and CASE labels, and

avoid their individual charac1.ers. or entlre program structures.

CUf<;or movcrnents in ~ruPE-2 need to conslder program partztzons (parts of a program

on which the curf->or can be posltioned), and streams (paths or sequences of partitions Ltat

a cursor follo\\i». Th(, movernents intend ta simplify and assist the user in both the editin!j

and brm\ "1Il~ of il progr;lm. Partitioning the program according ta the grammar resutts

in highly SiflH tured movementsj for example, placing the cursor on the reserved wOJdf>

POl.NTER 1'0 III ,1 record dt>claration is difficult. The user would be unable to easily delete

the.,p t\\O wnrd~. Thu:., fool requzrements may dictate that sorne cursor positions make

('di tlng or brow~JIlg more efficient. For example, MUPE-2 deviates from the grammar and

aJI()\\'~ the Cilrsor on the above two keywords, but is careful to preserve syntactic correctness

~IUPE-~ ~elects strcétms in such a \\:ayas to avold unlikely candidates for editing (such

as {'ntire p<utition:-;). and tü permit the user to move on partitions more likely to be edited

or brow~ed, ~lIl'h a~ Hientifiers. Vertical streams include identifiers on the left hand si de

III (IPd.tra tions or ~ 1 al cment s, or labels in a CASE statementi horizontal streams j nclude

pal t i t ions i Il de<!aratlollb or procedure declarations.

The Il~('r III 0\ ('~ tll{' lImor wlthin a window by using one of two sets of keys, the first for

CHAPTER 5. CURSORS AND THE USER INTERF.·1CE Il

structured movements, and the second for semi-structured mOVPll1ClltS. Stnu turcd (1\0\('

ments move the cursor éther next or previons along outf'rmost con:-.truct:" withill th" Polr

ent construct, out onto the parent, or in on the first constrllct cndo:-.t'd \\ it hin t hl' !M\'Pllt

Semi-structured movements mave the cursor onto partItIOn., aloll~ O(lI' of four (lir!'! ti()l1~

Table 5.2 shows xmupd's binding of cursor movement s to speC! lic he!,s 'l'hl' llo!.,lt.iol1 l'ITl­

<key> means: press the control key with the specified < kcy > For bo!.h PIS and PlI.

fragments, respective cursor-movement keys are the only one" tItat affpct tl\l' ~t.lt(1 of tlll'

displayed fragment; other keys are ignorecl.

Category Key Cur~or i\l10VI!Ull'nt
Structured movements Ctrl-n Next

Ctrl-p PrevlOu~

Ctrl-o Out
Ctrl-I In

Seml-structured movements - Left

- Rlght
T Up
l Down

Table 5.2: Cursor Movement Keys for Program Structures

Figure 5.2 shows how xmupe2 displays cursor movements used in browsin~ il <'Pql1f'I)«,

of statements in a Statements PIS window. These movements were accompliilhed USI III!; tlt"

l key. They show the cursor following a downward stream, witliout con cern for ;L pr011;r,1I11 \

AST, and cutting through construct boundaries (such as the keywords) to allow pO~lt\(IIlIIIl',

on structures most likely to be browsed. As a result of cutting through snch hOlll1darJ('~

browsing program structures is faster.

Cursor movements in MUPE-2 also support editing. For example, the cursor is movrd

with the - key when initially on the left hand SIcle of the following declaration:

TextArray = ARRAY [1..lOJ OF CHAR;

The second movement is from the left side to the subrange within the right '>Id", il1!'>tl';ul of

the entire right SIlle. This is an example of a tool'~ requiremcnts overriding the prograrn 'h

syntactic structure: the user is more likely to edit the innards of the right halld f>ide, ill!->t!',ul

of the entire side. Editing of the entire right ha.nd side is still possible, hy using; t.hr> control-o

key.

CIL1PTER.5, CURSORS AND THE USER INTERFACE

:. nlr~.f.rsILln_S
.ne ~. !,!r"'.:'.,.tlln.,

IIEPERT
Flr~ILln. :. F'lrstllntA.tltHlI

UIITIL FïrstLln •• [un .. ntLln.,
HUI'IUn,", :. 0'
rOR Lln!!!:=Flr~tLln. TO LastLln. DO

lIultLlncs :. Hu"""I,,.. • 11
Ello,

tlr.tLI.,. ;.
La,tLlna :. Plr'"
REPERf

i1IHm l-!r;::;- :. f'lrstLln.A,HeKtI
LnITlL FlrstLlna • CurrenlLlna,
11u,,1I l'II!!! :. 0'
FOR Lln.:-rh"ILlna TO la.ILI". 00

Hu..Llne. :. Hul'llincs • l'
ElIO'

lSl r"'Ag",."! Il : Suhtft,.nls ;m

FlrwtLlne :a PlrA.F'lrstllne,
l."tU ... :- Plr,l •• tLln.'
REPEAT

F'lrstLlne :. F'irstlln!!!A,IlPKtJ
UllTIL jr:n"r;ru~i .. "l!Iln",
Hu"Unu ::0 01
fOR LlM:-r 1t slLln. TO LntL 1". DO

Hu"'-Inss :. Hu"Unas • II
END 1

1

FI~stLlne :. Pt~.FlrstLlne.
lastllne :. Pt~.l .. tllne,
REPERT

FlrstLlne :. FlrstLlne·.HeHt'
UHTIL FlrstLlne • [urr.ntlln., r,r:rn :. o.
âi Lln.:.rlrstLln. TO lastllns DU

Nu""-In .. :. HUlollna •• 1.
Dro.

-FirstLlne :. Pt~,FlrstLI" ••
lastLlne :. Pt~.La.tllna.
REPERT

Flr,tLI". :. FlrstLI".A.H.Ht,
UHTIL Flrsillna • eurr.nllln.,
NulOllnes :. 0'
FOR :!li'l:l:.FlrstLln. TD lastllne DtJ

Hu""-lne. :. Nu~Lln •• + 1.
END.

F!r9tL.ne :. PI~,FlrsïLln.j
Lesti.lne :. Ptr"'.Lastllna'
/lEPERT

FlrslLlna :- FlrstLln.A.lle><tJ
UNTIl Flr~·.Llna • [urTantlln.,
HUltL 1 nas ;. 0,
fOR lln!!!'.FlrsILln. Ta laslLln. OU

Il!!:l!r..:::! :. Nu",,"ln!!!' • 1, Dm,

Figure 5.2: Cursor Movements in a PIS Window

45

CHAPTER 5. CURSORS AND THE USER INTERFACE Ih

The highly structured graphical cursor movements can only use the ~t.rllrt III pd 1ll0\'Pll\\'1l1

keys of Table 5.2. Figure 5.3 animates such graphical cursor movelll('n ts. E.ll II fr.llll\' ~ltO\\

in the PIL Container Window, the PIL- Node Text \-Vi ndow corre~pollding to tilt' PI L Bod.' • l/

the current structured ClIrsor. In Frame (a), the structured cursor is on tltp ('Htm' ~Illdlll."

PIL vVindow (that is, on the entire fragment) Two ctrI-l key sequcIlCl''> fir~t lllOVC' t Ill"

cursor inside and position it on the Su pel' ~lodule nocle (see FrallW (b)) .1Ild t 1tt'I1 OJI 1 t-.

immediate child. the DefImpModule nocle (see Frame (c)). Frame (d) :0110\\" thp (\\l'-()f

back on the Super~lodule node. as a result of a ctrI-o. 110ving the cl\r~or from thl" l1ud .. Î Il

the next adjacent noùe, the Program:"fodule no de, requires the ctri-ll key~ (:'PC' Fr.lIllf' (('))

Similarly, to move the cursor from the Progranùlodule node to the Sllper~lodtllp l\odt', tllf'

user must press the ctrl-p keys together.

5.2.2 Design and Implementation

Xmupe2 is responslble for mapping the results of successful (internaI) \\!llldow-indl'f)('nd\'!It

cursor movements onta the the windaw in which the mouse cursor is Iacated. Xmllpt>.!'~ III ,li II

design strategy for cursor movements, as previously mentioned. is not to be aware of th ..

signifieance of a particular cur~or movement. It is the responslbdity of tjlP cOIllputation,LI

camponent to determille the Sllccess or failure of a cursor movement.

The J:mupe:2 alganthms ta drive cursor movements in a window are not. concPfllP<! \VIt Il

the visibllity of the structured cursor as the result of a SlJccf'hsful mavemcnt. Thl' X \VIlldow

System determllles the visibility of a cursor: tlus is becallse il, wllldO\v aets ah ,1, ~(roll.lblp

viewport into the dit.played text or graphies: the user ean use the ~crollb.u5 tü VIP\\' a rllI!'>OT

not immediately viSible. Resizing each window displaying a cursor can also u:-,lI.dly .H hw\!>

the same effect.

The computational component 's intprnal cur~or movements arp indeppllt!pl\t of .lny \\111

dow system, but xmupe2's algonthm that drIves cursor movemenb on tP'\l dJift'r,> ,>11l~1i11 \

from the one that drives graphies mo\ernenb' thp former p,tinb ,t ClIf'>Or (uliLullIlll!; JI1'>t

text, where,ls the latter paillts a grapilleal obJcct Ot!tprwI':>c. bot h ,t1l!,Ollt hIll!'> MI' 1',>,>1'11

tially similar and are outlincd as one algonthm :,hown in Figurp '),1 (llllp,> 1ll.trJ..,'d Wltl! ,t

(CC) indicate caIls ta computational compoIl<.'nt rou tl ne:,). \ \'jH'll th!' !nOll',(l <'li r,>or 11> III

a PIS \Vmdaw, PIL Graphics Window, or subwilldow of ,t PIIr~Udl' 'l'pxt WIHdow .IHd

the user depr('~s{'~ a hey, the X \Vindow System dete<,b titIS (>\,PIlt. It <tlltolllat il ally (,dl ..

xmupe:!J's correct cursor-movement driver routine.

CIIAJ>TEH.5. CURSORS AND THE USER INTERFACE 47

(b.d)

Figure 5.3: Cursor Movements in a PIL Window

CHAPTER 5. CURSORS AND THE USER INTERFA.CE

succass = false l*boolean*1
Retrieve key pressed
If key is for a legal cursor movement

success = Perform cursor movement (CC)
If success I*successful cursor movement*/

Retrieve internaI struc~ured cursor's coordinates (CC)
Paint cursor
Update editing menu for this fragment (CC)
Update Ylndoy's EditOps Menu

Elsa
Inform user that cursor movement failed

Figure 5...1: Algarithm ta ~love the Structured Cllrsor

I~

Chapter 6

Menus and the User Interface

The problem \Vith command-line user interfaces is that the user has to remember the syntax

"lId sPIIl,wtics of commands. Such interfaces are prone to er'"ors in the entry of sometimes

cryptic or complex commands and data. Menus, however. display the appropriate com­

IlI,U1ds and options. encouraging a structured approach. They rely on recognition rather

th,ln ree,dl. elinullatp memortzation of complex command sequences. require little or no

prim knowledge or traInIng, and hasten the learning of a system. In user interfaces of pro

gramming environlllents, menus provlde cognitive assistance to dilferent types of users: the

novice user is unlikely to ff~member aU system options and invocations, and the expert user

may forgtt infrequcntly used commands and options. By ensuring properly structllred and

p,trameterizeJ cOIIlmanùs. menus aet as a shICld between the user and the system. But, an

t''\pel t u~er may someti mes find menus a hindrance, and instead prefer menu aecelerù.toTs

or a cOllln1<wd-language interf,iee.

Thi~ chapter first discUf<,c& Issues in menu design. It then examines the usage, design,

and Implementa,tion of menu!> in xrnupe:-J.

6.1 Menu Design Issues

Two menu design ihsues are menu organization and item presentation sequencing. Schnei­

d!'rm.tIl [il] clah&ifies menus accord:ng to semantic organization. Sorne types include single

1I11'llUS. lille.tr seqUt'llces of menus, and tree ~tructured menus.

Sillyll' meT/li.' COllt.UIl Illultlple items and can extend to more than one screen. Linear

M'IIIlI 111'('8 of llH'llllh COIlhist of a senes of interdependent menus which guide the user through

40

CIlAPTER 6. MENUS A.ND THE USER INTERF.-\.CE

a series of choices. Presenting one decision at a Ume. the~e typ('~ of I1H'lIlJ:-' ~h{lllid .1110\\ th"

user to go back and view the results of previous Ch01CPS. Tr(,f'-~lr'llctw'(d IIlI'IlI\'. jI.IIII! 1')11

collections of items into groups - nsually of logically sinllla.r "nt! nlut\l.dl~ p rlll~i\(' 111'1/1',

- of menus at dlfferent levels. Such menus mu!:>t comlder th!' clppth (Illllllhl'f (JI 1"\'l'b) 1\1

the menu tree versus its breadth (number ofmenu item" per Il'\('l) Dp(If'.I~lll!!, Ih(' 11lImh",

ofitems per menu reduces the display time and screen c1uttpf of thl' IJlI'IlU. hlll .lddlllt>; IlIOI"

items per menu reduces the number of menus and deepl'Ils a 1111'1111 hll'r.1l (h~ lIowl'\ f'r "

deeper menu hierarchy increases search time or navigatlOIl of a Illf'llll

Menus that ap;>ear \\lth a mouse click alla that are IlaVl~<l!l'd hy t!IP 1Il<lIl"p. S('('III tn

offer a compromise: they save screen space by appeafllll!; \\ I\I'H IlPP!!Pd "lit! .11i' qlll(hlv

traversed. l'et. the user mmt remember WhlCh button to (lepf('''~ h('l'!l it df'pIP~,,(,d, !\l()\'/'

the mouse to select a menu item, and then relcase the bat/oll. E\:IH'rt 11-,l'f" Ill.LV 1)1'(OJlW

annoyed with thlS multl-step process and lnstead prefer arcpkrat()r~ or lIlf'lIll t~ pl'.dl/'.ul~

wruch use a mouse click or keystroke to execute the ~,tn1f' comm.Jnd.

Items in a menu can be ordered in vanOtlS mpthods, ~lIrh as chronol!)!!,l! ,d, .dph.t1If,t If ,tl

numerical. by SI mllan ty (functional grau pwg), or by fr('q\l('nc~ li lI\ port.\I\(" of Ihl' l ïï l,
Functional grouplllg is ideal for programming eUVlfonment IlH'Il\1~: for (·xalllpl.'. dl'(l.lra! 1011

template!> can be grouped in one menu, statement temp!d.tc!> in another, .wd "(1)1\

6.2 Menus in Xrrlupe2

Menus used in structured or syntax:-directed editors contain the COnlIl1.IIld:- .lpplH dill(dl

any point. For example. Enuly uses a fixed menu ta display the lega.l coll~trll(t'i th.l!. (,1I1 IH'

inserted at any point of editing a prograrn. The user uses a light pen tü "pleu, ,1 (on,>t Il](1

Smalltalk extensi vely use~ mPllus for pxecu tion of operatIOns. PEC.\:\ 11 .,ps III ('Il 11 ~ fOI III (J~ t

commanùs. and IPSE~ uses meull windO\\s for the same purro~e

XmupeJ uses: fixed slIlgle menus in the form of a It~t of Ille Il Il and rOIllI1l.\11I1 bllttol\~

single pull-down menu", and trce-structun'd pop-up menu" for editln~ co III III ,1 IId" ,\11111/'1111"

have clear and ullder~tandable title~ and Item Ila.rnp~. Thl! U'i('f uttli/.p,:> th" ,lppropflat l '

mouse bUttOIl~ ta display a non-fIxed lllCI1ù and tra\'er~e:, it by 1I\()Villf,!; t hl' !Homp (11f-,OI

over the items. POP-1lP and pull-clown mCHUS appcar only whPII nl'('\IPd. S.l\ IIIg; ,,{ 1 {'l'II ~p.l< f'

Releasing the mO\l:,e blltton 011 a. lughlighted IlWIlU item :,e\ccts tltat ItplII, for hll'r.lrdllc,d

menus, s(l!ectioll of an i(lm occurs whell the rele.l!:>e is OVf>r a leaf mP1I1I itl'III. All 1I011-fi p,j

CIIAPTER 6. JfENUS AND THE USER INTERF.4.CE 51

menus pop clown when the depressed mOllse-button is released; releasing the mou se button

when the mouse cursor is outsicle the menu does not select any item in that menu. This

!wh,LVlor allow~ the user ta gracefully exit from a menu.

Table lU Pllnmerate'-J the different menus available in xmupe2. An asterisk (") followine

a IlH'nU n,LIne indicatl's the menu can ha\-e multiple occurrences. The first tluee menus are

pull-down menus. and the rest are pop-up menus. Italicized narnes are literaI ones used in

the Hll'n Il~.

Nalllc Parent Contents
Crf',lteFragrnent ~Iem: ~hl!l Button WllIdow Fragt) pe names
Help ~len1J ~lal!l Button Wmdow Help Items
QUIt ~Ien\l ~Ialll Bulton Wmdow Cancel. Confirm
\\ lIldowOps ~Ienu· PIS 'v'v mdow (He/p

PIL Graphlcs Wmdow
'LJltOps ~Ienu· PIS Wmdow/ Edlting commands

PIL Graphlcs Wmdow(
PIL-~ode Text-W\l1dow SUbWllldows

Table 6 1: Xmupe:J ~Ienus

6.2.1 Using the Menus

A pull-doWIl menu IS clisplayed by depressing a menu button in the)v[aÎn Button Wmdow.

PuU-down menus a.re u~eu for the creation of fragments. help, and quittmg xmupe2. The

CreateFragment ~[enu. as shown in Figure 3.2, allows the user ta create a fragment of the

appropriate fragtypl'. The Help ;"'Ienll of the ~IaÎn Blltton Window, Help Buttons in U,e

TextEdit and In:,ppet Win-":ows, and lIelp item in each \VindowOps ~lenu, illustrate the

principle uf providing help at aIl levds. The Confirrn item in the Quit Menu shows the

principle of allowing the \l~er ta confirm dangerous cornmands. QUltting xmllpe:2 destroys

ail <l~sOclated winùows anu the structures mamtaÎned by the complltational component.

A tree-,>tructured E:UltOps Menu pops up with a mO\lse-button press and allows the

liser ln execllte an ediung commando suell a~ the insertion of PIS program structures or

l'IL node:,. Thl'w is .lIl EIlitOps Menu for every PIS vVindow, PIL Graphies Window, and

SUbWllldow in a PIL-~odl' Text Wlnùow. To indicate that the menu is active, the mouse

Clln.,or h,I.'> ,1 lt'llIpor.uy left-.trrow ~hape wlllie an EditOp::; Menil is vbible. A menu item

!Il an EdltOp~ ~1l'Illl h,lll .1 :,ubmenu If d. nght-arrow IS di~pld.yed al the rightmost side of

CHAPTER 6. MENUS AND THE USER INTERFA.CE

that item; menu items with no arrows are termini)l or leaf it<>ms. wluch firp (OIllIll.IIIt!,

Popping-up a submenu re<{uires that the monse cursor he moved to t 1::' arrow. Tht' \l~t'r

is alerted to the existence of an Editüps ~renu by a messag<' that apIlP.trs III tllf' l\t.lill

Messages \Vindow, when a fragment is created.

A novel featur~ about an EditOps Menu is that it') ron1,t'nb chan' .. !,!' .Iftpf .ln "dlllll!'.

command or cursor movement. as deterrnined by the corre.,polldilll!; !llPllll strll< tur!' III th,·

computatianal component. The ratlOnaJe behind the~e context",Cll"'l t 1 \(~ (h.ln~p,> I~ .t plOp

erty of the computational component: xmupe..! only rl'flect::, thp"c cha n~P'i

Figure 6.1 shows two different EditOps),[enUb resultJlw; from cnr"or 1Il0\PlIWllh 1',1111

frame shows the complete set of optIOns per menu An IlItprp'>tlIll!; a~pt'c(nf Fr.lIlll''> (.\)

and (b), is how each EdltOps ~[enu reJ1ects the context of the :>trll(tlln'd (1lr'0l III !-r.tI Il l'

(a), tlle structured cursor lS on the \VHILE ~tat.('ment. The Edlt()p~ \11'11\1 "hu\\,> t h.tt t ht,

user can De/ete. Drag. Fald. G rOl/p. or Tcxtually edit the WIIIL E s Lttf'!llf'll t. 111"1/11'1 llit'

(unpé.rseu) content s of the Anonymoll S 13 llff0r (ta wlllch deleted .\ ST" .1I P IllOvpd 1. or 1 Tl '1/ 1

other statement templates araund. ajler. '"jolf'. or 1ns/(le tlH' \\'HILE ~t.\tPlllt'llt III 1 r.llli!'

(b), the cursor has becn moved to the expre::>slon pla((~holdcr of tltp WHILE ..,t.llt'll\I'1I1

Only the Delete. ln::.ppct. and TextEdzt optIons are shown in the EJitOp~ ~I('llll

Note how e,lch menll of FIgure 5.1 ha" a tltle. separated from lb ltll'ltll IIp!l1''' h~ .1

Hne, which clearly indicatcs the purpose of the menu An EditOp::. ~11'll1t rllrIPllt ly dOl"

not support the interruption of a selected editing commando Abor! In~ a ';1'1<'((pd pdllllll'

command is possible only if the command i tself provides for thib: for exalll plI'. t lIt')) 1 d!..!; .! II<I

Group commands can he aborted, after they have been selpcted from an E(l!tOp..., \1 ('li 11

6.2.2 Design

Each pull .. down menu contains items organized alph.lbetically ta allow a ml~l\ll It<'tl) ln Il<'

quickly located. One alternate ordering of a CreateFragment),!pnu'., Ill'm'> \\11111<1 Il.1\1'

been to group item:, by PIS or PIL fragrnC'nt type, instead of alph.dwtH .t11y. :\/1 itf'ltl 1/1 d

pull-down menu is used more frequently than another, this b why .UI ort!PrIllt?; nf 11 t'llI~ b\

frequency ')f use was not coIl~idpred.

Item presentation sequellce in each EdltOps .\Ienu is not cOlltrullf'd Il} IT/wIJI'':. bol

is a function of the sequence in a correspondmg computation al lOrtlpOllPllt IIlt'UtI. wlI!(lt

is organized by editing comm.lllds and their options. XmuPf'::!. how(vpr. dol''' rpf!l'(t tltl~

functional organizJ.tlOn: related item~ are grouped togp! hN in .1 1111'1111, al1d Itl'lIl'> [JI'r HlI'1I0

ClI. \ P'tER (i. MENUS ,LVD TUE USER INTERFACE

-. --
~m8!li§Jî

t If".l~" n,..llI/"ItI'
l t. _'~'!Ot!...'=' L .. lllf'4'
"ur'D'hi'

ri &tI, Irsttln.t" '.M.U
C .. ,..,..n tl 1,..., ~~J,:::~,

rOfl~ Il''" ... =,~.L:.~~I,... 00
DI) f Il;:·.~~~'I'

mMati
FI,.,,, 'ee 'p Q'r"'.nr.ttlntll
L"\'~t"l\.lM" REPE 0,111,

r n, w.tLtn H·ucti
Ufl'J Ali" 0 Il._,..."tLI".,

~'w1III.

,1 A~::'" ::::.. 1:.2. L:·l~l'" DO
1"""" ,., 1 '.hr. "nl,s

,.,lnt ft

~(.t ..

"' .. c.11

".
•• 1

Pkr

(a)

~1~~~;:f);X:
ENDI
rtrttlh .. '. Ptr'" rll"ttLh,.,
LUlli". f' Pt"- L .. 'L'M'
IlU'EAI

n""llIrw 0. nr.tlln Uet(t,
~TJL Fln'LI'" • CLrrmtU".,
Hw.t.1,... '. a,
'OR lIn,'.rt tllrw '0 Lulli". 00

H\ML)" .. :- ~I". •• l'
[!<DI

(b)

Figure 6.1: EditOps Menus

.BWî-
rira • F'Irtllll".,
Las\' Utto" l"tLt
AEPE Ol"'t

r ,. 'l'Uni" "'-MU
001 I.,.r. 0 II.!.!!'" 'mtLII'l5I
Mu 1It""1
•• un •• ,u'

An,t \ •••
.r •••• r.,
'dne "l1t,.
1.11'" rf

c ...
Wlt.
c.1I
'111

c ••••• ,
'l,. ..

TO lHIL 1 r ... MI
Inn' 11

_f@Jta'l U :: s _

~" " !~.1

.J ~!lt.JVw=-Otc ... rl,..'ll"",'
l •• ,t lIUO.' -\. •• n,l".,

J RtrEI Cotl,tl t 1
LJIT ~ ~ ;;;: '!:::;~; i !:;' ~
.......... 1<;,. ••

1 ", 0,11,.,. TD ln'U 00
,'11" ..,.,,111 1".11:' li

.. n., ",.. .. P, "t,t ••
I".,..t !:;'
!:!!!!!.- ... III,.

" <ut

""U
<>/1

't.
a ... ",

53

CHAPTER 6. ME~US AND THE USER INTERFA.CE

are organized alphabetically. For example. options ta a first levelltl'Ill .trI' ~r()tqJt'd III ',('(IIlld

and third level submenus of this item. Items in an EditOps :-'h'lltl Mf' nof DI !!,.IIlI/,pd lit .Ill

alternate ordering, such as frequency of use, b('cause thls menu 1:-' (ail..,! 11\(·tl't! 011 li\(, Ih

EditOps Menus were designed without typeahead or accl'!pr,tfor c,tp,lhtllf\ Th" Il'>1'1

has to navlgate through the entire menu hierarchy ln ordN ta ,>plpet ,L !l\f'ltll Ifl'l1l. ~t'\I'/

theless. these menus are easy to use. quickly poppf'd np. (hSpI.L)pd. Il,lvie;,\tpd .. lJld poppl'd

clown. Because an EditOps ~[enu dynamlcally ch,wl!;p!> ,1ftPr ctlr,or mO\'I'IlH'llh or !'ditttlt!,

commands, a pop-up menu. not visible to the tIser, is the !H'"t t.\!w or IIlPllll !n tl~p

Table 6.2 contains the list of ail pOSSIble Items in a.n EdltOp" ~lPIlIl. a-. dt'lPrIlllIlpd

by the computatlOnal component. The first level, in tllls tf(~e ~tructun'd !lWl\II. b thal o[

editing commands. The second and third levels contain optIon:, to the COffl~sp()llding fir~t

level item. An editmg command is fired when the mer seh'ct'i thclt commando wlt.h ;dl th

options, from an EditOps :\olenu.

An EditOps ~Ienu usually do es fiat contain <lH the lü'ms of Tilbl0 (i.~, bllt Ilnly t h()~1'

retneved from the corresponding computatlOnal componcnt menu The computatlon,lI (Oltl

panent - not xml/peJ - performs the role of context-sen:-'Itivf' men1l filtPrlllt?; and pfl'Vl'nth

errors in program entry. An alternate method of disrlay wOllld h,ne bCPll ta show ,111 po"

sible items. and gray out the Illegal ones. A problem with that method is that thp ~('t of

all editing-command options 15 large. and the resulting EdltOp'i ~lcnu wuld not pO"",Jbl~

fit 011 the screen. The user wouid be frustrated \vith navlgatintr 1 hrouu;h Illd,ll! dll'!!,,11 I~I <IV

menu-it,pms and could be cOllfused.

Xmupe': has sImple. general routines to set an arhltrary luerarchicilllllt'lIll .,trtlctllP· lOI

display. This structure is independent of the organilation of il CO III P u tat iO!l ,tl CO/li 1)1)[11'111

menu and thus insulates :z:mlLpe:! From the comput,ltion.ll CO/llpOIlPnt. Flirt IlI'fll1O[I' li

building an EditOps ~fellu from the corresponding COr.lpUt,ltIOIl,ll colllponcnt Il)(,1l1l, nlll/III')

is not aware of the reasons underlying the legality of menu item:, .YmuJI"\ (O!l..,tru(tlon of

a menu becomes a simple mechalllcai process.

6.2.3 Implementation

The xmupeJ data structllrp tü store each EditOPf, :\ofenn is il tn!!' of dyn;ulllc,dly erl',l!l'd

nodes. E,lCh nodl' repre::'l'nu, a menti item and containh: pointl'f" to thl' 11P.\t/pr('vi()tl~

nodes. a pOInter to the subrnenn tree for that Itl'm, il back pOllltl'[to tlH' IJ.lfl'nt /Ill'Iltl If

it exists, the name of the item ta dbpl.1Y, a pointer to the fU/lctiolt to be fi[(·d (If lt<'1Il 1.., Il

CIl. \J>TER 6. AIENUS AND THE USER INTERFACE 55

Comlnand Options Options
Delete
Drag
Fold
Group
fn5ert (Arter,

Around,
Before,
InsideFirst,
InsideLast) (While, Repeat,

Loop, Assignment,
If, lfElement,
ElseIf, Case,
CaseElement, ElseCase,
With, Call.
EXIt, Return,
Comment, Phrase,
ConstBlock, TypeBlock,
VarBiock, ProcedureHeading,
ConstDecl, TypeDecl,
VarDecl, Opaque,
Export, Import.,
RenameClause, Id,
Qualtdent, Subrange,
EnumeratIOn, ProcedureType,
Pointer, Record,
Array, Set,
FixedField, Case Variant,
CaseVariantElement, CaseLabel,
Expression, ActualParameter
SuperModule, DeflmpModule,
ProgramModule, Procedure)

fn~pect

TextEtlit
UnFold
UnGroup

Table 6.2: EditOps Menu Structure

CHA.PTER 6. ivIENUS AND THE USER INTERFACE

leaf item), and a window-system window structure, among other fi('lds. Xnl1lfll'" windll\\

system-specifie data structure is more space efficient than the corre::.ponding w\l\(low-..,y~I(,!l\

independent computational-component data ctructure stonng the IlH'1111. Tht' 1.11 tN ..,1 fU!

ture is a fixed three-dimensional array, structured similarly to Table () 2. 'J'lu,> ,>I.I'lct IIr!' .l]..11

contains a field to indicate if a menu item is valid; the computatlonal COlllpOIlt'lIt ~f'\~ thl..,

flag, based on its internal information. In corrtrast, xmupe:J's menll ~trllctll((' ~t<)f('''' (1l1lv

the legal menu items. Xmupe2 needs its own menu structure b('call~e tlll' CUlllput,ltioll.lI

component menu structure is not suitable for display on the scrcen,

After a cursor movement or editmg command, xmupe:! call~ comp\ll.ttlol\.d IOlllpOlll'lIl

code to update its editing menu; and then calls x11wpe:2 rOllti1H'~ 10 tr.lIl!">late tlll~ {Ompul.,l

tional component menu to an EditOps ~lenu. The translation ('n~lIf(," 1 h.ü J:mu/J/'.! provul(''1

the user with displayable menus that correctly reflect currelltlf l('ga.l edllillg COllllll,UHb Jt

also ensures that ~mupe2 calls the correct computational compollt'Tlt routillP to fir(' t.hl' l'dll

ing command: in fact, selecting a menu item caUs a:1 interrnc<l!ate .rmllPt:.! rouI inp whi(h

then caUs the appropriate computational component routine. Tlus bllffNlllg; providp., ,\

modular structure. and prevems changes in one layer of code, from aff('ctlllg other~.

Chapter 7

Editing Commands and the User

Interface

The user edIts a frügment and its contents by using the :YIUPE-2 structured editor [8],

which is implemented by the computational component. For programmhg-in-the-small.

tlte editor supports both the structured and textual editing of program structures. Editing

programrning-lfl-the-Iarge structures 15 purel:: structured.

The cornputational component currentl! lluplements a subset of),IUPE-2's edlting com­

manùs [12]. MO!'lt irnplemented commands are for the marripulatlOll of program templates

or PIL lIod~'~. Xmupc2'~ role IS to fire editing commands from EditOps 1Ienus ... d refiect

tltt' cornm.wds· resllits III the appropriate window. Thus, its contribution is ta show thp

char.tclrr of thesr comrn;ulil:, and present a Ilser-friendly interface ta them.

TIIl~ ch.lptrr fir~t presents scenariof> ilIu5trating the effects of edltmg commandE. OII

the llS('f intrrf.tce TIH'!Je scenanos serve to explain tl e cditmg commands, from a user's

perspf'ctive, and to displtly the u~er's actualmteractior , with them. Secondly, the chapter

disctl~ses de~ign and im plementation i~sues facing the user i. \terface of eùiting commands.

7.1 Editing Scenarios

Prngr.Il111lliIlg-lIl-the-~I1lall eùiting scenarios are presented in Section 7.1.1; Section 7.1.2

dl'" ll~M'~ M P ll<trl 0:' for progralllming in the large. The scenarios in the1>e sections do not

:-.hn\\' Olle a~pl" t of .l'11!IlJit'J'S interaction with editing commands: while xmupe2 performs

1 hl' III tPrll.d rom pUL11 ion!:> a~!:>ociat(ld wi th an editing cornmand. it changes the shape of the

5;

CHAPTER 7. EDITING COM.MA.NDS A.ND THE USER INTEUF.-\('E

mou se eursor to a watch, writes a suit able message in the Main ~r(>sf,ap;f'~ \Vllldow .. \11<1

restricts the mouse eursor to the invohL 19 window. The first two ,tet Ion" "prv(' tn [('lI\llld

the user that an internaI program calculation is in progress and tha.t \V.utln).!; i'i np!'p'>'i.lr\

The third action prevents the user from executing another cOTllm,tIltl \" llllp tlH' (IIrrPlIl ont

is bemg completed, and foctises the user's attention to the curfpnt (,Ollllll,tIlt!. Oncp 1 hl'

eurrent eommand completes its exeeution. xT/2llpe..! re!ea~e'i the mouse Clll~m \"hich rt'llIfll"

to its original shape.

7.1.1 Programming-in-the-Small

Currently implemented commands for programming-in-the-small inrllldp: G rOll p / t 1I(; 1 Dl! p.

FoldjUnFold. De!ete. Inspect. Insert. TextEd!t. and Drag. Flgurf' ï.1 ,lIl1mal"" Pdlllll!!,

commands operating on a Statements fragment !abelpd as Fragmcnt # 1.

GroupjUnGroup

Frame (a) shows the structured curSOf on an entire FOR-Ioop. Thp U:-,Pf h,l,> de[HI''-'l'd t.h"

right mouse button. chosen the Group item from the EditOps ~[enu. anù 1:' about tü f'Xf'C1I!1'

the command by releaslIlg the button. The Group commaf1Ü combu!es aÙJacent ,trllcll!P'"

starting from the inItial positIOn of the structured cursor to a tar~et stru(tUfI'. Th" 1\',Pf

selects a target structure by maving the mO\lse cur~or ta a window row on or Wll11l1l tll1',

structure and by clicking the left mOllse bu ttOI1

In Frame (b), the user IS ready ta perforrn the Group cornmcll1d XmllfJl'.! Il,t, jlflllll'd .J

he!p message in the ~[alIl)'lessage,> \\'lIldow and the mause cursor h,t:-. chang,.d ..,h.\pf' tn ,L

crosshair that is restnctPù wlthin the Statements fragment. The help nH'",,;u1;" IlIdll.I1,', r Il.1'

.rmupeJ SUPPO! ts grouping by key or mouse: the former _s le'is u',('r frIt'ndl~ th.lIl 11\1' 1.1111'r

and is thus Ilot dl:,cusseù. Xote also that the user IS able to al>orl thl' C:fllUjl (OlJllll.llll! h\

depressing the nuddle or nght manse buttons. ln s1lch a ca.')". ,t ~IIIl,lbl!' Il 1 l'!:>-,,l!!/' ,tPP".!l"

in the 11ain ;,f%sages \\ïndow.

Frame (b) abo shows that the user has positior.ed the 1Il01J~1' clIr..,or Oll IIH' \~llId()w

row of the assignment statE'ment EndCvl := LzncPart- .SlllrtCol. 1 Pre:-':-'1/1~ tl\!' I"ft mOI)""

button executes the Grou p commanù. the source and targr·t O[Wf.lIl1b ar" th!' fi f,>t l, 0 H­

statement (the current structllrpd cur~or) and the above a~.,lgn[lH~lIt ~tat('[JJ(,llt. rl',p"(uvpl;.

1 Any wmdow COIUlllll I~ p.-rnllttl'd

r.:1l.\PTI~R 7. EDITING C01\L\IANDS AND THE USER INTERF.4CE

---~-- .. -
Urte • n,..tUM'
IliIL[LI". • NIL tD

IlEPl:Ar

, ~e-!!.'HI~~
~tCDI '. t I".P t ... Crd':ol'
Un.P.-t '. LI".~ t· U.,..tP.,.U
[ndf"ol • ll"....,.rt 40 5",.t(01.
ft» 1"1 10 Lnd(al - 5t.-I(01 • 1 DO

,~pk.. • ~.P,ac ••• 1.
++..N._f t f' .. 1.

DIU,
~l tH ~[C.rryp.J 00

!.l,rH 1~.nu:("Qr!JPeJ 00
!.IItH t'ollonuCPt'-l'el 00

o

EKJ~I". • tt.MI1l~fI;.~ .. I"'"
0Cl. ~

OCl,
~'Il UnwP .. t • "HI
lIne ,- 1.1,.. .. ~tLI".'

0<11,

J. --.uta rr~ OlMW'M.:lun
rr ... Rlllllllt .. ~

Drac

hIC. IrOflll u-.. JnllhJ ew_ar po.JL!on t..
'-~ _lOi .. kl);, t- rroo.....:l

1. __ 1. f.-o....., oper"'1ltl
''''nu l~

r •,..~_.
~ J'MJUM Q.r,or t. end-o(~.t.r\.IdJ.re
10 •• ,(Ii. rro.. ~ __ t~.

ru •• lIfT IIWJI". bUtan
, t&--~~.,olI"I

t'T •••• "" oc.r-" lIOute t.uu.~

(b)

(c)

(d)

Figure ;.1: Programming-in-the-Small Editing Scenarios

59

CHAPTER 1. EDITING COM)'V.NDS ASD TIrE USER ISTEU/':\('[-'

' IIC7J $ •• "
"IIIa _

LI'" .• ',,....'-LI,.,.,
IIIILt LI ... HIL III

1I[J'[Jl!

JI! l:-l TO [ndCol - St. ... tt.cl • l 'JO
Hu.lSpaoft t. Mu.IP.c.. • 1.

[MJ~.f \ :- "'-L.I \ - l,

"" Ut "'-nI..(CMf1\IP.J DO
UItH 1t19~(CNjr\IP.1 00

,,'TH DPtlorttiOllrl#4ll 00
DC]~U •• U ... :- , ... - 1t...,lwlnct.n

0«1,
0«1,

~IL LI_or' • Nili
1.1,. r- ll". HeHlll

[ICl,

(e)

........ ,.
~ Fr n\ Il : 5\8\ • ...,,\1

~~~ , -:~~~cc:rr.;oo 
~lrH 1tt.ra.J1 ..afopel DO 

UtTH QptltI"TS{~f...,.l 00 
O«J~I ... :. ,..,.".1 ... • hpJl .... ,..., 

DIl, 
00. 

lI4T1l. l',....p~t • Nllr 
li,.. :. LJ". ....... MtLl,.' 

DI" Dr.' 

(f) 

f_l' CO,.._, 
,.,.11 .. 

I
~ r,.~~~~·_~._I.~_nt!. 

ll~ • (h· .. \l1r.... 
"'ILE LI ..... NIL 00 

1 IOtA1 

.~~ 
DClI 

11_ ... t 

r~,-~:: 
"., ,,!. 

rOP "'1 1:1 {ndfol :-";;'(<11 .' nu 
l't. .. pt." ............ , • Il 
"' ..... ,L ........ ,l·" ,.." 

1 
lin. 

0'" 

( 1) 

Figure 7.1: Programming-in-the-Srnall Editlll~ S('I'Jl,trI0,> 

"..1 

", •• 1 

till 



C/l\PTER EDITIse; CO}L\IA.NDS AND THE USER INTERFACE 

(i) 

(j) 

. 
~~ _____ 1'iJ 

- -- - - _. 
LIN '. n,..tLJ,... 
IoIfILE li,. • HIL DO 

IIJ'{AI 

iCÔl> ... ..,..., ..... __ 
~3e:.~.~< ~ », 

« O •• l .... tor » .« c... ». 
"1T~ti:'~~f:~ro::~J 00 
om~t ... t- ....,..,al... ~1 .. Ir 

DIl, 
00, 

0«), 
lJ(t IL 1.1M4'.-t • MILl 
li". :- LI,...-.~tLI,,' 

EHU 

(k) 

FIgure ï.l: Programming-in-the-Small Editing Scena.rio:, 

61 



, 

CIIA.PTER ï. EDITING CO.\IMA.NDS A.YD THE USER ISTEU F\('1-' 

(m) 

00, 
lJ'(TIL Un="rt a NIL. 
Une Os l\ .... . ~\llr'4J 

DfJ. 

(II) 

liii ERRE -- -

1 
l, , 

llrw o. f'r'l\llIWJ 
l.If'l[ li",. • Hll 00 

It[P(Af 

(0) 

l'lgure ï.l: Programrning-in-the-Srnall Edltlfl~ SI Pfl.lfl()' 



('II \P,/ EU ï. EDlTI.\iG COM.UANDS A.ND THE USER INTERF.4.CE 63 

Fr,lm/' (c) ~hows th!' htluctllred cursor posltioned on the resultant grouped structure. now 

,II rroll fi df'd by bI a('l'~. The struct llred cursor has been Illoved to the second FOR-statement 

!'>pp lor,llll" (d)) in ordpr to ~how the distinctive gray font of the grouped structure 

Tu /I·'.I'I~P 'hp plr,,( h of the Group commando the user can choohe the UnGroup corn 

rIJ,Uld. t d ~J11!!; Frarnl'~ (,1) and (c) In reverse shows the ungrollping eITeet of the latter com­

Ill,lIld 

FoldjUnFold 

\ !)()\\f'rful fe,ltme of a. grouped structure (see Frame (c)) is that it can act as a single 

"lItlt). wlllch ca.n bp the operand of another command, such as a Fold. Frame (e) shows the 

('lI"l h of the FolJ LOmmand on the structureJ cursor of the Frame (c). 

The i.·'uld command elId('~ (holophrasts or selecti vely hides) program ~truetures reff'f 

('Il(('d L .. t Ill' ~tr1Jctllred L1Irtlor In Frame (e). the ellipsis indieates foldeJ program structures 

.tIld r"pn!~('nt" more than one bne. ElIsion IS u~eful for condensIng large programs and makes 

~p,ll (' ,1 prelllilllll. lInll~e unp,lfsmg which "tre"ses format. 

The ~"qlH'Il( e of the Frames (c) and (e) shows user contrvlluI elislOn. the user ean 

"lldl' (ur uneliuE') pro~r.trn structure" at will. COPE and the Cornell P:-ogram Synthesizer 

,d,o fl',ttllre this type of eIrslOn. The latter has CONDE~SE (condenses the innermost 

1'\(J,llldl'd uIlit cont;ulling the eursor Hne) and EXPAND (expand., the outermost condensed 

Ullit IdPlltIfi"d by the cursor !ine) commaulb. In contrast, PDEIL - a program dcvelopment 

1'!l\'lrOllll1pnt for PL/l [53], has automatlc clisIOn. In PDEIL, the s}stem idèntifies one or 

more fon of illtere~t; text in the neighborhood of the foei is dlsplayed. but text at sorne 

dl~t.\lI(,(, ;},\\,lY IS eliderl. 

'l'hl' CIl Fold command i~' the reverse of the Fold: the conten ts of a foided struct ure are 

1I111'lidl'd ,1IId appear a~ they wrre before folJlllg. For example, taking Frames (c) and (e) 

III rp\,pr<,p ~how~ the eITects of the U nFold commando 

FI,WH' (f) show~ the ~tructured eursor aIl the FOR-Ioop and the Delete command about 

to !Jl' l'XC( li 1 ('lI. TIl(' Dclcte eommand destroys the contents of the structurerl cursor. For 

('x ,\Ill (>1<,. In dt'll't<> .tn entire fragment. the structured CUlsor first has to be movcd on the 

\\ holt' fr.H!;l1H'lll. lu Fr,unc (g), the FOR-Ioop has been deletcJ and the structured eursor 

lI,l' IlIml'li 10 thl' \\lTII-.,tatelIH'Ilt. 



CIlA.PTER Î. EDITING COMAJANDS :LVD THE USER ISTEIW\CE li 1 

Most cornmands. such as the Delete, operate 0'1 the structured l'llr'ior, which ("III l'li' ! ...... 

structures witlun a fr.tgment or an entire fragment. This is how comm.tl1d~ (.111 0P"!d!" 

uniformly ane! offer the user d. sImple interface. 

A method of qlllchly deleting multipll' adj.l,CPIll structur{''i b lo fir.,r !!,fflUp t hl'lII t hl '1 

delete the grollped structure. when referpllcpd by the structurpd Cllr~()r .. \., ,III ,I:->lfk. 'Il" 
sider Frame!:> (il,)- (d ) of FI gure ï.::!. The,>!' ~Ilcccssi vely show. the ~f'le('tiotl or t hl' <; 1 Ol! JI 111'111 

from the EditOps ~Icnu, the positioning of the crosshalr 011 th(' rorrpct \\ III d 0\\ rOl\. t !1I' 

successful e;..ecu tlOn of the Group comrnand. an d the deletioll of t hl' groll pl'd ~t rll ( 1 Il '" 

Inspect 

The computational component move!:> a deleteù PIS structure. e;"cl'pt ail .. nln" fr.l!!;rlll'Ill 

to the Anonymou.; Bllffcr. For example. Frame (g) show~ t11,lt thl' II:-.I'r hd~ d..tl't!'d t !tl' 

FOR-Ioop. but now wants to lise the In!:>pect command ta \ic\'v' thp C()lIlf'I1h 01 t Iw, bulll'I 

Choosing the Inspect menu-itt'rn causes the pop-up of the In~pect \\'lndO\\ . .,hlm Il III hdllif' 

(h) and labeled v,'Jth Inspect: this \'.indow cOIl~i~u, of a.n uppn ln.,p!'( t BIIlloll \\ Illdfl\\ 

(containing IIelp and Done buttons) and a. lo\\cr readonly and 'of rol!.lbll' III~!)f'( 1 \ Il'\\ 1 Ill.!, 

\Vindo\v. The lIelp Button directs a help me~~a!je to thl' ),I.UII \11'.,~.I!!"" \\ïlldo\\ l'III' 

Inspect \ïewing \Vindow dlSpld.js the current contents of the AnOIlYIllOll., BIlII"r. .1 H)H 

loop. Frame (h) also sho\\s the shape of mouse cur~or as an T. IIldIC.tllllt!; t !te' 1,1( k of l'dit lll~' 

actions in the Inspect Vlewing Window. This cursor is abo re<;tflctpt! \\ Il hlll t Iii' 11I,,!'1 (1 

\Vllldow until the user selects the Done but ton. Such a sl'lection pop,- do\\ Il t IIp Will'" m 

and does not affect the contents of the Anonymolls Ouffer 

Insert 

Frames (i )-(k) animate sorne variations of the IlIbPrt command. Tlll~ 1O!J1 Ill.llIt! ., f()ur \,111 

ations correspond to adjacent (Insert After and Ini>prt Oefore). top-dowil (llI~l'rt Iw.rdl' 

First/Last), and bottom-up insertions (Imert Aronnd). AlI Im('rt (Ollllll'Wc!., (l'lIlPf ,t!HJ\11 

the structureJ cursor structures are imerted after, befof(!, insidl'. or arolllld, tlll' .,1 rll( 

ture referenccd by the struct ured cursor In!:>crted!:> truct ur('~ afl' ('Ilhl' r PI L Ilfldl''o (~ .. ,. 

SectiOll 7.1.2) or templd.te!:> of PIS program structures. 

Illsert InsideLast and Inscrt After are nut ~hown here. The top-dOWll Ill'ol'rl 11l"ldd .. l~t 

is similar to the Insert InsideFirst. except that the former in!:>prt'i .l ~lrllct IIr!' ,l.'o 1 1 JI' 1.1\1 



CIl.' PTEn ï EDITISC CO:"I.\f..LVDS A.ND THE USER INTERFA.CE 

&MT Il lI".P ... , • "'Il, 
ltrw • lh .... ~tllN' 

011, 

(a) 

(b) 

\tl'U' 
IlIlfell 

(c) 

LI'" .; ~Inllt,..' 
Iotill[ LI ... NIL DO 

REPrJlT 

_=:11 
Lt4TJ l,...prt. HIl, 

DCJ~'" J. ll,.. .... NmctL 1,., 

(d) 

Figure 7.2: Grouping and Deleting Program Structures 

,,,110tl 

Dn, 
f." 
Gr •• , 
,...... LIt 
u., .... , 

l'l 
[il 

65 

1 



CHA.PTER ï. EDITING COJ,I.\IANDS AND TIIE USER I.'iTL~UE\('E hl; 

one inside the contai ner struct ure referenced by the struct urpd CHr,>or. '1'1\\, .HIJ.IC('1I1 III "\'\ \ 

After is analogons ta the bsert Before. except that it inl:>erts strllrturl'S aftpr th!' ~trnrtlllt'd 

cursor. 

Frame (1) shows the re~ult of the lIlSertlO1l ofa LOOP templatp MOlilld II\(' \\'1'1'11 "t.lt" 

ment. The structured cursor remams on the WITH statement b,~fon' and ,lfl PI tht' LOO l' 

insertion. Frame (i) also shows the selection of an Insprt Imldl' FI rst tOIll Ill.! 1((1 1 () fi 1 l' t 1\1' 

insertIOn of an assignment-statement template lIlside the \VITH stat<'trH'Ilt. :\s ,t r(,~IJ! 1. 1.11(, 

\-VITH statement then contains, as its first statement. an assig,Illl\l'nt templ.d<' Wlt Il Ik~ll'.ll.l 

tor and Expr placeholders on the lef~ and nght sHies of the ,U,sl).!;llIlwnt ,>ymbol. r"'>pprl jvp!\, 

(see Frame (j)). ThIS frame aiso ~hows the SclcctlOll oftlH' lmf'rt-Uefore (.\,>~IU;IlIlII'lIt) it"lIl 

from the EdltOp~ )'lcnu. The result of thls selectIon is ln ÎIl,>prt .1lI ,t.,,,i~nIl\I'llt-~t.ltl'lIIl'lIt. 

template before the ~tructured cursor. currently on the \VITH st.,ttf'nll'I1t. .\ft('f tlli~ in"l'r 

tian. the structured cursor moves onto the nc\\ly IIlserted a:'''I~nlIlf'nt-st.llf'lIll'lIt. tplllpLlIf' 

In Frame (k), the user has then moved the structured carsor ill'>I<!" t.11Iè> :"mpLtI(, .1Ild Ollto 

the Designator placeholder. This frame also ~hows the Selp.ctlOn of the', '\ t Edi 1 II PIII f, (JIll 

the EditOps ),[enu. 

TextEdit 

The TextEdit command allows the user to textually edit the program .,truct lire r .. [t'fI!I\( ,,11 Il\' 

the structured cursor. Such a command is useful either for the replaCelll<'lIl oC pl.l('(·holdl'IC, 

with identifiers or expre~5ions or for circunnenting the rigidIle~., of pl1n~ !'>lrud1lf('d-f'I!JI Ill!', 

In Frame (k), the user lIltends to textually edit the Designator placellllldf'r .wd [l'pl,l<'' 

it with a variable. After seJectlllg the appropnate item of the Editüp.., ),!PlIlI. tlll' TI'\! I~dll 

Window appears (see Framc (1)). Labeled with il. TextEdlt. th, wIIldow CUII~I"I!> of ,III 

upper TextEdit Button Window (containing lIelp. Donc. and \bort BIl!.tOll,» ,llld .L 10\\1'1 

TextEdit EditlIlg Window (conta.iIliIl~ a lllousp-ba:ôcd srroilahl .. tl'xt-I',f1tor) 'l'hl' t.IUI'I 

window dlsplays the contents of the st.ructure<! Cllrsor. the De!'>!!!)' \.lor pl,l('pholdl'r. ,IIld th, 

textual cursor (the -). The u!'Jpr can textually elht the Tl'xtEdlt EdItlll~ Window\ (OIltl'lIh 

and pre~:, the Done B1ltton to iIldlcate thclt the re"ult i:, to 1)1' p.l~",,'d to 1 III' Ill! rPlIlPllt ,II 

compiler. If there arc no detected errors. the st.ructured Cllr~(lr i" fI'pl.lI pd wit" pdlll'd 

text. Unli!..e ImcrtIOn by tt'lIlplates. which automatically 1ll,tÏnLII1I" pr(J~r.LIII 1 Iltf'!!;rtty. ail 

incrcment,tl compiler is nl'('dpd ta en~llre the ~yn tactic in tP!.!;rI ty of pro)!;r.llll t P\ t r ..,111 1!, 

the Abort Button ab,llldolls the tpxtual edltillg 'les~ioll, alld fc.,L\'P~ th!' ,>1 ni! t IIIPt! (111\01 ~ 



CII. \ PTER ï. EDIT/SC CO:~'[MA.NDS AND TIIE USER INTERFACE 67 

COlltf~lItS - the D~~ignator placeholder in the Statements fragment - untouched. Pressing 

the IIdp Uutton dbplays a help message in the ),Iajn Messages Window. 

Notp that dunng a tE'xtual editing session, the mouse cursor changes its shape to an 

ITI!'Iinl~d !JPIlCJ! and i!> rp~tncted to the TextEdit vVindow, until the user presses the Done or 

Abort BllltOll~. The rpstrictlOn of the mouse cursor's movements is intended to focus the 

1J)Pf'S attentIOn Oll the current session é'.nd prevent multiple simultaneolls textual editings 

of the 'lame ~tructufed cursor. 

Frame (/Il) shows that the DesIgnator placeholder has been replaced with the identifier 

IAtNulTl. Betwpcn Framc~ (1) and (m), the user had typed the identIfier LeftNum in the 

TextEdit E(l!tIng Window and had pressed the Done hutton. 

Drag 

In a PIS fragment, the computational·component's unparsing algorithm may either split a 

con!>truct IIlto separate tines for formatting pllrposes or dlsplay dl:èp indentation. The user 

m.ty not like the unparscr's formattIng, and the Drag cornmand's purpose is to accommo­

(tate Individu'LI form,lttmg tastes. This command allows the user ta horizontally mave the 

<;trul't ured cursor conten ts a number af spaces leftward or right\'.:ard. 

In Frame (Ill). the ne~ted WITH-statements are deeply indented. and the right side 

of the a.~f,ignment ta the identifier :"i umBlanhS is Ilot completely vis! ble. There are three 

1ll\'lllOd., of dealing with tlllf>. seroll to the nght. resL,:e the Staterncnts wlIldow. or use 

tlle Oral!; commando In Frame (n l. the user ha.s plJ:::!tioned the strllctured cursor on the 

WITII-I).{('l\u ~tatement and !tas chosen the Drag item from the EtiltOps :'lenu A hclp 

1II('!Jèl.I!!/! h.LS beell shown in the :'lain )'f0ss,lge~ Window and the mouse cur!:>or has chaneed 

sh'l!)p to ,1 (ro,>sh.ur that ih ff'stncted wlthin the Stat€'menb fra~ment. As wlth the GroUlJ 

rOllllllùlld •• L Dr,\1!; r.LIl he performeJ by mouse or key. The lattpr, for simllar rea!Jall5 as 

\\'11 h t ht' GIOUp. ,Ur' not dJ!Jcu!Jsed. The Drag commando lihe the Group commando can he 

a bOl Ipd 

:\ntt' the po!->itlOn of the crosshalr ln Frame (n): the user has moved it ta the target 

roIUlllll . .! \\ Inch is thl' I1rst 0 of the LOOP identIfier. A press of the left monse hlltton then 

dbpl.l;' s the rt':-.ult of th(' Drag LOmrnand: the \VITH staternent refercnced by the structured 

(ur~or h.l~ heen hOrlzontally displ,lCC'd to the lcft (see Frame (0)). 

~\\'llIch \IIllIdO\\ ru\\' h Irn·I,'vant lH'cause the tira..; a.pphes to the ~tructured cursor. 



ClIA.PTER Î. EDITING CO.\I.\I:LVDS .-LVD THE USER ISTfllF\('!-' (i" 

7.1.2 Programming-in-the-Large 

The computationJ.1 component currently supports just the Inser!. .1n<l DI,Jptp t'OllIll1,Lllt!, Illr 

PIL structures. The scenario in thls section, shown in Figure ï.:l, i:-. b.lbl'd lir,>tly 1111 1 h,· 

structured insertion of PIL nodes and secondly, OII thelr deletioll A~ wit h PIS PdttlllL'" hlllli 

the Insert and Delete commands operate on the ~tructurE'd \ur~or 

Insert 

Frames (a) to (e) of Figure ;.3 animate a series of insertions in a ~!()<llJl('b fr.\~Il1I·lIt.l.t1)i'I"d 

as Fragment # 1. 

Frame (a) shows the structured cursor initially on the entl1'1' \'mpty \Iodlllp,> fr.I!.!;lll"lIt 

and the PIL G raphics \Vindow is blacl-.ened to reflect thii>. fi! prt':-'i>IIlt!; tll!' fI!.?,h 1. IllOl! ",' 

button. the EditOps \lenu appears and the uSPr can executp ,lO IIl~flrt IIl~ldpllr~1 of .t ~II 

per;"Iodule. Release of the monse but ton drspla! s a Super~lodllle nodf' III thl' PlI. (:rdphlf ~ 

\\ïndow and the structured cnrsor remallls on the :"lodulei> fra!!,lllf'llt. 

In Frame (b), the user has first rnoved the structured Cllr<,or lIl~id(' , h.· PI L C/.lphl{" 

\Vindow and onto the Super\fodule _ Xote thdt tlus moJule\ wrre-,polldlll!-'; PIL ~ocj,· 

Text \\ïndow appears in the PIL Container \\ïnJov.. The lIIsertion of a Pro~ra.ll\\loclIl1 .. 

after the Super)'lodule is shown in Frame (c) 13eca11se the Pro~r.U1ùlodlJlp wa., l/l~f'rt"d 

adjacent to the Super)'loliule. both nodes are displ,ljed as siblIll~~ at the ,>,WH' !JOrJ/Oll1.tl 

level. If the user hall chosen an Insert Defare command, the positioll~ of tlw !lad(l~ III h.lJllI' 

(c) would have been rl'\ ersed. 

After chaoslTIg an Insert InsldeFirst of a DllfIrnp)'Iodulc. tlH' U~('f :,Pl',> a j)pfImp\/odu/c· 

node displayed below the Super).[odule node (~('e FranH' (d)). The j)pfIrnp\!odlllp llOe/f' l' 

shawn one vertlcalle\el below the S\lper~lodule llt)(ie bec.Lu~e the' forttH'f W.t!'> III,prte'd ,t" 1 

chtld of the latter. Frame (e) shows the reslIit of d. fin •• 1 iml'rtlOll: ,tll IIl,>Prl 11I"J(JpLd~1 ,,1 

a Super)'lodule node. The newly-insprted Super).!adule lIode and the Df'fIllIp\lodlrl .. lIodf' 

are both siblings hecau~e they were insertrd insHle the SlIpflr~lodllle lIodl' of lltl' ,>1 fU{ tllP·d 

cur~or. 

Delete 

If certain nodes, or their chi1dren~ are to he removed, the Delet{! {ornrn,llId {.lIl b,' Il;c·d 

Frames (f) ta (h) animate a sequence of dpletions withill tl\(' sallie ~I!)dl/lf''' fr.l~rIIf'1l1 



CIUPTER 7. EDIT/NG COMZ'vIANDS AND THE USER INTERFACE 69 

( a) (c) 

"~~~!I ",,~I!':::ii!:ii fI 

ifg fi UICO. 

Il'' .. ' ...... 0" . 
AnuL-!!'U 0'11'" . ., ... , .. ,., ...... ". .1 'lur4 D.rl.'~ .. hl. 

IU.I. 

, 
"-_l, 

"-" "--., ..... ""'"-

i 
-"-

~ 
"~~ .... ,' .. .,,..... 

(b) (d) 

Figure ï.3· Programming-in-the-Large Editing Scenarios 



CIIllPTER 7. EDITING COfvnvIANDS AND THE USER INTERFACE ïO 

~ Frag.ent !1 ! 110~! .. Il 

§' 5 
•• 110., 

[1."" ~ 

".C--"--=-"--= - •. -=_. 
Pro .... anIIo.kJl. 1 

Pro!tl .... __ ------~! 

n '1 
- , 1Qird"ofl ~: : 

n - • j 
- Pr-f>tl~ .. , 

~ . .J 
.- PJo~l, 

_A' 
-

~ 1 
p,.".~ .... --- ~, 

r 

I~ - 1 

(e) (g) 

'-

1 
,» . .; 

.'. '~!i. .• ~ 

- .. 

(f) (h) 

Figure Î.3: Programming-in-the-Large Editing Scenarios 



C'll.\J>TEU Î EDITIse COJf.\l..\NDS A.ND THE USER INTERFACE 71 

Frarnl' (f) ~hows that the Super110dule node (and all its children) are to be deleted. 

'l'hl' re:-.ult, in Frame (g). displays only the PragramModule node - the sibling of the just­

Ij,.jl'tl'd Sllp~~r :'Imlule node. Deletlllg a hierarchy of nodes bj removing their root make., 

D"ll'tl' .1 pO\'verful ;wd fl{'xible edItlng commando Bec<lll,>e thf' structured cllrsor of Frame 

Ct!,} 1'> on tlt.. P rO~l ;LIll:\[ ad ulp nod!>. the node's tf'xtual repre!3cntation is dispiayed in the 

l'II CUll!.lllll'r \\'lndow. Fwally. Frame (h) shawi> the deletion of the Program:\Iodule node 

'llrj' :-,1,1 III tllrl'd Clirc-or 1.'> now on the entire ~[odules fralSrnent. as repre:,ented by a blackened 

l'IL Cr.tjlha,> \VllId(m 1'0 delt,te the fragment. the user can choose the Delete item from 

th .. Ed JI () [l~ :'1 l'n 11. 

7.2 Design and Implementation 

X/llllpP.l\ gcncral strate~y for the desIgn and Implementation of its interface ta all editJllg 

( 'lIIl Il1.1.Ilds is fi rst di~cu!:Jsed ln Section ;.2.1. The subsequent sections in vestigate other inter­

P,>tllt/S d(,~It;;lI and/or 1I1lplementation issues specifie to sorne commands. Not aIl commands 

al(' ll1erltlolleo bec.LUse the intcrfa<-e ta thPill is sillular. 

7.2.1 General Strategy for AH Commands 

XI/!1Il't''; file:; an eùiting comrna.nd by c:1.llmg the appropriate computational component 

l'llJllll!!; IOlllillP_ Slich a fOntmc does not only expcute the appropnate editing command. 

hll! ,d;-.() IIpd.ltC:-' the coordincLtes of the internai ~tructured cursor. Xmupe:? then: (a) caIls 

WllIpllt.\110U.ll component cod(' that updates the co.nponcnt·s internaI editing menu, (b) 

Ujll\al t''o t hl' current EditOps ~lpnu based on this internaI menu. (c) retrieves either the 

1lIlp.tr,>,'d 1,('\1, 01 PIL graph. (d) obtams the internaI structurpd cursor's coardinates, and 

(l') llpd,l(('~ thl~ propl'f \\ inJow 

In gPIlI·I.d . .rnlllpc.l's deSign strategy for lIlterfacing with editing LOIllmands is to be 

111l.L\\'.lfl' of tht' n.Llure of the resultlIlg changes ThIS is accomplished by relying on the 

nlfllflll<lllOll rd rll'\('d l'rom the computationa.l component after each editing command For 

('\,un pk. wllet her or not the cursor move!:J as a re~ult of cUl editing command 15 determined 

soldy by tilt' lOlllpllt,llion;.ù componPIll. Xml/pe': only has to reflect the current position of 

thl' ::.tructtlrpd cun,or. Another exarnple is the IIIterfarc to the Fold command: xmllpe2 i5 

Ilot .man' th.lt .1. foldl'd ~tructure eXIi-1t:-, - it just updates its representation of the textual 

Ulljl,lr'>l'd bllffl'r. Thb lIpd<1.tE.' shO\".,s tllP folded program structure~ replaced with an ellipsis. 



CHA.PTER Î. EDITllYG COJl.\fANDS ASD THE USEU [STUU': \( T - , 
1-

Ensuring the integri ty of options to à cOrTlrnanJ. rpfll'rtf'd in t hl' < nrrl'ct 1 t P!lI:, ,,1 "!I 

EditOps )'Ienu. IS critical. For example. textual ethting of the "tnll't I!rpt! rur,><H'~ rOllt. lib l' 

possible when the '3tructured cursor IS tni>ule a PIS frae;mPlIt. a.nd lo<aled on:1n approprl.tlf· 

structure. The complltatlOnal companPllt IS re,>!HlTl"I1J]P for tltl~ chp! hl Ill!; .tlld IHm!'!. 

the correct optiOns ta its editing menu XmufleJ I~ only awarp th.lt th!' (,(ITlljJllt.ltI1l1Id i 

component's editing menu must be upJated per commando 13y updatill~ .1 Il Edlt()p" \11'111. 

based on tItis internal nwnu. xmupeJ en ... ures the presentatIOII of propPf (OIlIIlI.1I1 cl., .111 d 

their options at any point. 

7.2.2 Delete 

In the computational component. the Delete command i!> lllliforrn !J1'('.tII..,,· 1 t f('l Il 0\ ,,~ III 1 

AST nodes. HO\\ever. xrn71pe:J must treat the deletion of an entire fr.le;rJIl'llt (1 h.t! 1'>, \\ /J. \: 

the structured cursor is on the entire fragmen t) dIfferen tly from t hl' dpll'IIOII (JI 1 h , 11111 "III. 

For the deletion of progr<.m structures inside a PIS fra~m(,llt. .l'THll!W..! 'lrt\l'h Ill'd.ll", Il 

representation of the corn pu tatlOnal com ponen t''i text ua.l u np.tr~pd hllll,'r .llId 1 ~ lIlll .l\\ 01/ ,. 1 >1 

the deletE:d structure. Delp.tlOn of a PIL node is slmllar. \\ 1 th rr'"pp( 1 to f !:l' t!.1'l!J"I' .i1 dhpl .... 

in a. PIL Graphies \Vindow: however. xT7!upe:.! must also dekte the PIL-:\o,j,. Tp\t \\'Ill<!(\\\'o 

represen ting the P IL noue and i ts children, and al! thel r assoclated da t<t ., trll! ! III .'~. D"I ,of l'il! 

of au en tire PIS fragment :-eq uires the destructiOn of the correspondi ng PIS \ \ï!ldow, ~Illl Ii 01 1 

deletion of a PIL fragment requires the destruction of aIl PIL-~ode Text \\'llld!l\\" \\Ithlll 

the PIL fragment. 

7.2.3 Drag 

Part of XmupeJ's implementation of the mouse-based D~'ag command i!> in an ('\pnt 1I.1IIIll,'! 

routine that trd.ps the f'res~ of a mouse button. Figure 7A outlines rm1Lp!:..!'~ .t!~ontlllll t<l 

Drag by manse, Part o,ït shows the C event handler that is cJ.l1ed Wlll'll tilt' X Wllldo\\ ~»)" 

tem detects d. mouse-button press. Once the mouse-cursor pixel-colulII/l J)()~Jti()Il ha., h,'pll 

translated ta a char.lcter-column number. the result heco1!1f.'s a hOfl,Wllt..d off.,,.t (t hl' dr.L!', 

COUllt) that is pc1tls(~d as a parameter ta the computational componellt routln!' l'XI'I lit l/l!2; tlll' 

Drag commando The drag count is positive for d. right\\'ard mav!' and nq!;.ltJ\'P for.t ]pjt w;trd 

one. There is no nced to access the computational compollf.'ut'.., Illlp.lro.,l'd h1lffl'r })('I.rIl',P 

the internat structured cursor already points to tlll' current I\np(trfool~d bufrpr Lill" Il lld,'h) 

only the horizontal position of the underlying text lllust be Ch.trIi!/'eJ Thr~ .d!.!;orIt hlll "boWIi 



('/1 \!>'ll::R ï EDIT/NG COM.\lANDS AND THE USER LNTERF.4CE ï3 

J~ an MII.d!S,L1l1,Ll,lOll of C and Modula-2 code: lines marked with (C) denote C code and 

1 hm!' wlth .1. (CC) indicate caUs to a computatioual component routIne. llori:ontaLofJset 

1'> ,1Il il\t('~er \.I.oabl" inJicating the net hOrizontal offset Button_x is an integer variable in­

dll,tflllg tin' pl;..!'l !J CQordlna,te ln winch the mouse button was pressed. Xmupe:J mamtaim:" 

fur 1'.1( Il WlJldow, il. Clu'sor_x_po/:ozlzon value. which b the pixel x coordinate of the top left 

«)fll/'f (jf th(~ 111tern,d structured Cllrsor, XmupeJ translates OIle of the internaI structured 

( IIl'>Of':-, toordillà.tes ta tlJl~ pixel value after each cursor mCJvement. 

horl=ontal_offset ~ 0 
status = fall (C) 

G03t the pressed mouse button CC) 
If mouse but~on == Leit mouse button (C) 

I*Gat column from plxel *1 
status = success 
horlzontal_offset = 

(button_x - cursor_x_posltlon) / wldth of text font displaying text 

If status =~ success and horlzontal_offset (> 0 
Drag wlth drag-count == horlzontal_offset (CC) 
ltefresh window text !*call to C code, made from Modula-2*/ 

FIgure ïA: Aigorithm to Drag by :'Iouse 

;.2.4 GroupjUnGroup 

XT1lIl/lI'': dues not understand the significance of a grouped structure bec.ause this structuIe lf, 

a plOpl'rty of the computd."ional componcnt. Nonetheless, it knows that any text enclosed 

wlthin hraces must be displayed in a gray font. As a result. xmllpe!J does not have to 

rt'lllcllllwr whidl text is to be displayed in gray. The computational C0mponcnt inserts the 

br,\(t'~ .lround .L grouped ~tr\lcture and is knowlPdgeabie ahout thelr purpose. 

When t he Grou p colllIIlanù fd.ils, aIl error mes~age appears in the :Ylain Messages Win­

<low. ,LIld the LOlltcnts of the PIS \Vinùow are llIlaffected F,ulure can bc the re"uIt of a 

IlS('[ 's ab( rt IIlg of the cOIIlmand or an lll\ ,l.lId end-of- group specIlication. The computa­

tlO!1.11 wlIlponent dOl'S not allow the grouplIlg of non-adjacent structures (those which are 

.It dilf'l'il'nt nl'"ting le\('I~) "l1eh ,15 .t \VIflLE statemcut and cl. statement Înside an adjacent 

H EPE.\T ~t.lll'l\ll'nt. .\lIllLpf'.! only aets as the rnessenger of the command's source and 



CHA.PTER ï. EDITING CO.\l.\IANDS AND THE USER l.YTERF\C[-' ~ \ 

target operands: i t is Dot aware of the legality of grollping. 

The implementation of grauplllg by monse pre~ents the prO')lplll Df l'nrtP( th 1JI.1ppllIl!, 

a window's ftat coordinate'l ta the corresponuing ~~rllctllres of thp (UlIIput.lt l(lll,tl «(lIIlP" 

nent. Figure ï.;) shO\vs elements of xmupeJ's algarithm ta group))\ lIlOIISP '} hl'" .d!.!,orl t hlll 1 

spread over tWQ routines: the first 15 cL C rontrne that halldle~ rt't fIl'\ ,li of t hl' II1111hP .111 ',01 

position in a PIS \VlTIdow: and the second. a ~laduh·2 fOutin!' Ih.11 Il..,'',,, Ihl~ PO"'III"" 1" 

interact with the computatianal component code. LlllPS marJ..pd \\lth.1 (') 111<11< .111' (' • (Id., 

those marked wlth a (CC) are Imupe:!'s rail". in \[odllla-2 ('od!'. tu (OtlljlllLtlIOIl.d .Olll\l() 

nent routines, and unmarked hnes represent ,rmUpt'!fod(' "\rltlPII III \11)'\\11.\'2 ('11111 '!I/'IJ/t 

is a pointer ta the currPDt textual unparsed-bllfrer LlllC nnd!'. d"/ll . • 1 ho()l".111 \.tll.dd,' .Illd 

window]ow. an integer van able that tr,lIl~l,Ltes ,t mou"p (ur~or·.., 'j-pJ\.I'I-, ()I)rdlll,lll' II) ,1 

text row. The algorithm returns -'l boolean [(';,ult to lUi (' c.dl!'] If 1 1 JI' [l'tllIli \.\1"" l', Irlll' 

the Group cammand sllcceeded in the compllLttioIl.d compOIll'llt. III thl" (,bl'. J'/IIIl!I/ ! 1i1,1 

updates i ts translations of the un parsed bu/fer and struct Il feJ CUf"U[. ,Uld 1 h!'1l l"fl l'.., Il t Il<' 

screen: otherwise, xmupeJ makes no chang,es to lb Jl~played tp'(t. 

The aIgarithm in Figure 7.5 do es not rnalIl talll ,ill)' COll1 plpx :,( rl'('11 Ill.! p~ i t "Il Il ph 

relies on taking advantage of the computatlondl compoll<'Ilt\ lextual unrMr'Jl'c! hulfl'f Il 

alsa does nat necessaflly traverse e\ery unpJ.rsed buffer Lille node. bllt Jump" froll! ".11 li 

se~ of Line nades referenced by the temporary IllO\.en.ent of the "tructured rur.,or Ir l'\''! \ 

Line no<ie cOlltains a dlfferent construct th,lt doe" not cont.tin any OIIH'f (Oll"t [II( 1" (f(JI 

example. an assignment statement), the algorithm degradl'~ tu ,t lil\(·.t[ tld\('I.."t! of tlt,· 

internai unpi\rsed buffer 

Finally, xTnupeJ's interface to the UnGroliP comm;lIld i~ simplp, bl'(.lll~!' th!' (OllQIlI 

tational component is responsible for removing the surrounding br,lI J..1't', Whl'1I J lilI/Ji' 

displays its translation of the unparsed text, ungrouped text i" shu\' n III ,t 1I0fIll,t1 f01l1 

because of the disappear,lllce of the brackets. 

7.2.5 Inspect/TextEdit 

Both the Inspect <lud TextEdlt \Vindows are created once: dispJ,l)'Pd wh<'l1 tlll' III:>p!'! t,tIlt! 

TextEdit commilnds are Illvoked, respectively, and hidden when the ll~l'r c!JOO"!''' to l'lld 

the textual editlllg or impectrng sessions. An altern,Ltivc wOllld h,LVp bl'!'lI lo dYJl,lllllt ,dl~ 

create and destroy eaeh willdow. The first method is fa~ t('r, but rp(!ll 1 rt''' mOI p "p.I«· th.11l 

the hecond. A further con~idera.tioll is the u~er'~ int\'faction wII Il both (OIlllll,llllh ,\ 11'."1 



('II \ !)T!';U ï EDITI.YG CO.\I.\lrLVDS A,VD TIIE USER. INTERFACE 

Whlle there lS no mouse-button press (C) 
If there lS a mlddle or rlght mouse-button press (C) 

Retur~ false (C) 

Else /*there IS a left mouse-button press*/ 
wlndow_row = y pIxel coordlnate of mouse/helght of text font (C) 
/*No need for colurnn*/ 

75 

If wIndow_row IS wlthln cur~ent InternaI structured cursor's coordlnates 
Return true /*grouplng current ~nternal structured cursor*/ 

If wIndow_row > flrst row of current Internal structured cursor 
Remember to use move-prevlous cursor movement routIne 
CurrentLlne = flrst unparsed-buf:er Llne-node to 

WhlCh ]nter~al structured cursor pOInts 
Else 

Remember to use move-next cursor movement routIne 
CurrentLlne = Iast unparsed-buffer Llne-node to 

WhlCh InternaI structured cursor points 
done = false 
WhIle not done and CurrentLlne lS not NIL 

If lnternal cursor movement 18 successful (CC) 
Get Llne node(s) ta lJhlCh Internal structured CllT"'or pOÜlts (CG) 
If lllndoll_loll lS lJlthln current internaI structured 
cursor's co~rdl~ates 

done = true 
Else lf uSlng move-prevlous 

Update CurrentLlne to pOInt to Line node just befoT8 
flrst Llne-node of internaI structured cursor 

Else /*uslng move-next*/ 
Update CurrentLinp to pOlnt to the Line just after the 

last Llne of Intarnal structux8d cursor 
Else /*Internal cursor movement falled*/ 

CurrentLlne = NIL 
Return done 

Figure 7.5: Algorithm to Group by Mouse 



CIIAPTER Î. EDITLVG COM.\[.-1NDS A..YD TllE ['SER ISTEUfH'[-' 

often need~ to text ually-ed i t struct Il rp~ 'inch as placpholdl'r~ or tn dp[!'1 P pl Il!.!,1 .\l1I ',II III 1 \ Il' ", 

and lllspect them later. 

Of course. xmupe:2 ensures the corrcspondpnce of the 11lhpPc1 .\Ill! 1'(':>.1 Edll \\ IlId,,\\ 

contents with the Anonymolls Dufrer and the current structuf<'d Cl1f'>lJl. II' 'P"( 11\"[:- It"I' 

resenting the contents of the structllred rur'ior and thp .\nonYlIloII' llllll"I l, 1',>"'I'IlII,tlh 1 

process of textual unparsing (~ee Section -l 1) 

The Anonymous Buffer. a structure of the computational compoIlI'IlI. 1-. IIlIll.dl:- .'111 pl, 

The compu.ational component fHis this bufrer \\Ith a structurfl ju ... 1 dd .. t!'d fICHl! .1 l'l, 

fragment. Successi\'~ deletlOlls of PIS .,tructur(ls destroy the currl'Ilt AlI'lll:-lll\\\I" 1\1\;1.· 

and replace it \VIth the newly deleted ~tructure Commands sllch ,lh IIl,>pr! Hllll"1 Il' ,1 

yet implemellted by the complltational <omponcnt - could thp!1 IIlH'It th" (11111"nl ,,,1 1),,' 

Anonymou& Dufrer into another locatlOllln the currcnt frag;nwlIt. or into ,lII()1 1i"1 Il .. ~'I1/1''1f 

This usage of the Anonymous Duffer is en\'I!:IlOned to allow mIl rfT/1I11l1l III 0//111/1/1111' 

7.2.6 Insert 

:-'l'CPE-2's computational component uniformly views the in~ertioll uf P!:-; .llld l'l!. ',11111 

tures: there is no barfler between PIL and PIS insertions. winch are bath m,tllljllIiolll!1II', ,01 

the AST representwg il program. Howc\er . .rTTl/Lpe.J must cl ';n~\li!:oh [lPt\\f'PIl th,' 11/,('1 Il''11 

of PIS structures and l'IL nodes. becau&e the former involves textllul urddtll.!!;.d \\111.1,,\\ 

contents, whereas the latter reqUlres a graplucal upd.1.tmg 

In the context of a single fragment, .rmupe..! cares IIttle about thp ddfl'r"lJll' \)1'1 \\. l'II '.1\ 

an Insert InsideFirst or InsideLast. It only ne('ds to fire the corrp!'t roll~lnp (.drl',lIl: Ill/IIII'} 

to the correspocdlIlg EditOps :-'Icnu Item) and !'edlsplay the unp,uo;pt! tl':-.I or )',1.,,>11 1" ,,II' 1 

the execution of an Insert commando 



Chapter 8 

User Interface Generation 

l ~f'r IIttprfac(' ~oftwMe can be dIlficult to create, modify. test. and mainti'in. A user in 

tt'l'f,l( (' mil 'lt control or respond. as quickly as possible, ta devices such as the keyboard 

.Ill1l llIU\hP TIlt' pro~raIllmcr must effectively choose from an increasingly dIverse array of 

!.!,LtpItH~. wlndow <;y,>t(,lJ1~. Int.eraction styles. input devices, among others. For exarnple. 

dUt l'l fl2arllpllllltlOn [i;3] interfaces. in which the user can select and manipulate the visual 

rl'prp~{'!lt.t! Ion of ,ill obJC'ct - typically by using a mouse, are easier to use. but more difficult 

1 t) ( rp,lt f' t h,lll rUlIlIll,lfHl-line based use!' interfaces. The user interface also commllnicatpq 

\\ Il ft t\\O t'!ltitJp~' the lbpr, and the applicatioll'S computational component. which contain5 

Illt"IU.d (odp wlth \\!\tc!t the usel does Ilot come in conLlCt. A succe~sful user interface 

lllll,>t Ill' Iln1 Il Il':Jpr fflPll(ll} and correctly reflect the internai state of an application. 

~\'1/1I11t.! I~ ,1lI ('x.imple of the difficulties enLOuntered when creating handcrafted user 

1111"1 f,Ht''' ('()Il~I~t Ill)!, of 'l(lproximately !-t.GOO lines of code, Its mtricacy and coding partly 

lll\ol\t·d h.llO\\Ipd!.!,f' uf tht' w,nputational cornponcnt's structures. their manipulations, and 

It'H.'( t 11l1!" (lf tht'~t' malllpulatlons 011 the scrccn. Considerable effort was put into insulating 

UII!' l.1\t·1 01 J'lIl1llw,,: cod(' froIll anotlu.!r and from details of the computational component 

1 ht'It' \\1'1\' ll\llIIIW'rable challenge:. to overcome, such as: the graphical representation of 

l'Il 1l0lt!.,,,. \ ht' tr<ln~l<ltlOll and dlhpl.ly of unparsec. text, the creation anù updating of 

tht' ,'dltOlh )'1l'!IIl'i. lIl,lIlag,cment of the contents of multiple wmdows, and the location 

of intl'lll,d --- oft(,11 hiPTarchical - fragments as a result of the mouse's movement into a 

Wllldu\\' 

[)p~ptt(' tltt' l'frort of rreating a user interface following the guidelines of good user 

intf'rf.u l' d" ... i!!,tl. tlH're b no guarantee tltat the resultant interface is easy to use or leam. 

ïï 



ClIA.PTER 8, USER INTERFACE GE"VETU.TION 

For example. an interface that is e<u>y to use for cne user, ma)' hl' ,}. (.1l1'>/, (lI' (111"( r.l (IOIt ((lI 

another. This may lead t.J repeated modIficatton ofuser interfare ~oftw,ue .I~ Il 1" \!p\('!tljll'd 

Such an iteralwe deslgn m~thodo!ogy relie~ on te~ting prototypl'~ \\Ith \I~l'r'> and IIllll!d:'11I1', 

the design of an interface based on user f('cdback, 

Modification of complex user interface rode if, Ilot alwa)s ,t ~lll1ph, Id,>" ,lIld 1ll.IY 01'(1'11 

require substantial effort. For example. althollgh modificatlollh and PXlp!l'>IOlh If) J'I/II/Iit 1 

are not difficult per se. they do requue kIlowledge of bOl Il tlt" X \\ Ill<!O\\ SV"lt'I!l ,Llld 

interaction between the user ITI terface anel the compll ta.t IOnal COITI pl lIlf'Il 1 l' li J" 

The time and effort expcndpd in the dl'~IL!;1I and lnlpl/'lIU'II(.LlltH\ o( .nl/III)I! \\\'l«' li", 

motÎ\ations for the author'" \\ork in the dl',>l~n of :-.ltïSL ( 1 Ill' \1\ (;.lll ,"f llIll'l\.L'" ~pl" 

ificatlOn Langll,ll!;'~ \ - a programmer's expenIlWnl.l1 I.Ul!!;lJ.\~" for 1 !JI' "1)1'/ di< .tllol! ()r 11',"1 

ITIterfaces. alld tll(' de~ign and nnplernent.tlJOII of IIlllU]/ ri i"1 h.' \f(-ISL-I\.I",'d (""1 ft.rl'lloI'l 

Generator) - a progra.m to generate u"er Ill(Plfal(' codl' frolll \ll-1SJ "P"(I!/(.III'l1l~ 1 iii', 

work attempts to ans\\'er the followrng qllesllOns: (a) Is lt I)(N'lhl" ft! P.I"rI;. d"'lI!!!1 .1 ·,llIlpi., 

experimental!anguage for the specificatIOn of ll"er tnt"rf,l(,h,' (b, ('.III .L l'lId 1,., <1,,\.,1 

oped to generate code [rom tlus speClficat ion') alld (L) C,lIl t 1\1' «l!l LIli li.! t \Ul\ (,f "P"\ Ill • .1 1 1'111 

language a.nd generator faciltt1.te th" ue\'e1opment of s'l.mplp n"pf Ill!l'rf.lIp ... : 

The rest of ,:lIS chapter is orgamœd ,).::. fo11ow", Section S,l pf(~'l('nl~ b.u Id!,lllIllId .11.01 

related \vork: SectIOn 8,~ discusses :"fCISL·s fpatllre~. SectIon ,~:3 dl''>! ri Ill" 1111/1'1/ /1 ,11101 

Section SA evaluates both :"1 rISL and TrWlgU!. 

8.1 Background and Related Work 

This section tntroducp<, user lnterf.Lce tools. di-,cus..,e~ controlmet!lod.., III luol .... 11101 ''\'1 \l', 

selectcd approJ.che~ and tool~ to the specificatIon and gPllPratlO1I of lh,'r 1111"ILul', 

8.1.1 An Introduction to User Interface Tools 

User znteTJace lool.~ [33,2ï] attemp: to J.l1tOI\l,tte or e.ts(' tht' rpprc,,('n(.\!I()[I. d"';I!!) •. IIlqll,' 

mentatlOll. exec<ltion. and modification oi \I~er intNfaces. SOllll' t n!l\, 1)111 pli) 1'\1'1 Il 1 .. bll' 

user interface program code or declarative l}P~criptions. ::'Ilch a~ d.ttab,I~f' n'( (jr,j~, IIt,1t dl" 

interpreted to prod uce a user interfaLe. A User l/ltnjfll'f: MtlTlflljuJl('1l1 .s '/'>/11/1 ({ -j \I:i) 

[65,2ï] is a tao! or set of tools to help a programmer design. prolo!yp", (',(l( lIt(', .1I1t! 1l1,1I11-

tain a tiser interface. A unIs usually illtegratcs thef>c activiti('~ IIlldN .l "11I!.!,I,' df'Vf'llJplllf'lIl 



('f[ \ PTI·;n 8. USER INTERF:·tCE GENERATION 79 

1111"( LUJ' The iutent is to allow a user-interface specifier to concentrate on the higher level 

d',P"( l , o! .l liser int<:'rface. instead of the low-level details. Typical functions of a UIMS 

III( IlId" h.lIullillg and validation of input, display of output, performing screen management, 

dlld rl'Îl .. ~h .. ln.! h,l1ldliIl~ crrors. 

l.d,plI lrom [:::!ï]. f Ignre S.l shows the basic structure of a typlcal cnrs and lb Illterac-

11(\11 WII li t hl' pl O!H'r de, e1opers. The application programmer implements the applica.tion's 

( III Il P Il t .1 tJUIl.t! (oll\ponent. Interacting wi th this programmer is the dialogue developer . who 

l]'.,'~ dl.du[!,IJc developmcnt tools to implement the dla.logue component. This componl?nt 

('olld'l( h .1I1 lIllertl,tl dialogue wlth the computatlOnal component anù handles interaction 

tl'I 111111111"'> anù eV('lIt sC'quencing. Ta analyze and evaluate the user interface. the evaluator 

r<'lJl'~ 011 d.ita frolIl stored guidelines. saved user interactions (for example. mouse button 

.l!ld h.ey !Hf';''iC''). J.nd !la on. :\'"ote that the dialogue developer and application programmf'T 

[I""d IlOI, !)Il dIffcrent pr:ople. 

Eva!U.llOr 

~ Fcedback for 

IterJuvc 
Rcfincmenc 

DlaIo~ue 
Component 

DI:dOlrue 
Dev.!:..100ment 

foots 

In te:n al 

Dialogue 

Inter-raie 

CommUnIC:luon 

Figure 8.1: UIMS Architecture 

CQJT1DIIUluonal 
Lornp\.;:1cnt 

programmmg ] Envuonment 

\ Ill\lll~ t Il\' req \Ilremen b for a user interface tool, such as a. UIMS, are [2ï] its functlOn­

(dlill. or wh.t!. •• tool can do. in tenus of prodllced interfaces and techniques, and usable 



CHAPTER 8. USER INTERFA.CE GESER.\TION 

input/output devices in these interfaces. The great':!r the fUllrtl(l!l.dll ~ t III' hpi !Pl \lIt>! IIt'I 

requirement is a tool's eas~ of use or usabzlzty: tools more u~.tblp .\.nd '',l'-.\.'r III IInd.'r-.I.III\! 

than others simpiify a ùcveloper's tahk. The complct(,7lr~s H'qlltrl'llll'lll l', .1 th !Ii, l1\t Jllt' ttl 

satisfy. For example, the complete specification of a d.ltp field f"qUlfl", 1111 1111'1 t1l\'. d,'I.ld, 

such as leap year information. The e;:;ten~lbzlzly rp<jlurpltJ('nt ,dltl\\'>.t 'Ilt.! III !\'" 11I1('rl.l'" 

representatIOns it produces. to be easily moJdicd. Sudl ,t r"qul (f'!llt'II! 'llIIlP"lI'"I!",> 1111 

the inability to attain absol1lte completen~!:>s In a. too!. .\ tllnl l.u klIlL~ ('11.1111 I"t'.!t Ilf", .lllt! 

not providing for extensibIllty should be eS('(Jpablt': tlH' tool "hould ,tllo\\ 1111' d.'\1'/ 'p .. r tll 

use regular programIlllI1g \\hen its fcaturps do Ilot ::.uffirl' (;IV('II.l 'op! (If (h.'l Il\t"II.I\" 

toois. an integraled and unlform interface to thl'''C too!::' I~ .t dp'Ir.d,\ .. rt'l}llllt'IlI P III \ Il III \If'1 

requirement is Loeuilly of definzlwn, in which a local d,'lillllJUIl .lppllf',> !(j IlIfl"'! (li ,dl ()I 

the interface. For example. window tltle forIlldt C<ln IH' fI'prl'~(,Jltpd \}f\1 p. :-f't oIpplv t() .d' 

instd.nces of created \\illdows. ChangJI1g the \\wdow tJtle forITl.lt III OIH' i'le.di!.I'.! dt'itlll! 1011 

automatically changes those of all creatcd \\ Indow~. 

User interface tools can produce better. more exten~ible and II'.UlIt.Ull.ddp IlJtl'l LI\ p.., 

[55]. These tools support rapid prototypillg;, al1o\'" separ,ltlon of u,>pr Illtl'rf.HP (ud .. [rOlll 

an application's computational component. and ('an re~llIt in llln!tll>!p Int "rLu ,''> P"f .I:)!'\: 

cation. Sorne tools llsed for the specificatIOn and desi~n of \l~er llltprf.H ('~. I~Pl\t'r,tI" I"",r 

interface code from these specificatIOns. Specifications can be verified ,tnd \'.t!ld.lIpd olllt! 

non-programmers can be lllvoived in the design of cl. uSPr Interface th!' 1'!llph,I,>I,> l', IInl 

purely on implementatiotl details. 

User interface taols é:.re not a panacea and exhiblt problems. Fir'itly. t hf' ! 001" th,,!!!'.,,' \ '" 

may not be easy to budd. Secondly, the advantage of consi"tp{'c;. III Illtprf.1l t>'o lII,l\ Ilot 

appeal to those ùe5lgners who seek control over al! a,:,pe('ts of ~oftwaH' 1 "qlllllm~ .l 11111'1'" 

feel and look. In ad(htIOIl. a user interface too1 <ldc!~ another la:. Pr ur -.oftW.lIt, : II.1I 111<1 \ 

slow down a program. ),[oreover. 50 me toois are ncither port<ible !lor (Ollllllt'[( I,dl.\ oI\,III.dll .. 

others are not easy to ll!:>e and learn. Graphll.tl tools .He thf' pa~IP~t 0/11''> !Il Ih". ""'P"I I.dl y fIl! 

non-programmers, but ma.ny are mostly experimental. FIIl,dly, .dthollL;1 11I,11I~ tO()].., t' \\ '" 

at providing fancy menus. windows, and otlter I1lethod~ of interaltIoll. t hl'lr fUII< r IOll,dlt \ 

may extend little beyonù that. 



Cl! \ !)'['r;n.., L"SEU IXTERF.tCE GENERA.TION 81 

8.1.2 lVlethods of Control 

('OIllIIlUIII( .l.tIOn lH'[w(>(>n a user interface tooi and an application may [ollow internaI, ex­

Il,rtl,d, or fIllÀeù IIJpthudt:> of control [60,2ïJ. 

1 Il wh T'TI III (,lI' pIl< ,LtIOJl ) COli tro!. the application caUs dialogue, or user interface, [unc­

tlfllh for OlltpUt alld IIIput Cornpared to others, this model of controlls efficient in exeCll­

l"ifI, bllt dd!J(1Ilt to lIlo.idy a ~:stem's sequencing because of the applicatlOn's control. 

1.1.1, lIUl' r lnll'rt.u") (ol\trol relies on user Illterface, not applicatIOn. control. Sequencing 

1 .... \. fllll' !11J1l of \bl'f Illp'lh. consequently, it is the user interface that calls application 

f'I'lllll'" .Ill,] h.lJldl".., 1111'> '>('q\lellcIn~ and scheduling. The application is vrewed as a set of 

""'!Il,tlll li. f!)lltlllf~". ,lppropnatelj called by the Illterface. For these reasons. external control 

h plf'\,dl'lll .lfllon).!; l:n!S~. 

III '(lntr,ht to JIltprn,d control. ~xternal control is better able ta exploit prototypwg 

'lltl'> 1'> l)l'c.LlJ~e c\:lern,d control gives a dialogue-oriented simulation of an applieation's 

f,"It,t\ Lor, and tI\(' programnwr can easily provide application procedure stubJ whlle th€' 

III f prf.u l' 1'> IW11\!!; plOt otyped. nut, lexical and syntaetie handling are sometimef mterleaved 

\\1111 ~1()b,tl <OlltIol codf' III the dialogue component, which invokes an applicatJOn's routines. 

l'hl'> 11111'rI!'<lVIIl!!; lJlak('~ the separ.Ltion of dialogue and computational code more difficult. 

l'~pr lrltl'rf,lc!' toob IItIlizlIlg external control. communicate \\'Ith the application using 

JJl\'f Itod~ ,\l( h .1., caUb,tck procedures. e\ellt handlers, and shared memory. Callback proce­

dUlt,~.Ht' ,lppIrC<ltIOIl proceùuH's that are reglstered with a user interface toot. The interface 

(',db llIP c,dllMck procedure dt an appropriate time, such as the selection of a menu item 

EI'I III ha7ll11as are procedures calleu w\ten certain device-dependent events occur. sud 

,l'> the mol Ion of a mOllbe curt:>or over an object. Event handlers specific to an applicatl(JJ) 

11'''' 1:' \ :. ·.·!ll be rl'gI~teret.: with a user interface tool. The interface c.ùls the appropriate 

'Il' l' f Illet:> OIlce a specifie even t OCCLU s. 

_\ pI"" 1 wilh m,iIlg p\eIlt-based mecltanisms is the need for often incorporating ap-

pIJc,LfIoll ",.Il\tlllli( '> in a u~er int.erface. This is a problem bccause of the violation of the 

S('IMr,\f ion lwtwt't'Il intNf.lcc and apphcation components. A classic examplc of application 

~l'lll.l1lti(., III il 1I51'r iIlI!'['farc is in direct malllpulation interfaces such as the :"Iacintosh's [34J 

or i\p:'\.T':o [IJ . In ~ll(h intl'rfacct>, a file can be delctcd by pressing the mOllse button and 

dr,l~glng t./H' lih'~ IrOll to the trash can icon. The dragged file ieon can pass ov~r a folder 

iWII, \vlllch IS tlll'n lughlighted to indieate a sem,LTltic relationt>ltip between [olùers and files. 

Tu hil!,ldl,!!,ht 1 hl' fulder icon, tl,e interface must be aware of this lclationship. Releasing the 



---------- ------ ---l' --------------------------. 

CHA.PTER 8 USER I:VTERF.-tCE GENERATION " 

mouse button over the folder icon deposits the file in the foldpl 

Shared memory bet\veen the user interfa.ce tool and tht' .\.pph( .11 ion i" .11101 hl'I 11\1'1 h .. t! • '1 

communica.tion. The applIcation and lIIterf.lce polI the ~hared Il\PlllOry III Illd"1 fo (Ilf'( l, :' ' 

changes. Alternately. changes can autom.ttically notify the ilppropll.lIf' (od.. J'JJI' ~Ii.li' , 

memory method can be effiCIent. at the cost of extra Dl ~lllory. 

Another method of controlls mued control. in wlucb both thl' lI~('r 11I1('ILl(1' 11Ioi .1111 

computational component can calI another. For example, dialogue C,UI IH' 1II\O"('.! flO!ll l'" !l 

of the computatlOna.l or interface components. Although mixed cOlltroll~ fl(l\lhl ... dl . .!"'''I' 

independence is difficult ta maintalll. ~1!x~'d (oHtrol adds mort' reqlllfPIlH'l1b t() ,Ill 111tl'] II , 

and makes it more complex. 

8.1.3 Approaches to Specification and Gen'2ration 

~lethods and toois for the specifica.tion and generation of user i nt erfat 1' __ \.tr\ '1 h .. pli 1 l''' d' 

of this section is to sur\'ey language-based. graphically-ba:,ed. and nllH'r Il1PI hlHI- .llltl IIl"j 

Language-Based Methods 

Language-based methods utilize speclflcation languages for U5pr Illterfa! \'" V.Hl,lllh o{ 

these enccmpass grammars in the form of B~F, state transition lllagralJl'>. oh)f'( 1 Ollf'III"t! 

languages. cleclaratlve languages. ar.cl event-based languages. 

BNF 

Backus-Naur Form 1 B~F) (58] if one of the language-b,l.~p(1 TnP! hods for t hl' ~Pl'( I!I< 011 li III 

of dialogue and user interface synt:Lx [67]. T~rmillals in tIlt' gr.ullllt.U' are t!lI' ill]>lll lohl"" 

representing a user's actions. Terminals combined by grallJlJl,)f produrtiun,>. fOI III Il!l!lIl'' 

minaIs. Collections of production:; in the grarnmar define the l'lIl!!;!lagp t h" 1l~1'1 l'fIlp\CI! '. III 

interacting with a computer. Attachment of prügram altÎoll" \~ il h l'd( h ,)f 1 hl' ~r.lIIll/l.l! " 

productions is also pO~hibIe. 

BNF has sa me dis,ldvant,tges: It cannot exphull the Il,1I.l1r(' of 1111111.111 "1111)1\111'1 III 

teractions, is restricted to contcxt-free languages. ha" .t f,w-ollt prohll'fJl 1)/'( .l!f~1' of 'l!l'lr 

highly-strllct urcd nature. and is sometimes difficul t ta undpfstand. Il ()\~'I'\f'r. Il.\ l, h.l ... bl'I'II 

used as ù, syntactic notation tü reprcsent iIlstance~ of human-( omplltf'f dl.dll!!,""" 



C'[L\ [J'FEn 8 USER J.VTERF.4.CE GENERA.TION 83 

Tlw SY.'iGRAPII (SYXtax directed GR.\PHics) [63] automatic generator of interactive 

'>y"I,{'lll'> ll:oe" ,Ul pxtendcd LLO) grammar for interface representation. Input to SYN­

(;n \p[[ ,lI!' an (,xu:lldcd n~F grammar de~cribmg the interface and the Pascal routines 

t.h.d. M" to tH' ra.lkd to perfnrm ,>P!ll,wtIC altions, SY~GIL\PH outpnt.,. III PasLaL a screen 

1ll.11ld~pr, sc.Lllllcr. and recurslve <!pscent par!'er for the Interface representation language, 

'l'II" :\b"lracl InteractlOlI Too! (AIT) [82]1~ a, language model for the specification of 

tJ I:"[S::,. Ua:oed 011 the IIller<lction lucrarchy paradJgm. ArTs generate a dialogue language 

for iL FI:"fS, by ~pecifyiIl~ dialogues and subdJ,dogues. Consequently. AITs define a gram· 

mal fOI thl" I,Ulgu;H!,f'. Input expressIons are the notatlOnal tool for this grammar and ore 

hif'r.trchl( .dl} ()f<fpred to form a system of grammatical productions controlled by exp res-

SIOUS. 

Stale Tran.~llwll Dzagrams 

Unllke D0.'"F deSCriptIOns. which are usually created textually, state transition diagrams 

[G·t] -- or fiIllte st.l.le machines - can graphically represent human-cümputer ùialogue. The 

tvplcal transition dia~ram is a set of states connected by arcs, each of which is labeled with 

an Input tüken. output to di&play, or applicatIon procedure to caU. i\fovement from one 

!>ta.tt' tu ,U1othf!r iuvolv€::, trùvers,ù of the connecting arcs. 

C.lp,lble of representing an interactive system. the RAPID/USE system [8-1.83J exec..utes 

tlall"ilillil dl<t!jr,ulls descllbmg this 5ystem. :\ diagram's nodes represent messages tü hl:' 

dhpl.t~f'd it~ ,ms. tramitions causeJ by e\ents or user input; and its boxes, executable 

a p plic.lll<H\-<\ct Ion::, 

'l'hl' St ate- Dlac,ram Interpretel System [:36] represents the time sequence of dialoguE', 

b,l'>"d Uil lf'xlc.tl. !:>ynLlct:·:. and semantic le\'els [Fl], These levels vlew a user interface 

fwm .1 lilll!,lIi"tll \'Ïewpo:nt: the lexicalle\CI is concerned .vith the ~tructure of tokens; the 

synt.lCllL !('\,('1. wlth sequences of tokens and output form and content; and the semantic 

1l'\('1. with output prl'sl'ntation techIllques and input operations. The interpreter system 

h,IS onl' ditl~r,llll pel' [cve!. (lnd arcs can have rccursive calls 1,0 other diagrams. Elther an 

inpllt or outp\lt. token l~ exclusively associated with a transition. The system produces 

df'\ Il \'-llIdepl'nt!plIt r('pre~entatlOns th,lt provide control of the ClIrsor 3.nd scrcen. 

\Vith pach .,t,ltp rpprcsentlIlg a mode. tran"itlOn dlagram1l are usefu! for mlliti-moded 

i 1\ t ('rf.lr('~. 11\ tel f.lc(,~ rC![ll1f1ng detatled synt.tctic parsing can brnefi t from transition di­

.1 l!, 1'.1 lib. .J.1CO!J [:17] dl'1II01l~t.ratcs th,11 transitIOn diagram" more directly dlOW the time 



CHAPTER 8. USER INTERFACE GENERATION 

sequence of human-computer dialogue and are a better structuft'd rl'pre~l'lIt,ttlulI (lf ,\ \l' "1 

interface than BNF. 

However, transition diagrams exhibit sorne problerns. For c'X(tmp!p, d('!->criptio!l'" l ,UI i',l , 

large and arcs are needed ~or ail input and comltlanùs, leadlllg to IIlerC,l!->('t! (olllpl<'\lt \ .1 

partial solution is ta use subdlagrams. Fllrthl>rmore, modc-frl'c IIlterf,lCcs plf'~I'lIt Ill!!, t IH' Il,,,'1 

Wlth multiple chai ces at any time or interfaces rcquiring COilCUrrl'nt O!Wr.llI\lIl<' Oll \.1l1<>11'> 

abjects. can resul t lU an int rtcate web of arcs out of astate. TIll' Inlpf:Lct 1Ol\ 0 b )1'\ h <,~ ~I "li 1 

[35J, a cornblIlation of~tatc-tran~ition diagrJ.-ms and event 1,lIIgllil!!;e~. a,tt(,ll1pt~ tn dp,lI 1\111t 

sorne of thcse problems and can support some farm of dircct-malllJllllatlOlI illtt'I LI! f"-. 

Although bath n~F-based techmques and transition dl,w;rams hhow tlll' o.;f.lIJlIJl.11!(.d 

relationships in. say command sequences. they ;tlone cannat. show' thl' 11\('.\n~ Il:- \\ hl( Il .\ 

command is gathered (for example. menu:,. \vinùows. altJ !,o on) and l'lltl'red (for !'''dillpl" 

by typing or mouse selection); and the semantic feedbacks resulting from 11:>l'r.,· ,li t 10":' 1 f/)I 

example. feedback durmg the movernent of an icon). 

Object- Orzented Languages 

Object-oriented languages allow the interface developer ta define interface" Jll tNnI:, III 

objects. The,;e are entities whkh are cla"sified into classes having attriblltes ,1IId dpf.url t 

behavior embodled by methods (procedures for performing activi ties). Commll Illc;tf lOf! 

between 0 bjects causes all actÎ\ ity and in}, en t.lllce of clJ.-Sses IS typic;ù of ob Jet t -orll'II 1 l'd 

systems. One allvantage of object-onented :,ystcms ib that they faClli~dtf' bl\ddlf!~ COlllpll'\ 

objects by combining simpler anes. Anather is that the prOl(~.,s of creat IIlt!, d. 1\..,l'f 1111 Pl id' l' 

is often sim pler, becau~e of a tendency ta vlew a mer interface in ter m~ of (IH' ( Ir ,Ln( t PII..,t 1( , 

and behavior of abjects sueh as windows. and menus. 

The George Waslllngtoll Univ~rsity UIillS (G\VUIl'-lS) [ï,l] 1" b,l!'>ed Oll .lJl obJPI t.-t)fll'lltl'd 

design paradigm. It lIlcorporates the lexie,tl, s::ntactic. and sew<I.utic 1('\'1'['" of <lll infl'r.lI tlOl1 

language, by embodYlllg the boundanes betwcl.:"n II'\le!:' within objcct C!.l:-':'f'S. ObJ!'( t t I.IW", 

consequently represent diffcrent len~ls of d.b!>tractlOn In allditlOn. GWüJ.:\IS :,upporb III 

hentance. attributes, and methods. 

Declarain-c Languages 

Declarative languages eoncentrate aIl what should happPfl, rat!Ier tlt,lll !Iow 1 t s!Iollld 

happen. UH.lSs based on declarative languages do not conrern th('/1I!'>I'[vf'!'J Wlt Ir C\f'lIt 



CHAPTER 8. USER INTERFACE GENERATION 

sequences, but instead concentrate on the information passed, such as globa.l vari,.blt,s 

linking interface to application. Such UIMSs usuaUy support only form-babcd interfaces. in 

which the user fUIs fields with information. The types of supported interactions arc usually 

limited to preprogrammed fixed ones, usually with no support for graplllcal manipulatlOll 

of objects - except for graphical areas used for application output. 

The COUSTN (COoperative USer INterface) system [30.32,31J pro\'idt,~ a forlll-basl'd 

interface definition in an interpreted language. Each definition consists of a form declaratioll 

with attributed field definitions. User-application communication is accompli shed with 

abstractions called slots - each 510t represents a value of information. An examph' I~ ,t 

slot per parameter of an application: before executing a command, the user specifie!"> lb 

parameters by filling the appropriate fields in the form, each of which corresponds tO.l <;101 

in the interface definition. 

Event-Based Languages 

Event-based systems contain event handlers, each defined by a procedure or IIlodule, 

that are trigg~r<!d on the receipt of the event(s) to whkh they have been attached. LlCh 

input token is considered to be an event, and the event handler that traps it can calI the 

appropriate application routine(s), perform sorne computations. call other event handkrs, 

or cause other rell'vant changes. Thus, events can be generated either by input devic('~ arp 

other event handlers. 

An advantage of UIMSs based on e/ent languages ls their ability ta handle multiple pro­

cesses, induding multl-thread dialogue that pre&ents multiple task paths avail.tblc lü d, U&t'I 

at any point of a dhlogue. Consequently, multiple interactions are easier to program Jlow 

ever, control fiow in event-based languages is not localized (with changes ~la~ily propa'=\;tu·d) 

- making it more difficult to create, understand, and debug code. 

A Language for Generating Asynchronous Event Handlers (ALGAE) [lIi]lh evellt 1l<l'1l'd 

and supports message passing in a multiprocessing envirollment. Event &p<,cifkal iOIl'>, wn t­

ten in a specia.l-purpose Pascal-like language, form an interface specifil'atioll A LGA E 

generates event handlers from this specification. 

The University of Alberta UIMS [25], based on the Seeheim modp.l, al50 useb event 

specifications, written in a C-like event language, to generate event handlers. IlI!>tances of 

an event handler are created at run-time. 

, 



t' 
1 

CIIAPTER 8. USER INTERFACE GENERATION 86 

Other event-basej systems include Squeak [6]- a textuallanguage for mause-based user 

interfaces, and the Sassafras UIMS [33], which incorporates the Event-Respanse Language 

- an event-based language that can support parallel dialogues. 

Graphicai Methods 

Direct manipulation interfaces, which have a highly interactive nature and allaw the use of a 

monse to select and manipulate screen abjects, are difficult to specify with language-oriented 

representations. In fact, such representations are not weil suited for direct manipulation 

interfaces. Easier to use are graphical specification methods that use a pointing device, such 

as a mouse, to manipulate objects on the screen. This manipulation allows the definition 

of part or all of the interface. Sorne systems can even be used by a user, as opposed to 

a dpsigner. But, ease of use complicates building the UIMS itself. Moreover, graphicaI 

techniques rnay not always support an extensive variety of interaction techniques. 

MENULAY [3] is a preprocessor serving as the front end of a UI~IS. MENULA'.. allows 

the designer ta specify the graphical and functional relationships within and among the 

displays maklTIg up a menu-based system. It allows the placement and drawing of abjects 

such as icons and other images on the screen. When the user selects that object, a semantic 

routine. written III a convention al programming language and linked to that abject, is 

calh"l. ~lENULAY code is cornpiled and linked to the run-time system that executes the 

user lllterface and handles user interactions. 

The Dialog Editor [5] supports building user interfaces by direct manipulation. The 

designer can directly place interaction techniques, such as dialogue boxes and menus, on 

the scrcen; z.nd designate places for input and output areas. It is up to the designE'f to 

specify. by typing, the name" of action routines called when previously created interaction 

objects are user-exccuted. 

Peridot [5(>,5·1] aJlows a designer to graphically create interaction techniques, such as 

scrollbars and menus, by manipulating !ines, text, and other primitives. The paradigm used 

by Peridot ib progmmming by example: by showing how a de vice or interaction object is 

Ill<\nipulated, the user gi';es the system examples of how they should behave. By inference, 

Peridot can gcneriltc parameterized object-oriented code, from a designer's actions and 

sample pcU'<lmeter valucs. 

TI\(' Nt'XT Interface Duilder [1] uses a graphies editor to permit the graphicaI definition 



CHAPTER 8. USER INTERFACE GENERATION 

of user interfaces. Consequently, a user-interface designer can construct a graphir;tl UM'I 

interface by the on-screen selection and manipulation of abjects. snch as llH'l1l1S <lllli hllttol\'>. 

from an object library. The Interface Builder aIso aIlows the specification of .H tlons fOI 

objects to perform, in response ta user actions. For example, a designer can "dp( t .1 CI'l 1.1111 

kind of button object from the Interface Builder's on-screen inventory of Objl'l b. IIIO\!' If 

to the desired screen location, label it, and attach an action to to bfl pf'rfor/lll'd wl\('11 th!' 

user clicks on it. Moreover, a designer can create a custom object by first setpctillf.!; a ~1I11iLlr 

object and customizing its behavior and appearance. The interface specificatioll dl'vdo{ll'd 

using the Interface Builder is saved to an interface file. The compilation of t hl;. lill' pLI< l''> 

its interface data in an executable file. Such a binary deSCrIption of .ln llltl'ff.lrl' .lll()w~ lb 

integration into programs. 

Other l\tIethods 

Having a knowledge-based representation of a user interface. the Uspr Interf.u'c Dl'vpl,)p­

ment Environment (UIDE) [20,18] supports user-interface design and irnplementatioIl. Thih 

representation consists of a class hlerarchy of objects, object propprtlCs and actlüllS. and 

preconditions (predicates that must be true for an action to occur) and po~tcOn(htlOils (c·). 

ist after an action has been executed). The knowledge base can ~enerat(' a (lcscription (lf .L 

user interface in Interface Definition Language [22]. Generation 0. different, bill, fUllej,joll 

ally equivalent interfaces, is possible by transforming [17,21J the interface r<'prc!1pllted in t.hp 

knowledge base. 

The Menu Interaction Kontrol Environment (MIKE) [62] permit:, a progr.UIIIIIl'f tu 

provide a list of application procedures and their pa::-ameter nanw!'> and type!'>. A nlPlIIJ I~, 

created from this list and then displayed to provide a simple interface. The lI~Pf ~el<·( u, ,J 

procedure by typing a prefix unique to a procedure name. If the procedure h.l:' p.u.l/llple'rh 

the system prompts the user for each parameter. Once ail parametflfs IhtVe becn specifie cl, 

the application's semantics are executed. MIKE allows icons ta be usee! for son\(' (Oflllll.lIHb, 

and permits the de'ligner to interactively change the interface Wltlt a. graphie.ll Intel fac (' 

editor. The editor acts as a specification guide and obviates the need to le.lrn lICW /Iot.ltion,LI 

forms. 



CllAPTER 8. USER INTERFACE GENERATION 88 

8.2 MUISL: The McGill User Interface Specification Lan­

guage 

Dased on the definition and manipulation of user interface objects, MUISL is the authorls 

expp.rirnental language for the specification of event-driven user interfaces. A component of 

MUrSL, a user interface object is an entity that describe:! a certain user-interface interaction 

method. Examples of objects include a text window, a window containing other objects, a 

menu, a command button, and so on. Classes of objects describe a group of similar types 

of abjects .1lld contain default object-attributes and operations. Defining an object requires 

that it bp aflsigned a class; it then has available for its use, the attributes and operations of 

that clas~. An object's attrzbutes define characteristics such as its dimensions, contents, and 

so on. Operatzons are requests to carry out a command on an object, usually to retrieve 

inform.LtIOIl from the object, or change certain aspects of the object. Operations can em­

body the JlPhaviar of an object, allow inter-abject communication, and specify relationships 

among objects. The set of an object's class-operations and attributes acts as the external 

interface of the object. Whereas a class identifies the type of the object, its superclass is 

the class [rom which it inhents attributes and operations. 

An ~lUISL abject-definition is based on the spi!dfication of the object's class, and 

option,d: ~Ilpercla~s, local variables, attributes, and actions. ActIOns cantain a statement 

se(lUCllce con~i~ting of MUISL statements, legal operations, any user-defined programming­

languag!' statcment, and callback and event handler pracedure-definitions. By using the 

proper operation, previously defined objects can be instantiated, or created, one or more 

times. IlI!:>t,wtiation allows the s!,:: ... iiication of parent-child relationships because an object 

is i mt,Ultr,tted as a child of another. Instantiation also makes active any defined event 

handll'f!:> Ol callbacks far that objects. Only then can these procedures receive events for 

that object. 

8.2_1 Assumptions and Scope of Work 

It is a~slllll<'li that. a MUISL specification is the input of a MUISL tool, currently muigen, 

which M'ans and parses the specification and genera~es user interface code if there are no 

errors. The general,pd cade, in a target programming language, is to be compiled and run in a 

largd windolV system. The NI UISL tool is responsible for: the definition and implementation 

of cl.1,~beS, attributps, aperations, and so on; and their mapping to an equivalent target 



CHAPTER 8. USER INTERFACE GENERATION 

programming language and window system structures and statem<,nb. 

MUISL assumes an underlying event-driven target window SystPIll .Ult! mode! 'lf C\'('I 11-

tian. Run-time aspects, such as low-level device interaction and managcIlH'nt of l'VPlIt:'> •• 1[1' 

assumed ta be handled by the target window system. It if assllmed th.!! thl' Lu)!,!'! \\111 

dow system supports the specification (ta be called regzstratlOTI), 1l1alla~(,1ll<'1l!. and tl Hl!'ly 

invocation of callbacks and event handlers. For example. MUISL allow" 1 hl' -'(ll'lÏfipr ! () 

attach one or more procedures (event handlers) ta a particular event, for a p.\rt Icul.lr oh 

ject. \Vhen the target window system detects the event on this obje('t, It ('.1.11:-, thl' ,ttt,lI Ii"d 

event handler(s). For events not specified, it is assumed that the target windnw "y~t(,1ll h"" 

default event handlers. 

MUISL also assumes that the target window system is responsible for fiow of cOlltrol alld 

contains a main interaction loop that detects events, and calls appropriate rolltllll'~. Th('rl' 

is no need for the program represented by a MUISL specification ta do any kind of pllllillt?; II 

is assumed that a 1IUISL tool generates one or more caIls ta target wllldow :'yhtPIll routl1l!''' 

implementing this loop, after generating code specified by the ),1 UISL ,,()l'ci fil ,tt lun ,\ 

window system su ch as the X Window System, satisfies the above coralitioll:-i .• lnd is WI'II 

suited as a target window system; accordingly, C is appropriate as ,1 target pro!!;ralIllllillC; 

language because of its easy interface ta the X Window System. 

Although NIUISL assumes an event-driven run-time model, it doe,> not Illandatt' ,1 1 1'1 t;lIll 

target programming language or window system. These are funetiom, of the :'Il: l'J L tool .\ t 

present, muigen uses the X \Vindow System and the C programmi ng langll.lgt'. r""(H'( t 1 \'1'1) 

MUISL is intended fcr a programmer (ta be called a .lfUISL speclficr) and Ilot .t 1J'>I'T Il 

does not assume that this programmer is knowledgeable in the target progra III III 1 n C; 1.1 n~lJ;Il',1' 

and window system. However, if the generated code is ta be moddipd and li Ilkpt! \\ 1 t" 

other code, such knowledge is useful. Accordingly, the hest lIspr of :'llJlSL I~ .l. pr()~r.llll/lll'r 

knowledgeable in bath the target programming language and willdow "y"U'lll. l'\ l'VI'I t hPlI',>,> 

a window and menu-based interface can be built, on top of 11UISL. In ordpf ta ~llldl' ,t lI"('r 

in the MUISL-based specification of a user interface. Implementation of '>lIl Il ail intr'rf,1I l' 

was not investigated, sinee the emphasis was to design MUlSL and te"t lb vi,tbtlit,Y Wlt il 

muzgen. 

MUISL is an experimental, and not a production, language for tlll' ~()I'( tfic.ltlOiI of Il'if'r 

interfaces. !ts current state is intended ta show the basic charact('fi~tlc~ of .t "rH'( IIic,ltiOTl 

language. Similarly, muigen is a sam pie tool ta show the ,.,efuIJlcs1> of :VIlIISL Th" worh 



CIlA.PTEU 8. USER INTERFACE GENERATION 90 

donc for this thc~is represents initial steps towards future work MUISL and muigen can 

easily be expandeù to support more complex interactions. 

Accordingly, ~lnSL is textual. not graphical. The intention was not to design a graph­

itaI langll,Lge As il result, MUISL does not support the specification of graphical objects 

1>lIch ,1:0 lim'~ and polygon~. 

l\[orf'ovPf. the classes. attributes, and operations (see Appendix D) that muigen cur­

rf~l1tly supports are basic and limited. The objective for this thesis was to present a usable 

sllb~f't of interactIOns and not to provide for a multitude of fancy interactions. Given 

7rllllgen's d,rchitecture (see Appendix C), the addition of new classes. attributes, and oper­

ations b (',lsily accomplished. 

How does ),IUISL compare to current languages? This question is answered as part of 

an evaluatlOn of :-"IFISL. in Section 8.4. 

8.2.2 The Language 

Tbe section is intended to discuss features of MUISL, whose lexical rules and grammar are 

provided in Appendix B. 

A !\.. :JrSL specification is created with a convention al text editor, and subsequently 

resides in an ASCII file. Tbis specification has three main blocks: an option al global­

varia.ble declaration-block, obJect definitions,1 and the inztzali::ation block. The following 

is an outline of a minimal YlUISL specification, with .. , indicating omitted specifications, 

and cOlllmcnts preceùcd \Vith a #: 

OBJECT 

#abject defin~tian contents here 

END #af abject defin~tion 

INIT #start of initialization block 

#may be empty 

END lof initial~zatian block 

Lexical Restrictions 

~lUISL is a case sensitive language, and its reserved words (see Table 8.1) are in upper 

C.1M' 50 th.t! tlll'Y are prominent in a specification. The type identifiers mentioned in that 

1 At lt'a.~t Ollt! llhJt'd dcfilIItlOlI 15 reqUired, because the purp05e of a specificatlOll i5 to provlde {or the 
tlt'hllltlOlI of obJt'cts 



CHAPTER 8. USER INTERFACE GENERA.TION 9\ 

table are: INTEGER, REAL, CHAR, CARDINAL. OB.JECTJD, STHl:\(;, In'TTONJII 

BOOLEAN, KEYCODE. DIMENSION, and POSITION. 

'Vord Purpose 
ACTIONS Starts actIOns section 
ATTRIBUTES Starts attnbute defimLlon 
BUTTON IdentIfies a button st1.tement 
CALLBACK Defines a callback procedure 
CASE,OF Start key Ibuttul1 statements 
CLASS Precedes obJcct's class 
ELSE Starts else portIOn In 

condltlOnaljkq jbutton staterrH'nts 
END Ends illl t, ,:lzatlOn block. 

abject defimtlOn. and 
sorne statt'ments 

EVENT Defines an event handl"r 
IF, TH EN Start condltlOnal statf'rnent 
INIT Starts InJtlahzatlon block 
KEY Identifies a kcy staternent. 
NA~IE Precedes obJect 's !lame 
OBJECT Starts obJect defimtlOn 
SUPERCLASS Precedes obJect's superclass 
Type identlfiers Define a t) pe 
VARIABLES Starts declaratlOn block 

Table 8.1: Reserved Words in ~IUISL 

Special MUISL symbols are shown in Table 8.2. The arithmeticsymbols of th;),! t.d)l" drl' 

<, >, $, 2:, == (equality), <> (inequality), -, +, Il (or),! (not),·. anù && (and) 1;~"II't 

of punctuation symbols is kept ta a minimum In arder Ilot ta burdpn tlH' \Il'ISI. <,[H'( dl('( 

with tao many syntactic details. Punctuation IS used when ll('cc~~.Lr~. '>11< lt .t.'> III .L IJ~' (lf 

variables, in which a comma separates identifiers of the same t! [W :'0 !'>PlIllcolon ""p.1 r.t! (''> 

different variable declarations or statements: a typical :-.n;rSL 'i{ll'cdi(.lt Ion \\lJuld h.t\" ('<!C li 

on a different tine. One use of the colon is after a re<;~f\(>d WOf(!. "'Il Il a!'> \.\ H 1 \ III J' '-l III 

arder ta indicate that a sequence of items is contallled after tlm rpwT\l'd wprd 

Special identlflers are those with a specIal prefix. Speci,ll pn'!iw". ,,!tOWlI III l.lbl .. :-i ,1 

ensure consistency in naming. The special identifiers narncd atulnlljC( j.dlb.!! h,," .lIlt! 

atidentjEejventILwdlers? respl'ctively denote callback and l'\'ent handl!'r .tt! f11111 t"-n.lIl1"" ~ 

Other idcntitiers preceded by special prefixes are not mandatcd by :'ICIS L hlll .1 propPfty 

2The nota.tlon useJ 15 c"l:pla.med m Appent!l:< B 



CIfAPTER 8. USER INTERFACE GENERATION 92 

Symbols Purpose 
Follows sorne reserved words, or 
precedes an operation 's argument value 

- Assigns values to variables or attnbutes -
, Separates Items 10 a Iist 
( ) Enclose items m sorne hsts 
[ ] Enclose an operatIOn 
!J! Indicates an external declaratlOn or action 
" Encloses a strmg 
Anthmetic symbols Indicate anthmetic manIpulatIOn 

Table 8.2: Special Symbols in MUISL 

of the ;"'[LïSL tool: it is this program which is responsible for definin~ such names and 

pn'illri/l!!; that a ~IUISL specification adheres to them. 

Prefix Usage Example 
AT Certa:n attnbute values ATwhlte 
arg OperatIOn argument names argObJect 
at Attrlbute names atButtonCursor 
button Button names buttonLeft 
cl Class names c1Text Window 
event. Event names eventKeyPress 
key Key names keyA 
obJ Operation names obJ RootInstantiate 

Table 8.3: Special Prefixes in MUISL 

Variables and Scope 

Gloh.tl vanablp'i I:sed wi thin any abject definition or the initialization block are declared in 

.t ~I()bal-\".triahlc d('claration-block. However, each object definition and the initialization 

bloch. forlll~ its lot,t1 ~cope. variables declared within each of these are visible only within 

1 h.11 o1>JI'II dt'fillltioll or initialization block. In an object definition, a local variable of the 

S,IIlIt' Il,1l1\P and typP as a global one, takes precedence over the global variable. Object 

Il,tlll(,~. wlllch fOrIn part of an object definition, are considered as implicitly declared global 

varl.tbl\'~. 

:\ \an.lblt' dPr!,Ir.ltIOll blork is preceded \Vith the token VARIABLES. The block consists 



CHAPTER 8. USER INTERFACE GENERATION 

of any combination of zero or more external declarations or types: carh tnw h foll\l\\l'd 

by a comma.-separated list of identifiers. Preceded with a @. an er/rï7/tll dt duml :011 h 

a declaration in the target programming language. This typ(' of dPr!,tf.tllol\ .H f:., 01'> .111 

escape mechanism, allowing the MUISL specifier to declare van.thl"" \\ !tl''>'' t~ P" III.t.\' Il'.t 

be available in MUISL. Note that any characters after the @ are ('O!)lPc! wfh.lIll1l. \\It!tollf 

any checking. The following example contains two consecutive extern.d dI'C\.If.lf Itl11"> 

VARIABLES: 

(Ochar *str; 

(Oint a[10]; 

No semicolon separa tes (non-external) declarations of variables of dlfrerPIl t tYI)I''> For l". 

ample, the following is a legal declaration: 

VARIABLES: 

INTEGER a, b 

OBJECT_ID SomeObject 

MUISL types are limited to those considered to be most Ilseflll in ùefillill~ .l IhllC Ilill'c 

face. For example, OBJECT JD declares a variable that ident.ifie~ ,1I\ ob]!'( t; B l' 1 TO \ ID 

a variable used as the identifier of a mouse button: KEYCODE. (' vari"bh' Il~('d ,t:-, .1 hl'.' 

identifier; DI11ENSION. a variable used for the dimensions of an obj!'et: ,lIld PO"lITI()\ 

a variable used to identify a mouse cursor's x- or y- coordinat!.'. 

Object Definitions 

The reserved words OBJECT and END surround an _,bject defiTlltion. \Vhi( h pro"ldl''> ,lll 

object's class and optional: superclass, local variables. attribute". ,11ld ,let IOn!> 

An object used by anotller, must have been m~tantlatfd el thl'r III th\' illl t 1 al1l.tt Ion !J!UI h 

or in the definition of another object (which itselfwas previo\lsly in~tanti;ttPd). In,>t.llI tl ,LI 1011 

creates an instance of the object, and an object defined oncr. cali h,t\(> lIl,lIly Ill:-,l.UI( l'.., Thl" 

shortens the amount of specification needed: one defimtlOn can .lpp!y tü ddfPCl'llf pLH po, 

For example, a text window can be defined once. but instantiatt'd lllU!fipk til11P., If ,1II 

interface requires text windows in more than olle place. This ob\l,ltp,> tl1P llf'f'd foc df'filllll~ 

diffcrent text window objects, each with a. different narne, but I)f'rfuflllill~ """l'lIll,dly t III' 

same function. 



CIIAPTER 8. USER INTERFACE GENERA.TION 94 

Instantiation allows the specification of parent-child relationships: an abject is instanti­

ated as a child of another. The abject instantiated before any other must be instantiated as 

the clllid of a srlPcl<d top level abject, whose name is a property of the MUISL tool and is 

aS~llrned tü have bef'n created as the first object.3 In the above example, the text window 

is tn~t(lIlttated a.~ a. child of multiple abjects. 

An obJPct i~ Ilniqllely tdenttfied by the object name - the identifier following the NAME 

Lokpfl. Idf'nttfylllg the abject being acted upon, the object name is essential when manipu­

latIIl!!; ohlPctS. The followmg example outlines an abject definition and its name: 

OBJECT 

NAME : SameName 

'The rest of the abject definition is here. 

END 'of abject definition 

#Other abj ects or the inltialization block can use Some1TllIle. 

As previollsly mentioned. an object name defined in one object definition can be used in 

ot her obJect defimtions or in the initialization block. In fact, the abject name is an implicitly 

glol>.llly declared variable of type OBJECT -ID: explicitly declaring it as an abject variable 

in the I?;lobal-vartable declaration block is allowed, but redundant. 

Classes 

An ohJcct's class, indicated by the identifier after the CLASS token, denotes an objeces 

type. Tllls class makes available to the object, default attributes and operations fOI that 

c1a~s. i\IUISL does not dictate class names, exc~pt for the requirement that they be preceded 

with the cl prefix. Class names, and their properties are defined by the ~IUISL tool. For 

ex.Lmple, an object defined as a text window must declare its class as that of a text window 

as follO\vs: 

OBJECT 

NAME : TextObject 

CLASS: clTextWindow 

'rest of the d6finition; 

'attributes and operations of clTextWindov can be used 

END 'object 

JIn mllly/'n, tins top !evel obJect 15 called ATtopOb}ect. 



CH.4PTER 8. USER INTERFA.CE GENERA.TION 

Classes form the inheritance hierarchy: an object's stlp(~rrlas.,. th., 1I1l'lItilll'r ,,-fh'f 11\1' 

SUPERCLASS token. is the c\ass from which an object's cla.s~ Illhen!:-- ,1ttflhllt .. ~ ,lIld op 

erations. Except for the highest dass, each class has a dpf,lUll ~lIpl'r( l.t~~ TIIl~ ,11I,J\\-, 

superclasses to contain attributes and operations that apply to lll!' lo\\pr (I,l~~"~ SlIpt" 

classing reduces the number of attributes and oper,ttion<; that a IO\\4'r (I,h~ I!t'I'd" III dp( I,I/t' 

because its superclass has already declared them. 

MUISL supports only single inheritance: a c1ass can be a sllpPrd,l,,~ 10 1lI,1I1\ 1'1""'('" hllt 

it can only have one superclass. Although a c1ass inhents att.rtbll(<,~ ,tlld 0PPf.tt 11)11" froll! 

its superclass. the class's attrihutes and opera.tlons ovprride tho"" of th .. ",\1111' n,III1I'. bill 

belonging to its superclass. A class can aIso inherit attnhllt"" wd 'J[>pr.tljIJlh fr'JIII (1.1'"'''' 

that are its distant superclasses. but the attnblltes and Opl'ratloll" of th .. 1 I(}",~t ,>lIjl"f! 1.1'>" 

override simllar ones of more dist,wt superclas~e~. Thil". wh"11 .UI ubJP( 1 II~", .UI .dlnl'III,· 

or operation. Its c1ass is first searched: if nelther attribut!' lIor OP"f,lll<J11 Il.1111'' " fOlllld. 

the object's superclass (elther default superclas~ ofth~ abject'" dot~,. Of Ih" Il.11llP ,lfll'f Ih" 

SUPERCLASS token) Îs searched. This upward proce~s rontlllll"~ Ultlt! tlt!' .Iltnbt\t .. ur 

operatIOn is found. or the root of the cla~s lllcrarrhy Il> re<lL!w<! ,wd 1 h" "'·.ITlIt LI d" 

For example. if the class ci irmdow is a. su perclass to the rla~'i cl l'al Il lTIdo!l'. ;ul<1 t'/ Houf 

is a superclass to clWzndoU'. then cIRool IS a dl~tant sllp(>rrl.l~~ tn d7t'J'llIwd(jll'. ObJP( h 

of class clTextWmdow Inherit attnblltes and opera.tlOns of r/trmtlo/I'. ,U1d IIlt Tl. Ihm!' (Jf 

clRoot. \Vhen the object of class c/TextWmdow uses an attnbute n.ll,"'d J'. th" .l.!trrblltl' 

names of clTextlVindow are searched for one calleu x. If it is not found. tho~p of d'l'lili/OU 

are searched for the attnbute x. If this search fails. the attnbllU' n.lllJ(·~ of dHoo/ ,Ut 

then searched. Because of this method of lIlheritance. a cla~,> ha~ tl\l' ,,1Illl' Il11Tlllll'r of (II 

more attributes than its superclass, but never fewer. A supercla.::,::, group" ,LUrIhllt(·., dlld 

operations common to ail of its subclasses - cl a::, ses that It IS d. ::,ulwrrla,,::, of Slblrll!.?; rI.I',',I" 

are those \vith the same immediate superclass; attnbutes and 0pf'rotti(JlI..., of ,1 < J,b'> ,11(' Ii"t 

visible to its sibling class. An attribllte or opera.tlOn is t'!.~wk to il d,l.,.,. If thp ,Lttrrh"t,· 

or operatIOn can be useu in that class. Vi::,i bill ty is pas~1 bl(' for at t fi hl! tp,> ,tilt! ()l"·r.ltio!l" 

defined in current cla5~ of an object, or any of that clas5'" ~IJIWrcl.l""(,'> 

If the superclass name is not incluued III an object defillitloll. tlIl' ...,('.trl h for aIl nblll,p, 

and operations not found under the abject 's cla.,>s (<lefine<l aftl'f tll(' f'L.\SS tokp!l) film 

mences in the object 's dcfaul t superclass. Defa.ul t su pl'rcla.,>,>t''> afP dl'rr VI·d from t hl' cl,L'" 

hierarchy shown zn Figure 8.2. Occasianally. an object of cla~~ .\ wOllld IJppd tu Il~P ,1Il 

1 



CllAPTER 8. USER INTERFACE GENERATION 96 

attribute or operation of class B, where class Bis 10t a superclass (immediate or distant) 

of class A. In this case, the specifier can override the default superclassing mechanism by 

spf'cifying a cJabS name after the SUPERCLASS token. For example, an interface is to 

comist of a fonn box window F with two viewport windows, VI and V2 as children, where 

V2 15 placed to the right of VI. To indicate that V2 is to be placed to the right of VI, an 

attribute of the class clFormBoxWindow must be used in the definition of V2. However, the 

c!.L;'ll hierarchy shows that cl Viewport Window and clPanedBox Window are sibling classes: 

the forrn box child placement attribute (called atFormBoxWindotuLeftNeighborObject), is 

Tlot Ilormally visible to an object of class clViewportWindow. For example, the following 

ubject defillltion does not allow any attribute or operation of clFormBox lVindow to be used: 

OBJECT 

NAME : V2 

CLASS: clViewportWindov 

#Attributes and operations follow. None of clFormBoxWindov's can be 

'used here because the immediate superclass is clCompoundWindov, and 

'none of i ts subsequent superclasses are clFormBoxWindov. 

END 

The solution is to override the default superclassing as follows: 

OBJECT 

NAME : V2 

CLASS: clVievportWindov 

SUPERCLASS: clFormBoyWindov 'overrides default 

ATTRIBUTES. #Here, attributes of clFormBoxWindov can nov be usad. 

atFormBoxWindowLeftNeighborObject = Vi 

#V 1 is the left neighbor of V2. 

END 

The drawback of the ab ove scheme is when an object A needs to use attributes or 

opt'rations of two or more classes, both of which are not supercla.sses to A's class. One 

SOlutlOlI to thÎb problem would be to allow multiple inheritance [51]. Another would be to 

provldt' some mcchanism to override the default superdassing, at the level of each attribute 

lh-finitlOn or ;,t.ltl'IllC'nt. A third solution would be to make certain dass-specific attributes 



CHAPTER 8. USER INTERF.4CE GENER.4TION !)'j 

and operations, globally available in a corn mon superclass. But, this diluteb the pOWf.'r of 

classing, in which attributes and operations are only associated \\ith a certa.in cI.u,s. and it.s 

subclasses. 

Figure 8.2 shows the class hierarchy that muigen defines." Classes shawn at the f1gh t uf 

the figure are leaf classes that inherit from their sllperclasses, shown to the lcft of t Iw figllrl'. 

Class names used in a specification are translated, or mapped. to narnes Ilnderstandable hv 

the target window system. The class name following the CLASS tokell is reqllirl'd to 1)(' il. 

leaf class, because leaf classes are the onIy ones that are presently mappecl to tar~('t window 

system names. Most of the leaf classes were chosen because of thelr ea~e of m.lPPlH).!; lo '\ 

Toolkit widgets [49], which are objects providing user interface ab~tr.tctlOn!->. 'l'lm l'.l~P (JI 

mapping simplified the implementation because no new types of leaf ohjects WI'f(, ll('''ùed, 

the goal was to show a workable language that would simplify and speed up sp('cdi( atInn of 

user interfaces and not just to define classes. The current mapping of leaf classps drJf", lJoL 

restrict MUISL ta objects in the X Toolkit: class names and their mappille;s call he allerl'd 

to anyones that can be supported in an event-based window system. 

First and Second Leve! Classes 

The topmost class is clRoot, whlch has no superclass, but is the immedjate sup('frJa~~ 

to clWindow, clBuUon, and cl,"tentJ. Being the top class, clRoot contains attributps :JJld 

operations common to ail classes and inherits no attributes and operations from otbl'r 

classes. Attributes such as the height and width of an abject are common for al! obJ<'rh, 

operations such as object instantiation and destruction are also common for all ohje( t,<, 

The otller second level classes - cHVindow, clButton, and clMenu - dlVidc mtcr,t' 1,)011 

styles into windows. buttons, and menus, respectively. These were c!t0'ien becaus(' J, wlll<!nw 

based user interface usually consists of windows, buttons, menus, or any cornhwatioll of 

them. 

Windows 

Windows are either simple (class clSimple Window) - containillg no other ohjclt~ ~>lJ( Il 

as subwindows, or compound (class clCompoundWindow) - containing one or more abjects. 

For compound windows, these objects can be other compound windows, or simple obJCcb 

such as buttons and menus. 

4Classes clGraphlcsWmdow and clProgramWmdow are currently not sUPl,orted 

, 

1 
1 



CIIAPTER 8. USER INTERFACE GENERATION 

clRoOl 

clWindow 

A 
clTextWindow 

clGenericWindow 

IS ' 1 W' d clScrollbarWmdow c unpe In ow 

clGraphlcsWindow 

clProgrnm Window 

clBoxWindow 

clCompoundWindow clPanedBoxWinciow 

clFormBoxWindow 

?T cICommanàButton 

lB ~clToggleButton 
c Ulton 

lMenuButton 

clViewponWindow 

clDialogue Window 

clLabelB utton 

.? clSimpleMenu ----.;>,. clItemSimpleMenu 
ciMenu ~ 

clListMenu 

Figure 8.2: Class Hierarchy 

98 



CHAPTER 8. USER INTERFACE GENERATION 

Buttons 

Class clButton is a superclass to classes such as command buttons (dass rlCom11ltITIlI 

Button), toggle buttons (class clToggleButton) , menu buttons (class c/.\flè1!Il UlIlloTl) , .llId 

label buttons (class clLabeIButton). AlI buttons are selectable rectan!-';ular ~(n'I'II !('~I()II~ 

that display a title. When the mouse cursor is over a button, the hllttoll'S hlJldl'r is IIslI.lll\' 

highlighted, indicating that it is the current focus of interest. 

A command buUon is selected with the press of the left mouse hutton. TI\(' bllttoll\ 

foreground and background colors are reversed, one or more progranuncr-,>!H'( Jfil'd .lct.I()II~, 

are then executed, and the button reverts to its original state when the rnollt>1' bu tt Il JI l', 

released. Release of the mouse button, when the mouse cursor is out51de of th(' collllllalH) 

button, aborts the execution of actions associated with the latter button. COllllll.wd but t ()II~ 

are useful for specifying a choice of different items to execute, as in a fixed menu 

A toggle bution contains state information: the but ton is either set or Ilot spt by ~llU p., 

sive presses of the left mouse button. A radio group consists of a group of t()/-';~\p bu t ton:, 

such that only one button can be set at any time. For example. a window cOlltJ.il\ln~ prllltpf 

options can have a toggle but ton for each type of printer, wlth oruy one printN IH'IH~ ('n 

abled at any instance. User interaction with toggle buttons is slInilar ta that of romm.lIH) 

buttons. 

A label button is a readonly button that displays a title or l.tbe!. A TI!f:nll billion b .L 

button that pops up a menu object of class clSimpleMenu, when the manse cnrsor li> 111,>,<1(' 

the button, and any mouse button is pressed. 

Alenus 

Third level classes whose superclass is clAlenu. are simple-menu classes (clat>:-. dSllllph'· 

lvlenu) and list-menu classes (class clListMenu). A list menu is a list of :-,trings orgatllzl'd as 

a menu of columns or rows. Selectlllg any string, by pressing the left mause buttoll whde tJ\(' 

mouse cursor is over that string, caUs une or more programmer-specified rallb,l(k" Th('~(' 

procedures are the same for each string. 

A szmple menu is a menu that contains one or more simple lIJ(,llll it('ws, PMh of rla~~ 

clItemSimp/eMenu. Simple menus are either pull-down menus (e g. aprH'arIlI~ Wllf'lI ,1 

mouse button is pressed) or pop-up menus (e.g. appearing for a -!rtain combin.Ltioll of 

keys and/or mouse cursor clicks). Selecting a simple menu item exc< utes olle or H1orl' 

programmer-defined procedures. 



CllAPTER 8. USER INTERFACE GENERATION 100 

Simple and Compound Windows 

The fourth level of classes includes subclasses for c1Simple Window and c1CompoundWin­

dow. Subclasses for the former include text windows (class cl Text Window) , generic windows 

(clalJ5 clGcnenc Wzndow) , graphies windows (cIass c1Graphics Window) , program windows 

(class clProgram Window) , and scrollbar windows (class c1Scrollbar). Subclasses for the latter 

include box WIndows (class clBox Win do w) , paned box windows (class clPanedBox Window) , 

forrn box windows (c1ass clFormBox Window) , viewport windows (class clViewport lVindow) , 

and dialogue WIndows (class clDlalogue lVindow). 

Texl windows can be used to display text and allow a user ta edit that text. These 

are text editors whof>e windows can contain optional scroUbars. Generic windows are the 

sllnplest types of windows and allow the MUISL specifier to marupulate them in any way. 

Graphlcs wmdows. currentIy not implemented, are to contain graphical objects, sueh as 

!ines and polygons. which a specifier can create and manipulate. Also not implemented are 

program wzndoll's - windows exeeuting a certain program, such as a UNIX sheU. Program 

windows are ofteIl useful in interfaces such as window-based debuggers; for example, one 

subwindow can contain the text of the current source file, and another can be executing the 

debugger ibelf. Scrollbnr wzndows can be used to provide scrollbars, at the programmer's 

control. For example. a scrollbar window can be used as a slider indicating the percent age 

done of a certain action. 

A box wzndow displays its children objects in an arbitrary fashion, left to the targE't 

windC'w system. For example, a box window can have two immediate chlldren: another box 

window containIng command buttons, and a text window. For the display of vertically or 

horizontally tiled panes, a paned box wzndow is useful. Each pane can be an object of any 

type. and is resizable, by default. In a form box window, the programmer can specify the 

location of on<' child with respect to another, unlike a box window. Containing a frame 

window with one inner window and one or two scrollbars, the viewport window acts as a 

viewport iuto the data of the inuer window. The frame window clips non-visible data, and 

scrolling, which is managed by the viewport window, displays the appropriate part of the 

data. The MUISL specifier can manually create the equivalents of the graphies and text 

wllldows by proper mdnagement of a viewport window's contents. A dialogue windowacts 

as a. dia.logue box. prompting the user for input. It usually consists of a text label, a text 

input area. and one or more buttons. 

, 
1 



CHAPTER 8. USER INTERFACE GENERATION 101 

Attributes 

Following the ATTRIBUTES token, attributes define the charactcristirs of the cu rrl'Il t 

object. The attributes whose values are set in an attribute definition o\'('rridp th!' 11('/.11111 

values set by the target window system and specifie to the object's c1ass. 

Attrihutes are of three types: regular attributes, callhack attrihutcs, and ('vent h.l1ldkr 

attributes. In an attrihute definition, all kinds of attributes are set as follows: 

< leftside > = < rightside > 

The left side of an attribute definition contains the attrzbute na me, which IS a. ~IP"( j,li 

identifier, prefixed with an at. This prefi..x is MUISL's only restriction: th(~ rest of th!' 

attribute name is dependent on the names defined by the MUISL tool. For exarnpl(" T1llll!lCI/ 

uses the following convention for attribute names: 

at < class identifier> < attribute name > 

For example, a typical attribute name is atRootBackground. 

Regular Attrzbutes 

Regular attributes define object characteristics such as width and height. An t'.rlf'rlwl 

attribute, preceded by a @ and spanning a Hne, acts as an escape mechanbm into thl' t.trr,PL 

window system: it allows any attribute definition allowed by the target wllldow "y~t(,111 

In an external attribnte dcfinition, it is assumed that the attribute nan\(' ;Jf!d valllP .tif' 

valid in the target window system. It is the MUISL specifier's responslbihty ln (>1l~t1rp thl' 

correctness of attribute names and values in such an instance. 

Non-external regular attribute definitions dijfer in the type of value ~pe( ilit>d O!l th!' 

right side: it can be a 1IUISL-defined attribute value, number. identifier, or "trIng. ),rtJISL­

defined attribute values are special identifiers prefixed with an :t T. Thc')" Idl'Iltilkr~ ,tH' 

defined by the MUISL too!. Muigen's attribute names and values MC t,tbulatpd III Ap­

pendix D. 

The following object definition shows various types of regular attribl\tc~: 

OBJECT 

NAME: CommandButtonl 

CLASS: clCommandButton 



CIfAPTER 8. USER INTERFACE GENERATION 

ATTRIBUTES: 

END 

#external attribute --- valid in the target window system 

~XtNinternalWidth = 6 

#MUISL-defined attribute value is on the right side. 

atButtonJustifyLabe1 = ATjustifyLeft 

#Right sida is a value (number or iden<;ifier). 

atRootWidth = 20 

atRootHeight = 10 

#right side is a string 

atRootLabel = "Quit ll 

Callback Attrzblltes 

102 

Callback attributes, containing a list of one or more callbacks, are procedures called 

wlten certain actiolls (events) occur. As such, callbacks are a special case of event han­

dleni. Onf' use of c:ùlbacks is to contain calls to application procedures; for example, an 

application procedure can be called when the user presses a command button. The target 

window system is responsible for invoking callbacks, in the sequence of their specification, 

or rcgiiJtratlOIl, when the specifie event happens. The MUISL specifier, however, only needs 

to spenfy thcm. without being concerned about how callbacks are invoked. 

There are different kinds of callbacks associated with certain classes. A destroy callback 

is called when an 0bject is destroyed, and is valid for all object classes. Bu.tton and menu 

Item rallbacks are called when the buttons or menu items are selected with a mouse click. 

MWll callbacks are called fOl the pop-up and pop-down of simple menus. A text callback is 

callet! for any challge in a text window (class cl Text Window). Scrollbar callbacks are called 

for scrolling actioniJ in a scrollbar abject (class clScrollbar Window)_ 

Callb.lck attnbutes are specified as a parenthesized list of one or more procedure names, 

l'ach sl'p.uated by a comma. The target window system calls them in the sequence of 

t.hcir declMation (from left ta right). The current version of MUISL does not support the 

speciJlcat.ioll of p.uameters for procedure identifiers in a callback attribute. The following 

shows destroy and blltton callbacks for the command button object. MUISL allows a 

singlliar or plnr;ù version of the callback attribute name: 

OBJECT 



CHAPTER 8. USER INTERFACE GENERATION 

NAME : CommandButtonl 

CLASS: clCommandButton 

ATTRIBUTES: 

END 

'Procl and then proc2 are called vhen this object is destroyed. 

atRootDestroyCallbaeks = ( proel , proc2 ) 

'Proc3 vill be called vhen the object is pressed vith d mouse. 

atButtonCallback = ( proc3 ) 

Event-Handler Attributes 

tl);1 

'Vhereas callback attributes are high-level methods of specifymg procpd Il fI'., ,ut t (lm,\! i 

cally called for standard user actions, event-handler attnbu.tes allow a 10w(,1 11'\1'1 of ~IW{ dl 

cation: they consist of event names and associated procedures - event handll'f" --- ral\Ptl 

when that event occurs. The MUISL specifier registers an event handler fOf ,L rl'rLlin l'Vl'llt, 

and the target window system is responsible for calling that procedure once th!' eVf>ut orcllr~ 

In MUISL, registration of event ha.ndlers is accompli shed with the event-h,llldier attrihllt(· 

that consists of one or more parenthesized event ltJ.jJ:es. each separated by WIIlIlJa ~ .\ Il 

event tuple5 is a pair of comma-separated event and procedllre name~' the procpdl1r( t~ 

automatically called whenever the target window system detects the ('vcnt, for t hl' CllrrPllt 

object. MUISL does not support specification of an event handlpf\ par,llllf'tpr" J. VI'JI( 

names are special MUISL identifiers with the event prefix (s('e Appendix D) ,\~ Wltl! 

attribute names, event names are defined by the :\IUISL too!. 

In the following example, procedure prad is registereù for the Key Pr(':,~. r'vl'nt, 

procedure prodJ, for the BllttonPress event. This im::hes that the Ltrgpt WlIldow \y~t (>!ll 

caUs proc1 every time i t detects the press of a key in the ob ject G~ t2fTIC WlIldow. a nd PH/('.) 

each instance it detects the press of a mouse button :n that objt'ct. In thi~ l'X;UllPlP. I)Jor! 

and proc2 are assumed to be procedures the MUISL specifier define'i e!s(!whpfI' 

OBJECT 

NAME: GenericWindow 

CLASS: clGenericWindow 

ATTRIBUTES: 

5 Tuple 15 used to mean a !!-luple. 



CIlAPTER 8. USER INTERFACE GENERATION 

END 

atRootEventHandlers = ( (eventKeyPress, proc1), 

(eventButtonPress, proc2) ) 

104 

If no callback or event handler is specified, the target window system calls its default 

procpdures. If the cr .1tents of the specified callback or event handler are not respectively 

defined with the cal/back or event-handler statement, no procedure template is generated. 

It b the responsibility of the MUISL specifier ta create such procedures in the generated 

filP. Callback and event-handler attributes are well suited to MUISL's assumption of an 

underlying event-based target window system that detects events, manages them. and sub­

seqllently caUs the appropriate callbacks or event handlers. Both types of procedures are 

powerflll methods of controlling the behavior of objects in response to events. 

Actions 

Precedetl by the ACTIONS token, the actions section of an abject definition consists of zero 

or more 'itatements. Simple statements can be external statements, operations. assignments. 

or condlllOTwl stalemeTlts. Procedu.re statements, which can either be cal/back statements 

or eVFTlt-haTldler statements, are usually containers of one or more simple statements. A 

callback ~t.tternent generates a (callback) procedure template filled with simple statements 

specified in the body of this stateroent. An event-handler statement generates an event­

handlpr templ.lte with the statements specified in ~he body of this statement. Simple 

st(ttt'!lIe[\f,~ not enclosed by a procedure statement, are generated in the procedure that 

deftnes the abject in whi<.h they are specified. Simple statements in the initialization block 

are gellPfated in a separate procedure. 

Ex/allai Siaft 7Il(,Tl/S 

Pn'ppll(IPd \Vith a @, external statements act as an escape mechanism into the target 

progr,unllllllg laIlguage: they allow the specification of any statement in that language. 

V~"lf!,e uf l'\.(prnal ~tat('ments not only makes MUISL an es capable language, but aIso adds 

n('xlbility ta it. Tl\(' following partial abject definition shows an external statement: 

GBJECT 

... #obJect name, class,etc. 

ACTIONS : 



CHAPTER 8. USER INTERFACE GENERATION 

END 

#MUISL does not have print stateménts. 

lOprintf("Crea'ting objec't"); 

'rest of actions 

Operations 

An operation is a request to execute a command on an obj{'ct. Surrotlnd<'<l Ily Il'ft 

and right square brackets, an operation is denoted by the operation nt;Tn(' (indi(atin!!; \\h,lI 

operation to execute), and a sequence of one or more arguments (in(liratllH!; wh,lt valll"~ ,lIl 

operation should use). 

MUISL requires that operation names contain a leading ob), but it dot''> Ilot dlCt.ltp th" 

specifie names of operations. Operation names are dependent on the names (!pliw,d bv t Ill' 

taoi impiementing ~lUISL. Muigen uses the following comention for opPrùtion n;Ul\('~ 

obj<class identifier,><operation name> 

For exampie, a typical operation name is ob)Rootlnstantzate. OperatlOlls are dplillpd for 

certain classes, and are vaUd only for the class for which they are deflncd. or any 'illbrla~'>f'''' 

of that class. The objRootlnstantzate operation, for example, is valid for ally ob jl'rt of (\,\"., 

ciRoot or any subclass of clRoot. In this case. the operation is va.hd for aIl d,l~'I'~ of ob )('( t.., 

since clRoot is the top class. Further details of operatlOns are in .\ppPl\lhx D 

Each argument of an operation conStsts of an argument naInP and \allll', ~ppar.Lt"d by 

a colon. As with operation names, MUISL does not place restnctlon" on ar~IlIlll'nt IJ,lIl"'" 

except that they start with a arg prefix. Semantically, the reCCI\;cr of <ln :>1 ('ISL opl'fat.l(}l, 

(that is, the abject ta whlch the operation applies~ must appear ,15 an 3.r~1l1l1(\llt ln t hf' 

current implementation of muigen, the recei ver of an oper'Ltion h, the a.rgll1I1l'nt v,d 111' w I,u,>f' 

argument name is argOb]ect. The receiver was made as an a.rgument, in"t(',ld of ,t ')('\l.tf,III' 

value after the operation name, in order to kcep the synta.x of oIwr,ttiOlh 11l11forlll 

Corresponding to an argument name is an argument t'alUf', \\ llll'h 1., tbp \,11111' 1l,>"d by 

the operation. for tha.t argument name. Argument name., arp [}l'Pdf'd ln Id"lItlfy ML?;1l11lf'111 

values, and ta allow arguments to be specifieù in any or<l('f ArgllIlH'nt V,LllI/''' (,lIl bl' 

identifiers (sucIt as a pre-declared variable identIfier), nurnber~. ~ t fi ng., (~lIC b .t, ,t fik /l,l/Ii1') , 

attribute names. or attribute values. 



t CIIAPTER. 8. USER INTERFACE GENERATION 106 

The following example shows a. partial specification using operations. The object is 

defined, then one instance of it is created in the initialization block. The resulting user 

interface will dibplay a string in a text window. 

OBJECT 

NAME: TextObject 

CLASS: clTextWindo~ 

ATTRIBUTES: 

atTextWlndowUpdate = ATeditable 'default is ATreadOnly 

ACTIONS: 

#This wlll be generated in the sarne procedure that defines the object. 

[abjText\hndOlJMessage argObject: TextObject argText: "Hello ~orld"] 

END 

INIT #initializatlon bloek 

END 

#Create an instance of the text abject; the parent object of the top 

#MUISL abject is given by the attribute value, ATtopObject. The 

#abject is created as a fixed windo~ always visible on the sereen 

#(ie. ATnaPopup). 

[ objRoatInstantiate argObject: TextObject argParent: ATtopObject 

argPapupType: ATnoPopup] 

Il SSl!J/lI1lCnt Statements 

Ailsignment statements allow variables to he set either to values of expressions or results 

of o)H'ratioIls 6 For example, because MUISL do es not currently support operations as parts 

of ex)>r(,~hiol\s. an operatIOn returning a value can be assigned to a variable which can later 

be u~ed. 

Exprp:>illOllh 011 the right si de of an assignment statement are a suhset of typical ex­

pr(':,sions found in a programming language. The MUISL grammar in Appendix B shows 

a prpcpdplll'l' aIllOI1~ operatars in an expression: this precedence is only ta simplify parsing 

Il ,HIII'l"1 !-I".uante,·s that a.1I operatIOn returmng a value and used 11\ an asslgnment genera1es a single 
,1al('III1'lIt f('lllrllln!-l .~ \'a!uc 



.... 

CHAPTER 8. USER INTERFACE GENERATION lOi 

by the MUISL tool. The precedence ruies of the target programming lallg;l1a~(' apply ln t III' 

generated code. 

Conditional Statements 

A conditional statement allows the selective execution of two sets of statpmellts, d(,pl'ndi/l~ 

on the value of a condition. Note that conditionals can be nested. 

The following example shows a conditional staternent and an asslgnmPllt, !Jotl! 1lI t hl' 

context of a callback for a li st menu. The index of the selected menu item 15 [Pt r!cv(,(1. d 1111 

an action is taken, based on a condition: 

OBJECT 

NAME: ListMenuObject 

CLASS: elListMenu 

ATTRIBUTES: 

#Set the appropriate attributes. 

VARIABLES: 

INTEGER index 

ACTIONS: 

CALLBACK ( atListMenuCallbaek, 'attribute name for eallback 

proel ) 

'Defines a eallback called vhen a list menu item ; ~ IJJ'('R:'l(1d 

'The CALLBACK statement vill be explained later. 

'Gat the index of the menu item pressed. 

index = [objListMenuGetCurrentltemlndex argObj eet: List.MenuObi ectJ 

IF index == 1 THEN 

#00 something with the index value. 

ELSE 

'Do something else. 

END • of if statement 

END 'of callback 



CII,\PTER 8. USER INTERFACE GENER.4TION 

END 'of object definition 

'rest of the specification 

Procedure S/atements 

108 

Thl' ~lUISL specifier can provide the contents of a callback or event handler in one of 

two methods: either as il MUISL procedure statement; or as a target programming language 

procedure addpd ta the generated file, or linked with it. The procedure statement allows the 

specIfier to concentrate on the contents of the callback or event handler, instead of having 

ta worry about their syntax in the target programming language. Because MUISL assumes 

an underlYlng cvent-based target window system, callbacks and event handlers are usually 

heavily used in interactions with an abject. Callbacks and event handlers are associatpd 

only wlth the object in which they are defined. 

Callback 8lalcmcnib 

Identificd by the leading CALLBACK token, the callback statement is used to specify 

the contents of il CJ.llback. Recall that a callback is a procedure automatically called by the 

target wllldow system, under certain conditions. A callback statement is not allowed for 

cla~se~ of ohjccts (or their superclasses) whlch do not have corresponding callback attributes. 

For an obJcct, a callback statement can be uniquely identified by the tuple following the 

CALLil.\CK token. The fir'3t element of the tuple is the name of the callback attribute for 

whirh the procedure is a callback. This name is used to check if a callback is allowed for 

the cl.1SS of the abject being defined. The second tuple-element contains thp name of the 

callh.lch.. 

Lpgal callbclCk ~tatements without corresponding callback attributes set in the attributes 

section, do not only gencrate a callback, but also a callback attribute for the abject in which 

tilt' st.tt(lllH'lIts are dcfincd. Consequently, there is no need to define callback attributes if 

tilt' corr{'~pondil\g callback statements are specified.1 

One or more dljJcrent callback statements are allowed for the same callback attribute (as 

is the ca~e for ca.llba.ck attriblltes). The arder in which callbacks are called, in the case of 

no dt'flnet! callback attributes, corresponds to the lexical arder of the callback statements. 

rit IS redllndanl, bul Ilot Illegal, lo do 50. 



CHAPTER 8. USER INTERFACE GENER.-1TION 1 Il!) 

An example of a callback statement was prcvhusly shawn Whl'll th.- condltlOll.lI ..,t.tt(' 

ment was discussed. In that example, the callback statenwnt for th~' li~t menu (,tilh,1I h 

named prod. was defined. There is no need for the following St.Ü<'Il1PlIl in tlJ(' atlrihllt.· ... 

section: 

atListMenuCallback = (procl) 

Generated is a callback. named procl, and containing the simple stalelllt'lIt.., wltlllll t III' 

MUISL callback statement. These statements are mapped to the rorr(l~pondin!!; St.ltPllif'lI1 " 

of the target programming language. The callback's title. defa.ult p;tramptpr..,. and 111111'1 

syntactic details, are au tomatically generated. 

Event-I/andler Statements 

The EVE~T token identifies the start of an event-handler statement. A tuplf' of e\l'llt 

and procedure names uniquely identifies an event handier statement within ,UI oI>J('( t. df'ft 

nition. This statement is used to specify the contents of an event-handler \\ hlch t IlP Ln)!,!'t 

window system automatically cal!!;, once it detects the event for the curn'llt obJf'1 t 

There is no need ta specify a corresponding event handier attn bu te for .UI C\ en t- h.lIldlf'r 

statement. Such an attribute is automatically generated. if it doe~ not (~;"l~t, bllt lhf'p' j.., 

an event-handler statement. U nlike callback statements, ollly one even t- h.Llldlf'f ~t.tt 1'1111'11 t 

per event, per abject, is allowed. 

An event-handler statement not only registers a procedure as a.n evell t h.\ lit! Il'r for d 11 

event (Le. it sets an event-handler attribute if it that has not already bPPIl ~pt ). but ,li '.1 1 

generates the event handler itself. Other than the standard templ,lte cod!! gPIlPf,tl pd lor 

an event handler, statements wi thin the MUISL event- hancHer statPIlH'lI 1 .trI' 1Il.lpIJf'd t () 

statements in the target programming language. and are included .lS p.ut of t Ilf' 1'\1'111 

handler. \Vhen an event occurs, the target event-based window sy.,tPI!l .1l1 1 OIll.lI li .illy ( .d h 

the event handler specified for the event. If an event hancHer h.u, bpf'!l ~ pl'Cllif'd PI till'I 111 

an event-handler attribute or statement, it is the procedure invohed. ot hpn .... I~I'. thi' III\ohl'd 

procedure is a default target window-system procedure. 

Statements within an event handier are a sequence of zer') or num' '>lrnplf' ..,1.tlI'IlIf'lIt., 

key statements, or button statements. Identified with starting CASE and 1\1,_ Y t(J"I'II~ •• 1 

key statement is a case statement whose case labels are key naml''; SplIl.lldH .dly, '>Ill II .1 

statement can be included in an event-handier statement for a kpyboard 1'\'('111 • .,Ill h ,1<' .1 



( 

., 
1 

CIIAPTER 8. USER INTERFACE GENERATION 110 

key prCflS or rdease. Each element of tms case statement contains the narne of a key, c:Lnd 

zI'ro or mor!' sImple statements that are executed if the keyboard event involved that key. 

A "implp -.;t,ltement sequence labeled by two or more key names is executed jf a keyboard 

1'\l'llt I~ df't!'rt('d fo' any of those keys. If no key matches the key activated. the statement 

,>l'quI'lIre ln thl' optlOnal ELSE-part of the key statement, is executed. 

Idf'lItdll'd \VIth starting CASE and BUTTON tokens, button statements are syntactically 

.tud SPIIl,llltIC.dly ~Imilar to key statements, except that the case labels are names of mouse 

bu t tOIl!>. :\ ca_~p element is selected If the but ton activated matches that of a case label. 

~[(;ISL dops not dictate the names of keys or buttons. excrpt that they be respectively 

pren·t!f't! \\'Ith a key or bulton tohen. It is the responsibili.y of the MUISL tool to map 

key or bu t ton names ta those supported by the target window system. i\[ulgen's names are 

t.Li>ulatf'd in App('ndix D. 

Key and blltton statements W'i!re included as part of MUISL event staternents becausc 

they allow an e.l!>y·to-understand and natural method of performing actions based the type 

of key or button lllvoh'ed. Each key or button statement generates a corresponding case 

~t,tteIllf'llt lr1 the target programming language. 

The followlllg cxample combines various types of event statements. The first event­

handler statement will cause an ev~nt handler, named handle_button_press, to be generated 

An eVPllt-handler attnbute for the mouse button press event will also be added ab an 

attribllte of Gt'TlerzcObject. Handle_button_press will be called by the target window system 

whcIlevpr a. rnOllse blltton is pressed while the mouse cursor is inside GenericObject. ThE> 

other two eVPllt statements will respectively generate event handlers for a key press anc'l the 

eIltraIl(,(, of the IllOllse cursor into GenericObject. 

OBJECT 

NAME : GenericObject 

CLASS: clGenericWindov 

ACTIONS: 

EVENT ( eventButtonPress. handle_button_press) 

CASE BurTON OF 

buttonLeft : 'left Mouse button 

buttonMiddle: 'middle mouse button 

tOprintf("Left or middle button"); 

. .. 'other actions here 

• 



CHAPTER 8. USER INTERFACE GENERATION 

buttonRight: 'right mouse button 

CCprintf("Right button"); 

... 'other actions here 

ELSE <Qprintf("Button not recognized"); 

END 'case button 

END 'event handler 

EVENT ( eventKeyPress. handle_key_press ) 

CASE KEY OF 

keyA: 

Jactions based on key pressed 

EL SE 0printf("Button not recognized"); 

END #case key 

END #event handler 

EVENT ( eventEnter, handle_enter_vindov ) 

caprintf ("Entered windov") ; 

.,. 'other actions here 

END 'event handler 

END 'object 

Initialization Block 

III 

The final portion of a MUISL specification consists of the initialization block w hic h ho idl'Il 

tified by the leading INIT token. The initialization block is intended to be uSfld ili> tjJ(' 

container of statements that create instances of previously defined objects. 'l'hl.' hlack li> Ilot 

limited to these statements, though. An initialization black generates a procedurp wlth If,f, 

contents mapped from the enclased MUISL statements. Tlus procedure ho (.tllfld within tlll' 

generated code. Va.riables used in the initia.lization block ca.n be declared aftpr tll(' VJ\ IU­

ABLES token a.nd colon symbal. An examp1~ of the initializat 1011 black y"ai> prl'vIOlI,ly 

given. 

It is assumed that the program generated from a MUISL specification p.ti>i>f1i> control 

to a main interaction loap implemented by the target window sy::.tem, and callet! after th,. 

ini tialization block. 



CIlilPTER 8. USER INTERFACE GENERATION 112 

Examples of complete MUISL specifications and their resultant user interfaces are shawn 

in Appendix E. 

8.3 Muigen: The MUISL-Based User-Interface Generator 

1'h;s section briefl}' describes muigen. a tool that scans. and parses a MUISL specification 

file. If there are no errors, it generates user interface code, using C as the target pro­

gramming lang uage. and the X \Vindow System (Version 11. Release 4, with the X Athena 

Widget Sf~t. and X Toolklt Intrinsics) as the target window system. A/1.ligen itself consists 

of aboll t 8.000 li nes of C code. using lex and yacc. 

Muzgcn wa~ designed and implemented with the purpose of providing a sample MUISL­

bascll u~(>r IIlterface generator which would demonstrate the viability of MUISL as a user 

interface specIfication language. Muzgen's architecture and method of generating files are 

described in Appendix C. 

8.3.1 Definitions 

Some definitions used include: 

• 1Iapping: the process of translating from a MUISL name to one or more target 

progr,llli nmg language and window system names. 

• Specilic.ltion File (SF): a file containing a ~IUISL specification. 

• Gl'llCrated File (G F): the output user interface file generated by m1.ligen; irus file 

cOlltallls source code in the target programming language and is to be compiled and 

run under the target window system. 

• ~l UISL tool: a program that accepts an SF as :nput and outputs a GF. 

• MUISL specifier: the programmer writing an SF. 

• MlllgCTI developer: the programmer who codes, modifies, or modifies m1.ligen. 

• Initialization Files (IFs): files containing MUISL or internaI muigen names and their 

rnappings ta target programming language and window :.ystem code, and other inter­

naJ muigen names. 



CHAPTER 8. USER INTERFACE GENERATION 1 l:t 

Steps in creating a user interface using MUISL and muigen are ta: crc<\.t.e an S F \VIl Il 

any text editor; create the GF by invoking muigen on the SF; using a compilpr and lin\..pr 

for the target programming language, compile and link the GF with .lny ot hN ~ol\rn' wdl' 

files (for example, application source code files in the target programrning l.wf!;uag!'), .11111 

run the resultant user interface in the target window system. 

8.3.2 Initialization Files 

An important aspect of muzgen is its use of IFs: it reads these files at the star!. of (''{crut )C)(I 

and dynamically binds their contents ta tables. A MUISL name reaù by t!tp par~PI l'. 

mapped to target programming language code by finding its enf ry in an appropriaIt' Llbl" 

IFs make muigen a tahle-driven program. thus minimizing the use of hard-\vired inforl1l,ltioll 

and facilitating changes of the target programming language and window sy~tern". If\ ,t1"o 

allow the ,nuigen developer 8 the ability to modify mapping information Wll,hOIlL tlt!' IlPPel 

for recompilil.tion of mUlgen. 

IFs are used to: initialize class names; define table names; map clas~ name~. attnbllt(· 

names, attribute values. methods, variable types, and event/key /buttoll naIJle~ ta ll<llIlP'> 

in the target programming language; construct the class hierarchy; and provid(' targl'l 

programming language code templates to he used in the generated-code file Contpnb of 

IFs are further explained in Appendix D. 

Based on grammar, the two types ofIFs are: Operation IFs (OIFs), and ~Ol. :'[lpr,lllo!l 

IFs (~OIFs). The former map MUISL operation names into target progra,rnullng lan~II,II~1' 

code and include information on the position and number of parameten, of OjH'ratlOll-Ilalllf!:-' 

The latter files map a name (such as a Nl1,TISL class name) ta another entity. ~Ildl ,l' ;1 

target programming language code-templatej or serve to dynarrucally init lalil.c a rTHllljl'TI 

data structure. 

Non-Operation Initialization-File Format 

The grammar of ~OIFs is shown in Figure 8.3. Notation and sorne tokens t1sed arp sllJlIlar 

to those of Appendix B. Nonterminals are shown in Italicsj terminais are in boldo and 

integer denotes an integer value. 

A typical NOIF consists of one or more definitions; each defini tian contains d. logl<:ally 

related set of mappings, with each mapping consisting of a record. The unique ident.ifier 

8ImtlillizatJon files are not intended for use by the MUISL specIfier 



{ 

C/I,\PTER 8. USER INTERFACE GENERATION 

definitionJist 
definitwn 
record_list 
record 
string 

{ definition }+ 
- ident integer recordJist 
{ record}+ 
{ ident , strmg} 
, { chamcter \ '} , 

Figure 8.3: Non-Operation Initialization-File Grammar 

114 

in a record, identifies the name to be mappedj and the string provides the mapping of this 

identifier. A string is used because sorne mappings consist of more than one name. 

Each definition is identified by a unzque name, followed by an integer indicating the 

number of records in this definition. Muigen allocates a table for each definition, and the 

size of this table is given by the integer for that definition. If the integer is smaller than 

the actuaI number of records, muigen prints an error message, and exits. The last record in 

each defim tion must be a nu11 record; "empty" definiticns must have this record. Reserved 

words in NOIFs include NULL (for a null record element), and UNSUPPORTED (for an 

elemcnt not yet supported by muzgen). 

The following example shows part of the IF that maps MUISL's attribute names to 

COrf(lsponJing X Winclow System names. Comments, preceded with a # character, cause 

the remainder of the line to be ignored: 

- clMenuAttributeTable 3 'number of records for this example 

{ atMenuCursor, 'XtNcursor' } 

#Description: Menu's default cursor 

#Values: AT*Cursor 

{ atMenuForeground, 'XtNforeground' } 

#Descrlption: Menu's foreground color 

#Values: ATwhite, ATblack; default: ATblack 

{ NULL,'NULL'} #last record must be null 

- clCompoundWindowAttributeTable 1 



CHAPTER 8. USER INTERFACE GENERATION 

{NULL. 'NULL'} 'last record must be null 

Operation-Initialization-File Format 

The grammar of OIFs is shown in Figure 8.4. The notation used is sinll!llT to th,11 of 

Section 8.3.2. The main difference between NOIFs and aIFs is the format of l'arh rp( ort!: 

otherwise, these types of files are similar. A NOIF record is structured as h1lrh. ill ord!'1 t (, 

allow muigen to check operation arguments. The record elements from tlll' spcon(! 011\\'.\1<1·, 

are strings since they may contain more than one identifier. In Figure 8.1. the fir"t rl'wrd 

element identifies the operation name; the second elem:mt, the rnappin~ of tI.l>' n.lIIH' \ (;{,,, '., 

indicate places for argument values); the third, a list of 11UISL argument n.l!lll'S W!IO"I' 

values will respectively replace the %s'Sj the fourth, a list of :VIUISL arguIlH'nt namp,> prpsl'ut 

in the MUISL operation; the fifth, the return type (NULL if none). Libb iIl r('cord·ell'lTwn!. 

strings consist of identifiers separated by one or more spaces. 

definition_List 
definition 
record_iist 
record 

string 

{ definitwn }+ 
- ident integer record_llst 
{ record}+ 
{ ident. string. string , 
string , strmg} 
, { character \ ,} , 

Figure 8.4: Operation Initialization-File Grammar 

The following is an example of a small part of an OIF: 

- clRootMethodTable 3 'for demonstration purposes 

{ objRootlnstantiate.' 'los = create'l.s('l.s,1.s);\n', 

'argObject argObject argparent argPopupType'. 

'argObject argParent argPopupType', , NULL , } 

• [ objRootlnstantiate argObject:<ident> argParent:<ident) 

• argPopupType: <attribute_ value>] 

# Valid attribute values: ATnoPopup, ATmenuPopup, ATobJectPopup. 

# ATdialoguePopup 



CIIAPTER 8. USER INTERFA.CE GENERATION 

{ objRootDestroy, 'XtDestroyWidget(y's);\n'. 'argObject'. 

'argObJect', 'NULL' } 

# [ objRootDestroy argObject:<ident>] 

{ NULL, 'NULL', 'NULL' , 'NULL'. 'NULL'} 'last record must be null 

- clButtonMethodTable 1 'last record must be null 

{ NULL, 'NULL', 'NULL' • 'NULL'. 'NULL' } 

8.4 Evaluation of MUISL and Muigen 

116 

This section evaluates bath MUISL and muigen by examining the following issues: ea5e of 

u.se, easl:' of understanding, support for prototyping, separation of the interface from the 

applica.tion, underlying concepts and syntax, completeness and correctness. extensibility and 

e.scap.tbilIty, locality of definition, functionality, portability and availability, programmer 

control. case of de~ign and implementatlOn, and the relation to xmupe2. \Vhen appropriate, 

comparisolls are made ta other systems. 

Ease of Use 

The first issue ta be examined i5 usability, or ease of use. Being textuaI, a MUlSL 

specification i5 crpatcd as an ASCII file, using any text editor. The specification is easily 

modifiable by editing the SF. Muigen accepts this SF and generates the resultant user 

illtl'rf.LlP cod!:' TIlIs code is then compiled and linked with other application code, and 

execll !,pd by the target wlndo.,," system. 

However, M UIS L 15 less easy ta use than graphicaI systems such as Peridot [56,54J, or 

the Dialog Edltor [5J These systems can permit even users to specify user interfaces. A 

disadvant,tge of USIlIg !\IUISL is that there is no interface editor - such as that in the 

Dlctlog Editor. :'IIKE [62J , or MENULAY [3] - to simplify the pro cess of building an 

intt'rf,lce ~Iwrification. However, the author's intention was not to build one, but instead 

COllcentratc 011 the dt'sign of MUISL and the design and implementation of muigen. 

Excppt for thl' l;Llk of an interface editor, usage of MUISL and muigen is similar to 

that of ot!tpr sy~teIlls. For example, in MIKE, the generated user interface is compiled and 

linkl'd with ,tppliration and library code. MENULAY is aIso similar in that the result of a 



CHAPTER 8. USER INTERF:-\CE GENERA.TION 1 17 

session with the interface editor is a specification stored in a file. which i5 gI'IH·r;til·d Into (' 

code, compiled, and run. 

Ease of U nderstanding 

MUISL is a textuallanguage and the ~IUISL specifier must im est till1l' tu Ip.Hn .1:>lH'( 1', 

of the language. However, MUISL i5 easy ta understand and learn. For c'\amph'. tht'fl' .u~, 

few parts ta an abject definition, standard names follow a certJ.in COfi\l'lltlOl\ •• Ulc! 1l0t.\1.ltlll 

of operations is consistent. MUISL clearly i5 less difficul t ta underf>t<lllti t ha Il 1 t:> t .If!.',,,t 

window system. 

Although the language is not complex, it places certain \iI\llt.ltIOIl~ t h.1l t hl' ~Ill IS 1. 

specifier must be aware of. For exampl~. MUIS L has mme lexical hml t.ltio!l:> on ,",on\(' ty pp,", 

of identifiers: key names must be preceded with key; attribllte Il.lmes. \\Ith al: ~talltl,lld 

attribute value identifiers, with AT; and sa on. But, these pff'fixp :> add Ulllforttllty ,\1\(l 

consistency ta the usage of certain names. An advantage of :'11('11 a n<1111lD!!; ~d\l'I!\I' I~ 11', 

fiexibility: the same names can be mapped ta names in different t.uU;pt \\IIlt!o\\' ~y'>l('I11~ .1Ild 

programming languages. 1IDISL is also case sensitive and requlre:, rpser\f'd WOI d ... "urlt a., 

OBJECT, CLASS, and sa on, be in upper case 

The event- and object-based model, in which objects can he defineu wlth optlO!l.JI .tt 

tributes and operations, enhance MUISL 's understandabili ty. Inheri tance of cLI:':' att 1 i bu t {'" 

and operation.; reduces the need for repetition of corn mon attributes and opt'ra t i()ll~ Crp 

ation of abjects is accomplished with one or more instantiations. Finally, by .t;-,:-.UlIJlIlP, 

an event-based model, whose run-time aspects are handled by the target wlndow .,y:,1 ('III 

the MUISL specifier need not understand how events within ohjects ;iff' halldll'd 'l'/w,' 

are the responsibility of the target window system. Uv incorpor.tting t'\'l'llt h,llIdlpf'l dllll 

callbacks, ~IUISL assumes an external (user interface) instead of an intNII,li (.l[lpli(.ltltlll) 

model of control: the 11ser interface is respons! hIe for call1llg applira tion rOll Il Il('~ Onl' of 

the previollsly mentioned advantages of external control is Its 'iupport for prolO! \ pillt'; 

A possible disadvantage of MUISL is that it is intmdl'd only for d. !)f{)!..\f.lllllllf'f 'l'hl'-. 

persan must also underst.llld the llnùerlying abject and eVf'ut b.I~(," of ~1l;1~L. (;I.lpl!1< ,d 

systems such as Peridot or the Dialog Editor obvlate the n('cd for lf';trllllll!; any 1'1l11!;1I.11!;1'. 

are easier to understand than MUISL, and can be used by user~. 

Support for Prototyping 



CIf/\PTER 8. USER INTERFACE GENERATION 118 

U sing MurS Land mllzgen allows the rapi d prototyping of user interfaces, and facilitates 

the specification, design, and implementation of user interfaces. The MUISL specifier can 

u&e tlllS langllae;e to completely specify a user interface, without necessarily having to write 

supporting lodp in the target programming language. The user interfale is then compiled 

and run: if dld,lIgetl are required, the MUISL specifier can easily change the MUISL speci­

fication, generate new user-interface code. compile it 1 and re-run it. The 1IUISL specifier 

saVf", time ,wd ('!fort and achieves a quick turnaround time, because there is usually no 

nccu tü reppatedly write or modify lengthy or intricate user interface code in a conventional 

programming langudge Modification of the smaller SF is typically easier and quicker. The 

result is ,t COnCl'lltrdtion 011 the functionality of a user interface, rather than on imple­

~enta tion detaIl& specific to a window system. As with other systems. the emphasis is on 

provlJing tools to as"i&t the user interface specifier. 

For pxample, each of the examples in Appendix E was initially constructed in fewer than 

twenty Ilunutes. The equlvalent time to construct them from scratch, using a conventional 

programming language, would hav(' taken over an hour each.9 The reduction of effort and 

time also extcnded ta the testing and modification of the MUISL specification files, and 

pro\'ed to be ea&ier and more convenient than an equivalent modification of conventional 

progr.unrning language code. The author was capable of easily experimenting with different 

a:,pects of the u&cr interfaces in each example, and rapidly customizing the final result with 

no difficultJ('s. MUISL specifications in this appendix were six to eight times sm aller than 

the gcncrated code. 

lu SUppOI ting rapld-prototyping, MUISL and muigen are similar to other UIMSs. For 

example. tllP Sasbafras un,rs [33J also supports the rapid development of user interfaces by 

using the 1 tt'ratlve devclopment approach - testing of the interface is possible independently 

of the apphc<1tion. Auot!l('r example is the Dialog Editor, which also permits the quick 

buildll1g, and modification of a user interface, without affecting the application. 

Separation of the Interface from the Application 

~[tTISL allows the &cparation of the user interface from the application for which the 

interface is IIMnJed. IJy stressing the form and interactions within a user interface, MUISL 

ab~tr.lcts the dpsign of a user interface from application code. But, MUISL provides hooks 

11Bnth till\t'~ ,\!.~Ullle a. ~pt'nfier knowledgeable 111 ~lUISL or the target window system, respectively The 
latter, of (OIIr~e. l~ mil<" harder 



CHAPTER 8. USER INTERF.-!CE GENERA. TION Il!) 

into the application. For example, callback procedure staterncnts ra.n contaill ca.ll~ tll .11' 

pli cation code. The resillt is a user interface that is a separate-modlll.1r elltity 

UIMSs such as Sassafras also support user interface and applIcation rolltinp~ lu hl' 

separated withou t limi ting their ability to exchange data. Otlwr ~y~ t('Ill~ .l.bo eIU OIlI.W,!' 

dialogue independence. For exarnple, COUSIN's slots [30.:12.:n] pnrollr.ll!;p t hlll\.-III~ III 1('rIn,> 

of data exchanged by the application and user, instead of how they arl' dl'> P 1.1} pd or TIlodtllf'd 

Underlying Concepts and Syntax 

MUISL includes concepts and resultlllg syntax similar to those of otllPr <'y,>telll,> 'l'III' 

object-oriented paradigm is similar to GWUI1IS's [i·!]. ~ruISL h.JC; Cl.l~'>I',>. aU llhut,·., 

operations (corresponding to methods), and inheritance - concepts emb()r!IPd III (; \VllI \1 S 

GWUlivIS identifies an object with tOhens such as Class, Attrzbulc.,. \// tlu,d, :-'Il'IS 1. ,d·,() 

has similar tokens to identlfy respective parts of a.n obJect defillitioli. LI\.-p (;\\,1'1:-'1:1, 

MUISL a1lows r.ommunication with an object by specifying the obj('rt'~ Il,Ul!(' or Id (.1:' .III 

argument), the name of the operation, and a list of other argument:, ~1l' I~ L \ Il~(' (lf .1. cI.I'>·. 

hierarchy, objects, their attributes, and actions is also similar to their \1..,(' III UIDE [~(USl 

Some synta..'C used in both systems, such as t he use of parenthesized lI~b of COnIm;t-c;"p,1 r.lu·d 

items, is identical. 

MUISL's use of an event-based paradigm is similar to that of event-ba:'l'd !>V~I('lJh ~Illh 

as the University of Alberta UIMS [25]. The model In both assume,> th,lt wli('I1 ,lll ('\'1'111 

occurs, i t is sent to the proper ev('nt handler( s). In the abovl' Cl:'1 S, oIlly ;'( t 1 \'1' ('\l'fi t 

handiers can receive events; an event handler is made active by IlSlll~ ail l'Xplt( It ..,I.ltl'IIII'llt 

to create it. In MUISL, simply defining an event hanJler in an obj"ct dl'filllt .on I~ III~lIlfl( 11'111 

to make it active. An event handler is made activc> by the ins! antl.LlIOII of th!! obJl'ct 1(11 

which it is a handler. MUISL similarly assumes a coIl.:eptual moti.,1 of Mt (\P l'WIlt h.tlIdl(·I<' 

executing concurrently and processing events as they come in. Therc I~ Tlothill!!; III "Il)I~1 

which prevents an event handler from invoking another e\ocnt h,l/Idl"r, or d",1l t.IV.ltl' ,li, 

active event hancHer: this ability is a function of the available opf'ratioll~ dP/illl'd by thl' 

MUISL too!. l\;ote that MUISL allows the definition of the sanH' evpnt haIldll'f for dIlf('rI'llf, 

events, or different objects. 

The usage of tokens snch as EVENT, VAR, IF, and INIT, and ,t~~lgnml'lIt ~I .dl'nl(·l1t~ III 

MUISL is similar to their usage in the University of Alberta UIMS. In bot h. CVI'llt h,Uldlpf', 

are defined for particular events. In the latter system, a file nampr! a~ ,Ul eVl'llt Ii,wdl!'r 



CIIA PTER 8. USER INTERFACE GENERA.TION 120 

file, contains sections defining: parameters to the event handler, its local variables, events 

it can process, and bodies of procedures, each of which responds to a particular event. In 

MUISL, event handlcrs are also attached to a particular object and make use of local and 

global variables and supported statements. 

Sorne of the syntax of MUISL's operations was inspired by Smalltalk's messages, but 

tllPre are sorne diffcrences: in an operation, the operation name is listed first and as previ­

oll",ly rnentioned, the receiver of an MUISL operation must appear as an argument. More­

over, the syntax of Srnalltalk-like messages is unconvilntional. and operation syntax seems 

more fwtnra.l to those used to procedure calls. However, an MUISL operation is not nec­

essanly a procedure call, although it may generate such a calI. An MUISL operation can 

generate one or more statements in the target programming language. Like a Smalltalk mes­

sage, an operatIOn serves as a modularity mechanism: it specifies what command should be 

carried out, but not how it is accornplished. The latter is achieved by mapping the operation 

to the gl.'nel ated target programming·language code. 

Completeness and Correctness 

Ca.n muzgen guarantee that a MUISL specification is correct or completely specifies a 

user intl.'rface? Completeness is a difficult requirement that remains an open question with 

rn<lny mer IlIterface tools. Afuigen attempts ta assess correctness as much as possible: lexical 

and synt'Ldic errorb are edsily detected. Sernantic errors, such as type clashes in assignment 

of operaI Jl)1l~' resul ts to variables, and bad arguments to a operation, are tlagged. However, 

sorne ('rror~. sneh as those in external statements, are beyond the scope of muigen ;-i,nd 

are lcft tn the compiler of the target programming language. Mu.tgen can only guarante€ 

corre("tlle~s to a certain degrc .... The onus is on the MUISL specifier to guarantee the rest. 

Extensibility and Escapability 

By including external statements and declarations, MUISL is escapable. Both allow 

the inclll",ioll of arbitrary target programming language statements and declarations that 

i\IUISL do('~ not t>lIppart. The generated file resulting from a specification file also gives the 

i\[UlSL ~p(,Clfier both the abllrty to rnodify user interface code, and t.he flcxibility to extend 

or ta.ilor tlm code aecording ta the particular application. This b because the generated file 

h. p",M'Ilti.tlly ,l. program in the target programming language. The only proviso is that the 

T'dl7ISL "'lwdfipr be familiar with the target programming language and window system. 



CHAPTER 8. USER INTERF..1.CE GENER,·\TION l~l 

A program driven by tables dynamically initlalized from mitl.llilatian fil!'!> (IF~). TIllll!!' Il 

is easily extensible. IFs ah.o enhance the power and flexibillty of /Ill/Zut'Tl, and pl'rlllit th .. 

modification of features such as operations and attriblltes. For ex.unplt'. tl1\' d.\:-.~ IlIl'r,1r( II\' 

shown in Figure 8.2 is stored in one IF. To change tl:is 11lerar,hy. th!' ~llïSL dCl'tloJlt 1 

must only update thls IF. No muigen code hd.S to be altcrcd. and rI'WlIl!lI!:tt 1011 of /lill/Ut Il 

is not necessary. However, adding a new c1ass requires l11odific,ttl!HI of ~I'\f'r.d IF~ 'l'III'. 

is presently a manual job. but is an excellent candidate for autall\,ttion II- '. .11,,0 r.lI IlIl.ttf' 

the alteration of the target window system or programming laII!~lI,lg;(', l)('cau"p only IF 

manipulation is reqUlred. The time to read IFs and lIIitlali/,p the corr!'''pOl\(llI\~ t.lbk" 1" 

negligible. 

~lUISL's c1assing mechamsm and inhentance of attnblltes and opl'r,ltlon'. 'iUpporl 10-

cality of definition. A change in the attribute or operation uf a P,lftlcul.tr cl.I~!> ,tppllf'!> tu .Lll 

inheriting classes. Recall that objects can use the attributes section ta chang;(~ tht- dd.Ltllt 

attribute values of their classes. A system such as the Dialog Editor is ,inllla.r in th.tt il, 

shares resources, such as a default background color, that apply ta multiple uspr-intf'rf.H l' 

interaction-objects. Changing a shared resource applies ta ail objects shaflng that rp~OIHCP 

Functionality 

Given its limitations. ~IUISL can still produce useful. viable and functional Ihf'r Int('r· 

faces. The MUISL specifier can use the generated file, ab is, or modify it. ta prodllu' th!' 

user interface. MUISL is powerful enough to specify both the attnbutes and qI)('r,I:lqll~, of 

an interface, in addition to the hierarchy of abjects. Usage of objects as blllldlll~ blol h'l Df 

a user interface adds to 1lUISL 's usable power (set of user in terfact''' th<lt, can IH' h1J JI t ). 

by allowing the constr:J.ction of complex objects from simple ones (sec the cx,llllplt''l in :\p 

pen dix E). G\VUIMS also has tlus feature. A drawback of this i" tht' II\( rf',l"f'd ,1IIltJIlIII 

of specification entailed; for example, to create a window of comm.llId b1Jt!on". a lOIlt.lillPI 

window and each of the command buttons must be defined "eparatply. Then. t hl'. (0111 ,lllIf'f 

must first be instantiated, and each command button hah to lw in:,talltl.tt .. d <1" iL (bild of 

this container. 

The current version of MUISL does support a. number of intPr.trtions. SIII h .1'> wÎnt!ow· •. 

menus, buttons, scrollbars, dialogue boxes, and so on - many of which .tre si/lld.lr tll tho,>!' 

of the DiaJog Editor. Numerous ilS able user interfaces can be bllilt ~()lely [rom tlH''>p tYIH''> of 

interactions. MUISL also allows the creation of user interfacps that h.wdl(· in(lu t fro/ll, .wd 



CIlA.PT}~R 8. USER INTERF.4CE GENERATION 122 

output to, abjects. This is possible bec au se the run-time aspects of input and output are 

a~~umed ta be h,llldied by an event-based target window system. For example, operations 

to writ(' t.o a window generate equivalent window-system code which handles output into 

the proppr screen area. 

Ail [;I:vrst> are restricted in the forms of user interfaces that they can generate [76J. 
1\1 t:IS L, a~ ,t spccific,ttion language is no exception. Other systems. such as Peridot, are 

e.t!:>wr to tlile. proville more functionality than ~IUISL, and are aimed at producing graph­

ical, direct-manipulation interfaces. But, Peridot cannot help with the textual command 

interfaLe~. or wi th the cading of the semantics of an application [56J. 

Portabilityand Availability 

Not constra.ined ta a certain target programming language or window system. MUISL 

il, portable lU The ctlrrent target programming language, C, 's widely available; the current 

tarf!;et Wlndow system, the X Window System. has been ported ta a wide variety of archi· 

tecture!:>, and is a popular system. There are a number of similarities in ~IUISL to window 

~y~tems, sud. as the X Window System, but at a higher level of abstraction. This is readily 

apparent in the choice of sorne attributes and operations: ~IUISL atternpts to shift as much 

fe~ponslbility ~ possible to the target window system, and to concentrate on the form of, 

and interaction WI thin, a user interface. 

Some UI11Ss are based on passibly non-portable run-time or window systems. Systems 

&Ilch as 11E~üL\ Y, or SYNGRAPH [63], generate code in convention al programming lan­

g\l,tt;('~ iluch a~ C and Pascal, respectively. A-luzgen, however. can easily change the target 

window sy~telIl or programmjng language. 

Programmer Control 

~I UISL does enforce a particular style of interface: that based on abjects, their at­

tributes. 0PI'f,ltions, and events. Dy mapping MUISL specifications to the target window 

sy~tl'm with its standard object attributes and operations, muigen provides the programmer 

\Vith uniforrnity acro!:>s all interfaces. But, the programmer is Cree ta change the generated 

code. which IlsuaJly has to be linked with the programmer's application code. The ability 

to madify the gpoprated code allows the programmer considerable control. 

IOllowt,ypr, the ta.rget wlIldow system must have an event-based run-time mode!. 



CHAPTER 8. USER INTERFACE GENER.-\TION 

Ease of Design and Implementation 

The rnost difficult part of the work was the design of MGISL: the CIIrrPllt la:l)!;\I,I!!;t' ih 

the last of numerous earlier versions. Usage of abjects, classing, aIl ri bl! tp.,. O[H'r,1I iOIl!">. ,\I\(I 

an event-based model introduced consistency and simplified the work. Oucp ~(t'lS L W.\~ 

relatively stable, the design and irnplementation of mUlgrn WI'H' n\l'('II.11\1I .\1 "'-l'II hl'.., ,11It! 

proceeded rapidly. Implementation was speeded and simphfie<i by tltt' u-,!' of 10"\'" ..,11ll! ,h 

lex and yacc, and the presence of an event-based target window sy.,tpIll th.lI rpdu( pd 1 h.­

amount of programming. The IFs that fill mmgen's tables. also simplified <ot!IIl1-!: 

Relation ta Xrnupe2 

A natural question ta ask is whether ).IU1SL can specify xmupf'J and mUlgr TI, Ill' Il!">''.! 

to generate it. The answer is a qualified yeso ü sing MUI5L and mUlljfll would h.Lv!' rf'd III ('ti 

the amount and effort of coding parts of xmupe2. The windows. menu'i, (,\l'llt h(tIldl"r~. ,1Ill! 

calIbacks can be specified and generated. For example, event handlers for heyboard Pf lllOU"''' 

events, can be written in MUISL. The complex window structure~ of fr.l(~nlf'llt:-, alld oth"r 

windows is not difficult to specify with )'IUI5L, nor is the display of text a.nd 1\I~ldll~ht Ille, of 

certain portions. Examples in Appendix E attest to the ability ta defille and InIPr.l( t \VIth 

complex window structures. However, other portions of xmupeJ whlch dl rt~('tly 111 t pral t Wlt li 

the com:,utational component, draw graphies, or are written in ),[odul.l.-2. C.tllllot 1)(, (III 

rently generated. The eapability to draw graphies ean be added ;u; .LTl e'dCII:-'IOIl t () ).[ l; rs L 

The Window List of xmupe:2 cannat and could Ilot be written iIl ),IUISL. Ca.llin~ ).!Odlll,1 :) 

code is possible in MUISL, by using the external statement, but interacting with ~[()dlll.l '/ 

code and its data structures presents a prablem, and cannot be supported hy ),[ l; IS L I..,.,IlI", 

such as traversaI of the unparsed buffers, and computational compollcnt lIH'lIll t>t rllctUfP" 

are best written in a conventional programming language since they interfacp dirpctly \Vith 

l\'1UPE-2 internaIs. As previously mentioned, about half of xTTlupeJ's appro\.ilI1.tt..]y l·L(lOO 

lines of code, interface with the computational component: this h.lIf LOuld Ilot lIav(~ IWPll 

generated. 



Chapter 9 

Conclusions 

This thesis has dealt with two key issues: (a) a user interface for the MUPE-2 programming 

en vironment. and (b) generating similarly styled-user interfaces, not necessarily limited ta 

programming environments, from a new specification language. 

The fir~t issue deals with xmupe2, a user interface for MUPE-2 in its current state. 

This cllVIronm('nt introduces a number of novel features which have been reftected in its 

I1ser interface. Xmupe2 successfully reReets the internai state of MUPE-2 at all times and 

sllpportb: bath pragramming-in-the-small and large; the creation, location, dis play, and 

m<lnllmlatian of multiple fragments; the unparsing of bath text and graphics; the display 

.HHI Ilpd.tti ng of structured cursors: structured and semi-structured cursor movements; the 

man.lg<'lIlent and firing of camputational component editing commands; interaction with 

UhN cwnts ,tnd cammunicating the required ones ta the computationaI component; and thE' 

upd,ltt' con tcxt-sensi ti ve mause- based menus. 

A Ilspr-frwndly program, xmupe2's implementation on a bit-mapped sereen and its use 

of menll~ a.nd the mouse bath allow the user ta easily and quiekly use MUPE-2's commands. 

Inter.l<:tlOll rnethads suell as windows, buttons, and menus offer an intuitive, yet powerful~ 

method of communication with the user. Help is offered at all junctures, and sorne opera­

tions can be aborted - when possible. AlI of xmupe2's user-directed messages are displayed 

in one windaw, and an old message is erased ber ore showing the new one. Windows and 

menus have clear titles and the latter have understandable item names. Mouse-based pop­

up and pull-dawn menus save screen space and permit a quiek traversai and selection of 

an ih'llI. Us('r fcedback is accomplished by changing the mouse eursor's shape: the shape 

ch.wg,<'s for different locations of the mouse cursor and for certain internai system-activities. 

124 



'.' 
CHAPTER 9. CONGL USIONS 

Finally, windows can easily be manipulated on the screen and be iconized or resizcù to S.\.\I~ 

space. 

Using the widely-available X Window System en:.ances the portability and I1pxlbllity of 

xmupe2. The modular architecture of xmupe2 isolates its window-systcm depI'Jull'I1t (lldp 

from other code and facilitates modification of the program. Much care wa~ Cd,(,11 ln l..('f'P 

a clear interface between the C and Modula-2 portions of the user mterfacp i\lodlll.l-2 wa~ 

chosen for part of xmupe2 in order to interact with MUPE-2's computatiollal compOllI'I1t 

C was chosen for interaction with the window syc;tem recause it ~implifif!d 1 III pif' llH'Il f ,ÜiOll 

and obviated the need for an intrÎcate window-system - Modula.-2 intprf.tl"l'. 

Xmupe2 is extensible: it is not difficult to a.dd support for new commands il1l[l\l'lIlI'Ilt(·d 

by the computational component. For example. xmupe;']'s menus are cfp,ttpd hy gl·lll'f.tl 

purpose routines that simply create a menu based on the parametPfs passcd 1.0 t!tl'Ill. \ 11 

other example is the method xmupe2 interacts with MUPE-2 cornmand~: it first calb tlll' 

appropriate computational component routine and then uses the same steps tn di:-,pl.1Y thl' 

results of a commando These steps are to: update the editing menu, m.lp t.he llnp.Ll~pd 

buffer, and display the structured cursor. 

Requiring considerable effort to design and code, the handcrafted .rrnupc:J took aholl!. 

seven months to design and irnplement and resulted in approximately 14.000 IiIl(,~ of cod!' 

The continuaI problem that faced xmupe2 was ensuring its correct interactioll Wl t ft thl' 

computationaI component - itself a large and complex program. 

Xmupe2 has clearly achieved the goals set forth in this thesis. It is a worbbh', lI~I'J 

friendly user interface for a programming environment. Xmupe2 also sa.tisfie~ the [('<jUill' 

ments enumerated in Section 3.1. Especially important is that xmllpeJ slInplifie,> t.1lt' m.l 

nipulations of fragments. 

As seen with :tnupe2, a user interface is often a significant part of an J.ppli(,ltlO!l ~ 

code. Moreover, handcrafting a user interface, such as xmupeJ, is oft<>n .t cornplpx. tr'dl(Jtl~, 

and time consurning process. Given that user interfaces are ofteIl developcd and t",>t('d 

by prototyping, many changes usually have to made to the first implem<'lltatior, of ,1 u~l'r 

interface. As a result, the second issue with which the thesis deals is the g,ell!'r.ttlOlI of Il~er 

interfaces from a specification language. This thesis shows tha.t il, is pm,sihle Ur (jp"'ll!,lI 

MUISL, a simple experimentallanguage for the specification of lHler intprfares; bllil<l a too], 

muigen, to generate code from this specification; and use the language alld gf'fWrator to 

facilitate the development of sam pIe user interfaces. 

1 
1 



ClI,\PTJ~n [J. CONCLUSIONS 126 

MUISL is an event-based language that views a user interface as a set of objects. The 

I;l,nguaw' Il:,es an object class hierarchy, with each class containing attributes and operations 

wlllC·Jt sllbcla~"f':' can inherit. Each object is uniquely identified by its name and class. 

The :"1 CISL -,pecIfier cau override default attributes for that class in an attributes section, 

.weI .d 'lU 1 Il cl ude vaflable definitions and a statement sequence applicable to each abject 

(Hillitiol\. One t)pe of statement allows the specification of the contents of callbacks or 

('V(,lIt handlers applicable to each abject. An object used in a statement sequence must be 

in"t .wti,lted a:, a c1uld of another previously instantiated abject. Instantiation allows the 

(rc,üioll of oOJect luerarchies and the single definition of a multiply instantiated object. 

Tu te»1 th(' vlability of :"IUISL as a specification language, the author designed and 

Illlplementcd mllzgen. a table-driven MUISL-based generator of user-interface code. Con­

sif>ting of ,l,hout 8000 lines of C code implemented in 2.5 months. muzgen uses C as the 

target plogramIIllllg language, and the X \Vindow Syst Ln as the target window system, A 

J!('xlhle featllrc of rnllzgen is the dynamic initialization of its tables from initialization files. 

TllPse fil('!> contain information on class names and their hierarchy, attribute names and 

valtw ..... o!Jf'rations, and (0de templates, among others. Using initialization files allows the 

al t('1 dt Ion of tar!jet programming language. target window system. class names, and 50 on. 

withollt h,l\ in~ tu modify mlllgen. 

;"1{'I'1L ,llld nlluljtn have allowed the author to quickly define, execute. and modify 

s,llllple 11.,L'r III t ('rf.H (,'>. such a" those of Appendix E. The equivalent process witlwut spec­

Ific,ltion Ial\gl,a!~,1~ and generator would have taken much longer and required significantly 

mOle codiIl!', It is cleclr that generation. WhP11 possible, is much easier than handcmfting. 

For !'x.llllpip. "ample interfaces that the author specified with MUISL and generated with 

/lULlIl,l). took f~'\\.('r titan twenty minutes each. Generated files were also typically fOltI tu 

si'-,. tllll!'., tltt' .,1/(' of the specification files. The MUISL specifications were easier to design. 

te.,t. and ll1odtf'y t h,Ul equi\'alent handcraftèd on es which would have taken a programmer 

1110r(' th.lIl ,t11 hum ('(tch to code. Uoreover. handcrafting the sam pIe user interfaces wouJd 

It,n'!' fl'qlllrl'd profillellcy in the' X WindO\\ System, a task considEfably more difficult than 

1II.1:-,tl'flll~ th\' f(·j.lti\'c1y slInple MUISL. 

Tht' \\01 k c,lrri"d out in titis thesi5 can be expanded in a number of ways. The MUPE-2 

compnt.üioniu compolH'nt has yet to be finished ,tnd xmupe2 should be upgraded to support 

fntnf(' f(',ttu[('s of ;"IUPE-2. For example, support for an incremental compiler can be easily 

addl'd 10 J·lIlI/pt'.!. ~IUISL is currently a textuallanguage that is suitable for a programmer, 



ClIAPTER 9. CONCLUSIONS 

not a user. A window-based interface ta MUISL, such as an Înterf.lce editor, coult! IH' 

built in arder ta allow a more user-friendly method of writing a MUISL ~pet ilir.ltion. The 

language does not support the specification of graphics in user interfMP'). ,linOn!!; nt !1I'r 

interaction methods, and should be altered ta do so. Finally, ~lt;ISL and IIl1l/I}! Il (()1I1d hl' 

used as the nuclei of a graphical UIMS providing a yet more powp rflll and I/ltuit 1\'(' lIl!'t hod 

of user-interface specification. 



Appendix A 

Xmupe2 Architecture 

The relation of the user interface to the rest of MUPE-2 is shown in Figure A.l. 

j
",,1 <;..-___ ...., .... ~ Co.mourauonal 

Lol'nponent 
User 

Intenace 
'--------' 

Figure A.1: The User Interface and Computational Component 

Xmupe2 has the modular decomposition shown in Figure A.2. The rest of MUP]~ 2)s 

archit.ecture is not shawn because it is not relevant to this thesis. The communication 

bet~r("~n .xmllpe:? and the computational component (shown in Figure A.1) occurs only 

throngh one layer of xmllpe2's modules. 

Except for the Modula-2 Interface, all code is written in C. The three main Jayers of 

xmupp.] are: 

• The Applicatzon Interface (AI) acts as the intermediary between xmupe2 and the 

cùmplltatJOnal component which is written in Modula-2. 

TIl(' C Interface (CI) contains the C language interface to: manage the display 

of cursors (Cul), drive the creation of fragments (FI), and interact with the 

unparsed buffer (UI). 

The Modllla-2 Interface (MI) is the only layer that directly interacts with the 

computational component. This layer contains code that: retrieves the struc­

tureù cursor's coordinates and interacts with the movements of the structured 

128 



., APPENDD{ A. XMUPE2 ARCHITECTURE 
1 1 ~!) 
& 

Node Abbreviations and Meanings 
AI ApplicatIOn Interface ER Event Response 
PC PresentatIOn Component CI C Interface 
MI Modula-2 Interface MS Menu System 
WS Window System WL Wil.dow List 
PG PIL Graphies IR Imtlahzer 
US Utlhtles System Cul Cursor Interface 
FI Fragments Interface VI Unparser Interface 
CB Cursor Buffer Layer M2B Modula-2 Buffer La)c 
DB Dnver Buffer Layer EB EllitOps Duffer Layer 
MB Menu Buffer Layer GD General Mandgf'r Dufii er Layer 
UB Unparser Buffer Layer CF Complcx Fragment,> 
SF Simple Fragments WID Wldgets 

Figure A.2: Xmupd Modular Decompmition 



APPENDIX A. XMUPE2 ARCHITECTURE 130 

cursor (CD), defines the C-Modula-2 interface (M2B), contains the main Modula-

2 program module (DD), interacts with editing commands (EB), interacts with 

internaI editing menus (MB), communicates with the General Manager (GB) -

a manager of intPrnal fragment structures, and retrieves information from the 

unparser (Un) . 

• The Event Respol1be (ER) system acts as the dialogue control component, responding 

to I1ser events and calling other xmupe2 code. Code in this layer directly interfaces 

with the X Window System. 

- The Menu System (MS) contains event handlers and callbacks for menus. 

- The Window System (\VS) contains event handlers and callbacks for windows 

representing PIL fragments (CF), PIS fragments (SF), and other non-fragment 

windows called widgets (WID) . 

• The PresentatIOn Component (PC) system performs the role of initializing and dis 

playing windows and menus. Sorne code in this layer directly interfaces with the X 

Window System. 

- The Wmdow List (WL) system manages the Window List. which contains infor­

mation on windows representing fragments and PIL nodes. 

- The PIL Graphzes (PG) system creates and manages the graphies data structures 

dlsplaying the PIL node hierarehy in a PIL Graphies Window. 

- The Imlza/z::er (IR) initializes xmupe2's variables and data structures and calls 

the X Toolki t 's main interaction loop. This loop is responsible for the manage­

ment and dispatching of events to xmupe2's event handlers and callbacks. 

- The Menil System (MS) contains code to create menus. 

- The Window System 1 WS) contains code to create windows. 

- The lItt/itzes System (US) contains various utilities used by xmupe2. 



Appendix B 

MUISL Lexical Rules and 

Granlmar 

Notation: ( ... indicates contents) 

.. - = is composed of 
x = x is a terminal 
x = x is a nonterminal 
[x] = x is optional 
{x} = o or more occurrences of x 
{x}+ = 1 or more occurrences of x 
( ... ) = group the contents 
/ .. ·f = match aI~y one character in list 

* = match 0 or more occurrences of the preceding 

+ = match 1 or mOfe occurrences of the prec('ding 
match any char acter 

\ = do nat match the character( s) fallawing 
\n = newline character 

= specifies a range 

B.l MUISL Lexical Rules 

comment ::= #.*\ \n 

digit ::= 0-9 

/eUer ::= ( a-z 1 A-Z ) 

131 



1 APPENDIX B. MUISL LEXICAL RULES AND GRA.MMAR 

clwracter ::= . 

B.2 MUISL Grammar 

mterface_dejimtion ::= [ variables J { objecLdejinition }+ initiali.::ation_block 

inztiall::allOn_block ::= INIT [ variables J [ ACTIONS: { simple_statement} J END 

objccLdefinitwn ::= 

132 

OBJECT objccLname c1ass [ superclassJ [ attnbutes ) [ variables J [ actions) END 

objt:cLnflTllc ::= N AivIE : zdent 

ulenl :'= lellcr { letter 1 dzgzt 1 _ } 

class ':= CLASS : class_name 

class_TULme ::= cl ident 

8uperr/aS8 ::= SUPERCLASS : class_name 

aitrzbules ::= ATTRIBUTES : { attrzbute_dejinition } 

attl'lblltc_dejinlllOn .:== 

T'cgular _att rzbute_definztlOn 

1 c/lllbllcLattrzbule_dejinitzon 

1 cvcTlI_/wTlIlle r _attrzbutLdejinztzon 

rrglllar_atll'zbulc_dejinztlOn ::= 

c:rtcrTuzl 

1 altrzlmte_Tlame = ( attrzbute_value 1 value 1 string) 

rallba('k_atlrzbllte_definztion ::= attribute_callback_nam.: = ( idenUist ) 

t;vcT!Lha'llllcr_(jttrzblJle_defi~ztion ::= altribute_evenLname = ( evenUuple_lzst) 

attT'/bllle_Tlamc .'= atH/ent 

altl'llmtt'_uallle ::= ATident 

t'lllllf' :. == ulcnl 1 numbeT' 

llllTUbtT ::= { d/gzt }+ [. { dzgzt }+ J [ /Ee/ [ + 1 - J [ digit}+ J 

slT'l1Ig ::= Il { cluzl'actcr \ " } Il 

al t1'/bul(' _cal/back_Tzame ::= at ident/ Ccl allback[ s J 

ItlcnU/.',t ::= ldcnl { , idcnt } 

attT'/blllt'_(' C't'nLrwme ::= at ident/Ee/vent/Hh/ amller[ s 1 

t't'CTlUllplf'_list ::= et'cnUllple { , evenUuple } 



APPENDLY B. p.,!UISL LEXICAL RULES AND GRAMM.\R 

evenUuple ::= ( evenLname , ident ) 

evenLname ::= eventidf:.nt 

variables ::= VARIABLES: decLblock 

decLblock ::= { type idenUist 1 external} 

type ::= 

INTEGER 1 REAL 1 CHAR 1 CARDINAL 1 BOOLEAN 1 STRING 

1 OBJECT_ID 1 BUTTON_ID 1 KEYCODE 1 DIMENSION 1 POSITION 

external ::= @.* 

actions ::= ACTIONS: { statement } 

statement ::= simple..statement 1 procedure_statement 

simple_statement ::= externall operat.on 1 assignment 1 cond/tlOrlal 

operation ::= [ operatlOn_name argumenU/st] 

operation_name ::= objldent 

argumenLlist ::= { argumenLname: argumenLvalue }+ 

argumenLname ::= argldent 

argumenLvalue ::= value 1 strmg 1 attnb1..lte_name 1 a~trtbute_t)alue 

asszgnment ::= ident == ( operatwn 1 expressIOn) 

expresswn ::= slmple_expresszon [ relation simple_expression) 

relation ::= < 1 > 1 ~ 1 ~ 1 == 1 <> 
simple_expresslOn ::= [-J term { add_operator term } 

add_operator ::= + 1 - III 
term ::= factor { muLoperator factor} 

muLoperator ::= * 1 / 1 && 

factor ::= value 1 ! factor 1 ( expression) 

conditlOnal ::= 

IF expression THEN { simple_statement } ELSE { simplc_stfltcmml } EN 0 

proceduT'c_statement ::= callback 1 evenLhandler 

cal/back ::= 

CALLBACK ( attribute_callback_name , tdent) { szrnplc-;tatf'711eHt } END 

evenLhandler ::= EVENT ( evenLname , ulent ) { evenLslatt'T1!t'nt } END 

evenLslaternent ::= key_slatement 1 buttoTLstatement 1 simplc_slfllemf'Tll 

key_statement ::= CASE KEY OF { key_cascelement } t [ dM'_I)(lrl 1 END 

key_case_clement ::= keycode: { szrnple_stalernent } 



APPENDIX B, MUISL LEXICAL RULES AND GRAi'vIMAR 

kt>!J(:odc ::= keyzdent 

else_part ':= ELSE { simple_statement } 

bulton_siatemcnl ::= 

CASE BUTTON OF { button_case_element }+ [ else_part] END 

lmllrm_cw:'/;_element ::= button_name: { simple_statement} 

butlO1Lname ::= buttonzdent 

134 



Appendix C 

Muigen Architecture and File 

Generation 

This appendix first discusses muigen's architecture, then gives a brier ov~rvlew of th(· ,>1 t'P'> 

muigen uses to produce a GF. 

C.I Muigen Architecture 

Muigen has a modular architecture whlch greatly simplified and speeded implemcntatlOlI, 

testing, and maintenance of the program. For example, the modular ardlltrrtllll' l'(t:,('~ 

muigen's expansion and enhancements. Definitions used later include: 

• The Mappmg Table (MT) is a table of pointers to othrr table~. each of whJ(:h ('ltIiPr 

contains code templates (the Template Table), or maptl most ~I{;ISL J1.Ull{·~ to td/f"pl 

programming language and window system name::., the ~lT and tabll'~ to Wllldi Il 

points are initialized from the contents of the IFs. 

• The Glass Table (CT) is a table that stores information about f'ach cl;lSs -' its ~Jl:ISL 

name, mapping, attributes, operations. and supcrclass. 

• An Ob)ect-Dejinztzon Structure (ODS) is a data structure storing informatlo/l "'p"dfi( 

to an object definition; information includes the abject nanH', object cla~:" bllp p rrl.lbh, 

local variables. attributes, and actions (including the code of local c.tllbark~ and (~\'f'/It 

handlers ). 

135 



APPENDI.X. C. MUIGEN ARCHITECTURE AND FILE GENERATION 136 

• The Objecl-Definitzon Structure List (ODSL) is the list of ODSs from which code for 

each defined object is generated. 

Muigen's modular decomposition is graphically shown in Figure C.l. The modules pE'rform 

the followlIIg functions: 

• The Drzver is the main module that calls other modules. 

• The Inzlzali::er reads and parses IFs, ini tializes the MT and CT from the IFs, initializes 

other nwzgen data structures, and performs other initializations. 

• The Checker performs lexical analysis, parsing, and semantic checking of the SE'. This 

module u&es Lex and yacc. 

• The Builder accepts tokens from the Checker and builds the ODSL. 

• The Generaior creates the GF from the ODSL and MT. 

Figure C.I: Mu/yen Modular Decomposition 

The Driver first caUs the Initializer which aborts muigen if there is any error in the IFs. 

Information p:tssed from the Initializer to the Driver includes the CT and MT. These tables 

are used Ly the Chech.er as it reads and parses the SF. While parsing, the Checker calls the 

llnilder at the appropriate tokens. The Builder creates an ons for each abject definition 

and fills it with informatIOn glcaned from an abject definition, with the assistance of the 

d,tta in tilt' ~[T and CT. If there are no errars detected by the Checker, the Driver then 



APPENDLY C. MUIGEN ARCHITECTURE AND FILE GENERATION 1:17 

caUs the Generator, and passes to it the OOSL created by the Builder. The Geuprator 1J~1':-' 

the 008L and code templates in the Template Table to create the GF. 

C.2 File Generation 

\Vhen the Generator creates the GF, its general algorithm is: 

Generate header (include-statements. macros.non-MUISL globals, etc.) 

Generate global procedures 

Generate global variables 

For each ons in the ODSL 

Generate event handlers 

Generate callbacks 

Generate object definition procedure 

Generate instantiation procedure 

Generate main () 

Generation of the abject definition procedure, whlch will contain the attriblllps, actioll~, 

and non-procedure statements of an ~IUISL object definition. uses the Illformatioo from 

the current ODS to do the following: 

Generate procedure header 

Generate local variables 

Generate regular attributes 

Generate object creation procedure 

Generate callback at~ributes 

Generate event handler attribut es 

Generate actions 

Generate procedure trailer 

Generation of the event handlers, callbacks, and the instantiation procedure if, p~~eJltltllly 

similar (except tor the diIferent procedure headers). and follows these step1>: 

Generate procedure header 

Generate local variables 

Generate actions 

Generate procedure trailer 



Appendix D 

Initialization Files 

This appendix describes the contents ofInitialization Files (IFs) read by muigen to ini tialize 

its t.lbb. The IFs contain mappings to the current targE't programming language and 

window system. C and the X \Vindow System, respectively. The purpose of this appendix 

is Ilot to show the mappings. but to explain the names that a MUISL specifier can use. 

For lt!pntdlC:ltion purposes, IFs contain an .ini suffix. PrefLxes have been chosen to indicate 

a non-code mapping (mappzng), or non-mapping initialization of a table (inzt), or code 

lemplate mapping (template). Of the IFs shown below, all but mappingOperation.ini are 

NOIFs. The contents of the IFs whose names are followed by an asterisk (*) are explained 

latf'r in thls appendix: 

initClassTable.ini Contains class names used in initializing the CT data structure. The 

class Hames in this file are those shawn in Figure 8.2. 

initMappingTable.ini Initializes the MT data structure, which points ta tables to be 

filled by the rest of the IFs. Entries in this file include names ta point ta tables 

of variable types. attribute names, attribute values, key mappings, mouse button 

mappings, event names, code templates, and sa on. 

mappingAttributeName.ini * Maps MUISL attribute names ta X Window Systcm at­

tribute names. 

mappingAttributeValue.ini * Maps MUISL attribute values ta X Window System at­

trihute valucs. 

mappingButtonNames.ini .. Maps MUISL button names ta X Window System mouse 

bu t ton names. 

138 



APPENDLY D. INITIALIZATION FILES l:m 

mappingKeyNames.ini • Maps MUISL key names ta X Window System kl'y namps. 

mappingClass.ini Maps MUISL class naInes, already initializcd in th(' CT from I7Ilt­

ClassTable.ini, ta X Window System nameR. 

mappingEventlVlasks.ini Maps internal muigen event-handler ma~ks to X Windl'w Sy~ 

tem event mask names. 

mappingEventNames.ini • Maps MUISL event names ta X Window Sytltelll ('vent 1l<L1ll1''> 

mappingOperation.ini * Contains MUISL operation mappings to CIX Window S,v:-.t l'III 

routines. 

mappingSuperclass.ini Contains class hlerarchy of MUISL abject-types. 

mappingVariable.ini Maps MUISL variable names ta C/X Window System I\all)('~ 

templateCode.ini *1Iaps internai muigen names to C/X Window Systt'm code-t('rnpl.tt(',>. 

The rest of this appendix first expla.ins the contents of the If" prc\ iOlli>ly rn.lrkpd wi t li 

an asterisk (*). Table D 1 gives the prefixes to be appended ta the attnhute n.lllll''> uf t1:(' 

corresponding attribute-name tables. For example, the prefix atRoot IS lo Ill' ap[H'lldp(1 tn 

the names of class clRoot's attributes. listed in Table D.2. The r(,SllltlIl~ ,lt.t.rIlJlltl' Il.UIli',> 

would be atRootBackground, atRootBorderWtdth, and sa on. Tables D.:2, D :~, D 1. 1):) 

D.6, D.7, D.S, D.9, D.lO, D.ll, D.12, D.13, D.14, D.15. D.lo. and D.li (jp,mlH' 

the attribute names that can be used on the left side of an attriblltc de!ilutioll Tahlr' 1) 1,1.( 

describes the attribute values that can be used on the right si de of an attnhutl'_dcfillltloll 

Table D.19lists legal mouse names, and Table D.20 gives a partiallIst of ll'~<ll key n.t/rH''> 

(the fulilist is tao long ta enumerate here). In the latter table. an ('llip,l~ Indi( .1 !l''> flll tJJi'r 

elements. Event names are shawn in Table D.21. 

Notation used includes: capitalized type names that indicate a vaIlle or v.m,thl/' of th,)!' 

type, non-itaIicized terminaIs, anà italicized nonterminals. The imtiab TWS denotp IILTyt'l 

window system; an asterisk (*) matches any character. Other notation I~ similttr 1.0 tbt of 

Appel.dix B. 



/\PPENDLY. D. INITIALIZATION FILES 140 

Class Attribute-NaDle Prefix 
clRvot atRoot 
c1Button atButton 
c1Menu atMenu 
c1Sim~le W mdow atSimple Window 
c1ToggleButton atToggleButton 
c11[enuButton atMenuButton 
clSimplel\Ienu atSimpleMenu 
clList~lenu atLlstMenu 
clText W mdow atTextWmdow 
clScroll bar Window atScrollbarWindow 
clBoxWmdow atBox\Vmdow 
clPunedBoxWindow atPanedBoxWindow 
clFormBoxWindow atFormBoxWindow 
cl V lewport W Illdow at V lewport WiL dow 
cIDlulogue Window atDialogueWindow 
clItemSlmple~lenu atItemSlmpleMenu 

Table D.l: Attribute-Name Prefixes 

-----
Nalllc Description Values Default ----
13(lck~rollnd Background coior ATblack, ATwlute ATwhite ._-----
Bordl'r \ V III th Border wldth DIMENSION 1 .--
l'.dlback Callback(s) ( .denUlst) NULL --
De!>troyC,dlhark DestructIOn call back( s) ( IdenUlst ) NULL 
E\('ntlLlndkr~ Event halldler( s) ( EvenUuple_lIst) NULL 
lIell;ht Helght DIMENSION 0 
Wldth Wldth DIMENSION 0 
~bp\\ h .. nIlI~talltlat('d Display when IDstlllltmted? A'1'yes, ATno ATyes 
bSt'n..,1t 1\ (' Recelve events" Al'yes, ATno ATyes 
l',NllonX Parent-relative x coordmate POSITION 0 

~~)~ltlonY Parent-relatIve y coordmate POSITION 0 
Label Label to dlsplay STRING NULL 

Table D.2: clRoot Attributes 



APPENDLY D. INITIALIZATION FILES III 

--
Name Description Values Dt,funlt 
Callback Button-press callback ( IIi enUlst ) :-JULL 

-~--- -
Cursor Mouse-cursor shape AT*C·trsor TWS 

--
Font Text font AT*Font' TWS 

-------
Foreground Fore),round color ATwlute, ATblack ATbl.lll.. --
J ustlfy Label Label's alignment ATJustlfyLett, 

ATjustifyCt>ntcr, 
ATJ ustIfy RIght A J'PI' fy( ','nt"t 

---~ ---
Table D.3: clButton Attnbutf's 

Name Description Values Def.lUit 
Cursor Mouse-cursor shape AT*Cursor T\rS 
Foreground Foreground color ATwhlte, ATblack ATbl;ïëh: 

Table DA: cl)'lenu Attributes 

Name Description Values Defaul 
Cursor Mouse-cursor shape AT*Cursor T\'I'S 
Foreground Foreground color ATwhlte, ATblack ATbLl-C 

Table D.5: clSimpleWindow Attributes 

Name Description T Values Dt>fa 
RadioGroup Toggie button ln raJio group i ,dent Nli!. 
ButtonState Set button? 1 ATyes, ATno A'T') l' 

Table D.6: clToggleButton Attribllte~ 

Narne Description 
SlmpleMenuN ame dSln1pleMenu to pop up 

Table D.ï: clMenuButtoIl Attribllte~ 



l 
APPEND/X D. INITIAL/ZATION FILES 142 

Nallle Description Values Default 
PopdownCallback Popdown-callback(s) ( ,denU,st ) NULL 
PopupCallback Popup-callback(s) ( ,denUzst ) NULL --PopllpltemOnEntry Default menu Item ( ,dent) TWS 

Table D.S: clSimple~Ienu Attributes 

Name Description Values Default 
Callback clLIst~[enu Item-callback(s) ( zdellUzst ) NULL 
Font Text font AT· Fp:; ". TWS 
DefaultColllmns ~Ienu column number CARDINAL 2 
ForccCùlumns 1 Force columns? ATyes. ATno ATno 
Il CllIS t nn ~s Menu Items STRING NULL 
i\ lImberltem~ ~ienu Itt'm nllmber CARDINAL 0 

Table D.9: clLIst~Ienu Attributes 

Name Description Values Default --Brf'akLlIIc Break hne? ATyes, ATno ATno --U PIlt'r D Ispl,t)' PO~1 tian Character posItIOn at 
top-Ieft corner POSITION 0 

Dl~pl,ty :"JOli Prlllt.lbics Olsplay nonpnntables? ATyes, ATno --ATyes - . 
El'!toCharq Echo characters? ATyes, ATno ATyes 
li pddlt· Text update-type 

-_ ... --
ATreadOnly, 
ATappendOnly, 
ATedltable ATreadOnly 

Font Tevt font AT·Font· TWS --
St rolillorlz Horizontal scrollbar? ATscrollAI ways, 

ATscrollNever, 
ATscrollWhenNeeded ATscrollNever 

SeroU V(·rt. Vt'rllcal scrollbar? ATscrolIA.lways. 
ATscrollNevcr. 
ATscrol1 \ V hen N eed cd ATscrollNevel' 

FrolllSt rtll~ St rll1g to dl'lplay sirmg NULL 
FrolllFtle Ftle to dlsplay slrmg NULL 
T)IW Text from st.rIng/file? ATstrll1gText, 

ATfileText ATbtrll1gText 

Table D.lO: cl Text Window Attributc:, 



APPENDIX D. INITIALIZATION FILES lU 

Name Description Values DI~falllt 
-

--1 JumpCallback Serail Jump-callbackls) ( IdenU"t ) Nt'LL 
W mdow Length Vertical scrollbar helghtj 

HOrIZontal scrollbar lenu;th DT~(E7'iSlO'\ 1 
-------

MmThumbSlze :\hnuTIum thumb pixel-sile D1~lE~~IO'" 1 ï 
- -

OrientatIOn Scrollbar OrientatIOn ATvertlc,tl. 
AThorllont al A1\.'rll('.11 

-----
DownCursor Vertlcal backward-scrollmg 

cursor AT*Cursor .\TdowlI A rr()w( 'Ilr~()r 
---

UpCursor Vertical torward-scrolhngj 
hOrizontal thumblIl~ cursor AT*Curo,or ATupArrl)w( 'ur~()r 

RlghtCursor 

1 

HOrlzontal backward-scrollmg/ 
'vertical thumbm~ cursor AT*Curo,or ATrlldn \rr()\\('ur.,OI 

-
LeftCursor HOrizontal forwaru-scrolllD~ AT*Cur.,or AI Idt.\rrll\d 'ur,>()r 
VertCursor Vertical mactlve cursor AT*Cursor .\ 1 \prt D. lllbl'·.\rrc)\\ 

C'ur.,or 
HonzCursor HOrizontal mactl've cursor 

1 

AT*Cursor 

1 

Xl !JOrtl Douill.' \rrr)\~ - . 

Cur'-oor --
ScrollCailback 1 Scrolhn~ cailback(sl 1 ( IdenLiI,t ) 1 :'-<1 LI. -- -
Shown ThumbSlze 1 Percenta~e thumb-~Ize REAL 1 U U 

---
Tlllckness Vertical wldthj 

HOrIZontal hel!~ht DI:-'lE~SIO~ 1 1 
ThumbTop 

1 

Percentage thumb-top 
location REAL [) [) 

--_# 

Table D.ll: clScrollbar\Vindow Attnbntes 

--~--

Name Description Value .. Dl'fault 
--

HonzSpaceBetweenClllldren HOrizontal pL\.el-space 

1 between chIidrell or~lE,\'SIO(\: ·1 
- --

VertS pace Bet ween CllIldren Vertical plxel-space 
between chlldrell or\1E~SIO'\ ·1 

Shape Box shape t\.'~ tallAnJ:'-. arrow. 
AT~hortAnd \\'Id(> ATtaIL\lId. \' .trrow ._-----

Table D.12: clI3oxWindow Attrlb\Itl'~ 



APPENDIX D. INITIALIZATION FILES 144 

Name Description Values Default 
Cursor Mouse-cursor shape AT*Cursor TWS 
Onent,LtlOn Pane-staekmg onentatlOn ATvertlcal, 

AThorlZontal ATvertical 
MaxSllC Ma.xlmum chlld size DIMENSION Infimty 
:\!PISI/,e :\hmmum chiid slze DIMENSION 1 Gnp size 
r\lIûwHe~11.C Allow chdd reslzmg? ATyes. ATno ATyes 
ShowG rlp l3etwl'pnPanes Show grlp between panes? ATyes. ATno ATno 

Table D.13: clPanedBoxWindow Attributes 

NaIne Description Values 1 Default 
J)f't'ault DI~tdnce Default mter-chddren spacmg CARDINAL 1 4 
LettNclghborOb]ect Left- nelghbor OBJECTJD 1 ~ULL 

TopNt'l~hborObJect Top-nelghbor OBJECT_ID 1 :--rULL 
lIorIzDlhtance HOrIzontal mter-duldren spacmg CARDINAL 1 TWS 
Y"rt DI~t anee Vertical mter-chiidren spacmg CARDINAL 1 T\VS 

Table D.14: clFormBoxWindow Attributes 

Name DescriptioIl Values Default - . 
Allo\\' lIorIzScrollbar Allo\\' horizontal scrollbar ATyes, 

when needed? ATno ATno 
Allow VertSnoll bar Allo\\' vertical serollbar ATyes. 

when needed? ATno ATno 
ForceScrol1 b.tr~ Force allowcd scrollbars? ATyes, 

ATno ATno 
U~('Bot toruEdge Place hOrIwntal scrollbar ATyes, 

on bot tom edge? ATno ATno 
UheitIghtEdge Place vertical serollbar AT} es, 

on top edge? ATno ATno 

Table 0.15: clVlewport Window Attributes 

'. 



APPENDLY D. INITIALIZATION FILES 

Name Description 
Text Input text 
DefaultDlstance Default mter-chlldren spacmg 
LeftNelghborObJect Left-nel J;h bor 

VahH'S 
STIt/NG 
CARDI;'-lAL 
OBJECT_ID 

D(>f; ,ïïftl 
1;, ;,\liL 

1 
l'< II!, 

TopNelghborObJect Top-nelghbor 013./ tl"LIIJ ~~-I-:L -ll~~--HorlzDlstance 
VertOlstance 

HOrizontal mtcr-('hddren spaClnt; L'AHDIN"L 
Vertical Inter-chiidren spaClng l'.\RDI:'-L\L 

Table 0.16: clDialogueWindow AttrJbllte~ 

Description Va' les 
------~------.~ 

~lenu Item callbackisl (1 nUI~t) 
---=~-':"--L-:-='''::'':'':''''''''...J 

Table 0.1 ï: clltemSimple~ 11U Attnbute.., 

s ') \\. 
S '1'\\ . 

\Vhen necessary, target programmlllg language and window sy~telIl codl' t.l'mplatl''> III 

templateCode.zni contain C;Zs charaeters that are replaced with the appropnatl' Il,UI\P''' ..,\l( Il 

as object names, mappeù class names. and 50 on This file contains LOde t(·l11pl.tle'l fur 

information such as mclude files. globa.l deftnltlOns, procedure templ,lte:>. and ~o on SOIl\l' 

examples of entries in tItis file are. 

{ templateEventHandlerHeader, 

#%s is fillad with specifier's avent handler name 

'void 'los(widget, client_data, event) 

caddr_t client_data;\n XEvent *event;\n {' } 

{ templateAssignment, ' 'los = 'los ;\n'} 

{ templateExternal, '%s'} 

{templateInstant~ateProcedureHeader, '\n vo~d Instantiate()\n{\n'} 

Operation name" and arguments specifieù j n TTWpp!TlyOplTallOll.lltl ,Ln' 'lUlIIIlI.tfI/Pd 1)1' 

low. The notation useù for operation name!> is: objCI(j.~sO]J(T(ltum.\llTllI' Th" llotallOIl 

-+ type indicates a return type a1>soci,tted wlth an operatlolL Tht' Mgullll'nt 1lI'10h)1 l'! I~ 

the receiver of ail operation - the abject ta \'.:Ill!.h the OIH'rallOll .lppljl",,; t'xc Ppt for 1 J/I' 

, 



APPENDIX D. INITIrtLIZATION FILES 146 

Name Description 
ATwhlte White color 
ATblack Black color 
ATyf's True 
ATno False 
ATreadOnly Readonly text 
A'LlppendOnly Appendonly text 
AT.!dltable Edltable text 
AT!>croll:-.it'ver No scrollbar 
ATscrollAlways Always a scrollbar 
ATscroll Whcn ~ eeded Scrollbar, If needed 
. \ TstrtngText Dlsplayed strmg 
ATfileText Displayed file 
ATvertlcal Vertical scrollbar 
AThonzontal Horizontal scrollbar 
ATsrnallFont 6x13 font 
AT!>mallFontBold 6x13 bold font 
ATrnedlUmFont 8x13 font 
ATrnedlumFontBold 8x13 bold font 
ATLlrgeFont 9x15 font 
ATlargeFontBold 9x15 bold font 
ATupArrO\\Cursor 1)- cursor 
ATdownArrowCursor J,l cursor 
ATnghtArrowCursor => cursor 
ATleftArrowCursor {:: cursor 
AThorlzDouble.\rrowCursor <=> cursor 
• \ Tvert Dou blcArrowCursor ~ cursor 
ATdotCur!>or • cursor 
ATclrdeCur~or o cursor 
ATcro::."halrCursor + cursor 
ATupDownArrowCursor ! cursor 
ATne.\rrowCursor / cursor 
ATnw.\rrowCursor '" cursor 
ATwalchCursor Watch-shaped cursor 
ATq u.'!> t Ion C ur!>or ? cursor 
ATjlhtlf) Lt'ft Left-j ustified label 
A TjU,>llfyCenter Center-justlfied label 
ATju:-.tlfyHlght Rlght-Justlfied label 
ATt.t1I.\lld~ arrow Tall & narrow clBoxWmdow 
Xl':--hortAndWlde Short & wlde c1BoxWmdow 
ATnoPopup One-tlme popup 
A rlllenuPopup ~Ienu popup/popdown 
.\Tdl,lloguePopup DIalogue-box popup/popdown 
ATobjPctPOPllP Non-menu/dialogue popupjpopdown 
ATtopOhject Top parent object 

Ta.ble D.IS: Attribute Values 



APPENDLY D. INITIALIZATION FILES 1 17 

Name Description 
buttonLeft Left mouse button 
buttonMiddle ~hddle mOllse buttoll 
buttonRlght Rlght mouse button 

Table D.19: }'louse Buttons 

Name Description 
keya a key 
keyA A key 

keyz :: kcy 

keyZ Z J..ey Î 
keyl 1 J..t'y 

Ta.ble D.20: Keys 

NaIne Event 
eventKeyPress Key pressed 
eventKeyRelease Key released 
eventButtonPress Button pressed 
eventMotlOn ~[ouse moved 
eventEnter ObJect entereu 
eventLeave ObJ<'ct eXltrd 
eventExpose ObJect expo~pd 
even t V ISI bic OhJect vl'ilble 
eventCreate ObJect created 
event DesLroy ObJ'~ct destroyf'u 
eventUnmap ObJect unuIspld.!pd 
event~[ap ObJect dl~played 
eventCollligure ObJect mallipulatpd 

eventReslze ObJPct rC!>lzed 

eventClrculate ObJect hlddenl unlllddpll 

Table D.:21: Event N;unes 



APPENDIX D. INITIALIZATION FILES 148 

operation ob)RootInslantzate, abjects are assumed to have been instantiated. Recall that 

an ap~ration's arguments can be specified in any order. 

OperatIOns asso<'ÏateJ with class clRoot are: 

• [ubjHootlnstantiate argObject:ldent argParent:ident 

argPo[lupType: (ATnoPopup 1 ATmenuPopup 1 ATobjectPopup 1 ATdidlogu:"'opup)J 

Purpose. Instantiate a previously defined object. 

• [objRüotDp.,troy ,trgObjcct:zdent] 

Purpose: Destroy dn ATnoPopup object. Will exit the program if destroyed 

ohjPct IS the parent of aIl others. 

• [objRootDp'itroyPopup argObject:ident] 

Purpose' Destroy an ATmenuPopup, ATobjectPopup, or ATdialoguePopup ob-

jpct. 

• [objRootDp'itrojExit argObject:zdenl] 

Purpose: Destray an abject and exit the program. 

• [objRootSetAttribut{' argObject:zdent argAttributeName:attribute .. name 

arg,.\ttrtbuteV,tlue: (zdent 1 strzng 1 attrzbute_value)J 

Purpose. Set an objcct's attribute to a value. 

• [objRootGet.\ttnbute argObject:ldent argAttributeName:attribute.name 

arg.\ttnbute Value:ulent] 

Purpose. Retrieve an object's attribute-vë.lue to a variable. 

• [objHoot~love argObject:zdent argX:value argY:value] 

Purposc' ~[o\'(' an object to an (x,y) location . 

• [o!>jHoot:'l.lP argObjpct:lllentJ 

Purpose: Di~play an Ilndisplayed abject . 

• [objHootl'lI:'[ap argObjcct:llient] 

Purpose: U ndbplay a displaycd object. 

Opl\r.ttioll~ ,b~oci,tted \\Îth cla~s c/ToggleBulton are: 



APPENDIX D. INITIALIZATION FILES 

• [objToggleButtonAddToGroup argObject:zeient argToggleButtünln(;Iollp.lIll·nf] 

Purpose: Add a toggle button ta the group of tog!!;le blltton~ ldl'l\tlhl'd Ily t\lI' 

value of argToggleButtonlnGroup. 

• [objToggleButtonRemoveFromGroup argObject:ùieTlt] 

Purpose: Remove the toggle button from its group of tog~lp huttnIl:-' 

Operations associated with class clListMenu. are: 

• [objList~lenuPopUp argObject:zdent] 

Purpose: Pop-up a list menu. 

• [objList~lenuPopDown argObject:zdentJ 

Purpose: Pop-down a list menu. 

• [objList~lenuIlighlightltem argObject:zdent argItemlnùex:C.\R DI~.\ LJ 

Purpose: Highlight a list-menu item at a certain Index. 

• [objList~lenu(nhigh1ightltem argObJect.zdent] 

Purpose: F nhighlight the currently highlighted list-menu 1 tem 

• [objList~lenuGetCurrentltemString argObject:zdentJ - STRI~(; 

Purpose: Get the string of the highlighted list-menu itpIIl. 

• [objLisùlenuGetCurrentltemlnJex argObject:zdentJ - CAHDl~\<1\L 

Purpose: Get the inùex of the ust menu item currently hlghlIghtf!d tIldf( f'" ',1 d ft 

at zero. 

Operations associated with class c/Text Wmdow object arc: 

• [objTextWindowLoadFromFile argObject:ulent argFilename:slrl7lyJ 

Purpose: Loaù a file jnto a text window. 

• [objText\VindowSaveToFile argObJcct.ulwt] 

Purpose: Save a text window's di~pl.lypd text to the fil!' (rom wlIH h II, W.l~ rf'dd 

• [objTextWindowS.l\:eTo;-.JamedFile algObject.idenl ar~Fil(,~;uIl(' ,~lnllg] 

Purpose: Sdve a text window's di~played text tü the n.lIIIf'd filf' 



1 

APPENDIX D. INITIr\LIZATION FILES 

• [objTextWindowHasTextChanged argObject:ident] ...... BOOLEAN 

Purpose: Return TRUE if a text window's contents have changed. 

• [objTextWindowReplaceText argObject:ident argText:string 

argStart POSI tion:CARD IN AL argEndPosition:CARDIN AL] 

150 

Purpose Delete text from the absolute character positions starting from the 

v.lJue for argSlarl Posztzon to the value for argEndPosztion. Replace deleted text with 

new tpxt. ~lvell by the value of argText. 

• [ubjText \VindowGetText argObject:zdent] - STRING 

Purpose: Get text displayed in a text window. 

• [ob jTp),. t \ V IIlJ()\\ HighlightText argO b ject: zdent argS tart Char Index:CARD IN AL 

argEnJ Char Index:CARDIN AL] 

Purpose: IIighlight text between starting and enrling absolute character posi­

ti()n~. incl\l~ive. 

• [objText\VinJowUnlughlightText argObject:ident] 

Purpose: UnhighlIght hlghlighted text. 

• [objTextWll1dow~Iessage argObJect:zdent argText:string] 

Purpose: Display text in a text window, erasing any previous messages. 

The ojlf'ration associated with class clDzalogue Window is: 

• [objDi,ùogueWindowGetText argObject:ident] - STRING 

Purpose: Get :t dialogue window's text. 

The number of the above operations, attribute !lames, and values, may be currently 

limited. but b \\'('11 suitl'.!d to simple experimentation with a specification language. New 

opl'ration~ .lnd attnbutes can be added to the IFs, without having to recompile muigen. 



Appendix E 

Sample MUISL Specifications 

This appendix describes sample ~IUISL specifications, and shows the user int!'! LuI'''' 1 h,l1, 

muigen generated from these specifications. The generated files are not shown heca lise uf 

space limitations. 

E.l Example 1 

The first example specifies a single window having multiple children. The resultallt Întl'rf,l( (' 

is shown in Figure E.1. It consists of a window with buttons and two text WI!H!OW:' 'l'III 

upper text window is for messages and the user's communication with tl1(' pro,!!,r;L1Il 'l'hl' 

lower text window is for text eruting. Frame (a) of the figure show~ tlJ(' inill,d Wllldow 

that appears when the program is invoked. The lower text window ïonta,IIlS Ill\' <.OlIlellh 

of a file ealled tempo In Frame (b), the user has typed the name of a file in the IIppl'r 1(',1 

window and has clicked the Load button to load this file. The 10\,;(>r tp;-.t wln<!ow c()llt"llI~ 

the contents of the loaded file. Frame (c) shows the results of cliching the IIrlp butlo[t il 

message appears in the upper text window. 

The complex hierarchy ofwindows incllldes: an outer paned box surroundillL?; ,dl w1l1dow~ 

(Ouler'PanedBox) and three box windows \!nner·Box. InnerUpperTe.rt. and [TlllfTLofL'('1 Tf Il) 

as ehildren of the outer paned box. Inn,~rBox aets as the contOlin<,r of !'IIP COllllll,llJ(! hllttllll!'> 

SaveButton (for saving the Cllrrent file), LoadBlltion (for loading a file who"e aallJ(' i~ typpd 

in InnerUpperText), lIclpButlon (for help mes1>ages in IrlTlerUppf'r Fexl) , and qrHtlJI1I1(J1! 

(for quitting). 

The specificatIOn of Example 1 first defines cach abject with its Olttrihutp,> ,lJId ,li tlOIl!'> 

151 



l APPENDLY E. SAMPLE ,iVlUISL SPECIFICATIONS 152 

-Œl. dUl l'!I 
1i",,~l!.Io.!.!J~ 

.. .. 
hi_ t. U. IUat .. 

l ........ "t ....... cllhre ru ......... '" bl • .... re" ,_ 'r ........... "'U&. r .. l.ul .... 
t....-l ........ " ..... u...... et..r ..... ' .... n. 

~ c:tw ..... l.u. , ........ tM-kiMl" 

L .... U,.. , ... u .... VIIW ......te 1M"IlIlNl ~ .............. u..., ............................. ,. 

".;.,,,,,,,,,, ....... IMlOO .~. 

(a) (c) 
tg. aut _ •• ';; 
~~~~ • 'uII,.,.atiI."lU .1D11~ 

, il IJl.;ln 1 1 BC/01l0, Sttl
..

• 11'111 '.11,.' '111 11111111 111.'.
1
1
1

.1 ru.
1 ".n.,.t ... c rll, w- 1 .. 'ft. , ,. ... III r .. tt6 •e. .. lh. rut",. 1 t..-IItl ... l ,,_ • ... iI' dw-........ Un.
1
•• 11.,11111 ""' ... 1111111111 11 ... ,.""" ••• 1111.".,.

1 ~ dw-..... 11I.1n 'r r--..,1AaJ.,
1 L U,... , .. dl t.A rw.t.. t.wR1ftW ~
1 C u.. l' ~ ... ML .,.

if Uf[lM 'a) u.. ... ,..., .
..... lche
... 1 °hlll. r _ ' 'SM1 :""-, "'1''''' ••
.. , , .. t_t ..
.... 1 °t .. -tOI ,·htJII 'M'. tfIM'
.. 1_ ... ,.. , .. t lw.

(h)

Figure E.1: Example 1 Interface

APPENDLY E. SA.L'rIPLE MUISL SPECIFICATIONS

Objects that need to override the default c1assing include the SUPERCLASS tokl't1 ill thl'Ir

definition. The specification instantiates the objects in the correct orùer tü pop IIp (\W

window. This example also shows the usage of callbacks and operationfi:

Descript10n: Shows clPanedBoxW1ndo". clBoxWindow. clTextW~ndo".

clCommandButton

#Def1ne the outermost paned box
aBJECT
NAHE: OuterPanedBox
CLASS: clPanedBoxW1ndow
ATTRIBUTES:

atRootHelght = 500
atRootW1dth = 500

END #OuterPanedBox

#Define the ch11dren of OuterPanedBoxWindo"
#Define the box containing buttons
aBJECT
NAHE: InnerBox
CLASS: clBoxWindow
A'l'TRIBU'l'ES:

atRootHeight = 2S
END #InnerBox

#Define the text windows

#Upper Text wlndow for messages
aBJECT
NAHE: InnerUpper'l'ext
CLASS: clTextW1ndow
ATTRIBurES:

atRootHe1ght = 100
atTextW1ndovUpdate = ATeditable
atTextW1ndovScrollHor1z = ATscrollAlvays
atTextW1ndovScrollVert = ATscrollAl"ays

END #InnerUpperText

OBJECT
NAHE: InnerLoverText
CLASS: clTextW1ndow
ATTRIBUTES:

atRootHe1ght = 375
atTextW1ndovUpdate = ATeditable
atTextWindovScrollHor1z = ATscrollAlvays
atTextWindovScrollVert = ATscrollAlvays
atTextW1ndovType = ATfileText
atTextW1ndovFromF11e = "temp"

t\PPE,VDJX E. Sr\MPLE AIUISL SPECIFICATIONS

E11D #InnerLowerText

#Def~ne chlldren of InnerBox
OBJECT
NAME' SaveButton
CLASS clCommandButton
SUPERCLASS' clTextW~ndow

ATTRIBUTES
atR,otCallback = (callback_save #not needed if CALLBACK statement

#l.S below
atRootLabel = "Save"

VARIABLES
STRING str

ACTIONS
CALLBACK (atRootCallback, callback_save)
#atR0otCallback ~s used because default superclass l.S overridden

[obJTextW~ndowSaveToCurrentF~le argObJect: InnerLowerText]
EUD #callback

E11D #SaveButton

OBJECT
NAME. LoadButton
CLASS: clCommandButton
SUPERCLASS. clTextWlndow
ATTRIBUTES.

atRootLabel = "Load"
#no need for callback attr~bute if CALLBACK statement is below

VARIABLES
STRING str

ACTIONS
CALLBACK (atRootCallback, callback_loal)

str = [obJTextW~ndowGetText argOb~ect:lnnerUpperText]
[obJTextWlndowLoadFromF~lp argObJect: InnerLowerText

argFlleName: str]
END #callback

END #LoadButton

OBJECT
NAME HelpButton
CLASS. clCommandButton
SUPERCLASS clTextW~ndow #to allow usage of obJTextW~ndow messages
ATTRIBUTES.

atRootLabel = "Help"
#no need for callback attr~bute ~f CALLBACK statement 1S Delow

ACTIONS.
CALLBACK (atRootCallback, callback_help)
#atRootCallback lS u~~d because default superclass is overridden

154

1

.,

APPESDIX E. SA.\IPLE MUISL SPECIFIG.4.TIO.VS

[obJTextW~ndowMessage argObJect: InnerUpperText
argText: "Th1S is all the help you'll get\n"]

END #callback
END #HelpButton

OBJECT
NAME: Qu~tButton

CLASS: clCornmandButton
ATUIBUTES:

atRootLabel = "QU1t"
#no need for callback attr1bute 1t CALLBACK statement ~s below

ACTIONS:
CALLBACK (atButtonCallback, callback_qu1t)

[obJRootDestroyEx~t argObJect: ATtopOb)ect]
END #callback

END #Qu~tButton

INI!
ACTIONS:

[ob]Rootlnstant1ate argOb]ect:OuterPanedBox argParent:ATtopObJect
argPopupType: ATnoPopup]

[objRootlnstant~ate argObJect:lnnerSox argParent· OuterPanedBox
argPopupType: ATnoPopup]

(ob]Rootlnstantlate argOb)ect:lnnerUpperText argparent Outer?anedBox
argPopupType: ATnoPopup]

[ob]Rootlnstant1ate argOb)ect:lnnerLo~erText argParent: OuteTPan~dRox
argPopupType: ATnoPopup]

#children ot InneriJox
(obJRootlnstantlate argOb]ect:SaveButton argParent: InnerBox

argPopupType. ATnoPopup]

[obJRootlnstantlate argObJect: LoadButton arg~arent: InnerBox
argPopupType: ATnoPopup]

[obJRootlnstantlate argObJect: HelpButton argParent· InnerBox
argPopupType' ATnoPopup]

(obJRootlnstant1ate argObJect: qU1tButton argparent. InnerBox
argPopupType: ATnoPopup]

END #INIT

Al'PENDIX E. SrlAJPLE MUISL SPECIFICATIONS 156

E.2 Example 2

The ,>l'LOnd example shows the ability ta instantiate multiple independent windows, at the

lJs(~r'o, requc'lt. Figure E 2 dlsplays the results of the user's creation of multiple windows Jt

(on~l.,h partly of a wllldow (labeled with a.out) containing command and menu buttons,

t h,tt l~ th!' ollly one th,tt mitially appears. The other windows - text and generic windows,

and a dl.do~lll' box - \\l're created by clicking the apprüpriate item from the IIlenu at tached

tu 0111' of tlle buttons. Also shawn is a pull-down menu titled WmdowMenu.

Figure E.2: Example 2 Interface

The winJow of buttons (OuterBox) includes LabelBulton (for displaying a title), QUlt­

flutlOTl (for qllitting), and .\/enuBulton (for pulling down the menu lVmdowMenu). This

pull-doWll n:l'IlU conbl~ts of items to create different windows: Afenu.lteml 1,0 create an in·

stance of tll(' tl'\t window, Te.xtWmdow: Menu/lem;] to create an Instance of the geneflc

window, Gt 1lITICWlIIdou'; and .\lenuItemJ to create an instance of the dialogue box, Dza·

logllt'/JOJ'. Tht' di'Lloljue box contains a text area and two command buttons (CancelButton

,U1d Conjirlll13utlll1!) .

. \ll obj('cts .lfl~ dPlltH'd with thl'ir attributes and a::tions, but not ail are immediately in·

~tanti.lt('d. (JI/II T'Bo;:, lb rhildrcn buttons, and H'mdowAfenu are first instantiated. \Vhen

APPENDIX E. SAJIPLE .HUISL SPECIFlC-\TIONS

a menu item is clicked. the appropriate WIl1dow (G~r.erzc n'mc/o1/', /'fJ 1lll/lf/tJIl', 01 /!III­

logueBoJ: wi th its buttons) is instal1tlated. X ote th.J.t this f'xamplp s !Iow,> 1 h" li '>,Il!;P of 1'\ l'Ill

handiers (see the definition of Gencrzc Wzndow):

Descrlptlon : Shows clCommandButton, clDlalogueWlndow,
clMenuButton, clLabelButton, clSlmpleMenu,
clItemSlmpleMenu, clGenerlc'.llndov. cl Text'hndow.
clBox\<Ilndow

Detlne the outermost box

OBJECT
NAME: OuterBox
CLASS: clBox~lndow

END #OuterBox

#Deflne chlldren ot OuterBox
OBJEC:'
NAME : LabelButton
CLASS: clLabelButton
ATTRIBTJTES:

atRootLabel = "Choose One"
atRootBorder~ldth = 0

EUD #LabelButtolL

OBJECT
NAME : QUltButton
CLASS: clCommandButton
ATTRIBUTES:

atRootLabel = .. QUlt
ACTIONS:

..

CALLBACK (atButtonCallback, callback_qult)
[obJRootDestroyExlt argObJect: ATtopObJect)

END #callback
END #QultButton

OBJECT
NAME : HenuButton
CLASS. clMenuButton
ATTRIBUTES;

atRootLabel = .. Wlndolls ..
atMenuButtonSlmpleMenuName "" ""llndowMenu"

END #MenuButton

Detlne the slmple menu

OBJECT

AI'PESDIX E S,UIPLE JIUISL SPECIFICATIONS

NAME: ihndollMenu
CLASS' clSlmrleMenu
ATTRIBUTES

atRootLabel = "'.hndowMenu"
E11D #W l.ndOllMenu

ObJects created trom the slmple menu

The text lllndoll

OBJECT
NAME Text~lndoll

CLASS clText~l.ndov

ATTRIBUES
atRoot~ldth = 200
JtRootHel.ght = 200
atText~lndollUpdate = ATedltable
atText~lndowScrollVert = ATscrollAlways

EllD #Text'.hndow

#Gener.:.c IJlndow
OBJECT
NA ME Generlc~lndoll

CLASS clGener~c~lndolJ

ATTRIBUTES
atRoot~l.dth = 200
atRootHelght = 200

ACTIONS
EVENT (eventButtonPress, handle_key_press)

CASE BUTTON OF
buttonLeft :

[ob]RootDestroyPopup argObJect: GenerlcW1Ddow]
ELSE

CDfprlntf (stderr, "Button pressed\n tl
);

END # case
END #event

EVENT (eventEnter, handle_enter)
IDfprl.ntf(stderr ,"Entf:lred wl.ndow\n");

END #event
END #GenerlcWlndow

Detlne the chlldren of the dl.alogue box
OBJECT
NAME ConflrmButton
CLASS clCommandButton
SUPERCLASS clDl.ùlogueWl.ndow
ATTRIBUTES

158

APPENDIX E. S.·L\JPLE MUISL SPECIFIG.\TIOSS

atRootLabel = "Cont~rm"
VARIABLES:

STRING str
ACTIONS:

CALLBACK (atRootCallback, callback_conf~rm)
str = [ob]DlalogueWlndowGetText argOb]e~~: DlalogueBox
~fprlntf(stderr, "Retrleved: %s\n",str);
[obJRootDestroyPopup argObJ8ct: D~alogueBox]

END
EllD #ConhrmButton

OBJECT
NAME: CancelButton
CLASS: clCommandButton
ATTRIBUTES'

atRootLabel = "Cancel"
AC'l'IOUS;

CALLBACK (atRootCallback, callbacx_cancel)
[ob]RootDestroyPopup argOb]ect: D~alogueBox]

END
END #CancelButton

Detlne the d~alogue box
OBJECT
NAME: D~alogueBox

~LASS: clDlalogueWlndow
ATTRIBUTES:

atRootLabel = "Choose One"
atDlalogueW~ndowText = "Sacple"

ACTIONS:
[ob]Rootlnstantlate argObJect:ContlrmButton argparent Dlaloguelinx

argPopupType: AT~oPopup]

[ob]RootInstantlate argOb]ect:CancelButton argParent TlIalogueHo)
argPopupType: ATnoPopup]

END #DlalogueBox

Deflne slmple menu Items

OBJrr.T
NAME: Kenulteml
CLASS; clltemS~mpleHenu

ATTRIBUTE3:
atRootLabel = "Text\hndow"
atltemSlmpleMenuCallback = (callback_lteml)

ACTIONS:
CALLBACK (atltemSlmpleMenuCallback, callbacK_lteml)

[obJRootInstantlate argOb]ect. Text\hndow argParent ATtopQbJect

APPLVIJIX E SAMPLE ,UUISL SPECIFICATIONS

EIlD #callback
E:1D #MenuI t emi

DBJECT
NAME. MenuItem2
CLASS clItemSlmpleMenu
ATTRIBUTES

argPopupType:ATob]ectPopup]

atRootLabel = "Generldhndo~"
atlternSlrnpleMenuCallback = (callback_ltem2)

ACTIONS.
CALLBACK (atlternSlmpleMenuCallback. callback_ltem2)

[obJRootlnstantlate argObJect: Gener~c~~ndow argParent: ATtopOb]ect
argPopupType.ATob]ectPopup]

E:1D #callback
END #MenuItem2

OBJECT
NAME' MenuItem3
CLASS clItemS~mpleMenu

ATTRIBUTES'
atRootLabel = "D~alogueBox"
atltemSlmpleMenuCallback = (callback_item3)

ACTIONS
CALLBACK (atltemSlmpleMenuCallback, callback_ltem3)

[obJRootlnstantlate argObJect:DlalogueBox argParent: ATtopOb]ect
argPopupType:ATob]ectPopup]

END #callback
END #MenuItem3

INIT
ACTIONS:

[obJRootInstant~ate ar~ObJect:OuterBox argParent:ATtopOb]ect
argPopupType:ATnoPopup]

[obJRootInstant~ate argOb]ect: LabelButton argPa,ent: OuterBox
argPopupType:ATnoPopup]

[obJRootlnstant~ate argObJect: Qu~tButton argParent: OuterBox
argPopupType:ATnoPopup]

[obJRootInstant~ate argObJect MenuButton argparent: OuterBox
argPopupType.ATnoPopup]

[obJRootlnstant~ate argOb]ect:W~ndoyMenu argParent: KenuButton

160

APPENDIX E S.4.\IPLE J1CISL SPECIFIC.4.TIONS

argPopupType: ATmenupo!Jup]

[ob]Rootlnstantiate argOb]ect:Menulteml argParent:~~ndowMenu
argPopupType:ATnoPopup]

(ob]RootlnstantJ.ate argObJ ect : Menultern2 argP=eut: ihndowMenu
argPopupType:ATnoPopup]

(obJRootlnstantiate argObJ ect: Menultem3 argparent ihndowMenu

END #IlHT
argPopupType:ATnoPopupJ

1 Il 1

Bibliography

[l] 7/H' :\"f'XT Syl>tem Reference Manual (Release 1.0 Preliminary Edition). NeXT Ine.,

1 !)).(!).

[:!] If U. Dpretta and et al. XS-1: An Integrated Interactive System and !ts Kernel.

In ProceedlT1!Js 6/h Internatzonal Conference On Software Engineering, pages 3·10- 3.19.

19.'\2.

[:1] \\'. lluxton anù et al. Towards a Comprehensive User Interface)'Ianagement System.

Computer Graphlcs. 1 ï(9):3.5-42. July 1083.

[.1]),1. C.lpliIl~('f and R. Hood. An IncrementaI Unparser for Structured Editors. In

Pl'Ol'efdmgs of the Smeteenth Annual Hawau International Conference on System Scz

Cl1CCl>, p,lge,> (j.')- ï.t, 10SIi.

[5J L. Carddli. Buzlrlzng User Interfaces Ey Direct ManzpulatlOn. Researeh Report 22,

DigItal Equipment Corp. Systems Researeh Center, Palo Alto, Calif., lDSi.

[(jJ L. Cardl'Ili and R. Plke. Squeak: A Language for Communicating with Mire In

SIGGR.\ Pli 'S.5 Conference Proceedmgs. pages 199-204, July 1985.

[il Pelerson. C.D .\Ihena Wu/get Sel - C Language Interface. MIT X Consortium, 1989.

[S] S. Choudhury. A Fragmcnl13ased Program Edztor. Master's thesis, Schoo1 of Computer

Scit>ncp, ~[cG dl Uni vcrsi ty, ~Iontreal, August 1986.

[!)] J. Coutai. Ab::.tr,letlOns for User Interface Design. IEEE Computer, 18(9):21-34,

Sl'ptlllllbt'r l C),~,1

[lO] Le. l),t\'ii> and IL\\'. SwelCy. I1uman Factors Guidelines in Computer Graphies: A

('.I~t' St udy. /111 J .. HaTi-Mac/une Sllldie3, 18:113-133, 1983.

162

BIBLIOGR.-tP HY 1 (i:t

[11] M. Delisle, D.E. Menicosy, and M.D. Schwartz. Magpze - An lnlfmcfu'(' !'mqmllllllllll/

Environment for PaSct'Z. Technical Report CR-83-·1, Computer Hp'>l','Tlh L.hnrottory.

Applied Research Laboratories, Tektronix Inc., 1 !183,

[12] L.P. Deutsch and E.A. Taft. Requzrements for an ExperImental PT'Oljl'lllllll/lIIg [':111'111'11

ment. Technical Report CSL-SO-lO. Xerox PARC. 10.':;0

[13J V. Donzeau-Gouge and et al. ProgramIDmg En' IrOnflll'nh ILl~('d OH Stllll tllrt'd Edl

tors: The ~IE~TOR ExperIence. In H. Schrobe D. I3ar~tow .lu!! E. S.lIld\\f'11. f'dlt()r~,

Interactzve Programrnzng Envzronments. :"lcGraw-Hdl Book C'omp.lIlY. 1 !),~ 1

[14] G. Engels. T. Janning, and W. Schafer. A lilghly Intcgrated Toni Spt For 1'1(),~r .. llI

Development Support. In Proc. AC"! SICS.\I.\LL Conjau/ce. pol!!,"'> 1 10. \l.ly I l
),-:,'\

[15J G. Engel~. M. Nagl, and W. Schafer. On the Struct, re of Structure-OflPlltpd Ldlt,jf'

far Different Applications. Proceedmgs of the AC.I' SIGSOFT/S[(,'jJI..l \' .':lojill'Illt

Engmeermg SymposIUm on Pmcttcal SvftIL'are Derelol ,<-nt Enl'lroTlTl!(ni,,,, ,.\ (' \1 su;

PLAN Notzces. 22(1):190-198. January 1087.

[16] M.A. Flecchia and R.D. Bergeron. Spec:fying Complex DlaJogs in AI!!:le ln j'/'()I'

SIGCHI+GIS7, pages 229-234. IDS,.

[17] J. Foley. Transformations on a Formal Specification of User-Computer Inf('rf.1I f'~

Computer Graphies. 109-112. April 198ï.

[18] J. Foley and et al. Defining Interfaces at a High Level of .\ bstrartioll I/:'L!' ",11ft ll'fl/(,

6(1):25-32, January 1989.

[191 J.D. Foley. The Structure of InteractIve Commanù La.llgu.ll';e~ ln J)w/'t t dUIIj.', .If

the IFIP Workshop on the Methodoloyy of InteractlOTl. pa?;('~ 227 :n 1. ~()rt Il){oll.tlld

Publ., Amsterùam. 1980.

[20] J.D. Faley and et al. A Knowledge-Bd.sed üser Intcrf.lce ~I.lIIùg(>IJl(,llt Syhtl'III IJI

Proceedinys of the .:lCi! CIl!','],'] Conference OT! lluman rlll:t01'8 111 CO/llPlltll//l ,')"l"tllll"

pages 67-72, ~lù.y 1\.)88.

[21J J.D. Foley, W.C. Kim. anù C.A. Gibbs. AIgonthms to Tran~form the FOflll.d Spl'(dl

cation of a User-Computer Interface. In lIuman-Cvmput(~r bzlcmdlOn - [S'fl.UI ("/

'87, pag"s 1001-1006, 1987.

lJlDLlOGRAPIlY 164

[22J C. Gibbs, W.C. Kim, and J. Foley. Case Studies in the Use of IDL: Interface Definition

Language. Technicd.l Report GWU-IIST-86-30, Dept. of EE & CS,George Washington

Cillversity. Wa!->hin~ton, D.C., 1986.

[2:3J A. Goldbcrg and D. Robsoll. Smalltalk 80: The Language and Its lmplementatzon.

Addl~OIl-Wesley, H)83.

[2'IJ M. Green. Report on Dialogue Specification Tools. In G.E. Pfaff, editor, User-Interface

Management Systems, pages 9-20, Springer-Verlag, 1985.

[25J ~I. Grpcn. The Gniversity of Alberta User Interface Management System. In SIG­

GHAPIf ·S.5 Conftrence Proceedzngs, pages 205-213, July 1985.

[26] W.J Hansen (;~er Engmeermg Prlllciples for Interactive Systems. In AFIPS FaU

Jmnt Comput/.r Conference Proceedznys, pages 523-532, 1971.

[27] II.H. Barbon anù D. IIIx Human-Computer Interface Development: Concepts and

S) ~teIIl~ for Its ~LlIIa~eIIlent. AC.\! Computzng Surveys, 21(1):5-92. ~larch 1989.

[2~J H.R IIarbon. D. lllx. and R.W. Ehrich. A Human-Computer Dialogue ~Ianage·

lIlent Sy~telIl. ln Proceed:ngs of INTER.lCT '84, Fzrst IFIP Conference on lluman·

Compllter Interac(WTl. page!> 57-61, International Federation for Information Process­

IIIg. l!:lS·!.

[2!)] P Il,LyP~. E. nall, and R. Reddy. Breaking the Man-~lachine Communication Barrier.

In:'!:' Computer, 1·1(3)'19-30. ;"'Iarch 1981.

[:W] P lLL:'t>:-, and P. SlCkely. GraceÏul Interaction Through the COUSIN Command lnter

f;H P. InltrrwtuJ7!fll Journal of .\!an-Jfachme Studles, 19(3):285-30.5, SeptembE:'J 1983

[:31] P.J. Il.Lye,, ExeruLlbll' Interface Defil1ltions USlllg Form-Based Abstra.ctions. In ft H.

Il.utson. "ditor, Adv(l1lces ln IluTTlan Computer 171teractzon, Volume 1, pages 161-190,

Ablp" Pllbli:.hing CorporatIOn. Norwood. New hrsey, 1985.

[:l:~] P.I. Il.1yP''. P .\. Sl.eJ..ely, ,wd !t.A. Lerner. Design Alternatives for User-Interface Man­

agt'IlH'1I1 S!~tl'Ill~ B<lM'd on Exppnence with COUSIN. In Proc. SIGCllI85, pages 169-

17."i, 1 !)S5.

[:I;~J H.n HIll. Supportlllg Concurrency, Communication, and Synchroniza.tioll in Human­

COlllplltpr Inter.lction - The Sassafras UIMS. ACM TransactIOns on Graphies,

5(.»'1 ï!)-~lO. July l!),~().

BIBLIOG RA.P lIY

[34] Apple Computer Inc. Inside Macintosh, vol. J. Addison-Wesley, Rl'<Hli Il)!;, ~\.u;'i , 1 m,T,

[35] R.J.K. Jacob. A Specification Language for Direct-~lallipllla.tioll lntl'ff,l(,ps :lc '.\1

Transactions on Graphzcs, 5(.t):283-31 ï, October 1986

[36] R .. J.K. Jacob. A State-Transition Dlagram Language for Visual Pro!!;f.lI11llllllg; 1 FI- Jo

Computer, 18(8):51-59, August 198.5.

[3i] R.J.K. Jacob. Using FormaI Specifications in the Design of a IIulI1,lIl-Complll\'f IlIft'l

face. Communications of the AG.\l, 26(.1):2.59-26.t, April 19S:J.

[38] Richards. J.N.J and et al. On Methods for Interface Specification d.nd D<,sl!!;!l IlI/n

national Journal of Man-Machine Studies, 24:54.5-.568, 1986.

[3D] B.W. Kernighan and J.R. Mashey. The UNIX Programming EnvirollnwIIL IFl'J

Computer, 14(4):12-24, April 1981.

[40J B.W. Kernighan and D.~l. Ritchle. The C Progmmmmg LaTlguflgr. PrentlcP-ILtll.

1Di8.

[.lI] C. Lewerentz and 11. N'agi. A FormaI SpecificatIOn Llllguage for Soft.ware Sy"U'tlb

defined by Graph Grammars. In Proceedmgs of WC'S4 Wor'ks/wp on Cmpht/II ()J'dlf:

Concepts in Computer Science, pages 22~-2-11, Linz, 198·1

[42] N.H. Madhavji. Fragtypes: A Basis for Programming Envlronmpllb. IEE1': Trafl.~Il(,

twns on Software Engmeermg, 14(1):S5-9i, January 1988.

[43] N.H. Madhavji. Operations for Programrrling i.l the al!. ln lI:'/:E 8lh /lI/rr7laIZ01WI

Conference on Software Engineering, pages 15-25, August 19S').

[44] N.H. Madhavji, S. Choudhury, R, Robson, and ~. Fnedmall. On COllllll,Uldh fOl "II III

tegrated Programming Environment. In K. Hopper and I.A. ~ewm,Ul, pdil.or~, l'ou/lllu­

tions for !Juman-Computer ComnwnzcallOn, pagt's 40i-·1~3, ~orth-lIullaIld PuhlI"hlll).!;

Co., 1986.

[45] N.H. Madhavji, N. LeoutsaraJ..os, and D. Vouliouris. Suftware CUll'.t ru(lion li~ill)!;

Typed Fragments. In Proceedmgs of the InternallOnal Joznt COHfu f Hff' Ol! Theor!}

and Practzce of Software Development (TAPSOFT), page,> 16:3-1iH, SprlIlgPf VPrl,lg.

1D85.

(46] N.H. Uadhavji, 1. Pinsonneault, and K. Toubache. ~lodt1la-2/~rUPE-2 Lallgu.ll-'p and

Environment Interactions. IEEE Soflwctre, :l(6):i-17, NOVflllllH'r l!)~(i.

IJl13L10GRAPIIY 166

[4ï] N.H. Madhavji, L. Pinsonneault, K. Toubache, and J. Desharnais. A New Approach

to Cursor Movements in User Interfaces of Integrated Programming Environments.

Information and Software Technology, 30(9):535-546, November 1988.

[.I~] N.Il. Madhavji, M. Zhang, S. Boulos, and G. Yuan Xiang. Semi-structured Cursor

~rovements in MUPE-2. Software Engineermg Journal, 4(6):309-31ï, November 1989.

[.ID] .1. McCormack and P. Asente. X.l1 Toolkit for the X Window Manager. In Pme.

ACJ/ SIGGraph Symp. User-Interface Software, pages 46-55, 1989.

[.')0] .J. McCormack, P. Asente. aud R. Swick. X Toolkzt Intrinszcs - C Language Interface.

~IIT X Consortium, 1989.

[!ilJ D. Meyer. Reusability: The Case for Object-oriented Design. IEEE Software, 4(2):50-

64. ~rarch 198ï.

[52J D. Meyer, J. Nerson, and S.H. Ko. Showing Programson aScreen. Science of Computer

Pl'Ogrammzng, 5:111-142, 1985.

[.'):3] :'1. Mikelsons. Prettyprinting in an Interactive Programming Envirùnment. In Proc.

SIGPLAN/SIGOA Symposium on Text Manipulation, pages 108-116, June 1981.

[5.1] D.A. ;'Iyers. Creating Interaction Techniques by Demonstration. IEEE Computer

Graplllc8 and Applicalzons, 51-60, September 198ï.

[.'i.ï] 13..\. ;,I}ers User-Interface Tools: Introduction and Survey. IEEE Software, 6(1):15-

2:L January 19S!).

[5fjJ D .. \. i\Iyers and \V. Buxton. Creating Highly-Interactive and Graphical User Interfaces

by Demonstration. In SlGGRAPH '86 Conference Proceedings, pages 249-258, August
l!)S()

[57] 1. Na!>~l and n. Schne\(lerman. Flowchart Techniques for Structured Programming.

ACl! S[(;PLAN Sulzces, 8(8), August 19ï3.

[!iS] P. Nam. Revi~ed Report on the Algorithmic Language ALGOL 60. Communications

of the ACI! . .J,Hluary 1963.

[591 J. Nie\ergelt. Errors in Dialogue Design and How to Avoid Them. In Document

Pl'rpamllUTl Systems, p,lgCS 1-10, North HoUand, 1983.

BIBLIOGRAPHY H>ï

[60] K. Normark. Programming Environments - Concepts, Architccture~. and T(Jols. Tt'rh

nical Report R 89-5, Institute of Electronic Systems, Aalborg University, Delllllark.

1989.

[61] D. Notkin. The Gandalf Project. The Journal of Systems and SoftlNu'c, h('2) 9\ 1()!\.

May 1985.

[62] D.R. Olsen. MIKE: The Menu Interaction Kontrol Environment flCM T/'1l11M1I'IW7IS

on Graphies, 5(4):318-344, October 1986.

[63] D.R. Olsen and E.P. Derr_pÎ>~y. SYNGRAPH: A Graphical Ci>N-Intl.'rfacp C"llt'ralor.

In SIGGRAPH '83 Conference Proceedmgs, pages 43-50, July H),>q.

[64] D.L. Parnas. On the Use of Transition Diagram~, in the DesÏ!;n of a U SI.'l 1111 ('rCH L' for

an Interactive Computer System. In Proc. 24th Natzonal A CJ! C'on(e/,(,1!fI', !l,ll'/," TI fi

385, 1969.

(65] G.E. Pfaff(ed.). User-Interface JHanagement Systems. Springer- Verl.J!!" 1985.

[66] L, Pinsonneault, Data Structures for a Programming Enmronment. :'!ai>t pr'.., thp:'ls.

School of Computer Science, Mc Gill University, Montreal, July 198ï.

[67] P, Reisner, Formai Grammar and Ruman Factors Df':>I!;ll ùf an InteractIve Gr.lphi!:,

System. IEEE Trans. Software Eng., SE-i(2):229-2-iO, Mareil 1981.

[68] S,P. Reiss, GraphicaI Program Development with PECAN Program DI'vdoj>IlII'llt SYl>'

tems. In Proceedings of the ACM SIGSOFT/SIGPLAN Software EnylTlf! rl1ly S'!l1rl!'o­

sium on Practical Software Development Envzronmenls, pages 30-41. April J !)l'l·l

[69] D. RosenthaI and A. Yen. USEr Interface Models Summary. Compllter (;,afJJl/(,·~,

li(3):16-20, January 1983.

[iD] R.\-V. Scheifler and J. Gettys. The X Window System. AGU TmnsactUJlIb on Gmphll'8,

5(3):i9-109, April 1986.

[il] B. Schneiderman. Designing Menu Selection Systems. Journal of the A m 1'/'1 rfm S()('lf!iy

for Informatzon Sciences, 3ï(2):57-ïO, Mardl 1986.

[ï2} B. Schneiderman. Deszgning the User Interface. Addison-Wesley, RI.',ldillg, M.ti>~,

198i.

l1IJJLIOGR.1PIlY 168

il. Schneiderman. Direct Manipulation: A Step Beyond Programming Languages.

1 E 1,'/:' Computer, 5 ï -69. August 1983.

[i 1] .J.r. SilJl'rt. W D. Ifurley. and T.W. Bleser. An Object-Oriented User Interface .Man

<l!!/,!IIl'llt Sy-.tl!llJ. In SIGGRAPll '86 Conference Proceedzngs. pages 259-267, August

l');-" li.

[i.i] D.C. SmIth and et al. Designmg the Star User Interface. BYTE, 7(-1):242-282. April

1 '1~2.

[itj] P P. T,lllner and \V.A.S. Buxton Sorne Issues in Future User Interface Management

Sy,>tf'm (UDIS) Development. In G.R Pfaff, edltor. User Interface Alanagement "ys.

kms. pd~e<; 67-i9. Springer- Verlag, 1085.

rii] T. Teltelballm and T. Reps. The Cornell Program Synthesizer: A Synt<L-"\. DuP(l~d

Programming En\ironmellt. CommunicatIOns of the A CU. 24(9):5G3-.573. September

1!)~1

[i,)] \V 'l'Pitt Im,w . . \ DispLty-OnenteJ Programmer's Assistant. InternatIOnal Journal of

Jfan '\l(ll'hzne StlldlCS. 11(2):157-187. ~Iarch 1979.

[iD] \\. Tl'lu'lman. :\ Tour Through Cedar. In 7th Internatzonal Conference on Software

Engl1lt'crl7lg, pages 181-19.5. ~Iarch 1984.

[KO] \V. Tpitelman cUlt! L. :'Iasinter. The Interlisp Programming Envi:onmellL. IEEE Com­

]Jllttr, 11(-I):~j-:J:J. Apnl1981.

[~1] :\. TI'~ler. The Smalltalk Environment. BYTE, ï(4), 1981.

[~~l J. \'.ln Df'I1 Bos. A bstract Interaction Tools: A Language for U Sf'T Interfac.e Mau-

ag<'llH'nt Systems. ACJf TransactIOns on Programmzng Languages and Systems,

1O(~).~15-~ 17, Aplll 19S8.

[H:!] :\.1. \\'a~Sl'rIllall. Extend1l1g Transition Diagrams for the Specification of Human­

Comput('f In/t'radlon. IEEE Trans. Softw Eng., SE-ll(i3), August 1985.

[Si) A.I \\'.\.,,,prm,Lll and D.T. Shewmake. Rapid Prototyping of Interactive Information

Sy:-,t('lll~ 5I<;30FT Softwllre Engl1lcerzng Notes, 1ï1-180, December IDS?.

[~5] N. Wll th. Pro!ll'fll11T1lzng lTI ,\1 adula-2 (Thzrd Corrected Edztion). S pringer-Verlag, 1985.

