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Should a Propensity Score Model be
Super? The Utility of Machine Learning
Procedures for Causal Adjustment
Shomoita Alam,a, Erica E. M. Moodiea∗ and David A. Stephensb

In investigations of the effect of treatment on outcome, the propensity score is a tool to eliminate
imbalance in the distribution of confounding variables between treatment groups. Recent work has
suggested that Super Learner, an ensemble method, outperforms logistic regression in non-linear
settings however experience with real data analyses tend to show overfitting of the propensity
score model using this approach. We investigated wider range of settings of varying complexities
including simulations based on real data to compare the performances of logistic regression,
generalized boosted models, and Super Learner in providing balance and for estimating the
average treatment effect via propensity score regression, propensity score matching, and inverse
probability of treatment weighting. We found that Super Learner and logistic regression are
comparable in terms of covariate balance and mean squared error, however Super Learner
is computationally very expensive and may induce positivity violations in real data settings.
Approaches based on generalized boosted models were inferior to both logistic regression and
Super Learner in terms of both balance and mean squared error. We also found that propensity
score regression adjustment was superior to either matching or inverse weighting when the form
of the dependence on the treatment on the outcome is correctly specified. Finally, we note that
to fully understand a complex estimation procedure, simulations based on both real and entirely
synthetic data may be needed. Copyright c© 2017 John Wiley & Sons, Ltd.

Keywords: Average treatment effect, Confounding, Covariate balance, Machine Learning,
Propensity Score.

1. Introduction

Randomized control trials are considered to be the gold standard for estimating the causal effect of a treatment
(or more generally, an exposure) on an outcome, as their design ensures (in large samples) that there is no
confounding of the relationship between treatment and outcome by other covariates, observed or otherwise.
Randomization leads to balance; essentially, this corresponds to independence of the confounding predictors and
the assigned treatment. Balance on confounding variables is a sufficient condition to allow consistent estimation
of causal effects using simple two-group comparisons. Observational (non-randomized) studies can also be used
to make causal inferences; however, such studies are typically not balanced, in that the baseline characteristics
may be systematically different in the treatment and the control groups, leading to confounding of the effect of
treatment on the outcome. Therefore, adjustment techniques aim to induce covariate balance in the treatment
and the control groups in order to obtain valid estimates of causal treatment effects.
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The propensity score (Rosenbaum and Rubin, 1983, 1985) can be used to eliminate imbalance in the
distribution of the covariates as, within fine strata of the observed propensity scores, the treated and untreated
groups are indistinguishable in terms of their covariate profile. The propensity score may be used as a covariate
in a regression model of the outcome and treatment, for matching of the treated and untreated subjects, or
for reweighting samples according to the inverse of their probability of being treated to estimate an average
treatment effect. Simple parametric modeling approaches such as logistic regression are widely used to estimate
the propensity score (Brookhart et al., 2006), and Rubin (2004) suggested complex models that may include
interaction and/or quadratic terms. The functional relationship between the treatment and other covariates
involved in estimating propensity score using a parametric model must be correctly specified; if this is violated,
it may result in covariate imbalance as well as inefficient estimation of the treatment effect (Kang and Schafer,
2007).

As an alternative to simple parametric approaches, machine learning and data-adaptive methods such as
classification trees, neural networks and boosting methods have been suggested: see, for example, Setoguchi
et al. (2008); Westreich et al. (2010); McCaffrey et al. (2004); Lee et al. (2010). Combinations of flexible
machine learning methods, termed ensemble methods, have also been proposed. Perhaps most prominently,
van der Laan et al. (2007) proposed an ensemble method called Super Learner that can use both parametric
and non-parametric techniques in a data-adaptive fashion. The Super Learner model averaging strategy involves
computing cross-validated estimates of the empirical predictive error of a number of candidate models based
on a selected loss function; a Super Learner estimator is then formed using a weighted linear combination of
the candidate predictive models. Pirracchio et al. (2015) considered Super Learner as a propensity score fitting
approach, and concluded that it improves covariate balance and reduces bias even in case of serious model
misspecification. However the improvements in estimation were in fact quite modest. Diaz and Kelly (2016)
focused on inverse weighted estimators, and suggested that in the absence of subject matter knowledge regarding
parametric functional forms of the propensity score, predictive accuracy should be used to select an estimator
among a collection of candidates. These authors also advocated the use of Super Learner. Super Learner has
also been considered in the context of longitudinal data, where it has been found useful in the presence of model
misspecification (Karim and Platt, 2017). Overall, Super Learner is now being widely adopted in the causal
inference literature and in applications (Kreif et al., 2015; Karim et al., 2016; Neugebauer et al., 2016; Ju et al.,
2017; Gharibzadeh et al., 2017).

The propensity score literature incorporating Super Learner speaks compellingly to its use, but simulation
studies presented as supporting evidence are often based on simple settings that – even when considering higher
dimensional covariates – may fail to capture the complexity of real-world analyses. In practice, Super Learner
has been found to induce positivity violations and reduced covariate balance (Moodie and Stephens, 2017).
Further, the benefits found are often modest, particularly relative to the computational burden of ensemble
approaches which often render in-depth simulation studies prohibitive, as variance assessments via bootstrapping
are infeasible for large-scale investigations. Motivated by the inconsistency in the simulation and real-data
findings, we undertook a comprehensive assessment of balance, bias and efficiency for a range of propensity
score modeling approaches focusing predominantly on simulations drawing from real data but also considering
nearly two dozen purely synthetic scenarios covering most of the cases explored in previous papers as well as
several new scenarios. We investigate the performance of logistic regression using main effects only and using
interaction terms, Super Learner, and generalized boosted methods for propensity score modeling in estimating
the average treatment effect using propensity score regression, propensity score matching and inverse probability
of treatment weighting.

In the following section, we summarize desirable properties of a propensity score, and the assumptions needed
to estimate a causal quantity effectively. In Section 3, we describe our simulation approach, focusing primarily
on the real data used for our simulations. The next section examines the results of the real-data simulations in
detail, and summarizes the simulations based on entirely synthetic data. Section 5 concludes with a discussion
of the findings and their implications for real data analyses.

2. Required Properties in Propensity Score Construction

We now recap the required or desirable properties of a method proposed for constructing a propensity score. We
denote the response or outcome by Y , the exposure or treatment by A, measured confounding variables by W ,
unmeasured confounding variables by U . Other covariates may also be recorded: we denote by X covariates that
predict (or are correlated with) outcome only, by Z covariates that predict (or are correlated with) treatment
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only, and by V covariates that are unrelated to both treatment and outcome; X are termed pure predictors of
outcome, Z are termed instruments or instrumental variables, and V are called spurious variables. Note that
unmeasured variables that would be classified as X, Z or V if measured can be ignored in the current context.

In the binary treatment context, a propensity score model is a model for the probability of treatment (say
A = 1) given other measured quantities (W,Z,X, V ). The following results hold:

1. Model construction: the propensity score model must induce balance on confounding variables, but does
not need to induce balance on any other variables. That is, we should construct the model Pr[A = 1|W ],
and define the propensity score as

g(W ) = Pr[A = 1|W ]. (1)

This may be achieved by regressing A on W in the observed data.

2. Balance: A propensity score correctly specified according to (1) induces a balancing mechanism in that
data with identical observed values of g(W ) can be compared directly in terms of their outcome. In order
to assess the value of a proposed propensity score model for adjustment, it is imperative to check for
balance in the observed data within strata of the propensity score.

3. Efficiency: When considering the causal estimator constructed using any of the standard methods
(regression, weighting or matching), potential competing models based on (W,Z) or (W,V ), that is,

Pr[A = 1|W,Z] Pr[A = 1|W,V ]

will be less efficient for estimating the causal estimand. The critical relevant issue is that construction of
a propensity score model is not an exercise in best prediction of A given the available information, but
instead is an exercise in inducing balance.

4. Positivity: A propensity score model that predicts treatment precisely leads to a violation of positivity
(or the experimental treatment assignment assumption) that states that causal comparisons can only be
carried out between truly comparable groups in which there is a positive probability of both receiving and
not receiving treatment.

5. Pure Predictors of Outcome: Variables X do not need to be included in the propensity score as they
are unrelated to A. However, the propensity score model based on Pr[A = 1|W,X] still induces balance on
the confounders W , and does not improve predictive capability in terms of predicting treatment. Including
X in the propensity score model may – for example in the case of propensity score regression – reduce the
variance of the causal estimator by dint of its association with the outcome Y .

6. Unmeasured confounding: If there exist unmeasured confounders U , then only the ‘oracle’ model
Pr[A = 1|W,U ] would yield balance in the required fashion to produce consistent estimation. Adjustments
based on Pr[A = 1|W ] will not in general yield consistent estimators.

These considerations are only immediately relevant in the hypothetical setting where the researcher can
identify each of the components (W,Z,X, V ) in their data set; in practice, the variables do not come conveniently
labeled in this way. Nevertheless, the considerations do lay out the principles for optimal construction of
the propensity score model. Furthermore, it might also be that in the presence of unmeasured confounding,
the classification of a variable would change, or that using an apparently spurious predictor would introduce
confounding through a backdoor path (de Luna et al., 2011). In this paper, we proceed as if all confounders are
measured, and focus on procedures for incorporating them optimally.

As mentioned in point 2. above, a key issue in the use of the propensity score adjustment is its ability to produce
balance. Often this is cited as a requirement for correct specification, i.e. we require that the model in (1) is
correctly specified in order for adjustments based on the propensity score to be effective. The correct specification
involves both the W variables included and the functional form of the proposed model for Pr[A = 1|W ].
In simpler approaches, parametric models Pr[A = 1|W ] ≡ Pr[A = 1|W ;β] are proposed; in methods based on
ensemble approaches, the specification is ‘algorithmic’ in nature. The main theoretical advantage of ensemble
methods is that they are more flexible than standard parametric approaches, and therefore can consistently
estimate Pr[A = 1|W ] for a broader class of data generating mechanisms. However, as we attempt to re-iterate
throughout this paper, consistent estimation of Pr[A = 1|W ] is not the primary goal of any propensity score-
based adjustment, and it may be that much simpler models that are imperfectly specified can achieve adequate
adjustment in the sense of providing the desired balance between treatment groups.
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3. Simulation Approach

The complexities of real data structures can provide different insights relative to completely artificial data, and
may be more reflective of the real world performance of a method. We adopt this approach, sometimes known as
plasmode simulation (Franklin et al., 2014) in our study, as it represents a complement to the highly controlled
and simplified settings most commonly adopted. Specifically, motivated by discrepancies between what we have
observed in the literature and our experience in application, our primary simulations were based on real data,
with all the inherent complexities, correlations, and non-linearities that may naturally exist remaining unknown
to the analyst. We also performed an extensive series of simulations using entirely synthetic data, based on
models previously considered in the literature but spread across multiple papers. Our simulations compare the
performance of several forms of propensity score estimation (logistic regression, generalized boosted models, and
Super Learner), and several utilizations of the propensity score (regression, matching, weighting).

3.1. Simulation Study Using Real Data

The basis of our simulation studies is a real data set in which the relationship between the variables (outcome,
treatment and other covariates) has a considerable complexity. The First Steps program, which was designed
to evaluate and monitor programs and services for low income and other high risk women and children in
Washington State, United States, began in August 1989. For the purposes of our analyses, the units of observation
are mother-infant pairs, and the binary treatment variable is an indicator of whether the mother participated
in the First Steps program. Covariates retained for use in our simulation were mother’s age, race (white, asian,
or other), parity (number of previous pregnancies, coded 0, 1, or >1), marital status, smoking status, weight
prior to pregnancy, and education level, as well as the child’s sex.

In the real data setting, the true impact of the treatment on outcome, and the potentially confounding
relationships between variables, are unknown. However, for a comparative study of the effectiveness of different
adjustment approaches, we may retain the observed treatment and covariate data and define a (structural)
outcome model that defines the magnitude of the effect of these variables on outcome. This approach does not
define the confounding structure (that is, the model Pr[A = 1|W ] from (1) is not specified in the simulation),
but it does define the causal parameter of interest in the outcome model, which may then be treated as the
true value of this quantity. Four data generating scenarios were considered. The treatment variable (A, with
A = 1 corresponding to participation in the First Steps program) was used as naturally given in the data. In two
scenarios, the four variables sex, race, parity and smoking status were set to be confounders (W ), in that they
appeared to be associated with the treatment, and were used to predict the synthetic outcome variable. The
remaining variables were unrelated to the outcome and thus, these were either instruments or spurious variables.
Two further scenarios were considered, in which all eight covariates were used to generate the outcome variable
and hence all were potential confounders.

The general form of the outcome model used in our simulations, from which the artificial outcome data were
generated, supposed an additive treatment effect, that is, with linear predictor

θa+ wα (2)

where w represents the row vector of confounders; specifically, there was no interaction between confounders
and treatment in the simulation. This structure was chosen for simplicity, but could easily be extended to allow
for interactions to be present. The continuous outcome of interest was birth weight (Y ) of the infant. The data
generating parameters were guided by associations observed in the First Steps data between the outcome and
the chosen confounders (sex, race, parity and smoking status); all other variables were set to have no effect on
the outcome. The average treatment effect was set to be either null (0g) or 150g. Variability was added to the
outcome in the form of a random mean-zero Normal variable with variance which was the residual variance
found in an analysis of the First Steps data (see Online Supplementary Material). Only the ‘true’ confounders
were included. Thus, the four scenarios considered were: (i) four confounders, null ATE; (ii) four confounders,
ATE of 150g; (iii) eight confounders, null ATE; or (iv) eight confounders, ATE of 150g.

The First Steps database comprises 2500 observations. In our simulations, we considered 500 replicates of
simulated samples of size 100, 300, and 500 to assess the performance of the estimators of interest. These
simulations drew samples of covariate and treatment variables from the full database with replacement to
achieve the desired sample size.

3.2. Synthetic Data Simulation

We additionally considered 21 simulation scenarios.
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• Four simulation scenarios were reproduced from Pirracchio et al. (2015), and an additional four were
similar to those but considered alternative parameter settings in the propensity score model;
• a further eight simulations were considered using the same data generating scenarios but in which the

analyses included instruments in the propensity score models;
• another simulation scenario was implemented similar to the setting proposed by Kang and Schafer (2007)

and discussed in Diaz and Kelly (2016);
• finally, we considered four new data generating scenarios. These simulations were designed to consider

a range of settings in which covariates enter the propensity score model linearly or non-linearly, so that
model mis-specification of varying degrees occurs in most of the scenarios.

Full details of these 21 data generating and model fitting settings are provided in the Online Supplementary
Materials.

3.3. Propensity Score Estimation

In all simulations, whether the data were generating using real covariates from First Steps data set or entirely
synthetic data, we fit the propensity score using four approaches:

• logistic regression, with covariates entered only as main effects (PS-LR in figures and tables);
• logistic regression, with covariates entered as main effects and all two-way interactions included (PS-LR2);
• generalized boosted models (PS-GBM) as suggested by Kang and Schafer (2007);
• the ensemble approach Super Learner (PS-SL).

The generalized boosted models were implemented using the twang package in R (Ridgeway et al., 2016). Super
Learner was implemented using the same libraries employed by Pirracchio et al. (2015), with default settings
for all methods and the cross-validated L2 squared error as the loss function. Support vector machines were
excluded from the Super Learner ensemble for the real (First Steps) data simulations analysis due to lack of
convergence, but were used in the simulations based on entirely synthetic data.

Standard errors and coverage of 95% confidence intervals were computed using a non-parametric bootstrap
with 100 resamples. Due to the computational burden of computing bootstrapped standard errors for the
ensemble approach, cross-validation was limited to five-fold. The computational time required to calculate the
bootstrap standard error from a single simulated sample was 20-30 minutes, depending on the computational
capacities of the nodes used in the Compute Canada clusters used for the simulation study. Thus, due to the
extensive number of simulations and the significant computational burden of the generalized boosted models and
the ensemble approach, bootstrapping was limited to the null ATE in the real (First Steps) data simulations.

3.4. Estimation of the Average Treatment Effect

The population average treatment effect is defined as the contrast between the expected outcome had the
entire population been treated, relative to the expected outcome had treatment been withheld from the entire
population. Several forms of estimation of the average treatment effect were considered:

• a naive model: regressing the outcome on the treatment only;
• a covariate-adjusted model: regressing the outcome on all covariates;
• a propensity score-adjusted model: regressing the outcome on the treatment and the propensity score (as

a linear, main effect term);
• a matched analysis: regressing the outcome on the treatment only, in a sample formed by pair-matching

based on the propensity score;
• a weighted analysis: regressing the outcome on the treatment only, in a sample weighted by the inverse

probability of treatment (Robins et al., 2000).

The matched analysis was carried out using the Matching package (Sekhon, 2011), with each subject in the
sample is matched once to the nearest subject in the alternative treatment group based on calipers of width of
0.2 of the standard deviation of the logit of the propensity score. Matching was performed with replacement.
The latter three of the approaches were employed with each of the four propensity score estimation methods
described in the previous subsection.

The naive model is expected to yield a biased estimator in the presence of confounding, while the covariate
adjusted model will provide an unbiased and efficient estimator of the ATE when the outcome model is correctly
specified. The latter three approaches will provide consistent estimators under correct specification of the
propensity score model.
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3.5. Performance Metrics

The performance of four approaches to propensity score estimation were compared using the following metrics:

• the bias, empirical standard error, and root mean squared error (rMSE) of the estimated average treatment
effect;
• the balance between the covariates between exposed and unexposed subjects (Austin, 2009), as assessed

by the average standardized absolute mean difference (ASAM), averaged over all covariates and expressed
as a percentage;
• the number of subjects discarded by the matching procedure for the matching estimator.

Typically, a standardized mean difference of 10% or greater is considered to be indicative of poor covariate
balance.

We also report the distribution of the inverse probability weights (Online Supplementary Materials) and the
predictive performance (Appendix) of each propensity score estimation method, as measured by the area under
the receiver operating curve (Harrell Jr and Dupont, 2006) and the predictive accuracy, defined as

1
n
{1(propensity score ≥ 0.5 & A=1) + 1(propensity score < 0.5 & A=0)}.

All analyses were performed using R statistical software 3.3.1 (R Core Team, 2016) using high performance
computing resources of Compute Canada. R code for the First Steps simulation is provided in the Online
Supplementary Materials.

4. Results

4.1. Results: Real Data Simulations

Results of the real data simulations with a null ATE are presented in Tables 1 and 2; the non-null ATE results
are similar, and are provided in the Online Supplementary Materials.

As expected, bias and mean squared error were lowest in the (correctly specified) covariate adjusted model.
Across analytic approaches, for a given propensity score estimation approach, propensity score regression
outperformed both matching and inverse weighting, supporting findings from other studies that have shown
direct adjustment to be superior to either IPTW or matching (Ertefaie and Stephens, 2010). Neither matching
nor inverse weighting consistently dominated the other.

Examining the results for each given analytic approach, the main effects only logistic regression propensity
score is often superior to or competitive with the more complex models, both in terms of bias and variability.
While including interactions or other more complex forms sometimes improved balance, the inclusion of all
two-way interactions in the propensity score for small samples led to disastrous results, with very few matches
and extreme weights (results not shown). For most sample sizes, covariate balance was not achieved for any
analytic approach; inverse weighting tended to confer better balance than matching, while there are no explicit
measures of balance for outcome regression modeling approaches.

An important issue that arose in our analyses was one of models failing to converge in smaller sample sizes,
occasionally due to insufficient numbers (too few individuals in the resampled data with a given characteristic
in a regression analysis), but more commonly due to an inability to find sufficient matches for the matched
analyses or due to extreme weights in inverse weighting. The most flexible or highly parametric approaches –
logistic regression with all pairwise interactions, Super Learner, and the generalized boosted models – were most
prone to this problem, which persisted even to the largest sample size of 500 for Super Learner. Full details are
provided in the Online Supplementary Materials.

In summary, for the real data simulation results in Tables 1 and 2, there is little evidence that the ensemble or
other machine learning methods for constructing the propensity score improve estimation of the ATE; indeed,
in most cases, the estimator bias and the MSE are typically larger for those methods than for more elementary
approaches, albeit often within the Monte Carlo uncertainty tolerance. There may be a small advantage in
terms of coverage probabilities, which are sometimes closer to the nominal level; however for the ensemble
methods, the variance and coverage calculations can only be facilitated using the bootstrap, which involves a
huge computational overhead.

In a matched analysis, a greater number of people discarded due to an inability to find a match indicates
potential violations of the positivity assumption. The greatest number of people discarded during matching
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Table 1. Simulation Results for the Simulation using First Steps Data with a Null Treatment Effect and Four
Confounders, with Only Confounders Included in the Estimated Propensity Score and Outcome Models. The

ASAM is Computed over the Confounding Variables Only.

Absolute Bias Empirical SE Bootstrap SE BS Coverage rMSE ASAM(%)1 Discarded
Sample Size = 100

Naive 28.5 170.6 154.1 89.8 173.0 41.5
Adjusted by Ws 2.3 160.4 160.9 92.4 160.4

Adjusted by PS-LR 3.2 162.3 164.6 92.6 162.4
Adjusted by PS-LR2 8.1 179.9 197.7 93.6 180.1

Adjusted by PS-SL 20.7 163.8 162.1 92.8 165.1
Adjusted by PS-GBM 11.4 169.8 179.5 95.2 170.2

Logit PS-LR Matching 10.2 220.2 212.8 95.4 220.4 29.4 10.3
Logit PS-LR2 Matching 10.1 212.5 205.6 93.2 212.7 28.3 31.8

SL Matching 23.1 194.5 203.6 96.4 195.9 52.2 9.1
GBM Matching 13.3 223.3 206.0 94.8 223.7 31.9 15.9

Logit PS-LR IPTW 8.6 196.6 196.3 93.0 196.8 18.0
Logit PS-LR2 IPTW 16.2 201.6 169.9 89.8 202.3 23.6

SL IPTW 10.0 302.7 324.9 99.8 302.8 101.0
GBM IPTW 13.8 187.3 162.6 90.0 187.8 20.3

Sample Size = 300
Naive 37.9 94.2 89.7 89.6 101.6 32.4

Adjusted by Ws 4.8 91.7 91.0 93.2 91.8
Adjusted by PS-LR 5.3 91.6 91.1 94.0 91.8

Adjusted by PS-LR2 3.8 95.2 96.5 93.2 95.3
Adjusted by PS-SL 22.7 91.3 89.9 93.0 94.1

Adjusted by PS-GBM 1.2 94.7 94.9 92.4 94.7
Logit PS-LR Matching 4.5 116.0 113.1 93.0 116.1 18.2 4.1

Logit PS-LR2 Matching 2.6 121.0 126.1 95.4 121.0 17.4 15.3
SL Matching 13.6 120.1 120.8 96.2 120.9 27.1 6.7

GBM Matching 3.3 119.5 121.6 95.2 119.6 18.4 7.8
Logit PS-LR IPTW 2.1 104.0 104.0 92.4 104.0 6.7

Logit PS-LR2 IPTW 0.1 114.1 119.8 94.2 114.1 8.7
SL IPTW 16.5 105.8 139.9 96.2 107.1 15.4

GBM IPTW 2.0 105.4 99.4 91.4 105.4 5.0
Sample Size = 500

Naive 35.4 70.3 68.6 91.4 78.7 30.5
Adjusted by Ws 1.7 69.1 69.7 92.4 69.2

Adjusted by PS-LR 1.9 68.8 69.8 93.4 68.8
Adjusted by PS-LR2 2.0 70.6 72.2 93.4 70.7

Adjusted by PS-SL 14.6 68.3 69.1 94.0 69.9
Adjusted by PS-GBM 0.4 70.8 72.1 93.2 70.8

Logit PS-LR Matching 1.3 82.3 84.5 94.8 82.3 14.0 3.6
Logit PS-LR2 Matching 2.6 85.9 89.4 94.8 85.9 14.2 11.5

SL Matching 8.0 86.3 92.0 96.4 86.6 21.3 5.2
GBM Matching 0.3 85.6 89.1 94.2 85.6 14.6 6.9

Logit PS-LR IPTW 0.7 74.5 77.1 92.8 74.5 4.7
Logit PS-LR2 IPTW 2.0 82.3 88.6 94.6 82.4 4.8

SL IPTW 10.1 76.4 89.5 95.2 77.1 10.8
GBM IPTW 1.9 77.3 77.5 92.6 77.3 3.1

1Balance for covariates child’s sex, mother’s race, parity and smoking status.

were when matching was being performed using the propensity scores fit by logistic regression with all two-way
interactions, and with generalized boosted models, even in larger samples.

The distribution of the weights for the inverse weighted analyses are shown in the Online Supplementary
Materials. As the data were sparse, there were occasionally large, and sometimes infinite, weights. In cases of
infinite weights, we set the weight to be the maximum of 2 and the largest finite weight in the sample.

The more complex propensity score models, fit via logistic regression with all two-way interactions or
generalized boosted models, showed even higher predictive accuracy than the ensemble approach, though all
methods were comparable in the largest sample size. As the highly parameterized logistic regression and the
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Table 2. Simulation Results for the Simulation using First Steps Data with a Null Treatment Effect and Eight
Confounders, with Confounders and Outcome Predictors Included in the Propensity Score and Outcome Model.

The ASAM is Computed over the Confounding Variables Only.

Absolute Bias Empirical SE Bootstrap SE BS Coverage rMSE ASAM(%)1 Discarded
Sample Size = 100

Naive 46.4 186.9 158.9 87.6 192.6 56.3
Adjusted by Ws 0.7 178.7 175.5 92.8 178.7

Adjusted by PS-LR 2.9 181.8 197.4 95.4 181.8
Adjusted by PS-SL 28.8 177.4 197.1 95.4 179.7

Adjusted by PS-GBM 38.9 255.5 398.8 95.6 258.5
Logit PS-LR Matching 4.8 293.6 318.2 98.2 293.6 35.6 21.1

SL Matching 22.5 238.7 299.6 99.0 239.7 54.3 11.3
GBM Matching 29.6 339.8 414.9 99.8 341.1 53.4 64.8

Logit PS-LR IPTW 4.1 270.0 254.2 93.8 270.0 32.1
SL IPTW 27.7 339.6 354.6 99.6 340.7 71.5

GBM IPTW 22.0 190.7 150.9 85.2 191.9 37.4
Sample Size = 300

Naive 61.2 99.3 91.1 86.4 116.6 49.6
Adjusted by Ws 3.2 97.2 94.9 91.4 97.2

Adjusted by PS-LR 4.6 98.5 95.8 90.8 98.6
Adjusted by PS-LR2 0.4 125.9 166.8 99.4 125.9

Adjusted by PS-SL 21.2 97.4 105.3 94.4 99.7
Adjusted by PS-GBM 28.7 126.4 131.4 91.2 129.6

Logit PS-LR Matching 13.1 176.2 165.8 97.4 176.7 18.9 5.2
Logit PS-LR2 Matching 4.1 271.4 276.8 99.4 271.5 36.5 19.6

SL Matching 7.5 157.6 223.5 99.2 157.8 26.1 4.8
GBM Matching 18.7 252.3 245.6 98.0 253.0 31.9 33.6

Logit PS-LR IPTW 5.0 142.6 135.0 90.4 142.7 13.8
Logit PS-LR2 IPTW 2.9 254.6 312.7 100.0 254.6 33.2

SL IPTW 14.3 188.2 304.2 99.8 188.8 23.8
GBM IPTW 18.8 124.9 99.3 87.8 126.3 20.6

Sample Size = 500
Naive 57.7 74.5 69.4 82.6 94.2 48.3

Adjusted by Ws 3.1 73.9 72.6 92.0 74.0
Adjusted by PS-LR 5.8 73.4 73.0 92.6 73.6

Adjusted by PS-LR2 3.1 82.4 95.0 95.6 82.5
Adjusted by PS-SL 11.2 76.9 83.2 92.6 77.7

Adjusted by PS-GBM 24.7 93.0 93.3 90.8 96.2
Logit PS-LR Matching 19.8 128.3 126.4 96.6 129.8 14.9 2.6

Logit PS-LR2 Matching 11.2 179.8 223.7 99.6 180.1 21.4 9.3
SL Matching 9.9 130.2 187.4 99.0 130.6 19.2 2.6

GBM Matching 11.8 197.2 196.7 97.6 197.6 26.4 18.4
Logit PS-LR IPTW 12.2 103.3 101.0 92.2 104.1 9.9

Logit PS-LR2 IPTW 1.0 211.0 257.0 99.6 211.0 27.1
SL IPTW 13.5 186.3 286.2 99.4 186.8 22.3

GBM IPTW 21.8 98.8 83.3 90.2 101.1 15.9

1Balance for covariates child’s sex, mother’s age, race, parity, marital status, smoking status, weight prior to pregnancy and education
level.

generalized boosted models did not provide the better estimates of the ATE, this underscores the point that
high predictive accuracy is not a desirable feature in a propensity score model. Rather, balance of confounding
variables across treatment groups is the aim of a propensity score analysis.

4.2. Results: Synthetic Data Simulations

In the Online Supplementary Materials, we detail the results of each of the synthetic data simulations; here we
aim to give an overview of our findings. We plotted boxplots of standardized mean squared errors (MSEs) and
ASAMs across all 21 scenarios, where the MSEs were standardized by dividing by the square of the true ATE.

The top panel of Figure 1 shows that propensity score regression produces the lowest standardized MSEs
with tighter distributions, followed by the inverse weighted approach, with the exception of the case where
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the propensity score is estimated via a logistic regression with all two-way interactions. Matching provides
consistently higher MSEs than the other approaches. Further, within any analytic approach, we see little or
no benefit from adopting complex modeling of the propensity score: Super Learner and main-effects logistic
regression tend to perform similarly, while generalized boosted models generally perform much worse. All
propensity score estimation methods lead to better balance than the naive (unadjusted) model. However, adding
complexity to the fit of the propensity score does not appear to improve covariate balance to any appreciable
degree. Note that it is not possible to compute balance statistics for the regression approaches.

5. Discussion

Researchers in epidemiology and medicine have embraced propensity based methods as a tool for estimating the
average effects of an treatment of interest. Considerable research efforts have been devoted to understanding the
impact of misspecification of the propensity score model (Drake, 1993; Kang and Schafer, 2007; Setoguchi et al.,
2008; Lee et al., 2010), and more recently authors have suggested the need for less parametric approaches to the
widely used logistic regression. Pirracchio et al. (2015) studied the use of ensemble package Super Learner to
estimate propensity scores and concluded that it performed better than logistic regression when using propensity
score matching and IPTW. One of the key findings of the this paper is that ensemble methods and other complex
models do not perform appreciably better (in terms of mean squared error) than much simpler approaches such
as logistic regression with main effects only. The advantages of using a simpler propensity score model as opposed
to a more complex method such as Super Learner or generalized boosting is that the statistical properties of the
resulting estimators are much more straightforward to derive either analytically or numerically using bootstrap
procedures. It is also the case that simpler models are more interpretable when it comes to understanding
the treatment-confounder relationship. Finally, in our experience, more complex propensity score modeling
approaches are more prone to producing positivity violations as they focus – in most cases – on prediction of
the treatment only.

In our simulations, we used an additive treatment effect model as in (2), and confirmed that for such a
model direct adjustment is superior to either IPTW or matching, which agrees with other recent literature into
propensity score methods (Ertefaie and Stephens, 2010; Moodie and Stephens, 2017). A more general model
proposes that the linear predictor takes the form

w0α0 + aw1ψ;
for distinct confounder vectors w0 and w1. The superiority of direct adjustment holds when the dependence
of the outcome on the treatment and treatment-confounder interactions are correctly specified in the proposed
outcome model, that is, the difference in expected outcome between treated (a = 1) and untreated (a = 0) is
correctly specified in the conditional model as taking the form w1ψ. If correct specification does not hold, then
doubly robust inverse weighting procedures can still produce consistent estimators provided either the outcome
regression model or the propensity score model is correctly specified, whereas direct regression adjustment
approaches in general do not. However, the results we have obtained concerning the propensity score model and
its construction still hold in this more complicated setting.

In this paper, we do not address the issue of variable selection in the propensity score model; there is a degree
of automated selection in the machine learning and ensemble approaches, but our simpler adjustment approaches
rely on fixed specifications. Variable selection is a challenging task in the two-stage (outcome model/propensity)
model setting and although the objectives of such selection are theoretically clear – we aim to include in the
propensity model only confounders, and in the outcome model pure predictors of outcome – operationalizing
these principles is currently the focus of much research. In the context of this paper, however, it is a separate
issue, and we do not address it in any detail.

Our simulations are extensive, but not exhaustive, and the results of our simulations may not generalize
beyond the settings and candidate methods, and the associated tuning parameters, used in this study (in
general, ensemble approaches depend on the choice of the candidate algorithms). A very recent study (Pirracchio
and Carone, 2016) developed an alternative version of an ensemble method that implements a measure of
covariate imbalance as the loss function, thus targeting covariate balance rather over predictive accuracy of
the propensity score. This approach is appealing, although – like the traditional ensemble approach – carries
significant computational burden that may not justify its use over simpler, familiar, and computationally trivial
models such as logistic regression. In addition, methods that focus on covariate balance may also enforce balance
on covariates that do not have any relationship with the outcome, likely leading to an increase in positivity
violations and estimator variance.
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Figure 1. Summary of Simulations Using the Synthetic Data, Aggregated Across 21 Data Generating Scenarios. Top: Mean Squared Error by
Analysis Method. Grey Points and Number Refer to the MSEs Scaled by 1000 for Scenario S21. Bottom: Average Standardized Absolute Mean
Difference (ASAM) by Analysis Method. Note: Balance Statistics are not Available for Regression Adjusted Models.
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Appendix. Measures of Prediction Accuracy in First Steps Simulation Study
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Figure 2. Plot Showing Area Under the Operating Curve (AUC, left column) and Prediction Accuracy (PA, right column) of the Null Treatment
Effect Scenarios. Black and Grey Symbols Represent the Scenario with Four and Eight Confounders, Respectively. Triangles, Circles, and Squares
Represent Sample Size of 100, 300, and 500, Respectively.
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SUPPLEMENTARY MATERIALS FOR
“Should a Propensity Score Model be
Super? – The Utility of Ensemble
Procedures for Causal Adjustment”
Shomoita Alam,a, Erica E. M. Moodiea∗ and David A. Stephensb

1. Simulation for Fully Synthetic Data Analysis

1.1. Data Generation and Estimation: Scenarios S1-S16

We explored 21 synthetic data simulation scenarios with models of varying degrees of complexity in the
propensity score. We shall refer to these scenarios are S1 - S21. More than two thirds of the scenarios (S1-S16)
follow the approach of Pirracchio et al. (2015), who follow the work of Setoguchi et al. (2008).

Data Generation For each of the first several settings, we have the following covariates: W is a vector of 4
confounders: (W1 −W4), Z is the vector of 3 instruments: (Z5 − Z7), and X is the vector of 3 outcome
predictors or risk factors (X8 −X10). These ten covariates are generated as follows:

(a) First, 8 standard normal random variables (Vi, i = 1, . . . , 6, 8, 9) were generated.

(b) Then, 8 covariates (Wi, i = 1, . . . , 4; Zi, i = 5, 6; Xi, i = 8, 9) are calculated as a linear combination of Vi,
i = 1, . . . , 6, 8, 9, with correlation ranging from from 0.2 to 0.9 introduced between some of the variables.

(c) A further 2 covariates (Z7,X10) were generated as independent standard normal random variables.

(d) Finally, 6 of the 10 covariates (W1,W3,Z5,Z6,X8,X9) were dichotomized based on the mean value of
each covariate.

Next, the treatment variable was generated. The probability that the exposure A equaled 1 was generated
as a function of the covariates Wi, i = 1, . . . , 4 and Zi, i = 5, . . . , 7 (i.e. only the confounders and instruments),
according to

Pr[A = 1|Wi,Zi] = (1 + exp(−(β0 + β1W1 + β2W2 + β3W3 + β4W4 + β5Z5 + β6Z6 + β7Z7)))−1,

for S1-S4, and according to a non-linear model:

Pr[A = 1|Wi,Zi] = (1 + exp(−(β0 + β1W1 + β2W2 + β3W3 + β4W4 + β5Z5 + β6Z6 + β7Z7

+ β2W2W2 + β4W4W4 + β7Z7Z7)))−1
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Table 1. Coefficients for the treatment model for Scenario S1-S16

Value for Scenarios
Coefficient S1-S2, S5-S6 S3-S4, S7-S8

S9-S10, S13-S14 S11-S12, S15-S16
β0 0.00 0.00
β1 0.80 0.80
β2 -0.25 -0.25
β3 0.60 0.60
β4 -0.40 -0.40
β5 -0.80 -1.60
β6 -0.50 -0.50
β7 0.70 1.40

for S5-S8. In Scenarios S9-S12, non-additivity was considered in the form of two-way interactions:

Pr[A = 1|Wi,Zi] = (1 + exp(−(β0 + β1W1 + β2W2 + β3W3 + β4W4 + β5Z5 + β6Z6 + β7Z7

+ 0.5β1W1W3 + 0.7β2W2W4 + 0.5β3W3Z5 + 0.7β4W4Z6 + 0.5β5Z5Z7 + 0.5β1W1Z6

+ 0.7β2W2W3 + 0.5β3W3W4 + 0.5β4W4Z5 + 0.5β5Z5Z6)))−1.

Non-additivity and non-linearity together were considered in S13-S16:

Pr[A = 1|Wi,Zi] = (1 + exp(−(β0 + β1W1 + β2W2 + β3W3 + β4W4 + β5Z5 + β6Z6 + β7Z7

+ β2W2W2 + β4W4W4 + β7Z7Z7

+ 0.5β1W1W3 + 0.7β2W2W4 + 0.5β3W3Z5 + 0.7β4W4Z6 + 0.5β5Z5Z7 + 0.5β1W1Z6

+ 0.7β2W2W3 + 0.5β3W3W4 + 0.5β4W4Z5 + 0.5β5Z5Z6)))−1.

The values of β are given in Table 1.
The continuous outcome variable Y as a linear function of A and Wi and Xi (only the confounders and

outcome predictors):
Y = α0 + αiWi + αiXi + γA+ ε

where the effect of exposure, γ = −0.4, and ε ∼ N(0, 0.09). The α coefficients of the outcome model are given
by (-3.85,0.3,-0.36,-0.73,-0.2,0.71,-0.19,0.26).

Analytic models For the estimation of the propensity scores in odd-numbered settings (Scenarios S1, S3, . . .,
S15), we used only the covariates which are confounders and outcome predictors, and excluded instruments from
the models. In contrast, for even-numbered settings (Scenarios S2, S4, . . ., S16), all covariates (confounders,
instruments, and outcome predictors) were included in the treatment model.

For the estimation of the outcome models which is only adjusted by the covariates, we used all the of them
(confounders, instruments, and outcome predictors).

1.2. Data Generation and Estimation: Scenario S17

In this setting, we considered only two binary covariates, W1 and W2, each drawn from a Bernoulli(0.6)
distribution. The treatment model was given by:

Pr[A = 1|W1,W2] =


0.02 if W1 = W2 = 0
0.48 if W1 = 0,W2 = 1
0.20 if W1 = 1,W2 = 0
0.30 if W1 = W2 = 1

.

Here, W1 and W2 are confounders and Y can depend on W1 and W2 as main effects only. But the
product/interaction of W1 and W2 is not a confounder and appears in the model for treatment but not outcome.
The coefficients for the outcome model are given by an intercept of -3.85, and 0.3 and -0.36 for W1 and W2,
respectively. Both covariates were used in the analytic model to estimate the propensity score.
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1.3. Data Generation and Estimation: Scenario S18

In this setting, we let W be a vector of 10 binary covariates each drawn independently from a Bernoulli(0.45)
distribution. The treatment is drawn from a Bernoulli distribution whose probability distribution depends on all
the main effects of the 10 covariates and two 4-way interactions (W1 : W2 : W3 : W4) and (W3 : W4 : W5 : W6)
with their lower order interactions included in the model. As in Scenario 17, the interaction terms are intended
to act like instruments in the model. The coefficients of the treatment and outcome models are provided in
Table 2. All covariates were used in the analytic model to estimate the propensity score.

Table 2. Coefficients for the treatment and outcome models for Scenario S18

Treatment model Outcome model
Coefficient Value Coefficient Value

β0 0 α0 -3.85
β1 0.8 α1 0.3
β2 -0.25 α2 -0.36
β3 0.6 α3 -0.73
β4 -0.4 α4 -0.2
β5 -0.8 α5 0.71
β6 -0.5 α6 -0.19
β7 0.7 α7 0.26
β8 0.3 α8 0.7
β9 -0.01 α9 -0.09
β10 0.1 α10 0.4
β1234 0.9
β123 0.01
β124 0.02
β134 0.03
β234 0.04
β12 0.001
β13 0.002
β14 0.003
β23 0.004
β24 0.005
β34 0.006
β3456 -1.2
β345 -0.01
β346 0.02
β356 -0.03
β456 0.04
β34 -0.001
β35 0.002
β36 -0.003
β45 -0.004
β46 -0.005
β56 0.006

1.4. Data Generation and Estimation: Scenarios S19-S20

In this setting, W is the vector of two Bernoulli(0.5) random variables. The treatment is also a Bernoulli
random variable with probability

Pr[A = 1|Wi] = exp(β0 + β1W1 + β2W2 + β3W1W2)
1 + exp(β0 + β1W1 + β2W2 + β3W1W2) ,

where coefficients β are (-2, 3, -2.5, 2.5) in S19 and (-0.25, 1, 1, -4) in S20. The coefficients for the outcome
model are as in S18: an intercept of -3.85, and 0.3 and -0.36 for W1 and W2, respectively. Both covariates were
used in the analytic model to estimate the propensity score.
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1.5. Data Generation and Estimation: Scenario S21

Finally, we adopted a setting from the simulation study conducted in Kang and Schafer (2007) and Diaz and Kelly
(2016). The true set of confounders, (U1, U2, U3, U4), is generated independently and identically distributed, from
a Normal distribution with mean 0 and a diagonal covariance matrix with variances of 1. Further, six instrumental
variables (Z5 − Z10) are independently generated from a Bernoulli(0.5). The treatment is a Bernoulli random
variable with probability

Pr[A = 1|Ui,Zi] = expit(− U1 + 0.5U2 − 0.25U3 − 0.1U4 + .1Z5 + 0.3Z6 − 0.7Z7 + 1.2Z8

+ .2Z9 − .3Z10).

The continuous outcome variable Y was generated from a linear combination of A and Ui (main effects only):

Y = 210 + 27.4U1 + 13.7U2 + 13.7U3 + 13.7U4 + γA+ ε

where the effect of exposure, γ = −0.4, and ε ∼ N(0, 1).
Again following Kang and Schafer (2007), we transformed the true confounders to create variables W1 −W4

as follows:

W1 = exp(U1/2),
W2 = U2/(1 + exp(U1)),
W3 = (((U1U3)/25) + 0.6)3,

W4 = (U2 + U4 + 20)2.

These variables, rather than Ui, were made available for the analysis, so that in the estimation, the (mis-specified)
propensity score was fit as A ∼W1 +W2 +W3 +W4 + Z5 + Z6 + Z7 + Z8 + Z9 + Z10.

Performance was assessed using 500 replicated data sets of size n = 300 for all simulation scenarios (S1-S21).

1.6. Detailed Results for the Simulation Scenarios of Synthetic Data

In this section, we provide the full results for the synthetic data simulations, which are summarized in Figure 1
of the main text.

Table 3. Simulation Results for Scenario S1

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.225 0.175 0.089 0.196 28.749
Adjusted by Ws -0.399 0.001 0.039 0.039
Adjusted by PS-LR -0.398 0.002 0.037 0.038
Adjusted by PS-LR2 -0.399 0.001 0.038 0.038
Adjusted by PS-SL -0.345 0.055 0.053 0.076
Adjusted by PS-GBM -0.592 0.192 0.091 0.212
Logit PS-LR Matching -0.396 0.004 0.066 0.066 15.630 4.944
Logit PS-LR2 Matching -0.401 0.001 0.076 0.076 15.931 8.628
SL Matching -0.340 0.060 0.080 0.100 19.325 2.738
GBM Matching -0.566 0.166 0.132 0.212 27.632 45.920
Logit PS-LR IPTW -0.399 0.001 0.043 0.043 12.429
Logit PS-LR2 IPTW -0.396 0.004 0.054 0.054 13.769
SL IPTW -0.395 0.005 0.054 0.054 14.193
GBM IPTW -0.342 0.058 0.054 0.079 18.583
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Table 4. Simulation Results for Scenario S2

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.225 0.175 0.089 0.196 28.749
Adjusted by Ws -0.399 0.001 0.039 0.039
Adjusted by PS-LR -0.400 0.000 0.039 0.039
Adjusted by PS-LR2 -0.401 0.001 0.042 0.042
Adjusted by PS-SL -0.366 0.034 0.047 0.058
Adjusted by PS-GBM -0.572 0.172 0.091 0.195
Logit PS-LR Matching -0.402 0.002 0.082 0.082 7.324 7.486
Logit PS-LR2 Matching -0.390 0.010 0.110 0.110 10.514 10.820
SL Matching -0.369 0.031 0.077 0.083 9.946 3.416
GBM Matching -0.546 0.146 0.147 0.207 20.997 61.634
Logit PS-LR IPTW -0.397 0.003 0.061 0.061 4.632
Logit PS-LR2 IPTW -0.389 0.011 0.122 0.123 10.794
SL IPTW -0.395 0.005 0.064 0.065 5.841
GBM IPTW -0.326 0.074 0.061 0.096 15.773

Table 5. Simulation Results for Scenario S3

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.264 0.136 0.091 0.163 31.661
Adjusted by Ws -0.400 0.000 0.045 0.045
Adjusted by PS-LR -0.398 0.002 0.038 0.038
Adjusted by PS-LR2 -0.398 0.002 0.039 0.040
Adjusted by PS-SL -0.332 0.068 0.061 0.091
Adjusted by PS-GBM -0.579 0.179 0.098 0.204
Logit PS-LR Matching -0.400 0.000 0.062 0.062 22.129 4.364
Logit PS-LR2 Matching -0.393 0.007 0.070 0.071 22.632 8.854
SL Matching -0.331 0.069 0.081 0.106 26.438 3.042
GBM Matching -0.562 0.162 0.137 0.212 34.664 48.906
Logit PS-LR IPTW -0.398 0.002 0.041 0.041 18.619
Logit PS-LR2 IPTW -0.396 0.004 0.051 0.051 19.864
SL IPTW -0.382 0.018 0.053 0.056 21.308
GBM IPTW -0.358 0.042 0.056 0.070 23.599

Table 6. Simulation Results for Scenario S4

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.264 0.136 0.091 0.163 31.661
Adjusted by Ws -0.400 0.000 0.045 0.045
Adjusted by PS-LR -0.401 0.001 0.046 0.046
Adjusted by PS-LR2 -0.401 0.001 0.052 0.052
Adjusted by PS-SL -0.379 0.021 0.053 0.057
Adjusted by PS-GBM -0.487 0.087 0.090 0.125
Logit PS-LR Matching -0.390 0.010 0.120 0.120 11.062 8.348
Logit PS-LR2 Matching -0.396 0.004 0.182 0.183 17.855 10.784
SL Matching -0.375 0.025 0.112 0.115 12.114 3.994
GBM Matching -0.473 0.073 0.198 0.211 22.035 75.386
Logit PS-LR IPTW -0.399 0.001 0.109 0.109 10.097
Logit PS-LR2 IPTW -0.386 0.014 0.192 0.193 17.502
SL IPTW -0.393 0.007 0.099 0.099 10.446
GBM IPTW -0.330 0.070 0.069 0.099 19.606
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Table 7. Simulation Results for Scenario S5

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.285 0.115 0.118 0.165 24.709
Adjusted by Ws -0.401 0.001 0.072 0.072
Adjusted by PS-LR -0.406 0.006 0.068 0.069
Adjusted by PS-LR2 -0.407 0.007 0.072 0.072
Adjusted by PS-SL -0.380 0.020 0.078 0.080
Adjusted by PS-GBM -0.565 0.165 0.123 0.206
Logit PS-LR Matching -0.404 0.004 0.094 0.094 13.060 4.678
Logit PS-LR2 Matching -0.406 0.006 0.113 0.113 13.971 9.330
SL Matching -0.380 0.020 0.107 0.109 16.191 3.462
GBM Matching -0.542 0.142 0.167 0.220 23.349 45.138
Logit PS-LR IPTW -0.411 0.011 0.071 0.072 9.796
Logit PS-LR2 IPTW -0.406 0.006 0.089 0.089 11.838
SL IPTW -0.416 0.016 0.079 0.081 11.904
GBM IPTW -0.376 0.024 0.081 0.084 15.925

Table 8. Simulation Results for Scenario S6

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.285 0.115 0.118 0.165 24.709
Adjusted by Ws -0.401 0.001 0.072 0.072
Adjusted by PS-LR -0.402 0.002 0.073 0.073
Adjusted by PS-LR2 -0.404 0.004 0.083 0.083
Adjusted by PS-SL -0.405 0.005 0.080 0.080
Adjusted by PS-GBM -0.552 0.152 0.129 0.199
Logit PS-LR Matching -0.408 0.008 0.112 0.112 6.773 5.776
Logit PS-LR2 Matching -0.393 0.007 0.150 0.151 9.533 10.578
SL Matching -0.405 0.005 0.115 0.115 8.212 8.722
GBM Matching -0.539 0.139 0.209 0.251 19.348 75.172
Logit PS-LR IPTW -0.403 0.003 0.083 0.083 3.360
Logit PS-LR2 IPTW -0.391 0.009 0.174 0.175 10.879
SL IPTW -0.405 0.005 0.095 0.095 5.577
GBM IPTW -0.360 0.040 0.090 0.099 14.716

Table 9. Simulation Results for Scenario S7

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.317 0.083 0.112 0.140 25.295
Adjusted by Ws -0.400 0.000 0.070 0.070
Adjusted by PS-LR -0.408 0.008 0.065 0.065
Adjusted by PS-LR2 -0.410 0.010 0.068 0.069
Adjusted by PS-SL -0.373 0.027 0.077 0.082
Adjusted by PS-GBM -0.549 0.149 0.132 0.199
Logit PS-LR Matching -0.408 0.008 0.095 0.096 16.659 3.994
Logit PS-LR2 Matching -0.409 0.009 0.104 0.105 17.456 9.350
SL Matching -0.375 0.025 0.107 0.110 20.629 3.276
GBM Matching -0.533 0.133 0.181 0.224 27.657 48.144
Logit PS-LR IPTW -0.411 0.011 0.066 0.067 13.019
Logit PS-LR2 IPTW -0.414 0.014 0.087 0.088 14.795
SL IPTW -0.409 0.009 0.074 0.074 15.782
GBM IPTW -0.388 0.012 0.077 0.078 18.173
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Table 10. Simulation Results for Scenario S8

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.317 0.083 0.112 0.140 25.295
Adjusted by Ws -0.400 0.000 0.070 0.070
Adjusted by PS-LR -0.401 0.001 0.071 0.071
Adjusted by PS-LR2 -0.404 0.004 0.081 0.081
Adjusted by PS-SL -0.411 0.011 0.083 0.084
Adjusted by PS-GBM -0.500 0.100 0.142 0.174
Logit PS-LR Matching -0.410 0.010 0.121 0.122 7.372 7.942
Logit PS-LR2 Matching -0.388 0.012 0.160 0.160 10.653 10.016
SL Matching -0.413 0.013 0.151 0.152 10.324 14.480
GBM Matching -0.488 0.088 0.256 0.271 21.344 91.540
Logit PS-LR IPTW -0.407 0.007 0.104 0.105 6.209
Logit PS-LR2 IPTW -0.406 0.006 0.243 0.243 16.356
SL IPTW -0.394 0.006 0.105 0.105 8.523
GBM IPTW -0.364 0.036 0.094 0.100 17.017

Table 11. Simulation Results for Scenario S9

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.262 0.138 0.117 0.181 30.981
Adjusted by Ws -0.398 0.002 0.073 0.073
Adjusted by PS-LR -0.404 0.004 0.071 0.071
Adjusted by PS-LR2 -0.407 0.007 0.075 0.075
Adjusted by PS-SL -0.378 0.022 0.076 0.079
Adjusted by PS-GBM -0.554 0.154 0.123 0.197
Logit PS-LR Matching -0.415 0.015 0.108 0.109 14.290 5.204
Logit PS-LR2 Matching -0.408 0.008 0.122 0.122 15.095 8.946
SL Matching -0.379 0.021 0.111 0.113 16.587 2.962
GBM Matching -0.530 0.130 0.171 0.215 25.183 44.704
Logit PS-LR IPTW -0.413 0.013 0.083 0.084 11.592
Logit PS-LR2 IPTW -0.412 0.012 0.108 0.108 13.734
SL IPTW -0.414 0.014 0.091 0.092 12.806
GBM IPTW -0.363 0.037 0.084 0.092 18.769

Table 12. Simulation Results for Scenario S10

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.262 0.138 0.117 0.181 30.981
Adjusted by Ws -0.398 0.002 0.073 0.073
Adjusted by PS-LR -0.398 0.002 0.073 0.073
Adjusted by PS-LR2 -0.398 0.002 0.083 0.083
Adjusted by PS-SL -0.378 0.022 0.076 0.080
Adjusted by PS-GBM -0.565 0.165 0.138 0.215
Logit PS-LR Matching -0.403 0.003 0.122 0.122 7.485 6.616
Logit PS-LR2 Matching -0.380 0.020 0.171 0.172 12.209 10.724
SL Matching -0.379 0.021 0.116 0.118 10.132 3.690
GBM Matching -0.541 0.141 0.220 0.261 22.106 62.850
Logit PS-LR IPTW -0.406 0.006 0.096 0.097 5.200
Logit PS-LR2 IPTW -0.394 0.006 0.203 0.203 12.819
SL IPTW -0.405 0.005 0.100 0.100 6.312
GBM IPTW -0.350 0.050 0.087 0.100 16.990
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Table 13. Simulation Results for Scenario S11

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.296 0.104 0.119 0.159 33.828
Adjusted by Ws -0.402 0.002 0.077 0.077
Adjusted by PS-LR -0.412 0.012 0.067 0.069
Adjusted by PS-LR2 -0.414 0.014 0.071 0.073
Adjusted by PS-SL -0.382 0.018 0.075 0.077
Adjusted by PS-GBM -0.568 0.168 0.124 0.209
Logit PS-LR Matching -0.408 0.008 0.105 0.106 20.795 4.874
Logit PS-LR2 Matching -0.415 0.015 0.110 0.111 21.526 9.002
SL Matching -0.382 0.018 0.106 0.108 23.829 2.626
GBM Matching -0.546 0.146 0.175 0.228 32.964 44.528
Logit PS-LR IPTW -0.410 0.010 0.071 0.071 17.706
Logit PS-LR2 IPTW -0.417 0.017 0.100 0.101 19.464
SL IPTW -0.415 0.015 0.079 0.081 19.329
GBM IPTW -0.382 0.018 0.079 0.081 23.741

Table 14. Simulation Results for Scenario S12

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.296 0.104 0.119 0.159 33.828
Adjusted by Ws -0.402 0.002 0.077 0.077
Adjusted by PS-LR -0.402 0.002 0.079 0.079
Adjusted by PS-LR2 -0.406 0.006 0.093 0.093
Adjusted by PS-SL -0.389 0.011 0.084 0.084
Adjusted by PS-GBM -0.525 0.125 0.136 0.184
Logit PS-LR Matching -0.388 0.012 0.149 0.150 9.541 6.962
Logit PS-LR2 Matching -0.390 0.010 0.252 0.252 17.336 11.996
SL Matching -0.375 0.025 0.145 0.147 11.349 3.994
GBM Matching -0.499 0.099 0.251 0.270 21.839 77.128
Logit PS-LR IPTW -0.389 0.011 0.133 0.134 8.981
Logit PS-LR2 IPTW -0.401 0.001 0.267 0.267 18.799
SL IPTW -0.388 0.012 0.128 0.128 9.553
GBM IPTW -0.354 0.046 0.092 0.103 20.976

Table 15. Simulation Results for Scenario S13

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.289 0.111 0.118 0.162 26.744
Adjusted by Ws -0.400 0.000 0.069 0.069
Adjusted by PS-LR -0.406 0.006 0.068 0.068
Adjusted by PS-LR2 -0.407 0.007 0.073 0.074
Adjusted by PS-SL -0.390 0.010 0.076 0.077
Adjusted by PS-GBM -0.546 0.146 0.128 0.194
Logit PS-LR Matching -0.411 0.011 0.100 0.100 11.972 4.656
Logit PS-LR2 Matching -0.416 0.016 0.119 0.120 13.061 10.470
SL Matching -0.398 0.002 0.112 0.112 14.254 3.908
GBM Matching -0.513 0.113 0.191 0.221 22.225 46.658
Logit PS-LR IPTW -0.428 0.028 0.079 0.083 9.281
Logit PS-LR2 IPTW -0.410 0.010 0.106 0.106 11.566
SL IPTW -0.419 0.019 0.084 0.086 10.665
GBM IPTW -0.376 0.024 0.082 0.086 16.181
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Table 16. Simulation Results for Scenario S14

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.289 0.111 0.118 0.162 26.744
Adjusted by Ws -0.400 0.000 0.069 0.069
Adjusted by PS-LR -0.402 0.002 0.069 0.069
Adjusted by PS-LR2 -0.402 0.002 0.080 0.080
Adjusted by PS-SL -0.404 0.004 0.078 0.078
Adjusted by PS-GBM -0.559 0.159 0.146 0.216
Logit PS-LR Matching -0.404 0.004 0.110 0.110 6.873 5.438
Logit PS-LR2 Matching -0.391 0.009 0.155 0.156 10.693 11.578
SL Matching -0.406 0.006 0.123 0.123 8.576 7.598
GBM Matching -0.525 0.125 0.227 0.259 21.195 78.858
Logit PS-LR IPTW -0.425 0.025 0.088 0.091 4.377
Logit PS-LR2 IPTW -0.403 0.003 0.174 0.174 11.250
SL IPTW -0.408 0.008 0.092 0.093 5.978
GBM IPTW -0.362 0.038 0.088 0.096 15.900

Table 17. Simulation Results for Scenario S15

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.311 0.089 0.118 0.148 27.288
Adjusted by Ws -0.398 0.002 0.073 0.073
Adjusted by PS-LR -0.408 0.008 0.070 0.071
Adjusted by PS-LR2 -0.410 0.010 0.072 0.073
Adjusted by PS-SL -0.386 0.014 0.077 0.079
Adjusted by PS-GBM -0.546 0.146 0.129 0.195
Logit PS-LR Matching -0.410 0.010 0.111 0.112 15.593 3.982
Logit PS-LR2 Matching -0.410 0.010 0.115 0.115 16.300 9.242
SL Matching -0.389 0.011 0.112 0.113 18.493 2.956
GBM Matching -0.517 0.117 0.194 0.226 26.381 44.466
Logit PS-LR IPTW -0.419 0.019 0.077 0.079 12.165
Logit PS-LR2 IPTW -0.412 0.012 0.092 0.093 14.240
SL IPTW -0.418 0.018 0.082 0.084 14.042
GBM IPTW -0.386 0.014 0.082 0.084 18.165

Table 18. Simulation Results for Scenario S16

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.311 0.089 0.118 0.148 27.288
Adjusted by Ws -0.398 0.002 0.073 0.073
Adjusted by PS-LR -0.399 0.001 0.073 0.073
Adjusted by PS-LR2 -0.402 0.002 0.081 0.081
Adjusted by PS-SL -0.412 0.012 0.083 0.084
Adjusted by PS-GBM -0.523 0.123 0.144 0.189
Logit PS-LR Matching -0.409 0.009 0.114 0.114 7.175 4.818
Logit PS-LR2 Matching -0.388 0.012 0.172 0.172 11.315 9.542
SL Matching -0.415 0.015 0.141 0.141 10.008 12.694
GBM Matching -0.506 0.106 0.259 0.280 21.597 100.736
Logit PS-LR IPTW -0.412 0.012 0.098 0.098 4.786
Logit PS-LR2 IPTW -0.396 0.004 0.196 0.196 13.879
SL IPTW -0.395 0.005 0.103 0.103 8.127
GBM IPTW -0.360 0.040 0.092 0.100 18.286
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Table 19. Simulation Results for Scenario S17

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.521 0.121 0.051 0.131 39.928
Adjusted by Ws -0.400 0.000 0.043 0.043
Adjusted by PS-LR -0.395 0.005 0.043 0.044
Adjusted by PS-LR2 -0.400 0.000 0.044 0.044
Adjusted by PS-SL -0.409 0.009 0.044 0.045
Adjusted by PS-GBM -0.400 0.000 0.044 0.044
Logit PS-LR Matching -0.394 0.006 0.058 0.058 12.728 7.578
Logit PS-LR2 Matching -0.402 0.002 0.053 0.054 11.676 16.344
SL Matching -0.402 0.002 0.055 0.055 10.659 24.558
GBM Matching -0.402 0.002 0.053 0.054 11.676 16.344
Logit PS-LR IPTW -0.367 0.033 0.048 0.058 11.822
Logit PS-LR2 IPTW -0.405 0.005 0.053 0.053 8.272
SL IPTW -0.401 0.001 0.060 0.060 12.853
GBM IPTW -0.408 0.008 0.055 0.055 8.158

Table 20. Simulation Results for Scenario S18

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.425 0.025 0.088 0.092 22.266
Adjusted by Ws -0.400 0.000 0.038 0.038
Adjusted by PS-LR -0.400 0.000 0.038 0.038
Adjusted by PS-LR2 -0.401 0.001 0.042 0.042
Adjusted by PS-SL -0.397 0.003 0.047 0.048
Adjusted by PS-GBM -0.393 0.007 0.050 0.051
Logit PS-LR Matching -0.393 0.007 0.075 0.076 7.165 4.658
Logit PS-LR2 Matching -0.402 0.002 0.102 0.102 9.646 8.970
SL Matching -0.392 0.008 0.079 0.079 10.451 2.394
GBM Matching -0.398 0.002 0.105 0.105 10.557 18.796
Logit PS-LR IPTW -0.399 0.001 0.044 0.044 2.859
Logit PS-LR2 IPTW -0.395 0.005 0.100 0.100 9.330
SL IPTW -0.387 0.013 0.053 0.054 4.974
GBM IPTW -0.403 0.003 0.048 0.048 5.348

Table 21. Simulation Results for Scenario S19

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.385 0.015 0.045 0.048 65.771
Adjusted by Ws -0.403 0.003 0.039 0.039
Adjusted by PS-LR -0.403 0.003 0.040 0.040
Adjusted by PS-LR2 -0.403 0.003 0.041 0.041
Adjusted by PS-SL -0.391 0.009 0.043 0.044
Adjusted by PS-GBM -0.403 0.003 0.041 0.041
Logit PS-LR Matching -0.404 0.004 0.044 0.044 7.677 0.000
Logit PS-LR2 Matching -0.404 0.004 0.043 0.044 7.645 0.000
SL Matching -0.400 0.000 0.054 0.054 12.190 0.150
GBM Matching -0.404 0.004 0.043 0.044 7.645 0.000
Logit PS-LR IPTW -0.400 0.000 0.042 0.042 4.402
Logit PS-LR2 IPTW -0.404 0.004 0.043 0.044 0.000
SL IPTW -0.390 0.010 0.065 0.065 37.962
GBM IPTW -0.404 0.004 0.043 0.044 0.000
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Table 22. Simulation Results for Scenario S20

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -0.392 0.008 0.043 0.044 34.746
Adjusted by Ws -0.402 0.002 0.036 0.036
Adjusted by PS-LR -0.402 0.002 0.036 0.036
Adjusted by PS-LR2 -0.402 0.002 0.039 0.039
Adjusted by PS-SL -0.402 0.002 0.039 0.039
Adjusted by PS-GBM -0.402 0.002 0.039 0.039
Logit PS-LR Matching -0.403 0.003 0.045 0.045 8.319 0.000
Logit PS-LR2 Matching -0.403 0.003 0.045 0.045 8.307 0.000
SL Matching -0.405 0.005 0.057 0.057 11.042 0.466
GBM Matching -0.403 0.003 0.045 0.045 8.307 0.000
Logit PS-LR IPTW -0.401 0.001 0.036 0.036 2.498
Logit PS-LR2 IPTW -0.403 0.003 0.045 0.045 0.000
SL IPTW -0.405 0.005 0.049 0.049 6.974
GBM IPTW -0.403 0.003 0.045 0.045 0.000

Table 23. Simulation Results for Scenario S21

Estimate Absolute Bias Empirical SE rMSE ASAM Discarded
Naive -19.135 18.735 3.857 19.128 25.964
Adjusted by Ws -6.363 5.963 2.303 6.392
Adjusted by PS-LR -5.598 5.198 2.135 5.619
Adjusted by PS-LR2 -3.615 3.215 1.943 3.757
Adjusted by PS-SL -7.092 6.692 2.141 7.026
Adjusted by PS-GBM 7.166 7.566 3.837 8.483
Logit PS-LR Matching -6.137 5.737 3.799 6.881 8.141 8.158
Logit PS-LR2 Matching -5.749 5.349 5.794 7.886 12.495 13.228
SL Matching -7.539 7.139 3.747 8.062 10.512 3.922
GBM Matching 3.493 3.893 6.172 7.297 21.012 63.006
Logit PS-LR IPTW -3.405 3.005 8.114 8.653 8.747
Logit PS-LR2 IPTW -5.780 5.380 6.555 8.479 12.619
SL IPTW -5.940 5.540 3.266 6.431 8.017
GBM IPTW -11.215 10.815 2.637 11.132 15.306
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Figure 1. Summary of Simulations Using the Synthetic Data, Aggregated Across 21 Data Generating Scenarios. Absolute Bias by Analysis
Method. Grey Points and Number Refer to the Absolute Bias Scaled by 100 for Scenario S21.
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Figure 2. Summary of Simulations Using the Synthetic Data, Aggregated Across 21 Data Generating Scenarios. Plot Showing Area Under the
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2. Summary of the Failed Bootstrap Estimates by Method

Table 24. Summary of Bootstraps that did not Converge in the Analysis of First Steps Data (null ATE)

Scenarios Four Confounders Eight Confounders
Sample Size 100 300 500 100 300 500
Naive 0 0 0 0 0 0
Adjusted by Ws 59 (3) 0 0 63 (3) 0 0
Adjusted by PS-LR 59 (3) 0 0 128 (3) 0 0
Adjusted by PS-LR2 59 (3) 0 0 - 81 (3) 0
Adjusted by PS-SL 227 (14) 0 0 226 (16) 2 (1) 0
Adjusted by PS-GBM 0 0 0 85 (3) 0 0
Logit PS-LR Matching 59 (3) 0 0 392 (89) 0 0
Logit PS-LR2 Matching 60 (3) 0 0 - 395 (66) 2 (1)
SL Matching 433 (43) 1 (1) 0 451 (43) 173 (30) 5 (2)
GBM Matching 1 (1) 0 0 473 (38) 32 (2) 0
Logit PS-LR IPTW 60 (3) 0 0 381 (86) 395 (66) 0
Logit PR-LR2 IPTW 69 (3) 0 0 - 400 (66) 0
SL IPTW 392 (42) 15 (1) 0 477 (42) 448 (33) 138 (5)
GBM IPTW 1 (1) 0 0 469 (30) 32 (2) 0

3. Distribution of the Inverse Probability Weights for the Null Treatment Effect
from the First Steps Data Analysis

Table 25. Inverse Probability Weights Distribution for the Simulations using First Steps Data

Min. Q1 Q2 Mean Q3 Max.
Scenario A
Sample Size = 100

PS-LR 1.0 1.1 1.1 2.0 1.4 21.6
PS-LR2 1.0 1.0 1.1 2.1× 1012 1.3 9.0× 1012

PS-SL 1.0 1.1 1.1 4.6× 106 1.4 4.6× 108

PS-GBM 1.0 1.1 1.1 1.8 1.4 14.4
Sample Size = 300

PS-LR 1.1 1.1 1.1 2.0 1.4 17.3
PS-LR2 1.0 1.1 1.1 2.0 1.4 28.4
PS-SL 1.1 1.1 1.1 8.8× 102 1.4 2.6× 105

PS-GBM 1.0 1.1 1.1 1.9 1.4 19.6
Sample Size = 500

PS-LR 1.1 1.1 1.1 2.0 1.4 15.3
PS-LR2 1.0 1.1 1.1 2.0 1.4 27.0
PS-SL 1.1 1.1 1.1 2.1 1.4 20.0
PS-GBM 1.0 1.1 1.1 2.0 1.4 19.5

Scenario B
Sample Size = 100

PS-LR 1.0 1.0 1.1 2.0 1.3 43.0
PS-LR2 1.0 1.0 1.0 6.7× 1013 9.0× 1012 1.2× 1015

PS-SL 1.0 1.0 1.1 2.2× 108 1.5 2.2× 1010

PS-GBM 1.0 1.0 1.1 1.4 1.3 7.6
Sample Size = 300

PS-LR 1.0 1.0 1.1 2.0 1.4 42.5
PS-LR2 1.0 1.0 1.0 1.8× 1013 1.2 1.4× 1014

PS-SL 1.0 1.0 1.1 2.3× 104 1.4 6.9× 106
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PS-GBM 1.0 1.0 1.1 1.5 1.3 20.3
Sample Size = 500

PS-LR 1.0 1.1 1.1 2.0 1.4 43.1
PS-LR2 1.0 1.0 1.1 4.2× 1012 1.3 4.5× 1013

PS-SL 1.0 1.0 1.1 3.8× 1012 1.4 1.9× 1014

PS-GBM 1.0 1.0 1.1 1.6 1.3 26.5
Scenario C
Sample Size = 100

PS-LR 1.0 1.1 1.1 2.0 1.4 21.2
PS-LR2 1.0 1.0 1.1 3.3× 1012 1.3 2.7× 1013

PS-SL 1.0 1.1 1.1 1.9× 1010 1.4 1.9× 1012

PS-GBM 1.0 1.1 1.2 1.8 1.4 13.8
Sample Size = 300

PS-LR 1.1 1.1 1.1 2.0 1.4 17.6
PS-LR2 1.0 1.1 1.1 2.0 1.4 26.6
PS-SL 1.1 1.1 1.1 1.8× 103 1.4 5.5× 105

PS-GBM 1.0 1.1 1.1 1.9 1.4 19.5
Sample Size = 500

PS-LR 1.1 1.1 1.1 2.0 1.4 14.9
PS-LR2 1.0 1.1 1.1 2.0 1.4 24.7
PS-SL 1.1 1.1 1.1 2.1 1.4 19.4
PS-GBM 1.0 1.1 1.1 2.0 1.4 18.5

Scenario D
Sample Size = 100

PS-LR 1.0 1.0 1.1 2.0 1.3 43.5
PS-LR2 1.0 1.0 1.8× 1013 7.3× 1013 2.7× 1013 1.1× 1015

PS-SL 1.0 1.0 1.1 6.3× 1011 1.4 4.0× 1013

PS-GBM 1.0 1.0 1.1 1.4 1.3 7.5
Sample Size = 300

PS-LR 1.0 1.0 1.1 2.0 1.4 43.8
PS-LR2 1.0 1.0 1.0 2.2× 1013 1.2 1.7× 1014

PS-SL 1.0 1.0 1.1 20.5 1.4 1.8× 103

PS-GBM 1.0 1.0 1.1 1.5 1.3 20.6
Sample Size = 500

PS-LR 1.0 1.1 1.1 1.9 1.4 42.3
PS-LR2 1.0 1.0 1.1 1.2× 1012 1.3 2.7× 1013

PS-SL 1.0 1.0 1.1 1.0× 103 1.4 4.9× 105

PS-GBM 1.0 1.0 1.1 1.6 1.3 26.1
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4. Results of the Non-Null Treatment Effect from the First Steps Data Analysis

Table 26. Simulation Results for the Simulation using First Steps Data with a Non-null Treatment Effect, with
Only Confounders Included in the Estimated Propensity Score and Outcome Models. The ASAM is computed

over the confounding variables only.

Estimate Absolute Bias Empirical SE RMSE ASAM(%)1 Discarded
Sample Size = 100

Naive 110.4 39.6 159.2 164.0 41.1
Adjusted by Ws 146.3 3.7 151.2 151.2
Adjusted by PS-LR 146.5 3.5 153.6 153.6
Adjusted by PS-LR2 148.2 1.8 174.2 174.2
Adjusted by PS-SL 116.8 33.2 157.4 160.8
Adjusted by PS-GBM 130.1 19.9 161.6 162.8
Logit PS-LR Matching 154.4 4.4 205.0 205.1 28.5 11.7
Logit PS-LR2 Matching 155.8 5.8 202.6 202.6 28.0 31.4
SL Matching 119.8 30.2 185.1 187.6 49.6 9.2
GBM Matching 130.4 19.6 203.5 204.5 33.8 16.0
Logit PS-LR IPTW 151.5 1.5 185.7 185.7 18.2
Logit PS-LR2 IPTW 152.0 2.0 190.5 190.5 24.1
SL IPTW 141.1 8.9 289.0 289.2 77.5
GBM IPTW 127.7 22.3 178.2 179.6 22.1

Sample Size = 300
Naive 118.4 31.6 95.0 100.1 32.2
Adjusted by Ws 149.7 0.3 92.7 92.7
Adjusted by PS-LR 149.2 0.8 93.0 93.0
Adjusted by PS-LR2 150.5 0.5 95.2 95.2
Adjusted by PS-SL 133.6 16.4 93.1 94.6
Adjusted by PS-GBM 149.4 0.6 94.8 94.8
Logit PS-LR Matching 154.0 4.0 121.1 121.2 18.1 4.4
Logit PS-LR2 Matching 156.7 6.7 126.3 126.4 17.3 16.4
SL Matching 144.4 5.6 122.5 122.6 27.0 7.0
GBM Matching 151.3 1.3 122.0 122.0 18.9 9.1
Logit PS-LR IPTW 151.1 1.1 105.5 105.5 6.5
Logit PS-LR2 IPTW 158.3 8.3 120.1 120.4 8.6
SL IPTW 138.1 11.9 110.5 111.2 15.8
GBM IPTW 148.8 1.2 111.0 111.0 6.1

Sample Size = 500
Naive 115.0 35.0 73.9 81.8 30.2
Adjusted by Ws 149.0 1.0 72.0 72.0
Adjusted by PS-LR 148.8 1.2 71.9 71.9
Adjusted by PS-LR2 150.1 0.1 74.2 74.2
Adjusted by PS-SL 136.1 13.9 71.9 73.3
Adjusted by PS-GBM 130.7 19.3 73.0 75.5
Logit PS-LR Matching 154.3 4.3 88.5 88.6 13.8 3.8
Logit PS-LR2 Matching 154.2 4.2 89.5 89.6 14.2 12.7
SL Matching 149.3 0.7 88.2 88.2 21.8 5.1
GBM Matching 127.8 22.2 85.0 87.9 19.1 7.8
Logit PS-LR IPTW 153.2 3.2 78.7 78.7 4.6
Logit PS-LR2 IPTW 154.1 4.1 85.9 86.0 4.8
SL IPTW 140.3 9.7 79.1 79.7 10.6
GBM IPTW 128.7 21.3 81.7 84.4 8.8

1Balance is checked for covariates child’s sex, mother’s race, parity and smoking status.
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Table 27. Simulation Results for the Simulation using First Steps Data with a Non-null Treatment Effect, with
Confounders and Outcome Predictors Included in the Propensity Score and Outcome Model. The ASAM is

Computed over the Confounding Variables Only.

Estimate Absolute Bias Empirical SE RMSE ASAM(%)1 Discarded
Sample Size = 1002

Naive 86.1 63.9 179.2 190.3 56.4
Adjusted by Ws 150.2 0.2 167.6 167.6
Adjusted by PS-LR 151.0 1.0 176.7 176.7
Adjusted by PS-SL 114.4 35.6 172.1 175.7
Adjusted by PS-GBM 197.0 47.0 242.2 246.7
Logit PS-LR Matching 157.8 7.8 300.3 300.4 36.1 21.8
SL Matching 109.3 40.7 225.4 229.0 55.7 11.8
GBM Matching 178.2 28.2 338.5 339.7 54.0 65.8
Logit PS-LR IPTW 147.9 2.1 259.0 259.0 32.3
SL IPTW 121.7 28.3 321.6 322.8 137.0
GBM IPTW 118.2 31.8 179.4 182.2 37.6

Sample Size = 300
Naive 96.5 53.5 101.9 115.1 49.7
Adjusted by Ws 148.8 1.2 97.6 97.6
Adjusted by PS-LR 146.5 3.5 97.5 97.6
Adjusted by PS-LR2 146.9 3.1 122.8 122.8
Adjusted by PS-SL 134.9 15.1 98.0 99.2
Adjusted by PS-GBM 176.2 26.2 125.2 127.9
Logit PS-LR Matching 147.7 2.3 177.9 177.9 19.1 5.1
Logit PS-LR2 Matching 146.3 3.7 297.8 297.8 36.5 17.2
SL Matching 138.1 11.9 154.3 154.8 25.1 4.9
GBM Matching 161.6 11.6 250.2 250.4 32.3 33.2
Logit PS-LR IPTW 145.3 4.7 150.5 150.6 14.1
Logit PS-LR2 IPTW 141.7 8.3 253.4 253.5 33.3
SL IPTW 148.4 1.6 181.2 181.2 22.2
GBM IPTW 134.8 15.2 125.8 126.7 20.4

Sample Size = 500
Naive 91.9 58.1 74.0 94.1 48.6
Adjusted by Ws 145.6 4.4 71.1 71.3
Adjusted by PS-LR 142.3 7.7 71.5 72.0
Adjusted by PS-LR2 145.8 4.2 80.3 80.5
Adjusted by PS-SL 138.9 11.1 72.7 73.5
Adjusted by PS-GBM 170.6 20.6 85.9 88.3
Logit PS-LR Matching 140.2 9.8 126.0 126.4 15.4 2.6
Logit PS-LR2 Matching 148.4 1.6 184.6 184.6 21.3 9.1
SL Matching 144.8 5.2 124.1 124.2 19.4 2.7
GBM Matching 152.9 2.9 205.3 205.3 27.0 17.5
Logit PS-LR IPTW 142.1 7.9 97.0 97.3 10.3
Logit PS-LR2 IPTW 153.5 3.5 196.5 196.5 25.7
SL IPTW 153.9 3.9 185.1 185.2 23.3
GBM IPTW 131.8 18.2 95.8 97.5 16.7

1Balance is checked for covariates child’s sex, mother’s age, race, parity, marital status, smoking status, weight prior to pregnancy and
education level
2Analysis for propensity score model with main effects plus all two way interaction terms (propensity score-LR2) was very unstable
with sample size 100. Therefore, PS-LR2 estimates were not calculated.
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5. Code

In an additional supplementary file, we provide sample code for the plasmode simulation using the First Steps
database. The code provided are for the scenario with a null treatment effect and four confounders, with a
sample size of 500.
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