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Abstract

Breast cancer, one of the primary causes of women mortality worldwide, can be effectively
treated if detected at its early stage. Microwave Imaging (MWTI), an emerging technique,
promises to complement the currently used diagnostic modalities. It is safe, non-ionizing
and potentially inexpensive, thus possessing key features to make it a good candidate for

frequent and mass screenings.

This thesis summarizes results of novel research done towards a prototype of a microwave

device aimed at screening breast tissues.

The author first presents the results of a research to combine Microwave Radar (MWR)
breast imaging technique with Microwave-Induced Thermoacoustic (MWIT) imaging to
improve tumor detection rate. An optimal rule for fusing information from the two
modalities is developed and applied to numerically-simulated microwave and acoustic

signals. The results demonstrate advantages of the hybrid method, compared to the

MWR and MWIT methods used individually.

Next, the thesis describes a research study to address the challenge of data acquisition in
MWTI. Recording microwave signals with high signal-to-noise ratio is either too expensive
or suffers from numerous artifacts and measurement errors. The author presents studies
aimed to improve the quality of collected time-domain data by minimizing the effect of

phase uncertainties using software compensation.

Finally, the thesis focuses on MWI algorithms. A comparative analysis of several existing
time-domain MWTI algorithms is accomplished to identify their advantages and weaknesses.
This analysis yields important lessons on algorithm development in the light of the specific
challenges presented by the MWI of the breast tissue. The author presents two improved
MWTI algorithms that address the identified drawbacks of the existing algorithms. The

performance of the new algorithms is evaluated with experimentally-recorded data sets.
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Sommaire

Le cancer du sein, 'une des principales causes de mortalité chez les femmes dans le monde,
peut étre traité efficacement s’il est détecté a son stade précoce. L’imagerie par micro-
ondes (MWI), une technique émergente, promet de compléter les modalités de diagnostic
actuelles. Elle est sécuritaire, non-ionisante et potentiellement peu cotiteuse, possédant
ainsi les principales caractéristiques pour en faire une bonne candidate pour des dépistages

fréquents et de masse.

Cette these résume les résultats des nouvelles recherches concernant le prototype d'un

dispositif de micro-ondes destiné a examiner les tissus mammaires.

L’auteur présente en premier lieu les résultats de recherche qui combine la technique
d’imagerie de radar micro-ondes (MWR) avec 'imagerie thermoacoustique induite par
micro-ondes (MWIT) afin d’améliorer le taux de détection des tumeurs. Une regle
optimale pour combiner I'information des deux modalités est développée et applique aux
signaux numériquement simulés micro-ondes et acoustiques. Les résultats démontrent les
avantages de la méthode hybride par rapport aux méthodes MWR et MWIT utilisées

séparément.

Ensuite, la these décrit une étude de recherche pour relever les difficultés de 'acquisition
des données en imagerie MWI. L’enregistrement de signaux micro-ondes ayant un rapport
signal-bruit élevé est soit trop cotiteux, soit génere des artefacts ou de nombreuses erreurs de
mesure. L’auteur présente des études visant a améliorer la qualité des données recueillies
dans le domaine temporel en minimisant 'effet des incertitudes de phase en utilisant la

compensation de logiciel.

Finalement, la these se concentre sur les algorithmes MWI. Une analyse comparative de
plusieurs algorithmes MWI dans le domaine temporel existant est réalisée pour en
identifier leurs avantages et faiblesses. Cette analyse enseigne des lecons importantes sur
la conception d’algorithmes a la lumiere des défis spécifiques présentés par le MWI des
tissus mammaires. L’auteur présente deux algorithmes MWI améliorés qui concernent des
limitations identifiées des algorithmes existants. La performance des nouveaux

algorithmes est évaluée a ’aide de données enregistrées.
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Preface and contribution of authors

This thesis represents three studies with the following contributions:

1. Chapter 4 - Dual-modality microwave breast cancer detection: MWR and MWIT.

Specific contributions are:

e The derivation of the fusion rule of the MWR and MWIT signals and analysis

of the resulting noise distribution for setting a detection threshold;

e Application of the developed data fusion rule to numerically simulated two-
dimensional data to evaluate the performance of the combined method versus
the MWR and MWIT methods alone.

2. Chapter 5 - Phase uncertainty compensation from time-domain data acquisition

system, with the following specific contributions:

e A developed method to estimate phase delay between two channels of the

recording device based on the analysis of “step”-like signals;

e Assessment of the variability of the phase delays in the recording device to
demonstrate that the phase delay of the two channels with respect to the
trigger is significantly correlated between the channels, thus enabling software

compensation of the phase uncertainty by phase-aligning the recorded signals;

e Optimization of the alignment method using experimental data.

3. Chapter 6 - Advancement of time-domain microwave imaging algorithms, with the

following specific contributions:

e Evaluation of several algorithms, mostly presented in the literature, and
identification of those that can offer high performance for dense and highly

heterogeneous cases;

e Derivation of an optimized version of the Delay-Multiply-And-Sum (DMASo)

algorithm and assessment of its computational complexity;

e Development of a frequency-domain counterpart of the Delay-And-Sum (DASf)
algorithm and evaluation of the algorithm on three-dimensional experimentally-

recorded data.
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developed algorithm to the numerically simulated data and evaluated the

detection performance;

2. Chapter 5: he proposed a method to compensate for the phase uncertainty in
microwave data acquisition system; he developed a method to estimate phase
delays between two channels of the recording device based on the analysis of
“step”-like signals; he studied the variability of the phase delays between the
channels in the recorded device to confirm the hypothesis of their correlated
behavior; he applied and statistically evaluated the developed signal alignment

method using experimental signals;

3. Chapter 6: he implemented existing MWI algorithms discussed in the
literature; managed preparation of numerical datasets for two-dimensional
modeling and was involved in the data acquisition process for the experimental
three-dimensional imaging; he applied and evaluated the existing microwave
imaging algorithms using the two-dimensional numerical datasets; he derived
and implemented the DASf algorithm; he mathematically optimized and
implemented the improved version of the DMAS algorithm (DMASo); studied
the performance of the DASf and DMASo algorithms using the experimentally

acquired signals from realistic breast phantoms.

e Guangran Kevin Zhu implemented the two-dimensional FDTD simulator, helped
preparing numerical breast phantoms and run numerical simulations on a
computational cluster. These simulated signals were used both for the
dual-modality detection study (chapter 4) and for the evaluation of MWI
algorithms (chapter 6).

e Boris Oreshkin helped deriving the expressions for noise distribution of the dual-

modality test statistics for hypothesis testing and setting a threshold. He also initially



vii

implemented the Generalized Likelihood Ratio Test (GLRT) and skin-breast artifact

removal algorithms.

e Adam Santorelli and Emily Porter contributed to the work described in chapter 6
with the acquisition of the experimental signals. In particular, they executed the
system setup, prepared realistic breast phantoms and recorded the datasets used for

testing the algorithms.
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Chapter 1

Introduction

1.1 Rationale and objectives

Breast cancer remains one of the deadliest diseases in Canada and worldwide. According
to the Canadian Cancer Society [4], there are estimated 25,000 new incidences and 5,000
deaths in 2015. US statistics quote expected 232,000 new cases and 40,000 deaths in the
same year [5]. The most efficient countermeasure against breast cancer is to detect new

lesions at early stages, which greatly increases the chance of recovery.

During the past fifty years, X-ray mammography has been the standard clinical screening
technique [6]. However, the limitations of the X-ray mammography are well recognized.
First, it yields high false-positive detection rate, especially on patients with dense breasts;
second, it exposes patients to ionizing radiation; third, it requires painful breast

compression [7].

Many efforts have been made to overcome these limitations using different technologies.
For example, ultrasound imaging is a quick diagnostic tool that could be used for mass
screening purposes due to its non-ionizing nature. However, ultrasound suffers from several
shortcomings. First, it fails to distinguish between malignant and benign tumors, second,
it often misses microcalcifications due to the “speckle” phenomenon and, third, it has high
operator dependency in interpretation of the results. Magnetic Resonance Imaging (MRI)
provides high tumor detection sensitivity [8]. However, it is a complex and expensive

method, usually requiring use of contrast agents. Therefore, it is not applicable for mass-
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screening.

It is worthwhile to mention that all the three clinical modalities mentioned above prove to
be an effective tool when used together [9]. However, in practice, their application is limited
to the cases when the cancer has already developed to its later stages. This motivates a

continuous search for new techniques to effectively detect tumors early.

One of the novel methods for early breast cancer detection is microwave imaging. The
method is based on the difference in dielectric properties between malignant and benign
tissues. Studies of dielectric properties of human tissues in the microwave frequency range
[10-12] demonstrate that the contrast between malignant and benign tissue reaches 10 times
in dielectric permittivity and conductivity. MWTI is non-ionizing and does not require such
expensive hardware as MRI scanners. This enables low-cost equipment, safe for frequent

scans of one patient, thereby potentially enabling mass screening [13].

One approach of microwave imaging is a time-domain Ultrawide-Band (UWB) Microwave
Radar (MWR), which is the focus of our research group at McGill University, guided by
Prof. Milica Popovi¢. Several challenges are related to the breast MWI in general and, in

particular, to the UWB time-domain breast imaging.

First, Electromagnetic (EM) waves with wavelength of several centimeters in breast tissues,
physically limit high imaging resolution. Next, highly heterogeneous and dense breasts
result in signals with a lot of clutter, i.e. reflections from normal tissues, surrounding a
possible tumor. In addition to the physical limitations, there is a significant challenge in
the time-domain data acquisition for the MWR method. Currently available inexpensive
microwave samplers suffer from noise, most significant of which is phase noise. Finally,
MWTI algorithms currently represented in the literature are very computationally expensive,
requiring high-performance computational clusters for three-dimensional MWT in order to
build one image in a time-frame of approximately an hour. Thus, algorithms for the MWR
method require optimization and improvement to decrease the cost of equipment and to

reduce imaging time.

The research work presented in this thesis is directed to address the challenges described

above. In particular, the studies described further pursue the following goals:

1. Combine signals collected by two methods - MWR and Microwave-Induced

Thermoacoustics (MWIT) in order to improve imaging performance. Within this



1 Introduction 3

study the following milestones have been considered:

e Develop optimal data fusion rule for MWR and MWIT signals;

e Derive expressions to compute hypothesis test statistics and their noise

distributions for setting tumor detection thresholds;
e Implement and evaluate the performance of the dual-modality detection

algorithm, based on the simulated datasets.

2. Develop a method to compensate phase uncertainty in the microwave sampler by
using software algorithms.
e Propose a method to reduce uncertainties in the microwave sampler;

e Develop an accurate method of phase delay estimation between “step”-like

signals;
e Statistically evaluate the method using experimental signals.
3. Improve performance of microwave imaging algorithms.
e Compare existing microwave imaging algorithms using simulated datasets with

variable parameters: levels of heterogeneity and contrast;

e Optimize the existing Delay-Multiply-And-Sum (DMAS) algorithm to improve

computational performance;

e Develop a frequency-domain counterpart of the existing Delay-And-Sum (DAS)

algorithm to improve both computational performance and image quality.

1.2 Thesis outline

The rest of the thesis is organized as follows.

Chapter 2 provides a literature review of breast cancer imaging and detection, with special

emphasis on the current research in the area of microwave imaging.

Chapter 3 presents the theoretical background, required for further chapters. Imaging

problem is formulated and methods for signal acquisition and pre-processing are described.
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Next, the chapter summarizes essential models of EM signal propagation. The rest of the

chapter is dedicated to the description of MWT algorithms.

Chapter 4 presents the methodology of signal fusion from two microwave breast imaging
modalities - MWR and MWIT and discusses the results of the application of this technique

to numerically simulated data.

The first part of Chapter 5 is dedicated to the design of the experimental data-acquisition
system. The second part of the chapter describes the methodology of phase uncertainty

compensation for time-domain data acquisition.

The purpose of Chapter 6 is two-fold. First, several existing imaging algorithms are
evaluated using numerically simulated datasets.  Next, the chapter presents the
Delay-And-Sum algorithm in the frequency domain (DASf) and an optimized version of
the Delay-Multiply-And-Sum algorithm (DMASo). Finally, the chapter closes with a

discussion of the advantages of the two proposed algorithms.

Chapter 7 concludes this thesis and presents suggestions for future work.



Chapter 2
Literature review

The non-invasive breast cancer detection techniques were first introduced with X-ray
imaging in 1960s [6]. Since that time, X-ray breast imaging has been accepted as a
clinical technique and took the name “mammography”. Several new techniques, such as

ultrasound and MRI, were introduced into breast imaging later.

The goals of breast cancer detection and diagnosis include:

a) improved performance in terms of: detection of tumors - i.e., the ability to correctly
identify their presence at earliest stages; localization - the ability to correctly
determine spatial location of tumors and their spread; characterization of abnormal

masses, most importantly, determining if they are malignant or benign tissues;

b) improved convenience for patients - eliminate safety risks (X-ray radiation dose,
etc.); lower patient discomfort (e.g. breast compression, injection of bio-markers);

improvement in data acquisition time;

¢) cost reduction, so that the screenings can be regular and can cover a higher percentage

of the population.

So far, no technique has met all the described criteria simultaneously. This chapter

describes the fundamentals of breast cancer and techniques for its detection and diagnosis.
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2.1 Anatomy and pathology of female breast

The anatomy of an adult female breast is shown in Fig. 2.1. Milk glands, consisting of
small lobules, produce and store milk. Ducts act as channels to release milk from the

breast. Fatty tissues surround the glandular network.

Chest muscles

Skin

Fatty tissue

Areola

Nipple

Lobules

Fig. 2.1 Illustration of the anatomy of female breast (modified image,
original image by Patrick J. Lynch available at http://coastfieldguides.com/).

Glandular tissues of the breast are soft and prone to the genesis of tumors of different
kinds. Breast cancer can develop both in lobules and in ducts: Lobular Carcinoma In Situ
(LCIS) - tumorous mass within a lobule; Ductal Carcinoma In Situ (DCIS) - tumorous
mass inside a duct. With further progress, the tumor expands into the glandular tissues,
resulting in Invasive Lobular Carcinoma (ILC) and Invasive Ductal Carcinoma (IDC) [7].
At later stages cancerous cells start to penetrate into blood vessels and spread throughout
the whole body (metastasis) [14].

The symptoms of breast cancer include breast irritation, swellings, palpable lumps of



2 Literature review 7

irregular shape, breast or nipple pain [14]. These symptoms usually appear only at later
stages of cancer development, when the tumor becomes larger in size and occupies more
breast tissues. Thus, it is essential to maximize the detection of asymptomatic cancer as

early as possible.

2.2 A summary of clinical methods for breast cancer detection

and diagnosis

Clinical methods for breast cancer detection have to be approved by relevant
governmental bodies, e.g. in the United States, the Food and Drug Administration
(FDA). Detection of breast cancer starts with screening, with the goal to detect any
anomalies in the breast [9]. The requirement for screening techniques is high sensitivity,
i.e. the ability to correctly identify those women who have cancer. In a clinical
environment the process usually starts with clinical breast exam, which involves palpation
- a procedure performed by a doctor or other health professional to detect tumors based
on hand tactile feeling [15]. Palpation, being the quickest and easiest technique, can
detect only large late-stage lesions inside the breast, which can rarely be treated
effectively [6]. In order to detect small, non-palpable, lesions, non-invasive imaging
techniques have been developed. X-ray mammography currently provides the best
trade-off between sensitivity and cost. Whenever any suspicious lesions are detected, the
patient is recommended for further analysis, to characterize the found abnormalities and
finalize the diagnosis. Additional imaging methods, such as MRI and ultrasound may be
involved at this stage, helping to diagnose and localize the lesions. The requirement for
the diagnostic techniques is high specificity, i.e. the ability to correctly identify those

women who do not have cancer [9].

Finally, the ultimate diagnosis about the suspicious already imaged lesion can be given
by biopsy - the procedure where a small amount of breast tissue is extracted and bio-
chemical analysis is performed to characterize the cell structure. Imaging methods, such
as ultrasound, are often used to guide the needle to the correct place for tissue extraction
[16]. Since biopsy is invasive and creates discomfort to patients, efforts are usually made

to avoid or minimize its usage.
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2.2.1 Notes on terminology

Throughout this thesis, the term “Imaging” is used for any kind of technique producing
an image at the output. The term “detection” is used to assume a process or its result,
that answers a yes/no question if a tumor is present in a breast. Examples of the
detection techniques can be found among machine learning methods that draw a
conclusion by analyzing input signals directly, based on hidden logical reasoning. On the
other hand, term “detection method” might be applied to an imaging method when it is
assumed that the detection step is applied after generating an image - this can be either
an automated image analysis algorithm (e.g., thresholding) or traditional analysis by a

trained radiologist.

2.2.2 X-ray methods
Mammography

Since the 1960s X-ray mammography (or just “mammography”) has been utilized as the

main clinical routine screening and diagnostic technique [17].

From the imaging perspective, mammography is a transmission-type method. Similar to
bone radiography, mammography utilizes X-rays that are radiated through a breast and
then recorded at the opposite side to get an image of dense objects inside the soft tissues.
Microcalcifications [18], usually linked to breast cancer, can be detected and localized by

trained radiologists.

Mammography screening requires a breast to be compressed between two plates while a
patient is standing in front of a mammographic machine. The compression helps reduce
the minimum needed radiation dose, which is achieved by reducing the attenuation of X-
rays in the thinner lossy medium. Moreover, compression helps reduce the superposition
of healthy heterogeneous tissues by spreading the volume of the breast to a larger area

exposed to X-rays [6].
X-ray mammography has clearly identified downsides [7]. First, it provides high false-

positive detection rate, especially on patients with dense breasts; second, it exposes patients
to ionizing radiation, limiting its frequency of usage to annual exams; third, it requires

painful breast compression [15].
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Digital mammography

Digital mammography does not have greatly improved performance in terms of the
detection/diagnostic capability in comparison with traditional mammography [19].
However, it has enabled the application of computer-aided detection and improved
storage and management of images [7]. For a long time it has been a technological
challenge for digital mammography to be compared with conventional film mammography
from imaging resolution perspective. In order to reach a resolution comparable with
conventional mammography, digital mammography requires a sensor matrix with over 100

Megapixels, a challenge which has been overcome only recently [20].

Digital breast tomosynthesis (DBT)

The clinical setup for breast tomosynthesis is close to mammography except that the
transmitter moves along a limited arc over the compressed breast and several X-ray shots
are taken [20]. These images are then used by reconstruction algorithms to represent a
three-dimensional view of the breast. The reconstruction is performed by algorithms
similar to those used in Computed Tomography (CT), such as filtered back projection
[21, 22]. However, the reconstruction quality is limited in DBT compared to that given by
the CT, since the shots are made from only a limited arc of the transmitter path. The
reconstructed three-dimensional view helps better understand the structure of the breast
and differentiate malignant lesions from surrounding benign tissues. The radiation dose
used in DBT is usually comparable to mammography. DBT technology is being
introduced into clinical screening [23]. Several commercial FDA-approved scanners are
already available on the market [24]. Studies that compare mammography with DBT
report a significant increase in performance when DBT is used in addition to
mammography [23, 25]. At the same time, applying two X-ray imaging methods
simultaneously inevitably increases the radiation dose.  Some studies claim that
performance increase of DBT over mammography is not convincing [25]. When used
alone, DBT has reported problems in the detection of microcalcifications [26], which is
essential for a successful breast screening modality. Currently, DBT is still under
evaluation and is in the development stage. In clinical environment it helps resolve

complex structures seen on mammography to avoid unneeded patient recalls [23].
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2.2.3 Ultrasound breast imaging

During ultrasound breast scanning, the patient lies in a supine position and the operator
moves an ultrasound transducer probe over the breast to obtain an image, which is updated
on a screen in real-time [18]. The images display an ultrasound echo profile of the tissues
under the probe. Dark areas represent tissues with higher water content, where attenuation

is high, often highlighting benign cysts inside the breast.

When used alone, ultrasound cannot detect microcalcifications and solid masses due to
the “speckle” phenomenon [6], which is prohibitive for a screening modality. In addition,
ultrasound imaging is too operator-dependent. On the other hand, ultrasound is an
indispensable adjunct to mammography to characterize soft masses. It has proven to
eliminate many unneeded biopsies after X-ray mammography had previously identified a
suspicious mass. As ultrasound is non-ionizing, it gives the advantage to an operator to
make as many scans as needed. Offering the capability of real-time imaging, ultrasound is
beneficial for guiding needle biopsies, after the tumor has been detected by

mammography or MRI [16].

2.2.4 Magnetic resonance imaging

In general, Magnetic Resonance Imaging (MRI) is a risk-free imaging technique to obtain
high-resolution high-contrast anatomic images of interior structures of a human body. It is
based on the principle of nuclear magnetic resonance. Magnetic momentum of spin systems
(protons) interact with externally applied EM radiation - when an EM pulse stimulates the
spins, they react by generating echo signals. The echo signals are different depending on
the material that the echoes come from. The recorded echo signals are picked up and
processed by image reconstruction algorithms to generate images that correlate with the

spatial distribution of the material under analysis [27].

During breast scanning a patient is lying inside the MRI scanner in a supine position.
Strong magnetic fields are generated by magnets in the tube. There is an inner layer of
Radio Frequency (RF) coils that generate EM pulses and record the echo response from

the patient.

MRI has been used for breast cancer imaging since the 1980s, after a specialized RF coil
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for breast MRI was developed [28]. The main advantages of MRI over mammography are
as follows: a) very high sensitivity (reported values as high as 100% [29]), b) non-ionizing

nature of the method and ¢) no need for breast compression.

The disadvantages of MRI are that it is very expensive, time-consuming and used for
breast screening mostly with contrast agents [30]. In addition, MRI struggles to distinguish

malignant and benign lesions [31].

MRI is used mostly as an adjunct technique for characterization of tumors and their spread
analysis when they are detected by mammography. In addition, MRI is applied to clarify
obscure mammography and ultrasound images, as well as in the neoadjuvant treatment

and post-operative assessment [8].

2.3 Alternative methods for breast cancer detection

Numerous alternative and/or complementary imaging modalities have been introduced
during the past years. These methods are based on the contrast between malignant and
benign breast tissues in their mechanical, thermal, acoustic and/or electromagnetic
properties. Some of these methods are currently in the evaluation stage and have not yet
received FDA approval. Others experience difficulties or limitations, which currently

question their application in breast cancer detection.

Further in this section a summary of alternative breast imaging methods is provided. A
comprehensive recent review of the imaging modalities in comparison with the current

clinical methods is available in [32, 33].

Thermography

This is a passive method that records and analyzes infrared radiation generated by the
human body. Abnormalities in the form of increased skin temperature in the areas
adjacent to the underlying cancerous zones can be detected in the images from an
infrared camera [34]. This technique was promising in 1970s, but was not efficient
[35, 36]. Interest in this technology has increased after technological advancement, which
enabled efficient measurement and recognition of energy patterns in the microwave region.

Since microwaves exhibit much higher penetration ability in the human body than
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infrared radiation, they can carry information from much deeper breast regions [37]. The
continuation of development has been seen in microwave radiometry [38]. The first

microwave radiometer for breast screening purposes was FDA-approved in 1999 [39].

Solutions involving ionizing techniques

Computed Tomography (CT), another widely spread clinical X-ray-based method of
whole-body imaging, rarely used for breast cancer screening and considered as an adjunct
to mammography [6, 15]. There are several reasons behind this. First, the radiation dose
required by CT is too high and is a prohibitive factor for screening purposes. Second, CT
has not proven to yield higher breast cancer detection rates. Although it provides a
three-dimensional image of the breast and helps eliminate the artifacts associated with
superposition of breast tissues (present in mammography), the resolution of CT is much
lower than that of film mammography [40].  Third, CT can only detect small

microcalcifications with the help of intravenous injection of iodide [41].

Positron-Emission Tomography (PET) [42] and scintimammography [6] - techniques that
use radioactive tracers that concentrate in tumorous areas. The radiation of the tracers
around tumors can be seen by PET or Single-Photon Emission Computed Tomography
(SPECT) scanners. The injection of the tracers is invasive and more expensive than
ultrasound and mammography. These methods are not considered to be safe for pregnant

WOI1ell.

Active infrared and near-infrared imaging

Application of light in infrared and near-infrared range for breast cancer detection started
from transillumination (also known as light scanning, or diaphanography). This is a
technique that uses transmission of red and near infrared light through the breast [42].
Transillumination is based on the preferential absorption of the light in breast tumors due
to increased amount of blood in the neovascular network. Later studies have shown that
this method is inefficient in comparison to mammography and other methods. Studies of
near-infrared techniques continue in the form of Near Infrared Spectroscopy (NIS) [43].
NIS targets to tomographically reconstruct optical properties of breast tissues by using

such techniques as diffuse optical tomography [33, 44]. This method has been proposed



2 Literature review 13

for use in combination with other modalities, such as MRI [45]. Studies of NIS are still in

progress and it has not yet been accepted as a clinical technique.

Electrical impedance techniques

These methods are proposed to detect tumors based on the decreased impedance of
malignant tissues over benign. Electric Impedance Tomography (EIT), also known as
Electrical Impedance Spectroscopy (EIS), is a method that aims to reconstruct dielectric
properties of breast tissue, based on impedance measurements in low-frequency range
(< 1 MHz). To accomplish this task, low currents (microamps to milliamps) are run
through the breast with several electrodes applied at various locations on the breast skin
[43].  Although this technique has not yet demonstrated vast clinical applicability,
promising results have been reported in [46, 47] and new algorithmic machinery to
reconstruct the EIT images is under development [48]. Electric Impedance Mapping
(EIM) method does not aim at reconstructing the whole breast conductivity profile.
Instead, it measures bulk impedance under the electrodes [49]. Although this method
does not offer high specificity, limits penetration depth of measurements and lacks
localization information for biopsy [49], it has been suggested that it is applicable as an
adjunct technique to mammography: the first commercially available EIM scanner got a
pre-market FDA approval in 1999 [6].

Hybrid methods

Several methods take advantage of using more than one physical principle to detect breast
cancer. The photoacoustic imaging technique employs optical and radio frequency waves
to illuminate the breast and receive ultrasound signals, induced by the selective absorption
of these waves inside malignant and normal tissues [50]. Acoustic waves can be induced
by microwave radiation - this approach is known as Microwave-Induced Thermoacoustics
(MWIT), which is described later in this chapter.

Another form of joint acoustic and microwave detection methods is described in [51]. The
proposed idea suggests using acoustic signals to modulate the microwave response. The
"Doppler” effect in microwave backscattered signal depends on the elastic properties of the

tissues and the amplitude of the scattered signals at the fundamental microwave frequency
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depends on the dielectric properties of the tissue.

Finally, elastography, also a hybrid technique, seeks to identify suspicious masses based on
their mechanical elasticity. Elasticity is measured indirectly, via other physical properties,
such as acoustic (ultrasound elastography [52]) or electromagnetic (magnetic resonance

elastography [43]).

2.4 Active microwave breast cancer detection

Similar to electrical impedance described earlier, MWTI is based on a significant contrast in
dielectric properties (“dielectric contrast”) between malignant and healthy tissues. During
the active MWI procedure, the breast is illuminated with low-power microwaves and the
response is processed and analyzed to detect the difference in the dielectric properties of
breast tissues in the microwave spectrum. The dielectric contrast between the tissues can

be used to detect the areas inside the breast with abnormalities.

Several studies report on measurement of dielectric properties of breast tissue. In 1988
Surowiec et al. published results of their measurements of breast dielectric properties [53]
in the range 10 kHz - 100 MHz. According to their data, the ratio between malignant
and normal breast tissues reaches 10:1 in both permittivity and conductivity. However, no
differentiation between glandular and adipose tissues is made in this study. Another set
of measurements of biological tissues by Joines et al., conducted six years later, extended
the frequency range to 50 - 900 MHz [54]. Their results report the dielectric contrast
of approximately 4:1 in permittivity and about 6:1 in conductivity. Further studies [10-
12, 55, 56] report consistent values and extend the frequency range up to 20 GHz. In these
studies it has been determined that malignant tissues possess more water, which increases

both their conductivity and permittivity.

A later large-scale study of breast specimens obtained from cancer surgeries by Lazebnik
et al. in 2007 [57] confirmed the previously measured 10:1 dielectric contrast only between
tumorous and adipose tissues: it is reported that the measured contrast of glandular tissues

with respect to the tumor tissues hardly reaches 10%.

A study to compare the dielectric properties of the breast specimens in the frequency range

of 100 Hz - 8.5 GHz, measured in vivo with those measured ex wvivo, is conducted by
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Halter et al. in [58]. The study demonstrates significant decrease in both conductivity and

permittivity of ez vivo samples compared to the in vivo measurements.

Further analysis of the tissue structures with cancer cells was performed by Sugitani et al.
[59]. It is reported in the publication that the proportion of the cancer cells in the tissue is
correlated with the measured conductivity and permittivity of the specimens in the range
of 1 -6 GHz.

Since the onset of breast cancer most often happens within ducts and lobules (LCIS/DCIS)
- the dielectric contrast between tumors and surrounding tissues (glandular tissues) is not
as high as when the tumor spreads and touches the adipose tissues. This fact suggests
that detecting tumors at an earlier stage might be much more challenging than initially
anticipated - not only because of the tumor size itself, but also because of the reduced
dielectric contrast. This conclusion is especially relevant for the time-domain UWB radar
approach since most image of the reconstruction techniques are based on the reflectivity

from scatterers inside the breast.

Despite the fact of the reported low contrast, active MWI is still encouraging for several
reasons. First, the 10% value of dielectric contrast is still higher for microwave imaging
compared to existing clinical methods, e.g. mammography (2%) and ultrasound (under
10%) [60]. Second, it is argued [58] that the measurements in [57] might not reflect the
true values of the tissues since the samples were analyzed ex vivo, several minutes after

their extraction.

Breast tissue attenuates microwaves, which limits their penetration (but still does not
prohibit tumor detection). According to the analysis in [61], average attenuation of breast
tissues is less than 4 dB/cm up to 10 GHz. This allows for microwaves to penetrate the
tissue up to 10 cm from the skin surface, with their backscatter still detectable at the

surface of the breast.

The female breast is structurally heterogeneous. This complex environment challenges the
analysis of microwave propagation inside the breast since EM waves experience
multiple-scattering. As a result, one cannot make a simplifying assumption about tissue
homogeneity, often an enabling factor for imaging algorithms; in addition, multiple
reflections between surrounding tissues and tumors that exist in the recorded signals

further complicate the analysis of the signals by masking the direct reflections from the
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tumors.

Finally, breast tissues are dispersive [10-12, 55-58], i.e. their properties are frequency-
dependent. This must be taken into account when evaluating wide-band wave propagation

through the tissues.

2.4.1 Microwave tomography

Microwave Tomography (MT) aims to reconstruct dielectric properties of the whole
domain of a biological specimen, one cross-sectional slice at a time. The first application
of MT was described by Larsen and Jacobi [60], who successfully reconstructed an image
of a canine kidney. MT images are built by solving an inverse-scattering problem of EM
propagation and scattering. This is accomplished by fitting an EM model to the recorded
data, by iterative adjustment of the unknown parameters of the model, which are the
dielectric properties of the propagation environment (the biological specimen). Several
reconstruction algorithms have been proposed, which include methods based on Born

linearization techniques [62, 63| as well as those based on shape functions [64].

The inverse problem requires multiple iterations of forward modeling, which are usually
computationally expensive. Various computational techniques are employed, such as Finite-
Difference Time-Domain (FDTD), Method Of Moments (MOM) and method of Finite
Elements (FE). In addition, the problem is often ill-posed, possibly resulting in multiple
solutions and instability of results (when slight variation in recorded data might result in

completely different reconstructed images).

Several experimental systems have been built and clinically tested [65, 66]. Major problems
associated with microwave tomography are the very high computational complexity of the
image reconstruction algorithms and the low quality of the images due to the ill-posed

imaging problem.

2.4.2 Microwave-induced thermoacoustics

Microwave-induced thermoacoustics (MWIT) is a hybrid technique which employs
microwaves to illuminate the breast and to receive the thermally-induced acoustic, rather

than microwave, response signals. The principle of MWIT is based on higher EM signal
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absorption rate by the malignant tumors as compared to that by the normal tissue. When
illuminated by short microwave pulses, the differential heating of tumors results in their
rapid micro-shrinkage and expansion. These size vibrations produce ultrasound signals,

which are recorded by acoustic sensors and analyzed for the presence of tumors [67].

In contrast to microwaves, acoustic waves have shorter wave lengths, which potentially
leads to higher spatial resolution. In breast imaging, MWIT method is mostly represented
by works of Kruger et al. [68] with a demonstrated experimental system. However, recent
studies report that the images produced by the MWIT are hard to interpret due to the
multiple physical processes involved in the origin of the acoustic signals. Further, the
implementation of the MWIT for breast cancer detection requires uniform breast heating,
which is a non-trivial task. Increasing the system complexity would result in its higher cost,
which would ruin the initial positioning of this microwave method as a good candidate for

mass-screening.

Hybrid imaging techniques involving the analysis of both acoustic and microwave
response signals are under investigation. Our research group has studied the application
of MWIT for breast cancer imaging. We proposed in [69] to combine this method with the
UWB microwave radar to increase the signal-to-noise ratio of the resulting images. Due
to increased amount of information coming from two different physical phenomena, this

combination may provide significant improvement, as it is further elaborated in chapter 4.

2.5 Ultrawide-band time-domain microwave radar

In the late 1990s, a group at Northwestern University investigated the UWB radar method
to detect breast cancer [61, 70]. What differentiates UWB radar from MT is that, instead of
reconstructing the dielectric profile of the breast, UWB radar images spatial distribution of
scattering intensity, which is based on the contrast between tissue properties rather than on
their absolute values. Significant dielectric contrast between malignant and benign breast
tissues creates dielectric interfaces in the tissues, which produce back-scattered reflections
when an impulse propagates within the breast. UWDB radar imaging algorithms make
an assumption of linear propagation. This approach significantly reduces the algorithmic
complexity because radar-based methods do not rely on inverse-scattering reconstruction.

In addition, the bandwidth of the UWB radar might offer higher spatial resolution compared
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to MT.

Time-domain UWB radar requires rather simple hardware. The associated
computationally-efficient image-formation algorithms dramatically decrease its cost. It is

therefore a viable candidate for a mass-screening tool.

The rest of this chapter describes essential aspects of UWB time-domain radar, such as
data acquisition systems with their elements, as well as numerical simulations, data pre-

processing and imaging algorithms.

2.5.1 Data acquisition

An example of a typical UWB radar data acquisition system design is illustrated in Fig. 2.2.
The system consists of a radome with a matching medium, where a breast is placed for
analysis. A pulse generator produces UWB pulses that are sent through antenna TX. The
response is picked up by antenna RX and sampled by a receiver. In practice, usually more
than one antenna is used at both transmitting and receiving sides. In this case a switching
mechanism has to be implemented to switch between antennas. A controller is responsible
for the supervision of the data collection. The collected signals are pre-processed and an

imaging algorithm is applied. The resulting images are visualized on a display.

Antenna arrays and elements

In order to maximize the amount of collected information, the breast is usually illuminated
from multiple locations to collect an array of signals. This can be accomplished in several
ways. First, only one antenna can be used for scanning around the breast [71]. This kind of
signal acquisition is known as synthetic monostatic array - the signals are transmitted by the
same moving antenna (“synthetic”), which is used both as a transmitter and as a receiver
of the microwave signals (“monostatic”). When more than one antenna is used, bistatic
or multistatic arrays are formed: when one antenna transmits, others record the response.
Multistatic arrays [72-74] can be implemented as either a synthetic array by using only
two independently moving antennas or as a real array - with many spatially fixed antennas.
Synthetic monostatic arrays are convenient in terms of RF implementation. They require

only one antenna without any RF switching mechanism involved. Another advantage is
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Fig. 2.2 Typical data acquisition system for ultrawide-band time-domain
radar.

that the number of collected signals can be easily configured in software. At the same
time, the downsides of this configuration are: complex mechanical system for antenna
movement, increased data acquisition time and limited collected information compared to

the multistatic arrangement.

In terms of data acquisition locations, several types of antenna arrays have been considered.
For a clinical setup when a patient lies in a supine position, conformal and planar antenna
arrays have been used in most cases [75-77]. This design does not require the usage of a
matching medium since the antennas can be positioned as close to the breast as needed.
Consistent distance between the skin and the antennas also helps in terms of signal pre-
processing, e.g. skin artifact removal, as further discussed in this chapter. However, when
the antenna layout can conform to the breast, their locations are not accurately known
with respect to each other for varying breast shapes. In addition, small variations in the
antenna-skin distance can cause big variations in antenna performance, as predicted by

antenna theory for antennas placed on or very close to an interface of two dielectrics.

In practice, arrays with fixed locations are used most often. Fear et al. [1, 2] use a cylindrical

synthetic aperture array in their Tissue Sensing Adaptive Radar (TSAR) system; Craddock
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et al. have developed a hemispherical array and implemented it in their experimental
system [73]. A hemispherical array is also used in the experimental system of our research

group[72].

More advanced antenna arrays are also considered, such as a rotating planar array, described
in [78], conformal array based on aspiration [74], which adjusts the breast to the hemisphere

by using air suction.

An essential part of a data acquisition system is the antenna element. Antennas in UWB
radar usually act as both receivers and transmitters. There are several criteria for antenna
design to use in the UWB radar breast imaging. First, antennas have to be compact in
order to fit in the area around the breast. Second, antennas need to efficiently operate in
a chosen frequency range (for UWB radar, 500 MHz - 10 GHz). Third, antennas need to
operate in the near-field region and have a specific radiation patterns. Fourth, antennas

should be optimized to work with a particular coupling medium.

Numerous antenna designs have been evaluated for microwave breast cancer detection,
such as resistively loaded bow-tie antennas [1, 79-81], horn antennas [76, 82, 83], Vivaldi
antennas [84], Vee dipoles [1], Wu-King monopoles [2], patch antennas [85] and custom
designs [3, 86].

Matching medium

In order to better couple antennas to the breast tissues and reduce excessive energy
scattering from the breast skin, a special matching medium usually fills the gap between
the antennas and the breast. The matching medium is a liquid substance, such as oil or
gel, in which the breast and antennas are immersed while the breast scanning procedure
is performed. The most common consideration for choosing a matching medium is to
provide a permittivity value close to those of the skin and antennas and, at the same
time, to lower the conductivity in order to reduce losses in this medium as much as
possible. For example, [87] describes immersion liquids tests and suggests that oil-based
liquids provide better permittivity coupling. Work by Zhou et al. [88] proposes to use

ethanol, which well matches the results of numerical simulations presented in [89].

In the work described in this thesis, ultrasound gel was used as the best option among

the commercially available clinically-approved materials. The dielectric properties of the
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ultrasound gel in the UWB range [90] are close to those of the breast skin, which provides

a good coupling between the antennas and the breast.

Frequency range and pulse shape

Another important factor for time-domain UWB radar is the excitation signal. First, the
RF pulse should occupy a frequency range wide enough to optimize the imaging resolution
(i.e., the pulse width should be minimized). Second, the energy of the radiated pulse should
be sufficient to propagate to the tumor and back with acceptable attenuation and should
be limited by safety regulations [91-93]. Third, pulse shape should be consistent with the

characteristics of the antennas that are used to radiate and receive the feedback.

Several types of pulses have been considered for use in UWB microwave radar systems for
breast cancer detection. The most commonly used excitation signal is a Gaussian pulse [94-
96]. Gaussian pulse generation is implemented in numerous microwave pulse generators.
Parametric Gaussian pulses are beneficial in advanced signal processing algorithms, such as
the wavelet transform [97]. Modulated Hermite pulses are studied for use in UWB breast
cancer imaging [98]. The work of this thesis uses a custom-synthesized broadband reflector
pulse shaping filter structure in order to generate a pulse that spans the range of 2 - 4 GHz

with maximum efficiency [99].

Microwave receiver

After a receiving antenna records the backscattered signal, the signal has to be digitized
for further processing. This is an essential step that has been a bottleneck for many years

for practical applications of UWB breast time-domain radar.

In general, there are two ways of acquiring UWB data from the system: a) sampling the
response from a transmitted UWB pulse (time-domain acquisition); and b) acquiring a
frequency response of the system in the range of interest and then using this data to
synthesize the response from a particular pulse (frequency-domain acquisition). The
time-domain method is considered to be used in practice in the final device since it offers
faster data acquisition than the frequency-domain method and can reduce the cost of the

sampler by taking advantage of equivalent-time sampling techniques [100, 101]. The



2 Literature review 22

frequency-domain method is mostly used in research environments due to the following
advantages: @) VNAs with high dynamic range are available as standalone devices;
b) frequency-domain data is more beneficial than sampled time-domain reflections since it
allows to model the response from virtually any type of excitation pulse (under the

assumption of system linearity).

Numerical simulations and breast models

Numerical simulations are largely used to synthesize data in the area of UWB microwave
imaging. The breast model is constructed and provided as an input to a computational
engine that simulates the excitation and propagation of EM waves in space and time and

computes EM fields for further evaluation.

At early stages of system development, the simulations are essential for feasibility
assessment. Simulations help design and optimize components of an experimental system,
such as the matching medium or antennas. The simulated UWB signals provide a means
of developing imaging algorithms without building actual equipment. Simulated data is
also beneficial for the statistical evaluation of algorithms under one varying factor with all

other factors fixed (which is often impossible in practice).

Two essential elements of any numerical model for breast cancer detection are the breast
model and the antenna models. The breast can be modeled with a simplified surface as a
regular hemisphere or ellipsoid and with a realistic anatomical shape. For realistic modeling,
usually MRI images are used to derive the surface and internal structures, e.g. [102], [103].
Recent EM solvers allow dispersive materials to be introduced into the simulation in terms
of Debye, Cole-Cole or other dispersive models. Antenna modeling has its challenges: thin
structures (which are usually resistive and conductive layers in antenna design) require a
very fine spatial grid, which results in a very high number of cells in the model. This can

easily make the simulation prohibitively large.

Nowadays a number of commercial full-wave EM simulation packages are available, such
as CST Microwave Studio [104], SEMCAD by SPEAG [105], ANSYS High Frequency
Structure Simulator package (HFSS) [106] as well as COMSOL Multiphysics [107]. Such
numerical methods as FDTD, FE and MOM are used in order to solve space-time

Maxwell’s equations in two-dimensional and three-dimensional environments.
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In order to validate simulated investigations in practice, numerical simulations are usually

followed by experimental trials that involve breast-mimicking phantoms [108-112].

2.5.2 Signal pre-processing

Before imaging algorithms can be applied to the collected signals they need to be
pre-processed to remove artifacts, compensate for antenna performance, band-pass filter
and remove other types of measurement noise. At the signal pre-processing stage other

parameters can be estimated, such as breast shape or average dielectric properties.

Calibration

Antennas can be used both to transmit and receive feedback signals. It is crucial to separate
incident antenna pulses from scattered signals in time. In order to remove this initial pulse,
a calibration procedure is performed. It consists in the subtraction of a calibration signal
from the received signals. The calibration signal is acquired by transmitting and recording
the waveforms without the breast exposed to the illumination. Besides the incident antenna
reflection, this procedure also reduces the effects of coupling between adjacent antenna

elements.

Breast properties estimation

Most imaging modalities require certain parameters to be known prior to the application
of the algorithms. These include breast shape, skin thickness and average dielectric
parameters of the internal structures. Simulated experiments usually assume these

parameters are known. However, in reality they need to be estimated.

Works by Winters et al. [113] and Williams et al. [114-117] propose algorithms to estimate
skin surface by preliminary breast scanning and making use of skin reflection. The problem
of breast surface identification is also addressed in [118] when the application of planar

antenna array for a hemispherical breast model is considered.

Skin thickness estimation is discussed in [1]. The authors of the study propose a method

to estimate thickness based on the difference in alignment between two skin cylinder
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reflections. Preliminary dielectric properties estimation is discussed in works by Winters
et al. in [119-121].

Skin-breast artifact removal

One of the challenges at the signal processing stage is to remove the skin-breast artifact
in the received signal. This interference is caused by a high-contrast dielectric interface
between skin and inner breast tissues and is aggravated by a not completely compensated

matching-medium-to-skin interface.

Several approaches for skin artifact removal have been proposed. First, when planar or
cylindrical breast models are used, the artifact in each channel is identical. A simple
averaging algorithm [94] can be used to estimate the artifact response and to subsequently
subtract the average from each channel. This approach is applicable only in cases when

antennas are positioned at equal distances from the regularly-shaped breast.

An algorithm proposed by Bond et al. in [75], applies Wiener filtering to the signals
that estimates skin reflection as a filtered combination of the signals. This efficiently
compensates for a time mismatch of the skin artifacts between the channels. This method

has been applied in many works and has been extended for a multistatic setting in [122].

Another approach proposed by Sill et al. [2] applies the Recursive Least Squares (RLS)
algorithm, adapted from a beamformer approach with the combination of Woody averaging
[71]. In comparison to Bond’s method, it iteratively searches for weighting coefficients which

change in time.

An entropy-based time window approach for skin-breast artifact removal is proposed by
Zhi et al. in [123]. This algorithm searches for a maximum entropy in the signals to localize

the dominant skin reflections.

An algorithm proposed by Maskooki et al. [124] addresses the problem of skin reflection
compensation by decomposing the received signals in frequency domain into complex
exponentials, which describe the responses from most significant scatterers. It is assumed
that the largest components represent skin reflections, which are removed after the

decomposition.

The described methods vary in their applicability to different breast shapes and antenna
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placement. So far, no solution has been proposed to remove the reflection from a realistic
irregular three-dimensional breast shape for a scenario when antennas are placed at a

distance of several centimeters from skin.

In order to remove the skin-breast artifact in simulated data, the following procedure
is usually used. A simulation of a tumor-free breast is performed and the signals are
subtracted from the signals acquired from the corresponding tumorous model. This gives

a tumor-only response which is then used to evaluate imaging algorithms.

2.5.3 Ultrawide-band breast cancer detection and imaging algorithms

The general problem of microwave breast cancer detection can be viewed as follows: based
on the recorded microwave signals, identify if a tumor exists inside the breast or not. This

ultimate goal can be approached in several ways.

One approach is to apply a machine-learning algorithm that can provide a direct answer
if a tumor exists in the breast or not. These algorithms are based on extensive statistical
model training (learning). Efficient algorithms, such as Support Vector Machines (SVM)
and neural networks have been developed and can provide a high detection rate (see
section 2.5.4). The machine-learning approach is relatively new in microwave breast
cancer detection and has not been well advanced due to several problems: it requires a
large amount of training data, which is not easy to obtain; the decision made by a
classifier is based on unknown rationale; as practice shows, it is very hard to detect a
tumor when parameters of the breast change (training on different datasets makes the

classifier more general, which introduces errors).

Another approach involves imaging, which has traditionally been used in other modalities,
such as mammography, ultrasound and MRI. This is a two-stage approach: first, an image of
the breast is built and, second, it is analyzed to detect and localize tumors. The second stage
can be done either manually (by a trained clinical professional) or by software. There are
several challenges associated with the software-driven detection of tumors. First, generating
a high-quality image that can be used to automatically detect tumors is a hard task. Second,
to make the decision, the algorithm requires a threshold. Estimation of the threshold,
similarly to the machine learning approach, requires large amount of training data. The

advantage of the imaging approach is that it generates an image, which can be analyzed
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by a human to verify the decision made by the algorithm. Further in this thesis imaging

approach will be considered, if not mentioned otherwise.

Most of the UWB breast imaging algorithms have been adapted from radar signal
processing.  They all strive to resolve issues resulting from the following: a) the
propagation of microwaves occurs in a multi-media environment that usually consists of a
background (air or matching medium), skin and breast tissue; b) breast tissue is highly
heterogeneous; ¢) in most cases, no far-field assumption can be made since antennas are

located close to the breast.

The first algorithm applied to UWB breast imaging was the Delay-And-Sum (DAS)
beamformer [1, 61, 94]. The DAS algorithm applies synthetic spatial focusing of the
collected signals by time-shifting them to a particular point inside the breast interior,
then adding them together and detecting the peak of the resulting waveform. The idea of
this algorithm is that when a tumor is present at a particular point, pulses reflected from
this scatterer are coherently summed up together, which results in a higher energy peak.
When no tumor is present, the peaks that might come from other locations are not in
phase, which spreads their energy along the resulting waveform and there is no strong
pulse. The map of the resulting waveform peaks provides the image of scattering power in

the breast interior, which potentially highlights the presence of tumors.

Resolution and detection performance of this algorithm has been analyzed in [125]. It is
reported that, according to numerical studies, tumors of less than 1 cm in diameter can be
successfully detected. An experimental feasibility study [126] has confirmed the detection

of objects with size of 1.2 cm.

Several modifications to improve performance of DAS have been introduced.
Delay-Multiply-And-Sum (DMAS) algorithm [127] applies cross-multiplication of all the
signals before applying the DAS algorithm - this effectively suppresses clutter in the
resulting image. Further, in chapter 6 of this thesis, the DMAS algorithm is analyzed and

its optimized version is proposed.

Klemm et al. proposed an Improved Delay-and-Sum (IDAS) beamforming algorithm in
[128], applied to their experimental system. The IDAS introduces an additional weighting
quality factor, which helps highlighting those areas with significant reflectors. Another
variation of DAS, Delay-and-Product beamforming algorithm, has been introduced in [129].
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Instead of summing the time-shifted signals, this beamformer computes their product and
calculates the amount of in-phase components in the resulting product vector. A similar

approach combining the above ideas is published in [130].

Further improvement of the DAS algorithm is proposed in [131]. The described channel-
ranked beamformer uses only those channels from the multistatic signal array, for which the
signal propagation distance is lower than a certain pre-determined threshold. Due to the
shorter propagation distance, the recorded signals are stronger in their amplitude, which
improves their signal-to-noise ratio. The proposed beamformer demonstrates increased

performance, compared to the traditional DAS [131].

Besides the described improvements, DAS-like algorithms are limited in performance due
to: a) coarse time-shifting of the signals due to discretization in time; b) assumption of
frequency-independent propagation speed in breast tissues; ¢) assumption that the

propagation speed in breast tissues is perfectly known.

To overcome the drawbacks of the DAS algorithm, the Microwave Imaging via Space-Time
(MIST) beamforming was introduced into the microwave imaging field by Bond et al. [75].
Later in this thesis we refer to the described MIST algorithm as Filter-And-Sum (FAS)
beamformer. The proposed algorithm is also based on the time-alignment of signals to
perform spatial focusing and uses additional filtering. The filter is designed to equalize
path length dependent dispersion and attenuation, interpolate any fractional time delays
remaining in the backscattered tumor responses after coarse time alignment, and band-
pass filter the signal [75]. The filtered signals are then summed-up and time-windowed
to calculate power corresponding to the test location. The MIST algorithm has proven
to be relatively robust to variations of dielectric parameters of tissue. Rigorous analysis
has been performed in [75, 118, 132] to evaluate the performance of the algorithm under
the mismatch between average taken dielectric properties and the actual ones. A similar
approach to compensate for the attenuation and dispersion is followed in [133], which

demonstrates the robustness of MIST to breast heterogeneity and tumor size.

Further works extended the application of the described algorithms to multistatic systems.
Due to the increased amount of information, multistatic algorithms further improve the
detection performance [122, 134-136].

Another type of UWB breast imaging technique is the Generalized Likelihood Ratio Test
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(GLRT). It was adopted by Davis et al in 2005 and is described in [76]. The algorithm
is based on statistical hypothesis testing approach. Describing the no-tumor scenario as
a null-hypothesis and assuming the alternative hypothesis when tumor exists, each of the
test locations inside the breast domain is tested based on a computed test statistic. The
test statistic is a value representing a degree of similarity between the received signal and
some theoretical “signal template”, which is derived by modeling a wave propagation inside
the breast. In contrast to the beamforming approach, hypothesis testing does not make
an assumption of a linear steering operation on a common signal. Instead, it proposes a
way to apply a signal model of arbitrary complexity. For example, scattering effects can
be included into the model, which may significantly increase matching the signal templates
to the signals recorded by antennas. The image of the computed test statistic values for
each spatial location provides the probability map of tumor presence at those locations. In
order to provide an answer on whether a tumor exists in the breast or not, a thresholding
technique should be applied. The value of the threshold is obtained with the procedure of
false discovery rate control, proposed by Benjamini et al. in [137]. More recent papers on
this technique are available [138, 139].

Studies of the detection approach in our group using numerical datasets from
reduced-contrast phantoms demonstrate that the GLRT method is very promising as it
gives high performance on medium-complexity scenarios and is the only successful

algorithm on highly-heterogeneous and extremely dense breast phantoms [96].

Both works, [75] (MIST) and [76] (GLRT), report the capability of the algorithms to detect
and localize small tumors (< 0.6 cm) in numerical breast phantoms when the contrast of

dielectric permittivity between normal and malignant tissues decreases to 2:1.

A technique based on multiple windowing is proposed by Bond et al. in [140]. It employs
multiple space-time beamformers (or windows) to obtain approximately statistically
independent images of backscattered power which are then averaged. According to the
published results, this approach improves the signal-to-clutter ratio and enables the

detection of 2-mm-diameter lesions in very heterogeneous tissues.

Further steps in detection performance have been made with the introduction of robust
algorithms.  The robust methods have been developed to deal with the challenges
associated with experimental trials. Since in the experimental setup there are significantly

more unknown factors compared to the numerically simulated signals, robustness in signal
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processing is essential.

A data-adaptive technique called Robust Weighted Capon Beamformer (RWCB) has been
proposed in [141, 142]. Similar to previously described algorithms, the signals are
spatially focused to the points within the breast. However, in order to deal with
uncertainties in the attenuation due to the propagation in lossy tissues with unknown
loss, additional factors are introduced (see chapter 3). These factors are adjusted based
on the analysis of the recorded data, and their optimum values that maximize the
signal-to-noise ratio are taken. In addition, authors in [142] propose the Amplitude and
Phase Estimation (APES) algorithm, with the intention to compute beamformer weights
based on the known signal waveform, provided by the RWCB algorithm. The volumetric
image is then calculated similar to DAS and MIST algorithms as the power of the
resulting summed signal.  Investigations in [141, 142] demonstrate that these two
data-adaptive techniques outperform their data-independent counterparts in terms of

improved resolution and better interference suppression.

The increase in available computational power has enabled robust multistatic signal
processing. Works by Xie et al. [143, 144] describe the application of adaptive techniques,
such as Robust Capon Beamformer (RCB), which is a simplified version of RWCB
without the data-adaptive window. The Multistatic Adaptive Microwave Imaging
(MAMI) algorithm is presented in [143]. For each transmitting antenna, a multistatic
setting provides a set of received waveforms at receiving antennas when every other
antenna acts as a transmitter. The authors propose a two-stage algorithm which first
applies an RCB procedure for each group of signals pertaining to one transmitting
antenna separately. The second stage applies the RCB algorithm again to produce one
combined waveform for a given synthetic focus location. Then, the power is calculated
similar to the DAS and MIST algorithms. The paper [144] compares the proposed
method with different combinations of other techniques: multistatic DAS, RCB, APES,
MIST and monostatic DAS. It is demonstrated that MAMI clearly stands out from all
other techniques but requires higher computational resources. Further development of
this technique is described in [144], where authors propose another variation of the MAMI
algorithm (MAMI-IT) by changing the order of the two described stages. It is reported
that  these two  algorithms  provide  better  performance for  different
Signal-to-Interference-and-Noise Ratio (SINR). The authors in [144] combine these two
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modifications of MAMI to produce a universal MAMI-C algorithm. Investigations of its
performance show that the combined version outperforms the MAMI-I and MAMI-II
algorithms for 4-mm and 6-mm tumor detection, for both low and high signal-to-noise

values.

The forward-scattering radar system proposed by Munawar et al. in [145] employs a bistatic
system to scan the area of the breast. The basic idea of the algorithm consists in the analysis

of the Doppler frequency in the received signals.

Another type of robust beamformer is known as the time-reversal beamformer, which is
described in [146] and further developed for complex breast models in [147]. This method
is an adaptive waveform transmission scheme that utilizes the rich scattering medium to
best match the target response. It is shown that this technique is more robust and provides

higher resolution than conventional beamformers.

Another approach to MWT is synthetic aperture radar imaging (also known as holography),
which is applied to microwave breast cancer imaging in works of Flores-Tapia et al. [148].
The algorithm employs a spatial fast Fourier transform, which makes imaging procedure

much faster than the traditional approach and enables real-time breast scanning.

Wavelet analysis is applied in works by Lazaro et al. [97] to estimate the time of arrival of
tumor response. The rationale of wavelet transform application is based on the idea that
it provides a convenient tool to perform a multiple scale correlation analysis between the
received signal and signal templates in shape of a Gaussian pulse, which can be represented

as a wavelet.

2.5.4 Machine learning approach

Machine learning algorithms have been applied to breast cancer detection. A
decision-making structure is being trained with multiple datasets, for which the tumor
existence is already determined by other means (“supervised learning”). Then trained,
these machines can then classify new cases as either tumorous or not. The main difference
of these algorithms from the imaging algorithms is that they usually draw a conclusion
without any intermediate step, such as formation of images or probability maps. This
makes it hard to evaluate their decision in favor of one or another conclusion. In a
publication by Kerhet et al. [149] an SVM-based approach is described. An SVM
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classifier is being taught to distinguish tumor-bearing signals from the normal ones.
Neural networks-based approach is represented in works by AlShehri et al. in [150] and
Woten et al. [151]. They use similar forward-scattering setting and adapt neural networks
for classification purposes. Kurrant et al. in their paper [152] propose Bayesian classifier

approach to compress the data into a lower dimensional space.

There has been significant interest in classification algorithms recently [153-156]. High
values of detection performance have been reported in [157-159]. In spite of the promising
results, currently the application of machine learning techniques remains challenging. The
main reason is that in order to train a classifier, large amount of training data is required. In
order to get such data patients have to be first accurately diagnosed with clinical methods
to get the training outputs, then UWB radar data collection has to be applied to the same
patient to get the corresponding training inputs. Considering that for successful training
the number of needed patients might be high, clinical trials of this size may be difficult for

many research groups.

2.5.5 Algorithm performance comparison

Several publications that compare imaging techniques are available. For example, [143]
compares six UWB imaging algorithms in a common setting. Studies described in [135, 136]

evaluate data-independent algorithms using numerical breast models.

Although most of the algorithms build an image of statistical measure of tumor presence,
which can be directly compared, it becomes a challenge to provide equal initial
conditions, which greatly affect the performance of the algorithms and complicate the
comparison. There are many factors, such as simplifying assumptions of the propagation
model (accountability for dispersion, breast shape, level of heterogeneity and dielectric
contrast); number of antennas and array configurations; the type of matching medium;
pulse shape and frequency range. To estimate the relative efficiency of the algorithms,
they should be applied to one equal setting. The author of this thesis was involved in a
study that compares a set of algorithms on a series of numerical breast phantoms with
variable degree of heterogeneity and dielectric contrast between tumorous and normal
tissues [96]. This study is described further in this thesis in chapter 6.
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2.5.6 Experimental studies

Currently no complete clinical UWB radar breast imaging device, ready for FDA-approval,
has been developed. However, several prototypes have been constructed and their results

reported in publications.

The first time-domain UWB breast cancer detection system has been described in [71]. The
second generation of this system [2] has been assembled for clinical trials. The described
TSAR system is composed of a patient table with a hole for a breast to be immersed into
a special reservoir filled with canola oil. Multiple studies have been performed with this

experimental system, including studies with patients [160].

A clinically-ready experimental system with a fixed multistatic hemispherical antenna array
has been developed by Craddock et al. [161, 162].

The research group at McGill University has developed and advanced an experimental
multistatic hemispherical microwave breast imaging system based on time-domain
measurements [72, 163]. The system has been tested on volunteers and prepared for

clinical trials at the time of the thesis submission.

2.6 Conclusion

Ultra-wideband microwave breast imaging is a novel area in breast cancer screening, which

has a potential to complement existing clinical modalities for early breast cancer detection.

Currently, microwave breast cancer detection and screening faces several challenges, which

are, in part, a subject of investigations reported in this thesis:

a) Efficient antenna design: the group at McGill University has been working on
improving both RF and mechanical performance of the antennas. The main focus is
to design a small, but yet efficient antenna that can be integrated into the whole

system design;

b) Improvement of a radome design: a breast-holding radome has to be made of
dielectrically compatible material, be able to hold the antenna array and minimize

the number of air gaps and other surface discontinuities encountered by the emitted
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microwave signal;

Removal of artifacts from signals: no algorithm has so far been developed to efficiently

remove the skin reflection artifacts from the collected signals;

Efficient data sampling unit: multistatic data has to be collected fast enough to
minimize artifacts associated with patient movement. On the other hand, it is
essential to maximize the dynamic range and to keep the noise floor of the sampled
signals as low as possible. These requirements set constraints to the design of a new

sampling unit for the experimental system.

Robust imaging algorithms: in a realistic clinical environment, prone to high noise and
multiple sources of measurement uncertainties, an adaptive approach is needed. The
group at McGill University has been working towards improved imaging algorithms

to apply to experimentally obtained data.



34

Chapter 3

Theoretical background: time-domain

microwave breast imaging

This chapter provides the theoretical background of the microwave imaging algorithms.
In the formulations throughout the document the following notation is used. Lower-case
bold symbols denote one-dimensional column-vectors while upper-case bold symbols
denote matrices. Superscripts T, H and —1 denote the transpose, the conjugate
transpose and the inverse, respectively. Symbols Re{-} and Im{-} denote real and
imaginary parts of a complex variable, respectively. Lower-case symbols represent
time-domain signals and their upper-case counterparts denote the frequency-domain
representation of the signals. Forward and inverse Fourier transform of signal x are
denoted by F(x) and F~'(x), respectively.

The rest of the chapter is organized as follows. First, the general problem of microwave
breast imaging is formulated and a theoretical model of the signals is introduced. Further,
the chapter describes theoretical EM propagation models and models for the dielectric
properties of breast tissues. The core of this chapter represents the formulation of the
MWI algorithms based on detection theory (section 3.5) and beamforming (section 3.6).
In order to quantitatively assess the performance of the imaging algorithms, appropriate

metrics are defined in section 3.7.
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3.1 Problem statement and signal model

A typical data acquisition scenario for breast cancer detection is depicted in Fig. 3.1. A
patient is lying in a prone position having one of the breasts immersed into the matching
medium and surrounded by an array of antennas held in the radome. The breast is
illuminated with microwave radiation; the response is received by the antennas and

recorded by a sampler.

p(t) — output pulse + Pulse generator

Eolp(t)} - direct pulse

—> y(t) —signal induced at antenna

Ex{p(t)} - tumor response i(t) — skin reflection +

(artefacts)

X(t) — sampled signal

Sampler

Fig. 3.1 A typical data acquisition scenario for beast cancer detection.

As mentioned in chapter 2, the goal of MWI is to build an image representing the internal
structure of the breast, which potentially enables the detection and localization of tumors

therein.

A short-duration pulse p(t) generated by a pulse generator is transmitted by the antenna
Ay Tt is assumed that antennas transmit with a wide beam pattern. Thus, the
transmitted pulse propagates from antenna A; toward the breast, as well as directly

toward other (receiving) antennas A, (direct pulse). The direct pulse contributes to the
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overall received signal and this contribution is denoted by E{p(t)}. After the transmitted
pulse has experienced scattering and propagation through the tissues, the received signal
contains the following components: reflection from skin and other artifacts (including
external electromagnetic interference), i(t); reflections from tumors inside the breast,
EAp(t)},q = 1,...,Q; reflections from heterogeneous glandular structures inside the
breast, clutter ¢(t).

Thus, the total field at antenna A, is modeled as:
Q
E(t) =Y &{p(t)} +i(t) + ¢(t) (3.1)
q=0

The induced signal at the input of the sampler will be a function of the EM field at the

input of antenna A,, i.e.:
y(t) = H{E(1)} (3.2)

Here function H, models the transformation associated with the characteristics of antenna
A,

Signal y(t) received by the antenna A, is sampled with period T in n = 1,..., N samples.
The moment when the receiver starts sampling is denoted by ¢, (which is the propagation
delay in cables and other equipment in the path from the antenna A, to the sampler
input) and its error by random variable e; (the triggering time error). The digitized version
of the signal z[n| will contain uncertainties associated with the data acquisition system

(measurement noise), which are combined in a random variable e,[n]:

zn] = y(to + e + nTs) + e,[n] (3.3)

It is assumed in (3.3) that the triggering time error e; is constant throughout one collected
waveform of N samples, i.e. that, after the first sample, the next samples will be collected

with constant time interval T5.

In order to highlight the tumor within a formed three-dimensional image of the breast, a

sequential method of building the image is applied. In particular, a scan geometry is defined
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as a three-dimensional block with dimensions W,, W, and W, and spatial resolution h,,
hy, h.. This results in images of size [W,/h,, W,/h,, W./h.] and total number of voxels
L =Wy/hy - Wy/h, - W,/h,. Each of the voxel values I,, ¢ =1,..., L is associated with
spatial location r, = {x, ys, 2¢}. The voxel values are computed independently from each
other. Their values depend on the algorithm applied. Further in this chapter imaging

algorithms that follow the sequential imaging method are described.

3.2 Signal pre-processing

Before any imaging algorithm can be applied, the collected signals have to be pre-processed
to compensate for unwanted artifacts i(t), direct pulses E{p(t)} as well as measurement-

related noise e, and e;.

Compensation for measurement noise is specific to a particular data acquisition system.
Section 5.2 of this thesis presents the analysis of the noise related to the experimental
system of the research group at McGill University. A method to minimize the phase noise

of the microwave sampler is described in section 5.3.

In order to remove the direct pulse, previously recorded baseline signals (i.e. the signals
recorded without the tumor inserted in the phantom) are subtracted from the signals that
are collected from patients (as in [94]). Skin-breast artifact removal is an essential part of
the breast cancer detection time-domain UWB radar signal pre-processing. The artifact
removal step is applied to both numerically-simulated and experimentally-recorded signals.
Several methods of the skin-breast artifact removal have been described in the literature,

applied to the following imaging scenarios:

1) Breast shape is close to hemispherical. This makes all the reflection signals look the
same and thus the reflection pulse can be estimated as the average between all the collected
time-domain signals. This averaged signal is then subtracted from all the collected signals,
which leaves signals only with tumor response and clutter. The details of this method can
be found in [94].

2) Breast shape has regular convex shape close to half-ellipsoid. In this case, the reflections
might have slightly different shape and location in the waveform. However, it is assumed

that the reflection from the skin can be well localized in time and easily separated from
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the region of interest (tumor response). For this scenario, the algorithm based on Wiener
filtering [75, 164] provides the best results.

3) Breast has an irregular shape with concave regions. This introduces a significant degree
of distortion of the pulse reflected from the skin. In this case, the reflection cannot be
separated from the rest of the remaining signal, including the tumor response. Several
attempts have been made to address this problem [123, 124, 165], but with little success.

The signals acquired using the experimental system in our research group (see chapter 5)
are bandpass-filtered to remove all the frequency contents outside of the frequency range
of interest of 2 - 4 GHz.

The digitized signals with the mitigated noise and artifact components have the following

model:
Q
x[n] = Z EApIn]} + ¢[n] : (3.4)

where p[n| and ¢[n] are digitized versions of p(t) and c(t), respectively.

3.3 Signal propagation models

Most of the microwave imaging algorithms can be referred to as “model-based” algorithms
since they rely on apriori knowledge about the propagation of EM waves in biological

materials. This section describes essential properties of human breast tissues.

3.3.1 Modeling dielectric material properties

Propagation of EM waves can be described based on dielectric properties of the propagation
media. These are dielectric permittivity and conductivity. The following relationships [166]
are used in the models described further:

Oe Oe

)=ele+-—) (3.5)

WE€Q JWeEp
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where the symbols represent the following quantities:
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e - complex (absolute) permittivity [F/m];

¢’ - real-valued permittivity, also known as just “permittivity” (quantifies energy stored
within the medium) [F/m];

¢” - imaginary part of complex permittivity (quantifies dissipation (loss) of energy within
the medium) [F/m];

€o - permittivity of free space, ¢y ~ 8.85 - 10712 [F/m];

€, - relative permittivity [unitless|;

e, - real-valued relative permittivity [unitless]; note: in many literature sources real-valued
permittivity is denoted with just €, omitting the prime sign for simplicity;

e/ - imaginary part of relative permittivity, also known as “loss factor”;

o, - effective conductivity [S/m)];

w = 2m f - angular frequency [rad/s;

f - frequency of the propagating wave [Hz].

In order to analytically model dispersive materials in the microwave range, measured
dielectric properties can be represented by mathematical models. Several models, such as

Cole-Cole and Debye [167], are based on a number of parameters. The research described

in this thesis makes use of the Debye model, defined with four coefficients:

Ae O
- + —
(14 jwr)  (jweo)

€r(W) = €0 + (3.6)
where:

€ - relative permittivity at infinite frequency [unitless];

A€ = €; — €4 - difference between static relative permittivity €, (at f = 0, zero frequency)
and relative permittivity at infinite frequency €., [unitless];

o, - static conductivity [S/m];

7 - relaxation constant [s].
The model is fit to the data recorded with a probe and a vector network analyzer.

The graphs of real-valued relative permittivity €/ can be obtained by plotting Re{e(w)}.

Effective conductivity is given by:

oe(w) = wepel (w) = wegIm{ e, (w)} : (3.7)
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3.3.2 Modeling electromagnetic propagation effects
Delay and attenuation
EM waves propagate in a medium with a velocity of [166]:

1 c
vy = = , 3.8
’ vV Hb€p v Horb€rb ( )

where ¢ &~ 2.998 - 10% [m/s| - speed of light in vacuum, p, [H/m] and g, [unitless] -
electromagnetic permeability and relative permeability of the background medium,
respectively (p.p ~ 1 for non-magnetic materials, such as human tissues); ¢, [F/m] and
€-p [unitless| are permittivity and relative permittivity of the background medium,

respectively.

The following equation describes a plane-wave propagating along the +z direction [166]:
Hyo(2) = e = e Ihv2 : (3.9)

where:

Hgy,(2) - propagation factor describing delay and attenuation due to lossy medium, as the
wave propagates along +z axis;

v = jky = ay, + j B - propagation constant of the background medium [m™'];

oy, - attenuation constant of the background medium [Np/m];

By - phase constant of the background medium [rad/m)];

z - propagation distance along +z axis [m];

ky, = w\/fwé, - complex wave number related to the background medium [rad/m)].

Expression (3.9) is a frequency-domain model that includes delay and attenuation. If the
value of propagating pulse is P(w) = F(p(t)) at point z = 0 (origin), then the value of the

electric field at a distance z from the origin will be:

P.(w) = E{P(w)} = P(w)Haal2) = Plw)e ™ (3.10)

If, in addition to the delay and attenuation, (3.10) takes into account frequency-dependent
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propagation effects, i.e. dispersiveness of the propagation medium, then the wave number

k is also dependent on w.

In the time domain, propagation delay is represented by a time-shift of the signal and
attenuation can be modeled with an additional factor. In particular, a signal pulse p(t)

that propagates to point 2z from origin in the medium defined above can be represented as

S(t) = e (t _ i) — H,(2)p (t - f) , (3.11)
Up Up

where H,(z) = e “7 is the lossy medium attenuation factor, defined in the time-domain

follows:

model separately from the delay factor. Equation (3.11) is applied only to monochromatic
or narrow-band signals or in cases when dispersiveness of the medium can be neglected (i.e.

when dielectric properties are approximately constant with frequency).

Spreading

Energy density of an EM wave fades as the wave propagates through free space. The
expansion of the wavefront is referred as the “spatial spreading” and in order to model this
effect, another factor Hg, is introduced. In this work three types of EM wavefronts are

considered, which determine how EM waves lose their energy density with the distance.

Spherical wave. In this case, the source is represented by an omnidirectionally radiating
sphere or point. The surface area of the wavefront in this scenario is proportional to the
square of the propagation distance z [168]. Assuming that the power is uniformly
distributed per unit of solid angle, it is inversely proportional to the square of the
propagation distance z. Therefore, for a spherical wave, the field amplitude is inversely

proportional to the distance z:

Hy(z)=- . (3.12)

This model is employed in scenarios when antennas have compact size (which is the

realistic case in the the discussed imaging problem) and can be modeled as point sources.
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The antenna performance, such as the radiation pattern and gain can be additionally
compensated by characterizing antenna properties from measurements and introducing
them into the EM model.

Cylindrical wave. This model is used to describe the wave propagation in two-dimensional
space, i.e. when all objects are represented by infinitely long structures elongated along
the axis perpendicular to the two-dimensional plane of our model. In this case, the spatial
spreading factor can be described as follows:
1
Hsp(z) = % (313)
This expression is used in numerical two-dimensional scenarios when the analysis of the

full three-dimensional space is not feasible due to the computational complexity.

Plane wave. This ideal model is employed when the size of the antenna is relatively big
compared to the irradiated geometry. In this case, the emitted wave has a very big wavefront
radius and thus can be approximated by a plane. The spreading effect for the plane wave

does not apply, which is reflected in:

Hy(z)=1 . (3.14)

EM scattering

When an EM wave encounters a tumor inside the breast, part of its energy is scattered

back, another part is transmitted further and the rest is absorbed by the tumor.

In this work, two methods of scatter modeling are considered. A simplified model is
described by a scalar factor that shows the amount of energy of the pulse that is

scattered /transmitted toward the receiving antenna from a given scatterer:

Hy(2) = o. (3.15)

The coefficient ¢ depends on the shape of the tumor, its size and its dielectric properties.

It is also known in the literature as the radar cross section.
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More advanced scattering model involves analytic solution to the problem of a plane wave
scattered by a dielectric sphere. This section summarizes the derivation of a closed form
solution for the problem of a plane wave impinging on a dielectric sphere. More details can
be found in [168-170].

The derivation begins with the expression for the scattered electromagnetic field for the

described problem, given in [168]:

E? = —jEjcos gzﬁz by, [H@)” (Br) + H? (kyr)| P! (cosh) (3.16a)
n=1
E > . . Pl (cos®
Ej = chos ¢ ij [jbnﬂgy (kyr) sin 0By (cos 0) — e, H (kyr) %} (3.16b)
P! (cosb) .
_ TnAm s (2) . /1
smgzﬁz [jb H (kyr) e cnHy (kyr) sin @ P (cos 0)] . (3.16¢)

Here £}, Ej, Ej denote the components of the scattered electric field in spherical coordinates
r,0,¢; ky is the wave number of the background medium (relative permeability u, = 1);
P is spherical Hankel function of the second kind; P! (cosf) are Legendre functions;
()" and ()" denote respectively the first and the second derivatives with respect to the
argument of the function. The expressions for the coefficients b, and ¢, depend on the
properties of the sphere. For a dielectric sphere with radius a and wave number k,;, the

coefficients are given by:

— kg J! (kya) J, (kqa) + kyJy, (kya) T, (kqa)
= - ~ Qn , (3.17a)
]i]dHn (kba) J (kda) — kan (kba) Jv/z (kda)

— kg, (kya) J. (kqa) + k,,j' (kya) J, (kqa)

= —05 - ay , (3.17b)
]CdHn (kba) Jl (/{ZdCL) (kba) Jn (kda)
g7 (2n+1)
Ay = W, (317C)

where J, denotes nth order spherical Bessel function [168].

In the monostatic scenario, where the receiver and transmitter are located at the same
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spatial point, only co-polar component of the scattered F, is of interest, which is found as:

E; = E;cos0cos ¢ |o=r = Ej |o=r
o=r p

(3.18)
Further simplification comes from using the following relationships [169, p.295]:
Pl (cos0) . Ln(n+1) 510
sin 0 |§>§rr_(_ ) 2 (3.19)
. L n(n+1)
sinf@P," (cosf) |g=r = (—1) — (3.19b)

Thus, for the monostatic case:

E: |g=r = %(—1) i [jbnﬁf)’ (ko) (=1)" @ — e H (k) (<1)" - <n2+ :
E, s L n(n+1)
= @(—1)2(—1) —

5 Gon HP (kyr) — e HD (kyr) (3.20)
1

Further, (3.20) can be simplified by introducing a new variable: b, = —b, [ap; G = —Cp/an,
noticing that j=" =

(—1)" 7" and combining all scaling factors before the sum as Ey. Thus,
the final expression for the monostatic scenario becomes:

B (r) = Bo 3 7" 20+ 1) (b B (k) + jen HE (k)

n=1

(3.21)

Thus, the overall scattering model based on the dielectric sphere is represented as:

Hy(z) = E; (2) (3.22)
In case when a two-dimensional scenario is considered (i.e., when the problem of a plane

wave hitting an infinitely-long cylinder is considered), expression (3.21) will be simplified
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as follows[169]:

+oo
B, =Ly Z (—4)"anHP (kor) ) (3.23)

where H? denotes the n'*-order cylindrical Hankel function of the second kind and the
coefficient a,, is given by:
2 Julkea) Ty (kaa) — T (Kga) T, (kea)
— 9 B (kya) T, (kqa) + & Ju(kaa) HY (kya)

(3.24)

where €, and €; are the relative permittivities of the background medium and the
dielectric cylinder, respectively; .J,, denotes the n'*-order Bessel function, and ()" denotes

the derivative with respect to the argument of the function.

Multi-media propagation

In the process of microwave imaging, EM waves emitted from antennas propagate toward
the breast through several media, which can include: background (medium where antennas
reside), matching medium (e.g. gel-like substance where the breast is placed), skin and
breast tissue. The following simplified line-of-sight propagation model is used further in
the MWI algorithms. The resulting effect of several media that the EM wave travels

through is represented as the product of the propagation models of each of the media:

\%
Hyp = [ Ho(r) (3.25)

v=1

where v denotes the medium number; H, represents the propagating model related to a

medium v and r, denotes the propagation distance in a given medium wv.

It should be mentioned that the model in (3.25) holds only for a propagating plane wave.
For the microwave breast imaging problem this is a very crude approximation, since the size
of the antennas is not negligible compared to the distance that the wave is traveling (i.e.,
far field assumption does not hold) and antennas are modeled as point sources. However,

as shown further in this thesis, the microwave images, produced based on this simplifying
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assumption, can offer acceptable image quality to detect breast tumors at early stage.

3.3.3 Parameter estimation

Wave propagation models presented above have several parameters, such as background
dielectric wave number kj, scattering factor o, tumor tissue wave number k; and tumor
radius a. Multi-media propagation requires the breakdown of the traveled distance into
several components, which can be learned from the geometry of the breast. These
parameters are usually unknown for each new patient and should be estimated
beforehand by either taking some apriori known average value or learned by analyzing
the recorded signals from a new patient. The methodology to estimate these parameters
has been addressed in the literature and can be found in [113, 117, 121, 171-174].

3.4 Signal array model

As a general case, a multistatic imaging scenario is considered further in this thesis. Each
of the m = 1,..., M antennas acts as a receiver and transmitter. This results in the
array of M - M recorded signals for full multistatic scenario and an array of M (M — 1) for
bistatic-only scenario (i.e., without monostatic signals when the same antenna cannot act

as a transmitter and receiver at the same time).

Further in the derivations index m will be used to denote a channel number, which is
represented by a combination of active transmitter/receiver pair of antennas. For most
imaging algorithms, it is convenient to represent the signal model in a matrix form. In

further formulations, the following three different representations will be used.

3.4.1 Time-domain sample-related representation

For a detection-theoretic approach it is convenient to represent the array of collected signals

grouping samples in vectors as follows:

L
Xm = Z QySem +cCp, s (326)
=1
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where x,, € RV*! is a vector of N samples recorded at antenna m; s;,, = Ern{p[n]} -
vector of the same size that represents modeled response from a potential tumor at location
0 (s¢m are further referred to as “signal templates”); c,, represents clutter and all other
types of noise of the received waveforms. Parameter oy signifies the presence of a tumor
response in the recorded signal (o, = 0 if no tumor is present at location ¢ and a, # 0

otherwise).

3.4.2 Time-domain channel-related representation

Another representation of the signal model is more appropriate for time-domain
beamforming algorithms. This representation groups channels together allowing to work

with samples separately.

Each of the M received time-domain signals x[n],n = 1,..., N can be represented as
follows:
L
x[n] =Y ausin] +c[n] (3.27)
=1

where x[n] € RM*! is a vector representing recorded signals at the M antenna elements at
time instances nTy with Ty denoting the sampling period; s/[n] is a vector of the same size
that represents the tumor response (deterministic signal); and c[n] € RM*! is the signal
component that represents the combination of the interference (clutter) and the rest of
the noise. Parameter «, signifies the presence of a tumor response in the recorded signal
coming from a possible location ¢. It should be noted that the difference in representation
between (3.26) and (3.27) in the matrix form would consist only in the transposition of the

matrix forming the complete signal array.

3.4.3 Frequency-domain representation

The following frequency-domain representation of the signal model will be used for the

MWTI algorithms that are formulated entirely in frequency domain.

The frequency domain model of the recorded signal Y,,(w) at channel m, related to the
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bi-static antenna pair A; (transmitter) and A, (receiver) can be described as follows:

Yo(w) = ) Apm(w)aeS(@) + Np(w) (3.28)

where Ay, (w) represents the element of the focusing vector related to channel m and
frequency w. Ag;,(w) can be also viewed as the frequency response of the channel m,
which includes propagation-related effects of the path from antenna A; to location ¢ and
from location ¢ to antenna A,. In the equation above a, denotes the tumor presence at
location £, being equal to “one” in case a tumor is present at location ¢ and equal to “zero”
otherwise. Noise introduced in a channel is denoted by N,,(w), and S(w) represents a
frequency component related to frequency w of the source signal. It should be noted here
that only responses from tumor locations are taken in expression (3.28). This means that
when the value of the image voxel related to location ¢ is computed, it is assumed that
no reflections are coming from other locations than location ¢. In reality, this is not true
and the responses from other tissues within the breast are unavoidable. However, these
reflections are expected to be much weaker, which is in the agreement with the physical
properties of the tissues in microwave range. These reflections are usually referred to as

clutter and in (3.28) they are incorporated in N,,(w).

The focusing vector Ay, can be modeled according to the assumed EM propagation model
described in section 3.3. For example, to model the EM propagation in the scenario with the
experimental acquisition system, the delay and attenuation, spreading and simple scattering

model is considered, described by the following expression:

A&m(w) = Hda,m,g(w)Hsp,m,g(w)qumj(w) . (329)

The first term Hg, e describes the attenuation due to lossy medium (real part) and the
phase delay due to finite propagation speed in the medium (imaginary part). The second
term is related to the attenuation due to the wave spherical spreading. Finally, the third

term Hg. ¢ describes the scattering effect from the tumor.
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3.5 Detection-theoretic algorithm based on hypothesis testing

By design, breast cancer detection algorithms may address the complete task of detecting
breast cancer, without the requirement of image analysis by an expert. However, the task of
automatic detection task can be significantly more complicated than imaging, which poses
additional challenges to signal processing algorithm design. Since detection algorithms
usually provide an image map of the probabilities of tumor presence, they can be compared
to imaging algorithms by comparing the quality of the output images in terms of the defined

metrics (section 3.7).

One approach to the microwave detection of breast cancer is to test the presence of tumor
at each location inside the breast. This approach is a good trade-off: on the one hand, it
provides means for automatic detection of tumor presence, and, on the other hand, it still

generates an image that can be evaluated by a human.

As mentioned previously, the research described in this thesis follows a sequential
approach to build an image. The detection-theoretic approach applied to microwave
breast cancer detection considers testing multiple hypotheses of a tumor presence at a
finite set of locations ¢ = 1,..., L inside the breast. As the result, this will produce an

image that will represent the probability of tumor presence at these locations.

In the derivations of the detection theoretic algorithm, signal model (3.26) is employed,
with make the following rearrangements. It is more convenient to stack vectors x,, to
T I

produce long column-vector x = [x! ...x%,]% of length M - N. Similarly, concatenating

vectors s,,, C,,, the resulting signal model is represented as follows:

L
x=> asitec . (3.30)
/=1

It can be seen that x in (3.30) consists of multiple possible reflections from potential tumors
with ay # 0. In the detection approach only one hypothesis will be tested at a time, in
particular the hypothesis that a tumor is present at the scan location ¢. Thus, for a given

test location ¢ only one term of the summation in (3.30) is considered. Thus, a model for
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a given test location ¢ can presented as follows:
X =aqus;+¢C , (3.31)

where signal amplitude ay is treated as a deterministic unknown parameter equal to zero in
case there is no tumor at location ¢. Signal templates s, are considered as deterministic and
dependent on the set of parameters related to the EM propagation model applied for the
test location ¢, which are not always known exactly. Noise component related to clutter c is
modeled as Gaussian with zero mean and covariance 02R,, where matrix Ry captures the
structural properties of the covariance, and scalar o2 specifies the noise power. The noise
components are assumed to be independent between the channels. The noise covariance
matrix Ry can be estimated using training data sets containing responses from a number

of cases free from signal component (i.e. with ay =0,¥¢=1,... L).

A binary hypothesis testing at each test location ¢ is formulated as follows:

7‘[0 Oy = 0 vs. Hl L Qy 7’é 0 . (332)

The signal model described by (3.26) and the assumptions listed above result in the
detection problem of a known signal (up to a scaling factor) with the noise of unknown
parameters. To address this challenge, a theoretical framework has been previously
developed and is known as the Generalized Likelihood Ratio Test (GLRT) [175, 176].

Prior to the application of the GLRT, the input signals x are whitened using the estimated
clutter covariance matrix:
X =R;/*x : (3.33)

In order to compensate for the distortion introduced by whitening, the signal templates are
exposed to the same whitening procedure, which produces vector s. The tilde sign (“~")

above x and s is further omitted for simplicity.

The GLRT performs the comparison of the generalized likelihood ratio L (x) against some
threshold 7:

Le(x) 2 n . (3.34)

The expression for Lg(x) and further derivations of the GLRT are given in [175, Ch. 9].
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The resulting hypothesis testing rule can be represented as follows:

Ty(x) = (NM —1) — "~ (3.35)

where P = s (SH )_1 sf! and P+ = I — P are projection matrices that project a vector onto

the signal and noise subspaces, respectively.

In order to perform the automated test of the tumor presence inside the whole breast
domain, the threshold v can be selected by fixing the false-alarm rate to some value Ppa

and based on the distribution of the test statistic under the null-hypothesis:
y=CDF ' (1—-Ppa) (3.36)

where CDF denotes the cumulative distribution function of the test statistic. Another

approach is to use the false discovery rate control procedure as was proposed by Benjamini
et al. in [137].

In addition to the automated detection test, for which threshold ~ is required, images of
Ty(x) will be used to compare the algorithm with other imaging algorithms, as described

at the beginning of this section. In this case, I, will be used in place of Tj(x).

3.6 Beamforming image-formation algorithms

Beamforming imaging algorithms have been widely used in the areas of aerial radar,
underwater sonar, ground-penetrating radar, and telecommunications. The basic idea of
the beamforming is synthetic focusing of the incoming EM waves, which helps localizing
their source. Applied to microwave breast imaging, this approach helps avoid solving the
computationally-demanding inverse-scattering problem, which is the basis of microwave

tomography.

The relationship of the beamforming approach to the hypothesis-testing described earlier in
section 3.5 can be viewed as follows. The hypothesis-testing approach compares the received
signals x with their corresponding theoretical signal templates s modeled for every test

location ¢ with the assumption that a tumor exists at the given test location. The degree
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of the similarity (the test statistic 7y) represents the probability of the tumor presence at
location ¢. In contrast, in the beamforming approach, while scanning each test location,
the recorded signals are being modified to compensate for the effects of propagation from
a given transmitting antenna A; toward a test location ¢ and from the test location ¢ to a
receiving antenna A,., thereby assuming that a reflector (potential tumor) exists at location
¢. This compensation is further referred to as spatial focusing!. After compensating for

the propagation effects, the following properties should be observed:

1. When a tumor is present at test location ¢:

e Similarity between the focused signals;

e High degree of matching between the focused signals and the emitted signal,

2. When tumor is not present at test location ¢ the two properties mentioned in item 1
do not hold.

All beamforming algorithms are based on these properties. The next step after the spatial
focusing is the computation the beamformer output, which is carried out by coherent
summation of the focused signals. When a tumor is present and the focused signals sum-
up coherently, the resulting power (“beamformer output power”) will be high compared to

the beamformer output power when no tumor is present at the synthetic focus location /.

Notes on terminology

In the further derivations of the beamforming algorithms, a hemispherical antenna array
is considered. In contrast to the conventional radar-theory problem definition with a
linear array of antennas and an incident plane wave, the interest is not in the direction of
arrival of the wave, but in the energy coming from a particular spatial point. Thus, the
operation of the presented beamformer will be “focusing” rather than “steering”.
Therefore, for the discussed problem, the term “focusing vector” is used instead of
“steering vector”. Next, the continuous beamformer output is not important, i.e. the

assumption is made that the system under analysis is static. Physically, this means that

'Spatial focusing, depending on the applied model, can be carried out by simple time-alignment of the
signals and/or multiplying by a compensation factor
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the patient is lying motioneless and the breast is not moving with respect to the antennas
and the radome. These assumptions explain the choice of the signal models used in the
derivations of the beamforming algorithms. The time-domain beamformers described
further, use signal model given by (3.27). The frequency-domain algorithms employ signal
model given in (3.28). The beamforming approach computes scattered signal power and
does not consider scattering effects of the tumor or it assumes that the scattering effect is

the same in the signals relative to all of the antenna elements.

3.6.1 Conventional spatial focusing: delay-and-sum beamforming

The Delay-And-Sum (DAS) beamforming applied to microwave breast imaging is also
known as the confocal microwave imaging algorithm. It is the first time-domain algorithm

applied to microwave breast imaging [94, 177].

The DAS beamforming is a time-domain algorithm. It is based on the assumption that
the breast material is non-dispersive. To represent this algorithm, signal model in (3.27)
is employed. Depending on the considered scenario, EM wave-propagation effects will be

modeled by using one of the propagation models presented in section 3.3.2.

One iteration of the DAS algorithm to compute the value of a voxel, corresponding to test

location /¢, is represented in Fig. 3.2.

First, all recorded signals x are synthetically focused to a focal point ¢ by applying time-
alignment and compensation for attenuation:

Tmeln] = H ! _Tm,ex[n + Tin ] , (3.37)

a,m,l=" sp

where H, ¢ is the lossy medium attenuation factor computed as defined in (3.11) for test
location ¢ and channel m (propagation distance z is taken as the sum of the distances
from transmitting antenna A; to location ¢ and from location ¢ to receiving antenna A,.);
Hp, me is the spatial spreading factor as defined in (3.12), (3.13) or (3.14) depending on
the considered EM model; and 7,,, is the propagation delay defined as follows:

Zm
g = (3.38)

Uts
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Fig. 3.2 Delay-and-sum beamformer block-diagram.

where v, (propagation speed in breast tissues) is defined as in (3.8).

Next, the focused signals are summed together producing the beamformer output:
M
aln) = 57 > Tmeln] (3.39)

Finally, the beamformer output power is computed and stored as the image voxel value
[ D AS(g):

1 N

Ipas(l) = NZ(%[”DQ : (3.40)

n=1

Several variations of the DAS algorithm have been presented in the literature. For
example, Li et al. [94, 177] employ specific shape of the transmitted pulse (differentiated
Gaussian), which has a zero-crossing at the focal point. In order to make use of the
coherent summation, as in (3.39), the focused signals are first integrated over time. Then,
only the values of the integrated signals at focal points are summed across the channels,
disregarding all other values of the waveforms. The research described in this thesis

follows the traditional beamforming approach, described by equations (3.39) and (3.40).
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Additional improvement for the DAS and other beamforming algorithms can be reached if
the focused signals are time-gated before summation to isolate the reflection at the focal
point. This windowing technique helps reduce the contributions of the noise outside of the

window.

The compensation delay 7,,, defined in (3.38) is, in general, a real value. Since digital
imaging algorithms are considered, there are two ways to apply the time-delay

compensation:

1. Coarse time-alignment: the real value of the 7 is rounded to the nearest integer and
the signal is shifted by the rounded number of samples. This type of alignment is used
in the DAS algorithms with the sample-by-sample coarse time alignment (DASs).

2. Fine time-alignment: in order to obtain the delayed version of the signals signal
interpolation is applied, which yields the DAS algorithm with the interpolation
time-alignment (DASi). This technique is beneficial when the sampling rate of the
recorded signals is not high. Interpolation procedure usually significantly increases

the computation time.

Delay-multiply-and-sum beamforming

The Delay-Multiply-And-Sum (DMAS) algorithm [127] is a version of the DAS algorithm,
which performs coupled cross-multiplication on the recorded signals x. It has been
demonstrated that this technique helps reduce clutter in the microwave images, thereby

improving the signal-to-noise ratio and tumor detection performance.

After compensation (3.37) has been applied to focus the signals to the focal point ¢, the

signals are cross-multiplied prior to the summation and (3.39) becomes:

1 M M
m=1 k=1
k#m

The beamformer output power for the DMAS is computed using equation (3.40). Further, in
chapter 6.2.1 an optimized mathematical expression is presented that significantly improves

the computational efficiency of the DMAS and brings the order of computations down to



3 Theoretical background: time-domain microwave breast imaging 56

that of the conventional DAS algorithm.

3.6.2 Spatial focusing with compensation: filter-and-sum beamforming

One significant limitation associated with the DAS algorithm is that it cannot take into
account frequency-dependent properties of dispersive propagation media. This drawback
can be addressed by a Filter-And-Sum beamforming (FAS) (also known as space-time

beamforming). The algorithm is depicted in Fig. 3.3.

——» Delay 7, —» FIR, w4

————m» Delay 7, —»| FIR, wy %l] 2ln] Calc. >
’ N power ]DAS(E)

———» Delayz,,—» FIR, wy ——=

Fig. 3.3 Filter-and-sum beamformer block-diagram.

The essential difference from the DAS algorithm is that the amplitude compensation in
(3.37) is augmented or replaced with FIR filtering. The FIR filter is designed to
compensate the effects of attenuation (due to spreading and lossy medium), dispersion of
the medium as well as to mitigate the effects of coarse time-alignment. Equation (3.37)

for FAS beamformer then becomes:

n+K
Emuln] = D wnlk —nlelk+ 7l (3.42)
k=n—K
where w,, are FIR coefficients and 2K + 1 is the filter length. The FIR filter weights w,,
are found as the solution to the wide-band problem to equalize path length dependent

attenuation and dispersion, mitigate errors introduced by the coarse-time alignment, and
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bandpass-filter the signals, as described in [75]. The authors in [75] report that the filtering
procedure effectively compensates the effects of dispersion for broad-band processing and

improves the imaging result.

The disadvantages of the FAS beamforming include the increased computational
resources associated with the filter design for each focal point ¢. Next, the regularization
procedure, required to compute the filter weights, produces results far from optimal since
the regularization constants are fixed. In essence, the FAS algorithm is an improved DAS
algorithm with the additional compensation of some of its drawbacks, rather than an

algorithm that is built on a different principle.

3.6.3 Robust beamforming

Data-independent beamformers rely only on apriori known information, often not
available in completeness, about the propagation environment and other system
properties. In order to obtain high detection performance, imaging algorithms to be
employed in the experimental system, thus, must be robust to the uncertainties of the

parameters.

As before, the signals are first pre-processed to remove the direct pulse and the skin-breast
artifact. Then the compensation is applied as shown in Fig. 3.3. Further, the following
signal model is considered. Each signal x,, is represented as a sum of a backscattered signal
s[n], scaled by a focusing vector a, and error e, comprised of both interference (primarily
due to clutter) and noise. The focusing vector a is assumed to be equal to a unit-vector
[1,1...1] since all of the signals are aligned. However, due to uncertainties in propagation
parameters there are errors in the calculation of the time shift 7,,(r) and the assumed

focusing vector a is, thus, slightly deviated from a.

Deviations of an assumed focusing vector a from the actual a may cause significant
degradation of the resulting beamforming performance. Thus, the robust beamforming
approach seeks to find optimal values of a and to adjust the filtering coefficients w

appropriately, in order to compensate for these uncertainties.

Several formulations of the robust beamformers applicable to UWB breast imaging have

been proposed in the literature.
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Lorenz and Boyd in [178, Chapter 1] formulate the Robust Minimum-Variance Beamformer
(RMVB), which is based on the adaptive Capon’s method, also known as Standard Capon
Beamformer (SCB). The beamformer weights are obtained by solving an optimization task
to minimize the weighted power output of the array in the presence of uncertainties in a

limited by a hyper-ellipsoid &:

minimize wfR,w

‘ . . (3.43)
subject to Re{w'la} >1Vaec¢& ,

where R, is a sample covariance matrix estimated from the last P received samples as

follows:
N
R, = > x(m)xf(n) ecM (3.44)

The solution to this problem can be given by Lagrange multiplier method [178, Chapter 1].

Gershman et al. [178, Chapter 2| follow similar approach by setting the optimization

task to maximize the output beamformer Signal-to-Interference-and-Noise Ratio (SINR),
estimated by:

SINR o:lwal” 3.45

- WiRow (3:45)

Bounding the norm of the variation of the focusing vector § = a — a to some pre-defined

constant €, the worst-case SINR is maximized:

ofw'(a+ )|
i : < ) (3.46)
max min WIRow subject to [|d]] < e

The solution to this task is given by:

-1

w = (Rm + LI> a , (3.47)

[w

where ||w|| can be found by applying an eigenvalue decomposition and Newton-Raphson
methods as described in [178, Chapter 2]. This leads to the robust variation of the
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Minimum-Variance Distortion-less Response (MVDR) beamformer.

Stoica et al. [178, Chapter 3], in contrast to the spatial filtering formulation of SCB
considered in two previous approaches, couple the covariance fitting formulation of SCB
with ellipsoidal or spherical uncertainty sets to obtain Robust Capon Beamformer (RCB).
Several formulations of the RCB have been proposed so far, which differ in the types of
constraints.

The covariance fitting formulation of SCB considers maximization of the beamformer

2

output power o2 = w’R,w while limiting the residual sample covariance matrix to be

positive semidefinite:
max o? subject to R, — c2aa’ > 0 , (3.48)

where the notation A > 0 denotes that A is positive semidefinite (A is an arbitrary

matrix).

Robust version of the beamformer above is given by including a as an optimization
parameter and applying additional constraint to the focusing vector of one of the

following types:

e Single Constraint Robust Capon Beamformer (SCRCB): in case of non-degenerate
ellipsoidal uncertainty approach the additional constraint is
(a—a)fC !(a—a) < 1. Flat ellipsoidal uncertainty set introduces the following
constraint: a = Bu+a, ||u| < 1, where B is an M x L matrix (L < M) with full

column rank and u is an L x 1 vector.

e Norm Constraint Robust Capon Beamformer (NCRCB) explicitly limits the norm of
the weight vector: [[w|[? < (. The first constraint in this case is considered from
H

the spatial filtering formulation, as w"a = 1.

e Double Constraint Robust Capon Beamformer (DCRCB): Spherical uncertainty set

is considered and the norm of the focusing vector is limited to an arbitrary constant:

(@)

la—af* < :
Ja? BTN (3.49)
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Solutions to the described optimization problems are given in [178, Chapter 3]. It is claimed
that the RCB is simpler and computationally more efficient than its equivalent counterparts
presented in [178, Chapter 1-2]. Moreover, in contrast to the formulations of RMVB and
the robust MVDR, RCB provides a simple way of eliminating the scaling ambiguity while

estimating the power of the desired signal.

The RCB approach with the spherical uncertainty set has been applied to the microwave
breast cancer detection problem in [141] and extended to multistatic scenario in [143]. The
results demonstrate increased performance of this method compared to previously studied
non-robust methods. It is also noted [178, Chapter 3] that DCRCB is the preferable
beamformer for the applications demanding high SINR, while RCB is the favored one for

the applications requiring accurate signal power estimation.

3.7 Performance metrics

Quantitative comparison of the imaging algorithm performance is not possible without
appropriate metrics. In the here-reported work, the following metrics will be used to assess

the algorithms.

Correct Detection is a binary measure which shows if the location emphasized by the
algorithm (image maximum) is associated with the reflections from tumor rather than
from the clutter. In order to verify this, the image of the healthy breast model is
subtracted from the image of the breast model with a tumor inside. If the peak of the
resulting image is within the 10-mm radius circle around the one detected by the
algorithm in the tumorous image, the detection is treated as correct. Otherwise, it is
assumed that the resulting image provides a misleading detection and is omitted in the
subsequent analysis. Metrics presented further are only valid and computed in the cases

of the correct detection.

Signal-to-Interference-and-Noise Ratio (SINR) - This metric is defined as
SINR = 201log (Imax.s/ Imax.n) , (3.50)

where Iaxs and Iyax, correspond to the peak amplitudes of the tumorous and healthy

images, respectively. The SINR is an important metric for the detection purpose which
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shows the capability of the algorithms to discriminate tumorous breasts from healthy

breasts.

Localization error (E;) - Shows the distance between the true tumor location ¢ and the one

estimated by the algorithm c:

E=lc—¢| . (3.51)

Peak-to-SideLobe Ratio (PSLR) - This metric is defined as
PSLR = 201log (Imax.s/Ls1) : (3.52)

where I is the most significant sidelobe amplitude of a tumorous image.

PSLR shows the level of artifacts surrounding the main lobe, corresponding to the tumor.
It can be useful to estimate the amount of distortion (the “sidelobe” level) introduced by
an imaging algorithm. The sidelobes can deteriorate the overall performance by amplifying

the clutter effects at the locations of sidelobes.

Mazximum-Size-at-Half-Mazimum (MSHM) - This metric is defined as the distance between
two furthest points on a contour of the main lobe at -3 dB level in a tumor-containing image.
MSHM is a metric to evaluate the resolution achievable by the imaging algorithms. Larger
values of MSHM evidence for lower resolution as the tumor appears more “smeared” in
the output image, thereby reducing the capability of the algorithm to distinguish between
two closely located scatterers. It is expected for the MSHM to increase while the dielectric

contrast is being reduced.

3.8 Chapter summary

This chapter presented the general problem of microwave breast cancer detection and

imaging. Several models of the recorded microwave signals were discussed.

Further, a theoretical background of wave propagation models in lossy media was provided,
followed by the description of the associated physical effects, such as delay, attenuation,

spreading and scattering.
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In order to present imaging algorithms, several array signal models were introduced, each

convenient for a particular type of algorithm set.

The main part of the chapter described the MWI algorithms. In particular, a
detection-theoretic approach was presented with the GLRT formulation. Next,

beamforming algorithms were discussed, such as the DAS beamformer, FAS beamformer,
the DMAS beamformer and the RCB beamformer.

Finally, performance metrics used for the algorithm performance assessment were defined.



63

Chapter 4

Microwave radar and
microwave-induced thermoacoustics:
dual-modality approach for breast

cancer detection

Several promising microwave breast cancer detection techniques, intended to complement
conventional methods such as X-ray mammography and Magnetic Resonance Imaging
(MRI), have been under development for the past decade. In addition to the evolution of
the Ultrawide-Band (UWB) Microwave Radar (MWR) described in the previous chapter,
another kind of imaging that utilizes microwaves has been under investigation.
Microwave-Induced Thermoacoustics (MWIT) [94, 179] imaging exploits the contrast in
the conductive loss between malignant and healthy tissue and holds the promise of a high
spatial resolution due to the short acoustic wavelength [179, 180]. Similarly to MWR,
MWIT technique is based on illumination of the breast with microwaves. However, in
contrast to MWR, the microwaves are used to achieve selective heating of tumorous areas
due to the contrast in the conductive loss. This leads to expansion of these areas, which
produces acoustic waves, recorded with transducers. Processing of the collected signals

gives the images, representing the absorption of microwave energy inside the breast.

The research work described further in this thesis demonstrates that the combination of
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these two modalities can potentially provide better detection performance than each of the
above techniques alone. This chapter describes the methodology and the results of the

developed microwave dual-modality detection technique.

A number of significant steps have been made to address the essential problems related to
both MWR and MWIT technologies. To summarize, Fear et al. proposed one of the early
microwave radar breast cancer detection systems in [94]; the delay-and-sum algorithm was
used for imaging and detection. Bond et al. developed beamforming algorithms [75] and
Davis et al. developed hypothesis testing algorithms [76]. Williams et al. developed
complementary processing techniques including artifact removal and skin surface
identification [114]. Klemm et al. [181] described an experimental system and reported on
its evaluation on realistic breast models and patients. Xie et al. strived to improve the
robustness of detection for the MWR method in [143]; a similar methodology was applied
to the MWIT modality in [95]. Xu and Wang demonstrated the feasibility of the MWIT
technique for imaging biological tissues in [180], and Kruger et al. described the first
hardware device for MWIT-based breast imaging in [179].

Recent experimental works show that certain challenges related to both MWR and MWIT
imaging remain unresolved or resolved only partially, which demands further investigations
in the field of microwave breast cancer detection. For example, a major problem associated
with the MWR method is high level of tissue heterogeneity, which leads to increased amount
of clutter in the recorded signals and results in low tumor detection rates. Uneven heating
related to the MWIT technique introduces high degree of uncertainty and increases false

positives.

No attempts have been made to fuse the MWR and MWIT modalities together into a single
imaging system, which is the purpose of this research study. Further discussion is based
on the assumption that the measurement noises, experienced when applying these two
techniques, are independent because they rely on different physical characteristics. This
work develops a methodology to process the input signals jointly based on a hypothesis
testing framework and proposes two different test statistics. In order to set the threshold
for detection, the distributions of the test statistics are derived. The proposed methodology
is evaluated on numerically simulated signals acquired by applying the FDTD method to a
set of two-dimensional breast models. These models have a realistic distribution of tissue

derived from MRI images. The results of the dual-modality detection method demonstrate
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significant improvement in the detection performance.

The rest of the chapter is organized as follows. Section 4.1 presents the dual-modality
detection scheme and defines the problems to be addressed. The details of the proposed
methodology are provided in section 4.2. The numerical simulation process is described in
section 4.3. Implementation details and the results are discussed in section 4.4. Finally, a

summary of the chapter is presented in section 4.5.

4.1 Problem statement

In the problem of dual-modality breast cancer detection, a scenario discussed in section 3.1
is considered. A patient lies on a test-bed in a prone position with the breast naturally
hanging down into a radome with antennas and acoustic transducers surrounding the breast.
Fig. 4.1 shows a simplified dual-modality detection scheme as a coronal slice of one of the

breasts of the patient and one of the antennas/acoustic transducers.

A/n/t/e/n/nﬁ ——————— -~ * N
%gz
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Fig. 4.1 Schematic representation of the proposed dual-modality breast
cancer detection method: a) Microwave radar mode; b) Micorwave-induced
thermoacoustics mode.

A two-stage monostatic data acquisition system is considered. At the first stage the system
works in the MWR mode (Fig. 4.1a): sequentially for each of M, antennas, a wideband
microwave pulse is radiated toward the breast and the reflected signal is collected with the

same antenna (recorded in N; samples).
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At the second stage (MWIT mode), 800 MHz microwave modulated pulses of a micro-
second duration are radiated to heat the breast from M, angles. The induced acoustic
signals are received by the transducer on the opposite side of the breast (N, samples).
The MWIT mode requires a relatively large acoustic transducer to receive the signals; the
alternative, simpler scenario can be implemented with just one microwave antenna and one
acoustic transducer at the opposite side of the breast (as suggested in Fig. 4.1b), rotated

mechanically around the breast.

Signals recorded for both MWR and MWIT modes have several components. In the MWR
case, signals contain direct pulses (see chapter 3), reflections from the skin-breast interface,
reflections from the internal tissue (clutter) as well as the measurement noise. Similar
components are relevant for the MWIT signals, except for the direct pulse, since the MWIT
signals are induced rather than reflected. The incident antenna pulses are removed from the
MWR signals by subtracting the known calibration signal (recorded beforehand without
the patient on the test-bed).

In this study, the removal of the skin-breast artifact for both MWR and MWIT signals
is accomplished by a modification of the algorithm described by Bond et al. in [75]. The
pre-processing procedures yield a set of column-vectors x; = [z;1,..., 25|, i =1... M,
which represent the MWR signals and another set of column-vectors w; = [u;1,. .., ujn,]|"
j = 1...M, for the MWIT signals. A case with Ny = Ny = N and M; = My = M is

considered further in this work and indices i, j are replaced further with common channel

Y

index m for convenience.

This research work adopts the detection-theoretic approach of hypothesis testing, based
on the analysis of a test statistic. The goal of this study is to develop an optimal way to
process the signals x and u jointly. A test statistic for the dual-modality approach is derived
and its null-hypothesis distribution is analyzed, for the purpose of setting a threshold for
detection. For assessment purposes, MWR and MWIT single-modality test statistics are
also computed. The dual-modality approach is evaluated on a set of signals acquired from
numerical simulations of the described test-bed. Structurally-realistic breast models with
multiple settings of the dielectric tissue properties are constructed for the simulations to

examine the impact of low contrast and high clutter.
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4.2 Methodology

4.2.1 Signal models and assumptions

Signal model described in (3.27) is considered for both MWR and MWIT signals:

L
Xm = Z QpSem + €m ; (41)
/=1
L
u,, = Z nédé,m + Cm . (42)
/=1

In the expression above, dg, is the induced pressure signal in contrast to sy ,,, which is the

back-scattered microwave pulse. Other variables are explained in section 3.4.2.

The GLRT algorithm, described in section 3.5, is applied to both of the signals (4.1) and

(4.2), which results in the images of the following test statistics:

x"1P. x uPau

U(X):XH—PSJ-X ; V(u>:uH—Pju 7

(4.3)

where U denotes the test statistic for MWR modality, V' denotes the test statistic for the
MWIT modality and matrices P, P+ are described in section 3.5.

In order to fuse MWR and MWIT methods together, the noise components &, and ¢,
are modeled as jointly Gaussian with zero means and covariances agRg and U%Rc, where
matrices Rg¢ and R¢ capture the structural properties of the covariance, and scalars ag and
UZ. specify the noise powers. The noise components are assumed to be independent between
the channels and between the MWR and MWIT methods. It is assumed that Re and R
can be estimated using a training data set containing responses from a number of healthy

breasts.

As discussed in section 3.5, the concatenation of vectors x,, is further represented in the
form of a single NM-length vector x. Similarly, vectors u, s, d represent N M-length

vectors of concatenated vectors u,,, s,,, and d,,, respectively.
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4.2.2 Hypothesis testing and generalized likelihood ratio test

In as similar way as described in section 3.5, at each scan location ¢ = 1,..., L, a binary
hypothesis test of a tumor presence is performed (hypothesis 'Hél)) versus null-hypothesis
(HEO)) for the joint MWR/MWIT breast tumor detection as follows:

Héo) Cap,m =0 VS. ’Hél) Do £0 . (4.4)

The detection problem is defined in the same way as in section 3.5 and the signals are

whitened accordingly:
x=R;’x ;  a=R;u . (4.5)

The clutter covariance matrices are estimated from a training set of (available) ten tumor-
free breasts, using the averaging. For simplicity, further discussion will use variables x and
u assuming these signals are whitened. Further, the derivations for one given location are

considered, and the index ¢ is omitted.

The dual-modality GLRT performs the comparison of the generalized likelihood ratio

L (x,u) against a threshold ~:
Hi
LG(X7 u) 2 Yo (46)
Ho

L¢(x,u) can be factorized under the assumption that the noises are independent:

p(X|d1, 6—2717 %1)p(u|ﬁ17 62,17 Hl)

Lg(x,u) = - -
Bem) = = 12, Hop(ul6Zy, Ho)

, (4.7)

where variables with the hat symbol and sub-indices 0 and 1 denote Maximum Likelihood
Estimates (MLE) under null- and alternative hypotheses respectively, which are given by
(175, Appendix 9A]:

o = (sHs)f sfx = (de)il d"u ; (4.8)
1 1

&271 _ WXH (I _ Ps) X &2,0 = WXHX s (4 9)
1 1

621 =-—u’(I-Pgu ; 629 =~—u"u (4.10)
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In these expressions I denotes the identity matrix and Py = s (s” )_1 s and
Py =d (dH d)_1 d represent projection matrices that project a vector onto the signal

subspace.

Making use of the MLE expressions in (4.7) and considering Gaussian distributions, results

in the following likelihood ratio:

PR TR
o= ()" ()
0'571 O'Cl
xHx =N uflu =R
B (xH <I—Ps>x) ‘ (uH <I—Pd>u)
= (A(x) x A(m)? . (4.11)

Substituting this into (4.6) and noting that (-)"2 is a monotonically increasing function,

results in the following decision rule:
Zxw) A AW = 5 (412)

For a fixed probability of false alarm, the threshold 4 can be determined from the inverse
Cumulative Distribution Function (CDF) of the test statistic Z(x,u) (see section 4.2.4).

It can be shown that Z(x,u) can be expanded as follows:

Z(x,u)=14U(x)V(u)+U(x)+V (u) : (4.13)

In order to eliminate the bias term in Z, the constant “1” is subtracted from (4.13), which

results in:

Zx,u)=U(x)V(u)+U(x)+V (u) : (4.14)
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4.2.3 Heuristic test statistic

This work also considers a heuristic alternative to Z(x,u). Since U and V are likelihood
ratios, it is intuitive to multiply them to fuse the results of the MWR and MWIT modes:

W(x,u) =U (x)V (u) : (4.15)

Later, in section 4.4, it is shown that the W (x,u) statistic provides higher clutter and

sidelobe suppression performance than the derived Z(x,u).

4.2.4 Distributions of the test statistics

The distribution of U (x) and V (u) up to a scaling constant under #, is given in [175]
and is identified to be the central-F with the same degrees of freedom, ¢; = ¢o = 1 for the
numerator and d; = dy = (NM —1) for the denominator. Detailed derivation for the CDFs
of W(x,u) and Z(x,u) is available in [182].

In brief, the expression for the CDF of Z(x, u) is obtained by considering Z(x, u) in the form
of (4.12) and representing it as a product of two identically distributed random variables
Z; of the form Z; = (V; + X;) /Y; with ¥; = x#P;x; and X; = x/Pg,x;. Under H, they
are independent, central chi-square distributed random variables with ¢; and d; degrees of

freedom, respectively.

By considering the joint distribution of numerator w = X +Y and denominator o = Y and
using the Jacobian method for the random variable transformation, the probability density

function of Z; can be represented in terms of Meijer’s G-function, as follows [182]:

—
|0
S~—

—3
~ _ﬁ_ﬁ) , (4.16)
2

where I' denotes the Gamma-function and G is Meijer’s G-function [183].

Applying the Jacobian technique again and using the G-function integrating formulas from
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[183], it can be shown that the CDF of Z = Z,Z, is:

Py - DEHSIN(G +%)
L($T(F)
1-2 , 1-2 1
><G§§< 1_0_1_& 1_0_2361_2 0) : (4.17)
2 2 ) 2 2 ’

The distribution of W (x,u) under H, is the distribution of the product of two centered
F-distributed random variables, which can also be expressed in terms of chi-square
distributions. The procedure of the derivations uses similar techniques to the ones
employed for the Pz(z) derivation. The moment generating function for W can be

expressed in terms of Meijer’s G-functions as follows [182]:

L1-91-2
()
3.2
T(dy/2)T(da/2)T(c1/2)T (c2/2)’

where ¢y, ¢9,dy, dy are the degrees of freedom of the four chi-square random variables.

Mw(U.)) =

(4.18)

The inverse Laplace transformation of (4.18) and application of the formulas from [183]

give the expression of the CDF:

G§§<d1d2w 1;_ R 1)
cic ?1 ’ 72 0 4 19)
[ (dy /2)T(da/2)T(¢1/2)T (¢2/2) : (4.

4.2.5 Signal templates

Variables s and d in (4.1) and (4.2) represent signal templates, i.e. theoretically derived
signals obtained by modeling EM wave propagation in dielectric media. The MWR signal

templates s are obtained using the EM model (3.23). The frequency-domain representation
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of the theoretical signal template is modeled by:

e—ijb(w)d@m

Sm(UJ) = G(jw)Tefﬂ'ktS(w)(dts,ﬁr(I)
b,m
% Z H? (kys(@)dism) (4.20)

where G(jw) denotes the frequency spectrum of the incident wideband Gaussian modulated
pulse, the second (rational) term describes the two-way propagation in the background, the
third (exponential) term denotes the forward propagation of a plane wave in the tissue,
and the fourth (summation) term denotes the scattering by a tumor modeled as a dielectric
cylinder [169]. Variables d, and d;s denote the propagation distances in the background
medium and tissue, respectively, and k;, and kts denote their frequency-dependent wave
numbers, respectively. Here, H? denotes the n*-order cylindrical Hankel function of the

second kind, and the coefficient a,, is given by:

6—‘71(] (ksa)J, (kqa) — Et—s(]n(kda)f (k:tsa)
H (kts )J (kda) + ets J (kda)H (kts )

, (4.21)

where a is the tumor radius and k; is the tumor wave number. ¢, and ¢; are the relative
permittivities of the healthy tissue and tumor, respectively, .J, denotes the n'"-order
cylindrical Bessel function, and (-)" denotes the derivative with respect to the argument of
the function. The effect of the skin is not included in the model due to the small electrical
size of the skin. This frequency-domain signal template is sampled with a 60 GHz

sampling frequency and transformed to the time domain (512 samples).

For the MWIT signal template, it is assumed that the tissue and the matching medium have
the same acoustic properties. The acoustic propagation properties include the estimated
average acoustic attenuation «, and acoustic speed ¢,. In order to model the finite sizes
of the tumor and the acoustic transducer, the induced pressure is integrated among tumor
region ) and the transducer aperture V¥, respectively. The time-domain signal template

models the delay and attenuation [95]:

_aa db m+dts m)
/ / ( M) 404U (4.22)
\V4 dbm + dts ,m Ca
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where () is the signal modulating the sinusoidal plane wave.

4.3 Numerical simulations

4.3.1 Breast models

The study described in the chapter considers two-dimensional circular numerical breast
models with 80-mm diameter tissue enclosed by a 2.0-mm thick skin as shown in Fig. 4.1.
The choice of the two-dimensional models is dictated by the limited computational resource:
the simulations required for the MWIT modality are too time-consuming to consider three-

dimensional realistic breast models.

Human breast has irregular geometrical shape, which poses challenges for both the skin-
breast artifact removal and the estimation of the distances of microwave propagation in
each medium. Thus, the circular breast shape is adopted in this work so that the study can
focus on the detection problem and leave the problem of irregular breast shape for future
research. The dielectric properties of the tissue are derived from ten MRI images [27] and
are described by the one-pole Debye model (3.6) with the relative permittivity for infinite
value of frequency €., the difference between the infinite and static relative permittivity

Ae, the static conductivity o,, and the relaxation time constant 7.

In order to cover a range of possible average dielectric properties of the healthy breast tissue,
N, = 9 series of numerical breast models are considered, with the EM tissue properties
defined by the Debye model in [184]. Table 4.1 contains the parameters of the models: A,
and 7 have been fixed to constant values while €., have been assigned values by linearly

mapping the grey-scale MRI pixel intensity as:

eoo(D) = €oop (1+5— M(p) = min(M) ) , (4.23)

2 max(M)— min(M)V

where p is the pixel number in the MRI image M; v denotes the percent of variation, which
defines the level of heterogeneity (Table 4.1). Exactly the same expression applies to map
os. Table 4.2 depicts the exact values of the tissue properties that are used for modeling
[185]. The last four columns of Table 4.1 represent the resulting statistics of the generated

material maps: the minimum and maximum ratios of the dielectric properties of malignant
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to benign tissues evaluated at the central frequency 6.85 GHz using the Debye model. In

the considered scenario the breast is immersed in an oil-like coupling medium with €, = 4.8.

Table 4.1 Tissue properties for data series

Series # Debye model parameters v x 100 | min(e,m/€p) | max(e,m/€rp) | min(o,,/op) | max(om,/op)
€op | Osp (S/m) | A | T (ps) '
1 3.1 0.05 1.6 13 7 10.6 11.1 24.8 25.1
2 4.0 0.08 3.5 13 30 6.4 7.7 11.5 11.9
3 4.0 0.08 3.5 13 40 6.3 8.0 11.5 12.0
4 13.0 0.4 24.4 13 30 1.4 1.6 1.7 1.8
5 13.0 0.4 24.4 13 50 1.3 1.7 1.7 1.8
6 13.0 0.4 24.4 13 70 1.3 1.7 1.7 1.8
7 13.8 0.7 35.6 13 10 1.1 1.2 1.2 1.2
8 13.8 0.7 35.6 13 30 1.1 1.2 1.2 1.2
9 14.2 0.8 40.5 13 10 1.0 1.1 1.0 1.0

Five acoustic and thermal properties associated with the breast models have been
compiled from [27, 186, 187] and are listed in Table 4.2. Density p, acoustic attenuation
oy, heat capacity c,, and volume expansion coefficient o are assumed constant for each of
the propagation media. Acoustic speed ¢, is variable to capture the acoustic
heterogeneity of the breast tissue. In this study, ¢, is mapped from the MRI pixel
intensities using (4.23) with v = 0.1 and ¢, = 1510 m/s.

Ten (IV;) different realizations of tissue structure (H1,...,H10) have been used for each of
the nine series. H2,....H10 have been utilized as the training set to capture the distribution
of the tissue clutter while H1 has been left to build two tumorous breast models by placing
a circular tumor (radius R = 3 mm) inside the breast tissue at two positions relative to
the center of the breast: [-20 mm;8 mm]| (P1) and [15 mm;-15 mm)] (P2). These are chosen
to illustrate an easier imaging scenario (adipose-dominant area) and a more difficult one
(tumor location for P1 has a higher tissue density, which decreases the dielectric contrast
and makes the detection task more difficult). Overall, Ny x N; = 9 x 10 = 90 healthy
and Ny X 2 = 9 x 2 = 18 tumorous breast models have been considered in this study.
An example of the distribution of the permittivity and conductivity for series #8 (tumor

location P2) is shown in Fig. 4.2.
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Table 4.2 Material parameters, where “-” denotes a pixel-wise mapping
from the MRI pixel intensity values to the physical properties. For the
background, ¢, is given in place of e

Unit Background Skin Tissue Tumor
€so Unitless €, =4.8 15.93 - 6.75
Os (S/m) 0.0 0.831 - 0.79
Ae  unitless N/A 23.83 - 48.35
T (ps) N/A 13 13 10.47
Ca (m/s) 1452 1615 - 1550
a, (dB/m) 95 35 45 41
p  (kg/m?) 950 1100 1020 1182
¢, J/(kg'K) 1800 3680 2220 3500
o 1/K 6.3-107*  3.0-107* 3.0-107* 3.0-1074

4.3.2 Microwave radar simulations

In the MWR simulation, as shown in Fig. 4.1a, transverse-magnetic Gaussian-modulated
sinusoidal plane waves polarized in the +z direction (directed from the paper towards the
reader as in Fig. 4.1a), with a 3-dB bandwidth of 7.5 GHz, are launched towards a breast
model at M = 36 equally-spaced angles. The FDTD method is used to solve Maxwell’s
equations and simulate the plane wave propagation using the analytic field propagator
method [188]. The spatial increment is set to 0.4 mm, which leads to 475x450 Yee’s cells
(the unit element of the spatial grid of the finite-difference computation [189]). In order to
truncate the scattered field region, 10 perfectly-matched layers are placed at the boundaries.
Each simulation has a time-span of 8.0 ns to ensure that all the scattered microwave energy
has left the simulation domain. The result is a vector of scattered signal recorded at each

of the M antennas working in the receiving mode.

4.3.3 Microwave-induced thermoacoustic simulations

In the MWIT simulation, as shown in Fig. 4.1b, plane waves at 800 MHz are launched
towards the breast model at M = 36 angles. Each simulation runs for 8 periods to reach

the time-harmonic steady state. The two-point estimation method [190] is applied in order
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Fig. 4.2 Dielectric properties of the numerical breast models evaluated at
6.85 GHz (series #8, tumor at location P2).

to calculate the amplitude of the electric field E,. The following expression is used to
calculate the point-wise Specific Absorption Rate (SAR):

ﬂﬂzﬂﬁgﬁﬂi, (4.24)

2p(r)

Where o(r) and p(r) denote, respectively, the conductivity and density of the breast tissue
at location r. The wavelength at 800 MHz in the coupling medium is 171 mm, which is
two times larger than the dimension of the breast models. The non-uniform heating due
to the comparable electric size of the breast is inherently included in this simulation. The
calculation performed by our research group show that the variability of the SAR across
the breast domain reaches 15dB.

The SAR is interpolated from the coarse grid for the electromagnetic simulations to the

dense grid for the acoustic simulations. The thermoacoustic wave equation is
1 0% a 0

Vp—5—=5=——=5S()I(t 4.25

p CZ atQ Cp at (I') ( ) ? ( )

where p denotes pressure. The right-hand side of this equation is the spatially dependent

SAR multiplied by the temporal envelope I(t), which is a Gaussian function with a 10 dB

bandwidth of 1.1 MHz. The spatial increment is set to 0.1 mm, which leads to 1600x 1600
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Yee’s cells. The simulation domain is truncated with 20 perfectly-matched layers. Each
acoustic simulation captures a time-span of 150 us. In order to simulate the finite size of
the transducer aperture, the induced acoustic signals are averaged on a 1-cm line tangential

to the transducer placement circle, on the side opposite to the incident plane wave.

In order to reflect realistic measurement equipment, Gaussian measurement noise is added

to the acquired signals (on the order of -60 dB relative to the signal maximum).

4.4 Results and discussion

For evaluation purposes, this study uses the Peak-to-Sidelobe Ratio (PSLR) metric, defined

in section 3.7.

Each of the considered series 1,...,9 comprises two tumorous cases (P1 and P2) and a
corresponding healthy scenario (H1). Four images of test statistics, one for each of these
cases, are computed as described in section 4.2.2: U(x), V(u), Z(x,u), W(x,u). Fig. 4.3
illustrates examples of images obtained as the output of the GLRT algorithm corresponding
to the breast models depicted in Fig. 4.2. The pixels represent the test statistic values at
locations ¢ = 1,..., L on the grid with spatial resolution of 1 mm. With the 1-mm grid,

around 5100 test locations inside the breast region have been assigned values.

The difference in the spatial distribution of clutter between U and V test statistics is
noticeable, which is the principal property that the fusion benefits from. The W test
statistic displays considerable clutter suppression (Fig. 4.3c). The clutter- and sidelobe-
reduction effects of the W test statistic are also evident in the PSLR metric (Fig. 4.4). The

W test statistic provides high clutter-reduction performance for series 2 - 8.

Figure 4.5 depicts the maximum values of the test statistics, obtained for the tumorous
(i.e., under hypothesis H;) and healthy (H,) cases. An improved detection performance
can be observed for the W test statistic with respect to the MWR test statistic U (series
4,5,6 and 8 fall under or very close to the red line 7,,;, that denotes the maximum value
of the test statistic across the series under Hy hypothesis) and V' (series 2 and 3 go below

Ymin) While preserving the detection capability for other series.

The next stage of the tumor detection technique is the thresholding. The thresholds are set

based on an estimated distribution for the healthy cases with the goal of minimizing the
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Fig. 4.3 Examples of images for the four types of test statistics (unitless).
Note improvement in clutter suppression for W. Actual tumor location is

shown by a circle (tumor position P2).
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Fig. 4.4 Averaged peak signal-to-sidelobe ratio versus the series number
(Table 4.1). The W test statistic provides high performance to reduce the
effects of clutter for series 2...8.

Table 4.3 Detection performance for the thresholds given by the qvality
tool. The results correspond to tests on 90 healthy cases and 18 tumorous

cases
uvilv | \w,\|ZzZ
False alarms | 2 | 1 010
Misses 6 | 8

False Discovery Rate (FDR). The software package qvality [191] was used to estimate the
FDR with respect to the test statistics. For one healthy and two tumorous cases available for
each series, the leave-one-out approach was used to set the threshold, i.e., first the threshold
was estimated based on the values of the test statistics for cases P2,H2,.... H10 and applied
to the test cases P1 and H1; next, the threshold was obtained from P1,H2....,H10 cases and
applied to the test cases P2 and H1. The value of the test statistic with minimum positive

g-value was used as the threshold.

Table 4.3 summarizes the detection performance achieved using the described methodology.
The values in the table were obtained as follows. Thresholds calculated for each series and
mode were applied to the corresponding two tumorous cases and one healthy case. If in
the resulting images, pixels of the test statistic in the tumorous area remained above the
threshold, this case was considered as a “hit”. Otherwise, the result was considered as a

“miss”. Similarly, if after thresholding of cases H1 (with the two thresholds) some pixels
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Fig. 4.5 Test statistics maximum values under #; and Hg hypotheses for
each series: a)U; b)V; ¢)Z; d)W. Maximum values of test statistics across
the series under Hy and H; hypotheses are shown as the red and green lines,
respectively.

remained above the thresholds, it was considered as a false alarm. The tumorous area was
defined as follows: the circle of 10 mm radius around the image maximum in case of correct
localization; or the same circle around the actual tumor location in case the localization
was not correct for a given case. The localization was defined as correct when the image
maximum was within the 10 mm radius from the actual tumor location. The total number
of misses along all the series for P1 and P2 cases was calculated and inserted into Table 4.3.
The total number of false alarms summed up along the series is shown in the corresponding
columns. Improvement in detection performance for both W and Z test statistics can be
seen. It is important to emphasize that the 5 misses occur for series 8 and 9 when the
tumor is located in glandular tissue. In these cases, the dielectric contrast is substantially

lower than in the majority of previous simulation studies reported in the literature.

Since the FDR is penalized, the number of false alarms is lower than the number of misses.
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However, both the number of misses and the number of false alarms are less for the fusion
approach than for any of the component approaches, as follows from Table 4.3. This
demonstrates the utility of the proposed approach. If another criterion is used to set the
threshold, for example, minimization of the probability of type II error (probability of a
miss), better results could be achieved in the number of misses, but the number of false
alarms could increase. The investigation of the different thresholding approaches will be

considered in future work.

4.5 Chapter summary

This chapter described a dual-modality approach to fuse data from the methods of MWR
and MWIT. In the dual-modality hypothesis testing framework, two test statistics were
considered, one based on the GLRT and one heuristic. Null-distributions of these
statistics were derived to enable the selection of thresholds. The performance of the
proposed dual-modality detection method was evaluated using FDTD-simulated signals.
The fusion approach can decrease the number of “false alarms” (detection of tumor when
it is not present) and “misses” (failure to detect tumor that is present). Although limited
in statistical significance, these results indicate that it is potentially beneficial to use the

MWR and MWIT modalities jointly, in a manner that allows fusion of their signals.
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Chapter 5

Experimental device prototype for
microwave breast cancer detection:
signal acquisition and pre-processing
methods

During the past decade, research in microwave breast cancer detection has advanced to
experimental validation. Several experimental systems have been developed by research
groups worldwide. The results that have been published so far suggest that the microwave
method can be a viable solution for mass-screening. However, the current experimental

prototypes require further improvement and testing before their usage in a clinical setting.

Several challenges need to be addressed in order to bring the microwave breast cancer
detection technology to the market. Advancement of data acquisition systems plays crucial
role in the overall system success. This chapter focuses on challenges and solutions related

to the signal-recording system.

First, the design of the experimental device prototype considered by the research group at
McGill University is presented. The signals that this device collects are characterized. Next,
the factors that can introduce uncertainties into the collected signals are identified and
methods to mitigate these factors are discussed. Finally, the chapter describes a method

to compensate for the phase uncertainties in the signals, associated with the microwave
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sampling mechanism. Phase errors are one of the factors that reduce the resulting image
quality. This factor is crucial in “differential” imaging, when previously collected signals

are subtracted from the newly acquired signals in the time domain.

5.1 Requirements for the microwave data acquisition system

This research study focuses on a scenario when a patient lies on a bed with a breast placed
in a radome, as shown in Fig. 5.1. An array of antennas is integrated into the radome. One
antenna emits an electromagnetic pulse and all the other antennas record the signal scatter.
This process is repeated for each antenna taking its turn as a transmitter, producing an
array of recorded signals. These signals are pre-processed and passed into an imaging

algorithm, which constructs an image to highlight possibly present tumors in the breast.

The microwave imaging system consists of the following components:

—_

. RF pulse generator;
2. Circuits that condition the RF pulse and deliver it to one of the antennas;

3. Switching matrix that selects one of the antennas as a transmitter and one as a

receiver;
4. Array of antennas;
5. Recording device for sampling RF signals (oscilloscope);
6. Control system, based on a Microcontroller Unit (MCU);

7. Personal Computer (PC) that implements high-level data collection functions, signal

processing, imaging and visualization.

The recorded signals have the pattern shown in Fig. 5.2.

It is expected that the major component in the recorded signals is the pulse propagating
directly from one antenna to another. Another strong contribution to the signal can be the
reflection from the skin associated with the dielectric interface between the skin and the

matching medium outside of the breast. The power of the skin reflection depends on the
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Fig. 5.1 Schematic representation of the designed experimental system
(clinical trials).

mismatch in the dielectric properties between the skin/breast and the matching medium.
In order to minimize this reflection, the radome is filled with appropriately selected coupling
material. The signal of interest (a reflection coming from a possible tumor) is buried in
reflections from heterogeneous structures inside the breast (“clutter”). Finally, the recorded

waveform has noise associated with the measurement equipment and external interference.

In order to successfully detect tumors present inside the breast, the major requirement is
to maximize the Signal-to-Noise Ratio (SNR) of the collected signals. The requirements to

the data acquisition system can be summarized in the following list:

e Powerful transmitter. The power of the transmitted signal should be as high as

possible, while within the limits of safety regulations [91, 93].
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Fig. 5.2 Experimental signal model - components.

Antennas must be optimized in terms of: a) radiation efficiency in a chosen frequency

band; b) physical size; ¢) beam pattern and d) mutual coupling.

RF circuits, delivering the pulse between the signal generator/receiver and the

antennas need to provide low attenuation and cross-talk.

The switching matrix should introduce as little cross-talk between the channels as

possible, yet providing low insertion loss.
RF receiver should be sensitive to a very weak tumor response.

RF sampler needs to provide sufficient bandwidth to capture the required frequency
content. The dynamic range of the sampler shall be sufficient to accommodate both

strong direct pulses and weak reflections from small tumors.

Number of sensors should be optimized to meet the trade-off between sufficient
gathered information and minimizing the cross-talk and excessive system

complexity implied by excessive number of antennas.
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e Switching time between the channels must be minimized to reduce the overall data

acquisition time.

e All RF circuits and elements need to be well matched between each other to avoid

power loss and distortion of the signals.

e All RF elements of the system should be shielded to avoid external interference.

Numerous hardware design techniques can be applied to increase the SNR of the
measurement, equipment. However, some effects that introduce artifacts can be mitigated

in software, as it is demonstrated further in this chapter.

5.2 Experimental device prototype

Fig. 5.3 represents the block-diagram of the implemented data acquisition system.

A generic RF pulse, approximately Gaussian in shape, is generated by an RF pulse
generator Picosecond Model 3600 [192]. The generated signal passes through a
Synthesized Broadband Reflector (SBR) circuit that shapes the pulse to localize its
energy in the range of 2-4 GHz [99]. Next, the pulse is amplified by 35dB with a
microwave amplifier Mini-Circuits ZVE-3W-83+ [193].

The amplified pulse is passed through a custom-built 2 x 16 blocking switching matrix and
fed into one of the 16 TWTL antennas [3]. The block-diagram of the switching matrix
is shown in Fig. 5.4. The antennas are inserted into the slots of the radome made of
Al O3 [194]. The signal is transmitted through the breast and surrounding materials in
the radome and a portion of it is received by other antennas. The signal from a receiving
antenna is passed back through the receive path of the switching matrix and recorded
by PicoScope PS9201A. The oscilloscope implements a sequential equivalent-time sampler
with 16-bit resolution and equivalent sampling rates of 80 Gs/s and higher. The analogue
bandwidth of the oscilloscope is limited to 12 GHz [195]. The system is triggered by a 1 MHz
square-wave from a clock generator Tektronix GigaBERT 1400 [196]. For the purpose of
compensating the time-domain phase uncertainties in the sampled RF signals, the clock

signal is recorded at the second channel of the oscilloscope (see further in this chapter).
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Fig. 5.3 Measurement system block diagram.

The pulse generator, the switching matrix and the oscilloscope are controlled by a data
acquisition software running on a PC. The interface between the PC and the external
components is implemented with a microcontroller ST Microelectronics STM32F4 [197].
Imaging algorithms are implemented in Matlab and applied to the recorded signals
separately from the recording software. Fig. 5.5 depicts the assembled data acquisition

system as connected for testing.

5.2.1 Analysis of experimental signals and factors of uncertainty

Signals, acquired by the microwave sampler, possess undesired contributions, which are
referred to as artifacts and noise. Prior to applying imaging algorithms to the recorded

signals, these signal components should be removed or minimized. These undesired
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contributions are determined by the factors identified in [198] and are summarized below.

Noise and artifacts related to measurement equipment

When the signal passes through the measurement equipment, it can suffer from several
types of additive (vertical) noise/interference, which include: all the noise accumulated at
the RF paths, multiple reflections from such components as circulators and power splitters,
as well as ADC sampling noise. Vertical noise can be mitigated by using appropriate

components and cables, as well as band-pass or low-pass filtering.

Horizontal noise (phase uncertainties) introduces random variable component in the
beginning of waveform sampling time. This uncertainty might dramatically decrease the
quality of the microwave images. A method to compensate for the horizontal noise is

presented further in this chapter.

The described imaging system involves multiple signal paths (switching matrix and
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Fig. 5.5 Implemented data acquisition system (patient table not shown).

antennas), which is another source of variability. ~ Both antennas and the RF
cables/switches are made with limited precision. One of the methods to compensate for
this source of variability is to measure the paths with high-precision measurement

instruments and to apply corresponding compensation in software.

Artifacts related to EM signal propagation

There are several contributions to the recorded signals from the physical environment. As
it has been mentioned above, pulses from transmitting antennas propagate to the
receiving antennas directly. These “direct” pulses are removed by using differential
imaging approach: previously recorded signals are subtracted from the newly acquired
data. The direct pulses are not related to the tumor response, so they can be subtracted
directly in time domain, assuming no phase uncertainty between the corresponding

subtracted signals. This subtraction procedure is referred to as “calibration”.

Reflections from the skin can be subtracted either during the calibration procedure and/or
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by applying techniques described in section 3.2.

Figure 5.6 shows a model of a signal after pre-processing.
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Fig. 5.6 Recorded signal after pre-processing.

5.3 Compensation for phase errors in a microwave sampler

As mentioned earlier, the experimental system employs a sequential equivalent-time
sampling oscilloscope to record microwave signals in time domain. Experimental studies
described further show that the recorded signals often suffer from a significant phase jitter
and drift with respect to the trigger signal. This uncertainty in phase, not being an issue
for other applications, can result in a significant problem for the differential imaging

approach.

In the differential imaging signals, recorded at different times from the same patient at
different times, are subtracted from each other. The differential signals are then used to
identify the differences in the scattered EM field and to detect possible tumor reflections.
Slight shifts in time domain between the two pulses that are subtracted leaves a residual
pulse, that might hinder a weak tumor response. Thus, compensation for the trigger phase

errors is essential.
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This section presents an approach to reduce the residual pulse with the help of a “reference”
signal, recorded at the second channel of the oscilloscope. The “reference” signal is used to
detect phase shifts between the recordings. The values of these phase shifts are then used
to adjust the phase of the corresponding microwave signals, recorded at the first channel of
the oscilloscope. The clock signal that triggers the data acquisition system is used as the

reference signal.

Channel 1 Channel 2
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Signal 1 | |
I
| |
| AT, :
I
|
Signal 2 N s ﬂ 2
|
! — 1 |

Fig. 5.7 Time alignment based on reference signals.

Figure 5.7 demonstrates the idea of the described time alignment. It represents two sets
of recorded signals, each having a microwave pulse (channel 1) and a reference signal
(channel 2). The phase differences between the signals are denoted as AT} and AT, for
channel 1 and channel 2, respectively. Since signals in channel 1 change depending on the
imaging scenario (e.g. varying antenna pairs), but reference signals on channel 2 have fixed
shape, AT, between all the recordings can be estimated. Next, assuming ATy = AT;,
compensation for the phase difference in channel 1 can be performed using estimated AT5.
The assumption of AT} = AT; does not hold in reality. However, as will be shown further,
there is a significant correlation between ATy and ATs, which enables compensating the

phase delay partially. This compensation statistically improves the overall signal alignment.

The rest of this section is organized as follows. First, problem statement is presented in
section 5.3.1. Next, the methodology to estimate the phase delay between reference signals,
as well as the technique to efficiently align microwave signals are described (section 5.3.2).

Finally, the results of the experiments and the discussion are presented in section 5.3.3).
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5.3.1 Problem statement

Figure 5.8 displays typical signals, recorded with the data acquisition system, described in
section 5.2. The two signals are recorded from the same antenna pair one day after another.
The green signal represents a signal without a tumor response and the blue signal has a

weak reflection from a tumor phantom, inserted into the breast phantom.
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Fig. 5.8 Recorded signals (after band-pass filtering): green - signal without
tumor response (baseline); blue - signal with tumor response

It can be seen that the signals are almost identical in shape due to the dominant direct
pulse, propagating from one antenna to another. The graph also shows that the two signals

have a visible phase shift with respect to each other.

In order to remove the direct pulse, a calibration procedure is applied, which subtracts the
baseline signal from the signal with the tumor response. The result of the subtraction is

represented in Fig. 5.9a.

Since the recorded signals (Fig. 5.8) have a phase offset, their subtraction produces the
residual pulse seen at the same location in time as the maximum of the recorded signals
(sample range 240 - 250). However, if the baseline is delayed by 2.2 samples prior to
calibration, the residual pulse is significantly reduced (Fig. 5.9b). It can be seen that now
the maximum of the difference signal has shifted closer to sample range 330 - 340. This
is expected, since the tumor response is delayed by several nano-seconds with respect to

the direct pulse. In this case, the delay is approximately 1.25 ns (100 samples at sampling
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Fig. 5.9 Signals after calibration: a) without alignment; b) with alignment.

period Ts = 12.5 ps). This example demonstrates that the calibration procedure, without
properly aligned signals, results in the differential signals with the presence of a dominant
residual pulse. This pulse is on the order of magnitude higher in amplitude than the tumor

response and prohibits successful imaging.

Another concern associated with the phase delays in the recorded signals is that the
calibrated difference signals might be still offset across the channels of the imaging

system!

. This can happen if the method to align the recorded signals for calibration is
applied only between the pairs “baseline - signal with tumor response”. If the offset is
still present between the channels, it can result in increased blur of the images, produced

by the imaging algorithms.

Thus, the goal of this study is to develop a method to phase-align the recorded signals both
between the recorded sets of signals (i.e. between baselines and the signals with the tumor

response) and within the recorded sets of signals (i.e. between the channels).

The pairwise phase-alignment of the signals between the sets can be done by applying a

cross-correlation method between the baseline and the signals with the tumor response.

LA channel of the imaging system is defined by a pair of transmitting and receiving antennas
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Since the dominant direct pulse has the same shape in both of the signals, the detection of
their phase offset should not be an issue. The method with the cross-correlation, however,
does not apply to align the signals within the sets since the direct pulses are different from

channel to channel.

In order to overcome this, “reference” signals are recorded at the second channel of the
oscilloscope. They will be used to detect the phase difference, as previously mentioned in

section 5.3.

The phase delays ATy and AT; of the signals, recorded at the two channels of the
oscilloscope, may vary. However, since the internal oscilloscope paths of the signals fed to
channels 1 and 2 are usually implemented in a similar way (in contrast to the signal path
of the trigger), a hypothesis is considered that the variability of the phase between the
channels is lower than that between the channels and the trigger event. In other words,
the author conjectures that the correlation between AT; and AT, is high. If this
hypothesis is true, then the discussed alignment method shall help reduce the residual

pulse in the difference signals.

In order to develop an efficient signal alignment method for microwave imaging, several
steps are considered. First, the above-noted hypothesis should be tested. This task requires
an accurate method to estimate phase delays between the reference signals, which will be
developed further in this section. Next goal is to make use of the estimated phase delays
between the recordings in order to align RF signals and demonstrate that the residual pulse

after the calibration is reduced.

5.3.2 Methodology

In order to verify the hypothesis mentioned above, the test setup, depicted in Fig. 5.10, is

considered.

A 1 MHz clock signal from the clock generator is routed to both channels of the oscilloscope.
Inverted clock signal from the same generator is used as the trigger source. Short cable “3”
is used for the trigger input to start recording earlier than the same clock edge enters the
RF channels of the oscilloscope. Long cable “1”7 together with the short cables “2” delay
signals to channels 1 and 2 by approximately 40 ns. This delay is necessary to record the

same edge of the clock signal that is used to trigger the acquisition (cable “3” introduces



5 Experimental device prototype for microwave breast cancer detection:
signal acquisition and pre-processing methods 95

Tektronix GigaBERT 1400
Clock generator

CLK CLK

®
O 5.0

®

Chl Ch2 TR

PicoScope PS9201A
Oscilloscope

USB

USB

PC

Fig. 5.10 Trigger analysis setup.

the delay of approximately 1 ns). It is essential to record the same edge of the clock since
it practically eliminates the jitter of the clock signal, associated with the clock generator

(which can be up to 100 ps, according to the specifications [196]).

The timing diagram represented in Fig. 5.11 explains the delays of the system. It is shown
that the inverted clock signal arrives at the trigger input of the oscilloscope after delay

ATr ~ 1 ns. After another delay ATs ~ 37 ns [195], sampling of the channels begins.
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Fig. 5.11 Trigger analysis - delays.

Since the clock signals fed to the channels 1 and 2 are delayed by approximately 40 ns,

their delay relative to the start of the recorded waveform is ATg = 3 ns.

Delays ATy and ATs are not relevant for the analysis of the phase delay. The delay ATg
will be analyzed separately for each of the channels. Thus, the timing diagram represented

in Fig. 5.12 is considered.

Random variables T} = t; + Aty, Ty = t9 + Aty and 1o = t19 + Atyo are introduced,

where t1, s, t15 are deterministic components and Atq, Aty, Atis are random variables. As
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Fig. 5.12 Trigger analysis - delays between the channels (not scaled).

mentioned previously, the considered hypothesis is that std(At12) < std(At;) and
std(Aty9) < std(Aty), where std(-) denotes standard deviation of a random variable.

For convenience purposes, phase delays 77 and T, are not estimated. Instead of
estimating the delay of the signals with respect to t; = 0, equivalent random variables
ATy, ATy, and ATy, are estimated (Fig. 5.13). First two variables are found as mutual
phase delays between the base reference (signal #1, channel 1 for each dataset) and all
other signals. Variable AT}y is computed as a mutual delay between the two channels of

the same recording.

Chl, signal 1

I B
) AT
Chl, signal n —+__4_L
|
|
T
Ch2,signaln ATz O | o
N T
|1 AT,
_-T__r‘_ 12

Fig. 5.13 Representation of estimated phase delay variables.
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Estimation of the phase delay

In order to demonstrate that the hypothesis is true, the phase delays between the signals
need to be estimated. Estimation of these values is not trivial due to the noise in the
recorded data. This work considers three methods to estimate mutual phase difference
between the signals. Each of these methods has variations, depending on the steps and
settings applied, as described further. These methods are further compared to choose one
that provides the best performance for the application of the phase uncertainty

compensation.
Phase delay estimation in time domain

The time-domain phase difference estimation algorithm is shown in Fig. 5.14. In order
to reduce high-frequency noise, the signals are first low-pass filtered. Then, the resulting
signals are optionally differentiated to highlight the areas with the slope. Next, the region
with the slope is extracted and interpolated by a factor of 100. Finally, mutual cross-
correlation between the two signals is computed for multiple lags. Phase shift AT is then

taken as the lag that maximizes the cross-correlation.
Phase delay estimation in frequency domain

One of the benefits of the frequency-domain processing is the possibility to operate with
fractional values of delays directly, without interpolation. This potentially increases the

accuracy of phase estimation and reduces the complexity of the algorithms.

The first steps are the same as those applied in the time domain: the signals are low-pass
filtered and differentiated. Next, additional optional step is considered for the frequency-
domain algorithm: windowing. As shown later, windowing helps avoid artifacts associated
with the periodical assumption of input signals, when the Digital Fourier Transform is
applied. Next, the signals are transformed to the frequency domain by using the FFT. The
resulting spectra is denoted as Y;(w) and Ya(w).

In order to estimate the phase delay based on the spectra of the two signals, the propagation

of signal Yj(w) through a linear system H(w) is modeled, such that:

Yo(w) = Hw)Yi(w) (5.1)
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Fig. 5.14 Estimation of phase delay in the time domain with cross-
correlation.
Where system H(w) is modeled to introduce delay and attenuation as follows:
H(w) = e @@ (5.2)
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Thus, signal Y5(w) is represented as a delayed and attenuated version of Y7 (w):
Ya(w) = Yi(w)e #*7) . (5.3)

The frequency-domain phase estimation method considers two approaches to compute the

value of the delay between the two signals AT

The first approach (Fig. 5.15) is based on weighted averaging of the values of 7(w) across

the region of interest of w. Thus, this approach is referred to as “weighted tau”. First,

Reference 1 Reference 2

l LP-filter l LP-filter

Differentiate and/or Differentiate and/or
window window

FFT FFT

Phase Phase

Compute 1(®)

Y

Compute AT

Magnitude: use for
weighting

Fig. 5.15 Estimation of phase delay in frequency domain: direct phase
computation.
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7(w) is computed as follows:

B 1 Y1 (w)
7(w) = Re _j_wln 2() : (5.4)

In the above expression, only real part is taken since the imaginary part of the expression

is associated with the attenuation, which is not beneficial for the phase estimation.

Next, AT is calculated as follows:

AT = Z Tw)w; (5.5)

Where N = Npgpr/2 is the number of frequencies of the spectrum, excluding the DC

component and frequencies higher than Nyquist frequency. Weights are represented by w;,
such that % w; = 1 and where Ny < N denotes the number of frequencies under analysis.
Three foll(l):vling three options of weighting are investigated:

a) Weighting using all frequencies. Normalized magnitude of one of the signal spectra is

used as a weighting function?:
Y1 (wi)]

5> Vi)

w; =

(5.6)

In the equation above Ny = N.

b) Top 5% of most powerful frequencies are taken to form the weighting function. In this

case, the same equation (5.6) applies, but Ny is limited to 5% of the total number of

2Since the two signals are expected to have very close shape, their magnitude spectrum will be similar.
Thus, there is no significant difference which of the signals is taken for the weighting function.
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frequencies in the spectrum. All other weights are equal to zero:

ML vl > .05V
e Vi Yiw)] 2 CO0N)
wi=4 3 M) (5.7
j:
0, otherwise ,

Where C represents the array of values from |Y(w)], sorted in descending order.

¢) Single-frequency option. Most dominant frequency of the spectrum is used to determine

AT. The weights are determined as follows:

1, if i = argmax|Y7(w;)] ,
i (5.8)

Ww; =
0, otherwise

An alternative approach to compute AT is based on the minimization of Mean Squared
Error (MSE) (Fig. 5.16). This approach assumes that the value of 7 is constant across all
the frequencies. The optimum value of 7 to fit the model (5.3) based on weighted MSE is

then taken as the phase delay between the two signals:

Ny
AT = argminz [Va(w;) — Y1 (wi)e 7“7 Py, . (5.9)
T i=1
The expression can be further transformed as follows:
Ny
AT = argmin » _w; (|Ya(wi)* + [Vi(wi)]” = Ya(wi) Y5 (wi)e 77 — Yy (w;) Ya(w;) /™)

T i=1
Ny

= argmax Z W (Yl (WZ)YQ* (wi)e_jw” + Yl* (wz‘)}/g(wz‘)ejw”)
Ti=l
Ny
= argmax Z Re{ Y1 (w;) Yy (w;)e 747 Yy , (5.10)

T i=1

Where w; are real-valued weights, computed using the three methods, per (5.6), (5.7) and
(5.8).



5 Experimental device prototype for microwave breast cancer detection:
signal acquisition and pre-processing methods 103

Reference 1 Reference 2

l LP-filter l LP-filter

Differentiate and/or Differentiate and/or
window window

I I
' '

Magnitude: use for gl PR

weighting +

AT=argmin(MSE)
T

Fig. 5.16 Estimation of phase delay in frequency domain: mean squared
error minimization approach.

The optimal value of 7 can be found from (5.10) above using already available methods,

such as binary search or the Gauss-Newton method.

Time-shifting of microwave signals

Signals recorded from the experimental system (Fig. 5.8) are in the microwave range of
several GHz with the dominant pulses positioned closer to the center of the waveforms.
Several methods to shift signal with fractional delay are described in the literature [199,

200]. The most popular techniques are based on interpolation. For example, the study in



5 Experimental device prototype for microwave breast cancer detection:
signal acquisition and pre-processing methods 104

[200] uses B-spline filtering with interpolation. However, applied to the recorded “step”-
like signals with significant noise, methods based on interpolation have proven not to be
reliable, since they result in additional numerical artifacts. In order to avoid the artifacts,
signal alignment, in the work presented by this thesis, is accomplished in the frequency

domain, as shown in Fig. 5.17.

T

}

Input signal —p| FFT |—P»| *e* |—Pp»| [FFT |—» Time-shifted signal

Fig. 5.17 Procedure of time-shifting of microwave signals.

Since the signals are close to zero at the edges, the waveforms are quazi-periodic. This fact
allows avoiding using windowing procedure without significant artifacts on signal edges

after going through the FF'T transformation procedure.

Assessment of signal alignment performance

In order to demonstrate the performance of the developed signal alignment method, a test

setup shown in Fig. 5.18 is assembled.

In this experiment, instead of recording clock signal at both channels, the following pairs
of signals are recorded: the RF pulse at channel 1 and the clock signal at channel 2.
Figure 5.19 depicts two examples of such recordings. It can be seen from the graphs that
the signals are not properly aligned. The developed alignment method will be applied to
all such recorded pairs. Then, the RF pulses will be subtracted in pairs before and after
the alignment. For all the difference signals, their absolute maxima and the overall power
will be computed. These two metrics will be used to assess the performance of several

variations of the signal alignment method.

5.3.3 Results

This section is structured as follows. First, the results of the phase estimation techniques

are presented and one that proves to be the most accurate and reliable is selected for further
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Fig. 5.18 Pulse alignment analysis setup (refer to the beginning of section
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use. Next, the section provides the analysis of the phase, associated with the oscilloscope

trigger and the two channels. This analysis demonstrates that the hypothesis stated in

section 5.3.1 is true. Finally, the results of the assessment of the signal alignment method

are discussed.

Estimation of phase delay between reference signals

The phase estimation methods described above are applied to a synthetic negative “step”-

like signal, represented in Fig. 5.20. This signal has been generated analytically using the

following closed-form expression:

e[n]

—0.24 + 0.56¢0-19(n—)*47

(5.11)
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Fig. 5.19 Two pairs of recorded signals (green and blue): microwave pulses
in channel 1 (top graph) and reference clock signals in channel 2 (bottom

graph).
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Fig. 5.20 Analytically generated signal used for phase estimation method
analysis.

In the expressions above, 7 denotes a phase shift in samples. Expression (5.11) has been
obtained by fitting the exponential function to the reference signals, collected with the

oscilloscope.



5 Experimental device prototype for microwave breast cancer detection:
signal acquisition and pre-processing methods 107

1000 pairs of test signals are generated by adding random white noise of
-60 dB,-50 dB,-45 dB and -40 dB in power with respect to the signal. The second signal
in each pair is analytically delayed by 7 = 8.59 samples (the number is chosen arbitrarily)
with respect to the first one. The selected noise levels cover the range of noise observed in
the experimentally recorded signals at various recording and averaging modes of the
oscilloscope. Thus, in total 4 sets of 1000 pairs of signals are considered. In addition, a

pair of the above signals without noise is also used in the evaluation.

Multiple combinations of the phase delay estimation methods, described in section 5.3.2,

are applied to the signals. The following parameters of the methods are varied:

1. Phase delay estimation methods:

e Time-domain cross-correlation
e Frequency-domain ”weighted tau” method

e Frequency-domain MSE method
2. Windowing (only for frequency-domain methods): ON or OFF
3. Differentiation: ON or OFF
4. Weighting type (only for frequency-domain methods, refer to section 5.3.2):

e “All frequencies” weighting
e “Top 5% weighting

e “Most dominant frequency” weighting
5. Interpolation type (for time-domain methods only, see Fig. 5.14):

e Linear interpolation
e Cubic spline interpolation

e Piecewise cubic Hermite interpolation

Table 5.1 summarizes the results obtained for the time-domain phase estimation method.
For each combination of parameters, mean values of the estimated phase delay and standard

deviation are presented.
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Table 5.1 Time-domain phase estimation results (mean value / standard

deviation of estimated phase delay).

ND = differentiation is OFF; D =

differentiation is ON. “-” denotes failure to correctly estimate the phase delay.
Interpolation type

Noise level Linear Spline Hermite
ND‘ D ND\ D ND‘ D

No noise - 8.56,/0.00 - 9.00/0.00 8.53/0.00

-60dB - 8.56/0.15 - 8.66/0.48 8.54/0.27

-50dB - 8.54/0.86 - 8.57/0.81 8.55/0.82

-45dB - | 7.69/12.10 | - 7.96/9.01 7.76/12.16

-40dB - | 1.31/31.07 | - |2.06/31.05 1.61/32.20

The time-domain method, based on maximizing the cross-correlation of two signals with
respect to the shift, fails to correctly estimate the phase delay without differentiating the
signal. When differentiation is used, linear interpolation provides a better result. However,
neither of the variations of the time-domain method is capable of estimating the phase

delay at high levels of noise (-45dB and higher) accurately and precisely.

Table 5.2 Frequency-domain phase estimation results: “all frequencies”

weighting option (mean value / standard deviation of estimated phase delay).
NWND = windowing OFF and differentiation OFF; WND = windowing ON
and differentiation OFF; NWD = windowing OFF and differentiation ON;
WD = windowing ON and differentiation ON.

Method | Noise level | NWND | WND | NWD WD

No noise | 1.43/0.00 | 7.69/0.00 | 8.53/0.00 | 8.52/0.00

-60dB || 1.43/0.01 | 7.69/0.03 | 8.45/0.08 | 8.56/0.07

Weighted tau -50dB || 1.43/0.04 | 7.69/0.01 | 8.20/0.27 [ 8.55/0.14
-45dB | 1.44/0.07 [ 7.69/0.17 | 7.93/0.44 | 8.55/0.23

-40dB | 1.43/0.12 | 7.69/0.30 | 7.44/0.71 | 8.56,/0.43

No noise | 2.90/0.00 | 7.29/0.00 | 8.57/0.00 | 8.53/0.00

-60dB || 2.89,/0.02 | 7.29/0.04 | 8.56/0.05 | 8.55/0.07

MSE -50dB || 2.89/0.09 | 7.29/0.11 | 8.56/0.17 | 8.55/0.16
-45dB | 2.90/0.14 | 7.30/0.20 | 8.57/0.27 | 8.57/0.27

-40dB |[ 2.89/0.24 | 7.28/0.35 | 8.58/0.55 | 8.57/0.49

The performance of the frequency domain methods, applied to the realistic “step” signal

with the exponential decay transition, is summarized in tables 5.2, 5.3 and 5.4.
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Table 5.3 Frequency-domain phase estimation results: “Top 5%” weighting
option (mean value / standard deviation of estimated phase delay). NWND
= windowing OFF and differentiation OFF; WND = windowing ON and
differentiation OFF; NWD = windowing OFF and differentiation ON; WD
= windowing ON and differentiation ON.

Method \Noise level H NWND \ WND \ NWD \ WD

Weighted tau

No noise

2.51/0.00

7.68/0.00

8.56/0.00

8.52/0.00

-60dB

2.50/0.03

7.68/0.03

8.57/0.04

8.55/0.07

-50dB

2.48/0.06

7.67/0.09

8.57/0.13

8.56/0.14

-45dB

2.48/0.12

7.68/0.17

8.56/0.23

8.56/0.24

-40dB

2.48/0.20

7.68/0.31

8.58,/0.42

8.56,0.44

MSE

No noise

3.26,/0.00

7.29/0.00

8.57/0.00

8.53/0.00

-60dB

3.26/0.03

7.29/0.04

8.56/0.06

8.55/0.07

-50dB

3.26/0.03

7.29/0.11

8.56/0.17

8.56/0.16

-45dB

3.27/0.15

7.30/0.20

8.58/0.30

8.57/0.27

-40dB

3.25/0.25

7.28/0.35

8.56,/0.56

8.57/0.50

Table 5.4 Frequency-domain phase estimation results:

“Most dominant

frequency” weighting option (mean value / standard deviation of estimated
phase delay). NWND = windowing OFF and differentiation OFF; WND
= windowing ON and differentiation OFF; NWD = windowing OFF and
differentiation ON; WD = windowing ON and differentiation ON.

Method

| Noise level | NWND | WND

NWD

WD

Weighted tau

No noise

3.98/0.00

7.62/0.00

8.46,/0.00

8.49/0.00

-60dB

3.98/0.04

7.62/0.05

8.45/0.42

8.54/0.00

-50dB

3.98/0.12

7.61/0.15

8.45/1.3

8.55/0.15

-45dB

3.99/0.23

7.61/0.27

8.32/25

8.55/0.26

-40dB

3.97/0.40

7.62/0.49

8.66/4.2

8.58/0.47

MSE

No noise

3.98/0.00

7.62/0.00

8.46,/0.00

8.49/0.00

-60dB

3.98/0.04

7.62/0.05

8.45/0.43

8.53/0.08

-50dB

3.98/0.13

7.61/0.16

8.33/1.23

8.54/0.17

-45dB

3.99/0.24

7.61/0.28

7.93/2.05

8.56/0.27

-40dB

3.98/0.41

7.60/0.49

8.37/1.52

8.56,/0.46

Without windowing and differentiation applied, both “weighted tau”

and MSE methods

fail to correctly estimate the phase delay even for noiseless signals. This failure is related

to the fact that the step function is not periodic. Thus, the Fourier transform results in

significant artifacts at the edges, which prevent successful phase delay estimation.
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Windowing improves the performance, however the estimated phase is still off by around
11% ((8.59 — 7.62)/8.59 - 100%). Differentiation significantly improves accuracy, with the
best result achieved using the “top 5%” weighting.

As a conclusion from this experiment, the option with windowing OFF, with
differentiation ON and with weighting based on top 5% frequencies provides the
combination when most stable performance is achieved with acceptable accuracy. Applied
to the exponential decay step signal, “weighted tau” and MSE methods with the
combination of the selected options show similar performance. At the same time,
“weighted tau” method is simpler in complexity, since it offers a closed-form solution.

Thus, this method is chosen for use in the further experiments.

Study of the oscilloscope phase delays

As described in section 5.3.2, pairs of signals with the test setup represented in Fig. 5.10
are recorded. In order to estimate delays ATy, ATy, ATis (Fig. 5.13), two sets of 1000
pairs of the signals are recorded during two consecutive days. Next, the frequency-domain
“weighted tau” method is applied to compute the values of the delays. This method is used

with the options, identified to provide best results in the previous section.

] M ........... .......... ........... ........... ......... \ ......... .....

N S S Day1,Chl | ... . |Day1,Ch2 ... S _

..........................

b ,,,,,,,,,, ,Da}rZTChZ

Day 2, Chl

i
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! i | l ! 1
a 100 200 300 400 A00
Recording #

Phase delay v=. recording #1, Ch1, samples

Fig. 5.21 Estimated values of AT} (“Chl1”) and ATy (“Ch2”) for two sets
of 1000 recordings during two consecutive days.
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Figure 5.21 represents estimated values of AT} and ATy for both days with respect to the
recording number. From the figure, one may identify the following behavior of the phase: a)
the phase jitter in both channels is present and is on the level of 0.2 samples; b) significant
drift of the phase delays is seen in both channels; ¢) the phase drift is synchronous between
the channels; d) there is a significant phase offset between the channels; e) the offset

significantly varies from day to day, but is constant throughout one recording session?.

In order to demonstrate property c¢) and that the offset between the channels is stable

during one session, the plot of AT}, is presented in Fig. 5.22. The flatness of the delay
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Fig. 5.22 Estimated values of ATjy for two sets of 1000 recordings during
two consecutive days.

between the two channels proves the hypothesis that the AT}5 has only low random jitter
and constant offset. However, a significant factor that might prevent efficient phase delay
compensation is the varying offset between the channels from session to session. In order
to mitigate the effect of the offset, self-calibration of the scope can be augmented with
additional cross-channel offset estimation recordings (similar to those discussed in this
chapter). The estimated phase delay then can be used to compensate for the overall phase

uncertainty in the recordings.

30ne session is referred to a procedure that includes self-calibration of the oscilloscope at the beginning,
followed by multiple signal recordings without re-calibration of the oscilloscope.
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Assessment of performance of the alignment method

In order to demonstrate the improvement that the compensation method can provide,
two sessions of recordings are performed, one per day, during two consecutive days. At
each session 1000 pairs of signals shown in Fig. 5.19 are recorded. For each recording the

following parameters are varied:

1. Recording mode of the oscilloscope?:

({9}

e “s” - no averaging;

e “hw2” - hardware “multiple” averaging with 2 averages;

e “hwl6” - hardware “multiple” averaging with 16 averages;
e “hw32” - hardware “multiple” averaging with 32 averages;
e “hws2” - hardware “stable” averaging with 2 averages;

e “hwsl6” - hardware “stable” averaging with 16 averages;

e “hws32” - hardware “stable” averaging with 32 averages.
2. Sampling rate:

e 40 Gs/s;
e 50 Gs/s;
e 80 Gs/s;
e 100 Gs/s.

Thus, in total two sets of 28000 pairs of recorded signals are analyzed. For illustration, the
chapter first presents the result of the alignment on two pairs of signals, collected at the
highest sampling rate, with 32 averages in the “stable” averaging mode. These recording
settings provide the lowest noise among all others, thereby resulting in the signals that are

easier to analyze.

Fig. 5.23a and 5.23b represent two recorded reference signals and two RF pulses,

respectively. These two pairs of signals come from two different sessions. Phase delay

4Refer to [195] for the description of the averaging modes of the oscilloscope
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Fig. 5.23 Recorded reference signals (a) and microwave pulses before

alignment (b) and after alignment (c). Recording mode of the oscilloscope:
100 Gs/s, “stable” averaging, 32 averages.
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between the RF pulses is clearly seen on the graph 5.23b. The delay between the
reference signals is detected and used to align the RF pulses, recorded at channel 1 of the
oscilloscope. Fig. 5.23c plots the RF pulses after the alignment. The improvement is

clearly observed.
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Fig. 5.24 Difference signals after subtracting non-aligned and aligned
microwave pulses.

Next, the two recorded pulses are subtracted before their alignment and after the alignment.
The result is represented in Fig. 5.24. The absolute maxima of the difference signals are
0.56V and 0.11V before and after the alignment respectively. The computed power of the
pulse is 18-1073 and 0.57-1072 (units of the computed power are meaningless since samples

are used for the time scale and no load impedance is specified).

The presented alignment case was one of the most successful. The values of the residual
pulse absolute maximum and power of all the signals recorded with the oscilloscope settings,
mentioned above, are represented in figures 5.25a and 5.25b. The plots demonstrate that
the compensation for the phase delay is successful for all signals. It can be also seen from the
figures that the phase error between the recorded signals is increasing with time, starting
after the oscilloscope calibration. This phenomenon is expected, since the oscilloscope self-
calibrates only for the conditions at the beginning of the session. After that time, these

conditions slowly change.



5 Experimental device prototype for microwave breast cancer detection:

signal acquisition and pre-processing methods 115
0.7 ) T T ! ! ! ! ! !
é OGk-- - ............ ............ ........... ..|Before Compensation ..................... _
= : ' : ’ : : :
g 1 P AP m ................................................
ot
204 I LTI DT 1 S 1 BN |11 B kR - - T I|N | SE P | AR 4
o .
g .
D 1 T S | 4 | P 1 S M P § I . _
@ ;
=3 i : | After compensation
e oo e N / 5 E e 4
E . :
2 01 , b :
o i
0 1 i | 1 1 1 i i 1
l 100 200 300 400 500 BO0 00 a00 s00 1000
Signal #
(a) Absolute maxima
0.025 : ! ! : ! ! ! ! !
02k ........... ........... ........... : : : i 4
% : : : : - | Before compensation
& : : : : :
>0015F - L SO e T / ........ U TR ' [ PP
Lo : : : ‘ | : : :
=
j 1
g |:| D'] - "HIEE MR L] ([ YRR 1N AN SRR el o PR (BR[| IR T R 1 L .
E 1
o d
1] : :
* : : Sk : : :
DDDE_ ............ s , ............ ........... .......... ‘ ..................... P T ]
: : : : : ;| After compensation
D I‘*-..._.... WL .L.J..d.u..‘&i.u.d-d..h..mu..lu.id_a.. num‘.mmd._...d.._....-.._.n..-.x..nl..._u_ .;_...1.4-.. ..... u._.].-..;.;m..AJJ...J......I...L._;u
0 100 200 300 400 500 B0O 700 a0a aoa 1000

Signal #
(b) Residual pulse power

Fig. 5.25 Computed metrics of difference signals before and after phase

compensation.

The mean values of the residual pulse absolute maxima and the power for all other

combinations of the recording modes and the sampling rates have been computed (figures

5.26 and 5.27).
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Fig. 5.26 Average absolute maxima of difference signals for various
recording modes.

It can be seen that both residual pulse power and absolute maxima are higher for modes
with higher sampling rates. This is explained by the fact that the peak of the residual
pulse is more visible and the pulse contains more samples at higher sampling rates (thus,
computed power is higher). Higher number of averages and “stable” averaging mode result

in weaker residual pulse for both non-aligned and aligned signals. Next, the graphs show
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Fig. 5.27 Average residual pulse power of difference signals for various
recording modes.

that for all recording modes, the alignment of signals reduces the residual pulse. However,
optimal performance is achieved at sampling rate 80 Gs/s: residual pulse amplitude is

reduced almost by a factor of 8 for “hws32” averaging and by a factor of 6 for “hws16”.
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5.4 Conclusions

This chapter presented the description of the requirements and the design of the first-
generation experimental system in the research group at McGill University. The signals
recorded by the data collection system were analyzed and potential factors of uncertainties

that might prevent successful microwave imaging were discussed.

Phase error in the recorded signals is one of the identified sources of uncertainty. The source
of the phase errors is related to the sampling equipment and cannot be easily eliminated
by hardware techniques. In order to address this challenge, a method to adjust the phase
of the recorded signals in software was proposed. This method is based on the analysis of

the additional reference signals, recorded at the second channel of the oscilloscope.

The study shows that the phase error of both channels of the oscilloscope is stable
throughout one recording session, thus allowing to compensate the phase drift with
respect to the trigger event. The results demonstrated that this alignment method is
efficient when applied to experimentally recorded RF signals. The recommendation for
further recordings is to use 80 Gs/s sample rate of the oscilloscope with “stable”

averaging mode and 16 or 32 averages.

The performance of this method can be further improved by compensating for the phase
offset between the two channels. This offset can be estimated from additional recordings,

done at the beginning of each session, after self-calibration of the oscilloscope.

Although this method demonstrated high performance in minimizing the residual pulse,
the performance of the calibration procedure can be improved if pairwise analysis of the
direct pulses is used instead of reference signals. Thus, the signal alignment procedure
can be done in two steps: first all the signals are aligned based on the described method
using “reference” signals; next, second additional alignment based on pairwise direct pulse
analysis is done only for calibration purpose. This sequence will both minimize the residual
pulse and align the signals between the channels to improve the sharpness of the microwave

images.
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Chapter 6

Ultrawide-band microwave breast

imaging algorithms

This chapter focuses on the analysis of microwave imaging algorithms and discusses ways

to improve their efficiency.

First, a study is presented that evaluates contemporary microwave breast imaging
algorithms on a series of two-dimensional numerical breast models. Section 6.1 discusses

the methodology and results of the algorithm assessment.

Second, section 6.2 discusses two approaches to improve the DMAS and DAS algorithms in
order to significantly reduce the amount of computations and improve the image quality.
The computational efficiency of the improved DMAS and the frequency-domain counterpart
of the DAS algorithm, DASf, is analyzed. The study evaluates the algorithm performance

on the signals recorded with the experimental system, from breast mimicking phantoms.

The chapter concludes with a discussion on further development of the microwave imaging

algorithms.
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6.1 Evaluation of the monostatic microwave radar algorithms on

two-dimensional numerical breast models

6.1.1 Methodology

The presented study evaluates beamforming imaging algorithms as well as the hypothesis
testing approach. Five algorithms representing both approaches that are mostly discussed
in the literature are selected for the evaluation. Data-independent beamforming is
represented by the conventional Delay-And-Sum (DAS) algorithm, its modified version,
Delay-Multiply-And-Sum  (DMAS) and more advanced Filter-And-Sum (FAS)
beamforming. In order to evaluate robust beamformers, Robust Capon Beamformer
(RCB) was implemented. The hypothesis testing approach is represented by the
Generalized Likelihood Ratio Test (GLRT) algorithm. Theoretical description of these

algorithms was given in chapter 3.

Breast Models

This evaluation study works with the signals obtained by numerical two-dimensional
simulations. As a numerical representation of a human breast we consider coronal slices of
circular shape (Fig. 6.1). The internal tissue structure of the breast is derived from MRI
images and enclosed by a 1.6-mm thick skin. The selection of circular shape for the breast
models is intentional - it helps provide identical skin-breast artifact seen at all antennas.
In such a scenario the artifact can be easily removed from the signals by the
average-subtract algorithm (refer to section 3.2), which allows to focus on the
performance of the imaging algorithms while avoiding the additional factor due to the
performance of the artifact removal algorithms. The dielectric properties of the tissue are
described by a one-pole Debye model with four parameters, given by (3.6). As presented
in Table 6.1, for each series, the values of Ae and 7 of the pixels are assigned to some
constants. The values of €., and o, are assigned according to the linear mapping from
the pixel intensities to €. in the range of ey, (1 £0.01v/2) and to o, in the range of

055 (1 £0.01v/2), where ey) and os, denote the mean values, and v denotes the
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Fig. 6.1 Coronary slice of the permittivity extracted from one of the healthy
breast phantoms. The locations of the current sources are marked by x.

percentage of variation. The resulting expression for €., and o, are given by:

ese(D) = € (1 n g - m]i (5\)4) mrﬁ%)@u) , (6.1)
os(p) = 05 (1 + g B m]z\;[(((]]?\)/[) mm1<n]\(4]\)/[)y) ’ (6.2)

where p is the pixel number in the MRI image M and in the corresponding material map;
v denotes the percent of variation, which defines the level of heterogeneity of the breast
tissue (Table 6.1).

Table 6.1 Tissue properties for data series

Series Debye model parameters v x 100 (%) | min(e.m/€rp) | max(€.n/€p) | min(oy,/op) | max(o,,/op)
€cop | Tsp (S/m) | Ae | T (ps) ' '
1 3.1 0.05 1.6 13 7 10.6 11.1 24.8 25.1
2 13.0 0.4 24.4 13 30 14 1.6 1.7 1.8
3 13.0 0.4 24.4 13 70 1.3 1.7 1.7 1.8
4 13.8 0.7 35.6 13 30 1.1 1.2 1.2 1.2
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The selection of the series properties can be explained as follows. Series 1 represents the
case of the highest tumor-tissue contrast in dielectric properties and the lowest level of
heterogeneity. This corresponds to adipose-dominant breast models and is the easiest case
from the detection point of view. Series 2 and 3 are based on the same contrast level, much
lower than that for Series 1, and they differ in the level of heterogeneity. Series 3 represents
a highly heterogeneous case. Series 4, having the contrast ratio close to 1, is considered
to be the most difficult from the detection point of view and is referred to as “extremely

dense”. Average level of heterogeneity of 30% has been chosen for this series.

In Table 6.1, columns min(e, ., /€,5), max(é ,/€.p), min(o,,/op), and max(o,,/0y) represent
the minimum and maximum ratios of the relative permittivity and conductivity between
the tumor and the healthy tissue after the tissue assignment, respectively. The dielectric

properties in the table are given for the frequency of 6.85 GHz.

Finite-Difference Time-Domain Simulations

Fig. 6.1 shows an example of a breast model and the simulation scenario. The breast
is placed in an oil-like lossless non-dispersive matching medium characterized by (¢ =
4.5,0 =0). A tumor with 3-mm radius, characterized by its Debye parameters (€., = 6.75,
os = 0.79 S/m, Ae = 48.35, 7 = 10.47 ps), is placed inside the model. There are 36
equally-spaced current sources placed around the breast at a fixed distance (28 mm away
from the skin). Each source sequentially emits a differentiated Gaussian pulse with a 3 dB
bandwidth from 3.1 to 10.6 GHz. In this work, the monostatic scenario is considered, which
results in 36 recorded signals for a breast model. The minimum wavelength, determined by
the largest permittivity at 10.6 GHz, is 3.87 mm. We set the spatial increment to 0.4 mm
and the relative Courant number to 0.999 to reduce the dispersion error. The time step is
2 ps. The maximum wavelength in the heterogeneous tissue at 3.1 GHz is 50.3 mm. We
place 12 perfectly-matched layers at a half of this wavelength away from the sources to
truncate the computation domain. Prior to the application of the imaging algorithms, we
apply the average-subtract method to remove the skin-breast artifact. Then, the signals
are down-sampled from 500 GHz to 64 GHz.
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Datasets

In order to provide sufficient statistics for the performance assessment, generated ten
different breast models containing tumor at different locations have been generated and
used in the simulation procedure, described above, in order to obtain the signals received
at each of the antennas. The same procedure has been applied to exactly the same tissue
structures without tumor inside, which have been used to compute the performance

metrics described further.

For the GLRT algorithm, in addition to the ten tissue structures, thirty more healthy breast
models have been produced to estimate the covariance matrices needed for the algorithm.
The same set of tissue structures with the assigned tumor locations have been used for each
of the four series. The difference between the series is only in the tumor/tissue properties
contrast and the level of heterogeneity. Besides the decrease in the number of breast
phantoms needed for the experiments, fixing tissue structures between the series removes

the factor of variability, which is beneficial for system performance comparison.

6.1.2 Results and discussion

The imaging algorithms mentioned above have been applied to each of the data sets to
obtain the images shown in Fig. 6.2. Performance metrics described in section 3.7 have
been computed and are presented in Fig. 6.3 - 6.5. Only the cases with correct detection
have been taken into account to compute the average value and standard deviation of the
metrics. When there are insufficient successful detections to allow adequate evaluation of

performance metrics, this is labeled in the figures as 'FAILED’.

Table 6.2 Number of incorrect tumor detections

Series 1 Series 2 Series 3 Series 4
DAS 0 0 0 10
DMAS 0 0 0 10
FAS 0 1 1 9
GLRT 0 0 0 2
RCB 0 0 3 6
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Fig. 6.2 Output images for the delay-and-sum algorithm (a) and filter-and-
sum algorithm (b), applied to the Series 1 breast model (almost-entirely-fat).

Table 6.2 contains the number of incorrectly detected tumors for each series. By analyzing
the table, it can be seen that most of the algorithms fail under the conditions of low

contrast. The only reliable algorithm in such a scenario is the GLRT, which incorporates
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Fig. 6.3 Signal-to-interference-and-noise ratio for a) Series 1 b) Series 2 ¢)
Series 3 and d) Series 4. Note that the scales in the four plots are not the
same.

EM propagation model of high complexity, capable to describe the effects of scattering from
the tumor. In conjunction with Fig. 6.3, one may notice that the simple algorithms such as
DAS and DMAS are rather stable and successful under the high and medium tissue/tumor
dielectric contrast levels. However, they fail under the extremely dense scenario. The FAS
algorithm, which incorporates the effects of dispersion, exhibits marginal improvement
over DAS and DMAS when the complexity of the model increases. The adaptive RCB
algorithm demonstrates a gradual decrease in performance with the contrast decrease and
heterogeneity growth. It is capable to detect tumor in four cases out of ten in the extremely
dense scenario. This is explained by its adaptive nature to the input data. By comparing
Fig. 6.3 b) and c), it is seen that the increase in heterogeneity from 30% to 70% decreases
SINR by 2 to 10 dB.

Fig. 6.4 represents the results of tumor localization accuracy. It is observed that, for the
easiest imaging scenario (Series 1), almost all of the algorithms localize the tumor up to the

image resolution (1-mm grid). DAS/DMAS show comparable results and outperform all
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Fig. 6.4 Localization errors E; for a) Series 1 b) Series 2 ¢) Series 3 and d)
Series 4. Note that the scales in the four plots are not the same.

other algorithms. The FAS algorithm gives lower performance due to the point scatterer
assumption and the regularization procedure. Heterogeneity does not play an important

role for the localization (compare Fig. 6.4, b) and c)).

The ability of the algorithms to isolate the tumor response by suppressing the clutter can
be estimated by metric PSLR (Fig. 6.5). The best performance for the easiest scenario is
achieved by the RCB algorithm, due to its adaptive capability. The good performance of
the DMAS algorithm can be explained by the signal cross-multiplication between channels,
which, in this case, acts as an effective clutter suppression mechanism. Similar to the SINR

metric, the PSLR decreases by several decibels with the increase of heterogeneity.

From the presented results, it is seen that the performance of the algorithms differs with
respect to different metrics. This suggests that certain algorithms should be selected to
address specific tasks. As the GLRT algorithm provides reliable performance with metrics

SINR and PSLR in all series, it is considered for further extension and improvement.
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Fig. 6.5 Peak signal to sidelobe ratio a) Series 1 b) Series 2 ¢) Series 3 and
d) Series 4. Note that the scales in the four plots are not the same.

6.1.3 Conclusions and future work

The first part of this chapter described the study of the performance of five microwave
breast imaging algorithms, evaluated on the signals generated from the breast models with

a reduced dielectric contrast and tissue heterogeneity.

The presented study shows that the DAS and DMAS algorithms exhibit small localization
error in the generated images, but they fail in the scenarios of high breast tissue density.
The FAS beamforming algorithm has an improved capability to image the models due to
its rejection of interference, but is prone to localization errors. Under a good estimate
of the average dielectric properties of the tissue and tumor, the hypothesis testing GLRT
algorithm is capable of detecting tumors, in the sense of a good signal-to-interference-
and-noise ratio. Since the microwave breast imaging strives to achieve the best SINR,
the GLRT algorithm is the most promising for this aim. As the current GLRT algorithm

handles monostatic signals, this study motivates to extend the GLRT algorithm to handle
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multistatic signals.

6.2 The advancement of data-independent beamforming

algorithms for microwave breast imaging

The analysis of the imaging algorithms described in the previous section has identified
algorithms that offer increased performance when applied to the two-dimensional numerical
breast phantoms with various degree of tissue heterogeneity and the level of dielectric
contrast. On the other hand, further studies in our research group have revealed that
in spite of demonstrating lower performance on the numerical data, algorithms such as
the traditional DAS are still well applicable in the experimental studies - they produce
microwave images with acceptable quality, with potential good detection of tumors in real
patients. Being formulated in a more efficient way than advanced algorithms, DAS and
DMAS algorithms can be improved to increase the computational performance without

losing image quality.

This chapter presents two approaches to advance the performance of the DAS and DMAS
algorithms.  First, it is demonstrated that the DMAS algorithm, presented in the
literature, can be reformulated in a different analytic expression, which significantly
reduces the amount of required computations. In the second part of this chapter we
propose a frequency-domain counterpart of the DAS algorithm, which both improves the

computational performance and has a potential to improve the image quality.

It has been previously shown that data acquisition in the time domain can be carried out
easier and faster than in the frequency domain [201]. However, processing of the collected
signals in the frequency domain might provide certain benefits. For this purpose the pre-
processed time-domain signals are converted into the frequency domain by applying the

Fourier transform and further processing occurs in the frequency domain.

The author of this thesis proposes the frequency-domain version of the Delay-And-Sum
beamformer (DASf) as a more computationally efficient replacement for the FAS

beamforming, discussed earlier in the first part of this chapter.
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6.2.1 Delay-multiply-and-sum algorithm: analysis of optimized version

The DMAS beamforming algorithm was described in section 3.6.1. The DMAS algorithm
demonstrated high performance in the study reported in section 6.1 and in the studies
by other research groups [127, 136]. However, the direct implementation of the DMAS,
as presented in the mentioned studies, suffers from a serious drawback - the demand in
computational resources. In fact, as shown further in this chapter, the DMAS algorithm
is much slower in comparison to other algorithms, such as the conventional DAS. The
analysis of the computational complexity shows that the DMAS presented in the literature
can be considered as a second-order algorithm with respect to DAS. In order to support this
argument and to explain how the DMAS algorithm can be optimized to lower computational

cost, further analysis of the algorithm complexity is conducted.

The computational expense for the considered beamforming algorithms consists of the

following two major contributions:
Obf =C.+C, , (63)

Where C, represents the computational cost related to the operation of compensation for
spatial attenuation, spreading and delay (equation (3.37)); C, denotes the number of
operations spent for coherent summation and the computation of the beamformer output
power given by (3.40) and (3.39), respectively. The term C. is the same for all
time-domain beamforming algorithms in this study, which eliminates C\ from the further
analysis. However, the C, term can dominate over the C, since the cost to compute H, ,, ¢
and Hgp e in (3.37) can vary significantly, depending on the considered propagation

model.

For the DAS algorithm, the C, is:
Co,DAS = (M + 1)N +1 . (64)

In other words, the computational complexity is ~ O(MN).
For the DMAS algorithm, following (3.41), C, is:

Coparns = (M(M —1)+ )N +1 | (6.5)
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Which is ~ O(M?N) operations per voxel.

The analysis of expression (3.41) reveals that it can be simplified as follows:

)= = fj o D
=
_ M(Ml — (i:l ,f; T s [nlFeeln] — mi P g[n]fmg[no
- T (ﬁi il M Fdln] - nﬁjl@m,e[nw)
- ST ((fj el - é@m,zm?) . (6.6)
The C, for the optimized DMAS expression is:
Coprase= (M +3)N+1 (6.7)

Which is ~ O(3M N) operations per voxel.

Thus, by computing (6.6) instead of (3.41), the amount of computations can be significantly
reduced. Further, in sections 6.2.3 and 6.2.4 the optimized version of the DMAS (DMASo)
algorithm is applied to the experimental signals in order to demonstrate the improvement

in computational performance.

6.2.2 Delay-and-sum beamforming in frequency domain

We next consider another approach to improve the data-independent algorithm DAS. In
particular, we discuss the advantage of performing the signal processing in the frequency
domain. The frequency-domain beamformer has been described in literature [202, 203].

This thesis adapts the same approach for use in microwave breast cancer detection.

It is assumed further that the collected digitized signals x,,, are pre-processed in order to:
a) filter-out measurement and other noise outside our range of interest (2 - 4 GHz) by a

band-pass filter; b) remove direct pulses traveling from one antenna to another directly
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by applying the calibration procedure, c) suppress the reflections from the skin surface
by a filtering method described in [75]. The pre-processing procedures are described in

section 3.2.

The resulting signals are then transformed into the frequency domain by applying the
discrete Fourier transform. The resulting signal array can be represented by the signal
model (3.28).

Similar to the time-domain DAS algorithm (see section 3.6.1), spatial focusing is applied
to each of the points inside the breast domain ¢ = 1,..., L to compensate for propagation
effects. However, in the DAST algorithm the compensation occurs entirely in the frequency
domain, enabling access to all the frequencies in the range of interest. This makes DASf
more attractive for wide-band applications with high dispersion of the propagation media,
which is the case for the breast cancer detection problem. Thus, a focused beamformer

signal for location ¢ and channel m becomes:

- Yo (wn)

Yone(wn) = Aoy (6.8)

The beamformer output is given by the channel-by-channel summation of focused signals:
M ~
=Y Youlw,) (6.9)
m=1

Finally, the total beamformer power for a scan location ¢ is computed as follows:
1N
= Nz Zy(wn)| : (6.10)

Visualization of p, with respect to the coordinates of the ¢-th location produces
two-dimensional or three-dimensional images of the scattering power within the breast

region.
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6.2.3 Methodology

The developed DMASo and the DASf algorithms are compared with the standard DMAS
and two modifications of the conventional DAS algorithms: DASs and DASI, described in
section 3.6.1. These algorithms are applied to the signals obtained from the experimental

breast imaging system, described in detail in chapter 5 of this thesis and in [159].

This study involves the hemispherical breast-mimicking phantoms, imitating dielectric
properties of the human breast [108]. The phantoms are placed in the radome of the
experimental system (see chapter 5). The antenna array, integrated into the radome,
consists of M = 16 elements. Each antenna in turn transmits a short pulse, produced by
the pulse shaping circuit (described in [99]) and delivered to the antenna by the 16-by-2
blocking switching matrix (refer to section 5.2). The microwave response from the breast
is recorded by a receiving antenna and further delivered by the switching matrix to a

microwave sampler (we use equivalent-time sampling oscilloscope PicoScope 9201A [204]).

The data collection for one breast phantom results in 240 bi-static signals (the 16 monostatic
signals are not recorded), which are used in the imaging. In this study, a tumor phantom
of approximately spherical shape with radius 1 cm is introduced into the breast-mimicking

phantom at the location x=30 mm; y=-30 mm; z=10 mm (Fig. 6.6).

For the demonstration of the performance three recordings with the same tumor location
are used. These recordings were previously obtained by our research group [159]. The

results presented further in this chapter are averaged across these three cases.

In order to demonstrate the performance of the algorithms with respect to the sampling
rate of the input signals, the signals are downsampled to 80, 40, 20 and 10 GHz (which
result in 2048, 1024, 512 and 256 samples in one signal, respectively). The number in
the algorithm abbreviation will denote the number of samples in the source signals (e.g.
DASf2048 will denote the DASf algorithm applied to the signals with 2048 samples).

6.2.4 Results and discussion

Fig. 6.7 represents the DASi2048 output image of the coronal slice at x=36mm, where the
reflections from the tumor are the strongest in power. The tumor response is seen as the

red spot in the lower left quadrant. In the zoomed-in regions with the tumor response
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2

Fig. 6.6 Tumor is placed in the breast-mimicking phantom at location
[30mm; -30mm; 10mm].

presented in Fig. 6.8, one can see that algorithms DASi2048 and DASf256 provide almost
identical images. The DASs version of the algorithm demonstrates worse results, especially
with 256 samples in the signals, where the tumor response is significantly distorted. The

artifacts seen in Fig. 6.8,d) are associated with the coarse time-alignment.

The code to obtain the images was executed on a Matlab cluster with 16 nodes (each node
is one core of Xeon 2.5 GHz quad-core processors). A summary of the execution time to
obtain the whole three-dimensional image is shown in Fig. 6.9. The computational time
agrees with the expected complexity of the algorithms: DASs being twice faster than DASi
due to the interpolation procedure in the latter. The execution time for DASf is between
the DASs and DASI for 2048 samples, but becomes the lowest as the number of samples
in the signals decreases to 256. This highlights that the benefit of the decreased sampling
rate for DAST is higher. At the same time, being the fastest, DAS{f256 offers image quality
comparable to DASi2048 (the slowest).

This clearly demonstrates the benefits of signal-processing in the frequency domain: unlike

using the time domain, it does not require interpolation, it is less time-consuming and it
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Fig. 6.7 Image slice at x=36 mm, given by the delay-and-sum algorithm
with 2048 samples in the input signals and time-alignment with interpolation
(DASi2048). The red square outlines the zoomed-in area for Fig. 6.8.

does not have the coarse time-alignment errors. It must be noted that the breast phantoms
are made with fat-mimicking material with a relatively flat frequency characteristic of the
dielectric properties (the material is not very dispersive). This is confirmed by the result of
DAS2048 being comparable to the DASf. In general, for dispersive materials DASt offers
a tool with a more convenient frequency-dependent properties compensation compared to
DASi/DASs.

The computational efficiency of DASf can be further increased if only the frequencies in
the range of interest are taken. For example, when working with the 256 samples and
limiting the frequency range to 2 - 4 GHz, just 21 frequency values are taken into account,
out of 129 (256/2+1).

Besides the discussed benefits, there are some drawbacks associated with the DASf
algorithm. One significant limitation that could affect the computational efficiency arises
when time-windowing is considered. In several works related to DAS, time-windowing

after spatial focusing is performed (see e.g. [75]), which is intended to isolate the tumor
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Fig. 6.8 Comparison of the selected area of interest (depicted in Fig. 6.7)
between the following algorithms: a) DASi2048; b) DASf256; ¢) DASs2048; d)
DASs256.

response in time. This procedure might improve the performance if the time of the
reflection is known accurately enough. The equivalent operation in the frequency domain

is the convolution, which is more computationally costly in frequency domain.

To assess the performance of the DMASo algorithm, an additional study was conducted
and the discussed algorithms applied to another set of the signals described in [159]. An
example image of the DMAS2048 output is shown in Fig. 6.10. This image is acquired
in lower resolution (2 mm grid) than the image in Fig. 6.7 since the time to compute a
high-resolution image for DMAS2048 is too high. Similar pictures are obtained for DASSs,
DASi, DASf and DMASo algorithms. Their performance in terms of SINR is very close and
on average is 0.2 — 1.5 dB. The tumour clearly stands out from the clutter, however due to

the limitations of the data acquisition system and due to the limited number of antennas
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Fig. 6.9 Algorithm execution time for the whole three-dimensional image
on a 16-node Matlab cluster.

and their placement, the performance is lower than that for the numerically simulated

scenarios.

Table 6.3 represents the summary of the execution times spent to produce one slice of the
three-dimensional image, averaged with respect to the slice number and the imaging case (in
total, three cases were considered, as mentioned earlier in this section). From the Table 6.3,
one can see that the results for the DASs, DASi and DAST agree well with those presented
in the study of the DASf algorithm. The non-optimized version of the DMAS takes much
more time to compute one slice than all other algorithms. On the other hand, the DMASo
algorithm executes much faster than the DMAS and the result is comparable with the DASi
algorithm (the applied DMAS algorithm performs coarse time alignment with the signals,
thus taking less time in comparison to the DASi, but more time compared to the DASs
algorithm). The images produced by the DMASo and DMAS algorithms match exactly,
up to the round-off errors of the double-precision floating point arithmetic performed in
Matlab, confirming the correctness of the derivations in (6.6) and the implementation in
Matlab.
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Fig. 6.10 Image slice at x=31 mm, produced by delay-multiply-and-sum
algorithm with 2048 samples in the input signals.

6.2.5 Chapter summary

The conducted studies of the described DASf and DMASo algorithms demonstrate their
significant improvement in computational performance compared to the conventional DAS
and DMAS algorithms.

The DASf algorithm offers several benefits over the time-domain DAS. First, no
oversampling of the recorded signals is needed to achieve optimal results, which reduces
the computational complexity. as well as the requirements of the data acquisition system.
Second, working with a selected frequency range can further improve the performance. In
addition, DASf has potential for broadband processing: it allows easy incorporation of
frequency-dependent properties of the propagation medium. The DASf algorithm can be
used, in future work, as a basis for more advanced robust algorithms, required to improve

the performance with the realistic signals recorded from the experimental system.

The computational performance of the DMAS algorithm was improved by analytically
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Table 6.3 Computational time per slice, averaged across three cases, given

in seconds
Algorithm || 2048 samples 1024 samples 512 samples 256 samples
DASs 52.3 37.0 32.6
DASi 68.2 51.3 43.6
DASf 73.6 39.3 22.8
DMAS 1025.7 671.1 505.2
DMASo 64.6 48.3 42 .4

optimizing the expression described in [127]. This improvement is critical for the systems

with a large number of antennas, especially when considering multistatic signal arrays.

The optimized analytical expression for DMASo significantly reduces the computational

complexity of the DMAS algorithm and makes it comparable to the conventional DAS

algorithm in execution time.
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Chapter 7
Conclusions and future work

Microwave imaging has received significant attention during the past two decades. This
interest can be primarily explained by the advancement of the RF technology, which has
enabled data acquisition in the GHz frequency range. Computational performance of
modern computers has grown tremendously, allowing implementation of complex image

reconstruction algorithms.

In the effort to advance the microwave breast imaging system, the thesis presented several

contributions.

First, a method to address inherent physical limitations of microwave breast imaging was
explored (chapter 4). Limitations such as low spatial resolution due to the wave length and
high amount of clutter in the recorded signals due to the heterogeneous breast tissues are
hard to overcome using single imaging modality, such as microwave radar. In the presented
study a dual-modality approach was employed in order to fuse signals of different physical
origin: microwave and acoustic. An optimal rule to combine signals, collected from the
MWR and MWIT modalities, was developed and compared to the MWR and MWIT,
applied separately. In conclusion, the optimal fusion rule suffered from a significant bias,
discriminating the information from the MWIT signals. To compensate for that, another
“product” fusion rule was introduced, which demonstrated that the fusion method can
yield increased performance compared to the single MWR and MWIT methods. Next
steps in this research could involve three-dimensional numerically simulated data and/or

data obtained experimentally.
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Second, the advancement of the experimental data acquisition system was presented in

chapter 5.

e Signals, recorded by the data acquisition system, were analyzed for the factors of
variability. It was found that a significant factor of variability, relevant for the
“differential imaging” approach, is the uncertainty in phase in the time-domain RF

sampler (oscilloscope).

e Further research (section 5.3) demonstrated that the phase uncertainties of the
oscilloscope can be compensated by time-aligning the signals based on the analysis
of the “reference” signals, recorded at the second channel. In particular, it was
identified that the phase uncertainty of the oscilloscope can be decomposed into
three components: phase offset, phase drift and random jitter. As demonstrated in
section 5.3.3, phase offset and phase drift can be compensated in software. It has
been also identified that optimal recording mode of the oscilloscope is at around
80 Gs/s sampling rate, with 16 or 32 averages and with “stable” averaging mode.
This information can be used for further improvement of the breast imaging system.
Random phase jitter can be also significantly reduced by the software
compensation, if optimal settings of the oscilloscope are used. Further work can
confirm the performance of the phase alignment method based on the output
microwave images. Additional compensation for the phase offset can be

implemented and evaluated in future research.

Finally, a study of microwave imaging algorithms, applied to the time-domain microwave

signals, was presented in chapter 6).

e Five algorithms, most presented in literature (DAS, DMAS, FAS, GLRT and RCB),
were compared in the context of breast imaging application. It was found that,
applied to highly heterogeneous and dense breast cases, only the GLRT algorithm
can detect tumors. Nevertheless, DAS and DMAS have shown good performance for
low-complexity imaging scenarios (i.e., for adipose-dominant breast tissues), while
offering relatively low computational complexity. It must be admitted that the
conducted evaluation study of the algorithms is not comprehensive. First, due to

the limitations of the data acquisition system, our research group had to resort to
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the numerical simulation studies. Second, due to computational limitations, only
two-dimensional simulations were performed, with simplified assumptions of the
system. As the computational capability increases with time and experimental data
becomes available, it is suggested to repeat this study in future, without the

limitations described above.

e Methods to optimize the DAS and the DMAS algorithms were explored. It was
shown that the DMAS algorithm can be mathematically optimized. The resulting
DMASo algorithm offers computational complexity comparable to that of DAS.
Finally, a frequency-domain counterpart of the DAS algorithm (DASf) was
developed. It was demonstrated that operating in frequency domain offers several
benefits over the time-domain DAS. First, it can offer comparable performance to
DAS on signals with much lower sampling rate.  Second, it benefits from
frequency-domain processing by limiting frequency range, applying weighting for
different frequencies and compensating breast tissue dispersiveness.  Further
research in the area of microwave imaging algorithms could include the
advancement of the DASf algorithm. One direction is to include compensation for
the dispersiveness of the propagation media. Next, a robust approach can be
applied to the DAST algorithm to adjust phase factor in the frequency domain, in a
similar way to the Robust Capon Beamformer (RCB).
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