INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI fiims
the text directly from the original or copy submitied. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the uniikely event that the author did not send UMI a compiete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, MI 48108-1348 USA
800-521-0800

UMI

Mobile-Agent-Based Dynamic Channel Allocation

with Waiting Queue

Zhang Yan-Mei
School of Computer Science
McGill University, Montreal

January, 1999

A Thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Master of Science

©Zhang Yan-Mei, 1999

i+l

Nationat Library Bibli tionale
of 8322'« duCanada
uisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wi Street 395, rue Waellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your s Votre rédivence
COur fle Notre riférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette theése.
Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-50914-1

Canadi

Abstract

The explosive growth of the wireless users requires efficient channel utilization. In this
thesis, we present a new channel allocation strategy with waiting queue model instead
of the block-and-clear model so that the quality of service in cellular network can be

improved.

From a computational and network resource viewpoint, our model is based on the
Mobile Agent Paradigm that has great advantages on reducing network traffic and
dynamic adaptation. We also show the possibility to implement our algorithm on the

Grasshopper mobile agent environment, which is compliant to the MASIF standard.

In order to evaluate the performance of our proposed model, a simulator is written in
Java, which shows that our algorithm gives the lowest average blocking probability
under different traffic load comparing with LP Scheme, First Available DCA Scheme
and Simple FCA Scheme. Specifically, our algorithm has a tremendous capability of

alleviating congestion in the hot spots of a cellular system.

Our research has been done within the group on “Advanced Studies on Mobile
Environments” (ASME) as a part of the Consortium MIAMI (Mobile Intelligent Agents
for Managing the Information Infrastructure).

Key Words: mobile agent, channel allocation, cellular system

Résumé

La croissance explosive des utilisateurs sans fil exige l'utilisation efficace de canal.
Dans ce mémoire, nous présentons une nouvelle stratégie d'allocation des canaux avec
le modéle de file d'attente au lieu du modéle block-and-clear de sorte que la qualité du

service dans le réseau cellulaire puisse étre améliorée.

Du point de vue de calcul et ressource de réseau, notre modeéle est basé sur le
Paradigme d’'Agent Mobile qui a de grands avantages pour la réduction du trafic de
réseau et l'adaptation dynamique. Nous montrons également la possibilité d'application
de notre algorithme dans l'environnement d'agent mobile de Grasshopper qui est

conforme i la proposition de MASIF, en vue de devenir la norme.

Afin d'évaluer I'exécution de notre modéle proposé, un simulateur est écrit en Java, ce
qui prouve que notre algorithme donne la plus basse probabilité de blocage moyenne
sous des contraintes de traffic varié, rivalisant avec LP Scheme, First Available DCA
Scheme et Simple FCA Scheme. Spécifiquement, notre algorithme a une capacité plus

grande d'alléger I'encombrement dans les points achalandés d'un systéme cellulaire.

Notre recherche a été faite chez le groupe sur "Advanced Studies on Mobile
Environments” (ASME) comme partie du consortium MIAMI (Mobile Intelligent

Agents for Managing the Information Infrastructure).

Mots Clés: mobile d’'agent, d'allocation de canal, systéme cellulaire

ii

Acknowledgements

I would foremost like to thank my Research Director, Dr. Petre Dini, for his direction
and guidance, and for showing me the pleasure one can get out of research. This

collaboration was for me a true enrichment.

I would also like to acknowledge my co-supervisor Prof. Gerald Ratzer for his
understanding and helpful advice during my research period.

I would like to express my gratitude to the Computer Research Institute of Montreal
(CRIM) for its financial support and providing me with the facilities, which I needed to

carry out this research.

As I look back to remember the people I want to thank on a more personal level,
particularly, enthusiastic thanks must be given to my friends Bonnie Wu, Linda Gu,
Xiao-Bo Fan and Jane Fu for their friendship. Sincere thanks must also be given to the
secretaries in school of Computer Science of McGill University , especially to Ms.

Franca Cianci for her kind help and consideration.

Special thanks go to my parents and three older sisters and brother for their constant
insistence that I could accomplish anything that I set out to do. Their support sustained

me throughout my 21 years study life, and I own more to them than I can repay.

Most of all, my husband Song Hu deserves much of the credit for being there for me all
the time when I need him, taking great patience to listen to me and explain things I
never understood. I couldnt finish this thesis without a lot of support and

encouragement from him.

iii

Contents

Abstract i
Résumé i
Acknowledgements iii
List of Figures vii
Introduction 1
1.1 Structure of Cellular Communication System............cccceveennes .|
1.2 Motivation for Channel AllOCation............occveemirerrervermrernnernnrnseenesesnenessenssneseseenes 2
1.3 Objectives and Scope of the TheSiScccvrerermreceienieereesteeeerc e 3
Channel Allocation Schemes §
2.1 Channel Division TeChRiqUES..............cocovvcerivirmrniririresiriienessesescsnessssesssssesssesens 5
2.2 Fixed Channel Allocation........ vereessensens 6
2.2.1 Simple FCA Scheme............... 6

2.2.2 Non-uniform Compact Pattern Allocation 6

2.2.3 Static Borrowing Schemes...... 7

2.2.4 Channel Borrowing SCHEMESoecverorervereresernrsscnsseserermssesessssessorsseses 7

2.3 Dynamic Channel Allocation. 9
2.3.1 Centralized DCA Schemes 10

2.3.2 Distributed DCA Schemes... 11
Mobile Agent Technology 13
3.1 Basic Concept 13
3.1.1 Agent 13

3.1.2 Stationary Agent and Mobile Agent 14

iv

3.1.3 Agent System..................cucuenn..... 14
3.1.4 Place..... .17

3 L5 REGUOM ...nananenonerereerrversreeeserecreeisnssesssssssesesssssrssesassessenensersasrens .17
3.2 Mobile Agent ArCRItECIUTE.........cc.ccoeeerreeirmmmvmriniiriisstsernrnesesnsaesessnssssresrereessens 17
3.2.1 Why Use an Agent Architecture..................oueeorvorucnnenne 17
3.2.2 Structure of an Mobile Agent........... .19
3.2.3 Mobile Agent Environmentoeeveereereerereerureernnmsessssssessressnssses 21
3.3 Advantages of the Mobile Agent Paradigm.........ccooememrmemoeeeieeeeerreeeee 22
Mobile-Agent-Based Dynamic Channel Allocation Algorithm 24
4.1 Motivation reevestestesesstesaesensssssas e b s bs SRt SRS bR s bR s s R s s b bbb s et e 24
4.2 Main Idea of LP AIZOTIthInueeeemcemeiee ettt e nenens 26
4.2.1 Channel Assignment Procedure Based on LP Algorithm........................... 27
4.2.2 Channel Release Procedure Based on LP Algorithm..................onuucrece.. 28
4.3 Design of Our Algorithm.........cceceerrrerccerereerecnenees .30
4.3.1 Channel Assignment Procedure.....................uueeeerevverveevnssreririrerserensenes 31
4.3.2 Channel Release Procedure................... .33
MASIF and Grasshopper 37
S.EMASTIF ...ovirireiienerennrene oo seessenss s sssssstssssssssssssssesssasssrsssssnssasssssssess 37
5.1.1 Background....................coun........ 37
3.1.2 Advantages Using Java in Mobile Agent Implemenuation.......................... 38
S5.1.3 CORBA SEIVICES........ooneeoeeeeoneerereneeeenevsssesessvssssesssnsssssssossssssssssasns 40
5.1.4 MAF Module 42
5.1.4.1 MAFAgentSystem Interface 4?2

5.1.4.2 MAFFinder Interface. 42

5.2 Grasshopper 43
3.2.1 Grasshopper Agent Environment 43
3.2.2 Basic Components of Grasshopper Environment 44
5.2.2.1 Agency 44

5.2.2.2 Region Registry 47

5.2.2.3 MASIF -~ Compliant Interfaces 47

5.2.2.4 Grasshopper — Specific Interfaces48

5.2.3 Agent Programming Guide On Grasshopper . 48
5.2.3.1 Agent Methods erebetsbebi e e sberor e s s e e R SRS e b s R e s bR bbb b 48

5.2.3.2 Inter-Agent Communication 49
Implementation and Performance 51
6.1 Implementation of Our Algorithm on Grasshopper...........cccccevrverernrrerircrunncnne 51
6.1.1 BaseAgent Class 53

6.1.2 DirectoryAgent Class...........cceeeermeeererveusvoreen vee 36

6.1.3 SIArTAGENL ClASS........oovveriveerieersrosrvsrvnrvesseessaeessssssosrasssrsssssssssssossasssssosaenes 6!

6.1.4 FiniSHAGENE ClASSuu..econeennerrrirvererrervnsisissinssissosssssssssssessssesssssssessesnssssnnans 65

6.2 Performance of Our AIZOLIthIN...........covvveerrevererereerensnnrnsessessecssenssssonssssnssessesanes 67
6.2.1 SimulGiONcneeeneeeneeeeneceeneereereeeeenes e 67

6.2.2 Uniform Trafficeeeeevveeiceerreniersiernssssssessssssssseesssesses 69
6.2.2.1 Performance under Different Traffic Loadccoocveveeevinenrcncnnincnennne 69

6.2.2.2 Performance under Different Waiting Timec.co.cvvvvvemrvrervnnceevnennnn. 70

6.2.2.3 Performance under Different Average Duration Timecourreeennnnene 71

6.2.3 Traffic Hot Spots...... .73
Conclusion 71
7.1 CONIEIDULON.cvencrriecreerne et nessecetencenecsensssassesssnsasacsssnsncasessestnasnsasasssessasse 77
7.2 FUIUFE WOIK......couerrivirieririenrnnrcreseersniresssesesssesssesens . .. 18
Appendix A Poisson Distribution 80
Appendix B Source Codes 82
1. Simple FCA Scheme 82

2. First Available DCA Scheme .. 8

3. Local Packing Scheme .. 88
4. Our Proposed Scheme 91
Bibliography 97

List of Figures

Figure 1.1 Structure of Cellular Communicationccoeevnueenmrreerrerverereerncveesnnes 2
Figure 3.1 Agent System.................... reessssssassestistsasa et sa s sae RS st s e e e R b s R SR e R e SRR e RS b 15
Figure 3.2 Agent System to Agent System Interconnection. 16
Figure 3.3 Region to Region INterconnection..............coueerirveeerenecenrensirisnssesesensecseecs 18
Figure 3.4 Simple View of the Structure of a Mobile Agent.............cccconvervurvrrerrerne 20
Figure 4.1 The Augmented Channel Occupancy Table............ooceervimeninrcncnencnnnen. 27
Figure 4.2 Channel Assignment Procedure Based on LP Algorithm 28
Figure 4.3 Channel Release Procedure Based on LP Algorithm...............ccrrnnnnneencs 29
Figure 4.4 Structure of Mobile-Agent-Based Cellular System......... " .. 31
Figure 4.5 Channel Assignment Procedure rreeseeeeane et asr b e s s bere R s reassr e ae 32
Figure 4.6 Channel Release Procedure................. . 34
Figure 5.1 CORBA Services and Facilitiesccccovuevunnnen.. .41
Figure 5.2 Grasshopper Environment reeessesesresssssssssbesei b s bt s b s s bbb bbb s bbbt s 4
Figure 5.3 The Usage of Proxy Objects for Dynamic Method Invocation 50
Figure 6.1 Diagram of Our Agent Classes Relationship in UML....................c.uuc........ 52
Figure 6.2 The Simulated 144-Cell Cellular Network Layout 68
Figure 6.3 Blocking Comparison: Uniform Traffic crreeresaesieses st bean s sansss 70
Figure 6.4 Blocking Comparison with Different Waiting Time 71
Figure 6.5 Effect of Average Duration Time: Uniform Traffic 712
Figure 6.6 Effect of Average Duration Time: Different Waiting Time...............c.c...... 72
Figure 6.7 Traffic Hot Spots: Giant Stadium... 73
Figure 6.8 Traffic Hot Spots: Diagonal Highway 74
Figure 6.9 Traffic Hot Spots: City Beltway 74

Figure 6.10 Blocking Probability for Traffic Hot Spot: Giant Stadium.........................
Figure 6.11 Blocking Probability for Traffic Hot Spot: Diagonal Highway

Figure 6.12 Blocking Probability for Traffic Hot Spot: City Beltway

viii

Chapter 1 Introduction !

Chapter 1

Introduction

Technological advances and rapid development of handheld wireless terminals have
facilitated the rapid growth of wireless communications and mobile computing.
Cellular technology is undoubtedly one of the most exciting and significant
technological developments of the late 20" century. The number of cellular subscribers
world-wide has grown from zero to 40 million in about twelve years and a recent
forecast estimated that there would be 160-200 million cellular subscribers in over 120
countries by the year 2000 [URL1]. Already 40 per cent of new lines being installed in
developing countries are using cellular technology. Since 1992 growth in the
telecommunications industry was come only from the cellular market, with the number
of new subscribers to the fixed PSTN (Public Switched Telephone Network) remaining
static [URLI1].

1.1 Structure of Cellular Communication System

A cellular communication system consists of mobile units linked via a radio network to
an infrastructure of switching equipment interconnecting the different parts of the
system, and allowing access to the normal (fixed) PSTN. Numerous transceivers called
Base Stations (BS) are located at strategic places, and cover a given area or cell. A
number of cells grouped together form an “area” and all its BS are in contact with a
Mobile Switching Center (MSC) which stores information and directs calls to mobiles

within its area. The MSCs of each area can communicate with each other, with a

Chapter 1 Introduction 2

special Gateway MSC that allows access to other cellular networks (e.g. the GSM
system) or to the PSTN. This hierarchical structure can be seen in Figure 1.1.

PSTN

. A

\:i'

A

= us A

PSTN

Figure 1.1 Structure of Cellular Communication

1.2 Motivation for Channel Allocation

A fundamental problem in wireless/mobile communication is that the electromagnetic
spectrum is a scarce shared resource, and needs to be managed efficiently to provide an
acceptable quality of service to communication-intensive applications. Federal
Communications Commission (FCC) has allotted channels on the 824-849 MHz bands
for transmission from mobiles and on 869-894 MHz for transmission from base station.
The channel spacing is 30 KHz. This frequency band can accommodate 832 duplex
channels. Among them, 21 channels are reserved for call setup, and the rest are used
for voice communications [Ming89]. A duplex channel is also referred to as a full-
duplex channel. It is used when data is to be exchanged between the two connected
devices in both directions simultaneously, for example, if for throughput reasons data
can flow in each direction independently [Fred96].

Chapter I Introduction 3

To satisfy the large demand of mobile telephone service, researchers at Bell Labs
presented the ingenious idea of frequency re-use [URL9). Each cell in the network uses
only a given subset of all available channels, which are different from those used by
adjacent cells. This ensures that interference does not occur between these cells. By
restricting the power of transmission, signals will not travel too far outside each cell
(due to the inverse square law) [URL9]. The same frequencies can then be re-used by
cells that are sufficiently far away. All such sets that use the same channel are referred
to as co-channel sets, or simply co-channels. The minimum distance at which co-
channels can be reused with acceptable interference is called the “‘co-channel reuse
distance” [Katzela96].

The tremendous growth of the wireless/mobile user population coupled with the
bandwidth requirement demands efficient reuse of the scarce radio spectrum allocated
to wireless/mobile communications. How the channels are to be assigned for
simultaneous use in different cells directly affects the throughput of such systems.
Efficient use of radio spectrum is also important from a cost-of-service point of view
[Katzela96]. A reduction in the number of base stations and hence, a reduction in the

cost-of-service can be achieved by more efficient reuse of the radio spectrum.

Up to now many channel allocation strategies have been suggested. We will proceed to

briefly discuss different channel allocation algorithms in Chapter 2.
1.3 Objectives and Scope of the Thesis

The main purpose of this thesis is to design and implement efficient methods and
algorithms in channel allocation. In our thesis, we present a new strategy in channel
allocation schemes. Instead of changing hardware connections between base stations
and MSC, we place the blocked calls in a waiting queue for a limited amount of time so
that to decrease the blocking probabilities of the cellular system. And we use Mobile
Agent approach to make dynamic decision and do the computation in the remote

Chapter 1 Introduction 4

destination in order to reduce the network traffic and improve the efficiency of resource

allocation.

The rest of the thesis includes the following: Chapter 2 reviews the existed channel
allocation schemes. Chapter 3 introduces the basic concept and architecture of Mobile
Agent, lists the advantages of using Mobile Agent in network and communication. In
Chapter 4, we present our new channel allocation algorithm and show how to use
Mobile Agent to manage efficiently the resource in cellular communication network.
Chapter S gives a brief introduction to Mobile Agent System Interoperability Facilities
Specification (MASIF), and the platform Grasshopper used in our impiementation that
is compliant to MASIF standard. The implementation details and the obtained results
are described in Chapter 6. Finally, we give a brief summary of our study and make

recommendation for further work in the last chapter.

Chapter 2 Channel Allocation Schemes 5

Chapter 2

Channel Allocation Schemes

A given radio spectrum (or bandwidth) can be divided into a set of disjoint or non-
interfering radio channels. All such channels can be used simultaneously, while

maintaining an acceptable received radio signal.

2.1 Channel Division Techniques

In order to divide a given radio spectrum into such channels, the following techniques
can be used [Fred96]:

Frequency division (FD): divide the spectrum into disjoint frequency bands.

Time division (TD): divide the usage of the channel into disjoint time periods that
called time slots.

Code division (CD): use different modulation codes to achieve the channel separation.

Furthermore, more ¢laborate techniques can be designed to divide a radio spectrum into

a set of disjoint channels based on the combination of the above techniques.

Channel allocation schemes can be divided into a number of different categories
depending on the comparison basis. When channel assignment algorithms are
compared based on the manner in which co-channels are separated, they can be divided
into Fixed Channel Allocation (FCA), Dynamic Channel Allocation (DCA), and
Hybrid Channel Allocation (HCA).

Chapter 2 Channel Allocation Schemes 6

2.2 Fixed Channel Allocation

In Fixed Channel Allocation (FCA) schemes, the area is partitioned into a number of
cells, and a number of channels is assigned to each cell according to some reused
pattern depending on the desired signal quality [Katzela96). A definite relationship is
assumed between each channel and each cell in accordance to co-channel reuse

constraints.

2.2.1 Simple FCA Scheme

In the Simple FCA Strategy, the same number of nominal channels is allocated to each
cell. Nominal channels are a set of channels, which are assigned to a given cell. This
uniform channel distribution is efficient if the traffic distribution of the system is also
uniform. In that case, the overall average blocking probability of the mobile system is
the same as the call blocking probability in a cell. Since traffic in cellular systems can
be non-uniform with temporal and spatial fluctuations, a uniform allocation of channels
to cells may result in high blocking in some cells while others might have a sizeable
number of spare channels. This could result in poor channel utilization [Katzela96].
Therefore, many Non-uniform Channel Allocation Algorithms, which are variations of
FCA strategy, are adopted so that heavily loaded cells are assigned more channels than
lightly loaded ones.

2.2.2 Non-uniform Compact Pattern Allocation

Non-uniform Compact Pattern Allocation is proposed by allocating channels to cells
according to the traffic distribution in each of them [Ming91]. Thus, heavily loaded
cells are assigned more channels than lightly loaded ones. The algorithm attempts to

minimize the average blocking probability as nominal channels are allocated one at a
time.

Chapter 2 Channel Allocation Schemes 7

Let there be N cells and M channels in the system. The allocation of a channel to the set
of co-channel cells forms a pattern that is referred to as the Allocation Pattern. In
addition, the Compact Allocation Pattern of a channel is defined as the pattern with
minimum average distance between cells. Given the traffic loads in each of the N cells
and the possible compact pattern allocations for the M channels, the Non-uniform
Compact Pattern Allocation algorithm attempts to find the compatible compact
patterns that minimize the average blocking probability in the entire system as nominal

channels are assigned one at the time.

2.2.3 Static Borrowing Schemes

Static Borrowing Schemes proposed in [Lewis73] re-assigns unused channels from
lightly loaded cells to heavily loaded ones at distance less than the minimum reuse
distance. Although in Static Borrowing Schemes channels are permanently assigned to
cells, the number of nominal channels assigned in each cell may be reassigned
periodically according to spatial inequities in the load. This can be done in a scheduled
or predictive manner, with changes in traffic known in advance in the former, or based

on measurements in the later,

2.2.4 Channel Borrowing Schemes

In Channel Borrowing Schemes, an acceptor cell that has used all its nominal channels
can borrow free channels from its neighboring cells to accommodate new calls. A
channel can be borrowed by a cell, if the borrowed channel does not interfere with

existing calls.

When a channel is borrowed, several other cells are prohibited from using it. This is
called channel locking. In contrast to Static Borrowing Schemes, Channel Borrowing
Schemes deal with short term allocation of borrowed channels to cells, and once a call
is completed, the borrowed channel is returned to its nominal cell. According to the

different ways a free channel selected from a donor cell, many channel borrowing

Chapter 2 Channel Allocation Schemes 8

strategies have been proposed [Lewis73}{Ming89]. Normally, the Channel Borrowing
Schemes can be divided into simple and hybrid.

Simple Channel Borrowing Strategy

In the Simple Channel Borrowing Schemes [Engel73], a channel set is nominally
assigned to each cell. When a call arrives in a cell, a nominal channel is assigned to
serve the call. If all nominal channels are busy, a nominal channel of the neighboring
cells is borrowed to serve the call if that borrowing does not interfere with existing
calls. Otherwise, the call is blocked.

The Simple Channel Borrowing strategy gives lower blocking than the traditional Fix
Channel Allocation strategy under light and moderate traffic conditions. In heavy
traffic conditions, however, channel borrowings may proliferate to such an extent that
the channel usage efficiency drops drastically, causing a rapid increase in blocking

probability [Kahwa78].
Hybrid Assignment Strategy

In the Hybrid Assignment Strategy [Kahwa78], the set of nominal channels assigned to
each cell is divided into two subsets A and B. Subset A channels are used in the iocal

cell only, while subset B channels can be lent to the neighboring cells.

In Simple Hybrid Channel Borrowing Strategy (SHCB), the ratio #A to #B is
determined a priori, depending on an estimation of the traffic conditions and it can be

adapted dynamically in a scheduled or predictive manner.

The Borrowing with Channel Ordering (BCO) strategy introduced in [Elnoubi82],
outperforms SHCB by dynamically varying the local to borrowable channel ratio
according to changing traffic conditions. In BCO strategy, all nominal channels are
ordered such that the first channel has the highest priority to be assigned to the next
local call, -and the last channel is given the highest priority to be borrowed by the
neighboring cells.

Chapter 2 Channel Allocation Schemes 9

In BCO strategy, a channel is suitable for borrowing only if it is simultaneously free in
the three nearby co-channel cells. This requirement is too stringent and decreases the
number of channels available for borrowing. So [Ming89] presented a new strategy
called Borrowing with Directional Channel Locking (BDCL) in 1989. In this strategy,
when a channel is borrowed, the locking of this channel in the co-channel cells is
restricted only to those affected by this borrowing. Thus the number of channels
available for borrowing is greater than that of the BCO strategy. To determine in which
case a “locked” channel can be borrowed, “lock directions™ are specified for each
locked channel. The scheme also incorporates reallocation of calls from borrowed to
nominal channels and between borrowed channels in order to minimize the channel
borrowing of future calls, and especially the multiple channel borrowing observed

during heavy traffic.

2.3 Dynamic Channel Allocation

Due to short term temporal and spatial variations of traffic in cellular systems, Fix
Channel Allocation (FCA) schemes are not able to attain a high channel efficiency. To
overcome this, Dynamic Channel Allocation (DCA) schemes have been studied during

the past twenty years.

In contrast to FCA, all channels are potentially available to all cells and are assigned to
cells dynamically as calls arrive. If this is done right, it can take advantage of temporary
changes in the spatial and temporal distribution of calls in order to serve more users.
For example, when calls are concentrated in a few cells, these cells can be assigned

more channels without increasing the blocking rate in the lightly used cells.

In DCA, a channel is eligible for use in any cell provided that signal interference
constraints are satisfied. The main idea of all DCA schemes is to evaluate the cost of
using a candidate channel, and select the one with the minimum cost provided that
certain interference constraints are satisfied. The selection of the cost function is what
differentiates DCA schemes [Cox72].

Chapter 2 Channel Allocation Schemes 10

The selected cost function might depend on the future blocking probability in the
vicinity of the cell, the usage frequency of the candidate channel, the reuse distance,
channel occupancy distribution under current traffic conditions, radio channel
measurements of individual mobile users or the average blocking probability of the
system. DCA schemes can be divided into centralized and distributed schemes with
respect to the type of control they employ. Several simulation and analysis results have
shown that centralized DCA schemes can produce near optimum channel allocation,

but at the expense of a high centralization overhead [Nettleton89].

2.3.1 Centralized DCA Schemes

In the centralized DCA schemes, a channel from the central pool is assigned to a call
for temporary use by a centralized controller. The difference between these schemes is
the specific cost function used for selecting one of the candidate channels for

assignment.

First Available strategy (FA) assigns the first available channel within the reuse
distance encountered during a channel search to the call [Cox72). In the Locally
Optimized Dynamic Assignment (LODA) strategy [Ming89], the concept of nominal
channels is not used. Instead, a particular cell having a call to serve evaluates the cost
of using each candidate channel. The channel with the minimum cost is then assigned.
The selected cost function is based on minimizing the channel reuse distance. In other
words, the cells using the same channel are packed as compactly as possible so that the
channel could again be reused in the closest possible range. Channel Reuse
Optimization Schemes attempt to maximize the efficiency of the system by optimizing
the reuse of a channel in the system area [Cox72][Kazunori92]. Channel
Rearrangement Schemes are to switch calls already in process, whenever possible, from
channels that these.calls are using, to other channels with the objective of keeping the
distance between cells using the same channel simultaneously to a minimum
[Donald73]. Thus, the channel reuse is more concentrated and more traffic can be
carried per channel at a given biocking rate.

Chapter 2 Channel Allocation Schemes 7

2.3.2 Distributed DCA Schemes

The proposed distributed DCA schemes use either local information about the current
available channels in the cell’s vicinity (cell based) schemes [Chih93] or signal strength
measurements [Mutsumu93][Furuya91].

In the Cell Based Schemes, a channel is allocated to a call by the base station where the
call is initiated. The difference with the centralized approach is that each base station
keeps information about the current available channels in its vicinity. The channel
pattern information is updated by exchange of status information between base stations.
The Cell Based Schemes provide near optimum channel allocation at the expense of
excessive exchanged of status information between base stations, especially under
heavy traffic loads.

In the Interference Adaptation Schemes which rely on signal strength measurements
[Mutsumu93], a base station uses only local information, without the need to
communicate with any other base station in the network. Thus, the system is self-
organizing, and channels can be placed or added everywhere. These schemes allow fast
real time processing and maximal channel packing at the expense of increased co-
channel interference probability with respect to ongoing calls in adjacent cells, which

may lead to undesirable effects such as interruption, deadlock and instability.

Local Packing algorithm presented in [Chih93] can be implemented distributively at
the base stations with a simple Augmented Channel Occupancy (ACO) table, or
centrally at the Mobile Switching Center without the need of a distributed database.
{Chih93] implemented this algorithm distributively and showed that, unlike some other
DCA algorithms, even when the network has a large number of channels, it maintains a
favorable performance over FCA under uniform traffic in the region of interest. More
importantly, the LP algorithm has a tremendous capability of alleviating congestion at
traffic hot spots.

Chapter 2 Channel Allocation Schemes 12

In our thesis, we use the main idea of LP algorithm because its higher performance over
other algorithms. But instead of keeping the database distributed in each base station,
we keep the database which contains the information of each base station in Mobile
Switching Center (MSC), and then using Mobile Agent Technology to analyze if there
is channel available during considered period. We will describe this algorithm in detail
in Chapter 4. In the next chapter, we will introduce the basic concept and architecture

of Mobile Agent Technology.

Chapter 3 Mobile Agent Technology 13

Chapter 3

Mobile Agent Technology

With the recent explosive development of computer networking and the Internet, a gap
has developed between the sheer amount of information that is available and the ability
to process or even locate the interesting pieces. This does not only apply to
“application-oriented data” such as scholarly publications, stock exchange quotes, or
weather satellite images, but also to the monitoring and operation of huge computer
networks. Agents show a possible way out of this dilemma [Anselm95]. Agent-based
systems have recently gained considerable attention in many areas of computer science
and information processing such as software engineering, human interfaces, and
network management. The incorporation of intelligence implies dealing in an adaptive

way with unforeseeable changes in the remote environment [Chess95].

3.1 Basic Concept

3.1.1 Agent

An agent is a computational entity, which acts on behalf of other entities in an
autonomous fashion, performs its actions with some level of proactivity and/or
reactivity. For instance, an estate agent who simply places a “for sale” sign outside a
property for sale and waits for purchasers to come into his shop is behaving in a much
more reactive fashion, than an agent who proactively advertises the property in the
local press. The same agent can display high amounts of both proactivity and reactivity

Chapter 3 Mobile Agent Technology 14

at different time [URL2]. An agent also exhibits some level of the key attributes of

learning, co-operation and mobility.

In the area of computing and information systems, the notion of an agent implies a
remotely executing program with a certain degree of autonomy, usually helping with

the tasks of information processing or retrieval [Hosoon96].

3.1.2 Stationary Agent and Mobile Agent

Conceivably, agents can be stationary or mobile. A stationary agent executes only on
the system where it begins execution. If the agent needs information that is not on that
system, or needs to interact with an agent on a different system, the agent typically uses
a communications transport mechanism such as Remote Procedure Call (RPC)
[GMD97]. For example, in the Simple Network Management Protocol (SNMP) which
is designed to give a user the capability to remotely manage a computer network by
polling and setting terminal values and monitoring network events, the stationary agent
is used to run off of each node on the network [URL15]. Many UNIX software vendors
include this with their terminal software. It collects network and terminal information
as specified in the Management Information Base (MIB) [URL10].

In contrast to a stationary agent, a mobile agent is not bound to the system where it
begins execution. It has the unique ability to transport itself from one system in a
network to another. This submission is primarily concerned with mobile agents. The
ability to travel permits a mobile agent to move to a destination agent system that
contains an object with which the agent wants to interact. Moreover, the agent may

utilize the object services of the destination agent system [GMD97].

3.1.3 Agent System

An agent system is a platform that can create, interpret, execute, transfer and terminate

agents. An agent system is associated with an authority that identifies the person or

Chapter 3 Mobile Agent Technology 15

organization for whom the agent system acts. An agent system is uniquely identified by
its name and address. A host can contain one or more agent systems. Figure 3.1

describes an agent system [GMD97].

ﬁ:enting
System

Agent

@) ™

(X'
L |
L LCommunication —

Infrastructure

Figure 3.1 Agent System

In above figure, when an agent transfers itself, the agent travels between execution

environments called places. We will introduce the place concept in Section 3.1.4.

An agent system type describes the profile of an agent. For example, if the agent system
type is Aglet, the agent system is implemented by IBM, supports Java as the Agent
Language, uses Itinerary for travel, and uses Java Object Serialization for its
serialization [GMD?97]. This specification recognizes agent system types that support
multiple languages, and languages that support multiple serialization methods.
Therefore, a client requesting an agent system function must specify the agent profile

Chapter 3 Mobile Agent Technology

(agent system type, language, and serialization method) to identify uniquely the desired

functionality.

All communication between the agent systems is through the Communication
Infrastructure (CI) which provides communications transport services, naming, and
security services for an agent system. The region administrator defines communication
services for intra-region and inter-region communications. The region concept will be

introduced in section 3.1.5. Figure 3.2 describes agent system to agent system

interconnection [GMD97].

“Operating |
A

Agent
System

-

g e B

Infrastructure

W Y
A

Agent
System

-

1T

Infrastructure

Figure 3.2 Agent System to Agent System Interconnection

In general, the core actions among agent systems are:

¢ Transferring an agent

e Creating an agent

¢ Providing globally unique agent names and locations
e Supporting the concept of a region

¢ Finding a mobile agent

¢ Ensuring a secure environment for agent operations

Chapter 3 Mobile Agent Technology 17

3.1.4 Place

A place is a context within an agent system in which an agent can execute. This context
can provide functions such as access control. The source place and the destination place
can reside on the same agent system, or on different agent systems that support the
same agent profile [GMD97].

A place is associated with a location, which consists of the place name and the address
of the agent system within which the place resides. An agent system can contain one or
more places and a place can contain one or more agents. When a client requests the

location of an agent, it receives the address of the place where the agent is executing.

3.1.5 Region

A region is a set of agent systems that have the same authority, but are not necessarily
of the same agent system type. The concept of region allows more than one agent

system to represent the same person or organization.

Regions are interconnected via one or more networks and may share a naming service
based on an agreement between region authorities and the specific implementation of
these regions. A non-agent system may also communicate with the agent systems
within any region as long as the non-agent system has the authorization to do so. Figure

3.3 describes region to region interconnection [GMD97].

3.2 Mobile Agent Architecture

3.2.1 Why Use an Agent Architecture

Agent architecture provides a flexible alternative to client/server and distributed object
architectures. It contains many advantages. Three of the most important advantages are
(Steven97]:

Chapter 3 Mobile Agent Technology 18

»

[“""'.:J

I m
Region Region
Agent Agent
System System

nigip L
aigiy siniy

Ca 1

T

Figure 3.3 Region to Region Interconnection

. Performs much processing at the server where local bandwidth is high, thus

reducing the amount of network bandwidth consumed and increasing overall

performance.

Operates independently on the application from which the agent was invoked. The
agent operates asynchronously, meaning that the client application does not need to
wait for the results. This is especially important for mobile users who are not
always connected to the network.

Allows for the injection of new functionality into a system at run time. An agent
system essentially contains its own automatic software distribution mechanism that
has built-in support for mobile code, new functionality generally can be installed
automatically at run time.

Chapter 3 Mobile Agent Technology 19

3.2.2 Structure of an Mobile Agent

Because a mobile agent is a software entity that exists in a software environment, it
inherits some of the characteristics of an agent. A mobile agent must contain all of the
following models [Chess95]{White95]:

Agent model: defines the internal structure of the intelligent agent part of a mobile
agent. In essence, it defines the autonomy, learning and co-operative characteristics of

an agent. Additionally, it specifies the reactive and proactive nature of agents.

Life-cycle model: defines the different execution states of a mobile agent and the events

that cause the movement from one state to another.

Computational model: defines how a mobile agent executes when it is in a running

state.

Security model: mobile agent security can be split into two broad areas. The first
involves the protection of host nodes from destructive mobile agents, while the second

involves the protection of mobile agents from destructive hosts.

Communication model: communication is used when accessing services outside of the
mobile agent, during co-operation and co-ordination between mobile agents and other

entities, and finally to facilitate competitive behavior between self-interested agents.

Navigation model: concems itself with all aspects of agent mobility from the discovery
and resolution of destination hosts to the manner in which a mobile agent is

transported.

These models are highly integrated and interdependent. Figure 3.4 gives a simple view
of the structure of a mobile agent [URL2].

Chapter 3 Mobile Agent Technology 20

Computational

Figure 3.4 Simple View of the Structure of a Mobile Agent [URL2]

The core of the structure is based on the computational model. This has significant
impact on the other models. It defines how we address other agents, hosts and
resources, which is important to the security model. The type of life cycle model

adopted is dependent on the facilities of the computational model.

Both the security and life cycle models are structurally very close to the core. Security
issues permeate every aspect of a mobile agent and therefore must be provided for at

the most basic level. The life cycle model defines the valid states for an agent.

The outer layer contains the communication, navigation and agent models. The agent
model defines the “intelligent agent” aspects of a mobile agent such as learning and
collaboration functions. The communication model is heavily dependent on the security
model so that agents are not corrupted by other agents or hosts. Finally, the navigation
model is also dependent on the security model as it hands itself over to the host to be
transported to another node.

Chapter 3 Mobile Agent Technology 2/

3.2.3 Mobile Agent Environment

A mobile agent environment is a software system, which is distributed over a network
of heterogeneous computers. [ts primary task is to provide an environment in which
mobile agents can execute. The mobile agent environment implements the majority of
the models that appear in the mobile agent definition. It may also provide: support
services which relate to the mobile agent environment itself, support services pertaining
to the environments on which the mobile agent environment is built, support services
accessing to other mobile agent systems, and finally support for openness when

accessing non-agent-based software environments [URL2].

The basic mobile agent architecture is illustrated in Figure 3.5 [URL2]). The mobile
agent environment is built on top of a host system. The s;miling faces are mobile agents
that travel between mobile agent environments. Communication between mobile agents
(local and remote) is represented by bi-directional arrows. Communication can also

takes place between a mobile agent and a host service.

Figure 3.5 Basic Mobile Agent Architecture [URL2]

Chapter 3 Mobile Agent Technology 2

3.3 Advantages of the Mobile Agent Paradigm

Mobile agents have many advantages over the traditional client/server model. In
[URL2], various claims related to mobile agent are examined and its advantages are

summarized as following:

e Efficiency: Mobile agents consume fewer network resources since they move the

computation to the data rather than the data to the computation.

® Reduction of network trafficc Most communication protocols involve several
interactions, especially when security measures are enabled. This causes a lot of
network traffic. With mobile agents, one can package up a conversation and ship it

to a destination host where the interactions can take place locally.

® Asynchronous autonomous interaction: Tasks can be encoded into mobile agents
and then dispatched. The mobile agent can operate asynchronously and independent
of the sending program. An example of this would be a mobile device dispatching
an autonomous search agent onto the fixed network, disconnecting, then

reconnecting some time later to collect the results of the search.

o Interaction with real-time entities: Real-time entities such as software controlling
an ATM switch or a safety system in a nuclear installation require immediate
responses to changes in their environment. Controlling these entities from across a
potentially large network will incur significant latencies. For critical situations
(nuclear system control), such latencies are intolerable. Mobile agents offer an
alternative. They can be dispatched from a central system to control real-time

entities at a local level and also process directives from the central controller.

¢ Dynamic adaptation: Related to the above topic, mobile agents have the ability to
autonomously react to changes in their environment. However, such changes must

be communicated to mobile agents from the mobile agent environment.

Chapter 3 Mobile Agent Technology 23

e Dealing with vast volumes of data: When vast volumes of data are stored at remote
locations, as in weather information systems, the processing of this data should be

performed local to the data, instead of transmitting it over a network.

® Robusmess and fault tolerance: The ability of mobile agents to react dynamically to
adverse situations makes it easier to build fault tolerant behavior, especially in a
highly distributed system.

e Support for heterogeneous environments: Both the computers and networks on
which a mobile agent system is built are heterogeneous in character. As mobile
agent systems are generally computer and network independent, they support

transparent operation.

e Personalize server behavior: In the intelligent networks, mobile agents are
proposed as a way to personalize the behavior of network entities (e.g., routers) by

dynamically supplying new behavior.

e Support for electronic commerce: Mobile agents can be used to build electronic
markets. Here mobile agents embody the intentions, desires, and resources of the

participants in such a market.

e Convenient development paradigm: The design and construction of distributed
systems can be made easier by the use of mobile agents. Mobile agents are
inherently distributed in nature and hence are a natural view of a distributed system.

Since mobile agents have many advantages over the traditional client/server model, we
present a mobile-agent-based dynamic channel allocation algorithm. In the next
chapter, we will describe our proposed algorithm in detail.

Chapter 4 Mobile-Agent-Based Dynamic Channel Allocation Algorithm 24

Chapter 4

Mobile-Agent-Based Dynamic Channel
Allocation Algorithm

4.1 Motivation

In Chapter 2, we reviewed the different channel allocation schemes. We found the
various techniques proposed in the literature made great effort on how to efficiently
reuse channels in the cellular system so that to minimize the biocking probabilities for
network traffic. However, those algorithms use the biock-and-clear model, that is, if a
call cannot allocate a channel, then this call is blocked and simply cleared immediately
[Donald73][Ming89][Chih93]. But in fact, in some cases, a short delay before being
connected could be acceptable. People would rather wait for a few seconds to get

connected than redial later.

In our research, we specifically consider this case where the mobiles may not need to
be connected immediately, mobile users might be able to tolerate a short delay before
being connected. If the waiting time is chosen properly, the total blocking probability
of the network can be reduced considerably [Reece96].

In our proposed new algorithm, we place the blocked calls in a waiting queue for a
limited amount of time. During this short period, if there is a channel available for this
call, then we can assign this channel to the call immediately. If there is still no channel
available, then this call is cleared. This algorithm can give people the choice to wait

Chapter 4 Mobile-Agent-Based Dynamic Channel Allocation Algorithm 25

for a connection so that it improves the quality of service (QoS) in cellular network.
QoS is a set of user-perceivable attributes of that which makes a service what it wants
[Race82]. Specific QoS parameters take subjective or objective values, expressed in
user-understandable language. Objective values are customer-verifiable, which are
defined and measured across particular service parameters. Those subjective values
represent the provider’s opinion which are defined and estimated with respect to user

surveys [Coch92].

In a customer-provider relation, QoS is defined by service parameters of the provider
(called the system performance at the QoS provider interface), which satisfy customer
requests (QoS customer interface) [Dini97]. Some major needs for QoS enhancements

were summarized as follows:
e possibility to choose many values at a time between space values of parameters

e transparent verification and validation of preconditions between combined space

values
e possibility to change dynamically the cardinality of value space
e improving the trader with new services in order to monitor relations

Our algorithm is based on the main idea of Local Packing algorithm [Chih93], because
LP algorithm maintains a favorable performance over FCA under uniform traffic in the
region of interest even when the network has a large number of channels. More

importantly, it has a tremendous capability to alleviate congestion at traffic hot pots.

Up to now, most cellular network are using central control. It can produce near
optimum channel allocation, but at the expense of a high centralization overhead
[Nettleton89]. In our algorithm, we keep a channel status table for assigning and
releasing channels in the Mobile Switch Center (MSC), each channel assignment
procedure and channel release procedure require some choice to be made dynamically.

These are arguably the hardest interactions to deal with from a computational

Chapter 4 Mobile-Agent-Based Dynamic Channel Allocation Algorithm 26

viewpoint and if using the traditional way, it will cause high network traffic [Mike95].
They are precisely the class of problems that our model is based on Mobile Agent
addresses.

As we introduced before, Mobile Agent has great advantages on reducing network
traffic, dealing with vast volumes of data and dynamic adaptation. Therefore, our study
uses Mobile Agent to make dynamic decision and do the computation when it is in the
remote destination (MSC). The Mobile Agent can select a proper channel for a call or
monitor when a channel is available for a waiting call. It makes our algorithm more
efficient and competitive with respect to the traditional methods without using the
Mobile Agent.

In the following section, we will describe our algorithm in detail. First, we give a brief

introduction to the main idea of LP algorithm.

4.2 Main idea of LP Algorithm

In the LP algorithm, each base station assigns channels to new or hand-off calls using
the Augmented Channel Occupancy Matrix (ACO), which contains the necessary and

sufficient local information for each base station to select a channel.

Let M be the total number of available channels in the system and i be the number of
neighboring cells to cell i within the co-channel interference distance. The ACO matrix,

as shown in Figure 4.1, has M+ columns and k: +/ rows.

The first M columns correspond to the M channels. The first row indicates the channel
occupancy in cell / and the remaining ki rows indicate channel occupancy pattern in the
neighborhood of i, as obtained from neighboring base stations. The last column of the
matrix corresponds to the number of current available channels for each of the ki + /

co-channel cells.

Chapter 4 Mobile-Agent-Based Dynamic Channel Allocation Algorithm 27

Channel
free
cell 1]2 |3]|4]s 6| 7 | e M| channel
i x X 0
i X X x 0
iz x 2
is | X x 0
is x x 5
is X 3
iw 4

Figure 4.1 The Augmented Channel Occupancy Table

4.2.1 Channel Assignment Procedure Based on LP Algorithm

When a base station receives an access request, it searches for an empty column in its
ACO table. If successful, it assigns that channel to the request. If the ACO table
contains no empty column, the base station then looks for a column with a single check
mark. If found, it identifies the corresponding cell and checks to see whether that cell
has channels available (indicated by a nonzero entry in the last column). If that is the
case, it sends a request to that cell to reassign the call currently using that channel to
another channel and it assigns the found channel to its access request. The Figure 4.2
describes the procedure of channel assignment.

The content of the ACO tabie is updated by collecting channel occupancy information
from all interfering cells through a simple procedure: each base station, when seizing or
releasing a channel, sent this information to all interfering cells’ ACO tables. A base
station should send out update information also if its own entry in the augmented
column has changed as a result of another cell seizing or releasing channels.

Chapter 4 Mobile-Agent-Based Dynamic Channel Allocation Algorithm 28

ey

l
>

if exists an empty

columa in ACO)
No if exists a column
with a singie mark
if that corvesponding V

cell has chanaels

Cuo channel available for the call
available

‘
€D,

send a request to that cell to reassign the call curready
using that chanuel to another chanael

!
T

/
uptiate the information
of ACO table

Figure 4.2 Channel Assignment Procedure Based on LP Algorithm

4.2.2 Channel Release Procedure Based on LP Algorithm

In the literature [Chih93], only the channel assignment procedure is considered. But in
our proposed algorithm, we need to consider how to assign a released channel to a
waiting call. According to the idea of the LP algorithm, we present the channel release

Chapter 4 Mobile-Agent-Based Dynamic Channel Allocation Algorithm 29

procedure based on the LP algorithm. Figure 4.3 describes the procedure of channel

release:

cell i finishes an access request
and releases chanael &

ifthere is a call
waiting
for a channel

return the channel & directly and
update the information of ACO table

assign the channel & yes if the call is from
to this call directely celli

if exists an empty
column in ACO table of
cell j afier clear channel
kincelli

if the call is from
interfering cell of
cell i, say cell j

yes

chanael k can’t be assigned
to this waiting call

if exists a column with
single mark in ACO

table of cell j after clear

channel kincell i

send s request (o that ceil to
reassign the call currently using
that channel to another channel

Clﬂl& the information of ACO hﬂe)

L

Figure 4.3 Channel] Release Procedure Based on LP Algorithm

Chapter 4 Mobile-Agent-Based Dynamic Channel Allocation Algorithm 30

When a call on channel k of cell i terminates, if there is a call waiting in the queue, first
check if the waiting call also comes from base station i, if yes, this channel can be
directly assigned to this call and doesn’t need update anything. If the waiting call is
not from base station i, say it is from base station j, check if cell j is the interfering cell
of cell i, if yes, check to see if this channel can be re-assigned to the waiting call. The

following steps are executed:

L. First it searches for an empty column in cell j°s ACO table after clearing the check
mark of the k channel in cell i. If successful, it assigns that channel to the waiting
call.

2. If the ACO table contains no empty column, then looks for a column with a single
check mark after clearing the check mark of the & channel in cell i. If found, it
identifies the corresponding cell and checks to see whether that cell has channeis
available (indicated by a nonzero entry in the last column). If that is the case, it
sends a request to that cell to reassign the call currently using that channel to
another channel and it assigns the found channel to the waiting call. If no channel is

available, then the channel & can’t be assigned to this waiting call.

The content of the ACO table is updated by the same way as the one used in channel

assignment procedure.

4.3 Design of Our Algorithm

In our algorithm, instead of implementing distributively at the base stations with a
simple Augmented Channel Occupancy table as Chih-Lin and Pi-Hui Chao [Chih93]
did, we propose to keep a table which contains the information of all base stations in
the Mobile Switching Center (MSC).

Each base station is treated as an agency where a stationary agent Base is residing to

provide services for the mobiles. If it receives a call request from a mobile, it will

Chapter 4 Mobile-Agent-Based Dynamic Channel Allocation Algorithm 31

create a Start agent and send it to the remote location MSC to select a channel for this
call. If it receives a call finished message from a mobile, it will create a Finish agent
and send it to MSC to release this channel. MSC is an agency where a stationary agent
Directory is residing to provide information needed by each base station and to update

the information in channel status table. Figure 4.4 shows this simple structure.

receive a call
create e wal)

MSC
ting queue
.- \"(\-S-mif—:,‘\)
'\...,~ é @

.-

" Finish)

P channel status table
finish a call \
C=D e
create .’

Figure 4.4 Structure of Mobile-Agent-Based Cellular System

4.3.1 Channel Assignment Procedure

When the Base agent in cell i receives an access request from a mobile, the following

steps are executed (see Figure 4.5):

1. First, the Base agent creates a mobile agent Srart with cell i’s authority and gives it

the fixed amount of time it should wait for a channel.
2. Sends Start to the place where the stationary agent Directory is residing in MSC.

3. The Start agent meets the Directory agent and asks the service.

Chapter 4 Mobile-Agent-Based Dynamic Channel Allocation Algorithm 32

Cm—
e

D checks S's suthentication
ond suthorization
Base agent in cell i crestes a mobile
agent Sun(S) which has il i's ID
No D refuses to
provide service o §

y
(send S to MSC j
v yes

S meets stationary agent D extracts ACO table of cell { from the channel status tabie
Direclory(D) in MSC) Gisc.uﬂm 0 5. Meanwhile, the ficlds in cheanel

—>-

status table which related to the ACO table are focked

CS‘IIylu the ACO table by l’m)

yes

No

A S meets D and returms the ACO table, and
D unlocks the fields related to this ACO

table in channel status tabie in MSC

G § sleep in the waiting qnua

during the given time.il
there is a channel
awailable(see Figure L6)

v D sends request to the corresponding
i) 1o resssign the call currentty using
that chanae! (o anether chanael

> > (mdl;mu)
n-—.mma--ummmnu) _—’(s"“m;“u""m)

returned ACO tahie, then unlecks the fieid reinted
(S wrminates itseif)

1o the ACO tabie in the channe! status tahle
Figure 4.5 Channel Assignment Procedure

Chapter 4 Mobile-Agent-Based Dynamic Channel Allocation Algorithm 33

4. The Directory agent first checks the authentication and authorization of the Start
agent, if they are not valid, then the Directory agent refuses to provide service. If
the authentication and authorization are valid, then the Directory agent extracts the
cell i’s ACO table and gives it to the Start agent. In the meantime, the fields in the
total channel status table, which related to this ACO table are locked. That means

they are not allowed to be accessed by other agent.
5. The Start agent uses the LP algorithm to analyze the ACO table.

e [f there is a channel available, then this channel is assigned to the Start
agent. Meanwhile, the information in ACO table is updated. Then the Starz
agent meets the Directory agent and returns the updated ACO table. If the
channel is available through channel-reassignment, the Directory agent
sends a request to the corresponding cell to reassign the call currently using
that channel to another channel. And the Start agent sends the result back
and then terminates itself. In the meantime, the Directory agent updates the
information in the total channel status table according to the updated ACO
table, and then, the fields related to this ACO table are unlocked.

e If there is no channel available, then the Start agent meets the Directory
agent and returns the ACO table. The Directory agent unlocks the fields
related to this ACO table and no update is needed. The Starr agent goes
into a waiting queue and sleeps there until invoked by the Directory agent.
If in the given time, no channel is available, then the Start agent sends a
signal back and terminates itself. In this case, the call is blocked.

4.3.2 Channel Release Procedure

When a call on channel k of cell i terminates, the following steps are executed (see
Figure 4.6):

Chapter 4 Mobile-Agent-Based Dynamic Channel Allocation Algorithm 34

=)

;
& S | <>t
A

yes

C send Fto MSC) D gets knck the released channe!
i nombee & and coil aumber i frem F
F mecis sistionary agesd
Direcsory(D) in MSC

I

C -“-'-';--"-’)‘
C -mu;onh j

T

D inwhes S and assipns it
(he channel

S sends the result dmck and
terminates itself

IS is from the
imterfering ceil of et
i.say aall §

A

D sends request (o the ponding cell
10 reassign the call currently using that
channe! to anether channe!

\

D inwhes S and gives S its ACO table. Meanwhile.
the fields in chanme! sintus wahie which related 1o
the ACO table are locked

oyt (s e 0 e by Lr i)
v field relnted 1o the ACO tahie in the channe!
status table

No

S meets D and returns the ACO talle, snd D

-
-

check this mebile sgent) >~

>

Figure 4.6 Channel Release Procedure

Chapter 4 Mobile-Agent-Based Dynamic Channel Allocation Algorithm 35

1. First, the Base agent in cell i creates a mobile agent Finish with cell i’s authority

and gives it the channel’s number k.

2. Sends the Finish agent to the place where the stationary agent Directory is residing
in MSC.

3. The Finish agent meets the Directory agent and asks the service.

4. The Directory agent first checks the authentication and authorization of the Finish
agent, if they are not valid, then the Directory agent refuses to provide service. If
the authentication and authorization are valid, then the Directory agent gets the
released channel number & and cell number i from the Finish agent. Then the Finish

agent terminates itseif.
5. After while, the Directory agent checks if the waiting queue is empty.

a) If the queue is empty, then the Directory agent updates the channel status table

according to the information the Finish agent gives.

b) If the queue is not empty, then the Directory agent checks the first mobile agent

Start in the queue.

o If this Start agent also comes from cell i, Directory agent invokes it and
assigns the channel k& directly to it and doesn’t need update anything. Then

the Start agent sends the result back and terminates itself.

e If this Start agent is not from cell i, check if it is from the interfering cell of

cell ¢.

If the Start agent is not from the interfering cell of cell i, then let the Start agent
continue sleeping and checks the second mobile agent in the queue, then

follows the same procedure as the first one.

Chapter 4 Mobile-Agent-Based Dynamic Channel Allocation Algorithm 36

If the Start agent is from the interfering cell of cell i, then the Directory
agent invokes it and gives its ACO table. The fields in the channel status
table which related to this ACO table are locked. With the ACO table, the
Start agent uses LP algorithm to analyze if the channel k can be assigned to
the call. If yes, then the Start agent updates the ACO table. Then the Start
agent goes to meet the Directory agent and returns the ACO table. If the
channel is available through channel-reassignment, the Directory agent
sends a request to the corresponding cell to reassign the call currently using
that channel to another channel. And the Srarr agent sends the result back
and then terminates itself. In the meantime, the Direcrory agent updates the
information in the total channel status table according to the updated ACO
table and then the fields related to this ACO table are unlocked.

If no channel can be assigned to the Starr agent, then the Start agent returns
the ACO table to the Directory agent. And the fields related to this ACO
table are unlocked. Let the Srarr agent sleep in the queue again. If there
exists another mobile agent sleeping in the queue, Directory agent checks it

and follows the same procedure as the first one.

o [f the channel k cannot be assigned to any mobile agent in the waiting
queue, then the Directory agent updates the channel status table according

to the information the Finish agent gives.

Our implementation is based on the Grasshopper platform. In order to show how our
implementation is possible, in the next chapter, we give a brief introduction to Mobile
Agent System Interoperability Facilities Specification (MASIF), and the platform
(Grasshopper) used in our implementation, which is compliant to MASIF standard.

Chapter 5 MASIF and Grasshopper 37

Chapter 5

MASIF and Grasshopper

Mobile agents are a relatively new technology that is fueling a new industry. Up to
now, there exist many agent systems, which differ widely in architecture and
implementation. Our research is carried out in the Grasshopper mobile agent
environment which is compliant to Mobile Agent System Interoperability Facilities
Specification (MASIF). In this chapter, we give a brief introduction to MASIF standard
and the Grasshopper platform.

5.1 MASIF

5.1.1 Background

An important goal in mobile agent technology is interoperability between various
manufacturer’s agent systems. The differences among mobile agent systems prevent
interoperability and rapid proliferation of agent technology, and has probably impeded
the growth of the industry [GMD97], thus it would be nice to have a single standard

that is as universally accepted.

Just as CORBA defines a standard for distributed object interoperability, standards are
needed for a universal agent platform that would allow any server to accept and execute
an agent from any vendor. Interoperability becomes more achievable if actions such as
agent transfer, class transfer, and agent management are standardized. Object
Management Group (OMG) is currently working on an agent standard in the form of a
. CORBA common facility. The resulting standard will specify language-independent

Chapter 5 MASIF and Grasshopper 38

interfaces for dealing with agents, but will probably not go as far as specifying any

particular mobile code implementation.

One of the most promising candidates for mobile agent standard is GMD FOKUS's
MASIF proposal. The MASIF standardization is a joint submission of GMD FOKUS,
International Business Machines Corporation, Crystaliz, General Magic, and the Open
Group in 1997. It is based on Java and built on top of the OMG Common Object
Request Broker Architecture (CORBA), thus providing the integration of the traditional
client/server paradigm and mobile agent technology. Our platform Grasshopper is the
first intelligent mobile agent environment that is compliant to the MASIF standard. In
the next two subsections, we show the advantages using Java in mobile agent
implementation and the services provided by CORBA in MASIF standardization. After
that, we describe two important interfaces contained in MAF module. Due to the
methods of these two MASIF-compliant interfaces are not optimized for the
Grasshopper environment, in Section 5.2.2.4, we will introduce two Grasshopper -

specific interfaces.

5.1.2 Advantages Using Java in Mobile Agent Implementation

Java is an interpreted, object-oriented language and library set. Its main features are

{URL11]:

e simple and familiar object-oriented language, which facilitates the definition of

clean interfaces to promote the design of reusable software modules.

e architecture neutral, portable and robust system, which places emphasis on early

error checking, and eliminates use of error prone programming features.

e interpreted and dynamic program execution, which permits application to adapt to

an evolving environment by deferring binding of plug-in modules until runtime.

e acomprehensive security system, which enables construction of virus-free, tamper-

free systems for network environments.

Chapter 5 MASIF and Grasshopper 39

e multithreaded execution with synchronization between threads, which is useful in a
multiprocessor system where threads run concurrently on separate processors, and
improves program performance on single processor systems by permitting the

overlap of input, output, or other slow operations with computational operations.

e support for distributed systems through the remote object invocation (RMI) and
object serialization (OS) facilities, and offer extensive library of routines for coping
with TCP/IP protocol.

A mobile agent is an active object that can move both data and functionality (code) to
multiple places within a distributed system. A mobile agent should be able to execute
in any machine within a network, regardless of the processor type or operating system.
In addition, the agent code should not have to be installed on every machine that the

agent could potentially visit. It should move with the agent’s data automatically.

Therefore, it is desirable to implement agents on top of a mobile code system, such as
the Java virtual machine (JVM). The Java Virtual Machine implements an abstraction
layer to hide the underlying operating system and hardware architecture (URL11]. This
abstraction is what insulates the built Java application from whatever system is hosting
execution. This is unlike the tradition model where the application is built for a
particular system. The built application is mapped directly to the particular system
hosting execution. By shifting these system dependencies from the built application to
the Virtual Machine, Java applications once built are inherently portable. It is the
Virtual Machine, which must be ported to the host system, not each particular Java
application. The dynamic nature of Java classes and objects, combined with advanced
networking capabilities, make Java highly qualified for use as a mobile agent platform
[Steven97].

Java and its run-time system produce a flexible and powerful programming system
which supports distributed computing. An agent’s classes are loaded at runtime over

the network as it travels from one location to another. So we can see that Java is a

Chapter 5 MASIF and Grasshopper 40

natural choice for implementing agent system because it is a mobile code platform with

built-in support for networking.

5.1.3 CORBA Services

CORBA (Common Object Request Broker Architecture) is a specification of an
architecture and interface that allows an application to make request of objects (servers)
in a transparent, independent manner, regardless of platform, operating system, or local
considerations. The CORBA ORB is an application framework that provides
interoperability between objects, built in (possibly) different languages, running on

(possibly) different machines in heterogeneous distributed environments [URL3].

The CORBA paradigm follows two existing methodologies: distributed client-server
programming and object-oriented programming. The distributed computing is based on
message-passing systems found in most UNIX systems. In CORBA, features of object-

oriented programming, such as encapsulation and inheritance, are used.

CORBA can provide the following services which are related to mobile agent
technology (Figure 5.1) [GMD97]:

e Naming service: CORBA naming service binds names to CORBA objects. The
resulting name-to-object association is called a naming binding, which is always
related to a naming context. A naming context is an object that contains a set of

name bindings in which each name is unique.

o Lifecycle service: CORBA life cycle service defines services and conventions for

creating, deleting, copying and moving CORBA objects.

e Externalization service: CORBA externalization service provides a standardized
mechanism for recording an object’s state onto a data stream, and for restoring an
object’s state from a data stream. An agent system uses this service when it needs to
serialize and deserialize an agent’s state.

Chapter 5 MASIF and Grasshopper 41

ORB

! !
/ Services \ r Facilities \

Security Mobile Agent Facility
Naming
—
Lifecycle Other Facilities
Externalization

_ 2N J

Figure 5.1 CORBA Services and Facilities

e Security service: although CORBA security does not currently meet all the needs of
mobile agent technology, the mobile agent facility (MAF) implementation must use
available CORBA security to satisfy its security needs. The security requirements

for agents and agent systems in CORBA are:

e Agent naming
o Client authentication for remote agent creation
¢ Mutual authentication of agent systems

e Agent system access to authentication results and credentials

Chapter 5 MASIF and Grasshopper 42

e Agent authentication and delegation
e Agent and agent system security policies

¢ Integrity, confidentiality, reply detection, and authentication

5.1.4 MAF Module

The Mobile Agent Facility (MAF) is a collection of definitions and interfaces that
provide an interoperable interface for mobile agent systems. The MAF module contains

two interfaces:

e MAFAgentSystem interface
o MAFFinder interface

The interfaces have been defined at the agent system level rather than at the agent level

to address interoperability concerns.

5.1.4.1 MAFAgentSystem Interface

The MAFAgentSystem interface defines methods and objects that support agent
management tasks such as fetching an agent system name and receiving an agent.
These methods and objects provide a basic set of operations for agent transfer,

including receive, create, suspend, and terminate.

5.1.4.2 MAFFinder Interface

The MAFFinder interface is a naming service. It provides methods for maintaining a
dynamic name and location database of agents, places, and agent systems. The interface
does not dictate what method a client uses to find an agent. Instead, it provides ways to
locate agents, agent systems, and places that support a wide range of location
technique. It defines operations for registering, unregistering, and locating agents,

places, and agent system.

Chapter 5 MASIF and Grasshopper 43

5.2 Grasshopper

Grasshopper is the first intelligent mobile agent environment, which is compliant to the
MASIF standard. The standardization ensures that user’s agent applications will be
opened towards other agent environments and save the investments for the future.
Grasshopper allows user to build agent-enabled distributed applications, which take
advantage of local high-speed communication and local high-speed data access. Thus

we chose to implement our algorithm in the Grasshopper platform.

5.2.1 Grasshopper Agent Environment

The Grasshopper environment consists of several agencies and a region registry,
remotely connected via an Object Request Broker (ORB). The advantage of
Grasshopper as an ORB-based agent platform is the integration of the traditional
client/server paradigm and mobile agent technology. Due to the fact that Grasshopper is
built on top of an ORB, the platform capabilities can easily be enhanced by simply
accessing other (agent-based or non agent-based) ORB applications. For instance, a
CORBA rtrading service can be integrated for finding agencies, places, or agents
providing specific capabilities, or an event service can be used to enhance the low-level

communication capabilities.

Several interfaces are specified to enable remote interactions between the distinguished
distributed components. Apart from Grasshopper-specific interfaces, the MASIF-
compliant interfaces (MAFAgentSystem and MAFFinder) are provided to enable
interoperability between the Grasshopper platform and (MASIF-compliant) agent
systems of different vendors. Figure 5.2 shows the Grasshopper environment [URLA4).

Chapter 5 MASIF and Grasshopper 44

N g
Figure 5.2 Grasshopper Environment [URLA]

5.2.2 Basic Components of Grasshopper Environment
5.2.2.1 Agency

Agencies are the actual runtime environments for mobile agents, consisting of a core
agency and one or more places. Each agency runs on its own Java virtual machine.
External interfaces are provided in order to enable the remote access of an agency via
an ORB. Interface MAFAgentSystem is provided in order to enable a MASIF-
compliant access, and the Grasshopper-specific interface AgentSystem offers
sophisticated access to a Grasshopper agency.

The core agency provides only those capabilities that are inevitably required for the
execution of agents. Agents access this functionality in order to retrieve information

Chapter 5 MASIF and Grasshopper 45

about other agents, agencies or places, or in order to move to another location. Human
users are able to monitor and control all activities within an agency by accessing the
core services. Optionally, a Graphical User Interface (GUT) can be activated to facilitate
user interactions. The entire content of an agency, i.e. the places as well as the agents
residing in each place, can be monitored and controlled. The important core services

are described as following:

Communication Service

This service enables asynchronous messaging and method invocation, and thus
supports the communication between agents. Agents can contact each other in a
location-transparent way. By contacting the region registry, the communication service
is able to locate the agent to which a connection shall be established. If agents move

away during communication, the new location is automatically updated.
Registration Service

Each agency must be able to know about all currently hosted agents and places for
internal/external management purposes. The registration service is developed in order
to deliver information about registered entities to hosted agents. Besides, the
registration service of each agency is connected to the region registry which maintains

information of agents, agencies and places in the scope of a whole region. -
Management Services

Management services are developed to monitor and control agents and places of an

agency by external (human) users. The following functionality is supported:

e create, remove, suspend, resume agents and places
e get information about specific agents and services
o list all agents residing in a specific place

e list all places of an agency

Chapter 5 MASIF and Grasshopper 46

Apart from this, configuration management enables human users to specify system,

trace, security, and communication properties.
Transport Service

This service supports the migration of agents from one agency to another. At the
destination agency, the agent continues its task processing at that point where it has
been interrupted before the migration. The transport service handles the externalization
and internalization of agents, the localization of the destination agency, the connection

establishment, and the transfer procedure itself.
Security Service

The Security Service provides authentication, privacy and integrity of inter-agent
communication using Security Socket Layer (SSL) with Remote Method Invocation
(RMI) or SSL with plain sockets. SSL is a strong and secure cryptographic method and

state-of-the-art in many security-relevant applications, e.g. Web Browsers.

While the core services are tightly and statically integrated into the agency, additional
services may be realized either by static components or by special agents, called service
agents. In this way, the capabilities of the Grasshopper platform can be enhanced in a
very flexible and comfortable way. The functionality realized by a service agent can be
offered to other agents, applications, or human users. Also mobile agents offer
functionality to other agents, services or human users. However, in contrast to service
agents, mobile agents may move through the network in order to perform their task. For
instance, a service agent or human user wants to collect information that is distributed
throughout the network. In this case, a mobile agent can be created, which migrates
from agency to agency, collects the desired information, and returns back to the

initiator.

Chapter 5 MASIF and Grasshopper 47

5.2.2.2 Region Registry

The region concept facilitates the management of the distinguished components in the
Grasshopper environment. Agencies, as well as their places, can be associated to a
specific region. Several agencies can be grouped to one region represented by one
region registry. Each agency automatically registers each currently hosted service agent
and mobile agent within the region registry. If an agent moves to another location, the

corresponding registry information is automatically updated.

The region registry is realized by means of a Java program running on its own Virtual
Machine. Agents may contact the region registry in order to locate other agents,
services, places, or agencies. On the other hand, human users (administrators) are able
to track their agents in the scope of the whole distributive environment by contacting

the region registry.

As an agency, also a region registry provides interfaces that enable remote access to the
offered functionality. The MASIF-compliant interface MAFFinder is provided in order
to enable MASIF-compliant access, and the Grasshopper-specific interface

RegionRegistration also can be used to offer a sophisticated access.

5.2.2.3 MASIF - Compliant Interfaces

As we introduced in Section 5.1.4, MASIF contains two interfaces: interface
MAFAgentSystem and interface MAFFinder. The interface MAFAgentSystem is
associated to single agencies, and provides the following methods:

e create/suspend/resume/remove agent

® receive agent

e list hosted agents

e list available services

e get agent state

o get MAFFinder reference

Chapter 5 MASIF and Grasshopper 48

The interface MAFFinder allows the registration and de-registration of agencies,
places, and agents in the scope of a region. Additionally, methods are provided to

search for specific agencies, places, and agents.

Because the methods of these two MASIF-compliant interfaces are not optimized for
the Grasshopper environment, a Grasshopper agency also can be accessed via the
Grasshopper-specific interfaces which have been designed especially for this platform,

and therefore allows to access the offered functionality in the most efficient way.

5.2.2.4 Grasshopper - Specific Interfaces

The Grasshopper-specific interfaces include interface AgentSystem and interface
RegionRegistration. In contrast to the interface MAFFinder and MAFAgentSystem,
these two interfaces have been especially designed for the Grasshopper platform.

Apart from the functionality offered by MAFAgentSystem, the AgentSystem interface
provides methods for sophisticated place management, i.e. the creation, suspension,

resumption, and removal of places within an agency.

Apart from the functionality offered by MAFFinder, the RegionRegistration interface
provides mechanisms for "freezing" an agent within a specific agency. Additionally,

sophisticated search operations are comprised.

5.2.3 Agent Programming Guide On Grasshopper

The following two subsection comprise some information that is need for the

implementation of a Grasshopper-compliant mobile agent.

5.2.3.1 Agent Methods

Grasshopper-compliant mobile agents are entirely implemented in Java, realized by
means of at least one Java class. Each concrete agent has to be derived from the
abstract class Agent which is part of the platform class library, and which has to be

provided by each agency during its runtime. This abstract class comprises various

Chapter 5 MASIF and Grasshopper 49

methods that realize the only “bridge” between an agent and its environment. These
methods can be subdivided into two groups [URLA]:

¢ Modifiable methods: Several methods of the abstract class Agent must or may be
re-implemented by the agent programmer. For instance, the method 1ive has to be
re-implemented since it specifies the actual task of the agent, whereas the method
createDescription can optionally be overridden in order to specify a textual

description of the agent’s task.

e Non-modifiable methods: During its execution, an agent must be able to access the
capabilities of the core agency. Thus, the class de.ikv.grasshopper.
agency .Agent provides various methods. That means, a concrete agent does not
get a reference of any component of the core agency, but instead invokes methods
of its own superclass. These methods are declared final which means that they

cannot be modified or re-implemented by agent programmers.

Some modifiable and non-modifiable agent methods that will be re-implemented or

used in our algorithm will be introduced in the Section 6.1.

5.2.3.2 Inter-Agent Communication

Agents must be able to communicate with each other in order to exchange information.
Especially, mobile agents must be able to access the offered functionality of service
agents. The mechanism for inter-agent communication is provided by the

communication service.

An agent that likes to make use of the communication service first has to create a local
proxy object associated witlr the agent that should be contacted. All communication
(method calls on the contacted agent) is done via that proxy object thus achieving
location transparency. Once the proxy object is created, the agent can use all public
methods of the associated agent. The communication service takes care of contacting
the desired agent itself and determines the underlying communication protocol. The
Figure 5.3 illustrates this scenario where Agent A is contacting Agent B.

Chapter 5 MASIF and Grasshopper 50

Mmmom) [seener T)

®--®
A \ 4

[Communication Service} {Communiution Server

Figure 5.3 The Usage of Proxy Objects for Dynamic Method Invocation

In this chapter, we have introduced our platform - Grasshopper. We will show how to
realize our algorithm on Grasshopper in the next chapter. And further more, we will

analyze the performance of our proposed model through a simulator written by Java.

Chapter 6 Implementation and Performance 51

Chapter 6

Implementation and Performance

In this chapter, the implement detail on Grasshopper will be given in Section 6.1. And
in Section 6.2, we will analyze the performance of our algorithm through a simulated

cellular network consisting of 144 hexagonal cells with equal size arranged in a 12x12

grid.
6.1 Implementation of Our Algorithm on Grasshopper

In our algorithm, we have two Kinds of service agents named the Base agent and the
Directory agent. We also have two kinds of mobile agents named the Start agent and
the Finish agent. Their tasks have been described in Section 4.3. In order to realize
these tasks, we need implement four agents class: BaseAgent, DirectoryAgent,
StartAgent and FinishAgent. Each agent has to be a subclass of the common

Agent class. For instance, with the BaseAgent class, we have:
public class BaseAgent extends de.ikv.grasshopper.agency.Agent

And as we introduced in Section 5.2.3, several methods of the abstract class Agent
must or may be re-implemented. In our implementation, we will re-implement
live(), init (), createName (), isMobileAgent () (only for service agents)
methods.

Figure 6.1 shows the diagram of our agent classes relationship according to Unified
Modeling Language (UML). UML is a general-purpose notational language for
specifying and visualizing complex software, especially large, object-oriented projects

Chapter 6 Implementation and Performance 52

{URL13). A class is drawn as a solid-outline rectangle with three compartments
separated by horizontal lines [URL14]. The behavior of a class is represented by its
operations. The structure of a class is represented by its attributes. Relationships

provide a pathway for communication between objects.

channel_number: String

StartAgent BaseAgent
home: String home: String
agentid: String location_MSC: String
WaitingTime: int channel_aumber: String

live()

waitingqueue: Vector

s

Hive()

imit()
:::3 cresteAgentName()
isMobileAgent()
:uteA.ellle() getChannel(String)
Agent -
agent_id: String
location: String
home: String
live)
initQ)
createAgentName()
isMobileAgent()
DirectoryAgent - FinishAgent
home: String homeid: String
database: DataBase agentid: String

channel_number: String

live()

init() Name() Class Relationship Notation: vt
createAgentName(

isMobileAgent() Associstion createAgentName()
getACOTable() > Inheritance -

Figure 6.1 Diagram of Our Agent Classes Relationship in UML

In the above figure, there exist two types of relationships between classes: inheritance
and association. Inheritance is a relationship between a superclass and its subclasses.
Association is a bi-directional connection between classes which is shown as a line
connecting the related classes [URL14]. In order to show how these agent classes
communicate with each other, in the following subsection, we will introduce each agent
class in detail.

Chapter 6 Implementation and Performance 53

6.1.1 BaseAgent Class

BaseAgent class is a subclass of common Agent. It declares the following objects:

private String home; //this base station’s location

private String homeid; //the identification of this base station
private String place; //the current place of the BaseAgent

private String channel_number; //contains the number of the channel
private String agentid; //the identification of created mobile agent
private String location_MSC; //the location of MSC

private String host_MSC; //the host name which MSC is residing
private String place_MSC; //the place name which MSC is residing

It includes the following methods:
e createAgentName (): This method defines an individual name for Base agent.

public String createAgentName(){

return new String(*“BaseAgent");

e isMobileAgent (): This method indicates whether an agent is a mobile agent or
a service agent. By default, agents are indicated as mobile agents (return value

true). Thus, this method has to be overridden for each service agent.

public boolean is MobileAgent(){

return false;

e init{(): This method allows to initialize the Base agent before the actual task
processing is started.

public void init(){

Chapter 6 Implementation and Performance 54

/initialize the channel_number to null at first
channel_number=null;

/*get this base station’s location. get Serviceinfo () method
returns information about the service represented by the agent */
home=getServiceinfo().getServiceRuntimeRelated().serviceLocation;

//get the id of this base station
homeid=getAgencyld();

//get this BaseAgent current place
place=de.ikv.grasshopper.util.LocationAssistant.getPlace(home);

//get the MSC'’s location
location_MSC=de.ikv.grasshopper.util. LocationAssistant.

createLocation(host_MSC, “MSC", place_MSC);

e 1live(): This method is the most fundamental method of each agent, since it

specifies the agent’s behavior.

public void live(){

/finitialize the information of mobile agent which will be created
Agentinfo info=null;

/*if BaseAgent receives a signal from a mobile, getSignal (mobile)
method analyzes the signal and return the message.*/
String message=getSignal(mobile);

/If message is “CallArrived”, creates Start agent and send to MSC
if (message=="CallArrived”) {

ry(

/*create a StartAgent in the current place. createAgent method
enables an agent to create another agent in the same or another
place of the current agency.*/
info=this.createAgent(“ crim.ca.ymzhang.StartAgent”,

“file://", place, null);

Chapter 6 Implementation and Performance 55

/
catch(Exception e){};
//get the id of the created agent
agentid=info.getServicelD().toString;

/*create a proxy of the StartAgent so that any public methods in
StartAgent class can be accessed by BaseAgent class.*/
StartAgentP startagent=new StartAgentP(agentid, homeid);

/finvoke its move() method, startagent will migrate to the MSC
try(
startagent.move()(location_MSC);
/
catch(Exception e){};

] //end if{message="CallArrived”)

//if message is “CallFinished”, creates Finish agent and send to MSC
else if (message=="CallFinished”)

tryf

//create a FinishAgent in the current
info=this.createAgent(“crim.ca.ymzhang.FinishAgent”,
“file://", place, null);
/
catch(Exception e){};
//get the id of the created agent
agentid=info.getServicelD().toString;

/*get the returned channel number according the mobile ID. Here
Mobile[mobileid] is an Object which containing the channel
number it is currently using.*/

String release_channel=Mobile[mobileid].channel_number;

/*create a proxy of the FinishAgent so that BaseAgent class can access
any public methods in FinishAgent class. Y/

FinishAgentP finishagent=new FinishAgentP

Chapter 6 Implementation and Performance 56

(agentid homeid,release_channel);

/finvoke its move() method, finishagent will migrate to MSC

try{

finishagent.move()(location_MSC);
/

catch(Exception e){ };

} //end else ifimessage=="CallFinished”)
else

System.out.printin(“invalid message!");

e getChannel (String channel_number): This method is used to receive
the result from StartAgent in the remote place (MSC).

public void getChannel(String channel_number){
/fif the channel_number is null, the call is blocked
ifichannel_number==null)
System.out.printin(“This call is blocked”);
/felse,, let this call use the channel indicated by channel_number
else

Mobile[mobileid].channel_number=channel_number;

/

6.1.2 DirectoryAgent Class

DirectoryAgent class is a subclass of common Agent. It declares the following

object:

private String home; //the home location
DataBase database; /*a reference of DataBase object. DataBase is an object
which contains all the channels’ occupation information.

It only can be accessed by Directory agent.*/

Chapter 6 Implementation and Performance 57

ACOTable acotable; /*a reference of ACOTable object. ACOTable is an object
which contains the channel occupation information of
specific interference cells.*/

Vector waitingqueue; //the list for waiting queue

The DirectoryAgent class includes many methods. Among them, some methods
are used to deal with DataBase which is not a main issue in our research. Thus, we will
not show the implementation details of these methods here. The implementation of
these methods can refer to our simulator (Appendix B). We only describe the following

important methods:

¢ createAgentName (): This method defines an individual name for Directory

agent.

public String createAgentName(){

return new String(" DirectoryAgent”);

e isMobileAgent (): This method indicates whether an agent is a mobile agent or

a service agent.

public boolean is MobileAgent(){
return false;
/
e init(): This method allows to initialize the Base agent before the actual task

processing is started.
public void init(){

/*initialize channel status Database using intial_DataBase ()
database=new DataBase();
initial_DataBase();
//get the home location

Chapter 6 Implementation and Performance 58

home=getServiceinfo().

getServiceRuntimeRelated().serviceLocation;

e live(): This method specifies the Directory agent’s behavior.
public void live(){
//do nothing in this method

e authentication(String agentid): This method is used to check if the

agents valid or not.

public boolean authentication(String agentid){
/*We suppose in MSC, there exists a database containing all valid agent
ID. Checking agentid in ID database by using method check_ID__
DataBase (String), if found, return true, else return false.*/
boolean found=check_ID_DataBase(agentid);
return found;

/

¢ getACOTable(String agentid, String homeid): This method is used
to provide the related ACO table for a specific Starr agent.

public ACOTable getACOTable(String agentid, String homeid){

/*first check if the agent is valid by invoking authentication method. If
the agent is valid, then providing the service to this agent.*/
iflauthentication(agentid)){

/*check DataBase if the field relating to its ACO table is locked. Wait
until the related fields are unlocked.*/
while(isLocked_DataBase(homeid){}

/*Extract ACO table from DataBase for this agent according 1o the
homeid by using method getTable_DataBase (String).*/

Chapter 6 Implementation and Performance 59

acotable=getTable_DataBase(homeid);

/*Then lock the fields which related to this ACO table by using
lock_DataBase (ACOTable), and return acotable.*/
lock_DataBase(acotable);
return acotable;

!
else
//if the agent is not valid, then refuse to provide service

System.out.printin(“This agent is not valid”);

¢ returnACOTable(ACOTable acotable): This method is used to modify
the channel status database according to the returned acotable and unlock the fields

which related to this acotable.

public void returnACOTable(ACOTable acotable){
//if the ACO table is changed, then change the DataBase accordingly
iftismodifed(acotable))
modify_DataBase(acotable);
/funlock the fields in DataBase which related to this ACO table

unlock_DataBase(acotable);

e getReleasedChannel (String homeid, String agentid, String
channel_number): This method is used to get released channel from Finish

agent. And process our channel release procedure.

public void getReleasedChannel
(String homeid, String agentid, String channel_number){
/*first check if the agent is valid by invoking the authentication method.
if the agent is valid, then providing the service to this agent.*/
iflauthentication(agentid)){

Chapter 6 Implementation and Performance 60

/*check if the waiting queue is empty. If it is not empty, check if this
channel can be assigned to the waiting call.*/
iffwaitingqueue.isEmpty()==false){

//check the elements in the waiting queue one by one
Enumeration waitingitem=waitingqueue.elements();
while(waitingitem.hasMoreElements()){

//get the first proxy of Start agent
StartAgentP item=(StartAgentP)waitingitem.nextElement();
/*if the item is from the same cell as FinishAgent, then awake
the item, set the flag in item equal to I so that this Start agent
can return the result. Then stop checking the waiting queue.*/
if(item.homeid==homeid){
notify(item);
/linform the item which channel is released
String item.releasedchannel=channel_number;
item.flag=1;
break;
/

/*if the item is from the interference cell of FinishAgent, then
awake it, and set the flag in this item to 2 so that this Start
agent can proceed the computation.*/
iflisNeighber(item.homeid, homeid)){

notify(item);
/linform the item which channel is released
String item.releasedchannel=channel_number;
String item.releasedhomeid=homeid;
item.flag=2;
/fwait until item finish its computation
while(item.finished==false){};
/*if the channel can be assigned to the item, break; Otherwise,

Chapter 6 Implementation and Performance 61

continue to check next element in the queue.
iflitem.channel_number)

break;
} //end if(isNeighber(item.homeid, homeid))
} //end checking the waiting queue
} //end ifiwaitingqueue.isEmpty()==false)
/*if the waiting queue is empty at first or this channel can not be

assigned to any waiting call, return this channel to Database.*/
returnChannel_DataBase(channel_number,homeid);
} //end iflauthentication(agentid))

else
System.out.printin(“This agent is not valid”);

6.1.3 StartAgent Class
StartAgent class is a subclass of common Agent. We declare the following

variables in this class.

private String home; //the location of the cell which this start agent comes from
private String homeid; //identification of the cell where the Start agent comes
private String agentid: //identification of the Start agent

private String channel_number; //the returned channel number

private ACOTable acotable; //the ACO table which the start agent will analyze

private int WaitingTime,; //the time for a call waiting in the waiting queue

Its constructor defines as:

public StartAgent(String agentid, String homeid){
this.homeid=homeid;
this.agentid=agentid;

Chapter 6 Implementation and Performance 62

The class includes the following methods:
¢ createAgentName (): This method defines an individual name for Srarr agent.

public String createAgentName()f

return new String(“StartAgent”);

e init(): This method allows to initialize the Start agent before the actual task

processing is started.

public void init(){
//get home's location
home=getServiceinfo().getServiceRuntimeRelated().serviceLocation;
//set 3 seconds for a Start agent waiting in the waiting queue
Waiting Time=3000;

¢ live(): This method specifies Start agent’s behavior.
public void live(){
/fif this agent is Start agent, then get ACO table from Directory agent
ifigetName()="StartAgent”){
/*create a proxy of Directory agent so that Start agent can access any
public methods in Directory agent.*/
DirectoryAgentP directoryagent=new DirectoryAgentP();
acotable=directoryagent.getACOTable(agentid, homeid);
/fanalyze the ACO table according to our algorithm
String channel_number=analyze_ACO(acotable);
//return the ACO table to Directory Agent
directoryagent.returnACOTable(acotable);
/*if no channel available, sleep in the waiting queue until invoked by

Chapter 6 Implementation and Performance 63

Directory agent. If waiting time is expired, then terminates itself.
The call is finally blocked.*/
ifchannel_number==null){

//add the proxy of this Start agent to waiting queue in Directory agent
directoryagent.waitingqueue.addElement(new StartAgentP());
String releasedchannel; //the channel number which will be released
String releasedhomeid; //the cell ID which will release a channel
while(time<=WaitingTime){

tryf
Java.lang.Thread.sleep();
/

/*invoked by Directory agent when a released channel is from the
same or interference cell with Finish agent.*/
catch(Exception e)f
/*set a flag to decide if Start agent need to analyze ACO table.
First set flag 0, If flag is changed to | by Directory agent, that
means the released channel is from the same cell as this Start
agent. Directory agent can assign this channel directly to this
Start agent, no need to modify DataBase. Then the Start agent
sends the results back and terminates itself. If flag is changed to
2 by Directory agent, that means the channel is from the inter-
ference cell, need to analyze the ACO table to decide if this
channel can be used.*/
int flag=0;
boolean finished=false;
while(flag==0){};
/fif flag=1, assign the released channel to this Start agent
ififlag==1){
channel_number=releasedchanne!l;
break;

Chapter 6 Implementation and Performance

/
/fif flag=2, then get ACO table from Directory agent

acotable=directoryagent.getACOTable(agentid, homeid);
/*analyze the ACO table according to our algorithm. The method
reanalyze_ACO is used to analyze ACO table after clearing
the released channel in the base station with releasedhomeid. */
channel_number=reanalyze_ACO
(acotable,releasedchannel,releasedhomeid);
/finform Directory agent the analyzation is finished
finished=true;
/freturn the ACO table to Directory Agent
directoryagent.returnACOTable(acotable);
/fif there is channel available, break; Otherwise, continue to sleep
ificchannel_number!=null)
break;
] //end catch
] //end while. Waiting time is expired.
} //end ifichannel_number==null)
/¥if the time is expired or there exists channel available, send the result
back and terminates itself.*/
/*create a proxy of BaseAgent so that Start agent can access any public
methods in BaseAgent class.*/
BaseAgentP baseagent=new BaseAgentP();
baseagent.getChannel(channel_number); //send the result back to home
remove(); //this method removes the agent from agency
} //end if(getName=="StartAgent")
else

System.out.printin(“This is not Start Agent”);

Chapter 6 Implementation and Performance 65

6.1.4 FinishAgent Class

FinishAgent class is a subclass of common Agent. It declares the following

objects:

private String channel_number; //the released channel number
private String homeid; /fidentification of the cell where the Finish agent comes

private String agentid: //identification of the Finish agent
Its constructor is defined as:

public FinishAgent(String agentid, String homeid, String channel_number){
this.channel_number=channel_number;
this.homeid=homeid;

this.agentid=agentid;

FinishAgent class includes the following methods:

e createAgentName(): This method defines an individual name for Finish

agent.

public String createAgentName(){

return new String(“FinishAgent”);

e init(): This method allows to initialize the Finish agent before the actual task

processing is started.

public void init(){
//get home’s location
String home=getServiceinfo().

getServiceRuntimeRelated().serviceLocation;

Chapter 6 Implementation and Performance

e live (): This method specifies Finish agent’s tasks.

public void live(){

/*if this agent is Finish agent, then return this channel to Directory
agent, then Finish agent terminates itself.*/
ifigetName()="FinishAgent"){

/*create a proxy of Directory agent so that Finish agent can access
any public methods of Directory agent.*/
DirectoryAgentP directoryagent=new DirectoryAgentP();
//return the channel to Directory agent
directoryagent.getReleaseChannel
(homeid, agentid, channel_number);

remove(); //remove this agent from the agency

else

System.out.printin(“This is not Finish Agent”);

Chapter 6 Implementation and Performance 67

6.2 Performance of Our Algorithm

In this section, a simulation program is written to evaluate the call blocking
performance of the proposed algorithm with different waiting time. Specifically, in
addition to its performance under uniform traffic, we examine its ability to alleviate

congestion in the hot spots of a cellular system.

As reference cases, we use the performances of Simple FCA Scheme, First Available
DCA Scheme and Locking Packing (LP) Scheme in the same situation. As we
introduced in the Chapter 2, the Simple FCA Scheme allocates the same number of
nominal channels to each cell. And the First Available DCA Schemes assigns the first
available channel within the reuse distance encountered during a channel search to the
call. In the Section 4.2, we have described the main idea of LP algorithm in detail.

6.2.1 Simulation

Our study is based on the following assumptions [David93][Ming89]:

1. All base-station transmitter power levels are the same in the absence of power

control.

!Q

The radio link is assumed to be free from noise and fading. So there is only power

loss in the radio signal due to propagation.
3. All portables and base stations have ideal homogeneous omni-directional antennas.

4. The channel assignment is made only for the radio links from mobiles to base
stations. Also the channel assignment is made for snapshots of the system, where a
snapshot is the set of mobiles in the system frozen in their positions, at some instant

of time.

Chapter 6 Implementation and Performance 68

5. In each cell, calls originate at a random position. The simulation assigns the base
station nearest to the mobile making a call attempt to provide service using a

channel available at the base station.

6. The call arrives according to the Poisson distribution {[Appendix A}, and the call
duration is exponentially distributed.

For the comparison purpose, our simulated cellular network is the same as the one in
[Chih93], which consists of 144 hexagonal cells with equal size arranged in a 12x12
grid. In order to avoid the boundary effect, the 144 cells in our simulation are organized
as a 12x12 array with wrap-around in both dimensions. Thus, the results are
representative of an infinite system, and therefore apply to typical cells in a large
network [Chih93). Figure 6.2 shows the layout of the simulated 144-cell cellular

network.

Figure 6.2 The Simulated 144-Cell Cellular Network Layout

Chapter 6 Implementation and Performance 69

Similar to current cellular system, the reuse constraint takes the form of two-cell
buffering [Chih93]. That is, cells that use the same channel can not be either immediate
or second-layer neighbors. Under this constraint, the reuse factor would be 7 when
FCA is deployed.

In general, the total number of distinct channels available in the cellular system is
typically in the range of 300-400 [Chih93]. In our study, we carry out the simulation of
our algorithm, Simple FCA algorithm, First Available DCA algorithm and LP algorithm
with 350 distinct channels in the cellular system, that is, for the Simple FCA system,
there are 350/7=50 channels per cell.

The simulation was started initially with no calls in the system. The time required for
stability was about 10 minutes. That means after 10 minutes, blocking probability in
the first half hour (from 10 minutes to 40 minutes) almost equals the one in the second
half hour (from 40 minutes to 70 minutes). Data were collected after stabilization for

about 30 minutes.

Blocking is defined as the ratio of new call attempts blocked to new call attempts and

does not include channel changes or forced call terminations at cell boundaries.

6.2.2 Uniform Traffic

In this section, we consider the case when all cells in the network have the same arrival
rate. We simulate the performances under different traffic load, different waiting time
for a call in the waiting queue and the different average duration time of calls. In the

following subsection, we will analyze the effects resulted by different factors.

6.2.2.1 Performance under Different Traffic Load

The Figure 6.3 shows the average cell blocking rate of Simple FCA Scheme, First
Available DCA Scheme, LP Scheme and our algorithm with 3 seconds waiting time in
the queue as a function of traffic load per cell (calls/hour) when average duration time

of calls is 1 minute.

Chapter 6 Implementation and Performance 70

Taffic lad(callshour) | 5000 | 5500 | 6000 [6500 | 7000 | 7500 | 8000

Simple FCA 41.65% | 48.08% | 51.17% | 55.58% | 58.79% | 61.08% | 63.40%

Fist Available DCA - 1 0,11% |3.59% |801% |13.87% | 18.72 |22.40% | 26.82%

LP algorithm 0.00% |0055% |037% |3.36% |7.57% |11.94% | 16.59%

Our algorithm 000% |0.00% |004% |137% |481% |8.75% |14.25%

Figure 6.3 Blocking Comparison: Uniform Traffic

From the Figure 6.3, we can see that, our algorithm gives the lowest blocking
probability under different traffic load, followed by LP Scheme, First Available DCA
Scheme and the Simple FCA Scheme. Under moderate traffic conditions (6500
calls/hour), the blocking probabilities are 1.37%, 3.36%. 13.87% and 55.58%
respectively. That means our algorithm with 3 seconds waiting time can decrease about
40 times, 10 times and 2.5 times blocking rate with respect to Simple FCA Scheme,
First Available DCA Scheme and LP Scheme. From the Figure 6.3, we also can see
that, under light and moderate traffic load, our algorithm can decrease much more
blocking probability with respect to another three schemes, and under heavy traffic, our
algorithm only outperforms LP Scheme with a small decrease in blocking probability,
but it still performs much more better than Simple FCA Scheme and First Available
DCA Scheme.

6.2.2.2 Performance under Different Waiting Time

In order to show how different waiting time for a call in the waiting queue affects the
performance of our algorithm, we made simulations with different waiting time from 0
second to 10 seconds when the traffic load per cell is 6500 calls/hour when average
duration time is 1 minute. Figure 6.4 shows the simulated result.

Chapter 6 Implementation and Performance 71

Waiting time(second) | () 1 2 3 4 5 6 7 8 9 10

Blocking probability(%) | 3.36 | 2.60 | 1.81 | 1.37 | 095 | 0.65 | 046 [0.32 [0.20 | 0.13 | 0.09

Figure 6.4 Blocking Comparison with Different Waiting Time

From the Figure 6.4, we can see that the longer the waiting time, the less blocking
probability is. From O second to 10 seconds, the blocking probability decreases from
3.36 t0 0.09, that means, with 10 seconds waiting time, the blocking rate can decrease
about 38 times with respect to the same algorithm without waiting queue. Regarding to
the tolerance a mobile user can have, in the Section 6.3, we fix the waiting time to be 3

seconds when the average duration time is | minute.

6.2.2.3 Performance under Different Average Duration Time

Traffic (in Erlang) is a measurement of how “busy” a line is during a period of

measurement. Traffic is calculated using the following formula [URL12]:
Traffic(in Erlangs) = Number of calls/hour x Average duration time

Thus, we can know that a large number of calls with a short average duration time will

produce the same result as a small number of calls with a long average duration time.

The Figure 6.5 shows the average blocking probabilities of different algorithm under
different traffic load per cell (calls/hour) with three seconds waiting time for our

algorithm when average duration time of calls is 3 minutes.

Traffic load(calls/our) | 1800 2000 2200 2400 2600

Simple FCA 45.88% 50.98% 55.81% 59.38% 61.70%

N

Chapter 6 Implementation and Performance

First Available DCA | 2 9] 8.90% 15.88% 21.68% 25.69%
LP algorithm 001% 0.56% 3.60% 8.78% 13.27%
Our algorithm 0.00% 0.14% 2.61% 7.65% 12.14%

Figure 6.5 Effect of Average Duration Time: Uniform Traffic

Comparing the Figure 6.3 to Figure 6.5, we can see that with the same blocking
probabilities, all algorithms can carry about 3 times more calls per hour with 3 minutes

average duration time than with 1 minute average duration time.

In order to show the effects of average duration time on the waiting time for a call in
the waiting queue, we also simulate the performance of our algorithm with 3 minutes
average duration time under different waiting time from 0 second to 10 seconds when
the traffic load per cell is 2200 calls/hour. The Figure 6.6 shows the result:

Waiting time(sccond) 0 1 2 3 4 5 6 7 8 9 10

Blocking probability(%) | 3.60 | 3.45 | 3.01 | 2.68 |2.46 | 2.16 | 2.09 | 1.88 | 1.75 | 1.51 | 1.43

Figure 6.6 Effect of Average Duration Time: Different Waiting Time

From the Figure 6.6, we can see that the blocking probability decreases from 3.60 to
1.43 when the waiting time for a call in the waiting queue is changed from 0 second to
10 seconds, that means, with 10 seconds waiting time, the blocking rate can decrease
about 2.5 times with respect to the same algorithm without waiting queue. Compared to
the Figure 6.4, in which the blocking rate can decrease about 2.5 times with only 3
seconds waiting time with respect to the same algorithm without waiting queue, we can
see that with the same blocking probability, the longer the average duration time is, the
longer the waiting time for a call in the waiting call should have.

Chapter 6 Implementation and Performance 73

6.2.3 Traffic Hot Spots

Usually there are temporal and spatial variations in local traffic demands. The DCA
Algorithms have great advantage in these situations due to flexibility in their channel
assignment. Various patterns of traffic hot spots may be of practical interest [Chih93].
We particularly consider the isolated hot spots such as the Giant Stadium after a ball
game (see Figure 6.7), the diagonal highway (see Figure 6.8) and the expressway

around a metropolitan area during rush hour (see Figure 6.9).

We simulate the performances of these three layout by using Simple FCA Scheme, First
Available DCA Scheme, LP Scheme and our algorithm with | minute average duration
time and 3 seconds waiting time in the queue as a function of traffic load per shadow
cell (calls/hour) while the traffic load in the other cells is 6200 calls/hour. The Figure
6.10, Figure 6.11 and Figure 6.12 show the simulated results.

00000000

()

Figure 6.7 Traffic Hot Spots: Giant Stadium

74

Chapter 6 Implementation and Performance

Figure 6.8 Traffic Hot Spots: Diagonal Highway

Figure 6.9 Traffic Hot Spots: City Beltway

Chapter 6 Implementation and Performance

75

Traffic load(callshour) | 6400 6600 7000 7800 8600 9400 11000
Simple FCA 53.01% | 53.22% | 53.84% | 55.08% | 55.66% | 56.21% | 58.29%
First Available DCA 1 943% | 10.13% | 11.12% | 13.07% | 14.44% | 15.16% | 19.17%
LP algorithm 093% |[127% |182% |341% {531% |691% |10.63%
Our algorithm 0.17% |041% |[131% |3.05% |(4.77% |643% |1042%
Figure 6.10 Blocking Probability for Traffic Hot Spot: Giant Stadium

Traffic load(callshour) | 6600 7400 8600 9800 11000 12600
Simple FCA 53.24% |54.03% |5533% |5642% |56.70% | 58.69%
Fist Available DCA - 1 10,07% | 11.59% | 13.32% | 1540% |16.61% |19.28%
LP algorithm 1.36% 2.51% 4.25% 6.75% 8.51% 11.22%
Our algorithm 0.35% 1.24% 2.82% 541% 1.53% 10.59%

Figure 6.11 Blocking Probability for Traffic Hot Spot: Diagonal Highway

Traffic loadcallsbour) | 6600 7400 8200 9000 9800 10800

Simple FCA 53.60% |54.40% |5549% |5627% |57.44% |5800%
FistAvilble DCA | 10.67% | 12.30% |13.78% |15.15% |17.35% |18.99%
LP algorithm 146% |290% |460% |676% |9.06% |1121%
Our algorithm 034% |163% {292% |534% |782% |1061%

Figure 6.12 Blocking Probability for Traffic Hot Spot: City Beltway

Chapter 6 Implementation and Performance 76

From Figure 6.10, Figure 6.11 and Figure 6.12, we can see that our algorithm gives the
lowest blocking probability under various traffic hot spots layout, followed by LP
Scheme, First Available Scheme and Simple FCA Scheme. For example, in Diagonal
Highway, when the traffic load in hot spots is increased 38% (8600 calls/hour), the
blocking probabilities are 2.82%, 4.25%, 13.32% and 55.33% respectively. For Giant
Stadium (Figure 6.10), Diagonal Highway (Figure 6.11) and City Beltway (Figure 6.12)
layout, our algorithm can increase 78%, 103% and 74% traffic load in the hot spots
respectively with only about 10% blocking probability. We can see from the given data
that, with the light and moderate increase of the traffic load in the hot spots, our
algorithm behaves much more better than another three algorithm. Under the heavy
increase of traffic load in the hot spots, our algorithm only outperforms LP Scheme
with a small decrease in blocking probability, but it still performs much better than
Simple FCA Scheme and First Available DCA Scheme.

In this chapter, we have talked about the implementation and performance of our
algorithm. In next chapter, we will summary our work and give the recommendation

for future work.

Chapter 7 Conclusion 77

Chapter 7

Conclusion

7.1 Contribution

In this research, a mobile-agent-based dynamic channel allocation with waiting queue
algorithm was developed. This algorithm can give mobile users the choice to wait for a
connection so that it improves the quality of service (QoS) in cellular network. That is,

a user can accept some variations with respect to required QoS parameters.

From the viewpoint of computation and network resource, our model is based on
Mobile Agent Paradigm that has great advantages on reducing network traffic, dealing
with vast volumes of data and dynamic adaptation. Our study uses mobile agent to
make dynamic decision and do the computation when it is in the remote destination.
Thus, it makes our algorithm more efficient and competitive with respect to the

traditional client/sever model.

We considered the Grasshopper mobile agent environment as our platform because it
allows user to build agent-enabled distributed applications, which take advantage of
local high-speed communication and local high-speed data access. Grasshopper is
compliant to Mobile Agent System Interoperability Facilities Specification (MASIF)
which is based on Java and built on top of the CORBA.

A simulation program also has been written to evaluate the performance of our
proposed algorithm. Our simulator consists 144 hexagonal cells with 350 distinct
channels which is typical channel number in the cellular system. We simulated the

Chapter 7 Conclusion 78

performances under different traffic load, different waiting time for a call in the waiting
queue and the different average duration time of calls. As reference cases, we also
simulated the performances of Simple FCA Scheme, First Available DCA Scheme and

Local Packing Scheme in the same situation.

The simulations showed that even with a few seconds waiting time for a call in the
waiting queue, it maintains a favorable performance over Simple FCA Scheme, First
Available DCA Scheme and Local Packing Scheme under uniform traffic load. The
longer the waiting time for a call in the waiting queue, the less the blocking probability
our algorithm has. The simulations also showed that with the same blocking probability
under the same traffic load, the longer the average duration time is, the longer the

waiting time should have.

From the viewpoint of practical interest, three typical patterns of traffic hot spots such
as Giant stadium, Diagonal highway and City beltway were considered. Through the
simulation, we can see that our algorithm also has lowest blocking rate with respect to
the other three algorithms especially when the system has light or moderate traffic load.
Under heavy traffic, our algorithm only outperforms LP algorithm with a small
decrease in blocking probability, but it still performs much more better than Simple
FCA Scheme and First Available DCA Scheme.

7.2 Future Work

The following recommendations are suggested for future improvements and further

developments of our proposed algorithm:

e The algorithm could consider the priority of incoming calls. Each call has a priority
factor, the call with higher priority should be served first if two calls come
simultaneously. In the waiting queue, we could sort the calls by their priority factors
and put the call with highest priority in the head of queue. This strategy can prevent
losing some important calls and can let some urgent calls get connected as soon as

possible.

Chapter 7 Conclusion 79

e The algorithm could set dynamic waiting time instead of fixed waiting time for
calls in the waiting queue. In this way, every mobile user can decide how long he
can wait to get connected. This improvement can offer the mobile users more

chance to state their requirement.

e In our proposed algorithm, we make assumption that the set of mobiles in the
system is frozen in their positions at some instant of time. But practically, some
mobiles can move from one cell to another and any active call needs to be allocated
a channel in the destination cell. This event, termed the handover or handoff,

deserves further consideration.

Appendix A Poisson Distribution | 80

Appendix A

Poisson Distribution

The Poisson distribution governs the occurrence of random events in space or time. It
assumes the distribution of the intervals elapsing between two consecutive requests is
exponential. Usually the process is said to consist of discrete events occurring (with an
exponential distribution) at a constant rate of L events/time. Then the probability of
exactly N events occurring within a time interval ¢ is [ULR7]:

(LI)N e(-l—l)

N!

Waiting time distributions are based on the exponential distribution, which in turn is

derived from the Poisson distribution.

Consider a problem such as the call request in a cellular system. The number of calls
during any particular unit of time is governed by the Poisson distribution with mean L
per unit time. We will consider the distribution of time intervals between successive
call requests and find the probability that there is a time-interval of length ¢ between
successive call requests [URLS).

We divide ¢ into increments df in length such that there is a small probability p of the
occurrence of a call request during dt, ¢ is the probability of no occurrence of a call
request in that interval, where p+g = 1. dt is assumed small enough to make the
probability of more than one call request in dt negligible.

Appendix A Poisson Distribution 81

The probability, denoted by dP, that there are n incremental intervals between

successive call requests is given by:

dP =pq"

That is n intervals with no call requests, and in the (n+/)th interval we have a call

request. So we have:

dP = p(1-p)"

Now if there are L call requests per unit time, the mean number of call request in time
dt is Lds. So using the formula, mean = number of trials x the probability of success at

any trial, we get:
Ldt=1xp

This gives us dr = p/L. Because we can write dt = ¢/n. Equating expressions for dr we

have p/L = t/n , that is p = Lt/n. Then we can get:
dP = L(1-Lt/n)"dt
dP/dt = L(1-Lvn)"

As n -> infinity, the expression in brackets tends to exp(-Lt). We can get:
dP/dt = Le*™

The righthand side is the exponential distribution, and is the probability density
function for the interval between successive events, i.e. it is the probability that the
time interval lies between ¢ and 7+dr. The probability that a given interval is less than
or equal to ¢ is given by integrating. So we can get the cumulative distribution:

P(T<=t) = 1-e"1¥

Appendix B Source Codes 82

Appendix B
Source Codes

In this section, we list the important classes for simulators of Simple FCA Scheme, Fist

Available DCA Scheme, LP Scheme and our proposed scheme.

1. Simple FCA Scheme

This program is written to calculate the blocking probability of Simple FCA Scheme. It
includes class MSC, class BaseStation, class Call and class MyString. The program

was tested using JDK 1.1.5 under Unix system.

JREARAAA A AR A A 2020 30 A0 S0 00 A0 o 0 R e ok R K RNk RKRRRRERE KRR RRRRKES

package ca.megill.fix_channal;
import java.io.*;

fid

This is the controlling class used to calculate the blocking probability using Simple FCA algorithm. In this class, we only collect
the data between Start_time and End_time which given by the user.

*f

class MSC{
static int current_time;
static BaseStation[]{] basestation;
static int block_num=0; //counter for blocking calls
stauc int total_call=0: Ifcounter for total calls
static int Start_time.End_time: //the start time and end time for data collecting

{{This is the constructor of class MSC, making some initialization
public MSC(int totai_chan_num){
basestation=new BaseStation{ 12][12};
for (int i=0:i<1 2;i++)
for (int j=0;j<12;j++)
basestation(i](j}=new BaseStation(i. j, total_chan_nunv7): /Anitialize the Base Stations
current_time=0;
}

Appendix B Source Codes 83

/This is main class of whole package of Simple FCA algorithm.
public static void main(String argv{]){
int Total_chan_num;
String call_data="call.dat":
iftargv.length<3) {
System.out.printin(“Usage: total_chan_num, start_time end_time").
System.exit(1);}
/fvead data from keyboard
Total_chan_num=integer.parseini(asgv(0]);
Start_time=Integer.parselnt(argv(1])*60*100;
End_time=integer.parseint(argv(2])*60*100;
MSC msc=new MSC(Total_chan_num);
eyl
FileReader reader=new FileReader(call_data);
BufferedReader buf_reader= new BufferedReader(reader);
String In=null;
while ((In=buf_reader.readLine())'=nuil){
Iiprocess the data read from call.data fiie
String one_call{]=MyString.split(in,” *);
current_time=Integer.parselnt(one_call[0]):
if (one_call{4].charAu0)=="c") {

/fonly collect data berween Start_time and End_time
if(current_time>End_time) break:
iftcurrent_time>Stant_time) total_call++:

Call call=new Call(Integer.parseint(one_cali{1]));
basestation(Integer.parseint(one_call[2])](Integer.parselni(one_call[3))].MakeNewCall(call):)
else {
int callid=Integer.parseint(one_cail{1]);
basestation[Integer. parselnt(one_call[2][Integer.parselnt(one_call{3])].ReleaseCall(cailid):
}
} ffend while
buf_reader.close();
} thend try
catch{JOException e){
System.err.printin(e):
System.exit(1):
]
System.out.printin(*The block probablity is™+(double)block_numv(double)total_call*100.0);
}
}

r~

This class is used to calculate the blocking probability of Simpie FCA Scheme. It includes MakeNewCail(Call),
AllocateNewChannei(), FindNewChannel(), TakeNewCall(Call.int) and ReleaseCall(int) methods.

*/

class BaseStation({
int id,matrix_x. matnix_y; channal_num: //cell number and channel number

Call[] channal_status;

Jiconstructor of class BaseStation to do some initialization

public BaseStation(int x, int y, int channal_pum){
matnix_x=x;
matrix_y=y:
id= x*100+y:
this.channal_num=channal_num;
channal_status=new Call{channal_num];

}

/fThis method is used to allocate new channel 1o the base station.
int AllocateNewChannal(){
for(int i=0:i<channal_num:i++){
if (channal_status{i] == null){
retum i; // If there exist channel, retumn the channel number.

Appendix B Source Codes 84

}
}
return -1; //otherwise, retum -1
}

/fThis method is used to calculate the blocking number for the calls.
void MakeNewCall(Call call){
int newchannal=FindNewChannal();
ifinewchannal==-1){
if(MSC.current_time>MSC.Starn_time)
MSC.block_num++;
reum;

}
TakeNewCail(call. newchannai);
}

//This method is used to decide if a empty channel can be found
int FindNewChannal(){
for (int i=0:i< channal_num;i++){
ift channal_starys[i]==null)
retum i //if found, resum the channel number
}
retumn -1; //otherwise, retum -1
}

/fThis method shows how (o take a new call
void TakeNewCall(Cali call, int newchannal){
channai_status{newchannal}=call.
)

/fThis method shows the procedure how to release a call
void ReleaseCall(int callid){
forting i=0:i<channal_num:i++){
iftchannal_status(i])'=null && channal_status(i].callid==callid)
channal_status(i]=null:

!
}

™

This class defines a object Call, which only contains one parameter callid.

*/
class Cali{
int callid;
public Call(int callid){
this.callid=cailid; }
l

™

This class is used 10 do the string processing. It analyze the string read from file call.dat and extract the cormresponding variable
such as Start_time, End_time, callid. cell number and call’s property(released or new call).

=/
class MyString(

/MThis method splits a string into an array of strings, and retum it.
public static Swring(] split(String string, Sering delimiar)(

int indexf=0;

int indexb=0;

string=string.trim();

int count= split_num(string , delimiar);

String{] out=new String{count}:

Appendix B Source Codes &s

int len=delimiar.length():

for(int i=0;i<count;i++){
indexb=string.indexOf(delimiar.indexf);
iflindexb=-1)

indexb=string.length();
out[il=string.substring(indexf, indexb);
indexf=indexb+len;
}
retum out;
}

I[This method is used (o calculate the number of fields and retum it.
public static int split_num(String string, String delimiar){
int indexf, indexb;
int count=1;
indexf=indexb=0;
int len=delimiar.length():
while((indexb=string.indexOfidelimiar.indexf)}!=-1){
count++;
indexf=indexb+len;
)

retum count++;

2. First Available DCA Scheme

This program is written to calculate the blocking probability of First Available DCA
Scheme. It includes class MSC, class BaseStation, class Call and class MyString.
Among them, class Call and class MyString are the same as the ones in Simple FCA
Scheme. Thus, we don’t list these two class here. The program was tested using JDK

1.1.5 under Unix system.

JRRR AR A A A e e e e e R ek R ke R AR A R e kR Rk Rk EREERERRKEERREER/

package ca.mcgill.pure_dyn:

import java.io.*;

r

This is the controlling class used to calculate the blocking probability using First Available DCA algorithm. In this class, we only
collect the data between Start_time and End_time which given by the user.

*

class MSC{
static int current_time;
static BaseStation[][) basestation:
static int Start_time, End_time; //set clock for the data collecting
static int total_call=0, block_num=0:

/This is the constructore of the MSC class, doing some initialization
public MSC(int total_chan_num){
basestation=ncw BaseStationf12][12};
for (int i=0zi<| 2;i++)
for (intj=0;j<1 2;j++)
basestation[i](jj=new BaseStation(i, j, total_chan_num);

Appendix B Source Codes 86

for (int i=0ii<] 2;i4++)
for (int j=0:j<12:j++)
basestanton{i](j].Initial(); /initalize the Base Stations
current_time=0;
}

/[This is the main class of the whole package of First Available DCA algorithm
public static void main(String argv(}){
int Total_chan_num:
String call_data="call.dat™;
iflargv.length<3) {
Sysiem.out.printin(*Usage: total_chan_num start_time end_time™);
System.exit(1);
]
/fread channel number, start time and end time from keyboard
Total_chan_num=Integer.parselnt(argv(0]):
Start_time=Integer.parseint(argv{1])*60*100;
End_time=Integer.parseini(argv{2])*60*100;
MSC msc=new MSC(Total_chan_num);

eyl
FileReader reader=new FileReader(call_data);
BufferedReader buf_reader= new BufferedReader(reader);
String In=null;
while ((In=buf_reader.readLine())!=null){
String one_call{]=MyString.split(In,” =);
current_time=Integer.parseint(one_call{0]):
if (one_call[4).charAu(0)=="¢") {
if(current_time>End_time) break:
if(current_time>Start_time) total_catl++;
Call call=new Call(Integer.parseint(one_call[1])):
/faccording to the data to decide make a new call or release a call
basestation(Integer. parselnt(one_call{2])}{Integer.parseint(one_call[3})]). MakeNewCali(call);

int callid=Integer.parseint(one_call[1]):
basestation[Integer.parselnt(one_call{2])){ Integer.parscint(one_call[3})).ReleaseCali(callid).

} Hend while
buf_reader.close().
)
catch(JOException e){
System.err.printin(e);
System.exit(1):
}
System.out.printin(*“The block probablity is *+(double)block_num/(double)total_call*100.0);

v

Fid

This class is used to calculate the blocking probability of First Available DCA Scheme. It includes Initial(), MakeNewCall(Call),
GetChannel(), FindNewChannel(). TakeNewCall(Call.int) and ReleaseCali(int) methods.

*

cinss BascStation{
int neighber{}[]=new int[6)(2]:
BaseStation basestation[}=new BaseStation{6];
int matrix_x, matrix_y;
int channal_num:
Call{] channal_status;

//constructor of class BaseStation. make some initialization
public BaseStation(int x, int y, int channal_num){
matrix_x=x;
matrix_y=y;
this.channal_num=channal_num;

Appendix B Source Codes 87

channal_status=new Call{channal_num];
}

/[This method decides the neighbors of cell i
void Initial(){
ift(matrix_x%2)==1){
basestation[0]= MSC.basestation[matrix_x][(matrix_y+12-1)%12];
basestation{ |]= MSC.bascstation{ matrix_x]j[(matrix_y+12+1)%12];
basestation[2])= MSC.basestation[(matrix_x+12-1)% [2][(matrix_y+12-1)%12};
basestation[3]= MSC.basestation[(matrix_x+12-1)%§ 2][matrix_y}:
basestation[4)= MSC.basestation[(matrix_x+12+1)% 1 2] [(matrix_y+12-1)%12];
basestation(5]= MSC.basestation{(matrix_x+12+1)% | 2] [matrix_y];

elset
basestation[0}= MSC.basestation[matrix_x]{(matrix_y+12-1)%12};
basestation(| }= MSC.basestation[matrix_x]{(matrix_y+12+1)%12];
basestation[2]= MSC.basestation((matrix_x+12-1)% 12][(matrix_y+12+1)%12];
basestation[3]= MSC.basestation[(matrix_x+12-1)%12][matrix_y}:
basestation[4}= MSC.basestation[(matrix_x+12+1)%12][(mawix_y+12+1)%12];
basestation[5]= MSC.basestation[(matrix_x+12+1)% | 2] [matrix_y];
}
}

//This method is used to find a channel for the call by First Available DCA Algorithm
int FindNewChannal(){
Call neighber_channal[j[}=new Call{6](channal_num);
fortint i=0ni<8:i++)
neighber_channai{i]=basestation(i]. GetChannal():
for(int i=0zi<channal_num:i++){
if (channai_status(i] == null){
intj;
for(j=0:j<6:j++)
if(neighber_channal[j](i] != null) break;
if j==6) rerum i;: //if a channel is found. retumn the channel number
)
}
retum -1, /fotherwise, retum -1
}

/fThis method is used to serve a new call and calculate the blocking number of calis
void MakeNewCall(Call call){
int newchannal=FindNewChannal();
if(newchannal==-1){
if(tMSC.current_time>MSC.Start_time) MSC.block_num++;
retum;
}
TakeNewCall(call, newchannal);
}

/This method is used to update the ACO table after taking a call.
void TakeNewCall(Call call, int newchannal){
channal_status{newchannal]=cail:
}

//This method is used to do the procedure for releasing a call
void ReleaseCall(int callid){
for(int i=0;i<channal_num;i++){
iflchannal_status(i]'=null && channal_status(i].callid==callid)
channal_status(il=null:

)
//This method is a object to retum the channel status

Callf] GetChannal(){
retun channal_status; }

Appendix B Source Codes . 88

3. Local Packing Scheme

This program is written to calculate the blocking probability of Local Packing Scheme.
It includes class MSC, class BaseStation, class Call and class MyString. Among them,
class Call and class MyString are the same as the ones in Simple FCA Scheme. Thus,
we don't list these two classes here. The program was tested using JDK 1.1.5 under
Unix system.

/******** Ao e e e e A e e g ok el ok ok ok kR Rk Rk ok ok kR R R R kR Rk ke kR Rk Rk k f

package ca.megill.dyn_with_reorg:
import java.io.*;

,.

This is the controlling class used to calculate the blocking probability using LP algorithm. In this class, we only collect the data
between Start_time and End_time which given by the user.

s/

class MSC{
static int current_time;
static BaseStation(][} basestation;
static int block_num=0:. //counter for biocking calls
static int total_call=0; //counter for toual calls
static int Start_time.End_time; //set the start cimie and end time for data collecting

/This is the constructor of class MSC. make some initialization
public MSC(int total_chan_num)(

basestation=new BaseStation[12](12]:

for (int i=0:i<I2:iv+)
for (int j=0;j<12:j++)

basestation(i)[j}=new BaseStation(i. j, total_chan_num);

for (int i=0:i<1 2:i++) for (int j=0:j<i 2;j++)

basestation(i](j].Initial(): current_time=0:
)

//main class of the whole package of LP scheme
public static void main(String argv(D{
int Total_chan_num;
String call_data="call.dat”;
iftargv.length<3) {
System.out.printin(“Usage: java ca.megill.dyn_with_reorg. MSC total_chan_num start_time end_time™);
System.exit(l):

}
{/read channel number . start time and end time from the keyboard
Total_chan_num=Integer.parseint(argv{0])
Start_time=integer.parselnt(argv(1])*60*100;
End_time=Integer.parseini(argv(2])*60*100;

MSC msc=new MSC(Total_chan_num);
ry(
FileReader reader=new FileReader(call_data);
BufferedReader buf_reader= new BufferedReader(reader):
String In=null;
while ((In=buf_reader.readLine())!=null){
String one_call(]=MyString.split(in,”)
current_time=Integer.parseint(one_call(0]):

Appendix B Source Codes

89

l.

/iread data from file call.dat to decide to make a new call or release a cail

if (one_call[4]).charAl0)=="c") {
iflcurrent_time>End_time) break;
if{current_time>Start_time) total_call++;
Call call=new Call(Integer.parselnt(one_call(1])):
basestation{Integer.parselnt(one_call(2])}
[Integer.parseint(one_calli[3]).
MakeNewCall(call):

}

else {
int callid=Integer.parselnt(one_call(1]):
basestation{Integer.parseint(one_call{2])]
(Integer.parselint(one_call[3])].
ReleaseCall(callid):

}
} Hend while
buf_reader.close():
}
catch(IOException ¢){
System.err.printin(e):
System.exit(l);
}

System.out.printin(*“The block probablity is “+(double)block_num/(doubie)total_cail*100.0):

This class is used to calculate the blocking probability of Local Packing Scheme. It includes Initial(). MakeNewCall(Call).
GetChannel(), FindNewChannel(). [sRearganizable(), Switch_channei(intint), TakeNewCall(Callint) and ReleaseCalltint)

methods.

*

class BaseStation{
BaseStation basestation[]=new BaseStation{6);
Call neighber_channal[)[)}=new Call{6][]:
int matrix_x., matrix_y: int channal_num:
Call(] channal_status:

/This is the constructor of class BaseStation. making some initialization
public BaseStation(int x, int y. int channal_num){

}

matrix_x=x;

matnx_y=y;
this.channal_num=channal_num;
channal_status=new Call{channal_num];

//This method is used 1o initialize the neighbor of cell i
vaid Initial(){

ift(matrix_x%2)==I1){
basestation{0)= MSC.basestation{matrix_x}[(matrix_y+12-1)%12];
basestation| 1]= MSC basestation{matrix_x}[(matrix_y+12+1)%12];

basestation[2]= MSC.basestation{(matrix_x+12-1)%12][(matrix_y+12-1)%(2];

basestation[3]= MSC.basestation[(matrix_x+12-1)%12]{matrix_y];

basestation[4]= MSC basestation{(matrix_x+12+1)% L2][(matrix_y+12-1)%12];

basestation{5]= MSC.basestation[(matrix_x+12+1)%12][matrix_y]:

else{
basestation{0]= MSC.basestation{matrix_x][(matrix_y+12-1)%12];
basestation{ | }= MSC.basestation[matrix_x]{(matrix_y+12+1)%12];

basestation{2]= MSC.basestation[(matrix_x+12-1)%12]((matrix_y+12+1)%12];

basestation[3]= MSC.basestation{¢(matrix_x+12-1)% I 2][matrix_y];

basestution{4]= MSC.basestation[(matrix_x+12+1)%12]{(mamix_y+12+1)%12];

basestation{$S}= MSC.basestation[(matrix_x+12+1)% I 2]{matrix_y];

Appendix B Source Codes

//This method is used to decide if an empty channel can be found
int FindNewChannal(){
for(int i=0;i<6:i++)
neighber_channal(i)=basestation[i}.GetChannal();
for(int i=0:i<channal_num;i++){
if {channal_status(i] == null){
intj:
for(j=0:j<6:j++)
if(neighber_channal(j](i] = null) break:
if (j==6) return i: //if find an empty channel, retura the channel number
}
}
retum -1; //otherwise, retum -1
)

//This method is used to decide if a channel can be found by reorganization using LP algorithm
int [sReorganizable(){
for (int i=0:i<channal_num:i++){
iftchannal_status(ij==null){
int j;
int candadate_basestation=0;
int k=0;
//find the column which only has one check mark in the ACO wuble
for(j=0;)<6j++){
if(neighber_channal{j](i]!=null) {
candadate_basestation=j;
k4+;
}

iftk>1) break:
}
if(j==6 && k<2){
int empty,_channal=basestation(candadate_basestation}.FindNewChannal();
iftempty_channal'=-1){ //if the responding cell has empty channel. switch the channel
basestation{candadate_basestation).Switch_Channal(i.empty_channal);
retum i; //retum the channel number i
}
}
}
}
retumn -1 //if cannot reorganizable, return - |

}

//This method is used to do the procedure of call assignment and calculate the blocking number of calis
void MakeNewCall(Call call){
int newchannal=<FindNewChannal().
if(newchannal==-1 }{
int reorganz_channal=IsReorganizable();
if(reorganz_channal!=-1){
TakeNewCall(call, reorganz_channal);
retumn;
)
iftMSC.current_time>MSC.Start_time)
MSC.block_num++;
retum;

}
TakeNewCall(call, newchannal);
}

//This method is used to update the ACO table after take a new call
void TakeNewCall(Call call, int newchannal){
channal_status{newchannal]=call:
}

/[This method is used to switch a channel if the channei can be reorganized
void Switch_Channal(int from, int 10){
channal_statys{to}=channal_status{from];

Appendix B Source Codes 9!

channal_status{from]=null;
}
/[This method is used to do the procedure of releasing a call
void ReleaseCall(int callid){
fortint i=0:icchannal_num:i++){
if(channal_status(i]'=null && channal_status[i).callid==callid)
channal_status(i]=null;
}
}
/[This method is used to retun the status of channel
Call{] GetChannal(){
return channal_status;

)
]

4. Our Proposed Scheme

This program is written to calculate the blocking probability of our proposed scheme. It
includes class MSC, class BaseStation, class WaitingCall, class WaitingQueue, class
Call and class MyString. Among them, class Call and class MyString are the same as
the ones in Simpie FCA Scheme. Thus, we don’t list these two classes here. The
program was tested using JDK 1.1.5 under Unix system.

/****#**#*****/

package ca.megill.dyn_with_reorgandqueue:
import java.io.*:

,.

This is the controlling class used to calculate the blocking probability using our proposed algorithm. In this class, we only collect
the data between Start_time and End_time which given by the user. And waiting time of a call in the waiting queue is also given
by user.

¢

class MSC{
static int current_time:
static BaseStation[][] basestation;
static WaitingQueue waitingqueue: //the object of waiting queue
static int block_num=0; //counter for blocking calls
static int total_call=0; //counter for total calls
static int Start_time.End_time; //set the start time and end time for data collecting
static int ignore_num=0: //counter of calls whose duration time is less than waiting time
static int waiting_time: //waiting time for a call in the waiting queue

/This is the constructor of class MSC, doing some initialization
public MSC(int to1al_chan_num){
basestation=new BaseStation{12}[12];
waitingqueuve=new WaitingQueue():
for (int i=0:i<] 2;i++)
for (int j=0:j<1 2;j++)
basestation{i](jl=new BaseStation(i, j. total_chan_num);
for (int i=0:i< 2;i++) for (int j=0:;j<12:j++)
basestation(i](j1.Initial(): current_time=0:

Appendix B Source Codes 92

//This is the main class of the whole package of our proposed algorithm

public static void main(String argv(I){
int Total_chan_num:
String call_data="call.dat”;
if(argv.length<d) {
System.out.printin(*Usage: total_chan_num start_time end_time waiting_time™);
System.exit(l);

}

/iread channel number, start time, end time and waiting time from the keyboard
Total_chan_num=Inieger.parselni(argv(0]):
Start_time=Integer.parseint(argv[1])*60*100;
End_ume=integer.parseinuargv(2])*60* 100;
waiting_time=Integer.parselnt(argv(3])*100;
MSC msc=new MSC(Total_chan_num);
try{
FileReader reader=new FileReader(call_da);
BufferedReader buf_reader= new BufferedReader(reader);
String In=nuil;
Jiread data from file call.dat, nnly processing data between stast time and end ime
while ((In=buf_reader.readLine())!=null){
String one_call[J=MyString.split(In.”);
current_time=Integer.parselnt(onc_call(0]):
f/decide if it is a new call or a released call
if (one_call(3].charAt(0)=="c") {
if(current_time>End_time) break:
iftcurrent_time>Start_time) total_call4+;
Call cail=new Call(Integer.parseint(onc_call{1]));
basestation{ Integer. parseint(one_call{2])]{Integer.parsent(one_call{3])]. MakeNewCall(call);
)
else {
int callid=Integer.parseint(one_call[1]):
basestation{Integer.parselnt{one_call{2])]{Integer.parselnt(one_call[3])].ReleaseCall(callid):

}
} lHend while
buf_reader.close():
} lend try
catch(lOException e}{
System.err.printin(e):
System.exit(1):
}
System.out.printin(“The block probablity is "+{double)block _num/(double)total_call*100.0);

,.

This class is used to calculate the blocking probability of our proposed scheme. It includes Initial(). MakeNewCall(Call),
GetChannel(), FindNewChannel(), TakeNewCall(Call.int) and ReleaseCall(int) methods.

*/

class BaseStation{
BaseStation basestation{}=new BaseStation([6];
Call neighber_channalf][j=new Call(6](]:
WaitingQueue waitingqueue:
int matix_x, matrix_y:
int channal_num;
Call(] channal_status;

I{This is the constructor of class BaseStation. making some initialization
public BaseStation(int x, int y. int channai_num){

matnx_x=x;

matrix_y=y:

this.channal_pum=channal_num:

channal_status=new Call{channal_numj;

Appendix B Source Codes

93

}

//This method is used 1o initial the neighbor of cell i
void Initial(){
waitingqueue=MSC.waitingqueue;
ifimatrix_x%2)=1){
basestation[0]= MSC.basestation{matrix_x}[(matrix_y+12-1)%12];
basestation[I]= MSC.basestation[matrix_x]((matrix_y+12+1)%12];
basestation[2]= MSC.basestation[(matrix_x+12-1)%12][(matsix_y+12-1)%12]:
basestation(3]= MSC.basestation{(matrix_x+12-1)%12][matrix_y]:
bascstation{4]= MSC.basestation[(matrix_x+12+1)%12][(matrix_y+12-1)%12];
basestation5]= MSC.basestation[(matrix_x+12+1)% | 2] [matrix_y}:

basestation[0]= MSC.basestation{matrix_x][(matrix_y+12-1)%12];
basestation(1]= MSC.basestation[matrix_x]((matrix_y+12+1)%12]:
basestation{2]= MSC.basestation[(matrix_x+}2-1)% 1 2}[(matrix_y+12+1)%12};
basestation{3]= MSC.basestation{(matrix_x+[2-1)%12}{matnix_y);

basestation[4]= MSC.basestation[(matrix_x+!2+1)% 1 2}{(matrix_y+12+1)%12};

basestation[5)= MSC.basestation[(matrix_x+ 2+1)% 1 2][matrix_y];
}

//This method is used 10 decide if an empty channel can be found
int FindNewChannal(){
for(int i=0:i<6:i++)
neighber_channal[i]=basestation(i]. GetChannal();
fortint i=0:i<channal_num;:i++){
if (channal_status{i] = null)}{
int j:
for(j=0.j<6:j++)
ifineighber_channal(j]{i] != null) break:
if (j==6) return i: //if find an empty channel, retum the channel number
}
}
return -1. //fotherwise, retum -1

I[This method is used to decide if a channel can be found by reorganization in ACO table
int IsReorganizable(){
for (int i=0:i<channal_num:i++){
if(channal_status(i]==null){
intj;
int candadate_basestation=0;
int k=0;
for(j=0:j<6:j++){
iftneighber_channal(ji(i]'=null) {
candadate_basestation=j;
k++;
}
if(k>1) break:

}
if(j==6 && k<2){
int empty_channal=basestation[candadate_basestation}.FindNewChannal();
iftempty_channal!=-1){
basestation{candadate_basestation].Switch_Channal(i.empty_channal);
retumn i; //if find channel, then retum the channel number
}
1

}
} /fend for
return -1; //otherwise, retum -}
}

/IThis method is used to do the procedure of call assignment using our proposed algorithm
void MakeNewCall(Call call){
int newchannal=FindNewChannal();

Appendix B Source Codes 94

ifinewchannal==-1){
int reorganz_channal=IsReorganizable();
if(reorganz_channal'=-1){
TakeNewCall(cali, reorganz_channal);
return;
}
/Aif no channel available, then put it into waiting queue
waitingqueue Enqueuc(new WaitingCall(matrix_x.matrix_y MSC.current_time. call.callid));
retum;

)
TakeNewCall(call, newchannal). //if there is an empty available, take the new call
H

//This method is used 10 update the ACO table after taking a new call
void TakeNewCali(Cail call. int newchannal){
channal_status{newchannal]=call;
}

/IThis method is used to switch the channel if reorganization occurs

void Switch_Channal(int from, int to}{
channal_status(to]=channal_status[from};
channal_status[fromj=null;

}

/This method is used to do the call releasing procedure
void ReleaseCall(int callid){
iftwaitingqueue.CheckReleaseCall(callid))
retum:
inti;
forti=0zi<channal_num;i++){
tf(channal_status{i]'=null && channal_status{i].callid==callid|{
channal_status(i]=null;
break:
}
}
if(icchannal_num)
waitingqueue.Check WaitingCall(matrix_x.matrix_y.i):
)

/This is the object which contains the channel status
Call[] GetChannal(){
return channal_status:
}
}

I.

This class is used to keep the identification of a waiting call. It includes the cell number which the waiting call comes from, the
callid and the time which this call have already waited

¢

class WaitingCall{
int source_x, source_y;
int source_time:
int source_callid:

/[This is the constuctor of class WaitingCall, which doing some initialization
WaitingCall(int x.int y,int time, int callid){
SOUrce_x=x;
source_y=y:
source_lime=time:
source_callid=callid;

Appendix B Source Codes 95

r

This class is used to describe the object Waiting Queue. It includes Enqueue{WaitingCall). CheckWaitingCall(int, int. int),
CheckRealseCall(int) and IsNeighber(int, int, int, int) methods.

*/

import java.util.*;

class WaitingQueue(
Vector waitingqueue:;
int waitingtime=MSC.wailing_time:

/This is the constructor of class WaitingQueue, making some initialization
public WaitingQueue(){
waitingqueue=new Vector();

!

//This method is used to add the call without channel in the waiting queue
void Enqueue(WaitingCall waitingcall){
waitingqueue.addElement(waitingcall);
}

//This method is used to check if the channel released can be assigned to the call in the waiting queue.
void CheckWaitingCall(int matrix_x, int matrix_y. int freechannal){
if(waitingqueue.isEmpty()) retum: //if the queue is empty, then doonot need check
Enumeration waitingitem = waitingqueue.elements();
/luse channel release procedure of our proposed algorithm (o assign the channel
while(waitingitem.hasMorcElements()){
WaitingCall item= (WaitingCall) waitingitem.nextElement();
int x=item.source_x:
int y=item.source_y;
iftmatrix_x==x && matrix_y==y){ //if the waiting call also comes from cell L assign the channel 1o it directly
MSC.basestation(x}{y]. TakeNewCall(new Call(item.source_callid), freechannal);
wailingqueue.removeElement(item);
return;

}
IAf waiting call is from the interfering cell of cell I, check if it can be reorganized
if{isNeighber(matrix_x, matrix_y. x, y){
int channal=MSC.basestation(x]{y}. FindNewChannal();
ifichannal!=-1){
MSC.basestation{x](y). TakeNewCall(new Call(item.source_callid).channal);
waitingqueue.removeElement(item);

return;
}
else {
int reorganz_channai=MSC.basestation{x][y].IsReorganizabie()
iftreorganz_channal'=-1){
MSC.basestation{x][y]). TakeNewCall(new Call(item.source_callid), reorganz_channal);
waitingqueue.removeElement(item);
retum;
}
} /end else
} fend if
} /end while

retum;
}

//This methed is used to check the waiting queue when a call is released
boolean CheckReteaseCali(int callid){
boolean retum_value=false:
if(waitinggueue.isEmpty()) return false;
Enumeration waitingitem = waitingqueue.clements();
while(waitingitem.hasMoreElements())
WaitingCall item= (WaitingCall) waitingitem.nextElement();
/Aif the waiting time is expired. then this call is blocked
iR(MSC.current_time-item. source_time)>waitingtime)(

Appendix B Source Codes

waitingqueue.removeElement(item);
IfIMSC.current_time>MSC.Start_time)
MSC.block_num++:
waitingitem=waitingqueue.clements();
continue;
}
if(callid==item.source_callid){
waitingqueue.removeElement(item):
retumn_value=true;
/Aif the call’s duration time is less than waiting time. this call is ignored
if(MSC.current_time>MSC.Start_time){
MSC.ignore_num++;
MSC.total_call--;
}
H
} /lend while
retum retumn_value:

}

/fThis method is used to decide if the waiting call is from the interfering cell of cell i
boolean IsNeighber(int matrix_x, int matrix_y, int x, int y){
iftmatrix_x%2==I)
ift(matrix_x==x&&(matrix_y+12-1)% | 2==y)}i(matrix_x==x&&(matrix_y+12+1)% | 2==y)lI
((matrix_x+12-1)%12=x&&(matrix_y+| 2-1)% | 2==y)l ((matrix_x+12-1)% | 2==x&&(matrix_y==y))il
((matrix_x+12+1)% | 2==x&&(matrix_y+12-1)% | 2==y)l ((matrix_x+12+1)% | 2=x&&matrix_y==y))
return true;
else iftimatrix_x==x&&(matrix_y+|2-)% 2==y)iKmatrix_x==x&&(matrix_y+12+1)%12=y)ll
((matrix_x+12-1)% | 2==x&&(matrix_y+12+1)% | 2==y)ll ((matrix_x+12-1)% | 2==x&&(matrix_y==y))ll
((matrix_x+12+1)% 1 2==x&&(matrix_y+12+1)% 1 2==yM ((matrix_x+12+1)% | 2=x&&matrix_y==<y})
return true;
retumn false;

Bibliography

97

Bibliography

[Anselm95]

[Chess95]

[Chih93]

[Coch92]

[Cox72]

[Dini97]

Anselm Lingnau and Oswald Drobnik, “An infrastructure for
mobile agents: Requirements and Architecture”, Proc. 13th DIS
Workshop, Orlando, Florida, September 1995

D. Chess et al, “Itinerant Agents for Mobile Computing”, IBM
Research Report RC20010, IBM Research Division, 1995

Chih-Lin and Pi-Hui Chao, “Local Packing Distributed Dynamic
Channel Allocation at Cellular Base Station”, IEEE
GLOBECOM, 1:293-301, 1993

Don Cochrane, “Quality of Service Mappings”, The Management
and Telecommunications Networks, eds: R. Smith, E. H.
Mamdani, and J. G. Callagan, Ellis Horwood, 1992

D. C. Cox and D. O. Reudink, “Dynamic Channel Assignment in
two dimension large-scale mobile radio systems”, The Bell
System Technical Journal, 51:1611-1628, 1972

Petre Dini, A. Hafid, “Towards Automatic Trading of QoS
Parameters in Multimedia Distributed Applications”, Open
Distributed Processing and Distributed Platforms, 4: 166-179,
May, 1997

Bibliography

[Donald72]

[Donald73]

(Elnoubi82]

[Engel73]

(Fred96]

(Furuya91]

[GMD97]

Donald C. Cox and D. O. Reudink, “A Comparison of Some
Channel Assignment Strategies in Large-Scale Mobile
Communication System”, [EEE Transaction on Communications,
COM-20(2): 190-195, April, 1972

Donald C. Cox and Douglas O. Reudink, *“Increasing Channel
Occupancy in Large-Scale Mobile Radio Systems: Dynamic
Channel Reassignment”, I[EEE Transactions on Vehicular
Technology, VT-22(4): 218-222, November, 1973

S. M. Elnoubi, R. Singh and S. C. Gupta, *“A new frequency
channel assignment algorithm in high capacity mobile
communication systems”, IEEE Trans. Vech. Technol, VT-31(3),
August, 1982

J. S. Engel and M. Peritsky, “Statistically optimum dynamic sever
assignment in systems with interfering severs”, IEEE Trans.
Vech. Technology, VT-22(4), November, 1973

Fred Halsall, “Data Communications, Computer Networks and
Open Systems”, Addison-Wekley Publishing Company, ISBN 0-
201-42293-X, 1996

Furuya. Y. and Yoshihiko Akaiwa, “Channel Segregation : A
Distributed Channel Allocation Scheme for Mobile
Communication Systems”, IEICE Transactions, 74:1531-1537,
1991

- GMD FOKUS, “Mobile Agent System Interoperability Facilities

Specification”, OMG TC Document orbos/97-10-05, November,
1997

Bibliography

[Hosoon96]

(Hua93]

[Jens93]

[Kahwa78]

[Katzela96]

[Kazunori92}

[Lewis73}

Hosoon Ku and Gottfried W. R. Luderer, “An intelligent mobile
agent framework for distributed network management”, Network
System Laboratory, Arizona State University, 1996

Hua Jiang and Stephen. S. Rappaport, “Prioritized Channel
Borrowing Without Locking: A Channel Sharing Strategy for
Cellular Communication”, IEEE GLOBECOM, 1:276-280, 1993

Jens Zander and Hakan Eriksson, “Asymptotic Bounds on the
Performance of a Class of Dynamic Channel Assignment
Algorithms”, IEEE Journal on Selected Areas in
Communications, 11(6):926- 933, August, 1993

T. J. Kahwa and N. D. Georganas, “A hybrid channel assignment
scheme in large scale”, IEEE Trans. Communication, COM-
26(4), April, 1978

I. Katzela and M. Naghshineh, “Channel Assignment Schemes
for Cellular Mobile Telecommunication Systems: A
Comprehensive Survey”, IEEE Personal Communications, pages
10-31, June, 1996

Kazunori Okada and Fumito Kubota, “On Dynamic Channel
Assignment Strategies in Cellular Mobile Radio Systems”, [EICE
Transactions Fundamentals, 75(1634-1641), 1992

Lewis. G. Anderson, “A Simulation Study of Some Dynamic
Channel Assignment Algorithms in a High Capacity Mobile
Telecommunications System”, IEEE Transactions on Vehicular
Technology, VT-22(4):210-217, November, 1973

Bibliography

100

[Michael95]

[Mike95]

{Ming89]

[Ming91]

[Mo096]

[Mutsumu93]

[Nettleton89]

Michael R. Genesereth and Steven. Ketchpel, “Software Agents”,
Computer Science Department, Stanford University, 1995

Mike Rizzo and Ian A. Utting, “An Agent-based Model for the
provision of Advanced Telecommunications Services”,
Computing laboratory, University of Kent at Canterbury, U. K.,
1995

Ming Zhang and Tak-Shing P. Yum, “Comparisons of Channel-
Assignment Strategies in Cellular Mobile Telephone Systems”,
[EEE Transactions on Vehicular Technology, 38(4):211-215,
November, 1989

Ming Zhang and Tak-Shing P. Yum, “The Nonuniform Compact
Pattern Allocation Algorithm for Cellular Mobile System™, I[EEE
Transactions on Vehicular Technology, 40(2):387-391, May,
1991

Moo Wan Kim, et al, “Dual Agent System to Integrate Service
Control and Network Management”, Fujitsu Laboratories Ltd.,
Japan, 1996

Mutsumu Sericawa and David J. Goodman, “Instability and
Deadlock of Distributed Dynamic Channel Allocation”,
Proceedings of the 43rd IEEE Vech. Technology Conference,
pages 528-531, 1993

R. W. Nettleton, “A high capacity assignment method for cellular
mobile telephone systems”, 39th IEEE VTC, pages 359-367,
1989

Bibliography

101

[Partha97]

(Race82]

[Reece96]

[Songwu97]

[Steven97]

(Sunghyun96)

[URLI1}

(URL2]

[URL3]

Partha P. Bhattacharya and Leonidas Georgiadis, *Distributed
Channel Allocation for PCN with Variable Rate Traffic”,
IEEF/ACM Transaction on Networking, 5(6):907-923,
December, 1997

Race Project QOSMIC Deliverable 1.3C: “QoS and Performance
Relation”, 82/KT/LM/DS/B/013/b1

C. S. Reece and A. Van De Liefvoort, “Performance Analysis of
Heterogeneous Traffic on an Integrated Network Link with Finite
Waiting Room and Anticipated-Release Researvation Policy”,
Computer Science Telecommunications, University of Missouri-
Kansas City, February, 1996

Songwu Lu and Vaduvur Bharghavan, *“Adaptive Resource
Management Algorithms for Indoor Mobile Computing
Environments”, Coordinated Sciences Laboratory, University of

Illinois at Urbana-Champaign, 1997

Steven R. Farley, “Mobile agent system architecture”, SIGS
Publications, Inc. New York, NY, USA, 1997

Sunghyun Choi and Kang G. Shin, *“A Cellular Wireless Local
Area Network with QoS Guarantees for Heterogeneous Traffic”,
Real-time Computing Laboratory, The University of Michigan,
CSE-TR-300-96, August, 1996

http://www.dse.doc.ic.ac.uk/~nd, 1998
http://www.cs.tcd.ie/Brenda. Nangle/iag.html, 1997

http://www .acl.lanl.gov/CORBA, 1998

Bibliography

102

[URLA]
[URLS]
[URLS)
(URL7]
[URLS]
[URL9]
[URLI10]
[URL11]
[URL12)
[URL13]
[URL14)
[URL1S]

[Vijay93)

[White95]

Wuyidl]

hup://www.ikv.de/products/grasshopper.html, 1998
http://ccnga.uwaterloo.ca/jscourias/GSM/gsmreport.html, 1998
http://www.readiodesign.com/cellwrks.html, 1998
http://www.seanet.com/~ksbrown/kmath026.htm, 1997
http://forum.swarthmore.edu/dr.math, 1998
http://www.bell-labs.com, 1997
http://www.concentric.net/~tkvallil/snmp2.htmi, 1997
http://iworks.interworks.org/conference/I[Works97/sessions, 1998
http://www.albury.net.au/~rhodes/knowldge.html, 1997
http://www.zdwebopedia.com/TERM/U/UML.html, 1998
http://www.rational.com/uml/index.shtml, 1998
http://homer.span.ch/~spaw2724/SNMP, 1998

Vijay K. Jain and Bonchul Koo, “TDMA/FDMA PCN System:
An Advanced Channel Borrowing Strategy”, [EEE GLOBECOM,
1:271-274, 1993

White J., “Telescript technology: The foundation of the electronic
market place”, General Magic white paper, 1995

Wuyi Yue, “Analytical Methods to Calculate the Performance of a
Cellular Mobile Radio Communication System with Hybrid
Channel Assignment”, IEEE Transactions on Vehicular
Technology, 40(2): 453-460, May, 1991

Bibliography

[Yoshiyasu93) Yoshiyasu Nishibe, et al, “Distributed Channel Allocation it.
ATM Network™, IEEE GLOBECOM, 1:417-423, 1993

