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Abstract }

Collaterality.aﬁd the facilities for parallel
' -
processing in the algorithmic language Algol 68 are
cénsidered,

: %,

. The occurrences and effects of colla%erality are
examined in detail and the main features of the
language are discussed.

The development of concurrept proc;ssing is then
followed, from early hardwarg aspects up to the
realization of parallel facilities. in high level
1anguageé. leading to a study of parallel operations
in Algol 68, Algoni%hms using these operations are

givqu corresponding to those given by various

authors in other languages,
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Cette thése &tudie les possibilités fournies par N
le langage algorithmique Algol 68 pour les processus
paralléles, Elle examine en détail ‘les apparitions et
les effets.du parallélisme, ainsi que les points
principaux du langage. ) Lo ,

Elle suit le dévelloppement des ﬁrocessus

— paralléles, depuis les premiers aspects technolégiqueé
‘ jusqu'd la réalisation d'opérations paralldles dans les
langages de haut niveau. Ceci méne & 1'étude des
opérations paralldles en Algol 68. On AOnnﬁ des g
T algorithmes qui utilisent ces opéral}ona, ezﬁ\gui‘
correspondent & ceux qu'ont donnés divers auteuré%dans
d'autres langages,
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1. Algol 68.

1.1. The language. i

—

Algol 68, a machinééindependent programming languége;

_is rigorously defined -in the ‘Report on the Algorithmic !

Language ALGOL 68*' (1), and an authorized (by Working f
Group 2.1 Algol of the International Federation for Ipform-

ation Processing), 'informal' description of the language

(]

is given in Lindsey and van der méulen (2). A description

of Algol 68-R, An implemenfed sub-language of Algof 68,

having almost All the features of Algol 68 { but not the

——

parallel ones), is given in (5). The:reader w%th sone - -

familiarity with Algol 60 is referred to (3), for alﬁﬁéck

introduction to the differences between the two 1anguages: K
This. thesis islconcerned with: ‘

1) {Hé/gccurrence of’collaterality in the Yanguage;

2) tﬂ; use of the ‘'par’ ciause for parallel programming;

3) the synchrgﬁization facilities, avaiiable through the

use of &eMaphores,

These topics are dealt with orily very briefly in (3).

Collaterality generally is treated at some length in (2),

~

and one example of an algorithm using the 'par' clause is,
given there. One example of a 'par' algorithm is also
found in (1). These algorithms are considered in part 5.

Some of the examgles of collaterality found in (2) are

. uded in varidue forms in part 1,2, following.
N

)
The Algol 68 Report (1) defines a 'strict' language,

an 'extended' language, and a 'tepresentation’ langeage.

 The first is a definition of the language in terms of its

- N
syntax and semantics. The second allows several changes

b g
™
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for ease ¢f use, including the use of comments, abbreviations,

and theffépfacement of some constructions by}simpler ones. The

reprééenti?icﬁwlanguage'is the extended language as it appears

in a particular medium, . '
The programs {(algorithms), or program segments, used

here ngl be versions of the "particular program", as defined .

iﬁ\the syntax:

-
prog;;m: open symbol.stan?ard prelude,library prelude
option,particular b£ogram.exit.library postlude
™ option,standard postlude,close symbol.
The programmers program t%eh, is always enclosed in a set of
'built-in' constructions. The 'preludes' contain built-in and
user-defined modes and procedures, and the 'postludes' finish’
off the 'preludes'. The ﬁroblem program is the 'particular
program'., It consists of a Noid closQ? clause

begin .I..l.l.".l.‘..end

or
(ll....!..'.l.l...l....')

and is constructed in the 'block' fashion of an Algol 60
program, although (1) does not define program structure in
terms of blocks but in terms of ‘'ranges', that 1s, 'serial
clauses' within '(* and ')',which define the scope of

values declared in them.

Programs in this thesis will be occasignally incomplete

in that a comment will be swbstituted for a unit of code,

3

for example:

if ¢ some condition £ then £ some action £ else —

£ some other action g

l" ) fa T
. e ?,j
Input and output instructions will be sometimes omitted.
. 4
¢ | .
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Some of the permitted 'extensions' to the strict language
b

| will be used here. Thify are given below, °
ﬁ 1) in declaring variables . /~\.
' mode identifier; 'will be used instead of the
strict form
ref mode idintifier = loc mode; i
e.g. . Lo
real xi instead of ng 533} X =,%3£ realy
2) in declaring aﬁ@ initializing »
' mode identifier:= value; will be used instead of”the
strict form ' -
ng mode identifier = 123 mode 1= value}
e.g. .
int i:1= 5, instead of Egiﬂzgz_i = {23'323 1=5;
a 3) in decldaring a 'pointer' \
4 ref mode identifier: will be used instead of the i,
strict form - J
ref ref mode identifier = lpc ref mode ; g ’ :
8.L0
' ng real yj instead of ”ng ng real y = loc £§f'feéla

4) in declaring and initializing a pointer

#

ref mode identifieri= valuey will be used instead of the
_Jah—.t .

gstrict form

ref ref mode identifier = loc ref mode 1= value;
.»’ e.g.
{7 )
( ref real y:= x; instead of

ref ref real y = loc ref real 1= x;

ped

‘ 5) in declaring structures ' Tl
e 5 v

(o4

struct struct-name = (mode field-namel, mode field-nameZ2,..};

C ey

=3

ek
LA N
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struct-name name-of-a-struct;
¢

néme-of-a-structx=(some\structﬁre display):

inétead of the strict form . . (
. e, N -

/ . .
rey struct(mode field—namel,...) name-of-a-strudt -

[ p

= loc struct(mode field-nameil,...):=(structure display):
’

e.g.

struct record = (igg.age. string name);

record students -

‘sﬁudent:=(17.'sharon;);

-

instead of

ref struct(int age,string name) 'student

= loc struct(int age, string name):=(17, 'sharon');

6) in declaring multiple values

[bounds. yees] mode identifier

instead of the strict form

ng [_, ....] mode identifier = {39 [bounds. , .J mode s
€.
[h:k.m:n] real xi s

instead of

a

EEE[: ' ]real x = loc [h:k,m:n] real;

E ———

2) in declaring procedures i

Broc procedure-name = (mode parameter .list)mode: routine;
instead of the strict form -

proc(mode) mode procedure-namie = ((mode parameter list)

mode: routine);

BE -2 ’ g

3

- ’:/ N ,
nwwf:;proc recip =~(real &) real: 1/a;

ot
oy gL )

" ingtead of

7

((real a) real: 1/a);

proc (real] real reci
- /.»/ oy
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$
) in declaring names of procedures

©

' ’ ; mode procedure-name = proc (mode parameter llist) mode}

procedure-name name-of-a-procedure;

instead of the strict form

ref proc (mode parameter list) mode name-of-a-procedure

= loc proc.(mode parameter list) modeé;

eog'

mode sproc = proc (real) real; |,

sproc aprocj

instead of

ref proc (real) real aproc = loc proc (reél) realy

9)in declaring 8perators‘

op op-name = (mode parameter list) mode : routine;

instead of the strict form

*

& " _ op (mode parameter list) mode op-name

= (mode parameter list) mode: routine; 0 ;

s - ) / £

op vip = (real a,b) real:(a * b)/(a + b)),

- instead of

. op (real,real) real vim = (real a,b) reali(a * b)/(a + b));

A

N\
| : 10) in repef}tive statements

!
} for some integer value
1 !

/ from some start value

by some increment

/ \ to some 1limit

while some condition is true

‘a may be abbreviated by:

a) oﬁitting 'from ,.' when the value is assumed to be 1;

do some process

i A ' |



. counterpdrts. They are:

. "2

b) omitting 'by...' when the 1ncrement 1g—assumed to bb 13 ” )

.

3
c) omitting 'to some limit!' when the number of iterations is

. ‘f’

? o

indefiﬁite; -
d) omitting ‘'while..,.' when no such governing clause exi;ts.
11) the conditional clause

if some—condltlon then true-action else. false action fi
will be,abbfeviated to "

(some-coqditéon ltrue-action \false-action)
12) 'go to 1abélq wili be abbreviated to 1label'. .
13). comments w111'appqaw. surrounded by £ . £.

Coer01on.“the forcing of the delivnry of the right kind

t

v
of value, plays a large part in Algol 68, Unlike other la?guages

where it s hidden in the semantics, e.g. in Fortran,

x = 1y .
gives a mode change across the equal sign, in Algol 68
coercionsg are spelled out in the syntax. ln algorithms given here,
all coercioné are assumed to be automatic (1.e. the required
vélue ig assumed to be ungmbighous).

Some Aigul 6810perator§,ubed here have‘ho'Algol 60

)

minus where a minus 1 means ai=a=1;

plus where a plus,1 means ai=a+ly

times . where a times b means a:=a¥bj

N \
..overb where a overb b -means ar=asb; ( for 1ntegers )

AN

div Here 2 div b means a:=a/b;

—ia

means a:=a mod b; P

modb where
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1.2, Collaterality.” - - S
) In Algol 68 'collateral' phrases and-clauses are:thpse\
: ' ‘ - 43
’ whose constltuents may be elaborated (carrled .out) 1in an

>

order that may’ not be the same as the order in which they

< . g ‘
. : a e
are written down. Im the clause 6 a : \\\\N/,) -t

i
) ¢ - M

J (ar=3,b1=k,cr=5) L R
it is iéblied‘%hat"the order in which the‘thfgg’aséignafions
are done will make no difference "to.the results of the program.

. . Collateral cggnstituents are separated by commas; serlal

N

constituents, where the order of elaboratlon is important,

e

are separated by sem}-colons. A Semlhc910n means 'go on', in

- the sense of 'do this first and then go‘on @b do what comes |
next', ) . ' ”

Given a collateralchause S

’ (n1,n2,n3,...) ‘

the order of execution of its constituents is not defined in

the language rules. Collaterality is defined (1) in terms of

‘actions', and these are described as being 'inseparable'’

‘serial' or ‘'collateral'. "A serial action consists of actions
which take place one after the other". "“A collategal action

¥ AY '
consists of actions merged in time; i.e. it consists of b

inseparable actions each of which is chosen in a way which is
left undefined in this -Report, from among the first of the

inseparable actiohd which, at that moment, according to this

/"’

Report, would be the continuation of any of the constitutiqg/,/~

i -

Py

actions*. (1).

The constitue clause or phrase may be

—

o

’ . elaborated: : ,
\\\\;:£1\ ;l/}p/%hé/ggggz/;;ey appear in when they are writtgn down,

i

S Thig means that they are tredtéd as serial, and theﬁqomma‘

Py



is read as a semi-colong

2) in some other order decided at compile time by the compiler;
3) simultaneously, hecause n processors are dyailable. The

availability of more than one processor is df%cuBSed fully in
- : p

parts 2 to 5.

If 1 above is true and collaterality is not specifically

5

requested, it can still occur, in, for example, the compiling

of arithmetit expressions (7). For example, the expression

. {
a+b+c+d+e+f+g+nh

can become, in %the compilation process, .an intermediate

‘ . 3
expression

(CC(((a + b) + ¢c) + d) + e) + ) +“g)~+‘h

which givés a tree which needs seven serial additions :

, /’+:
i . + “\
e i A ‘ £ /////
. ' - ‘+/
. +//// .
. . +/§s .
R
~\ |
a b c d e f g h

[P

But if the expression is tranglated to
((a +b) + (c +d)) + ((e +f) + (g+h))

this gives.a tree which needs only three 'elapsed' additions:

: +
+///// \\\\\+
+’/// ~\\+ . +/// \\\+
SN NN \ .
a b ¢ dje f g . h

¢ ’

P

ey 4

e

¢
4




The first four additions are done in parallel, then two,
then the 1ast<one is done. Similar constructions for the
generation of parallel expressions are”giign in (8). This
is 'expression parallel', collaterality of a kind of which
the programmer may be unaware. The compiler can examine a
piece of code and evaluate it to take advantage of multi-
processing capabilities, even if these capabilities are
restricted (to 'expression parallel' operations), and even
if the program being evaluated is a 'serial’' one. n

¢ Without n-processor capabilities, the compiler may take
advantage of explicit collateral clauses by choosing the

order of execution which yields the minimum number of final,

compiled instructions..’

The main implication for the programmer in usiné the
collateral form is that the execution of one part of the
clause must not be allowed to influence the execution of
another part: the other part might be execﬁted first.

Collateral{ty‘éccurs throughout Algol 68 (and occufs
algo, in declarations and expressions, in other high level
languages). In many cases collateral elaboration offers no
substantial advantagé'SQér sérial elaboration. At the worst
it is easier for the programmer to write in the cﬁllateral
form. At best, collateral directives instruct the compiler
that certain things may be done at’ the same time, and time

i
is saved. In between -these two extremes, collaterality
offers opportunities for varying degrees of efficiency
improvement. It also offers a number of traps for the

programmer. ‘ ' .




In Algol 68 collaterality is used in declarations,

assignations, identities, displays (of structures and

multiples), operator exec¢ut:ion, expressioens and formuias, .
4

procedure calls, and identity relations. ln some cases its

use is 'built-in' and the programmer can neither ask for it
nor refuse it. In other cases, he states when he wants it,

Declarations.,

As in most high level languages, variables may be

declared colléterally, that is, many in one 'type' statement.,

Fortran, PL/1 and Algol 60U all have declarations of this
kind: |

real x,y,zy or (x,y.z),{igg};
This dées not represent a'great departure from equivalent
serial declarations:

real x; real y; real zi

The parsing phase of the compiler recogniées 'y' to be a
continuation introducing a repetition of the previous
primitive type. In the syntax of Algol 68 this 1s:
collateral declaration: unitary declaration 1ist proper.
'List proper' is simpl; a list (in this case of declarations)
separated by commas. Collateral declarations allow the
programmer to specify a number of identifiers in one phrase,

From the 'strict' and 'extended' language point of view, when

writing

real X,y,Zi

the programmer is writing:

~ _real x,real y, real z;

which is an (extended language) abbreviation for:
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ref real x = loc real, .

ref real y = loc real,

—e e

ref real z = loc realy R

——— eee—— p——

Initializing may be done collaterally also, as in

real x1=1.2,y1=1.3,21=1.4;

If constants are being declared, they too may be elaborated
collaterally. For example: . e

real p = 4.4,q = 5,5

Collateral declarations may be mixed, up to a point. Thus
real p = 4.4, real zi= 3.3
is legit%mafe but it is not correct to wrifé i
_r_g_a_a} p = W4, z1=3.3;
This would be trying to say that ‘real’ is both the mode of
'p' and the mode of 'z’, But%the mode of 'z’ ishactually
‘ref real'; ‘'real z' is an extended language convenience.
The same word 'real' can not here ﬁlay the two parts, one
the actual mode of ‘'p', and the 6ther an abbreviation ffy

the actual mode of 'z°'.

Agsgignations.,

All assignations are elaborated collaterally. That is,
the order in which the left hand side and the right hand
side are obtained is not s;:cified. In simple assignations
guch as:!

x1=98,4;
it does not matter whether the 'x' is ‘'obtained' first, or
the value. But the sides are not always as simple as‘these.
If the asgignation involves subseripts, for example, problems
can occur, Consider:

xl[(iz=i+1)]8= x2[(i+1)]3
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Note that because a subscript must eventually reduce to an

e

integer, anything that yields an integer can be used. But an
assignation such as 'it=1 + 1;' does not yield anything; it
is 'void'. To make it yield a value it must be turned into i
a closed clause. The occurrence of a closed clause as a
subscyript will cause a coercion, in the above case to an
integer.

With the above assignation the sides may be got in any
order, which means that the subscripts may be obtained in any
order. The compiler may have a rule that gays 'if the same
things appear on either side of the assignation operator, do

one and assume the other is the same”, which will have the

effect of: -
Ki= 1 + 13 v
Xl[k]l‘= x2[k]; v

But if the two sides are elaborated truly cdllaterally. then
the following could result (;ssume 'i' is initially zeroj:
left side fight side
get i1 (into 1i')
add 1 to 1i°
get i1 into i';
add 1 to 1i''
store 1' in i -
store i'' into 1
This gives both subscripts as '1' and xl[L)and xd[l}are
obtained (again, collaterally). But another possibility is:,
left side right side .
get 1 1nto 1i'

add 1 to i

(U
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store 1' in i
? get i (now 1) into i''
add 1 to 1"!
- store i'' in i
This gives xl[Z?x: xz[z]: or, 1if the left side is evaluated
as soon as its subscript is available, xl[l] = x2[2];
If the order of elaboration of the subscripts were to be
reversed, the resulg could be xi[2]i= x2[1]1 or x1[#}=x2[1];
If 'i' could be égzzssed (and stored) simultaneously by two -
fetches (and stores), in a 2-processor machine, and the ‘
- additions done trﬁly in parallel, the result would be
Xl[l]n: xz[l];. An example similar to this ia given in if).
The ambiguity can be avoided by evaluating the sub-~
scripts beforehand, or simply by knowing the order of
elaboration. Probably, one side would be evaluated andhthe
" other would be assumed to give the same result but the -
language rules do not spegify it. They leave open the
‘possibilities outlined above.
. When two phrases are to Pe elaborated collaterally,
"As long as the elaboration of A has no effect on the
elaboration of B and vice versa then the manner [of this
elab%ration:]... has no effect on the result". (2). But if
the elaboration of one has what may be called a 'side effect’
on the other, difficulties will result. For example:
“(int n, )

}
real X,y

read(n)

etc)




is correct but

(int n,

al

;

read(n):

etc) ’ ;
is no@écorrect because 'n' may not be known wﬁen 'read' is
done.

’ °
The kind of 'side, effect' referred to above is when the

~

effect is unexpected and alters something and the programmer

is unaware of it. 'Normal' side effects are common. Knuth (9)

' defines a side effect to be "a change invoked by a function

designator in the state of some quantities which are 'own'
variables[global variables declared locally, not accessible
outside of their defining procedure but still existing when
the procedure is re-entereq]or which are not local to the
function designator". ('Own' variables are not used in Algol
68, but the idea is available through the use of the 'heap').
Knuth goes on to say "when a procedure is being called in the
midst of some expression it has side effects éf in addition
to computing a value it does input or output ér changes tgé ‘
value of some variable that is not internal to the procedure.
For example 0

integer a;

integer procedure f(x,y);

crerees BI= X + 14"
~Wegner (6) gives a more general discussion, He defines
a Bide effect as something that modiffes the environment. For
example, the result of an arithmetic operatign is to produce
a value that is to be used as an argument by subsequent

operators. An operator is applied to its operands and the

L2
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result replaces the Qalud;at the top of  the operand stack., But
the effect of an assignment gtatement is to remové both of its

arguments (1ts left side and its rlght side) from the operand

‘stack without repla01ng them with a value (in Algol 68 terms

;the result is of no mode} it is void). Its 'side’ effect 13 to

'modify the environment', to record a new value in the left
hand éide. Expressions whoée principal effect is to mddify the
environment are cqiled statements. Rhe values produced in the
absence of side effects are temporary quantities, while-side
effects may be thought of as a method qf recording the reéult
of a sequence of transformations in thefﬁegmanent environment,
thereby making it unnec;ssary to carry the informatién in the

tempordry environment. A statement-type procedure (u%ually

called*a 'procedure') has a null value and affects things by

‘;._ y
.the side effects @t produces during its execution. Function-

type procedures ('functions') are like expressions; they yield
a value. But they may also have side effects. A side effect of
a function is to set values of parameters; or to change the
value of a global variable, or to jump +to a label in an
enclosing block, or to invoke procedures that may have side
effects. ‘ ;o
Displays. v
In Algol 68 a 'literal' or the appearance of a number
which stands for itself, a 'constant', is called a

.
*denotation’.,

5 is a denotation of mode int (an integer constant) -

5.0 is a denotation of mode real (a real constant)
wge is a denotation of mode char (a literal)

L
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9 } ’ 1 6

- s

"five" " is not a denotation. of mode char but a multiple

value of mode 'string'. 1t is referred to as a
8
'string denotation’f even though 'string' is

S not a bvasic mode but a 'built-in' defined mode

mode string =110 flei] char

true is a denotation of mode bool. 2

&

There is no provision for a 'structure denotation', i.e.
a 'structure constant'. There is, however, a structure
‘display’, which provides the means for assigning values to all
the fields of a structure at once, in the same way that a
single integer denotation can be assigned to an integer variable.
The analogy, for structures, to
int ny
ni=53
ist / -0

mode r.c = struct(int i, j,k)s

rec nj
ni=(5,5,5)3
where '(5,5,5)' is a structure display. 1n such displays, the
fields are elaborated collaterallyi they aré geparated by
commas. This means that the same consideration~must be given
to their elaboration as would be given to any other collateral
expression. For example A -
ni=(a+b+c,a-b-c,a+b-c)
where 'n' is of mode }ec. is also a structurewdisplay and its
fields are to be elaborated collaterally. ''he analogy with

integer constants breaks down here, because with 'a‘', 'b', and

'c' as integer variables, 'a+b+c' is not a constant. Thus a
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display is more than a denotation, which is ‘a constapt. The
ﬁmportant thing here is that the constituents are elaborated
collaterally. There is no provision for

"ni=(a+b+cija-b-cya+b-c)

A similar situation exists for multiple values, 1ln
contrast with Fortran and PL/1, but in harmony with the above
methods for structures, elements of multiples, may, in Algol
68, be multiply assigned to, not only with constants, but w;i?
expressions. Thus multiple displays are, as structure display;“
are, more powerful than denotations. For example:

) L)

.[113] real x1;

x1|=(1.2.2.3.3-4hé
'x1' is a real multiple, & 'row of real', and it -is multiply
aééigned its elements, with real denotations. The point to be
noted for multiple displays ls the same as that for structures:
the element assignations are elaborated collaterally.

x1i=(a+ 1.2, sqrt(z) - h, reciprocal(3.14));
is a multiple display whose element expressions (wﬁioﬁ7are all
'unitary clauses yielding values of mode real') aré assigned
‘all at once', instead of by |

x1(1]:=a + 1.2y

xi[Z]:: sqrt(z) - hy ~

\ -

and are elaborated in an order left undefined by the language.

x1[3]:= reciprocal (3.14);

The particular implementation of the language will define the
order of evaluation., The same considerations apply to multiples -
of higher value ofN&imension, for example:

EEEP mar = [1:2,1:3]233&;

mar Xxi;




xxt=((1.

18

’

102'21303)|(O-900180007))3 '

The two clauses (1.1,2.2,3.3) and (0.9,0.8,0.7) are both

elaborated collaterally, with respect to their elements and

to each other.

Operators.

H

The collaterality involved in the elaboration of

operands in a formula in Algol 68 can become critical when

the defining of new operators is done, but basically it is

the kind of thing which occurs in P1/1, where, altﬁbugh a

hierarchy of operators exists, when parenthesized expressions

result, for example

>~

(a + b)<(c & 4) P
the elaboration has no tixed order. Th;\;;}gs do not specify

which of the parenthesized expressions will be evaluated

first (10). ln Algol pH8 each operator, monadic or dyadiec, has

a priority (10

for all unaries, 1 to 9 for dyadics), and

possesses a routine. Use of the operator invokes this routine.

The operands on either side of a dyadic operator Qfe evaluated

collatefally if they are declared collaterally in the routine

which the operator possesses. For example:

priority di = 7;

op di =

x1, x2.
real

(x1 + x2)/
(x1 * x2)

(real x1,x2) real: (x1 + x2)/(x1 ¥ x2); -

is the operator and is of priority 7, the same

priority as the built-in operators '*' and ‘'/'i
are the formal parameters, declared tollaterallyi
specifies that a real value is to be yielded;

is the clause defining the action in &

'the routine possessed by the operator.

.
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If the operator is used on the right hand side of an

assignation:

y3 += (a + b) di (a - b)y

r

then there are & number of levels of collatérality present,
First, the left and right sides will be obtained collaterally;
there is no prescribed order for doing this. I'hen the~(a + b)

and the (a - b) are coerced-%b reals, ih any order., When the
v

right side is reduced to
el di e2

the invocation of 'di’' causes the collateral elaboration of

two identity declarations: )

(real x1 = el, real x2 = eZ2)

to take place in the routine possessed by 'di'. Then the rest
of the routine is elaborated using théivalues now in 'x1' and
'x2' and the result of the expression (a real valuéo is
assigned to 'yj'..The routine for 'di' is carried out using
the standard operators ;4’. '/'dgnd '#', their priprities
being 6,7 and 7 respecti&e&y.

Parameters in operator routines may be elaborated
serially if the commas ;n their definition are replaced by
semi-colons. This is illustrated next, for procedures, where
the‘same facility applieq. e

Procedure calls,

—

If there exists a procedure, for example: . o

proc f = (real z1,22,23) real: £ some routine £;

&

then the routine possessed by 'f' accepts three 'reals' and
delivers a 'real'. Since the parameters are declared

collaterally, the call:




z1= £(wl,w2,w3); S

cauges collateral elaboratioﬁ of the left and right sides of
the asgignation, collateral elaboration of the three para-
meters, and elaporation of the routine. That is, the three
collateral identity declarations

(real z1 = wl,real z2 = w2, real z3 = w3)
take place. However, as with parameters in operator routings.
the programmer has a choice. The identity declarations may
be done serially, by rep}aciﬁé the commas with semi-colons
iﬁ the'brocedure definifion:

proc f = (real 213 real z23 real z3)realif etc £

The difference between a comma and a semi-colon can
be very important., In

proc p = (ng [1:m] real u.zgf[l:n] real v) reals

"¢ some routine £;
| the routine 'p' expects the names of two multiples to be
supplied. This is a ‘'call by reference';.the routine will use
the names to ‘access the original multiple values to which
the names refer. Theyarrays can thus be assigned to within
the routine because the identity declaration that takes
place on the invocation of the procedure is of the form:

ref [1sm]rea1 u = the name of a multiple

A

as distinct from

1nnqreal 8 the name of a multiple ¥hich is

[4
then dereferenced to yield the
values in it, )

j The latter would be a 'call by value' and it would be wrong

to assign to the multiple 's' within the procedure.

S




If the procegure 'n' is called,” as follows: .,

[1:3] real x1=(1.1,2.2,3.3)3
[1!“] real yt=(4-4.5.5.6-6)8

pix,y)s ; e —

L /

then & collateral identity declaratloj resilltsz T

(ref [1!&] real u = x, ref [11 real v = y)
RSN -———-—Ey..\» e

._"Ahn—-‘\;/‘y

The names 'x' and 'y' and thé‘b@uhéé"'m’ and 'n' are obtained
N

in any order. But if it was required that a procedure aqpépt

only multiples of the same size, by uskng 'upb', as i:s 2 |
proc q (ref [1: ]real t, ref [1xupb t]real r) real; | 4
£ some routine f£ C ‘ |
then the comma, for collateral‘elaboration. will‘not work. 7
The operation 'upb t' yields the upper bound of 't'. But
unless theaelaporation of 't' were done before that of 'r'
waus attempted, this upper bound would, ﬁerhgps, naot be t/,;\_wfw
’ " C
available. The comma must be replaced by a semi-tolon. This “,M““
would then guarantee that 'upb t* Wis Kmown when 'r' was a
evaluated. (2). T
Identitv }elatibns. R ‘
,An identity rq}abxon uses the relatdr ;?§Ql”p ‘i
and yields a value of 'true’ or ‘ralse’. 1t is congéxqjd with )
the equality of names., Assuming that 'a' and 'b' are nébes. . 3
that is, of mode 'ref' something, then . ///;/}/
at=i1b;s .
says 'the value of thelett side (a name) is the same (name)
as the value of the right side'. If the declazgx;pné are made
ref real a; T :
real xi 3 ‘kxwﬁjﬁf<
ar=xj ( ,*”'«W‘f = ’



.- then - S
art=1x; ! - ‘
yields.'true'. 'a; is dereferenced to find which name it
referred to and since this was 'x', and the right gide is

\; the name 'x', the result is 'true’. Similarly : 'xﬂ

Xt=1az1 '

A yields 'true'. The right side is dereferenced this time, with

the same result Conversely

X1 #1383

~

L

and : )

alﬁ:xt

both yield 'false The elabora%ion of an identity relation

)

» 1s collateral; the left and rigd& gides being done in any
v

¢ .
'

order, lLikKe an assignment.

In contrast with this, a 'conformity' relator, ‘':a'’

s L] . ! 13 ‘ N k3
“or '1i1=', is used in & conformity relation and such a

-
relation is not elaborated collé%gpallyb The relation is used
. to flnd out gzzw:§krent moderof a variable when it has been
. )
. . declared to be of 'union' mode. For example: =
union a = (char,int);
{ int i,char j; )
\ at=5y .
irray e |
' yields 'true' because 'a' is cuprehtly of 'int' mode, and so
ig 'i'., But -
. " , "4
Jras T, R ’
yields 'false'. If ' ' ‘ ’
p -
& ,
' 0y ’ ,ﬁ &
.
@ &
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then

’ : frias | |
i h *
ylelds 'false" and E - - - R :

j'lat ’o boe . ¥
yields. "true'. ) \

'i11=' means ‘'if it conforms to, let it be assigned'q Thus

' 4 after the above,

?

gives 'j' the value of ‘the character "5".
7 With either of theseirelaﬁions. the elaboration is
not collaterdl., The right hand side must be elaborated
* before “the left, to check its current mode. The right side
may be dereferencéd witil its mode islthe same as the left,
if it ever is, (i.e. modes on the right that Qiffer from |
p' l{'he left by 'ref ref ...' will eventuxxally conform), but the

elaboration is not collateral, !

Having considered the occurrences of collaterality

.

in~Algol 68, the provisions existing in the language for

commanding and controlling collaterality using the 'parallel’ -

~\

features can be examined. Before doing this however, some
discussion is needed of parallel processing in, general, its
history, problems and evolution to a high level language

facility., This follows in parts 2,3 and 4.

S » * /




2. Parallelism. . . -

p 2.1. Early interests in parallelism. '

In the paper "Prellminary D1scue$1on of the Logical
Design of an Electronic ComputLyg_;nstrumen+" (11)¢ an early,
(19&6). defining document for the modern computer, the idea
of parallellsm appears., In discussing the storage device to

be used in the proposed machine, parallel access and

1IS—were propogeds
In (12), Von Neumann compares "natural and artificial

componentry”. He states: "An efficiently organized large
natural automation (like the human nervous system) will tend
to pick -up as many logical (or informational) items as
possible simultaneously, and process them simultaneously,
while an efficiently organized large artificial automation

o (l1ike a large modern computing machine) will be more likely

to do things succesively - one thing at a time. That is,

large ;nd efficient nat;ral automata are likely to be!highly o

parallel while ... artificial automata will tend to be less

so and rather to be serial". He considered what operations

in a computer could be done in pargllel and pointed out "that

parallel and serial operat¢ons are’ not unrestrictedly

gubstitutable for each other", "Not everything serial can be _
immediately paralleled - certain operations can only be
pepformed after certain others, and not simultaneously with
them (i.e. they must use the resWlts of the latter}. In such

a case, the transition from a s;tlal scheme "to a parallel one
may be impossible, or-it may be possible but only concurrently

‘ with a change in the logical approach and organization of the

.

procedure”, Par 1ixm at the statemert level could thus lead
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o to difficulties but at the hardware level it was present .

0 from the beginning and the ideas e‘xp\rl‘essed in the 1946

report are eéﬁoga~fﬁenty-eigh£ years later in a E}Eicéiﬁgﬁf&;ﬁ
statem;nt by Feng (13): "To parallel process a number gj
words under single instructi¥gn control a set of processing
elements are used. A procegsihg unit may contain either a
serial or a parallel arithmetic-logic unit: If the proceé;ing

element 1g capable of performing bit paralilel Operétluns -

~the processor is called a fully parallel processor or simply

a parallel processor",
Today, 'large artificial automata' have incorporated
in their design as many parélle} facilities as economics
permit.Serial speed is limited now by path length and this
can be only so short, Qg/get n processes finished in less
‘ than.n times the time for one is now the aim. For this it is -
necessary to do some or ;11 of the processes concurrently.
Ideally, with n processors, the time can be reduced to 1/n th

the time for n processes, plus what ‘overhead' time isused

-

. to invoke and maintain the parallel operations. There will *

v

~..._r-glways be a lower limit on what is sensible to do in parallel.

N

When the parallel time approaches the serial time, parallelism
imust be justified on other grounds; But speed is not the sole

reason for doing things in parallel: the solutions of some

problems are parallel in nature, and they should be so

-

expressible.

s

q&
.



2.2, Parallelism in modern computers.

Early computers performed one operation at a time. An
" addition might be composed of parallel additions of several
bits, but the 'gross' operations were done consgcutively.

A

There ﬁere no overlappéﬁ or simultaneous operations. If input

£

o ——— BT, autput«Llquwas_needed the processor turned 1ts attention

to it, and did not resume computing until the I0 was finished.

3 e e

B S — . A
— rn-—m than one oﬁeratlop at%awilmeL -

Devices (channels), restricted to 10 duties, can execute their

- - - e dr

own-gets of instructions to do these duties, leaving the . _

processor free to work on something else. The channél can also
access memory between the processors own accesses to memory

(16). This overlapping and interleaving are examples of

*

-

parallel processing.
Another level of concurrency, less obvious than IO,

is the parallel processing of individual instructigLs, at the

1N
level of the instruction itself. —The Processor executes an
instruc£ioﬁ by acgessing it, decoding it,. readying some unit
(on the I-cycle) and by accessing the operands, carrying out
the instructio: and storiég the results (on the E-cycle).
These cycles may be performed in the traditional serial way, °
but they may be overlapped, by starting the I-cycle for an
ensuing iﬁstruction before the E-cycle for a previous one is
finished. This is a form of hidden parallelism existing on
some modern machines,

Another parallel activity may be undertqken by the
compiler. If a true parallel machine is available, with n

‘ processming units, but the language that the source program is

in does not have provision for the explicit expression of
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parallelism, the compiler may exam;;;\¥ﬁé‘source\program for

- »

partg that are amenable to parallel processing.and will
construct code to take advantage of the processing breadth
of the machine. If something is seen in the program that
involves the serial elaboration of n‘ppeféfions that are

= independent of' each other, a 'p;;ETIEiismkggg}yzer' (14 ) may

G, L .

extract them from their sequential settifg in. the source

27

wo—

e g et e

program and give eacl of the n pProcessors one each to do.
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2.3, Parallel programming,

3 -

1 With more than one processor several operations may

proceed simultaneously. These may be inmtructions, groups
of instructions, or whole prbgrdms. The built-in parallelism
of I0 operations (where tw;‘procesqors can be considered
available, tﬁé central one and a channel) will still exist,

- .. ..as may also _th¢ use of parallelism in memory and’ instruction

- int ing; e basic parallelism—in the adding— ———

1

circuitry.

If more than one processor is available. o; één be
simuldated, or if one processor can handle operations in such
an interleaved fashion that it appears to be a éulti-processé?'
or if a single processor can be 'passed éround'»(u) between

L\,//;rocesses so that each appears to have its own independent
’ processor, if any of these activities are available through
a programming language, then a new level of parallelism,
parallel prggr;mming. is possibles

If a machine has one processor only, then the statements

that it executes in a \parallel program must be done °
consecutively, but in the time sense only. By interleaving,
different processes can advance cdncurrently. The object of
para}lelism is not only to increas? gpeed but to make possible
concurrent advancement of routines which can proceed logically
independently. It m;tters little if & machine uses one
processor or more than one to do this.YThe aim is for the user

»

to be able to do parallel processing in his program, without
,. -

regard to how the configuration allows it to be carried out.

‘ | Some possibilitiés for paz\aljlel processing are summarized

as follows: :

.
- "
]
o . .. J
. \ o g
, s
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1). the usual parallel 10 operations:
¢) 'micro' parallelism at the instruction cycle level;
3) recognitidh‘bylfﬁe‘ébmﬁiler of ‘'expression parallelism*
in ;rithmetic statements (7,8);
4) n processors are available and the compiler extracts -
‘ potentially parallel sequences of operations from the source

-

program (14);

—— -~~~ ————5)the machine is actually n machines, a true multi-processor; . .

6)7§p97@a9hiné”has n processors and the programmer demands,

- 7 PR - - B ~
- -— v e I

through the source language statements, parallel operations.

Note that n may be 1. - R

o,



30

Z.4, Multiprogramming and multiprocessing,

Pa;éiiel processing on machines with single processors
reflects some aspect of multiprogramming, which may be defined
as "the interleaved execution of two or—more programs " (15),

The difference bhetween multiprogramming and >

]

multiprocessing (ise. the use of more than one processor) is

that multiprogramming implies some form of o;erlapping of
operations while multiprocessing implies Bome form of >

duplication of facilities. As well, multiprogramming can take

place inmachines which have multiprocessor facilities and

some duplication of facilities is always necessary in machines
which are to be capable of anything moreutpan strictly
monoprpgramming. \

If some form‘of parallel programming is being realized
oﬁ a single processor machine thep some form of
mgltiprogramming is being done. , 9

Multiprograﬁming encompasses such terms as 'multijob
operations' (multiprogramming where each 'program' is a
separate job or job step), and 'multitaék operations’' ( a
method of multiprogramming which allows the things which are
being multi-executed to be 'tasks', rather than separate v
jobs). These facilities are achieved through the use of
overlapping of instructions @pd the interleaving of ' T -
operations. {:'

In sequential monoprogramming, a 'task' is simply a jobd
or a job step. In multiprogramming, a task is the execution
of a set of inéfructions and the data and céntrol information

necesgsary for its execution: A task may involve a part of a

procedure, a whole procedure, or a whole program. ln a mono-

programming environment, a task is simply the current ;B;k‘
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to be done, but in a multiprogramming environment tasks .

compete with each other for control of a procesgor (15).

S&me'ﬁrogramming languages -(P1/1, Burroughs Algol)
allow the programmer to use the multiprogramming capibilty
within'a single program by using the multitasking facility
(10,17). - Coe T

In a machine with n processing elements parallel

4

processing will, in general, decrease the overall time of

execution. For example, some loops could be done 'all at

once': S . ‘ \ ' i

for i to n do ( é[i]u: 2 * a[i]);
could be done in one execution on n processors., But this
would not be done if the time for setfing up such a multi-
process equalled or exceeded the difference between the
sequential and parallel methods, Assuming ho overhead, the
total time spent processing in parallel would still be the
same as for gerial, buf the elapsed time would be cut to
1/n units,

If the machine has only one processor then any 'par;llel'
statements will actually be executed sequentially in time,
though in an interl;QQQd fafhion. This pseudo-parélielism
will not improve the time but if the solution to a problem
is naturally expressible ,as two or more parallel routines,
then it is good if it can be written as such in the source .
language. Also, programs may be easier to write in a
‘parallel’ fashion (even though executed sequentially), than _—

e

e e ol
those written in a serial interleaved way. Conversely, the

e

_temptation to 'parallelize’ when—uﬂhebéssé}y must be resisted

as compflicated routines may result. - ’ “
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As stated, ideally, the time taken to do a jggbusing n

’ processors should be 1/n the time taken for the same job with

’ one processor. Obviously this can not Hbe reached because of
‘the yime aésociated’;ith the invocation and running of the

parallel processes. However, Rosenfeld (18) showed that, with
a particular program amenable to parallel processing (the
distribution of current in an electrical nefwork), with
careful programming, the time taken for a job on a machine
with n-pfocessor capability did indeed approach 1/n the time

_ taken hy a single ﬁrocesso;.,ﬁewlisxs the followingipointSL o

1) creation and termination of tasks generally’reqdirés \

gubstantial amounts of executive system activity, which @ses
\

¥
processor time;

&£ -

| 2) extensive interlock for the synchronization of parallel
~ [

‘ ’ , tasks (see part j.1) usually requires processors to spend
large amounts of time idling; M,/””

-

3) the number of available processors may ngtwbé‘known in
advance. |

~ These considerations émpﬁ%size that programs using
parallel facilities should be independent of the actual
number of processors_gpéfha;é overhead amounting to a small

!
ii percentage gg/ugéful activity.
| L

peperr TR Y T XU DTS,
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»”mmm.nmwwwvﬁme121ng compiler decides which 1nstructlons. ndf‘%ﬁnN

2,5. Some machines,

One well known example of a multiprocessor machine is

£

ILLIAC IV. This is an ‘'array processor'., i stream of instruct-
ions (or perhaps a small number of streams of instructions)

controls a number of synchronized execution units, each unit

v

operating on one element of a data array. Solomon I and II

(j9)’are similar machines. A more general multiproceesing

!

system is distinguished by its ability to access common
storage Qith all n processors. Each processor obeys commands

from its individually fetched instruction stream (18). An

example of this is the IBM /360-67. ~  — —— - - — -
Other\systems (Burroyghs 6700, IBM /370) allow multi-

tasking. Machines with highly parallel designs are the CDC

7600, Burroughs 8500 and IBM /360-91 and CDC 6600, the latter

having parallel asynchronous units allowing 10 independent

unrelated 1nstruct1onﬁwxgwpveooeéﬁwn«paca&%gl (but an

mwmwb‘

programmer) (19). -

e,

Schwartz (20) looks at parallelism in large @gehiﬁesi R
“ - ';_
1) internally overlapped machines (e.g.DC 6600 ) where the .

o

-

-

hardware executes short sequences in parallel; e rot
2) uniform instruction machines (e.g. Weetinghouse Solomon):
These are inefficient for branching or where interwoven d&ta

forces each processor to look at the intermediate results of

another unit;

j)multiple instruction-location counter machines,.appearing

to the ﬁser to be multiple, logically separate processors.
N

This is a departure from the consideration mentioned earlier, *'

where n-was unknown. 1n this type of machlne. n/&sigzplacit




3. Prdblems in parallel processing. ‘ e

3.1, Producerss consumers arx mutualﬁexclq31on.

A problem of fundamental impsrtance in parallel process-
i;g is that of "mutual exclusion® (21,22), This occurs when
two or-more processes running in paféilel must be prevented "
from execufipg some of their actions in parallel. The actions g
comprise a ‘'critical section' of the proc;ss arid the processﬁﬁxWﬂﬂT

must be written such that only one is in its critical Sectiom—— —
—_—

at any one time. No at umptions are made about relativé speeds

)
and no priorities are given;'infinite waits' are disﬁ%lgwedf’www
Each proéess must be able to access its criticatﬁggg%ion, but
at a time when no other process is accessjing Tts critical .
sec%ioﬁ. The problem will occur./fgpwﬁgémple, if two or more
processes in parallel attggppwfslaiter a common variable. Tbé
SOlutiO?/EEﬁEMPQQVQE%M;;;.Other process from‘enteriné its
8§E¥;;;i section, where the alteration is done, while one
process is changiné the variable in its critical section.’

Two or more instructions need not access the same data-at
precisely the same time to cause trouble. The simultaneity
need not be as close as that. Two processes attempfing to,add i
into a co%mon variable concurrently is_ enough. Dijkstr;t(ZB) A
gives the example of two processes adding to a counter.’which
is supposed to ﬁecordmthe number of timeé it is accessed:
process oné process two -
ri=ng r:=n
r:=r+1:\ ri=r + 1;
, ni=r; ’ ni=r
Assume\that the instructions are executed not simultaneouﬁly
but in £“stpictly interleaved way, and that both processes
T e
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can eénter their critical sections concurrently. Assume n is

initially zero: .
process one process two
get n into n' (=0) get n into n'' (=0)
storetn' in r (r=0) store n'' in r (r=0)
get r into r' (r'=v) get r into r'' (r''=0),
-add 1 to r' (r'=1) add 1 to r'' (r"=1)‘
store r' into nh (h=1) store r'' into n (n=1)

n ends up as 1 when it should be 2. The second process must

be prevented from accessing n while the first is doing so.

It must be 'locked out', and then allowed to access n. One

8olution to this ig in the use of a Jlocal variable within
) N .

each parallel process and allowing it to exchange its value

<
-

‘with a common variable (21). 1f 'x' is a common variable:

(global), initially zerd. then each process can have the

following form:

begin int loc:=1;

begin repeat swap(x,lod¢) until loc=0;

o

critical section (e.g. where n is incremented)

¢ © swap(x,loc)-
rest of process
end

end

Assume there are three processes-and assume close °to

¢
simultaneous execution:

©

time process one process two

o l locg'=1 1ocz'=1
loc*'=0,x=1 loc''=1,x=1
critical section loe''=1,x=1

y

process three
loc'''=1

lToc'''"=1,x=1

»
v

loc'' *'=1,x=1




loc'=1,x=0 loc''=0,x=1" loc'''=1,x=1

\ rest of process “critiéal section loc'''=1,x=1
® ‘ loc' '=1,x=0 loc* ! =0,%=1 T
resg of procéss critical section L
loc"';].x¥0
i rest of process
No two processes access their critical sections at once
because only one 'loc( is zero at any one time and this
"guards entry to the critical sections.,,The fault in this
is that the processes 'idle' while waiting to access their
critical sections. The; occupy théiu;e\of a processor ;they
could be left dormant until their turn came. To achieve '
b this, the idea of a 'semaphore' (i.e. a signal flag) is
introduced. The semaphore is used to communicate between the
processes, telling one when it c;ﬁ proceed and freezing the
rest.

A semaphore can be an integer, or a reference to an “

a) O or 1;

b) 0,1,2,3,..41

c) veo —3.-5,—1,0,1,2.3...: s
The operations on gemaphores are the P and V operations

(23,§h). The Ploperation reduces the value of the integer by

1; the V operation increases it by 1. If a semaphofe is of

+the (a) kind, then, when a P operation is done on it,- if

' integegﬁ the value of which may be restricted to:
\

ite value is already zero, the routine in which the P occurs

3

is halted. Subsequent P ogerqtions on this semaphore have no

‘ effect, A V operation on it will restore it to a value of 1

erg

and the routine which was halted will restart at the plate

\
.
- N i
i f
, /
i




of the P operation., This means that a P oberatibn before &

criticdl sectioq?ﬁfil allow the section to be entered if the ;

semaphore's value is currently 1 but will block entrance to

-

the gection if the value is zero.

- 1
1f" a semaphore is allowed to have mor€ V operations on

it than P operations then it will take o valueg 1,2,3.. and
a value greater than 1 will mean that the routine associated
with the semaphore wi%l have, effectively, a priority, in
that it will take more than one P operation to halt it.

if a semapﬁore is allowed to be negative it means that
more ‘than one pfbcess is halted by 1t. It has been affected
by P operations ig'more than one place and its absolute
value represents the number of processes awaiting ité return
to a positive value, and thus the number of processes
awaiting restarting. :

Tﬁe P operation represents a potential delay; the V
operation, the removal of a barrier. After a V operatlonl if
a semaphdre is stiIl below éerO(case c) then it H;dhﬁore
than one process awaiting it (24}) 3

The semaphore, the critical section and the lock out
ideas together with the classical ‘'producer/consumer' problem
are discussed at length by Dijkstra (23), Hoare (45) and
Wirth (26). The diagram below illustrates the discussion, Two‘
or more processes are started up concurrently. Roth have
semaphores associated with them which will cause the process
t6 halt if an attempt is made to push the semaphore below °
zero, One process 'prodrces' (e.g. }t feaés a data item), -

while the other 'consumes' (e.g: it manipulates the read 1tem).

The cqpsumef process begins by performing a P operation

»
Y (Fee e
. k3
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on its semaphore, which has an initial value of zero, and the
process halts. There is nothing to consume. The producer

ppoébss,|aftep producing an item, performs a P operation on

——

its semaphore (which, since 1t referred to an integer value

which was initially positive; does not cause a halt). The

)

/ q=0 o

' produce ] consume

P(m) Viq) P(q) Vim)
Vi(m) P(m)
critical|’ :;GEEEEIW
section section
put in get from
buffer buffer

process then enters “its critical section wh;re. for example,
it accesses a buffer and stores the item. Meanwhile, the
consumer part is prevented from entering its critical section
and accessing the buffer because it is halted. When the
producer part emerges from its critical section it performs

a V operation on its semaphore and on the semaphore associated

- with the consumer part. This allows the consumer part to start

again and enter its critical section, to access the buffer, to
get an item that the producer has put there. Before it does

80, if performs a P operatidn on the producer's semaphore, to

~ push it-%to zero so that if the producer should attempt to

enter its critical section while a consumer is busy in its
critical section, the producer routine will be halted by the

P operation at the entrance to its critical section, After

“

3
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emerging from its critical section, the consumer routine
performs a V operation on the producer's semaphore allowing
the producer to enter its critical section, while the consumer

goes on to 'congume' the item in a non-critical part that has

.no coincidence of access with the produter part. Then it is

halted before its next entry into its critical section by the

.
P

- P operation on its semaphore.

The 'producer/consumer® problem(qccurs in haﬁy parallel
processing situations and appears in different forms in various
algorithms’(sqe pafts 4 and 5). 1lts solution, using semaphores,
is éhe aolutlok to thg problem of the synchronization of

-

gsimultaneous processes.
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3,2, what can and what can not be done in ‘parallel,

a Bernstein \(27) proved that the possible parallelism of
two program blocks is undec1dable. Given twckprocesses. there
» is no algorithm that will give -as output a statgagﬁi that the
two are or are not capable of being run in .parallel. what is ~
ggssible. is to set up %ests. and if the-processes pass them.
then parallelism is possible. The basic test is,whet‘er e
storage lotation conteqﬁé are modified by statements%ﬂg‘bne
procesg so as to make references to %he locationg by state-
-. ments in another procesé yield invalid results. ‘
. The obvious candidates for parallelism are loops, but as
Lorin (19) points out, certain precautions mu:i\;;\ggken:
1) no iteration of a loop canhbe dependent on a previous
iteration and no successor can be dependent on the completion
0 of an iteration. If one thing must wait for another to finish
then it can not be done concurrently with it
2) if a variable appears on the left hand side of an
- assignation only, it must be made local to the process, In
| DO 20 I = }.10‘
- A = 2(I)#%3
i . X . 20 CUNTINUE ‘ -

'A' musk. be made local if the loop is to be done in parallel
¢ > L]

. e.g. A' = 2(I)®**3 A'' = Z2(1)##3 etc
3) the loop
"'DO 66 I=1,5

S =8 + V(I)

I
o« 66 CONTINUE

tanno%fbeuexecutedningparallethecauig\gf the agpearence of 5

———

| ; . ; )

'—\ - -
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on both sides of the assignétion. Trouble, on the exact _vyaiue ‘ 4
0 of S after the first (and only, if'(S processors are used)
elaboration, could be avoided by frewriting the loop ag
-~ DO 66 I = 1,5 .
S(I) = 8(1) + V(I) o 2
66 CONTINUE ‘
and postponiqg the summation of S, This w&@ld be worthwhile if
the V(I) calculation were replaced by something more time-
consuming. The SkI)'s would theélbé added in a normal 1oopz
DO 66 I = 1,5
S(I) = S(I) + somé expression that could be done in
_ parallel
‘66 CONTINUE _
DO 67 I =1,5 ' T
‘ SS =SS + S(I)
" 67 CONTINUE _
Operations other thaﬁ loops. can be done in parallel. \\’)
Schedler (28) describes a meth;d°for the parallel calculatioh
of the roots of an equation, Murtha (39) cites the solving of
differential eéuations. The potential exists for applying
parallel techniques to commercial opeﬁgtions, where the same
operations are done on many different transactions. (Programs
using multitasking alre exs for commercial applications).
Lehman (29) suggests that.common problems should be -
“r' re-analyzed and new alggritﬁms be designed rather than try

-~ 'to convert their existing serial ones to paralielﬂuse.




// L, Parallelismﬁin high level languages.

i ’ 4.1, What is required.

When 10 operations are performed concurrently with other

operations; or individual inst;Bctiohs are being overlapped at
the cycle level, parallel processing has been achieveq: But a
‘higher' form of parallel processing is when the language in
which the Program is written allows the programmer to express
explicitly that certain parts (perhaps all) of the. program have'
been deliberately designed to take advantage of the n-processors
in the machine (or of the machine's ability to simulate the
presence of n processors), and that the programmer, through the
language stateménts, will control the parallel execution.of his

«

program, No longer will it be necessary to rely on the compiler

to discover potential areas of parallel activity in the serial
’ code, although evaluations of certain expressions could still
produce parallel code unknown to the programmer. \
With the freedom to cause concurrent activities to take }
place comes the reéponsibility to make sure that they téke place | i
properly: that_lpey/HB/not interfe;e with each other accidently; ‘
that the?'can czkﬁhnicate with each other if neceésary; and that .
they do in fact represent an imprbyement on sequential execrt;gg
of the same work. The facilities to do this do not exist in‘'many
| languageq, and where they do exist they are at a level that is~
fairiy estricted., In the following, a numbter of approaches to ‘
.explicit parallel processing are conéidered. A short descript{on
—— ——— — of some attempts at introducing'parallel provessing statements -

into high level languages follows. Some early algorithms are

‘ i given. Their Algol 68 equivalents are given in ‘part 5.5. =~ @
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4,2, Parallelism in procedure-oriented languages, ° ]

]

‘ The introduction of parallel processing facilities into

high level languages was achieved in a restricted way. in the
simulation languages, for example SOL (30,31). The problem of
introducing parallel proceééing instrgé iong into:the meneral,
procedure-oriented high level languages has bden looked at by

mgﬁy authors (26.26.32.33,34,35). Multitasking is available in -
PL/1 and Burroughs Algol, Conway (36) introduced a basic idea

of parallel work, that of the 'fork'. A 'forking'’ instr;ction

is one that creates and initi?tes;parallel processes. The

t 2

instruction 'fork', a machine-level instruction,would cause a ’
duplication-of, the existing state of things to be available to
several processofs and allow them to begin execution of groups

of instructions. The forking idea has an everyday analogy.

¢

)

) ‘ When a processor calls {‘.’or the execution of & sequence of ?0
A instructions by a channel while it continues to execute its
own instructions in parallel with those of the channel, it is
effectively, 'forking'. The basic mechanism uéed,in forking,
as in all parallel operations, is the 'fork!' stack, where each
process has access.to the program global stack as it existed
at the time of the 'fork', but maintaine its own stack for the
duration of the 'forked'x i.e. parallel process. '
Opler (32) began a\round of investigation into the ways .

of intrdducing parallel ﬁrocessing through high level language

instructions. He suggested, for machines with multi-p?%cessor

elements, the introduction into Fortran, Cobol, Algol and other

i

languages, étatementq for doing some parts of a program in
j"' parallel. He chose the loop as the obvious candidate for
|

"= -— .-~ — -parallelism, and the basic statement was, for Fortran:

it

fos)
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labell DO TOGETHER labelZ,label3,...{(labeln)

where 'labeln' is the label of a HOLD instruction, where all
loops came together. The Loop\Eoﬁld be nested, ,apd different
paths could reference }he samé variables, but no paths could
change the variables,. There could be no pranching into a pgih.
Progress through a path was to continue until the next label
was met, then an automatic bfaﬁch to the HOLD statement would

o

occur,

r 3

Opler gives the following example of ﬁﬁe mul%iplication'
of twp 21st order matrices, on & machine with 5 processors:
77 DO TOGETHER 1,4,3,4,5(6)
1 DO 11 I1=1,¢21,5 _ -
, D0 11 J1=1,21
DO 11 Ki=1,21
11 €(I1,J1)=C(I1,J1) + A(I1,K1) #* B(XK1,J1)
Z DO 22 12=2,17,5 . f
DO 22 J2=1,21 n
DO 22 K2=1,21
22 ¢(12,J2)=C(12,J2) + A(I2,K2) * B(K2,J2)
3 DO 33 I3=3,18,5
ete
4 DO 44 I4=W4,19,5
etc .
5 DO 55 15=5,20,5 .
etc . g . A
* 6 HOLD
Using 5 processors, ,g£roups of 2205, 1764, 1764, 1764 andiﬁ?éu

-multiplications are done in parallel. The elapsed time is for

777"~ the 2205 multiplications, i.e. the time taken for the first,

4, A
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longest segment. The serial method
DO 6 I=1,21
DO 6 J=1,21 ¢

ke

DO 6 K=1,21
6 C(I,0)=C(I1,d) + A(L,K) * BlK,J)
takes 9261 mult%g}ibations. AnnAigol 68 prggfam equivalent to
the above 'parallel' algorithm is given iﬁ part 5.5. -~ .
4 Anng:l (33) suggested that DO TOGETHER and HOLD do

not utfi?ze the full parallel processing‘capabilities of

. $
machines like the IBM /360~-67. He introduces some new commands

into Algol 60. Their syntax is:

{label pair) 11={label) , {1a

{label list) ::1={label pair)'(la 1 list),{1label)

{variable list? t1=(variable),(variab e)l(variable list),
(variablg)

(fork statement ) t1= fork <£hbel pair)

{join statement ) 11= join (1;£el list)

{terminate statement)ii= tgrmfﬁate {label 1list)
{obtain statement) sngig%;éin (variable/list)|
{release statement) 1:1= release(variaggé lisf)

'‘terminate’ plays the same ro ‘fas an exiting condition\
in arepetitive procedure, ﬁoining}/giicesses together when they
are not in fact complete but sgpé condition makes their ending
desirable. 'obtain’' and 'relyése' are 'lock' and ‘'unlock' and
restrict or free accessiﬁp/{he variables in their lists to other
segments of thewpéégramf Somg of these statemenfs are used in

the program below to form a vector product: . g
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o
s1=0y
fork fir .last;i‘ . .

o * first: begin
811=04

) £3£_1:=1 step 1 until n/z/éé. %
) / slr=s1 + (a(i) **6(53); 2 | o
// 'goto next '

end

——

last: Dbegin

s21 =0

for jr=n/2 +/1 step 1 uptil n do

s21=52 + fa(j) * b(jf)t

‘ next: join first,last;
g1=81 + 523
An Algol 68 algorithm equivalent to this is given in

part 5.5. p

g -~

Parnas (37) said that Anderson's suggested additions to
Algold 69 to facilitate paraliel processing were not of enoughN
genérality or power. 1t was not sufflc}zﬁt to be able to
specify forking into two sequnces and/their'subsequent joining:
| What was needed were language additions that would allow
freedom from the concept of 'sequencing', in which it would be
p6581b1e to déscribe procedures which were ac%ivated, delayed,
altered or terminated as a qopsequencefbf cer%ain conditions,
rather tgan';y reaching certain points in a sequéﬁce of

o commands.,

Wirth (35) suggested that the first step should be to

.-
-~ *
[ty
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define the problems that needed to be solved. He states two
cases where parallel processing is done for different reasons:
1) a‘program:exists that can be executed sequentially; the
programmer indicates that part of it may be executed in
parallel; ~
2) a program is designed for a configuration and it is
required that different parts of it work in parallel by
different 'individuals' (i.e. components, unf%s. brocedures),
because the individuals possess abilities not possessed by
others and that these individuals must communicate, thréugh
common variables.

Speaking of Algol 60, Wirth points out that in some
implementations of it, parts of expressions can be evaluated
simultaneously (see part 1.2)‘and that only at the stafeﬁent
level are things necessarily defined to be serial, by the use
of 's'. Thus although statements are executed sexially. within
a stgtement an expression can be evaluated collaterally. It
would be desirhble .(he goes on) to have a not;tion f'or
indicating that statements snould be exeéuted 6ollaferally

i.e. in parallel with other.stagpmentsﬁm suggests the uséiaﬁi
‘and' instead of ';'. Here he anticipates Algol 68 where 'par’ )
ie gsed instead of 'and' (see parts 1.2 and 5).

His_versigz_of Anderson's vector multiplication, using
‘and', is giyen below.lt is almost identical to the Algol 68
progr;m for tée same calculation., See pa;t 5.5. He gives also

a general matrix multiplication algorithm using 'and's For it~

and its Q}gol 68 equivalent, see part 5.5.
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8li1=821=0; -
—~ - - begin “ .
. for it=1 step 1 until n + < do

s11=81 + a(i) * b(i)

and

for js=(n ¢ 2)+1 step 1 until n do

e

s21=s2 + a(j) * b(j)

- end;

s

-

St=81 + 82}
"Parallel execution of the tatements‘%epgrated by '&nd’ is
meant to be optiSnal. If only one processor is available the

" order of the execution is not prescribed". Thus the default,

Q
“ if there is only one processor, is that the 'and' becomes
A~ like the ',' in Algol 68, implying arbitrary collaterality,
..“( - R ‘\ ‘
. . If the order influences the result, the program could then

become -ambiguous: o
’ - xz=:; +y 529 Y=y + X
(he says) is just as uninformative as the Algol 60
Bt1= f_*‘g;
where

< real procedure f3 fi= x1= x + y3

on,

... Teal procedure g; gi= yi¥.y + xi

- This pééns that ig the dbsence of some kind of 'lock out’

< mechaqismuvfhe tws s;atements, if é;ecuted in parallel, both
-. try to update a variable at (possibly) the same time, with
unknown results. ILf péralléiism is introduced at the level of

N statements then the programmer must be aware of its posgsible

consequences,




Dennis and Véh Hporn suggested various language

Ve

Y

commands for paralle;_processingx

command

fork w

quit

join t,w

<

private x

meaning
initiate a new process at w;

a process which has completed a set of

procedure s%eﬁs is terminated by 'quit’',

. after which the process no longer existsi

't' is a count tb be decremented; 'w' 1is
the label of the instruction to be
éxecuteg when 't' becomes zeros

'x' exists only as long as the process’
declaring it exists (i.e.kit is 'local’).

At 'fork' the values of any quantities

declared 'private’ to the main process
are assigned as values‘gf corresponding
QMan@ities of the branch process;

a data object may be updated
asyﬁchronously by several_processes
thch afe perhaps members of different
computations. Updating a data structure
frequently requirgs a sequence of
operations such that intermediate states
of theg data are inconsistent and would
lead to erroneous computation if they
were interpreted by another precess,

'w' is a 'lock’' indicator that prevents
other sequences from updatiﬁg an item;
this allows another process to update.

the item again;

‘\u?

T
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ﬂ\program example of the use of the above commands
9 . is givgn in (34). vect?r product is formed using a machine
with n processors (cf Anderson's program for n=2):

bégin real array a(iin),b(1:n);

! boolean wi ;e

rehl s; integer ti

private integer 1i;

ti=ny

for ii=1 step 1 until n gé

fork e
~ Y R
N ¢
quitsy ~ .
‘l
[ ~ . 5
e: begin private.real x;

substance: x:=a(i) * b(i); \

0 . . lock wj R
. [« .

s1= 8 + X3

o
N " unlock W; . ¥
jdin t,ry
, quit
end; o
. rs ;estiof the program '
. - endy | h ’
e : 'fork e' assigns the values of 'i' {declared as 'pfivaté'
o in the main part), to the processes\hgggn'at 'e'. Each
process is a new version (incarnatihn;\ f the routine, with
each having its own 'pigxake x'; Aeccess 'g' is gained by
L locking out all othertrSutines while thé addition to~'s} is
o done. 't' is decremented at 'join t,r' and when 1t reaches

v

1
zero progress resumes at 'r'. 't' will be zero when 'i'

)'*)a
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reaches 'n', the limit of the loop. 'w' is a one bit iﬂdicator
accessible to all the processes which use the object 's' (see
part 5.3 for its likeness to an Algol 68 'sema'). 'w' must be
initially zero. 'lock w' tests 'w' and if it is 1 the process
idles, testing 'w' again until it is z;ro. 'w' is set to zero
by 'unlock w', When 'w' is zero on a lock command, the process '

gets 'w' to 1 and goeé on to the next statement.
8

An equavalent Algol 68 algorithm is given in part 5.5.
In serial programming the time taken for a vector

product of this form is n*m + n*a where m is the time for a
&

~multiplication and a is the time for an addition. In paralilel

processing, the total time spent in computation is not of

s

prime intqfest. but the. elapsed time is. If operations except
those surrounding the summing (i.e. except the locking ones)
are 1§nored. then the :time that elapses in a parallel program
like this one is the time spent by the processes which find

always that the 'w' is 1. Such a process must wait until the
Pan N
other n-i processes have accessed s'. The multlpli}ations

P

are all done cbncurrently. The longééi’fhat the—hth process

i

must wait for access to 's' is 2#%n*p where p is the time for

a 'lock' operation. The progress in 'substance' would be:

-

=1 i=2 i=3 : i=n

v

x:=a(1)tP(1)s x1=a(2)*b(2)s x:=a(3)*b(3): ... x1=a(n)*b(n);

N‘ lock wy lock wy lock w; , lock w{
s:=8 + X . lock w) Yock wi “Tlock wy
unlock wy lock w;;ﬁ‘ lock w; o lock wj

e 7 S1=8 + X1 lock wi - lock wy
oo unlock wi lock w; ' , ~ lock wy

.. * g1=s + Xy =~ lock w3

.o e unloek w; Jlock wi



[

. for the PL360 language, using ‘'start' and 'stop' (cf 'fork’

.52

- The elapsed time for n processors is then (m+a) + 2%n¥*p
while that for a serial program is n(m+a). Since a lock
operation would be fast in comparisén with a multiplication,
the parallel process is obviously faster. The 'overheads' of
parallél processing musﬁ‘ﬁe considered. They must be small
compared with the compu%ation time. The problem being done in
parallel (when it could be done serially.Aand they all can be),
must be large enough éé make the extra time involved
insignificant when the rflative costs in time of .parallel and
serial are considered, As Dennis and Horn note though, the ~
moti;atiqn for parallel processing is not just speed. Such
processing "relaxes the constraints on the order in which parts
of a computation may be carriéﬁ out", An "algorithm can then,
take advantage of this ex#ra';regdom to allocate resources
more efficiently"”.

Wirth (26) states that most current pfdgramming i
languages do not reflect the fact that most programs take
advantage of concurrently operating units within a computer
system, and sugg%sted thgt\thebreasons for this were that
concurrent execution is usdaily“ggg§}ned to input and ouﬁgut
operations and these are hidde% from the average programme;T

Also, 'multiprogramming' (even within a single program), is

a difficult art and current languages have only rudimentary

means for carrying it out. He proposed- a set of instructions

and 'quit'), and P and V operators on semaphores. He points

out that if semaphores are allowed 0 and 1 values only then '

P and V are equivalent to lock and unlock (see part 3.1). He

gives a simple exposition of the 'producer/consumer' problem.

d
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5. Parallel processing in Algol 64, ‘

o

5.1. Passive and active collaterality.

33

The earlier discussion on collaterality in Algol 68

N " \ o
centred on those occasions when the order of elaboration of

program entities did not matter to the execution of , the
program, All the proérammer had to do was to be sware of
the possibilities of 5Zide effects' and to avoid asking
for collaterality when the elaboration of one thing might
affect that of another. It was a 'passive', rather than
éﬁtive, kind of parallelism, handing over to the compiler

’ . e
the freedom to exploit the ability of a piece of program

to be momentarily independent of the next piece and, where

i,

'feasible. to marry this indépendence to the facilities

provided by the machine. It is possible, though, that anyk
compiler might ignofe the chance and, effectively, replace
the dbmmas with semi-colons, making serial all thosé parts
that the programmer left, intentiondIly or not, to be
parallel., Whatever happens, the effect of allowing the
elaboration to be collateral is a pbsgible speeding up of
the compiling process by allowing code f; be duplicated™ ™
ingtead of regernierated; of allowing oﬁé sequence of .
elaboration instead of another, with a saving in the amount
of code generafed; and, if the machine is so equippe@, ;n
allowing of the direction that certain code be executed in
a parallel fashion. There has been, though, no provision
for an active kind of parallelisg, no method whereby thé
programmer can control, at run time, the™parallel execution
.0 his program; no instructigﬁ/éé say 'at this p?%nt iﬁ my

ﬁrogram I want to set two or more tasks in action and allow
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them to run (in some way) cbncurrently; and to control them
while they run'. Facilities to do“this exiét in Algol 68
and “though restricted to the essentials in view of the e
none-too-advanced state of the art" (1) are sufficient for
some useful algorithms to be written.

The key to the increased complexity of active parallelism
over the passive kiffi lies in ‘the ability of para;lel clauses
to communicate with each other. When communication is possible
then it is no longer true that one part of a collateral or
parallel operation must not be allowed to affect another.
Now it is quite likely that one thing will affect another,
deliberately so. What is neghed,rand what becomes possible
if the processes can communicate, is synchronization. The
‘processes can be allowed, for example, to have cofimon access
to data. The@ifference is that their access will not be in
an order‘9n3nown to tpe programmer (and hence dangerous

because he does not know which will be done first). lnstead,

it becomes controlled by him. . N
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5.2. The parallel clause.

Algol‘Qp achieves parallel processing by combinirig the

parallel symb51 'par' with the collateral elaboraf;dh of a .Hy
' ,q?ni«_« E
b - 3 -

group of clauses to force the cre%}ion\gr asynchronous™~..-.
éctivities. nameljl‘%he concurrent execution of these clauses.
bontrol of the progress of these clauses is then'gchieved
%hréugh the use 9f semaphores (23) and operationé“on these
semaphores, as de;cribed below. |
In tﬂe syntax (1), the parallel élause is-defined‘hs:
strong collaterél‘voidﬁc;auééi !

parallel symbol SE%IBh. strong void unit list proper PACK.

whegeﬁ L '
PALK ‘ is the 'metanotion’ for '(* and ')* or
for 'ﬂégin' and ‘'‘end’'s
st proper means simply a 1ist (of the previous
|

member) separated by commas. The list is

——

strong void hnit(s) groups of\gﬁétements, single or inside

a ’pécg'. These follow (signified by the
comma in the production rule) an—eptional
‘par' symbol.

Thus a ‘'strong collateral void clause' could be

par{ clause , clause , +..)3

or simply -

( clause , olause , ...}

3 [ 3

In the second case, the élauees would be executed in .some
arbitrary collateral manner, beyond the csntggl of the

programmer, With the 'par' option it becomes meaningful to

introduce - ihto the clauses operations on semaphores which

wili control the synchronization of the execution of the

«~
2
~
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clauses, These operations will have no meaning outside a

'par’' clause. The word °'strong' in the'aboye syntax refers

to the position of the clause in the context and is

connected with coercion {see (1)).
Consider the parallel clause:

par(xi=a,yi=b,zt1=c)}s -

‘This would not achieve much. 1f the machine being used haﬁ

P

three processors then"it is conceivable that the three -

assignments would be done each on one processor and the

[N
elapsed time would be for one only. If the machine has one

. processor then the three actions would take place in some

interleaved fashion concurrently, which at best would be

equivalent\(in time) to three sequential actions,



‘an ldentifier to be of this mode

*ngse of the operands:-in the formula where the operator' is

] - S

t

5.3. Communication between processes.

For commuhicatioﬁeen parallel pfocesses Algol 68

has a mode 'sema’', defined in éhe standard prelude as

cun,,d

struct sema = (ref int‘f)a

or

1

modéxsema_ = gtruct(ref int f);

This is a single field structure, the fié}d being one that ST

@

possesses a value that is the name of an {hteger: Declaring

Pl
-~

gema hold;

.

declares 'hold' to be a structure having onql;iela. A single’
field structure is 1llegal except when it is a sema, A)modq
sema identifier will be called a 'semaphore’ .

Three operatibns aéé defined on semaphores: '/', '4°,

and '{'. The symbol '/°' appears as the division operator also

i,e. as a dyadic operator, for real, integer and complex

operands., No confusion resu;ts because Algol 68 executes the (
operator by choosing, from the various routines possessed by

the operator, the. one whose operands are of modes which match

bding used. Here the three operators appear as unary operators. )

't' is adso the dyadie operator for exponentlaylon. it is |
given the optional representation, as a unary operatar on a o
semaphore, of »up', and '|' is given that of ‘'down',

The routine possessed by '/' is:

op / = (int a) sema; {sema sy f of 'su=_int:i= a; s);

-~

This states that '/' will be applied to ah integer and q&ll
return a sema, The elaboration of the routine, with‘a call of °©

hold i= /13

’ . {/{



is as follows:

2 1) the '1' is transmitted égg,the identity declaration (int a=1)
. ) talges places . - ‘
2) a local//ema ig deéI::;d; -

3) In /;/of g1= 1nta=a an 1nteger value, equal to the value of

//fé//(in this case ;J, is created on the ‘heap’' (i.e. in a static

’ ,/4 sterage area ﬁGt the run-time gtack). 1t can be referred to

o

only via a 'pointer’', and so 1is assigned to the 'ref int f' of

- the structure 's'. Thus the sema 's' now contains a pointer to

a hidden integer of value 1;
4) the sema 's' is returned and is given to the sema ‘hold',

Now 'hold' possesses a-structure which points to an

e’

integer, and this integer can not be accessed, except through

'up' and 'down’', see below,
N ‘.

o
' '
f

114,'; and have the following effects:
| -

'up' and 'downf change the value of the hidden integer 'b

qgff holds If the int;ger is already zero, then __the
constituent of the ‘par' clause in which
« the 'down' occurs is'halted; 1f the integer
ié:not zero, it is reduceffi by one, but the
bé%ecution of the‘bbnstxtueqznof the 'ﬁér’
clause where the 'down' appears is not
“affected. The integers referred to by semas
(there will often be more than one in a.

program) thus cause a halt to their clauses

<

when they_attehpt to become negative., If a
sema is zero and it then has three ‘down'
. operations on it, it does not become -3.

—_ 1t stays at zero and each clause containing

[+ 3 - -




the 'down' halts. The sema then has three

processes awaiting its revival,

* The integé} is increased by one. If there

were parts of the 'pgr' clause that were
halted because a previous 'down' on this
sema had been done when the integer was
zero, then these parts dre started again
at the 'down' operation that halted them,
In each case, the 'down' is ;épeated. The
first 'down' will push the integer to zero
but will not halt the clause. The other

‘downs', if any, will,: in the absence of

an intervening ‘'up’, attempt‘to drive the

A

integer below zero again and cause a halt

t6 the clause they are in.

The operator 'down' is defined as follows:

~op‘ = (sema edsger}g does not return a value £

(ref int dijkstra = f of edsger;
do( if dijkstra 2 1 then

dijkstrai=dijkstra - 1;

goto p

else

£ note that this could bJ%written
v

in the extended language as

,do((dijkstra élldijkstra minus 1:p]|...

The 'else' branch is not coded,
but if the down occurred within
the constituent of a 'par' clause

\

that constituent's elaboration is
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" halted. The Report (1) does not
say how this is to be done. If
’the ‘down’' occurred elsewhere, °
fu;ther elaboration is undefined.
The error should have been caught

earlier because the rules say
that a 'down’, must bq within a
'par' clause. £

Ei) £ end of the 'if' g

.
'

p: skip);

o ——————

This states that if the integer is positive it is )
to be decrementéd{ otherwise a halt occurs. Its elaboration
on a call of

down hold;

iss
1) the identity declaration (sema edsger = hold) takes place.
Since previously 'hold’ ?ecame possessed of 's' (in '"hold=/1")
this means that the operatgr's routine is mew dealing with
's’; o .
2) a-new ;ointep. ‘ref int dijkstra' is set up locally and is
given the value 'f of edsger', that }s, it points to what 'f
<« of 8' points to, the 1hteger on the heap{
3) if the intgger is positive, decrement it and jump to label
'p', where 'skip’ means 'do nothing'i o
L) otherwise, stop the execution of the clause in which the
‘down' occurs. ‘ N
The opg;ator ‘up’ is defined as follows: '}
291 = (EEEE edsger)s(zgf 323 dijkstra = f g{ edsgé};
dijkstraz=.dijkstra + %;

T £ at this point the implementation
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the resumption of all parts of the
'par' clause that werg‘halted
because the name possessed by
'‘dijkstra' referred .to a value

o smaller than 1 £
) f

The elaboration of 'up' with the call

/
up Hold;

is:
1) the identity declaration (sema edsger = hold) takes place.
As with 'down', the routine will be dealing with 's’';,

2) a new pointer, ‘ref int dijkstra' is set up locally and is

given the value 'f of edsger';

3) the integer ultimately referred to is ‘incremented by 1y

4) execution of a clause or clauses may be resumed..
An example of the use of these operators is given in (5)s
one =/1, other =/0;

par(do( down one; read data; up other),

do( down other; use data; up one)); ~
—_— —m —

t/;)qis is a simple example of a solution to the 'mutual exclusion’
pr

obiem found in the 'producer/consumer' situation. Tracing its

execution can be done as' follows:

o




-

time one's integer{é value: O,
down one 0,
’ read‘data ’ e 0,
up other (now 1) "o,
/ down one halt,
halted  ~ N
can now retest 1,
dowri one 0,
_ read data g 0,
Eé other (now 1) 0,
down one ) hal?.
haltedQ\\\\
etc )

other's integer's values:s 0

down other halt

62

halted —
can now retest ) 1
down other o \\ 0
use'ﬁata X u , 0
up onij(now 1) : 0
down other - ~ halt
halﬁgd —

can riow retest 1
down other 0
use data N 0
etcv !

The first ‘down' on ‘'other' locks out the 'use data'.part

(from accessing the empty data area) while-tihe 'read' part

gets the data. The second 'down'

'read' part while the 'use' part

on 'one' locks out the ,

accesses the data.

one = /1
other = /0O
down a down ,
one other
critical up - . critical up
part other | - | part one
read data use data
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A better version of this program, using a double buffer

v

., i1s given in (38): . g
. sema full = /0, empty = /2 - ; )
v int ni=1, mi=13 2 .
£ some buffer is declared here £ -
éif(gg(down ;mpty; read into buffer(n);
ni= 3-n; up full), ‘n
gg(down fully use buffer(m): h
. ' ‘ mi= 3-mj up empty) ) : s N
It may he assumed to execute as follows: \
time ‘emﬁfy's integer's value:2, full's integﬁ%:O
£ . down empty - 1, down full halt
‘ read into buffer(1) halted
n: =2 halted -
/. _ t up ftlll (now 1) can new retest
o “ down empty 0, down full 0
read into buffer(2) use buffer(1)
n:=1 , Q ~ o mi=2
A up full ‘“1. up empty 1
ggyg_empty 0, down full - o
' read into buffer(1) use buffer(2) °
ni =2 m:=1 B
’ ete ) etc D
After the first 'down' on 'full', which locks out the
o ‘use'- part (so that 'reéd' can puB somethiag in the buffer),
h it appears that the semaphores do not affect the program;
. but further examination shows that they are necessary. If,
. - say, two processors were executing the instructions and the

one doing the reading got held up, then without the actions

on the semaphores, another ‘use’ migpt be attempted, which

v i



Hould access old data, beforé a new read was.done. This is

prevented, because the second 'down' on 'full;; will halt

° ) . T , .
the ‘'use' part, which will then wait for the 'up full' in

the 'read"part‘xo cause if to be resumed. Theg semaphore

5

’operayions not only synchronize the two pérts of the 'par’

clause, alternating between two parts of the buffer. but

they also provide an assurance against ii%égal entry into

-
*

the critical sections of ppe two .processes.

In languages that have provision for~multitésking,
there are various methods for telling whether a +task is W7
finisheq;(for exaniple, 'event' and °‘'wait' in PL/1, ’'cause"" 4?
and ‘wait’' 'in Burroughs Algdl). 'Event' and 'cause' signal
an 'sttachiné' (master) task that the ‘'attathed' task is .

dones 'wait' holds up the main task until this happens. In

Algol 68, operations on semaphores are intended asfmeaﬁ%bﬁ

“ VT

to control access to ¢ tlcal sectione of processes (' tasks ),
not as completion signzZlers. Thus it would seem possible
for an Algol 68 program to have one of its parts finished
before the other, with possible dlsastroég effects. 1n

Ei_r(gcg: i Eg 1000 ‘clo

1 (s1:= 82 +ai1] * vli]),

| | s2i= 82 + a[1001] * b[1001])

Sz sl + 824
it would seem that in any implementation (true parallelism
on two processors. 1nter1eavedaexecutlon. co routlnes). tﬁ; )
flrst 'leg’ w1ll finish far behlnd the Second There séems

)

nothlhg\fo prevent the statement fOllOWlng the 'par' clause

from belng executed as soon~as the second part of the 'par’

PN




e

’ -

T 3;' . 6b

t

this, holding up the completion of the second part until
the last addition in the 'do' loop was done:

sema stop = /1) . ,

par((down stopi
%gf i Eg 1000 92 ,
(sli= s1 + a[i] *.b[i])s
_ up stop), ‘
| (s21='82 + af1001) * b[1001]
down stop))s
s1= s1 + 82;

“This is, however, unnecessary. Tﬁe semantics/ (1) say that
before a 'par' clause is considered complete ali clauses™ .
iniit«ﬁﬁét be complete. Also, fhe‘interruption of a clause
within the 'par’' clause interrupts tﬁé;w%ole clause. Thus
a 'goto label' in a constituent clause, where 'label' was

outside the constituent, would interrupt the constituent

“z“~&ndﬁéo the whole clause. The.actions of 'up' and ‘down' do

not 'interrupt' the constituent clauses in which théy occur.
They may 'resume’ its execution or 'halt' it, but they do
not Yerminate it. A halted ;%ausespay be resumed ( it is
‘asleep' and may be 'awakened'), bunghat happens when an
‘interruption' occurs is not defined in the langg?ge. But
interrupting one part of a 'par' clause wil} interrugt all

Y s

the others and stop execution of the clause.
v }

/
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5.4, Methods of execution,

* ~The executioq of a 'par' clause depends on the setting

w4 by —

up of separate run-time stacks for each of the constituents
while allowing each constituent access to the 'global' stack
of the program, But how, gn the absence of more than one
processo;,‘the interleaving of-instructions takes place is
lett up to the imﬁlementpr and the properties of his hardware
and software. Some kind of,co-routine activity between the
constituents would gseem most likely: aj’call—detach-resume'
mechanism at the statement_level could give one-to-one iﬁter-
leaving‘of instructions, but would cause 4 high 'overhead',
With a gsingle procéssor. the execution orocesé may be like
that described in (17), in a discussion on the Burroughs
B5700/6700 series of computers, These machines would seem to
be well suited to Algol 68 implementation. Theié software is
written in Burroughs‘Algol. which contains many of the multi-
tasking facilities of PL/1 aﬁd has proviqun for semaphores
of the Algol 68 type. Organick (17) says that a program
designed to be run on a machine with multiprocessors, i.e. a
solution to a proﬁlem that is essentially‘of a parallel
nature, need not have more than one 5focessor assignedpto it.
A single processor can bé assigned to serve at several jsites
of activity'. First it will execute at one site, then at V

o ./.
another, achieving an apparent concurrency at a cost of a

slightly longer running time. A prosram that is designed for

mofe than one processor should regard these processors as
'virtual' or ‘'pseudo’. The virtual processor then .maps its

'‘site of activity'® on to the actual processor wheh it (the

Py

/
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area of the program in which the virtual processor ‘resides’')
receives'the services of the actual processor. The actual

processor is thought of‘ag being 'passed around among ‘the

_virtual processors’'.

et D '

a— e,



5.5 Algorithms,

The following algorithms all use parallel processing

- techniques, Wherek¥ﬁé%or145nhl was in Algol 68 (1 and 2),

explanations are provided and some minor changes in nomen-
o -

)

clature are made. Where the original algorithm was not.in

Algol 68, an Algol 68 version is providgd.

10,

-
The algorithms have not been executed on any machines,

Generate and prin;. Lindsey and van der Meulen, (2).
Cooperating sequential processes, Algol 68 Report, (1).
Matrix multiplication, Opler, (32).

Vector, product, Anderson, (29),

Vegtoj§product, Wirth,“(26).

(34).

Producer/consumer problem, Wirth, (26).'

Vector product, Dennis and Van Horn,

Matrix addition,
Matrix multiplication, Wirth, (35).
Simultaneous linear equations._

(39).

Evaluation of a polynomial, Murtha,

A

Aoy,

T

68
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5.5.1 Generate and print algorithm# Lindsey and van der Meulen.
o

An example of a parallel program is given in (2). An-
explanatory. version of it is given below. It is a variation on
the ‘pfo&&cer/consumer' problem. There are two parts to the 'par’
clause and theip execution depends on the availability of items
to print (they are generated by a procedure at random intervals)
and the aY?ilability of the printer, which takes a certain fixed
time tg ‘consume' an itém. Items are held in a\gggfer while
waiting‘fdr the printer to become available. The performan;é of-
the program can not be predicted without knowigg‘the rates of
production and consumption (the average time to generate an item.
and the time the printer takes to print an item) and the size of

+

the buffer.

(struct item =( £ a collection of values £ )

proc generate = item: £ a routine to generate items at

random intervals, Thelroutine

neéds no parameters and returns
an 'item', which is of the type
declared above. S
int num = £ a constant. £

—— -

[lxnum]'item buffer; £ an array of items. 'buffer' is

).

the array name. Its elements

are structures. £
int index:=0,,
h exdex: =03 £ a collateral~dec1aratidn of
two initialized counters. £

)

| bool workingi=true,

pfinfing;=trhe; £ a’ ' collateral declaration of

"y
| T

two initialized conditionals. g

E

hd

J/
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sema full,free; £ a collateral declaration of two

free 1= /num;

full 1=/0;

gemaphores.

-

.

£ 'free' now refers to a copy off

£ the integer '‘nun’.-There are

initially 'num' places empty in

the buffer. o

*

£

.
o

par(while working 22. £ while ‘working' has the value

-\'

'true', repeat the following: g

(down free; £ decrement the semaphore. If it

is already zero this part of

P
the ‘par’ clause halts. £

index modb num plus 1; £ Add 1 to a counter that goes

[ >

buffer [index] :=generate;

from 1 to the size of the ;

buffer. Then produce an item g

~

P

£ and put it in the buffer, £

if £ a condition 'no'more items' —~c

- PSERTT 1 L

has been.set (probably in the

procedure 'generate’) y
then working:=false £ itywiléwgguse this producer £
fig £ part to terminate. Increment g
up full)), £ the semaphore 'full’. If it &as

zero and had caused the
‘consumer' part to be halted

that part will start-up-.at

" 'down full'. £

while printing do £ This is the 'consumer' par%.
- . i}

o

Lf there are some items still

in the buffer, or if production

P ,




(3!

— — e
. . (down full, £
X : ]
exdex modb num plus 1
ﬁrint(buffer[exdex]);#
. printing:=working £
*
N
‘/\ " or indexgexdex; R -
TN up free £
) £
) £
)
P

is s8till going on , this part
attempts to start up. Then, £
if 'full’ is already zero, this
part halts. The ‘critical' néxt

part will not be entered. £

the next item in the buffer is

prinfed. The condition governing
. .

the repetition of the 'consumer'

part is that fprinting' has a A
value of ;true'. It is true- if
the condition for the ‘producer’
part is true (i.e.’working' is
'true', or if there are items g
left in the buffer.

1f the Tﬁ;shucé? part was haltedg

this will restart it at 'down free

The While' clause ends T g
The 'par' clause eﬁ&s- .- £
The program ends, t .
.

i
~ 1A




Flowchawt of algorithm 5.5.1.
57 . ’

( begin§ ) o ] (

1

. -declare
initjialize
. orking o .
ye no ’ yes —-—
l true? true?
down up up - down
free ' full | free ; - full
critical ' critical | .
section: ©d sectiom
increment I increment
~ index; . exdexs Y
put®item in . | print item
",gpffer; from buffer:
*fscj wof&in% - : set printing ‘\'V“L”ﬂ
condition ’ condition’
1,
The critical sections are: ‘

1) putting an item into the buffer’} and

2) taking an item from the buffer for printing.
Access to the printing routine must be blocked.(by 'down

full'), otherw1se a buffer place containing an old item (or no

item) might be accessed Putting an item into the: buffer must

be controlled (by 'down free'), otherwise a buffer place might

be overlaid beforé—Tts item is printed.

—y



5.5.2. Cooperating segquential processes algorithm, Algol 68

Report. - )
A parallel algorithm which uses a new construction ik .

given in (1). The program consists of a parallel clause whose
constituents are calls on a procedure, eéadh call supplying two

arguments to the procedure. One-argument is a procedure, the

other is-an integer. The higher level proceédure consists of a

pérallel clause also, which has as its constituents a call on

the procedure passed to it and a fecursive call on itself, with
the integer pgrameter reduced by one.wThése recursive calls end
when the integer parameter becomes zero. The rdsult of this
construction is g? create several incurnati%ns of the original
argument procedures. Their execution is then governed by various
semaphores embedded in them. The program is yet another variation
of the"producen/consumer' problem. A modified, (somefname;

have been changed), explanatory version of it folldﬁs. The
construction is a fruitful one, lending i@gelf to other problems
(see programs for vegtor product, matrix addition and ‘

multiplication, below). -

e
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begin , ' .

/
int slots,nproducers,nconsumers;

read ((slots,nproducers,nconsumers));
[lmproducers] file infile; [lmcongy_ners] file outfile;
for 1 to nproducers do open (infile [i].skip.inchannel[i] )3

for 1 to nconsumers do open (outfile[i].skip.outchannel[i])c

mode page = [l:60.lx132] chars
[l\x/slots] ref page magazine;
int exdex:i=1, index:=l;

gema fulli=/0, free:/slots, ini=/1, outi=/1,
proc paracall = (proc {int)p,int n):(n)olpg_z; gp(n),paracall (p,n=1)))s

«’prt'oc producer = (int i)ido (heap page leaf;
get (infile[i],leaf);

down free;

down ing )

magazine [index] 1=leaf; ¥

index modb slots plus 1l;
N\
up full;

_up in);
. proc consumer = (int i);do (page sheet;
' down full;

!
down out

} s{;eetz =magazine [exdex] '
exdex modb slogs plus 1;
’ Fgg free:
' ggﬁgutl
puf (outfilgi.ﬂ ,8heet));

par (paracall (proﬂucer y,nproducers),paracall(consumer, r}é’onsumers ))
t

AN .
t
U

end P

/

a )
a2
R O,
= = 3. 9] 4
. o
™
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 identifier ‘'leaf’'. Insteaqd, it is assigned to a 'ref page'

75

The final ‘'par' clause starts up the concurrent

versions of ‘paracall’', which’in turn initiate parallel versioné

of ‘'producer’' and ‘'consumer’.: Ty ﬁ

‘A 'page’ is anp array of characters. A 'magazine' is an
array of 'page' names, which will be accessed-using the '‘indices
‘exdex’' and '1ndex'; The semaphores °‘full’, '}ree'. ‘in' and
'out' will control access to the critical sections in the

procedures ‘producer' and ‘éonsumer’.

The procedure ‘paracall’ is recursive, It accepts a

procedure and an integer and generates n incarnations of the

procedure which it recelved, al* in parallel.

‘Producer' is a statement-type procedure, returning no
véﬁue. It is one of the two procédures of which 'paracall’' sets
up n versions ('consumer' is the other one). Its critical. .
gsection is” between ‘down in' and ‘'up full"'.

Each time a ‘producer' is created it declares a ‘'page’ )
on the 'heap' and gets data from the correct file to £ill this
'page’. The 'page' will not dlsappear when this version of

‘producer’' dies, It will not be accessible through the

variable, a member of ‘'magazine’', and will be accessible through
it. |

If 'free' and 'in' are not zero, the name of the 'page’ o
is put into the buffer ‘'magazine'. The semaphore 'in'_Prqvents ’
the k'th vers;on of;'producer' from accessing its critical
gsection if some other ‘producer' is in its critical section.
Otherwi;e a wrong néme of’au'page' would be put into the

current .‘magazine' slot. Then 1 is added to the remainder of

‘ 'index divided by the number of places in the buffer’.
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48 allowed access to its critical section by the 'up’

y forcing the creation of asypchronous activity (namely the

. 76

V ! '

The procedure then allows the next waiting'version of
‘consumer' access to its critlical section by an 'up' operation
on the semaphere 'full’,

The procedure ‘consumer' runs in parallel with other
editions of 'producer' and ‘'consumer'. Each edition declares
a local ‘page’, callad_'sheét', and if a 'producer' has now
finished accessing its critical section and has set the-
semaphore"full' by the operation 'up' (it may have been zero .

/

‘consumer’ is not accessing its critical section (between [

and this version of 'consumer' halted), and if some other

*down out® and 'up free') and thus has set the éemaphore ‘out’ -
to zero, then the current edition of 'consumer' gains access

to its critical section, It fills its local ‘'sheet’ wi%h the -
next :available 'page' (the name is obtained from the buffer
.Pagazine' andwdereferenced). The counter 'e*dex' is
incremented. Like 'index' it ranges'from 1 to a maximum of
‘slots', the size of the buffer,

Next, a 'producer’' is allowed access to its critical

section (where it will store into the buffer 'm
the operation 'up' on the semapﬁbre ‘free'; 'fiee' may have

been zero when a 'producer®' downed it, and another 'consumer:\\\\

operation on the semaphore ‘'out’, . /
After the critical section of the procedure 'qonsumer'
is left a 'page' is printed on the proper file,
Tﬁe main“statement of the program is the final parallel
cclause, which gguses the collateral elaboration of a group of

4 ¥
Célauees (the two calls of the recursive procedure 'paracall’), :

)

J ¢ - L | m.n a“‘ U‘
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concurrent execution of these clauses). Con?rol of the progress
of the clauses is then achieved through the use of semaphores. . .
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" 5.,5.3. Matrix multipljcation algorithm, Upler.

v oy ' p)

Opler (32) proposed an_algorithm (given in part 4.3)
for the multiplication of 218t order matrices using 'parallel’
Fortran, His construction was based on the assumption of a

5-processor machine., An Algol 68 algorithm with the same

assumption is'given %élow; The flrst 20 rows of the result

T

TR
s
) .

“

kg .

9

matrix are done using 5 inéarnations or the’ procedure ‘mult’,
uslng the 5 processors., l'he 21st TOW must -be done separately.

Thls makes the algorithm clumsy and a betf@r one for a general

matrix multlpllgatlon is glven in 5.5.9. L

S 3

/ (intlmx=20,nx=5| ’ "t
_— 1

A .

o2 —~—

[1:21,1121]real a,b,c1=0.u;

2 . proc mat=(proc{int,int) p.int est)x

[y

b

(e20|par(p(e,t),mat(p,;é-1, ' t=1)))

Hroc mult=(int-s,v): AR C
: N - Egg i‘from S‘EX 5 tg VQQQ.__ . Ni? -
1 St &
’ (for j to 21 do

(for k to 21 do

te[tsi]i= e[ta] + afik] . b{k,j]{));

‘read((a,b));

"mat(pult.n.m)x q

" for j to 21 do - p.é separate calculation £
(reat c21j:1=0,0; . - £ 18 needed.for the 2ist g
',EEF k to 21 ég S - ro%. - R

9(02133= E213 + af21.k] * b[k,J]); o
!
| c[21 3]:— célJ))

3

The cdla is used in the above- to éut dowr on the number

~

not be uséd in procedure 'mult' Because different editions of
J L

of references to a’subscripted vanlah;eJ_Ihia_ ni a

oo !
¢ ° L
" .
N N \ | Y



' 1]

)

'mult’ would try to_set the 'cxxj' to zero and destroy the

{
contents for another incarnation. This could- be avoided only

o
’
s

.

ﬂﬂ‘

f

i
o
’5'1
:

by using ‘'heap’ storgge.

[

The number of 'elapsed' mulitiplications for this

algqfithm is the same as that for Opler's, 1764 + (for the

last row) 441 = 2205.

Note that procedure 'mat' could be written: ‘
proc mat = (int e,t):1(e>0 pak(mult(e.t).matQmult.e-l;f—l)))l

{

v

and the call changed to:

mat(n,m); , i

’

The“advdniage of transmitting the procedure ‘mult' as a

para;Qteffig:that %: allows for a more general form of

construction. By this means -the second level procedure may
A ~ 4 B

invdke:&ifférent procedures if needed (see 5.5.2.3. The :

general construction will be Gsed here. _
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5.5.4, Vector product algorithm; Anderson.

o~ An Algol 68 program equivalent to Anderson’s (25)

: . J vector product, given in part 4.3, follows., « -
(int n; . .
read(n); . e
o int g1=04 . - - A S
T T - - é%i“?zgf“tt.t27‘”“*“"*“‘“ e o F T ; T
[1;n432§ a,b; ~ v

1

read((a,b))
“ par((real s1i1=0;

for 1 to n overb 2 do

(sls=s1 + afi] * b[i]);

t1t= heap reali=s1i),

—r——
- N |

. (real 821=0;

= » for j.from n overb 2 plus 1 to n do |

@ (s2i= 62 + a[j] * S[i])s - 0

t21= heap real:=s2));

‘s1= t1 + 12

’

print(s) ).

-\\\\\\\\\\\\Sii\f::¥ife;?eap' generates storage outside of any.range
‘ (i.e.'glo en to global pfgéram variables) but a 'heap'

fa— ~~ variable can be agcessed outside the range in which it is

~—

declared only via another identifier whigﬁ\Tﬁ“a—lreference to'
(i.e. a.name of) the mode of the variable declared on the s

heap. In the above, the 't‘ identifiers, which are ‘'ref int’
mode, i.e. the names of 'ints', are used. A1l this program

»

really needs though are thg normal !global' variables. The

L

7 use of the heap can be avoided (see the next algorithm). -

“
. .
. 7 N e
s - 4
. . - \ .
\ o




5. 5 5. Vector product algorithm, W1rth.

> Wirth's (26) version of & vector product (given in
. part 4,3) is simpler thah Anderson's. 1t rem&ues the sub-
4 ) totals to thé outslde of the.parallel portion. The same o

algorlthm “in Algol 66 is thus” similar to the previous one,

— = . without the”usa of heap storage-

- A

’ (int my \
read(n )u; S &
’i_r_l_‘g 81=0,811=0,821=0}%
[_1:n]_':&_13‘_l_: a,bs
i . read((a,d)) T
. par(for i to n oyerb 2 do

(s11=, sl + a[1] *\b—{—i—}—}

for J from n overb 2 plus 1 ton do

’\ - (s21= 82+ afj] * v[i] s

e .

‘ ne 81= 81 + 82} -
print(s)) \

8 . ~

~ L \

- }
[}
5
‘ -~ 1‘4;;%
JR— [

h
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5.5.6, Vector product zalgorithm, Dennis and Van Horn.

Dennis and, V¥dn nggggm!fork' program (34), éiven in

[ b T T,

part 4.3, has an Algol 68 equivalent, given below. Instead

e -y e .
of the 'lock' function,™-a semaphore is used. The ‘par’

clause is the equivalent of the forking process. Heap use

‘“'“”A*Ié‘TﬁTﬁ‘ﬁéEé§§ET$r1nmi—unwa&ﬂuni—rgfeifnunms~%xr4%hev%e%aarmH;L_—ﬁ—————

are locked out-by the 'down' and 'up' operations on the
semaphore., A local éub-totalv‘equivalent to the 'private
real x' in the original algorithm, is introduced and the .

grand total is-updated by each of the n incarnations of
— - .
'substance'. In each Kth version of 'substance' a local

[z

X, holds the product of two elements while the 'down'

operation locks out all references to ‘s’ until the kth - )

product has been safely added..
» M "
(int ng

read(n);
[11n] real a,by
real s1=0,0;

o————

- sema w=/1j

read((a,bt ¢

P .
—1 proc vector = (proc (123) p,‘igf k)s -
& a
(k>0|par(p(k),vector(p,k-1)));

proc substance = (int i):

[V, °

~ LY

(real x

‘ , -
N xXi1= a[i] * b[i]:
; .
ow ) “"down’ wi .-
J - 4 si=8+xy
. Bg_w); 3

vector(substance,n) ;

priggﬂs))




[

& * see 5.5.1°and -5.5.2,-This "
(ﬁ%%. example is merely to show th?u
he Yfaﬂﬁ“ ) ‘ nature of the 'par' clause when
| p .- used as a solution to this kind
"' of problem. , £
. par(while wo;ktébedqne do ” ' y -

a83

5.5.7. Producer/consumer algorithm, Wirth.

The simple producer/consumer program given by Wirth

(26) and shown in part 4.3 is given below as an Algol 68 a

program. it is a simplification of the kind of problen

-

hBhown earlier in the‘examples 5.5.1 and 5.5.2.

(int ny i e

g T e e e

- read(n);
([lan] real buffer; -

sema f=/0,e=/n;

ettt

——

bool worktobedone:= true,

3 "

v itenfstobeconsumedi= truei
proc produce = £ some procedure to produce items)
i \' f Pd "~
in this case, real numbers £

?

n

proc consune £ some procedure to consume itemsg

proc puta = £ me r9utine to put itemé‘}n the
“ , | buffer:. o e LA

proc geta = £ some routine to get items from
"o . . the buffer.

For:.examples of such procedures

in a producer/consumer program,.

N\ .
(produces down ey puta; up f),

-

(-4

e while itemstobeqii:umed:gg '

: )(down}fa geta; up " consume))))

N * . , -

=
a

o
\\\\.
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5.5.8, Matrix addition ajl_gorit\hm.

LT}:ere are twelve versio/ns of the routine for the
/gpérator '4' in the 'standard pi‘elude'. the coerrect one
being chosen according to the modes of the operands of

'+' when it is used in a formula. These twelve do noi

include a version for matrix addition but one 1s suggegted

in (2), ‘;for-ﬁse in o ,

Z1= X + Yy
- ” where x,y, and z are declared as real matrices. It ist

R~ N .. 0p + = (ref[la y1 ]real as - d

———

. ,, ref[lnl upb a,1:2 updb a]real b)

- ‘ ref'[ . ]reaJ.: > £ two matrix names are
o .

gubplied and the namé
of a/m‘étrix is yielded.
' | ] ‘ The two matrices& are of
- . any dimension but are
e - v 4 the same size. The one
- . . ' : ~ whose name is yielded
R y . —— 7 will be created on the
v ‘ . heaps=—— -
| X . . (ir_xf uml-_gp_lz a,n=2 E.EE ag -0
| , ' B » £ local variablee, made
_ -equal to the row and’

column size of a*

.

4

- héap[lsm,lm real s

—

£ the. array whose name

T is- yielded.

./\ - - for § to n do LA

g = g R R



— ’ 4 8s
£ [ ,j] means feor all
lower indices (see

T
— -

.below). Then the name
i

-\\““‘-\:“’5\““ — s o
)
) is returned. ln an _
’ , assignment zi=x + yj ° e
/il J ‘2' becomes ‘'s' and
- r— 7 d

further references to
3 ' '2" in the program a;§
references to 's'. g
8) , - e
Although this routine contains collaterality, it is

basipally a serial calculation. A ‘'parallel' algorithm

. : for the same operaton follows, (The '+ operator that
appears within the rputine is tpe standard é:;I;;:;Bne fbr
./\ ‘ , real operands). ,‘ &
(int m,n; A‘
read((m,n) ) o o
([1:m?1znl real a,b,c;
read{(a,b)); j!
S . proc addmat = (proc(int) p,int k) -
: (k>0|par(p(k),addmat(p,k-1))s \
gggé addup = (int j):
. ) ¢[.,j]:= a[ ,j] + b[ ,j]; I |
v addmat(addup,n); o
print((a,b.c)))) “ .
~ Note that | !
¢ -l ]
) " feans | | » .



-— ' ¥

o “ : " 86
: ) c[l.j]:: a[l.j1‘+ b[l.j] ~
- o o2e3]r=a[2,5] #+ [2.3] "
‘ etcq )
c[m j]s: a[m j] + b[m j] ?
Thus the routines given above have the eifect of adding

. e1éments“caiumn*byfﬁﬁiumﬁ““f“—m“right'tb’Iéft‘ frbm‘tﬁ***ﬂT“““

column to the first. The elapsed time is for m addltionsa

there are n of these done concurrently, instéad of serially,-
. - "~ where the time taken would be for m x n additions.
To do a matrix subtraction in"the same program it

?
would be necessary to include a procedure

i ) ' proc sub = (int j). c[ .j]:é a[ .j] - t{,j];
and a call @s °
addmat(sub.n)£;' 4
VN : . Since ‘'addmui' receives a procedure és,a parameter it

can invoke parallel editions of ’éddup' or 'sud’, '

d

A} ’
N e e e —
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5.5.9. Matrix multiplication algorithm, Wirth.

Wirth (35) gives an algorithm for matrix

| multiplication using Algol 60 with’an 'and' operation

to cause concurrent execution of routines. It is given

Y

here with an Algol 68 equivalent, ‘ -

integer -array a(l:m,1:m)}b(1:m.1xh);c(1ih.i}h7}‘

procedure product(i,j); value .i,js integer 1i,j;

begin integer ki-real s7=s1=01

for ki=1 step 1 until h do

- ' St1= 8 + b(i,k) * C(k'j)3

a(i,j)i=s

' end;

* procedure colﬁmn(i.j); value i,j: integer i, j;

‘pyoduct(i.j) agd if j>1 then column(i,j-1)1

T procedure row(i); value ii integer ij )

e - column{i,n) and if i)1 then row(i-1i);

row(m) ;
T L

In this aigorithm, for an (m x n) = {m x h)(h x n)

product, the, call 'row(m)' invokes

-~

El

" column{m,n),column(m-1,n),...,column(1,n)
and each- call on 'column’ invékes
product( ,n),product( ,n-1),....proguc§(.,1)
The result is m x n concurrent elaborations of '‘product’
each of which calculates one element of matrix *'a' by the
multiﬁlication . ’
b(i,k) * e(k,]) A ~

- . i
where k goes from 1 to g. If there are,m x n processing

»
. > ¢
elements available, then in each urfit would 'be done, :

/'y s @ ,’ . Lok
{j>concurrently. 'h' multiplications, 'h' additions and 'h'

S
g | ~
r
’ - iR

~

&



~

®aggignations, for an-elapsed time of

i

—~ R h(time for a multiplication + time for an add + time for

‘ s, . an assignation).
The foliowing Algol 68 algorithm performs the matrix

multiplication in the same elapsed time. “

w

- e {int m,n,h; S e
| * read({m,n, h)}:
;' _ ’ [1:m 1un] int a, [lzm 1:h] int b, [1:h 1zn] int cs
EEES prpduct = (int i, K o
(real 81=0,03 | -
‘e " for k to h do .
. _ (s1=8 + bfi, K] * c[k.‘j}); |
i . . aLi,j]a=s);
‘ _ proc column = (Eggf(iﬁf'iﬂf) p,int i,3)
A | B (70| par(p{i, j),cotumn(p,i,3-1)))1
{.. proc¢ row = (int 1): 4 ’

(i>0|gg;(column(§;oduct.i,n).RQW(i-l)))s
read((b,c))s
" row(m)
printka)) . e ;
The call on 'row' invokes'parallpl editions of 'column',
recur31vely. with 'm’ decreaslng to 1, and each call on

chumn invokes parallel editions of 'product’', also

T . .
1 recursively, with 'n' decreasing to t. The result is m x n
- ! concurrent executions of 'product', as in'Wirthfg algorithm,
- X
¥ R r——
’ ~~ - " ; a9,




, broc swapcol = £ no parameters £’

done in parallel because each iteration needs, as input to it,

¢ 89

5.5.10., Simultaneous.linear kquation algorithm,

Parallel operations are used below for the solution of .

n simultaneous linear equations by reduqtlon to a triangular
matrix and !'back’ substitution.iTMo parts of the algorithm use

N b
parallel operations: the concurrent reduction of rows by

_subtraction from their elemente of the pivot times the ;-

<3

corresponding minimum roy element, and the interchange of

two rows by concurrently interchanging all their elements, The , |

calculation Bf the roots, by procedure 'backsub', can not be

the root found in ‘the previous iteration.
begin int ny

' read(n);

‘ [1xn.1xn] int a, [1zn] int b, [1sn] real roots,

-%nt nn,min, t;

pro¢ reduce = (proc(int) z,int 5):

[

if £>0 then par{z(f),reduce(z,f-3§)) fi;

progc rowelements = (int w): begin int pivgtzza[w.nnl overb min;
: if w=t then for j to nn do°

if a[w,3j] # 0 then

. C 0 demioe sveals
- fi;

b{w] minte pivot * bft].
£i

S o

ends

begin int c:=b[nnjc b[nﬂ};= b[t]n b[t]ajtmgggs

proc swap = (proc(int) r,int*k): ‘ ‘

if k>0 then par(r(k) swap(r.k 1))£ir

e R a

s ” . . \




90

3

proc change = (int h): begin int q:= a[rm.h]r
a
. a[nn.h]x: a[t.h]; a[t.h]t= q

a o

. ) ‘ end; '
proc backsub = € no parameters £ 1

begin real sum; for i to n do

begin sumi= b[i]; .
for s to i-1 do begin B ) ;
sum minus a[i,s]* roots[s]

i
i
Lw" ~a

_ , end;
roots[i]x-: sum / a[i,i] (
end
end; 4
read((a,b));
nn:= n + 11 \J ‘ , .
~ while nn>2 do begin nn minus 1; )
\ bbs mim:: max intif ;w largest integer £ .

for i to nnido begin if a[i,nn]# 0 .
‘ “: and abs a[i,nn]( min

>

- : ’ '
; then begin min:i=a [i ' nn] }
1 . . v < ,
K > ” o R t‘ =}
&
) end
~ /
' l fi
. Y € endg
R

‘ reduce (rowelements,nn);
‘ . for i to nn do begin if i;é] t then
) : . . | if a[i,nn];é 0_then V
T - ’ ) ‘ "~ pegin swap(chahge,i)i
‘ s swapcoljgoto bby

%)



.
e m T

'n congurrent p&ﬁtions of ‘rowelements', has, in each

‘swapcols _ *

swap (chdnge,nn)

backsub;

print(roots)

' - N

. - o (
Considering arithmetic operations only, the algorithh, in
£

&

1) a divisioq: to find the 'pivot';

¢ 2) n subtractions-and n multiplications, to reduce the last’

B,

“element ih each row to zeromand ig the 'min' row to 1;

3) a subtraction and a multipkication, to ‘reduce the Ab' elements.
This gives a total of 2n + 3 arithmetic operations, The
operations 1 to 5 above are repeated n-1 times éﬁving a total of
\ ¢

, “ a .
N . . I (3 < X
n- 1’. q
»

4

. ) v :Ej f(k) where f(k)=ck + d
n - © ! !
1 > k=1 ‘ . ¢ N . 3{ i
- .

fwhich is of the order ofknz'bperatiqns. In additionnyhe

ivisions and

calculation of the roots, done serially, takes n
o , )

n2/2 subfractions and nz/? multiplications. The tot
arithmetic operations for a serial algorithm woyld Se ok th
order of n’ (the n concurreﬁ% eihborationé o% 'rowelements’ would

be serial, thus multiplying the number of operations b§ e This o
is to be expected, from the generalization that with n pro ors

.the time taken for an execution done in parallel should-~ be 1/n

"~

T e

the time that it takes when done‘seria_.lly. I _ .
- +

LY
o

- A ¥ ’
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g o L 5.5.11, kol¥noﬁ1al evaluation algorithm,’ Murtha.

—  ~~ a4
-

Murtha (39) considers fﬁa—6vaiﬁ£§ion of a
= polyndm}al of nth"&EQree: S s - ]

(X e +‘anxn —
N e

G -

: by evaluating - . ! 7

- ] . ‘ = +
. p(X) ao /a

2 . bi.“ = ai°+ Xbi""l "5',,

‘ for i = nn-1yn-2, ...,0, with b =a ~ and b, =p(x). ¥

This gives the nesting - ¥ = \ |
. ‘ P(x) = ...x(x(a (x) +a, ) +'a )+ el

i He points»out that thisc needs n mult1pi1cations and n
- additfone and 8ince each by needs to use.b; -1 the
K ~evaluation is strictly sequential. He then outlines a
° parallel algorithm that uses k processors to evaluate
k .

by =8y +Xby .y P

for i = O) eeey k"’l . First‘ b{’\is "calculated for i ; k.
1 ) [ _\:Q A - . -
«ssy N=k (also in parallel). <The terms from n-k+i to n *

are all

- bi hand ai R - -

\ and the finallpolynomial to be evaluated is - 5
‘ k-1 ~ .
) k-1% - . :
- An Algol 68 algorithm to do this, given k .
"“\\Frocessors and for large n () 3k), follows:~ - SO

)

- 3

pix) b0 + b{Z + s + b

"

o

“7 /\5 - . . LN

e, T

e

e
LF

A

~,




o

(1nt n,ki ’

read({m,k))1 ‘ \
(real sumc-u O.x xtok; . .

bool switch:=falsej .o . / \

Bhng real a,bj - :
read((x.a)); o s ’ . .
proc, poly = (proq(int int) P, 1nt u,z): . ¢

¥

£

_ (2>=0 ggf(p(u.z).poly(p.u.p—r7)i:'

proc calc = (int s,m): ' —

(int & ‘ .
« ti= 8 + my ' -
b[th= a[f] + xtok * b[k+t]); Do

xtok: ka; ' ) - ~‘I .
loopl: for i frqﬁ n-k+1 to n do b[i]x~ a[llg I - .

loopﬁu for v frém n—2*k+1 by -~k to 0 do

——

(poly(calc,v,k-1)3 v -
BWitCh!‘:(V#U/\(V-k)(?))} £ in case v does not
J reach zero. £

bzero: (switch}calc(o.O)); - £ if switch is on do
‘ T e
' ' final calc for b(0)g

N

loopit for w from O to k-1 do

(suii plus (btw] * x{w) )
print(sum))) ~-
Comment:
loop1 glves the highest k-1 b(i)ﬁg from n-k+1 to‘n.\
They are 31mp}y the correspondxng a(i)'s.
loopZ calculates b(i)-= a(i) + x b(1+k). bachoxteration

invokes ‘poly' which in turn sets up ‘calc'. This

- gives k concurrent executions of b(i) = a(i) + xkb(itk)
D e ‘ 2

O



for b(i) s in groups of k. ‘.g}
b(B) b(?) b(6) are_ done Ap loopl

9 - -

-

forn = 8,k'=3

Wy
* -

\
b?S) b(u) b()) are done in parallel, then

b(Z)'b(l) b(O) are done in parallei.. <

loepj calculates the polynom1a1

/

p(x%if.b(p) + b(1)x *oae 4 b(k- 1)x

form® 8, k =3 this 18

KEr

p(x)--vb(O) + b(1)x + b(2)x

? e

Similarly.‘for n = 100, k =25

loopil
loop?2

bzero

"1o0p3

»

gets b(i) for i =76, ..i, 100 (= a(i) for these 1)

gats b(i) ‘for 1‘:&254

1 in three iteratijons:

.flrst b(75) to b(5) in parallel » -

then b(50) to b(26) in parallel ]

then b(£5) to b(1)

in parallel.

ﬁhen calculates b(0) by calling calc(o 0).

then calculateS'

pix) =

P

b(U) + BI1)X + ... + bl2t)x®?

In this algorithm there are w/k inypcations of 'poly'»_

. and each results in parallel editiops of

‘calc', There is

is used. Each editiorivof 'calc’

AY

an extrag,'calc' if ‘'bzero’

results in 1 addition and 1 multiplication, giving a total
of n/k additions and n/k multiplications. The final summing

L
’

takes an additional k multiplications and k additions.



L
'qerial, iterative execution. Moreover, the essence of

- * 2 7

“ .

6. Conciusions. . _ .

qulaféral elaboration in Algbl 68 can lead, eveén
withqut multiprocessing facilities, to more efficient

object programs, by éiving the compiler wtiter more

freedom, and to more freéfflowing source programs by RN

allowing the programmer greater freedom’oﬁ'expression
in his statements. _ | , s
~ The parallel facilities inﬁphe'ianguage. are, as
stated in (1), "restricted io the essentials in view
of the nqne-t%o-ad?anced state qf the+art”, [t would
seem that ﬁ;thoqﬁ the developm&é& of more geﬁeral
purposefhrproceééor eLement.machinee, that parallelism
will be restglcted. 1ts usefulness will depend on the
ability of the programmer to construct simple algorithms.
T#Z temptation will be to make éhe constructions of the
r3 ufsive type, to generate as_many incgrqations of a
process as possible. But this will be expensive in
Qtorage apd, without n|processors, Q&ll be slower than
an élgorithm will be difficult to communicate when
sevefal processges -are recyrsively generat{pg Qarallel

vergsions and these have semaphores in them causing

halting and restarting, It is easy to introduce the use

_ of parallelism into the solution of many problems, but

even when parallelism is the ﬁatural way to express the
solution it is nevel really necessary to parallelize:

the solution.can al ays be arrived at serially and °

iteratively.

)
Parallel processing is not 'the wave of the future'
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but it is an_alega-mt way of exec\,ﬂ:ing golutions to - .
probleg@‘*ﬂ‘ho@ final results repfeégét ;F'converging
<;f several irﬁepemém—paths\ag «jalculation, When more
than one proceésog is available the e nce is then

éccompanied by a gain in efficiency as wéll.
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