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Abstract 

Collaterallty, and the facilities for paral'Uü 
~ 

processing in the algorl~hmic language Algol ce are 

cônsidered. 
\ , , 

The occurrences and effects of collaterality are 

examined in detail and the main features of the 
" 

language are discussed. 

The development of concurrent processin~ is then 

follawed, fram early hardware aspects uv ta the 

realization of parallel facilities"in hifh level 

lan~uages, leading ta a study of parallel operations 
, 

in Alf',ol 68. A-lgo:çithms using these operations are 

give~ corresponding ta those given by various 

authars in ather languages. 
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Cette thèse étudie les possibilités fournies par 

le langage algorithmique Algol 68 pour les process'us 

parallèles. Elle examine en détail 'les apparitions et 

les effets~du parallélisme, ainsi que les points 

principaux du langage. 
, 

Elle suit le dévelloppe~ent des processus 
-

parallèles, depuis les premiers aspects technologiques 

jusqu'à la réalisation d'opérations parallèles dans les 

langages de haut ~iveau. Ceci mène à l'étude des 

opérations parallèles en Algol 68. On donn~ des 

algorithmes qui utilisent ces opérations, e~qui 
,1 

correspondent à ceux qu'ont donnés divers auteurs1 dans 

d'autres langages. 

li " , 
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1. Algol 68. 

1.1. The language. ~ 
, 

Algol 68, a machine~independent progFamming language, 

_le rigorously defined'in the 'Report on the Algorithmic : 

Language ALGot 68' (1), and an authorized (by Working If 
Group 2.1 Algol of the International Federation for Inform-

1 

ation Processing), 'informaI' description of the language 
o 

is given i Lindsey and van der [i'le,ulen (2). A description 

of Algol n implemented 8,ub-Ianguage of' Algol 6e, 
1 

having almost the features of Algol 68 ~ but .hot the 
----~ 

parallel ones , lB giv,en in' (5). The' reader wi th some
c

" 
... -- .. 

farniliarl ty w l th Algol.60 is referred to (J), for a t}ick" 

introduction to the dlfferences between the two languages. 

Thls,thesis ia concerned withl 

1) th'e),ccurrence of collateraiity in the language, 
,. 

2) the use of the 'par' clause for parallel prograrnming; 

J} thè synchrbnization facilities, avail~ble through the 

use of' éèMapho,rea. 

These topics are dealt with only very briefly in (3). 
, 

Collaterality generally i8 treated a~ sorne length in (2), , 

ahd one example of an algorithm using the 'par' clause is, 

given there. One example of a 'par' algorithm ia also 

found in (1). These algorithms are considered in part 5. 

Sorne of the exa~gles of collaterali ty found in 

used in vario~ forms in part 1~2, fo11Owing. 
~ 

(2) are 

The Algol' 68 Report (1) dèfines a 'strict' language, 
, ' ,. 

an 'extended' language, and a '~epresentation' language • 

:.- The first ie a defini ~ion of the language in terms of i ta 
" "-syntax and semantica. The second allows several changes 

1 .. 



~2 

for ~ase 9f use, includin~ the use of comments, abbreviations, 
, 

and the rèplàcement of sorne constructions by' simpler ones. The 

repr;senta~io~-language ~is the ~xtended language as it appears 

in a particular medium. 
o 

1#> 

The programs (algorithms), or program segments, used 

here ~i'll be versions of the "particular program", as defined .. 
.... 

in the syntâ,xl 

progtaml open symbol,standard prelude,library prelude .. ~ 
option,particular prograrn,exit,library postlude 

option,standard postlude,close symbol. 

The programmers progr.,arn the'n. is always enclose'd in a set of 

'built-in' constructions. The 'preludes' conta'in built-in and 

user-defined modes, and procedures, and the 'postludes' finish' 

off the 'preludes'. The problem program is the 'particular 
l::Jt 

program'. Tt consists of a ~oid clo8~ clause 

begin •••••••••••••••• end 

or 

l ................•..•••• ) 

and is constructed in the 'block' fashion of an Algol 60 
. 

program, a~though (1) does not deflne program structure ln 
l 

terms of blocks but in terms of 'ranges', that lS. 'seriaI 
~ ~ 

clauses t within '(' and ')',which define the scope of 

values declared in them. 

Programs in this thesis will be occa8iQ~~11y incomplete 

in that a comment ,will be s~bstituted for a unit of c9de, 
, 

for examplel 

if ~ sorne cond1tion t then ~ sorne action ~ else 

~ sorne other acti'on ~ 

f1 . ,.~ 
~, f'" 

Input and output instructions will be sometimes omitted. 

~ . .. j 

< ./ 

'" 
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Sorne of the permi tted ., extens ion's 1 to tpe strict language 
, 

will be used here. T",y are given pelow. . . 
1) in declaring variables 

. 
mode identifiera will be used instead of the 

strict fom 

:.:! mode idjntifier = loc mode r " 

e.g. 

real XI instead of ref real X =,loc rea1, 

2) in declaring an~ initializing 

mode identifiera = valuea will be used instead of the 

strict fom 

ref mode ident1fier = loc mode 1= value, 
- -- ------
e. g. 

int il= 5, instead of ref int i = loc int 1=5; 

J) in declar~ng a 'pointer' 

ref mode identifier, 

--""-,-

wIll he used instead of the 

strict'fonn 

ref ref mode identifier = Ipc ref mode: 

e.g. 

ref real YI instead of 'j ref ref real Y = loc raS ireal 1 

4) in declaring and initializing a point~r 

~ef mode identifiera= valuêl will be used instead of the 
~ 

strict form 

ref ref mode identifier = loc ref mode s= va~ue, 

e.g. 

ref real. yi = X J instead of --
ref ref real Y = loc re! real 1= x, - -..:--

5) in declaring structure~ .< -., , 
.... 

struct atruct-name = lmode field-namel, mode field-name2, •• ll 

,Il 
{,""'I 
~ 1 

" , 
l' 



struct-name name-of-a-structl 
• 1;' 

name-of-a-structl=(some ,structure display), 
. 

instead of the strict form 
. "'-. (\ 

1 ~ " 
~ struct(mode fleld-namel, ••• ) name-of-a-strud~ -

,,~ ---_:J .' 
= loc structlmode field-namel •••• ):=(structure display)1 

-~ 

e.g. 

struct'record = (~ge, string name) , 

record studentl 

1 studentl=(17, 'sharon'); 

instead of 

ref struct(int age.str~ng name) 'student 

= loc struct{int, age, string name)I=(17, 's,haron' J, 

6) in declaring mUltiple values - ~ 

[boundS, •• •• ) mode ident5,.fien - . 
instead of the strict form 

, •.. J mode identifier = loc [bounds, , • J mode 1 

e. g. 

[h:k,IDln] real XI 

instead of 

ref [ ,]:.:..:: x = l,oc [hlk,m"n] real; 

7) in declarine procedures 

iroc procedure-name = {mode parameter~iet)mode: routiner 

instead of the strict form ( 

proctmode) mode procedur7e = ( (mode parame ter list) -
mode: routine) r 

.. 
/ 

;\ 

=;" freal a) real: lIa; 
~ 

;' 

re'al recip = « l'eal a) reall lia) 1 -. ---
~, .,-, if .... y 

.)11. • ..,. • 
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ti) in declaring names of p ocedures 

mod~ procedure-name c proc (mode parameter list) model ___ • ____ l 

procedure-name name-of-a-procedurel 

instead of the strict form 

ref proc (mode parameter list) mode name-of-a-procedure 

= loc proc,~mode parameter list) modè; 

e.g. 

mode sproc = proc (real) reall 
" 

sproc aproc 1 

instead of 

ref proc (real) real aproc = loc proc (real) reall 

9)in declaring operators 

op op-name = (mode parameter 'list) mode 1 routine; 

instead of the strict form 

op (mode parameter l~st) mode op-name 

= (mode parameter list) moder routine; 

e.g. 

op 

instead 

(real a,b) reall(a * b)/(a + 0», 

1 
/ 

5 

op real vim = (real a,b) reall(a * b)/(a + b»; 

10) in repet\tive statements 

for sornd,integer value 

from sorne start value 

by sorne increment 

to sorne limit 

-4-. 

while sorne condition i3 true 

do sorne process 

May be abbreviated byl 

a) omitting 'from •• ' when the value is assumed to be 11 

1 
l 



il 
-~ .... _---

b) omi tt ing 'by ••• ' w1ien the increment·, is ass umed to be 1, 
4 

c) omitting 'to S9me limit' when the number of iterations 16 ", 
d) omitting 'while ••• ' when no such governing clause exists. 

,}' 

11) the conditional élause 
. 

if sorne-condition then true-action'else_ false-action fi 

will be,abbrev~ated to 

(sorne-condition \tr~e-action \ false-action) , ... 
12) 'go to ~abelq wili be abbreviated to 'label'. 

1). comments,will (fi·PP", sur.rounded by li ... p. 

Coercion. ~~he forcing of th~ dellvery of the rlght kind . , /' 
of value: plays a l~rge pàrt in Algol 68. Unlike other la1guages 

,whe re i t .Je h ldd'en in the semant le s, . e. g. in Fortran, ) 

x = i, , 

give~ a mode change across the equal sign, in Algol 6U 

coercd.'ons, are spellep out in the syntax. ln algori thms- glven here. 
~ 

aIl coercions are assumed to he automatic (l.e. the required 
" 

value 19 assumed to be unambiguous). 
. , 

Sorne Algol 68 operators, ubed here h~ve ho 'Algol 6ü 

co~nter~r~s. They arel 

minus where a minus l' means al=a~ll 

plus where a plus, 1 means al =a+ll' 

times _ where a times b ·means al =a*bl . 

.,overb wher:e 
\ 

a overb b-means al=a;,bl \ for lntegers ) 

\~ere ~ div b means al =a/b; 
. -- , -, 

modb b lneans al=a mod b· .. 

1 

) 
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- . -?:' 7. 
'1 .2. Collateral i ty. - .<' 

. . 
In Alg"ol 6~ 'collateral! phrases and- cla.uses are-:-those '. 

» ~. 

who~e cOrlsti tuents may" be elabora ted, ,( ?,arried .out) in .. 
• order that may~not ber the sarne as the order in which they . 

are wrl tten down. l~ the clause 
, ,,# ~ 

~
" 

r. C r 

... ~I, 

(a. =3, b, ~,c ,"=5) . . . 
i t ls i~~lied 'ha t" the order in which the, thr"èe- as~igna(ions 

< .. 

are done 'will make no difference"to.the results of" the program. 

• Collateral ,~sti tuents a,re ~ep!rated by <~ommas J serial 

constituents, where the order of 'elaboration ls important, ' 
" 

~ 

are separated by semi-colons. A ~emi''''c{)lon means 'go on', in 

the sense of 'do this first and then go on to do what cornes 

next' • . ' .. 

Given a collater~l cLause 

(nl ,n2,nJ, ••• ) 
'\ 

the order of execution of its constituents is not defin~d in 

~he language rules. Collaterality is defined (l) in terme ~f 

'actions', and these are described as being 'inseparable', 
( '-

'seriaI' or 'collateral'. "A seriaI action consists of actions 

which take place one after the other~. "A collateral action 
ù6! 

consists of actions merged in 'timel i.e. it consists of 
" 

inseparable actions each of ~hich is chosen in a way which i~ 

left undefined in this ,Report, from ~mong the first of the 
, 

inseparable actioh9 which, at that moment, acco~ding to thls 

. -~ 

Report, would be the continuation of any of the cons_ti tutinJ--~-'~ 
~ ___ ------ -- CI • 

actions M. (1). 

elaborated, 

t-c-__ ~::r-7'f?iTi'1r1~rE"'r C l a us e 0 r ph ras e May be f 

,,­
l' l' i they appear in when they are writt~ down. 

------- v ;l-I This means tha1; 'they 9,re treàteO as seria,l, and the 'Comma 



1 \, 

• 

« . -

'" 
8 

is read as a serni-colonr 

2) in som~ other arder decided at compile time by the compilerr 

· 3) simultaneousLy~ _because n proceSBors are ayailable. The 

. , ' . 

, 
availability of m'ore than one processor ia d~~cuBsed fully in 

~I ' 

parts 2 to 5. 

If 1 abo~e iB true and collaterality 16 not specifically 

requested, it can still occur, in, for example, the compiling 
, 

-
of arithmeti~ expressions (7). For example-, the expression' 

~-. r 
a + b + C + d + e + f + g + h 

can become, in 'he compilation process, ,an intermediate 

expression oC 

«««a + b) + c) + d) .- + e) + f) + g) ,+' 'h 

which givès a tree which needs seven serial additions 

a b c d e f g h 

But if the expression ls translated to 

( (a + b) + (c + d)·) + « e + f) + (g + h)) 

this gives,a tree which needs only three ~lapsed' additions 1 

.. 

------------------------------~------~--~,,--------------------~ 
/ 
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The firet four additions are done in parallel, then two, 

then the last one is done. Similar constructions for the 
~ ..... -

generation of parallel expressions are,fgtven in (8). This 

is 'expression parallel', collaterality of a kind of which 

the programmer may be unaware. The compiler can examine a 

piece of code and evaluate it to take advantage of multi­

processing capabilities, even if these capabilities are 

restricted (to 'expression parallel' operations), and even 

if the program being evaluated ls a 'seriaI' one. 

, Without n-processor capabilities, the compiler may take 

advantage of explicit collateral clauses by choosing the 

9 

order 'of executio'n which yields the minimum number of final. ..... 

com})iled l.nstructl.ons.,· 
, 

The main implication for-the programmer in using the 

collateral form is that the execution of one part of the 

clause must not be allowed to influence the execution of 

another partI the other part might be executed first. . -

CollateralitY'occurs throughout Algol 6e (and occurs 

also, in declarations and expressions, in other high leve! 

languages). In Many cases c911ateral elaboration offers no 
, 1. , 

substantial advantagé' over seriaI elaboration. At the wors~ 

it is easier fo~ the programmer to write in the collateral 
1 

forme At best, collateral directives instruct the compl.ler 

that certal.n things May bé done at/the same time, and time 
i . 

is saved. In between,thes6 two extremes, collaterality 

offers opportunities,for varying degrees of efficiency 

improvement. It also of~~r9 a number of traps for the 

programmer. ,"'-

,'j.. 
'-.. 

, . 
..r 

./ 
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In Algol 6e collaterality iB uBed in declarations, 

assignations, identities, displays (of structures and 

multiples), operator exeéutlon, expressiGns and formulas, 

p~ocedure calls, and identity relations. ln sorne cases its 

use is 'built-in' and the programmer can neither ask for it 

nor refuse it. In other cases, he states when he wants it. 

Declarations. 

10 

As in MOSt high level languages, variables m~y be 

declared collaterally, th~t is, many in one 'type' statement. 

Fortran, PL/l and Algol 6u aIl have declarations of this 

kindl 

real x,y,zl or (x,y,z) _floatl 

This does not represent a great departure from equivalent 

seriaI declarationss 

real XI real YI real ZI 

The parsing phase of the compiler recognizes ',' to be a 

continuation introqucing a repetition of the previous 

pr~mit1ve type. In the syritax of Algol 6~ this 1S: . 

collateral declarationl unitary declaration llst proper. 
i 

'List proper' is simply a list (in this case of declarations) 

separated by commas. Collateral declarations allow the 

programmer to specify a number of identifiers in one phrase. 

From the 'strict' and 'extended' language point of view, when 

writing 

real x,y,zr 

the programmer i9 writinga 

rèal x,real y, real Zl 
---~ - -

which is an (extended language) abbreviation forl 

--------------------------_/ 



~ 
-. 

ref real x = loc rea1., ------ ~ "-

ref real y = loc real, 

ref real z = loc real, 

Initializing may be done collaterally aIso, as in 

real xl=1.2,YI=1.J,ZI=1.4c 

If constants are b~ing declared, they too may be elaborated 

collaterally. For examplel 

real p c 4.4,q = 5.51 

Collateral declarations may be mixed, up to a point. Thus 

~ p = 4.4, real ZI= J.)I 

is legitimate but it i6 not correct to write 

real p = 4.4, zl=J:)e 

" This would be trying to sai that 'real' is both the mode of 

'p' and the mode of 'Z', But the mode of 'z' is actually 

'ref real'e 'real z' Is an extend~d language convenience, 

The same word 'real' can not here play the two parts, one 

the actual mode of 'p', and the other an abbreviation fe, 

the actual mode of 'z'. 

Assignations. 

AlI assignation~ are elaborated collaterally. That ia, 

the order in which the left hand side and the right hand 
o 

side are obtained ,is not specified. In simple assignations 

such as, 

XI=98.4, 

it do~s not matter whether the 'x' is 'obtained' firat, or 
• the value. But thè sides are not always as simple as these. 

11 

If the assignation involves subscripts, for ex~mple, problems 

c~n occur. Considera 

xl (il=i+1)]I= XG«i+l)] 1 

, 1 

-..; 



... 

• • 

12 

Note that becau~e 
integer, anythJng 

a subscript must eventually reduce to an 

that yields an integer can be used. But an 

assign~tion such as 'it=i + 11' does not yield anything, it 

is 'void ',a To make it yield a value it must be turned into 

a closed clause. The occurrence of a closed clause as a 

subscript will cause a coercion, in the above case to an 

integer. 

With the above assignation the sides may be got in any 

arder, which means that the subscripts May be obtained in any 

arder. The compiler May have a rule that says 'if the same 

things appear on either side of the assignation operator, do 

one and assume the' other is the same-", which will have the 

effect of, 

}(,I = i + 1; 

Xl[k)'= x2[k]. 

... 

But if the two sides are elaborateù truly collaterally, then 
',' 

the following could result (~ssume 'i' ls initially zero), 

left side right side 

get i (into i') 

add 1 to i' 

ge t i in toi' , 

add 1 to i" 

store 1.' in i . 

store i" into ~ 

This gives both sub~crlpts as '1' and Xl[l]and X~[l]are 

oota1ned ~again, callaterally). Bu~ another possibility iSI 

left side right side .... 
get 1 lnto i' 

âdd 1 to i' 
• 

1 



1 

,i 

., 

-e 

store ~ 1 in i 

get i (now l) into i" 

add 1 to ~ l , 

store i" in i 

. 1.3 

This gives Xl[~jS= X2[~]1 or, 1f the 1eft side iB evaluated 

as soon as its subscript iB availab1e, Xl[l]'= X2[2], 

If the order of elaboration of the subsqripts were to be 

reversed, the resuy' could be xl L 2 JI::: x2 [1] 1 or xl [1} =x2 [1] f 

If 'i' could be ~cessed (and stored) simultaneously by two 

fetches (and stores), in a 2-processor machine, and the 

, additions done truly in parallel, the result would be 

~l[lJ:~ i2(1]'. An example' similar to this ls gi~en in (~). 
The ambiguity can be avoided'by evaluating thé SUb~ 

Bcripts beforehand, or simply by knowing the order of 
, i, 

elaboration. Probably, one aide would be evaluated and the 

"'-'- ~er would be àssumed ta give the same result but the 

~anguage rules do not specify it. They leave open, the 
~ , 

'possibilities outlined above. 

, When two phrases are to be elaborated collaterally, 
" 

liAs long,as the elaboration of A has no effect on the 

elaboràtion of ~ and vice versa then the manner [of this 

elabfrationJ ••• has no effect on the result lt
• (2). But if 

the 'elaboration of one has what May be called.a 'side effect' 

on the other, difficulties will result. For example& 

(int n, . 
real x,YI 

read(n) 1 

etc) 

• r 

- \' 
, .;.,t 

o 

.: 

~----------------------~----------------------------~~w~----------~ 
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ia correct but 

(lnt n, 
" . , ' 

read( n) J 

1 
etc) 

la not correct becauae 'n' May not be known when 'read' is 
1 .... 

done. 
D 

The kind of 'side effect' referred to above is when the , 

effect ie unexpected and altera sornething and the programmer 

ia unaware of it. 'Normal' side effects ,are common. Knuth (9) 

, defines a side effect to be t'a change invoked by a function 

designator in the state of some quantities which are town' 

variables[global variables decla~~d locally, not accessible 

outeide of their defining procedure but still existing when .. 
the procedure is re-enteredJor which are not local to the 

function designator". ('Own t variables are not used in Algol 

68, but the idea is available through the use ,of the 'heap'). 

Knuth goes on to say "when a procedure is being ca lIed in the 

midst of sorne expression it has side effects 'if in addition 
- ~ 

to computing a value it does input or output or changes the 

value o~ sorne variable that is not internaI to the procedure. 

For exampte 

integer ar 

integer procedure f(x,y) r 

• • • • • • • al= x + lr" 

Wegner (6) gives a more general discussion~ He defines 

a -side effect as something that modif.f·es the environment. For . 
exampIe, the result of an arithmetic operation iB to produce 

a value that ~s to be used as an argument by subsequent 

operators. An operator ie applied to its operands and the 

to. 
/ 
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resul: t replaces the ~aluel ;at the top' of-- the operand stack. But 

the effect of ~n assignment statement le to remov~ bovn of lte 

arguments (its left side and its right siae) from the operand 
- ---. ---------

" atack without replacing them with a va~ue (in Algol 68 te~s 
. , 

-the result is of no mode, it is void). lts 'side' effect is to 

'modify the environment'" to record a new value in the left 

- hand sjde. Expressions whose principal effect is to modify the 

environment are called statements. ~e values produced in the 

absence of side affects are temporary quanti~ies, while·side 

effects'may be thought of as a method of recording the result 

of a sequence of transformations in the permanent envlronment, 

thereby making lt unnecessary to carry the informat1ôn in the 

temporary environment. A statement-type procedure (usually 
• Q 

, 
called'a 'procedure') has a null value and affects things by 

4J. • ) 

.the side effects it produces during its execution. Function~ 
1} ,J 

type procedures ('functions') are like expressions, they yield 

a value. But the y May also have side effects. A side effect of 

a function ls to set values of par~~eters, or to change the 

value of a global variable, or to jump to a label in an 

enclosing block, or to invoke procedures th~t May have side 

effècts. l " 

Displays. 

ln Algol 6ts a ' literaI' or the appearance ,of a" number 

which stands for itself, a 'constant', is called a 

• denotation' , 
" 

, -

"\ 

5 is a denotatiôn of mode int (an integer cons~tant) 

5.0 is a denotation of mode real ta real constant) 

't 5" is a denotation of mode char (a literaI) 

,l' 
.-

,. 
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"five" 'ls not a denotation.of mode char but a multiple 

value of mode '9tr~g'. lt i9 referred to as a 
, 
" ( 

--------
'string denotation',' even though 'B"tring' is 

not a basic mode but a 'built-in' defined ~~pe 

mode string =.1 lle 0 flex] char 

true is a denotation of mode bool. 

There i8 no provision for a 'structure denotation'. i.e. 

a 'structure 'constant'. There is, however, a structure 

'display', which provides the means for ass igning values to all 

the fields of a structure at once, in the same way that a 
• 

single integer denotation can be assigned to an integer variable. 

The analogy, for structures, to 

int n, 

nl=5, 

iSI 

mode r ... c = struct{int i,j,kJ, 

rec n, 

where 'l5.5,5)· is a structure display. ln such displays, the 

fields are elaborated collaterally, they are separated, by 
~ , 

commas. This means that the sarne consideration must be given 

to their elaboration as would be g~ven to any other collateral 
,d 

expression. For example 

nl=la+b+c,a-b-c,a+b-cJ, 
-• where 'n' is of mode rec, is aiso a structure display and its 

fields are to be elaborated collaterally. 'l'he analogy with 

integer constants breaks down here, because with 'a', "b', and 

'e' as integer variables, ~a+b+c' is not a constant. Thus a 

.,' 
" ... i ~ 

q 
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display· is more than a denotati.on, which is -8. constaot. The 

important thing here ls that the constituents are elaboratéd 

co~aterally. There ia no provision for 

"nt =(a+b+c;a-b-c ,a+b-c), 

A similar situation exists for multiple values. ln 

contrast with Fortran and PL/l, but ln harmony with the above 

methods for structures, elements of muI tiples, may, in Algol 

68, be multiply as~igned to, not only with constants, but with 
""'----. ' 

expressions. Thu8 multiple displays are, as structure displays 

are, more powerfu1 than denotations. For examplel 
.. 

• [ 1 1 J] real xl, 
" 

xll=(1.2,2.3,J.4~r 

'xl' is a real multiple, a 'row of real', and tt- is mul tiply 

assigned its elements, with rea1 denotations. The point to be 

noted for multiple disp';ays ls the same as that for structures. 

the element assignations are elaborated co1laterally. 

xl.=(a+ 1.2, sqrt{z) - h, reciprocal(3.14»t 
Q 

is a multiple display whose element expressions (w~ich are aIl 

'unitary clauses yieiding values of mode real') are assigned 

'aIl at once', instead of by 

Xl[l)r= a + 1.21 

x1 [2J 1 = sqrt( z') - hr \, 

Xl[J]I= reciprocal(J.14) , 

and are e1aborated in an order 1eft undefined by 
~ 

the language. 

The particu1ar implementation of the language will define the 

order of evaluation. The same considerations apply to multiples, 

of higher value of dimension, for example: 

mode mar = [112,lrJ]real, 

rnar xx r 

1 
\J 



'. 

" 

.' J 
! 

, 
XX 1 = ( ( 1. 1 , 2 • 2 , ) • :3 ) , ( 0 • 9 , 0 • 8 , 0 • 7 ) ) ; 

,. 

The two clauses (1.1,2.2,).) and (O.9,O.8,O~7) are both 

elaborated collaterally, with respect to their elements and 

to each other. 

Opera tors. 

The collateral~ty i~olved in the elaborat~on of 

operands in a formula in Algol 68 can become critical when 

the defining of new operators is done, but basically i~ is 

the kind of thing which occurs in PL(l, where, although a 
~ 

hierarchy of operators exists, when parenthesized expressions 

result, for e~ample 
'1 

( a + b) < (c & d) r~ _ 

the elaboration has no r~~ed order. The r~ do not specify 

which'of the parenthesized expressions will be evaluated 

first (lU). ln Alg_ol J>tj each operator, monadc..ic or dyadic, has 

a priority (10 for all unaries, 1 to 9 for dyad1cs), and 

18 

possesses a routine. Use of the operator invokes this routine. 

The operands on, either side of a dyadic operator are evaluated 
, 

collaterally if they are declared èollaterally in the routine 

which the operator" possesses. For examp~ 1 

priori ty di = 7; 
~--~, -
~ 

op di = 
di 

xl, X~, 

r.eal 

lxl + x~)1 

(xl * x2) 

~real xl,x2) reall (Xl + x2)/(Xl * X2)1 
-"--

ls 'the operator and is of priority 7, ~he sarne 
t 

priority as the built-in operators '*' and 'j', 

are the -formal parameters, dec.lared collaterally, 

specifies that a real value i6 to be,yie!ded, 

is the clause defining the action in IF 

the routine possessed by the operator. 

" 
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If the operator is used on the right hand side of an 

assignations 

yJ 1= (a + b) di (a - b), 
/ 

then there are a number of levels of collaterality present. 

First, the left and right sides will be obtained collaterallYI 
1 . . 

there is no prescribed order for doing this. Then the ~a + b) 
r_ 

and the (a - b) are coerced ~o reals, in any order. When the 
t ' 

right side is reduced to 

el di e2 

the invocation of 'di' causes the collate~al elaboratlon of 

two identity declarationsi 
- ".r 

(real x1 = el, r~al x2 = e2) 

to take ~lace in the routine possessed by 'di'. Then the rest 
r-

of the routine is elaborated-using th.e,.'(Talues now in 'xl' and 
. . 

'x2' and the result of the expression (a reaL valueJ is 

assigned tb 'y'j'. The routine for' 'di' ls carried out using .-
the standard operat·ors '+', t/' .and '*', their priorities 

, 
being 6,7 and 7 respectiv~ly. 

Pararneters in operator routines rnay be elaborated 

serially if the commas in their definition are replaced by 

semi-colons. This ls 111ustrated next, for procedures, where 

the sarne facility applies. 

Procedure calls. 

If there exists'a procedure, for exarnple. 

proc f = (real Zl,z2,zJ) reall t sorne routine tl 

then the routine possessed by '~' accepts three 'reals' and 

delivers a 'real', Since the parameters are declared 

collaterally, the calI. 



----,. 

1': 
l 

, , 

\ 

za= f(wl,w2,w))1 

causes collateral elaboration of the left and rieht sides of 
'J 

the as~ignation, collateral elaboration of the three para­

meters, and ela)oration of the routiner 'l'hat 1s, the three 

collateral identity declaraticns 

(~ zl == wl,real z2 == w2, real z) = w)) 

20 

take place. However, as with parameters in operator routines, ~ 

the program~er has a choice. The identity declarations may 
1 

be done serially, bf re~~acing the commas ~ith semi-colons 

in the 'procedure definitiona 
, 

proc f = (real zll real z2, real zJ)reallt etc tl 

The difference between a comma and a semi-colon can 

be very important. In 

proc p = (ref [llm] real u,ref[lln] real v) reall 

"t s orne routine t 1 

the routine 'p' expects'the names of two multiples to be 

supplied. This is a 'calI by reference'l the routine will use 

the names to~acce8s the original multiple values to which 

the names refer. The arrays can thus be assigned to within 

the routine because the identity declaration that takes 

place on the invocation of the procedure is of the forma 

ref [lamJ~ u = the name of a multiple 

as distinct from 

[llm]real s = the name of a multiple ~hich is 

" " 
then dereferenced to yield the 

values in it. . . 
) The latter would be a 'calI by value' and it would be wrong 

to assign to the' multiple 's~within the procedure. 

'. 
, " 

-J- . 
__ ~,f ____ ~ ______ ~ ________________ ~ _______ ~ 

--.,> 
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If the proce't;lure ''O. i9 called/ 

D 

(113] real xl=(1.1,2.2,).jJt 

~14] real YI=(4.4,5.5,6.6), 

p(x,Y)J 

follows 1,_ 

then a collateral identity declarat1o~ resultsl 

(.:.:! [11 mJ real> .. ~ = ~x, ref [11 ~ J real v = y) 
- .. 

c .' 

The names 'x' and 'y' and the'rr6uhas 'm' and 'n'are 
" 

/' 

in any arder. But if it was required that a procedure acplpt 
.r 

~.,..,,-; 

pnlymultiples of the sarne size, by us~ng 'upb', as in. 
) ..-

proe q = (ref [11 ]real t,ref [i"UPb t]~,;i:-) '~.e~~I_ 

~ sorne routine ~ 

then the comma, for collateral elaboration, will not work. 

The operation 'upb t' yields the upp,er bound of 't'. :But 
.) 

unless the elaboration of 't' were done b,efore that of 'r' 
, ./ 

W~6 attempted, this upper. 

,.' 

1 

bound would, perh<;tps, nat be -~ ____ 
~ ------- ./" ---- . .~~ 

available. The comma must be replaced ~,~lon. Thi~,.,. ,., ... ",,,,, 

'upb t·- ï,/as- known when 'r' was would then guarantee that 

evaluated. (2). 

Identity relations • 
... / .. ~ 

,An identi ty r~l:at.ion uses the relatdr • l'~I ' '-Or • 1~1 ' 
o '.. ... ~ ,-

~ 1 " .... 

and y ields a value ot'" true' or 
\ . 'Ialse'. l~ is con~~d with " 

and 'b' are n~~sf the e'l,uali ty of names. Assuming that • a' 

at=lb; 

/ 
/ that is, of mode 'ref' somethln~, the~ 

o 
c 

says 'the value of the le1 t s ide t-a name) is the sarne (hame) 

are made 

ref real ar 

real XI 

al=XI 

~' .".,. 
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t f , -~ 

th en 

yie~s.'true'. 'a' is dereferenced te find which name it 

referred to and sinee this was 'x', and the right side ls 

the name 'x', the result is 'true'. Similarly 

xs=sas 

yields 'true'. The right side ls dereferenced this time, with 
. , 

the same result. Conversely 
-------- --- - ----~------ --~ -- ----- -- --- ------ -----

XI,Fla; 

and 

aIFIX' 

~oth yield 'f~lse'. The elabera~ion of an identity relation 

ls collateral, the left and righ! .ides being done in any 
r - - _J 

order, liKe an assignment'. 

In contrast with this, a 'eonformi:tty' relat9r, ':"1' 
• l' • 

, \ 

'~or '1 1 =', is used in ~ conformi ty relation and such a 
() . 

relation is not élab.orated eollai!~g;ally~, 'l'he relation is used 

to' find out ~rent mode --of a variable Wh-en i t has been 
J 
) 

declared to be of 'union' mode. For examplé"s 

union a ='(char,int), 

int l,char J; 

,al =5, 

yiel~J~ 'true' because "a' ls cu~reQtly of 'int' mode, and so 
<..; 

i8 'i'. But 

" 

yields 'false'. If 

al="S", 

.... 

LI 

~ . ,,' 



1 

) 

then 

il 1 a-c -1 
1 

" . 
l, 

. , 

yields 'faIsEf'- and 
- 1 

j lIaI 

yield8', 'trJAe'., 

, '. 

'11=' means 'if it conforms to, let it be 

\, -. 

\ 
\ 

2) 

aSSigned'~ Thus 
-. 

after the above, 

j 11 =a J 
-~. -~-- - ----

gives 'j' the value of the character "5". 

With either of these rela~ions, the elaboration i8 

not collatergl. The right hand side must be elaborated 

, before~he laft, to check its current mode. The right side 
1 

may be dereferenced urttil its mode i6 the s~me as the left, 

if it ever is, (i.e. modes on the right that differ from 

~he left,by 'ref ref ••• ' will event~ally conform), but the 

elaboration i8 not collateral. t 

Having considered the occurrences of collaterality 

in~AIgol 68, the provisions existing in the language for 

commanqing and controlling collater~lity usine the 'parallel' 

features can be examined. Before doing this however" sorne 

disc.,uss,lon i8 needed of parallel processing inogeneral, its 
, 

history, problems and evolution to a high level language 

fac.ility. This follows in parts 2,3 and 4. 
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2. Parallelisme 

2.1. Early interests in parallelisme 
--- ---- -- ~~-----~~---

In the paper "Preliminary Discus~ion of th~ Logical 

Des ign of an Electronic CO~?~tWunstrument .. _ (~1) t an early. 

!19&6). defining docum~nt for the modern computer, the idea 

of parallelism appears. In discussing the storage device to 

be used in the proposed machine, parallel access and 

operations werè proposed. 

In (12). Von Neumann compares "natural and artificial 

componentry". He statesl "An efficiently oreanized large 

natural automation (like the human nervous system) will tend 

to pick -up as many logical (or informational) items as 

possible simultaneously, and process them sirnultaneously, 

while an efficiently organized large artificial automation 

(like a large modern computing machine) will he more likely 

to do things succesively - one thing at a time. That is, 

large and efficient natural automata are likely to be highly , , . 

parallel while ••• artificial automata will tend to be less 

50 and rather to be se_rial". He considered what operations 

in a computer could be dème "in par~,llel and pointed out "that 
"''''l • parallel and seriaI operations are not ~nrestr~ctedly 

substitutable for each other". "Not everything eerial can be 

immediately paralleled - certain operations can only be 

performed after celrtain others. and not s imul taneously wi th 

them (i.e. they must use the res'\lts of the latter). In such 

a case, the transition from a ser~al scheme-to a parallel one 

may be impossible, orcit rnay be possible but only concurrently 

with a change in the logical approach and organization of the 

procedure". m at the stateme-rt level- could thu8 lead 
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. 
to difficul ties but at the hardware level i t was pres.ent 

from the beginning and the ideas exyiessed in the 1946 
--- " 

report are echoed twenty-eight years later in a typical 
o 

statemen19 by Feng (13) r "To parallel process a number .v. 
words under single instruct'\n control a set of processing 

elements are used. A processfng uni ~ lTl3.y cunta±neithe-r- a 

25 

; 
seriaI or a parallel arithmetic-Iogic unit. If the processing 

element lS -capable of perform1ng bit parallel opelftions - ------,,-

,the propessor ls called a fully parallel processor or simply 

a parallel processor". 

Today,. 'large artificial automata' have incorporated 

in their design ~s many par~lleJ facilities as economics 

permit.Serial speed ie limited now'by path iength and this 

can be only so short. \~et n processes finished in less 

than~n times the time for one i8 now the aim. For this it ls 

neces8ary to do sorne or aIl of the'processes concurrently. 

Ideally, with n processors, the time can be reduced tp l/n th 

the time for n processes, plus what toverhead~ time is·used 
- .. 

to invoke and maintaln the parailel operations. There will' 

·~------·_.r-Q.lways be a lower limit on whât is sensible to do in parallel. 

When ~he parallel time approaches the serial time, parallelism 

must be justified on other grounds. But speed is not the sole 

reason for doing things in parallelr the solutions of sorne 

problems are parallel in nature, and they should be 80 

expressible • 
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2.2. Parallelism in moden1~mputers. 

Early computers performed one oper~tion at a time. An 
~ . 

aàà1tîon~might be-comp~e4 ~f-paralleladditionBof severai 

bits, but the 'gross' operations were done cons~cutively. 
- . 

There ";ere no overlappèëi or simul taneous opera~ions. If input 

·-----f'OHr.,Jm.tput (10) .1'Ia-..S._ I1.fteded • .!he processor tUrQ~ ~ ts attentJ"on 

to it, and did not resume eomputing until the 10 was finished • 
.. -----------'---- --- ---- .... -- i~~: /r 

an one ratio,l', .. ~~ a time... ---___.-

7 

t 
t 
! 

< ~ , 

ilt 
~ 

1 

--
7 

1 --.-

Deviees (ehannels), restricted to 10 duties, ~an execute their 
--- - - ~--. ., 

own.'sets of lnstrucfions-t"o'âo these -duties,--l-e-av-ing--the- - ____ ._ 

processçr free to work on something else. The channél can also 

access rnemory between the processors own accesses to memory 

(16). This overlapping and interleaving are exarnples of 
• 

parallel processing. 

Another level of eoncur~ency, less obvious t~an 10, 

ls the parailei proeessing of individual instrutt~ghs, at the 

level of the instruction i tself. --'!'he p'rocessor executes an 

instruction by aeeessing it, decoding it,. r~~dying sorne unit 

(on the I-eycle) and by accessing the opera~ds, carrying out 
..... J 

the instruction and storing the results (on th~ E-cycle). 0 

These cycles may be performed in the traditional seriaI way, 

but they may be overlapped, by starting the I-cyele for an 
. 

ensuing instruction before the E-cycle for a previous one is 

fin1.shed. This ia a forro of hidd,en parallelism existing on 

sorne modern machines. 

Another parallel activity may be undert~ken by the 

compiler. If a true parallel machine is, a,.vailable, w i th n 
(, 

processing units, but the language that the source program is 

in does not have provision for the explicit expression of 

• 
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----- - - ~--~ 
1 

• 

'. 

parts that are amenable to parallel processing.and will 

const~,ic-t--co-dë- to talfé aiF'-a:n~age' of thé pro~essTng breadth 

of the machine. If.something ls seen in th~ program ~ 
involves the serial elaboration of n~opérationB that are 

~independent of' each other, a 'p~Iism-~~yzer' (14)- May 
Q"'"s .. __ 

______ ____ Q_~t.raç_t _th_e!!'Lir~m~J:t~ ~.x_ !3_~guential_ ~ettif\~_ ~n_ :th~L ~_ou~~_~ - . 
prograin a!l~- gl.ye--eac~ of the n processors one-eB.Cl1 to do • 

\ 
l ". / , 

27 
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2.3. Parallel programming. 

With more than one processor ~everal operations May 

proceed simultaneously. Th~se mayb~ inRtructions, gr~ps 

of instructions, or who le pr'ogràms. The buil t- in parallelism 

of 10 operatipns (where two proces~ors can be considered 

aval1able, the one and a Channel) will still exist, 
t 

par~11~1~6m in memory and instrûction 
~--, 

----- ~ -----.tnt~~.....-;- e basic 'palallerisrn in-the- addinè---- --------

'#j 

circuitry. 

e than one processor is available, or can be 

simulated, or if one processor can handle operations in such 
r 

an interleaved fashion that it appears to be a multl-proceasor 

or if a single processor can be 'passed around' -(4) between 

~rocesses so that each appears to have its own independent 

processor, if any of these activities are available through 

a prograrnrning language, then a new level of parallelisrn, 

paralle l prô'gramming, ls poss i ble.' 

If a machine has one processor only, then the statements 

that it executes in a~arallel program must be done " 

consecutively, but in the time sense only. By interleaving, 

different processes can advance concurrently. The object of 

parallelism is not only to increase speed but to make possible 

concurrent advancement of routines which can proceed logically 

independently. lt matters little if \~achine use.s one 

processor o~ more than one to do thiS~!he aim ia for the user 

to be able to do parallel processing in h1s program, without ,. 
regard to how the configuration allows it to -be carried out. 

~ome possibilities for parallel procéssing are summarized 
J 

as followsl 

." \ 

'\ 
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• 

f 

, zac:: 

l),the usual parallel 10 operations, 

~) 'micro' parallelism at the instruction cycle level, 

J) recognition by tneiCornptIer oT 'expression parallelism~ 
f 

in arithmetic statements (7,8), 

4) n processors are av~ilable and the compile~ extracts ~ 

potent1ally parallel sequenees of operations from the source 

program (14) J 

6) the machiné' )has n processors and the programmer demande, 

29 

-~ ~- --~ - - - - -- - --~ -- ----------..,,- -------- -----~-

through the source language statements, parallel operations. ' 

Note that n May be 1. 

1 
''1 , 

./ 
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JO 
; ,.4. MultiErggramming and multiprocessing. 

" , 

parallel processing on machines with single processors 

reflects sorne aspect of multiprogramming, which rnay be defined 

as "the interleaved executi'on of two or more programs .. (15), 

The difference between multipro~ramming and 
, . 

mur~iprocessing (l~e. the use of mo~e than one proceseor) ie 

that multiprogra~ming Implies sorne forro of overlapping of 

operations while roultiprocessing implies~ome forro of 
\ 
\ 

duplication of facilities. As weIl, multiprogramming can take 

--place in macfiines- w~h- have -muJtjproces13or iacJ-lj.tJe~and 

sorne duplica~ion of facilitles ls always necessary in machines 

which are to be capable of anything more than strictly 

monopr?gramming. 

If sorne form of parallel programming is belng realized--

on a single processor machine then sorne forro of .. 
rnul~lprogramming ls being done .. 

Multiprogramming encompasses such terme as 'multijob 

operations' (multiprogramming where each 'prograrn' ls a 

separate job or job step), and 'multitask oper~tions' ( a 

method of multiprogramming ~hich allows the things which are 

being multi-executea to be 'tasks', rather than separate 

jobs). These facilities are achieved through the Use of 

overlapping of instructions ~nd the interleaving of 

operations. < 
ln seq~ential monoprogramming, a 'task' ia simply a job 

or a job step. In rnultiprogramming, a task is the execution 
~ 

of a set of instructions and the data and control information 

necessary for its executionô A task May involve a part of a 

procedure, a whole pr~ce~e. or a whole urogram. ln ~ mono-

programming environment, a taak is simply the current work 

" 

/ 
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to be done, but in a multiprograrnming environment tasks 

compete with each other for control of a processor (15) • 
~ 

Some,programming ~anguages .(PL/l, Burrcughs Algol) 
r 

allow the programmer to use the mUlt1prograrnmïng capabilty 

within a single program by using the multitasking facility , 
(10,17). " 

In a machine with n processing elements parallel 
---'"' 

processing will, in general, decrease the overail time of 

execution. For exarnpIe, some loops could be done 'al~ at-

-- ----t --, - -t -
f 

for i to n do ( a[i11= 2 * a[1])J 

could be done in one execution on n processors. But this 
. 

wouid not be done if the tirne for setting up such a multi-

process equalled or exceeded the difference between the 

sequentiai and parailei rnethod~ Assurning ho overhead, the 

total tirne spent processing in parailei would still be the 

sarne as for serial, but the elapsed time would be eut to 

lin units. 

)1 

If the machine has only one processor then any 'paralIel' 

statements will actually be executed sequentially in time, 

though in an interleave-d fashlon. 'l'his pseudo-parallelism 
li' • 

will not improve the time but if the solution to a problem 

ls naturally expresslbieuas two or more parallel routines, 

then it is good if it can be written as such in the source 

language. Also, prograrns may be easier to write in a 

'parallel' fashion (even though executed sequentially), than ~ --------
~ -~.----

those wrltten in a serial interleaved way. c0r:!...y~a'e-j:f, the 

, temptat~on t.o 'parallelize' when 'unhecé;~;;;;--must he reslsted 

.~ Gom~iCà~ed routines May result. .' 

J~ 
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A t t d . d Il th t' t k t d . ~ . s s a e , l ea y, e lme a en 0 0 a JOu uSlng n 

processors should be lin the time taken for the sarne job with 

one processor.' ObviQusly this çan not be reached because of 
~ ~,--' 

the time associated with the invocation and running of the 
" 

parallel processes. However, Rosenfe~d (18) showed that, with 

a particuiar program amenable ~o ~arallel processing (the 

distribution of current in an ele'ctrical network), wi th 

careful progx'amming, the tl.me taken for a job on a machine 

wi th n-pfocessor capabili ty d'id indéed approach lin the time 

__ _ _ _ taken _ b~ IL a ingl a p roces sor __ 11e __ l,is-ts -±he following points l-
-

1) creation and termination of tasks generally'reqùires , 
\ 

substahtial amounts of e~ecutive system activity, which ~es 
\ 

processor time 1 
, -

2) extensive interlock for the synchronization o~ parallel 

tasks ('see part j.1) usually requires processors to spend 
large amounts of time idling: //,.",.",'~""""b'"""''''U''' ",H' 

" 
j) the number of available processors may no_t..'·-'be known in 

advance. 

, These considerations emph~ize that programs using 

parallel facilities should be i~pendent of the actual -- . - .. 

number of proces1}ors ,~l1ave overhead amount ing to a small 

. ---------" percentage ~usêful activity. 

---~...--

,---­
~-----

'. 

/ 
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2.5. Some machines • 
'; 

One weIl known example of a multiprocessor machine ls 

ILLIAC IV. This is an 'array processor'. ~ stream of instruct-

ions (or perhaps a smaii number of streams of instructions) 
, 
controls a number of synchronized execution units, each unit 

operating on one element of a da~a array. Solomon 1 and II 

(39) 'are s imilar machines. A more general mul tiprocees ing 

system ie distinguished by its ability to accees common 

storage Jith aIl n processors. Each processor obeys commands 

from its individually fetched instruction stream (18). An 

example of this isthe-fBM /~360-6? 

Other~systemsl (Burroughs 6700, IBM /370) allow multi­

tasking. Machines with highly parallel designs are the CDC 
) 

7600, Burroughs 8500 and IBM /360-91 and CDC 6600, the latter 

having parallel asynchronous units allowing 10 independent 

",,,,,e ur;related instru,~~~~~~~~7l».( ?ut an 
'''','-. _........... _ M r _ :. ,. 

.. ,.,."." ... f!""" ...... ~",,~~·t .. rntlzr;;g compiler decides which iIlstructions, J1ô~ 

= n 

• J 

programmer) (19). 

Schwartz (20) looks at parallelism in large maehlnasl ~ 
./" ./' ';.. 

1) internally overlapped machines (e. g.CDC 6600) where the ."' .... ..,., .. ' 
hardware executes short· seq uencès in parallel; ~V'., . ./"~ 

/' 

2) uniform instruction machines (e. g. 'mf4tinghouse ~o-iomonr~ 

These are inefficient for branching or where interwoven d~a 

forces each processor to look ai the intermediate results of 

another unit, 

J)muitiple instruction-locat~on counter mach~nes,-appearing 

"'./ 

to the user to be multiple, logically separate processors6 ' , 
~, '> . ~ 

-rr 
This is a departure from the consideration mentioned earli~rf . -,/ 

-

where n'was unknowh. ln this type of machin~~~~~~c1~: 

- ----------------------- -~ .. -
-- ~ --:-----------.-..---- --- - --:. .---:;--- ---

.77 ..... S ...... ________ ~~~~~~~~-
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J. Prôblems in parallel processing. 

3.1. Producersj consumera ami mutual., excluSlon. 

A problem of fundamental impàrtance in parallel process-

ing ie that of "mut)lal exclusion" (21,22). This occurs wRen 
) 

t'NO or-more processes runnlng in para.l\lel must be prevented 

from executing sorne of their actions in parallel. Th~ actions 
~ -~ - .................. 

comprise a 'critical section' _. of the proceS8 ana ~he proce~"""" 

must be written sllch that orily -o~~- 18 in-its crftICaT sectt~ 
/1 ---- , ~t any one time. No a,umPtions ar.e made about ~elative speed~ .............. ",...., 

and no priori tiee are - given ~f infini te wai ts' are disal~""Y 
. ~~. 

Each process must be able to access i ts cri tical.:::::S;6tlon, but 
~ ,~ 

at ~ time when no other process is acce~its critical, 
"". 

section. The problem will occur, f~xample, if two or more 
-----~ processes in parallel atternpl--t-o alter a common yariable. TlJ.e 

-~ 

solution mus~'other process from' entering ite 
--'---~.- ......... 

------::::-- -
critical section, where the alteration is done, while one 

r 

process i9 changin~ th~ variable in its critical section •. 

Two or more instructions need not access the sarne data-at 

precisely the sarne time to cause trouble. The sirnultaneity 

need not be as close as that. Two processes attémpting to add 
(~~ 

into a common variable concurrently i9, enough. Dijkstra (2)) ~ 

gives the example 'of two processes adding to a counter, which 
, 

is supposed to record the number of tim~s it is accessedl 
j 

process one process two 

ri =nc rl=nl 

rl=r + 11 rl=r + 1 ; 

nr =rl n:=rl 

Assume t~at the instructions are executed not simultaneo~sly 

but in 4 stpi~tly interleaved way, and that coth processes 
~ 



, 
-1 

lit . 

• 

; 

• 

can enter their critical sections concurrently. AS8~e n i8 

ini tially zero 1 

proceS8 one 

get n into n' (~O) 

store nt in r (r=.O) 

get r'i~to r" (r'=u) 

,add 1 to r' (r' =1 ) 

store r' into h (h=l) 

proceS8 two 

get.n into n' , (=0) 

store n' , in r (r=O) 
. 
get r into r' , ( r' '=o), 

add 1 to r' , (r' , =1 ) 

store r' , into n (n=l ) 

35 

- ,.. 
1 

n ends up as 1 when it should be 2. The 's·écond proces8 must ,~ 

be prevented from accessing n while the first i8 doing SOI 

It must be 'locked out', and then allowed to access n. One 
, .-

êolution to this is in the use of a ~ocal variable withih 
Cl ~ 

each parallel process and al10w ing 'i t to exchange i ts value 

with a common variable (21). 
( ~-

If 'x' is a common variable· 

(global), initia1ly zero, then each process can have the , 

following forml 

begin int loc 1 =1; 

begin repeat 8wap(x,10è) until 10c=0; 

br~tical section (e.g. where n is incremented) 

" - 8wap(x,10c),· 

rest of process 

end 

end 

Assume there are thre,e prqcesses 'and assume close ota 
-~ 

1 

simultaneous executionl 

time 'proces8 one process two procesS three 

0 ~ 
10c'=1 loc' '=1 lac" '=1 

loc'=O,x=l lac' '=l,x=l foc"'=l,X=l () 
, 

critical section loc' '=l,x==l 10c'-' '=l,x=l 



... 
\' , 

.., 

loc'=l,x=O loc"=O,x=l' loc' , '=l,x=l 
. ...;.' . 

rest of process ncr1t1cal sectlon loc" '=l,x=l 

loc' '=l,x=O lor.···=O,x=l 
• 

rest of process critical section 

loc" '=1 ,x=O . 

rest of process 

No two processes access their critical sections at once 

because only one floc' i8 zero at any one time and this 

guards entry to the critical sections.QThe fault in this 

is that the processes 'idle' while waitinB to accesq their 
\ " , 

critical sections. Jhey occUPY the use of a processorlthey 

c.ou1d be 1eft dormant until, their turn came. To achieve 

th is, the idea of a, 'semaphore' (i. e. a 8 iV1al f1ag) i8 

introduced. The semaphore is used ta communicate hetweon the 
J . 

processe8, te1line one when it aan proceed and freezing the 

rest. 

A sema~hore can be an integer, or a reference to an 

integeJt, t'~e value' of which may be r~stricted tOI 

a) ° or 11 

b) 0,1,2,) .... 1 

c) ••• -3,-2,-1,0,1,2,), •• : 

The operations on semaphores are the P and V operations 

--(2),24). The P operation reduces the value of the .~~nteger by 
, 

1: the V operation increases it by 1. If a semaphore i8 of 

*the (a) kind, then, when a P operation i8 done on it,' if 

its value is already zero, the routine in which the P occu~s 

i8 haJted. Subsequent P operations on this semaphore have no 
\J _. ; 

effect. A V operat10n on it will restore it to a value of 1 
{ 

and the routine Wh1Ch was halted will restart at the pla~e 

... 

----~----~--------/ 
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of the P operation. Thi~ me~ns !Tha-t--a P operation before a 

_ ~'r cri ticéU sect,ion.";;ul allÇlw the section to be .en~ered if the 
- ..... -- , 
~-..l semaphore' s value is currErl"i.tly 1 but will block entrance to 

" 

t~e qection if the value ii zero. 

11 a semaphore is allowed to have mo~é V operations on , 

it than P oper~tions then it will,take on values 1,G,J •• and 

a value greater than 1 will Mean that the routine assoclated 

with the semaphore will have, effectively, a priority, in 

that it will take IDDre than one P operation to haIt it. 
1 

If a semaphore is allowed to be negatlve it means that 
, _1 

more ·than one pràcess is halted by lt. It has been af~ected 

by P pperations iB more than one place and its absolute 

value represents the number of processes awaiting its return 

to a positIve value, and thus the number of processes 

a~aiting restarting. 
. ,"- . 

The P operation represents a potential delay~ the V 

. operation, the removal of a barrier. After a V operatlon, if 

a semaphore i9 st iIl- below zero (case c) then it had more 

than one process awai t ing i t (24_~_. 

The semaphore. the critical section and the lock out 

ideas together with the classical 'producerjconsumer' problem 

are discuss~d at l,ength by Dijkstra (GJ), Hoare (~5) and 

Wirth (26). The diagram below illustrates the discussion. 'J.1wo 

or more processes ~re started up concu~rently. Both have 

semaphores associated with thern which will cause the process 

trin--e --if an--attèmpt -i8 made to pusli-tne -semapn6re below a 

zero. One process 'pro~ïces' (e.g. ~t reads a data item), 

while the other • consumes , (e.g'. it manipulates the read ~t~m). 

The copsumer process begins by performing a P operation 
.... 

l ' • • • • • ." " 

--- ---- --~ 
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on its semaphore, which has an initial value of ~ero, and the 

process halts. There ia nothing to consume. The producer 
'1 -

PFocess"afte~ producing an item, performs a P operatipn on 

its semaphore (which, since it'referred to an integer value 
~. 

which was initially positive; does not cause a haIt). The 

Plm) 

cri tical 

section 

put in 

buÏfer 

V(q) 

V(m) 

m=l 
q=O 

Plq~ 

P(m) 

consume 

critical 

section 

get from 

buffer 

V(m) . 

process tnen enters'its critical section where, for example, 

it accesses a buffer and stores the item. Meanwhile, the 

consumer part is prevented from entering its critical section 

and accessing the buffer because it is halted. When the 

producer part emerges from its critical section it performs 

a V operation, on its semaphore and on the semaphore associated 

with the consumer part. This allows the consumer part to start , 

again and enter its, critical section, to access the buffer, to 

get an item that the prodücer has put there. Before it does 

so, it performs a P operation on the producets semaphore, ta 
L 

push _it-};O __ zero so~_ha~ _if the_ progtlcer s~ould attempt to 

enter its critical section while a consumer ls busy in Its 

critical section! the producer routine will be halted by the 

P operation at the entrance to l1;s critical section. After 

'v 
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emerglng from Lts critical section. the consumer routine 

performs a V operation on the producer's semaphore allowing 

the producer to €nter its critical section, while the consumer 

-- goes on to 'consume' the item in a non-critical part that has 

.no coincidence of access with the prpdueer part. Then It la 

halted before its pext entry into its critical section by the 

-p o~eration on its semaphore. 
-

.' The 'producer/consumer' problem occurs in m~ny paralfel 

processing situations and appears in different forms in various 
, 

algorithms (sE\e parts 4 and 5). Its solution, u'sine semaphores, 
, '. 

ls the Solutlon to the problern of the synchronizatlon of 
'1 1 • 

simultaneous processes • 

t-r-----------------------------------. 
, . 

6' . 

, .. 

J 
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).~. what can and what can not be done in yarallel. 

Bernstein \(27) proved that the possible parallelism of 

two program blocks is undecidable. Given twDt processes, there 

----------is no algorithm that will give ·as output a statement that the 

two are or are not capable of being run in .parallel. What ls , 
possible, i8 to set up tests, and if th~-p~Qcesses pass them, 

, 

then paralle liem is pos si ble. The. ~,ii c te s t is, whe tie,l' , • _. 

storage 10'cation contents are mod1f1ed by statements" ::'~n one 
• l " 

proces~ sa as to maKe rèferences to the locat~pn~ by state­

mente in another process yield invalid results. 

The obvious candidates for parallelism a~ but as 

Lorin (19) points out, certain precautions must be taken, 

1) no iteration of a loop can be depend~nt on a previous 

i tera tian and no successor can be dep'endent on the completion 

of an iteration. If one thing must wait for another ta finish 

then it can not be done concurrently with itl 

2) if a variable appears on the left ~and side of an 
1 

assignation only, it must be made local to the proc~ss. In 

DO 20 l = 1,10 

A = 2(I)**J 

• • • • • • • • • • • 

20 CtlNTINUE 

'A' mus",tt. be made local if the loop is ta be done in parallel 
r/ .. 

e.g. A' = Z(I)**) At' = Z(I)**3 etc 

) the loop 

, DO 66 I=1,5 

s = s + V( 1) 

66 CONTINUE 

rr>earence of S 
-- ---~ -~ ----'--------~ 
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, . 
on both s ides of the aas igna t ion. -Trouble, on the exac-t _va,l)le 

,of S after the first (and only, if 5 processors are used) 
-( 

elaboration, could be avoided by tewriting the loop aB' 

DO 66 l = 1,5 ~ 

S(I) = S(l) + V(I)~ 

66 CONTINUE 
~ 

and postPoni~r the summation of S. This wo~ld be worthwhile if 

the V(I) calculation were r~placed by something more time~ 
b 4 1 

consumlng. The. S (I) 'a w'Ou).d then'- be added in a normal loop. 

DO 66 1 = 1-,5 

S(I) = S(1) + aome expression that could be done in 

parallel 

J 66 CONTINUE 

DO 67 l =1,5 

SS = SS + S( 1) 

~ COHTINUE 

Operations other than loo~s. can be done in parallel. 

Schedler (Ge) describes a methodOfor the paraI leI calculatioh 

of the rOGts of an equation. lVlurtha (JY) cites the solving of 

differential equations. The potential exis,ts for applying 

parallel techniques to commercial operations, where the sarne 
'" 

operat10ns are done on Many different transactions. (programà 

- -

~sing multitasking alre~commercial applications). 

Lehman (29) suggests tha~,cornmon problems should be 

re-analyzed and new al~:rithrns be desip;ne,d rather th an try 
, 

te eon~t --tlle-ir -e-x-ist~'I'"lg ser-1al -ones to paralle.L. use • 

/ 

J 
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4. Parallelism in high level languages. 

4.1. What i6 reguired. 

When 10 operations are performed concurrently with other 

operations. or individual instructions are being overlapped at 

the cycle level, parallel processing has been achieved. But a 

'higher' forrn of parallel proces6ing ls when the language in 

which the ~rogram ls written allows the programmer to express 

42 

explicitly that certain parts (perhaps all) of the:...program have 

been deliberately designed to take advantage of the n-processors 

in the machine (or of the machine's ability to simulate the 

presence of n processors), and that the programmer, through the 

language statem~nts, will control ~he parallel execution,~f his 

program. No longer will it be necessary to rely on the compiler 

to discover potential areas of parallel activity in the seriaI 

code, although evaluations of certain expressions could still 

produce parallel code unknown to the programmer. 

With the freedom t~ cause concurrent activities to take 
<' 

place cornes the responsibility to make sure thttt.they take place 

properlYI t~atj\~dlô-not interfe~e with each other accidentlYI 

that the: can co~>unicate with each other' if necessary; and that 

they do in fact represent an improvement on sequential exec~~~~ 

of the sarne work. The facilities to do this do not exist intmany 

lang~a~e,. aQd,Where they do exist they are at a level that is 

fairly ~stricted. ln the following, a number of approaches to 
, r 

\ explicit parallel processing are consridered. A short description 

-- ------- - -o1'----s-om-e- a ttemp ts a t irttroducing-'-parail~"i- prc1Cess ing--s-tat~nts-
.' 

into high level languages follows. Sorne earty algorithms are 
. 

given. 'fheir Algol 6B equlvalents are given in 'part 5.5. "i' 

---==--------, -:----- -- -- -- ---
'-

_____ 1 __ -



• 

7 7 7 

1 
4.2. Parallelisrn in proc~dure-oriented languages. 

IJ 1 

The introduction of parallel processing facilities into 

high levei languages was achieved in a restricted way. in the 

simulation languages, for example SOL (30,)1). The proplem or. 

introducing parallel processing instruê~into,the ~nerai. 

procedure-orien~ed h~gh level languages\ has b~ looked at ,by 
,,--

Many authors (:GO,26,32,3J,J4,.J5). Multitasking is available in 

PL/1 and Burroughs Atgol. Conway lJ6) introduced a basiq idea 

of parallel work, that of the 'fork'. A 'forking' instruction 

ia one that creates and in! tirtesl' parallel processes. The 

instruction 'fork', a ~achine-level instruction,would cause a 

duplicat!on~~ the existing state of things to be available to 

several processors and allow them to begin execution of groups 

of instructions. The forking idea has ,an everyday analogy • 
....... 

When a processor calls for the execution of a sequence of 10 

instructions by a channel while it continues to execute its 

own instructions in parallel with those of the channel, it is 

effectively, 'forking'. The basic rnechanism used ,in forking, 

4) 

as in aIl parallel opet"fl tj.ons, is the 'forJs;,,', s tack, where each \ 

process has access-to t~e program global stack ~s it ex~sted 
at the time of the 'for~'-' but maintains its own sté.ck for the 

1 
1 
1 

duration of the • forked' , i. e .• paral'lel process. 

Opler (32) began a \ round of investigation into the ways 
\ 

of intr6ducing parallel processing through high level language 

instructions. He suggested, for machines with multi-p~ocessor 

element-s., the introduction into Fortran ,ÇQbo!_, A1.go1 and other 
--, 

languages, statements. for-aoing sorne pv.rts of a p'rogram in 

parallel. He chose the loop as the obvious candidate for 

-- -paralle1 iem, aJ1J:t~the basic statement was, for Fortran: 

\ 

• 



labell DO TOGETHER labê12,Labelj •••• (labeln) 

where 'la beln' i9 the label of a HOLD instruction, where aIl 

------- < loops came together. 'fhe J.oop could be nested, Aapd different 

paths could reference the sarne variables, but no paths could 
~ , 

change the variables .• There could be no branching into a p~th. 

Progress through a path was to continue until the next label 
" was met, then an automatic branch to the HOLO statement would 

... 
oeeur. 

Opler gives the following exarnple of the m~ltiplication 

of 1ittD 21st order ma triees, on a machine w~·t;h 5 processors 1 

77 DO TOGETHER 1,L,j,~,5(6) 

1 DO 11 Il=1,Ll,5 

DO 11 J t=1,21 

DO 11 Kl=1,21 

• 11 C{11,Jl)=C(11,Jl) + A(Il,Kl) * B(Kl,Ji) 

2- DO" 22 12=2,17,5 

DO 22 J2=1,21 

DO 22 K2=1,2i 

22 C(I2,J2)=C(I2,J2) + h (12 ,K2) * B(K2,J2) 

3 DO 33 13=3,18,5 

" ete 

4 DO 44.I4=4,19,5 

etc 

5 DO 55 I5=5,20,5 

ete 

6 HOLD 

Using 5 proeessors, {groups of 2205, 1764, 1764, 1764 and 1764 

.. mul tiplicat ions are done in parallel. 'rhe ~plapsed time is for 

~ -- ------- ~ne__z2û1-m~ ... -1..-e..--tha.-time-.i~J~en·_fo~ the first, 
,\ 

, , 
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longest segment." The seriaI rnethod 

DO 6 1=1.21 

DO 6 J=l, 21 
l} 

DO 6 K=l,21 

1 

6 C(I,J)=C(I,J) + A{I,K) * BtA,J) 

takes 9261 mul ti7'cations. An Algol 68 p~_~gram equivalent to 

the above 'p~lelt algorithm ls given in part 5.5. 

, A~~son (JJ) suggested that DO TOGETHER and HOLD do 
-----'-. not uti~1ze the full parallel processing capabilities of 

6 

45 

machines like the IBM /360-67. He introduces sorne new commands 

into Algol 60. Their 

<label pair> 

<label listl 

(variable list} 

(fork statement > 

(join statem,ent > 

syntax iBI 

t I=<label) ,(l~ 

11=(label pair)l<la~l list),(label) 

Il :(variable), <,va ri yb e) I(variable list), 

(variable) 
\1 ~ 

11= fork <label pair> 
\ 

11= join (lJbel list) 

(terminate statement)ll~ term{fiate (label list) 
1--" ~ / 

(obtain statern~nt> 11~~tain <variable list) 
/ 

(release statement> 11== release (varia bJk list> 
JI ~ 

'terminate' plays the same r~ as a,n exiti<ng condition 

in a repeti tive procedure, 'joining/processes together when they 

are not in fact complete but so;tt conditiop_ makes their ending 
/ 

.. de,sirable. 'obtain' and 'rel,.ase' are 'lock' and 'unlock' and 

restrict or fr.~ accees 0he variables in their liste to other 

segments of the progr~ Sorne of-these statements are used in 

the program below ~form a ~ector product. 

--..... .... ____ ~S ____ e ___ ~ 
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81=0,' 

firet. begin 

s11 =0, 

--

,laet, ' 

for il=l step 1 until n/2 do 

s 1 r =s 1 + (a ( i ) * -ti ( i) ) t '-

fgoto next 

end, 

lastl begin 

s21=0, 

for j J =n/2 + 1 step 1 Ufltil n do 

821=s2 + a(j) * b(ji)1 

goto n xty 
/ 

/ 

nextl join first,last, 

sl=sl + s2; 

.. 

An Algol 68 algorithrn equivalent to this is given in 

46 

Parnas (37) said that Anderson's suggest~d add1tions to 

Algol 60 to facilitate parallel proces·sing Were not bf enough 

generali1;y or power. l t was not sUff1C~t to be able to 
/ 

specify forking into two sequnces and their subsequent joining • .. -
What was needed were language add~tions that would allow 

freedom from the concept of 'sequencing', in which it would be 
r .. 

poss1ble to describe procedures which were activated, delayed, 
"-

al tered or terminated as a consequence i,f certa"in conditions, . , ..... 
rather t~an by reaching certain points in a sequence of 

commands • 

Wirth (35) suggested that the firet step should be to 

"' 
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define the problems that needed ,to be solved. He states two 

cases where parallel processing ls dpne for different reasonsi 

1) a, program-exists that can be executed sequentiallYI the 

programmer lndicates that part of it may be executed 1n 

parallel, 

2) a program le designed for a conflguration and it:is 

required that different par,ts of i t work in parallel by 
.( 

different 'individuals' (i.e. components, units, procedures), 

because the individuale possess abilities not posseesed by 

others and that these individuals must communlcate, through, 

common variablès. 

Speaking of Algol 60, Wirth points out thit in sorne 

implementations of it, parts of expressions can b~ evaluated 

simultaneouely lsee part 1.2) and that only at the statement 

levei are things necessarlly def1n~d to be seriaI, by the use 

of "'1 Thus although statements are executed seriallr, within 

a statement an expression can be evaluated collaterally. It 

would be desiràble .(he goes on) to have a notation Yor 
l , 

indicating that statements snould be executed coilaterally 

i.e. in parallel wi th other statements,he s\,1ggests the use'-o~-
- 1 

D'and' lnstead of ','. Here he anticlpates Algol 6e where 'par' 

ie used instead of 'and' (see parts 1.~ and 5). 
" 

His version of Anderson's vector multiplication, using 
.. 

'and', is given qeIow.lt is almost identical to the Algol 6~ 

program for the sarne calculation. See part 5.5. He gives also 
/' I~ 1 

a general matrix multiplication algorithm using 'and'. For it--

'-~ and i ts Algol 6e equivaient, see part 5 • ..5. 

/ 

./ 

• 
/ 

/ 
/ 

, 
/-

/ 
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t, 

4~ 
sll =sL, =0, 't;: 

beg~n 

for i, =1 step 1 until n . L do 

SI' =s1 + a(i) * b(i) 

and 

for ja=(n ~ 2)+1 step 1 until n do 

82,=62 + a(j) * b(j) 

end, 
'~ 
SI =81 + 821 

"Parallel execution of the by 'ttnd' i8 

meant to be optidnal. If only one processor i8 available the 

order of tl',e executian is not preecribed", Thu8 the default, 

if there i8 only one processor, ie that the 'and' becomes 

like the f , , in Algol 6~, implying arbitrary c~llaterality, 
''" , 

If the order influences the result, the program could then 

become·ampiguousl 
'\ 

XI =.x + Y and yi = Y + x ,) 

(he says) 18 just as uninformative as the Algol 60 

81 = f * gl 

where 

real procedure fI fl= Xl= X + YI 
.- , 

real. proced-Q~ g 1 =- Y 1 :\t-, y .f ,.-1 g; + xt 
~-

me~s 
.. 

'l'his that in the absence of sorne kind of 'lo<ck out' 

mecha~i~~, the two statements, if èxecuted in parallel, both 

try to update a variable at (possibly) the sarne time, wïth 
, 0 

) 

unknown result8. If pârallelism is introduced at,the level of 

statements then the programmer must be aware of ite po~sible 

consequences " 

48 
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Dennia and Van H~rn suggested various language 

commanda for parallel processing, 

command 

fork w 

quit 

join t,w 

private x 

1 
lock w 

urllock w 

meaning 

initiate a new procesB at WI 

a process which has completed a set of 

procedure s~eps is terminated by 'quit', 

after which the process no longer exists, 

't' ls a count tb be decremented; 'w' 18 

the label of the instruction to be 

6xecuted when 't' becomes zero; -.. ~ .... ~ 

'x' exists only as long as the process' 

declarine it exists (i.e. it is 'local'). 

At 'fork' the values of any quantities 

declared 'private' to the main process 

are assigned as values, of corresponding 

q~antities of the branch processl . 
a ~ata abject rnay be updated 

asynchronously by several processes 

which are perhaps members of different 

computations. Updating a data structure 

frequently requires a sequence of 

operations auch that intermediate st~tes 

of the..., data are ine' ons is te nt and would 

Iead to erroneous computation if the y 

were interpreted by anoth~r pr~ceS6. 

'w' is ~ 'lock' indicator ihat prevents 

other sequences from updatihg an iteml 

this allows another process ta update, 

the item again; 

1 

) 
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'~ program example of the use of the above command~ , 

is given in (34). ~ vector product is formed using a machine 

in ~he ma in part), to the processes 'ùegtm' a t 'e'. Each 
, 1 

(' ~" , 

,proce8s is a new version (.incarn,atibn) y the rO,utine, with 

each having its own 'p~~te x'. Access .~' is gaine!'d by 

locking out ail other routines wh1ie the addition to"S' ls 

done. 't' i8 decremented at 'join t.~' and when 1t reaches .. 
t 

zero progress résumes at 'r'. 't' wi.1J<1'>e zerowhen 'i' 

.-
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reaches 'n'. the limi t of the loop., 'w' i8 a one bit indicator 

accessible to aIl the processes which use the object 's' (see 

part 5.3 for its likeness to an Algol 68 'sema'). 'w' must be 

initially·zero. 'lock w' tests 'w' and if it ia 1 the proceas 

idles, testing 'w' again until it ls zero. 'w' ls set to zero 

by 'unlock w'. When 'w' is zero on a lock command, the proces8 
" 

sets 'w' to 1 and goes on to the next statement. 
î 
An equ1~alent Algol 6e algorithm i9 given in part 5.5. 

ln seriaI programming the time taken for a vector 

product of this form la n*m + n~a where m is the ti~e for a 

Fmultiplication and a 18 the time for an addition. In parallel 

, 

1 

processihF" the total time spent in computation ls not of 

prime interest, but the· elapsed time is. If operations except 

those ~urrounding thè s~ming (i.e. except the lockine ones) 

are 19nored, th en the ·tlme that elapses ln a parallel program 

like this one ls the time spent by the p~ocesges which flnd 

always that the 'w' i8 1. Such a process must wai t untll the 
;r--., 

other n-l processes have accessed .~-'s'. The mul tlpl Ù:ations 
... J { , (' __ 

• .. ~ i'" ~ ,.... \ • ).... t 

are aIl done concurrently. The longe~t that th~hth process 

must wait for access to 's'~is 2*n*p where p i8 the time for 

a 'lock' operation. The progress in 'substance' would bel 
, .. 
i=1 i=2 i=j i=n 

X 1 =a ( 1 ) *,b ( 1 ) , 
(.j 

xl=a(2)*b(2), x 1 =a () ) * b (J ) l , ••• X 1 =a ( n ) * b ( n) , 

lock w, locK WI lock w; lock WI 

s: =8 + x; lock WJ l'bck W; 
''"--

lock W, 

unlock WI lock WI ~ .' lock w; lock W, 

.. ' 
lock - , w, '" SI=S + x, lock WI • • 

• • unlock W; lock w; lock W, 
lock w, + XI • • • • SI =s " 

• • • • unlOck w; ,lock w, 

, , 

J 
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The elapsed time for n processors is then lm+a) + 2*n*p 

while that for a seriaI program is n{m+a). Since a lock 

operation would be ,fast in comparison wi th amuI tiplication. 

the parallel process is ObV1ously faster. The 'overheads' of 
. 

parallel processing mus~ be considered. They must be .small 

compared with the computation time. Th~ problem being done in 

parallel (when it could be dona serially, -and they aIl can be), 
. " 

must be large enough to make the extra time inyolved 
G 

insigniffcant when the relative costs in time of.parallel and 

seriaI are considered. As Dennis and Horn note though, the 

motivation for parallel proces~i~g ls not just speed. Such 

processing "relaxes th'e constraints' on the order in which parts 

of a computation May be carried out". An "algorithm can then 

take advantage of this extra freedom to allocate resources 

more efficiently". 

" Wirth (26) states that Most current programming 

languages do not reflect the fact that most programs take 

advantage of concurrently Qperating units within a computer 
\.' 

system, and suggested that the reasons for this were that 
o • 

concurrent execution i9 usually_~onfined to input ·and output 

operations and these are 'hidde~~;;:~" the average programmer. 

Also, 'multiprogrammlng' (even within a single prog~am), is 

a difficult art and current languages have only rudimentary 

means for carrying it out. He proposed. a set of instruct10ns 
-

,for the PLJ60 language, using 'start' and 'stop' tC'f 'fork' 

and 'quit'), and P and V operators on semaphores. He points 

out that if sem~phores are allowed ü and 1 values only then 

p and V are equivalent to lock and unlock (see part j.1). He 

gives a simple exposftion of the 'producer/consurner' problem. 

o 

" '. 

1 
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5. Parallel processing in Algol 6e • 

5.1. Passive and active collaterality. 

The earlier discuss~Qn on collaterality in Algol 68 

53 

. '- , 
centred on those occasions when the order of elaborat10n of 

program enti ties did not matter to the execution of. the 
o 

program. Ali the programmer had 'to ao WRS to be aware of 
§t.;'" 

the possibilities of 'side effects' and to avoid aeking 

for collaterality when the elaboration of one thing might 

affect that of another. It was a 'passive', rather than 

active, kind of parallelism, handing over to the compiler 
< ~ 

the freedom to ~xploit the ability of a piece of( program 

to be momentarily independent of the next piece and, where 

feasible, to marry this independence to the facilities 

provided by the machine. It is possible, though, that any 

compiler might ignore the 'chance, and, effectively, replace 

the épmmas ~ità semi-oolons, making seriaI aIl those parts 

that ~he programmer left~ intentiq~~!y or not, to be 

paràllel. Whatever happens, the effect of allowing the 

elaboration to be collateral is a p'ossible speèding up of 

the compiling process by allowing code to be duplicated-'--
.. 

instead of regeneratedJ of allowing one sequence of , 

elaboration instead of another, with a saving in the amount 

of code generatedl and, if the machine is so equippeqG an 

allowing of the direction that certain code be executed in 
l' 

a parallel fashion. There has been, though, no provision 

for an active kind of parallelism, no method whereby the 

programmer can control', at run time, th.è~PCl!,B.llel ~xecution 

,of his program; no instruC"trôn-to say lat this point inmy 
< • 

program l want to s two or more tasks in action and allow 

" 

, 
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them to run (in sorne way) concurre~y, and ta control them 

while they run'. Facilities te do this exist in,Algol 68 

and "though restricted to the essen"tials in view of the 

none-too-advanced state of the art" (1) are sufficient for 

sorne useful algorithms tO,be written. 

The key to the increased complexity of active ~~~~lle1ism 

over the passive kinà lies in the ability of paral1el clauses 

ta communicate'with each other. When communication is possible 

then it is no longer true that one part of a collate'ral or 
1 

p~rallel op~ration must not-be allowed to affect another. 

Now it ls quite likely that one thing will affect another, 
" 1 , 

deliberately 80. What i6 needed.t and what becomes"possible 

if the processes can communicate, i9 s~chronization. The 

processee can be allowed, for example, to have caMman access 

ta data. The~ifference ia that their acceSB wlll not be in 

an arder ~nown to the programmer tand hence dangerouB 
..r - ~ 

because he does not know~~hich will be dOTIe first). Instead, 

it be~mes controlled by him. 

o r -!:., 
'" 1 .,J. - -. ; . 

, ,;:1,. ... .,. 

l<" i 

J. 

1 • 

Il 

o 
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5.2. The parallel çlau~ 

Algol ~~ achieves parallel processing by combining the 

parallel symbol 'par' with the collateral 

group of clauses to force the crea,t·ion of' .. '/ .. "'-(; 

, 

~ 

- Î' 
elaboration of a 

11, ~"""_~ ..... 
• :!(. ..... -. 

async hronous'.,.,~,-.,.l. 

- .... 

.1 -

a.ctivi ties f namely _ 'the concurrent execution of these clauses. 

Control of the progress of these clauses is then achieved .. r 
, , 

through the use of semaphores (2J) and operatio~~on these 
i 

semaphores, as described below. 

In the syntax (1), the parallel dlause is ·defined aSI 
. 

strong collatepaLvoid clausel 
-- ~'---.... 

parallel symbol option, strong void unit list prQper PACK. 

where ,. 
-

is the '~etanotio~' for '(' and ');~r 

for 'begin' and tend', 

st proper means simply a list (of the previous 

member) sèparated by commas. The list ls 

strong void lunit(s) group'a" of~'Statementsf single or inside 

a 'p~cl~'. These fo.llow (signi,fied by the 
-comma in the production rule) an~o~tional 

'par' symbole 

Thus a f·strong collateral void clause' could be 

parl clause , clause 

or simply 

( clause , olause , , ••• ), 

In the second case, the clauses would be executed in .. some 
~ 

arbitrary collateral manner, beyond the control of the - ......... -
programmer~ With the 'par' option it becomes meaningful to 

introduce·into the clauses operations on semaphores which 
, 

will control the synchTonization of the execution of the 

t ~ 1 

------------------------------------------------~~-----~ 
." ft 
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(1 

clauses. These operations will have no meaning outside a 

'par' clause. The word 'strong' in the'abo~e syntax refers 

,to the pos i tion of the clause in the context and ls 

connected wlth coerclon {Bee (1». 

Consider the parallel clausel 

par(xl=a,ya=b,zl=c)t 
, , 

This w,ould· not achiev.e much. lf the machine being used had 

<> 

three processors then~it is concelvable that the three 
, 

assignments would be done each on o~e procesBor and the 
"-

elapsed tlme would be for one only. If the machine haB one 

procesBor then the three actions would take place in sorne 

interleaved fashion concurrently, which at best' would be 

equivalent (in time) to three sequential actions. , 

\ 
0 

\ 
, 

\ 
-:. 
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5.3. Communication between processes. 

For communlcation~een parallel processes Algol 68 
" 

has a mode 'sema', def"ined in the standard prelude as 

struct sema = (ref lnt i)1 

or 

mode-'sema 
-'- = strùct(ref ~nt f)a 

This is a single field structure. the field being one that 
" 

possesses a value that ls the name ot' an ihteger: Dec.laring 

'an ident1fler to be of this mode 
è' 

sema hold. 
f 

declares 'hold' to be a structure having one field. A single' 
il 

field structure 1s lllegal except when it is a s~ma. A mod~ 

sema identifier will be called a 'semaphore' " 
"".-

Three operations a{e defined on semaphores. 'l', 't', 
- ~ 

and 't'. The symbol 'l' appears as the ctivlsion operator also 

i.e. as a dyadic operator, r for real, integer and complex 

operande. No confusion resul ts p ecause Algol btj executes the 

operator by choosing, from the ~rious routines possessed by 

the operator, the. one whose ope rands are of modes which match 

57 

~ose of the operands·in the formula where the operator' la , 

bJing used.'Here the three operators appear as unary operators. 

't' 1s ad.!=,o the dyadic operator for exponentlat,l.On. lt 1s 
, 

g1ven the o~onal representation, as a unary operator 

semaphore, o~up" and '~' is given that of 'down'. 

The routine "possessed by '/' 1S1 

on a 

op / = lint a) sema, .(sema SI f of~s.I=......in:t!= a, S), - - - -
This states that 'j' will be applied to ah integer'and ~ill 

return a sema. The elaboration of the routine, with a calI of o 

hold := Il J 

, 
c 
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is as followsl 

1) the '1' is transmitted a~ the 
~ / 

identity declaratlon (int a=l) 

takes place, - // 

G) a lOC~l)"ma is" de éÎal'."èd 1 
// 

J) In ~of Sl= intl=a' an integer value, equal to the value of 

~An this oas~ }" ls created on the 'heap' (l.e. in a static 

_ //~-'stGrage area, ~t the run-time etaok). lt can be referred to 

." 

07via a 'pointer', and so ls assigned to the. 'ref int f' of 

/the structure 's'. Thus the sema 's' now contains a pointer to 
\ 

a hidden integer of value 1, 
1 

4) the sema 's' is returned and ls given to the sema 'hold'. 

Now 'hold' possesses a-structure which points to an 

integer, and this integer can not be accessed, except through 

'up' and 'down', see below. 

'Up ' and 'down' change the value of the hidden integer 

and have the following effectsl 
.- 1 

down ho Id c If the lnteger is already zero, then .---Xhe 

constituent of the 'par' clause in which 

the 'doY/n' occurs ls h'alted; lf the integer 
r 

ls'not zero, it is reducati by one, but the 
9).~ 
execution of the~~~nstltue~,of the 

.J 

'par' 

clause ~here the 'down' appears is not 

·'affected. The integers referred to by semas 

(there will often be more" ten one in a, 
r'" ~~ .. 

program) thus cause a haIt to their clauses 

when the~_attempt to b~come negative. If a 

sema is zero and it then has three 'down' 

operations on it, it does not become -3. 

It etays at zero and each olause containing 

- --------- -- - - -- -- '---
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the1dowrr halts. The sema then has thrée 

processes awaiting its revival. 

up holdl ~ The integér is increased by one. If there 

~ere parts of the 'par' clause that were 

halted because a previous 'down' on this 

sema had been done when the integer was 

zero, then'these parts are started again 

at the 'down' operation that halted thern. 
-, 

In each case, the 'down' is repeated. The 

first 'down' will push the integer to zero 

but will not halt the clause. The oth,r 

'downs', if any, will" in the absence of 

an intervening 'up', attempt\to drive the 

integer b~low zero again and cause a halt 

ta the clause the y are in. 

The operator 'down' is defined as followsl 

,_ op ~ = (sem~ edsger)~ does not return a value ~ s 

(ref int dijkstra = f of edsgarJ 

do( if dijkstra ~ 1 then 

dljksttal=dijkstra - 11 

goto p 

else 

~ note that this could bJ'wri tten 
f 

in the extended language as 

59 · 

,/do(dijkstra ~lldijkstra mimis l;pl ... 

The 'else' branch 18 not coded, 

but if the down occurred within 

the constituent of a 'par' clause 

that constituent's elaboration is 

, 
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haited. ~he Report {l),does not 

say how this LS to be done. If 

the 'down' occurred els-ewhere, . , 

further elaboration 18 undefined. 

The ~rror should have been caught 

earlier because the rules say 

that a 'down'.wust be within a 

'par' clause. 

fi) ~ end of the t if' ~ 

pl skip); 

This states that if the integer is positive It ls 
f , 

to be decremented, otherwlse a haIt oceurs. lts elaboration 

on a cal.l of 

down ho.ld 1 

is. 

1) the identity declaration (sema edsger = hold) takes place. 

Since previously 'hold' ~ecame possessed of 's' (in 'hold=/l') 

this means that the operator's routine Is ~ew dealing with 

's ' 1 

G) a'new pointer, 'ref int dijkstra' Is set up loeally and is 

glven the value 'f of edsger', that i8, it points to what 'f 
'1 

~of st poin~s to, the ~nteger on the heap, 
~ 

3) if the integer is positive, decrement it and jump to lane"l 

'p', where 'skip' means 'do nothing', , 

4) otherwise, stop the execution of the clause in which the' 

'down' oceurs. 

The operator tup' i8 defined as followsl 
o 

op t = (~ edsge'r) 1 (~ int dijkstra = f 
·r 

of edsger; 

dijkstral =, dijkstra + 1; 

t at this point the Implementation 
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\ 
must al10w 

r 

the resumption of a1l parts of the 

is: 

'par' clause that were halted 

because the name possessed by 

'dljkstra' referred ,-to a value 

arnaller than 1 

The elaboration of tupi with the cal1 

up h'oldl 

./ 

1) the identity declaration (sema edsger = hold) takea place. 

Aa wl th 'down', the rou~ine w i11 be dealing w i th 'a' a 
~ \ 

2) ~ new pointer, 'ref int dijkstra' ia set up loca11y and is 

given the value 'f of edsger', 

3) the integer ultirnately referred to ia ~ncremented by 11 

4) ex'ecution of a clause or c-lauses may be resume_d.,. 

An examp1e of the use of these operators is given in (5)1 

one =/1, other =/0, 

par(do( down one, read dataI up other), 

dot down other, use data, up one», 
--.4 

)!his is a simple exam.ple of a solution to the 'mutua1 exc1us)..on' 

~prob1em found in the 'producer/consumer' situation. Tracing its 

execution can be done as'followsJ 

--~~--~--------------------~-------~ " --
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time one'e integer',.6 valuel O,o;ther's integer'e value. 0 

down one O,down other haIt 

read data 

up other (now 1) 

down one 

halted 

can now retest 

0, can now retest 

halt,down other 

use -data 

1 

o 

o 

o 

down one 

1 t up one~( now 1) 

O,down other haIt 

read da"ta O,hai ted -
r 

,-
/ ~ other lnow 1) 

down 0l(e 

halted ~ 

0, can now retest 

halt,down '.ether 

use data 

:etc etc 

The firet 'down' on 'other' locks out the 'use data'.part 

(from accessing the empty data area) wh~l~~th~ 'read' part 

gets the data. The second 'down' on 'one' locks out the, 

'read' part while ~he 'use' part accesses the data. 

" 

down 
, î 

one 

cri tical up' 

part other 

read 

l 

one = /1 

other = 10 

cri tical 

_part:, 

use data 

t 

\ 

dowtl 

other 

up 

one 

1 

o 
. 

o 

1 
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A better vers ion of tlù.s program, _ us ing a doub,le buf'fer 

" is given in (Je) 1 " 
sema full = /0, empty = /2, 

int nl=1, ml=1; ~ 
, 

t sorne buffer is declared h~re t 
\ 

par(do(down emptYt read into buffer(n); 

nl= J-n; up full), 

do(down full, use buffer(m), 

ml = )-m ï- up ernpty» 1 

It may Qe assumed to exequte as followsl ) 
'. 

time 

u 
) ... 

'em~~y's integer's valuel~, full's intege~IO 

down empty 1 , down full haIt 

read lnto buffer(l) halted 

n: =2 halted 

up full (now 1) can new retest 

down empty 0, down full 

read into buffe r( ~) use buffer{ 1) 

nI =1 t(} y: ml=2 

up lull 1, up ernpty 

~ empty 0, down full 

read into buffer{l) use buffer( 2) 

nl=2 m:=1 

',' 
etc etc 

After the first 'down 1 on 1 full', which locks out the 

'use'- part (so that 'read' can pu~ somethl~g in the buffer), 

it appears that the semaphores do not affect the program, 

but further exarnination shows that they are necessary. If, 

say, two processors were executlng the instructions and the 

one doing the reading got held UP, then without the actions 

on the semaphores, another ',use' mig!'lt be ât~empted, which 

0 

1 

u 
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, 
'A 
'1Iould access old c!ata, beforé a new read ~ae'odone. This ie 

, 
prevented r because the second 'down' on 'full' : wilY haIt 

1), 

the 'use' part, which will then wait for the 'up full' in 
, [ 

l.-

the 'read' part ,to cause i t to,be resumed. The semaphore 

opera~ions not only synchronize the two parts pf, the 'par' 
\ 

clause, alternating between two parts of the buffer, but 
.;.. 

they aleo provlde an assurance against il~e,~al ent'ry into 

the cri tical sections of 1:~e two ,processes .. " 
Q 

,In langUages that have prov~sion for mul tita:sking, 

64 

. " 

there ~re various methods for telling.whether a task is ,~ 

finished'(for exa~ 'event' and 'wait' in PL/l .. 'caus~'--

and 'wai t' 'in Burroughs 

an 'attaching' (master) task 

). 'Event' and 'cause' signal 

a t thé 'a t;ta-êhed ' task is .( 

done; 'wai t' holds up the main task until this happens. Ir:1 

Algol 68, operations on s~maphores, are intended as!, mean~ 

to control access 
, " ..... ,,, l 

to crttical sections of processes' ('tasks')~ 

n,9t as cornpletion sign~lers. Thus it would seem possible 

for an Aleol 6H program to have one of its parts finished , 

before the other, with possible disastrou~ effects. ln 

par(for i to 1000 do - ----' - -
) \, ( si: = s't ,!", ,a' ï ~ ] * b [ i ] ) , 

s21= s2 + a[10oil * b[1001])' 

Sl= Sl + s2, 
. 

it w~uld seern that in any implementation (true parallelisrn 
.. r ............ ~ _ 

on two processors, interleaved~~xecution. co-routines), the 

first 'leg' will finish far behind th'e Second'. There séems 
, " ) , 

_?O~hin~to p,revent the statement following the 'par' ciause 

from being e~ecut~d as soon'~8 the~second part of the 'par' 
1 .... ~r ...... 

, , (~""<u' ... , \ 

clause" has finished. 'earèful use. of semaphores can prevent 

, ..... ' 
, ','''---, 

1 
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.. 
'1 ' 

this, holding up the cornpletion of the second part until 

the last addition in the 'do' loop was donel 

sema stop = /1 J 

par( (down s'top 1 

for i to 1000 do 

(s 11 = S 1 + a (i J * ,b li] h 

up stop), 

(S21 = '82 + a fl001)' * b [1001): 

down stop») 1 

, 

'. 

Th i9 i9. ~owev:e r. unnecessary. T~e semant ies! ( 1 ) say tha t 

before a 'par' cla~8e i8 considered ~omplete aIl clauses' 

in: it must be complete. /tlso, the .interruption of a clause 

within the 'par' clause interrupts trie-w~ole clause. Thus 

a 'goto label' in a constituent clausè, where 'làbel' was 

outside the constituent, would interrupt the const~tuent 

.r-';:""-arut;:So the whole clausè. The, actions' of 'up' and 'down' do 

not 'interrupt' the constituent clauses in which thêy occur. 
~ 

Th~y May 'resurne' its execution or 'haIt' it, but trey do 
, 

not ~erminate it. A halted clause ,may be resumed ( it is 
,f 0 

'aslèep' and may be 'awakened'), but what happens when an 
~. 

'interruption' occurs is not defined in ~he langu~ge. But 
- , 

o 

interrupting one part of a 'par' clause will interrupt aIl 

the others and stop execution of the clause. 

,; ... 

~-

,. 
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5.4. ~ethods of execut~on. 

, -The execution of a 'par' clause depends on the setting 
-...... ---..... t ......... ~ ........ --

up of separate run-time stac~s for eaéh of the constituents 
J '1:) ,1 

while allowlng each constituent accéss to the 'global' stack ~ 

of the program. But how, ln the absence of more than one 
o 

processor, 'the interleaving of-instructions takes place is 

lel~ up to the implementor and the prbperties of his hardware 

and software. Sorne kind of,co-routine activity between the 

constituents would seerA most likely; a, 'call-detach-resume' 

mechanism at the staternent_level could e-iv.e one-tlo-one inter-

leaving of instructions, but woulrl cause d high 'overhead'. 

With a~_ingle processor, the execution orocess rnay be like 

that des~ribed in (17), in a rli8cu~~ion on the Burroughs 

B5700/6700 ser.ies of computers. These machines wo'uld Se-e-m ta 
( 

b~ weIl suited to Aleol 68 Implementation. Their software is 

written in Burroughs Algol, which contains many of the multi­
... 

tasking facilities of PL/l and has provision for semaphor~s 

of the Algol 68 type. Organick (17) says that a program 

designed to he run on a machine with multiprocessors, i.e. a 

solution to a problem that i8 essentially of a parallel 
--

nature, need not have more than one proces~or assigned~~o it. 
1 

A single processor c~n be assigned to serve at several ~sites 

of activity'. First it will executp at one site , th en at 
,.- /" 

another, achieving an apparent concurrency at a cost of a 

slightly longer rûnni~g time. A pro~ram that i8 designed for 

m~ than one processor should regard these pr~cessors as 
......... -~ 

'virtual' or 'pseudo'. The ~irtual processor then _maps its ,,-

'site of activity' ori to the dctual processor wheh it (Jhe 

/ 

~ 

1 

" 
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:, area of the program in which t~e virtual processor 'resides') 

r~ceives'the services of the actual processor~_T~e actual 

processor is thought oflas being 'passed aroùnd among- the 

_ virt.ual_processors ' • . ., 

-- t 

;, 
.... 

-- '-, 

.' 

o 



~\ -

• 

, , 

" , 
El 2 

68 

5,.5 Algori thms. 
1 

The following algorithme aIl use parallel processing . 
techniques. Where c'-tne-o:ri~nfll was in Algol 68 (1 and 2), 

explanations are provided ana.......some minor changes in nomen-
J, , 

<> 

clature are made. Wher~ the original algorithm was not~in 

Algol 68, an Algol 68 version is provid~d. 
-J 

The algorithms have not been executed on any machines. 
" 

1 • Generate and print, Lindsey.and van d~r Meulen, (2). 

2. 

3. 

Cooperating sequential procësses, Algol 68 Report, (1) •. 

Matrix multiplication, opl~i, (32), 

vector~product, Anders~n, (25). 

Vecto~product, Wirth, (26). . , 

q.. 

6. Vector product, Dennis and Van Horn, ()4), 

7. Producer/consumer p.roblem, Wirth, (26). 

8t Matrix addition • 

"-:')9( Matrix multiplication, Wirth', ()5). 

10. Simul~a~eous linear equ~tions. 

11. Evaluation of a polynomial. Murtha, ()9). 

, . 

. \ 
L 

t 
1 1 

'\ 

, 
" 

, , 
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Generate and print algorithm, Lindsey and van der Meulen. 

1 ~ 
An example of a parallel program la given in (2). An' 

explanatory,version of it ie glven below. It is a variation on 
. 1"4 . . \~ 

the 'producer/consumer' problem. There are two parts to the 'par' 

clause and their execution depends on the avalLabillty of items 

to prlnt (they are generated by a procedure at random lntervala) 

and the availabllity of the printer, which taxes a certain fixed .. 
- , 

time to • consume , an item. Items arè-helrl in a,.P..Y.ffer while 

waiting for the printer to become àvailable. The performance ~ 

the pro~ram can not be predicted without knowing,th~ rates of 

production and consumption (the average time to genera~e an item, 

and the tim~ the p~lnter takes to print an item) and the size of 

the buf.:(er. 

(struct item =( 1- a collectism of values 1- \ ) 

proc generate = iteml ~ a routine to generate items at 

int num = 

(llnum] 'item buffera 

). 

int index s =0, i, 

exdexi =0, 

\ bool wC?rklng,=true, , 

.~ l 
- \ 

• printingl =tTue a 

, 
random intervals. The routine 

needs no parameters and returns 

an 'item', which is of the type 

declared aboya. ~ 

~ a constant. ~ 

~ an arrây of items. 'buffer' is 

the array name. Its elemants 

are structures. t 

t a collateral_Qeclaration of 

two initialized counters. t 

~ a<collateral declaration of 

two initialized conditionals. ~ 
"' 

/ 
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~, 

sema full.free. 

, 
free 1 = /num. 

full 1 =/01 

70 

t a collateral decla~ation of two 

semaphores. 

t 'frtte' now refera to a copy o~ 

,... ~ the integer 'num'. - There are 

initially 'num' places empty in 

the butfer. 

par(while working do ~ while 'working' has the value 
~ :.J..-

{down free, 

'true'. repea,t the followinga t 

t decrement the semaphore. If it 

ls already zero thls part of 
~-

the ·par' clause halts. 

index madb num plus 1. ~ Add 1 to a counter lh~'t goes 

fr6m 1 to the size of the 
" 

liI'_g. 
bufter. Then produce an item ~ 

b\dfer (indexl' =ge~~r~te. 
'"-. "'-

t and, put it in the buffer. . 
if t a condition 'no"more ttems' 

has b~en.set (probably in the 

procedure 'generate') 
. 

tnen workingl =false ~ it wilJ._~ause this producer t' 

fil ~ part to terml.nate. lncr-ement t 

up full», ~ the semaphore 'full'. If it was 

while printing do 

.. 
" zero and had caused the 

'consumer' part to be halted 

that part will star~-~p~t 

'down full". 
... 

t This ls the 'consumer' part. 
':J 

if there a~e some items still 

in the buffer, or if production 
~ , 

i ,. 

______ ~J ___________________________________ ~ 
" s 



(down full, 

î 

ia sti.ll going on • thia part 

attempta to start up. Then, 

71 

t if 'full' la already zero, thla 

part halts. The 'critical' nèxt 

part will not be entered. 

exdex modb num plus le 
-"'--

print(bUffer[eXdex]J,.é the next item in the buffer la 
---. 

printingl=worklng 

exj:exdexi 

up free 

) 

) 

) 

.i' .. ~ 

. 
printed. The condition governlng 

the repetition of the 'consumer.' 
• '1.- ""-

part ls that 'printing' has;a .é 
1 

~ value of 'true'. It is true" if 

the condition for the 'producer' 

part ls true (1. e :'''working' la 

• true " or if the re are i tems ~ 

~ left in the buffer. 
~ .. ~ ~ 

if thé 'produceI' part 'was hal ted,t! 

,t! this will restart it at 'do~n fre~ 

, 
The ~hile' c.(!use ends ----- t 

~ The 'par' clause ena-s---._- _ ~ 

~ The program end's • ~ 

, 
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., 

ye 

down 

Flowch~ of algori thm '5.5.1.' 
~,r _,._ 

Geg~tJ · ~ 
-declare 

ini~lize 
A~iliting 

n'~o------~------~--~ 

true? 

up up . 

yes 

down 

free full free .. 
f full 

crltical 

seotionl 

increm.,ent 

indexe 

put.titem in 

se-t wot'1nng 
• " 0 

c9*1C1i tion 

l, 

The critical sections arel 

critical 

sectionl 

Increment 

exdex, ~ 

print item 

from buffer 1 

set printing 

condi tion.' 

' ... ' 1.) putting an item into the buffer!' and 
, , 1 

2) taking an.item l'rom the buffer for printing. 
, 

Access to, the printing routine must be blocke~~{by 'down 

full'), otherwise a buffer place containing an old item (or no 
" 

i t'em) might be accessed. Putting an i tero into the- buffer must 

be controlled (by t down free 1 ), otherw ise a ,buffer place might 
, 

be overlaid before-rts item is printed. 

. , 1 
JI! 
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?J 

5.5.2. Cooperating seguential procesees algorithmJ Algol 68 

Report. 

A parailel aigorithm which uses a new construction ~ .. 
given in (1). The~rogram consists of a paralle1 clause whose 

constituents are calle on a proced~re, éadh ca11 supplying'two 

argfimente to the procedure. One-argument is a procedure, the 

other is~an integer. The higher level procedure consists of a 

parallel clause also, which haB as its c~nstituents a call on 

the procedure passed to it and a recursive calI on itael!, with 

the integer parameter reduced hy one. These recursive calls end , 

when the inte'ger parameter becomes zero. The ~.sul t of this 

construction is ~ create several incarnati~ns of ~he original 
f _ ' 

argument procedur~s. Their execution ls thën governed by various 

semaphores embedded in them. The program is yet another variation 

of the 'producer/consumer' problem. A modified, (some'na~ea 

have been changed), explanatory version of it follofs. The 

construction ls a fruitful one, lending itaelf to other problems 
'" 

(see programs for ve~tor prôduct, matrix addition and ~ 
multiplication, beIow).- .' 

L 

. \ 

, . 

. , 

-------------------~----------------------------~~--~~' . '''; 



.. 
if 
begin 

1 < 

int slots,nproducers,nconsumers. 
" • 

read «slots,nproducers,nconsumers», 

(l.nproducers] file infile, [llnco(l~~ers] file outf~lel 

74 

for i to npro~ueers ~ open (infile[i],skip,inchannel[i]>, 
/ ~ 

for i to neonsumers do open (outfile[i],skip,outchannel[i]), 

modt ru!M ~ [1160,11 132].9..hYJ 
-.;" 

[IIBlotS] ru ~ magazine, 

in! exdex.=l, index •• l. 

~ full,E/O, free./slots, in.=/l, out.-/l, 

proe paracall = (proe (int)p,in! n)l(n~o1par ~p{n),paracall (p,n-l»), 
" 

.-'proc prod uc er = (int i) 1 do (heap ~ leaf 1 

get (infile [i] ,leaf), 

.Q.Q!n free 1 

Q.m!n in, 

magazine [index]. =leaf, 

index modb slots plus l, ,-
!!12. full, 

~ in), 

proc consumer = (int i),do (~ aheet, 

~ full, 

down out, 

'" s~eet J amagaz ine [exdex ] , 

exdex ~ slots plus l, 

!œ. freer 
,... 

, ~ out, 

. pur (outfileJjJ.~heet»1 
par (para'call (producer,npx:oducers) ,paracall (consumer,~è'onsumers) ) 

" 

-------------------~"'"-~.~-------~~----~-- / v /' 

s r 



1 

75 

The final 'par' clause starts, up :the concurrent 

versions of 'paracall', which' in turn initiate parallel versions 

of 'producer' and 'consumer'.~ 

A 'page' ,is a}'} array of charactere. A 'magazine' ie an 

array ot "page' names, which will be accessed.·'Using the 'indices 
- > 

'exdex' and 'index'. The semaphores trulli, 'fr~', 'in' and 
~ 

'out' ~ill_control access to the critical sections in the 
( 

procedures 'producer' and 'éohsumer'. 

The procedure ~paracall' le recureive. It accepts a 

procedure and an integer and generates n incarnations ot the 

procedure which it received, al~in parallel. 

~~ 'Producer' is a statement-type procedure, returnlng no 
~) ., 

value. It is one of the two procedures of which 'paraeall' sets 

up n versions ('oonsum~r' is the other one). lts critical 

section is'between 'down in' and 'up full', 

Each time a 'producer' is created it declares a 'page' 

on the 'heap' and gets data from the correct file tO~ill this 

'page', The 'page' will nôt disappear wh en this versi~ of 

'producer' dies, It will not be accessible through the 

identifier 'leaf'. Instea~, It is asslgned ta a 'ref page' 
\ 7: 

variable. a member ot 'magazine', and will be accessible thrDugh 

it. 

It 'free' and 'in' are not zero, the name of the 'page' ~ 

ls put into the bufter 'magazine', The semaphore 'in' pr~vents 
- t 

the k'th version of"producer' from accessing its critical 

section if somè other ~roducert ls ln its critical section. 
&.. , " 

Otherwise a wrong name of a 'page' would be put into the 

current :'m~azine' slot, Then 1 is added to the remainder of 

'index divided by the number of places in the buffer', 

----------

1 
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~ 
The procedure then allows the next waitlng'version of 

'consumer' access to its,critlcal section byan 'up' operation 

on the sem~re 'full'. 

The procedure 'consumer' runs in parallel with other 

editione of 'producer' and 'consumer'. Each edltion declares 

a local 'page', callad 'sheèt', and if a 'producer' has now 

finished acc~sing its critical se~tion and has se~ the' 

semaphore 'full' by the operation tupi (it may have be~n zero 

and this version ,of 'consumer' halted), and if -some other 

'consumer' le not accessing its critical section (between 
1 

'down out' and 'up free') and thu8 has set the semaphore 'out' 

to zero, then the current edit ion of 'co~um~' gains access 

to its critical section. It fills its local 'sheet' with the 

next'available 'page' (the name is-~btained from the buffer 
If' 

'magazine' and dereferenced). T~e counter 'exdex' is' 

incremented. Like 'index' it ranges from 1 to a maximum of 

'slots', the size of the buffer. 

/ 

Next. a 'producer' is allowed access to ite critical 

section (where it will store into the buffer 'em') by 

the operation 'up' on the semaph~ore 'free', 'f ee' May have ,~ 
been.~ero when a 'producer' downed it, and anot er 'consumer' 

~ .. d"";"_ _, 

is allowed access to its critical section by the 'up' 

operation on the s~maphore 'out'. 
{ 

After the critical section of the procedure 'consumer' 

ie left a 'page' ie printed on the proper file. 

The main~statemen~ of the program ie the final parallel 

plause, which causes the collateral ~laboration of a group of 
l y 
-'clauses (the two calle of the r~cursive procedure 'paracall'), 

) forcing the creation of asy~chronoUs activity (namely the 
,.1> 

.' 

__________________ ~o~ __________________________ J._~ __________ m~-. 
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concurrent execution of these clauses). Control of the progress 
", 

of the clauses lB 'then achLeved througn the use of semaphores. -

1 

, '. 

J \ 

1 , 

.. 

J 

, . 
" • 4 

, .. 

1 :-

., c'C}. 
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c ).5.). Matrix multipllcatiQn algorithm, Opler. 

Opler (J2) propose~ an.algorithm (given ln part ~~) 

for the multiplicatlon of G1at order matrices using 'para~lel' 

Fôr-e-ran. Hia construct.;i.on was basad on the assumption of a 

5-process'or machlne. An AJ.go~ ~~ algqri thm wi·th the same 
._--'~' 

assumption ls' given 'b-elow ~ 'l'he. rl.rat ~o r~~s of the resul t 
e.---------- ---"------ - " ~ J ~ ~ f = ..... (lt,.'1' ....... ,...... ....... <"~ ---,~=--- ----- - ---' -~------

'~, 

" 

Ç> 

"' 

" 

• 1 

matrlx are done using 5 -inéarnat1ons or, the' procedure 'mUlt', 

us~ng the 5 processore.' The G1at ,ro~ must,be Oone separately. 

This makes the-algorithm ~l~sy and a,better o~e 
~,-

matrix mUltipI~ation Is given in 5.5 •. 9-~ 

. 
for a general 

Cint, IDI=20,nl=" -, 
(1,21,il~1)real a,b,el=U.uI 

-~ , proe mat=lptoclint,int) p,int eft), ----- ,- .~ 

(~)O,~lPle,t),mat(p;~~l~t-l)))1 

'«proc mui t=( int· s , v) 1 
. ." ~ .. 

.... 
'" for 1 from a by 5 to V.-:.do 

" 
~ '--,- ,-

o -,..--..... 

II' 9 
(for j to 21 do 

-....-

(fo~ k to 21 do 

l e [~. j] ; = e [i, J] + a [ i, k] * b (k;j] n',. 
read II a, b) ) r 

. " mat l mui t, n, Pl) 1 

, 

. - ~ .~ separate caIeU!atlon i - r 0 r j t 0 21 do 

lreal c21jl=O.Or ~ lS néededofor the 21st 

~ for k tq 21 do 

(a21JI= e~lJ + ~tzl,kl 

p 

". , . 

o 

,/ 



<, 

,ç 
• 

,.. , 

'mult' would try to:aet the ~cxxj' to zero and de~tr~y th~ 
1 

contents "for another incarnatlon. 'llhis c,ould-- be avoided d!ûy 

, ' 

a ________ " ___ ~~ _______ ~__ _ ___ ___ 

by using 'heap' storage. 
t " 

The number of 'elapsed' multiplications for this , 

algQri thm is the sarne as that for opler',s, t764 + (for the 
,~-~ - - - - ~- -, - - --- - -,-------

__ ~a~"t;~~~~) __ ~_4_.L = __ 240 5. 
"-- - ------,-----------

-

Note'that procedure 'mat' coùld be writtenl 

~ mat ,= (int e,t). <e,o!par(muit<e,t) ,mat(~ult,e-lit-l) Pl 
, - ( 

and the calI changed to.' - 1 

mat( n,m) J 

The "advantage of transmi tting the proceduré 4mult' as a 

~ara;;'ter' 'i~.; .. ~hat i; allows ~or a more general fo~ of ", 

construètion. By this means ~the sec,ond level proce<i'ure May 
t 

invoU,diffèrent procedures if needed (see 5 • .5.2.). The 

, " , f' ' • 

\ 
, . 

, . 
( 

\, 

fJ 

/' 
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b 
5.5.4 • Vector product algorithFh Anderson. 

An Algol 68 program e'quivalent to Anderéon-!s {~?l 

vector product, given in part 4;3. follows. ~ 

(int n, 

read (n) 1 -., 
int SIca, 

-;--r-e r int tl-, t2r--- -- -- -- - If -

[.l~n]int a,bl" 

read ( (a, b) ) , 
\ 

par( (real sl. i1=O, 

for i to n overb 2 do 
"-

(s 1 r:: S 1 + a [i] * b[ i ] ) 1 

t1c= heap ~'=Sl), 

(real a2. =0, 

for j ..... from n ove rh 2 "~ 1 to n do 

( s 2 1:: S 2 + a [j 1 * br j] ) 1 

t2.= ~ ~J=S2»r, 

Sl= tl + t21 

print(s» , 

.' 

'~eap' generates storage outside of any~range 

global program variables) but a 'heap' 

variable càn be açcessed outsige "~ range in which it is 
------declared only via another identlfier whi~îll.s- a -'-refere~ce to' 

" .. 
(i.e. a name of) the mode of the variabl9 declared on the 

heap. In the above, the 't'identifiera. which are 'ref int' 

mode, i.e. the namea of 'ints', ~re used. HII this progra~ 

really needs though are th~ normal ! global' variables. The 

use of the heap can be avoided (see the next algorithm). ' 

-' -



; 

1 

--- ~ 

'. 

--:--------
- . 

5.5.5. Vec~~r product algorithml, W1rth. 

Wil':t,h's (26) version of a vector product (given in 

part 4.j) is' simpler th~ Anderson'g. lt rern~es the Bub­

totals to thé outside of the "parallel portion. The sarne 
-'~ 

algoritï1m--in- -Algoi 6ti i6 thUâ~ similaor to the previou8 one, 
_. 

wit};\Ollt the-~SjLoi' heap storage: 

read(n) r 

int ~1=O.B11=O,s21=O, 

III n 1 i nt a, b 1 

read ( ( a • b) ) , 

par(f9r i to n -
(8ll=e1-+ 

" , 
'" ~ 

for j from -
r (a2.= e2 + 

~ .. SI= sl + 8~J 
l' 

print(s)) 

\ 

) 

0lf!rb 2 do 

a[i) '*"~7 
\ 

n overb 2 plus 

afj] ~ b[j]», 

1 to n do 

\ 

\ 

.. 

81 
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5.5.6. Vector product algorithm, Dennis and Van Horn. 

Dennis a~Vân Hornle !fork' program (J4), given in 
c.....JlI"!/O'T-rI~ >: .. ,.-~"--:~ • f 

an Algol 6~ equivalent, given ~~low. Instead 
" '. part ~.), has 

- ~. 

of the 1 lock' :t:_~ctiorl,--a semaphore la used. The 'par' 

clause ie the equ~lent of the forking process. -Heap use 
• 0 

" -------- ---- -ls]fot nècessary and wlWanted referenees to --'the-"tEYtal---~-~~-

\ 

'. 

-
are loc~e~ out-Gy the 'down l an~ tupi operations on the 

semaphore. A local sub-total ' .... equivalent to the 'private , 
c 

teal x' in the original algor~thm, ls introduced and the 

grand total ~~'update~ by each of the n incarnations of 
--'~ - "--, " 

'substance'. In Bach Xth yersion of 'substance' a local 

x
k 

holds the product of twn elements while the 'down' 

operation locks out a±l references to 's' until the kth 

product has bèen safe~y added •. 
~ .. , 

tint nl 

read( n) 1 

[1. n 1 real a, ~I. 

real s 1 =0. 0 1 -

sema W=/l. 

::«a,~~--
, -~ 

proc vector = (proc (int) p, .int k). 
-(JJ- - Q 

(k)O\~(p(k)tVector(p,k-l»)' 

proc substance = l int i). 
~- - '. 

~ 

(real XI -" 

r.\.. 
i 

, 
XI= a[i] * b [~ll 

~;'> ,J"'down"w; 0" 

r , , 
''- ~ Sl= s-+ XI 

up, w), 

" . 

• 

, 
, < 

vector(substance,n)1 

prinl(s» 

______________________ 'L,l _______ ' __ -_"~--~-~~---.-'----------------------------------_._: __ ~ 
'" 
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5.5.7. Produeer/cons~er algorithm, Wir.th. 

The simple producer/eonsumer program glven by Wirth 

(26) and shown in part 4.) la given below as an Algol 68 
, 

program. lt ia a simplification of the kirirl of problem 
, ., 

shown earlïer in the examples 5.5.1 and 5.5.2. 
------~--f.( ihn~t~n-;-,----"""------ ----

,1 

7-- ~~---- ----- ~---____ _ 

, , 

read(n) J 

([lin] real buffer, 

serna f=/O. e=/n, 

bool worktobedonea= truet 

ite~tobeconsumedl~ trueJ -
~ produce == ~ sorne procedure to ,produee items, 

proe eonsUJ1Ïe = 
proe puta = 

"~ J 

proc geta = 

.. 

\ ,.-
in thia caset real numbers ~ 

~ sorne procedure to consume items~ 
," . 

~ ~e ~?utine to put items in the 

buffer. .__- . - t 

t sorne routine to get items from 

the buf,fer. 

For,examples of such procedures 

in a producer/eons~er program .. -

s.~~ 5.5.1 '. ànd -5.5. 2>-'P-hl-s '" 

example is merely to show the" 

nature of thè 'par' clau~e ~hen 

used as a solution ta this kind 
. 

of problem. t-
par(whïle worktobed~n~ do / 

'\ 

, . 
(pro~uce, ~. e, puta, up f). 

while itemstobe~sumed~do 

(doWh-'f' g~ta, up",-,' cons~e»» 
- ~. 1 

.. 

r ~ ~ 
.F ••• s •• ~~~~~~~===============,.~7~--L.,--------~--____________ 0_' 



. ' 

.J. 

; 
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o 

B4 

5.5.8~ Matrix addition algorithme 
i ., 

,There are twelve versions of the routine fç>r' the 

opérator '+' in the 'standard prelude', the correct one 
r 
being chosen accord1ng to the modes of the ope rands of 

'+' when lt is used in a formula. These twelve do not 

include a version for matrIX addition but one ~s suggetted 

<in (2), lor-tJ.se in 

Zl= x + yi 

where' x,y, and Z are declared as real matrices .. lt lai 

.. 
.J, 
'~ • 

\ 

( ~ [ 11 , 11 ] real al 
,,-

ref[111 upb a,ll2 upb a]real b) 

:,:!T ' ] reall - ~ two matrix mimes are 

s uPP 1 ied and the namé 
/ \ 

of a màtrix ls yielded • 

The two matrices are of 

any dimension but are 

the same size. The one 

whosa name ois yielded 

will be creat~ on the 

heap-;--..... -

(int m=l_upb a,n=G upb al 

t local variableè, made 

°equal to the row 'and~ 

j 

èolumn size of 'a 1 ~ 

heap[llm,lln]~ SI 

# tha array whoae,name 

iao yielded. 

for j to n do "-.. 

';" - 1 /, 
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~ [ t j] means for afl 

lower 1ndicea (aee 

,below). Tnen the name 

is returned. ln an 

ase i~ent z 1 =x. + y, : ~-)~r 

'z' becomea s an 

further refe~es,to 

'z" in the program a~ , 

references to "a t • ~ 
, , 

sb 

Although this routine containa collateraI1t~" it ts 

baal~ally a seriaI calculation. A 'parallel' âlgorithm 

for the aame opera~n followa. (The '+' ~~rator that 
=--~~~ 

appears w1thin the ~outine ia the standard prelude one for 
" c 

real operande). 

lint m,nI 

, , 

readl{m,n», 

l[l.m;llnl ~ a,b,cl 

readpa, b»1 1 
proc addmat = (proc{int) p,int k). 
-----.1 _ _ -

, '. 

(k)olpar{p(k),addmat(p,k-l»1 

proc ad{Qup =~ ~ ~ j) 1 

~l . , j] 1 = a[ ,j J + b[ , j] 1 ct 

,addrnat(addup, n) 1 

pll'i~t ( (a, b, c J ) ) ) 
\ ! 

Note that 

, c [ ,j J 1 ~ a[ "/ j] + bL ,j] 
4beane 

'. 

'. 
~' 

, 
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C[l,j].= a[l,jl + b[l,j] ~._-~-

t; C(2,jJ.= a[2, j] + b[Z,j] 

etc,t 

c[m,j]l= alm,j] + b[ m ~ j ] ~ 

, ,{' 

Thus th~ ~routines given above have the effect of adding 
~ j. -\ 

elemente colUïnn. ,by:: colunm, !rom ï"t-gl'lt-to :teft,- from the n . 
'. 

column to the first. The elapsed time is for.rn additions, 

there are n of these done concurrel')tly, instëad of seriallf,o 

where the time taken would be for m x n aaditlons. 

'1'0 do a matrix s ... ubtractioh in"the sarne prograrn i t 
1 

would be necessary to lnclude a proce?ure 

proc s \.!b = (int j) 1 C ( ,j] 1 ~ a[ , j J 
and a calI , 

addmat(sub,n) , 
" , 

Since 'adama~' receives a procèdure as a pararneter it 
J 

can invoke parallel editions of 'addup' or ·sub'. 

j .-'-----

• . :l 

/ 

.. 

• 
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5.5.9. M!trix multipîlcatio~ algorithm, Wirth. 

Wrrth (35) givea an algorit~ for matrix 

multip1ication u~ing Algol 60 wlth'an 'and' operation 

to cause cohcurrent execution of routines. It ié given 
..... l" • 

here ~ith an ~lgol 68 equivalent • 
./ 
-~-~------

ihteger ·array a ( 11 m,lI m) , b( 1 : m .11 h) , c ( la h, 11 n) 1 
_--'~__ ....... 0_....;. 

procedure pro<1uct( i, j h. value ,.i, j, integer 1. j, 

begln lnteger kr-real S'T"'1ilI;:O 1 

for kl=l step 1 until h do 

St= S + b(i,k) * c(k,j). 

a( 1 t j) 1 =s 

end; 
" . procedure cOlumn(l,j)1 value l,j; integer l,j, 

, \ 

.~.--

product(i,j) a~d if j)l then column(i,j-l), --
procedure row(i), value i, integer i, , 

column(i,n) and if i)l then' row(i-l); 
'\ 

row(m) 1 ~. 
()o .' 

In th~s aigorithm, for an (m x n) = (m x h)(h x n) 

prod~ct, the, calI 'ro~(m)' invokes' 

column{m,n),column(m-l,n), ••• ,column(l,n) 

and each· ca1.1 on, 'column' involces 

produpt( ,n),product( ,n-l), ••• ,pro~uc~( ,1) 

The result la m x, n concurrent elaborations of 'product' 

eac'b of whicl') calcula tes one element of matrix D'a' py the 

mul tip1ication , 
b(l,k) * c(k,j) 

",' 

where k goes from 1 tO!. If there a.re.,..m x n proc'ess1.ng 
,. .~ 

elements avail~ble, then in each urtlt would 'be done, 

... 0 >7 concurrently, :h' multiplications, 'h'~additions and' th' r "î ... 

• • 

, 

' . 

. , 



i~ 
1 

o 

-
J 

\ 

bas81gn~tions, for an·elapsed time of 
... 

h(time for a multiplicatiori + time for an a?d + time tor 

an assignation). 

The following Algol- 6tl algorithm performs the matrix 

multiplication in the same elapsed time. ~ 

i • 

re ad ( \ m , n , h) ) , 
\'J 

( 1 t m,li n 1 int a, [ l t m, 11 hl int b, [11 h, 1 in] irit CI 
," .. 

proc pr?duct = llnt i, j) 1 1). 1 

proc column = 

proe row = 

read ( ( b ,c ) ) , 

row(m) 1 

print (a) ) 

(real SI=O.O, 

for k to h do 

(S 1 =, S + b [i, k 1 * c [k ,-j }JI 

a b i , j] 1 =s ) 1 
J 

(proctint,int) p,int i,J)1 

(j>olpar(p(i,j),Column(p,i,j-l»)' 
• 

(int i)1 
-, ( .... 1 (i)O par(column product,~,n),rpw(i-l»)' 

~f 
The calI on 'row' invokes 'pa:rall,el ecH tions of 'column', 

recursivelYt with 'm' decreasing to l, and each' dall on 
D. 1 

'co~umn;' invokes parallel editions of 'produc~', aiso 

recursiveIy, with 'n: decre~sinB to 1. ~he result is m x n 

concurrerît executions of 'product', as ,in' W irth '..;s algorl thml/'. 
I!I'-

• J 

\ 

-~--~~'~~-----~----~Q--------~--~~~ 
r "J 
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5~S.10. Simultane~u8~Lin~h.Eguation algorithme 

Parallel operations are ueed below for the solution of 
" 

n eimultaneou8 linear equations by reduction to a triangular 

matrix and ~back' eubstitution. ;Two parte of the algorithm U!Se 
, ~ 

par~~lel oper~tionsl the concurrent reduction of rows by 

_ l!Iu~~raction frcm their element~ of the pivot times the 

{) 

corresponding 'JIllnimum ~ rQY,t ~l~m..,~t,,-, and' the interchan'ge "of 
~ 

two rows by concurrently interchanging aIl their elemente. The 
, 

calculation of the ropts, py procedure 'backsub', can not be 
7 

done in parallel becauee each iteration needs, as input to it, 

the root found in!the previous iteration. 

begin" int n, 
~ 

read(n) 1 

[l.n,lln] int a, [lin} int b, [lin] ~ roots, 

.~nt nn,min,t, 

reduee = (proc(int) z,int f)1 
1 

li f>O then E!L<'z(f),reduce(z,f-&» .. 
~ rowelements = (i~t w}r begin 

~ 
-~-, 

" 

1 

int piv?t~=a(w,nnl, overb min, 

if. w=t then for j 12 nn 22' 

fi 

if a[w,j] fi 0 then 

+, j] minus pivot*a[ t, j] 
fir 

b[W] ini~ivot * b [t] . 

Il proe swapeôl = ft no parameters ~ l' 
,1 

be&in int CI=btnnj, b[nn],,,= b[tl. b[tJ .. ~end' 
a 

proc swap = (proc(lnt) r,int 4 k)1 

'( 
i 

, 1 
.; 
1 

l' 

( 

._ ..... e.---::::-_-.:... _____ ~i:.!f~k>~O~t~h~e,Mn~p~ar (~(_~) ,~~ap (r, k-1) ) fi, , . " 
-~, ...... , ---.' ---:-----.- -~1-·-=---~ ~_ ~-_. -- -' ----.. 

,. \., . 

---~-~~~----~~~------------~~'--~ .... ;! 'rI,) ~ 
S ? -

. , 
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change = (int h), begin int q.= a(nn,h]r 

(1" 
a[nn.h)'= ~[t.h]' a[t.h]'= q 

. 
ent;l, 

" 
, 

backe-ub = i no parameters ~ 1 , 

begd.n 'rèal surn, for: i to n do 

, " 
begin surns= b[i]' 

for s .!.Q. 1-1 do begln 

surn minus a[i,s]* roots[s] 

end, 

end, 

re ad ( (a " b) ) , 

nnt = il 11' 

<1 

roots li]a = sum 1 a [i, i] 

/ 
while nn> 2 do begin nn minus 1, .. 

bb. mins= mai int,~ the largest integer 

nn':~do begin if a[i,nn];6 0 

--." and ~ a[i,nn] < min 

<>' ' 

the; begin min,=a[i,nn], 

tl=} , 

,'>. 

" ~,-,'-

" 

reduee(rowelements,nn); 

for i to nn do begin if il
1 

t ~ 

if a[ i.nnJ ~ Q,,';,hen 

.- begin swap (change, i) ",' 

~ swapco1, goto bb, 
J._ 

.. 

o 

-------~----~. ------'----

<J 

: ' 

fi 
a ' 

.0 .. ' !!!9.' fi ,0"" ) 

~---~~------------.-/ , r I~ 

1 -. 



~ 

e 
~ 

.. 

,/ 

e' 

,/ 

'swapcol, " 

swap (chlinge, nn) 

backsub; 

print ( roots ) 

o 

Considering arithmetic operations only, the algorithm, in 
f 

n cQnçurrent ~d\ tions of 'rowelements', has, in each 

1) a division, to find the 'pivot'; 
. \". 
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, ..... 
, 2) n subtractions--and n multiplications, to reduce the last' 

Q - - ~ 
'. element ih each row to' zero.and lU the 'm~n' row to 11 

, i 

3) a subtraction and a multip.L-ication, to'reduce the <'b' elem~nts. 
cp 

This gives a total of 2n + J arithmetic operations. The 
a - " 

operations 1 to J above are rep~ated n-1 times giving a total of 

\ 
.\ d .' , 

r'. - n-1 
! 

l ' .' ! if f(k) where f (k)=ck + d :), 
J 

k=l (' 

rr 
/which is of the 

2 • • 
order o~~n operatl~ns. In addition.;,.t~e • 

calculation of the root.s, done éerially.; takes n . vis ions and 
• 1 r ' 

n2/2 subtraetions and n21? multiplications. The tot 

arithmetic operations for a serial algorithm wOlJ,ld be 0 

order of n3 (the n concurrent etaboration~ of 'rowelements '. would 

?e ,seriaI, thus mul tiplying the ~~ber of op~rations b~ ~ This 

le to be expected, from the generalization that with n pro~rs , . . 
~e tim~ taken for an execution done in parallel should~be lin 

. 

- \ 
( 

... -'-~ 

... -. ~"-, ___ ~ __ il .. 

time that it takes. when done .seri~lly. _f' .. the • .,. 
r'\ 

~ 
1 

'-

. • ~ 

, 
---.. -:.-. ~ ~ltM.,; 

li 

..... , 
, .... -
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5.5.11 • .pol:(nomial evaluation algori thm,' 'lVlurtha.-
---! Mùrtha (J9) considera ttte evaluation of a , 

POlyn~m~al of nth ~de~reel 

p{x) :z. aO +/a1x + .' •• +' 2 n X
n

' 

by evaluating 
CI • 

br = aio+ xb i +1 , '1 

for i = n.n-i\n-4:!, • .-.,0, with bn = an'_and bO '= p(x) • 

This gives the'nesting - ~ 
1 

P{x) 1: .: .x(x(an(lt) +' à ) +J a .) + ••• , 
n-l "n-2 ' t • 

t 1 ~ .. -

He point~t that thisoneedâ n mult1p~ications and n 

~ addtt.fons and ,,;~ince each bi needs to use ,-lii_l the 

evaluation ie stric~ly ~equential. He then~outline~_a 

~ par~llel algorlthm that UB~S k proceBBors to evaluate 
_ k 

b i - ai + x bi;:Jt ~ 

for i = 0 t ••• t k-l ~ Flrst' bi·'is ,'calculated for i = k, 
l , _,~ 

••• , n-k (also in parallel). 9The terms fr,Qm n-k+l to n 

are all 
\ ' , 

b i = ai 

and the flnallPOlynOmial to be evaluate~,l~ 

p(x) b O ~ b~ t .t. + bk~lxk-l 
- , .. ~........ ~ 

An Algol 6H algorithm to do this, ~~ven k 

~process~~s ,and for large n l>jk). fol~~wBI 

- ... '" l 1 
r 

.­
" 

.-

" o 

,~ 
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(int n,kl 

read( (w, kJ) 1 
.. . 
'- '" (real SUMI=U.O,x,xtok, 

bool switc~l=talsel 

[01 n] rCl!al a, bi 

read( (x,a» 1· 
- , 

, 
\ 

proc,poly = (proç(int,int) p, int U,Z)I - - ""'-- .......... 

• 

".1'" (z>=olparlp(u,z),POly(p,l.l'.Z;;'!"')),' ' 

proc calc c (int s,m). 

,( int ta 
, . 

-4' tic S + ml 

xtokl:: xtka 

l09Pl.:. -for i frt n-k+l to n ~- b[i} = a[ 1}', 

loop~1 !.5!!: v trom n-2*k+l by -k to 0 do 

(poly(calc,v,k-l), ~ 

swi tch 1 =( v'f0N. v-k)<?».r ~ in case v does 

reach zero. 

bzerol lSWitch~CalC(O,O» J. ~ if swi tch le on -- .... 

'. . .' 

not 

~ 

do 

... 

final calc for b(O),t 

loopJt for w from 0 ta k~l do 

(sUJJÎ plue (btW]* x1w»J 
print(sum» ) 

They are simpjy the corresponding a(1)"s.. \ 
, 

100J?2 calculates b(i)-: a(i) + Xkb\l+k). Each"iteration 

.. 

. 
0 

\ 

invokes 'poly' wnich in turn sets up ·calc·, This 

gives k concurrent executions o! b{i) cali) + Xkb{i~~} 
. ,. 

• 

" 

./ 



...... 

! 

--------

1 
9~ " 

, 1 

for-bli .. ~ 'e in groups of k. l!:.g', for n = ~.k -= J 
f , 

~ ... 
' ..... " '.-

bÇijr, bl 7) _ b(6) 
\- --",,- are done io loopl ~ 

"'q ... ~ • --~ ~ 

;:'. 

, .. 
"'bf5), b(4) ,hl) are done in parallel, th~ '. " [ . 
b( G) ,.b"ll ) , b( 0) are done in paraliei" ~ 

'" ...,., 
loop~ ~alculates the polynomial 

1 1 
~. , 

1 J 1 pl~ ;f'~~b( Ir') + b( l)x + 'ft- + b( k-l )xk - 1 
... ~ 1 J <'\_ ~ _ 

for A.:l .... ti, k = :3 this. lB !;l 

• . J 
PlJS~;' .~.b('O) + b{l)X, + bO~)X~ 

'f • ~ 
Similarly,·for n = 100, K =25 

loopl gets b(l) f-o~ 
1 

loop'2 gats b(1) for 
, 

- ---. , first bl 'l5J . to 

. . 
i 1: 76, ••• , 100 (/: a(1) for these .... Ij~1 

• 
d 

i ~.7 . ..5_L_~. •• l in three i terati-onsl 

--<;. - • 

b(yl) in' parallel 

then b(50) to b(2OÛ 1n-parallel 
• 

) 

. 
then b(G5} to b(l) in parallel. 

• • 
bzéro then calculates b(O) by oalling calolo,Q). 

loopJ then calèula~es' 

p(x) = b{U) + b"{1}x + ••• + b(l4)x24 

-
ln, t,is algori thm there are rv'k- in'lj)catiollS of 'poly'._ 

- and each resul ts in parallel, edi tiops of t caic'. There is 

an extra.'calc' if 'bzero' la used. J:!;ach editio~of 'cale' , , 
results' in 1 addition a!ld 1 mUit,ipll.Cation, g1ving a tota~ 

of n(k additions and n,ik multfPlicatlons, The final summi~ 

takes an additional k multiplications and k addltions. 

" 

1 



,. 
,,--.. 

-[} 
~ 

T 

."' 

" 

j , 

6. Conc':1us.lons. 

CQllateral elaboratlon in Algol be can lead, ev~n 

w~th~~t multiprocesaing facilities, to more efficient 
, 

object programs, by givi~g ~he compller ~ltèr more 
. 

freedom. and to more free~flowing Source programs by 

allowing the pI:.ogrammer ~reater freedom' 01 expression .' - , , 
ln his statements. 

The parallel facixitles in the*languàge. are, as 
"'" 

stated in li). ~ttrestricted to the es·s.entials in view 
li 

of the none-t6o-advanced state of the~art ... It would 
\ -, 

seern that ~ithout the deve1opm~ of more ge~ral 
- r -; • .. . 

purpose 'n-processor e~ement machines, that parallelism 
, ' 

will be restrlcted. lts usefulness will depend o~ the 

ability of the programmer to construct simple algorithms. 

Th~ te~Ptation wil.l be to make the constructions· of the 

reburslve type, to generate as Many incarnations of a 
1 

process 

sltorage 
, 

• 1 

, ~erial, 

'-' , 

às possible. But this will be expensive in 

~d. without n(processors. ;111 be slower th~n 
iterative exec~ion. Moreover, the essence of 

an algorlthrn will be difficult to cornmunicate when 

several processes-are recursively generating paral1el 
.. ,4 

versions and these have s~maphores in them caus.ing 

halting and restarting. It ià easy to introduce the use 

of parallelism into the solution of Many problems, but 

<;] 1 l' , even when paraI e lsrn le the natural way to express the 
, " 

solution it i~ nev~f really necessary to parallelizel 

the solution·c~n ~aye be arr.ived at seria1Iy and 

iterativeIy. 

tparallel proceseirig i,s not 'the wave of the future' 

, 

\' 
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... 

• 
but it ls an,elegant way' of exec~ting solutions to' , 

- ' - -- .. 
probl~~~~hose final results reptesent ~~ converglng 

.. ft Cl' !,.o-.. f 

of severaI irldepend!~ ~alCulati~n~ When more 

than one proceBSO~ 18 available the lB then 
\ 

accompanied by a gain in e~riciency as hrough a 

decrease in el,sed .e!tie. l. 

-- . \ 

4 1 
1 

, .. ~--

, 

\ 

.(, \ 

b "" : ' "-

'. 
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