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In the past decade, the number of malware variants has increased rapidly. Many researchers have proposed to detect malware
using intelligent techniques, such as Machine Learning (ML) and Deep Learning (DL), which have high accuracy and precision.
These methods, however, sufer from being opaque in the decision-making process. Therefore, we need Artiicial Intelligence
(AI)-based models to be explainable, interpretable, and transparent to be reliable and trustworthy. In this survey, we reviewed
articles related to Explainable AI (XAI) and their application to the signiicant scope of malware detection. The article
encompasses a comprehensive examination of various XAI algorithms employed in malware analysis. Moreover, we have
addressed the characteristics, challenges, and requirements in malware analysis that cannot be accommodated by standard
XAI methods. We discussed that even though Explainable Malware Detection (EMD) models provide explainability, they make
an AI-based model more vulnerable to adversarial attacks. We also propose a framework that assigns a level of explainability
to each XAI malware analysis model, based on the security features involved in each method. In summary, the proposed
project focuses on combining XAI and malware analysis to apply XAI models for scrutinizing the opaque nature of AI systems
and their applications to malware analysis.

CCS Concepts: · Security and privacy → Malware and its mitigation; · Computing methodologies → Artiicial

intelligence.
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1 Introduction

Today, many critical infrastructures in our society are connected to the Internet to reduce operating costs or
simplify control. These cyber-physical systems are susceptible to various vulnerabilities that could be exploited
by adversaries by injecting malware and conducting malicious activities, such as information theft and ransom
collection [3].
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Importance of the topic: Cybersecurity has been enhanced using AI in many remarkable ways, including
malware detection [53, 74], code similarity [24], intrusion detection [92], attack prediction [130], and digital
forensics [48]. Detecting malicious or suspicious activity in time may prevent signiicant loss. As these tasks
are crucial, the analytical model should be accurate and transparent. When a Portable Executable (PE) ile is
identiied as malware, it is essential to specify which characteristics, referred to as low-level explanations, or
which types of malicious activities, referred to as high-level explanations, contributed to this determination.

To construct a malware detection model, we need to reverse engineer PE iles and analyze the resulting
assembly code. The diferent paradigms that have been proposed for malware analysis fall into three main
categories: Static, Dynamic, and Hybrid approaches that can be signature-based [83, 149], behavior-based [38, 66],
data low graphs [134, 135, 151], control low graphs (CFG) [4, 15, 25, 69], OpCode oriented [37], Grayscale
image analysis [64, 125], and Executable and Linkable Format (ELF) header analysis [14, 112], etc. However,
all the studies mentioned have their shortcomings, e.g., signature-based models require frequent updates and
behavior-oriented methods rely on predeined malicious activities. Furthermore, except for a few, previous studies
failed to be robust and against code obfuscation and the rapidly growing malware variants [141].

The extension of the computational power of computers and the development of various DL approaches have
made the analysis of security data easier. Malware detection using DL has already been noticeably explored. For
instance, D’Angelo et al.[28] presented an integration of transfer learning and federated learning approaches to
address regression issues. The paper demonstrates a signiicant advancement in malware detection for IoT devices
by combining privacy preservation with high accuracy and eiciency, overcoming the limitations of existing
federated learning methods. Similarly,[131] conducted a review of malicious traic analysis. Moreover, intrusion
detection using a DL-based model has been presented in [63], [120], and [75]. Convolutional Neural Networks
(CNNs) have also been used in intrusion detection [147]. The authors have developed a CNN architecture to
detect intrusion and malicious activity on the Web. Similarly, the study employed an extended version of CNN
named Deep CNN or DCNN to classify the malware family [137]. Another advanced version of Artiicial Neural
Networks (ANNs) known as Autoencoder has been used in feature selection and other malware analysis-related
tasks [145].

Diferent DL algorithms have also been used in other types of analysis, such as NLP-based malware detection,
including, but not limited to, Recurrent Neural Networks (RNNs), e.g., Gated recurrent units (GRUs) [140],
Long Short-Term Memory (LSTM) [47], and Bi-LSTM [17]. Although the above-mentioned state-of-the-art DL
algorithms have shown their signiicance in malware detection in terms of precision and accuracy, they are still
opaque in explaining the reason why a decision was made.
In 2016, the Defense Advanced Research Projects Agency (DARPA)1 came up with a new AI concept named

Explainable AI (XAI), to reduce the black-boxing of Deep Learning (DL) models and strengthen transparency,
interpretability and explainability. With the conception of XAI, many researchers started to work on the new
dimension of explainable models in diferent ields, including malware detection because it helps stakeholders
understand and trust the decisions made by AI systems. Transparency in XAI ensures that these systems can be
audited and validated, addressing potential biases and errors in AI-driven decisions. This is crucial in security
contexts where the reasons behind labeling software or activities as malicious must be clear and justiiable.
We conducted a comprehensive literature survey on XAI methods for malware analysis (refer to Table 1)

and identiied several areas where further research could be beneicial. Speciically, areas such as XAI model
evaluation, comparative analysis of classiication methods, used datasets, and adversarial attacks as limitations,
are crucial for explaining and exposing the inadequacies of traditional XAI methods in efectively addressing
EMD. Given the unique and complex nature of malware threats, traditional methods, while useful, fall short in
capturing the multi-dimensional and evasive characteristics of malware. This limitation highlights the need for the

1https://www.darpa.mil/program/explainable-artiicial-intelligence
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development of new XAI approaches or the adaptation of existing ones to better handle the intricacies of malware
code and behavior. Moreover, establishing robust, objective metrics for evaluating the interpretability of malware
detection models is critical to advancing the ield. Enhancing the resilience of these models against adversarial
attacks is also crucial for maintaining the integrity and reliability of malware analyses. Addressing these core
challenges will not only improve model interpretability but also ensure that such interpretations are trustworthy
and practical in real-world scenarios. Moreover, the method of communication should change according to the
underlying security data, so it can convey relevant information as a true means of representation to the end user.
Various models proposed by researchers are already inspired by Natural Language Processing (NLP) or image
recognition, and although they are eicient for textual/image data, they need to be highly customized for this
type of security data.

Malware analysts need to comprehend the features and malicious behaviors behind a prediction for a particular
malware family. This way, they can later adjust the malware detection systems to be able to identify similar
patterns and anomalies as malware [13].
This article bridges the gap between XAI and malware detection by reviewing and enriching recent studies

published by top publishers. This study aims to address the following research questions: 1) How can XAI improve
transparency and trust in malware detection systems? (Section 4) 2) What are the current state-of-the-art XAI
methods used in malware analysis, and how efective are they? (Section 4.3) 3) What are the challenges and
limitations of these methods, and how can they be overcome? (Sections 5.2, 5.4, 5.5) 4) What are the potential
ways of communication for malware analysts and cybersecurity stakeholders? (Section 5.3)

This work also demonstrates the model construction of malware detection and classiication using XAI. XAI
ensures to overcome the black-box nature of DL algorithms and provide transparency, enhanced interpretability,
and explainability to the deep models, along with probability calculation for each prediction. In this survey, we
addressed XAI for malware analysis and explored all the existing endeavors in this domain, with their challenges
and limitations. The contributions of this review paper are as follows:

• We conducted a review of XAI methods for malware analysis published in top journals between 2016 and
2023, evaluating their metrics, discriminating power, and interpretability (Section 4.3, 4.4).

• We presented several possible solutions that XAI ofers for the problems related to malware detection and
discuss adversarial attacks, as a limitation of some XAI models (Section 5.2, 5.4, 5.5).

• We identiied a lack of generalization in evaluating XAI models for malware analysis and proposed a metric
for evaluating the explainability of XAI models at diferent levels of explanations (Section 5.1.2).

• We proposed a framework for evaluating the explainability of XAI models for malware analysis based on
diferent levels of explanations and used a taxonomy to assess how understandable the explanations are.
We also applied this taxonomy to previous studies and discuss their communication level (Section 5.3).

The structure of the article is organized as follows: Section 2 presents an all-encompassing review of the
relevant literature and contextual background. Section 3 covers malware analysis, including both traditional and
automated techniques employing traditional ML or DL approaches, along with a thorough discussion of datasets.
In Section 4, the XAI methods for malware analysis are discussed in detail. Section 5 discusses the challenges.
Finally, Section 6 concludes the article, highlighting future research avenues.

2 Related survey articles

There has been a considerable number of publications in the domain of malware analysis using DL. For instance,
in [53], the author used transfer learning to classify malware images. Similarly, [131] covered a review of malicious
traic analysis using ML. Moreover, Sohi et al. [120] used a DL-based model for intrusion detection. Subsequently,
these authors recognized the sensitivity of the models and began to focus on their interpretability.

ACM Comput. Surv.
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‘Right to Explanation’ was the primary reason behind XAI-models [127]. Afterwards, many researchers started
working on interpretability in distinctive subdomains, including malware detection. For example, in [106], the
authors interpreted the ANN model, and Lacave et al. [57] explained the Bayesian Neural Network (BNN). Not
only DL algorithms but traditional ML models also sometimes need to enhance the level of explainability, such
as Support Vector Machine (SVM) and logistic regression. Martens et al. [80] presented a comprehensive rule
extraction-based study using SVM. Numerous researchers also worked on a graphical drawing of the black-box
DL models using heatmap [22]. The authors in [146] provide a survey study on visual analytics techniques for
ML.
To prove the signiicance of our research, we studied and analyzed papers on XAI for malware detection by

following the PRISMA model [113]. We selected renowned publishers and conferences (see details in Appendix,
Section 7) and Table 6 to ensure the comprehensiveness and relevance of our analysis. Table 1 presents a summary
of the topics that have been covered in the review papers. Aslan et al. [13] provide deep insights into the various
approaches for malware detection, including heuristic-based algorithms and IoT-based malware, concluding
that no algorithm can detect sophisticated and new malware. Signature and heuristic-based methods, however,
outperform the others. Similarly, Namanya et al. [87] presented a detailed review of various published works
regarding obfuscation techniques. They also reviewed multiple methods to detect malware through recently
published works, including heuristics. However, they did not include any future direction for malware detection.
Few studies are partially introducing XAI in the ield of malware hunting. Gibert et al. [34] reviewed a

comprehensive analysis of malware detection, including challenges and future scope. The study provides quality
content on malware taxonomy and background on malware analysis, including static, dynamic, and hybrid
methods. Although the authors included and discussed interpretability and the adversarial attack problem in
future trends, they did not review the explainable malware model classiiers. In the same way, Majid et al. [78]
mainly focused on DL techniques and elaborated on them. However, the study neither discussed the future
challenges nor explainable DL models in detail. Limited published studies have assessed the area of cybersecurity
using XAI, such as [124], and [44] presented an analysis of cybersecurity methods using XAI.

Although some studies discuss XAI for malware analysis, they do not speciically focus on malware detection,
but rather cover other cybersecurity domains related to XAI, such as intrusion detection, spam detection, and
malicious traic detection. For example, [123] is one of the rare review papers in which the authors discuss the
interpretability, explainability, and accountability of AI-based malware and intrusion detection models. Srivastava
et al. [123] presented a review of cybersecurity and its inherent subdomains, but not speciically on malware
analysis. The authors discussed various other topics, e.g., health care, Industrial 4.0, supply chain, e-governance,
etc. They give a supericial overview of the application of XAI for malware analysis. Similarly, in [81], the author
reviewed articles on XAI for three domains: NLP, bioinformatics, and malware classiication. In [48], the authors
described and reviewed the application of XAI to build reliability in DL models for digital forensics, but not for
malware analysis. For these reasons, we did not include these studies in Table 1.

To the best of our knowledge, no review paper has discussed the challenges and limitations of XAI models in the
area of cybersecurity or malware detection. In [61], the authors demonstrated a comprehensive literature survey
on cyberattacks and cybersecurity in recent developments and trends, but did not examine the scope of XAI in
particular. In [55] and [16], the authors discussed the vulnerability of XAI models to adversarial attacks. These
are among the few review papers that cover three major interrelated areas: cybersecurity, XAI, and adversarial
attack. However, these studies also did not focus on malware analysis.

Singh et al. [116] partially discussed the problem of adversarial attacks and mainly reviewed articles published
using various analysis methods, but they did not discuss the explainable model.
Although many articles have attempted to organize XAI studies, only a few have been successful in doing

so. For example, studies by authors such as [35] and [2] covered a wide range of XAI topics, but they did not
speciically focus on malware analysis. While these studies provided a general overview of XAI, our work is
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signiicant in expanding the scope of research for both paradigms. Our article highlights the shortcomings of
previous works, such as the lack of attention to adversarial attacks, and proposes new evaluation metrics. We
also suggest a common evaluation method and communication level for XAI in malware analysis, contributing to
the advancement of the ield.

Table 1. Summary of published review papers on related topics. ‘c’ indicates complete explanation, ‘p’ signifies partial
discussion, and ‘x’ means not discussed at all in the mentioned article. ‘MAP’ stands for Malware Analysis Process.
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Arfeen et al. [10] c x c c c c c c c x x p

Aslan et al. [13] x p x c c c c c c x x x

Bhusal et al. [16] x x c p x x x x x p c x

Feizollah et al. [31] c c c c c c p x c x x x

Gibert et al. [34] c x c c c c c x c x x c

Iadarola et al. [44] p x p p p p p x c c x c

Kuppa et al. [55] x x x p x x x x x c c p

Li et al. [61] x x x c x x x x p c x p

Majid et al. [78] x x x p c c x x c x x x

Mathews et al. [81] p x x p x x x x c c x p

Namanya et al. [87] x p p c c c p c p x x x

Razgallah et
al. [100]

x x x c c c p p c x x x

Saeed et al. [105] c x x c p p x c c x x x

Singh et al. [116] x c x x c c x x c x x p

Souri et al. [122] p x p c c c p x c x x x

Srivastava et
al. [123]

c p p p x x x x c c x c

Stevens et al. [124] x x x x x x x x p c x x

Wang et al. [132] x x x p c c c x c x x x

Our Survey c c c c c c c c c c c c

3 Malware Analysis and Detection

In this section, we discuss various types of approaches used prior to the introduction of XAI in this domain.
These approaches encompass all types of malware analysis, ranging from basic static analysis to ML/DL-based
algorithms. We refer to only a few studies in Table 2, not all studies within these categories, as our aim is to
emphasize and explore XAI for EMD.

3.1 Traditional approaches for malware analysis

File analysis using a vetting service such as VirusTotal [10] is the irst step of malware analysis. If VirusTotal
does not recognize the ile, it does not necessarily mean the ile is benign. Such iles are subjected to further
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analysis using traditional approaches, which scrutinize deeper aspects that automated tools may miss. If a ile
is subsequently identiied as suspicious or malicious through deeper analysis, it is then added to an internal or
specialized malware database. This includes comprehensive steps such as code analysis, where indings at each
stage are thoroughly validated. The inal step in the malware analysis procedure is to authenticate and catalog a
malicious ile in this specialized database, ensuring its characteristics can be quickly identiied in future scans.

Fig. 1. Stages of Malware Analysis Process. This diagram details the sequential layers of malware analysis, highlighting the
transition from static properties analysis through dynamic behavior and dynamic properties analysis, to reverse engineering
and code analysis. It illustrates how each layer builds upon the previous to provide a thorough evaluation of potential
malware.

The three main stages of malware analysisÐstatic, dynamic, and hybridÐare distinguished by the quality,
features (mentioned in Table 2), and complexity of the features. ’Quality’ refers to the efectiveness of the features
in accurately identifying malware, and ’complexity’ involves the computational resources and expertise required
to analyze these features. The diagram 1 details the typical low of malware analysis, starting from initial static
analysis through to dynamic and behavioral analysis, integrating both high-level overview and deeper, speciic
processes. These stages are detailed further below.

3.1.1 Static analysis. Static analysis is one of the fundamental ways to dissect a malware sample. Malware
analysts employ a myriad of static features to analyze a known malware sample, as shown in Table 2. Since
static features are simple to manipulate and are not robust, static-based malware detection systems can easily be
circumvented and exploited by packed and obfuscated malware. Static analysis works well solely to gain an initial
indication about a ile. If analysts discover unusual indications about a ile, they can perform a more thorough
investigation.

3.1.2 Dynamic analysis. Dynamic analysis is more reliable than static analysis, although carrying out a thorough
dynamic analysis is challenging [93]. Analysts are not only limited to classifying the iles, but they can also watch
their behavior. They can extract a ile’s dynamic properties (Table 2) by running it in a sandbox environment
and observing their behavior, registry changes, memory alterations, network, and Internet-related activities.
Any clue discovered during static analysis might be scrutinized throughout this procedure, because attackers
eventually need to modify a dynamic feature, which is not simple to achieve, and evading a dynamic analysis
is rather diicult. On the other hand, some iles cannot be executed in a safe environment such as in a virtual
machine or sandbox, and the detection mechanism may lag iles as benign if disguised in speciic environments.
The disadvantage of dynamic analysis, other than being computationally expensive, is that malware might

hide its malicious behaviour while being analyzed.
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Table 2. Studies and their method for malware analysis.

Type Features Article(s) Features used

Static analysis PE headers features, Import/Export libraries
or services, Entropy, Printable-readable strings,
Bytes of images, N-grams (from static contexts)

[49, 50, 60] Op-code/Bytes n-gram analysis

Dynamic analy-
sis

CFGs, API Calls, Call graphs, Memory modi-
ications, Registry changes, Hardware related
information, Network traic, N-grams (from dy-
namic contexts)

[91, 95, 108,
110, 128]

API calls, Function in DLL im-
port/export, system calls based
detection

Hybrid analysis A combined analysis utilizing both static and
dynamic features mentioned above

[114] Op-code n-grams and API calls
based analysis

Heuristics-
based analysis

Features based on behavioral characteristics and
heuristic rules, e.g., API or system calls

[45, 90] Diagram of system-call graph,
printable string, etc.

ML/DL-based
analysis

Utilize either static features, dynamic features,
or a combination of both

[65, 86] Gray scale images classiication
using CNN

[29] API calls analysis using
Bayesian network

[39, 136,
144]

Autoencoder based detection

3.1.3 Hybrid and code analysis. Hybrid analysis combines both static and dynamic analysis of malware. Engineers
attempt to comprehend the relationship between the behavior of the iles and their features. Additionally,
analysts thoroughly examine the assembly code and function to determine how the ile will afect the system or
organization.

Adopting the hybrid approach is complicated, because attackers constantly create new malware variants and it
is diicult to check such a large number of iles manually [34]. As a result, the following new paradigms are used
to detect malicious activity:

• Heuristics-based analysis: This type of malware analysis uses automated processes to extract rules
from training iles. Although heuristics-based analysis is good at inding zero-day malware, it is prone to
false-positives. Identifying a malware sample generally involves dynamic features, such as API calls and
CFGs, or static features like strings. Heuristic-based systems are vulnerable against polymorphic, packed,
and obfuscated malwares.

• ML/DL-based analysis: This type of malware analysis is a more eicient, quick, and accurate technique
to evaluate malware than traditional methods. However, ML/DL-based approaches sufer from a lack of
interpretability and need a suicient amount of labeled data. These shortcomings were the main motivation
behind introducing XAI for malware analysis, which we will cover in detail in the next sections.

3.2 ML/DL algorithms for malware analysis

3.2.1 Traditional ML. There are many diferent types of traditional ML models with their strengths and weak-
nesses. Each ML model has a speciic level of interpretability. Linear and logistic regression are among the basic
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Fig. 2. Algorithms used for malware classification or detec-
tion

Fig. 3. Malware dataset classification used in the studies
taken for the survey

classiication algorithms that are straightforward to explain, but they perform poorly when the relationships
between dependent and independent variables are non-linear.
In the article by Alzubaidi et al. [8], the authors use a rule-based approach described in the study [2] for

intrusion detection. The approach involves generalizing a linear method and uses a rule-based ensemble to
construct an explainable model. Similar to this approach, Decision Tree (DT) and Random Forest (RF) algorithms
also split data based on feature rules. For example, the ID3 algorithm2 selects features based on entropy and then
classiies the data.

DT has high interpretability, but if we ensemble multiple trees for RF, it becomes more diicult for analysts to
study. Studies [5, 7, 83, 84] use RF for classiication purposes. In addition to RF, XGBoost has also been used for
malicious detection [7, 12].

SVM has frequently been used for malware classiication. Studies [51, 67, 83] used SVM in diferent ways and
also provided explainability by using it as a surrogate model. The study [83] employed two versions, i.e., Linear
and RBF SVM on the DREBIN dataset [11] for malicious Android app classiication. [56] are among the rare studies
that use unsupervised learning for classiication, where classiication is based on Indicators of Compromise (IOC),
such as registry keys, ile path, command lines, domain names, and IP addresses.

3.2.2 DL. DL-based models have been applied to a wide range of applications, due to their high classiication
power. A DL model can process diferent types of data, such as images, time series, and graphs. Therefore, the
algorithmwe use for a classiication problem primarily depends on the kind of data we are processing for detection
or classiication. Notably, four types of DL algorithms are predominantly employed for malware classiication:
Multilayer Perceptrons (MLP), which are used for feature-based data; CNN and their customized versions, suitable
for image data; RNN, ideal for time series or assembly code analysis; and Graph Neural Networks (GNN), used
when processing graph-based data.

Initially, feature-based classiication applied on structured data had been frequently used, as it was easy to
surrogate for explainable models. Early studies used diferent versions of MLP [36, 96] that used ANN, and the
features were system calls, libraries, and kernels. The studies [38, 139] extracted features such as API systems
calls from binaries and used DNN for the classiication of malicious iles. Study [133] proposed a novel method
for interpretable malware detection that used MLP with attention layers to detect the most inluencing features.
The authors compared their method with other state-of-the-art models at that time.

2https://pypi.org/project/decision-tree-id3/
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Because most of the studies represented binaries in terms of images, either colored or grey-scale, the authors
employed diferent versions of CNN for image-based classiication. [19, 32, 99, 138] used initial versions of CNN
and the study [19] used a customized version of CNN called EMBERMalConv. Similar to [133], Bose et al. [19]
added an attention mechanism in CNN for extracting the details of weights and gradients of the layers and
determining the inluencing pixels of the image. The model proposed in the study claimed to be better than the
original MalConv [138]. Similarly, Lin et al. [62] used an advanced version of CNN, namely GoogLeNet Inception
3, a CNN architecture with 22 hidden layers. In addition, the study by Mitchell et al. [85] implemented a CNN
using opcode data.

There are two types of data that researchers use in RNNs: 1) time series data and 2) assembly code extracted from
binaries using a dissembler. The studies [36, 51, 94, 97] used various versions of RNN. For instance, studies [51, 97]
detected malicious activities using network traic data. Prasse et al. [97] implemented their malicious behavior
detection method by LSTM and transformers. Khan et al [51] implemented an LSTM-based autoencoder for a
similar task. Article [36] presented a state-of-the-art model named LEMNA (Local Explanation Method using
Nonlinear Approximation) for explaining cyber threat data. They processed the hex sequence of assembly code
using RNN and provide explainability using LEMNA. Furthermore, [94] employed an attention-based RNN that
investigates the utilization of registers in each cycle and depicts the gradient of the layers as an explainability of
a malicious event. Diferent transformers used to process assembly code are also popular among researchers.
For example, in [59], the authors used a galaxy-based transformer to process the assembly code, creating the
embedding of the function, and providing inluencing functions as interpretability. Moreover, BERT (Bidirectional
Encoder Representations from Transformers) was used in the study [67].
Up to now, Herath et al. [40] is the only study that used CFG for the detection and processing through GNN.

In the same model, they also proposed a method to provide explainability through a graph (network of blocks
that are responsible for a malicious activity). Additionally, Saqib et al. [107] introduced a new graph model,
the Canonical Executable Graph (CEG), which they utilized for malware family detection. Their results, when
compared with those obtained using CFG, demonstrated superior performance.

3.3 Datasets of the studies

Data analysts primarily use four types of data for malicious activity detection and classiication. Figure 3 depicts
the classiication of the data types used in the studies and connects them with their speciic data. The detail of
each data type is as follows:

3.3.1 Binaries. Security analysts rely on binaries as essential data for their investigations, since they encompass
all the necessary information for detecting malicious activities. Binary iles, identiiable by extensions such as
.exe or .bin, consist of a sequence of eight-bit bytes. Disassemblers are required to interpret this type of ile and
transform it into other required data formats, such as CFGs, code, images, or features. Binary iles can contain
various ile types, such as executables, libraries, images, databases, and archives, among others. In the research
studies examined in our proposed review paper, the majority of the binaries used were Android (APK) iles or PE
iles.

Android APPs or APK iles An APK ile is an Android package that is used to install an Android application
on a mobile device. Recent investigations have shown that many hackers use APK iles to carry out malicious
behavior on a user’s mobile phone, such as draining its battery, stealing passwords, or sharing conidential
material. Considering that smartphones contain a great deal of a user’s conidential information, it is essential to
analyze harmful code that spreads through APK iles. In this subsection, we review the numerous APK datasets
that are publicly available and were employed in the articles we evaluated.
Two very popular public repositories of malicious APK iles are VirusShare and VirusTotal. VirusTotal can

be used for checking whether an APK is either malicious or benign by using its hashes. For instance, study [11,
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121, 133, 139] downloaded malicious APK iles from VirusShare. However, for the benign samples, they used
the Google Play Store and tested all the samples over VirusTotal. Furthermore, [94] and [83] used datasets from
VirusTotal.

Drebin [11], which was created for static analysis of malware running on Android, is another benchmark
dataset. The authors [11] gathered binaries from a variety of sources, including the Google Play Store and the
Russian and Chinese markets. They also obtained samples from the Android Malware Genome Project [150].
Later, they employed VirusTotal to evaluate each sample and distinguish malware from benign samples by taking
the majority votes of the results from ten antivirus scans (AntiVir, AVG, BitDefender, ClamAV, ESET, F-Secure,
Kaspersky, McAfee, Panda, and Sophos). Drebin is a huge repository for malware analysis, which is why it has
been used by many studies, e.g., [5, 11, 52, 67, 83, 133].

The study [133] explores a new repository of malware, the National Internet Emergency Center (NIEC)2. This
directory has the latest malware samples and contains various malware categories including Trojans, spyware,
and phishing. Similarly, study [7] used a dataset (CICMalDroid 2020 [73, 76]) published by the University of New
Brunswick (UNB)3. CICMalDroid 2020 is a recently released Android malware dataset consisting of more than
17,341 APK iles spanning four categories of adware, banking malware, riskware, and SMS malware. They also
have a separate category for benign binaries [73, 76]. Another study by Ambekar et al.[9] utilized two diferent
repositories: Borah et al.[18] and Mathur et al. [82].

PE iles The MALICIA dataset is a collection of binaries that have so far exploited 502 servers [88]. The authors
of the dataset collected samples of malicious binaries from diferent servers and provided their metadata [121].
The study [19] used this data for classiication purposes. Another dataset is MALIMG [89], which is a collection
of malware images from 25 diferent families. The authors proposed a method to convert binaries into grey-scale
images before classifying them. This dataset was used by [62] and [138] to propose an interpretable malware
detection model. Other studies that have employed PE binaries have not publicized their datasets, due to non-
disclosure agreements. Their dataset consists of a mixture of Android and Windows binaries, or the samples
were collected from various sources and veriied on VirusTotal.

3.3.2 Source code. Source code is also used by some studies for malware detection or classiication. For example,
in [94], researchers executed 367 programs on the Xilinx Zynq7000 SoC ZC702 evaluation board. Similarly, in [43],
Smali code extracted from source code was converted into an image that was used for further analysis. This
demonstrates the potential of source code data in enhancing the accuracy and efectiveness for malware detection
and classiication.

3.3.3 Network trafic. Four studies in our review used network traic data for interpretable malware detection.
The study [97] collected network traic data from various companies and diferent users. The dataset consists of
9,776,911 training samples and 9,970,560 test samples, where each sample is a combination of an organization, a
user, and a ive-minute interval in which at least one network event was observed. In total, 216 distinct network
events occurred at least once in the training and evaluation dataÐmost of these events occurred frequently. On
average, 2.69 network events were observed in each ive-minute interval in the training data and 2.73 events in the
test data. Similarly, Sharma et al. [115] collected network traic data from various sources, such as MalShare and
VirusShare. Another study [51] used a real-world gas pipeline system data source in their conducted experiments,
created by Mississippi State University (MSU) [105]. This data source contains time series data with real and
synthetic labeled anomaly points. The entire dataset consists of 2,74,628 samples, out of which 2,14,580 are normal
data samples, and 6,0048 are anomalous. Through this process, normal and abnormal fragments are created.
Unlike the previous two studies, article [63] used publicly available network traic data, known as UGR’16 [70].

2https://share.anva.org.cn/web/publicity/listMalware
3https://www.unb.ca/cic/datasets/index.html
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This dataset is a collection of about four months of real network traic from a tier-3 Internet Service Provider
(ISP), containing background and attack traic. It is a well-labeled dataset with enough ground truth attacks.
For their speciic analysis, the researchers selected a portion of this dataset (i.e., 115 GB) that encompasses the
network lows captured within a designated time window.

3.3.4 Malicious URLs. Apart from CICMalDroid 2020 [73, 76], UNB also published other URL-based datasets,
such as ISCX-URL2016 [79]. This is a dataset containing benign, spam, phishing, defacement, and malicious URLs.
The study [7] utilized this dataset to performed interpretable malicious URL detection. Similarly, in article [12],
authors used another dataset (CIC-Bell-DNS 2021) [77] for malicious domain classiication. This dataset includes
discriminative DNS-based features (e.g., subdomain length, numeric percentage, character distribution, entropy,
N-grams, obfuscation method, etc.) that are more robust than the previous studies.

4 XAI-based Malware Analysis

4.1 General approach

In this section, we present a general approach to implement XAI for malware analysis. Fig. 4 depicts the overall
process of malware detection/classiication using XAI. The pipeline of the process consists of four diferent
components. 1) Classiication/Detection: In this pipeline the data is irst split into two parts for the training and
testing phases. In the training phase, the data is further divided into training and validation sets. The validation set
is employed to ine-tune the classiier parameters and save the best model for the testing phase. These processes
are iterated until the speciied hyper-parameter epoch is exceeded or the required evaluation criteria are met. 2)
Model evaluation: In the second phase of the analysis, it is crucial to evaluate the performance of the model
using various measures commonly used to assess a model’s classiication or detection performance: precision,
recall, accuracy, misclassiication score, and F-score. Precision refers to the model’s ability to accurately identify
true positive samples, while recall measures the model’s ability to identify all positive samples. Accuracy denotes
the percentage of correct predictions made by the model, while the misclassiication score measures the number
of incorrectly classiied samples. The F-score combines precision and recall to provide a more comprehensive
evaluation of the model’s performance. These measures are essential for understanding the efectiveness of the
model and identifying areas for improvement. 3) Explainability/Interpretability: Regarding the explainability
and interpretability of the classiication, if a model’s performance is deemed satisfactory during the evaluation
phase, the subsequent step involves explaining or interpreting the classiication results. While various models
have been developed to describe real-world data, the interpretability of malicious data varies depending on the
input. The explainability generator interprets the predictions in terms of features, images, and graphs. Two
possible ways to generate these explanations include local explanations during the testing phase (Fig. 4) or global
explanations that tune the explanation generator’s parameters during the training phase. The subsequent section
elaborates more on these distinct categories of explanations. 4) Explainability assessment: After generating
explanations, it is crucial to assess their quality. This process is typically qualitative and involves ground truth
matching, case studies, and other similar methods. Some researchers have also proposed assessment metrics to
quantify the quality of the explanations.
The rest of the article elaborates on the models proposed in the literature for each of these four pipeline

components, providing a detailed discussion of their strengths, weaknesses, and applicability in the context of
malware analysis.

4.2 Categories of XAI

Based on interpretability, we can divide the XAI models into two groups:
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4.2.1 Global Interpretation. Global interpretation analyzes the model as a whole, focusing on the overall structure,
parameters, and the representations it has captured [72]. This type of interpretation provides insights into how
the entire model behaves across all data points. It examines the contributions of model parameters (weights and
biases) to the predictions. Essentially, it depicts the distribution of the predicted outputs concerning the features.
For instance, in a neural network trained to classify malware, global interpretation might involve analyzing
the importance of diferent layers and neurons in making predictions. Techniques such as feature importance
scores, where the impact of each feature on the overall prediction is quantiied, are commonly used for global
interpretation. However, achieving global interpretability becomes challenging as the number of parameters
increases, especially when dealing with feature spaces that exceed three dimensions, making them diicult to
visualize and comprehend.

As an example, suppose we have a deep learning model trained to detect malware based on various static and
dynamic features. A global interpretation technique might analyze the overall importance of features such as PE
headers, API calls, and network traic patterns. It could use feature importance scores to show that API calls
contribute more signiicantly to the model’s predictions than PE headers. This information helps understand the
model’s general behavior and the features it relies on most across all instances.

4.2.2 Local Interpretation. Local interpretation, in contrast to global interpretation, focuses on understanding the
model’s prediction for a single instance. This approach seeks to explain why the model made a speciic prediction
for a particular input. For example, in the context of malware detection, local interpretation might highlight the
speciic features of a malware sample (such as certain API calls or byte sequences) that were most inluential in the
model’s decision to classify it as malicious. Techniques such as Local Interpretable Model-agnostic Explanations
(LIME) [101] and Shapley Additive Explanations (SHAP) [68] are commonly used for local interpretation. These
methods generate explanations by approximating the model locally around the instance of interest, providing
insights into which features contributed most to the prediction. For instance, LIME might perturb the input
features and observe the changes in the model’s output to identify important features, while SHAP values quantify
the contribution of each feature based on cooperative game theory.
For local interpretation, consider a speciic malware sample that the model has classiied as malicious. Using

SHAP, we can generate a local explanation that shows which features of this particular sample inluenced the
model’s decision. For instance, the explanation might reveal that certain unusual API calls and speciic byte
sequences in the ile were critical in identifying it as malware. This localized insight helps security analysts
understand why the model lagged this speciic sample, aiding in further investigation and validation.

4.3 XAI Methods

In this section, we discuss various studies and their explainability methods. Table 3 collectively presents these
methods, noting whether they include ground truth and whether their methods have been evaluated.

4.3.1 Rule-based. Rule-based explainability has been inspired by DT. Since DT is a self-interpretable traditional
ML algorithm, it does not require further exploration. In a rule-based model, we need to formalize thresholds for
features or deine some rules that are constructed in the form of trees that make them understandable for people
(Figure 6a). However, applying DT to malware analysis is not very convincing and researchers have shifted to
black-box DL and further extract certain principles to add explainability.

Researchers typically create DT from a trained neural network and record the output of hidden layers [139] by
extracting them as features. Mathematically, the features are deined as follows:

�� � =
1

��

� �−1︁

�=0

��
ℎ �

(1)
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Fig. 4. Illustration of an XAI model for malware analy-
sis, showing key performance metrics: Accuracy (Acc),
Precision (P), Recall (R), and F1-Score (FC).

Fig. 5. Explanation methods for malware classification

where �� � is the �
�ℎ instance and column � of the dataset � ′, used to construct the explanation DT. In this

equation, ��
ℎ �

denotes the output of the ��ℎ hidden layer for the ��ℎ instance, �� is the total number of outputs

for the ��ℎ instance, and � � represents the total number of neurons in the ��ℎ hidden layer. The inal result (e.g.,
benign or malware) of the black-box model is used as a label column in � ′. After constructing the data � ′, a DT
model is trained based on the entropy of � ′ for column � ,

��� (� ′) = −
︁

���

�����2 (�� ) (2)

where �� is the proportion of class � in the dataset. By splitting � ′, information gain (IG) can be calculated

�� (� ′, � = �) = � (� ′) − � (� ′ |� = �) (3)

where � (� ′ |� = �) is the entropy for a speciic value/class (�) of any column � in a given sample � ′.
In the last step, a column with maximum IG will be chosen. The explainability of the model looks as Fig 6a.

(a) Rule-based method used for mal-
ware classification/detection

(b) Atention mechanism for explain-
ability

(c) Image-based explainability for two
diferent malware families presented
in [44]. A sample of theMecor and Air-
push malware families are presented
on the let and right.

Fig. 6. XAI methods for EMD
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Yan et al. [139] proposed a rule-based explainable model. First, they constructed a rule-based tree from the
output layer of the trained neural network and then extracted rules from the input and input layers of the same
classiier. Finally, they used values of the output layer as a bridge to join the input-rule-tree and output-rule-tree.
The study [63] used another rule-based model that was originally represented by Dash et al. [34]. In [34], authors
used Boolean rules either in the form of disjunctive ( OR-of-AND) or conjunctive (AND-of-OR) normal forms.
Similarly, Sharma et al. [115] used network traic data to extract network features and employed DT to extract
rules for explaining the attack.

4.3.2 Atention mechanism. Most of the XAI malware detection studies used attention-based mechanisms to
provide explainability in the model. Attention mechanism can be applied to any type of data and provides
explainability according to the input and the model used for classiication or detection. For instance, if the input
data is an image, this mechanism generates some patterns in the image that may represent a malware family
or malicious event. If the input data is a feature, it can be applied to various hidden layers of MLP to help us
understand the feed-forwarding mechanism for any set of features.

As shown in Figure 6b, �� indicates the importance of the corresponding feature, which can be calculated using
the Softmax function as,

�� =
��� (�ℎ� )∑�
�=0 ��� (�

ℎ
� � )
, (4)

where � is the total number of the features involved in the classiication, and �ℎ� is the output of the hidden layer
ℎ, which is

�ℎ� =

�−1︁

�=0

��� �ℎ� , (5)

where � is the total number of the features involved in the classiication, and �ℎ� is the output of the hidden layer,
�ℎ� is a learnable weight of ℎ

�ℎ hidden layer and ��ℎ feature. The Softmax function is crucial here as it normalizes
the output of the hidden layer, converting them into probabilities that sum to one, thereby highlighting the most
inluential features for the classiication process. This normalized scoring by the Softmax function emphasizes the
signiicant features by amplifying the highest scores and suppressing others, facilitating a clear and interpretable
visualization of feature importance in the model.

The attention mechanism is the most generic solution for the explainability of any black-box model and any
form of data type. For example, in [19], the authors conducted experiments on weights and gradients associated
with diferent layers of MalConv, while predicting the class of PE. This way, they extracted raw bytes, which
are more inluential for the prediction, and deciphered them as part of the PE. They found that header bytes
contribute more than other parts. However, other sections of the binary also show responsibility for the class
prediction.

Similar to [19], other studies used ensemble attention mechanisms in CNN, e.g., [138]. Furthermore, article [94]
proposed a model in which they integrated CNN with RNN. Some studies also embedded attention layers in MLP
and detected the key features of the classiication, e.g., [133] and [59]. In [59], researchers inserted an attention
layer in FFNN (Feed Forward Neural Network) and detected the main features in the input layer. Also, they
utilized this mechanism to detect the most inluencing assembly functions. Arp et al. [11] used SVM for the
classiication and tune some weights to the feature.
Studies [83, 96, 97] employed gradient-based explainability. They analyzed the relevance of each feature in

each layer by calculating the gradients and providing explainability. In [97], the authors used integrated gradients
and determined the sequence of the most important network events. Similarly, in [83], Melis et al. proposed a

ACM Comput. Surv.



A Comprehensive Analysis of Explainable AI for Malware Hunting • 15

Table 3. Explainable methods types and explaining strategies for studies. ‘x’ presets the study not evaluated their XAI
method.

M
et
h
o
d

R
ef XAI Model Explained by

G
ro
u
n
d
T
ru
th

XAI Metrics

A
tt
en
ti
o
n
m
ec
h
an
is
m
-b
as
ed

[19] Analysing gradient and weights of layers Extracting inluencer bytes No x

[133] Attention-based mechanism Key features Yes Interpretability
result

[97] Integrated gradients method Determine the sequence of themost important
network events

No x

[83] Gradient-based approach Most inluential local features No x

[96] Layer wise relevance and aggregate Most inluencing system call to the tag classi-
ication

Manual evaluation

[94] Attention in RNN Highlight register uses in cycles No x

[138] Attention-based mechanism Most inluencing instructions No x

[11] Attention-based weight extraction Static key features Manual evaluation

[59] Attention-based mechanism Static features and code embedding Manual evaluation

ru
le
-b
as
ed [139] Rule-based tree generation Important features No x

[63] Boolean rule in disjunctive normal form
or conjunctive normal form

Feature based explanation Yes x

[115] DT Boolean rules for attack traics No x

Fe
at
u
re

ba
se
d

[36] LEMNA Most inluencing bytes Yes Fidelity test

[38] N-grams extraction Most inluencing system calls No x

[51] LIME Key features No x

[52] LIME Most contributing OpCode sequence No x

[56] EIGER IOC detection Manual evaluation

[7, 126] SHAP Key features No x

[67] SHAP, LIME Key features Fidelity,robustness

[5, 6, 119] SHAP Key features No x

[9, 12] SHAP, LIME Key features No x

[85] H-LIME Key Opcode features extraction No Completeness, spar-
sity, consistency, ef-
iciency

Im
ag
e
ba
se
d

[19] Analysing gradient and weights of layers Extracting inluencing bytes No x

[99] LIME Heatmap No x

[44] Grad-CAM Heatmap generation, cumulative heatmap,
learning evaluation

Yes x

[32, 43] Grad-CAM Most inluencing pixels, heatmap Yes Manual evaluation

[62] Ensemble Deep Taylor Decomposition
(EDTD)

Pixel-level explanation Fidelity, robustness

G
ra
p
h
-b
as
ed

[30] Relate a sub graph to the tactics, tech-
niques, and procedures (TTP)

Subgraph identiication Yes Manual evaluation

[121] SHAP Subgraph of API call graph No x

[40] CFGExplainer Subgraph identiication Sparsity, idelity

[107] GAGE Subgraph extracted from CEG Yes Robustness
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model to identify the most inluential local features. Study [96] analyzed layer-wise relevance and aggregated the
gradient to detect the most inluencing system call to the tag classiication.

4.3.3 Feature-based. Similar to rule-based explainability, feature-based explainability also detects inluencing
features for the prediction. However, in this type of explainability, we detect those features by formalizing their
importance in the prediction. In this section, we provide a detailed description of these models, including LIME,
SHAP, and LEMNA.
LIME is a local surrogate model used for explaining each individual prediction. LIME is trained on the

training dataset and for each epoch, it tries to understand how much the output may change on which input.
Mathematically, LIME can be explained as follows:

E(�� ) = ��������� �(� , �, �� ) + Ω(�), (6)

where E(�� ) is an explanation of model � for instance � , and g, a linear model is itted by LIME, and � is the
instance for making the interpretability.� is the set of all possible explanations and we strive to keep the minimum
loss function � for the instance � . The �����������(� ) is the function that checks the prediction’s closeness with
� and the actual model or trained classiier � for instance � . Ω(�) is the complexity of the model, which we aim
to keep as small as possible by controlling the number of parameters used for explainability. The proximity ��
represents the strength of the observation, which is closed to � and used for explainability.

The studies [9, 12, 51, 52, 67] used LIME to identify the main features of the classiication. Moreover, Mitchell
et al. [85] proposed a novel hierarchical LIME (H-LIME) approach, applied at the levels of classes and methods,
resulting in a sparser explanation.

SHAP Similar to LIME, SHAP is a local interpretable model. In this approach, we calculate the contribution of
the individual features in the prediction using various possible combinations for all other features. Furthermore,
it can be formulated as follows:

� � (���) = Σ�⊆(1,...,� ) { � }
|� |!(� − |� | − 1)!

�!
(��� (� ∪ �) − ��� (�)), (7)

where � is the input that we are deciphering, � is the subset of the attributes used in the model, and � is the total
number of the models. Furthermore, ���� (�) is the prediction for the instance � for the � subset of the features.

���� (�) =

∫
�̂ (�1, �2, ..., �� )�P�∉� − �� ( �̂ (� )) (8)

SHAP used the Shapley value to detect the contribution of each feature in the prediction for an instance � . It is
inspired by Game Theory, where each feature behaves like an individual player of the game and each player is
independent to make a decision. Below is the SHAP function:

�(�′) = ∅0 +

�=1︁

�

∅��
′

� , (9)

where � is the function for interpretability, ∅� is each feature’s contribution, which sums up � times, and the
total number of features is computed as follows:

�︁

�=1

∅� = �̂ (�) − �� ( �̂ (� )) . (10)

�̂ (�) is the prediction for � . In articles [5ś7, 9, 12, 67, 119, 126], researchers employed SHAP for the inter-
pretability of the main features.
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Other Some studies proposed an XAI model dedicated to security data. For instance, Guo et al. [36] proposed a
model known as LEMNA, customized for security applications. They claimed that it generated high-idelity results.
Although it is a locally interpretable model like LIME, it can handle feature dependency and nonlinear local
boundaries to increase explanation idelity for cybersecurity data. In [56], the authors proposed a model called
EIGER that automatically generates IOC. N-Grams extraction of the input features is also employed to explain
the underlying model. In [38], the authors extracted N-grams and system calls to explain malware classiication.

4.3.4 Image-based. In image-based explainability, researchers either highlight some part of the image (check
Figure 6c) or create representing images for each class by employing ensemble, aggregation, or calculating
gradients from images of training data. Selvaraju et al. [117] proposed an explainable model, Gradient-weighted
Class Activation Mapping (Grad-CAM), for various versions of CNN. It inds a value for each pixel of the image,
which is called a class discriminative localization map, �����−���

� � R�×� , with dimensions height(�) and width(�)
formulated as follows:

�����−���
� = ���� (

︁

�

��
��� ) (11)

where��
�
is the learnable weight for convolution � and class � , and �� is the activation of convolution � .��

�
can

be calculated as follows:

��
� =

︷     ︸︸     ︷
1

�

︁

�

︁

�

���

���
� �

, (12)

where
���

���
� �

is the gradient of class � score for feature �, with respect to activation �� , and the irst part (
︷︸︸︷

)

of the Eq. 12 depicts the global average pooling.
The Grad-CAM model was later used by researchers for security applications, e.g., [32, 43, 44]. The studies [43,

44] used CNN for malware classiication and explored the portion of images that contributed the most in the
classiication using Grad-CAM. Moreover, studies [19, 62] fond the most inluencing bytes (image pixels) by
analyzing the gradient of CNN. Lin et al. [62] proposed an Ensemble Deep Taylor Decomposition (ETDTD) as a
method to provide pixel-level explanations for the outputs of a Selective Deep Ensemble Learning-based (SDEL)
for image-based malware detection. SDEL is a detector proposed in the same study for image-based malware
detection, which combines multiple deep learning models to improve the accuracy. In [138], the model was
similar to [19], but the classiication was explained by highlighting instructions instead of bytes. Apart from this,
Rahman et al. [99] only generated a heatmap.

4.3.5 Graph-based. Recently, graph-based explainability has been employed by security researchers to detect
a network of blocks or functions that are malicious, instead of inding just the functions. It represents the
interpretability of the malicious events or code in the form of a subgraph. In the studies [30, 40], the authors
extracted CFGs from an executable and used them for classiication. Later, they employed any subgraph extraction
technique and surrogate in their classiication method to explain the prediction. In [40], Herath et al. proposed a
model namely, CFGExplainer, to extract the blocks of a CFG and used it to explain the behavior of the malware.
Moreover, in [30], the authors extracted the most inluential API calls from a CFG of a malicious ile. Additionally,
Soi et al.[121] utilized an API call graph as input to extract APIs for explainability purposes. Building upon
these approaches, Saqib et al.[107] developed the CEG and employed a novel method, the Genetic Algorithm
based Graph Explainer (GAGE), to identify malicious functions and their caller-callee relationships within CEG.
The approach by Saqib et al. [107] demonstrated enhanced robustness and discriminative power compared to
CFGExplainer.
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4.4 XAI malware analysis model evaluation

Evaluating the performance of an explainable malware detection model requires assessing two key components:
discrimination power and interpretability [20]. Discrimination power refers to the model’s ability to accurately
classify benign and malicious iles or identify the speciic malware family to which a ile belongs. Interpretability,
on the other hand, refers to the quality of the explanations provided by the model, including factors such as
correctness and robustness.

4.4.1 Discriminating power. The discriminating power of an explainable model is vital and should not be
compromised while explaining the prediction. The metrics that are normally used to quantify the classiication
power of a model include precision, recall, and accuracy, as deined below:
Precision measures the number of right predictions out of the total number of observations of a class.

Mathematically, the precision for a model� and class � is:

� (�,�) =
No. of correct predictions of c

Total observations in c
(13)

Recall is the proportion of correct predictions out of the total number of predictions made for a class � by
model�.

�(�,�) =
No. of correct predictions of c

Total no. of c
(14)

Accuracy is the percentage of correct predictions out of a total number of predictions made by any model�.

�(�) =
No. of correct predictions

Total no. of observations
× 100 (15)

F1-Score is the harmonic mean of precision and recall and can be mathematically written for a class � and
model�.

�1(�) =
2 × � (�,�) × �(�,�)

� (�,�) + �(�,�
(16)

The higher the score for the discriminating power, the better the classiication model will be.
In this, Section 4.4.1, the discriminating power of various models is compared based on diferent datasets, as

presented in Table 8. Although these comparisons are drawn from diverse datasets, they are instrumental in
demonstrating the robustness and adaptability of the models across varying contexts and data characteristics.
This approach allows us to identify which models maintain high performance regardless of dataset variability,
ofering insights into their generalization capabilities. Furthermore, this comparison helps in highlighting speciic
strengths and weaknesses of each model, facilitating a more informed choice of model based on the dataset’s
nature and the requirements of the classiication task. By evaluating models across diferent datasets, we can
better understand the potential impacts of dataset-speciic factors on model performance and thus reine model
selection and tuning strategies for optimal results in real-world applications.

4.4.2 Interpretability. Interpretability is an essential evaluation criterion for malware detection models, because
it allows for understanding how and why a model is making its decisions. Interpretability is necessary in the
context of malware detection, because it identiies speciic features or characteristics that the model uses to make
its decisions. This information can be used to improve the model by focusing on the most relevant features and
to gain insight into the behaviour of the malware itself. Additionally, interpretability can increase trust in the
model and its decisions, as users can understand how it arrived at its predictions. This is particularly important
in scenarios where the consequences of misclassiication can be severe. Overall, interpretability is an essential
aspect of designing explainable malware detection models and researchers are using the following metrics to
evaluate it:
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Interpretability result (IR) is proposed by Wu et al. [133] to evaluate a model generated explanations
regarding any malicious ile. The model proposed by Wu et al. [133] generates textual information regarding
the ile. In addition, their ground truth data about being malicious is also an unstructured text. The key word or
set of words extracted from both textual explanations are known as ‘concept’. This way, we have two sets of
‘concepts’ (e.g., ��� and ��� ):

��� = {� | � ∈ Word(s) in ground truth explainability}

��� = {� | � ∈ Word(s) in model generated explainability}

So, the numbers of elements in the following subsets are

�� =

������

⋂
���

��� , �� = |��� −��� | , �� =

������

⋃
���

��� ,

where �� denotes the number of concepts correctly veriied with ground truth from model-generated explain-
ability. �� represents the number of those concepts identiied by the model, but not in ground truth. Last, �� is
the number of total concepts in both sets. The above numbers help to determine the following metrics:

��������� =
��

�� + ��
, ������ =

��

��
, �� =

2 ∗ ��������� ∗ ������

��������� + ������

where 0 ≤ �� ≤ 1. If �� increases, �� tends to 1. However, for higher �� values, the value of �� decreases. As a
corollary, for high explainability, �� should have a value close to 1.

Fidelity is a more generic and global metric to evaluate the explanations of any XAI model. Fidelity is not only
for unstructured textual data, but also for image-, graph-, and feature-based explainability, as studies [36, 40, 62, 67]
have used these metrics to evaluate the performance of their models.

Assume we have two sets of explanations, namely model-generated and ground truth:

���� =
{
�� � | �� � ∈ value of ��ℎ feature in ground truth explainability for ��ℎ instance

}

���
� =

{
�� � | �� � ∈ value of ��ℎ feature in model generated explainability for ��ℎ instance

}

where ���� and ���
� are sets of features from ground-truth and model-generated data, respectively. Moreover, �

can represent any kind of feature that is used to perform the classiication or detection of malware, e.g., pixel
of malicious ile’s image, static or dynamic features of PE, etc. A viable approach to determine the idelity of
black-box models is by utilizing Mean Absolute Percentage Error (MAPE). Using MAPE, the idelity of the model
� is

� (�) = 1 −

[
1

�

�︁

�=0

�︁

�=0

������ (�� � ) − �
��
� (�� � )

��
������ (�� � )

��

]

, (17)

where � and� are the total number of instances and features in the testing data, respectively.
A model with higher idelity is good and demonstrates how well the model is able to mimic the ground truth

explanation.
Robustness shows how much the XAI model can generate diverse explanations for diferent predictions and

data. Therefore, the robustness of the model does not depend on ground truth.
First, we need to deine the similarity between two diferent explanations generated for two diferent data

points by model�,

���(���� (�), ���� (�)) =





∑�
�=0

������� (�� ) − �
��
� (�� )

��� � � �� ∈ ���� (�) ∩ ���� (�)

∑�
�=0

������ (�� )
�� � � ��� ∉ ���� (�) ∩ ���� (�)

(18)
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where ���� (�) denotes the explanation generated by model� for an instance � from class �� and �� ∈ � .� is a set

of all the classes. �� is the ��ℎ feature of the explanation and the total number of features is denoted by� .
For two diferent classes �� and �� from which samples to calculate similarity are selected, if we repeat the

experiment � (�� ) and � (��) times, respectively, then the robustness of model� is calculated as:

�(�) =

∑
� (�� ) ���(���� (�), ���� (�))/� (�� )

∑
� (�� ) ���(�

��
� (�), �

��
� (�))/� (��)

(19)

Robustness represents a ratio between the similarities of diferent classes. Thus, a robust model� should
generate a high value for two diferent malware families or for benign and malicious iles.
Expressiveness describes the expressive power of any explanation generated by model� from a human

perspective [62]. High class distinctiveness, i.e., robustness and correctness of an explanation, i.e., idelity, lead
us to understand an explanation better. Thus, the expressiveness of model� is formulated as a factor of both
robustness and idelity [62]:

� (�) = � (�)/�(�) (20)

Sparsity refers to the ratio between the size of the feature set used to provide an explanation by a model and
the size of the ground truth explanation set. It can be computed for a model� as:

� (�) =
1

�

�︁

�=0

(

1 −

�����
�

��
������

��

)

, (21)

where � is the size of testing data and |.| presents the cardinality of any set. Sparsity has its signiicance when
we evaluate a model with idelity. A good model should have high sparsity without compromising its idelity.

Completeness quantiies how much of the decision-making process the explanation covers. For model�, it
can be measured as the proportion of decision factors explained:

� (�) =
Number of factors explained

Total decision factors
, (22)

where a higher� (�) indicates more comprehensive explanations. A high level of completeness ensures that users
gain a comprehensive understanding of how and why decisions are made, fostering greater trust and reliability
in the system.

Consistency assesses whether similar inputs lead to similar explanations in model�. It can be deined as:

� (�) = 1 −
Var(� (�))

Var(�)
, (23)

where � (�) is the explanation for input � , and Var represents variability. Higher � (�) implies greater consistency
and high consistency ensures that the model’s logic is stable and predictable, which is particularly important in
high-stakes environments like malware detection.

Eiciency evaluates the computational cost of generating explanations. For model�, it is given by:

� (�) =
1

Time to generate explanations + Resource usage
, (24)

aiming for higher � (�) to ensure practical usability in real-time systems. A highly eicient model minimizes the
overhead of generating explanations, ensuring that the system remains practical even in resource-constrained
environments.
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5 Discussion and Analysis

5.1 Performance analysis

Table 4. Combined Performance and Interpretability Assessment. Abbreviations used: Acc - Accuracy, P - Precision, R - Recall,
FS - F1-Score. A mark ’x’ denotes studies not using any metrics to evaluate their XAI methods.

Study Malicious Benign Algorithm Acc P R FS Interpretability Assessment

[139] 31,805 10,000 MLP 98.55 97.93 98.27 98.04 x

[19] 700 MalConv 87.10 87.30 x

[19] 700 EMBER Mal 92.20 x

[133] 15,570 20,120 Drebin 95.24 95.94 94.9 95.42 Interpretability result

[133] 15,570 20,120 MLP 96.50 96.38 97.13 96.75 x

[133] 15,570 20,120 XMal 98.35 98.48 98.28 98.37 x

[97] CNN 92.10 x

[97] LSTM 92.30 x

[97] Transformer 94.70 x

[97] Transformer 48.60 x

[97] RF 32.20 x

[44] 7386 1060 CNN 97.00 x

[43] CNN 94.40 94.70 94.30 94.50 Empirical testing

[30] 3250 133743 SIR-GN 89.60 92.70 Empirical testing

[51] 60048 214580 Conv-LSTM- 89.21 93.87 51.43 67.91 x

[52] 5560 CNN 98.00 98.00 98.00 97.00 x

[62] GoogleNet In 99.87 99.80 99.14 99.50 Fidelity, Robustness, Expressiveness

[83] 5615 121329 SVM 99.00 x

[96] ANN 94.00 85.00 96.00 Empirical testing

[94] RNN 98.90 Empirical testing

[7] XGBoost 95.00 x

[7] XGBoost 98.00 x

[40] GNN 77.55 Fidelity, Sparsity

[67] BERT 99.40 Fidelity, Robustness

[5] RF 98.60 x

[12] XGBoost 98.18 97.79 98.57 98.18 x

[11] Drebin 95.90 x

[59] IFFNN 97.70 97.50 97.90 Empirical testing

[85] 17,240 CNN 0.9290 0.9371 0.9494 0.9432 Completeness, Sparsity, Stability/Consistency, Eiciency

[126] 50,000 50,000 LR 0.7566 0.8965 0.5802 0.7045 x

[126] 50,000 50,000 DT 0.9720 0.9670 0.9772 0.9721 x

[126] 50,000 50,000 KNN 0.7671 0.7132 0.8933 0.793 x

[99] 9,339 CNN 0.9944 0.9944 0.9944 0.9944 x

[121] 48,372 CNN 0.8700 0.8600 0.8800 0.8700 x

[6] 29,298 XGB 0.9985 0.9985 0.9985 0.9985 x

[119] Hybrid CNN-
BiGRU

0.9798 0.9775 0.9776 0.9775 x

[32] GradCam 0.9600 0.9500 0.9540 0.9704 x

[9] TabLSTMNet 0.9763 0.9789 0.9776 0.9800 x

[107] GCNN, GAGE 0.9000 0.8500 0.8700 0.8700 Robustness
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5.1.1 Discriminating power analysis. The performance of the models varies signiicantly across diferent studies
(Table 4). For example, the model in study [139] had an accuracy of 0.9855, a precision of 0.9793, a recall of 0.9827,
and an F1-score of 0.9804. In contrast, the model in study [19] (using the MalConv algorithm) had an accuracy of
0.871 and an F1-score of 0.873. Similarly, the study [133] demonstrated the improvement in performance with
increasing complexity in the algorithms used (Drebin, MLP, and XMal), with an accuracy of 0.9524, 0.965, and
0.9835, respectively. Furthermore, study x4 showed the impact of using diferent architectures such as CNN,
LSTM, Transformer (pre-trained), Transformer, and RF on the performance, where the Transformer architecture
had the lowest performance with an accuracy of 0.486. It is important to note that the results presented in this
table should be interpreted cautiously, as they are highly dependent on the speciic dataset and experimental
setup used in each study.
Upon reviewing the interpretability assessment alongside the discriminative power, we ind that there is no

consistent correlation between explainability and discriminative power. For example, studies [43, 133] exhibit
high discriminative power coupled with substantial explainability, whereas study[40] demonstrates very low
discriminative power.

5.1.2 Interpretability assessment. The interpretability of themodels is an essential aspect of evaluating explainable
malware detection models. In the literature review, most of the studies have used manual evaluation methods to
assess the interpretability of the models. However, there needs to be more standardization and consistency in
evaluating interpretability. For example, some studies may focus on the transparency of the model’s decision-
making process. In contrast, others may concentrate on the interpretability of the features or representations
learned by the model.
Despite the lack of standardization in the interpretability evaluation, it is clear that the interpretability of

the models is important for ensure that the discrimination results are meaningful and actionable. For example,
suppose a model can correctly identify malware, but cannot provide insight into why it made that decision. In
that case, it may be diicult for security analysts to use that information to take action. This highlights the
importance of developing interpretability evaluation methods that are both standardized and meaningful.

Interpretability is an essential aspect of explainable malware detection. It should be evaluated using numeric
values to ensure consistency and standardization. However, most studies reviewed in this article use manual
evaluation, which may lead to subjectivity. Balancing performance and interpretability, while designing and
evaluating malware detection models, is important (Table 4).

5.2 Specificity to malware analysis

Existing XAI methods, such as LIME and SHAP, are only partially suitable for interpretable malware analysis,
due to their limitations in handling high-dimensional and complex data, such as the binary code of a malware
sample [36]. These methods are designed to explain the predictions of a model on individual instances. They may
need help to comprehensively understand the entire malware detection process. Additionally, these methods are
not explicitly designed to handle the unique characteristics of malware, such as evasive tactics and polymorphism,
which can make them less efective in explaining the behaviour of a malware sample [111]. Furthermore, the use
of such methods for malware analysis has been limited in the literature, and their efectiveness in this domain
needs to be thoroughly evaluated. For example, in a study by Guo et al. [36], the authors applied LIME to explain
the predictions of a malware detection model and found that the explanations were only sometimes relevant or
suicient to understand the model’s decision.
In conclusion, while existing XAI methods may provide some level of interpretability, they may not be

appropriate for interpretable malware analysis, due to their following limitations:

• Lack of proper evaluation metrics: The ield of interpretable malware analysis is still in its infancy and
appropriate evaluation metrics must be used to measure the interpretability of the models. The lack of such
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metrics leads to subjectivity in assessing interpretability and makes it diicult to compare diferent models.
For instance, in our survey, many studies claim to provide explainability, yet they have not evaluated
their models against XAI metrics. In Table 4, the majority of the studies, denoted by ’x,’ do not utilize any
evaluation metrics.

• The complexity of malware: Malware, by its very nature, is designed to evade detection and can use various
techniques to achieve this. This makes it diicult to understand the underlying behaviour of malware
and thus challenging to generate interpretable explanations of the models’ predictions. For example,
studies [30, 40] exemplify the challenges in generating interpretable model explanations. Study [30] uses
CFG generation to analyze how malware’s dynamic alteration of execution paths complicates detection and
interpretation. Similarly, study [40] examines CFG with node features, demonstrating how malware uses
obfuscation techniques to evade detection, further hindering clear interpretation. Both studies illustrate
the diiculty in maintaining accuracy in models’ explanations due to the sophisticated evasion strategies
employed by malware, highlighting a signiicant gap that necessitates further research in robust, adaptive
malware analysis techniques.

• Adversarial attacks: XAI models are vulnerable to adversarial attacks, which can manipulate the models’
predictions and the generated explanations. This makes it diicult to trust the interpretability of the
models, especially in the context of malware detection, where adversaries may have a vested interest in
evading detection. For instance, the studies listed in Table 3 that utilize image-based explainability methods
demonstrate increased vulnerability to such attacks [148]. These adversarial strategies can subtly alter
image inputs in ways that are imperceptible to human observers but lead to incorrect model outputs, thus
misleading the explanation process and undermining trust in the system’s decisions.

5.3 Method of communication

In Section 4.2, the method of communication is typically divided into two main categories: local and global
explanations. To further reine these categories, we can also categorize them based on the level of abstraction,
which determines the comprehensibility level of the explanation to people [71]. However, there is a trade-of
between the level of abstraction and the idelity and faithfulness of the method. Methods with higher abstraction
levels are more understandable to humans, but may not accurately relect the model’s behavior.

For local explanations, feature explanation is the lowest level of abstraction, while natural language explanations
are the highest level. Feature explanation involves highlighting the input features that have led to a particular
output, while natural language explanations use sentences to describe predictions using more abstract concepts.
For global explanations, vocabulary explanation is the lowest level of abstraction, while rule explanations are the
highest level. Vocabulary explanation explains the entire model in terms of each word in the vocabulary, while
rule explanation extracts general rules to explain the model’s behavior, although this can be challenging due to
the complexity of the rule extraction process.

Choosing the appropriate method of communication for XAI explanations is an ongoing challenge and depends
on the speciic application and target audience. The most popular methods of communication include, but are
not limited to, input features, adversarial examples, inluential examples, counterfactuals, natural language,
vocabulary, ensemble, linguistic information, and rules [71].

DL-based models for malware analysis should be explainable in terms of features used in manual or traditional
methods (see Table 2) so that security administrators and reverse engineers may better comprehend the model’s
behavior and thought process. Malware identiication has previously been made and explained using various
techniques, such as feature extraction, API call analysis, subgraph extraction from CFGs, etc. However, some
of the explanations do not directly help the stakeholders, who need to understand the proposed method of
explanation generation from scratch, which again leads to a blackboxing.
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Table 5. Level of studies in the literature
C
o
m
.L
ev
el

Study Method Used Justiication

L
ev
el
0

[19, 99] Heat maps Analysing gradient, weights of layers, and/or pixels which
are not directly explainable to stakeholders

[32, 36, 44] Grayscale image, inluencial bytes Image generation, heatmap generation, cumulative
heatmap, learning evaluation but not applicable to code

[43] Smali code to images Most inluencing pixels heatmap

[62] NA Pixel-level explanation

[63, 115] Features of attack traic, boolean
rule in disjunctive normal form or
conjunctive normal form

Feature-based explanation

L
ev
el
1

[139] Static features (N-grams) Rule-based tree generation

[85, 133] Opcode N-grams Static key features

[52] Opcode sequences to image Most contributing opcode sequence

[84] Static features analysis Threshold-based rules constructed from features

[5ś7, 9, 11, 12, 51, 67, 83, 119,
126]

Static features Feature-based explanation

L
ev
el
2

[97] Network traic Determine the sequence of the most important network
events IOC

[38, 121] Most inluencing system calls, APIs Dynamic features analysis

[30] CFG generation Subgraph identiication, relate a subgraph to the TTP

[96] System calls, system libraries, and
kernel

Most inluencing system call to the tag classiication

[56] IOC Extracts features based on their behavior, IOC detection

[94] Register utilization in each cycle Highlight register uses in cycles

[59] Static and dynamic features Uses opcode frequency and features analysis

L
ev
el
3 [138] Bytes to image Most inluencing instructions

[40] CFG with node features Subgraph identiication

[107] CEG Subgraph of malicious functions and their caller-callee

In this article, we propose diferent levels of explanations categories based on features used in explanation and
their relation with manual analysis. They are as follows:
Level 0: This level involves visualizations, some tree construction, or rule generations, which are neither

based on static nor dynamic features mentioned in Table 2. This level does not directly explain something to the
stakeholders. However, after learning some background about the proposed method, they may learn the pattern
and use it in analyses. For example, heatmaps may not directly mean anything to reverse engineers or security
administrators, but can provide an overview of the model’s behaviour. Suitable for initial assessments by data
analysts and entry-level security personnel, these visualizations can help identify patterns or anomalies that
merit further investigation.
Level 1: At this level, static indicators provide security administrators with informationabout whether a ile

is suspicious or not. Key feature extraction based on LIME or SHAP is in this category. Although this level
of explanation provides a clue solely at a supericial level, it could be helpful for further dynamic analysis.
Additionally, these explanations can guide the coniguration of security tools to better detect similar threats in the
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future and assist in the initial stages of incident response by outlining the primary characteristics of the potential
malware. This level of explanation is instrumental for security administrators and malware analysts who need to
rapidly assess the potential threat of a ile and preparing the groundwork for more detailed forensic analysis.
Level 2: At this stage, dynamic features determine whether a ile is malicious. Network connections, ile

system activity, API calls, and CFGs are some features that can be retrieved from ile behaviour. An explanation
based on these could provide substantial understanding to the stakeholders. Therefore, it is on a higher level
of communication. This level is crucial for network administrators and cybersecurity incident responders who
require a deeper understanding of an active or potential threat’s behavior within a network environment. The
explanations provided here support proactive threat hunting and incident response strategies.
Level 3: Reverse engineering-related features such as subgraph extraction and code analysis are included at

this level. These aspects-based interpretations may help explain the malware’s operation and means of evading
detection more in depth. This is the highest level of explanation because following this, reverse engineers
immediately draw their conclusions and investigate the degree and nature of the danger that might arise from the
user only making minor eforts. This level is tailored for expert stakeholders like forensic analysts and advanced
security researchers. These professionals beneit from a granular understanding of malware operations and
evasion tactics, facilitating a comprehensive threat analysis.
The proposed study suggests a categorization based on four levels of explanation for evaluating models for

malware analysis. From Level 0 to Level 3, these levels are arranged in ascending order of interpretation quality.
According to their degree of interpretability, we used this framework to group the research we included in our
survey (see Table 5) into diferent categories.

5.4 Time Eficiency

Generally, explainability adds additional computational cost on top of the underlying deep neural network
training. Although most systems today are equipped with GPU, we need to improve the time eiciency of the
XAI model. Overlapping the training and the explanation part is a way to enhance the system’s eiciency and
performance. In other words, explanations are extracted at the same time that the model is being trained.
Intrinsic interpretability is a way to integrate interpretability into the models to increase eiciency. One

approach is to add a new layer with interpretable constraints to improve the comprehensibility of the classiication
models globally [72]. Another way is to use an attention weight matrix to specify which parts of the input are
attended by the model.
For method of communication discussed in the previous section, generally, higher levels of abstraction in

explanations (Levels 2 and 3) involve more complex computations and hence are less time-eicient compared to
Levels 0 and 1. However, these higher levels provide richer insights that can be critical for advanced forensic
analysis and detailed system audits. Therefore, while they require more computational resources, their potential
for providing deep insights justiies the additional time cost.
Time eiciency is a crucial assessment criterion often overlooked in many studies. In our survey, only four

studies considered this aspect. Alani et al. [5] reported a testing phase time of 0.7631 microseconds (��) to extract
features for explainability using SHAP. Aslam et al. [12] achieved a time of 0.0424 seconds to extract URL features
using XGBoost. However, they achieved a signiicantly lower time of 0.0078 seconds using DT. Despite the longer
extraction time, XGBoost demonstrated better discriminative power than DT. Alani et al. [6] used SHAP and
reported a training time of 0.518116 seconds and a testing time of 0.569026 microseconds (��). Li et al. [59] claimed
their method could analyze 15,239 samples per second. These results underscore the importance of including
time eiciency in the evaluation of explainable models, as it directly impacts their practicality and scalability in
real-world applications. Furthermore, we analyzed their time complexity in Table 6, providing a comprehensive
comparison of the computational costs associated with diferent algorithms.
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Table 6. Time complexity analysis of diferent algorithms for training and testing phases

Algorithm Time Complexity Brief Analysis Phase Studies

Grad-
CAM

� (�2 · � ) Grad-CAM involves a forward pass, gradient calculation, and matrix multiplications,
primarily afecting the computational cost with respect to the sequence length � and
feature dimension � . The operations scale quadratically with the sequence length and
linearly with the feature dimension.

Testing [32, 43,
44]

SHAP � (� · 2� ) SHAP calculates the Shapley values for feature importance, with an exponential
complexity for exact calculations due to the combinatorial nature of subsets.

Testing [5ś
7, 9, 12,
67, 119,
121, 126]

LIME � (� · � + �2 · � ) LIME generates local explanations by perturbing the input and itting a simple model
to these perturbations. Here,� is the number of perturbed samples, � is the prediction
time, and � is the number of features in the local model. The complexity is linear in
the number of samples and quadratic in the number of features.

Testing [9, 51, 52,
67, 99]

Attention-
ANN

� (�2 · � ) Attention mechanisms, as used in transformers, compute relevance scores and apply
them to input sequences. The dominant cost is in computing the dot-product attention
for sequences of length � and feature dimension � , scaling quadratically with the
sequence length.

Training
and Test-
ing

[11, 59, 94,
133, 138]

DT � (� ·� · log(�) ) Constructing a DT involves splitting data based on feature values tominimize impurity.
Here, � is the number of features, and� is the number of samples. The complexity
relects the efort to evaluate splits at each node, with a logarithmic factor for tree
depth in balanced cases.

Training [115]

DT � (� ) Once the tree is constructed, making predictions and generating explanations involves
traversing the tree from the root to a leaf, where � is the depth of the tree. This is
generally fast and eicient.

Testing [115]

GAGE � (� × � × � ) GAGE iteratively reines subgraphs using a genetic algorithm. � represents the
number of generations, � is the population size per generation, and � is the itness
evaluation time for subgraphs, inluenced by the number of nodes and edges. The
process is computationally intensive due to the iterative nature and the complexity of
graph operations.

Training [107]

5.5 Adversarial atack as limitation

There is no doubt that DL speeds up the malware analysis process. In addition, XAI provides a way to verify
the detection or classiication performed by black box DL models. However, both DL and XAI have limitations
and sometimes even interpretability and explainability make it easy for attackers to evade security. Many
studies [27, 118, 148] explained how XAI can be manipulated and have proposed a model to uncover the
vulnerabilities in XAI models. For example, Zhang et. al [148] demonstrated that interpretable DL systems (IDLSes)
are vulnerable to adversarial manipulations, allowing adversaries to arbitrarily designate an input’s prediction
and interpretation, and suggested potential countermeasures. The paper [27] demonstrated how explanations can
be manipulated by applying visually imperceptible perturbations to inputs and proposed mechanisms to enhance
the robustness of explanations. Similarly, Slack et. al [118] showed how post hoc explanation techniques, such as
LIME and SHAP, can be manipulated by adversarial entities using a novel scafolding technique, allowing biased
classiiers to remain biased, while generating innocuous explanations. Therefore, when dealing with DL and
XAI-based models designed for malware analysis, it becomes additionally critical to address the security of AI.

The adversarial attack is still an open issue for the DL-based model, which could make a malware detection
system fragile. An adversary could also use explainability to exploit the malware detection model. Thus, in this
section, we review two types of papers: 1) studies that discussed the fragility of a DL model for malware detection
and 2) studies that used explainability to evade the detection mechanism.
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Mathematically, the minimum perturbation added to the � ′ feature used for classiication can afect the
classiication’s direction and result in a misclassiication.

��� ∥�� ∥

� .� . �
′
= � + �� , � (�

′
) ≠ � (�) ,

(25)

where � is any instance of the dataset, � (.) is the classiication model, and �� is the perturbation.

5.5.1 Adversarial atacks against DL. DL models can be exploited using various types of data. For instance,
in [42, 58, 111], researchers proposed models to manipulate the static and dynamic features of the PE and evade
detection. Laskov et al. [58] utilized PE features and automated the process to search the space where they can
inject malicious features. In our survey, the majority of studies focus on feature-based explainability; for instance,
studies [5, 7, 51, 52, 67] utilize this approach. These models are particularly vulnerable to the types of adversarial
attacks discussed earlier, where malicious features are inserted to evade detection.

Other studies [42, 111] proposed models based on API calls and dynamic features analysis. Furthermore, some
researchers also used dynamic features as sequential data, e.g., sequence of API calls. It is challenging to create
adversarial samples by modifying such data, because one wrong API addition may crash the software. However,
some the authors proposed a model to automatically ind the space where they can insert benign API calls and
mislead the classiier. In the articles [41, 103, 104], authors proposed a model to automatically insert API calls and
other printable strings that do not afect the functionality of the executable. The model proposed by Han et al. [38]
employs system calls as input, a form of sequential data, making it prone to speciic adversarial tactics. Such
tactics take advantage of the sequential arrangement by inserting seemingly innocuous API calls in a strategic
manner. These inserted calls are designed to deceive classiiers efectively while maintaining the functionality of
the software, thereby avoiding system crashes.
The CFG is also a major component to detect a malicious process because it is hard to be distort. However,

Abusnaina et al. [1] performed adversarial analysis to generate a subgraph and modify the CFG to evade the
system. In addition, some researchers have proposed binary-level modiications. For example, in [26, 98], the
authors extract benign prototypes during the training of the neural network and add them to the malicious ile.
Studies employing CFG, such as those by researchers in [40] and [30], are vulnerable to the adversarial techniques
discussed. These techniques involve the generation of subgraphs that subtly alter the CFG to evade detection
systems.

5.5.2 Adversarial atacks against XAI. XAI is used to enhance the transparency of DL models and involves humans
to verify their classiication. However, some attacks have been devised to exploit these models, such as [54, 102].
Rosenberg et al. [102] discussed how XAI could be used to generate adversarial examples for malware classiiers.
The paper presented a new approach for generating adversarial examples that focused on modifying speciic
features of the input, rather than adding new features. The authors irst used XAI techniques to identify the most
important features of a given malware sample and then conducted a speciic modiication, feature-by-feature.
This approach allowed them to generate adversarial examples that were the most likely to evade detection, while
still preserving the functionality of the malware. The paper [102] also introduced the concept of transferability of
explainability, which means that the same XAI techniques can be applied to diferent classiiers and datasets and
still result in a similar subset of important features. Overall, this method highlighted how XAI techniques can be
used to generate more efective adversarial examples for malware classiiers and how adversaries can leverage
these techniques to bypass multi-feature types of malware classiiers. It also raised important questions about the
trade-ofs between interpretability and robustness in traditional ML models.

In another work, Kuppa et al. [54] proposed a method for exploiting XAI-based models in a black box setting.
The authors proposed a taxonomy for XAI methods, covering various security properties and threat models. They
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then designed a novel black box attack to analyze the consistency, correctness, and conidence security properties
of gradient-based XAI methods. The key idea behind this attack was to use the information provided by the XAI
model’s explanation report to craft adversarial examples that could fool the model without afecting its output.
To conduct the attack, the authors used a gradient-based optimization method to ind adversarial examples that
maximized the diference between the explanation report and the actual classiier output. After, they evaluated
the proposed approach on three security-relevant datasets and models, and demonstrated that the method could
mislead both the classiier and explanation report. The results of the study showed that the proposed black box
attack is efective in exploiting the XAI models and it can help in designing more secure and robust XAI methods.

Over-revealing malicious features in iles for the sake of explainability can lead to the types of attacks discussed
previously. For instance, the study by [56] exposes features based on their behavior in IOC detection, potentially
informing attackers. Similarly, [40] openly reveals CFG with node features that have malicious intent. Moreover,
[96] utilizes system calls and system libraries, which inadvertently disclose the most inluential system calls for
tag classiication to potential attackers.

6 Conclusion

In this review paper, we conducted an in-depth analysis of state-of-the-art techniques in XAI for malware analysis.
Our analysis revealed several challenges in creating efective explainable models, including the diiculty in
balancing interpretability with accuracy, the absence of a standardized evaluation framework, and the complexity
of explaining intricate models.

We observed a need for a generic metric for comparing the quality of explainability, which presents a challenge
for malware analysts and reverse engineers. To address this issue, we proposed a framework for comparing the
level of explainability that provides insight into how well the model explains malicious ile predictions and the
depth of knowledge contained in the explanation. Our proposed taxonomy categorized each study considered in
this review, along with their justiication for falling into that particular category.

We further noted that various articles used diferent metrics for evaluating their explainability, with some failing
to provide suicient justiication for accuracy. We proposed a generic approach for quantifying explainability
quality to address this issue. Additionally, we evaluated and compared each study based on its discriminative
power.
There are several potential future directions for XAI in malware analysis research. One important area for

future research is generating a reliable ground truth dataset that could be used for training and evaluating
explainable models. This would help improve the models’ reliability and increase their efectiveness. Another
important direction is the development of more efective techniques for improving the explainability levels of
these models. Our proposed taxonomy provides a road map for increasing the interpretability of models up to
level 3. Nonetheless, there is potential to make explanations more understandable to malware analysts and other
security stakeholders. Additionally, future work should focus on developing standard evaluation criteria for
explainable models. In this article, we generalized some of the metrics used in the literature and proposed some
generic metrics. Evaluating models on these metrics is necessary to set benchmark models for the ield.

Overall, this review paper contributes to the ield of XAI for malware analysis by identifying the challenges in
creating efective explainable models, proposing a framework for comparing explainability levels, and ofering a
taxonomy for categorizing studies. Our proposed approach for quantifying explainability quality and evaluating
each study based on its discriminative power can guide researchers and practitioners in developing efective XAI
models for malware analysis.
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Appendix

A. Background

A1. Rise of AI

With an incalculable amount of data gathered daily, it is not feasible to analyze and correlate them using only
the intervention of a human agent. To automate and systematically analyze and explore big data, researchers
have started predicting and classifying data using statistical and mathematical concepts known as traditional ML
models. Traditional ML models include, but are not limited to linear regression, logistic regression, polynomial
regression, DT, RF, SVM, and K-mean clustering. For instance, the foundational concepts of machine learning have
been extensively discussed by Carbonell et al. [21], while the practical applications of ANNs in data classiication
are detailed by Jain et al. [46]. Further, Wang et al. [129] provide a brief review of ML-applications across various
ields such as medicine, agriculture, and environmental science, demonstrating the versatility of ML techniques.
Finally, the development and applications of evolutionary ANNs are reviewed by Yao [142], illustrating their
role in enhancing the capabilities of traditional neural networks. However, traditional ML methods are not
eicient in solving complex problems, especially when the decision boundary is highly non-linear. Consequently,
DL algorithms [8, 109], inspired by the working of the human brain, came into the picture. The deep network
architectures in the DL models can extract high-level representations of the input data using several non-linear
complex layers.

A2. Black-boxing in AI

AI has revolutionized our life by ofering efective and eicient traditional ML and DL-based algorithms that
mimic what humans can think and do. Although these models can achieve human performance in a wide range
of applications, they are unable to explain their output results in a human-understandable way. They can classify
inputs into diferent categories, but cannot explain why a particular decision was made. Each AI-based model
can provide a diferent level of explainability. For example, DT are to some extent inherently explainable, because
of the rules they generate during the classiication process, whereas SVM’s predictions are is too complicated
to be understand among all ML models. ANN improved the performance of every AI model, but due to their
inherent robustness and complexity, they almost provide the least amount of reliability, interpretability, and
transparency [2] (check Figure 7).

Fig. 7. Relation between performance and explainability of ML/DL models.
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A3. ‘Right to Explanation’ and XAI

‘Right to Explanation’ (RTE) was the primary motivation for explainable AI models [127]. According to this
law, any group or individual has the right to know the explanation behind every personal, legal, or commercial
decision made by any professional or legal executive [127], e.g., rejection of loan application, health insurance
coverage, etc. Because any prediction or decision automatically made using ANN has only a result without an
explanation of how that result was obtained, DL methods are in violation of the law. For example, in digital
forensics, a false prediction/classiication may lead us to the wrong criminal. Therefore, a model needs to be
transparent in order to be able to rely on it for automated forensics results.
In the case of malware analysis, DL-based models can be a useful. However, adopting these models could be

problematic if the model’s decisions are not explainable to the involved stakeholders. Security administration
may apply RTE because a false positive malware detection could result in unwanted system disruptions and
downtime, and a false negative could leave the system vulnerable to an attack, which may put the organization
in jeopardy. By providing explanations for the decisions made by the model, analysts can better understand the
reasoning behind the results and improve the accuracy and efectiveness of the malware analysis. Furthermore,
security analysts can identify the causes of the incidents to help them in mitigating the risk and adjusting the
security policies of the organization accordingly [72].

B. Methodology and article selection

Fig. 8. Flow chart of the methodology chosen for article
searching and screening (Step-wise representation)

Table 7. Parameters of the survey

Parameter

Literature
databases

CiteSeerX, ACM digital library,
IEEE Explore, SCOPUS, Google
Scholar

Journal
databases

SpringerLink, Science Direct Jour-
nals, Elsevier, IEEE, Archive

Types of pub-
lications

Archive, journal articles, conference
papers

Inclusion/ Ex-
clusion crite-
ria

Relevant to XAI and malware anal-
ysis

Keywords Malware analysis, XAI, Interpreta-
tion, Explainable, Transparent mod-
els, Adversarial learning, Adver-
sarial machine learning, Evasion
attacks, Poisoning attacks, Deep
learning, Adversarial examples, Cy-
ber security, Fragile XAI

We conducted a systematic review for our proposed literature survey. Researchers suggested various frame-
works or approaches for conducting literature reviews in a systematic way, such as the PRISMA model [113] (see
Fig. 8).
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To perform our study we conducted a thorough search for related articles using various databases such as
Google Scholar, Scopus, and diferent journals’ websites. Our initial step involved iltering the records and
eliminating duplicates. We then proceeded to remove non-qualitative articles. To select the papers once the
dataset was inalized we applied eligibility criteria based on speciic features such as relevance to XAI and
malware analysis. Ultimately we selected 27 articles that met our criteria for evaluation in the study, as shown in
Figure 8. The iltering process was based on the relevance of articles to the topic under investigation. Table 7
highlights the parameters we used in our survey.
During the revision of the paper, we repeated the same process with the same selection criteria for papers

published from 2023 onward and the analysis. Therefore, Figure 8 does not include the second revision phase.

C. Future Directions and Emerging Approaches

This section provides an overview of these advancements and discusses their potential impact on future research
and practical applications.
Unstructured and multi-modal data integration: Unstructured data such as call graphs, CFGs, and API

graphs, using Graph-based models like GAGE [107] and CFGExplainer [40], have shown promise in capturing
the complex relationships within malware code. These models can provide more interpretable insights by
analyzing malicious executables’ code and data low graphs. The robustness and discriminative power of these
models suggest they will play a crucial role in advancing EMD. Moreover, the integration of multi-modal data,
combining information from diferent sources such as network traic, system logs, and binary analysis, ofers a
comprehensive view of malware behavior. Multi-modal approaches can improve detection accuracy and provide
richer explanations by leveraging diverse data types. For instance, HYDRA [33] learns from various sources
to maximize the beneits of multiple feature types to relect the characteristics of malware executables. Future
research should focus on developing frameworks that efectively integrate and analyze multi-modal data to
enhance both the performance and interpretability of EMD.

Federated learning and privacy-preserving techniques: Recent studies have highlighted the importance
of privacy-preserving techniques in malware detection, particularly in environments like IoT devices where data
sensitivity is paramount. Federated learning, which enables model training across decentralized devices without
sharing raw data, has gained traction. For instance, D’Angelo et al. [28] demonstrated a signiicant advancement
in this area by integrating transfer learning and federated learning to improve regression analysis in malware
detection. This approach not only enhances privacy but also maintains high accuracy and eiciency, making it a
valuable direction for future research.

Advances in NLP: The application of NLP techniques to malware analysis is an emerging area that leverages
the power of models based on Large Language Models (LLMs). For example, this survey [143] highlights that using
LLMs such as GPT-4 to detect malware is a promising application. These models (e.g., BERT, GPT) can analyze
code and documentation to identify patterns indicative of malicious behavior. By integrating NLP with traditional
malware detection methods, researchers can improve the interpretability and accuracy of their models. Future
work could explore the synergy between NLP and other explainability techniques to enhance the transparency of
malware detection systems.

Quantum machine learning: Quantum computing holds potential for signiicant advancements in machine
learning, including malware detection. Quantum Machine Learning (QML) algorithms can process information
at unprecedented speeds, potentially improving the eiciency and accuracy of detection models. For instance,
Giovanni et al. [23] present a malware detection method using quantum machine learning, comparing its
performance and explainability with CNNs. Although still in the early stages, exploring the application of QML
to XAI and malware detection could open new avenues for research and development.
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