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ABSTRACT

Abstract

Appropriate modelling of the interaction between wheel and terrain is a key element in
simulating wheeled mobile robots and analyzing their functionality on soft terrain. In this
thesis, two modelling approaches, with their implementation in a multi-body dynamics
environment and their experimental validation, are introduced.

The first approach is based on well-established semi-empirical terramechanics models.
The multi-pass effect is considered in the implementation by storing terrain deformation
and changes in hardening of soil under the wheel. A high-resolution height-field (HF) is
used to model the terrain surface, with relevant information stored in the HF vertices. A
novel framework is developed for implementation of this model in a multi-body dynamics
environment. For every wheel in contact with soft soil, unilateral contact constraints are
added to the solver in the normal direction. Terramechanics forces in the tangent plane
and the resistant moment are formulated as set-valued functions associated with kinematic
constraints on their complementary variables. The new formulation leads to the dynamics
representation in the form of a linear complementarity problem. The properties of these
constraints are set based on the soil reactions determined from the semi-empirical terrame-
chanics model, at every time-step of the simulation. With this approach, fast and stable
simulation is achieved.

In the second approach, normal and shear stress distributions in the contact area are de-

termined using continuum mechanics with a computationally efficient technique compared
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to finite element modelling. The author proposes a velocity field in the vicinity of the con-
tact area motivated by the physical nature of the problem. Using this field, the incremental
changes to the stress field are determined by resorting to classical elasto-plasticity theory
and an appropriate constitutive relation for soil. As opposed to finite element approaches,
which model the soil in contact with the wheel as a high-resolution mesh, our approach fo-
cuses on the wheel-soil contact patch only. This localized representation provides the basis
for fast wheel-soil interaction modelling. By combining this approach with a height-field as
terrain representation, elasto-plastic soil deformation and changes in the hardening state of
soil are directly captured. In addition, because of the elasto-plastic representation for soil,
energy dissipation during soil compaction is directly captured. The dynamic slip-sinkage
behaviour of the wheel and the semi-elliptical shape of the normal stress distribution un-
der the wheel are natural outcomes of the proposed model. The results obtained from the
proposed approach are compared with experimental data available in the literature, which
show good agreement between the model and experiments under various ranges of wheel
slippage and loading conditions.

Moreover, an extensive set of experiments was conducted using a version of the Juno
rover (Juno II), owned by the Canadian Space Agency (CSA). The analysis of the results
shows good agreement between the experimental rover behaviour and the simulation runs

using both models developed.
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RESUME

Résumé

Afin de simuler et d’analyser les mouvements de robots mobiles sur terrain déformable,
il est essentiel de correctement modéliser les interactions entre les roues du véhicule et le
terrain. Dans cette these, deux approches de modélisation seront présentées et analysées,
avec leurs mises en ceuvre dans un environnement de simulation en temps réel.

La premiere approche est basée sur un modele semi-empiriques de mécanique des sols.
L’effet du passage répété d’un véhicule sur le terrain est pris en compte par le stockage de
la déformation du terrain et du durcissement du sol sous les roues. Un champ de hau-
teur (Height Field) a haute résolution est utilisé pour modéliser la surface du terrain; les
informations nécessaires sont stockées dans les sommets du champ de hauteur. Une ap-
proche originale est développée pour la mise en ceuvre dans I’engin de simulation. Pour
chaque roue en contact avec le sol mou, une contrainte de contact unilatéral est ajouté au
solveur pour la direction normal au mouvement. Les forces dans le plan tangent, issus de
la mécanique des sols, et la résistance au moment sont traités comme des fonctions multi-
valuées associées a des contraintes cinématique pour les variables complémentaires. Cette
nouvelle formulation conduit a une représentation dynamique sous forme d’un probléme
de complémentarité linéaire. Les propriétés des contraintes sont définies en fonction des
réactions du sol, calculées par le modle semi-empirique a chaque pas de simulation. Avec

cette approche, une simulation rapide et stable est obtenue.

il
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Dans la seconde approche, la répartition des contraintes normales et de cisaillement
dans la zone de contact est déterminée en utilisant la mécanique des milieux continus avec
une technique de calcul efficace par rapport a la modélisation par éléments finis. Nous
proposons ’utilisation d’un champ de vitesses au voisinage de la zone de contact, dans
une approche motivée par la nature physique du probleme. Avec ce champ de vitesse,
les changements progressifs du champ de contraintes sont calculées en recourant a la
théorie d’élasto-plasticité classique et a une relation de comportement appropriée pour
les sols. Contrairement aux approches par éléments finis, qui modélisent le sol en con-
tact avec la roue comme un maillage haute résolution, notre approche est axée uniquement
sur 1’aire de contact roue-sol. En combinant cette approche avec un champ de hauteur
comme représentation du terrain, la déformation élasto-plastique du sol et les changements
dans le durcissement du sol sont directement pris en compte. En outre, en raison de la
représentation élasto-plastique du sol, la dissipation d’énergie au cours du compactage du
sol est aussi directement prise en compte. Le comportement dynamique de compaction et
de glissement de la roue et la forme semi-elliptique de la répartition des contraintes nor-
males sous la roue sont les résultats naturels du modele proposé. Les résultats obtenus par
cet approche sont comparés a des données disponibles dans des études expérimentales, et
montre un bon accord avec la théorie pour un large domaine de valeur de glissement et de
charge.

En outre, un vaste ensemble d’expériences ont été menées en utilisant une version du
rover Juno (Juno II) de I’ Agence spatiale canadienne (ASC). L’ analyse des résultats montre
un bon accord entre le comportement expérimental des rovers et des simulations utilisant

les deux modeles développés.
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CLAIMS OF ORIGINALITY

Claims of Originality

(1) A new framework is developed in the thesis for efficient implementation of semi-
empirical terramechanics models in a multibody dynamics simulation environ-
ment. This approach is based on deregularization of the terramechanics relations
by using kinematic constraints with set-valued force characteristics. As a re-
sult, efficient and real-time simulation of rovers moving on soft soil is achieved.
As opposed to other implementations of these semi-empirical terramechanics
models in the literature, which require simplification of these models in order
to achieve close to real-time performance, no simplification is required when the
implementation of the proposed approach in the multi-body dynamics simulation
environment Vortex is used. Furthermore, the developed formulation is modular
in that various semi-empirical wheel-soil interaction models can be used. The
model was partly reported in (Azimi et al., 2010, 2011a).

(i1) In addition to using semi-empirical models, a novel approach is developed in
this thesis for modelling the interaction between wheels and soil. This approach
uses elasto-plasticity theory to determine the stress field in the contact area. An
important element in our model lies in assuming a plausible velocity field for
soil particles, which in turn, eliminates the need of using finite element analysis
for determining soil reactions. This novel approach was reported by Azimi et al.

(2011c, 2013b).
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(iii) In the thesis, the terrain is modelled as rough and deformable. In order to cap-
ture an important feature referred to as multipass effect, changes in the hardening
properties of soil and the amount of deformation imposed by the wheel are main-
tained by developing an extended height-field data structure. Both modelling ap-
proaches are also implemented in Vortex, then used for 3D dynamic simulation
of full-scale rovers. This approach is outlined in (Azimi et al., 2012).

(iv) Experimental investigations were also conducted with the Juno II rover. The ex-
perimental outcomes are compared with the results obtained from the developed
models, which shows their correctness. The results were presented in (Azimi

etal., 2013a).
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1.2 SCOPE AND OBJECTIVES OF THE THESIS

CHAPTER 1

Introduction

1.1 Motivation

Mobile robotic systems represent key elements for planetary exploration as well as
earthly applications. Such robots have to operate on various different types of unstructured
terrain, among which soft deformable soil is of particular interest. In order to investigate
the effect of deformable soil on the performance of rovers, appropriate models are required
to represent the interaction between wheel and terrain. In this context, soil reactions are
required in response to the wheel movement. In these models, high fidelity could be needed,

while the computational efficiency is a key element in the application of the models.

1.2 Scope and Objectives of the Thesis

Depending on the application, different modelling techniques can be used for study-
ing wheel and soil interaction. The scope of this thesis is to develop wheel-soil interac-
tion models for simulation and analysis of rovers in a multi-body simulation environment,
which can be used, for example, in the design, control, or operation planning of rovers.
For this purpose, parametric models with modest computational cost are of interest. For

earthly-based applications, however, an entirely empirical technique can also be used, with
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a look-up table. As empirical techniques cannot be extrapolated beyond the conditions for
which they were developed, they are not discussed in this thesis.

A semi-empirical technique that allows for the parametric analysis of wheel-soil inter-
action was proposed by Bekker (1956). This model and its extension proposed by Wong
and Reece (1967a) are widely used, as they have been experimentally validated and are
computationally efficient. The latter is referred to as the Wong-Reece (WR) model in this
thesis. These two models have a broad range of application in characterizing vehicles on
soft terrain. Both models have significant applications in mobile robotics as well. For ex-
ample, in the AESCO Soft Soil Tyre Model (ASzTM) (AESCQO, 2005), the Bekker model
is used. Furthermore, lagnemma (2001), lagnemma and Dubowsky (2004), Shibly et al.
(2005), Ishigami et al. (2007, 2009), Hutangkabodee et al. (2008), and Senatore and Sandu
(2011) used the WR model in their wheel-soil interaction studies. In addition, Wong and
Asnani (2008) compared the performance of several wheels of lunar vehicles by means of
the NWVPM software package (Wong, 2010), in which normal stress distribution under
the wheel is obtained using the Bekker model. A simplified version of the WR model was
used by lagnemma et al. (2004) to identify cohesion and internal friction angle of soil for
real-time applications of rovers operating on soft soil. Terrain parameter identification was
also done by Ray (2009), using the WR model. This WR model was also used by Ojeda
et al. (2006) for wheel-slip detection and positioning error compensation.

A framework is developed in Chapter 2 for the implementation of these semi-empirical
models in a multi-body dynamics simulation environment. In this thesis, the implemen-
tations are based on Vorfex!, an advanced multi-body dynamics simulation environment
developed by CM-Labs Simulations Inc. As discussed in Chapter 2, the framework can be

used to accommodate various types of terramechanics models.

1http://www.vxsim.com/
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In addition to semi-empirical models, other models, based on continuum mechanics,
can be employed. In this regard, soft soil is modelled as a continuum, in which wheel-
soil contact can be analyzed by considering an appropriate constitutive relation for soil and
using detailed finite element discretization to calculate stress distribution and soil defor-
mation in the contact area, as reported in (Chiroux et al., 2005; Fervers, 2004; Xia, 2011).
In yet another class of methods, dry soil is modelled as cohesionless granular material,
with wheel-soil contact analyzed with the discrete element method (DEM) (Wong, 2010).
One of the issues with DEM in wheel-soil interaction modelling is the need to consider a
large number of particles, which results in an extremely high computing time, even with
supercomputers (Wong, 2010). For wheel-soil interaction, Finite Element Analysis (FEA)
is computationally less demanding than DEM. However, FEA is still inappropriate for a
multibody dynamics simulation environment, because of its high computational cost.

An efficient novel approach, based on elasto-plasticity theory, is introduced in Chap-
ter 3 of this thesis for wheel-soil interaction. This approach will be shown to extend the
application domain of the above-mentioned semi-empirical models, while being compati-
ble with dynamics formulations and multibody simulation environments. In this context,
instead of resorting to FEA to find soil reactions on the rigid wheel, an assumed velocity
field in the contact region is used. A rather simple, still plausible velocity field is assumed
that can lead to acceptable results, comparable to those obtained with the Bekker and WR

models and experimental data.

1.3 Literature Review and Background Material

1.3.1 Traditional Semi-empirical Models in the Longitudinal Direction
In order to predict motion resistance of a rigid wheel on soil, Bekker (1956, 1969) as-
sumed that the normal stress distribution under the wheel can be obtained from the average
pressure under a flat plate when pushed into the soil. Bekker surmised that the relation be-

tween this average pressure and plate sinkage can be represented for homogeneous terrain

3
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as

p= <]Zc+k¢) Z (1.1)
where p is pressure, b the plate width used in the penetration test, k. the pressure-sinkage
parameter due to the cohesive effects, ky the pressure-sinkage parameter due to the fric-
tional effects, z the sinkage of the flat plate, and n € R™" is an exponent of deformation
(Wong, 2008). It is noteworthy that k¢ and k. have dimensions dependent on the value of
n, which is a shortcoming of the model.

What is known as the bevameter (Bekker, 1969; Wong, 2008) is one of the best-known
techniques for measuring the terrain response to loading relevant to vehicle-mobility stud-
ies. It can be employed to find the pressure-sinkage relationship using a set of plate-
penetration tests, as well as performing a set of shear tests to derive the shear stress-
displacement relationship. In the penetration test, a plate of suitable size is used to emulate
the contact area of the wheel. As mentioned by Wong (2008), the parameters k., ke, and n
can also be obtained using circular plates in the penetration test.

The shear stress-displacement relationship, obtained from the shear tests, can be ex-

pressed as indicated below for most of the homogeneous soils (Wong, 2008):

T=(c+ptan@)[l —exp(—ja/Ka)] (1.2)

where 7 is the shear stress, j; is the shear displacement, with units of length, ¢ and ¢
are the cohesion stress and the angle of internal friction of the terrain, respectively, and
K, is referred to as the shear deformation modulus, with units of length. Equation (1.2),
proposed by Janosi and Hanamoto (1961), is a simplified form of a relation suggested by
Bekker (1956).

In order to predict the soil reaction on a rigid wheel, Bekker (1956) assumed that the
radial terrain reaction at all points on the contact surface is equal to that under a plate

penetrated to the same depth. Therefore, the normal stress distribution under a rigid wheel
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on homogeneous terrain can be obtained from Eq. (1.1) as (Bekker, 1956; Wong, 2008):

k n
0n(6) = (f +k¢) £"(6) (1.3)
where b is either the wheel width or the smaller dimension of the wheel/terrain contact
patch (Wong, 2010), ¢ is the vertical sinkage at any point on the contact surface, as illus-
trated in Fig. 1.1, and angle 6 describes the location of any point in the contact patch, as

shown in the same figure.

FIGURE 1.1. Geometry of rigid wheel and soil contact, with soil reaction forces
and moment in dashed red lines.

By knowing the normal stress distribution o, in the contact area, the shear stress dis-

tribution 7 is expressed using Eq. (1.2) as

2(0) = (c+ 6,(8) tan §) {1 —exp (-j”g’)ﬂ (1.4)

Different relations for the shear displacement j; have been proposed in the literature.
The relation proposed by Wong and Reece (1967a) for a driven wheel has been the most

widely adopted:
Jja(0) =R[(61 —6) — (1 —i5)(sin6; —sin 0)] (1.5)

5
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where 0 is defined in Fig. 1.1, 0; is an angle indicating the initial contact with soil, R is the

wheel radius, and iy is the wheel slip ratio, defined as

. Rw_vX
Iy = RO

(1.6)

where o is the angular velocity of the wheel and v, is the horizontal component of the
velocity of the wheel centre, for a wheel in planar motion. It should be mentioned that
Eq. (1.5) is obtained by integrating the slip velocity in the contact region from the initial
point of contact with soil, identified by the angle 0y, to the current angle 6 and assuming a
constant slip ratio (Wong and Reece, 1967a).

When the normal and shear stress distributions around the wheel are known, the soil
reactions, including motion resistance R, traction force F;, resisting moment 7;., and terrain

vertical reaction force F; can be obtained as

0
R.=Rb | 6,(6)sin0d6 (1.7)
&)
01
FF=Rb | 7(0)cosbd6 (1.8)
0>
01
T,=R°b [ 1(6)d6 (1.9)
)
01
F.=Rb | [t(0)sin6+ 0,(0)cosO]|d6 (1.10)
0>

and F; — R, is what is known as the drawbar pull of the wheel.
By neglecting the effect of shear stress on F, and assuming small wheel sinkage,
Bekker (1956, 1969) estimated motion resistance R, as

(BF)"
(B—n)"1 (n+ 1) (ke + bky)*2(2R)";

R.= (1.11)
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where vi = (2n+2)/(2n+1), vo =1/(2n+1), and v3 = (n+1)/(2n+ 1). In addition,
the wheel sinkage can be estimated as (Bekker, 1956, 1969)

2vp
3F,
= < 1.12
: <(3—n)(kc+bk¢)\/2R> (112

REMARK 1. It should be noted that, some quantities with dimensions are raised to

powers in Egs. (1.11) and (1.12), because Eq. (1.1) was used to develop them.

Onafeko and Reece (1967) mentioned that the pressure-sinkage relationship expressed
in Eq. (1.1) is unsatisfactory, since the dimension of soil parameters k. and ky are dependent
on n. This brings about further problems in relations developed based on Eq. (1.1), for
example Eqgs. (1.11) and (1.12). Therefore, the pressure-sinkage relation, Eq. (1.1), should
be replaced by

p = (ki +kab) (%)n (1.13)

As mentioned by Onafeko and Reece (1967), Eq. (1.13) may take the form below for very

compact soils:

p = (kee+ky¥%ib) (%) (1.14)

where ., kfp, and n are new dimensionless pressure-sinkage parameters, and 7; is the spe-
cific weight of the terrain. Furthermore, Onafeko and Reece (1967) indicated that K; in
Eq. (1.2) is usually dependent on both the contact pressure and plate width used in the
bevameter test. The dependency of K; on contact pressure is also mentioned by Wong
(2008).

Wong (1967) studied the soil behaviour beneath rigid wheels for compact, dry sand
and for frictionless clay. Wong observed that a rigid wheel displaces the compact soil
partly laterally and partly longitudinally. In addition, he mentioned that there are usually

two flow zones in the longitudinal plane, one forward, one backward.
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Wong and Reece (1967a) referred to some experimental studies on sand in which they
showed that the radial stress distribution is slip-dependent, and the maximum radial stress
does not occur at the bottom-dead-centre, as would be expected from the plate sinkage
analogy. They proposed the empirical relation given below for estimating angle 6y, as the

location of the point of the maximum radial stress in the contact patch:

Oy = (c1 + c2is) 01 (1.15)

where ¢ and ¢, are dimensionless constants. Wong and Reece (1967a) proposed the rela-

tions below for normal stress distribution:

R n
(k1 + kab) (3) [cos 6 —cos 6;]", Oy <06 <6
0. (6) = R\" 6—6, "
(kl -l-kzb) — cos | 0; — (91 — GM) —cosB;| , 6, <0 <0y
b Oy — 6>
(1.16)

where 6, represents the exit angle, illustrated in Fig. 1.1. In addition, shear stress distribu-
tion was obtained using Eq. (1.2), in which the shear displacement j; is determined from
Eq. (1.5). Soil reactions can then be obtained from Eqgs. (1.7)—(1.10), by assuming 6, = 0.
It should be noted that non-zero values for 6, have been used in the literature, as discussed

in Subsection 1.3.2.

REMARK 2. It should be mentioned that the three forms of pressure-sinkage relations,
Egs. (1.1), (1.13), and (1.14), are frequently used in the literature to obtain the normal
stress under a wheel. For that, either the model of Bekker, expressed in Eq. (1.3), or the

model of Wong and Reece (1967a), given in Eq. (1.16), is used.

Wong and Reece (1967b) also studied the behaviour of towed rigid wheels on sand.
Similar to their approach for analyzing driven rigid wheels (Wong and Reece, 1967a),
where the authors estimated the position of maximum normal stress, Wong and Reece

(1967b) first estimated the position of what they called a transition point. This is the point

8
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on the wheel periphery at which shear stress changes direction. This point lies at the junc-
tion of two soil failure zones beneath a towed wheel, as concluded from experiments (Wong
and Reece, 1967b). Since at this point shear stress is zero, the normal stress becomes a prin-
cipal stress at the transition point on a towed rigid wheel, it is the major principal stress. By
assuming that (i) soil failure only occurs in the direction of wheel motion, and (ii) soil is
incompressible, the transition point can be determined using the relation (Wong and Reece,

1967b)

T ¢\ cosO —1/(1—is)
tan (4—2) = sinet (117)

where 6; is the angle representing the position of the transition point. Equation (1.17) may
result in two solutions for 6; in the acceptable range of 6; € [0, 0;); however, as discussed
by Wong and Reece (1967b), the transition point always takes the smaller value.
Furthermore, the maximum radial stress would be expected to act at the transition
point, as suggested by classical soil mechanics (Wong and Reece, 1967b). In addition, the
position of maximum radial stress was observed to be very close to the transition point
in the experiments (Wong and Reece, 1967b). The normal stress distribution for towed
wheels is then calculated similar to driven wheels, and can be expressed using Eq. (1.16)

upon using 6, for 6y, as

R n
(k1 + kab) (b) [cos O —cos 0;]", 6, <06 <6
on(0) = R\" 60— 6, n
(kl —l—kzb) — cos | 0; — (91 — 9[) —cosB| , b,<O0<6
b 9[—92
(1.18)

Shear stress distribution is also obtained using Eq. (1.4), while the shear deformation

Ja in the front region, 6 € [6;, 0;], should be determined by (Wong and Reece, 1967b)

(1 —i5)(sin 6 —sin 6;)
91 - 9;

]'dZR[(91—9) —(l—is)(sinel—sine)} (1.19)

In addition, in the rear region, 6 € [6,, 6;], j, is obtained from Eq. (1.5).
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As an alternative to the Wong and Reece (1967b) approach, Gee-Clough (1976) also
studied free-rolling, towed, rigid wheels. In this approach, instead of local sinkage {(0),
the cumulative normal displacement N(0), with units of length, was used to find the radial
(normal) stress

G.(0) = (% +k¢) [N(6)]" (1.20)

where N(0) can be calculated as (Gee-Clough, 1976)
N(0) =R(1 —i;)(cos® —cos 0) (1.21)
Substituting Eq. (1.21) in Eq. (1.20) leads to

0u(6) = (4o ) CO)1 -1 (122)

By comparing Eq. (1.22) with Eq. (1.3), the difference between the Bekker and the
Gee-Clough (1976) approaches lies in the term (1 — i;)". Furthermore, the latter is proposed

for towed wheels, only.

1.3.2 Recent Developments Pertinent to Rover Simulation
Some of the recent improvements on semi-empirical Bekker models related to rover
simulation are discussed below. It should be noted that the research work associated with
using these models in a multi-body dynamics environment and dealing with rough terrain

1s discussed in Subsection 1.3.3.

e Effect of Grousers:
The effect of grousers has been investigated with various methods. A simple and
common approach, as in (Jia et al., 2012), consists in using a larger wheel radius—the
original radius plus the grouser height. Another approach, however, is to consider in-

dividual bulldozing forces on the grousers (Trease et al., 2011). In the thesis, grousers

10
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are not explicitly included; a larger-wheel-radius approach can be used to approximate
their effect.

Computation of the exit angle 0,:

In the Bekker model, as mentioned above, the exit angle is assumed zero. However, a
non-zero exit angle can be determined by considering ground flexibility and obtaining
soil rebound, as reported in (AESCO, 2005). This is discussed in more detail in Sec-
tion 2.4.5. In addition, Ishigami et al. (2007) used the Wong and Reece (1967a) model
with a non-zero exit angle. In their approach, the non-zero exit angle is assumed by
means of a visually identified parameter, which relates the exit angle 6, to the entrance
angle 0.

Slip-sinkage behaviour:

Ding et al. (2010a) conducted a set of experiments on a lunar soil simulant to study
the slip-sinkage behaviour and the extra sinkage caused by grousers. They used the
Ishigami et al. (2007) model as a base-line and suggested that the exponent in the
pressure sinkage relation should be a linear function of the slip-ratio. With this mod-
ification, a good match between theory and experimental slip-sinkage was reported.
However, no theoretical analysis was provided. The dynamic slip-sinkage is captured
in our novel elasto-plastic model, introduced in Chapter 3, in a different way, without
any particular assumption, as discussed in more detail in Subsection 3.3.3.

Small and Lightweight Rovers:

Meirion-Griffith (2012) extended the pressure-sinkage relation of Bekker to include
wheel diameter with application to lightweight rovers with small wheels. In that ap-
proach, rigid cylinders are used in the pressure-sinkage experiments, instead of flat
plates. As a result, the pressure-sinkage relation is dependent on the wheel diameter.
Soil behaviour can be modelled using critical state soil mechanics, in which the over-
all density of the soil mass dominates the behaviour of soil under shear deformation

(Wood, 1990). Basically, under a constant normal stress, for dense soil, the shear

11
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stress increases with the shear strain and then decreases, and may reach a constant
value; whereas, in soft soil, the shear stress does not show this behaviour. This as-
pect of soil behaviour has been discussed by Senatore and lagnemma (2011) and its
importance has been explained especially for lightweight mobile robots. They also
proposed a relation on considering the density effect on the shear response. How-
ever, as mentioned by Senatore and Iagnemma (2011), this relation requires further
investigation. It should be noted that the framework proposed in Chapter 2 for the
implementation of the semi-empirical terramechanics models can accommodate this

relation for obtaining the shear stress distribution.

1.3.3 Review of Semi-empirical Models in Multi-body Environments

The wheel-soil interaction model AS>TM (AESCO, 2005) was used by Bauer et al.
(2005, 2008) with the SimMechanics toolbox of Matlab. The experimental validation of
AS?TM was reported by Bauer et al. (2005), while the application of the tool developed
in assisting the design and optimization of rover mobility systems is discussed in (Bauer
et al., 2005) and (Bauer et al., 2008).

AS?TM is a wheel-soil interaction model that is developed based on the work of
Schmid (1995). This model is available as a Matlab/Simulink S-Function, and uses the
basic concepts introduced by Bekker. The pressure-sinkage relation follows the Bekker
model, and the shear stress is developed using the Janosi-Hanamoto relation. Certain fea-
tures like tire flexibility and grousers effect are incorporated in this model according to
AESCO (2005).

Ishigami et al. (2007) extended the semi-empirical model of Wong and Reece (1967a)
and investigated the effect of lateral forces introduced during the steering manoeuvres of
rovers. This terramechanics model was used with a multibody model of an articulated
four-wheel rover to simulate the motion of the rover on soft soil. In this work, soil reac-

tions are added as external forces to the wheels, and the rover is assumed to move on a flat

12
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surface. This work was extended by Ding et al. (2010b) for operation on rough terrain, in
which the interaction area between the wheel and the rough terrain is simplified as a plane.
The terramechanics model was also extended by including the slip-sinkage model of Ding
et al. (2010a). However, the terrain reactions on the wheel are again included as external
forces and moments on each wheel. In addition, in order to speed up the simulation, the
terramechanics relations are simplified. In Chapter 2 of this thesis, an approach is devel-
oped to avoid direct application of terrain reactions as external forces and moments. The
disadvantages of using external forces/moments are discussed in Chapter 2.

In the work reported by Schifer et al. (2010), the multibody simulation package Sim-
pack is used for the simulation of rovers. In their work, the soft soil surface is represented
by a height-field. In order to find soil reactions, the penetration depth of a wheel into each
contacting node of the terrain surface is determined. At each contacting node, the pressure
is obtained from the Bekker relation, Eq. (1.1), while the shear stress is determined from
a basic Mohr-Coulomb friction model. In their approach, the displaced soil is distributed
around the moving wheel. There is, however, no discussion about computational efficiency
of their approach. Furthermore, this approach is not modular, in the sense that using other
terramechanics relations, e.g., the Wong and Reece (1967a) model or the model of Ishigami
et al. (2007), is not trivial. Our approach, however, enables faster than real-time simulation
of rovers, with the ability to use a variety of semi-empirical terramechanics models.

Trease et al. (2011) used MSC-Adams for developing a multibody dynamics simulation
platform, which uses terramechanics relations regarding wheel-soil interaction, and is used
for the simulation of the Spirit and Opportunity rovers. They used the semi-empirical
model of Ishigami et al. (2007) with a different lateral force model and incorporated the
slip-sinkage model of Ding et al. (2010a).

A volumetric contact model for the interaction of wheel and soil was developed by
Petersen (2012). Using the Bekker pressure-sinkage relation and the geometry of the con-

tact, the model implicitly considers the energy dissipation during motion, coming from
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the rolling resistance, while being computationally efficient. This model is used with
the MapleSim simulation toolbox to develop simulation of the Juno rover. Even though
the Bekker pressure-sinkage relation is used in the development of this model, the semi-
empirical terramechanics models are not explicitly included in the model. Therefore, the
extension of the model to include the Wong and Reece (1967a) model or the slip-sinkage

model of Ding et al. (2010a), requires further research.

1.3.4 Other Pertinent Approaches

An alternative to semi-empirical models is to use continuum mechanics-based models.
In this family of models, the soil is represented with elastic, visco-elastic, elasto-plastic,
or elastic-visco plastic constitutive relations. In order to determine the stress field and soil
deformation, spatial discretization techniques such as finite element method (FEM) are
frequently used.

Early attempts in the use of finite element analysis (FEA) for studying wheel-soil in-
teraction have been reported by Perumpral et al. (1971), Yong and Fattah (1976), and Yong
et al. (1978). By the advances made in FEA and the computational capacity of computers,
this approach was pursued by others. Liu and Wong (1996) and Liu et al. (2000) modelled
elasto-plastic soil response by the use of critical state soil mechanics. Other examples in
using FEA for interaction analysis between wheel or tire and soil can be found in the work
reported by Schmid (1995), Fervers (2004), Chiroux et al. (2005), Hambleton and Drescher
(2008, 2009), and Xia (2011).

As an alternative approach, Karafiath (1971) and Karafiath and Nowatzki (1978) as-
sumed that the soil under a moving wheel is in the state of failure. Using this assumption,
they surmised that the failure in the soil mass can be represented by the simple Mohr-
Coulomb failure criterion, in which the strength of soil is defined by the internal friction
angle and the cohesion of soil. By neglecting the inertial effects, the slip lines of fail-

ure were determined, which then led to the stress field. This approach, however, requires
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the soil to be modelled as a rigid-plastic material (Yong and Fattah, 1976), and cannot be
extended for other plastic soil representations.

In addition, Wanjii et al. (1997) represented the soil under a rigid wheel with a visco-
elastic three-element Maxwell model to determine normal stress distribution in the contact
area. Using the assumptions of Bekker, normal stress is determined from pure vertical
deformation of soil under the wheel; normal stress is assumed independent of the shear
stress. The shear stress is then determined using the Janosi and Hanamoto (1961) relation.
This approach differs from the Bekker model in that the normal stress is determined by
means of a visco-elastic model, whereas in the Bekker model, the normal stress is indepen-
dent of velocity. This approach, however, does not capture plastic soil deformation and the
slip-sinkage phenomenon.

In the approach developed in Chapter 3 (Azimi et al., 2013b, 2011c), a high-fidelity
elasto-plastic representation is used for the soil mass, in which plastic soil deformation and
soil hardening/softening are captured. In addition, by assuming a plausible velocity-field

in the contact area, the stress field is determined without resorting to FEA.

1.4 Thesis Outline

Implementation of semi-empirical terramechanics models in a multibody dynamics
environment is the focus of Chapter 2. In this chapter, the scope of semi-empirical models
and their limitations when used with dynamic multibody systems are explained first. The
implementation details and the developed framework are then discussed. A key concept in
this part relates to the deregularization of the terramechanics models, which in turn leads
to wheel-soil interaction models in the form of linear complementarity problems (LCPs).
Soil compaction and hardening, which results in the multi-pass effect, are also included in
the model.

A novel approach based on elasto-plasticity theory is developed in Chapter 3 for ana-

lyzing the interaction between a rigid wheel and soft soil. The developed model is explained
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step-by-step through various algorithms included in Chapter 3. Simulation results obtained
from the new technique are compared against semi-empirical terramechanics models as
well as available experimental data. Additional illustrative examples are also provided
to show the behaviour of the new model in a dynamic operation with variable slippage.
Furthermore, discussion on the dynamic slip-sinkage effect, which is captured in the new
approach, is included.

In Chapter 4, the wheel-soil interaction models developed in the thesis are used for
3D simulation of the Juno II rover using Vortex. In addition, experimental results obtained
based on an extensive set of tests are compared with the results of the simulation. The Juno
II rover was developed by Neptec and Ontario Drive Gear (ODG) for the Canadian Space
Agency (Visscher and Reid, 2012).

Chapter 5 summarizes the contributions of the work and includes suggestions for future

research work.
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CHAPTER 2

Semi-empirical Models in a Multi-body

Dynamics Environment

2.1 Introduction

In this chapter, the implementation of semi-empirical models in a multibody dynamics
environment is discussed. It should be mentioned that the scope of this chapter is not to
develop new terramechanics models, but to develop and explain a framework for efficient
implementation of these models. Here, the most widely used semi-empirical terramechan-
ics models are explained and used. As explained in detail in this chapter, these models are
revised to make them compatible with multi-body dynamics environments.

The thesis focuses mainly on the wheel motion in the longitudinal direction. The forces
acting in the lateral direction, however, are also included and discussed later in this chapter.
The lateral direction is added so that the motion of rovers on uneven terrain and during
steering manoeuvres can also be simulated and analyzed.

As explained below, all the semi-empirical models for the longitudinal direction, which
are discussed in this thesis, are originated from the analogy made by Bekker in relating

the normal stress under the wheel to the average pressure under a flat plate penetrating

17



CHAPTER 2. SEMI-EMPIRICAL MODELS IN A MULTI-BODY DYNAMICS ENVIRONMENT

soil. Therefore, these models are referred to as the family of Bekker models, or the semi-
empirical Bekker models, in this thesis.

In Section 2.2, CM-Labs’ Vortex!, the multibody software package employed, is briefly
described. A review of pertinent semi-empirical models for the longitudinal direction was
included in Section 1.3.1. The scope and limitations of these models when used with multi-
body systems is discussed in Section 2.3. The detailed implementation of semi-empirical
models is explained in Section 2.4. In this section, operations on flat terrain are first dis-
cussed, followed by an extension of the model to motion on rough deformable terrain with
multipass effect in Section 2.4.5.

In the semi-empirical Bekker models, the soil reactions can be obtained from Eqs. (1.7)—
(1.10), when wheel sinkage and slip ratio are known, which are readily obtained from wheel
position and velocity. These reactions can directly be added to the wheel as external forces
and moments. However, there are some issues with this approach. To explain these issues,
the assumptions made in the semi-empirical Bekker models are reviewed, followed by their
limitations when used in the context of multibody dynamic systems.

Part of the work discussed in this chapter was published in (Azimi et al., 2010, 201 1a,
2012).

2.2 Brief Description of Vortex

Vortex is a simulation environment for complex multibody systems. It includes ad-
vanced graphical capabilities and is optimized for fast, real-time simulation. The basic
elements of a multibody model are rigid bodies and constraints, the former being referred
to as parts in Vortex. Several different types of constraints are available in Vortex, in order
to impose kinematic restrictions between parts. The kinematic constraints apply restric-
tions on the relative position or velocity of the bodies by applying internal forces/moments.

Vortex can limit the maximum possible internal forces/moments that can be applied by the

1http://www.vxsim.com/
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kinematic constraint. When the required internal force/moment of the constraint goes be-
yond the maximum limit or capacity of the kinematic constraint, the constraint will not be
able to maintain the kinematic restriction.

In Vortex, the parts can contain what is known as collision geometries. Collision ge-
ometries can be simple shapes, such as cubes, cylinders, and spheres, as well as more com-
plicated ones, such as height-fields and polyhedra. Contacts are detected between any pair
of bodies with defined collision geometries; if the latter overlap, the overlapping volume
is reduced to a contact patch and normal direction. This patch is then further reduced to
several contact points at the extremities of the patch. A unilateral constraint is then created
at each contact point.

Moreover, Vortex can model viscous or dry friction using what is called the box model,
where the friction bounds along the axes that span the contact plane are explicitly specified.
Alternatively, the maximum force may be defined as a function of the normal force. Vortex

uses a linear complementarity problem (LCP) solver for the forward dynamics problem.

2.3 Scope and Limitations of Semi-empirical Bekker Models in Con-

nection with Multibody Systems

The semi-empirical Bekker models, reviewed in Section 1.3.1, were developed under
certain assumptions, where a cylindrical wheel is assumed to move on a flat and horizontal
soil surface under steady-state conditions. In this context, given the vertical load on the
wheel centre and the slip ratio, these models make it possible to determine the wheel sink-
age, drawbar pull, and driving torque. Some of the shortcomings and limitations of these
models, resulting from the above assumptions, are listed below.

L1: If the semi-empirical Bekker models are directly used for dynamics simulation,
the vertical component of the wheel-centre velocity v, does not contribute to the

calculated soil reaction. Therefore, the soil reaction force in the z-direction (F?)
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L2:

is only a function of sinkage z and slip ratio, which, in turn, means that the en-
ergy loss due to dynamic motion in the z-direction cannot be accounted for with
these semi-empirical models. Simulation of a wheel/terrain interaction directly
with the Bekker or WR model results in an artificial oscillatory response in the
vertical direction. A remedy to this problem is to add a nonlinear damping term,
as discussed in this chapter. It should be mentioned that the model proposed in
Chapter 3, based on elasto-plasticity theory, addresses this limitation by captur-
ing the energy loss due to the plastic deformation of the terrain.

The other issue comes from the use of the slip ratio. Consider the simulation of
a single wheel driven by a torque. When the wheel is stopped on a horizontal
flat terrain, and no torque is applied, the forces in the forward wheel direction,
which are F; and R, according to Fig. 1.1, must balance. When the wheel is
stopped, the slip ratio is undefined, according to Eq. (1.6). Depending on soil
properties and wheel sinkage, there exists a slip ratio at which F; and R, balance,
if the wheel sinkage is not too high. However, finding this slip ratio requires
an iterative approach, if any of the semi-empirical models mentioned earlier are
used. Here, one can use another model for a stopped wheel on flat, horizontal
terrain that develops zero drawbar pull, for example, a model with symmetric
stress distribution, as shown in Fig. 2.1. However, when the wheel or rover is
on a slightly inclined surface, this model cannot work, as the normal and shear
stress distributions will not be symmetric. In addition, directly using these semi-
empirical models requires finding a slip ratio (different from the slip ratio in the
case of a horizontal surface) that results in the above-mentioned force balance.
In the case of a rover that is stopped on irregular terrain, the above-mentioned
approaches are not feasible for finding the slip ratios for all wheels that would
result in the force balance. Furthermore, when the wheel moves very slowly,

abrupt changes in the slip ratio can happen that could cause spurious oscillations
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and even instability if the time-step of the simulation is not small enough. It is
noted that when the wheel centre velocity and angular velocity are small, the slip
ratio is close to an undefined state.

A framework is developed in this chapter for efficient implementation of semi-
empirical models, which handles these issues by introducing several constraints
and applying soil reactions via these constraints, instead of considering them as
directly applied forces/moments. This framework accommodates different semi-

empirical models and handles any wheel motion.

016,

FIGURE 2.1. Schematic of a stationary wheel on a flat horizontal surface and the
normal stress distribution developed on the soil (shear stress is not shown). Stress
distribution is assumed symmetric, which results in zero drawbar pull. This form
of stress distribution occurs when the wheel has only moved downwards with no
rotation.

Considering these limitations, semi-empirical models have to be modified before being
used in multibody dynamics simulation environments, as discussed in the remainder of this
chapter. In addition, a framework is developed to deregularize the interaction model by

means of kinematic constraints.
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2.4 Implementation of Semi-empirical Models

In order to employ semi-empirical relations in a multibody dynamics environment like
Vortex, it is necessary to determine soil reactions (forces and moments) based on the wheel
pose (position and orientation) and twist (velocity and angular velocity) in addition to the
dimensions of the wheel and soil parameters.

The overall procedure involved in the method is first discussed in Section 2.4.1, in
which, by referring to the limitations mentioned in Section 2.3, the motivation of the ap-
proach developed in this chapter is explained. Then, the planar motion is discussed, fol-
lowed by non-planar motion. Extensions for operation on rough deformable soil is then

explained.

2.4.1 Motivation and Overall Procedure

As discussed in Section 1.3.1, using semi-empirical Bekker models, soil reactions can
be readily determined from Eqgs. (1.7)—(1.10), when wheel sinkage and slip ratio are known.
A typical approach in the literature, as mentioned in Section 1.3.3, is to apply these reac-
tions as external forces and moments to the wheel.

Now we recall the limitation L2 mentioned in Section 2.3 in the use of the slip ratio. As
discussed therein, the problem is that when the rover is stopped, or it is close to stopping,
the slip ratio is undefined according to Eq. (1.6). However, in order to determine soil
reactions from Egs. (1.7)—(1.10), the slip ratio has to be known a priori. Assuming an
arbitrary slip ratio is also not possible, as it will lead to reaction forces/moments that will
not result in force balance. Therefore, the reaction forces cannot be determined from the
same semi-empirical formulation.

Furthermore, when the rover is moving very slowly, the slip ratio can vary substan-

tially from one simulation step to the next one. This means that small changes in the rover
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velocity can lead to large changes in the reaction forces, i.e., the system involves steep char-
acteristics for the forces that involve the slip ratio. This, in turn, means that the differential
equations resulting for such a system will be stiff.

As an alternative in dealing with systems with steep force laws, Pfeiffer (2007), re-
placed those force laws, in a hydraulic system, with their equivalent set-valued force repre-
sentation. This led to a dynamics representation for the hydraulic system where the explicit,
force representations based on constitutive equations are replaced by unilateral and bilat-
eral constraints on the kinematic variables complementary to the forces. This approach
can be referred to as deregularization. In the approach proposed in this thesis, the dy-
namic system is deregularized by introducing kinematic constraints with set-valued force
laws, and avoiding direct use of terramechanics relations that would produce external ap-
plied forces/moments. As will be shown in Section 2.4.4, the system with these constraints
will lead to a linear complementarity problem (LCP), which can be solved, in turn, in an
efficient way using LCP solvers.

When modelling the terrain reactions to the wheel via external forces and moments,
numerical problems can happen with large time-steps. Small time-steps must, therefore, be
used, which can lead to unacceptably large simulation times. With non-smooth modelling,
which results from deregularization, relatively large time steps may be used with great
accuracy and stability. This can lead to high simulation efficiency.

Furthermore, as the terramechanics forces/moments are not directly applied as exter-
nal forces/moments in the proposed approach, we can assume a particular slip ratio for the
cases when the wheel is stopped. Therefore, the same terramechanics relations can be used
for both a moving and a non-moving wheel, which makes the proposed framework appro-

priate for the implementation of various semi-empirical terramechanics models.

2.4.2 Planar Wheel Motion

Based on the form of the stress distribution under the wheel, the semi-empirical models
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discussed in this thesis are divided into two. In the first model, referred to as the Bekker
model, the normal stress distribution is obtained from Bekker’s assumption, in which the
location of the maximum normal stress is at the bottom of the wheel (Bekker, 1969). In the
second model, referred to as the WRI model, for Wong, Reece, and Ishigami, the location
of the maximum normal stress is shifted forward according to Wong and Reece (1967a),
and a nonzero exit angle can be considered based on the model of Ishigami et al. (2007),
as shown in Fig. 2.2. The following relation is used to determine the exit angle in the WRI

model:

A
6, = acos (1 — ?Z) (2.1

() (b)

FIGURE 2.2. Normal stress distribution under a rigid wheel moving on an uncom-
pacted soil as proposed by (a) the Bekker model, and (b) the WRI model, in which
A = 0 is equivalent to the Wong and Reece (1967a) model.

In addition, the shear stress distribution is obtained from Eqgs. (1.4) and (1.5) in both
models. Slight modifications to these relations, however, are required to obtain the shear

stress in a multibody dynamics environment, as explained in Section 2.4.2.2.
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2.4.2.1 Normal Direction

The force in the normal direction is introduced by means of a viscoelastic-like re-
sponse, wherein we change stiffness and damping coefficients every time-step of the simu-
lation, based on terramechanics relations. In this regard, it is noted that if the wheel sinkage
is positive, the reaction force F; occurs, while for negative sinkages, i.e., no contact between
wheel and terrain, the reaction force vanishes. Therefore, the force in the normal direction
can be modelled with a one-point contact with unilateral properties, in the planar case. In
this case, by intersecting a circle, which represents the cylindrical wheel, and a line, which
represents a plane, the sinkage value and the contact point A, as shown in Fig. 2.3, can be

readily obtained.

untouched
soil surface

FIGURE 2.3. Schematic of wheel and soil contact in the planar case with the equiv-
alent soil reactions. A is the contact point and z is the sinkage, which are obtained
by intersecting a line representing the untouched soil surface and the circle, which
represents the wheel.

The normal reaction force predicted by any of the semi-empirical models mentioned
above, Eq. (1.10), is a function of wheel sinkage and slip ratio. As the semi-empirical

21t should be mentioned that Vortex provides the possibility of changing the stiffness and damping coef-
ficients of any contact point at every simulation step.
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formulae were not developed for dynamic conditions, the energy dissipation during the
motion in the vertical direction is not captured. Therefore, if this relation is directly used in
a multibody dynamics environment, undamped oscillations occur. To avoid this unrealistic
behaviour, a damping term is added, as discussed below. It is noted that under steady-state
conditions, i.e., zero relative vertical velocity between wheel and terrain, the damping term
vanishes and the terrain reactions resulting from this implementation are equivalent to the
ones obtained from the semi-empirical models.

The instantaneous stiffness coefficient k, is defined based on the semi-empirical models

as

Rb [
@:——/ [2(6)5in 6 + 6,(8) cos 6] d6 2.2)
Z JO,

where z is the wheel sinkage. It should be noted that k, is a nonlinear function of sinkage
and slip ratio. At every time step, k, changes according to the current values of sinkage and
slip ratio, so the resulting force applied to the wheel will be equivalent to the reaction force
given by the original semi-empirical models, i.e., Eq. (1.10). By including the damping
term, the normal reaction force becomes

61

F.,=Rb | [t(0)sin®+0,(0)cosB]dO+c,z (2.3)
6,

where ¢, is a damping coefficient and 7 represents the velocity component of the wheel nor-
mal to the contact plane. Choosing an appropriate damping coefficient is not straightfor-
ward. Here, the damping coefficient is defined to be proportional to the stiffness coefficient

as

¢, = nek, (2.4)

where 7). is the proportionality coefficient and has units of frequency. It was found em-

pirically that if 1. lies between 0.1 and 0.4 s~!, this added damping can lead to realistic
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responses with zero or negligible oscillation. In the simulation runs included in this thesis,
ne =0.1 s~ is used. It should be noted that the criterion in selecting the proper damping
coefficient lies in obtaining a simulated response with zero or negligible oscillation in the
normal direction.

A viscoelastic system is also used by Sohl and Jain (2005) in the ROAMS planetary
rover simulation package, regarding the wheel-terrain contact modelling in the direction
normal to the terrain. They used a single-DOF Hunt-Crossley (Hunt and Crossley, 1975)
model, in order to determine normal terrain reaction force on the wheels. However, as the
instantaneous stiffness coefficient obtained from the semi-empirical model, i.e. Eq. (2.2),
is different from the one obtained from the above-mentioned Hunt-Crossley model, wheel
sinkage and the computed normal force differ from those expected by the equivalent semi-
empirical model. As mentioned by Sohl and Jain (2005), the normal force obtained from
the viscoelastic model can then be used to determine the corrected sinkage and the other re-
actions of the terrain, using the semi-empirical model. This means that the semi-empirical
model is not used in their approach in determining the normal force on the wheel and the
simulated wheel penetration to the ground. In addition, no discussion regarding the rolling
resistance was presented. However, in the approach proposed in this thesis, the viscoelastic
model is determined based on the instantaneous stiffness of the terrain, which results in the
sinkage and the normal force calculation matching the semi-empirical model employed.
Moreover, as discussed later, other soil reactions determined from a semi-empirical model,

including rolling resistance, are included in our formulation.

2.4.2.2 Slip Ratio
In this thesis, it is assumed henceforth that the same model is used for driving, braking,
and towed conditions, as also assumed by Ishigami et al. (2007). In this regard, following

the approach explained in the foregoing reference, the model proposed by Wong and Reece
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(1967a) is also used for a braking or towed wheel upon redefining the slip ratio and the

computation of shear stress, as discussed below.

REMARK 3. For a towed rigid wheel, a model was proposed by Wong and Reece
(1967b) slightly different from their model for a driven wheel (Wong and Reece, 1967a).
However, the two models show a discontinuity when switching between them, as is required
when modelling general, dynamic rover operations including non-steady states. Therefore,
the model for a driven wheel (Wong and Reece, 1967a) was used by Ishigami et al. (2007)
for the entire range of operation. The same approach as in (Ishigami et al., 2007) is used

in this thesis as well.

The slip ratio defined in Eq. (1.6) is only valid for a driving wheel (i.e., |[R®| > |vy|).

It is redefined below to support the driving, braking, and towed cases:

1= if[vy| < |Rw| # 0 (driving)
is:=3 peR® (2.5)
— —1 if |Rw| < |vy| # 0 (braking or towed)
»

X
For a wheel moving very slowly, a small variation in v, or @ can cause a large change

in the slip ratio. Therefore, the value of slip ratio determined from Eq. (2.5) is modified as

shown below. To this end, an intermediate variable is defined as

Ro ,if |v| < |Ro|
Viemp = (2.6)
vy ,otherwise

The slip ratio is then redefined as

O ) if Vtemp - 0
Iy = Rw — V2 2.7)
' Vx I—exp| — tgmp , otherwise
Vtemp Vinin
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where vy 1S an indication of an insignificant speed for the rover. For example, when
analyzing or simulating a rover with a nominal speed of 0.1 m/s, vy, of around 0.0001 m/s
could be employed.

This modified definition for slip ratio leads to the same results as in Eq. (2.5) when the
wheel is not moving very slowly. In addition, in the case of a stationary wheel, a slip ratio
of zero is assumed®. Furthermore, when the wheel moves very slowly, the slip ratio remains
close to zero, according to Eq. (2.7). This avoids fluctuations in the slip ratio for a slow-
moving wheel. It should be mentioned that the assumed zero slip ratio for a stationary
wheel, is a natural choice, as for a slowly-moving wheel the slip ratio determined from
Eq. (2.5) can fluctuate around zero, which, in turn, means that the filtered value for slip
ratio under this condition should be close to zero. The assumption of using zero slip ratio
for a stationary wheel provides a smooth transition in the slip ratio when the wheel starts
or stops moving, thus leading to numerical stability.

In addition, the shear stress distribution is obtained from the relation below, instead of
Eq. (1.4), to properly account for the effect of a negative slip ratio:

1ja(6)]

7(6) = (c+0(6)tan¢) {1 —exp (-Td)] sen(ja), (2.8)

where j; is expressed in Eq. (1.5) and sgn(+) is the signum function, defined as

I if x>0
sgn(x) = (2.9)

—1 if x<0
It is noted that K is a positive scalar; therefore, directly using a negative j; in Eq. (2.8)
without taking its absolute value, makes no physical sense. According to Janosi and

Hanamoto (1961), the shear stress 7(0) changes from zero to its maximum of c+ &/(0) tan ¢

by the use of an exponentially decaying function of a positive j;. When j; is negative,

3 As mentioned in Section 2.4.1, our proposed approach makes it possible to use a particular slip ratio for
a stationary wheel.
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7(0) also becomes negative, while the form of the exponentially decaying function does

not change. An illustration of the modified 7(0) of Eq. (2.8) is shown in Fig. 2.4.

10 Tmax

5 /

Shear stress (kPa)
o

'5 /

-10 — Tmax

0.2 015 -0.1  -0.05 0 0.05 0.1 0.15 0.2
Shear deformation j; (m)

FIGURE 2.4. Change of shear stress versus j; as suggested in Eq. (2.8). Tpaxs
which is equivalent to ¢ + ¢ (0)tan ¢, is set to 10 kPa in this figure and Kj is set to
0.025 m.

2.4.2.3 Traction and Resistance

As seen in Fig. 1.1, there are four reactions determined from Eqgs. (1.7)—(1.10). F; is
considered by setting compliance and damping coefficients at the contact point in a one-
point contact model, as mentioned above. R, in Eq. (1.7) is related to o,(60), while F;
and 7, are functions of the shear stress distribution. Instead of directly applying these
forces/moments to the wheel, as mentioned in Section 2.4.1, appropriate constraints are
formulated, which are consistent with the point-contact model employed. The traction
force F; is first discussed, followed by 7, and R,.

Let us recall the ideal case of contact between a wheel and a plane, in the context of
rigid-body dynamics. In this case, a standard modelling approach is to consider a unilateral
constraint to represent the contact in the normal direction. In addition, in the presence of
dry friction, the Coulomb friction model is often used for the tangential contact plane, with

the velocity of the contact point as a key variable.
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The traction force and resisting moment, determined from terramechanics, are included
using the point contact model and the relative velocity of the contacting bodies at the con-
tact points, as explained below.

The traction force F; is obtained from the shear stress distribution; it is included in the
model using the position and velocity of the contact point, as displayed in Fig. 2.3. Using
the longitudinal velocity component of the contact point A of the wheel, referred to as vay,
the revised set-valued model for the traction force and its complementary variable, vay,
will be given. The revised model is explained in two steps. The first revised model for the

traction force, referred to as F;;4, can be given as

_|Ft‘ if va4, >0
Fa(vax) = [—|E] || if vay=0 (2.10)
|Ft| if VAx<O

In other words, when vy4, # 0, F;4 acts in the opposite direction of vy, and its value is
clearly defined, while F;; can take any value between |F;| and —|F;| if v4, is zero.

A key concept in this formulation is that F;; is expressed as a set-valued force law in
terms of its complementary kinematic variable v4,. Therefore, F;;, expressed in Eq. (2.10),
can be interpreted by introducing a kinematic constraint on the contact velocity va,, and
assuming that the maximum constraining force that can be provided by this constraint is
limited. For Eq. (2.10), the kinematic constraint is v4, = 0, with the maximum restraining
force limit of |F;|.

Let us now assume that the WR model is used and the wheel moves to the right, which
is the assumed positive direction of motion. When the slip ratio is positive, which means
vay < 0, the shear displacement j;(6) will be non-negative according to Eq. (1.5). This,
in turn, means that the shear stress 7(6) will be non-negative in the contact area as well,
under Eq. (1.4). Therefore, the traction force F; will be positive, according to Eq. (1.8).

This is consistent with Eq. (2.10).

31



CHAPTER 2. SEMI-EMPIRICAL MODELS IN A MULTI-BODY DYNAMICS ENVIRONMENT

However, when v4, > 0, which means a negative slip ratio, the shear displacement in
the contact area j;(6) can become positive, negative, or zero depending on the value of slip
ratio and wheel sinkage, according to Eq. (1.5). Figure 2.5 illustrates this behaviour for a

wheel moving to the right with a relatively high sinkage.
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FIGURE 2.5. Shear displacement in the contact area computed from Eq. (1.5) for a
wheel with radius and width of 0.15 m and a sinkage of 0.04 m, with soil properties
reported in Table 2.1, and assuming zero exit angle. The results are displayed for
slip ratios of —0.05, —0.15, —0.2, and —0.3.

Therefore, the shear stress can show a similar behaviour using Eq. (1.4). The shear
stress in this case can vary as shown in Fig. 2.6, for example. This means that the traction
force F;, when the wheel has a negative slip ratio, can be positive, negative, or zero. This
is not consistent with Eq. (2.10). For example, as mentioned in the caption of Fig. 2.6,
the traction force F; determined from Eq. (1.8) is positive for slip ratios —0.05 and —0.15,
while F;;, determined based on Eq. (2.10), is negative, because the contact velocity vy, is
positive (as iy < 0). For slip ratios of —0.2 and —0.3, however, F;;, determined based on
Eq. (2.10), is negative, as is the value of F;.

The undesired change of the direction of F;; occurs due to using the reference contact

velocity of zero in the formulation. This behaviour, however, can be corrected by revising
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FIGURE 2.6. Shear stress distribution for a wheel with radius and width of 0.15 m
and a sinkage of 0.04 m, with soil properties reported in Table 2.1, using the Wong
and Reece (1967a) model with zero exit angle. The results are displayed for the
slip ratios of —0.05, —0.15, —0.2, and —0.3, while the computed F; values are 40.6
N, 5.1 N, —12.5 N, and —41.9 N, respectively.

TABLE 2.1. Parameters of the semi-empirical model, taken from Ishigami et al. (2007)

¢ (deg) 372
¢ (Pa) 800

ky (N/m"2)) | 8.14 x 10°

ke (N/m" D) [ 1.37 x 103

n(-) 1.0
K; (m) 0.025
Cl (—) 0.4
c (-) 0.15
Frq(vax) as:
—|Ft| if vay > Vref
Fa(vax) = [=|E] ] if vay = Vies (2.11)
|E| if va, < Vref

where v, s is non-zero when the slip ratio is negative and the F; determined from Eq. (1.8)

becomes positive; v,.r can be defined as
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ey = (I14+c3)vay ,if iz<0 & F>0 2.12)
, otherwise

where c3 is any small non-dimensional positive scalar. With the revised formulation, the
kinematic constraint equation is voy = vy, with the maximum restraining force of |F;|. Tt
should be mentioned that in every time-step of the simulation, the value of F; is determined
from terramechanics relations, e.g. Eq. (1.8), by means of the sinkage and slip ratio deter-
mined in the last time-step. In addition, v, is determined using the last time-step value
of va,. Therefore, before performing a new simulation step, the values of F; and v,y are
determined from the results of the last time-step. With these values, the appropriate con-
straint that represents Eq. (2.11) is set up. As will be shown in Section 2.4.4, the dynamic
equations of the multibody system with this constraint can lead to a linear complementarity
problem.

By inspection, one can realize that Egs. (2.11) and (2.12) are consistent with the ex-
pected behaviour from terramechanics relations. Different cases of planar wheel motion
are discussed below. It is noted that F; is the value directly determined from the terrame-
chanics relations and it does not take into account the direction of motion of the wheel
centre. Positive F; helps the wheel to move, while negative F; opposes the wheel motion.

Case 1: Wheel moves to the right (v, > 0) with ig > 0: In this case, positive i results in
F; > 0, and both conditions v, > 0 and i; > 0 lead to v4, < 0; therefore, from
Eq. (2.12) vyer = 0 and in turn v4, < vy.r. From Eq. (2.11), F;4 becomes |F;|, as
expected.

Case 2: vy > 0 with iy <0, which implies that v, > 0. In this case, if F; > 0, v,y becomes
(14 c3)vax from Eq. (2.12), and hence, vy, < vy r. Therefore, F;; becomes |F,
as expected.

In addition, if /; <0, v,y becomes zero from Eq. (2.12), then v4, > v, r, which

results in F;; = —|F;|. This is also the expected result.
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Case 3: v, < 0 with ig > 0, which implies that v4, > 0. In this case, F; > 0 and, as
explained above, F; should help the wheel to move in its current direction of mo-
tion, which is to the left. Therefore, it is expected to see a negative F,.

From Eq. (2.12), vyer = 0. As vay > Vyep, Fig becomes —|F;|, which is the ex-
pected result, too.

Case 4: vy <0 with iy <0, which implies that v, <0. In this case, if F; > 0, v, s becomes
(14 c3)vay from Eq. (2.12), and thus v4, > v,er. Therefore, F,; = —|F| is the
outcome of Eq. (2.11), which again is the expected result. In addition, if F; < 0,
Vrey becomes zero from Eq. (2.12), and therefore, vay < vy.r, which results in
F,4 = |F;|. This is also the expected result.

As explained further in Section 2.4.4, Eq. (2.11) can lead to the formulation of a lin-
ear complementarity problem (LCP). This formulation, enables fast and stable simulation
of rovers moving on soil, while wheel-soil contact is represented with semi-empirical ter-
ramechanics models. It should be noted that multibody systems with unilateral contact
can generally be formulated as LCP, as mentioned by Anitescu and Potra (1997), who
formulated a multibody system with unilateral contact and dry friction as a LCP. Vortex,
the multibody dynamics simulation environment used in our implementation, is generally

based on such formulations and it employs efficient LCP solvers.

The soil reactions displayed in Figs. 1.1 and 2.3 must be equivalent. The soil reactions
shown in Fig. 1.1 are F;, R, F,, and T, with all the reaction forces acting through the wheel
centre. The equivalent system of soil reactions shown in Fig. 2.3 is composed of F;, R, F?,
and 7, where T,, is referred to as the residual resistance torque. It should be noted that in
this equivalent system, F; acts at the contact point A, not at the wheel centre. For the two

systems to be equivalent, 7, must be related to 7, by

T,, =RFE —T, (2.13)
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Similar to the approach explained above for the traction force, the revised formula for

the residual resistance torque can be given as

—|T,| if 0> o
Trra(vax) = [=|T|, | T|] if © = @y (2.14)
| T,/ if ©< Wy

where @, is defined by

ot+ei(0=2) if <0 & T, <0

wré’f - vx R

R

where R is the wheel radius and c3 is the same as that used in Eq. (2.12). Again, by

(2.15)
otherwise

inspection, the validity of the proposed relations in Egs. (2.14) and (2.15) can be verified
similar to the arguments detailed above for the traction force. It should be noted that the
assumed positive directions for 7., ®, and v, are shown in Fig. 2.3. With this definition, a
negative 7,, acts in the opposite direction of the angular velocity @, while a positive 7, in
the direction of w. Different cases of motion are briefly discussed below:

Case 1: Wheel moves to the right (v, > 0) with ig > 0: In this case, positive i results in
T,» < 0, and both conditions v, > 0 and is; > 0 lead to ® > v, /R; therefore, from
Eq. (2.15) @r = vy/R and in turn ® > Wy f. From Eq. (2.14), T,,4 becomes
—|T,/|, as expected.

Case 2: v, > 0 with iy < 0, which implies that @ < v,/R. In this case, if 7, < 0, e f
becomes @+ c3(® — v /R) from Eq. (2.15), and thus, ® > @,.s. Therefore, 7,4
becomes —|7;,|, as expected.

In addition, if 7, > 0, @,y becomes equal to v, /R from Eq. (2.15), and therefore,
® < Wy f, which results in 7,4 = |T,,|. This is also the expected result.

Case 3: v, < 0 with iy > 0, which implies that @ < 0 and |w| > |vy|/R, which means

® < vy/R. In this case, T, < 0 and, as explained above, 7}, should resist the
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angular motion of the wheel in its current direction of motion. Therefore, it is
expected to see a positive T,,4, as @ < 0.
From Eq. (2.15), @y r = vi/R. As @ < Oy, T,y becomes |T,,|, which is the
expected result, too, as explained above.

Case 4: vy < 0 with iy < 0, which implies that |@| < |v|/R and therefore, @ > (vy/R).
In this case, if 7, < 0, @,.r becomes @ + c3(® — v¢/R) from Eq. (2.15), and
thus, ® < ®,,¢. Therefore, T,,4 = |T,,| is the outcome of Eq. (2.14), which again
is the expected result. In addition, if 7, > 0, @,y becomes equal to vy /R from
Eq. (2.15), and therefore, ® > .y, which results in 7,,; = —|T,,|. This is also
the expected result.

Similar to Eq. (2.11), Eq. (2.14) can lead to an LCP formulation, as will be explained

in Section 2.4 .4.

In addition, based on its physical nature, the rolling resistance R, also referred to as
compaction resistance, is related to vy, the velocity of the centre of the wheel; it always
opposes v, and can vanish when v, does. Based on this, the revised formulation for com-

paction resistance R.; can be expressed as:

—|R| if v >0
Rea(vi) = [—|Re|,|R]] if vi=0 (2.16)
IR| if vy <0

which has a form similar to Eq. (2.11) and can lead to an LCP formulation, as will be

explained in Section 2.4.4.

2.4.3 Non-planar Motion on Flat Terrain
As mentioned above, in the development of semi-empirical models, like the Bekker
and Wong-Reece models, planar motion was considered. The non-planar motion discussed

in this section has two features: (i) lateral forces, developed during steering manoeuvres,
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for example, and (ii) penetration of a cylindrical wheel such that the cylinder axis is not
parallel to the terrain.
2.4.3.1 Lateral Forces

The lateral force F; is composed of two parts; one is related to the shear stress devel-
oped under the wheel, Fj;, while the other is related to bulldozing resistance that acts on

the side of the wheel, Fj;:

Fy = Fig+ Fip (2.17)

Similar to the approach of Schwanghart (1968), and Yoshida and Ishigami (2004), F;, can
be calculated by integrating the shear stress under the wheel, as
01

Fiy=Rb [ "le+0(6)n(9)][1 —exp(—jy(6) /K, )] db. 2.18)

where K, is the shear deformation modulus in the lateral direction; jy is the shear deforma-

tion in the lateral direction and computed by Yoshida and Ishigami (2004) as

jy(9> = R(l - is)(el - 9>tanBSa (2.19)

where f3; is the side slip angle, which is the angle between the wheel centre velocity vector

and the wheel forward direction:

Vy

Bs = atan <3) (2.20)

with v, and vy denoting the forward and lateral components of the wheel centre velocity,

respectively.

REMARK 4. Equation (2.19) needs special treatment: when Bg — 90°, j, — oo, which

in turn means that the shear stress becomes equal to the shear strength, as the exponentially
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decaying termin Eq. (2.18) becomes zero. In the implementation in Vortex, By is limited to a

slightly smaller value than 90° to avoid singularities, while its physical effect is preserved.

In addition, Fj, is computed by means of the Fundamental Earthmoving Equation
(FEE) of Reece (1964) and by performing integration over the contact area in the side-
wall of the wheel. In this approach, it is assumed that the sidewall of the wheel behaves
similar to the cutting blade of a bulldozer.

According to FEE, the bulldozing force is composed of four terms, which represent the
effects of soil density and cohesion, surcharge on the soil surface, and adhesion between
blade and soil. Based on the shape of the failure surface, four N-factors have to be deter-
mined as well (Reece, 1964). The shape of the failure surface depends on the soil internal
shear angle and the friction between blade and soil, as well as the blade shape and the soil
mass involved. McKyes (1985) presented the method of trial wedges, in which the failure
surface is approximated by a plane, which becomes a straight line in a 2D model, as shown
in Fig. 2.7. Therefore, the above-mentioned N-factors can be readily determined, using the

static equilibrium of the failing wedge.

blade velocity

horizon

Cady /sinpy,  H\|

FIGURE 2.7. Forces acting on the soil wedge.

According to McKyes (1985), the bulldozing force per unit tool width can be expressed

as
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F = ydiNy+ cdy,N + Q\wNg + cadyNy (2.21)

From the static equilibrium of all forces applied on the wedge, the N-factors are determined

as

_ (cotp,, +cotBy,) sin(04, + ¢ + By)  sin(a+ ¢+ Bu)
Ny = 2sin(8,, + pyw + ¢ + By) , Ng= Sin(Sy + Poo+ & + Bor) (2.22a)
N — cos @ N, = —cos(py + 0 + By) (22b)

< sinﬁw sin(5w-|—pw-|- () +ﬁw>, B sinp,, Sin(aw +pw+ @ +ﬁw)

with soil slope inclination angle o, blade/soil angle p,,, blade penetration depth d,,, soil
failure angle f,,, soil internal friction angle ¢, soil cohesion ¢, specific weight of the soil
¥, blade/soil friction angle §,,, blade/soil adhesion ¢, and surcharge force per tool width
Q.. In this method, B,, is determined such that it causes the least resistance from soil.
According to McKyes (1985), the proper value for 3, minimizes N,; however, it can also

be approximated as the passive Rankine state angle (Wong, 2008):

Pw=m/4—0/2 (2.23)

It is also noted that usually the angle between the wheel side and soil surface, repre-
sented by the blade/soil angle p,,, is around 90°. Using Eq. (2.21), the lateral force from
the bulldozing resistance on the sidewall of a cylindrical wheel is obtained by integrating

over the submerged portion of the wheel sidewall, as shown in Fig. 2.8, as

01
Fiy :R/e (YC(8)2Ny + cL(8)N. + OuNg +cal (8)Ny) cos OsinfydB,  (2.24)

where the surcharge force per tool width Q,, can be obtained by assuming a particular shape

for soil accumulation on top of the original soil surface. In addition, the slip angle f; is
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included in the formulation, as, in reality, with zero slip angle, i.e., no lateral velocity, there

will be no bulldozing on the sidewall.

soil surface
vy

FIGURE 2.8. Schematic illustration of determination of bulldozing force via inte-
gration over the submerged portion of the wheel sidewall
It should be mentioned that the range of applicability of this formula is limited to tool-
soil angles below 90° and slightly above 90°. In fact, the sidewall of a wheel and terrain
usually makes a 90° angle, which makes the method of trial wedges a good candidate
for this application. In addition, the N-factors, Egs. (2.22a, 2.22b), become singular when
sin(,, + pw + @ + B,,) becomes zero, which is the case when the summation of these angles
becomes 180°.% In this situation, the forces F,, and R,, become collinear and, therefore, no
static equilibrium for the forces acting on the wedge can be obtained. Furthermore, no
static equilibrium can be achieved when the summation of these angles becomes larger
than 180°. However, when p,, is around 90° or smaller, the solution is valid.
It should also be mentioned that, in this thesis, the friction between the sidewall of the
wheel and soil is neglected, i.e., 8,, = 0 is used here.
According to recent findings by Ding et al. (2011b), in cases of a large p,,, a single

wedge is not enough. In this case, the approximation of the failure pattern using two wedges
“The other cases, summation of angles equal zero or 360°, do not have physical meanings.
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leads to more acceptable results. However, as mentioned above, using a single wedge is
appropriate for modelling bulldozing forces on the sidewall of a cylindrical wheel, with a
negligible sidewall/soil friction.

The idea of decomposing the lateral force into a shear part and a bulldozing resistance
part is similar to the approach proposed by Ishigami et al. (2007). However, the part related
to bulldozing resistance is different. In the above reference, the bulldozing resistance is not
related to the velocity direction of the wheel, which results in high bulldozing force at small
side-slip angles—an outcome which is not physically correct. In addition, the method of
trial wedges of McKyes (1985) is used here, as opposed to the Hegedus (1960) bulldozing
force model. A benefit of using the former approach over Hegedus is that the slope of the

terrain can also be included in the formulation.

Similar to the approach used for the traction force in Section 2.4.2.3, the lateral com-
ponent of the velocity of contact point A of the wheel in Fig. 2.3, referred to as vy, is used

to set up the revised model for the lateral force Fj; as a set-valued force law:

—|F| if vay >0
Fa(vay) = [~|F|,|F|] if vay=0 (2.25)
|| if v, <0

Similar to Eq. (2.11) that was proposed for the traction force, Eq. (2.25) leads to the

formulation of a linear complementarity problem, as explained in Section 2.4.4.

2.4.3.2 Wheel Axis Not Parallel to the Terrain
In Vortex, when two or more bodies are in contact, several unilateral contact constraints
are placed in the contact region, depending on the shape of the colliding objects. In the

case of contact between a plane and the rolling side of a cylindrical wheel, one or two
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contact points, as shown in Fig. 2.9, are generated. For each contact point, the sinkage is

determined as the minimum distance from that point to the plane, as shown in Fig. 2.9.

L —

soil surface

contact points

FIGURE 2.9. Illustration of contact points between a rolling cylindrical wheel and
a planar terrain.

The stiffness and damping coefficients of each contact point are then set according
to Egs. (2.2)—(2.4). The traction force F; is determined from Eq. (1.8) and is divided by
2 to compensate for the two-point contact model employed. For each contact point, one
constraint with set-valued force law is added to the simulation and is set up according to
Eq. (2.11), to model the traction force. In addition, as the velocity of the wheel centre
is used to form the constraint associated with the compaction resistance R., Eq. (2.16),
a single constraint is added per wheel for the compaction resistance, based on the average
value of R, determined from the two contact points. Similarly, the residual resistance torque
T,, is determined from Eqgs. (1.9) and (2.13), for each contact point. Their average value is
used to set up a single constraint per wheel for the residual resistance torque, according to
Eq. (2.14).

It should be noted that the terramechanics models are developed and tested for the case
of similar sinkages on both sides. Therefore, in the case of large differences between the
sinkages on the two sides of the wheel, as schematically shown in Fig. 2.9, this implemen-

tation can only be seen as an approximation.
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2.4.4 Soil Reactions in a Complementarity Formulation

A Linear Complementarity Problem is expressed as (Stewart, 2000):

Find wu; € R”™ such that:
w; =Bju; +b; (2.26)
wi >0 ; uy>0 ; wlTul =0
where B; € R™*", b; € R™, and w; € R™. Moreover, x > 0 indicates that all components
of x are greater than or equal to zero.
According to Acary and Brogliato (2008), a generalization of an LCP with an addi-
tional system of linear equations, which is referred to as Mixed Linear Complementarity

Problem (MLCP), can be expressed as:

Find u € R"™ and w € R™ such that:
Bu+Cw+b =0, 2.27)
y=Du+Ew+d
w>0 ; y>0 ; wiy=0
where B € R C e R™*™ b e R™,yec R™, DecR™™ E¢cIR™ and
d e R™.

Anitescu and Potra (1997) showed that using explicit Euler integration, a multiboy
dynamics system having unilateral contact with dry friction and bilateral constraints can be
formulated as a MLCP. Here we show that a multibody model with no constraints except for
the kinematic constraints with the set-valued force laws expressed in Egs. (2.11), (2.14),
(2.16), and (2.25), can also be formulated as a MLCP. It then follows that a multibody
system having unilateral contact with dry friction, bilateral constraints, and the constraints
in Egs. (2.11), (2.14), (2.16), and (2.25) can also be formulated as a MLCP, following
the procedure explained by Anitescu and Potra (1997). The latter discussion, however, is

avoided as it lies outside of the scope of the thesis.
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In Sections 2.4.2.3 and 2.4.3, soil reactions were formulated in the form

—f if x> x;
fax) =< [=f,f] if x=x (2.28)

f if x <x
where f is a positive scalar and x is the complementary variable of f;. It is noted that f and
x are known a priory. Equation (2.28) is the general form for Egs. (2.11), (2.14), (2.16),
and (2.25). For example, in the case of the traction force expressed by Eq. (2.11), f, fu, x,

and x; represent F;, Fyg, vay, and v, s, respectively.

Consider the dynamic equations of an n-degree of freedom system with the kinematic

constraint and the set-valued force law expressed in Eq. (2.28) as:

M(q)v+£.(q,v) = £, + A" f; (2.29)

where M is the n by n mass matrix, q € R"” and v € R" are the vectors of generalized
coordinates and velocities, respectively, f. € IR" denotes the Coriolis and centrifugal forces,

f, € R" is the applied forces, and A is the constraint Jacobian obtained by:

ox

AIE

(2.30)

It is noted that in our formulation, only one constraint with the set-valued force law,
Eq. (2.28), is included in Eq. (2.29). Therefore, the constraint Jacobian A belongs to R
The extension of this formulation to more than one constraint is straightforward.

As A is the constraint Jacobian, the constraint velocity x is related to the generalized

velocities by

x=Av (2.31)
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Following the procedures explained by Acary and Brogliato (2008) and Anitescu and
Potra (1997), Egs. (2.29) and (2.28) can be reformulated as a MLCP, as we prove below.

Let us introduce slack variables A; and A,, and define f, as

7= 512 (2.32)
where A; and A, are the solutions of
M>0 5 (x—x)+lx—x1| >0 ; A[(x—x1)+|x—x|]=0
L>0 5 —(x—x)+|x—x1|>0 ; L[—(x—x1)+|x—x1]]=0 (2.33)

M+2A=2f

By inspection, one can realize that in Eq. (2.33), x > x; leads to A; = 0 and A, = 2f.
In addition, x < x; results in A; = 2f and A, = 0. Moreover, if x = x;, then 4; € [0,2f] and
A> € [0,2f] subject to A; + Ay = 2f.

Now we claim that the value of f; is equal to f,, determined from Eq. (2.32). For
X # x1, this is trivial, as mentioned above. Now let us consider x = xj.

By eliminating A, from Eq. (2.32) and the last relation of Eq. (2.33), ?d is obtained as

fa=M—f (2.34)

When x = x1, 0 < A; < 2f, as mentioned above. This means that —f < A; — f < f,

and therefore, f; € [—f, f]. This concludes our claim, i.e., f; and f, are equivalent.

Now, let us introduce x and x~ as

xt = [(x—x1) +|x—x1]]/2 = max(0,x —x;) >0

(2.35)

x =[(x—x1)—|x—x1]]/2=min(0,x —x;) <0
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Therefore, Eq. (2.33) can be expressed as:

1120 5 X+ZO 5 7ch+:0
M>0 ;3 —x >0 ; Ax =0
X—X] =x"+x

M+A=2f

\

(2.36)

Combination of Egs. (2.29), (2.31), (2.32), and (2.36), and noting that f; and f, are

equivalent, lead to the MLCP defined in Eq. (2.27), where m; =n+2,my, =2, E = 0,2,

d =041, and B, u, C, w, b, and D are given below

x+
u—= A’l s W =
A
_x_
M —(1/2)AT 0, 0,1 (1/2)AT
B=1 0., 1 0 , C=1 0 1
—A 0 —1 1 0
fc_fa
0ix, 1 O
b— —2f : D— 1x
01><I’l O 1
X

(2.37)

(2.38)

(2.39)

It should be mentioned that the condition w’y = 0 implies A;x" = 0 and Apx~ = 0,

because A;x™ > 0 and —Arx~ > 0, from Eq. (2.36). This concludes our claim.

Furthermore, using an explicit Euler integration scheme, Eq. (2.29) becomes:

M) —vD) 1 i, = i, +h AT

(2.40)
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where £ is the integration time-step. The superscript (/) on v symbolizes the general veloc-
ities at time-step /. Similarly, combining Eq. (2.40) with Egs. (2.32) and (2.36) leads to the
MLCP defined in Eq. (2.27) with E = 0,2, d = 0,1, and

G+ ]
x+
u= M 7 W= (2.41)
A
_x_ ]
M —(h/2)AT 0. | Ouxi (h/2)AT
B=1| 0., 1 0 ; C=1 0 1 (2.42)
—A 0 —1 | 1 0
~Mv") 4 n(f.— 1)
01><n I 0
0;x, O 1

X1
The interested reader is referred to (Acary and Brogliato, 2008), (Anitescu and Potra,

1997), and (Pfeiffer and Glocker, 1996) for further discussion on this topic.

2.4.5 Motion on Rough Terrain and the Multipass Effect

In the computation of soil reactions based on semi-empirical models, estimation of a
wheel/ground penetration value (wheel sinkage) is a key element. The sinkage is used to
determine 6; and 6, which are in turn used to calculate the soil reactions. In the semi-
empirical Bekker models, it is assumed that the wheel has a cylindrical geometry and the
terrain is flat (cf. Figure 1.1). In a basic implementation of such models, a cylindrical
geometry for the wheel and a locally flat surface, e.g., a plane, for the terrain could be used
as mentioned above.

In order to consider irregularities in the terrain surface, a high resolution height-field

(HF) is used here for terrain representation. Determination of a sinkage value suitable for
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use in the semi-empirical models, however, is far more difficult in this case. If, here too,
we were to apply the basic approach described above and attempt to determine the sink-
age from wheel and terrain geometries, we would have to deal with a general cylinder/HF
intersection algorithm. Depending on the HF-resolution, this can be computationally a
very expensive task. In addition, for arbitrary wheel interactions such as the wheel driving
on high-frequency rough ground or entering the onset of an incline, finding a reasonable
penetration depth that also changes smoothly from one simulation step to the next is algo-
rithmically challenging, yet it is a requirement for stable simulation.

Here, this challenge is met by reducing the complex geometrical problem of the overlap
between a cylindrical wheel and a general HF to the simple cylinder/plane intersection case.
This is achieved by approximating the wheel/terrain contact patch locally by a plane. First,
all the HF vertices in the wheel footprint are identified—see Fig. 2.10. Those vertices can
be obtained by first determining a bounding box of the wheel in local height-field space and
projecting it on the height-field. Then, for each of these vertices a ray cast is performed onto
the wheel geometry along the local up-axis of the height-field. If a hit with the geometry is
obtained, the vertex is considered as part of the footprint in the given simulation step. If the
hit point lies below the HF, the wheel penetrates the ground at that point, and the vertex is
called active. It is clear that the set of active vertices approximates the surface with which
the wheel is in contact at any step in the simulation. This observation can be used to obtain
the penetration sought as follows: at each simulation step a plane is found from the point
cloud defined by the positions of the currently active vertices, via a least-squares fit. This
plane is referred to as the least-squares plane. This plane intersects the cylindrical wheel by
definition and is used as an approximation of the wheel/ground contact patch at the current
simulation step. Finally, a cylinder/plane intersection test is conducted, from which the

cylinder penetration can be readily obtained.
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Bounding

O Hei .
box Height field vertices

|
|
| in the footprint
|
|

@ Active height field
vertices in the
+ footprint
|
|

Sinkage | | Least-squares plane

FIGURE 2.10. Schematic of height-field/wheel interaction and the approximating
least-squares plane

The compaction aspect of a wheel passing over soft ground can also be captured with
the HF-based terrain representation. Soil compaction is governed on one hand by a geo-
metric change of the terrain surface, and on the other hand by a change of the compaction
state of the soil material. Based on this observation, the HF data structure is enhanced
by additional data entries associated with each vertex representing soil-hardening parame-
ters, which capture the state of compaction in the HF at the corresponding location. Note
that the type of parameters needed strongly depends on the type of wheel-soil interaction
model used in simulation. The compaction of soil is modelled by evolving both the height
and the soil-hardening parameters associated with the vertices in the wheel footprint. For
semi-empirical models, the multi-pass approach of Wong (2010) has been adapted to this
implementation. In this context, the wheel sinkage used in the pressure-sinkage relation is
a key input for the evolution of soil hardening parameters.

The changes in the geometric properties and the compaction state of soil can be de-
rived from the sinkage of the wheel in the ground. The determination of the wheel footprint
allows for monitoring the wheel sinkage at each vertex of the footprint. This yields a dis-

cretized representation of the geometric effects of deformation occurring at the wheel/ground
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interface at each simulation step. In order to obtain permanent (plastic) terrain deforma-
tion, at some point the sinkage data obtained has to be transferred to the HF. For a given
HF vertex, this corresponds to lowering the height as well as updating the soil-hardening
parameter at this vertex. In this approach, this transfer is conducted for a given vertex if it
has just left the wheel footprint. In other words, the transfer is carried out in frame k if the
vertex was part of the wheel footprint in frame k — 1 and is not detected in the footprint any
more in frame k.

In this way, the terrain surface is not modified while the wheel is still passing over it, an
approach that avoids introducing disturbances in the simulation. Changing the HF surface
while it is still in contact with the wheel would otherwise directly affect the computation of
the sinkage parameter, which is used as the main input for computation of the soil reaction
forces. As a consequence, the soil reaction forces would be altered due to the actions of
the compaction model implementation, which is not desired. By deferring the modification
of the deforming soil at a given HF location until after the wheel has passed, this issue is
effectively avoided.

With the approach described above, all sorts of soil compaction effects can be repre-
sented. Deformation of a perfectly plastic soil, for instance, would be achieved by main-
taining the maximum sinkage at each vertex in the footprint.
2.4.5.1 Basic Relations

As mentioned above, the multipass approach of Wong (2010) is used here, in which the
pressure-sinkage relation follows the curve illustrated in Fig. 2.11. During elastic reloading
or unloading, part AB in Fig. 2.11, the pressure p is a linear function of the total sinkage

3ty i-e-7

D= Ppu—ky (Zu - Zt) (2.44)
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where z; is the sinkage measured from the uncompacted soil surface, p, refers to the pres-
sure at point A, which is the pressure when the unloading starts, z, is the total sinkage at
which the unloading has started, and k,, is the slope of the loading-unloading curve, defined

by Wong (2010) as:

ky = ko +Ayzy (2.45)

in which kg and A, are material constants that define the elastic unloading/reloading be-

haviour.
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FIGURE 2.11. Schematic of unloading/reloading model of Wong used to find nor-
mal stress distribution with multipass.

It should be noted that in this model the total elastic sinkage z, is assumed to be smaller
than z,. However, referring to the Bekker pressure-sinkage relationship, Eq. (1.3), if the
sinkage exponent n is smaller than unity, the tangent line to the pressure-sinkage relation
at 7z = 0 becomes vertical, which means an infinite slope for the tangent line. This in turn
indicates that when n < 1, depending on the value of ko, there exists a z,, value at which
kyz, equals p,. For values of z, smaller than this value, z, will be greater than z,,, which
contradicts the above assumption that z, must always be smaller than z,,. To address this

issue, in this case, the elastic unloading line is modified to connect the origin to point A.
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Therefore, in this case the pressure is obtained using Eq. (2.46), instead of Eq. (2.44), for
the unloading case, and the soil vertex is flagged as uncompacted (not hardened):

p="Lug (2.46)

Zu

In addition, if z; > z,,, the pressure is obtained from the pressure-sinkage equation for
an uncompacted soil, e.g., Eq. (1.3) for the Bekker relation. It is clear that if a wheel is
moving over already compacted soil, e.g., in a second pass, the penetration of the wheel
into the ground is measured from an already compacted soil surface. However, the value of
Z; is needed in Eqs. (2.44) and (2.46). The total sinkage z; can be readily obtained as shown
in Eq. (2.47) from the current wheel sinkage on compacted soil z, and the past maximal

sinkage z,,, which is the hardening parameter

4 =2+2u—Ze (2.47)

where z, is obtained from

le = pu/ku (2.48)

It should be noted that the past maximal sinkage z, is a parameter of our hardening
model, which is stored per vertex and modified as a result of multiple wheel passes (multi-

pass). Furthermore, the shear stress is obtained using Eq. (2.8).

2.4.5.2 Unloading—Reloading Relations in Various Wheel-soil Interaction Models

In this approach, after a wheel has passed, the HF vertices that have been in contact are
modified (both their height and hardening parameter). In the unloading/reloading model
of the terrain, as discussed above, the hardening is a consequence of the maximum total

sinkage.
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In this section, two cases are of interest. In the first case, the Bekker model is discussed,
while in the second case, the Wong and Reece (1967a) model and another model explained
by Ishigami et al. (2007) are considered. Normal stress distributions under a rigid wheel
for these models are displayed in Fig. 2.2.

There are two issues that need to be discussed for each model: (i) the amount of com-
paction (soil deformation) and hardening that is maintained in the terrain after the wheel
has passed, and (ii) the stress distribution when a wheel is moving on an already compacted
soil.

Case 1: Bekker model:

In this model, the point of maximum sinkage under the wheel corresponds to the maximum
pressure; therefore, the maximum deformation can be directly used to update the vertex
properties.

In order to update the vertex height and permanent hardening property, in the HF
data structure two additional entries are also stored, maximum penetration and temporary
hardening. During the time that a vertex is in contact with the wheel, vertex height and
permanent hardening remain unchanged but maximum penetration and temporary harden-
ing change. When the vertex has left the contact, maximum penetration and temporary
hardening are used to update vertex height and permanent hardening, respectively.

In addition, when the Bekker model is used to find the soil reactions on a wheel moving
on an already compacted soil, the normal stress distribution is directly determined based on
the approach explained in Section 2.4.5.1. In this regard, using £ (), illustrated in Fig. 1.1,
instead of z in Eq. (2.47), z; is determined as a function of 6. Then, z,(6) is used to interpret
and compute the pressure distribution, as explained in Section 2.4.5.1.

Furthermore, by knowing the normal stress at the bottom-dead-centre pmax, Which is
the normal stress at z;(6 = 0), a nonzero exit angle is found from the elastic rebound of soil

as (see Fig. 2.12):
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6, = cos”! <1 — pmax> (2.49)

Rk,

Ze = pmax/ku

FIGURE 2.12. Determining the exit angle in the Bekker model from the elastic
rebound. ppax is the normal stress at point A.

Case 2: WR and Ishigami et al. (2007) models:
In these models, the maximum pressure and maximum deformation do not occur at the
same location as opposed to the case of the Bekker model. Here, the hardening parameter
is updated based on the maximum normal stress but the soil height is set according to the
maximum deformation that each vertex experiences. The elastic rebound is not considered
because in these models, the normal stress at the exit angle reaches zero. By using the 4
parameter, which was introduced by Ishigami et al. (2007) to find the exit angle, the total

plastic deformation, that is set in these models for every vertex, is determined as

Zp = Zmax(1 — 1) (2.50)

where znmax 1s the maximum deformation the vertex has experienced during the contact with

the wheel. The height of the soil vertex once the wheel has passed is thus consistent with
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the assumptions made in the WR and Ishigami et al. (2007) models. For WR we use A =0
and for the Tshigami et al. (2007) model A is set according to the material properties. For
more details, the reader is referred to (Ishigami et al., 2007).

In addition, when the wheel moves over an already compacted soil, the normal stress
for 6 between 0; and 6, follows the reloading equation and is directly obtained as in the
Bekker model. For 6 between 6y, and the exit angle 6,, the normal stress follows the
scaled symmetry assumed by Wong and Reece (1967a) and Ishigami et al. (2007), where
the symmetry line is identified by 6y, the location of maximum normal stress. The normal

stress distribution is schematically displayed in Fig. 2.13.

FIGURE 2.13. Schematic of normal stress distribution under a rigid wheel moving
over the track of another wheel, using the Wong and Reece (1967a) and Ishigami
et al. (2007) models.

In Fig. 2.13, the front wheel portion, represented by the interval [0, 6)], touches pre-
compacted soil. In this zone, the soil reacts elastically at the beginning, represented in
the proposed model by the reloading line BA, shown in Fig. 2.11. Here, the soil has been
hardened by a previous wheel pass. As a consequence, in the current pass, the wheel has to
first overcome the pressure required to elastically deform the soil, until the pressure reaches

pu- Therefore, the normal stress increases rapidly at the beginning on the reloading curve
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BA, and then continues increasing more slowly, once p, is reached. At this point, the soil
has transitioned into a plastic state represented by the curve AC, shown in Fig. 2.11, which
has a smaller slope. As a result of the plastic deformation, the soil is hardened to another
level during this wheel pass. It should be noted that, if the normal stress applied by the
wheel does not overcome p,,, the soil only deforms elastically, which leads to no further
hardening in the current wheel pass.

When 6 varies from 6, to 0,, the stress decreases so that the stress profile forms the

scaled symmetry used in the WR and Ishigami et al. (2007) models mentioned above.

2.5 Summary and Conclusions

In this chapter, a new framework was developed for efficient implementation of semi-
empirical terramechanics relations in multibody dynamics environments. In the proposed
framework, a viscoelastic-like response combined with a unilateral contact model is intro-
duced to incorporate the reaction force F; in the direction normal to the terrain. Further-
more, the traction force F;, resistance moment 7, resistance force R,., and the lateral force
F; are included in the model by modelling them as set-valued force representations with
their complementary kinematic variables. As shown in this chapter, the dynamics equa-
tions of the multibody system with these representations of terramechanics relations led to
a linear complementarity problem.

In addition, in our implementation, the terrain is represented as a high resolution
height-field data structure. To deal with motion on rough terrain, we developed an effi-
cient scheme in approximating the contact area using a least-squares technique. Further-
more, wheel-induced soil deformation and hardening is captured in our model, by which

the multi-pass effect is included.

57






3.1 INTRODUCTION

CHAPTER 3

An Alternative Model Based on Elasto-Plasticity

Theory

3.1 Introduction

A novel approach in analyzing the interaction between a wheel and soft soil is in-
troduced in this chapter. In this approach, normal and shear stress distributions in the
contact area are determined using continuum mechanics without resorting to finite element
discretization, which led to a computationally efficient technique. A velocity field in the
vicinity of the contact area is proposed, which is motivated by the physical nature of the
problem. Using this field, the incremental changes to the stress field are computed by
resorting to elasto-plasticity theory and an appropriate constitutive relation for soil. As
opposed to classical finite element approaches, which model the soil in contact with the
wheel as a high-resolution mesh, our approach focuses on the wheel-soil contact patch
only. This highly localized simulation scheme provides the basis for fast wheel-soil inter-
action modelling. By combining this approach with a height-field as terrain representation,
elasto-plastic soil deformation and changes in the hardening state of soil are directly cap-

tured.
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The procedure for computing soil reactions in the contact area is explained in Sec-
tion 3.2. In this section, the computation of stress-increment tensor for a single point in
the contact area is explained first in Section 3.2.1. This involves: (i) proposing a velocity
field and obtaining the strain-increment tensor for it; (if) using an elasto-plastic constitutive
relation for soil, which is the Drucker-Prager with cap hardening in this thesis; and (iii)
using an iterative procedure from the classical elasto-plasticity theory for decomposing the
strain-increment tensor to the elastic and plastic parts. In Section 3.2.2, the determination
of the stress tensor in the entire contact area is explained. The elastic rebound computation
is then discussed in Section 3.2.3.

Simulation results are discussed in Section 3.3. In this section, the results of the pro-
posed approach in steady-state operations are first compared with the results obtained from
the Bekker and the Wong and Reece (1967a) models, where the latter is referred to as WR
model. The simulation results of non-steady motion with variable slippage are discussed
in Section 3.3.2. The slip-sinkage phenomenon captured in the novel model is discussed
in Section 3.3.3. A discussion on the proposed velocity field is the focus of Section 3.3.4.
Validation with experimental results available in the literature, which are obtained from a
single-wheel testbed, are explained in Section 3.4, followed by integration in the multi-
body dynamics environment, Vortex, in Section 3.5. Further discussion and comparison
with semi-empirical models and their behaviour regarding multi-pass is presented in Sec-
tion 3.7.

The research work discussed in this chapter was reported in (Azimi et al., 2011c,b,

2013b).

3.2 Soil Reaction Estimation Using Elasto-Plasticity

Assume that a rigid wheel, under planar motion, is in contact with homogeneous soft

soil. In order to find soil reactions, the calculation or estimation of the normal and shear
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stress distributions around the wheel are required. Then, from Eqgs. (1.7-1.10), soil re-
actions will be calculated. A novel approach is developed in this section based on elasto-
plasticity theory to calculate ¢, and 7 in the contact area. The proposed approach comprises
two stages: first, we explain how, for any point in the contact area, the change in the stress
tensor Ao caused by wheel motion is determined; then, the stress field in the entire contact

area is computed, using the algorithms introduced below.

3.2.1 Computation of the Stress-increment Tensor

Let us consider that at a point (in the soil) close to the wheel surface, the stress tensor
o and the current strain tensor € are known. In addition, the elastic €° and plastic €” parts
of the strain tensor are also known. Given the state of the rigid wheel, we look for the Ac
developed in a small time-interval At. The main issue is the determination of the strain
increment tensor A€, which is done here by assuming a velocity field at the region near the
contact area. The assumed velocity field and the determination of A€ are explained in this
section.

Using elasto-plasticity theory and a suitable constitutive relation for soil, the elastic
and plastic parts of the strain increment, A€° and A€”, are calculated based on an iterative
procedure for finding a plastic multiplier (de Souza Neto et al., 2008). Further details are

available in Appendices A and B.

REMARK 5. As mentioned by Khan and Huang (1995), the constitutive equations for
plastic deformation should be formulated in incremental form because of path dependence

in plastic deformation. [

As previously indicated, any elasto-plastic constitutive relation can be used in our pro-
posed approach to represent the soil response. In this thesis, the Drucker-Prager model with
cap hardening is used to express the plastic behaviour of soil. In order to have a complete
elasto-plastic constitutive relation, an elastic model needs to be adopted as well, for which

a linearly elastic relation has been used here. For the plastic behaviour, yield surfaces and
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flow potentials should be described with any hardening or softening rule. These are ex-
plained in detail in (SIMULIA, 2010) and (Helwany, 2007); a brief explanation is included

in Appendix A.

3.2.1.1 The Assumed Velocity Field

By assuming that the friction coefficient between the wheel and the soil surfaces is
higher than the internal friction coefficient of soil, any slippage happens between soil par-
ticles, not between wheel surface and soil. Therefore, the velocity of any soil particle in
contact with the wheel circumference is equal to the velocity of the corresponding point on
the wheel surface. Under these conditions, the soil velocity field near the contact surface is

assumed to have the form

. aj
+(r,0) = (vysin@ —v,cosB)exp | ———(r—R 3.1
40) = (im0 —v:co0sO)exp |~y oL (r—R) G0
vg(r,0) = (vycos O + v, sin@ — rm)exp [—o3(r—R)] (3.2)

where polar coordinates r and 0 are used to uniquely define the location of any point in the
soil with respect to the wheel centre, while vy, v,, and ® are the generalized velocities of the
wheel in planar motion, as shown in Fig. 3.1. In addition, (r — R) indicates the depth in the
radial direction measured from the wheel surface, &;, o, and a3 being constant positive
scalars, and 8501 the volumetric part of the plastic strain tensor. It is noted that the velocity

field defined in Egs. (3.1-3.2) is valid for r > R and 6, < 6 < 0.

REMARK 6. By assuming the presence of small narrow grousers on the wheel surface,
slippage will happen only among soil particles. This assumption tallies with the presence

of high friction between wheel surface and soil. [

62



3.2 SOIL REACTION ESTIMATION USING ELASTO-PLASTICITY

FIGURE 3.1. The r-0 directions in which the soil-particle velocity is decomposed

The assumed velocity field is in agreement with the boundary conditions of the prob-
lem, i.e., at r = R soil particle velocity is equal to that of the contact point on the wheel,
while the velocity approaches zero as r — oo. It is also noted that the motion of a soil
particle under the wheel is a phenomenon of diffusion, as opposed to propagation; thus the
exponential decaying terms in the velocity field are consistent with this behaviour. In addi-
tion, as discussed below, the velocity field is only used in the vicinity of the wheel surface,
as the only use of the velocity field in our approach is to determine the velocity gradient in
the contact area. The assumed velocity field is in agreement with the experimental observa-
tions reported in the literature (Senatore et al., 2012), (Skonieczny et al., 2012), where the
motion of soil particles under the wheel is recorded using high speed cameras; the velocity
field is then visualized from post-processing of the recorded images.

By using the above-mentioned Drucker-Prager model for soil, the model predicts either
elastic deformation or elasto-plastic deformation with hardening or softening for soil, all

depending on the state of stress. If the stress in the p-g plane lies in the cap region F¢,
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shown in Fig. A.2, the soil shows compaction; otherwise dilation. In addition, p and ¢ are
the stress invariants defined in Appendix A.

Moreover, when the soil is loose, which means a small 8501, a surface-applied penetra-
tion, by a rigid wheel surface for example, will mainly cause some compaction on the soil
under the wheel, but will not cause considerable soil flow to the sides. However, the same
penetration on the same soil but with a higher density could result in soil-particle motion to
the sides. This means that the soil with higher initial density will become less compacted

when facing the same motion on its surface. This behaviour is captured to some extent by

p

including &,

in the velocity field and the model parameter o;. More discussion on the

assumed velocity field is included in Section 3.3.4.

REMARK 7. The proposed velocity field is compatible with the above-mentioned con-
stitutive relation used for soil, as the hardening/softening pattern of soil is fully identified

by € which is a key parameter in the velocity field. (]

vol’

Then, the velocity gradient tensor at = R, on the external wheel peripheryl, is de-

termined as

_Lvr(&m o

G,o(R,0)= | Ewoit@® , (3.3)
—OC3V9(R,9)—CO 0

where v, (R, 0) and vg(R, 0) are the radial and tangential velocity components at the wheel
surface at location 6 and are obtained from Eqgs. (3.1) and (3.2), respectively.

Introducing the rotation matrix

sin@ cosO
R= , 3.4)
—cosfO sin0

'R* indicates the value of r when r approaches R from “the right”, as the function whose argument is r
is not defined at R™.
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the velocity gradient tensor G,g can be transformed into the fixed coordinate system (x-z)

via a similarity transformation:

G,. =RG,gR” (3.5)

where G,; is the velocity gradient tensor in the x-z system. Then, the time-derivative € of

the infinitesimal strain tensor can be obtained as the symmetric part of the velocity gradient:

1
&= E(GXZ +GL) (3.6)

The strain increment is then obtained as:

A€ = EAt (3.7

3.2.2 Determination of the Stress Tensor in the Contact Area

The procedure for obtaining soil reactions is explained in the two algorithms below. In
Algorithm 1, it is assumed that the rigid wheel is in steady-state condition, similar to the
Bekker and WR models, and moves with a nonzero angular velocity, while in Algorithm 2,
the general motion is considered. Algorithm 1 is straightforward for implementation, com-
pared to Algorithm 2, and is useful for parameter-tuning and comparison with the Bekker
and WR models, as explained in Section 3.3.4. Algorithm 2, however, is applicable to the
general motion of the wheel, as explained further below.

In Algorithm 1, the normal and shear stress distributions in the contact area are ob-
tained by following the motion of a single point on the wheel periphery from its initial
contact with soil (6 = 0;) until separation (6 = 6, in Fig. 3.1). During this motion, at any
location of this point identified by the angle 6, shear and normal stresses are obtained. As
the wheel moves under steady-state conditions, the stress values should not change in time

at any contact angle 6. Therefore, the calculated stress distributions, obtained by following
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the motion of the point mentioned above, represent the stress distributions under the wheel.

ALGORITHM 1.

Assumptions:

o The rigid wheel operates under steady-state conditions. This means that the
velocity component v, is zero. Also, the stress field in the contact area should not
change in time.

e The pre-compaction level and the initial stress level of soil before contacting
with the wheel are known. Therefore, the stress and strain tensors are known at
the initial contact point @ = 0y in Fig. 3.1.

e A high friction coefficient exists between wheel surface and soil, as explained
earlier and in Remark 6.

Steps:

(i) At the initial contact point, @ = 0, in Fig. 1.1, initialize 6 and € from the initial
compaction data of soil. Then, choose a small At for integration, set AO = wAt,
and go to Step 5.

(ii) Update 6 = 6, — AB.

(iii) From Egs. (3.1-3.7), calculate A€ associated with the motion during A6.

(iv) Using plasticity theory, A€ and A€? are determined (see Appendix B), which
leads to the computation of ©, €°, and € at the current location on the wheel
(with angle 0). Then, express the stress tensor in the r-0 directions to obtain
0,(0) and t(0).

(v) Set 6, =06. If 6 >0, go to Step (ii); else, go to Step (vi).

(vi) If 0,(0) <0, go to Step (viii); else, soil particle is in the elastic rebound condi-
tion. Follow the steps in Algorithm 3 to find 6 and A€°. Note that in this case

AgP = 0.
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(vii) Express the stress tensor G in the r-0 directions to obtain c,(60) and ©(0). Then,
go to Step (vi).
(viii) Use Egs. (1.7—1.10) to obtain soil reactions. B

REMARK 8. By default, elastic rebound of soil is included in Algorithm 1 in steps 6

and 7. Omitting these steps means neglecting the elastic rebound of soil. []

The algorithm below outlines the procedure involved in this novel approach, for the
dynamic motion of a rigid wheel in planar motion. In this algorithm, an explicit integration
scheme is used to obtain the updated normal and shear stress distributions under the wheel,
based on the motion of the wheel and hardening state of the soil. Here, the stress values are

obtained at some mesh points on the contact region of the wheel and soil (Fig. 3.2).

ALGORITHM 2.
Assumptions:
e The pre-compaction level and the initial stress level of soil before contact with
the wheel are known.
e A high friction coefficient exists between wheel surface and soil, as explained
earlier and in Remark 6.
Steps:
(i) Determine some mesh points on the periphery of the wheel by creating a surface
mesh on the wheel periphery. The nodes of this mesh are the mesh points used
in this algorithm (see Fig. 3.2).
(ii) Determine the mesh points that are in contact with the terrain (referred to as
active points). The values of stress and strain at active points that have not been
in contact with the terrain in the previous time-step will be initialized from the

initial stress and strain of soil.
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(iii) For a given time-step and for each active point, the steps below are followed. It
should be noted that for each active point, the current stress and strain tensors
are known at time t.
(a) Define the loading condition: loading or unloading:

(i) Compute v; as
/
V; = Vmesh * Dterrain (3.8)

where Viyesh 1S the velocity vector of the active point and Neppain 1S the
normal direction of the terrain®.
(ii) vag > 0, the active mesh point is in the rebound”; go to Step (iii-d).
Otherwise, the point is in a loading condition; go to Step (iii-b).

(b) A€ is calculated from Egs. (3.1-3.7).

(c) Using elasto-plasticity theory, A€ and A€’ are determined (see Appen-
dix B), which leads to the updated stress tensor O (t + At) and updated strain
tensors €°(t + At) and €7 (t + At). Then, go to Step (iv).

(d) Elastic rebound condition: follow the steps in Algorithm 3 to find the up-
dated stress tensor © (t + At) and updated strain tensor €°(t + At), while €
remains unchanged.

(iv) Express the updated stress tensor of all active points in the r-0 directions to
obtain o and 7. Integration of o and T over the area of wheel surface covered
by the active points will result in the reaction forces of soil.

(v) Increment time in simulation with the reaction forces obtained in the previous

step. Set t <t + At and go to Step (ii). B

>The computation of N,y 1S explained in Section 3.5 when operating on an irregular terrain.
3For numerical stability reasons, in our implementation instead of zero, we compare v, with a small
positive scalar €' to start our elastic rebound phase. When 0 < v; < €, soil will show rebound with softening.
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REMARK 9. A€ should be small enough fo ensure the convergence of the numerical
procedure involved in obtaining A€® and A€®, in Step (iii); the required time-step for the A€
calculation is usually much smaller than the time-step of the multibody system simulation.
In this case, Step (iii) is conducted multiple times under smaller increments to ensure the

convergence of the A€® and A€ calculations. (]

REMARK 10. Having a large number of mesh points will increase the computation
time; however, the algorithm is highly parallelizable as each mesh point can be treated
independent of the other points in this algorithm. It should be noted that using a very small
number of mesh points can cause non-negligible discretization error, which may result in

noticeable oscillations. []

FIGURE 3.2. Mesh points in a 2D case for a cylindrical wheel. Solid circles are
active mesh points.

3.2.3 Elastic Rebound Computation
In wheel and soil interaction, soil rebound happens when the wheel surface starts to
separate from soil instead of pushing it. Therefore, in this stage pressure between soil

particles decreases, which causes reduction in both normal and shear stresses. In our model,
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during elastic rebound, normal and shear stresses decrease such that the hardening state of
soil does not change (due to a purely elastic rebound assumption).

The assumed velocity field expressed in Eqgs. (3.1) and (3.2) is valid for the region un-
dergoing no rebound, because there it is assumed that the soil particle in the wheel surface
follows the velocity of the wheel surface. However, if the soil particle at the wheel surface
is in a rebound condition, then it cannot follow the wheel surface, because it cannot be
pulled by the wheel, where negligible adhesion between wheel surface and soil is assumed.
We can, however, assume that in the radial direction, the soil particle follows the motion
of the wheel surface until the contact pressure between wheel and soil reaches zero. After
that, separation between wheel surface and the soil particle happens. During this rebound
phase, the shear strain is adjusted in our algorithm such that the state of stress remains
inside or on the yield surface (state of stress outside the yield surface is invalid), while the
hardening of soil does not change. To this end, the procedure below is introduced for any
point that is in the elastic rebound phase. It is noted that the condition for a soil particle to

be in the elastic rebound phase was explained in Algorithms 1 and 2.

ALGORITHM 3.
Given the current stress tensor O, strain tensors €° and €P, wheel geometry and state vari-
ables, and knowing that the soil particle is experiencing elastic rebound, compute updated
stress and strain tensors after a small time-step At.
Steps:
(i) Compute A€ from Eq. (3.7) and initialize the elastic and plastic parts of the

strain increment tensor by

A€ A€ (3.9a)

trial —

Ag? =0 (3.9b)
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(ii) Introduce a trial stress state, which has the form below for a linearly elastic

behaviour:
Ouia =0+C: Asfrial (3.10)
where C is the fourth-rank elastic stiffness tensor. Symbol “:” denotes double

contraction, as needed between a fourth-rank tensor C and a second-rank tensor
€y (de Souza Neto et al., 2008), to produce a second-rank stress tensor.

(iii) Check the validity of Oia. If it is inside or on the yield surface, go to Step (v),
as Oyial IS a valid stress tensor (de Souza Neto et al., 2008); otherwise, go to
Step (iv).

(iv) Modify A€{;,: This is done by modifying the lower off-diagonal element of
G,o(R",0) in Eq. (3.3), referred to as G,g(2,1), by the relation below:

Gr,9(271):_a3V9<R79)(1_n)_w (311)

where 1 is a positive scalar. Here we increase M stepwise from zero until the
condition in Step (iii) is satisfied on Oyia. The updated A€, is computed from
Egs. (3.1-3.7) and using Eq. (3.11). It is noted that, by using this modified strain
increment tensor in the elastic rebound phase, the state of stress remains valid,

while the hardening state of soil does not change. This is the necessary condition

e

for a purely elastic rebound. After incrementing N and computing A€,

go to
.4
Step (ii)".

(v) Set 6 = Oyiq and exit. B

“Instead of increasing 7 stepwise, a more computationally efficient approach would be formulating a
single-variable optimization problem, basically a line search, to find the appropriate 1.
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3.3 Simulation Results and Further Analysis

To validate the proposed approach, our results are compared with those obtained using
the Bekker and WR models. As mentioned above, the Drucker-Prager constitutive relation
with cap hardening is used to model the plastic deformation of soil in this thesis. Combined
with a linear elasticity model, this relation leads to an elasto-plastic constitutive relation for
soil. However, the nature of the Bekker and WR models being different from this elasto-
plastic constitutive relation, they have different sets of parameters. The parameters of the
elasto-plastic constitutive relation are listed in Tables 3.1 and 3.2; some of these parameters

are taken from (Chiroux et al., 2005).

REMARK 11. It is noted that the approach proposed in this thesis does not depend on a
specific constitutive relation for soil or a specific form of the velocity field. Soil constitutive
relation and the assumed velocity field are important elements of the approach, but other

pertinent constitutive relations and velocity fields can also be employed. []

The parameters needed for the Bekker and WR models are k., kg, n, ¢, c, and K.
Here we need to find the equivalent set of parameters needed for these models based on
the parameters of the elasto-plastic constitutive relation listed in Tables 3.1 and 3.2. To
do so, we simulated the plate-penetration test (bevameter test) using Abaqus to identify k.,
ko, and n, as explained below. In addition, ¢ and ¢ are defined from the parameters of the
Drucker-Prager model (8 and d) using the relations below (Shoop, 2001), by “assuming

plane strain response and non-dilatant flow” (Shoop, 2001):

tanff = 1.73sin¢, d =1.73ccos¢ (3.12)

Furthermore, an average value for K; was chosen based on values reported in the terrame-

5

chanics literature”. Moreover, for the WR model two other parameters, c¢; and c», are

5 A more appropriate way for defining ¢, ¢, and K, is simulating the bevameter shear test in Abaqus,
which should result in more accurate calculation of shear stress distribution.
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needed to locate the position of the maximum radial stress. These parameters are also
selected from p. 386 of (Wong, 2010) for loose sand; their values are listed in Table 3.3.

TABLE 3.1. Material properties for the elasto-plastic constitutive relation

Young’s modulus, E (Pa) 3% 10°
Poisson’s ratio, v (-) 0.32
Angle of friction, B (deg) 41
Material cohesion, d (Pa) 350
Cap eccentricity, R, (-) 0.15
Initial value for 8501 (=) 0.001
Transition surface parameter, & (-) | 0.01

TABLE 3.2. The hardening pattern used in the elasto-plastic constitutive relation

pp (kPa) 8\1,701 pp (kPa) 8\1,701

0.15 0 24 0.149679
1.5 0.014661 27 0.160028
3 0.028334 30 0.16928
6 0.053024 36 0.185036
9 0.074619 48 0.208422
12 0.093572 63 0.228045
15 0.110262 87 0.248232
18 0.125006 120 0.266976

21 0.138069 150 | 0.280999

TABLE 3.3. Parameters of the Bekker and WR models used for comparison

¢ (deg) 30
¢ (Pa) 234
ko (N/m"2)) | 4.104 x 10°
ke (N/mU"+ 1) 0
n(-) 0.8
Ky (m) 0.013
1 (9) 0.18
¢ (9) 0.32

As mentioned above, the plate-penetration test (bevameter test) is simulated using
Abaqus to identify k., ky, and n. For this, 2D simulation runs were conducted on Abaqus/Explicit

with plate widths of 100 mm and 120 mm. The von Mises stress distribution under the plate
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is shown in Fig. 3.3. It should be noted that only one half of the plate and soil mass is sim-
ulated, as the problem has a plane of symmetry. The average pressure developed under the
plate is plotted in Fig. 3.4 versus plate sinkage for both plate sizes. From that figure, &, kg,

and » are identified.

IR o
i o

L
[LH

FIGURE 3.3. Von Mises stress distribution under the plate in the penetration test
with a plate width of 0.1 m
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FIGURE 3.4. Average pressure developed under the plates vs. plate sinkage using

Abaqus Explicit

In the remainder of this section, an example of steady-state motion for a single wheel is

analyzed, followed by non-steady motion of the same wheel in the second example. Then,
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the slip-sinkage behaviour is investigated. An explanation of the assumed velocity-field
parameters and general discussion are the topics of the last two subsections.
3.3.1 Steady-state Motion

In this case, a rigid cylindrical wheel with 0.30 m diameter and 0.10 m width moves
under steady-state conditions, which means a constant v, and @ and a zero v,. v, is 0.12 m/s
and o is 1.0 rad/s, which results in a 20% slip ratio. This example is repeated for different
values of vertical load, ranging from 39 N to 206 N. Soil reactions are compared with the
Bekker and the WR models. The parameters of the proposed velocity field, which were
tuned based on an approach explained in Section 3.3.4, are listed in Table 3.4. It should
be mentioned that in the results displayed in Figs. 3.5-3.9 we have adopted a zero exit
angle (8, = 0) by assuming that the elastic rebound of soil is negligible. As 6, = 0 is also
assumed in the Bekker and WR models, this assumption helps us do a fair comparison
between the basic elements of our model and the aforementioned Bekker and WR models.

After that, all the results are obtained while considering the elastic rebound of soil.

TABLE 3.4. Parameters of the proposed velocity field

a(m )| op()| o (m)
0.64 | 003 | 35

By comparing the results of the drawbar pull and the resistance force, Figs. 3.5 and
3.6, the estimated resistance force closely matches the ones resulting from the Bekker and
WR models; however, the traction force is overestimated at low and underestimated at high
sinkage values, when compared with these models. In addition, as shown in Fig. 3.7, the
estimated wheel sinkage matches the Bekker and WR models relatively well, under various
loadings and a fixed 20% slip ratio.

Furthermore, the normal and shear stress distributions are displayed in Figs. 3.8 and
3.9. The normal stress distribution is closer to the Bekker model, but shows that the po-
sition of maximum normal stress is shifted forward, which agrees with experimental ev-

idence (Wong, 2010). It is noteworthy that the normal stress distribution resulting from
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FIGURE 3.5. Comparison of the calculated drawbar pull for 20% slip ratio under
the action of different vertical loads
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FIGURE 3.6. Comparison of the calculated resistance force for 20% slip ratio un-
der the action of different vertical loads

the proposed approach is in good agreement with these models. The shear stress, how-
ever, is overestimated at the area closer to the entry point and underestimated towards the
bottom-dead-centre. This can be related to a shortcoming of the adopted constitutive re-

lation, which can represent the compaction process relatively well but overestimates the
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FIGURE 3.7. Comparison of the resulting sinkage for 20% slip ratio under the
action of different vertical loads
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FIGURE 3.8. Normal stress distribution for 20% slip ratio under F, = 165 N

shear stress at small shear strains. This means that the proposed model with this constitu-
tive relation can more accurately represent terrains with small K. It should, however, be
noted that the Bekker and WR models provide an estimation for the stress distribution in
the contact area; further experimental data, for stress distribution, are needed to comment

more specifically on the validity of these results.
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FIGURE 3.9. Shear stress distribution for 20% slip ratio under F; = 165 N

In Figs. 3.8 and 3.9, the stress values are zero for negative contact angles (8 < 0). It
should be noted that in steady-state operations (v, = 0), the radial component of the velocity
vector on the wheel periphery at angle 6, v,(R, 8), becomes negative for 8 < 0, and points
toward the wheel centre. For this case, if we assume that the soil shows negligible elastic
rebound, there will be no contact when v,(R, 0) < 0, as the wheel can only push the soil.
Therefore, assuming zero elastic rebound when v, = 0 results in 6, = 0 and a discontinuity
in the stress distribution.

This example was analyzed again while considering the rebound of soil due to its
elasticity and using a relatively small Young’s modulus for soil (see Young’s modulus in
Table 3.1). Normal and shear stress distributions are shown in Fig. 3.10. As a relatively
small Young’s modulus is used for soil, the rear region (6, < 6 < 0), corresponding to
the elastic rebound, is noticeable. Increasing Young’s modulus results in smaller 6,. As

expected, the stress distributions show no discontinuity in this case.

REMARK 12. As mentioned above, the non-zero exit angle in this model is the result of

the elastic rebound of soil. In practice, soil flow and grousers affect the exit angle and they

78



3.3 SIMULATION RESULTS AND FURTHER ANALYSIS

20 Normal |_|
\ — — == Shear
" / \

10 \

r <
/ ‘\\
| h

N\

0
-10 -5 0 5 10 15 20 25 30 35
Contact angle (deg)

Stress distribution (kPa)

FIGURE 3.10. Normal and shear stress distributions for 20% slip ratio under F, =
165 N using Algorithm 1 with consideration of elastic rebound of soil.

could be the dominant factors when moving on sand with relatively high slip ratio. How-
ever, when adapting a continuum model with using an elasto-plastic soil representation,
the elasticity of soil (and wheel) determine the exit angle, which is an inherent limitation
of elasto-plastic soil representation. It should be mentioned that the common practice in
the literature is to either assume the exit angle as a function of the entrance angle, as in

(Ishigami et al., 2007), or use soil and wheel elasticity, as in (AESCO, 2005). ]

3.3.2 Non-steady Motion and Variable Slippage
In this section, we analyze a simple but illustrative example in order to demonstrate the
behaviour of our model in non-steady operations and under a wide range of wheel-slippage
conditions. In this example, we investigate the planar motion of a rigid wheel on soil, in
which v, and @ are controlled to achieve certain values for the wheel slip ratio with ®
measured positive cw and vy positive to the right (Fig. 1.1). In the z-direction, the wheel is
free to move under gravity. Mass, radius, and width of the wheel are 16 kg, 0.15 m, and

0.10 m, respectively.
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The wheel is dropped with a zero initial velocity and an initial sinkage of 1 mm. Algo-
rithm 2 is used to obtain the reaction forces applied on the wheel, and the elastic rebound
of soil is included that leads to a non-zero exit angle for the proposed model. From ¢ =0 s
tot =1 s, the wheel moves in the z-direction only, due to gravity, and causes plastic defor-
mation in soil. The wheel is then commanded to move forward with the velocity profiles
shown in Fig. 3.11. With these velocity profiles, the slip ratio grows incrementally from 0

to 30%. The results obtained with our proposed approach are displayed in Figs. 3.12 and

3.13.
0.225 pp—— 1.5
Jero 10%  209% i 30%
slip /__Sl'_p_l slip slip
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p— \b
=
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FIGURE 3.11. Command forward and angular velocities to the wheel

Again, our results are compared with those obtained based on the Bekker and WR
models. However, directly using the Bekker or WR model in this example leads to an unre-
alistic oscillatory response in soil reactions and wheel sinkage, because energy dissipation
in the z-direction is not considered in those models, as briefly explained in Section 2.3.
Therefore, we used the modified version of these models, as proposed in Chapter 2. The
results are shown in Figs. 3.14 and 3.15.

As can be seen from Fig. 3.12, using our model, wheel sinkage increases with slip
ratio, which agrees qualitatively well with the experimental observations, known as slip-
sinkage. In the Bekker and WR models, however, this feature is not captured. In addition,

at the initial phase, when the wheel is dropped, it sinks with a negligible rebound when the
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FIGURE 3.12. Vertical position of wheel centre versus time as predicted by our
novel approach in modelling wheel-soil interaction
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FIGURE 3.13. Wheel traction and rolling resistance as predicted by our novel ap-
proach in modelling wheel-soil interaction

proposed model is used, due to plastic deformation of soil. The wheel moves up when it
starts its motion with zero slip ratio, which agrees with experimental observations.
In Fig. 3.13, the traction and resistance forces predicted by our model exhibit some

oscillations from their nominal value. This is caused by the discretization error associated
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FIGURE 3.14. Vertical position of wheel centre vs. time as predicted by the modi-
fied Bekker and WR models (Azimi et al., 2011a)
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FIGURE 3.15. Wheel traction and rolling resistance as predicted by the modified
Bekker and WR models explained in Chapter 2.
with the use of mesh points. Increasing the number of the mesh points results in smaller
oscillation amplitudes in the reaction forces.
To better illustrate the effect of discretization, the same simulation is conducted with

higher resolution for the mesh points, the results being shown in Fig. 3.16. In the results
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shown in Fig. 3.15, the rigid wheel has 72 mesh points, one mesh point every 5 degrees.
The results displayed in Fig. 3.16 are obtained with 180 and 360 mesh points for the wheel.
As can be seen, the oscillation amplitude decreases substantially upon increasing the num-

ber of mesh points.
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FIGURE 3.16. Wheel traction and rolling resistance as predicted by the proposed
model with different mesh points on the wheel. (a) 180 mesh points; and (b) 360
mesh points.

3.3.3 Analyzing the Slip-sinkage Phenomenon
According to the WR model (Wong and Reece, 1967a), the effect of wheel slip on
normal stress distribution under a rigid wheel is at the position of maximum radial stress
(6yr), but the stress distribution from soil surface to 6y, remains independent of wheel slip
and follows Bekker’s pressure-sinkage relation. However, the results of our model suggest
that the wheel slip affects the stress distribution in the entire contact area.
By increasing wheel slip, according to our model, soil particles at the contact area ex-

perience a higher shear deformation (in the direction tangent to the wheel surface), while
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receiving a lower push from the wheel in the direction normal to the wheel surface. Based
on our assumed velocity field, and the Drucker-Prager constitutive relation adopted for
soil, this combination leads to a strain increment tensor A€ with a smaller volumetric plas-
tic part. As a result, a lower soil hardening is predicted with our model when wheel slip
increases. The pressure-sinkage relations under a rolling/slipping wheel (with various slip-
page conditions), obtained by using our model, is displayed in Fig. 3.17. As can be seen, the
pressure-sinkage relation changes in the entire contact area when the wheel slip changes.
This overall behaviour is consistent with the model recently proposed by Ding et al. (2010a)
regarding slip-sinkage. In their approach, they modified the sinkage exponent n as a linear
function of slip ratio, in order to capture experimental observations. However, further ex-

perimental studies where stress distribution is measured at different slip ratios are necessary

to fully investigate the validity of these models.
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FIGURE 3.17. Normal stress under a rigid wheel versus local sinkage  (see
Fig. 1.1 for a definition of {) at various slip ratios under F, = 165 N, while the

elastic rebound is considered.

It is also noted that during elastic rebound, normal stress decreases linearly with §, as

a result of the linearly elastic relation used to represent the elastic behaviour of soil. Of
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course, nonlinear elastic relations can also be incorporated to more accurately capture the
elastic response of different types of soil.

Stress distributions at different slip ratios are displayed in Fig. 3.18 to better illustrate
the situation. As can be seen from the figure, in the case of zero slip ratio, maximum normal
stress occurs at the bottom-dead-centre (6 = 0); however, it shifts forward by increasing
wheel slip. This shift in the location of maximum normal stress is caused by soil softening®.
For example, in the case of 20% or 40% slip ratio in Fig. 3.18, the normal stress increases
from zero at 6 = 0; to its maximum value at 6 = 6y;. In this region, soil hardening is
happening. From 6 = 6y, to around 6 = 0, soil softening happens and causes the normal
stress to decrease. After that, normal and shear stresses decrease because of the elastic

rebound of soil.
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FIGURE 3.18. Normal and shear stress distributions for various slip ratios under
F, =165 N using Algorithm 1, where the elastic rebound is considered.

3.3.4 Discussion on the Proposed Velocity Field and Its Parameter Selection

To better illustrate the proposed velocity field, in Fig. 3.19 trajectories of soil particles

®1t should be noted that in the Drucker-Prager model adopted in this thesis, when a plastic deformation
happens at the failure surface F; or the transition surface F;,, the deformation may cause soil softening.
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initially at soil surface and 10 mm below surface are plotted at different slip ratios for a
wheel diameter of 0.3 m. The trajectories are overall consistent with reported experimental
observations in (Shikanai et al., 2000), (Maciejewski and Jarzebowski, 2004) and (Fukami
et al., 2006). The difference lies in that soil particles initially located deeper in soil (not
on the surface) tend to scape to soil surface where there is no loading, as they move along
the least resistive path; this behaviour becomes more significant when soil compaction
increases. What is important for our approach is the effect of this behaviour on the velocity
gradient and strain tensor in soil particles very close to the contact surface. Here we have
considered the effect of soil compaction by including 85 o> Which is the hardening/softening
variable, in the velocity field.

In addition, in the proposed velocity field, it is assumed that a soil particle at the contact
area has the same velocity as the adjacent point on the wheel surface. However, if the entry
angle 0 is large, as shown in Fig. 3.20, soil particles at the beginning of the contact may not
follow the wheel surface motion. Furthermore, a soil particle at this location shows a higher
tendency to escape to the surface. This means that its tendency to become compacted is
lower. Even further improvement to the model can be achieved by improving these aspects
of the velocity field. This can be done based on experimental observation and analysis of
the motion of soil particles under a wheel. For example, the soil visualization techniques
used by Senatore et al. (2012) and Skonieczny et al. (2012) could be used for this.

As an example of using the visualization techniques mentioned above, the velocity
filed obtained from the experiments reported by Senatore et al. (2012) is used to compare
with the velocity field assumed in this thesis. The experimental result is shown in Fig. 3.21,
while our simulation result is shown in Fig. 3.22. The comparison shows that the proposed
velocity field can closely capture the experimental results for the type of soil and loading
condition used in the experiments of Senatore et al. (2012).

Velocity field parameters, o, ¢, and o3, have to be identified in order to use the

proposed model. However, these parameters are not inherent to either the Drucker-Prager
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FIGURE 3.19. Trajectories of a soil particle when a wide rigid wheel with a di-
ameter of 0.3 m moves over it at various slip ratios, as predicted by the proposed
velocity field. Wheel and soil properties are the same as those used in this section:
(a) Soil particle is initially at the soil surface; and (b) soil particle is initially 10 mm
below the soil surface.

parameters or the Bekker model (@; and a3 have units of m~! and oy is dimensionless).
These parameters, however, are related to soil properties. Based on our observation from
various simulation trials, we noticed that by varying o and o, we can cover a rather wide
range of soil parameters, characterized by a range of values of n and ky of the Bekker

model, without changing any parameter in the Drucker-Prager constitutive relation. Shear
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Vactual velocity vector
,~ for the soil particle

assumed velocity vector
for the soil particle

FIGURE 3.20. Schematic of assumed and actual velocity vectors of soil particle
near the beginning of contact when the entry angle (0;) is relatively large.

response can also be captured by tuning oz and ¢ (and c if soil cohesion is significant).
This interesting behaviour suggests that any parameter identification algorithm may need
to focus on finding ; and o based on the normal stress distribution, independent of o3 and
¢ (and possibly ¢). This reduces the dimensionality and complexity of the identification
problem. Also, identifying the other Drucker-Prager parameters is often not needed.

Considering these observations, we used a trial-and-error approach in selecting veloc-
ity field parameters. To appropriately select ¢&¢; and o, it is required to have normal stress
distribution around the wheel at one operating condition with 10-20% wheel slippage. As
this information is usually not available, we use the Bekker model to find a normal stress
distribution. Here, we assume that the pressure-sinkage parameters are known. Parameters
o and o are, then, selected such that the normal stress distribution (from the entry angle
to the point of maximum stress) under the wheel at 20% slippage closely matches Bekker’s
pressure-sinkage curve.

After selecting o and , 03 is selected such that the traction force in an operating

condition with 15-20% wheel slippage under a given vertical load on the wheel is close to
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(a)

FIGURE 3.21. Velocity field of soil particles under a rigid wheel moving with 30%
slip ratio: (a) the horizontal; and (b) the vertical velocity components. The unit of
color bars is m/s (Courtesy of Karl lagnemma from MIT)

the traction force calculated from the Bekker model. It should be noted that selection of
these parameters is done at only one loading and operating condition, but the results are

valid over a wide range of loading conditions, as shown in Figs. 3.5-3.7.

3.4 Validation with Experimental Results

The experimental data reported by Ding et al. (2011a) are used for validation of the

model proposed here. Wheel radius and width are 157.35 mm and 165 mm, respectively.

89



CHAPTER 3. AN ALTERNATIVE MODEL BASED ON ELASTO-PLASTICITY THEORY

0.008
0.006
0.004
0.002
(a)
-0.002
-0.004
-0.006

-0.008

0.015
0.010
0.005
-0.005

-0.010

-0.015

FIGURE 3.22. Colour plots of the proposed velocity field for soil particles under
a rigid wheel moving with 30% slip ratio: (a) the horizontal; and (b) the vertical
velocity components. The unit of color bars is m/s

The steady-state response of our model is compared with the experimental data for various
values of slippage—Figs. 9(a), 9(b) and 9(c) of Ding et al. (2011a). The experimental data
reported for a wheel with no grousers, a wheel with 5-mm grousers, and a wheel with 10-
mm grousers are used for comparison, as shown in Figs. 3.24-3.26. To this end, a single-
wheel testbed is simulated in Vortex, in which forward and angular speed of the wheel are
controlled, while the wheel is free to move in the vertical direction, same as the example
discussed in Section 3.3.2. The soil data set used for parametrization of the elasto-plastic
constitutive relation is the same as what was used in the previous section, except for  and

d, which are set to 42.4° and 367 Pa, respectively, according to Eq. (3.12). This is done
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in order to comply with the soil properties reported by Ding et al. (2011a), where ¢ and ¢
are 31.9° and 250 Pa, respectively. It should be noted that the model parameters required
for our elasto-plastic constitutive relation were not available in (Ding et al., 2011a)’. In
spite of that, by tuning the parameters of the velocity field according to Section 3.3.4, the
terrain response is closely captured. Numerical values of the velocity field parameters are
displayed in Table 3.5. The vertical position of the wheel centre is shown in Fig. 3.23
during this motion.

TABLE 3.5. Parameters of the proposed velocity field used in the experimental validation

o (mil) o (-) | oz (mil)
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FIGURE 3.23. Vertical position of wheel centre vs. time under an 80-N vertical
load on the wheel centre and different slip ratios, as predicted by our model

7 Appropriate parameter identification of this elasto-plastic model can be done by means of triaxial test
data (Helwany, 2007).

91



CHAPTER 3. AN ALTERNATIVE MODEL BASED ON ELASTO-PLASTICITY THEORY

The slip-sinkage phenomenon is captured by our model; however, as can be seen from
Fig. 3.24, the sinkage is underestimated compared with the experimental data. In our
model, the sinkage increases from almost 7 mm at zero slip to around 15 mm at 60% slip,
whereas in the experiments reported for a wheel with no grousers, the sinkage increases

from around 6 mm to around 17.5 mm®.
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FIGURE 3.24. Variation of wheel sinkage vs. slip ratio under an 80-N vertical load
on the wheel centre
Even though the predicted wheel sinkage values are not exactly the same as in the
experimental data, it is noteworthy that generally, the experimentally observed behaviour
is naturally captured by the proposed model. In addition, the drawbar pull and driving
torque estimation match the experimental data fairly well, as shown in Figs. 3.25 and 3.26.
In order to further verify the scalability of our model, its prediction is compared with
the experimental data under the different vertical loads reported by Ding et al. (2011a).
However, the only available data are for a wheel with 10-mm grousers under 35 N, 80 N,

and 150 N vertical loads. The comparison is displayed in Figs. 3.27-3.29. As expected, the

81t is noted from observing the experimental data in Fig. 3.24 that the sinkage at zero slip ratio decreases
when the grouser height increases. This suggests that, in these experiments, the sinkage has been measured
from the wheel surface, not from the grouser tip. In this case, the extra support, provided from grousers
penetration in soil, causes the wheel to sink less.
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FIGURE 3.25. Variation of developed drawbar pull vs. slip ratio under an 80-N
vertical load on the wheel centre
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FIGURE 3.26. Variation of applied torque on the wheel vs. slip ratio under 80-N
vertical load on the wheel centre

slip-sinkage is underestimated, due to the extra sinkage that these relatively big grousers
have caused in the experiments. Drawbar pull and driving torque (Figs. 3.28 and 3.29,

respectively), are captured relatively well.
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FIGURE 3.27. Comparison of wheel sinkage computed from the plasticity model
with experimental data reported in Fig. 18 of Ding et al. (2011a), under a 35-N, 80-
N, and 150-N vertical load acting on the wheel centre. A rigid wheel with 10-mm
grousers was used in the experiments.
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FIGURE 3.28. Comparison of the drawbar pull computed from the plasticity model
with experimental data reported in Fig. 18 of Ding et al. (2011a), under a 35-N, 80-
N, and 150-N vertical load on the wheel centre.
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FIGURE 3.29. Comparison of the driving torque computed from the plasticity
model with experimental data reported in Fig. 18 of Ding et al. (2011a), under a
35-N, 80-N, and 150-N vertical load acting on the wheel centre.

3.5 Integration In the Multi-body System

Algorithm 2, in combination with Algorithm 3, is suitable for implementation in the
multi-body dynamics simulation environment Vortex. Using these algorithms, soil reac-
tions are readily determined. These reactions can be added directly to the wheel as external
loads or by using the approach explained in Sections 2.4.2.1 and 2.4.2.3, in which the latter
is used here. It should, however, be mentioned that the damping coefficient ¢, introduced
in Eq. (2.4) is set to zero in all implementations associated with the elasto-plasticity model,
as the energy dissipation is ensured by capturing the plastic deformation in soil.

In this implementation, the terrain surface is represented by a height-field, similar to
the approach explained for semi-empirical models in Section 2.4.5. The active vertices,
explained in Algorithm 2, are determined by intersecting the wheel and the height-field
vertices. The least-squares plane approximation of the terrain, as discussed in Section 2.4.5,
is also used here to find the terrain normal ny.,j, and the wheel sinkage. Deformation of the

terrain and changes in the hardening/softening parameter, 8501, are stored in the vertices of
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the height-field. It is noted that this approach directly captures elasto-plastic deformations
and soil-hardening/softening properties, which directly results in the multipass effect.
Moreover, as a lateral force model is required to operate the rover on an irregular
terrain, the lateral force model explained in Section 2.4.3.1 is also added to the model.
For that, the normal stress distribution obtained from the elasto-plasticity model is used to
determine the shear stress in the contact area using Eq. (2.18). The shear stress is then inte-
grated over the contact area to determine F;, which is used to set up the set-valued function
representation of the lateral force with its complementary kinematic variable expressed in

Eq. (2.25).

3.6 Execution Time of the Proposed Algorithms

Plane-strain FE simulation of a rigid cylinder on soil with Abaqus/Explicit was con-
ducted for comparison of execution time between the proposed approach and FEA, as
shown in Fig. 3.30. In this case, the wheel radius was 0.15 m and the wheel centre velocity
0.00375 m/s with a slip ratio of 20%. The wheel was released with zero initial velocity
and zero sinkage, while it was touching the soil surface. During the first 3.1 s, the wheel
only moved in the vertical direction under gravity. Then, it was gradually accelerated to
reach its final speed in 5 s. It continued moving with this velocity and 20% slip ratio. It
took about four hours to simulate 83.1 seconds of motion. The same motion was simulated
using the new approach with a wheel using 72 mesh points, which resulted in 8-9 active
mesh points, with total simulation time of about 180 s on the same processor (Intel Core™
2 Duo T7500 @ 2.2 GHz). This means about 80 times faster than with the FE simulation
mentioned above. The code based on the proposed approach, however, was written in Mat-
lab and only a single CPU core was used; therefore, shorter execution times are possible if
parallel computing is used.

In addition, as shown in Fig. 3.31, simulation of the Sojourner rover was conducted

in Vortex using the proposed approach on an Intel Core™ i7-920 processor @ 2.67 GHz.
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FIGURE 3.30. Plane-strain FE simulation of a rigid cylinder on a soil with
Abaqus/Explicit. The cylinder moves with 20% slip ratio.

This rover has six wheels but all of the computations associated with the new model were
performed on a single CPU core. During straight-line motion with a rover speed of 0.10
m/s, every second of motion took about 13 s simulation time, while the total number of ac-
tive mesh points was 52 on average, which means about nine active mesh points per wheel.
Since this simulation was performed using only a single CPU core for the computation as-
sociated with the new model, interactive and even real-time performance can be achieved
for slow-moving rovers if the data-parallel nature of this model is used. It should be noted
that each active mesh point can be executed independently from the others, which makes
the model data-parallel, and therefore, readily parallelizable. This feature, however, has
not yet been implemented.

It is noted that for implementation on a single CPU core, the execution time linearly
depends on the number of active mesh points. As the wheel sinkage grows, the number
of active mesh points increases, which in turn can result in variation of the computational
time. This is not desirable for real-time applications. However, parallel processing can help

in improving that situation. The other variable that directly affects the execution time is the
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FIGURE 3.31. Sojourner rover simulation in Vortex using the elasto-plasticity
model. The rover moves on a height-field and the soil deformation and the harden-
ing parameter are stored in the height-field vertices.

rover speed. A higher rover speed requires a smaller time-step to ensure the convergence
of the elasto-plasticity solver, which could, in turn, increase the overall execution time.

It is also noted that by decreasing the number of mesh points on the wheel, which in
turn decreases the number of active mesh points, the discretization error increases. This
could lead to substantial oscillatory behaviour in the computed reaction forces. We rec-
ommend to choose the settings such that in a 2D simulation of a wheel, at least five active

mesh points cover the contact area.

3.7 Further Discussion and Comparison with Semi-empirical Models

The results obtained with the proposed model and the assumed velocity field were
close to those obtained based on the WR and Bekker models under steady-state operating
conditions for a particular slip ratio, as shown in Section 3.3.

Some of the limitations of the semi-empirical models were listed in L1 and L2 (Sec-

tion 2.3). To address limitation L1, a remedy is adding a damping term in the z-direction,
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as done in Chapter 2. However, in the method proposed in this chapter in Algorithm 2,
the energy dissipation due to dynamic motion in the z-direction is captured by using an
elasto-plastic soil representation.

Regarding the slip-sinkage phenomenon, the results obtained with the proposed method
showed a clear dependency of normal stress distribution on the slip ratio, with larger slip
ratio resulting in larger wheel sinkage. This aspect was analyzed in Section 3.3.3. The re-
sults of this approach are also compared with the experimental data reported by Ding et al.
(2011a); this comparison in Section 3.4 showed good agreement between the proposed

model and the experimental data, regarding the slip-sinkage phenomenon.

REMARK 13. A modification to the pressure-sinkage exponent n in the WR model was
suggested by Ding et al. (2010a), in order to capture the slip-sinkage behaviour observed
in their experimental data. To do so, they assumed that n changes linearly with the slip

ratio of the wheel, but no theoretical analysis was provided. []

Moreover, the stress distribution under the wheel obtained from the novel approach is
affected by the type of motion that the wheel undergoes. For example, consider the example
discussed in Section 3.3.2. At instants 0.045 s and 0.095 s when the wheel is moving
downward under the action of gravity, the normal stress distribution is even, as shown in
Fig. 3.32, while the shear stress is odd. As a result, the soil reaction can be expressed
as a single vertical force vector, as expected. In addition, when the wheel is moving, the
evenness no longer holds, as shown in Fig. 3.33, due to plastic deformation in soil. It
should be noted that this behaviour is achieved without any need for considering special
cases for a moving or stationary wheel, which is a limitation of semi-empirical relations as
discussed in Section 2.3 under L2. It should be mentioned that the only difference from the
conditions of the example in Section 3.3.2 and the results displayed in Figs. 3.32 and 3.33

is the use of 180 mesh points for the wheel, instead of 72.
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FIGURE 3.32. Normal and shear stress distributions obtained from the elasto-
plasticity model when the wheel is moving downward in the example included in
Section 3.3.2: (a) stress distributions at # = 0.045 s and v, = —0.357 m/s; (b) stress
distributions at = 0.095 s and v, = —0.194 m/s. As expected, the contact stresses
are such that soil reaction can be expressed with a single vertical force vector.
It is noted that in the approach introduced in this thesis, no special assumption is con-
sidered to capture certain features like the slip-sinkage phenomenon. These features are

natural outcomes of the model. This, together with the other features, makes this novel

model and framework conceptually different from semi-empirical models. In addition, the
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FIGURE 3.33. Normal and shear stress distributions obtained from the elasto-

plasticity model when the wheel is moving with 10% slip. The result correspond to
t =6.495s and v, = 0.

proposed approach provides a framework for the more efficient use of elasto-plasticity the-
ory. Today, elasto-plastic constitutive models of soil are only used with FEM for wheel-soil
interaction analysis, but rover simulation on soft soil with FEM is prohibitively slow for
interactive simulation or mission planning, for example. The proposed approach provides

a good balance between fidelity and computational efficiency, by eliminating the need of

FEM.
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4.1 INTRODUCTION

CHAPTER 4

Experimental Investigation and Rover

Simulation

4.1 Introduction

An extensive set of experiments was conducted using a version of the Juno rover (Juno
IT) that is owned by the Canadian Space Agency. The experiments were planned and per-
formed by our McGill research team with help from personnel of the Canadian Space
Agency, University of Waterloo, and Neptec Design Group. The author of this thesis played
a key, leading role in planning and carrying out these experiments. The experiments were
conducted at the facilities of the Canadian Space Agency in Ottawa. The rover used in the
experiments is displayed in Fig. 4.1.

In this chapter, a brief description of the rover and its model developed in Vortex are
presented in Section 4.2. In Section 4.3, a set of experiments conducted for identifying
rover properties like its total mass and centre of mass, its overall drive-train friction, and
motor constants are discussed.

The drawbar pull experiments performed on soft soil is the focus of Section 4.4. In
this section, the experimental results are compared with the results from simulation. The

simulation runs are conducted using the two wheel-soil modelling approaches developed
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FIGURE 4.1. Pictures of the Juno rover, captured during experiments.

and described in Chapters 2 and 3. Furthermore, the rover is loaded with extra weight
and the drawbar pull experiments are repeated in order to investigate the scalability of the
models developed in the thesis.

In Section 4.5, motion on irregular surfaces is investigated, upon comparing the exper-
imental results with the outcomes of both simulation models.

In addition to the experiments reported and analyzed in this thesis, other experiments
were conducted as well, including traversing obstacles and steering manoeuvres. These

will be used for further investigations and developments.

4.2 Description of the Rover and its Model

Juno II is a four-wheel rover with a linked walking beam suspension system (Viss-
cher and Reid, 2012). It was developed by Neptec and Ontario Drive Gear (ODG) for the
Canadian Space Agency. Juno II has two walking beams that are connected to form the
suspension system. This suspension makes the rover capable of adjusting the orientation
of its main body while travelling over obstacles and uneven terrain. In addition, it has an
active part in the suspension that allows for tilting the main body by means of a linkage.

On each side of the rover, two wheels are connected to a walking beam; each pair of wheels
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on the side are driven using a single DC motor (Fig. 4.2). Furthermore, the rover uses skid

steering.

Reflector Prism [Sise4

Left DC Motor

Conctin g Rod

Left Walking Beam & Right Walking Beam

FIGURE 4.2. Juno II rover

Overall approximate dimensions of the rover are 1.4 m in length, 1.5 m in width, and
0.6 m in height, with a total mass of approximately 317.6 kg. The wheels used during ex-
periments were ARGO tires with small grousers. The wheels have 22” diameter, including
the height of the grouser.

A full-scale model of the rover was developed in Vortex; snapshots of the rover model
during simulation are shown in Figs. 4.3 and 4.4. In order to develop this model, a CAD
model of the rover was used. The multi-body model of the rover has 13 rigid bodies and 15
joints. The rigid bodies and joints used in modelling the rover are shown in Fig. 4.5. The
rigid bodies are representations of: the chassis, two walking beams, four wheels, and six
bodies that connect the walking beams to the chassis at the rear end of the rover and allows
for tilting the chassis. The model of the rover in Vortex at different configurations of the

tilting mechanism is shown in Fig. 4.4.
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(a) b)

FIGURE 4.3. Images from the simulation of Juno rover in Vortex.

() (b)

FIGURE 4.4. Simulated Juno rover in Vortex at different tilting configurations.

In Vortex, the above-mentioned rigid bodies, referred to as parts, are created at their
appropriate location. The parts are restrained together with the joints shown in Fig. 4.5.
As mentioned in Section 2.2, in order to detect contact between parts in Vortex, collision
geometries can be added to the parts. Cylindrical collision geometries are considered for
the wheels, while for the irregular terrain, a height-field is used.

Four types of joints are used in modelling the rover, which are revolute joint (RJ),
prismatic joint (PJ), spherical joint (SJ), and universal joint (UJ), as shown in Fig. 4.5. A
RJ or PJ adds five constraint equations to the multi-body dynamic equations. The RJ allows
for the relative rotation of the two bodies around the revolute axis, while the PJ allows for

relative translation along one direction. A UJ adds four constraint equations and allows for
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RJ: Revolute Joint
UJ: Universal Joint
SJ: Spherical Joint
PJ: Prismatic Joint

FIGURE 4.5. Illustration of the rover model with its joints. Totally, eight revolute
joints, three universal joints, three spherical joints, and one prismatic joint are used
in the multibody model of the rover.

rotations around two co-planar perpendicular axes. A SJ adds three constraint equations
that constrain the relative position of the two bodies.

The allowable relative motion of some joints, e.g., relative rotation around the revo-
lute axis of the RJ and relative translation along the prismatic direction in the PJ, can be
controlled. These are referred to as controllable joint coordinates, which are either free or
actuated in the model developed for the rover. In an actuated controllable joint coordinate,
the relative velocity of the joint is specified, which adds an additional kinematic constraint
to the model.

In order to command the rover to move with specified angular velocities for wheels, the
controllable joint coordinates of the revolute joints connecting the wheels to the walking
beams (RJ1, RJ2, RJ3, and RJ4 in Fig. 4.5) are actuated. The rover moves by commanding

the appropriate angular velocities to these controllable joint coordinates. In addition, the
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controllable joint coordinate of the prismatic joint (PJ1 in Fig. 4.5) is modelled as actuated.
This allows us to tilt the rover. The rest of the joints in the model are free joints.
Furthermore, the torque or force associated to any of the above-mentioned kinematic
constraints are determined from the Lagrange multipliers associated to the constraint equa-
tion. It is noteworthy that the torques required to maintain the kinematic constraints related
to the controllable joint coordinates of RJ1 to RJ4 are of particular interest to us. These
torques, which are determined from the Lagrange multipliers corresponding to their kine-
matic constraints, are used to determine the equivalent torques of the left and right DC
motors, shown in Fig. 4.5. In this regard, the summation of the torques obtained from
RJ1 and RJ2, divided by the gear ratio of the drive-train, provides the equivalent torque of
the left DC motor determined from the simulation. Similarly, the torques obtained from
RJ3 and RJ4 provide the equivalent torque of the right DC motor. In the subsequent sec-
tions, these torques are compared against the motor torques determined from experimental

measurements.

4.3 Determining Rover Properties

For the inertial properties, the total mass of the rover and its centre of mass (COM)
were determined experimentally. To do so, we placed a digital weighting scale under each
wheel on a horizontal, flat concrete floor. This gave us the total weight of the rover and the
location of its COM, as projected on the horizontal plane. In addition, we tilted the rover,
as shown in Fig. 4.4, and recorded the readings of the weighting scales. This provided an
approximate location for the COM of the chassis.

The mass of the wheels were also measured using the weighting scales. The rest of the
inertial properties were determined based on the CAD model of the rover and its overall
mass.

The rover was instrumented with

e a tachometer for each motor to measure the angular velocities of the motors, and
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e an inertial measurement unit (IMU).

Furthermore, the rover was equipped with motor current measurement devices, which
reported motor currents versus time during the experiments. The torque of each motor is
determined in the thesis using the current measurements. In addition, the global position of
the rover was measured using a Total Station' that tracks the position of a reflector prism
attached to the rover”. The reflector prism is shown in Fig. 4.2. During our experiments,

the position of the reflector prism was recorded versus time.

Before operating the rover on soft soil, it was commanded to move on a horizontal, flat

concrete floor and on a configurable metallic incline, as shown in Fig. 4.6.

FIGURE 4.6. Juno II on the configurable metallic incline.

The rover was operated at different velocities on a straight line trajectory on the hor-
izontal, flat concrete floor. From this set of experiments, an approximation of the torque
required to overcome the overall friction forces in the drive-train of the rover was found.

Figure 4.7 shows the measured currents for each motor at different motor speeds.

"http://www.worldoftest.com/totalstation.htm

2Total Station is an electronic-optical instrument that is used in surveying. This device can determine the
position of a reflector prism with respect to the position of the device itself, as long as a clear line-of-sight is
maintained between the prism and the total station.
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FIGURE 4.7. Measured current of both motors (left and right sides) versus average
speed of the motors for the rover moving on horizontal flat concrete floor. The
error-bars show the variation in the measured current.

The torque applied by each motor can be estimated from the measured current under

the assumption of a linear relation between the current and the torque:

K
Trnotor - —mtAmotor (41)
g

where Totor 1S the estimated motor torque, Apotor 18 the measured current of the motor, K,
is the motor constant related to torque, and Q. is the duty cycle of the pulse-width modu-
lation (PWM) driver of the motor. The duty cycle varies between 0 and 1. By changing the
duty cycle, the effective voltage of the motor changes, which, in turn, causes the rover to
move at different speeds. The relation between the duty cycle and the average motor speed
is shown in Fig. 4.8. As expected, this relation is linear.

The motor constant K, is determined by driving the rover on slopes of 11.5°, 13.5°,
and 15.5°. The comparison between the measured torques and the torques determined by
simulation is shown in Fig. 4.9. As the motors are similar, the same K,; was determined for
both motors. These experiments were conducted by using a duty cycle of 0.45. It should be

mentioned that a velocity-dependent friction is added to each controllable joint coordinate
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FIGURE 4.8. Average motors speed versus the duty cycle for the rover moving on
horizontal flat concrete floor.

of the wheels, based on our measurements. To do so, the measured current in Fig. 4.7 with
the duty cycle shown in Fig. 4.8 are used to determine the motor torque from Eq. (4.1). For
each side of the rover, the motor torque determined in this approach is equivalent to the total
drive train friction. For each side, the torque is multiplied by the total drive train ratio, in
order to determine the equivalent friction that is added to the controllable joint coordinates
of the wheels. With this model, the torque determined by simulation can closely match
the torque expected from the experiments and can determine the energy expenditure for a
certain manoeuvrer of the rover.

In the next section, the drawbar pull experiments are reported and the results compared
with both modelling approaches. After that, the operation of the rover on uneven terrain
is investigated. The trajectory of the rover and energy expenditure are compared from the

simulation runs and experiments.

4.4 Drawbar Pull Experiments on Soft Soil

During this set of experiments, the rover was commanded to move in a straight line
on uncompacted soil with a flat, horizontal surface. In the experiments, the rover was held

by a rope, and its speed was manually controlled by constantly feeding a rope through a
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FIGURE 4.9. Comparing the motor torques obtained from the simulation and the
torque determined from experiments using current measurements with the deter-
mined K, of 0.251: (a) left motor; (b) right motor

descender. The tension in the rope was measured using a load cell. This tension is equal to
the drawbar pull developed by the rover. The input duty cycle of the motors was set to 0.45
in all experiments.

A picture of the descender and the load cell is shown in Fig. 4.10. The rover with the
cable and the load cell attached to it is shown in Fig. 4.11. This picture was taken after fin-
ishing an experiment. In addition, a schematic diagram illustrating this set of experiments
is shown in Fig. 4.12.

Several experiments were carried out. In each experiment, the intention was to keep the
speed of the rover constant, but different from other experiments. This caused the wheels to
maintain a relatively constant slip ratio in each run, while obtaining the results at different
slip ratios. The average rover velocity and the average angular velocity of the rover were
used to compute the slip ratio for each experiment. For one of the tests, the measurements
over time are displayed in Figs. 4.13—4.16. As can be seen in Fig. 4.15, the angular velocity
is fairly constant. In addition, rover speed can be assumed constant from Fig. 4.16, as the

rover position changes linearly over time.
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FIGURE 4.11. The rover attached to the load cell after a drawbar pull test

Rover

Descender Load cell | | | |
Fixed pole
| |

3—@ |

4\ Manual Feeding of the rope

through the descender

FIGURE 4.12. Schematic illustration of the drawbar pull experiments
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FIGURE 4.13. Measured tension in the rope over time. Sampling frequency of the
load cell was 3 Hz.
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FIGURE 4.14. Measured motor current over time during the drawbar pull test.
Sampling frequency was 20 Hz.
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4.4.1 Comparison with a Semi-empirical Terramechanics Model

In order to conduct simulation runs, a setup similar to the drawbar pull experiments
was created using Vortex. In this simulation setup, the terrain is represented by a height-
field, as explained in Section 2.4.5. The terrain surface is initially flat and horizontal. In
this setup, a resisting force, Fppp, is applied to the rover chassis. This is the force applied
by the rope to the rover in the experiment and is equal to the drawbar pull.

In each simulation run, the rover is commanded to move by setting a constant angular
velocity to all wheels. As mentioned in Section 4.2, this is done by setting the proper
angular velocities in the controllable joint coordinates of RJ1, RJ2, RJ3, and RJ4. In each
simulation run, Fppp is incrementally increased from zero to a desired drawbar pull value.
By incrementally increasing the value of Fpgp, while the angular velocities of the wheels
remain constant, the rover slippage increases gradually. After reaching the desired value
for Fppp, the rover moves under a steady-state condition with a constant slip ratio. The slip
ratio, the final Fppp, and the driving torque to each wheel are recorded from each simulation

run.

TABLE 4.1. Parameters of the WRI model with multipass used in simulation runs
with Juno II rover

¢ (deg) 21
¢ (Pa) 2900
ky () 300
ke () 0.69
n () 1.0
K, (m) 0.004
(&) (-) 0.0
¢ () 0.45
26 0.2
v (N/m®) | 1.2x10%
ko (N/m>) 0
A, (N/m*) | 5.03x10%

The framework developed and explained in Chapter 2 is implemented in Vortex and

used for the simulation. The terramechanics relations are based on the WR model with
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a non-zero exit angle, as suggested by Ishigami et al. (2007), which is referred to as
WRI model in the thesis and was explained in Section 1.3. In addition, we employed the
pressure-sinkage relation of Reece, expressed in Eq. (1.14), with this model. Furthermore,
the multipass effect is considered in the simulation, as explained in detail in Section 2.4.5.

An important step in creating the simulation setup is the selection of soil parameters.
These were selected and tuned based on the results of two experiments: (i) the experiment
with no rope attached (no drawbar pull); and (ii) the experiment that corresponds to the
maximum drawbar pull with the highest slip ratio’.

The tuned parameters of this model with the multipass effect are reported in Table 4.1.
As explained in Section 2.4.5, kg and A, are model parameters that define the elastic un-
loading/reloading behaviour. In addition, the soil is assumed to be initially uncompacted,

in the model, as the terrain was prepared to be uncompacted before each experiment.
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FIGURE 4.17. The drawbar pull versus slip ratio for different values of K.

3 An alternative way in the selection of soil parameters for this model is via the plate-penetration and the
shear tests using the bevameter. However, we did not have access to a bevameter during our experiments.
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It should be mentioned that the critical soil parameters in this model are kfp, ké, 9, c,
and K. kfp and k. determine the pressure-sinkage relation, Eq. (1.14), after selecting n and
Y. As the wheel sinkage in the no-drawbar pull experiment is mainly dependent on the
pressure-sinkage relation, kfp and k.. are tuned such that the observed wheel sinkage of that

experiment is close to the simulation results.
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FIGURE 4.18. Comparing the drawbar pull obtained from experiments with the
values obtained from simulation using the approach of Chapter 2 and the WRI

model.

Moreover, as ¢ and ¢ dictate the shear strength of soil according to Eq. (2.8), they
are selected such that the maximum drawbar pull approaches the simulation outcome. The
parameter K;, which appears in Eq. (2.8), defines how the drawbar pull changes with slip
ratio. The simulation results for different values of K, are displayed in Fig. 4.17. In addi-
tion, according to Eq. (2.1), parameter A defines the exit angle of the wheel. As the wheels
of Juno IT have non-negligible flexibility, a rather large value of A is selected to compensate
for the effect of wheel flexibility. Furthermore, ky and A, are selected based on the values

reported by Wong (2010) for sand.
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The comparison between the simulation and experiment for the drawbar pull and driv-
ing torque versus slip ratio are shown in Figs. 4.18—4.20. As can be seen from these figures,
the simulation results can closely capture the experimental data. The experimental results
for drawbar pull, Fig. 4.18, show that by slightly increasing the slip ratio, from around zero
to around 8%, the drawbar pull almost reaches its maximum value. This suggests that the
shear deformation modulus K for this soil should be very small, which results in selecting
a very small value for K; in our model, as reported in Table 4.1.

The results displayed in Figs. 4.19 and 4.20 also show an interesting behaviour for the
driving torque requirement. As expected, in the no-drawbar pull test, which corresponds
to a slip ratio of around zero, a non-negligible torque is required to drive the rover. This
torque is needed to overcome the rolling resistance and the drive train friction. Overall, the
results show that at low slip ratios, the simulation closely captures the experimental results,
while at high slip ratios the model slightly under-estimates the torque requirements.

In addition, the drawbar pull experiments were repeated for the same rover, while its
mass was increased by adding massive metallic disks to it. The rover with the added mass

is shown in Fig. 4.21. The total added mass was 111.5 kg.

FIGURE 4.21. The rover with the added mass to its main frame.

The drawbar pull and the driving torque of this set of experiment were also compared

with simulation results. In this case, the simulation setup was the same as the setup used
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FIGURE 4.22. Comparing the drawbar pull obtained from experiments with the
values obtained from simulation using the the approach of Chapter 2 and the WRI

model. The rover was heavier, as shown in Fig. 4.21.
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FIGURE 4.23. Comparing the driving torque of the left side motor obtained from
experiments with the values obtained from simulation using the approach of Chap-
ter 2 and the WRI model. The rover was heavier, as shown in Fig. 4.21.
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for the previous test, except that the mass of the rover chassis was increased by 111.5 kg,

and its other inertial properties were update accordingly.
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FIGURE 4.24. Comparing the driving torque of the right side motor obtained from
experiments with the values obtained from simulation using the approach of Chap-
ter 2 and the WRI model. The rover was heavier, as shown in Fig. 4.21.

The results are shown in Figs. 4.22—4.24. Apparently, the simulation results can closely
represent the experimental data. This set of results is of particular interest, as it shows that

the same model with the same parameters can appropriately represent the 35% heavier

Trover.

4.4.2 Comparison with the Elasto-plasticity Model
The model developed and described in Chapter 3 is used to simulate the interaction
between the wheels of the rover and soil. The same sets of experiments were used to
compare the simulation results against the experiments.
In order to use this model, both the Drucker-Prager soil parameters and ay, o, and
o3 need to be determined. In this example, the parameters of the Drucker-Prager model

were those used in Section 3.3, except for 8, d, and Young’s modulus. The ¢ parameters
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are also determined using the procedure explained in Section 3.3.4. The hardening data are

those in Table 3.2, the rest of the parameters being displayed in Tables 4.2 and 4.3.

TABLE 4.2. Material properties for the elasto-plastic constitutive relation

Young’s modulus, E (Pa) 8x10°
Poisson’s ratio, v (-) 0.32
Angle of friction, 8 (deg) 38
Material cohesion, d (Pa) 3161
Cap eccentricity, R, (-) 0.15
Initial value for €7 (-) 0.001
Transition surface parameter, & (-) | 0.01

TABLE 4.3. Parameters of the proposed velocity field used in the elasto-plasticity model

o (mil) o (-) | oz (mil)
3.5 0.045 100

The comparison between the simulation results and the experiments obtained with the

Juno II without added mass are displayed in Figs. 4.25-4.27.
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FIGURE 4.25. Comparing the drawbar pull obtained from experiments with the
values obtained from simulation using the elasto-plasticity model.
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FIGURE 4.26. Comparing the driving torque of the left side motor obtained from
experiments with the values obtained from simulation using the elasto-plasticity
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FIGURE 4.27. Comparing the driving torque of the right side motor obtained from
experiments with the values obtained from simulation using the elasto-plasticity

model.
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As can be seen in Fig. 4.25, the drawbar pull determined using the model developed
for Juno IT with the elasto-plastic wheel-soil interaction model can closely capture the ex-
perimental results. According to the simulation results, the drawbar pull increases rapidly
with the slip ratio from zero to 10% slip ratio. Then, the drawbar pull increases at a slower
pace up to around 30% of slip ratio. After that, the drawbar pull decreases slightly upon
increasing the slip ratio. The driving torque results displayed in Figs. 4.26 and 4.27 also

show a good match between simulation and experiments.
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FIGURE 4.28. Comparing the drawbar pull obtained from experiments with the
values obtained from simulation using the elasto-plasticity model. The rover was
heavier, as shown in Fig. 4.21.

In addition, the experimental results obtained from a rover with the added mass are
compared with the simulation results obtained from using the elasto-plasticity model; the
results are displayed in Figs. 4.28-4.30.

As can be seen from Figs. 4.28-4.30, the simulation results closely capture the exper-
imental data, which further validates the scalability of the elasto-plasticity-based model,
with the 35% heavier rover. This was the behaviour expected from this model, as the ex-

perimental investigation explained in Section 3.4 represented this feature of the model.
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FIGURE 4.29. Comparing the driving torque of the left side motor obtained from
experiments with the values obtained from simulation using the elasto-plasticity
model. The rover was heavier, as shown in Fig. 4.21.
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FIGURE 4.30. Comparing the driving torque of the right side motor obtained from
experiments with the values obtained from simulation using the elasto-plasticity
model. The rover was heavier, as shown in Fig. 4.21.
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In addition, Fig. 4.28 shows that the drawbar pull decreases when the slip ratio in-
creases from around 42% to around 68%. The simulation also shows a reduction in the
drawbar pull when the slip ratio increases from around 32% to 70%. While the torque re-
quirements have increased constantly with the slip ratio (Figs. 4.29 and 4.30), the drawbar
pull does not show the same pattern, as mentioned above. This result can be explained by
looking at the elasto-plasticity model, as discussed in detail in Chapter 3: increasing the
slip ratio causes the slip-sinkage effect. Increasing the sinkage, in turn, could increase the
rolling resistance R.. Increasing the slip ratio will also increase the traction force. There-
fore, depending on the type of soil and loading condition, when the slip ratio increases, one
could see two phases in the drawbar pull behaviour. In the first phase, the drawbar pull
increases and then may reach a constant value. In this phase, the increase in the traction
force is higher than the increase in the resistance, which results in the positive gain in the
drawbar pull. Then, by further increasing the slip ratio, in the second phase, the drawbar
pull may show a decrease. This is because of excessive slip-sinkage happening at high slip
ratios, which causes higher increase rate in the resistance than the traction force. However,

during the entire range of slip ratio, the resistance torque increases with the slip ratio.

4.5 Motion on an Irregular Surface

In this experiment, the rover is operated on irregular terrain made of uncompacted soft
soil. The developed multi-body model of the rover, explained in Sections 4.2 and 4.3, is
used with the wheel-soil interaction models and frameworks, explained in Chapters 2 and
3, to simulate the rover motion associated with this experiment.

For this case, the terrain was scanned using a LIDAR system. The raw data from the
LIDAR scan are displayed in Fig. 4.31. The LIDAR data are used to create the terrain
profile compatible with the simulation setup, which is a height-field. This height-field uses

a fixed 0.04 m grid size in this example.

127



CHAPTER 4. EXPERIMENTAL INVESTIGATION AND ROVER SIMULATION

FIGURE 4.31. LIDAR scan of the test area

FIGURE 4.32. Location of the rover on the terrain before starting the experiment.

The location of the rover before starting this experiment is shown in Figs. 4.32 and
4.33, which is different from its location shown in the LIDAR scan (Fig. 4.31). The reason
is that the rover was moved to its initial location after taking the LIDAR scan of the test area,

in order to have the proper information of the terrain surface used on the experiment. It is
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noted that the terrain under the rover cannot be scanned, as the rover blocks the line of sight
of the LIDAR scanner. The location of the rover and its heading direction, however, was
approximately determined from the measurements and the pictures taken before starting

the test.

FIGURE 4.33. The height-field terrain prepared using the LIDAR scan data, with
the initial location of the rover.

The terrain profile used in the simulation and the location of the rover before starting
the simulation are displayed in Fig. 4.33. During simulation, the rover was commanded by
the same angular velocity profile that was obtained from the experiments. However, the
angular velocities obtained from the experiments were first filtered. The original angular

velocities and the filtered data are shown in Figs. 4.34 and 4.35.
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FIGURE 4.34. The angular velocity of the left motor obtained from the experiment
and the filtered value used in the simulation.
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FIGURE 4.35. The angular velocity of the right motor obtained from the experi-
ment and the filtered value used in the simulation.

The trajectory of the reflector prism, which was attached to the rover chassis, was
recorded during the experiment. This trajectory is compared with that obtained from the
simulation runs. In addition, the driving torque and the energy consumption are compared

with the experiments.

Similar to the results of drawbar pull experiments discussed in Section 4.4, the ex-
perimental outcomes are first compared with the simulation results obtained when using
the WRI model, which was implemented in Vortex based on the approach explained in

Chapter 2. The results are displayed in Figs. 4.36—4.40.
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FIGURE 4.36. The global position of the reflector, attached to the rover. The ex-
perimental results are compared with the values obtained from simulation using the
semi-empirical model.

As can be seen from Fig. 4.36, the rover trajectory, which was obtained by tracking the
reflector prism attached to its chassis, is captured with very good accuracy. In the experi-
ment, the rover has mainly moved along the x-axis. This motion is accurately represented

in the simulation, as shown in Fig. 4.36. During the experiment, the rover climbs a small
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FIGURE 4.37. The energy expenditure of the left side motor. The experimen-
tal results are compared with the values obtained from simulation using the semi-
empirical model.
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FIGURE 4.38. The energy expenditure of the right side motor. The experimen-
tal results are compared with the values obtained from simulation using the semi-
empirical model.

dune, as shown in Fig. 4.33. The motion in the z-axis, shown in Fig. 4.36, represents the
climbing of and then descending from the dune over time.
Furthermore, the energy expenditure is shown in Figs. 4.37 and 4.38. The energy

expenditure is determined based on the power consumption of the motors. The latter is
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FIGURE 4.39. The driving torque of the left side motor. The experimental results
are compared with the values obtained from simulation using the semi-empirical
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determined from multiplying the motor torque by its angular velocity. Overall, the simu-

lation results are acceptable with some drift observed in the results of the left motor. The

reason for a lower accuracy in the result of the left wheel could be related to inaccuracy in
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the scanned terrain data. As can be seen from Figs. 4.31 and 4.33, the LIDAR scanner is
placed in the right side of the rover test area. This makes the scanner to be closer to the
terrain areas that come in contact with the right-side wheels of the rover, and therefore, lead
to a higher accuracy in the scanned surface.

Moreover, the driving torque obtained from simulation is compared with experiments,
as shown in Figs. 4.39 and 4.40. In both figures, the experiments show more variation than
the simulation. The rather small oscillations in the driving torques obtained from simula-
tion are related to our implementation explained in Section 2.4.5. As explained there, the
terrain under each wheel is approximated by a plane obtained using a least-squares approx-

imation. This approach, basically, filters out some of the irregularities in the terrain.

The elasto-plasticity model explained in Chapter 3 with the model parameters shown
in Tables 4.2 and 4.3 is also used to simulate this motion of the rover. The results are
displayed in Figs.4.41-4.45.

As can be seen from Fig. 4.41, the trajectory of the rover was also captured with good
accuracy with using this novel model. Furthermore, the comparison between the energy
expenditure, as shown in Figs. 4.42 and 4.43, shows a similar pattern to what was observed
in Figs. 4.37 and 4.38. Moreover, the simulation results regarding the driving torque of
both motors versus time are compared with the experimental results, as shown in Figs. 4.44
and 4.45. The results in Figs. 4.44 and 4.45 show considerable oscillation in the torque
requirement determined from the simulation. This behaviour can be explained by recalling
Section 3.5: in the elasto-plasticity model implementation, the least-squares plane is only
used to determine the normal direction of the plane locally under the wheel, but the active
vertices used in Algorithm 2 are determined directly from the height-field vertices. That
is, the terrain irregularities are not filtered, which, in turn, leads to a higher variation in the

simulation results.
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FIGURE 4.41. The global position of the reflector, attached to the rover. The ex-
perimental results are compared with the values obtained from simulation using the
elasto-plasticity model.

It should be mentioned that the wheel slippage seen during motion was relatively small,
and the slip ratio was below 10%. This could be the main reason for having a very good

match between simulation and experiment in the total travelled distance. Had the rover
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FIGURE 4.42. The energy expenditure of the left side motor. The experimental
results are compared with the values obtained from simulation using the elasto-
plasticity model.
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FIGURE 4.43. The energy expenditure of the right side motor. The experimental
results are compared with the values obtained from simulation using the elasto-
plasticity model.

operated with higher slip, the results could have shown larger differences between experi-
ment and simulation, in terms of the rover trajectory. The reason for this behaviour lies in

that, in both experimental and simulation results, as shown in Figs. 4.18 and 4.25, when the
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FIGURE 4.44. The driving torque of the left side motor. The experimental results
are compared with the values obtained from simulation using the elasto-plasticity
model.

slip ratio is around 20% and higher, the drawbar pull does not significantly change under
significant changes in the slip ratio.

The energy expenditure determined from simulation runs using both models also shows
a relatively good match compared to the experiments. As energy expenditure is an impor-

tant aspect in mission planning of rovers, the simulations can be very helpful in this regard

as well.
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FIGURE 4.45. The driving torque of the right side motor. The experimental results
are compared with the values obtained from simulation using the elasto-plasticity

model.
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5.1 THESIS CONTRIBUTIONS

CHAPTER 35

Conclusions and Recommendations for Future

Work

5.1 Thesis Contributions

In this thesis two modelling approaches for wheel-soil interaction were introduced.
The first approach, presented in Chapter 2, is based on widely used semi-empirical ter-
ramechanics models. In order to implement the semi-empirical terramechanics models in
a multi-body dynamics simulation environment, a novel framework was developed. As
shown in Chapter 2, using this framework, a multi-body dynamics model combined with
semi-empirical terramechanics relations can be formulated as a mixed linear complemen-
tarity problem. With this formulation, fast and real-time simulation of rovers on irregular
terrain was achieved. It was shown through simulation and experimental verification that
this model is capable of producing realistic simulated behaviour even on non-planar, rough
terrain. In this implementation, the terrain is represented as a high resolution height-field
data structure, which deforms under wheel-induced soil compaction. To deal with motion
on rough terrain, we developed an efficient scheme in approximating the contact area us-
ing a least-squares technique. The method captures wheel-induced soil deformation and

hardening, which results in the multi-pass effect.
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In Chapter 3, we introduced a novel approach in representing the interaction between
wheel and soil that allows for efficient dynamics modelling, simulation and analysis of
rovers, and provides a theoretical framework in wheel-soil interaction. In this approach,
elasto-plasticity theory is employed in order to determine the stress field in the contact area.
A velocity field is proposed for the motion of soil particles in the vicinity of the contact
region. Using this velocity field and the Drucker-Prager constitutive relation for soil, the
stress field in the contact area is determined incrementally using an explicit integration
scheme explained in Algorithm 2. In this approach, the soil plastic deformation and energy
loss due to this deformation are captured. In addition, elastic rebound of soil is determined
using Algorithm 3. The proposed approach is modular in that it does not have to be used
with the Drucker-Prager constitutive relation and the proposed velocity field. Any elasto-
plastic constitutive relation and other possible velocity-field representations can be used in
this framework, if needed, to more closely capture the behaviour of different soil types.

As discussed in detail in Chapter 3, the results are in good agreement with experimental
data available in the literature and with results that can be obtained based on semi-empirical
terramechanics models. The proposed model, however, goes beyond the semi-empirical
terramechanics models and is compatible with multibody dynamics environments. Energy
dissipation due to soil plastic deformation is directly represented in our model. In addition,
the slip-sinkage phenomenon is captured by the model as a natural outcome. The process-
ing time required for the computation of soil response using the proposed model is much
shorter than that required by FEA, and its implementation is readily parallelizable. There-
fore, the framework introduced here allows for fast and even real-time simulation of rovers
on soft soil, while a high-fidelity elasto-plastic constitutive relation can be used for soil. In
addition, the model has the capability of covering a broad range of motion possibilities that

can happen under general motion conditions.
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In Chapter 4, the models developed in the thesis are used to perform rover simulation.
The simulation results are compared against an extensive set of experiments conducted with
the Juno Il rover. In this chapter, the multi-body model of the rover developed in Vortex was
discussed in detail. Three sets of experiments were conducted and reported in this chapter.
The first set was performed on horizontal, flat concrete floor and on a metallic incline, in
order to determine rover properties. The second set of experiments was conducted on soft,
uncompacted soil with a horizontal flat surface, in which the drawbar pull of the rover was
measured at various ranges of wheel slippage. The experiments were repeated for the rover
with added mass.

Operation on irregular terrain was the scope of the last set of experiments in Chapter 4.
In this case, the terrain surface was scanned using a LIDAR scanner, before operating the
rover on it. Using the LIDAR data, a height-field terrain was generated in Vortex. In the
simulation, the wheels of the rover were commanded with the same angular velocities that
were obtained based on measurements during experiments. The rover trajectory, motor
torques, and the energy expenditure obtained from simulation were compared with experi-

mental data.

5.2 Recommendations for Future Work

The model developed in Chapter 3, based on elasto-plasticity theory, provides a novel
framework for studying wheel and soil interaction. We explained the model and all its
essential components in the thesis. As with almost any new idea, a number of investigations
can be conducted to assess its performance and achieve even further improvements.

The two main parts of the model that can be further investigated are the proposed
velocity field and the elasto-plastic constitutive relation. The assumed velocity field was
discussed in Subsection 3.3.4. Experimental observation of soil particle motion under a

wheel can shed light on how the velocity field can be further developed, if needed, in order
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to more closely capture any specific type of soil and wheel motion. This type of experi-
ments has been recently reported by Senatore et al. (2012) at MIT. Similar experiments are
also being conducted at Carnegie Mellon University (Skonieczny et al., 2012). It should
be mentioned that one of the important issues that needs to be investigated is the effect of
terrain slope on the velocity field.

Moreover, the use of alternative elasto-plastic soil models, depending on the type of
soil, can be investigated. For example, the models proposed by Manzari and Dafalias
(1997) and Taiebat and Dafalias (2008) can be good candidates for operations on sand.
These models capture both hardening and softening behaviour in sand, their numerical im-

plementations are relatively straightforward, and they are computationally efficient.

Regarding semi-empirical models, extra effort in modelling lateral forces is needed.
In this regard, capturing the changes in soil surface induced from the soil bulldozed by
the wheel sidewall can be an interesting direction for future investigation. In addition, as
mentioned in the thesis, the recent findings of Ding et al. (2011b) suggest that in the case of
a large angle p,, between wheel-sidewall and soil surface, the approximation of the failure
pattern using two wedges leads to more acceptable results, when compared with the single-
wedge model of McKyes (1985). This finding is worth further investigation. Moreover,
additional experimental investigation on inclined soil surfaces can be beneficial. In this

regard, inclined single-wheel testbeds can be employed.

142



BIBLIOGRAPHY

BIBLIOGRAPHY

V. Acary and B. Brogliato. Numerical Methods for Nonsmooth Dynamical Systems. Ap-
plications in Mechanics and Electronics, volume 35 of Lecture notes in applied and
computational mechanics. Springer, 2008.

AESCO. Matlab/Simulink Module AS*TM User’s Guide, 2005.

M. Anitescu and F. A. Potra. Formulating dynamic multi-rigid-body contact problems with
friction as solvable linear complementarity problems. Nonlinear Dynamics, 14:231-247,
1997.

A. Azimi, M. Hirschkorn, B. Ghotbi, J. Kovecses, J. Angeles, P. Radziszewski, M. Teich-
mann, M. Courchesne, and Y. Gonthier. Simulation-based rover performance evaluation
and effects of terrain modelling. In /5th CASI Astronautics Conference ASTRO, 2010.

A. Azimi, M. Hirschkorn, B. Ghotbi, J. Kovecses, J. Angeles, P. Radziszewski, M. Te-
ichmann, M. Courchesne, and Y. Gonthier. Terrain modelling in simulation-based per-
formance evaluation of rovers. Canadian Aeronautics and Space Journal, 57:24-33,
2011a.

A. Azimi, J. Kovecses, and J. Angeles. Wheel-soil interaction modelling for dynamics
simulation of rovers. In CCToMM Symposium on Mechanisms, Machines, and Mecha-
tronics, 2011b. (Extended abstract only).

A. Azimi, J. Kdvecses, and J. Angeles. Wheel-soil interaction model for rover simulation

based on plasticity theory. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS),

143



BIBLIOGRAPHY

pages 280-285, San Francisco, USA, September 201 1c.

A. Azimi, D. Holz, J. Kovecses, J. Angeles, and M. Teichmann. Efficient dynamics mod-
eling for rover simulation on soft terrain. In 50th AIAA Aerospace Sciences Meeting,
pages 1-9, Nashville, USA, January 2012.

A. Azimi, D. Holz, J. Kovecses, J. Angeles, and M. Teichmann. Wheel-terrain interaction
modelling for dynamics simulation and analysis of wheeled mobile robots. In CCToMM
Symposium on Mechanisms, Machines, and Mechatronics, 2013a. (Extended abstract
only).

A. Azimi, J. Kdvecses, and J. Angeles. Wheel-soil interaction model for rover simulation
and analysis using elasto-plasticity theory. IEEE Transactions on Robotics, 29(5):1271-
1288, 2013b.

R. Bauer, W. Leung, and T. Barfoot. Development of a dynamic simulation tool for the ex-
omars rover. In Proc. 8th Int. Symp. on Artificial Intelligence, Robotics and Automation
in Space, iSAIRAS, Munich, Germany, Aug. 2005.

R. Bauer, T. Barfoot, W. Leung, and G. Ravindran. Dynamic simulation tool development
for planetary rovers. Int. J. Advanced Robotic Systems, 5(3):311-314, 2008.

M. G. Bekker. Theory of Land Locomotion. Ann Arbor, The University of Michigan Press,
1956.

M. G. Bekker. Introduction to Terrain-Vehicle Systems. Ann Arbor, The University of
Michigan Press, 1969.

R. C. Chiroux, W. A. Foster, C. E. Johnson, S. A. Shoop, and R. L. Raper. Three-
dimensional finite element analysis of soil interaction with a rigid wheel. Applied Math-
ematics and Computation, 162:707-722, 2005.

E. A. de Souza Neto, D. Peri¢, and D. R. J. Owen. Computational Methods for Plasticity:
Theory and Applications. John Wiley & Sons, 2008.

L. Ding, H. Gao, Z. Deng, and J. Tao. Wheel slip-sinkage and its prediction model of lunar
rover. Journal of Central South University of Technology, 17:129—-135, 2010a.

144



BIBLIOGRAPHY

L. Ding, K. Nagatani, K. Sato, A. Mora, K. Yoshida, H. Gao, and Z. Deng. Terramechanics-
based high-fidelity dynamics simulation for wheeled mobile robot on deformable rough
terrain. In IEEE International Conference on Robotics and Automation, 2010b.

L. Ding, H. Gao, Z. Deng, K. Nagatani, and K. Yoshida. Experimental study and analysis
on driving wheels’ performance for planetary exploration rovers moving in deformable
soil. J. Terramechanics, 48:27-45, 2011a.

Y. Ding, N. Gravish, and D. I. Goldman. Drag induced lift in granular media. Phys. Rev.
Lett., 106(2):028001, Jan 2011b.

C. W. Fervers. Improved FEM simulation model for tire-soil interaction. J. Terramechan-
ics, 41:87-100, 2004.

K. Fukami, M. Ueno, K. Hashiguchi, and T. Okayasu. Mathematical models for soil dis-
placement under a rigid wheel. J. Terramechanics, 43:287-301, 2006.

D. Gee-Clough. The bekker theory of rolling resistance amended to take account of skid
and deep sinkage. J. Terramechanics, 13(2):87-105, 1976.

J. P. Hambleton and A. Drescher. Modeling wheel-induced rutting in soils: Indentation. J.
Terramechanics, 45(6):201-211, 2008.

J. P. Hambleton and A. Drescher. Modeling wheel-induced rutting in soils: Rolling. J.
Terramechanics, 46(2):35-47, 2009.

E. Hegedus. A simplified method for the determination of bulldozing resistance. Techni-
cal report, Land Locomotion Research Laboratory, Army Tank Automotive Command,
1960. Technical Report, no. 61.

S. Helwany. Applied soil mechanics: with ABAQUS applications. Wiley, 2007.

K. Hunt and F. Crossley. Coefficient of restitution interpreted as damping in vibroimpact.
Applied Mechanics, 42:440-445, 1975.

S. Hutangkabodee, Y. Zweiri, L. Seneviratne, and K. Althoefer. Soil parameter identifica-
tion and driving force prediction for wheel-terrain interaction. Int. J. Advanced Robotic

Systems, 5(4):425-432, 2008.

145



BIBLIOGRAPHY

K. ITagnemma and S. Dubowsky. Traction control of wheeled robotic vehicles in rough
terrain with application to planetary rovers. The Int. J. Robotics Research, 23(10-11):
1029-1040, October-November 2004.

K. Iagnemma, S. Kang, H. Shibly, and S. Dubowsky. Online terrain parameter estimation
for wheeled mobile robots with application to planetary rovers. IEEE Transactions on
Robotics, 20(5):921-927, October 2004.

K. D. Iagnemma. Rough-Terrain Mobile Robot Planning and Control with Application to
Planetary Exploration. PhD thesis, Massachusetts Institute of Technology, 2001.

G. Ishigami, A. Miwa, K. Nagatani, and K. Yoshida. Terramechanics-based model for
steering maneuver of planetary exploration rovers on loose soil. J. Field Robotics, 24(3):
233-250, 2007.

G. Ishigami, G. Kewlani, and K. Jagnemma. Predictable mobility - a statistical approach for
planetary surface exploration rovers in uncertain terrain. /[EEE Robotics & Automation
Magazine, 16(4):61-70, 2009. ISSN 1070-9932.

Z. Janosi and B. Hanamoto. Analytical determination of drawbar pull as a function of slip
for tracked vehicles in deformable soils. In First Int. Conf. on Terrain-Vehicle Systems,
Turin, Italy, 1961.

B. Jeremié¢, Z. Yang, Z. Cheng, G. Jie, K. Sett, M. Taiebat, M. Preisig, N. Tafazzoli, and
P. Tasiopoulou. Lecture Notes on Computational Geomechanics: Inelastic Finite Ele-
ments for Pressure Sensitive Materials. Computational Geomechanics Group, University
of California Davis, November 2010.

Z. Jia, W. Smith, and H. Peng. Fast analytical models of wheeled locomotion in deformable
terrain for mobile robots. Robotica, pages 1-19, 2012. doi: http://dx.doi.org/10.1017/
S0263574712000069.

L. L. Karafiath. Plasticity theory and the stress distribution beneath wheels. J. Terrame-

chanics, 8(2):49-60, 1971.

146



BIBLIOGRAPHY

L. L. Karafiath and E. A. Nowatzki. Soil Mechanics for Off-Road Vehicle Engineering.
Trans Tech Publications, 1978.

A. S. Khan and S. Huang. Continuum Theory of Plasticity. John Wiley and Sons, 1995.

C. H. Liu and J. Y. Wong. Numerical simulations of tire-soil interaction based on critical
state soil mechanics. J. Terramechanics, 33(5):209-221, 1996.

C. H. Liu, J. Y. Wong, and H. A. Mang. Large strain finite element analysis of sand: model,
algorithm and application to numerical simulation of tire-sand interaction. Computers
and Structures, 74:253-265, 2000.

J. Maciejewski and A. Jarzebowski. Experimental analysis of soil deformation below a
rolling rigid cylinder. J. Terramechanics, 41:223-241, 2004.

M. T. Manzari and Y. F. Dafalias. A critical state two-surface plasticity model for sands.
Geotechnique, 47(2):255-272, 1997. ISSN 00168505.

E. McKyes. Soil cutting and tillage. Elsevier, 1985.

G. Meirion-Griffith. Advances in Vehicle-terrain interaction modeling for small, rigid-
wheeled vehicles operating on deformable terrain. PhD thesis, Mechanical and
Aerospace Engineering, Illinois Institute of Technology, 2012.

L. Ojeda, D. Cruz, G. Reina, and J. Borenstein. Current-based slippage detection and
odometry correction for mobile robots and planetary rovers. IEEE Transactions on Ro-
botics, 22(2):366-378, April 2006.

O. Onafeko and A. R. Reece. Soil stresses and deformations beneath rigid wheels. J.
Terramechanics, 4(1):59-80, 1967.

J.V. Perumpral, J.B. Liljedahl, and W.H. Perloff. A numerical method for predicting the
stress distribution and soil deformation under a tractor wheel. J. Terramechanics, 8(1):
9-22,1971.

W. Petersen. A Volumetric Contact Model for Planetary Rover Wheel/Soil Interaction. PhD

thesis, University of Waterloo, 2012.

147



BIBLIOGRAPHY

F. Pfeiffer. Deregularization of a smooth system — example hydraulics. Nonlinear Dynam-
ics, 47(1-3):219-233, 2007.

E. Pfeiffer and Ch. Glocker. Multibody Dynamics with Unilateral Contacts. Wiley Series
in Nonlinear Science. John Wiley & Sons Inc., 1996.

L. E. Ray. Estimation of terrain forces and parameters for rigid-wheeled vehicles. IEEE
Transactions on Robotics, 25(3):717-726, June 2009. ISSN 1552-3098. doi: 10.1109/
TRO.2009.2018971.

A. R. Reece. The fundamental equation of earth-moving mechanics. Proceedings of the
Institution of Mechanical Engineers, 179:16-22, 1964.

B. Schifer, A. Gibbesch, R. Krenn, and B. Rebele. Planetary rover mobility simulation
on soft and uneven terrain. Vehicle System Dynamics: International Journal of Vehicle
Mechanics and Mobility, 48(1):149-169, 2010.

I. C. Schmid. Interaction of vehicle and terrain results from 10 years research at ikk. J.
Terramechanics, 32(1):3-26, 1995.

H. Schwanghart. Lateral forces on steered tyres in loose soil. J. Terramechanics, 5(1):
9-29, 1968.

C. Senatore and K. D. lTagnemma. Direct shear behaviour of dry, granular soils for low
normal stress with application to lightweight robotic vehicle modelling. In Proceed-
ings of the 17th International Symposium of the International Society of Terrain-Vehicle
Systems, pages 1-11, Blacksburg, VA, USA, 18-22 November 2011.

C. Senatore and C. Sandu. Off-road tire modeling and the multi-pass effect for vehicle
dynamics simulation. J. Terramechanics, 48:265-276, 2011.

C. Senatore, M. Wulfmeier, P. Jayakumar, J. Maclennan, and K. lagnemma. Investigation
of stress and failure in granular soils for lightweight robotic vehicle applications. In
Ground Vehicle Systems Engineering and Technology Symposium, Michigan, August
14-16 2012.

148



BIBLIOGRAPHY

H. Shibly, K. Tagnemma, and S. Dubowsky. An equivalent soil mechanics formulation for
rigid wheels in deformable terrain, with application to planetary exploration rovers. J.
Terramechanics, 42:1-13, 2005.

T. Shikanai, K. Hashiguchi, Y. Nohse, M. Ueno, and T. Okayasu. Precise measurement of
soil deformation and fluctuation in drawbar pull for steel and rubber-coated rigid wheels.
J. Terramechanics, 37:21-39, 2000.

S. A. Shoop. Finite element modeling of tire—terrain interaction. Technical report, US
Army Corps of Engineers, Engineer Research and Development Center, 2001.

SIMULIA. Abaqus Theory Manual, Version 6.10-EF. Dassault Systemes Simulia Corp.,
2010.

K. Skonieczny, S. J. Moreland, C. Creager, and D. Wettergreen. Novel experimental tech-
nique for visualizing and analyzing robot-soil interactions. In Earth and Space Confer-
ence, pages 1-10, April 2012.

G. Sohl and A. Jain. Wheel-terrain contact modelling in the ROAMS planetary rover sim-
ulation. Proceedings of IDETC, pages 1-9, September 2005.

D. E. Stewart. Rigid-body dynamics with friction and impact. SIAM Review, 42(1):3-39,
2000. doi: 10.1137/S0036144599360110.

M. Taiebat and Y. F. Dafalias. Sanisand: Simple anisotropic sand plasticity model. Int. J.
Numer. Anal. Meth. Geomech., 32:915-948, 2008.

B. Trease, R. Arvidson, R. Lindemann, K. Bennett, F. Zhou, K. lagnemma, C. Senatore,
and L. Van Dyke. Dynamic modeling and soil mechanics for path planning of the mars
exploration rovers. In ASME International Design Engineering Technical Conference &
Computers and Information in Engineering Conference IDETC/CIE,, 2011.

P. Visscher and E. Reid. Continued development of juno rover. In 50th AIAA Aerospace

Sciences Meeting, pages 1-13, Nashville, USA, January 2012.

149



BIBLIOGRAPHY

S. Wanjii, T. Hiroma, Y. Ota, and T. Kataoka. Prediction of wheel performance by analysis
of normal and tengential stress distributions under the wheel-soil interface. J. Terrame-
chanics, 34(3):165-186, 1997.

J. Y. Wong. Behaviour of soils beneath rigid wheels. J. Agric. Engng. Res., 12(4):257-269,
1967.

J. Y. Wong. Theory of Ground Vehicles. John Wiley and Sons, New Jersey, fourth edition,
2008.

J. Y. Wong. Terramechanics and Off-Road Vehicle Engineering: Terrain Behaviour, Off-
Road Vehicle Performance and Design. Elsevier, second edition, 2010.

J. Y. Wong and V. M. Asnani. Study of the correlation between the performances of lu-
nar vehicle wheels predicted by the Nepean wheeled vehicle performance model and
test data. Proceedings of the Institution of Mechanical Engineers, Part D (Journal of
Automobile Engineering), 222(D11):1939-54, 2008. ISSN 0954-4070.

J. Y. Wong and A. R. Reece. Prediction of rigid wheel performance based on the analysis
of soil-wheel stresses part I: Performance of driven rigid wheels. J. Terramechanics, 4
(1):81-98, 1967a.

J. Y. Wong and A. R. Reece. Prediction of rigid wheel performance based on the analysis
of soil-wheel stresses part II: Performance of towed rigid wheels. J. Terramechanics, 4
(2):7-25, 1967b.

D. M. Wood. Soil Behaviour and Critical State Soil Mechanics. Cambridge University
Press, first edition, 1990.

K. Xia. Finite element modeling of tire/terrain interaction: Application to predicting soil
compaction and tire mobility. J. Terramechanics, 48:113—-123, 2011.

R. N. Yong and E. A. Fattah. Prediction of wheel-soil interaction and performance using
the finite element method. J. Terramechanics, 13(4):227-240, 1976.

R.N. Yong, E. A. Fattah, and P. Boonsinsuk. Analysis and prediction of tyre-soil interaction

and performance using finite elements. J. Terramechanics, 15(1):43-63, 1978.

150



BIBLIOGRAPHY

K. Yoshida and G. Ishigami. Steering characteristics of a rigid wheel for exploration on
loose soil. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pages 3995—
4000, Sept. 2004.

151






A.1 BASIC ELEMENTS OF AN ELASTO-PLASTIC MODEL

APPENDIX A

Drucker-Prager Model with Cap Hardening

The Drucker-Prager with cap hardening plasticity model is used in this thesis to represent
the plastic response of soil. In order to explain this model, some basic concepts regarding

elasto-plasticity theory are briefly recalled.

A.1 Basic Elements of an Elasto-plastic Model

The concept of an elasto-plastic model can be explained with a simple test: uniaxial
tension of ductile metals. The common mathematical model used to capture the behaviour
of ductile metals in uniaxial tests can be illustrated in Fig. A.1, which is a 1D elasto-plastic
constitutive model.

In this model, if the total strain in the material is such that the tensile stress ¢ re-
mains below the yield stress o, the deformation is purely elastic. The total elastic strain
that corresponds to oy is €,. It is noted that for ductile metals, a linear relation has been
experimentally observed between stress and strain in the elastic domain.

If the total strain exceeds €y, the material will show permanent or plastic deformation.
According to this model, when loading to 67 > 0y, as shown in Fig. A.1, and then fully
unloading, a plastic strain 8{7 will remain. Now, if loading is applied again, such that the

total strain & is below g1, the material will show only elastic deformation, i.e., by removing
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APPENDIX A. DRUCKER-PRAGER MODEL WITH CAP HARDENING

FIGURE A.1. Mathematical model for the uniaxial tension experiment (adapted
with modification from (de Souza Neto et al., 2008))

the load, the strain will become 8{’ . The stress in this case can be obtained from:
GZIE(SZ—S{?) (A.1)

where a linear elastic model is used to relate the elastic strain to the stress, and E is the
Young modulus of the material. In general, the total stress can be expressed based on the
total elastic strain as:

o =E¢° (A.2)

which means that the elastic strain is obtained from below in this model of the uniaxial
experiment:

e=e—¢’ (A.3)

That is, the additive decomposition of the strain tensor holds for this model.

Another observation from the uniaxial test and its mathematical model is that after

the material has experienced plastic deformation, its yield stress increases. From Fig. A.1,
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A.2 ELASTO-PLASTIC STRAIN DECOMPOSITION AND THE ELASTIC LAW

when loading to o7 and start unloading, the new yield stress is 6,1 = o7, which is larger
than the yield stress o, before plastic deformation. This evolution of the yield stress caused

by the plastic strain is known as hardening (de Souza Neto et al., 2008).

According to de Souza Neto et al. (2008), a general elasto-plastic constitutive model
contains the elements listed below:
- A rule for elasto-plastic strain decomposition and an elastic law
- A yield criterion, that is expressed with a yield surface
- A plastic flow rule and a hardening law.
Each of these elements is discussed below for the assumed elasto-plastic constitutive

model (Drucker-Prager with cap hardening).

A.2 Elasto-plastic Strain Decomposition and the Elastic Law

In this thesis, the additive decomposition of the strain tensor is adopted, which is ex-

pressed in incremental form as':

A€ = A€€ + A€? (A4)

In addition, a linear elastic law is assumed for the elastic behaviour of soil. This law

can be expressed as:

c=C:¢ (A.S)

where C is the fourth-rank elastic stiffness tensor and symbol “:” denotes double contrac-
tion, as needed between a fourth-rank tensor C and a second-rank tensor £° (de Souza Neto
et al., 2008), to produce a second-rank stress tensor. In addition, it is noted that the stress

tensor is obtained from the total elastic strain tensor.

'Tt is noted that in finite deformation, the decomposition of elastic and plastic parts are multiplicative
(Khan and Huang, 1995); however, as mentioned in (SIMULIA, 2010), the additive decomposition still holds
when elastic strain is infinitesimal and the strain rate is measured as the rate of deformation.
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A.3 Yield Criterion and Yield Surface

In elasto-plastic materials, the principle of yield and plastic flow can be expressed by
means of a yield surface.

The yield surface, described by a scalar yield function F, is defined in terms of the
stress invariants p and g, for the Drucker-Prager with cap hardening plasticity model. p is

related to the first moment of the stress tensor
p=—=tr(0), (A.6)

while ¢, the von Mises equivalent stress, is proportional to the square root of the second
moment of S:

a=/3u(s?) )

where S is the stress deviator, defined as:
S=0+pl (A.8)

and I is the identity tensor.

q

/

=
p
FIGURE A.2. Yield surface in the p-q plane (adapted from (SIMULIA, 2010))
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A.3  YIELD CRITERION AND YIELD SURFACE

The yield surface as depicted in Fig. A.2, consists of three parts in the p-g plane: the
failure surface Fj; the transition surface F;,; and the cap surface F.. They obey the relations

below (SIMULIA, 2010):

Fs=q—ptanB —d =0 (A.9)

_ Req : B
F.= \/(p—pa)2+ <1+a—a/cos/3) —Re(d+ patanfp) =0 (A.10)

Er:\/<p_pa)2+{q_<l_ * )(d+patanl3)r—a(d+patanﬁ)=0 (A.11)

cosf3

where 8 and d are related to the angle of friction and cohesion of the material, respectively.
As mentioned in (SIMULIA, 2010), R, is a material parameter referred to as the cap ec-
centricity, while «, typically between 0.01 and 0.05, is used to define the size of F;,. p, is

obtained from the evolution variable p; as (SIMULIA, 2010):

Pb _Red

= — A.12
1 +R.tanf ( )

Pa

As will be explained in Section A.4, p, defines the hardening or softening behaviour.
Based on Eqgs.(A.9)—(A.12), the yield function can be expressed as F (0, p;) for the
above-mentioned Drucker-Prager model. According to elasto-plasticity theory, (Khan and
Huang, 1995; de Souza Neto et al., 2008), when F(0,p,) < 0, the material is in an
elastic state. Therefore, the entire elastic domain can be expressed by the following set

(de Souza Neto et al., 2008):

&={c|F(c,py) <0} (A.13)

It is noted that in the elastic domain, plastic yielding is not possible. Furthermore,

when the yield function is zero, i.e., F(0,p,) = 0, plastic yielding and plastic flow can
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occur. The set of stresses at every given p,, that satisfy the plastic yielding condition form

a surface, which is referred to as the yield surface and is defined as:

% ={6 | F(o,py) =0} (A.14)

This yield surface forms the boundary of the elastic domain. It should also be men-
tioned that any state of stress that leads to a positive yield function is not plastically admis-

sible (Khan and Huang, 1995; de Souza Neto et al., 2008).

A.4 Plastic Flow Rule and the Hardening Law

In order to have a complete plasticity model, we need to define the plastic flow rule
and a law for the evolution of hardening-related variables. In this regard, it is convenient
to define the flow rule in terms of a scalar flow potential function (de Souza Neto et al.,
2008). In the Drucker-Prager with cap hardening model, the flow potential G is a scalar
that consists of two parts in the p-g plane; plastic flow on the cap region G., and plastic

flow on the failure and transition regions G, (SIMULIA, 2010):

o, Req ?
GC_\/(p Pa) +<1+a—a/cos[3) (A.15)

q 2
Gsz\/[<pa—p)tanﬁ]2+(Ha_a/wsﬁ) (A.16)

The two elliptical portions, G, and G, form a C'-continuous potential surface. It should

be mentioned that in this elasto-plastic model, plastic flow on the cap region G, causes

hardening, while the plastic flow on G, leads to softening.
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A4 PLASTIC FLOW RULE AND THE HARDENING LAW

As mentioned earlier for the uniaxial test, the yield surface evolves with the plastic
strain. In the Drucker-Prager elasto-plstic model with cap hardening, the hydrostatic com-
pression yield stress pp, shown in Fig. A.2, varies with the volumetric plastic strain 8501
according to a piecewise linear function, as schematically shown in Fig. A.3. As shown in
Fig. A.4, upon increasing pj, the yield surface expands, which causes material hardening.

Furthermore, decreasing p;, causes the yield surface to become smaller, which is known as
softening.

vol

Pb

FIGURE A.3. A typical hardening relation between 8501 and p,, (adopted with mod-
ification from (SIMULIA, 2010))
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FIGURE A.4. Evolution of the yield surface in the p-g plane with changes in pj.

Increasing pj, results in expansion in the yield surface, and hence, hardening, while
reduction in p leads to a smaller yield surface and soil softening.
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APPENDIX B. COMPUTATION OF ELASTIC AND PLASTIC PARTS OF STRAIN TENSOR

APPENDIX B

Computation of the Elastic and Plastic Parts of

the Strain-increment Tensor

The calculation of Ag® and A€” is explained briefly here, based on the total strain increment
A€.

Following an approach explained by de Souza Neto et al. (2008), the elastic and plastic
parts of the strain increment tensor can be decomposed by finding a single scalar, known
as plastic multiplier, from a nonlinear algebraic equation. This procedure is summarized
below.

Using plastic potential theory, a classical plasticity theory (Khan and Huang, 1995),

the increment in the plastic strain can be obtained as

0G
p = —_—
AEP =2 (B.1)

where A; is the plastic multiplier and G is the flow potential surface defined in Egs. (A.15)
and (A.16) for the Drucker-Prager constitutive relation.

In the algorithm described below, it is required to find the evolution of p;, the hard-
ening variable in the Drucker-Prager constitutive relation, based on A;. As explained in

Section A.2, p;, depends only on the volumetric plastic strain 8501. Therefore, the relation
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below for the evolution of p;, is derived using Eq. (B.1):

0 G
Apy = Alagipbtr (%) (B.2)

vol

In obtaining Eq. (B.2), the relation for the volumetric plastic strain, namely,

el = tr(eP) (B.3)

vol —

is used.
For determining A;, what is called the loading/unloading conditions of the elasto-
plastic model must be satisfied (de Souza Neto et al., 2008). These conditions can be

expressed in terms of the Karush-Kuhn-Tucker criteria stated by Jeremic et al. (2010):
F(o,pp) <0; A4 >0; F-A4,=0 (B.4)

where F is the yield surface that is defined for the Drucker-Prager constitutive relation
in Egs. (A.9-A.11). Based on these criteria, a positive A; exists when there is a plastic
deformation; A, is zero if the deformation is only elastic. Using the condition stated in
Eq. (B.4), an elastic predictor/plastic corrector algorithm is normally used to compute A;.
With A; known, the plastic strain increment is readily determined from Eq. (B.1). In addi-
tion, from Eq. (A.4), the elastic strain increment tensor A€° is obtained. From this A€¢, the
increment in the stress tensor caused by A€ is readily determined. This algorithm involves
the steps below, following the procedure explained in Box 7.1 of (de Souza Neto et al.,

2008):

ALGORITHM 4.
Given the current stress tensor 6(0), strain tensors €°(0) and €”(0), and the total strain
increment A€, find Aq.

(a) Elastic predictor step (adapted from (de Souza Neto et al., 2008)):
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(i) Set A1 =0, i.e., assume that the strain increment is fully elastic. Then cal-

culate the elastic trial states as:

€..=¢€°(0)+Ae (B.5a)
Py = py(0) (B.5b)
ol =C:¢e,, (B.5¢)

It should be noted that p;, changes with €’ . Therefore, if €7(0) is known,

vol*
so is pp(0).

(ii) Verify the plastic admissibility condition: F(c™! piral)y < 0. If the test
fails, we go to step (b); otherwise, Ay is reported as zero, i.e., only elastic
deformation occurs.

(b) Plastic corrector step or Return-Mapping Algorithm, in which the system of

equations below is solved for €°, py, and A (adapted from (de Souza Neto et al.,

2008)):
. oG
£ — etrmﬁll% =0 (B.6a)
. J oG
pp— pirial — 5 ﬁ,bltr (ao) =0 (B.6b)
F(o,py) =0 (B.6¢)

witho=C: €.

It is noted that Eq. (B.6a) is derived from the additive decomposition of the strain

increment tensor. In addition, Eq. (B.6b) is obtained from Eq. (B.2), which is the evolution

of the hardening parameter. Moreover, Eq. (B.6c) stems from the plastic admissibility

condition, according to which, when plastic deformation exists, the yield function is zero.

Details on the numerical solution of Egs. (B.6a)—(B.6¢) can be found in (Jeremic et al.,
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