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ABSTRACT

Abstract

Appropriate modelling of the interaction between wheel and terrain is a key element in

simulating wheeled mobile robots and analyzing their functionality on soft terrain. In this

thesis, two modelling approaches, with their implementation in a multi-body dynamics

environment and their experimental validation, are introduced.

The first approach is based on well-established semi-empirical terramechanics models.

The multi-pass effect is considered in the implementation by storing terrain deformation

and changes in hardening of soil under the wheel. A high-resolution height-field (HF) is

used to model the terrain surface, with relevant information stored in the HF vertices. A

novel framework is developed for implementation of this model in a multi-body dynamics

environment. For every wheel in contact with soft soil, unilateral contact constraints are

added to the solver in the normal direction. Terramechanics forces in the tangent plane

and the resistant moment are formulated as set-valued functions associated with kinematic

constraints on their complementary variables. The new formulation leads to the dynamics

representation in the form of a linear complementarity problem. The properties of these

constraints are set based on the soil reactions determined from the semi-empirical terrame-

chanics model, at every time-step of the simulation. With this approach, fast and stable

simulation is achieved.

In the second approach, normal and shear stress distributions in the contact area are de-

termined using continuum mechanics with a computationally efficient technique compared
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to finite element modelling. The author proposes a velocity field in the vicinity of the con-

tact area motivated by the physical nature of the problem. Using this field, the incremental

changes to the stress field are determined by resorting to classical elasto-plasticity theory

and an appropriate constitutive relation for soil. As opposed to finite element approaches,

which model the soil in contact with the wheel as a high-resolution mesh, our approach fo-

cuses on the wheel-soil contact patch only. This localized representation provides the basis

for fast wheel-soil interaction modelling. By combining this approach with a height-field as

terrain representation, elasto-plastic soil deformation and changes in the hardening state of

soil are directly captured. In addition, because of the elasto-plastic representation for soil,

energy dissipation during soil compaction is directly captured. The dynamic slip-sinkage

behaviour of the wheel and the semi-elliptical shape of the normal stress distribution un-

der the wheel are natural outcomes of the proposed model. The results obtained from the

proposed approach are compared with experimental data available in the literature, which

show good agreement between the model and experiments under various ranges of wheel

slippage and loading conditions.

Moreover, an extensive set of experiments was conducted using a version of the Juno

rover (Juno II), owned by the Canadian Space Agency (CSA). The analysis of the results

shows good agreement between the experimental rover behaviour and the simulation runs

using both models developed.
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Résumé

Afin de simuler et d’analyser les mouvements de robots mobiles sur terrain déformable,

il est essentiel de correctement modéliser les interactions entre les roues du véhicule et le

terrain. Dans cette thèse, deux approches de modélisation seront présentées et analysées,

avec leurs mises en œuvre dans un environnement de simulation en temps réel.

La première approche est basée sur un modèle semi-empiriques de mécanique des sols.

L’effet du passage répété d’un véhicule sur le terrain est pris en compte par le stockage de

la déformation du terrain et du durcissement du sol sous les roues. Un champ de hau-

teur (Height Field) à haute résolution est utilisé pour modéliser la surface du terrain; les

informations nécessaires sont stockées dans les sommets du champ de hauteur. Une ap-

proche originale est développée pour la mise en œuvre dans l’engin de simulation. Pour

chaque roue en contact avec le sol mou, une contrainte de contact unilatéral est ajouté au

solveur pour la direction normal au mouvement. Les forces dans le plan tangent, issus de

la mécanique des sols, et la résistance au moment sont traités comme des fonctions multi-

valuées associées à des contraintes cinématique pour les variables complémentaires. Cette

nouvelle formulation conduit à une représentation dynamique sous forme d’un problème

de complémentarité linéaire. Les propriétés des contraintes sont définies en fonction des

réactions du sol, calculées par le modle semi-empirique à chaque pas de simulation. Avec

cette approche, une simulation rapide et stable est obtenue.
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Dans la seconde approche, la répartition des contraintes normales et de cisaillement

dans la zone de contact est déterminée en utilisant la mécanique des milieux continus avec

une technique de calcul efficace par rapport à la modélisation par éléments finis. Nous

proposons l’utilisation d’un champ de vitesses au voisinage de la zone de contact, dans

une approche motivée par la nature physique du problème. Avec ce champ de vitesse,

les changements progressifs du champ de contraintes sont calculées en recourant à la

théorie d’élasto-plasticité classique et à une relation de comportement appropriée pour

les sols. Contrairement aux approches par éléments finis, qui modélisent le sol en con-

tact avec la roue comme un maillage haute résolution, notre approche est axée uniquement

sur l’aire de contact roue-sol. En combinant cette approche avec un champ de hauteur

comme représentation du terrain, la déformation élasto-plastique du sol et les changements

dans le durcissement du sol sont directement pris en compte. En outre, en raison de la

représentation élasto-plastique du sol, la dissipation d’énergie au cours du compactage du

sol est aussi directement prise en compte. Le comportement dynamique de compaction et

de glissement de la roue et la forme semi-elliptique de la répartition des contraintes nor-

males sous la roue sont les résultats naturels du modèle proposé. Les résultats obtenus par

cet approche sont comparés à des données disponibles dans des études expérimentales, et

montre un bon accord avec la théorie pour un large domaine de valeur de glissement et de

charge.

En outre, un vaste ensemble d’expériences ont été menées en utilisant une version du

rover Juno (Juno II) de l’Agence spatiale canadienne (ASC). L’analyse des résultats montre

un bon accord entre le comportement expérimental des rovers et des simulations utilisant

les deux modèles développés.
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CLAIMS OF ORIGINALITY

Claims of Originality

(i) A new framework is developed in the thesis for efficient implementation of semi-

empirical terramechanics models in a multibody dynamics simulation environ-

ment. This approach is based on deregularization of the terramechanics relations

by using kinematic constraints with set-valued force characteristics. As a re-

sult, efficient and real-time simulation of rovers moving on soft soil is achieved.

As opposed to other implementations of these semi-empirical terramechanics

models in the literature, which require simplification of these models in order

to achieve close to real-time performance, no simplification is required when the

implementation of the proposed approach in the multi-body dynamics simulation

environment Vortex is used. Furthermore, the developed formulation is modular

in that various semi-empirical wheel-soil interaction models can be used. The

model was partly reported in (Azimi et al., 2010, 2011a).

(ii) In addition to using semi-empirical models, a novel approach is developed in

this thesis for modelling the interaction between wheels and soil. This approach

uses elasto-plasticity theory to determine the stress field in the contact area. An

important element in our model lies in assuming a plausible velocity field for

soil particles, which in turn, eliminates the need of using finite element analysis

for determining soil reactions. This novel approach was reported by Azimi et al.

(2011c, 2013b).
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CLAIMS OF ORIGINALITY

(iii) In the thesis, the terrain is modelled as rough and deformable. In order to cap-

ture an important feature referred to as multipass effect, changes in the hardening

properties of soil and the amount of deformation imposed by the wheel are main-

tained by developing an extended height-field data structure. Both modelling ap-

proaches are also implemented in Vortex, then used for 3D dynamic simulation

of full-scale rovers. This approach is outlined in (Azimi et al., 2012).

(iv) Experimental investigations were also conducted with the Juno II rover. The ex-

perimental outcomes are compared with the results obtained from the developed

models, which shows their correctness. The results were presented in (Azimi

et al., 2013a).
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1.2 SCOPE AND OBJECTIVES OF THE THESIS

CHAPTER 1

Introduction

1.1 Motivation

Mobile robotic systems represent key elements for planetary exploration as well as

earthly applications. Such robots have to operate on various different types of unstructured

terrain, among which soft deformable soil is of particular interest. In order to investigate

the effect of deformable soil on the performance of rovers, appropriate models are required

to represent the interaction between wheel and terrain. In this context, soil reactions are

required in response to the wheel movement. In these models, high fidelity could be needed,

while the computational efficiency is a key element in the application of the models.

1.2 Scope and Objectives of the Thesis

Depending on the application, different modelling techniques can be used for study-

ing wheel and soil interaction. The scope of this thesis is to develop wheel-soil interac-

tion models for simulation and analysis of rovers in a multi-body simulation environment,

which can be used, for example, in the design, control, or operation planning of rovers.

For this purpose, parametric models with modest computational cost are of interest. For

earthly-based applications, however, an entirely empirical technique can also be used, with
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a look-up table. As empirical techniques cannot be extrapolated beyond the conditions for

which they were developed, they are not discussed in this thesis.

A semi-empirical technique that allows for the parametric analysis of wheel-soil inter-

action was proposed by Bekker (1956). This model and its extension proposed by Wong

and Reece (1967a) are widely used, as they have been experimentally validated and are

computationally efficient. The latter is referred to as the Wong-Reece (WR) model in this

thesis. These two models have a broad range of application in characterizing vehicles on

soft terrain. Both models have significant applications in mobile robotics as well. For ex-

ample, in the AESCO Soft Soil Tyre Model (AS2TM) (AESCO, 2005), the Bekker model

is used. Furthermore, Iagnemma (2001), Iagnemma and Dubowsky (2004), Shibly et al.

(2005), Ishigami et al. (2007, 2009), Hutangkabodee et al. (2008), and Senatore and Sandu

(2011) used the WR model in their wheel-soil interaction studies. In addition, Wong and

Asnani (2008) compared the performance of several wheels of lunar vehicles by means of

the NWVPM software package (Wong, 2010), in which normal stress distribution under

the wheel is obtained using the Bekker model. A simplified version of the WR model was

used by Iagnemma et al. (2004) to identify cohesion and internal friction angle of soil for

real-time applications of rovers operating on soft soil. Terrain parameter identification was

also done by Ray (2009), using the WR model. This WR model was also used by Ojeda

et al. (2006) for wheel-slip detection and positioning error compensation.

A framework is developed in Chapter 2 for the implementation of these semi-empirical

models in a multi-body dynamics simulation environment. In this thesis, the implemen-

tations are based on Vortex1, an advanced multi-body dynamics simulation environment

developed by CM-Labs Simulations Inc. As discussed in Chapter 2, the framework can be

used to accommodate various types of terramechanics models.

1http://www.vxsim.com/
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In addition to semi-empirical models, other models, based on continuum mechanics,

can be employed. In this regard, soft soil is modelled as a continuum, in which wheel-

soil contact can be analyzed by considering an appropriate constitutive relation for soil and

using detailed finite element discretization to calculate stress distribution and soil defor-

mation in the contact area, as reported in (Chiroux et al., 2005; Fervers, 2004; Xia, 2011).

In yet another class of methods, dry soil is modelled as cohesionless granular material,

with wheel-soil contact analyzed with the discrete element method (DEM) (Wong, 2010).

One of the issues with DEM in wheel-soil interaction modelling is the need to consider a

large number of particles, which results in an extremely high computing time, even with

supercomputers (Wong, 2010). For wheel-soil interaction, Finite Element Analysis (FEA)

is computationally less demanding than DEM. However, FEA is still inappropriate for a

multibody dynamics simulation environment, because of its high computational cost.

An efficient novel approach, based on elasto-plasticity theory, is introduced in Chap-

ter 3 of this thesis for wheel-soil interaction. This approach will be shown to extend the

application domain of the above-mentioned semi-empirical models, while being compati-

ble with dynamics formulations and multibody simulation environments. In this context,

instead of resorting to FEA to find soil reactions on the rigid wheel, an assumed velocity

field in the contact region is used. A rather simple, still plausible velocity field is assumed

that can lead to acceptable results, comparable to those obtained with the Bekker and WR

models and experimental data.

1.3 Literature Review and Background Material

1.3.1 Traditional Semi-empirical Models in the Longitudinal Direction

In order to predict motion resistance of a rigid wheel on soil, Bekker (1956, 1969) as-

sumed that the normal stress distribution under the wheel can be obtained from the average

pressure under a flat plate when pushed into the soil. Bekker surmised that the relation be-

tween this average pressure and plate sinkage can be represented for homogeneous terrain

3
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as

p =

(
kc

b
+ kφ

)
zn (1.1)

where p is pressure, b the plate width used in the penetration test, kc the pressure-sinkage

parameter due to the cohesive effects, kφ the pressure-sinkage parameter due to the fric-

tional effects, z the sinkage of the flat plate, and n ∈ IR+ is an exponent of deformation

(Wong, 2008). It is noteworthy that kφ and kc have dimensions dependent on the value of

n, which is a shortcoming of the model.

What is known as the bevameter (Bekker, 1969; Wong, 2008) is one of the best-known

techniques for measuring the terrain response to loading relevant to vehicle-mobility stud-

ies. It can be employed to find the pressure-sinkage relationship using a set of plate-

penetration tests, as well as performing a set of shear tests to derive the shear stress-

displacement relationship. In the penetration test, a plate of suitable size is used to emulate

the contact area of the wheel. As mentioned by Wong (2008), the parameters kc, kφ , and n

can also be obtained using circular plates in the penetration test.

The shear stress-displacement relationship, obtained from the shear tests, can be ex-

pressed as indicated below for most of the homogeneous soils (Wong, 2008):

τ = (c+ p tanφ)[1− exp(− jd/Kd)] (1.2)

where τ is the shear stress, jd is the shear displacement, with units of length, c and φ

are the cohesion stress and the angle of internal friction of the terrain, respectively, and

Kd is referred to as the shear deformation modulus, with units of length. Equation (1.2),

proposed by Janosi and Hanamoto (1961), is a simplified form of a relation suggested by

Bekker (1956).

In order to predict the soil reaction on a rigid wheel, Bekker (1956) assumed that the

radial terrain reaction at all points on the contact surface is equal to that under a plate

penetrated to the same depth. Therefore, the normal stress distribution under a rigid wheel

4
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on homogeneous terrain can be obtained from Eq. (1.1) as (Bekker, 1956; Wong, 2008):

σn(θ) =

(
kc

b
+ kφ

)
ζ n(θ) (1.3)

where b is either the wheel width or the smaller dimension of the wheel/terrain contact

patch (Wong, 2010), ζ is the vertical sinkage at any point on the contact surface, as illus-

trated in Fig. 1.1, and angle θ describes the location of any point in the contact patch, as

shown in the same figure.

ω

vx

θ1

θ
θ2

ζ

x

z

R

Rc

Fz

Ft

Tr

FIGURE 1.1. Geometry of rigid wheel and soil contact, with soil reaction forces

and moment in dashed red lines.

By knowing the normal stress distribution σn in the contact area, the shear stress dis-

tribution τ is expressed using Eq. (1.2) as

τ(θ) = (c+σn(θ) tanφ)

[
1− exp

(
− jd(θ)

Kd

)]
(1.4)

Different relations for the shear displacement jd have been proposed in the literature.

The relation proposed by Wong and Reece (1967a) for a driven wheel has been the most

widely adopted:

jd(θ) = R[(θ1 −θ)− (1− is)(sinθ1 − sinθ)] (1.5)

5
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where θ is defined in Fig. 1.1, θ1 is an angle indicating the initial contact with soil, R is the

wheel radius, and is is the wheel slip ratio, defined as

is =
Rω − vx

Rω
(1.6)

where ω is the angular velocity of the wheel and vx is the horizontal component of the

velocity of the wheel centre, for a wheel in planar motion. It should be mentioned that

Eq. (1.5) is obtained by integrating the slip velocity in the contact region from the initial

point of contact with soil, identified by the angle θ1, to the current angle θ and assuming a

constant slip ratio (Wong and Reece, 1967a).

When the normal and shear stress distributions around the wheel are known, the soil

reactions, including motion resistance Rc, traction force Ft , resisting moment Tr, and terrain

vertical reaction force Fz can be obtained as

Rc = Rb

∫ θ1

θ2

σn(θ)sinθ dθ (1.7)

Ft = Rb

∫ θ1

θ2

τ(θ)cosθ dθ (1.8)

Tr = R2b

∫ θ1

θ2

τ(θ)dθ (1.9)

Fz = Rb

∫ θ1

θ2

[τ(θ)sinθ +σn(θ)cosθ ]dθ (1.10)

and Ft −Rc is what is known as the drawbar pull of the wheel.

By neglecting the effect of shear stress on Fz and assuming small wheel sinkage,

Bekker (1956, 1969) estimated motion resistance Rc as

Rc =
(3Fz)

ν1

(3−n)ν1(n+1)(kc+bkφ )ν2(2R)ν3
(1.11)

6
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where ν1 = (2n+ 2)/(2n+ 1), ν2 = 1/(2n+ 1), and ν3 = (n+ 1)/(2n+ 1). In addition,

the wheel sinkage can be estimated as (Bekker, 1956, 1969)

z =

(
3Fz

(3−n)(kc +bkφ )
√

2R

)2ν2

(1.12)

REMARK 1. It should be noted that, some quantities with dimensions are raised to

powers in Eqs. (1.11) and (1.12), because Eq. (1.1) was used to develop them.

Onafeko and Reece (1967) mentioned that the pressure-sinkage relationship expressed

in Eq. (1.1) is unsatisfactory, since the dimension of soil parameters kc and kφ are dependent

on n. This brings about further problems in relations developed based on Eq. (1.1), for

example Eqs. (1.11) and (1.12). Therefore, the pressure-sinkage relation, Eq. (1.1), should

be replaced by

p = (k1 + k2b)
( z

b

)n

(1.13)

As mentioned by Onafeko and Reece (1967), Eq. (1.13) may take the form below for very

compact soils:

p = (k′cc+ k′φ γsb)
( z

b

)n

(1.14)

where k′c, k′φ , and n are new dimensionless pressure-sinkage parameters, and γs is the spe-

cific weight of the terrain. Furthermore, Onafeko and Reece (1967) indicated that Kd in

Eq. (1.2) is usually dependent on both the contact pressure and plate width used in the

bevameter test. The dependency of Kd on contact pressure is also mentioned by Wong

(2008).

Wong (1967) studied the soil behaviour beneath rigid wheels for compact, dry sand

and for frictionless clay. Wong observed that a rigid wheel displaces the compact soil

partly laterally and partly longitudinally. In addition, he mentioned that there are usually

two flow zones in the longitudinal plane, one forward, one backward.

7



CHAPTER 1. INTRODUCTION

Wong and Reece (1967a) referred to some experimental studies on sand in which they

showed that the radial stress distribution is slip-dependent, and the maximum radial stress

does not occur at the bottom-dead-centre, as would be expected from the plate sinkage

analogy. They proposed the empirical relation given below for estimating angle θM as the

location of the point of the maximum radial stress in the contact patch:

θM = (c1 + c2is)θ1 (1.15)

where c1 and c2 are dimensionless constants. Wong and Reece (1967a) proposed the rela-

tions below for normal stress distribution:

σn(θ) =

⎧⎪⎪⎨
⎪⎪⎩

(k1 + k2b)

(
R

b

)n

[cosθ − cosθ1]
n, θM ≤ θ < θ1

(k1 + k2b)

(
R

b

)n[
cos

(
θ1 − θ −θ2

θM −θ2
(θ1 −θM)

)
− cosθ1

]n

, θ2 ≤ θ < θM

(1.16)

where θ2 represents the exit angle, illustrated in Fig. 1.1. In addition, shear stress distribu-

tion was obtained using Eq. (1.2), in which the shear displacement jd is determined from

Eq. (1.5). Soil reactions can then be obtained from Eqs. (1.7)–(1.10), by assuming θ2 = 0.

It should be noted that non-zero values for θ2 have been used in the literature, as discussed

in Subsection 1.3.2.

REMARK 2. It should be mentioned that the three forms of pressure-sinkage relations,

Eqs. (1.1), (1.13), and (1.14), are frequently used in the literature to obtain the normal

stress under a wheel. For that, either the model of Bekker, expressed in Eq. (1.3), or the

model of Wong and Reece (1967a), given in Eq. (1.16), is used.

Wong and Reece (1967b) also studied the behaviour of towed rigid wheels on sand.

Similar to their approach for analyzing driven rigid wheels (Wong and Reece, 1967a),

where the authors estimated the position of maximum normal stress, Wong and Reece

(1967b) first estimated the position of what they called a transition point. This is the point

8
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on the wheel periphery at which shear stress changes direction. This point lies at the junc-

tion of two soil failure zones beneath a towed wheel, as concluded from experiments (Wong

and Reece, 1967b). Since at this point shear stress is zero, the normal stress becomes a prin-

cipal stress at the transition point on a towed rigid wheel; it is the major principal stress. By

assuming that (i) soil failure only occurs in the direction of wheel motion, and (ii) soil is

incompressible, the transition point can be determined using the relation (Wong and Reece,

1967b)

tan

(
π

4
− φ

2

)
=

cosθt −1/(1− is)

sinθt
(1.17)

where θt is the angle representing the position of the transition point. Equation (1.17) may

result in two solutions for θt in the acceptable range of θt ∈ [0,θ1); however, as discussed

by Wong and Reece (1967b), the transition point always takes the smaller value.

Furthermore, the maximum radial stress would be expected to act at the transition

point, as suggested by classical soil mechanics (Wong and Reece, 1967b). In addition, the

position of maximum radial stress was observed to be very close to the transition point

in the experiments (Wong and Reece, 1967b). The normal stress distribution for towed

wheels is then calculated similar to driven wheels, and can be expressed using Eq. (1.16)

upon using θt for θM as

σn(θ) =

⎧⎪⎪⎨
⎪⎪⎩

(k1 + k2b)

(
R

b

)n

[cosθ − cosθ1]
n, θt ≤ θ < θ1

(k1 + k2b)

(
R

b

)n[
cos

(
θ1 − θ −θ2

θt −θ2
(θ1 −θt)

)
− cosθ1

]n

, θ2 ≤ θ < θt

(1.18)

Shear stress distribution is also obtained using Eq. (1.4), while the shear deformation

jd in the front region, θ ∈ [θt ,θ1], should be determined by (Wong and Reece, 1967b)

jd = R

[
(θ1 −θ)

(1− is)(sinθ1 − sinθt)

θ1 −θt
− (1− is)(sinθ1 − sinθ)

]
(1.19)

In addition, in the rear region, θ ∈ [θ2,θt], jd is obtained from Eq. (1.5).

9
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As an alternative to the Wong and Reece (1967b) approach, Gee-Clough (1976) also

studied free-rolling, towed, rigid wheels. In this approach, instead of local sinkage ζ (θ),

the cumulative normal displacement N(θ), with units of length, was used to find the radial

(normal) stress

σn(θ) =

(
kc

b
+ kφ

)
[N(θ)]n (1.20)

where N(θ) can be calculated as (Gee-Clough, 1976)

N(θ) = R(1− is)(cosθ − cosθ1) (1.21)

Substituting Eq. (1.21) in Eq. (1.20) leads to

σn(θ) =

(
kc

b
+ kφ

)
ζ n(θ)(1− is)

n (1.22)

By comparing Eq. (1.22) with Eq. (1.3), the difference between the Bekker and the

Gee-Clough (1976) approaches lies in the term (1− is)
n. Furthermore, the latter is proposed

for towed wheels, only.

1.3.2 Recent Developments Pertinent to Rover Simulation

Some of the recent improvements on semi-empirical Bekker models related to rover

simulation are discussed below. It should be noted that the research work associated with

using these models in a multi-body dynamics environment and dealing with rough terrain

is discussed in Subsection 1.3.3.

• Effect of Grousers:

The effect of grousers has been investigated with various methods. A simple and

common approach, as in (Jia et al., 2012), consists in using a larger wheel radius—the

original radius plus the grouser height. Another approach, however, is to consider in-

dividual bulldozing forces on the grousers (Trease et al., 2011). In the thesis, grousers
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are not explicitly included; a larger-wheel-radius approach can be used to approximate

their effect.

• Computation of the exit angle θ2:

In the Bekker model, as mentioned above, the exit angle is assumed zero. However, a

non-zero exit angle can be determined by considering ground flexibility and obtaining

soil rebound, as reported in (AESCO, 2005). This is discussed in more detail in Sec-

tion 2.4.5. In addition, Ishigami et al. (2007) used the Wong and Reece (1967a) model

with a non-zero exit angle. In their approach, the non-zero exit angle is assumed by

means of a visually identified parameter, which relates the exit angle θ2 to the entrance

angle θ1.

• Slip-sinkage behaviour:

Ding et al. (2010a) conducted a set of experiments on a lunar soil simulant to study

the slip-sinkage behaviour and the extra sinkage caused by grousers. They used the

Ishigami et al. (2007) model as a base-line and suggested that the exponent in the

pressure sinkage relation should be a linear function of the slip-ratio. With this mod-

ification, a good match between theory and experimental slip-sinkage was reported.

However, no theoretical analysis was provided. The dynamic slip-sinkage is captured

in our novel elasto-plastic model, introduced in Chapter 3, in a different way, without

any particular assumption, as discussed in more detail in Subsection 3.3.3.

• Small and Lightweight Rovers:

Meirion-Griffith (2012) extended the pressure-sinkage relation of Bekker to include

wheel diameter with application to lightweight rovers with small wheels. In that ap-

proach, rigid cylinders are used in the pressure-sinkage experiments, instead of flat

plates. As a result, the pressure-sinkage relation is dependent on the wheel diameter.

Soil behaviour can be modelled using critical state soil mechanics, in which the over-

all density of the soil mass dominates the behaviour of soil under shear deformation

(Wood, 1990). Basically, under a constant normal stress, for dense soil, the shear
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stress increases with the shear strain and then decreases, and may reach a constant

value; whereas, in soft soil, the shear stress does not show this behaviour. This as-

pect of soil behaviour has been discussed by Senatore and Iagnemma (2011) and its

importance has been explained especially for lightweight mobile robots. They also

proposed a relation on considering the density effect on the shear response. How-

ever, as mentioned by Senatore and Iagnemma (2011), this relation requires further

investigation. It should be noted that the framework proposed in Chapter 2 for the

implementation of the semi-empirical terramechanics models can accommodate this

relation for obtaining the shear stress distribution.

1.3.3 Review of Semi-empirical Models in Multi-body Environments

The wheel-soil interaction model AS2TM (AESCO, 2005) was used by Bauer et al.

(2005, 2008) with the SimMechanics toolbox of Matlab. The experimental validation of

AS2TM was reported by Bauer et al. (2005), while the application of the tool developed

in assisting the design and optimization of rover mobility systems is discussed in (Bauer

et al., 2005) and (Bauer et al., 2008).

AS2TM is a wheel-soil interaction model that is developed based on the work of

Schmid (1995). This model is available as a Matlab/Simulink S-Function, and uses the

basic concepts introduced by Bekker. The pressure-sinkage relation follows the Bekker

model, and the shear stress is developed using the Janosi-Hanamoto relation. Certain fea-

tures like tire flexibility and grousers effect are incorporated in this model according to

AESCO (2005).

Ishigami et al. (2007) extended the semi-empirical model of Wong and Reece (1967a)

and investigated the effect of lateral forces introduced during the steering manoeuvres of

rovers. This terramechanics model was used with a multibody model of an articulated

four-wheel rover to simulate the motion of the rover on soft soil. In this work, soil reac-

tions are added as external forces to the wheels, and the rover is assumed to move on a flat

12
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surface. This work was extended by Ding et al. (2010b) for operation on rough terrain, in

which the interaction area between the wheel and the rough terrain is simplified as a plane.

The terramechanics model was also extended by including the slip-sinkage model of Ding

et al. (2010a). However, the terrain reactions on the wheel are again included as external

forces and moments on each wheel. In addition, in order to speed up the simulation, the

terramechanics relations are simplified. In Chapter 2 of this thesis, an approach is devel-

oped to avoid direct application of terrain reactions as external forces and moments. The

disadvantages of using external forces/moments are discussed in Chapter 2.

In the work reported by Schäfer et al. (2010), the multibody simulation package Sim-

pack is used for the simulation of rovers. In their work, the soft soil surface is represented

by a height-field. In order to find soil reactions, the penetration depth of a wheel into each

contacting node of the terrain surface is determined. At each contacting node, the pressure

is obtained from the Bekker relation, Eq. (1.1), while the shear stress is determined from

a basic Mohr-Coulomb friction model. In their approach, the displaced soil is distributed

around the moving wheel. There is, however, no discussion about computational efficiency

of their approach. Furthermore, this approach is not modular, in the sense that using other

terramechanics relations, e.g., the Wong and Reece (1967a) model or the model of Ishigami

et al. (2007), is not trivial. Our approach, however, enables faster than real-time simulation

of rovers, with the ability to use a variety of semi-empirical terramechanics models.

Trease et al. (2011) used MSC-Adams for developing a multibody dynamics simulation

platform, which uses terramechanics relations regarding wheel-soil interaction, and is used

for the simulation of the Spirit and Opportunity rovers. They used the semi-empirical

model of Ishigami et al. (2007) with a different lateral force model and incorporated the

slip-sinkage model of Ding et al. (2010a).

A volumetric contact model for the interaction of wheel and soil was developed by

Petersen (2012). Using the Bekker pressure-sinkage relation and the geometry of the con-

tact, the model implicitly considers the energy dissipation during motion, coming from
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the rolling resistance, while being computationally efficient. This model is used with

the MapleSim simulation toolbox to develop simulation of the Juno rover. Even though

the Bekker pressure-sinkage relation is used in the development of this model, the semi-

empirical terramechanics models are not explicitly included in the model. Therefore, the

extension of the model to include the Wong and Reece (1967a) model or the slip-sinkage

model of Ding et al. (2010a), requires further research.

1.3.4 Other Pertinent Approaches

An alternative to semi-empirical models is to use continuum mechanics-based models.

In this family of models, the soil is represented with elastic, visco-elastic, elasto-plastic,

or elastic-visco plastic constitutive relations. In order to determine the stress field and soil

deformation, spatial discretization techniques such as finite element method (FEM) are

frequently used.

Early attempts in the use of finite element analysis (FEA) for studying wheel-soil in-

teraction have been reported by Perumpral et al. (1971), Yong and Fattah (1976), and Yong

et al. (1978). By the advances made in FEA and the computational capacity of computers,

this approach was pursued by others. Liu and Wong (1996) and Liu et al. (2000) modelled

elasto-plastic soil response by the use of critical state soil mechanics. Other examples in

using FEA for interaction analysis between wheel or tire and soil can be found in the work

reported by Schmid (1995), Fervers (2004), Chiroux et al. (2005), Hambleton and Drescher

(2008, 2009), and Xia (2011).

As an alternative approach, Karafiath (1971) and Karafiath and Nowatzki (1978) as-

sumed that the soil under a moving wheel is in the state of failure. Using this assumption,

they surmised that the failure in the soil mass can be represented by the simple Mohr-

Coulomb failure criterion, in which the strength of soil is defined by the internal friction

angle and the cohesion of soil. By neglecting the inertial effects, the slip lines of fail-

ure were determined, which then led to the stress field. This approach, however, requires
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the soil to be modelled as a rigid-plastic material (Yong and Fattah, 1976), and cannot be

extended for other plastic soil representations.

In addition, Wanjii et al. (1997) represented the soil under a rigid wheel with a visco-

elastic three-element Maxwell model to determine normal stress distribution in the contact

area. Using the assumptions of Bekker, normal stress is determined from pure vertical

deformation of soil under the wheel; normal stress is assumed independent of the shear

stress. The shear stress is then determined using the Janosi and Hanamoto (1961) relation.

This approach differs from the Bekker model in that the normal stress is determined by

means of a visco-elastic model, whereas in the Bekker model, the normal stress is indepen-

dent of velocity. This approach, however, does not capture plastic soil deformation and the

slip-sinkage phenomenon.

In the approach developed in Chapter 3 (Azimi et al., 2013b, 2011c), a high-fidelity

elasto-plastic representation is used for the soil mass, in which plastic soil deformation and

soil hardening/softening are captured. In addition, by assuming a plausible velocity-field

in the contact area, the stress field is determined without resorting to FEA.

1.4 Thesis Outline

Implementation of semi-empirical terramechanics models in a multibody dynamics

environment is the focus of Chapter 2. In this chapter, the scope of semi-empirical models

and their limitations when used with dynamic multibody systems are explained first. The

implementation details and the developed framework are then discussed. A key concept in

this part relates to the deregularization of the terramechanics models, which in turn leads

to wheel-soil interaction models in the form of linear complementarity problems (LCPs).

Soil compaction and hardening, which results in the multi-pass effect, are also included in

the model.

A novel approach based on elasto-plasticity theory is developed in Chapter 3 for ana-

lyzing the interaction between a rigid wheel and soft soil. The developed model is explained
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step-by-step through various algorithms included in Chapter 3. Simulation results obtained

from the new technique are compared against semi-empirical terramechanics models as

well as available experimental data. Additional illustrative examples are also provided

to show the behaviour of the new model in a dynamic operation with variable slippage.

Furthermore, discussion on the dynamic slip-sinkage effect, which is captured in the new

approach, is included.

In Chapter 4, the wheel-soil interaction models developed in the thesis are used for

3D simulation of the Juno II rover using Vortex. In addition, experimental results obtained

based on an extensive set of tests are compared with the results of the simulation. The Juno

II rover was developed by Neptec and Ontario Drive Gear (ODG) for the Canadian Space

Agency (Visscher and Reid, 2012).

Chapter 5 summarizes the contributions of the work and includes suggestions for future

research work.
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CHAPTER 2

Semi-empirical Models in a Multi-body

Dynamics Environment

2.1 Introduction

In this chapter, the implementation of semi-empirical models in a multibody dynamics

environment is discussed. It should be mentioned that the scope of this chapter is not to

develop new terramechanics models, but to develop and explain a framework for efficient

implementation of these models. Here, the most widely used semi-empirical terramechan-

ics models are explained and used. As explained in detail in this chapter, these models are

revised to make them compatible with multi-body dynamics environments.

The thesis focuses mainly on the wheel motion in the longitudinal direction. The forces

acting in the lateral direction, however, are also included and discussed later in this chapter.

The lateral direction is added so that the motion of rovers on uneven terrain and during

steering manoeuvres can also be simulated and analyzed.

As explained below, all the semi-empirical models for the longitudinal direction, which

are discussed in this thesis, are originated from the analogy made by Bekker in relating

the normal stress under the wheel to the average pressure under a flat plate penetrating
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soil. Therefore, these models are referred to as the family of Bekker models, or the semi-

empirical Bekker models, in this thesis.

In Section 2.2, CM-Labs’ Vortex1, the multibody software package employed, is briefly

described. A review of pertinent semi-empirical models for the longitudinal direction was

included in Section 1.3.1. The scope and limitations of these models when used with multi-

body systems is discussed in Section 2.3. The detailed implementation of semi-empirical

models is explained in Section 2.4. In this section, operations on flat terrain are first dis-

cussed, followed by an extension of the model to motion on rough deformable terrain with

multipass effect in Section 2.4.5.

In the semi-empirical Bekker models, the soil reactions can be obtained from Eqs. (1.7)–

(1.10), when wheel sinkage and slip ratio are known, which are readily obtained from wheel

position and velocity. These reactions can directly be added to the wheel as external forces

and moments. However, there are some issues with this approach. To explain these issues,

the assumptions made in the semi-empirical Bekker models are reviewed, followed by their

limitations when used in the context of multibody dynamic systems.

Part of the work discussed in this chapter was published in (Azimi et al., 2010, 2011a,

2012).

2.2 Brief Description of Vortex

Vortex is a simulation environment for complex multibody systems. It includes ad-

vanced graphical capabilities and is optimized for fast, real-time simulation. The basic

elements of a multibody model are rigid bodies and constraints, the former being referred

to as parts in Vortex. Several different types of constraints are available in Vortex, in order

to impose kinematic restrictions between parts. The kinematic constraints apply restric-

tions on the relative position or velocity of the bodies by applying internal forces/moments.

Vortex can limit the maximum possible internal forces/moments that can be applied by the

1http://www.vxsim.com/
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kinematic constraint. When the required internal force/moment of the constraint goes be-

yond the maximum limit or capacity of the kinematic constraint, the constraint will not be

able to maintain the kinematic restriction.

In Vortex, the parts can contain what is known as collision geometries. Collision ge-

ometries can be simple shapes, such as cubes, cylinders, and spheres, as well as more com-

plicated ones, such as height-fields and polyhedra. Contacts are detected between any pair

of bodies with defined collision geometries; if the latter overlap, the overlapping volume

is reduced to a contact patch and normal direction. This patch is then further reduced to

several contact points at the extremities of the patch. A unilateral constraint is then created

at each contact point.

Moreover, Vortex can model viscous or dry friction using what is called the box model,

where the friction bounds along the axes that span the contact plane are explicitly specified.

Alternatively, the maximum force may be defined as a function of the normal force. Vortex

uses a linear complementarity problem (LCP) solver for the forward dynamics problem.

2.3 Scope and Limitations of Semi-empirical Bekker Models in Con-

nection with Multibody Systems

The semi-empirical Bekker models, reviewed in Section 1.3.1, were developed under

certain assumptions, where a cylindrical wheel is assumed to move on a flat and horizontal

soil surface under steady-state conditions. In this context, given the vertical load on the

wheel centre and the slip ratio, these models make it possible to determine the wheel sink-

age, drawbar pull, and driving torque. Some of the shortcomings and limitations of these

models, resulting from the above assumptions, are listed below.

L1: If the semi-empirical Bekker models are directly used for dynamics simulation,

the vertical component of the wheel-centre velocity vz does not contribute to the

calculated soil reaction. Therefore, the soil reaction force in the z-direction (Fz)
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is only a function of sinkage z and slip ratio, which, in turn, means that the en-

ergy loss due to dynamic motion in the z-direction cannot be accounted for with

these semi-empirical models. Simulation of a wheel/terrain interaction directly

with the Bekker or WR model results in an artificial oscillatory response in the

vertical direction. A remedy to this problem is to add a nonlinear damping term,

as discussed in this chapter. It should be mentioned that the model proposed in

Chapter 3, based on elasto-plasticity theory, addresses this limitation by captur-

ing the energy loss due to the plastic deformation of the terrain.

L2: The other issue comes from the use of the slip ratio. Consider the simulation of

a single wheel driven by a torque. When the wheel is stopped on a horizontal

flat terrain, and no torque is applied, the forces in the forward wheel direction,

which are Ft and Rc according to Fig. 1.1, must balance. When the wheel is

stopped, the slip ratio is undefined, according to Eq. (1.6). Depending on soil

properties and wheel sinkage, there exists a slip ratio at which Ft and Rc balance,

if the wheel sinkage is not too high. However, finding this slip ratio requires

an iterative approach, if any of the semi-empirical models mentioned earlier are

used. Here, one can use another model for a stopped wheel on flat, horizontal

terrain that develops zero drawbar pull, for example, a model with symmetric

stress distribution, as shown in Fig. 2.1. However, when the wheel or rover is

on a slightly inclined surface, this model cannot work, as the normal and shear

stress distributions will not be symmetric. In addition, directly using these semi-

empirical models requires finding a slip ratio (different from the slip ratio in the

case of a horizontal surface) that results in the above-mentioned force balance.

In the case of a rover that is stopped on irregular terrain, the above-mentioned

approaches are not feasible for finding the slip ratios for all wheels that would

result in the force balance. Furthermore, when the wheel moves very slowly,

abrupt changes in the slip ratio can happen that could cause spurious oscillations
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and even instability if the time-step of the simulation is not small enough. It is

noted that when the wheel centre velocity and angular velocity are small, the slip

ratio is close to an undefined state.

A framework is developed in this chapter for efficient implementation of semi-

empirical models, which handles these issues by introducing several constraints

and applying soil reactions via these constraints, instead of considering them as

directly applied forces/moments. This framework accommodates different semi-

empirical models and handles any wheel motion.

θ1 θ1

FIGURE 2.1. Schematic of a stationary wheel on a flat horizontal surface and the

normal stress distribution developed on the soil (shear stress is not shown). Stress

distribution is assumed symmetric, which results in zero drawbar pull. This form

of stress distribution occurs when the wheel has only moved downwards with no

rotation.

Considering these limitations, semi-empirical models have to be modified before being

used in multibody dynamics simulation environments, as discussed in the remainder of this

chapter. In addition, a framework is developed to deregularize the interaction model by

means of kinematic constraints.
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2.4 Implementation of Semi-empirical Models

In order to employ semi-empirical relations in a multibody dynamics environment like

Vortex, it is necessary to determine soil reactions (forces and moments) based on the wheel

pose (position and orientation) and twist (velocity and angular velocity) in addition to the

dimensions of the wheel and soil parameters.

The overall procedure involved in the method is first discussed in Section 2.4.1, in

which, by referring to the limitations mentioned in Section 2.3, the motivation of the ap-

proach developed in this chapter is explained. Then, the planar motion is discussed, fol-

lowed by non-planar motion. Extensions for operation on rough deformable soil is then

explained.

2.4.1 Motivation and Overall Procedure

As discussed in Section 1.3.1, using semi-empirical Bekker models, soil reactions can

be readily determined from Eqs. (1.7)–(1.10), when wheel sinkage and slip ratio are known.

A typical approach in the literature, as mentioned in Section 1.3.3, is to apply these reac-

tions as external forces and moments to the wheel.

Now we recall the limitation L2 mentioned in Section 2.3 in the use of the slip ratio. As

discussed therein, the problem is that when the rover is stopped, or it is close to stopping,

the slip ratio is undefined according to Eq. (1.6). However, in order to determine soil

reactions from Eqs. (1.7)–(1.10), the slip ratio has to be known a priori. Assuming an

arbitrary slip ratio is also not possible, as it will lead to reaction forces/moments that will

not result in force balance. Therefore, the reaction forces cannot be determined from the

same semi-empirical formulation.

Furthermore, when the rover is moving very slowly, the slip ratio can vary substan-

tially from one simulation step to the next one. This means that small changes in the rover
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velocity can lead to large changes in the reaction forces, i.e., the system involves steep char-

acteristics for the forces that involve the slip ratio. This, in turn, means that the differential

equations resulting for such a system will be stiff.

As an alternative in dealing with systems with steep force laws, Pfeiffer (2007), re-

placed those force laws, in a hydraulic system, with their equivalent set-valued force repre-

sentation. This led to a dynamics representation for the hydraulic system where the explicit,

force representations based on constitutive equations are replaced by unilateral and bilat-

eral constraints on the kinematic variables complementary to the forces. This approach

can be referred to as deregularization. In the approach proposed in this thesis, the dy-

namic system is deregularized by introducing kinematic constraints with set-valued force

laws, and avoiding direct use of terramechanics relations that would produce external ap-

plied forces/moments. As will be shown in Section 2.4.4, the system with these constraints

will lead to a linear complementarity problem (LCP), which can be solved, in turn, in an

efficient way using LCP solvers.

When modelling the terrain reactions to the wheel via external forces and moments,

numerical problems can happen with large time-steps. Small time-steps must, therefore, be

used, which can lead to unacceptably large simulation times. With non-smooth modelling,

which results from deregularization, relatively large time steps may be used with great

accuracy and stability. This can lead to high simulation efficiency.

Furthermore, as the terramechanics forces/moments are not directly applied as exter-

nal forces/moments in the proposed approach, we can assume a particular slip ratio for the

cases when the wheel is stopped. Therefore, the same terramechanics relations can be used

for both a moving and a non-moving wheel, which makes the proposed framework appro-

priate for the implementation of various semi-empirical terramechanics models.

2.4.2 Planar Wheel Motion

Based on the form of the stress distribution under the wheel, the semi-empirical models
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discussed in this thesis are divided into two. In the first model, referred to as the Bekker

model, the normal stress distribution is obtained from Bekker’s assumption, in which the

location of the maximum normal stress is at the bottom of the wheel (Bekker, 1969). In the

second model, referred to as the WRI model, for Wong, Reece, and Ishigami, the location

of the maximum normal stress is shifted forward according to Wong and Reece (1967a),

and a nonzero exit angle can be considered based on the model of Ishigami et al. (2007),

as shown in Fig. 2.2. The following relation is used to determine the exit angle in the WRI

model:

θ2 = acos

(
1− λ z

R

)
(2.1)

θ1θ1

θ2

z z

λ z

ωω
vxvx

(a) (b)

FIGURE 2.2. Normal stress distribution under a rigid wheel moving on an uncom-

pacted soil as proposed by (a) the Bekker model, and (b) the WRI model, in which

λ = 0 is equivalent to the Wong and Reece (1967a) model.

In addition, the shear stress distribution is obtained from Eqs. (1.4) and (1.5) in both

models. Slight modifications to these relations, however, are required to obtain the shear

stress in a multibody dynamics environment, as explained in Section 2.4.2.2.
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2.4.2.1 Normal Direction

The force in the normal direction is introduced by means of a viscoelastic-like re-

sponse, wherein we change stiffness and damping coefficients every time-step of the simu-

lation, based on terramechanics relations. In this regard, it is noted that if the wheel sinkage

is positive, the reaction force Fz occurs, while for negative sinkages, i.e., no contact between

wheel and terrain, the reaction force vanishes. Therefore, the force in the normal direction

can be modelled with a one-point contact with unilateral properties, in the planar case. In

this case, by intersecting a circle, which represents the cylindrical wheel, and a line, which

represents a plane, the sinkage value and the contact point A, as shown in Fig. 2.3, can be

readily obtained2.

ω

vx

untouched
soil surface

A

z
x

z

Rc

Fz

Ft

Trr

FIGURE 2.3. Schematic of wheel and soil contact in the planar case with the equiv-

alent soil reactions. A is the contact point and z is the sinkage, which are obtained

by intersecting a line representing the untouched soil surface and the circle, which

represents the wheel.

The normal reaction force predicted by any of the semi-empirical models mentioned

above, Eq. (1.10), is a function of wheel sinkage and slip ratio. As the semi-empirical

2It should be mentioned that Vortex provides the possibility of changing the stiffness and damping coef-

ficients of any contact point at every simulation step.
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formulae were not developed for dynamic conditions, the energy dissipation during the

motion in the vertical direction is not captured. Therefore, if this relation is directly used in

a multibody dynamics environment, undamped oscillations occur. To avoid this unrealistic

behaviour, a damping term is added, as discussed below. It is noted that under steady-state

conditions, i.e., zero relative vertical velocity between wheel and terrain, the damping term

vanishes and the terrain reactions resulting from this implementation are equivalent to the

ones obtained from the semi-empirical models.

The instantaneous stiffness coefficient kz is defined based on the semi-empirical models

as

kz =
Rb

z

∫ θ1

θ2

[τ(θ)sinθ +σn(θ)cosθ ]dθ (2.2)

where z is the wheel sinkage. It should be noted that kz is a nonlinear function of sinkage

and slip ratio. At every time step, kz changes according to the current values of sinkage and

slip ratio, so the resulting force applied to the wheel will be equivalent to the reaction force

given by the original semi-empirical models, i.e., Eq. (1.10). By including the damping

term, the normal reaction force becomes

Fz = Rb

∫ θ1

θ2

[τ(θ)sinθ +σn(θ)cosθ ]dθ + czż (2.3)

where cz is a damping coefficient and ż represents the velocity component of the wheel nor-

mal to the contact plane. Choosing an appropriate damping coefficient is not straightfor-

ward. Here, the damping coefficient is defined to be proportional to the stiffness coefficient

as

cz = ηckz (2.4)

where ηc is the proportionality coefficient and has units of frequency. It was found em-

pirically that if ηc lies between 0.1 and 0.4 s−1, this added damping can lead to realistic
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responses with zero or negligible oscillation. In the simulation runs included in this thesis,

ηc = 0.1 s−1 is used. It should be noted that the criterion in selecting the proper damping

coefficient lies in obtaining a simulated response with zero or negligible oscillation in the

normal direction.

A viscoelastic system is also used by Sohl and Jain (2005) in the ROAMS planetary

rover simulation package, regarding the wheel-terrain contact modelling in the direction

normal to the terrain. They used a single-DOF Hunt-Crossley (Hunt and Crossley, 1975)

model, in order to determine normal terrain reaction force on the wheels. However, as the

instantaneous stiffness coefficient obtained from the semi-empirical model, i.e. Eq. (2.2),

is different from the one obtained from the above-mentioned Hunt-Crossley model, wheel

sinkage and the computed normal force differ from those expected by the equivalent semi-

empirical model. As mentioned by Sohl and Jain (2005), the normal force obtained from

the viscoelastic model can then be used to determine the corrected sinkage and the other re-

actions of the terrain, using the semi-empirical model. This means that the semi-empirical

model is not used in their approach in determining the normal force on the wheel and the

simulated wheel penetration to the ground. In addition, no discussion regarding the rolling

resistance was presented. However, in the approach proposed in this thesis, the viscoelastic

model is determined based on the instantaneous stiffness of the terrain, which results in the

sinkage and the normal force calculation matching the semi-empirical model employed.

Moreover, as discussed later, other soil reactions determined from a semi-empirical model,

including rolling resistance, are included in our formulation.

2.4.2.2 Slip Ratio

In this thesis, it is assumed henceforth that the same model is used for driving, braking,

and towed conditions, as also assumed by Ishigami et al. (2007). In this regard, following

the approach explained in the foregoing reference, the model proposed by Wong and Reece
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(1967a) is also used for a braking or towed wheel upon redefining the slip ratio and the

computation of shear stress, as discussed below.

REMARK 3. For a towed rigid wheel, a model was proposed by Wong and Reece

(1967b) slightly different from their model for a driven wheel (Wong and Reece, 1967a).

However, the two models show a discontinuity when switching between them, as is required

when modelling general, dynamic rover operations including non-steady states. Therefore,

the model for a driven wheel (Wong and Reece, 1967a) was used by Ishigami et al. (2007)

for the entire range of operation. The same approach as in (Ishigami et al., 2007) is used

in this thesis as well.

The slip ratio defined in Eq. (1.6) is only valid for a driving wheel (i.e., |Rω| ≥ |vx|).
It is redefined below to support the driving, braking, and towed cases:

is :=

⎧⎪⎨
⎪⎩

1− vx

Rω
if |vx| ≤ |Rω| �= 0 (driving)

Rω

vx
−1 if |Rω|< |vx| �= 0 (braking or towed)

(2.5)

For a wheel moving very slowly, a small variation in vx or ω can cause a large change

in the slip ratio. Therefore, the value of slip ratio determined from Eq. (2.5) is modified as

shown below. To this end, an intermediate variable is defined as

vtemp =

⎧⎨
⎩ Rω , if |vx| ≤ |Rω|

vx , otherwise
(2.6)

The slip ratio is then redefined as

is :=

⎧⎪⎪⎨
⎪⎪⎩

0 , if vtemp = 0

Rω − vx

vtemp

[
1− exp

(
−v2

temp

v2
min

)]
, otherwise

(2.7)

28



2.4 IMPLEMENTATION OF SEMI-EMPIRICAL MODELS

where vmin is an indication of an insignificant speed for the rover. For example, when

analyzing or simulating a rover with a nominal speed of 0.1 m/s, vmin of around 0.0001 m/s

could be employed.

This modified definition for slip ratio leads to the same results as in Eq. (2.5) when the

wheel is not moving very slowly. In addition, in the case of a stationary wheel, a slip ratio

of zero is assumed3. Furthermore, when the wheel moves very slowly, the slip ratio remains

close to zero, according to Eq. (2.7). This avoids fluctuations in the slip ratio for a slow-

moving wheel. It should be mentioned that the assumed zero slip ratio for a stationary

wheel, is a natural choice, as for a slowly-moving wheel the slip ratio determined from

Eq. (2.5) can fluctuate around zero, which, in turn, means that the filtered value for slip

ratio under this condition should be close to zero. The assumption of using zero slip ratio

for a stationary wheel provides a smooth transition in the slip ratio when the wheel starts

or stops moving, thus leading to numerical stability.

In addition, the shear stress distribution is obtained from the relation below, instead of

Eq. (1.4), to properly account for the effect of a negative slip ratio:

τ(θ) = (c+σ(θ) tanφ)

[
1− exp

(
−| jd(θ)|

Kd

)]
sgn( jd), (2.8)

where jd is expressed in Eq. (1.5) and sgn(·) is the signum function, defined as

sgn(x) =

⎧⎨
⎩ 1 if x ≥ 0

−1 if x < 0
(2.9)

It is noted that Kd is a positive scalar; therefore, directly using a negative jd in Eq. (2.8)

without taking its absolute value, makes no physical sense. According to Janosi and

Hanamoto (1961), the shear stress τ(θ) changes from zero to its maximum of c+σ(θ) tanφ

by the use of an exponentially decaying function of a positive jd . When jd is negative,

3As mentioned in Section 2.4.1, our proposed approach makes it possible to use a particular slip ratio for

a stationary wheel.
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τ(θ) also becomes negative, while the form of the exponentially decaying function does

not change. An illustration of the modified τ(θ) of Eq. (2.8) is shown in Fig. 2.4.
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FIGURE 2.4. Change of shear stress versus jd as suggested in Eq. (2.8). τmax,

which is equivalent to c+σ(θ) tan φ , is set to 10 kPa in this figure and Kd is set to

0.025 m.

2.4.2.3 Traction and Resistance

As seen in Fig. 1.1, there are four reactions determined from Eqs. (1.7)–(1.10). Fz is

considered by setting compliance and damping coefficients at the contact point in a one-

point contact model, as mentioned above. Rc in Eq. (1.7) is related to σn(θ), while Ft

and Tr are functions of the shear stress distribution. Instead of directly applying these

forces/moments to the wheel, as mentioned in Section 2.4.1, appropriate constraints are

formulated, which are consistent with the point-contact model employed. The traction

force Ft is first discussed, followed by Tr and Rc.

Let us recall the ideal case of contact between a wheel and a plane, in the context of

rigid-body dynamics. In this case, a standard modelling approach is to consider a unilateral

constraint to represent the contact in the normal direction. In addition, in the presence of

dry friction, the Coulomb friction model is often used for the tangential contact plane, with

the velocity of the contact point as a key variable.
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The traction force and resisting moment, determined from terramechanics, are included

using the point contact model and the relative velocity of the contacting bodies at the con-

tact points, as explained below.

The traction force Ft is obtained from the shear stress distribution; it is included in the

model using the position and velocity of the contact point, as displayed in Fig. 2.3. Using

the longitudinal velocity component of the contact point A of the wheel, referred to as vAx,

the revised set-valued model for the traction force and its complementary variable, vAx,

will be given. The revised model is explained in two steps. The first revised model for the

traction force, referred to as Ftd , can be given as

Ftd(vAx) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−|Ft | if vAx > 0

[−|Ft |, |Ft|] if vAx = 0

|Ft| if vAx < 0

(2.10)

In other words, when vAx �= 0, Ftd acts in the opposite direction of vAx, and its value is

clearly defined, while Ftd can take any value between |Ft| and −|Ft | if vAx is zero.

A key concept in this formulation is that Ftd is expressed as a set-valued force law in

terms of its complementary kinematic variable vAx. Therefore, Ftd , expressed in Eq. (2.10),

can be interpreted by introducing a kinematic constraint on the contact velocity vAx, and

assuming that the maximum constraining force that can be provided by this constraint is

limited. For Eq. (2.10), the kinematic constraint is vAx = 0, with the maximum restraining

force limit of |Ft |.
Let us now assume that the WR model is used and the wheel moves to the right, which

is the assumed positive direction of motion. When the slip ratio is positive, which means

vAx < 0, the shear displacement jd(θ) will be non-negative according to Eq. (1.5). This,

in turn, means that the shear stress τ(θ) will be non-negative in the contact area as well,

under Eq. (1.4). Therefore, the traction force Ft will be positive, according to Eq. (1.8).

This is consistent with Eq. (2.10).
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However, when vAx > 0, which means a negative slip ratio, the shear displacement in

the contact area jd(θ) can become positive, negative, or zero depending on the value of slip

ratio and wheel sinkage, according to Eq. (1.5). Figure 2.5 illustrates this behaviour for a

wheel moving to the right with a relatively high sinkage.
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FIGURE 2.5. Shear displacement in the contact area computed from Eq. (1.5) for a

wheel with radius and width of 0.15 m and a sinkage of 0.04 m, with soil properties

reported in Table 2.1, and assuming zero exit angle. The results are displayed for

slip ratios of −0.05, −0.15, −0.2, and −0.3.

Therefore, the shear stress can show a similar behaviour using Eq. (1.4). The shear

stress in this case can vary as shown in Fig. 2.6, for example. This means that the traction

force Ft , when the wheel has a negative slip ratio, can be positive, negative, or zero. This

is not consistent with Eq. (2.10). For example, as mentioned in the caption of Fig. 2.6,

the traction force Ft determined from Eq. (1.8) is positive for slip ratios −0.05 and −0.15,

while Ftd , determined based on Eq. (2.10), is negative, because the contact velocity vAx is

positive (as is < 0). For slip ratios of −0.2 and −0.3, however, Ftd , determined based on

Eq. (2.10), is negative, as is the value of Ft .

The undesired change of the direction of Ftd occurs due to using the reference contact

velocity of zero in the formulation. This behaviour, however, can be corrected by revising
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FIGURE 2.6. Shear stress distribution for a wheel with radius and width of 0.15 m

and a sinkage of 0.04 m, with soil properties reported in Table 2.1, using the Wong

and Reece (1967a) model with zero exit angle. The results are displayed for the

slip ratios of −0.05, −0.15, −0.2, and −0.3, while the computed Ft values are 40.6

N, 5.1 N, −12.5 N, and −41.9 N, respectively.

TABLE 2.1. Parameters of the semi-empirical model, taken from Ishigami et al. (2007)

φ (deg) 37.2

c (Pa) 800

kφ (N/m(n+2)) 8.14 × 105

kc (N/m(n+1)) 1.37 × 103

n (-) 1.0

Kd (m) 0.025

c1 (-) 0.4

c2 (-) 0.15

Ftd(vAx) as:

Ftd(vAx) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−|Ft | if vAx > vre f

[−|Ft |, |Ft|] if vAx = vre f

|Ft| if vAx < vre f

(2.11)

where vre f is non-zero when the slip ratio is negative and the Ft determined from Eq. (1.8)

becomes positive; vre f can be defined as
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vre f =

⎧⎨
⎩ (1+ c3)vAx , if is < 0 & Ft > 0

0 , otherwise
(2.12)

where c3 is any small non-dimensional positive scalar. With the revised formulation, the

kinematic constraint equation is vAx = vre f , with the maximum restraining force of |Ft |. It

should be mentioned that in every time-step of the simulation, the value of Ft is determined

from terramechanics relations, e.g. Eq. (1.8), by means of the sinkage and slip ratio deter-

mined in the last time-step. In addition, vre f is determined using the last time-step value

of vAx. Therefore, before performing a new simulation step, the values of Ft and vre f are

determined from the results of the last time-step. With these values, the appropriate con-

straint that represents Eq. (2.11) is set up. As will be shown in Section 2.4.4, the dynamic

equations of the multibody system with this constraint can lead to a linear complementarity

problem.

By inspection, one can realize that Eqs. (2.11) and (2.12) are consistent with the ex-

pected behaviour from terramechanics relations. Different cases of planar wheel motion

are discussed below. It is noted that Ft is the value directly determined from the terrame-

chanics relations and it does not take into account the direction of motion of the wheel

centre. Positive Ft helps the wheel to move, while negative Ft opposes the wheel motion.

Case 1: Wheel moves to the right (vx > 0) with is > 0: In this case, positive is results in

Ft > 0, and both conditions vx > 0 and is > 0 lead to vAx < 0; therefore, from

Eq. (2.12) vre f = 0 and in turn vAx < vre f . From Eq. (2.11), Ftd becomes |Ft|, as

expected.

Case 2: vx > 0 with is < 0, which implies that vAx > 0. In this case, if Ft > 0, vre f becomes

(1+ c3)vAx from Eq. (2.12), and hence, vAx < vre f . Therefore, Ftd becomes |Ft|,
as expected.

In addition, if Ft < 0, vre f becomes zero from Eq. (2.12), then vAx > vre f , which

results in Ftd =−|Ft |. This is also the expected result.
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Case 3: vx < 0 with is > 0, which implies that vAx > 0. In this case, Ft > 0 and, as

explained above, Ft should help the wheel to move in its current direction of mo-

tion, which is to the left. Therefore, it is expected to see a negative Ftd .

From Eq. (2.12), vre f = 0. As vAx > vre f , Ftd becomes −|Ft |, which is the ex-

pected result, too.

Case 4: vx < 0 with is < 0, which implies that vAx < 0. In this case, if Ft > 0, vre f becomes

(1+ c3)vAx from Eq. (2.12), and thus vAx > vre f . Therefore, Ftd = −|Ft | is the

outcome of Eq. (2.11), which again is the expected result. In addition, if Ft < 0,

vre f becomes zero from Eq. (2.12), and therefore, vAx < vre f , which results in

Ftd = |Ft|. This is also the expected result.

As explained further in Section 2.4.4, Eq. (2.11) can lead to the formulation of a lin-

ear complementarity problem (LCP). This formulation, enables fast and stable simulation

of rovers moving on soil, while wheel-soil contact is represented with semi-empirical ter-

ramechanics models. It should be noted that multibody systems with unilateral contact

can generally be formulated as LCP, as mentioned by Anitescu and Potra (1997), who

formulated a multibody system with unilateral contact and dry friction as a LCP. Vortex,

the multibody dynamics simulation environment used in our implementation, is generally

based on such formulations and it employs efficient LCP solvers.

The soil reactions displayed in Figs. 1.1 and 2.3 must be equivalent. The soil reactions

shown in Fig. 1.1 are Ft , Rc, Fz, and Tr, with all the reaction forces acting through the wheel

centre. The equivalent system of soil reactions shown in Fig. 2.3 is composed of Ft , Rc, Fz,

and Trr, where Trr is referred to as the residual resistance torque. It should be noted that in

this equivalent system, Ft acts at the contact point A, not at the wheel centre. For the two

systems to be equivalent, Trr must be related to Tr by

Trr = RFt −Tr (2.13)
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Similar to the approach explained above for the traction force, the revised formula for

the residual resistance torque can be given as

Trrd(vAx) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−|Trr| if ω > ωre f

[−|Trr|, |Trr|] if ω = ωre f

|Trr| if ω < ωre f

(2.14)

where ωre f is defined by

ωre f =

⎧⎪⎨
⎪⎩

ω + c3

(
ω − vx

R

)
if is < 0 & Trr < 0

vx

R
otherwise

(2.15)

where R is the wheel radius and c3 is the same as that used in Eq. (2.12). Again, by

inspection, the validity of the proposed relations in Eqs. (2.14) and (2.15) can be verified

similar to the arguments detailed above for the traction force. It should be noted that the

assumed positive directions for Trr, ω , and vx are shown in Fig. 2.3. With this definition, a

negative Trr acts in the opposite direction of the angular velocity ω , while a positive Trr in

the direction of ω . Different cases of motion are briefly discussed below:

Case 1: Wheel moves to the right (vx > 0) with is > 0: In this case, positive is results in

Trr < 0, and both conditions vx > 0 and is > 0 lead to ω > vx/R; therefore, from

Eq. (2.15) ωre f = vx/R and in turn ω > ωre f . From Eq. (2.14), Trrd becomes

−|Trr|, as expected.

Case 2: vx > 0 with is < 0, which implies that ω < vx/R. In this case, if Trr < 0, ωre f

becomes ω +c3(ω −vx/R) from Eq. (2.15), and thus, ω > ωre f . Therefore, Trrd

becomes −|Trr|, as expected.

In addition, if Trr > 0, ωre f becomes equal to vx/R from Eq. (2.15), and therefore,

ω < ωre f , which results in Trrd = |Trr|. This is also the expected result.

Case 3: vx < 0 with is > 0, which implies that ω < 0 and |ω| > |vx|/R, which means

ω < vx/R. In this case, Trr < 0 and, as explained above, Trr should resist the
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angular motion of the wheel in its current direction of motion. Therefore, it is

expected to see a positive Trrd , as ω < 0.

From Eq. (2.15), ωre f = vx/R. As ω < ωre f , Trrd becomes |Trr|, which is the

expected result, too, as explained above.

Case 4: vx < 0 with is < 0, which implies that |ω| < |vx|/R and therefore, ω > (vx/R).

In this case, if Trr < 0, ωre f becomes ω + c3(ω − vx/R) from Eq. (2.15), and

thus, ω < ωre f . Therefore, Trrd = |Trr| is the outcome of Eq. (2.14), which again

is the expected result. In addition, if Trr > 0, ωre f becomes equal to vx/R from

Eq. (2.15), and therefore, ω > ωre f , which results in Trrd = −|Trr|. This is also

the expected result.

Similar to Eq. (2.11), Eq. (2.14) can lead to an LCP formulation, as will be explained

in Section 2.4.4.

In addition, based on its physical nature, the rolling resistance Rc, also referred to as

compaction resistance, is related to vx, the velocity of the centre of the wheel; it always

opposes vx and can vanish when vx does. Based on this, the revised formulation for com-

paction resistance Rcd can be expressed as:

Rcd(vx) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−|Rc| if vx > 0

[−|Rc|, |Rc|] if vx = 0

|Rc| if vx < 0

(2.16)

which has a form similar to Eq. (2.11) and can lead to an LCP formulation, as will be

explained in Section 2.4.4.

2.4.3 Non-planar Motion on Flat Terrain

As mentioned above, in the development of semi-empirical models, like the Bekker

and Wong-Reece models, planar motion was considered. The non-planar motion discussed

in this section has two features: (i) lateral forces, developed during steering manoeuvres,
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for example, and (ii) penetration of a cylindrical wheel such that the cylinder axis is not

parallel to the terrain.

2.4.3.1 Lateral Forces

The lateral force Fl is composed of two parts; one is related to the shear stress devel-

oped under the wheel, Fls, while the other is related to bulldozing resistance that acts on

the side of the wheel, Flb:

Fl = Fls +Flb (2.17)

Similar to the approach of Schwanghart (1968), and Yoshida and Ishigami (2004), Fls can

be calculated by integrating the shear stress under the wheel, as

Fls = Rb

∫ θ1

θ2

[c+σ(θ) tan(φ)][1− exp(− jy(θ)/Ky)]dθ , (2.18)

where Ky is the shear deformation modulus in the lateral direction; jy is the shear deforma-

tion in the lateral direction and computed by Yoshida and Ishigami (2004) as

jy(θ) = R(1− is)(θ1 −θ) tanβs, (2.19)

where βs is the side slip angle, which is the angle between the wheel centre velocity vector

and the wheel forward direction:

βs = atan

(
vy

vx

)
(2.20)

with vx and vy denoting the forward and lateral components of the wheel centre velocity,

respectively.

REMARK 4. Equation (2.19) needs special treatment: when βs → 90◦, jy → ∞, which

in turn means that the shear stress becomes equal to the shear strength, as the exponentially
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decaying term in Eq. (2.18) becomes zero. In the implementation in Vortex, βs is limited to a

slightly smaller value than 90◦ to avoid singularities, while its physical effect is preserved.

In addition, Flb is computed by means of the Fundamental Earthmoving Equation

(FEE) of Reece (1964) and by performing integration over the contact area in the side-

wall of the wheel. In this approach, it is assumed that the sidewall of the wheel behaves

similar to the cutting blade of a bulldozer.

According to FEE, the bulldozing force is composed of four terms, which represent the

effects of soil density and cohesion, surcharge on the soil surface, and adhesion between

blade and soil. Based on the shape of the failure surface, four N-factors have to be deter-

mined as well (Reece, 1964). The shape of the failure surface depends on the soil internal

shear angle and the friction between blade and soil, as well as the blade shape and the soil

mass involved. McKyes (1985) presented the method of trial wedges, in which the failure

surface is approximated by a plane, which becomes a straight line in a 2D model, as shown

in Fig. 2.7. Therefore, the above-mentioned N-factors can be readily determined, using the

static equilibrium of the failing wedge.

horizon

blade velocity

gravity

ρw

βw

δw

φ

αw cdw/sinβw

cadw/sinρw

Fw

Rw

Ww

Qw

dw

FIGURE 2.7. Forces acting on the soil wedge.

According to McKyes (1985), the bulldozing force per unit tool width can be expressed

as
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F = γd2
wNγ + cdwNc +QwNQ + cadwNa (2.21)

From the static equilibrium of all forces applied on the wedge, the N-factors are determined

as

Nγ =
(cotρw + cotβw)sin(αw +φ +βw)

2sin(δw +ρw +φ +βw)
, NQ =

sin(αw +φ +βw)

sin(δw +ρw +φ +βw)
(2.22a)

Nc =
cosφ

sinβw sin(δw +ρw +φ +βw)
, Na =

−cos(ρw +φ +βw)

sinρw sin(δw +ρw +φ +βw)
(2.22b)

with soil slope inclination angle αw, blade/soil angle ρw, blade penetration depth dw, soil

failure angle βw, soil internal friction angle φ , soil cohesion c, specific weight of the soil

γ , blade/soil friction angle δw, blade/soil adhesion ca and surcharge force per tool width

Qw. In this method, βw is determined such that it causes the least resistance from soil.

According to McKyes (1985), the proper value for βw minimizes Nγ ; however, it can also

be approximated as the passive Rankine state angle (Wong, 2008):

βw = π/4−φ/2 (2.23)

It is also noted that usually the angle between the wheel side and soil surface, repre-

sented by the blade/soil angle ρw, is around 90◦. Using Eq. (2.21), the lateral force from

the bulldozing resistance on the sidewall of a cylindrical wheel is obtained by integrating

over the submerged portion of the wheel sidewall, as shown in Fig. 2.8, as

Flb = R

∫ θ1

−θ1

(γζ (θ)2Nγ + cζ (θ)Nc +QwNQ + caζ (θ)Na)cosθ sinβs dθ , (2.24)

where the surcharge force per tool width Qw can be obtained by assuming a particular shape

for soil accumulation on top of the original soil surface. In addition, the slip angle βs is
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included in the formulation, as, in reality, with zero slip angle, i.e., no lateral velocity, there

will be no bulldozing on the sidewall.

soil surface

θ1

θ1
θ

ζ

vx

vy

FIGURE 2.8. Schematic illustration of determination of bulldozing force via inte-

gration over the submerged portion of the wheel sidewall

It should be mentioned that the range of applicability of this formula is limited to tool-

soil angles below 90◦ and slightly above 90◦. In fact, the sidewall of a wheel and terrain

usually makes a 90◦ angle, which makes the method of trial wedges a good candidate

for this application. In addition, the N-factors, Eqs. (2.22a, 2.22b), become singular when

sin(δw+ρw+φ +βw) becomes zero, which is the case when the summation of these angles

becomes 180◦.4 In this situation, the forces Fw and Rw become collinear and, therefore, no

static equilibrium for the forces acting on the wedge can be obtained. Furthermore, no

static equilibrium can be achieved when the summation of these angles becomes larger

than 180◦. However, when ρw is around 90◦ or smaller, the solution is valid.

It should also be mentioned that, in this thesis, the friction between the sidewall of the

wheel and soil is neglected, i.e., δw = 0 is used here.

According to recent findings by Ding et al. (2011b), in cases of a large ρw, a single

wedge is not enough. In this case, the approximation of the failure pattern using two wedges

4The other cases, summation of angles equal zero or 360◦, do not have physical meanings.
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leads to more acceptable results. However, as mentioned above, using a single wedge is

appropriate for modelling bulldozing forces on the sidewall of a cylindrical wheel, with a

negligible sidewall/soil friction.

The idea of decomposing the lateral force into a shear part and a bulldozing resistance

part is similar to the approach proposed by Ishigami et al. (2007). However, the part related

to bulldozing resistance is different. In the above reference, the bulldozing resistance is not

related to the velocity direction of the wheel, which results in high bulldozing force at small

side-slip angles—an outcome which is not physically correct. In addition, the method of

trial wedges of McKyes (1985) is used here, as opposed to the Hegedus (1960) bulldozing

force model. A benefit of using the former approach over Hegedus is that the slope of the

terrain can also be included in the formulation.

Similar to the approach used for the traction force in Section 2.4.2.3, the lateral com-

ponent of the velocity of contact point A of the wheel in Fig. 2.3, referred to as vAy, is used

to set up the revised model for the lateral force Fld as a set-valued force law:

Fld(vAy) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−|Fl| if vAy > 0

[−|Fl|, |Fl|] if vAy = 0

|Fl| if vAy < 0

(2.25)

Similar to Eq. (2.11) that was proposed for the traction force, Eq. (2.25) leads to the

formulation of a linear complementarity problem, as explained in Section 2.4.4.

2.4.3.2 Wheel Axis Not Parallel to the Terrain

In Vortex, when two or more bodies are in contact, several unilateral contact constraints

are placed in the contact region, depending on the shape of the colliding objects. In the

case of contact between a plane and the rolling side of a cylindrical wheel, one or two
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contact points, as shown in Fig. 2.9, are generated. For each contact point, the sinkage is

determined as the minimum distance from that point to the plane, as shown in Fig. 2.9.

contact points

soil surface

sinkage

contact 
patch

wheel axis

FIGURE 2.9. Illustration of contact points between a rolling cylindrical wheel and

a planar terrain.

The stiffness and damping coefficients of each contact point are then set according

to Eqs. (2.2)–(2.4). The traction force Ft is determined from Eq. (1.8) and is divided by

2 to compensate for the two-point contact model employed. For each contact point, one

constraint with set-valued force law is added to the simulation and is set up according to

Eq. (2.11), to model the traction force. In addition, as the velocity of the wheel centre

is used to form the constraint associated with the compaction resistance Rc, Eq. (2.16),

a single constraint is added per wheel for the compaction resistance, based on the average

value of Rc determined from the two contact points. Similarly, the residual resistance torque

Trr is determined from Eqs. (1.9) and (2.13), for each contact point. Their average value is

used to set up a single constraint per wheel for the residual resistance torque, according to

Eq. (2.14).

It should be noted that the terramechanics models are developed and tested for the case

of similar sinkages on both sides. Therefore, in the case of large differences between the

sinkages on the two sides of the wheel, as schematically shown in Fig. 2.9, this implemen-

tation can only be seen as an approximation.
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2.4.4 Soil Reactions in a Complementarity Formulation

A Linear Complementarity Problem is expressed as (Stewart, 2000):

Find u1 ∈ IRm such that:⎧⎨
⎩ w1 = B1u1 +b1

w1 ≥ 0 ; u1 ≥ 0 ; wT
1 u1 = 0

(2.26)

where B1 ∈ IRm×m, b1 ∈ IRm, and w1 ∈ IRm. Moreover, x ≥ 0 indicates that all components

of x are greater than or equal to zero.

According to Acary and Brogliato (2008), a generalization of an LCP with an addi-

tional system of linear equations, which is referred to as Mixed Linear Complementarity

Problem (MLCP), can be expressed as:

Find u ∈ IRm1 and w ∈ IRm2 such that:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Bu+Cw+b = 0m1×1

y = Du+Ew+d

w ≥ 0 ; y ≥ 0 ; wT y = 0

(2.27)

where B ∈ IRm1×m1, C ∈ IRm1×m2, b ∈ IRm1, y ∈ IRm2, D ∈ IRm2×m1, E ∈ IRm2×m2, and

d ∈ IRm2.

Anitescu and Potra (1997) showed that using explicit Euler integration, a multiboy

dynamics system having unilateral contact with dry friction and bilateral constraints can be

formulated as a MLCP. Here we show that a multibody model with no constraints except for

the kinematic constraints with the set-valued force laws expressed in Eqs. (2.11), (2.14),

(2.16), and (2.25), can also be formulated as a MLCP. It then follows that a multibody

system having unilateral contact with dry friction, bilateral constraints, and the constraints

in Eqs. (2.11), (2.14), (2.16), and (2.25) can also be formulated as a MLCP, following

the procedure explained by Anitescu and Potra (1997). The latter discussion, however, is

avoided as it lies outside of the scope of the thesis.
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In Sections 2.4.2.3 and 2.4.3, soil reactions were formulated in the form

fd(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− f if x > x1

[− f , f ] if x = x1

f if x < x1

(2.28)

where f is a positive scalar and x is the complementary variable of fd . It is noted that f and

x are known a priory. Equation (2.28) is the general form for Eqs. (2.11), (2.14), (2.16),

and (2.25). For example, in the case of the traction force expressed by Eq. (2.11), f , fd , x,

and x1 represent Ft , Ftd , vAx, and vre f , respectively.

Consider the dynamic equations of an n-degree of freedom system with the kinematic

constraint and the set-valued force law expressed in Eq. (2.28) as:

M(q)v̇+ fc(q,v) = fa +AT fd (2.29)

where M is the n by n mass matrix, q ∈ IRn and v ∈ IRn are the vectors of generalized

coordinates and velocities, respectively, fc ∈ IRn denotes the Coriolis and centrifugal forces,

fa ∈ IRn is the applied forces, and A is the constraint Jacobian obtained by:

A =
∂x

∂v
(2.30)

It is noted that in our formulation, only one constraint with the set-valued force law,

Eq. (2.28), is included in Eq. (2.29). Therefore, the constraint Jacobian A belongs to IR1×n.

The extension of this formulation to more than one constraint is straightforward.

As A is the constraint Jacobian, the constraint velocity x is related to the generalized

velocities by

x = Av (2.31)
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Following the procedures explained by Acary and Brogliato (2008) and Anitescu and

Potra (1997), Eqs. (2.29) and (2.28) can be reformulated as a MLCP, as we prove below.

Let us introduce slack variables λ1 and λ2, and define f d as

f d =
λ1 −λ2

2
(2.32)

where λ1 and λ2 are the solutions of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1 ≥ 0 ; (x− x1)+ |x− x1| ≥ 0 ; λ1 [(x− x1)+ |x− x1|] = 0

λ2 ≥ 0 ; −(x− x1)+ |x− x1| ≥ 0 ; λ2 [−(x− x1)+ |x− x1|] = 0

λ1 +λ2 = 2 f

(2.33)

By inspection, one can realize that in Eq. (2.33), x > x1 leads to λ1 = 0 and λ2 = 2 f .

In addition, x < x1 results in λ1 = 2 f and λ2 = 0. Moreover, if x = x1, then λ1 ∈ [0,2 f ] and

λ2 ∈ [0,2 f ] subject to λ1 +λ2 = 2 f .

Now we claim that the value of fd is equal to f d , determined from Eq. (2.32). For

x �= x1, this is trivial, as mentioned above. Now let us consider x = x1.

By eliminating λ2 from Eq. (2.32) and the last relation of Eq. (2.33), f d is obtained as

f d = λ1 − f (2.34)

When x = x1, 0 ≤ λ1 ≤ 2 f , as mentioned above. This means that − f ≤ λ1 − f ≤ f ,

and therefore, f d ∈ [− f , f ]. This concludes our claim, i.e., fd and f d are equivalent.

Now, let us introduce x+ and x− as

x+ = [(x− x1)+ |x− x1|]/2 = max(0,x− x1)≥ 0

x− = [(x− x1)−|x− x1|]/2 = min(0,x− x1)≤ 0
(2.35)
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Therefore, Eq. (2.33) can be expressed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ1 ≥ 0 ; x+ ≥ 0 ; λ1x+ = 0

λ2 ≥ 0 ; −x− ≥ 0 ; λ2x− = 0

x− x1 = x++ x−

λ1 +λ2 = 2 f

(2.36)

Combination of Eqs. (2.29), (2.31), (2.32), and (2.36), and noting that fd and f d are

equivalent, lead to the MLCP defined in Eq. (2.27), where m1 = n+2, m2 = 2, E = 02×2,

d = 02×1, and B, u, C, w, b, and D are given below

u =

⎡
⎢⎢⎢⎣

v̇

λ1

−x−

⎤
⎥⎥⎥⎦ , w =

⎡
⎣ x+

λ2

⎤
⎦ (2.37)

B =

⎡
⎢⎢⎢⎣

M −(1/2)AT 0n×1

01×n 1 0

−A 0 −1

⎤
⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎣

0n×1 (1/2)AT

0 1

1 0

⎤
⎥⎥⎥⎦ (2.38)

b =

⎡
⎢⎢⎢⎣

fc − fa

−2 f

x1

⎤
⎥⎥⎥⎦ , D =

⎡
⎣ 01×n 1 0

01×n 0 1

⎤
⎦ (2.39)

It should be mentioned that the condition wT y = 0 implies λ1x+ = 0 and λ2x− = 0,

because λ1x+ ≥ 0 and −λ2x− ≥ 0, from Eq. (2.36). This concludes our claim.

Furthermore, using an explicit Euler integration scheme, Eq. (2.29) becomes:

M(v(l+1)−v(l))+hfc = hfa +h AT fd (2.40)
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where h is the integration time-step. The superscript (l) on v symbolizes the general veloc-

ities at time-step l. Similarly, combining Eq. (2.40) with Eqs. (2.32) and (2.36) leads to the

MLCP defined in Eq. (2.27) with E = 02×2, d = 02×1, and

u =

⎡
⎢⎢⎢⎣

v(l+1)

λ1

−x−

⎤
⎥⎥⎥⎦ ; w =

⎡
⎣ x+

λ2

⎤
⎦ (2.41)

B =

⎡
⎢⎢⎢⎣

M −(h/2)AT 0n×1

01×n 1 0

−A 0 −1

⎤
⎥⎥⎥⎦ ; C =

⎡
⎢⎢⎢⎣

0n×1 (h/2)AT

0 1

1 0

⎤
⎥⎥⎥⎦ (2.42)

b =

⎡
⎢⎢⎢⎣

−Mv(l) +h(fc − fa)

−2 f

x1

⎤
⎥⎥⎥⎦ ; D =

⎡
⎣ 01×n 1 0

01×n 0 1

⎤
⎦ (2.43)

The interested reader is referred to (Acary and Brogliato, 2008), (Anitescu and Potra,

1997), and (Pfeiffer and Glocker, 1996) for further discussion on this topic.

2.4.5 Motion on Rough Terrain and the Multipass Effect

In the computation of soil reactions based on semi-empirical models, estimation of a

wheel/ground penetration value (wheel sinkage) is a key element. The sinkage is used to

determine θ1 and θ2, which are in turn used to calculate the soil reactions. In the semi-

empirical Bekker models, it is assumed that the wheel has a cylindrical geometry and the

terrain is flat (cf. Figure 1.1). In a basic implementation of such models, a cylindrical

geometry for the wheel and a locally flat surface, e.g., a plane, for the terrain could be used

as mentioned above.

In order to consider irregularities in the terrain surface, a high resolution height-field

(HF) is used here for terrain representation. Determination of a sinkage value suitable for
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use in the semi-empirical models, however, is far more difficult in this case. If, here too,

we were to apply the basic approach described above and attempt to determine the sink-

age from wheel and terrain geometries, we would have to deal with a general cylinder/HF

intersection algorithm. Depending on the HF-resolution, this can be computationally a

very expensive task. In addition, for arbitrary wheel interactions such as the wheel driving

on high-frequency rough ground or entering the onset of an incline, finding a reasonable

penetration depth that also changes smoothly from one simulation step to the next is algo-

rithmically challenging, yet it is a requirement for stable simulation.

Here, this challenge is met by reducing the complex geometrical problem of the overlap

between a cylindrical wheel and a general HF to the simple cylinder/plane intersection case.

This is achieved by approximating the wheel/terrain contact patch locally by a plane. First,

all the HF vertices in the wheel footprint are identified—see Fig. 2.10. Those vertices can

be obtained by first determining a bounding box of the wheel in local height-field space and

projecting it on the height-field. Then, for each of these vertices a ray cast is performed onto

the wheel geometry along the local up-axis of the height-field. If a hit with the geometry is

obtained, the vertex is considered as part of the footprint in the given simulation step. If the

hit point lies below the HF, the wheel penetrates the ground at that point, and the vertex is

called active. It is clear that the set of active vertices approximates the surface with which

the wheel is in contact at any step in the simulation. This observation can be used to obtain

the penetration sought as follows: at each simulation step a plane is found from the point

cloud defined by the positions of the currently active vertices, via a least-squares fit. This

plane is referred to as the least-squares plane. This plane intersects the cylindrical wheel by

definition and is used as an approximation of the wheel/ground contact patch at the current

simulation step. Finally, a cylinder/plane intersection test is conducted, from which the

cylinder penetration can be readily obtained.
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Least-squares plane

Bounding 

box
Height field vertices 

in the footprint

Active height field 

vertices in the 

footprint

Sinkage

FIGURE 2.10. Schematic of height-field/wheel interaction and the approximating

least-squares plane

The compaction aspect of a wheel passing over soft ground can also be captured with

the HF-based terrain representation. Soil compaction is governed on one hand by a geo-

metric change of the terrain surface, and on the other hand by a change of the compaction

state of the soil material. Based on this observation, the HF data structure is enhanced

by additional data entries associated with each vertex representing soil-hardening parame-

ters, which capture the state of compaction in the HF at the corresponding location. Note

that the type of parameters needed strongly depends on the type of wheel-soil interaction

model used in simulation. The compaction of soil is modelled by evolving both the height

and the soil-hardening parameters associated with the vertices in the wheel footprint. For

semi-empirical models, the multi-pass approach of Wong (2010) has been adapted to this

implementation. In this context, the wheel sinkage used in the pressure-sinkage relation is

a key input for the evolution of soil hardening parameters.

The changes in the geometric properties and the compaction state of soil can be de-

rived from the sinkage of the wheel in the ground. The determination of the wheel footprint

allows for monitoring the wheel sinkage at each vertex of the footprint. This yields a dis-

cretized representation of the geometric effects of deformation occurring at the wheel/ground
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interface at each simulation step. In order to obtain permanent (plastic) terrain deforma-

tion, at some point the sinkage data obtained has to be transferred to the HF. For a given

HF vertex, this corresponds to lowering the height as well as updating the soil-hardening

parameter at this vertex. In this approach, this transfer is conducted for a given vertex if it

has just left the wheel footprint. In other words, the transfer is carried out in frame k if the

vertex was part of the wheel footprint in frame k−1 and is not detected in the footprint any

more in frame k.

In this way, the terrain surface is not modified while the wheel is still passing over it, an

approach that avoids introducing disturbances in the simulation. Changing the HF surface

while it is still in contact with the wheel would otherwise directly affect the computation of

the sinkage parameter, which is used as the main input for computation of the soil reaction

forces. As a consequence, the soil reaction forces would be altered due to the actions of

the compaction model implementation, which is not desired. By deferring the modification

of the deforming soil at a given HF location until after the wheel has passed, this issue is

effectively avoided.

With the approach described above, all sorts of soil compaction effects can be repre-

sented. Deformation of a perfectly plastic soil, for instance, would be achieved by main-

taining the maximum sinkage at each vertex in the footprint.

2.4.5.1 Basic Relations

As mentioned above, the multipass approach of Wong (2010) is used here, in which the

pressure-sinkage relation follows the curve illustrated in Fig. 2.11. During elastic reloading

or unloading, part AB in Fig. 2.11, the pressure p is a linear function of the total sinkage

zt , i.e.,

p = pu − ku(zu − zt) (2.44)
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where zt is the sinkage measured from the uncompacted soil surface, pu refers to the pres-

sure at point A, which is the pressure when the unloading starts, zu is the total sinkage at

which the unloading has started, and ku is the slope of the loading-unloading curve, defined

by Wong (2010) as:

ku = k0 +Auzu (2.45)

in which k0 and Au are material constants that define the elastic unloading/reloading be-

haviour.

p

pu

zt

Loading
Reloading

Unloading

1

ku

zezu

A

B

C

FIGURE 2.11. Schematic of unloading/reloading model of Wong used to find nor-

mal stress distribution with multipass.

It should be noted that in this model the total elastic sinkage ze is assumed to be smaller

than zu. However, referring to the Bekker pressure-sinkage relationship, Eq. (1.3), if the

sinkage exponent n is smaller than unity, the tangent line to the pressure-sinkage relation

at zt = 0 becomes vertical, which means an infinite slope for the tangent line. This in turn

indicates that when n < 1, depending on the value of k0, there exists a zu value at which

kuzu equals pu. For values of zu smaller than this value, ze will be greater than zu, which

contradicts the above assumption that ze must always be smaller than zu. To address this

issue, in this case, the elastic unloading line is modified to connect the origin to point A.
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Therefore, in this case the pressure is obtained using Eq. (2.46), instead of Eq. (2.44), for

the unloading case, and the soil vertex is flagged as uncompacted (not hardened):

p =
pu

zu

zt (2.46)

In addition, if zt ≥ zu, the pressure is obtained from the pressure-sinkage equation for

an uncompacted soil, e.g., Eq. (1.3) for the Bekker relation. It is clear that if a wheel is

moving over already compacted soil, e.g., in a second pass, the penetration of the wheel

into the ground is measured from an already compacted soil surface. However, the value of

zt is needed in Eqs. (2.44) and (2.46). The total sinkage zt can be readily obtained as shown

in Eq. (2.47) from the current wheel sinkage on compacted soil z, and the past maximal

sinkage zu, which is the hardening parameter

zt = z+ zu − ze (2.47)

where ze is obtained from

ze = pu/ku (2.48)

It should be noted that the past maximal sinkage zu is a parameter of our hardening

model, which is stored per vertex and modified as a result of multiple wheel passes (multi-

pass). Furthermore, the shear stress is obtained using Eq. (2.8).

2.4.5.2 Unloading–Reloading Relations in Various Wheel-soil Interaction Models

In this approach, after a wheel has passed, the HF vertices that have been in contact are

modified (both their height and hardening parameter). In the unloading/reloading model

of the terrain, as discussed above, the hardening is a consequence of the maximum total

sinkage.
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In this section, two cases are of interest. In the first case, the Bekker model is discussed,

while in the second case, the Wong and Reece (1967a) model and another model explained

by Ishigami et al. (2007) are considered. Normal stress distributions under a rigid wheel

for these models are displayed in Fig. 2.2.

There are two issues that need to be discussed for each model: (i) the amount of com-

paction (soil deformation) and hardening that is maintained in the terrain after the wheel

has passed, and (ii) the stress distribution when a wheel is moving on an already compacted

soil.

Case 1: Bekker model:

In this model, the point of maximum sinkage under the wheel corresponds to the maximum

pressure; therefore, the maximum deformation can be directly used to update the vertex

properties.

In order to update the vertex height and permanent hardening property, in the HF

data structure two additional entries are also stored, maximum penetration and temporary

hardening. During the time that a vertex is in contact with the wheel, vertex height and

permanent hardening remain unchanged but maximum penetration and temporary harden-

ing change. When the vertex has left the contact, maximum penetration and temporary

hardening are used to update vertex height and permanent hardening, respectively.

In addition, when the Bekker model is used to find the soil reactions on a wheel moving

on an already compacted soil, the normal stress distribution is directly determined based on

the approach explained in Section 2.4.5.1. In this regard, using ζ (θ), illustrated in Fig. 1.1,

instead of z in Eq. (2.47), zt is determined as a function of θ . Then, zt(θ) is used to interpret

and compute the pressure distribution, as explained in Section 2.4.5.1.

Furthermore, by knowing the normal stress at the bottom-dead-centre pmax, which is

the normal stress at zt(θ = 0), a nonzero exit angle is found from the elastic rebound of soil

as (see Fig. 2.12):
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θ2 = cos−1

(
1− pmax

Rku

)
(2.49)

θ1

θ2

ze = pmax/ku

R

ω
vx

A

FIGURE 2.12. Determining the exit angle in the Bekker model from the elastic

rebound. pmax is the normal stress at point A.

Case 2: WR and Ishigami et al. (2007) models:

In these models, the maximum pressure and maximum deformation do not occur at the

same location as opposed to the case of the Bekker model. Here, the hardening parameter

is updated based on the maximum normal stress but the soil height is set according to the

maximum deformation that each vertex experiences. The elastic rebound is not considered

because in these models, the normal stress at the exit angle reaches zero. By using the λ

parameter, which was introduced by Ishigami et al. (2007) to find the exit angle, the total

plastic deformation, that is set in these models for every vertex, is determined as

zp = zmax(1−λ ) (2.50)

where zmax is the maximum deformation the vertex has experienced during the contact with

the wheel. The height of the soil vertex once the wheel has passed is thus consistent with
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the assumptions made in the WR and Ishigami et al. (2007) models. For WR we use λ = 0

and for the Ishigami et al. (2007) model λ is set according to the material properties. For

more details, the reader is referred to (Ishigami et al., 2007).

In addition, when the wheel moves over an already compacted soil, the normal stress

for θ between θ1 and θM follows the reloading equation and is directly obtained as in the

Bekker model. For θ between θM and the exit angle θ2, the normal stress follows the

scaled symmetry assumed by Wong and Reece (1967a) and Ishigami et al. (2007), where

the symmetry line is identified by θM, the location of maximum normal stress. The normal

stress distribution is schematically displayed in Fig. 2.13.

θ1

θ2 θM

z

λ z

ω
vx

FIGURE 2.13. Schematic of normal stress distribution under a rigid wheel moving

over the track of another wheel, using the Wong and Reece (1967a) and Ishigami

et al. (2007) models.

In Fig. 2.13, the front wheel portion, represented by the interval [θ1,θM], touches pre-

compacted soil. In this zone, the soil reacts elastically at the beginning, represented in

the proposed model by the reloading line BA, shown in Fig. 2.11. Here, the soil has been

hardened by a previous wheel pass. As a consequence, in the current pass, the wheel has to

first overcome the pressure required to elastically deform the soil, until the pressure reaches

pu. Therefore, the normal stress increases rapidly at the beginning on the reloading curve
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BA, and then continues increasing more slowly, once pu is reached. At this point, the soil

has transitioned into a plastic state represented by the curve AC, shown in Fig. 2.11, which

has a smaller slope. As a result of the plastic deformation, the soil is hardened to another

level during this wheel pass. It should be noted that, if the normal stress applied by the

wheel does not overcome pu, the soil only deforms elastically, which leads to no further

hardening in the current wheel pass.

When θ varies from θM to θ2, the stress decreases so that the stress profile forms the

scaled symmetry used in the WR and Ishigami et al. (2007) models mentioned above.

2.5 Summary and Conclusions

In this chapter, a new framework was developed for efficient implementation of semi-

empirical terramechanics relations in multibody dynamics environments. In the proposed

framework, a viscoelastic-like response combined with a unilateral contact model is intro-

duced to incorporate the reaction force Fz in the direction normal to the terrain. Further-

more, the traction force Ft , resistance moment Tr, resistance force Rc, and the lateral force

Fl are included in the model by modelling them as set-valued force representations with

their complementary kinematic variables. As shown in this chapter, the dynamics equa-

tions of the multibody system with these representations of terramechanics relations led to

a linear complementarity problem.

In addition, in our implementation, the terrain is represented as a high resolution

height-field data structure. To deal with motion on rough terrain, we developed an effi-

cient scheme in approximating the contact area using a least-squares technique. Further-

more, wheel-induced soil deformation and hardening is captured in our model, by which

the multi-pass effect is included.
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CHAPTER 3

An Alternative Model Based on Elasto-Plasticity

Theory

3.1 Introduction

A novel approach in analyzing the interaction between a wheel and soft soil is in-

troduced in this chapter. In this approach, normal and shear stress distributions in the

contact area are determined using continuum mechanics without resorting to finite element

discretization, which led to a computationally efficient technique. A velocity field in the

vicinity of the contact area is proposed, which is motivated by the physical nature of the

problem. Using this field, the incremental changes to the stress field are computed by

resorting to elasto-plasticity theory and an appropriate constitutive relation for soil. As

opposed to classical finite element approaches, which model the soil in contact with the

wheel as a high-resolution mesh, our approach focuses on the wheel-soil contact patch

only. This highly localized simulation scheme provides the basis for fast wheel-soil inter-

action modelling. By combining this approach with a height-field as terrain representation,

elasto-plastic soil deformation and changes in the hardening state of soil are directly cap-

tured.

59



CHAPTER 3. AN ALTERNATIVE MODEL BASED ON ELASTO-PLASTICITY THEORY

The procedure for computing soil reactions in the contact area is explained in Sec-

tion 3.2. In this section, the computation of stress-increment tensor for a single point in

the contact area is explained first in Section 3.2.1. This involves: (i) proposing a velocity

field and obtaining the strain-increment tensor for it; (ii) using an elasto-plastic constitutive

relation for soil, which is the Drucker-Prager with cap hardening in this thesis; and (iii)

using an iterative procedure from the classical elasto-plasticity theory for decomposing the

strain-increment tensor to the elastic and plastic parts. In Section 3.2.2, the determination

of the stress tensor in the entire contact area is explained. The elastic rebound computation

is then discussed in Section 3.2.3.

Simulation results are discussed in Section 3.3. In this section, the results of the pro-

posed approach in steady-state operations are first compared with the results obtained from

the Bekker and the Wong and Reece (1967a) models, where the latter is referred to as WR

model. The simulation results of non-steady motion with variable slippage are discussed

in Section 3.3.2. The slip-sinkage phenomenon captured in the novel model is discussed

in Section 3.3.3. A discussion on the proposed velocity field is the focus of Section 3.3.4.

Validation with experimental results available in the literature, which are obtained from a

single-wheel testbed, are explained in Section 3.4, followed by integration in the multi-

body dynamics environment, Vortex, in Section 3.5. Further discussion and comparison

with semi-empirical models and their behaviour regarding multi-pass is presented in Sec-

tion 3.7.

The research work discussed in this chapter was reported in (Azimi et al., 2011c,b,

2013b).

3.2 Soil Reaction Estimation Using Elasto-Plasticity

Assume that a rigid wheel, under planar motion, is in contact with homogeneous soft

soil. In order to find soil reactions, the calculation or estimation of the normal and shear
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stress distributions around the wheel are required. Then, from Eqs. (1.7–1.10), soil re-

actions will be calculated. A novel approach is developed in this section based on elasto-

plasticity theory to calculate σn and τ in the contact area. The proposed approach comprises

two stages: first, we explain how, for any point in the contact area, the change in the stress

tensor Δσσσ caused by wheel motion is determined; then, the stress field in the entire contact

area is computed, using the algorithms introduced below.

3.2.1 Computation of the Stress-increment Tensor

Let us consider that at a point (in the soil) close to the wheel surface, the stress tensor

σσσ and the current strain tensor εεε are known. In addition, the elastic εεεe and plastic εεε p parts

of the strain tensor are also known. Given the state of the rigid wheel, we look for the Δσσσ

developed in a small time-interval Δt. The main issue is the determination of the strain

increment tensor Δεεε , which is done here by assuming a velocity field at the region near the

contact area. The assumed velocity field and the determination of Δεεε are explained in this

section.

Using elasto-plasticity theory and a suitable constitutive relation for soil, the elastic

and plastic parts of the strain increment, Δεεεe and Δεεε p, are calculated based on an iterative

procedure for finding a plastic multiplier (de Souza Neto et al., 2008). Further details are

available in Appendices A and B.

REMARK 5. As mentioned by Khan and Huang (1995), the constitutive equations for

plastic deformation should be formulated in incremental form because of path dependence

in plastic deformation. �

As previously indicated, any elasto-plastic constitutive relation can be used in our pro-

posed approach to represent the soil response. In this thesis, the Drucker-Prager model with

cap hardening is used to express the plastic behaviour of soil. In order to have a complete

elasto-plastic constitutive relation, an elastic model needs to be adopted as well, for which

a linearly elastic relation has been used here. For the plastic behaviour, yield surfaces and
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flow potentials should be described with any hardening or softening rule. These are ex-

plained in detail in (SIMULIA, 2010) and (Helwany, 2007); a brief explanation is included

in Appendix A.

3.2.1.1 The Assumed Velocity Field

By assuming that the friction coefficient between the wheel and the soil surfaces is

higher than the internal friction coefficient of soil, any slippage happens between soil par-

ticles, not between wheel surface and soil. Therefore, the velocity of any soil particle in

contact with the wheel circumference is equal to the velocity of the corresponding point on

the wheel surface. Under these conditions, the soil velocity field near the contact surface is

assumed to have the form

vr(r,θ) = (vx sinθ − vz cosθ)exp

[
− α1

ε
p
vol +α2

(r−R)

]
(3.1)

vθ (r,θ) = (vx cosθ + vz sinθ − rω)exp [−α3(r−R)] (3.2)

where polar coordinates r and θ are used to uniquely define the location of any point in the

soil with respect to the wheel centre, while vx, vz, and ω are the generalized velocities of the

wheel in planar motion, as shown in Fig. 3.1. In addition, (r−R) indicates the depth in the

radial direction measured from the wheel surface, α1, α2, and α3 being constant positive

scalars, and ε p
vol the volumetric part of the plastic strain tensor. It is noted that the velocity

field defined in Eqs. (3.1–3.2) is valid for r ≥ R and θ2 ≤ θ ≤ θ1.

REMARK 6. By assuming the presence of small narrow grousers on the wheel surface,

slippage will happen only among soil particles. This assumption tallies with the presence

of high friction between wheel surface and soil. �
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ω
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FIGURE 3.1. The r-θ directions in which the soil-particle velocity is decomposed

The assumed velocity field is in agreement with the boundary conditions of the prob-

lem, i.e., at r = R soil particle velocity is equal to that of the contact point on the wheel,

while the velocity approaches zero as r → ∞. It is also noted that the motion of a soil

particle under the wheel is a phenomenon of diffusion, as opposed to propagation; thus the

exponential decaying terms in the velocity field are consistent with this behaviour. In addi-

tion, as discussed below, the velocity field is only used in the vicinity of the wheel surface,

as the only use of the velocity field in our approach is to determine the velocity gradient in

the contact area. The assumed velocity field is in agreement with the experimental observa-

tions reported in the literature (Senatore et al., 2012), (Skonieczny et al., 2012), where the

motion of soil particles under the wheel is recorded using high speed cameras; the velocity

field is then visualized from post-processing of the recorded images.

By using the above-mentioned Drucker-Prager model for soil, the model predicts either

elastic deformation or elasto-plastic deformation with hardening or softening for soil, all

depending on the state of stress. If the stress in the p-q plane lies in the cap region Fc,
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shown in Fig. A.2, the soil shows compaction; otherwise dilation. In addition, p and q are

the stress invariants defined in Appendix A.

Moreover, when the soil is loose, which means a small ε
p
vol, a surface-applied penetra-

tion, by a rigid wheel surface for example, will mainly cause some compaction on the soil

under the wheel, but will not cause considerable soil flow to the sides. However, the same

penetration on the same soil but with a higher density could result in soil-particle motion to

the sides. This means that the soil with higher initial density will become less compacted

when facing the same motion on its surface. This behaviour is captured to some extent by

including ε p
vol in the velocity field and the model parameter α2. More discussion on the

assumed velocity field is included in Section 3.3.4.

REMARK 7. The proposed velocity field is compatible with the above-mentioned con-

stitutive relation used for soil, as the hardening/softening pattern of soil is fully identified

by ε
p
vol, which is a key parameter in the velocity field. �

Then, the velocity gradient tensor at r = R+, on the external wheel periphery1, is de-

termined as

Grθ (R
+,θ) =

⎡
⎢⎣−

α1

ε
p
vol +α2

vr(R,θ) ω

−α3vθ (R,θ)−ω 0

⎤
⎥⎦ , (3.3)

where vr(R,θ) and vθ (R,θ) are the radial and tangential velocity components at the wheel

surface at location θ and are obtained from Eqs. (3.1) and (3.2), respectively.

Introducing the rotation matrix

R =

⎡
⎣ sinθ cosθ

−cosθ sinθ

⎤
⎦ , (3.4)

1R+ indicates the value of r when r approaches R from “the right”, as the function whose argument is r

is not defined at R−.
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the velocity gradient tensor Grθ can be transformed into the fixed coordinate system (x-z)

via a similarity transformation:

Gxz = RGrθ RT (3.5)

where Gxz is the velocity gradient tensor in the x-z system. Then, the time-derivative ε̇εε of

the infinitesimal strain tensor can be obtained as the symmetric part of the velocity gradient:

ε̇εε =
1

2
(Gxz +GT

xz) (3.6)

The strain increment is then obtained as:

Δεεε = ε̇εεΔt (3.7)

3.2.2 Determination of the Stress Tensor in the Contact Area

The procedure for obtaining soil reactions is explained in the two algorithms below. In

Algorithm 1, it is assumed that the rigid wheel is in steady-state condition, similar to the

Bekker and WR models, and moves with a nonzero angular velocity, while in Algorithm 2,

the general motion is considered. Algorithm 1 is straightforward for implementation, com-

pared to Algorithm 2, and is useful for parameter-tuning and comparison with the Bekker

and WR models, as explained in Section 3.3.4. Algorithm 2, however, is applicable to the

general motion of the wheel, as explained further below.

In Algorithm 1, the normal and shear stress distributions in the contact area are ob-

tained by following the motion of a single point on the wheel periphery from its initial

contact with soil (θ = θ1) until separation (θ = θ2 in Fig. 3.1). During this motion, at any

location of this point identified by the angle θ , shear and normal stresses are obtained. As

the wheel moves under steady-state conditions, the stress values should not change in time

at any contact angle θ . Therefore, the calculated stress distributions, obtained by following
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the motion of the point mentioned above, represent the stress distributions under the wheel.

ALGORITHM 1.

Assumptions:

• The rigid wheel operates under steady-state conditions. This means that the

velocity component vz is zero. Also, the stress field in the contact area should not

change in time.

• The pre-compaction level and the initial stress level of soil before contacting

with the wheel are known. Therefore, the stress and strain tensors are known at

the initial contact point θ = θ1 in Fig. 3.1.

• A high friction coefficient exists between wheel surface and soil, as explained

earlier and in Remark 6.

Steps:

(i) At the initial contact point, θ = θ1 in Fig. 1.1, initialize σσσ and εεε from the initial

compaction data of soil. Then, choose a small Δt for integration, set Δθ = ωΔt,

and go to Step 5.

(ii) Update θ = θp −Δθ .

(iii) From Eqs. (3.1–3.7), calculate Δεεε associated with the motion during Δθ .

(iv) Using plasticity theory, Δεεεe and Δεεε p are determined (see Appendix B), which

leads to the computation of σσσ , εεεe, and εεε p at the current location on the wheel

(with angle θ ). Then, express the stress tensor in the r-θ directions to obtain

σn(θ) and τ(θ).

(v) Set θp = θ . If θ > 0, go to Step (ii); else, go to Step (vi).

(vi) If σn(θ) ≤ 0, go to Step (viii); else, soil particle is in the elastic rebound condi-

tion. Follow the steps in Algorithm 3 to find σσσ and Δεεεe. Note that in this case

Δεεε p = 0.
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(vii) Express the stress tensor σσσ in the r-θ directions to obtain σn(θ) and τ(θ). Then,

go to Step (vi).

(viii) Use Eqs. (1.7–1.10) to obtain soil reactions. �

REMARK 8. By default, elastic rebound of soil is included in Algorithm 1 in steps 6

and 7. Omitting these steps means neglecting the elastic rebound of soil. �

The algorithm below outlines the procedure involved in this novel approach, for the

dynamic motion of a rigid wheel in planar motion. In this algorithm, an explicit integration

scheme is used to obtain the updated normal and shear stress distributions under the wheel,

based on the motion of the wheel and hardening state of the soil. Here, the stress values are

obtained at some mesh points on the contact region of the wheel and soil (Fig. 3.2).

ALGORITHM 2.

Assumptions:

• The pre-compaction level and the initial stress level of soil before contact with

the wheel are known.

• A high friction coefficient exists between wheel surface and soil, as explained

earlier and in Remark 6.

Steps:

(i) Determine some mesh points on the periphery of the wheel by creating a surface

mesh on the wheel periphery. The nodes of this mesh are the mesh points used

in this algorithm (see Fig. 3.2).

(ii) Determine the mesh points that are in contact with the terrain (referred to as

active points). The values of stress and strain at active points that have not been

in contact with the terrain in the previous time-step will be initialized from the

initial stress and strain of soil.
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(iii) For a given time-step and for each active point, the steps below are followed. It

should be noted that for each active point, the current stress and strain tensors

are known at time t.

(a) Define the loading condition: loading or unloading:

(i) Compute v′z as

v′z = vmesh ·nterrain (3.8)

where vmesh is the velocity vector of the active point and nterrain is the

normal direction of the terrain2.

(ii) If v′z > 0, the active mesh point is in the rebound3; go to Step (iii-d).

Otherwise, the point is in a loading condition; go to Step (iii-b).

(b) Δεεε is calculated from Eqs. (3.1–3.7).

(c) Using elasto-plasticity theory, Δεεεe and Δεεε p are determined (see Appen-

dix B), which leads to the updated stress tensor σσσ(t+Δt) and updated strain

tensors εεεe(t +Δt) and εεε p(t +Δt). Then, go to Step (iv).

(d) Elastic rebound condition: follow the steps in Algorithm 3 to find the up-

dated stress tensor σσσ(t+Δt) and updated strain tensor εεεe(t+Δt), while εεε p

remains unchanged.

(iv) Express the updated stress tensor of all active points in the r-θ directions to

obtain σ and τ . Integration of σ and τ over the area of wheel surface covered

by the active points will result in the reaction forces of soil.

(v) Increment time in simulation with the reaction forces obtained in the previous

step. Set t ← t +Δt and go to Step (ii). �

2The computation of nterrain is explained in Section 3.5 when operating on an irregular terrain.
3For numerical stability reasons, in our implementation instead of zero, we compare v′z with a small

positive scalar ε ′ to start our elastic rebound phase. When 0 ≤ v′z ≤ ε ′, soil will show rebound with softening.
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REMARK 9. Δεεε should be small enough to ensure the convergence of the numerical

procedure involved in obtaining Δεεεe and Δεεε p, in Step (iii); the required time-step for the Δεεε

calculation is usually much smaller than the time-step of the multibody system simulation.

In this case, Step (iii) is conducted multiple times under smaller increments to ensure the

convergence of the Δεεεe and Δεεε p calculations. �

REMARK 10. Having a large number of mesh points will increase the computation

time; however, the algorithm is highly parallelizable as each mesh point can be treated

independent of the other points in this algorithm. It should be noted that using a very small

number of mesh points can cause non-negligible discretization error, which may result in

noticeable oscillations. �

vx

vz

ω

nterrain

FIGURE 3.2. Mesh points in a 2D case for a cylindrical wheel. Solid circles are

active mesh points.

3.2.3 Elastic Rebound Computation

In wheel and soil interaction, soil rebound happens when the wheel surface starts to

separate from soil instead of pushing it. Therefore, in this stage pressure between soil

particles decreases, which causes reduction in both normal and shear stresses. In our model,
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during elastic rebound, normal and shear stresses decrease such that the hardening state of

soil does not change (due to a purely elastic rebound assumption).

The assumed velocity field expressed in Eqs. (3.1) and (3.2) is valid for the region un-

dergoing no rebound, because there it is assumed that the soil particle in the wheel surface

follows the velocity of the wheel surface. However, if the soil particle at the wheel surface

is in a rebound condition, then it cannot follow the wheel surface, because it cannot be

pulled by the wheel, where negligible adhesion between wheel surface and soil is assumed.

We can, however, assume that in the radial direction, the soil particle follows the motion

of the wheel surface until the contact pressure between wheel and soil reaches zero. After

that, separation between wheel surface and the soil particle happens. During this rebound

phase, the shear strain is adjusted in our algorithm such that the state of stress remains

inside or on the yield surface (state of stress outside the yield surface is invalid), while the

hardening of soil does not change. To this end, the procedure below is introduced for any

point that is in the elastic rebound phase. It is noted that the condition for a soil particle to

be in the elastic rebound phase was explained in Algorithms 1 and 2.

ALGORITHM 3.

Given the current stress tensor σσσ , strain tensors εεεe and εεε p, wheel geometry and state vari-

ables, and knowing that the soil particle is experiencing elastic rebound, compute updated

stress and strain tensors after a small time-step Δt.

Steps:

(i) Compute Δεεε from Eq. (3.7) and initialize the elastic and plastic parts of the

strain increment tensor by

Δεεεe
trial = Δεεε (3.9a)

Δεεε p = 0 (3.9b)
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(ii) Introduce a trial stress state, which has the form below for a linearly elastic

behaviour:

σσσ trial = σσσ +C : Δεεεe
trial (3.10)

where C is the fourth-rank elastic stiffness tensor. Symbol “:” denotes double

contraction, as needed between a fourth-rank tensor C and a second-rank tensor

εεεe
trial (de Souza Neto et al., 2008), to produce a second-rank stress tensor.

(iii) Check the validity of σσσ trial. If it is inside or on the yield surface, go to Step (v),

as σσσ trial is a valid stress tensor (de Souza Neto et al., 2008); otherwise, go to

Step (iv).

(iv) Modify Δεεεe
trial: This is done by modifying the lower off-diagonal element of

Gr,θ (R
+,θ) in Eq. (3.3), referred to as Gr,θ (2,1), by the relation below:

Gr,θ (2,1) =−α3vθ (R,θ)(1−η)−ω (3.11)

where η is a positive scalar. Here we increase η stepwise from zero until the

condition in Step (iii) is satisfied on σσσ trial. The updated Δεεεe
trial is computed from

Eqs. (3.1–3.7) and using Eq. (3.11). It is noted that, by using this modified strain

increment tensor in the elastic rebound phase, the state of stress remains valid,

while the hardening state of soil does not change. This is the necessary condition

for a purely elastic rebound. After incrementing η and computing Δεεεe
trial, go to

Step (ii)4.

(v) Set σσσ = σσσ trial and exit. �

4Instead of increasing η stepwise, a more computationally efficient approach would be formulating a

single-variable optimization problem, basically a line search, to find the appropriate η .
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3.3 Simulation Results and Further Analysis

To validate the proposed approach, our results are compared with those obtained using

the Bekker and WR models. As mentioned above, the Drucker-Prager constitutive relation

with cap hardening is used to model the plastic deformation of soil in this thesis. Combined

with a linear elasticity model, this relation leads to an elasto-plastic constitutive relation for

soil. However, the nature of the Bekker and WR models being different from this elasto-

plastic constitutive relation, they have different sets of parameters. The parameters of the

elasto-plastic constitutive relation are listed in Tables 3.1 and 3.2; some of these parameters

are taken from (Chiroux et al., 2005).

REMARK 11. It is noted that the approach proposed in this thesis does not depend on a

specific constitutive relation for soil or a specific form of the velocity field. Soil constitutive

relation and the assumed velocity field are important elements of the approach, but other

pertinent constitutive relations and velocity fields can also be employed. �

The parameters needed for the Bekker and WR models are kc, kφ , n, φ , c, and Kd .

Here we need to find the equivalent set of parameters needed for these models based on

the parameters of the elasto-plastic constitutive relation listed in Tables 3.1 and 3.2. To

do so, we simulated the plate-penetration test (bevameter test) using Abaqus to identify kc,

kφ , and n, as explained below. In addition, φ and c are defined from the parameters of the

Drucker-Prager model (β and d) using the relations below (Shoop, 2001), by “assuming

plane strain response and non-dilatant flow” (Shoop, 2001):

tanβ = 1.73sinφ , d = 1.73ccosφ (3.12)

Furthermore, an average value for Kd was chosen based on values reported in the terrame-

chanics literature5. Moreover, for the WR model two other parameters, c1 and c2, are

5A more appropriate way for defining φ , c, and Kd is simulating the bevameter shear test in Abaqus,

which should result in more accurate calculation of shear stress distribution.
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needed to locate the position of the maximum radial stress. These parameters are also

selected from p. 386 of (Wong, 2010) for loose sand; their values are listed in Table 3.3.

TABLE 3.1. Material properties for the elasto-plastic constitutive relation

Young’s modulus, E (Pa) 3×106

Poisson’s ratio, ν (-) 0.32

Angle of friction, β (deg) 41

Material cohesion, d (Pa) 350

Cap eccentricity, Re (-) 0.15

Initial value for ε
p
vol (-) 0.001

Transition surface parameter, α (-) 0.01

TABLE 3.2. The hardening pattern used in the elasto-plastic constitutive relation

pb (kPa) ε p
vol pb (kPa) ε p

vol

0.15 0 24 0.149679

1.5 0.014661 27 0.160028

3 0.028334 30 0.16928

6 0.053024 36 0.185036

9 0.074619 48 0.208422

12 0.093572 63 0.228045

15 0.110262 87 0.248232

18 0.125006 120 0.266976

21 0.138069 150 0.280999

TABLE 3.3. Parameters of the Bekker and WR models used for comparison

φ (deg) 30

c (Pa) 234

kφ (N/m(n+2)) 4.104 × 105

kc (N/m(n+1)) 0

n (-) 0.8

Kd (m) 0.013

c1 (-) 0.18

c2 (-) 0.32

As mentioned above, the plate-penetration test (bevameter test) is simulated using

Abaqus to identify kc, kφ , and n. For this, 2D simulation runs were conducted on Abaqus/Explicit

with plate widths of 100 mm and 120 mm. The von Mises stress distribution under the plate
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is shown in Fig. 3.3. It should be noted that only one half of the plate and soil mass is sim-

ulated, as the problem has a plane of symmetry. The average pressure developed under the

plate is plotted in Fig. 3.4 versus plate sinkage for both plate sizes. From that figure, kc, kφ ,

and n are identified.

FIGURE 3.3. Von Mises stress distribution under the plate in the penetration test

with a plate width of 0.1 m
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FIGURE 3.4. Average pressure developed under the plates vs. plate sinkage using

Abaqus Explicit

In the remainder of this section, an example of steady-state motion for a single wheel is

analyzed, followed by non-steady motion of the same wheel in the second example. Then,
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the slip-sinkage behaviour is investigated. An explanation of the assumed velocity-field

parameters and general discussion are the topics of the last two subsections.

3.3.1 Steady-state Motion

In this case, a rigid cylindrical wheel with 0.30 m diameter and 0.10 m width moves

under steady-state conditions, which means a constant vx and ω and a zero vz. vx is 0.12 m/s

and ω is 1.0 rad/s, which results in a 20% slip ratio. This example is repeated for different

values of vertical load, ranging from 39 N to 206 N. Soil reactions are compared with the

Bekker and the WR models. The parameters of the proposed velocity field, which were

tuned based on an approach explained in Section 3.3.4, are listed in Table 3.4. It should

be mentioned that in the results displayed in Figs. 3.5–3.9 we have adopted a zero exit

angle (θ2 = 0) by assuming that the elastic rebound of soil is negligible. As θ2 = 0 is also

assumed in the Bekker and WR models, this assumption helps us do a fair comparison

between the basic elements of our model and the aforementioned Bekker and WR models.

After that, all the results are obtained while considering the elastic rebound of soil.

TABLE 3.4. Parameters of the proposed velocity field

α1 (m
−1) α2 (-) α3 (m

−1)
0.64 0.03 35

By comparing the results of the drawbar pull and the resistance force, Figs. 3.5 and

3.6, the estimated resistance force closely matches the ones resulting from the Bekker and

WR models; however, the traction force is overestimated at low and underestimated at high

sinkage values, when compared with these models. In addition, as shown in Fig. 3.7, the

estimated wheel sinkage matches the Bekker and WR models relatively well, under various

loadings and a fixed 20% slip ratio.

Furthermore, the normal and shear stress distributions are displayed in Figs. 3.8 and

3.9. The normal stress distribution is closer to the Bekker model, but shows that the po-

sition of maximum normal stress is shifted forward, which agrees with experimental ev-

idence (Wong, 2010). It is noteworthy that the normal stress distribution resulting from

75



CHAPTER 3. AN ALTERNATIVE MODEL BASED ON ELASTO-PLASTICITY THEORY

40 60 80 100 120 140 160 180 200 220
0

5

10

15

20

25

30

35

Proposed approach
Wong-Reece
Bekker

Vertical force (N)

D
ra

w
b

ar
p

u
ll

(N
)

FIGURE 3.5. Comparison of the calculated drawbar pull for 20% slip ratio under

the action of different vertical loads
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FIGURE 3.6. Comparison of the calculated resistance force for 20% slip ratio un-

der the action of different vertical loads

the proposed approach is in good agreement with these models. The shear stress, how-

ever, is overestimated at the area closer to the entry point and underestimated towards the

bottom-dead-centre. This can be related to a shortcoming of the adopted constitutive re-

lation, which can represent the compaction process relatively well but overestimates the
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FIGURE 3.7. Comparison of the resulting sinkage for 20% slip ratio under the

action of different vertical loads
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FIGURE 3.8. Normal stress distribution for 20% slip ratio under Fz = 165 N

shear stress at small shear strains. This means that the proposed model with this constitu-

tive relation can more accurately represent terrains with small Kd . It should, however, be

noted that the Bekker and WR models provide an estimation for the stress distribution in

the contact area; further experimental data, for stress distribution, are needed to comment

more specifically on the validity of these results.
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FIGURE 3.9. Shear stress distribution for 20% slip ratio under Fz = 165 N

In Figs. 3.8 and 3.9, the stress values are zero for negative contact angles (θ < 0). It

should be noted that in steady-state operations (vz = 0), the radial component of the velocity

vector on the wheel periphery at angle θ , vr(R,θ), becomes negative for θ < 0, and points

toward the wheel centre. For this case, if we assume that the soil shows negligible elastic

rebound, there will be no contact when vr(R,θ) < 0, as the wheel can only push the soil.

Therefore, assuming zero elastic rebound when vz = 0 results in θ2 = 0 and a discontinuity

in the stress distribution.

This example was analyzed again while considering the rebound of soil due to its

elasticity and using a relatively small Young’s modulus for soil (see Young’s modulus in

Table 3.1). Normal and shear stress distributions are shown in Fig. 3.10. As a relatively

small Young’s modulus is used for soil, the rear region (θ2 < θ < 0), corresponding to

the elastic rebound, is noticeable. Increasing Young’s modulus results in smaller θ2. As

expected, the stress distributions show no discontinuity in this case.

REMARK 12. As mentioned above, the non-zero exit angle in this model is the result of

the elastic rebound of soil. In practice, soil flow and grousers affect the exit angle and they
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FIGURE 3.10. Normal and shear stress distributions for 20% slip ratio under Fz =
165 N using Algorithm 1 with consideration of elastic rebound of soil.

could be the dominant factors when moving on sand with relatively high slip ratio. How-

ever, when adapting a continuum model with using an elasto-plastic soil representation,

the elasticity of soil (and wheel) determine the exit angle, which is an inherent limitation

of elasto-plastic soil representation. It should be mentioned that the common practice in

the literature is to either assume the exit angle as a function of the entrance angle, as in

(Ishigami et al., 2007), or use soil and wheel elasticity, as in (AESCO, 2005). �

3.3.2 Non-steady Motion and Variable Slippage

In this section, we analyze a simple but illustrative example in order to demonstrate the

behaviour of our model in non-steady operations and under a wide range of wheel-slippage

conditions. In this example, we investigate the planar motion of a rigid wheel on soil, in

which vx and ω are controlled to achieve certain values for the wheel slip ratio with ω

measured positive cw and vx positive to the right (Fig. 1.1). In the z-direction, the wheel is

free to move under gravity. Mass, radius, and width of the wheel are 16 kg, 0.15 m, and

0.10 m, respectively.
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The wheel is dropped with a zero initial velocity and an initial sinkage of 1 mm. Algo-

rithm 2 is used to obtain the reaction forces applied on the wheel, and the elastic rebound

of soil is included that leads to a non-zero exit angle for the proposed model. From t = 0 s

to t = 1 s, the wheel moves in the z-direction only, due to gravity, and causes plastic defor-

mation in soil. The wheel is then commanded to move forward with the velocity profiles

shown in Fig. 3.11. With these velocity profiles, the slip ratio grows incrementally from 0

to 30%. The results obtained with our proposed approach are displayed in Figs. 3.12 and

3.13.
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FIGURE 3.11. Command forward and angular velocities to the wheel

Again, our results are compared with those obtained based on the Bekker and WR

models. However, directly using the Bekker or WR model in this example leads to an unre-

alistic oscillatory response in soil reactions and wheel sinkage, because energy dissipation

in the z-direction is not considered in those models, as briefly explained in Section 2.3.

Therefore, we used the modified version of these models, as proposed in Chapter 2. The

results are shown in Figs. 3.14 and 3.15.

As can be seen from Fig. 3.12, using our model, wheel sinkage increases with slip

ratio, which agrees qualitatively well with the experimental observations, known as slip-

sinkage. In the Bekker and WR models, however, this feature is not captured. In addition,

at the initial phase, when the wheel is dropped, it sinks with a negligible rebound when the
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FIGURE 3.12. Vertical position of wheel centre versus time as predicted by our

novel approach in modelling wheel-soil interaction
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FIGURE 3.13. Wheel traction and rolling resistance as predicted by our novel ap-

proach in modelling wheel-soil interaction

proposed model is used, due to plastic deformation of soil. The wheel moves up when it

starts its motion with zero slip ratio, which agrees with experimental observations.

In Fig. 3.13, the traction and resistance forces predicted by our model exhibit some

oscillations from their nominal value. This is caused by the discretization error associated
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FIGURE 3.14. Vertical position of wheel centre vs. time as predicted by the modi-

fied Bekker and WR models (Azimi et al., 2011a)
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FIGURE 3.15. Wheel traction and rolling resistance as predicted by the modified

Bekker and WR models explained in Chapter 2.

with the use of mesh points. Increasing the number of the mesh points results in smaller

oscillation amplitudes in the reaction forces.

To better illustrate the effect of discretization, the same simulation is conducted with

higher resolution for the mesh points, the results being shown in Fig. 3.16. In the results
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shown in Fig. 3.15, the rigid wheel has 72 mesh points, one mesh point every 5 degrees.

The results displayed in Fig. 3.16 are obtained with 180 and 360 mesh points for the wheel.

As can be seen, the oscillation amplitude decreases substantially upon increasing the num-

ber of mesh points.
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FIGURE 3.16. Wheel traction and rolling resistance as predicted by the proposed

model with different mesh points on the wheel. (a) 180 mesh points; and (b) 360

mesh points.

3.3.3 Analyzing the Slip-sinkage Phenomenon

According to the WR model (Wong and Reece, 1967a), the effect of wheel slip on

normal stress distribution under a rigid wheel is at the position of maximum radial stress

(θM), but the stress distribution from soil surface to θM remains independent of wheel slip

and follows Bekker’s pressure-sinkage relation. However, the results of our model suggest

that the wheel slip affects the stress distribution in the entire contact area.

By increasing wheel slip, according to our model, soil particles at the contact area ex-

perience a higher shear deformation (in the direction tangent to the wheel surface), while
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receiving a lower push from the wheel in the direction normal to the wheel surface. Based

on our assumed velocity field, and the Drucker-Prager constitutive relation adopted for

soil, this combination leads to a strain increment tensor Δεεε with a smaller volumetric plas-

tic part. As a result, a lower soil hardening is predicted with our model when wheel slip

increases. The pressure-sinkage relations under a rolling/slipping wheel (with various slip-

page conditions), obtained by using our model, is displayed in Fig. 3.17. As can be seen, the

pressure-sinkage relation changes in the entire contact area when the wheel slip changes.

This overall behaviour is consistent with the model recently proposed by Ding et al. (2010a)

regarding slip-sinkage. In their approach, they modified the sinkage exponent n as a linear

function of slip ratio, in order to capture experimental observations. However, further ex-

perimental studies where stress distribution is measured at different slip ratios are necessary

to fully investigate the validity of these models.
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FIGURE 3.17. Normal stress under a rigid wheel versus local sinkage ζ (see

Fig. 1.1 for a definition of ζ ) at various slip ratios under Fz = 165 N, while the

elastic rebound is considered.

It is also noted that during elastic rebound, normal stress decreases linearly with ζ , as

a result of the linearly elastic relation used to represent the elastic behaviour of soil. Of
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course, nonlinear elastic relations can also be incorporated to more accurately capture the

elastic response of different types of soil.

Stress distributions at different slip ratios are displayed in Fig. 3.18 to better illustrate

the situation. As can be seen from the figure, in the case of zero slip ratio, maximum normal

stress occurs at the bottom-dead-centre (θ = 0); however, it shifts forward by increasing

wheel slip. This shift in the location of maximum normal stress is caused by soil softening6.

For example, in the case of 20% or 40% slip ratio in Fig. 3.18, the normal stress increases

from zero at θ = θ1 to its maximum value at θ = θM. In this region, soil hardening is

happening. From θ = θM to around θ = 0, soil softening happens and causes the normal

stress to decrease. After that, normal and shear stresses decrease because of the elastic

rebound of soil.
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FIGURE 3.18. Normal and shear stress distributions for various slip ratios under

Fz = 165 N using Algorithm 1, where the elastic rebound is considered.

3.3.4 Discussion on the Proposed Velocity Field and Its Parameter Selection

To better illustrate the proposed velocity field, in Fig. 3.19 trajectories of soil particles

6It should be noted that in the Drucker-Prager model adopted in this thesis, when a plastic deformation

happens at the failure surface Fs or the transition surface Ftr, the deformation may cause soil softening.
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initially at soil surface and 10 mm below surface are plotted at different slip ratios for a

wheel diameter of 0.3 m. The trajectories are overall consistent with reported experimental

observations in (Shikanai et al., 2000), (Maciejewski and Jarzebowski, 2004) and (Fukami

et al., 2006). The difference lies in that soil particles initially located deeper in soil (not

on the surface) tend to scape to soil surface where there is no loading, as they move along

the least resistive path; this behaviour becomes more significant when soil compaction

increases. What is important for our approach is the effect of this behaviour on the velocity

gradient and strain tensor in soil particles very close to the contact surface. Here we have

considered the effect of soil compaction by including ε p
vol, which is the hardening/softening

variable, in the velocity field.

In addition, in the proposed velocity field, it is assumed that a soil particle at the contact

area has the same velocity as the adjacent point on the wheel surface. However, if the entry

angle θ1 is large, as shown in Fig. 3.20, soil particles at the beginning of the contact may not

follow the wheel surface motion. Furthermore, a soil particle at this location shows a higher

tendency to escape to the surface. This means that its tendency to become compacted is

lower. Even further improvement to the model can be achieved by improving these aspects

of the velocity field. This can be done based on experimental observation and analysis of

the motion of soil particles under a wheel. For example, the soil visualization techniques

used by Senatore et al. (2012) and Skonieczny et al. (2012) could be used for this.

As an example of using the visualization techniques mentioned above, the velocity

filed obtained from the experiments reported by Senatore et al. (2012) is used to compare

with the velocity field assumed in this thesis. The experimental result is shown in Fig. 3.21,

while our simulation result is shown in Fig. 3.22. The comparison shows that the proposed

velocity field can closely capture the experimental results for the type of soil and loading

condition used in the experiments of Senatore et al. (2012).

Velocity field parameters, α1, α2, and α3, have to be identified in order to use the

proposed model. However, these parameters are not inherent to either the Drucker-Prager
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FIGURE 3.19. Trajectories of a soil particle when a wide rigid wheel with a di-

ameter of 0.3 m moves over it at various slip ratios, as predicted by the proposed

velocity field. Wheel and soil properties are the same as those used in this section:

(a) Soil particle is initially at the soil surface; and (b) soil particle is initially 10 mm

below the soil surface.

parameters or the Bekker model (α1 and α3 have units of m−1 and α2 is dimensionless).

These parameters, however, are related to soil properties. Based on our observation from

various simulation trials, we noticed that by varying α1 and α2, we can cover a rather wide

range of soil parameters, characterized by a range of values of n and kφ of the Bekker

model, without changing any parameter in the Drucker-Prager constitutive relation. Shear
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FIGURE 3.20. Schematic of assumed and actual velocity vectors of soil particle

near the beginning of contact when the entry angle (θ1) is relatively large.

response can also be captured by tuning α3 and φ (and c if soil cohesion is significant).

This interesting behaviour suggests that any parameter identification algorithm may need

to focus on finding α1 and α2 based on the normal stress distribution, independent of α3 and

φ (and possibly c). This reduces the dimensionality and complexity of the identification

problem. Also, identifying the other Drucker-Prager parameters is often not needed.

Considering these observations, we used a trial-and-error approach in selecting veloc-

ity field parameters. To appropriately select α1 and α2, it is required to have normal stress

distribution around the wheel at one operating condition with 10–20% wheel slippage. As

this information is usually not available, we use the Bekker model to find a normal stress

distribution. Here, we assume that the pressure-sinkage parameters are known. Parameters

α1 and α2 are, then, selected such that the normal stress distribution (from the entry angle

to the point of maximum stress) under the wheel at 20% slippage closely matches Bekker’s

pressure-sinkage curve.

After selecting α1 and α2, α3 is selected such that the traction force in an operating

condition with 15–20% wheel slippage under a given vertical load on the wheel is close to
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(a)

(b)

FIGURE 3.21. Velocity field of soil particles under a rigid wheel moving with 30%

slip ratio: (a) the horizontal; and (b) the vertical velocity components. The unit of

color bars is m/s (Courtesy of Karl Iagnemma from MIT)

the traction force calculated from the Bekker model. It should be noted that selection of

these parameters is done at only one loading and operating condition, but the results are

valid over a wide range of loading conditions, as shown in Figs. 3.5–3.7.

3.4 Validation with Experimental Results

The experimental data reported by Ding et al. (2011a) are used for validation of the

model proposed here. Wheel radius and width are 157.35 mm and 165 mm, respectively.
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FIGURE 3.22. Colour plots of the proposed velocity field for soil particles under

a rigid wheel moving with 30% slip ratio: (a) the horizontal; and (b) the vertical

velocity components. The unit of color bars is m/s

The steady-state response of our model is compared with the experimental data for various

values of slippage—Figs. 9(a), 9(b) and 9(c) of Ding et al. (2011a). The experimental data

reported for a wheel with no grousers, a wheel with 5-mm grousers, and a wheel with 10-

mm grousers are used for comparison, as shown in Figs. 3.24–3.26. To this end, a single-

wheel testbed is simulated in Vortex, in which forward and angular speed of the wheel are

controlled, while the wheel is free to move in the vertical direction, same as the example

discussed in Section 3.3.2. The soil data set used for parametrization of the elasto-plastic

constitutive relation is the same as what was used in the previous section, except for β and

d, which are set to 42.4◦ and 367 Pa, respectively, according to Eq. (3.12). This is done
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in order to comply with the soil properties reported by Ding et al. (2011a), where φ and c

are 31.9◦ and 250 Pa, respectively. It should be noted that the model parameters required

for our elasto-plastic constitutive relation were not available in (Ding et al., 2011a)7. In

spite of that, by tuning the parameters of the velocity field according to Section 3.3.4, the

terrain response is closely captured. Numerical values of the velocity field parameters are

displayed in Table 3.5. The vertical position of the wheel centre is shown in Fig. 3.23

during this motion.

TABLE 3.5. Parameters of the proposed velocity field used in the experimental validation

α1 (m
−1) α2 (-) α3 (m

−1)
1.0 0.045 25
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FIGURE 3.23. Vertical position of wheel centre vs. time under an 80-N vertical

load on the wheel centre and different slip ratios, as predicted by our model

7Appropriate parameter identification of this elasto-plastic model can be done by means of triaxial test

data (Helwany, 2007).
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The slip-sinkage phenomenon is captured by our model; however, as can be seen from

Fig. 3.24, the sinkage is underestimated compared with the experimental data. In our

model, the sinkage increases from almost 7 mm at zero slip to around 15 mm at 60% slip,

whereas in the experiments reported for a wheel with no grousers, the sinkage increases

from around 6 mm to around 17.5 mm8.
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FIGURE 3.24. Variation of wheel sinkage vs. slip ratio under an 80-N vertical load

on the wheel centre

Even though the predicted wheel sinkage values are not exactly the same as in the

experimental data, it is noteworthy that generally, the experimentally observed behaviour

is naturally captured by the proposed model. In addition, the drawbar pull and driving

torque estimation match the experimental data fairly well, as shown in Figs. 3.25 and 3.26.

In order to further verify the scalability of our model, its prediction is compared with

the experimental data under the different vertical loads reported by Ding et al. (2011a).

However, the only available data are for a wheel with 10-mm grousers under 35 N, 80 N,

and 150 N vertical loads. The comparison is displayed in Figs. 3.27–3.29. As expected, the

8It is noted from observing the experimental data in Fig. 3.24 that the sinkage at zero slip ratio decreases

when the grouser height increases. This suggests that, in these experiments, the sinkage has been measured

from the wheel surface, not from the grouser tip. In this case, the extra support, provided from grousers

penetration in soil, causes the wheel to sink less.
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FIGURE 3.25. Variation of developed drawbar pull vs. slip ratio under an 80-N

vertical load on the wheel centre
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FIGURE 3.26. Variation of applied torque on the wheel vs. slip ratio under 80-N

vertical load on the wheel centre

slip-sinkage is underestimated, due to the extra sinkage that these relatively big grousers

have caused in the experiments. Drawbar pull and driving torque (Figs. 3.28 and 3.29,

respectively), are captured relatively well.
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FIGURE 3.27. Comparison of wheel sinkage computed from the plasticity model

with experimental data reported in Fig. 18 of Ding et al. (2011a), under a 35-N, 80-

N, and 150-N vertical load acting on the wheel centre. A rigid wheel with 10-mm

grousers was used in the experiments.
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FIGURE 3.28. Comparison of the drawbar pull computed from the plasticity model

with experimental data reported in Fig. 18 of Ding et al. (2011a), under a 35-N, 80-

N, and 150-N vertical load on the wheel centre.
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FIGURE 3.29. Comparison of the driving torque computed from the plasticity

model with experimental data reported in Fig. 18 of Ding et al. (2011a), under a

35-N, 80-N, and 150-N vertical load acting on the wheel centre.

3.5 Integration In the Multi-body System

Algorithm 2, in combination with Algorithm 3, is suitable for implementation in the

multi-body dynamics simulation environment Vortex. Using these algorithms, soil reac-

tions are readily determined. These reactions can be added directly to the wheel as external

loads or by using the approach explained in Sections 2.4.2.1 and 2.4.2.3, in which the latter

is used here. It should, however, be mentioned that the damping coefficient cz introduced

in Eq. (2.4) is set to zero in all implementations associated with the elasto-plasticity model,

as the energy dissipation is ensured by capturing the plastic deformation in soil.

In this implementation, the terrain surface is represented by a height-field, similar to

the approach explained for semi-empirical models in Section 2.4.5. The active vertices,

explained in Algorithm 2, are determined by intersecting the wheel and the height-field

vertices. The least-squares plane approximation of the terrain, as discussed in Section 2.4.5,

is also used here to find the terrain normal nterrain and the wheel sinkage. Deformation of the

terrain and changes in the hardening/softening parameter, ε
p
vol, are stored in the vertices of
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the height-field. It is noted that this approach directly captures elasto-plastic deformations

and soil-hardening/softening properties, which directly results in the multipass effect.

Moreover, as a lateral force model is required to operate the rover on an irregular

terrain, the lateral force model explained in Section 2.4.3.1 is also added to the model.

For that, the normal stress distribution obtained from the elasto-plasticity model is used to

determine the shear stress in the contact area using Eq. (2.18). The shear stress is then inte-

grated over the contact area to determine Fl , which is used to set up the set-valued function

representation of the lateral force with its complementary kinematic variable expressed in

Eq. (2.25).

3.6 Execution Time of the Proposed Algorithms

Plane-strain FE simulation of a rigid cylinder on soil with Abaqus/Explicit was con-

ducted for comparison of execution time between the proposed approach and FEA, as

shown in Fig. 3.30. In this case, the wheel radius was 0.15 m and the wheel centre velocity

0.00375 m/s with a slip ratio of 20%. The wheel was released with zero initial velocity

and zero sinkage, while it was touching the soil surface. During the first 3.1 s, the wheel

only moved in the vertical direction under gravity. Then, it was gradually accelerated to

reach its final speed in 5 s. It continued moving with this velocity and 20% slip ratio. It

took about four hours to simulate 83.1 seconds of motion. The same motion was simulated

using the new approach with a wheel using 72 mesh points, which resulted in 8–9 active

mesh points, with total simulation time of about 180 s on the same processor (Intel CoreTM

2 Duo T7500 @ 2.2 GHz). This means about 80 times faster than with the FE simulation

mentioned above. The code based on the proposed approach, however, was written in Mat-

lab and only a single CPU core was used; therefore, shorter execution times are possible if

parallel computing is used.

In addition, as shown in Fig. 3.31, simulation of the Sojourner rover was conducted

in Vortex using the proposed approach on an Intel CoreTM i7-920 processor @ 2.67 GHz.
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FIGURE 3.30. Plane-strain FE simulation of a rigid cylinder on a soil with

Abaqus/Explicit. The cylinder moves with 20% slip ratio.

This rover has six wheels but all of the computations associated with the new model were

performed on a single CPU core. During straight-line motion with a rover speed of 0.10

m/s, every second of motion took about 13 s simulation time, while the total number of ac-

tive mesh points was 52 on average, which means about nine active mesh points per wheel.

Since this simulation was performed using only a single CPU core for the computation as-

sociated with the new model, interactive and even real-time performance can be achieved

for slow-moving rovers if the data-parallel nature of this model is used. It should be noted

that each active mesh point can be executed independently from the others, which makes

the model data-parallel, and therefore, readily parallelizable. This feature, however, has

not yet been implemented.

It is noted that for implementation on a single CPU core, the execution time linearly

depends on the number of active mesh points. As the wheel sinkage grows, the number

of active mesh points increases, which in turn can result in variation of the computational

time. This is not desirable for real-time applications. However, parallel processing can help

in improving that situation. The other variable that directly affects the execution time is the
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FIGURE 3.31. Sojourner rover simulation in Vortex using the elasto-plasticity

model. The rover moves on a height-field and the soil deformation and the harden-

ing parameter are stored in the height-field vertices.

rover speed. A higher rover speed requires a smaller time-step to ensure the convergence

of the elasto-plasticity solver, which could, in turn, increase the overall execution time.

It is also noted that by decreasing the number of mesh points on the wheel, which in

turn decreases the number of active mesh points, the discretization error increases. This

could lead to substantial oscillatory behaviour in the computed reaction forces. We rec-

ommend to choose the settings such that in a 2D simulation of a wheel, at least five active

mesh points cover the contact area.

3.7 Further Discussion and Comparison with Semi-empirical Models

The results obtained with the proposed model and the assumed velocity field were

close to those obtained based on the WR and Bekker models under steady-state operating

conditions for a particular slip ratio, as shown in Section 3.3.

Some of the limitations of the semi-empirical models were listed in L1 and L2 (Sec-

tion 2.3). To address limitation L1, a remedy is adding a damping term in the z-direction,
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as done in Chapter 2. However, in the method proposed in this chapter in Algorithm 2,

the energy dissipation due to dynamic motion in the z-direction is captured by using an

elasto-plastic soil representation.

Regarding the slip-sinkage phenomenon, the results obtained with the proposed method

showed a clear dependency of normal stress distribution on the slip ratio, with larger slip

ratio resulting in larger wheel sinkage. This aspect was analyzed in Section 3.3.3. The re-

sults of this approach are also compared with the experimental data reported by Ding et al.

(2011a); this comparison in Section 3.4 showed good agreement between the proposed

model and the experimental data, regarding the slip-sinkage phenomenon.

REMARK 13. A modification to the pressure-sinkage exponent n in the WR model was

suggested by Ding et al. (2010a), in order to capture the slip-sinkage behaviour observed

in their experimental data. To do so, they assumed that n changes linearly with the slip

ratio of the wheel, but no theoretical analysis was provided. �

Moreover, the stress distribution under the wheel obtained from the novel approach is

affected by the type of motion that the wheel undergoes. For example, consider the example

discussed in Section 3.3.2. At instants 0.045 s and 0.095 s when the wheel is moving

downward under the action of gravity, the normal stress distribution is even, as shown in

Fig. 3.32, while the shear stress is odd. As a result, the soil reaction can be expressed

as a single vertical force vector, as expected. In addition, when the wheel is moving, the

evenness no longer holds, as shown in Fig. 3.33, due to plastic deformation in soil. It

should be noted that this behaviour is achieved without any need for considering special

cases for a moving or stationary wheel, which is a limitation of semi-empirical relations as

discussed in Section 2.3 under L2. It should be mentioned that the only difference from the

conditions of the example in Section 3.3.2 and the results displayed in Figs. 3.32 and 3.33

is the use of 180 mesh points for the wheel, instead of 72.
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FIGURE 3.32. Normal and shear stress distributions obtained from the elasto-

plasticity model when the wheel is moving downward in the example included in

Section 3.3.2: (a) stress distributions at t = 0.045 s and vz =−0.357 m/s; (b) stress

distributions at t = 0.095 s and vz =−0.194 m/s. As expected, the contact stresses

are such that soil reaction can be expressed with a single vertical force vector.

It is noted that in the approach introduced in this thesis, no special assumption is con-

sidered to capture certain features like the slip-sinkage phenomenon. These features are

natural outcomes of the model. This, together with the other features, makes this novel

model and framework conceptually different from semi-empirical models. In addition, the
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FIGURE 3.33. Normal and shear stress distributions obtained from the elasto-

plasticity model when the wheel is moving with 10% slip. The result correspond to

t = 6.495 s and vz = 0.

proposed approach provides a framework for the more efficient use of elasto-plasticity the-

ory. Today, elasto-plastic constitutive models of soil are only used with FEM for wheel-soil

interaction analysis, but rover simulation on soft soil with FEM is prohibitively slow for

interactive simulation or mission planning, for example. The proposed approach provides

a good balance between fidelity and computational efficiency, by eliminating the need of

FEM.
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4.1 INTRODUCTION

CHAPTER 4

Experimental Investigation and Rover

Simulation

4.1 Introduction

An extensive set of experiments was conducted using a version of the Juno rover (Juno

II) that is owned by the Canadian Space Agency. The experiments were planned and per-

formed by our McGill research team with help from personnel of the Canadian Space

Agency, University of Waterloo, and Neptec Design Group. The author of this thesis played

a key, leading role in planning and carrying out these experiments. The experiments were

conducted at the facilities of the Canadian Space Agency in Ottawa. The rover used in the

experiments is displayed in Fig. 4.1.

In this chapter, a brief description of the rover and its model developed in Vortex are

presented in Section 4.2. In Section 4.3, a set of experiments conducted for identifying

rover properties like its total mass and centre of mass, its overall drive-train friction, and

motor constants are discussed.

The drawbar pull experiments performed on soft soil is the focus of Section 4.4. In

this section, the experimental results are compared with the results from simulation. The

simulation runs are conducted using the two wheel-soil modelling approaches developed

103



CHAPTER 4. EXPERIMENTAL INVESTIGATION AND ROVER SIMULATION

(a) (b)

FIGURE 4.1. Pictures of the Juno rover, captured during experiments.

and described in Chapters 2 and 3. Furthermore, the rover is loaded with extra weight

and the drawbar pull experiments are repeated in order to investigate the scalability of the

models developed in the thesis.

In Section 4.5, motion on irregular surfaces is investigated, upon comparing the exper-

imental results with the outcomes of both simulation models.

In addition to the experiments reported and analyzed in this thesis, other experiments

were conducted as well, including traversing obstacles and steering manoeuvres. These

will be used for further investigations and developments.

4.2 Description of the Rover and its Model

Juno II is a four-wheel rover with a linked walking beam suspension system (Viss-

cher and Reid, 2012). It was developed by Neptec and Ontario Drive Gear (ODG) for the

Canadian Space Agency. Juno II has two walking beams that are connected to form the

suspension system. This suspension makes the rover capable of adjusting the orientation

of its main body while travelling over obstacles and uneven terrain. In addition, it has an

active part in the suspension that allows for tilting the main body by means of a linkage.

On each side of the rover, two wheels are connected to a walking beam; each pair of wheels
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on the side are driven using a single DC motor (Fig. 4.2). Furthermore, the rover uses skid

steering.

Connecting Rod

Right Walking BeamLeft Walking Beam

Reflector Prism

Chassis

Left DC Motor

Linear Actuator of

Tilting Mechanism
Right DC Motor

FIGURE 4.2. Juno II rover

Overall approximate dimensions of the rover are 1.4 m in length, 1.5 m in width, and

0.6 m in height, with a total mass of approximately 317.6 kg. The wheels used during ex-

periments were ARGO tires with small grousers. The wheels have 22” diameter, including

the height of the grouser.

A full-scale model of the rover was developed in Vortex; snapshots of the rover model

during simulation are shown in Figs. 4.3 and 4.4. In order to develop this model, a CAD

model of the rover was used. The multi-body model of the rover has 13 rigid bodies and 15

joints. The rigid bodies and joints used in modelling the rover are shown in Fig. 4.5. The

rigid bodies are representations of: the chassis, two walking beams, four wheels, and six

bodies that connect the walking beams to the chassis at the rear end of the rover and allows

for tilting the chassis. The model of the rover in Vortex at different configurations of the

tilting mechanism is shown in Fig. 4.4.
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(a) (b)

FIGURE 4.3. Images from the simulation of Juno rover in Vortex.

(a) (b)

FIGURE 4.4. Simulated Juno rover in Vortex at different tilting configurations.

In Vortex, the above-mentioned rigid bodies, referred to as parts, are created at their

appropriate location. The parts are restrained together with the joints shown in Fig. 4.5.

As mentioned in Section 2.2, in order to detect contact between parts in Vortex, collision

geometries can be added to the parts. Cylindrical collision geometries are considered for

the wheels, while for the irregular terrain, a height-field is used.

Four types of joints are used in modelling the rover, which are revolute joint (RJ),

prismatic joint (PJ), spherical joint (SJ), and universal joint (UJ), as shown in Fig. 4.5. A

RJ or PJ adds five constraint equations to the multi-body dynamic equations. The RJ allows

for the relative rotation of the two bodies around the revolute axis, while the PJ allows for

relative translation along one direction. A UJ adds four constraint equations and allows for
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UJ1

RJ1

RJ2

RJ3

RJ4

RJ5 RJ6

UJ3

UJ2SJ1
SJ2

SJ3PJ1

RJ8

RJ7

RJ:  Revolute Joint

UJ:  Universal Joint

SJ:  Spherical Joint

PJ:  Prismatic Joint

FIGURE 4.5. Illustration of the rover model with its joints. Totally, eight revolute

joints, three universal joints, three spherical joints, and one prismatic joint are used

in the multibody model of the rover.

rotations around two co-planar perpendicular axes. A SJ adds three constraint equations

that constrain the relative position of the two bodies.

The allowable relative motion of some joints, e.g., relative rotation around the revo-

lute axis of the RJ and relative translation along the prismatic direction in the PJ, can be

controlled. These are referred to as controllable joint coordinates, which are either free or

actuated in the model developed for the rover. In an actuated controllable joint coordinate,

the relative velocity of the joint is specified, which adds an additional kinematic constraint

to the model.

In order to command the rover to move with specified angular velocities for wheels, the

controllable joint coordinates of the revolute joints connecting the wheels to the walking

beams (RJ1, RJ2, RJ3, and RJ4 in Fig. 4.5) are actuated. The rover moves by commanding

the appropriate angular velocities to these controllable joint coordinates. In addition, the
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controllable joint coordinate of the prismatic joint (PJ1 in Fig. 4.5) is modelled as actuated.

This allows us to tilt the rover. The rest of the joints in the model are free joints.

Furthermore, the torque or force associated to any of the above-mentioned kinematic

constraints are determined from the Lagrange multipliers associated to the constraint equa-

tion. It is noteworthy that the torques required to maintain the kinematic constraints related

to the controllable joint coordinates of RJ1 to RJ4 are of particular interest to us. These

torques, which are determined from the Lagrange multipliers corresponding to their kine-

matic constraints, are used to determine the equivalent torques of the left and right DC

motors, shown in Fig. 4.5. In this regard, the summation of the torques obtained from

RJ1 and RJ2, divided by the gear ratio of the drive-train, provides the equivalent torque of

the left DC motor determined from the simulation. Similarly, the torques obtained from

RJ3 and RJ4 provide the equivalent torque of the right DC motor. In the subsequent sec-

tions, these torques are compared against the motor torques determined from experimental

measurements.

4.3 Determining Rover Properties

For the inertial properties, the total mass of the rover and its centre of mass (COM)

were determined experimentally. To do so, we placed a digital weighting scale under each

wheel on a horizontal, flat concrete floor. This gave us the total weight of the rover and the

location of its COM, as projected on the horizontal plane. In addition, we tilted the rover,

as shown in Fig. 4.4, and recorded the readings of the weighting scales. This provided an

approximate location for the COM of the chassis.

The mass of the wheels were also measured using the weighting scales. The rest of the

inertial properties were determined based on the CAD model of the rover and its overall

mass.

The rover was instrumented with

• a tachometer for each motor to measure the angular velocities of the motors, and
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• an inertial measurement unit (IMU).

Furthermore, the rover was equipped with motor current measurement devices, which

reported motor currents versus time during the experiments. The torque of each motor is

determined in the thesis using the current measurements. In addition, the global position of

the rover was measured using a Total Station1 that tracks the position of a reflector prism

attached to the rover2. The reflector prism is shown in Fig. 4.2. During our experiments,

the position of the reflector prism was recorded versus time.

Before operating the rover on soft soil, it was commanded to move on a horizontal, flat

concrete floor and on a configurable metallic incline, as shown in Fig. 4.6.

FIGURE 4.6. Juno II on the configurable metallic incline.

The rover was operated at different velocities on a straight line trajectory on the hor-

izontal, flat concrete floor. From this set of experiments, an approximation of the torque

required to overcome the overall friction forces in the drive-train of the rover was found.

Figure 4.7 shows the measured currents for each motor at different motor speeds.

1http://www.worldoftest.com/totalstation.htm
2Total Station is an electronic-optical instrument that is used in surveying. This device can determine the

position of a reflector prism with respect to the position of the device itself, as long as a clear line-of-sight is

maintained between the prism and the total station.
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FIGURE 4.7. Measured current of both motors (left and right sides) versus average

speed of the motors for the rover moving on horizontal flat concrete floor. The

error-bars show the variation in the measured current.

The torque applied by each motor can be estimated from the measured current under

the assumption of a linear relation between the current and the torque:

Tmotor =
Kmt

αdc

Amotor (4.1)

where Tmotor is the estimated motor torque, Amotor is the measured current of the motor, Kmt

is the motor constant related to torque, and αdc is the duty cycle of the pulse-width modu-

lation (PWM) driver of the motor. The duty cycle varies between 0 and 1. By changing the

duty cycle, the effective voltage of the motor changes, which, in turn, causes the rover to

move at different speeds. The relation between the duty cycle and the average motor speed

is shown in Fig. 4.8. As expected, this relation is linear.

The motor constant Kmt is determined by driving the rover on slopes of 11.5◦, 13.5◦,

and 15.5◦. The comparison between the measured torques and the torques determined by

simulation is shown in Fig. 4.9. As the motors are similar, the same Kmt was determined for

both motors. These experiments were conducted by using a duty cycle of 0.45. It should be

mentioned that a velocity-dependent friction is added to each controllable joint coordinate
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FIGURE 4.8. Average motors speed versus the duty cycle for the rover moving on

horizontal flat concrete floor.

of the wheels, based on our measurements. To do so, the measured current in Fig. 4.7 with

the duty cycle shown in Fig. 4.8 are used to determine the motor torque from Eq. (4.1). For

each side of the rover, the motor torque determined in this approach is equivalent to the total

drive train friction. For each side, the torque is multiplied by the total drive train ratio, in

order to determine the equivalent friction that is added to the controllable joint coordinates

of the wheels. With this model, the torque determined by simulation can closely match

the torque expected from the experiments and can determine the energy expenditure for a

certain manoeuvrer of the rover.

In the next section, the drawbar pull experiments are reported and the results compared

with both modelling approaches. After that, the operation of the rover on uneven terrain

is investigated. The trajectory of the rover and energy expenditure are compared from the

simulation runs and experiments.

4.4 Drawbar Pull Experiments on Soft Soil

During this set of experiments, the rover was commanded to move in a straight line

on uncompacted soil with a flat, horizontal surface. In the experiments, the rover was held

by a rope, and its speed was manually controlled by constantly feeding a rope through a
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FIGURE 4.9. Comparing the motor torques obtained from the simulation and the

torque determined from experiments using current measurements with the deter-

mined Kmt of 0.251: (a) left motor; (b) right motor

descender. The tension in the rope was measured using a load cell. This tension is equal to

the drawbar pull developed by the rover. The input duty cycle of the motors was set to 0.45

in all experiments.

A picture of the descender and the load cell is shown in Fig. 4.10. The rover with the

cable and the load cell attached to it is shown in Fig. 4.11. This picture was taken after fin-

ishing an experiment. In addition, a schematic diagram illustrating this set of experiments

is shown in Fig. 4.12.

Several experiments were carried out. In each experiment, the intention was to keep the

speed of the rover constant, but different from other experiments. This caused the wheels to

maintain a relatively constant slip ratio in each run, while obtaining the results at different

slip ratios. The average rover velocity and the average angular velocity of the rover were

used to compute the slip ratio for each experiment. For one of the tests, the measurements

over time are displayed in Figs. 4.13–4.16. As can be seen in Fig. 4.15, the angular velocity

is fairly constant. In addition, rover speed can be assumed constant from Fig. 4.16, as the

rover position changes linearly over time.
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FIGURE 4.10. The descender and the load cell used in the drawbar pull tests

FIGURE 4.11. The rover attached to the load cell after a drawbar pull test

Fixed pole
Descender Load cell

Rover

Manual Feeding of the rope

through the descender

FIGURE 4.12. Schematic illustration of the drawbar pull experiments
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FIGURE 4.13. Measured tension in the rope over time. Sampling frequency of the

load cell was 3 Hz.
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FIGURE 4.14. Measured motor current over time during the drawbar pull test.

Sampling frequency was 20 Hz.
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FIGURE 4.15. Measured motor speed over time during the drawbar pull test. Sam-

pling frequency was 20 Hz.
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FIGURE 4.16. Measured rover position over time during the drawbar pull test.

Sampling frequency of the total station was 2 Hz.
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4.4.1 Comparison with a Semi-empirical Terramechanics Model

In order to conduct simulation runs, a setup similar to the drawbar pull experiments

was created using Vortex. In this simulation setup, the terrain is represented by a height-

field, as explained in Section 2.4.5. The terrain surface is initially flat and horizontal. In

this setup, a resisting force, FDBP, is applied to the rover chassis. This is the force applied

by the rope to the rover in the experiment and is equal to the drawbar pull.

In each simulation run, the rover is commanded to move by setting a constant angular

velocity to all wheels. As mentioned in Section 4.2, this is done by setting the proper

angular velocities in the controllable joint coordinates of RJ1, RJ2, RJ3, and RJ4. In each

simulation run, FDBP is incrementally increased from zero to a desired drawbar pull value.

By incrementally increasing the value of FDBP, while the angular velocities of the wheels

remain constant, the rover slippage increases gradually. After reaching the desired value

for FDBP, the rover moves under a steady-state condition with a constant slip ratio. The slip

ratio, the final FDBP, and the driving torque to each wheel are recorded from each simulation

run.

TABLE 4.1. Parameters of the WRI model with multipass used in simulation runs

with Juno II rover

φ (deg) 21

c (Pa) 2900

k′φ (-) 300

k′c (-) 0.69

n (-) 1.0

Kd (m) 0.004

c1 (-) 0.0

c2 (-) 0.45

λ (-) 0.2

γs (N/m3) 1.2×104

k0 (N/m3) 0

Au (N/m4) 5.03×108

The framework developed and explained in Chapter 2 is implemented in Vortex and

used for the simulation. The terramechanics relations are based on the WR model with
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a non-zero exit angle, as suggested by Ishigami et al. (2007), which is referred to as

WRI model in the thesis and was explained in Section 1.3. In addition, we employed the

pressure-sinkage relation of Reece, expressed in Eq. (1.14), with this model. Furthermore,

the multipass effect is considered in the simulation, as explained in detail in Section 2.4.5.

An important step in creating the simulation setup is the selection of soil parameters.

These were selected and tuned based on the results of two experiments: (i) the experiment

with no rope attached (no drawbar pull); and (ii) the experiment that corresponds to the

maximum drawbar pull with the highest slip ratio3.

The tuned parameters of this model with the multipass effect are reported in Table 4.1.

As explained in Section 2.4.5, k0 and Au are model parameters that define the elastic un-

loading/reloading behaviour. In addition, the soil is assumed to be initially uncompacted,

in the model, as the terrain was prepared to be uncompacted before each experiment.
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FIGURE 4.17. The drawbar pull versus slip ratio for different values of Kd.

3An alternative way in the selection of soil parameters for this model is via the plate-penetration and the

shear tests using the bevameter. However, we did not have access to a bevameter during our experiments.
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It should be mentioned that the critical soil parameters in this model are k′φ , k′c, φ , c,

and Kd . k′φ and k′c determine the pressure-sinkage relation, Eq. (1.14), after selecting n and

γs. As the wheel sinkage in the no-drawbar pull experiment is mainly dependent on the

pressure-sinkage relation, k′φ and k′c are tuned such that the observed wheel sinkage of that

experiment is close to the simulation results.
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FIGURE 4.18. Comparing the drawbar pull obtained from experiments with the

values obtained from simulation using the approach of Chapter 2 and the WRI

model.

Moreover, as c and φ dictate the shear strength of soil according to Eq. (2.8), they

are selected such that the maximum drawbar pull approaches the simulation outcome. The

parameter Kd , which appears in Eq. (2.8), defines how the drawbar pull changes with slip

ratio. The simulation results for different values of Kd are displayed in Fig. 4.17. In addi-

tion, according to Eq. (2.1), parameter λ defines the exit angle of the wheel. As the wheels

of Juno II have non-negligible flexibility, a rather large value of λ is selected to compensate

for the effect of wheel flexibility. Furthermore, k0 and Au are selected based on the values

reported by Wong (2010) for sand.
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FIGURE 4.19. Comparing the driving torque of the left side motor obtained from

experiments with the values obtained from simulation using the approach of Chap-

ter 2 and the WRI model.
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FIGURE 4.20. Comparing the driving torque of the right side motor obtained from

experiments with the values obtained from simulation using the approach of Chap-

ter 2 and the WRI model.
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The comparison between the simulation and experiment for the drawbar pull and driv-

ing torque versus slip ratio are shown in Figs. 4.18–4.20. As can be seen from these figures,

the simulation results can closely capture the experimental data. The experimental results

for drawbar pull, Fig. 4.18, show that by slightly increasing the slip ratio, from around zero

to around 8%, the drawbar pull almost reaches its maximum value. This suggests that the

shear deformation modulus Kd for this soil should be very small, which results in selecting

a very small value for Kd in our model, as reported in Table 4.1.

The results displayed in Figs. 4.19 and 4.20 also show an interesting behaviour for the

driving torque requirement. As expected, in the no-drawbar pull test, which corresponds

to a slip ratio of around zero, a non-negligible torque is required to drive the rover. This

torque is needed to overcome the rolling resistance and the drive train friction. Overall, the

results show that at low slip ratios, the simulation closely captures the experimental results,

while at high slip ratios the model slightly under-estimates the torque requirements.

In addition, the drawbar pull experiments were repeated for the same rover, while its

mass was increased by adding massive metallic disks to it. The rover with the added mass

is shown in Fig. 4.21. The total added mass was 111.5 kg.

FIGURE 4.21. The rover with the added mass to its main frame.

The drawbar pull and the driving torque of this set of experiment were also compared

with simulation results. In this case, the simulation setup was the same as the setup used
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FIGURE 4.22. Comparing the drawbar pull obtained from experiments with the

values obtained from simulation using the the approach of Chapter 2 and the WRI

model. The rover was heavier, as shown in Fig. 4.21.
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FIGURE 4.23. Comparing the driving torque of the left side motor obtained from

experiments with the values obtained from simulation using the approach of Chap-

ter 2 and the WRI model. The rover was heavier, as shown in Fig. 4.21.
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for the previous test, except that the mass of the rover chassis was increased by 111.5 kg,

and its other inertial properties were update accordingly.
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FIGURE 4.24. Comparing the driving torque of the right side motor obtained from

experiments with the values obtained from simulation using the approach of Chap-

ter 2 and the WRI model. The rover was heavier, as shown in Fig. 4.21.

The results are shown in Figs. 4.22–4.24. Apparently, the simulation results can closely

represent the experimental data. This set of results is of particular interest, as it shows that

the same model with the same parameters can appropriately represent the 35% heavier

rover.

4.4.2 Comparison with the Elasto-plasticity Model

The model developed and described in Chapter 3 is used to simulate the interaction

between the wheels of the rover and soil. The same sets of experiments were used to

compare the simulation results against the experiments.

In order to use this model, both the Drucker-Prager soil parameters and α1, α2, and

α3 need to be determined. In this example, the parameters of the Drucker-Prager model

were those used in Section 3.3, except for β , d, and Young’s modulus. The αi parameters
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are also determined using the procedure explained in Section 3.3.4. The hardening data are

those in Table 3.2, the rest of the parameters being displayed in Tables 4.2 and 4.3.

TABLE 4.2. Material properties for the elasto-plastic constitutive relation

Young’s modulus, E (Pa) 8×105

Poisson’s ratio, ν (-) 0.32

Angle of friction, β (deg) 38

Material cohesion, d (Pa) 3161

Cap eccentricity, Re (-) 0.15

Initial value for ε p
vol (-) 0.001

Transition surface parameter, α (-) 0.01

TABLE 4.3. Parameters of the proposed velocity field used in the elasto-plasticity model

α1 (m
−1) α2 (-) α3 (m

−1)
3.5 0.045 100

The comparison between the simulation results and the experiments obtained with the

Juno II without added mass are displayed in Figs. 4.25–4.27.
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FIGURE 4.25. Comparing the drawbar pull obtained from experiments with the

values obtained from simulation using the elasto-plasticity model.
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FIGURE 4.26. Comparing the driving torque of the left side motor obtained from

experiments with the values obtained from simulation using the elasto-plasticity

model.
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FIGURE 4.27. Comparing the driving torque of the right side motor obtained from

experiments with the values obtained from simulation using the elasto-plasticity

model.
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As can be seen in Fig. 4.25, the drawbar pull determined using the model developed

for Juno II with the elasto-plastic wheel-soil interaction model can closely capture the ex-

perimental results. According to the simulation results, the drawbar pull increases rapidly

with the slip ratio from zero to 10% slip ratio. Then, the drawbar pull increases at a slower

pace up to around 30% of slip ratio. After that, the drawbar pull decreases slightly upon

increasing the slip ratio. The driving torque results displayed in Figs. 4.26 and 4.27 also

show a good match between simulation and experiments.
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FIGURE 4.28. Comparing the drawbar pull obtained from experiments with the

values obtained from simulation using the elasto-plasticity model. The rover was

heavier, as shown in Fig. 4.21.

In addition, the experimental results obtained from a rover with the added mass are

compared with the simulation results obtained from using the elasto-plasticity model; the

results are displayed in Figs. 4.28–4.30.

As can be seen from Figs. 4.28–4.30, the simulation results closely capture the exper-

imental data, which further validates the scalability of the elasto-plasticity-based model,

with the 35% heavier rover. This was the behaviour expected from this model, as the ex-

perimental investigation explained in Section 3.4 represented this feature of the model.
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FIGURE 4.29. Comparing the driving torque of the left side motor obtained from

experiments with the values obtained from simulation using the elasto-plasticity

model. The rover was heavier, as shown in Fig. 4.21.
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FIGURE 4.30. Comparing the driving torque of the right side motor obtained from

experiments with the values obtained from simulation using the elasto-plasticity

model. The rover was heavier, as shown in Fig. 4.21.

126



4.5 MOTION ON AN IRREGULAR SURFACE

In addition, Fig. 4.28 shows that the drawbar pull decreases when the slip ratio in-

creases from around 42% to around 68%. The simulation also shows a reduction in the

drawbar pull when the slip ratio increases from around 32% to 70%. While the torque re-

quirements have increased constantly with the slip ratio (Figs. 4.29 and 4.30), the drawbar

pull does not show the same pattern, as mentioned above. This result can be explained by

looking at the elasto-plasticity model, as discussed in detail in Chapter 3: increasing the

slip ratio causes the slip-sinkage effect. Increasing the sinkage, in turn, could increase the

rolling resistance Rc. Increasing the slip ratio will also increase the traction force. There-

fore, depending on the type of soil and loading condition, when the slip ratio increases, one

could see two phases in the drawbar pull behaviour. In the first phase, the drawbar pull

increases and then may reach a constant value. In this phase, the increase in the traction

force is higher than the increase in the resistance, which results in the positive gain in the

drawbar pull. Then, by further increasing the slip ratio, in the second phase, the drawbar

pull may show a decrease. This is because of excessive slip-sinkage happening at high slip

ratios, which causes higher increase rate in the resistance than the traction force. However,

during the entire range of slip ratio, the resistance torque increases with the slip ratio.

4.5 Motion on an Irregular Surface

In this experiment, the rover is operated on irregular terrain made of uncompacted soft

soil. The developed multi-body model of the rover, explained in Sections 4.2 and 4.3, is

used with the wheel-soil interaction models and frameworks, explained in Chapters 2 and

3, to simulate the rover motion associated with this experiment.

For this case, the terrain was scanned using a LIDAR system. The raw data from the

LIDAR scan are displayed in Fig. 4.31. The LIDAR data are used to create the terrain

profile compatible with the simulation setup, which is a height-field. This height-field uses

a fixed 0.04 m grid size in this example.
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Location of 

LIDAR Scanner

FIGURE 4.31. LIDAR scan of the test area

FIGURE 4.32. Location of the rover on the terrain before starting the experiment.

The location of the rover before starting this experiment is shown in Figs. 4.32 and

4.33, which is different from its location shown in the LIDAR scan (Fig. 4.31). The reason

is that the rover was moved to its initial location after taking the LIDAR scan of the test area,

in order to have the proper information of the terrain surface used on the experiment. It is
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noted that the terrain under the rover cannot be scanned, as the rover blocks the line of sight

of the LIDAR scanner. The location of the rover and its heading direction, however, was

approximately determined from the measurements and the pictures taken before starting

the test.

FIGURE 4.33. The height-field terrain prepared using the LIDAR scan data, with

the initial location of the rover.

The terrain profile used in the simulation and the location of the rover before starting

the simulation are displayed in Fig. 4.33. During simulation, the rover was commanded by

the same angular velocity profile that was obtained from the experiments. However, the

angular velocities obtained from the experiments were first filtered. The original angular

velocities and the filtered data are shown in Figs. 4.34 and 4.35.
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FIGURE 4.34. The angular velocity of the left motor obtained from the experiment

and the filtered value used in the simulation.
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FIGURE 4.35. The angular velocity of the right motor obtained from the experi-

ment and the filtered value used in the simulation.

The trajectory of the reflector prism, which was attached to the rover chassis, was

recorded during the experiment. This trajectory is compared with that obtained from the

simulation runs. In addition, the driving torque and the energy consumption are compared

with the experiments.

Similar to the results of drawbar pull experiments discussed in Section 4.4, the ex-

perimental outcomes are first compared with the simulation results obtained when using

the WRI model, which was implemented in Vortex based on the approach explained in

Chapter 2. The results are displayed in Figs. 4.36–4.40.
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FIGURE 4.36. The global position of the reflector, attached to the rover. The ex-

perimental results are compared with the values obtained from simulation using the

semi-empirical model.

As can be seen from Fig. 4.36, the rover trajectory, which was obtained by tracking the

reflector prism attached to its chassis, is captured with very good accuracy. In the experi-

ment, the rover has mainly moved along the x-axis. This motion is accurately represented

in the simulation, as shown in Fig. 4.36. During the experiment, the rover climbs a small
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FIGURE 4.37. The energy expenditure of the left side motor. The experimen-

tal results are compared with the values obtained from simulation using the semi-

empirical model.
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FIGURE 4.38. The energy expenditure of the right side motor. The experimen-

tal results are compared with the values obtained from simulation using the semi-

empirical model.

dune, as shown in Fig. 4.33. The motion in the z-axis, shown in Fig. 4.36, represents the

climbing of and then descending from the dune over time.

Furthermore, the energy expenditure is shown in Figs. 4.37 and 4.38. The energy

expenditure is determined based on the power consumption of the motors. The latter is
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FIGURE 4.39. The driving torque of the left side motor. The experimental results

are compared with the values obtained from simulation using the semi-empirical

model.
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FIGURE 4.40. The driving torque of the right side motor. The experimental results

are compared with the values obtained from simulation using the semi-empirical

model.

determined from multiplying the motor torque by its angular velocity. Overall, the simu-

lation results are acceptable with some drift observed in the results of the left motor. The

reason for a lower accuracy in the result of the left wheel could be related to inaccuracy in
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the scanned terrain data. As can be seen from Figs. 4.31 and 4.33, the LIDAR scanner is

placed in the right side of the rover test area. This makes the scanner to be closer to the

terrain areas that come in contact with the right-side wheels of the rover, and therefore, lead

to a higher accuracy in the scanned surface.

Moreover, the driving torque obtained from simulation is compared with experiments,

as shown in Figs. 4.39 and 4.40. In both figures, the experiments show more variation than

the simulation. The rather small oscillations in the driving torques obtained from simula-

tion are related to our implementation explained in Section 2.4.5. As explained there, the

terrain under each wheel is approximated by a plane obtained using a least-squares approx-

imation. This approach, basically, filters out some of the irregularities in the terrain.

The elasto-plasticity model explained in Chapter 3 with the model parameters shown

in Tables 4.2 and 4.3 is also used to simulate this motion of the rover. The results are

displayed in Figs.4.41–4.45.

As can be seen from Fig. 4.41, the trajectory of the rover was also captured with good

accuracy with using this novel model. Furthermore, the comparison between the energy

expenditure, as shown in Figs. 4.42 and 4.43, shows a similar pattern to what was observed

in Figs. 4.37 and 4.38. Moreover, the simulation results regarding the driving torque of

both motors versus time are compared with the experimental results, as shown in Figs. 4.44

and 4.45. The results in Figs. 4.44 and 4.45 show considerable oscillation in the torque

requirement determined from the simulation. This behaviour can be explained by recalling

Section 3.5: in the elasto-plasticity model implementation, the least-squares plane is only

used to determine the normal direction of the plane locally under the wheel, but the active

vertices used in Algorithm 2 are determined directly from the height-field vertices. That

is, the terrain irregularities are not filtered, which, in turn, leads to a higher variation in the

simulation results.
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FIGURE 4.41. The global position of the reflector, attached to the rover. The ex-

perimental results are compared with the values obtained from simulation using the

elasto-plasticity model.

It should be mentioned that the wheel slippage seen during motion was relatively small,

and the slip ratio was below 10%. This could be the main reason for having a very good

match between simulation and experiment in the total travelled distance. Had the rover
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FIGURE 4.42. The energy expenditure of the left side motor. The experimental

results are compared with the values obtained from simulation using the elasto-

plasticity model.
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FIGURE 4.43. The energy expenditure of the right side motor. The experimental

results are compared with the values obtained from simulation using the elasto-

plasticity model.

operated with higher slip, the results could have shown larger differences between experi-

ment and simulation, in terms of the rover trajectory. The reason for this behaviour lies in

that, in both experimental and simulation results, as shown in Figs. 4.18 and 4.25, when the
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FIGURE 4.44. The driving torque of the left side motor. The experimental results

are compared with the values obtained from simulation using the elasto-plasticity

model.

slip ratio is around 20% and higher, the drawbar pull does not significantly change under

significant changes in the slip ratio.

The energy expenditure determined from simulation runs using both models also shows

a relatively good match compared to the experiments. As energy expenditure is an impor-

tant aspect in mission planning of rovers, the simulations can be very helpful in this regard

as well.
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FIGURE 4.45. The driving torque of the right side motor. The experimental results

are compared with the values obtained from simulation using the elasto-plasticity

model.

138



5.1 THESIS CONTRIBUTIONS

CHAPTER 5

Conclusions and Recommendations for Future

Work

5.1 Thesis Contributions

In this thesis two modelling approaches for wheel-soil interaction were introduced.

The first approach, presented in Chapter 2, is based on widely used semi-empirical ter-

ramechanics models. In order to implement the semi-empirical terramechanics models in

a multi-body dynamics simulation environment, a novel framework was developed. As

shown in Chapter 2, using this framework, a multi-body dynamics model combined with

semi-empirical terramechanics relations can be formulated as a mixed linear complemen-

tarity problem. With this formulation, fast and real-time simulation of rovers on irregular

terrain was achieved. It was shown through simulation and experimental verification that

this model is capable of producing realistic simulated behaviour even on non-planar, rough

terrain. In this implementation, the terrain is represented as a high resolution height-field

data structure, which deforms under wheel-induced soil compaction. To deal with motion

on rough terrain, we developed an efficient scheme in approximating the contact area us-

ing a least-squares technique. The method captures wheel-induced soil deformation and

hardening, which results in the multi-pass effect.
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In Chapter 3, we introduced a novel approach in representing the interaction between

wheel and soil that allows for efficient dynamics modelling, simulation and analysis of

rovers, and provides a theoretical framework in wheel-soil interaction. In this approach,

elasto-plasticity theory is employed in order to determine the stress field in the contact area.

A velocity field is proposed for the motion of soil particles in the vicinity of the contact

region. Using this velocity field and the Drucker-Prager constitutive relation for soil, the

stress field in the contact area is determined incrementally using an explicit integration

scheme explained in Algorithm 2. In this approach, the soil plastic deformation and energy

loss due to this deformation are captured. In addition, elastic rebound of soil is determined

using Algorithm 3. The proposed approach is modular in that it does not have to be used

with the Drucker-Prager constitutive relation and the proposed velocity field. Any elasto-

plastic constitutive relation and other possible velocity-field representations can be used in

this framework, if needed, to more closely capture the behaviour of different soil types.

As discussed in detail in Chapter 3, the results are in good agreement with experimental

data available in the literature and with results that can be obtained based on semi-empirical

terramechanics models. The proposed model, however, goes beyond the semi-empirical

terramechanics models and is compatible with multibody dynamics environments. Energy

dissipation due to soil plastic deformation is directly represented in our model. In addition,

the slip-sinkage phenomenon is captured by the model as a natural outcome. The process-

ing time required for the computation of soil response using the proposed model is much

shorter than that required by FEA, and its implementation is readily parallelizable. There-

fore, the framework introduced here allows for fast and even real-time simulation of rovers

on soft soil, while a high-fidelity elasto-plastic constitutive relation can be used for soil. In

addition, the model has the capability of covering a broad range of motion possibilities that

can happen under general motion conditions.
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In Chapter 4, the models developed in the thesis are used to perform rover simulation.

The simulation results are compared against an extensive set of experiments conducted with

the Juno II rover. In this chapter, the multi-body model of the rover developed in Vortex was

discussed in detail. Three sets of experiments were conducted and reported in this chapter.

The first set was performed on horizontal, flat concrete floor and on a metallic incline, in

order to determine rover properties. The second set of experiments was conducted on soft,

uncompacted soil with a horizontal flat surface, in which the drawbar pull of the rover was

measured at various ranges of wheel slippage. The experiments were repeated for the rover

with added mass.

Operation on irregular terrain was the scope of the last set of experiments in Chapter 4.

In this case, the terrain surface was scanned using a LIDAR scanner, before operating the

rover on it. Using the LIDAR data, a height-field terrain was generated in Vortex. In the

simulation, the wheels of the rover were commanded with the same angular velocities that

were obtained based on measurements during experiments. The rover trajectory, motor

torques, and the energy expenditure obtained from simulation were compared with experi-

mental data.

5.2 Recommendations for Future Work

The model developed in Chapter 3, based on elasto-plasticity theory, provides a novel

framework for studying wheel and soil interaction. We explained the model and all its

essential components in the thesis. As with almost any new idea, a number of investigations

can be conducted to assess its performance and achieve even further improvements.

The two main parts of the model that can be further investigated are the proposed

velocity field and the elasto-plastic constitutive relation. The assumed velocity field was

discussed in Subsection 3.3.4. Experimental observation of soil particle motion under a

wheel can shed light on how the velocity field can be further developed, if needed, in order
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to more closely capture any specific type of soil and wheel motion. This type of experi-

ments has been recently reported by Senatore et al. (2012) at MIT. Similar experiments are

also being conducted at Carnegie Mellon University (Skonieczny et al., 2012). It should

be mentioned that one of the important issues that needs to be investigated is the effect of

terrain slope on the velocity field.

Moreover, the use of alternative elasto-plastic soil models, depending on the type of

soil, can be investigated. For example, the models proposed by Manzari and Dafalias

(1997) and Taiebat and Dafalias (2008) can be good candidates for operations on sand.

These models capture both hardening and softening behaviour in sand, their numerical im-

plementations are relatively straightforward, and they are computationally efficient.

Regarding semi-empirical models, extra effort in modelling lateral forces is needed.

In this regard, capturing the changes in soil surface induced from the soil bulldozed by

the wheel sidewall can be an interesting direction for future investigation. In addition, as

mentioned in the thesis, the recent findings of Ding et al. (2011b) suggest that in the case of

a large angle ρw between wheel-sidewall and soil surface, the approximation of the failure

pattern using two wedges leads to more acceptable results, when compared with the single-

wedge model of McKyes (1985). This finding is worth further investigation. Moreover,

additional experimental investigation on inclined soil surfaces can be beneficial. In this

regard, inclined single-wheel testbeds can be employed.
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A.1 BASIC ELEMENTS OF AN ELASTO-PLASTIC MODEL

APPENDIX A

Drucker-Prager Model with Cap Hardening

The Drucker-Prager with cap hardening plasticity model is used in this thesis to represent

the plastic response of soil. In order to explain this model, some basic concepts regarding

elasto-plasticity theory are briefly recalled.

A.1 Basic Elements of an Elasto-plastic Model

The concept of an elasto-plastic model can be explained with a simple test: uniaxial

tension of ductile metals. The common mathematical model used to capture the behaviour

of ductile metals in uniaxial tests can be illustrated in Fig. A.1, which is a 1D elasto-plastic

constitutive model.

In this model, if the total strain in the material is such that the tensile stress σ re-

mains below the yield stress σy, the deformation is purely elastic. The total elastic strain

that corresponds to σy is εy. It is noted that for ductile metals, a linear relation has been

experimentally observed between stress and strain in the elastic domain.

If the total strain exceeds εy, the material will show permanent or plastic deformation.

According to this model, when loading to σ1 > σy, as shown in Fig. A.1, and then fully

unloading, a plastic strain ε
p
1 will remain. Now, if loading is applied again, such that the

total strain ε2 is below ε1, the material will show only elastic deformation, i.e., by removing
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σ

σy

σ1

εε p
1

ε2 ε1εy

FIGURE A.1. Mathematical model for the uniaxial tension experiment (adapted

with modification from (de Souza Neto et al., 2008))

the load, the strain will become ε
p
1 . The stress in this case can be obtained from:

σ2 = E(ε2 − ε p
1 ) (A.1)

where a linear elastic model is used to relate the elastic strain to the stress, and E is the

Young modulus of the material. In general, the total stress can be expressed based on the

total elastic strain as:

σ = Eεe (A.2)

which means that the elastic strain is obtained from below in this model of the uniaxial

experiment:

εe = ε − ε p (A.3)

That is, the additive decomposition of the strain tensor holds for this model.

Another observation from the uniaxial test and its mathematical model is that after

the material has experienced plastic deformation, its yield stress increases. From Fig. A.1,
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A.2 ELASTO-PLASTIC STRAIN DECOMPOSITION AND THE ELASTIC LAW

when loading to σ1 and start unloading, the new yield stress is σy1 = σ1, which is larger

than the yield stress σy before plastic deformation. This evolution of the yield stress caused

by the plastic strain is known as hardening (de Souza Neto et al., 2008).

According to de Souza Neto et al. (2008), a general elasto-plastic constitutive model

contains the elements listed below:

- A rule for elasto-plastic strain decomposition and an elastic law

- A yield criterion, that is expressed with a yield surface

- A plastic flow rule and a hardening law.

Each of these elements is discussed below for the assumed elasto-plastic constitutive

model (Drucker-Prager with cap hardening).

A.2 Elasto-plastic Strain Decomposition and the Elastic Law

In this thesis, the additive decomposition of the strain tensor is adopted, which is ex-

pressed in incremental form as1:

Δεεε = Δεεεe +Δεεε p (A.4)

In addition, a linear elastic law is assumed for the elastic behaviour of soil. This law

can be expressed as:

σσσ = C : εεεe (A.5)

where C is the fourth-rank elastic stiffness tensor and symbol “:” denotes double contrac-

tion, as needed between a fourth-rank tensor C and a second-rank tensor εεεe (de Souza Neto

et al., 2008), to produce a second-rank stress tensor. In addition, it is noted that the stress

tensor is obtained from the total elastic strain tensor.

1It is noted that in finite deformation, the decomposition of elastic and plastic parts are multiplicative

(Khan and Huang, 1995); however, as mentioned in (SIMULIA, 2010), the additive decomposition still holds

when elastic strain is infinitesimal and the strain rate is measured as the rate of deformation.

155



APPENDIX A. DRUCKER-PRAGER MODEL WITH CAP HARDENING

A.3 Yield Criterion and Yield Surface

In elasto-plastic materials, the principle of yield and plastic flow can be expressed by

means of a yield surface.

The yield surface, described by a scalar yield function F , is defined in terms of the

stress invariants p and q, for the Drucker-Prager with cap hardening plasticity model. p is

related to the first moment of the stress tensor

p =−1

3
tr(σσσ), (A.6)

while q, the von Mises equivalent stress, is proportional to the square root of the second

moment of S:

q =

√
3

2
tr(S2) (A.7)

where S is the stress deviator, defined as:

S = σσσ + pI (A.8)

and I is the identity tensor.

d

β

q

Fs

Ftr

Fc

pa pb p

FIGURE A.2. Yield surface in the p-q plane (adapted from (SIMULIA, 2010))
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A.3 YIELD CRITERION AND YIELD SURFACE

The yield surface as depicted in Fig. A.2, consists of three parts in the p-q plane: the

failure surface Fs; the transition surface Ftr; and the cap surface Fc. They obey the relations

below (SIMULIA, 2010):

Fs = q− p tanβ −d = 0 (A.9)

Fc =

√
(p− pa)2 +

(
Req

1+α −α/cosβ

)2

−Re(d + pa tanβ ) = 0 (A.10)

Ftr =

√
(p− pa)2 +

[
q−
(

1− α

cosβ

)
(d+ pa tanβ )

]2

−α(d + pa tanβ ) = 0 (A.11)

where β and d are related to the angle of friction and cohesion of the material, respectively.

As mentioned in (SIMULIA, 2010), Re is a material parameter referred to as the cap ec-

centricity, while α , typically between 0.01 and 0.05, is used to define the size of Ftr. pa is

obtained from the evolution variable pb as (SIMULIA, 2010):

pa =
pb −Red

1+Re tanβ
(A.12)

As will be explained in Section A.4, pb defines the hardening or softening behaviour.

Based on Eqs.(A.9)–(A.12), the yield function can be expressed as F(σσσ , pb) for the

above-mentioned Drucker-Prager model. According to elasto-plasticity theory, (Khan and

Huang, 1995; de Souza Neto et al., 2008), when F(σσσ , pb) < 0, the material is in an

elastic state. Therefore, the entire elastic domain can be expressed by the following set

(de Souza Neto et al., 2008):

E = {σσσ | F(σσσ , pb)< 0} (A.13)

It is noted that in the elastic domain, plastic yielding is not possible. Furthermore,

when the yield function is zero, i.e., F(σσσ , pb) = 0, plastic yielding and plastic flow can
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occur. The set of stresses at every given pb that satisfy the plastic yielding condition form

a surface, which is referred to as the yield surface and is defined as:

Y = {σσσ | F(σσσ , pb) = 0} (A.14)

This yield surface forms the boundary of the elastic domain. It should also be men-

tioned that any state of stress that leads to a positive yield function is not plastically admis-

sible (Khan and Huang, 1995; de Souza Neto et al., 2008).

A.4 Plastic Flow Rule and the Hardening Law

In order to have a complete plasticity model, we need to define the plastic flow rule

and a law for the evolution of hardening-related variables. In this regard, it is convenient

to define the flow rule in terms of a scalar flow potential function (de Souza Neto et al.,

2008). In the Drucker-Prager with cap hardening model, the flow potential G is a scalar

that consists of two parts in the p-q plane; plastic flow on the cap region Gc, and plastic

flow on the failure and transition regions Gs (SIMULIA, 2010):

Gc =

√
(p− pa)2 +

(
Req

1+α −α/cosβ

)2

(A.15)

Gs =

√
[(pa − p) tanβ ]2 +

(
q

1+α −α/cosβ

)2

(A.16)

The two elliptical portions, Gc and Gs, form a C1-continuous potential surface. It should

be mentioned that in this elasto-plastic model, plastic flow on the cap region Gc causes

hardening, while the plastic flow on Gs leads to softening.
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A.4 PLASTIC FLOW RULE AND THE HARDENING LAW

As mentioned earlier for the uniaxial test, the yield surface evolves with the plastic

strain. In the Drucker-Prager elasto-plstic model with cap hardening, the hydrostatic com-

pression yield stress pb, shown in Fig. A.2, varies with the volumetric plastic strain ε
p
vol

according to a piecewise linear function, as schematically shown in Fig. A.3. As shown in

Fig. A.4, upon increasing pb, the yield surface expands, which causes material hardening.

Furthermore, decreasing pb causes the yield surface to become smaller, which is known as

softening.

pb

ε
p
vol

FIGURE A.3. A typical hardening relation between ε
p
vol and pb (adopted with mod-

ification from (SIMULIA, 2010))

d

β

q

pb(0) pb(1)pb(2) p

FIGURE A.4. Evolution of the yield surface in the p-q plane with changes in pb.

Increasing pb results in expansion in the yield surface, and hence, hardening, while

reduction in pb leads to a smaller yield surface and soil softening.
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APPENDIX B. COMPUTATION OF ELASTIC AND PLASTIC PARTS OF STRAIN TENSOR

APPENDIX B

Computation of the Elastic and Plastic Parts of

the Strain-increment Tensor

The calculation of Δεεεe and Δεεε p is explained briefly here, based on the total strain increment

Δεεε .

Following an approach explained by de Souza Neto et al. (2008), the elastic and plastic

parts of the strain increment tensor can be decomposed by finding a single scalar, known

as plastic multiplier, from a nonlinear algebraic equation. This procedure is summarized

below.

Using plastic potential theory, a classical plasticity theory (Khan and Huang, 1995),

the increment in the plastic strain can be obtained as

Δεεε p = λ1
∂G

∂σσσ
(B.1)

where λ1 is the plastic multiplier and G is the flow potential surface defined in Eqs. (A.15)

and (A.16) for the Drucker-Prager constitutive relation.

In the algorithm described below, it is required to find the evolution of pb, the hard-

ening variable in the Drucker-Prager constitutive relation, based on λ1. As explained in

Section A.2, pb depends only on the volumetric plastic strain ε p
vol. Therefore, the relation
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below for the evolution of pb is derived using Eq. (B.1):

Δpb = λ1
∂ pb

∂ε
p
vol

tr

(
∂G

∂σσσ

)
(B.2)

In obtaining Eq. (B.2), the relation for the volumetric plastic strain, namely,

ε
p
vol = tr(εεε p) (B.3)

is used.

For determining λ1, what is called the loading/unloading conditions of the elasto-

plastic model must be satisfied (de Souza Neto et al., 2008). These conditions can be

expressed in terms of the Karush-Kuhn-Tucker criteria stated by Jeremić et al. (2010):

F(σσσ , pb)≤ 0; λ1 ≥ 0; F ·λ1 = 0 (B.4)

where F is the yield surface that is defined for the Drucker-Prager constitutive relation

in Eqs. (A.9–A.11). Based on these criteria, a positive λ1 exists when there is a plastic

deformation; λ1 is zero if the deformation is only elastic. Using the condition stated in

Eq. (B.4), an elastic predictor/plastic corrector algorithm is normally used to compute λ1.

With λ1 known, the plastic strain increment is readily determined from Eq. (B.1). In addi-

tion, from Eq. (A.4), the elastic strain increment tensor Δεεεe is obtained. From this Δεεεe, the

increment in the stress tensor caused by Δεεε is readily determined. This algorithm involves

the steps below, following the procedure explained in Box 7.1 of (de Souza Neto et al.,

2008):

ALGORITHM 4.

Given the current stress tensor σσσ(0), strain tensors εεεe(0) and εεε p(0), and the total strain

increment Δεεε , find λ1.

(a) Elastic predictor step (adapted from (de Souza Neto et al., 2008)):
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(i) Set λ1 = 0, i.e., assume that the strain increment is fully elastic. Then cal-

culate the elastic trial states as:

εεεe
trial = εεεe(0)+Δεεε (B.5a)

ptrial
b = pb(0) (B.5b)

σσσ trial = C : εεεe
trial (B.5c)

It should be noted that pb changes with ε p
vol. Therefore, if εεε p(0) is known,

so is pb(0).

(ii) Verify the plastic admissibility condition: F(σσσ trial, ptrial
b ) ≤ 0. If the test

fails, we go to step (b); otherwise, λ1 is reported as zero, i.e., only elastic

deformation occurs.

(b) Plastic corrector step or Return-Mapping Algorithm, in which the system of

equations below is solved for εεεe, pb, and λ1 (adapted from (de Souza Neto et al.,

2008)):

εεεe − εεεe
trial +λ1

∂G

∂σσσ
= 0 (B.6a)

pb − ptrial
b −λ1

∂ pb

∂ε
p
vol

tr

(
∂G

∂σσσ

)
= 0 (B.6b)

F(σσσ , pb) = 0 (B.6c)

with σσσ = C : εεεe. �

It is noted that Eq. (B.6a) is derived from the additive decomposition of the strain

increment tensor. In addition, Eq. (B.6b) is obtained from Eq. (B.2), which is the evolution

of the hardening parameter. Moreover, Eq. (B.6c) stems from the plastic admissibility

condition, according to which, when plastic deformation exists, the yield function is zero.

Details on the numerical solution of Eqs. (B.6a)–(B.6c) can be found in (Jeremić et al.,

2010).
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