Design and Implementation of a Unified

Programming Framework for Things, Web
and Cloud

Debashish Ghosh

School of Computer Science
McGill University
Montreal, Canada

October 2014

A thesis submitted to McGill University in partial fulfillment of the requirements for
the degree of Master of Science.

(© 2014 Debashish Ghosh

Dedication

To Mom, Dad and the Internet of Things community.

ii

Acknowledgements

I would like to thank my thesis supervisor, Professor Muthucumaru Maheswaran, for
being a source of inspiration and providing a continuous influx of new ideas and con-
cepts that could make a difference to the world of Internet of Things and technology
in general. I would also like to acknowledge other students in the Advanced Network
Research Lab. Fan Jin, for always being there and helping out in working with arduino
processors. My friends Syed Ahmed, Vaibhav Somani, Sridipta Misra, Bhaskar Pila-
nia, Mohit Shah, Sujay Kathrotia and Sameer Jagdale for always supporting. Lineker
Tomazeli for helping out with the ideas about SpaceOS. Robert Wenger for the work
on the video server and converting the server from Twisted to Tornado. Julien Lord

for providing hlib.

iii

Abstract

Internet of Things (IoT) are quite diverse in their capabilities: ranging from tiny
sensors to Internet connected appliances. As a result, a particular computing activ-
ity might be split across many elements from things, web, and cloud. Therefore, a
programming framework targeted towards IoT must be quite flexible in allowing the
developer to partition the processing actions among the participating elements with-
out requiring the developer to strictly adhere to predefined service interfaces. The
programming framework should keep the language familiar and have minimal learning
beyond existing languages and technologies. In this thesis, I present JavaScript Ar-
duino Development Environment (JADE), a framework that allows a developer to mix
C and JavaScript constructs with JADE keywords to construct a complete program to
solve a particular computing activity. The combination of C, the most commonly used
language for the things and JavaScript the most rapidly expanding and extensively
used language of the web, could prove to be extremely potent. I describe the language
constructs introduced by JADE and explain how they can be used to implement dif-
ferent software interaction patterns among thing, web, and cloud. The next expected
frontier in the evolution of the Internet is the subsumption of physical objects and
the spatial interactions with them into the internet. This leads to another important
feature of JADE, which is to leverage the facilities provided by SpaceOS, a system
software stack for smart computing environments; to provide a simpler programming
model for the things. I implemented a proof-of-concept prototype of JADE over In-
tel Galileos, web, and cloud. The results from the experiments are described in the

chapter on Experimental Results.

iv

Résumé

L’Internet des Objets (IdO) est trs diverses dans son application: allant de minuscules
capteurs des appareils connects Internet. Par consquent, une activit de program-
mation particulire pourrait tre rpartie entre de nombreux Iments tels les objets, le
web et le cloud. Par consquent, un cadre de programmation orient vers |'Internet
des Objets doit tre assez souple pour permettre au dveloppeur de partitionner les
actions de traitement entre les Iments cibls sans ['obliger de se conformer strictement
aux interfaces de services prdfinis. Le cadre de programmation devrait garder un lan-
gage familier et comporter peu dapprentissage au-del du langage et des technologies
existantes. Dans cette thse, je prsente JavaScript Arduino Development Environ-
ment (JADE), un cadre de programmation qui permet un dveloppeur de mlanger
le C et le JavaScript en combinaison avec des mots cls de JADE pour construire un
programme complet capable de rsoudre une activit informatique particulire. La com-
binaison de C, le langage le plus couramment utilis pour les objets et de JavaScript,
le langage le plus couramment utilis pour le web et qui connat une expansion rapide,
pourrait s’avrer extrmement puissant. Je dcris la structure des langages introduites
par JADE et explique comment ils peuvent tre utiliss pour implanter diffrents modes
d’interactions logiciels parmi les objets, le web, et le cloud. La prochaine frontire
prvue dans I'volution dInternet est la subsomption des objets physiques et les interac-
tions spatiales avec ceux-ci dans sur Internet. Cela introduit une autre caractristique
importante de JADE, qui consiste exploiter les installations fournies par SpaceOS,
un logiciel de systme pour les environnements informatiques intelligents; fournir un
modle de programmation plus simple pour les objets. J’ai mis en place un prototype
de preuve de concept pour JADE sur Intel Galile, le web, et le cloud. Les rsultats des

expriences sont dcrits dans la chapitre des rsultats exprimentaux.

Contents

Chapter 1: Introduction

1.1 Imntroduction
1.2 Motivation
1.3 Problem Definition
1.4 Thesis Contribution
1.5 Thesis Organization

Chapter 2: Background Information

2.1 Overview e
2.2 Ideas Contributing to JADE
221 RPCand RMI
222 AllJoyn
223 CORBA
224 SOAP
225 REST
2.2.6 Tiny Web Services L.
2.3 Ideas Supported by JADE 0oL
2.3.1 Ambient Intelligence L.
2.3.2 Cyber Physical Systems
2.3.3 Semantic Technology

Chapter 3: Unified Programming Framework Design
3.1 Design Objectives
3.2 System Architectureo
3.2.1 Space OS Interface Implementation

Ot Ot = W = -

© 0o 0w N

11
12
13
14
14
15
16

18
18
19

Contents vi
3.3 Major Components of the Architecture 22
3.3. 1 Spaces 23

3.3.2 Web Application L 26

3.3.3 Cloud Server 26

3.4 Important Issues in Realizing the Architecture 28
3.4.1 Reliabilityo 28

3.4.2 Security 30
Chapter 4: JADE Programming Framework 32
4.1 Overview 32
4.2 Functions 34
4.2.1 jadef C Function 34

4.2.2 jarequireo 36

4.2.3 jacall Function L 37

4.2.4 jaevent Function oo 38

4.2.5 jaweb and jacloud Functions 39

4.3 Live Variable 41
4.3.1 Update triggered by the ‘thing’ 41

4.3.2 Update triggered by the web/cloud 42

4.4 TImplementing JADE o 43
4.4.1 The JADE Runtime 44

442 hlib. . ..o 45

4.5 Virtualization of Things 48
Chapter 5: Experimental Results 51
5.1 Design Evaluation o0 54
5.1.1 Memory Footprint 55

5.1.2 Network Transmission Efficiency 5D

5.1.3 Network Transmission Performance 56
Chapter 6: Example Applications 59
6.1 Internet of Things. L. 59
6.1.1 Machine to Machine Communication 61

Contents vii
6.1.2 Interoperability 0oL 62

6.2 Other Applications 63
6.2.1 Home Automation 63

6.2.2 Remote Monitoring and Control for Elderly Care 64

6.2.3 Physical Devices and Spaces as a Service 64
Chapter 7: Related Work 65
7.1 End User Programming in Ubiquitous Programming Environment . . 65
7.2 Ubiquitous Computing 67
7.3 Programming of Pervasive Computing 68
7.4 Olympus: A Pervasive computing programming framework 71
7.5 Spatial Programmingo 74
7.6 SpaceBrew 74
Chapter 8: Conclusions and Future Work 77

References

viii

List of Figures

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

5.1
5.2
9.3
5.4

Layered organization of the System Architecture 21
User interacting with the Thing 22
SpaceOS components view 23
Thing registration phase 24
Thing becomes Space Resolver 25
'thing’, web and cloud interaction through JADE 33
Layered virtualization stack 49
Time slice virtualization model 50
Intel Galileo with accelerometer prototype 51
Game Initial State (Left) and Game Goal State (Right) 54
Data Transmission Efficiency 56
Network Transmission Latency 57

List of Tables

5.1

Memory usage for simulation program under different loads 58

Chapter 1

Introduction

1.1 Introduction

A recent forecast made by International Data Corporation (IDC) projected Internet of
Things (IoTs) and the associated ecosystem to be an $8.9 trillion market by 2020 and
include more than 200 billion connected things. To realize such a scale of expansion, it
is not sufficient to just create the devices and deploy them, the associated ecosystem
needs to be developed and users need to embrace IoT. Users will start embracing
[oT only when compelling applications that solve real problems are available for IoT.
Therefore, it is important to focus on creating programming frameworks that will
allow developers to easily develop high-quality applications for IoT.

Due to various factors, programming [oT is different from normal computers. One
difficulty is that ‘things’ may not be capable of processing a complete computing ac-
tivity by themselves. They may need the computational capabilities of cloud-based
backend to complete the processing tasks and a web-based frontend to interact with

the user. Therefore, programming the thing can be quite complicated by the fact

1 Introduction 2

the programmers need to deal with disparate elements to complete an activity. An-
other difficulty is the mobility of ‘things’ or other factors that can make ‘things’ less
available. Yet another difficulty and perhaps the hardest is the interoperability of the
‘things’.

In this thesis, we present a unified programming framework called JADE (an
acronym standing for JavaScript Arduino Development Environment) for loT. JADE
is a hybrid language that uses few keywords to mix C/C++ with JavaScript. For
instance, we can have JavaScript implementation of a C function. The JADE pre-
processor separates the JavaScript and C/C++ code and makes the necessary linking
between the corresponding functions. Using JADE, we can write a program for a
‘thing’ that partly runs on the thing and partly runs on the web or cloud. The exe-
cution of all components are coordinated by the portion of the program that runs on
the ‘thing’. The C/C++ portion augmented with glue code is compiled to run on the
‘thing’. Similarly, the JavaScript portion and the corresponding glue code is injected
into the web or cloud. With the rapid ascension of NodeJS in cloud computing, it
is possible to have cloud-based backends running JavaScript code that is injected by
the JADE program.

JADE makes it simpler to develop many IoT applications by bringing the well
known “single node view” to IoT programming. It fuses the ‘thing’, web, and cloud
such that cloud and web can be accessed via remote procedure calls implemented by
the JADE runtime. For instance, an intelligent thermostat application can be devel-
oped in a single set of source files written in JADE. The C/C++ portion does the
sensing and control part of the thermostat functions. The JavaScript portion is re-

sponsible for storing the sensed values in the clouds, running the prediction algorithms

1 Introduction 3

on the cloud, and realizing the user interface on the web. Using JADE, the intelligent
thermostat developer would not be restricted by any preconceived service interfaces.
She is free to program all elements according to the needs of the application at the

same time reusing existing libraries and services.

1.2 Motivation

Programming IoT presents many unique challenges. One of the key problems for
programming in [oT is their heterogeneous nature with heavily constrained sensors in
one extreme and fully-featured smart devices in the other extreme. While the resource-
constrained sensors can be dedicated to a specific computing activity, the fully featured
smart devices could be hosting apps that allow them to perform different tasks at
users’ discretion. Therefore, the debate [1] [2] rages on regarding the programming
models that should be supported by IoT.

There are three major ways for approaching the programmability problem in a
heterogeneous distributed system such as the IoT: use service-oriented computing,
develop a new programming language, and develop a library that exposes a uniform
interface on all devices. The Web of Things (WoT) [3] is a variation of IoT that imple-
ments the service-oriented computing paradigm. Although service-oriented computing
is quite powerful, one of the drawbacks is the requirement to use the services “as is”
using the interfaces exposed by them. In service-oriented computing, each “service
endpoint” is maintained by a service provider who creates and maintains the offered
services. Therefore, it is difficult or impossible for another party to customize the
services offered by an endpoint. As a result, with WoT, the common case is to reuse

existing services through the APIs offered by them.

1 Introduction 4

Over the years, many programming languages have been developed for IoT like en-
vironments [4]. Although a programming language that is designed for IoT can bring
the optimal set of features, it will also have many drawbacks. The most important
among them is the resistance from the developers to learn an entirely new language.
Also, implementing the new language on all constituent devices is another major
challenge. Due to these reasons, most proposals for new languages for heterogeneous
distributed systems have remained academic curiosities.

Another powerful approach to programming [oT is to develop libraries that run
on all constituent devices and support a uniform interface for communications. The
AllJoyn [5] framework from Qualcomm is one such example. The biggest advantage of
this approach is that the developer need not learn a new language; instead, she needs
to learn the library APIs. The drawback is the effort needed in maintaining the library
on all devices. Because the libraries need to be packaged with the operating system
and often require hardware support, the device manufacturers need to be engaged
in the development of the libraries. Another significant drawback of this approach
is its incompatibility with the web. The web browsers have very restricted ways of
interacting with other components. Therefore, a program running in a browser cannot

utilize such libraries.

1.3 Problem Definition

The primary goal of this thesis is to develop a unified programming framework which
allows the developer in the domain of IoT to write code as a single program. This
should make the job of the developer a lot simpler. Secondly, there is a need to reduce

the barrier for developers by reusing widely used existing technologies, rather than

1 Introduction 5

introducing new technologies.
In addition, to expedite the deployment of a system software stack for smart com-
puting environment called SpaceOS, by providing a simpler programming framework

for the ‘things’.

1.4 Thesis Contribution

The thesis makes the following contributions. First, it presents an architectural frame-
work of how users and things can communicate via a server system. The thesis pro-
vides a programming framework, JADE that allows the user to write code for smart
devices in the world of Internet of Things (IoT) to be executed on the ‘thing’, on
the server and on the browser. There is a novel contribution in terms of interaction
patters between the ‘thing’, server and the user. It offers standard options where the
‘thing’ can offer API and user can call functions of the API. Furthermore, it offers an
event-based system where events can be triggered by both the user or the ‘thing’ to-
gether with a publish/subscribe system that allows to subscribe to events and reacts
to them. Finally interaction can also occur directly through variables that appear
to be replicated across devices and servers and cam be manipulated directly by all

entities.

1.5 Thesis Organization

Chapter 2 provides the background information for the thesis. Chapter 3 describes
the design rationale for a unified programming framework. Chapter 4 presents the

details of the JADE programming framework. The experimental results are discussed

1 Introduction 6

in Chapter 5. Chapter 6 discusses some potential applications of the JADE framework

in different domains. Chapter 7 discusses the related works.

Chapter 2

Background Information

2.1 Overview

The background information has been divided into two parts, the first part consists
of ideas contributing to JADE and the second part comprises of ideas supported by
JADE. The topics in the first part are important for helping in the understanding of
JADE. Topics like RPC, RMI, CORBA, REST and SOAP discuss different methods
of communication and interaction within a network or between different networks.
Their understanding is important as the underneath architecture of JADE for com-
munication between the ‘things’, the cloud server and the web is inspired and based
on these standard protocols. AllJoyn is a peer to peer framework to help overcome
interoperability issues in [oT. Tiny Web Services attempts to provide interoperability
in IoT at the application level. The knowledge of these two is important as JADE is
positioned as a programming framework for the diverse world of IoT, and attempts to
tackle the challenge of interoperability. The second part discusses topics that JADE

supports and could contribute to. Topics like Cyber Physical Systems, Ambient Intel-

2 Background Information 8

ligence and Semantic Technology have become more important with the rise of IoT.
The development of JADE could assist and contribute to each of these important

fields.

2.2 Ideas Contributing to JADE

2.2.1 RPC and RMI

Procedure calls are used for transfer of control over the same program. Remote
Procedure Calls (RPC) [6] proposes that the same method could be used over com-
munication networks too. In Remote Procedure Calls, upon invocation, the calling
environment is suspended, and the parameters are passed to the environment where
the procedure is to be executed, referred to as the callee procedure. The results are
returned to the calling environment, where execution resumes as if returning from a
simple single-machine call. Advantages of RPC include clean and simple semantics,
efficiency and generality. RPC gained popularity as a means of making distributed
computing easier, as at the time of its inception even experienced system programmers
didn’t have enough expertise to build distributed systems with existing tools. RPC
structure is based on the concept of stubs. There are five components involved while
making a remote call. These include the user, the user-stub, the RPC communication
package, the server-stub, and the server. The user, the user-stub and one instance of
RPCRuntime execute in the caller machine; the server, the server-stub and another
instance of RPCRuntime are executed in the callee machine. The programmer also
needs to consider the steps involved in inter machine binding. There are two aspects
involved in binding. Firstly, how would the client of the binding mechanism determine

what he wants to bind to. Secondly, how could caller determine the machine address

2 Background Information 9

of the callee. First problem is resolved by using a naming convention, which binds the
importer of an interface to the exporter of the interface, by specifying the type and
the instance of the interface. The second problem to determine the location, could
be resolved either by using the network address of the machine with which they wish
to communicate in the application program itself; alternatively a broadcast protocol
could be used to locate a specific machine. With JDK 1.1, Java introduced the object
oriented equivalent of the Remote Procedure Call called Remote Method Invocation
(RMI). RMI is native to Java and depends on multiple features of Java objects like
serialization, portability and Java interface definition. Tightness with Java makes
it impractical to be used with applications written in other languages. RMI is a
Java-to-Java technology. If we want a Java client to use RMI to communicate with
a remote object in another language, it must be done using a Java intermediary that
is co-located with the “foreign” remote object. So, to use RMI, a Java middleware
needs to be provided. RMI [7] is much more flexible compared to Remote Procedure
Call (RPC). It allows polymorphism, so remote classes could be downloaded into run-
ning application. RMI offers more options for parallel and distributed programming.
Communication overhead of the Java RMI implementation remains a weakness. High
latency is typical for distributed systems for which they were created, however for

more tightly coupled parallel machines such latency is unacceptable.

2.2.2 AllJoyn

AllJoyn [5] is an open source Android-based peer-to-peer communication framework.
It helps in overcoming interoperability issues in IoT by introducing the D-Bus proto-

col as an abstraction layer, that allows it to run on multiple operating systems like

2 Background Information 10

Linux, Android, Microsoft Windows, i0OS, OS X etc. AllJoyn uses a Java-like location
transparent RMI service. The main goal of AllJoyn is to provide a software bus for
distributed advertising and discovery services. Another software abstraction for bus
attachment allows the peers to be connected by providing a unique well known name.
A hierarchical naming system, similar to the UNIX file system, is used for arranging
the bus objects. Clients should use proxy bus objects for ease of interaction. Running
AllJoyn on android is enabled by using the AllJoyn daemon. The OS abstraction layer
assists the daemon to be run on different operating systems. The bus attachment is a
link to the IPC that connects the clients and services to the AllJoyn daemon. JADE
differs from AllJoyn as it does not expose a software bus for peers to attach; rather it
provides a unified programming model for the developers to write code for the thing,
server or web. Functions like ‘jacall” explained in Chapter 4, could be used to achieve
peer to peer communication. As the developer is able to code for both the server and
the web, this allows the freedom to control the API present in the server through

‘jadef’.

2.2.3 CORBA

Common Object Request Broker Architecture through the use of object-oriented
model allows communication between different operating systems, programming lan-
guages. The key features of CORBA includes a good service description, strong
typing, ensure atomic transactions and language mapping. While some important
drawbacks of CORBA include a two step activation process for the CORBA object,
simulating same address space and providing state to objects. In contrast to RPC

and RMI described before, CORBA is an integration technology which doesn’t exist

2 Background Information 11

as a programming language, but rather as an Interface Definition Language (IDL);
and converts code in one language through the ORB as a generalised interface, to

another desired programming language.

2.2.4 SOAP

Simple Object Access Protocol (SOAP) [8] was the first divergence from the tradi-
tional RPC model. SOAP defined and improved the wire model. SOAP also defined
a modular description framework called WSDL. It’s different from other protocols in
the sense that it has no objects, involves no directory and there is no code mobility.
Although SOAP is a Remote Procedure Call, it has differences from the traditional
RPC model, and therefore perceived as a divergent from the typical RPC character-
istics. SOAP [9] decouples the encoding, the protocol and the transport. It uses an
envelope syntax for sending and receiving XML messages between clients and services.
SOAP is a protocol for decentralized and distributed system, to increase the power
of internet to pass typed information between the client and services. SOAP is an
XML based object invocation protocol, and was originally developed for distributed
applications to communicate over HT'TP. SOAP defines the use of XML and HTTP to
access platform independent services. In contrast, XML-RPC is a Remote Procedure
Calling protocol that works over the Internet, and is really an XML-RPC message that
is an HT'TP-POST request. The body of the request is in XML. A procedure executes
on the server and the value it returns is also formatted in XML. The main difference
between SOAP and traditional RPC lies in the fact that in SOAP we use procedures
which have named parameters and order is irrelevant where as in XML-RPC order is

relevant and parameters do not have names. SOAP is about document-level transfer,

2 Background Information 12

while traditional RPC is more about values being transferred. Another difference is
that SOAP is extremely verbose, traditional RPC is simpler in comparison. JADE
has some similarities to SOAP, but instead of using the envelope syntax for sending
XML messages, JADE wraps up the message to be sent in a JSON object, which is
parsed at the server or the browser, and the appropriate function is called. Using this
approach the message sent is less convoluted and there is lesser content compared to

sending it in the enveloper syntax format as used by SOAP.

2.2.5 REST

REST [10] enables component interactions in a layered client server style architecture
with the added constraint of a generic resource interface, which allows inspection by
intermediaries. The REST service is pull based, the consuming component, pulls
representation whenever it suspects a state change to occur. Although it is less efficient
than a push based system, for a single client system, but for the Web, where its not
practical to have a push based system, the pull based REST API is more appealing.
In REST [2], data and functionality are considered resources, identified by Uniform
Resource Identifiers (URIs). REST typically uses a client server architecture with a
stateless protocol, usually HT'TP. Web applications built on REST architecture are
RESTful web services. RESTful Web services map the four main HTTP methods
GET, POST, PUT, DELETE to the CRUD actions of create, retrieve, update and
delete. REST can be used easily in the presence of firewall. REST and SOAP based
web services are platform and programming language independent. Clients and servers
are loosely coupled. REST was developed as a simpler alternative to the complicated

and verbose structure introduced by the addition of security and message reliability

2 Background Information 13

in SOAP.

2.2.6 Tiny Web Services

It is important in the vision of [oT, to allow adding sensors to existing smart infras-
tructures. This requires network layer and application layer interoperability. Network
layer interoperability can be achieved through IP. At the application layer, application
developer needs to understand the type of data, parameter values and control mes-
sages expected by the sensor. One approach for interoperability is to force each sensor
vendor to use new common specification. Another approach is to use existing web
services in a lightweight manner. In the paper [11], sensor node reports its interface
using Web Service Description Language (WSDL). Applications that want to use the
sensor, sends the sensor the specified message. Advantage of this technique is that
application developers only need to know the semantics of the sensor, while the WSDL
handles the task of generating method calls in a high level language (easy to use).
Eg. Visual Studio or Netbeans IDE could be used to parse the WSDL and generate
a Java object that provide device messages as function calls with typed arguments.
The Visual Studio or Netbeans IDE take care of actual format and packets to be
sent according to the WSDL specifications. This allows incorporating a new device,
with messages easily sent as automatically generated method calls. The challenges
of low battery life of devices, low power could be overcome by having the device im-
plement low power web services on WSDL standard compliant devices. Requirement
of sleep for devices to save power could be achieved by using Web Services Eventing
[12]. Similar to Tiny Web Services, even in JADE application developers only need

to know the semantic of the sensors or the interface for the ‘things’ that they will

2 Background Information 14

interact with, while the underneath architecture takes care of generating method call

using functions like call_user_def ().

2.3 Ideas Supported by JADE

2.3.1 Ambient Intelligence

Ambient Intelligence (AmlI) [13] brings intelligence to our everyday environment. It
builds on advances in sensors, pervasive computing and artificial intelligence. As a
result of growth in these contributing fields, there seems to be a great potential being
observed in Ambient Intelligence. Ambient Intelligence needs to be sensitive, respon-
sive and adaptive. An Aml agent perceives the state of the environment through
sensors, makes decisions and changes the state of the environment through actions
such as robotic assistance or controlling the devices. Sensors are the key to link com-
putational power to physical application. Motion sensors are used to track individuals
and motions, however they can not determine who created the movement. An alterna-
tive is for persons or items to wear sensors for this purpose. RFID tags are an example
of this technology. A combination of RFID readers and motions sensors could produce
more precise sensing technology. I-Button are small devices that allow the receptor to
communicate with a computer, they are also used as sensors. Microphones and video
cameras are used for tracking too. Analyzing the sensor data can be done in a central-
ized or a distributed model. In centralized model, data is transmitted to central server
which fuses and analyzes data, while distributed model provides the sensors with pro-
cessing capability. Reasoning is used for providing algorithms to provide links between
sensing and acting. Reasoning includes modelling user behavior, activity prediction,

decision making and spatial-temporal reasoning. To further societal acceptance of

2 Background Information 15

Aml, there is a need to define human centric interfaces that are context aware and
natural. Context awareness enables devices that infer current activity of the user and
characteristics of the environment, to intelligently manage information content and
means of information distribution. [14] proposes an adaptable and extensible context
ontology for creating context aware computing infrastructure. It is especially relevant
considering the fast evolution in the hardware and software industry, so the decisions
made today regarding context specifications should be adaptable and extensible. The
ontology provided is a basic, generic context ontology which was built around four
main entities. These entities, which include user, environment, platform and service;
are mentioned to be based around the most important aspects in context information.
The advancements in the field of AmlI will go unnoticed if it is difficult for the users.
So design of natural interfaces is of greater relevance. Aml could have a significant
impact in our lives through many applications in Smart homes, health monitoring,
hospitals, transportation, education, etc. Through ambient intelligence a confluence
of topics can converge to help society. JADE tries to capture the different aspects of
Aml. Analysis of the sensor data is done in a centralized manner in a cloud server.
The user could use the browser as a convenient and easy way to interact with the

physical system.

2.3.2 Cyber Physical Systems

Cyber-physical systems (CPS) [15] bridge the cyber-world of computing with the
physical world. CPS represents a confluence of technologies in embedded systems,
distributed systems, dependable systems, real-time systems with advanced micro-

controllers, actuators and sensors. CPS must operate dependably, safely, securely

2 Background Information 16

and in real-time to aid in the realization of a future societal-scale system. Thereby
allowing effective integration and pervasiveness of real-time processing and sensing
across heterogeneous logical and physical domains. The availability of low-cost sensors
with increased capabilities, high capacity computing devices, wireless communication,
ample internet bandwidth and increased energy capacity are the driving forces pushing
the advancement of CPS. CPS attempts to interface the powerful and precise logic
of computing with the continuous dynamics and noise in the physical environment.
CPS are designed to include a network of interacting elements rather than standalone
devices. The advancement of Cyber Physical Systems could be vital in realizing
the effectiveness of the ‘live’ variables introduced in JADE. By using the advanced
sensors and actuators which are part of the Cyber-Physical Systems, the ‘things’
could monitor and communicate any change in their state by using the ‘live’ variable
concept developed in JADE, which will be explained in chapter 4. As JADE allows
developers to write code in JavaScript for the web and in C/C++ for the ‘thing’, it
could help in bridging the gap between the computational systems and the physical

systems

2.3.3 Semantic Technology

In addition to ‘thing” and Internet directed vision, the paper presents a semantic ori-
ented vision [16]. Semantic technologies are a means of creating machine interpretable
representation which provides an efficient way of sharing and integrating information.
Semantic Technology consists of algorithms and solutions that bring structure and
meaning to information. Semantic technology helps in understanding and interpret-

ing information. Some examples of Semantic Technologies include Natural Language

2 Background Information 17

Processing (NLP), Artificial Intelligence and Data Mining. The paper suggests using
middleware as a software layer abstracting the details of different technologies. Sim-
ilarly SpaceOS explained in chapter 3, using the cloud as a middleware between the
Things and the browser helps in abstracting technology details. Applications need
to discover sensors. Semantic Technology is viewed as a key topic to resolve inter-
operability. Most semantic tools/techniques are created mainly for web resources
and often overlook the dynamicity and constraints of the physical world. According
to [16], lightweight ontology seem to have a better chance of wide scale adoption.
Application of Linked data principles to semantic processing could further improve
interoperability. SpaceOS, through the use of JADE, suggests associating attributes
to ‘things’, for example the attribute ‘brightness’ could be associated with a lamp
and the attribute ‘temperature’ to a thermostat. If we create a link between these
two attributes of the lamp and the thermostat, then as the ‘brightness’ of the lamp

changes, so will the ‘temperature’ of the thermostat.

18

Chapter 3

Unified Programming Framework

Design

3.1 Design Objectives

A new programming framework dealing with the Internet of Things has several re-
quirements. The framework we propose as part of this research is quite novel and
includes elements of all of the points mentioned previously in Chapters 1 and 2. Fol-

lowing are some of the key objectives we wanted to achieve in designing the framework.

1. Leverage existing trends: 10T is in a highly dynamic technology sector. There-
fore, it is necessary to leverage existing trends in developing the programming
framework. In particular, the programming framework should reuse technologies

that are heavily used by the developers in the sector.

2. Lightweight framework: The framework should have small resource footprints

so that it could be ported to highly resource-constrained devices.

3 Unified Programming Framework Design 19

3. Flexible function partitioning: A programmer of heterogeneous devices such as
[oT can immensely benefit from a flexible function partitioning mechanism that
allows her to easily deploy custom code at the web or cloud. JADE could be used
for calling functions using the jadef {web} and the jadef {cloud} keyword on
the web and the cloud, which run on the environment of the web or the cloud,
therefore follow the web CPU cycle and the cloud CPU cycle respectively. While
in the case of other protocols like REST and RPC, the function invocation takes
place in the system where the REST or RPC call is made. So, the CPU cycle
being followed is that of the local system. Using such a functionality provided by
JADE, the programmer can easily create computing activities that incorporate

the thing, web, and cloud.

4. Gentle learning curve: We can expect many programmers to be highly proficient
on well known languages. By creating a framework that combine snippets of
existing programming languages, can provide a gentle learning curve to the IoT

programiner.

5. Support for heterogeneous systems: We can expect the loT ecosystem to contain
a highly heterogeneous collection of devices. These devices should interoperate

among themselves and cloud and web resident services.

3.2 System Architecture

The unified programming framework developed here relies on a system architecture
(also referred to as SpaceOS) that is described below. In this system architecture, we

have three major elements, the ‘thing’, the web and the cloud. The functions provided

3 Unified Programming Framework Design 20

by the architecture are arranged in a stack shown in Fig. 3.1. In this figure, there
are three parts, the Core, the Foundation and the Application. The Core part has
services that run on all elements: thing, web and cloud. These services are responsible
for naming, discovery and handling events. When a smart device enters a space, it is
given a spacelD by the space resolver. After this it sends a request to the cloud for
providing it a name or id (TId) which is unique. The Core also provides Discovery
service, which allows a ‘thing’ to find other ‘things’ of the same type. Events could be
triggered by the ‘thing’, the cloud as well as the web. For instance an update in the
temperature value sent by a thermostat when the temperature recorded by the sensor
connected to it changes. This is an example of an event triggered by the ‘thing’.
Events could be triggered by the cloud using the jacall() function from the cloud on a
‘thing’. Users could invoke events on the browser. So, methods to handle the events
should be present in the ‘thing’, the web and the cloud.

The Foundation part has services that are specific for the different elements. The
foundation services on the thing are responsible for functions such as locationing.
Multiple bluetooth markers along with iBeacons could be used for locationing of the
‘thing’. The foundation services run on the web and cloud as well. Their functions
change depending on the element. The Application part has services that are created
by the developer using the JADE framework. Each type of component (‘thing’, web
and cloud) has its own version of the stack.

The architecture presented here is cloud-centric, where the nodes in the network
communicate through services hosted in a cloud platform. Therefore, it is important
to have fault-tolerant communication services built into the ‘things’ in SpaceOS such

that the smart computing environment can at least have partial capabilities even

3 Unified Programming Framework Design 21

Application

Foundation

Core

Fig. 3.1 Layered organization of the System Architecture

when the connectivity to the cloud is lost. This could be done in a manner similar to
the fault-tolerant model for ‘things’, by having each ‘thing’ store a local copy of all
the important information that it requires from the cloud, as previously described in

section 3.4.1.

3.2.1 Space OS Interface Implementation

The SpaceOS lies on the application layer, abstracting physical objects connected to
the network and creating a logical representation of them. All communication with
‘things’ and web users is done through sockets. For web users we are currently using
web sockets and for ‘things’ we use TCP sockets.

Fig. 3.2 shows a sequence diagram of a simple user interaction through the browser.
We assume that the smart things are already rendered on the browser. For instance
a smart bulb is rendered using an icon of appropriate shape. First, the user selects
the ‘thing’ that he/she wants to interact with. Users could select an object in a space
by touching the object on the screen on his/her tablet/smart phone or could click
the screen on his/her computer screen. This event of touch/click by the user invokes
the GetMenu(x,y) function, where the parameters correspond to the x and y pixel
coordinates of the point where the touch/click occurred. The GetMenu(x,y) function

fetches the menu from the SpaceOS Server via the Web Server, for the object present

3 Unified Programming Framework Design

22

Browser WebServer SpaceOS Thing
Server
N : ' '
Touch !
ltem N

GetMenu(x,y)—)é—GetMenu(x,y)—)i

Select ig-----ReturnMenuJs ------ D SEREEE ReturnMenuJS------- :
ltem from | : :

Menu . ;
- -Invoke(Tld, Cmd, args)-»---Invoke(TIld, Cmd, args) - »

' Open Socket _:
(if not open)

i—-lnvokeCmd(args)*i

(----------- return--------- <- ------------------------------- -4 -

Fig. 3.2 User interacting with the Thing

_return values
(if any)

in that location. The ReturnMenuJS function returns the menu to the browser, which

could be viewed by the user. The user then selects an action from the options present

in the menu. Once the selection is done, the Invoke(TId, Cmd, args) function is

called and the action is invoked on the ‘thing’ via the WebServer and the SpaceOS

Server. TId is the id of the ‘thing’, Cmd is the C function that is to be invoke on

the ‘thing’ and args is the list of arguments for the C function invoked on the ‘thing’.

An acknowledgement could be sent from the ‘thing’ to the browser on the successful

completion of the action.

3.3 Major Components of the Architecture

Fig. 3.3 shows a break down of the 3 main components of the SpaceOS framework,

Spaces (Smart Environments), Web Application and the Cloud Server.

3 Unified Programming Framework Design 23

Cloud Server Web Browser

Web Server

WebSocket

Web Application

Space OS

TCP/IP

Space

Smart Thin

Native Application
JADE

Fig. 3.3 SpaceOS components view

3.3.1 Spaces

A Space is represented by the ‘things’ that it has and is identified by a unique id.
The SpaceOS framework was designed to facilitate the process of adding objects to
a smart environment. The act of bringing a smart object into a Space will trigger
a chain of events responsible to registering that object with its current space and
deploying necessary code to the SpaceOS server, see Fig. 3.5.

Each space has a Space Resolver. Space Resolvers assist the registration of a
new object to a specific space in the network. For example, lets assume we want to

make our house a smart environment. By bringing a smart object into the house it

3 Unified Programming Framework Design 24

will connect to the local network. The smart objects will have the framework code
installed which will allow it to do a series of discover protocols. The smart object will
send a broadcast message asking if there are any resolvers in the network. If yes, the
resolver will reply by sending the unique id of their space. By receiving this unique id
the new smart object can register itself with the SpaceOS server. In the case where
a resolver is not found, the new smart object will register itself with the SpaceOS
server and then becomes the resolver for the space. The subsequent paragraph and
figures 3.4 and 3.5 describe the ‘thing’ registration process in more detail. Once the
registration is done the smart object and the SpaceOS server start the synchronization
phase. In the synchronization phase the smart object will subscribe for events (see
Section 3.3.3.2) and publishes its metadata, live variables and server side code (see

Chapter 4).

Space0S
Cloud Server

Thing SpaceResolver (SR)

| Broadcast
“If there SR in this space?”

Reply ;

"Yes, SpacelD=X"
Registerhe(Addr,SpacelD, E_ocationType]—>
SubscribeForEvents —— >

—— PublishMyEvents »
DeployJADE:: > N

Fig. 3.4 Thing registration phase

3 Unified Programming Framework Design 25

Thing registration process When a ‘thing’ enters a space, it sends a broadcast
message to all devices in the network asking whether there is a space resolver in that
space. If a space resolver is already present, the space resolver replies with a message
‘ves’ to the new device followed by the space id of the space. Figure 3.4 shows the
exchange of messages when a space resolver is present in the space. The ‘thing’
then requests to be registered in the space by sending a RegisterMe(Addr, SpacelD,
LocationType) message to the Space Resolver using the Space ID provided by the
Space Resolver. Once this is done, the ‘thing’ could Subscribe for events, publish

events and deploy JADE.

Space0OS
Thing Cloud Server

| Broadcast
“If there SR in this spac

——
Timeout
e

Y

—RegisterMeAndCreateSpace(Addr, LocationType)—»
SubscribeForEvents ——— |
PublishMyEvents
DeployJADE

Yy

SetAsSR ;
. :

Fig. 3.5 Thing becomes Space Resolver

When the broadcast message asking for Space Resolver in the space is timed out,
the ‘thing’ realizes that the space does not have a Space Resolver. This scenario is

shown in Figure 3.5. Once the timeout occurs, the ‘thing’ needs to create a space and

3 Unified Programming Framework Design 26

then register itself. Next, the ‘thing’ could subscribe for events, publish events and

deploy JADE. The ‘thing’ then sets itself as the Space Resolver for that space.

3.3.2 Web Application

The user browser is the interface at which the user will interact with the smart envi-
ronment. It has two modes, the interaction mode and the programming mode. In the
interaction mode the user is able to visualize smart objects in the environment, raise
events from objects and interact with other users connected. In the programming
mode users can create relationship between objects and events. These relationships
are used when smart objects notify the event manager that an event has happened.
The act of building relationships between physical smart objects is what we call ” pro-

gramming the physical world.

3.3.3 Cloud Server

The SpaceOS server is responsible for managing spaces and coordinating interactions
between user-to-thing, thing-to-thing. It has 3 main modules which are explained

below.

3.3.3.1 Space Management

The Space Management module is responsible for managing the logical representation
of spaces, objects and users. Spaces, objects and users can be added, modified or
deleted as necessary. It is also responsible for keeping track of which spaces and
objects are still available (online). This is done by probing the smart objects and

verifying that they are alive. If no object is available for a particular Space, that

3 Unified Programming Framework Design 27

Space is considered offline, and is removed.

3.3.3.2 Event Management

Each smart object implements the observer pattern. Objects can subscribe for differ-
ent types of notifications based on object type, content type or for an specific event
raised by a specific object. Developers are able to expose their events at the synchro-
nization phase (see Section 3.3.1). As events are raised, the event manager receives
them through the network and is responsible for finding and notifying the subscribers
with the assistance of the space manager. For example, if in our smart environment
we have a switch that raises two events, SwitchUp() and SwitchDown(). A smart
lamp can register for such events and at the same time it could specify a callback
function, such as TurnOn() or TurnOff(). Therefore, relationships between events

can be built between smart objects of the space.

3.3.3.3 View Management

The view management is responsible for handling all request and responses sent to
the user browser. It communicates with the browser through web sockets. When
requested, It will communicate with the space management to gather information
about the smart objects available and their functionality. It’s also responsible for
forwarding event requests made by the user. For example, the user can request the
lamp to TurnOn() through the web interface. The view management will receive
that and forward that request to the Event manager for processing. Thus, all actions

regarding user interface and user interactions are handled by the view manager.

3 Unified Programming Framework Design 28

3.4 Important Issues in Realizing the Architecture

We need to investigate many issues related to reliability and security before realizing
this architecure. Although the different ways of ensuring reliability and security have
not been implemented yet, in this section we propose different methods to deal with
these issues. Reliability is an important issue while considering the design of a unified
programming framework. As JADE is inspired from the RPC model, we first compare
the reliability offered by JADE to that provided by RPC. Next, we look at different

techniques for improving the security.

3.4.1 Reliability

An application using RPC may be needed to be aware of the kind of transport protocol
that is running underneath. For instance, in the case of a reliable transport protocols
like TCP, most of the reliability issues are already taken care of by TCP. However,
if the application is running on top of an unreliable transport protocol like UDP, the
application must implement its own timeout, retransmission and duplicate detection
policy.

There are three different forms of RPC call semantics, at least once, at most
once and exactly once. In the case for at least once, client stub re-transmits request
until a valid response arrives. At least once semantics are common for Idempotent
procedures. Idempotent procedures are those that have no additional effect if called
more than once. Consider an application that is using unreliable transport such as
UDP, if the application retransmits messages after timeouts and does not receive a
reply, it can not infer anything about the number of times the procedure got executed.

However, if it receives a response, it could infer that the procedure got executed at least

3 Unified Programming Framework Design 29

once. Exactly once semantics for RPC is similar to local Inter Process Communication
(IPC), however it is harder to achieve because of server crashes and network failures. If
an application is using reliable transport such as TCP, on receiving the reply message
the application can infer that the procedure got executed exactly once. However, it
can not infer anything if it does not receive a reply. For the case of at most once, it
is important that the server remembers the previously granted requests from a client
and not regrant them. To achieve this, a server may use the Transaction id that
is packaged as part of the RPC message. A client application may want to reuse a
transaction id when transmitting a call. The server may wish to remember the id of
the executed call and chose not to execute further calls with the same id in order to
ensure at most once semantics.

In contrast to RPC, ‘live’ variables which are part of JADE are totally “best
effort”. There is no notion of reliability. There could be network failure, server failure
and ‘thing’ failure. So ‘live’ variables are UDP and do not maintain any state at the
receiver or sender. Duplicate, lost ;reordered and delayed messages are possible while
using live variables.

Currently, for JADE, we are using TCP as the communication protocol, thereby
ensuring that there are no network related failures. However, it is important to
safeguard against failures that could occur at the server and the ‘thing’. Each ‘thing’
could store a local copy of all the important information relevant to it, that is stored in
the server, like names or the id (TId) of other ‘things’ in the network, the events that
the other ‘things’ have subscribed for, so that even during the event of server failure,
there is partial functionality in the ‘thing’, to ensure that the whole setup does not

crash. There are several ways of implementing fault tolerance for the ‘things’. One

3 Unified Programming Framework Design 30

of the ‘things’ in the network could be made the ‘central node’, which sends periodic
broadcast messages to all other ‘things’, to check whether they are alive. Failure of a
‘thing’ is detected if a timeout occurs at the central node. Another method could be
to use a peer to peer mechanism for tracking the failure of a ‘thing’ using a Distributed
Hash Table. Each ‘thing’ checks the liveness for one other ‘thing’ in the network and
stores the “Tid” which is the id of the ‘thing’ being being monitored, in its local hash
table; this ensures all the ‘things’ in the network are being monitored. Initially, when
there is only one ‘thing’ in the network it is the only one being monitored. When the
second ‘thing’ enters the network, the first ‘thing’ monitors the second and the second
monitors the first. When one more ‘thing’ enters the network, it is monitored by the
first ‘thing’, while it monitors the second ‘thing’. The first ‘thing’ sends a welcome
message containing the Tid of the second ‘thing’ to the newly entered ‘thing’, which
stores this Tid in its local hash table and sends a reply message to the first ‘thing’
with its own Tid. So, that is how the first ‘thing’ will now monitor the new ‘thing’, the
new ‘thing’ monitors the second ‘thing’ and the second ‘thing’ is left unchanged and
continues to monitor the first ‘thing’. The chain continues, whenever a new ‘thing’
enters the network, it is monitored by the first ‘thing’ while it monitors the ‘thing’
that was being monitored by the first ‘thing’ before. The second ‘thing’ is at the end

of this chain and it monitors the first ‘thing’.

3.4.2 Security

In the architecture presented here, interactions take place between the three main
components, the ‘thing’, the web and the cloud. Intrusions and interference could

take place at any of these components. Therefore an authentication needs to be done

3 Unified Programming Framework Design 31

between the different components involved in the interaction to ensure that there is
no breach in the security. For instance, if a ‘thing’ connects to the web, there should
be an authentication done by the web server to ensure it’s the correct ‘thing’ that it
is connecting to. This could be done by checking the ‘thing’ id from the list of ids
in its directory to determine whether the ‘thing’ is a part of the existing network.
Similarly, when there is interaction involving the ‘thing’ and the cloud, the cloud
server should authenticate whether the ‘thing’ that is interacting with it belongs to
the network. Before a user accesses the web, and tries to access the cloud through
the web, an authorization step should take place to determine the permissions and
the level of access that should be granted to the user. In addition there should be
a logon authentication of the user to ensure that the user is authenticated before
entering the network. For accessing the web, password authentication or biometric
authentication could be done for the user, based on the kind of device (smart phone,

tablet or computer) from which the user tries to access.

32

Chapter 4

JADE Programming Framework

4.1 Overview

JADE is a programming framework to facilitate the interaction between the ‘thing’,
the web and the cloud. Figure 4.1 shows how the interaction between these dif-
ferent components takes place through the different functions provided by JADE.
jadef {web} is used for interaction between the ‘thing’ and the web. As JavaScript is
the main language of the web and also the language for the cloud server, jadef {web}
and jadef {cloud} allow developers to write code in JavaScript syntax, which is later
inserted into the web or the cloud. The cloud server is written in NodeJS, the devel-
oper could insert JavaScript functions for the cloud by using jadef {cloud}. JADE
allows a publisher-subscriber system; ‘thing’ exports to the cloud the events it sub-
scribes for, by using the jasubscribe function and publishes events by using the
jaevent function. So, the cloud could keep track of the subscribers and publishers
for different events. jacall function exposes the functions that could be called on

the ‘thing’ from the cloud.

4 JADE Programming Framework 33

Smart Things

& [] *
,;o“’ live variables
~N

> jacloud: from web to cloud »

< jaweb: from cloud to web £

Web Browser

Fig. 4.1 ’thing’, web and cloud interaction through JADE

The interaction between the web and the cloud is enabled by using the jaweb
function for calling the web from the cloud. jacloud is used for calling the cloud
from the web. The developer could introduce the jaweb function invocation inside
the jadef {cloud} function, that goes to the cloud server and the jacloud function
invocation inside the jadef {web} function, which goes to the web.

A ‘thing’ could have have values which change dynamically or could be changed

by the user, these variable are ‘live’ variables. ‘live’ variables could be invoked at

4 JADE Programming Framework 34

the ‘thing’ if the value associated with a ‘thing’ changes, this change in the value
needs to be passed to the cloud and the web. While the user could change the ‘live’
variable value through the web, again the change needs to be reflected on the real

‘thing’ through the cloud.

4.2 Functions

4.2.1 jadef C Function

JADE language allows the developer to code for both the server and the web. The
code that is to be passed to the server or the browser, needs to be enclosed within a
function. Such a function should begin with the keyword ‘jadef’, followed by either
the keyword ‘web’ or ‘cloud’ enclosed within parentheses depending on where the
function will be executed. The function name and parameters follow the ANSI C
syntax. Inside the function’s body, the code should be written in standard JavaScript
syntax. This function is called from the ‘thing’ and runs in the cloud or the web.

Below is the syntax for writing jadef function for the web:

jadef {web} C_function_prototype ()

{

// JavaScript body

Listing 4.1 jadef function syntax

A simple example jadef function obeying the syntax is provided. Notice the C

function declaration and JavaScript function body.

4 JADE Programming Framework 35

jadef {web} foo(int xValue)

{
var x = liveVar (‘‘foobar.x”, xValue);
x.onupdate = function (){

2

alert (‘‘new value of x 7 + x.value +

‘“‘baz: 7 + baz);

Listing 4.2 jadef function example

The cloud server for JADE will be implemented in NodeJS, which runs the JavaScript
code from the ‘thing’. The ‘thing’ should also provide its name, so that the functions in
the cloud can be associated with the corresponding ‘thing’. For sending the JavaScript
code to the cloud, the developer should use an additional keyword ‘cloud’ enclosed

within parentheses in front of the function name, as shown below:

jadef {cloud} C_function_prototype()

{

// JavaScript body

Listing 4.3 jadef server synatax

JADE provides the feature of creating multiple virtual instances of the same phys-

ical object. The syntax for achieving this functionality is shown below:

jadef {thing} {//choice}
{

4 JADE Programming Framework 36

// C body

Listing 4.4 jadef ‘thing’ syntax

The choice could be exclusive, mutual, weighted or time slice. This is further elabo-

rated in Section 4.5.

4.2.2 jarequire

The JavaScript body in the jadef function may require some external libraries, global
variables or function definitions which could be included inside jarequire(). If the
user wants to insert HTML5 templates or link CSS files into the HTML5 templates,

jarequire could be used for this purpose too.

jarequire ()

{

// external libraries
// global variables
// global functions
// HIML5 templates.

Listing 4.5 jarequire syntax

In example below, the variable ‘baz’ is defined in the global scope, which allows

the jadef function foo in Listing 4.2 to access the value.

4 JADE Programming Framework 37

jarequire ()

{

var baz = 10;

Listing 4.6 jarequire example

4.2.2.1 jasubscribe Function

Allows the developer to write a function in the C/C++ syntax in the ‘thing’ that gets
executed when the event is triggered by another ‘thing’, browser, or the cloud server.

Below is an example of the prototype of the jasubscribe function:

jasubscribe {event name} c_function ()

{

// code to be executed when the event occurs

Listing 4.7 jasubscribe function syntax

4.2.3 jacall Function

Using the ‘jacall’; the developer can mark a function as callable from the cloud or
another ‘thing’. A JavaScript function signature that corresponds to the C function
will be registered at the cloud server as an API supported by the ‘thing’. This API
can be discovered by other cloud resident functions and invoked, which will result in

a callback to the thing.

jacall C_function()

4 JADE Programming Framework 38

// jacall function calls to interact with
// other ’thing’s through their exposed API

// ’thing’ application code

Listing 4.8 jacall function syntax

4.2.4 jaevent Function

As we are using a publisher-subscriber model for event handling, there needs to be a
mechanism to publish events to the server so that ‘jasubscribe’ will receive the events.
The ‘jaevent’ function allows the developer to define new events or use predefined

events in the system. Below is the syntax for jaevent:

jaevent {event_name} {

// declare variables associated with the event

void c¢_function (){
// assign values to the variables associated
// with the event
raise_jaevent (event_name ,

variables_as_parameter);

Listing 4.9 jaevent and raise_jaevent function syntax

4 JADE Programming Framework 39

The call to raise_jaevent transfers the event to the server. The server notifies
the subscribers of the event when it gets published. At the system level, a data
structure is maintained for storing the events and its parameters. A hierarchical
naming convention is followed underneath to help identify different events. For in-
stance “event.user.eventButton” could be used to identify an event called ‘eventBut-
ton’ which is created by the developer. While “event.system.mousemoveEvent” could

identify a system event that is used by the developer.

4.2.5 jaweb and jacloud Functions

The programmer may want to write code segments which when run on the ‘thing’, is
transferred to the web and could invoke functions on the cloud from the environment of
the web. Similarly parts of code which when run on the ‘thing’; could be transferred to
the cloud from where it could invoke functions on the web. To allow the programmer to
achieve these desired objective we provide two functions jacloud and jaweb. jacloud
and jaweb will be used for calling the cloud from the web and the web from the cloud
respectively. Hence, the invocation to the jacloud and jaweb functions could be
included as part of jadefweb and jadefcloud respectively.

So, the JADE parser while parsing the JavaScript body inside jadef {web} could
search for an additional keyword ‘jacloud’. Once it encounters ‘jacloud’, the parser
will replace jacloud with ws.send(Arguments) or equivalent NodeJS command for
websocket communication between the cloud and the web.

Below is the syntax for calling the jacloud function from the jadef {web} func-

tion.

jadef {web} C_function(args)

4 JADE Programming Framework 40

// IS body

jacloud cloud_function(arg)

Listing 4.10 jacloud syntax

After being parsed by jade.py, which is the JADE parser, the output will look like

what is shown below.

C_function(args)

{
// IS body

ws.send (” cloud _function”, arg);

Listing 4.11 parsed jacloud function

Similarly, we do the invocation for jaweb function inside the jadef {cloud} func-

tion.

jadef {cloud} C_function(args)

{
// IS body

jaweb web_function(arg)

Listing 4.12 jaweb syntax

Below is the ouptut after being parsed by the JADE parser.

4 JADE Programming Framework 41

C_function (args)

{
// JS body

ws.send (" web_function” | arg);

Listing 4.13 parsed jaweb function

4.3 Live Variable

JADE allows the programmer to tie a variable in the ‘thing’ to a variable in the cloud
or web. We believe this provides a much simpler way of obtaining the latest value of
a variable without generating another event for it. To achieve this, we introduce the

concept of “live variables.”

4.3.1 Update triggered by the ‘thing’

Variables whose value could change are referred to as ‘live’ variables. They are denoted

by the storage class 1ive we introduce into the C side.

void foobar (){

live int x;

Listing 4.14 An example of live variable

4 JADE Programming Framework 42

The ‘live’ here is similar to the static or extern keyword in C. When a variable is
declared ‘live’; if the value of the variable changes elsewhere, the new value will be
reflected locally, and vice-versa. While writing the code in JADE, any portion of the
code written in C syntax, could include a ‘live’ variable, except the JavaScript part
which is inside the jarequire and the jadef function for the cloud and the web.

Inside the ‘jadef’ function for the cloud/web, the developer could add the event
that should transpire in the cloud/web, when a live variable value update is received

from the ‘thing’, using the syntax shown below.

x.onupdate = function () {

// event upon value update

Listing 4.15 onupdate JavaScript function

The onupdate function allows the programmer to execute arbitrary JavaScript code

when the value of the live variable gets modified in the ‘thing’.

4.3.2 Update triggered by the web/cloud

The live variable can be updated in either end. Above, we described how the updates
propagate from the ‘thing’ to the cloud or web. Below we describe how updates
propagate from cloud or web to the ‘thing’. In the C side, JADE provides a library
function called checkVal() that allows the programmer to read the current value of
the live variable. If there is no updates for the live variable, the checkVal () routine
will timeout after the given interval. The C function uses the return value to indicate

the presence of a updated value.

void updateThing ()

4 JADE Programming Framework

43

live int x;
while (1) {
int timeout = 1000; //1000 ms
int xflag = checkVal(”x”, timeout);
if (xflag) {
// new value found for x

} else {

// timeout occurred

Listing 4.16 update ‘thing’s’ live variable

4.4 Implementing JADE

The JADE implementation has two major parts. First is the JADE preprocessor

that converts JADE source file to the C/C++4, ino (Arduino compatible C/C++),

and JavaScript. Second is the JADE runtime that is necessary to integrate all the

components together. This part is mainly responsible for message communications

and invoking the necessary functions.

4 JADE Programming Framework 44

4.4.0.1 The JADE Preprocessor

The JADE Preprocessor is written in python. It takes a JADE file with .ja extension
as input and generates a .ino or .c and JavaScript files as output. The preprocessor
parses the JADE file one line at a time and adds the code to the JavaScript file or
the .ino (or .c) file determined by the presence of keywords like jadef, jasubscribe,

jacall, jaevent and jarequire.

4.4.1 The JADE Runtime

The JADE runtime is made of a library in C, library in JavaScript, and a NodeJS
server (currently server is implemented in Python). The C library consists of impor-
tant functions that could be used by the developer while writing the C/C++ part of
the code in the JADE language. The C and JavaScript libraries are responsible for
implementing the remote procedure call (RPC) functionality so that C functions can
call their JavaScript implementations and vice-versa. In addition to the RPC func-
tionality, the libraries also support the live variable updates through a similar but
simpler mechanism. In live variable updates, we need to keep track of the functions
getting in scope and leaving the scope. Further, the updates for the live variables
need to be routed to the appropriate variables when many variables are active at the
same time.

One of the features of the JADE runtime is its ability to work with web browsers.
That is, the Javascript programs running inside web browsers can use the JADE

runtime to communicate with programs running in ‘things’ and cloud.

4 JADE Programming Framework 45

4.4.2 hlib

It is a library that is written entirely in C. The hlib is present on the ‘thing’. The
library consists of important functions that could be used by the developer while
writing the C/.ino part of the code in the jade language. Originally, hlib was meant
to be used for the W12 Window system, containing a set of drawing primitives, to
be used by application developers, to render on the screen when the appropriate
event occurs. The hlib assists developer by allowing them to focus on the application
and not worry about the communication channel and message transfer to the server.
The hlib could be included as part of the header in the jade program, by following
the C syntax for including a file. The hlib directory consists some important files for
events and commands. hlib stores a the set of events that could occur at the browser /
server, based on which the event received from the server are identified and appropriate
handler is called. In event.h, the header file for events, we enumerate all the events that
could happen like ClickEventType, MouseDownEventType, MouseMoveEventType,
MouseDragEventType et cetera are some examples of events. Event is registered as a
structure containing the event type and the event value which is a union, comprising
of keyboard, mouse values et cetera. Prior to creating the jsevent function in JADE,

event handling was being done by registering callbacks for events.

4.4.2.1 call user def Function

The application developer may want to create functions in javascript for the web or
the cloud, or may want to call some pre-existing javascript function. The javascript
function is invoked by using the call_user_def function call in the C/.ino program.

The call_user_def function present in hlib.c, is a special purpose function, which

4 JADE Programming Framework 46

takes the function name and function arguments; and calls the corresponding function
at the web or the cloud. For the ease of programming, the developer does not need
to bother about invoking call_user_def, rather it is inserted by the preprocessor.
The biggest challenge in creating the call_user_def function was to allow variable
type and number of arguments to be passed. To facilitate this functionality, we used
va_list, and for interpreting the type of the parameter, an additional single character
parameter needs to be passed to the function. The character ‘i’ identifies integer, ‘s’
for string, ‘¢’ for character, ‘f’ for float and ‘d’ for double. Below is the prototype for

invoking the call_user_def function:

(33 kM

call _user_def(‘‘atest”, ss”, xstr, ystr);

Listing 4.17 Example invocation of call user def funciton

The first parameter is the name of the javascript function which we want to be called
at the server or the web. Next is the type of the parameters which are needed by the
function followed by the parameters themselves. Here, the parameter ss implies that
the two arguments ‘xstr’ and ‘ystr’ are strings. In the next step, the function name

is wrapped in a JSON object and sent to the server.

4.4.2.2 update function

This function is responsible for updating the value of the live variables every time a
new value is assigned to them. The function is inserted by the preprocessor into the
C/.ino file to update the value of a variable in Javascript. Below is the prototype of

an update function:

4 JADE Programming Framework 47

(33

update (‘ ‘main_y” s” main_v):
) b)

Listing 4.18 Example invocation of update funciton

The argument that update function receives the variable, the type of the variable and

the value of the variable.

4 JADE Programming Framework 48

4.5 Virtualization of Things

In addition to providing a unified programming model, JADE also introduces a novel
concept of virtualization of things such that the mapping between a physical ‘thing’
and its virtual counterpart is no longer one-to-one. This idea of ‘thing’ virtualiztion
was first mentioned by Saracco in [17]. It should be noted that the virtualization we
envision here is little different from the common notion of virtualiztion described in
existing literature [18], where a virtual object is considered as the dynamic represen-
tation of its physical counterpart.

With IoT, the nature of interaction between human and the real world is no
longer limited to the physical one, we could have users visiting a real world through
the web. While those visitors remained passive observers earlier, they could be active
by trying to control the things through the web. Such activities create a big problem
for the application developers due to the concurrent access of many users. The JADE
approach is to simplify the problem by offering a virtualization idea.

Existing approaches for connecting physical objects to cyberspace such as AllJoyn [5]
do not handle the problem of concurrent access. By enabling virtualiztion, JADE
could introduce new possibilities for using physical spaces. For example, this extreme
form of virtualization could enable a “service-oriented” access to physical spaces and
things.

The virtualization of a ‘thing’ means that a physical object can be assigned mul-
tiple virtual entities such that these represent the virtual instances of the physical
object. With multiple users, each user can acquire their own copy of the virtualized
‘thing’, with full interfacing functionality. As shown in Figure 4.2, the virtualization

of the thing can be achieved using a simple hypervisor implmentation on the thing.

4 JADE Programming Framework 49

Application -

Virtual Thing

Thing Hypervisor

Physical Thing
(Hardware)

Fig. 4.2 Layered virtualization stack

Each virtual object can be mapped to its physical object under one of the following
virtualization models.

In JADE, several virtualization models are offered to the developer. Based on
the property of the physical object, and the nature of the application, the developer
can select from: exclusive, majority, weighted, and time slice. With the exclusive
model, one virtual instance monopolizes over the interface until it exits, thus no
shared user control is present. With the majority model, a majority representation
over all of the virtual instances operates the physical object, and shared user control
is achieved. With the weighted model, which is a general case of the majority model,
each virtual instances have their own associated weights, such that the user privilege
can be reflected through the weights of individuals’ virtual instances. With the time
slice model, analogous to process scheduling, virtual instances are allocated a time
slice, during which the virtual instances are imposed on the physical object.

In JADE, through the following syntax, the ‘thing’ can be designed to take on the
different virtualization models. In the example in Figure 4.3, the expresso machine
should under an ezclusive model while the lamp could be using any one of the shared

model.

4 JADE Programming Framework 50

Smart Desk Lamp Smart Espresso Machine

o

Virtual Espresso Machine and Desk Lamp view
in Browser

Fig. 4.3 Time slice virtualization model

jadef {thing} {virtualization model}

{

// ’thing’ application code

Listing 4.19 jadef thing virtualization syntax

51

Chapter 5

Experimental Results

In order to demonstrate the capability of the JADE programming framework, we

choose to implement an example prototype application over the Intel Galileo [19].

Fig. 5.1 Intel Galileo with accelerometer prototype

The prototype, shown in Figure 5.1, consists of an Intel Galileo connected with an
MMAB8452Q accelerometer [20]. As an example, a motion control based web game,
shown in Figure 5.2, where the user is required to maneuver the bird into the la-
beled goal zone has been designed. Through the use of live variables, initialized in

Listing 5.1, real time accelerometer movements can be computed and automatically

5 Experimental Results 52

updated to the browser, as in Listing 5.3. On the browser side, the live variable
angle_X is tied to the live variable tiltAngleX on the ‘thing’ side such that desired
actions upon update can be performed through JavaScript functions, shown in Listing

5.4. Example codes show only x-axis computation, it is analogous for y and z.
live int angleX = 0;
live int angleY = 0;
live int angleZ = 0;

Listing 5.1 Live variable declaration

void setup () {
Ethernet. begin (MAC); // Establish ethernet connection
// Establish connection to server machine

move (angleX ; angleY , angleZ);

Listing 5.2 Ethernet and server connection setup

void loop ()

{

angleX = computeAngleX ();
angleY = computeAngleY ();

angleZ = computeAngleZ ();

Listing 5.3 Compute title angle in real time

jadef move(int Xvalue, int Yvalue, int Zavalue)

5 Experimental Results 53

var angle X = liveVar(”loop.angleX” 6 Xvalue);
var angle Y = liveVar(”loop.angleY”, Yvalue);
var angle Z = liveVar(”loop.angleZ”, Yvalue);
angle_X .onupdate = function (){

// x direction movement: angle X .value

ki

angle_Y .onupdate = function (){

// y direction movement: angle Y .value

¥

angle_Z .onupdate = function (){

// z direction movement: angle_Z.value

}

Listing 5.4 JavaScript function to be executed on the web browser

Including shown code snippets above in the . ja file, through the JADE prepro-
cessor, a .ino file and .js file will then be generated. The developer can compile
and upload the application to Arudino, and perform desired actions upon real time

update from the accelerometer.

5 Experimental Results 54

Fig. 5.2 Game Initial State (Left) and Game Goal State (Right)
5.1 Design Evaluation

To evaluate the design of the system architecture in practice, we measured the mem-
ory footprint, network transmission efficiency, and network transmission performance
between a cloud server and a thing prototype. For the measurements, we used a PC
with UBuntu 14.04 running a python server and tools like network analyzer, and an
Intel Galileo [19] with JADE runtime deployed as the thing prototype. The program
on the thing has been compiled with i586-poky-linux-uclibc-gee (GCC) version 4.7.2.
With memory footprint, device of interest is the Intel Galileo as other devices are not
typically resource constrained. The link between thing and cloud is Ethernet, with
all devices reside in LAN. The message exchanging protocol at the transport layer is
TCP. In terms of M2M communication, JADE resides between the application layer
and transport layer in the Internet stack. For transmission efficiency, we measure the
efficiency of using JADE as service for communication between IoT devices. The effi-
ciency is measured for different payloads from 0 to 512 bytes passed by the application
layer. For transmission performance, we measure the latency of 10,000 messages for
different payloads from 0 to 512 bytes. During the evaluation, payload is pushed to

cloud in the form of RPC, with payload being the parameter.

5 Experimental Results 55

5.1.1 Memory Footprint

Intel Galileo board runs Yocto based Poky Linux distribution, which supports native
Linux based applications. smem is used to analyze the memory footprint, and PSS
is measured. The simulation program on the thing uses JADE for event management
and RPC. The goal is to examine memory usage under different loads. The simulation
on the thing resembles sensor activities in typical IoT settings, where a sensor node
collects data and pushes to the cloud, while periodically receives data from the cloud.
The sending rate from thing to cloud varies from 1Hz to 100H 2z, and from cloud to
thing stays constant at 0.2Hz. The sending rate will be referred as activity, and is
normalized against 100H z in column 1 below. The payload size is fixed to 100 bytes
both ways.

The memory overhead incurred by making JADE library calls at different rates
is examined. In both scenario, simulation program collects data after receiving data
from cloud, and simultaneously, pushes data to cloud in the form of RPC at different
rates. The difference is, in Scenario A, the JADE library function used to push data
to cloud is woid; but is valid in Scenario B. The measurement shows proportional
set size measured for the simulation process. Under light activity, JADE library calls

incur insignificant memory overhead. Whereas, under moderate and heavy activity,

overhead is 4 kB.

5.1.2 Network Transmission Efficiency

The simulation program on the thing pushes payload of different sizes to cloud through
JADE. The goal is to examine data transfer efficiency using JADE as service for

communication. For each message, the size of payload passed by the application layer

5 Experimental Results 56

to JADE is compared against size of payload JADE passed to the transport layer.

JADE Payload (Bytes)

0 o0 200 300 400 500
Application Payload (Bytes)

Fig. 5.3 Data Transmission Efficiency

JADE encodes each message to be passed in the JSON format [21], which incurs
a slight transmission overhead. The JSON object is transferred over the network as

a string and is evaluated at the receiving end.

5.1.3 Network Transmission Performance

The latency is measured in terms of TCP round-trip time for different payloads from

thing to cloud.

5 Experimental Results 57

50

40

30

Latency (ms)

20

‘ .
020 50 100 200 300 500
Payload (Bytes)

Fig. 5.4 Network Transmission Latency

As the size of the payload increases, the latency also increases. The deviation is a

result of standard network congestion and TCP congestion management.

5 Experimental Results

58

Activity | Scenario A | Scenario B | JADE API Overhead
1% 144.0 kB 144.0 kB ~0 kB
10% 144.0 kB 144.0 kB ~0 kB
20% 144.0 kB 144.0 kB ~0 kB
50% 144.0 kB 148.0 kB ~4 kB
100% 148.0 kB 152.0 kB ~4 kB

Table 5.1 Memory usage for simulation program under different loads

59

Chapter 6

Example Applications

6.1 Internet of Things

We are in a process of a gradual transition from the Internet of Computers to the In-
ternet of Things (IoT) [22]. The reduction in the size, price and energy consumption
of processors has resulted in them being widely used and integrated into everyday
objects. “Smart” objects play a key role in the IoT vision. Using sensors, the smart
objects are able to perceive their context, while built-in networking capabilities allows
them to communicate with each other, access internet services and interact with peo-
ple. More devices like sewing machines, exercise bikes, washing machines, light bulbs
and thermostats are being computerized and fitted with network interfaces. Various
technical developments taken together help in bridging the gap between the virtual
and the physical world. These technical developments include providing effective com-
munication technologies and wireless technologies like GSM, Wi-Fi, Bluetooth, Zigbee
and more. Addressability for objects, including discovery, look-up or name services,

thus providing remote configuration. Objects could be identified by using RFID, NFC

6 Example Applications 60

or optically readable bar codes. Sensors are used in objects to collect information,
while actuators could be used to manipulate the environments. Localization for smart
‘things’ could be achieved using GPS, ultrasound time measurement, radio beacons
and optical technologies. Creating appropriate user interfaces is another step in en-
suring efficient communication and interaction with the user. There are some big
challenges that are restricting the growth and proliferation of the Internet of Things.
Scalability is a major concern. Communication and service discovery needs to be
performed efficiently to ensure IoT reaches its full potential. Interoperability is one of
the biggest challenges in the IoT domain. There needs to be a common standardised
schema to allow different smart objects with different information, processing and
communication capabilities to interact with each other. Another challenge is to cre-
ate an extensive software infrastructure to manage the ‘things’ and provide services
to them. Other challenges include managing huge volumes of data some ‘things’ may
produce, interpretation of the data, providing security, privacy and fault tolerance.
A logical development to the Internet of Things could be to leverage the technolo-
gies of World Wide Web for the smart objects as Web of Things [23]. JADE could
play a significant role to expedite the development of the different aspects of the
Internet of Things and help in overcoming some of the significant challenges. The
sensors and actuators provide information to the ‘thing’, which could transfer this
information to the server, by using the ‘live’ variable concept. Thus, ensuring that
frequent updates of the values are sent. JADE also allows to use most of the powerful
features of the web, as it allows the developer to write code in JavaScript inside the
’jadef’ function and include external files and libraries by using the ’jarequire’

function. JavaScript is the most widely used and familiar language for the web and

6 Example Applications 61

with so many new libraries being based on it, JavaScript could prove to be a vital cog
in making the development of IoT widespread. The JADE programming framework
combined with the NodeJS server which will be implemented soon, and through the
use of TCP as the communication protocol and the use of web sockets, could provide
the software architecture necessary to allow the ‘things’ and the physical environment

to be controlled virtually.

6.1.1 Machine to Machine Communication

To enable smooth interactions between one machine and another, without human
intervention, it is important to overcome the domain specific nature of the existing
semantic sensor networks that add semantics to the context. Semantic sensor networks
are responsible for enabling explicit representation of sensors, sensor observations and
knowledge of the environment. A possible solution is to add semantics to the measured
data as opposed to the context [16]. There has been an increase in the availability
of M2M devices, due to a growth in the usage of M2M devices in several domains
like home monitoring, weather monitoring, health monitoring. M2M area networks
gather information from M2M devices. Merging different M2M area networks (sensor
networks) to create useful M2M applications is a difficult task due to the differences
in the protocols used (Zigbee, Bluetooth, 3G, 4G, WiFi, CoAp, etc.), heterogeneous
data formats and the lack of description of measurements. Semantic data in most
cases is implicit, however at times there is a need for explicit semantic description
of the data. The challenges in this front include managing heterogeneous data from
M2M area networks; using semantic web technologies to convert sensor measurement

into semantic measurement and the ability to reason on these semantic data. The

6 Example Applications 62

paper presents an architecture to convert heterogeneous sensor networks to semantic
sensor networks. Semantic technologies are added to M2M gateways as well as M2M
applications. The heterogeneous nature of the M2M data is overcome by converting
all the data into a standard XML format; then using semantic web languages (RDF,
RDFS, OWL) to add semantics to the XML sensor measurement. In M2M applica-
tions, semantic based reasoning tools (machine earning, recommender system) provide
sophisticated semantic treatments. JADE could assist in achieving M2M communica-
tion by using peer to peer communication, where a ‘thing’ broadcasts its information
to all the other ‘things’ in the same space. In addition, a publisher-subscriber scheme
could be used; where a ‘thing’ publishes its events using the ‘ jaevent’ to the server
and the subscriber of the event, indicated using ¢ jasubscribe’, is notified when the

event gets triggered.

6.1.2 Interoperability

All ‘things’ should have a common platform for communication, with standard single
API. This API should be sustainable over different platforms. Cross domain interop-
erability, should be given significance over vertical integration. If all smart objects in
a space are connected to a single vendor, the problem arises when there is an update in
an object that is produced by a different vendor. There are several challenges around
interoperability in the web of things (WoT). There is a need to increase interoper-
ability, at the same time maintaining innovation and exploration. There has been an
explosion of WoT platforms over the recent years; these often take for granted the
presence of an interoperable IoT model. A hub-centric approach [24] is a possible

means of overcoming these challenges. WoT hubs can be broken down into a number

6 Example Applications 63

of categories like web-enabled IoT products, web centric IoT development platforms,
WoT hubs and sensor webs. A degree of interoperability is provided through a thing-
agnostic model and API created by large IoT platform vendors to allow to integrate
‘things’ across various domains. As more users and ‘things’ are connected to the
hub, it could become a de facto standard. Domain-specific sensor data portals like
International Federation of Digital Seismograph networks (FDSN) have established
standards towards interoperability. JADE could help in facilitating interoperability.
JADE works using JavaScript as an “interface”. That is the native functions (C
functions) are exposed as JavaScript functions that are called on “proxy” objects. As
JavaScript is a standardised language which is already largely interoperable, we can

achieve interoperability using the JADE approach.

6.2 Other Applications

6.2.1 Home Automation

Smart computing is making steady inroads into home automation, where appliances
and other items are getting an infusion of computing capabilities. The next step is for
the smart objects to operate in concert to support a smarter environment in the home.
Interoperability is one of the major challenges in achieving this objective. SpaceOS
provides an enabling framework for a smart computing environment by providing a
user-driven approach for tackling the interoperability problem. In addition, SpaceOS
can also enable newer modes of interactions. In particular, users can employ video
to obtain another view of the home environment while controlling the smart devices

and interacting with the people in the home.

6 Example Applications 64

6.2.2 Remote Monitoring and Control for Elderly Care

The basic setup of this application is very similar to home automation. However,
this problem can have stronger privacy issues because of a third party involvement.
The hybrid model of overlaying the video stream with smart device information can
help. We can decrypt portions of the video that are normally encrypted using keys
provided by the smart devices. Depending on the contingency that might arise, the

video becomes visible for the care provider.

6.2.3 Physical Devices and Spaces as a Service

There are many valuable physical spaces and devices for which users have limited
access. One example would be science laboratories for high school students. A smart
computing environment like the one created by SpaceOS can be used to virtualize a
laboratory and provide remote access to the facility to a large number of students.
The devices in the lab could be connected to microprocessors to make them “smart”.
These devices would have a representation on the web browser, which the students
could access. Each student could control different objects through the web using this
setup created through JADE, as the lab equipments have now have become ‘things’.
Further, using the facilities provided by SpaceOS it is possible for large number of
users to collaborate in a physical space. In the case of a school project, members of
a group could also discuss and have live chats on the web browser, exchange their
ideas and then collaborate to work and control different devices to complete their
projects remotely. In a project involving robotics, multiple students could work on
different parts of a robot by having microprocessors for different parts of the robot.

One student could work on the arm, another on the fingers, another on the body.

65

Chapter 7

Related Work

7.1 End User Programming in Ubiquitous Programming

Environment

Ubiquitous programming has been perceived as the third wave of computing for a long
time. There have been several academic approaches to realize ubiquitous computing.
Based on the extent of human involvement, on one end of the spectrum lies machine
learning, which places decision making entirely on the hands of the system. While
on the other end is the top down approach to ubiquitous computing called End User
Programming, which involves the end user in customizing the environments. End
User Programming refers to people who are not professional software developers, pro-
gramming computers. Various End User Development (EUD) tools could be used by
the end user to program and modify softwares without significant knowledge of pro-
gramming. Some EUD tools include spreadsheets and scripting languages. Although,
we have computers everywhere, in phones, cars, TVs, refrigerators and many other

devices, there is an evident absence of the software to control these devices and make

7 Related Work 66

them work for us. A formal connection lacks between the programming task and its
abstraction, and the user of the environment. Domains like mobile devices, browsers,
databases, spreadsheets, games et cetera have seen end users embrace programming
and customizations. This indicates that end user may be ready to program their
ubiquitous environment.

Smart home fitted with actuators and sensors is a commonly cited example of a
future ubiquitous computing environment. Readings of the actuators could be coor-
dinated to infer high-level conditions about the state of the home and its occupants.
One of the major challenges in building such smart spaces is the massive amount
of customization necessary. Due to large and varying individual needs for these ap-
plications, the traditional software paradigm will not scale. Requirements to realize
this is to have an extensive architecture built on top of existing, well understood
web protocols, to allow users to program their smart environment. In the presently
implemented models, commercial systems are controlled by the vendor with propri-
etary rather than open standards. Its a flawed approach, as no single company could
provide all the actuators/sensors needed to achieve diverse ubiquitous computing,.

A survey was conducted [25] from users about smart homes and their impact. It
was apparent from the responses received that different users wanted different behavior
from their space; different users perform similar actions in different ways. These
varying behaviors and actions could be met by creating abstract, straight forward
and usable end user programming constructs for ubiquitous computing. The paper
[25] tries to shift the focus to the user and motivate and create a vision for end user
programming in a ubiquitous environment. This vision of end user programming

follows three major steps. Firstly, user should be involved in the design process. The

7 Related Work 67

platform should be human centric and only moderately abstract. Secondly, provide an
extensible platform for matching conditions to actions. Performing actions depends
on the availability of hardware. Each smart environment is distinct. The paper
suggests to use a single software framework, which could be extended to accommodate
additional software or hardware functionality. Lastly, to build on powerful, widely
deployed web protocol. The platform server could be written on any of the existing
web languages.

Implementing ubiquitous programming through JADE framework could achieve
most of the desired objectives of End User Programming. For a space which allows
Ubiquitous Computing, using the JADE framework, the developer could include the
end user during the design process. An extensible platform could be then created,
where any new device could be added following similar sequence of events as described
when a new device enters a space in SpaceOS, depicted in figures 3.4 and 3.5. Also,
JADE uses JavaScript which is the most widely used scripting language for the web
and would fit in well with the proposed vision for end user programming to widely

deploy web protocols.

7.2 Ubiquitous Computing

In the computing model presented in [26] called Plan B, there is no middleware
in place to integrate different systems, instead there is a way of exporting all of
the properties of a system through distributed virtual file systems. This Ubiquitous
computing model could be used to apply general purpose tools to any system resource
without the need of a middleware. All machines are peers and export volumes. System

has machines, booted by the user. Once booted, a machine exports all of its resources

7 Related Work 68

to the network as a tiny file system. These tiny file systems exported consist of
resource volumes and attributes, referred to as Constraints. Constraints are attribute
- value pairs to identify properties of interest. Each process has namespace that binds
names to resources. The environment that an application could see consists of a set of
files that have been imported into its namespace. The environment seen by the user
is that seen by all the applications that belong to him/her. Mount system call is used
to find the volume given the constraint from the volume table. For handling events,
a general purpose event delivery volume provides ports that could be used as event
channels. The file system processes event messages and writes to appropriate port
to deliver the message. Interoperability between different systems using this model is
granted to an extent because most machines nowadays have the ability to remotely
use files. As the protocol used by Plan B is not a widely used protocol, some Plan B
machines run gateways that export Plan B files through CIFS and NFS. This adds
Windows and Unix to the list of systems that could use Plan B files. In contrast to
the approach taken by Plan B, JADE uses the cloud server, which is a middleware
needed to enable interaction between different ‘things’. Through JADE, a ‘thing’
sends the events that it subscribes for and the events that it publishes to the cloud

server, which could be then accessed by other ‘things’ in the network.

7.3 Programming of Pervasive Computing

The system architecture for pervasive computing makes the developer’s task of creat-
ing application that adapts to highly dynamic environment, feasible. Pervasive com-
puting calls for the deployment of a wide variety of smart devices that are expected

to react to their environment and coordinate with each other and the network ser-

7 Related Work 69

vices, throughout our living spaces. Pervasive computing space could be envisioned
as a combination of mobile and stationary devices that draw on powerful services
embedded in the network to achieve users’ task. The key challenge is to build appli-
cations that adapt to a rapidly evolving environment. Current distributed systems
and client server models are not adept to handle such a huge dynamic computing en-
vironment. In this architecture called one.world [4], each device runs a single instance
of one.world. Separate abstractions exist for application data and for functionality.
One.world stores and interacts with data in the form of tuples, and are composed of
components. Components implement functionality by importing and exporting event
handlers. Each device’s root environment holds one.world kernel.

Application needs to be accessible as the user is moving across the physical space.
The applications should provide access to shared data even if the current location
does not allow network access and should also have the ability to recover from failures.
Features like migration, remote event passing (REP), replication and checkpointing
are the services provided by one.world that serve as common building blocks to directly
help developers to make their applications adaptable.

Data management is achieved through tuples. Tuples are records with named
fields and an application that dynamically determines a tuple’s fields. Tuples are
used for I/0 instead of byte stream, because tuples preserve the structure of data, are
simple to use and obviate the need for explicit marshalling and unmarshalling of data.
Compared to XML, tuple are simpler and easier to use. The structure of XML-based
data is more complicated including tags, attributes and namespaces. In addition,
the interface to XML-based data such as DOM, are comparatively more complex.

Tuples have a Global unique identifier (GUID) field, that supports application specific

7 Related Work 70

annotations. Replication makes tuples accessible to multiple nodes even if the tuples
are not connected.

Events in one.world are simply tuples. Events have a source field implementing an
event handler. Event delivery has at-most-once semantics, both for local and remote
event handling. Components import and export asynchronous event handlers and are
responsible for implementing application functionality. Components are instantiated
within specific environments and within their constructors, declare which event han-
dlers they will import and export. Asynchronous event handling is implemented by
using a queue of pending invocations provided by each environment and a pool of
one or more threads to implement such invocations. An environment seems like a
regular component to an application. There is a hierarchical arrangement of events,
which offers considerable flexibility and power. Event sent to the request handler
of an event, which is exported by the environment, are delivered to the first ances-
tral environment whose ‘monitor’ handler, which is imported by the environment, is
linked. Omne.world is implemented using Java and a small, native library is used to
generate the GUID. BerkleyDB [27] is used to implement reliable tuple storage. The
one.world architecture for pervasive computing uses three principles to provide system
support. Firstly, uses leases to expose changes, allowing the applications to develop
strategies to handle those changes. Secondly, nested environments and late binding
to dynamically compose applications. Finally, tuples represent data and components
implement functionality to cleanly separate data and functionality.

In an analogous manner to the pervasive computing architecture, the JADE frame-
work uses ‘live’ variables to track and expose changes captured by the sensors. In

JADE, we use a publisher-subscriber scheme for binding applications and events, by

7 Related Work 71

allowing the developer to specify the attribute of a ‘thing’ using the jasubscribe
function. In JADE, the functionality is represented by a JSON object which contains
the name of the function while data is represented as arguments. Thus clearly sep-
arating data and functionality just like what tuples do in the pervasive computing

model presented in [4].

7.4 Olympus: A Pervasive computing programming

framework

Olympus is a high-level programming model, developed [28] for Enhanced Physical
Spaces called Active Spaces that are highly dynamic. An Active Space is a physically
bounded collection such as a room consisting of devices, users, services and appli-
cations. Spaces are characterized by large number of different types of services and
applications. It’s a challenge to choose the “best” way of performing a task, given
so many different options for services and applications. The developer should not
be burdened with this task, so a higher level of abstraction should be provided to
the developers. Olympus allows developers to specify active space entities using high
level description. The developer would not know how different tasks are performed in
different environments. Each space has different kind of resources, so developers had
to customize their application for new spaces. Programs in an active space should
choose the “best” way of performing a task, and not bother the developer with this.
Olympus is associated with virtual entities, which are resolved by the framework into
an actual active space entity. Discovery process discovers a class of entities that satisfy
all requirements and then select instances of these classes that satisfy instance level

requirements. FExecution of common active space operations like starting, stopping

7 Related Work 72

and moving components; notifying users; taking actions when the user enters a space,
etc. are determined by the Olympus framework and the developer does not need to
bother about them. Olympus is part of the Gaia middleware and is implemented in
C++. Below is a sample Olympus program. Here the developer says he wants to

start a slideshow application with the file Olympus.ppt in an active space:

ActiveSpace asl; // refers to virtual active space entity
asl.instantiate (); // asl now refers to the active space
Application appl; // refers to virtual application entity

appl.start (asl); // appl started in active space asl

Listing 7.1 Example code for Olympus

A meta operating system called Gaia [29], manages resources for an active space.
Olympus allows its users to program in terms of virtual entities, which are variables
that have not yet been initialized. Entities can be stored in variables, used in expres-
sions and passed as parameters to functions. The developer does not need to worry
about the actual instance that the entity gets instantiated with. Commonly used Ac-
tive space operations are implemented as operators in Olympus. The operator set is
analogous to the instruction set of a computer. These could be used by the developers
in their programs. For instance, a space may require authentication before a user is
allowed to enter, while another may use location service to detect the user’s presence.
These details are hidden from the developer, and allows him to check the user’s pres-
ence by the operator ‘in’. [30] mentions Gaia to be a distributed middleware infras-
tructure that coordinates software entities and heterogeneous supported interaction

nodes. In most cases using a middleware approach to address pervasive computing,

7 Related Work 73

the developer is still left producing the glue code between the middleware and the
application domain. Olympus tries to bridge the gap between the midleware and its
application domain by enabling ontological description of entities to be integrated into
the development of an application. Then depending on different aspects like resource
availability and developer-supplied constraints, a middleware based on Gaia resolves
the descriptions enabled by Olympus into actual entities. Applications in Gaia are
composed of five components, which are model, presentation, adapter, controller and
coordinator. The ontology defines the relationship between different objects. For ex-
ample, there is requireDevice relationship. requireDevice (PowerPointViewer) =
PlasmaScreen v Desktop v Laptop v TabletPC. The above example implies that
the PowerPointViewer features can only run on PlasmaScreen, TabletPC or Desktop.
Developer can specify the constraints that the classes and instances of the virtual ma-
chine should satisfy in the format of entity, property and values. Space-level policies
are written by the administrator of the space in the form of prolog rules. Based on
the location, task supported, state of the entity and context of the space, Olympus
creates a multidimensional utility function to choose the best entity. As it is not
possible to rank entities across dimensions, to rank all candidate entities for choosing
the best one, one of the dimensions must be chosen as the primary one. Programs
developed on Olympus have two main segments. In the first segment of programming
on Olympus, the developer specifies the type of virtual entity and its properties or
constraints. In the second programming segment, developers can use high level oper-
ators on the entities. Although the framework does simplify the task of the developer,

it also takes away some control from the hands of the end user.

7 Related Work 74

JADE has some similarities to Olympus, as it uses known programming languages
like C and JavsScript. However, JADE does not implement a lot of abstraction. So,
the user and the developer always have the control in their hands, unlike the case in

Olympus.

7.5 Spatial Programming

In the world of ubiquitous Networks of Embedded Systems (NES), Spatial Program-
ming (SP) [31] attempts to solve problems that are faced by traditional distributed
programming. It’s an attempt to design and implement a programming model for
NES, which is able to execute coordinated actions in a decentralized manner. Space
is split into two special spaces, spacel and space2. Spacel is a given geographic loca-
tion and space2 is detected dynamically by using an intelligent camera, once a motion
sensor is triggered by an object. The main focus is to program the physical world in
order to overcome the challenges posed by attempting to execute coordinated actions
in a decentralized manner. So, when a motion sensor is triggered by an object, col-
laborative object tracking needs to be performed by the cameras. Spatial reference is
provided by using a tuple {space:tag}. The drawback of this approach is that the

namespaces, to reference the space, could be extremely large.

7.6 SpaceBrew

Spacebrew [32] is an MIT licensed open software toolkit to connect interactive things
to one another. Every element that is hooked up to the system is identified as either

a publisher or a subscriber. To launch Spacebrew, a server is needed to host the

7 Related Work 75

Spacebrew session. Public Spacebrew session could be hosted on Amazon EC2 as well.
The public server is written in NodeJS and uses web sockets. Any web browser based
client can communicate with the Spacebrew. When connecting to the server, clients
need to communicate their ‘config’ information to Spacebrew. In order to take the
html/css/javascript coding out of the web side of things, Spacebrew consists of a series
of libraries for Arduino, Processing, JavaScript. Thus reducing the knowledge of web
technologies to prototype projects that communicate via the internet. Whenever a
Spacebrew example is run (processing, javascript etc.), a “publisher” or a “subscriber”
is created on the spacebrew server. The interface visible to the user consists of three
columns, which are publisher, subscriber and clients. A connected client sending out
some data is called a “publisher” and appears on the left column of the server. A
client that receives and interprets the information is called a “subscriber” and appears
on the right column of the server. Initially, each client on making a connection with
Spacebrew, appears in the clients column. Boolean, ranges and strings are the types
that the client is capable of sending; they appear as nodes in the publisher column.
Information that client could interpret appear as nodes in the subscriber column. The
user could hover over and connect like values (Boolean to Boolean, string to string,
publisher to subscriber) between publishers and subscribers. Below is a code sample

written in processing.js

¢ = new Spacebrew(this);

// add each thing you publish

// and subscribe to

c.addPublish(‘‘buttonPress”, buttonSend);

c.addSubscribe(‘‘color”, ‘‘range”);

7 Related Work 76

c.addSubscribe(‘‘text”, ‘‘string”);

Listing 7.2 Spacebrew syntax

JADE has some similarities to Spacebrew. JADE also uses a publisher-subscriber
scheme. For the subscriber of an event we could use ‘jasubscribe’ with the name of
the event, which is explained in Chapter 4. The keyword ‘jaevent’ could be used
to publish the events. Like Spacebrew, JADE also tries to make the work of the
developer and the user easier, by hiding the underneath complex architecture for
sending data to the server and reusing existing technologies. The primary difference
is the customizable interface offered by JADE. Spacebrew offers a ‘standard’ interface

like a service-oriented system.

77

Chapter 8

Conclusions and Future Work

Internet is poised to undergo a major transformation in terms of number of devices and
services due to the induction of Internet of things (IoT). To fully realize the promise
of IoT, we need programming frameworks that will allow developers to work on IoT
with familiar tools. To achieve this, we propose JADE that constructs a programming
framework using C/C++ and JavaScript. The ideas used in this synthesis could be
applied to create a version that mixes Java with JavaScript as well. We believe the
approach of using a preprocessing step and leaving the actual compilation to the
“native” compiler has its benefits in long term maintenance of the tools and the
application code.

To further simplify the application development for IoT, we introduced the ideas
of ‘live’ variables. Although the functionality offered by the live variables can be
implemented by the event processing scheme in JADE, we believe the live variables
provided a much easier usage pattern for the programmers.

Another aspect of JADE that is yet to be implemented is the virtualization of the

things. When a thing could be controlled by many users over the web, it becomes

8 Conclusions and Future Work 78

complicated for the application developer. We believe the JADE runtime could actu-
ally help to make the programmers’ task easier. By virtualizing the ‘thing’, we allow
the programmer to deal with the single user scenario and the runtime is responsible
for mapping the actions in the multi-user scenario.

We already built the proof-of-concept prototype of the JADE preprocessor and
runtime. We are able to write programs and execute them.

As part of the future work, we will implement the ‘thing’ virtualiztion. We will
use the ‘thing’ virtualization to deploy JADE applications over many web users (i.e.,
multi-user scenario). Another interesting future direction is to use JADE in newer
operating systems such as Tizen that have the “web app stack” and “native app
stack.” Using JADE, we could develop “hybrid apps” that use the web and native
features in a single device or across multiple devices. Also as part of the future work,
we will try to implement some of the methods described in Chapter 3 for achieving
reliability and a higher level of security.

The server in the current version of spaceOS is implemented in python using the
Tornado framework. In the future we intend to implement the server in NodeJS. This
will allow the jadef function for the server to directly introduce parts of javascript
code to the server.

The JADE file creates a Javascript file and a C / .ino file. The JavaScript file needs
to be sent to the server, so that the JavaScript could be rendered on the browser, when
the space is accessed. This could be achieved by using a File transfer protocol.

There is a growing trend for applications to be developed which are part native
and part web based. Different devices use different browser technology for rendering

web pages. Blackberry uses HTML5WebWorks for development, iOS devices use

8 Conclusions and Future Work

79

PhoneGap while smart watches use the Tizen Web API.

80

References

1]

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot):
A vision, architectural elements, and future directions,” Future Gener. Comput.
Syst., vol. 29, pp. 1645-1660, Sept. 2013.

S. Nastic, S. Sehic, M. Vgler, H. L. Truong, and S. Dustdar, “Patricia - a novel
programming model for iot applications on cloud platforms.,” in Service-Oriented
Computing and Applications, pp. 53-60, IEEE, 2013.

D. Guinard, A Web of Things Application Architecture — Integrating the Real-
World into the Web. Ph.d., ETH Zurich, 2011.

R. Grimm, J. Davis, E. Lemar, A. Macbeth, S. Swanson, S. Gribble, T. Ander-
son, B. Bershad, G. Borriello, and D. Wetherall, “Programming for pervasive
computing environments,” tech. rep., University of Washington, 2001.

R.-C. Marin, “Hybrid contextual cloud in ubiquitous platforms comprising of
smartphones,” Int. J. Intell. Syst. Technol. Appl., vol. 12, pp. 4-17, July 2013.

A. Birrell and B. J. Nelson, “Implementing remote procedure calls,” ACM Trans.
Comput. Syst., vol. 2, no. 1, pp. 39-59, 1984.

J. Maassen, R. V. Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Jacobs, and
R. Hofman, “Efficient java rmi for parallel programming,” ACM Transactions on
Programming Languages and Systems, vol. 23, p. 2001, 2001.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,
S. Thatte, and D. Winer, “Simple Object Access Protocol (SOAP) 1.1,” w3c note,
World Wide Web Consortium, May 2000. See http://www.w3.org/TR/SOAP/.

K. A. Kadouh and K. A. Albashiri, “Improvement of data transfer over simple
object access protocol (soap),” International Journal of Computer, Information
Science and Engineering, vol. 8, no. 2, pp. 16 — 19, 2014.

References 81

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[19]

[20]

R. T. Fielding, REST: Architectural Styles and the Design of Network-based Soft-
ware Architectures. Doctoral dissertation, University of California, Irvine, 2000.

B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny web services for
sensor device interoperability.,” in IPSN, pp. 567-568, IEEE Computer Society,
2008.

“BEA, microsoft, and tibco release web services eventing (WS-eventing) specifi-
cation.,” 2004.

D. J. Cook, J. C. Augusto, and V. R. Jakkula, “Review: Ambient intelligence:
Technologies, applications, and opportunities,” Pervasive Mob. Comput., vol. 5,
pp- 277-298, Aug. 20009.

D. Preuveneers, J. V. den Bergh, D. Wagelaar, A. Georges, P. Rigole, T. Clerckx,
Y. Berbers, K. Coninx, V. Jonckers, and K. D. Bosschere, “Towards an extensible

context ontology for ambient intelligence,” in Second European Symposium on
Ambient Intelligence, vol. 3295 of LNCS, pp. 148 — 159, Nov 8 — 11 2004.

R. Rajkumar, I. Lee, L. Sha, and J. A. Stankovic, “Cyber-physical systems: the
next computing revolution.,” in Design Automation Conference (S. S. Sapat-
nekar, ed.), pp. 731-736, ACM, 2010.

A. Gyrard, C. Bonnet, and K. Boudaoud, “A machine-to-machine architecture
to merge semantic sensor measurements,” in WWW 2013, 22nd International
World Wide Web Conference, Doctoral Consortium, May 13-17, 2013, Rio de
Janeiro, Brazil.

R. Saracco, “Future of objects virtualization and the internet with things,”
in IEEE Technology Time Machine Symposium on Technologies Beyond 2020,
pp- 1-1, June 2011.

D. Kelaidonis, A. Somov, V. Foteinos, G. Poulios, V. Stavroulaki, P. Vlacheas,
P. Demestichas, A. Baranov, A. Biswas, and R. Giaffreda, “Virtualization and
cognitive management of real world objects in the internet of things,” in IEFE

International Conference on Green Computing and Communications, pp. 187—
194, Nov 2012.

“Introducing the intel galileo development board.” See http://www.intel.com/
content/www/us/en/do-it-yourself/galileo-maker-quark-board.html.

“Triple axis accelerometer breakout - mma8452q - sen-10955 - sparkfun electron-
ics.” See https://www.sparkfun.com/products/10955.

References 82

[21]
[22]

23]

[24]

[25]

[27]

28]

[29]

[32]

D. Crockford, “Javascript object notation.,” See http://www.json.org/.

F. Mattern and C. Floerkemeier, From the Internet of Computers to the Internet
of Things, vol. 6462 of Lecture Notes in Computer Science, pp. 242-259. Springer,
2010.

D. Guinard and V. Trifa, “Towards the web of things: Web mashups for em-
bedded devices,” in Workshop on Mashups, Enterprise Mashups and Lightweight
Composition on the Web (MEM 2009), in proceedings of WWW (International
World Wide Web Conferences), Apr. 2009.

M. Blackstock and R. Lea, “Toward interoperability in a web of things.,” in Ubi-
Comp (Adjunct Publication) (F. Mattern, S. Santini, J. F. Canny, M. Langhein-
rich, and J. Rekimoto, eds.), pp. 1565-1574, ACM, 2013.

S. Holloway and C. Julien, “The case for end-user programming of ubiquitous
computing environments,” in Proceedings of the FSE/SDP workshop on Future
of software engineering research, FoSER ’10, pp. 167-172, ACM, 2010.

F. J. Ballesteros, E. Soriano, K. L. Algara, and G. G. Muzquiz, “Plan b: An
operating system for ubiquitous computing environments.,” in PerCom, pp. 126—
135, IEEE Computer Society, 2006.

M. A. Olson, K. Bostic, and M. I. Seltzer, “Berkeley db.,” in USENIX Annual
Technical Conference, FREENIX Track, pp. 183-191, USENIX, 1999.

A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell, and M. D. Micku-
nas, “Olympus: A high-level programming model for pervasive computing envi-
ronments.,” in PerCom, pp. 7-16, IEEE Computer Society, 2005.

M. Romn, C. Hess, R. Cerqueira, R. H. Campbell, and K. Nahrstedt, “Gaia: A
middleware infrastructure to enable active spaces,” IEEFE Pervasive Computing,
vol. 1, pp. 74-83, 2002.

C. Consel, W. Jouve, J. Lancia, and N. Palix, “Ontology-directed generation of
frameworks for pervasive service development.,” in PerCom Workshops, pp. 501—
508, IEEE Computer Society, 2007.

C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and L. Iftode, “Spatial pro-
gramming using smart messages: Design and implementation.,” in International
Conference on Distributed Computing Systems, pp. 690-699, IEEE Computer
Society, 2004.

“About spacebrew.” See http://docs.spacebrew.cc/about/.

