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Abstract 

  Novel synthetic methodologies that are effective, environmentally friendly and 

efficient are becoming ever increasingly difficult to design. In fact, the development of 

such techniques is often labor-intensive, wasteful and costly. Several years ago, 

instrumental techniques, such as nuclear magnetic resonance, high performance liquid 

chromatography and mass spectrometry, were integrated into the chemistry toolbox and 

their maturity significantly accelerated the process of synthetic discovery. Surprisingly 

and contrastingly, computational advances have not yet been incorporated as far as the 

imagination can take them. Fifty years after Gordon E. Moore, the co-founder of Intel, 

first predicted a yearly two-fold expansion of computational power, we are attaining its 

peak, and yet information technologies are still under-utilized in chemical settings. 

 Until now, computational techniques employed in designing chemical and 

biochemical synthesis have been merely a tease. Expanding the abilities of computational 

molecular discovery methods is an attractive solution to exploring a vast amount of 

unknown synthetic approaches. Furthermore, making these virtual methodologies 

accessible to the organic and medicinal chemistry communities will allow them to reach 

their full potential. Currently, only a handful of research groups in Canada truly blend 

computational and organic chemistry and often in a rationalization capacity rather than as 

a design strategy. 

 This thesis describes efforts to develop new computational design approaches for 

small molecules and biological structures and apply them to organo- and biocatalytic 

research programs. A contemporary perspective on software programs is required for 

their inclusion in the chemistry toolbox for several reasons. Currently, hundreds, if not 

thousands, of computational chemistry software packages exist; however, in most cases, it 

is only the developers that make use of these tools, the ones that simulate chemical 

phenomena, as opposed to visualization software suites. A significant lack of usability – 

simplicity in running routine experiments – is likely one of the largest causes for this 

disappointing reality. Accurate results are also necessary to build trust from the 

experimental chemistry community. These issues were the focus of this work to 
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demonstrate that the integration of computational tools within organic chemistry is not 

only plausible, but increasingly valuable when no advanced, expert training is necessary. 

 More specifically, we have created and developed several computational tools, 

FINDERS, REACT2D, CONSTRUCTS and ACE 2.2, in order to automate and guide the design, 

discovery and synthesis of asymmetric organocatalysts. Their validation and full 

integration into one easy-to-use software platform, the VIRTUAL CHEMIST, establishes the 

potential significance of such an innovation. In addition, these concepts have been applied 

to biological systems, mainly cytochrome P450 metabolic enzymes and zinc-containing 

metalloenzymes involved in several disease-related pathways. The transition state 

modeling approach that is implemented in ACE was integrated into our docking software, 

FITTED, and automated to yield IMPACTS, a site of metabolism prediction software that 

includes a trivalent approach. Moreover, a proton-shuttling mechanism was modeled into 

FITTED, significantly improved results of zinc-binding and demonstrated the positive 

effect of accurately modeling biochemical phenomena. The final goal was to successfully 

create a single point mutation protocol to simulate protein engineering in an efficient 

manner and to effectively model biocatalysis. By combining this procedure with IMPACTS 

it would be possible to virtually, and accurately, mutate cytochrome P450s, craft new 

transition states and eventually design new biochemical reactions. In all, the work in this 

thesis represents efficient approaches to improve a wide range of computational 

chemistry applications and demonstrate their viability, value and rightful place in the 

chemistry toolbox. 



 v 

Résumé 

 La conception et le développement de nouvelles méthodes de synthèse efficaces et 

respectueuses de l’environnement deviennent de plus en plus difficiles. En fait, le 

développement de ces techniques est souvent dispendieux, requiert beaucoup de travail de 

laboratoire et produit une grande quantité de déchets. Depuis plusieurs années, des 

techniques instrumentales telles que la résonance magnétique nucléaire, la 

chromatographie liquide à haute performance et la spectrométrie de masse ont été 

intégrées dans la boîte à outils de la chimie et leur maturité a significativement accéléré le 

procédé de découverte en chimie organique. Cependant, il est surprenant que les avancées 

informatiques n’aient pas encore été incorporées aussi loin que l’on pourrait l'imaginer. 

Cinquante ans après que Gordon E. Moore, le co-fondateur d’Intel, ait prédit pour la 

première fois le doublement annuel de la puissance de calcul des ordinateurs, nous 

atteignons présentement son sommet, et pourtant les technologies de l’information 

demeurent sous-utilisées en chimie. 

 Jusqu’à maintenant, les techniques informatiques employées dans la synthèse 

chimique et biochimique n'ont été qu'un préambule. Améliorer la découverte en chimie 

guidée par des méthodes informatiques représente une solution attrayante pour explorer 

une vaste quantité d’approches synthétiques inconnues. De plus, la possibilité de rendre 

ces technologies virtuelles accessibles aux communautés de la chimie organique et des 

sciences pharmaceutiques leur permettra d’atteindre leur plein potentiel. En ce moment, 

seulement une poignée de groupes de recherche au Canada combinent véritablement la 

chimie informatique et la chimie organique et ce, en utilisant souvent une approche de 

rationalisation plutôt qu’en tant que stratégie de conception. 

 Cette thèse décrit les efforts visant à développer de nouvelles approches de 

conception assistée par ordinateur pour la recherche de petites molécules et structures 

biologiques ayant des propriétés organo- ou biocatalytiques. Une vision plus actuelle sur 

les logiciels de programmation et leur inclusion dans le jeu d'outils des chimistes 

organiciens est nécessaire pour plusieurs raisons. Actuellement, des centaines, sinon des 

milliers de logiciels de chimie informatique existent. Toutefois, dans la majorité des cas, 

ce sont seulement les développeurs qui font usage de ces outils (ceux qui modélisent les 
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phénomènes chimiques et non les interfaces graphiques). Un manque important de 

convivialité et de simplicité pour des calculs de routineest l’une des plus grandes causes 

d'une  réalité qui n'est pas à la hauteur des possibilités offertes. Des résultats fiables sont 

également nécessaires pour bâtir la confiance de la communauté de chimie expérimentale. 

Ces préoccupations ont été au cœur de nos travaux qui visaient à démontrer que 

l’intégration d’outils informatiques au sein de la chimie organique est non seulement 

possible, mais aussi de plus en plus précieuse lorsqu’une formation avancée d’expert 

n’est pas requise. 

 Plus précisément, nous avons créé et développé plusieurs outils informatiques, 

FINDERS, REACT2D, CONSTRUCTS et ACE 2.2, dans le but d’automatiser et guider la 

conception, la découverte et la synthèse d’organocatalyseurs asymétriques. Leur 

validation et leur pleine intégration dans une plate-forme de logiciels facile à utiliser, le 

VIRTUAL CHEMIST (Chimiste virtuel), pourra établir l’importance d’une telle innovation. 

De plus, ces concepts ont été appliqués à des systèmes biologiques, principalement les 

enzymes métaboliques cytochrome P450 et les métalloenzymes au zinc qui sont 

impliquées dans plusieurs voies liées à des maladies. La modélisation des états de 

transition à partir D’ACE a été intégrée dans notre logiciel de « docking », FITTED, et 

automatisée menant au logiciel de prédiction de sites de métabolisme, IMPACTS. En outre, 

la modélisation d'un mécanisme de transport de protons a aussi été implémenté dans 

FITTED et a amélioré les résultats de liaison du zinc de façon significative. Notre dernier 

objectif était de créer un protocole de mutation en un seul point afin de simuler 

l'ingénierie de protéines efficace et de modéliser avec précision les processus de 

biocatalyse. En combinant cette procédure avec IMPACTS, il est possible de muter les 

cytochromes P450 de façon efficace et précise, de créer de nouveaux états de transition et 

par conséquent, de concevoir de nouvelles réactions biochimiques et de nouveaux 

biocatalyseurs. En résumé, le travail décrit dans cette thèse présente des approches 

efficaces qui contribuent à un large éventail d’applications en chimie informatique et 

démontre leur viabilité, leur valeur et leur place légitime dans le coffre à outils de la 

chimie. 

Traduit de l'anglais par Katherine Bujold 
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Introduction to Chapter 1 

The goals of this thesis are two-fold. First, the development of accurate computational 

tools for asymmetric organocatalysis and biocatalysis was the primary focus. The general 

strategy for achieving this objective was to first identify unattained computational 

modeling milestones in these domains, an automated asymmetric catalyst discovery, for 

example. Next, the relevant chemical or biochemical phenomena were determined and 

were often the missing piece from existing software packages. Frequently, modeling 

necessitates shortcuts in order to minimize the time requirements, but certain omissions 

can be impactful. Finally, accurate modeling of these phenomena was a main focus which 

led to improved results seen throughout validation experiments.  

The second aim of this thesis was to consider the accessibility to such software by organic 

chemists without any necessary expertise or advanced training in computational 

techniques or programming. The keys to creating handy simulation packages are to 

automate, simplify input and output, and be fast. The general procedure to develop such 

tools was to recognize, with the help of organic chemists, the unmet needs or support for 

laboratory experiments and synthetic plans. Then, as with chemical phenomena, these 

steps must be accurately modeled and encoded. Specifically, in a given synthetic 

methodology, a chemical reaction is identified, reagents are purchased, catalysts are 

prepared and then applied in a second chemical reaction so that those resulting in the best 

enantioselectivities can be labeled and kept for future reactions. This can take months or 

even years for proper screening while software can reduce this to days. 

In summary, this thesis aims at developing novel computational chemistry protocols that 

are both accurate and accessible by correctly modeling chemical reactions that could be 

ongoing in a flask or a Petri dish. The primary linking topic is transition state modeling 

since the majority of chemical reactions must pass through an activation barrier to break 

bonds. This chapter presents an overview of transition state modeling techniques 

available to the modeling community and reviews their development, validation, and 

availability. 
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Chapter 1: 

Introduction – Efficient Transition-State Modeling using 
Molecular Mechanics Force Fields for the Everyday Chemist 

 

This chapter is currently in press and is reproduced from the invited book chapter: “Efficient 
Transition-State Modeling using Molecular Mechanics Force Fields for the Everyday Chemist”, 
Pottel, J.; Moitessier, N.; Reviews in Computational Chemistry, 2015, 29, in press. Wiley (2015).  

 

1.1 Introduction 

 Computational chemistry and computer-assisted molecular modeling have advanced 

tremendously due to their efficiency in clarifying chemical problems and offering insights 

that may otherwise be missed. While the throughput of quantum mechanical (QM) 

methods remains low, molecular mechanics (MM) computations are significantly faster 

and can, nowadays, be applied to the study of large systems (e.g., molecular dynamics 

simulations of proteins in aqueous medium) and/or large libraries of small molecules 

(e.g., screening of thousands of small molecules in drug discovery). In fact, in 

computational chemistry, there is always a struggle between obtaining the most accurate 

calculations and the time needed to perform these computations. Over the past few 

decades, both sides of this conflict have been improved by the development of better 

force fields (this concept will be explained further in this chapter) and faster computers. 

Empirical force fields (FFs) can be described as sets of mathematical equations and 

parameters (derived empirically) used in MM to describe the potential energy of a 

molecule. FFs can be further used to describe atomistic movements (e.g., molecular 

dynamics) and molecular properties (bond vibrations) and to predict the outcome of an 

experiment (e.g., IR spectra). FFs are often embedded in software and, along with the 

visualization software that exists, can be used without much expertise or extensive 

knowledge of how they were built or developed (although, as described below, many FFs 

exist for different purposes and selecting the correct one can be crucial to the success of a 

project). The progress in this field is directed towards many different molecular studies 
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such as molecular dynamics, conformational analysis of small to very large systems 

(small molecule catalysts up to proteins), as well as equilibrium and transition state (TS) 

structure modeling. In turn, all of these areas cover applications in the fields of chemical 

biology, medicine, materials and more. The evolution of FFs from methods used for 

simple potential energy minima identification to those used for complex TS modeling has 

followed the trends in experimental chemistry, the needs of the chemical and 

pharmaceutical industries, and, importantly, the availability of computing power.  

 In the sub-disciplines of synthetic, medicinal and process chemistry, having more 

efficient and greener catalysts is required as a response to increasing economic and 

environmental pressures. Consequently, there has been a drive to better understand 

chemical reactions and transformations and, furthermore, to develop new, efficient and 

cleaner reactions. Computational chemists have reacted to these needs and developed 

methods to guide experimentalists in the development of these reactions. A highly 

accurate but time-consuming option is to use QM techniques. They are based on non-

intuitive concepts and can be difficult to comprehend for some bench chemists who are 

trained in valence-bond views of bond making and bond breaking; this option is often 

avoided by those with little expertise in quantum chemistry and molecular modeling 

because meaningful results can only be obtained with advanced knowledge of the 

underlying techniques and methods (e.g., many of the existing density functionals have 

severe limitations and, while they may work well for one class of materials, they do not 

work well for others). In contrast, MM techniques offer more intuitive, user-friendly, 

black-box methods for organic and medicinal chemists to use for molecular modeling – 

assuming they are accurate enough for the problem under investigation.  

 In the field of synthesis, TS modeling with MM is very important but far less 

developed than the MM modeling of energy minima (i.e., ground states). This chapter is 

designed to first educate the non-expert, whether industrial or academic, in the subject of 

MM and FFs, assuming a basic knowledge of chemical principles, and second, to show 

how to apply this theory to TS modeling. An overview of current MM-derived techniques 

used in TS modeling will be given, discussing the theory, advantages, potential 

drawbacks and availability of software packages. The aim is to offer students, researchers 

and teachers a foundation of understanding in order to be comfortable with using the 



 5 

available procedures while being aware of the concerns and potential drawbacks of 

different methodologies. For a more detailed review of the theory and methods, see a 

review from Corbeil and Moitessier.1 

 This review focuses on methods that are well documented. Other, less well 

documented, methods are available, but due to lack of information, these will not be 

detailed herein. Among them is a TS modeling technique implemented in PCMODEL 

available at http://www.serenasoft.com/pcm8.html and a TS searching technique that uses 

QM for refinement known as AFIR, artificial force induced reaction.2 

 

1.2 Molecular Mechanics and Transition State Basics 

1.2.1 Molecular Mechanics  

 MM is often used to calculate equilibrium structures (ground state geometries in three 

dimensional space with minimum potential energy often referred to as "stable 

conformations"), energies associated with these structures and an assortment of other 

properties using classical mechanics as mentioned in the introduction.3-7 MM is usually 

taught in secondary and post-secondary education as a ball and spring model where atoms 

“feel” classical forces between them. Explicit electron considerations are omitted in this 

model (in more advanced versions, polarization may be considered8 and electron lone 

pairs may be introduced for directionality in hydrogen bonding9) and the potential energy 

surface (PES) is described by functions that characterize spring stretching, bending, 

dihedral (torsional) angles and more. These functions are parameterized and critiqued 

based on experimental data such as X-ray diffraction and NMR data10-18 or the more 

accurate computational techniques that do take into consideration electronic effects and 

more complex phenomena. The functions represent a PES (Figure 1.1) with a 

dimensionality that depends on the equations used. A very basic FF is the combination of 

a set of functions (Eqs. 1.1-1.6) and associated parameters, assuming simple additivity of 

these energy terms (i.e., bond energy is independent of angle energy). 

                                  

                                 (1.1) 
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 where, for example, 

                  (1.2) 

                   (1.3) 

                           (1.4) 

                
 
   

  
  

 (1.5) 

                
     
   

   (1.6) 

 In these equations ks, kb and kt are force constants, r0, θ0 and δ are equilibrium bond 

length, angle and torsion values, n is the rotational periodicity, A and B are constants 

based on the interaction between two atoms and q is a point-charge. All of these values, 

known as parameters, can be different depending on the potential functions comprising 

the FF. The sum of all of the energies for the aforementioned terms equals the total 

energy of the system. What is described here is a very general set and only a simple 

example of a FF; a more elaborate look at possible functions for each of the terms in Eq. 

1.1 can be found in a review from Pettersson and Liljefors.19 

 

Figure 1.1. Some of the different energy functions accounted for in a FF and a hypothetical 3-
dimensional potential energy surface (only 2 components of Etot considered) that a particular FF is 
intended to reproduce. 
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 For comparison purposes, consider the range in complexity, accuracy and 

computation time for two different functions. The CHARMm FF20 employs a bond 

stretching term similar to Eq. 1.2 while the MM3 FF21-23 uses more terms (Eq. 1.7) in 

order to better simulate the anharmonicity that is described by the Morse Potential (Figure 

1.2).24 Eq. 1.2 is the harmonic approximation of the Morse Potential.  

                                 
 
  

                 (1.7) 

 

 

Figure 1.2. Harmonic, MM3 and Morse potentials. Top graph: overall curve; bottom graph: 
expansion of the equilibrium bond length within 20 kcal/mol distortion energy. 
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 The harmonic approximation can often model the equilibrium energy adequately and 

the computing speed is fast while functions closer to the Morse Potential can model the 

equilibrium bond lengths correctly as well as those lengths that are far from equilibrium 

(Figure 1.2). Note that the variable r is a squared term in Eq. 1.2 whereas in the more 

complex, accurate Eq. 1.7, the r terms range from squared to the fourth power. Also note 

that Eq. 1.2 is significantly faster to calculate because there are fewer CPU operations to 

execute. This trade-off between speed and accuracy must be taken into consideration 

when contemplating the size of the system to be studied or the needs of the user. For 

many small molecule studies, the computation time will not be large and the accuracy of a 

non-equilibrium bond length may be vital, suggesting the use of Eq. 1.7, whereas for 

proteins the time requirements can be significant (many more atoms and bonds) and the 

accuracy of predicting a bond length using Eq. 1.2 can be satisfactory since long-range 

effects often dominate. One must keep in mind that this example pertains only to Ebond 

and other energy terms have their respective computational cost and accuracy.  

 It is important to note that while the absolute value of Etot and the other energy terms 

are not significant, the relative values are useful because they can indicate preferred 

energy minima (e.g., conformers), or potential TSs (i.e., energy maxima) which will be 

described in more detail below. As shown in Figure 1.2, the harmonic approximation (red 

curve) has a minimum at potential energy = 0, while a C-C bond has a dissociation energy 

of ca. -80 kcal/mol which means Ebond = -80 kcal/mol at optimal distance. Thus, the 

harmonic approximation provides relative bond energy values and not absolute values. 

Consequently, comparisons are only meaningful when comparing molecular systems with 

the same set of parameters such as conformers, stereoisomers and some regioisomers. 

When necessary, comparing FF-derived energies of molecules with different atom 

connectivity (including regioisomers) and bond structures must be done cautiously. To 

solve this issue, MM3 provides information on heats of formation, although, once more, 

the provided data should be taken with caution.  

 For a lengthy list of FF parameters, consider the review from Jalaie and Lipkowitz.25 

Advances have been made to most of these FFs since then and new ones have been 

developed with varying applications.26-29 One area that has been explored is that of TS 

modeling.30 Lowering activation barriers with catalysts, discovering mechanisms and 
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predicting reaction outcomes accurately are crucial for efficient, environmentally-friendly 

and cost-reducing chemistry. 

 

1.2.2 Transition States 

 A TS is characterized as a geometry representing a saddle point (first-order) on the 

PES, which is a maximum on the reaction coordinate, but minimum in all other directions 

(Figure 1.1). TSs are either states between two conformations of the same molecule (a 

conformational change described by bond rotation, stretching, etc.) or states between 

reactants and products in a chemical transformation (configuration changes are observed 

between reactants A and B forming product C, for example). This review focuses on the 

latter since analyzing TSs resulting from conformational changes does not involve bond 

breaking/making and because these energy barriers are often included in the 

parameterization process31 and they have been studied for over 50 years.32-33 Thus, 

throughout this chapter, whenever we refer to a TS, the connotation is that of a chemical 

reaction and not a conformational transformation. 

 The most common and simple way to describe chemical reactivity relies on 

transition-state theory (TST).34 The energy difference between reactant(s) and TS 

structure(s) is the activation energy (Figure 1.3) which defines the reaction rate as shown 

in the Arrhenius and Eyring equations (Eqs. 1.8-1.9), 

     
   
    (1.8) 

       
 

 
    

        
 

 
   

  
    

   (1.9) 
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Figure 1.3. An example of a 1-D PES illustrating the energy of activation (Ea) and TS structure, 
which is to be located in TS determination. 

 Here, k is the reaction rate, A is the pre-exponential constant, Ea is the activation 

energy, R is the gas constant, T is the temperature, κ is the transmission coefficient, KB is 

Boltzmann’s constant, h is Planck’s constant, ∆G‡ is the Gibbs energy of activation, ∆S‡ 

is the entropy of activation and ∆H‡ is the enthalpy of activation.  

 As presented in Eq. 1.9, the rate should be defined by the total free energy difference 

between reactant and transition structure. Thus all contributors, such as all motions 

(vibrations, rotations, translations), should be considered but these properties can be 

difficult to obtain. Generally, it is assumed that these values for vibration, rotation and 

translation are similar for different TS structures of a given reaction (e.g., diastereomeric 

TS structures) and thus can be neglected when computing a relative energy of activation 

(ΔEa). The actual energy barrier (Ea) is of course more intricate than this approximation 

and will not be covered going forward since it requires explicit, accurate treatments of the 

above mentioned contributors to the energy function.35 

 A recurrent problem in computational chemistry is the time-accuracy trade-off. Using 

MM is much faster than using QM; however, the accuracy is not expected to be 

comparable, unless advanced training of the FF is carried out on the chemical system 

under investigation.36 Nevertheless, there have been many attempts at computing or 
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modelling the PES or finding other creative ways to put together the MM principles with 

the goal of finding TS structures. Some generalized FF techniques can offer a promising 

starting point for refinement by more accurate, time-consuming computational methods, 

although other well-trained, highly specific FFs can be nearly as accurate as QM 

techniques. Below, we outline several available FF methods for TS modeling and focus 

more on their scientific foundation and less on their successes. Very often, the users 

themselves can tip the scales from failure to success, but this is only possible by 

understanding the underlying principles of the software being implemented. There is a 

fine line, however, between bias and expertise. 

 

1.3 Ground State Force Field Techniques 

1.3.1 Introduction  

 In 2003, Jensen and Norrby noted that many MM applications are treated as black-

boxes that are available in common modeling software packages; however, TS modeling 

was not yet one of those techniques.35 Over ten years later, TS modelling remains a field 

requiring some level of expertise and here we present an overview of the available TS 

modeling approaches. They are classified into two general groups: ground state force 

field (GSFF) techniques and transition state force field (TSFF) techniques. For each 

method, we provide a general explanation followed by the motivation behind the 

technique and the principles upon which the method was founded. Some reported 

performance data and the accessibility for industry and/or academia is also given when 

available. 

 GSFF techniques often involve a modification of the core MM infrastructure 

developed for standard FF applications (i.e., GSFF parameters with additional functions 

developed for TS modeling). Knowledge of ground state reactants and products and their 

individual potential energy surfaces is used to locate the TS.30 
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1.3.2 ReaxFF  

1.3.2.1 Theory 

 The first GSFF developed for the study of chemical transformations that we will 

discuss is ReaxFF, developed by van Duin, Dasgupta, Lorant and Goddard.37 This is an 

example of what is termed a “reactive force field” because it accounts for bond 

making/breaking. This FF was originally developed to model TSs for hydrocarbon 

systems38 but has, over the past decade, been extended to an array of organometallic 

species,39-49 other organics,50-52 and a variety of different reactions/applications.53-56 It has 

also been implemented into a complete package including a user interface. Here we 

present some “under-the-hood” information that is important for understanding the 

software/method. 

 The major advantage of ReaxFF is the treatment of all bonding terms (included in 

EBond, EAngle, ETorsion, etc.) including TS forming/breaking bonds in the energy function 

(Eq. 1.10). To account for the longer-range covalent interactions that are signatures of TS 

structures, the bonding terms here are bond-order dependent (Figure 1.4). For example, a 

breaking/forming bond will have a bond order less than 1, while a double bond being 

converted to a single bond would typically have a bond order between 1 and 2. Thus, 

since the designation of a bond is no longer binary as in traditional non-reactive FFs 

(where the bond either exists or it does not) there is instead a bonding spectrum. 

Accordingly, no explicit bond labeling is required in the input (topological list of bonds 

set at the beginning of the calculations, which becomes problematic when bonds must 

break or form during a simulation) as it is for most MM applications. The bond-order 

depends on the inter-atomic distances and can thus be easily calculated “on-the-fly.” It is 

then corrected based on the valence to ensure that the bond order does not exceed the 

valencies of the atoms as defined by the Ebond term of Eqs. 1.11-1.13. Similar 

relationships are made for Eangle and Etorsion.37 

                                                                 

                                                 (1.10) 
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   (1.11) 

            
             (1.12) 

                              
     (1.13) 

 Here, BO’ij is the bond-order between atoms i and j, σ, π, and ππ denote the bond-

character (single, double, triple), rij is the inter-atomic distance, r0 is the equilibrium 

distance, Vali is the valence of atom i, BOij is the corrected bond-order (corrected for 

over-estimation or underestimation of the valence), De is the dissociation energy and the 

a-values, trained for each bond pair, are empirical parameters (a description of the 

required parameterization can be found at the end of this section).  

 

Figure 1.4. An example of bond order using 1,3-butadiene and cyclobutene. None of the bonds in 
this system are pure single or pure double in character and thus the bond-order will be calculated 
to be somewhere between 1 and 2. 

 Eq. 1.11 is continuous with no issues in transitions between bond characters, but 

requires correction factors for over-coordination. The empirical parameters denoted “a” 

have a maximum value of 1 and then drop to 0 depending on the inter-atomic distance. 

For example, for C-C bonds, there is a maximum BO of 3 and C-H bonds a maximum of 

1. In the same vein, a carbon atom should not exceed a total BO of 4 due to its valence, 

based on valence bond theory,57 yet this would occur without an atomic over/under-

coordination penalty term (EOver, EUnder) within this methodology. The angle and torsion 

terms (EAngle, ETorsion) are fairly standard functional forms with the exception of their 

being based on BO. Once again, a penalty function (EPenalty) is invoked on the angle term 

due to the boundary conditions necessary for bond orders as mentioned above. 

Conjugation effects (EConjugation) are considered when successive bond orders are at 
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approximately 1.5. The non-bond and electrostatic factors (Evan der Waals, ECoulomb) are 

represented by a modified Morse potential and expanded Eq. 1.6 respectively.  

 

1.3.2.2 Validation 

 To train and validate their FF, van Duin et al. used heats of formation as criteria of 

performance.37 They tested ReaxFF on a variety of hydrocarbons including conjugated 

and non-conjugated systems, radicals, various conformations and crystal structures, and 

compared all values to quantum chemical data as well as to MM3 (a high quality FF for 

small molecules) results. The rationale for deviations between this FF and MM3 values 

for heats of formation (the error for ReaxFF is about double that of MM3) is that MM3 

employs empirical corrections specifically developed for these classes of molecules 

(different ring systems for example). Experimental values for heats of formation are 

given, however no discussion is offered to explain the observed differences for 

conjugated/non-conjugated or radical systems. Importantly, the developers recognized 

that some of their validation data was biased because they used the same (or similar) 

systems for training their set of parameters. They required 93 parameters to describe 

hydrocarbons and took satisfaction in the generality of their energy descriptions, noting 

specifically that no special treatment for sp3-sp2 C-C bonds is needed as compared to 

MM3. They demonstrated this FF can be used as a non-reactive FF (for ground states, not 

for TS modeling). Their examination of dissociation curves compared to DFT data then 

demonstrated ReaxFF’s potential as a reactive FF. The developers are aware of the 

limitations involving quantum chemical phenomena, as, for example, the orbital 

overlap/symmetries involved in the ring-opening of cyclobutene to form butadiene 

(Figure 1.4). Because this FF is based on empirical data, it is incapable of modeling 

complex reactivity for which data does not exist for parameter development, nor can it 

discover completely new reactions. This limitation, however, is offset by the immense 

speed-up for structure/reactivity prediction compared to semi-empirical and DFT QM 

techniques (2 orders of magnitude faster than PM3 (semi-empirical) and 5 orders of 

magnitude faster than DFT for a system of about 80 atoms).37 
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1.3.2.3 Availability 

 ReaxFF is offered with a free 30-day trial and many different licenses can be 

purchased including regional discounts, varying core allocations and teaching-only 

licenses. The pricing is dependent upon the length of the contract, region and purpose. 

Their website (www.scm.com) offers tutorials, pricing information, references and 

manuals. As mentioned previously, it is worth noting that the parameterization process is 

not necessary if the system under investigation incorporates only atoms/reactions that 

have already been parameterized; however, as described in many of the references, 

deriving the empirical values in each term of Eq. 1.10 may be necessary. It is also of 

value to know that this GSFF is one of the most widely-referenced methods, the original 

publication having been cited over 800 times according to scopus.com. 

  

1.3.3 RFF 

1.3.3.1 Theory 

 In 1997, Rappé and co-workers proposed the reaction force field (RFF) in order to 

model the bond breaking/forming process.58 For their purpose, the reaction        

      was partitioned into two components         and         

and the crucial aspect is that the TS can be found somewhere on the two PESs. To model 

these surfaces, the authors developed a dissociative bond term that accounts for homolytic 

cleavage, polar bond cleavage, changes in hybridization and 1,3-interactions between 

atoms on fragments (Figure 1.5).  
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Figure 1.5. Dissociative bond considerations included in RFF. 

 Apart from the dissociative bond term, the remaining terms of the FF are standard as 

in Eq. 1.1 along with an inversion term (a Fourier expansion for trivalent atoms – keeping 

the cone-like shape of trivalent nitrogen and phosphorous but allowing the centre to invert 

while keeping sp2 atoms flat). The terms, which can be found in the original RFF 

publication, resemble those of the Universal force field (UFF), developed by the same 

group,59 and rely on bond orders as in ReaxFF (Eqs. 1.11-1.13) albeit not exactly in the 

same way. Key differences are that the electronegativity is no longer considered in the 

bond stretch term since the polarity is handled in the dissociation of bonds, and the van 

der Waals term has been modified to better model the 1-3 interactions depicted in Figure 

1.5. 

 

1.3.3.2 Validation 

 The first generation RFF was used to calculate vibrational frequencies as well as TS 

geometries for the Diels-Alder cycloaddition, the Cope rearrangement and the chemical 

reaction of a methyl radical with ethylene. The activation energies were well estimated 

for these three reactions as were the geometries when compared to experiment and QM 
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methods (Unrestricted Hartree Fock – UHF for example). An example is summarized in 

Table 1.1.  

Table 1.1. RFF and QM comparison for the reaction of a methyl radical with ethylene. 

 

Term Property RFF Prediction UHF Value 

a Length 1.08 Å 1.08 Å 

b Angle 106.3 ° 101.0 ° 

c Length 2.19 Å 2.25 Å 

d Angle 123.3 ° 109.1 ° 

e Length 1.36 Å 1.38 Å 

f Length 1.08 Å 1.08 Å 

ETS Energy 8.1 kcal/mol Exp. Value: 7.9 kcal/mol 
 

 Only these hydrocarbon systems were investigated and any user should be wary about 

the use of this FF with heteroatoms unless suitable changes are made. RFF was applied to 

zirconium systems by Dunn et al.60 but only as a means to obtain a starting geometry 

(conformational search) while DFT was used as a refinement technique. The RFF 

energies were not deemed accurate when compared to experiment; this is not surprising 

since the goal of MM techniques is often to obtain geometries and not absolute energies, 

especially in the case of metals that exhibit many electronic effects. RFF is still 

considered a valuable FF technique; wide coverage of the periodic table has been 

reported,61-62 much like UFF, although no validation is presented with systems featuring 

heteroatoms.  
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1.3.3.3 Availability 

 The authors must be contacted in order to obtain RFF. No further information is 

found on the author’s website regarding the equations, parameters or availability. 

 

1.3.4 SEAM 

1.3.4.1 Theory 

 SEAM is another GSFF method. It was developed by Jensen in 199263 in response to 

criticism by Houk and co-workers64-67 about gaps that needed to be filled68-69 with respect 

to the TS location problem (discussed in the TSFF section below). While the work prior 

to that of Jensen was criticized for its over-parameterization and small validation set, 

Jensen attempted to generalize the approach to modeling TSs and eliminate the need for 

specific parameters for each and every TS. Jensen postulated that because the TS is the 

apex of the lowest-energy path from the reactants to the products along the reaction 

coordinate, the TS could then be described as the seam of the intersecting PESs 

describing the reactants and the products (Figure 1.6). 

 

Figure 1.6. Illustration of intersecting PESs for reactant and product yielding the SEAM, the 
inversion technique proposed by Houk, and MCMM methods advocated by Truhlar. 
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 The GSFF used to develop SEAM was MM2, the precursor to MM3, but the SEAM 

approach can be used with almost any available ground state force field, with accuracies 

dependent on the FF selected. One parameter, c in Eq. 1.14, was added in the description 

of the bond stretching (Eq. 1.2) to allow for greater deviation from the equilibrium bond 

distance - something that one might expect to see in a TS. Additionally, a constant value 

is required for each reaction so that each PES is set to the same scale; because the 

connectivity is different for reactant and product, the FFs cannot be compared directly 

and an offset is required.70 No other changes were made to the FF except for adding 

missing parameters for certain atoms/fragments, regardless of TS modeling. 

                                 (1.14) 

 

Figure 1.7. Corrected bond energy term according to Eq. 1.14. The inversion of energy at highly 
stretched bond length is an artefact of the method and must be considered upon selecting the 
value of c.  

 The notion of locating the intersection of reactant and product PESs means 

determining where along the coordinate the energy of the initial state, ER, is equal to that 

of the final state, EP (Figure 1.6). Because the sum of the two energies should be at a 

minimum, this converts the search for the location of the TS into an energy minimum 

search that can be carried out by most optimizers embedded in MM programs. This is 

solved in this instance using Lagrange multipliers and is improved iteratively until 

convergence. The technical details are described in the original publications35,63,70 and the 
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idea was later expanded into mixing three PESs, the third of which models resonance 

energy terms.71 It is important to note that the starting geometries in the validation test 

were those of the reactant and/or product and it is believed the global minimum in the 

optimization is found in each instance for the constrained systems that were tested.  

 

1.3.4.2 Validation 

 Validation was done by matching the TSs generated using the SEAM approach 

(MM2 FF) with those generated using ab initio techniques. Jensen probed small structural 

changes, distant from the reaction centre, in order to verify that his method could 

reproduce trends in reactivity. The small changes allowed him to neglect solvent effects 

and entropic considerations. The reactions considered (compared to ab initio structures) 

in the first publication63 are summarized in Figure 1.8.  

 
Figure 1.8. Initial reactions tested for SEAM that were compared to ab initio structures 

 SEAM was able to find secondary (i.e., higher in energy) TS geometries as well as 

the energetically favored ab initio ones based on MCSCF – Multi-configurational self-

consistent field – a QM method. For example, both the chair-like and boat-like TSs were 

found for the Cope rearrangement with an energy difference similar to that of MCSCF. 

The Claisen rearrangement proved more difficult because the reaction is not 

thermoneutral, i.e., it does not depend solely on steric effects, and heats of formation must 

be considered. The resulting breaking/forming bonds were too short compared to QM 

data72 (RHF/6-31G*): 1.748 and 1.974 Å compared to 1.917 and 2.264 Å for breaking 

and forming bonds respectively. When heats of formation were considered, the derived 

TS had a longer breaking bond (1.765 Å) and a shorter forming bond (1.943 Å). This 
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agrees with the Hammond postulate that states an earlier TS is observed in an exothermic 

reaction.73 Similar issues pertaining to non-thermoneutral reactions were encountered 

with the Diels-Alder reaction for which special attention was required. Additionally, the c 

term in Eq. 1.14 may require fine-tuning depending on the reaction being considered, 

especially whether it depends primarily upon steric factors or other factors influencing the 

TS. The trends in steric effects were generally well predicted especially when compared 

to experimental data when steric repulsions are the dominant driving force and when the 

substrates did not differ significantly (Table 1.2). 

Table 1.2. Activation energy trends for steric effects. 

 

R-Group C-Br (Å) 
(SEAM) 

C-Cl(a) (Å) 
(HF/MINI)(b) 

∆EA (kcal/mol) 
(SEAM) 

∆EA (kcal/mol) 
(experimental, 

in solution) 
methyl 2.422 2.418 0.00 0.00 
ethyl 2.451 2.442 3.93 1.56 

propyl 2.453  3.52 1.41 
i-propyl 2.494 2.410 8.24 3.77 
i-butyl 2.461  5.84 3.07 

n-pentyl 2.474  10.91 5.55 
t-butyl 2.657  20.63  

(a) Data obtained from secondary source with chlorine atom demonstrated that the lack of variation in the 
TS bond distance was not abnormal.74 

(b) Hartree-Fock (MINI is a basis set, not covered in this chapter). 

 

 Jensen noted that minimal limitations of the SEAM method exist if certain conditions 

are applied. For example, if the FF used for both reactants and products is known to be 

accurate for distorted geometry (i.e., well-described outside favorable geometries as 

shown in Figure 1.7), it should produce reasonable TS geometries. If this condition does 
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not hold, the same TS could be found for multiple starting geometries or optimizations 

may not converge. One drawback, as seen in Figure 1.6, is that the absolute energy of 

activation is over-estimated. However this effect is nullified when investigating relative 

energies, as, for example, when comparing diastereomeric TSs in asymmetric reactions. 

Jensen also noted that these GSFF methods are only effective when steric concerns are 

the driving forces of the reaction since the FFs used do not account for electronic effects 

either directly at the reaction centre or indirectly from other molecular fragments in the 

reactant or product. He proposed that an efficient method to find the TS structure is to use 

SEAM for geometry optimization and then to perform a single point DFT calculation for 

electronic structure data. That approach was successfully carried out by Anglada et al. on, 

for example, the ring opening of the cyclopropyl radical.71 SEAM was later applied to 

enzymatic TSs, more specifically the decarboxylation of orotidine by the decarboxylase 

enzyme orotidine-5’-monophosphate decarboxylase.75 This protocol was attractive 

because it provided significant advantages in time over QM and QM/MM techniques (a 

hybrid of QM and MM not covered in this chapter) although variations in the energy 

between the different TS structures found with the same enzyme were significant 

(attributed to large structural differences between the 20 TS structures examined). 

 

1.3.4.3 Availability 

 SEAM for AMBER76 is available free of charge upon request. The website 

(http://www.teokem.lu.se/~ulf/Methods/seam.html) contains useful references and a 

guide for preparing input. An external MM program is required. Examples are offered 

when combining SEAM with AMBER (ambermd.org) and a brief outline of how to run 

the program and find the output is provided. 

 

1.3.5 EVB/MCMM 

1.3.5.1 Theory 

 The empirical valence bond (EVB) technique was proposed in 1980 by the Nobel 

laureate, Warshel, and his co-worker, Weiss77 and then further developed, modified and 
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applied to TS modelling by Truhlar and co-workers, denoted multiconfiguration 

molecular mechanics (MCMM) in the year 2000.78 In this section, we focus on the 

applications of MCMM, keeping in mind that Warshel pioneered the VB 

theory/application to modelling. Some differences between EVB and MCMM are 

outlined in a letter published by Truhlar.79 Those distinctions will not be described here 

but they are important and the novice is urged to read this. 

 EVB/MCMM focuses on mixing potential energy surfaces of both reactants and 

products, whether they are monatomic or polyatomic molecules. MCMM is an 

application of the valence bond theory (VBT) that originated from London, Eyring and 

Polanyi.80 In contrast to the SEAM method that searches for the crossing of the two PESs 

(Figure 1.6), the MCMM method uses an energy term to describe the mixing of the two 

PESs in order to calculate the TS. More specifically, a mixing term (ERP) is used to 

convert the two diabatic states (ER and EP) into the proper adiabatic states (the actual TS) 

and not the crossing point as with SEAM. The adiabatic states (E) are determined by 

solving the following matrix which boils down to Eq. 1.15 in the case that two states, EP 

and ER, are considered. 

         
           

   
                        

  

 
 (1.15) 

 For the minima (in the reactant or product states, before or after the chemical 

reaction), the difference between ER and EP is so large that ERP becomes negligible and 

the equation reduces to the minimum energy, either ER, representing the reactants PES or 

EP, representing the products PES. If we consider the SN2 reaction that Jensen 

investigated with the SEAM method, our hypothetical potential energy surface could be 

illustrated by Figure 1.9. Another example (nucleophilic addition) can be found in an 

excellent review from Jensen and Norrby.35  
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Figure 1.9. Illustration of mixing PESs of an SN2 reaction. 

 Again, and it cannot be overstated, the most important criterion for this method to be 

applicable, similar to SEAM, is that the FF(s) used to describe ER and EP should model 

the structures correctly at large distances from the minimum along the reaction 

coordinate. This usually requires a Morse-like potential for the bonding term24 at long 

distances and a modified Lennard-Jones potential (efficient for calculating van der Waals 

interactions) for short distances23 since the repulsion is inaccurate at short distance in its 

original form. Additionally, the angles can be highly distorted and should be modelled 

appropriately. Basically all FF terms that are required to describe energetics far from 

equilibrium structural values must be valid at these geometries. Furthermore, the FF 

should also be able to calculate the relative energy of reactants and products accurately, 

something not expected from most FFs. While some corrections can be made (normally 

heats of formation), others require external calculations or experimental data. The 

problem arises from the changed connectivity between reactants and products along the 

reaction pathway; most FFs are/were designed to calculate relative energies for different 

conformations, but not for changes in configurations.  

 The mixing term, ERP, can be either a constant reaction-specific value or a function 

that depends on the reaction coordinate. Initial work by Chang and Miller81 was used to 
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solve ERP in order to match QM data for geometries, energies and frequencies for the TS. 

Subsequently, Truhlar and co-workers proposed a modified version of the Chang and 

Miller technique by fitting the mixing term at multiple points on the PES and then 

interpolating additional points. Their method depends on internal coordinates and is 

restricted to only the reactive center. Determining ERP requires additional input data, 

either barrier height and approximate TS geometry or electronic structure data from high-

level computations prior to the use of the actual MCMM method, regardless of the 

method used. This technique can be perceived by bench chemists as complicated and less 

user friendly than the aforementioned methods, but this is a very powerful tool for 

modeling bond making/breaking processes. More details can be found in the original 

publication.78 

 

1.3.5.2 Validation 

 The validation was performed using the MM3 FF (with some modifications) and 

AM1/PM3 for semi-empirical dynamics simulations82-83 on three test reactions (Figure 

1.10): the isomerisation of 1,3-cis-pentadiene, the hydrogen transfer between a hydroxyl 

group and methane and the hydrogen transfer between CH2F and CH3Cl, chosen for their 

sensitivity to the shape of the PES. 

 

Figure 1.10. Initial reactions tested for MCMM.78 

 The validation was done by comparing computed results to direct dynamics 

calculations using gaussrate.84 By tuning of some parameters and carefully selecting the 

number of non-stationary points (the additional interpolated points discussed above) to be 

modeled on (or off) the reaction coordinate, the semi-empirical dynamics results were 
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reproduced successfully using MCMM. The authors stressed that the major advantages of 

this technique are the need for only a small amount of QM electronic structure 

information (reactants and products) as input information, the internal, automatic 

generation of surface information, and, that the reaction coordinate can be more than one-

dimensional. A major attribute is the ability to calculate rate constants and vibrational 

frequencies along the reaction path. Truhlar and co-workers noted that their weighting 

function is very sensitive. Although they assessed a variety of different forms, the chosen 

form of the weighting function may not be applicable in all cases. This method and its 

closely related VBT method have been reviewed extensively35,85-91 and they have been 

used in multiple studies in order to expand the capabilities and functionalities.92-106  

 In addition to small molecule reactions, there is a great need for accurate methods 

that can model biocatalysed transformations. One of the most widely studied classes of 

proteins is the cytochromes P450 (CYPs). CYPs are metabolic enzymes that oxidize a 

large fraction of the drugs currently on the market. Predicting the oxidation of drugs is of 

great value for drug design studies. As a result, this approach has been applied to CYPs 

and mode specifically to the modeling of testosterone oxidation.102 

 

1.3.5.3 Availability 

 A software package that carries out MCMM calculations is named MCSI; it is 

distributed by Professor Truhlar at the University of Minnesota. Prior to 2010, it was 

known as MC-TINKER (it uses TINKER, developed by Professor Jay Ponder107). The 

website (comp.chem.umn.edu/mcsi) offers information on how to obtain a license and 

download the software packages. There is no cost associated with obtaining the program 

package; only a license form is required. The website also includes an extensive, well-

written manual and revision history. For EVB-specific software, Professor Warshel’s 

website (laetro.usc.edu/software.html) refers to a few programs, including their in-house 

software MOLARIS-XG, which can be downloaded with permission from their executive 

(free of charge). Detailed manuals with examples are also provided. There also exists a 

web-based platform for EVB in AMBER (http://ambermd.org/evb_pmf.html) among 

others. 
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1.3.6 ACE 

1.3.6.1 Theory 

 ACE (Asymmetric Catalyst Evaluation) was developed by Moitessier and co-workers 

and first reported in 2008.108 ACE was originally designed from chemical principles such 

as the Hammond–Leffler postulate stating that the TS is most similar to the species – 

reactants or products – to which it is closest in energy. This led the developers to consider 

the TS as being a linear combination of reactants and products. In practice, it is similar to 

the SEAM approach but with a tunable factor mimicking the Hammond–Leffler postulate. 

Conceptually, the forming bonds are considered as a combination of covalent bonds 

(products) and non-bond interactions (reactants) with λ defining the product character of 

the TS (i.e., the position of the TS on the PES) (Eq. 1.16). For example, the TS of a Diels-

Alder reaction (Figure 1.11) is the combination of two partial bonds (λ ranges from 0 to 

1) from the product as defined in a FF and of non-bonds from the reactants (e.g., van der 

Waals and electrostatic interaction). Specifically, if in Figure 1.11a we set λ to 0.25, the 

bond between atoms 1 and 2 has 75% double bond character (in the reactant) and 25% 

single bond character (of the product). Similarly, atoms 7 and 5 would be 75% in non-

bonded interaction and 25% in an angle. This approach is fully automated and combined 

with MM routines and a genetic algorithm into a single independent program (ACE). The 

MM3* FF was used in the original version. The genetic algorithm takes care of the 

conformational search and is necessary to optimize the complete TS complexes including 

the atoms involved in the breaking/forming bonds (e.g., 4, 7, 1 and 8 in Figure 1.11) as 

well as all the other atoms. 

                                   (1.16) 
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Figure 1.11. Diels-Alder reactions and transition states. 

 In a second version of ACE, solvent effects in the form of implicit solvent models 

were implemented (the GB/SA method was used, see original paper109). As Diels-Alder 

reactions with dissymmetrical reagents have been found to be highly asynchronous (the 

bond between carbons 4 and 7 is much shorter than that between atoms 1 and 8 in the TS 

in Figure 1.11b), modeling of asynchronous TSs was made possible in this second 

version of the program. ACE 2.0 also approximates a Boltzmann population, designed to 

improve the prediction of temperature-dependent phenomena.110 In a more recent version 

(ACE 2.2, unpublished), the focus was on automating the entire computation protocol. In 

ACE 2.0, each TS (two diastereomeric TSs in Figure 1.11b) was computed separately and 

the predicted diastereomeric excesses (d.e.) were computed manually by the user. ACE 2.2 

can now take all the potential TSs and compute the d.e. in a single, automated run. It can 

also take a library of catalysts and compute a set of d.e. in a single run. ACE 2.2 was then 

incorporated into a fully automated interface for asymmetric catalyst design that will be 

discussed in the coming chapter.  
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 The Moitessier group developed a docking program (FITTED111) that was combined 

with the ACE TS modeling method leading to the IMPACTS program.112 ACE was 

developed to compare energies and structures of diastereomeric TSs; because the TSs' 

connectivity is identical (TSs in Figure 1.11b), ΔΔG‡ (the related d.e.) could be computed 

accurately with force fields. Combining some of the FITTED and ACE features, IMPACTS 

was developed to identify the most likely site of metabolism (SoM) of drugs and includes 

a variety of mechanisms like hydrogen abstraction, aromatic oxidation and sulfide 

oxidation. To compare the different mechanisms accurately (i.e., TS structures having 

different connectivity and sets of parameters), a reaction-dependent correction was 

necessary. Similarly, different carbon atoms reacting via the same mechanism (e.g., 

aromatic oxidation of multiple aromatic carbons) cannot be compared with fidelity using 

traditional MM approaches. To complete the computation of the relative TS potential 

energies, an empirical ligand reactivity factor was introduced. To do that, the energy of 

activation for a large set of fragments was computed using DFT and tabulated. Within the 

IMPACTS package, each possible SoM is assigned a fragment and then an energy of 

activation, should that SoM be the one selected.  This program enables the study of TSs 

within a protein binding site and was developed specifically for CYP-mediated drug 

metabolism. 

 

1.3.6.2 Validation 

 ACE 2.0 was validated with approximately 150 examples of asymmetric Diels-Alder 

cycloadditions, organocatalyzed aldol reactions and epoxidation reactions. The generated 

TS structures were compared to those reported previously using DFT methods (Figure 

1.12).110 
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Figure 1.12. ACE 2.0 (yellow) vs. DFT (grey) generated TSs. The largest deviations between ACE 

and DFT predictions are highlighted in green. a) Diels Alder reaction between butenoyl - chiral 
auxiliary (in the back) and cyclopentadiene (in the front); b) Epoxidation reaction using a chiral 
dioxirane reagent; c) Proline-catalyzed aldol reaction. 

 The predicted selectivities were compared to experiment and also to DFT-generated 

predictions. A good correlation was determined and a mean unsigned error in the range of 

1 kcal/mol was obtained. An example is given in Figure 1.13 where DFT was compared 

to ACE 2.0 predictions on a set of epoxidation catalysts for a set of alkenes. 
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Figure 1.13. Representative catalysts screened (left) on multiple alkenes and the average 
predicted and observed ee's for each catalyst. 

 IMPACTS has also been validated extensively using sets of P450 substrates. The 

predicted metabolites were compared to those predicted using other state-of-the-art 

programs (i.e., MetaSite) and to predictions made by experts in the field.112 As can be 

seen in Table 1.3, this tool proved to be accurate in modeling TSs in cytochromes P450 

(CYPs). This work also demonstrated the applicability of the ACE approach to 

biocatalysis.  

 

Table 1.3. Accuracy[a] of IMPACTS in predicting the correct SoMs for respective datasets. 

CYP isoform N[b] Random selection IMPACTS[c] Experts[d] 

1A2 137 31 77 69 (5) 
2C9 129 29 79-82 71 (7) 
2D6 157 27 76 64 (4) 
3A4 293 28 72-75 61 (6) 
All 4 716 28 77 65 (5) 

[a] % of molecules with an observed SoM in the predicted two SoMs. [b] Number of substrates. [c] Multiple 
crystal structures were assessed. [d] Average predictions by medicinal chemists and biotransformation 
experts with standard deviation given in brackets. 
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1.3.6.3 Availability 

 The ACE and IMPACTS programs are available with all the necessary accessories as 

part of the VIRTUAL CHEMIST and FORECASTER platforms respectively upon request at 

http://www.molecularforecaster.com/. 

 

1.4 Transition State Force Field Techniques 

1.4.1 Introduction 

 Decades ago, FFs were used to evaluate reactivity of simple substrates. Although 

MM had been used to rationalize a variety of reactions, scientists were mostly looking at 

strain energies using GSFFs. Of note are the reports from Garbisch in 1965 who studied 

the equilibrium between enol forms using FF-like potential energy computations on 

experimentally determined (NMR and EPR) structures113 as well as the reactivity of 

alkenes in diimine reduction114 (Figure 1.14), and, the reports from DeTar and Tenpas 

who used parameters developed for alkanes and ortho-esters to model the TS of the acid-

catalyzed hydrolysis of esters in 1976.115 

 

Figure 1.14. Systems investigated by Garbisch in 1965.  

 An alternative to GSFFs are reaction-specific transition state force fields (TSFFs). 

One of the main advantages of this approach is its transferability to most MM packages. 

The user assigns new atom types and develops the corresponding parameters for the TS, 

and then adds them to the force field, which is often in the form of a text file. The major 

disadvantage is the need to develop FF parameters for any new reaction, a step that 

requires expertise. As mentioned earlier in this chapter, we consider only TSs that are 



 33 

saddle points (maximum on the reaction coordinate, but minimum in all other directions, 

Figure 1.1). However, to be able to use the traditional MM optimization (minimization) 

routines, the TS must be modeled as a minimum on that PES and not a true TS 

(“inversion” in Figure 1.6).  In principle, a proper set of parameters can be developed that 

considers the TS as being a minimum, an artefact that has its own limitations. 

Nevertheless, approaches for doing such calculations have been reported and validated for 

a number of reactions. 

 In this context, a QM-derived TSFF was first introduced over 30 years ago and 

applied to asymmetric hydroboration of alkenes.116-117 In most of those early applications, 

the TS was developed using QM methods and simply kept frozen in MM applications. 

This approximation came from the belief that the stereochemical outcomes of reactions 

could be attributed primarily to steric interactions between the atoms not directly involved 

in the bond breaking/bond forming reactions. Thus no optimization of the 

position/interaction of the atoms directly involved in the bond breaking/forming was 

deemed essential and no specific parameters were required for these reacting atoms and 

interactions between them. As an example, Houk investigated the asymmetric 

hydroboration of alkenes (Figure 1.15).116 TSs were first computed using ab initio 

calculations (3-21G basis set) for simple systems like that shown in Figure 1.15b. Then 

the four atoms forming/breaking bonds in the TS (C, C, B, H) were frozen in space while 

the atoms directly connected to those reacting atoms were free to move with non-reactive 

MM2 parameters. This purely MM approach was accurate in identifying major 

contributors (sterics and electronics) to the stereoselectivity of a number of hydroboration 

reactions. Although a number of other reactions have been investigated using this 

approach, they were reviewed by Eksterowicz and Houk117 and will not be covered in this 

chapter.  
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Figure 1.15. a) Asymmetric hydroboration of cis-butene and b) TS for hydroboration of ethylene 
with borane. 

 While using frozen QM-generated TSs was successful, allowing for transition state 

flexibility is expected to be more accurate. Houk and co-workers developed parameters 

defining the TSs as energy minima rather than as saddle points (Figure 1.6).118 This can 

be viewed as being too gross an approximation, and one might anticipate that distorted 

TSs would be poorly defined. However it has been found that TS geometries are often 

well-defined regardless of the substrates and reagents, unless large steric clashes are 

imposed. More importantly, this approximation enabled the use of optimization routines 

such as those in MacroModel119 (now available from Schrödinger, 

http://www.schrodinger.com/MacroModel/) using regular GSFFs like MM2. For 

example, MM2 parameters for the TS of hydroboration of alkenes were developed using 

ab initio calculations (MP2/6-31G*/3-21G) and were applied successfully to the 

chemistry of Masamune chiral borane.120 All of these studies used QM-derived TS 

structures to derive TS parameters. They were very successful and demonstrated the 

accuracy of TSFFs using TSs as minima. Unfortunately, such approaches are not easy for 

non-experts to use, are difficult to automate, and, accordingly, will not be described 

further herein. With this in mind, more user-friendly methods including Q2MM were 

developed. 

 

1.4.2 Q2MM 

1.4.2.1 Theory 

 Q2MM (Quantum to Molecular Mechanics) was developed by Norrby and co-

workers to generate accurate reaction-specific TSFFs from QM-derived TSs. In this 

approach, as in TSFFs described above, the TS is considered to be a minimum on the PES 



 35 

(Figure 1.1 and Figure 1.6). In contrast to the development of other TSFFs, Q2MM makes 

use of the Hessian of the TS as computed by QM methods. The Hessian is a matrix of the 

second derivatives of the energy with respect to all atomic coordinates. It provides 

information about the curvature of the PES (narrow or large energy well) and relates to 

the vibrational frequencies on each atom (which relate to the normal modes of vibrations 

observed by IR spectroscopy). As shown in Figure 1.16, the Hessian matrix is 

diagonalized into a new matrix D (this is achieved by finding a matrix P and its inverse P-

1 which relates the Hessian matrix to its diagonalized matrix D as given in Figure 1.16). 

The bii are the eigenvalues of the Hessian and P the matrix made of the eigenvectors. If a 

given structure has only positive eigenvalues, it is at a minimum on the PES, but if it has 

a single negative eigenvalue, the structure is a TS. Thus, if a TS is identified (i.e., a single 

eigenvalue is negative), converting it into a minimum can be achieved by replacing this 

value (b22 in Figure 1.16) by any positive value. Then the Hessian is reconstructed using 

the new eigenvalues and the eigenvectors. 

 

Figure 1.16. Conversion of a saddle point into a minimum within Q2MM matrix.  

 At this stage, the eigenvalues are all positive and the Hessian represents a minimum. 

In other words, the TS becomes a minimum on the PES.  Through an iterative procedure 

the FF is next trained to reproduce this new PES, where the TS is a minimum, leading to a 



 36 

TSFF for this specific reaction. In this process, the Hessian is computed using the FF and 

the FF is modified to minimize the difference between the reference QM-derived Hessian 

and the FF-derived Hessian. For more details, the reader is referred to a very detailed 

protocol reported in 2010.121 

 

1.4.2.2 Validation 

 The Q2MM method has been successfully applied to a variety of asymmetric 

reactions including the dihydroxylation of alkenes,122-123 Horner-Wadworth-Emmons 

(HWE) reactions124 and diethylzinc addition to aldehydes125 and more recently, the 

asymmetric hydrogenation of ketones using Noyori's catalysts (Figure 1.17).126 

 

Figure 1.17. a) Asymmetric reduction of ketones with a Ru complex that was used to test the 
derived TSFF. b) An example of a system used to locate the TS. 

 Using B3LYP/LACVP* (a density functional and a basis set appropriate for 

transition metals), Norrby and co-workers located the TSs for a small set of substrates and 

catalysts containing small diamine ligands (Figure 1.17b). The corresponding Hessian 

matrices were next used to derive the TSFF parameters needed for MM3*, a force field 

implemented in MacroModel. The electrostatic parameters were also refined to fit the 

DFT-derived atomic charges.  

 This TSFF was then used to study 13 systems including that depicted in Figure 1.17a. 

The correlation between experimental data and computed ("predicted") data in the form 

of ΔΔG‡, the free energy difference between the two diastereomeric TSs leading to either 

enantiomer of the product, had R2 = 0.83 with a mean unsigned error well below 0.7 
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kcal/mol. This high level of accuracy is in line with the aforementioned studies 

(dihydroxylation, HWE and diethylzinc addition) using Q2MM.  

 As MCMM and ACE (IMPACTS), Q2MM has been applied to CYP-mediated 

oxidation.127 In this study, Norrby, Rydberg and co-workers developed a TSFF for 

hydrogen abstraction, which is the major oxidation reaction carried out by CYPs, leading 

to N/O-demethylation and hydroxylation. Other reactions including sulfur oxidation and 

aromatic oxidation were not considered by this TSFF. Because the heme present in CYPs 

is responsible for the oxidation, the rest of the protein was removed. Using the DZP/6-

31G* basis set (a special basis was necessary for iron), the TSs were located for a number 

of substrates using a truncated (i.e., smaller) heme only (Figure 1.18).  

 

Figure 1.18. CYP-mediated oxidation of sp3 carbon atoms - model used to derive TSs. 

 Q2MM was used to develop TS parameters compatible with other GAFF (General 

Amber FF) parameters,128 a force field frequently used in protein/ligand modeling. The 

derived TSFF was first demonstrated to reproduce heme structures derived by DFT 

accurately, and was then used to predict the most stable TSs (of many possible docking 

poses) with two different drugs binding to CYP2C9 and CYP3A4.129 As mentioned 

throughout this chapter, FFs like GAFF cannot compute relative energies between 

molecules having different connectivity, including different metabolites (with different 

site of metabolism, SoM). Consequently, this TSFF (modified GAFF) was not expected 

to identify the preferred SoM accurately. As a result, the energies of the TSs leading to 

different SoMs were estimated by combining QM-derived energies and binding energies. 

This approach proved to be satisfactory in identifying the metabolites for Flunitrazepam 
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and progesterone with CYP2C9 and CYP3A4. Because this TSFF has already been 

developed and incorporated into GAFF, any other drugs reacting with any heme-

containing enzymes through hydrogen abstraction can now be modeled. 

 

1.4.2.3 Availability 

 The Q2MM package is available upon request from Per-Ola Norrby. A suitable 

quantum program (Jaguar or Gaussian in the studies above) is required to generate the 

TSs and the necessary Hessian(s) and a MM package (MacroModel in the studies above) 

is required to use the TSFF and combine it with other MM routines such as those used to 

optimize the structures. The P450 parameters are available for use with AMBER 

(http://www.teokem.lu.se/~ulf/Methods/ponparm.html). 

 

1.5 Conclusion and Prospects 

 Over the last fifty years, researchers have used computational methods to rationalize 

the outcome of organic chemistry transformations and to help in the design of improved 

catalysts or reagents. Modeling of TS structures has been dominated by QM methods with 

relatively few efforts dedicated to developing and using faster and more intuitive MM 

approaches.  

 In this chapter, we described the available MM methods, as well as their theory and 

validation studies. Despite these being available to experimentalists, the number of both 

users and reports of their application to catalyst design has been limited. This is in great 

contrast to the field of computer-aided drug design (CADD) where many drug companies 

and academic groups are utilizing easy-to-use software for discovering new research 

avenues. We believe that the methods described herein will remain relatively unknown 

and underused by experimentalists until the dependence on QM data is alleviated. That 

being said, these software packages are based on well-established theory described in this 

chapter and they are often useable with limited training. Consequently, we recommend 

contacting any developers of the software you wish to explore. Moreover, reactions 

already investigated/parameterized will not require any additional QM manipulation. 
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 To further advance the field of TS modeling using MM methods, we propose to 

integrate computational chemistry into organic synthesis laboratories as well as create an 

environment at the educational level where using software becomes routine and is not 

feared by those without expertise in the development process. It is our belief that once 

modeling techniques are more established at the fundamental learning stages for any 

chemist, the novelty in chemical research will greatly expand; computational methods 

will improve and consequently accounts of their use will grow exponentially.  
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Introduction to Chapter 2 

Many computational medicinal chemistry tools, like docking and supporting protocols, 

have been developed in our group for many years. It was only in 2008 and later in 2011 

that ACE, a tool for predicting the outcome of asymmetric catalysis, was designed and 

added to the computational arsenal. Unfortunately, the software required programming 

knowledge and several independent scripts in order to be operated. As a consequence, it 

was not used to its full potential, although not for a lack of trying by organic chemists in 

our lab. This chapter presents, in the context of an ongoing synthesis research project, the 

re-imagining of ACE and its supporting protocols for a greater purpose. No longer would 

this software only be used by computational experts as automated, usable and user-

friendly tools were created to carry out an entire synthetic plan, virtually. Several new 

algorithms were developed on the basis of a new molecular representation in order to 

enable the computation/examination of thousands of compounds in the timeframe of one 

night, or even a lunch break. 
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Chapter 2: 

VIRTUAL CHEMIST: A Computational Toolbox for Chemists 

 

This chapter describes software design and several validation experiments to demonstrate its 
accuracy. ACE was previously designed by Nicolas Moitessier and Christopher R. Corbeil, and 
was modified in this work. 

 

2.1 Abstract 

 As soon as a hypothesis is set and a research plan is designed, several tedious, time-

consuming and repetitive experiments will often be necessary to develop novel organic 

chemistry methodologies. Can all these steps and experiments be performed virtually and 

automatically?  To date, although computational chemistry has been instrumental in drug 

discovery, it has seldom reached the synthetic chemistry laboratories. We proposed to 

design a fully automated protocol for virtual synthetic methodology covering all the steps, 

beginning from the selection and ordering of chemicals to the organic reaction simulation 

and testing of the outcome. The design and development of several algorithms, within the 

framework of the VIRTUAL CHEMIST, will be presented that recreate: searching chemical 

catalogs for reagents, reacting these reagents to virtually synthesize catalysts, evaluating 

their promise for enantioselectivity and all the computational chemistry intricacies in 

between. Application to the development of asymmetric catalysts for given chemical 

reactions demonstrated its effectiveness and ease-of-use. 

 

2.2 Introduction 

 The field of asymmetric catalysis is growing exponentially and is especially valuable 

to the fields of medicinal chemistry and advanced materials. An organic chemist can 

consider a specific chemical reaction and often use molecular scaffolds to imagine more 

complex asymmetric catalysts with the goal of developing a more efficient and 

stereoselective catalyst. However, the exploration of the vast chemical space and infinite 
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possibilities is lengthy and tedious (and impossible) if performed using solely traditional 

experimental techniques.1-2 Computer simulations have been used with great success in 

drug discovery to reduce time requirements and labor needs3-4 so how come similar 

principles cannot be applied to facilitate the discovery of catalysts for well-known 

reactions in synthetic organic chemistry. Searching the chemical space would 

undoubtedly be more efficient using computational power. Furthermore, computationally 

applying the identified and selected catalysts to a specific reaction is within reach. 

Therefore, it would appear that the foundation exists for virtual discovery of asymmetric 

catalysts. 

 A major difference between computer-aided drug design (CADD) and asymmetric 

catalyst design is the required accuracy. Drug discovery often investigates molecules 

hitting a target with reasonable binding affinity; CADD requires accuracy of a few 

kcal/mol in order to differentiate strong binders from weak or non-binders. In contrast, as 

little as 1.0 kcal/mol between stereomeric transition states (TSs) can distinguish highly 

from poorly stereoselective asymmetric catalysts. As a result, a "chemical accuracy" of 

1.0 kcal/mol or less is needed. 

 Nowadays accurately computing the stereoselectivity, or at least rationalizing the 

stereochemical outcome of an asymmetric chemical transformation, is often possible 

through the use of quantum mechanical (QM) techniques such as density functional 

theory (DFT)5-11 However, despite the demonstration of its feasibility, it is not until 2009 

that the first use of DFT on sets of asymmetric catalysts and substrates was reported,12 

with little communicated thereafter.13 We believe that identifying stereoselective catalysts 

in silico must be significantly faster than discovering them experimentally, or 

computational methods will only be used to rationalize observations rather than be 

exploited in the planning stages of synthetic chemistry. An effective, rapid screening of a 

large number of catalysts therefore precludes the use of QM. 

 Alternatively, significantly more time-efficient methods have been devised using 

molecular mechanics (MM) as described in the previous chapter.14 Since most force fields 

were designed for ground state modeling, their transferability to diastereomeric TSs had 

to be addressed. In this context, the Q2MM method, which relies on QM-derived TS 
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force fields, has demonstrated high accuracy on a number of asymmetric reactions.15-18 

Similarly, our group reported ACE (Asymmetric Catalyst Evaluation), a program 

accurately predicting the stereochemical outcome of asymmetric reactions defining the 

TS structure as a linear combination of reactant and product structures.19-20 Although 

Q2MM and ACE were good candidates for computer-guided development of asymmetric 

catalysts, their full integration into experiments had yet to reach its full potential. On one 

hand, Q2MM's reliance on QM-derived TS force fields limits its use to previously 

parameterized reactions for non-QM experts.14 On the other hand, ACE required the 

construction of starting structures using a combination of manual TS building and 

independent Linux-based programs: a tedious and unintuitive process.  

 Currently, the crucial step is to port this technology to the hands of organic chemists 

as was successfully achieved with NMR spectroscopy, mass spectrometry and HPLC to 

name a few. Organic chemists run their own routine NMR experiments without the 

necessity of an in-depth understanding of the technique, but using computational methods 

requires extensive training in programming and QM or MM. Removing the need for 

training entails that the input and output be simple, familiar and readable, and that all the 

simulated experimental stages are fully automated and integrated. It is important to 

clarify, at this stage, the definition of usable and user-friendly in the context of this 

research. Usable is meant to refer to routine experiments which an organic chemist would 

be interested in running. As with NMR, an organic chemist will rarely attempt to 

investigate new pulse sequences; this is the domain of the experts in the field. Similarly, 

this software is not meant to replace QM or the modeling experts worldwide. User-

friendly is meant to refer to the accessibility and ease-of-use of a software package: the 

color pictures, automated workflows, checkboxes and intuitive steps that are required to 

run a virtual experiment. Herein we present our efforts that led to the improvement of 

ACE 2.2 and the development of novel computational tools fully integrated into an 

intuitive, usable and user-friendly platform, VIRTUAL CHEMIST.  

 Overall, an asymmetric catalyst development project can be designed as shown in 

Figure 2.2. As an example, Gerosa et al. recently reported the computer-aided design and 

development of novel asymmetric organocatalysts for Diels Alder reactions (Figure 

2.2).13 In this excellent piece of work, they first tested catalysts prepared following the 
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synthetic scheme shown in Figure 2.2a. ONIOM (B3LYP/6-31G*:AM1), a QM-based 

software package, was then demonstrated to be highly predictive to model the 

stereoselectivity of the reaction in Figure 2.2b and used to subsequently virtually screen 

62 potential catalysts. The most promising one was selected for synthesis and turned out 

to be the most stereoselective of the series. Unfortunately, no temporal information is 

reported although it can be estimated that these predictions required time on the order of 

weeks or even months as well as an expertise in programming. Could this work be 

reproduced and a good catalyst identified in just a few mouse-clicks at a desktop 

computer? Several technically challenging, and technologically advanced tools have been 

developed in this context. 

 

Figure 2.1. General synthesis planning and execution stages with a virtual comparison 
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Figure 2.2. a) Reaction scheme defining the synthetic route to an asymmetric organocatalyst. b) 
The application of this catalyst in a common Diels Alder reaction. 

 

2.3 Theory 

2.3.1 Comparing chemical structures 

 An organic chemist usually wants to find most, if not all, matches of a chemical 

scaffold with other variable features, referred to as R groups. Usually this is drawn in the 

form of a 2D structure as shown in Figure 2.2a. This is stored on a computer as a text file 

of atom names, coordinates and connections. Some transformations are required from this 

representation in order to establish a comparison. Generally, from an algorithmic 

perspective, finding a substructure within a structure is known as sub-graph isomorphism. 

A graph, in computer science, is very similar to a molecule in the sense that it has vertices 

(atoms) and edges (bonds) and all together these describe the graph (molecule). There are 

several types of graph-matching: exact, the simplest, substructure and similarity, the most 

difficult. The three endeavors each have an intrinsic complexity, regardless of relative 

simplicity, due to the encoding of molecules. SMILES21 is a method of keeping all the 

molecular information in one text string, something useful for exact matching, however 

there can be inconsistencies from one output source to another. Further technical 

difficulties arise when adding the ambiguities and variability for substructure and 
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similarity searching. We thought to develop a minimalistic approach to encode molecular 

structures into a string-like format that could then be compared from one to another using 

a breadth-first search (BFS) algorithm. This problem is known to be NP-Complete22 

meaning no polynomial-time solution is known. Much of the sub-graph isomorphism 

problem applied to chemistry is made simpler by the constraints imposed by the nature of 

molecules.23 Certain rules exist that, for example, enforce a limit on edges that touch a 

given vertex (i.e., a carbon atom can have a maximum of 4 bonds) which allows us to 

take shortcuts and greatly reduce the running time.  

 This 'genotypic' representation could then encode the necessary information from the 

actual molecule (phenotype). We planned to only perform manipulations/computations 

based on this genotypic representation as opposed to accessing data structures 

(phenotypes) during each computation. The text-based encoding will then be used to 

identify scaffold matches, exact matches and largest common substructures between 

molecules, processes necessary to search for chemicals and encode chemical 

transformations.  

 Many of the shortcuts to filtering non-matches and attempts to identify exactitudes as 

efficiently as possible are based on the approaches of the human brain. A chemist can 

look at two molecule drawings and almost immediately label them as identical or not. A 

computer should replicate these efficiencies. 

 First, before computationally considering the specific properties of the genotypic 

representations, conceptually, a chemist would look for easily identified, superficial 

features.24 If well-selected, this should reduce the run-time of the software significantly. 

The key notion is to select independent properties that will cover the widest possible 

range and that will be computationally easy to compare. For example, if the number of 

atoms and bonds differ from one molecule to the next, then they cannot be exactly the 

same. Similarly, if they do not contain the same number of each element then they are not 

identical. Terminal atoms, those that are bound to only one other atom are also an easy 

target to distinguish dissimilar molecules; like a comparison of picture frames before 

looking at the pictures themselves. These quick filtering techniques allow the presented 

software to accurately search through 23 million molecular structures for one scaffold in a 
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matter of hours (ca. 1000 per second), something that would take a human being years or 

decades and is prone to errors.  

 If the first filters are passed, the genotypic string is created to represent the molecular 

structure. When considering two images, one technique to eliminate possible similarity is 

to start in a distinct region that is likely to differ from one to the other. In this context, the 

string is rooted, or anchored, at one of the rarest elements appearing in the template and is 

then expanded in a breadth-first-search manner (Figure 2.3). Then for the second layer, 

the neighbors of each atom in layer 1, except those appearing in the previous layer (layer 

0) will be appended, and so on to eventually create the complete graph/molecule. Within 

the string, only specific information for defining any atom is kept: the parent (previously 

visited, connected atom), the element, the atom number, the degree of un-saturation and a 

flag for cycles (the connecting atom that forms a ring). While more information may be 

required to describe more complex systems, our current testing does not demonstrate a 

need for any additions. With this genotype in hand, structures can now be compared with 

various goals: substructure, exactitude and common substructure identification. 

 

Figure 2.3. Example of indexing an amino-alcohol into its genotypic representation. 

 

2.3.2 Substructure search  

 Finding a substructure (e.g., template with R groups) within a structure (e.g., actual 

chemical from a library) is crucial for chemical diversity. In this context, an R-group will 
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be allowed to be any functional group with no restrictions on element or bond-type. In the 

case of R=H, some explicit rules were required, as the string representation described 

above does not include hydrogens. The library phenotypes must now be converted, one at 

a time, to their genotypes as was demonstrated above for the template. As the string is 

built, at each layer, the two strings will be compared (Figure 2.4). If, in this comparison, 

discrepancies arise, the following atom is used as the anchor and a new string is built. If 

potential matches are not discovered for every single atom in the substructure (after 

examining all possible genotypic representations) then this library molecule does not 

contain the template. If the library string is completed and all template atoms have a 

potential match, it progresses to the next stage of evaluation. To clarify, it cannot yet be 

concluded that the library molecule contains the template since the strings are built in a 

forward manner – meaning information of the past is lost; each atom “knows” only to 

whom they are connected and nothing beyond (Figure 2.4). There are consequently 

instances that require a more rigorous, extensive investigation; consider the number of 

times one must go back and forth between two handsomely dressed men to determine if 

they are wearing exactly the same clothing. 
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Figure 2.4. A sample run-through of the BFS matching algorithm (only 3 iterations) 

 A series of deductive tests are carried out to establish the unique corresponding atoms 

between template and library molecules. Each template atom must have only one 

counterpart in the library molecule to ensure correctness as well as to properly label the 

equivalencies. This is achieved by creating new string genotypes anchored at atoms in the 

template that have more than one potential equivalent atom in the library molecule. If the 

new genotype does not match the corresponding genotype created from the library 

molecule, anchored at the potential matching atom, then these atoms cannot be 

counterparts. As a result, the molecules are evaluated forwards and backwards when these 

uncertainties arise. If, after any iteration, one template atom is no longer matched to a 

library atom, the entire molecule is skipped and does not match. A proper substructure is 

identified if and only if each and every template atom is labeled with one counterpart. 

This approach accounts for ring junctions (special treatment for 3-member rings) as well 

as local symmetries found within many molecular structures. 
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2.3.3 Exact structure matching 

 All of the components presented in section 2.3.2 are pertinent to exact structure 

matching except no R-groups are present and every atom in the template must match 

exactly one in the library molecule. It is in fact much simpler algorithmically to determine 

if two molecular structures are identical. No consideration of tautomers was included in 

the development at this stage. 

 

2.3.4 Largest common substructure identification 

 Establishing the largest common substructure found in two molecules (Figure 2.5) 

was a challenging task. Unlike the previous two search goals, an anchor is not obvious, 

the number of corresponding atoms in both structures is variable and the criteria for being 

labeled an equivalency is much less strict. To put this in perspective, as opposed to 

examining the picture frames in the case of dissimilarity of one substructure, in this 

instance, we are searching to cut out the largest piece of a picture that is identical to a 

piece of the same size in the second picture. 

  

Figure 2.5. Largest common substructures identified for two reagents within a product. Atoms or 
bonds in black are not part of the largest common substructure. 

 Utilizing the purpose of this tool (discussed later in this chapter), the only known 

atom that must be found in both structures is at least one R-group. Therefore, this can be 

established as the anchor. Upon building and comparing genotypes, many leniencies are 

allowed when searching for equivalencies. The atoms connected to a given atom, the 

level of un-saturation of bonds and the ring junctions can all differ between two 

molecular substructures yet they can still be common substructures. To circumvent these 

variables, the genotype construction is slightly modified to consider number of bonds as 

opposed to un-saturation and if this and the element match, it is preliminarily set as a 

potential counterpart. Using the above-mentioned extensive graph matching anchored at 
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“promiscuous” atoms (with multiple equivalencies), the result is narrowed to the 

maximum number of atoms that are labeled with one single counterpart and the number 

of atoms is stored. The entire largest substructure procedure is repeated from each R atom 

in order to achieve the largest possible match. 

 

2.3.5 3D substructure matching 

 The 3D aspect of structure matching adds a geometry element to section 2.3.2, but is 

otherwise the same. A substructure is identified using the genotypic representations and 

now this set of equivalent atoms must be superimposed in 3D space and verified for a 

good geometry overlap (Figure 2.6).  

 

 Figure 2.6. Sample 2D superposition (right) of a catalyst onto a TS (left). Extra bonds 
defined for reactant and product stages and only exist for technical reasons. 

 This becomes crucial when considering a carbon atom with 3 R-groups. Previously, 

in 2D, any assignment of R-group would be acceptable. Now, with 3D coordinates 

existing in both the template and library molecules, the correct R-groups must be paired 

otherwise a potentially distorted geometry conformation can arise and/or an inversion of 

configuration can result. The way this is accomplished, similarly to section 2.3.4, is by 

keeping record of the best match thus far and attempting all possible matching sequences, 

i.e. checking all genotypic representations that could lead to an acceptable equivalency 

assignment. In this instance, it is not the number of matching atoms which determines the 
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best assignment; rather a score is given to the torsion angle distortions and bond 

stretching upon attempted superposition. Further considerations were required for local 

symmetry, 3-member rings and preservation of the input stereochemistry (Figure 2.7). 

 

Figure 2.7. The crucial role of geometry in 3D superposition of substructures. The 4 TSs shown 
represent the potential equivalency labeling, but only TS-1 and TS-2 offer reasonable geometrical 

conformations. 
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2.4 Implementation 

2.4.1 Searching for chemical scaffolds 

 An automated sequence of algorithms has been implemented to search through user-

defined catalogs based on an input reaction scheme; an organic chemist can draw a 2D 

scheme in ChemDraw, A+BÆC (AÆB also acceptable), and run the software package in 

order to extract libraries of reagents matching scaffolds A and B from the Aldrich catalog, 

for example, all in a matter of seconds or minutes depending on the generality of the 

scaffolds. The software package, FINDERS (Filtering, Identifying, Negating Duplicates 

and Evaluating Reaction Substructures), functions as follows. First, a quick filter is run 

based on the superficial properties of the reagent(s), mentioned previously, to eliminate 

“obvious” molecules from the catalog. Next, the given scaffold is expanded for 

protecting/leaving groups by the developed algorithm: CREATE (Chemical Reagent 

Expansion After Template Evaluation). Up to 4 “X-groups” are allowed and a list of 

available options is given in Appendix 1 (Figure 2.8). These groups need to be explicitly 

defined since they differ from R-groups which can be any functional group.  

 

Figure 2.8. An example of CREATE expanding templates for X-groups and R being a functional 
group or H. Cis and trans is not implemented in the current version of the software and thus these 
will be labeled as duplicate as described below. 

 Each generated scaffold is now queried amongst the filtered libraries for substructure 

matches using the theory in section 2.3.2 and output to a new file. Then, several in-house 

packages are used to automatically: add hydrogens (CONVERT – Conformational 

Optimization of Necessary Virtual Enantiomers, Rotamers and Tautomers), label 
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functional groups (SMART – Small Molecule Atom typing and Rotatable Torsions 

assignment), and remove user-defined incompatible chemical groups outside the input 

scaffold (REDUCE – Recognition and Elimination by Descriptors of Undesired Chemical 

Entities). An organic chemist would not select a molecule containing a second aldehyde if 

the desired scaffold contained one and this was the reactive site. The final step is to 

remove duplicate structures since vendors may have multiple salt versions, 

concentrations, quantities or physical states of the same compound; in molecular files, all 

of these copies are stored, however only one instance should be kept in the final library. 

The developed algorithm DIVERSE (Duplicate Identification Validated by Evaluation of 

Regio- and Stereochemical Exactitudes), uses the theory in section 2.3.3 to evaluate all 

remaining molecules and eliminate duplicated structures. This is often the most time-

consuming step since an exponential number of molecular comparisons are required in its 

current state. 

 

 2.4.2 Performing combinatorial chemistry 

 The following software package that was developed was to use two chemical libraries 

to carry out an A+BÆC type of reaction and generate all the possible combinations of A 

and B forming C (or carry out an AÆB reaction) again, in a matter of seconds. REACT2D 

(Rapid Enumeration by an Automated Combinatorial Tool in 2D) works as follows. It is 

not simply a follow-up to FINDERS and needed to be designed to be an independent set of 

algorithms if perhaps properly focused libraries were already in-hand. For this reason, 

many of the algorithms are re-run with some minor modifications. First, CREATE expands 

the scaffolds once more, but in this instance, leaving/protecting groups are labeled as X 

after being matched since these groups would not appear in the final product C and would 

have the same combinatorial outcome. Thus, when DIVERSE is carried out, the same 

scaffolds differing only by a leaving/protecting group would be labeled as identical so as 

to not unnecessarily grow the number of combinations. Furthermore, it is applied at this 

stage and not after the combinatorial chemistry since the number of molecular 

comparisons is far fewer in separate libraries rather than library of products. While most 
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of the current available software requires the user to explicitly label atoms belonging to 

the different reactants in the product, our implementation precludes human interference. 

 The substructure matching has, therefore, again identified the corresponding atoms 

between template and library molecules, the exact matching has removed ones that would 

result in duplicate products and now the reaction can be carried out. Using the theory in 

section 2.4.4, the reacting templates, A and B, can be matched to the atoms found in C. 

The leniencies defined regarding largest common substructure are due to bonds 

forming/breaking and rings being closed from reactant to product. Finally, using matrix 

algebra, library molecules can be templated onto the products C and be joined in a 

combinatorial fashion. An overall summary of both FINDERS and REACT2D can be seen in 

Figure 2.9. 

 

Figure 2.9. Schematic representation of FINDERS and REACT2D going from a 2D reaction scheme 
and a chemical catalog to combinatorial chemistry. 
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2.4.3 Building 3D transition states 

 A software package was created to generate 3D TSs as input for the in-house 

enantioselectivity evaluation software, ACE (Asymmetric Catalyst Evaluation). ACE 

requires 3D TSs in a reasonable geometry with two different bond configurations: one at 

the reactant stage and one at the product stage. Additionally, the input must include the 

TS leading to both enantiomers in order to output a predicted enantioselectivity for each 

catalyst. CONSTRUCTS (Converting and Orienting Native Structures on Templates of 

Rotatable and Unoptimized Chemical Transition States) is fully automated and prepares 

all the necessary input for ACE, previously a labor-intensive and knowledge-requiring 

step. The required input is a library of 2D catalysts (and substrates, if desired) and a TS 

template (can be available from literature or generated using QM techniques). First, using 

CONVERT, the catalysts are transformed into 3D using a series of MM equations. Then, 

SMART is applied in order to run an in-house geometry optimization algorithm, MINIMIZE 

resulting in acceptable 3D conformations. Now, the TS is expanded, similarly to the 

expansion of templates with CREATE, but with no X-groups, simply Rs can be Hs. The 

theory in section 2.3.5 is applied and the library of catalysts will match the correct TS and 

be superimposed in 3D space. Subsequently, the substrates are added (also matched if 

from a library) and the TS is thus built piecewise and all the combinations of catalysts and 

substrates are generated (Figure 2.10). The output also includes the two configurations 

required for ACE as “reactant” and “product” files.  
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Figure 2.10. From 2D sketches (a) of catalysts and (b) substrates to (c) usable TS structures for 
proline-catalyzed aldol reaction. (d) The scheme of the TS is given in 2D for clarity. 

 

2.4.4 Evaluating enantioselectivity 

 ACE underwent minor changes to make it more accessible to users by implementing a 

parallelization that allows the software to run quicker, and a routine that enables to read 

and run multiple substrate/catalyst systems. Furthermore, the output was simplified to 

enable a more efficient analysis of the results. The technical details of ACE19-20 will not be 

described in this thesis since it is not the work of the author. 
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2.5 Validation 

2.5.1 FINDERS/REACT2D 

 In order to validate these virtual combinatorial chemistry tools, a set of chemical 

transformations among the most widely used in medicinal chemistry were selected as 

reported by Hartenfeller et al.25 and are shown in Appendix 1 and some examples in 

Figure 2.11.  

 

Figure 2.11. Examples of chemical reactions investigated with FINDERS/REACT2D – 
benzimidazole synthesis (top), thiazole synthesis (middle) and Niementowski quinazoline 

synthesis (bottom). 

 Reagent libraries were created using the Aldrich catalog downloaded from the ZINC 

database (~59000 compounds), the drawn reaction schemes and FINDERS (Table 2.1). It is 

difficult to exhaustively validate a substructure search algorithm since it requires a known 

library of matches and decoys as well as a wide diversity of chemical groups, 

configurations and even atom numbering. The work presented here represents a 

significant exploration of possibilities, and constant investigation of inconsistencies, but 

is likely not exhaustive.  
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Table 2.1. FINDERS validation with a set of 13 diverse chemical reactions. The name of 
the reaction is given with the number of the reaction from Hartenfeller.25 MW and N are 
the maximum molecular weight and number of atoms allowed in the search. Time is the 

total runtime for FINDERS to search the Aldrich catalog and output the results. 

    FINDERS  REDUCE DIVERSE Time 
(min:s) 

Entry Name MW N A B A B A B  

1 Pictet-Spengler (1) 150 30 105 3250 20 269 15 257 3:46 

2 Benzimidazole synthesis (2) 150 30 16 14309 6 571 6 549 23:11 

3 Thiazole synthesis (7) 200 30 398 193 131 94 115 94 2:10 

4 Niementowski quinazoline (8) 200 30 86 9011 7 307 7 286 11:51 

5 Tetrazole terminal (9) 150 30 2051 n/a 268 N/A 267 N/A 2:30 

6 Tetrazole connect (10) 150 30 2051 4489 268 18 267 17 5:10 

7 3-Nitrile-Pyridine (17) 150 30 250 n/a 37 N/A 37 N/A 0:20 

8 Spiro-Chromanone (18a) 150 30 49 46 7 17 7 10 0:30 

9 Paal-Knorr pyrrole (21) 120 18 176 12308 13 450 11 421 13:56 

10 Fischer indole (23) 120 18 69 11179 4 283 3 250 12:57 

11 Reductive amination (30.1) 100 15 42146 3250 425 30 251 30 38:08 

12 Stille coupling (43) 150 30 12929 38 128 4 71 3 29:00 

13 Grignard reaction (44) 120 18 5072 2051 176 97 56 96 9:30 

 

REACT2D was then validated (Table 2.2) by visually inspecting a subset of structures and 

confirming the expected number of products from two reaction types: A+BÆC 

(coupling) or AÆB type (transformation). The combinations are indeed exhaustive except 

for one instance which is a very special case (Figure 2.12). In this situation, 2 R-atoms 

become 1 atom and technically match the same one. In the current protocol, this is 

disallowed and the molecule is said to not be a match in REACT2D. In reality, in this 

specific reaction, this would be disallowed regardless due to geometric constraints. 

 

Figure 2.12. Paal-Knorr pyrrole synthesis reaction scheme (top). A demonstration of the 
disallowed 2 R-group/1 equivalent case (bottom) 
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Table 2.2. REACT2D validation with a set of 13 diverse chemical reactions. The name of 
the reaction is given with the number of the reaction from Hartenfeller.25 Input libraries 

for A and B are resultant from FINDERS in Table 2.1. Time is the total runtime for 
REACT2D to execute exhaustive combinatorial chemistry and output the results. 

  FINDERS  DIVERSE (X) REACT2D Time (min:s) 

Entry Name A B A B C  

1 Pictet-Spengler (1) 19 257 15 257 3855 1:15 

2 Benzimidazole synthesis (2) 6 550 6 550 3300 9:06 

3 Thiazole synthesis (7) 115 94 89 94 8366 0:27 

4 Niementowski quinazoline (8) 7 301 7 286 2002 1:41 

5 Tetrazole terminal (9) 267 N/A 267 N/A 267 1:10 

6 Tetrazole connect (10) 267 17 267 17 4539 1:18 

7 3-Nitrile-Pyridine (17) 37 N/A 37 N/A 37 0:01 

8 Spiro-Chromanone (18a) 7 17 7 10 70 0:12 

9 Paal-Knorr pyrrole (21) 13 421 11 (8) 421 3368 4:54 

10 Fischer indole (23) 4 272 3 250 750 1:15 

11 Reductive amination (30.1) 425 30 251 30 7530 3:22 

12 Stille coupling (43) 128 4 71 3 213 0:14 

13 Grignard reaction (44) 164 96 55 96 5280 0:19 

 

2.5.2 CONSTRUCTS/ACE2.2 

 As a validation of the efficiency and accuracy of the software, we focused on the 

organocatalyzed aldol and Diels Alder reactions. In 2000, the proline-catalyzed 

intermolecular aldol reaction was reported by List, Barbas and co-workers26-27 while the 

first Diels-Alder "organocatalyst" was reported by MacMillan and co-workers.28 A 

number of other organocatalysts have since been reported for these two reactions, 

including several proline analogues, and chiral binaphthyl diamine derivatives.29 

Interestingly, the reported enantioselectivity rarely exceeds 95% ee despite the large 

amount of work dedicated to the development of organocatalysts.30-31 Consequently, these 

two reactions were good candidates for this study: there was sufficient literature data for 

validation as well as space for computer-guided improvement.  

 First, a set of 36 aldol organocatalysts was assembled from the literature with most of 

them previously experimentally reacted with aldehydes 2.8a-c. TS templates needed by 

CONSTRUCTS were built from those reported by Bahmanyar and Houk.32-33 Ultimately, 
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108 (36 x 3) catalyst-substrate systems were built for the aldol reaction (examples in 

Figure 2.13) within under 5 minutes. Since ACE is applied to TS templates, it implicitly 

assumes a specific reaction mechanism and appropriate catalytic activity. Pyrrolidine is 

an efficient monofunctional catalyst known to catalyze the aldol reaction by activating the 

ketone,34 while the additional carboxylic acid of proline activates the aldehyde making 

proline a bifunctional catalyst. However, the 9-membered cyclic TS proposed for proline 

may be competing with an open TS as observed with pyrrolidine and 2.9h.35 Additionally, 

reported stereoselectivities for aldol reactions vary significantly with catalyst loading, 

solvent,36 additives  and temperature.37 Unfortunately, the collected data includes 

stereoselectivities collected under different conditions and therefore includes noise when 

compared to our automated process which simulates screening under a single set of user-

defined conditions. The set consists of two types of catalysts: first, proline and other 

carbocylic acid or thioamide-containing catalysts37-38 (e.g., 2.9a-c) feature acidic protons 

and assumed to work primarily through the cyclic TS and second, amide-containing 

catalysts35 which may provide both cyclic and open TSs (Figure 2.14). These alternate 

mechanisms are exemplified by 2.9d-f. It was observed that the yield and 

enantioselectivity dropped when going from medium-sized and slightly acidic 

(electronwithdrawing CF3 group, 88% yield, 45% ee) 2.9e to less acidic and larger 

tertbutylamide 2.9f (55% yield, 15% ee). Experimentally, reports have shown that the 

acidity of this proton was critical likely due to these two co-existing mechanisms.38 

 

Figure 2.13. Known substrates (a) and catalysts (b) for organocatalyzed aldol reactions. 
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Figure 2.14. Cyclic and open TSs for organocatalyzed aldol reaction. Simple systematic tests 
revealed that λC-C1 = 0.4, λCOOH-O = 0.1 and λCONH-O = 0.0001 reproduced the DFT-derived TSs for 

the aldol reaction catalyzed with proline and prolinamide derivatives.39 

 To test this hypothesis the data was extracted for the first class of catalysts (black in 

Figure 2.15). This data confirmed that when a single mechanism is in play (i.e., cyclic TS 

only), ACE can predict enantioselectivity with accuracy high enough to be used to screen 

organocatalysts for aldol reactions. For the second class (green and red in Figure 2.15), 

when two pathways may co-exist, the predicted major isomers produced with four 

catalysts are minor isomers experimentally (top left quadrant in Figure 2.15). In red are 

highlighted the results with three catalysts including 2.9f and 2.9g which are bulky 

amide-containing systems. Thus, in the cases where the mechanism of action may vary, 

ACE is capable of predicting the correct isomer in most cases but with poor 

enantioselectivity accuracy. As an additional limitation sulfonamide derivatives such as 

2.9i were not fully parameterized in MM3 and had to be removed.  
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Figure 2.15. Predicted vs. experimental enantioselectivities (the sign indicates one isomer versus 
the other). 

 Next, a set of 17 known Diels-Alder organocatalysts and 3 substrates were compiled 

(examples in Figure 2.16) for both the endo and exo TSs in ca. 15 minutes (102 systems). 

TS templates were built from those reported by Gordillo and Houk8 (Figure 2.17). 48 of 

these systems have been previously evaluated experimentally (21 endo and 27 exo).  

 

Figure 2.16. Previously reported substrates (a) and catalysts (b) for organocatalyzed Diels-Alder 
reaction. 
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 The TS systems of catalysts and substrates were built using the fully automated 

CONSTRUCTS/ACE protocol. The predicted enantioselectivies were then compared to those 

reported. Poor sulfonhydrazine (2.11d) parameters led to unexpectedly high values of 

ΔΔG* likely due to the lack of parameters in the MM3 force field used by ACE. These 

were discarded. As can be seen in Figure 2.18, the correlation between predictions and 

experimental data is apparent. As a ΔΔG* of only 1 kcal can result in an increase of 

enantioselectivity from 0% ee to ca. 70% ee at room temperature due to the log-scale in 

the conversion, we looked at the ranking rather than the absolute values. It is important to 

evaluate whether our program could discriminate the catalysts inducing high or low 

stereoselectivity since, in practice, a chemist would use this tool to identify those most 

likely to be successful. As can be seen in Table 2.3, the top of the ranked list 

(computational prediction) is overall inducing (experimentally) significantly greater 

stereoselectivity.  

 

Figure 2.17. Reported TS structures for the asynchronous Diels-Alder reaction. The DFT-derived 
TSs can be accurately reproduced using λC-C1 = 0.3 and λC-C2 = 0.002 (for the shortest and longest 

forming bonds respectively).8 
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Figure 2.18. Predicted vs. observed enantioselectivities Diels-Alder reactions: endo (blue) and 
exo (red) products. 

Table 2.3. Identification of stereoselective catalysts for the Diels Alder reaction. 

 Av. ee Topa Middlea Bottoma 

Diels-Alder - endo 63.3% 81.5% 58.8% 50.5% 

Diels-Alder - exo 66.8% 77.2% 71.0% 45.0% 

[a] the ranked list is split into 3 sections (top 33.3%, 33.4-66.6%, bottom 33.3%) and the experimental 

stereoselectivities averaged 

 

2.5.3 VIRTUAL CHEMIST  

 With all of these tools in hand, in order to render these tools useable by non-experts, 

the VIRTUAL CHEMIST interface was developed (Figure 2.19). The sketcher is on top of a 

workflow made up of the four programs reported herein. Through simple clicks, the 
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reaction scheme can be drawn and the settings can be chosen. The graphical user interface 

is intuitive and easy-to-use. 

 

Figure 2.19. The VIRTUAL CHEMIST platform. 

 

2.6 Conclusion 

 Throughout this work, new implementations that utilize a genotypic representation of 

molecular structures were applied to multiple facets of asymmetric synthesis research 

plans. Three new, automated, usable and user-friendly software packages, FINDERS, 

REACT2D and CONSTRUCTS, were developed to then be followed by an upgraded ACE 

program. There are few limitations to these algorithms and approaches and the majority 

of these have been identified and characterized. When competing TSs appear as in the 

organocatalyzed aldol reaction, ACE is able to correctly identify major isomers albeit with 

poor enantioselectivity prediction. In the case of the organocatalyzed Diels-Alder 

reaction, where no competing pathway exists, the accuracy is high enough to enrich a 

focused library with more stereoselective catalysts. This, along with the integration of 
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these 4 programs into the VIRTUAL CHEMIST platform, demonstrates that such a 

computational process, which takes an average of ca. 10h per system (per core), can be an 

efficient tool to now guide a research plan prior to time-consuming synthesis and testing 

of new catalysts and not only be a utility in explaining experimental observation.  

 

2.7 Experimental 

2.7.1 ACE calculations 

 Default parameters implemented in ACE have been used for lambda (describing the 

linear combination of reactants and products) and other genetic algorithm optimization 

inputs. 
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Introduction to Chapter 3 

The application of transition state modeling to proteins while creating accurate 

computational tools requires a considerable understanding of structural biology. 

Structure-based design represents a significant scale-up from the small molecule-based 

approaches seen in the previous chapter. The docking program developed in the 

Moitessier group, FITTED, and the accessory programs of the FITTED suite will be used 

throughout the remaining chapters for various applications and the improvements will be 

described in detail. This chapter reviews the developments of FITTED since its inception in 

the year 2007 and includes a brief overview of some of the achievements described in 

later chapters of this thesis. A firm understanding of the milestones in the progression of a 

software package is required for identifying where certain applications and methodologies 

may have been overlooked, omitted for technical reasons, or simply unknown. 
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Chapter 3: 

Docking Ligands into Flexible and Solvated Macromolecules. 8. 
An Account on the Development of FITTED and other Tools 

 

This chapter has been submitted for publication and is reproduced from the invited review: 
“Docking Ligands into Flexible and Solvated Macromolecules. 8. An Account on the 
Development of FITTED and other Tools”, Moitessier, N.; Pottel, J.; Therrien, E.; Englebienne, P.; 
Liu, Z.; Tomberg, A.; Corbeil, C.R.; Accounts of Chemical Research, 2015, submitted. American 
Chemical Society (2015).  

Author Contributions: Eric Therrien contributed to the knowledge in sections 3.3 and 3.4.7. 
Pablo Englebienne contributed to the knowledge found in sections 3.4.1 and 3.4.2. Zhaomin Liu 
contributed to G-Quadruplex knowledge in section 3.4.2. Anna Tomberg contributed to the 
knowledge in section 3.4.6 and Christopher R. Corbeil contributed to the knowledge of sections 
3.4.1, 3.4.2 and 3.4.7. All other sections, figures and overall editing were contributions of the 
author of this thesis. 

 

3.1 Conspectus 

 Over the past 20 years, computational methods docking small molecules to proteins 

have become instrumental in the discovery of novel drugs. Fifteen years ago, we began 

our first docking-guided drug design project which provided nanomolar metalloproteinase 

inhibitors and revealed the potential of structure-based drug design. At that time, docking 

programs primarily considered flexible ligands and rigid proteins. Our subsequent 

applications of docking programs demonstrated that accounting for protein flexibility and 

displaceable water molecules, while taking advantage of ligand-based pharmacophores, 

improved the docking accuracy of existing methods. This prompted us to develop our 

own program, FITTED, implementing all of these discoveries into a single, automated, and 

user-friendly software package. Although these simulations are expected to mimic the 

protein-ligand binding more accurately, several other phenomena, such as binding to 

metals and covalent inhibitors, must be contemplated to increase its transferability when 

applied to new therapeutic areas. FITTED has been modified and improved over nearly 10 
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years by a number of contributors and extensively validated over this period. Since our 

primary motivation is application-based, several of the concepts behind the evolution of 

FITTED are rooted in medicinal chemistry projects and collaborations. For example, broad 

interest in metalloenzymes and, specifically, zinc-metalloenzymes, led us to develop 

methods considering drug-zinc coordination as well as its effect on the pKa of 

surrounding residues. Also, to target covalent enzyme inhibitors, a contentious issue in 

drug design, as opposed to the usual non-bonded interaction docking, FITTED was updated 

to identify reactive groups and react them with a given residue (e.g., catalytic residue) 

when the geometry enables it. This first fully automated covalent docking program was 

successfully applied to the discovery of covalent prolyl oligopeptidase inhibitors. In order 

to study drug metabolism by cytochrome P450 enzymes (CYPs), the program IMPACTS 

was developed as part of FITTED. IMPACTS docks compounds to CYPs and models 

transition states of oxidation reactions within the catalytic site, and thus predicts the 

structure of the metabolites. This program opened the door to the use of docking-based 

methods in biocatalysis. 

 Our efforts, combined with those of other docking software developers, enabled a 

better understanding of the complex drug-protein binding process while providing the 

medicinal chemistry community with useful tools that led to drug discoveries. In this 

account, we describe, within the historical context, our contributions over the past fifteen 

years to develop FITTED and additional software programs that have all been integrated 

into the FORECASTER Platform. 

 

3.2 Introduction 

 Over the past two decades, traditional medicinal chemistry approaches have been 

supplemented with a plethora of computational tools, such as docking and quantitative 

structure-activity relationship (QSAR) methods. In the early 1990s, docking programs 

primarily investigated the binding between small molecules and rigid proteins. In the late 

90s, to better simulate a drug’s binding process, Totrov and Abagyan reported a method 

to dock to flexible proteins,1 while Lengauer and co-workers implemented discrete water 

molecules.2 By 2008, over 60 docking programs were reported.3  
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 Our research program relies on the use of predictive computational techniques, 

specifically docking programs and transition state (TS) predictive tools,4 to accelerate the 

drug discovery process. While using existing software for our early medicinal chemistry 

projects, we rapidly realized that different targets such as nucleic acids, serine proteases, 

metalloproteinases and various drug classes were treated unequally, and often incorrectly, 

by all programs. Therefore, we initially added missing features such as protein flexibility 

and displaceable waters to these programs for a better binding simulation. Although these 

modifications significantly improved docking accuracy, they also affected the 

performance (i.e., runtime), user-friendliness, and transferability of the enriched code. In 

2007, Moitessier, Corbeil and Englebienne developed FITTED,5 a docking software 

integrating protein flexibility and displaceable waters. Since then, the major docking 

programs, including Surflex,6 GOLD,7 AutoDock,8 and DOCK9 have also incorporated 

these two features.10  

 In this account, we wish to summarize the achievements and the current status of our 

research along with the context for each stage (Figure 3.1). In fact, most of the 

improvements to the software resulted from the questions arising from our own, or our 

collaborators’, ongoing projects. The foundation of our research programs is to develop 

software for medicinal chemists based on fundamental knowledge and principles to solve 

challenges arising in experimental research.  
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Figure 3.1. Timeline of the development and applications of FITTED. 

 

3.3 The pre-FITTED era 

3.3.1 MMP inhibitors 1999-2001 

 Over fifteen years ago, Moitessier and Therrien, working with Hanessian, were 

interested in using docking programs to design metalloproteinase (MMP) inhibitors.11 

AutoDock3.012 and DOCK4.0,13 two publicly available docking programs, were tested for 

their ability to predict the experimentally observed binding modes. Until then, MMP 

inhibitors were designed in a traditional way but the extensive synthetic efforts to prepare 

the first series led to no significant inhibitory potency.14 In parallel, by modifying an 

existing inhibitor, compound 1 (Figure 3.2), nanomolar sulfonamide derivatives 

exemplified by 2 and 3 were designed and prepared.15 When docking was used to 
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prioritize a subset for synthesis, a number of nanomolar and sub-nanomolar MMP 

inhibitors were discovered.16-17 

 

Figure 3.2. MMP inhibitors. 

 The benefit of using docking programs to guide the design of enzyme inhibitors was 

clear and so we decided to explore such programs in other medicinal chemistry projects. 

Unfortunately, this was the first and only time that our use of off-the-shelf software was 

highly successful. Subsequently, each new project required the implementation of novel 

ideas and techniques into existing programs to ensure their accuracy.  

 

3.3.2 Integrin antagonists 2002-2003 - pharmacophore oriented docking 

 In an effort to develop Arg-Gly-Asp (RGD) carbohydrate-based mimetics as αVβ3 and 

αIIbβ3 antagonists, we planned a combination of computational predictions, advanced 

parallel and combinatorial syntheses, and cell-based assays. When a crystal structure of 

the unbound αVβ3 receptor came out, AutoDock, FlexX and DOCK were tested for their 

ability to dock known active antagonists, each featuring a positively charged (mimicking 

Arg) and a negatively charged (mimicking Asp) functional group. Unfortunately, the 

latter was predicted to bind to Asp150 while experiments were pointing at Asp218. To 

correct this, a three-point pharmacophore was derived from reported antagonists, docked 
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into the apo structure and used to orient the docking (Figure 3.3).18 While this work was 

ongoing, a crystal structure of this receptor bound to a cyclic peptide was released and 

validated our proposed binding mode.  

 

Figure 3.3. Pharmacophore-oriented docking applied to integrin antagonists. Positively charged 
group (blue bead), negatively charged group (red), aromatic group (green). 

 

3.3.3 BACE-1 inhibitors 2002-2006 - docking to flexible proteins 

 With several available co-crystal structures, BACE-1, a validated target for 

Alzheimer's disease therapeutics, has been an excellent candidate for the application of 

structure-based inhibitor design methods. However, the catalytic di-aspartate protonation 

state (Figure 3.4) and protein flexibility were critical for optimal BACE-1 inhibitor 

design, yet difficult to model.19-20 Moitessier, Therrien and Hanessian teamed up to 

develop a docking method addressing these challenges.21 



 94 

 

Figure 3.4. Two possible di-aspartate protonation states. 

 Using the four available BACE-1 crystal structures complexed with different small 

peptides, we evaluated the accuracy of existing automated docking programs including 

AutoDock, FlexX and DOCK. Due to the flexibility of both the ligands and the protein, 

initial docking experiments failed. Our previous successful study of flexible catalysts22 

using a genetic algorithm (GA) led us to optimize flexible protein-ligand complexes with 

this technique: both the ligand and protein conformations (side chains and backbone) 

were encoded as chromosomes providing an accurate induced-fit docking method 

implemented within Accelrys’ Insight II. This method was first validated by docking 

OM99-2 and OM00-3 co-crystallized with BACE-1 with very good accuracy, despite 

their large number of degrees of freedom (Figure 3.5).  
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Figure 3.5. BACE-1/OM99-2 crystal structure (green), docked pose (purple), and 2D drawing. 

 The identification of active compounds requires not only a proper binding mode but 

also a correct prediction of the free energy of binding, computed with a scoring function. 

We hypothesized that a better description of the contribution of water binding and 

entropy loss upon binding would be necessary to discriminate between active and inactive 

inhibitors. A new force field based scoring function for BACE-1 was developed. 

RankScore1 included additional terms for hydrogen bonding and a number of rotatable 

bonds as a surrogate for entropy change upon binding.  

                                          (3.1) 

 The accuracy of RankScore1 was compared to 15 scoring functions using a validation 

set of 80 in-house compounds. Combined with our flexible protein docking protocol, 

RankScore1 outperformed the others for the discrimination of the active compounds. This 

significant enrichment in active compounds demonstrated the ability of the developed 

flexible protein docking protocol with the scoring function to accurately predict BACE-1 

inhibitors’ binding modes. However, this protocol involved multiple computational steps 

linked together with scripts, which made distribution to medicinal chemists difficult. 
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3.3.4 Aminoglycoside antibiotics as bacterial RNA binders 2004-2006 - displaceable 
waters 

 Another collaborative project with the Hanessian group aimed to use docking 

methods in guiding the design of aminoglycoside derivatives as potential antibiotics.23-24 

Comparative studies showed that docking programs available at that time were fairly 

accurately docking molecules to RNA.25 A close look at crystal structures of 

aminoglycosides bound to bacterial RNA revealed that the charged ammonium groups of 

the antibiotics were often not directly interacting with the negatively charged phosphate 

backbone (Figure 3.6). In fact, it was highly polarized bridging waters connecting the 

RNA to the aminoglycoside charged groups.  

 

Figure 3.6. Aminoglycoside water-mediated binding to bacterial RNA. 
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 When only one water molecule is involved in the binding, simply selecting the best 

scoring pose between docking with or without the water is sufficient to evaluate its 

necessity. In the case of aminoglycosides bound to bacterial RNA however, several 

waters were needed and the corresponding number of alternative selections of waters 

increased exponentially, rendering the docking process highly dependent on the set of 

molecules used. The ability to displace waters during docking would solve this issue. At 

this time, a study using AutoDock demonstrated that a combination of grids could model 

side chain motions and water displacement; we thought to expand this approach by 

displacing several waters simultaneously. 

 We developed a strategy to compute the interaction between the aminoglycosides and 

every non-clashing water molecule. This approach simulated the displacement of waters 

by aminoglycoside functional groups and led to a significantly improved accuracy (lower 

RMSD – root mean square deviation) in the binding mode prediction with AutoDock 

(Figure 3.7).  

 

Figure 3.7. AutoDock accuracy in pose predictions with two additional implementations. 
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3.4 The FITTED era 

3.4.1 FITTED 1.0 and 1.5 (Flexibility Induced Through Targeted Evolutionary 
Description) 2006-2008 

 At this stage, we had developed, implemented, and applied three 

strategies/algorithms: pharmacophore-oriented docking, docking to flexible proteins, and 

docking in the presence of displaceable waters; however, all three of these methods were 

implemented in various programs. Corbeil, Englebienne and Moitessier took up the 

challenge of creating a single integrated software and developed FITTED 1.0 (Figure 3.8).5 

The core of FITTED involved a GA to perform the conformational search of the 

ligand/protein complex, as used in the other implementations. Prior to running FITTED, 

the input is prepared using SMART, a tool for small molecule atom typing and determining 

molecular properties, and PROCESS, a tool for creating the binding site cavity and protein 

interaction sites. 

 Once the input files are prepared, FITTED creates an initial population by first 

generating a random ligand conformation, placing it within the binding site using a 

matching algorithm (and the interaction sites) while checking for clashes using binding 

site cavity created by PROCESS. This pose undergoes an energy minimization within the 

binding site and is scored using AMBER/GAFF energy, which continues until the desired 

population size is reached (Figure 3.8). 

 The initial population then undergoes evolution. Two ligand poses are selected as 

parents and their chromosomes undergo crossover, mutation or other operators. The best 

scoring individuals of the parents and children are kept for the next generation. Once the 

population converges, the best poses are scored using RankScore and output.  
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Figure 3.8. Architecture of FITTED 1.0 docking process.  

 A small set of protein/ligand complexes addressing both protein flexibility and 

displaceable waters was used for validation.5 Within this set, FITTED achieved an 

increased accuracy over the rigid protein model. Figure 3.9 illustrates the success of each 

feature of FITTED; the correct prediction of the glutamine conformation (up vs. down), the 

occurrence of waters, and the correct ligand pose. Application to α-mannosidase 

inhibitors, through a collaboration, was a first test on the transferability of FITTED.26  
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Figure 3.9. Flexible docking applied to two thymidine kinase structures (top: 1e2k and bottom: 
1ki3). 
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Figure 3.10. Filtering approach implemented in FITTED explained with HCV polymerase as an 
example. 

 To enable FITTED to perform a virtual screen (VS) on HCV polymerase, new tools 

were developed to reduce the size of the library and increase FITTED’s speed (Figure 

3.10). This involved filtering compounds based on known reactive/toxic groups and 

Lipinski’s rule of five using an early version of REDUCE. The VS of the Maybridge 

Library identified 826 potential HCV binders and led to the identification of two micro-

molar inhibitors.  

 We next studied the conformational changes of a kainate receptor upon binding. 

Depending on the type of ligand (full vs. partial agonist), the kainate receptor can adopt 

an open, closed or intermediate state. Docking of known agonists against an ensemble of 

crystallographic structures yielded accurate pose predictions and correctly identified the 

conformational state. Subsequent prospective docking of known partial agonists showed a 

preference for the closed structure, when most experimentalists thought a more open 

structure would be preferred. Studies using electrophysiology confirmed their preference 

for the closed conformation. These investigations also identified a key tyrosine that 

determined the open/closed state, which in turn was used to design novel binders.27  

 

3.4.2 FITTED 2.6 2009 

 Additional features such as ring flexibility and an improved matching algorithm 

required FITTED to be re-evaluated on a larger set of complexes. Both self-docking 
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(ligands/proteins from the same crystal structure) and cross-docking (ligands from a 

different protein crystal) experiments were performed. This exhaustive validation 

revealed that protein flexibility was critical while displaceable waters were not.28 FITTED 

was comparable to the best docking programs available at this time when using rigid 

proteins (Figure 3.11). Cross-docking accuracy increased when a flexible protein was 

used, with FITTED again outperforming the others. 

 

Figure 3.11. Accuracy of FITTED 2.6. 

 A second study was carried out to determine what role these implementations played 

on predicting binding affinity.29 A panel of 18 commercially available scoring functions 

were applied to our own well-curated, challenging dataset of 209 protein-ligand 

complexes and, unsurprisingly, most of them did not perform as well as reported. As in 

the previous study, displaceable water did not have a large impact and should only be 

used when necessary. On the other hand, protein flexibility had a large impact on a few of 

the scoring functions, but many others performed similarly (Figure 3.12).  
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Figure 3.12. Impact of water and protein flexibility on scoring function accuracy. 

 This last study led to the development of two different scoring function flavors 

implemented into FITTED 2.6,30 one for optimizing a ligand for affinity and another for 

identifying potential VS hits. While the physics remained the same in both cases, the 

datasets required for training are different and yielded different coefficients for the same 

formalism. 

                                                 

                           (3.2) 

 where EvdW, Eele and EHB are the AMBER van der Waals, electrostatic, and hydrogen 

bond protein-ligand interaction energy, respectively; ∆Gsolvation is the GB/SA solvation 

free energy, ∆GSASA  is the solvent accessible surface area, Nwater is the number of bridging 

waters and Erot is a weighted score of rotatable bond types with cn representing fitting 

weights. 

 RankScore2 was developed for optimizing ligand affinity and tested on a set of 100 

protein-ligand complexes. It was found to be amongst the most accurate scoring functions 

applied on this dataset. 
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 To enable accurate identification of binders, or “hits”, versus non-binders in a VS, 

RankScore2 was recalibrated using the DUD set,31 a series of protein targets with known 

binders and decoy ligands. FITTED was used to dock the ligands and RankScore4 was 

trained using these poses to maximize the area under a receiver operating characteristic 

(AU-ROC) curve. Since RankScore4 was developed to identify actives and decoys, it 

clearly outperformed RankScore2. 

 Meanwhile, we had started a project aiming at developing G-quadruplex stabilizers as 

cancer therapeutics in collaboration with the Sleiman, Autexier and Mittermaier groups.32-

35 At first, three crystal structures of G-quadruplex with bound ligands were available. To 

better address the flexibility of the G-quadruplex and the energy upon binding, we opted 

for a combined docking-molecular dynamics (MD) simulation strategy using FITTED 2.6. 

We found that FITTED could be used to generate reasonable starting structures for 

refinement by MD simulations. Platinum(II) supramolecular squares32 and platinum(II) 

phenanthroimidazoles34-35 were designed. Our group is currently testing FITTED and 

improving the accuracy with nucleic acid binders.  

 

3.4.3 FITTED and covalent docking 2008-2012 

 FITTED was modified to handle covalent docking for a separate project aimed at 

developing covalent prolyl oligopeptidase (POP) inhibitors.36-38 A large number of reports 

on covalent drugs prompted us to enable FITTED to auto-identify reactive functional 

groups, create the covalent bond, and compute its energy in a single run. Thus, upon 

docking, if the functional group (aldehyde and boronic ester in Figure 3.13) is close 

enough to the binding site residue, a covalent bond is formed; otherwise, it is assumed to 

be non-covalent. Other programs/workflows followed our original report including 

covDock (Schrodinger), covalentDock (AutoDock)39 and Dockovalent (DOCK).40 Using 

this method, we have designed the POP inhibitors shown in Figure 3.14. 
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Figure 3.13. Reversible covalent inhibitors. 

 

 

Figure 3.14. Reversible covalent POP inhibitors. 

  

3.4.4 Metabolism prediction 2011-2012 

 Enzyme inhibitors were the main focus of our developments until we looked at drug 

metabolism, specifically CYP-mediated oxidation,41 and exploited FITTED to visualize the 

reactive state and provide insight into the site of metabolism (SoM) of drug candidates. 

Many groups have attempted SoM prediction using docking; however, our approach is 
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novel, as it models the TS by combining FITTED with ACE4 (a tool for prediction of 

stereoselectivity). Furthermore, we applied a reactivity-based score derived from QM data 

resulting in a trivalent approach (reactivity, docking, TS modeling) that demonstrated 

greater accuracy. 

 

Figure 3.15. Overall approach implemented into IMPACTS. 

 The initial version of our SoM prediction software, IMPACTS (In-silico Metabolism 

Prediction by Activated Cytochromes and Transition States, Figure 3.15), considered 

multiple oxidation reaction types and focused on aromatic oxidation and hydrogen 

abstraction. At first, a dataset of fragments was generated and activation energies were 

derived by DFT to then be used as penalties within IMPACTS. Next, the P450-substrate 

complex is built (forcing proximity to iron-oxo), which calculates the TS structure 

energy. Each potential SoM is given a score (RankScore2 + activation energy), and 

ranked accordingly. IMPACTS was validated on a diverse dataset of substrates involving 

several oxidation reactions (e.g., aromatic oxidation, epoxidation, hydroxylation, 

sulfoxidation) with four of the five major CYP isoforms (Figure 3.16). 
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Figure 3.16. % of molecules with an observed SoM in the predicted two SoMs. Number of 
substrates in the set written in brackets. 

 As is the standard in this field, a prediction is deemed correct if one of the top-2 

SoMs is experimentally observed. We decided to challenge our program by testing 

against experts in the medicinal chemistry field. The experts were asked to pick 2 SoMs 

for 716 molecules, and IMPACTS consistently had them outperformed by 6-7%. Although 

we recognize that this is not a significant representation of the field, it does offer some 

insight into the place for such software in both academia and industry. 

 Currently, the success and the abilities of IMPACTS have led to projects investigating 

CYP inhibition, computer-engineered biocatalysis, and metabolite prediction, the follow-

up step to SoM identification. 

 

3.4.5 FITTED 3.1 and metal coordination 2013-2014 

 In collaboration with the Gleason group, we looked at histone deacetylase (HDAC) 

inhibitors.42 HDACs classes I/II are zinc metalloenzymes with inhibitors coordinating the 

zinc. Often, this interaction is modeled as a purely electrostatic or van der Waals 

interaction excluding the covalent nature of metal coordination. GOLD and FlexX, like 

FITTED, use coordination sites to guide the geometry, however metal interaction scoring 

required improvement. Additionally, in the close proximity to the zinc, a histidine, or 
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more generally, a basic residue (glutamate in MMPs), is typically present and may bind 

an acidic proton (Figure 3.17). Accurately modeling these features to predict the binding 

mode required additional implementations such as specific zinc-coordination and  

hydrogen bond equations. A bonding consideration is necessary if the ligand is in 

proximity to the zinc ion, while non-bonding would be more accurate at longer distances. 

Similarly, the proton shift is modeled with two static representations: if the ligand is in 

proximity to the zinc, the proton exists on the basic residue; otherwise, it is on the ligand. 

We thus developed new energy functions to represent the special hydrogen bond, as well 

as the metal coordination, and implemented them in FITTED. 

 

Figure 3.17. Binding process to metalloenzymes. 

 As validation, 121 complexes were selected for self-docking experiments. The new 

results were compared with the two previous FITTED implementations (Figure 3.18).  
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Figure 3.18. Pose prediction accuracy. Left: accuracy of the zinc coordination geometry; right: 
accuracy of the pose prediction. 

 These implementations improved the overall pose prediction and zinc binding 

accuracy. Additionally, a virtual screening of the DUD-e set of metalloenzyme inhibitors 

yielded an average AU-ROC of 0.869. For comparison, the original FITTED metal 

considerations led to average AU-ROCs of 0.639 and 0.510. Others followed up our 

efforts docking to metalloenzymes, such as AutoDock4Zn.43 Application to the design and 

preparation of HDACi's followed (unreported data).  

 

3.4.6 FITTED and drug discovery 2013-2014 

 Different models for waters can be used in docking experiments. For example, waters 

may be represented as spherical particles that are both hydrogen bond donors and 

acceptors, removing their orientation dependence. We thought that such symmetrical 

waters, as opposed to those with a directional dipole moment, would result in more 

reliable docked poses. The resulting FITTED 3.6 was tested exhaustively using the DUD 

set and the impacts of protein flexibility, zinc-binding, the conserved waters, and the 

inclusion of water particles were fully evaluated.44 

 The DUD set contained a single crystal structure per target protein. In order to mimic 

flexibility, conformational ensembles were built using three approaches: experimental 
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structures, simulated conformations generated, and by allowing side chain flexibility. 

From the analysis of docking to rigid proteins, it became clear that some targets are more 

dependent on the protein structure selected for docking than others. Taking the examples 

of COX-2 and FGFr1 (Figure 3.19), the measured AU-ROC ranged from very poor to 

high depending on the crystal structure of the same protein. A closer look at these 

proteins revealed that some of the conformations used may hinder access to the binding 

site or favor binding of only a certain chemical series, leading to poor scores for active 

compounds. Including protein flexibility addressed this issue in 1/3 of cases. We therefore 

suggested that when the protein flexibility is unknown and/or when a diverse set of 

ligands is studied, including protein flexibility should increase accuracy; however, when 

the ligands are similar, it is best to use rigid docking as these ligands are expected to bind 

to a very similar protein conformation. As in the previous studies, using displaceable 

waters had little effect, or in some cases, hindered the results. 

 

Figure 3.19. VS accuracy dependent on water mode (left) and protein structure (right). 
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3.4.7 Integrating computational and medicinal chemistry - the FORECASTER 
platform 

 To improve the user-experience, FORECASTER, a web-based interface, was developed 

to allow the user to build drug design workflows (Figure 3.20),45 eliminating the need to 

run multiple command-line applications to perform common drug design tasks. As a 

validation, FORECASTER was used to build virtual combinatorial libraries, filter, and 

extract a highly diverse library from the NCI database. These focused libraries were then 

docked to the estrogen receptor (ER); accurately identifying existing ER modulators 

demonstrated its usability and accuracy.  

 

Figure 3.20. Sample workflow on the FORECASTER platform using some of the available tools. 
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3.5 Conclusion and Perspective 

 Over the years, we have reported a docking program foundation, FITTED, initially 

developed for enzyme-inhibitor binding mode prediction. Subsequently, we have 

expanded its scope for application to VS, metalloenzymes, nucleic acids, covalent 

inhibitors, and SoM prediction. All of these implementations contributed to successful 

drug discovery research programs (G-quadruplex binders, POP, HDAC, HCV polymerase 

and MMP inhibitors, GluK2 antagonists, and PET imaging agents46). Over the years, our 

studies44 have shown that protein flexibility improves pose prediction and active 

compound discovery; however, more work is still needed to properly consider the binding 

free energy of waters. Recently, the first independent comparative study using 6 proteins 

revealed that FITTED (specifically RankScore) outperformed 15 other scoring functions.47 

This independent success story, along with over 150 licensed academic and industrial 

groups, demonstrates that FITTED, along with the FORECASTER platform, is a tool 

medicinal chemists can use to aid in a wide variety of drug discovery challenges with 

meaningful results. 

 

Figure 3.21. Roadmap for the development of FITTED. 

 While we have been developing and expanding the scope of FITTED (Figure 3.21), the 

application of docking methods has evolved in many labs from structure-based drug 

design to metabolism prediction, off-target identification, and more. In principle, any 

biological process encountering a binding process could be investigated using docking 

methods. In this context, CYP inhibition, p-gp efflux, and plasma protein binding 

prediction could be attainable milestones. In the near future, docking methods may be 

employed to predict several drug properties prior to any experiments. 
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Introduction to Chapter 4 

Docking to metalloenzymes, zinc metalloenzymes specifically, was not a priority during 

the original development of FITTED. The accuracy of the results was often similar to those 

of other docking programs however never stellar. The poor accuracy was often attributed 

to the drawbacks of molecular mechanics tools in modeling metals and d-orbital 

containing elements. For instance, point-charges were seen as limiting and insufficient 

when considering the diffuse electron clouds ascribed to transition-metal elements and 

their geometries. In the context of collaboration with the Gleason group (McGill 

University), FITTED was used to investigate proper zinc-binding with the goal of 

providing support for drug discovery and histone deacetylase inhibitor docking. This 

chapter presents the development of a method modeling a crucial proton-shuttle 

mechanism found within all zinc metalloenzymes and the measurements supporting the 

experimental reports of its existence. Additionally, the integration of a new energy 

function within FITTED is described and demonstrates the improved accuracy of docking 

to these enzymes.  
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Chapter 4: 

Docking Ligands into Flexible and Solvated Macromolecules. 6. 
Development and Application to the Docking of HDACs and 

other Zinc Metalloenzymes Inhibitors 

 

This chapter is reprinted with permission from: “Docking Ligands into Flexible and Solvated 
Macromolecules. 6. Development and Application to the Docking of HDACs and other Zinc 
Metalloenzymes Inhibitors”, Pottel, J. ; Therrien, E.; Gleason, J. L.; Moitessier, N.; Journal of 
Chemical Information and Modelling, 2014, 54(1), 254-265. Copyright (2014) American 
Chemical Society.  

Author Contributions: Eric Therrien initiated the idea of having docking to metalloenzymes 
within FITTED with James L. Gleason as part of a team grant and they contributed to the 
knowledge of using the FORECASTER/FITTED suites of programs and the knowledge of HDACs 
and their inhibitors respectively. All coding and application experiments were contributions of the 
author of this thesis. 

 

4.1 Abstract 

 Metalloenzymes are ubiquitous proteins which feature one or more metal ions either 

directly involved in the enzymatic activity and/or structural properties (i.e., zinc fingers). 

Several members of this class take advantage of the Lewis acidic properties of zinc ions 

to carry out their various catalytic transformations including isomerization or amide 

cleavage. These enzymes have been validated as drug targets for a number of diseases 

including cancer however, despite their pharmaceutical relevance and the availability of 

crystal structures, structure-based drug design methods have been poorly and indirectly 

parameterized for these classes of enzymes. More specifically, the metal coordination 

component of the process of drugs binding to metalloenzymes has been inadequately 

predicted by current docking programs, if at all. In addition, several known issues, such as 

coordination geometry, atomic charge variability and a potential proton transfer from 

small molecules to a neighboring basic residue, have often been ignored. We report 
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herein the development of specific functions and parameters to account for zinc-drug 

coordination focusing on the above-listed phenomena and their impact on docking to zinc 

metalloenzymes. These atom-type dependent but atomic charge-independent functions 

enable the simulation of drug binding to metalloenzymes, considering an acid-base 

reaction with a neighboring residue when necessary with good accuracy. 

 

4.2 Introduction 

 Over the years, several zinc metalloenzymes have been validated as drug targets. 

Among these metalloproteins are the matrix metalloproteinases (MMPs) which represent 

a family of zinc endopeptidases including stromelysin-1 (MMP-3), gelatinases (e.g., 

MMP-2) and collagenases (e.g. MMP-1 and MMP-9), the carbonic anhydrases, the 

mannosidases (e.g., α-mannosidase), β-lactamase, phospholipase C, alcohol 

dihydrogenase and the histone deacetylases (e.g., HDAC-8). As with several other 

enzymes, docking methods have been tested as tools for inhibitor design and discovery. 

Our interests in MMP1-3 and α-mannosidase4 inhibitors led us to further evaluate docking 

programs for the design of these classes of inhibitors.  

 Over the past few decades, docking methods have evolved from simple rigid body 

assembling tools (rigid body docking) to methods modeling flexible ligand/flexible 

protein complexes.5 Our efforts in the field led to the development of a docking program, 

FITTED (Flexibility Induced Through Targeted Evolutionary Description), which accounts 

for ligand and protein flexibility as well as for the presence of displaceable water 

molecules.6-7 In order to cover a large range of drug classes, further implementations 

provided FITTED with the ability to model the binding of covalent drugs.8 In 2007, the 

first version of FITTED was tested for its ability to dock mannosidase inhibitors which 

revealed the intricacies of modeling zinc coordination.4 Later on, we also demonstrated 

that scoring metalloenzyme inhibitors was poor.9 Throughout the years, docking 

programs have been assessed for their ability to dock inhibitors coordinating metal ions 

(often zinc) of metalloenzymes: AutoDock, DOCK, GOLD and FlexX being widely 

used.10-15 Within most of these studies, the metal coordination has been modeled through 

simple electrostatic and van der Waals interactions and no treatment of the covalent 
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nature of metal coordination was considered. In addition, the zinc ion atomic charge has 

often been assumed to be +2 while more advanced molecular dynamics simulations have 

often required finely tuned charging schemes.10 Although these approximations provided 

reasonable overall binding modes and even good enrichments in some studies,16 scoring 

the metal coordination is expected to be poorly predictive and more advanced scoring is 

required, in particular scoring the displacement of water molecules coordinating the zinc 

ion in the unbound state might be critical in order to identify poor zinc binding groups.12 

In an attempt to account for the covalent nature of zinc coordination, hydrogen bond-like 

terms have also been evaluated (e.g., GOLD) however this is merely circumventing the 

problem; a metal coordination is neither a covalent bond nor a hydrogen bond. Despite 

these limitations, docking-based virtual screening has been reasonably successful but can 

certainly be improved.17 

 Our recent interest in developing HDAC inhibitor hybrids18-20 revived our curiosity in 

improving the ability to dock to metalloenzymes. Here we report our efforts to further 

develop our docking program in order to accurately model zinc coordination and more 

specifically to discover novel HDAC inhibitors. 

 

4.3 Theory and Current State 

4.3.1 Metalloenzymes and classical molecular mechanics 

 When simulating the metal-ligand coordination using classical molecular mechanics, 

two models have been proposed differing in the nature of the coordination bond: the 

bound model and the non-bound model. First, the bound model, in which the zinc-ligand 

bond is considered covalent, enables the coordination geometry to be considered with the 

normal bonded terms (bond, angles, and torsions). In contrast, the non-bound model relies 

on non-directional interactions (electrostatic, van der Waals) and is thus expected to 

provide less reliable geometries but eliminate the potentially overly-strict constraints 

placed on a typical covalent interaction such as, for example, a carbon-carbon bond. 

Docking methods cannot easily rely on the bound model as, following the positioning and 

orientation of the ligand, the zinc binding group may or may not coordinate the zinc ion. 

If it is not coordinated, the bound energy must be ignored. In this context, covalent 
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docking methods exist, in which both covalent and non-covalent poses can be considered 

and could be extended to metal coordination.8 When either model is used, the charge 

transfer between the zinc ion and the coordinating groups varies as a function of the 

coordination geometry and of the zinc binding group nature; consequently, it remains 

difficult to simulate the binding process with the traditional point charges and thus, 

polarizable force fields have been envisioned.21 The change in pKa of the zinc binding 

group, a potential proton transfer to a neighboring basic residue and the presence of water 

are also to be considered for accurate docking of zinc binding molecules. 

 

4.3.2 Docking to metalloenzymes, coordination geometry, proton and charge 
transfers and displacement of water molecules 

 Accurately docking small molecules to metalloenzymes requires consideration of the 

coordination geometry, charge transfer, change in pKa and displacement of coordinating 

water molecules. First, as zinc(II) has a saturated electronic configuration (d10), 

electrostatic interaction is the major component and the geometry is not as well defined as 

with other transition metals. In fact, although zinc adopts an octahedral geometry in water 

through hexacoordination with water molecules, our survey of available crystal structures 

revealed that the coordination geometry in proteins ranges from tetrahedral to octahedral 

and may be highly distorted from ideality. As a result, since the coordination geometry is 

not stringent, simple terms such as electrostatic and van der Waals have been used in 

several simulation studies.22  

 Second, changes in pKa and proton transferability significantly modify the zinc 

coordination energy. As an example, hydroxamic acid-based HDAC8 inhibitors bind to 

the zinc ion and make an additional two hydrogen bonds with neighboring residues 

Tyr307 and His142 (Figure 4.1). A close look at another twelve metalloenzymes revealed 

that a basic residue not coordinated to the zinc ion (e.g., His 142 in HDAC8) and/or a 

hydrogen bond donating residue (e.g., Tyr307 in HDAC8) can be found in all of these 

cases. The prevalence of such residues in close proximity to the catalytic zinc may be 

explained by their role in the enzyme catalytic function. In fact, these residues participate 

in the catalytic activity by, for instance, converting L3Zn(OH2) with L being histidine or 
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glutamic acid to L3Zn(OH), hence converting the water molecule into a more reactive 

hydroxide ion (Figure 4.2). For example, the pKa of a water molecule bound to the 

catalytic zinc ion of carbonic anhydrase is as low as 7 while it is 15.7 in bulk water.23 

These changes in pKa sometimes result in a proton exchange (acid-base reaction). For the 

zinc coordination energy to be computed correctly, this property must be investigated and 

considered.  

 

Figure 4.1. HDAC zinc binding site with an hydroxamic acid-containing ligand. Only the zinc 
binding group of the ligand is shown for clarity (PDB code: 1t67). 

 

Figure 4.2. Catalytic process of matrix metalloproteinases (Substrate in green, water in blue and 
enzyme in black) 

 Some of the above-mentioned basic residues also participate in drug binding through 

interactions other than usual non-bonded interactions. Previous computational studies 

have shown that a proton transfer from the drug to the basic residue or change in 

protonation state of this residue by buffer proton uptake can occur (Figure 4.3). 

Approximately 10 years ago, Cross and co-workers reported a change in the hydroxamic 
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acid pKa of over 3 pKa units when bound to TACE with a concomitant increase in the pKa 

of the neighboring Glu406 of nearly 2 pKa units.24 These changes in acidity led the 

hydroxamic ligand to be more acidic than Glu406 and hence induced a proton shift. The 

protonation of Glu406 was also proposed when an acetate group was bound to zinc. 

Earlier this year, this protonation of neighboring Glu when an acetate is bound to zinc 

was demonstrated experimentally in MMP12.25 A similar proton transfer was initially 

proposed for HDAC8,26 but was recently found to be disfavored by nearly 4.0 kcal/mol 

(Figure 4.3c).27 When docking ligands to metalloenzymes, docking programs should 

therefore include routines to transfer protons when required. To our knowledge, this has 

never been done. 

 

Figure 4.3. Zinc coordination and proton transfer. 

 As shown in Figures 4.3 and 4.4, one water molecule (or hydroxide ion) is 

coordinating the catalytic zinc ions (distance lower than 2.5 Å) as observed in several 

crystal structures such as MMPs (e.g., 1xuc) and thermolysin (e.g., 3tln) while a second 

one may appear at greater distances (greater than 3 Å) somewhat solvating the first one 

(e.g., ACE, 1j38). Even enzymes in which zinc coordinates two hydroxyl groups of 

carbohydrates, such as α-mannosidase, have only one water molecule coordinating zinc 

when unbound (α-mannosidase, 3bub). Displacement of this water molecule is necessary 
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for ligand binding. In order to properly score the ligand-metal coordination energy, the 

water-metal energy should be subtracted. Thus the water coordination energy should be 

also known.   

 

Figure 4.4. Ligand interacting with water molecule which coordinates to zinc (thermolysin, 8tln). 

 Among the other major factors that docking programs should account for (implicitly 

or explicitly) is charge transfer. When zinc is coordinated to, for example, 3 histidine 

residues, its actual charge is not +2 but rather closer to +1 or lower. In addition, the 

atomic charge also significantly changes when an additional ligand (e.g., a drug) is bound 

to a free coordination site. For example, Merz and co-workers have developed force field 

parameters for zinc-containing enzymes in which the zinc atomic charge varies from 0.43 

to 0.92 depending on both the ligand (such as water or hydroxide) and coordinated 

protein residues. In addition, large variations of charge transfer were observed between a 

neutral (water, charge transfer of 0.17) and negatively charged ligands (hydroxide, 

0.41).28 Consequently, when docking a library of small molecules, a distinction should be 

made when neutral or charged molecules are considered. Classical molecular mechanics 

cannot account for these effects, as atomic charges are fixed unless specific charges are 

developed for each system. In order to account for this charge transfer, polarizable force 

fields can be used.21 However their implementation in docking programs can be 

challenging due to the computational power and time needed to dynamically modify 

atomic properties. 
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4.4 Implementation 

4.4.1 DFT studies and testing set 

 We first planned to develop a function that will evaluate the zinc coordination 

potential energy. This function will be independent of the currently used hydrogen bond, 

electrostatic or van der Waals terms. To do so, we turned our attention to quantum 

mechanical (QM) methods. In this area, density functional theory (DFT) studies have 

been reported although most include data computed solely with optimized structures and 

not with structures away from their ideal coordination in order to evaluate the 

coordination energy surface. In addition, in some of these studies, the role played by the 

basic neighboring residues was not considered.29 An exhaustive survey of the PDB led us 

to collect 121 structures of metalloenzymes bound to various ligands and with most 

having a good resolution, lower than 2.5 Å. The ligands cover a number of zinc binding 

groups (e.g., o-amidoaniline, terminal sulfonamides, hydroxamic acids, thiols), and even 

include ligands bearing two potential zinc binding group such as captopril co-crystallized 

with the angiotensin converting enzyme (PDB code: 2x8z, Figure 4.5) or a sulfanyl 

butanoic acid derivative (3i1u). These latter systems will enable us to test whether the 

proper zinc binding group can be identified by our docking method if a small molecule 

features more than one. Some of these ligands do not coordinate to zinc such as the 

hydrolysis product Val-Trp bound to thermolysin (PDB code: 3tmn, Figure 4.5). These 

structures were assembled by family (e.g., MMP1, MMP3, MMP8, α-mannosidase, 

thermolysin, HDAC8, see Appendix 2 for complete set). 

 

Figure 4.5. Selected ligands co-crystallized with metalloenzymes. 
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 In order to investigate the energetics of the coordination, 19 representative structures 

out of the 121 were selected for DFT studies. These 22 systems were selected to cover as 

much of a diverse set of zinc coordination spheres (i.e., coordinating ligand and protein 

residues) as possible. The key residues and ligands were truncated (the main chain atoms 

were removed) leading to systems such as the one shown in Figure 4.1. Then hydrogen 

atoms were added and optimized using GAMESS-US (B3LYP/6-31G*). For the 

following studies, we kept all the protein atoms frozen as was previously reported.30 We 

are aware that DFT functionals are not optimal for these metal coordination energies. 

Despite the large use of B3LYP in the area, recently reported work by Friedman and co-

workers found that on significantly smaller and highly polar systems (e.g., H3C-S- ::::  

Zn2+), B3LYP overestimates the interaction energy by about 5% at the equilibrium 

distance and by even more at longer distance due to an overestimation of the polarization 

energy.31 However as mentioned by Friedman and co-workers, the presence of four or 

five coordinating ligands in our truncated systems should reduce the polarization error 

hence the overall error of B3LYP. In addition, the size of our systems (four or five 

coordinating ligands, 40 to 90 atoms) precludes the use of MP2 leaving DFT as an 

acceptable alternative. 

 

4.4.2 Computing zinc coordination energy 

 Scripts were developed to move the ligand away from the zinc atom in 0.20 Å 

increments and single point energy was calculated for each configuration. In order to 

uncouple the effect of the zinc coordination from the effect of neighboring residues, the 

same trajectory was alternatively computed with and without these residues; the bound 

state/unbound state energy difference must be attributed to the zinc coordination energy 

only if the residue is not present. As mentioned previously and shown in Figure 4.3, the 

neighboring residues may have significant effects on the binding affinities of zinc binding 

groups (ZBG). In the case of HDAC8-hydroxamic acid interactions, the overall potential 

energy drops by as much as 45 kcal/mol when His142 is kept in the truncated system 

(Figure 4.6). When this additional residue is ignored, the gain in energy of the 

hydroxamic acid coordination is reduced to about 20 kcal/mol for a difference of 
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approximately 25 kcal/mol. In practice this histidine residue participates in a strong 

hydrogen bond with the hydroxamic acid, increasing the polarity of the O-H bond, hence 

the coordination energy of the oxygen to zinc. In turn, this coordination increases the 

acidity of this hydrogen, hence the strength of the hydrogen bond. This demonstrates that 

the two effects (hydrogen bond and zinc coordination) are acting in concert. 

 

Figure 4.6. Zinc coordination energy for HDAC8 (PDB: 1t67). The shoulder between 4 and 6 Å 
observed when His142 was kept is due to light steric clashes upon ligand removal. 
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4.4.3 Computing proton transfer to a neighboring residue 

 In addition to this zinc coordination, cases where proton transfer is expected were 

evaluated. Hydroxamic acids are neutral at physiological pH. However, as mentioned 

above, when approaching the coordination sphere of the zinc ions, the pKa decreases and 

the proton may transfer to a neighboring glutamate or histidine residue. To probe this 

effect, the potential energy of hydroxamate and hydroxamic acid approaching the zinc 

coordination sphere next to a glutamic acid or a glutamate respectively was first 

computed (Figure 4.7). Our calculations on the representative systems revealed that at 

short ligand-zinc distances, the proton of hydroxamic acids, sulfonamides and thiols is 

likely transferred to the glutamate (via a threonine in the case of carbonic anhydrase). The 

same calculations were performed when a histidine was the basic residue. In contrast to 

the glutamate containing systems, we found that the hydroxamic acid proton does not 

transfer in HDAC8 in which the zinc is neutralized (i.e., coordinated with two aspartates 

and one histidine). These observations, which are in agreement with the reports from 

Cross et al.24 and Wu et al.,27 validated our approach in which the crystallographic 

Cartesian coordinates were used without further optimization. 
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Figure 4.7. The effect of transferring a proton from ligand (hydroxamic acid or sulfonamide) to 
residue (glutamate with or without a threonine relay). a) 1kbc, human neutrophil collagenase 
(MMP-8); b) 3s71, carbonic anhydrase. The blue curve shows the favourable situation when the 
ligand is coordinated and the red shows the favourable situation at longer distances. The purple 
curve is the combination of the two that is required for docking. 

 In order to uncouple zinc coordination and proton transfer for implementation into 

FITTED, investigations were carried out on diversely truncated systems. In contrast to the 

ligand-zinc coordination energy which was computed with or without neighbouring 

residues by moving the ligand away, the hydrogen bond strength was evaluated (QM 

methods mentioned above) with the ligand bound to zinc in its equilibrium position while 

moving the neighbouring residue away from the ligand along the hydrogen bond 

coordinate (Figure 4.8).  

 If we combine the two potential energy curves once more for the 22 representative 

systems, we see that the distances at which hydrogen bonds occur are solely controlled by 
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the ionized ligands and glutamic acid residues and the neutral ligand/glutamate energies 

can be ignored (Figure 4.8). The point at which the two curves cross is assumed to be the 

energy barrier for the proton transfer to occur. However this is difficult to model with 

molecular mechanics and thus a flatter-minimum curve was implemented.  

 

Figure 4.8. The computed interaction energy for selected truncated systems (1uzf, ACE).  

 A close look at crystal structures also showed that the residue for which no transfer 

was observed can still form hydrogen bonds that are shorter and stronger than usual. 

Among the examples is Tyr307 (Figure 4.1) in HDAC8. An approach similar to that used 

to develop zinc coordination parameters has been applied to develop the corresponding 

parameters. In a nutshell, the neighbouring basic residues were moved away by 0.20 Å 

and the corresponding energy was calculated. 

 

4.4.4 Computing water coordination energy 

 As discussed above, optimal binding energy can only be computed if the energy 

associated with the displacement of a water molecule is considered. For this purpose, the 

above systems were used in which the ligand was replaced by a water molecule and the 

position of the latter was optimized through DFT energy optimization. In some cases, the 

acidifying effect of the zinc ion led to a spontaneous proton transfer from the water 

molecule to a glutamate and in contrast, when many aspartic acids are coordinated to 

zinc, the proton spontaneously transferred from the glutamic acid to the hydroxide ion 

(Figure 4.9). In order to compute the water coordination energy, the difference in energy 
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between the lowest in energy bound states (either water-glutamate or hydroxide-glutamic 

acid, Figure 4.9) and the unbound state was computed. For optimal transferability of these 

calculations, the set included systems with either Glu (alone or via Thr) or His as a basic 

residue and either His/His/His, His/His/GA, His/GA/GA, His/His/GA/GA or 

His/GA/GA/GA as residues in the zinc coordination sphere, where GA represents Glu or 

Asp.  

 

Figure 4.9. Zinc coordination and proton transfer with water molecule in the cases of proximal 
glutamic acid (top) or histidine (bottom). 

 

4.4.5 Energy function parameterization 

 As discussed above and shown in Figure 4.10, the binding of small molecules to zinc-

containing metalloenzymes is often not a simple bimolecular binding.  
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Figure 4.10. Binding process. 

 In order to properly model the zinc coordination (#3 in Figure 4.10), we proposed to 

develop a novel energy function term for computing the zinc-ligand interaction. This 

function should be independent of the charge eliminating the charge transfer effect (#4 

and 6 in Figure 4.10). From the collected DFT data, the energy well depth (ɛ) and zero 

energy point (σ) were determined for each system and used to derive a Lennard-Jones-

like potential equation. The derived equations (Eqs. 4.1-4.3) predict the energy 

differences with good accuracy (see Figure 4.11). 

  
    

    
   (4.1) 

  
           

          (4.2) 

                        (4.3) 

 This approach was applied to both zinc coordination and the strong hydrogen bonds 

described above. (x,y)=(6,3), (8,4) and (10,6) were assessed with A and B being products 

of the energy well depth and zero points energies as defined in Lennard-Jones' theory,32 C 

being a constant term to be trained and r being the distance between the coordinated atom 
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and zinc. The third term was initially introduced to account for electrostatic interactions 

that may vary from one system to another. However, we found that upon fitting the 

curves for each system using the 6-3 relationship, removing this third term was possible 

without significantly affecting the fit of the DFT and MM curves. Unexpectedly, a shift of 

0.25 Å of the position of the minimum of the energy well was observed in the majority of 

cases. All these observations led us to implement function (2) into FITTED with the 

parameters given in Section 4.7. Examples of the predicted energy curves are given in 

Figure 4.11. 

 In addition to the new zinc-coordination energy equation, upon investigating the 

special hydrogen bond between the bound ligand and the neighboring basic residue (#5 in 

Figure 4.10), we determined that a new equation should be implemented for this type of 

interactions as well. We were able to model this as a 6-3 relationship as well, but with 

different parameters. The depth of the energy-well upon distancing the basic residue, as 

shown in Figure 4.8, is far beyond the expected stabilization obtained from currently 

modeled hydrogen bonds.  



 137 

 

Figure 4.11. FITTED-derived energy curves using a LJ 6-3 equation vs. DFT-derived energy 
curves.  Top: zinc-ligand interaction energy 1kbc; middle: zinc-ligand interaction energy HDAC8 
(1t67); bottom: hydrogen bond energy (1kbc). 
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4.4.6 Implementation 

 At this stage, the newly implemented FITTED energy function can now properly 

evaluate the energy of such zinc-ligand systems. Then a routine identifying whether the 

proton transfer should be carried out based on distances and chemical nature of the 

coordinating functional group has been implemented. First, a routine identifying acidic 

zinc binding groups (e.g., hydroxamic acid, terminal sulfonamide and thiols) was 

implemented into SMART, a program of the FITTED suite used to prepare the small 

molecules prior to the actual docking. This information is then output in the ligand file. 

Within FITTED itself, a routine was implemented that can read this information from the 

ligand file and a switching function was introduced which recognizes whether the zinc 

binding group (e.g., hydroxamic acid) is close enough to zinc to be ionized or not. If it is 

ionized, the energy function is applied to the system on the left in Figure 4.12, or if 

neutral, it is applied to the system on the right. In practice, hydrogens on both the 

functional group and on the basic residue are present and a list of interactions for each is 

prepared. The newly implemented routine identifies which of the two lists should be 

selected.   

 

Figure 4.12. Modeling proton transfer. 

 Since one of the major features of FITTED is the option to displace water molecule, no 

additional modifications were necessary for displacing the coordinating water in the 

unbound state. However, scoring the displacement of water molecule was modified to 

incorporate the water/zinc coordination energy which is highly dependent on the zinc 

coordination sphere. In parallel to this explicit displaceable water molecule, we also 

assessed the use of a more implicit approach. For this purpose, scaling factors were 
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applied to the zinc coordination energies to implicitly account for the displacement of the 

water molecules coordinating the zinc ion. 

 

4.5 Results and Discussion 

4.5.1 Validation - pose prediction 

 With these implementations in hand, a first set of validation experiments was carried 

out. For this purpose, self-docking experiments using the 121 complexes selected as a 

testing set were performed. All these docking experiments were carried out 10 times to 

ensure that the result was statistically significant.  In order to validate the novel energy 

function and implementations, the accuracy of FITTED, using either the traditional 

electrostatic/van der Waals energy, the previously implemented hydrogen bond-like term 

or the current version with an explicit or implicit water molecule coordinating zinc, was 

assessed. At this stage, we expected a significant improvement of the zinc coordination 

geometry that will be therefore more accurately scored. In practice, we observed that the 

novel implementation significantly improved the positioning of the zinc binding group 

(Figure 4.13 top). As a result, the overall pose prediction is significantly enhanced (Figure 

4.13 bottom) with improvement as large as 10% (RMSD lower than 2Å) and even 13% if 

the best scoring pose of the 10 runs was used for each of the 121 systems. More 

unexpectedly, the implicit water displacement energy treatment turned out to lead to more 

accurate predictions.  
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Figure 4.13. Pose prediction accuracy. Blue: 12-6 Lennard-Jones + electrostatic, red: 12-10 
Hydrogen bond-like, purple: new implementation with implicit water, green: new implementation 
with explicit water. Top panel: accuracy of the zinc coordination geometry (the RMSD of only 
the zinc binding group is computed)  average over 10 runs (left), best-scoring of the 10 runs 
(right); bottom panel: accuracy of the pose prediction average over 10 runs (left), best-scoring of 
the 10 runs (right). 

 We next looked more specifically at HDAC / inhibitor complexes (Table 4.1). While 

the previous implementations have overall success of 39% (Electrostatic, LJ12-6 

treatment of metal coordination) and 48% (Electrostatic, LJ12-10), the novel 

implementation predicted the pose correctly 71% of the time. 3c0z (HDAC7) and 1t67 

(HDAC8) are two examples of significant pose prediction improvement (Figure 4.14). 

While the previous two implementations predicted poses with RMSDs of about 4 Å in all 
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10 runs with 3c0z, the novel implementation enabled the prediction of poses within 1.5Å 

of the observed poses in all 10 runs.  

Table 4.1. Docking accuracy on HDACs. The three implementations are compared for 
their accuracy in predicting the ligand binding modes (implicit water displacement energy 

mode). 

 Implementation Average RMSDa Lowest RMSDa Success 
rateb 

HDAC2 – 3max 
Elec./vdW 0.38 0.35 100% 

H-Bond-like 0.38 0.36 100% 
New implem. 0.32 0.28 100% 

HDAC4 – 2vqj 
Elec./vdW 8.85 2.60 0% 

H-Bond-like 3.62 1.90 10% 
New implem. 3.56 2.11 0% 

HDAC7 – 3c0z 
Elec./vdW 4.07 3.85 0% 

H-Bond-like 4.38 4.20 0% 
New implem. 1.25 1.09 100% 

HDAC7 – 3c10 
Elec./vdW 0.92 0.85 90% 

H-Bond-like 1.04 0.82 100% 
New implem. 0.89 0.82 100% 

HDAC8 – 1t67 
Elec./vdW 2.11 1.51 30% 

H-Bond-like 2.79 1.56 20% 
New implem. 1.46 0.82 90% 

HDAC8 – 1t69 
Elec./vdW 2.99 1.82 20% 

H-Bond-like 2.13 1.58 50% 
New implem. 3.82 1.27 40% 

HDAC8 – 1w22 
Elec./vdW 1.55 0.91 60% 

H-Bond-like 1.36 0.92 90% 
New implem. 1.47 0.72 70% 

HDAC8 – 3f07 
Elec./vdW 2.98 1.90 10% 

H-Bond-like 2.88 1.60 10% 
New implem. 1.59 1.14 70% 

a over 10 runs. b percentage of runs with RMSD < 2Å (out of 10 runs) 
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Figure 4.14. Predicted poses: Elec/vdW mode: red, HB-mode: orange, new implementations: 
green vs. crystal structure (green). a) ligand binding mode; b) zinc coordination. 

 

4.5.2 Validation - virtual screening 

 At this stage, these novel implementations were applied to the screening of potential 

metalloenzyme inhibitors. For this purpose, known actives and decoys should be 

collected. The DUD-e set includes inhibitors and decoys for five metalloenzymes which 

were used herein. In order to test our entire set of programs, the tautomers from the sets 

of ligands and decoys from the DUD-e sets were identified and removed and 100 unique 

ligands and 5000 unique decoys were selected and hydrogens added. All these steps were 

done using routines of our FORECASTER platform as described in the experimental section. 

Table 4.2 summarizes the accuracy of these screens. While DOCK provided AU-ROC 

values ranging from 0.71 to 0.80 with an average of 0.744, FITTED provided AU-ROC 
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above 0.79 for 4 of the 5 targets used in this validation study with an improved average of 

0.829 with an explicit water molecule bound to zinc. Surprisingly HDAC2 provided a 

lower AU-ROC of 0.67.  

 Further investigation of this somewhat disappointing result revealed that the set 

includes several macrocyclic molecules, as exemplified by ChEMBL424189 (trapoxin B, 

Figure 4.15), as well as several inhibitors with bulky and/or branched cap groups that did 

not fit into the binding site of HDAC2 co-crystallized with a much smaller ligand (3max, 

Figure 4.15). The N-terminal L1 loop in HDAC2, which is on the surface lining the 

opening to the active site, is several amino acids longer than the corresponding loop in 

HDAC8 (Figure 4.16).  The result is that HDAC2 possesses a longer access tube and a 

more restricted surface that may limit the docking of larger or conformationally restricted 

cap groups.  In addition, it is established in some HDACs, including HDAC8, that the 

surface is malleable and thus may accommodate larger ligands.33 The current version of 

FITTED considers the protein flexibility using sets of experimental protein conformations 

(i.e., crystal structures).  However, all three crystal structures of HDAC2 have small 

ligands bound and thus it was not possible to model this potential flexibility. In addition, 

we have found that among the actives included in the DUD-e validation set, some are 

most likely not simple competitive inhibitors. For example, trapoxin B is a known 

irreversible covalent inhibitor34 and that ChEMBL402341, a dithiolethione-containing 

inhibitor releases H2S over time (Figure 4.15).35 Thus the actual active inhibitors might be 

species other than those in the database. 

 

Figure 4.15. HDAC2 inhibitors. 
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Table 4.2. Area under receiver operating curve. 

Enzyme DOCKa FITTEDb 

ACE 0.72 0.79 

CA 0.73 0.89 

HDAC2 0.77 0.67 

HDAC8 0.80 0.89 

MMP13 0.71 0.90 
a data provided on http://dude.docking.org/targets. b HOH explicit 

 

 

Figure 4.16. Comparison of HDAC2 (3max, blue) and HDAC8 (2v5x, green).  The additional 
length of the N-terminal loop increases the length of the access tube.  The ligand shown in red is 
the N-(2-aminophenyl)-2-benzamide from the HDAC2 structure (3max). 
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4.6 Conclusion 

 In conclusion, our docking program FITTED has been modified to account for zinc 

coordination of ligands and other related processes such as unusually strong hydrogen 

bonds and proton exchange with neighboring residues. These implementations 

significantly improved the pose prediction accuracy over the more traditional 

electrostatic/Lennard Jones treatment or even the hydrogen bond-like treatment 

previously implemented. Based on the success of this technique, it is likely that this 

approach could be applied to other transition metals if desired. A close look at the results 

showed that docking to HDACs was also more accurate and that identification of actives 

in screening is possible with this current version of the program.    

 

4.7 Experimental 

4.7.1 DFT calculations 

 All the quantum mechanical calculations were performed using DFT, more 

specifically the B3LYP functional (Restricted Hartree−Fock) and a custom basis set 

combining 6-311G* for the zinc atom and 6-31+G* for all other atoms (based on ref. 24). 

All calculations were performed in vacuum. The B3LYP calculations were performed 

using GAMESS-US v.Aug2011-64bit. The crystal structures from the PDB were 

truncated to include the zinc atom, the residues coordinated to zinc (also truncated) and 

the residues interacting with the ligand. The ligands were also truncated to include only 

the ZBG. Hydrogen atoms were added to the ligand only where they could interact with 

the neighboring residue in the active site (i.e. where a proton shift could occur). 

 

4.7.2 Force field parameters 

 The first step was to freeze all atoms in the system other than the manually-added 

hydrogen atoms which were optimized using the DFT methods mentioned previously. 

This was deemed to be the equilibrium state (crystal structure + optimized hydrogen 

atoms). Next, the system was broken down and the neighboring residues were omitted. 
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The ligand was moved systematically away from the zinc along a designated vector by 

steps of 0.2 Å in order to obtain the energy profile (single point energies). Similarly, the 

neighboring residue was moved systematically along the hydrogen bond vector in order to 

obtain the hydrogen bond energy profile. These two sets of calculations were performed 

with the hydrogen atom either on the ligand or on the neighboring residue in order to 

establish which configuration would be optimal depending on the conditions (i.e. distance 

of the ligand from the zinc atom); either one configuration was always preferential (no 

proton transfer) or the two profiles had to be combined (proton transfer). Special 

considerations were made for the complex systems (carbonic anhydrase) where the 

hydrogen transfer occurred via a threonine to a glutamic acid. 

 The generated structures along the vectors were used to compute the FITTED energy 

and to derive force field parameters for optimal curve matching. 

 

4.7.3 Construction of the testing sets 

 The sets of decoys and ligands were downloaded from the DUD-e web site 

(http://dude.docking.org/targets) and further processed as follows. First the hydrogens 

were removed from all the molecules in order to make the tautomers as similar as 

possible using a routine of FORECASTER. Then the molecules were clustered by similarity 

using SELECT and 100 ligands and 5000 decoys with the largest diversity were selected. 

Hydrogens were added using CONVERT and all these ligands prepared for docking using 

SMART. 

 

4.7.4 Preparation of the protein files 

 PREPARE and PROCESS were applied using the specific keyword identifying 

metalloenzymes (Macromolecule metalloprotein) and other parameters to the default.  
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4.7.5 Docking with FITTED 

 Each docking is a set of 3 runs starting from a different seed. The different 

implementations were identified by a specific keyword (Macromolecule 

protein/metalloprotein_HB/metalloprotein). For the pose prediction tests each set of 3 

runs was carried out 10 times. For the screening, 3 runs for each small molecule were also 

carried out.  

 

4.7.6 Application of FITTED 

 Default parameters implemented in FITTED have been used. 
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Introduction to Chapter 5 

Another group of biologically relevant metalloenzymes are cytochrome P450s. These 

enzymes are responsible for the majority of metabolism of xenobiotics in the liver. The 

oxidation of drug molecules by P450s facilitates their excretion from the body. However, 

it is possible for toxic compounds to be generated and, consequently, predicting the 

outcomes of the chemical reactions between drugs and P450s is essential to the field of 

medicinal chemistry. The first step to accurately model this process would be to locate the 

drug molecule in the binding site of the enzyme. As was shown in the previous chapter, 

docking to metalloenzymes is not trivial and special considerations were necessary. This 

chapter presents the development of modeling techniques to capture the biochemical 

process of P450 oxidation: the inherent reactivity of a drug molecule, the binding of a 

drug molecule to the reactive state of the enzyme and the transition state of the chemical 

reaction resulting in a final metabolite. This chapter bridges the first two chapters about 

small molecule catalysis with the second two chapters about enzymatic inhibition and 

describes the first time that transition state modeling was integrated into a docking 

program. The chapter further describes the accuracy of the technique, puts it in context 

with other available methodologies and compares the accuracy of its predictions to the 

predictions of pharmacokinetic experts in the field.  
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Chapter 5: 

Development of a Computational Tool to Rival Experts in the 
Prediction of Sites of Metabolism of Xenobiotics by P450s 

 

This chapter is reprinted with permission from: “Development of a Computational Tool to Rival 
Experts in the Prediction of Sites of Metabolism of Xenobiotics by P450s”, Campagna-Slater, 
V.║; Pottel, J.║; Therrien, E.; Cantin, L. D.; Moitessier, N.; Journal of Chemical Information and 
Modelling, 2012, 52(9), 2471-2483. Copyright (2012) American Chemical Society.  

Author Contributions: Valérie Campagna-Slater encoded the transition-state modeling into 
FITTED to create the foundation for IMPACTS. Eric Therrien contributed to the knowledge of 
using the FORECASTER/FITTED suites of programs and Louis-David Cantin was a co-P.I. on a 
grant and contributed to the knowledge in medicinal chemistry and metabolism. Other coding and 
validation experiments were contributions of the author of this thesis. 

 

5.1 Abstract 

 The metabolism of xenobiotics - and more specifically drugs - in the liver is a critical 

process controlling their half-life. Developing higher throughput predictive methods of 

the metabolic stability of xenobiotics and identifying their metabolites is an avenue of 

research. It is expected that predicting the chemical nature of the metabolites would be an 

asset for designing safer drugs and/or drugs with modulated half-lives. We have 

developed IMPACTS (In-silico Metabolism Prediction by Activated Cytochromes and 

Transition States), a computational tool combining docking to metabolic enzymes, 

transition state modeling and rule-based substrate reactivity prediction to predict the site 

of metabolism (SoM) of xenobiotics. Its application to sets of CYP1A2, CYP2C9, 

CYP2D6 and CYP3A4 substrates and comparison to experts’ predictions demonstrates its 

accuracy and significance. IMPACTS identified an experimentally observed SoM in the top 

2 predicted sites for 77% of the substrates, while the accuracy of biotransformation 

experts’ prediction was 65%. Application of IMPACTS to external sets and comparison of 
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its accuracy to those of eleven other methods further validated the method implemented 

in IMPACTS. 

 

5.2 Introduction 

 The cytochrome P450s (CYPs) are a group of heme-containing enzymes involved in 

the metabolism of various xenobiotics and endogenous compounds. In particular, they are 

involved in the phase-I metabolism of most drugs currently on the market. A majority of 

these biotransformations are carried out by only 5 isoforms out of the 57 P450s in the 

human genome, namely CYP1A2, 2C9, 2C19, 2D6, and 3A4.1,2,3 CYP-mediated chemical 

modifications of drugs affect their pharmacokinetic properties as microsomal stability 

often correlates with hepatic clearance and hence with the half-life of drugs in the 

patients’ body. In addition, the produced metabolites can themselves have a 

pharmacologic effect and intrinsic toxicity.1 During the development stage, a number of 

chemical modifications of the lead compounds are often required to reach an acceptable 

pharmacokinetic profile and to produce a drug candidate. Thus, predicting the metabolic 

stability of drugs and the binding mode of small molecules in metabolic enzymes in a 

high throughput manner became a promising avenue of research. In fact, accurately 

predicting sites of metabolism (SoMs) and the binding mode of small molecules in 

metabolic enzymes could be useful to flag potential in vitro or in silico hits, help 

prioritize experiments, provide key insights enabling the design of more stable 

compounds with modulated half-life, predict metabolites that may induce toxicity (e.g., 

CYP1A2-mediated oxidation of aniline leads to carcinogenic metabolites2) or even 

investigate the polymorphism of CYP enzymes and their marked interindividual 

variability.3 These multiple applications were the impetus for the development of 

computational approaches or protocols to predict P450 metabolism of small molecules,4-6 

with a great body of work from the Rydberg group.7-9 These can be classified as ligand-

based (e.g., quantitative structure-activity relationships10, pharmacophore, quantum 

mechanical-derived rules,8,11 descriptors12), reactivity-based (e.g., calculation of 

activation energies of each potential reactive centre by DFT or semi-empirical 

calculations such as in CypScore or fragment recognition such as in SMARTCyp8) and 
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structure-based (e.g., docking) methods.5,13-18 A number of methods predicting SoMs 

have been devised but as stated in a recent perspective article,6 most consider a single 

aspect of the reaction, as illustrated by ligand-based methods11 which do not account for 

the recognition of the substrates by the CYP enzymes. In parallel, structure-based 

methods are often tested on a single CYP and their transferability to other CYP remains 

unknown.19-20 Ultimately, it is expected that predictions would be more accurate if the 

method considered both CYP protein structures as well as ligand chemical reactivity. 

Approaches combining ligand reactivity and protein structures have been devised as 

illustrated by the pioneering work from Cruciani et al. (MetaSite)21 and Oh and co-

workers (MLite),22 which uses a non-atomistic representation of the enzymes. However, 

despite these efforts, little has been reported on the significance of the predictions. We 

report herein our efforts towards the development of a fully automated program that 

combines molecular docking, ligand reactivity estimation and transition state structure 

modeling to predict the SoM of drugs, with a focus not only on accuracy but also on 

significance of these predictions. Furthermore, our predictions were compared to those 

made by biotransformation experts, which revealed the usefulness of such a program. 

 

5.3 Theory and Implementation 

5.3.1 Docking and P450-mediated metabolism 

 Accurately docking small molecules to enzymes requires high resolution protein 

structures. As of today, crystal structures have been solved for about one third of the 

human P450 isoforms (including four of the most important five listed above, with 2C19 

not yet crystallized), making docking possible.23-26 However, compared to traditional non 

covalent drug docking, predicting P450 substrates and SoMs adds a level of difficulty. 

First, enzymatic catalysis does not only depend on protein-ligand non covalent binding. 

After the substrate binding event, a reactive orientation of the substrate SoM with respect 

to the heme is required, allowing the oxidation reaction to take place. The efficiency of 

the biotransformation also depends on the intrinsic reactivity of the ligand reactive site. In 

several reported studies, putative substrates have been docked to a P450 structure of 

interest (either an X-ray structure or homology model27) using standard docking 
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programs, and docking poses obtained have been used to predict most likely metabolites 

based on distances to the heme group.19 However, this approach does not take into 

account intrinsic reactivity of putative SoMs, does not model the chemical 

transformation, nor does it discriminate between inhibitors and substrates. 

 

5.3.2 Docking and drug reactivity 

 In order to account for ligand reactivity while docking, rule-based approaches for 

predicting activation energies based on density functional theory (DFT) calculations, 

combined with docking to CYP1A2 were proposed to predict SoMs of substrates from 

both binding energy (based on docking scores) and intrinsic energy (obtained from a rule-

based method).28 Very recently, approaches considering docking to flexible P45029 and 

ligand reactivity to predict SoMs of drugs were disclosed.7,30 Two other main limitations 

in accurately modeling CYPs, is their promiscuity due to receptor flexibility,31-32 and the 

presence of water molecules, which may also be important in drug/CYP binding.29 In fact, 

in a recent review, Tarcsay and Keseru listed three major issues to address for accurate 

docking-based approaches: poor scoring, protein flexibility and presence of water 

molecules.5 

 

5.3.3 Docking, drug reactivity and transition state 

 To reproduce the process of CYP-mediated metabolism and consider both the 

thermodynamics of the ligand/enzyme binding and the thermodynamics of the chemical 

transformation, we thought to combine a docking program and a transition state (TS) 

modeling program. Docking of TS structures has been previously reported, although the 

method required development of a TS for each drug prior to the actual docking.9 In 

contrast to other docking studies,19,33 our method not only investigates the protein-ligand 

non-covalent binding (“binding” in Figure 5.1), but also imposes a proper orientation 

of the substrate with respect to the heme (“orientation” in Figure 5.1) and considers the 

intrinsic reactivity of the ligand reactive site  (“reaction” in Figure 5.1).34 This 

approach should provide a more accurate prediction of the activation energy including the 
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distortion from optimal TS geometries. In addition, the absence of CYP-specific training 

throughout the development of this method and its validation on four very different CYPs 

assessed its transferability to other CYPs. 

 Although the complete CYP-mediated oxidation cycle includes several steps, the 

SoM is selected in the sub process shown in Figure 5.1. 

 

Figure 5.1. Investigated steps in the P450-mediated drug oxidation. 

 

5.3.4 Development of IMPACTS 

 We have developed and implemented the framework into a SoM prediction program 

(IMPACTS, In-silico Metabolism Prediction by Activated Cytochromes and Transition 

States), which uses some modified routines of our FITTED docking program35-36 to predict 

the CYP-mediated metabolism of small molecules (Figure 5.2). This fully automated 

program predicts the most likely site(s) of reaction and TS structures of small molecules 

when reacting with the CYP heme as the activated iron-oxygen species. 
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Figure 5.2. Fully automated protocol implemented in IMPACTS. User-input is 2D molecular 
structure and a selection of one CYP or all 4 major CYPs from a menu. Site of oxidation 
identified on the phenyl ring. 
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5.3.5 Identifying SoMs and their reactivity 

 First, a database of small molecular fragments and their isoform-independent 

corresponding reactivity (in the form of activation energies) was built. Previously 

computed data11,37 was supplemented with additional DFT calculations. For instance, 

exhaustive DFT calculations were carried out to include the impact of various electron-

withdrawing and electron donating groups on the reactivity of phenyl rings. The heme 

system was modeled using a simpler methoxy radical and energies relative to benzene 

were computed. In order to test this model, correlation with activation energies obtained 

using the full heme model was computed (Figure 5.3). Substituents at all positions of the 

benzene (except that with methoxy) were considered.  

 

Figure 5.3. Correlation between activation energies (Ea) relative to benzene derived using the 
methoxy model and the full heme model.38 r2=0.86. 

 We then considered pairs of substituents. All combinations of fifteen groups were 

carried out and only the minimum was considered for the same positions on mirror sides. 

The additive effects of these groups were clearly demonstrated. For instance, calculations 

indicated that the presence of both p-OMe and o-Me stabilized the radical transition state 

by 4.5 kcal/mol relative to unsubstituted benzene while p-OMe and o-Me alone induced a 

stabilization of 2.4 kcal/mol and 2.3 kcal/mol respectively. Few exceptions arose with 
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cases of π-stacking or hydrogen bonding. These were evaluated on an individual basis and 

a static correction factor could be applied to these cases in order to match the additive 

effect observed. Interestingly, we found that the stabilizing/destabilizing effect of pairs of 

groups (relative to unfunctionalized benzene) equals the sum of the effect of individual 

groups (Figure 5.4). As a result, a simple additive rule was implemented in IMPACTS to 

compute the effects of pairs. The computed relative activation energies are given in Table 

5.1.  

 

Figure 5.4. Correlation between activation energies (Ea) of bi-functionalized benzene derivatives 
(e.g., m-nitro,p-methoxy-benzene) relative to benzene and the sum of the relative energies of 
individual mono functionalized benzene derivatives (e.g., sum of m-nitro-benzene and p-methoxy 
benzene). r2=0.96. 
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Table 5.1. Computed activation energies for functionalized benzene (aromatic oxidation). 
Relative energies (kcal/mol). 

Fragment Ortho Meta Para Fragment Ortho Meta Para 

 
20.9a 20.9a 20.9a     

 
-2.25 -0.35 -2.30 

 
0.04 0.62 0.65 

 
-3.35 -0.44 -2.45 

 

0.81 0.52 -0.21 

 
-1.74 -0.45 -0.67 

 

-1.27 0.40 -0.46 

 
-5.72 -1.72 -5.15 

 
-0.71 0.97 -0.67 

 

-6.24 -0.36 -4.90 
 

-2.49 -0.91 -3.62 

 
-7.33 -0.18 -5.28 

 
-4.64 -2.02 -3.87 

 

-4.67 -0.87 -5.55 
 

-0.65 0.65 -0.67 

 

-6.85 -1.04 -7.76 
 

-0.96 0.34 -0.45 

 

-1.98 -0.13 -2.46 
 

-2.59 0.00 -3.08 

 
-0.76 0.96 0.29 

 
0.79 -0.43 1.27 

 
-2.29 -0.39 -0.91 

 

1: -4.84 
2: -1.69 

3: -3.04 
4: -4.03  

a See ref. 11  
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 We then turned our attention to hydrogen abstraction. As for the aromatic oxidation, 

we have found that the methoxy model correlated well with the full heme model (Figure 

5.5) and enabled the computation of a large number of derivatives. However, in contrast 

to aromatic oxidation, the saddle point was deemed a necessary calculation for all 

hydrogen abstractions, and was thus included; in this case, no additive effects were 

observed and each necessary pair had to be computed (Table 5.2). The activation energies 

were computed following Eq. 5.1. 

 Ea = Ea (derivative, methoxy model) - Ea (ethyl, methoxy model) + Ea (ethyl, full heme model) (5.1) 

 

 

Figure 5.5. Correlation between activation energies relative to ethyl, isopropyl and tertbutyl 
derived using the methoxy model and the full heme model.11,39 r2=0.97 
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Table 5.2. Computed activation energies for hydrogen abstraction (kcal/mol). 
Fragment ∆∆G Fragment ∆∆G Fragment ∆∆G 

 
21.12a 

 
18.39a 

 
17.85a 

 
16.42 

 
14.39 

 
16.18 

 
16.00 

 
14.35 

 
15.51 

 
15.04 

 
13.91 

 
14.31 

 
10.32 

 
9.63 

 
11.64 

 
11.50 

 
12.02 

 
14.91 

 
16.51 

 
14.75 

 
14.82 

 
18.14 

 
15.80 

 
16.07 

 
25.53 

 
19.37 

 
20.44 

 
14.05 

 
13.21 

 
13.42 

 
15.23 

 
16.57 

 
16.49 

 
15.84 

 
14.43 

 
13.77 

 
13.37 

 
11.81 

 
12.56 

 
10.41 

 
11.43 

 
9.05 

 
11.77     

a See ref. 11 
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 Next, our program initially developed to prepare ligands for docking,35 SMART, was 

modified such that it can identify all putative reactive sites and stabilizing/destabilizing 

neighboring groups (e.g., p-OMe) in a small molecule. This is achieved by comparing the 

substrate to a database of fragments and groups including those in Table 5.1 and Table 

5.2, and assigning the corresponding activation energy. A routine identifying equivalent 

SoMs was also implemented into SMART (e.g., both ortho positions of a mono substituted 

phenyl, or atoms equivalent through planar symmetry). 

 

5.3.6 IMPACTS 

 The activation energy values which are pre-computed by SMART are read into 

IMPACTS (third term in Equation 1). The drug/CYP complex is then built by docking the 

molecule into the CYP active site using a modified version of the hybrid matching 

algorithm (MA) / genetic algorithm (GA) from our docking program, FITTED.35,40 When 

the MA is applied within IMPACTS, a reactive group is positioned near the P450 heme 

while another two pharmacophoric groups are randomly selected and placed on 

complementary interaction site beads located in the CYP enzyme (Figure 5.2). The 

energy of the system is then computed (Eq. 5.2).  

 In addition to docking substrates, IMPACTS models the TS as a linear combination of 

the ground state non-covalently bound substrate and the covalently bound substrate (first 

two terms in Eq. 5.2). This approach originates from the hypothesis that the TS structure, 

according to the Hammond-Leffler principle, is located between the reactants and 

products and can indeed be described as a linear combination of the products and 

reactants. This approach has been successfully applied in the prediction of TSs with our 

ACE program, which predicts the stereochemical outcome of asymmetric reactions.41-42 

As in ACE, a weighing factor (λ), allows the user to shift the TS closer to the non-

covalently or covalently bound structure following the chemical transformation (first two 

terms in Eq. 5.2). However, in contrast to ACE, IMPACTS can handle multiple potential 

reactive sites simultaneously, each leading to a specific TS with its corresponding list of 

interactions. Herein, an interaction list is defined as a series of bonds, angles, torsions and 

out-of-plane terms used to describe the structure and energy of the ligand, together with 
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the van der Waals and electrostatic interactions between the ligand and the protein. The 

mechanisms of commonly observed reactions43 have been implemented in this first 

version of the program, including hydrogen abstraction38 and aromatic oxidation.38 The 

code has been written such that adding a new reaction is straightforward and can be done 

within a few minutes by the developers as long as the reaction mechanism is known.  

                                              (5.2) 

                  (5.3) 

 With this method, the TS is located at the minimum of the linear combination of 

energy functions (Figure 5.6). However, as an artifact of the method, this minimum is 

associated with a non zero energy (e.g., nearly 80 kcal/mol in Figure 5.6) which is very 

dependent on the reaction mechanism. As this value is much lower for hydrogen 

abstraction than for aromatic oxidation (Figure 5.7), the relative energies of these two 

reactions cannot be accurately compared unless correcting terms are included (fourth term 

in Eq. 5.2). To compute these correcting terms, a library of small fragment molecules was 

built and the energy terms associated with the TSs were computed separately using a 

modified version of IMPACTS and kept for reference. 

 

Figure 5.6. TS energy as a linear combination of bonded and non-bonded energies 
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Figure 5.7. TS for aromatic oxidation and hydrogen abstraction. Side chains of the heme on the 
porphyrin ring are omitted for clarity. 

 

5.3.7 Datasets 

 In order to measure prediction accuracy, sets of substrates of CYP1A2, CYP2C9, 

CYP2D6 and CYP3A4 were assembled starting from previously reported sets.7,19,30,44 In 

order to evaluate not only the accuracy but also the significance of the predictions, we 

went back to the primary literature which revealed problems to be considered. First, data 

available for some compounds was conflicting. For example, the metabolism of 

Voriconazole by CYP2C9 and Selegiline by CYP2D6 has been observed by Hyland et 

al.45 and Rittenbach et al.46 respectively while recombinant CYP2C9 and CYP2D6 had no 

detectable Voriconazole oxidation activities and Selegiline oxidation activities 

respectively in studies from Murayama et al.47 and Hidestrand et al.48 In two separate 

reports, CYP2C9 was or not involved in the metabolism of Losartan.49 Similarly, while 

CYP2C9 was found to be a major CYP for the metabolism of Sertraline in one report, it 

was also found to be reacting weakly in another.50-51 Second, in several cases, drugs 

experimentally tested were racemic mixtures (e.g., Rosiglitazone52) and no data was given 

on the individual enantiomers. In addition, it is well known that CYP-mediated 

metabolism may have some level of stereoselectivity (e.g., CYP2D6 preferentially 

hydroxylates (L)-Trimipramine and preferentially demethylates its enantiomer53 and (R)-

Bufuralol is preferentially hydroxylated by CYP2D654). In some cases, the wrong 

enantiomer was given in the published set and although this would not impact QSAR 

models, this would expectedly impact the apparent accuracy of any protein structure-

based methods such as MetaSite or IMPACTS. Third, depending on the cells used to 
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express the recombinant enzymes CYP1A2, CYP2D6 and CYP3A4 (human B-

lymphoblast cells or baculovirus-infected insect cells), whether they were co-expressed 

with NADPH-CYP oxidoreductase or not, the azelastine N-demethylase activity of these 

three CYPs varied significantly (by more than two orders of magnitude). Thus, CYP2D6 

has been found to be the most reactive CYP by Nakajima et al.55 while CYP1A2 was 

identified as the most effective by Imai et al.56 Fourth, the substrate concentration is also 

a factor as shown with the metabolism of FLU-157, a metabolite of Fluvastatin. At a 

concentration of 1 μM, CYP3A4 was the major metabolizing enzyme and CYP2C9 did 

not react while CYP2C9 was the major metabolizer at a concentration of 100 μM. This 

same concentration dependence was observed for Sertraline.51 In some reports, the 

reported data was unclear. For example, the controversy about the role of CYP3A4 in the 

metabolism of Ochratoxin A was mentioned58 but not discussed and CMV423 was 

described as being oxidized by CYP1A2>CYP3A4>CYP2C9>CYP2D6 although 

CYP1A2 was less reactive. In this report, the experimental data was presented as an odd 

result.59 As an explanation of this variability of results, the role of DMSO as a CYP 

inhibitor was mentioned by Pearce and co-workers as the formation of some metabolites 

of Carbazepine were not observed by others who used DMSO-containing incubation 

mixtures.60  

 In some cases, several metabolites had been found but only one was investigated. For 

example, three major metabolites for DA-8159 have been found in rats.61 However, a 

single one (product of N-dealkylation) has been investigated with human CYP, 

identifying CYP3A4 as the major enzyme.62 Although the 7-hydroxylation of 

Chlorpromazine was investigated in 200063 it is not until 2010 that the other three major 

metabolites were investigated.64 Similarly, Nitrendipine and Nifedipine which are 

dihydropyridines were aromatized by CYP3A4. However it was mentioned that “it must 

be concluded that that P4503A4 is able to oxidize other portion of some of these 

molecules”.65 Zolpidem was metabolized into 3 major metabolites (M3, ca 65%, M4, ca 

25%, M11, ca 10%) but the contributions of CYP1A2 (ca 8%), 2C9 (ca 31%), 2D6 (ca 

17%), 2C19 (ca 2%) and 3A4 (ca 40%) in the metabolism of Zolpidem has only been 

reported for M3. As a result, CYP1A2 may be producing more M4 than M3. Thus the 

role of CYP1A2 remains unclear. Similarly, CYP-mediated metabolism of selective 
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estrogen receptor modulators has been investigated revealing a large number of 

metabolites.66 In the case where more than 3 metabolites are reported, we considered only 

the major three (e.g., metabolism of Ramelteon by CYP1A267). Another issue is the use 

of animal models (rats and mice) as it has been found that these models were not always 

accurate to predict the metabolism in humans (e.g., Midazolam in mice vs human68). Two 

additional points that readers should be aware of when developing such a set are given 

below. First, as the molecular weight of the different CYPs varies, the unit given for 

activity (whether pmol/min/pmol CYP or pmol/min/mg/mg CYP) is important as the 

perception of the role of each of the CYP may differ (see for example, Ketamine 

metabolism by CYP2B6, CYP3A4 and CYP2C9 using both units69). Second, the activity 

of the CYP is very sensitive to the isoform. N,N-diethyl-m-toluamide is metabolized by 

CYP2D6*1 (Val374) while CYP2D6 (Met374) does not produce any detectable 

activity.70 Data from in vivo studies should also be taken with care. For example, the 

metabolism in vitro of Gefitinib was found to produce a number of metabolites including 

the desmethyl derivative. The latter is a major metabolite found in human plasma but a 

minor metabolite in vitro.71-72 

 Considering all the collected information and the various factors described above, we 

had to curate the retrieved datasets. As additional criteria, molecules that are too small 

and/or feature a single or only two potential reactive sites (e.g., butadiene monoxide) 

were excluded in order to avoid over-simplifying the testing set. Substrates such as 

Sulfinpyrazone sulphide, Capsaicin, Domperidone and 2-n-propyl quinoline were also 

removed as many metabolites are not clearly identified (several possible regioisomers on 

aromatic rings). Finally, duplicates were identified and removed. For example, the 

metabolism of Selegiline48, Deprenyl73 and N-methyl,N-propargylphenylethylamine46 was 

investigated independently although these three names refer to the same molecule. This 

led to sets of 137 CYP1A2 substrates, 128 CYP2C9 substrates, 157 CYP2D6 substrates 

and 293 CYP3A4 substrates. These sets are supplied online and the PDB codes can be 

found in Appendix 3. 
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5.4 Results and Discussion 

5.4.1 IMPACTS 

 In practice, IMPACTS identifies multiple potential reactive sites in a single ligand and 

creates interaction lists for each of these possible sites (Figure 5.8). The docking 

procedure then docks the substrate and, for each pose, selects the reactive site closest to 

the ferryl oxygen as the reactive site. The interaction list corresponding to a bond 

formation at this particular reactive site is then used to compute forces and potential 

energy values of this particular TS. As with any docking program, a score is assigned to 

the proposed binding mode (referred to as a pose) and can be used to rank different poses. 

Within IMPACTS, the scoring function is composed of the non covalent scoring function 

RankScore implemented in our docking program FITTED, and the activation energy (Eq. 

5.3). 

 Among the implemented transformations43 are hydrogen abstraction38 leading to 

either hydroxylation of alkyl chains (which also represents the first step in N-dealkylation 

and O-dealkylation)74 or oxidation of aldehydes into carboxylic acids,75 oxidative 

deboronation as observed with Bortezomib,76 aromatic oxidation,38 thioketone and 

thiophosphate oxidation,77 double bond epoxidation, aromatic nitrogen (e.g., pyridine) 

oxidation, thioether oxidation into sulfoxide, sulfoxide oxidation into sulfone and aniline 

oxidation. Other more unusual reactions such as P450-mediated conversion of nitriles to 

amides,78 and oxidative defluorination72 have not yet been implemented. 
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Figure 5.8. TS computed for oxidation of Flurbiprofen with CYP2C9, the various lines represent 
possible forming bonds (the protein is omitted for clarity). 

 

5.4.2 Measuring accuracy 

 One important factor to consider in these comparisons is that experimental data will 

report the most predominant metabolites from incubation samples. However, metabolites 

that can undergo sequential reactions or are too unstable to be isolated and may be 

missed. As we are looking at TSs critical for the regioselective oxidation, further 

rearrangements of an unstable reaction intermediate are not predicted by the program in 

its current version. For instance, the sulphur atom of the thiophene ring of drugs79 can 

first be oxidized (Figure 5.9).80 This is rapidly followed by a rearrangement and the 

formally observed metabolite is oxidized on the carbon adjacent to the sulphur. An 

alternative thiophene oxidation of Tienilic acid and Suprofen has been proposed which 

goes through an epoxide formation.81 Oxidative deboronation has also a well-defined 

mechanism (Figure 5.9). The empty orbital of the boronic acid (e.g., Bortezomib) plays a 

key role in the oxidation process. For our predictions to be deemed correct, oxidation of 

the sulphur atom or epoxidation of Tienilic acid and oxidation of the boron atom of 
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Bortezomib should be proposed as the first transition state and not the oxidation of the 

adjacent carbons as observed. 

 

Figure 5.9. Multistep oxidation of Tienilic acid or Suprofen (top) and Bortezomib (bottom) 

 

5.4.3 Applications to CYP1A2, CYP2D6, CYP2C9 and CYP3A4 substrates 

 In order to assess the accuracy of IMPACTS, testing sets of substrates of CYP1A2, 

2C9, 2D6 and 3A4 were assembled. The sets Sheridan et al., Danielson et al., 

Vasanthanathan et al.19 and from Rydberg et al. 7 were either downloaded or rebuilt and 

further curated as described in the theory and implementation section. Although 

CYP2C19 is another major isoform, the lack of crystal structures precluded its use in this 

work. The success rate of IMPACTS is shown below using the metrics previously 

described30 (Table 5.3). 

 Predictions were made using IMPACTS on the sets of CYP1A2, CYP2C9, CYP2D6 

and CYP3A4 substrates and these predictions were defined as correct when one of the top 

two predicted SoMs has been experimentally observed (top-2 metrics, Table 5.3).30 A 

single crystal structure of ligand-bound CYP1A2 (pdb code: 2hi4) and CYP2D6 (3qm4) 

are available to date, while two and seven crystal structures of ligand-bound CYP2C9 
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(1r9o, 2og5) and CYP3A4 (1tqn, 1w0e, 1w0f, 1w0g, 2jog, 2vom, 3nxu) respectively have 

been reported. In order to demonstrate the significance of the predictions, the potential 

SoMs were identified by IMPACTS and two were randomly selected (Table 5.3). We were 

pleased to see that the implementation of ligand reactivity significantly increased the 

overall accuracy from 28% (obtained by random selection) to 60%, and docking to rigid 

CYPs further increased this accuracy by another 17%. As expected, the accuracy with the 

most promiscuous CYP3A4 was the highest with the ligand potential SoM reactivity and 

increased only slightly when docking was considered. This contrasted with the data 

obtained with the other three “more specific” enzymes which revealed that overall 

using only the ligand-based rules implemented in IMPACTS was not sufficient. 

Pharmacophores used to identify potential SoMs for substrates of these three enzymes 

have been reported indicating that the substrate binding orientation has a significant role 

in the selection of the SoMs. With these four CYPs, the accuracy is well over 70%.  

Table 5.3. Accuracy[a] of IMPACTS in predicting the correct SoMs for respective datasets. 

CYP N[b] Rand.[c] Ea
[d] IMPACTS[e] flexible[f] Experts[g] Best expert[h] 

1A2 137 31 59 77 - 69 (5) 74 
2C9 129 29 59 79-82 50 71 (7) 74 
2D6 157 27 49 76 - 64 (4) 65 
3A4 293 28 66 72-75 48 61 (6) 71 
All 4 716 28 60 77 49 65 (5) 71 

[a]% of molecules with an observed SoM in the predicted two SoMs. [b]Number of substrates in the set. 
[c]Random selection from the potential SoMs identified by IMPACTS. [d]Only the predicted reactivity of the 
potential SoMs is considered. [e]IMPACTS with a single crystal structure; a range is given if multiple 
structures were alternatively assessed; [f]IMPACTS when considering protein flexibility. [g]Average 
predictions by experts standard deviation in brackets. [h]Best predictions from experts. 

 

 More unexpectedly, the accuracy of the predictions was lower when protein 

flexibility was considered. Other reports have shown that this factor improves the 

accuracy although only slightly.20,30 A close look at the predictions reveals that the 

failures are more ligand-dependent (these ligands provide low accuracy regardless of the 

protein structure used) rather than protein structure-dependent (the failures are similar 

regardless of the CYP structure used). Thus, we believe that considering protein 
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flexibility added noise to the calculations rather than improving the protein/substrate 

modeling. This data also demonstrated that either the promiscuity of the investigated 

CYPs is a great challenge or that the method as implemented has reached the limit of 

accuracy of the current potential energy function. We noted that most of the observed 

SoMs were found in the top 4 suggested (> 90%). The other poorly predicted 10% 

included large and/or highly flexible molecules which are known to be problematic with 

docking programs or may require significant conformational changes in the protein. 

 

5.4.4 Experts’ predictions 

 Despite the many reports on methods for SoM prediction,6 none has specifically 

questioned the usefulness (accuracy and user-friendliness) of the current methods in the 

context of drug design, medicinal chemistry and metabolism studies, with, to the best of 

our knowledge, a single study reporting the prediction of a single biotransformation 

expert on two medium-sized (N=39, 82) sets.82 Are these methods accurate enough to be 

useful? To address this critical issue, we challenged four medicinal chemists and two 

biotransformation experts each with over ten years of experience. Although these six 

experimentalists may not be representative of the medicinal chemistry and 

biotransformation communities, the collected data (Table 5.3) is indicative of what could 

be considered an accurate and useful method. A web site has been set up to enable these 

experts to record their predictions on the four sets of substrates (in 2D), i.e., the same 

input given to IMPACTS. Their predictions were consistently lower than those by IMPACTS 

by at at least 7%. The accuracy of the predictions of one of the experts were overall closer 

to that of IMPACTS, although still overall lower by more than 5%. 

 Interestingly, random selection provides an accurate prediction for as many as one 

fourth of the substrates with the criteria used in Table 5.3. This accuracy rose to nearly 

40% when the top-3 metrics was used.  

 Overall, this data revealed that our program will be useful for predicting SoMs of 

small molecules or even libraries of small molecules and for producing three dimensional 

structures of the TSs of the small molecule/CYP complexes (Figure 5.10). 
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Figure 5.10. N-demethylation of Sertraline by CYP2C9. 

 

5.4.5 IMPACTS’s performance 

 In order to assess the accuracy of this first version of IMPACTS, we have retrieved sets 

of CYP substrates developed by Zaretzki et al.83 and by Afzelius et al. 82 These sets were 

prepared and submitted to IMPACTS, and the predictions were compared to those reported 

using eleven other methods. These methods include academic (e.g., SMARTCyp) and 

commercial programs (e.g., StarDrop), ligand-based, structure-based and hybrid (i. e., 

both ligand and protein structure-based, MetaSite) methods. RS-Predictor makes use of 

ligand descriptors. A more thorough description of these methods and their use can be 

found in Zaretzki et al. and Afzelius et al.’s original publications.82-83 As was done by 

Afzelius et al., large and highly flexible substrates were not considered by our docking-

based method IMPACTS. This pre-selection did not affect much the size of the CYP1A2, 

CYP2D6 and CYP2C9 substrates sets (one to four molecules per set, less than 2% of 

these substrates), but did reduce the number of CYP3A4 substrates by 8%  as shown in 

Table 5.4. As the sets are slightly different from one program to the next and as updated 

and/or improved versions of these methods may have been released since their use by 

Afzelius et al. and Zaretzki et al., this comparison should be considered with care and is 

only used to illustrate the overall performance of IMPACTS, and not to provide a ranking 

of methods. As can be seen in Table 5.4, this first version of IMPACTS stands well this 
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comparison with accuracy equivalent to RS-Predictor and superior to all the other 

methods with CYP2C9 substrates. The accuracy with CYP1A2 substrates is also 

comparable to that obtained with RS-Predictor. However, IMPACTS was slightly less 

accurate than other methods for CYP2D6 and CYP3A4 substrates when looking at 

average accuracy.  

Table 5.4. Accuracy of IMPACTS and eleven other methods in predicting the correct SoMs 
for external datasets. 

Isozyme 1A2 2C9 2C9 2C9 2D6 2D6 3A4 3A4 3A4 

Na 271c 98c 128c 49d 134c 136c 321c 154c 65d 
Nb 269c 96c 127c 45d 133c 132c 295c 144c 58d 

IMPACTS 80.5 84.4 76.4 81.8 70.7 71.2 73.2 70.1 82.5 

RS-Predictor83 83.0 81.6 79.7 - 85.8 79.4 81.9 79.2 - 

SMARTCyp83 - 67.7 66.9 - 48.5 68.1 73.1 77.2 - 

StarDrop83 - 77.4 78.4 - 81.5 69.2 77.5 66.9 - 

Schrödinger83 - 69.6 74.0 - 66.2 70.1 80.2 68.2 - 

Sheridan et al.44,83 - 72.4 - - 71.9 - 77.4 - - 

MetaSite44,83 - 68.8 - 91 65.4 - 61.8 - 87 

MetaDock82 - - - 66 - - - - 67 

QMBO82 - - - 84 - - - - 84 

QMSpin82 - - - 78 - - - - 78 

MetaGlide82 - - - 67 - - - - 65 

SporCalc82 - - - 81 - - - - 81 
a Number of substrates used by Zaretski et al. and Afzelius et al. b Number for substrates when large and 
flexible substrates removed following Afzelius et al. c Sets from Zaretzki et al., top-2 metrics was used.83   
d Sets from Afzelius et al., top-3 metrics was used.82 

 

 In contrast to ligand-based methods, docking-based methods provide information on 

the binding mode of the substrates in the active site of CYPs. However, their major 

drawback84 is the CPU time required to make predictions. In general, ligand-based 

predictions can be made within a second or less per compound. Analysis of the data 

generated to produce Table 5.4 revealed that 77% of the runs took 2 minutes or less per 
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run and 97% took ten minutes or less. 0.8% of the compounds, mostly 3A4 substrates, 

were not docked after an hour. 

 

5.5 Conclusion 

 In conclusion, we have developed a preliminary version of a fully automated 

program, IMPACTS, for the prediction of the SoMs of drugs. Moreover, IMPACTS provides 

a 3D picture of the TS of the drug at the active site of cytochromes (Figure 5.10). In 

addition, this method does not require any training and should be applicable to other 

CYPs.6 Knowledge about both the binding mode and the SoM may enable medicinal 

chemists to design modifications at locations other than the SoMs to disturb or enhance 

the substrate-CYP recognition. In contrast to other methods, ligand reactivity, binding 

affinity and proper geometry of the TS are all considered in a single and fully automated 

run. Other limitations in modeling CYPs include the presence of water molecules, which 

may also be important in drug/CYP binding.5,29 Strategies to overcome these challenges 

and improvements of the current activation energies are currently being investigated in 

the hope of further increasing the accuracy of IMPACTS. Finally, a comparison between 

the predictions generated by IMPACTS, those by random selection, those made by experts 

and those made using another eleven methods demonstrated that IMPACTS can be 

extremely useful.  

 

5.6 Experimental 

5.6.1 Construction of the testing sets 

 The testing sets were built with care to reduce the noise in the prediction assessment. 

Here is a list of selection criteria that were used; a detailed discussion is provided in the 

theory and implementation section. 1. Small molecules such as butadiene monoxide with 

only one possible reactive site (i.e., a single double bond) have been removed from 

existing sets as they increase the apparent accuracy but reduce the significance of the 

predictions; 2. Eicosapentaenoic acid, Sulfinpyrazone sulphide, Capsaicin, Domperidone 

and 2-n-propyl quinoline were also removed as many metabolites are not clearly 
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identified (several possible regioisomers on aromatic rings). 3. Duplicates were identified 

and removed. An asterisk was then added to the atoms being oxidized in order to 

eventually identify whether the predicted SoM is one of the observed SoMs. Sets are 

given in separate files in mol2 format. 

 

5.6.2 Computation of the activation energies 

 All the quantum mechanical calculations were performed using DFT, more 

specifically the B3LYP functional (Unrestricted Hartree-Fock) and the 6-31G* basis-set. 

All calculations were performed in vacuum. The B3LYP calculations were performed 

using GAMESS-US v.Aug2011-64bit. 

 As the reacting methoxy group is not aligned with the benzene ring, the transition 

state is not perfectly symmetrical. Thus, for the monosubstituted benzene derivatives, the 

two meta and ortho positions are not equivalent. The lowest-in-energy of the two meta 

positions and highest-in-energy of the two optimized ortho positions were kept for each 

one. The highest-in-energy of the two minima was regarded as correct for ortho position 

as the difference in energy was often due to hydrogen-bonding effects which are artefacts 

of the methoxy models. In fact, hydrogen bonds would be limited within the heme system 

(steric block). In parallel, sterics are the driving force at the meta position and thus the 

lowest-in-energy was regarded as correct 

 

5.6.3 Application of IMPACTS 

 Default parameters implemented in IMPACTS have been used. IMPACTS has been 

integrated into our platform FORECASTER85 for user-friendliness. The user can draw the 

substrate into a 2D sketcher and select the CYP enzyme with which to predict the SoM. 

FORECASTER will take care of adding hydrogens, generating a 3D structure and selecting 

the correct CYP files. IMPACTS and FORECASTER are accessible free of charge to 

academic users (www.fitted.ca). 

 

 



 179 

5.7 Acknowledgements 

 We thank AstraZeneca R&D Montréal and NSERC for financial support, Dr. Warner 

(AstraZeneca) for fruitful discussions and CIHR for a fellowship to VCS (DD training 

program). We are also grateful to Dr. Raeppel (ChemRF Laboratories), Drs. Projean and 

Griffin (AstraZeneca), Dr. Ramirez-Molina (GlaxoSmithKline), and Dr. Giroux (Vertex 

Pharmaceuticals) for their contribution to experts’ predictions. Calcul Québec and 

Compute Canada are acknowledged for generous CPU allocations. 

 

5.8 References 

1. Wong, Y. C.; Qian, S.; Zuo, Z., Regioselective biotransformation of CNS drugs and 

its clinical impact on adverse drug reactions. Exp. Opin. Drug Metab. Toxicol. 2012, 
8 (7), 833-854. 

2. Shamovsky, I.; Ripa, L.; Börjesson, L.; Mee, C.; Nordén, B.; Hansen, P.; Hasselgren, 

C.; O’Donovan, M.; Sjö, P., Explanation for Main Features of Structure–

Genotoxicity Relationships of Aromatic Amines by Theoretical Studies of Their 

Activation Pathways in CYP1A2. J. Am. Chem. Soc. 2011, 133 (40), 16168-16185. 

3. He, S. M.; Zhou, Z. W.; Li, X. T.; Zhou, S. F., Clinical drugs undergoing 

polymorphic metabolism by human cytochrome P450 2C9 and the implication in 

drug development. Curr. Med. Chem. 2011, 18 (5), 667-713. 

4. Zhang, T.; Chen, Q.; Li, L.; Liu, L. A.; Wei, D. Q., In silico prediction of cytochrome 

P450-mediated drug metabolism. Comb. Chem. High Throughput Screening 2011, 14 

(5), 388-395. 

5. Tarcsay, A.; Keserü, G. M., In silico site of metabolism prediction of cytochrome 

P450-mediated biotransformations. Exp. Opin. Drug Metab. Toxicol. 2011, 7 (3), 

299-312. 

6. Kirchmair, J.; Williamson, M. J.; Tyzack, J. D.; Tan, L.; Bond, P. J.; Bender, A.; 

Glen, R. C., Computational Prediction of Metabolism: Sites, Products, SAR, P450 

Enzyme Dynamics, and Mechanisms. J. Chem. Inf. Model. 2012, 52, 617-648. 



 180 

7. Rydberg, P.; Vasanthanathan, P.; Oostenbrink, C.; Olsen, L., Fast prediction of 

cytochrome p450 mediated drug metabolism. ChemMedChem 2009, 4 (12), 2070-

2079. 

8. Rydberg, P.; Gloriam, D. E.; Olsen, L., The SMARTCyp cytochrome P450 

metabolism prediction server. Bioinformatics 2010, 26 (23), 2988-2989. 

9. Rydberg, P.; Hansen, S. M.; Kongsted, J.; Norrby, P.-O.; Olsen, L.; Ryde, U., 

Transition-State Docking of Flunitrazepam and Progesterone in Cytochrome P450. J. 

Chem. Theory Comput. 2008, 4 (4), 673-681. 

10. Saraceno, M.; Massarelli, I.; Imbriani, M.; James, T. L.; Bianucci, A. M., Optimizing 

QSAR Models for Predicting Ligand Binding to the Drug-Metabolizing Cytochrome 

P450 Isoenzyme CYP2D6. Chem. Biol. Drug Des. 2011, 78, 236-251. 

11. Rydberg, P.; Gloriam, D. E.; Zaretzki, J.; Breneman, C.; Olsen, L., SMARTCyp: A 

2D method for prediction of cytochrome P450-mediated drug metabolism. ACS Med. 

Chem. Lett. 2010, 1 (3), 96-100. 

12. Zaretzki, J.; Bergeron, C.; Rydberg, P.; Huang, T.-w.; Bennett, K. P.; Breneman, C. 

M., RS-Predictor: A New Tool for Predicting Sites of Cytochrome P450-Mediated 

Metabolism Applied to CYP 3A4. J. Chem. Inf. Model. 2011, 51 (7), 1667-1689. 

13. Pelkonen, O.; Turpeinen, M.; Raunio, H., In vivo-in vitro-in silico pharmacokinetic 

modelling in drug development: Current status and future directions. Clin. 

Pharmacokin. 2011, 50 (8), 483-491. 

14. Czodrowski, P.; Kriegl, J. M.; Scheuerer, S.; Fox, T., Computational approaches to 

predict drug metabolism. Exp. Opin. Drug Metab. Toxicol. 2009, 5 (1), 15-27. 

15. De Graaf, C.; Pospisil, P.; Pos, W.; Folkers, G.; Vermeulen, N. P. E., Binding mode 

prediction of cytochrome P450 and thymidine kinase protein-ligand complexes by 

consideration of water and rescoring in automated docking. J. Med. Chem. 2005, 48 

(7), 2308-2318. 

16. Stjernschantz, E.; Vermeulen, N. P. E.; Oostenbrink, C., Computational prediction of 

drug binding and rationalisation of selectivity towards cytochromes P450. Exp. Opin. 

Drug Metab. Toxicol. 2008, 4 (5), 513-527. 



 181 

17. Vaz, R. J.; Zamora, I.; Li, Y.; Reiling, S.; Shen, J.; Cruciani, G., The challenges of in 

silico contributions to drug metabolism in lead optimization. Exp. Opin. Drug Metab. 

Toxicol. 2010, 6 (7), 851-861. 

18. Sun, H.; Scott, D. O., Structure-based drug metabolism predictions for drug design. 

Chem. Biol. Drug Des. 2010, 75 (1), 3-17. 

19. Vasanthanathan, P.; Hritz, J.; Taboureau, O.; Olsen, L.; Jorgensen, F. S.; Vermeulen, 

N. P. E.; Oostenbrink, C., Virtual screening and prediction of site of metabolism for 

cytochrome P450 1A2 ligands. J. Chem. Inf. Model. 2009, 49 (1), 43-52. 

20. Moors, S. L. C.; Vos, A. M.; Cummings, M. D.; Van Vlijmen, H.; Ceulemans, A., 

Structure-Based Site of Metabolism Prediction for Cytochrome P450 2D6. J. Med. 

Chem. 2011, 54, 6098-6105. 

21. Cruciani, G.; Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, C.; Howe, T.; 

Vianello, R., MetaSite: Understanding Metabolism in Human Cytochromes from the 

Perspective of the Chemist. J. Med. Chem. 2005, 48 (22), 6970-6979. 

22. Oh, W. S.; Kim, D. N.; Jung, J.; Cho, K. H.; No, K. T., New combined model for the 

prediction of regioselectivity in cytochrome P450/3A4 mediated metabolism. J. 

Chem. Inf. Model. 2008, 48 (3), 591-601. 

23. Williams, P. A.; Cosme, J.; Ward, A.; Angove, H. C.; Vinkovi, D. M.; Jhoti, H., 

Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 2003, 
424 (6947), 464-468. 

24. Williams, P. A.; Cosme, J.; Matak Vinkovi, D.; Ward, A.; Angove, H. C.; Day, P. J.; 

Vonrhein, C.; Tickle, I. J.; Jhoti, H., Crystal structures of human cytochrome P450 

3A4 bound to metyrapone and progesterone. Science 2004, 305 (5684), 683-686. 

25. Wester, M. R.; Yano, J. K.; Schoch, G. A.; Yang, C.; Griffin, K. J.; Stout, C. D.; 

Johnson, E. F., The structure of human cytochrome P450 2C9 complexed with 

flurbiprofen at 2.0-Å resolution. J. Biol. Chem. 2004, 279 (34), 35630-35637. 

26. Coleman, S.; Linderman, R.; Hodgson, E.; Rose, R. L., Comparative metabolism of 

chloroacetamide herbicides and selected metabolites in human and rat liver 

microsomes. Environ. Health Persp. 2000, 108 (12), 1151-1157. 



 182 

27. Kjellander, B.; Masimirembwa, C. M.; Zamora, I., Exploration of enzyme-ligand 

interactions in CYP2D6 & 3A4 homology models and crystal structures using a 

novel computational approach. J. Chem. Inf. Model. 2007, 47 (3), 1234-1247. 

28. Rydberg, P.; Vasanthanathan, P.; Oostenbrink, C.; Olsen, L., Fast Prediction of 

Cytochrome P450 Mediated Drug Metabolism. ChemMedChem 2009, 4, 2070-2079. 

29. Hritz, J.; de Ruiter, A.; Oostenbrink, C., Impact of Plasticity and Flexibility on 

Docking Results for Cytochrome P450 2D6: A Combined Approach of Molecular 

Dynamics and Ligand Docking. J. Med. Chem. 2008, 51 (23), 7469-7477. 

30. Danielson, M. L.; Desai, P. V.; Mohutsky, M. A.; Wrighton, S. A.; Lill, M. A., 

Potentially increasing the metabolic stability of drug candidates via computational 

site of metabolism prediction by CYP2C9: The utility of incorporating protein 

flexibility via an ensemble of structures. Eur. J. Med. Chem. 2011, 46, 3953-3963. 

31. Ekroos, M.; Sjögren, T., Structural basis for ligand promiscuity in cytochrome P450 

3A4. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (37), 13682-13687. 

32. Guengerich, F. P., A malleable catalyst dominates the metabolism of drugs. Proc. 

Natl Acad. Sci. USA 2006, 103 (37), 13565-13566. 

33. Ito, Y.; Kondo, H.; Goldfarb, P. S.; Lewis, D. F. V., Analysis of CYP2D6 substrate 

interactions by computational methods. Journal of Molecular Graphics and 

Modelling 2008, 26 (6), 947-956. 

34. Zhu, Y.; Silverman, R. B., Revisiting Heme Mechanisms. A Perspective on the 

Mechanisms of Nitric Oxide Synthase (NOS), Heme Oxygenase (HO), and 

Cytochrome P450s (CYP450s). Biochemistry 2008, 47 (8), 2231-2243. 

35. Corbeil, C. R.; Englebienne, P.; Moitessier, N., Docking ligands into flexible and 

solvated macromolecules. 1. Development and validation of FITTED 1.0. J. Chem. 

Inf. Model. 2007, 47 (2), 435-449. 

36. Corbeil, C. R.; Moitessier, N., Docking Ligands into Flexible and Solvated 

Macromolecules. 3. Impact of Input Ligand Conformation, Protein Flexibility, and 

Water Molecules on the Accuracy of Docking Programs. J. Chem. Inf. Model. 2009, 
49 (4), 997-1009  



 183 

37. Bathelt, C. M.; Ridder, L.; Mulholland, A. J.; Harvey, J. N., Mechanism and 

structure-reactivity relationships for aromatic hydroxylation by cytochrome P450. 

Org. Biomol. Chem. 2004, 2 (20), 2998-3005. 

38. Rydberg, P.; Ryde, U.; Olsen, L., Prediction of Activation Energies for Aromatic 

Oxidation by Cytochrome P450. J. Phys. Chem. A 2008, 112 (50), 13058-13065. 

39. Olsen, L.; Rydberg, P.; Rod, T. H.; Ryde, U., Prediction of Activation Energies for 

Hydrogen Abstraction by Cytochrome P450. Journal of Medicinal Chemistry 2006, 
49 (22), 6489-6499. 

40. Corbeil, C. R.; Moitessier, N., Docking ligands into flexible and solvated 

macromolecules. 3. Impact of input ligand conformation, protein flexibility, and 

water molecules on the accuracy of docking programs. J. Chem. Inf. Model. 2009, 49 

(4), 997-1009. 

41. Corbeil, C. R.; Thielges, S.; Schwartzentruber, J. A.; Moitessier, N., Toward a 

computational tool predicting the stereochemical outcome of asymmetric reactions: 

Development and application of a rapid and accurate program based on organic 

principles. Angew. Chem. Int. Ed. 2008, 47 (14), 2635-2638. 

42. Weill, N.; Corbeil, C. R.; De Schutter, J. W.; N., M., Toward a computational tool 

predicting the stereochemical outcome of asymmetric reactions: Development of the 

molecular mechanics-based program ACE and application to asymmetric epoxidation 

reactions. J. Comput. Chem. 2011, 32 (13), 2878-2889. 

43. Guengerich, F. P.; Isin, E. M., Mechanisms of cytochrome P450 reactions. Acta 

Chim. Slov. 2008, 55 (1), 7-19. 

44. Sheridan, R. P.; Korzekwa, K. R.; Torres, R. A.; Walker, M. J., Empirical 

Regioselectivity Models for Human Cytochromes P450 3A4, 2D6, and 2C9. J. Med. 

Chem. 2007, 50 (14), 3173-3184. 

45. Hyland, R.; Jones, B. C.; Smith, D. A., Identification of the Cytochrome P450 

Enzymes Involved in the N-Oxidation of Voriconazole. Drug Metab. Disp. 2003, 31 

(5), 540-547. 



 184 

46. Rittenbach, K. A.; Holt, A.; Ling, L.; Shan, J.; Baker, G. B., Metabolism of N-

methyl, N-propargylphenylethylamine: Studies with human liver microsomes and 

cDNA expressed cytochrome P450 (CYP) enzymes. Cell. Mol. Neurobiol. 2007, 27 

(2), 179-190. 

47. Murayama, N.; Imai, N.; Nakane, T.; Shimizu, M.; Yamazaki, H., Roles of CYP3A4 

and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from 

voriconazole, a new anti-fungal agent, in human liver microsomes. Biochem. Pharm. 

2007, 73 (12), 2020-2026. 

48. Hidestrand, M.; Oscarson, M.; Salonen, J. S.; Nyman, L.; Pelkonen, O.; Turpeinen, 

M.; Ingelman-Sundberg, M., CYP2B6 and CYP2C19 as the Major Enzymes 

Responsible for the Metabolism of Selegiline, a Drug Used in the Treatment of 

Parkinson's Disease, as Revealed from Experiments with Recombinant Enzymes. 

Drug Metab. Disp. 2001, 29 (11), 1480-1484. 

49. Yun, C. H.; Lee, H. S.; Lee, H.; Rho, J. K.; Jeong, H. G.; Guengerich, F. P., 

Oxidation of the angiotensin II receptor antagonist losartan (DuP 753) in human liver 

microsomes. Role of cytochrome P4503A(4) in formation of the active metabolite 

EXP3174. Drug Metab. Disp. 1995, 23 (2), 285-289. 

50. Kobayashi, K.; Ishizuka, T.; Shimada, N.; Yoshimura, Y.; Kamijima, K.; Chiba, K., 

Sertraline N-Demethylation Is Catalyzed by Multiple Isoforms of Human 

Cytochrome P-450 In Vitro. Drug Metab. Disp. 1999, 27 (7), 763-766. 

51. Obach, R. S.; Cox, L. M.; Tremaine, L. M., Sertraline is metabolized by multiple 

cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in 

human: An in vitro study. Drug. Metab. Disp. 2005, 33 (2), 262-270. 

52. Baldwin, S. J.; Clarke, S. E.; Chenery, R. J., Characterization of the cytochrome P450 

enzymes involved in the in vitro metabolism of rosiglitazone. Br. J. Clin. Pharmacol. 

1999, 48 (3), 424-432. 

53. Eap, C. B.; Bender, S.; Gastpar, M.; Fischer, W.; Haarmann, C.; Powell, K.; Jonzier-

Perey, M.; Cochard, N.; Baumann, P., Steady state plasma levels of the enantiomers 



 185 

of trimipramine and of its metabolites in CYP2D6-, CYP2C19- and CYP3A4/5-

phenotyped patients. Ther. Drug Monit. 2000, 22 (2), 209-214. 

54. Narimatsu, S.; Takemi, C.; Tsuzuki, D.; Kataoka, H.; Yamamoto, S.; Shimada, N.; 

Suzuki, S.; Satoh, T.; Meyer, U. A.; Gonzalez, F. J., Stereoselective Metabolism of 

Bufuralol Racemate and Enantiomers in Human Liver Microsomes. J. Pharmacol. 

Exp. Ther. 2002, 303 (1), 172-178. 

55. Nakajima, M.; Nakamura, S.; Tokudome, S.; Shimada, N.; Yamazaki, H.; Yokoi, T., 

Azelastine N-Demethylation by Cytochrome P-450 (CYP)3A4, CYP2D6, and 

CYP1A2 in Human Liver Microsomes: Evaluation of Approach to Predict the 

Contribution of Multiple CYPs. Drug Metab. Disp. 1999, 27 (12), 1381-1391. 

56. Imai, T.; Taketani, M.; Suzu, T.; Kusube, K.; Otagiri, M., In Vitro Identification of 

the Human Cytochrome P-450 Enzymes Involved in the N-Demethylation of 

Azelastine. Drug Metab. Disp. 1999, 27 (8), 942-946. 

57. Goda, R.; Nagai, D.; Akiyama, Y.; Nishikawa, K.; Ikemoto, I.; Aizawa, Y.; Nagata, 

K.; Yamazoe, Y., Detection of a new N-oxidized metabolite of flutamide, N-[4-nitro-

3- (trifluoromethyl)phenyl]hydroxylamine, in human liver microsomes and urine of 

prostate cancer patients. Drug. Metab. Disp. 2006, 34 (5), 828-835. 

58. Simarro Doorten, A. Y.; Bull, S.; Van Der Doelen, M. A. M.; Fink-Gremmels, J., 

Metabolism-mediated cytotoxicity of ochratoxin A. Toxicol Vitro 2004, 18 (3), 271-

277. 

59. Bournique, B.; Lambert, N.; Boukaiba, R.; Martinet, M., In vitro metabolism and 

drug interaction potential of a new highly potent anti-cytomegalovirus molecule, 

CMV423 (2-chloro 3-pyridine 3-yl 5,6,7,8-tetrahydroindolizine 1-carboxamide). Br. 

J. Clin. Pharmacol. 2001, 52 (1), 53-63. 

60. Pearce, R. E.; Vakkalagadda, G. R.; Steven Leeder, J., Pathways of carbamazepine 

bioactivation in vitro I. Characterization of human cytochromes P450 responsible for 

the formation of 2- and 3-hydroxylated metabolites. Drug Metab. Disp. 2002, 30 

(11), 1170-1179. 



 186 

61. Choi, S. J.; Ji, H. Y.; Lee, H. Y.; Kim, D. S.; Kim, W. B.; Lee, H. S., In vitro 

metabolism of a novel phosphodiesterase-5 inhibitor DA-8159 in rat liver 

preparations using liquid chromatography/electrospray mass spectrometry. Biomed. 

Chrom. 2002, 16 (6), 395-399. 

62. Ji, H. Y.; Lee, H. W.; Kim, H. H.; Kim, D. S.; Yoo, M.; Kim, W. B.; Lee, H. S., Role 

of human cytochrome P450 3A4 in the metabolism of DA–8159, a new erectogenic#. 

Xenobiotica 2004, 34 (11-12), 973-982. 

63. Yoshii, K.; Kobayashi, K.; Tsumuji, M.; Tani, M.; Shimada, N.; Chiba, K., 

Identification of human cytochrome P450 isoforms involved in the 7- hydroxylation 

of chlorpromazine by human liver microsomes. Life Sci. 2000, 67 (2), 175-184. 

64. Wójcikowski, J.; Boksa, J.; Daniel, W. A., Main contribution of the cytochrome P450 

isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the 

phenothiazine neuroleptic chlorpromazine in human liver—A comparison with other 

phenothiazines. Biochem. Pharmacol. 2010 80, 1252-1259. 

65. Guengerich, F. P.; Brian, W. R.; Iwasaki, M.; Sari, M. A.; Baeaernhielm, C.; 

Berntsson, P., Oxidation of dihydropyridine calcium channel blockers and analogs by 

human liver cytochrome P-450 IIIA4. J. Med. Chem. 1991, 34 (6), 1838-1844. 

66. Zhang, Z.; Chen, Q.; Li, Y.; Doss, G. A.; Dean, B. J.; Ngui, J. S.; Silva Elipe, M.; 

Kim, S.; Wu, J. Y.; DiNinno, F.; Hammond, M. L.; Stearns, R. A.; Evans, D. C.; 

Baillie, T. A.; Tang, W., In Vitro Bioactivation of Dihydrobenzoxathiin Selective 

Estrogen Receptor Modulators by Cytochrome P450 3A4 in Human Liver 

Microsomes:  Formation of Reactive Iminium and Quinone Type Metabolites. Chem. 

Res. Toxicol. 2005, 18 (4), 675-685. 

67. Obach, R. S.; Ryder, T. F., Metabolism of Ramelteon in human liver microsomes and 

correlation with the effect of fluvoxamine on ramelteon pharmacokinetics. Drug 

Metab. Disp. 2010, 38 (8), 1381-1391. 

68. Perloff, M. D.; von Moltke, L. L.; Court, M. H.; Kotegawa, T.; Shader, R. I.; 

Greenblatt, D. J., Midazolam and Triazolam Biotransformation in Mouse and Human 



 187 

Liver Microsomes: Relative Contribution of CYP3A and CYP2C Isoforms. J. 

Pharmacol. Exp. Ther. 2000, 292 (2), 618-628. 

69. Hijazi, Y.; Boulieu, R., Contribution of CYP3A4, CYP2B6, and CYP2C9 Isoforms 

toN-Demethylation of Ketamine in Human Liver Microsomes. Drug Metab. Disp. 

2002, 30 (7), 853-858. 

70. Usmani, K. A.; Rose, R. L.; Goldstein, J. A.; Taylor, W. G.; Brimfield, A. A.; 

Hodgson, E., In Vitro Human Metabolism and Interactions of Repellent N,N-Diethyl-

m-Toluamide. Drug Metab. Disp. 2002, 30 (3), 289-294. 

71. McKillop, D.; McCormick, A. D.; Millar, A.; Miles, G. S.; Phillips, P. J.; Hutchison, 

M., Cytochrome P450-dependent metabolism of gefitinib. Xenobiotica 2005, 35 (1), 

39-50. 

72. Mckillop, D.; Mccormick, A. D.; Miles, G. S.; Phillips, P. J.; Pickup, K. J.; Bushby, 

N.; Hutchison, M., In vitro metabolism of gefitinib in human liver microsomes. 

Xenobiotica 2004, 34 (11-12), 983-1000. 

73. Grace, J. M.; Kinter, M. T.; Macdonald, T. L., Atypical Metabolism of Deprenyl and 

Its Enantiomer, (S)-(+)-N,.alpha.-Dimethyl-N-Propynylphenethylamine, by 

Cytochrome P450 2D6. Chem. Res. Toxicol. 1994, 7, 286-290. 

74. Rydberg, P.; Ryde, U.; Olsen, L., Sulfoxide, Sulfur, and Nitrogen Oxidation and 

Dealkylation by Cytochrome P450. J. Chem. Theory Comput. 2008, 4 (8), 1369-

1377. 

75. Liu, X.; Wang, Y.; Han, K., Systematic study on the mechanism of aldehyde 

oxidation to carboxylic acid by cytochrome P450. J. Biol. Inorg. Chem. 2007, 12 (7), 

1073-1081. 

76. Larkin, J. D.; Markham, G. D.; Milkevitch, M.; Brooks, B. R.; Bock, C. W., 

Computational investigation of the oxidative deboronation of boroglycine, H2N-

CH2-B(OH)2, using H2O and H 2O2. J. Phys. Chem. A 2009, 113 (41), 11028-

11034. 

77. Jayathirtha Rao, V.; Muthuramu, K.; Ramamurthy, V., Oxidations of thioketones by 

singlet and triplet oxygen. J. Org. Chem. 1982, 47 (1), 127-131. 



 188 

78. Zhang, Z.; Li, Y.; Stearns, R. A.; Ortiz de Montellano, P. R.; Baillie, T. A.; Tang, W., 

Cytochrome P450 3A4-Mediated Oxidative Conversion of a Cyano to an Amide 

Group in the Metabolism of Pinacidil. Biochemistry 2002, 41 (8), 2712-2718. 

79. Taguchi, K.; Konishi, T.; Nishikawa, H.; Kitamura, S., Identification of human 

cytochrome P450 isoforms involved in the metabolism of S-2-[4-(3-methyl-2-

thienyl)phenyl]propionic acid. Xenobiotica 1999, 29 (9), 899-907. 

80. Jean, P.; Lopez-Garcia, P.; Dansette, P.; Mansuy, D.; Goldstein, J. L., Oxidation of 

Tienilic Acid by Human Yeast-Expressed Cytochromes P-450 2C8, 2C9, 2C18 and 

2C19. Eur. J. Biochem. 1996, 241 (3), 797-804. 

81. O'Donnell, J. P.; Dalvie, D. K.; Kalgutkar, A. S.; Obach, R. S., Mechanism-based 

inactivation of human recombinant P450 2C9 by the nonsteroidal anti-inflammatory 

drug suprofen. Drug Metab. Disp. 2003, 31 (11), 1369-1377. 

82. Afzelius, L.; Arnby, C. H.; Broo, A.; Carlsson, L.; Isaksson, C.; Jurva, U.; Kjellander, 

B.; Kolmodin, K.; Nilsson, K.; Raubacher, F.; Weidolf, L., State-of-the-art tools for 

computational site of metabolism predictions: Comparative analysis, mechanistical 

insights, and future applications. Drug Metabol. Rev. 2007, 39 (1), 61-86. 

83. Zaretzki, J.; Rydberg, P.; Bergeron, C.; Bennett, K. P.; Olsen, L.; Breneman, C. M., 

RS-predictor models augmented with SMARTCyp reactivities: Robust metabolic 

regioselectivity predictions for nine CYP isozymes. J. Chem. Inf. Model. 2012, 52 

(6), 1637-1659. 

84. Rydberg, P., Theoretical Study of the Cytochrome P450 Mediated Metabolism of 

Phosphorodithioate Pesticides. Journal of Chemical Theory and Computation 2012. 

85. Therrien, E.; Englebienne, P.; Arrowsmith, A. G.; Mendoza-Sanchez, R.; Corbeil, C. 

R.; Weill, N.; Campagna-Slater, V.; Moitessier, N., Integrating Medicinal Chemistry, 

Organic/Combinatorial Chemistry, and Computational Chemistry for the Discovery 

of Selective Estrogen Receptor Modulators with Forecaster, a Novel Platform for 

Drug Discovery. J. Chem. Inf. Model. 2012, 52, 210-224. 

 

 



 189 

 

 

 

 

 

Introduction to Chapter 6 

The previous chapter describes the accurate modeling of chemical reactions ongoing 

within a P450 enzyme. It is well documented that enzymes can be used in synthetic 

chemistry contexts as an efficient, environmentally-friendly, cheap alternative to metal-

based catalysts. In this context, P450 enzymes, bacterial or human isoforms, are good 

candidates to be employed in a laboratory setting. The enhanced specificity and 

selectivity of biocatalysts is, in this case, a restriction we wish to dissolve by engineering 

the protein with the goal of producing a different chemical product. With the docking and 

reaction modeling in hand, virtually engineering the enzyme is left to be accomplished. 

This chapter presents the first step to a virtual protein engineering software package. The 

development of statistical libraries and molecular mechanics energy functions to select 

three-dimensional conformations and accurately mutate side chain residues is described. 

To limit the number of variables, side chain residues are mutated to themselves – 

reconstructed – since a mutation to a different amino acid may entail a backbone motion, 

not covered in this work. Extensive validation experiments are also described within this 

chapter. 
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Chapter 6: 

Single-Point Mutation with a Rotamer Library Toolkit: 
Toward Protein Engineering 

 

This chapter has been submitted for publication and is reproduced from: “Single-Point Mutation 
with a Rotamer Library Toolkit: Toward Protein Engineering”, Pottel, J.; Moitessier, N.; Journal 
of Chemical Information and Modelling, 2015, submitted. American Chemical Society (2015).  

Author Contributions: this chapter consists of software design and statistical evaluation of its 
accuracy. The reported developments and applications were contributions of the author of this 
thesis 

 

6.1 Abstract 

 Biocatalysis, defined as the use of natural catalysts (e.g., enzymes) to perform a 

chemical transformation, is an ever-growing field of research characterized by efficient, 

environmentally-friendly and cost-saving chemical reactions. Enzymes are highly praised 

for their specificity, however this is not without its flaws. Protein engineers have long 

been hard at work to harness this natural source of regio-, stereo- and chemo-selectivity in 

order to carry out chemistry (reactions and/or substrates) not previously achieved with 

these enzymes. This is most commonly achieved by creating a rapid evolution in the flask 

resulting in mutated enzymes.  

 The extreme labor demands and exponential number of mutation combinations have 

induced computational advances in this domain. Due to the multiple factors at play 

including thermal stability, activity and selectivity, efforts directed at designing enzymes 

de novo have not yet produced the expected breakthrough. As an alternative to de novo 

protein design, we propose to modulate the enzyme chemistry through single point 

mutations of an existing enzyme that already demonstrates stability and activity. The first 

step towards this approach is to predict the correct conformations upon mutating residues 

(i.e., rebuilding side-chains). For this purpose, we opted for a combination of molecular 
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mechanics and statistical data. Herein, we have developed automated computational tools 

to extract protein structural information and created conformational libraries dependent 

on a variable number of criteria for each amino acid side-chain. We have also developed 

the necessary tool to apply the mutation and optimize the conformation accordingly. We 

obtained excellent accuracy with an overall average RMSD of 0.91 Å and 1.01 Å for the 

18 flexible natural amino acids within two distinct sets of over 3000 and 1500 side-chain 

residues respectively. Ultimately, since our in silico protein engineering outlook involves 

using our docking software, FITTED/IMPACTS, we applied our mutation protocol to a 

benchmarked dataset for self- and cross-docking. Our side-chain reconstruction does not 

hinder our docking software, demonstrating differences in accuracy of 2.1% and 1.6% 

respectively for sets including over 200 protein structures. 

 

6.2 Introduction 

 Protein engineering has become a viable and well-sought after approach to 

complement synthetic chemistry by using biocatalysts for development of new chemical 

reactions.1 The concept of biocatalysis can date all the way back to 1858 with Louis 

Pasteur’s use of Pencillium glaucium as an enzyme catalyst2 (fermentation dating back 

much further). It has become a very active area of research today in the 21st century3 

which aims to provide complementary tools to small molecule-catalyzed asymmetric 

synthesis. Biocatalyzed transformations can often be carried out under mild reaction 

conditions, with high stereo- regio-, and chemoselectivity, as well as environmental 

friendliness. Naturally occurring enzymes carry out a large variety of transformations 

including kinetic resolution of racemates, regioselective functionalization of molecules 

and asymmetric chemical transformations.4 The main drawback of most biocatalysts is 

their restricted substrate specificity, which has significantly limited their applicability in 

catalyzing new, industrially-relevant reactions.  

 Biocatalysis has been classified into three major periods of laboratory development 

(LD) and the results are well documented:5 (1) immobilization of native enzymes to carry 

out specific chemical transformations, (2) engineering of enzymes to enable the binding 

of new substrates and thus new synthetic routes and (3) directed evolution involving 
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random selection and screening in order to simulate Darwinian evolution in a rapid 

fashion. 

 Currently, we are likely in a fourth period of LD where advances in computational 

power, tools and understanding have led to a new gold standard: complete enzyme 

design.6-7 The combined efforts of experimental and computational research will likely 

lead to this achievement. While there are excellent reports of success in this domain,8 it is 

believed that this technique is far from the potential it could reach. If a parallel set of 

periods of computational development (CD) in protein engineering is drawn: (1) growth 

of visual tools for crystal structures and molecular dynamics simulations, (2) in silico 

prediction of mutations in existing enzymes to accept new substrates, (3) iterative process 

to create a significantly new variety of enzymes. The next stage is where LD meets CD to 

create new biocatalysts for new chemical reactions altogether.  

 Many limitations were overcome to achieve (2) and (3) of LD and many remain to be 

conquered on the computational parallel; we propose that (2) and (3) of CD have not been 

fully explored as the Holy Grail (complete enzyme design) is being chased too eagerly. 

Challenges, from the LD perspective, include enhancing protein stability and enzyme 

activity (regio-, stereo- and chemo-selectivity). Many research groups have attempted to 

predict protein thermal stability9-17 using a variety of techniques and software. Similarly, 

from the CD side, there has been effort to alter regio- and stereoselectivity by way of 

protein mutation18-22 or ligand variation.23 Thus, the community has achieved parts of (2) 

of CD and now a more efficient, exhaustive predictive power is required to move to, and 

beyond, (3) of CD where computers can independently suggest one, or more, side-chain 

mutations to enable a new specificity.  

 Herein we report our efforts to begin the development of such a software package 

where it is anticipated that, given an enzyme with a known mechanism of action (e.g., 

heme-containing monooxygenase) as well as a desired reaction product (e.g., 

hydroxylated substrate), side-chain mutations will be automatically proposed after 

considering regio- and stereoselectivities as well as enzyme thermal stability. 

Specifically, cytochrome P450BM3 is known to oxidize fatty acids, however mutations 

have enabled the oxidation of indole to create indigo; our long-term goal is to be able to 
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identify these mutations. Furthermore, once validated, we will be able to propose novel 

mutations in other cytochrome P450s to carry out never-before-seen oxidations.  

 Many considerations are vital to such a prediction such as side-chain flexibility, 

backbone motions and thermostability; however, it is believed that making small, subtle 

changes buried in the binding site (e.g., single point mutation) of a sizeable enzyme will 

not completely alter protein conformations or stability. Thus, this goal is within reach and 

may offer an alternative to de novo enzyme design where the creation of a completely 

new protein sequence is based on templates and a desired function.  

 The very first step to achieve such a milestone is to successfully predict side-chain 

conformations, often referred to as rotamers, upon modifying one residue in the protein 

sequence. We report the development of protocols to efficiently generate rotamer libraries 

and to select the correct rotamer based on a combination of statistics and molecular 

mechanics (MM). We further demonstrate its capabilities by applying it to “mutate” 

residues to themselves by removing and reconstructing a given side-chain, herein termed 

“self-mutation”, and then further testing it in reproducing self- and cross-docking results 

previously reported from our lab.24-25 This last validation assessed the quality of the 

structures at the atomic level. 

 

6.3 Theory and Current State 

6.3.1 Virtual protein engineering 

 Experimental protein engineering is often attempted using a technique denoted as 

iterative saturation mutagenesis (ISM).26 The first step of this methodology is to identify 

one or more residues that are deemed relevant and randomly mutate them to create 

focused libraries to screen.27 This involves many labor-intensive steps that could be 

simulated, anticipated and planned by a computer. Furthermore, the number of 

possibilities when mutating residues grows exponentially with the number of side-chains 

selected and thus a virtual protocol evaluating these prospective changes would be 

desired.28 In order to have a complete design package, it has been proposed that four 

items are required:29-30 (1) an accurate protein backbone motion predictor, (2) an 
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exhaustive list of discrete rotamer conformations for side-chains, (3) an optimization 

protocol to efficiently search the library of conformations and (4) a method to score, rank 

and correctly select the "best" side-chain conformations. 

 In some cases, an entire protein fold can be proposed31 however a protein structure 

can often be obtained from crystal structure databanks,32 homology models,33 NMR34 or 

molecular dynamics simulations.35 Currently, the most widely known computational tools 

available to tackle some or all of the above steps are SCHEMA, ProSAR and ROSETTA 

although there are many other supporting algorithms that can be used to accomplish 

individual tasks. SCHEMA36 investigates the effect of DNA recombination on the 

structural integrity of proteins and has been applied to determine if functional integrity 

can be retained as well.37 This software has been used successfully and is well 

represented in the literature.38-40 ProSAR41-42 is a protein structure-activity relationship 

approach that applies the concepts of QSAR to protein engineering. This is a simulation 

of directed evolution and can have the desired results.43 ROSETTA,44-45 likely the most 

impacting software, has been shown to be able to design effective enzymes from scratch. 

This protocol uses quantum mechanics to build a transition state and then uses template 

protein structures to create a binding cavity to surround this reactive state. It has been 

successful with several reaction types and has been improved over the years.7,46-50 We 

direct the reader to an excellent review on available techniques that tackle the different 

elements of protein engineering (although not de novo design).51 

 

6.3.2 Complexity in predicting mutation  

 The number of properties that are targeted in protein engineering speaks to the 

complexity of the problem, especially from a computational standpoint. Thus far, we have 

mentioned many concerns, some of which are subtler than others. The thermostability and 

entropy change of the protein, including the folding, rigidity and solvent considerations, 

are major hotspots.52-56 The general structure prediction, if attempting de novo design, is 

of paramount importance and many methods have been reviewed.57 What is often not 

mentioned is the need to accurately simulate the transition-state of the chemical reaction 

that is under investigation. Within de novo design, this is considered by building a 
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stabilizing binding cavity surrounding a proposed transition-state.49 However, the effect 

that the engineered protein will have on this reactive state is unclear and the quantum 

mechanics process can cause CPU time to be a major concern.  

 Our approach here is to incorporate transition-state modeling with a mutated protein 

design. In order to accomplish this task, we will attempt to minimize the number of 

unknowns and difficult variables to predict. This follows the suggestion from Peisajovich 

and Tawfik that stated, although “you get what you screen for” in directed evolution, you 

should also “select for what is already there”.58 Their statement was made on the premise 

of beginning from a small amount of catalytic activity with the goal of improving it, 

however we believe this can apply to the entire rational design paradigm. Additionally, 

Baker outlined many of the remaining challenges ahead and emphasized the risk of low 

catalytic efficiency regardless of ideal binding site structure in novel designs.59 At this 

point, since we plan to mutate binding site residues only, we assume the mechanism of 

entry will remain unchanged as will the long distance electrostatics and catalytic 

machinery and consequently need to ensure the accuracy of our side-chain mutations. 

 

6.3.3 Side-chain importance and rotamer libraries 

 In this vein, if we begin from known protein structures, the first step to successfully 

predict the effects of a side-chain mutation is to accurately reposition this new residue 

with respect to its neighbors and in space. In fact, side-chain flexibility is greater than that 

of the backbone, although more localized, and predicting their conformations has long 

been a sought after endeavor.60-61 The conformational space, if considering all 

conformations for all side-chains, in even a small protein is computationally 

inaccessible.62-63 Thus, to achieve reasonable accuracy, many groups have created 

rotamer libraries64 – a set of discrete conformations that each amino acid can have within 

a protein. To apply these libraries, an evaluation of each rotamer is required for selection 

of the “correct” (i.e., experimentally observed) one, regardless of whether self-mutation 

or a true mutation is the goal. There are two central approaches to rotamer libraries: 

statistics65-71 and force field72-75 based. There are also those that combine the two.76-80 For 

statistical methods, the data used and the clustering properties are critical. If poor 
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resolution protein structures are used then the output will be no better. Similarly is the 

case for libraries that are either too specific or non-specific. The clustering by similarity 

of observed conformations must not be so specific that there is little statistical relevance 

(for example, 15° in Figure 6.1) yet it must not be so unspecific that the distribution is too 

wide and not useful (120° in Figure 6.1 loses a lot of the nuances from the actual 

distribution). In this latter case, a single conformation will be used to represent a large 

variety of conformations. 

 

Figure 6.1. The balance for resolution (left) and, consequently, clustering (right) conformational 
data. 

 Likewise to backbone conformations, discrete and/or preferred conformations for 

side-chains can be found in nature that can be exploited. As the structural information 

contained within the protein data bank (PDB) grows, more specific distributions can be 

established that can each contain a significant amount of data;81 libraries have become 

backbone-dependent for better accuracy. For physics based methods, the primary factor is 

often steric clashes however other terms have been emphasized such as hydrogen bonds,66 

disulfide bridges75 and solvation.82  

 

6.3.4 Development of a rotamer library 

 Recently, side-chain conformation was shown to be important for improving protein-

protein docking as slight steric clashes can be removed.83 Current force fields can be very 

sensitive to attractive or repulsive interactions and thus minor adjustments can have a 
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large impact on docking results84 and even stability predictions.85 Herein we report our 

development of a new rotamer library/scoring method based on both statistics and physics 

in order to modify the reconstruction protocol already implemented in PREPARE, a 

program of the FITTED suite, our docking software.24 The motivation behind the creation 

of another rotamer library is three-fold. First, the number of PDB structures has grown 

significantly in recent years (approx. 10000 new structures per year32) and new data 

results in a more accurate statistical representation. Second, with our own parameters and 

automated protocol, a more focused/biased library could easily be generated, if necessary; 

we are not only generating a new rotamer library, but also tools to repeatedly collect new 

information and create new libraries. For example, if it was identified in a given set of 

proteins that neighboring residues had a significant effect on side-chain conformations, 

then we could analyze the database and encode this as a clustering criterion. Or, if we 

determine that this broad rotamer library is unsatisfactory for modeling side-chains 

conformations in a given class of proteins, like in the case of DFG-in and –out in the 

kinase family,24 it would be quick and easy to only search these enzymes to produce a 

focused rotamer library. Finally, and perhaps most importantly, for an effective protein 

engineering software to be used by experimentalist biochemists, the protocol should be 

integrated and automated in a user-friendly manner. Should the rotamer library/selection 

criteria exist in a third-party software, this detracts from the likelihood it is used by the 

general chemistry community. 

 

6.4 Implementation 

6.4.1 Statistical library and clustering 

 To gather the proper data, the entire available PDB was queried and filtered for 

structures that were deemed appropriate for our study. Since we hope to create a general-

purpose software package, we did not discriminate between different protein families or 

functions. In order to avoid overtraining for a given protein (e.g. α-thrombin has 355 

structures deposited as of Aug. 2015), a set of non-redundant protein chains was uploaded 

from the PDB. Residues with B-factors above 50 (poorly resolved) were removed due to 

poor resolution resulting in a dataset of 18752 structures which contained a total of 
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approximately 3.3 million residues, distributed amongst the different amino acids as 

shown in Table 6.1. Our program PREPARE was modified to read PDB files and collect 

structural information on each residue. Among the information gathered for a given 

residue was: torsion angles and the secondary structure – alpha helix, beta sheet or loop – 

that this residue pertained to; the process was automated and could be applied to any data 

set of PDB structures.  

Table 6.1. Amino acid distribution amongst 18752 PDB structures 

Amino Acid Counts Amino Acid Counts 

ARG 191239 LYS 203085 
ASN 163870 MET 65779 
ASP 224480 PHE 165908 
CYS 51036 PRO 184096 
GLN 136905 SER 232645 
GLU 244631 THR 215771 
HIS 93218 TRP 55213 
ILE 239549 TYR 141297 
LEU 387365 VAL 293446 

 

 The next challenge was to cluster the large amount of data to obtain a rotamer library 

that could be evaluated for its ability. We defined the conformation of a residue as being 

the set of torsion angles that describe the geometry of the side-chain. Thus, we selected 

different resolution values to create bins, and for each torsion angle we assigned it to a 

bin according to Eq. 6.1.  

      
                      

   
             

             
                                 (6.1) 

 The side-chain was then assigned a value corresponding to its bin number, while 

accounting for the circular redundancy (0° = 360°). The bin value was established 

according to Eq. 6.2; each individual angle was represented by a 2-digit value, resulting 

in an 8-digit code. A constant of 10 was added to avoid leading 0s (1 would have to be 

01). There are 4 codes since the largest side-chains, arginine and lysine, each have 4 
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torsion angles that need to be evaluated (the final torsion in arginine is always 180° 

relative) 

                                          

                                         (6.2) 

 Once complete, the bin is reviewed and if it already exists in duplicate then they are 

grouped together; this method was effective for memory concerns due to minimal 

information storage. The torsion angle values were continuously summed and never 

stored, enabling us to obtain an average value for each angle in each cluster. A 2nd 

iteration and slightly modified algorithm allowed us to also obtain a standard deviation to 

establish the nature of the distribution of each angle. Both procedures were automated and 

repeated for all side-chains from all proteins with different resolutions (Table 6.2). The 

libraries can be found online from Molecular Forecaster Inc. 

Table 6.2. Clustering results using different resolution values. Number of clusters with 
each set of criteria is given. 

Res.: 15° 30° 60° 120° 

Sec. 
Struct.: Loop Beta-

sheet 
Alpha-
helix Loop Beta-

sheet 
Alpha-
helix Loop Beta-

sheet 
Alpha-
helix Loop Beta-

sheet 
Alpha-
helix 

ARG 9559 22154 19787 3778 5864 5233 751 854 815 80 80 79 

ASN 1019 1087 898 302 318 273 83 86 79 18 18 18 

ASP 995 1108 997 292 317 305 85 91 79 18 20 19 

CYS 24 24 24 12 12 12 6 6 6 3 3 3 

GLN 4209 7536 6630 1405 1881 1729 282 355 335 54 54 57 

GLU 5326 9056 9187 1569 2097 2097 313 387 365 54 56 55 

HIS 885 1038 840 274 301 261 82 80 70 18 18 18 

ILE 674 1035 850 239 304 273 68 85 79 19 23 21 

LEU 836 1133 880 265 330 271 79 94 85 21 24 19 

LYS 8744 19682 18663 3539 5602 5148 735 843 805 80 80 80 

MET 2203 3418 2615 810 965 765 171 183 158 27 27 27 

PHE 805 946 756 251 277 228 74 80 70 18 18 18 

PRO 126 N/A N/A 46 N/A N/A 18 N/A N/A 9 N/A N/A 

SER 24 24 24 12 12 12 6 6 6 3 3 3 

THR 83 107 89 42 49 43 20 23 22 9 9 9 

TRP 574 781 649 196 240 200 62 69 66 18 18 16 

TYR 738 920 747 246 264 234 76 76 68 18 18 19 

VAL 76 108 81 35 45 37 17 20 18 7 8 7 
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 In order to select one of these libraries, we evaluated the distribution at 5° resolution 

– a fine grain – with the goal of establishing how our coarse-grained libraries (60°, 120°) 

can reproduce the true distribution. For visualization purposes, this was illustrated for 

only one angle (2-dimensional result) for a small set of amino acids in a given 

conformation; the chosen angles represent sp3-sp3 and sp3-sp2 bonds. The coarse-grained 

plots were obtained assuming a Gaussian distribution using the calculated average angle 

and standard deviation (Figure 6.2) within each bin.  

 

Figure 6.2. Comparing fine and coarse-grained rotamer distributions for different amino acids. 
The abundance has been normalized to 60° in each case; the relative peak heights are still relevant 
at 120° however the absolute peak heights are not. 

 Based on inspection of these curves as well as chemical intuition – the need to 

explore all gauche/staggered/eclipsed combinations – both 60° and 120° libraries offer 

potential for success. From this point forward, the finer resolution libraries, 15° and 30°, 

were omitted for size concerns and a lack of easy representation of the majority of the 

torsion space. 
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6.4.2 Testing different side-chain libraries 

 Since the proposed usage of such a rotamer library is to mutate amino acids within 

the binding site to affect a protein’s function, we “trained” our criteria selection 

(resolution, library size, conformation scoring) on a set of protein structures that were 

preferred because of the existence of mutation data for these enzymes, i.e. they could be 

used in further protein engineering studies. The word “trained” may be inappropriate 

since the only training is with regard to some of the criteria and does not in any way 

influence the data output and could essentially not be biased. The set consisted of 98 PDB 

structures (see Appendix 4 for full list) and using PROCESS part of the FORECASTER 

platform,86 we established a list of binding site residues; any side-chain within 7 Ǻ (a 

default parameter in PROCESS) of the crystallized ligand was identified. This resulted in a 

data set of 3179 residues distributed amongst the amino acids as shown in Table 6.3.  

Table 6.3. Amino acid distribution within the binding site of 98 and 68 PDB structures 
making up the training and testing sets respectively. The docking set is also presented. 

Amino 
acid 

“Training” 
Set Counts % “Testing” 

Set Counts % Difference Docking 
Set Count % 

ARG 226 7.11 92 5.36 -1.75 7 3.04 
ASN 170 5.35 102 5.94 0.59 10 4.35 
ASP 176 5.54 92 5.36 -0.18 11 4.78 
CYS 63 1.98 25 1.46 -0.53 3 1.30 
GLN 82 2.58 34 1.98 -0.60 7 3.04 
GLU 112 3.52 66 3.84 0.32 13 5.65 
HIS 113 3.55 52 3.03 -0.53 19 8.26 
ILE 253 7.96 203 11.82 3.86 13 5.65 
LEU 322 10.13 218 12.69 2.56 27 11.74 
LYS 138 4.34 94 5.47 1.13 9 3.91 
MET 79 2.49 43 2.50 0.02 12 5.22 
PHE 192 6.04 141 8.21 2.17 14 6.09 
PRO 164 5.16 91 5.30 0.14 5 2.17 
SER 212 6.67 97 5.65 -1.02 24 10.43 
THR 246 7.74 131 7.63 -0.11 5 2.17 
TRP 153 4.81 34 1.98 -2.83 13 5.65 
TYR 185 5.82 50 2.91 -2.91 17 7.39 
VAL 293 9.22 153 8.91 -0.31 21 9.13 

TOTAL 3179 100 1718 100 0.00 230 100 
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 Next, to evaluate each rotamer library and set of criteria, these ~3200 residues were 

individually, one at a time, deconstructed from the protein, keeping only the 4 backbone 

atoms (N, C, O, Cα), and then reconstructed using data from the rotamer library. To rank 

the different settings, a root mean squared deviation (RMSD) was calculated between the 

reconstructed and the crystal structure side-chains (excluding the 4 backbone atoms and 

Cβ). In the final instance, an evaluation of the torsions is also given. The progress towards 

a sensible, well thought out library selection will now be described. 

 We began with the coarser of the two libraries, a resolution of 120°. Furthermore, we 

did not consider backbone secondary structure at the outset and used only those 

conformation clusters within the loop grouping (although these conformations were 

almost always represented in the beta-sheet and alpha-helix groupings as well). The 

method of selection of a conformation was varied: a random choice from the library, the 

most abundantly observed conformation, evaluating every single conformation with a 

MM force field, as well as allowing some leniency (flexibility by rotating torsion angles 

clockwise or counter-clockwise within a restricted range) to each average angle were all 

attempted. The results are summarized in Table 6.4. The “worst” row indicates the 

maximum RMSD of all the methods listed.  

 The 60° resolution library was evaluated (“60small”, Table 6.4) with the same set of 

criteria. We used a small set, using only the top 10 conformations per residue and then we 

expanded the number of clusters considered by the software to 34 (in the rotamer library 

by Lovell et al.,68 the library previously implemented in PREPARE, a maximum of 34 

conformations were found – “60large”, Table 6.4). We thought to probe deeper and 

expand the library size to top 70, (“60XL”, Table 6.4). At this point, we included a 

measure of probability for the selected conformation (“Scoring”, Table 6.4). Each 

conformation, for each amino acid, was assigned a Boltzmann-weighted energy based on 

its abundance within the library (Eq. 6.3) in order to add a statistical consideration to the 

selection process. Consequently, the most observed conformation has an energy penalty 

of 0 kcal/mol and wide vs. narrow distributions are discriminated in an intelligent 

manner. 
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                              (6.3) 

 where kB is the Boltzmann constant and T is the temperature (298K). 

 Subsequently, we further expanded the number of conformations for arginine and 

lysine (top 100) without too large a computational cost, and we examined a weighting 

scheme for the statistical energy, Econformation (“60XXL/w = 0.25-5”, Table 6.4). Finally, a 

consideration for secondary structure was added (the percentages and order of the 

conformation clusters differed) (“sec”, Table 6.4). For comparison, we also evaluated the 

120° resolution library including the scoring and the secondary structure and observed 

similar results.  
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Table 6.4. Training set results: average RMSD upon side-chain reconstruction using 
different rotamer libraries and selection criteria. (W.AVG: weighted average; Sc: Scoring, 

weight in brackets; gradient red to green for improved RMSD) 

  ARG ASN ASP CYS GLN GLU HIS ILE LEU LYS 
 Counts: 226 170 176 63 82 112 113 253 322 138 

12
0 

Worst 7.42 3.83 3.88 3.16 5.02 4.99 5.25 3.75 3.68 5.81 
Random 3.80 2.43 2.40 2.08 2.86 2.85 3.52 2.03 2.50 3.29 

Abundant 3.12 1.52 2.02 1.09 2.18 2.12 3.18 1.21 1.54 2.71 
All 2.29 0.81 1.03 0.51 1.36 1.46 0.94 1.22 0.89 1.73 

Flexibility 1.93 0.81 1.02 0.45 1.29 1.46 0.94 1.17 0.94 1.80 
Flex Wide (20-5) 1.98 0.80 1.00 0.42 1.25 1.45 0.91 1.15 1.05 1.98 

60
sm

al
l Worst 7.68 3.65 3.63 3.40 5.11 4.92 5.26 3.74 3.72 5.77 

Random 3.80 2.50 2.51 2.45 2.43 2.29 3.51 2.01 2.32 3.00 
Abundant 3.13 1.50 1.98 1.10 2.17 2.13 3.19 1.21 1.55 2.74 

All 2.47 0.68 0.78 0.54 1.47 1.81 0.99 1.12 1.06 2.20 
Flexibility 2.52 0.66 0.76 0.46 1.44 1.72 0.97 1.09 1.11 2.09 

60
la

rg
e 

Worst 7.68 3.79 3.76 3.40 5.29 4.92 5.24 3.81 4.06 6.04 
Random 3.82 2.17 2.30 2.45 2.39 2.62 3.18 1.73 2.52 3.12 

Abundant 3.13 1.50 1.98 1.10 2.18 2.13 3.19 1.21 1.55 2.74 
All 2.13 0.89 0.98 0.53 1.12 1.65 0.84 1.21 1.14 1.83 

Flexibility 1.87 0.86 0.95 0.46 1.09 1.58 0.95 1.14 1.18 1.82 
Flex Wide (10-2.5) 1.78 0.85 0.96 0.52 1.17 1.54 0.96 1.15 1.19 1.82 

60
X

L Flexibility 1.79 0.87 1.03 0.46 1.17 1.61 0.98 1.16 1.19 1.78 
Flex Wide (10-2.5) 2.07 0.84 0.99 0.52 1.20 1.58 0.99 1.17 1.20 1.74 
Flex + Sc (W=1.00) 1.79 0.81 0.91 0.45 1.18 1.47 0.86 1.13 0.59 1.75 

60
X

X
L 

Flex + Sc (W=0.25) 1.82 0.86 0.97 0.47 1.19 1.63 0.88 1.16 0.94 1.72 
Flex + Sc (W=0.50) 1.83 0.86 0.92 0.46 1.17 1.54 0.91 1.14 0.76 1.69 
Flex + Sc (W=0.75) 1.84 0.84 0.91 0.45 1.19 1.50 0.87 1.14 0.68 1.71 
Flex + Sc (W=1.00) 1.83 0.81 0.91 0.45 1.18 1.47 0.86 1.13 0.59 1.70 
Flex + Sc (W=1.25) 1.82 0.79 0.90 0.45 1.17 1.42 0.82 1.11 0.57 1.69 
Flex + Sc (W=1.50) 1.81 0.78 0.89 0.45 1.16 1.43 0.80 1.11 0.61 1.70 
Flex + Sc (W=1.75) 1.78 0.77 0.89 0.45 1.14 1.41 0.84 1.10 0.63 1.70 
Flex + Sc (W=2.00) 1.78 0.77 0.89 0.44 1.14 1.41 0.82 1.12 0.63 1.69 
Flex + Sc (W=5.00) 1.72 0.66 0.90 0.38 1.23 1.44 0.83 1.10 0.63 1.73 

60
X

X
L 

Flex + Sc (W=0.00) 
+ sec 1.86 0.89 1.05 0.51 1.14 1.51 1.04 1.16 1.19 1.71 

Flex + Sc (W=1.00) 
+ sec 1.79 0.80 0.89 0.40 1.13 1.44 0.91 1.14 0.56 1.64 

Flex + Sc (W=2.00) 
+ sec 1.75 0.69 0.90 0.33 1.12 1.36 0.91 1.14 0.54 1.61 

12
0 

X
X

L 

Flex + Sc (W=1.00) 
+ sec 1.94 0.73 0.93 0.37 1.17 1.41 0.94 1.14 0.56 1.74 
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  MET PHE PRO SER THR TRP TYR VAL AVG W. 

AVG 

 Counts: 79 192 164 212 246 153 185 293 3179 3179 

12
0 

Worst 5.66 5.43 3.81 2.66 2.83 7.25 6.42 3.01 4.66 4.49 
Random 3.16 3.82 2.21 1.65 1.75 4.25 4.06 1.81 2.80 2.71 

Abundant 2.09 1.83 0.66 1.59 1.30 3.34 2.62 1.13 1.96 1.87 
All 1.12 0.67 0.68 1.05 0.54 1.17 1.03 0.39 1.05 1.02 

Flexibility 1.06 0.55 0.68 0.97 0.48 0.98 0.84 0.36 0.98 0.96 
Flex Wide (20-5) 1.18 0.54 0.68 0.96 0.52 1.05 0.68 0.37 1.00 0.97 

60
sm

al
l Worst 4.59 5.50 3.25 2.88 2.85 7.12 6.45 2.91 4.58 4.44 

Random 2.67 3.68 0.58 1.76 1.75 4.01 3.44 1.89 2.59 2.52 
Abundant 2.12 1.85 0.64 1.60 1.30 3.45 2.65 1.14 1.97 1.88 

All 0.98 0.63 0.66 1.11 0.56 1.46 1.01 0.38 1.11 1.07 
Flexibility 0.79 0.51 0.67 1.04 0.52 1.23 0.82 0.36 1.04 1.02 

60
la

rg
e 

Worst 5.09 5.79 3.86 2.88 2.85 7.09 6.59 2.89 4.72 4.57 
Random 2.82 2.74 1.84 1.76 1.76 4.43 3.45 1.97 2.61 2.54 

Abundant 2.12 1.85 0.64 1.60 1.30 3.45 2.65 1.14 1.97 1.88 
All 1.12 0.67 0.67 1.12 0.52 1.20 1.08 0.39 1.06 1.05 

Flexibility 1.04 0.59 0.67 1.05 0.53 1.10 0.90 0.36 1.01 0.99 
Flex Wide (10-2.5) 1.00 0.54 0.67 0.99 0.51 0.98 0.76 0.37 0.99 0.97 

60
X

L Flexibility 1.24 0.60 0.67 1.05 0.53 1.03 0.86 0.36 1.02 1.00 
Flex Wide (10-2.5) 1.33 0.57 0.67 0.99 0.51 0.93 0.77 0.37 1.02 1.00 
Flex + Sc (W=1.00) 0.80 0.55 0.67 0.94 0.42 1.13 0.85 0.40 0.93 0.89 

60
X

X
L 

Flex + Sc (W=0.25) 1.08 0.59 0.67 0.99 0.47 1.06 0.87 0.37 0.99 0.96 
Flex + Sc (W=0.50) 0.86 0.56 0.67 0.95 0.44 1.09 0.84 0.38 0.95 0.92 
Flex + Sc (W=0.75) 0.79 0.54 0.67 0.95 0.45 1.13 0.85 0.39 0.94 0.91 
Flex + Sc (W=1.00) 0.80 0.55 0.67 0.94 0.42 1.13 0.85 0.40 0.93 0.89 
Flex + Sc (W=1.25) 0.79 0.54 0.67 0.94 0.42 1.10 0.85 0.41 0.91 0.88 
Flex + Sc (W=1.50) 0.76 0.52 0.67 0.93 0.42 1.15 0.85 0.42 0.91 0.88 
Flex + Sc (W=1.75) 0.76 0.53 0.67 0.92 0.40 1.15 0.84 0.41 0.91 0.88 
Flex + Sc (W=2.00) 0.75 0.54 0.67 0.91 0.44 1.15 0.84 0.43 0.91 0.88 
Flex + Sc (W=5.00) 0.81 0.60 0.67 0.95 0.58 1.06 0.87 0.53 0.93 0.90 

60
X

X
L 

Flex + Sc (W=0.00) 
+ sec 1.22 0.60 0.67 1.01 0.53 1.06 0.82 0.35 1.02 1.00 

Flex + Sc (W=1.00) 
+ sec 0.76 0.48 0.67 0.96 0.44 1.16 0.77 0.39 0.91 0.87 

Flex + Sc (W=2.00) 
+ sec 0.74 0.50 0.67 0.93 0.50 1.14 0.78 0.45 0.89 0.87 

12
0 

X
X

L 

Flex + Sc (W=1.00) 
+ sec 0.76 0.49 0.68 0.93 0.44 0.92 0.80 0.39 0.91 0.88 
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6.5 Results and Discussion 

6.5.1 Analysis of performance 

 In general, the average RMSD improves as we consider more components of the 

library and can be attributed to the MM consideration to rank the different potential 

conformations, as well as greater coverage of the conformational space. For example with 

ARG shown in Figure 6.3, using 60° resolution, the most abundant conformation (7.66%) 

gives RMSD=4.05 Å, rank 8 (2.36%), selected from the top 10, has RMSD=2.55 Å and 

rank 18 (1.51%), selected from the top 34, has RMSD=0.64 Å. In fact, the top 10 

conformations in our dataset included less than 85% of the conformation space for 11 of 

the 18 amino acids and less than 55% for 5 (Table 6.5). The results demonstrated that 

while some of the smaller amino acids showed improvement, the large, flexible ones 

became worse. Including the top 34 conformations and subsequently the top 70, only two 

amino acids being below 80% of the conformational space, led to significant reductions in 

the RMSD of these floppy side chains. The top 100 conformations were included for 

ARG and LYS to achieve 80% coverage. This significantly reduces the odds that the 

correct conformation is not considered, as was the case with the smaller libraries. 

 

Figure 6.3. Benefit of a larger rotamer library. PDB code: 1OVD; ARG57. Using 60° resolution: 
most abundant conformation (red), rank 8 (orange), rank 18 (green), with flexibility (blue). 
Ligand in purple, grey is crystal structure. Hydrogen atoms removed for clarity. 
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Table 6.5. Coverage of the conformational space (total percentage) for different number 
of clusters included from a 60° resolution library 

 
Top 34 
(120°) Top 10 Top 34 Top 70 Top 70  

(ARG/LYS 100) 

ARG 90.89 32.10 60.40 74.45 79.87 
ASN 100.00 78.02 98.54 99.95 99.95 
ASP 100.00 82.08 98.88 99.95 99.95 
CYS 100.00 100.00 100.00 100.00 100.00 
GLN 95.33 50.72 78.78 89.66 89.66 
GLU 94.92 53.39 77.50 89.31 89.31 
HIS 100.00 80.41 97.92 99.92 99.92 
ILE 100.00 93.12 99.12 100.00 100.00 
LEU 100.00 90.08 98.93 99.96 99.96 
LYS 92.70 49.07 69.12 78.97 83.50 
MET 100.00 54.97 83.89 93.10 93.10 
PHE 100.00 83.74 98.42 99.98 99.98 
PRO 100.00 97.64 100.00 100.00 100.00 
SER 100.00 100.00 100.00 100.00 100.00 
THR 100.00 99.75 100.00 100.00 100.00 
TRP 100.00 78.98 97.85 100.00 100.00 
TYR 100.00 84.76 98.66 99.96 99.96 
VAL 100.00 99.62 100.00 100.00 100.00 

 

 Moreover, as we allow for some flexibility from the average (a range of +/- 5° with 

2.5° increments) we see a further refinement where the RMSD drops to 0.32 Å (Figure 

6.3). We attempted a much wider flexibility to represent the approximate standard 

deviations in the clusters (+/- 20° at 5° intervals for 120°, +/- 10° at 2.5° intervals for 

60°), however this led to poor success in most cases with a significant increase in 

computational demand. 

 With regard to the preference of 60° over the 120° clustering, the results were very 

similar. In fact, for some residues, such as LEU, the results suggested that 120° resolution 

was a wiser selection. However, for a flexible residue like ARG, it appeared that 60° was 

preferred with an average 0.14 Å improvement in RMSD; in some cases, important 

conformations were not even considered. To demonstrate, Figure 6.4 shows chosen 
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conformations using 120° resolution and flexibility, rank 33 (0.69%), resulting in an 

RMSD=4.89 Å and using 60° resolution and flexibility, rank 37 (0.63%), having an 

RMSD=0.55 Å where this conformation does not exist in the former library. Ultimately, 

120° may better model a few of the amino acids based on the bond types (sp3 – sp3 vs. sp2 

– sp3 have different placement/number of minima) however our goal was to opt for one 

set of criteria to be used as generally as possible without biasing our selection. In the 

future, one could envision different sized rotamer libraries being used dependent on the 

amino acid in question or, more specifically, on each bond type. 

 

Figure 6.4. Preference for 60° resolution over 120°. PDB code: 1JMF; ARG218. Chosen 
conformations: using 120° resolution, rank 33 (red) and using 60° resolution, rank 37 (green). 
Ligand in purple, grey is crystal structure. Hydrogen atoms removed for clarity. 

 The statistical component within the scoring is where we saw the greatest 

improvement, especially for LEU and MET. LEU is small, hydrophobic and can often fit 

in many different conformations. Thus without any statistical consideration, very minor 

interactions will dominate in MM. For example, using 60° resolution without any 

statistical weighting, the selected conformation was rank 58 (0.02%) giving an 

RMSD=1.76 Å, whereas, with scoring W=1, rank 1 (53.7%) was selected yielding an 

RMSD=0.19 Å (Figure 6.5). MET, on the other hand, is larger and floppier, however the 

diffuse electron cloud of sulphur atoms can result in discrepancies within force fields87 

and thus a solely MM scoring may be inadequate. Interestingly, the underlying cause of 

added success with statistical weighting was subtler and no significant electronic effects 
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were observed; the results were undeniable though. As we can see in Figure 6.5, using 

60° resolution without any statistical weighting, rank 42 (0.32%) resulted in an 

RMSD=3.58 Å, while, with scoring W=1, rank 4 (4.95%) gave a much better 

RMSD=0.18 Å. The general enhancement in accuracy led us to believe that the 

combination of statistics (evaluating side-chain intrinsic energy) and MM (measuring the 

interaction with other residues) considerations would be the direction to advance. To our 

delight, a weight of 1.00 on the Boltzmann energy was satisfactory and would indicate 

little over-training for our system.  

 

Figure 6.5. Statistical consideration improves LEU and MET self-mutations. Top: PDB code: 
3UJD; LEU14. Using 60° resolution: rank 58 (red), scoring W=1, rank 1 (green). Bottom: PDB 
code: 1QKT; MET357. Using 60° resolution: rank 42 (red), scoring W=1, rank 4 (green). Ligands 
in purple, grey is crystal structure residues. Hydrogen atoms removed for clarity. 
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 The statistics play an important role when interactions with the ligand were not the 

driving force behind the observed conformation. Conversely, the MM component could 

be overpowering. As shown in Figure 6.6, a number of issues can arise. The correct 

conformation would have been rank 27 (0.92%), an energetic preference of 1 kcal/mol 

over the selected one at 0.17%, although the final angle is 30° away from the average 

angle value – outside the 5° flexibility; the flexibility can remain too narrow (i.e., even 

finer resolution required). Additionally, a water molecule interacts with the crystal 

structure ARG, however this interaction was not considered during the mutation 

procedure and thus the favorable interaction was with the ligand instead. This 

demonstrated the overpowering by MM, disregarding the statistically higher ranked 

conformation – even with W=5.0, the selection remains the same. It also showed that 

additional factors such as water molecules could modulate the side-chain conformations, 

a process that our program does not account for currently. 

 

Figure 6.6. Summary of the statistical and MM limitations. PDB code: 1CNQ; ARG140. Using 
60° resolution: top 10 and 34, selected rank 4 (2.85%) (Red, RMSD=3.10 Å), top 70, selected 
rank 58 (0.32%) (Orange, RMSD=2.71 Å), top 100, with scoring W=1, selected rank 87 (0.17%) 
(Yellow, RMSD=2.46 Å). Correct conformation, rank 27 (0.92) (Green). Ignored water molecule 
(red sphere), crystal structure (grey) and ligand (purple). Hydrogen atoms removed for clarity. 
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 The secondary structure was the final, optional condition we chose to test; overall the 

accuracy was slightly improved and this combination demonstrated the best average 

RMSD for all the criteria. Although nearly identical sets of conformations were collected 

whether the residues were on loops, α-helices or β-sheets, their occurrence varied, and 

consequently, so were the weights assigned to each of them. Thus, this slight 

improvement is likely the result of refined statistical scoring of the residue side-chains 

incorporating the backbone-dependency. These results were satisfactory and thus we 

proceeded to evaluate the transferability of the 60° resolution library, using MM and 

statistical energy components and secondary structure for conformation selection, to a 

completely different (testing) data set of protein structures. 

 

6.5.2  Validation – testing set for self-mutation 

 This new rotamer library and selection criteria were now applied to a testing set of 68 

PDB structures, also obtained from a set of proteins having crystallographic mutation data 

for future protein engineering studies. The distribution amongst the 1718 amino acids was 

very similar to the original data set however the structures are completely different (Table 

6.3). To this set, we applied the 60° resolution library using the statistical and MM 

evaluation with and without the secondary structure consideration. Additionally, the 120° 

resolution library was evaluated due to the apparent success when combined with the 

final selection method. However, with this testing set, the 120° library performed worse 

and reinforced our ultimate selection of the 60° library (Table 6.6). 

 

 

 

 

 

 

 



 213 

Table 6.6. Testing set results: average RMSD upon side-chain reconstruction using select 
rotamer libraries and selection criteria (continued gradient from Table 6.4). 

  60XXL 120XXL 

 Counts Flex + Scoring 
(1.00) 

Flex + Scoring 
(1.00) + sec 

Flex + Scoring 
(1.00) + sec 

ARG 92 2.31 1.85 2.17 
ASN 102 0.79 0.83 0.86 
ASP 92 0.67 0.66 0.67 
CYS 25 0.91 0.88 0.88 
GLN 34 1.54 1.55 1.49 
GLU 66 1.58 1.50 1.51 
HIS 52 0.92 0.86 0.91 
ILE 203 1.54 1.55 1.60 
LEU 218 0.67 0.67 0.68 
LYS 94 2.03 1.96 2.02 
MET 43 0.90 0.91 0.89 
PHE 141 0.64 0.68 0.65 
PRO 91 0.61 0.61 0.63 
SER 97 1.36 1.40 1.37 
THR 131 0.43 0.43 0.49 
TRP 34 1.08 1.01 1.06 
TYR 50 0.61 0.49 0.47 
VAL 153 0.31 0.29 0.29 
AVG 1718 1.05 1.01 1.03 

W.AVG 1718 1.00 0.97 1.00 
 

 Since the standard in the field of rotamer libraries is to determine the success 

according to torsion matching, we evaluated this metric as well (Table 6.7). In the context 

of protein engineering and binding site optimization, we believe the RMSD is a more 

relevant measure, as the overall shapes of the side-chains are crucial. Although the first 

torsion angle can differ by 90°, for example, the general shape of a floppy residue like 

arginine or lysine can right itself at the polar head – the vital point of interaction – and 

have a relatively low RMSD (Figure 6.7). Conversely, by torsion accuracy a prediction 

may be within 40° at each angle however the overall conformation and position of this 
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polar head can be distinctly different, having an RMSD over 3.5 Ǻ. Furthermore, a 

general trend can be seen relating the RMSD and the torsion accuracy demonstrating that 

at low RMSD, the torsion accuracy must be high; however at high RMSD, where the 

conformation is positioned incorrectly, the torsion accuracy can be high and misleading 

(Figure 6.7). Regardless of the metric to evaluate success, the proof that this 

implementation is valuable can be shown by carrying out self- and cross-docking 

experiments since this is the foundation of our protein engineering research plan. 

Table 6.7. Torsion accuracy for both training and testing in percentage. Predicted torsions 
(χ) within 40° of the crystal structure are deemed correct. If first χ is incorrect, subsequent 

χ are also incorrect. 

  ARG ASN ASP CYS GLN GLU HIS ILE LEU LYS 

 N: 226 170 176 63 82 112 113 253 322 138 

Tr
ai

ni
ng

 S
et

 χ 1 78.0 86.9 82.9 93.8 79.5 75.2 96.5 76.1 95.4 78.4 
χ 2 65.6 71.4 73.1  65.1 54.0 61.1 50.7 87.0 65.5 
χ 3 37.0    54.2 35.4   87.0 53.2 
χ 4 30.0         25.9 

 N: 92 102 92 25 34 66 52 203 218 94 

Te
st

in
g 

Se
t χ 1 79.3 82.4 89.2 72.0 88.2 77.3 96.2 63.6 91.3 69.9 

χ 2 67.4 73.5 76.3  55.9 62.1 67.3 29.6 83.0 51.6 
χ 3 37.0    17.6 47.0   83.0 30.1 
χ 4 19.6         17.2 

  MET PHE PRO SER THR TRP TYR VAL AVG W. AVG 

 N: 79 192 164 212 246 153 185 293 3179 3179 

Tr
ai

ni
ng

 S
et

 χ 1 90.1 100 44.3 63.9 87.3 90.8 95.2 91.3 83.6 83.8 

χ 2 87.7 94.4 38.3   82.4 92.5  70.6 71.5 

χ 3 76.5        57.2 60.7 

χ 4         27.9 28.4 

 N: 43 141 91 97 131 34 50 153 1718 1718 

Te
st

in
g 

Se
t χ 1 88.4 95.8 58.2 44.3 90.8 97.1 100 96.1 82.2 81.5 

χ 2 81.4 89.4 51.6   85.3 94.1  69.2 66.8 
χ 3 67.4        47.0 56.5 
χ 4         18.4 18.4 
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Figure 6.7. Left: Relationship between RMSD and torsion accuracy. Trends defined by black 
lines. Right: Arginine residue and the demonstration of pitfalls for torsion accuracy. Grey – 
crystal structure. Green – torsion incorrect, RMSD=1.76 Ǻ. Red – torsion correct, RMSD=3.69 Ǻ. 

 

6.5.3 Validation – pose prediction in self- and cross-docking 

 To verify the success of our protocol, we ran docking studies since this was 

essentially the purpose that we will investigate with the mutated side-chains for protein 

engineering. Our proposed biocatalysis software is a combination of protein engineering 

and protein reaction modeling.88 For the latter, we require accurate docking results in 

order to position the ligand correctly. Consequently, our docking protocol could not be 

inhibited by an unrealistic binding cavity created from unrealistic side-chain mutations. 

Therefore, we tested the ability of our self-mutations not only to reproduce crystal 

structures but also docking results or perhaps improve them. In fact, with no practical 

reference, it would have been difficult to know whether the low RMSD we measured is 

low enough for practical applications. The available libraries have often been used for 

protein modeling in which the side chain conformation is not as important as the overall 

folding. In our case, moving an atom by as little as 1.0 Å can be detrimental to the 

substrate binding. 

 Ultimately, the accuracy of docking a small molecule into a binding site must be 

conserved upon self-mutation in order to instill confidence in the ability of protein 

engineering software when molecular dynamics simulation is not an option due to 

computational power costs. Using a previously established,24 appropriate screening set of 
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230 PDB structures that cover a variety of shapes, sizes, functions and ligands (see 

Appendix 4 for list of PDB codes), we carried out self-docking experiments with the 

latest version (v. 3.7) of the FITTED software. Subsequently, using PROCESS, a binding site 

residue within 3 Ǻ of the ligand was identified and then, using our new rotamer library, 

self-mutated. The self-docking was repeated with the “mutant” structure. To our delight, 

the average RMSD of the self-mutated residue side-chains, 0.88 Ǻ, was similar to that of 

the development stages, as was the amino acid distribution (Table 6.3), and furthermore, 

the success for docking was virtually unchanged, within 2.2%, or 5 fewer successes 

(using a 2 Ǻ metric, the standard in the field). The causes for failure or success can be 

attributed to a number of influencing factors. First, let us examine an example where self-

mutation improved the docking result (Figure 6.8, top left). In this carbonic anhydrase, a 

PHE was randomly mutated (RMSD=4.40 Å) and opened additional space for the ligand 

to be docked correctly. In some cases, the docking was better after self-mutation, however 

the side chain conformation was almost unchanged (RMSD=0.06 Å) (Figure 6.8, top 

right). This can once again be attributed to poor convergence or scoring issues due to very 

minor MM energy differences between the very different poses; the correct conformation 

was in fact seen but not the lowest in energy and this highly scored, poor conformation 

was not observed in the self-mutant docking. Unfortunately, the self-mutations can have 

negative consequences as well (Figure 6.8, bottom left). In this instance, the self-mutation 

of TYR is incorrect (RMSD=6.14 Å) and resulted in a poor docking orientation. Its 

placement allowed the ligand more space for a large bond rotation on the opposite side. 

Coincidentally, a docked pose with RMSD=1.50 Å, better than the wild type (WT) 

docking, was observed but poorly scored. Once again, a poorly docked pose, this time 

after self-mutation, can be unrelated to the poorly reconstructed side chain (Figure 6.8, 

bottom right). As an illustration, the self-mutation of ILE was excellent (RMSD=0.10 Å), 

yet the docked pose was completely inverted.  
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Figure 6.8. Self-docking successes and failures. Crystal structures in grey, crystal ligands in 
purple, hydrogen atoms removed for clarity. Top left: PDB 1OKL, PHE131; mutated PHE in 
orange, WT docking in red (RMSD=3.92), mutant docking in green (RMSD=1.50). Top right: 
PDB 2HWI, VAL485; mutated VAL in orange, WT docking in red (RMSD=7.50), mutant 
docking in green (RMSD=1.20). Bottom left: PDB 2Q8S, TYR473; mutated TYR in orange, WT 
docking in green (RMSD=2.91), mutant docking in red (RMSD=6.08). Bottom right: PDB 
2HWQ, ILE249; mutated ILE in orange, WT docking in green (RMSD=1.69), mutant docking in 
red (RMSD=9.25). 

 In order to investigate if the self-mutation was the most likely culprit when it comes 

to poor docked poses in the modified protein structures, we broke down the results into 

the four categories: when both docked poses were accurate, when either and only one was 

correct and when both failed. The results are summarized in Table 6.8. What we observed 

was that the most significant average RMSD difference in side chains occurs when the 

WT docking was wrong, but the post-self-mutation docking was acceptable. The lowest 

average RMSD was seen when the WT docking was correct and the self-mutation 

appeared to have a negative impact. The diminished change in the side chain 

conformation suggested that these were convergence or MM scoring issues primarily.  
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Table 6.8. Summary of side chain mutation RMSD and consequential docking results 

 Self-Docking Cross-Docking 

 Instances Average side- 
chain RMSD (Å) Instances 

WT good / MUT bad 19 (8.2%) 0.614 64 (7.6%) 
WT good / MUT good 117 (50.9%) 0.800 356 (42.3%) 
WT bad / MUT good 14 (6.1%) 1.677 50 (5.9%) 
WT bad / MUT bad 80 (34.8%) 0.942 372 (44.2%) 

 

 To further validate the effectiveness of mutation prediction we applied the same 

protocol to cross-docking, a true test for any docking software package. Again, both the 

WT and self-mutated structures were used, the same ones having been generated in the 

self-docking test. Our self-mutated structures consistently performed well compared to 

the WT structures with 842 complexes that were formed, demonstrating a difference in 

accuracy of only 1.6%, or 14 fewer successes (using a 2.6 Ǻ metric24). As seen in Table 

6.8, there remains the distinction where the self-mutation had an effect on the docked 

pose, both for good and for bad. A few examples are show in Figure 6.9. First, a 

reasonable self-mutation of GLU (RMSD=0.77 Å) resulted in a complete displacement of 

the docked pose; the correct conformation was not observed at all. This was likely due to 

a disruption of the hydrogen bond that was formed between the GLU and the ligand, 

albeit after such a small shift. It is worth noting that the self-docking with this protein 

structure suffered the same consequences (WT: RMSD =0.31 Å, MUT: RMSD=9.58 Å). 

Self-mutation also had positive impacts in the cross-docking. In the example shown, MET 

(RMSD=1.18 Å) was shifted slightly over, giving proper room for the docked pose upon 

cross-docking. Without this minor motion, the ligand was flipped and the pose was 

incorrect. This followed the same general trend observed in the self-docking experiments. 
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Figure 6.9. Cross-docking successes and failures. Crystal structures in grey, crystal ligands in 
purple, hydrogen atoms removed for clarity. Top: PDB 1M0Q docked into 1M0O, MET57; 
mutated MET in orange, WT docking in red (RMSD=6.27), mutant docking in green 
(RMSD=1.09). Bottom: PDB 1FH9 docked into 1FH8, GLU233; mutated GLU in orange, WT 
docking in green (RMSD=0.53), mutant docking in red (RMSD=7.70). 

 The overall docking results are summarized in Table 6.9. The docking accuracy, 

regardless of RMSD metric, remained quite similar over a long range of RMSD (Figure 

6.10) demonstrating that our side-chain mutation protocol was satisfactory in the sense 

that it did not largely impact the docking ability of FITTED and thus should prove viable 

for our protein engineering software.  
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Table 6.9. Docking results for both wild-type and self-mutated protein structures 

 Self-Docking Cross-Docking 

 WT Self-mutated WT Self-mutated 
Instances (N) 230 230 842 842 

Average RMSD of 
docked pose (Å) 2.58 2.78 3.74 3.84 

Success (N) 136 131 420 406 
Success (%) 59.1 57.0 49.9 48.2 

 

 

Figure 6.10. Overall accuracy of docking to both WT and mutant structures over a range of 
success criteria 

 

6.6 Conclusion 

 In conclusion, our docking program PREPARE has first been modified to collect 

structural data from available protein/ligand crystal structures. Additional routines were 

implemented to properly rebuild mutated side-chain amino acids within the binding site 

of protein structures. This was accomplished using a combination of statistical and MM 

selection criteria upon building a new rotamer library. The generation of conformation 

clusters remains a separate protocol and could be applied to a focused set of structures if 

this is required. The high quality of the produced mutations was confirmed by both low 

deviation from crystal structures and accurate docking of a set of protein/ligand 
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complexes. Based on the success of this technique, it is likely that this approach could be 

applied to actual side-chain mutations in the context of protein engineering. Currently, an 

algorithm to guide the backbone motion upon changing a residue is under investigation 

with the goal of combining these two techniques. Re-building random side-chains prior to 

docking experiments may provide better docking accuracy by essentially cleaning the 

structures; however a significantly more in-depth study is required.  

 

6.7 Experimental 

6.7.1 Construction of the “training” and testing sets 

 The sets of PDB codes were downloaded from the Platinum (Protein-ligand affinity 

change upon mutation) database website (http://bleoberis.bioc.cam.ac.uk/ 

platinum/browse) and further processed to select only those with single point mutations 

within the binding site. The exhaustive list of binding site residues to mutate was 

identified using PROCESS and a ligand distance of 7 Å (Ligand_Cutoff 7). Sets can be 

found in Appendix 4. 

 

6.7.2 Preparation of the protein files 

 FORECASTER routines, PREPARE and PROCESS, were applied using the specific 

keyword identifying mutation (Mutation 1), the appropriate flexibility mode 

(Flexibility_Mode Quick), the rotamer library resolution (StatsResolution 120) and other 

parameters set to the default. The RMSD was calculated by extracting the appropriate 

side-chain residue coordinates and comparing the mutated and wild-type conformations. 

 

6.7.3 Construction of the docking sets 

 The sets of PDB were obtained from a previous study24 with two omissions due to 

limitations of the current mutation software implementation; molecules binding between 

two protein domains (i.e. between chain A and chain B), cannot be properly handled in 

the current version. The PDB codes can be found in Appendix 4. 
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6.7.4 Preparation of the protein files for docking 

 MATCH-UP, PREPARE and PROCESS were applied with the default parameters and the 

specific keyword identifying metalloenzymes when applicable. 

 

6.7.5 Docking with FITTED 

 Default parameters implemented in FITTED were used. The subversion 4207 of the 

FORECASTER platform and programs has been used for this study. 
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Chapter 7: 

Conclusion and Perspective 

 

7.1 Concluding remarks 

 In the world of chemoinformatics and software development for chemists, the 

usability and user-friendliness is often overlooked when it comes to simulating routine 

experiments, as opposed to visualization software that normally interfaces to other 

software to carry out experiments. Within the research presented in this thesis, this has 

been a focus; automating and simplifying software was just as crucial as developing the 

methodology. Moreover, the automation can be even more difficult to encode than the 

chemical theory, thus requiring a significant effort. Consequently, a successful research 

contribution in this domain is not only the accuracy of the proposed software but the 

reflection of its usability by it being employed by research groups worldwide.  

 At the risk of sounding unhinged, the VIRTUAL CHEMIST platform could modernize 

synthetic chemistry and every field that it influences. The idea behind this program is to 

aid organic chemists in planning and focusing their synthesis for asymmetric catalysis. 

There is no such automated software that guides chemistry from start to finish and its 

development was, in fact, propelled by this need in previous work not described in this 

thesis.1 Chapter 2 presents the evaluation of the steps involved in experimental synthesis, 

from ordering chemicals to testing a catalyst, the automation of each of these steps 

virtually, and their integration into one easy-to-use online platform. In short, the software 

will search any given catalog for desired scaffolds, based on a reaction scheme (the only 

other input from the experimentalist), which are then used to virtually create 

organocatalysts by combinatorial chemistry. It then builds a 3-dimensional transition state 

for a given asymmetric reaction with these catalysts and finally evaluates and ranks the 

enantioselectivity with good accuracy. The VIRTUAL CHEMIST is still in its infancy and its 

integration within the Moitessier group to discover new asymmetric catalysts is 

beginning. Once polished, such software could transform the purpose of computational 

chemistry from rationalization to instruction and ultimately bring it to the forefront of 
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chemical synthesis. The VIRTUAL CHEMIST is now a registered copyright and will be 

distributed by Molecular Forecaster Inc. 

 The work presented in chapter 4 regarding zinc metalloenzymes sought to develop a 

protocol for these enzymes in order to improve the docking software, FITTED. The 

identification of ongoing biochemistry within the binding cavity jumped the accuracy 10-

20% for these enzymes and was recently featured in an account on the development of 

FITTED. However, not only did this research improve the in-house docking software, it 

preceded the research of other groups,2-4 AutoDock for example (one of the most widely 

used), seeking the same advances in their own software.5 Furthermore, the approach, 

identifying and modeling dynamic chemical and biochemical phenomena, was 

commended by the community. Consequently, the software has been used by the Gleason 

group6-7 and has been implemented in the teaching curriculum at McGill University in the 

undergraduate research labs. The software is also distributed by Molecular Forecaster Inc. 

and free for academic research. 

 The work presented in chapter 5 is often cited as being a unique software 

development in the field of site of metabolism prediction. The trivalent approach taken 

has been praised as insightful.8-14 Additionally, it demonstrates some of the best accuracy 

in the community and has been used by experimentalists in our group on medicinal 

chemistry projects involving prolyl-oligopeptidase,15 and abroad to evaluate kinase 

inhibitors.16 The abilities of the software have further been exploited to identify sites of 

metabolism and then predict the consequential metabolites formed.17 Its use exhibits the 

reliability of the predictions as well as the user-friendliness of a computational tool. 

Moreover, Molecular Forecaster Inc. markets and sells the software while making it 

freely available to academic groups worldwide.  

 Building off of the advances reported in chapter 5, chapter 6 presents efforts towards 

an accurate, an eventually automated, protein engineering software. The versatility of this 

computational tool has yet to be fully developed or explored. The foundation has been 

built towards single point mutations whereas most research groups have been relatively 

unsuccessful with different virtual engineering approaches. 
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 Overall, this thesis presents a body of work based on a philosophy that computational 

modeling should be: (1) guided by reason and chemical justification and (2) relevant to 

the laboratory chemists – produces accurate research and software that is employed by 

organic and medicinal chemists. The significance of this research led the writing of two 

invited reviews presented in chapters 1 and 3, demonstrating the considerable interest 

from the scientific community. This thesis aims to bring this philosophy to future research 

projects in chemical theory and computational chemistry.  

 

7.2 Future opportunities 

 Organocatalysis in computational chemistry is a budding field of research with many 

untapped potential applications. In the context of the developments presented in this 

thesis, there are many improvements that could be envisioned. For one, the overall speed 

of this software has not reached its maximum. The novel string, or genotype, 

representation of a molecule resulted in relatively efficient comparisons; however the 

number of comparisons, especially when searching for duplicates, can be enormous. A 

more focused searching algorithm rather than exhaustive assessments could solve this 

problem. Furthermore, one could imagine a software protocol to identify “hotspots” that 

are more characteristic as opposed to the implemented “rare atom” technique as a starting 

point. Moreover, an optional, automated similarity clustering protocol should be included 

to limit the size of chemical libraries and thus reduce the runtime without sacrificing 

meaningful and interesting results. 

 From a new application perspective, this software platform and automated chemical 

tool could be used to generate new mechanistic insights. ACE could be “inverted” to 

search for transition states – the output would be the transition state, or a list of plausible 

ones – given reacting and product configurations input by the user. While the 

conformation space and 3D space can be expansive, reactive sites on molecules (where a 

bond is likely to be broken or formed) can already be identified, similarly to IMPACTS, the 

only difference being the catalytic machinery is not fixed as it is within the enzyme. 

Optimization algorithms can be written to search potential reactive states and the current 

ACE technology can be used to evaluate reaction barriers. While these activation energies 
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may not be accurate in absolute value, they have been shown to be able to rank 

enantioselectivity in a relative fashion and therefore, with a normalization factor for 

different reaction types, are promising for ranking the transition states themselves. 

 Taking this notion of mechanistic discovery one step further, it could be possible to 

apply the VIRTUAL CHEMIST in reverse to create a retrosynthetic analysis tool. As 

opposed to being given the reaction scheme, this would be the unknown in the 

experiment. If given a chemical product and a library of known chemical reactions and 

their associated transition states, it may be possible to work backwards through ACE to 

arrive at a library of catalysts and substrates. Using reactive sites within these molecules, 

REACT2D could be reversed in a similar fashion with FINDERS used to identify catalog 

molecules for production of the catalysts. These are just some of the ways the VIRTUAL 

CHEMIST platform could be expanded for new capabilities and used to explore the vast 

chemical space. 

 In-silico biocatalysis is far from its end-point and more research is required to obtain 

an accurate, reliable protein engineering software package. It appears that modeling 

chemical reactions within binding sites has reached acceptable precision. Unfortunately, 

protein structures are large biological systems with many long-range effects dominating 

the functionality in some cases. Currently, research is ongoing in the Moitessier group to 

supplement the side-chain mutation protocols presented in this thesis with a simulation of 

backbone motion upon residue mutation. Once accomplished, the three algorithms (side-

chain mutation, backbone motion, IMPACTS), must be integrated and validated by 

modeling existing wild-type and corresponding mutant crystal structures. Subsequently, 

testing can begin to match reactivity to the data provided by IMPACTS regarding the 

activation barriers of the oxidations. Only once this milestone is achieved can new 

biochemical reactions be conceived. Additionally, multi-point mutations may be a 

possibility however this concept entails more structural motions, i.e. more technical 

difficulties. 

 In general, computational chemistry, when focusing on applicability and usability 

within the organic chemistry community, will continue to be limited by the restrictions 

imposed by molecular mechanics since quantum mechanics is neither time-efficient nor 
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easily applied. Molecular mechanics must be improved for metal atoms and reach 

accuracies better than 1 kcal/mol (sometimes insufficient to distinguish two different 

states) to be applied to many relevant catalytic cycles; until then, computational chemists 

will run simulations to rationalize experimental findings and never guide synthetic design.  

Furthermore, there is a psychological hurdle to overcome for experimentalists and the 

community at large to accept computational data. There is seemingly no amount of 

laboratory data for a satisfactory validation of a modeling technique; this is in part due to 

the required shortcuts for time-sensitivity and in part due to a lack of trust. Through the 

experiences reported in this thesis, it appears that it will remain difficult for this barrier to 

be broken for the foreseeable future. It is not all bleak, however, computational insights 

are often sought after and remain an active component in a majority of high impact 

synthetic and medicinal chemistry projects and the field will continue to prosper and 

blossom. 
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Appendix 1 

Table A1.1 List of available protecting and leaving groups. X only shown for clarity.  

Label 2D  
Structure Label 2D  

Structure Label 2D  
Structure 

H  Et  CN 
 

CF3 
 

tBu 
 

OTf 
 

F  Ac 
 

Bn 
 

Cl  OMe  PMB 
 

Br  OH  Boc 
 

I  COOMe 
 

Fmoc 

 

NO2 
 

CONHMe 

 

Cbz 

 

NH2  BOH2 
 

NHPh 
 

Ph  SMe  NMePh 
 

NHAc 

 

OMs 
 

TMS 
 

NHMe 
 

NMs 

 

TIPS 

 

NMe2 
 

Ots 

 

TBDPS 

 
Me      
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Figure A1.1. List of chemical reactions used to validate FINDERS and REACT2D. 
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Appendix 2 

Table A2.1. Set used for the validation study. The ones used for QM studies are shown in 
bold 

Entry PDB code Entry PDB code Entry PDB code Entry PDB code 
1 1a85 32 1jj9 63 2gc1 94 3kgq 
2 1a86 33 1kbc 64 2gc2 95 3kne 
3 1b3d 34 1lde 65 2oc2 96 3l3n 
4 1b8y 35 1mmb 66 2ow6 97 3m04 
5 1biw 36 1mmp 67 2qdm 98 3max 
6 1bn4 37 1mmq 68 2tmn 99 3nxq 
7 1bnn 38 1mnc 69 2usn 100 3p25 
8 1bqo 39 1o86 70 2vqj 101 3p58 
9 1bzm 40 1okl 71 2wd2 102 3p5a 
10 1bzs 41 1ps3 72 2x8z 103 3qyk 
11 1caq 42 1r33 73 2x94 104 3s71 
12 1cbx 43 1r34 74 2x96 105 3s8x 
13 1ciz 44 1r4l 75 2x97 106 3tmn 
14 1cxv 45 1sln 76 2xhm 107 3v2m 
15 1d8m 46 1t67 77 2zxg 108 456c 
16 1de5 47 1t69 78 3b2p 109 4dwv 
17 1fbl 48 1thl 79 3b34 110 4tln 
18 1g4o 49 1tlp 80 3bto 111 4tmn 
19 1hdq 50 1tmn 81 3bup 112 5tln 
20 1hee 51 1tqt 82 3c0z 113 5tmn 
21 1hfc 52 1ttm 83 3c10 114 6cpa 
22 1hfs 53 1usn 84 3cpa 115 6tmn 
23 1hww 54 1uze 85 3d4z 116 7cpa 
24 1hxk 55 1uzf 86 3dx2 117 7tln 
25 1hy7 56 1w22 87 3ejp 118 830c 
26 1i76 57 2c6n 88 3ejs 119 8cpa 
27 1iy7 58 2ctc 89 3f07 120 8tln 
28 1jan 59 2f18 90 3fgd 121 966c 
29 1jao 60 2f1a 91 3fvl   
30 1jap 61 2f7r 92 3fx6   
31 1jaq 62 2gc0 93 3i1u   
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Appendix 3 

A3.1 Accuracy of IMPACTS using top 1 to 4 as metrics 

Table A3.1. Accuracy[a] of IMPACTS in predicting an observed SoM for respective 
datasets. 

  Top 1 Top 2 

  Rand.[c] Eact
[d] IMPACTS[e] Rand.[c] Eact

[d] IMPACTS [e] 

CYP1A2 137 16 39 59 31 59 77 

CYP2C9 129 15 38 56 29 59 79-82 

CYP2D6 157 14 31 56 27 49 76 

CYP3A4 293 15 42 50-53 28 66 72-75 

All 4 716 15 37 49 28 60 77 

  Top 3 Top 4 

  Rand.[c] Eact
[d] IMPACTS [e] Rand.[c] Eact

[d] IMPACTS [e] 

CYP1A2 137 44 81 88 56 85 91 

CYP2C9 129 41 74 88-90 53 80 92-94 

CYP2D6 157 38 66 86 49 76 90 

CYP3A4 293 40 81 82-84 50 87 87-89 

All 4 716 41 74 86 52 82 90 

[a] % of molecules with an observed SoM in the predicted one, two, three or four SoMs referred to as top 1, 

top 2, top 3 and top 4. [b] Number of substrates in the set. [c] Random selection from the SoMs identified  

by IMPACTS. [d] Only the predicted reactivity of the SoMs is considered. [e] IMPACTS with a single crystal 

structure; if multip le structures were alternatively assessed, a range is given.  

The computations have been done in triplicates using different seeds for the random number generator. The 

standard deviation never exceeds 3.0.  
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Figure A3.1. Accuracy of IMPACTS when Top 1, Top 2, Top 3 and Top 4 predicted SoMs are 
considered. Red: IMPACTS; Blue: Energy of activation only (ligand-based method); Green: 
random selection; Triangles: CYP 1A2; Circles: CYP2C9; Squares: CYP2D6 and Rhombus: 
CYP3A4. 

 

A3.2 Construction of the testing sets 

 The testing sets were built with care to reduce the noise in the prediction assessment 

as discussed in the main text. These sets are given in separate files in mo l2 format. 

The pdb codes for the crystal structures are given below: 

CYP1A2: 2HI4 

CYP2C9: 1R9O, 1OG2 and 1OG5 

CYP2D6: 3QM4 

CYP3A4: 1TQN, 1W0E, 1W0F, 1W0G, 2J0D, 2V0M, 3NXU 
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A3.3 Experimental procedures 

 Default parameters implemented in IMPACTS have been used. IMPACTS has been 

implemented into our platform FORECASTER1 for user- friendly use. The user can draw the 

substrate into a 2D sketcher and select the CYP enzyme with which to predict the SoM. 

FORECASTER will take care of adding hydrogens, generating a 3D structure and selecting 

the correct CYP files (Figure A3.2). IMPACTS and FORECASTER are accessible free of 

charge to academic users. 

 
Figure A3.2. Integration in FORECASTER. 
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Appendix 4 

Table A4.1. PDB codes used for “training” conformational library selection 

Entry PDB code Entry PDB code Entry PDB code 
1 1a4h 32 1x7z 63 3f8z 
2 1amk 33 1yxi 64 3f91 
3 1cnq 34 1zoa 65 3fjx 
4 1flm 35 1zzr 66 3fk0 
5 1flv 36 1zzs 67 3fs6 
6 1jmf 37 1zzu 68 3g0e 
7 1jmg 38 2aog 69 3g0f 
8 1jmh 39 2nnp 70 3gug 
9 1jmi 40 2ony 71 3ijw 
10 1jqx 41 2onz 72 3lbo 
11 1nja 42 2pym 73 3ld5 
12 1njc 43 2pyn 74 3lep 
13 1nje 44 2q63 75 3lqg 
14 1ovd 45 2qfs 76 3lql 
15 1p6n 46 2qft 77 3lz5 
16 1q6e 47 2rde 78 3m4h 
17 1q6g 48 2tdm 79 3n0h 
18 1qds 49 2yge 80 3n0m 
19 1qkt 50 2ygf 81 3n0s 
20 1qy1 51 3a20 82 3nu9 
21 1thy 52 3a6q 83 3oxc 
22 1tpw 53 3a6r 84 3rdo 
23 1tsv 54 3aj5 85 3ry2 
24 1tsy 55 3am3 86 3s3v 
25 1u5b 56 3am5 87 3ug2 
26 1us0 57 3cyx 88 3uj9 
27 1wli 58 3d1x 89 3ujc 
28 1wlk 59 3d1y 90 3ujd 
29 1x7w 60 3dgl 91  
30 1x7x 61 3dgo 92  
31 1x7y 62 3f8y 93  
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Table A4.2. PDB codes used for “testing” conformational library selection 

Entry PDB code Entry PDB code Entry PDB code 
1 1gz3 32 3dt7 63 3rhq 
2 1gz4 33 3dtb 64 3rhr 
3 1ykl 34 3fjz 65 3tkw 
4 1ykp 35 3fk1 66 3um5 
5 2aoc 36 3fra 67 3um6 
6 2aod 37 3frb 68 3um8 
7 2ca8 38 3fre   
8 2caq 39 3frf   
9 2f8f 40 3fy8   
10 2idw 41 3fy9   
11 2ien 42 3fyv   
12 2ieo 43 3fyw   
13 2ito 44 3kyg   
14 2ity 45 3lzs   
15 2jbz 46 3lzu   
16 2nmz 47 3m3c   
17 2o2q 48 3m3e   
18 2o2r 49 3m3o   
19 2q64 50 3moe   
20 2qd7 51 3mof   
21 2vfe 52 3moh   
22 2vfg 53 3nu3   
23 2vfh 54 3nu4   
24 2vfi 55 3nu5   
25 2wds 56 3nu6   
26 2wdy 57 3nuj   
27 3aj6 58 3nuo   
28 3cyw 59 3pca   
29 3d1z 60 3qgt   
30 3d20 61 3rhj   
31 3dt4 62 3rho   
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Table A4.3. PDB codes used for docking studies (part 1) 

Entry PDB code Entry PDB code Entry PDB code Entry PDB code 
1 1a4g 32 1f0s 63 1iel 95 1o5r 
2 1a4q 33 1f4e 64 1iem 96 1o86 
3 1a8i 34 1f4f 65 1igz 97 1okl 
4 1agw 35 1f4g 66 1jao 98 1ony 
5 1ah0 36 1fcx 67 1jaq 99 1oz1 
6 1ah3 37 1fcy 68 1jj9 100 1p44 
7 1b8n 38 1fcz 69 1jkx 101 1p4g 
8 1b8o 39 1fd0 70 1ki2 102 1pax 
9 1b8y 40 1fgi 71 1ki7 103 1ps3 
10 1ba8 41 1fh7 72 1kim 104 1pxx 
11 1biw 42 1fh8 73 1kv2 105 1q4g 
12 1bju 43 1fh9 74 1l2i 106 1r34 
13 1bn4 44 1fhd 75 1l2s 107 1rt1 
14 1bnn 45 1fm9 76 1lhg 108 1rth 
15 1c1b 46 1g4o 78 1llb 109 1s7y 
16 1c2t 47 1gar 79 1m0n 110 1s9t 
17 1c3e 48 1ggn 80 1m0o 111 1sd3 
18 1cde 49 1gi6 81 1m0q 112 1sqa 
19 1ciz 50 1gi8 82 1m17 113 1sr7 
20 1cx2 51 1gj5 83 1mmb 114 1t9s 
21 1d8m 52 1gj7 84 1mnc 115 1tbf 
22 1db1 53 1gja 85 1mv9 116 1thl 
23 1e2k 54 1gpn 86 1mvc 117 1tlp 
24 1e2n 55 1gwq 87 1ndw 118 1tnk 
25 1ecv 56 1gwr 88 1nhu 119 1tt1 
26 1efy 57 1h1d 89 1nl9 120 1ttm 
27 1ejn 58 1hw8 90 1nsd 121 1txi 
28 1eko 59 1hwi 91 1nwl 122 1utp 
29 1eqg 60 1hww 92 1o0m 123 1uy6 
30 1eve 61 1hxk 93 1o0n 124 1uyd 
31 1f0r 62 1ie8 94 1o0o 125 1uze 
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Table A4.4. PDB codes used for docking studies (part 2) 

Entry PDB code Entry PDB code Entry PDB code Entry PDB code 
1 1uzf 32 2axa 63 2q61 95 3fuc 
2 1v7a 33 2ayl 64 2q8s 96 3fug 
3 1vid 34 2b35 65 2qe2 97 3g8n 
4 1vrt 35 2bdj 66 2qe5 98 3pax 
5 1vru 36 2bz5 67 2qn7 99 3pgh 
6 1wbo 37 2ckm 68 2qn8 100 3std 
7 1wbv 38 2cl5 69 2rg6 101 3tmn 
8 1wxy 39 2f18 70 2rgp 102 4cox 
9 1xgj 40 2fgi 71 2src 103 4pax 
10 1xkk 41 2fvc 72 2std 104 4std 
11 1xoz 42 2gc8 73 2uwd 105 5std 
12 1xp0 43 2gir 74 2uwl 106 5tmn 
13 1xp1 44 2gs6 75 2w8y 107 8tln 
14 1xpc 45 2h7l 76 2x23   
15 1y3u 46 2h7n 78 2xbw   
16 1y57 47 2hai 79 2xir   
17 1yae 48 2har 80 2z7g   
18 1yol 49 2has 81 2zff   
19 1yvf 50 2hwi 82 2zgb   
20 1ywn 51 2hwq 83 2zno   
21 1zgc 52 2iog 84 2zvj   
22 1zuc 53 2iok 85 3b68   
23 2a3i 54 2o5d 86 3bel   
24 2aa2 55 2oc2 87 3ccw   
25 2aa5 56 2oiq 88 3ccz   
26 2aa7 57 2ouz 89 3cdb   
27 2ack 58 2oye 90 3d90   
28 2ai1 59 2p16 91 3dt3   
29 2ai2 60 2p1v 92 3ekr   
30 2ao6 61 2pax 93 3ert   
31 2ax9 62 2pnu 94 3fc6   

 

Rotamer libraries with 60° resolution are available online from Molecular Forecaster Inc.  


