


Abstract

Melodic reduction is a process performed on symbolic music to discover the more
important structural notes of a melody. In music theory literature the process has
a foundation in the works of Heinrich Schenker, as well as Fred Lerdahl, and Ray
Jackendoff. Among other applications, melodic reduction can be used for: harmony
estimation, melodic similarity and comparison, compression of melodic representations,
melodic search, and automatic or assisted composition. The process of melodic reduction
can also involve auxiliary melodic analysis methods such as melodic segmentation (or
grouping), metrical structure analysis, and melodic parallelism. This thesis investigates
the use of a technique originally developed for Natural Language Processing (NLP)
to identify hierarchies in sequential data—the Probabilistic Context-Free Grammar
(PCFG).
Using the PCFG, it is possible to encode the rules of embellishment, allowing the

identification of melodic embellishments. After defining each rule for a PCFG, it can
take a sequence of notes and automatically build a tree structure by iteratively applying
the rules. The hierarchical tree structure represents a reduction, since every subsequent
level contains less and less notes. This thesis involves the supervised training of a
PCFG using melodic reductions that were annotated using The Generative Theory of
Tonal Music (GTTM) (Lerdahl and Jackendoff 1983). The GTTM dataset provides
the melodic reductions in tree format, which is compatible with the PCFG technique
(Hamanaka, Hirata, and Tojo 2007b). By leveraging the existing reductions, one can
model the distributions for each of the rules contained in the analyses, and use those to
find the most probable melodic reduction for a new input melody. A standard evaluation
methodology is used to test the efficacy of the melodic reduction grammar.

ii



iii



Résumé

La réduction mélodique est un traitement réalisé sur la musique symbolique dans le but
de découvrir les notes structurelles les plus importantes d’une mélodie. Dans la littérature
de la théorie musicale, le traitement trouve son fondement dans les œuvres d’Heinrich
Schenker, ainsi que de Fred Lerdahl et de Ray Jackendoff. Entre autres applications, la
réduction mélodique peut être utilisée pour effectuer : Une estimation de l’harmonie, la
similarité et la comparaison mélodiques, la compression de représentations mélodiques,
la recherche mélodique, et la composition automatique ou assistée. Le processus de
la réduction mélodique peut également impliquer des méthodes auxiliaires d’analyse
mélodique, comme par exemple la segmentation (ou le regroupement) mélodiques,
l’analyse de la structure métrique, et le parallélisme mélodique. Cette thèse étudie
l’utilisation d’une technique originellement développées pour le traitement automatique
du langage naturel (NLP) pour identifier les hiérarchies dans les données séquentielles
La grammaire probabiliste indépendante du contexte (PCFG).
En utilisant la PCFG, il est possible d’encoder les règles d’embellissement, ce

qui permet l’identification des embellissements mélodiques. Après avoir défini chaque
règle pour un PCFG, elle peut prendre une séquence de notes et de construire
automatiquement une structure arborescente par le itérativement application des règles.
La structure hiérarchique arborescente représente une réduction, puisque chaque niveau
suivant contient des notes de moins en moins. Cette thèse implique la formation
supervisée de la PCFG en utilisant les réductions mélodiques qui ont été annotées en
utilisant La Théorie Générative de la Musique Tonale (GTTM) (Lerdahl et Jackendoff
1983). Les fichiers des données GTTM présentent les réductions mélodiques sous
forme d’arborescence, ce qui est compatible avec la PCFG technique (Hamanaka,
Hirata, et Tojo 2007b). En tirant partie des réductions existantes, on peut modeler
les distributions pour chacune des règles du dispositif de formation et les utiliser
pour trouver l’arborescence la plus probable pour une nouvelle entrée de mélodie. Une
méthodologie standard d’évaluation est utilisée pour tester l’efficacité de la grammaire
de réduction mélodique.

iv



v



Acknowledgements

First and foremost, I would like to thank my advisor, Ichiro Fujinaga. His guidance in
both the technical challenges as well as his consistent support, feedback, and flexibility
were invaluable to the project. I am also grateful for the malleability of the McGill Music
Technology program, which allowed for the simultaneous pursuit of high-level Music
Theory in addition to the application of cutting-edge Machine Learning techniques.

On a technical level this thesis was made possible by the open source Natural
Language Toolkit (NLTK), as well as the database of expert musical reductions using
The Generative Theory of Tonal Music (GTTM) that were provided to me by Masatoshi
Hamanaka.
I would also like to thank my partner, Amanda, who supported me throughout the

process with flights, Skypes, and a formidable tolerance for puns, and my family, who
were as supportive as they were patient.
I am also indebted to my fellow labmates, first and foremost Hannah Robertson, who

showed me how to be a Master’s student, but also Greg Burlet, Andrew Hankinson, and
Gabriel Vigliensoni who were always there to lend a helping hand.
Last but not least, I am thankful for the solidarity of my Music department brethren:

Julian Vogels, H̊akon Knutzen, James Perrella, and Emily Burt.

vi



vii



Contents

Abstract ii

Résumé iv

Acknowledgements vi

List of Figures xii

List of Tables xv

Glossary xvii

1 Introduction and Motivation 1
1.1 Thesis structure 3

2 Background 4
2.1 Natural Language Processing 4

2.1.1 Formal Grammars 4
2.1.2 Parsing Algorithms 5
2.1.3 Chomsky Hierarchy 5
2.1.4 Chomsky Normal Form 6
2.1.5 Probabilistic Context-Free Grammars 8
2.1.6 Training of a PCFG 8

2.2 The Generative Theory of Tonal Music 9
2.2.1 The Four Components 9
2.2.2 Metrical Structure 11
2.2.3 Grouping Structure 12
2.2.4 Time-span Reduction 14
2.2.5 Prolongational Reduction 17
2.2.6 Parallelism in GTTM 20

3 History of Melodic Reduction and Related Techniques 22
3.1 Melodic Segmentation 22

3.1.1 Implementing GTTM’s Grouping Rules 23
3.1.2 Local Boundary Detection Model 23
3.1.3 Grouper 25

viii



3.1.4 Memory-Based Models 26
3.2 Melodic Parallelism 29
3.3 Melodic Reduction 31

3.3.1 Musical Grammars and Trees 31
3.4 Automatic and assisted composition 33

4 A PCFG for Melodic Reduction 36
4.1 Approach 38
4.2 Creating the CFG 39

4.2.1 Alternative Representations 42
4.3 Grammar Induction and Parsing 42

4.3.1 Formatting the Training Data 43
4.3.2 Supervised Learning with the NLTK Toolkit 48

5 Evaluation Methodology 51
5.1 Constructing the CFG Using Constraints 51
5.2 Tree Comparison 54
5.3 Cross-fold Validation 56

6 Experiment 59
6.1 Implementation 59

6.1.1 Context-Free Grammar (CFG) Construction 60
6.1.2 Pre-processing 62
6.1.3 Training 65
6.1.4 Tree Comparison 65
6.1.5 Cross-Fold Validation 71
6.1.6 Creating and Displaying Melodic Reductions From Trees 71

6.2 Results 72
6.2.1 Discussion 74
6.2.2 Analysis of the Reductions 77

6.3 Discussion 80

7 Conclusion 83
7.1 Summary of Contributions 83
7.2 Future Work 84
7.3 Adding Harmony 84
7.4 Augmenting the Model 88
7.5 Representing Rhythm and Meter 89
7.6 Melodic Generation Examples 90

7.6.1 Sampling the PCFG 90
7.7 Recapitulation 95

Appendices 101

A The Preference Rules of GTTM 102

ix



B XML Snippet for Melodic Phrase in Chopin’s “Grande Valse Brillante” 106

C Generated String for the CFG Before Training 109

x



xi



List of Figures

2.1 The Chomsky hierarchy 7
2.2 Metrical Preference Rule example 12
2.3 Visual groupings based on Gestalt 13
2.4 Auditory analog of Gestalt grouping rules: Timing 13
2.5 Auditory analog of Gestalt grouping rules: Pitch 13
2.6 GTTM tree branching form 15
2.7 GTTM tree with notated cadence 16
2.8 Prolongational reduction tree branching possibilities 18
2.9 Prolongational reduction tree basic form 19

3.1 LBDM boundary profile 25
3.2 Results of different melodic segmentation systems 29
3.3 Parellelism example for one of Beethoven’s sonatas 31
3.4 A T-R tree in an automatic composition system 35

4.1 A visualization of a set of melodic embellishment rules, encoded manually
into the production rules of a formal grammar (Gilbert and Conklin 2007,
3). 38

4.2 A time-span tree and a prolongational tree example 44
4.3 An example of how the time-span and the prolongational trees’ branching

can differ 45
4.4 GTTM trees converted into PCFG format 46
4.5 A limitation of the GTTM to PCFG tree conversion algorithm 49

5.1 Leaf alignment algorithm example 55
5.2 A PCFG parse tree example 56
5.3 A parse tree with the compared nodes marked 57

6.1 Temporal sequence options in different branching structures 63
6.2 Example of comparison algorithm with no matching nodes 67
6.3 An example of the comparison algorithm 70
6.4 A PCFG parse tree example 73
6.5 Example of the application of the “New” rule 76
6.6 A GTTM time-span tree converted into PCFG format 77
6.7 Example of melodic reduction with the prolongational reduction data 79
6.8 An example parse tree when using the time-span reduction data 80

xii



6.9 Melodic reductions created using the time-span reduction data 81
6.10 A parse tree resulting from the time-span reduction data 82

7.1 An example of generated melodies using the PCFG 91
7.2 A parse tree of a generated melody 93
7.3 A melody embellished with the PCFG 94
7.4 Examples of generated melodies 95

xiii



xiv



List of Tables

3.1 The rules of GTTM’s grouping theory, quantified 24

6.1 Results of cross-fold validation on the PCFG 74
6.2 Baseline percentage of leaf nodes 75

7.1 Ascending arpeggios generated with the harmony grammar 87

xv



xvi



Glossary

CFG Context-Free Grammar. 1, 5, 7–11, 15–17

EFSC Essen Folksong Collection. 1

GPR Grouping Preference Rule. 1, 11

GTTM The Generative Theory of Tonal Music. 1, 11–14, 16

IOI inter-onset interval. 1

LBDM Local Boundary Detection Model. 1

MPR Metrical Preference Rule. 1, 11

NLP Natural Language Processing. 1

NLTK Natural Language Toolkit. 1, 17

OOI offset-to-onset interval. 1

PCFG Probabilistic Context-Free Grammar. 1, 5, 7, 9, 11, 12, 17

PRPR Prolongational Reduction Preference Rule. 1, 11

PRWFR Prolongational Reduction Well-Formedness Rule. 1, 12

TSPR Time-Span Preference Rule. 1, 11

TSWFR Time-Span Well-Formedness Rule. 1, 12

XML Extensible Markup Language. 1, 11, 12

xvii



1. Introduction and Motivation

When experiencing music, a listener engages in a combination of perceptual processes,
from the translation of oscillating vibrations into pitch, to the automatic inference
of more structural musical elements such as key and meter. Often, a music listener
considers a melody to be a sequence of pitched events. However, when a listener hears a
simple sequence of pitched events, they are experiencing more than just that particular
sequence—they are forming a structural representation of that melody based on musical
relationships within the sequence. For this reason, a listener can recognize a melody
if it begins on a different pitch, in a different key (such as the “Happy Birthday” song
started from an arbitrary pitch). Indeed, our perception of melodies often involves more
than just the melody itself.
Musical structure is inherently hierarchical. In most songs, there is some form of

repetition (unless the song is through-composed), which creates a particular high-level
form of the piece. In Western tonal music, for example, there is the sonata form, which
consists of three parts: an exposition, development, and a recapitulation. In popular
music, songs can be broken into sections such as the intro, verse, and chorus (among
others). In jazz music, performers often notate songs using a musical chart that contains
each section with the chord sequence and duration for each chord in that section. In all of
these forms, certain sections repeat in full or in part. Beyond the section structure, music
continues to separate into musical objects that can be associated hierarchically; sections
will contain phrases, which contain harmonic sequences, which will in turn contain notes.
Melodic reduction is the process of determining the more structural notes in a melody.

During this process, a musical analyst will systematically remove notes from the melody
that are deemed less structurally important. Some reasons for removing a particular
note are, among others, pitch placement, metrical strength, surrounding notes, and
relationship to the underlying harmony. Because of its complexity, formal theories on
melodic reduction that comprehensively define each step required to reduce a piece in
its entirety are relatively few.
Composers have long used melodic ornamentations to elaborate certain notes, or to

span a particular interval. In the early 1900s, Heinrich Schenker developed a hierarchical
theory of music reduction (a comprehensive list of Schenker’s publications was assembled
by David Beach (1969)). In it, he ascribed each note in the musical surface as an
elaboration of a representative musical object found in the deeper levels of reduction.
As part of the analysis, Schenker described particular methods of ornamentation that
can also be used for the opposite operation—what he named diminution (Forte and
Gilbert 1982). The particular categories of ornamentation that were used in his
reductive analysis were neighbor tones, passing tones, repetitions, consonant skips, and
arpeggiations. For example, given an interval formed by notes of longer durational

1



value, one can create an elaboration of that interval using additional notes of smaller
value that conform to these categories of ornamentation. Similarly, if the particular
ornamentation is identified, an analyst can remove certain smaller-valued notes so that
only the larger-valued notes remain.
In the 1980s, Fred Lerdahl and Ray Jackendoff—a musician and a linguist—created a

new theory of musical reduction in the The Generative Theory of Tonal Music (GTTM)
(Lerdahl and Jackendoff 1983). The authors’ goal was to create a formally-defined
generative grammar for identifying the hierarchical structure of a musical piece. In
GTTM, every musical object in a piece is subsumed by another musical object,
which means that the subsumed musical object is directly subordinate to the other.
Unlike Schenkerian analysis, this subordination rule necessitates that every event is
accounted for by another single musical event. In detailing this process, Lerdahl and
Jackendoff begin with breaking down metrical hierarchy, then move on to identifying a
grouping hierarchy (separate from the metrical hierarchy). Finally, they create two
forms of musical reductions using the information from the metrical and grouping
hierarchies—the time-span reduction, and the prolongational reduction. The former
details the large-scale grouping of a piece, while the latter notates the ebb and flow
of musical tension in a piece. Between all of these sub-tasks, the particulars of
their reductive process involve other analytical methods, such as parallelism, musical
segmentation, cadence identification, and harmonic ordering/precedence. It is useful,
then, to review the details of GTTM in order to understand all of the related music
analytical techniques that might influence melodic reduction.
The focus of this thesis is to test the efficacy of the Probabilistic Context-Free

Grammar (PCFG) when applied to the task of melodic reduction. The PCFG represents
a generative grammar—much the same as the theoretical model that Lerdahl and
Jackendoff aimed to create (Lerdahl and Jackendoff 1983). The additional feature
provided by the PCFG is that each grammatical rule is also assigned a probability, each of
which can be learned from a data set. The technique is borrowed from Natural Language
Processing (NLP), and has been used before to perform the task of melodic reduction
(Gilbert and Conklin 2007). However, in previous research, unsupervised learning was
used, and the results were not tested against a dataset. In this thesis, the PCFG will be
used to encode the rules of ornamentation into grammatical production rules, and the
training process of the PCFG will use supervised learning to discover the probabilities
associated with each rule. The grammar will be implemented using the open-source
Natural Language Toolkit (NLTK) (Loper and Bird 2002), which provides methods for
supervised learning of PCFGs. Once trained, the algorithm can determine the most
probable parse tree for an arbitrary input melody. For supervised learning of a PCFG,
it is necessary to have existing solutions in order to determine the probabilities assigned
to each production rule in the grammar. In the process of implementing GTTM in
software, Hamanaka et al. created such a database, with 300 expert analyses of melodies
using the rules of GTTM (Hamanaka, Hirata, and Tojo 2007b). This dataset will be
split into five separate folds. Then, cross-fold validation (Jurafsky and Martin 2000,
154) will be performed to evaluate the musical effectiveness of the melodic reduction
technique. The results will be analyzed and discussed.

2



Motivations for performing melodic reduction include melodic identification and
similarity, efficient storage of melodies, automatic composition, variation matching, and
automatic harmonic analysis. For example, Rizo developed a method for symbolic music
comparison utilizing tree data structures, which can compare melodies with different
ornamentations (Rizo 2010). Marsden explored the use of Schenkerian reductions for
identifying variations of melodies (Marsden 2010). De la Puente, Alfonso, and Moreno
created a method for discovering the tree structures of melodies and subsequently
evolving them using evolutionary grammars for automatic composition (2002).

1.1. Thesis structure

Rather than cover the entire field of melodic analysis techniques, which is too broad,
the literature review for this thesis will focus on the melodic analysis techniques that
utilize generative grammars and tree data structures. This focus on tree data structures
was inspired by Marsden (2005), in which he discussed the ideal characteristics of
the representation of musical structure. In order to represent musical structure, the
author argued that an encoding must be both generative and hierarchical, among others.
Marsden recommended a modified tree structure. Indeed, the abstract data type tree
seems the most fit for capturing both the hierarchical and temporal aspects of a piece.

The thesis is organized as follows:

Chapter 2 provides background information on both GTTM and formal grammar
theory, including probabilistic techniques. The background on GTTM will give an
overview of the different musical theories that are required to perform a reduction,
while the grammatical background will cover the computer science techniques that
were used to perform melodic reduction with a PCFG.

Chapter 3 presents a history of literature on melodic reduction and the related
methods that are required when trying to find melodic structure from symbolic
music.

Chapter 4 explains the PCFG for melodic reduction algorithm and how it is
trained.

Chapter 5 describes the process of evaluating the performance of the PCFG
algorithm.

Chapter 6 discusses the results of the evaluation of the PCFG, as compared with
GTTM.

Chapter 7 suggests future work to improve and extend the current algorithm.

3



2. Background

Before introducing the range of research on melodic reduction and its related techniques,
a deeper look at certain theories and techniques utilized in this thesis is in order. It is
first important to understand the mechanics of a Probabilistic Context-Free Grammar
(PCFG). Secondly, since the dataset that is used for supervised learning was created
using The Generative Theory of Tonal Music (GTTM), it is also important to understand
the details of the form and content that is embedded in that theory. Unravelling the
different layers of GTTM can also provide insight into which particular musical analysis
methods are related to melodic reduction. This chapter will give an overview of the
fundamental theories involved with Natural Language Processing (NLP), as well as a
more in depth look into the formative concepts of GTTM.

2.1. Natural Language Processing

2.1.1. Formal Grammars

Grammars are effective tools for breaking down the hierarchical structure of a sequence.
They were created to perform the grammatical extraction of written sentences; using
a series of rewritable rules, they are able to describe the different possibilities of
grammatical syntax. The field that grew around grammars is called NLP. Chomsky
formalized grammars (1956) and later extended the theory (1959). Backus et al. extended
the theory as well, in parallel (1959). The definition of a formal grammar consists of
four parameters, G = {N,Σ, R, S}, which are defined as follows (Jurafsky and Martin
2000):

N a set of non-terminal symbols

Σ a set of terminals (disjoint from N)

R a set of production rules, each of the form α→ β

S a designated start symbol

To be clear, production rules define the relationship between the non-terminals and the
terminals; they specify which symbols can be replaced, or rewritten by other symbols.
The non-terminal symbols, N, are equivalent to variables that can be rewritten by as
any sequence of non-terminals or terminals. It is the production rules that specify
these rewrites. By convention, non-terminals are represented with uppercase letters, and
lowercase letters represent terminals. Within each production rule, both the α and the β
represent a sequence of non-terminals and terminals. This is denoted by α, β ∈ {Σ∪N}∗,

4



where {Σ ∪ N}∗ is the infinite set of strings of non-terminals and terminals. This set
may or may not include the empty string, λ. Terminals are often called “words” because
grammars were originally designed to parse written natural languages. A sequence of
words creates a “sentence”. These terms are often still used, even when using grammars
for purposes other than written natural language (e.g., computer languages).
Each formal grammar provides all of the information needed to generate a single formal

language. For this reason, formal grammars are synonymous with generative grammars.
Similarly, formal grammars are descriptive grammars because they define the syntax of
a language.

2.1.2. Parsing Algorithms

The process of applying a grammar to a given sentence in order to create a tree of applied
production rules is called parsing. It is possible that a given grammar cannot describe an
input sentence, or even that multiple parse trees result; when multiple trees can result,
the grammar is known as ambiguous. Because of the recursive nature of grammars, a
record of which rules have been applied to particular sub-strings is often kept, in order
to avoid processing the same substring more than once. The record is known as a chart,
and, subsequently, grammar-parsing algorithms are known as chart parsing algorithms
(Kay 1986).
There are two types of parsing algorithms: bottom-up parsers or top-down parsers.

Bottom-up parsers apply the rules that described the terminals first, and then build
the tree up by applying rules to those non-terminals, while top-down parsers apply the
rules with non-terminals first and search for possible terminals last. The predominant
bottom-up parser is named after its co-creators, the Cocke-Younger-Kasami algorithm
(Cocke 1969; Younger 1967; Kasami 1965).

2.1.3. Chomsky Hierarchy

Chomsky detailed the different types of formal grammars, and how they are related
(Chomsky 1956). All formal grammars are related, and stem from the formal grammar
as described above. The way they differ is dependent on the restrictions that are
applied to the generic formal grammar. The most important distinction is the concept
of productions that require or do not require context. In formal grammars, the
non-terminals are considered variables. If these variables can only be applied with the
requirement of adjoining terminals, then the grammar is context-sensitive—that is, if
any of the rules contain terminals as well as non-terminals on the left-hand side. Thus,
in Context-Sensitive Grammars, the syntax for a production can be

xA→ β

Ay → β

xAy → β

(2.1)

In these examples, A represents a non-terminal, while x and y represent terminals. The
β symbol represents a sequence that includes either non-terminals, terminals, or both.

5



Context-Sensitive Grammars have a further requirement that, for any production rule,
the number of symbols on the left-hand side must be less than or equal to the number
of symbols on the right-hand side: |α| ≤ |β|.
Context-Free Grammars (CFGs) are just the opposite. CFGs require that the

left-hand side of any production rule include only a single non-terminal. This ensures
that the non-terminals can be applied regardless of the symbols surrounding it. The
format for productions of CFGs is always:

A→ β (2.2)

Regular grammars further restrict the format of productions. The right-hand side
of any production that is part of a regular grammar must consist of any number of
terminals, optionally succeeded by a single non-terminal. Alternatively, the order can
be switched, such that the right-hand side contains any number of terminals preceded
by a single non-terminal. It is also possible to make a rule with only terminals on
the right-hand side. These first two options are described as right-linear (where the
non-terminal is on the right) and left-linear. Every regular language can be produced
by both a left-linear and an equivalent right-linear grammar. The left-hand side of each
production, as in CFGs, must be composed of a single non-terminal. The family of
languages produced by regular grammars can be obtained using regular expressions.

These cumulative restrictions allow the definition of language types that have a
different level of generative power. Generative power is the ability to produce a language
of a certain complexity. With each added restriction, the generative power of a grammar
type wanes. For instance, a CFG can describe a language that a regular grammar simply
cannot.
All of these types of grammars combined compose the Chomsky Hierarchy (Chomsky

1956). Each grammar type is set-inclusive, such that, for example, a regular grammar
is a CFG, a CFG is a Context-Sensitive Grammar, and a Context-Sensitive Grammar is
a formal grammar (see Figure 2.1).

2.1.4. Chomsky Normal Form

Chomsky also created a specific format for simplifying formal grammars. Chomsky
Normal Form (CNF) requires that a grammar have rules with only two possible formats
(Chomsky 1959):

A→ B C (2.3)

or
A→ x (2.4)

By definition, a grammar that is in CNF is also a CFG, since there are only non-terminals
on the left-hand side of each rule. Notice, also, that a grammar in CNF must exclude
the use of the empty string. Similarly, any CFG can be converted into CNF in an
efficient way, by adding and substituting rules. For example, consider a CFG that has

6





2.1.5. Probabilistic Context-Free Grammars

An extension of the CFG is the PCFG (Booth 1969). Sometimes called the Stochastic
Context-Free Grammar, the PCFG’s definition is identical to the CFG, except for one
addition to each rule. The rules are now defined as (Jurafsky and Martin 2000):

A→ β [p] (2.7)

where p is the conditional probability of this particular non-terminal A expanding into
the right-hand side β. p can also be written as P (A → β|A) or simply P (A → β).
For each non-terminal, the conditional probabilities for the expansion of every rule that
contains it all sum to 1:

∑

∑

P (A→ β) = 1 (2.8)

One can also compute the probability of a parse tree, given an input sentence S. The
probability of a given parse tree, T, can be computed by considering every n non-terminal
node in the tree, and cumulatively multiplying the probability associated with the
particular production that the non-terminal used:

P (T, S) =

n
∏

i=1

P (Ai → βi) (2.9)

Because grammars can often be ambiguous, having two or more valid parse trees for
the same input sentence, the PCFG can be used to disambiguate between the two. For
any given sentence, the probability of each parse can be computed. A reasonable choice
for the best parse is simply to choose the parse of the highest probability.

2.1.6. Training of a PCFG

A PCFG is only useful if the probabilities have been defined for each rule. The simplest
way to gather the statistics for the likelihood of each rule application is to compute the
percentages from an existing treebank. A treebank is a corpus in which every sentence
has been annotated with its corresponding tree parse (Jurafsky and Martin 2000, 404).
Given a set of sentences with their solution trees, it is simply a matter of adding up
the occurrences of each rule and dividing by the number of times a specific right-hand
side expansion occurs. This yields probabilities for every expansion, and is known as
“inducing” a PCFG. It is a form of supervised training.
This thesis will follow a similar approach. Researchers have previously created a

corpus treebank of 300 melodic analyses in which there exists a tree structure for each
melody (Hamanaka, Hirata, and Tojo 2007b). In this thesis, a system is designed to
convert the tree structures provided in that treebank into the appropriate format for the
training of a PCFG, and the resulting probabilities will allow the most likely parse tree
to be found for any new melody.

8



2.2. The Generative Theory of Tonal Music

The Generative Theory of Tonal Music (GTTM) was the product of musician Lerdahl
and linguist Jackendoff, who attempted to use linguistic ideas to determine the
hierarchical musical structure of a piece (including both the rhythm and pitch) (1983).
Lerdahl and Jackendoff focused on the perception of music by the listener, in terms
of the musical structure that is communicated aurally. Indeed, they believe that “a
piece of music is a mentally constructed entity, of which scores and performances are
partial representations by which the piece is transmitted”(Lerdahl and Jackendoff 1983,
7). Thus, they believe it is imperative to consider the cognitive processes involved
with processing music, and to incorporate those into any theory of musical structure.
Lerdahl and Jackendoff sought to encode the psychological principles of the Gestalt
tradition—specifically the works of Wertheimer (1938), Köhler (1929), and Koffka
(1935)—into grammatical musical rulesets. The motivation for their research was to
provide a grammar that is machine-executable, however they noted that their focus
does not lie in formally defining the precise mathematical formulae needed to execute
the grammar (Lerdahl and Jackendoff 1983, 53). It is important, then, to consider
which aspects of their formal descriptions are the most challenging to implement as a
mathematical, or software system.
Before delving into the details of GTTM, a general overview of the different facets of

the theory is in order. The decisions made for the representation and structure of the
theory play a large role in the manifestation of the rules.
Following that, a presentation of the motivations and intuitions of the rules that

form each of the four components will be detailed. With each of these components,
another facet of the process of identifying the musical structure will be evident. Given
the tree-based form of the resulting musical structure, one can consider the results as a
musical reduction. In the context of building a PCFG for melodic reduction, it is also
important to understand, in detail, previous attempts at building generative grammars
for musical reduction. The different features of GTTM could be used, for example, to
form the production rules of the PCFG. Similarly, the dataset that will be used in this
research for training the PCFG was created using GTTM. In order to understand what
branching decisions were made in the training data, one must understand the principles
upon which the musical reduction trees were formed.

2.2.1. The Four Components

GTTM is comprised of four separately defined, yet interacting components. The set
consists of four formally defined hierarchical organizations: metrical structure, grouping
structure, time-span reduction, and prolongational reduction. Grouping addresses the
organizing of similar gestures on the musical surface, as well as the relationship between
larger groups of notes. The metrical structure creates a hierarchy of strong and weak
beat associations. The time-span reduction combines both meter and grouping to
create a segmented reduction that pinpoints the strongest events in each segment (called
structural accents), while the prolongational reduction creates a hierarchy of structural

9



pitch content organized by the ebb and flow of tension in the piece. Each of these
are annotated as a hierarchy containing different types of elements that are specific to
that type of analysis, however the hierarchies share similar properties. For each type of
hierarchy, the following formal definitions apply:

1. It is “composed of discrete elements or regions related in such a way that one
element subsumes or contains other elements or regions”(Lerdahl and Jackendoff
1983, 13).

2. No elements can overlap.

3. The combination of sub-elements for a given element must compose the entire
element (there cannot be partial sub-elements, or elements that are not included).

4. It is recursive, such that the rules for an element and its sub-elements apply at
every level.

5. Elements at the same hierarchical level must be contiguous (non-adjacent groupings
are prohibited).

The elements that a hierarchy is composed of can be either single nodes that represent
timed and pitched events, or the elements can be regions of a specific duration. In each
case, the element that subsumes another element must have a higher priority in the
musical hierarchy. For example, an element of higher priority could be one that has a
larger duration or more prominent metrical placement. In some cases, there is reason
to have overlap between adjacent elements, for instance, when the end of a cadence is
also used as the starting note in a new phrase. The authors address these situations as
exceptions to the rule, and create rules for duplicating an event so that it may exist as
part of two separate elements.

Meter versus Grouping

Lerdahl and Jackendoff made a clear distinction between the rules necessary to describe
meter, and the rules necessary to describe groups. Their reasoning was that groups
should represent a sequence of related notes—a durational unit—while meter should
represent just the onsets in time. Thus, the two systems for annotating the respective
metrical and grouping structures of a piece should also be distinct. The notable
counter-example that the authors provided is the representation of meter by prosodic
analogy (Cooper and Meyer 1960). Cooper and Meyer presented a rhythm notation
system that borrows its syntax from stress markers in poetry. Every element in the
rhythmic structure is represented by a dash (‘–’) or a cup (‘∪’) symbol, to represent
strong and weak beats, respectively. These symbols are used to notate both meter
and grouping. There are disadvantages in the prosodic representation that Cooper and
Meyer presented, as compared with Lerdahl and Jackendoff’s. Generally, on the lowest
level, the system will align with metrical accents, which is congruent with Lerdahl and
Jackendoff’s method of metrical notation. In higher levels of the notation, the notation

10



system is ambiguous as to whether it notates the meter or the grouping, and thus the
system breaks down. Furthermore, the beats at the smaller level are not represented by
specific points in time, rather they indicate a time-span. Lerdahl and Jackendoff argued
that any metrical notation should be able to indicate a precise moment in time, similar to
the conductor accenting imaginary, and infinitesimally small points of time with gestures.
By identifying the drawbacks in prosodic notation, Lerdahl and Jackendoff were able to
create a more accurate depiction of two musical features (meter and grouping) as separate
systems.

2.2.2. Metrical Structure

Lerdahl and Jackendoff used a simpler approach than prosodic notation, by utilizing a
dot notation for meter (see Figure 2.2), and also by separately defining the metrical and
grouping notational systems. Meter is notated with sequences of dots stacked in levels,
in which the weaker beats are not represented at a higher level. According to Lerdahl
and Jackendoff: “the time-spans between beats at any given level must be either two or
three times longer than the time-spans between beats at the next smaller level”(Lerdahl
and Jackendoff 1983, 20). The authors also noted that not all metrical levels are equally
perceptible by listeners. Lerdahl and Jackendoff argued that “the listener tends to focus
primarily on one (or two) intermediate level(s) in which the beats pass by at a moderate
rate. This is the level at which the conductor waves his baton, [and] the listener taps his
foot.”(Lerdahl and Jackendoff 1983, 21). Lerdahl and Jackendoff borrow a term from
the Renaissance, and labels this unit from the metrical hierarchy as the tactus. The
tactus is defined as the principal rhythmic unit (Sadie and Grove 1980). The tactus is
generally continuous throughout the course of a piece. Levels smaller than the tactus,
however, are allowed to enter and exit the piece as necessary. The principles just listed
relate to what are referred to in GTTM as “Well-formedness Rules”, which define how
a hierarchical structure can be formed for the specific component. There can be many
possible structures for a given musical excerpt, and the method by which these potential
structures are rated is by a set of “Preference Rules”. The Preference Rules are created
with an order of priority, so that when two rules conflict, preference is given to one over
the other.
For the metrical preference rule system, one particular rule establishes the logic for

the majority of the Metrical Preference Rules (MPRs)1. MPR 3 states (Lerdahl and
Jackendoff 1983, 76):

Prefer a metrical structure in which beats of level Li that coincide with
the inception of pitch-events are strong beats of Li.

Inceptions can be considered onsets in this context. The remaining MPRs extend
the principle presented in MPR 3 to describe those salient attributes that might be
important, such as: accent, long duration of a pitch-event, long duration of dynamic,
long slurs, long patterns of articulation, long regions of identical pitch, and long duration

1A list of all the rules of GTTM can be found in Appendix A

11







when their effects are “relatively more pronounced”, in GPR 4 (Lerdahl and Jackendoff
1983, 49). GPR 5 seeks to define the shape of higher levels, and states that higher
levels should seek to subdivide the groups in two equal-length parts. GPR 6 requires
that, when possible, parallel segments of music should form parallel groups, or parts
of groups—the usage of a term like “parallel” is intrinsically complicated, as discussed
below in Section 2.2.6. Finally, GPR 7 defines a preference rule that will prefer the
stability of the time-span or prolongational reductions. Thus, there is a reference to
preference rules from time-span and prolongational reductions.
Grouping is often included as part of the process of melodic reduction, and GTTM is

no different. Section 3.1 will give a more detailed look at the research around melodic
grouping. There are many that have formed their research around the same principles as
those in GTTM and in Gestalt Psychology, while others provide different perspectives
and methods.

2.2.4. Time-span Reduction

The two remaining components of GTTM that have yet been described are the time-span
reduction, and the prolongational reduction. Both reductions are represented, in their
totality, by a tree structure, as opposed to the dot or slur notation seen in the metrical
and grouping hierarchies, respectively. The tree structures follow the formal guidelines
for well-formed hierarchies, as mentioned previously, and extend it to designate a system
of reductions within the structure.

Branching

In GTTM, a format for determining dominance between two objects in a tree of musical
objects is presented. Each branch has a visual direction that specifies which object is
the dominant one. Different branching possibilities are shown in Figure 2.6. In Figure
2.6h, for example, the branches are organized from most dominant on the left to least
dominant on the right. The fundamental assumption behind the directional branching
in the time-span and prolongational trees (defined below) is that each pitch event is a
musical elaboration of another pitch event (Lerdahl and Jackendoff 1983, 113). Also,
the elaboration (or, in reverse, reduction) of events is recursive in that higher levels
will also be reduced to even higher levels, until only a single event exists. Given two
pitch events, their representative tree will have two separate branches that connect at
a point. For right-branching trees, the left branch will end at the connection point,
while the right branch will continue upwards. This represents that the object at the
end of the right branch is the dominant sub-element, and the left element is simply
an elaboration of the dominating right element. For left-branching trees, the opposite
is true. Furthermore, no branches are allow to cross, each element can only represent
one branch, and each element must exist on the tree. See Figure 2.6 for a depiction of
different tree possibilities.

14







stable choice of metrical structure, while TSRPR 6 creates a preference for heads that
result in a more stable prolongational reduction (Lerdahl and Jackendoff 1983, 167).
Here, there is a bit of ambiguity left in the definition because of the interdependence of
the time-span reduction and the prolongational reduction. The authors were aware that
conflicts would arise between the two, and that if there were such conflicts, the head
that allows for more stability in the prolongational reduction following the time-span
reduction, that head should have a priority over other possibilities. There is also a
preference rule for Cadential Retention, TSRPR 7, and a couple of rules for defining the
higher-level structure in terms of which types of heads should start or end the piece.
With these explicit rules about cadences, it is evident that harmony is a guiding factor
in the formation of prolongational trees, especially when considering the musical events
higher in the tree. See Figure 2.7 for an example of the tree syntax for one instance of
Cadential Retention.

Metrical Consonance

The time-span reduction’s main organizational principles are based on meter (Lerdahl
and Jackendoff 1983, 119). The time-span reduction of a piece notates and visualizes
the structural accents and the general phrasing that a piece presents. In fact, at a local
level (i.e., the musical surface), the time-span reduction is based largely on metrical
considerations. With a time-span reduction, one can also identify parts with syncopation,
where the local and the global structures conflict, as well as anacruses and afterbeats.

2.2.5. Prolongational Reduction

According to Lerdahl and Jackendoff, the time-span reduction is not designed to
represent a listener’s sense of progress in the piece; there is no way to encode the series
of tensions and relaxations that a piece will usually invoke (Lerdahl and Jackendoff
1983, 179). The prolongational reduction seeks to define just that. The same format for
directionally branched trees in the time-span prolongation applies to the prolongational
reduction, however in this case the branches represent a hierarchy of tensing and relaxing
events. A right-branching node implies that the child event on the right is more tense
than the event on the left (which is represented at the next level as the head), and a
left-branching node shows that there is a relaxation from the left child event to the right
one.

Syntax

The prolongational reduction format also introduces some new branching elements.
There are three additional specifications that warrant distinction with a new notation:
strong prolongation, weak prolongation, and progression. Strong prolongation occurs
when there are two musical events that have identical pitch information—they are the
same. If these occur in functionally similar levels, the latter may be considered to
prolong the first. Strong prolongations are notated by an empty circle at the point
of branch intersection. Weak prolongation is similar, except the two musical events

17







the head of that region (Lerdahl and Jackendoff 1983, 220). First and foremost, there is a
preference for the most important time-span event; if the time-span considers it the most
important event in that region (often these are considered structural accents), then there
is a strong preference to make that the prolongational head. This preference is defined
in Prolongational Reduction Preference Rule (PRPR) 1. Similarly, the prolongational
reduction should honor the segmentation that the time-span reduction created (PRPR
2). There is a preference for a more stable prolongational connection (PRPR 3). Here,
there is an important clarification required, in order to define the stability condition.
Before describing prolongational stability in more detail, it is wise to consider the final
preference rules: Branches should also connect to more prolongationally stable events
(PRPR 4); The normative form should be preferred when possible (PRPR 6).

Prolongational Stability

Lerdahl and Jackendoff stated that when making choices for the prolongational
reduction, the branches should be maximally stable, based on the hierarchy of strong
prolongations, weak prolongations and progressions (Lerdahl and Jackendoff 1983, 188).
Right-branching preferences are for the prolongations in that order (strong, weak,
progression), and left-branching preferences are the opposite. Beyond that, there is
a preference for events with similar tonality. Events that have a common diatonic
collection (e.g., those in the same key) are considered more stable. A lower, but still
significant priority in the preference hierarchy is the melody. Melodies are branch based
primarily on melodic distance—those notes that are closer in pitch will be more likely
to be grouped together as branches. However, there are other concerns as well. For
example, passing motion will generally attach to the event with stronger tonality, as
defined by the explicit or implied harmony. Neighbor tones will generally right-branch,
since they are usually a result of a strong prolongation, and strong prolongations are
almost always right-branching. Metrical placement is also a consideration, but that
should be taken care of by the time-span preference rules. The authors of GTTM
also specify a preference for categorizing ascending melodic motion as a right-branching
structure, and descending motion as a left-branching one. These branching structures
are the more stable forms for each. Lastly, prolongational stability is defined by harmonic
stability, in which two harmonic elements are deemed more stable if their harmonic roots
are closer on the circle of fifths. Like melodies, progressions that ascend (on the circle
of fifths) are right-branching and descending ones are left-branching.

2.2.6. Parallelism in GTTM

Parallelism plays a substantial role in the formulation of preference rules. The highest
priority rule in the metrical preference rules (MPR 1) from The Generative Theory of
Tonal Music (GTTM) is based on parallelism. The rule states “Where two or more
groups or parts of groups can be construed as parallel, they preferably receive parallel
metrical structure” (Lerdahl and Jackendoff 1983, 75). Furthermore, in the Grouping
Preference Rules (GPRs), parallelism finds its own rule in GPR 6. It again occurs in the

20



Time-Span Preference Rules (TSPRs)—in TSPR 3—and the Prolongational Reduction
Preference Rules (PRPRs)—in PRPR 5. However, the authors failed to provide a
rule-based system for defining parallelism. The authors admit, “failure to flesh out
the notion of parallelism is a serious gap in [their] attempt to formulate a fully explicit
theory of musical understanding” (Lerdahl and Jackendoff 1983, 53).

21



3. History of Melodic Reduction and
Related Techniques

The Generative Theory of Tonal Music (GTTM) is not the only theory that was created
to formalize the music theoretical methods involved in melodic reduction. Schenkerian
analysis (Beach 1969) also provides a framework with which to reduce scores. Beyond
that, many concepts that are involved with the process of melodic reduction can be
found in a history of research in the Music Information Retrieval (MIR) field, which
will be explored in this chapter. These concepts include melodic segmentation, melodic
parallelism, and the theory of harmonic progression. Each of these have been approached
with different methods—some inspired by GTTM, and others that take a different
approach. In addition, melodic reduction has been applied to automatic generation
of melodies. Included in this chapter are methods for automatically reducing musical
pieces using Schenkerian analysis, as well as the relevant research for related melodic
reduction techniques, and an overview of generative tools for the automatic composition
of melodies.

3.1. Melodic Segmentation

As was shown in the detailed analysis of GTTM in Chapter 2, melodic segmentation
plays an important role in the reduction of melodies. In GTTM, melodic segmentation
was detailed in the Grouping Preference Rules (GPRs) (see Section 2.2.3), and the two
processes can be considered equivalent. The time-span reduction and the prolongational
reduction tree are only formed after the grouping hierarchy is created, with the grouping
hierarchy informing the choices made in the reduction trees. Tenney and Polansky
presented a formal model for melodic segmentation using the ideas of Gestalt psychology
(1980). Lerdahl and Jackendoff also modeled their GPRs around Gestalt psychology.
Others take a different approach. Melodic segmentation can assist the task of melodic
reduction by identifying notes that are structurally more important. In all of the
following research, a melody is defined as a monophonic sequence of notes, with no
overlap. What this means is that no part of any two notes will sound at the same time.
Melodic segmentation discovers pairs of boundaries that explicitly define subsequences
within the sequence of notes. Certain melodic segmentation algorithms aim to apply
this subsequence partitioning to both surface-level groups as well as higher-level groups.
This section will document the research that has been performed for the purpose of
melodic segmentation.

22



3.1.1. Implementing GTTM’s Grouping Rules

There are some who chose to directly quantify the melodic segmentation work that
Lerdahl and Jackendoff detailed in the GPRs of GTTM. As mentioned, the authors
of GTTM did not provide a machine implementation of their work, however they
aimed to specify the rules to the level of detail such that an implementation would
be straightforward (Lerdahl and Jackendoff 1983, 53). Frankland and Cohen (2004)
isolated and evaluated the part of the theory related to only to melodic segmentation,
specifically the GPRs.
Upon reviewing the GPRs in GTTM, Frankland and Cohen found that only certain

of the preference rules presented in GPRs 2 and 3 (discussed in Section 2.2.3) are
translatable into mathematical equations. Specifically, the preferences for boundaries on
larger differences in offset-to-onset interval (OOI) (GPR 2(a)), inter-onset interval (IOI)
(GPR 2(b)), intervallic distance (GPR 3(a)), and duration (GPR 3(d)) were quantified
(Frankland and Cohen 2004, 501).
A series of mathematical formulae were created to quantify GPRs 2 and 3 (see

Table 3.1). Each formula was based on a particular parameter of the note, determined
by the preference rule. The variable n represents the feature of the note (or pair of notes)
that was being used, and is represented in the column labelled n. In the first row where
the formula for GPR 2(a) is shown, the feature being utilized was the OOI between a
set of two consecutive notes. The formula applied was simply the absolute length of the
OOI, which can also be considered the amount of rest between the notes. The scale for
the length of the rest was normalized so that a whole note, or semibreve, was valued at
exactly 1.0. For GPR 2(b), IOI was used, which measures the timing difference between
the attack point of two consecutive notes. The measurement involved a sequence of
four notes, for which the three consecutive intervals between the four attack-points was
measured. If the center interval was the largest in length, then the boundary strength
was computed using the corresponding formula, otherwise a null value was assigned. The
formula for GPR 3(a) measured the jump in consecutive pitch intervals. For a set of
four notes, if the change in pitch interval between the middle two notes was the largest,
then the boundary strength approached 1.0 as the middle pitch interval grew larger. For
GPR 3(d), the duration of n1 must be equal to the duration of n2, and the duration
of n3 must be equal to the duration of n4. Therefore, the formula simply compared n1

and n3. If they were equal, the value was zero, whereas if they were very different, the
value approached 1.0. Given the mathematical formulae for the corresponding GPRs,
the authors then compared the measurements with boundary judgements collected from
participants listening to six different melodies. The only strong correlation with the
empirical boundaries was produced with the boundary predictions from rule 2(b).

3.1.2. Local Boundary Detection Model

One computational approach to melodic segmentation is the Local Boundary Detection
Model (LBDM) (Cambouropoulos 2001). The LBDM is similar to GTTM’s GPR 3
in that it is designed to identify change in certain features of the consecutive intervals

23



GPR Description n Boundary Strength

2(a) Rest OOI absolute length of rest (semibreve = 1.0)

2(b) Attack-point IOI

{

1.0− n1+n3

2×n2
if n2 > n3 ∧ n2 > n1

⊥ otherwise

3(a) Register Change pitch



















1.0− |n1−n2|+|n3−n4|
2×|n2−n3|

if n2 6= n3 ∧

|n2 − n3| > |n1 − n2| ∧
|n2 − n3| > |n3 − n4|

⊥ otherwise

3(d) Length Change duration







⊥ if n1 6= n2 ∨ n3 6= n4

1.0− n1/n3 if n3 ≥ n1

1.0− n3/n1 if n3 < n1

Table 3.1.: The rules of GTTM’s grouping theory, quantified by Frankland and Cohen
(2004, 504–507), as gathered by Pearce etȧl (2010, 6). The n column
represents the feature being measured in the formula.

between notes. Each of these features were computed for every consecutive pair of notes
in the input note sequence, creating a profile for each. The features included pitch
interval in semitones, OOI and IOI. The Change Rule specifies a mathematical formula
for the measurement of change over each of the interval profiles; a boundary strength si
for a given interval xi is a product of its surrounding intervals in the sequence:

si = xi × (ri−1,i + ri,i+1)

Each r represents the degree of change between subsequent intervals:

ri,i+1 =

{

|xi−xi+1|
xi+xi+1

iff xi + xi+1 6= 0 and xi, xi+1 ≥ 0

0 iff xi = xi+1 = 0

Each of the features’ strength profiles were then combined with a weighted average.
The boundaries were found by identifying local peaks in the profile of the weighted
average of strength profiles. An example is provided in Figure 3.1. Note that the change
rule is based on the same principle as the GPRs in GTTM, by considering not only the
current interval, but also the neighboring ones.
Cambouropoulos tested the weighted boundary strength profile with different weights

for the different features, as well as a particular threshold over which a peak in the
strength profile would be considered a boundary. The author chose a threshold such
that 25% of notes fell on boundaries. The algorithm was evaluated on a data set of
52 Western tonal melodies with melodic punctuation notated by an expert performer.
The term melodic punctuation was used to describe boundaries in melodic sub-phrases
that are accentuated by a micropause in performance. These notations were created by
previous research that was carried out to identify expressive timing deviations of melodic
lines (Friberg, Bresin, Frydén, and Sundberg 1998). With the optimal parameters,
LBDM was found to have a recall of .74 and a precision of .49 (Cambouropoulos 2001,
18).

24



Figure 3.1.: An example of a boundary strength profile for Chopin’s Etude Opus 10,
Number 3 (Cambouropoulos 2001, 21). Each note’s boundary strength is
marked with a diamond in the graph.

3.1.3. Grouper

David Temperley (2001) also created a software system to automatically analyze music.
His approach was strongly influenced by the ideas of GTTM—he even presented his
rulesets using the terms: Well-formedness Rules and Preference Rules, borrowed from
GTTM. Temperley utilized the Gestalt principles of proximity and similarity in an effort
to discern what the listener experiences during a piece. In this work, Temperley presented
six systems to analyze particular aspects of music: metrical structure, melodic phrase
structure, contrapuntal structure, pitch spelling, harmonic structure, and key structure.
Each of these systems provided their own set of well-formedness and preference rules,
each of which defined the form of all possible structures, and the priority assigned
between elements of the structure, respectively.
The software toolkit that provides the melodic phrase structure analysis is named

Grouper (Temperley 2001), which consists of three main Phrase Structure Preference
Rules (PSPRs). These PSPRs were paraphrased by Pearce, Müllensiefen, and Wiggins
as follows (Pearce, Müllensiefen, and Wiggins 2010, 374):

PSPR 1 (Gap Rule):
Prefer to locate phrase boundaries at (a) large IOIs and (b) large OOIs; PSPR 1 is
calculated as the sum of the IOI and OOI divided by the mean IOI of all previous
notes;

PSPR 2 (Phrase Length Rule):
Prefer phrases with about 10 notes, achieved by penalising predicted phrases by
|(log2N) − log210| where N is the number of notes in the predicted phrase—the
preferred phrase length is chosen ad hoc (by Temperley (2001, 74)), to suit
the corpus of music being studied (in this case Temperley’s sample of the Essen
Folksong Collection (EFSC) (Schaffrath 1995)) and therefore may not be general;

25



PSPR 3 (Metrical Parallelism Rule):
Prefer to begin successive groups at parallel points in the metrical hierarchy (e.g.,
both on the first beat of the bar).

3.1.4. Memory-Based Models

The previous models from Section 3.1.1 to 3.1.3 made boundary decisions either after
analyzing an entire piece of music, or after making multiple parallel observations and
combining them post hoc. There exists a class of models that utilize only a certain
window of observations to predict the presence of a melodic segmentation boundary at a
given point. These models are referred to as memory-based models, and include Markov
models, n-grams, and probabilistic grammars.

Modelling Entropy

Ferrand, Nelson, and Wiggins (2003) applied a memory-based model to melodic
segmentation. They formed their model on the assumption that “segmentation
boundaries are likely to occur close to accentuated changes in entropy” (Ferrand, Nelson,
and Wiggins 2003, 142). The authors defined entropy as the change of predictability
associated with a certain sequence of events in a musical piece. Markov models with
differing lengths of observational sequences were utilized to determine the probabilities
for certain musical events. Often, the predictability of an event would change drastically
at the beginning or end of a commonly occurring pattern. This technique can be
performed on data that is not labelled with melodic segment boundaries, and was
tested on Debussy’s Syrinx, which contains segmentation data created by combining
the boundary judgements from multiple listeners. The model was able to successfully
predict all 11 boundaries, but also had 4 spurious predictions.

Data-Oriented Parsing Technique

One method utilizes a hierarchical model applied to musical melodic segmentation (Bod
2002). Bod borrowed from both machine learning and natural language processing in
order to develop a grammar that determines phrase boundaries in melodies. To begin, the
work analyzed and evaluated previous attempts at utilizing grammatical learning-based
techniques, and also introduced a new method that incorporates memory, all evaluated
on the EFSC (Schaffrath 1995). The algorithms were trained on 5,251 folksongs in the
EFSC, and were tested on the remaining 1,000.
The work began by evaluating the Treebank grammar technique. The Treebank

technique creates rules for all of the parse trees that literally occur in the training set.
These parse trees are generated automatically, with one rule per phrase. For phrases,
this means that each phrase, in its entirety, is a unique rule that specifies the entire
note sequence of that phrase. Because of this, only the boundaries of phrases that have
been seen before (or are identical to a seen phrase) can be identified. Unsurprisingly,

26



this method had a poor recall, at 3.4%, even though the precision was 68.7%; phrases
that were repeated were easily interpreted and segmented, while completely new phrases
were almost impossible to segment.
Bod compared his grammar-based methods with other works on the same dataset.

Providing a more detailed view into phrases as well as how notes interact within a
phrase is the Markov grammar technique (Seneff 1992; Collins 1999). It is similar to
the Treebank method, except that every phrase is decomposed into a chain of Markov
probabilities, with a certain history. For instance, if a six-note phrase is observed in the
dataset, there will be a Markov chain of seven different probabilities, with all but the
first conditioned on the previous n notes (n is determined by the history parameter).
The seventh event is the token that represents the end of a phrase, which accounts for
the additional probability computation. If the history parameter is set to four, and a
phrase of length six is evaluated, the probability would be computed as follows (in this
example P stands for a Phrase non-terminal, and END is a data point that demarcates
end of a phrase). Each numeral digit is a single note event, represented by the index of
its pitch in the current scale:

p(P → 123456) = p(1) ∗ p(2|1) ∗ p(3|1, 2) ∗ p(4|1, 2, 3) ∗ p(5|1, 2, 3, 4)∗

p(6|2, 3, 4, 5) ∗ p(END|3, 4, 5, 6)

The probability for each note is conditioned on the history of the previous four notes,
creating a fourth-order Markov chain on every observation, when available. Tested over
the EFSC, this method had a slightly lower precision than the Treebank method (63.1%),
however its recall was much improved (80.2%).

Bod presented his own grammar technique that is an enhancement of the Markov
grammar. This technique corresponds to the Data-Oriented Parsing (DOP) technique
developed earlier, also by Bod (1998). An inherent feature of this approach allows
for the consideration of higher-level structure when determining phrase boundaries, as
conditional probabilities. In this case, the number of phrases that occur in a folksong
is the crucial information that allows for an improvement in segmentation performance.
With the DOP, the conditional probability of a given phrase is based on the different
higher-level rules in the grammar; for every folksong that is seen in training, a rule is
created that specifies the number of phrases that was seen in that folksong. Here is an
analogue to the Markov grammar example, using the DOP method:

p(P → 123456|S → PPP ) = p(1|S → PPP ) ∗ p(2|S → PPP, 1)∗

p(3|S → PPP, 1, 2) ∗ p(4|S → PPP, 1, 2, 3)∗

p(5|S → PPP, 1, 2, 3, 4) ∗ p(6|S → PPP, 2, 3, 4, 5)∗

p(END|S → PPP, 3, 4, 5, 6)

In this case, the new rule of S → PPP stipulates that each melodic phrase should
be part of a set of 3 phrases. The concept of applying more globally-defined features
to the parsing of surface features was seen in the melodic segmentation models for

27



both the Grouper algorithm and the LBDM. Specifically, PSPR 2 in the Grouper
algorithm (detailed in Section 3.1.3) also uses global information—it estimates the likely
number of notes in each phrase, and uses that estimation to influence the decision
of phrase boundaries (Temperley 2001). As in LBDM (described in Section 3.1.2)
(Cambouropoulos 2001), the threshold for peaks in the strength profile to qualify as
boundaries was based on the estimated percentage of notes that should be considered
boundary notes. When Bod (2002) used this extra information in his model, the DOP
parser obtained a precision of 76.6% and a recall of 85.9% on the EFSC.
The new design was able to find what the author calls “jump-phrase”

boundaries—boundaries that occur between two consecutive notes of identical pitches,
for which the prior note has a jump in pitch preceding it and the latter note has a
jump in pitch succeeding it. Bod compared the boundary identification to hypothetical
Gestalt boundary assignments, and asserted that neither Gestalt nor harmonic grouping
preferences could explain this particular boundary. In the test set of the EFSC, over
32% of the folksongs had at least one of these jump-phrase boundaries, and overall, the
total percentage of phrases that began or concluded with a jump was more than 15%.

IDyOM

Somewhat similar to the DOP method, another statistical method that instead employed
unsupervised learning techniques was proposed by Pearce, Müllensiefen, and Wiggins
(2010). The Information Dynamics Of Music (IDyOM) is used to model the information
content, as defined by MacKay (2003), of a melody to determine which event in a
sequence is more unexpected than the other events. Given a sequence of events (in this
case, notes), and the preceding element, the model estimates the conditional probability
of an event at index i with the formula:

p(ei|e
i−1

i ) (3.1)

With the conditional probabilities, the measurement for the information content can be
defined as such:

h(ei|e
i−1

i ) = log2
1

p(ei|e
i−1

i )
(3.2)

h can be considered the measure of contextual unexpectedness of an event. Similarly
the entropy of a given sequence is computed.
The premise presented in IDyOM is that melodic boundaries are found where the

contextual unexpectedness and the entropy of a given note transition are high. The
authors also extended their model to incorporate n-grams of a higher order by computing
the frequency counts in the training stage for all n-grams up to a certain order. The
authors then used a statistical method (Cleary, Teahun, and Witten 1995) for estimating
probabilistic distributions using a weighted sum of all models in order to make their
boundary predictions.
The authors of IDyOM also presented an evaluation of many of the aforementioned

models, including Grouper, LBDM, and Frankland and Cohen’s implementation of the
GPRs. The dataset used for the evaluation was a subset of the EFSC (Schaffrath

28





together into a single unit—the dotted quarter note. The group of 3 eighth notes can
then be seen as durationally equivalent to other dotted quarter notes found in the piece.
This often works well when considering the music of Bach, which the algorithm was
designed to analyze, but can easily falter in other situations. The research by Steedman
(1977) was built upon the author’s earlier work with Longuet-Higgins (1971).
In (Ruwet 1972), the author used formal grammars as a verification tool for identifying

segmentations in music. These segmentations were based on different types of musical
repetitions—including both transformational repetitions, and oppositions or inversions.

Exact pattern matching is not a technique that is unique to music or melodic
parallelism. Certain algorithms have solved the problem for efficiently discovering
repeated patterns in strings (Crochemore 1981). This particular string-matching
algorithm was repurposed by Cambouropoulos (2006) to find exactly-repeated phrases
in a melody. In fact, depending on the representation of the melodic transitions, it
is also possible to find repetitions of inexact pitch sequences. Cambouropoulos et
al. (2005) accomplished this by creating interval categories that overlap, allowing the
system to categorize a minor third as either a step or a leap. The exact same pattern
extraction algorithm was used as part of a rhythmic pattern recognition model designed
by Mont-Reynaud and Goldstein (1985).
As mentioned previously, the term “significant” in this context can describe certain

characteristics of the patterns that are extracted with exact pattern-matching techniques.
For example, Cambouropoulos (2006) argued that “significant” patterns can be
quantified by a combination of length, frequency of occurrence, and degree of overlap.
Each of these factors had a particular weight associated with it, and a Selection Function

was created that maximized the selection of patterns that author considered best.
Lartillot (2010) also created a system for prioritizing the different patterns that are
extracted with pattern-matching techniques. Indeed, he utilizes some of the same
features of patterns, such as length, frequency, and degree of overlap, but also adds
the concept of cyclical parallelism—that is, those patterns that immediately repeat in a
cyclical fashion. Furthermore, Lartillot applied a different concept for selecting the most
“significant” patterns. First, the author defined a maximal pattern: a pattern that is
not included in any other repeated patterns (Lartillot 2010, 203). As opposed to using
a mathematical approximation, Lartillot borrowed the notion of closed patterns from
information theory (Pasquier, Bastide, Taouil, and Lakhal 1999). A closed pattern is a
pattern that is either maximal or occurs more frequently than the pattern of which it is
a part. An example of a score analysis for discovering parallelism is shown in Figure 3.3.
In this example, the maximal pattern is simply pattern P, because it subsumes all other
repeated patterns. However, as Lartillot pointed out (2010, 205), if the selection method
is maximality, then patterns a and ab would be discarded, since only one pattern can be
maximal. This would be detrimental because the most frequently repeated pattern is,
in fact, a. By using the concept of closed patterns as the selection method, more of the
relevant patterns are kept. In this case, those patterns that are more frequent than their
parent pattern are pattern ab, which occurs four times compared to pattern P, which
occurs twice, and pattern a, which occurs six times.

30





it seemed the problem of composing a melody with more long-term form was prevalent,
as Smoliar articulated in his review of the literature (Smoliar 1986, 137):

[T]he programs which are discussed are similar to a program which can
generate sentences from a given grammar. The resulting sentences are
grammatical but generally weak in meaning. Such a program has yet to
produce a set of sentences which coherently form a paragraph.

Gilbert and Conklin (2007) designed a grammar for melodic reduction based on the
Repeat Rule, Neighor Tone Rule, Passing Tone Rule, and the Escape Tone Rule as
described in Chapter 4, and utilized unsupervised learning on 185 of Bach’s chorales
from the EFSC. This grammar was also utilized by Abdallah and Gold (2014), who
implemented a system in the logical probabilistic grammar framework PRISM for the
comparison of probabilistic systems applied to automatic melodic analysis. The authors
implemented the melodic reduction grammar provided by Gilbert and Conklin using two
separate parameterizations and compared the results against four different variations of
Markov models. The evaluation method was based on data compression, so that those
models that performed better were those that required the least amount of information
to encode a given note. The evaluation metric was given in bits per note (bpn). Tested
over four separate subsets of the Essen Folksong Collection, the authors found that the
grammar designed by Gilbert and Conklin was the best performer with 2.68 bpn over all
the datasets, but one of the Markov model methods had a very similar performance. The
same authors also collaborated with Marsden (2016) to detail an overview of probabilistic
systems used for the analysis of symbolic music, including melodies.
Other work sought to implement the generative grammar that was presented by

Lerdahl and Jackendoff in GTTM. Hamanaka et al. (2007b) presented a system for
implementing GTTM. While the original theory was intended to be a grammar,
Hamanaka et al. utilized many mathematical models for estimating preferences and
priorities so that the rules of the grammar actually manifested in a system of probabilities
and constraints. The resulting framework identifies time-span trees automatically from
monophonic melodic input. Time-span trees were chosen for implementation rather than
prolongational trees because the time-span trees relate more directly to the grouping
structure analysis and the metrical structure analysis rules also presented in GTTM.
Some of the preference rules for grouping structure and metrical structure are more
straightforward to quantify. Furthermore, the time-span trees do not consider harmony,
while the prolongational trees do. The authors parameterized 17 of the 22 rules that
are formalized in GTTM. For each rule, Hamanaka et al. assigned a strength in order
to quantify priority between the rules. Parameters were also created for particular rules
that require them. For example, a parameter is necessary for indicating how important
the length of a phrase is when considering parallel phrases. In order to utilize this rule
for creating boundaries, one must consider whether or not parallel passages should be
notated with a boundary at either the beginning or the end of the parallel phrase. A
parameter was also created to indicate where the boundary should be placed.

Each of the parameters were tuned by hand on a piece-by-piece basis. The authors
contended that the parameters likely reflect stylistic elements of a particular piece, or

32



family of pieces (Hamanaka, Hirata, and Tojo 2007b, 276). A dataset of 100 solutions
was created specifically for testing the efficacy of the time-span tree analyzer. Expert
musicologists were instructed to follow GTTM and apply all of its rules in order to create
these time-span tree solutions. Using the hand-tuned parameters and testing against the
dataset of solution trees, the system attained an f-measure of 0.60.
Later, Hamanaka et al. (2007a) created a system that would automatically estimate

all the parameters, obtaining an f-measure of 0.35—still above the baseline f-measure of
untrained parameters.
Hamanaka et al. were not the only ones to endeavor to make systems that implemented

GTTM for the purposes of melodic reduction. Nord (1992) created a system to prove
the theoretical value of GTTM, and applied all the rules by hand. Others used the
theories within GTTM to create compositional frameworks or aids, as will be discussed
in Section 3.4.
Bernabeu et al. (2011) created a Probabilistic Context-Free Grammar (PCFG) for

reducing melody that was used to find inexact matches of similar melodies. The reductive
properties of the trees allowed for comparisons with melodies that had similar, but
not exact pitch sequences. The algorithm was trained on 420 monophonic 8–12 bar
incipits of 20 universally-known melodies. The test set was a MIDI representation of the
same melodies performed by both amateur and professional pianists. Each incipit was
performed by multiple pianists, giving multiple samples of the same melody with slight
differences in timing and pitch due to performance errors. The resulting performance
was a 87.3% success rate.
Kirlin and Jensen (2011) and Kirlin (2014) modelled the hierarchies in melodies using

probabilistic methods and triangular graphs, which have a similar form to a single
grammatical rule with two right-hand side values.

3.4. Automatic and assisted composition

There are times that melodic reduction is performed for the purpose of reversing the
process to create new melodies or melodic fragments. In other research, structures that
are similar to those used in melodic reduction tools (such as tree structures) are also
used for compositional tools. This section will explore compositional tools created using
melodic reduction and tree structures.
Lerdahl built upon his own work by implementing a system for assisted composition

(Lerdahl and Potard 1986). In this work, the authors utilized both the grouping
structure and the prolongational reduction frameworks of GTTM. The motivation for
using those particular theories was that the grouping structure would give a sense
of continuity and temporal locale, while the prolongational structure would ensure
that tension and resolution is innate to the system (Lerdahl and Potard 1986, 17).
From the prolongational reduction theory, they borrowed the notation and terminology
for strong prolongations, weak prolongations, and progressions. Each branch of the
prolongational tree thus is referential to the corresponding parent event. Lerdahl and
Potard were focused on the creation of a software tool that would allow composers to

33



sketch out different aspects of a piece before knowing exactly what notes they wanted
to score. Therefore, the tool allowed the user to either define the relative prolongational
movements, and assigned the metrical structure based on that, or the user could do
the opposite—define the metrical structure of a piece, and have the software assign the
prolongational form. In this way, authors were seeking to create a musical sketch pad
that could interface with the psychological motivations of the composer, no matter what
part of the musical piece the composer had formed.
The Musical Object Development Environment (MODE) framework was also built

loosely upon the prolongational tree structures (Pope 1991b). Pope preferred to refer to
the trees as T-R trees, for Tension-Relaxation. MODE is a framework with a graphical
user interface (GUI) for the editing and application of T-R trees for the purpose of
musical composition. Figure 3.4 shows an example of the GUI used to manipulate
Chinese poetry when set to music.
GTTM was not the only theory that utilized a formal grammar for the goal of

automatic composition. Roads explored the concept of “Composing Grammars” (Roads
1977). In this work, he created a compositional tool called COTREE that used
context-free rewriting rules in order to help a composer generate music.

Cope created a system for generating music in which similar musical phrases were
automatically created using a linguistic technique called the Augmented Transition
Network (Cope 1996).
Baroni and Jacoboni designed a grammar that was utilized to analyze and generate

melodies in the style of major-mode chorales by Bach (Baroni and Jacobini 1975; Baroni
and Jacoboni 1978). The output of the system would generate the soprano part of the
first two phrases of the chorale.
The Bol processor was implemented as a system that would generate tabla phrases

using a grammatical representation of tabla performance (Bel and Kippen 1992). The
system analyzes the performance of tabla phrases by expert players, and then constructs
new phrases from the resulting grammar.
The hierarchical nature of a score was also exploited by means of a grammar by

Buxton, et al. (1978). In this work, the authors created a recursive object in order to
represent a part of the score. This object could represent an event as small as a single
note, or a set of events that spanned the entire score. This musical event object was
specified with a grammar, and could recursively expand to accommodate the different
sizes. Buxton et al. could then, for example, specify a grammar tree that represented a
motif, and use it as a template for theme and variation. The template would be applied
repeatedly in succession, and elaborated in a different way using the same grammar for
each iteration.

34



Figure 3.4.: A Tension-Relaxation (T-R) tree example shown in the MODE GUI
provided by Pope (1991a, 326). This example shows the text from a Chinese
poem entitled Moonlight Night being set to music, with the durational T-R
tree visible (note the parameter “length” is highlighted in the third column
at the top). Manipulating the locations of the leaf words in the tree would
affect their duration when synthesized along with the music.

35



4. A PCFG for Melodic Reduction

The focus of this research is to encode the rules of melodic embellishment into
a Probabilistic Context-Free Grammar (PCFG). Each embellishment rule can be
transferred directly to either one or multiple probabilistic production rules. Using these
rules and a dataset of hand-annotated tree solutions that represent reduced notes, one
can train the PCFG, and apply the PCFG to new test cases. The trained PCFG will be
tested for accuracy against solutions outside of the training set. As a starting point, the
Context-Free Grammar (CFG) that will represent the grammatical melodic reduction
framework must be formed.
The rules of melodic embellishment are so widely used that they are detailed in a

musical dictionary (Sadie and Grove 1980). In order to facilitate the understanding of
the embellishment rules, some definitions will be of use. In Western tonal music, pieces
generally contain a restricted subset of notes that have a particular relationship to each
other. These relationships are called musical scales. The fundamental unit that measures
pitch distance in a scale is the semitone. Generally, each step in a scale will represent
one or two (and sometimes three) semitones. The relationship between this ordered set
of notes is distinct in the intervals between each step. In the case of major scales that is
W-W-H-W-W-W-H, where ‘W’ represents a whole tone, or two semitones, and the ‘H’
represents a half tone, or semitone. When a scale with this order of relationships is used
as the fundamental organization of a piece, it is referred to as the diatonic framework.
Within the diatonic framework, a step is the difference between two consecutive notes of
a scale. This is an important consideration because many embellishment rules are used
in the context of the diatonic framework, and thus the intervals between notes can be
either one or two semitones.
An embellishment is considered any note that can be added to another more structural

note to create more variety in the piece. In the course of this research, the structural
importance of a note is directly related to its place in the tree hierarchies provided
in the input data. The embellishment rules considered for building the CFG have a
couple of specific features. It was desirable to exclude any contextual information in the
rules—like harmony—so rules that require harmony were eliminated for consideration.
Furthermore, because the rules will need to rely on their form as opposed to their context,
it would be beneficial to use rules that have a specific form. For this reason, rules that
span three notes, as opposed to only two, were selected. The rules used in the course of
this experiment were as follows:

• Neighbor Tone Rule

For any given note, it is possible to embellish the note by adding a new note just
one diatonic step away in pitch, and returning afterwards to the original note.

36



• Escape Tone Rule

In the situation in which there are two consecutive notes that are separated by
a leap (more than one diatonic step), one can embellish the first note by moving
by one diatonic step in the opposite direction of the leap. The escape tone is also
known as the échappée.

• Cambiata

The musical situation defined by the Cambiata is a leap followed by a step in the
opposite direction. It is similar to an Escape Tone, however the order of the interval
sizes are reversed. Since it has such a specific shape, it will also be included.

• Passing Tone Rule

When two consecutive notes form a leap with a magnitude of two diatonic steps,
it is possible to insert a note in between them that is one diatonic step above the
first note and one diatonic step below the second. This forms an ascending passing
tone. Descending passing tones are also possible.

• Repeat Rule

One simple way to embellish a note is to simply break up the duration of the note
into two separate notes of the same pitch.

It is the basis of these five rules that we will form the CFG. This set of rules is
almost the same as the ruleset presented in previous work with a PCFG for melodic
reduction (Gilbert and Conklin 2007). The authors used a ruleset consisting of the
Neighbor Tone, Escape Tone, Escape Tone, Passing Tone, and Repeat Rule, excluding
the Cambiata Rule. A visualization of their ruleset can be seen in Figure 4.1. Conklin
and Gilbert also added an additional rule that accounted for any interval that could not
be described by one of the embellishment rules. There are also rules for embellishment
that won’t be incorporated:

• Suspension

A melodic suspension occurs when there is change of the underlying harmony, and
the resolution to a new note that is part of the underlying harmony is delayed;
instead there is a note before the resolution that is one diatonic step above the
eventual resolved note. Thus, the final note is suspended in both its onset timing
and by the higher pitch of the preceding note.

• Anticipation

Anticipation occurs also on a harmonic change. One of the notes that is part of the
new harmony is played just before the harmonic change, and then again when the
change happens. Often the note is dissonant with the harmony when it is played
before the change, so it provides a tension before resolving on the same note with
a consonant underlying harmony.

37





With cross-fold validation (Jurafsky and Martin 2000, 154), the data is segmented into
a number of segments (called “folds”), and for each iteration one segment is held as the
test set, and the other segments are used as the training set. The training and testing
steps are then performed, and a new segment is chosen as the test set. The results are
aggregated across all folds, in order to average out any inconsistencies that might be
created by selecting a particular configuration.
Using this approach, it will be possible to determine whether the time-span trees or the

prolongational reduction trees can be used to create an effective tool for automatically
reducing melodies in the framework of a PCFG.

4.2. Creating the CFG

In order to create a PCFG, a CFG must first be designed. While the rules are described
in diatonic terms, the CFG will be implemented without the context of a musical key.
The CFG will compare pitch intervals between pairs of consecutive notes in a score,
measured by an integer number of semitones. Say, for example, if a CFG contains an
implementation for the Neighbor Tone Rule, its rules would need to cover all of the
semitone intervals that represent a diatonic step. Namely, 1 and 2. The rules would
naturally follow:

0 → 1 -1
0 → 2 -2
0 → -1 1
0 → -2 2

This ruleset is incomplete because a CFG was designed for string-based representations,
so the semitone intervals on the right-hand side must also be resolved with their string
counterpart. For each semitone interval that occurs on the right-hand side of a rule, then,
we need an additional rule to expand that interval into its string-based representation:

0 → 1 -1
0 → 2 -2
0 → -1 1
0 → -2 2
1 → ‘1’
-1 → ‘-1’
2 → ‘2’
-2 → ‘-2’

Now we have a CFG that can processing a string-based input, as it was originally
designed to do. There is one further issue with the implementation; the left-hand side
non-terminals follow a more strict naming convention that excludes the use of the minus
sign as the first character. Thus the CFG need be modified further to prevent this from
happening. For each negative non-terminal, the minus sign is replaced with the letter
‘m’:

39



0 → 1 m1
0 → 2 m2
0 → m1 1
0 → m2 2
1 → ‘1’

m1 → ‘-1’
2 → ‘2’

m2 → ‘-2’

For the Neighbor Tone Rule, as seen above, the grammar only needs to expand a small
subset of intervals to cover all the possible diatonic steps and to keep the relationship of
the intervals intact. For other rules this process is slightly more complicated. Specifically,
for the Escape Tone Rule as defined above, the second interval in the right-hand side
of the rule specifies that there must be a leap (more than one diatonic step). There
must be a limit as well on the maximum number of semitones, otherwise the rule would
infinitely expand. Also, it wouldn’t make sense to have semitone intervals outside of a
certain range, because the human ear can only hear pitches of a particular range, and
thus those pitches outside that range are not used in music. For purposes of the Escape
Tone Rule and its corresponding leap, we apply a limit of twenty-four semitones, which
equates to a two-octave leap. We’ll know if this limit is inadequate if there exists any
interval in the corpus that extends beyond twenty-four semitones. With this limit in
mind, we can expand the Escape Tone Rule also into a CFG format:

m23 → 1 m24
m22 → 2 m24
m22 → 1 m23

...
m2 → 2 m4
m2 → 1 m3
m1 → 2 m3
1 → m2 3
2 → m1 3
2 → m2 4
3 → m1 4
3 → m2 5

...
22 → m1 23
22 → m2 24
23 → m1 24

For this embellishment rule, the rules that would incorporate right-hand side values of
more than twenty-four are excluded. Specifically, the production rules with a left-hand
side of the non-terminal ‘23’ only amount to a single rule, as opposed to two rules, which
is the normal set of combinations for each interval. The reason for this is that it would
necessitate an interval of twenty-five on the right-hand side of the rule. This is already a

40



limitation, but again should not be a problem is that particular situation does not occur
in the training and test sets.
One other thing of note is the expansion of the CFG rules that are required to describe

even the limited ranges of the left-hand side values. Here, one left-hand side value is a
range of [-24:-3] and [3:24], while the other is [1:-2], and [-1:-2]. We end up with 42× 4
possibilities, leaving us with one hundred and sixty-eight productions. The number of
productions involved with a CFG directly affects the ability to parse input sequences.
If the number of productions grows to be too large, the parsing problem could become
intractable. One benefit of the PCFG is that the rules will only be incorporated into
the trained PCFG if they have occurred in the training set. So there is potential that
the training process will prune zero-probability rules in the CFG.

Besides the rules specifically designed for musical rules of embellishment, one extra
rule is necessary. The embellishment rules will not exhaust all possible combinations
of intervals; there will be certain interval sequences that satisfy none of the encoded
embellishment rules. Therefore, a rule must be created that allows any new interval to
happen, so that the grammar can describe every possible melodic sequence. The rule
created describes any interval that does not qualify as a melodic embellishment. First,
we must define “any interval”, by specifying a rule that has every possible interval in
a series of right-hand side extrapolations. The token chosen to represent this “any
interval” is the letter ‘N’, for “New”. Using the previously-specified range of intervals
from [-24:24], the “New” rule will expand each possibility:

N → m24
N → m23
N → m22

...
N → m1
N → 0
N → 1

...
N → 22
N → 23
N → 24

In order to properly utilize the “New” rule, it must optionally be recursive, so that any
number of new intervals can be found in sequence. The following rule describes exactly
that:

N → N N

Lastly, as with every CFG, a starting node must be specified. Conventionally an ‘S’
is chosen to denote the starting rule, which will simply expand to a “New” rule:

S → N

41



In order to generate all the rules for the CFG, a system was built that specifies the
constraints for each item in the production. The corresponding CFG rules are then
generated in string format, as depicted above. Using this system, it is easy to generate
new constraint-based rules and automatically create the corresponding CFG. The details
of the implementation for this system will be specified in section 5.1.

4.2.1. Alternative Representations

It is possible to reduce the number of rules by changing the representation of the data. If
the basic unit of data was a diatonic interval instead of a semitone interval, for example,
there would be only seven possibilities per octave as opposed to twelve. This would also
have the benefit of grouping the production rules for both the Neighbor Tone Rule and
the Passing Tone Rule. In the case of the Neighbor Tone Rule, it would require only two
production rules for the embellishment rule, as opposed to the four rules shown above.
The two rules would be:

0 → 1 m1
0 → m1 1

This would similarly reduce the ruleset for the Passing Tone Rule. However, there would
be an up-front cost of converting the data into its corresponding diatonic indices, using
the key information.
Another possibility is to limit the semitone intervals to their octave-equivalent pitch

class. With this method, an interval of fourteen semitones would be represented as
simply an interval of two semitones. This representation would also collapse the number
of rules required, since any semitone interval greater than eleven would be removed from
the dataset. This has one unfortunate side-effect in that, for example, a leap of thirteen
semitones would no longer be considered a leap, because it would be represented as an
interval of one.
Perhaps a level of abstraction would be of greater use, to group the embellishment

rules more succinctly. It is also possible to represent the data as either a leap or a step,
since the embellishment rules selected rely entirely on that distinction. The unfortunate
drawback is that the precise interval is then lost. If the goal were to sample from
the PCFG in order to create new melodies from the trained model, then this level of
abstraction would prevent precise intervals from being generated.

4.3. Grammar Induction and Parsing

In order to convert the CFG into a PCFG, data is required. The dataset that is used for
training the PCFG is the hand-made melodic analyses using The Generative Theory of
Tonal Music (GTTM) provided by Hamanaka, Hirata, and Tojo (2007b). This dataset
contains three hundred separate analyses of melodies using GTTM. The analyses are
split into two groups that vary only in the number of analyses each group provides.
Specifically, for all three hundred melodies, there are three separate expert analyses

42



that represent the different features of the melodies that GTTM addresses: Grouping
Preference Rules (GPRs), Metrical Preference Rules (MPRs), and the Time-Span
Preference Rules (TSPRs). Additionally, for a smaller set of one hundred melodies,
the Prolongational Reduction Preference Rules (PRPRs) are applied. The TSPRs and
the PRPRs result in tree structures (time-span trees and prolongational reduction trees),
while the GPRs are represented as subsequences of notes that are perceptually grouped,
and the MPRs are represented with a hierarchical dot-based structure. All formats are
encoded in the Extensible Markup Language (XML) file format. Only the TSPRs and
the PRPRs can be used as input for supervised learning of the PCFG, because a grammar
requires a tree-based structure as input for the learning process. The main difference
between the PRPRs and the TSPRs is that the PRPR analyses include decisions made
with the influence of harmonic context. Because this research has excluded rules that
require a harmonic context, it would make sense to utilize the trees created from the
TSPR rules (time-span trees) instead. Additionally, the time-span tree analyses amount
to three hundred analyses, while the prolongational trees only amount to one hundred in
this particular dataset. With supervised learning of probabilistic systems, it is better to
have more data so that there are less chances of seeing a particular observation that has
a zero probability. This research will run both datasets separately in order to determine
which is a better fit for the experiment.

4.3.1. Formatting the Training Data

There is an additional step in order to use the GTTM dataset for supervised training
of the PCFG. The input format provided by GTTM is slightly different than what is
required to train the PCFG. As was discussed in Section 2.2.4, the time-span trees differ
from grammar trees in that one element will subsume another, creating a direct and
unique parent-child relationship. With the grammatical rules that were selected for the
PCFG, each note is subordinate to not just one note, but two separate notes. Because
of this, the time-span trees must be converted to the grammar-based format in order
to inform the PCFG of the solutions. Take for example the first melody in the GTTM
dataset, Frédéric Chopin’s “Grande Valse Brillante”, a waltz in E flat. Shown are both
the time-span tree (in Figure 4.2a) as well as the prolongational reduction tree (in Figure
4.2b).
The GTTM trees are encoded in XML. Each XML file annotates a tree in which

each level consists of both a primary and secondary tag, each of which can optionally
be recursive. Every tag will at a minimum contain a head node, which specifies the
note in the original score that it references, with a format of <Part Name>-<Measure

Number>-<Note Number>. An example melodic phrase represented in the XML format
of the GTTM dataset is given in Appendix B. The XML listed there represents the
time-span tree of the second group of four notes in the melody of “Grande Valse
Brillante”. Both the time-span tree and the prolongational tree for the same four
notes are displayed in Figure 4.3. This phrase is a prime example of the differences
between the time-span and prolongational reductions. Specifically, the time-span tree
attaches the middle two notes to the left-most branch. Intuitively this makes sense

43









The Algorithm

An algorithm was created to recursively iterate through all the branches in a particular
GTTM tree, and to apply the grammar at each branch configuration. The algorithm
will iterate from the bottom up, selecting first the primary and secondary head notes,
and then returning their information to the higher level. Then, the primary and
secondary notes will be combined with the closest note from the parent tag. So, in
the prolongational tree example from Figure 4.3a, note P1-2-3 will be the note of least
importance, and will be paired with note P1-2-2. P1-2-3 is the secondary tag and
P1-2-2 is the primary tag. Since, at this level, there are only two possible notes, and
the CFG rules require three, this pair is returned to the next highest level to complete
the triple. When the pair is tupled with P1-2-4, then the algorithm will compute the
intervals between the three notes, and apply the grammar. This set of three notes
represents the Passing Tone Rule perfectly, and thus note P1-2-3 will be reduced out.
The CFG rule that would be used is the 4 → 2 2 rule, so that the resulting interval
would be four semitones. This process continues recursively up the tree until the CFG
has been applied to all branch combinations from the original tree. In the case of this
particular example, the CFG will next be applied to notes P1-2-1, P1-2-2, and P1-2-4.
For this set of notes, there is no embellishment rule that describes the two consecutive
jumps of an interval of five semitones followed by an interval of four semitones, so the
“New” rule will be applied, and the process will conclude. The resulting parse tree that
is produced is represented in Figure 4.4a.
One challenge is that the note of the lowest priority in a group of three notes may

not be the note that is found in the temporal center of the three notes in the score.
This happens in the time-span tree in Figure 4.3b, between notes P1-2-1, P1-2-2, and
P1-2-3. In this case, both branches are of the same direction—to the right. The note of
lowest priority is P1-2-3. Ideally, the CFG should be applied to notes P1-2-2, P1-2-3,
and P1-2-4 in order to reduce P1-2-3, but that would violate the hierarchy specified in
the dataset. Therefore, when the CFG is applied to this particular configuration, none
of the embellishment rules apply. In fact, even if the noteset consisting of notes P1-2-1,
P1-2-2, and P1-2-3 were used, it would also violate the hierarchy because P1-2-3 would
be considered the parent note of P1-2-2 in CFG terms. In this case, the “New” rule is
the only rule that can add an arbitrary interval to another, so that rule is applied and
the parse tree for these three notes is passed up the hierarchy. The resulting parse tree
for the time-span tree of the second four notes in “Grande Valse Brillante” is shown in
Figure 4.4b. It is evident that none of the embellishment rules that were selected could
be applied to this phrase.
Another problem arises in creating a full parse tree from each set of three notes as

described in the pseudocode of the conversion algorithm. The problem is specifically
due to the “New” rule. Once a non-integer string (like the left-hand side of the “New”
rule, N) replaces an interval symbol in the parse tree, no embellishment rule can be
applied above that particular node, because the embellishment rules all have integer
interval values on the left-hand side of the rule. An example of this case occurs when
the tree-conversion algorithm is applied to Chopin’s “Grande Valse Brillante”. Each

47



grammar rule applied at a particular branch is combined with its parent’s grammar
tree; The tree produced is an invalid parse tree. The tree is shown in Figure 4.5 with the
offending branches highlighted. The only solution to this would be to create a rule for
every combination of two intervals, as opposed to using the N → N N rule. If the same
range of intervals is used—from negative twenty-four to twenty-four—then the ruleset
would be expanded by 492 = 2401 rules. Such a high number of production rules would
make parsing input sequences extremely slow, and would also create a large amount of
rules with zero probability. With a lot of zero-probability rules, there would be many
situations where the entire input sequence has a zero probability.

The particular reason that the parse tree in Figure 4.5 is invalid is in the m3 → m1 N

rule found on the right side of the tree. A minor third interval requires integer intervals
as children and cannot incorporate any intervals of arbitrary size, which is what the
N non-terminal represents. The reason this occurs in the converted tree is precisely
because the algorithm looks at the notes that are attached at each branch, so it can
compute the intervals exactly, as opposed to incorporating the intervallic information of
the child non-terminals as a CFG would. Then the root node from the trees of the lower
branches are inserted into the child nodes of the grammar parse from the current branch
configuration. Unfortunately, once a N non-terminal is used in a tree, the actual interval
that created that non-terminal is lost. Since the algorithm computes the intervals from
the notes in the current branch configuration, it does not incorporate the intervals of
the child branches for each note. Therefore the intervals are not cumulative as they
would be in the CFG. This approach was chosen because the rules that are applied by
GTTM are applied based on the notes, not the intervals, so it is more true to the original
theory of GTTM if the intervals are computed directly from the notes, and not from the
cumulative intervals from the child branches for each note.

4.3.2. Supervised Learning with the NLTK Toolkit

Once the format of the GTTM data is compatible for a CFG, the probabilities for each
right-hand side of each rule must be found through supervised learning. The Natural
Language Toolkit (NLTK) provides the tools necessary for learning probabilities from
a solution set of trees. As was described in Section 2.1.6, the induction of a PCFG is
only a matter of counting up all of the occurrences of each possible right-hand side for
each rule, and then dividing by the total number of times that rule is seen. This process
creates a probability distribution for each rule. Once the tree format is converted, the
training set will consist of a list of rules that were found in each of the solution files. The
format makes it simple to induce a PCFG, since each applied rule is already isolated,
regardless of its location in a particular tree. The induce_pcfg function provided in
NLTK’s algorithm will directly induce a PCFG from a list of rules. It will aggregate
each rule instance in order to create the corresponding PCFG. It does this by traversing
a tree and finding every production rule that was applied to create the tree. Errors in
conversion will result in a PCFG that has a different ruleset from the originally specified
CFG.
Once each rule’s probabilities have been calculated, it is necessary to use the PCFG

48





to parse test cases. NLTK will also be used for parsing a new datapoint with a PCFG.
For example, the ViterbiParser will return the most probable tree given a PCFG and
an input sequence. This work will utilize the ViterbiParser in order to find the most
probable parse tree for each input melody from the test set.

50



5. Evaluation Methodology

The approach taken for the evaluation of the Probabilistic Context-Free Grammar
(PCFG) for melodic reduction was to compare the entire melodic reduction hierarchy
that is output by the PCFG with the full reduction trees given by the analyses created
with The Generative Theory of Tonal Music (GTTM). The motivation for comparing
trees was that it measures the performance of the model at all levels of melodic reduction.
An ideal method should be able to reproduce the reductive decisions both on the musical
surface—in the passing of microphrases and melodic figures—and on the deeper levels,
where other factors such as compositional form take a larger role. This approach is a
strict evaluation strategy since it requires each level to be accurate.

5.1. Constructing the CFG Using Constraints

In order to evaluate the PCFG, one must first design the exact rules that will be used in
the underlying Context-Free Grammar (CFG). In Chapter 4, the different musical rules
that were chosen to be encoded were described. For example, as was shown for the Escape
Tone Rule, the number of CFG rules that are required to expand a single embellishment
rule can be large. In order to avoid the human error involved with constructing each CFG
rule by hand, a framework was built in order to generate a CFG using constraints and
number ranges. The constraint-based system assumes that all of the rules are dealing
with integer values.
The software was built in the Python programming language, and has a particular

format for each embellishment rule. On the left-hand side of each rule consists of a
name with which to identify it (although it will not show up in the final CFG output) as
well as a formula for the resulting non-terminal. On the right-hand side are up to two
separate non-terminals. Each of these non-terminals have a range associated with it.
After the non-terminals is a bracketed list that contains all of the conditions necessary
for the rule to be valid. Take for example the constraint-based rule for the Escape Tone
Rule described earlier:

Escape [i1 + i2] -> i1 [-2:2] i2 [3:24, -3:-24] (i1 * i2 < 0)

The formula for computing the resulting value on the left-hand side is given in brackets
after the rule’s name. Then each right-hand side non-terminal is named, and given any
number of ranges, also contained in brackets. Finally, in braces, the conditions that
must be satisfied for the rules to be added are given in braces after the right-hand side
non-terminals. The naming convention of the non-terminals must reflect the variables
given in both the formula for the left-hand side and the conditions on the right-hand

51



side. Notice that the Escape Tone Rule only requires one condition, (i1 * i2 < 0).
This condition ensures that the sign of i1 and i2 must be opposite. If they were the
same sign, they would either both be positive, resulting in a positive number, or they
would both be negative, also resulting in a positive number. The ranges have already
specified that i1 is in the range of a diatonic step, and i2 is in the range of a diatonic
leap. Peculiarly, i1 also has the value of zero in its range. One would assume that
this would allow values that are not considered a diatonic step into the Escape Tone
Rule of the final CFG. It is the condition (i1 * i2 < 0), however, that excludes that
possibility. Because the condition requires that the product of the two right-hand side
values be less than zero, and anything multiplied by a zero value is equal to zero, then
Escape Tone Rules with a zero value are by definition excluded.
The algorithm for expanding the constraints into a string that can be parsed into a

CFG is simple:

for each constraint-based rule:

iterate through the first non-terminal’s range:

iterate through the second non-terminal’s range:

iterate through all the necessary conditions, using both the

first and second non-terminals’ current value

check all conditions for current rule

if all conditions are met, create the production rule

string that represents this rule’s current configuration

expand the left-hand side formula and assign

the result to the left-hand side non-terminal

append the new \gls{cfg} string to the set of all \gls{cfg} rules

if neither non-terminal on the right-hand side contains a range,

add the rule as is

The algorithm considers every combination of non-terminals within the given ranges,
but will only add the rule with the current configurations if and only if every condition
is satisfied for the current values.
The result of running the software with only the Escape Tone Rule specified with

constraints is:

1 → m2 3

2 → m2 4

3 → m2 5

4 → m2 6

5 → m2 7

6 → m2 8

7 → m2 9

8 → m2 10

9 → m2 11

10 → m2 12

11 → m2 13

12 → m2 14

13 → m2 15

14 → m2 16

15 → m2 17

16 → m2 18

17 → m2 19

18 → m2 20

19 → m2 21

20 → m2 22

21 → m2 23

22 → m2 24

2 → m1 3

3 → m1 4

4 → m1 5

5 → m1 6

6 → m1 7

7 → m1 8

52



8 → m1 9

9 → m1 10

10 → m1 11

11 → m1 12

12 → m1 13

13 → m1 14

14 → m1 15

15 → m1 16

16 → m1 17

17 → m1 18

18 → m1 19

19 → m1 20

20 → m1 21

21 → m1 22

22 → m1 23

23 → m1 24

m23 → 1 m24

m22 → 1 m23

m21 → 1 m22

m20 → 1 m21

m19 → 1 m20

m18 → 1 m19

m17 → 1 m18

m16 → 1 m17

m15 → 1 m16

m14 → 1 m15

m13 → 1 m14

m12 → 1 m13

m11 → 1 m12

m10 → 1 m11

m9 → 1 m10

m8 → 1 m9

m7 → 1 m8

m6 → 1 m7

m5 → 1 m6

m4 → 1 m5

m3 → 1 m4

m2 → 1 m3

m22 → 2 m24

m21 → 2 m23

m20 → 2 m22

m19 → 2 m21

m18 → 2 m20

m17 → 2 m19

m16 → 2 m18

m15 → 2 m17

m14 → 2 m16

m13 → 2 m15

m12 → 2 m14

m11 → 2 m13

m10 → 2 m12

m9 → 2 m11

m8 → 2 m10

m7 → 2 m9

m6 → 2 m8

m5 → 2 m7

m4 → 2 m6

m3 → 2 m5

m2 → 2 m4

m1 → 2 m3

The last if statement in the pseudo-code also allows for regular CFG rules to be directly
inserted into the final CFG. This allows for the transferral of the “New” rule and the
“Start” rule from the constraint-based ruleset into the finalized CFG ruleset. Also, as
the software runs, the non-terminals that are created on the right-hand side of each rule
are saved. For each one of these non-terminals, there will need to be a grammar rule for
resolving the non-terminal with its equivalent string. This process happens at the end
of any CFG generation, so that all possible non-terminals are included and resolved.

With this software system for generating a CFG string from a set of constraint-based
rules not only eliminates human error from the process and saves time, it also allows for
the future use of the system for anyone interested in the process. The full specification
for the constraint-based grammar, in the new format defined above is:

S [] -> N []

N [] -> N [] N []

N [] -> i1 [-24:24]

Neighbor [i1 + i2] -> i1 [-2:-1, -1:2] i2 [-2:2] {i1 == (i2 * -1)}

Passing [i1 + i2] -> i1 [-2:2] i2 [-2:2] {abs(i1 + i2) >= 3 }

Escape [i1 + i2] -> i1 [-2:2] i2 [3:24, -3:-24] {(i1 * i2 < 0)}

Cambiata [i1 + i2] -> i1 [3:24, -3:-24] i2 [-2:2] {(i1 * i2 < 0)}

53



The full generated CFG grammar string can be found in Appendix C. Only the Neighbor,
Passing, Escape Tone, and Cambiata Rules represent embellishment rules—the “New”
rule and the “Start” rule are merely necessary to cover all situations, and will not be
considered embellishments.

5.2. Tree Comparison

After the CFG rules are formed, the PCFG can be created with supervised training.
In order to properly evaluate the efficacy of the trained PCFG, a comparison algorithm
must be created in order to validate the parse trees created by the PCFG against the
solutions from the GTTM dataset.
The simplest tree comparison algorithm involves comparing the labels at each node

in the tree, from the top-down (Hoffmann and O’Donnell 1982). This assumes that the
root of each tree (the top-most node) should be the same starting point. The algorithm
iterates down through each child node, recursively comparing each label. When a label
does not match, that particular branch will be terminated; the child nodes will not be
considered for label comparison. This algorithm will find all of the branches that were
parsed correctly, starting from the top. For the application to this experiment, there are
two main problems with approach. The first incompatibility is with the approach; this
method ignores potentially valid parses on the lower parts of branches, and penalizes an
entire branch for one single error towards the top. The second problem is in applicability.
The top-down comparison algorithm assumes that the roots of the trees are the same,
which will not necessarily be true when comparing our parses with our solution trees. In
fact, the trees in the solution set are rooted from the bottom up—that is, the same notes
are used as input in the solution trees as they are in the parsed result set. Therefore,
there should be at least some similarity in the set of leaf nodes in each tree.
The solution trees will sometimes contain branches between notes that are not directly

adjacent, so there could be some mismatch between the leaf node sequences. For
example, sometimes there are larger intervals missing in the solution between two larger
sub-trees because only the notes that were higher in the GTTM tree were compared, as
opposed to the notes that were adjacent in the score. In this case, that solution tree
would be misaligned with the parse tree by one interval. In order to avoid getting false
negatives throughout the rest of the leaf sequence, an alignment algorithm was used so
as to match the correct parse tree leaf with the correct solution tree leaf.

Since some of the leaf nodes could be at different indices between the two trees,
the process was more complicated than simply iterating through the leaf node set
in both the parse tree and the solution tree. It was necessary to first align both
sequences of leaf nodes to find the correct match for each leaf node. The alignment
algorithm was also borrowed from field of Natural Language Processing (NLP). There is
a string-matching algorithm for comparing and analyzing the edit distance between two
strings (Levenshtein 1966). The edit distance is defined as the number of edit operations
that are required to transform one string into another, including insertion, deletion, and
substitution of characters. This algorithm, once applied, also provides the path between

54









configuration was found wherein none of the folds contained a test set for which any of
the terminals had a zero probability.

58



6. Experiment

This chapter details the experiment to evaluate the performance of the Probabilistic
Context-Free Grammar (PCFG) for melodic reduction. First, the experiment is
described in detail, including the implementation for each step. It is important to
consider the details of the implementation, because each decision made in the process
of implementation will have an effect on the outcome of the experiment. Once all of
the implementation details are uncovered, the tabulated results are shown. Then a
baseline for comparing the results will be proposed. Using the parse trees that result
from the application of the PCFG, melodic reductions will be presented. With these,
the theoretical validity of reduction decisions that the model makes can be evaluated on
a case-by-case level.

6.1. Implementation

The software for this thesis was implemented entirely in the Python programming
language, using the PyCharm Integrated Development Environment. The code is
publicly available1.
The software is structured into multiple runtime environments, for the tasks

of Pre-processing, Training, Cross-fold Validation, Tree Comparison, Creating and
Displaying Melodic Reductions From Trees, and Melodic Generation. Each have their
own modules for different facets of the task, separated into different source files. This
section will describe the implementation in detail for each of the tasks listed. It is
designed to walk through the codebase in detail, and the structure of the section will
follow this hierarchy:

CFG Construction

constraint grammar.py builds the rules of the initial CFG in string format,
using the defined constraints.

Pre-processing

music grammar.py converts the input tree data from the format given by The
Generative Theory of Tonal Music (GTTM) dataset to the format needed to
train a PCFG.

Training, Cross-fold Validation, and Tree Comparison

music rule test.py controls the flow of the evaluation process and contains the
functions for training the PCFG and performing the cross-fold validation.

1https://github.com/bigpianist/PCFGMelodicReduction

59



music grammar.py (seen also in the Pre-processing task) collects all the
production rules from the input GTTM data, so that the probabilities can be
modelled.

validate tree.py performs the comparison of the parse trees created by the
trained PCFG with the converted GTTM solution trees.

Creating and Displaying Melodic Reductions From Trees

score to tree.py provides the algorithms necessary to truncate trees by depth,
and also to display melodies using either the GTTM solution tree or PCFG
tree formats.

Melodic Generation

pcfg generate.py will generate a randomly sampled tree from a PCFG. It can
also selectively sample embellishment rules in order to randomly embellish a
melody.

generate arpeggio.py will generate random output sentences from a given
Context-Free Grammar (CFG), and contains the string-based version of the
harmony grammar.

6.1.1. CFG Construction

To create a trained PCFG, the process involves the design and implementation first of a
CFG, and then the application of a training method in order to model the probabilities
of each rule. The methodology for the design of the CFG was presented in Section 4.2.
This section details the implementation.
The Natural Language Toolkit (NLTK) was used for the training and parsing of input

melodies, as well as the display of resulting parse trees (Loper and Bird 2002). NLTK
provides an object-oriented structure for the creation and manipulation of CFGs and
PCFGs. The objects are named “CFG” and “PCFG”, respectively. Therefore, when
designing a CFG, the resulting output must be compatible with the necessary input for
forming a CFG object with NLTK. NLTK provides a method for constructing CFGs
from strings, which is the method used in this software.
An object-oriented hierarchy was created in order to process a constraint-based

grammar and to generate the corresponding CFG in string format. The goal of this
grammar creation code is to create a set of integer-based rules automatically from a set
of integer ranges and mathematical conditions. In order to do so, the following objects
were defined in the constraint grammar.py file of the PCFGMelodicReduction repository:

ConstraintGrammar

ConstraintRule

LHSVariable

RHSVariable

RHSCondition

60



It is best to show the method of implementing rules with an example. The following
is the code for the creation of the Escape Tone Rule:

# Escape−tone Rule

l e f t s i d e = LHSVariable ( lambda i1 , i 2 : i 1 + i 2 )
var1=RHSVariable ( ‘ i 1 ’ , [ l i s t ( range ( −2 ,3 ) ) ] )
var2=RHSVariable ( ‘ i 2 ’ , [ l i s t ( range (−24 ,−2)) , l i s t ( range ( 3 , 2 5 ) ) ] )
r s = [ ]
r s . append ( var1 )
r s . append ( var2 )
c ond i t i on s = [ lambda i1 , i 2 : ( i 1 ∗ i 2 ) < 0 ]
e s c ap e r u l e = Constra intRule ( l e f t s i d e , r i g h t s i d e , c ond i t i on s )
r u l e s . append ( e s c ap e r u l e )

It is logical to describe the object-oriented system from the bottom up. A RHSCondition
specifies the conditions required for the right-hand side variable to constitute a valid CFG
production rule. In the above code, for example, the condition is (i1 * i2) < 0. This
means that the product of the integer values of the ‘i1’ variable and the ‘i2’ variable
must be less than zero. The two right-hand side variables have a set of possible integer
values, defined by their ranges. When creating all the possible production rules from this
ConstraintRule object, the algorithm will iterate through all of the RHSVariables’ integer
sets, creating every possible combination of integers. Each combination will be tested
with the conditions specified in the RHSCondition object. If the current combination of
integers satisfies the RHSCondition object’s conditions, then a string will be generated
that represents the CFG production rule with the current configuration of right-hand
side integer values.
For the Escape Tone Rule, specified above, there are two RHSVariables. The first

RHSVariable specifies the set of integer intervals, in semitones, that can be considered
a diatonic step. The second RHSVariable specifies a diatonic leap. Note that the range
values specified are exclusive, not inclusive, so, for example, range(-24,-2) is actually
the set of all integers from -24 up to and including -3.
The LHSVariable merely specifies the mathematical formula for generating the

left-hand side non-terminal of the corresponding CFG rule. In the code example above,
the formula is simply to add the two right-hand side variable. An example of a valid
CFG rule, specified by the code above is the right-hand side values of -1 and 22.
The corresponding CFG string would be ‘21 → -1 22’. This represents one possible
manifestation of the Escape Tone Rule.
The ConstraintGrammar specified in the constraint grammar.py file contains the

corresponding objects for the Neighbor Tone Rule, the Escape Tone Rule, the Cambiata
Rule, the Passing Tone Rule, and the Repeat Rule. For each rule, the same process is
applied: iterate through all RHSVariable integer combinations, test the RHSCondition
object’s conditions (there can be multiple), and generate the CFG string if the conditions
are satisfied. The resulting set of CFG production rules is shown in Appendix C.

61



6.1.2. Pre-processing

Before delving into the exact implementation of the evaluation, one must understand
the pre-processing that was required before the CFG could be trained and converted
into a PCFG. As described in Section 4.3, the data that was used for the training of
the PCFG required a format change before the cross-fold validation could be performed.
This section will describe both the dataset used, as well as the pre-processing that was
required before the training and evaluation of the PCFG could be performed.

The GTTM dataset

The GTTM dataset (Hamanaka, Hirata, and Tojo 2007b) provides expert annotations
of melodic reductions. The data is partitioned into multiple separate files, representing
the different theories of GTTM: metrical structure analysis, grouping structure analysis,
time-span reduction, and prolongational reduction. Each analysis is contained in its
own Extensible Markup Language (XML) file representing the hierarchical data of that
particular GTTM analysis. Recall, from Section 2.2.1 that each of the four GTTM
components is hierarchical. The original melodies are also provided in MusicXML format
(Good 2001). The melodies were chosen from the Western Classical music repertoire of
the 18th and 19th century, and each consist of an 8-bar monophonic excerpt from a
particular piece. Not every type of analysis was provided for each melody in the dataset.
The dataset consist of 300 files in total. For the 300 files, the analyses for the processes
of metrical structure analysis, grouping structure analysis, and time-span reduction are
all available. For a smaller set of 100 files, every GTTM process has a corresponding
analysis. The difference is that the prolongational reduction analyses are only available
for the first 100 melodies of the dataset, and not for the remaining 200. The data was
obtained through Masatoshi Hamanaka’s website2.
For this thesis, the only GTTM analyses utilized were the time-span reduction and

the prolongational reduction. For the time-span reduction data, there were 300 analyses,
and for the prolongational reduction analyses there were 100. The format of each of these
analysis files is discussed in Section 4.3.1, and an example of a snippet from a time-span
reduction analysis file is given in Appendix B.

Converting the Tree Formats

Also described in Section 4.3.1, the key difference in the format of the CFG trees and
the format of the GTTM trees is that the CFG rules require a set of three notes in
order to utilize a melodic embellishment rule. In order for a note to be subsumed in
the GTTM trees, only one other note is required. Because of this, it was necessary to
convert between the two formats.
An algorithm for traversing a GTTM tree and creating the corresponding CFG tree

was created in the music grammer.py file. Within that file, a function was designed
for recursively iterating through the XML file for the given GTTM tree, and applying

2http://www.gttm.jp/ accessed April 22, 2014.

62





appropriate. At each level, both the note and the resulting parse tree for both the
primary and the secondary branches are passed up to the next-highest branch location.
In the function, this is represented by the return value—it is a tuple containing those
values. One other thing to note is that, if there is a child primary tag for a given node,
there must also be a secondary tag. The pseudocode for the algorithm is displayed in
Algorithm 1.

Algorithm 1 Get CFG Tree From GTTM Tree Recursively

1: procedure applyCFG(note1, note2, note3)
2: if isOrderV alid(note1, note2, note3) then
3: fullT ree← getCFGTree(note1, note2, note3),
4: else
5: tree1← getCFGTree(note1, note2),
6: tree2← getCFGTree(note2, note3),
7: fullT ree← getCFGTree(tree1, tree2),

return fullT ree

8: procedure parseBranch(head, musicXml, CFG)
9: if primary in head then

10: primaryTuple← ParseBranch(head.primary, musicXml, CFG)
11: secondaryTuple← ParseBranch(head.secondary, musicXml, CFG)

12: if primaryTuple then
13: note1← primaryTuple.primaryNote
14: note2← primaryTuple.secondaryNote
15: note3← secondaryTuple.primaryNote
16: primaryTree← applyCFG(note1, note2, note3)
17:

18: primaryTree← mergeTree(primaryTree, primaryTuple.primaryTree)
19: primaryTree← mergeTree(primaryTree, primaryTuple.secondaryTree)

20: if secondaryTuple then
21: note1← primaryTuple.primaryNote
22: note2← secondaryTuple.primaryNote
23: note3← secondaryTuple.secondaryNote
24: secondaryTree← applyCFG(note1, note2, note3)
25:

26: secondaryTree← mergeTree(secondaryTree, secondaryTuple.primaryTree)
27: secondaryTree← mergeTree(primaryTree, secondaryTuple.secondaryTree)

28: newPrimNote← primaryTuple.primaryNote
29: newSecNote← secondaryTuple.primaryNote
30: newTuple← [newPrimNote, primaryTree, newSecNote, secondaryTree]
31: return newTuple

64



6.1.3. Training

NLTK provides the necessary functionality to train a PCFG. The induce_pcfg function
will automatically build the corresponding PCFG object by simply giving a list of all
the production rules that were seen in the set of solution parse trees used for training.
The function requires that the production rules be isolated so that the individual
parse tree created at each branch is listed separately. This is the perfect format for
the the converted GTTM trees, because the trees were converted by applying the
grammar at each branching position! Therefore, the previous algorithm for converting
the GTTM trees into CFG trees (seen in Algorithm 1) was re-used, with the simple
addition of collecting a list of individual parse trees that were created at each branch.
The pseudocode for the resulting algorithm is shown in Algorithm 2. Note that the
productionList parameter to the parseBranch function is passed by reference, so the
calling function would allocate that variable and it would be automatically modified
and returned. The production list is populated before the trees are merged with the
trees from the lower branches, on lines 17 and 26 of Algorithm 2, which ensures that the
production rules added represent only the current branching configuration. The updated
conversion algorithm, when applied to a particular GTTM solution, would return the
following:

1. A single CFG tree representing the combined production rules created by applying
the CFG at every branch of the GTTM tree, to be used for evaluation.

2. A list of all the individual production rules that were applied at each branch, to
be used for training.

This process could be applied to both the time-span trees and the prolongation trees.
Once the production list is created that aggregates all of the individual CFG trees

from every branch of every input GTTM tree, the creation of the trained PCFG was
as simple as calling the NLTK.induce_pcfg function with only the starting production
rule, and the list of productions as parameters.

6.1.4. Tree Comparison

The tree comparison method is what defines the evaluation for a particular parsed
melody. The CFG trees resulting from the conversion of the GTTM reductions are
the ground truth, so the task is then to compare the parse trees created with the trained
PCFG with the converted GTTM trees. The methodology for this comparison was
described in detail in Section 5.2, and can be summarized thusly:

• Select the sequence of leaf elements from both trees

• Align the leaf sequences to maximize identical leaves between the two sets

• For each aligned pair of leaves, iterate up the tree, comparing production rule
nodes

65



Algorithm 2 Collect All Productions From GTTM Trees

1: procedure applyCFG(note1, note2, note3)
2: if isOrderV alid(note1, note2, note3) then
3: fullT ree← getCFGTree(note1, note2, note3),
4: else
5: tree1← getCFGTree(note1, note2),
6: tree2← getCFGTree(note2, note3),
7: fullT ree← getCFGTree(tree1, tree2),

return fullT ree

8: procedure parseBranch(head, musicXml, CFG)
9: if primary in head then

10: primaryTuple← ParseBranch(head.primary, musicXml, CFG)
11: secondaryTuple← ParseBranch(head.secondary, musicXml, CFG)

12: if primaryTuple then
13: note1← primaryTuple.primaryNote
14: note2← primaryTuple.secondaryNote
15: note3← secondaryTuple.primaryNote
16: primaryTree← applyCFG(note1, note2, note3)
17: productionList.append(primaryTree)
18:

19: primaryTree← mergeTree(primaryTree, primaryTuple.primaryTree)
20: primaryTree← mergeTree(primaryTree, primaryTuple.secondaryTree)

21: if secondaryTuple then
22: note1← primaryTuple.primaryNote
23: note2← secondaryTuple.primaryNote
24: note3← secondaryTuple.secondaryNote
25: secondaryTree← applyCFG(note1, note2, note3)
26: productionList.append(secondaryTree)
27:

28: secondaryTree← mergeTree(secondaryTree, secondaryTuple.primaryTree)
29: secondaryTree← mergeTree(primaryTree, secondaryTuple.secondaryTree)

30: newTuple← [primaryTuple.primaryNote, primaryTree, secondary.primaryNote,
secondaryTree]

31: return newTuple

66





method to compute the edit distance between two strings (Levenshtein 1966). The
Levenshtein distance computes the minimum number of edit operations that are required
to convert one string into another. It allows the edit operations of insertion, deletion,
and substitution. Each action has a particular cost associated with it. In order to adapt
this to two sets of leaf sequences, the substitution operation had to be removed. The
leaf sequences cannot be changed, therefore substitution was not an option. In order
to implement the Levenshtein algorithm, a matrix is created for which one dimension
is the length of one string plus one, and the other dimension is the length of the other
string plus one. Each operation has a direction associated with it. In each cell, the
algorithm is comparing how to change one string into the other, using the operations.
The modified pseudocode is shown in Algorithm 3. Given the matrix returned from this
function, it is possible to know which indices from one list should be removed in order
to create the sequence from another list. One can then trace the minimum value path
back from the bottom-right cell, getting a path that determines the best alignment. The
best alignment guarantees the the maximum number of elements between the two sets
of leaf nodes will be identical.
Once the best alignment is discovered among two sets of leaf nodes between two

trees, the different branches that contain those leaves can be compared between the
trees. The software iterated through all paired sets of leaf nodes, and then applied
a bottom-up tree comparison for every pair of branches. The pseudocode for the
bottom-up tree comparison is given in Algorithm 4. The comparison computes the
number of identically-formed nodes in the branches from two different trees. As was
mentioned in Section 5.2, a node is identically formed when both its label and its
placement as compared with its sibling node are equivalent. With the combinations
of these algorithms, the total number of identically-formed nodes for a pair of trees can
be discovered.
Figure 6.3 shows the comparison algorithm in action. Figure 6.3a shows the solution

tree converted from the GTTM time-span tree data. Figure 6.3b is the most probable
parse tree, after training the PCFG, and testing it on the fourth fold of the time-span
tree data. The alignment algorithm is then applied to the leaves of both trees, giving
the alignment that represents the maximum number of similar leaf elements between
the two trees. This alignment is necessary because of the intervals that were omitted
because of the conversion algorithm, as described previously. In Figure 6.3c, the result
of the comparison algorithm is shown. Each node that both has the same label, and is in
the same branching configuration between the parse tree and the solution tree is marked
with an ‘X’. One can see, for example, the Neighbor Tone Rule is discovered in both
trees: first between the first two intervals (‘-1’ and ‘1’) of the song, and then later
between the sixth and seventh intervals (‘-2’ and ‘2’). However, above both of these
embellishment rules in Figure 6.3c, either the node label changes (as with the parent
node ‘S’ of the first Neighbor Tone Rule) as compared with the solution tree, or the
branching configuration changes (as with the parent node ‘N’ of the second Neighbor
Tone Rule, which is a right-branching child in the solution tree and a left-branching
child in the parse tree).

68



Algorithm 3 Leaf Alignment Algorithm

1: procedure editDistance(list1, list2, numCorrect)
2: d← matrix(len(list1) + 1, len(list2) + 1)
3: //moving across the matrix represents deletion
4: //The source list can be transformed into the empty
5: //list by deleting all indices
6: for i from 1 to len(list1) do
7: d[i, 0]← 0

8: //moving down the matrix represents addition
9: //The target list can be reached from the empty

10: //list by adding all indices
11: for j from 1 to len(list2) do
12: d[0, j]← 0

13: for j from 1 to len(list2) do
14: for i from 1 to len(list1) do
15: if list1[i] == list2[j] then
16: d[i, j]← d[i− 1, j − 1] //no operation
17: else
18: deletion = d[i− 1, j]
19: addition = d[i, j − 1]
20: d[i, j]← min(deletion+ 1, addition+ 1)

21: return d//minimum distance is in index [m,n]

Algorithm 4 Compare Trees Bottom Up

1: procedure compareBottomUp(node1, node2, numCorrect)
2: label1← node1.label
3: label2← node2.label
4:

5: isLeftChild1← isNodeLeftChild(node1.parent, node1)
6: isLeftChild2← isNodeLeftChild(node2.parent, node2)
7:

8: if label1 == label2 and isLeftChild1 == isLeftChild2 then
9: node1.label←‘X’

10: numCorrect← numCorrect + 1
11: parentNumCorrect← compareBottomUp(node1.parent, node2.parent, 0)
12: numCorrect← numCorrect + parentNumCorrect

13: return numCorrect

69





6.1.5. Cross-Fold Validation

With the algorithms defined for the conversion of the GTTM trees (Algorithm 1),
the training of the PCFG (Algorithm 2 plus NLTK), and the method of comparison
(Algorithms 3 and 4), the cross-fold validation is relatively straightforward. The process
was as follows for both the time-span tree data and the prolongation tree data:

1. Randomly create 5 equal-sized separate subsets, or folds, of the dataset.

2. Train the PCFG on 4 of the 5 folds.

3. Use the trained PCFG to parse each melody from the remaining test set, then
compare each parse tree with the solution tree using the comparison method.

4. Repeat steps 2 and 3 until each fold has been the test set one time.

For step 1, the Python module random was used. Five separate subsets were created
by randomly selecting melodies from the dataset, in even parts. The corresponding code
for the cross-fold validation of the PCFG was placed in the file music rule test.py. It
controls the flow of the process, and also contains the functions required to execute the
validation, generateFoldIndices and crossVal. The implentations for these functions
were straightforward so the pseudocode is not supplied.
The percentage of nodes that were identically-formed between the parse trees created

with the trained PCFG and their corresponding converted GTTM trees was aggregated
of the entire test set, for each fold configuration. Similarly, the sum of all nodes in the
converted GTTM trees was also computed, giving a percentage of accuracy for each fold.

6.1.6. Creating and Displaying Melodic Reductions From Trees

It is also important to understand the types of decisions that result from the PCFG, in
terms of which notes are reduced. For the trees that result from the PCFG, as well as
the original solution trees, it is possible to remove the deepest level of branches in order
to subsequently reduce the melody. The GTTM solution trees are generally very evenly
distributed. That is, they tend to be not very deep, and to have similar depth on each
branch. Both types of the PCFG parse trees, however, can be very unbalanced and also
very deep. Therefore, two separate methods were developed to create melodic reduction
examples from the GTTM trees and the PCFG trees, respectively.
For the GTTM solution trees, it was as simple as defining a single depth, and traversing

every branch to that level, truncating any branches that extended beyond that depth.
Because the branches are even, this created the expected result—notes were generally
removed from multiple places in the melody in each step. For the parse trees, a different
approach was taken. Instead of specifying the depth as a distance from the root, a
negative depth was assigned. With this method, any node that was within a certain
distance of the leaf node of the current branch would be truncated. This produced
a similar result to the depth-based method with the GTTM trees, even though the
forms of the trees tended to be very different. Figure 6.4 shows an example of the

71



parse tree method. Figure 6.4a is the most probable parse tree for the PCFG trained
with the second fold configuration of the prolongational reduction data. Note that the
maximum depth is 8, while the branch on the right side has a depth of only 5. Figure
6.4b shows the first step in the negative depth reduction method. After reducing this
tree by one level, both the branch of depth 8 and depth 5 are truncated. This process
continues one level at a time until Figure 6.4d is produced. The tree in Figure 6.4d
can no longer be reduced, because there are no longer any embellishment rules applied
in that tree, there is only the “New” rule. As was presented in Section 4.3.1, once the
“New” rule is used, the resulting integer interval data is lost. For this reason, the tree
can no longer be reduced. The code for the depth-based tree reduction algorithm as
well as the negative depth reduction algorithm is provided in the score from tree.py file.
The depth-based tree reduction algorithm is a standard depth-first search with a simple
counting mechanism incorporated. Once the appropriate depth is found, the branch is
truncated. The negative depth reduction algorithm is more of a custom case. Therefore,
the pseudocode for the negative depth tree truncation algorithm is provided in Algorithm
5. The pseudocode provided is slightly simplified from the original version—the original
version also includes the tracking of removed note indices so that the notes removed can
be identified for the generation of the score at a later time.

Algorithm 5 Negative Depth Tree Reduction Algorithm

1: procedure truncateToNegDepth(node, desiredDepth)
2: maxChildDepth← 0
3: //the depth function finds the depth of the tree from the current node and below
4: treeDepth← node.depth()
5: for child in node.children do
6: if node.label == ‘N ′ then
7: child,maxChildDepth← truncateToNegDepth(child, desiredDepth)
8: else
9: doTruncateBranch← treeDepth <= desiredDepth

10: branchNotY etTruncated← (maxChildDepth+ 1) <= desiredDepth
11: if doTruncateBranch and branchNotY etTruncated then
12: node.deleteChildren()
13: else
14: child,maxChildDepth← truncateToNegDepth(child, desiredDepth)

15: return node,maxChildDepth

6.2. Results

There were two different types of reductions that were tested: the time-span trees
created from the Time-Span Preference Rules (TSPRs), and the prolongational reduction
trees created from the Prolongational Reduction Preference Rules (PRPRs). Cross-fold
validation was applied for each, resulting in aggregated statistics on the effectiveness of

72





each approach for each fold. The results for each fold were then averaged over all of the
five different fold configurations.

Type of Tree Fold Number Percentage of Matched Nodes

Prolongation Reduction 1 14.16
2 12.84
3 14.09
4 10.72
5 13.53

Average Percentage All 13.07

Time-span 1 12.69
2 15.49
3 14.76
4 14.91
5 17.26

Average Percentage All 15.02

Table 6.1.: The results from cross-fold validation for each data set.

The statistics resulting from cross-fold validation are shown in Table 6.1. The PCFG
matched more closely to GTTM with the time-span tree data. Table 6.1 shows only
the total nodes that matched using the bottom-up tree comparison algorithm, after
alignment. It is important to consider these percentages as compared with some baseline
metric. The leaf sequences are being considered as a starting point for the bottom-up
comparison. For these tree datasets, it would make sense to use the comparison of the
two leaf sequences as a baseline to judge the success of a model; a model that accurately
represents the data set should be able to come close to reproducing the leaf sequence
of the solution set. Table 6.2 shows the fold performance over the two types of data
as compared to the percentage of leaves that are in the solution set. To compute the
percentage of leaves in each solution tree, all of the productions were aggregated over
each tree from each fold. Likewise, all the leaves from each tree of each fold were
aggregated, and the percentage of leaves per the number of productions was then easily
computed. These leaves represent the percentage of nodes in the solution GTTM trees
that are leaf nodes of their branch. This baseline was chosen because, ideally, the parse
trees should have the same leaf sequence as the solution trees. This is not the case,
because an alignment algorithm was required to align the leaf nodes of the PCFG parse
trees with the solution GTTM trees. Using this baseline should be the starting point
for comparison.

6.2.1. Discussion

It is clear that the PCFG’s performance is worse than the defined baseline metric. For
an ideal reduction, the nodes of the leaves between the parse tree and the solution tree
would be identical, as well as all of the higher-level nodes in the tree. On average, a given

74



Type of Tree Fold Total Leaves Total Productions Leaf Percentage

Prolongation Reduction 1 537 1518 35.38
2 526 1461 36.00
3 617 1719 35.89
4 673 1869 36.00
5 600 1677 35.78

Average Percentage All 35.81

Time-span 1 1959 5491 35.68
2 1894 5365 35.30
3 1942 5508 35.26
4 1741 4842 35.96
5 1768 4976 35.53

Average Percentage All 35.54

Table 6.2.: The percentage of leaf nodes for each fold, for each data set.

parse tree’s leaf nodes that match the corresponding solution tree’s leaf nodes, plus their
matching reduction nodes at a higher level do not sum to the percentage of leaf nodes in
the corresponding solution trees. This means that the reductions are very inconsistent,
and the number of situations in which they fail at the surface level, on average, outweigh
the number situations in which they succeed. This is likely due to a few different factors.
For one, the solution trees do not have the same leaf sequences as the parse trees. A
decision was made when converting the solution trees to an input format compatible with
a CFG to consider the sets of notes at each branching configuration in the trees created
with GTTM, and to compute the intervals from the notes in that set. Accordingly,
the intervals are not always computed from the notes that are directly adjacent in the
score. This decision was made in order to accurately reflect GTTM, since GTTM based
its rules on notes and not intervals. The depiction of this problem can be seen in the
comparison of the trees in Figures 4.4a and 4.4b. Figure 4.4a contains the particular
configuration that allows for the creation of the leaf sequence from adjacent notes in the
input melody, while Figure 4.4b does not, resulting in the duplication of an interval of
two semitones. This issue does not, however, affect the correctness or the applicability
of the training algorithm, nor does it implicate that the form of the resulting parse trees
is incorrect in any way.
Another factor that drops the percentage is simply that the number of possible parse

trees with the current CFG ruleset is quite large. For a particular sequence of ten
intervals taken from an arbitrary file in the GTTM dataset, for instance, the number
of possible parse trees using the original CFG amount to 17,616. Part of the reason
why there are so many different tree configurations is because of the rule that allows the
repetition of any intervals that fall in the defined range—the N → N N rule. This rule
was necessary because not every interval combination is described in the embellishment
rules that were chosen. Consider a hypothetical interval sequence of [5, -4, 6], for
example. There are no embellishment rules that apply to this particular situation.

75







the preceding group of three notes, namely B, C, and D. It is the metrical placement
of these notes that determines this preference. The PCFG has chosen to use the note
on the second beat of a measure as an anchoring tone. It is much more likely that the
first and third beat of the third-to-last measure would be the anchoring tones, because
both of those metrical placements are stronger than the second beat. The solution from
GTTM in Figure 6.7a is congruent with this synopsis. It seems that having metrical
information encoded in the interval representation would definitely help in this situation.

A similar situation occurs between the third and fourth rows of Figure 6.7b, in
measures 3–6 with notes E, D and C. It is not likely for a note such as this D, which has
an onset on the downbeat of a measure, and a duration of over two measures, to be a
passing tone to a note that sounds on the second beat of the measure, and has a much
smaller duration. In this case, there are no other embellishment rules that would apply
for this group of notes, or their directly adjacent notes. When comparing the melody at
levels 3 and 4 in the reduction with the equivalent level of reduction in the solution of
Figure 6.7a, it is clear that these “errors” in melodic reduction can also compound as the
reduction gets higher in the parse tree; the reductions in Figure 6.7b seem to become
more and more disparate from the solution reduction in Figure 6.7a as the reduction
depth increases. For the situation of passing tone in measures 3–6, it indeed seems that
the mistake is a result of previous reductions, since the passing tone is the only possible
rule to apply in that situation.
The parse tree for the melody of Pomp and Circumstance created with the PCFG

trained on the time-span GTTM tree data is also shown in Figure 6.8. When compared
with Figure 6.4a, it is evident that the differences are only superficial. It is only the
configuration of the nodes that represent the “New” rule that are different. In fact, it
would create the same set of melodic reductions as in 6.7 if the same negative depth
pruning method were used.

Für Elise

Figure 6.9 shows an example of another comparison of the the reductions created with
a parse tree and the reductions created with a solution tree. In this case, the PCFG
was trained on the time-span reduction data. Similarly, the solution file chosen was
the time-span reduction tree given by the GTTM dataset (Hamanaka, Hirata, and Tojo
2007b). This is a great example of where the reductive capabilities of the PCFG model
fail but also where they succeed. In Figure 6.9a, the second row shows the first phrase
being reduced. In the first full measure (as well as the preceding anacrusis), the opening
figure of two identical neighbor tones is correctly identified. Following that, an escape
tone is found in the D natural note that occurs at the end of the first full measure.
Looking at the same staff, in the fourth full measure, when the opening figure repeats, it
is evident that the figure is reduced in exactly the same way. One positive thing about
the PCFG is that it is likely to reduce an identical passage in the same way, since the
probabilities are static after training. In Figure 6.9b, the solution reductions, the two
passages are also reduced in almost exactly the same way.
Where the PCFG fails is in the arpeggios in between the iconic opening figure and

78











7. Conclusion

This thesis investigated the efficacy of a Probabilistic Context-Free Grammar (PCFG)
when designed to automatically reduce melodies. The evaluation was done using a
dataset of melodic trees, performing cross-validation after employing supervised learning
to train the model. Previously, the PCFG had not been tested on a database of ground
truth annotations, such as the one utilizing The Generative Theory of Tonal Music
(GTTM) (Hamanaka, Hirata, and Tojo 2007b). Chapter 1 introduced the concept
of melodic reduction, and some of its relevant uses. Chapter 2 gave a more detailed
background of the critical techniques of Natural Language Processing (NLP) and the
reductive theory behind the annotations that were used. Chapter 3 presented a history
of research for not only melodic reduction, but also the relevant research for tasks related
to melodic reduction, such as melodic segmentation and melodic parallelism. Chapter 4
explained the process of creating a PCFG, by first designing a Context-Free Grammar
(CFG) and then utilizing the GTTM database created by Hamanaka et al. (2007b)
to calculate the probability distributions for each rule of the PCFG. It also discussed
the difficulties in translating the annotation format into the necessary input format for
supervised training of a PCFG. Chapter 5 described the evaluation method, namely the
comparison of tree structures.
Chapter 6 described the experiment and presented the results. Both the time-span

tree and the prolongational tree data were used for the training of the PCFG. The most
probable tree was parsed for each melody in the given test set, and those parse trees
were compared with the ground truth GTTM trees. The evaluation method for each
result aligned the leaves from the two trees, and performed a bottom-up tree comparison.
It was found that the method had some critical limitations. Namely, the inability to
describe every interval movement with the melodic embellishment rules eliminated the
possibility of accurately estimating the higher levels of the tree structures. The lack
of a proper representation of harmony and meter in the data encoding was a limiting
factor. However, given the limitations, the PCFG was effective for the more surface-level
melodic figures as was seen in Figure 6.9. If the limitations in the design were overcome,
the PCFG for melodic reduction would certainly have a better performance.

7.1. Summary of Contributions

The main contribution of this work is the systematic evaluation of a PCFG for melodic
reduction, using an existing database of expert annotations. Previously, the use of
a PCFG for melodic reduction had been done, but supervised learning had not been
performed with this model, and the results were not evaluated against a test set of
ground truth melodic reductions.

83



Secondly, this thesis presents a unique solution for automatically generating the rules
of a CFG using mathematical constraints. Using a PCFG for the processing and
estimation of integer intervals can create a large combination of rules, which would
be unwieldy to notate by hand. The framework developed allows for the specification
of integer ranges for each of the right-hand side values, as well as the ability to define
constraints (in the form of logical conditions) for validating when the current combination
of right-hand side values constitutes a proper rule.

7.2. Future Work

There is much room for improvement for the current experiment. Namely, all of the
following features would likely improve the model of the underlying system:

• Add rules to the CFG that allows the ruleset to describe every possible interval
sequence without using the “New” Rule. This section will specifically explore the
creation of harmonic grammar rules.

• Augmenting the PCFG model by changing the method of comparison for grammar
rules. Ideally, the embellishment rule probabilities should be lumped together for
each rule, even if the individual intervals for each left-hand side are different.

• Incorporate rhythm and/or meter into the representation.

This thesis will explore each of these possible improvements in this chapter.
Similarly, this thesis will briefly explore the potential uses of the results of the

experiments. One feature of probabilistic systems is that the resulting probabilistic
distributions can be sampled to generate instances of the modelled sequences. A trained
PCFG for melodic reduction can be used to instead generate and embellish melodies.
This process is also explored in this chapter.

7.3. Adding Harmony

The change that would be most fundamental to the improvement of the algorithm is
to somehow ensure that every possible intervallic movement is covered by integer-based
grammar rules. This change would ensure that every intervallic movement is described as
part of some musical rule. As was seen in the example reduction for the song Für Elise in
Figure 6.9, the melodic reduction fails to reduce any of the notes of the arpeggios in the
melody. The solution reduction, on the other hand, reduces the melody in all measures,
including those with arpeggios. Because the arpeggios cannot be reduced by the PCFG,
the “New” rule must be used, making it impossible to continue the reduction on a higher
level. Therefore, one large step in the right direction towards improving the reductional
capabilities of the model would be to incorporate harmonic rules into the CFG. Currently,
harmony is ignored. Not only does this leave many intervals unaccounted for in the
ruleset that could be accounted to harmonic arpeggiation, but it also excludes the
embellishment rules that require harmony from the ruleset.

84



The difficulty in creating a series of rules that describe the harmonic context of a
piece is that the current representation encodes the relative pitch distance between two
notes, as opposed to the set membership of a note; whether or not a note is part of a
triad can be considered a type of set membership. However, it would not be impossible
to represent a triad using relative pitch distances. As a demonstration of the potential
for encoding harmonic context in a CFG, a method for encoding an ascending triad
arpeggiation in a CFG is presented.
A triad has three possible notes, and can span any octave. Since every rule must

represent relative pitch distance, it would be possible to compute the relative pitch
between every note combination of the three notes. To simplify matters, a range of only
one octave is considered for each individual interval. For the purpose of this experiment,
a minor triad is modelled, which consists of a root note, a minor third above the root,
and a perfect fifth above the root. In pitch-class terms, the set consists of a root note
and the intervals of both three and seven above that root note. In order to truly create
a triad, all of the notes within that triad must be visited. To further simplify the issue,
the creating harmony grammar will only consider arpeggios that move up in pitch. To
begin, a rule is created that represents the transition from the root note to the third of
the the triad, followed by the transition from the third to the fifth of the triad:

ROOT → 3 4

This rule completes the triad, by visiting each note in the triad, starting from whatever
note was first played. This by no means covers all the possible triads. Therefore, an
abstraction is made to represent moving to the third of the triad. Then a rule is created
for the third of the triad moving to the fifth, which will complete the triad:

ROOT → 3 THIRD
THIRD → 4

A difficulty occurs when the abstraction is made to create rules starting at each of the
triad’s representative notes (e.g. ROOT, THIRD, FIFTH). It would be ideal to represent
the case for any time that note is visited. If a new rule were created for the fifth of the
triad, the weakness of the abstraction is illuminated:

ROOT → 3 THIRD
THIRD → 4
FIFTH → 8 THIRD

The FIFTH rule now also utilizes the THIRD rule. If both the FIFTH and THIRD rules are
used in succession, however, the resulting sequence would be a complete grammatical
sentence, but a triad would not be formed. Instead, an interval of eight is followed by
an interval of four—the notes have moved from the fifth of the triad, to the third, and
back to the fifth over the span of an octave. It is therefore necessary to codify which
triad notes have been visited before landing on a particular note, as follows:

S → ROOT | THIRD | FIFTH
ROOT → 3 ROOT THIRD | 7 ROOT FIFTH

85



THIRD → 4 THIRD FIFTH | 9 THIRD ROOT
FIFTH → 5 FIFTH ROOT | 8 FIFTH THIRD
ROOT THIRD → 4
ROOT FIFTH → 8
THIRD FIFTH → 5
THIRD ROOT → 7
FIFTH ROOT → 3
FIFTH THIRD → 8

The left-hand side values that represent two notes (e.g., THIRD ROOT) provide a type of
memory that allows the grammar to ensure that certain notes have been visited. In its
current state, the grammar supports any combination of three ascending notes that will
lead to the completion of the triad. It would be ideal to allow repetition of notes that
are in the triad as well. In order to accomplish this, another memory state is added
that represents the triad being completed already. These states are labelled with an X

to represent that any interval that leads to a note in the triad is acceptable.

S → ROOT | THIRD | FIFTH
ROOT → 3 ROOT THIRD | 7 ROOT FIFTH
THIRD → 4 THIRD FIFTH | 9 THIRD ROOT
FIFTH → 5 FIFTH ROOT | 8 FIFTH THIRD
ROOT THIRD → 4 | 4 FIFTHX
ROOT FIFTH → 8 | 8 THIRDX
THIRD FIFTH → 5 | 5 ROOTX
THIRD ROOT → 7 | 7 FIFTHX
FIFTH ROOT → 3 | 3 THIRDX
FIFTH THIRD → 8 | 8 ROOTX
ROOTX → 3 | 7 | 3 THIRDX | 7 FIFTHX
THIRDX → 4 | 9 | 4 FIFTHX | 9 ROOTX
FIFTHX → 5 | 8 | 5 ROOTX | 8 THIRDX

From this CFG, there is still one situation that is not covered. For the rules that
represent having visited two notes (e.g., ROOT THIRD or FIFTH ROOT), it is possible to
have an interval that moves to another two-note rule. For example, the ROOT THIRD

represents being on the third note of the triad while having visited the root of the triad.
If a major sixth interval occurs next, the triad will not be completed—rather, it would
represent being back on the root note and having visited both the root and the third of
the triad. In this case, it would return to the THIRD ROOT rule. With the final addition
of the situation described (for all two-note rules), the resulting CFG is:

S → ROOT | THIRD | FIFTH
ROOT → 3 ROOT THIRD | 7 ROOT FIFTH
THIRD → 4 THIRD FIFTH | 9 THIRD ROOT

86



FIFTH → 5 FIFTH ROOT | 8 FIFTH THIRD
ROOT THIRD → 4 | 4 FIFTHX | 9 THIRD ROOT
ROOT FIFTH → 8 | 8 THIRDX | 5 FIFTH ROOT
THIRD FIFTH → 5 | 5 ROOTX | 8 FIFTH THIRD
THIRD ROOT → 7 | 7 FIFTHX | 3 ROOT THIRD
FIFTH ROOT → 3 | 3 THIRDX | 7 ROOT FIFTH
FIFTH THIRD → 9 | 9 ROOTX | 4 THIRD FIFTH
ROOTX → 3 | 7 | 3 THIRDX | 7 FIFTHX
THIRDX → 4 | 9 | 4 FIFTHX | 9 ROOTX
FIFTHX → 5 | 8 | 5 ROOTX | 8 THIRDX

This final grammar generates every possible interval combination for ascending arpeggios
of a minor triad. The triad can be rooted on any note, and can start from any note
within the triad. The Natural Language Toolkit (NLTK) package provides a module
for randomly generating sentences of the language defined by a CFG. This module was
used to generate the following example sequences in Table 7.1 from the triadic grammar
just described. The file that contains the CFG sampling code is generate arpeggio.py.
For clarity, each right-hand side option of the start rule (ROOT, THIRD, and FIFTH) was
notated, and the interval sequences were used to generate the corresponding notes of the
C minor triad. Each column starts from the respective note from the C minor triad.

ROOT THIRD FIFTH

D. Intervals Notes Intervals Notes Intervals Notes

4 [3, 4] C, Eb, G [4, 5] Eb, G, C [5, 3] G, C, Eb
5 [3, 4, 5] C, Eb, G, C [4, 5, 3] Eb, G, C, Eb [5, 3, 4] G, C, Eb, G
5 [3, 4, 8] C, Eb, G, Eb [4, 5, 7] Eb, G, C, G [5, 3, 9] G, C, Eb, C
5 [3, 9, 7] C, Eb, C, G [4, 8, 9] Eb, G, Eb, C [5, 7, 8] G, C, G, Eb
4 [7, 8] C, G, Eb [9, 7] Eb, C, G [8, 9] G, Eb, C
5 [7, 8, 4] C, G, Eb, G [9, 7, 5] Eb, C, G, C [8, 9, 3] G, Eb, C, Eb
5 [7, 8, 9] C, G, Eb, C [9, 7, 8] Eb, C, G, Eb [8, 9, 7] G, Eb, C, G
5 [7, 5, 3] C, G, C, Eb [9, 3, 4] Eb, C, Eb, G [8, 4, 5] G, Eb, G, C

10 [7, 8, 9, 7, 5, 3, 9, 7] [9, 3, 9, 7, 8, 4, 8, 9] [8, 4, 8, 4, 5, 3, 4, 8]
C, G, Eb, C, G, C, Eb,
C, G

Eb, C, Eb, C, G, Eb, G,
Eb, C

G, Eb, G, Eb, G, C, Eb,
G, Eb

Table 7.1.: Ascending arpeggios generated from the CFG for a minor triad. The “D.”
column stands for grammar tree “Depth”, and is proportional to the number
of intervals contained in each grammar string. The grammar was run with
the three different starting rules of ROOT, THIRD, and FIFTH. The intervals
were then converted to individual notes starting from the root, third, and
fifth of the C minor triad, respectively. All trees of depth five or less are
included, as well as one randomly-selected grammar string of depth ten.

This CFG for a minor triad could be modified easily to create a grammar for major

87



triads, or diminished triads. It could also be modified to support chords with a variable
number of member notes, like two or four. Could it also be used to model a sequence
of varying chords? The difficulty with extending this grammar to model sequences of
chords is in the transitions from chord to chord. Suppose the underlying harmony was
a C minor triad followed by a F major triad. In order to create rules that modelled
both triads as well as the transition between them, one would have to know exactly how
each note from the first triad can transition to each of the notes of the second triad.
For example, if the transition occurred from the third of the first triad to the root of
the second triad, it would be an interval of two semitones from Eb to F, whereas if the
starting note were the root of the first triad, the interval would be five semitones from
C to F. The requirement of describing the situation in terms of relative intervals in this
case seems to constrict the grammar from being applied. The main difficulty is that,
with the minor triad grammar, the interval transition from that minor triad to another
triadic grammar depends very much on the final note that occurs in the first triad.
This is defined in the grammar by which rule has happened last. In a Context-Free
Grammar, one cannot create a transitional rule that takes into account the state of
the previous rule. For this reason, a melody that contains an underlying sequence of
changing chords cannot be accurately modelled with the above grammar representation
of harmony (it would be able to model a melody that only has one underlying chord).
Likely, to incorporate harmony into a model with changing harmonic content, one would
need a more general abstraction of harmony.
If a melody remains in a single harmonic context (without transitioning to a new

underlying chord) it would be possible to extend the arpeggiating grammar above with
the rules of embellishment. Instead of simply terminating on each interval integer,
one could add the non-terminal rules that were used in the experiment to extend the
possibilities to notes outside of the current harmonic context.

7.4. Augmenting the Model

There is a limitation of the chosen model in regards to the representation of the rules.
The limitation is that some of the embellishment rules have multiple right-hand side rules
that describe the same process applied to different interval spans. This creates a different
left-hand side value for each of the rule applications. Similarly, each rule must be resolved
to the string-based representation of intervals; instead of a conditional comparison of
numerals, each integer interval must be compared with its string representation. This
means that the embellishment rules are not considered for any given interval based on
their overall frequency of occurrence, rather they are considered based on their frequency
of occurrence at that interval. There could be a situation, for example, where the Escape
Tone Rule happens in the training set frequently on a minor chord, where it embellishes
the minor third. This information would not then be applicable to an augmented chord,
for example, because an augmented chord consists of two consecutive major thirds.

Below is a further example with the Escape Tone Rule. With the current string-based
representation, one must create an individual rule for each interval size that represents

88



a leap. As shown in Section 4.2, the different leap sizes necessitate the creation of
one hundred and sixty-eight rules. Each of these rules create their own probability
distribution, and therefore the probability of an Escape Tone happening is not properly
represented. In fact, some of the production rules that describe the Escape Tone Rule
will actually collide with other embellishment rules. Take the Escape Tone Rule applied
to an interval of size four:

4 → 5 m1
4 → 6 m2

The challenge here is not in that these rules are incorrect, but they resolve to a left-hand
side that is not unique to the embellishment rule that is being modeled. Here are the
other rules in the CFG that have a left-hand side of the interval four:

4 → 2 2
4 → ‘4’

Contained in the CFG is also a production rule that represents the Passing Tone Rule
applied over an interval of four semitones. Ideally, the probabilities should all be grouped
by the type of embellishment rule even if the size of the intervals are different. If,
instead of strings, the CFG rule actually contained in its implementation the ability
to apply mathematical constraints (such as those that were made when constructing
the CFG) at the time of parsing an input sequence, then it would be possible to directly
model the probability distribution of the rule, without distributing the probabilities over
multiple right-hand side rules that represent the manifestation of that embellishment
rule only at that particular interval. This would require the creation of a new parsing
algorithm, where every string comparison is instead replaced with a mathematical
constraint validator. The result would be a constraint-based CFG. This would improve
the experiment because the probability for each rule would not depend on the interval
at which the rule is being applied, and would more closely represent the frequency with
which the rule occurred in the training set.

7.5. Representing Rhythm and Meter

An additional change that would benefit the model would be the addition of rhythm
and/or meter into the data representation. As was shown in the reduction examples
for the melody Pomp and Circumstance in Figure 6.7, the lack of metrical information
allows for the application of the embellishment rules in unusual places. Specifically the
Escape Tone Rule is applied to the last three notes, which utilizes a very weak metrical
position for the first parent note, which has the metrical position of the second beat of
a measure in time signature 3

4
.

There are different options for encoding the metrical positions of notes. A simple
method is to couple the intervals with an interval of the metric level of each note. Gilbert
and Conklin (2007) used this approach using what they called a “metric delta”. To
compute this metric delta, the metric levels were grouped in a hierarchy. The hierarchical

89



levels represented the significance of each of the beats within a measure. The first level
is the downbeat of the first beat of the measure, the second level is the downbeat of the
third beat, then the down beats of the second and fourth beat were grouped as a level,
then the upbeats, then notes that fell on the sixteenth notes. Similar to the intervals
between the notes’ pitches, an interval between these metric levels was computed for
each data point, and the pitch interval and metric interval were grouped as a single
observation. This approach again expands the probability distributions and categorizes
the same embellishment rule into even more production rules. One disadvantage of this is
that it creates more sparsity in the resulting probabilistic distributions, and also creates
a bigger disparity between the musical embellishment rules, and their implementation in
the PCFG; each embellishment rule would have a larger multiple of different production
rules, spreading the probabilities over an even wider set of left-hand side possibilities.
However, it would have the advantage of the ability to avoid the use of certain notes
with poor metrical positions as parent notes of embellishment rules, and could possibly
prevent the mistakes like the one shown in the Pomp and Circumstance example from
occurring.

7.6. Melodic Generation Examples

The goal of the following demonstration is not to assert that the PCFG created is an
effective tool for composition; the melodies created below do not compare to the creations
of expert composers, by any means. Rather, the aim is to show the possibilities for
applying a trained grammar. By definition, any sequence that is generated by sampling
a probabilistic grammar is part of the language that the grammar defines. Therefore,
if a particular style of melodies is properly modelled, the output sequences generated
by that model should also be recognizable as a manifestation of that style. With these
particular results it is evident that is not the case. However, given a PCFG that passes a
higher-level evaluation, one could utilize it to potentially correct existing melodies (as a
sort of musical “spell-check”), or to automatically compose melodies of moderate quality
in a large volume.

7.6.1. Sampling the PCFG

With a trained PCFG like the one created in this experiment, it is possible to generate
output sequences by sampling the probabilities for each rule. Each set of rules for a
given left-hand side has a probability for each right-hand side possibility. Each rule’s
right-hand side probabilities sum to one. By using the probability distributions, one
can create a new sequence that is representative of the grammar, through the process of
random sampling.
The NLTK provides a function for each probabilistic rule of a PCFG that generates

example sequences for a PCFG. To sample a distribution, the process is simple. One
would need to assign a mathematical range to each right-hand side based on the
proportion of its probability. Then, a random number must be generated, and the
range that contains that random number is the newly-sampled rule. The NLTK toolkit

90



(a) A generated melody with the interval sequence of [-3, 5].

(b) A generated melody with the interval sequence of [-1, -2, 3].

(c) A generated melody with the interval sequence of [-3, -2, -2. -3].

Figure 7.1.: Melodies generated by random sampling of a PCFG trained on the fifth fold
of the prolongational reduction tree dataset.

was used for this process as well. It is possible to use this feature to generate a whole
tree structure, based on recursively sampling the right-hand side of each rule generated,
starting with the “Start” rule. The file that contains the sampling code for the PCFG
is generate arpeggio.py, part of the PCFGMelodicReduction repository.
An example of a generated melody is shown in Figure 7.1a. The onset for each note

is arbitrarily assigned to intervals of two beats in order to avoid emphasizing individual
notes rhythmically. Similarly, each generated melody was chosen to start on the note C.
For the purposes of the following examples, the trained grammar used for the melodic
generation was created from the fifth fold of the prolongational reduction trees. Through
the generation process, the sampled grammar creates a sequence of pitch intervals, which
are computed in succession from the starting note. The melody in Figure 7.1a happens
to stay within the C major scale, but because there is no concept of scale or harmony
encoded in the grammar, the notes are able to move with any interval within the defined
range—even those outside of the C major scale. The generated interval sequences will
vary in length as well. The only rule that will add extra intervals is the “New” Rule: N
→ N N. It also has a right-hand side production for every possible integer terminal as
well as all the embellishment rule non-terminals. The right-hand side that does extend
the melody occurs with an average probability of 16.68% over the five folds. When this
rule is applied recursively, it soon samples the other possible right-hand side productions,
which are all terminals or embellishment rules (which lead to terminals), thus ending
the melody. Two additional generated melodies are shown in Figure 7.1b and Figure
7.1c. The fact that these melodies also remain in the C major scale is coincidence.

91



Melodic Embellishment With Selective Sampling

It is also possible to use sampling in order to utilize the trained PCFG for particular
purposes. For the situation in which a melody already exists, it is possible to restrict
the set of grammar rules that are considered when sampling in order add notes to the
existing melody. Another algorithm was created in order to selectively sample only the
embellishment rules. The process is described below:

• Parse the melody using the probabilistic grammar, in order to create a parse tree

• For every leaf in the tree

– Select the parent non-terminal of the given leaf

– Find all right-hand side productions of the parent non-terminal

– Select all right-hand side productions that are of length greater than one

– Normalize the aggregated probabilities of the new right-hand side rule subset

– Sample from the new probabilistic distribution that includes only those rules
that will embellish the given interval

∗ Find the corresponding terminal to each of the new child non-terminals
created from sampled embellishment rule

– Replace the leaf with the new grammar tree created from the embellishment
rule and its child non-terminals

Some of these steps warrant further explanation. The process will be detailed for the
first generated melody from Figure 7.1a. The first step is to parse the melody to create
the parse tree. Applying the PCFG to this melody yields the following tree. In this
case, each set of parentheses represent the application of a new non-terminal:

(S (N (m3 -3)) (N (5 5)))

The series of rules that created this tree are:

{S → N, N → N N, N → m3, m3 → ‘-3’, N → 5, 5 → ‘5’}.

The tree graph is shown in Figure 7.2.
The set of leaves in the tree depicted in Figure 7.2 are simply ‘-3’ and ‘5’. Iterating

through each of these, ‘-3’ is selected first, and its parent non-terminal is identified
as simply m3. The next step involves finding all the right-hand side production rules
for the non-terminal m3, which amount to the following set of rules. The full grammar
rule is provided for each, as well as the probability with which that rule occurred in the

92







(a) A generated melody with the interval
sequence of [-3, 5], with its embellished
counterpart of interval sequence [-2, -1,

7, -2]

(b) A generated melody with the interval
sequence of [-1, -2, 3] above its
embellished counterpart of interval sequence
[-3, 2, 1, -3, 2, 1]

(c) A generated melody with the interval sequence of [-3, -2, -2, -3] above its embellished
counterpart of interval sequence [-2, -1, 1, -3, -4, 2, -1, -2]

Figure 7.4.: Melodies generated by random sampling of a PCFG and then embellished
with selective sampling. The PCFG was trained on the fifth fold of the
prolongational reduction tree dataset.

7.7. Recapitulation

This thesis has shown that the PCFG is a dynamic tool, allowing for the hierarchical
modelling of sequential data. With a growing number of databases available, techniques
for the systematic evaluation of digital representations of musical scores are becoming
more useful and relevant to the fields of music theory and musicology. Systematic
evaluations provide not only a way to validate the potential in certain models, but also
to hone and improve upon data representations of musical information when utilized for
specific tasks. The level of intuition of expert musicologist or composer might never be
attained by software tools, but certainly large-scale analysis of music provides a different
perspective on musical challenges, and a larger platform for experts to apply their skills.

95



References

Abdallah, S. A., and N. E. Gold. 2014. Comparing models of symbolic music using
probabilistic grammars and probabilistic programming. In Proceedings of the

International Computer Music Conference, Athens, Greece, 1524–31.

Abdallah, S. A., N. E. Gold, and A. Marsden. 2016. Analysing symbolic music with
probabilistic grammars. In D. Meredith (Ed.), Computational Music Analysis,
157–89. Cham, Switzerland: Springer International.

Backus, J. W. 1959. The syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM conference. In Proceedings of the

International Conference for Information Processing, Paris, France, 125–31.

Baroni, M., R. Brunetti, L. Callegari, and C. Jacoboni. 1982. A grammar for melody:
Relationships between melody and harmony. In M. Baroni and L. Callegari (Eds.),
Musical Grammars and Computer Analysis, Florence, Italy, 201–18.

Baroni, M., and C. Jacobini. 1975. Analysis and generation of Bach’s chorale melodies.
In Proceedings of the International Congress on the Semiotics of Music, Belgrade,
Yugoslavia, 125–34.

Baroni, M., and C. Jacoboni. 1978. Proposal for a grammar of melody: The Bach

Chorales. Montreal, Canada: Les Presses de l’Université de Montréal.

Beach, D. 1969. A Schenker bibliography. Journal of Music Theory 13 (1): 2–37.

Bel, B., and J. Kippen. 1992. Modelling music with grammars: Formal language
representation in the Bol processor. In A. Marsden and A. Pople (Eds.), Computer

Representations and Models in Music, 207–38. London, United Kingdom:
Academic Press.

Bernabeu, J. F., J. Calera-Rubio, and J. M. Iñesta. 2011. Classifying melodies using
tree grammars. In Proceedings of the Iberian Conference on Pattern Recognition

and Image Analysis, Las Palmas de Gran Canaria, Spain, 572–9.

Bod, R. 1998. Beyond grammar: An experience-based theory of language. Stanford,
CA: CSLI Publications.

Bod, R. 2002. Memory-based models of melodic analysis: Challenging the Gestalt
principles. Journal of New Music Research 31: 27–37.

Booth, T. L. 1969. Probabilistic representation of formal languages. In Proceedings of

the Symposium on Switching and Automata Theory, Waterloo, Canada, 74–81.

Buxton, W., W. Reeves, R. Baecker, and L. Mezei. 1978. The use of hierarchy and
instance in a data structure for computer music. Computer Music Journal 2 (4):
10–20.

96



Cambouropoulos, E. 2001. The local boundary detection model (LBDM) and its
application in the study of expressive timing. In Proceedings of the International

Computer Music Conference, Havana, Cuba, 17–22.

Cambouropoulos, E. 2006. Musical parallelism and melodic segmentation: A
computational approach. Music Perception 23: 249–68.

Cambouropoulos, E., M. Crochemore, C. Iliopoulos, M. Mohamed, and M. Sagot.
2005. A pattern extraction algorithm for abstract melodic representations
that allow partial overlapping of intervallic categories. In Proceedings of the

International Conference on Music Information Retrieval, London, United
Kingdom, 167–74.

Chomsky, N. 1956. Three models for the description of language. Institute of Radio

Engineers Transactions on Information Theory 2: 113–24.

Chomsky, N. 1959. On certain formal properties of grammars. Information and

Control 2 (2): 137–67.

Cleary, J. G., W. J. Teahun, and I. H. Witten. 1995. Unbounded length contexts for
PPM. In Proceedings of the Data Compression Conference, Snowbird, UT, 52–61.

Cocke, J. 1969. Programming languages and their compilers: Preliminary notes. New
York, NY: Courant Institute of Mathematical Sciences, New York University.

Collins, M. J. 1999. Head-driven statistical models for natural language parsing.
Computational Linguistics 29 (4): 589–637.

Cooper, G., and L. B. Meyer. 1960. The rhythmic structure of music. Chicago, IL:
University of Chicago Press.

Cope, D. 1996. Experiments in musical intelligence, Volume 12. Madison, WI: AR
Editions.

Crochemore, M. 1981. An optimal algorithm for computing the repetitions in a word.
Information Processing Letters 12 (5): 244–50.

de la Puente, A. O., R. S. Alfonso, and M. A. Moreno. 2002. Automatic composition
of music by means of grammatical evolution. In Proceedings of the Conference on

APL: Array Processing Languages: Lore, Problems, and Applications, New York,
NY, 148–55.

Ferrand, M., P. Nelson, and G. Wiggins. 2003. Unsupervised learning of melodic
segmentation: A memory-based approach. In Proceedings of the European Society

for the Cognitive Sciences of Music Conference, Hannover, Germany, 141–4.

Forte, A., and S. E. Gilbert. 1982. An introduction to Schenkerian analysis.
Cambridge, MA: W. W. Norton.

Frankland, B., and A. J. Cohen. 2004. Parsing of melody: Quantification and testing
of the local grouping rules of Lerdahl and Jackendoff’s “A generative theory of
tonal music”. Music Perception 21 (4): 499–543.

97



Friberg, A., R. Bresin, L. Frydén, and J. Sundberg. 1998. Musical punctuation on
the microlevel: Automatic indentification and performance of small melodic units.
Journal of New Music Research 27 (3): 271–92.

Gilbert, É., and D. Conklin. 2007. A probabilistic context-free grammar for melodic
reduction. In Proceedings for the International Workshop on Artificial Intelligence

and Music, International Joint Conference on Artificial Intelligence, Hyderabad,
India, 83–94.

Good, M. 2001. MusicXML for notation and analysis. The virtual score:

representation, retrieval, restoration 12: 113–24.

Granroth-Wilding, M. T. 2013. Harmonic analysis of music using combinatory

categorial grammar. Ph.D. thesis, University of Edinburgh, Edinburgh, United
Kingdom.

Hamanaka, M., K. Hirata, and S. Tojo. 2007a. FATTA: Full automatic time-span
tree analyzer. In Proceedings of the International Computer Music Conference,
Copenhagen, Denmark, 153–6.

Hamanaka, M., K. Hirata, and S. Tojo. 2007b. Implementing “A generative theory of
tonal music”. Journal of New Music Research 35 (4): 249–77.

Hoffmann, C. M., and M. J. O’Donnell. 1982. Pattern matching in trees. Journal of
the ACM 29 (1): 68–95.

Jurafsky, D., and J. H. Martin. 2000. Speech and language processing: An introduction

to natural language processing, computational linguistics, and speech recognition

(1st ed.). Upper Saddle River, NJ: Prentice Hall.

Kasami, T. 1965. An efficient recognition and syntax-analysis algorithm for
context-free languages. Technical report, Air Force Cambridge Research Lab,
Bedford, MA.

Kassler, M. 1963. A sketch of the use of formalized languages for the assertion of
music. Perspectives of New Music 1 (2): 83–94.

Kay, M. 1986. Algorithm schemata and data structures in syntactic processing. In B. J.
Grosz, K. Sparck-Jones, and B. L. Webber (Eds.), Readings in Natural Language

Processing, 35–70. San Francisco, CA: Morgan Kaufmann.

Kirlin, P. B. 2014. A probabilistic model of hierarchical music analysis. Ph.D. thesis,
University of Massachusetts Amherst, Amherst, MA.

Kirlin, P. B., and D. D. Jensen. 2011. Probabilistic modelling of hierarchical music
analysis. In Proceedings of the International Conference of Music Information

Retrieval, Miami, FL, 393–8.

Koffka, K. 1935. Principles of Gestalt psychology. New York, NY: Harcourt, Brace &
World.

Köhler, W. 1929. Gestalt psychology. New York, NY: Liveright.

98



Lartillot, O. 2010. Reflections towards a generative theory of musical parallelism.
Musicae Scientiae 14 (1): 195–229.

Lerdahl, F., and R. Jackendoff. 1983. A generative theory of tonal music. Cambridge,
MA: The MIT Press.

Lerdahl, F., and Y. Potard. 1986. La composition assistée par ordinateur.
Rapports de recherche. Paris, France: Institut de Recherche et Coordination
Acoustique/Musique, Centre Georges Pompidou.

Levenshtein, V. I. 1966. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady 10: 707–10.

Longuet-Higgins, H., and M. J. Steedman. 1971. On interpreting Bach. Machine

Intelligence 6: 221–41.

Loper, E., and S. Bird. 2002. NLTK: The natural language toolkit. In Proceedings of

the Workshop on Effective Tools and Methodologies for Teaching Natural Language

Processing and Computational Linguistics, Volume 1, Stroudsburg, PA, 63–70.

MacKay, D. J. 2003. Information theory, inference and learning algorithms.
Cambridge, United Kingdom: Cambridge University Press.

Marsden, A. 2005. Generative structural representation of tonal music. Journal of
New Music Research 34 (4): 409–28.

Marsden, A. 2010, August 9-13. Recognition of variations using automatic Schenkerian
reduction. In Proceedings of the International Conference on Music Information

Retrieval, Utrecht, Netherlands, 501–6.

Mont-Reynaud, B., and M. Goldstein. 1985. On finding rhythmic patterns in musical
lines. In Proceedings of the International Computer Music Conference, Burnaby,
Canada, 391–7.

Nord, T. 1992. Toward theoretical verification: Developing a computer model of

Lerdahl and Jackendoff’s generative theory of tonal music. Ph.D. thesis, University
of Wisconsin-Madison, Madison, Wisconsin.

Pasquier, N., Y. Bastide, R. Taouil, and L. Lakhal. 1999. Efficient mining of
association rules using closed itemset lattices. Information Systems 24: 25–46.

Pearce, M. T., D. Müllensiefen, and G. A. Wiggins. 2010. Melodic grouping in
music information retrieval: New methods and applications. In Z. Ra and
A. Wieczorkowska (Eds.), Advances in Music Information Retrieval, Volume 274
of Studies in Computational Intelligence, 364–88. Berlin, Germany: Springer.

Pope, S. T. 1991a. A tool for manipulating expressive and structural hierarchies in
music. In Proceedings of the International Computer Music Conference, Montreal,
Canada, 324–7.

Pope, S. T. 1991b. The well-tempered object: Musical applications of object-oriented

software technology. Cambridge, MA: MIT Press.

99



Rizo, D. 2010. Symbolic music comparison with tree data structures. Ph.D. thesis,
University of Alicante, Alicante, Spain.

Roads, C. 1977. Composing grammars. In Proceedings of the International Computer

Music Conference, San Diego, CA, 54–132.

Roads, C., and P. Wieneke. 1979, March. Grammars as representations for music.
Computer Music Journal 3 (1): 48–55.

Ruwet, N. 1972. Language, musique, poésie. Paris, France: Éditions du Seuil.

Ruwet, N. 1975. Theorie et methodes dans les etudes musicales. Musique en Jeu 17:
11–36.

Sadie, S., and G. Grove. 1980. The new Grove dictionary of music and musicians.
London, United Kingdom: Macmillan.

Schaffrath, H. 1995. The Essen folksong collection in the Humdrum kern format. Menlo
Park, CA: Center for Computer Assisted Research in the Humanities.

Seneff, S. 1992. TINA: A natural language system for spoken language applications.
Computational Linguistics 18 (1): 61–86.

Smoliar, S. W. 1976. Music programs: An approach to music theory through
computational linguistics. Journal of Music Theory 20 (1): 105–31.

Smoliar, S. W. 1986. Reviewed work: Musical grammars and computer analysis.
Journal of Music Theory 30 (1): 130–41.

Steedman, M. J. 1977. The perception of musical rhythm and metre. Perception 6 (5):
555–69.

Temperley, D. 2001. The cognition of basic musical structures. Cambridge, MA: The
MIT Press.

Tenney, J., and L. Polansky. 1980. Temporal Gestalt perception in music. Journal of
Music Theory 24 (2): 205–41.

Wertheimer, M. 1938. Laws of organization in perceptual forms. In W. D. Ellis (Ed.),
A Source Book of Gestalt Psychology, 71–88. London, United Kingdom: Routledge
& Kegan Paul.

Younger, D. H. 1967. Recognition and parsing of context-free languages in time n3.
Information and Control 10 (2): 189–208.

100



Appendices

101



A. The Preference Rules of GTTM

Each of the following rules come from The Generative Theory of Tonal Music (GTTM)
(Lerdahl and Jackendoff 1983). The page numbers are referenced after each rule.

Grouping Preference Rule (GPR) 1 Strongly avoid groups containing a single
event. [43]

GPR 2 (Proximity) Consider a sequence of four notes n1n2n3n4. All else being
equal, the transition n2–n3 may be heard as a group boundary if

a. (Slur/Rest) the interval of time from the end of n2 to the beginning of n3 is
greater than that from the end of n1 to the beginning of n2 and that from the
end of n3 to the beginning of n4, or if

b. (Attack-Point) the interval of time between the attack points of n2 and n3 is
greater than that between the attack points of n1 and n2 and that between
the attack points of n3 and n4. [45]

GPR 3 (Change) Consider a sequence of four notes n1n2n3n4. All else being
equal, the transition n2–n3 may be heard as a group boundary if

a. (Register) the transition n2–n3 involves a greater intervallic distance than
both n1–n2 and n3–n4, or if

b. (Dynamics) the transition n2–n3 involves a change in dynamics and n1–n2
and n3–n4 do not, or if

c. (Articulation) the transition n2–n3 involves a change in articulation and n1–n2
and n3–n4 do not, or if

d. (Length) n2 and n3 are of different lengths and both pairs n1,n2 and n3,n4 do
not differ in length.

(One might add further cases to deal with such things as change in timbre or
instrumentation.) [46]

GPR 4 (Intensification) Where the effects picked out by GPRs 2 and 3 are
relatively more pronounced, a larger-level group boundary may be placed. [49]

GPR 5 (Symmetry) Prefer grouping analyses that most closely approach the
ideal subdivision of groups into two parts of equal length. [49]

GPR 6 (Parallelism)Where two or more segments of the music can be construed
as parallel, the preferably form parallel parts of groups. [51]

102



GPR 7 (Time-span and Prolongational Stability) Prefer a grouping
structure that results in more stable time-span and/or prolongational reductions.
[52]

Metrical Preference Rule (MPR) 1 (Parallelism) Where two or more groups
or parts of groups can be construed as parallel, they preferably receive parallel
metrical structure. [75]

MPR 2 (Strong Beat Early) Weakly prefer a metrical structure in which the
strongest beat in a group appears relatively early in the group. [76]

MPR 3 (Event) Prefer a metrical structure in which beats of level Li that coincide
with the inception of pitch-events are strong beats of Li. [76]

MPR 4 (Stress) Prefer a metrical structure in which beats of Level Li that are
stressed are strong beats of Li. [79]

MPR 5 (Length) Prefer a metrical structure in which a relatively strong beat
occurs at the inception of either:

a. a relatively long pitch-event,

b. a relatively long duration of a dynamic,

c. a relatively long slur,

d. a relatively long pattern of articulation,

e. a relatively long duration of a pitch in the relevant levels of the time-span
reduction, or

f. a relatively long duration of a harmony in the relevant levels of the time-span
reduction (harmonic rhythm). [84]

MPR 6 (Bass) Prefer a metrically stable bass. [88]

MPR 7 (Cadence) Strongly prefer a metrical structure in which cadences are
metrically stable; that is, strongly avoid violations of local preference rules within
cadences. [88]

MPR 8 (Suspension) Strongly prefer a metrical structure in which a suspension
is on a stronger beat than its resolution. [89]

MPR 9 (Time-span Interaction) Prefer a metrical analysis that minimizes
conflict in the time-span reduction. [90]

Time-span Reduction Preference Rule (TSRPR) 1 (Metrical Position)
Of the possible choices for head of a time-span T, prefer a choice that is in a
relatively strong metrical position. [160]

TSRPR 2 (Local Harmony) Of the possible choices for head of a time-span,
T, prefer the choice that is

103



a. relatively intrinsically consonant,

b. relatively closely related to the local tonic. [161]

TSRPR 3 (Registral Extremes) Of the possible choices for head of a time-span,
T, weakly prefer a choice that has

a. a higher melodic pitch

b. a lower bass pitch [162]

TSRPR 4 (Parallelism) If two or more time-spans can be construed as
motivically and/or rhythmically parallel, preferably assign them parallel heads.
[164]

TSRPR 5 (Metrical Stability) In choosing the head of a time-span T, prefer
a choice that results in more stable choice of metrical structure. [165]

TSRPR 6 (Prolongational Stability) In choosing the head of a time-span T,
prefer a choice that results in more stable choice of prolongational reduction. [167]

TSRPR 7 (Cadential Retention) If the following conditions obtain in a
time-span T, then label the progression as a cadence and strongly prefer to choose
it as head:

i. There is an event or sequence of two events (e1)e2 forming the progression for
a full, half, or deceptive cadence.

ii. The last element of this progression is at the end of T or is prolonged to the
end of T.

iii. There is a larger group G containing T for which the progression can function
as structural ending. [170]

TSRPR 8 (Structural Beginning) If, for a time-span T, there is a larger group
G containing T for which the head of T can function as structural beginning, the
prefer as head of T an event relatively close to the beginning of T (and hence to
the beginning of G as well). [170]

TSRPR 9 In choosing the head of a piece, prefer the structural ending to the
structural beginning. [174]

Prolongational Reduction Preference Rule (PRPR) 1 (Time-span
Importance) In choosing the prolongationally most important event ek of a
prolongational region (ei–ej), strongly prefer a choice in which ek is relatively
time-span-important. [220]

PRPR 2 (Time-span Segmentation) Let ek be the prolongationally most
important event in a prolongational region (ei–ej). If there is a time-span that
contains ei and ek but not ej , prefer a prolongational reduction in which ek is an
elaboration of ei, similarly with the roles of ei and ej reversed. [221]

104



PRPR 3 (Prolongational Connection) In choosing the prolongationally most
important event ek in a prolongational region (ei–ej), prefer an ek that attaches so
as to form a maximally stable prolongational connection with one of the endpoints
of the region. [224]

PRPR 4 (Prolongational Importance) Let ek be the prolongationally most
important event in a region (ei–ej). Prefer a prolongational reduction in which ek
is an elaboration of the prolongationally more important of the endpoints. [226]

PRPR 5 (Parallelism) Prefer a prolongational reduction in which parallel
passages receive parallel analyses. [226]

PRPR 6 (Normative Prolongational Structure) A cadenced group
preferably contains five elements in its prolongational structure:

a. a prolongational beginning,

b. a prolongational ending consisting of one element of the cadence,

c. a right-branching prolongation as the most important direct elaboration of
the prolongational beginning,

d. a right-branching progression as the (next) most important direct elaboration
of the prolongational beginning,

e. a left-branching “subdominant” progression as the most important
elaboration of the first element of the cadence. [234]

105



B. XML Snippet for Melodic Phrase in
Chopin’s “Grande Valse Brillante”

<primary>

<ts timespan="1.0" leftend="5.0" rightend="6.0">

<head>

<chord duration="1.0" velocity="90">

<note id="P1-2-4" />

</chord>

</head>

<at>

<temp difference="3.0" stable="./../..">

<pred temp="./../.." />

<succ temp="+inf" />

</temp>

</at>

</ts>

</primary>

<secondary>

<ts timespan="2.0" leftend="3.0" rightend="5.0">

<head>

<chord duration="1.0" velocity="90">

<note id="P1-2-1" />

</chord>

</head>

<at>

<temp difference="2.0" stable="./..">

<pred temp="-inf" />

<succ temp="./.." />

</temp>

</at>

<primary>

<ts timespan="1.0" leftend="3.0" rightend="4.0">

<head>

<chord duration="1.0" velocity="90">

<note id="P1-2-1" />

</chord>

</head>

106



<at>

<temp difference="2.0" stable="./../..">

<pred temp="-inf" />

<succ temp="./../.." />

</temp>

</at>

</ts>

</primary>

<secondary>

<ts timespan="1.0" leftend="4.0" rightend="5.0">

<head>

<chord duration="0.5" velocity="90">

<note id="P1-2-2" />

</chord>

</head>

<at>

<temp difference="1.0" stable="./..">

<pred temp="./.." />

<succ temp="+inf" />

</temp>

</at>

<primary>

<ts timespan="0.5" leftend="4.0" rightend="4.5">

<head>

<chord duration="0.5" velocity="90">

<note id="P1-2-2" />

</chord>

</head>

<at>

<temp difference="1.0" stable="./../..">

<pred temp="./../.." />

<succ temp="+inf" />

</temp>

</at>

</ts>

</primary>

<secondary>

<ts timespan="0.5" leftend="4.5" rightend="5.0">

<head>

<chord duration="0.5" velocity="90">

<note id="P1-2-3" />

</chord>

</head>

<at>

107



<temp difference="0.5" stable="./..">

<pred temp="./.." />

<succ temp="+inf" />

</temp>

</at>

</ts>

</secondary>

</ts>

</secondary>

</ts>

</secondary>

108



C. Generated String for the CFG Before
Training

S → N

N → N N

N → m24

N → m23

N → m22

N → m21

N → m20

N → m19

N → m18

N → m17

N → m16

N → m15

N → m14

N → m13

N → m12

N → m11

N → m10

N → m9

N → m8

N → m7

N → m6

N → m5

N → m4

N → m3

N → m2

N → m1

N → 0

N → 1

N → 2

N → 3

N → 4

N → 5

N → 6

N → 7

N → 8

N → 9

N → 10

N → 11

N → 12

N → 13

N → 14

N → 15

N → 16

N → 17

N → 18

N → 19

N → 20

N → 21

N → 22

N → 23

N → 24

0 → m2 2

0 → m1 1

0 → m1 1

0 → 0 0

0 → 1 m1

0 → 2 m2

m4 → m2 m2

m3 → m2 m1

m3 → m1 m2

3 → 1 2

3 → 2 1

4 → 2 2

1 → 3 m2

2 → 3 m1

2 → 4 m2

3 → 4 m1

3 → 5 m2

4 → 5 m1

4 → 6 m2

5 → 6 m1

5 → 7 m2

6 → 7 m1

6 → 8 m2

7 → 8 m1

7 → 9 m2

8 → 9 m1

8 → 10 m2

9 → 10 m1

9 → 11 m2

10 → 11 m1

10 → 12 m2

11 → 12 m1

11 → 13 m2

12 → 13 m1

12 → 14 m2

109



13 → 14 m1

13 → 15 m2

14 → 15 m1

14 → 16 m2

15 → 16 m1

15 → 17 m2

16 → 17 m1

16 → 18 m2

17 → 18 m1

17 → 19 m2

18 → 19 m1

18 → 20 m2

19 → 20 m1

19 → 21 m2

20 → 21 m1

20 → 22 m2

21 → 22 m1

21 → 23 m2

22 → 23 m1

22 → 24 m2

23 → 24 m1

m23 → m24 1

m22 → m24 2

m22 → m23 1

m21 → m23 2

m21 → m22 1

m20 → m22 2

m20 → m21 1

m19 → m21 2

m19 → m20 1

m18 → m20 2

m18 → m19 1

m17 → m19 2

m17 → m18 1

m16 → m18 2

m16 → m17 1

m15 → m17 2

m15 → m16 1

m14 → m16 2

m14 → m15 1

m13 → m15 2

m13 → m14 1

m12 → m14 2

m12 → m13 1

m11 → m13 2

m11 → m12 1

m10 → m12 2

m10 → m11 1

m9 → m11 2

m9 → m10 1

m8 → m10 2

m8 → m9 1

m7 → m9 2

m7 → m8 1

m6 → m8 2

m6 → m7 1

m5 → m7 2

m5 → m6 1

m4 → m6 2

m4 → m5 1

m3 → m5 2

m3 → m4 1

m2 → m4 2

m2 → m3 1

m1 → m3 2

1 → m2 3

2 → m2 4

3 → m2 5

4 → m2 6

5 → m2 7

6 → m2 8

7 → m2 9

8 → m2 10

9 → m2 11

10 → m2 12

11 → m2 13

12 → m2 14

13 → m2 15

14 → m2 16

15 → m2 17

16 → m2 18

17 → m2 19

18 → m2 20

19 → m2 21

20 → m2 22

21 → m2 23

22 → m2 24

2 → m1 3

3 → m1 4

4 → m1 5

5 → m1 6

6 → m1 7

7 → m1 8

8 → m1 9

9 → m1 10

10 → m1 11

11 → m1 12

12 → m1 13

13 → m1 14

14 → m1 15

15 → m1 16

16 → m1 17

17 → m1 18

18 → m1 19

19 → m1 20

20 → m1 21

21 → m1 22

22 → m1 23

23 → m1 24

m23 → 1 m24

110



m22 → 1 m23

m21 → 1 m22

m20 → 1 m21

m19 → 1 m20

m18 → 1 m19

m17 → 1 m18

m16 → 1 m17

m15 → 1 m16

m14 → 1 m15

m13 → 1 m14

m12 → 1 m13

m11 → 1 m12

m10 → 1 m11

m9 → 1 m10

m8 → 1 m9

m7 → 1 m8

m6 → 1 m7

m5 → 1 m6

m4 → 1 m5

m3 → 1 m4

m2 → 1 m3

m22 → 2 m24

m21 → 2 m23

m20 → 2 m22

m19 → 2 m21

m18 → 2 m20

m17 → 2 m19

m16 → 2 m18

m15 → 2 m17

m14 → 2 m16

m13 → 2 m15

m12 → 2 m14

m11 → 2 m13

m10 → 2 m12

m9 → 2 m11

m8 → 2 m10

m7 → 2 m9

m6 → 2 m8

m5 → 2 m7

m4 → 2 m6

m3 → 2 m5

m2 → 2 m4

m1 → 2 m3

0 → ‘0’

1 → ‘1’

2 → ‘2’

3 → ‘3’

4 → ‘4’

5 → ‘5’

6 → ‘6’

7 → ‘7’

8 → ‘8’

9 → ‘9’

10 → ‘10’

11 → ‘11’

12 → ‘12’

13 → ‘13’

14 → ‘14’

15 → ‘15’

16 → ‘16’

17 → ‘17’

18 → ‘18’

19 → ‘19’

20 → ‘20’

21 → ‘21’

22 → ‘22’

23 → ‘23’

24 → ‘24’

m24 → ‘-24’

m23 → ‘-23’

m22 → ‘-22’

m21 → ‘-21’

m20 → ‘-20’

m19 → ‘-19’

m18 → ‘-18’

m17 → ‘-17’

m16 → ‘-16’

m15 → ‘-15’

m14 → ‘-14’

m13 → ‘-13’

m12 → ‘-12’

m11 → ‘-11’

m10 → ‘-10’

m9 → ‘-9’

m8 → ‘-8’

m7 → ‘-7’

m6 → ‘-6’

m5 → ‘-5’

m4 → ‘-4’

m3 → ‘-3’

m2 → ‘-2’

m1 → ‘-1’

111


	Abstract
	Résumé
	Acknowledgements
	List of Figures
	List of Tables
	Glossary
	Introduction and Motivation
	Thesis structure

	Background
	Natural Language Processing
	Formal Grammars
	Parsing Algorithms
	Chomsky Hierarchy
	Chomsky Normal Form
	Probabilistic Context-Free Grammars
	Training of a PCFG

	The Generative Theory of Tonal Music
	The Four Components
	Metrical Structure
	Grouping Structure
	Time-span Reduction
	Prolongational Reduction
	Parallelism in GTTM


	History of Melodic Reduction and Related Techniques
	Melodic Segmentation
	Implementing GTTM's Grouping Rules
	Local Boundary Detection Model
	Grouper
	Memory-Based Models

	Melodic Parallelism
	Melodic Reduction
	Musical Grammars and Trees

	Automatic and assisted composition

	A PCFG for Melodic Reduction
	Approach
	Creating the CFG
	Alternative Representations

	Grammar Induction and Parsing
	Formatting the Training Data
	Supervised Learning with the NLTK Toolkit


	Evaluation Methodology
	Constructing the CFG Using Constraints
	Tree Comparison
	Cross-fold Validation

	Experiment
	Implementation
	cfg Construction
	Pre-processing
	Training
	Tree Comparison
	Cross-Fold Validation
	Creating and Displaying Melodic Reductions From Trees

	Results
	Discussion
	Analysis of the Reductions

	Discussion

	Conclusion
	Summary of Contributions
	Future Work
	Adding Harmony
	Augmenting the Model
	Representing Rhythm and Meter
	Melodic Generation Examples
	Sampling the PCFG

	Recapitulation

	Appendices
	The Preference Rules of gttm
	XML Snippet for Melodic Phrase in Chopin's ``Grande Valse Brillante"
	Generated String for the CFG Before Training

