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ABSTRACT

Inflationary cosmology is the standard paradigm of early universe physics. In-

flation leaves the universe in a non-thermal state, very cold and effectively empty of

matter. Hence any successful inflationary model must explain how the inflationary

phase is connected to the high temperatures at Big Bang Nucleosynthesis as well as

explaining the production of the Standard Model particles. The Reheating mecha-

nism has been introduced to inflationary cosmology in order to explain transfer of

energy which is stored in the inflaton field to other dynamical degrees of freedom in

the universe and render the universe hot. Therefore, reheating is an integral part

of inflationary cosmology. Studying particle production in models with a concrete

background in high energy physics and the evolution of cosmological perturbations

during reheating are the two main directions of the current thesis. Particle produc-

tion via non-gravitational channels for G-inflation, Axion Monodromy inflation and

an Asymptotically Safe Quantum Field Theory have been studied. These channels

proved to be efficient. A study of the evolution of cosmological perturbations for a

massless inflation toy model and for the asymptotically safe field theory showed that

perturbations are highly excited even on large cosmological scales during reheating,

while it was shown than in axion monodromy inflation no such significant evolution

on large scales occur.
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ABRÉGÉ

L’inflation cosmique est le paradigme standard de la physique de l’univers pri-

mordial. L’inflation laisse l’univers dans un état non thermique, très froid et vide de

matière. Par conséquent, il est impératif que tout modèle inflationniste explique la

relation entre la phase d’inflation et les températures élevées de la nucléosynthèse du

Big Bang et détaille la production des particules du modèle standard. Le mécanisme

de réchauffage et de refroidissement a été introduit dans la cosmologie inflationniste

afin d’expliquer le transfert de l’énergie conservée dans le champ d’inflation à divers

auters degrés de liberté dynamiques dans l’univers, et contribue à l’échauffement de

l’univers. Donc, le mécanism de réchauffage est une partie intégrante de la cosmologie

inflationniste. L’étude de la production des particules, dans le contexte de la physique

des hautes énergies, et de l’évolution des perturbations cosmologiques pendant le

réchauffement, est l’objectif de la thèse actuelle. La production des particules par

des voies non gravitationnelles pour l’inflation G, l’inflation d’axion monodromique,

ainsi qu’une théorie quantique des champs asymptotiquement sûre a été étudiée et

s’est révélée efficace. L’étude de l’évolution des perturbations cosmologiques pour un

modèle jouet de d’inflationon sans masse et de la théorie de champ asymptotique-

ment sûre a prouvé les excitations de perturbations même fur de grandes échelles

cosmologiques pendant le réchauffage, alors que l’inflation d’axion monodromique ne

présente pas une évolution aussi considérable fur de grandes échelles.
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Chapter 1 INTRODUCTION

In Gamow’s classical Big Bang cosmology, the Big Bang was just a hypothetical

explosion in the beginning of the Universe out of a singularity. In modern infla-

tionary cosmology, which solves the horizon, the flatness, and the origin-of-structure

problems simultaneously, the Big Bang is physically defined as the moment when

the energy density of the inflaton field is converted to matter fields and the Universe

has first become radiation dominated. The study of these processes namely, the

reheating mechanism, is therefore of utmost importance to clarify the evolution of

our Universe, and has an important impact on the evolution of inhomogeneities in

the energy density of the universe. In this thesis, after reviewing the basics of early

universe cosmology and of reheating after inflation, we discuss particle production in

some inflationary models which have a concrete background in high energy physics

and the gravitational effects in reheating mechanism. Reheating typically begins first

with a linear explosive particle production (i.e. preheating). The linear regime of the

resonance terminates by backreaction effects, though resonance might be continuing

in a non-linear regime. In later stages, reheating may continue with the perturba-

tive channel of the single-particle decay of Quantum Field Theory (QFT). Finally,

a thermalization process is needed to produce a state in which the particles have a

thermal distribution.

Also, due to the coupling between matter and gravity sectors, one can expect

that the explosive particle production during preheating is accompanied by a dra-

matic evolution of the cosmological perturbations. This is another aspect of reheating

physics that we are going to discuss and analyze in the thesis.

REHEATING IN EARLY UNIVERSE COSMOLOGY 2



Chapter 1 INTRODUCTION

In this thesis, first we introduce the basics of inflationary cosmology and cosmo-

logical perturbation theory. Then in chapter 3, we review the basics of the reheating

mechanism by discussing the perturbative approach and parametric resonance.

We continue with a discussion on the backreaction effects which shut off the lin-

ear stage of the resonance. In chapter 4, we introduce a class of G-inflation models.

We investigate direct particle production channels and compared the efficiency with

respect to the well-established gravitational particle production mechanism for the

model. We then provide the conditions for which the direct channels will eventu-

ally dominate the particle production. In chapter 5, we include gravitational effects

during the reheating analysis and study parametric resonance of cosmological per-

turbations. We introduce massless preheating, axion monodromy, and inflation in a

asymptotically safe QFT. After discussing particle production in these models, we

study the growth of entropy perturbations and the constraints that the induced cur-

vature perturbation will put on the models. Finally we conclude the thesis in chapter

6.

REHEATING IN EARLY UNIVERSE COSMOLOGY 3
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Chapter 2 BASICS

2.1 Introduction

In order to review the essential basics of early universe physics, in the following

we will introduce inflationary cosmology, the standard paradigm of early universe.

Then we will discuss the theory of cosmological perturbations which is essential to

understand structure formation in the universe. The two are the basic knowledge

needed to follow the discussions in the subsequent chapters. Reader can refer to [6]

for a recent review.

2.2 Inflationary Cosmology

The paradigm that the universe has underwent an exponential expansion at early

times has become the standard paradigm of early universe cosmology [7, 8, 6, 9]. The

inflationary paradigm not only solves some important problems of the standard Big

Bang cosmology, but also provides a causal mechanism for the generation of pri-

mordial density perturbations [10]. In this section we briefly review the inflationary

scenario which will be used throughout the thesis.

2.2.1 Friedmann-Robertson-Walker Cosmology and Decelerating Uni-
verse

Modern cosmology rests on two pillars: the cosmological principle and Ein-

stein’s theory of relativity. The cosmological principle states that the universe is

spatially homogeneous and isotropic on large scales (> 100Mpc) and evolves with

REHEATING IN EARLY UNIVERSE COSMOLOGY 5



Chapter 2 BASICS

time. We can formulate this principle in general relativity with the maximally sym-

metric Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)dx2, (2.1)

where the so called scale factor a(t) is a dimensionless function of time. The scale

factor is a measure of the size of spatial hypersurfaces at each moment of time and

we work in natural unites (~ = c = 1).

Assuming a FRW metric and considering the case of perfect fluid matter, we

can work out the Einstein field equations

Gµν = 8πGTµν . (2.2)

The 0− 0 component is the first Friedmann equation

H2 +
k2

a2
=

ρ

3M2
p

, (2.3)

where ρ is the energy density, H ≡ ȧ(t)
a(t)

is the Hubble parameter, k is the spatial

cyrvature and the Planck mass is MP = (8πG)−1/2. The Bianchi identity applied

to the Einstein field equations, gives conservation of the energy momentum tensor

which can be written as

ρ̇ = −3H(ρ+ P ), (2.4)

where P is the pressure and “ ˙ " is the derivative with respect to time. Then the

difference between the 0− 0 component and the i− i one gives an equation for the

REHEATING IN EARLY UNIVERSE COSMOLOGY 6



Chapter 2 BASICS

acceleration of the expansion which is the second Friedmann equation

ä = − a

6M2
P

(ρ+ 3P ). (2.5)

Ordinary matter satisfies the strong energy condition, ρ + 3P > 0 and hence for

ordinary matter the acceleration is always negative. As is the case in the standard

Big Bang cosmology, for a universe in which ordinary matter always dominates, there

will be serious problems concerning initial conditions.

2.2.2 Initial Condition Problems

Assuming that ordinary matter always dominates, we recover a decelerating uni-

verse for all times in the evolutionary history of the universe. Having said that, there

are observations for which there is no explanation in the context of a decelerating

universe. A few of the problems are listed below.

Flatness Problem

The flatness problem is related to the fine-tuning of the spatial curvature of

universe to be consistent with the current observations of the energy density of the

universe. Current observations are consistent with k ' 0 (see recent result from the

Planck satellite [11]). Defining 3M2
PH

2 ≡ ρc, where ρc is the energy density in a

spatially flat universe, we can rewrite the Friedmann equation as follows

ρ

ρc
= 1 +

k2

(aH)2
, (2.6)

REHEATING IN EARLY UNIVERSE COSMOLOGY 7



Chapter 2 BASICS

where (aH)−1 is the comoving Hubble radius1 . Taking time derivatives of both sides

of the above equation and assuming that the strong energy condition satisfies, we

get
d

dt
(
ρ

ρc
) > 0, (2.7)

which means d
dt

(aH)−1 > 0. Hence the ratio ρ
ρc

continues to deviate from unity. On

the other hand, current observations shows that we live in a universe with almost

no spatial curvature which is consistent with ρ
ρc
' 1. But we just found the ratio of

ρ
ρc

is a growing function of time. Therefore, considering the age of the universe, we

find that the initial value of the ratio was extremely close to unity which is the case

for the flat universe (k = 0 case). So the problem is how to justify such a highly

fine-tuned flatness for the universe at initial times.

Horizon Problem

The standard Big Bang cosmology is unable to explain the observed homogeneity

and isotropy of the Cosmic Microwave Background Radiation (CMB). The CMB is

a temperature map of the universe which shows that all regions of the universe had

almost the same temperature (to roughly one part in 105) at the time of photon

decoupling [12]. Considering photons reaching us from opposite directions in the

sky, the ratio between the time of photon decoupling and the present time indicates

that the sources of the photons at the time of photon decoupling were in a spatial

1 The comoving Hubble radius is the scale below which microphysics dominates over gravity and
above which gravity dominates.
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Chapter 2 BASICS

Figure 2–1: A sketch of space-time diagram that illustrates the horizon problem: The past light
cone lp at the last scattering surface is much larger than the forward light cone lf (t) at the same
time.[13].

distance greater than the particle horizon at that time. In other words, the past light

cone over which the CMB is observed at photon decoupling is much larger than the

comoving forward light cone at the same time, as sketched in Figure 2-1.

Therefore there is no causal mechanism that can explain such homogeneity and

isotropy.

Primordial Fluctuations

Observations of the CMB also show the existence of large scale primordial energy

density fluctuations as in Figure 2-2 (temperature fluctuations which are associated to

energy density fluctuations). Again in the context of Standard Big Bang cosmology,

there is no causal mechanism to generate such fluctuations of very early times since

REHEATING IN EARLY UNIVERSE COSMOLOGY 9
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the wavelength of the perturbations was greater that the horizon at those early times,

λ > H−1, as can be seen in Figure 2-3.

Figure 2–2: CMB thermal fluctuations as measured by Planck 2015. Red spots correspond under
dense regions while the blue spots correspond to over dense regions. Perturbations are roughly one
part in 105 [12].

We can add more problems to the list [13], but as we saw above Standard Big

Bang cosmology is unable to give any explanation for them.

2.2.3 Inflation; A Solution

The idea of inflationary cosmology is basically to add an early phase of acceler-

ated expansion of space to the standard Big Bang cosmology. In that sense, inflation

is not a fundamental theory rather it is a “paradigm” that can successfully give a

reasonable explanation for the initial conditions of Standard Big Bang cosmology.

It also gave some important predictions for the growth of perturbations which were

later verified by observations of the CMB and the large scale structure (for recent
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Chapter 2 BASICS

reviews see [8, 6, 9, 13, 14]). From Eq. (2.5) it is clear that by violating the strong

energy condition, ρ+ 3P > 0, one gets an accelerated expansion (ä > 0). Let us see

how inflation will solve the initial condition problems.

For the case of the flatness problem, we should note that if we violate the strong

energy condition, the time derivative of Friedmann equation gives

d

dt
(
ρ

ρc
) < 0, (2.8)

which in turn means d
dt

(aH)−1 < 0. In other words, the comoving Hubble radius

shrinks during inflation and the ratio ρ
ρc

evolves towards unity. Therefore if inflation

lasts long enough, ρ
ρc

= 1 will be the attractor for any arbitrary initial ”non-flat”

universe and hence no fine-tuning is needed.

Figure 2–3: While comoving length scales k−1 remain constant, the comoving Hubble radius
(aH)−1 shrinks. [9].

For the same reason, the shrinking of the Hubble radius during inflation will

provide the possibility for generation of the large scale primordial perturbations,

REHEATING IN EARLY UNIVERSE COSMOLOGY 11
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see Figure 2-3. Since the scales of cosmological perturbations are sub-Hubble during

early phases of inflation, a causal mechanism can generate small quantum fluctuations

which of later stages of inflation become classical and develop into cosmological

perturbations.

For the horizon problem, we note that in Standard Big Bang cosmology the

particle horizon is the same as the Hubble radius, and therefore there is no physical

explanation for the observed homogeneity and isotropy of the CMB. To address the

problem, all we need is to provide that the homogeneity scale in the universe origi-

nates at sub-Hubble scales and become much bigger than the Hubble radius at some

early times. Again, we can easily see that the shrinking of the Hubble radius during

inflation provides that. A sketch of the inflationary space-time is given in Figure 2-4.

2.2.4 How to Obtain Inflation

As we said before, the key feature we need for inflation is to violate the strong

energy condition and have ρ+ 3P < 0. It means that if the dominant component of

the universe has the equation of state P = wρ with w < −1
3
, the universe is in the

accelerated expansion phase. This criterion on the equation of state is incompatible

with the standard description of matter as a classical ideal gas and none of the

familiar types of matter have that equation of state (radiation has w = 1
3
, dust has

w = 0). The breakdown of the ideal gas picture in the early universe is no surprise

as on such high energy scales one can reasonably expect this to happen. Instead,

matter needs to be described by Quantum Field Theory (QFT). Now let us see if

QFT can introduce matter that can provide the required equation of state. The
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Figure 2–4: A sketch of the inflationary space-time. The horizontal axis corresponds to physical
distances and the vertical axis is physical time [6].

simplest possibility is to consider a spin 0 bosonic field, a so called “scalar field". For

the moment let us consider the case of a single homogeneous scalar field, φ, with the

Lagrangian

Lm =
1

2
∂µφ∂

µφ− V (φ) (2.9)

Since we are considering the case of a homogeneous scalar field

φ = φ(t)

where “t“ is the physical time

1

2
∂µφ∂

µφ =
1

2
φ̇2,
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By varying the action for matter content with respect to the metric we can read the

energy momentum tensor for the free scalar field. The energy density and pressure

are

ρφ =
1

2
φ̇2 + V (φ), (2.10)

Pφ =
1

2
φ̇2 − V (φ). (2.11)

Then the equation of state for the scalar field is

w =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (2.12)

Now it can easily be seen that if the kinetic energy is subdominant for some period

of time, φ̇2 � V (φ), we obtain the equation of state

w ' −1 < −1

3
,

which is required for accelerated expansion to happen. The condition of having

kinetic energy to be subdominant is so the called “slow-roll" condition. This is

the key feature behind the potential-driven methods of obtaining inflation. In this

chapter we only focus on potential-driven scenarios of inflation but later in chapter

4 when we discuss G-inflation we will introduce an alternative method of obtaining

inflation. However, to solve the initial condition problems, we need not only inflation

but also long enough inflation. We need the kinetic energy to be subdominant for

a relatively long time. Using the dynamics of the scale factor one can translate this

condition into

ε ≡ − Ḣ

H2
� 1, (2.13)
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η ≡ ε̇

Hε
� 1. (2.14)

The former is the first slow-roll condition which guarantees inflation while the lat-

ter is the second slow-roll condition and provides a long enough duration for inflation.

2.2.5 Dynamical Attractor

There is a good question that the reader can ask at this point. It seems that in

order to solve the initial condition problems, we have introduced a phase of evolution

to the history of the universe where we have imposed another set of initial conditions

or fine-tuning. One possible approach to answer this reasonable question is to argue

for the “naturalness" of the slow-roll condition [14]. Since the pre-inflation physics is

unknown, discussing naturalness may not be possible. However, there is an intuitive

way to see that the inflationary solution is an attractor which in some sense might

be seen as a natural solution.

To see the attractor solution, we note that if we start off with a potential energy

dominated initial condition then the slow-roll condition is already satisfied. If instead

we start off with a kinetic energy dominated state and small potential energy, from

the continuity equation, Eq. (2.4), one can see ρ̇ ' −6Hρ which in turn means that

the kinetic energy redshifts as a−6 and very quickly becomes subdominant, hence

leading to a slow-roll state. In this sense, slow-roll condition can be considered as a

dynamical attractor.

Up to now we only considered the homogeneous case. In next section we will

move on and consider inhomogeneities in both matter content and metric.
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2.3 Cosmological Perturbations

Homogeneous and isotropic spacetime has been very successful to describe our

universe on very large scales. However, we know that on smaller scales the content

of the universe (galaxies, stars, planets and ...) has been distributed very inhomo-

geneously. Also, small fluctuations from CMB map, as in Fig. 2-2, indicate that

the inhomogeneities in energy density of the universe was small at the time of CMB.

Hence to obtain a consistent description of the universe, the inhomogeneities ob-

served on small scales, can be treated as small perturbations above the homogeneous

and isotropic background spacetime.

Cosmological perturbation theory (linearized gravity in an expanding universe)

is a cornerstone of modern cosmology [10, 15]. In the context of inflationary cosmol-

ogy the idea is that the cosmological structures originated from quantum fluctuations

of the primordial fields which amplified and became classical perturbations during

inflation and through gravitational instability made the structures in the universe.

In this section first we discuss a coordinate-based approach to study cosmological

perturbations, and then at the end of the chapter in a more geometrical approach

we will introduce the covariant formalism for the perturbations.

2.3.1 Perturbations in Matter and Metric

Due to the coupling between matter and spacetime, perturbations in matter

will induce perturbations in metric. The starting point of cosmological theory is

to consider linear fluctuations around a FRW background. The perturbed Einstein
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equations take the form

δGµν = 8πGδTµν , (2.15)

where δGµν is the perturbed Einstein tensor and δTµν is the perturbations in energy

momentum tensor. If the matter content of the universe is a single scalar field, then

for the perturbations in the matter one can consider

φ(x, t) = φ̄(t) + δφ(x, t),

where the first term on the right hand side is the homogeneous background field

and the second term describes perturbations. For the metric perturbations we can

consider

gµν = ḡµν + δgµν .

The first term on the right hand side is the metric for the FRW background spacetime

and the second term is the perturbations. From Eq.(2.1) we know the background

metric but how about the perturbation tensor? Since the full metric is a symmetric

tensor, therefore there are 10 degrees of freedom for δgµν which need to be determined.

Based on the differences in transformation properties under spatial rotations, we

can classify perturbations and decompose them into three types, namely four scalar

modes, four vector modes and two tensor modes. These modes are decoupled at the

linear level and can be studied separately. Throughout most of the thesis we only

consider linear perturbations and neglect higher orders.

Vector perturbations decay in an expanding spacetime. Tensor modes which

describe the gravitational waves are decoupled from matter perturbations at linear

order. Therefore from now on we only focus on scalar modes and investigate the
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dynamics and their evolution.

2.3.2 Gauge freedom

For scalar perturbations the line element can be written as

ds2 = −(1 + 2A)dt2 + 2a(∂iB)dtdxi + a2[(1− 2ψ)δij + ∂i∂jE]dxidxj. (2.16)

As we said there are four degrees of freedom in the metric for scalar perturbations.

If we consider a single scalar field as the matter content, this will add one more

degree of freedom to the dynamics and one may naively think there are five degrees

of freedom in total while physically there is only one. Using two constraint equations

in the Einstein equations will remove two degree of freedoms but there are still two

gauge artifacts. To elaborate more on the issue, let us remember the diffeormorphism

invariance (or general covariance) of General Relativity. Meaning that although the

physics remains unchanged under coordinate transformations, such coordinate trans-

formations lead to fictitious perturbations which might be interpreted mistakenly as

real perturbations while they are only gauge artifacts.

There are two ways to resolve the gauge-dependent ambiguity. Fixing the gauge

and working with a specific choice of coordinates is one possibility which reduces the

original four scalar degrees of freedom to only two. Alternatively one may define a set

of “gauge-invariant" variables which do not change under coordinate transformations.

The two methods are equivalent and depending on the problem, working with one

might be more convenient than the other one. Here we prefer to work with the latter

for the purpose of future applications in the next chapters.
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Knowing the behaviour of both the metric and matter perturbations under co-

ordinate transformations, the gauge-invariant variables have been chosen as combi-

nations of the metric and matter perturbations which remain unchanged under such

transformations. One famous variable of this kind is the “curvature perturbation"

−ζ ≡ ψ +
H

ρ̇
δρ, (2.17)

which in the uniform density gauge (δρ = 0) is equal to ψ 2 . Knowing the transfor-

mation rules for both ψ and δρ under the coordinate transformations

ψ → ψ +Hδt,

and

δρ→ δρ− ρ̇δt,

then one can easily prove that ζ is indeed a gauge-invariant variable.

2.3.3 Power Spectrum of Curvature Perturbations

In order to find the evolution of curvature perturbations, the most straightfor-

ward way is to expand the Einstein-Hilbert action to second order in ζ and find the

equation of motion for it. For the moment we work in the case of a single scalar

field as the matter content. Using the second order constraint equations and doing

some integrations by part one can find a simple form for the second order action for

2 The spatial scalar curvature (Ricci scalar) at first order in perturbations is given by R ∝ ∇2ψ
hence the name curvature perturbation for the variable.
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curvature perturbations [10]:

S(2) =

∫
dtd3xa3 φ̇2

2H2
[ζ̇2 − 1

a2
(∂iζ)2]. (2.18)

Defining z ≡ aφ̇
H

and working with conformal time adτ = dt one can rewrite this

action in terms of the Sasaki-Mukhanov variable v ≡ zζ:

S(2) =
1

2

∫
dτd3x[(v′)2 − (∂iv)2 +

z′′

z
v2]. (2.19)

Then we can read off the equation of motion for the Sasaki-Mukhanov variable

v′′ −∇2v − z′′

z
v = 0. (2.20)

Going to Fourier space and defining

v(τ, k) =
1

(2π)3/2V 1/2

∫
d3xe−ik.xv(x, τ),

where V is a cutoff volume. We can rewrite Eq.(2.20) for mode functions vk

v′′k + (k2 − z′′

z
)vk = 0. (2.21)

It is obvious that if k2 > z′′

z
then the mode function vk has a oscillatory solution

while if k2 < z′′

z
then vk has a growing solution. Similar to the Jean’s length in

the Newtonian theory [15], in this equation z′′

z
defines a length scale below which

modes oscillate with constant amplitudes while above that length scale, modes have

a growing solution (vk ∼ z).

Now to solve the equation of motion for the Sasaki-Mukhanov variable, let us

rewrite the mass term z′′

z
in terms of the slow-roll parameters Eq.(2.14-15). From
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the definition of z one can write

z2 = 2a2ε,

where we have used the Friedmann equation and the continuity equation to obtain

the right hand side. Therefore

z′

z
= (aH)[1 +

1

2
η], (2.22)

z′′

z
= (aH)2[2− ε+

3

2
η − 1

2
εη +

1

4
η2 +

η̇

H
]. (2.23)

The above equations are exact. We also know that the slow-roll parameters are

very small during inflation, and therefore we can find an approximate expression for

the mass term to first order in the slow-roll parameters. From the definition of ε,

Eq.(2.14), we can write

aH ' −1

τ
(1 + ε), (2.24)

where we used “'" instead of equality since the expression is valid only to first

order in slow-roll parameters. From now on we only consider linear order in slow-

roll parameters and simply use the equality sign. Using Eq.(2.25) we will find the

expression for the mass term

z′′

z
=

1

τ 2
[2 + 3(ε+

1

2
η)]. (2.25)

Defining ν = 3
2

+ ε + 1
2
η as in ref.[8], and putting Eq.(2.26) back into the Sasaki-

Mukhanov equation we get

v′′k + (k2 −
ν2 − 1

4

τ 2
)vk = 0. (2.26)
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This equation has an exact solution in terms of Hankel functions:

vk =

√
−πτ
2

ei(1+2ν)π/4[c1H
(1)
ν (−kτ) + c2H

(2)
ν (−kτ)]. (2.27)

Note that τ < 0 during inflation. In order to determine the constants c1 and c2 we

impose the Minkowski vacuum initial condition (kτ → −∞, one can see this as a

condition on very small scales where geometry is flat)

vk →
e−ikτ√

2k
, (2.28)

which corresponds to c1 = 1 and c2 = 0. This gives the solution of the Sasaki-

Mukhanov equation

vk(τ) =

√
−πτ
2

ei(1+2ν)π/4H(1)
ν (−kτ). (2.29)

Using the asymptotic expansion for small arguments of the Hankel function (large

scale perturbations as k � aH 3 ) we find

vk = i

√
−τ
2π

Γ(ν)(
−kτ

2
)−ν , (2.30)

where Γ(ν) is the gamma function. For large arguments (small scale perturbations

as k � aH) we find

vk =
e−ikτ√

2k
(1− i

kτ
). (2.31)

3 aH is the length scale which determines if a mode is a large scale mode or a small
scale mode. We can find this from the Sasaki-Mukhanov equation and noting z′′

z
is

almost (aH)2 to leading order. We will refer to large scale modes as the super-Hubble
modes and to small scale modes as the sub-Hubble modes.
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Note that since we are going to calculate the power spectrum of the fluctuations, the

phase in Eq.(2.30) is not important and we dropped it in the above equations.

Having found the expression for the Sasaki-Mukhanov variable for small and

large scales, we can get the power spectrum of curvature perturbations accordingly.

By definition the power spectrum of ζ is given by

Pζ ≡
k3

2π2

∣∣∣vk
z

∣∣∣2 . (2.32)

For the case of super-Hubble modes we get

Pζ '
k3

4π3
Γ2(ν)(

k

2
)−2ν ≡ Aζk

ns−1, (2.33)

where Aζ is the amplitude of the power spectrum or the so called COBE normaliza-

tion. From observations of the cosmic microwave background radiation [12] we know

that Aζ ∼ 10−10. Also ns is the spectral tilt of the power spectrum and for our case

ns − 1 = 3− 2ν.

If ns − 1 > 0 the spectrum is so called blue-tilted which means more power is on

smaller scales while ns − 1 < 0 corresponds to a red-tilted spectrum and has more

power on large scales. The case of ns = 1 is the so called scale-invariant spectrum

which means all scales have the same power in the spectrum. From recent obser-

vations [12], we know ns − 1 = 0.032 ± 0.006, meaning that the power spectrum of

curvature perturbations is almost scale-invariant with a tiny deviation which makes

it slightly red-tilted. One of the great successes of the inflationary paradigm was the
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prediction of the spectrum of perturbations [16] which was later verified by different

observations.

2.3.4 Multi-field Inflation and Entropy Modes on Large Scales

In what we discussed previously we only considered the case of single field in-

flation. Now we wish to generalize the idea to the case of multiple scalar fields as

the matter content. The setup is as follows: we will consider N scalar fields which

all have canonical kinetic energy and are minimally coupled to gravity.

One of the fields plays the role of the inflaton field and drives exponential expan-

sion of space and the other fields do not contribute to inflation [17]. The Lagrangian

is

L =
1

2

N∑
I

gµν∂µφI∂νφI − V (φI , ..., φN). (2.34)

From this Lagrangian one can easily read off the equations of motion for the back-

ground fields

φ̈I + 3Hφ̇I + V,φI = 0, (2.35)

where V,φI is the derivative of the potential with respect to φI . The Friedmann

equation becomes

H2 =
1
2

∑
I φ̇

2
I + V (φI , ..., φN)

3M2
P

. (2.36)

To study perturbations, instead of considering fluctuations in each field, here we

will work with the perturbations of energy density and pressure. The evolution of

energy density perturbations is given by energy momentum conservation (the Bianchi
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identity, ∇µT
µν = 0) [8]:

δ̇ρ+ 3H(δρ+ δP ) =
k2

a2
δq + (ρ+ P )[3ψ̇ + k2(Ė +

B

a
)], (2.37)

where

δρ =
∑
I

[φ̇I(δ̇φI − φ̇IA) +
∂V

∂φI
δφI ], (2.38)

δP =
∑
I

[φ̇I(δ̇φI − φ̇IA)− ∂V

∂φI
δφI ], (2.39)

and the momentum perturbations are

δq = −
∑
I

φI∂iδφI . (2.40)

We can rewrite the pressure perturbations in terms of an adiabatic piece plus a

non-adiabatic piece. The adiabatic piece is δPad = Ṗ
ρ̇
δρ hence non-adiabatic contri-

bution can be written as

δPnad = δP − Ṗ

ρ̇
δρ. (2.41)

As we discussed before, we will work with gauge-invariant variables. Rewriting

Eq.(2.38) will give us the evolution of curvature perturbations. Also, scales of cosmo-

logical interest are the large scale ones (k → 0), Therefore the evolution of curvature

perturbations on large scales is given by

ζ̇ = −H δPnad
ρ+ P

. (2.42)

For the case of single field inflation, since the pressure is totally determined by the

energy density, the non-adiabatic pressure perturbation on large scales is zero and

curvature perturbations freeze out on super-Hubble scales. However in the case of
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multi-field inflation the non-adiabatic pressure is in general non-zero, and hence cur-

vature perturbations evolve even on super-Hubble scales. Now let us investigate the

connection between non-adiabatic pressure perturbations and entropy perturbations.

By definition, the gauge-invariant entropy perturbations are [17]

S = H(
δP

Ṗ
− δρ

ρ̇
). (2.43)

Then one can easily verify that on super-Hubble scales 4

S =
H

Ṗ
δPnad.

Therefore we can rewrite Eq.(2.43) in terms of entropy perturbations

ζ̇ = − Ṗ

(ρ+ P )
S, (2.44)

and using the continuity equation we get

ζ̇ = 3Hc2
sS, (2.45)

where we have used the definition of the speed of sound c2
s = Ṗ

ρ̇
. From Eq.(2.46) we

can see on super-Hubble scales, entropy perturbations source curvature perturbations

and make ζ evolve. This result is very important and we will use it when we study

the evolution of curvature perturbations on super-Hubble scales in the next chapters.

4 Note that entropy perturbations are non-zero even in the case of a single field case. But they
are negligible on super-Hubble scales. See [18] for further discussions.
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2.3.5 Covariant Formalism for Cosmological Perturbations

As we promised in the beginning of the section, now we are going to discuss

perturbations in a geometrical approach, namely the covariant formalism [19, 20,

21, 22, 23, 24]. The key feature of this “non-perturbative" formalism is that the

variables which are defined as perturbations vanish at the background level. After

introducing the formalism, in order to make the comparison between this approach

and the coordinate-based approach we discussed in previous subsections possible, we

will use two approximations: 1) linear order in perturbation and 2) large scale limit.

In what follows, first we introduce the basics of the formalism in the case of a perfect

fluid, and then we will consider the case of two coupled scalar fields (which indeed

is the situation which we study in chapter 5).

A Perfect Fluid

We consider space-time as a manifold with a preferred flow direction which

is characterized by a four-velocity ua which satisfies the normalization condition

uaua = −1.

The energy-momentum tensor for the perfect fluid is

T ab = (ρ+ P )uaub + Pgab, (2.46)

where ρ and P are energy density and pressure, respectively. The spatial projection

tensor orthogonal to the fluid four-velocity is

ha b ≡ ga b + uaub , (2.47)
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and satisfies the relations

habh
b
c = hac and

h b
aub = 0 . (2.48)

The expansion parameter of space is given by

Θ ≡ ∇au
a , (2.49)

where ∇a is the covariant derivative. The acceleration, u̇a , is defined through the

projected covariant derivative along the four-velocity. To be more precise, let us

define the time evolution of any quantity in the covariant formalism by the Lie

derivative with respect to the flow direction in the manifold. For a one form Ya the

Lie derivative is defined by

Ẏa ≡ LuYa = uc∇cYa + Yc∇au
c . (2.50)

For a scalar f only the first term arises, i.e. ḟ = ua∇af . Therefore the acceleration

is defined by

u̇a = Luua . (2.51)

For each comoving observer, we can define the logarithm α of the local scale factor

by integrating Θ along the fluid world lines:∫
dτΘ ≡ 3α . (2.52)

Key to the covariant approach is to make use of variables which vanish on the

unperturbed space-time. Following [19, 20, 24] one can define the “projected covariant
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derivative” operator

Da ≡ hba∇b . (2.53)

It is the projection onto the hypersurface perpendicular to the vector field tangent to

the flow lines. Next, one can introduce the spatially projected covariant derivative

(projected gradient) of the energy density

Daρ ≡ h b
a∇bρ = ∂aρ+ uaρ̇ , (2.54)

of the pressure

DaP ≡ h b
a∇bP = ∂aP + uaṖ , (2.55)

and of the expansion parameter

DaΘ ≡ h b
a∇bΘ = ∂aΘ + uaΘ̇ . (2.56)

As these quantities vanish in FRW space-time, they yield a fully geometrical and

non-perturbative characterization of perturbations.

Knowing that, let us work out the generalized curvature and non-adiabatic pres-

sure perturbation in a geometrical way. Starting point are the conservation equations

for the energy-momentum tensor whose first component yields the continuity equa-

tion

ρ̇+ Θ(ρ+ P ) = 0 . (2.57)

Using the projected gradient of this equation one can define curvature covector as

below [21]

ζa ≡ Daα−
α̇

ρ̇
Daρ . (2.58)
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Then the time evolution of this quantity is

ζ̇a = Luζa = − Θ

3(ρ+ P )
(DaP − c2

sDaρ), (2.59)

where c2
s ≡ Ṗ

ρ̇
is the generalized speed of sound as defined in [21]. Comparing this

equation with the familiar equation of motion in linear theory, Eq. (2.43), where the

right-hand side of the equation is the non-adiabatic pressure perturbation, we define

the non-adiabatic pressure covector as

P (nad)
a ≡ DaP −

Ṗ

ρ̇
Daρ . (2.60)

Making use of the definitions in equations (2.52, 53, 55) one can rewrite the curvature

and the non-adiabatic pressure covectors in terms of ordinary gradients

ζa = ∂aα−
α̇

ρ̇
∂aρ, (2.61)

P (nad)
a = ∂aP −

Ṗ

ρ̇
∂aρ . (2.62)

For the case of a single scalar field one can show that non-adiabatic pressure

covector is

P (nad)
a = 2

φ̇

ρ̇
V,φDaρ, (2.63)

which vanishes in the long wavelength approximation. Then considering ρ̇ = −Θφ̇2

in equation (2.59), leads to the equation

ζ̇a =
2

3

V,φ

φ̇3
Daρ, (2.64)
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for the time evolution of the curvature covector for the case of a single scalar field.

The right-hand side of this equation vanishes in the long wavelength approximation.

This yields the conclusion that in the case of a single perfect fluid the curvature

fluctuation ζ is conserved on super-Hubble scales at arbitrary order in perturbation

theory.

Two Scalar Fields

The extension to the case of two scalar fields was given in [21]. We introduce

it here and then we will use it in chapter 5 when we apply the covariant formalism

to study the case of massless preheating. The first step is to identify the adiabatic

and the entropy components of the fluctuations in this two field system. To do this

we use the formalism developed in [17] in which we are given two scalar fields φ

and χ which both have non-vanishing backgrounds which are evolving in time. The

adiabatic field σ is tangent to the field trajectory, the entropy field s is orthogonal to

it. We can introduce the corresponding unit vectors in two-dimensional field space

via

eIσ ≡ 1√
φ̇2 + χ̇2

(
φ̇, χ̇

)
, (2.65)

eIs ≡ 1√
φ̇2 + χ̇2

(
−χ̇, φ̇

)
, (2.66)
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where I is the field space index. The angle θ of the trajectory in field space is then

given (in the small angle approximation) by

θ =
χ̇

φ̇
. (2.67)

Using the above definitions, we can set up the adiabatic and entropy field cov-

ectors by taking the respective projective covariant derivatives of the basis fields φ

and χ:

σa ≡ eIσ∇aϕI = cos θ∇aφ+ sin θ∇aχ, (2.68)

sa ≡ eIs∇aϕI = − sin θ∇aφ+ cos θ∇aχ . (2.69)

Note that sa is orthogonal to ua and we have uasa = 0, but this is not the case for

the adiabatic covector since uaσa = σ̇.

The geometrical variables which describe the field perturbations are obtained

by taking the spatially projected version of the above equations

σ⊥a ≡ eIσDaϕI = σa + σ̇ua , (2.70)

s⊥a ≡ eIsDaϕI = sa . (2.71)

Note that these fluctuations are well defined non-perturbatively.

From the Klein-Gordon equations for the φ and χ fields, we can find the adiabatic

and entropy components of the Klein-Gordon equations. Using these equations we

can find the evolution equation for the adiabatic σa and entropy sa covectors. The
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resulting equation for the adiabatic component is [21]

(σ̈a)
⊥ + Θ(σ̇)⊥a + σ̇DaΘ +

(
V,σσ + θ̇

V,s
σ̇

)
σ⊥a −Da(∇cσ⊥c ),

=
(
θ̇ − V,s

σ̇

)
sa)
� +
(
θ̈ − V,sσ + Θθ̇

)
sa −DaY(s) , (2.72)

where

Y(s) =
1

σ̇

(
ṡa + θ̇σ⊥a

)
sa . (2.73)

The equation for the entropy component is [21]

s̈a +
(
Θ− 1

σ̇
(∇cσ⊥c − Y(s))

)
ṡa +

(
V,ss + θ̇2 − 2θ̇

V,s
σ̇

)
sa

−Da(∇cs
c) (2.74)

=
θ̇

σ̇

(
DaΠ−

Π̇

σ̇
σ⊥a − 2εa

)
− 1

σ̇

(
Dcs

c + Y(σ)
)·
σ⊥a

+DaY(σ) ,

where εa is the covector associated with the comoving energy density perturbation

and

Y(σ) ≡
1

σ̇

(
ṡa + θ̇σ⊥a

)
σ⊥,a . (2.75)

The first approximation we make is to linearize these equations (the expansion

parameter is the amplitude of the fluctuations, which in our case is proportional to

~.) This yields greatly simplified equations

(σ̈a)
⊥ + 3H(σ̇)⊥a + σ̇DaΘ +

(
V,σσ − θ̇2

)
σ⊥a −Da(D

cσ⊥c )

' 2(θ̇sa)
· − 2

V,s
σ̇
θ̇sa , (2.76)
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and

s̈a + 3Hṡa +
(
V,ss + 3θ̇2

)
sa −Da(Dcs

c)

' −2
θ̇

σ̇
εa . (2.77)

The final approximation we make is to focus on long wavelengths, i.e. we work

in the leading order gradient expansion in which also the comoving energy density

fluctuation vanishes. This yields our final equations

(σ̈a)
⊥ + 3H(σ̇)⊥a + σ̇DaΘ +

(
V,σσ − θ̇2

)
σ⊥a

' 2(θ̇sa)
� − 2θ̇

V,σ
σ̇
sa, (2.78)

and

s̈a + 3Hṡa +
(
V,ss + 3θ̇2

)
sa ' 0 . (2.79)

As is well known in the linear theory of cosmological perturbations (see e.g. [10] for

an overview and [25] for an introduction), the entropy fluctuations are not affected

by the amplitude of the adiabatic perturbation. On the other hand, entropy fluctu-

ations induce a growing adiabatic mode.

2.4 Conclusion

In this chapter we have reviewed Inflation as the standard paradigm of early uni-

verse physics and also the theory of cosmological perturbations. First we introduced

the Big Bang cosmology and the initial condition problems and discussed inflationary

cosmology as a solution to the problems. Then we introduced perturbations in the

matter and gravity sectors in the context of Einstein’s theory of General Relativity.
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We then solved for the perturbed field equations. We introduced gauge-invariant

variables and discussed curvature perturbations in detail. Then we extended our

discussion to multi-field cases and introduced entropy perturbations. Finally as a

geometrical approach to cosmological perturbations, we introduced the covariant

formalism and discussed the non-linear evolution of perturbations in this formalism.
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3.1 Introduction

Inflation leaves the cosmos in a non-thermal state, very cold and effectively

empty of matter. Hence any successful inflationary model must explain how the in-

flationary phase is connected to the high temperatures at Big Bang Nucleosynthesis

as well as explaining the production of the Standard Model particles and Baryogene-

sis. The reheating mechanism has been introduced to inflationary cosmology in order

to explain transfer of energy which is stored in the inflaton field to other dynamical

degrees of freedom in the universe and render the universe hot (for recent reviews see

[26, 27]). Therefore reheating is an integral part of any inflationary model, without

which inflation would not be a viable early universe scenario. In this chapter we

present a review of different reheating mechanisms with more emphasis on paramet-

ric resonance.

3.2 Perturbative Reheating

Reheating was initially discussed using perturbation theory in Quantum Field

Theory using perturbative single-particle decay [28]. In this scenario, the inflaton

field which oscillates around its minimum after inflation is considered as a collection

of scalar particles which each decay to Standard Model particles and radiation. Let

us study a toy model to have a better understanding of the process. To make sure

that the energy transfer from the inflaton field eventually completes, we consider the

trilinear interaction of the form

Lint = −σφχ2,
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where χ is the scalar decay product and the coupling constant σ has dimensions of

mass. Then the decay rate is

Γφ→χχ =
σ2

8πmφ

. (3.1)

Without considering the energy loss due to the decay, the equation of motion

for the inflaton field is

φ̈+ 3Hφ̇+ V,φ = 0. (3.2)

One may take into account the energy loss due to the decay, by inserting a damping

term in the equation of motion1

φ̈+ 3Hφ̇+ Γφ̇+ V,φ = 0. (3.3)

As long as the decay rate is smaller than the Hubble parameter, the decay

products are redshifted very fast and particle production is not efficient. But when

the Hubble parameter drops to the value H ∼ Γ and below, production becomes

efficient and the inflaton field will decay. It is assumed that the decay products

will eventually thermalize. To find the temperature at the end of reheating, as an

estimate we consider all the energy density of the universe (or at least the dominant

part of that) to be in radiation. Therefore

ρ =
g∗π

2

30
T 4 = 3M2

PH
2, (3.4)

1 Note that the effects of fluctuations are not taken into account this way and this is one of the
problems of the perturbative reheating.
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where g∗ ∼ 102 is the number of relativistic degrees of freedom for the Standard

Model at high energies. As an upper bound one can use Γ ∼ H and find an expression

for the reheating temperature

Treh '
1

2

√
MPΓ. (3.5)

3.2.1 Problems with the Perturbative Analysis

One of the issues with the perturbative approach is that it does not take into

account the coherent nature of the inflaton oscillations at the end of inflation. In the

language of quantum mechanics, the inflaton field is in a coherent state and we can

treat it classically. In the next section we will show how dramatically the reheating

scenario will change by taking into account the coherency of the inflaton field after

inflation.

Another issue which is related to above mentioned problem concerns application

of S-matrix theory in QFT which is the building block for perturbative reheating.

S-matrix theory is developed in QFT to study scattering processes and connect the

initial state of the system to the final state. In S-matrix theory, we assume a “small

number" of particles which have a “space-like separation" from each other in both

initial and final state, and then through a unitary transformation (S-matrix) we con-

nect the two states. In our case, the initial state is the state of the inflaton field at

the end of inflation and clearly we can see that the coherent state is not a state with

a small number of particles with space-like separation. Instead it is a condensate

of a homogeneous field which coherently oscillates and can be treated classically.
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Therefore the initial state does not satisfy the requirements of S-matrix theory.

3.3 Parametric Resonance and Preheating

As was initially discussed [29], the coherent nature of the inflaton field oscilla-

tions drives parametric resonance which is very efficient in the energy transfer from

the inflaton field. This period which is happening right after inflation is named pre-

heating [30]. It can be considered as the first (linear) stage of reheating which is

followed by non-linear dynamics and the thermalization process. In what follows we

will discuss in detail how coherent oscillations of the inflaton field induce instabili-

ties in the equation of motion for the fluctuations. Note that in this chapter we only

consider matter perturbations and neglect the gravitational effects. We will include

gravitational effects in our analysis in chapter 5.

3.3.1 A First Look at Parametric Resonance

We present the preheating mechanism with a simple toy model with Lagrangian

V (φ, χ) =
1

2
m2
φφ

2 +
1

2
m2
χχ

2 +
1

2
g2χ2φ2, (3.6)

where φ is the inflaton field which is coupled to a subdominant scalar field χ via the

interaction term g2χ2φ2. We also assume that the homogeneous value of the χ field is

negligible. As we discussed in the previous section, the inflaton field can be treated

as a classical field at the end of inflation. Thus, in the setup of Lagrangian Eq.

(3.6) the classical field φ acts as an external force (time-dependent effective mass)

in the evolution of the quantum field χ. Therefore we are going to study quantum
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production of χ particles in the external classical background of the inflaton field.

The amplitude of inflaton field oscillations is in principle decreasing with time due to

the expansion of the universe. However, in this subsection we are going to neglect the

expansion of space and treat the problem as in a Minkowski background. Since the

time period of preheating is very short compared to the Hubble time (H−1) typically,

this is a good approximation. We will consider effects of the expanding background

in the next subsection.

In a Minkowski background the inflaton field oscillates as

φ(t) = Φ sin(mφt), (3.7)

where Φ is the amplitude of oscillations. Since (3.6) is quadratic in χ, the Fourier

modes of χ evolve independently. We use the Fourier expansion in the form

χ(x, t) =

∫
d3k

(2π)3/2V 1/2
χk(t)e

ikx, (3.8)

where V is a normalization volume. Then the modes χk satisfy the equation2

χ̈k + (k2 +m2
χ + g2Φ2 sin2(mφt))χk = 0. (3.9)

From the mathematical point of view this is the equation of a harmonic oscillator

with a time-varying mass. If the mass term is a periodic function of time, Eq.(3.9)

is known as Hill’s equation. Working with the dimensionless time variable z ≡ mφt,

2 Note that we neglect the expansion of the universe, and we normalize the scale factor at the
end of inflation to be a0 = 1.
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we can rewrite this equation in the conventional form of

χ′′k + (Ak − 2q cos(2z))χk = 0, (3.10)

where Ak ≡
2q(k2+m2

χ)

m2
φ

and q ≡ g2Φ2

4m2
φ
. If the mass term is harmonic and not only

periodic, as in Eq. (3.10), then the Hill equation is known as the Mathieu equation.

The Floquet theorem says that the Mathieu equation has a solution of the form [31]

χk = eµ(k)zP1(z) + e−µ(k)zP2(z), (3.11)

where µ(k) is so the called Floquet exponent. In general it is a complex valued

function of the momentum k which is determined by parameters Ak and q. The

functions P1,2 are periodic functions of z. If µ(k) is real then the dominant mode of

Eq.(3.11) is exponentially growing (unstable) while if it is pure imaginary the mode

functions are just oscillating (stable). As we said, µ(k) is determined by Ak and q

which depend on momentum, amplitude of the inflaton oscillations, the inflaton and

preheat field’s masses and the coupling constant. Therefore in parameter space there

are different “stable" and “unstable" regions. Figure 3-1 displays stable and unstable

regions in the parameter space of the theory of Eq.(3.6)

Exponential growth of the mode functions χk means efficient particle production

and growth of the number density of created particles nk. Knowing the energy of

each mode Ek = 1
2
(|χ̇|2 + ω2

k|χk|2), one can write the expression for the number

density

nk =
ωk
2

(
|χ̇|2

ω2
k

+ |χk|2)− 1

2
. (3.12)
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Figure 3–1: Structure of instability bands for the theory of Eq.(3.6). The horizontal axis is the
rescaled momentum where K =

√
(k2 +m2

χ). The real part of µ(k) has been rescaled by the mass
of the inflaton as well as the inflaton amplitude [26].

Considering χk ∝ eµz, then for modes in the instability bands the number density is

nk ∝ e2µz. It is clear that the efficient particle production we discussed only happens

for certain momenta, and therefore it leads to a highly non-thermal state and will

be followed by a thermalization process in later stages.

Depending on the parameters, if only one narrow instability band contributes to

the resonance then particle production is in the so called narrow resonance regime.

While if broad ranges of momenta contribute, it is in the broad resonance regime.
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Broad resonance happens when q � 1 whereas for narrow resonance usually q 6 1.

Although mathematically the above-mentioned instability structure of resonance

works for both narrow and broad resonances, it has been shown [30] that the pertur-

bative expansion of the solution does not converge in the case of broad resonance.

Instead for the large values of q parameter, we should focus on the violation of the

adiabaticity condition ω̇k
ω2
k
� 1 for particle production3 . Remembering q = g2Φ2

4m2
φ
, in

our case to obtain broad resonance, we need either a large amplitude of oscillations

or a small mass for the inflaton field.

In the broad resonance regime, then during most of the period of oscillation, the

effective mass of the χ field (m2
χ(t) = m2

χ + g2φ2(t))is much greater than the inflaton

field mass mφ, and the system is in the adiabatic regime. Considering a hierarchy

of mφ � mχ for the bare masses of the fields, we find that only for a short period

of time in the vicinity of φ = 0 a violation of the adiabaticity condition occurs and

significant particle production happens. Then again as the inflaton field evolves, the

system returns to the adiabatic regime and particle number become invariant. This

evolution happens in each oscillation until resonance gets shut off by backreaction

effects. The evolution of the resonance is contrasted in the narrow and broad regimes

in Figure 3-2.

3 From the WKB approximation we know if the frequency ωk = (k2+m2
x+g2Φ2 sin2(mφt))

1/2 is
a slowly varying function of time, we are in the adiabatic regime ( ω̇k

ω2
k
� 1). In the adiabatic regime

the particle number is an adiabatic invariant, meaning there is no particle production. Instead in
the non-adiabatic regime ( ω̇k

ω2
k
� 1), significant particle production is expected [30].
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Figure 3–2: Number density of the produced particles in the case of narrow (left panel) and
broad (right panel) resonance in a Minkowski background. Note the qualitative differences in the
evolution of the resonance in the two cases[30].

In the expanding background, the situation is even more complicated, and reso-

nance cannot begin in the narrow resonance regime. Next we are going to introduce

a formalism to study the theory of broad resonance which in turn is applicable to

both Minkowski and expanding backgrounds.

3.3.2 The Theory of Broad Resonance

In the more realistic case of an expanding background, resonance begins in the

broad band regime and then, as the amplitude of the oscillations of the inflaton

field decreases, it will be followed by a narrow resonance regime which in turn may

eventually be followed by perturbative decay. In the spirit of Ref. [30] we are go-

ing to introduce a formalism to study the efficient particle production in the broad

resonance regime. The formalism has roots in the conventional quantum field the-

ory description of particle production in a time-dependent background [32, 33, 34],
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namely making use of adiabatic eigenfunctions and Bogoliubov coefficients4 . Noting

our discussion in previous subsection, it is clear why the adiabatic approximation is

reasonable in the case of broad resonance and particle production happens only in a

short period in the vicinity of φ = 0. We will see that the process is similar to the

case of scattering from a parabolic potential.

We begin with the more general case of an expanding background in which Eq.

(3.9) has the form

χ̈k + 3Hχ̇k + (
k2

a2
+m2

x + g2Φ2(t) sin2(mφt))χk = 0. (3.13)

If we translate the violation of adiabaticity condition in terms of momenta, we get

k2

a2
6

2

3
√

3
gmΦ(t)−m2

χ. (3.14)

By the field redefinition of Xk = a
3
2χk we can absorb the friction term in Eq. (3.13)

and rewrite the equation as

Ẍk + ω2
kXk = 0, (3.15)

where

ω2
k =

k2

a2
+m2

χ + g2Φ2(t) sin2(mφt)−
3

4
(
ȧ

a
)2 − 3

2

ä

a
. (3.16)

4 Bogoliubov coefficients transform creation and annihilation operators in a way that the Hamil-
tonian is diagonalized at each time t [33].
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One can show that the last two terms cancel out after inflation. Also from now on

we will consider mχ = 0 for simplicity. Therefore we can rewrite Eq. (3.15) as

Ẍk + (
k2

a2
+ g2Φ2(t) sin2(mφt))Xk = 0. (3.17)

The evolution of the preheat field is adiabatic for all times in each oscillation of the

inflaton field except for a very short period of time in the vicinity of φ = 0. Therefore

one can write the solution of Eq. (3.17) in the adiabatic approximation

Xk(t) =
αk(t)√

2ωk
e−i

∫
ωkdt +

βk(t)√
2ωk

e+i
∫
ωkdt, (3.18)

where the coefficients αk and βk are the Bogoliubov transformation coefficients with

the normalization

|αk|2 − |β2
k| = 1. (3.19)

Note that vacuum initial condition at ti implies αk = 1 and βk = 0 . Then the

particle density in mode k at any time t is given by nk = |βk|2. One can find the

total number density per comoving volume

nχ =
1

(2πa)3

∫ ∞
0

d3k|βk|2. (3.20)

Also the energy density will be

ρχ =
1

(2πa)3

∫ ∞
0

d3k
ωk
a
|βk|2. (3.21)

Therefore as we can see, the problem of particle production is reduced to finding the

Bogoliubov coefficients. Next we will give an introduction to Bogoliubov transfor-

mations to make more clear the relation between particle production and Bogoliubov
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coefficients [33].

Bogoliubov transformations

One can write Xk in terms of the mode functions

Xk(t) = akv
∗
k(t) + a†−kvk(t), (3.22)

where v∗, v are a basis for the solution space of Eq.(3.15) and normalized in a way

to satisfy the condition

v′kv
∗
k − vkv′∗k = 1. (3.23)

Inserting Eq.(3.21) into the Fourier expansion of the rescaled field Xk gives

X(x, t) =

∫
d3k

(2π)3/2V 1/2
(akv

∗
ke
ikx + a†kvke

−ikx). (3.24)

Now we follow the canonical quantization procedure and promote X field to a quan-

tum field operator X̂ and introduce the canonical conjugated momentum π̂ by im-

posing the commutation relations

[X̂(x, t), π̂(y, t)] = iδ3(x− y), (3.25)

[X̂(x, t), X̂(y, t)] = [π̂(x, t), π̂(y, t)] = 0. (3.26)

It is now straightforward to promote ak and a†k to operators and find the commutation

relations

[âk, â
†
k′ ] = δ3(k − k′), [âk, âk′ ] = [â†k, â

†
k′ ] = 0. (3.27)
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Now it is obvious that we can interpret ak and a†k as creation and annihilation

operators. Given ak and a†k, we can construct a basis of the Hilbert space of quantum

states. But the basis is not unique. If vk and v∗k solve the equation

v̈k + ω2
kvk = 0, (3.28)

then a linear combination of the two i.e.

uk = αkvk + βkv
∗
k, (3.29)

will have the property that uk and u∗k also satisfy similar condition of Eq. (3.22) as

long as the coefficients obey (3.19). Therefore the choice of creation and annihilation

operators bk and b†k corresponding to uk mode functions is equally preferable to the

set of ak and a†k, although they single out different vacua. Using Eq. (3.21)

akv
∗
k + a†−kvk = bku

∗
k + b†−kuk. (3.30)

Then from Eq(3.28) we find the expression for the transformation between ak and

a†k and the set of bk and b†k

ak = α∗kbk + βkb
†
k, a†k = αkb

†
k + β∗kbk, (3.31)

which is the so-called Bogoliubov transformation, and αk,βk are the Bogoliubov

coefficients. To compute the Bogoliubov coefficients we need to know uk and vk and

their first derivatives at some time t1

uk(t1) = αkvk(t1) + βkv
∗
k(t1), (3.32)
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u′k(t1) = αkv
′
k(t1) + βkv

′∗
k (t1). (3.33)

Therefore we find the Bogoliubov coefficients

αk =
W (uk, v

∗
k)

2i
, (3.34)

βk =
W (vk, uk)

2i
, (3.35)

where

W (vk, uk) = vku
′
k − ukv′k,

is the Wronskian function.

Particle production in terms of wave propagation in parabolic poten-
tials

Let us label the times when φ passes zero by tj where j runs from 1 to N and

counts the number of zero-crossings of the inflaton field. Therefore the adiabaticity

condition is violated around tj, and then before and after this time the adiabatic

approximation is valid. So before scattering at tj we have

Xj
k(t) =

αjk√
2ωk

e−i
∫
ωkdt +

βjk√
2ωk

e+i
∫
ωkdt. (3.36)

Then after scattering (zero-crossing) and in the time interval tj < t < tj+1 the mode

function has the form

Xj+1
k (t) =

αj+1
k√
2ωk

e−i
∫
ωkdt +

βj+1
k√
2ωk

e+i
∫
ωkdt. (3.37)

The Bogoliubov coefficients only vary in the vicinity of tj, tj+1 and so on, and during

the rest of the time they are time-independent. Considering Xj as the incoming
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wave and Xj+1 as the scattered outgoing wave, one can find the Bogoliubov coeffi-

cients with the label j + 1 in terms of those with the label j and the reflection and

transmission amplitudes Rk and Dkαj+1
k e−i

∫ tj
0 ωkdt

βj+1
k e+i

∫ tj
0 ωkdt

 =

 1
Dk

R∗k
D∗k

Rk
Dk

1
D∗k


αjke−i ∫ tj0 ωkdt

βjke
+i

∫ tj
0 ωkdt.

 (3.38)

The integral
∫ tj

0
ωkdt measures the accumulated phase by the time tj. Then to con-

tinue we note that in the vicinity of tj one can Taylor expand and write sin2(mφt) ∼

m2
φ(t− tj)2 to quadratic order. Therefore Eq.(3.17) can be written as

, Ẍj
k + (

k2

a(tj)2
+ g2Φ2

jm
2(t− t2j))X

j
k = 0. (3.39)

In the vicinity of tj we can consider Φ(t) = Φj to be time-independent. Then by

introducing the time variable

τ = (gΦjm)
1
2 (t− tj),

and working with the rescaled momentum κj = k(a2(tj)gΦjm)−
1
2 , we get

d2Xj
k

dτ 2
+ (κ2

j + τ 2)Xj
k = 0. (3.40)

In the language of quantum mechanics, this equation describes scattering from a neg-

ative parabolic potential in analogy with the time-independent Schrödinger equation

[3]

∇2ψ + (E − V )ψ = 0, (3.41)
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where ψ is a wave function with energy E in a parabolic potential V = −τ 2. For

the φ values in the vicinity of tj quantum tunneling occurs and one can solve the

problem with standard methods of quantum mechanics. Therefore the reflection and

transmission amplitudes are given [30] by

Rk = − ieiϕk√
1 + eπκ2

, (3.42)

Dk =
ie−iϕk√

1 + e−πκ2
, (3.43)

where

|Rk|2 + |Dk|2 = 1, (3.44)

and ϕk is given by

ϕk = arg Γ(
1 + iκ2

2
) +

κ2

2
(1 + ln

2

κ2
). (3.45)

Now we can rewrite Eq.(3.37)αj+1
k

βj+1
k

 =

 eiϕk
√

1 + e−πκ2 ie−(π/2)κ2+2i
∫ tj
0 ωkdt

−ie−(π/2)κ2−2i
∫ tj
0 ωkdt e−iϕk

√
1 + e−πκ2


αjk
βjk

 . (3.46)

From this equation one can find the number of created particles after a zero-crossing

of the inflaton field. Since nj+1
k = |βj+1

k |2 we find

nj+1
k = e−πκ

2

+ (1 + 2e−πκ
2

)njk − 2e(−π/2)κ2
√

1 + e−πκ2
√
njk(1 + njk) sin θjk, (3.47)

where θjk = 2
∫ tj

0
ωkdt−ϕk + arg βjk− argαjk includes all the information about phase

differences for the waves. We note that the exponential factor e−πκ2 is very important.

If πκ2 > 1 it is obvious that particle production is suppressed. So we need πκ2 ≤ 1
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for significant particle production. We can translate this condition in terms of the

momentum k

k2

a2
≤ gmφΦ

π
, (3.48)

which is consistent with our earlier result Eq.(3.14) and gives an estimate of the res-

onance band. Another point in Eq.(3.46) is that κ2 ∝ g−1 therefore the exponential

term e−πκ
2 is not analytical at the limit of small coupling constant g → 0. Therefore

particle production in the broad resonance regime in such a nonconformal theory

cannot be derived via a perturbative analysis, and hence the nonperturbative nature

of the resonance is manifest.

We can define the growth index µjk via

nj+1
k = njke

2πµjk . (3.49)

In the limit of njk � 1 we can rewrite Eq.(3.46)

nj+1
k ≈ njk(1 + 2e−πκ

2 − 2 sin(θjk)e
−(π/2)κ2

√
1 + e−πκ2). (3.50)

Comparing the last two equation gives

µjk =
1

2π
ln(1 + 2e−πκ

2 − 2 sin(θjk)e
−(π/2)κ2

√
1 + e−πκ2). (3.51)

Let us have a careful look of this equation. If the argument of the logarithmic

function is greater than 1 then the growth index is positive and particle production

is efficient. This happens only if

e−(π/2)κ2 > sin(θjk)
√

1 + e−πκ2 ,
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1√
1 + eπκ2

> sin θjk. (3.52)

Therefore particle production depends significantly on the phase θjk and nature of the

interference of the wave functions. The number of particles after a scattering can in-

crease or even decrease, as is shown in Figure 3-3. The effect of particle production is

maximal when sin θjk = −1 (µ ≈ 0.28). If the interference is destructive and Eq.(3.51)

does not hold, the number of particle decreases. This happens when sin θjk = 1. One

can find a typical value for the growth index µjk ≈ 0.175 by considering sin θjk = 0.

In the case of Minkowski space where both Φ(t) and a(t) are constant, the phase

only depends on the momentum and one can expect separate instability/stability

bands of momenta. However, in the case of an expanding background, the phase is

time-dependent as well as being momentum-dependent, and hence the separation of

the instability/stability bands is washed out as the bands become time-dependent.

So far we have considered particle production after only one zero-crossing of the

inflaton field. Now we are going to consider the number density of produced particles

after multiple oscillations of the inflaton field. We consider the initial condition

α0
k = 1, β0

k = 0, n0
k = 0 and random initial phases θ0

k. After some oscillations of the

inflaton field

nk(t) =
1

2
e2π

∑
j µ

j
k . (3.53)

As an estimate one can rewrite
∑

j µ
j
k = µeffk N , where N is the number of oscillations

of the inflaton. If the period of oscillations is given by T , then at the time t after

inflation

N =
t

T/2
, (3.54)
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Figure 3–3: Number density after scattering for two different phases. Constructive interference
corresponds to the case when the number density increases after scattering, while it is destructive
when the number density decreases. The time is in the units of 2π/κ and the dotted lines show the
time of the scattering event[30].

where T = 2π
mφ

. Therefore ∑
j

µjk = µk
mφt

π
, (3.55)

where we dropped the index “ eff " for simplicity. Then Eq.(3.52) gives

nk(t) =
1

2
e2µkmφt. (3.56)

Therefore the total number density is given by integration of nk over all momenta

which experience the resonance:

nX(t) =
1

2(2πa)3

∫ kmax

0

d3ke2µkmφt. (3.57)
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Since the integrand is angle-independent, the total number of produced particles

during broad resonance regime is given by

nX(t) =
1

4π2a3

∫ kmax

0

dkk2e2µkmφt. (3.58)

Then the energy density of the produced particles is given by integrating nk(t)ka over

all momenta which are in the resonance band

ρX(t) =
1

4π2a4

∫ kmax

0

dkk3e2µkmφt. (3.59)

In order to estimate the amount of the particle production, let us calculate the

integral of Eq.(3.57) and find the number density of the produced particles as a

function of time. To solve the integral approximately, we can rewrite the integrand

as follows

k2e2µkmφt = e2 ln k+2µkmφt.

We can Taylor expand the exponent around the maximal value of µk at k∗ where

µk∗ ≡ µ∗. Then the integral has the form

nX(t) ' k2
∗e

2mφµt

4π2a3

∫ kmax

0

dke
−(mφt|µ′′k(k∗)|+ 1

k2∗
)(k−k∗)2

, (3.60)

nX(t) ' k3
∗

(2π1/2a)3
e2mφµt(mφtµ∗ + 1)−

1
2 erf(

√
1 +mφtµ∗). (3.61)

Knowing that erf(
√

1 +mφtµ∗) ' 1, our expression for the number density of pro-

duced particle during resonance is

nX(t) ' k3
∗e

2mφtµ∗

(2π1/2a)3
√

1 +mφtµ∗
. (3.62)
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Then, from Eq. (3.58), the energy density will be

ρX(t) ' k4
∗e

2mφtµ∗

8π3/2a4

√
3
2

+mφtµ∗

. (3.63)

Therefore it is enough to just find k∗ at which µk has its maximum and the value of

the growth index at the maximum. Next will discuss the effects which terminate the

resonance and hence particle production.

3.4 Backreaction and the End of Resonance

We will now consider some backreaction effects which could terminate or even

suppress preheating and particle production. First of all, the fluctuations of χ which

are generated in the preheating instability will back-react on the background and

lead to correction terms both in the equation of motion for φ and even in that of χk

fluctuations. We need to determine the length of time these effects can be neglected.

Secondly, fluctuations in the inflaton field themselves could be amplified and then

back-react both on the equation of motion for φ, shutting off the oscillations which

drive preheating, and also on the equation of motion for χ, providing corrections to

the mass term which will prevent the violation of adiabaticity which is required to

obtain the resonance. When these backreaction effects become important then our

linear analysis won’t be valid and nonlinear dynamics is needed to study the problem.

3.4.1 Corrections Due to Amplification of χ Field Fluctuations

Amplified χk fluctuations will lead to corrections in the effective mass of the

inflaton field which in turn will terminate coherent oscillations of the inflaton field
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and hence shut off the resonance. From Eq.(3.6) the equation of motion for the

background inflaton field during reheating while the χk fluctuations get amplified is

φ̈+ 3Hφ̇+ (m2
φ + g2

〈
χ2
k

〉
)φ = 0, (3.64)

where 〈χ2
k〉 is the averaged squared of the preheat field fluctuations and is given by

[2] 〈
χ2
k

〉
=

∫ kmax

kmin

d3k|χk|2, (3.65)

and kmin,kmax determine the resonance band. In our case kmin = 0 and kmax is

given by Eq.(3.47). This correction may affect the coherent nature of the inflaton

oscillations. Therefore we can derive a criterion for the time when the backreaction

effect becomes important: 〈
χ2
k

〉
∼
m2
φ

g2
. (3.66)

The same effect (amplification of χk fluctuations) will induce a correction term

to the evolution of preheat field fluctuations. Due to nonlinearities which will be

present due to renormalization considerations there is a term of the from 1
4
λχχ

4 in

the potential. Then the equation of motion for the χ field fluctuations (in the Hartree

approximation) becomes

χ̈k + (k2 +m2
χ + g2φ2(t) + λχ

〈
χ2
k

〉
)χk = 0, (3.67)

where for simplicity we considered the case of a non-expanding background. The

criterion from this effect will be

g2φ2(t)λ−1
χ ∼

〈
χ2
k

〉
. (3.68)
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As a rough estimate we can consider the value of the inflaton field at the end of

inflation to be φend ∼ 0.1MP . One can rewrite the criterion as

〈
χ2
k

〉
∼ 10−2 g

2

λχ
M2

P . (3.69)

From naturalness at the one loop level we know that λχ ∼ g4. Also, considering

mφ ∼ 10−6MP , one can easily see that the former criterion (3.65) will happen much

sooner than the latter (3.68). Thus means that in the model we discuss, amplification

of preheat field fluctuations has a larger contribution to the equation of motion for

the inflaton field.

3.4.2 Corrections Due to Amplification of the Inflaton Field Fluctuations

Depending on the potential, parametric resonance may happen for inflaton field

fluctuations as well. Then the amplified fluctuations will back-react on the back-

ground evolution. In our toy model, the equation of motion for inflaton field fluctu-

ations is

δ̈φk + (k2 +m2
φ)δφk = 0. (3.70)

It is obvious that there is no instability in this equation, and δφk fluctuations just

oscillate. We will see in the next chapters that self-resonance will happen in some

models.

3.5 Conclusion

We have studied the reheating mechanism after inflation. We observed that

reheating is an integral part of any inflationary theory without which inflation leaves
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the universe cold and empty of matter. We saw that to connect the inflationary

phase to the hot Big Bang Cosmology, during reheating energy which is initially

stored in the inflaton field should be transferred to other degrees of freedom and par-

ticle production should happen. We presented the perturbative analysis of reheating

and discussed the problems with this approach. Then we introduced parametric res-

onance and preheating and discussed the scenario in detail. We saw that coherent

oscillation of the inflaton field play an essential role in the scenario, and periodic

time dependency of the frequency is a key feature in the analysis. The linear stage

of the resonance will terminate when backreaction of the produced particles on the

background dynamics becomes important. At this time resonance might be termi-

nated by backreaction or resonance may transit to a non-linear stage when the linear

analysis introduced here would not work.

So far in what we discussed the frequency has a periodic time-dependency, in

which the Floquet theory applies. In the next chapter we will introduce another for-

malism to do the analysis of reheating and particle production even in the cases with

non-periodic time-dependent frequency using a Born Approximation Method which

involves the Green’s function method for solving inhomogeneous linear differential

equations.
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4.1 Introduction

In all the models we have discussed in previous chapters, inflation is so-called

potential-driven. Now we are going to introduce a model in which inflation is driven

kinetically and study particle production in the model. Although there are different

classes of models in which inflation is not potential driven, it was shown [35], that

by introducing Galileon type terms (in particular kinetic terms) in the action of a

scalar field φ, it is possible to obtain an inflationary model in which matter violates

the Null Energy Condition (NEC)1 and hence a blue tensor tilt is possible 2 . This

model is called G-inflation. In this model, inflation is driven by the kinetic term

in the action which at early times has the “wrong” sign and hence can lead to the

violation of the NEC. Nevertheless thanks to the Galileon-type terms, the stability

of fluctuations is maintained even in the presence of NEC violation contrary to the

case of k-inflation [36]. Inflation terminates at a scalar field value above which the

sign of the kinetic term reverts back to its canonical form. This leads to a transition

from an inflationary phase to a standard kinetic-driven phase with equation of state

w = 1, where w is the ratio of pressure to energy density. The energy density in φ

then decreases as a(t)−6, where a(t) is the cosmological scale factor.

1 Tµνn
µnν > 0 where nµ is any null (light-like) vector.

2 In the context of inflationary cosmology with vacuum initial conditions and with matter obey-
ing the (NEC), one always obtains a red tilt for tensor spectrum. This is different than the scalar
spectrum for which either a red or a blue tilt can be obtained, although the simplest slow-roll
models of inflation also predict a red tilt of the scalar spectrum.
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Since there is no phase during which φ(t) oscillates there is no possibility of pre-

heating. As discussed in [35], the production of regular matter particles after Galileon

inflation is still possible by the gravitational Parker particle production mechanism

[32, 33, 34]. The question one can ask is whether in the presence of a coupling be-

tween matter and the inflaton there is nevertheless some non-gravitational channel

which transfers energy to matter faster than what can be achieved by gravitational

effects.

In the following we will see that there is indeed a channel for direct particle

production, and we derive conditions on the coupling constant for which this direct

channel is more efficient than Parker particle production 3 . The analysis is based

on the general framework set out in [29].

The analysis of this chapter is based on our previous work [1]. We begin with a

brief review of G-inflation, move on to a discussion of the particle production mech-

anism we use, before presenting the calculations applied to the model. The notation

is in natural units in which the speed of light, Planck’s constant and Boltzmann’s

constant are set to 1.

3 A similar channel is operative in the “emergent Galileon” scenario of [37] - see [38]. Particle-
induced particle production has also recently been studied in a bouncing cosmology in [39].
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4.2 G-inflation

The original G-inflation [35] is based on a scalar field φ minimally coupled to

gravity with an action

L = K(φ,X)−G(φ,X)�φ , (4.1)

where X is the standard kinetic operator

X =
1

2
∂µφ∂

µφ , (4.2)

and K and G are general functions of φ and X. See [40] for its generalized version.

The special property of this class of Lagrangians is that the resulting equations

of motion contain no higher derivative terms than second order [41]. In the case

K = K(X) and G(φ,X) ∝ X the action has an extra shift symmetry (“Galilean

symmetry”) and these Lagrangians were introduced and studied in [42].

The model of kinetically driven G-inflation [35] is based on choosing

K(φ,X) = −A(φ)X + δK , (4.3)

with

A(φ) = tanh
[
λ(φe − φ)

]
, (4.4)

and

G(φ,X) = g̃(φ)X = g̃X . (4.5)

Here λ and g̃ are coupling constants and δK includes higher order terms in X which

are important during inflation. After the sign of the linear kinetic term in the action
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is flipped at φ = φe, the higher order corrections soon become negligible and do not

affect our analysis of reheating.

We consider homogeneous and isotropic cosmological solutions resulting from

this action. As shown in [35], for φ < φe there are inflationary trajectories for

which the quasi-exponential expansion of space is driven by the wrong-sign kinetic

term. Inflation ends at φ = φe, and for φ > φe the background becomes that of a

kinetic-driven phase with w = 1, a(t) ∼ t1/3 and

φ̇(t) ∼ 1

t
. (4.6)

We call this stage the kination regime of the model. Since the energy density in φ

decays so rapidly, eventually the kination regime will end and regular radiation and

matter will begin to dominate. The energy density at which this transition happens

determines the reheating temperature of the Universe.

Knowledge of the reheating temperature is important for various post-inflationary

processes such as baryogenesis or the possibility of production of topological defects.

It may also be possible to directly probe the physics of the phase between the initial

thermal stage and the hot Big Bang phase with precision observations (see e.g. [43]).

Regular matter and radiation are produced by gravitational particle production.

However, if this is the only mechanism, then the reheating temperature will be low

as it is suppressed by
H4

ρI
∼ H2

M2
P

, (4.7)
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where ρI the energy density during inflation and MP is the Planck mass. This ratio

is bounded to be smaller than 10−8 based on the upper bound on the strength of

gravitational radiation produced during inflation [94]

In the following we will assume that there is a direct coupling between matter

(described by a free massless scalar field χ) and the inflaton field φ. We consider two

possible couplings. The first is of the form

LI =
1

2
g2φ̇χ2 , (4.8)

where g is a dimensionless coupling constant. Note that we have chosen a derivative

coupling of φ with χ to preserve the invariance of the interaction Lagrangian under

shifting of the value of φ (which is part of the Galilean symmetry. The disadvantage

of this coupling is that it violates the symmetry φ→ −φ. The second coupling obeys

this symmetry but involves non-renormalizable interactions. It is

LI = −1

2
M−2φ̇2χ2 , (4.9)

where M is a new mass scale which is expected to be smaller than the Planck mass.

These couplings open up non-gravitational channels for the production of χ particles

4 .In the following we will study the conditions under which these direct production

4 Since the shift symmetry is already broken (in order to have inflation) there is
no a priori reason to exclude couplings which do not respect the symmetry. However
we take a more conservative choice and work with couplings which respect the shift
symmetry.
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channels are more efficient than the gravitational particle production channel.

4.3 Inflaton-Driven Particle Production

Assuming that the Lagrangian for the matter field χ has canonical kinetic term,

then the Lagrangian for χ is that of a free scalar field with a time dependent mass,

the time dependence being given by the interaction Lagrangians (4.8) or (4.9). Each

Fourier mode χk of χ evolves independently, the equation of motion is

χ̈k + 3Hχ̇k + (
k2

a2
− g2φ̇)χk = 0 . (4.10)

or

χ̈k + 3Hχ̇k + (
k2

a2
+M−2φ̇2)χk = 0 , (4.11)

depending on the form of the interaction Lagrangian. The effects of the expansion

of space can be pulled out by rescaling the field

Xk ≡ a−1χk . (4.12)

Then, in terms of conformal time τ (which is related to physical time t by dt =

a(t)dτ), the equation of motion becomes

X ′′k + (k2 − g2φ̇a2 − a′′

a
)Xk = 0 , (4.13)

or

X ′′k + (k2 +M−2φ̇2a2 − a′′

a
)Xk = 0 , (4.14)

where a prime denotes a derivative with respect to τ .
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The qualitative features of the equations of motion (4.13) or (4.14) are well

known from the theory of cosmological perturbations (see e.g. [10] for an in-depth

review and [44] for a brief overview). In the absence of the interaction term, Xk will

oscillate on sub-Hubble scales, i.e. scales for which

k2 >
a′′

a
∼ H2 , (4.15)

whereas the mode function Xk is squeezed on super-Hubble scales, i.e.

Xk ∼ a . (4.16)

Following [29], we will treat the effects of the interaction term in leading order

Born approximation, i.e. we write

X ≡ X0 +X1 , (4.17)

(here and in the following we will drop the subscript k) where X0 is the solution of

the equation in the absence of interactions, i.e. a solution of

X ′′0 + (k2 − a′′

a
)X0 = 0 , (4.18)

solving the initial conditions of the problem, and X1 is the solution of the inhomo-

geneous equation

X ′′1 + (k2 − a′′

a
)X1 = g2φ̇a2X0, (4.19)

or

X ′′1 + (k2 − a′′

a
)X1 = −M−2φ̇2a2X0, (4.20)
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(with vanishing initial conditions) obtained by taking the interaction term in (4.13)

or (4.14) to the right hand side of the equation and replacing X by the “unperturbed”

solution X0.

The inhomogeneous equation (4.19) (or (4.20)) can be solved by the Green’s

function method

X1(τ) =

∫ τ

τi

dτ ′G(τ, τ ′)g2a2(τ ′)φ̇(τ ′)X0(τ ′) , (4.21)

or

X1(τ) = −
∫ τ

τi

dτ ′G(τ, τ ′)M−2a2(τ ′)φ̇2(τ ′)X0(τ ′) , (4.22)

where the Green’s function G(τ, τ ′) is determined in terms of the two fundamental

solutions u1 and u2 of the homogeneous equation via

G(τ, τ ′) = W−1
(
u1(τ)u2(τ ′)− u2(τ)u1(τ ′)

)
, (4.23)

where W is the Wronskian

W = u1(τ)u′2(τ)− u2(τ)u′1(τ) . (4.24)

In the above, the time τi is the time when the initial conditions are imposed. In our

case it is the end of the period of inflation.

The condition that direct particle production is more efficient than gravitational

particle production is

X1(τ) > X0(τ), (4.25)
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at some time τ > τi before the time when the kinetic phase would be terminated by

gravitational particle production alone.

4.4 Analysis

We now apply the formalism of the previous section to our specific Galileon

inflation model. We are interested in super-Hubble modes for which the k2 term in

the equation of motion (4.10) can be neglected. The fundamental solutions are then

u1(τ) = (
τ

τi
)1/2, (4.26)

u2(τ) = (
τ

τi
)1/2ln(

τ

τi
) ,

and hence the Wronskian becomes

W =
1

τi
, (4.27)

and the Green’s function is

G(τ, τ ′) =
(
ττ ′
)1/2

ln(
τ ′

τ
) . (4.28)

The contribution X1(τ) induced by the direct coupling between φ and χ thus

becomes

X1(τ) = g2

∫ τ

τi

dτ ′
(
ττ ′
)1/2

ln(
τ ′

τ
)φ̇(τ ′)a2(τ ′)X0(τ ′) , (4.29)

or

X1(τ) =
−1

M2

∫ τ

τi

dτ ′(ττ ′)1/2ln(
τ ′

τ
)φ̇(τ ′)2a2(τ ′)X0(τ ′) , (4.30)
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For X0(τ) we can take the dominant solution of the homogeneous equation

X0(τ ′) = X0(τi)(
τ ′

τi
)1/2ln(

τ ′

τi
) . (4.31)

Making use of the scaling (4.6) of φ̇ and after a couple of lines of algebra we obtain

the approximate result (keeping only the contribution from the upper integration

limit)

X1(τ) ' g2φ̇i(τi)τ
2X0(τi) . (4.32)

or

X1(τ) ' −M−2φ̇i
2
(τi)τ

2
i (
τ

τi
)1/2X0(τi)ln(

τ

τi
) . (4.33)

If we take the initial time τi to correspond to the end of inflation, we have

φ̇(τi) ' H(τi)MP , (4.34)

where H(τi) is the value of H at the end of inflation. In this case

X1(τ) ∼ g2MP τi(
τ

τi
)3/2 , (4.35)

or

X1(τ) ' −(
MP

M
)2X0(τ) . (4.36)

The criterion (4.25) for direct particle production to dominate over gravitational

particle production then becomes (up to logarithmic factors)

g2 >
H(τi)

MP

(
ti
t

) . (4.37)
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or

(
MP

M
)2 > 1 . (4.38)

Note that for the second interaction term, particle production via direct interactions

dominates within one Hubble expansion time (the time interval after which the con-

tribution from the lower integration end can be neglected), provided that M < MP ,

a condition which has to be satisfied if we are to trust the effective field justification

of the interaction term.

Once X1(τ) starts to dominate over X0(τ), the Born approximation ceases to be

valid. At that point, the coupling term in the equation of motion for X will become

the dominant one, and an approximation to (4.13) (we will first focus on the case

of the first interaction term) which is self-consistent for long wavelength modes (for

which the k2 term in the equation is negligible) is

X ′′ − g2φ̇a2X = 0 . (4.39)

An approximate solution of this equation is

X(τ) = A(τ)e
f̃( τ
τi

)3/4τi (4.40)

with

f̃ ≡ 4

3

(
g2φ̇(τi)

)1/2
. (4.41)

Inserting this ansatz (4.40 and 4.41) into (4.39) we find an equation for the amplitude

A(τ)

A′′ + 3

2
f̃ τ−1/4τ

−3/4
i A′ − 3

16
f̃ τ−5/4τ

−3/4
i A = 0 , (4.42)
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which both for f̃ τi � 1 and f̃ τi � 1 has a dominant solution which is constant in

time.

From (4.40) and (4.41) we see that there is quasi-exponential growth of X which

becomes important once

f̃ τi(
τ

τi
)3/4 > 1 , (4.43)

which in terms of physical time is

t

ti
> f̃−2τ−2

i . (4.44)

In the above we are implicitly assuming that f̃ τi < 1. If f̃ τi > 1 then reheating via

direct particle production is instantaneous on a Hubble time scale and the reheating

temperature is given by the energy density at the end of inflation.

Returning to the case f̃ τi < 1, the we see that once the time t is larger than the

one given by (4.44), the energy transfer from the inflaton to matter is exponentially

fast and will immediately drain all of the energy from the inflaton. Hence, the

“reheating time” tRH is

tRH ∼ ti(f̃ τi)
−2 , (4.45)

and since the energy density between ti and tRH decreases as a(t)−6 ∼ t−2 we have

ρ(tRH) ∼ ρ(ti)(f̃ τi)
4 . (4.46)

Making use of ρ(ti) = H2(ti)M
2
P (up to a numerical factor) and ρ(tRH) ∼ T 4

RH we

finally obtain the reheating temperature TRH to be

TRH ∼ f̃ τi(H(ti)MP )1/2 , (4.47)
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which is larger than the reheating temperature H(ti) which would be obtained if

only gravitational particle production were effective, provided that

f̃ τi > (
H(ti)

MP

)1/2 . (4.48)

In the case of the second coupling, the conclusions are similar. Once the coupling

term in the equation of motion dominates over the expansion term, the equation can

be approximated as (changing the sign of the coupling term)

X ′′ −M−2φ̇2a2X = 0 . (4.49)

Since

φ̇2(τ)a2(τ) = φ̇2(τi)(
τi
τ

)2 , (4.50)

the equation has power law solutions with an exponent ∆ given by

∆ =
1

2

[
1±
√

1 + 4R2
]
, (4.51)

where

R ≡ MP

M
. (4.52)

We see that if M � MP , then the power of the dominant solution is ∆ � 1 and

this means that there is complete energy transfer from the inflaton to χ within one

Hubble expansion time. Hence, the reheating temperature is given by the energy

density at the end of inflation, i.e.

TRH ∼ (H(ti)MP )1/2 . (4.53)
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4.5 Conclusion

In this chapter we have introduced G-inflation model and derived the condition

under which direct particle production in the model dominates over gravitational

particle production. The discussion also applies to k-inflation [36]. We consider two

possible interaction Lagrangians, namely (4.8) and (4.9). We first study the onset of

matter particle production from the direct coupling using the Born approximation.

We find that for both interaction terms we consider, the direct particle production

channel eventually dominates. This happens within one Hubble expansion time

for the coupling (4.9), whereas in the case of (4.8) the time when direct particle

production starts to dominate depends on the coupling constant g.

Once direct particle production begins to dominate over gravitational particle

production we must use a different approximation scheme to solve the equation of

motion. We can now neglect the squeezing term in the equation of motion. We pro-

vide solutions of the resulting approximate equations of motion and show that once

direct particle production begins to dominate, the energy transfer from the inflaton

to the matter fields will be almost instantaneous. This allows us to estimate the

value of the reheating temperature, the temperature of matter once the inflaton field

has lost most of its energy density to particle production. In the case of the second

interaction term (4.9), the reheating temperature is given by the energy density at

the end of inflation, in the case of the first interaction term (4.8), it is reduced by a

factor which involves the interaction coupling constant g.
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5.1 Introduction

As we promised before, in this chapter we are going to include gravitational

effects in our analysis of reheating in three different inflationary models. Note that

we are interested in long wavelength modes where linear analysis is valid. Non-

linear evolution of the modes is beyond the scope of our work. In the first model,

we discuss the parametric instability in the amplitude of cosmological perturbations

during massless preheating. We show how instabilities in the matter sector are

connected to entropy perturbations which in turn will induce curvature perturbations,

as it was pointed out initially in [45, 46, 47, 48]. Here we will apply the covariant

formalism (introduced in chapter 2) to study the evolution of entropy perturbations

in a two-field inflationary model the so-called massless preheating. As we see in the

next section, the result is consistent with earlier works and confirms the significant

enhancement of cosmological perturbations even on large scales.

In the second model, we will study axion monodromy inflation [49] with a deriva-

tive coupling between the axion field and the U(1) gauge field. We will show that

although the resonance is efficient in producing gauge field fluctuations, the induced

curvature perturbation is consistent with the current observation data.

Then we will show preheating in an Asymptotically Safe Quantum Field Theory

[50]. We will discuss that parametric resonance of the spectator scalar fields is effi-

cient in this model. This observation has crucial consequences for the evolution of

cosmological perturbations in the theory.
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5.2 Preheating of Entropy Perturbations in Massless Preheating

The key aspect of preheating is that the oscillations of the inflaton field φ after

the end of inflation lead to a periodically varying contribution to the mass term

of the χ field. The equation of motion for χ thus falls into the category of those

described by Floquet theory [31], which states that there are bands of Fourier modes

of χ which experience exponential growth. Since the inflaton field φ also couples

to gravity, the oscillations of φ lead to a periodically varying contribution to the

mass term in the equation of motion for cosmological perturbations, as was first

pointed out in [51] and [52]. Hence, there is the possibility that preheating can lead

to a parametric instability in the amplitude of cosmological perturbations, even on

scales which are super-Hubble at the end of inflation. If this were true, it would

completely change the usual predictions of inflationary models. In fact, the presence

of a resonant instability of cosmological fluctuation modes could lead to an amplitude

of fluctuations which is much larger than the observed value, thus placing constraints

on inflationary models.

In [53] it was shown that in models with only adiabatic fluctuations there is

no instability of curvature fluctuations on super-Hubble scales. This is related to

the conservation of the comoving curvature fluctuation variable ζ on super-Hubble

scales [54, 55]. However, in certain two field models of inflation it was argued in

[45, 46, 47, 48] that in the case of “massless preheating" (the inflaton having vanishing

mass) there will be a preheating instability for the entropy fluctuation mode, even
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on super-Hubble scales 1 . In fact, it was shown in [57, 58] that back reaction effects

will not be strong enough to shut off the instability before the entropy mode has

become dominant. The presence of a preheating instability for the entropy mode

was confirmed in the analyses of [59] and [60], extended to the case of multi-field

generalized Einstein models in [61], and applied to certain examples in [62].

However, there remain concerns about the conclusions of [53]. An analysis using

the “separate universe" method [63] argues that the preheating of entropy fluctuations

is less effective. An analysis using the δN formalism, a method which is closely related

to the separate universe approach, finds that there is parametric resonance of the

entropy mode [64], although in a subsequent paper [65] the same authors do not find

substantial effects on the curvature fluctuations . In addition, little amplification of

the curvature fluctuations is observed in the numerical work of [66] which was based

on a numerical implementation of the δN formalism.

Since the entropy mode seeds a growing curvature fluctuation on super-Hubble

scales, any parametric resonance instability of an entropy mode can lead to an ex-

ponential growth of the curvature fluctuation during the preheating stage. This is a

potentially disastrous effect since the fluctuations could well grow to become larger

than the observed values. Hence, from the point of view of inflation model building

it is very important to determine whether the parametric resonance instability of the

entropy mode is robust.

1 In the case of “massive preheating" (the potential of the inflaton being dominated by the mass
term) there is no preheating of the entropy mode at linear order in cosmological perturbation theory,
as shown in [56].
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In this section we are going to study evolution of entropy perturbations in mass-

less preheating. The goal is to reconsider this question using different methods than

have been used before. Specifically we will make use of the “covariant formalism", a

formalism developed in [19] (see also [20] for earlier related work), a formalism which

can be applied even non-perturbatively (we, however, will use a perturbative trun-

cation of the formalism). Our goal is to demonstrate an instability of the model on

cosmological scales. Our methods obviously break down once the nonlinear regime is

reached. At this point, numerical methods used to study nonlinear preheating effects

(see e.g. [67] for the first numerical code for studying preheating which includes the

metric fluctuations, and [66, 68, 69, 70, 71, 72, 73]) would have to be applied. These

nonlinear effects, however, cannot reduce the amplitude of curvature perturbations

on cosmological scales, and hence we do not consider them.

Our study shows that the preheating of entropy modes is indeed effective in the

massless preheating toy model which we consider, and that this leads to an exponen-

tially growing contribution to the curvature fluctuation. Since we have shown that

our equations are the perturbative limit of a consistent non-perturbative formalism,

we now have a better reason for arguing that the instability we find will extend be-

yond the perturbative treatment.

5.2.1 Setup for The Model

In [53] necessary conditions for the effectiveness of preheating of the entropy

mode of metric fluctuations have been discussed. One of the conditions is that there

is efficient parametric resonance in the matter sector in the absence of gravitational
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fluctuations. A model of massless inflation satisfies this condition. Hence, we consider

a toy model containing a massless inflaton field φ coupled to a massive matter field

χ with a potential

V (φ, χ) =
λ

4
φ4 +

1

2
g2φ2χ2 . (5.1)

The interaction term φ2χ2 allows for the decay of the coherent inflaton configuration

φ into massive χ excitations.

Up to the mass term for χ (which we will neglect in this section) our model is

conformally invariant. Thus, via a conformal transformation we can map our model

into one living in Minkowski space-time, and then study preheating in Minkowski

space-time. This is technically much simpler than performing the calculation in the

original variables in an expanding universe. As pointed out first by [74], the structure

of resonance in the matter sector depends in a crucial way on the relation between the

coupling constants λ and g2. Indeed the only parameter responsible for the structure

of resonance is the ratio g2

λ
.

We are interested in studying the evolution of the entropy perturbation in this

two field model. To do this we first need to study the evolution of the quantum field

χ in the background of the classical field φ. This will be done in the rest of this

section.

We consider the case in which the zero mode of the χ field is zero and therefore

χ has no effect on the inflationary dynamics in the absence of quantum fluctua-

tions. However, quantum fluctuation of this field are continuously excited. Since the

equation of motion for χ is linear in χ each Fourier mode evolves separately. We

are interested in modes whose wavelength today corresponds to cosmological scales.
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The wavelength is smaller than the Hubble radius early during the inflationary phase,

grows relative to the Hubble radius as a consequence of the accelerated expansion

of space during the period of inflation, and exits the Hubble radius a number of

e-folding times before the end of inflation. At that point, the oscillations of the

quantum fluctuations freeze out and the modes can be squeezed.

Later on we will have to take into account the fact that the ensemble of large

scale fluctuations of the χ field will generate an effective χ background in which

smaller scale χ modes live. We will find this background by averaging over the large-

scale fluctuations.

5.2.2 Background Evolution

First we review the dynamics of φ after the end of the period of inflation. During

inflation the effective potential for the inflaton is λ
4
φ4 . Therefore the Klein-Gordon

equation for the classical inflaton field φ is

φ̈+ 3Hφ̇+ λφ3 = 0 , (5.2)

where H is the Hubble parameter and “ ˙ “ is the derivative with respect to physical

time. For further simplification we work with conformal time η defined via

adη = dt .

Then as we mentioned before we do a conformal transformation

aφ = ϕ .
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If we rewrite Eq.(5.2), we find

ϕ′′ + λϕ3 − a′′

a
ϕ = 0 , (5.3)

where “ ′ “ denotes the derivative with respect to conformal time.

After the end of the period of slow-roll inflation, the background ϕ field will start

anharmonic oscillations about ϕ = 0 since it lives in a confining potential. It is well

known that for a quartic potential λφ4 the time-averaged energy momentum tensor is

traceless and hence the equation of state (averaged over an oscillation period) is the

same as for radiation. Hence a(η) ∼ η, and therefore the last term in the equation

(5.3) vanishes. Thus we obtain

ϕ′′ + λϕ3 = 0 (5.4)

which has periodic solutions. To find these solutions we introduce the dimensionless

conformal time

x ≡
√
λϕ̃η ,

where ϕ̃ is the constant amplitude of the oscillations of ϕ = ϕ̃f(x). The solution of

equation (5.4) can be written in terms of Jacobi elliptic functions:

ϕ = ϕ̃cn(x− x0,
1√
2

) . (5.5)

We can approximate the elliptic cosine function by the leading term in its series

expansion, cos(x), which is very good approximation as discussed in [74]. Therefore
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the solution of the Klein-Gordon equation for the ϕ field is

ϕ ' ϕ̃ cos(x) . (5.6)

Before moving on to next section, for further reference it is useful to find the

form of scale factor in this theory [74]. At the end of inflation and beginning of

preheating the effective potential is λφ4/4 and the homogeneous value of χ field is

zero. Thus the Friedman equation is

H2 =
8π

3M2
p

(
1

2
φ̇2 +

λφ4

4
) , (5.7)

where H is the Hubble parameter. When averaging over several oscillations of the

inflaton field while φ�Mp we then find

a(x) ∼
√

2π

3

ϕ̃

Mp

x . (5.8)

5.2.3 Evolution of the Preheat Field χ Fluctuations

In this subsection we study the evolution of the linear mode functions of the

χ field, and use the results to determine an effective background χ field which a

fixed Fourier mode of the fluctuations will feel. As discussed e.g. in [2, 5, 58], this

background is obtained by integrating over fluctuations of wavelength larger than

the one we are considering.

At the classical level, the homogeneous value of the χ field is zero. The effective

background which a mode with wavenumber k will feel is generated by the quantum
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fluctuations of larger wavelengths which have exited the inflationary Hubble radius

earlier, have been squeezed and decohered and hence become classical (see e.g. [75,

76]). To find this effective background, we must first solve the equation for the

quantum fluctuations of the χ field. For simplicity we take the spatial sections to be

flat.

As it is standard in the field, we use the formalism of quantum field theory

in curved space-time. Since we are considering a free quantum field χ̂, we can ex-

pand the field in Fourier modes, and each Fourier mode in creation and annihilation

operators â+
k and âk, respectively

χ̂(t, ~x) =
1

(2π)3/2

∫
d3k

[
âkχk(t) exp(−ik.x) (5.9)

+ â+
k χ
∗
k(t) exp(ik.x)

]
,

where the mode functions χk satisfy the following Fourier space Klein-Gordon equa-

tion

χ̈k + 3Hχ̇k + (
k2

a2
+ g2φ2)χk = 0 . (5.10)

In conformal time and considering conformal transformation

aχ ≡ X (5.11)

as well as a conformal transformation of the φ field

aφ ≡ ϕ (5.12)

we find

X ′′k + [
k2

λϕ̃2
+
g2

λ
f(x)− a′′

a
]Xk = 0 , (5.13)
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where “ ′ “ denotes the derivative with respect to dimensionless conformal time, and

f(x) is the periodic with amplitude 1. As mentioned before, the last term in this

equation vanishes during massless preheating and the equation becomes:

X ′′k + [
k2

λϕ̃2
+
g2

λ
cos2(x)]Xk = 0 , (5.14)

where we have also inserted the approximate form of f(x). This equation has the

structure of a Mathieu equation. To make it clear we rewrite equation (5.14) as

follows:

X ′′k + [(
k2

λϕ̃2
+
g2

2λ
) +

g2

2λ
cos(2x)]Xk = 0 . (5.15)

As we mentioned before, we will consider values of the coupling constant for

which it is known that there is preheating in the matter sector. Hence, we consider

the case g2

λ
' 2 since in this case all long wavelength modes of the χ field are located

in the instability region of the Mathieu equation [74]. Therefore the solution for Xk

will be of the form

Xk(x) = A1 exp(µkx)P1(x, k) + A2 exp(−µkx)P2(x, k) , (5.16)

where µk is the so-called Floquet exponent [31] which in this case has a positive real

component (the Lyapunov exponent), and P1 and P2 are periodic functions of x with

amplitude 1 which appear in the solution of the Mathieu equation [31]. Note that

the period is determined by the period of the inflaton field, and is independent of k.

Considering only the growing mode we need to determine the constant A1 by

fixing the initial conditions. Since preheating is preceded by a phase of inflationary

expansion, the initial conditions for preheating are determined by the evolution of
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the field during inflation. This slow-roll inflation is given by a quasi exponential

expansion of the universe, where the Hubble parameter is almost constant. During

inflation, quantum χ field perturbations (as well as φ perturbations) are created

from vacuum initial conditions on sub-Hubble scales. As the wavelengths of these

fluctuations are amplified in this phase relative to the Hubble radius, they eventually

exit the Hubble radius where they “freeze out" and may undergo squeezing.

To see whether squeezing occurs, we have to compare the magnitude of the

induced mass term in (5.13), the term g2

λ
f(x)Xk, with the squeezing term a′′

a
Xk.

Thus, the condition for squeezing is

g2

λ
<

a′′

a
. (5.17)

Re-expressing the derivative with respect to the rescaled time in terms of the regular

time derivates, the condition (5.17) becomes (making use of |Ḣ| � H2)

H2 > g2Φ2 . (5.18)

Since during slow-roll it follows from (5.7) that H2 ∼ Φ4, we see that (5.18) will

be more easily satisfied for large values of the inflaton field. Thus, to see if we get

squeezing we need to determine the range of values of Φ during slow-roll inflation.

Specifically, we need to determine the value of Φ at the end of the slow-roll period.

During slow-roll, the second derivative term in (5.2) is neglected and the kinetic

term is negligible in the Friedmann equation (5.7). Solving for the evolution of

Φ in the slow-roll approximation and using the result to check when the kinetic
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contribution to H ceases to be sub-dominant yields the result

ϕ2
end ∼ 2(6πG)−1 (5.19)

for the value of ϕ at the end of the slow-roll period. We are interested whether there

is squeezing for modes which exit the Hubble radius a number N Hubble times before

the end of inflation (for scales of cosmological interest we have N ∼ 50). Making

a Taylor expansion in the evolution of ϕ about the endpoint of the slow-roll phase

yields the lower bound

ϕ(N) > ϕend

(
1 +N

3

2

)
(5.20)

for the value of ϕ N Hubble expansion times before the end of inflation. Inserting this

result into (5.18), we can see that the condition (5.18) is satisfied provided N > 2.

This means that the quantum fluctuations of the entropy modes will be squeezed

between when they exit the Hubble radius and when N = 2, i.e. essentially to the

end of the slow-roll phase.

Since during the squeezing period Xk ∼ a, the power spectrum of the entropy

modes from inflation becomes scale invariant and the initial conditions for the X

modes at the beginning of the preheating phase are given by:

A1(k) =
1√
2k

a(tR)

a(tH(k))
= HIk

−3/2 , (5.21)

where tR is the time when inflation ends. We will normalize the scale factor such

that a(tR) = 1. Also, tH(k) is the time of horizon crossing, with a(tH(k)) = k/HI
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and HI the Hubble rate during inflation. With that, the solution for Xk is:

Xk(x) ' HIk
−3/2 exp(µkx)P1(x, k) . (5.22)

Thus we can observe clearly that the Xk mode function is exponentially growing,

which in turn leads to an exponentially growing number density of χ particles. The

value of the Floquet exponent as a function of k is shown in Fig. 5-1 [2]. In this

figure, the vertical axis denotes the value of the Floquet exponent, the horizontal

axis labels k. Note that for the infrared modes which we are interested in, the

value of the Floquet exponent is about 0.2. Even though µk < 1, the time scale

of the exponential instability is (while long compared to the oscillation time) short

compared to the Hubble expansion time. Note that the analysis has so far been in

the absence of gravitational fluctuations.

0.5 1.0 1.5 2.0
k

0.05

0.10

0.15

0.20

Μk

Figure 5–1: Value of the Floquet exponent (vertical axis) as a function of k in units of k2/(λφ̃2).
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The quantum fluctuations on large wavelength which were squeezed and clas-

sicalized after exiting the Hubble radius will form a background in which the met-

ric fluctuations evolve. To find the effective background value which a mode with

wavenumber k feels is given by 2

χeff(k) =

(∫ k

0

d3k′|Xk′|2
)1/2

. (5.23)

To see this, we begin from the expression for the contribution of long wavelength

(i.e. longer than k−1) modes to the X field at a fixed point x in space

X(x) = V 1/2

∫ k

0

d3k′Xk′e
ik′x , (5.24)

in terms of the Fourier modes. Here, V is the cutoff spatial volume which we intro-

duced such that the Fourier modes have the mass dimension of a harmonic oscillator.

Without loss of generality we can take the point x to be x = 0. We now consider the

expectation value of the square of the absolute value of (5.24)

< |X(0)|2 >= V

∫ k

0

d3k′
∫ k

0

d3k′′ < Xk′X
∗
k′′ > . (5.25)

Since the Fourier modes are uncorrelated we have

< Xk′X
∗
k′′ > δ3(k′ − k′′)V −1|Xk′|2 . (5.26)

Inserting (5.26) into (5.25) then yields (5.23).

2 To further justify this, imagine that χ contains fluctuations with two Fourier modes, a mode
k we are interested in, and a longer wavelength mode k′. The mode k can locally be viewed as a
mode which fluctuates not about 0, but about the local value of the k′ mode.
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We are interested in infrared modes k which lie in the instability band of the

Mathieu equation. From Figure 5-1 we see that for these values of k the infrared

modes k′ which appear inside the integral also lie in the instability band, and that

we can approximate the Floquet exponent by a constant µk′ = µ. Inserting (5.22)

into (5.23) we see that there is a potential logarithmic infrared divergence of the

integral. There is, however, an infrared cutoff: the form (5.22) does not apply for

modes which are outside the Hubble radius at the beginning of inflation. Therefore

the integral can be estimated by

χeff(k) ∼
√
πHI exp(µx)

(
ln

(
k

kmin

))1/2

P1(x, k) , (5.27)

where kmin is the value of k which corresponds to Hubble radius crossing at the

beginning of the period of inflation3 . The logarithm is given by NI , the number of

e-foldings of inflation which in the rest of analysis of this section we consider
√
NI ∼

O(1). The periodic function P1 is [31] a series of sine and cosine functions with

different coefficients and the leading term is sin(x) with unit coefficient Therefore,

the leading term for P1 gives us

χeff(k) ∼
√
πHI exp(µx) sin(x), (5.28)

3 This is a key point in our analysis. At strictly linear order in perturbation theory the back-
ground value of χ would vanish. However, in a particular patch of length k−1 the average value of
χ will not vanish because of the presence of fluctuations on scales which are in the infrared with
respect to k. They will produce a non-vanishing effective background. Our procedure corresponds
to integrating out infrared modes which are unobservable from the point of view of the patch of
interest.
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for the effective background value of the preheat field.

5.2.4 Application of The Covariant Formalism to Massless Preheating

Our goal in this section is to show that in massless preheating entropy fluctua-

tions are indeed parametrically amplified, and that this in turn leads to an exponen-

tially growing contribution to the curvature fluctuations. As we shall see, the effect

on the curvature fluctuations is quadratic in the amplitude of the quantum fluc-

tuations. The entropy fluctuations themselves have an exponentially growing term

which is linear in the fluctuation amplitude. However, the coupling between the

entropy and the adiabatic mode is suppressed by an additional power which comes

from the fact that the background of the entropy field vanishes at zero order.

For the case of massless preheating the equation for long wave linearized entropy

fluctuations (2.79) becomes

s̈a + 3Hṡa +
[
(3λφ2 + g2χ2) sin2 θ − 2g2φχ sin 2θ

+ g2φ2 cos2 θ + 3θ̇2
]
sa ' 0 . (5.29)

To analyze this equation of motion we make a couple of approximations and use

the following setup:

– As mentioned before, at the beginning of preheating the overall homogeneous

value of the χ field is zero (the effective χ field on a scale k will be non-vanishing

but of linear order in the amplitude of the fluctuations).
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– We use the relation for θ in the small angle approximation introduced in

Eq.(2.68) in chapter 2:

θ ≡ χ̇

φ̇
(5.30)

for the instantaneous angle between the background trajectory and the φ field

direction in field space. Therefore at the beginning of preheating the angle is

of linear order in the fluctuations.

– We will use the result from [17] for θ̇ in the large scale limit

θ̇ = −V,s
σ̇
, (5.31)

where V, s is the derivative of the potential with respect to the entropy com-

ponent. We use another result which is shown in [17]

V,s = −V,φ sin θ + V,χ cos θ . (5.32)

At the beginning of preheating we have V,χ ' χ which like χ is of first order.

Thus, θ̇ is of first order and we can drop the last term in equation (5.29) as it

is of second order.

– The perturbative expression for the expansion parameter is

Θ = 3H + εF + ε2G+ higher order terms , (5.33)

where we use ε to track the order of perturbations. We will only need to

consider the zero order term since effects of the other terms would be of higher

order in perturbation theory.
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Making use of the above points, the equation (2.79) at leading order becomes

s̈a + 3Hṡa + g2φ2sa = 0 . (5.34)

If we do a conformal transformation

asa ≡ Sa

aφ ≡ ϕ (5.35)

and work with conformal time instead of physical time we get

S ′′a + g2ϕ2Sa = 0 , (5.36)

which has the same structure as the equations (5.14, 5.15) for the χ background

field. From the discussion of the solutions of this equation in the early section of this

article it thus follows that

Sa = B1u1a +B2u2a , (5.37)

where u1a is exponentially growing and u2a is exponentially damped. Considering

only the growing mode and remembering the same form for u1a as we used in equation

(5.22), we find

Sa = Hk−3/2 exp(µx)P1a(x, k) , (5.38)

where P1a indicate periodic functions of x with unit amplitude, and we hence conclude

that the entropy component is exponentially growing due to parametric resonance

at the beginning of preheating. This is one of the main results of this section.

We are interested in the process of conversion of the entropy fluctuation into a

curvature fluctuation. This process happens continuously throughout the preheating
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phase. In the rest of this section we will study the evolution of curvature covector

due to this conversion process.

As is well known, entropy fluctuations can seed a growing curvature fluctuation

mode on super-Hubble scales. In the linear approximation which we use (and working

under the small angle θ assumption) the induced curvature fluctuation ζentk is given

by

ζentk ' H

ϕ̇2
χ̇Sk , (5.39)

where Sk is the Fourier space entropy fluctuation determined above in (5.38). Making

use of (5.38), inserting the result for χ given in (5.28), and taking care of the change

in the temporal variable from x to η we find

ζentk '
√
πλ
H3ϕ

ϕ̇2
e2µxk−3/2P (x, k) (5.40)

where P is a periodic function of unit amplitude. This clearly shows the exponential

growth of the induced curvature fluctuations. A derivation of this result from first

principles making use of the covariant formalism is given in the Appendix. Note

that even though µk < 1, the time scale of the exponential instability is (while long

compared to the oscillation time) short compared to the Hubble expansion time, the

time scale relevant to the conversion of entropy fluctuations to adiabatic ones.

We can evaluate the power spectrum for the curvature perturbation given by

the entropy mode from at horizon crossing:

P ent
k =

k3

2π2
|ζentk |2 ∼ λ

H6

ϕ̇4
ϕ2e4µx . (5.41)
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Hence, we conclude that the entropy perturbations give a scale invariant contribution

to the power spectrum of the curvature perturbation from inflation, but with an

amplitude which is exponentially increasing.

We have derived our result in a simple two field inflation model, the conclusions

will carry over to other multi-field models. This analysis suggests that in any infla-

tionary model in which the inflaton satisfies the massless preheating condition, then

if low mass entropy fields are present which couple to the inflaton, then parametric

resonance of the entropy perturbation indeed happens. Due to the conversion pro-

cess of entropy perturbation into adiabatic perturbation (as studied in the context

of coupled scalar fields in [17]), parametric resonance of entropy perturbation may

lead to a rapidly growing adiabatic mode which could have a large impact on the

spectrum of curvature perturbation we observe today. The spectrum will remain

approximately scale-invariant, but there is the danger that the exponential growth

will cause the fluctuations to become non-linear (which would rule out the model).

To see whether this is a serious concern, we must however first consider backreaction

issues. Backreaction might cut off the instability before the induced curvature fluc-

tuations become too large. However, below we find that at least the backreaction

effects which we consider are not strong enough to shut off the resonance in time for

the induced curvature fluctuations to remain small enough.
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5.2.5 Backreaction Effects

In the previous sections we considered the parametric resonance of entropy per-

turbations during preheating neglecting any backreaction effects. However, the expo-

nential instability of the entropy field leads to an exponential creation of χ particles

that are expected to back react in the background. The study of backreaction is

important, since the cumulative effect of the creation of particle eventually becomes

important affecting the resonance and even terminating preheating, as already no-

ticed in [57, 74, 102] (see also [79] for earlier numerical work).

We will consider two backreaction effects that can affect preheating in the g2/λ =

2 case. Other backreaction effects and parameters choices were studied in [57, 74].

The first effect is the backreaction of the parametrically amplified χ on the evolution

of the inflaton background. If the force induced by χ is larger than the force present

in the absence of χ, then the condition for massless preheating will no longer be

satisfied and the broad parametric resonance will terminate. This will happen when

g2〈χ2〉 ∼ λφ2 . (5.42)

Using 〈χ2〉 = χ2
eff from (5.28) and setting φ = φend, this condition implies that

e2µ∆x ' λ−1 . (5.43)

This gives us the time interval before this backreaction effect becomes important. We

can use this result to evaluate the power spectrum of the curvature perturbations

induced by entropy modes at the time that the resonance shuts off by this back-

reaction effect. Using (5.41) and (5.43), the power spectrum at this time is given
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by:

P ent
k ∼ λ−1H

6

ϕ̇4
ϕ2 . (5.44)

Since at the end of inflation ϕ̇2 = V and ϕ = ϕend, we can estimate the power

spectrum for the curvature perturbations from the super-Hubble amplified entropy

perturbations as:

P ent
k ∼ 1

5
. (5.45)

This is considerably larger than the observed values, exceeding by many orders of

magnitude the COBE normalization measurement [80]. We thus conclude that the

parametric amplification of entropy perturbations can lead to a serious problem for

models like the one we consider, unless other effects are found which shut off the

resonance earlier.

We can also consider the backreaction of the produced χ particles on the Fried-

mann equation. We find that demanding that the induced χ terms remain sub-

dominant leads to precisely the condition (5.42).

The second effect considered in this paper is the influence of the produced δφ

particles on the δχ resonance. If the creation of φ particles is large enough, increasing

significantly the effective mass of the δχ field, this could damp or even stop the

resonance of the χ field. Thus we need to know if

V,χ < g2χ〈δφ2〉 ⇒ φ2 < 〈δφ2〉 , (5.46)

at some point during preheating, altering the effective time dependent mass and con-

sequently the χ resonance. However, we can see from the equation for the eigenmodes
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φk(t) during preheating:

¨δφk + 3H ˙δφk +

(
k2

a2
+ 3λδφ2

)
δφk = 0 , (5.47)

that for δφk the resonance is always narrow, since it is equivalent to the case of

parametric resonance with g2/λ = 3. This leads to a very small characteristic expo-

nent µ [74] and a very inefficient creation of φ particles. This effect will always be

less important than the parametric resonance for the χ field, that is very broad and

has a large characteristic exponent. Thus, the second backreaction effect studied in

this paragraph does not have the potential of shutting off the resonant amplification

of entropy fluctuations early, and does not change the conclusion from (5.45) that

curvature perturbations are too large when the resonance is finally shut off.

We have to stress, though, that the full theory of backreaction and rescattering

during preheating is not fully developed. However, this result represents an advance

with respect to previous investigations since the covariant formalism allows for a full

non-linear analysis including metric fluctuations (although we here considered only

the linear limit).

To conclude this section we note that we have considered the preheating of en-

tropy fluctuations in a two field model in which an inflaton field with vanishing bare

mass is coupled to a massless entropy field. In the absence of metric fluctuations, it

is known that in this model there is efficient preheating (“massless preheating”). We

find, using a covariant formulation of the theory of cosmological fluctuations which
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in principle can be extended to a full nonlinear analysis, that the entropy fluctua-

tions experience a period of broad parametric resonance. At quadratic order in the

amplitude of fluctuations, the entropy modes seed a growing curvature fluctuation.

Hence, we find a curvature fluctuation mode which is growing exponentially during

the preheating phase. In agreement with previous studies [57] we find that backreac-

tion effects are too weak to shut off the resonance before the power spectrum of the

induced curvature fluctuations has reached an amplitude close to 1, i.e. many orders

of magnitude larger than the observational value. Hence we see that models of the

type we consider here are phenomenologically ruled out, unless there are backreac-

tion effects not considered here which manage to truncate the resonance earlier than

the ones we have studied.

5.3 Entropy Perturbations in Axion Monodromy with a Derivative Cou-
pling

There has been a lot of recent interest in large field models of inflation in which

the potential is given by a fractional power of the field. An example which is currently

attracting much attention is axion monodromy inflation (see [81] for the initial paper

and [82] for a recent review). Axion monodromy models are attractive since they

may provide a natural realization of large field inflation in the context of superstring

theory. Large field models of inflation [83, 84] are advantageous since in such a

context the slow-roll trajectory is a local attractor in initial condition space [85],

even including metric fluctuations [86]. In contrast, for small field models the initial

velocity of the inflaton field needs to be fine tuned, thus creating a potential initial

condition problem [87]. As is well known [88], from the point of view of observations,
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large field models of inflation are interesting since they may lead to a significant

tensor to scalar ratio.

There are challenges to obtain large field inflation models. For field values

|φ| > MP corresponding to large field inflation (MP is the Planck mass), there is the

danger that gravitational corrections will lift the potential and prevent slow rolling

of the field, unless there is a symmetry such as shift symmetry [89] which protects

the small mass required for large field inflation. In string theory, there is a further

challenge of obtaining large field inflation: we expect the field range of the candidate

inflatons, e.g. the moduli fields or the fields associated with brane separations, to be

small, and hence incompatible with large field inflation. Monodromy inflation [90]

provides a possible resolution of this problem, and axion monodromy is currently

regarded as the most promising implementation of the idea of monodromy inflation

in the context of string theory [82]. For this reason, there has been a lot of recent

activity on this topic. The axion of axion monodromy inflation is a bulk field, and

thus couples to and can lose energy to each sector. There may be phenomenological

issues which arise when the energy loss of the axion into other sectors is considered,

but we will not address this issue here.

In this section we will focus on a minimal setup of axion monodromy inflation

in which we only consider the axion field and its associated U(1) gauge field. The

Lagrangian we are considering is (in (-,+,+,+) signature)

L = −(1/2)(∂φ)2 + V (φ)− 1

4
FµνF

µν +
1

Λ
φ FµνF̃

µν , (5.48)
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where Λ is a UV scale, and is different from the axion decay constant. The potential

V (φ) is the monodromy potential:

V (φ) = µ3
√
φ2
c + φ2 , (5.49)

where µ is an energy scale whose value can be determined from the observed mag-

nitude of the cosmic microwave background anisotropies, and where φc < MP is a

constant, MP denoting the Planck mass. The field strength

Fµν = ∂µAν − ∂νAµ (5.50)

is that of the abelian gauge field. From the point of view of effective field theory,

we would expect Λ to be given either by the string scale or the Planck scale. More

stringent, though indirect, constraints come from models of early universe cosmology

based upon this coupling. The gaussianity of the CMB constrains the parameter ξ,

which we will define shortly, to be ξ∗ . 2.2 at the moment when the pivot scale k∗ ex-

its the horizon [94], see also [95, 96], which can be translated to a bound Λ−1 ≤ 12MP .

Recent results on the validity of perturbation theory during inflation [97] constrain ξ

to be ξ ≤ 3.5, which correspond to an even tighter constraint on ξ∗ (if the whole in-

flationary trajectory is to be treated perturbatively). Given these considerations we

will take a conservative approach, and work with an upper bound Λ−1 ≤ O(1)MP
−1.
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5.3.1 Background Evolution

We assume that the axion starts out in the large field region φ�MP where the

slow-roll approximation

3Hφ̇ = −V ′(φ) ' −µ3 (5.51)

of the equation of motion is self-consistent. The end of inflation occurs at the field

value when the slow-roll approximation breaks down, at which point (1/2)φ̇2 = V .

This takes place when

|φ| ≡ φe =
1√
6
MP , (5.52)

and the kinetic energy at this point is

1

2
φ̇2
φ=φe =

1√
6
µ3MP . (5.53)

The value of the Hubble constant at the end of inflation is H = He with

He = 2−1/43−3/4M
−1/2
P µ3/2 . (5.54)

After inflation ends φ begins anharmonic motion about the ground state φ = 0. As

long as we can neglect the expansion of space and the loss of energy by particle

production, the motion is periodic but anharmonic.

The value of µ is set by the observed amplitude of the cosmic microwave back-

ground (CMB) anisotropies. A simple application of the usual theory of cosmological

perturbations (see e.g. [10] for a detailed review, and [98] for an overview) shows that
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the power spectrum Pζ of the primordial4 curvature fluctuation ζ has the amplitude

Pζ ∼
( µ

MP

)3
, (5.55)

from which it follows that

µ ∼ 6× 10−4MP . (5.56)

5.3.2 Preheating of Gauge Field Fluctuations

As first pointed out in [29] and [99], a periodic axion background can lead to

explosive particle production for all fields coupled to the axion. This effect is called

“preheating” [100, 101, 102] (see also [27, 103] for reviews). Here we will consider the

resonance of the gauge field fluctuations 5

The equation of motion for the linear fluctuations of Aµ is (see e.g. [95, 105, 106])

d2Ak±
dτ 2

+

(
k2 ± 2k

ξ

τ

)
Ak± = 0 , (5.57)

4 We add the word “primordial” to make a distinction between the original fluctuations and the
induced ones which will be the focus of this paper.

5 There is the also a possibility that there is an efficient self-resonance of the inflaton, leading
to oscillons [104]. Oscillon formation occurs once the amplitude of φ oscillations falls below φc,
as defined in equation (5.49). Provided that φc is small compared to the initial amplitude of
oscillations, which is indeed the case in realistic string embeddings, oscillon formation will not
occur until preheating in to gauge fields has ceased to be efficient, and will not occur at all if
preheating into gauge fields is efficient enough to halt the oscillatory motion of φ. Given this, we
will not consider oscillon formation in this work, although this does deserve further attention.
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where ± denote the two polarizations of the gauge field, τ is conformal time, k

indicates a comoving mode, and ξ is given by6

ξ =
2φ̇

ΛH
, (5.58)

where H is the Hubble expansion rate and φ is the background field, and an overdot

denotes the derivative with respect to physical time. As long as the slow-roll approx-

imation is valid, ξ can be taken to be constant. This is the equation relevant during

the inflationary period.

As Eq. (5.57) shows, for one of the polarization states there is a tachyonic insta-

bility (see e.g. [107] for an initial discussion of tachyonic instabilities in reheating)

already during inflation for long wavelength modes, i.e. modes which obey

k − 2ξ

|τ |
= k − 4|φ̇I |

ΛH|τ |
< 0 , (5.59)

where the subscript I indicates that the time derivative is evaluated during slow-roll

inflation. The critical wavelength beyond which there is a tachyonic instability has

a fixed value in physical coordinates if we take H and φ̇ to be constant in time. The

critical wavelength can be called a “gauge horizon” and it plays a similar role as the

Hubble radius (Hubble horizon) for cosmological perturbations. The gauge horizon

is proportional to the Hubble radius, its physical wavenumber kp being given by

kp = 2ξH . (5.60)

6 Our definition of ξ is equivalent to the definition used in [95, 105, 106] with the identification
α/f = 4/Λ.
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For modes which start in their vacuum state deep inside the horizon, the tachy-

onic resonance [107] leads to squeezing of the mode function. The Floquet exponent

is proportional to k, and hence, among all the modes which become super-horizon

(meaning super-gauge horizon) by the end of inflation, the ones which undergo the

most squeezing are the ones which exit shortly before the end of inflation, i.e. whose

comoving wavenumbers is given by

k = k∗ ≡ 2ξH , (5.61)

if we normalize the cosmological scale factor to be a(t) = 1 at the end of inflation.

The value of k∗ is determined by the Hubble rate and the axion field velocity at the

end of the period of inflation.

It can be shown [105] that the mode function prepared by inflation is

A
(0)
k+ =

2−1/4

√
2k

(
k

ξaH

)1/4

eπξ−4ξ
√
k/2ξaH

A
(0)
k− = 0, (5.62)

where +/− denote the positive/negative chirality mode (the − mode is not amplified

during inflation). This corresponds to a highly blue spectrum of gauge field fluctu-

ations with an ultraviolet cutoff which is set by the gauge horizon; the cutoff comes

from the second term in the exponential on the right hand side of (5.62). The major

amplification factor FI of the amplitude is

FI = eπξ . (5.63)
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For the specific potential (5.49) of axion monodromy inflation the values of k∗

and ξ are (making use of (5.53) and (5.54) )

k∗ = 4
(2

3

)1/4
M

1/2
P µ3/2Λ−1 (5.64)

ξ = 2
√

6
MP

Λ
. (5.65)

This shows that if Λ � MP there is a large enhancement of the amplitude of Ak

during inflation. On the other hand, if Λ � MP , then the growth is negligible. For

small values of Λ (i.e. large values of ξ), the “gauge horizon” is smaller than the

Hubble horizon, whereas for large values of Λ the opposite is true.

As mentioned above, the power spectrum PA of gauge field fluctuations is blue.

On length scales larger that the gauge horizon we have

PA(k) ≡ k3|Ak|2 ∼ k5/2 . (5.66)

During reheating the expansion of space can be neglected [29] and the equation

(5.57) becomes

Äk± +

(
k2 ± 4

k

Λ
φ̇

)
Ak± = 0. (5.67)

We immediately see that the tachyonic resonance which was present during the pe-

riod of inflation persists during the preheating period when φ undergoes damped

anharmonic oscillations about φ = 0. While φ̇ is negative, then the same polariza-

tion mode gets amplified as during inflation. During the second half cycle, when

φ̇ > 0, it is the other mode which is amplified while the original mode oscillates.

To obtain an order of magnitude estimate of the amplification of Ak during

preheating, we focus on the first oscillation period (when the Floquet exponent of
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the instability is largest). We focus on the first quarter of the oscillation period T

when φ is decreasing from φ = φe to φ = 0. The velocity during most of this time

interval is approximately φ̇e (see (5.53)). The amplitude of Ak grows exponentially

at a rate (for k/k∗ < 1),

µk = 2

(
k

Λ

)1/2√
φ̇
e

= 2

(
2

3

)1/8(
k

Λ

)1/2

M
1/4
P µ3/4 . (5.68)

The factor Fk by which the amplitude of Ak is amplified is

Fk = eXk , (5.69)

with

Xk =
1

4
Tµk , (5.70)

where T is the period. The quarter period is given by

1

4
T =

φe

φ̇e
. (5.71)

Combining these equations yields

Xk = Xk∗

( k
k∗

)1/2
, (5.72)

with

Xk∗ = 2

(
2

3

)1/2
MP

Λ
. (5.73)

Comparing the amplification factors FI and Fk (see (5.63) and (5.73)) one sees that

at the value k = k∗ they have similar magnitudes.
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The mode function after one period of oscillation of φ is thus given by

Ak+ =
2−1/4

√
2k
eXk

(
k

ξaH

)1/4

eπξ−4ξ
√
k/2ξaH . (5.74)

As long as the expansion of the universe can be neglected, and before backreaction

shuts off the resonance, the gauge field fluctuations grow by the same factor in each

period. Hence, after N periods we obtain

Ak+ =
2−1/4

√
2k
eNXk

(
k

ξaH

)1/4

eπξ−4ξ
√
k/2ξaH . (5.75)

Comparing the expressions for the period T and the Hubble expansion rate H at

the end of inflation we see that right at the end of inflation T ∼ H−1 and hence the

expansion of space cannot be neglected. However, once reheating starts, φ decreases

and hence T decreases and the expansion of space becomes negligible. The Floquet

exponent can be taken to be approximately constant during half of each period, and

vanishing for the other half. Hence, over a period (0, t) of reheating, the increase in

the amplitude is

Fk ∼ e
1
2
µkt , (5.76)

and the gauge field amplitude becomes

Ak+ =
2−1/4

√
2k
e

1
2
µkt

(
k

ξaH

)1/4

eπξ−2
√

2ξ
√
k/ξaH . (5.77)

There is also an amplification for the (−) polarization, Ak−, but this mode is sup-

pressed during inflation, and enters preheating with a different mode function.
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5.3.3 Gauge Field Energy Density Fluctuations

We have thus far computed the gauge fields produced during preheating. This

sources an energy density perturbation, δρA, which we will now focus on. The gauge

field energy density is defined as (in (-,+,+,+) signature)

ρA(x, t) = −T 0
0 , (5.78)

where Tµν is given by (again in (-,+,+,+) signature, and assuming a Lagrangian

L = (1/4)F 2),

Tµν = −1

4
gµνF

2 + FµλF
λ
ν . (5.79)

In terms of the gauge field Aµ, and without any gauge fixing, this reduces to

ρA(x, t) = −1

2
(∂0Ai − ∂iA0)(∂0Ai − ∂iA0) +

1

4
(∂iAj − ∂jAi)(∂iAj − ∂jAi) . (5.80)

We can fix the gauge by setting A0 = 0. The leading term on cosmological scales is

given by

ρA(x, t) ' −1

2
∂0Ai∂0Ai . (5.81)

To find the Fourier modes of ρA(x, t), we first expand Aµ in terms of classical

oscillators

Aµ(x, t) =
∑
λ=+,−

∫
d3k

(2π)3

[
ελµAλ(k, t)αke

ikx + ελµ
∗
Aλ(k, t)α

†
ke
−ikx

]
, (5.82)

where αk are classical oscillators drawn from a nearly Gaussian distribution, satisfy-

ing

〈αkαk′〉 = (2π)3δ3(k + k′) , (5.83)
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where the angular brackets stand for ensemble averaging. We can expand ρ in a

similar fashion

ρA(x, t) =

∫
d3k

(2π)3
ρAkβke

ikx + c.c. , (5.84)

where βk are a different set of classical oscillators, whose distribution function can be

determined in terms of the αk. The Fourier modes of ρ(x, t) are simply a convolution

of Fourier modes of the gauge field Aµ

ρAkβk = +
1

2
a−2

∫
d3k′

(2π3)
Ȧk′+Ȧ(k−k′)+αk′αk−k′ , (5.85)

where the mode function Ak is given by equation (5.77). There is a gradient term

k2A2
k which is comparable in magnitude to the time-derivative term, and thus changes

ρAk by a factor of two.

We can use the above expression to straightforwardly calculate the background

energy density in the gauge field and the spectrum of the gauge fluctuations. The

homogenous background energy density is simply 〈ρA(x, t)〉, and we define the fluc-

tuations δρA(x, t) about this background as δρA = ρA − 〈ρA〉, such that 〈δρA〉 = 0,

and the variance of fluctuations is simply 〈δρ2
A〉 = 〈ρ2

A〉−〈ρA〉2. A simple calculation

shows that the background is given by

〈ρA(x, t)〉 =
1

2
a−2

∫
d3k|Ȧk+|2 . (5.86)

The dominant contribution to the integral comes from the maximally amplified mode

k = k∗, and we can hence approximate it as

〈ρA(x, t)〉 ∼
√

2 a−2 e2µ∗t(µ∗k∗)
2e−2

√
2 · e2πξ , (5.87)
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where µ∗ ≡ µk∗ From this we see that the amplitude of 〈ρ〉 depends inversely on the

UV scale Λ, since a smaller Λ means an increased k∗.

The mode function of fluctuations can be straightforwardly computed using the

definition δρA = ρA−〈ρA〉 in conjunction with equation (5.85) and the approximation

that the βk are drawn from a nearly Gaussian distribution, i.e. 〈βkβk′〉 = (2π)3δ3(k+

k′). The exact βk are not drawn from a Gaussian distribution, but as we have the

modest goal of computing power spectra (i.e. two-point statistics), this is not an

important distinction. The dominant term in δρAk is

|δρAk|2 '
1

4
a−4

∫
d3q |Ȧq|2|Ȧk−q|2 . (5.88)

For modes in the IR, i.e. k � k∗, this integral is highly peaked at q = k∗ and we can

find

|δρAk|2 '
〈ρA〉2

k3
∗

. (5.89)

Note, in particular, that the resulting power spectrum of gauge field fluctuations is

highly blue. The spectral index is ns = 4.

5.3.4 Backreaction Considerations

The exponential increase in the gauge field value cannot continue forever. Even-

tually, the tachyonic resonance will be shut off by backreaction effects. backreaction

in a two field toy model of parametric resonance was considered in [108], where it was

concluded that backreaction does not prevent the exponential production of entropy
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fluctuations before these perturbations become important. In this subsection we es-

timate how long the tachyonic resonance in our model will last until backreaction

becomes important.

We will consider the two most important backreaction effects involving gauge

field production. The first is the effect of gauge field production on the axion field

dynamics, the dynamics driving the instability. Recall that the axion equation of

motion is given by

φ̈+ 3Hφ̇+ V,φ =
1

Λ
〈FF̃ 〉, (5.90)

where 〈FF̃ 〉 refers to enseble or spatial averaging as was done to determine 〈ρA〉 in

the previous section. To obtain an order of magnitude estimate of when backreaction

becomes important, we can compare the term on the right hand side of (5.90) with

the force driving the oscillations. The first condition of ‘small backreaction’ comes

from demanding that the force term dominates. This translates to

〈V,φ〉rms � 〈
FF̃

Λ
〉RMS . (5.91)

We can estimate the order of magnitude of the right-hand side of the above equation

by Λ−1ρA, and hence the condition (5.91) becomes

V ′ � 1

Λ
ρA . (5.92)

The second backreaction condition comes from demanding that the energy den-

sity is dominated by the scalar field, i.e.

V � ρA . (5.93)
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In this equation, the value of φ appears. We will use the value at the end of inflation.

For the axion monodromy potential we are using, the two conditions differ by

a factor Λ/MP . Inserting the expression (5.87) into the first backreaction criterium

(5.92) yields

2µ∗t = −2πξ + 3 ln

(
Λ

µ

)
+ 2 ln

(
Λ

MP

)
(5.94)

for the time interval t before backreaction becomes important, whereas the second

condition (5.93) yields

2µ∗t = −2πξ + 3 ln

(
Λ

µ

)
+ 3 ln

(
Λ

MP

)
(5.95)

which is a stronger condition if Λ < MP and weaker otherwise.

The amplitude of the gauge field energy density fluctuations when backreaction

becomes important then is bounded from above by

δρAk ∼ V

k
3/2
∗

for Λ > MP (5.96)

δρAk ∼ V

k
3/2
∗

Λ

MP

for Λ < MP .

Note that there can be backreaction effects from the production of other fields which

may turn off the resonance much earlier. Since we are interested in obtaining upper

bounds on the effects generated by gauge field production, we will work with the

above upper bounds.

5.3.5 Induced Curvature Perturbations

During reheating purely adiabatic fluctuations on super-Hubble scales cannot be

amplified since it can be shown that the curvature fluctuation variable ζ is conserved.
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This can be shown in linear cosmological perturbation theory [88, 109, 110, 111],

but the result holds more generally (see e.g. [54, 55]). On the other hand, entropy

fluctuations can be parametrically amplified during reheating [46, 47] (see also [113]).

Entropy fluctuations inevitably seed a growing curvature perturbation. Thus, in the

presence of entropy modes it is possible to obtain an exponentially growing curvature

fluctuation on super-Hubble scales (see e.g. [114] for some studies of this question in

earlier string-motivated models of inflation).

Consider ζ, the curvature perturbation on uniform density hypersurfaces. This

is the variable which determines the amplitude of the CMB anisotropies at late times

(see [10] for a detailed overview of the theory of cosmological perturbations). In the

absence of entropy fluctuations, this variable is conserved on super-Hubble scales

[55, 88, 109, 110]. However, in the presence of entropy perturbations, a growing

mode of ζ is induced on super-Hubble scales, as already discussed in the classic review

articles on cosmological perturbations [10, 115] and as applied to axion inflation in

[116]. For more modern discussions the reader is referred to [118, 138]. The equation

of motion for ζ on large scales (of cosmological interest) is given by (2.43)

ζ̇ = − H

p+ ρ
δPnad . (5.97)

Note that ζ is dimensionless.

From our discussion in chapter 2, we know that the relative entropy pertur-

bations is related to the non-adiabatic pressure perturbations. Then we can write
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non-adiabatic pressure perturbations as

δPnad = ṗ

(
δp

ṗ
− δρ

ρ̇

)
, (5.98)

where in our case the total pressure is the sum of the contributions from the φ field

and from the gauge field, i.e. p = pφ + pA, and similarly for ρ. For a background

that is dominated by φ, and with δρA > δρφ, the above non-adiabatic pressure

perturbation is simply

δPnad ' ṗφ

(
δpA
ṗφ
− δρA

ρ̇φ

)
, (5.99)

and the evolution equation of ζ is given by

ζ̇ ' − H

ρφ + pφ

(
1

3
− c2

sφ

)
δρA , (5.100)

where c2
sφ =

Ṗφ
ρ̇φ

is the speed of sound for the inflaton field.

In our case, the gauge field energy density fluctuations δρA is increasing ex-

ponentially with a Floquet exponent 2µ∗ during the preheating phase, as shown in

earlier sections. Hence, integrating over time, we get

∆ζk = −µ−1
∗

H

ρφ + pφ

(
1

3
− c2

sφ

)
δρAk , (5.101)

where the wavenumber k and the density fluctuation δρA are Fourier space quantities.

However, since δρA is independent of k, we find that the power spectrum of the

induced fluctuations of ζ is

P∆ζ(k) ∼ k3 , (5.102)

which corresponds to a highly blue tilted spectrum with index ns = 4. Since the

spectrum has such a large blue tilt, there are no constraints on our model coming
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from demanding that the induced curvature fluctuations do not exceed the observa-

tional upper bounds.

5.3.6 Primordial Black Hole Constraints

Since the power spectrum of induced curvature fluctuations is highly blue,

we have to worry about the possible constraints on the model coming from over-

production of primordial black holes. Primordial black holes are constrained by a set

of cosmological observations, beginning with the original constraints coming from

the observational bounds on cosmic rays produced by radiating black holes [119].

Primordial black hole production during reheating has been considered in simple

two field inflation models in [120], and in models with spectra with a distinguished

scale in [121].

In the context of an inflationary cosmology, primordial black holes of mass M

can form when the length scale associated with this mass (i.e. the length l for which

the mass inside a sphere of radius l equalsM) enters the Hubble radius. The number

density of black holes of this mass will depend on the amplitude of the primordial

power spectrum 7 .

Since in our case the power spectrum is highly blue, the tightest constraints will

come from the smallest mass for which cosmological constraints exist. These corre-

spond to black holes with a mass such that they evaporate during nucleosynthesis.

7 The are numerous subtleties in computing the precise number density, which tend to suppress
the number of primordial black holes formed, see e.g. [122] and references therein. These details
will not be important for our analysis.
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The extra radiation from these black holes would act as an extra species of radiation,

and would destroy the agreement between the theory of nucleosynthesis and obser-

vations (see [123] for reviews). The smallest length scale (i.e. largest wavenumber

k) for which constraints exist is [124]

kmax ∼ 1019Mpc−1, (5.103)

and the approximate bound on the power spectrum is

Pζ(kmax) < 10−1.5 . (5.104)

In fact, the bound for smaller values of k has comparable amplitude.

The power spectrum including the induced curvature perturbations is given by

Pζ(k) =
k3

(2π)2
|A0k

−3/2 + ∆ζk|2, (5.105)

where A0 ∼ 10−10 is the amplitude of the power spectrum at the pivot scale k =

k0 = 0.05Mpc−1, and we have approximated the spectrum of curvature perturbations

from inflation to be scale invariant. We already computed the value of the induced

curvature fluctuations ∆ζ in the previous subsection in Eq. (5.101). Inserting the

values from (5.96), (5.64) and (5.65) we obtain the following expressions for the

leading order correction to the power spectrum of curvature fluctuations

∆Pζ(k) = O(10−3)
√
A0 k

3/2 Λ5/2

M
7/4
P µ9/4

for Λ > MP

∆Pζ(k) = O(10−3)
√
A0 k

3/2 Λ7/2

M
11/4
P µ9/4

for Λ < MP , (5.106)
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corresponding to a spectrum with index ns = 5/2. These expressions hold if the

exponential growth of the curvature fluctuations is only limited by the backreaction

effects studied before. Other effects may terminate the growth earlier. Hence, the

above equations provide upper bounds on the amplitude of the induced curvature

perturbations.

For the largest value of k for which the primordial black hole constraints apply

we have
k

MP

∼ 10−39 . (5.107)

Inserting this value into (5.106) we find that the primordial black hole constraint

(5.104) is trivially satisfied for the realistic range of values of Λ.

To conclude, we note that in this section we have considered a minimal ax-

ion monodromy model and have calculated the spectrum of curvature perturbations

induced by the entropy modes associated with the gauge field to which the axion

couples. We find that the leading correction to the curvature spectrum is blue with

spectral index ns = 5/2. Hence, there are no constraints from large scale cosmologi-

cal observations. On the other hand, since the spectrum is blue, there is a danger of

overproduction of primordial black holes. We find, however, that the amplitude of

the spectrum is too low even on the smallest scales for which cosmological constraints

exist.
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5.4 Entropy Perturbation in an Asymptotic-safe Model

Recently, interesting results have come up in the area of asymptotically safe

quantum field theories [128, 129], where it has been shown that a gauge-Yukawa

theory can exhibit an ultraviolet (UV) safe (i.e. non-trivial) fixed point. Being UV

safe these models could be interesting for early time cosmology. In particular, it has

been realized that these models admit a period of cosmological inflation at very early

times [130].

As we emphasized throughout the current thesis, in order to connect the infla-

tionary phase with the late time cosmology, a period of “reheating" at the end of

inflation is required. The early phase of reheating, namely the preheating process,

typically leads to a non-thermal state in which modes in certain wavelength intervals

are highly excited whereas the rest are not excited at all. However, it leads to a

phase in which the equation of state of matter is approximately that of radiation.

For early universe considerations such as baryogenesis or the production of topolog-

ical defects it is important to know the energy density when the radiation phase of

expansion begins. Hence, it is important to know whether the preheating process is

operative or not 8 . The first motivation for the work presented in this section is to

find out whether in the asymptotically safe quantum field models discussed in [130]

preheating occurs.

8 Preheating does not arise in all inflationary models.
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If an inflationary universe model admits a preheating instability at the end of the

period of inflation, there is the danger that the instability will also affect the cosmo-

logical perturbations [133]. The period of inflation produces fluctuations [16] which

have the right spectral shape to explain the observed distribution of matter in the

universe and the observed cosmic microwave background anisotropies. A paramet-

ric growth of these fluctuations at the end of inflation would destroy the agreement

between theory and observation. As we saw earlier in this chapter, in the presence

of a second scalar field a preheating instability of curvature fluctuations is possible

[2]. It is important to point out why the growth of super-Hubble scale perturbations

during reheating is compatible with causality. This is already discussed in [113].The

key point is that in inflationary cosmology there is an exponentially large difference

between the horizon (the forward light cone of a point on the initial condition surface,

e.g. a point at the beginning of inflation) which grows exponentially in time, and

the Hubble radius, the inverse expansion rate (which is constant during a period of

exponential inflation). The reason why inflation can provide a solution of the horizon

problem of Standard Big Bang cosmology is precisely the fact that the physical scale

of a region of causal contact and homogeneity expands exponentially and becomes

much larger than the Hubble radius. At the end of inflation, the inflaton field is in

the coherent state and the correlation length of the field would set the maximum

wavelength of fluctuations which can causally be amplified. Inflation will provide

that the background inflaton field is coherent over a distance much larger than the

Hubble radius during reheating and therefore guarantees possibility of causal ampli-

fication of super Hubble modes. This possibility is the case for both adiabatic and
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entropy fluctuations. Also we would like to mention the fact that field equations

are relativistic, hence causality is mathematically build-in and the result from field

equations will not violate causality. In this regard there is no distinction between

supper-Hubble and sub-Hubble modes.

The asymptotically safe quantum field models studied in [130] contains many

scalar fields. A second goal of our study is to see whether there is a parametric

amplification of entropy modes in our models, and what the resulting amplitude of

the induced curvature fluctuations is 9 .

5.4.1 Model

We will here give a short recap of the model at hand. The full Lagrangian density

is composed of adjoint SU(Nc) gauge fields, Nf Dirac fermions in the fundamental

of SU(Nc) and an Nf × Nf neutral complex scalar matrix, H. We will here only

present the scalar part of the Lagrangian.

Lscalar = Tr
(
∂µH

†∂µH
)
− uTr

(
H†HH†H

)
− v

(
TrH†H

)2
, (5.108)

where u and v are dimensionless coupling constants.

9 This question has recently been addressed in other two field models of inflation in [2, 4].
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As we will be working in the UV regime of this model it is noteworthy that the

scalar couplings at the UV fixed point [128] are given by

α∗u =
u∗Nf

(4π)2
=

√
23− 1

19
δ (5.109)

α∗v =
v∗N2

f

(4π)2
= − 1

19

(
2
√

23−
√

20 + 6
√

23

)
δ (5.110)

where the constant

δ ≡ Nf

Nc

− 11

2
(5.111)

(which must be positive) can be made arbitrarily small by adjusting Nc and Nf .

We will in this work take a simplified version of (5.108) as we assume H to be

symmetric and real. The parametrization of H is given by

Hij =


1√
2Nf

φ if i = j

1
2
χ(ij) else ,

(5.112)

where (ij) indicates that this part is symmetric in i and j.

With this normalization the kinetic term in (5.108) is given by

Tr
(
∂µH

†∂µH
)

=
1

2
∂µφ∂

µφ+
1

2

Np∑
l

∂µχl∂
µχl (5.113)

where Np = Nf (Nf−1)/2 is the number of different off-diagonal fields, χij. It is clear

from the kinetic term why we chose the normalization of H in (5.112). Similarly the

double trace potential is given by

v
(
TrH†H

)2
=
v

4
φ4 +

v

4

Np∑
l

χ4
l +

v

2
φ2

Np∑
l

χ2
l +

v

2

Np∑
l>k

χ2
l χ

2
k. (5.114)
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For a general complex matrix H the potential can be fully written in terms of

the structure constant of U(Nf ), see Appendix B of Ref. [135]. We will however here

use the following grouping of terms for the single trace potential

uTrH†HH†H =
u

4Nf

φ4 +
3u

2Nf

φ2

Np∑
l

χ2
l

+
3u√
2Nf

φ

Nf∑
i<j<k

χijχjkχki +
u

8

Np∑
l

χ4
l

+
u

8

Nf∑
i 6=j k>i

χ2
ijχ

2
jk +

u

16

Nf∑
i,j,k,l

χijχjkχklχli.

(5.115)

It is worth noting that there is no cubic term for φ. This is a consequence of the fact

that φ appears only on the diagonal of H.

At first glance this model seems overly complicated, however a short motivation

why this model is relevant for discussion will be given here. A central parameter in

the study for parametric resonance is the ratio of the quartic inflaton coupling (λ) to

the portal coupling (g2). A study similar to the present can be given in a toy model

with an inflaton and a scalar field coupled to the inflaton. In these toy models the

relevant parameter (g2/λ) will need to be fixed arbitrarily, see e.g. [2, 3, 102, 132].

This is in contrast to the model presented in this section. With the model given by

(5.108) this ratio is given by the model it self and is thereby not an arbitrarily cho-

sen number. Furthermore, as was shown in [129] the running of the couplings follow

that of the gauge coupling (in [129] called αg) along the UV uni-dimensional stable

trajectory. This implies that the ratio g2/λ stays constant even including running

away from the UV fixed point. This is a remarkable fact that solidifies our future
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choice for this ratio to be that at the UV fixed point. This is a priori not a feature

of a toy model, hence the model in (5.108) is an interesting scenario.

5.4.2 Recap of Results on Inflation

We will in this section recap some of the results of Ref. [130] as this is the

inflationary scenario we have in mind for our investigation. Inflation is driven by the

diagonal element of H where all diagonal elements are taken to be the same [129].

The inflationary effective potential can be derived from (5.108) with the couplings

given by (5.109) and (5.110),

V (φ) =
λφ4

4(1 +W (φ))

(
W (φ)

W (µ0)

) 18
13δ

(5.116)

where λ = v∗ + u∗

Nf
and W (·) is related to the product logarithm, see Ref [130]

for details. This is a φ4-theory including renormalisation of the inflaton operator

expanded near the UV fixed point.

The potential in equation (5.116) is valid for a large range in φ. However, for

the study of parametric resonance small field values are considered as this minimum

of the potential is located here. This means that for this analysis the potential will

be approximated by λφ4. This full φ dependence is included for completeness.

It was shown that this model can provide a viable scenario for large field inflation.

The inflationary slow-roll condition ceases to be satisfied and thus quasi-exponential

expansion stops at a field value

φend =

√
(4− 16

19
δ)(3− 16

19
δ)MP '

√
12MP . (5.117)
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The phenomenological predictions for this model, for very small δ, lie just outside

the Planck’15 2σ contours for the tensor-to-scalar ratio and scalar spectral index.

It was noted that in this perturbative regime a very large number of flavors was

needed to produce the measured amplitude of curvature perturbations by the inflaton

fluctuations alone. However this number drops rapidly as the perturbative parameter

δ is pushed close to and beyond the radius of convergence of the underlying model.

The inflationary phase will quasi-exponentially redshift the wavelength of any

fluctuations existing before the onset of reheating, and will produce a homogeneous

inflaton condensate. Once the field value of this condensate decreases to below the

value given by (5.117), accelerated expansion of space ends and the reheating period

begins. We will be working in terms of the usual metric

ds2 = dt2 − a(t)2dx2 (5.118)

of space-time, where t is physical time and x are the Euclidean comoving coordi-

nates of the expanding space. It will often be useful to work in terms of conformal

time η defined via dt = adη. Since we are interested in the period of reheating, we

will normalize the scale factor to be a(tR) = 1 at the time tR corresponding to the

beginning of reheating.

5.4.3 Parametric Resonance

We will here discuss parametric resonance of the inflaton and the off-diagonal

scalar fields. One could also investigate parametric production of fermionic fields;

however this will be left for a later discussion.
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At the end of the inflationary epoch and before significant production of any

other field has happend, the equation of motion (EoM) for the homogeneous inflaton

field is given by

φ̈+ 3Hφ̇+ λφ3 = 0 , (5.119)

where H is the Hubble expansion parameter. It is obvious that the solution for φ

will correspond to damped oscillation. The expansion of space can be factored out

by introducing a rescaled field ϕ̃ ≡ aφ and working in terms of conformal time. In

terms of this field the solution is, as noted in [74], oscillatory, however not sinusoidal

but proportional to the elliptic cosine, cn(x), where x is a rescaled dimensionless

conformal time which will be defined below. The equation of state of these oscil-

lations is (upon time averaging) that of radiation. Hence the amplitude, which is

asymptotically given by

ϕ̃ = a
1√
t

(
3M2

P

8πλ

) 1
4

, (5.120)

is constant.

The EoM for the ij off diagonal component is given by

0 = χ̈ij + 3Hχ̇ij + g2φ2χij − a−2∇2χij

+
3u√
2Nf

φ

Nf∑
k

χikχkj +O(χ3) , (5.121)

where ∇ stands for the gradient operator with respect to the comoving spatial coor-

dinates. Here

g2 = v +
3u

Nf

. (5.122)
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Note that first line is leading order in χ ∼ 0, and anything beyond this is subleading.

In our study of parametric resonance we consider the first three terms only, and the

rest we regard as back reactions in the next section. The first line is a linear equation

for χij which we will solve for each Fourier mode independently.

Fourier transforming this linear EoM and rescaling the field by aχ = X yields

10

X̃ ′′k +

(
κ2 +

g2

λ
cn2

(
x,

1√
2

)
− a′′

a

)
X̃k = 0 , (5.123)

where we have dropped the ij indices since the equation is identical for each com-

ponent as long as we do not include mixing terms from the higher orders in χ. We

have defined

κ2 =
k2

λϕ̃2
(5.124)

and primes are derivatives w.r.t the dimensionless conformal time

x ≡
√
λϕ̃η . (5.125)

In (5.123) we have signified the Fourier component by a tilde, however they will be

omitted from now on. The term a′′

a
is zero during the phase of parametric resonance

as can be checked from the Friedman equation.

10 We are neglecting terms in the equation of motion for Xk containing the metric perturbations.
As discussed in Chapter 19 of the review article [10] this is justified as long as the energy density
in the entropy field is smaller than that of the inflaton field. We are not the first to use this
approximation. It is the basis of the curvaton scenario [141] and related scenarios such as the New
Ekpyrotic model [142].

REHEATING IN EARLY UNIVERSE COSMOLOGY 128



Chapter 5 PREHEATING OF COSMOLOGICAL PERTURBATIONS

We will now approximate the elliptic cosine by the first term of a cosine expan-

sion [74] as follows

cn

(
x,

1√
2

)
' 8
√

2π

T

e−
π
2

1 + e−
π
2

cos

(
2π

T
x

)
(5.126)

where T is giving by the complete elliptic integral

T = 4K

(
1√
2

)
= 4F (

π

2
|1
2

) .

Here

F (θ|m2) =

∫ θ

0

dφ√
1−m2 sin2(φ)

is the elliptic integral. Numerically we have β ≡ 2π
T
' 0.8472. As an approximation

to the elliptic cosine we will use

cn

(
x,

1√
2

)
' cos (βx) . (5.127)

With this we can rewrite (5.123) in terms of the rescaled dimensionless conformal

time, y ≡ βx (which we normalize to be y = 0 at the beginning of the reheating

period, i.e. t = tR) as

X ′′k + β−2

(
κ2 +

g2

2λ
+ 2

g2

4λ
cos (2y)

)
Xk = 0 (5.128)

where the derivative is with respect to y.

Written on this form, the equation of motion for χ takes the form of a Mathieu

equation with parameters q = g2

4β2λ
and A = β−2(κ2 +2q) (see e.g. [?]). The Matheiu
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equation has a solution given by

X(y) = A1 exp(µky)P1(y, k) + A2 exp(−µky)P2(y, k), (5.129)

that is, a growing and decaying exponential solution, with periodic behavior captured

by P1 and P2. Here µk is the Mathieu characteristic exponent, and the two periodic

functions have amplitude 1 and the frequency which is given by the frequency of the

inflaton condensate, i.e. independent of k (see [31, 136]).

The characteristic exponent µk is in general a complex number. However, for

some parameters it has a real part called the Floquet index. Given our model pa-

rameters
g2

λ
=
α∗v + 3α∗u
α∗v + α∗u

' 7.4 , (5.130)

we present the Floquet index in Figure 5-2.

Before discussing the parametric amplification of χ after inflation, we must de-

termine the initial conditions for χ(y) at the end of the inflationary phase. Similar

to our discussion in section 2 of the current chapter, squeezing condition satisfies

here as well. Hence the spectrum of the X perturbations will be scale invariant at

the beginning of the reheating period (t = tR), i.e.

Xk(tR) ' HIk
−3/2P1(y = 0, k) , (5.131)

where HI is the value of H during inflation (more precisely when the scales of interest

exit the Hubble radius during inflation). In the following we will not make a difference

between HI and the Hubble expansion rate at the end of the inflationary phase, i.e.

H(tR).
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Figure 5–2: Positive real part of the Mathieu characteristic exponent for q = g2

4β2λ and A =

β−2(κ2 + 2q).

During the preheating phase, the above value of X is exponentially amplified,

yielding

Xk ' HIk
−3/2 exp(µky)P1(y, k) . (5.132)

Since we have normalized the scale factor to be a(tR) = 1, and since we can ignore

the growth of a(t) during the initial preheating period, we can identify X and χ.

The fluctuations of χk computed above yield the entropy fluctuations generated

in the model. In order to compute the induced curvature fluctuations, we need the

background value of the χ field. In the case of two field inflationary models with scalar

fields having classical background, it is clear how to identify the background value
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of the entropy field. In the case of a model like the one we are considering, in which

there is no classical zero mode of the entropy field, the situation is more complicated.

Working strictly at first order in perturbation theory there is no background, and

hence there will be no induced curvature fluctuations. However, this is clearly not the

correct result, since if we were to argue in this way then cosmic string formation in an

early universe phase transition would never lead to curvature fluctuations on super-

Hubble scales, and it is well known that such curvature perturbations are formed (see

e.g. [137] for reviews on cosmic strings and structure formation). A way to address

this issue was recently suggested in [2, 4]: each k mode of the fluctuations lives in

an effective background χeffij (k) which is generated by all perturbation modes with

smaller wavelengths.

The effective background is given by

χeffij (k) =

(∫ k

0

d3k′|Xk′|2
)1/2

. (5.133)

Following our analysis in section 2, we can estimate the effective background for

the χ mode fluctuations

χeffij (k) ∼ HIN
1/2
I exp(µy)P1(y, k) , (5.134)

where again kmin is the value of k which corresponds to Hubble crossing at the be-

ginning of inflation. Note that NI is the logarithm function as in (5.27).
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5.4.4 Backreaction Effects

In our analysis of the preheating in the UV-safe theory, we have neglected any

backreaction mechanism. Having done that we observed that exponential ampli-

fication sets in, and that the induced curvature fluctuations might have potential

dangerous consequences for the theory. However it is crucial to consider backreac-

tion effects since they will eventually terminate the resonance. Backreaction effects

are nonlinear and are often studied numerically. However, for the questions of large-

scale curvature fluctuations, an analytical analysis is preferable (see [57] for an initial

study of backreaction effects during preheating in a two field inflation model).

Here we will consider two kinds of backreaction effects:

– The effect of produced χ particles on the evolution of the inflaton field .

– The contribution of amplified modes on the effective mass for χ field fluctua-

tions.

Other backreaction effects are studied in [74, 3] but are not relevant in our case.

Effects on the evolution of the inflation field

The leading order term in χ, for small χ, in the inflaton action is

g2

2
φ2

Np∑
l

χ2
l , (5.135)

where the index l runs over all of the χ fields. This must remain sub-dominant to

the main interaction term in the inflaton action which is

λ

4
φ4 . (5.136)
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This leads to the condition

Np∑
l

〈χl〉2eff <
λ

2g2
φ2
end , (5.137)

which needs to be satisfied in order to justify neglecting backreaction effects. In the

case when all preheat fields are excited equally, which we show is the case, we get

〈χl〉2eff <
λ

2g2Np

φ2
end . (5.138)

Naturally, the more fields we have, the less each must be excited to interfere. Note

that all χ modes which are excited contribute to the left hand side of (5.138), and

hence the expression is proportional to NI .

Contribution to the effective mass of the preheat field fluctuation

Now we focus on the mass term in the equation of motion for one of the χk field

modes. At linear order in χ, the mass term comes from the coupling of χ to the

inflaton. This is the mass term which we have considered and which leads to the

parametric instability, and its value is

g2φ2
end . (5.139)

However, beyond linear order there is a contribution to the mass which comes from

the interactions between all χ fields. As is evident from (5.114) and (5.115) each χ

field couples quadratically to a fixed χ. Assuming that all χ fields are excited equally

we get a contribution to the mass which is

λ′Np〈χ〉2eff (5.140)
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where we have taken into account that each mode of χ which are excited contribute

to the effective mass of the χ field, and hence the above expression is proportional

to NI . In the above, λ′ is a coupling constant made up of the constants appearing

in (5.114) and (5.115). The condition, that backreaction can be neglected, then

becomes

〈χ〉2eff <
g2

2λ′Np

φ2
end. (5.141)

Since λ′ is of the same order of magnitude as λ we find that (using the value of g2/λ

which our model predicts) the first backreaction condition (5.138) is slightly stronger

than the second one (5.141).

Note that when the parametric resonance stops all preheating fields have been

excited equally as the sole non-democratic couplings enter in the χ4 terms relevant

only for the second backreaction effect considered.

5.4.5 Induced Curvature Perturbations

Having shown that parametric resonance of the spectator scalar fields is efficient

in this model, we move on to investigate the resulting amplification of the entropy

fluctuations which in turn leads to a contribution to the curvature perturbation with

an exponentially growing amplitude.

Fluctuations in a spectator scalar field will induce a contribution to the curvature

whenever the equation of state of the spectator field mode is different from that of the

adiabatic mode. The magnitude of the induced curvature fluctuation is proportional

to the energy density in the spectator field. Thus, a background value of the spectator

field is required in order to obtain a growing curvature mode. If we are considering
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curvature fluctuations on a fixed scale k, we will use the effective background χ field

constructed earlier as this background. The conversion of entropy field fluctuations

into curvature perturbations has been studied in many works (see e.g. [138, 139] for

some classic papers). We may also use the covariant formalism of [140] as applied

to study preheating in [2] and presented in this chapter. Following our analysis in

section 2, the induced curvature fluctuation is given by

ζk '
H

φ̇2
χ̇Sk , (5.142)

where Sk is the entropy field perturbation which, according to our analysis, is given

by

Sk = Hk−3/2 exp(µy)P1(y, k) , (5.143)

where P1(y, k) is the same periodic function as in (5.132).

The expression for χ̇ can be found using (5.134), yielding

χ̇ = β
√
λΦH

√
NI exp(µy)

∂P1(y, k)

∂y
, (5.144)

where Φ is the amplitude of φ, and where we have neglected the derivative of the

exponential factor, as it carries a factor of µ which is small compared to the order 1

frequency of P1. Hence, we obtain

ζk =
H3

φ̇2

√
λβ
√
NI exp(2µy)k−3/2ΦP (y, k) (5.145)

where P (y, k) = P1
∂P1

∂y
is a periodic function. The most important feature of this re-

sult is exponential growth of curvature perturbation which is induced by the entropy
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perturbation (see also the Appendix of Ref [2] for a more detailed derivation of this

result).

Using this result we can evaluate the power spectrum of induced curvature

perturbations, yielding

Pk =
k3

2π2
|ζk|2 '

H6Φ2

φ̇4
exp(4µy)

β2λ

4π2
NI , (5.146)

where we used |P |2 ∼ 1
2
. To estimate this expression we will use the fact that at

the end of inflation kinetic energy is of the same order of magnitude as the potential

energy. We also use Φ = φend and introduce the number σ via

φend ≡ σMP . (5.147)

We can use the result of the previous section on backreaction to yield an estimate for

the value of exp(4µy) when the resonance stops. As discussed in the previous section

one can show the first backreaction effect shuts off the resonance before the second.

Therefore using (5.138) for the time when the backreaction becomes important, we

get

exp(4µy) ∼
(

2g2

λ

)−2
M4

P

H4
N−2
I N−2

p σ4 (5.148)

Inserting (5.148) and (5.147) into (5.146) and taking into account that the potential

energy at the end of inflation is

V =
λ

4
σ4M4

P (5.149)

we obtain our final result

Pk ∼
β2σ2

N2
pNI

(
g2

λ

)−2

(5.150)
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for the power spectrum of the induced curvature fluctuations.

For our model with g2

λ
' 7.4 and σ2 ' 12 and β ' 1 we get

Pk ∼
1

N2
pNI

. (5.151)

For this not to exceed the observed value with amplitude of order 10−10 we need a

large number of flavors and/or a large number of e-foldings of inflation.

To conclude this section, we note that our first result is that the parametric in-

stability indeed arises in the UV-safe model we introduced, hence the energy transfer

from the inflaton condensate to fluctuating fields is rapid. Our second result concerns

the demand that the curvature fluctuations induced by the parametrically amplified

entropy modes do not exceed the upper observational bounds. We have seen that

this puts a lower bound on the product N2
pNI , where Np is the number of scalar fields

which the model of [128, 129] contains, and NI is the total number of e-foldings of

the inflationary phase. The reason that the power spectrum of the induced curva-

ture fluctuations decreases as N2
p is that backreaction effects turn off the parametric

instability earlier as Np increases. It is a linear effect in Np on the fluctuation modes,

and hence a quadratic effect in the power spectrum. The reason that the bound

depends on NI is that the energy density in the effective entropy field background

(which determines the strength of the conversion of entropy to adiabatic mode) is

proportional to
√
NI , and that as NI increases the backreaction is shut off earlier

due to more modes being super-Hubble. The combination of these effects gives the
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net scaling of the power spectrum as N−1
I .

5.5 Conclusion

In this chapter gravitational effects are considered during preheating. We ob-

served that the enhancement of cosmological perturbations indeed happens during

preheating. Depending on the model and the conditions during preheating, this

enhancement can occur even on large scales which are of cosmological interest.

In the first model we considered here, we applied the covariant formalism to

study the evolution of entropy perturbations in massless preheating. We observed

that the amplifications of the induced curvature perturbations is a serious problem for

the model as it exceeds the observational constraints by many orders of magnitude.

In the second model, we studied preheating into the gauge field fluctuations

in the axion monodromy setup with a derivative coupling to the gauge field via a

Pontryagin term. Although preheating is efficient in the model to produce gauge

field fluctuations, we observed that the spectrum of induced curvature perturbation

is very blue. This means that the enhancement on large scales is not significant and

preheating does not have an observational impact in this regard in the model. Since

the spectrum is blue, overproduction of primordial black holes might a problem for

the model. However our analysis showed that the production of primordial black

holes in the model satisfies the current observational constraints.

Then we studied preheating in a UV-safe field theory and observed that pre-

heating happening in the model and enhancement of the cosmological perturbations

on large scales may happen depending on the parameters of the model.
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Inflation leaves behind a non-thermal state in the universe. The average temper-

ature of the universe is very low and space is almost empty of matter. The reheating

mechanism is the connecting phase between inflation and Big Bang cosmology. It

explains high temperatures at Big Bang Nucleosynthesis and is considered as the

origin of the Standard Matter particles. Therefore, reheating is an integral part of

any inflationary scenario.

In this thesis, we reviewed both inflation as the standard paradigm of the early

universe and also the theory of cosmological perturbations. Then we gave a detailed

review of the reheating mechanism. We saw that to connect the inflationary phase

to the hot Big Bang Cosmology, during reheating the energy which is stored in

the inflaton field should be transferred to other degrees of freedom and particle

production happens. We studied the linear stage of reheating in which explosive

particle production occurs due to parametric resonance. We saw that the linear

stage of reheating will terminate when backreaction of the produced particles on the

background dynamics becomes important.

In chapter 4, we studied reheating in a class of G-inflation models. Since there

is no phase of oscillation of the inflaton field after inflation, there no possibility of

parametric resonance. We studied the onset of matter particle production from direct

couplings using a Born approximation approach. We derived the conditions under

which direct particle production dominates over gravitational particle production.

In chapter 5, we included gravitational effects in our analysis of reheating. We

studied particle production in a massless preheating model, in axion monodromy

inflation and in an asymptotically safe quantum field theory. We observed that in
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all three models, parametric resonance is efficient and explosive particle production

occurs. Then we calculated the curvature perturbations which are induced by grow-

ing modes of entropy perturbations. We confirmed that in the massless preheating

model and in the asymptotic safe QFT model this enhancement happens even on

large cosmological scales. Due to observations, this enhancement put severe con-

straints on the models. In the case of axion monodromy inflation with a derivative

coupling to a U(1) gauge field, we observed that the induced curvature perturbations

on large scales have less power in comparison to small scales, and hence the model is

safe regarding the amplification of entropy perturbations. We also studied formation

of primordial black holes and showed that the observational constraints are satisfied

in the model.
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Appendix: Growth of Induced Curvature Fluctuations

In this appendix we derive the growth of the induced curvature fluctuations from

first principles, making use of the covariant formalism.

In the long wavelength limit, the growth of ζ is given by [19, 21]

ζ̇a ≡ Luζa =
2

3

Θ

σ̇2
V,sSa . (6.1)

Note that the induced growing mode of ζ is quadratic in the magnitude of fluctua-

tions.

The equation (6.1) can be understood in the following way: For the Lie derivative

of curvature covector we have

Luζa = uc∇cζa + ζc∇au
c . (6.2)

Considering uc = {1/a, 0, 0, 0} we get

Luζa =
1

a
∂tζa . (6.3)

Then one can find the relation between the curvature covector and the conventional

coordinate based curvature perturbation as follows [23] (up to first order)

ζi = ∂iζ . (6.4)

Note that the quantity ζ we introduced here is the same as the conventional curvature

perturbation in the large scale limit which we are interested in (see the discussion in

[23]). The same relation holds for Sa, and considering ∂i → ik in Fourier space leads
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to
1

a
∂tζ =

√
2H

σ̇2
V,sH k−3/2 exp(µx)P1(x) . (6.5)

Up to first order in perturbation theory

σ̇2 ' φ̇2 (6.6)

and

V,s = −λφ3θ + g2φ2χ . (6.7)

Using dimensionless conformal time and again applying the conformal transformation

ϕ = aφ and the same for the preheat field χ, we obtain for the angle θ

θ =
χ′

a
− a′

a2
χ

ϕ′

a
− a′

a2
ϕ
. (6.8)

Therefore using equation (6.1) gives

ζ ′ =
2
√
π

x
k−3/2cos2(x)e2µxF (x) , (6.9)

where

F (x) ≡ λ
µx sin2(x) cos(x) + x cos2(x) sin(x)− sin2(x) cos(x)

(x sin(x) + cos(x))3
+g2 sin2(x)

(x sin(x) + cos(x))2
,

(6.10)

which clearly shows that

ζ ∝ exp(2µx) . (6.11)

Hence, we conclude that parametric resonance of entropy perturbations induces an

exponentially growing curvature mode.
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Thus, we see that taking into account the squeezing of the modes and the so-

lution (5.22), curvature perturbation induced by the entropy modes after inflation,

using (6.5), is given by:

ζentk ∼
√

2πλ
H3

ϕ̇2
ϕk−3/2e2µx , (6.12)

where we made the approximation of V,s ' λϕ2χeff .
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