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ABSTRACT 

This thesis concerns the geophysical theory of electro­

magnetic fields and waves, mainly for the near field induction 

problem, for very-high and ultra-high frequencies. The major 

contribution of this research is to allow for geophysical 

models of a half-space in which the basic electromagnetic 

parameters are complex-valued and frequency-dependent. With 

less emphasis, other dependencies (i.e. temperature, porosity, 

salinity, water content and grain size) are also discussed. In 

spite of the lack of a theoretical basis in solid-state 

physics, the Cole-Cole model of complex conductivity, permitti­

vity and permeability has been employed because of their 

relatively simple mathematical formulation while closely 

corresponding to the Kirkwood-Fuoss physical permittivity 

model. This geophysical electromagnetic theory is described, 

in parallel, in both the time and frequency domains in order to 

describe the domain-equivalence of the complex-valued 

frequency-dependent models. 

Olhoeft (1975) recognized the need for describing perma­

frozen materials with complex-valued permittivities which 

contribute to an additional conductivity-like loss at 

frequencies beyond few Hertz. Spectra of Olhoeft's observa­

tions on permittivity and conductivity of real materials have 

been inverted in this work to allow for frequency dependent 
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complex-valued electrical parameters. The results support the 

formulated theory. Furthermore, the resulting parameters have 

been used to calculate the geophysical electric and magnetic 

fields caused by theor~tically simple transmitting dipole 

antennas. 

This thesis offers a substantial review of the contempora­

ry models of geophysical electromagnetic parameters which allow 

for the better understanding of high frequency electromagnetic 

effects which can now be usefully observed with modern 

geophysical prospecting survey instruments. 

RESUME 

Cette recherche presente la theorie geophysique des champs 

et ondes electromagnetiques du probleme d' induction au champ 

proche, aux tris hautes et ultra hautes fr~quences. La contri­

bution majeur de cette recherche est qu'elle permet des 

modeles geophysiques du demi-espace, dans lequel les parametres 

geophysiques de base sont complexes et sont fonctions de la 

frequence. o•autres dependances {ex: temperature, porosite, 

salinite, contenance d'eau et taille des graines) sont aussi 

brevement citees. Malgre le manque d'explication theorique en 

etat solide, les modeles Cole-Cole de conductivite, 

permittivite et permeabilite ont ete choisis, a cause de leurs 
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formes mathematiques simples tout en ayant une proche 

correspondance avec le model Kirkwood-Fuoss de permittivit,. 

La description de la theorie d'electromagnetisme en geophysique 

est elaboree en parallile, dans le domaine de fr6quence, et le 

domaine de temps, pour en deduire la nature complexe des 

parameters. 

Olhoeft ( 197 5) soul igne la necess i te de deer ire les 

matiires pergelisoles au-dessus de quelques Hertz, par une 

permittivite complexe. Cette derniere participant a une perte 

additionnelle d'ordre conductive. Dans cette oeuvre, des 

spectres de resistivite et permittivite observes appartenant a 

de matieres reelles, ont ete inverses en permettant des 

parametres electriques complexes, et fonction de la frequence. 

Les resultats obtenus soutiennent la theorie formulae. Ces 

meme parametres ont ete par la suite utilises pour en deduire 

les champs ~lectriques et magn,tiques caus's par deux 

configurations d'antenne dipolaire theoriquement simple • . 
Cette these offre une revue substantielle des modeles 

contemporains de parametres electromagnetiques geophysiques, ce 

qui nous esperons, permettra une meilleure comprehension des 

effets electromagnetiques de hautes frequences, observes par 

les instruments modernes de prospection geophysique • 

.. 
Nous esperons que la lecture de cette these offrira une 

rif~rence convainquante et substantielle pour d'eventuelles 

recherches futurs. 
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CHAPTER I 

GENERAL INTRODUCTION 

1.1 INTRODUCTION 

The purpose of this thesis is to assemble a useful des­

cription of the electrical and magnetic properties of real 

geological materials, which is appropriate for the wide range 

of frequencies now employed in geophysical measurements, and 

which allows for the variety of source-receiver configurations 

of electrical, magnetic and electromagnetic instruments in 

c o m m·o n use • we s ha 11 1 i m i t o u r at tent ion to homo g en eo us and 

isotropic geological materials which can, however, exhibit 

strong frequency dependencies in their electromagnetic physical 

properties. The description must be consistant with Maxwell's 

electromagnetic theory and known natural laws. We shall find 

it convenient to use the Cole-Cole (1941) dispersion formulae , 

in describing the complex frequency dependence of the di-

electric permittivity, the electrical conductivity (or 

resistivity), and the magnetic permeability of naturally occur­

ing materials. We shall compare these theoretical models to 

examples derived from the existing empirical data which now 

spans frequencies from essentially DC ( Van Voorhis et al. 

1973, Carmichael 1982} to ultra-high frequency band ( Hoekstra 

& D e 1 an e y 1 9 7 4 , P o 1 e y ~! ~!. 1 9 7 8 , C o o n ~! a!. 19 8 1 e t c ••• ) • 

1 
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In addition we shall obtain appropriate theoretical 

formulations for the description of geophysical measurements in 

relation to the geological electrical and magnetic parameters. 

1.2 NATURAL ROCKS 

Natural rocks are heterogeneous materials, which show 

consid~rable complexity with respect to their electrical and 

magnetic properties. In general, a rock is a multicrystalline 

matrix, comprising a large density of surface contacts be~ween 

different materials, elements and solutions. The evolving theo­

ries of solid state physics can essentially describe the 

electrical and magnetic phenomena which arise on the 

microscopic surfaces and within microscopic volumes of rocks. 

The macroscopic properties of a composite material, 

containing phases with very different physical properties, 

depend not only on the volume fractions of the constituents, 

but are extremely sensitive to thELgeometry and topology of the 

boundary surfaces between the phases. Nevertheless rocks typi­

cally show some •mean" macroscopic behavior. Geophysically 

our interest is with the macroscopic measures and therefore, 

for convenience, in the development of this work we shall 

describe the electrical and magnetic behavior of an equivalent 

homogeneous medium, which is conductive permittive and 

permeable. 

2 
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The magnetic permeability of general rock types does not 

differ much from that of free space, except for the common 

naturally occuring •magnetic• materials. At zero frequency, 

and under low inducing fields, the magnetization is essentially 

directly proportional to the magnitude of the inducing field. 

That is, we may employ a real valued constant of 

proportionality, the magnetic susceptibility, to describe 

the field-magnetization relationship. At low frequencies the 

magnetization of most materials closely follows the alternating 

field (that is, remains in ph~se with the alternating field) 

but as frequency increases the field oscillations become too 

rapid for the molecular and grain boundary adjustments to be 

maintained in equilibrium with the applied field so that the 

magnetization becomes phase-delayed in reference to this field. 

At even higher frequencies (typically beyond 10 KHz, except in 

the narrow-bands of nuclear and electronic resonances) the in­

duced magnetization of macroscopic volumes of real materials 

essentially vanishes (Landau and Lifshitz, 1960). Since we 

are here dealing mainly with very high frequency electromag­

netic (VHF-EM) fields, the magnetic effects are generally 

insignificant, and we shall reasonably assume rock permeabili-

ties equivalent to the permeability of free space Po• 

A similar situation holds for the dielectric polarization 

of rocks, although the analogous phenomena typically arise at 

much higher frequencies (Debye, 1929). At low frequencies, 

the dielectric polarization easily follows an alternating 

3 
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inducing electric field. The electrical susceptibility, which 

is the constant of proportionality relating the electric pola­

rization to the inducing field, is essentially real valued and 

therefore no power loss occurs. At extremely high frequencies, 

in the microwave and infrared band, the field alternates so 

quickly that electrical polarization cannot become established 

and only a small residual level of polarization remains. This 

results in most materials showing a minimum in dielectric 

permittivity at sufficiently high frequencies. This residual 

permittivity will approach that of free space for non-polar 

molecules, while for substances like water, alcohol and barium 

titanite, which are molecules possessing a natural perma-

nent electric dipole moment due to the asymmetry of their 

electrical charge distribution, the residual permittivity will 

exceed that of free space. 

Conductivity of physical materials can show a relatively 

complex frequency dependence. As well, the range of real con­

ductivities of common materials is extremely wide: from the 

order of 10-15 S/m for quartz and mica to the order of 109 S/m 

for silver, gold and copper. At extremely low temperatures, 

some metals and alloys posses a practically infinite supercon­

ductivity (e.g. lead below 7.2°K). In such metals the current 

continues to flow without measurable dissipation 

the electric field has been removed. 

even after 

Often, the conductive properties of rock masses dominate 

all other effects at frequencies in the submicrowave range. 

4 
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However, in the infrared to x-ray frequency range, conductivity 

can show a considerable complexity of frequency dependence. 

our interest in these frequency-dependent electrical and magne­

tic material properties will not concern the various strongly 

resonant phenomena such as nuclear magnetic resonances. 

1.3 OUTLINE 

In chapter II, we define tne essential electromagnetic 

fields and in restricting their description impose 1 inear i ty, 

isotropy .and homogeneity conditions on the geophysical media. 

Constitutive equations and Ohm's law are then stated both in 

the time and frequency domains. We shall require realizabili~y 

{i.e. we require that the phenomena be causal and stable), a 

condition which leads to Hilbert transform restrictions. 

Maxwell's equations and charge continuity equation follow, from 

which we deduce the wave equation for the E- and H-field and 

derive the general equation of the propagation constant and 

wave impedance for far fields. Also, propagation depth and 

apparent resistivity as functions of frequency and average 

material properties are obtained. For near field, we shall 

consider potential functions described in terms of Hertz vector 

from which, by appropriate differentiation, the E- and H-field, 

and consequently all other electromagnetic fields, can be 

described. 

5 
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In Chapter III, common dielectric phenomena and dielectric 

hysterisis are described followed by Debye's "Polar Molecules• 

description in introduction to the Cole-Cole model which has 

been adopted as the basic dielectric dispersion model in this 

research. After the description of each dielectric model in 

the frequency domain, its time domain equivalent is obtained 

via Fourier transformation. The Cole-Davidson dielectric 

dispersion model is compared to the Cole-Cole model; the 

Maxwell-Wagner effect is discused. 

The final section of Chapter III deals with conductivity, 

its temperature dependence and time and frequency domain 

relationships. The Cole-Cole resistivity model which is now 

commonly used· in geophysical analysis of high-frequency·. 

resistivity and induced polarization data is described; the 

Cole-Dav id son resistivity model which describes the membrane 

polarization effect is also discussed. 

Chapter IV describes the general equations of apparent 

dielectric permittivity and resistivity and from these 

equations deduces the several limiting cases which are commonly 

used in geophysical theory. Example inversions of actual 

resistivity data are attempted to obtain estimates of the 

essential Cole-Cole parameters of the geophysical media. The 

general equation of the "formation factor•, taking into account 

complex resistivity and permittivity properties, is then 

obtained and subsequently reduced to the equation commonly 

employed in geophysical electromagnetic theory. The effect of 

6 



porosity, water content and salinity are discussed and examples 

and references are given. Finally, practical measurements are 

compared to the elaborated theory. 

Chapter V essentially deals with alternating current 

sounding for simple configurations of antennas. The objective 

is to study the variation of the electric and magnetic fields 

with depth, height and particularly frequency. First the E-

and H-field equations are developed for vertical and 

horizontal dipoles, in terms of the Hertz vector, then profiles 

for different varying parameters are calculated, considering 

Cole-Cole parameters. 

Chapter VI comprises the conclusion and further 

suggestions for study. 

0 
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CHAPTER II 

THE GENERALIZED MATERIAL PROPERTIES RELATING THE 
VECTOR FIELD QUANTITIES OF ELECTRICITY AND MAGNETISM. 

2.1.1 VECTOR FIELD QUANTITIES 

The essential vector measures which represent an 
...,. 

electrical and magnetic field, are D, the electric displacement 

(Cjm2), E, the electric field (V/m), j, the electric current 

density (Amp/m2), which are primarely of electric nature, and 

~ -H, the magnetic field (Amp/m} and B, the magnetic induction 

(Teslas) which are of magnetic nature. These vector quantities 

are interrelated by Maxwell's equations, the equation of charge 

continuity, the constitutive relationships, and Ohm's law. 

In free space, the constitutive relationships and Ohm's 

.... -law describe linear functional dependencies between the D & E, . ...... ~ -. ..... 
B & H, J & E vector fields pairs respectively. 

£
0

=8.854* 10-12 Farads/m 2-1-1 

~0=4n*10-7 Henry/m 2-1-2 

tr0 =0.0 S/m for free space 2-1-3 

In real materials, the generalization of these relation-

ships can give rise to a need for much more complex 

mathematical forma1isms. In any real material, we may 
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establish these relationships using the general functional 

forms: 

D=f (E,E) , 2-1-4 

B=f (..U,H) I 2-1-5 

J=f(Z:,E). 2-1-6 

Where the E ,cM. and Z. represent a location dependent 

complex series of tensor coefficients which may be involved in 

a nonlinear way with the vectors. 

2.1.2 LINEARITY AND ISOTROPY 

For real materials, in the presence of sufficiently small 

E- and H-fields these relationships can normally be assumed to 

be locally represented by linear, homogeneous functions, 

D= E .E I 2-1-7 

B= .).{ .H 2-1-8 

and 

J= 1.. .E 2-1-9 

where .E, •. 4{and Z. can be either scalar or second-rank tensor 

quantities describing the essential material properties. 

In an anisotropic (but linearly homogeneous) medium, each 

component of the resulting field depends upon all components of 

10 
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the applied field and the material constants ( i.e. the 

6, 1, if) must have a general tensor form. Then, the indivi­

dual components of the vector quantities can be related by the 

tensor equations: 

Di = e .. lJ Ej, 2-1-HJ 

B· l = y ij H· J 2-1-11 

and 

Ji = <T i j Ej • 2-1-12 

where, now, each material constant is described by a second 

rank tensor. For example 

2-1-13 

where 

i,j=1,2,3 represent three orthogonal spatial coordinates. 

Similarly 

and 

Equation 2-1-13 shows that 9 coefficients are required 

to define the property of conductivity at any point. Commonly, 

however, <:fj = '!}; , and this symmetric conductivity tensor 

contains only 6 independent elements. It is further possible to 

adjust the coordinates in such manner that ~-k=0 if i~k so that 

11 
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(
~I 0 

(j"'~ = 0 i1"._.2. 

0 0 
2-1-14 

reduces to a diagonal tensor. If any two elements of this 

tensor are equal, the medium is uniaxially anisotropic. For 

isotropic media all three coefficients are equal and the tensor 

relationships reduce to scalar ones ( i.e. a zero rank tensor). 

Then, Ohm's law reduces to its common form, 

J= <r.E 2-1-lSa 

and the constitutive equations simplify: 

D= e.E, 2-l-16a 

B= T. H. 2-l-17a 

These scalar constants are 

E. , the dielectric permittivity measured in F m-1 . , 

I , the magnetic permeability measured in H -1 .m and 

\{", the electric conductivity measured in s -1 .m • 

These much simplified relationships hold at any point 

within linear and isotropic materials; they also hold every-

where within materials which are homogeneous. 

2.1.3 HARMONIC COMPONENTS OF THE VECTOR FIELDS. 

Commonly in the development of the physical theory of 

electromagnetism, we implicitly consider harmonic components of 

the field quantities. The constitutive equations and Ohm's law 

12 
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can be more explicitly written in the following form: 

.... -D{w)= t(w).E(w), 2-1-18 

• -B(w)= p{w) .H(w) 2-1-19 

and 

- -J(w)= 11'( w) .E (w) • 2-1-213 

These equations are analogous to the input-output rela-

tions describing linear systems in which the material property 

( i • e • the d w) , p ( w) a n d er( w) ) c o r re s p o n d s to t h e s y s t e m 

transfer function, and the vector field quanti ties correspond 

to the input-output pairs (Fuller and Ward, 1970}. Equivalent-

ly then, in the •time domain• of the real world of measure-

ments, these relationships are represented by the convolutional 

forms: 

2-1-21 

- --b(t)= VY\.(t)* h(t) 2-1-22 

and -j <t> = .A<t> * e<t>. 2-1-23 

Here the symbolic notation * represents the general super-

positon integral; for example: 

Ict>= J~(-r).e(t--r) d-e 
-Oo 

or equivalently 

r { t ) := J 00

). ( t -'1) • e ( T) d T 

-~ 
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[Note: Unless otherwise indicated, throughout this thesis, 

upper-case Latin and Greek symbols apply to the frequency domain 

and their lower-case equivalents to the time domain. However, 

in order to minimize the confusion of the reader who has 

typically learned his electromagnetic formalism in the 

frequency domain, we shall maintain the symbols ~, f 1 ~ and 

~ to describe the frequency-domain material properties and use 

s, r, e and m for their time-domain equivalents.] 

Only in the particular case where the material property is 

independent of the frequency is its Fourier transform of the 

time function a scaled Dirac function, and consequently in this 

case th.e time-domain convolution can be replaced by the simple 

multiplication by the scaled conductivity permittivity or per­

meability. This simple case is not of basic interest in the 

subsequent development of this thesis. 

In the real world, measurements are made in time domain, 

but mathematical manipulation in this domain is often cumber­

some, especially when dealing with inversion and interpretation 

of geophysical data. Frequency domain mathematical manipula-

tions are usually much easier, even though the material proper­

ties must be then represented by complex-valued functions of 

frequency. Throughout this thesis, we will be concerned with 

the parallel formulation of the required electromagnetic equa­

tions in both the frequency and time domains. 

The Fourier transform relates the frequency and time 

14 
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representations of the electrical or magnetic vector field 

quantities or material properties as follows: 

I><, 

x<~>= 1 /x<t> .e-i~t dt 
;..~/)<, 

and 

2-1-25 

2-1-26 

+ where x(t) and X((J.}) represent any of these quantities in each 

of the two domains. For example; 

1- If the time domain E-field is a scaled impulse function 

. 
E(t=0) = E0 ~(t) 2-l-27a 

then the frequency domain E-field will be frequency indepen-

dent and 

2-1-27b 

2- If 

E { t) = E 
0

• e i4lot 2-1-28a 

where w is the angular frequency of a continuous wave oscilla-
o 

tion, then 

2-l-28b 

Generally in the following development of this thesis, we 

s ha 11 o m i t the fa c to r e .lli.J..,t when des c r i b i n g ha r m on i c e 1 e c t r o­

magnetic waves and fields in the time domain. Equivalently, we 

shall often omit the factor ~(t) when describing essentially 

temporally impulsive fields in the Fourier frequency domain. 

15 
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2.1.4 REALIZABILITY, REALITY AND THE HILBERT TRANSFORM 

The functional representation of the properties of real 

materials .must be •realizable•. That is the quantities e(t), 

~(t) and A(t) must be both causal and stable, for if they were 

acausal they would violate what appears to be nature's most 

basic law that a response must follow the excitation and if 

they were unstable, they would violate the law of energy 

conservation. Furthermore, in 2-1-21 both e(t) and d(t) must be 

real-valued (Fuller and Ward, 1970); this requires that &(t) be 

real-valued. Mathematically, we can establish the causality 

and reality conditions by requiring that: 

e(t), m...(t), A(t)=(0 for 

l real for t>0 
2-1-29 

and we can establish the stability condition by requiring that 

2-1-30 

which implies that 

2-1-31 

which guarantees that the Fourier transform of e(t) is every­

where finite. 

The Fourier transform pair representing the dielectric 

permittivity property must have the form: 

c(w)= ..L );.) e-iwt dt 
a.n 

16 
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€-(t)= } E:.(w) e+iwt dw • 2-1-33 

Since the time domain material functions are properly 

causal and real valued, the corresponding frequency domain 

functions ~(w), y<~ and ~{w) must be complex-valued. The 

complex nature of these material functions allows that the 

related vector field quantities need not be exactly in phase 

with each other. The reality of the time-domain function 

implies further conditions: the real part of E:.(w) (also y (w) 

and IT(w)) must be an even function of frequency while the 

imaginary part must be an odd function of frequency. Further-

more, for a system to be physically realizable implies a well-

known relationship between the real and i~aginary parts of its 

frequency domain functional representation which is described 

by the •ailbert Transform•. 

Given 

R(iw)= P{w)+ iQ(w) = A(w) e icp (w) 2-1-34 

the Fourier transform of a causal temporal function r(t), 

P(w) and Q(~) must be Hilbert transform pairs. That is 

P(w)=...!.)~{u)/(W-u) du 
.::2R. - ·"o 

Q(w)= jo->P(u)/( w-u} du. 
-Coo 

Furthermore if 

R (().))=A (<.V} .e i ~ (w) 

17 
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obeys the stronger condition of minimum phase (Ulrych & 

Lasserre, 1966), then the real and imaginary principal corn-

ponents of the logarithm of R(~ are also Hilbert transform 

pairs. That is 

ln A(w) = ..L j Oo 4><.u') /(w-u) du. 
~n -~ . 

2-1-38 

2-1-39 

It appears to be a natural law that simple passive systems 

are •minimum phase•. This property is manifest in the time 

domain response of a system as its ability to pass energy from 

input to output as rapidly as possible given that it modifies 

signal frequency composition. 

2.2.1 SOME ELEMENTARY ELECTROMAGNETIC THEORY. 

Maxwell's field equations, shown here in time domain, are 

as follows: 

..... - .,.. 
Ampere's law \Txh(t)= j (t) +od(t), 

ot. 
2-2-1 

\j xe{t) = 
...,. 

Faraday's law - ~b(t) , 2-2-2 - 'Ot. 
Coulomb's law V.d(t)= f (t) 2-2-3a 

and 
_,. 

\/.b(t)= 0. 2-2-4 

In a homogeneous isotropic medium equation 2-2-3a reduces 

to 
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c 
2.2.1 SOME ELEMENTARY ELECTROMAGNETIC THEORY. 

Maxwell's field equations, shown here in time domain, are 

as follows: 

..... - ~ 

Ampere's law \Txh(t)= j (t) + 0 d(t)' 
-ot. 

\f xe(t) = 
_,. 

Faraday's law - ~b(t) , 

2-2-1 

2-2-2 - 'Ot 
Coulomb's law V.ct(t)= f (t) 2-2-3a 

and 
4-

\f.b(t)= 0. 2-2-4 

In a homogeneous isotropic medium equation 2-2-3a reduces 

0 to 

18 



c 

- .,.. 
\J .d(t)=0 • 2-2-3b 

In equation 2-2-1, noting the analogy between the current 
....... ....,. 

density j and and the field quantity JLd, this latter term is 
"()t:.. 

called the displacement current density. Depending on whether 
..,. -

gd or j dominates,.the material will be essentially either a 
'()t. 

dielectric or a conductor. 

The charge continuity equation 

2-2-sa 

completes Maxwell's four equations in generally describing 

electricity and magnetism. In any region of non-vanishing 

conductivity, the charge density will reach its equilibrium 

very quickly, so that there will usually be no accumulation of 

charge during the flow of current and 

2-2-Sb 

Maxwell's equations show that electromagnetic fields should be 

capable of propagation through space as waves. 

Fourier transformation of equations 2-2-1 and 2-2-2 obtains 

-.::7 ...... ~ -+ 
~ XH(~)= J(w)+i~D(w) 2-2-6 

and 

t"7 .. • -
~ xE (~) = -llt.)B (w) • 2-2-7 

..... 
Often, in geophysical electrimagnetic theory, the term wD(~) 

in equation 2-2-6 is neglected for low frequencies; however, as 

we increase frequency we may reach a condition where 
...... 

wD{w) 
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we increase frequency we may reach a condition where wD(w) 

-becomes comparable in magnitude with J(w). 

Introducing the equivalent Fourier transformations of the 

constitutive equations and Ohm's law into equations 2-2-6 and 

2-2-1 we obtain: 

- -VXH(w)== ( <T(w)+iwdw)) E{w) 2-2-8 

and .... ..... 
VXE(w)== -i p(w) H(w) • 2-2-9 

These two equations can be reformed as wave equations in 

E{w) and H(w). 

2.2.2 THE ELECTROMAGNETIC WAVE EQUATION 

In a general linear homogeneous isotropic material cha-

racterized by complex valued frequency-dependent parameters ~' 

f, and p we can derive the relationships governing the 

propagation of electromagnetic fields. Replacing 2-2-9 in 

2-2-8 and using the identity 

- - -VxVxA= V( V .A) -V A 2-2-10 

we find that 

"E(w} == i w fl{w) [ c:T(w) +iwdw) J E(lv} , 2-2-11 

-and equivalently we obtain a complimentary equation in H(w} 

~- ~ 
V H{w)=. iu.) p(w) [ <r(w)+iw E{ul)]H(w). 2-2-12 
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If we further recognize that 

kl. = -iwp ( <r +ioJf ) 2-2-13 

is the squared wavenumb~r for waves propagating within the 

material, we can . rewrite equations 2-:-2-12 & 2-2-13 as 

follows: 

2-2-14a 
and 

g 2 
VH{w)+k H(w) = 0 • .,. 2-2-14b 

where r is the position vector, measured from any arbitrarily 

chosen origin for a coordinate system. Equations 2-2-14a and 

2-2-14b describe waves propagating through an absorbing medium. 
..... 

The general solution of the wave equation for E in Cartesian 

coordinates, restricting our immediate interest to plane waves: 

2-2-15 

where Eo is independent of frequency and position and using 

Cartesian coordinates, 

k.r=ux+vy+wz 

so that the propagation vector, 

and 
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2.2.3 THE PROPAGATION CONSTANT AND LOSS TANGENT 

Equation 2-2-13 shows that the magnitude of the propa­

gation constant must be generally complex-valued 

• 2-2-16 

Rearranging equation 2-2-13 

where now y , '\i and t:.. are real values, 
\e. 1!.- e 

then ( compare 

Crossley {1982)): 

2-2-17 

and 

f = cw~e. )'11. l ( \-t'l")\12._ ~ j \lz. 
where '2. 

2-2-18 

2-2-19 

The ratio of imaginary to real components of k2 

2-2-20 

is called the loss tangent. Below the critical frequency where 

tan iS' =1, the propagation vector depends more upon effective 

material conductivity than its dielectric conductivity. Above 

this frequency, the effect of material permittivity dominates. 

Typically at frequencies for which tan~<< 1, we may neglect 
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the presence of a material dielectric permittivity while for 

frequencies for which tan8 >> 1, the permittivity dominates 

the conductivity. This critical frequency is of the order of 

Hl4 Hz for quartz and gneiss and u~S Hz for granite and 

gabbros. 

2.2.4 WAVE IMPEDANCE 

A particular situation arises when we have a homogeneous 

half space and a harmonic current flows along the x-axis. Thus 

the E-field components vanish along the y-axis and z-axis and, 

Ex= Ae-ikz+iwt= A e-{3z e+i ( wt- az) 2-2-20 

where the e-{3z term represents a damping term and eiaz is the 

phasor. Here Ex is time varying and generates a time variant ,. 
orthogonal magnetic field in the y direction. 

Hy= k/wp A e-ikz+iwt 2-2-21 

The surface wave impedance of the homegeneous ground, defined 

as the ratio Ex/Hy and denoted by Z has SI-dimensions of ohms. 

In free space where (f=0 p=p
0 

and 

is simply real-valued; 

ohms. 

23 
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£=€ , the wave impedance 
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2.2.5 DEPTH OF PENETRATION OF VHF EM-WAVES 

In the conventional solution for the skin depth of 

electromagnetic fields, which is generally valid at low 

frequencies, the depth of penetration is obtained as: 

2-2-23 

Using this equation at very high frequencies predicts very 

small values of ~ in the frequency range of our interest. The 

electromagnetic theory however does not justify this simple 

form for higher frequencies. Starting with the general equa-

tion for the propagation constant; 

, 2-2-24 

the depth of penetration (i.e. that depth at which the ampli-

tude of the field component has decayed to 1/e of its original 

value) becomes 

~: [ ( :1. ~~ ) [ (. I +Ch f )41
.2. ~ 1]] y~ 

4\fe. y ~~t. 
2-2-25 

and, since q & 6. are functions of the frequency, the e e 

penetration depth is not simply dependent on either parameter. 

In soft rocks such as limestone and dolomite, a pulse radar 

has detected lithological contrasts at a depth beyond 12 m. 

This is not yet the upper limit of these systems: Moffat & 

Puskar (1976} estimated a penetration in these rocks of 

around 16m. (50 ft.). For hard rocks, considering the 
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differences in their electrical properties, it is estimated 

that the depth of penetration should be greater than that of 

soft rocks by at least a factor of 4. Reflections from voids 

have been detectable at 16.4 m. in the frequency range of 10 to 

16~ MHz. Coon et al. (1981) estimated the depth of penetration 

of 2~-5~0 MHz to 33 m(l~~ ft) through coal seams. In addition, 

the EM energy polarized normal to the bedding planes is less 

attenuated than energy polarized parallel to the bedding 

planes. Lafleche (1984) has obtained penetrations beyond 5~ m. 

at 445 Mhz in the Big Nickel Mine, Sudbury, Ontario. 

2.2.6 APPARENT RESISTIVITY 

From equation 2-2-22 we obtain the absolute ratio 

At low frequencies, is neglected and if we write 

we obtain 

1 I (E.xJ 2 

4"~ .. wp \-\'f 2-2-27 

However if the medium is dielectric or if we increase the 

frequency, v can not be neglected and 

2-2-29 
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where now the equation also depends upon the dielectric proper-

c ty of the medium. The apparent resistivity values will be 

larger than those estimated under the low frequency assumption. 

2.2.7 POTENTIAL FUNCTIONS AND THE HERTZ VECTOR 

Often in solving problems in electromagnetics, potential 

functions are introduced (Sommerfeld 1949, Patra and Mallick 

1980). The fields are then derived by differentiation of these -potential functions. Since B is necessarily solenoidal, it 
....... 

can be expressed in terms of another vector A so that 

- ...,. B = 'VxA 2-2-30 

c 
and 

2-2-31 

...... -therefore (E.+ C~..Ut...) is i rrotational, and consequently 

2-2-32 

where +is a scalar function. 

The functions A & c} are known as the vector & scalar 

potentials. Introducing. the Lorentz restriction, 

I 

both functions must obey wave equations, similar to those of 

c the E- & H-fields as above. 
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Hertz has shown that electromagnetic fields can be expres­
~ 

sed in terms of a single vector function J\ . If we set: 

_,... ...,.. 
A= y~ (<T-\-{~f:-)}\ 2-2-33 

this equation satisfies Lorentz' restriction so that 

:t ~ -~ ·lt- 2-2-34 

Substituting 2-2-33 & 2-2-34 into 2-2-32 we find 

- -E= rq x-q xjt 2-2-35 

or 

2-2-36 

and similarly 

~= - v..'l 2-2-37 
"''wy 

Equation 2-2-35 & 2-2-37 are the general equations of 

electric and magnetic fields in terms of the Hertz vector • 
....,. 

Hence, once]\ is known, the resulting fields can be derived 

directly. Sommerfeld (1949) has treated this subject in 

detail. 

....,. 
In electrodynamics the Hertz vector potential\\._ replaces - -the scalar potential of electrostatics. The E and H fields, 

and the related B and D, as well as J fields can be all expres-
..... 

sed in terms of JT • This Hertz vector potential can be. shown 

to obey the wave equation itself, 

2-2-38 
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and its Fourier transform is: 

J
D.:, .....:;.. .{(.>:)~ 

5'i(l) = Ju.o) .e. dl).) • 
-~ 

2-2-39 

0 

0 
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CHAPTER III 

ELECTRICAL AND MAGNETIC PROPERTIES OF ROCKS 

3.1.1. DIELECTRIC PHENOMENA 

Dielectric materials are good insulators; they are corn-

posed of molecules with bound charges, which when placed in an 

electric field E, become di-polarized in the direction of the 

applied external field. This resulting polarization accounts 

for their refractive indices being different from those of free 

space. At sufficiently low field, the polarization is linear 

in the applied field as follows: 

- _... P= c< E 3-1-1 

where 

D<: 3-1-2 

~ = polarizability (F.m-1) 

eo= dielectric permittivity of free space (F.m-1) 

x~= dielectric susceptibility (dimensionless) 

A measure called electric displacement,D, is due to both -the polarization of the bound charges, P, and to the applied 

external field, E. 
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....,. - -D = c.E + p 3-1-3 
Cl 

or 
...... -D = ~E 3-1-4 

where 

E: = ~(1+'\_). 3-1-5 

~ is the factor of proportionality between the external 

electric field ....,. -E and the resulting electric displacement D in 

a dielectric, and is known as the dielectric permittivity. 

In the simplest case, ~ is considered to be a scalar 

constant, independent of all other physical parameters and 

coordinates. For free space ( and approximately for air): 

~e.= 0, 

0 
and 

...... -
D = 6: E 3-1-6 

0 

For real materials, the dielectric permittivity is often 
. 

much mor~ complex and in general E::c is a complex tensor, func-

tion of frequency ( <.>:> ) , temperature ( T and location ( r ). 

It is also known to be pressure, porosity, salinity and grain 

size dependent. For the moment, we will consider £ as being a 

complex frequency dependent scalar quantity describing the 

dielectric condition of a homogeneous medium thus: 

€:.. 
4 

= E::. (_L>)) 3-1-7 

where 

0 4o ~ I // 

E::. = E:.. _, E.. 3-1-8 
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The choice of sign is arbitrary; here, the sign is chosen 

so that E"> 0. The negative sign indicates that the phase of 

the imaginary component lags that of the real component. The 

complex nature of E.,.. requires that within the material, under 

the application of an external alternating field, there is 

energy dissipation. Table 1 ( from Poley et al., 1978) shows 

some measures of complex * € 

In most dielectric mateiials the displacement of charges 

is proportional to the applied electric field E. However in 

some materials like Rochelle Salt [orthorombic hemihedral-holo­

axial crystalline structure, chemical composition; (K,NH 4 ) 

NaC 4 H4o6 • 4H 2 )] the dielectric displacement is not uniquely 

determined by the applied field, but also depends on its pre­

vious value. This phenomena is known as the "dielectric hyste-

resis". 

3.1.2 DIELECTRIC HYSTERESIS 

In the hysteresis phenomena, the displacement traces out 

a hysteresis loop quite similar to the magnetic hysteresis 

loop. By analogy to ferromagnetism is this effect is called 

"ferroelectrici ty". The hysteresis implies that the substance 

has a spontaneous polarization, (i.e. a polarization which 

persists when the applied field is removed). The susceptibili­

ty in such materials depends on the present applied field and 
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Table 1. (After Poley et al., 1978). Real 
and imaginary permittivity versus frequency. 

f lj 

(Mc/s) 
Et €" 

(cm) 

10 "'d 28 380 36 
u 

18 36 14.7 100 ... 
:;1 

200 "' 16 16 13.2 "" u 
500 E _!!. ___ ___ 2_.§_ __ f----l3.L _ 1-·--
800 0· 13.2 3.2 13.7 

1000 c. 13 2.6 14.4 ~ ... 
0.65 16.0 3000 - 11 I< 

u 

Penetration depth for salt-water-saturated sandstone. 
(Porosity 15%, salinity 15% by weight} 

D 

Figure 1. ~eproduced 
D-E Hysterisis loops 
for Kh 2Po

4
• 
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the history of previously applied fields. 

Ferroelectricity is typically sensitive to temperature. In 

the case of Rochelle Salt, increasing temperature above 0°C 

causes the hysteresis loop to decrease slightly in height, 

while the width undergoes a more important decrease. At around 

24oc both sides of the loop merge into one line and the salt's 

spontaneous polarization disappears. The temperature at which 

this occurs is the ferroelectric Curie point of the substance. 

On the other hand, by decreasing the temperature below 0°C, at 

some lower temperature, near -20°C, the spontaneous polariza­

tion disappears again (see figure 1). 

Other materials which show the property of dielectric 

hysteresis are: Potasium Hydrogen Phosphate KH 2Po 4 , Barium 

Titanite BaTio 3 and Cadmium Niobate Cd 2Nb 2o7. This strongly 

non-linear dielectric hysteresis effect will not be considered 

further. I will, rather, restrict my attention to the much more 

common condition of linearity. 

3.1.3 TEMPERATURE VARIATION 

Increasing the temperature increases thermal agitation 

which in turn usually decreases the degree of polarization of a 

molecule, and hence, produces a decrease in the electric 

susceptibility. Later it will become clear that the parameters 

describing the permittivity are themselves temperature depen­

dent. We will, at present, assume the material temperature to 

be a constant (see Figure 2 }. 
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3.1.4 POLAR MOLECULES 

The "Polar Molecules" model was described by Debye (1929). 

Although now of little practical use, it was the first step in 

the development toward the definitive model which has been 

adopted in this research. The development of the Debye disper-

sion equation for polar molecules can be found in the 

litera~ure (Debye, 1929 and Bottcher, 1952). It determines the 

following complex pemittivity: 
~ . 
E (w)- €«>-:.(f.,- fee)/ (!-1-..(.w-r) 3-1-9 

where 

w = angular frequency 
, 

T = intrinsic relaxation time which for a material of 

spherical polar molecules is: 

3-1-10 

TJ = viscosity, 

a = average radius of the molecule, 

E0 = real asymptotic value of permittivity at very high 

frequencies 

~= real permittivity at zero frequency 
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The complex dielectric constant at 10 X 10' Hz as a function of temperature at three water contcnts (g H,O/g s.>il) 
for (a) Goodrich day and (b) Fairbanks silt. 

Figure 2. (From Hoekstra and De1aney, 1974) 
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Real and imaginary parts of the dielectric con· 
stant plotted against freq\\ency •. The solid curves are for 
the Oebye Eqs. (2), the da:Jhed curves indicate the type o£ 
behavior frequently found experimentally. . 

Figure 3. (From Co1e and Co1e, 1941) 
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Within the two real limits of permittivity ~0 and ~=' 

there is a range of dispersion which is characterized by an 

out-of-phase component of permittivity. In this transition 

region of dispersion, since this permittivity component is in 

phase with any possible real conductivity component, it is 

often called the absorption conductivity. This dispersion 

imposes a decrease on the real component of permittivity from 

It is worth noting the model symmetry of permittivity 

function of log-frequency about about log ~\.=13. Actually 

measured components also possess such symmetry. Separating the 

real and imaginary components in equation 3-1-9, the real 

component becomes: 

3-1-11 

and the imaginary component, 

,, I 1. 
E:. .;:; C.€:.0 - E:.c;o) u .. Yt t... I -t-li.U"t..) ) • 3-1-12 

The phase angle of the complex-valued permittivity is: 

3-1-13 

where 

Maximum loss occurs at frequency at where the 

dielectric components are 
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' <So 4 ~!la t. .; 3-1-14 
2 

H &o- ~ 0., 3-1-15 e. = • 
1-

The most rapid variation of the absorption and dispersion 

curves occurs in the two decades of (I.)"'C centered about ~ tU-u=0. 

This range is called the dispersion range (see Figure 3). 

The relaxation time ~requires further consideration. 

Rewriting equation 3-1-10, 

:3. 
t. :: .~tt'\.o( 11]..\<T 3-1-10 

Here, ~ is the viscosity; one therefore should expect the range 

dispersion to occur at lower frequencies for more viscous 

liquids. These dependencies have been found in many cases 

(i.e. glycerine, glycols} which are extremely viscous at low 

temperatures. Experimentally ~ shows an exponential dependen­

ce of the form of e B/kT on temperature, thus the relaxation 

time 't. will increase even faster with decreasing temperature 

since it is proportional to 

"to6e B/kT /kT 

The molecular explanation of the temperature dependence is that 

the relative influence of the molecular interaction energy 

decreases with respect to that of the thermal energy when the 

temperature increases. The relaxation time is also proportio­

nal to the volume of the molecules, so that for larger 

molecules the dispersion occurs at lower frequencies. In addi-
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tion to T 'Eo also decreases with temperature; also, t is to 
""" 

a minor extent, temperature dependent. 

Changing the temperature displaces the profiles of the 

/and t' curves but their general forin is preserved on the 

frequency axis. 

In equation 3-1-10, the molecules are considered to be 

spherical while, more generally, Cole and Cole (1941) suggest 

that they are ellipsoidal. Thus, instead of a single relaxa-

tion time, three must be considered, one for each of the axial 

ratios of the ellipsoid. Consequently the term 

L 
1+ ..LwT 

should be replaced by 

3-1-16 
i-t-1. WT;,_ 

3.1.5 FOURIER TRANSFORMATION OF THE DEBYE DISPERSION MODEL 

The Fourier transform of the permittivity function of 

frequency described by Debye's dispersion model is 

e ( t) =Jeoc E_+ l: c- Ea::> ] 
- 1.i-t.WT 

e iwt d 6U • 3-1-17 
-oo 

The first term on the right side of this equation is a constant 

and its Fourier transform is a scaled Dirac delta function. 

Thus; 
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3-1-18 

where 

The imaginary part in this integral is odd with respect to x 
. I 
and its integral reduces to zero. The real part is even and 

dx 3-1-19 

Integrating equation 3-1-19 obtains 

e(t)= t. ~(t) + 
CO 

t>=0 3-l-20a 

Thus, the time-domain measure of the permittivity is entirely 

real as required and is simply an exponentially decreasing 

function of time. For negative times, causality requires that 

e(t) = 0 t<0 3-l-20b 

In addition 1= I e-(t)j dt = 60 must be finite for stability. 

We shall now verify the physical realizability of the Debye 

models; the real and imaginary components of ( ) must be 

Hilbert transform pairs: 

3-1-21 

and 

This is easily verified, for equation 3-1-21 
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where 

This integral in this equation can be found in standard tables 

3.1.6 RELAXATION AND RESONANCE 

Electrical responses can be classified as a "resonance 

phenomenon" or "relaxation phenomenon" according to whether or 

not the time domain response function oscillates or smoothly 

decays toward some assymptotic value. In the range of frequen-

cies of our interest; the Debye model responses are purely 

relaxational. However all real materials appear to show reso-

nances at sufficiently high frequencies. In condensed matter 

the lowest resonant frequencies are in the infrared range {1013 

Hz.), where lattice and molecular vibrations start to take 

place. For water, relaxation occurs roughly between 3 and 300 

GHz and the atomic rotational and vibrational polarization is 

between 1 and 100 THz. 
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3.1.7 DISTRIBUTION OF RELAXATION TIMES 

Equation 3-1-9 describes Debye's dielectric dispersion 

model in polar molecules. This equation, in a very few cases, 

appears to describe real dielectricity. Most dielectric mate­

rials deviate from Debye•s model although they show similar 

general behavior and symmetry. Usually their dispersion pro-

file is flatter and extends over a much wider range of frequen­

cies, while the absorption curve is broader and with a smaller 

maximum value. 

The reason for this deviation is that the Debye model is 

too simple and considers only a single relaxation time. That 

is, all molecules in the substance are assumed to be spherical 

and identical. In real materials, the local conditions on each 

molecule are, however, strongly variable: the magnitude of the 

interaction forces, directing forces, thermal influences all 

change from place to place and time to time and consequently 

every dipole possesses a particular relaxation time. Hence, 

instead of a single relaxation time, we must describea distri-

bution of relaxation times centered about some most probable 

value. The term 

in Debye's simple model must be replaced by 

J <>., ~ ("t) d"t: 

0 \ +..{1,)}1: 
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where G( ) is a normalized distribution function; that is, 

)eo ~CC) d -c-:. d_. 
0 

This extended dispersion model is described by the form 

with the real component 

and imaginary component 

€::..1' ( lU) = (_ c 
0 

- f.. eo) J eo & ("() t..\"t. d 't 
\-t lw\.)'2. 

3-1-23 

3-1-24 

The theory of distributed relaxation times was first 

described by van Schweidler (1913), but he did not obtain an 

equation for G("t"}· If we consider that an infinite number of 

causes disturb the original relaxation time L., it would be a 
0 

good assumption to consider a Gaussian probability distribu-

tion form for G(l::). 

3-1-25 

where y=ln 1:./'"C. 
0 

Here b determines the width of the distribution and -z:: is the 
0 

most probable value for the relaxation time •. 

Kirkwood and Fuoss (1941) suggested another distribution 

function for G (G}: 

3-1-26 
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which closely fits the experimental obtained dispersion curves 

for many real materials. 
,, 

E.. should then be represented as 

3-1-27 

where f is a free param~ter for selection: 

f =1 results a system with a single relaxation time while ~ =0 

represents infinitely wide distribution of relaxation times. 

Another empirical formula for dielectric dispersion was 

suggested by Cole and Cole (1941): 

3-1-28 

This function is also symmetrical about ln uYt =1 ( This 

property will be discussed in more detail later). An 

interesting property of the Cole-Cole model is that it 

satisfies many experimental results and is in good agreement 

with the Kirkwood and Fuoss {1941) dispersion if the relation 

between parameters 

3-1-29 

It has the major advantage of being a much simpler representa-

tion and free of integrals. Its disadvantage is that no 

physical theory has been suggested which determines the 

parameter f . 

Qualitatively, in concentrated solutions, we would expect 
b 

a broadening of the distribution and lowering of ~m, because 

coupling of any sort between the molecules would superimpose 
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another set of relaxation times on those characteristic of 

individual molecules. In the case of a very wide distribution 

of relaxation, times (mica, ceramic, glasses), however, the 

Cole-Cole equation (3-1-28) becomes rather innacurate and the. 

Kirkwood-Fuoss relationship should be used instead. 

3.1.8 COLE-COLE DISPERSION MODEL 

The Cole and Cole (1941) dispersion equation 3-1-28 

3-1-28 

is commonly preferred in the current geophysical literature in 

describing dielectrics and especially conductivity properties 

by analogy ( Pelton et al., 1978). Here, 

~ = the most probable relaxation time. 

oC = the distribution parameter which is a measure of distri-

bution of the relaxation times. 

Necessarily, 

o<=0 reduces equation 3-1-28 to the Debye equation with a 

single relaxation time while the limit o<..=l is physically non­

'' realizable because it imposes e=0. Approaching the ~ = 1. 

limit produces very wide dispersions nearly independent of 

frequency (with a time domain response, proportional to the 

logarithm of time). 
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As their basis for description of their dielectric disper­

sion model, Cole and Cole chose to use the Argand diagram in 

complex plane, in which the imaginary component is plotted 

versus the real component. Each point characterizes a single 

frequency; the locus of points describes basic properties of 

the empirical model. The Argand locus for Debye's model is 

represented by a se m i c i r c 1 e w i t h i t s cent er on the re a 1 a x i s at 

the point (see Fig. 4). This locus of points can be 

represented by the following vectorial sum: 

3-1-29 

which is the equation of a circle with 

3-1-30 

Measurments made for real materials do not fit the Debye 

semicircle. Ra.ther they form a locus of points in a circular 

arc (particularly at lower temperatures) having its center 

below the real axis. From Figure 5, we can see that the angle 

(1-~)n/2 is independent of the frequency. It follows then that 

3-1-31 

where t(~) is a real undetermined function of frequency and 

other parameters. Substituting from 3-1-30 

3-1-32 

since 
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Figure 4. {From Al varez, 19 7 3) . 
Argand diagram of the Debye model. 

20 

a.avotn'o; 114%X: OIIIARO+ 

Comple.'t dielectric constants of water and alcobols. 

Figure 5. (From Cole and Cole, 1941). 
Argand diagram of the Cole-Cole model 
for four substances. 
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Also, since the complex form of ~ is a result of 

considering an applied field of the form 

E·= E eiwt 
0 

in which i and w show identical exponential dependence, the 

dependence of f (1.1)) on frequency can be considered to have the 

form ~ 1-()(. This follows from the fact that any theory in 

which w appears as a result of linear operations on the corn-

plex exponential will lead to the same dependence on the unit 

imaginary i, as on c.u. 

3-1-28 

The real and imaginary components of 3-1-28 are respectively: 

3-1-33 

3-1-34 

where 

Without any loss of generality we can require in the following 

conditions 

3-1-36 
and 
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so that the causality restriction (equation 2-1-26) will be 

respected. The maximum dispersion occurs at ~m=l/r where 

11 

3-1-37 

I 
The condition of the Hilbert transformation, requires that ~ or 

~*are uniquely determined by the knowledge of the other compo-

nent. 

and 

This has been verified by 

e..'(lJ.)) _E. eo = ..L j"""' e::'c·n 'V dv 
~rt "V l._ ~,_ 

0 

, _ J<>c l E:iv)- tOt'>] IJ..\ d~ 
E.(~ - l 1.. 

0 'V-U:S 

Kramers (Cole and Cole, 1941): 

3-1-38 

Because of technical difficulties in obtaining measure-

ments for real materials)~' and G,' are only determined near the 

low or high frequency limits. However, I '' since €. and E. are 

uniquely determined by the knowledge of the other, it is possi~ 

ble to interpolate the known data to form an arc locus and 

determine the parameters of an equivalent homogeneous dielec-

tric model. 

TABLE 2 
-------------------------------------
SUBSTANCE DIELECTRIC CONSTANT ~o 
-------------------------------------
Quartz 4.5- 4.7 

Calcite 7 - 8 

Gas 1 

Oil 2.2 

Water 80 

Shale 13 - 15 
--------------------------------------
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3.1.9 TRANSIENT COLE-COLE PERMITTIVITY MODEL 

The Fourier transform of the Cole-Cole equation is 

,.....;_ 1-41 
e.(J .. ) = 6.-o:;> ~(h) + (t

0
-f:.co) ;f [ 14 ( i-+ ( .iw-c..) J 3-1-39 

The term 
1. 

will have a Fourier transform which 

will show much slower than exponential decay of the Debye 

equation where o<. was equal to zero. To derive the time 
• 

domain response of this term following Jain (1981), let us for 

convenience temporarily absorb into 

3-1-40 

We know that H(w) is the Fourier transform of the impulse 

response h{t). If we rearrange 3-1-40 

3-1-41 

If a= 0 the time domain Fourier transform of the above would be 

3-1-42 

and obviously likewise Debye's equation, the response would be 

- tJ-c, 
h.th) = e . 3-1-43 

l ~~ 
If we denote the fractional derivative by!... for a >9 we would 

'()l:l-Ol 

have 

·3-1-44 

Using the property that 
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= 3-1-45 

where is the gamma-function, we would obtain the form for 

h(t) as 

"~ \ 
(.-1) 3-1-46 

Then the equivalent unit step function response would be 

~ ntl #::. n(.\-ol) 
U(:4-) : L (-t) 3-1-47 

"'"" r(n -l'\ot;-1) 

Returning to equation 3-1-39, the Fourier transform of the 

Co1e-Cole model will then obtain 

)
l'\+1 L n(.l-oi.) 

(- \ r::.J-r:. 
• 3-1-48 

We require that e(t) be finite when t-ii"Dc• For t/-c <=1, the 

above equation is finite, but for t/-c. >1, in order to keep the 

transient e(t) finite we must replace 

Oo 

eU) .. (t:o- t.c:e) L.. 
""=' 

n -V\ (I -ot) 
(-t) (+t-c) 3-1-49 

r (. 1- 'r'\ -t noe) 

so that the series will converge. The above discussion holds 

for reversible absorption but does not take into account the 

effect of irreversible Joule conductivity (Jain, 1981). 

From Figure 6 it is apparent that for t>='t the transient 

permittivity decreases to less than half its initial value. 
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3.1.10 COLE-DAVIDSON DISPERSION MODEL 

R. Cole and Davidson (1951), observed a non-symmetric 

behavior in some substances like glycerol, propylene glycol and 

few others. They developed the following empirical formula to 

fit their dispersion curves 

3-1-50 

where now ~ is a measure of skewness 

'* The real and imaginary components of the complex permittivity~ 

are then 

~ 
(:.

1 
_ €:;_«> : (_t-

0
- e<t>) (CoS 't) CoS~4:> 

3-1-51 

6" :: ( 6
0 

_ E-c:o) (_CoS + }' Sl~ ~+ 
3-1-52 

where tan cp = wT 

This model is not symmetric about lnwr-= 0 but consists of 

contributions that diminish in importance as the frequency 

increases, producing smaller values of ~'toward higher frequen-

cies in comparision with Debye's model. 
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3.1.11 MAXWELL-WAGNER EFFECT 

In addition to the polarization in dielectrics as discus-

sed previously, there is another polarizaton rising in 

a heterogeneous material from the accumulaton of charges due to 

differences in mobility between anions and cations in adjacent 

zones. At the interfaces, a membrane polarization arises. 

Physical descriptions of polarization usually omit this pheno-

menon since it is of little fundamental interest. However in 

geophysical measurements in geological conditions, it is of 

considerable practical interest. 

Maxwell-Wagner (Alvarez, 1973) described the charge built 

up at the microscopic interface of two media differing in 

conductivity and/or dielectric permittivity. This Maxwell-

Wagner polarization is then due to concentration gradients that 

develop at zone boundaries in response to current flow. Their 

· theory considers spherical particles with constant parameters 

i and ~ uniformly distributed in a medium with constant para-
a. !2 

meters 6 and ~ to arrive at a relaxation spectrum with a single 
I I 

relaxation time. In the frequency domain: 

3-1-53 

and 

3-1-54 

so that 

3-1-55 

and for £,...) =~ 
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3-1-56 

Consequenly if~ and~ vary as a function of position,~(=/~) 

will be non-zero and as a result there can be a concentration 

of charges at the microscopic interface. The term V(~/~) gives 

then rise to the Maxwell-Wagner effect which produces an addi-

tonal dispersion of the system. 

3.2.1 CONDUCTIVITY 

Conductive materials are characterized by the abundance of 

contained free charges. Under the application of any external 

electric field E, the free charges will flow along the field 

lines producing a current density J, which is a function of the 

applied field: 

3-2-1 

Recalling the discussion of linearity at low field levels, iso-

tropy and homogeneity, we expect a linear relationship between - ..,. the current density J and the field strength E, scaled by a 

complex conductivity q* • 

... 
J = * -t:r • E 

j = current density (Amp/m2) 

~~= conductivity in S/m 
"1. "" 

\1'= "if(~, T) 
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In the simplest situation the conductivity is a constant 

scalar and, in particular, for a material like air where the 

conductivity is approximately zero, 

3-2-4 

However in general like permittivity, conductivity is also 

a complex tensor, dependent on frequency, temperature, location 

and pressure. 

3.2.2 THERMAL DEPENDENCE OF CONDUCTIVITY 

To deal with the temperature dependence, let us rather 

consider the inverse of conductivity, the resistivity. 

' 

3-2-5 

3-2-6 

3-2-7 

The electrical resistivity of conductors is dominated at room 

t~mperature by the collision of conduction electrons with 

lattice phonons and at very low temperatures by collision with 

impurity atoms and mechanical imperfections in the lattice. 

The net res i s t i v i t y i s 9 i v en by Mat h i e son' s r u 1 e { K i t t e 1., 

1958). 

p= 3-2-8 

where Pl is the thermal resistivity, and Pi is independent of 

temperature and due to the atomic structure of the matter. The 

electrical conductivity is not a simple matter to deal with 
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because of its complex dependence on many parameters. However, 

Kittel shows that p 1 can be represented by the empirical 

function 

where f approaches unity at high temperatures and is proportional 

to (T/9R)4 at very low temperatures. 

Above, 

M is the atomic mass, 

9the Debye temperature and 
R 

T, the absolute temperature. 

The proportionality ofp1 with T/M$
2 

at high temperature 
R. 

follows because the electron-phonon scattering is proportional 

to the mean square thermal strain. Additional discussion of 

the dependence of resistivity on temperature is beyond the 

scope of this thesis, but has been discussed by Kittel (1958). 

V~ry generally, we expect resistivity to be approximately 

linear in temperature, in the range of temperatures of our 

interest, so that 

3-2-9 

Some curves of thermal conductivity as function of 

absolute temperature, are shown below (Fig. 7). The behavior 

of these particular elements with respect to temperature is 

closely related to their atomic crystalline structure but this 

is not the interest of this work.. Henceforth, we will 

constrain the temperature to a constant. 
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Temperature. K 

Resistance of potassium below :20 
K. as measured on two specimens bv D. K. 
C. :\lacDonald and K. :\lendelssohn, Proc. 
Rov. Soc. tLondon) A202, 103 \ 19.50). The 
different intercepts at 0 K are attributed to 
different concentrations of impurities and 
static imperfections in the two specimens. 
For measurements below -!.2 K, see D. 
Gugan, Proc. Rov. Soc. (London) A325. 2:23 
d971). . 

100 

The thermal conductivity of copper, after Berman and Mac-
Donald. 

Figure 7. (From Kittel, 1958). Resistance 
and thermal conductivity curves versus tem­
perature. 
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3.2.3 TIME DOMAIN CONDUCTIVITY AND RESISTIVITY 

In good conductors the property practically measured is 

their resistivity, while in poor conductors conductivity is 

practically measured. The logical foundation of linear respon­

se theory is the principle of superposition, which is expressed 

by the following expression in which conductivity relates an 

imposed electric field to the resulting current density within 

the medium: 

- JOo j<·D .= ,&(.t) e (:l:--c) dt:. 
0 

3-2-1~ 

In a parallel description material resistivity relates an 

electric field due to current-density generation: 

{).,. 

; Lt) .. J r(.c) j cl-·q dt. 3-2-11 
'0 

Above, s{t) and r{t) are the real conductivity and resistivity 

impulse response functions. According to the causality 

restriction we require 

s(t) = r(t) = 0 for t<9 3-2-12 

Note then that 

s{t) ~ r{t)-1 for t<~. 

... 
These respective functions describe the response j(t) and 

..... ... 
e {t) due to a short impulse in 1(t) and j(t). 

equivalent step responses, we would obtain 
1:.. 

1((-\) :. J '( ('t) dt: 
0 
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where R(t) and 
.. 

C(t) are the output waveforms of e(t) and 

..,.. - -j(t) due to an input unit step j(t) and e(t). We define the 

Fourier transforms of s(t) and r(t) by: 

~ I -~~t 
ri ( w) : 1::.(:1:..) e ,Jt 
~~ I e;., - -<~t p {w):: J. r(J) e. dl 

0 

3-2-14 

and equivalently 

.sLt) : j()<> 
-~ 

\ 1'4)t 
a ( ~.U) e dw 

.-<'u.)t 
r"f. (_w) e. dw 

3-2-15 

In the latter pair, the path of integration is along the 

real w-axis. If ~* and p* have singularities for any real w, 

the path of integration is properly displaced infinitesimally 

in the positive imaginary direction. 

The two components of ~(~) contributing to the line 

integral are those associated with the semicircle path at 

infinity and the path enclosing th negative imaginary axis • 

The second contribution depends only upon the difference 

between the values taken by the integrand on the two sides of 

the real w-axis. The decay spectrum are defined by the diffe­

rence ( Shuey and Johnson, 1973): 

and equivalently for ~(w) 

V'( -i~+oL) - 'f (- -<.'U) -e.!) 

Qin 
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In addition, if we consider that both f(!>)) and v-(~) are 

finite at w__.. 0o which is a realizability requirement, the 

decomposed impulse responses become. 

3-2-18 

where Ar and Ac are real resistivity and conductivity decay 

spectra. The resistivity and conductivity responses in terms 

of Ar and Ac are obtained by the use of the Cauchy integral 

theorem: 

3-2-19 

3-2-20 

The step response in terms of the decay spectra are 

also obtained by integration of 3-2-18: 

or in 

J (>o -\:.t 
RU:.)::. P -+ (t-e )/1.. dkl 

~~ -~ Y IK 

C.(~) .:- \r£C> - Jl>o ( \ - e-~t) ~e d\:jjk 
-'"" 

terms of fo and O'"o 
- \:.t 

Rt+) :: fo- J_: e A_.. dk;k 
Ct+) : .~.j Oo -'let-A dl:: 

iJ"o e ('.. /k -Cc 
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3.2.4 THE DEBYE MODEL 

For a single decay time, the Debye model is described in 

frequency domain by the form 

3-2-23 

which has one pole at W= -'"i • The resistivity decay spectrum 
"C 

becomes 

A'(:. ~c-fcC> 'Hu.:>- 11-t) 
"C 

and the voltage response to a unit current step (see figure 9), 

3.2.5 COLE-COLE RESISTIVITY MODEL 

Until now, permittivity and resistivity ( or conductivity) 

have been discussed in parallel formalism and have been shown 

to posses similar behavior. Thus, it should be useful to 

consider a Cole-Cole resistivity modei of dispersion. This 

model was introduced into the geophysical literature by Pelton 

e! al. (1978}. The reason they have suggested this model is 

that it comprises two additional parameters which may well 

provide a means for recognition of the mineralization by use of 

high-frequency resistivity (or induced polarization) geophysi­

cal surveys. In addition, this simple model has been found to 
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fit a large variety of laboratory complex measurements of 

resistivity {Madden and Cantwell, 1967 and Pelton .!! ~1., 

1978) • 

A mineralized rock sample having both blocked and unbloc­

ked pore passages (Fig. 10 ) can be simulated by the circuit 

of Figure 11. The complex frequency dependent impedance of this 

circuit is 

3-2-29 

where m is the chargeability: 

' m--
- ~. +l 

Re 
3-2-30 

Ro is the unblocked pore path resistance, 

R1 is the resistance of the solution in blocked passages, 

c is the degree of frequency dependence of the impedance 

0<=c<=l 

~ is the relaxation time. 

With some manipulation we can rewrite equation 3-2-29: 

3-2-31 

where 

Equ~tion 3-2-31 is the Cole-Cole dispersion equation as common-

ly presented in the geophysical literature. At very low 

frequencies the current flows through unblocked pore passages, 

and the assymptotic value of the impedance will be Ro• At very 

high frequencies the flow is through both blocked and unblocked 

passages in parallel and the impedance assymptote becomes z~· 
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· Mineralised Rock 

Figure 10. (From Pelton et al., 1976). Small section 

of mineralized rock with both blocked and unblocked po­
re passages. 

Ro 

[ 
1 , 

Z(w)=Ro 1-m (1-l+(iwc)c)J 

Equivalant Circuit 

Figure 11. (From Pelton et al., 1976). The equivalent 
circuit of the above. ----
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Among the mineralizations to which the Cole-Cole resisti-

vity model has been fitted is the Lornex Porphyry Copper 

deposit in Highland Valley British Colombia {Fig. 12) for which 

the following parameters have been determined in interpretation 

of broad-band, high-frequency induced polarization survey data 

Ro = l::lb .o :t o.cr QW'I 

z = 6S.o :! /. ::< !21-11 

-4. 
T = ( J..o-:t-o. b) x \D 

c = o. U, ± o.t::>CJb 

In another case of dry porphyry from Copper Cities 

deposits, Arizona, in addition to the normal dispersion, a 

second dispersion appears at higher frequencies, which is pos­

sibly due to membrane polarization. The dispersion curve has 

been fitted by 2 Cole-Cole terms. In addition to the above, 

there is a high frequericies iriductive coupling due to the 

· common dipole-dipole configuration used in the Induced polari-. 
zation survey method. Millett (1967) gives complete tables for 

this inductive electromagnetic coupling and thus it can be 

reduced from the raw dispersion. 

Obviously, the cole-cole model is simple. The dominant 

mechanism controlling the current passage through blocked pas-

sages is diffusion. In natural rocks, many different pore 

passages blocked by different minerals having different grain 

sizes occur. The result of this is a broad dispersion with a 

slight frequency dependence. Despite weaknesses, the model 
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slight frequency dependence. Despite weaknesses, the model 

fits a large variety of laboratory samples and in-situ 

measurements. 

3.2.6 TIME DOMAIN EQUIVALENT RESPONSE OF COLE-COLE 
RESISTIVITY MODEL 

If the frequency dependent exponent c = 1, the time do m a in 

decay has the familiar negative exponential form, 

3-2-31 

where, now, I is the chargeability current. 

But, if c < 1, the decay will be slower than exponential. 

Proceeding in the same way as for dielectric permittivity, we 

can determine the step decay for resistivity to have the form: 

cc " 1 1'\(. 
V(t)=mRo L (-I) l'-1-t) 

1 1'\U> l (I -1-t\C) 

V(t)= m~ ~ l-1)n"'
1 

LlriTf"<\C.. 
1 ":" r L'- "'.) 

See Figure 13. 

t/'t. <=2 it 

t/-r: > 2 tt 

3.2.7 COLE-DAVIDSON RESISTIVITY MODEL 

3-2-32 

Madden and Marshall (1959) developed a theoretical model 

for membrane polarization. Their model describes clay-bearing 

sandstone and comprises of a series combination of zones. Zone 
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1 contains pore fluid uninfluenced by clay while the pore fluid 

in zone 2 is in near proximity to clay particles so that when 

current is passed through zone 2 it is predominantly carried by 

transport of cations rather than anions. Upon linearizing the 

appropriate equations of motion and matching boundary condi­

tions between zones, Madden and Marshal! derive a rather 

complicated expression for the impedance combinations of zones, 

2. 

~ (.t..:~) ~ L I r ..L + ~ -t {:2.~'\('1 ) [.X ce~ + )(.'2.BtA J'1 
'(, Pc,t= ~e, A'if'l~1. Vi <r'Z.. f:),9'2. -car.~. &-\an~ 

Klein and Sill (1982) have shown that the Cole-Davidson 

distribution provides a close fit to the Madden-Marshal! model 

while reducing number of parameters required so that it offers 

a more practical tool for characterizing clay's EM response. 

They have fitted the Cole-Davidson parameters by inversion, for 

an artificially produced sample of clay-glass bead mixtures of 

varying size and pore solution conductivity. they descibe 

3-2-33 

where 

R = background resistivity, 
0 R, ""\ 

, 

1-Ra:,/R0 
chargeability, F?o 

m = 
1 = time constant, 

and 

R
1 

= high frequency asymptote. 

Madden and Marshall's description suggests that ~ would provide 

information of the clay occurence and texture while the char-

geability m should depend upon the amount of clay present in 
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isolated zones. Clay particles providing a continuous path for 

surface conduction would be expected to decrease R0 , but have 

no effect on m (see Figure 14). 

If membrane polarizaton could be completely characterized 

by a diffusion-like process, we would expect more symmetrical 

phase peaks with the parameter ~ close to 1, but for the 

artificial samples 

.5<c<l. 

also most values of ex were less than 9.5. These results 

suggest that essential membrane polarization effects can be 

empirically described by the generalized Cole-Davidson model. 

Klein and Sill (1982) show that increasing grain size 

shifts the relaxation toward lower frequencies (Fig. 15). 
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3.3.1 MAGNETIC INDUCTION 

An external magnetic field Hext' applied to a medium will 

align the internal magnetic poles of the body and thus produce 

a secondary polarization field M. This quantity is commonly 

known as the magnetization and increases the total field within 

most materials. The sum of the external field and magnetiza-

tion scaled by the free space permeability determines the 

magnetic induction B, 

B= 1-' ( ~ I -rM) 
I c ~)( 

3-3-1 

-1-
where y .. = 41"t'ICtO H/m is the magnetic permeability of free space 

especially, in free space, M=0 and 3-3-1 reduces to 

3-3-2 

Equation 3-3-1 can be rewritten, 

3-3-3 

where now,Xm is the magnetic susceptibility, a dimensionless 

quantity. By definition, the ratio of the magnetic induction to 

the applied field is called the magnetic permeability, 

3-3-4 

All known materials exhibit a non-zero magnetic suscepti­

bility. For most (paramagnetic) materials the magnitude of 
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susceptibility is small and of positive sign, for some 

(diamagnetic) materials, it is small and of negative sign. The 

most common materials which are colloquially regarded as the 

"magnetic" ones are properly ferromagnetic and may show 

relative large values of positive susceptibility. The most 

common of the ferromagnetic minerals are the oxides fo iron 

(certain ones), nickel and titanium. Further explanation of 

the common magnetic conditions follows: 

Diamagnetism: Diamagnetic materials contain no permanent 

magnetic dipoles, but dipoles can be induces by an external 

field. The field of the dipoles opposes the external field and 

is negative, 

3-3-5 

Paramagnetism: Paramagnetism occurs in substances which 

contain permanent magnetic dipoles. Paramagnetism occurs when 

an external magnetic field lines up the permanent dipoles in 

oppositionto their thermal agitation. For thes group of mate­

rials, 

Ferromagnetism: In ferromagnetics materials, quantum 

mechanical effects cause the magnetic moments of many electrons 

to align with each other. even in the absence of an external 

field. Typically, 

3-3-7 
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also is a function of the external field and past history 

of magnetization. 

Antiferromagnetism: Some substances which contain magnetic 

ions are not substantially magnetized since every oriented spin 

couples with an antiparallel spin in a nearby atom so that the 

net result is zero. Hematite is an example of such a material. 

3.3.2 MAGNETIC HYSTERESIS EFFECT 

Let us allow that the magnetization, M, is a general 

polynimial function of the applied field. A Maclaurin's series 

expansion of M, in the applied field obtains 

Q. !> 
M = A H + A H + A H+ ••••••• 

I 2, S 
3-3-8 

where A. are coefficients. 
I. 

Since we are dealing with low fields in geophysics, the 

third and higher order terms are often negligible, and thus: 

2. 
M ~ A H + A H 3-3-9 

I 2. 

This is known as Lord Rayleigh's relationship. 

Magnetic materialx may be classed as follows: 
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A - Soft magnetic materials which show linear effects with 

the applied field for which A2 is negligible. 

B - Hard magnetic materials that are non-linear with the 

applied field A2 ;4 f3 and possessing a memory of its past magne­

tization. 

To describe the intrinsic magnetic hardness of a ferromagnetic 

material, it is sufficient to introduce the coercive force He 

and the remanent coercive force Mr. Figure 16 shows the clas­

sical hysteresis loop in which r(H) is the tangent to the curve 

at each particular point, and depends upon the applied field. 

The degree of hysteresis is determined by the area enclosed by 

the loop. For soft magnetic materials, the hysteresis loop 

encloses essentially no area. The form of the hysterisis loop 

is dependent upon mineral grain-size, composition and shape. 

For both hard and soft magnetic materials the magnetiza-

tion tends to a saturation asymptote at very high fields. 

Saturation requires all dipoles to be magnetized in the 

direction of the external field so that further magnetization 

is not possible. 

In general equation 3-3-113 can be written in the form, 

B = 'I ( 14), H) -H !11 3-3-11 

but fo the soft magnetic materials which are the basic 

interest, here, equation 3-3-11 simplifies and 
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.... .If, -B= y(u.>) .H. 3-3-12 

Fourier transformation of this obtains the time domain equiva-

lent form: 

..... 
b (t} = 

"11 
m ( t} • 

..... 
h{t,r-). 3-3-13 

3.3.3 TEMPERATURE DEPENDENCE OF MAGNETIZATION 

All materials are to some extent magnetic in presence of 

an external field, but ferromagnetic materials can become per­

manently magnetized through acquiring an ordering energy. 

Thermal vibrations tend to disorder this magnetization. As 

long as the ordering energy is larger than the thermal vibra­

tion energy the materials maintains ferromagnetic characteri­

sics but when the thermal energy dominates, the material loses 

its magnetic properties. The 1 im i t;ing temperature for perm a-

nent magnetization is the Curie temperature, 

3-3-14 

where k is Boltzmann's Constant 1.38xl0-6 erg/oK. 

A characteristic curve of ferromagnetic temperature depen­

dence is shown in Figure 17. 
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Figure 16. Classical magnetic hysteresis 
loop. 

81 
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Figure 17. (After Strangway, 
1967). Curve of magnetization 
versus temperature. 
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3.3.4 MAGNETIC LOSSES 

Neel's (1955} model of non-interacting single-domain par-

ticles has been used in the description of the magnetization of 

lunar paricles. The magnetic behavior of lunar samples is 

dominated by metallic iron grains, a large fraction of which 

are smaller than 3~~ K in diameter and essentially of single­

domain. In addition, the low iron content (~.~1% to ~.5% by 

weight} isolates the particles. Consider a sample of Nt non­

interacting single-domain iron particles of volume v, suspended 

in a material of magnetic permeability of ~o· When a field is 

applied, thermal interaction will cause N particles to reorient 

themselves so that there is a net magnetization m parallel to 

the direction of the applied field. The rate of change of the 

net magnetization of the N particles is: 

3-3-15 

where 

js is the saturation magnetization, 

h is the applied magnetic field, 

T is the absolute temperature, 

k is Boltzmann's constant and 

't: is the time constant of the system of N particles. 

For an applied sinusoidally-varying magnetic field 
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resulting in magnetization 

m(t) = m eiwt 
0 

3-3-16 

3-3-17 

the total magnetization as a function of the applied field in 

frequency domain is 

3-3-18 

The ratio m
0
/h0 is complex magnetic susceptibility 

ex =- ~ ( _,_ ) ; 
1'1\ 3 1-+--<w-r 

3-3-19 

the time constant ~ is determined by the shape and size of the 

magnetic grains. In real materials, particles possess diffe­

rent shapes and sizes which produce a distribution of relaxa­

tion time constants. 

Recalling the similarity between the Kirkwood-Fuoss distribu-

tion of relaxation times in dielectrics and the Cole-Cole 

model, we can recognize its analogy to the following magnetic 

relaxation model suggested by Olhoeft and Strangway (1974), 

which also possesses the Cole-Cole behavior. 

3.3.5 COLE-COLE MAGNETIC RELAXATION 

Magnetic minerals show a measurable magnetic lossiness 

through various mechanisms. This effect has been measured by 

Olhoeft and Strangway (1974) in the range of 125 to 4000 Hz. 
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Magnetic losses can cause distinct but small changes in the 

electromagnetic response of a medium. The effect can be detec­

ted provided the peak magnetic loss is of lower frequency than 

the electric and dielectric losses. 

Olhoeft and Strangway (1974) suggested that a Cole-Cole 

dispersion with a broad distribution magnetic relaxation times 

well fitted their data. The complex magnetic permeability can 

be described 

3-3-21 

where 

and 

so that 

where: 

3-3-22 

Since magnetic relaxation is a low frequency effect, the appro-

ximation 

holds and the propagation constant has the form 
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where I I/ I (( 

<>1. :: ( lf<r - V t)' 

~.,. ( r-'q-'+ rr''tr'') . 
In the case of negligible conductivity losses 

3-3-23 

where 

~:: ~1'(-'' . 
Figure 18 compares Galt's (1952) data for single crystal 

magnetics with relaxation curves with = 0.67, allowing a 

relatively broad distribution of relaxation times. In fact, 

the distribution is typically broader for magmetic relaxation 

than for electrical and dielectric relaxation. Figure 19 shows 

the variation of the loss tangent with changing quantities of 

magnetite in artificial samples. Experimentally, the magnetic 

loss peaks for magnetite in the audio-frequency range neat 350-

1000 Hz independent of geometry. The effect of magnetic dispe-

rsion and absorption, is small in comparision to the equivalent 

eletrical effects and is usually insignificant in most 

·geophysical materials. Only in highly resistive rocks for· 

which the electrical losses in the audio-frequency range are 

small does the magnetic loss become an important background 

effect. 
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CHAPTER IV 

4.1 APPARENT DIELECTRIC PERMITTIVITY AND CONDUCTIVITY 

Recall equation 2-2-13 which determines the propagation 

constant, k, 

4-1-1 

Ferromagnetic materials exepted, in general, the magnetic pola-
.If rization of most materials is so weak that r can be replaced 

by 'to' the permeability of free space, for all practical 

purposes. If we now substitude for the real and imaginary 

components of permittivity and conductivity, we find, 

I p I 1/ 

~2 ~ { e. + '!:t' I I.U ) - i \' Ill { (J' + w f. ) • 4-1-2 

and rewriting this equation, we form 

4-1-3 

where the subscript e stands for "effective" and defines the 

total in-phase and total 

20) • 

I 1/ 

(:; ( (.)) + (f ({,))/to) 

I 11 

([ ( U)) + w €:. (tu) 

quadrature components see Figure 

4-1-4 

4-1-5 

The parameters which are actually, or perhaps more properly 
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apparently, measured are ~(w) and ~::.e ( w) , { F u 11 e r and W a r d , 

1970). Thus the measured conductivity and permittivity are a 

combination of the true parameters. In fact, most substances, 

substances in addition to their dielectric properties, have 

free moving charges. Upon the application of an electric field 

the mechanism of absorption due to the charge transport toward 

the electrodes contributes to the dielectric losses. Inspection 

of equations 4-1-4 and 4-1-5 leads us to expect large ~ (w) 's 
.. 

at low frequencies if ~(w)F~ and large ~e(w) at high frequen-

cies if t."(~) 'I ~. 

Observations show that in moist rocks, conductivity in-

creases with frequency, but levels off around a "critical" 

frequency (Fuller and Ward, 197~ ). Permittivity, however, 

decreases continually with increasing frequency.· This is in 

agreement with the above equations. At very low frequencies, 

some rocks show an abnormally high permittivity { e.g. e. =19 4 
(.. 

eo for shale with 3.8% pore electrolite by volume, (figure 29). 

These high values are simply due to the ~-1 factor in equation 

4-1-4, and are not in any way the characteristic of the medium. 

Some approximations are possible in the following cases: 

For "wet" rocks, we can reasonably expect free charge 

conduction to be the dominant mechanism. By letting: 
I IJ h 

>> wt. (tA) and q- (w) >> 

the following approximation will hold: 

4-1-6 
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4-1-7 

Fuller and Ward's observations for wet rocks show that the 

conductivity is a slowly varying function of ~ • In 6 orders 

of frequency ~he conductivity seldom exceeds one order of 

magnitude ( q- =t 10-1 and 10-5 S/m). The dielectric permittivity 

is typically inversely proportional to the frequency and can 

reach values beyond 107 below 1Hz (see Figure 21). At high 

frequencies, though, the dielectric constant assymptotes to 

80£0 which is the dielectric constant of water. 

For "dry" rocks, the opposite approximation holds: 

I I! " 
I 

€. (w) >> \J ( w) I l0 and E..(~) >> \f ((U) /w 

Thus 

""" 
,, 

\j (t...)) :. ~ ~ (w) 
and e 

~ (w) 'i ' (w) ~ e. 

4-1-8 

4-1-9 

The observed data shows a conductivity approximately proportio­

nal to the frequency ( cr- ~ 10-6 to 10-12 S/m) and a dielectric 

permittivity decreasing slowly with frequency such that for 6 

orders of frequency it varies about one order of magnitude 

(Figure 22). 

Complex dielectric permittivity values have been measured 

above 20MHz by Poley et al. Their measurements for sandstones 

with 15% porosity showed that for dry samples ~· showed small 

decrease with frequency while an air-humid sample has an in­

creasing £' toward lower frequencies. Salt water saturated 

samples also showed an increasing contribution of e 1 with 
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frequency up to a critical frequency where the curve levels 

off. Very high values of ~·were found at lower frequencies. 

All these measurements are in agreement with the above approxi­

mations but we must not forget that these are approximations 

and so must be used carefully. Often, these approximations 

have been considered to hold in general, but we shall avoid 

this assumption here. 

The above discussion applies properly to homogeneous 

media. Fuller and Ward's measurements on rock salt has shown 

dispersion to be practically absent, and with very low quadra­

ture components which means that it allows an appreciable depth 

of field penetration. 

4.1.1 INVERSION OF RESISTIVITY 

Fitting of real resistivity data with the effective resis­

tivity equations 4-1-4, 4-1-5 and the Cole-Cole conductivity 

and resistivity has been attempted in demonstration of the need 

for more complex electromagnetic models. The resistivity data 

used here were obtained by Olhoeft (1975), for clay perma­

frost at -27°C, for which there is a notable decrease of 

apparent effective resistivity with frequency in the range of 

103Hz to 107Hz. The inversion method used in the following 

analysis is the "singular value decomposition" approach. 

First, equation 4-1-5 was modelled with constant 

92 



permittivity and conductivity with frequency (see table 3). 

The inversion resulted in the following parameters: 

and 

, 
cr = 0.1772E-5 S/m, 

e.."=40.35 €. 0 F/m 

6. = 0.158. 

The ~· value is not realistic and the relative error 

measure for the inversion is very large. Next, a Cole-Cole 

dielectric permittivity and a constant conductivity model was 

considered. The fit was less reliable than that of the first 

case above, the reason being that the data describe effective 

resistivity values and so we cannot expect these data to well 

determine the dielectric constant. Next, the same equation was 

modelled with a Cole-Cole resistivity and imaginary permittivi-

ty; the results obtained -were: 

e." = 43.1 ~0 F/m, 

fo = 47.36E+4 Qm, 

fae = 5.687 ~m, 

4-1-11 
fc = 2.14E+4 Hz, 

()<. = 0.958 
and 

!::..: 0. 299E-l. 

The error, clearly, has been decreased by almost one order 

of magnitude, (see table 3), consequently we have adopted this 

latter model instead of the first. We can further improve the 

model by considering both Cole-Cole resistivity and permittivi­

ty models. The results are as follows: 
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Fo = 0.4364E+6 Q.m 

rc::ICI = 5.68 9m 

fl"" = 135.5 Hz 

tlc.,. = 0.92 

with a relative error, 

b = 0.21E-2, 

'-o = 40.35 £ 0F/m 

E-&.1::> = 2.67 .e:.. 9 F/m 

fc = 849.7 Hz 

O(.c = 0.122 

4-1-12 

one order of magnitude smaller than for the previous case. 

See Figure 23. 

A similar fitting for the same clay permafrost at -10°C 

has also been accomplished using a combined resistivity-permit­

tivity Cole-Cole dispersion models: 

fo = 0.2819E+6 Q..m eo = 40.35 <::. 0 F/m 

feo = 7.06 c:2m G:Cle = 2. 98 ~0 F/m 
4-1-13 

fr = 61.62 Hz fc = 838.4 Hz 

O<r = 0.87 IX =fJ.l22 c. 

A = 0.17E-2 .. 

see Figure 24. 

Above, we discovered that the Cole-Cole parameters and 

especially the relaxation time are frequency dependent and 

shift toward lower values with increasing temperature which 

accords with these results. Olhoeft's (1975) resistivity data 

for ice at -27°c has been fitted with two Cole-Cole dispersion 

functions to obtain: 

f o = 0 .6912E+6 (2 m 



rQ.:> = 2.52 em 

f = 2."7 Hz r 

0< r= "·92 

!::. = 9.195E-1. 

See Figure 25. 

GDC = 24.7" e. 0 F/m 
4-1-20 

fc = 4645. Hz 

!)( = 0.122 
"'" 

A joint inversion has been performed on two sets of data ' 

after Carmichael (1982). belonging to the effective resistivi­

ty and permittivity of serpentinite at 200°C, (see Figure 26). 

The listing of the program is provided in appendix B. The re-

lative error in the data is higher by one order of magnitude 

than the previous fit, that results from using a joint inver-

sion. The fitted parameters of the combined resistivity/per-

mittivity Cole-Cole models are as follows: 

Po .,. 0.4827E+5 E.o'"' 40.56 

P«> .... 0.7590E+3 E. " 2.0 
cc 

+ = 0.2070E-t-4 
+<:... " 0.200E+3 

I' 

c,.: ':11 0.55 0.95 
{ 0< ~ c. 

~ = 0.121 
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e () e 
Table 3. Observed and fitted resistivity values for various models 

• FREQUENCY . OBSERVED • FITTED WITH • FITTED WITH • FITTED WITH • 
(HZ) RESISTIVITY TWO COLE-COlE COLE-COLE CONSTANT 

C2M PARAMETERS RESISTIVITY AND 
2M PM ~M 

0.2153E+2 . 0.4642E-46 . 0.4266E-46 . 0.4622E-t6 . 0. 5494E+6 

0.4645E+2 . 0.4500E+6 . 0.4168E+6 . 0. 4498E+6 . 0. 5330E+ 6 

0.1000E+3 . 0.4472E+6 . 0. 395 7E+6 . 0. 4252E+6 . 0.5Ql0E46 

0.2153E.,.3 . 0.3412E+6 . 0. 3545E"' 6 . 0. 3803E+6 . 0.4435E+6 

0.4645E+3 . 0. 2 851E+6 . 0.2855E+6 . 0. 3096E+6 . 0.3555E .. 6 

O.l000E.,.4 . 0.1875E..-6 . 0.2045E+6 . 0. 2211E .,.6 . 0.2492E-t6 

0.2153E+4 . 0.1259E+6 . 0.1379E+6 . 0 .1367E+6 . 0.1516E""6 

0.4645E+4 . 0. 7943E+5 . 0. 8799E+-5 . 0.7470E-t5 . 0. 8207E+S 
.0 
11 0 .lOOOE+ 5 0. 5012E+5 0. 5221E+S 0. 3757E+5 0.4134E-t5 . . . . 

0.2153E+5 . 0.2512E-+5 . 0.2882E+5 . 0.1791E+5 . Q.l999E+5 

0.4645E+5 . 0 .1259E+5 . 0.1401E+5 . 0.8207E•4 . 0.9445E+4 

0 .10.00E+6 . 0.6310E+4 . 0.7303E+4 . 0.3656E+4 . 0.4428E+4 

0. 2153E+6 . 0. 3162E +4 . 0.3503E+4 . 0.1593E+4 . .0.2066E-t4 

0.4645E+6 . 0.1292E+4 . 0.1642E+4 . 0. 6897E+3 . 0.9604E+3 

0 .1000E+7 . 0.7055E+3 . 0.6981E+3 . 0. 3040E+3 . 0.4474Et3 

0.2153E+7 . 0.3055Et-3 . 0.2701E+3 . 0 .1384E+3 . 0.2088E+3 

0.4645E+7 . 0.9333E+2 . 0.9520E+2 . 0. 6506E+2 . 0.9770E+-2 

O..l000E+8 . 0.342BE+2 . 0. 3308E+2 . 0.3198E.f2 . 0. 4628E+2 

0. 2153E+8 . 0 .1233E_,. 2 . 0.1334E+2 . O.l672E+2 . 0.2240E+2 

0.4645E+8 . 0.6580E<~l . 0.6339E+l . 0.6197E+l . 0.1614E+2 

d . . . 0.2101E-2 . 0.2986E-l . 0.1583E+ 0 
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Figure 23. Effective resisti~ity versus frequency for natural 
clay permafrost at -21oc. (After Olhoeft, 1975). Note that 
Olhoeft uses the nomenclature real resistivity where we use ef­
fective resistivity. The field strenath is 22V/cm. 
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Figure 24. Effective resitivity versus frequency for natural 
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Figure 25. Effective resitivity versus frequency for natural 
ice core, at -27°c. (After Olhoeft, 1975). The field strength 
is 22V/cm. 
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Figure 26. Fitted and observed effective resistivity and permitti­
vity of serpentinite at 200°C, versus frequency. (After Carmichael, 

1982}. The above two curves were sunultaneously inverted. 
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4.2 FORMATION FACTOR 

One of the parameters calculated from rock properties is 

the so-called formation factor F. At VHF it is determined as ( 

Sen et al., 1981) 

F = c:p-m 4-2-1 

where ~ is the porosity of the rock, 

" e...., is the imaginary part of the complex dielectric 

permittivity of a non-saturated salt-water solution, ,, 
E;. is the imaginary component of the complex dielectric 

permittivity of a salt-water saturated formation, 

m is the cementation index which varies between 1.3 and 

4. and is determined empirically. 

At low frequencies, the equivalent measure is 

F ~ -M 
= = cp 

rr 
4-2-2 

where <:iw is the de conductivity of water and 

<f is the conductivity. 

The similarity of these two equations allows one to 

describe a more general, combined equaton for the formation 
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factor: 

,. I , 

F = <f-m = LE:. t~)-+'IT({.))/~.lw 
[E:.\t..;)) -T ITJ(.t.l)/~]D 

4-2-3 

where the subscript (o) stands for the measurement done for the 

sample and (w), the measurement for salt-water. Equation 4-2-3 

reduces to equation 4-2-1 at VHF and to equation 4-2-2 at LF. 

Archie's empirical law is 

F oc <f-m 4-2-4 

and depending to the sample studied (see Sen ~ al.) it has 
-I 

been suggested to have the forms, a~-m, a('1'-<fc)-m,2cj(3- "\"}, and 

alsd other forms can be encountered in the literature. The 

absence of the percolation threshold, ~c =0, implies that the 

fluid phase remains essentially continuous to very low values 

of porosity and that pores are stongly interconnected. In 

general, the branching nature of the pore space in sedimentaty 

rocks is more complex than the simple networks usually assumed 

in theoretical models. There have been attempts to obtain 

f~rmulae for the relationship between dielectric constants of a 

medium and its porosity which involves ellipsoidal particles 

and depolarization factors ( Ziman, 1979 and Sen et al., 1981). 

4.3 DIELECTRIC RESPONSE IN AN HETEROGENEOUS MEDIUM 

Real data do not always show simple relaxation curves 

(Figure 27). To fit such measurements, more than one Cole-Cole 

dispersion must be considered. For example, let us consider a 
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After Hoekstra and Delaney, 1974. 
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Pha£c angle spectra from the Copper Cities 
porphyry copper deposit in the Globc-Miami district 
of Arizona. Dipole-dipole array, n == 1, x "" 1 m. 

After Pelton et al., 1976. 

Figure 27.Permittivity and resistivity curves versus frequency 

do not always show simple Cole-Cole relationships. 

103 



0 

porous rock matrix with permittivity e.~ and pores filled with 

water of permittivity { • In such heterogeneous situations, 

the dielectric behavior of the system can be expected to show 
-¥ 

an average dielectric property 6~ plus a small difference from 

the average. In the solid-state physics of a disordered 

system, the exact field is computed in terms of multiple scat­

tering theory in which these difference-fluctuations from the 

average medium are treated as perturbations. The combined 

"' dielectric constant E. computed from the macroscopic polariza-

tion of the system is found to be ( Webman eta!., 1977 .} 

4-3-1 

where 
f 
~ = combined dielectric permittivity, 

.t!i --~a dielectric permittivity of the equivalent homogeneous 

medium, 
~ 

~ = local dielectric permittlvity and 

+i = volume fraction of the ith phase. 

For a two-component system with a small concentration x of 

material ~2* imbedded as isolated spheres in 
¥ :t 

chose ea = E.
1 

so that: 

or 
"" "' t - E:.l 

E:...)l + 1. =-~ 
"11 4 

E:. "' e-1 

+ .lj 
::: ':( E;'Z.-l:.l 

e.-t"" '2. '-,"~ 
[E:.;, ( I+'Z.Y.) -+2E:.fll-~)1 
[(:."~ (l-t'2,')() T t.f ( \ -~)1 

I 

* e.. 1 , we can 

4-3-2 

4-3-4 

This equation was derived by Bottcher (1952} and is called 

the "Average t-matrix Approximation" 1 (ATA). Sen et al., (1981) 

suggested a model they have called the "Coherent Potential 

Approximation" 1 (CPA), in which the dielectric permittivity 
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of the medium is equal to that of the equivalent homogeneous 
~ . . model £.
0 

instead of bel ng equal to that of the host rock t
1 

• 

CPA treats all components symmetrically whereas ATA selects one 

as a host rock. Equation 4-3-4 for CPA obtains 

"' .,.] I !1 l•i - '- ._ o . 
["-t-f1.~~ 

4-3-5 

Sen et al.,(l981) 
4 

noted that the corrections for e. 

beyond CPA ai"~3J~h order in the transition matrix, while for 

ATA they are 2nd order. In practice CPA better agrees with 

ex per i men t s. The mode 1 Se n e t a 1., ( 19 8 1) de a 1 w i t h des c r i be s 

large clusters of grains which are individually surrounded by 

water in which small separated grains exist. The model 

comprises large spheres coated with a water film containing 

small spheres (see Sen et al. ,1981 for details). The overall 

dielectric permittivity of such materials, is then 

4-3-6 

where L is the depolarizing factor associated with the i-axis 

along which the field is impressed, 
.. 
~m is the dielectric permittivity of the grains and 

'f 
e w is the dielectric permittivity of water. 

The depolarizing factor depends upon the aspect ratio of the 

grains and is equal to 1/3 for spherical grains. The dielec-

tric permittivity of the medium can be obtained given w 

and • For the ATA model the equivalent equation becomes 

t.
11
w - €.* ( ~ )\.... = I- .....h 
-t f:-" T 4-3-7 
€.~- ~W\ 
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Although these two equations are similar, the former re­

sults in the following limiting cases 

w ___.,. 0 

E:...:U-E:!W\ 

E:.l :: ~\.) <::? ~2. 

while the latter results in zero DC conductivity. 

4.3.1 EXPERIMENTAL RESULTS 

4-3-8 

4-3-9 

4-3-19 

Figure 28 shows the low frequency (129 Hz), in-phase 

conductivity measurements for artificial rocks saturated with 

10., 1, and 0.1 2 m NaCl solutions and is in agreement with 

equation 4-3-8. The value of 

have zero conductivity. 

drops as low as 2% and we dont 

At 1.1 GHz, measurements (figurE 29 ) of real and imagi-

* nary components of '- have been obtained for varying porosity. 

The agreement with the above mentioned theory is excellent. At 

I' " high frequencies, the imaginary component is E:. 4 v;(.,.) while the 

real remains E., since vj(JJ << e:.' • 

4.4 POROSITY, WATER CONTENT AND SALINITY 

Poley et al. (1978), Katsube and Collett (1976), Pelton et 

al. {1978} carried out measurements of electrical properties of 

rocks over a wide range of frequencies. If a substance has a 

conductivity, this will mainly determine its electric behavior 
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at lower frequencies-but this properties influence will decline 

rapidly toward high frequencies and the dielectric propertiy 

becomes significant beyond 10 KHz. By combining some logging 

data with VHF measurements of rock properties, fluid satura-

tion, porosity, fluid salinity and formation factors might be 

deduced. 

A series of sandstone and limestone samples with porosity of 

6 to 26% were measured by Poley et al (1978) under various 

conditions of fluid saturation. These measurements showed that 

electrical parameters are strongly porosity dependent with real 

and imaginary dielectric permitivitties increasing with increa-

sing porosity, while conductivity decreases with porosity 

(figure 30). 

In water saturated porous formations, such as sandstone 

and volcanic rocks, the moisture content greatly affects the 

bulk dielectric permittivity since the DC dielectric constant 

of water is 80 E0 • Furthermore, also the magnitude of 

generalyy increases with salinity. At VHF (above 108Hz), the 

real dielectric permittivity becomes virtually insensitive to 

salinity and thus insensitive to the nature of the water 

filling the pores and is dependent only upon the amount of 

water present. This is particularly important in geophysical 

mearurement since the water salinity is often unknown due to 

fresh water, co 2 and chemical flooding. In water saturated 

formations at VHF ~· may serve as porosity indicator when the 

bulk permittivity of the rock matrix is known. 

109 



0 

£' 
1Sr---------------------------------------~ 

10 -

o Fruh-woter saturated 

x Oil·saturoted 

X 

00L-------------1~o------------72o~-----------3~o~ 
E' Versus q, for Water-Saturated and 

Oil-Saturated Sandstones 
f = 1200 MHz 

20r-----------~r-------------r---------~-, 

; 
/ , 

0 Fresh woler soluro!l!d 
" Oit soturotl!d 

, , 
; , 

-----

0 

k X 

$~------------~------------~------~--~ 0 10 20 30cjl 

E' Versus q, for Water-Saturated and 
Oil-Saturated limestones (Calcites) 

f = 1200 MHz 

Figure 30. (After Poley et al., 1978). 

~ versus • for water-saturated and oil­
saturated limestones and sandstones at 
1200 MHz. 

' , " 



E' 
20~---~-----.----~ Figure b 

legend for Figures b and c 

• Fresh water 
x 2.0% wt salinity 
o 4.3% wt salinity 
o 9.1% wt salinity 
+ 15.0% wt salinity 

Salinity 
•J.wt 

E' 15 
25 ,..-------:--·-----.--_,_--, 

9 
f:::200 MHz 

5 

0 

£' 
20 

15 

10 

5 

I 

0~------~-------~'------- 0 

f=1200MHz 

0 10 20 

f:1800MHz 

/ 
0./ 

--~ 
V :r .. , 

.,"" 
7 

0 10 20 30 OJ, 0 10 20 

+ 

Figure 31. (After Poley et al., 1978). 
Dependence of E' on Porosity for Sandstones of Various Salinities 

JQO/o 

tt 

Figure c 



Figure 31 shows measurements of a' for water saturated 

samples at different salinities for three frequencies. Figure 

32 
,, 

shows measurements of E::..-values at these same frequencies. 

' From figure 33, we see that at 18~0 Mhz, the ~values are vir-

tually independent of salinity while 
, 

€. values show a small 

increase as a function of salinity with frequency. This is due 

' to the basic conductivity contribution ~~to the equivalent 

imaginary component of permittivity which in Poley's develop­

ment is included directly in the imaginary permittivity. Thus 
, // 

when €. and €. are measured together, 6" can be used as a 

salinity indicator. 

In contrast to water, the dielectric permittivity of oil 

is only of the order of c;;:~· In another experiment by Poley et 

al. (1978), measurements on completely oil-saturated (Sw=0) to 

completely water-saturated samples (Sw=l), at 250 MHz (figure 

30). At VHF values of E:.' and t;;;." are perhaps useful in diffe-

rentiating between water and oil saturation. 

4.5 ACCURACY OF MEASUREMENTS 

Advances in BF time domain techniques made the measurement 

of dielectric permittivity possible up to 1012 Hz. EM-wave 

propagation borehole logging devices make measuremtns of phase 

shift, .Acf>, and attenuation, .A, from which the composite diele­

ctric properties can be calculated. 
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Of real and imaginary permittivity components for a water 

saturated sample at different ~alinities for 1800MHz. 

It can be seen that at 1800 MHz, the real permittivity is 

virtually independent of salinity while the imaginary 

component shows a small increase as a function of salinity. 
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Schlumberger introduced EM-wave travel time measurements 

which yield composite dielectric values. The travel time tpl 

is the inverse phase velocity of EM wave propagating in an 

infinite homogeneous medium and has dimensions of inverse velo-

city. Theoretically it is defined by 

4-5-1 

The measured value tplc, is the formation travel time versus 

wireline depth and is determined from a measured phase shift, 

' 
where L = distance between point receivers at x1 and x2 

and w = instrument {EPT) frequency. 

4-5-2 

The relative deviation of tplc from tpl has been investigated 

and found not to be more than 5%. 

Let us consider a plane wave propagating along the x-

axis. The E-field associated with this wave is: 

E(x) = E ei(kx-wt) 
0 

If we write the propagation constant as 

4-5-3 

one. may evaluate the ot and ~ eo rrespond i ng to the EM-wave 

travel time. The phase shift, ll<f, of the electric field rela-

tive to two point receiver positions x1 and x2 is: 
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We consider equation 4-5-5 the exact expression for the phase 

shift. Schlumberger calculates ~c from the phase shift as 

~c will be exact for a plane wave propagating through a 

half space. 

4-5-6 

The general attenuation in dB/m relative to the two point 

receivers is given by: 

4-5-7 

Thus ~c is in terms of A, as suggested by Schlumberger, for 

plane waves is obtained according to 

4-5-8 

where As is the attenuation in dB/m arising from spreading 

losses which are dependent on the properties of the medium 

which difficult to determine. the approximation procedure used 

to evaluate As is to replace it by the value of attenuation in 

air where ~air=~. Schlumberger also introduce a second travel 

time: 

4-5-9 

or 

4-5-1~ 

then deduce the following equation for tpl 
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Using this form, provided accurate values of tPW' tph' 

tpma are available by laboratory experiments, water and oil 

saturation and porosity can be deduced. 

In frequencies between 1~-4~ MHz, the real dielectric 

constant ~,of a water - oil - saturated matrix is consistent 

with the following equation (Meador and Cox, 1975): 

where 

4-5-11 

s = water saturation w 

, 
e.. 

01 

= real dielectric permittivity of water, 

= real dielectric permittivity of oil, and 

= real dielectric permittivity of rock matrix, 

= porosity, and 

c.. = an empirical factor between ~ and 2 which 

depends upon the porosity, grain size, shape and orientation. 

Freedmann and Vorgiatzis (1979) suggested that if c=l/2 

and if we multiply equation 4-5-11 by ~Yz.we obtain 

4-5-12 

where tpw' tpoh and tpoma are travel times for the water hydro­

carbons and rock matrix and 

4-5-13 

which is essentially the same as the equation used by 

Schlumberger because the correction term ~~ 4 is relatively 
l.ti 

small. 
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Freedman and Vorgiatzis consider a model of a half space 

(layer 1.) in which there is a layer (2) of mudcake of uniform 

thickness d and in which is located a transmitting antenna at x 

= 0 with two receiving antennae at x 1 and x 2 • The electric 

field due to the boundary conditions of the model has just a z­

component (Figure 341. The phase shift and the attenuation can. 

be determined by equations 4-5-5 and 4-5-7 for point receivers, 

but practically for finite receivers At and A are position­

dependent v~ry over the area of the receivers. Provided the 

receivers measure averaged electric field at their locations, 

we can still use equations 4-5-5 and 4-5-7 but we must use 

equation 2-2-36 to describe the E-field in terms of the near 

field Hertz vector. Considering the boundary conditions, 

Freedman and Vorgiatzis (1979) obtain the following equation 

for E: 

They performed computer calculations for various values of the 

two media from phase shift and attenation and compared them to 

the measured values and found that, in the absence of mudcake, 

the error in tplc was between 0.7 and 4.3%, tplc being always 

less than tpc• With mudcake the error was of the order of 0.1 

to 11.4%. The attenuation was a monotonically increasing func­

tion of the mudcake thickness; the phase shift increased with 

the effective permittivity of the medium. The formation die­

lectric properties calculated in this way are properly apparent 
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rather than true. For qualitative purposes however, this method 

is acceptable. It is also possible to construct departure 

curves which enable one to obtain true formation properties 

from apparent values. 

A schematic view of the theoretical model. 
·•. 

Figure 34. After Freedman and Vorgiatzis, 1979). 
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CHAPTER V 

5.1 ALTERNATING CURRENT SOUNDING 

Sommerfeld (1936) .has developed the theory of alternating 

current EM-sounding for very simple configurations of antennas; 

i.e. vertical and horizontal dipoles over a plane homogeneous 

half-space. Although in practice the antenna design is very 

critical, for our present mathematical development of the 

theory we will idealize the transmitter and receiver and treat 

them as electrical and magnetic dipoles. In EM exploration, 

frequency plays a dominant role. Multifrequency EM sounding is 

known as the parametric sounding. 

The Sommerfeld theory attracted little geophysical 

interest because of its technical and practical limitations 

until two decades ago, when elaborate multifrequency instru­

ments were developed. The ability to make measurements stimu­

lated continuing development of the theory for various 

transmitter receiver configurations (Patra and Mallick 1980, 

Frischknecht 1966, 1967, etc ••• ). 

Parallel with the development of the theory digital fil­

ters for the numerical evaluation of the required Hankel trans­

forms have been developed (Anderson 1977, 1978). These filters 

very closely approximate the Hankel transforms and are a power­

ful tool in the evaluation of these integrals. In the recent 
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literature, the asymptotic solutions for large kr terms have 

been developed by several workers (Mi ttra et al., 1979, Kuo and 

Mei 1978). These yield more rapid solutions, closely approxi-

mating the potential vector. 

In general, the objective of these AC soundings is either 

to determine the variations of the earth's electrical parame-

ters with depth (parametric sounding) or to recognize lateral 

inhomogeneities (geometric sounding). Our objective here is 

rather to describe the frequency dependence of the electrical 

parameters of a homogeneous half-space. The Hertz vector was 

described by Sommerfeld (1936) and has been used to derive EM-

field components while dealing with the electric current flow. 

Magnetic dipoles which are represented by frame antennas have 

an analogous magnetic current flow which relates to another 

vector, similar to the Hertz vector, the Fitzgerald vector F. 

The general form of these two vectors is: 

11 = A )CO K(X) J" (~f) d\ 5-1-1 

where 

0 

A= dimensionaless scaling factor, 

jn = Bessel function of order 0 or 1 and 

k = Kernel function, either 

e:"P ... 1Pe: e.-"''t -t~ye 
k())' O( 

~ = height of antenna above the assumed half-space, 

~ = depth of measurement, 
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'l 
k = w~E...eo 

k = propagation constant of the half-space c. 
I. • l . 
1'\e. :::: --1. w er ( E:. w-t A. <r) 

The Kernel of these equations must be decreasing functions 

with ex, which will always be the case if we chose the negative 

real part of the exponents. Due to the oscillatory nature of 

the Bessel functions J (Ar), there is a further cancellation of 
r'l 

terms which enhances the convergence of the integrals. 

The major contribution to these integral transformations 

derives primarely from small values of ). • It must be noted 

that those integra~s with the denominators 

pair of simple poles ex= t'\=- where 

have a 

5-2 

The poles do not lie normally in the integration path 

because n is a complex constant, but if otherwise, must be 

avoided by the path of integration. This theory has been used 

to evaluate E- and H-field for several different transmitter 

configurations and also to determine the impedance of a loop-

loop and a loop and wire configuration Using the appropriate 

Cole-Cole resistivity and dielectric permittivity parameters. 

Since there is a similarity between vertical electric 

dipole and horizontal magnetic loop antenna, let us discuss 

these two cases in parallel. In the following development, 

antenna dimensions to be considered small with respect to the 

wavelength and some distance above the halfspace surface 

boundary. 

123 



0 

An alternating field is imposed on the halfspace by a loop 

or a long wire antenna. These source EM fields are the prima­

ry excitations; the secondary stimulation is produced by 

currents induced within the halfspace. A receiver coil or rod 

can then measure the perturbation of the normal field due to 

subsurface induced currents. For geophysical sounding from the 

surface the sum of the primary and secondary fields must be 

considered. In geophysical prospecting, it is the stimulation 

in the ground due to the secondar~ field which is of essential 

interest. 

5.2 A VERTICAL ELECTRIC DIPOLE ANTENNA ABOVE A DISSIPATIVE 
EARTH 

The E- and H-field for the vertical electric antenna are 

obtained as (Sommerfeld, 1936) 

~ -" 
E = -k_ JT +V <.i1.J\) 

c:. 5-3 

1.. .... 
H = kc: \J ..,rr S-4 

-i~~. 

where - -
in cylindrical coordinates. The z-axis coincides with the 

antenna axis and z = ~ is the air-ground interface. A 

harmonic time dependence of e-iwt has been suppressed through­

out. The Hertz vector direction is that of the antenna current 

that is: 
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and because of cylindrical symmetry around the antenna nz is 

independent of 4> , thus '0 = 0 and 
i'"q:, 

... -
Jf'i :Ji3:. {.(lt,l.r..l) 5-5 

Inserting equation 5-5 in 5-4 and 5-3 we obtain 

5-6 

and 

5-7 

and 
.2. 

H~ = -~A 'OJft 
'11.Ay· ~\"' 

5-8 

where A is the dimensionality factor, and we are going to absorb 

it into the :st. term, 
A = l dx ' 

with 

and 

4rt~e.d> 

I = current in antenna, 

dx = element of length of the antenna, 

w = angular frequency and 

60 = permittivity of free space. 

Avoiding the details, we consider the following case: 

At the air-ground interface boundary conditions are: 

5-9 

Without applying any specific properties of the parameters of the 

media, the Hertz vector has the form 
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5-10 

By taking the appropriate derivatives (Sommerfeld} we get, 

5-11 

..,. J (\2. eYa~-~t., 
H.ef = -2iAkt (Jlbtb A Jc.)j,.)dA 

kya"' k!~ • • 
5-12 

At the origin, necessarily 

- -Er (r=0) = H (r=0} = 0 • 
. ~ 

5-13 

5.3 HORIZONTAL MAGNETIC ANTENNA OVER AN ARBITRARY EARTH 

In the case of a magnetic dipole source the Fritzgerald .. -vector F is used instead of n , and 

- -E =-iw~. V x F 

.... ...,. - .1. .. 
H = -k2 Fz +~ F 

5-14 

5-15 

Insulated electric current loops (i.e. magnetic dipole) have 

considerable value as antennas for electromagnetic probing. 

The basic model used now is a small loop source, carrying an 

alternating current, oriented in the z-direction. In 

cylindrical coordinates, we will have one Fitzgerald potential 
-+ 

vector component in the z-direction, Fz• This vector is symme-
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tric in et"· Taking the appropriate derivatives through 

equations 5-14 and 5-15 above, our horizontal field components 

become 

.... ~ 

E = iwy£Fz , q:. or 
5-16 

...... ...-. 
Hr ='£ <'l F z> I 

0~ 'Ur 
5-17 

and 
.... ..... 
Er = H = "· '"1=' 

5-18 

The vertical magnetic component becomes 

.... 
Hz = • 5-19 

Using the appropriate boundary conditions we find the 

Fritzgerald vector 

..,. J -~k +ysi. 
F =A ~ e.. j (Af)dA 5-29 

z y+~e_ c 

and inserting this form into equations 5-17, 5-18, 5-19 above, 

the horizontal field component becomes 
- Jc:Q l ~-~-y~ 
Ect:' = -2i!))yf. 1.. e c J 1 Or)eiA 

o Y+Ye 
5-21 

- Jco ). 2.. 'ri~-yh 
Hr= -2A Ji_ e. J

1
(.1\r')d). 

~ ~+la 
5-22 

and the vertical component, 

..... (""""'" ~ 
Hz = -2 iAwy • ..Jo 1). 5-23 

At the origin 

E cf' ( r=O) = Hr ( r=O) = g • 

The field component E c:::p can be measured using a transversely 

oriented pair of ground potential probes; -Hz can be measured 

I 
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with a horizontal coil of few turns. There are some special 

difficulties in measuring the Hr-components. All six 

integrals above can be evaluated by numerical integration with 

the help of Anderson's (1978) digital filters. The Kernels of 

these integrals are generally complicated terms, involving 

roots of complex values in both the exponent and denominator. 

Several approximations must be made in order to evaluate these 

integrals: for example, for measurements at the surface (z=0), 

we considered that: 

and consequently, at the surface, the Kernels 

~ek.2+y~~ 

reduce to 

and 

and 

These assumptions are only appropriate at "low" frequencies and 

can not be generalized. The major contribution to these 

integrals is from small k(' s, where at high frequencies k
0 

is 

not small compared to '). • At large distances, the assymptotic 

solutions of the above integrals are often used in replacement. 

As we have seen above, many geophysical parameters are invol­

ved in the determination of the EM-field components. Let us 

recall these parameters which appear directly in the field 

equations; 
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'). =·variable of integration 

= J).'l--k'Z.. 
1. 

~Yo&.o 1' where ko = 
0 

r=. = Jx7.... I( 
z = lAY a (!A E:.e- -l <re) where k e. 

"A = A (I,w) = dimensionless scaling term. 

The Kernels of the Hankel integrals are dependent on 

frequency and also on the propagation constants in both media. 

We are especially interested in the propagation vector in the 

ground halfspace which is definite!~ determined by the geophy­

sical ground properties. Since ke appears in the exponent of 

integration, small changes in kE can appreciably modify the 

magnitude of the EM-fields~ 

By measuring, then, these fields at several frequencies 

{at least 8 frequencies are required to overdetermine the 

solutions) we may determine by inversion the propagation 

constant of the homogeneous ground and from this constant, the 

geophysical properties of the ground. Let us now determine the 

form of these fields as a function of different parameters. 

5.4 VARIATION WITH DEPTH 

We here consider the E and H fields of the vertical 
"' cp 

electric dipole. For all other antenna configurations, similar 

conclusions with respect to the kernels of the Hankel integrals 

can be drawn. We shall keep the frequency constant thus k0 

and kE and A remain contant. The height of the dipole is first 
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arbitrarily fixed to be one wave length in the following exam-

ples. The horizontal position of measurement is taken to be 

some substantial distance away from the antenna since just 

beneath the antenna, fields are nul. A unit current will drive 

the antenna: fields are evaluated as functions of depth. For 

H~)the essential factor in the integral containing the depth is 

e-2fE where 

As expected, fields decrease exponentially with depth while 

oscillating due to the sinusoidal form of eiZft. 

- 'Z:?e The corresponding integral factor for the Er field is Ya e. • 

The behavior of this field will show some minimum value at the 

surface reaching a maximum at some depth and then continue 

decreasing (but less rapidly than exponential) toward larger 

depths. In Figure 35 the two curves show Er and Hi"fields for 

a homogeneous half-space of the clay permafrost at -27°C 

(Olhoeft} in chapter IV, section 4.1.1 with depth. Once we 

know the character of variation of the fields with depth, we 

shall fix henceforth, the depth at once skin depth for the 

subsequent e~amples. 

5.5 VARIATION WITH HEIGHT OF ANTENNA 

The effect of increasing the height of the antenna also 

provides an exponential decrease on ~-field (Figure 36). The 

term responsible for this effect is e-h~ • For 
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the term e-hp is purely oscillatory, while for 

0 "'A"( ko 

this term is purely negative exponetially. In the transform 

integral, this second form dominates so that there will be an 

exponential decrease with increasing height. Let us now set 

the height again at one wavelength and consider the variation 

of fields with the horizontal axis at for several frequencies. 

Here we will see the effect of the propagation constant. 

5.6 FREQUENCY VARIATION 

As seen in figures { 37- 42 ), the major effects on the 

field occurs within a radius of about one wavelength; beyond 

this range, the fields die off rapidly. A more important 

effect is the variation of the maximum amplitude of the field 

with frequency. At some particular frequency, we find a 

maximum field amplitude for any particular height due to the 

choice of the Cole-Cole models which determine the propagation 

constant of the halfspace ground medium. 

5.7 RADIATION ENERGY 

The quadratic quantity of energy flow is determined by the 

amplitude of Poynting's vector 
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S = [EH] • 5-24 

averaged over all time and space. Due to the orthogonality of 

the eigenfunctions, the Bessel functions cancel in this product 

and the total energy flow integrated over a horizontal plane 

reduces to 

5-25 

All energy which enters the Earth is effectively transformed 

into Joule heat so that -s is the total thermal absorption of 

Earth per unit time. s+ is the total radiation is air above 

the halfspace. The energy input to the antenna per unit time 

(i.e. the radiative power) is: 

w = s - s 
+ 

For the vertical magnetic loop integral 5-24 is obtained 

in Appendix E. For the vertical dipole and horizontal dipole, 

the mathematical development was done by Sommerfeld (1936). 

The results for the three antenna configurations are summa-

rized: 

i - Vertical electric antenna: 

w = !211 k 'S ( ~ -+ 2~~J-~ to~~ o~-u) 5-26 
Yow 3 .:s~ 

where 

u = I R ~ AJCO~ _lyh f).~ 
d)~ 5-27 - e e. -k!l 0 l'lv'i'V I I \E 
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where 

where 

and 

ii - Horizontal electric antenna: 

iii - Vertical magnetic loop: 

u'A 
I 

.:s = 2 kh. 

We see that the first part of the contribution to the 

power is due simply to geometrical factors the frequency, and 

only the second part, that is the integral part, involves the 

ground geophysical parameters. These integrals have been nume­

riclally evaluated by the computer and have never shown a 

contribution larger than about 5% of the first part. Hence, 

independently of the range of the geophysical parameters, the 

power input to the antennas can be computed on the basis of the 

frequency and the geometrical factors of the antenna alone. 
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Figure 37. Real component of secondary H+-field for aver­

tical transmitting dipole antenna, at various frequencies. 

The electrical parameters used to create these spectra are 

those of a half-space of clay permafrost at -21oc, as ob-

tained in sectio~4.1.1. The current of the transmitter 

is equal to unity, the horizontal distance is in terms of 

the wavelength, the length of the antenna is equal to ')./4, 

and the depth of measurement is equal to one skin depth. 

It should be noted that the purpose of these plots is to 

show the aspect of the secondary field at various frequen-

cies, due to frequency-dependent electrical parameters of 

the half-space. The maximum ·field occurs at 10 7 Hz. 

Figure 38. Real component of the secondary E -field for r 

a vertical transmitting dipole antenna, at various frequen-

cies. Parameters are all the same as in figure 37. The 

maximum field occurs at 107 Hz. 

Figure 39. Real component of the secondary H~-field for 

a magnetic transmitting antenna, at various frequencies. 

Same parameters as above are used. The maximum field 

occurs at 108 Hz. 

Figure 40. Real component of the secondary E~-field for 

a magnetic transmitting antenna, at various frequencies. 

Same parameters as above are used. The maximum field 

occurs at 108 Hz. 
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CHAPTER VI 

CONCLUSIONS 

6.1 SUMMARY OF THE THESIS AND DISCUSSION OF RESULTS 

The original intention of the research project and this 

thesis which derives from it was to obtain an elaborated 

geophysical theory of electromagnetic fields and waves. The 

present work has concentrated, mainly, on the near-field 

induction problem for very-high and ultra-high frequency fields 

generated by idealized dipole antennas in proximity to a ground 

halfspace. The major, and largely original, contribution of 

this research has been to allow for geophysically reasonable 

models of a halfspace in which the basic electromagnetic 

parameters are complex-valued and frequency-dependent. In 

spite of the fact of a lacking solid-state physical theoretical 

explanation for the Cole-Cole model of complex conductivity, 

permittivity and permeability, we chose to employ this model 

because it is of considerable contemporary interest in 

geophysics and because it is relatively simple mathematically 

while corresponding closely to the Kirkwood-Fuoss physical 

permittivity model. 

The electromagnetic theory has been described in parallel 

in both the time and frequency domains. In attempting to 
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describe complex frequency dependent parameters, the details of 

this parallelism are especially important because it must be 

shown, for example, that models are reasonable. That is, we 

must always ensure that the parametric models employed are 

physically realizable: stable, causal and perhaps of minimum 

phase (or delay). For the Cole-Cole permittivity models, Jain 

(1981) and here, for the equivalent conductivity model (cf. 

Pelton et al. (1978)) the time-domain equivalents have been 

derived. In the case of the audio-frequency conductivity 

measurements as obtained in contemporary IP (induced 

polarization) surveying, this parallelism is of considerable 

importance. As very-high and ultra-high frequency 

electromagnetic methods become more used in geophysical 

surveying, the parallelism of the permittivity models will be 

similarly topical. 

Olhoeft's (1975) published data for permafrozen clay soils 

and Carmichael's data for serpentinite have been inverted 

using various Cole-Cole models of material conductivity and 

permittivity. Olhoeft had recognized the need for describing 

permafrozen materials with complex-valued permittivities which 

contribute to an additional apparent conductivity-like loss at 

frequencies beyond a few hertz. The inversions for these same 

data presented above yield much lower error bounds when the 

frequency-dependent Cole-Cole models are used in replacement of 

Olhoeft's constant complex permittivity assumption. 
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The thesis offers a substantial review of contemporary 

models of geophysical electromagnetic parameters which are 

known to be dependent upon such various conditions as tempera­

ture, salinity, porosity, electrochemistry, mineral grain size 

and shape, etc.. The newest of these models can contribute to 

the better understanding of high-frequency induced polarization 

effects and ultra-high frequency induction effects which can 

now be observed with modern geophysical prospecting and 

surveying instruments. 

6.2 SUGGESTIONS FOR FURTHER WORK 

In continuation of the developments of an elaborated 

geophysical electromagnetic theory, it would be useful to 

consider the similar problems concerning a grounded current 

electric dipole at high freqency and BF-to-UBF wave propagation 

phenomena in presence of the complex-valued, frequency 

dependent geophysical materials. Solution of the former problem 

could offer an essential theoretical description of the IP 

phenomena which are now so much used in base-metal geophysical 

prospecting and which show promise for petroleum exploration. 

Solution of the latter problem could extend the geophysical 

application of surface wave impedance measurements into the 

very-high to ultra-high frequency range. 

It now remains to demonstrate that in practical geophysi­

cal prospecting and surveying, these elaborations of the des­

cription of electromagnetic phenomena will lead to improved 

interpretations of geological structures. That task is best 
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accomplished in the industrial environment of geophysical sur­

veying and prospecting. We hope that this research will be of 

interest to the broader community of pure and applied geophysi­

cists. 
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Appendix A 

Program SVD.Pl inverts an effective resis­
tivity curve and yields in the cole-cole 
electrical parameters. 
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LIST SVD.Pl 

c-------------------------------------------------c INVERTING OF WAVE-IMPEDANCE 
C DATA: AClO.D AC27.D BClO.D BC27.D 
C RHO COLE ONLY 
C SVII.Pl 
~----rNrEGER-No~NP~M-----------------------------

R E AL. FRG C?O > , ORES< 20 > , C RE"S < 20 > 'fiRES< 20 > '[tELX ( 6) 'S 1 C 20) ' 
* S2<20>rE1<20>rF.2C20>,X1<4>rX2<4>rPirE"PSI, 
* X<6>rXEP<4>rD1C20>rD2<20)rEPS1rOMEGAC20> 

REAL*B DC6>rDF.LTAC20>,WRC416)rAC20r6>rTITLE 
LOGICAL ALTERNrACOLE 
DATA PirEPS0/3.1415927r.885F.-l1/riDGT/1/ 

C-----------------------------------------RE"AitiNG IN 
REAIIC5r230) TITLE 

READCS,200) TEMP 
READC5r220> NOrNP 
READCS,200>CFRG<I>rORES<I>,I=1rNO> 
NP2=NP/2 
READC5r200><Xl(J)rl=lrNP2> 
READC5,200>CX2Cilrl=lrNP2> 
REA[I(5,200) EF'Sl 

C-----------------------------------------WRJTING OUT 
WRITEC6,300) 
WRITEC6r240) TITLErTEMP 
WRITEC6,300> 
WRITFC6r320> 
WRITEC6,210><FRQ(J)r0RESCI>,J=1rNO> 

C-----------------------------------------DF.FINING PARAMETERS 
C WRITEC6r250) 
C WRITEC6r330)CX1<I>rl=1rNP2> 
C WRITEC6r260) 
C WRITEC6r330><X2<I>ri=1rNP2> 
C WRITEC6r300) 

10 

DO 10 I=1rNO 
ORES<I>=ALOGlOCORESCI>> 
OMEGA<I>=FRG<I>*2•*PI*EPSO 
NI=l 
RHOJ=2.92 
Ef'S=43.1 

X2<4>=.958 
X2<3>=.214Et5 

X2<1>=.4736Et6 
EPSI=ALOG10C1.01) 

C-------------------------------------------FORMINB COLOMN DELTA 

20 
c 

30 

ACOLE=.FALSE. 
CALL COLE<S1rS2rX2rACOLE,FRQ,pi,NO> 
CALL RHOCE1rF.2rS1rS2rOMEGArCRESrRZF.ROrFPSOrAI.TERN,NO> 

SSS=O.O 
WRITEC6r*> Ef'S,X2<1>rX2<2>rX2<3>rX2<4> 
DO 30 I=lrNO 

Y=l./CSl<I>+OMEGA<I>*EPS> 
CRES<I>=Y+RHOI 

WRITF.(6,*> CRES<I> 
CRES<I>=ALOGlO<CRES<I>> 

DRES<I>=RHOI*l.OltY 
DRES<I>=ALOG10<DRES<I>> 

DELTACI>=ORESCI>-CRESCI> 
ACir6>=<DRES<I>-CRES<I>>IEPSI 
SSS=SSS+DELTA<I>*DELTA<I> 
CONTINUE 
SSS=SSS/NO 
WRITEC6,*> SSS 
WRITEC6,*> C DEL.TA<J>rJ=l,NO> 

C-------------------------------------------FORMING MATRIX A 
C CALL PLOT2<DRES,ORES,CRESr20t60> 

DO 50 I=lt4 
X2<I>=X2CI>*1.01 
CALL COLE<D1rD2rX2rACOLErFRGrPirNO> 
DO 40 J=lrNO 

Z=RHOitCt./CDl<J>tOMEGA<J>*EPS>> 
~~S;t~~(~~~~tS~~tRES<J>>IEPSI 

X2Cl)=X2CI)/1.01 
EF'S=EF'S*l.Ol 

DO 60 J=lrNO 
Z=RHOit<l./CSl<J>+OMEGA<J>*EPS>> 
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61 

1 

70 

129 

140 
c 
c 
c 
C135 
c 
c 

199 
200 
210 
220 
230 
240 

~~ 

DRES<J>=ALOG10<Z> 
A(J,5)=CDRESCJ>-CRESCJ))/EPSI 
DO 61 I=lrNO 

WRITEC6,310><A<IrJ)rJ=lt6) 
WRilE<6d> 
FORMAT<' I AM AT INVERTING'> 
NNN=6 
[IQ 70 I=1r4 
X<I>=X2<I> 
X<5>=EPS/1.01 
X<6>=RHOI 
CALL SVDCArX•DELTArDELXtD,WRrEF'SlrNOtNNN> 
WRITE<6t300) 
NI=Nlt1 

[tO 129 I= 1 , NF'2 
X2<I>=X<I> 

EF'S=X<5> 
RHOI=X<6> 
IF<NI.LT.5> GO TO 20 
DO 140 I=1rNP2 
DELX<I>=10·**<DELX<I>> 
WRITEC6t270><X<I>tDELX<I>•I=1,6) 
WRITE<6r300> 
WRITE<6•*><E1<I>•I=l•20> 
DO 135 I=ltNP2 

DELX<I>=DELX<ltNP2> 
WRITE(6,'260) 
WRITE<6t270><X2<I>,DELX<I>ri=1rNP2> 
STOP 
FORMAT<4G10.4) 
FORMAT<2G10.4) 
FORMAT<216> 
FORMAT<A7> 
FORMATC/r' CASE OF'tA7r'AT 'rFl0.2r'C',/) 
FORMAT(/' COLE-COLE PERMITT!V!TY PARAMETERS',;, *' EPSI-ZERO EPSI-INFINITY TAU ALFA'/) 
FORMAT</•' COLE-COLE CONDUCTIVITY PARAMETERS',;, *' SIGMA-ZERO SlGMA-INFlNITY TAU ALFA't/) 

270 FORMATCG12.4•'ERR',G12.4) 
300 FORMAT<'---------------------------------------------') 
310 FORMAT<8G10.3> 

320 FORMATC/,15X,'INPUT DATA'r/,4Xt'FREQUENCY',4X,'RESISTIVJTY'r/) 
330 FORMAT<3X,G10.4r7X,3G10.4> 

END 
C---------------------------------------COLE-COLE COMPLEX CURVES 

SUBROUTINE COLE<Z1,Z2tX,ACOLErFRQrPI,NO> 
REAL Z1<1>tZ2<1>•X<l>,FRQ<1>,zERO,LMT,TAli•ALFA,Y,A• 

5 

c 
10 

* AR,PlrFrB 
LOGICAL ACOLE 
ZERO=X<1> 
LMT=X<2> 
TAU=1 .. /XC3> 
ALFA=X(4) 
Y=ALFAtPI/2. 
A=COS<Y> 
B=SIN<Y> 
IF<.NOT.ACOLE> GO TO 5 
A=SIN<Y> 
B=COS<Y> 
ALFA=l.-ALFA 
DO 10 I=ltNO 
Y=<FRQCI>*TAU>**ALFA 
F=Y**2.t2.*A*Yt1. 
F=<ZERO-LMT)/F 
Z1<I>=<l.+Y*A>*F+LMT 
Z2<I>=B*Y*F 
CONTINUE 
IFCACOLE) GO TO 30 
DO 20 I=lrNO 
AR=Z1<I>*Zl<I>tZ2<I>*Z2<I> 
Z1<I>=Zl<I>IAR 

C Z2<I>=Z2<1>/AR 
20 CONTINUE 

30 CONTINUE 158 



RETURN 
ctD---~~~---------------------------------------SVD 

SUBROUTINE SVDCArXrBrDELXrDrWRrEPSlrNOrNP> 
REAL*S B<l>rD<1>rA(NOr1)rWRC1>rSUH 
REAL X<l>rDELXCt> 
CALL LSVDFCArNOrNOrNPrBrNOrlrDrWRriER> 
WRITEC6r1) 

1 FORMAT<' SINGULAR VALUES') 
WRITEC6r50) CD<I>ri=1r6) 
DO 20 I=lrNP 
SUM=O.O 
IFCD<I>.NE.O.O) SUH=B<I>ICCDCI>*D<I>+EPS1)/DCI>> 

20 B<I>=SUM 
DO 40 I=lrNP 
SUH=O.O 
[IQ 30 J=lrNP 

30 SUM=SUM+ACirJ>*B<J> 
XCI>=ALOG10CXCI>> 
IFC10**<X<I>>.GT.4.*10**<X<I>+SUH>> GO TO 35 
IF<lO**<X<I>>.LT.lO**<X<I>+SUM>/4.> GO TO 35 
XCI>::;X.CI>+SUM 

35 XCI>=tO.**X<I> 
40 DELX<I>=SUM 

WRITEC6r60) 
WRITEC6r50) CXCI>rl=1r6) 

SO FORHATC4Gt2.4> 
60 FORMAT<' PARAMETERS AFTER CORRECTION'> 

RETURN 
END 
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Appendix B 

Program SVD.P simultaneously inverts effecti-
ve resistivity and permittivity curves and yields 
in the corresponding Cole-Cole electrical parame­
ters. 
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c-------------------------------------------------c INVERTJON OF RESISTIVITY AND DJELfCTRIC PERMITTIVITY 
C SERPENTTNITE DATA c-------------------------------------------------

INTE:GER NO,NF',M 
REAL FRGC24),0RESC24J,CAlC24>,DfR<24),DfLX<B>,oBSC?4), 

* S2<24>,E1<24)rf2<24),X1(4),X2(4),pJ,fPSirS1<24), 

e * X ( 8 > , X E P ( 4 > , Ill < 2 4 > ' fl2 < 2 4 > , E PS 1. ' 0 M F G A ( 2 4 ) , 0 DIE L < 2 4 ) 
RE:AL*B lH8),tiELTAC24),WRC1024),AC24,8),TtT,LE 
LOGICAL. ACOLE 
DATA PI,fPS0/3.1415927,.884194lE-11/,IDGT/1/ 

C-----------------------------------------REAfiiNG IN 
READC5,230) TIT,LE 
READ(5,200> TEMP 
READ(5,220> NO,NP 
READC5,210><FRG<I>,ORES<I)r0DIELCJ>,I=l•NO> 
NP2=NP/2 
N02=N0*2 
READ<5,200><Xl<I>ri=1,NP2) 
REAt1<5,200><X2<I>,I=1,NP2> 
READ<5,200) fPSl 

C-----------------------------------------WRITING OUT 
WRITE(6,290> 
WRITEC6r300> 
WRITEC6r240) TIT,LE,TEMP 
WRITEC6t300) 
WRITE(6,320> 
WRITf(6,280><FRG<I>,ORES<I>,ODIEL.<I>ri=1rNO> 

C-----------------------------------------DfFINING PARAMETERS 
WRITEC6,250> 

10 

WRITE<6•330> <Xl <I>, I=l rNP2> 
WRITE<6,260) 
WRITE<6r330><X2<I>ri=l,NP2> 
WRITEC6r300) 
DO 10 J=l,NO 
OBS<I+NO>=ALOGlO<ORES<I>> 
OBS<J>=ALOG10CODIEL<I>> 
OMEGA<I>=FRG<I>*2•*PI 
NI=l 
DO 15 I=l,NF'2 
X<I>=Xl<I> 

c~---:~~~~~~~::~~~~------------------------FORMIN~ COLOMN fiELTA 
..:0 RZERO=X2<1> 

40 

ACOLE=.FALSE. 
CALL COLE<Sl,S2rX2rACOLE,FRQ,PI,NO> 
ACOLE=.TRUE. . 
CALL COLE<E1rE2,XlrACOLE,FRn,pr,NO) 
CALL. RHO< El' E2, Sl '52, OMEGA, CAL. 'RZERO, EPSO, NO> 
WRITE:C6r200) CAL 
IIEL.=O.O 
DO 40 I=l,N02 
CAL<I>=ALOGlO<CAL<I>> 
DELTA<I>=OBS<I>-CAL<I> 
TIEL=DELtDEL.TA<I> 
DEL=DEL/N02 
WRITE'<6,ll:) DEL 

C-------------------------------------------FOkMING MATRIX A 

60 

70 

• c 61 

1 

M=l 
ACOLE=.TRUE. 
CALL DERIVCXtrXEP,EPSirNP2,M> 
CALL COLE<DlrD2rXEPrACOLErFRGrPirNO> 
CALL RHO<DlrD2rSlrS2r0MfGArDERrRZEROrEPSOrN0) 
CALL MATRIXCDER,CAL,A,EPSl,N02rNP2rM) 
M=Mtl 
IF<M.LE.NP2> GO TO 60 

M1=1 
ACOLE=.FALSE. 
CALL DERIV<X2rXEPtEPSirNP2rM1> 
RZERO=XEP<1> 
CALL COLE<DlrD2rXEPrACOLErFRQ,PlrN0) 
CALL RHO<ElrE2•DlrD2rOMEGArDERrRZEROrEPSOrNO> 
CALL MATRtXCDER,CALrArEPSirN02rNP2rM) 
M=Mtl 

Ml=Ml+l 
IF<M.LE.NP> GO TO 70 
M=M-1 
DO 61 I=lr24 

WRITE<6r310><A<IrJ)rJ=lr8) 
WRITE<6Jl) 
WRITEC6,300) 
FORMAT<' I AM AT INVERTING') 
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80 

CALL SVD<A•XrDELTA,DlLX•D•WRrF.PSl,N02rNP> 
NI=NI+l 

DO 80 1=1, NF'2 
Xl<I>=X<I> 

X2<I>=X<I+NP2> 
IF<NI.LT.2> GO TO 20 
ACOl.E=. FALSE • 
CALL COLE<Sl,S2rX2rACOLErFRGrPirN0) 
ACOLE=.TRUE. 
CALL COLE<El,E2•X1•ACOLErFRGrPirNO> 
CALL RHOCElrE2rS1rS2rOMEGArCALrRZEROrF.PSOrNO> 
WRITE(6,200) CAL 
WRITE<6r240) TITrLErTEMP 
DO 140 I=lrNP 

140 DELX<I>=lO.**<DELXCI>> 

199 
200 
210 
220 
230 
240 
250 

260 

270 
280 
290 

300 
310 

320 

WRJTE<6,270)(XCI>rDfLXCl)ri=1rNP> 
WRITE<6,300) 
STOP 
FORMAT<4G10.4) 
FORMAT<3G10.4) 
FORMAT<216> 
FORMAT<4X,2A8) 
FORMAT</•' CASE OF 'r2A8r' AT 'rF10.2r'C'> 
FORMAT<!' COLE-COLE PERMITTIVITY PARAHETERS'r/r 

*' EPSI-ZERO EPSI-INFINITY TAU ALFA'/) 
FORMATC/r' COLE-COLE CONDUCTIVITY PARAMfTERS'r/r 

*' RESIS-ZERO RESIS-INFINITY TAU ALFA'r/) 
FORMAT<G12.4r'ERR'rG12.4> 
FORMAT<2G14.4rG17.4) 
FORMAT<lHl) 
FORMATC 1

---------------------------------------------') FORMAT<8G10.3) 
FORMAT(/r15Xr'INPUT DATA'r/,4Xr'FRF.GUF.NCY'r4Xr'R~SISTIVITY'r4Xr 

&'DIELECTRIC PERM.'/) 
330 FORMAT<3XrG10.4r7Xr3G10.4> 

END 
C---------------------------------------COLE-COLE COMPLEX CURVES 

SUBROUTINE COLE<Z1rZ2rXrACOI_E,FRGrPirNO> 

c 

5 

10 

REAL Z 1 < 1 > r Z2 < 1 > , X< 1 > 'FRG ( 1 >,ZERO' LMT 'TAU, ALFA' Y' A, 
* AR,PlrFr!l 

LOGICAL ACOLE 
ZERO=X<1> 
LMT=X<?.> 
TAU=1./X(3) 
ALFA=X<4> 
Y=ALFA*PI/2. 
A=COSCY> 
E:=SIN<Y> 
IF<.NOT.ACOLE> GO TO 5 
A=SINCY) 
B=COS<Y> 
ALFA=l.-ALFA 
no 10 I=lrNO 
Y=<FRG<I>*TAU>**ALFA 
F=Y**2.+2.*A*Yt1. 
F=<ZERO-LMT)/F 
Z1<I>=<1.+Y*A>*F+LMT 
Z2<I>=B*Y*F 
IF<ACOLE> GO TO 30 
DO 20 I=lrNO 
AR=Zl<I>*Z1<I>+Z2CI>*Z2(1) 
Zl<I>=Zl<I>IAR 

20 Z2<I>=Z2<I>IAR 
30 CONTINUE 

WRITEC6r40) zt,z2 
RETURN 

40 FORMATC12G7.1) 
END 

C----------------------------------------DERIVATIVF. OF PARAMTERS 
SUBROUTINE DERIVCX,XEP,EPSJ,NP,M> 
REAL X<l>•XEP<l>rEPSI 
DO 10 I=l•NP 

10 XEP<I>=X<I> 
EF'SI=O.Ol*X<M> 
XEPCK)=XEP<M>+EPSI 

-

EPSJ=ALOGlOCXEP<M> >-AL.OG10<X<M> > 
RETURN 
END 

C-------------------------------------------FDRMING THE MA1RIX A 
SUBROUTINE MATRIXCDER,CRESrArEPSlrNOrNPrM> 
REAL DER<l>,CRES<1>,EPSI 
REAL*8 A<NOrNf') 
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DO 10 I=l rNO 
DER<I>=ALOG10CDERCI>> 

10 ACirM)=CDER<I>-CRES<J>>IEPSI 
RETURN 
END 

C----------------------------------------------RESISTIVITY 
~ SUBROUTINE RHO<E1,E2rS1rS2rOMEGArCRcS,RZERO,EPSDrN0) 
~ REAL ElC1)rE2<1>rS1<1>rS2Cl>,OMEGA<1>,CRESC1>rRZERD 

DD 10 I=lrNO 
CRES<I>=E1<I>tS2(1)/0MEGA<I>IEPSO 
SE=Sl<I>+DMEGACI>*E2<I>*EPSO 

10 CRESCitNO>=l./SE 
30 RETURN 

END 
C-----------------------------------------------SVD 

1 

20 

30 

35 

SUBROUTINE SVDCA•X•BrDELX,DrWRrEPS1rNO,NP> 
REAL*8 B<1>,DCl>rACNOr1>rWRC1>rSUM 
REAL XC1>rDELX<1> 
CALL LSVDF(AtNOtNOrNPrBrNOr1rD,WRriER> 
WRITEC6rl) 
FORMAT<' SINGULAR VALUES') 
WRITEC6t50) CDCI)rl=1•8> 
DO 20 I=lrNP 
SUM=O.O 
IF<DCI>.NE.O.O> SUM=BCI}/(CD<I>*D<T>tEPSl)/DCI>> 
BCI>=SUM 
DO 40 I=lrNP 
SUM="O.O 
DO 30 J=ltNP 
SUM=SUMtACI,J>*B<J> 
XCI>=ALOG10<X<I>> 
IFC10**<X<I>>.GT.4.*10**<XCI>tSUM>> GO TO 35 
IFClO**<XCI>>.LT.lO**<X<I>tSUM)/4.) GO TO 35 
X<I>=X<l>+SUM 
X<I>=tO.**X<I> 
IF<X<4>.GT.l.O> X<4>=0.99 

40 DELX<I>=SUM 
IF<X<B>.GT.l.O>X<B>=0.99 
WRITEC6r60) 
WRITE<6,50> <XCl>ri=1r8) 

~ FORMATC4G12.4) 
VO FORMAT<' PARAMETERS AFTER CORRECTION') 

RETUFW 
END 
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Appendix C 

Program HORANT.P given the electrical parameters 
at a certain frequency, calculates the ~- and ri­
fielcis of a horizontal magnetic loop transmitting 
antenna versus distance over a homogeneous dissi­
pative half-space. 



LISi HoRANT.P 

c-----------------------------------------------------c HORIZONTAL ANTENNA OVER ARBITRARY EARTH 
c 
C EARTH IS CONSIDERED TO FE HALF-SPACE • 

. • A HORIZONTAL CONFIGUTATtON OF A ROD ANTF.:NNE IS CONSIDERED • 
. THF ANTENNA IS POSITIONNED ONE WAVELENGHT ABOVE THE GROUND. 

THE ANTENNA LENGTH IS TAKEN TO BE EQUAL TO WAVELENGHT/4. 
C DEPTH OF MEASURMENT IS INITIALLY EGIJAL TO ONE SKIN I•EPTH. 
C FIELDS ARE COMPUTED PER UNIT CURRENT, BEING LINEAR IN IT. 
C THE VERTICAL CONFIGURATION OF A FRAME ANTENNA CAN ALSO BE 
C COMPUTED FROM THIS PROGRAM BY INTERCHANGING E & H WITH H & 
C -E, AND EPSI & MU WITH MU & EPSI. 
c 
C IFC GIVES US THE DIRECTION OF THE HORIZONTAL AXIS WITH 
C RESPECT TO THE fi!RECTION OF THE ANTENNA, BEING IT SELF IN 
C THE X-DIRECTION. 
C IFC=l X-AXIS. <WE HAVE THE MAXIMUM FIELD VALUE HERE> 
C IFC=2 THE INDEPENDENT VARIABLE IS NORMALIZED WITH RESPECT 
C OF THE WAVELENGTH. X-AXIS CONSIDERED ONLY 
C JFC=3 AXIS MAKES 45 DEGREES WITH X-AXIS. 
C IFC=4 Y-AXIS. CWE HAVE THE MINIMUM FIELD HERE> 
c 
C THIS PROGRAM USES ANDERSONS HANKEL TRANSFORM 
C-------------------------------------------- MAIN VARIABLES 

REAL FRQ,pt,CMUtEPSOrANTLN,HGHTrDPTH,TOLrRC22>rRNORMC22> 
REAl*B K2tHFtEF 
COMPLEX COMPrZHANKSrHXtHYtEXC22>tEYC22>,HYNC22>,COEF1,COEF2t 

& ZlrZ2rZ3rZ4rZ5rZ6 
COMPLEX*16 KE2rXX 
INTEGER NNrNtiFC 
EXTERNAL C1rC2rC3tC4tC5rC6 
COMMON/PARMTR/KE2tK2tfiPTHrHGHT 
DATA PI,EPSOrCMU/J.1415927t8.84194lE-12t1.25664E-6/tNN/21/ 
DATA HF/'H-FIELD'/rEF/'E-FIELD'/ 
READC5t210) FRGtK2tKE2 
READC5r210> RR,TOL 
READ<Sr220> MULTriFC 

C--------------------------------------------PARAMETERS 
C=10•**0.2 
RN=<l./3. >*l.E-3 
COMP=CMPLXCO.Orl.O> 
SL=EPSO*CMU 
SL=SORTCSL> 

C -----------~------------------------------------ANTENNA LENGHT 
ANTLN=l./SL/4./FRG 
HGHT=ANTLN*4·*MULT 
COEFl=COMP*ANTLN/PI/2. 
COEF2=ANTLN*FRQ*CMU/KE2 
XX=CDSQRT<KE2> 
DPTH=ABS<AIMAG<XX>> 
DPTH=l.IIIF'TH 
WRITE<6r320) 
WRITE(6,260> 
WRITE<6r230) 
WRITE<6t2SO> HGHTtANTLN 
WRITE<6t240> DPTH 
WRITE<6r310> FRG 
WRITE<6r260) 
WRITEC6,270> 

C=------------------------------------------ANDERSON'S FILTER 
WRITE<6,280> HF 

20 

WRITEC6r290) 
HX=O.O 
DO 80 I=lrNN 
CI=C**I 
N=INT<IIS.> 
TOLI=TOL/lO.**N 
RI=RR*CI 
R<I>=RI 
RNORM<I>=RI/ANTLN/4. 
GO TO <20,30r30,40>riFC 
RNORM<I>=RN*CI 
RI=RNORM<I>*ANTLN*4• 
R<I>=RI · 

~o---z2:zHANKs(i:Rr:c2:roLr:NF:i)-----------INTF.GRAL 2 
CALL SAVER<l•l> 

C--------------------------------------------INTEGRAL 5 
ZS=ZHANKS<O,RI,CS,TOLI,NF,O> 
Z5=Z5-Z2/RI 165 



C------- ---- ------------------------------INTEGRAL 3 
Z3=2HANKS<l,RI,C3,TOLI,NF•l> 

CALL SAVER< l '1) , c---------------------------------------------JNTF.GRAL 4 
Z4=ZHANKS<1,RI,C4rTOLI•NF,O> 

Z4=Z4-Z3/RI 
c---------------------------------------------INTEGRAL 1 

40 Zl=ZHANKS(O,RI,Cl,TOLI•NF•l> 
Z1=Z1*KE2 

c----------------------------------------------JNTEGRAL 6 
~ Z6=ZHANKS(Q,RI,C6,TOLI,NF,1) 
W EY<I>=O.O 

50 

60 

70 

80 

GO T0<?0,70,50,60), IFC 
HX=Z5*COEF1/2. 
HY=-COEF1*CZ6+Z5/2.> 
EX<I>=COEF2*<Zl+Z5/2.> 
EYCI>=-COEF2*Z4/2. 
GO TO BO 
HY=-COEF1*Z6 
EX<I>=COEF2*Z1 
GO TO BO 
HY=-COEF1*<Z6+Z5> 
EX<I>=COEF2*<Z1+Z4) 
WRITE<6,300> RirRNORM<I>,HX,HY 
WRITEC6,260) 
WRITF.(6,280) EF 
WRITE(6,290) 

C -------------------------------------------WRITING OUT E-FIELD 
DO 110 I=1•NN 

110 WRITEC6,300> R<I>,RNORM<I>,EX<I>,EY<I> 

c 
c c 
c 
c 
C120 

200 
210 
220 
7:30 
240 
250 

~ 
!If<) 
290 
300 
310 
320 
330 
340 
350 

GO TO 200 
IF<IFC.NE.3> GO TO 200 
WRITE<6,260) 
WRITE(6,330) 
WRITE(6,350> 
DO 120 l=2,NN 
WRITE(6,340>RNORM<I>•HYN<I>,fEX<I> 

STOP 
FORMAT< 4G10 • .4 > 
FORMATC2I6> 
FORMAT(' HORIZONTAL ANTENNA OVER AN ARBITRARY F.ARTH WITH'/) 
FORMATC9X,' DEPTH=',G12.4,' M'> 
FORMAT<BX,' HEJGHT=',Gl2.4•' M',/,' ANTENNA LENGTH='rGl2.4,' M'> 
FORMAT<'----------------------------------------------------',1) 
FORMAT (' ANDERSON FILTER IS USED FOR F 1 El.II EVALUATION', I I) 
FORMATC6X,'R R/L',27X,AB> 
FORMAT<34X,'X',26Xr'Y'//) 
FORMAT<2Gl0.4t2X,2('(',G11.5t'+I'rG12.5,')')/) 
FORMAT<SX,' FREQLIENCY='tGl2.4,' HZ'/) 
FORMAT<lHl) 
FORMATC/34X,' NORMALIZED FIELnS •,;) 
FORMAT<6X,G10.4,6X,2('(',G11.5,'+I'r612.5r'>'>l> 
FORMATC9X,'R/L'r19Xr'HY-FIELD'r16X,'EX-FIELD'//) 
EN I! 

C----------------------------------------------- KERNEL 1 
COMPLEX FUNCTION ClCG> 
COMPLEX*l6 KE2rC'B'E 
REAL*B K2rAMDA,AMD•A•DPTHrHGHT 
COMMON/PARMTR/KE2,K2,DPTH,HGHT 
AMD=DBLE<G> 
AMfiA=AMTI*AMD 
A=AMDA-K2 
A=DSQRT<DABSCA>> 
C=AMDA-KE2 
B=CDSQRT<C> 
IF<nREAL<B>.LT.O.O> B=-B 
C=B*IIF'TH+A*HGHT 
E=l.O 
IF<nREAL<C>.LT.150.> GO TO 100 
Cl=O.O 
GO TO 200 

100 IF<IIREALCC>.GE.0.1E-6>E=1./CnEXP<C> 
Cl=AMII*EI<A+B> 
CR=RE"AL<Cl> 
CI=AIMAG<C1> 
IF<ABS<CR).LT.O.lE-20) CR=O.O 
IF<ABS<CI>.LT.O.lE-20) Cl=O.O 
Cl=CMPLX<CR,CI> 

AD RETURN 
-- ENit C----------------------------------------------- KERNEL 2 
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c----------------------------------------------- KERNEL 2 COMPLEX FUNCTION C2<G> 
COMPL.EX*16 KE:?,CtFctE 

REAL*B K2,AMDAtA,DPTHrHGHT 
COMMON/PARMTR/KE2tK2,DPTHtHGHT 
AMDA=[IE!LE (G) 
AMDA=AM[tA*AMDA 

A A=AMDA-K2 
~ A=DSQRT<DAFcS<A>> 

C=AMDA-KE2 
B=CDSQRT<C> 
IFCDREAL<B>.LT.O.O> B=-B 
C=B*DPTH+A*HGHT 
E=l.O 
IFCDREAL<C>.LT.170> GO TO 100 
C2=0.0 
GO TO 200 

100 JF<DREAL<C>.GE.O.lE-6> E=l./CDEXP<C> 
C2=AMDA*<A-B>*EI<KE2*A+K2*B> 
CR=REAL(C2> 
CI=AIMAGCC2> 
IF<ABS<CR>.LT.O.lE-20> CR=O.O 
IF<ABS<C!>.LT.O.lE-20) Cl=O+O 
C2=CMPLX<CRtCI> 

200 RETURN 
END 

C----------------------------------------------- KERNEL 3 

EB~~ttR*~~Nk~~~~'~;~G) 
REAL*B K2•AMDAtAtDPTHtHGHT 

COMMON/PARMTR/KE2tK2tDPTH,HGHT 
AMDA=DBLE<G> 
AMDA=AMDA*AMDA 
A=AMDA-K2 
A=TISQRT <[lABS< A> > 
C=AMDA-KE2 
B=CDSQRT<C> 
IF<DREAL<B>.LT.O.O> B=-B 
C=B*Df'TH+A*HGHT 
E=l.O 

C).. IF<DREAL<C>.LT.lSO.) GO TO 100 
C3=0.0 
GO TO 200 

100 IF<DREAL<C>.GE.O.lE-3> E=l./CDEXP<C> 
C3=AMDA*E*<B*<A-B>I<KE2*A+K2*Fc>+l.I<A+B>> 
CR=REAL<C3> 
CI=AIMAGCC3> 
IF<AFcS<CR>.LT.O.lE-20> CR=O.O 
IF<ABSCCI>.LT.O.lE-20> CI=O.O 
C3=CMPLX<CR,CI> 

200 RETURN 
END 

C----------------------------------------------- KERNEL 4 
COMPLEX FUNCTION C4<G> 
COMPLEX*16 KE2tCtBtE 
REAL*S K2,AMDA,AMD,A,DPTH,HGHT 
COMMON/PARMTR/KE2tK2tDPTHtHGHT 
AMD=DBLE<G> 
AMDA=AMD*AMD 
A=AMDA-K2 
A=DSQRT<DAFcS<A>> 
C=AMDA-KE2 
B=CftSlH"\T <C) 
IF<DREAL<B>.LT.O.O> B=-B 
C=B*DPTH+A*HGHT 
E=l.O 

IFCDREAL<C>.LT.150.) GO TO 100 
C4=0.0 
GO TO 200 

100 IFCDREAL<C>.GE.O.lE-6> E=l./CDEXP<C> 
C4=AMD*AMDA*E*<1./CA+B>+B*<A-Fc)/CKE2*A+K2*B>> 
CR=REAL<C4) 
CI=AIMAG<C4) 
IF<ABS<CR>.LT.O.lE-20> CR=O.O 
IF<ABS<CI>.LT.O.lE-20> CI=O.O 

.. C4=CMPLXCCRtC!) 
WOO RETURN 

END 
C----------------------------------------------- KERNEL S 
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C----------------------------------------------- KERNEL 5 
COMPLEX FUNCTION CSCG> 
COMPLEX*16 KE2tC,BtE 

11'\. REAL*8 K2,AM£1A,AMDrArDPTH,HGHT 
~ COMMON/PARMTR/KE2,K2,DPTHtHGHT 

AMD=DBLE<G> 
AMfiA=AMD*AMD 
A=AMDA-t\2 
A=DSQRTCDABS<A>> 
C=AMDA-KE2 
B=CfiSQRTCC> 
IF<fiREAL<B>.LT.O.O> B=-B 
C=B*DPTH+A*HGHT 
E=l.O 

IFCDREALCC>.LT.170.> GO TO 100 
CS=O.O 
GO TO 200 

100 JFCDREALCC>.GE.O.lE-6> E=l./CDFXP<C> 
C5=AMD*AMDA*CA-B>*E/CKE2*A+K2*B> 
CR=RF.ALCCS> 
CI=AIMAGCC5) 
IFCARS<CRJ.LT.O.lE-20) CR=O.O 
IFCAFSCCI).LT.O.lE-20) CI=O.O 
C5=C11PLXCCR,CI> 

200 RETURN 
END 

('-
COMPLEX FUNCTION C6<G> 
COMPLEX*16 KE2'C'B'E 
REAL*8 K2,AMDA,AMD,ArDPTH,HGHT 
COMMON/PARMTR/KE2,K2,DPTHrHGHT 
?tMD=DBLE < G > 
AMDA=-AMD*AMD 
A=AMDA-K2 
A=DSQRTCDABS<A>> 
C=AMDA-KE2 
Il=CIISGRT < C > 

~ IFCDREAL<B>.LT.O.O) B=-B 
W C=B*IIF'TH+A*HGHT 

E=l.O 
IFCDREAL<C>.LT.170) GO TO 100 
C6=0.0 
GO TO 200 

100 IF<DRfALCC>.GE.O.lE-6> E=l./CDFXPCC> 
C6=B*AMD*EICA+B> 
CR=REALCC6> 
Cl=AIMAGCC6) 
IF<AFS<CR>.LT.O.lE-20> CR=O.O 
IFCABSCCI>.t.T.O.lE-20> CI=O.O 
C6=CMPLX<CRrCI> 

200 RETURN 
END 

-- Kl:"f::NEL > 

C---------------------------------------HANKEL FILTER 
COMPLEX FUNCTION ZHANKS<N,B,FUN,TOL,NF,NEW> 
COMPLEX FUN,CrCMAX,FSAVEtKE2 
COMMON/SAVE/FSAVE<283)tGSAVF<283>tNSAVE 
COMMON/PARMTR/KF2tK2,DPTHtHGHT 
DOUBLE PRECISION E'ER,YlrY 
DIMENSION T<2>rTMAX<2> 
DIMENSION WTOC2S3>,WAOC76)rWFOC76),WC0<76>rWDO<SS>t 

* WT1C283)tWA1C76>tWB1<76),WC1<76)rWDl<SS> 
EQUIVALENCE CWTO<l>,WAOCl))rCWTOC77),WBOCl)),(WT0<153)rWCOC1>), 

* <WTOC229),WDOC1)),(WT1<l>•WA1(1))r(WT1<77),WB1(1)), 
* CWT1<tS3>,WClC1>>rCWT1C229>rWD1C1>> 

EQUIVALENCE CCrTCl)),(CMAX,TMAXCl>> 
C----------------------------------------F=DEXPC.2DOt FR=l.IE 

DATA E/1.221402758160169834DO/,ER/.818730753077981859DO/ 
Df-1TA WAO/ 

* 2.1969101E-1l• 
*-7.9821627E-o9, 
*-1.0207546E-08r 

~ *-1.270B7B9E-oa, 
.., *-1.S807160E-0Br 

*-1.9650840E-08r 
*-2.4407377E-08r 
*-3.0266804E-08, 

4.1201161E-09,-6.13229BOf-09' 
8.5778983E-09,-9.1157294F.-09t 
1.0796633E-08r-1.1393033E-08, 
l.J446466E-oa,-t.41743oor-oa, 
1.6747136E-oa,-1.7625961E-os, 
2.0869789E-08,-2.1903555E-OB, 
2.6033678F-oa,-2.7186773F.-08r 
3.2534013F.-oa,-3.3672072F-oa, 
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7.2479291E-09, 
9.6615250E-09, 
1.2049873E-os, 
1. ~i005577E-08, 
t.8693427E-oa, 
2.3305308E-OB, 
2.9094334E-os, 
3.6408936E-oe, 



*-3.7425022E-0Rr 
•-4.6035233E-os, 
*-5.60S6570E-os, 
*-6.7117043E-0Hr 
*-7.7553611E-08r 
*-8.3217217E-08r 
*-7.3963141E-08r 
•-2.6163525E-os, 
* 1.1407365E-07r 
* 4.6831433E-07, * 1.3091334E-06r 

DATA WBO/ 

4.0787921E-08,-4.1543242E-08r 
5.1425075E-08r-5.0893896F.-08r 
6.547524BE-0Br-6.1539913F.-08r 
8.4767837E-08r-7.2583120E-08r 
1.1279873E-o7,-8.1416723E-08r 
1.5663185E-07r-8.1482581E-08t 
2.3109673E-o7,-S.7243707E-os, 
3.6808773E-07r 2.7049871E-08• 
6.3720626E-07t 2.5241961E-07r 
1.1916346E-06r S.0099716E-07r 
2.3701475E-06r 2.0803829E-06, 

4.5756842E-08, 
s.7934897F.-os, 
7.4301996E-08r 
9.7366568E-oa, 
1.3206914F.-07r 
1.8860593E-07r 
2.SB67452E-07r 
4.7932617E-07r 
8.6373487E-07r 
1.6696015E-06r 
3.4012978E-06/ 

* 3.2456774E-06r 4.9240402E-06r 5.0005198E-06, 7.1783540E-06t 
* 7.6367633E-06r t.052203SE-os, 1.1590021c-os, 1.54R8635~-os, 

~ ~=§~l8i~~f.=8~: 5:~~~~~1?t=85: §:?~?9~9~~=8~: '=~~r~r~~f.=8~: * 8.8951409E-05t 1.l094809E-04t l.3308026E-04r 1.65l133SE-04r 
* 1.9895671E-04r 2.4587193E-04r 2.9728181E-04r 3.6629770E-04t 
* 4.4402013E-04• 5.4589361E-04, 6.6298832f-04, S.137534BE-04, 
* 9.8971624E-04r 1.2132772E-03r l.4772052E-03r 1.8092022c-03r 
* 2.2045122E-03, 2.6980811E-03r 3.2895354E-03r 4.0238764E-03r * 4.9080203E-03t 6.0010999F.-03, 7.3216B78F.-03, 8.94B922SE-03r * l.0919448E-02r 1.3340696E-02, l.6276399E-02, t.9873311E-02r * 2.4233627F.-02r 2.955S699E-02r 3.5990069E-02r 4.3791529E-02r 
I 5.3l50319E-02• 6.4341372E-02, 7.7506720f-02t 9.2749987E-02• * l.0980561E-01, t.2791555E-Ol• l.4525830c-01r 1.582008SE-01t 
* 1.6058576F.-01r 1.4196085E-01t 8.9781222E-02,-t.0238278E-02r 
*-1.5083434E-Olr-2.9059573E-01r-2.9105437F.-01,-3.7973244E-02t * 3.8273717E-Olt 2.20141l8F.-01,-4.7342635E-Olr l.9331133E-01, * 5.3839527E-02,-1.1909845E-01t 9.9317051E-o2,-6.6152628E-02, 
* 4.0703241F.-02r-2.4358316F.-02, t.4476533E-02,-8.6198067E-03/ 

DATA WCO/ 
% 5.l597053E-03r-3.1074602E-03, 
* 7.0004347E-04,-4.2904226E-04, 
* 9.9891279E-05,-6.1589037E-05, 
t 1.447957?F-05,-8.9417427E-06t 
* 2.1074101E-Q6,-1.3019229F-06t * 3.0702417E-07,-1.8969219E-OJ, * 4.47402B3E-oa,-2.7643004E-os, 
* 6.5200311E-09,-4.02B4597E-09, 
* 9.5019040E-10,-5.8708696E-10, 
* 1.384779?E-1Q,-B.5560821f-11• 
* 2.0182948E-11,-1.2470979E-11r 
* 2.9415274E-1?r-t.St70081E-12r * 4.2739744E-13,-2,6344388E-13r 
* 6.0487998E-l4,-3.6973097E-14t * 9.1574735E-t5r-S.9567236E-15r 
* 1.6406939f-l5,-8.8248S90E-16r 
t-B.0942556E-l7r-3.7172363E-17, 
* 4.6174116E-16r-5.862735BE-16r 
* l .0?11793E-15,-1,0940039E-l5r 

DATA WDO/ 

1.8B22342E-03r-1.145654SF.-03, 
2.6354444f-04r-1.6215439E-04, 
3.7996921E-05r-2.3452250E-05r 
S.5227518E-06,-7.4114~52E 06r 
B.0433617E-07,-4.Y6936B1E-08' 
1.1720069E-07r-3.24t2496E-OS, 
t.7079403t.-os,-t.os~2634f-oa, 
2.4B90232F-Q9,-1.5378695F-09, 
3.6273937E-10r-2.2412348E-10r 
5.2865474F-11t-3.26b4392F.-11' 
7.7057678F.-l?r-4.7611713E-12r 
l.t221034E-12r-6.9271067E-13r 
lol697105f-13t-9.9147443F.-14r 
2.2817964F.-14r-1.4315547F-14r 
3.9209969E-15r-2.5911739E-15r 
3.0195409f-16r 2.2622634E-17r 
1.9299542F.-l6,-3.33R8160E-16, 
7.2227767E-16r-8.7972941E-16r 
l.0789555F.-15r-9.7089814E-16/ 

* 7.4110927E-16r-4.1700094E-16r 8.5977184E-17r 1.3396469f-16r 
*-l.7838410E-16t 4~897542lE-17, 1.939B153f-16,-5,0046989E-16t * 8.3280985E-16r-1.1544640E-15, t.4401527E-1S,-1.6637066E-15r 
t l.7777129E-15,-1,7322187E-15, 1.5247247E-15r-1.1771155E-15, 
* 6.9747910E-16r-1.2088956E-16r-4.8382957E-l6r 1.040B292E-15r 
*-1.5220450E-15r t.9541597E-1Sr-2.4107448E-15r 2.9241438E-15r 
*-3,5176475E-15t 4.2276125E-15,-5,097785lE-lSr 6.1428456E-15r 
*-7.3949962E-15t 8.8597601E-15r-l.0515959E-l4t 1.22645B4E-14r 
*-1.3949870E-14r t.5332490E-14,-t.6146782E-14t 1.6084121E-14t 
*-1.4962523E-14r l.2794804F.-l4,-9.928670lE-15r 6.8B25B09E-1Sr 
*-4.0056107E-15t 1.596S079E-15,-7.2732961F.-l8r-4.0433218E-16r 
*-6.5679655E-16r 3.3011866E-15r-7.3545910E-15r 1.2394851E-14r 
*-1.7947697E-l4t ?.3774303E-14r-3.0279l68E-l4r 3.9252831E-14r 
*-5.5510504E-14r 9.0505371E-14r-1.7064873E-13/ 

DATA WAll 
*-4.2129715E-16r 5.3667031E-lSr-7.1183962E-15t 8.9478500E-15t 
*-1.0767891E-14r 1.2362265E-l4r-l.3371129E-14r 1.3284178E-14r 
*-1.1714302E-14• 8.4t3473HE-15r-3.7726725E-15r-1.4263879E-15r * 6.1279163E-15,-9.l.l02765E-15r 9.9696405E-15r-9.3649955E-15r 
* 8.6009018E-15r-8.9749846E-15, 1.1153987E-14r-1.4914821E-14, 
* 1.9314024E-14,-2.3l72388E-14r 2.5605477E-14,-2.62l.7555F.-14t 
* 2.505776BE-14,-2.2485539E-14r 1.9022752E-14r-1.5198084E-14, * 1.1422464E-l4,-3.9323958E-15r 4.8421406f-15,-2.1875032E-15, 
*-3.2177842E-17, l.8637565E-15,-3.3683643F.-15' 4.6132219E-15' 
*-5.6209538E-15, 6.4192841E-15,-6.8959928E-15r 6.9895792E-15r 
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c 

100 

*-6.5355935E-l5, 5.6125163E-1~,-4.1453931F.-1~' 2.63~8827~-15, 
*-9.5l04370E-16' 1.4600474E-1b, ~.blb6~19F.-16' 8.289924bE-17' 
* 5.0032100E-16, 4.3752205E-16, 2.1052293E-15,-9.5451973E-16• 
* 6.4004437E-15,-2.1926177E-15• l.lb~1003F.-14t ~.84l5433E-16, 
* 1.8044664E-14' t.0755745E-14• 3.0159022~-14• 3.3~06l38F.-14, 
t 5.8709354E-14' 8.1475200E-14, 1.2530006E-13, t.8519112E-13r 
* 2.7641786E-13• 4.1330823E-13, 6.150b209E-13• 9.1921659~-13r 
* 1.3698462E-12t 2.0447427E-12• 3.0494477E-12r 4.~501001E-12' 
* 6.7870250E-12, 1.0126237E-11r 1.5104976E-11t 2.2536053E-11/ 

[tATA WB1/ 
* 3.3617368E-11' 5.0153839E-11t 7.481B173E-11• l.1161804E-10, 
* t.6651222E-l0' 2.4840923E-10r 3.7058109E-10• 5.5284353E-10r 
* 8.2474468F.-10r 1.2303750F.-09, 1.8355034E-09r 2.7382502E-09r 
* 4.0849867E-09t 6.094089SE-09, 9.0913020E-09, l.356265lE-oa, 
* 2.0233058E-OB, 3.0184244E-08, 4.5029477E-08• 6.7176304E-08r 
* 1.002148SE-07' 1.4950371E-07, 2.2303208E-07r 3.3272689E-07r * 4.9636623E-07, 7.4049804E-07• l.1046805E-06r 1.6480103F.-06, 
* 2.4585014E-06, 3.6677163E-06r 5.47l4550E-06r 8.1626422f-06r 
* 1.2176782E-05, 1.8166179E-05t 2.7099223E-05r 4.0428804E-05, 
* 6.0307294E-05r 8.9971508E-05, t.3420195E-04, 2.0021123E-04r 
* 2.9860417E-04t 4.4545291f-04, 6.6423156E-04• 9.9073275E-04r 
* 1.4767050E-03r 2.201680bE-03r 3.2788147E-03, 4.8837292E-03t 
* 7.2596811E-03r t.0788355E-02r 1.5973323E-02r 2.3612041E-02, 
* 3.4655327E-02r 5.0608141E-02r 7.2827752E-02r 1.0337889E-01r 
* 1.4207357£-0lt 1 .882l.315E-01r 2.2996815F.-01r 2.5088SOOE-01r 
* 2.0334626E-01r 6.0665451E-02,-2.0275b83E-Olr-3.5772336E-01, 
*-1.8280529E-01, 4.7014634E-01r 7.299t233E-03,-3.0614594E-01, 
* 2.4781735E-01,-1.tl49185E-Olr 2.5985386f-02• 1.0850279E-02r 
*-2.2830217E-02t 2.4644647E-02r-2.2895284F.-02r 2.(l197032f-02/ 

DATA WCl/ 
*-1.74BB968E-02, 
*-9.6138436E-03, 
*-5. 3482055E-O:~, 
*-2.9883670E-03r 
*-:I .6709583f-03, 
*-9.3441130E-04t 
li:-5,2253532E-04, 
*-2.9220916E-04t 
*-l.6340753E-04r 
*-9.1379828E-05, 
*-5.1100905E-05' 
*-2.8576356E-05r 
*-1. 5980307E-0~), 
*-8.9364160E-06, 
*-4.9973715f-06r 
*-2.7946015E-06, 
*-1.5627811E-06r 
*-S.7392952E-07r 
*-4.8871388E-07, 

{lATA Wfll/ 
*-2.7329579E-07r 
*-1.5283091E-07r 
*-8.5465227E-08r 
*-4.7793376E-08r 
*-2.6726739E-0Br 
*-1.4945974F-08, 
*-8.3590023E-09, 
*-4.6739154E-09r 
*-2.6137226E-09r 
*-1.4616324E-09r 
*-8.173b202E-10' 
*-4.5707937E-10, 
*-2.5560176E-10r 
*-1.4294012E-1Q, 

NONE=O 

1.5057670E-02,-l.2953923f-02r 
8.2952090E-03r-7.1628361f-03r 
4.6232056E-03r-3.9970542E-03, 
2.5840861E-03,-2.2345428E-03r 
1.4449655E-o3,-l.249540BF.-03r 
9.0803899E-04r-6.9875784E-04t 
4.5186b~2F-04r-3.9075515E-04t 
2.5269019F-04,-2.l85l585F-04t 
1.4130796F.-04r-1.2219719F-04t 
7.9021432E-05,-6.8334412E-os, 
4.4189914E-Q5,-3.S213580E-OS, 
2.4711b31F.-05,-2.1369580F.-OS, 
1.3819097E-05r-1.1950174E-05r 
7.7278366E-06,-6.6827083E-06, 
4.3215167E-06,-3.7370660F.-06r 
2.4166539E-06r-2.0898207E-06r 
1 .3514274f-o6,-1.1686576F.-o6, 
7.5573750E-07r-6.5353002E-07r 
4.2261921E-07r-3.6546333E-07, 

2.3633470F.-07r-2.0437231E-07r 
1.3216174E-07,-1.1428792f-07r 
7.3906734E-oa,-6.3911437E-oa, 
4.1329702E-08r-3.57401B9E-os, 
2.3112160E-OB,-1.9986424f-OS, 
1.2924650E-oa,-t.1176694E-oa, 
7.2276490F.-09,-6.2501673E-09r 
4.0418061E-09,-3.4951847E-09r 
2.2602382E-09r-l.954~596E-09r 
1.2639577E-09,-1.0930164E-09r 
7.0681930E-l0,-6.1122713[-10• 
3.9526267E-10r-3.41805b9E-10r 
2.2t0323JE-10r-1.911389tE-tOr 
1.2361991E-l0,-8.2740936E-11/ 

IF<NF.W.EQ.O) GO TO 100 
NSAVE=O 
Y1=.735BB5266147979446DO/DBLE<B> 
ZHANKS=CMPLX<O.OrO.O> 
CMAX=CMPLX(Q,O,O.O> 
NF=O 
Y=Yl 
t~SSIGN 110 TO M 
I=131 
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1.11.53254E-02r 
6.1882910E-03, 
3.456011SE-03r 
1.9323046f-Q3, 
1.0805480E-03r 
6.0425624E-04r 
3.37908b1E-04, 
l • 8896332E-04, 
1.0567099f-04J 
5.9092726E-05r 
3.3045496f-05r 
1.8479514F-05r 
1.0334008E-05r 
5c7789251E-06r 
3.2316575E-06r 
1.8071890E-06r 
1.0106056E-06, 
5.651452BE-07r 
3.1603732E-07/ 

1.767325BE-07r 
9.BB31386F.-oa, 
5.5267923E-oa, 
3.0906612E-oa, 
t.7283419F.-oa, 
9.6651347F.-09, 
5.4048822E-09, 
3.0224895E-09r 
1.6902214E-09, 
9.4519327E-to, 
5.2B56342E-to, 
2.95~7785F.-10, 
t.6528994E-lo, 



110 

0 

Y=-Y*F 
GO TO 200 
TMAX<ll=AMAX1<AFS(T(l)),TMAX<1>> 
TMAX<2>=AMAX1<ABSCT(2)),TMAX<2)) 
!=1+1 
Y=Y*E 
IF<I.LE.149> GO TO 200 
IF<TMAX<1>.EG.O.O.AND.TMAX<2>.EG.O.O) NONE=1 
CMAX=TOL*CMAX 
ASSIGN 120 TO M 
GO TO 200 

120 IF<ABS<T<1>>.LE.TMAX<l>.AND.ABS<T<2>>.L.E.TMAX<2>> GO TO 130 
I=I+l 
Y=Y*E 
IF<J.LE.283> GO TO 200 

130 Y=Y1 
ASSIGN 140 TO M 
1=130 
GO TO 200 

140 IF<ABS<T<1>>.LE.TMAX<l>.AND.ABS<T<2>>.L.E.TMAX<2>.AND. 
*NONE.EG.O> GO TO 190 

I=I-1 
Y=Y*ER 
IF<I.GT.O> GO TO 200 

190 ISAVE=l 
ZHANKS=ZHANKS/B 
RETURN 

200 G=SNGL<Y> 
IF<NEW> 300,210,300 

210 IF<ISAVE.GT.NSAVE> GO TO 300 
ISAVEO=ISAVE 

220 IF<G.EQ.GSAVE<ISAVE>> GO TO 240 
ISAVE=ISAVE+1 
IF<JSAVE.LE.NSAVE> GO TO 220 
ISAVE=ISAVEO 

240 

~g 
GO TO 300 
C=FSAVE<JSAVE> 
ISAVE=ISAVE+l 
IF<N> 270,260,270 
C=C*WTO<I> 
GO TO 280 

270 C=C*WTl<I> 
280 7HANKS=ZHANKS+C 

GO TO Mt(110,120t140) 
300 NSAVE=NSAVE+l 

C=FUN<G> 
NF=NF+l 
FSAVE<NSAVE>=C 
GSAVE'<NSAVE>=G 
GO TO 250 

400 RETURN 
END 

C-----------------------------------------SUBPROGRAM SAVER 
SUBROUTINE SAVER(I,J> 

1 

COMPLEX FSAVE 
COMMON/SAVE/FSAVE<283>,GSAVE<283>,NSAVE 
DO 1 K=1,NSAVE 
FSAVE<K>=<GSAVE<K>**I>*<FSAVF.<K>**J> 
RETURN 
END 
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Appendix D 

Program VERANT.P, given the electrical parameters 
at a certain frequency, calculates the E- and H­
fields of a vertical transmitting dipole antenna 
versus distance, over a homogeneous dissipative 
half-space. 
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i. 1 .. 1 F r:· T I C ,;, 1 ;::, ;..; T c: ~J i ~ .~; 0 V F R A f~ B l T ;:;; i4 r:.: Y EA F~ T H 

, ... . 
l ... -

.. -. 
~~' 

r· 

t FC:_ __ 
TFL:;;:. 

INDEPFNDFNT VARIAHLf NORMALI7FD 
1 N It F F' C N V [ N T V ~~~ r;: 1 A HI.. F ?1 F: ,C:: N ?; B B 0 L.. ! ... : T :: ME AS U i~: E 

; THJf:) p;:::OGF'(lh UEFS ANJtFF:SONF~ HfiNI(FL TF';lNSFOF:t··1 
--------------------------------------------MAIN VARJABLfS 

R E t:d. CH··i E G A , CF' S Cl ~ F' I , A N T L N , r·l G H T , rFW , 1:: , T n I , C: rHJ ~ I If' '\ H , f.; J G R ( l ) , f\ J G I .: 1 ) , 
~ RNORMC25>,COLP(4) 

::: :;:·(.:!I t: 8 i< 2 , H F , F' F , X S 
COMPLEX COMP,7,2HANKS~E,H,HNC25) 
:::Cl r'i P L E X :¥ 1 6 K F. ~' , X X 

f,'TEGEF< NN 
!..DG 1 C{il r~CCJL.E 
t; ::: U L E ::;: ,. F i::. L SE i 

EXTFPN<~1L C 1 • c·::!. 
COMMON/PARMTR!KE?,KJ,OPTH,HGHT 
DttT~l HF/. H·-FIELD I/, FF./! F-F'I ELl! i / 

D~TA PI,EPSO,CMU/3.l4159?7,,8841941E-1J ~.l?SA64~-5/,NN/20/ 
L AD(5,210) FRQ,K2~KE2 

:C!I'!(':,'i,?10) FFW 
11'\ FE,:,n(!),2:!.0! COLP 
~ READ(5r710) R,TOL 

READ(5r220) MULT,IFC 
C ··· •• ·- ··· ·- -· ·- .... •• .... ·· -- -- .... -· •·· -· -· ·-· ·• ...... - ·•· ··- ... ·- ·- -· -·- ··--- -·- -- •• •• ·•· -· -- F' f:1 RA METE I: t:: 

o:··1EGA:::.2, tF' I tFF:G 
c:;;; :to~ :t:;.~~o ~ 2 
F< ~~ "' >; :!. • /3 , ) :f. 1 , E •· 0:3 

3 L. "'F.·. FGO;fCMU 
2=UMEGAiOMEGAtSL 

COMP CMPLX(O.O,l,o: 
CALL COLE<SIGR·SIG[,~OtP,ACOLf,FRQ,pJ,l> 

1< E 2 ::: G 11 F ()(It C ii l.l :« K X 
r---------- ----------- ---- ---- ---------------SFT 

L :: ·· ·· -· ... -· ....... -- ·--- ·· ... -- ·· ·---- ·· ... -· .... •· ·· ... ···--- ... - ·· ·· ·· ... ·· ... - ....... (.:, N l: F F;: (:; 0 rl ' S F LT,::: i··: 
?ITE(6,280) HF,EF 

D D :: ? ') T = l ~ f .. IN 

0 
c ::: ::; c ~< ~~< J 
!'··!::: J NT ·: J ... 
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1 RNO~M(Jl=RN*CI 
F I "'' F I! 0 t:.; h ··· 1 i t: .::1 N T \ .. P ~: .-1 • 

C--------------------------------------------J:;rFGRAL 1 
' 1·1==::). *:F'AF:r1*1·:;:;tti<F:?:f/ /Ml.I;Gt~[ ;,': 

'') n Z::: Z H ~:, ;,; i< ::~ ; :: r F;: l ~ C :1. v T 0 L I , N F r 1 ) 
H=-rGMP*ANTL.N*KF:?*//PJ/2. 
IF<IF:.EQ.O) HNCIJ=H/OMEGA 

-f--------------------------------------------J~~~~~~~K~*7*PARM 
c: 

~~::· (J (:· 
., ·• , .. 
•• • ,.!, './ 

c----------------------------------------------- KfRNEL 1 
COMPLEX FUNCTTON Cl(G) 
COMPLEX*16 KE?,c,B 
r·; E. t: Lit: S IC.:: ~ td": D ~~ • D PH T ~ ?1 , E ~ l·IG HT , ~~MD 
CJMMON/PARMTR/Kf?,K2,DPTH,HGHT 
l~t f·:J n =-.:· D B L E ( ;3 ~:· 

1::, r-1 D ~~~ ""'~~MD l ?11'1 D 
,~~ .:::riD?:l .... l<2 
t1•::•n~;DF~T ( I'if.·i:F:~~. ( p,! .i 
C ••· ,::; h D fl "·I< E 
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To ~.::oo 
Jv0 lFCDREAL(Cl.GF.O.lE-A~ E=i./CDFXP(C) 

C ~AMDA*BtE/(KE2*AtK2*B) 
CF<:: .. F:Ft,l. ( C~.::! 
C .i :: t1 I ti r::, G ' C 2 ;. 
: i·- < (.; F ~·. C F~ ) ·: ~."' I' ~ 0 ., 1 E -- ? ·J ) C F~ :::; 0 • 0 
:i: F ( i:i E: s ( c I ) V 1.. T I. l) t :! F-? 0 .~' c I:::; 0 -~ 0 
C2 Ct:'IPLX ( Cr·: ~ C:l) 

· .. _, ~~.·r:Tu;:; ~~ 

ENl' 
C---------------------------------------HANKFLf:FJLTER 

COMPLEX FUNCTION ZHANKSC~·B,FUN,TOLrNF,NEWl 
COMPLEX FUN,c,CMAXrFSAVF~KE2 
~~ ~;. r·j !. .' , [< :; ,•••. <· • ~ t<•· ··~ ,\ I 1 • ~ ,...~ ....,. ' -. ,... -· I • '' "\ '"( ' ,-. "' '" 

~0MMUNtoHV[;rb~vll~8~J•UQAV~~~b~J,N~HV~ 
COMMON/PARMTR/KF2,K2,DPTH,HGHT 
Ii DU L E F' F;: r.: C I S I 0 N E , El;: :· Y l , Y 
DIM NSION T(2>,TMAX()) 
fi Ii''iF!:~:n: 01'1 V.JTO ( 28:7.) r l..IAO < i'b), WHO ( 7b), WCO (}{.)~WilD< 55)¥ 

~·. W T 1 ( 2 8 3 ) , W 1'H ( n. ) , W H:l ( 7 6 ) ' W C l ( "/ f-, 1 ' W U :1 !. 5 5 ) 
E ;) U I 1.) (, L. EN C F ( l·J T 0 ( 1 ) , ~J A 0 ( :L ) ) , ( t.J T (l ( 7 7 ) , I,.)}·: C ( :t i I , ( W I Cl ( :1 ~:i 3 I ' L'l L U !. :1 :• I ;• 
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Appendix E 

Integration of the total energy flow over a 
horizontal plane for a vertical magnetic loop. 
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For a vertical magnetic loop 5-13 is replaced by 

6::. ~) ('E.,.:k~ _ t.~~:) 'd"a4f • E-l 

If the loop is considered to be in the yz-plane, the Hertz 

vector for the S~term becomes 

E-2 

where 

r\.. -1"- ~ l A:. Le \:e. tny-~) , 

. ""f "'~e 
E-3 

and the Hertz vector for the s_terms becomes 

E-4 

where 

E-5 

Considering the following relations for the electrical and 

magnetic fields 

-- ~cf~- ~~dfS\x -\-~~'\>~'I i) E-6 

t. :. ..C~uo 6\v\cf ~v. ,~ 
V \1 '0~ 

where 
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a.:"\\ :; Lo~q:. ro]~ ' 
'b'('" 

.... 
divT\ for the s. term is: 

.... 
diV\1. for the S_ term is: 

consequently 
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The four field components for the S~ term are then deduced 

as 
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Introducing a further simplification, for the situation 

where the z-plane approaches the h-plane: 

E-14 

and E-13 yields to: 

where 

0 
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Applying the same simplification to the A, B, and C terms: 

E-16 



and finally w is obtained as: 
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