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ABSTRACT

This thesis concerns the géophysical theory of electro-
magnetic fields and waves, mainly for the near field indqction
problem, for very-high and ultra-high frequencies. The major
contribution of this research is to allow for gedbhysiéal
models of a half-space in which the basic electromagnetic
parameters are complex-valued and frequency-dependent. With
less emphasis, other dependencies (i.e. temperature,‘porosity,
salinity,vwatef content and grain size) are also discussed. 1In
spite of the lack of a theoretical basis in solid-state
physics, the Cole-Cole model of complex conductivity, permitti-
~vity and permeability has been employed because of their
relatively simple mathematical formulation while closely
corresponding to the Kirkwood-Fuoss physical permittivity
model. This geophysical electromagnetic theory is described,
in parallel, in both the time and frequency domains in order to
describe the domain-equivalence of the complex-valued

frequency-dependent models.

Olhoeft (1975) recognized the need for describing pefma—
frozen materials with complex-valued permittivities which
contribute to an additional conductivity-like loss at
frequencies beyond few Hertz. Spectra of Olhoeft's observa-
tions on permittivity and conductivity of real materials have

been inverted in this work to allow for frequency dependent



complex-valued electrical parameters. The results support the
formulated theory. Furthermore, the resulting parameters have
been used to calculéte the geophysical electric and magnetic
fields caused by theoretically simple transmitting dipole

antennas.

This thesis offers a substantial review of the contempora—.
ry models of geophysical electromagnetic parameters which allow
for the better understanding of high frequency electromagnetic
effects which can now be usefully observed with modern

geophysical prospecting survey instruments.

RESUME

Cette recherghe présente la théorie géophySique des champs
et ondes électromagnétiques du probléme d'induction au champ
proche, aux trés hautes et ultra hautes fréquences. La contri-
bution majeur de cette‘reqherche est qu'elle permet des
modéles géophysiques du demi-espace, dans lequel les parametres
géophysiques de base sont complexes et sont fonctions de 1la
fréquence. D'autres dépendancés (ex: température, porosité,
salinité, contenance d'eau et taille des graines) sont aussi
brévement citées. Malgré le manque d'explication théorique en
état solide, les modéles Cole-Cole de conductivité,

permittivité et perméabilite ont é&té choisis, 3 cause de leurs



formes mathématiques simples tou£ en ayant une proche
correspondance avec le model Kirkwood-Fuoss de permitfivité.
La description de la théorie d'électromagnétisme en géophysique
est élaborée en paralléle, dans le domaine de fréquence, et le
domaine de temps, pour en déduire la nature complexe des

parameters.

Olhoeft (1975) souligne 1la nécgssité dé decrire 1les
matiéfes pergélisoles au-dessus de quelques Hertz, par une
permittivité complexe. Cette dernidre participant a une perte
additionnelle d'ordre conductive. Dans cette oeuvre, des
spectres de résistivité et permittivité observés apbartenant a
de matidres réelles, ont été inversés en permettant des
pafametres électriques complexes, et fonction de 1la fréQuenﬁe.
Les résultats obtenus soutiennent la théorie formulée. Ces
méme parametres ont été par la suite ufilisésApour en deduire
les champs electriques et ﬁagnétiques causés par deux

configurations d'antenne dipolaire théoriquement simple.

Cette thése offre une revue substantielle des modeles
contemporains de parametres électromagnétiques géophysiques, ce
qui nous esperons, permettra une meilleure compréhension des
effets électromagnétiques de hautes fréquences, observés par

les instruments modernes de prospection géophysiqué.

Nous esperons que la lecture de cette thése offrira une
reférence convainquante et substantielle pour d'éventuelles

recherches futurs.



ABSTRACT. « + . « + &

RESUME ] L] L] L] . L] LI

TABLE OF CONTENTS . .

ACKNOWLEDGEMENTS . .

LIST OF FIGURES . . .

LIST OF TABLES . . .

LIST OF APPENDICES. .

CHAPTER I GENERAL INTRODUCTION. &« ¢ ¢ o o o o o
1.1 Introduction . . . + ¢ ¢ ¢ «. & o &
1.2 Natural Rocks. « . « ¢ o ¢ o o « o
103 Outline L] ‘o . . ’ L] . . . . . [ 3 . .

CAPTER 1I THE GENERALIZED MATERIAL PROPERTIES

TABLE OF CONTENTS

RELATING THE VECTOR FIELD QUANTITIES
OF ELECTRICITY AND MAGNETISM. . . . . .

Vector Field Quantities. . . . .
Linearity and Isotropy . . . ..

Harmonic Components of the Vector
Fields - - - . .. L] * L 2 * L] - L] *

Realizability, Reality and the
Hilbert Transform . . ¢ o o o »

Some Elementary Electromagnetic
Theory « « ¢« ¢ ¢ ¢ v ¢ 4 ¢ o o @

The Electromagnetic Wave Equation

iv

Page

ii
iv
viii
ix
xiii

xiii

19
12

16

18

20



CHAPTER III

2.2.3 The Propagation Constant and The

Loss Tangeant . . ¢ « ¢ + .« &
2.2.4 Wave Impedance . « « o o o o o«

2.2.5 The Depth of Penetration
V.H.FO EM"'WaVQS - Y . . . L] .

of

2.2.7 Potential Functions and The Hertz

Vector L2 * . . - * - L] L 2 L ] L d

ELECTRICAL AND MAGNETIC PROPERTIES OF

. 22
. 23
. 24
. 25
. 26

ROCKS

3.1.1 Dielectric Phenomena . . . . . . 39
3.1.2 Dielectric Hysterisis. . . . . . 32
3.1.3 Temperature Variation. . . . . & 34
3.1.4 Polar Molecules . . . ¢ ¢ @« o & 35
3.1.5 Fourier Transform of the Debye

Dispersion model . . . . ¢« + « & 39
3.1.6 Relaxation and Resonance . . . . 41
3.1.7 Distribution of Relaxation Times 42
3.1.8 Cole~-Cole Dispersion Mgdel e o o 45
3.1.9 Transient Cole-Cole Permittivity

Model. o o ¢ ¢ o o ¢ o o o o o = 50
3.1.10 Cole-Davidson Dispersion Model . 53
3.1.11 Maxwell—Wagner Effect. . . . . . 54
3.2.1 Conductivity « « ¢ ¢ ¢ ¢ ¢ ¢ o 55

3.2.2 Thermal Dependence of Conductivity 56

3.2.3 Time Domain Conductivity and
Resistivity . . . ¢« ¢ +« o o+ &

3.2.4 The Debye Model. . « . + + . &

3.2.5 Cole-Cole Resistivity Model. .

. 59
. 63
. 63



5.5 Variation with Height of Antenna 1309

5.6 Frequency Variation . . . . . . 133

5.7 Radiation Energy « « « ¢ ¢ o o & 133

CHAPTER VI CONCLUSION . ' 144
6.1 Summary of the Thesis and Discus-—

sion of Results . ¢ ¢« ¢ ¢ o o & 144

6.2 Suggestions for Further Work. . 146

GENERAL REFERENCE 149

vii



5.5 Variation with Height of Antenna 139

5.6 Frequency Variation . . . . . . 133

5.7 Radiation Energy . . « + + o« + 133

CHAPTER VI CONCLUSION 144
6.1 Summary of the Thesis and Discus-

sion of Results . . . « « « & &« 144

6.2 Suggestions for Further Work. .. 146

GENERAL REFERENCE * . L L] L] L] L d L] L] * L] ® L 3 L] L] L] L] 149

vii



ACKNOWLEDGEMENT

The author wishes to express her sincere appreciation
to Professor 0.G. JENSEN for his encouragement and assistance.
Continuing support of this research which was provided by
the EMR Research agreements number 138/4/81, 90/4/82 and
54/64/83 as awarded to Professor 0. G. JENSEN is greatfully

acknowledged.

viii



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

10.

11.

12.

LIST OF FIGURES

(Reproduced from Megaw, 1957). D-E hyste-
resis loops at various temperatures for

KH2P04. o L4 L) L] L] L] L] . L] . 3 3 L) » L[] * [ 3 L[] 33

(From Hoekstra and Delaney, 1974). The

complex dielectric constant at 1¢gl? Hz as
a function of temperature at three water
contents. - L] L] L] L] L * L ] L] * L] L] L] > - 36

Real and imaginary parts of the dielectric
constant plotted against frequency. The
solid curves are for the Debye equation,
the dashed curves indicate the type of
behavior frequently found experimentally.
( After Cole and Cole, 1941). « ¢ « ¢ o = 36
( From Alvarez, 1973). Argand diagram of
the Debye model. . . .« . . . & ¢ « o« « o« 47

( From Cole and Cole, 1941). Argand.
diagram of the Cole~Cole model for four

SUbStanceS L] . . L3 . - . - »> . . ® [ L] . L] 47

( From Jain, 1981). Decay voltage versus
t/p for various T/P. ¢ ¢ « ¢ o o o e o o 52

( From Kittel, 1958). Resistance and
thermal conductivity versus temperature. . 58

Comples resistivity for the Debye model
with p(=9=100<em, ¢(9)=2062m, =1 sec.

(After Shuey and Johnson, 1973) . ? . o 62
Step response for the Debye model with
cg=lsec,§fﬂ.5 sec. ( After Shuey and
Johnson' 1973). [ ] - - * ] * ® ® L ] L] L ] [ ] L] 62

( From Pelton et al., 1976). Small
section of mineralized rock with both
blocked andunblocked pore passages. . . 65

( From Pelton et al., 1976). The
equivalent circuit of the above. . . . .- 65

( After Pelton et al., 1976). Two phase
angle spectra, and theit fitted Cole-Cole



Figure
Figure
Figure

Figure
Figure
Figure

Figure

Figure
Figure
Figure

Figure

Figure

Figure

13.

14.

15a.

15b.
15c.
16.

17.

18.

19.

20.

22.

23.

equations ¢ ¢ ¢ ¢ o ¢ o o e o 0 s o o o o

( From Jain, 1981). Step decay versus t/c,
for various a'S. . ¢ v ¢ 4 ¢ o o 2 o o

( After Klein and Sill, 1982). Amplitude
and phase angle spectra versus frequency .

( After Klein and Sill, 1982). Same as
above [ ] ® ® [ ] L ] [ ] [ ] ® L ] > * [ ] - [ 2 * - [ ] [ ]

67

69

71

73

( After Klein and Si11,11982). Same as above 74

( After Klein and S5ill, 1982). Same as above 75

Classical magnetic hysteresis loop . . . .

L] 81

( After Strangway, 1967). Curve of magneti-

zation versus temperature. . . . . . . o« .

( After Olhoeft and Strangway, 1974).

Galt's single crystal magnetic permeabili-
ty spectrum' L * . L] * . . * L] L 3 L L] L] L

( After Olhoeft and Strangway, 1974).
(Several loss tangent spectra for
artificial samples with varying magnetite
content; the weight percentage of magne-~-
tite are indicated.) « ¢ o ¢ ¢ ¢ ¢ o o o

( After Fuller and Ward, 1970).
(Dielectric constant and electric conduc-
tivity spectra of a shale with 3.8 % pore

"electrolyte by volume [27] measured by

two—‘electrode Cell.) . . o . . . - . . .

( After Fuller and Ward, 1974). ( Dielec-
tric constant and electrical conductivity
spectra for a synthetic mineralized rock
made of a mixture of 20% pyrite grains in
andesite grains with NaCl as the

. 81

86

86

90

electrolyte. A four-electrode cell was used.)90

{ After Fuller and Ward, 1978). Dielec-
tric constant and electrical conductivity
spectra of four specimens of sandstone
from the Morrison formation in the
Colorado Plateau. Specimens 10
and 12 were dry while specimens 21 and 23
were wet. o ¢ ¢ ¢ ¢ ¢ ¢ 4 e s e e e e

Effective resistivity versus frequency for
natural clay permafrost at -27°C., ( After
Olhoeft, 1975). Note that Olhoeft uses the
nomenclature real resistivity where we use

. 91



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

24.

25.

26.

27.

28.

29.

38.

31.

32.

33.

effective resistivity. The field strength
is 22V/Cm L] * L] L L] L] L] L ] . L] L d [ ] * L d * -

Effective resistivity versus frequency for
natural clay permafrost at -106°C. ( After
Olhoeft, 1975). The field strength is
22V/CMe o 4 o o o o o o o o o o o s o o o o

Effective resistivity versus frequency for
natural ice core at -18°cC. ( After
Olhoeft, 1975). The field strength |is
22V/Cm. e o o o 5 s 8 s ® e e o s e o e = o

Fitted and observed effective re51stiv1ty
and permittivity of serpentinite at 286°C,
versus frequency. ( Data after
Carmichael, 1982). The above two curves
were simultaneously inverted . . . . . .

Permittivity and resistivity curves versus
frequency do not always show simple Cole-

"Cole relationships . .+ &« &« ¢ o ¢« o & « &

( After Sen et al., 1981). -(Conductivity
of fused glass beads as a function of
porosity showing 0 ,¢2behavior. The size of

grains in the self-similar model can all:

be the same of all diffenrent. Hanai
bruggeman formula would five g=¢o for
? <45. L] > L d > . * .. L] L d L] L] ® * - L L]

( After Sen et al., 1981). ( Real part
and imaginary part 't of the dielectric cons-
tant for fused glass beads at 1.1 GHz as
a function of porosity saturated with
distilled water, methanol and air. . . . .

e versuschor water-saturated and oil-
saturated limestones and sandstones, at
lzgg MHZ. L ] . L] . L] L] L J L] * * * L] [ 3 L ] - L ]

( After Poley et al., 1978). Dependence

of on porosity for sandstone of various
salinities . . ¢ & ¢ ¢ ¢ ¢ o o o o o o &

( After Poley et al., 1978). Dependence
of on porosity for sandstones saturated
with water of various salinities. . . . .

( After Poley et al., 1978). Measurements
of real and imaginary permittivity compo-
nents for a water saturated sample at
different salinities for 1860 MHz. It can

be seen that at 18¢¢ MHz, the real permit—-

tivity isvirtually independent of the sa-

xi

97

98

99

149

107

108

119

111

113



Figure 34.

Figure 35.

Figure 36.

Figure 37.

Figure 38.

Figure 39,

Figure 48.

linity while the imaginary component shows
a small increase as a function of salinity

( After Freedman and Vorgiatzis, 1979)

Variation with depth of the real
components of E.-and H,- fields of a
vertical transmitting dipole antenna.
Frequency= 10E7 Hz, length of antenna=%W4,
height above ground= A, the distance of
measurement is one wavelength from the
transmitting antenna, and the depth is
normalized to the wavelength. .. . . . .

Variation of the H -field with height, for
the example fo the clay permafrost of
chapter IV, section 4.1.1. The wavelength
is 3 m., the antenna length is A/4, and
the depth is equal to one skin depth. . .

Real component of secondary - filed for
a vertical transmitting dipole antenna,
at various frequencies. The electrical
parameters used to create these spectra
are those of a half-space of clay
permafrost at -27°C, as obtained in
section 4.1.1. The current of the
transmitter is equal to unity, the length
of the antenna is equal to /4. and the
depth of measurement is equal to one skin
depth. It should be noted that the
purpose of ‘these plots is to show th
aspect of the secondaty field at various
frequencies, due to frequency-dependent
delctrical parameters of the half-space.
The maximum field occurs at 10E7 Hz. . .

Real component of the secondary E_-field
for a vertical transmitting dipole
antenna, at various frequencies.
Parameters are all the same as in figure
37. The maximum field occurs at 1@E7 Hz.

Real component of the secondary H -field
for a magnetic transmitting antenna, at
various frequencies. Same parameters as
above are used. The maximum field occurs

at 1¢E8 HZ. - . [ ] L3 L3 . . L] [ . L3 . L] L] '

Real component fo the secondary E_,-field
for a magnetic transmitting antenna, at
various frequencies. Same parameters as
.above are used. The maximum field occurs
at 10E8 HZ. . «. o ¢ o o o o o o o o o o

xii

114

119

131

132

136

137

138

139



Figure 41.

Figure 42,

Amplitude of secondary H,.—-field, of a
horizontal magnetic antenna at various
frequencies. Maximum frequency occurs at
10E8 Hz. All parameters are as
Previously. . ¢ o o o o o o o o o o o o o

Amplitude of secondary E¢—field, of a
horizontal magnetic antenna at various
frequency. Maximum field occurs at 10E8

141

Hz. All parameters are as previously. . 142



Table 1.

Table 2.

‘Table 3.

Appendix

Appendix

Appendix

Appendix

Appendix

LIST OF TABLES

Page

( After Poley et al., 1978). Real and imagi-
nary permittivity components versus frequency 33

Dielectric constants of some materials. . . .. 49

Observed and fitted resistivity values for
various modelsS. . ¢ ¢ ¢ o ¢ ¢ o o o o o o o 96

o
L]

C.

D.

LIST OF APPENDICES

Program SVD.P1l inverts an effective resis-
tivity curve and yields in the Cole-Cole
electrical parametersS. « « « o« o o s o o o 156

Program SVD.P simultaneously inverts effec-
tive resistivity and effective permittivity
curves and yields in the corresponding Cole-
Cole electrical parameters . . « ¢« o« o o« 160

Program HORANT.P, given the electrical para-
metersat a certain frequency calculatesthe
E~ and H- fields of a horizontal magnetic
loop transmitting antenna versus distance
over a dissipative homogeneous half-space . 164

Program VERANT.P, given the electrical para-
meters at a certain frequency, calculates the

E- and H- fields of a vertical transmitting
dipole antenna over a dissipative homogeneous
half“space- . . . . * . . - . . . . . . * . 172

Integration of the total energy flow over a
horizontal plane for a veritcal magnetic
loop. . * L] L] L] L] * L L d L 3 L] . L d L Z * * L d L ] L] 179






CHAPTER I
GENERAL INTRODUCTION

1.1 INTRODUCTION

The purpose of this thesis is to assemble a useful des~
cription of the electrical and magnetic properties of real
geological materials, which is appropriate for the wide range
of frequencies now employed in geophysical measurements, and
which allows for the variety of source-receiver configurations
of electrical, magnetic and electromagnetic instruments in
common use. We shall limit our attention to homogeneous and
isotropic geological materials which can,.however, exhibit
strong frequency dependencies in their electromagnetic physical
properties. The description must be consistant with Maxwell's
electromagnetic theory and known natural laws. We shall find
it convenient to use the Cole-Cole (1941) dispersion formulae ,
in describing the complex frequency dependence of the di-
electric permittivity, the electrical conductivity (or
resistivity), and the magnetic permeability of naturally occur-
ing materials. We shall compare these theoretical models to
examples derived from the existing empirical data which now
spans frequencies from essentially DC ( Van Voorhis et al.

1873, Carmichael 1982) to ultra-high frequency band ( Hoekstra

& Delaney 1974, Poley et al. 1978, Coon et al. 1981 etc...).



In addition we shall obtain appropriate theoretical
formulations for the description of geophysical measurements in

relation to the geological electrical and magnetic parameters.

1.2 NATURAL ROCKS

Natural rocks are heterogeneous materials, which show
considerable complexity with respect to théir electrical and
magnetic properties. 1In general, a rock is a multicrystalline
matrix, comprising a large density of surface contacts between
different materials, elements and solutions. The evolving theo-
ries of solid state physics can essentially describe the
electrical and magnetic phenomena which arise on the
microscopic surfaces and within microscopic volumes of rocks.
The macroscopic properties of a composite material,
containing phases with very different physical properties,
depend not only on the volume fractions of the constituents,
but are extremely sensitive to the geometry and topology of the
boundary surfaces between the phases. Nevertheless rocks typi-
cally show some “mean" macroscopic behavior. Geophysically
our interest is with the macroscopic measures and therefore,
for convenience, in the development of this work we shall
describe the electrical and magnetic behavior of an equivalent
homogeneous medium, which is conductive permittive and

permeable.



Thé magnetic permeability of general rock types does not
differ much from that of free space, except for the common
naturally occuring "magnetic™ materials. At zero frequency,
and under.low inducing fields; the magnetization is essentially
directly proportional to the magnitude of the inducing field.
- That is, we may empioy avreal valued constant of
proportionality, the magnetic susceptibility,. to describe
the field-magnetization relationship. At low frequencies the
magnetization of most materials closely follows the alternating
field (that is, remains in phasé with the alternating field)
but as frequehcy increases the field oscillations become too
rapid for the molecular and grain boundary adjustments to be
" maintained in equilibrium with the applied field sd that the
magnetization becomes phase—delayed in reference to this field.
At eveh higher frequencies (typically beyond 18 KHz, except in
the narrow-bands of nuclear and electronic resonances) the in-
duced magnetizatidn of macroscopic volumes of real materials
essentially vanishes (Landau and Lifshitz, 1969). Since we
aré here dealing mainly with very high frequency electromag-
netic (VHF-EM) fields, the magnetic effects are generally

insignificant, and we shall reasonably assume rock permeabili-

ties equivalent to the permeability of free space pug-

A similar situation holds for the dielectric polarization
of rocks, although the analogous phenomena typically arise at
much higher frequencies (Debye, 1929). At low frequencies,

the dielectric polarization easily follows an alternating



inducing electric field. The electrical susceptibility, which
is the constant of proportionality relating the electric pola-
rization to the inducing field, is essentially real valued and
therefore no power loss occurs. At'extremely high frequencies,
in the microwave and infrared band, the field alternates so
quickly that electrical polarization cannot become established
and only a small residual level of polarization remains. This
results in most materials showing a minimum in dielectric
permittivity at sufficiently high frequencies. This residual
permittivity will approach that of free space for non-polar
molecules, while for substances like water, alcohol and barium
titanite, which are molecules possessing a natural perma-
nent electric dipole moment due to the asymmetry of their
electrical charge distribution, the residual permittivity will

exceed that of free space,

Conductivity of physical materials can show a relatively
complex frequency dependence. As well, the range of real con-
ductivities of common materials is extremely wide: from the
order of 1p~153 S/m for quartz and mica to the order of 192 S/m
for silver, gold and copper. At extremely low temperatures,
some metals and alloys posses a practically infinite supercon-
ductivity (e.g. lead below 7.2°K). 1In such metals the current
continues to flow without measurable dissipation even after

the electric field has been removed.

Often, the conductive properties of rock masses dominate

all other effects at frequencies in the submicrowave range.



However, in the infrared to X-ray frequency range, conductivity
can show a considerable complexity of frequency dependence.
Our interest in these frequency-dependent electrical and magne-
tic material properties will not concern the various strongly

resonant phenomena such as nuclear magnetic resonances.

1.3 OUTLINE

In chapter 11, we define the essential electromagnetic
fields and in restricting their description impose 1linearity,
isotropy .and homogeneity conditions on the geophysical media.
Constitutive equations and Ohm's law are then stated both in
the time and frequency domains. We shall require realizability
(i.e. we require that the phenomena be causal and stable), a
condition which leads to Hilbert transform restrictions.
Maxwell's equations and charge continuity equation follow, from
which we deduce the wave equation for the E- and H-field and
derive the general equation of the propagation constant and
wave impedance for far fields. Also, propagation depth and
apparent resistivity as functions of frequency and average
material properties are obtained. For near field, we shall
consider potential functions described in terms of Hertz vector
from which, by appropriate differentiation, the E- and H-field,
and consequently all other electromagnetic fields, can be

described.



In Chapter III, common dielectric phenomena and dielectric
hysterisis are described followed by Debye's "Polar Molecules"
description in introduction to the ColefCole model which has
beeh adopted as the basic dielectric dispersion model in this
research., After the description‘of each dielectric model in
the frequency domain, its time domain equivalent is obtaihed
via Fourier transformation. The Cole-Davidson dielectric
dispersion model is compared to the Cole-Cole model; the

Maxwell-Wagner effect is discused.

The final section of Chaptér III deals with conductivity,
its temperature dependence and time and frequency domain
relationships. The Cole-Cole resistivity model which is now
commonly uséd~ in geophysical analysis of high-frequency-
resistivity and induced polarization data is described; the
Cole-Davidson resistivity model which describes the membrane

polarization effect is also discussed.

Chapter IV describes the general equations of apparent
dielectric permittivity and resistivity and from these
equations deduces the several limiting cases which are commonly
used in geophysical theory. Example inversions of actual
resistivity data are attempted to obtain estimates of the
essential Cole-Cole parameters of the geophysical media. The
general equation of the "formation factor", taking into account
complex resistivity and permittivity properties, 1is then
obtained and subsequently reduced to the equation commonly

employed in geophysical electromagnetic theory. The effect of

[*)]



porosity, water content and salinity are discussed and examples
and references are given. Finally, practical measurements are

compared to the elaborated theory.

Chapter V essentially deals with alternating current
sounding for simple configurations of antennas. The objective
is to study the variation of the electric and magnetic fields
with depth, height and particularly frequency. First the E-
and H-field equations are developed for verticai and
horizontal dipoles, in terms of the Hertz vector, then profiles
for differentrvarying parameters are calculated, considering

Cole-Cole parameters.

Chapter VI comprises the conclusion and further

suggestions for study.






O

CHAPTER II

THE GENERALIZED MATERIAL PROPERTIES RELATING THE
VECTOR FIELD QUANTITIES OF ELECTRICITY AND MAGNETISM.

2.1.1 VECTOR FIELD QUANTITIES

The essential vector measures which represent an
electrical and magnetic field, are B, the electric displacement
(C/m2), E, the’electric field (V/m), J, the electric current
density (Amp/mz), which are primarely of electric nature,vand
ﬁ, the magnetic field (Amp/m) and'E, the magnetic induction
(Teslas) which are of magnetic nature. These vector quantities
are interrelated by Maxwell's equations, the equation of:charge

continuity, the constitutive relationships, and Ohm's law.

In free space, the constitutive relationships and Ohm's
law describe linear functional dependencies between the D & E,

B & ﬁ; T & E vector fields pairs respectively.

D= ¢,E €,=8.854*1p~12 Farads/m  2-1-1
B= p H Ho=4n*10~7 Henry/m 2-1-2
J= o ,E 0,=0.0 S/m for free space 2-1-3

In real materials, the generalization of these relation-
ships can give rise to a need for much more complex

mathematical formalisms. In any real material, we may



establish these relationships using the general functional

forms:
D=£(£,E) , v2-l—4
B=£f(,H) , 2-1-5
J=£f(Z,E) . 2-1-6

Where the E ,.# and Z represent a location dependent
complex series of tensor coefficients which may be involved in

a nonlinear way with the vectors.

2.1.2 LINEARITY AND ISOTROPY

For real materials, in the presence of sufficiently small
E- and H-fields these relationships can normally be assumed to

be locally represented by linear, homogeneous functions,

D= £ .E , 2-1-7

B=.U{.H 2-1-8
and

J=2Z .E 2-1-9

where £,.#and 2 can be either scalar or second-rank tensor

quantities describing the essential material properties.

In an anisotropic (but linearly homogeneous) medium, each

component of the resulting field depends upon all components of

19



the applied field and the material constants ( i.e. the
e ,TA,V) must have a general tensor form. Then, the indivi-
dual components of the vector quantities can be related by the

tensor equations:

D. = ¢

i = €ij E4, 2-1-19
B; = Yij Hj 2-1-11
and
Ji = T35 Ej. | 2-1-12

where, now, each material constant is described by a second

rank tensor. For example

T T 9 . ' 2-1-13
z - \62. o T | 7T
G Ty T3

where

i,j=1,2,3 represent three orthogonal spatial coordinates.

Similarly
€
J

and

uM:tri'J

Equation 2-1-13 shows that 9 coefficients are required
to define the property of conductivity at any point. Commonly,
however, 75 = 3; r and this symmetric conductivity tensor
contains only 6 independent elements. It is further possible to

adjust the coordinates in such manner that Tx=0 if i#k so that

11



2-1-14
© © a3

reduces to a diagonal tensor. If any two elements of this
tensor are equal, the medium is uniaxially anisotropic. For
isotropic media all three coefficients are equal and the tensor
relationships reduce to scalar ones ( i.e. a zero rank tensor).

Then, Ohm's law reduces to its common form,

J= T.E 2-1-15a
and the constitutive equations simplify:

D= e¢.E, 2-1-16a

B= T'H' 2—l-l7a
These scalar constants are

€ , the dielectric permittivity measured in F.m-l,

Foe the magnetic permeability measured in H.m~! and

o , the electric conductivity measured in s.m~1,

These much simplified relationships hold at any point
within linear and isotropic materials; they also hold every-

where within materials which are homogeneous.

2.1.3 HARMONIC COMPONENTS OF THE VECTOR FIELDS.

Commonly in the development of the physical theory of
electromagnetism, we implicitly consider harmonic components of

the field quantities. The constitutive equations and Ohm's law

12



can be more explicitly written in the following form:

Dlw)= e(w).E(w), o | 2-1-18

B(w)= p(w).H(w) 2-1-19
and |

J(w)= r(w).E(w). | 2-1-20

These equations are analogous to the input—éutput rela-
tions describing linear systems in which the material property
(i.e. the ‘e(w), pu(w) and o{w)) corresponds to the system
transfer function, and the vector field quantities correspond
to the input—output pairs (Fuller and Ward, 197¢). Equivalent-
ly then, in the "time domain® of the real world of measure-

ments, these relationships are represented by the convolutional

forms:

d(t)= e(t)* &(t), 2-1-21
B(t)= m(t)* h(t) 2-1-22
and

o= A(r)* &by, 2-1-23

Here the symbolic notation * represents the general super-

positon integral; for example:

o« .
i(t)= ‘/;4(7).e(k—r) dz 2-1-24a
_oo -
or equivalently
j(t>=j A(t=g.e(r) dr : 2-1-24b
~ 00 . .

13



[Note: Unless otherwise indicated, throughout this thesis,
upper-case Latin and Greek symbols apply to the frequency domain
and their lower-case equivalents to the time domain. However,
in order to minimize the confusion of the reader who has
typically learned his electromagnetic formalism in the
frequency domain, we shall maintain the symbols ¢, pr € and
P to describe the frequency—doﬁain material properties and use

s, r, e and m for their time-domain equivalents.]

Only in the particular case where the material property is
independent of the frequency is its Fourier transform of the
time function a scaled Dirac function, and consequently in this
case the time-domain convolution can be replaced by the simple
multiplication by the scaled conductivity permittivity or.per-
meability. This simple case is not of basic intefest in the

subsequent development of this thesis.

In the real world, measurements are made in time domain,
but mathematical manipulation in this domain is often cumber-
some, especially when dealing with inversion and interpretation
of geophysical data. Frequency domain mathematical manipula-
tions are usually much easier, even though the material proper-
ties must be then represented by complex-valued functions of
frequency. Throughout this thesis, we will be concerned with
the parallel formulation of the required electromagnetic equa-

tions in both the frequency and time domains.

The Fourier transform relates the frequency and time

14



representations of the electrical or magnetic vector field

quantities or material properties as follows:

&
X(w)= 'Tjjf(t) cemivt g¢ 2-1-25
X

Z o

and

- % . :

x(t)= __//X(co).e"'“’-"t dw 2-1-26
- 0o

where X(t) and ?«Q represent any of these quantities in each

of the two domains., For example;

l1- If the time domain E~-field is a scaled impulse function
E(t=0) = Eg %(t) ‘ 2-1-27a

then the frequency domain E-field will be frequency indepen-

dent and
E(w)=Eg . 2-1-27b
2- If
E(t)=E,.elnt 2-1-28a

where u%is the angular frequency of a continuous wave oscilla-

tion, then

E(w)=Eg.2w0 (w-w,) . 2-1-28b
Generally in the following development of this thesis, we
shall omit the factor eidt yhen describing harmonic electro-
magnetic waves and fields in the time domain. Equivalently, we
shall often omit the factor S(t) when describing essentially

temporally impulsive fields in the Fourier frequency domain.

15



2.1.4 REALIZABILITY, REALITY AND THE HILBERT TRANSFORM

The functional representation of the properties of real
materials must be "realizable®™. That is the quantities g(t),
-Wdt) and A(t) must be both causal and stable, for if they were
acausal they would violate what appears to be nature's most
basic law that a response must follow the excitation and if
they were unstable, they would violate the law of energy
conservation. Furthermore, in 2-1-21 both e(t) and d(t) must be
real-valued (Fuller and Ward, 197ﬂ); this requires that e (t) be
real-valued. Mathematically, we can establish the causality
and reality conditions by requiring that:

g for t<@

e(t), m(t), A(t)= 2-1-29
real for t>@

and we can establish the stability condition by requiring that

jg'(t)dt < oo | 2-1-3p

o

which implies that

[= = .
j{e(t){ dt < eo | 2-1-31

which guarantees that the Fourier transform of e(t) is every-

where finite,

The Fourier transform pair representing the dielectric

permittivity property must have the form:

e(w)=é‘-je(t) e-lwt dt 2-1-32
n

7

(=4

/
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e(t)= jem etivt g, | 2-1-33

Since the time domain material functions are properly
causal and real valued, the corresponding frequency domain
functions &(w), $(w) and < (w) must be complex—valued; The
complex nature of these material functions allows that the
related vector field quantities need not be exéctly in phase
with each other. The reality of the time-domain function
implies further conditions: the real part of & (w) (also Y(m)
and T(w)) must be an even function of frequency while the
imaginary part must be an odd function of frequency. Further-
more, for a system to be physically realizable implies a well-
known relationship between the real and imaginary parts of its
frequency domain functional representation which is described

by the ®"Hilbert Transform".
Given
R(iw)= P(w)+ iQ(w) = A(w) e 1 (w) 2-1-34

the Fourier transform of a causal temporal function r(t),

P(w) and Q(w) must be Hilbert transform pairs. That is

0o
Peo)=2 Jow/(w - au 2-1-35
[ /oo
0o
Q)= [ P(u)/(w-u) du. 2-1-36
Zoo

Furthermore if

R () =A(w) .el ® @) 2-1-37
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obeys the stronger condition of minimum phase (Ulrych &’
Lasserre, 1966), then the real and imaginary principal com-
ponents of the logarithm of R(y) are also Hilbert transform

pairs., That is

% - -
in A(Lo)=a.‘.“ J é?(\ﬁ/(u)—ﬂ) Aw : - 2-1-38
oo .

Do
(W)= Jk La MW/ (wW-u) Su 2-1-39

It appears to be a natural law that simple passive systems
are "minimum phase®”, This property is manifest in the time
domain response of a system as its ability to pass energy from

input to output as rapidly as possible given that it modifies
signal frequency composition.
2.2,1 SOME ELEMENTARY ELECTROMAGNETIC THEORY.

Maxwell's field equations, shown here in time domain, are

as follows:

- —_> -
Ampere's law Vxh(t)= j(t) + D d(t), 2-2-1
Faraday's law ¥ xe(t)= —’%_b(t) , 2-2-2
. t
Coulomb's law V.d(t)= P (t) : 2-2-3a
and
- .
V.b(t)= g. 2-2-4

In a homogeneéous isotropic medium equation 2-2-3a reduces .

to

18



obeys the stronger condition of minimum phase (Ulrych &
Lasserre, 1966), then the real and imaginary principal com-

ponents of the logarithm of R(y) are also Hilbert transform

pairs., That is

0o
In A=t J ) /(w-u) Bu 2-1-38
-0 ) .

' 0o : . |
d?(b-))-"-‘, Joa -QnA(w\/(uo-u.) du 2-1-39

It appears to be a natural law that simple passive systems
are 'miniﬁum phase®™. This property is manifest in the»time
domain response of a system as its ability to pass energy from
'input to output as rapidly as possible given that it modifies

signal frequency composition.

2.2.1 SOME ELEMENTARY ELECTROMAGNETIC THEORY.

Maxwell's field equations, shown here in time domain, are

as follows:

-» - ->
Ampere's law Vxh(t)= j(t) + D d(v), 2-2-1
> - ot
Faraday's law V xe(t)= -—;%?(t), ’ 2-2-2
Coulomb's law V.d(t)= p(t) 2-2-3a
and "
—
V.b(t)= 1. : 2~-2-4

In a homogeneous isotropic medium equation 2-2-3a reduces

to
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T .d(t)=0 . 2-2-3b

In equation 2-2-1, noting the analogy between the current
> >
density j and and the field quantity 2d, this latter term is
ot
called the displacement current density. Depending on whether

- -
?2d or j dominates, the material will be essentially either a
ot

dielectric or a conductor.
The charge continuity equation
-
V.i(t)+ 2e(t)=0 2-2-5a
ot

completes Maxwell's four equations in generally describing
electricity and magnetism. In any region of non-vanishing
conductivity, the charge density will reach its equilibrium
very quickly, so that there will usually be no accumulation of

charge during the flow of current and
V.5(t) =6 . 2-2-5b

Maxwell's equations show that electromagnetic fields should be

capable of propagation through space as waves.
Fourier transformation of equations 2-2-1 and 2-2-2 obtains

v xﬁ(w)= E(w)+iw3(w) 2-2-6
and

UXE(w)= -iwB(w) . 2-2-7

Often, in geophysical electrimagnetic theory, the termc»BUO)
in equation 2-2-6 is neglected for low frequencies; however, as

. : . . - =
we increase frequency we may reach a condition where wD(w)

19



we increase frequency we may reach a condition where wD(w)

becomes comparable in magnitude with SYw).

Introducing the equivalent Fourier transformations of the

constitutive equations and Ohm's law into equations 2-2-6 and

- 2=2-7 we obtain:

vxH(w)= ( d(w)+iwe(w)) E(w) | 2-2-8

and - -—
VXE(w)= -i u(w) H(w) . 2-2-9

These two equations can be reformed as wave equations in

E(w) and H(w).

2.2.,2 THE ELECTROMAGNETIC WAVE EQUATION

In a general linear homogeneous isotropic material cha-
racterized by complex valued frequency-dependent parameters a,
€, and u we can derive the relationships governing the
propagation of electromagnetic fields. Replacing 2-2-9 in

2-2-8 and using the identity
VxVkA= V( V.A) -V A& - 2-2-19
we find that
VE(w)= iw p(w) [ T(w)+iwe()] E(w) , 2-2-11

and equivalently we obtain a complimentary equation in ﬁ?w)

'VQI-;(w); iw plw) [ T(w)+iw €(w) ]—H’(a)) . 2-2-12
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I1f we further recognize that
k% = —iop (o +iwe ) 0 2-2-13

is the squared wavenumber for waves propagating within the

material, we can . rewrite equations 2f2‘12‘& 2-2-13 as
follows:
2 2 : '
KE(w)+ K" E(w) = 0 : 2-2-14a
and

2 ‘ 2
VH(0)+k™ H(w) =0 . 2-2-14b

where r is the position vector, measured frqm any arbitrarily
chosen origin for a céordinate system. Equations 2-2-14a and
2-2-14b describe waves propagating through an absorbing medium,
The general solution of the wave equation for E in Cartesian
coordinates, restricting our immediate interest to plane waves:

E(w,r)= E, el(+k.r+ot) v 2-2-15

where Eo 1s independent of frequency and position and using

Cartesian coordinates,
kK.r=ux+vy+wz

so that the propagation vector,

\/u2+v2+w2
Vv x2+y2+z2,

o
"

and

~
i
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2.2.3 THE PROPAGATION CONSTANT AND LOSS TANGENT

Equation 2-2-13 shows that the magnitude of the propa-

gation constant must be generally complex-valued

k= oz—iF . 2-2-16

Rearranging equation 2-2-13
k2 = —im?e(ogiw €)

where now y, V; and €, are real values, then ( compare
e

Crossley (1982)):

y (IR \
oL = (usgfé)z [_(\+v)'L4Q],L 2-2-17
and
PN N ' oo
%: (uﬁe)h(_(”\?)z_\fjl 2-2-18
where *
2-2-19
vz mﬂe/q_a

The ratio of imaginary to real components of k2
tan> = v = wee, 2-2-20
Te

is called the loss tangent. Below the critical frequency where
tanf5=1, the propagation vector depends more upon effective
material conductivity than its dielectric conductivity. Above
this frequency, the effect of material permittivity dominates.

Typically at frequencies for which tan 5<< l, we may neglect
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the presence of a material dielectric permittivity while for
frequencies for which tans >> 1, the permittivity dominates
the conductivity. This critical frequency is of the order of
164 Hz for quartz and gneiss and 185 Hz for granite and

gabbros.

2.2.4 WAVE IMPEDANCE

A particular situation arises when we have a homogeneous
half space and a harmonic current flows along the x-axis. Thus

the E-field components vanish along the y-axis and z-axis and,
EX= Ae"ikz*‘iwt:' A e"'ﬂz e+i( wt- aZ) 2-2-20

where the e—f2Z term represents a damping term and elaz jis the

Here Ex 1S time varying and generates a time variant

P

phasor.

orthogonal magnetic field in the y direction.

Hy= k/wp A e-ikztiot 2-2-21

The surface wave impedance of the homegeneous ground, defined

as the ratio Eyx/Hy and denoted by Z has SI-dimensions of ohms.

- w2
Z=Hy/Ey= Wou= (Ghe 2-2-22

In free space where (=@ pu=4 and €=¢€, , the wave impedance

is simply real-valued;

Z= /éﬂg:lZﬂn ohms.

23



2.2.5 DEPTH OF PENETRATION OF VHF EM-WAVES

In the conventional solutién for the skin dépth of
electromagnetic fields, which is generally valid at 1low
frequencies, the depthAof penetration is obtained as:

s = (L |? | 2-2-23

T
Using this equation at very high frequencies predicts very
small values of $ in the frequency range of our interest. The
electromagnetic theory however does not justify this simple
form for higher frequencies. Starting with the general equa-

tion for the propagation constant;
2 . \
k=[ wye, - Loy ] a2 , 2-2-24

the depth of penetration (i.e.thaﬁ depth at which the ampli-
tude of the field component has decayed to l/e of its original

value) becomes

5. [/ 2e 2. 1z,
E( 3(-5":) [ '*%2) +11] 2-2-25

and, since %@ez are functions of the frequency, the

penetration depth is not simply dependent on either parameter.

In soft rocks such as limestone and dolomite, a pulse radar
has detected lithological contrasts at a depth Beyond 12 m.
This is not yet the upper limit of these systems: Moffat &
Puskar (1976) estimated a penetration in these rocks of

around lé6m.(50 ft.). For hard rocks, considering the
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differences in their electrical properties, it is estimated
that the debth of penetration should be greater than.that of
soft rocks by at least a factor of 4. Reflections from voids
have beeh detectable at 16.4 m. in the frequency range of 18 to
168 MHz. Coon et al. (1981) estimated the depth of penetration
of 20-508 MHz to 33 m(18@¢ ft) through coal seams. In addition,
the EM energy polarized normal to the bedding planes is less
attenuated than energy polarized parallel to the bedding
planes. Lafleche (1984) has obtained penetrations beyond 58 m.

at 445 Mhz in the Big Nickel Mine, Sudbury, Ontario.

2.2.6 APPARENT RESISTIVITY

From equation 2-2-22 we obtain the absolute ratio

— 24 -Y2
Ex wu [i+v] 2-2-26
HY Je
At low frequencies, is neglected and if we write
P = -—L
%T Te
we obtain
| Fx Iz
fopp= — | =% -2~
oﬂ, W H\! 2-2 27

However if the medium is dielectric or if we increase the

frequency, v can not be neglected and

=L E"Z [ V- (fﬁ)z 1&14]*‘/2 2-2-29
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where now the equation also depends upon the dielectric proper-
ty of the medium. The apparent resistivity values will be

‘larger than those estimated under the low frequency assumption.

2.2.7 POTENTIAL FUNCTIONS AND THE HERTZ VECTOR

Often in solving problems in electromagnetics, potential
functions are introduced (Sommerfeld 1949, Patra and Mallick

1980). The fields are then derived by differentiation of these

—

potential functions. Since B is necessarily solenoidal, it

-
can be expressed in terms of another vector A so that

-

B = VxA 2-2-30
and

Vx (B4l =0y | 2-2-31
therefore (E;+t$i) is irrotational, and consequently

—-> - Y

where %>is a scalar function.

e .
The functions A &é% are known as the vector & scalar

potentials. Introducing. the Lorentz restriction,

V.—i-fib\zT&.aﬂ?-’r TT% = O

both functions must obey wave equations, similar to those of

the E- & H-fields as above.

26



Hertz has shown that electromagnetic fields can be expres-

-~
sed in terms of a single vector function J| . If we set:
S (Ta4we) |© 2-2-33

this equation satisfies Lorentz' restriction so that

-

= N ‘\:k | 2-2-34

Substituting 2-2-33 & 2-2-34 into 2~2-32 we find

E= VT 0 I 2-2-35
or

B= V() 4 VT | 2-2-36
and similarly

> k? - = '

H= -5 NxJT 2-2-37

A'u.sv.r
Equation 2-2-35 & 2-2-37 are the general equations of
electric and magnetic fields in terms of the Hertz vector.
Hence, oncei? is known, the resulting fields can be derived
directly. Sommerfeld (1949) has treated this subject in

detail.

-
In electrodynamics the Hertz vector potential\|_ replaces

- -

the scalar potential of electrostatics. The E and H fields,
-

and the related B and'ﬁ, as well as J fields can be all expres-

sed in terms of JT . This Hertz vector potential can be.shown

to obey the wave equation itself,
2 q ~> -
F+K) T =0 2-2-38
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and its Fourier transform is:

(L :J Jw <« Qw. 2-2-39
- 05
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CHAPTER III

ELECTRICAL AND MAGNETIC PROPERTIES OF ROCKS

3.1.1 . DIELECTRIC PHENOMENA

Dielectric materials are good insulators; they are com-
posed of molecules with bound charges, which when placed in an
electric field E, become di~-polarized in the direction of the
applied external field. This resulting polarization accounts
for their refractive indices being different from those of free
space. At sufficiently low field, the polarization is linear

in the applied field as follows:

= [av4 E 3-1"1
where
> = é'oXe 3-1-2
> = polarizability (F.m~1)
& =

- = dielectric permittivity of free space (F.m‘l)

Xe= dielectric susceptibility (dimensionless)

A measure called electric displacement,ﬁ, is due to both
the polarization of the bound charges, 3, and to the applied

external field, E.
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or

o4
"
o
)
[9%)
|
}.—l
)
W

where
e = §31+yé). 3-1-5
€ is the factor of proportionality between the external
electric field E and the resulting electric displacement D in

a dielectric, and is known as the dielectric permittivity.

In the simplest case, € is considered to be a scalar
constant, independent of all other physical parameters and

coordinates. For free space ( and approximately for air):

QXQ_= gI

& =&

and

> -

o

For real materials, the dielectric permittivity is often
much more complex and in general & is a complex tensor, func-
tion of frequency (o ), temperature ( T ) and location (r ).
It is also known to be pressure, porosity, salinity and grain
size dependent. For the moment, we will consider € as being a
complex frequency dependent scalar quantity describing the

dielectric condition of a homogeneous medium thus:

e = "W | 3-1-7
where
&* = e:—i e—” 3__1_8
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The ch§ice of sign is arbitrafy; here, the sign is chosen
so that €"> @. The negative sign indicates that the phase of
the imaginary component lags that of the real component. The
complex nature of X requires that within the material, under
the application of an extefnal alternating field, there is
ehergy dissipation. Table 1 ( from Poley et al., 1978) shows

*
some measures of complex ¢ .

In most dielectric materials the displacement of charges
is proportional to the applied electric field E. However in
some materials like Rochelle Salt [orthorombic hemihedral-holo-
axial crystalline structure, chemical composition; (K,NH4)
NaCyH,O0¢ . 4H,)] the dielectric displacement is not uniquely
determined by the applied field, but also depends on its pre-
vious value. This phenomena is known as the "dielectric hyste-

resis".

3.1.2 DIELECTRIC HYSTERESIS

In the hysteresis phenomena, the displacement traces out
a hysteresis loop quite similar to the magnetic hysteresis
loop. By analogy to ferromagnetism is this effect is called
"ferroelectricity”. The hysteresis implies that the substance
has a spontaneous polarization,(i.e. a polarization Which
persists when the applied field is removed). The susceptibili-

ty in such materials depends on the present applied field and
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Table 1. ( After Poley et al., 1978). Real
and imaginary permittivity versus frequency.

f 5
(Mc/s) ¢ €« (cm)

10 g 28 380 36

100 5 18 36 14.7
200 8 16 16 13.2
soo | B |14 | 56 | _ _ 131 _
800 =5 13.2 3.2 13.7
1000 = 13 2.6 14.4
3000 g 11 0.65 16.0

Penetration depth for salt-water-saturated sandstone,
(Porosity 15%, salinity 15% by weight)

at 10°c. at 0%c.

At -20°c.

Figure 1. (Reproduced from Megaw, 1957)
D-E Hysterisis loops at various temperatures,

for I\thO4
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the history of previously applied fields.

Ferroelectricity is typically sensitive to temperature. 1In
the case of Rochelle Salt, increasing temperature above 8°C

causes the hysteresis loop to decrease slightly in height,

. while the width undergoes a more important decrease. At around

24°C both sides of theAloop merge into one line and the salt's
spontaneous polarization disappears. The temperature at which
this occurs is the ferroelectric Curie point of the substance.
On the other hand, by decreasing the temperature below p°c, at’
some lower temperature, near QZQOC, the spontaneous pélariza-

tion disappears again (see figure 1).

Other materials which show the property of dielectric
hysteresis are: Potasium Hydrogen Phosphate KHépo4, Barium
Titanite BaTiO3 and Cadmium Niobate Cd,Nb,07. This strongly
non-linear dielectric hysteresis effect will not be considered
further. I will, rather, restrict my attention to the much more

common condition of linearity.

3.1.3 TEMPERATURE VARIATION

Increasing the temperature increases thermal agitation
which in turn usually decreases the degree of polarization of a
molecule, and hence, produces a decrease in the electric
susceptibility. Later it will becomevclear that the parameters
describing the permittivify are themselves temperature depen-
dent. We will, at present, assume the material temperature to

be a constant (see Figure 2 ).
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3.1.4 POLAR MOLECULES

The "Polar Molecules" model was described by Debye (1929).
Although now of little practical use, it was the first Step in
the development toward the definitive model which has been
adopted in this research. The developﬁent of the Debye diéper—
sion equation for polar molecules can be found in the
literature (Debye, 1929 and Bottcher, 1952). It determines the
following complex pemittivity:

?(w).. € =(er¢,,) /(i-l»».twr) ' ' 3-1-9

where

w angular frequency

T intrinsic relaxation time which for a material of

spherical polar molecules is:

T« Bana /T f 3-1-1¢
7 = viscosity,
@ = average radius of the molecule,
€ = real asymptotic value of permittivity at very high
frequencies

€ [ -il?“'\ él

oo
o

e, = real permittivity at zero frequency
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The complex diclectric constant at 10 X 10® Hz as a function of temperature at three water contents (2 H,0/g soil)
for (a) Goodrich clay and () Fairbanks silt.

(From Hoekstra and Delaney,

1974)
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Real and imaginary ﬁarts of the dielectric con-

stant plotted against frequency.. The solid

curves are for

the Debye Eqs. (2), the dashed curves indicate the type of

behavior frequently found experimentally.
(From Cole and Cole, 1941)

Figure 3.
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.so0 that e e .

Within the two real limits of permittivity e and ¢,
there is a range of dispersion which is characterized by an
out-of-phase component of permittivity. 1In this transition
region of dispersion,'since this permittivity component is in
phase with any possible real conductivity component, it is
often called the absorption condhctivity. This dispersion
imposes a decrease on the real component of permittivity from

e to ¢ .
4 <

It is worth noting the model symmetry of permittivity
function of log-frequency about about log wt=0. Actually
measured components also possess such symmetry. Separating the
real and imaginary components in equation 3-1-9, the real

component becomes:
€~ = (&-€o0) /[ #lwt)*] 3-1-11
and the imaginary component,

=€, - ey WT [T+ lwt)] - ~ 3-1-12

The phase angle of the complex-valued permittivity is:

3. tan ¢ ltad | (Corbad W 1 3-1-13
¢ ot yZ  Qetwry)

where
\l
Ty = teo 'LT,
* (..._3

Maximum loss occurs at frequency at w = where the

L
T
dielectric components are
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3 3-1-14
2

e”: fonoe | - 3-1-15
z .

The most rapid variation of the absorption and dispersion
curves occurs in the two decades of wt centered about &%um=ﬂ.

This range is called the dispersion range (see Figure 3).

The relaxation time < requires further consideration.

Rewriting equation 3~1-10,

a -
T = .811(\0( /O_VT N 3-1-19

Here, n is the viscosity; one therefore should expect the range.
dispersion to occur at lower frequencies for more viscous
liquids. These dependenéies have been found in many cases
(i.e. glycerine, glycols) which are extremely viscous at‘low'
temperatures. Experimentally n_ shows an exponential dependen-
ce of the form of e B/KT 5p temperature, thus the relaxation
time © will increase even faster with decreasing temperature

since it is proportional to

Tee B/KT k7 .

The molecular explanation of the temperature dependence is that
the relative influence of the molecular interaction energy
decreases with respect to that of the thermal energy when the
temperature increases. The relaxation time is also proportio-
nal to the volume of the molecules, so that for larger

molecules the dispersion occurs at lower frequencies. In addi-
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tion to 7 ,¢, also decreases with temperature; also, ¢ _is to

a minor extent, temperature dependent,

Changing the temperature displaces the profiles of the
€and & curves but their general form is preserved on the

frequency axis.

In equation 3-1-19, the molecules are considered to be
spherical while, more generally, Cole and Cole (1941) suggest
thét they are ellipsoidal. ‘Thus, instead of a single relaxa-
tion time, three must be conéidered, one for each of the axial

ratios of the ellipsoid. Consequently the term
l

14 AT

should be replaced by

3 ) .
g — 3-1-16
K=l i-l'twrk .

3.1.5 FOURIER TRANSFORMATION OF THE DEBYE DISPERSION MODEL

The Fourier transform of the permittivity function of

" frequency described by Debye's dispersion model is
[~ =4
o A4lwT w .

The first term on the right side of this equation is a constant
and its Fourier transform is a scaled Dirac delta function.

Thus;
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o b .

LoAx e

e(t)= € §(t) + &=f= ' e - dx 3-1-18
T Lo Vay?

where X = WT .

The imaginary part in this integral 1is odd with respect to x
.' : ' ,
and its integral reduces to zero. The real part is even and
(=) E .
! T 4 ‘+X2

Integrating equation 3-1-19 obtains

Eo-€ e
e(t)= . 2(t) + Lozt o t>=g 3-1-20a

Thus, the time-~domain measure of the permittivity is entirely
real as required and is simply an exponentially decreasing

function of time. For negative times, causality requires that

e(t) = 90 t<g 3-1-206b
oo

In addition ‘j [e(tﬂ~ dt = € must be finite for stability.
o

We shall now verify the physical realizability of the Debye
models; the real and imaginary components of ( ) must be

Hilbert transform pairs:
é(- { e V. |
) —€e 2 v[) \?—L{wl dv 3-1-21
and
© ]:é,/(\?) —-6aoj Wway
VRl

This is easily verified, for equation 3-1-21

é,” (w) -

)
6., (w) - €™ Eo-Car v \)QAQ
2 5 L\I'A"+(\+w’€)?’2+ 03:)'[2]
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1
where ~N-NT.

This integral in this equation can be found in standard tables

(Abramowitz and Stegun, 1968):

oo P8
\} NTdv oo

[ (W (8024 182 | +uwRrt?
and thus, '

~-&_’(U~)\»&.w: €co-€co
(+L§t?

3.1.6 RELAXATION AND RESONANCE

Electrical responses can be classified as a "resonance
phenomenon® or "relaxation phenomenon®™ according to whether or
not the time domain response functionAoscillates or smoothly
decays toward some assymptotic value. 1In the range of frequen-
~cies of our interest, the Debye model responses are purely
relaxational, However all real materials appear to show reso-
nances at sufficiently high frequencies. Invcondensed matter
the lowest resonant frequencies are in the infrared range (lﬂ13
Hz.), where lattice and molecular vibrations start to take
place. For water, relaxation occurs roughly between 3 and 300
GHz and the atomic rotational and vibrational polarization is

between 1 and 108 THz.
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3.1.7 DISTRIBUTION OF RELAXATION TIMES

Equation 3-1-9 describes Debye's dielectric dispersion
model in polar molecules. This equation, in a very few cases,
appears to describe real dielectricity. Most dielectric mate-
rials deviate from Debye's model although they show similar
general behavior and symmetry. Usually their dispersion pro-
file is flatter and extends over a much wider range of frequen-
cies, while the absorption curve 1is broader and with a smaller

maximum value.

The reason for this deviation is that the Debye model is
too simple and considers only a single relaxation time. That
is, all molecules in the substance are assumed to be spherical
and identical. In real materials, the local conditions on each
molecule are, however, strongly variable: the magnitude of the
interaction forces, directing forces, thermal influences all
change from place to place and time to time and consequently
every dipole possesses a particular relaxation time. Hence,
instead of a single relaxation time, we must describea distri-
bution of relaxation times centered about some most probable

value, The term

}

| 44wt

in Debye's simple model must be replaced by

Oo
J &iodx 3-1-22
°  ladut
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where G( ) is a normalized distribution function} that is,
w .
\l é('t«)d'c - J‘ . 3-1-23

This extended dispersion model is described by the form

() = €t (o e}m)j Gvdr 3-1-24
4yt | |

with the real component

el - (eo-t =y Tam dt .

a
L wt)”
and imaginary component
(=0
e'(w) = (Eo-€w) | GLT) WL dT
|4 (osey?

The theory of distributed relaxation times was first
described by von Schweidler (1913), but he did not obtain an
equation for G(r). If we consider that an infinite number of
causes disturb the original relaxation time‘%, it would be a
good assumption to consider a Gaussian probability distribu-

tion form for G(z).
N2 -
Geoydr - 2 e Ay 3-1-25
yu

where y=1n t/t
N o

Here b determines the width of the distribution and E>is the
most probable value for the relaxation time..

Kirkwood and Fuoss (1941) suggested another distribution

function for G(C):

G(Ty=3 (eshyr \)J 3-1-26
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which closely fits the experimental obtained dispersion curves

for many real materials. ¢’ should then be represented as

e(w) = e"'m Lech Y‘i% £a wr, ) ' 3-1-27

where % is a free paraheter for selection: |
fF=l results a system with a single relaxation time while F>=ﬂ
represents”infinitely wide distribution of relaxation times.
Another empirical formula for dielectric dispersion was

suggested by Cole and Cole (1941):
% \ VS
(W) €= (Go-&) /L1 rhwT) | - 3-1-28

This function is also symmetrical about 1ln wt=1 ( This
property will be discussed in more detail 1ater). An
interesting property of the Cole-Cole model is that it
satisfies many experimental resﬁlts and is'in good agreement
with the Kirkwood and Fuoss (1941) dispersion if the relation
between paraﬁeters

bz

2 cos v,

3-1-29

It has the major advantage of being a much simpler representa-
tion and free of integrals. Its disadvantage is that no
physical theory has been suggested which determines the

parameter % .

Qualitatively, in concentrated solutions, we would expect

a broadening of the distribution and lowering of‘sﬁ, because

coupling of any sort between the molecules would superimpose
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another set of relaxation times on those characteristic of
individual molecules. In the case of a very wide distribution
of relaxation, times (mica, ceramic, glasses), howéver, the
Cole~-Cole equation (3-1-28) becomes rather innacurate and the

Kirkwood-Fuoss relationship should be used instead.

3.1.8 COLE-COLE DISPERSION MODEL

The Cole and Cole (1941) dispersion equation 3-1-28

€y -€p = (€ame ) /T L4 C"Umw] 3-1-28

is commonly preferred in the current geophysical literature in
describing dielectrics and especially conductivity propérties

by analogy ( Pelton et al., 1978). Here,

t = the most probable relaxation time.

. « = the distribution parameter which is a measure of distri-

bution of the relaxation times.
Necessarily, gLec L 1,

X=g reduces equation 3-1-28 to the Debye equation with a
single relaxation time while the 1imit k=1 is physically non-
realizable because it imposes J=ﬂ. Approaching the & = 1,
limit produces very wide dispersions nearly independent of
frequency (with a time domain response, proportional to the

logarithm of time).
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As their basis for description of their dielectric disper-
sion model, Cole and Cole chose to use the Argand diagram in
complex plane, in which the imaginary component is plotted
versus the real compoﬁent. Each point characterizes a single
frequency; the locué of points describes basic properties of
the empirical model. The Argand locus for Debye's model is

representéd by a semicircle with its center on the real axis at

the point ei£é¢’ (see Fig. 4). This locus of points can be

represented by the following vectorial sum:

BN
\J

> :
U\ = & € : | 3-1-29

which is the equation of a circle with
> > .
U =€ €, U= dwt(€-€) 3-1-39
Measurments made for real materials do not fit the Debye
semicircle. Rather they form a locus of points in a circular
arc (particularly at lower temperatures) having its center
below the real axis. From Figure 5, we can see that the angle

" (1-=x)n/2 is independent of the frequency. It follows then that

- ~{( - YN '
u+3’=ﬁ{4+¥(w\e ) IQ]=€0-€Q:; ’ 3-1-31

where f(m) is a real undetermined function of frequency and
other parameters. Substituting from 3-1-30

*

€€y =( eo-—éw\/\'_hf(w) e’((‘"oq hlﬁ] 3-1-32

since
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Figure 4. (From Alvarez, 1973).
Argand diagram of the Debye model.

METHYL ALCOHOL -
rzo

& 0.4 CMe

SLEVOOT O BAZ X3 0IRARD +
Complex dielectric constants of water and alcohols.

Figufe 5. (From Cole and Cole, 1941).
Argand diagram of the Cole-Cole model
for four substances.
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A (1=0) Ty L (=)
e = A >

e*(w)- € = (ep-em3/ti+fcw)i("”].

Also, since the compléx form of g is a result of

considering an appiied field of the form

in which i and w show identical exponential dependence, the
dependence of £ (w) on frequency can be considered to have the
form  1-%, This follows from the fact that any theory in
which ¢» appears as a result of linear operations on the com-
Plex exponential will lead to the same dependence on the unit

imaginary i, as on w.
] , \~ol
Ew) e = (- )/ L+ Chwr) "] 3-1-28

The real and imaginary components of 3-1-28 are respectively:

é’(w) -€__ = (eo-cw>[1—\- CwT)‘—d S ““/2]/2\ 3-1-33
€Wy = Cho-ep)(wt) ™ wexmy, /) 3-1-34
where

(—ol . 2 (|~
A= [+ Qlwr) é\vx,o(r(/z + Cw_‘_)é— )

Without any loss of generality we can require in the following

conditions

€ (w<d) = &' (wyo) 3-1-36
and

e'(w<e) =~ €¢wye)
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so that the causality restriction (equation 2-1-26) will be
respected. The maximum dispersion occurs at wm=l/r where

L]

€ =_|7: (€,-€,) tan [ (=AW, T, 3-1-37

m

The condition of the Hilbert transformation, requires that e or
¢ are uniquely determined by the knowledge of the other compo-

nent. This has been verified by Kramers (Cole and Cole, 1941):

e_(b_\) ~e_ T M VAY
‘ 21 Vi - A } v
and 3-1-38
, : e,'m_e A '
e’(@ _._.J L . w]bl 3
° Yoot
Because of technical difficulties in obtaining measure-

ments for real material%é/andefare only determined near the
low or high frequency limits. HoweQer, since € and €” are
uniquely determined by the knowledge of the other, it is possi-
ble to interpolate the known data to form an arc locus‘and
determine the parameters of an equivalent homogeneous dielec-

tric model.

TABLE 2
SUBSTANCE BIEZEEEQIE'ESQEEESE"Z
Quartz 4.5 - 4.7
Calcite 7 - 8
Gas 1
0il 2,2
Water 89
Shale 13 - 15

D e e et e e s g o = . S ———— S — o — v ot .
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3.1.9 TRANSIENT COLE-COLE PERMITTIVITY MODEL

The Fourier transform of the Cole-Cole equation is

~— R [ 4
ey e Sy 4 (e ey F [ a4y () S 3-1-39
1 . . .
The term -———, will have a Fourier transform which
[+ ({wT)

will show much slower than exponential decay of the Debye

equation where . was equal to zero. To derive the time

’

domain response of this term followihg Jain (1981), let us for

convenience temporarily absorb into :
.4 1o
H(w)" . |O( 3146
|+ (AWTYT

We know that H(w) is the Fourier transform of the impulse

response h(t). If we rearrange 3-1-40

H(w) 4 (do)  Hw)=4. 3-1-41

If a= # the time domain Fourier transform of the above would be

hek) +2 h(k) = SE) 3-1-42
ot :
and obviously likewise Debye's equation, the response would be
t/
-t
h(t)y= e . 3-1-43
1 - '
If we denote the fractional derivative by'-E_l for a>0 we would
>t
have
%Lu
hty s 2 wik) V¢S S 3-1-
3-1-44
'

Using the property that
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c x k-¢ ’
D) £ £ 3-1-45

REE TC)  [eivk=c)

where is the gamma-function, we would obtain the form for

h(t) as
& nyt U= =L
Y= -y B 3-1-46
n-t C¢n-nk)
Then the equivalent unit step function response would be
Yo nel . net-o)
oy - Z 0 & 3-1-47
A=t [Cn-nert)

Returning to equation 3-1-39, the Fourier transform of the

Cole-Cole model will then obtain

P N+l nC\~el)
eld) =e_BG) +(e,-e,)T V) th . 3-1-48
T nane+)

We require that e(t) be finite when t —a. For t/r <=1, the
above equation is finite, but for t/, >1, in order to keep the

transient e(t) finite we must replace

b oy N (i-o)
e : (Lo-b) L 0 G Eye 3-1-49
n=i
T -n+nx)

so that the series will converge. The above discussion holds
for reversible absorption but does not take into account the

effect of irreversible Joule conductivity (Jain, 1981).

From Figure 6 it is apparent that for t>=T the transient

permittivity decreases to less than half its initial value.
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Figure 6. (From Jain, 1981). Decau voltage versus t/p for various %T/p.



3.1.18 COLE-DAVIDSON DISPERSION MODEL

R. Cole and Davidson (1951), observed a non—Symmetric
behavior in some substances like glycerol, propylene glycol and
few others. They developed the following empirical formula to

fit their dispersion curves.

€_e_ = (¢o¥éz)/(\*iwt) 3-1-58

oo

chgL

where now B is a measure of skewness

*
The real and imaginary components of the complex permittivitye

are then .
e, = (&-6&) (o8 C\’f cospe 3-1-51
" s (6-€) oS 4’)% sk 3-1-52
where tan ¢ = wr

This model is not symmetric about lnwr= # but consists of
contributions that diminish in importance as the frequency

increases, producing smaller values of ¢’ toward higher frequen-

cies in comparision with Debye's model.
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3.1.11 MAXWELL~-WAGNER EFFECT

In addition to the polarization in dielectrics as discus-
sed previously, there is another polarizaton rising in
a heterogeneous material from the accumulaton of charges due to
differences in mobility between anions and cations in adjacent
zones. At the interfaces, a membrane polarization arises.
Physical descriptions of polarization usually omit this pheno-
menon since it is of little fundamental interest. However in
geophysical measurements in geological conditions, it is of

considerable practical interest.

Maxwell-Wagner (Alvarez, 1973) described the charge built
up at the microscopic interface of two media differing inv
conductivity and/or dielectric permittivity. This Maxwell-
Wagner polarization is then due to concentration gradients that
develop at zone boundaries in response to current flow. Their
-theory considers spherical particles with constant parameters
ei and<z uniformly distributed in a medium with constant para-
meters e.and g to arrive at a relaxatioh spectrum with a single

relaxation time. In the frequency domain:

To -VEe®) . Veey+e VB - p 3-1-53
and |
V. oV (ad) = Vo) ao¥de s 3-1-54
so that
Awp = T ‘_—(iwe) * VLV(é/VS .E(mﬂ] 3-1-55

and for =0
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pe) s T | Ve /q) B - 3-1-56
Consequenly if € and ¥ vary as a function of position, V (&/¢)
will be non-zero and as a result there can be a concentration
of charges at the microscopic interface. The term V(&/g) gives
then rise to the Maxwell-Wagner effect which produces an addi-

tonal dispersion of the system.

3.2.1 CONDUCTIVITY

Conductive materials are characterized by the abundance of
contained free charges. Under the application of any external
electric field E, the free charges will flow along the field
lines producing a current density J, which is a function of the

applied field:

mi

J =4 (7,E) 3-2-1

Recalling the discussion of linearity at low field levels, iso-
tropy and homogeneity, we expect a linear relationship between
the current density J and the field strength E, scaled by a

complex conductivity o¥*.

- -
J= ¢*. E 3-2-2
J = current density (Amp/m2)
v = conductivity in S/m
» A
= 7(w, T)
():‘= Tl.q—z{ W"

55



In the simplest situation the conductivity is a constant
scalar and, in particular, for a material like air where the
conductivity is approximately zero,

Jair =0 . | 3-2-4

However in general like permittivity, conductivity is also
a complex tensor, dependent on frequency, temperature, location

and pressure,

0 3.2.2 THERMAL DEPENDENCE OF CONDUCTIVITY

To deal with the temperature dependence, let us rather

consider the inverse of conductivity, the resistivity.

S

ﬁf’g} .3_2—5

p= r)’_t(‘f”

p; V, [l " 3*2_6
T ol P op 3-2-7

The electrical resistivity of conductors is dominated at room
temperature by the collision of conduction electrons with
lattice phonons and at very low temperatures by collision with
impurity atoms and mechanical imperfections in the lattice.
The net resistivity is given by Mathieson's rule (Kittel,

1958) .
p= P1+ Py 3-2-8

where P1 is the thermal resistivity, and pj 1s independent of

temperature and due to the atomic structure of the matter. The

electrical conductivity is not a simple matter to deal'with
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because of its complex dependence on many parameters. However,

Kittel shows that P can be represented by the empirical

function
P, % (T/MEY) F (T/8p)

where f approaches unity at high temperatures and is proportional

to (T/OR)4 at very low temperatures.
Above,

M is the atomic mass,
%the Debye temperature and

T, the absolute temperature.

. . 2
The proportionality ofpy yjth T/MSRat high temperature
follows because the electron-phonon scattering is proportional

to the mean square thermal strain. Additional discussion of

the dependence of resistivity on temperature is beyond the

scope of this thesis, but has been discussed by Kittel (1958).

Very dgenerally, we expect resistivity to be approximately
linear in temperature, in the range of temperatures of our

interest, so that
P = Pi+ THMp 3-2-9

Some curves of thermal conductivity as function of
absolute temperature, are shown below (Fig. 7). The behavior
of these particular elements with respect to temperature is
closely related to their atomic crystalline structure but this

is not the interest of this work. Henceforth, we will

constrain the temperature to a constant,
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3.2.3 TIME DOMAIN CONDUCTIVITY AND RESISTIVITY

In good conductors the property practically measured is
their resistivity, while in poor conductors conductivity is
practically measured. The logical foundation of linear respon-
se theory is the principle of superposition, which is expressed
by the following expression in which conductivity relates an
imposed electric field to the resulting current density within

the medium:
- o
_j(*) i/ Aty e (d-1) de. 3-2-19

In a parallel description material resistivity relates an
electric field due to current-density generation:

-_p o .
e (1) =_f rek) J(k-1) at. 3-2-11

o
Above, s(t) and r(t) are the real conductivity and resistivity
impulse response functions. According to the causality

restriction we require

s(t) = r(t) =0 for t<g 3-2-12
Note then that

s(t) # r(t)-1 for t<g.

These respective functions describe the response ?(t) and
Z(t) due to a short impulse in 3(t) and E(t). For their
equivalent step responses, we would obtain

L
Q0”=¢f 7 (1) dt 3-2-13
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t
c&hj stt) 41T
where R(t) and C(t) are the output waveforms of 3(t) and
| g(t) due to an input unit step ?(t) and g(t). We define the
Fourier transforms of s(t) and r(t) by:
‘ot
~ 10D
(W) = f ) e Ak

s <t 3-2-14
o) s [Ty e et

and equivalently
<t

e
6&):‘/N 0 w) e dw

A " _ N
@)JZ & () ¢ dw : 3-2-15

In the latter pair, the path of integration is along the
real w-axis. If <* and p* have singularities for any real w,
the path of integration is properly displaced infinitesimally

in the positive imaginary direction.

The two components of ff(m) contributing to the line
integral are those associated with the semicircle path at
infinity and the path enclosing th negative imaginary axis .
The second contribution depends only upon the difference
between the values taken by the integrand on the two sides of
the real w-axis. The decay spectrum are defined by the diffe-

rence ( Shuey and Johnson, 1973):

P (~Autal) - p (-Aw =o)

A (w) = 3-2-16
v AT
and equivalently for «(w)
-4t ) = - AW~
A (w) = Tl - T o) 3-2-17

Q2T
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In addition, if we consider that both F(W and t(w) are
finite at w— oo which is a realizability requirement, the

decomposed impulse responses become

oo vt
() = P g&.} +~L A((k) e Ak

ket —2-
st = G W) _JOQ A (k) e dk 3-2-18

where A, and A, are real resistivity and conductivity decay
spectra. The resistivity and conductivity responses in terms

of Ay and A, are obtained by the use of the Cauchy integral

theorem:
[~ &
PLw) = ?De-';(‘fo Arﬁ\'idk 5 3-2-19
wi<
Tlw) ‘Tw-'ﬁj Acékl"“‘ . | 3-2-20
e Wt

The step response in terms of the decay spectra are

also obtained by integration of 3-2-18:

kb
REY = Py 4_/: (t-e ) A, dk/

o -kt 3-2-21
Clk) - vw_j’% (Vo€ ) A Ak
or in terms of Po and Ug
-kt
0o
REt) - fo—J_% € Ardk/k
3-2-22

CH’) s vo *‘/‘: E\tt AC dk/k
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3.2.4 THE DEBYE MODEL

For a single decay time, the Debye model is described in

frequency domain by the form

puw) = p 4 forfe 3-2-23

which has one pole at w=-2 . The resistivity decay spectrum
T

becomes

Y

R A
T

and the voltage response to a unit current step (see figure 9),

Q(i*) £ ?o - Lro- ﬁ:o) GXF (._t/t) *

3.2.5 COLE-COLE RESISTIVITY MODEL

Until now, permittivity andvresistivity ( or conductivity)
have been discussed in parallel formalism and have been shown
to posses similar behavior. Thus, it should be useful to
consider a Cole~-Cole resistivity modé& of dispersion. This
model was introduced into the geophysical literature by Pelton

et al. (1978). The reason they have suggested this model is

that it comprises two additional parameters which may well

provide a means for recognition of the mineralization by use of

high-frequency resistivity (or induced polarization) geophysi-

cal surveys. In addition, this simple model has been found to
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fit a large variety of laboratory complex measurements of
resistivity (Madden and Cantwell, 1967 and Pelton et al.,

1978) .

A mineralized rock sample having both blocked and unbloc-
ked pore passages (Fig. 10 ) can be simulated by the circuit
of Figure 11. The complex frequency dependent impedance of this
circuit is

2ww): Re| lt-wm (1= -2-
w): Ro[ 1-m |+wt)°ﬂ 3-2-29

where m is the chargeability:

|
m= E::‘ 3-2-30

Ro is the unblocked pore path resistance,

R, is the resistance of the solution in blocked passages,

¢ is the degree of frequency dependence of the impedance
P<=cK=1

T is the relaxation time.

With some manipulation we can rewrite equation 3-2-29:

(o) -2 = Re-Zeo 3-2-31
Ve (Aust)e
where
-1
-z_w:. (—Ié‘:* JE-.>

Equation 3-2-31 is the Cole-Cole dispersion equation as common-
ly presented in the geophysical literature. At very 1low

frequencies the current flows through unblocked pore passages,

and the assymptotic value of the impedance will be Ry. At very

high frequencies the flow is through both blocked and unblocked

passages in parallel and the impedance assymptote becomes Zao'
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Figure 10. (From Pelton et al., 1976). Small section

of mineralized rock with both blocked and unblocked po-
re passages.
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Equivalant Circuit

Figure 11. (From Pelton et al., 1976). The equivalent
circuit of the above.
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Among the mineralizations to which the Cole-Cole resisti-
vityvmodel hasvbeen fitted is the Lornex Porphyry Cobper
deposit in Highland Valley British Colombia (Fig. 12) for which
the following parametefs have been determined in interpretation

of broad-band, high-frequency induced polarization survey data

R, = [26.010.9Q Om
Z = 680Xl.2 2m

-4
T = (4.0r0.6>x1\0
c = ©0.46% 0.006

In another.case of dry porphyry from Copper‘Cities
deposits, Arizona, in addition to the normal dispersion, a
second dispersion appears at higher frequehcies, which isvpos—
sibly due to membrane polarization. The dispersion curve has
been fitted by 2 Cole-Cole terms. 1In addition to the above,
there is a high frequencies inductive coupling due to the
common dipole-dipole configuration used in the Induced polari-
zétion survey method. Millett (1967) dives complete tables for
this inductive electromagnetic coupling and thus it can be

reduced from the raw dispersion.

Obviously, the cole-cole model is simple. The dominant
mechanism controlling the current passage through blocked pas-
sages is diffusion. 1In natural rocks, many different pore
passages blocked by different minerals having different grain
sizes occur. The result of this is a broad dispersion with a

slight frequency dependence. Despite weaknesses, the model
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phase angle spectra and their equivalent Cole-

Cole equations.

a7



slight frequency dependence. Despite weaknesses, the model
fits a large variety of laboratory samples and in-situ

measurements.

3.2.6 TIME DOMAIN EQUIVALENT RESPONSEOF COLE-COLE
RESISTIVITY MODEL

If the frequency dependent exponent ¢ =1, the time domain

decay has the familiar negative exponential form,

i/
T
V(t)= mﬂf e 3-2-31

where, now, I is the chargeability current.

But, if ¢ < 1, the decay will be slower than exponential,
Proceeding in the same way as for dielectric permittivity, we

can determine the step decay for resistivity to have the form:

& ¢
V(t)=mR L &V ) t/ <=27
I nze T (tang)
§ ' 3-2-32
vit)=me ¥ 0™ (o™ /752w

———

Fv=-nd)

Ny

See Figure 13.

3.2.7 COLE-DAVIDSON RESISTIVITY MODEL

Madden and Marshall (1959) developed a theoretical model
for membrane polarization. Their model describes clay-bearing

sandstone and comprises of a series combination of zones. Zone
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1 contains pore fluid uninfluenced by clay while the pore fluid
in zone 2 is in near proximity to clay patticles so that when
_current is passed through zone 2 it is predominantly carried by
transport of cations rather than anions. Upon lineariéing the
appropriate equations of motion and matching boundary condi-
tions between zones, Madden and Marshall derive a rather
complicated expression for the impedance combinations of zones, .
R ‘
Zw): =0 [ L +B 4 -(—“;3:;‘) L’ﬁlﬂ“‘_?ﬂ'\l"l
¢ RF U6 And, Vi 66, “anx, Bienx,

Klein and Sill (1982) have shown that the Cole-Davidson
distribution provides a close fit to the Madden-Marshall model
while reducing number of parameters required so that it offers
a more practical tool for characterizing clay's EM response.
They have fitted the Cole-Davidson parameters by inversion,bfor
an artificially produced sample of clay-glass bead mixtures of

varying size and pore solution conductivity. they descibe

1

Z(w) = Ry [ 1-m ( 1- ) 3-2-33
CC 1+ tiwTy )X
where
R_ = background resistivity, ! '
Ry
m = 1-R_/R, chargeability, ©
1 = time constant,
and
R = high frequency asymptote.

Madden and Marshall's description suggests that p would provide
information of the clay occurence and texture while the char-

geability m should depend upon the amount of clay present in
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isolated zones. Clay particles providing a continuous path for

surface conduction would be expected to decrease R but have

ol

no effect on m (see Figure 14).

If membrane polarizaton could be completely characterized
by a diffusion-like process, we would expect more symmetrical
phase peaks with the parameter ¢ close to 1, but for the

artificial samples :
.5<eKl.

also most values of &« were less than #.5. These results
suggest that essential membrane polarization effects can be

empirically described by the generalized Cole-Davidson model.

Klein and Sill (1982) show that increasing grain size

shifts the relaxation toward lower frequencies (Fig. 15).
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3.3.1 MAGNETIC INDUCTION

An external magnetic field H applied to a medium will

ext’

align the internal magnetic poles of the body and thus produce
a secondary polarization field M. This quantity is commohly
known as the magnetization and increases the total field within
most materials. The sum of the external field and magnetiza-
tion scaled by the free space permeability determines the

magnetic induction B,
B=TL (LL” +M) 3-3-1

where P ‘“1“64 H/m is the magnetic permeability of free space

especially, in free space, M=f and 3-3-1 reduces to

B= YoLQx4 3-3-2
Equation 3-3-1 can be rewritten,

B= v, Heed Cl+Xm) 3-3-3

where now, Y n is the magnetic susceptibility, a dimensionless
quantity. By definition, the ratio of the magnetic induction to

the applied field is called the magnetic permeability,

§= v %) | 3-3-4

All known materials exhibit a non-zero magnetic suscepti-

bility. For most (paramagnetic) materials the magnitude of
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susceptibility is small and of positive sign, for some
(diamagnetic) materials, it is small and of negative sign. The
most common materials which are colloquially regarded as the
"magnetic" ones are properly ferromagnetic and ﬁay show
relative large values of positive susceptibility. The most
common of the ferromagnetic minerals.are the oxides fo iron
(certain ones), nickel and titanium. Furthef explaﬁation of

the common magnetic conditions follows:

Diamagnetism: Diamagnetic materials contain no permanent
magnetic dipoles, but dipoles can be induces by an external
field. The field of the dipoles opposes the external field and

is negative,
x <9 3-3-5
m

Paramagnetism: Paramagnetism occurs in substances which
contain permanent magnetic dipoles. Paramagnetism occurs when
~an external magnetic field lines up the permanent dipoles in
oppositionto their thermal agitation. For thes group of mate-

rials,
Xp>? | | 3-3-6

Ferromagnetism: In ferromagnetics materials, quantum
mechanical effects cause the magﬁétic moments of many electrons
to align with each other even in the absence of an external
field. Typically,

3-3-7

XF >XP
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also is a function of the external field and past history

of magnetization.

Antiferromagnetism: Some substances which contain magnetic
ions are not substantially magnetized since every oriented spin
couples with an antiparallel spin in a nearby atom so that the

net result is zero. Hematite is an example of such a material., -

3.3.2 MAGNETIC HYSTERESIS EFFECT

Let us allow that the magnetization, M, 1is a general'
polynimial function of the applied field. A Maclaurin's series
expansion of M, in the applied field obtains

2 3
M = A H + A H + A H+.oo.-o. 3-3—8
' 2 3
where A. are coefficients.

Since we are dealing with low fields in geophysics, the

third and higher order terms are often negligible, and thus:
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M A H+ AzH _ 3-3-9
|} .

This is known as Lord Rayleigh's relationship.

Magnetic materialx may be classed as follows:
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A - Soft magnetic materials which show linear effects with

the applied field for which A, 1is negligible.

B - Hard magnetic materials that are non-linear with the
applied field A, # 0 and possessing a memory of its past magne-

tization.

To describe the intrinsic magnetic hardness of a ferromagnetic
material, it is sufficient to introduce the coercive force Hg
and the remanent coercive force M., Figure 16 shows the clas-
sical hysteresis loop in which r(H) is the tangent to the curve
at each particular point, and depends upon the applied field.
The degreevof hysteresis is determined by the area enclosed by
the loop. For soft magnetic materials, the hysteresis 1oop
encloses essentially no area. The form of the hysterisis loop

is dependent upon mineral grain-size, composition and shape.

For both hard and soft mégnetic materials the magnetiza-
tion tends to a saturation asymptote at very high fields.
Saturation requires all dipoles to be magnetized in the
direction of the external field so that further magnetization

is not possible.
In general equation 3-3-10¢ can be written in the form,
- ¥ -
B = ‘T\- (LO,H) « H 3-3-11

but fo the soft magnetic materials which are the basic

interest, here, equation 3-3-11 simplifies and
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- —
B = ;(w) . H . : 3-3-12

Fourier transformation of this obtains the time domain equiva-

lent form:

-l

b(t) = m (t). ;(t,‘r) . 3-3-13

3.3.3 TEMPERATURE DEPENDENCE OF MAGNETIZATION

All materials are to some extent magnetic in presence of
an external field, but ferromagnetic materials can become per-
manently magnetized through acquiring an ordering energy.
Thermal vibrations tend to disorder this magnetization. As
long as the ordering energy is larger than the thermal vibra-
tion energy the materials maintains ferromagnetic characteri-
sics but when the thermal energy dominates, the material loses
its magnetic properties. The limiting temperature for perma-

nent magnetization is the Curie temperature,

Te = YoMk | 3-3-14

where k is Boltzmann's Constant 1.38x10~6 erg/Ok.

A characteristic curve of ferromagnetic temperature depen-

dence is shown in Figure 17.
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Figure 16.
loop.
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Figure 17. (After Strangway,
1967). Curve of magnetization
versus temperature.
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3.3.4 MAGNETIC LOSSES

Neel's (1955) model of non-interacting single-domain par-
ticles has been used in the descripti&n of the magnetization of
lunar paricles. The magnetic behavior of lunar samples is
dominated by metallic iron grains, a large fraction of which
are smaller than 308 R in diameter and essentially of single-
domain., In addition, the low iron content (@.01% to 8.5% by
weight) isolates the particles. Consider a sample of Nt non-
interacting single-domain iron particles of volume v, suspended
in a material of magnetic permeability of Po. When a field is
applied, thermal interaction will cause N particles to reorient
themselves so that there is a net magnetization m parallel to
the direction of the applied field. The rate of change of the

net magnetization of the N particles is:

dm - o _m 3-3-15
dt T T

where
d'—Js V/kT

js is the saturation magnetization,
h is the applied magnetic field,

T is the absolute temperature,

k is Boltzmann's constant and

T is the time constant of the system of N particles.

For an applied sinusoidally-varying magnetic field

82



h(t) = b, elwt 3-3-16
resulting in magnetization

m(t) = m elwt 3-3-17

the total magnetization as a function of the applied field in

frequency domain is

(—L—) g 3-3-18
+4wt

(o)
(1)

The ratio my/h, is complex magnetic susceptibility

- o LY. _3-
Yo © 5 (= )5 3-3-19

the time constant t is determined by the shape and size of the
magnetic grains. 1In real materials, particles possess diffe-
rent shapes and sizes which produce a distribution of relaxa-

tion time constants.

Recalling the similarity between the Kirkwood-Fuoss distribu-
tion of relaxation times in dielectrics and the Cole-Cole
model, we can recognize its analogy to the following magnetic
relaxation model suggested by Olhoeft and Strangway (1974),

which also possesses the Cole-Cole behavior.

3.3.5 COLE-COLE MAGNETIC RELAXATION

Magnetic minerals show a measurable magnetic lossiness
through various mechanisms. This effect has been measured by

Olhoeft and Strangway (1974) in the range of 125 to 4088 Hz.
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Magnetic losses can cause distinct but small changes in the

electromagnetic response of a medium.

The effect can be detec-

ted provided the peak magnetic loss is of lower frequency than

the electric and dielectric losses.

Olhoeft and Strangway (1974) suggested that a Cole-Cole

dispersion with a broad distribution magnetic relaxation times

well fitted their data.

be described

The complex magnetic permeability can

T Ve T +(»('u.5'\')°lJ

X ! o
PEr-y
where
s O30
and
] Y
v P
so that
X YS-YQ
where:
= L !
rw w?:\-)ao
- L\M !
Te o

Since magnetic relaxation is a low frequency effect,

ximation

k?.

holds and the propagation constant has the form

ks fo LA < A 0]

2 oA o'cf"w
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where ," ,”

F~(v¢+v%%-

In the case of negligible conductivity losses

LT Y
k= [0y I CaSH L ) 2 s yeY ] 3-3-23
2
where

St

Figure 18 compares Galt's (1952) data for singlé crystal
magnetics with relaxation curves with = g.67, allowing a
felatively broad distribution of relaxation times. 1In fact,
the distribution is typically broader for magmetic relaxation
than for electrical and dielectric relaxation. Figure 19 shows
the variation of the loss tangent with changing quantities of
magnetite in artificial samples. Experimentally, the magnetic
loss peaks for magnetite in the audio-frequency range neat 350~
1009 Hz independent of geometry. The effect of magnetic dispe-
rsion and absorption, is small in comparision to the equivalent»
eletrical effects and is usuélly insignificant in most
"geophysical materials. Only in highly resistive rocks for .
wgich the electrical losses in thg audio-frequency range are
small does the magnetic loss become an important backgrqund

effect.
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CHAPTER IV

4.1 APPARENT DIELECTRIC PERMITTIVITY AND CONDUCTIVITY

Recall equation 2-2-13 which determines the propagation
constant, Kk, . |
k2 = uszr*é.* - i U*T\*& 4-1-1

Ferromagnetic materials exepted, in general, the magnetic pola-
rization of most materials is so weak that Tﬂ can be replaced
by Yo the permeability of free space, for all practical
purposes. If we now substitude for the real and imaginary

components of permittivity and conductivity, we find,
k2 = wzt,( e+ T/ ) - diypw (o + we’). | 4-1-2
gnd rewriting this equation, we form
k2 = wZ‘ree - i‘(‘wqa 4-1-3

where the subscript e stands for "effective" and defines the

total in-phase and total quadrature components see Figure
20) .
eé(m) = ¢ (w) + T()/w o 4-1-4
T = T+ wel | 4-1-5

The parameters which are actually, or perhaps more properly
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apparently, measured are <, (w) and € (w), (Fuller and Ward,
197@9). Thus the measured conductiviﬁy and permittivity are a
combination of the true parameters. In fact, most substances,
substances in addition to their dielectric properties, have
free moving charges. Upon the application of an electric field
the mechanism of absorption due to the charge transport toward
the electrodes contributes to the dielectric losses. Inspection
of equations 4-1-4 and 4-1~5 leads us to expect large %(w)'s
at low frequencies if &kw)#ﬂ and large % () at high frequen-

cies if e'(w) # 0.

Observations show that in moist rocks, conductivity in-

creases with frequency, but levels off around a "critical"”

frequency (Fuller and Ward, 1970 ). Permittivity, however,
decreases continually with increasing frequency. This is in
agreement with thetabove equations. At very low frequencies,
some rocks show an abnormall'y high permittivity ( e.g. €c=l4
€o for shale with 3.8% pore electrolite by volume, (figureIZG).
These high values are simply due to the w1 factor in equation

4-1-4, and are not in any way the characteristic of the medium.

Some approximations are possible in the following cases:

For "wet" rocks, we can reasonably expect free charge

conduction to be the dominant mechanism. By letting:
’

T(w) D> we”(w) and o G”(u)) >> ‘04-’("-’)

the following approximation will hold:

G, (W) B T (w) | 4-1-6
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Lo 4-1-7

Fuller and Ward's observations for wet rocks show that the
conductivity is a slowly varying function of . 1In 6 orders
of frequency the conductivity seldom exceeds one order of
magnitude (T = 16~1 and 1872 S/m). The dielectric permittivity
is typically inversely proportional to the frequency and can
reach values beyond 187 below 1Hz (see Figure 21). At high

frequencies, though, the dielectric constant assymptotes to

88€y which is the dielectric constant of water.

For "dry" rocks, the opposite approximation holds:

e () >> T(w) /e and  €(w) > T(w)/n

Thus

~

ﬁ'e(w) ) e"(m) 4-1-8

€, () 2 e (W 4-1-9

and

The observed data shows a conductivity approximately proportio-
nal to the frequency (T2 16-6 to 1p-12 8/m) and a dielectric
permittivity decreasing slowly with frequency such that for 6
orders of frequency it varies about one order of magnitude

(Figure 22).,

Complex dielectric permittivity values have been measured
above 20MHz by Poleyet al. Their measurements for sandstones
with 15% porosity showed that for dry samples &' showed small
decrease with frequency while an air-humid sample has an in-
creasing e¢' toward lower frequencies. Salt water saturated

samples also showed an increasing contribution of e¢' with
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frequency up to a c;itical frequency where the curve levels
off. Very high values of e' were found at lower frequencies.
All these measurements are in agreement with the above approxi-
mations but we must not forget that these are approximations
and so must be used carefully. Often, these approximations
have been considered to hold in general, but we shall avoid

this assumption here.

The above discussion applies properly to homogeneous
media., Fuller and Ward's measurements on rock salt has shown
dispersion to be practically absent, and with very low quadra-
ture components which means that it allows an appreciable depth

of field penetration.

4.1.1 INVERSION OF RESISTIVITY

Fitting of real resistivity\data with the effective resis-
- tivity equations 4-1-4, 4-1-5 and the Cole-Cole conductivity
;nd resistivity has been attempted in demonstration of the need
for more complex electromagnetic models. The resistivity data
used here were obtained by Olhoeft (1975), for clay perma-
frost at -27°9C, for which there is a notable decrease of
apparent effective resistivity with frequency ‘in the range of

1¢63Hz to 187Hz. The inversion method used in the following

analysis is the "singular value decomposition" approach.

First, equation 4-1-5 was modelled with constant
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permittivity and conductivity with frequency (see table 3).

The inversion resulted in the following parameters:

T = g.1772E-5 S/m,

e = 4p.35 €, F/m
and

A = g.158.

The e™ value is not realistic and the relative error
measure for the inversion is very large. Next, a Cole-Cole
dielectric permittivity and a constant conductivity model was
considered. The fit was less reliable than that of the first
case above, the reason‘being that the data describe effective
resistivity values and so we cannot expect these data to well
determine the dielectric constant. Next, the same equation was
modelled with a Cole-Cole resistivity and imaginary permittivi-

ty; the results obtained were:

E" = 4301 é«g F/m’
fo = 47.36E+4 2m,
Fx= 50687 le
4~1-11
fo = 2.14E+4 Hz,
= = 9.958
and
& = 9.299E-1.
The error, clearly, has been decreased by almost one order
of magnitude, (see table 3), consequently we have adopted this
latter model instead of the first. We can further improve the

model by considering both Cole-Cole resistivity and permittivi-

ty models. The results are as follows:
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Po = 8.4364E+6 2m €o = 40.35 €4F/m

f_= 5.68 em €,.= 2.67 €4 F/m elo1a
fn = 135.5 Hz £, = 849.7 Hz

ur = gogz Q‘c = golzz

with a relative error,
A = g.21E-2,

one order of magnitude smaller than for the previous case.

See Figure 23.

A similar fitting for the same clay permafrost at -19°C
has also been accomplished using a combined resistivity-permit-

tivity Cole-Cole dispersion models:

Po = 0.2819E+6 om e = 40.35 ¢y F/m
= 7.06 2m Eew = 2.98 €, F/m
oo o 4-1-13
£, = 61.62 Hz f. = 838.4 Hz
>, = §.87 =, =g.122

A = g.l7E-2.

See Figure 24.

Above, we discovered that the Cole-Cole parameters and
especially the relaxation time are frequency dependent and
shift toward lower values with increasing temperature which
accords with these results. Olhoeft's (1975) resistivity data

for ice at -27°C has been fitted with two Cole-Cole dispersion

functions to obtain:

Po = 0.6912E+6 2m €o = 70.32 ¢g F/m



Pas = 2.52 2m €. = 24.70 ey F/m

4-1-20
£, = 2.07 Hz fo = 4645. Hz
%= 0.92 % = 98.122

A = ﬂ.lﬂsE-l.

See Figure 25.

A joint inversion has been performed on two sets of data
after Carmichael (1982), belonging to the effective resistivi-
ty and permittivity of serpentinite at 200°C, (see Figure 26).

The listing of the program is provided in appendix B. The re-

lative error in the data is higher by one otder of magnitude

than the previous fit, that results from using a joint inver-

sion. The fitted parameters of the combined resistivity/per-

mittivity Cole-Cole models are as follows:

P, = 0.4827E+5 €, = 40.56

P> = 0.7590E+3 e = 2.0

o @

£ - 0.2070E+4 £L= 0.200E+3
Y

O" s 0.5—5 Oﬂ.;— 0.95

A = 0.121
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J0

Toble 3.

FREQUENCY
(HZ)

0.2153E+2
~0.4645E+2
0.1000E+3
0.2153E+3
0.4645E+3
0.1000E+4
0.2153E+4
0.4645E+4
0.1000E+5
0.2153E45
0.4645E+5
0.1000E+6
0.2153E+6
0.4645E46
0.1000E+7
0.2153E+7
0.4645E4+7

0.1000E+8
0.2153E+8
0.4645E+8

OBSERVED

RESISTIVITY

oM

0.4642E46
0.4500E+6
0.4472E+6
0.3412E+6
0.2851E+6
0.1875E+6
0.1259E+6
0.7943E+5
0.5012E+5
0.2512E+5
0.1259E+5
0.6310E+4
0.3162E+4
0.1292E+4
0.7055E+3
0.3055E+3
0.9333E+2

0.3428E42
0.1233E+2
0.6580E+1

0

FITTED WITH

TWO COLE-COlE

PARAMETERS
eM
0.4266E46

0.4168E+6
0.3957E+6
0.3545E46
0.2855E46
0.2045E+6
0.1379E+6
0.8799E+5
0.5221E+5
0.2882E+5
0.1401E+5
0.7303E+4
0.3503E+4
0.1642E+4
0.6981E+3
0.2701E+3
0.9520E+2

0.3308E+2
0.1334E+2
0.6339E+1

0.2101E-2

FITTED WITH

COLE-COLE

RESISTIVITY

oM
0.4622E46

0.4498E+6
0.4252E+6
0.3803E+6
0.3096E+6
0.2211E .6
0.1367E+6
0.7470E45
0.3757E4+5
0.1791E+5
0.8207E44
0.3656E+4
0.1593E+4
0.6897E+3
0.3040E+3
0.1384E+3
0.6506E+2

0.3198E+2
0.1672E42
0.6197E+1

0.2986E-1

Observed and fitted resistivity values for various models

FITTED WITH
CONSTANT
AND

aM
0.5494E46

0.5330E+6
0.5C10E+6
0.4435E+6
0.3555E46
0.2492E+46
0.1516E+6
0.8207E+5
0.4134E+5
0.1999E+5
0.9445E +4
0.4428E +4

.0.2066E+4

0.9604E+3
0.4474E+3
0.2088E+3
0.9770E+2

0.4628E+2
0.2240E4+2
0.1614E+2

0.1583E+ O
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Figure 23. Effective resistivity versus frequency for natural
clay permafrost at -270C. (After Olhoeft, 1975). Note that
Olhoeft uses the nomenclature real resistivity where we use ef-
fective resistivity. The field strength is 22v/cm.
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Figure 24. Effective resitivity versus frequency for natural

clay permafrost at -10°0cC. (After Olhoeft, 1975). The field
strength is 22V/cm.
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Figure 25. Effective resitivity versus frequency for natural
ice core, at -27°C. (After Olhoeft, 1975). The field strength
is 22V/cm.
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Figure 26. Fitted and observed effective resistivity and permitti-
vity of serpentinite at 200°C, versus frequency. (After Carmichael,
1982). The above two curves were simultaneously inverted.
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4.2 FORMATION FACTOR

One of the parameters calculated from rock properties is
the so—éalled,formation factor F. At VHF it is determined as (

Sen et al., 1981)

where & is the porosity of the rock,

éais the imaginary part of the complex dieiectric
permittivity of a non-saturated salt-water solution,

é’is the imaginary component of the complex dielectric
permittivity of a salt-water saturated formation,

m 1is the cementation index which varies between 1.3 and

4, and is determined empirically.

At low frequencies, the equivalent measure is

where ¢, is the dc conductivity of water and

T 1is the conductivity.

The similarity of these two equations allows one to

describe a more general, combined equaton for the formation
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factor:

[ W)+ T/l
Le(w) + Tiw/wl,

F = ?—m = 4-2-3

where the subscript (o) stands for the measurement done for the
sample and (w), the measurement for salt-water. Equation 4-2-3

reduces to equation 4-2-1 at VHF and to equation 4-2-2 at LF.
Archie's empirical law is

F ex =M 4-2-4
and depending to the sample studied (see Sen et al.) it has
been suggested to have the forms, ag™m, ae§-¢c)‘m,2«3—=#$z and
also other forms can be encountered in the literature. The
absence of the percolation threshold, ¢, =g, implies that the
fluid phase remains essentially continuolus to very low values
of porosity and that pores are stongly interconnected. 1In
general, the branching nature of the pore space in sedimentaty
rocks is more complex than the simple networks usually assumed
in theoretical models. There have been attempts to obtain
formulae for the relationship between dielectric constants of a
medium and its porosity which involves ellipsoidal particles

and depolarization factors ( ziman, 1979 and Sen et al., 1981).

4.3 DIELECTRIC RESPONSE IN AN HETEROGENEOUS MEDIUM

Real data do not always show simple relaxation curves
(Figure 27). To fit such measurements, more than one Cole-Cole

dispersion must be considered. For example, let us consider a
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Figure 27.Permittivity and resistivity curves versus frequency

do not always show simple Cole-Cole relationships.
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porous rock matrix with permittivity e: and pores filled with
water of permittivity e; . In such heterogeneous situations,
the dielectric behavior of the system can be expected to show
an average dielectric property é; plus a small difference from
the average. In the solid¥state physics of a disordered
system, the exact field is cbmputed in terms of multiple scat-
tering theory in which these difference-~fluctuations from the
average medium are treated as perturbations. The combined
X

dielectric constant € computed from the macroscopic polariza-

tion of the system is found to be ( Webman etal. 1977.)

*

+
ce (1+224, di-¢y Y(1-Z & ei-ca L) 4-3-1
a L e_.‘.)?.é L &1 ZéA
where
#
€ = combined dielectric permittivity,
¥
€a = dielectric permittivity of the equivalent homogeneous
medium,

€ local dielectric permittivity and

5

volume fraction of the ith phase.

For a two-component system with a small concentration x of

. . . *
material 62* imbedded as isolated spheres in €; + We Can
¥

*
chose e.a = g so that:
¥ ¥ +* ¥
6 -é.( = * éz —él 4_3_2
or e¥+26| " 67_ 426l*
et et Lezc|+zx>+7_c. C-wy) 4-3-4

Ee* (1423 + €5 (1 -x)]
This equation was derived by Bottcher (1952) and is called
the "Average t-matrix Approximation®", (ATA). Sen et al., (1981)
suggested a model they have called the "Coherent Potential

Approximation”, (CPA), in which the dielectric permittivity
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of the medium is equal to that of the equivalent homogeneous

* ¥
model ¢ instead of being equal to that of the host rock € -
CPA treats all components symmetrically whereas ATA selects one

as a host rock. Equation 4-3-4 for CPA obtains

*
18 le-€] Lo, 4-3-5
[&5+2¢Y
%

Sen et al.,(l1981) noted that the corrections for ¢
beyond CPA are 4th order in the transition matrix, while for
ATA they are 2nd order. In practice CPA better agrees with
experiments. The model Sen et al.,(1981) deal with describes
large clusters of grains which are individually surrounded by
water in which small separated grains exist. The model
comprises large spheres coated with a water film containing

small spheres (see Sen et al. ,1981 for details). The overall

dielectric permittivity of such materials, is then

X * L .
Em-€ (6‘\._;+)J - J=%YZ 4-3-6
€ -, €

where L is the depolarizing factor associated with the i-axis
along which the field is impressed,

4
€ p 1s the dielectric permittivity of the grains and

+ s . s . -

€ w 1s the dielectric permittivity of water.
The depolarizing factor depends upon the aspect ratio of the
grains and is equal to 1/3 for spherical grains. The dielec-

tric permittivity of the medium can be obtained given mr W

and . For the ATA model the equivalent equation becomes

L #* * [
€w - 6* (&m) == 4-3-7
€h - €m €
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Although these two equations are similar, the former re-

sults in the following limiting cases

. Vs
W —m o W:ﬂ'wn?b' 4-3-8
W o o eoem  (ew)" . 4-3-9
, Ep-elm e
for e « & e ey PpY2 4-3-19

while the latter results in zero DC conductivity.

4.3.1 EXPERIMENTAL RESULTS

Figure 28 shows the low frequency (128 Hz), in-phase
conductivity measurements for artificial rocks saturated with
19., 1, and @#.1 2m NaCl solutions and is in agreement with
equation 4-3-8. The value of drops as low as 2% and we dont

have zero conductivity.

At 1.1 GHz, measurements (figure 29 ) of real and imagi-
nary components of 5 have been obtained for varying porosity.
The agreement with the above mentioned theory is excellent. At
high frequencies, the imaginary component is €<4VZ¢ while the

real remains ¢ since v2u<< e .

4.4 POROSITY, WATER CONTENT AND SALINITY

Poley et al. (1978), Katsube and Collett (1976), Pelton et
al. (1978) carried out measurements of electrical properties of
rocks over a wide range of frequencies. If a substance has a

conductivity, this will mainly determine its electric behavior
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at lower frequencies-but this properties influence will decline
rapidly toward high frequencies and the dielectric prépertiy_
becomes significant beyond 16 KHz. By combining some logging:
data with VHF measurements of rock properties, fluid satura-
tion, porosity, fluid salinity and formation factors might be

deduced.

A series of sandstone and limesﬁone samples with porésity of
6 to 26% were measured by Poley et al (1978) under various
conditions of fluid saturation. These measurements showed that
electrical parameters are strongly porosity dependent with real
and imaginary dielectric permitivitties increasing with increa-
sing porosity, while conductivity decreases‘with porosity

(figure 30).

In water saturated porous formations, such as sandstone
and volcanic rocks, the moisture content greatly affects the
bulk dielectric permittivity since the DC dielectric constant
6f water is 89 €g- Furthgrmoré, also the magnitude of '
" generalyy increases with salinity. At VHF (above 198Hz), the
;eal dielectfic permittivity becomes virtually insensitive to
salinity and thus insensitive to the nature of the water
filling the pores and is dependent only upon thé amount of
water present. This is particularly important in geophysical
mearurement since the water salinity is often unknown due to
fresh water, CO, and chemical flooding. In water saturated

formations at VHF &' may serve as porosity indicator when the

bulk permittivity of the rock matrix is known.
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Figure 31 shows measurements of e&" for water saturated
samples at different salinities for three frequencies. Figure
" 32 shows measurements of e-values at these samé frequencies.
From figure 33, we see that at 18g6 Mhz, the ;values are vir-
tually independent of salinity while ¢&” values show a small
increase as a function of salinity with frequency. This is due
to the basic conductivity contribution j@to the equivalent
imaginary component of permittivity which in Poley's develop-
ment is included directly in the imaginary permittivity. Thus
when ¢ and ¢”are measured.tOgether, e" can be wused as a

salinity indicator.

In contrast to water, the dielectric permittivity of oil
is only of the order of cy- IN another experiment by Poley et
al. (1978), measurements on completely oil-saturated (Sw=g) to

completely water-saturated samples (Sy,=1), at 250 MHz (figure
30). At VHF values of ¢' and ¢" are perhaps useful in diffe-~
rentiating between water and oil saturation.

.

4.5 ACCURACY OF MEASUREMENTS

Advances in HF time domain techniques made the measurement
of dielectric permittivity possible up to 112 Hz. EM-wave
pPropagation borehole logging devices make measuremtns of phase

shift,Aé, and attenuation, A, from which the composite diele-

ctric properties can be calculated.
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Figﬁre 33. ( After Poley et al., 1978). Measurements

Of real and imaginary permittivity components for a water
saturated sample at different salinities for 1800MHz.

It can be seen that at 1800 MHz, the real permittivity is
virtually independent of salinity while the imaginary

component shows a small increase as a function of salinity.
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Schlumberger introduced EM-wave travel time measurements
which yield composite dielectric values. The travel time tpj]
is the inverse phase velocity of EM wave propagating in an
infinite hohogeneous medium and has dimensions of inverse velo-

city. Theoretically it is defined by

by = [l‘fe (u+\>’>"’-+|)]"z, 4-5-1

pl

The measured value tg,., is the formation travel time versus

wireline dePth and is determined from a measured phase shift,

t = ﬁ 4—5-2
ple Znlw
where L = distance between point receivers at X; and x3
and W = instrument (EPT) frequency.

The relative deviation of tplc from tp has been investigated

and found not to be more than 5%.

Let us consider a plane wave propagating along the x-

axis. The E-field associated with this wave is:

E(x) = B, el(kx-wt) 4-5-3
If we write the propagation constant as

k = o~ 1% 4-5-4

one may evaluate the o« and §corresponding to the EM-wave

travel time. The phase shift,A1>, of the electric field rela-

tive to two point receiver positions x; and xp is:
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Ad= - Im [ E(X;)/E(xp) ] . - 4-5-5

We consider equation 4-5-5 the exact expression for the phase

shift. Schlumberger calculates o, from the phase shift as
e = Ad. (x7-x5)71 . 4-5-6

xc will be exact for a plane wave propagating through a
half space.
The general attenuation in dB/m relative to the two point

receivers is given by:

A =8.686 . (x;-x,)"1 . Re {1n[E(xX])/E(x3)]} . 4-5-7

Thus %c is in terms of A, as suggested by Schlumberger, for

Plane waves is obtained according to

FC = —é'i‘éé = (Xz_)(|\)‘| Qe_ & \n [E(X.)/E()%}}} -As/&-éaé s 4-5-8

where Ag is the attenuation in dB/m arising fronm spreading

losses which are dependent on the properties of the medium
which difficult to determine. the approximation procedure used

to evaluate Ag is to replace it by the value of attenuation in

air where Bair=0. Schlumberger also introduce a second travel

time:
e . (o(z-» 152)'/2
po - (L),L 4“5-9
or
21 2 \
tp1 = (b -F/wzyz 4-5-1p

then deduce the following equation for tpl

tpl = #; 6\(0 timo + P ( l-é*o) t}-k + ("?)i‘ama
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Using this form, provided accurate values of tpw' tph'

t are available by laboratory experiments, water and oil

pma
saturation and porosity can be deduced.

In frequencies between 10-40 MHz, the real dielectric
constant e’of a water - oil - saturated matrix is consistent

with the following equation (Meador and Cox, 1975):

€ [ PouE b (-S4 (-dYE ] 4-5-11

where Sy = water saturation

€, = real dielectric permittivity of water,
&; = real dielectric permittivity of oil, and
6;a = real dielectric permittivity of rock matrix,
<% = porosity, and
¢ = an empirical factor between # and 2 which

depends upon the porosity, grain siie, shape and orientation.

Freedmann and Vorgiatzis (1979) suggested that if c=1/2

and if we multiply equation 4-5-11 by H&we obtain

tpo = ':Pswt‘mw "'47(.“51,4) +t\=c\/\“' U'%’) {-‘\’oma > 4-5-12

where t h and t are travel times for the water hydro-

pw’ tpo poma

carbons and rock matrix and

pox = [re; 1% 4-5-13

which is essentially the same as the equation used by
Schlumberger because the correction term §Z§ is relatively

small.
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Freedman and Vorgiatzis consider a model of a half space
(layer 1.) 1in which fhere is a layer (2) of mudcake of uniform
thickness @ and ih which is located a transmitting antenna at x
= @ with two receiving antennae at x; and x,. The electric
field due to the boundary conditions of the model has just a z-
component (Figure 34). The phase shift and the attenuation can
be determined by equatiqns 4-5-5 and 4-5-7 for point receivers,
but practically for finite receivers 44 and A are position-
dependent vary over the area of the receivers. Provided the
receivers measure averaged electric field at their locations,
we can still use eqﬁations 4-5-5 and 4-5-7 but we must use
equation 2-2-36 to describe the E-field in terms of the near
field Hertz vector. Considering the boundary cbnditions,

Freedman and Vorgiatzis (1979) obtain the following equation

‘:> | for E:

E(r) =2(“Plancy )/ [’FJ"O"):Y' kg -ak) @ 1
o "R g ER T TRy LN e The £ 7T

‘ i\c.r . 2
-F/4\'\é-¢, e/ys (1 -4\<,k-(‘=‘r‘) )

They performed computer calculations for various values of fhe
two media from phase shift and attenation and compared them to
the measured values and found that, in the absence of mudcake,
the error in tplc was between #.7 and 4.3%, tplc being always
less than tpc‘ With mudcake the error was of the order of @.1
to 11.4%. The attenuation was a monotonically increasing func-
tion of the mudcake thickness; the phase shift increased with

the effective permittivity of the medium. The formation die-

lectric properties calculated in this way are properly apparent
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rather than true. For qualitative purposes however, this method
is acceptable. It is also possible to construct departure
curves which enable one to obtain true formation properties

from apparent values.

7/ -
= \

A schematic view of the theoretical model.

.’

Figure 34. ( After Freedman and Vorgiatzis, 1979).
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CHAPTER V

5.1 ALTERNATING CURRENT SOUNDING

Sommerfeld (19365_has developed the theory of alternating :
cﬁrrent EM-sounding for very simple confiqurations of antennas;
i.e. vertiéal and horizontal dipoles over a plane homogeneous
half-space. Although in practice the antenna design is very
critical, for our present mathematical development of the
theory we will idealize the transmitter and receiver and treat
them as electrical and magnetic dipoles. In EM exploration,
frequency plays a dominant role. Multifrequency EM sounding is

known as the parametric sounding.

The Sommerfeld theéory attracted little geophysical
interest because of its technical and practical limitations
until two decades ago, when elaborate multifrequency instru-
ments were déveloped. The ability to make measurements stimu-
lated continuing development of the theory for various
transmitter receiver configurations (Patra and Mallick 19849,

Frischknecht 1966, 1967, etc...).

Parallel with the development of the theory digital fil-
ters for the numerical evaluation of the required Hankel trans-

forms have been developed (Anderson 1977, 1978). These filters
very closely approximate the Hankel transforms and are a power-

ful tool in the evaluation of these integrals. 1In the recent
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literature, the asymptotic solutions for large kr terms have
been developed by several workers (Mittra et al., 1979, Kuo and

Mei 1978). These yield more rapid solutions, closely approxi-

mating the potential vector.

In general, the objective of these AC soundings is either
to determine the variations of the earth's electrical parame-
ters with depth (parametric sounding) or to recognize lateral
inhomogeneities (geometric sounding). Our objective here is
rather to describe the frequency dependence of the electrical
parametefs of a homogeneous half-space. The Hertz vector was
described by Sommerfeld (1936) and has been used to derive EM-
field components while dealing with the electric current flow.
Magnetic dipoles which are represented by frame antennas have
an analogous magnetic current flow which reiates to another
vector, similar to the Hertz vector, the Fiizgerald vector F.

The general form of these two vectors is:

T - Af” KON J Ohe) ) | | 51-1
where

A = dimensionaless scaling factor,

Jn= Bessel function of order @ or 1 and
K = Kernel function, either
woye BP0 e
tke 4 ki Ytp

=
it

height of antenna above the assumed half-space,

depth of measurement,
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bY
K =‘“Y€b

l%= propagation constant of the half-space
1 .
B +4@
kE. AW (EwtAd)
The Kernel of these equations must be decreasing functions
with A, which will always be the case if we chose the negative
real part of the exponents. Due to the oscillatory nature of

the Bessel functions ((Ar), there is a further cancellation of
n

terms which enhances the convergence of the integrals.,

The major contribution to these integral transformations
derives primarely from small values of A. It must be noted
2
that those integrals with the denominators ?)<+T€' have a
- [ L4

pair of simple poles '>\==ﬂF where

Yo = 1 CLeay 'z 5-2

The poles do not lie normally in the integration path
because n is a complex constant, but if otherwise, must be
avoided by the path of integration. This theory has been used
to evaluate E- and H-field for several different transmitter

configurations and also to determine the impedance of a loop-

loop and a loop and wire configuration Using the appropriate

Cole-Cole resistivity and dielectric permittivity parameters.

Since there is a similarity between vertical electric
dipole and horizontal magnetic loop antenna, let us discuss
these two cases in parallel, 1In the following development,
antenna dimensions to be considered small with respect to the
wavelength and some distance above the halfspace surface

boundary.
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An alterhating field is imposed on the halfspace by a loop
or a long wire antenna. These source EM fields are the prima-
ry excitations; the secondary stimulation is produced by
currents induced within the halfspace. A receiver coil or rod
can then measure the perturbation of the normal field due to
subsurface induced currents. For geophysical sounding from the
surface the sum of the primary and secondary fields must be
considered. 1In geophysical prospecting, it is the stimulation
in the ground due to the secondary field which is of essential

interest.

5.2 A VERTICAL ELECTRIC DIPOLE ANTENNA ABOVE A DISSIPATIVE
EARTH

The E- and H-field for the vertical electric antenna are

obtained as (Sommerfeld, 1936)

E o= -k T+ VR 5-3
- z -
H=X QuIr 5-4
4m?. -
where

-~

U= JTCwr, b x)
in cylindrical coordinates. The z-axis coincides with the
antenna axis and =z = @ is the air-ground interface. A
harmonic time dependence of e~iwt L35 peen suppressed through-
out. The Hertz vector direction is that of the antenna current
that is:

— ~»

JT:JTl
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and because of cylindrical symmetry around the antenna ﬂé is

independent of thus 2 =@ and
p b, e

-

Jr‘i :JT}. ((Ii,\l.)) 5—5

Inserting equation 5-5 in 5-4 and 5-3 we obtain

E‘F= Er =0 5-6
and
E. A2 T / _ -
r %f(’bi 1) 5 7
and
2
Hy=-K4 2 5-8
* Y r
’lwlr.

where A is the dimensionality factor, and we are going to absorb

it into the 3|, term,

A=13x% R 5-9
4N NE o
with
I = current in antenna,
dx = element of length of the antenna,
W = angular frequency and
€, = permittivity of free space.
Avoiding the details, we consider the following case:
At the air-ground interface boundary conditions are:
Er1 = Ery
and
He) = Hey,

Without applying any specific properties of the parameters of

media, the Hertz vector has the form
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— o0 o -L‘>h+\=j:. '
FaaAl 2D TTE G Owyad 5-10
where e “L\”YS
2 = k2712
n ’kE/k .

By taking the appropriate derivatives (Sommerfeld) we get,

for E,and H? respectively,

> 2 2 YeX-ph
E, = -22k J X & J.Ondr | 5-11
< 2
and k2 ri
- . PR Caled dd '
H, = -21AK2 me,bj W oe® ' yonan 5-12
. € k2 2 1) »
» ey
At the origin, necessarily
E (r=8) = H (r=0) = 0 - | 5-13
r(r=8) qj ) ‘

5.3 HORIZONTAL MAGNETIC ANTENNA OVER AN ARBITF.ARY EARTH

In the case of a magnetic dipole source the Fritzgerald

ind -l
vector F 1is used instead of 37T, and

=—iwy, V x F ' 5-14

my wid

2
= k2 F, +YF 5-15

Insulated electric current loops (i.e. magnetic dipole) have
considerable value as antennas for electromagnetic probing.
The basic model used now is a small loop source, carrying an
alternating current, oriented in the z-direction. 1In
cylindrical coordinates, we will have one Fitzgerald potential

- . .
vector component in the z-direction, F,. This vector is symme-
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tric in <. Taking the appropriate derivatives through

equations 5-14 and 5-15 above, our horizontal field components

become
: -
E¢= iy RF, , 5-16
Dr
He =2 (A Fp) 5-17
% or
and
-> -
Er = Hq== g. 5-18

The vertical magnetic component becomes

Hz = iwg [LD(r2F)] . 5-19
Yo Y b\'( DrE
Using the appropriate boundary conditions we find the

Fritzgerald vector

~ph+e
Ez =af %A ?-Y i Jo (Av) dA 5-20
= :

and inserting this form into equations 5-17, 5-18, 5-19 above,

the horizontal field component becomes

P o= E}‘- h
'E:qD = -2ti.AJ x ek( Y J L Orydi 5-21
R A -
H. - _2A‘Jq>ﬁﬁ JrT J Oy | 5-22
MR T-

and the vertical component,

- o> 3 Yfi“fh

HZ = —ZiAwlr.j (>\ € JOQ}FSd) . 5-23
° PrP=

At the origin

ECP(r=ﬂ) = H, (r=0) = 0.

s -’ L]
The field component Eg can be measured using a transversely
oriented pair of ground potential probes; E; can be measured

’
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with a horizontal coil of few turns. There are some special
difficulties in measuring the H -components. All siX
integrals above can be evaluated by numerical integration with
the help of Anderson's (1978) digital filters. The Kernels of
these integrals are generally complicated terms, involving
roots of complex values in both the exponent and denominator.
Several approximations must be made in order to evaluate these
integrals: for example, for measurements at the surface (z=0),

we considered that:

kK- g (.e. /N —5))

and consequently, at the surface, the Kernels

_3 -\-’h Y.
)
&*ékzéfykg Vet
reduce to
Ak ")‘Y
£ _ and e
kz
E-}‘ 2\ *Ye

These assumptions are only appropriate at "low" frequencies and
can not be generalized. The major contribution to these .
integrals is from small kc's, where at high frequencies ko is
not small compared to A . At large distances, the assymptotic
Solutions of the above integrals are often used in replacement.
As we have seen above, many geophysical parameters are invol-
ved in the determination of the EM-field components. Let us

recall these parameters which appear directly in the field

equations;
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>>
]

‘variable of integration

— YA 2
2 .
Pe = VN2 KT where k_ =Wy €e-1T5)
A=A (I,o) = dimensionless scaling term.

The Kernels of the Hankel integrals are dependent on
frequency and also on the propagation constants in both media.
We are especially interested in the propagation vector in the
ground halfspace which is definitely determined by the geophy-
sical ground properties. Since ke appears in the exponent of
integration, small changes in kE can appreciably modify the

magnitude of the EM-fields.

By measuring, then, these fields at several frequencies
(at least 8 frequencies are required to overdetermine the
Solutions) we may determine by inversion the propagation
constant of the homogeneous ground and from this constant, the
geophysical properties of the ground. Let us now determine the

form of these fields as a function of different parameters.

5.4 VARIATION WITH DEPTH

We here consider the Er and Hqp fields of the vertical
electric dipole. For all other antenna configurations, similar

Conclusions with respect to the kernels of the Hankel integrals

can be drawn. We shall keep the frequency constant thus kg

and kp and A remain contant. The height of the dipole is first
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arbitrarily fixed to be one wave length in the following exam-
ples. The horizontal position of measurement is taken to be

some substantial distance away from the antenna since just

beneath the antenna, fields are nul. A unit current will drive

the antenna: fields are evaluated as functions of depth. For
H¢,the essential factor in the integral containing the depth is
e~ 2. where

z?a = Z(fa + iz?x

As expected, fields decrease exponentially with depth while

oscillating due to the sinusoidal form of elZ{,.

-2
The corresponding integral factor for the E, field is Y;Qﬁ%

The behavior of this field will show some minimum value at the
surface reaching a maximum at some depth and then continue
decreasing (but less rapidly than exponential) toward larger
depths. In Figure 35 the two cdrves show E_ and Hﬁ>fie1ds for
a homogeneous half-space of the clay permafrost at -27°C
(Olhoeft) in chapter 1V, section 4.1.1 with depth. Onée we
know the character of variation of the fields with depth, we

shall fix henceforth, the depth at once skin depth for the

subsequent examples,

5.5 VARIATION WITH HEIGHT OF ANTENNA

The effect of increasing the height of the antenna also
provides an exponential decrease on Ih;field (Figure 36). The

term responsible for this effect is e“hf . For
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0

the term e‘hf is purely oscillatory, while for

o< A<ke
this term is purely negative exponetially. 1In the transform
integral, this second form dominates so that there will be an
exponential decrease with increasing height. Let us now set
the height again at one wavelength and consider the variation
of fields with the horizontal axis at for several frequencies.

Here we will see the effect of the propagation constant.

5.6 FREQUENCY VARIATION

As seen in figures ( 37 - 42 ), the major effects on the
field occurs within a radius of about one wavelength; beyond
this range, the fields die off rapidly. A more important
effect is the variation of the maximum amplitude of the field
with frequency. At some particular frequency, we find a
maximum field amplitude for any particular height due to the
choice of the Cole-Cole models which détermine the propagation

constant of the halfspace ground medium.

5.7 RADIATION ENERGY

The quadratic quantity of energy flow is determined by the

amplitude of Poynting's vector
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S = [EH]. 5-24

averaged over all time and space. Due to the orthogonality of
the eigenfunctions, the Bessel functions cancel in this product
and the total energy flow integrated over a horizontal plane

reduces to

S = _/éz de = J/[Er'ﬁ$=— EQ' Hr ] dr. | 5-25

All energy which enters the Earth is effectively transformed
into Joule heat so that -S_ is the total thermal absorption of
Earth per unit time. S, is the total radiation is air above
the halfspace. The energy input to the antenna per unit time

(i.e. the radiative power) is:

For the vertical magnetic loop integral 5-24 is obtained
in Appendix E. For the vertical dipole and horizontal dipole,
the mathematical development was done by Sommerfeld (1936).
The results for the three antenna configurations are summa-

rized:

i - Vertical electric antenna:

W = Q:t:%‘g (% + 25\2}5-3 LOSS+0) 5~26
lo
where
. oo - 2¢h '
u=n_Re§AJ3£a_ SR AN 5-27
kb ° é%*? T S
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ii - Horizontal electric antenna:

W= anke (2 - Aw§ + Seml Tl 4y
w2 3 33
where
co -2 h 2
e Rli) e PP 290 =) gy

"‘2\" e

iii - vertical magnetic loop:

S .
w =2k (2 +sal _omd el 4 V)
b (St 3 3 K&
where
e 20k ¥
vaelt Q,(A'J ST (232K D)
k3 ° ¥ % oY%
B G \
and
X = 2 kn.

We see that the first part of the contribution to the
power is due simply to geometrical factors the frequency, and
only the second part, that is the integral part, involves the
ground geophysical parameters. These integrals have been nume-
riclally evaluated by the computer and have never shown a
contribution larger than about 5% of the first part. Hence,
independently of the range of the geophysical parameters, the
power input to the antennas can be computed on the basis of the

frequency and the geometrical factors of the antenna alone.
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Figﬁre 37. Réal component of secondary H+-field for a ver-
tical transmitting dipole antenna, at various frequencies.
The electrical parameters used to create these spectra are
those of a half-space of clay permafrost at -279C, as ob-
tained in section 4.1.1. The current of the transmitter
is equal to unity, the horizontal distance is in terms of
the wavelength, the length of the antenna is equal to \.%¢4,
and the depth of measurement is equal to one skin depth.
It should be noted that the purpose of these plots is to
show the aspect of the secondary field at various frequen-
cies, due to frequency-dependent electrical parameters of

the half-space. The maximum field occurs at 107 Hz.

Figure 38. Real component of the secondary Er-field for
a vertical transmitting dipole antenna, at various frequen-
cies. Parameters are all the same as in figure 37. The

maximum field occurs at 107 Hz.

Figure 39. Real component of the secondary H_-field for
a magnetic transmitting antenna, at various frequencies.
Same parameters as above are used. ' The maximum field

occurs at 108 Hz.

¢;f1eld for

a magnetic transmitting antenna, at various frequencies.

Figure 40. Real component of the secondary E

Same parameters as above are used. The maximum field

occurs at 108 Hz.
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CHAPTER VI

CONCLUSIONS

6.1 SUMMARY OF THE THESIS AND DISCUSSION OF RESULTS

The original intention of the research project and this
thesis which derives from it was to obtain an elaborated
geophysical theory of electromagnetic fields and waves, The
Present work has concentrated, mainly, on the near-field
induction problem for very-high and ultra-high frequency fields
gdenerated by idealized dipole antennas in proximity to a ground
halfspace. The major, and largely original, contribution of
this research has been to allow for geophysically reasonable
models of a halfspace in which the basic electromagnetic
parameters are compiex-valued and frequency-dependent. 1In
spite of the fact of a lacking solid-state physical theoretical
explanation for the Cole-Cole model of complex conductivity,
permittivity and permeability, we chose to employ this model
because it is of considerable contemporary interest in
geophysics and because it is relatively simple mathematically
while corresponding closely to the Kirkwood-Fuoss physical

permittivity model.

The electromagnetic theory has been described in parallel

in both the time and frequency domains. 1In attempting to
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describe complex frequency dependent parameters, the details of
this parallelism are especially important because it must be
shown, for example, that models are reasonable., That is, we
must always ensure that the parametric models employed are
physically realizable: stable, causal and perhaps of minimum
phase (or delay). For the Cole-Cole permittivity models, Jain
(1981) and here, for the equivalent conductivity model (cf.
Pelton et al. (1978)) the time-domain equivalents have been
derived. In the case of the audio-frequency conductivity
measurements as obtained in contemporary IP (induced
polarization) surveying, this parallelism is of considerable
importance, As very-high and ultra-high frequency
electromagnetic methods become.more used in geophysical
surveying, the parallelism of the permittivity models will be

similarly topical.

Olhoeft's (1975) published data for permafrozen clay soils
and Carmichael's data for serpentinite have been inverted
using various Cole-Cole models of material condﬁctivity and
permittivity. Olhoeft had recognized the need for describing
permafrozen materials with complex-valued permittivities which
contribute to an additional apparent conductivity-like loss at
frequencies beyond a few hertz. The inversions for these same
data presented above yield much lower error bounds when the
frequency~dependent Cole-Cole models are used in replacement of

Olhoeft's constant complex permittivity assumption.
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The thesis offers a substantial review of contemporary
models of geophysical electromagnetic parameters which are
known to be dependent upon such various conditions as tempera-
ture, salinity, porosity, electrochemistry, mineral grain size
and shape, etc.. The newest of these models can contribute to
the better understanding of high-frequency induced polarization
effects and ultra-high frequency induction effects which can
now be observed with modern geophysical prospecting and

surveying instruments.

6.2 SUGGESTIONS FOR FURTHER WORK

In continuation of the developments of an elaborated
geophysical electromagnetic theory, it would be useful to
consider the similar problems concerning a grounded current
-electric dipole at high fregency and HF-to-UHF wave propagation
phenomena in presence of the complex-valued, frequency
dependent geophysical materials. Solution of the former problem
could offer an essential theoretical description of the IP
phenomena which are now so much used in base-metal geophysical
prospecting and which show promise for petroleum exploration.
Solution of the latter problem could extend the geophysical
application of surface wave impedance measurements into the

very-high to ultra-high frequency range.

It now remains to demonstrate that in practical geophysi-
cal prospecting and surveying, these elaborations of the des-

cription of electromagnetic phenomena will lead to improved

interpretations of geological structures. That task is best
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accomplished in the industrial environment of geophysical sur-
veying and prospecting. We hope that this research will be of
interest to the broader community of pure and applied geophysi-

cists.
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Appendix A

Program SVD.Pl inverts an effective resis-
tivity curve and yields in the cole-cole
electrical parameters.

156



AC27. RCI1O0.D RC27.D

AC10.In
RHO COLE ONLY

SVn,.F1

INVERTING OF WAVE-IMFEDANCE

LIST SVI.F1
DATAS

C
C
c
£E>

6)s51(20)
y

- e
ot (D b4
~a. -
O »
GmD A~
e el
Nswrrd »
N o
(v 4N o]
[ N VEENY
ne~
AN
OO~
Cuvri( 0
(S ]
Ul aCi<r
Lid o~ o
2O -
QC~3
P o IS
A0~
Cliwroul
Cd e Ol
o~ e O
no ~gCu
i~ <
T~ i~
At~ L2

I
F'
2
E
/
DING IN

(WIS TR ]V =]\ 4
N) sl ol
[N TS @uN -
OO = 0]
Zw i~k
[s L e Jor]

L~ i
Wl N> 00 <Ca
[da) * 0
Wt oy
=< WD
<Ll wo
=

3 I

DATA FI;EPSD/?.]41J9?7;.885E—11/;IDG

C___..__._..-...-—-—_-__.__..._——-—__...___.—_-..-_——__

R
L

T/1
REA

Y2 ORES(I)»I=1yNO)

F-

TLE
TEM
s NF
Q1

- O
b~z

O~
O~
oHiOQ
1 w040

N
404
[N
zZ
-
]
[ ]
(]
-
o~
i i vt
~ s ()
L
> >l
N ot
P X Xl
[ele ol
OSOo

CUSHCI0E CHT0ICH
ma RN e
IS GG
LY« R I
[=1T1 [~ Tuo R} ey o Y}
T TLCIITITT
W Wi o il
£ (2 Zig

—

1,NO)

1yNF2)

TITLEs TEMF
(X2(I) s I=1+NF2)

30)(X1(I)»1

E(b&y
E y
TECAy
TE(6y
E(69210)(FRQ(T)yORES(I)]

wﬁIT“
Cmmmmm e e -___DEFINING FARAMETERS

Cmm == m o oo —RTTING OUT
WRITE(67250)

(=]
w0

(VS
~l
~H
b ey
S~
[F 3
L -
L2y
(=1 3
o~
S
i

NS OO0
[olelodrgulid
MO«
MG <l
o o anij o~

0 0G0 4t

b~

bl il ©

(o]
-t

CIM e~~~ i T
NI~
= bbb =t G vt i (] s v
i L I QIS ~ )
o2 OO L O I T AL XK T
33335002l

|
i
]
]
I
!
|
|
I
|
|
Q

wi NWO Ll ~ E U< ~0us -
-~ J-M - OSLE- e =
O L Ol 20
LQCANTZO e Sl ~nom
OO =BS 20 [=~R1xis 1815}

I
O~ O~ || QO
AT | (e 0L

swodb NLWPItho &
ONCO E-Xuoi
S XOUa " (=1}

o o
g ]

<<
T
-
Lt
] <
L
4 Qo >
= < -
Q - v 4
- = -
[on] 14 <<
o L =
T
< — [ 1)
=z < -4
L L (o]
x fa] x
fr 4 N &«
o [+ Q
L [¥Y] L
1 -~ '
i o < ]
] £ [
[ B Y FHEN oM | ~
I ON X 1 QO ~
| Z&E = | z ~
] ~ n o~ |~ -~ ~
| - M 1O ™ ~
] Gl ~ ~ | 0 . Wt w
| s & W ~ | = -~ ¥ [Vl
I g0 X G w ~1 O S ~ 0 '
I e w Ui a. o1 ez T o 2
I L ~ 9] Z| - . ~ Wi ~
| oG N o~ N~ LN ~ &\ )
I Wl ~ ~s ot - w oo ~ ~
I B N W ~ A o - W o~ <
1 Oc X < fa P ol S IV 1o e R Qo T 9 2]
| GO »~ (0 L s o d 17 I ol L O S ~ (7]}
[ - o) IR S 1Y s U 0N ~ | < + W x
] U - X Ol Ll =i ~ ~ o
I Cdms ~ O ~U - ~ T “+
I Xt 0+ HESS) O i Q X A ~
| alfi XK A Q¥ |~ 1 & e ~NIO =
I N & HHOW O ~F -l O v~ . ~
I Nt N I OO~ i [T T o O™y —
| e el O wEEATEO g NS IE s NeeNme D
il | W o WOUW+0O OO - N 18 0 -O0N~00~
VTV I VI~ Zor>> O L it ~ | AQZH LI 22N
Wit dvld ~ o N\NH~AdAQO XU OA~rAa il abe s it~ o o
OIS | Tl vt oI Tl ISS 2% § b= v~ Ll o T 0436 il
Ort o s TO WL _JOO wm ll vt » Hl wnm e LUIN woo O G e 12X 1~
e el e dl QT s CGH| O AUrHH IGO0 | A XOTIG A~ oD+
HOEOY >~ il ~NZN -~ [ D I~ -
Lt )
ol ol |
L
L | <€
32210
[}
|
|
I
[
|48

05

"Q

c

157



”~~

z

=z

z

=

)
4 N
- (o]
i Q.
o -~ b4
o ~0 [
Lad - i
~ - i H
wm ~ -~ = 1} i
L <0 ~ 3 - -
Ww - - [ -
N = Z = ~ [
-~ [} (o] - -~ ~
~ T3 > ~ O >*
- -~ @ ol ~xX i ot
~ o~ Ll i -~ L] [T
32 I - = O HW w ~ =
w - - C4 ~= o4 -
L - < on O o~
~Q -~ | ot o -~ s~ Z -
N T | %] = -~ 4
A o~ & [FH] . P o I o B o
QT A~ P z O X e 3
-~ © £ ~i - - D9~ w2 ~
OWo~ < O X~ - Z¥ A~ WZ A~
owzZzm < . QO i~ ~n e OO~ 2 LiIOO

s e O WIHO NO A 0
=g vt N b ) o~ e N MM I
IR 2N OS> OXAQHFHE & ® o~ &
AU~ SO IDO0ACMI NI~ ~000 O
e PN [ o XKW U~ e X O i ) v
St COSH U W =D = LWL > il
O e QE~EUNAASA~A_IFZO | RZ X e -0
LW BHEZ HWBO - I SO~ JHHF L~
D (EOZO~w~w~Tr XL TLOWKLZO S -
RIS BLIZOXXXP3IZ LE~AQID3I3I3ZIS 330N

3 o

~i
- O a2 o~
i -

o - _
—t O LOULOY

70
g
140

)

ALFA’ /)
FORMAT(/y15Xs "INFUT DATA s/ 94Xy "FREQUENCY 94Xy "RESISTIVITY »/)

AMETERS "9/

TAU

ALFA’ /)

v/ )
METERS v/

—~ w1 oo
< < <TO0O0 &
. - oo W
SO~ uw N
g N~ |
OO o | o g
T NN O

R i TR § TN L R

CCIICCCTUWTNACITT
ELLELLXT £ XXrkr
ey & L&
QOo0o00 O 000
biinte ol e~

*

FORMAT(3XsG10.4,7X»3610.,4)

END

~
L3

0

OOCOOO O OCOE
O 09T * N DNOw
CICITTHIT it Cdsa

s
330
Cmm——==m———~=—mmo e ——e————e——————————COLE-COLE COMFLEX CURVES

3

'LMTyTAUYALFAY YAy

Q:FIsND)
1]

"4 4

L4
Z
158

s
’
S

¥ALFA

*
i
<4
—~mlL o~
DN -~ZIg
O T L~ OO0\
=0 ~ ™ LWZF %>l OZe~~
TR 1R ] M N\ - =3 SE4 N
vt mL A o~ Lvi A0l o> A~
P . A XFL~AA s i | 30l I~ vegll
Pt Tl OIS D= Do D= D= i (O LD I -NND D
TN CX~ o X T O GEN NZ0 ~ilg2Z22Z
o OUXA I LNZZZGHOE MWL A A IO ™A -
e MO H<E O o« HOT L 36N = CCINH - =
N QEFIJLCON~00L i wwwe || w22

2
)
+Z2(I)%Z2(1)

XF+LMT

QoL
ON =_| -

ACOLE) 6O TO

Sl QWETCIHH HW Ao 8 H Il =-NOLOE~-N0 0o
SR*LZLT‘HYAHBI CETRALLNNOHSOOCNNOLQ
<

I M

< (o)
i x]
© @



RETURN

END
e e o e —————5VD

c&

~~

.

4

L)

(o] ~

=z 14

~ 1]

i (]

ne -

4

W 3

LI Y -

L~ =

B =

L L W) -y

[= 1V

-3 0O ~
Hw Z o~
-~ e (A~
W o0 W0
(= L o=
O L e
mZz X Ci
-~ - >
Xa O -

0eldad Z

AN N
Wed g, ~NO =
ZwrmTvet et
HEwD s o~

WX~ =~

NE.0.0) SUM=B(I)/((D(IX>XD(I)+EFS1)/D(I))

< E
idanl’s)

NTL Al L

e
Z ZHOHHUIX E~AA~AMNO

*

£

~ QO
N g
b TR I 4
L e
-0l

Ll N I J

(I)yI=1+6)
METERS AFTER CORRECTION’)

~  X~CQ

TIN AT L v
(i S~ A LR

a3 DO O

O XX NOINO

Dt o || & o
= O OHOADIAOE_[ % ¥ O ~ OO~

D X o= =
(= 3 WCWO O HOoOQOM)I OOl ~WUAd g
. lJd AR EFM I QAT MM~ meess Xel-ErD)
o b L = (-0
DWLWCLOZO DL ~OI0ID v -~ LUz
VEELOILIIC VIS SO XK S123 B L. el

o
]

o o
in< o0
at} ]

o

159



Appendix B

Program SVD.P simultaneously inverts effecti-
ve resistivity and permittivity curves and yields
in the corresponding Cole-Cole electrical parame-
ters.
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Appendix C

Program HORANT.P given the electrical parameters
at a certain frequency, calculates the k- ana hH-
fielas of a horizontal magnetic loop transmitting
antenna versus distance over a homogeneous dissi-
pative half-space.
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Appendix D

Program VERANT.P, given the electrical parameters
at a certain frequency, calculates the E- and H-
fields of a vertical transmitting dipole antenna
versus distance, over a homogeneous dissipative
half-space.

172



e

oy s s
VY

Ty NN

.

vy
o

ETE S

‘
1

A

[+

4
i

G
I

1+ com Aos s s e B s onte e e e o brer ewm fews Sen v F £ [’

g
",
N\

BTN

[

THAMSFOR

1)

a

ENT »

L
A

COF
e F L

'
-
H

e

o~

O

o

" st

SHANKS v E v HyHN I

"y
1,

SO E s FF

BeFLsls

Al

?

173



’

PTH

W

FakrTH

TTRARY

3
d

ARk
/

.
1
.

0
"
»
B
"
)
s

= .
= R S
= TE~
i L Y
i o 147
—
=~

GVER

\
/

DMl HNOT

ek

KR

=
- T
<L
=
—

i

.

g O
.-
e 5o
~ 10
PR
-
-
Cd =
—t

fee]
<X ®
= oL
e -
. P
P it A a)
b —
= 7po b
~ i

-

s RS

by s

{551 b i3d

— oy prad

o ~ o

S .o tas

PO N L 1 5
~ Eou o+
i e el S
o A
T e (D
ot L} .

k4

ME /M FR
é
(s

£
1

P
I

EmME

1
N

i
3

LK .
FOSTTTONNED

s

HT »AMD
1

Fa
"THe HIEHT

1

+
-
e

I3

m

o

AR1A G0

-

M-FTFLT

e MG

N

0F

s

o

BRI
RERWIR

- FTH

TRMALLTIED

-
L.

174



tud
: —
i
: -~
: .z
; elin
H b
i =
: . o
: ] i
. :
i HEE-
: P
i
.
:
i

THANKS (R o By FLU

!

0]

Bt TRTR w0 DT

P e S 1 i

e T e W

fo-Piw X ¥

e ]

R LN TeT ek e
AN S ST &
F G O DG D
PR o 2y o 3 14

£

T
LR R A ]

Lo

JFEE0

AF
30

o
L)

= I

e e e e B
Tiee % o s<
O e o N
3R s

N R Y

S E"“zif i-SI

. o e, e,y m, g

LEER R pR SR 5 wEY SR LAy SRI ) ¢
et ninlaintalale]

RERE e B EarEatFa L Fee

o e S
GG T T
PP v i L30T
et £ TR CHLS

[ T s i

ETERa AR e R W

- o~ g
TR s TRt

Erielateptw]

e —
S e T B

s

T vt e e et

175



il
S
;~ 3BT
o
P =T

R A AN

5.

-
<]

.

e
..

P
Lo

&

[}

i
£ >og B B B o Be g L
0 e T - -
3 [FEReas i BN Ra 9 T L o -
H H H H H
g : HEE I H
iadige i SRR e
S N = LT ~0
o - -
-..Jfl.- £ 37

\
1.4

o

S

~
L
€

[
v

o
i T
Fro e ]
FERS I3 =i
e '
ferEond HE
+ s +
HE R
A
i
o, o= e L O Y L
oy Pad R e R T Far e ]
[AFR A i s RURS T T
o
[
i
it fact
N o~ R
-~ RS LR

>

s R csiin
e e

"\ .}/l _-I.l I!Ml
e
SR EER Al

176



1
~d

i o
ey £
-
< rat
=3 e -
ol i) - 2] -
¥ - e, ;
i LT B
[ (s F B
I 3 -
A

N
I R
o]

- i
s

4F

3
L

o gy
1,0

L
"

¥

]
e

177



N }l )

T

23

»
&

"

<L

-
.

iy
.

4

.
i

178



Appendix E

Integration of the total energy flow over a
horizontal plane for a vertical magnetic loop.
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For a vertical magnetic loop 5-13 is replaced by

* - 3
= ) T KW H dde?-
6-_j<=r ¢ ¢ \')( i E-1

If the loop is considered to be in the yz-plane, the Hertz

vector for the S, term becomes

-u2
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Considering the following relations for the electrical and

magnetic fields
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The four field components for the S, term are then deduced
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and the same components for the S term are
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Introducing a further simplification, for the situation

where the z-plane approaches the h-plane:
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The S_ term proceeding as above results as follows:
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Applying the same simplification to the A, B, and C terms:
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and finally W is obtained as:
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