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ABSTRACT

Novel approaches to enforce the Geometric Conservation Law (GCL) on moving

grids using spectral in time solvers are introduced. The governing equations are based

on the Arbitrary Lagrangian-Eulerian formulation of the Navier-Stokes equations,

discretized in time through either the Non-Linear Frequency Domain (NLFD) or the

Time-Spectral (TS) methods. The equations are spatially discretized by a structured

finite-volume scheme on three-dimensional hexahedral meshes or two-dimensional

quadrilateral grids. The derived methodologies follow a general approach where the

positions and the velocities of the grid points are known at each time step based on

the dynamic mesh deformation using the Radial Basis Functions (RBF) technique.

The Integrated Face Mesh Velocities (IFMV) are derived either from the Approxima-

tion of the Exact Volumetric Increments (AEVI) relative to the undeformed mesh or

exactly computed based on a Mapping (MAP) between the physical domain and the

computational space. It was shown that satisfying the GCL does not guarantee that

the errors in the Integrated Face Mesh Velocities (IFMV) are either at the same level

or converge at the same rate. The methods are validated numerically by verifying

the conservation of uniform flow and by comparing the integrated face mesh veloc-

ities to the exact values derived from the mapping. Their impact on aerodynamic

computations is evaluated through two-dimensional plunging or pitching simulations

of a cylinder and a NACA0012 airfoil.
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ABRÉGÉ

De nouvelles méthodes pour résoudre les Lois de Conservation Géométriques

sur des maillages déformables sont introduites pour une discrétisation temporelle

des équations fondamentales de la mécanique des fluides selon des approches spec-

trales. Les équations de Navier et Stokes sont exprimées selon la formulation arbi-

trairement Lagrangienne-Eulérienne, et sont discrétisées en temps par la méthode

non linéaire dans le domaine fréquentiel ou par la méthode en temps spectral. La

discrétisation spatiale des équations utilise la technique des volumes finis pour des

maillages tridimensionnels hexaédriques ou bidimensionnels composés de quadri-

latères. Les méthodologies de résolution proposées suivent une approche globale

où seules les positions et vitesses des noeuds du maillage sont connues à partir

de sa déformation par la technique d’interpolation des fonctions en base radiale.

Les vitesses du maillage intégrées sur chaque face sont obtenues soit en utilisant

une approximation la plus précise possible des incréments volumiques de chaque

élément, ou exactement calculées par l’intermédiaire d’une cartographie entre l’espace

physique et l’espace numérique. Il est observé que satisfaire les Lois de Conservation

Géométriques ne garantit pas que l’erreur sur les vitesses de maillage intégrées sur

chaque face soit du même ordre ou converge à la même vitesse. Les méthodes sont

validées numériquement en vérifiant la conservation d’un écoulement uniforme et en

comparant les valeurs des vitesses de maillage intégrées sur chaque face. Les effets de

ces différentes approches sur le calcul des coefficients aérodynamiques sont évalués
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en effectuant des simulations de mouvements oscillatoires d’un cylindre et d’un profil

d’aile NACA0012.
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NOMENCLATURE

This section defines the main abbreviations and symbols employed in this thesis.

Unless it is specified otherwise by the subscript “C”, all relevant spatial quantities

are expressed in physical space. When necessary local modifications and additional

variables will be introduced directly in the text of the dissertation.

Abbreviation

AEVI Approximation of the Exact Volumetric Increment

ALE Arbitrary Lagrangian-Eulerian

AVG Average

BI-MAP Bilinear Mapping

DFT Discrete Fourier Transform

GCL Geometric Conservation Law

IDFT Inverse Discrete Fourier Transform

IFMV Integrated Face Mesh Velocity

LVI Linear Volumetric Increment

NLFD Non-Linear Frequency Domain

RBF Radial Basis Functions

SCL Surface Conservation Law

TRI-MAP Trilinear Mapping

TS Time-Spectral
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VCL Volume Conservation Law

Operators

(·)t Transpose operator

〈·〉T Time-average over a period operator

L Scalar triple product operator

T Trilinear mapping operator

∇ Nabla operator

× Cross-product operator

Scalar quantities

CD Total drag coefficient

CD,p Pressure drag

CD,v Skin friction drag

CL Total lift coefficient

Cps Stagnation pressure coefficient

E Total energy per unit mass

G Sum of the integrated face mesh velocities over a cell faces

Gm Integrated face mesh velocity

Ĝk kth Fourier coefficient of the sum of integrated face mesh veloc-

ities over a cell faces

Ĝm,k kth Fourier coefficient of the integrated face mesh velocity

H Total enthalpy per unit mass

lm Linear part of the volumetric increment

M∞ Freestream Mach number
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N Number of harmonics in the temporal discretization

Nf Number of faces

Ngrid Number of grid points

NRBF Number of RBF points

Nts Number of time instances

p Pressure

pm Periodic part of the volumetric increment

Re∞ Freestream Reynolds number

St Strouhal number

t Time variable

T Temporal period

Temp Temperature

V∞ Freestream fluid velocity

αi RBF interpolation coefficients

δij Kronecker symbol

γ Heat capacity ratio

EGCL Level of convergence of the GCL

EIFMV,x, EIFMV,y Level of convergence of the IFMV

κ Reduced frequency

ρ Density

τij Components of viscous stresses

φ RBF basis function

Ω Volume variable
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Ωm Volumetric increment

Ω̂k kth Fourier coefficient of the volume Ω

Ω̂m,k kth Fourier coefficient of the volumetric increment

∂Ω Boundary of the volume Ω

n1, n2, n3 Cartesian components of unit normal vector

u1, u2, u3 Cartesian components of fluid velocity vector

x1, x2, x3 or x, y, z Cartesian components of position vector in physical space

ξ, η, ζ Cartesian components of position vector in computational space

Subscripts

C Computational space index

h General hexahedron element (Definition 3.3.2) designation

m Face index

n Time instance index

q Quadrilateral element designation

Vector quantities

Fc Inviscid flux vector

FM
c Modified inviscid flux vector for moving boundaries

Fd Artificial dissipation flux vector

Fv Viscous flux vector

n Normal vector

n̂ Unit normal vector

N̂C Unit normal vector in computational space

r Position vector
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rC Position vector in computational space

R Residual vector

R̂k kth Fourier coefficient of the residual vector

R̂∗k kth Fourier coefficient of the unsteady residual vector

v Velocity vector

vC Velocity vector in computational space

V Contravariant flow velocity vector

Vt Contravariant boundary velocity vector

xr Position vector of a RBF point in the undeformed mesh

xv Position vector of a grid point in the undeformed mesh

∆xr Displacement vector of all RBF points in the x direction

∆xv Displacement vector of all grid points in the x direction

w Vector of the conservative variables

w̄ Modified vector of the conservative variables

ŵk kth Fourier coefficient of the modified vector of the conservative

variables

A RBF volume point basis function matrix

D Fourier temporal-derivation operator matrix

IN Identity matrix of dimension 2N + 1

M RBF basis function matrix
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CHAPTER 1
Introduction

1.1 Context

Since the 1950s, rapid advances in computer science and its associated tech-

nologies have prompted engineers to develop and employ software in order to exploit

the enormous calculation efficiency of computers. As problems of greater complexity

could be tackled in a reasonable amount of time, novel disciplines focused on the

development of numerical methods in various engineering fields emerged in the last

several decades. Among them the Computational Fluid Dynamics (CFD) field aims

to predict the behaviour of a fluid flow under predefined spatial boundary condi-

tions and temporal initial conditions by using numerical methods to approximate

the solution of the governing equations. In aerodynamics, the lack of analytical

methods to exactly solve those equations for flows around smooth geometries such

as two-dimensional airfoils motivated the development of CFD as a discipline. Today

aircraft and turbomachinery manufacturers exploit CFD to optimize the design of

their products and predict as precisely as possible the aerodynamic performances.

The accuracy of the results provided by the CFD simulations enables engineers to

explore multiple configurations.

However, despite the progress realized in numerical simulation and the increase

of computing capacities in recent decades, the accurate computation of unsteady

aerodynamic flows in a reasonable amount of time still presents a challenge in the
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field of computational fluid dynamics. Compared to steady flow problems which only

require an accurate spatial discretization, unsteady flow solvers have to provide an

accurate temporal resolution of the flow. The accurate computation of unsteady flows

is essential for applications such as helicopter rotor design or rotor-stator interactions

in turbomachinery.

1.2 Frequency domain solutions

Until recently, simulations of unsteady flows were performed through time march-

ing techniques for which the solution is constructed in time from an initial freestream

solution. One widely used approach is Jameson’s dual time stepping technique [17]

which is based on two nested loops. The outer loop is used to march the solution in

physical (or real) time through a second-order backward difference scheme. Then at

each physical time step the inner loop is used to march the solution to a steady state

in pseudo time through a multistage Runge-Kutta scheme. The convergence of this

technique is usually improved using local time-stepping and a multigrid strategy [16].

For periodic in time problems, the time step is advanced until a periodic steady state

solution is resolved. In some instances if only the periodic solution is of interest, a

large number of time steps or computational expense is required to shed the initial

transient solutions.

In the specific case of time periodic flows encountered in problems such as aeroe-

lastic analysis or turbomachinery, several new techniques have been developed over

the last two decades to hasten the convergence of the numerical solvers. In such flows,

any flow characteristic repeats itself every temporal period T , which makes it possible

to exploit Fourier collocation techniques to accurately and efficiently represent the
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solution in physical time. The accuracy of the solution and the computational cost

are then determined by the number of harmonics employed to model the periodic

unsteadiness of the flow.

At first, periodic time-linearized techniques were introduced [11, 12], in which

the flow is decomposed into a steady non-linear background flow and small periodic

perturbations. Both steady and perturbed parts are advanced separately, where the

steady part is solved using a conventional solver while a system of wave equations is

employed to advance the perturbations. Despite the high computational efficiency

of such an approach, it is unable to model non-linearities inherent to unsteady flow

problems due to the decoupled nature of the solution strategy.

This motivated the development of completely non-linear techniques to capture

the unsteadiness. The Harmonic Balance (HB) method initially introduced by Hall

and al. [13] was the first of such an approach capable to capture the non-linearities

of the flow. Then, McMullen and al. [24–26] developed the Non-Linear Frequency

Domain (NLFD) method in order to solve the Euler and Navier-Stokes equations

directly in the frequency domain contrary to Hall’s method where equations were still

solved in time. An alternative to this approach is the Time-Spectral (TS) method

presented by Gopinath and al. [8, 9], which avoids the explicit use of a Discrete

Fourier Transform (DFT) and discretizes the temporal derivative operator through

a Fourier collocation matrix to solve the equation in time. Since these techniques

directly converge to the periodic state solution, there is no initial transient effects

to be computed which makes these methods computationally more efficient than

time marching approaches for periodic flows. These methods were validated for both
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Euler and Navier-Stokes equations through several unsteady periodic problems and

proved to be successful in the capture of flow non-linearities as well as significantly

decreased the required time to obtain the solution compared to time marching solvers

[3, 8, 13, 25, 32].

Regardless of the approach, the expression of the residual as a function of the

state vector is always non-linear and a pseudo-time stepping technique have to be

employed to decrease the residual to negligible values. The convergence of the NLFD

method originally solved using a Runge-Kutta multistage scheme in pseudo-time was

later improved by employing the Lower-Upper Symmetric-Gauss-Seidel (LU-SGS)

implicit scheme [4] or by taking into account the local level of unsteadiness of the

flow through adapting the number of harmonics [28–31].

1.3 Mesh deformation and Geometric Conservation Law

Although the accurate computation of unsteady flows presents many difficul-

ties, such simulations are essential during the aircraft design process and especially

to evaluate the aeroelastic behaviour of aircraft components such as the wings, com-

pressor and turbine blades. Aeroelasticity is the study of fluid-structure interactions

between a body and a fluid flow. The accurate prediction of such behavior is critical

to avoid structural failure. It can be decomposed into two analysis, the static (or

steady) response of the body and its dynamic (unsteady) behavior such as vibra-

tions. For instance, the flutter instability is a dynamic phenomenon which occurs

when there is a positive feedback between the aerodynamic forces and the deflec-

tion of the structure. It produces a negative damping which leads either to self
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oscillations or to diverging oscillations of the body which eventually would trigger

structural failure.

Besides the complexity due to the unsteadiness of the flow, aeroelastic problems

require by definition the motion of the body. To account for the movement of the

boundaries, it becomes necessary to perform simulations on moving and potentially

deforming grids. One popular approach for such problems is the formulation of

the governing equations through an Arbitrary Lagrangian-Eulerian method [15, 35].

The approach requires the evaluation of the geometric quantities of the mesh such as

vertices positions and velocities. In addition, in order to treat arbitrary body-fitted

grids with complex geometry a mapping from the physical domain (x, y, z) to the

computational space (ξ, η, ζ) is needed. Due to the motion of the coordinate system,

additional care has to be taken to compute the mesh velocities and the mapping

metrics. Thomas and al. [38] were the first to formally define the necessity to solve

additional laws to preserve the conservation of the solver numerical scheme. Termed

as the Geometric Conservation Law, it is composed of two subsets of laws known as

the Surface Conservation Law (SCL) and the Volume Conservation Law (VCL). A

mathematical interpretation of the SCL relates that any cell volume has to be closed

by its surfaces whereas the VCL states that the temporal rate of change of the cell

volume is equal to the sum of the temporal rate of change of the algebraic volumes

swept by each face enclosing it through time. SCL differs from the VCL in the way

that it needs to be verified even for fixed grids (steady state) while the VCL appears

only on deforming grids.
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The violation of any of these laws may result in errors in the flow solution, for

instance it was reported that the violation of the GCL leads to inaccurate flutter

prediction for aeroelastic cases [20]. Further investigation on time marching schemes

clarified the theoretical status of the GCL, exposing its link to temporal-order accu-

racy [10], or stability conditions [7]. In addition, the Discrete Geometric Conservation

Law (DGCL) were derived in order to preserve the temporal accuracy for first-order

[33], second-order [19] and high temporal-order schemes [6, 22, 23]. These methods

are well adapted for time marching approaches, but their extension to the NLFD or

Time-Spectral methods is not straightforward since it becomes necessary to compute

all quantities : state vector, fluxes, mesh positions and mesh velocities, at all time

steps before applying the Fourier discretization. A popular approach to satisfy the

GCL is to deduce the mesh velocities from the prior knowledge of the volumetric

increments between successive time steps [22, 23, 43]. Following this idea, Tardif

and al. [37] introduced a methodology to enforce the GCL in the NLFD framework.

1.4 Research objectives

The main objective is to develop methods to satisfy the Geometric Conservation

Law in a three-dimensional finite volume framework with a temporal discretization

following the Non-Linear Frequency Domain method presented by McMullen and al.

[24]. In order to achieve this objective, the steps listed below were followed :

1. Investigate the approach from Tardif and al. [37] and demonstrate its limita-

tions;
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2. Propose and develop new methods to enforce the GCL in a NLFD framework

and demonstrate their impact on the convergence and accuracy, both analyti-

cally and numerically;

3. Evaluate and compare the impact of the developed methods on aerodynamic

simulations.

The dissertation is organized through the following structure. In Chapter 2, the

Navier-Stokes equations governing compressible viscous flows and their discretization

in space and time are presented along with the dynamic mesh deformation technique

using Radial Basis Functions (RBF). In Chapter 3, the Geometric Conservation Law

is introduced and the developed methodologies are derived analytically. Numerical

validation of the analytical results are presented in Chapter 4, and the impact on the

aerodynamic coefficients of a cylinder and a NACA0012 airfoil for different motions

is discussed in Chapter 5. Lastly conclusions, research contributions and future work

are presented in Chapter 6.
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CHAPTER 2
Flow solver framework

In this chapter, the characteristics of the flow solver employed to derive the

different methodologies to enforce the Geometric Conservation Law are presented.

Section 2.1 presents the formulation of the Navier-Stokes equations on a moving mesh

using the Arbitrary Lagrangian-Eulerian approach while its spatial discretization

on a hexahedral structured grid through a finite volume approach is introduced in

Section 2.2 and its discretization in physical time using the Non-Linear Frequency

Domain method is explained Section 2.3. The method employed for the dynamic

mesh deformation through the Radial Basis Functions technique is developed Section

2.4.

2.1 Governing equations

When solving the Navier-Stokes equations on a moving grid a popular approach

is to use an Arbitrary Lagrangian-Eulerian (ALE) formulation [2] which can be

derived from the differential form of the conservation equations given without source

terms by :

∂w

∂t
+∇ · [Fc(w) + Fv(w,∇w)] = 0, (2.1)

where w is the vector containing the conservative variables and often named the state

vector or solution, ∇w is the solution gradient, Fc(w) is the inviscid flux vector and

Fv(w,∇w) is the viscous flux vector.
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For a control volume Ω enclosed by a boundary ∂Ω with the corresponding unit

normal vector n̂ pointing outward, the integration of this differential form and the

application of the divergence theorem yields :

ˆ
Ω

∂w

∂t
dΩ +

˛
∂Ω

Fc(w) · n̂dS +

˛
∂Ω

Fv(w,∇w) · n̂dS = 0. (2.2)

Then applying the Leibniz integral rule to the first term leads to :

∂

∂t

ˆ
Ω

wdΩ +

˛
∂Ω

(Fc(w)−wVt) · n̂dS +

˛
∂Ω

Fv(w,∇w) · n̂dS = 0, (2.3)

where Vt = ∂x
∂t

is the contravariant velocity of the boundary enclosing the control

volume.

This equation is known as the Arbitrary Lagrangian-Euleurian formulation of

the Navier-Stokes equations and can be written as :

∂

∂t

ˆ
Ω

wdΩ +

˛
∂Ω

FM
c (w) · n̂dS +

˛
∂Ω

Fv(w,∇w) · n̂dS = 0, (2.4)

where FM
c (w) = Fc(w) − wVt is the convective flux vector on a moving grid, if

Vt = 0 then it is equal to the original inviscid flux vector.

In three dimensions, the state vector w, the vector of the convective fluxes on a

moving grid FM
c (w) and the viscous flux vector Fv(w,∇w) are expressed as follows
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using Einstein notation with the index i = 1, 2, or 3 :

w =



ρ

ρu1

ρu2

ρu3

ρE


; FM

c (w) =



ρV

ρu1V + n1p

ρu2V + n2p

ρu3V + n3p

ρHV


−



ρVt

ρu1Vt

ρu2Vt

ρu3Vt

ρEVt


,

and Fv(w,∇w) =



0

njτijδi1

njτijδi2

njτijδi3

ni(ujτij + k ∂Temp
∂xi

)


with the Kronecker symbol δij,

(2.5)

where ρ, u1, u2, u3, E, p, τij, Temp, k andH are respectively, the density, the Cartesian

velocities of the fluid, the total energy per unit mass, the pressure, the components

of the viscous stresses, the temperature, the thermal conductivity coefficient and the

total enthalpy per unit mass defined by :

H = E +
p

ρ
. (2.6)

In order to close the system of equations, the pressure is evaluated under the

assumption of ideal gas through the combination of the equation of state with the

definition of total energy (2.7) :

p = (γ − 1)

(
ρE − (ρu1)2 + (ρu2)2 + (ρu3)2

2ρ

)
, (2.7)

10



where γ is the heat capacity ratio.

Also, V = (u1, u2, u3) is the contravariant velocity of the fluid, Vt =

(
∂x1

∂t
,
∂x2

∂t
,
∂x3

∂t

)
is the contravariant velocity of the boundary enclosing the control volume and

n̂ = (n1, n2, n3) is the boundary unit normal vector pointing outward of the con-

trol volume. It yields :  V = V · n̂ = uini,

Vt = Vt · n̂ = ∂xi
∂t
ni.

(2.8)

By introducing a discretized control volume and an artificial dissipation flux

vector Fd to avoid an odd-even decoupling of the solution and to increase the ac-

curacy at discontinuities, equation (2.4) can be written under a semi-discretized

non-dimensionalized form as :

∂(Ωw)

∂t
+
∑
∂Ω

[(
FM

c −
√
γM∞

Re∞
Fv

)
S − Fd

]
= 0. (2.9)

The previous set of equations has to hold for each control volume and can be

expressed as a semi-discrete system of ordinary differential equations in time :

∂(Ωw)

∂t
+ R(w) = 0, (2.10)

where R(w) =
∑
∂Ω

[(
FM

c −
√
γM∞

Re∞
Fv

)
S − Fd

]
is the residual vector.

2.2 Spatial discretization

In this work, the discretization in space is performed employing a second-order fi-

nite volume method either on three-dimensional hexahedral grids or two-dimensional

quadrilateral meshes. Given an arbitrary control volume, the state vector w is eval-

uated at the cell centroid, while the residual vector R(w) is calculated through the
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summation of the fluxes over all the faces of the control volume. Using the indices

i, j and k to denote the cell centroid, the discretized form of equation (2.10) can be

written as such :

∂(Ωijkwijk)

∂t
+ R(wijk) = 0,

R(wijk) =

Nf∑
m=1

[(
FM

c m −
√
γM∞

Re∞
Fvm

)
Sm − Fdm

]
,

(2.11)

where m is the index of summation through the faces and Nf the number of faces

enclosing the control volume.

The modified convective flux is computed as the average of the fluxes at a cell

face and the artificial dissipation is evaluated using the Jameson-Schmidt-Turkel

(JST) scheme [17]. The viscous flux is computed using a central second-order dis-

cretization. The residual vector is calculated as the summation over the faces of the

control volume of the different fluxes.

2.3 Temporal discretization

The temporal discretization of the flow solver employs the NLFD approach de-

veloped by McMullen and al. [24]. Under the assumption that both the modified

state vector w̄ = Ωw and the residual vector R(w) are periodic in physical time,

the two quantities can be expanded as discrete Fourier series using a finite number

of harmonics,

w̄(t) =
N∑

k=−N

ŵke
i(2πk/T )t, (2.12)

R(w(t)) =
N∑

k=−N

R̂ke
i(2πk/T )t, (2.13)
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where i =
√
−1 is the imaginary unit, T is the temporal period, k is the wave number,

and N is the number of modes employed in the Discrete Fourier Transform (DFT).

The kth Fourier coefficients ŵk and R̂k are given by the following equations (2.14)

and (2.15), for −N ≤ k ≤ N :

ŵk =
1

2N + 1

2N∑
n=0

Ω(tn)w(tn)e−i(2πk/T )tn , (2.14)

R̂k =
1

2N + 1

2N∑
n=0

R(w(tn))e−i(2πk/T )tn , (2.15)

where their computations require the sampling of the modified state vector and the

residual vector for Nts = 2N + 1 time steps at equally spaced time instances such

that the nth time sample tn is :

tn =
n

2N + 1
T , for n = 0, .., 2N. (2.16)

At this point, it is important to emphasize that the state and residual vectors

need to be evaluated at all time instances before transferring in the Fourier domain,

this is a fundamental difference with the time marching approach. The Fourier

representation is then substituted into the semi-discrete form of the Navier-Stokes

equations (2.10) to yield :

∂

∂t

(
N∑

k=−N

ŵke
i(2πk/T )t

)
+

N∑
k=−N

R̂ke
i(2πk/T )t = 0, (2.17)

⇔
N∑

k=−N

i2πk

T
ŵke

i(2πk/T )t +
N∑

k=−N

R̂ke
i(2πk/T )t = 0. (2.18)
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By exploiting the orthogonality property of the Fourier basis, this leads to a set

of 2N + 1 equations (2.19), each being associated to a wave number k :

i
2πk

T
ŵk + R̂k = 0 for −N ≤ k ≤ N. (2.19)

Since the representation of R̂k as a function of ŵk is not straightforward, an

unsteady residual R̂∗k is defined and driven to zero using a pseudo-time marching

approach such that :
R̂∗k = i

2πk

T
ŵk + R̂k

∂ŵk

∂t∗
+ R̂∗k = 0

, for −N ≤ k ≤ N. (2.20)

Thus at convergence, R̂∗k = 0 and equation (2.20) is satisfied for each wave number.

The new periodic solution is then transferred back to the physical time domain

using an Inverse Fourier Discrete Transform (IDFT) and evaluated at each time

instance tn by dividing by the volume :

w(tn) =
w̄(tn)

Ω(tn)
, for 0 ≤ n ≤ 2N. (2.21)

The equation in pseudo-time can be solved using any time-stepping scheme. In

this work, we use a hybrid five-stage Runge-Kutta scheme with blending coefficients

for the artificial dissipation [16].

2.4 Dynamic mesh deformation

The deformation of the mesh is performed using the Radial Basis Functions

(RBF) [37]. The method is based on the assumption that the movement of all grid
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points can be interpolated from an a priori known motion of a set of points called

the RBF points. In this study, the RBF points are always a subset of the grid points

at the boundary of the domain, their displacements relative to the undeformed mesh

are prescribed at each time instance using analytical functions. Because of the NLFD

method, the mesh positions and velocities are therefore computed and stored for all

Nts time steps. For any grid point vj of position vector xvj in the undeformed mesh,

its displacement in the x-direction sx(xvj , t) is defined as :

sx(xvj , t) =

NRBF∑
i=1

αi(t)φ(||xvj − xri ||2), (2.22)

where NRBF is the number of RBF points, αi are the interpolation coefficients, xri

is the position vector of the ith RBF point in the undeformed grid and φ is some

basis function depending on the Euclidean distance ||xvj − xri ||2 between the points

vj and ri. In this work, Wendland C0’s basis function [39] is considered, it is defined

as follows:  (1− l)2 if l < 1

0 if l ≥ 1
, with l =

||xvj − xri ||2
R

, (2.23)

where R is the support radius relative to the surface of RBF points. Since the equa-

tion (2.22) holds for any grid point whether it is a RBF point or a standard grid point,

the RBF points are denoted with the subscript r while the grid (or volume) points

are denoted with the subscript v. Then in the x-direction, the displacements of all

RBF points and the interpolated displacements of all grid points are regrouped re-

spectively in the vector ∆xr and in the vector ∆xv. Therefore the a priori unknown
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displacements ∆xv are obtained through equation (2.24) :

∆xv = A(M−1)∆xr, (2.24)

where :

M =



φr1r1 φr1r2 . . . φr1rNRBF

φr2r1
. . .

...

...

φrNRBF r1 · · · φrNRBF rNRBF


,A =



φv1r1 φv1r2 . . . φv1rNRBF

φv2r1
. . .

...

...

φvNgridr1 · · · φvNgridrNRBF


,

(2.25)

with :

φvirj = φ
(
||xvi − xrj ||2

)
, (2.26)

and Ngrid is the total number of grid points. The displacements in the y and z

directions can be computed with the same matrices given in equation (2.25), by

considering the RBF points displacements in the corresponding direction.

Similarly, the mesh velocities for any grid point are computed using the Radial

Basis Functions for Velocities (RBFV) by interpolating the a priori known velocities

of the RBF points which leads to the following expression :

vv,dir = A(M−1)vr,dir, (2.27)

where vv,dir is the vector of the velocities of the grid points and vr,dir is the vector

of the velocities of the RBF points and the direction is given by dir = x, y, or z.
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CHAPTER 3
Derivation and enforcement of the Geometric Conservation Law

As previously stated our interest is focused on the Volume Conservation Law

aspect of the GCL. Under integral form the VCL for a control volume Ω enclosed by

a boundary ∂Ω can be written as follows :

∂

∂t

ˆ
Ω

dΩ−
˛
∂Ω

(Vt · n̂)dS = 0. (3.1)

where Vt is the mesh velocity vector and n̂ is the unit normal vector to the surface

∂Ω pointing outward. The law relates only on geometrical considerations and is

always satisfied under continuous form and implicitly satisfied for rigid grid motion.

It arises from the deformation of the mesh and is closely related to the preservation

of uniform flow by the numerical scheme. Therefore in order to obtain a consistent

solution method, the GCL must be discretized using the same numerical scheme

employed to discretize the primary conservation laws [10]. In our case, it yields a

hexahedral stuctured finite-volume framework and a temporal discretization using

the NLFD method.

A first approach to enforce the VCL in the NLFD context was presented by

Tardif and al. [37] but more investigation is needed to determine its limitations. In

this chapter, further developments are added to this approach in Section 3.2 which

expose its analytical limits and new methods are proposed in Sections 3.3 and 3.4.
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3.1 Derivation of the GCL in the NLFD framework

Considering any discretized control volume Ω enclosed by Nf faces, then equa-

tion (3.1) can be written as :

∂Ω

∂t
−

Nf∑
m=1

¨
∂Ωm

(Vt · n̂m)dS = 0, (3.2)

where n̂m is the unit normal vector to the face ∂Ωm pointing outward. Then the

integrated face mesh velocities (IFMV) Gm(t) corresponding to the temporal rate of

change of the algebraic volume swept by each face through time are introduced in

equation (3.3) :

Gm(t) =

¨
∂Ωm

(Vt · n̂m)dS, (3.3)

and also G(t) is the sum of the IFMV over all faces of the control volume :

G(t) =

Nf∑
m=1

Gm(t). (3.4)

Then equation (3.2) can be written as :

∂Ω

∂t
−G(t) = 0. (3.5)

Under the assumption that the volume Ω and the sum of the integrated face mesh

velocities G are periodic functions of time, the NLFD discretization can be applied :

Ω(t) =
N∑

k=−N

Ω̂ke
i(2πk/T )t, (3.6)

G(t) =
N∑

k=−N

Ĝke
i(2πk/T )t. (3.7)
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By substituting these expressions into equation (3.5), it yields :

∂

∂t

(
N∑

k=−N

Ω̂ke
i(2πk/T )t

)
−

N∑
k=−N

Ĝke
i(2πk/T )t = 0 (3.8)

⇔

(
N∑

k=−N

i2πk

T
Ω̂ke

i(2πk/T )t

)
−

N∑
k=−N

Ĝke
i(2πk/T )t = 0. (3.9)

Then by exploiting the orthogonality property of the Fourier basis, it leads to a

system of 2N + 1 equations, each corresponding to a wave number k :

i2πk

T
Ω̂k = Ĝk for −N ≤ k ≤ N. (3.10)

The set of equations (3.10) provides the necessary condition to enforce the GCL in

the NLFD approach. Such criterion is not satisfied in general and has to be enforced

through the correct computation of the cell volume and the integrated face mesh

velocities, in a way consistent with the solver numerical scheme. Since the volume is

usually exactly known, one popular approach in time marching methods is to split

the GCL over each face [22, 23, 43]. In the current framework, the volume of a cell

can be expressed as the sum of the volume at a reference initial instant t0 and the

algebraic (positive or negative) volumetric increments due to each face Ωm relative

to this reference instant :

Ω(t) = Ω(t0) +

Nf∑
m=1

Ωm(t). (3.11)

By substituting relations (3.11) and (3.4) into the equation (3.5), it yields :

Nf∑
m=1

(
∂Ωm

∂t
−Gm(t)

)
= 0. (3.12)
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Then for each face m enclosing the discretized control volume, we need to ensure the

relation (3.13) :

∂Ωm

∂t
= Gm(t). (3.13)

However, even if the positions of the mesh vertices and their velocities are known

at all time instances from the dynamic mesh deformation, the implementation of

the GCL using this relation is not straightforward using the NLFD method. In the

following, volumetric increments are always considered as algebraic values which can

either be positive or negative.

3.2 Approach of Tardif and al. [37]

The first approach developed by Tardif and al. [37] is based on a linear repre-

sentation of the volumetric increments relative to a reference time instance t0. For

any face m defined by its vertices the induced volumetric change would simply be

represented by drawing straight lines from their initial position at t0 to their position

at time instant t, see Figure 3–1.

This approach has two advantages : first, it is easy to compute the volumetric

increments at each time instant using standard cell volume computational algorithms

; second, the volumetric increments due to each face are time periodic as long as the

movement of the vertices is periodic.

Once the volumetric increments are known for 2N + 1 time instances defined by

equation (2.16), their Fourier representations are calculated :

Ωm(t) =
N∑

k=−N

Ω̂m,ke
(i2πk/T )t, (3.14)
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Figure 3–1: Example of linear volumetric increment in 2D relatively to a reference
time instant t0

and the Fourier formulations of the integrated face mesh velocities for each face m

are introduced :

Gm(t) =
N∑

k=−N

Ĝm,ke
(i2πk/T )t. (3.15)

Then by substituting, the Fourier representations into criteria (3.13), and ex-

ploiting the orthogonality of the Fourier basis, a system of 2N + 1 equations (3.16)

is obtained for each face m :

i2πk

T
Ω̂m,k = Ĝm,k for −N ≤ k ≤ N. (3.16)

Therefore, the GCL are satisfied independently for each face of the control volume

by computing the Fourier coefficients Ĝm,k and then applying an IDFT to transfer

back the integrated face mesh velocities to the temporal domain. Despite its attrac-

tiveness, this method is restricted to linear movements due to the manner in which

the volumetric increments are computed. In general, the motion would not be linear
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and such representation of the volumetric increments will not be sufficient to ensure

the correct computation of the IFMV.

Moreover the NLFD method is based on the assumption that the quantities are

time periodic and can be expanded in Fourier series, but having a time periodic

movement of the vertices does not guarantee time periodic volumetric increments

but only that their temporal derivative will be periodic. This statement will be

demonstrated through the following example.

A 2D quadrilateral element is considered with the following motion defined by

equation (3.17) and shown Figure 3–2 :

α(t) = 2πt,

r1 = r1,0,

r2 = r2,0,

r3 = r3,0 +R(1− cos(α(t)))ex +R(sin(α(t)))ey,

r4 = r4,0,

(3.17)

where the index 0 refers to the initial position of the grid, R is the radius defining the

amplitude of the circular motion and ex and ey are the unit vectors in respectively

the x and y directions.

For the face defined by the vertices r2 and r3, the derivation of the expression

of the exact volumetric increment in the x direction and its time derivative leads to

the following expressions respectively (3.18) and (3.19) :

Ω23,x(t) =
R2

2
(α(t)− sin(α(t))) +

Ry3,0

2
(1− cos(α(t))), (3.18)
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Figure 3–2: (a) The initial undeformed quadrilateral element is shown in black while
the movement of the mesh points is presented in red with two deformed configurations
of the cell in dashed lines, (b) Exact volumetric increment for the face 2-3 in the x
direction relatively to the initial configuration (in dash dot line) in blue

∂Ω23,x(t)

∂t
=
R2

2

∂α

∂t
(1− cos(α(t))) +

Ry3,0

2

∂α

∂t
sin(α(t)), (3.19)

where the length y3,0 = (r3,0 · ey).

Thus the temporal derivative of the volumetric increment is periodic whereas

the volumetric increment is the sum of a linear term and a periodic term and the

direct application of the NLFD method on the exact volumetric increment is not

possible since the linear term is not expandable as a Fourier serie. Additional work

is required to ensure equation (3.13) is compliant with the NLFD method.

3.3 New method based on the exact volumetric increments

In this section, first a new methodology which relies on the exact volumetric

increments is introduced analytically in Section 3.3.1. Then, the accuracy due to

the numerical discretization of the method on hexahedral grids is derived in Section

3.3.2 and then extended to quadrilateral grids in Section 3.3.3.
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3.3.1 Method

In this section, we introduce and demonstrate the new Theorem 3.3.1,

Theorem 3.3.1. Let Ω be a discretized control volume, enclosed by Nf faces, and

subjected to a periodic motion of its vertices. Then given the knowledge of the exact

volumetric increments Ωm for m = 1, ..., Nf , a sufficient condition to ensure the

satisfaction of GCL in the NLFD framework is the computation of the integrated

face mesh velocities, where the zeroth and higher modes can be expressed as

Ĝm,0 =
Ωm(T )

T
, (3.20)

Ĝm,k =
i2πk

T
p̂m,k for −N ≤ k ≤ N, k 6= 0, (3.21)

where Ĝm,k and p̂m,k are the Fourier coefficients of respectively the integrated face

mesh velocities and the periodic parts of the exact volumetric increments given by,

pm(t) = Ωm(t)−
(

Ωm(T )

T

)
t. (3.22)

Proof. Under the assumption that the motion of the vertices is periodic, the tempo-

ral rate of change of the algebraic volume swept by each face through time is periodic.

Thus the temporal derivatives of the volumetric increments and the integrated face

mesh velocities are periodic, the DFT is applied to the equation (3.13) leading to :

Gm(t) =
∂Ωm

∂t
= Ĝm,0 +

N∑
k=−N,k 6=0

Ĝm,ke
i 2π
T
kt, (3.23)
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where Ĝm,k, for − N ≤ k ≤ N are the Fourier coefficients of both the temporal

derivative of the volumetric increment and the integrated face mesh velocity of a

face m.

By integrating the equation in time, any volumetric increment is expressed as :

Ωm(t) =

ˆ
∂Ωm

∂t
dt = Ω̂m,0 + Ĝm,0t+

N∑
k=−N,k 6=0

T

i2πk
Ĝm,ke

i 2π
T
kt. (3.24)

where Ω̂m,0 is a constant of integration. Then any volumetric increment can be

interpreted as the sum of a linear term lm(t) and a periodic function pm(t) defined

by :

lm(t) = Ĝm,0t, (3.25)

pm(t) = Ω̂m,0 +
N∑

k=−N,k 6=0

T

i2πk
Ĝm,ke

i 2π
T
kt. (3.26)

Knowing the values of the volumetric increments at t = t0 and t = t0 + T , and

exploiting the periodicity of the functions pm, yields :

Ωm(t0) = Ĝm0t0 + pm(t0)

Ωm(t0 + T ) = Ĝm0(t0 + T ) + pm(t0 + T )

pm(t0) = pm(t0 + T )

Ĝm,0 =
Ωm(t0 + T )− Ωm(t0)

T
(3.27)

Hence the zeroth Fourier coefficients of the integrated face mesh velocities are known

through equation (3.27) applied for each face m and the linear parts lm of the vol-

umetric increments can be computed at each instant. Then, an expression of the
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periodic part of any volumetric increment pm is obtained as :

pm(t) = Ωm(t)− lm(t) = Ωm(t)−
(

Ωm(t0 + T )− Ωm(t0)

T

)
t. (3.28)

Usually t0 would be taken as the initial time instant t0 = 0 corresponding to the

undeformed configuration of the mesh, for this specific reference time instant Ωm(0) =

0, and the previous expression can be further simplified into equation (3.29) :

pm(t) = Ωm(t)−
(

Ωm(T )

T

)
t. (3.29)

Therefore, at each instant t the periodic parts of the volumetric increments pm are

known and for each face m we introduce the Fourier coefficients for pm, noted as p̂m,k

for −N ≤ k ≤ N . By calculating the temporal derivative in Fourier space of pm and

exploiting the orthogonality of the Fourier basis functions, the rest of the Fourier

coefficients of the integrated face mesh velocities Ĝm,k are deduced for each face m

from a system of 2N equations

Ĝm,k =
i2πk

T
p̂m,k for −N ≤ k ≤ N, k 6= 0. (3.30)

Since the derivation in Fourier space puts to zero the contribution from the zeroth

coefficient, the values of the integration constants Ω̂m,0 are not relevant to compute

the integrated face mesh velocities. �

Finally the procedure to compute the IFMV to enforce GCL by deducing the

temporal derivative of the volumetric increment for each face is given by the pseudo-

code (Algorithm 1). It is important to note that since the values of the volumetric
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for n = 0, ..., 2N do
Calculate the mesh deformation using the RBF for equally space time
instances tn ;

end
for face = 1, ..., facemax do

for n = 0, ..., 2N + 1 do
Calculate the volumetric increments Ωface(tn) ;

end

Deduce the zeroth Fourier coefficient via Ĝface,0 =
Ωface(t2N+1)

T
;

for n = 0, ..., 2N do
Extract the periodic part of the volumetric increment via
pface(tn) = Ωface(tn)− Ĝface,0tn ;

end
Compute the Fourier coefficients p̂face,k via FFT on pface(t) ;
for k = −N, ..., 1 and k = 1, ...N do

Deduce the kth Fourier coefficient of the integrated face mesh velocity

via Ĝface,k =
i2πk

T
p̂face,k ;

end

Compute the integrated face mesh velocity Gface(t) via IFFT on Ĝface,k

with −N ≤ k ≤ N ;

end

Algorithm 1: Pseudo-code representing the derived procedure to compute
the integrated face mesh velocities and ensure GCL in the NLFD framework
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increments are required at t = T in order to deduce the zeroth Fourier coefficients

Ĝm,0 through equation (3.20), one additional time step is needed t2N+1 compared to

the number of time steps for the flow solver. However for this final time step the

configuration of the mesh is the same as the initial (the undeformed mesh), thus no

additional time step is needed for the mesh deformation. For this procedure, the

key point is to compute the exact volumetric increments as accurately as possible in

order to preserve the spectral convergence of the NLFD method.

3.3.2 Practical enforcement and error estimation on hexahedral grids

In practice the accuracy of the previous method highly depends on the accu-

racy of the computation of the volumetric increments. For a hexahedral grid, as

each face m sweeps through the computational domain, between time intervals they

form 8-vertex cells with 12 straight line segment edges but 6 faces which may no

longer be planar depending on the mesh deformation; thus these 8-vertex cells may

not form hexahedra. However 8-vertex cells with 12 straight line segment edges are

topologically equivalent to hexahedra independent of the planarity of the faces [5]

and sometimes termed as “general hexahedra” [44]. The surfaces of any “general

hexahedron” can be defined using a trilinear mapping [5] between the 8-vertex cells

in physical space with 12 straight line segment edges for either planar or non planar

faces and a reference cube in the computational domain Figure 3–3. Thanks to this

mapping which depends only on the vertices positions and the numeration conven-

tion, the volume of any of these general hexahedra can be computed. This yields the

following Definitions 3.3.2, 3.3.3 and 3.3.4.

28



Definition 3.3.2. The terminology general hexahedron is employed to design a 8-

vertex cell with 12 straight line segment edges for either planar or non planar faces

which is topologically equivalent to a hexahedron.

Definition 3.3.3. The volume of any “general hexahedron” (Definition 3.3.2) as a

function of the position vectors of the vertices in the physical space ri for i = 1, ..., 8,

is evaluated through,
Ωh = (Ω4321 + Ω5678 + Ω3487 + Ω1265 + Ω4158 + Ω2376),

with Ωijkl =
1

12
(rj + rk) · ((ri + rj)× (ri + rl)).

(3.31)

x
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η

ζ
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T −1

Figure 3–3: Trilinear mapping between a “general hexahedron” (Definition 3.3.2) in
the physical space and a reference cube in the computational domain

Definition 3.3.4. For any face m of a hexahedral cell, the exact volumetric in-

crement is estimated through a sum of “general hexahedra” (Definition 3.3.2) each

corresponding to the approximated volumetric increment between two time samples

29



tn−1 and tn and noted as Ωm,h(tn), (see Figure 3–4) :

Ωm(t0) = 0,

Ωm(tn) =

(
n∑
k=1

Ωm,h(tk)

)
+ εTm(tn), for 1 ≤ n ≤ 2N + 1,

(3.32)

where t0 = 0 is the initial instant corresponding to the undeformed mesh and εTm(tn)

is the truncation error at time instant tn.

ra(tn−1)
rb(tn−1)

rc(tn−1)

rd(tn−1)

ra(tn)

rb(tn)

rc(tn)

rd(tn)

(a)

n− 1

n n+ 1

Ωh(tn)

Ωh(tn+1)

(b)

Figure 3–4: (a) Approximated volumetric increment between two time steps tn−1

and tn : Ωh(tn) (b) Approximation of a volumetric increment as a sum of “general
hexahedra” (Definition 3.3.2)

Now that the mathematical tools to compute the volumetric increments are in-

troduced, the accuracy of the procedure presented in Section 3.3.1 can be established,

we have the first Lemma 3.3.5,

Lemma 3.3.5. In the context of Theorem 3.3.1, and under the Definitions 3.3.2,

3.3.3 and 3.3.4, for any face m the temporal-order of accuracy of the zeroth Fourier

coefficient of the integrated face mesh velocity Ĝm,0 is limited to one.

30



Proof. We introduce the scalar triple product application L defined by,

L =

 R3 × R3 × R3 → R

(V1,V2,V3) → V1 · (V2 ×V3) = det(V1,V2,V3)
(3.33)

due to the properties of the determinant this application is a 3-linear alternating

form meaning that if any of the three vector is a linear combination of the two others

the result is zero.

Recalling that the volume of any “general hexahedron” (Definition 3.3.2) is com-

puted as a function of the position vectors of the vertices in the physical space ri for

i = 1, ..., 8 through the following equation (see Definition 3.3.3) :
Ωh = (Ω4321 + Ω5678 + Ω3487 + Ω1265 + Ω4158 + Ω2376),

with Ωijkl =
1

12
L(rj + rk, ri + rj, ri + rl).

(3.34)

For each face m the path of the four corresponding vertices between two time

steps is linearly approximated, as shown in Figure 3–4. Then, for any of these vertices

ri, i = a, b, c, d at the nth time sample, we have the Taylor expansion :

ri(tn) = ri(tn−1)+

(
∂ri
∂t

(tn−1)

)
(tn−tn−1)+

1

2

(
∂2ri
∂t2

(tn−1)

)
(tn − tn−1)2 +O((tn − tn−1)3)︸ ︷︷ ︸

Truncation error on the vertex path

.

(3.35)
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The volumetric increment is then defined by the vertices positions with the following

indexation, r1 = ra(tn−1), r2 = rb(tn−1), r3 = rc(tn−1), r4 = rd(tn−1),

r5 = ra(tn), r6 = rb(tn), r7 = rc(tn), r8 = rd(tn).
(3.36)

By substituting the Taylor expansions into the vertices positions to compute the

volume of the volumetric increment through equation (3.34), and then by exploiting

the 3-linearity of the triple product application, the order of the truncation error is

evaluated. The lowest order terms of the truncation error are given by one of the

following generic forms :

L(ri(tn−1), rj(tn−1), εk(tn)) =

{
ri(tn−1) ·

[
rj(tn−1)× 1

2

(
∂2rk
∂t2

(tn−1)

)]}
τ 2 +O(τ 3),

L(ri(tn−1), εj(tn), rk(tn−1)) =

{
ri(tn−1) ·

[
1

2

(
∂2rj
∂t2

(tn−1)

)
× rk(tn−1)

]}
τ 2 +O(τ 3),

L(εi(tn), rj(tn−1), rk(tn−1)) =

{
1

2

(
∂2ri
∂t2

(tn−1)

)
· [rj(tn−1)× rk(tn−1)]

}
τ 2 +O(τ 3).

(3.37)

where i, j and k are the vertices indices. Therefore for any face m, the truncation

error εTm,h on the volumetric increment between two time steps tn−1 and tn is of order

two in τ = (tn− tn−1). In addition, it is possible to write the lowest order term of the

error as a linear combination of the previous forms equation (3.37), thus there exists

a scalar function ETm depending on the vertices paths ri and their second temporal
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derivatives
∂2ri
∂t2

such that,

εTm,h(tn) = ETm(tn−1)τ 2 +O(τ 3). (3.38)

Due to the temporal periodicity of the vertices paths ri, the function ETm is also

periodic. Recalling that the number of time steps Nts = 2N + 1 and using the

definition of the time instance, the difference (tn − tn−1) is written as

τ =
[n− (n− 1)]T

2N + 1
=

T

Nts

. (3.39)

Thus the truncation error during the estimation of the volumetric increment between

two time steps at the nth instant and noted εTm,h(tn) is of order two in τ and can be

expanded as :
εTm,h(t0) = 0,

εTm,h(tn) = ETm(tn−1)τ 2 +O(τ 3), for 1 ≤ n ≤ 2N + 1,

(3.40)

where ETm(t) is a scalar periodic function depending on ri(t), and
∂2ri
∂t2

, for i = a, b, c, d.

In order to estimate the error committed on the exact volumetric increment

approximated at the nth time sample, these errors have to be summed, and yields :

εTm(t0) = 0,

εTm(tn) =
n∑
k=1

εTm,h(tk) =

(
n∑
k=1

ETm(tk−1)

)
τ 2 + nO(τ 3), for 1 ≤ n ≤ 2N + 1.

(3.41)
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Hence, for 1 ≤ n ≤ 2N + 1 :

|εTm(tn)| ≤ n

(
max

1≤n≤2N+1
|ETm(tn−1)|

)
τ 2 + nO(τ 3) = nO(τ 2) (3.42)

Thus for n = Nts :

|εTm(tNts)| ≤ NtsO

((
T

Nts

)2
)

= O(τ) (3.43)

The order of the error to approximate the exact volume of the volumetric increment

may decrease over a period from 2 to 1 for the final value. Thus for any face m, the

order of the truncation error εTm(tNts) done to compute the zeroth Fourier coefficient

of any integrated face mesh velocity Ĝm,0 is one. �

Recalling that the zeroth Fourier coefficients are then used to extract the periodic

part of any volumetric increment see Theorem 3.3.1, the error committed on the

rest of the Fourier coefficients of the integrated face mesh velocities is given by the

following Lemma 3.3.6,

Lemma 3.3.6. In the context of Theorem 3.3.1, and under the Definitions 3.3.2,

3.3.3 and 3.3.4, for any face m the temporal-order of accuracy of the Fourier co-

efficients Ĝm,k, for −N ≤ k ≤ N with k 6= 0, is limited to between one and two.

Proof. For 1 ≤ n ≤ Nts, the periodic part of a volumetric increment can be further
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expanded as :

pm(tn) = Ωm(tn)− Ωm(tNts)

T
tn

=
n∑
k=1

Ωm,h(tk) + εTm(tn)−


Nts∑
k=1

Ωm,h(tk) + εTm(tNts)

T

(
nT

Nts

)


From equation (3.41), we have :

pm(tn) =
n∑
k=1

Ωm,h(tk) +

(
n∑
k=1

ETm(tk−1)

)
τ 2 + nO(τ 3)

−


Nts∑
k=1

Ωm,h(tk) +

(
Nts∑
k=1

ETm(tk−1)

)
τ 2 + (Nts)O(τ 3)

T

(
nT

Nts

)


=

(
n∑
k=1

Ωm,h(tk)−
n

Nts

Nts∑
k=1

Ωm,h(tk)

)
+

[
n∑
k=1

ETm(tk−1)− n

Nts

Nts∑
k=1

ETm(tk−1)

]
τ 2 + nO(τ 3).

Then the truncation error on the periodic part of any volumetric increment pm(t) is

given for 1 ≤ n ≤ Nts by :

εTpm(tn) =

[
n∑
k=1

ETm(tk−1)− n

Nts

Nts∑
k=1

ETm(tk−1)

]
τ 2 + nO(τ 3). (3.44)
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Since the bracketed term in equation (3.44) is dependent of n, the order of

accuracy for any n is still unclear. To refine the determination of the order of

accuracy during the computation of pm, the approximation of an integral using the

Riemann sum is exploited.

For any T -periodic function f at least three times continuous (f ∈ C3([0;T ]),

we have the following asymptotic development (3.45) where f ′ = ∂f
∂t

:

RNts =
T

Nts

Nts−1∑
k=0

f (tk) ,

RNts =

ˆ T

0

f(t)dt− T

2Nts

(f(T )− f(0)) +
T 2

12(Nts)2
(f ′(T )− f ′(0)) +O

((
T

Nts

)3
)
.

(3.45)
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Then applying this result to the truncation error εTpm(tn), for 1 ≤ n ≤ Nts :

εTpm(tn) =

[
n−1∑
k=0

ETm(tk)−
n

T

T

Nts

Nts−1∑
k=0

ETm(tk)

]
τ 2 + nO(τ 3)

=

[
n−1∑
k=0

ETm(tk)−
n

T

(ˆ T

0

ETm(t)dt− τ

2
(ETm(T )− ETm(0))

+
τ 2

12
(ETm

′
(T )− ETm

′
(0)) +O(τ 3)

)]
τ 2 + nO(τ 3)

=

[
n−1∑
k=0

ETm(tk)− n
(
〈ETm〉T −

τ

2T
(ETm(T )− ETm(0))

+
τ 2

12T
(ETm

′
(T )− ETm

′
(0))

)]
τ 2 + nO(τ 3)

=

[
n−1∑
k=0

ETm(tk)− n〈ETm〉T

]
τ 2 + nO(τ 3)

=

[
n−1∑
k=0

(
ETm(tk)− 〈ETm〉T

)]
τ 2 + nO(τ 3),

(3.46)

where 〈.〉T represents the mean of a function on the segment [0;T ]. Taking advantage

of the fact that the function ∆ETm = ETm − 〈ETm〉T is T -periodic with zero mean value
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and exploiting a second time the expression (3.45), yields for n = Nts :{
Nts−1∑
k=0

[(
ETm(tk)− 〈ETm〉T

)]}
τ =

ˆ T

0

(
∆ETm

)
dt︸ ︷︷ ︸

=0

− τ
2
(∆ETm(T )−∆ETm(0)) +O(τ 2)

= −τ
2

(ETm(T )− ETm(0)) +O(τ 2).

(3.47)

Substituting back the expression (3.47) into the final equation in (3.46) for n = Nts,

leads to :

εTpm(tNts) = −τ 2(ETm(T )− ETm(0)) +NtsO(τ 3) = O(τ 2). (3.48)

In summary the truncation error committed on the periodic part of any volu-

metric increment follows the equation :

εTpm(t0) = 0,

εTpm(tn) =

{
n−1∑
k=0

[(
ETm(tk)− 〈ETm〉T

)]}
τ 2 + nO(τ 3), for 1 ≤ n ≤ 2N.

εTpm(tNts) = O(τ 2).

(3.49)

In general, the order of the truncation error on the approximation of the periodic

part of any volumetric increment used as input for the NLFD method is of order

between one and two. Analytically, we observe that for each face m this order is

determined by the sum
n−1∑
k=0

[(
ETm(tk)− 〈ETm〉T

)]
, which is bounded for 1 ≤ n ≤ Nts
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by

{
Nts max

1≤k≤Nts
|
(
ETm(tk)− 〈ETm〉T

)
|
}

. This upper bound ensures that in the worst

case, the order of accuracy is 1. However asymptotically it is reasonable to assume

that for small and high values of n, the term
n−1∑
k=0

[(
ETm(tk)− 〈ETm〉T

)]
is small enough

to consider that the truncation error is of order 2 whereas for n in the middle of the

range [1;Nts], the order is greater than 1 but lesser than 2. �

Assuming that the spectral convergence of the Fourier transform is reached and

taking advantage of its bijectivity, the truncation error on the Fourier coefficients

Ĝm,k and finally on the integrated face mesh velocities is of order between 1 and 2.

Therefore the accuracy of the procedure is given by the following Corollary 3.3.7 :

Corollary 3.3.7. In the context of Theorem 3.3.1, and under the Definitions 3.3.2,

3.3.3 and 3.3.4, for any face m the temporal-order of accuracy of the integrated face

mesh velocity is limited to between one and two.

Thus it is important to note that even if the method described in Section 3.3.1

enforced the Geometric Conservation Law, the integrated face mesh velocities are

determined within an accuracy of order 1 to 2. This is a disadvantage since the

benefit of the spectral convergence of the NLFD method.

3.3.3 Extension to two-dimensional quadrilateral grids

The extension of these results to a 2D quadrilateral grid where the exact volu-

metric increments are approximated through a sum of quadrilaterals (see Figure 3–5)

is straightforward following the same procedure as in Section 3.3.2. The volume of
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any quadrilateral can be approximated using a bilinear mapping between the phys-

ical domain and the computational space see Figure 3–6. This yields the adapted

definitions.

n− 1

n

n+ 1

Ωq(tn)
Ωq(tn+1)

Figure 3–5: Approximation of a volumetric increment as a sum of quadrilaterals
representing the linear volumetric increments between two successive time steps

x

y

ξ

η
1

2

3
4

1 2

34

B

B−1

Figure 3–6: Bilinear mapping of a quadrilateral in the physical space (x, y) to a
reference square in the computational domain (ξ, η)

Definition 3.3.8. The volume of any quadrilateral as a function of the position

vectors of the vertices in the physical domain ri for i = 1, ..., 4, is evaluated through,

Ωq =
1

2
Det [(r3 − r1) , (r4 − r2)] . (3.50)
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Definition 3.3.9. For any face m of a quadrilateral cell, the exact volumetric in-

crement is estimated through a sum of quadrilaterals each corresponding to the ap-

proximated volumetric increment between two time samples tn−1 and tn and noted as

Ωm,q(tn), (see Figure 3–4) :

Ωm(t0) = 0,

Ωm(tn) =

(
n∑
k=1

Ωm,q(tk)

)
+ εTm(tn), for 1 ≤ n ≤ 2N + 1,

(3.51)

where t0 = 0 is the initial instant corresponding to the undeformed mesh and εTm(tn)

is the truncation error at time instant tn.

By employing the new Definitions 3.3.8 and 3.3.9, and exploiting the bilinearity

of the determinant in the volume calculation and following the same proofs as that

shown for Lemmas 3.3.5 and 3.3.6, the Theorem 3.3.10 that ensures the correct order

of accuracy of the Integrated Face Mesh Velocities is derived :

Theorem 3.3.10. In the context of Theorem 3.3.1, and under the Definitions 3.3.8

and 3.3.9, for any face m the temporal-order of accuracy of the integrated face mesh

velocities is limited to between one and two.

3.4 Alternative approach based on the exact integrated face mesh veloc-
ities

3.4.1 Trilinear mapping

The computation of the metrics of a grid is often easier in a Cartesian grid,

for this reason a mapping between the curvilinear physical domain and a Cartesian
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computational space can be performed. In this work, a trilinear mapping is already

used to compute the volume of any general hexahedron (Definition 3.3.2) [5], but

it can also be used to compute the temporal derivative of the volume, the surface

vectors and the exact integrated face mesh velocities as long as the position and

velocity vectors of the vertices are known. This section develops the derivation of

these expressions.

Notation :

By default variables are expressed in the physical domain unless it is specified

otherwise with the index “C”.

T ↔ Trilinear mapping

C ↔ computational space : (ξ, η, ζ)

m ↔ any face of a hexahedral cell

n ↔ normal vector

n̂ ↔ unit normal vector

(3.52)

Derivation :

The mapping T from the physical domain to the computational space is intro-

duced :

T =

 (DC)→ (D)

(ξ, η, ζ)→ (x, y, z) = (T (ξ, η, ζ)),
(3.53)

where (DC) is the computational space and (D) is the physical domain. The appli-

cation is defined by considering a reference cube in the computational space which
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enables the mapping of any “general hexahedron” in the physical domain. A neces-

sary and sufficient condition to ensure the invertibility of the mapping is the strict

positivity of the Jacobian for any point of the element. However no simple relations

exist in order to verify the positivity of the Jacobian in 3D [18, 21].

In this work, the position vector r = (x, y, z) in the physical domain is mapped

through rC = (x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ)) based on the location vectors in the

physical domain of the vertices ri = [xi, yi, zi] i = 1, ..., 8 with the following conven-

tion derived from Figure 3–3 :

rC = (1− ξ)(1− η)(1− ζ)r1 + ξ(1− η)(1− ζ)r2 + ξη(1− ζ)r3 + (1− ξ)η(1− ζ)r4

+(1− ξ)(1− η)ζr5 + ξ(1− η)ζr6 + ξηζr7 + (1− ξ)ηζr8,

(3.54)

where 0 ≤ ξ, η, ζ ≤ 1.

The velocity vector v = (vx, vy, vz) in the physical domain is mapped in the

same way vC = (vx(ξ, η, ζ), vy(ξ, η, ζ), vz(ξ, η, ζ)) based on the velocity vectors of the

vertices in the physical domain vi = [vx,i, vy,i, vz,i] i = 1, ..., 8 :

vC = (1− ξ)(1− η)(1− ζ)v1 + ξ(1− η)(1− ζ)v2 + ξη(1− ζ)v3 + (1− ξ)η(1− ζ)v4

+(1− ξ)(1− η)ζv5 + ξ(1− η)ζv6 + ξηζv7 + (1− ξ)ηζv8.

(3.55)
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For any face m of a cell, the normal vector is given by one of the following

expressions :

nC,ζ=0 = −
(
∂rC
∂ξ

)
x

(
∂rC
∂η

)
, nC,ζ=1 = +

(
∂rC
∂ξ

)
x

(
∂rC
∂η

)
,

nC,ξ=0 = −
(
∂rC
∂η

)
x

(
∂rC
∂ζ

)
, nC,ξ=1 = +

(
∂rC
∂η

)
x

(
∂rC
∂ζ

)
,

nC,η=0 = −
(
∂rC
∂ζ

)
x

(
∂rC
∂ξ

)
, nC,η=1 = +

(
∂rC
∂ζ

)
x

(
∂rC
∂ξ

)
,

(3.56)

where the signs are determined in order to have the normals pointing outward of the

cell volume. The Jacobian matrix J(ξ, η, ζ) is expressed as :

J(ξ, η, ζ) =

(
∂rC
∂ξ

∂rC
∂η

∂rC
∂ζ

)
(3.57)

and its determinant can be calculated with one of the following expressions :

|J | =
(
∂rC
∂ξ

)
·
[(

∂rC
∂η

)
×
(
∂rC
∂ζ

)]
=

(
∂rC
∂η

)
·
[(

∂rC
∂ζ

)
×
(
∂rC
∂ξ

)]
=

(
∂rC
∂ζ

)
·
[(

∂rC
∂ξ

)
×
(
∂rC
∂η

)]
.

(3.58)

Once the position vector, velocity vector, normal vectors and Jacobian are known,

these quantities are used to compute the integrals of the volume and mesh velocities

through a change of variables.

Volume integral

Through the application of the divergence theorem, the volume of any “general

hexahedron” can be evaluated as such,

Ω =

ˆ
Ω

dΩ =

‹
∂Ω

1

3
r · dS =

1

3

‹
∂Ω

(r · n̂)dS
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We can then write the integral in the computational domain through the trilinear

mapping to acquire,

Ω =
1

3

‹
∂Ω

(r · n̂)dS =
1

3

‹
∂ΩC

(rC · n̂C)|JC|dSC

=
1

3

Nf∑
m=1

¨
∂ΩC,m

(rC,m · n̂C,m)|JC,m|dSC,m,

where dSC,m is either dξdη, dηdζ or dζdξ and the integral boundaries are [0 1]2.

N.B. : On any face of the “general hexahedron” only one of the variables in the

computational space ξ, η or ζ has a fixed value. Thus the quantity (rC,m.n̂C,m)|JC,m|

is still a function of two variables which has to be integrated over the face.

For each face, the computation of the integral over the surface under this form

is not straightforward (the difficulty comes from the unit normal vector) and needs

to be simplified a priori. This is done by exploiting the relation (3.59), for the

derivation of this expression see Appendix B in [45] :

n̂C,m|JC,m| = CC,mN̂C,m, (3.59)

where CC,m = C(ξ, η, ζ) is the cofactor matrix of the Jacobian matrix J for the

trilinear mapping and N̂C,m is the constant unit normal vector to the corresponding
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face in the computational space :

N̂C,ζ=0 = [ 0 0 −1 ]t, N̂C,ζ=1 = [ 0 0 +1 ]t,

N̂C,η=0 = [ 0 −1 0 ]t, N̂C,η=1 = [ 0 +1 0 ]t,

N̂C,ξ=0 = [ −1 0 0 ]t, N̂C,ξ=1 = [ +1 0 0 ]t.

(3.60)

Once the equation (3.59) is substituted into the integrals over the surfaces, an explicit

expression of the volume as a function of ri, i = 1, ..., 8 is obtained :

(Ω)T = (Ω4321 + Ω5678 + Ω3487 + Ω1265 + Ω4158 + Ω2376)T , (3.61)

where for any set (i, j, k, l) ∈ {4321; 5678; 3487; 1265; 4158; 2376}, the volumetric

contribution of the face Sijkl is given by (3.62) :

(Ωijkl)T =
1

3

¨
∂ΩC,ijkl

rC,ijkl · (CC,ijklN̂C,ijkl)dSC,ijkl

=
1

12
(ri + rj) · ((rj + rk)× (ri + rl)).

(3.62)

Temporal derivative of the volumetric integral

The temporal derivative of the volumetric integral can be expressed as,

∂Ω

∂t
=

∂

∂t

ˆ
Ω

dΩ. (3.63)

By substituting the results of the previous section, primarily equations (3.61) and

(3.62), an explicit expression of the temporal derivative of the volume as a function
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of ri and vi, i = 1, ..., 8 is derived :(
∂Ω

∂t

)
T

=

(
∂Ω4321

∂t
+
∂Ω5678

∂t
+
∂Ω3487

∂t
+
∂Ω1265

∂t
+
∂Ω4158

∂t
+
∂Ω2376

∂t

)
T
, (3.64)

where for any set (i, j, k, l) ∈ {4321; 5678; 3487; 1265; 4158; 2376}, the temporal deriva-

tive volumetric contribution of the face Sijkl is given by (3.65) :(
∂Ωijkl

∂t

)
T

=
1

12
(vi + vj) · ((rj + rk)× (ri + rl))

+
1

12
(ri + rj) · ((vj + vk)× (ri + rl))

+
1

12
(ri + rj) · ((rj + rk)× (vi + vl)).

(3.65)

Integrated face mesh velocities

The integral of the face mesh velocity in the physical domain for a face m is

given by,

Gm =

¨
∂Ωm

(v · n̂m)dSm.

By introducing the trilinear mapping, we can express the integrated face mesh ve-

locities as,

Gm =

¨
∂ΩC,m

vC,m · (n̂C,m|JC,m|)dSC,m =

¨
∂ΩC,m

vC,m · (CC,mN̂C,m)dSC,m.

Once the integration is performed, the explicit expressions of the integrated face

mesh velocities are obtained as a function of ri and vi, i = 1, ..., 8. For a face with
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the set (i, j, k, l) ∈ {4321; 5678; 3487; 1265; 4158; 2376} :

vt = vi + vj + vk + vl

Sijkl = (ri x rj) + (rj x rk) + (rk x rl) + (rl x ri)

Sαβγ = (rα x rβ) + (rβ x rγ) + (rγ x rα) for any set α, β, γ

(Gijkl)T =
1

12
(vt · Sijkl + vj · Sijk + vk · Sjkl + vl · Skli + vi · Slij) .

(3.66)

It was verified that with these expressions for the IFMV and the temporal deriva-

tive of the volume as functions of velocity and position vectors of the vertices, the

semi-discrete equation of the GCL (3.5) is analytically retrieved. In other words, the

sum of equation (3.66) applied to the 6 sets {4321; 5678; 3487; 1265; 4158; 2376} is

equal to expression (3.64).

3.4.2 Derivation of the GCL in the NLFD framework

The methods presented in Sections 3.2 and 3.3 to enforce the GCL are based

on equation (3.13), and the integrated face mesh velocities are deduced from the

calculation of the volumetric increments as input. The approach presented in this

section using the trilinear mapping is quite different because no volumetric incre-

ments are computed, the integrated face mesh velocities are directly evaluated in

physical time using equation (3.66). In addition the cell volumes are computed using

equation (3.31). Hence in the GCL equation as established in (3.5), both Ω and
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G =
∑Nf

m=1 Gm are exactly calculated, the only degree of freedom remaining to en-

force the equation is the discretization of the temporal derivative operator

(
∂

∂t

)
.

In the NLFD framework, this operator is discretized in the Fourier domain and is

a function of the number of harmonics N employed in the temporal discretization.

Therefore the GCL equation will be satisfied if and only if the temporal deriva-

tive of the cell volume expressed in Fourier space converge to the Fourier temporal

differentiation applied to the cell volume,

DFT

{(
∂Ω

∂t

)
T

}
=

(
∂

∂t

)
Fourier

(DFT {(ΩT )}) , (3.67)

where T refers to the trilinear mapping. Hence, this method will not enforce the

GCL for any number of time steps contrary to the method presented in Section 3.3,

but for a sufficient number of harmonics ensuring the convergence of the equation

(3.67). Since this approach is based on the exact integrated face mesh velocities and

ensures the GCL with a spectral rate of convergence depending on the mesh motion,

it provides a good alternative to the method exploiting the volumetric increments

with an order of accuracy comprised between one and two. In the Chapter 4, we will

present the numerical results of these different methods for several test cases.

3.4.3 Extension to two-dimensional quadrilateral grids

As stated in Section 3.3.3, any quadrilateral cell in the physical domain (x, y) can

be mapped through a bilinear formulation to a reference square in the computational

space (ξ, η). In this work, for any quadrilateral cell, both position and velocity vectors

in the physical domain respectively denoted r and v are mapped based on the location

and velocity vectors of the vertices respectively ri and vi for i = 1, ..., 4 (see Figure
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3–6 for the numeration), the corresponding quantities in the computational space

are defined as :

rC = (1− ξ)(1− η)r1 + ξ(1− η)r2 + ξηr3 + (1− ξ)ηr4, (3.68)

vC = (1− ξ)(1− η)v1 + ξ(1− η)v2 + ξηv3 + (1− ξ)ηv4, (3.69)

where 0 ≤ ξ, η ≤ 1.

Then the volume Ω and the integrated face mesh velocities Gij are exactly

derived and expressed in the physical domain as :

Ω =
1

2
Det [(r3 − r1) , (r4 − r2)] , (3.70)

Gij =
1

2
Det [(vi + vj) , (rj − ri)] , (3.71)

where ij belong to one of the 4 sets {12; 23; 34; 41}.

Thus in the GCL equation (3.5), both the volume and the integrated face mesh

velocities are exactly evaluated and the results of the previous Section 3.4.2 are

applicable. Therefore on quadrilateral meshes, this method will enforce the GCL for

a sufficient number of harmonics in the NLFD discretization and employs the exact

integrated face mesh velocities, hence it provides a good alternative to the methods

based on the volumetric increments.

3.5 Extension of the results to Time-Spectral method

In this section, we extent the previous results from Section 3.3.2 to Time-Spectral

(TS) method presented by Gopinath and al. [8, 9]. Compared to the NLFD method

which solves the governing equations in the frequency domain, the Time-Spectral
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method solves the governing equations in the time domain but exploits the features

of a spectral approach.

3.5.1 Time-Spectral method

Assuming a periodic flow and a periodic deformation of the mesh, we recall the

temporal discretization of the modified state vector w̄ = Ωw equations (2.12) and

(2.14),

w̄(t) =
N∑

k=−N

ŵke
i(2πk/T )t,

with :

ŵk =
1

2N + 1

2N∑
n=0

Ω(tn)w(tn)e−i(2πk/T )tn ,

where T is the time period, N is the number of modes considered in the DFT and

tn the equally spaced time instances given by,

tn =
n

2N + 1
T , for n = 0, .., 2N.

In Fourier space, the time discretization operator leads to,

∂w̄

∂t
(t) =

N∑
k=−N

i2πk

T
ŵke

i(2πk/T )t, (3.72)

⇔ ∂w̄

∂t
(t) =

2π

T

N∑
k=−N

ik

(
1

2N + 1

2N∑
K=0

Ω(tK)w(tK)e−i(2πk/T )tK

)
ei(2πk/T )t. (3.73)

By evaluating this expression for each time instance tn, we have for n = 0, ..., 2N ,

∂w̄

∂t
(tn) =

2π

T

N∑
k=−N

ik

(
1

2N + 1

2N∑
K=0

Ω(tK)w(tK)e−i(2πk/T )tK

)
ei(2πk/T )tn , (3.74)
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⇔ ∂w̄

∂t
(tn) =

2N∑
K=0

[
Ω(tK)w(tK)

(
2π

T

1

2N + 1

N∑
k=−N

ikei(2πk)(n−K)/(2N+1)

)]
. (3.75)

We introduce, the coefficients dn,K , defined for n = 0, ..., 2N by,

dn,K =
2π

T

1

2N + 1

N∑
k=−N

ikei(2πk)(n−K)/(2N+1), (3.76)

the compact form of the coefficients for an odd number of time steps is written as

follows (for the derivation see Reference [9]),

dn,K =


2π

T

1

2
(−1)n−K csc

(
π(n−K)

2N + 1

)
, if K 6= n

0, if K = n,

(3.77)

and,

∂w̄

∂t
(tn) =

2N∑
K=0

dn,Kw̄(tK). (3.78)

The temporal-derivation operator appears as the multiplication of a matrix D =

(dn,K)0≤n,K≤2N with each vector (w̄i(tK))0≤K≤2N , for i = 1, ..., 5 where the index i

refers to the component of the modified state vector in the governing equations. In

addition, this matrix is skew-symmetric, independent of any state variables and com-

pletely determined by the number of harmonics used in the DFT and the temporal

period. Then a pseudo-time t∗ is introduced and the equations are solved in the time

domain through,

∂w̄

∂t∗
(tn) +

∂w̄

∂t
(tn) + R(w(tn)) = 0, for n = 0, ..., 2N. (3.79)
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3.5.2 Derivation and enforcement of the GCL

Recall that in order to obtain a consistent solution method, the GCL must be

discretized using the same numerical scheme employed to discretize the governing

equations. In the case of Time-Spectral method, it leads to the following Theorem

3.5.1,

Theorem 3.5.1. Let Ω be a discretized control volume, enclosed by Nf faces, and

subjected to a periodic motion of its vertices. Then given the knowledge of the exact

volumetric increments Ωm for m = 1, ..., Nf , a sufficient condition to ensure the

satisfaction of GCL in the TS framework is the computation of the integrated face

mesh velocities through the following relations,

Gm = (D)pm + 〈Gm〉T (IN ), (3.80)

where for all m, 〈Gm〉T are the temporal mean values of the integrated face mesh

velocities, IN is the identity matrix of dimension 2N + 1, Gm = (Gm(tn))0≤n≤2N

and pm = (pm(tn))0≤n≤2N are the vectors grouping the time instances of respectively

the integrated face mesh velocities and the periodic part of the exact volumetric in-

crements given by,

pm(t) = Ωm(t)−
(

Ωm(T )

T

)
t, (3.81)

and D = (dn,K)0≤n,K≤2N is the matrix representing the temporal derivation operator

of the Time-Spectral method, defined by its coefficients dn,K for 0 ≤ n,K ≤ 2N ,

dn,K =


π

T
(−1)n−K csc

(
π(n−K)

2N + 1

)
, if K 6= n

0, if K = n.

(3.82)
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Proof. Under the assumption that the motion of the vertices is periodic, the tempo-

ral rate of change of the algebraic volume swept by each face through time is periodic.

Thus the temporal derivative of the volumetric increments and the integrated face

mesh velocities are periodic, the DFT is applied to equation (3.13) leading to :

Gm(t) =
∂Ωm

∂t
= Ĝm,0 +

N∑
k=−N,k 6=0

Ĝm,ke
i 2π
T
kt, (3.83)

where for any face m, Ĝm,k are the Fourier coefficients of both the temporal derivative

of the volumetric increment and the integrated face mesh velocity. The mean of a

function expandable in Fourier serie is given by its zeroth Fourier coefficient thus,

〈Gm〉T = Ĝm,0. (3.84)

From the proof of Theorem 3.3.1, we have the following relations,

Ωm(t) = lm(t) + pm(t), (3.85)

lm(t) = Ĝm,0t =
Ωm(T )

T
t, (3.86)

pm(t) = Ω̂m,0 +
N∑

k=−N,k 6=0

T

i2πk
Ĝm,ke

i 2π
T
kt, (3.87)

pm(t) = Ωm(t)−
(

Ωm(T )

T

)
t. (3.88)

Then, by exploiting these results and applying the Time-Spectral temporal derivation

to the periodic part of the volumetric increment, we can write for each face m and
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time instance tn, with n = 0, ..., 2N ,

Gm(tn) =
∂Ωm

∂t
(tn)

=
∂(lm + pm)

∂t
(tn)

= 〈Gm〉T +
∂pm
∂t

(tn)

= 〈Gm〉T +
2N∑
K=0

dn,Kpm(tK),

(3.89)

Finally, if we group all the time instances in a vector Gm, we obtain,

Gm = (D)pm + 〈Gm〉T (IN ), (3.90)

where IN is the identity matrix of dimension 2N + 1 and D = (dn,K)0≤n,K≤2N is the

matrix representing the temporal derivation operator of the Time-Spectral method.

The condition given by equation (3.90) is a criteria to ensure that the GCL are

enforced in the Time-Spectral framework. �
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CHAPTER 4
Numerical validation of the different methodologies

The new approaches to enforce the Geometric Conservation Law developed in

Chapter 3 are numerically tested in order to validate their procedures. The protocol,

test cases and results are presented in the following sections. A simple 3D finite

volume solver was developed on Matlab1 to perform the simulations.

4.1 Protocol

The physical interpretation of the GCL is that any uniform flow must be pre-

served by the numerical scheme employed for the flow solver and independently of

the mesh movements. This law imposes constraints on the manner to compute some

geometrical quantities such as the volume and the integrated face mesh velocities.

Thus the first step of our test is to ensure the preservation of uniform flow by com-

puting the relative error between the initially defined uniform state vector w0 and

the computed state vector w by the flow solver,

RelErr = max
0≤n≤2N

{
max

1≤nv≤Ncell

(
max
1≤j≤5

∣∣∣∣wj(nv, tn)− w0,j(nv, tn)

w0,j(nv, tn)

∣∣∣∣)} , (4.1)

where w1 = ρ, w2 = ρu1, w3 = ρu2, w4 = ρu3 and w5 = ρE and nv is the index

pointing to the grid cell with Ncell the number of cells in the mesh.

1 The MathWorks, Inc., Natick, Massachusetts, United States.
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However the verification of uniform flow preservation only guarantees that the

GCL are satisfied “by summing over the faces”, but not that the computed integrated

face mesh velocities are correct. Indeed as long as the sum of the temporal derivative

of the volumetric increments is equal to the temporal derivative of the cell volume,

∂Ω

∂t
=

Nf∑
m=1

∂Ωm

∂t
, (4.2)

the deduced integrated face mesh velocities from the temporal derivative of the volu-

metric increments from equation (3.13) enforce the GCL after the summation through

the faces (see equation (3.5)) but the integrated face mesh velocities themselves may

not converge to the correct values.

Thus in order to verify that the GCL are enforced with a correct evaluation of

the integrated face mesh velocities, the values derived from the trilinear mapping

equations (3.64) and (3.66) based on the location and velocity vectors of the grid

points retrieved from the dynamic mesh deformation, are considered as reference.

Therefore for each motion of the mesh and for various number of harmonics N , four

different implementations of the integrated face mesh velocities are compared :

1. the IFMV deduced from the linear volumetric increments from Tradif and al.

[37] see Figure 3–1 noted as “NLFD-LVI” ;

2. the IFMV calculated with the new method based on the exact volumetric

increments approximated as a sum of “general hexahedra” (Definition 3.3.2)

see Figure 3–4 and noted as “NLFD-AEVI” ;
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3. the approximation obtained by taking the average of the velocity of the four

vertices defining a face and projected along the surface normal vector noted as

“AVG”;

4. the method based on the trilinear mapping noted as “TRI-MAP” and used as

reference for the exact values of the IFMV.

For each of these approaches, the preservation of uniform flow is tested. Then dif-

ferent quantities are compared by computing the maximum absolute error :

• comparison of the sum of the IFMV to the NLFD temporal derivative of the

cell volume computed using the numerical scheme of the flow solver. This

comparison is similar to a demonstration of the preservation of uniform flow:

AbsErr1 = max
0≤n≤2N

 max
1≤nv≤Ncell

∣∣∣∣∣∣
 Nf∑
m=1

Gm(nv, tn)


METHOD

−
(
∂Ω

∂t
(nv, tn)

)
NLFD

∣∣∣∣∣∣
 ;

(4.3)

• comparison of the IFMV to the reference integrated face mesh velocities (TRI-

MAP) in each direction dir = x, y or z :

AbsErr2 = max
0≤n≤2N

{
max

1≤nv≤Ncell

∣∣(Gm,dir(nv, tn))METHOD − (Gm,dir(nv, tn))TRI−MAP

∣∣} .
(4.4)

4.2 Test cases

This section presents the different mesh motions impose as test cases. The

temporal period is always taken to be unity. All tests are performed on a square

mesh of size 10 × 10 × 10, and of lengths Lx = 3.2, Ly = 2.8, and Lz = 2.4. The

undeformed positions of the mesh are indexed with the subscript 0, if needed the
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RBF points are indexed with the subscript r. The two parameters in the Jameson-

Schmidt-Turkel (JST) scheme are κ(2) = 1 and κ(4) = 1/32. The simulations are run

for a number of harmonics, N from 1 to 20. The mesh deformations for cases 2, 4

and 5 at an arbitrary time instant are presented on Figure 4–1.

4.2.1 Without RBF

Three test cases are performed by directly imposing the mesh deformation to the

entire mesh. The velocity of the vertices is computed based on the analytic temporal

derivation of the vector position of the vertices. For any vertex, its initial position is

noted (x0, y0, z0). The parameters Ax, Ay, Az, R, and α0 can be arbitrarily chosen as

long as no degenerative cells (cells with negative volume) appear during the motion.

The analytic functions employed for the motions are as follows :

Case 1 : 1-harmonic sinusoidal perturbation of the mesh with a linear motion, the

direction is held fixed while each point has its own motion amplitude based on

its initial position :
x(t) = x0 + Ax sin

(
πx0
Lx

)
sin
(
πy0
Ly

)
sin
(
πz0
Lz

)
sin (2πt)

y(t) = y0 + Ay sin
(
πx0
Lx

)
sin
(
πy0
Ly

)
sin
(
πz0
Lz

)
sin (2πt)

z(t) = z0 + Az sin
(
πx0
Lx

)
sin
(
πy0
Ly

)
sin
(
πz0
Lz

)
sin (2πt)

(4.5)

Case 2 : 2D perturbation of the mesh with a non-linear motion; however the time-

average volume swept by a face, Ĝm,0 = 0 in equation (3.23). For any cell the
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projection of the motion along a plane z = constant is shown in Figure 4–4 :

α(t) = α0 sin(2πt)

x(t) = x0 + y0 cos(π
2
− α(t))

y(t) = y0 sin(π
2
− α(t))

z(t) = z0

(4.6)

Case 3 : 2D perturbation of the mesh with a non-linear motion and Ĝm,0 6= 0 in

equation (3.23), the deformation is prescribed only for the interior grid points

while the boundary points are fixed. The projection of the motion along a

plane z = constant is identical to the movement of the 3rd node on the Figure

3–2 presented in Section 3.2 :

α(t) = 2πt

x(t) = x0 +R(1− cos(α(t))

y(t) = y0 +R sin(α(t))

z(t) = z0

(4.7)

4.2.2 With RBF

Two test cases are performed by deforming the mesh through the RBF. The

analytic functions employed for the RBF motions are as follows :
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Case 4 : 3D perturbation of the mesh using the RBF, with each point having its

own linear motion (amplitude and direction) :

sx(t) = rx(x0,r, y0,r, z0,r) sin(2πy0,r) sin(2πz0,r) sin(2πt)

sy(t) = ry(x0,r, y0,r, z0,r) sin(2πx0,r) sin(2πz0,r) sin(2πt)

sz(t) = rz(x0,r, y0,r, z0,r) sin(2πy0,r) sin(2πz0,r) sin(2πt)

where rx(x0,r, y0,r, z0,r); ry(x0,r, y0,r, z0,r) and

rz(x0,r, y0,r, z0,r) are randomly generated

(4.8)

Case 5 : simulation of a sinusoidal pitching motion :

α(t) = α0 cos(2πt)

xp = 0.621Lx

sx(t) = (x0,r − xp)[cos(α(t))− 1] + y0,r sin(α(t))

sy(t) = −(x0,r − xp) sin(α(t)) + y0,r[cos(α(t))− 1]

sz(t) = z0,r

(4.9)

4.3 Freestream preservation

The results demonstrating uniform flow preservation are shown for all test cases

in Figure 4–2. The evolution of the relative error defined by equation (4.1) is pre-

sented as a function of the number of time steps Nts.

The results show that the two methods employing the IFMV deduced from

the Fourier discretization preserve uniform flow, while the approximation derived

from the AVG yields the least accurate results. This is consistent since for both

methods NLFD-LVI and NLFD-AEVI, despite different definitions of the volumetric

increments, they still ensure that the sum of the temporal derivative of the volumetric
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(a) Case 2 (b) Case 4

(c) Case 5

Figure 4–1: Mesh deformations of the exterior grid points for cases 2, 4 and 5 at an
arbitrary chosen time step
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5

Figure 4–2: Relative error regarding the uniform flow preservation for each test case

63



increments is equal to the temporal derivative of the cell volume evaluated in the

frequency domain (equation (4.2)).

It is also observed that using the (TRI-MAP) integrated face mesh velocities

preserves uniform flow and thus satisfies the GCL given a sufficient number of har-

monics (see cases 2, 4 and 5) which is expected. Its rate of convergence should be

exactly the same as the rate of convergence of the temporal derivative of the cell

volume in the Fourier space. This is verified in the next section.

4.4 Comparison of the integrated face mesh velocities to the reference
value

The results are shown on Figures 4–3 through 4–8. It is important to note that

for all figures, the graph (a) refers to equation (4.3) as the function of the number

of time steps and is not the sum of the graphs from (b), (c) and (d) which refer to

equation (4.4). The errors that appear on the y-axis of the figures are the max norm

between the investigated approaches, both NLFD-based and AVG and the reference

approach (TRI-MAP).

Regarding the comparison of the sum of the integrated face mesh velocities

(IFMV) to the NLFD temporal derivative of the volume from Figures 4–3(a) through

Figure 4–8(a), the results show that the sum of the IFMV computed with the meth-

ods NLFD-LVI, NLFD-AEVI and TRI-MAP converge to the expected values for all

cases while the AVG method provides the correct values only for cases 1 through 3

and yields a constant absolute error above 10−5 for cases 4 and 5. Recall that the

maximum error in the sum of the IFMV is a measure of the level to which GCL is

satisfied as given in the semi-discrete GCL equation (3.5). Hence the NLFD-based

approaches prove to satisfy the GCL for all considered grid deformation and for any
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(a) (b)

(c) (d)

Figure 4–3: Case 1 : (a) Comparison of the sum of the integrated face mesh velocities
to the NLFD temporal derivative of the volume (b) Comparison of the individual
integrated face mesh velocity to the reference values (TRI-MAP) in the x direction
(c) in the y direction (d) in the z direction
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number of harmonics which is expected by design. The reference approach (TRI-

MAP) satisfies this requirement exactly for linear deformation cases as shown for

Cases 1 (Figure 4–3(a)) and 4 (Figure 4–7(a)) for any number of harmonics and con-

verged spectrally for non-linear deformation cases (Cases 2, 3, and 5). The spectral

rate of convergence is observed compared to the first-order backward finite-difference

(∆t(1)) and second-order centered finite-difference (∆t(2)) approximating the tempo-

ral derivative of the cell volume. As expected, this rate of convergence is found to be

similar for the preservation of uniform flow using the reference TRI-MAP method.

However, the AVG approach is not designed to enforce the GCL, it is only an ap-

proximation based on the mesh velocities and face metrics and hence for the cases

considered herein, the method proved to ensure the GCL with an accuracy up to

10−5.

A comparison of the individual integrated face mesh velocities for each direction

reveals the limits and provides interesting insights of the investigated approaches.

Two primary observations can be made. First, the NLFD based approaches con-

verge at most at second order as expected based on Corollary 3.3.7, if the mesh

deformation along the observed direction is non-linear. For Cases 2, 3, and 5, the

mesh deformation in both the x-and y-directions are non-linear as shown in sub-

figures (b) and (c) of Figures 4–5, 4–6, and 4–8. One exception is the spectral

rate of convergence for the y-direction in Case 2. These results can be explained by

analyzing in details the mesh movement. Since the motion is in two dimensions, let

us consider a constant z plane, then the deformation of any cell can be represented

as shown in Figure 4–4. We observe that in the y-direction, the area swept by the
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x

y

Figure 4–4: Two-dimensional projection of the motion in case 2 for one cell : the
exact volumetric increment in the x direction is filled in clear green and in dark blue
in the y direction. The blue dashed dot arrows show the paths of the vertices.

faces can be exactly evaluated using a linear approximation of the curved boundaries

shown in blue. Therefore in the y-direction, the volumetric increments are exactly

computed and the individual IFMV are correctly computed using either the NLFD-

LVI or NLFD-AEVI methods once the temporal derivative operator is converged in

Fourier space. In the x-direction, a linear approximation is insufficient to compute

exactly the volumetric increments thus the NLFD-AEVI method converges at an

order between one and two as stated in Corollary 3.3.7.

Second, even if the numerical scheme enforces the GCL by preserving uniform

flow, the employed method may not converge to the correct integrated face mesh

velocities. The method based on the approximation of the exact volumetric increment

(NLFD-AEVI) is found to be converging toward the reference values at an order

between one and two in the worst test cases considered here (4 & 5). This is consistent

with the derivation of the error from Section 3.3.2 and the resulting Corollary 3.3.7.
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The NLFD-LVI and AVG methods may present significant inaccuracies depending

on the mesh deformation.

(a) (b)

(c) (d)

Figure 4–5: Case 2 : (a) Comparison of the sum of the integrated face mesh velocities
to the NLFD temporal derivative of the volume (b) Comparison of the individual
integrated face mesh velocity to the values (TRI-MAP) in the x direction (c) in the
y direction (d) in the z direction

68



(a) (b)

(c) (d)

Figure 4–6: Case 3 : (a) Comparison of the sum of the integrated face mesh velocities
to the NLFD temporal derivative of the volume (b) Comparison of the individual
integrated face mesh velocity to the values (TRI-MAP) in the x direction (c) in the
y direction (d) in the z direction
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(a) (b)

(c) (d)

Figure 4–7: Case 4 : (a) Comparison of the sum of the integrated face mesh velocities
to the NLFD temporal derivative of the volume (b) Comparison of the individual
integrated face mesh velocity to the values (TRI-MAP) in the x direction (c) in the
y direction (d) in the z direction
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(a) (b)

(c) (d)

Figure 4–8: Case 5 : (a) Comparison of the sum of the integrated face mesh velocities
to the NLFD temporal derivative of the volume (b) Comparison of the individual
integrated face mesh velocity to the values (TRI-MAP) in the x direction (c) in the
y direction (d) in the z direction
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4.5 Time-Spectral Method

The numerical results for the Time-Spectral method are the same as that shown

for NLFD-LVI and NLFD-AEVI depending on which approach is retained to compute

the volumetric increments. For this reason, the graphs are not reproduced herein.

The comparisons and conclusions derived for the NLFD discretization hold for the

Time-Spectral method as well.

4.6 Discussion

The limits of the previous method of Tardif and al. [37] (NLFD-LVI) were clari-

fied and demonstrated numerically and a modified approach (NLFD-AEVI) has been

presented that ensures the satisfaction of the Geometric Conservation Law for a flow

solver based on either the NLFD or Time-Spectral discretization of the ALE formula-

tion of the Navier-Stokes equations. The methods NLFD-AEVI and NLFD-LVI aim

to satisfy the GCL by computing the integrated face mesh velocities according to

the numerical discretization of the flow solver and take as input the face volumetric

increments. The accuracy of the methods was shown to be highly dependent on the

computation of the correct volumetric increments and in the worst cases considered

converged at first-to-second-order for the NLFD-AEVI approach (Corollary 3.3.7)

or zeroth-order for the NLFD-LVI procedure. The integrated face mesh velocities

themselves may not converge to the correct values as demonstrated in our numerical

test. Although the approaches have been verified to preserve uniform flow for any

number of harmonics; such a low order of accuracy defeats the purpose of spectral

in time methods. Hence an alternate novel approach has been developed based on a

trilinear mapping between the physical domain and the computational space which
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allows the evaluation of the exact cell volume and integrated face mesh velocities.

The disadvantage of this method is that it is not consistent with the discretization

of the flow solver, meaning that freestream preservation is not satisfied for any num-

ber of harmonics as it is with the modified approach, NLFD-AEVI. However such

inconvenience is compensated by its spectral rate of convergence, which is sufficient

to ensure the satisfaction of the GCL and to preserve uniform flow.
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CHAPTER 5
Two-dimensional aerodynamic simulations

In this chapter, we present the results of aerodynamic simulations employing

the different developed methods. The RBF dynamic mesh deformation as well as

the different methodologies to compute the integrated face mesh velocities were im-

plemented in the in-house adaptative NLFD two-dimensional finite volume solver

originally developed by Mosahebi and al. [28–31]. Instead of employing artificial dis-

sipation, a Roe flux difference splitting scheme [36] is used to compute the convective

fluxes. A Lower-Upper Symmetric-Gauss-Seidel (LU-SGS) implicit scheme [4] is used

to solve the equation in pseudo-time (2.20). Since the current flux adjustment ap-

proach for temporal-mismatched control volumes in the adaptive approach renders

the scheme non-conservative, the adaptation was turned off for all simulations.

In this section, results for aerodynamic computations of a plunging and/or pitch-

ing cylinder and a NACA0012 airfoil are presented. An O-grid topology is used for

the cylinder mesh with 256x128 cells and a C-grid topology for the NACA0012 mesh

with the same dimensions. The ratio between the farfield distance to the cylinder

diameter D or the airfoil chord c is 200. All RBF points in the farfield are fixed (zero

displacements).

It should be noted that the current solver is only able to resolve one dominant fre-

quency in the domain which is specified for plunging cases by specifying the Strouhal

number St = 2h0f
V∞

and the reduced frequency for pitching motions κ = πfc
V∞

, with h0

74



(a) Cylinder (b) NACA0012

Figure 5–1: Near resolution of the undeformed meshes employed for the simulations

the plunging amplitude, c the chord or diameter of the body, V∞ the freestream

velocity and f = 1
T

the frequency of oscillation corresponding to the period T . The

chord and diameter are both taken to be unitary. The Prandtl number Pr and the

freestream temperature are held constant for all simulations and respectively taken

equal to 0.75 and 300 K.

The following notations are adopted for the aerodynamic coefficients : stag-

nation pressure coefficient Cps, total lift coefficient CL, total drag coefficient CD,

pressure drag coefficient CD,p and skin friction drag coefficient CD,v. The level to

which the GCL is satisfied is measured by computing the maximum absolute differ-

ence between the NLFD temporal derivative of the volume from the flow solver and

the sum of the integrated mesh velocities deduced from the various techniques and

is denoted as EGCL. Flow solver residual is converged to a sufficient level to ensure

that the aerodynamic coefficients are only impacted by the GCL error. In addition,
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the values of the IFMV deduced from the NLFD-based methods are compared to

the bilinear mapping approach which serves as the reference method in the x and y

directions and denoted respectively as EIFMV ,x and EIFMV ,y.

5.1 Plunging cylinder

As a first test case, a plunging cylinder in the y-direction is considered, the

displacements of the RBF points at the surface of the cylinder are prescribed as

follows :  sx(t) = 0,

sy(t) = h0 sin(ωt),
(5.1)

where h0 is the amplitude of the heaving motion. The results are compared to

Mosahebi and al. [29] with h0
D

= 0.2, M∞ = 0.3, Re∞ = 100, and St = 0.16704. The

frequency was chosen to be equal to the vortex shedding frequency computed for the

stationary case. Table 5–1 presents the verification of the GCL and the convergence

of the IFMV in each direction, the mean values of the drag coefficients are presented

in Table 5–2 for different number of harmonics. The flow solver converged to machine

accuracy for all cases.

Methods EGCL EIFMV ,x EIFMV ,y

NLFD-LVI ≤ 10−13 ≤ 10−12 ≤ 10−12

NLFD-AEVI ≤ 10−13 ≤ 10−12 ≤ 10−12

BI-MAP ≤ 10−12 N.A. N.A.
Table 5–1: Level of satisfaction of the GCL and convergence of the integrated face
mesh velocities in the case of the plunging cylinder using 1 ≤ N ≤ 7 harmonics in
the DFT

It is observed that the GCL and the IFMV have converged to machine accuracy

for any number of harmonics and for all three methods. This result is consistent since
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Methods CD,p CD,v CD
All methods (1 harmonic) 1.16631 0.36754 1.52863
All methods (2 harmonics) 1.25273 0.38537 1.63810
All methods (3 harmonics) 1.23544 0.38297 1.61841
All methods (4 harmonics) 1.23329 0.38242 1.61571
All methods (5 harmonics) 1.23546 0.38283 1.61829

Mosahebi and al. [29] (10 modes) 1.22992 0.38044 1.61035
Table 5–2: Mean values of the drag coefficients in the case of the plunging cylinder
with M∞ = 0.3, Re∞ = 100 and St = 0.16704.

the motions of the RBF points at the surface of the body are linear with the same

amplitude and direction, hence in this specific case the three methods are equivalent

and expected to produce the same results. As a consequence, the computed aero-

dynamic coefficients, as listed in Table 5–2, are identical for all methods within the

accuracy of the flow solver. Given the number of modes employed in our simula-

tions, the results are consistent with Mosahebi and al. [29]. However, it must be

noted that even if one harmonic is sufficient to satisfy GCL at machine accuracy, the

computation of the mean drag coefficients up to the second digit requires additional

harmonics as shown in Figure 5–2.

The investigations of Young and al. [41, 42] and Yang [40] showed that the

behavior of the drag coefficient is primarily due to the shedding of vortices. Vortices

may appear either at the trailing edge and diffuse in the wake or at the leading

edge and convect downstream before separating from the airfoil and diffuse into the

downstream wake. These vortices contribute to the wake and influence the drag.

The instantaneous total drag coefficient follows the temporal evolution from Figure

5–2b.
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(a) Distribution of the Fourier coefficients (b) Temporal evolution of CD

Figure 5–2: Total drag coefficient analysis for a plunging cylinder

5.2 Pitching cylinder

For the second case, a pitching cylinder about its center is considered with an

angle varying from −10◦ to +10◦. The freestream Mach number, Reynolds number

and the reduced frequency are chosen from [28], M = 0.3, Re = 100 and κ = 0.52477.

The level to which GCL is satisfied is presented on Figure 5–3(a) and the convergence

of the IFMV to the reference values in each direction on Figure 5–3(b) and Figure 5–

3(c). Contrary to the previous case, the GCL is no longer statisfied for any number

of harmonics using the BI-MAP method which converges at a spectral rate. The

limits of the NLFD-based methods are observed when computing the integrated face

mesh velocities; especially in the x direction where for solutions larger than three

harmonics, the convergence of the NLFD-LVI approach reaches a threshold at 10−5

to 10−6 and the NLFD-AEVI method converges at first-to-second order. In the y

direction, both methods converge at a spectral rate.
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The mean values of the aerodynamic coefficients are presented in Table 5–3 and

the drag polar (CD versus CL) are demonstrated in Figure 5–4, for 2 and 5 modes.

Simulations with only 1-harmonic did not converge to a residual below the level

of convergence of either the GCL or the IFMV and thus are not presented. For 2

and 5 modes, differences between the mean values of the aerodynamic coefficients

begin to appear at the fifth decimal place and the relative gap between the different

methods is always inferior to 0.01%. The results are still in good agreement with

Mosahebi and al. [29]. As previously stated for the plunging cylinder even if one

harmonic is sufficient to represent the motion of the mesh, additional modes are

needed to correctly capture the instantaneous behavior of the total drag coefficient.

In the industry, designer uncertainty goals for performance simulations on successive

refined grids are usually up to ±0.005 on the lift coefficient and ±0.5 drag counts1

on the drag coefficient [14]. Thus the differences herein on the mean total drag

coefficient and maximum lift coefficient being respectively lower than one drag count

and 0.01, they would not be considered worth further investigation.

1 one drag count = 10−4.CD
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Figure 5–3: Level of satisfaction of the GCL and convergence of the IFMV for the
pitching cylinder case
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Methods CD,p CD,v CD Cps
NLFD-LVI (2 harmonics) 1.103169 0.354731 1.457901 1.033769

NLFD-AEVI (2 harmonics) 1.103187 0.354735 1.457922 1.033765
BI-MAP (2 harmonics) 1.103186 0.354738 1.457925 1.033771

NLFD-LVI (5 harmonics) 1.107321 0.355542 1.462864 1.035812
NLFD-AEVI (5 harmonics) 1.107283 0.355535 1.462819 1.035823

BI-MAP (5 harmonics) 1.107267 0.355532 1.462800 1.035829
Mosahebi and al. [29] (10 harmonics) 1.11386 0.356830 1.47069 1.03252

Table 5–3: Mean values of the drag coefficients and maximum lift coefficient in the
case of the pitching cylinder.

(a) 2 modes (b) 5 modes

Figure 5–4: Drag polar CD vs CL for the pitching cylinder case
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5.3 Plunging NACA0012 airfoil

In this section, a plunging NACA0012 airfoil in the y-direction is considered.

The results are compared to Allaneau and al. [1] with h0
D

= 0.08, M∞ = 0.2,

Re∞ = 1850 and St = 0.288. Table 5–4 presents the verification of the GCL and the

convergence of the IFMV in each direction. The mean values of the drag coefficients

are presented in Table 5–5 for different number of harmonics and the instantaneous

behavior of the total lift and total drag on Figure 5–5.

Methods EGCL EIFMV ,x EIFMV ,y

NLFD-LVI ≤ 10−13 ≤ 10−13 ≤ 10−13

NLFD-AEVI ≤ 10−13 ≤ 10−13 ≤ 10−13

BI-MAP ≤ 10−13 N.A. N.A.
Table 5–4: Level of satisfaction of the GCL and convergence of the integrated face
mesh velocities in the case of the plunging NACA0012 using 1 ≤ N ≤ 7 harmonics
in the DFT

Methods CD,p CD,v CD
All methods (1 harmonic) -0.01494 0.05105 0.03611
All methods (2 harmonics) -0.01391 0.05267 0.03876
All methods (3 harmonics) -0.01353 0.05306 0.03953
All methods (4 harmonics) -0.01392 0.05323 0.03938
All methods (5 harmonics) -0.01337 0.05323 0.03986

Table 5–5: Mean values of the drag coefficients in the case of the plunging NACA0012
with M∞ = 0.2, Re∞ = 1850 and St = 0.288.

Similar to the plunging cylinder case, it is observed that the GCL and the IFMV

converge to machine accuracy for any number of harmonics and for all three methods,

which is consistent for a linear motion with identical amplitudes and directions for

the RBF points at the surface of the body. The computed average aerodynamic
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coefficients are identical for all methods within the accuracy of the flow solver as well

as the instantaneous behavior of the total lift and total drag which are consistent

with the results of direct numerical simulation (DNS) provided by Allaneau and al.

[1]. and Young and al. [42] who investigated the aerodynamic forces on a flapping

airfoil.

(a) CL - 1 mode (b) CL - 5 modes

(c) CD - 2 modes (d) CD - 5 modes

Figure 5–5: Instantaneous total drag and total lift coefficients over a period for the
plunging NACA0012 case
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5.4 Pitching NACA0012 airfoil

For the final test case, a pitching motion of the NACA0012 airfoil about the

quarter chord is considered where two pitching angles are considered ±5◦ and ±20◦

with a reduced frequency κ respectively equal to 2 and 3.

5.4.1 Pitching NACA0012 at ±5◦ angle and κ = 2

The mean angle of attack is zero while the pitching angle varies from −5◦ to

+5◦. The freestream Mach number, Reynolds number and the reduced frequency

are chosen from [28], M∞ = 0.2, Re∞ = 1100 and κ = 2. The level to which GCL

is satisfied is presented on Figure 5–6(a) and the convergence of the IFMV to the

reference values in each direction on Figure 5–6(b) and Figure 5–6(c). The results

are similar to the pitching cylinder case, the GCL is satisfied with all NLFD-based

methods while the (BI-MAP) converges at a spectral rate. As for the integrated face

mesh velocities, the results in the y direction are herein similar to the x direction,

the convergence of the (NLFD-LVI) approach reaches a threshold close to 10−6 and

the (NLFD-AEVI) method converges at first-to-second order beyond 3 harmonics.

The mean values of the aerodynamic coefficients are presented in Table 5–6 and

drag polar is shown in Figure 5–7, for 1, 2 and 5 modes. For the 2 and 5 mode

cases the differences between the mean values of the aerodynamic coefficients begin

to appear at the third decimal for the drag coefficients and the second decimal for the

maximum lift coefficient. The relative gap between the different methods is always

inferior to 0.01% for the drag coefficients and 0.5% for the maximum lift coefficient.

Differences are observed compared to Mosahebi [27] and Pedro and al. [34], which are

due to the insufficient number of harmonics considered to represent the unsteadiness
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of the flow with at most 5 harmonics. The graph of instantaneous CD vs CL shows

significant differences between the NLFD-based methods and the BI-MAP method

employing only one harmonic which drastically reduce with two or more harmonics.

The differences between the methods are still being lower than one drag count and

thus do not deserve further investigation for industrial applications.
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Figure 5–6: Level of satisfaction of the GCL and convergence of the IFMV for the
pitching NACA0012 case at ±5◦ and κ = 2
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Methods CD,p CD,v CD max(CL)
NLFD-LVI (1 harmonic) 0.022492 0.085322 0.107815 0.82104

NLFD-AEVI (1 harmonic) 0.022506 0.085295 0.107802 0.81741
BI-MAP (1 harmonic) 0.022588 0.085351 0.107939 0.81715

NLFD-LVI (2 harmonics) 0.024502 0.086092 0.110594 0.79241
NLFD-AEVI (2 harmonics) 0.024503 0.086089 0.110592 0.79224

BI-MAP (2 harmonics) 0.024501 0.086102 0.110604 0.79199
NLFD-LVI (5 harmonics) 0.024827 0.086247 0.111074 0.77927

NLFD-AEVI (5 harmonics) 0.024824 0.086253 0.111078 0.77930
BI-MAP (5 harmonics) 0.024824 0.086256 0.111080 0.77923

Mosahebi [27] (adaptive methods) 0.0280 0.0859 0.1139 0.7201
Pedro and al. [34] 0.0276 0.0857 0.1132 0.7107

Table 5–6: Mean values of the drag coefficients and maximum lift coefficient in the
case of the pitching NACA0012 airfoil at ±5◦ and κ = 2

(a) 1 mode (b) 2 modes

Figure 5–7: Drag polar CD vs CL for the NACA0012 airfoil case at ±5◦ and κ = 2
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5.4.2 Pitching NACA0012 at ±20◦ angle and κ = 3

The pitching angle variation is increased to ±20◦ and the reduced frequency to

κ = 3 while all other parameters remain unchanged. The convergence of the density

residual for N = 5 harmonics is presented on Figure 5–8(a). The level to which GCL

is satisfied is presented on Figure 5–8(b) and the convergence of the IFMV to the

reference values in each direction on Figure 5–8(c) and Figure 5–8(d). As expected,

the convergence of the GCL is still at spectral rate and similarly the IFMV using

the (NLFD-AEVI) method still converge at first-to-second order, however for both

quantities additional harmonics are needed to reach an equivalent level of convergence

compared to the ±5◦ pitching case. The convergence of the IFMV using the (NLFD-

LVI) method reaches a threshold at 10−3 to 10−5 which is higher than the previous

case. These observations are consistent since the amplitude of the pitching motion is

larger, thus the non-linearity of the mesh deformation is more significant and places

an additional challenge to the convergence of the GCL and IFMV.

Methods CD,p CD,v CD max(CL)
NLFD-LVI (5 harmonics) -0.06783 0.08980 0.02196 10.4643

NLFD-AEVI (5 harmonics) -0.06753 0.09134 0.02381 10.4610
BI-MAP (5 harmonics) -0.06577 0.09167 0.02590 10.4576

Table 5–7: Mean values of the drag coefficients and maximum lift coefficient in the
case of the pitching NACA0012 airfoil at ±20◦ and κ = 3

The mean values of the drag coefficients and the maximum lift for the pitching

NACA0012 airfoil at ±20◦ are presented in Table 5–7 for 5 harmonics as well as the

drag polar Figure 5–9. The level of convergence of the density residual for each mode

was stopped below 10−7 (Figure 5–8(a)), since the level of convergence of the GCL

87



0 5000 10000 15000
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

(a) Density residual

10
0

10
1

10
2

10
-15

10
-10

10
-5

10
0

(b) EGCL

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

(c) EIFMV ,x

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

(d) EIFMV ,y

Figure 5–8: Density residual, level of satisfaction of the GCL and convergence of the
IFMV for the pitching NACA0012 case at ±20◦ and κ = 3
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is at 10−8 (Figure 5–8(b)) and the IFMV computed at machine accuracy for the BI-

MAP method (Figures 5–8(c) and 5–8(d)) the values of the aerodynamic coefficients

from the bi-mapping can be considered as reference. Absolute differences on the

mean total drag coefficient of respectively 39.8 drag counts (NLFD-LVI) and 20.9

drag counts (NLFD-AEVI) are observed. These are much larger than the ±5◦ case

and represent respectively 15.21% and 8.06% of relative gap. Such differences are

much higher than one drag count and clearly shows the impact of having Integrated

Face Mesh Velocities which converge at an order inferior to the one of the flow solver

or the GCL. In addition, the analysis of the two components of the drag coefficient

shows that the differences on the skin-friction drag are higher than on the pressure

drag, a similar observation can be done for the previous ±5◦ pitching NACA0012

case (see Table 5–6) but not for the pitching cylinder case (see Table 5–3). The

differences on the maximum lift coefficient are still lower than 0.01 and would not

be worth further investigation. The velocity contours and streamlines are presented

on Figure 5–11 at time instances t0, t5 and t10; the vortices which cause the drag

variation are visible at the leading edge and in the wake.

Figure 5–9: Drag polar CD vs CL for the NACA0012 airfoil case at ±20◦ and κ = 3
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The absolute error distributions on the IFMV compared to the (BI-MAP) values

in the x and y directions are presented on Figure 5–10 at a time instance t5 = 5
11
T .

The airfoil leading edge is positioned at xLE = −0.25 and the trailing edge at xTE =

0.75. The areas of maximum error begin at the trailing edge which is the RBF point

with the largest prescribed motion amplitude.

(a) EIFMV ,x distribution

(b) EIFMV ,y distribution

Figure 5–10: Error distributions on the IFMV for the pitching NACA0012 case at
±20◦ and κ = 3
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The relative errors on the mean pressure coefficient at the surface of the airfoil

and the mean wall shear stresses are presented on the Figure 5–12. It is observed

that the relative error is much more significant for the wall shear stress which is

required in the computation of the skin-friction drag coefficient than on the pressure

coefficient which intervenes in the evaluation of the pressure drag. In addition, the

errors are higher for the (NLFD-LVI) method than the (NLFD-AEVI) methodology

which is consistent with the compared accuracy of both methods to compute the

IFMV.
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(a) t0 (b) t5

(c) t11

Figure 5–11: Fluid velocity contours and streamlines for the pitching NACA0012
case at ±20◦ and κ = 3 at time instances t0, t5 and t10
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(a) Lower side

(b) Upper side

Figure 5–12: Relative errors on the mean pressure coefficient cp and the mean wall
shear stress τw for the pitching NACA0012 case at ±20◦ and κ = 3 at a time instance
t5 = 5

11
T
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5.5 Discussion

The different methodologies are compared based on five simple test cases. First,

it was shown that for linear motions, no differences are observed and all methods

are equivalent which is analytically expected. In addition it was also demonstrated

that, the convergence of the GCL and IFMV is independent of the convergence of

the aerodynamic coefficients.

For problems with more complex mesh motions, in the case of “small” defor-

mations (±10◦ pitching cylinder and ±5◦ pitching NACA0012 airfoil), differences

between the methodologies to compute the time-average behavior of the drag co-

efficients were found to be below 0.01% relative to the mapping method for any

number of harmonics, while the instantaneous behavior could present more signifi-

cant distinctions which reduce as the number of harmonics increase in the temporal

discretization. The order of magnitude of these differences being less than one drag

count, would not be further investigated in industry. However as the non-linearity

of the motion becomes more significant for “large” deformation amplitude (±20◦

pitching NACA0012 airfoil), differences over twenty drag counts are observed even

for a reasonable number of harmonics of five employed for the temporal discretiza-

tion which corresponds to a level of convergence of the GCL around 10−9 using the

mapping method and to IFMV converged between 10−4 to 10−5 using the NLFD-

based methods. From the levels of convergence, it appears that the differences are

mainly due to the inaccuracy of the IFMV and that enforcing solely the GCL does

not guarantee the most accurate results.
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In summary, the performances of the different methodologies are quite compa-

rable regarding the average aerodynamic coefficients as long as the non-linearity of

the mesh deformation is not too “large”. The limits of each method appear for small

number of harmonics, where the level of convergence of the GCL is low using the

BI-MAP method while the level of convergence of the integrated face mesh velocities

is low using the NLFD-based methods. However, at higher number of harmonics,

the BI-MAP approach begins to satisfy the GCL, while the inaccurate IFMV from

the NLFD-based methods appear to affect the accuracy of integrated function values

such as the drag and lift coefficients.
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CHAPTER 6
Conclusion and future work

The satisfaction of the Geometric Conservation Law (GCL) is essential to avoid

the introduction of numerical errors or inaccuracies in the solution. The limitations

of the initial approach proposed by Tardif and al. [37] were discussed. It was shown

that this method satisfies the GCL with possibly non converging integrated face mesh

velocities since it is based on a linear representation of the volumetric increments.

Thus the approach of Tardif and al. [37] is ill-suited for complex non-linear motions.

Novel approaches were developed for both the Non-Linear Frequency Domain

and the Time-Spectral methods to enforce the GCL. These methodologies are based

on the computation of the Integrated Face Mesh Velocities (IFMV) through the

evaluation of the Approximated Exact Volumetric Increments (NLFD-AEVI) or a

mapping between the physical domain and the computational space (MAP). The

techniques were thoroughly investigated both analytically and numerically in order

to determine their accuracy and limitations. The NLFD-AEVI method was shown

to satisfy GCL with first-to-second order accurate IFMV while the mapping-based

methodologies enforce the GCL with a spectral rate of convergence through the

computation of the exact integrated face mesh velocities. Hence it was proven that
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satisfying the GCL does not guarantee that the errors in the integrated face mesh ve-

locities are either at the same level or converge at the same rate. The different meth-

ods were demonstrated for both two-dimensional quadrilateral and three-dimensional

hexahedral grids.

The comparison of the different methods on aerodynamic simulations were per-

formed for plunging or pitching motions of a cylinder and a NACA0012 airfoil. For

linear motions, all the methods are equivalent and produce the same results. Depend-

ing on the degree of non-linearity of the mesh motion, differences appear between

the methods which can become significant for “large” mesh deformations. It was

observed that the differences on the drag coefficients decrease as the temporal dis-

cretization is refined but may persist to be above one drag count and thus deserve

further consideration from an industrial point of view. Lastly, it was shown that the

rate of convergence of the Geometric Conservation Law is independent from the rate

of convergence of aerodynamic coefficients.

Additional investigation of three-dimensional aerodynamic performances which

would allow for more complex mesh deformations is needed to evaluate the differences

between the developed methodologies. The correct determination of the impact of

the GCL as well as the IFMV on aerodynamic computation is fundamental in order

to evaluate the accuracy of the flow solver. Indeed for a pitching airfoil with a

large pitching angle, the separation of the flow is convected along the chord in the

downstream direction and Rigid Grid Motion is not sufficient to preserve the cell

density in the wake, thus dynamic mesh deformation along with the GCL satisfaction

is essential for such simulations. Moreover these future investigations should not be
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only restricted to aerodynamic coefficients but expanded to Limit Cycle Oscillation

in aeroelastic cases in order to further extend the current in-house solver.
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