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ABSTRACT

Novel approaches to enforce the Geometric Conservation Law (GCL) on moving
grids using spectral in time solvers are introduced. The governing equations are based
on the Arbitrary Lagrangian-Eulerian formulation of the Navier-Stokes equations,
discretized in time through either the Non-Linear Frequency Domain (NLFD) or the
Time-Spectral (TS) methods. The equations are spatially discretized by a structured
finite-volume scheme on three-dimensional hexahedral meshes or two-dimensional
quadrilateral grids. The derived methodologies follow a general approach where the
positions and the velocities of the grid points are known at each time step based on
the dynamic mesh deformation using the Radial Basis Functions (RBF) technique.
The Integrated Face Mesh Velocities (IFMV) are derived either from the Approxima-
tion of the Exact Volumetric Increments (AEVI) relative to the undeformed mesh or
exactly computed based on a Mapping (MAP) between the physical domain and the
computational space. It was shown that satisfying the GCL does not guarantee that
the errors in the Integrated Face Mesh Velocities (IFMV) are either at the same level
or converge at the same rate. The methods are validated numerically by verifying
the conservation of uniform flow and by comparing the integrated face mesh veloc-
ities to the exact values derived from the mapping. Their impact on aerodynamic

computations is evaluated through two-dimensional plunging or pitching simulations

of a cylinder and a NACA0012 airfoil.
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ABREGE

De nouvelles méthodes pour résoudre les Lois de Conservation Géométriques
sur des maillages déformables sont introduites pour une discrétisation temporelle
des équations fondamentales de la mécanique des fluides selon des approches spec-
trales. Les équations de Navier et Stokes sont exprimées selon la formulation arbi-
trairement Lagrangienne-Eulérienne, et sont discrétisées en temps par la méthode
non linéaire dans le domaine fréquentiel ou par la méthode en temps spectral. La
discrétisation spatiale des équations utilise la technique des volumes finis pour des
maillages tridimensionnels hexaédriques ou bidimensionnels composés de quadri-
lateres. Les méthodologies de résolution proposées suivent une approche globale
ou seules les positions et vitesses des noeuds du maillage sont connues a partir
de sa déformation par la technique d’interpolation des fonctions en base radiale.
Les vitesses du maillage intégrées sur chaque face sont obtenues soit en utilisant
une approximation la plus précise possible des incréments volumiques de chaque
¢lément, ou exactement calculées par I'intermédiaire d’une cartographie entre I'espace
physique et I’espace numérique. Il est observé que satisfaire les Lois de Conservation
Géométriques ne garantit pas que 'erreur sur les vitesses de maillage intégrées sur
chaque face soit du méme ordre ou converge a la méme vitesse. Les méthodes sont
validées numériquement en vérifiant la conservation d’un écoulement uniforme et en
comparant les valeurs des vitesses de maillage intégrées sur chaque face. Les effets de

ces différentes approches sur le calcul des coefficients aérodynamiques sont évalués
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en effectuant des simulations de mouvements oscillatoires d'un cylindre et d’un profil

d’aile NACA0012.



NOMENCLATURE
This section defines the main abbreviations and symbols employed in this thesis.
Unless it is specified otherwise by the subscript “C”, all relevant spatial quantities
are expressed in physical space. When necessary local modifications and additional

variables will be introduced directly in the text of the dissertation.

Abbreviation

AEVI Approximation of the Exact Volumetric Increment
ALE Arbitrary Lagrangian-Eulerian
AVG Average

BI-MAP Bilinear Mapping

DFT Discrete Fourier Transform

GCL Geometric Conservation Law
IDFT Inverse Discrete Fourier Transform
IFMV Integrated Face Mesh Velocity
LVI Linear Volumetric Increment
NLFD Non-Linear Frequency Domain
RBF Radial Basis Functions

SCL Surface Conservation Law
TRI-MAP Trilinear Mapping

TS Time-Spectral
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VCL

Operators

()’
()
L

T

\Y

X

Scalar quantities
Cb

Cbo,p

C'D,v
&)

Q0 Q&m0

823 mgm

Volume Conservation Law

Transpose operator

Time-average over a period operator
Scalar triple product operator
Trilinear mapping operator

Nabla operator

Cross-product operator

Total drag coefficient

Pressure drag

Skin friction drag

Total lift coefficient

Stagnation pressure coefficient

Total energy per unit mass

Sum of the integrated face mesh velocities over a cell faces
Integrated face mesh velocity

k" Fourier coefficient of the sum of integrated face mesh veloc-
ities over a cell faces

k" Fourier coefficient of the integrated face mesh velocity
Total enthalpy per unit mass

Linear part of the volumetric increment

Freestream Mach number
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Pm
Re

Eacr
Errmve, Errmvy

R

p

Ti j

Number of harmonics in the temporal discretization
Number of faces

Number of grid points

Number of RBF points

Number of time instances
Pressure

Periodic part of the volumetric increment
Freestream Reynolds number
Strouhal number

Time variable

Temporal period

Temperature

Freestream fluid velocity

RBF interpolation coefficients
Kronecker symbol

Heat capacity ratio

Level of convergence of the GCL
Level of convergence of the IFMV
Reduced frequency

Density

Components of viscous stresses
RBF basis function

Volume variable
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Qo Volumetric increment

Qy k" Fourier coefficient of the volume )

' .k k" Fourier coefficient of the volumetric increment
o052 Boundary of the volume (2

ni,Na, N3 Cartesian components of unit normal vector

Uy, U, Us Cartesian components of fluid velocity vector

x1,To,x3 Or x,y,z Cartesian components of position vector in physical space

&, C Cartesian components of position vector in computational space
Subscripts

C Computational space index

h General hexahedron element (Definition 3.3.2) designation

m Face index

n Time instance index

q Quadrilateral element designation

Vector quantities

F. Inviscid flux vector

FM Modified inviscid flux vector for moving boundaries
Fq Artificial dissipation flux vector

F, Viscous flux vector

n Normal vector

n Unit normal vector

N Unit normal vector in computational space

r Position vector

X



g =

?§>

Position vector in computational space

Residual vector

k" Fourier coefficient of the residual vector

k" Fourier coefficient of the unsteady residual vector
Velocity vector

Velocity vector in computational space

Contravariant flow velocity vector

Contravariant boundary velocity vector

Position vector of a RBF point in the undeformed mesh
Position vector of a grid point in the undeformed mesh
Displacement vector of all RBF points in the x direction
Displacement vector of all grid points in the x direction
Vector of the conservative variables

Modified vector of the conservative variables

k" Fourier coefficient of the modified vector of the conservative
variables

RBF volume point basis function matrix

Fourier temporal-derivation operator matrix

Identity matrix of dimension 2N + 1

RBF basis function matrix
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CHAPTER 1
Introduction

1.1 Context

Since the 1950s, rapid advances in computer science and its associated tech-
nologies have prompted engineers to develop and employ software in order to exploit
the enormous calculation efficiency of computers. As problems of greater complexity
could be tackled in a reasonable amount of time, novel disciplines focused on the
development of numerical methods in various engineering fields emerged in the last
several decades. Among them the Computational Fluid Dynamics (CFD) field aims
to predict the behaviour of a fluid flow under predefined spatial boundary condi-
tions and temporal initial conditions by using numerical methods to approximate
the solution of the governing equations. In aerodynamics, the lack of analytical
methods to exactly solve those equations for flows around smooth geometries such
as two-dimensional airfoils motivated the development of CFD as a discipline. Today
aircraft and turbomachinery manufacturers exploit CFD to optimize the design of
their products and predict as precisely as possible the aerodynamic performances.
The accuracy of the results provided by the CFD simulations enables engineers to
explore multiple configurations.

However, despite the progress realized in numerical simulation and the increase
of computing capacities in recent decades, the accurate computation of unsteady

aerodynamic flows in a reasonable amount of time still presents a challenge in the



field of computational fluid dynamics. Compared to steady flow problems which only
require an accurate spatial discretization, unsteady flow solvers have to provide an
accurate temporal resolution of the flow. The accurate computation of unsteady flows
is essential for applications such as helicopter rotor design or rotor-stator interactions
in turbomachinery.

1.2 Frequency domain solutions

Until recently, simulations of unsteady flows were performed through time march-
ing techniques for which the solution is constructed in time from an initial freestream
solution. One widely used approach is Jameson’s dual time stepping technique [17]
which is based on two nested loops. The outer loop is used to march the solution in
physical (or real) time through a second-order backward difference scheme. Then at
each physical time step the inner loop is used to march the solution to a steady state
in pseudo time through a multistage Runge-Kutta scheme. The convergence of this
technique is usually improved using local time-stepping and a multigrid strategy [16].
For periodic in time problems, the time step is advanced until a periodic steady state
solution is resolved. In some instances if only the periodic solution is of interest, a
large number of time steps or computational expense is required to shed the initial
transient solutions.

In the specific case of time periodic flows encountered in problems such as aeroe-
lastic analysis or turbomachinery, several new techniques have been developed over
the last two decades to hasten the convergence of the numerical solvers. In such flows,
any flow characteristic repeats itself every temporal period T', which makes it possible

to exploit Fourier collocation techniques to accurately and efficiently represent the



solution in physical time. The accuracy of the solution and the computational cost
are then determined by the number of harmonics employed to model the periodic
unsteadiness of the flow.

At first, periodic time-linearized techniques were introduced [11, 12], in which
the flow is decomposed into a steady non-linear background flow and small periodic
perturbations. Both steady and perturbed parts are advanced separately, where the
steady part is solved using a conventional solver while a system of wave equations is
employed to advance the perturbations. Despite the high computational efficiency
of such an approach, it is unable to model non-linearities inherent to unsteady flow
problems due to the decoupled nature of the solution strategy.

This motivated the development of completely non-linear techniques to capture
the unsteadiness. The Harmonic Balance (HB) method initially introduced by Hall
and al. [13] was the first of such an approach capable to capture the non-linearities
of the flow. Then, McMullen and al. [24-26] developed the Non-Linear Frequency
Domain (NLFD) method in order to solve the Euler and Navier-Stokes equations
directly in the frequency domain contrary to Hall’s method where equations were still
solved in time. An alternative to this approach is the Time-Spectral (T'S) method
presented by Gopinath and al. [8, 9], which avoids the explicit use of a Discrete
Fourier Transform (DFT) and discretizes the temporal derivative operator through
a Fourier collocation matrix to solve the equation in time. Since these techniques
directly converge to the periodic state solution, there is no initial transient effects
to be computed which makes these methods computationally more efficient than

time marching approaches for periodic flows. These methods were validated for both



Euler and Navier-Stokes equations through several unsteady periodic problems and
proved to be successful in the capture of flow non-linearities as well as significantly
decreased the required time to obtain the solution compared to time marching solvers
(3, 8, 13, 25, 32].

Regardless of the approach, the expression of the residual as a function of the
state vector is always non-linear and a pseudo-time stepping technique have to be
employed to decrease the residual to negligible values. The convergence of the NLFD
method originally solved using a Runge-Kutta multistage scheme in pseudo-time was
later improved by employing the Lower-Upper Symmetric-Gauss-Seidel (LU-SGS)
implicit scheme [4] or by taking into account the local level of unsteadiness of the
flow through adapting the number of harmonics [28-31].

1.3 Mesh deformation and Geometric Conservation Law

Although the accurate computation of unsteady flows presents many difficul-
ties, such simulations are essential during the aircraft design process and especially
to evaluate the aeroelastic behaviour of aircraft components such as the wings, com-
pressor and turbine blades. Aeroelasticity is the study of fluid-structure interactions
between a body and a fluid flow. The accurate prediction of such behavior is critical
to avoid structural failure. It can be decomposed into two analysis, the static (or
steady) response of the body and its dynamic (unsteady) behavior such as vibra-
tions. For instance, the flutter instability is a dynamic phenomenon which occurs
when there is a positive feedback between the aerodynamic forces and the deflec-

tion of the structure. It produces a negative damping which leads either to self



oscillations or to diverging oscillations of the body which eventually would trigger
structural failure.

Besides the complexity due to the unsteadiness of the flow, aeroelastic problems
require by definition the motion of the body. To account for the movement of the
boundaries, it becomes necessary to perform simulations on moving and potentially
deforming grids. Omne popular approach for such problems is the formulation of
the governing equations through an Arbitrary Lagrangian-FEulerian method [15, 35].
The approach requires the evaluation of the geometric quantities of the mesh such as
vertices positions and velocities. In addition, in order to treat arbitrary body-fitted
grids with complex geometry a mapping from the physical domain (z,y,2) to the
computational space (£, 7, () is needed. Due to the motion of the coordinate system,
additional care has to be taken to compute the mesh velocities and the mapping
metrics. Thomas and al. [38] were the first to formally define the necessity to solve
additional laws to preserve the conservation of the solver numerical scheme. Termed
as the Geometric Conservation Law, it is composed of two subsets of laws known as
the Surface Conservation Law (SCL) and the Volume Conservation Law (VCL). A
mathematical interpretation of the SCL relates that any cell volume has to be closed
by its surfaces whereas the VCL states that the temporal rate of change of the cell
volume is equal to the sum of the temporal rate of change of the algebraic volumes
swept by each face enclosing it through time. SCL differs from the VCL in the way
that it needs to be verified even for fixed grids (steady state) while the VCL appears

only on deforming grids.



The violation of any of these laws may result in errors in the flow solution, for
instance it was reported that the violation of the GCL leads to inaccurate flutter
prediction for aeroelastic cases [20]. Further investigation on time marching schemes
clarified the theoretical status of the GCL, exposing its link to temporal-order accu-
racy [10], or stability conditions [7]. In addition, the Discrete Geometric Conservation
Law (DGCL) were derived in order to preserve the temporal accuracy for first-order
[33], second-order [19] and high temporal-order schemes [6, 22, 23]. These methods
are well adapted for time marching approaches, but their extension to the NLFD or
Time-Spectral methods is not straightforward since it becomes necessary to compute
all quantities : state vector, fluxes, mesh positions and mesh velocities, at all time
steps before applying the Fourier discretization. A popular approach to satisfy the
GCL is to deduce the mesh velocities from the prior knowledge of the volumetric
increments between successive time steps [22, 23, 43]. Following this idea, Tardif
and al. [37] introduced a methodology to enforce the GCL in the NLFD framework.
1.4 Research objectives

The main objective is to develop methods to satisfy the Geometric Conservation
Law in a three-dimensional finite volume framework with a temporal discretization
following the Non-Linear Frequency Domain method presented by McMullen and al.
[24]. In order to achieve this objective, the steps listed below were followed :

1. Investigate the approach from Tardif and al. [37] and demonstrate its limita-

tions;



2. Propose and develop new methods to enforce the GCL in a NLFD framework
and demonstrate their impact on the convergence and accuracy, both analyti-
cally and numerically;

3. Evaluate and compare the impact of the developed methods on aerodynamic
simulations.

The dissertation is organized through the following structure. In Chapter 2, the
Navier-Stokes equations governing compressible viscous flows and their discretization
in space and time are presented along with the dynamic mesh deformation technique
using Radial Basis Functions (RBF). In Chapter 3, the Geometric Conservation Law
is introduced and the developed methodologies are derived analytically. Numerical
validation of the analytical results are presented in Chapter 4, and the impact on the
aerodynamic coefficients of a cylinder and a NACAO0012 airfoil for different motions
is discussed in Chapter 5. Lastly conclusions, research contributions and future work

are presented in Chapter 6.



CHAPTER 2
Flow solver framework

In this chapter, the characteristics of the flow solver employed to derive the
different methodologies to enforce the Geometric Conservation Law are presented.
Section 2.1 presents the formulation of the Navier-Stokes equations on a moving mesh
using the Arbitrary Lagrangian-Eulerian approach while its spatial discretization
on a hexahedral structured grid through a finite volume approach is introduced in
Section 2.2 and its discretization in physical time using the Non-Linear Frequency
Domain method is explained Section 2.3. The method employed for the dynamic
mesh deformation through the Radial Basis Functions technique is developed Section
2.4.

2.1 Governing equations

When solving the Navier-Stokes equations on a moving grid a popular approach
is to use an Arbitrary Lagrangian-Eulerian (ALE) formulation [2] which can be
derived from the differential form of the conservation equations given without source
terms by :

ow

o + V. [Fe(w)+Fy(w,Vw)| =0, (2.1)

where w is the vector containing the conservative variables and often named the state
vector or solution, Vw is the solution gradient, F.(w) is the inviscid flux vector and

F,(w,Vw) is the viscous flux vector.



For a control volume €2 enclosed by a boundary 0f2 with the corresponding unit
normal vector n pointing outward, the integration of this differential form and the

application of the divergence theorem yields :

W 10+ 35 Fo(w) - hdS + §£ F(w, Vw) - AdS = 0. (2.2)
o Ot 09 o9

Then applying the Leibniz integral rule to the first term leads to :

9 / wdQ2 +§£ (Fe(w) —wVy) -ndS +§l§ Fy(w,Vw) - -ndS =0, (2.3)
ot Jo G

oN

where Vi = %—’t‘ is the contravariant velocity of the boundary enclosing the control
volume.
This equation is known as the Arbitrary Lagrangian-Euleurian formulation of

the Navier-Stokes equations and can be written as :

9 / wdQ +§1§ FM(w) - ndS +§1§ F,(w,Vw)-ndS = 0, (2.4)
ot Jo o0 o0

where FM(w) = F¢(w) — wV, is the convective flux vector on a moving grid, if
V. = 0 then it is equal to the original inviscid flux vector.
In three dimensions, the state vector w, the vector of the convective fluxes on a

moving grid FM(w) and the viscous flux vector Fy(w, Vw) are expressed as follows



using Einstein notation with the index ¢ = 1,2, or 3 :

( 3\ ( 3\ r \

P pV PVi
Py purV +nip puVs
W =19 pus ; Fl(w) = pugV+mngp ¢ = puVy >
pu3 puzV + nsp puzVy
| PE | . pHV ] | PEV:
, 0 3
n;T;0i1
and Fy(w,Vw) = 1702 with the Kronecker symbol 4,
n;Tii0i3
| niuymij + k5

(2.5)
where p, w1, ug, us, E, p, 7;j, Temp, k and H are respectively, the density, the Cartesian
velocities of the fluid, the total energy per unit mass, the pressure, the components
of the viscous stresses, the temperature, the thermal conductivity coefficient and the
total enthalpy per unit mass defined by :

H=p+72 (2.6)
p

In order to close the system of equations, the pressure is evaluated under the
assumption of ideal gas through the combination of the equation of state with the

definition of total energy (2.7) :

(pur)® + (pu2)® + (PU3)2> 7

pz(v—D(M?— 2%

(2.7)
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where ~ is the heat capacity ratio.

Ory Oxy O
Also, V = (uq, ug, u3) is the contravariant velocity of the fluid, Vi = ( T gt x;;)

ot ot ot
is the contravariant velocity of the boundary enclosing the control volume and

n = (ny,ng,n3) is the boundary unit normal vector pointing outward of the con-

trol volume. It yields :

(2.8)

V=V -h=%p,

By introducing a discretized control volume and an artificial dissipation flux
vector Fgq to avoid an odd-even decoupling of the solution and to increase the ac-
curacy at discontinuities, equation (2.4) can be written under a semi-discretized
non-dimensionalized form as :

LN ) [T PR ) 29

ot 5 Re

The previous set of equations has to hold for each control volume and can be

expressed as a semi-discrete system of ordinary differential equations in time :

o(w)
ot

+R(w) =0, (2.10)
Mo
where R(w) = Z {(FIXI - \/_—Fv) S — Fd} is the residual vector.
Re
£

2.2 Spatial discretization

In this work, the discretization in space is performed employing a second-order fi-
nite volume method either on three-dimensional hexahedral grids or two-dimensional
quadrilateral meshes. Given an arbitrary control volume, the state vector w is eval-

uated at the cell centroid, while the residual vector R(w) is calculated through the

11



summation of the fluxes over all the faces of the control volume. Using the indices
i, j and k to denote the cell centroid, the discretized form of equation (2.10) can be

written as such :

( 5’(91 kW k)
# + R(W”k) = O,
(2.11)
Ny \/_M
R(lek’> = Z |:(F2/Im - Re OOva) Sm - de:| ;
\ m=1 o0

where m is the index of summation through the faces and Ny the number of faces
enclosing the control volume.

The modified convective flux is computed as the average of the fluxes at a cell
face and the artificial dissipation is evaluated using the Jameson-Schmidt-Turkel
(JST) scheme [17]. The viscous flux is computed using a central second-order dis-
cretization. The residual vector is calculated as the summation over the faces of the
control volume of the different fluxes.

2.3 Temporal discretization

The temporal discretization of the flow solver employs the NLFD approach de-
veloped by McMullen and al. [24]. Under the assumption that both the modified
state vector w = Qw and the residual vector R(w) are periodic in physical time,
the two quantities can be expanded as discrete Fourier series using a finite number

of harmonics,

N
W(t) = ) Wye'CH I (2.12)
k=—N
N
R(w(t) = > Rye'C™/M0 (2.13)
k=—N



where ¢ = y/—1 is the imaginary unit, 7" is the temporal period, k is the wave number,
and N is the number of modes employed in the Discrete Fourier Transform (DFT).
The k' Fourier coefficients Wy, and Ry, are given by the following equations (2.14)

and (2.15), for —-N <k < N :

2N
1 .
Vi = Q(t,)w(t,)e " 2mk/ Tt 2.14
M:2N+1§%()W(k : (2.14)
1 2N
R, = R(w(t,))e mk/T)in 2.15

where their computations require the sampling of the modified state vector and the
residual vector for N;s = 2N + 1 time steps at equally spaced time instances such

that the n'* time sample t,, is :

o n
2N +1

tn T, forn=0,..,2N. (2.16)

At this point, it is important to emphasize that the state and residual vectors
need to be evaluated at all time instances before transferring in the Fourier domain,
this is a fundamental difference with the time marching approach. The Fourier
representation is then substituted into the semi-discrete form of the Navier-Stokes

equations (2.10) to yield :

0 [ & , N
& < Z Wkez(ka/T)t> + Z Rkez(ka/T)t _ O, (217)

k=—N k=—N
N ot N
o i(2mk/T)t S Li(2rk/T)t _
& k_g_N T Wie +k_§_NRke = 0. (2.18)
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By exploiting the orthogonality property of the Fourier basis, this leads to a set

of 2N + 1 equations (2.19), each being associated to a wave number k :

2rk A
i%vaRk:()for ~N<Ek<N. (2.19)
Since the representation of f{k as a function of wy is not straightforward, an
unsteady residual f{Z is defined and driven to zero using a pseudo-time marching
approach such that :

. ok .
R};:i%ﬁvk+Rk

,for — N <k <N. (2.20)

0wy, A
P LR =0
ot* R

Thus at convergence, f{,’g = 0 and equation (2.20) is satisfied for each wave number.
The new periodic solution is then transferred back to the physical time domain
using an Inverse Fourier Discrete Transform (IDFT) and evaluated at each time

instance t,, by dividing by the volume :

w(t,) = vg;((f:;’ for 0 <n <2N. (2.21)

The equation in pseudo-time can be solved using any time-stepping scheme. In
this work, we use a hybrid five-stage Runge-Kutta scheme with blending coefficients
for the artificial dissipation [16].

2.4 Dynamic mesh deformation
The deformation of the mesh is performed using the Radial Basis Functions

(RBF) [37]. The method is based on the assumption that the movement of all grid
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points can be interpolated from an a priori known motion of a set of points called
the RBF points. In this study, the RBF points are always a subset of the grid points
at the boundary of the domain, their displacements relative to the undeformed mesh
are prescribed at each time instance using analytical functions. Because of the NLFD
method, the mesh positions and velocities are therefore computed and stored for all
Ny time steps. For any grid point v; of position vector x,; in the undeformed mesh,
its displacement in the x-direction s,(x,,,t) is defined as :

NrBF

Sa(Xo;, 1) = Z i ()(l[x; = %r:||2), (2.22)

i=1
where Ngpp is the number of RBF points, «; are the interpolation coefficients, x,,

is the position vector of the i RBF point in the undeformed grid and ¢ is some

basis function depending on the Euclidean distance ||x,;, — X, ||2 between the points
vj and 7. In this work, Wendland C0’s basis function [39] is considered, it is defined

as follows:
(1-— l)2 ifl<1

l— HX’UJ' _XT‘Z' 2
_—R ,

, with

0 ifl>1

(2.23)

where R is the support radius relative to the surface of RBF points. Since the equa-
tion (2.22) holds for any grid point whether it is a RBF point or a standard grid point,
the RBF points are denoted with the subscript r while the grid (or volume) points
are denoted with the subscript v. Then in the z-direction, the displacements of all
RBF points and the interpolated displacements of all grid points are regrouped re-

spectively in the vector Ax, and in the vector Ax,. Therefore the a priori unknown
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displacements Ax, are obtained through equation (2.24) :

Ax, = AM Ax,, (2.24)
where :
(b'f'l/f'l ¢T1'I"2 A ¢7‘17’NRBF ¢U17’1 ¢U17‘2 AR ¢’U1TNRBF
M _ ¢T27’1 ’A _ ¢U2T1
¢TNRBFT1 o ¢TNRBFTNRBF ¢ngridT1 T ¢UNgridrNRBF
(2.25)
with :
¢vi7“j = ¢ (||XU1' - XT]'“?) ) (226)

and N4 is the total number of grid points. The displacements in the y and z
directions can be computed with the same matrices given in equation (2.25), by
considering the RBF points displacements in the corresponding direction.

Similarly, the mesh velocities for any grid point are computed using the Radial
Basis Functions for Velocities (RBFV) by interpolating the a priori known velocities

of the RBF points which leads to the following expression :
Vo, dir = A(M_l)vr,dira (227)

where v, 4 is the vector of the velocities of the grid points and v, 4, is the vector

of the velocities of the RBF points and the direction is given by dir = x,y, or z.
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CHAPTER 3
Derivation and enforcement of the Geometric Conservation Law

As previously stated our interest is focused on the Volume Conservation Law
aspect of the GCL. Under integral form the VCL for a control volume €2 enclosed by

a boundary 0€) can be written as follows :

0 < _
a/QdQ _ 5639(Vt -0)dS = 0. (3.1)

where V; is the mesh velocity vector and n is the unit normal vector to the surface
0f) pointing outward. The law relates only on geometrical considerations and is
always satisfied under continuous form and implicitly satisfied for rigid grid motion.
It arises from the deformation of the mesh and is closely related to the preservation
of uniform flow by the numerical scheme. Therefore in order to obtain a consistent
solution method, the GCL must be discretized using the same numerical scheme
employed to discretize the primary conservation laws [10]. In our case, it yields a
hexahedral stuctured finite-volume framework and a temporal discretization using
the NLFD method.

A first approach to enforce the VCL in the NLFD context was presented by
Tardif and al. [37] but more investigation is needed to determine its limitations. In
this chapter, further developments are added to this approach in Section 3.2 which

expose its analytical limits and new methods are proposed in Sections 3.3 and 3.4.
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3.1 Derivation of the GCL in the NLFD framework
Considering any discretized control volume €2 enclosed by Ny faces, then equa-

tion (3.1) can be written as :

00 L
T > //m (Vg - fap,)dS = 0, (3.2)
m=1 m

where n,, is the unit normal vector to the face 02, pointing outward. Then the
integrated face mesh velocities (IFMV) G,,(t) corresponding to the temporal rate of
change of the algebraic volume swept by each face through time are introduced in
equation (3.3) :

Gon(t) = //a  (Ver)is (3.3)

and also G/(t) is the sum of the IFMV over all faces of the control volume :

G(t) = Gul(t). (3.4)

Then equation (3.2) can be written as :

o0
S5 =Gt =0, (3.5)

Under the assumption that the volume €2 and the sum of the integrated face mesh

velocities G are periodic functions of time, the NLFD discretization can be applied :

N
Q) = Y Qe (3.6)
k=—N
N
G(t)= Y Gpe'™/mr, (3.7)
k=—N
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By substituting these expressions into equation (3.5), it yields :

<Z Q ol i(2mk/T) ) Z G ez(?ﬂ'k/T (38)

N .
127k~ ion .
& <Z = She 2 k/T>t> Z GrelCmR/ITIt — (). (3.9)

k=—N

Then by exploiting the orthogonality property of the Fourier basis, it leads to a

system of 2N + 1 equations, each corresponding to a wave number k :

ZQ;ka Gy for —N <k <N. (3.10)

The set of equations (3.10) provides the necessary condition to enforce the GCL in
the NLFD approach. Such criterion is not satisfied in general and has to be enforced
through the correct computation of the cell volume and the integrated face mesh
velocities, in a way consistent with the solver numerical scheme. Since the volume is
usually exactly known, one popular approach in time marching methods is to split
the GCL over each face [22, 23, 43]. In the current framework, the volume of a cell
can be expressed as the sum of the volume at a reference initial instant ¢, and the
algebraic (positive or negative) volumetric increments due to each face €, relative

to this reference instant :
Q) = Qto) + Y Q). (3.11)

By substituting relations (3.11) and (3.4) into the equation (3.5), it yields :
N
O
> (8— - Gm(t)) =0. (3.12)
=\ ot
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Then for each face m enclosing the discretized control volume, we need to ensure the
relation (3.13) :

O,
= Gull). (3.13)

However, even if the positions of the mesh vertices and their velocities are known
at all time instances from the dynamic mesh deformation, the implementation of
the GCL using this relation is not straightforward using the NLFD method. In the
following, volumetric increments are always considered as algebraic values which can
either be positive or negative.

3.2 Approach of Tardif and al. [37]

The first approach developed by Tardif and al. [37] is based on a linear repre-
sentation of the volumetric increments relative to a reference time instance ty. For
any face m defined by its vertices the induced volumetric change would simply be
represented by drawing straight lines from their initial position at ¢y to their position
at time instant ¢, see Figure 3-1.

This approach has two advantages : first, it is easy to compute the volumetric
increments at each time instant using standard cell volume computational algorithms
; second, the volumetric increments due to each face are time periodic as long as the
movement of the vertices is periodic.

Once the volumetric increments are known for 2N + 1 time instances defined by

equation (2.16), their Fourier representations are calculated :

N
Q(t) = Z Qm,ke(iQWk/T)t, (3.14)

k=—N
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| Q| Q) [a)

Figure 3—-1: Example of linear volumetric increment in 2D relatively to a reference
time instant ¢,

and the Fourier formulations of the integrated face mesh velocities for each face m

are introduced :

N
G(t) = Y G e/, (3.15)

k=—N

Then by substituting, the Fourier representations into criteria (3.13), and ex-
ploiting the orthogonality of the Fourier basis, a system of 2N + 1 equations (3.16)

is obtained for each face m :

2tk - )
Z;S%ﬁ:mer—NngN. (3.16)

Therefore, the GCL are satisfied independently for each face of the control volume
by computing the Fourier coefficients Gm,k and then applying an IDF'T to transfer
back the integrated face mesh velocities to the temporal domain. Despite its attrac-
tiveness, this method is restricted to linear movements due to the manner in which

the volumetric increments are computed. In general, the motion would not be linear
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and such representation of the volumetric increments will not be sufficient to ensure
the correct computation of the IFMV.

Moreover the NLFD method is based on the assumption that the quantities are
time periodic and can be expanded in Fourier series, but having a time periodic
movement of the vertices does not guarantee time periodic volumetric increments
but only that their temporal derivative will be periodic. This statement will be
demonstrated through the following example.

A 2D quadrilateral element is considered with the following motion defined by
equation (3.17) and shown Figure 3-2 :

.

a(t) = 2mxt,
ry = Trio,
ry = Tap, (3.17)
rg = rzo+ R(1—cos(a(t)))ex + R(sin(a(t)))ey,
L T4 = T4,

where the index 0 refers to the initial position of the grid, R is the radius defining the
amplitude of the circular motion and e, and ey are the unit vectors in respectively
the x and y directions.

For the face defined by the vertices ry and rs, the derivation of the expression
of the exact volumetric increment in the x direction and its time derivative leads to

the following expressions respectively (3.18) and (3.19) :

(1) = -(a(t) —sin(a(0) + 201 —cos(a(t),  (3.18)
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Figure 3-2: (a) The initial undeformed quadrilateral element is shown in black while
the movement of the mesh points is presented in red with two deformed configurations
of the cell in dashed lines, (b) Exact volumetric increment for the face 2-3 in the z
direction relatively to the initial configuration (in dash dot line) in blue

O3.(t)  R* O Rys0 0

5 = 75(1 —cos(a(t))) + 5 B sin(a(t)), (3.19)

where the length y3 o = (r30 - ey).

Thus the temporal derivative of the volumetric increment is periodic whereas
the volumetric increment is the sum of a linear term and a periodic term and the
direct application of the NLFD method on the exact volumetric increment is not
possible since the linear term is not expandable as a Fourier serie. Additional work
is required to ensure equation (3.13) is compliant with the NLFD method.

3.3 New method based on the exact volumetric increments

In this section, first a new methodology which relies on the exact volumetric
increments is introduced analytically in Section 3.3.1. Then, the accuracy due to
the numerical discretization of the method on hexahedral grids is derived in Section

3.3.2 and then extended to quadrilateral grids in Section 3.3.3.
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3.3.1 Method

In this section, we introduce and demonstrate the new Theorem 3.3.1,
Theorem 3.3.1. Let €2 be a discretized control volume, enclosed by Ny faces, and
subjected to a periodic motion of its vertices. Then given the knowledge of the exact
volumetric increments (), for m = 1,..., Ny, a sufficient condition to ensure the
satisfaction of GCL in the NLFD framework is the computation of the integrated

face mesh velocities, where the zeroth and higher modes can be expressed as

. Q. (T
Gm,o - IE )7 (320)
. 2k
Conp = for —N<k<N, k#0, (3.21)

T
where émk and Dp, 1 are the Fourier coefficients of respectively the integrated face

mesh velocities and the periodic parts of the exact volumetric increments given by,

pont) = (1) — (Q";ET)) : (3.22)

Proof. Under the assumption that the motion of the vertices is periodic, the tempo-
ral rate of change of the algebraic volume swept by each face through time is periodic.
Thus the temporal derivatives of the volumetric increments and the integrated face

mesh velocities are periodic, the DFT is applied to the equation (3.13) leading to :

Oy Y m
Gm(t) = W = Gm,o + Z GmJﬂeZTkt, (3.23)

k=—N,k£0
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where CA}'m,k, for — N < k < N are the Fourier coefficients of both the temporal
derivative of the volumetric increment and the integrated face mesh velocity of a
face m.
By integrating the equation in time, any volumetric increment is expressed as :
/—dt + Gt + i L G, et (3.24)
Qim0 m,0 o ok Ok . .

where 2,0 is a constant of integration. Then any volumetric increment can be

interpreted as the sum of a linear term [,,(¢) and a periodic function p,,(t) defined

by :
ln(t) = G, (3.25)
Yoo
pm(t) = Qm,g + Z ﬁGm,kelTkt. (326)
=—N,k#0

Knowing the values of the volumetric increments at ¢ = ty and ¢t = ¢y + T, and

exploiting the periodicity of the functions p,,, yields :

Qi (o) = Gooto + Pm(to)
Qm (to + T) = émo (to + T) + Pm (t() + T)
pm(tO) - pm(tO + T)
A Q T)—Q
Grmo = mfo T), m{fo) (3.27)

Hence the zeroth Fourier coefficients of the integrated face mesh velocities are known
through equation (3.27) applied for each face m and the linear parts [, of the vol-

umetric increments can be computed at each instant. Then, an expression of the
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periodic part of any volumetric increment p,, is obtained as :

(3.28)

Pan(t) = Qo (£) = L () = Quu(t) — <Qm(to +T) — Qm(to)) .

T
Usually g would be taken as the initial time instant {; = 0 corresponding to the
undeformed configuration of the mesh, for this specific reference time instant €2,,,(0) =
0, and the previous expression can be further simplified into equation (3.29) :

Pm(t) = Q(t) — <Qm?m) t. (3.29)

Therefore, at each instant ¢ the periodic parts of the volumetric increments p,, are
known and for each face m we introduce the Fourier coefficients for p,,, noted as p, i
for —N < k < N. By calculating the temporal derivative in Fourier space of p,, and
exploiting the orthogonality of the Fourier basis functions, the rest of the Fourier
coefficients of the integrated face mesh velocities @mk are deduced for each face m

from a system of 2N equations

. ionk
Groge = b for =N <k <N, k#0. (3.30)

Since the derivation in Fourier space puts to zero the contribution from the zeroth
coefficient, the values of the integration constants Qm,O are not relevant to compute

the integrated face mesh velocities. |

Finally the procedure to compute the IFMV to enforce GCL by deducing the
temporal derivative of the volumetric increment for each face is given by the pseudo-

code (Algorithm 1). It is important to note that since the values of the volumetric
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for n=0,...,2N do
Calculate the mesh deformation using the RBF for equally space time

instances t,, ;
end
for face =1, ..., faceq, do
for n=0,....,2N +1 do
‘ Calculate the volumetric increments Qg () ;
end

A Q t
Deduce the zeroth Fourier coefficient via G teee0 = M ;

T
for n=0,...,2N do
Extract the periodic part of the volumetric increment via

pface(tn) = Qface(tn) - éface,Otn ;

end
Compute the Fourier coefficients procer via FFT on prace(t) ;
for k=—-N,..,1and k=1,..N do

Deduce the k" Fourier coefficient of the integrated face mesh velocity
oA 127k |
via Gface,k = T DPrace,k ;

end

Compute the integrated face mesh velocity G fqce(t) via IFFT on G face,k
with —N < k < N;

end

Algorithm 1: Pseudo-code representing the derived procedure to compute
the integrated face mesh velocities and ensure GCL in the NLFD framework
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increments are required at ¢ = T' in order to deduce the zeroth Fourier coefficients
(A}’m,o through equation (3.20), one additional time step is needed toy 1 compared to
the number of time steps for the flow solver. However for this final time step the
configuration of the mesh is the same as the initial (the undeformed mesh), thus no
additional time step is needed for the mesh deformation. For this procedure, the
key point is to compute the exact volumetric increments as accurately as possible in
order to preserve the spectral convergence of the NLFD method.
3.3.2 Practical enforcement and error estimation on hexahedral grids
In practice the accuracy of the previous method highly depends on the accu-
racy of the computation of the volumetric increments. For a hexahedral grid, as
each face m sweeps through the computational domain, between time intervals they
form 8-vertex cells with 12 straight line segment edges but 6 faces which may no
longer be planar depending on the mesh deformation; thus these 8-vertex cells may
not form hexahedra. However 8-vertex cells with 12 straight line segment edges are
topologically equivalent to hexahedra independent of the planarity of the faces [5]
and sometimes termed as “general herahedra” [44]. The surfaces of any “general
hexahedron” can be defined using a trilinear mapping [5] between the 8-vertex cells
in physical space with 12 straight line segment edges for either planar or non planar
faces and a reference cube in the computational domain Figure 3-3. Thanks to this
mapping which depends only on the vertices positions and the numeration conven-
tion, the volume of any of these general hexahedra can be computed. This yields the

following Definitions 3.3.2, 3.3.3 and 3.3.4.
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Definition 3.3.2. The terminology general hexahedron is employed to design a §-
vertex cell with 12 straight line segment edges for either planar or non planar faces
which s topologically equivalent to a hexahedron.

Definition 3.3.3. The volume of any “general hexahedron” (Definition 3.3.2) as a
function of the position vectors of the vertices in the physical space r; fori=1,...,8,

15 evaluated through,

Q= (Qs21 + Qsers + Qaasr + Q1265 + Qu1ss + Qasre),
(3.31)

1
with Qijkl = E(I'j + I'k) . ((I‘Z + I‘j) X (I‘i + I‘l>).

Figure 3-3: Trilinear mapping between a “general hexahedron” (Definition 3.3.2) in
the physical space and a reference cube in the computational domain

Definition 3.3.4. For any face m of a hexahedral cell, the exact volumetric in-
crement is estimated through a sum of “general hexahedra” (Definition 3.53.2) each

corresponding to the approximated volumetric increment between two time samples
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tn—1 and t, and noted as Q5 (t,), (see Figure 3-4) :

”

Qm<t0) - 07

(3.32)

Qm(tn) = <Z Qmﬁ(tk)) + Eﬁ(tn), fOT 1 S n S 2N -+ 1,
k=1

\
where ty = 0 is the initial instant corresponding to the undeformed mesh and €’ (t,)

18 the truncation error at time instant t,,.

Figure 3-4: (a) Approximated volumetric increment between two time steps ¢, 1

and t, : Qu(t,) (b) Approximation of a volumetric increment as a sum of “general
hezahedra” (Definition 3.3.2)

Now that the mathematical tools to compute the volumetric increments are in-
troduced, the accuracy of the procedure presented in Section 3.3.1 can be established,
we have the first Lemma 3.3.5,

Lemma 3.3.5. In the context of Theorem 3.3.1, and under the Definitions 3.3.2,
3.3.8 and 3.3.4, for any face m the temporal-order of accuracy of the zeroth Fourier

coefficient of the integrated face mesh velocity Gm,o 1s limited to one.
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Proof. We introduce the scalar triple product application £ defined by,

RExRIxR® — R
L= (3.33)
(Vl,VQ, Vg) — V1 . (V2 X V3) = det(Vl,V2, Vg)

due to the properties of the determinant this application is a 3-linear alternating
form meaning that if any of the three vector is a linear combination of the two others
the result is zero.

Recalling that the volume of any “general hexahedron” (Definition 3.3.2) is com-
puted as a function of the position vectors of the vertices in the physical space r; for

i =1,...,8 through the following equation (see Definition 3.3.3) :

Q, = (Qus21 + Qsers + Qaasr + Q1265 + Qa1ss + Qazre),
(3.34)
1
with Qijkl = E,C(I‘j + rg,I; + r;r; -+ I'l).

For each face m the path of the four corresponding vertices between two time
steps is linearly approximated, as shown in Figure 3—4. Then, for any of these vertices

r;, i = a,b,c,d at the n' time sample, we have the Taylor expansion :

or; 1 (9% 9
(tn) = 1 (t —(t_ th—tn_1)+= [ == (tn_ th — tn O((ty — tn_1)?).
rilt) = mltn- 04 0 ) Cataibg (G (6)) o = 10?4 0100 — )
Truncation error?)?a the vertex path

(3.35)
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The volumetric increment is then defined by the vertices positions with the following

indexation,
rrn = I, tn—la rs = Ty tn—17 rs = TI¢ tn—17 ry, = Ig tn—17
(tn-1) (tn-1) (tn-1) (tn-1) (3.36)
rs = ra(tn)y re = rb(tn)a r = rc<tn)7 rs = rd<tn)-

By substituting the Taylor expansions into the vertices positions to compute the
volume of the volumetric increment through equation (3.34), and then by exploiting
the 3-linearity of the triple product application, the order of the truncation error is
evaluated. The lowest order terms of the truncation error are given by one of the

following generic forms :

L0t 1) alt) = (i) [eitaca) x5 (G20 )| 12+ 00,

ot?

£t et 1) = {3 (G0 ) x| 2+ 06,

ettt mutta) = {5 (Gan)) It a2+ O

(3.37)
where 7,7 and k are the vertices indices. Therefore for any face m, the truncation
error 6%7 ;, on the volumetric increment between two time steps ¢,,_; and ¢, is of order
two in 7 = (¢, —t,_1). In addition, it is possible to write the lowest order term of the
error as a linear combination of the previous forms equation (3.37), thus there exists

a scalar function &I depending on the vertices paths r; and their second temporal
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.. d%r;
derivatives — such that,
ot?

e (tn) = EL(t, )T + O(T?). (3.38)

m,h

Due to the temporal periodicity of the vertices paths r;, the function &I is also
periodic. Recalling that the number of time steps N;s = 2N + 1 and using the

definition of the time instance, the difference (¢,, — t,_1) is written as

m—m-0T T
2N +1 N

(3.39)

Thus the truncation error during the estimation of the volumetric increment between

two time steps at the n'" instant and noted €. , (¢,,) is of order two in 7 and can be

m,h

expanded as :

Eg;,h(to) =0,
(3.40)
e n(tn) =EL(tn1)T® + O(7%), for 1 <n < 2N +1,
T . . . . . 821'i .
where &, (t) is a scalar periodic function depending on r;(t), and EL fori =a,b,c,d.

In order to estimate the error committed on the exact volumetric increment

approximated at the n” time sample, these errors have to be summed, and yields :

el (tn) =) e nlty) = <Z Ei(tk_1)> 7>+ nO(7?), for 1 <n < 2N + 1.

(3.41)
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Hence, for 1 <n <2N +1:

el (t)| < n ( max |5£(tn1)|> 2+ nO(7°) = nO(7?) (3.42)

1<n<2N+1

< N0 ((]\7];)2) — O(r) (3.43)

The order of the error to approximate the exact volume of the volumetric increment

Thus for n = Ny, :

’6,71’;1 (tNts>

may decrease over a period from 2 to 1 for the final value. Thus for any face m, the
order of the truncation error €’ (ty,.) done to compute the zeroth Fourier coefficient

of any integrated face mesh velocity CA}’WO is one. |

Recalling that the zeroth Fourier coefficients are then used to extract the periodic
part of any volumetric increment see Theorem 3.3.1, the error committed on the
rest of the Fourier coefficients of the integrated face mesh velocities is given by the
following Lemma 3.3.6,

Lemma 3.3.6. In the context of Theorem 3.3.1, and under the Definitions 3.3.2,
3.3.3 and 3.3.4, for any face m the temporal-order of accuracy of the Fourier co-

efficients G’mﬁk, for =N < k < N with k # 0, is limited to between one and two.

Proof. For 1 < n < Ny, the periodic part of a volumetric increment can be further
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expanded as :

Qm t ts
p(t) = () — %tn
Nts
§ Z Qm,h (tk;) + Eﬁ (tNts) T
B T _ k=1 n
= Qon(te) + €, (tn) T (Nts)

From equation (3.41), we have :
Pltn) = > Qunlts) + (Z Sﬁ(tk_1)> > +nO(1%)
k=1 k=1

i Lo (tr) + (Z Sﬁﬁ(tk—l)) 72 4 (Niy)O(7%)

n Nts n Nts
n n
= g Qn(ty) — g Qonlte) | + E Em(tio1) — E Em(tr1)
k=1 s p—1 k=1 Nes k=1

Then the truncation error on the periodic part of any volumetric increment p,,(t) is
given for 1 <n < Ny by :

Nts

T _ - T n T
Epm (tn) - [; gm(tk—l) - Nts ;gm(tk—l)

72 4+ nO(7?). (3.44)
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Since the bracketed term in equation (3.44) is dependent of n, the order of
accuracy for any n is still unclear. To refine the determination of the order of
accuracy during the computation of p,,, the approximation of an integral using the
Riemann sum is exploited.

For any T-periodic function f at least three times continuous (f € C3([0;77),

. . _ of .
we have the following asymptotic development (3.45) where f' = - :

Ry, = /0 F(t)dt — 2]as(f(T) — f(0)) + %NZ)Q(J“(T) EA ((1\17:) )
(3.45)
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Then applying this result to the truncation error e (t,), for 1 <n < Ny, :

T

S

- % (/OT 7 (#)dt

Nis—1

ZST t)

Pm

% 4+ nO(7?)

k=0

— S(ENT) = £1(0))

+ SEND - e o)+ 0(73))] 7+ nO(7*)

_ [Z 11— n (D) — (EX(T) - EX(0))

k=0

(3.46)

+ (gT’( T) - 5,2’(0)))} 72+ nO(7%)

12T

[n—1

= |D_Ent) —n(Enr

Lk=0

[n—1
= D (Enty) -
L k=0

Ep)r

2+ n(’)(TB)

24+ TLO(7'3>,

)

where (.)r represents the mean of a function on the segment [0; 7']. Taking advantage

of the fact that the function AEL

:gT—

(ETY 7 is T-periodic with zero mean value
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and exploiting a second time the expression (3.45), yields for n = N :

{ Z [(EX () — (5,’;Q>T)]}¢ = /0 (AEL) dt — Z(AEL(T) — AEL(0)) + O(72)

k=0

(3.47)
Substituting back the expression (3.47) into the final equation in (3.46) for n = Ny,

leads to :

e (th) = =T (E(T) = £,(0)) + NsO(%) = O(7?). (3.48)

In summary the truncation error committed on the periodic part of any volu-

metric increment follows the equation :

4

Egm (to) = 0,

e (tn) = {” (&L th) — (&) ] } 2+ nO(7?), for 1 <n < 2N. (3.49)

\ egm(tNts) = O(7?).

In general, the order of the truncation error on the approximation of the periodic
part of any volumetric increment used as input for the NLFD method is of order
between one and two. Analytically, we observe that for each face m this order is

n—1

determined by the sum Z [(EL(tk) — (E5)7)], which is bounded for 1 < n < Ny
k=0
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by {Nts max | (&L (te) — (E8)T) \} This upper bound ensures that in the worst

1<k<Nis "
case, the order of accuracy is 1. However asymptotically it is reasonable to assume
n—1
that for small and high values of n, the term Z [(E)(tk) — (EL)7)] is small enough
k=0
to consider that the truncation error is of order 2 whereas for n in the middle of the

range [1; Ny, the order is greater than 1 but lesser than 2. [ |

Assuming that the spectral convergence of the Fourier transform is reached and
taking advantage of its bijectivity, the truncation error on the Fourier coefficients
émk and finally on the integrated face mesh velocities is of order between 1 and 2.
Therefore the accuracy of the procedure is given by the following Corollary 3.3.7 :
Corollary 3.3.7. In the context of Theorem 3.53.1, and under the Definitions 3.5.2,
3.3.8 and 3.3.4, for any face m the temporal-order of accuracy of the integrated face
mesh velocity is limited to between one and two.

Thus it is important to note that even if the method described in Section 3.3.1
enforced the Geometric Conservation Law, the integrated face mesh velocities are
determined within an accuracy of order 1 to 2. This is a disadvantage since the
benefit of the spectral convergence of the NLFD method.

3.3.3 Extension to two-dimensional quadrilateral grids
The extension of these results to a 2D quadrilateral grid where the exact volu-

metric increments are approximated through a sum of quadrilaterals (see Figure 3-5)

is straightforward following the same procedure as in Section 3.3.2. The volume of
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any quadrilateral can be approximated using a bilinear mapping between the phys-
ical domain and the computational space see Figure 3-6. This yields the adapted

definitions.

Figure 3-5: Approximation of a volumetric increment as a sum of quadrilaterals
representing the linear volumetric increments between two successive time steps

Figure 3-6: Bilinear mapping of a quadrilateral in the physical space (z,y) to a
reference square in the computational domain (¢, )

Definition 3.3.8. The volume of any quadrilateral as a function of the position

vectors of the vertices in the physical domain r; for i =1,...,4, is evaluated through,

Q, = %Det[(rg Cr) (=) (3.50)
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Definition 3.3.9. For any face m of a quadrilateral cell, the exact volumetric in-
crement is estimated through a sum of quadrilaterals each corresponding to the ap-

proximated volumetric increment between two time samples t,_1 and t,, and noted as

Qng(tn), (see Figure 3-4) :

;

Qm(tO) = 07

(3.51)

Qo (t,) = (Z Qm,q(tk)) + €L (t,), for 1 <n < 2N +1,
k=1

0
where ty = 0 is the initial instant corresponding to the undeformed mesh and €’ (t,)
18 the truncation error at time instant t,,.

By employing the new Definitions 3.3.8 and 3.3.9, and exploiting the bilinearity
of the determinant in the volume calculation and following the same proofs as that
shown for Lemmas 3.3.5 and 3.3.6, the Theorem 3.3.10 that ensures the correct order
of accuracy of the Integrated Face Mesh Velocities is derived :

Theorem 3.3.10. In the context of Theorem 3.5.1, and under the Definitions 3.3.8
and 3.3.9, for any face m the temporal-order of accuracy of the integrated face mesh
velocities 1s limited to between one and two.

3.4 Alternative approach based on the exact integrated face mesh veloc-
ities

3.4.1 Trilinear mapping
The computation of the metrics of a grid is often easier in a Cartesian grid,

for this reason a mapping between the curvilinear physical domain and a Cartesian
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computational space can be performed. In this work, a trilinear mapping is already
used to compute the volume of any general hexahedron (Definition 3.3.2) [5], but
it can also be used to compute the temporal derivative of the volume, the surface
vectors and the exact integrated face mesh velocities as long as the position and
velocity vectors of the vertices are known. This section develops the derivation of
these expressions.
Notation :

By default variables are expressed in the physical domain unless it is specified

otherwise with the index “C”.

T < Trilinear mapping

C <« computational space : (£,n,()

m <> any face of a hexahedral cell (3.52)
n <> normal vector

n < unit normal vector

Derivation :

The mapping 7 from the physical domain to the computational space is intro-

duced :
De) — (D
T = (Pe) = (P) (3.53)
(éa 7, C) — (IL‘, Y, Z) = (T(ga 7, C))7
where (D¢) is the computational space and (D) is the physical domain. The appli-

cation is defined by considering a reference cube in the computational space which
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enables the mapping of any “general hexahedron” in the physical domain. A neces-
sary and sufficient condition to ensure the invertibility of the mapping is the strict
positivity of the Jacobian for any point of the element. However no simple relations
exist in order to verify the positivity of the Jacobian in 3D [18, 21].

In this work, the position vector r = (z,y, z) in the physical domain is mapped
through re = (z(&,71,0),y(&,n,(), 2(£,n,()) based on the location vectors in the
physical domain of the vertices r; = [z;,v;, 2] ¢ = 1,...,8 with the following conven-

tion derived from Figure 3-3 :

re=(1-8Q-=n)1-Or1 +&1 —n)(1—ra+&n(l —Ors + (1 = En(l — ry

+(1 = &) (1 = n)¢rs + (1 — n)Cre + Encry + (1 — §)nlrs,
(3.54)

where 0 < &,n,¢ < 1.
The velocity vector v = (v, vy,v,) in the physical domain is mapped in the
same way ve = (v5(€,1,C),v,(&,1,¢),v:(§,m, () based on the velocity vectors of the

vertices in the physical domain v; = [v,;, vy, v, i =1,...,8 :

ve=(1-80 =1 =Ovi+&{1 =01 =va+&n(l = va+ (1 =1 = )vy

+(1 =& —=n)¢vs + (1 —n)Cve +EnCvr + (1 — E)nlvs.
(3.55)
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For any face m of a cell, the normal vector is given by one of the following

expressions :

. arc arc B arc arc
nc’gzo—_(aé“)}(( n)’ nc’<:1—+<8£)x( n)’
0 0 o o
Nee—o = — <ainc) X (%) , Neg=1 =+ (—;;) X <_(9r(6) , (3.56)
B Orc Ore B ore dre
o=~ (56) 1 (5¢) - e =+ (5)<(5).

where the signs are determined in order to have the normals pointing outward of the

cell volume. The Jacobian matrix J(§,n, () is expressed as :

(3.57)

J<§,n,<): ( aI‘C 8rc Grc >

9 dn  O¢

and its determinant can be calculated with one of the following expressions :

- G ) (- G 3 -Gl - G 1)~ ()

(3.58)

Once the position vector, velocity vector, normal vectors and Jacobian are known,
these quantities are used to compute the integrals of the volume and mesh velocities
through a change of variables.
Volume integral

Through the application of the divergence theorem, the volume of any “general

hexahedron” can be evaluated as such,

1 1
Q:/dQ:# —r.dsz—# (r-R)dS
Q 893 3 [o)9)
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We can then write the integral in the computational domain through the trilinear

mapping to acquire,

1 1
Q:_# (r - 8)dS :-# (rc - )| JeldSe
SIE 3 Joqe

Ny
; /
= 5 (rC,m : ﬁC,m)‘JC,m’dSC,ma
3 'mz_l e,m

where dSc,, is either d&dn, dnd( or d(d¢ and the integral boundaries are [0 1]%
N.B. : On any face of the “general hexahedron” only one of the variables in the
computational space £, n or ¢ has a fixed value. Thus the quantity (r¢ ,,-ficm)|Jem|
is still a function of two variables which has to be integrated over the face.

For each face, the computation of the integral over the surface under this form
is not straightforward (the difficulty comes from the unit normal vector) and needs
to be simplified a priori. This is done by exploiting the relation (3.59), for the

derivation of this expression see Appendix B in [45] :
B¢ | Jem| = ComNem, (3.59)

where C¢,, = C(§,m,C) is the cofactor matrix of the Jacobian matrix J for the

trilinear mapping and Nc,m is the constant unit normal vector to the corresponding
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face in the computational space :

Neeo=[0 0 -1, Neemi=[0 0 +11].
Neg—o=[0 -1 0], Negmr=1[0 +1 0" (3.60)

Neemo=[-1 0 0, Negsi=[4+1 0 0]

Once the equation (3.59) is substituted into the integrals over the surfaces, an explicit

expression of the volume as a function of r;, i =1, ..., 8 is obtained :

()7 = (Quzo1 + Qsers + Qaagr + Qiags + Qarss + Qosze) 7, (3.61)

where for any set (i,7,k,1) € {4321;5678;3487;1265;4158;2376}, the volumetric

contribution of the face S;;; is given by (3.62) :

1 R
Q)T = 3 ), re.ijel - (CeijiNeijr)dSe,ijh
C.ijkl

(3.62)
1
= E(Fi + 1) - ((rj +15) X (1 +17)).
Temporal derivative of the volumetric integral
The temporal derivative of the volumetric integral can be expressed as,

o 0

— = — [ dSd. 3.63

%= i), 369

By substituting the results of the previous section, primarily equations (3.61) and

(3.62), an explicit expression of the temporal derivative of the volume as a function
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of ry and v;, e =1, ..., 8 is derived :

o€ Ouzo1 | Osers | O3agr | Oigs | Oiss | Ofazre

— = 3.64
(m)T ( a o o o o e ) B8
where for any set (i, j, k, 1) € {4321; 5678; 3487; 1265; 4158; 2376}, the temporal deriva-

tive volumetric contribution of the face S;;x is given by (3.65) :

<8%itjkl>T — 1_12(V1 +v;) - ((r; +1g) X (r; +17))

s (1) (% Vi) X () (3.65)

+%( i+ 1) - (15 4 10) X (Vi + 1))

Integrated face mesh velocities

The integral of the face mesh velocity in the physical domain for a face m is

Gm:// (V - fipn)dS,.
OQm,

By introducing the trilinear mapping, we can express the integrated face mesh ve-

given by,

locities as,

G = // vem : (ﬁC,m|JC,m|)dSC,m = ﬂ Ve (CC,mNC,m>dSC,m.
8QC,m 6QC’m

Once the integration is performed, the explicit expressions of the integrated face

mesh velocities are obtained as a function of r; and v;, ¢ = 1,...,8. For a face with
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the set (7,7, k, 1) € {4321; 5678; 3487; 1265; 4158; 2376} :

p
Vi= Vi+V;+ VitV

Sijkzl = (I‘i X I‘j) + (I‘j X I‘k) + (I‘k X I‘l> + (I‘l X I'Z')
(3.66)

Sagy = (ra x13)+ (rgxr,)+(r, xr,) for any set a, 5,7

1
(Giju)T = 1 (Vi - Sijir + V- Sijk + Vi - Sjr + Vi - Sgii + Vi - Siij) -

\
It was verified that with these expressions for the IFMV and the temporal deriva-
tive of the volume as functions of velocity and position vectors of the vertices, the
semi-discrete equation of the GCL (3.5) is analytically retrieved. In other words, the
sum of equation (3.66) applied to the 6 sets {4321;5678;3487;1265;4158;2376} is
equal to expression (3.64).
3.4.2 Derivation of the GCL in the NLFD framework

The methods presented in Sections 3.2 and 3.3 to enforce the GCL are based
on equation (3.13), and the integrated face mesh velocities are deduced from the
calculation of the volumetric increments as input. The approach presented in this
section using the trilinear mapping is quite different because no volumetric incre-
ments are computed, the integrated face mesh velocities are directly evaluated in
physical time using equation (3.66). In addition the cell volumes are computed using

equation (3.31). Hence in the GCL equation as established in (3.5), both © and
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G = Z,]Zf:l G,, are exactly calculated, the only degree of freedom remaining to en-
force the equation is the discretization of the temporal derivative operator <§)
In the NLFD framework, this operator is discretized in the Fourier domain and is
a function of the number of harmonics N employed in the temporal discretization.
Therefore the GCL equation will be satisfied if and only if the temporal deriva-

tive of the cell volume expressed in Fourier space converge to the Fourier temporal

differentiation applied to the cell volume,

where T refers to the trilinear mapping. Hence, this method will not enforce the
GCL for any number of time steps contrary to the method presented in Section 3.3,
but for a sufficient number of harmonics ensuring the convergence of the equation
(3.67). Since this approach is based on the exact integrated face mesh velocities and
ensures the GCL with a spectral rate of convergence depending on the mesh motion,
it provides a good alternative to the method exploiting the volumetric increments
with an order of accuracy comprised between one and two. In the Chapter 4, we will
present the numerical results of these different methods for several test cases.
3.4.3 Extension to two-dimensional quadrilateral grids

As stated in Section 3.3.3, any quadrilateral cell in the physical domain (z,y) can
be mapped through a bilinear formulation to a reference square in the computational
space (£,n). In this work, for any quadrilateral cell, both position and velocity vectors
in the physical domain respectively denoted r and v are mapped based on the location

and velocity vectors of the vertices respectively r; and v; for i = 1,...,4 (see Figure
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3-6 for the numeration), the corresponding quantities in the computational space

are defined as :

re = (1 =&)(1 —n)ry + &(1 —n)ra + Enra + (1 — §)nry, (3.68)

ve= 1= =n)vi+&(1 —n)va+&nvs + (1 = §)nva, (3.69)

where 0 < &, < 1.
Then the volume  and the integrated face mesh velocities G;; are exactly

derived and expressed in the physical domain as :

Q- %Det (rs—11) , (rs —12)] (3.70)
Gy = %Det (vi+v;) , (r; — 1)), (3.71)

where ij belong to one of the 4 sets {12;23;34;41}.

Thus in the GCL equation (3.5), both the volume and the integrated face mesh
velocities are exactly evaluated and the results of the previous Section 3.4.2 are
applicable. Therefore on quadrilateral meshes, this method will enforce the GCL for
a sufficient number of harmonics in the NLFD discretization and employs the exact
integrated face mesh velocities, hence it provides a good alternative to the methods
based on the volumetric increments.

3.5 Extension of the results to Time-Spectral method

In this section, we extent the previous results from Section 3.3.2 to Time-Spectral

(TS) method presented by Gopinath and al. [8, 9]. Compared to the NLFD method

which solves the governing equations in the frequency domain, the Time-Spectral
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method solves the governing equations in the time domain but exploits the features
of a spectral approach.
3.5.1 Time-Spectral method

Assuming a periodic flow and a periodic deformation of the mesh, we recall the
temporal discretization of the modified state vector w = Qw equations (2.12) and

(2.14),

with :
1 2N

N Q(t, Yw(t, e~/ Ttn
= oy 2 ) wt)e ,

where T is the time period, N is the number of modes considered in the DFT and

t, the equally spaced time instances given by,

t — T, f =0,..,2N.
n 2N+1 orn=20,.

In Fourier space, the time discretization operator leads to,

_ N .
2 .
%—Y(t) =y == Th o2k D (3.72)

2N

(9W 2 - , A
_ —i(2wk/T)t i(2mk/T)t
T 3t T :z: (2N+1 E:Q(tK)W(tK)e K) e . (3.73)

By evaluating this expression for each time instance t,,, we have for n =0, ...,2N,

aw :%XN: <

2N

(tK)W<tK>ei(27rk/T)tK> ei(27rk/T)tn7 (374)
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ow X w1 e
t) = Q(t t ke i(27k)(n—K)/(2N+1) ) .
& - (t) KEO (tx)w(tx) <T2N+1k§ ike (3.75)

We introduce, the coefficients d,, g, defined for n =0, ..., 2N by,

N

Z ikl 2mR) (n—K)/(2N+1), (3.76)

27 1
T 2N +1

dn,K =

the compact form of the coefficients for an odd number of time steps is written as

follows (for the derivation see Reference [9]),

2_%1(_1)71_1{ cse (M) . if K+#n
de _ T 2 2N +1 (3_77)
0, if K=mn,
and,
Ow al
K=0

The temporal-derivation operator appears as the multiplication of a matrix D =
(dn.x )o<n.k<2n With each vector (W;(tx))o<k<on, for ¢ = 1,...,5 where the index ¢
refers to the component of the modified state vector in the governing equations. In
addition, this matrix is skew-symmetric, independent of any state variables and com-
pletely determined by the number of harmonics used in the DFT and the temporal
period. Then a pseudo-time t* is introduced and the equations are solved in the time
domain through,

8W(t)+a—v_v
ot " ot

(tn) + R(w(t,)) =0, for n =0,...,2N. (3.79)
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3.5.2 Derivation and enforcement of the GCL

Recall that in order to obtain a consistent solution method, the GCL must be
discretized using the same numerical scheme employed to discretize the governing
equations. In the case of Time-Spectral method, it leads to the following Theorem
3.5.1,
Theorem 3.5.1. Let €2 be a discretized control volume, enclosed by Ny faces, and
subjected to a periodic motion of its vertices. Then given the knowledge of the exact
volumetric increments €, for m = 1,..., Ny, a sufficient condition to ensure the
satisfaction of GCL in the TS framework is the computation of the integrated face

mesh velocities through the following relations,

where for all m, (Gp,) are the temporal mean values of the integrated face mesh
velocities, Ly is the identity matriz of dimension 2N + 1, G, = (Gn(tn))o<n<on
and p,, = (pm(tn))o<n<an are the vectors grouping the time instances of respectively
the integrated face mesh velocities and the periodic part of the exact volumetric in-

crements given by,

Pnlt) = Q) — <QmT<T>) : (3.81)

and D = (dy, k )o<n,x<an 1S the matriz representing the temporal derivation operator
of the Time-Spectral method, defined by its coefficients d,, x for 0 < n, K <2N,

T K m(n— K) ‘
T(_l) CSC (m) s Zf K 7é n (382)

0, if K =n.

dn,K -

53



Proof. Under the assumption that the motion of the vertices is periodic, the tempo-
ral rate of change of the algebraic volume swept by each face through time is periodic.
Thus the temporal derivative of the volumetric increments and the integrated face

mesh velocities are periodic, the DFT is applied to equation (3.13) leading to :

N
a. =" _a G, el TH 3.83
m( ) 8t m,0 + Z m,ke ) ( . )

k=—N,k#0

where for any face m, G’mﬁk are the Fourier coefficients of both the temporal derivative
of the volumetric increment and the integrated face mesh velocity. The mean of a

function expandable in Fourier serie is given by its zeroth Fourier coefficient thus,

(Gr)p = Gono. (3.84)

Qi (t) = Ln(t) + P (), (3.85)
. Qu(T
L (t) = Gim,ot = T( )t (3.86)
A N
Po(t) = Qo+ > =G T, (3.87)
b ST st 127k

Q. (T
Pm(t) = Qo (t) — (—T( )) t. (3.88)
Then, by exploiting these results and applying the Time-Spectral temporal derivation

to the periodic part of the volumetric increment, we can write for each face m and
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time instance t,, with n =0, ..., 2N,

G (tn) = (tn)

Opm, () (3.89)

= (Gum)p+ o

2N

= <Gm>T + Z dn,Kpm(tK)a

K=0

Finally, if we group all the time instances in a vector G,,, we obtain,

G = (D)py, + (Gm)r (Ty), (3.90)

where Zy is the identity matrix of dimension 2N + 1 and D = (d,, i )o<n,x<2n 1S the
matrix representing the temporal derivation operator of the Time-Spectral method.
The condition given by equation (3.90) is a criteria to ensure that the GCL are

enforced in the Time-Spectral framework. |
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CHAPTER 4
Numerical validation of the different methodologies

The new approaches to enforce the Geometric Conservation Law developed in
Chapter 3 are numerically tested in order to validate their procedures. The protocol,
test cases and results are presented in the following sections. A simple 3D finite
volume solver was developed on Matlab! to perform the simulations.

4.1 Protocol

The physical interpretation of the GCL is that any uniform flow must be pre-
served by the numerical scheme employed for the flow solver and independently of
the mesh movements. This law imposes constraints on the manner to compute some
geometrical quantities such as the volume and the integrated face mesh velocities.
Thus the first step of our test is to ensure the preservation of uniform flow by com-

puting the relative error between the initially defined uniform state vector wy and

)

where w; = p, wy = puy, wy = puy, wy = pug and ws = pFE and n, is the index

the computed state vector w by the flow solver,

wj (nvy tn) - wO,j (nvy tn)
wo,j (M, tr)

RelErr = max { max <maX

0<n<2N | 1<ny<Neeyy \ 15555

pointing to the grid cell with N, the number of cells in the mesh.

! The MathWorks, Inc., Natick, Massachusetts, United States.
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However the verification of uniform flow preservation only guarantees that the
GCL are satisfied “by summing over the faces”, but not that the computed integrated
face mesh velocities are correct. Indeed as long as the sum of the temporal derivative

of the volumetric increments is equal to the temporal derivative of the cell volume,

Ny
012 0,

the deduced integrated face mesh velocities from the temporal derivative of the volu-
metric increments from equation (3.13) enforce the GCL after the summation through
the faces (see equation (3.5)) but the integrated face mesh velocities themselves may
not converge to the correct values.

Thus in order to verify that the GCL are enforced with a correct evaluation of
the integrated face mesh velocities, the values derived from the trilinear mapping
equations (3.64) and (3.66) based on the location and velocity vectors of the grid
points retrieved from the dynamic mesh deformation, are considered as reference.
Therefore for each motion of the mesh and for various number of harmonics N, four
different implementations of the integrated face mesh velocities are compared :

1. the IFMV deduced from the linear volumetric increments from Tradif and al.
[37] see Figure 3—1 noted as “NLFD-LVI” ;

2. the IFMV calculated with the new method based on the exact volumetric
increments approximated as a sum of “general hexahedra” (Definition 3.3.2)

see Figure 3—4 and noted as “NLFD-AEVI” ;
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3. the approximation obtained by taking the average of the velocity of the four
vertices defining a face and projected along the surface normal vector noted as
“AVG”;

4. the method based on the trilinear mapping noted as “TRI-MAP” and used as
reference for the exact values of the IFMV.

For each of these approaches, the preservation of uniform flow is tested. Then dif-
ferent quantities are compared by computing the maximum absolute error :

e comparison of the sum of the IFMV to the NLFD temporal derivative of the
cell volume computed using the numerical scheme of the flow solver. This
comparison is similar to a demonstration of the preservation of uniform flow:

all a0
AbsErry = max max E Gm(ny, tn) - (—(nv,tn)) :
m=1 NLFD

0<n<2N | 1<n,<Neey ot
METHOD

(4.3)
e comparison of the IFMV to the reference integrated face mesh velocities (TRI-

MAP) in each direction dir = x, y or z :

AbsErry = ogmng}ziN {Kgg]}éce” ‘<Gm,dir(nv; tn))METHOD — (Grmgir (N0, tn))TRI—MAP‘} :
(4.4)

4.2 Test cases

This section presents the different mesh motions impose as test cases. The
temporal period is always taken to be unity. All tests are performed on a square
mesh of size 10 x 10 x 10, and of lengths L, = 3.2, L, = 2.8, and L, = 2.4. The

undeformed positions of the mesh are indexed with the subscript 0, if needed the
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RBF points are indexed with the subscript . The two parameters in the Jameson-
Schmidt-Turkel (JST) scheme are x?) = 1 and k* = 1/32. The simulations are run
for a number of harmonics, N from 1 to 20. The mesh deformations for cases 2, 4
and 5 at an arbitrary time instant are presented on Figure 4-1.
4.2.1 Without RBF
Three test cases are performed by directly imposing the mesh deformation to the
entire mesh. The velocity of the vertices is computed based on the analytic temporal
derivation of the vector position of the vertices. For any vertex, its initial position is
noted (o, Yo, 20). The parameters A,, A,, A,, R, and oy can be arbitrarily chosen as
long as no degenerative cells (cells with negative volume) appear during the motion.
The analytic functions employed for the motions are as follows :
Case 1 : 1-harmonic sinusoidal perturbation of the mesh with a linear motion, the
direction is held fixed while each point has its own motion amplitude based on

its initial position :

0= A (i) () () s 09

2(t) = 2o + A, sin (’z‘)) sin (%) sin (%) sin (27t)

x(t) = xo + Ay sin (72”;0) sin (2—?) sin (7TLZ°> sin (27t)

Case 2 : 2D perturbation of the mesh with a non-linear motion; however the time-

average volume swept by a face, ém,O = 0 in equation (3.23). For any cell the
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projection of the motion along a plane z = constant is shown in Figure 44 :

(

a(t) = agsin(27t)

(4.6)

Case 3 : 2D perturbation of the mesh with a non-linear motion and G’m,o # 0 in

equation (3.23), the deformation is prescribed only for the interior grid points

while the boundary points are fixed. The projection of the motion along a

plane z = constant is identical to the movement of the 3rd node on the Figure

3-2 presented in Section 3.2 :

4.2.2 With RBF

Two test cases are performed by deforming the mesh through the RBF. The

analytic functions employed for the RBF motions are as follows :
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Case 4 : 3D perturbation of the mesh using the RBF, with each point having its

own linear motion (amplitude and direction) :

(
Sz(t) = ro(Tors Yor, 20r) SIN(27yo ) sin(27m2 ) sin(27t)

sy(t) = ry(zor, Yor, 20,) sin(2mzy ) sin(27mzo ) sin(27t)
s.(t) = (o, Your, 20r) SIN(27Yo ) sin(27 20 ) sin(27t) (4.8)

where (2o, Yo, 20,4); Ty (Tors Yor, 20,) and

\ 72(Z0rs Yo, 20,r) are randomly generated

Case 5 : simulation of a sinusoidal pitching motion :

(

a(t) = agcos(2mt)
z, = 0.621L,
$.(t) = (@, — ap)[cos(a(t)) — 1] + yo, sin(a(t)) (4.9)

sy(t) = —(xo, — xp) sin(a(t)) + yo - [cos(a(t)) — 1]

Sz (t) = Zo,r

4.3 Freestream preservation

The results demonstrating uniform flow preservation are shown for all test cases
in Figure 4-2. The evolution of the relative error defined by equation (4.1) is pre-
sented as a function of the number of time steps Ny.

The results show that the two methods employing the IFMV deduced from
the Fourier discretization preserve uniform flow, while the approximation derived
from the AVG yields the least accurate results. This is consistent since for both
methods NLFD-LVI and NLFD-AEVI, despite different definitions of the volumetric

increments, they still ensure that the sum of the temporal derivative of the volumetric
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--Initial undeformed grid

—Deformed grid at an arbitrary time instance

--Initial undeformed grid

—Deformed grid at an arbitrary time instance

(b) Case 4

--Initial undeformed grid

—Deformed grid at an arbitrary time instance

(c) Case 5

4 and 5 at an

Figure 4-1: Mesh deformations of the exterior grid points for cases 2,

arbitrary chosen time step
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increments is equal to the temporal derivative of the cell volume evaluated in the
frequency domain (equation (4.2)).

It is also observed that using the (TRI-MAP) integrated face mesh velocities
preserves uniform flow and thus satisfies the GCL given a sufficient number of har-
monics (see cases 2, 4 and 5) which is expected. Its rate of convergence should be
exactly the same as the rate of convergence of the temporal derivative of the cell
volume in the Fourier space. This is verified in the next section.

4.4 Comparison of the integrated face mesh velocities to the reference
value

The results are shown on Figures 4-3 through 4-8. It is important to note that
for all figures, the graph (a) refers to equation (4.3) as the function of the number
of time steps and is not the sum of the graphs from (b), (c¢) and (d) which refer to
equation (4.4). The errors that appear on the y-axis of the figures are the max norm
between the investigated approaches, both NLFD-based and AVG and the reference
approach (TRI-MAP).

Regarding the comparison of the sum of the integrated face mesh velocities
(IFMV) to the NLED temporal derivative of the volume from Figures 4-3(a) through
Figure 4-8(a), the results show that the sum of the IFMV computed with the meth-
ods NLFD-LVI, NLED-AEVI and TRI-MAP converge to the expected values for all
cases while the AVG method provides the correct values only for cases 1 through 3
and yields a constant absolute error above 107> for cases 4 and 5. Recall that the
maximum error in the sum of the IFMV is a measure of the level to which GCL is
satisfied as given in the semi-discrete GCL equation (3.5). Hence the NLFD-based

approaches prove to satisfy the GCL for all considered grid deformation and for any
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number of harmonics which is expected by design. The reference approach (TRI-
MAP) satisfies this requirement exactly for linear deformation cases as shown for
Cases 1 (Figure 4-3(a)) and 4 (Figure 4-7(a)) for any number of harmonics and con-
verged spectrally for non-linear deformation cases (Cases 2, 3, and 5). The spectral
rate of convergence is observed compared to the first-order backward finite-difference
(AtM) and second-order centered finite-difference (At?) approximating the tempo-
ral derivative of the cell volume. As expected, this rate of convergence is found to be
similar for the preservation of uniform flow using the reference TRI-MAP method.
However, the AVG approach is not designed to enforce the GCL, it is only an ap-
proximation based on the mesh velocities and face metrics and hence for the cases
considered herein, the method proved to ensure the GCL with an accuracy up to
1075,

A comparison of the individual integrated face mesh velocities for each direction
reveals the limits and provides interesting insights of the investigated approaches.
Two primary observations can be made. First, the NLFD based approaches con-
verge at most at second order as expected based on Corollary 3.3.7, if the mesh
deformation along the observed direction is non-linear. For Cases 2, 3, and 5, the
mesh deformation in both the z-and y-directions are non-linear as shown in sub-
figures (b) and (c) of Figures 4-5, 4-6, and 4-8. One exception is the spectral
rate of convergence for the y-direction in Case 2. These results can be explained by
analyzing in details the mesh movement. Since the motion is in two dimensions, let
us consider a constant z plane, then the deformation of any cell can be represented

as shown in Figure 4-4. We observe that in the y-direction, the area swept by the
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Figure 4-4: Two-dimensional projection of the motion in case 2 for one cell : the
exact volumetric increment in the x direction is filled in clear green and in dark blue
in the y direction. The blue dashed dot arrows show the paths of the vertices.

faces can be exactly evaluated using a linear approximation of the curved boundaries
shown in blue. Therefore in the y-direction, the volumetric increments are exactly
computed and the individual IFMV are correctly computed using either the NLFD-
LVI or NLFD-AEVI methods once the temporal derivative operator is converged in
Fourier space. In the z-direction, a linear approximation is insufficient to compute
exactly the volumetric increments thus the NLFD-AEVI method converges at an
order between one and two as stated in Corollary 3.3.7.

Second, even if the numerical scheme enforces the GCL by preserving uniform
flow, the employed method may not converge to the correct integrated face mesh
velocities. The method based on the approximation of the exact volumetric increment
(NLFD-AEVI) is found to be converging toward the reference values at an order
between one and two in the worst test cases considered here (4 & 5). This is consistent

with the derivation of the error from Section 3.3.2 and the resulting Corollary 3.3.7.
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The NLFD-LVI and AVG methods may present significant inaccuracies depending

on the mesh deformation.
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Figure 4-5: Case 2 : (a) Comparison of the sum of the integrated face mesh velocities
to the NLFD temporal derivative of the volume (b) Comparison of the individual
integrated face mesh velocity to the values (TRI-MAP) in the x direction (c) in the
y direction (d) in the z direction
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4.5 Time-Spectral Method

The numerical results for the Time-Spectral method are the same as that shown
for NLFD-LVI and NLFD-AEVI depending on which approach is retained to compute
the volumetric increments. For this reason, the graphs are not reproduced herein.
The comparisons and conclusions derived for the NLFD discretization hold for the
Time-Spectral method as well.
4.6 Discussion

The limits of the previous method of Tardif and al. [37] (NLFD-LVI) were clari-
fied and demonstrated numerically and a modified approach (NLFD-AEVI) has been
presented that ensures the satisfaction of the Geometric Conservation Law for a flow
solver based on either the NLFD or Time-Spectral discretization of the ALE formula-
tion of the Navier-Stokes equations. The methods NLFD-AEVI and NLFD-LVI aim
to satisfy the GCL by computing the integrated face mesh velocities according to
the numerical discretization of the flow solver and take as input the face volumetric
increments. The accuracy of the methods was shown to be highly dependent on the
computation of the correct volumetric increments and in the worst cases considered
converged at first-to-second-order for the NLFD-AEVI approach (Corollary 3.3.7)
or zeroth-order for the NLFD-LVI procedure. The integrated face mesh velocities
themselves may not converge to the correct values as demonstrated in our numerical
test. Although the approaches have been verified to preserve uniform flow for any
number of harmonics; such a low order of accuracy defeats the purpose of spectral
in time methods. Hence an alternate novel approach has been developed based on a

trilinear mapping between the physical domain and the computational space which
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allows the evaluation of the exact cell volume and integrated face mesh velocities.
The disadvantage of this method is that it is not consistent with the discretization
of the flow solver, meaning that freestream preservation is not satisfied for any num-
ber of harmonics as it is with the modified approach, NLFD-AEVI. However such
inconvenience is compensated by its spectral rate of convergence, which is sufficient

to ensure the satisfaction of the GCL and to preserve uniform flow.
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CHAPTER 5
Two-dimensional aerodynamic simulations

In this chapter, we present the results of aerodynamic simulations employing
the different developed methods. The RBF dynamic mesh deformation as well as
the different methodologies to compute the integrated face mesh velocities were im-
plemented in the in-house adaptative NLFD two-dimensional finite volume solver
originally developed by Mosahebi and al. [28-31]. Instead of employing artificial dis-
sipation, a Roe flux difference splitting scheme [36] is used to compute the convective
fluxes. A Lower-Upper Symmetric-Gauss-Seidel (LU-SGS) implicit scheme [4] is used
to solve the equation in pseudo-time (2.20). Since the current flux adjustment ap-
proach for temporal-mismatched control volumes in the adaptive approach renders
the scheme non-conservative, the adaptation was turned off for all simulations.

In this section, results for aerodynamic computations of a plunging and/or pitch-
ing cylinder and a NACAO0012 airfoil are presented. An O-grid topology is used for
the cylinder mesh with 256x128 cells and a C-grid topology for the NACA0012 mesh
with the same dimensions. The ratio between the farfield distance to the cylinder
diameter D or the airfoil chord ¢ is 200. All RBF points in the farfield are fixed (zero
displacements).

It should be noted that the current solver is only able to resolve one dominant fre-
quency in the domain which is specified for plunging cases by specifying the Strouhal

number St = % and the reduced frequency for pitching motions x = 7‘;—{::, with hg
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Figure 5-1: Near resolution of the undeformed meshes employed for the simulations

the plunging amplitude, ¢ the chord or diameter of the body, V., the freestream
velocity and f = % the frequency of oscillation corresponding to the period T'. The
chord and diameter are both taken to be unitary. The Prandtl number Pr and the
freestream temperature are held constant for all simulations and respectively taken
equal to 0.75 and 300 K.

The following notations are adopted for the aerodynamic coefficients : stag-
nation pressure coefficient C),, total lift coefficient ', total drag coefficient Cp,
pressure drag coefficient Cp ), and skin friction drag coefficient Cp,. The level to
which the GCL is satisfied is measured by computing the maximum absolute differ-
ence between the NLFD temporal derivative of the volume from the flow solver and
the sum of the integrated mesh velocities deduced from the various techniques and
is denoted as Egcr. Flow solver residual is converged to a sufficient level to ensure

that the aerodynamic coefficients are only impacted by the GCL error. In addition,
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the values of the IFMV deduced from the NLFD-based methods are compared to
the bilinear mapping approach which serves as the reference method in the x and y
directions and denoted respectively as Erpapy » and Erppry -
5.1 Plunging cylinder

As a first test case, a plunging cylinder in the y-direction is considered, the
displacements of the RBF points at the surface of the cylinder are prescribed as

follows :

(0 =0, (5.1)

sy(t) = hosin(wt),
where hg is the amplitude of the heaving motion. The results are compared to
Mosahebi and al. [29] with % = 0.2, M., = 0.3, Res = 100, and St = 0.16704. The
frequency was chosen to be equal to the vortex shedding frequency computed for the
stationary case. Table 5-1 presents the verification of the GCL and the convergence
of the IFMV in each direction, the mean values of the drag coefficients are presented

in Table 5-2 for different number of harmonics. The flow solver converged to machine

accuracy for all cases.

Methods Eacr | Errmve | Errmvy

NLFD-LVI | <1078 [ <1072 | <107

NLFD-AEVI | <107B | <107 | <1072
BI-MAP <107 N.A. N.A.

Table 5-1: Level of satisfaction of the GCL and convergence of the integrated face
mesh velocities in the case of the plunging cylinder using 1 < N < 7 harmonics in
the DFT

It is observed that the GCL and the IFMV have converged to machine accuracy

for any number of harmonics and for all three methods. This result is consistent since
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Methods Coyp Co.u Cp
All methods (1 harmonic) 1.16631 | 0.36754 | 1.52863
All methods (2 harmonics) 1.25273 | 0.38537 | 1.63810
All methods (3 harmonics) 1.23544 | 0.38297 | 1.61841
( )
(

All methods (4 harmonics 1.23329 | 0.38242 | 1.61571
All methods (5 harmonics) 1.23546 | 0.38283 | 1.61829
Mosahebi and al. [29] (10 modes) | 1.22992 | 0.38044 | 1.61035

Table 5-2: Mean values of the drag coefficients in the case of the plunging cylinder
with M, = 0.3, Re,, = 100 and St = 0.16704.

the motions of the RBF points at the surface of the body are linear with the same
amplitude and direction, hence in this specific case the three methods are equivalent
and expected to produce the same results. As a consequence, the computed aero-
dynamic coefficients, as listed in Table 5-2, are identical for all methods within the
accuracy of the flow solver. Given the number of modes employed in our simula-
tions, the results are consistent with Mosahebi and al. [29]. However, it must be
noted that even if one harmonic is sufficient to satisfy GCL at machine accuracy, the
computation of the mean drag coefficients up to the second digit requires additional
harmonics as shown in Figure 5-2.

The investigations of Young and al. [41, 42] and Yang [40] showed that the
behavior of the drag coefficient is primarily due to the shedding of vortices. Vortices
may appear either at the trailing edge and diffuse in the wake or at the leading
edge and convect downstream before separating from the airfoil and diffuse into the
downstream wake. These vortices contribute to the wake and influence the drag.

The instantaneous total drag coefficient follows the temporal evolution from Figure

5—2b.
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Figure 5-2: Total drag coefficient analysis for a plunging cylinder

5.2 Pitching cylinder

For the second case, a pitching cylinder about its center is considered with an
angle varying from —10° to +10°. The freestream Mach number, Reynolds number
and the reduced frequency are chosen from [28], M = 0.3, Re = 100 and k = 0.52477.
The level to which GCL is satisfied is presented on Figure 5-3(a) and the convergence
of the IFMV to the reference values in each direction on Figure 5-3(b) and Figure 5—
3(c). Contrary to the previous case, the GCL is no longer statisfied for any number
of harmonics using the BI-MAP method which converges at a spectral rate. The
limits of the NLFD-based methods are observed when computing the integrated face
mesh velocities; especially in the z direction where for solutions larger than three
harmonics, the convergence of the NLFD-LVI approach reaches a threshold at 1073
to 107% and the NLFD-AEVI method converges at first-to-second order. In the y

direction, both methods converge at a spectral rate.

78



The mean values of the aerodynamic coefficients are presented in Table 5-3 and
the drag polar (Cp versus Cp) are demonstrated in Figure 54, for 2 and 5 modes.
Simulations with only 1-harmonic did not converge to a residual below the level
of convergence of either the GCL or the IFMV and thus are not presented. For 2
and 5 modes, differences between the mean values of the aerodynamic coefficients
begin to appear at the fifth decimal place and the relative gap between the different
methods is always inferior to 0.01%. The results are still in good agreement with
Mosahebi and al. [29]. As previously stated for the plunging cylinder even if one
harmonic is sufficient to represent the motion of the mesh, additional modes are
needed to correctly capture the instantaneous behavior of the total drag coefficient.
In the industry, designer uncertainty goals for performance simulations on successive
refined grids are usually up to £0.005 on the lift coefficient and 4-0.5 drag counts!
on the drag coefficient [14]. Thus the differences herein on the mean total drag
coefficient and maximum lift coefficient being respectively lower than one drag count

and 0.01, they would not be considered worth further investigation.

! one drag count = 107*.Cp
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Figure 5-3: Level of satisfaction of the GCL and convergence of the IFMV for the
pitching cylinder case
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Methods Cpo,p Cpy Cp Chps
NLFD-LVI (2 harmonics) 1.103169 | 0.354731 | 1.457901 | 1.033769
NLFD-AEVI (2 harmonics) 1.103187 | 0.354735 | 1.457922 | 1.033765
BI-MAP (2 harmonics) 1.103186 | 0.354738 | 1.457925 | 1.033771
NLFD-LVI (5 harmonics) 1.107521 | 0.355542 | 1.462864 | 1.035812
NLFD-AEVI (5 harmonics) 1.107283 | 0.355535 | 1.462819 | 1.035823
BI-MAP (5 harmonics) 1.107267 | 0.355532 | 1.462800 | 1.035829
Mosahebi and al. [29] (10 harmonics) | 1.11386 | 0.356830 | 1.47069 1.03252

Table 5-3: Mean values of the drag coefficients and maximum lift coefficient in the

case of the pitching cylinder.
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Figure 5-4: Drag polar Cp vs C, for the pitching cylinder case
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5.3 Plunging NACAO0012 airfoil

In this section, a plunging NACA0012 airfoil in the y-direction is considered.
The results are compared to Allaneau and al. [1] with 22 = 0.08, M, = 0.2,
Re,, = 1850 and St = 0.288. Table 5-4 presents the verification of the GCL and the
convergence of the IFMV in each direction. The mean values of the drag coefficients
are presented in Table 5-5 for different number of harmonics and the instantaneous

behavior of the total lift and total drag on Figure 5-5.

Methods Eacr | Errmve | Errmvy
NLFD-LVI [ <1078 [ <1078 | <1073
NLFD-AEVI | <1078 | <1078 | <10713

BI-MAP < 10713 N.A. N.A.

Table 5-4: Level of satisfaction of the GCL and convergence of the integrated face
mesh velocities in the case of the plunging NACA0012 using 1 < N < 7 harmonics
in the DFT

Methods Cbyp Co. Cp
All methods (1 harmonic) | -0.01494 | 0.05105 | 0.03611
All methods (2 harmonics) | -0.01391 | 0.05267 | 0.03876
All methods (3 harmonics) | -0.01353 | 0.05306 | 0.03953
All methods (4 harmonics) | -0.01392 | 0.05323 | 0.03938
All methods (5 harmonics) | -0.01337 | 0.05323 | 0.03986

Table 5-5: Mean values of the drag coefficients in the case of the plunging NACA0012
with M, = 0.2, Re,, = 1850 and St = 0.288.

Similar to the plunging cylinder case, it is observed that the GCL and the IFMV
converge to machine accuracy for any number of harmonics and for all three methods,
which is consistent for a linear motion with identical amplitudes and directions for

the RBF points at the surface of the body. The computed average aerodynamic
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coefficients are identical for all methods within the accuracy of the flow solver as well
as the instantaneous behavior of the total lift and total drag which are consistent
with the results of direct numerical simulation (DNS) provided by Allaneau and al.

[1]. and Young and al. [42] who investigated the aerodynamic forces on a flapping

airfoil.
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Figure 5-5: Instantaneous total drag and total lift coefficients over a period for the
plunging NACAO0012 case
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5.4 Pitching NACAO0012 airfoil

For the final test case, a pitching motion of the NACAO0012 airfoil about the
quarter chord is considered where two pitching angles are considered +5° and +20°
with a reduced frequency x respectively equal to 2 and 3.
5.4.1 Pitching NACAO0012 at +5° angle and sk = 2

The mean angle of attack is zero while the pitching angle varies from —5° to
+5°. The freestream Mach number, Reynolds number and the reduced frequency
are chosen from [28], M., = 0.2, Re,, = 1100 and x = 2. The level to which GCL
is satisfied is presented on Figure 5-6(a) and the convergence of the IFMV to the
reference values in each direction on Figure 5-6(b) and Figure 5-6(c). The results
are similar to the pitching cylinder case, the GCL is satisfied with all NLFD-based
methods while the (BI-MAP) converges at a spectral rate. As for the integrated face
mesh velocities, the results in the y direction are herein similar to the x direction,
the convergence of the (NLFD-LVI) approach reaches a threshold close to 107¢ and
the (NLFD-AEVI) method converges at first-to-second order beyond 3 harmonics.

The mean values of the aerodynamic coefficients are presented in Table 5-6 and
drag polar is shown in Figure 5-7, for 1, 2 and 5 modes. For the 2 and 5 mode
cases the differences between the mean values of the aerodynamic coefficients begin
to appear at the third decimal for the drag coefficients and the second decimal for the
maximum lift coefficient. The relative gap between the different methods is always
inferior to 0.01% for the drag coefficients and 0.5% for the maximum lift coefficient.
Differences are observed compared to Mosahebi [27] and Pedro and al. [34], which are

due to the insufficient number of harmonics considered to represent the unsteadiness
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of the flow with at most 5 harmonics. The graph of instantaneous C'p vs C, shows
significant differences between the NLFD-based methods and the BI-MAP method
employing only one harmonic which drastically reduce with two or more harmonics.
The differences between the methods are still being lower than one drag count and

thus do not deserve further investigation for industrial applications.
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Figure 5-6: Level of satisfaction of the GCL and convergence of the IFMV for the
pitching NACA0012 case at £5° and k = 2
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Methods Coyp Cboa Cp max(Cp)
NLFD-LVI (1 harmonic) 0.022492 | 0.085322 | 0.107815 | 0.82104
NLFD-AEVI (1 harmonic) 0.022506 | 0.085295 | 0.107802 | 0.81741
BI-MAP (1 harmonic) 0.022588 | 0.085351 | 0.107939 | 0.81715
NLFD-LVI (2 harmonics) 0.024502 | 0.086092 | 0.110594 | 0.79241
NLFD-AEVI (2 harmonics) 0.024505% | 0.086089 | 0.110592 | 0.79224
BI-MAP (2 harmonics) 0.024507 | 0.086102 | 0.110604 | 0.79199
NLFD-LVI (5 harmonics) 0.024827 | 0.086247 | 0.111074 | 0.77927
NLFD-AEVI (5 harmonics) 0.024824 | 0.086255 | 0.111078 | 0.779350
BI-MAP (5 harmonics) 0.024824 | 0.086256 | 0.111080 | 0.77923
Mosahebi [27] (adaptive methods) |  0.0280 0.0859 0.1139 0.7201
Pedro and al. [34] 0.0276 0.0857 0.1132 0.7107

Table 5-6: Mean values of the drag coefficients and maximum lift coefficient in the
case of the pitching NACA0012 airfoil at £5° and k = 2
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Figure 5-7: Drag polar Cp vs Cp, for the NACAQ0012 airfoil case at +5° and xk = 2
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5.4.2 Pitching NACAO0012 at +20° angle and x =3

The pitching angle variation is increased to +20° and the reduced frequency to
k = 3 while all other parameters remain unchanged. The convergence of the density
residual for N = 5 harmonics is presented on Figure 5-8(a). The level to which GCL
is satisfied is presented on Figure 5-8(b) and the convergence of the IFMV to the
reference values in each direction on Figure 5-8(c) and Figure 5-8(d). As expected,
the convergence of the GCL is still at spectral rate and similarly the IFMV using
the (NLFD-AEVI) method still converge at first-to-second order, however for both
quantities additional harmonics are needed to reach an equivalent level of convergence
compared to the +5° pitching case. The convergence of the IFMV using the (NLFD-
LVI) method reaches a threshold at 1073 to 10~° which is higher than the previous
case. These observations are consistent since the amplitude of the pitching motion is
larger, thus the non-linearity of the mesh deformation is more significant and places

an additional challenge to the convergence of the GCL and IFMV.

Methods Cpoyp Cow Cp max(C7p)
NLFD-LVI (5 harmonics) | -0.06783 | 0.08980 | 0.02196 | 10.4643
NLFD-AEVI (5 harmonics) | -0.06753 | 0.0913/ | 0.02381 | 10.4610
BI-MAP (5 harmonics) -0.06577 | 0.09167 | 0.02590 | 10.4576

Table 5-7: Mean values of the drag coefficients and maximum lift coefficient in the
case of the pitching NACAO0012 airfoil at +20° and k = 3

The mean values of the drag coefficients and the maximum lift for the pitching
NACAOQ012 airfoil at +20° are presented in Table 5-7 for 5 harmonics as well as the
drag polar Figure 5-9. The level of convergence of the density residual for each mode

was stopped below 1077 (Figure 5-8(a)), since the level of convergence of the GCL
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Figure 5-8: Density residual, level of satisfaction of the GCL and convergence of the
IFMV for the pitching NACA0012 case at +£20° and k = 3
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is at 107® (Figure 5-8(b)) and the IFMV computed at machine accuracy for the BI-
MAP method (Figures 5-8(c) and 5-8(d)) the values of the aerodynamic coefficients
from the bi-mapping can be considered as reference. Absolute differences on the
mean total drag coefficient of respectively 39.8 drag counts (NLFD-LVI) and 20.9
drag counts (NLFD-AEVI) are observed. These are much larger than the £5° case
and represent respectively 15.21% and 8.06% of relative gap. Such differences are
much higher than one drag count and clearly shows the impact of having Integrated
Face Mesh Velocities which converge at an order inferior to the one of the flow solver
or the GCL. In addition, the analysis of the two components of the drag coefficient
shows that the differences on the skin-friction drag are higher than on the pressure
drag, a similar observation can be done for the previous +5° pitching NACA0012
case (see Table 5-6) but not for the pitching cylinder case (see Table 5-3). The
differences on the maximum lift coefficient are still lower than 0.01 and would not
be worth further investigation. The velocity contours and streamlines are presented
on Figure 5-11 at time instances tg, t5 and t;p; the vortices which cause the drag

variation are visible at the leading edge and in the wake.
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Figure 5-9: Drag polar Cp vs Cp, for the NACAQ0012 airfoil case at +20° and k = 3
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The absolute error distributions on the IFMV compared to the (BI-MAP) values

in the x and y directions are presented on Figure 5-10 at a time instance t5 = %T.

The airfoil leading edge is positioned at x;r = —0.25 and the trailing edge at xrg =
0.75. The areas of maximum error begin at the trailing edge which is the RBF point

with the largest prescribed motion amplitude.
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Figure 5-10: Error distributions on the IFMV for the pitching NACAO0012 case at
+20° and kK =3
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The relative errors on the mean pressure coefficient at the surface of the airfoil
and the mean wall shear stresses are presented on the Figure 5-12. It is observed
that the relative error is much more significant for the wall shear stress which is
required in the computation of the skin-friction drag coefficient than on the pressure
coefficient which intervenes in the evaluation of the pressure drag. In addition, the
errors are higher for the (NLFD-LVI) method than the (NLFD-AEVI) methodology
which is consistent with the compared accuracy of both methods to compute the

IFMV.
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Figure 5-11: Fluid velocity contours and streamlines for the pitching NACA0012
case at +20° and k = 3 at time instances tg, t5 and %
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5.5 Discussion

The different methodologies are compared based on five simple test cases. First,
it was shown that for linear motions, no differences are observed and all methods
are equivalent which is analytically expected. In addition it was also demonstrated
that, the convergence of the GCL and IFMV is independent of the convergence of
the aerodynamic coefficients.

For problems with more complex mesh motions, in the case of “small” defor-
mations (£10° pitching cylinder and +5° pitching NACAO0012 airfoil), differences
between the methodologies to compute the time-average behavior of the drag co-
efficients were found to be below 0.01% relative to the mapping method for any
number of harmonics, while the instantaneous behavior could present more signifi-
cant distinctions which reduce as the number of harmonics increase in the temporal
discretization. The order of magnitude of these differences being less than one drag
count, would not be further investigated in industry. However as the non-linearity
of the motion becomes more significant for “large” deformation amplitude (£20°
pitching NACAOQ012 airfoil), differences over twenty drag counts are observed even
for a reasonable number of harmonics of five employed for the temporal discretiza-
tion which corresponds to a level of convergence of the GCL around 10~ using the
mapping method and to IFMV converged between 10~* to 10~° using the NLFD-
based methods. From the levels of convergence, it appears that the differences are
mainly due to the inaccuracy of the IFMV and that enforcing solely the GCL does

not guarantee the most accurate results.
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In summary, the performances of the different methodologies are quite compa-
rable regarding the average aerodynamic coefficients as long as the non-linearity of
the mesh deformation is not too “large”. The limits of each method appear for small
number of harmonics, where the level of convergence of the GCL is low using the
BI-MAP method while the level of convergence of the integrated face mesh velocities
is low using the NLFD-based methods. However, at higher number of harmonics,
the BI-MAP approach begins to satisfy the GCL, while the inaccurate IFMV from
the NLFD-based methods appear to affect the accuracy of integrated function values

such as the drag and lift coefficients.
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CHAPTER 6
Conclusion and future work

The satisfaction of the Geometric Conservation Law (GCL) is essential to avoid
the introduction of numerical errors or inaccuracies in the solution. The limitations
of the initial approach proposed by Tardif and al. [37] were discussed. It was shown
that this method satisfies the GCL with possibly non converging integrated face mesh
velocities since it is based on a linear representation of the volumetric increments.
Thus the approach of Tardif and al. [37] is ill-suited for complex non-linear motions.

Novel approaches were developed for both the Non-Linear Frequency Domain
and the Time-Spectral methods to enforce the GCL. These methodologies are based
on the computation of the Integrated Face Mesh Velocities (IFMV) through the
evaluation of the Approximated Exact Volumetric Increments (NLFD-AEVI) or a
mapping between the physical domain and the computational space (MAP). The
techniques were thoroughly investigated both analytically and numerically in order
to determine their accuracy and limitations. The NLFD-AEVI method was shown
to satisfy GCL with first-to-second order accurate IFMV while the mapping-based
methodologies enforce the GCL with a spectral rate of convergence through the

computation of the exact integrated face mesh velocities. Hence it was proven that
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satisfying the GCL does not guarantee that the errors in the integrated face mesh ve-
locities are either at the same level or converge at the same rate. The different meth-
ods were demonstrated for both two-dimensional quadrilateral and three-dimensional
hexahedral grids.

The comparison of the different methods on aerodynamic simulations were per-
formed for plunging or pitching motions of a cylinder and a NACA0012 airfoil. For
linear motions, all the methods are equivalent and produce the same results. Depend-
ing on the degree of non-linearity of the mesh motion, differences appear between
the methods which can become significant for “large” mesh deformations. It was
observed that the differences on the drag coefficients decrease as the temporal dis-
cretization is refined but may persist to be above one drag count and thus deserve
further consideration from an industrial point of view. Lastly, it was shown that the
rate of convergence of the Geometric Conservation Law is independent from the rate
of convergence of aerodynamic coefficients.

Additional investigation of three-dimensional aerodynamic performances which
would allow for more complex mesh deformations is needed to evaluate the differences
between the developed methodologies. The correct determination of the impact of
the GCL as well as the IFMV on aerodynamic computation is fundamental in order
to evaluate the accuracy of the flow solver. Indeed for a pitching airfoil with a
large pitching angle, the separation of the flow is convected along the chord in the
downstream direction and Rigid Grid Motion is not sufficient to preserve the cell
density in the wake, thus dynamic mesh deformation along with the GCL satisfaction

is essential for such simulations. Moreover these future investigations should not be
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only restricted to aerodynamic coefficients but expanded to Limit Cycle Oscillation

in aeroelastic cases in order to further extend the current in-house solver.
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