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ABSTRACT

A knowledge-based eX"pert system was developed to assess the level of abnormality

in the brain electrical activity of pediatric patients monitored in the intensive care unit. SL"

hours of an 8-channel EEG record serves as the input to the monitoring device based on

which the brain activity is classified as being normal, miIdly abnormal, moderately abnormal

or severely abnormal.

Spectral band activity is computed tor each channel for every 3D-second epoch.

Artifact rejection is accomplished by a median filter with a hard-limiter thresholder.

Quantitative variables refiecting possible abnormality : a measure of amplitude depression, a

mealiUre of assymmetry, a measure of anterio-posterior differentiation and a measure of

EEG variability over time are extracted from each EEG record. Statistical distributions of

these measures are established for a control "normal" population of about ten patients 50

ciassified by a neurologist on visual interpretation. New EEGs to be ana1ysed are

statistically compared with the control population and a probability measures of normality

for the various measures are determined. The expert system learns from prior examples of

dassification done by the neurologist by a technique of inductive machine learning. The

monitor is trained and tested using sixty examples using the rotation method of error

estimation.

The monitor had a tendency to classifY the EEGs with a higher level of abnormality

than the expert. Possible reasons and potential solutions are discussed.
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RESUME

On a développé un système expert pour déterminer le niveau d'anommlité de

l'activité électrique du cerveau chez des enfants placés sous surveillance à l'unité de soins

intensifs. Une section de 6 heures d'un EEG à 8 voies est analysée et classée par le système

dans les catégories suivantes: normal, anormalité mineure, anormalité moyenne et

anormalité sévère.

On commence par calculer les bandes d'activité spectrale pour chaque section de 30

secondes. La réjection d'artéfacts se iàit ensuite à l'aide d'un liltre médian et d'un seuillixe.

On calcule à partir de l'enregistrement complet les variables suivantes, reflétant divers

aspects de l'anormalité électroencéphalographique: une mesure de dépression d'amplitude,

une mesure d'asymétrie, une mesure de différentiation antéro-postérieure, et une mesure de

fluctuations temporelles. On obtient ensuite une distribution statistique de ces variables pour

une population de sujets contrôles dont l'EEG a été considéré totalement normal par

interprétation visuelle. Les EEGs à analyser sont alors comparés à cette population,

permettant d'obteIÙr une mesure de probabilité de normalité pour chacune des variables. Le

système expert apprend par la méthode de logique inductive la classilication de chaque EEG

faite par le neurologue. L'apprentissage et l'évaluation des erreurs sont faits par la méthode

de rotation avec 60 exemples.

Le mOIÙteur a tendance à classer les EEGs dans un IÙveau d'anormalité plus élevé

que le neurologue. On discute les raisOiis possibles et les solutions à envisager.
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1. INTRODUCTION

1.1 Neurological Monitoring

The purpose of any monitoring facility in the Intensive Care Unit (ICU) is to equip

the physician with an additional pair of eyes; to enhance his/her powers of observation to

detect abnormalities at a reversible stage 50 that timely and medically sound decisions can

be made. In the present day ICUs, innumerable catheters, transducers, digital read-outs and

alarms keep vigil on the heart, lungs and kidneys. The brain however, is monitored only by

clinical observations and by measurement ofintra-cranial pressure (ICP).

Invasive ICP monitoring devices provide the most accurate and reliable information

for clinical determination ofICP. Non-invasive methods of determining ICP are promising

but none are clinically useful at present. Invasiveness is an unfavorable quality for any

monitoring devicc::. Further, irrespective of the method of ICP monitoring used, the user

requires a level of expertise for optimal interpretation ofthe data it produces. Spurious ICP

measurements that go unrecognized as erroneous may lead to management decisions with

potentially catastrophic consequences (Miller et. al., 1986).

Monitoring the Central Nervous System level offunctioning is a diflicult task as it is

not feasible to have a neurologist at ail times, doing seriai neurologic examinatioDS. As a

result, neurologic examinations are often delegated to intensive care nurses. Even when

performed conscientiously, seriai neurologic examinations are discontinuous and subjective.

These wait for a clinical manifestation of a functional deterioration. As a result, often times

they arc unable to anticipate capricious clinical deterioration and identifY them only after
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they occur. This defeats the purpose of a monitor itself Also. c1inical observations are very

limited in a comatose or umesponsive patient, or an anificially paralyzed patient. A single or

even repeated electrophysiologic study may suffer from the same problems as does the

neurologic examination - it is a discrete, brief sample of data that may not retlect the

patients overall condition. Partîcularly, it would miss the very gradua! changes that may be

taking place

.A successful leU monitoring system should meet the following criteria:

• be more sensitive and specifie than clinicat observations.

• be non-invasive.

• be easily operated and interpreted by non-e"llerts.

• be usable at the patients bedside

• not interfere with medica! or nursing care of the patients.

Examples of successful non-neurologic monitoring units are the bedside

electrocardiographic (EKG) and transcutaneous pulse oximetry.

Many neurointensivists believe that the electroencephalogram (EEG) can become an

integral part of monitoring in the leU (Emmerson and ehiappa, 1988). The EEG is very

sensitive to change in physiological state and its value as a prognostic indicator of functional

recovery has been demonstrated (Arroyo et. al., 1993). The technique itself is non-invasive

and technological advances have made possible the collection, storage and analysis of

continuous EEG. However, raw EEG recorded continuously over several hours generates

cumbersome amounts of data and its complexity discourages interpretation by non-experts.
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To ovcrcome this shortcocning and to make it easily operable by non-experts, several

attempts have becn made at compressing and simplifYing the data with definite benefits.

Recent studies have examined the continuous EEG as a tool for making on-line clinical

management decisions (Jordon 1990, 1992).

1.2 The Electroencephalogram

1.2.1 Generation and Recording of the EEG

Electroencephalography involves the recording and analysis of the electrical signais

generated by the brain. The electrical activity of the brain consists of ionic currents

generated by biochemical sources at the cellular levels. These ionic currents cause electric

and magnetic fields that can be measured in the brain and surrounding tissues.

The EEG is recordable from the scalp surface after being picked up by metal

electrodes and conductive jelly. The arrangement of these electrodes on the surface of the

scalp is done based on the international 10-20 System (Jasper 1958). EEG is recorded as a

potential difference between pairs of electrodes and each such pair is referred to as a

"channel". Figure 1.1 illustrates a 16·channel EEG. The amplitude of the EEG typically

ranges from 10 to 100 J.1V and is amplified about ten thousand times for recording and

display. The EEG is corrupted by artifacts caused by various sources such as patient

movement, power supply interference and poor electrode contact. Amplification of these

signais by ten thousand limes causes immense artifactual distortion in the EEG.
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Figure 1.1 - 20 seconds ofa l6-channel EEG.



5

The combination of electrodes examined at a particular point in time is referred to as

a "montage". For instance, potential difference between successive pairs of electrodes in

each hemisphere may be recorded as shown in Figure 1.2. This is referred to as a "bipolar

anterior posterior montage".

Figure 1.2

Continuous analog EEG can be displayed using. paper write~out or oscilloscopic

display. Computer~based digital EEG systems are no~ in use. In addition to efficient means

of data storage and transmission, they also lend themselves to subsequent data processing.

The EEG is used in the evaluation of infectious diseases of the nervous system,

head trauma, cerebral vascular accidents, epilepsy and brai'il tumors. It can aIso contribute

as an indicator of brain functiOD in metabolic disorders and in the evaluation of organic

causes of psychiatrie problems and behavioraI and adjustment problems of children. More

recently, EEG bas come to play a major role in the evaluation of the cerebral death of
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donors where organ transplants are considered. EEG can also be recorded from the cortical

surface or from depth probes. The former is called electrocorticogram while the latter is

called depth electrogram.

1.2.2 Why the EEG for monitoring

A few of the more important reasons for using the EEG as a monitor of brain

activity are discussed below.

1. EEG reflects cerebral neuronal junction. The EEG represents the temporal and spatial

summation of potentials, at the junctions of nerve ceUs caIled neurons. These potentials

reflect the underlying state of cerebral metabolism which in turn depends on multiple

factors including synthesis of enzymes and energy (Siegel et. al., 1989). Thus, the EEG is

a composite reflection of complicated intraceUular activity and inter-neuronal

communication. A disturbance in one or more of these coroponents will produce a

disturbance in the EEG. This roulti-layered system makes the EEG a highly sensitive,

although non-specifie, indicator ofcerebral dysfunction.

2. The EEG is sensitive to ischemia (reduced cerebral bloodflow) and hypoxia (reduced

level of oxygen to brain) - the most common causes of brain irJury. Predictable EEG

changes occur with cerebral ischemia. The EEG is roain1y generated by the pyramidal

neurons of the cortex, caIled pyramidal because of their shape. FoUowing hypoxic­

ischemic injury the pyramidal neurons typicaIly demonstrate severe neuronal dropout,

suftèring a large drop in neuronal population. The relatively selective wlnerability of

these cells makes the EEG particularly sensitive to these common insults. The sensitivity
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of the EEG to ischernic injury has been demonstrated by Jordon and Stringer (1991). In

their studies they observed a correlation between amplitude of the background EEG

activity and the volume and severity of the ischernic damage.

3. EEG correlates with cerehral topography. The international 10-20 System used for

electrode placement establishes a consistent relationship between the electrode

placement on the surface ofthe scalp and the underlying cerebral topography (Homan et.

al., 1987). Therefore, inferences maybe drawn about disease localization based on the

EEG abnorrnalities detected at the scalp. This was a more important attribute before the

introduction of the tools capable of more specific disease localization such as computed

tomography (CT) or magnetic resonance imaging (MRl). However for patients in the

ICU transport for imaging studies could be bazardous. The EEG bas the advantage of

being able to serve as a bedside monitor and aid in decision making about disease

localization.

4. EEG detects neuronal dysfunction at a reversihle stage. The EEG deteriorates before

cell membrane failure. Astrup et al. (1981) have demonstrated that EEG abnorrnalities

due to diminished blood flow set-in much before cell-death or energy fallure occurs.

This implies the existence of a "therapeutic window" following EEG abnorrnalities.

Gross et al. (1981) and Wood et al. (1984) have reported that EEG abnorrnalities

reversed as cerebral blood flow increased in patients with cerebral ischemia thus

demonstrating this theory.
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5. EEG is tlze best available methodfor detectillg sei::llre activity. A seizure is the result

of occasional , excessive and disorderly electrical discharges of the gray matter which

may be detected by EEG monitoring.. Clinically, it could manifest itself as sudden, brief

attacks of 1055 of consciousness, motor activity, sensory phenomena or inappropriate

behavior. A significant incidence of acute seizures among lCU patients, subsequent to

head injury, spontaneous intracranial hemorrhages and ischernic strokes has been

reported by Engel (1989). A systematic study of seizures among patients in the lCU has

documented a high incidence of non-convulsive seizures (Jordan, 1992). The clinical

features ofthese seizures, unlike their conVlùsive counterparts, are subtle, arnbiguous or

absent and hence diagnosis of these is quite difficult without EEG monitoring. EEG

monitoring bas aided seizure managllment in the lCU in two ways. Non-convulsive

seizures with very subtle or no clinical accompaniments are detected earlier thereby

allowing the initiation oftimely treatment (Maynard and Jenkinson, 1984). ICU patients

exhibit a wide variety of involuntary and serni-purposeful movements which could be

mistaken to be clinical accompaniments of a seizure. EEG monitoring helps distinguish

serni-purposeful jerks, spasms, head deviations, etc. from true clinical manifestations of

seizures.

In addition to the neurobiologic reasons discussed above, the technique of EEG

itself is non-invasive and an EEG monitoring system can operate at the patient's bedside

without any interference to examination or patient care. However, interpretation of raw

EEG data requires skilled personnel who may not be available at all times in the ICU.
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• Quantitative EEG discussed in the following section may be able to overcome this short­

coming.

1.2.3 Quantitative EEG

A neurophysiological EEG monitor should record brain activity of the patient in the

leU over several hours continuously in order to provide autht,ntic diagnostic information.

Thorough review and interpretation of the EEG requires the presence of a neurologist on­

site throughout the period of recording. This is quite unr(:aSonable. In practice, there is a

considerable time lag between recording of the EEG and actual interpretation. Also, visual

interpretation of a 24 hour EEG recording is quite tedious and time-consuming.

Quantitative EEG (QEEG) relies on the transformation of digitized EEG signais into

mathematically derived parameters thereby performing a frequency analysis by computing

the Fast Fourier Transfonn, a period analysis for meclSllring half or full waves or an

amplitude analysis for determining the average amplitude, its variance skewness and

kurtosis (pronk, 1987). These parameters characterize the EEG thus analyzed. This

information can be further interpreted by statistical analyses based on a select population

considered to be "normative". It can also be displayed as topographic maps or graphs in a

form intelligible to the non-expert. Pattern recognition.techniques may also be applied to the

parameters derived to c1assifY them as normal or abnormal recordings.

Several factors in addition to the ones mentioned above, favor QEEG analysis.

Bickford (1973) has demonstrated that experienced electroencephalographers make

considerable errors in estimating amplitude values and consistently read higher than the•
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computer estimate. In the presence of artifacts the human estimates are further degraded.

QEEG using computer-assisted frequency analysis has been reported to be more sensitive

than visual interpretation in several situations. QEEG monitoring systems can compress

data and thereby identify modulating backgrounds, intervals of physiologie sleep and

gradual shifts in dominant frequeney. Long-term EEG trends ofprognostic significance such

as those mentioned above may bt: missed by visual analysis. Also, the earliest manifestation

of cerebral isehemia subsequent to carotid surgery is a 5 to 15% drop in amplitude (Chiappa

et. al., 1979). This goes unnotieed during visual interpretation but is reported by QEEG

analysis.

It would be quite useful to have a monitoring unit that would not only record EEG

but also interpret it on-line. Such a system would then extract features from the EEG and

based on those characteristics, raise an alarm at the appearance of abnormal EEG activity.

At this time a neurologist may be called in to eonfirm and act upon the finding of the

monitoring system. One place where such a system would make a definite impact on clinieal

decision-making is the pediatrie ICU.

1.3 Cardiac Surgery and Brain lnjury

Innumerable children are bom each year with congenital heart disease serious

enough to require surgery early in life. The use of deep hypothermie Cardiopulmonary

Bypass (CPB) with or without deep hypothermie Circulatory Arrest (CA) has improved

operating conditions for pediatrie cardiac surgery. This has resulted in improved survival

and reduced cardiac morbidity.
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Hypothermic CA has been a wide1y used technique since its introduction in the

early 1960's. CA creates an operative field free of perfusion cannulae and blood and this

proves to be a definitive advantage. The use of this technique is based on the premise that

there is a "safe" duration of total circulatory arrest, which bears an inverse relation to body

temperature; the organ with the shortest "safe" circu1atory arrest time is the brain.

The perioperatiœ period is an important time for the occurrence of brain injury

serious enough to be followed by neurologic sequelae. Results of a study at Duke

University Medical Center indicated that intracellular brain oxygenation decreases

significantly during circu1atory arrest and remains impaired after rewarming and CPB,

despite normalization of oxygen availability (Greeley et. al., 1989). Deep hypothermic CA

seems to be a factor in the delayed recovery of cerebral blood flow and metabolism in

patients. Some patients exhibit a normal response to low cerebral blood flow following

surgery, Le. they demonstrate an increased oxygen extraction from the blood. However, the

cerebral oxygen metabolism in some patients is stunned and unable to exert a protective

response of increased oxygen extraction. It is therefore likely that low cardiac output and

pressure-passive cerebral blood flow potentiate brain ischemia after CPB and surgery in

some patients. Ischemia - a state of diminished blood supply to the brain, is the initiating

event for the development of several braln lesions.

As the overall outcome of corrective surgery for congenital heart disease bas

improved, the focus is now on neurologie dysfunctiç>n due to surgery. The incidence of

significant neurologie deficits following cardiac surgery in infants varies approximately

between 5% and 25% depending upon the sophistication of the follow-up measures.
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E:-."tensive researeh is going on, both to improve the existing methods of CA and bypass and

also to try and reverse isehernie damage when it occurs.

What the pediatrie ICU eould use is a neurophysiologic monitor which could

interpret the EEG and raise an alarrn at the appearanee of abnormai activity. As discussed in

section 1.2.2, the EEG is very sensitive to ischernia and EEG abnormalities set in prior to

neuronal dysfunction. Such a monitor would then detect abnormalities at a reversible stage

and provide a scope for therapeutic assistance. This in essence, is the aim ofthis project and

is further discussed below.

1.4 Project Definition

The aim of the project is to build an automated Neurophysiologieal Monitor for the

pediatric lCU. The primary uti1ity of the system is to serve as a bedside diagnostic too1 for

pediatric eardiac patients subsequent to surgery. This may also be used to monitor other

ICU patients as the system basically detects abnormal EEG patterns. The EEG of eardiae

patients in the ICU is reeorded for about 20 hours starting an hour or so after surgery. The

monitor being built is an off-Iine deviee whieh aeeepts several hours of raw EEG data as

input, performs quantitative analysis and classifies it as normal or abnormal based on its

eharacteristics. Such a monitor aims at rnirnicking the. neurologist, the expert. The features

used by the monitor for interpretation ofan EEG will then be the qLlantitative equivalents of

the qualitative features used by the expert himself. Knowledge is aequired in collaboration

with the expert about the features that are crucial in differentiating a normal from an

abnormal EEG. This is discussed in Chapter 2.
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A continuous EEG recorded over long hours is subject to various kinds of artifacts.

Rejection of artifacts of physiologic and environmental origin is quite essential for accurate

interpretation of the EEG. Once artifacts are rejected, the EEG is ready for quantification.

Chapter 3 discusses the EEG data acquisition system at the Montreal Children's Hospital,

the source and nature of artifacts that are encountered during a long-term recording in the

ICU and the design offilters for artifact rejection.

Knowledge Engineering involves the design and development of quantitative

parameters equivalent to the qualitative features crucial in classifYing an EEG. Chapter 4

discusses the various mathematically derived parameters extracted from the EEG. EEG is a

qualitative tool and no clear-cut quantitative boundaries exist between normal and abnormal

recordings. Statistical analyzes of the quantitative features extracted, discussed in Chapter

5, provides information about the normality of the EEG by comparing it with a population

considered normative.

A Knowledge-Based Expert System accepts the probability measures associated

with each of the parameters extracted and classifies the EEG into one of four categories,

normal, rnildly abnormal, moderately abnormal, or severely abnormal. Machine Induction

principles are used to train the system with prior examples. Chapter 6 discusses this in

detail. The performance of the automated monitor is discussed and improvements are

suggested in Chapter 7.
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• 1.5 Literature Review

The literature reveals several instances ofEEG monitoring in the lCU. EEG changes

correlate with regional ischemia during carotid artery endarterectomies (Trojaborg and

Boysen, 1973). As a result EEG monitoring is currently in ell."tensive use during carotid

surgery (Chiappa et. al., 1979, Cho et. al., 1986) and this has made a definite impact on

clinical decision making. EEG monitoring is currently in practice during cardiac surgery as

weil (Salemo et. al., 1978). Jordon and Stringer (1991) have reported a decisive impact of

EEG monitoring on clinical management decisions in 85% of the patients monitored

subsequent to cardiac surgery. EEG monitoring of patients in coma has provided clues to

the cause of coma and prognostic information (Cant and Shaw, 1984). EEG monitoring has

been used for monitoring barbiturate therapy for increased intra cranial pressure (Ropper

and Rockoff, 1983).

Much of the results presented in the literature referenced above relies on visual

analysis rather than on computer analysis. This is somewhat limited in scope and

enormously time-consuming. Computer-assisted analysis has been used by several

researchers, however the mos! sensitive variables to be monitored have not been

determined. The tool most commonly used is the Compressed Spectral Array (CSA)

devised by Bickford et. al. (1971). Here the frequency spectra of EEG activity are

computed and plotted against a vertical time scale for successive epochs. Gross changes can

therefore be identified visually. Other display formats such as trend plotting ofvarious EEG

and physiologie parameters have also been used.

•



•

•

15

Prank (1987) and Prior (1987) have reviewed some EEG features that may be

useful in prognostication and clinical decision-making. These include spectral features,

period and amplitude features, measures of mobility and complexity, and autoregressive

filtering coefficients. Thomas et al. (1985) have reported that, subsequent to

cardiopulmonary bypass, the most significant changes concerned amplitude rather than

frequency parameters.

Deviees designed to provide an automatic EEG monitoring system have been few.

Bickford (1950) estimated the depth ofbarbiturate and ether anesthesia with such a device

and automatically regulated the rate of drug administration by changes produced in the

EEG. Similar servomonitor mechanisms have been developed for other anesthetic agents as

weIl CVerzeano, 1951). The Cerebral Function Monitor (CFM) described by Prior (1973), is

the first device capable of artifact rejection in addition to automated interpretation. The

system also has an in-built eleetrode impedance monitoring system which maybe quite

important for long-term EEG monitoring systems.

Bickford et. al. (1971), in their monitoring system for diagnosis of irreversible coma,

have concemed themselves with ECG artifact rejection using template subtraction

techniques. MacGillivray and Kennedy (1968) describe a monitoring system for patients

with grossly disturbed metabolic states. This system, involving analog devices, produces a

regular plot at short intervals ofthe relative proportions of different frequencies in the EEG.

They report tbat clinicians understand these frequency plots and interpret them in order to

assist management ofcomatose patients.
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Maulsby (1973) bas described a multi-cbannel EEG analvsis too1 that displays

information e:-.:tracted from the EEG in an anatomical fonnat. This cao be easily

comprehended by physicians having little formai training in EEG. The display consists of

four figures of the head upon each of which the activity corresponding to one of four

frequency bands is plotted as bar graphs.

Maynard and Jenkinson (1984) developed a system called the Cerebral Function

Analyzing Monitor (CFAM) an improvement of the CFM described above. This device

bandpass filters (2-20 hz) the EEG, performs amplitude rectification and smoothingand

then computes, every 2 sec, five amplitude measures and the percentage of activity in nine

frequency bands These are displayed as a function oflime.

The Vital Signs Monitoring System (VSMS) (Chiappa and Roch, 1993) is another

computer-assisted diagnostic tool. This system plots the trend over several hours, of various

EEG and physiological parameters such as peak, median power and spectral edge

frequencies, frequency bin activity totals, frequency bin ratios, blood pressure, heart rate

and intra-cranial pressure. In addition to data reduction, the plots generated by the CFAM

and the VSMS make visual interpretation of EEG trends easier and discernible by the non­

expert.

Artifact rejection is quite important for accurate interpretation oftbe EEG. Most of

the systems in the literature that rely on computer analysis do not reject artifact completely.

The literature does not show evidence for the presence of systems capable of completely

automated EEG interpretation. During feature extraction from the EEG, it would probably
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be wise to extract quantitative equivalents of tbe qualitative features used by the neurologist

for interpretation. The literature reveals some work in tbis direction.

Tlùs project attempts at complete automation ofEEG interpretation. Rejection of all

kinds of artifacts is attempted prior to extraction of features tbat correspond to tbe

qualitative features used by the neurologist.
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2. THE ABNORMAL EEG

EEG abnormalities in children can be of three kinds.

* Background abnormalities - Background activity refers to the basic EEG rhythm which

are present at al! times. Sometimes, major EEG patterns and changes in activity are

superimposed on these basic rhythms. EEG background abnormalities correspond to

aberrations in the amplitude and frequency composition of these basic rhythms.

* Ictal abnormalities - IetaI abnormalities are those associated with seizures. These appear

most often as sharp waves and spikes, hypersynchronous rhythmic activity or as

paroxysmal slow wave activity.

* Abnormalities of organization in states and maturation - Composition ofEEG activity in

children varies considerably with age. Children who exhibit sleep rhythms that are

uncharaeteristic of their age are said to have abnormalities of organization in sleep states

and maturation.

Background abnormalities appear to be most suitable for diagnostic applications especially

in long-term prognosis (Lombroso 1985). Studies indicate that background EEG is a good

indicator of prognosis subsequent to hypoxic-ischemic injury, if recorded for sufficient

duration in al! states (Watanabe et.aI., 1980). Seriai recordings and follow-up studies have

disclosed a graded series of background abnormalities from maximal!y depressed EEG to

normal background EEG. Each grade of abnormality correlates closely with the subsequent

neurological outcome. The prognostic significance of the background abnormality depends

on the time of the recording as well. Studies indicate that recordings within the !irst 48
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hours of the illness serve as the best prognostic indicators (Kayser-Gatchalian and

Neundorfer, 1980).

Ietal abnormalities in children could be caused by the invo1vement of the central

nervous system or by metabolic derangement and are either transient or sustained. These

provide prognostic information as weil. However, background abnormalities are, in general,

more reliable prognostic indicators (Lombroso, 1985). For instance, the prognosis of a child

with ictal abnormalities accompanied by a sustained background abnormality is worse than

that of another, whose ictal abnormalities are accompanied by a transient background

abnormality. The tbird category, abnormalities associated with maturation and organization

of states, consists of more subtle deviations of certain bioelectric parameters and their

usefulness is not well-established.

An automated EEG neurophysiological monitor should be capable of detecting both

background abnormalities and ictal abnormalities in order to obtain maximum prognostic

information. An analysis of the background activity involves the study oflong-term trends

and therefore superimposed bursts of activity which may represent ictal abnormalities are

smoothed out. Similarly, a system designed to detect ictal abnormalities pays no attention to

long-term trends. Therefore the detection of these two should be handled independently.

The intent of this project is to develop a monitoring system capable of identifying

background EEG abnormalities.
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Background EEG abnormalities manifest themselves in several forros .

1. Depression - A depressed EEG is characterizedby a 10-50 IlV activity with mixed

frequencies, persistent through ail states, sleep and wakefulness. This background

pattern requires caution in interpretation since transient depression could be caused by

various reasons and is not an indicator ofunfavorable prognosis. Detection of depressed

activity is quite crucial since the fust manifestation of cerebral ischemia is a 5 to 15%

drop in amplitude (Chiappa, 1979).

2. Inactive Pattern - This is characterized by cerebral activity below 10 IlV almost

continuously, unreactive to stimulus. It occurs in disparate clinical conditions and carries

quite an unfavorable prognosis.

3. Burst Suppression - Periods ofinactive background (lower than 10 IlV) interrupted by

synchronous or asynchronous bursts of activity characterize this abnormal pattern. The

intermittent bursts themselves last between 0.5 to 6 sec and contain one or more

irregular slow waves with or without sharp transients. Studies show that a burst

suppression pattern heralds an unfavorable outcome and bas a very high statistical

predictability associated with it (Lombroso, 1985).

4. Interhemispheric Amplitude Asymmetry - A persistent amplitude asymmetry in

background rhythms between corresponding channels of the two hemispheres is

considered abnormal. Here again transient or mild asymmetries are of no pathological

significance. A persistent voltage asymmetry recognizable in various states could denote

a depression in one hemisphere or large amplitude activity in the other, both of which
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point to an underlying abnormality. Bricolo et al.(1978), assessed the significance of

asymmetry and found that in most cases, the lower amplitude corresponded to the side

of the lesion.

5. Mon%nous Pattern - This consists of an almost invariant diffuse pattern present at ail

times, poorly reactive to stimuli. Studies show that the second level response to a

diminished cerebral blood supply, after generalized depression, is a diffuse monotonous

delta pattern from aIl cerebral regions (Chiappa, 1979). Although the presence of sleep

patterns in comatose patients may have prognostic significance, the presence of

spontaneous alteration of the EEG is more important. To study spontaneous variations

adequately, the EEG is to be recorded over an extended period of time. Bricolo and co­

workers (1973) and Bergamasco and associates (1968) have found that a invariant EEG

carries worse prognosis than a cycling (alternating) EEG. In another study,

approximately 95% of the patients with a slow and monotonous CSA had unfavorable

outcomes against only 30% of those with a changing CSA (Bricolo et.al., 1978).

Although the cycling EEG patterns only weakly correlate with the clinical state of the

patient, they still have significant independent prognostic value (Rumpl et.al., 1979).

6. Absence ofAmplitude Gradient - The EEG of a normal child shows a sharp decline in

voltage from the posterior to the anterior head regions. This is usuaIly accompanied by a

marked decrease in low frequencies in the same posterior anterior direction. Substantial

clinical evidence correlates an absence of such a gradient with severe neurologic

injury (Slater and Torres, 1979).
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The monitoring unit built aims at identiJYing these above-mentioned background

abnormalities by ell.'tracting quantitative features from the raw EEG. However, prior to this

the raw EEG data recorded is to be pre-processed in order to make interpretation easier.

This is discussed in chapter 3.



3. DATA PRE-PROCESSING

3.1 DATA Acquisition

At the Montreal Children's Hospital, EEG is recorded from 8-channels by a

montage called "Little H" illustrated in Figure 3.1 below. Twelve electrodes including a

ground are glued onto the surface of the scalp and the electrode scalp junction is filled in

with conductive jelly. EEG recorded from channels 1 and 4 correspond to activity from the

frontal head regions of the left and right hemispheres respectively. Similarly, channels 2 and

5 represent right and left central parietal head regions, channels 3 and 6 represent the

posterior head regions and 7 and 8 record the central temporal head regions of the left and

rigbt hemispheres. This is illustrated in Figure 3.1.

Figure 3.1 - "Little HU montage.
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After being picked up by the electrodes, the analog signal is arnplitied by a factor of

10000 and then digilized at 200 Hz sarnpling frequency. Prior to digitization, the signal is

filtered by a low pass tilter (cut-offfrequency 30Hz and attenuation 6db/octave) to prevent

a1iasing and a high pass tilter to remove artifacts due to respiration, sweating, etc. EEG is

recorded and displayed on a computer monitor using a software called MONITOR. Figure

3.2, on the next page, illustrates 20 seconds of such an 8-channel EEG record.

As explained earlier, analysis of the background activity involves a study of long­

term trends. EEG recorded continuously over a period of six hours produces approximately

60 MB of data. The first step toward trend and pattern analysis is data reduction. Further,

while detecting background EEG abnormalities, sustained rather than impulsive changes in

the EEG are of significance. Therefore, loss of detail as a result of data reduction does not

distort EEG interpretation.

Visual interpretation ofthe EEG involves for most parts, assessment ofits frequency

composition. The neurologist estimates visually the amounts ofEEG activity in the various

frequency bands, delta (1-3 Hz), theta (3-7 Hz), alpha (7-14 Hz) and beta (14-30 Hz),

compares and correlates them and arrives at a decision about the normality of the EEG. It

would therefore be quite useful to transform the entire EEG into the frequency domain.

This would provide information about the EEG activity in the various frequencies ranges

over a period of time. The EEG activity at various frequencies at different instants of time

could then be readily compared and the state of the EEG record could be arrived al. ln

addition, it would also perform the task ofdata-reduction and facilitate trend analysis.
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The frequency analysis of the EEG record is perfonned using a software called

ECLIPSE. The program divides the entire EEG recording into epochs of 30 second

duration. Each such epoch is referred to as a 'page'. The choice of a 30-sec epoch is based

on the premise that any rhythm that lasts for a duration 1ess than 30 seconds is impulsive

rather than sustained activity. After filtering using a cosine window, Fast Fourier

Transfonns are computed for every 512 sample points (corresponding to 2.56 seconds) and

this amounts to eleven frequency domain distributions per channel per page. The epoch

duration is in fact 28.06 seconds and not exact1y 30 seconds to facilitate this. The spectral

resolution is 0.39Hz. The frequency distributions for each page of a channel is obtained by

averaging the Il distributions corresponding to it. The band activity is then the average of

the amplitudes of the activity within the frequency range of the corresponding band. The

frequency ranges of the various frequency bands are defined below.

Band Titles Frequency Range(Hz)

Delta 1.17 to 3.13

Theta 3.52 to 7.03

Alpha 7.42 to 13.28

Total 1.17 to 14.06

Table 3.1 - Definition ofEEG frequency bands.
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The frequency of genuine cerebral rhythms could be as high as 50 Hz. However, the

total band spans only up to 14 Hz. The rationale behind such a narrow band is discussed in

the section on Artifact Rejection. Once the "activity" of the EEG record is computed, each

channel is associated with four average amplitudes of activity correspondi;lg to the four

frequency bands for every page of the record. The activity values for a frequency band of a

channel are then plotted against rime thus forming a rime series as shown in Figure 3.3.

Such a plot is called a band array and it represents the trend in activity in a particular

frequency range arising from a particular head region. For instance, Figure 3.3 represents

the activity over.a 12 hour period in the delta, theta, alpha and total bands recorded from

the left posterior head region. Activity computation by ECLIPSE reduces 6 hours of raw

EEG data from 60 118 to about 500 KB. The neJct hurdle to overcome prior to trend

analysis is artifact management discussed in the following section.
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3.2 Artifact Management

3.2.1 Artifacts

Artifacts are frequent and often intraetable during long-term EEG recordings in the

leU. Here, unIike in the EEG laboratory, the technician is deprived of a controlled

environment. This is so since the prime concem in the leU is the support of patient's Iife

and, particularly in the early hours after surgery, many procedures both diagnostic and

therapeutic are in progress. The effect of these artifacts on computer analysis is quite

serious and their rejection is essential for authentic interpretation of the recording. In the

leU the sources and characteristics of artifacts are numerous and varied. The more

common types ofEEG artifact are listed below.

* 60 Hz artifact from the mains power.

* Patient movement.

* Poor electrode contact.

60 Hz artifact is due to interference from nearby equipment or the very common

ground loop. Figure 3.4 iIIustrates 20 seconds of an EEG with 60 Hz artifact most

prominently visible in the right frontal head regions (channel f4-c4). In the leU where

several electrical devices are operated simultaneously, power supply interference is quite

common. This artifact also occurs when a patient is grounded more than once and there is a

difference between the grounds. Yet another source. of 60 Hz artifact is when a ground

electrode is shorted to one ofthe active eleetrodes.
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In addition to 60 Hz, the above-mentioned sources also generate harmonics at 120

Hz, 180 Hz, etc. which contaminate the EEG. Since the signal is digitized at 200 Hz, the

activity at 120 Hz aliases and appears as an activity peak at 80 Hz and 180 Hz activity

aliases as 20 Hz. The 20 Hz activity contanùnates the beta band. Figure 3.5 above

ilIustrates the amplitude spectra (1.17 to 50 Hz) of the EEG shown in Figure 3.4. The peak

at 20 Hz is due to aliasing as explained earlier.

Patient-generated artifacts include body movement, muscle contraction of the scalp,

blinking, chewing, coughing, swallowing, Iùccouglùng and involuntary myoclonic jerks.

Contractions of the scalp muscles and other muscles due to chewing, couglùng and

swallowing produces broad band activity referred to as the Electromyogram (EMG). The

EMG is quite useful for behavioral studies, however, while monitoring cerebral function

these rhythms are not of interest and they contanùnate the EEG making interpretation

difficult. Another source of patient-generated artifact is the EOG (Electro-occulogram)

generated by eye-movement.

Patient movement causes artifaetual signals both due to mechanical movements of

electrical contacts and movement of the conductors that carry Current from the scalp

electrodes to the amplifiers. Tlùs conductor motion results in induction ofan electric current

due to the earth's magnetic field. The current through the conductor due to the potential

recorded at the scalp is very small due to the magnitude of the potentials themselves and the

very large impedances of the amplifiers. The induced currents are thus comparable to the

currents of cerebral origin and therefore contanùnate the EEG signals. Patient exanùnation

and physiotherapy also cause rh}1lmùc artifact due to discharges of static current.
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Patient-generated artifacts are usually spiky, containing sharp elements and very

large amplitudes. They stand-out quite clearly from Llle background. These are usually

impulsive not lasting for more than a second in duration. Figure 3.6 illustrates an EEG

contaminated by patient-generated artifact. In the band arrays, these artifacts clearly stand

out from the background and are usually solitary. Figure 3.7 illustrating the total band array

of the EEG in Figure 3.6, helps appreciate the difference in amplitude between EEG of

cerebral origin and patient-generated EEG artifact. Here the very large amplitude spiky

components correspond to patient generated artifact.

Artifact due to poor electrode contact is quite inevitable during a long-term

recording and this is illustrated in Figure 3.8. Electrodes are glued on to the surface of the

head and a jelly fills the gap between the eleetrode and scalp to make contact. During long­

term recordings, the jelly could dry up and this may impair the contact. Also, the electrode

itself may not be glued properly. Artifact due to poor contact is characterized by low

frequency and moderately high amplitude. Such artifacts however, are not impulsive and

remain unti! the electrode is glued again or fresh jelly is injected into the junction. In the

band arrays, the artifact is usually seen in the delta and total bands and occasionally in the

theta band as they are characterized by very low frequencies. The band array corresponding

to an EEG with poor eleetrode contact is illustrated in Figure 3.9a. The humps in activity

here correspond to electrode contact artifact. Figure 3.9b illustrates the band array of

another EEG where the humps cor: espond to genuine fluctuations in the frequency

composition of the EEG.
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The humps in both 3.9a and 3.9b look quite alike even though one is artifactual

while the other is not. Removal of the artifactual humps while preserving the genuine humps

could be a difficult problem to solve.

3.2.2. Artifact Rejection

As discussed earlier, the aim of this diagnostic tool is to study gross changes of the

EEG background over several hours. The state of any EEG is determined main1y on the

basis of its frequency composition over several hours, average amplitude and symmetry in

activity between different regions of the head. It is therefure sufficient to reject artifacts

large enough to manifest themselves in the frequency spectrum. It is quite unnecessary to

identif)r and reject specific artifactual EEG waves in the time domain. Each point in the band

array of the activity file represents average activity over a 30 second period in the

corresponding frequency band for the particular channel. Artifact identification and rejection

from these band arrays would be sufficient for our purposes. It is important to realize that

artifact identification can be done visually on1y by examiIÙng the raw EEG record in the

time domain. However, suppression of the artifact is done in the frequency domain.

Therefore all examples ofband arrays ofartifactual or non-artifactual EEG presented in this

section are chosen subsequent to visual examination of the raw EEG itself and not by

examiIÙng the band activities.

The frequency range of background EEG of cerebral origin is 0-30 Hz. Sorne faster

rhythms of cerebral origin up to 50 Hz may be present but usually correspond to ictal

activity. Therefore any activity at 60 Hz could be treated as artifact and rejected. The
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artifact due to hannonics however, alias and appear at lower frequencies and contaminate

the beta frequency band (14 to 30 Hz). Trus band itself is altered by medication and

administration of anesthetics (Mahla) thereby making interpretation difficult. To remove the

effect of these non-pathological confounders, the 60 Hz artifact and its hannonics. the total

band is defined from 0 to 14 Hz. As seen in the previous section, most background EEG

abnormalities manifest themselves in the delta (1 to 3 Hz) and theta (3 to 7 Hz) frequency

ranges. Therefore, such a definition of the total band is not likely to distort or handicap the

interpretation in a significant way.

To reject the artifacts due to patient movement and poor electrode contact discussed

above, a filter capable of rejecting both impulsive very rugh-amplitude artifact and sustained

moderately rugh amplitude artifact is required. Linear filters are used extensively, in several

signal processing applications today. However, they fail to perform weil with high

amplitude impulsive noise components. Linear filters merely smear the effect of impulsive

noise components. The performance of aS-point moving-average filter on an artifactual

EEG is illustrated in Figure 3.10. (3.10a) illustrates the unfiltered band array with impulsive

EEG artifact and (3.1Ob) is the band array subsequent to filtering using the S-point linear

filter. (3.10d) illustrates the filtered output of the band array in Figure 3.IOc with sustained

artifact. The filter averages the band array values witrun aS-point window. Impulsive high­

amplitude artifact is merely smeared rather than removed as observed in the illustration

(3.1Ob). The linear filter does not reject sustained artifact either as is evident from Figure

3.10d.
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A non-linear filter called the median filter has been used successfully with impulsive

noise components. The median filter replaces the value at each point by the median of the

signal values in some finite neighborhood about that point. The non-linear characteristics of

this filter help remove impulsive noise components while maintaining sharp edges at the

same time. However, it fails to reject sustained noise components. The performance of a 5­

point median filter on an EEG with impulsive artifact and on one with sustained artifact is

illustrated in Figure 3.11. Figure 3.llb illustrates the effect ofmedian filtering on the band

array illustrated in Figure 3.lla. The median filters removes the artifact leaving no trace of

it. (3.11c) represents the band array of an EEG with sustained EEG artifact and (3. II d)

shows the effect of the median filter on it. In the case of sustained artifact the median filter

performs rather poody and most artifact passes right through and is unrejected as is evident

from (3.lld).

From the discussion above, it is clear that the, median filter is efficient at rejecting

impulsive noise components. With sustained noise however, the performance of neither of

the filters discussed above is remarkable. Sustained artifacts in EEG recordings can extend

over several hours. In such cases, both linear and median filters dampen the artifactual

activity initially. After a certain period oftime (depending on the size of the window) when

the entire neighborhood is artifactual and sunilar, these filters fail to recognize and reject

them as artifact. Therefore to get rid of artifacts that extend over long periods of time, a

hard-limiter threshold should be used.
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A median fiiter with a hard-limiter threshold perforrns \Vell \\~th the rejection of

sustained arùfact. The data is fust filtered \~th a 5-point median filter. If the median of anv

window of totaI band acti~ty is greater than a certain threshold, then the acti\~ties in ail

frequency bands of that particular epoch for that channel are replaced ùy the respective

average band acti~ties averaged up to that point in time, thus rejecting the artifact. The

choice of the threshold is quite criticaI for the performance of the filter. An absolute

threshold may not be a good choice since the amplitude of the artifact itself is proportionaI

to the average amplitude of the background EEG. A high threshold may fail to reject

arùfacts of depressed EEGs while a low threshold may reject genuine high amplitude

rhythms of cerebral origin. The threshold shouId therefore be relative to the average totaI

band acti~ty.

The amplitude of most arùfacts including that due to poor electrode contact is at

least 1.5 times the average EEG background acti~ty. Extensive EEG re~ew indicates that

genuine fluctuations of cerebraI origin in totaI band acti~ty, Le. average EEG acti~ty in the

o to 14 Hz range over a 30 sec. period, is rarely greater than 25% of the average

background acti~ty. Therefore, it is safe to assume that totaI band acti~ty greater than the

overaIl average total band acti~ty by at least 1.5 times is artifactuaI.

As explained earlier, the band arrays are first filtered with a 5-point median filter

which rejects impulsive arùfacts. If the median in any window of totaI band acti~ty is

greater by 1.5 times than the corresponding running average up to that point in time, then

the activity vaIues in aIl band arrays corresponding to that epoch and channel are replaced

by their respective running averages in acti~ty. This requires that the first window that is
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filtered is artifact !Tee in order to build an artifaet !Tee running average. This sbould be

ensured by the user. Tbe monitoring system prompts the user ta input the time ta start

analysis. The user then should ensure that at least 3 minutes of "clean" EEG forms the start

of analysis.

The performance of a median filter with a hard-limiter threshold on the signais in

Figure 3.12a and 3.12c are illustrated in the Figures 3.12b and 3.12d respectively. Clearly,

the hard-limiter threshold rejects bath sustained and impulsive artifacts quite effectively. AlI

other filters discussed above fail ta perform weil when the artifact fills the entire window.

Ali data points are then similar and the filter does not have a sample of true unartifactual

band array values. Further these filters reject as artifaet, what does not conform with the

rest of the members of the same window. In the case of sustained artifacts therefore,

nothing is rejeeted. The hard-limiter threshold filter however, has a sample of true band

array values in the form of a running average. The filter bas a reference uncontaminated by

artifact and is therefore able ta reject artifact by comparison even when the artifaet is

sustained and fills the entire window.
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Other threshold values have also been tried. A lower threshold tends to reject true

EEG as artifact. This is illustrated in Figure 3.13, where a threshold of 1.25 rejeets genuine

EEG as artifact. Figure 3.13a represents the original band array and figure 3.13b the result

subsequent to filtering. A high threshold on the other hand accepts artifactual EEG as real

EEG. This is seen in Figure 3.14 which illustrates the performance of the filter on the band

array shown in Figure 3.14a for different threshold values. Figure 3.14b shows output for a

threshold vaiue of2.0 and figure 3.14c shows the output for a threshold of 1.5. Comparing

the two outputs, the superior performance of a threshold at 1.5 is clearly demonstrated.

Once artifact rejection is complete, the band array is ready for feature extraction

discussed in the following Chapter.
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4. FEATURE SELECTION

From the discussion on abnormal EEG patterns it is apparent that the nature of

background EEG activity is primarily assessed on the basis of four aspects, namely,

* Amplitude

* Left 1Right symmetry

* Variability ofthe EEG

* Anterior 1Posterior gradient

A depressed EEG record is characterized by very low amplitude activity. The

inactive pattern discussed in Chapter 2 as an indicator of bad prognosis is also associated

with low amplitude values, lower than that of a depressed record. An amplitude measure is

therefore quite important to detect these patterns. The prognostic significance of a variable

EEG pattern, a gradient in slow activity from the anterior to the posterior head regions and

symmetry in activity between the two hemispheres is discussed in Chapter 2. These aspects

are crucial in classifying an EEG as normal or otherwise.

Quantitative equivalents of the above-mentioned four features are to be derived in

order to obtain information about the EEG record that would facilitate its classification as

normal or otherwise. To study spontaneous alterations and assess long-term trends

effectively, it is necessary to analyze an extended EEG record (> 6 hours). To detect or

evaluate variability of the EEG, data recorded for several hours is required. However, it is

important to obtain information about an abnormal EEG pattern at the earliest in order to
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be mos! useful. Taking both these factors into consideration, classification of the EEG is

done based on 6 hours of recording. Features are extracted from 6 hour long EEG records

and the classification is done based on these characteristics. The mathematical derivations of

the quantitative features extracted from an EEG prior to classification are discussed below.

4.1 Measure of Amplitude

Figure 4.1 illustrates total band activities of two EEG records, figure 4.1a

corresponding to a normal EEG and figure 4.1b corresponding to a depressed EEG, after

artifacts have been rejected from them. A depressed EEG record is characterized by low

amplitude values, and the severity ofdepressioll is inversely proportional to the amplitude of

the activity. A simple measure ofthe total band activity quantifies amplitude normality.

Sustained rather than impulsive amplitude abnormalities are bad prognostic

indicators. The amplitude measure is mathematica1ly derived as the logarithm of the average

over a 5 - minute period of the total band activity of any channel of the EEG record. In a

band array, this represents the logarithm of the average of 10 points of total band activity

since basic calculations are made every 30 seconds. The reason for using the logarithm of

the average rather than a simple average is explained in the chapter on Statistical Analysis.
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Depressed EEG activity may arise from one or more head regions. The amplitude of

the EEG activity recorded from the various channels should therefore be ascertained and

evaluated for depression. Eight measures of amplitude, corresponding to the eight channels,

are extracted from every EEG record that is to be evaluated. An amplitude measure

extracted every 5 minutes for every channel therefore amounts to 12 x 6 x 8 or 576

amplitude values for a 6 hour EEG record.

4.2 Measure of Left 1Right Symmetry

Figure 4.2 on the following page, depicts delta band activities frOID. the posterior

head regions of the left and right hemispheres of two patients, one corresponding to a

symmetrical EEG illustrated in figure 4.2a and a second to an asymmetric pattern in figure

4.2b, according to the interpretation of the neurologist. A simple ratio of activity between

corresponding channels of the left and right hemispheres could qilantify the level of

symmetry. A ratio value closer to "1" implies a symmetrical EEG pattern. A value greater

than 1 implies a right hemispheric depression and a value less than 1, a left hemispheric

depression. The extent of the depression itself is direet1y proportional to the absolute

difference between 1 and the ratio value. With Left 1 Right symmetry, as in the case of

depression, sustained rather than impulsive abnormalities are of concern. Therefore, the

delta band activity is smoothed to remove impulsive transients prior to computing the ratio.

The formula for the Left 1Right Symmetry parameter is given below.

average activity ofchannel in the left hemisphere
r = logarithm [------------- ------------------ ]

average activity of corresponding channel in right hemisphere
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Average activity here represents average delta band activity over a 5 - minute period

which corresponds to an average of 10 points of the delta band activity. Symmetry can also

be measured by comparing total band activities between hemispheres instead of delta band

activities. However, the total band activity is susceptible to noise over a larger frequency

range and could show asymmetries due to non-pathological .easons as weil. On the other

hand, there is a high probability that an asymmetry in activity due to pathology would

manifest itself in the delta band in addition to any other frequency ranges and hence the

delta band is preferred.

FOllf Left / Right symmetry measures corresponding to the four pairs of channels

symmet.rically located in the two hemispheres are extracted every 5 minutes of an EEG

record. Each channel pair monitors activity in one of the following four head regions ­

anterior, central-parietal, posterior and the central-temporal and so the measures extracted

monitor symmetry in activity in the corresponding head region. A quantified 6 hour EEG

record is thus associated with 72 left / right symmetry values for each of the four channel

pairs.

4.3 Measure of Front 1Back Differentiation

As explained in chapter 2, a normal EEG record is associated with a gradient in

amplitude of activity in the low frequencies with amplitude decreasing in the posterior to

anterior direction. This is referred to as Front / Back differentiation. Figure 4.3 illustrates

the delta band activities from the anterior and posterior channels of the right hemisphere of

two patients.
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The EEG ofthe patient in figure 4.3a shows a clear anterior posterior gradient while

that of the patient in figure 4.3b shows DO such differentiation as confirmed by the

neurologist. A ratio of the delta band activity of the posterior channel to that of the anterior

channel of the same hemisphere reflects effectively the extent of their differentiation.

As explained earlier, four channels record activity from each hemisphere. The

channels that monitor the anterior and the central-parietal regions share a common

electrode. SimiIarly, the central-parietal and posterior channels share a common electrode.

As a result, large enough gradients do not exist between activities of these channel pairs

even for normal recordings and detection of abnormalities on their basis may not feasible.

Therefore anterior to posterior gradient in activity is ineasured by comparing the activities

recorded by the anterior and posterior channels. Two such measures are extracted for every

EEG record corresponding to the two hemispheres. The parameter is derived using the

formula given below.

average delta activity of the posterior head region
r = logarithm [----------------------------------------------- ]

average delta activity ofanterior head region ofthe same hemisphere

Average delta activity in the formula above corresponds to an average over a 5 -

minute period ofthe delta band activity. A posterior predominance of delta activity during a

5 - minute period is refleeted by a ratio value greater than 1while an anterior predominance

is reflected by a ratio value less than 1. The boundary between normal and abnormal

gradient values is not clear-cut and this is further discussed in the section on Statistical

analysis. The front / back differentiation ofevery EEG record is described by 144 values, 72

corresponding to the left hemisphere and another 72 corresponding to the right hemisphere.
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4.4 Measure for Variability

This measure assesses the e:-.."tent of spomaneous cycling in an EEG record. The tota!

and delta bands oi the posterior channels of the two hemispheres are most refleetive of a

cycling EEG. The total band howe\'er, is susceptible to noise of a wider frequency range

and it is therefore reasonable to measure variability using the delta band activity.

Figure 4.4 illustrates three posterior delta band activities subsequent to artifact

rejection, one '\Vith spontaneous cycling figure 4.4a and two others figure 4.4b and figure

4.4c, withom. Figure 4.4c shows an absolmely flat band acti\ity \vith no signs ofvariability.

A solitary large hump such as the one present in Figure 4.4b is not representative of a

spontaneously vaf)ing EEG either. Both these examples were classified as monotonous, and

hence abnormal EEGs by the neurologist. The example in Figure 4.4a shows severa! humps

in the band acti\ity each of which e:-.."tend over a substantia! period of time. Spontaneous

a!terations in the EEG appear in the band array as humps that are significantly higher in

amplitude !han the valleys that interrupt them. Each hump e:-.."tends over a substantia! period

of time and a 6 hour recording is usually characterized by severa! such humps. Therefore to

quantif)' variability, the number, duration and height of the humps are to be quantified.

Figures 4.4a, 4.4b and 4.4c can be treated as a!temating signais, '\Vith components at

severa! frequencies, superimposed on a DC signal, the DC component being the averJ.ge

delta band activiry over the entire duration. The a!temating signal ofFigure (4.4c) would be

characterized by very low amplitude but high frequency components (20 to 30 cyclesl6

hours) since it is a very flat time series. Figure (4.4b) on the other hand, will be associated
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\\ith high amplitude low frequency cornponents (1 to 2 cvcleS/6 hours) as it has one. .

e:-"'1ended hump. A band :may representing genuine cycling. as in Figure (4.4a) would be

associated "ith high amplitude cornponents \,ith 5 te S cycles for the entire 6 hour period.

It is therefore essential to estirnate roughly, both the range of frequencies and the

amplitudes of the alternating cornponents of the delta band :mays to quantifY the variability.

This is accomplished by cornputing the zero-crossing rate and the energy of the alternating

signal as described below.

The DC component, which is a simple average amplitude of the delta band acti,ity,

is subtracted from the band :may values of the same channel and what remains is the

a1temating signal. As e:-"l'lained earlier, frequency a1ternations of about 5 to S cycles/6 hours

are to be identified. Fluctuations l'aster than 8 cycles/6 hours are rernoved by linear filtering

as they do not pro,ide information about variability of the EEG that is of prognostic

significance. The band mays of the two posterior channels frorn which the respective DC

components have been removed, are fillered "ith 5 point linear averaging filters This filler

replaces every point in the band may, by the average of acti,ity \\ithin a 5-poinl window

centered about it. This filtering operation srnoothes out the humps in activity thal lasl for

iess than a coupie ofminutes, thereby removing their influence on the zero-crossing raIe.

As the name implies, the zero-crossing rate is a COllOt of the number of limes the

signal crosses the tirne axis. This is a rough estirnate of the frequency of the allernating

signal. A iow zero-crossing raIe implies either a rnonotonous record or very few humps

which may be artifaetual. Both these cases do not represent normally cycling EEGs. A high

zero-crossing rate corresponds to a band may depicting several hurnps. However, these
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humps may extend over a very short period of time or may have a very low maximum

amplitude and in neither case corresponds to a normally cycling EEG. The ex"tent of the

humps is ascertained by computing the energy of change of the alternating signal using the

formula below.

i"120

i-o k Xi'!

e = log [-----------------)
(average delta band activityf

where "x;" denotes the amplitude of each point of the band array after the De component

has been removed from it The energy of change is measured as a fraction of the average

delta band energy. The boundary for absolute fluctuations between normal and abnormal

EEGs is a function of the background amplitude of the EEG itself. Relative fluctuations on

the other hand, are patient independent. This normalization facilitates measurement of

relative fluctuation of the EEG with respect to its average energy rather than absolute

fluctuations. The energy of change is a function of the extent and height of the humps. A

low energy of change corresponds to a short hump, short either in duration or in extent or

both. These do not represent cycling EEGs. A high energy of change could correspond

either to a single large hump or several humps, the former will have a low zero-crossÎllg rate

while the latter a large zero-crossing rate.

From the discussions above it is evident that in order to quantify variability of an

EEG, both zero-crossing rate and energy of change are essential. A zero-crossing rate and

an energy of change measure are extraeted from the posterior channel of each of the two

hemispheres for every 6 hour EEG record and used for further interpretation.
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Eighteen quantitative measures describe 6 hours of raw EEG data after fcature

ell."traction. Further interpretation is carried out by statistical methods discussed in chapter 5.
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5. STATISTICAL ANALYSIS

Upon feature extraction, the 500 KB activity file is reduced to a set of 1012 data

values, 576 of wlùch describe its amplitude, 288 others describe the symmetry in activity

between the left and right hemispheres of the brain, 144 describe the anterior to posterior

gradient in activity and 4 describe the variability of the EEG. In the previous section on

feature extraction, several phrases such as "Iow amplitude", "lùgh frequency", "values close

to 1", etc. were used without qualification. Where does the amplitude threshold lie between

a normal and depressed EEG? Below what value is \he measure for anterior posterior

dilferentiation considered to represent an abnormal EEG? Where exactly d02S the boundary

between normal and abnormal categories lie for all of the measures discussed in the

previous section? These problems must be solved to proceed further with the task of

interpreting the EEG.

The expert is unable to help with the definition of the quantitative boundaries for the

various measures extracted as he does not relate to these quantitative quantities. He does

not use them to visually interpret the EEG and no known boundaries or threshold values are

available for these features from other sources either.

Interpretation of quantitative EEG measures, as explained earlier, is usually

performed by statistical analyses based on a normal control population. The selection of a

representative normal control population is crucial for good system performance. For tlùs

project, of the EEGs recorded, a group of eight post-cardiac surgery patients had normal

post-operative EEG recordings and normal short-term neurologie outcome and are chosen
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to comprise the control population. Long-term EEG recordings of these patients lasting

between 18 and 24 hours in duration evaluated as ;'eing normal by the neurologist serve as

the control population. The measures describing amplitude, symmetry, anterior 1 posterior

differentiation and variability are extracted from each of these recordings. Upon e"1raction

of these measures it was observed that three of these patients showed signs of asymmetry in

activity between henûspheres and one exlùbited nûnimal anterior-posterior differentiation.

The abnormalities were very nûnimal, however. This is confirmed by the neurologist on re­

evaluation of the EEG visually. AIl other measures of these records were found to be

normal. Abnormal features of records were dropped from the corresponding control

population. Therefore, the control populations of each of the amplitude and variability

measures consists ofeight patients, control populations of the measures of symmetry consist

offive patients and anterior 1posterior differentiation consist ofseven patients.

Cumulative frequency distributions of the control population are constructed for

each of the eighteen measures . The characteristic measures of a new patient whose EEG is

to be interpreted can then be statistically compared with the distributions of the control

population. A measure of sinûlarity between them will indicate the level of normality of the

new patient. The construction of the distributions and the statistical tests are discussed

below.
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• 5.1 Population Distributions

As seen in the previous chapter, ail features extracted from the raw EEG are defined

as the logarithm of a certain estimate rather than the estimate itself For instance, symmetry

measures are defined as a logarithm of the ratio rather than as the ratio itself, amplitude

measures are defined as the logarithm of average amplitudes rather than as the average

amplitudes themselves. The distributions of the estimates such as average amplitude do not

follow the characteristics of a normal distribution. Tlûs may either be due to the biological

mecharùsm generating the EEG or due to rigid boundaries associated with the estimates

themselves. To facilitate transformation of these distributions toward the normal

distribution, the logarithm of the estimate is used as the parametric definition (Gasser et.aI.,

1982). The construction ofthe distributions for ail of the 18 parameters is discussed below.

5.1.1 Amplitude Nonnality

Data values extracted from the EEGs of the eight "normal" patients extracted at 5 minute

intervals is used to construct frequency distributions of each of the eight measures of

amplitude corresponding to the eight channels recorded. Each of these patients contribute

between 216 and 288 data points to the distributions (recordings last between 18 and 24

hrs) amounting to a total of 1738 points. The distributions appear in Figure 5.1. Values of

skew and normal tests lie between -1 and +1 confirrning that ail amplitude distributions are

witlùn acceptable limits of the normal distribution. Averages and standard deviations of the

various distributions appear in Table 5.1.

•
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Head region (Channel) Average Std. Deviation

Left Anterior 4.30 0.28

Left Central Parietal 4.28 0.29

Left Posterior 4.50 0.33

Right Anterior 4.34 0.24

Right Central Parietal 4.25 0.26

Right Posterior 4.48 0.35

Left Central Temporal 4.97 0.25

Right Central Temporal 4.99 0.26

Table 5.1

It was stated earlier that EEGs of normal children exhibit a posterior anterior gradient in

the amplitude of activity with decreasing values in the anterior direction. The average values

of activity presented in the table exhibit this posterior anterior gradient in the two

hemispheres demonstrating this aspect. The last two amplitude measures represent the

central temporal head regions. The inter-eleetrode distance for these two channels is twice

that of the other channels and hence the amplitude averages are higher than those of the

other channels.
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5.1.2 Symmetry

Data values from five patients evaluated normal by the neurologist are used to

construct the four frequency distribuùons for the left / right symmetry measures. These

distributions too are within acceptable limits of normal distribuùons. These distribuùons

consisted of 1085 points and are illustrated in Figure 5.2 above. The averages and standard

deviaùons of the four distributions are presented in Table 5.2.

Head region Average Std. Deviaùon

Anterior 0.99 0.07

Central Parietal 0.99 0.08

Posterior 1.01 0.07

Central Temporal 1.00 0.03

Table 5.2

As is evident from Figure 5.2 and the standard deviations listed in the table, the distribution

from the channel pair that monitors the central-temporal head region has a much smaller

range as compared to the other distributions. The two channels of this pair have a common

electrode i.e. the channel on the left hemisphere meàsures voltage between electrodes T,

and C, while the channel on the right hemisphere measures voltage between electrodes T4

and C,. Hence the difference in activity between hemispheres is much less as compared to

the other channel pairs.
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5.1.3 Front 1Back DilTerentiation

Seven patients comprise the frequency distributions characterizing front 1 back

differentiation of the control population. Skew and nomal tests verify that these

distributions consisting of 1569 data values are within acceptable bounds of the normal

distribution. Th<;l averages and standard deviations of the two curves shown in Figure 5.3

corresponding to the two hemispheres is presented in Table 5.3. The posterior to anterior

activity ratios in young children may reach values as high as 4:1 (Slater and Torres,

1979).This explains the large standard deviations of these distributions as compared to

those representing the symmetry in activity..

Hemisphere Average Std. Deviation

Left 1.14 0.\0

Right 1.13 0.\2

Table 5.3

5.1.4 Variability

Twenty one data points from eight patients constitute the four frequency

distributions - two for zero-crossing rate and two for energy change, corresponding to the

two hemispheres. Unlike all other parameter values that are extracted once every five

minutes, these parameters are extracted ooly once every six hours and hence the small

sample set. The averages and standard deviations of the four distributions represented in

Figure 5.4 is presented in Table 5.4.
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Parameter Average Std. Deviation

Zero-crossing rate - Left 17.48 !.l2

Zero-crossing rate - Right 15.62 1.09

Log energy of change - Left -3.80 0.13

Log energy of change - Right -3.64 0.13

Table 5.4

5.2 Statistical tests

Software analyzes six hours of EEG data and extracts eighteen features from it

which amounts to 1012 data points. The aim at this point is to arrive at the level of

normality of each of these features by analyzing the corresponding sample sets of data. Each

of the eight amplitude measures, four symmetry measures and two front 1 back

differentiation measures are associated with 72 data values each. The amplitude an<;\ ratio

distributions of a new "normal" patient could be expeeted to be quite similar to the

corresponding distributions of the control population. An abnormal EEG, on the other

hand, would have distributions quite different from that of the control group. This is evident

from Figure 5.5 which illustrates the symmetry measure that compares the posterior head

regions in the three cases, Ca) control population distribution, (b) distribution of a normal

patient and Cc) distribution of an abn')lmal patient.
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•

•

74

The distributions in (a) and (b) are similar in terms of the value corresponding to the

peak, the range of the distribution, etc. while (c) is quite different !Tom both these

distributions.

A measure of the degree of similarity between the distributions of the control

population and the EEG being analyzed would give an estimate of the norrnality of the

feature concemed. An appropriate definition of the "measure of similarity" is crucial to

facilitate extraction of the required infC'rmation !Tom the sarnple sets. For ail of the fourteen

features Le. eight amplitude and six ratio features, that provide such a sarnple set of data, an

overall measure of norrnality that ignores individual fluctuations of the data values is

desirable. A comparison of the means of the data set and the corresponding control

distribution would serve as a suitable measure of similarity. The basic premise is that similar

distributions have similar means and arithmetic means provide a good estimate of overall

data trend. This is c1early evident in Figure 5.5, where the means of (a) and (c) are at 0.01

and 0.00 respectively, while the mean of(c) is far away at 0.10 indicating an abnormality. A

t-statistic measures the level of similarity between distributions by comparing their means.

This could be used to compare distributions of new patients with the control population to

extract information about their norrnality. This is further discussed in section 5.2.1 below.

5.2.1 T - Statistic

Very often inferential statistics is sought in order te make decisions about the value

of a pararneter such as a population mean or population proportion. Often cross-correlation

techniques are used to compare populations. However, when the similarity of the means of
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distributions is to be compared rather than the forms of the distributions themselves

hypothesis testing is preferred. Hypothesis testing first involves making a suitable

hypothesis. Tests are then carried out on the population and the hypothesis is eithcr

accepted or rejected on the basis of the values obtained for the test-statistic applitd. One

test-statistic often used for hypothesis testing is the t-statistic.

Suppose that independent random samples of sizes nI and n, are taken from two

normally distributed populations with means Il, and Il' respectively. Let x, and s, represcnt

the sample mean and standard deviation of the sample from population with mean ~ll and x,

and s, the sample mean and standard deviation of the sample from the population with mean

Il,. Then the random variable

(x, - x,) -(Il, - Il')
t = ------------------------

-/(s,'/n, + 5,'/n,)

has approximately the t-distribution with degrees offreedom given by

[(s,'/n, + 5,'/n,)] '
df= ---------------------

(s,'/n,)' + (s,'/n,) ,

n, - 1 n, - 1

.....5.1

.....5.2

•

rounded to the nearest integer (Weiss and Hasselt, 1991). The t curve is symmetric about

'0' and extends indefinitely in both directions. k with the normal curve, the area under a t-

curve is equal to 1 and it approaches a normal curve as the number of degrees of fre.:dom

get larger.

For the test ofa hypothesis H: Il. = Il,, therefore the random variable,



• (xl - x2)
t = --------------

";(s,'/n, + 5/ln,)
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.....5.3

•

may be used as the test statistir. and is called a t-statistic. A t-statistic value of 0 implies that

the hypothesis is absolutely true. If the t-statistic is > 0 then the area under the t-curve to

the right of it gives the probability of the truth of the hypothesis. Similarly, the area under

the t-curve to the lefl: ofa t-statistic value less than 0 gives the probability of the truth of the

corresponding hypothesis. The t-statistic essentially measures the normalized distance

between the means of the two distributions and hence greater its absolute value lesser is the

probability of the two means being equal.

The probability value associated with the t-statistic value corresponding to any two

distributions provides a measure of similarity between the arithmetic means of the two

distributions being compared. This is exactly what is desired while comparing parameter

distributions of the control population and a new patient, and hence the t-statistic maybe

used to perform the task. The t-test maybe applied ooly to distributions that satisfy two

conditions: Independent Samples and Normal Populations. Two samples are independent if

the samples selected from one of the populations has no effect on those selected from the

other. For the problem at hand, the two samples are absolutely independent of each other

since they are from different patients and hence do not influence each other. The

distributions of the control populations themselves are within limits of a normal distribution

as discussed in section 5.1. The various distributions of most patients have also bt:en found

to conform with the characteristics of a normal distribution. The t-test statistic may

therefore be applied to obtain information about similarity ofthese distributions.
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Subsequent to feature extraction from an EEG to be interpreted, the means and

standard deviations of the 14 parameters: 8 amplitudes, 4 synunetries and 2 front back

differentiations, are calculated. The t-statistic is then calculated as below.

..... SA

where,

x, =mean ofa parameter distribution for the EEG being evaluated

x, = mean ofthe control population distribution for the same parameter

cr, = standard deviation of the parameter distribution for the EEG being evaluated

cr, =standard deviation ofthe control population distribution for the same parameter

n, =number ofsamples for the EEG evaluated

n, =number of samples in the control population

The number of degrees of freedom of the t-curve associated with the randc.{u variable is

defined above in Equation 5.2. Since n, is very large (> 1000), df", (n, -1) = 71. Beyond df

= 30, the t-curve converges to the normal distribution (Weiss and Hassett, 1991) and

therefore the probability values corresponding to the various t-statistic values are read off

the normal distribution tables. Ifthe t-statistic > 0 then the mean ofthe control population is

less than that of the EEG being analyzed for the particular parameter. Similarly, if the t­

statistic < 0 the control population mean is greater than that ofthe EEG being evaluated.

The range of t-statistic values extends from -00 to +00. Its value represents the level

of norma1ity of the measure associated with il. For amplitude measures, depression in EEG
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activity is an abnormality and amplitudes greater than or equai to that of the control

population represent normal EEG. Therefore a t-statistic value greater than or equal to zero

irrespective of its magnitude implies absolute amplitude normality for the corresponding

amplitude parameter. Therefore the probability of normality is assigned a value of 1.0. A t­

statistic < 0 corresponds to a depression in activity of the EEG being evaluated and the

level of depression is a function of the absolute value of the t-statistic. It has been observed

that a t-statistic value < -50 indicates a very severe depression and is therefore assigned a

0.0 probability of amplitude normality. Therefore the tcstatistic value range from -50 to 0 is

mapped linearly onto a probability r:;.nge from 0.0 to 1.0. The probability of normality of an

amplitude parameter is thus defined as,

= 1.0, t-value ~ 0.0

Prob. of amp. normality = (50 + t-value)! 50, -50 < t-value < 0

= 0.0, t-value ~ - 50

..... 5.5

•

The symmetry pararneters compare activity of the left hemisphere to !hat of the right

hemisphere. For normal EEGs the activity between hemispheres is syrnmetrical as is evident

from the means of the control population distributions for these parameters. A t-statistic

value> 0 for a syrnmetry parameter therefore implies that the mean of the distribution for

the EEG being analyzed is > mean of the control population which is '" 1.0. This in turn

implies that the right hemisphere is relatively depressed as compared to the left hemisphere.

A t statistic < 0 on the other band implies a relative left hemispheric depression. Unlike in
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the case of parameters for amplitude, for symmetry, at-value different from 0.0 represents

an abnorrnality and the level of asymrnetry is a function of the magnitude of the t-statistic. It

has been observed that a t-statistic value with magnitude > 50 indicates a very severe

asymmetry and is therefore assigned a probability of 0.0. A t-statistic value equal to 0.0

indicates absolute symmetry and is hence associated with a probability of norrnality of 1.0.

Thus each of the t-value ranges from -50 to a and from a to 50 is linearly mapped on to a

probability range of 0.0 to 1.0.

= 0.0, t-value :::; -50

Prob. ofnorrn. ofsymrnetry = (50 -\ t-valuel )/50, -SO<t-value< 50

= 0.0, t-value 2: 50

...... 5.6

•

ln the case of front / back differentiation measures, a front back ratio less than the

mean of the control population distribution indicates an insufficiency in differentiation in

activity between posterior and anterior head regions and the level of abnorrnality itself is a

function of the magnitude of the mean of the pararneter of the EEG being analyzed. A

parameter value greater than the mean of the control distribution indicates a greater

differentiation than average and this does not represent an abnorrnality. In terrns of t­

statistic values therefore, t = or > a is considered normal and the probability of norrnality

associated with it is set to 1.0. Once again it was obsl~rved that at-value < -50 indicated a

very severe lack of differentiation and the probability of norrnality associated with it is set to
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0.0. The probability ofnormality for at-value between -50 and 0.0 is linearly rnapped on to

a 0.0 to 1.0 probability range as below.

= 1.0, t-value 2: 0.0

Prob. ofnormality of diff. = (50 + t-value)/SO, -50 < t-value < a

= 0.0, t-value::; - 50

..... 5.7

•

A t-statistic is calculated for each of the eight amplitude parameters, four left 1right

syrnrnetry parameters and !Wo front 1 back differentiation parameters. The various

parameter values are thus, mapped on to a 0.0 to 1.0 probability range, each reflecting the

probability of normality of the feature of the EEG that they measure, i.e. amplitude of a

particular channel or leftlright symmetry of certain region of the brain, or front to back

differentiation.

5.2.2 Assessment of Variability

Unlike the amplitude and ratio characteristics which are summarized by data

distributions for each new incoming patient, variability is characterized by four values each

one surnmarizing a different aspect of variability. As it is not a distribution, the t-test may

not be used to assess il. The variability of every six hour EEG record analyzed is

characterized by two sets of measures corresponding to the two hemispheres, each set

consisting of a zero-crossing rate and an energy of change measure. As discussed earlier,

large enough values for both measures corresponding to a particuiar hemisphere indicates
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presence of variability in activity originating from that hemisphere. The data values

themselves can be assessed for normality by comparing them \Vith the corresponding

frequency distributions of the contrcl population. A measure of the relative standing of the

data values within the distributions of the control population may be treated as an estimate

of the level ofnormality of the measure itself For instance, a zero-crossing rate greater than

ail sample points of the control population implies a 100% normality in the zero-crossing

rate. A value less than a1l sample points of the control population would imply an absolute

abnormality and one equal to the mean wOlÙd indicatea 50% probability ofnormality of the

zero-crossing rate. Such a measure of relative standing cOlÙd be arrived at by computing the

z-score ofthe parameter value as discussed in the section below.

Any normal eurve is defined by its two parameters : I!, the mean about which it is

symmetrical and cr its standard deviation. The total area under such a curve is equal to 1 and

most ofit lies between I! - 3cr and I! + 3cr. The area under a normal curve with parameters

I! and cr that lies between x = a and x =b is equal to the area under the standard normal

curve that lies between

a-I!
z = -------

cr
and

b-I!
z = ------

cr
... ..5.8

A standard normal eurve has a mean of 0 and standard deviation equal to 1. The area under

a normal curve with parameters I! and cr that lies to the left of a given value x can be found

in a similar way by tirst computing the corresponding z-score as

x-I!
z= -----

cr

... ..5.9
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The area to the left of the z-sco:e under the standard normal curve is equal to the required

area and can be read from standard tables.

While assessing the zero-crossing rate and energy of change parameters, the relative

position of these with respect to the control population data set is desired. This amounts to

finding the area to the left of the parameter value under the corresponding control

population distribution. Since ail four distributions of the control population, 2 zero­

crossing rates and 2 energies of change, faII within limits of a normal curve the z-score

method described above maybe used to evaluate the areas required.

The z-score of the zero-crossing rate and energy of change parameters of an EEG

being analyzed are computcd using Equation 5.6. The area under the standard normal curve

to the left of z-score gives a measure of normality of the corresponding parameter.

Therefore, subsequent to computation of the z-score, the two zero-crossing rate parameters

and the two energy of change parameters are reduced to four probabilities of normality each

denoting the level ofnormality of the corresponding charaeteristic of the EEG.

5.3 Data Reduction

Subsequent to statistical analysis, an EEG' is characterized by 18 probability

measures lying between 0.0 and 1.0. From the information provided by these measures the

level of normality of the EEG is to be deciphered. This can be performed by an automated

learning machine which is trained by a r~presentative set of examples. However, the

efficiency of such a systenl is dependent ou: tl le number of variables provided to it and is

better if fewer variables are input to the system. Therefore it would be useful to minimize
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the number of variables provided to such a leaming de\ice. \Vith the automated EEG

monitor, the eighteen measures may be reduced to four by integrating the information ITom

the eight amplitude measures as one, the four symmetry measures as another, the two

differentiation measures as a third feature and the variability measures as a fourth feature.

Ofthe eighteen measures generated from an EEG to be evaluated, eight characterize

the amplitude of the EEG activity corresponding to the eight head regions. To obtain

information about the overall normality ofEEG amplitude, the information from these eight

parameters should be suitably aggregated. Depression in several of the eight head regions is

indicative of a worse prognosis than depression in just one region. To incorporate this

gradation into the overall amplitude normality parameter, the eight amplitude normality

parameters are averaged to provide one parameter of overall amplitude normality. Similarly,

the four symmetry parameters that characterize symmetry in activity between the two

hemispheres in the various head regions are averaged to provide a parameter of left / right

symmetry. The front / back differentiation parameters corresponding to the two

hemispheres are averaged to provide the front / back differentiation parameter. An EEG is

said to be variable if it is characterized by a good zero-crossing rate AND a good-energy of

change. A high value for one of them with a low value for another is as bad a prognosis as a

low value for both parameters. The normality of variability is therefore indicated by the

magnitude of the lower of the two parameter values. Therefore the variability parameter can

be defined as

variability = min { probability of normality ofzero-crossing' rate, probability ofnormality of
energy of change}

..... 5.10
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The twa variability parameters carrespanding ta the twa hemispheres are then averaged ta

provide an overaIl measure ofvariability of the EEG.

Subsequent to statistical analysis and data reduction therefore, the EEG is

characterized by four probability measures that speak about the amplitude, the left / right

symmetry, the front / back differentiation and the variability of the EEG. This information is

to be further interpreted to c1assifY the EEG as being normal, mildly abnormal, moderately

abnormal or severely abnormal. This is done by automated machine learning from prior

examples of such classification done by the neurologist. This is discussed in the following

chapter.
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6. KNOWLEDGE·BASED EXPERT SYSTEM

The aim at this stage is to develop a system which accepts the four indices, i.e.

amplitude, symmetry, front / back differentiation and variability measures of an EEG as

inputs and classifies the EEG as one of the four categories namely, normal, mildly abnormal,

moderately abnormal or severely abnormal (Figure 6.1).

System -----1

Input

Data

Interpretation

System

Output

Figure 6.1

•

Such a system should mimic the neurologist's criteria for classification. The data

interpretation in the figure above should correlate with the neurologisLs decision-making

about the level ofEEG abnormality based on its varioils characteristics. However, since the

neurologist interprets these EEGs visually and the characteristics themselves are not

quantified, knowledge acquisition by direct consultation with the neurologist is not feasible.

The system could acquire knowledge about the data interpretation from examplcs classified

by the neurologist. The EEGs classified by the neurologist can be quantified and

characterized by the four indices which would form the inputs to the system. The

neurologists classification would serve as the corresponding output. Data interpretation is

intrinsically codified in the input-output relationship of these examples and suitable

automated techniques can be designed to extract the required knowledge. This chapter

discusses the concept of automated machine-learning from examples and describes the

knowledge-based expert system bullt to perform the task ofEEG classification.
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• 6.1. Machine leaming from examples

One way to teach a system how to perform a task is by presenting i, \\ith examples

of how it should behave. The system treats the examples as highly specifie pieces of

information which are then transformed ioto more general pieces of knowledge that maybc

used effectively by the performance element. Simon and Lea (1974) call the space of

possible training instances the instance space and the space of possible general rules the mie

space. Then the system sholÙd search the rlÙe space to come up with rlÙes that would

describe the behavior of instances in the instance space. An intelligent learning system

wOlÙd select ils own instances to resolve ambiguities about mies in the rule space.

Therefore, if the program were unsure whether all dogs have four legs, it might search the

instance space ta spot animals with different numbers oflegs to see which ones are dogs.

Any system that learns from experience sholÙd address three component problems :

• Aggregation. The learner sholÙd identify the basic. objects that constitute the instances

from which he willlearn. He should fust and foremost separate signal from noise.

• Clustering. The learner must identify which objects or events should be grouped

together ioto a c1ass. He sholÙd develop extensional definitions for concepts based on

those data.

• Characterizatioll. The learner must formulate some general description or hypothesis

that characterizes instances of the concept. In other words, he must generate an

intensional definition of the concept.

•
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The task of learning from examples maybe viewed as a degenerate case of the

general Ieaming task as the tutor solves the problems of aggregation and clustering by

providing the leamer with positive and negative examples of the concept to be leamed.

Therefore the task of learning frOl!' examples maybe viewed as simplified characterization,

since this is the only component of Iearning that must be addressed. This simplification has

proved quite useful to learning researchers, and many of the characterization methods that

were initially developed for the task of learning from examples have been successfully

transferred to more complex problems.

6.2. Concept Leaming

A great many programs have been developed that leam one or a few concepts from

instances. A concept maybe called a predicate described in some language, which when

applied to a positive instance is TRUE and when applied to a negative instance is FALSE. A

concept partitions the instance space into positive and negative subsets. Thus, given a

representative language for concepts and a set of positive and negative training instances,

the concept learning problem itself is to find a unique description in the rule-space that

would encompass alI the positive instances and none of the negative instances. Once the

concept is leamed, the system is ready to classify new unknown instances as positive or

negative instances of the concept.
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6.2.1. Concept Learning by Generalization

Concept learning from instances has primarily incorporated techniques of

generalization. In this paradigm, the system initially assumes that ail aspects of the first

positive instance are relevant to the concept and systematically removes conditions as they

fail to occur in new instances. The basic prernise is that one can arrive at the definition of a

concept by determining those features that are held in common by a set of positive

examples. The performance of such a system is primarily dependent on two features - the

manner in which the rule space is searched and the way in which negative instances are

made use of.

Many of the early systems used a depth-first search and often did not use the

negative instances at alI. Bruner, et. aI.(1956), developed a system to learn concepts that

could be represented as attribute-value pairs. This approach started with a positive instance

and initially all attributes were assumed relevant to the concept. Those attributes whose

alteration led to a negative instance were retained and alI others were eliminated. Although

this strategy works well with conjunctive concepts connected by an AND, it cannot be used

to learn disjunctive concepts connected by OR WInSton (1970), extended this approach

further to learn more complex representations. In this case, with the introduction of new

positive instances, in some cases, more than one generalization was possible. Since the

system performed a depth-first search through therule space, it needed the ability to

backtrack and this is when negative instances come into play. A misc1assification of a

negative instance on the part of the system initiates backtracking to a prior more specific

definition.
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An advantage of breadth-first search strategies is that they need not retain positive

instances of a concept since they need never backtrack. Hayes and McDermott (1977), have

incorporated this in their system. In this technique, if a generalization was formed that

covered non examples in addition to positive examplcs of the concept, it was considered

overly general and that hypothesis was dropped iTom consideration. This requires that

negative instances be stored to prevent over - generalizations.

The Version Space technique developed by Mitchell (1977) dispenses with such a

need too. In this technique, in addition to maintaining a set of generalizations or maximally

specific versions (MSVs) ofa concept, a set ofmaximally general versior.s (MGVs) are also

maintained. The MGV starts off with the most general point in the mie space, the null

description, which places no constraints on the training instances and thus describes

anything. The MSV starts off with the first positive instance itself represented in the same

language as the mIe space. New positive instances lead to a more general MSV due to

fewer conditions which correlates with the generalization in the previous methods. New

negative instances lead to more specific MGVs with additional conditions. An MSV

hypothesis that successfully matches a negative instance is removed. Similarly, an MGV

hypothesis that fails to match a positive instance is removed. This algorithm known as the

candidate - elimination algorithm is a least-cornrnitment algorithm since it does not modifY

the version space, a set of all plausible hypotheses, until it is forced to do so by the training

instances. Positive instances force the program to generalize - thus, very specific concept

descriptions are removed iTom the version space. Negative instances force the system to
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specialize, so very general concept descriptions are removed from the version space. Thus,

the version space gradually shrinks unti! only the desired concept description remains.

The basic approach of learning by generalization has a number of drawbacks lhal

limit its value as a path to knowledge acquisition.

1. Since the method examines features that are held in common by positive instances, it

tends to over generalize when confronted ,vith examples of disjunctive rules.

2. Generalization based learning systems have difliculty handling erroneous data. If even

one of these examples is faulty, the entire learning sequence is thrown into cnnfusion.

Therefore, efficient error-handling procedures are to be built in.

3. Programs that learn through generalizations have difficulty responding to an environrnent

in which the conditions predicting an event actually change over time.

Recently, more work bas been done in this field to alleviate the above-mentioned

shortcomings. Michalski and Larson (1978), have suggested the use of only the mosl­

representative training instances and a more robust learning algorithm. Leng and Buchanan

(1992), have improved the performan.:e of their inductive inferencing by letting the system

generate new terms e.g. ordering (> <) concepts. Clyrner and others (1992), have built a

system that is context sensitive by including a meaSure of efi'ectiveness for the various

parameters.
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6.3. Neural Networks

Neural Networks are another form of automated machine learning from examples.

Here, a functional form is assumed for the unknown system. This functional form has a

vector of parameters, w, that must be determined from the instances. The most popular

form assumed fOl the unknown system is a linear function. With more complex systems

multiple layers are io.corporated and the system creates new features in the hidden layers.

If the rule space is considered to comprise ail of the possible parameter vectors, then

finding these parameter vectors is a task of searching the rule space to describe the behavior

of the training instances. Inductive learning machines work exactly on this principle and

hence neural networks maybe likelled to them. Unlike neural nets, constructive induction

methods require either some prior knowledge of potentially useful features or ways to build

them. This could be a liability in a truly knowledge-free domain but an advantage when a

littie is available since it can be directly encoded.

6.4 Knowledge-Based Expert System for EEG Classification

6.4.1 Neural Network or Induction by Generalization?

As discussed earlier, a Knowledge-Based Expert System (KBES) is to be designed

to perform automatic interpretation of the EEG. Such a system should aggregate

information provided by the four characteristic parameters of the EEG and c1assiiy it

amongst one of four categories. The knowledge about how the information is to be

aggregated could be acquired from prior examples in two different ways. This could be
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treated as a neur:ù network with the four indices as the inputs and the four classifications

may be quantified and used as the output of the system. The network could then be trained

with a large set of examplcs. An alternative approach would be inductive concept Icarning

by generalization. The system would be provided with the instance spacc consisting of the

various examples and a rule space with an operative language that would be used by the

system to describe the rules that it would generate. The system would create the mies by

making generali7.ations based on its positive and negative examples.

As explained in section 6.3 a neural network is advantageous when no information is

available about the relationship between the input and the output of the system. If however,

a little information is available, an inductive mechanism is advantageous as this information

can be incorporated into the operative language of the mIe space. In this case, where the

EEG is to be classified, one does have access to a little information about the relationship

between the inputs and the output ofthe system. A patient P, with parameter indices greater

than or equal to another patient p, will belong to a grade better than that of p, : if P, were

moderately abnormal then p, could never be severely abnormal. This is so because all

parameter values are probabilities of normality. A higher value for a parameter implies a

greater probability of the parameter, and hence the EEG, being normal. While training a

neural network this information must be learnt by the system from the examples given to il.

However, it could be passed on to an inductive learning mechanism by incorporating < and

> signs in the operative language of the rule space. This is further discussed in the section

6.4.2. Thus, it will be advantageous to solve this problem by designing an inductive tool

that learns by generalization. However, the various shortcomings of the technique of
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generalization discussed in section 6.2.1 are to be remedied for acceptable system

performance. The system design is discussed in the following section.

6.4.2 Defining the boundary

The problem at band is to ciivide a four-dimeosional space, each dimension

corresponding to a parameter, ioto four regions -- normal, mild, moderate and severe

categories of EEG classification. A new EEG to be classified would then be assigned the

region it faIls in. Theboundary between any !Wo regions is a monotonous surface in four­

dimensions. Such a SUlface ensures that an EEG with ail parameter values greater than or

equal to that of another BEG would be associated with a region indicating as much or a

lesser degree of abnormality. Figure 6.2 below illustrates the problem in two-dimensions.

The two axes correspond to two parameters based on the values of wbich the region

encompassed by them is divided. Here the regions are demarcated by monotonie lines. The

problem then is to define the three lines between the four regions ofEEG classification.

normal

Figure 6.2
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The automated EEG monitor [earns concepts from examples by the technique of

generalization. Tbree boundaries between the four categories ofEEG classification are to be

learnt. Each boundary may be treated as a concept and learnt independently. Every one of

these boundaries divides the decision space into two regions. For instance, the boundary

between the mild and moderate regions divides the decision space into two regions, the one

to the right of the boundary consisting of the mild and normal regions and the other to the

left ofit, consisting of the moderate and severe regions. To define any one of the boundaries

therefore, the exampies corresponding to the categories that are expected to be to the right

ofthe boundary are called positive instances and those that are expected to be to the left are

treated as negative examples. The aim then is to come up with a boundary definition that

runs between these positive and negative instances. Such a definition of positive and

llegative instances feeds the system information about the ascendancy of the categories i.e.

greater the parameter value, greater the level ofnormality.

The Most General Version (MGV) of any boundary starts at the origin of the four

dimensional space, thus declaring the entire space as tlie region of interest and progressively

cordons off regions with incoming negative instances to make the space more specific. The

MGV interprets negative instances with the < operator. A negative instance teaches the

system that the region of the decision space with parameter indices < those of the negative

instance would lie ta the left of the boundary. Each negative instance that alters the MGV

is represented as a point with four coordinates. Therefore the definition of the MGV is a set

of points. The negative instances that lie to the left of the existing boundary do not affect

the MGV. Progressively, the definition of the MGV moves to the right with new incoming
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instances. The Most Specific Version (MSV) stans with the first positive instance of that

region. With incoming positive instances th~ MSV relaxes its limits and makes the space

more ge:leralized. The MSV uses the greater than operator to generalize, i.e. if a positive

instance cornes in, then the system learns that parameter indices greater than or ,~qual to that

of the positive instance would lie to the right of the boundary being defined. The MSV

boundary progressively moves to the right with incoming positive instances. Positive

instances that lie to the right of the CUITent definition of the boundary do not alter the MSV.

Thus sllch an operative language in the rule-space, consisting of> and < signs also teaches

the system about the ascendancy of the categories. At any rime during training, the

definition of the boundary could look like Figure 6.3 below. The +'s in the figure represent

positive instances of the boundary to be defined and x's represent negative instances of the

boundary. The dashed line denotes the MSV definition of the boundary while the solid line

denotes the MGV definition.

4-.....1' MSV

x li: ......:; +......~ +

x d·........±".

x MGV h "1
Figure 6.3

•

A good representative sample-set would ensure the convergence of the MSV and the MGV

and would therefore define the boundary uniquely.

Each boundary limit is stored as a point with four co-ordinates. For instance p. (p .1,

p", po>, P.,), Pb (p." Pb" Pb" Pb4) and P,(p,,, pa, p", po,) could be three points on the boundary
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between the normal and mild categories. A new EEG Pn(Pnl. p"", Pn." Pn') wouId be called

normal if,

{ Pol <: pol AND Pn1 <: po' AND p., <: p" AND p., <: Po'}

This design facilitates leaming of both conjunctive concepts connected by AND and

disjunctive concepts connected by OR. Leaming of disjunctive concepts is not possible with

most conventional generalized inductive leaming techniques. The method developed here

overcomes this shortcoming.

6.4.3. Dealing with bad instances

A negative instance does not alter the MSV as long as it falls to the left of boundary

defined by it. However, if it falls to the right of the boundary, then a conflict between two

instances, one positive and another negative is taking place. The conflict occurs because a

negative instance bas parameter indices greater than that of the positive instance and it is

necessary to identify the bad instance. To begin with, both instances are treated as erratic

data. The negative instance is dropped and does not alter the MGV. The MSV boundary is

pruned, Le. it is made less generalized by dropping the bound set by the conflicting positive

instance. If a similar positive instance cornes in a second time, then the system is reassured

that the positive instance was indeed genuine and the boundary is reinstated. Ifon the other

hand, a similar negative instance cornes back, then no conflicting bounds exist in the MSV

and hence the instance goes on to alter the boundary of the MGV.
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A positive instance that falls to the right of the boundary defined by the MGV does

not affect its definition. If on the other hand it falls to the left of it, it is treated as above and

the MGV boundary is pruned by dropping the hound set by the conflicting negative

instance. The conflicting positive instance is dropped as well and it does not alter the MSV.

If however, a similar negative instance cornes in again as a member of the training set, the

system resets the MGV boundary as with the case for the MSV.

Thus, erratic instances are dropped and the boundary that best suits the majority of

the data is tiùcen as the definition. Such a technique for erroneous data management makes

the system robust and insensitive to errors in data. The knowledge-based expert system

described above is trained and tested. The resuIts are presented and discussed in Chapter 7.
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7. RESULTS AND CONCLUSION

7.1 Results of statistical analysis

After artifacts are rejected from the EEG, quantitative features are el>"tracted trom il.

These features are then compared with a normal population to estimate their level of

normality. As explained earlier, the t and z-statistic values estimate the levels of normality.

The measures extracted were found to quantifY the level of abnormality quite weil as is

evident from a few examples presented below.

Figure 7.1 a depicts an EEG with normal amplitude and figure 7.\ b illustrates a

depressed EEG. The depression in activity is present in ail channels and the neurologist

graded it as a moderate level of depression. The distributions of the amplitude mensure for

the left frontal channel is presented in figure 7.2. Figures 7.2a and b corresponds to 6 hours

of the EEG in figures 7.1a and b respectively. The t-values associated with these

distributions are +10.12 and -28.35 respectively. As explained earlier, at-value greater than

zero implies an absolute amplitude normality and is assoched with a probability of

normality 1.0. The EEG in figure 7.lb is associatedwith a probability of normality 0.43

according to equation 5.5. A probability ofnormality is arrived at for each of the 8-channels

recorded and these are averaged to obtain the overall probability of normality of amplitude.

The probability of amplitude normality for the EEG in figure 7.1a was found to be \.0 since

ail channels had at-value greater than O. O. The amplitude normality probability for the EEG

in figure 7.1b was found to be 0.30, in keeping with the neurologist's classification.
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Figure 7.l(a) - 20 secs ofan 8-channel EEG ofa patient with normal amplitude ofactivity.
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Figure 7.3 shown on the follo\\~ng page depicts an EEG \\ith an as)mmetry in

activity. Upon visual examination, the asymmetry in activity is found to be most pronounced

in the frontal head regions (f3-c3 vs f4-c4) ,vith a right-sided relative depression in acti\~ty.

The central-parietal channels (c3-p3 vs c4-p4) also demonstrate an asymmetI)" in actÏ\~ty

though to a much lesser degree. The activity in the posterior appears quite symmetrical.

Figure 7.4 illustrates the symmetl)" measure distributions for the three channel pairs. Figure

7.4a corresponding to the frontal pair shows a clear right shift from 0.0, indicating a left­

sided predominance in activity. Figure 7.4b also shows a very slight right shift while figure

7.4c is quite well-centered about 0.0. The t-values associated with each of these

distributions capture well the observations made above. The frontal pair has at-value

+40.32 indicating a severe asymmetry, the central pair has at-value +7.21 indicating a mild

asymmetl)" and the posterior pair is associated with at-value 0.94 indicating a symmetric

activity. The probabilities of normality associated with each of these is calculated using the

formula in equation 5.6 and they are 0.19, 0.86 and 0.98 respectively. The overall

probability ofsymmetl)" of the EEG in figure 7.3 is found to be 0.68, obtained by averaging

the three measures of symmetl)". The probability of symmetry associated with this EEG

does not indicate a veI)" severe asymmetry since it ispronounced only in one of the three

channel pairs.
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Figure 7.3 • 20 secs of an 8-channel EEG of a patient with as::lymmetric cerebral activity. A
relative depression on the right side is evident.
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Figure 7.4 - Distributions of the measures of symmetry for the (a) frontal pair
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Variability of EEG is quantified by the zero-crossing rate and energy of change

measures. Figure 4.4 illustrates the delta band activity of tbree EEGs - figure 4.4a with

good spontaneous cycling and figures 4.4b and c without. The values of the measures and

the corresponding z-staùsùcs for the tbree examples are Iisted below.

Fig. No. Zero-crossing rate Log of energy of change

measure z-value measure z-value

4.4a 20 1.85 - 3.46 2.56

4.4b 6 -10.19 -2.74 8.14

4.4c 26 7.85 -4.52 -5.56

The EEG corresponding to figure 4.4a is associated with high values for both the energy of

change and zero-crossing measures. These in turn correspond to positive z-staùsùc values.

Figure 4.4b is associated with a high value for the energy of change alone while figure 4.4c

is associated with a high value for the zero-crossing measure alone. In these cases too, high

values for the measure are associated with positive z-values and low values are associated

with negative z-values. A positive z-value implies that at least 50% of the control

population lies below the patient being analyzed. The z-values obtained for the tbree

examples discussed above is :in keeping with the discussions ofchapter 4.

The probability associated with variability of the EEG is obtained using equation

5. 10. EEG corresponding to figure 4.4a bas a probability of having a normal level of

variability of 0.75 while figures 4.4b and c are associated with a probability of 0.0. The
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probability measures for variability associated \\1th the examples discussed above clearly

indicate that for good spontaneous cycling high values for both the zero-crossing rate and

the energy of change are required as explained in chapter 4.

Qualitative assessment of results obtained after statistical analysis indicates a good

level of correlation hetween the t and z-statistic values and visual interpretation. The feature

extraction techniques and the statistical anaiysis succeed well in characterizing the EEG in

terms of a few quantitative measures. The performance of the expert classifier is discussed

in section 7.3. The following section discusses the data acquired and the possible and

optimal ways ofutilizing the data for training and testing of the expert system.

7.2 Training and Testing Data

Twenty two EEGs from as many patients recorded at the Montreal Children's

Hospital are used as the training and testing data for the expert monitoring system. Each of

these recordings lasts between 18 and 22 hours in duration and a majority are recordings

after corrective cardiac surgery. The recordings are evaluated by a neurologist and every 6

hour section is graded as normal, mildly abnormaI, moderately abnormai or severely

abnormai based on visual interpretation. Every one of the twenty two EEGs yields two or

three 6 hours sections depending upon the extent of artifact. In aIl, a set of 60 sections is

available from the twenty two patients, for training and testing the expert system. There are

several ways in which a data set can be divided into training and testing subsets. The merits

and demerits ofthe various schemes are discussed below.
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A popular technique used with perceptron-like leaming algorithms is the

resubstitution method. Here, the entire data-set is usd to train the system and the same

data-set is used to test it as weil. One essential property of the perceptron algorithm and

also the inductive leaming technique used for tbis project is that they converge to one

hyperplane that correctly classifies ail the training examples. However, with small sample­

sizes the hyperplanes tend to be multiple and the performance results on the design sets are

not replicated by independent test ·sets. For this project where the sample-size is quite sma1l

the technique ofresubstitution would be quite inappropriate.

The most obvious alternative to the resubstitution method is to partition the data

into two mutually exclusive subsets and to use one for testing and the other for training the

expert system. Tbis scheme known as the holdout method makes poor use of the data since

a leaming machine trained on a larger data set will, in general, perform better than one that

is trained on a smaller data. When the sample-size is sinall the performance of a system that

is designed with only part of the data would suifer remarkably due to a non-representative

data-set. The holdout method is therefore, uneconomical in its way of using the data and

gives pessimistic error estimates.

The third method called the leave-one-out method goes a long way towards making

efficient use of the available data and reducing the bias of the error estimate. By this

technique, if the sample size is n, then, the system is trained with (n-I) samples and tested

\\1th the other. This is carried out n times until ail the samples have been used for testing.

Here for each run almost the entire sample-set is used for training and ultimately ail samples

are used in the tests, though each run consists ofindependent training and testing sets. The
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leave-one-out method has been found e),:perimentally to be approximately unbiased

whatever be the classifier used. However, the ex"tensive computation involved as n training

sessions are required, is a big drawback of this technique.

The rotation method 1. a compromise between the holdout and leave-one-out

methods. For this method, the n samples are divided into r sets with nlr samples each. In

each run one of the r sets serves as the testing set while al! others are used to train the

learning machine. The performance of the system is then arrived at by calculating its

average performance for the r runs. The rotation method reduces both the bias inherent to

the holdout method and the computational complexity associated with tlle leave-one-out

method (Devijver, 1982).

For the purpose of this project, the rotation method of performance estimation is

used. The 60 sections are divided into six subsets with 10 sections each. Six training and

testing runs are carried out and the performance is the average of the six runs.

7.3 Results of the classifier

Features are extracted from each of the 60 six hour sections. For each run, the

learning machine learns from the inputs and outputs of the 50 training examples and is then

tested on the 10 testing examples. The cumulative result for the six runs is presented in a

matrix form in table 7.1 below.
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Table 7.1. Comparison of classification results from the automatic method

and the human expert.

::::s::Automated grade NORMAL Mll..o MODERATE SEVERE

NORMAL 2 2 0 0

MILD 5 2 ~ 1.)

MODERATE 3 2 4 3

SEVERE 1 16 10 6

In the 4X4 matrix presented, rows represent system classification and the columns

correspond to classification by the expert. The main diagonal represents the concordance

between the two methods. A clear bias in classification toward the left of the main diagonal

is evident. This implies a conservative performance by the monitoring device, Le. the

monitor in most cases, assigns to the EEG either the same grade as the neurologist or a

grade of greater abnormality. This may be due to the presence of an undefined gray area

between boundaries or due to an insufficiency in knowledge engineering.

According ta the technique of generalization for inductive learning, the general and

specifie versions of the boundary should converge and provide a unique solution (Mitchell,

1977). However, this requires a large enough sample-set. If the training set is not

representative enough, a gray area is present between the general and specifie versions of
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any boundary(Figure 6.3). Such a system will perform conservaùvely if it uses the specific

version of the boundary as the gray area would then be included in the negative instance

domain. The performance of the system would be generous if the general version of the

boundary were used instead. Since the technique of inducùve learning is used for tlùs

monitoring unit, ilS conservative performance maybe due to a large gray area.

T0 ascertain the extent of the gray area, the system performance using the specific

and general versions of the boundaries maybe compared. The performance of the monitor

using the general version of the boundaries is surnmarized in table 7.2 below. Results

appearing in tables 7.1 and 7.2 are quite sim.iIar. This.indicates that the two versions of all

boundaries (one between normal and mild, a second between mild and moderate and a third

between moderate and severe) are quite close to each other and the intervening gray area is

quite negligible. Therefore, the conservative beh"vior of the system is not due to

insufficiency in the training set. The possibility of insufficiency in knowledge engineering is

discussed in the section below.
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Table 7.2 - Comparison of performance using the general

version of ail boundaries.

::::s::Monitor' s grade NORMAL MILD MODERATE SEVERE

NORMAL 2 4 1 0

MILD 5 2 5 2

MODERATE 4 2 3 2

SEVERE 0 14 8 5

7.4 Discussion

The aim of the project bas been to develop a monitoring system for automated

interpretation oflong-term EEG in the pediatrie lCU. Almost none ofthe systems that exist

today are capable of complete automatic interpretation. The cerebral function monitor

(CFM), extracts quantitative features from the EEG and these values are to be interpret by

the user. The compressed spectral array is used extensively by several systems. Here again,

the user is expected to interpret the spectral array by himself. The system developed at the

Montreal Children's Hospital tries to automate the entire process ofEEG interpretation so

that no expertise is expected from the user.

The first step in this process is artifact rejection. Most other monitoring units with a

similar aim accomplish this task in the time domain by identifYing and rejecting specifie
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artifacts usually with a single amplitude threshold (Bickford 1950, Pronk 1987, Prior 1987).

Artifact rejection of this monitoring unit performed in the frequency domain, has been more

efficient due to the following reasons : in the ICU it is quite difficult to anticipate the

waveforms of the various artifacts and also it is computationally economical to reject

artifacts in the frequency domain. By using a median filter and a hard-limiter thresholder,

artifacts are not separated from the underlying signal. The artifactual page is merely

replaced by the average activity of the preceding few hours. This simply ensures that long­

term interpretation does not suffer unduly from to this artifactual section. However, if the

entire recording is artifact-ridden, the output subsequent to artifact rejection ceases to

reflect true brain activity. Therefore for accurate EEG interpretation it is important to

ensure a good quality of recording. Most recordings performed in the pediatric ICU at the

Montreal Children's Hospital, except an initial few, were found to have fewer artifacts tban

was anticipated facilitating further interpretation.

Very few monitoring units developed so far make an attempt to mimic the

neurologist while performing quantitative analysis. Al! measures used for EEG

interpretation by this monitoring unit are quantitative representations of qualitative EEG

features used by the neurologist. These measures quaotify the EEG quite effectively and

their values demonstrate abnormalities observed by the expert on visual aoalysis. As

observed by Chiappa (1979), these quantitative measures cao be very sensitive and on

several occasions picked up abnormalities missed by the expert on visual interpretation. On

review, the presence ofabnormalities were confirmed by the expert.
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AIl of the four measures used by this monitoring unit fail to identify two very

important EEG patterns that reflect abnormality in brain function. One such pattern is the
•

burst suppression which heralds an unfavorable outcome reaching high statistical

predictability as observed by Lombroso (1985). Burst suppression is characterized by

periods of inactive background interrupted by synchronous or asynchronous bursts of

activity. This pattern may be reported as generalized depression by the amplitude measure if

the interrupting bursts are also low in amplitude. This is quite rare and in most cases the

burst suppression pattern is reported as being normal by the monitor. The second pattern

that the monitor fails to report is generalized high amplitude slow -wave activity. Chiappa

(1979) reports that generalized slowing is one of the fust few signs of ischernic brain

damage. However, this is not identified by any of the four quantitative measures used. It is

very crucial to add a few other measures that could identifY the patterns described above.

Statistical analysis compares the attributes of new EEGs to be classified with those

of a group of "norrnal controls" and grades them based on the analysis. It is important to

choose the control population appropriately. The EEG of most patients in the lCU would

be abnorrnal, if their characteristics were compared with those of an absolutely normal child

due to the effects of anesthetics, medication, etc. Normal EEGs were therefore chosen from

the recordings ofICU patients by visual analysis. Quantitative measures were then extracted

from these EEGs and if they indicated an abnormality the EEGs were reviewed to re·

confirrn their classification. Thus the control population consists of patients in the lCU

whose EEGs are norrnal.
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When at-test is used to compare distributions, it is general practice to quantiIY

similarities of the distributions by estimating the probability associated \\;th the test-statistic

on the t-distribution. In this case the t-curve probability associated with the test statistic

estimates the probability of absolute normality of the corresponding feature. It does not

however, quantifY the level of abnormality since the control population consists only of

"absolutely normal" patients. According to the t-distribution, any t-statistic value> 3.08 is

associated with a 0.0 probability of 100% normality. The t-statistic value itself on the other

band, quantifies the normalized distance between the means of the two distributions

compared. Since the degree of abnormality is a function of the distance between the means,

the t-statistic value measures the level of abnormality quite effectively. It is therefore more

meaningfu1 to use the t-statistic value rather than its probability value from the t­

distribution. The expert system built uses the t-statistic value to quantifY abnormalities. The

literature shows instances of t-statistic mapping to localize normal and abnormal functions

of the brain (Duffy et. al., 1981).

The EEG of children varies extensively from birth up to about 6 years of age, after

which the variation is much less pronounced. An EEG pattern considered normal for a 3

month-old may be an abnormal pattern for a 3 year old child. The neurologist takes the age

of the patient into account while classif)ing the corresponding EEG as normal or otherwise.

For this monitoring unit it would be ideai to define age intervals such as < 1 year, 1 to 3

years, 3 to 6 years, 6 to 10 years and > 10 years within which the charaeteristics of a normal

EEG recording are not expeeted to vary extensively. Independent "normal" control

populations for the various age intervals could then be created and training and testing
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could be done for each of these intervals. This would probably improve the accuracy of

classification of the EEGs. However, due to non-availability of representative populations

for the various age intervals such a scheme could not be implemented.

The control population used for this monitoring device inc1udes patients of ail ages

up to 12 years. As mentioned earlier, the neurologist takes the age of the patient into

consideration while classifYing the EEGs. Therefore, patients with similar quantitative

measures may be associated with different degrees of abnormality due to their age and this

would result in conflicting training examples when used to train the monitor. To make the

system robust and insensitive to erratic training examples a scheme for rejection of

conflicting training examples has been incorporated as explained earlier. This mechanism

combined with the conflicting examples due to age could render the system conservative as

was observed in the results obtained.

In addition to age, the neurologist' s classification could be influenced by other

factors such as the coma scale and patient's drug or anesthetic levels. The performance of

the system would mimic that of the neurologist's better if the influence of these factors is

investigated and incorporated in the monitoring unit.

The inductive learning technique by generalization used to train the expert system is

found to be superior to a neural network in tenns of scope for system manipulation and

design. Ascendancy of grades of EEG abnormality (normal, mild, moderate and severe)

could be coded right into the decision space whereas this would be impossible with a neural

network. However, the expert system built thus, does not lend itself to empirical analyses of

performance. It is quite difficu1t to get a feeling for the extent of influence of each of the
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measures on classification. In other words, it is quite difficult to comprehend the threshold

limits physically. To funher improve the performance of the monitor, it is very important 10

be able to gauge the importance of each of the measures used and consider alternative ways

of handling them. A feel for the importance of each of the measures could probably be gOI

by training and testing the system with three measures, dropping one each lime. The nature

of the results thus obtained should summarize the importance of the measure that was not

used.

The system was trained with a set of:lifty patients. It is possible that the training set

was not large enough for the system to learn the boundaries accurately. Training and testing

ofthe system cOuld be performed with a set of simulated data. A large data set with various .

different combinations of the parameter values could then be simulated and the system

performance could be evaluated better.

The overall system performance of the EEG monitor built is not very impressive.

However, efficient methods of artifact rejection and feature extraction have been devised.

Collection of more data for training the system could help the system learn the boundaries

accurately. As explained earlier using small age intervals should go a long way in improving

system performance. Inclusion of few more quantitative measures suggested above and

better techniques to interpret the information provided by the measures would also enhance

system performance.
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