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ABSTRACT

A knowledge-based expert system was developed to assess the level of abnormality
in the brain electrical activity of pediatric patients monitored in the intensive care unit. Six
hours of an 8-channel EEG record serves as the input to the monitoring device based on
which the brain activity is classified as being normal, mildly abnormal, moderately abnormal

or severely abnormal.

Spectral band activity is computed for each channel for every 30-second epoch.
Artifact rejection is accomplished by az median filter with a hard-limiter thresholder.
Quantitative variables reflecting possible abnormality : a measure of amplitude depression, a
measure of assymmetry, a measure of anterio-posterior differentiation and a measure of
EEG variability over time are extracted from each EﬁG record. Statistical distributions of
these measures are established for 2 control “normal” population of about ten patients so
classified by a neurologist on visual interpretation. New EEGs to be analysed are
statistically compared with the control population and a probability measures of normality
for the various measures are determined. The expert system learns from prior examples of
classification done by the neurologist by a technique of inductive machine learning. The
monitor is trained and tested using sixty examples using the rotation method of error
esltimation.

The monitor had a tendency to classify the EEGs with a higher level of abnormality

than the expert. Possible reasons and potential solutions are discussed.
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RESUME

On a développé un systéme expert pour déterminer le niveau d’anormalité de
activité électrique du cerveau chez des enfants placés sous surveillance a I'unité de soins
intensifs. Une section de 6 heures d'un EEG & 8 voies est analysée et classée par le systéme

dans les catégories suivantes: normal, anormalité mineure, anormalité moyenne et

anormalité sévére.

On commence par calculer les bandes d’activité spectrale pour chaque section de 30
secondes. La réjection d'artéfacts se fait ensuite & I’aide d’un filtre médian et d’un seuil fixe.
On calcule a partir de I’enregistrement complet les variables suivantes, reflétant divers
aspects de I’anormalité électroencéphalographique: une mesure de dépression d’amplitude,
une mesure d’asymétrie, une mesure de différentiation antéro-postérieure, et une mesure de
fluctuations temporelles. On obtient ensuite une distribution statistique de ces variables pour
une population de sujets contrdles dont PEEG a été considéré totalement normal par
interprétation visuelle. Les EEGs a analyser sont alors comparés a cette population,
permettant d’obtenir une mesure de probabilité de normalité pour chacune des variables. Le
systéme expert apprend par la méthode de logique inductive la classification de chaque EEG

faite par le neurologue. L’apprentissage et 1’évaluation des erreurs sont faits par la méthode

de rotation avec 60 exemples.

Le moniteur a tendance & classer les EEGs dans un niveau d’anormalité plus élevé

que le neurologue. On discute les raisoiis possibles et les solutions a envisager.
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1. INTRODUCTION

1.1 Neurological Monitoring

The purpose of any monitoring facility in the Intensive Care Unit (ICU) is to equip
the physician with an additional pair of eyes; to enhance his/her powers of observation to
detect abnormalities at a reversible stage so that timely and medically sound decisions can
be made. In the present day ICUs, innumerable catheters, transducers, digital read-outs and
alarms keep vigil on the heart, lungs and kidneys. The brain however, is monitored only by

clinical observations and by measurement of intra-cranial pressure (ICP).

Invasive ICP monitoring devices provide the most accurate and reliable information
for clinical determination of ICP. Non-invasive methods of determining ICP are promising
but none are clinically useful at present. Invasiveness is an unfavorable quality for any
monitoring device. Further, irrespective of the method of ICP monitoring used, the user
requires a level of expertise for optimal interpretation of the data it produces. Spurious ICP
measurements that go unrecognized as erroneous may lead to management decisions with

potentially catastrophic consequences (Miller et. al., 1986).

Monitoring the Central Nervous System level of functioning is a difficult task as it is
not feasible to have a neurologist at all times, doing serial neurologic examinations. As a
result, neurologic examinations are often delegated to intensive care nurses. Even when
performed conscientiously, serial neurologic examinations are discontinuous and subjective.
These wait for a clinical manifestation of a functional deterioration. As a result, often times

they arc unable to anticipate capricious clinical deterioration and identify them only after
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they occur. This defeats the purpose of a monitor itself: Also, clinical observations are very
limited in a comatose or unresponsive patient, or an artificially paralyzed patient. A single or
even repeated electrophysiologic study may suffer from the same problems as does the
neurologic examination - it is a discrete, brief sample of data that may not reflect the
patients overall condition. Particularly, it would miss the very gradual changes that may be

taking place
A successful ICU monitoring system should meet the following criteria:
4 be more sensitive and specific than clinical observations.
¢ Dbe non-invasive.
¢ be easily operated and interpreted by non-experts.
4+ beusable at the patients bedside
+ pot interfere with medical or nursing care of the paﬁeuts.

Examples of successfl norn-neurologic monitoring units are the bedside

electrocardiographic (EKG) and transcutaneous pulse oximetry.

Many neurointensivists believe that the electroencephalogram (EEG) can become an
integral part of monitoring in the ICU (Emmerson and Chiappa, 1988). The EEG is very
sensitive to change in physiological state and its value as a prognostic indicator of functional
recovery has been demonstrated (Arroyo et. al., 1993). The technique itself is non-invasive
and technological advances have made possible thel collection, storage and analysis of
continuous EEG. However, raw EEG recorded continuously over several hours generates

cumbersome amounts of data and its complexity discourages interpretation by non-experts.



To overcome this shortcoming and to make it easily operable by non-experts, several
attempts have been made at compressing and simplifying the data with definite benefits.
Recent studies have examined the continuous EEG as a tool for making on-line clinical

management decisions (Jordon 1990, 1992).

1.2 The Electroencephalogram

1.2.1 Generation and Recording of the EEG

Electroencephalography involves the recording and analysis of the electrical signals
generated by the brain. The electrical activity of the brain consists of ionic currents
generated by biochemical sources at the cellular levels. These ionic currents cause electric

and magpnetic fields that can be measured in the brain and surrounding tissues.

The EEG is recordable from the scalp surface after being picked wp by metal
electrodes and conductive jelly. The arrangement of these electrodes on the surface of the
scalp is done based on the international 10-20 Systemb(lasper 1958). EEG is recorded as a
potential difference between pairs of electrodes and each such pair is referred to as a
“channel”. Figure 1.1 illustrates a 16-channel EEG. The amplitude of the EEG typically
ranges from 10 to 100 uV and is amplified about ten thousand times for recording and
display. The EEG is corrupted by artifacts caused by various sources such as patient
movement, power supply interference and poor electrode contact. Amplification of these

signals by ten thousand times causes immense artifactual distortion in the EEG.
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The combination of electrodes examined at a particular potnt in time is referred to as
a “montage”. For instance, potential difference between successive pairs of electrodes in
each hemisphere may be recorded as shown in Figure 1.2. This is referred to as a “bipolar

agterior posterior montage”.

Figure 1.2

Continuous analog EEG can be displayed using paper write-out or oscilloscopic
display. Computer-based digital EEG systems are now in use. In addition to efficient means

of data storage and transmission, they also lend themselves to subsequent data processing.

The EEG is used in the evaluation of infectious diseases of the nervous system,
head trauma, cerebral vascular accidents, epilepsy and bratn tumors. It can also contribute
as an indicator of brain function in metabolic disorders and in the evaluation of organic
causes of psychiatric problems and behavioral and adjustment problems of children. More

recently, EEG has come to play a major role in the evaluation of the cerebral death of



. donors where organ transplants are considered. EEG can also be recorded from the cortical
surface or from depth probes. The former is called electrocorticogram while the latter is

called depth electrogram.

1.2.2 Why the EEG for monitoring

A few of the more important reasons for using the EEG as a monitor of brain

activity are discussed below.

1. EEG reflects cerebral neuronal function. The EEG represents the temporal and spatial
summation of potentials, at the junctions of nerve cells called neurons. These potentials
reflect the underlying state of cerebral metabolism which in turn depends on multipie
factors includiI:Lg synthesis of enzymes and energy (Siegel et. al., 1989). Thus, the EEG is
a composite reflection of complicated intracellular activity and inter-neuronal
communication. A disturbance in one or more of these components will produce a
disturbance in the EEG. This multi-layered system makes the EEG a highly sensitive,

although non-specific, indicator of cerebral dysfunction.

2. The EEG is sensitive to ischemia (reduced cerebral blood flow) and hypoxia (reduced
level of oxygen to brain) — the most common causes of brain irjury. Predictable EEG
changes occur with cerebral ischemia. The EEG is mainly generated by the pyramidal
neurons of the cortex, called pyramidal because of their shape. Following hypoxic-
ischemic injury the pyramidal neurons typically demonstrate severe neuronal dropout,
suffering a large drop in neuronal population. The relatively selective vulnerability of

these cells makes the EEG particularly sensitive to these common insults. The sensitivity



of the EEG to ischemic injury has been demonstrated by Jordon and Stringer (1991). In
their studies they observed a correlation between amplitude of the background EEG

activity and the volume and severity of the ischemic damage.

3. EEG correlates with cerebral fopography. The international 10-20 System used for
electrode placement establishes a copsistent relationship between the electrode
placement on the surface of the scalp and the underlying cerebral topography (Homan et.
al., 1987). Therefore, inferences maybe drawn about disease localization based on the
EEG abrormalities detected at the scalp. This was a more important attribute before the
introduction of the tools capable of more specific disease localization such as computed
tomography (CT) or magnetic resonance imaging (MRI). However for patients in the
ICU transport for imaging studies could be hazardous. The EEG has the advantage of
being able to serve as a bedside monitor and aid in decision making about disease

localization.

4. EEG detects neuronal dysfunction at a reversible stage. The EEG deteriorates before
cell membrane failure. Astrup et al. (1981) have demonstrated that EEG abnormalities
due to diminished blood flow set-in much before cell-death or energy failure occurs.
This implies the existence of a “therapeutic window” following EEG abnormalities.
Gross et al. (1981) and Wood et al. (1984) have reported that EEG abnormalities
reversed as cerebral blood flow increased in patients with cerebral ischemia thus

demonstrating this theory.



5. EEG is the best available method for detecting seizure activity. A seizure is the result

of occasional , excessive and disorderly electrical discharges of the gray matter which
may be detected by EEG monitoring.. Clinically, it could manifest itself as sudden, bnef
attacks of loss of consciousness, motor activity, sensory phenomena or inappropriate
behavior. A sigpificant incidence of acute seizures among ICU patients, subsequent to
head imjury, spontaneous intracranial hemorrhages and ischemic strokes has been
reported by Engel (1989). A systematic study of seizures among patients in the ICU has
documented a high incidence of non-convulsive seizures (Yordan, 1992). The clinical
features of these seizures, unlike their convulsive counterparts, are subtle, ambiguous or
absent and hence diagnosis of these is quite difficult without EEG monitoring. EEG
monitoring has aided seizure management in the ICU in two ways. Non-convulsive
seizures with very subtle or no clinical accompaniments are detected earlier thereby
allowing the initiation of timely treatment (Maynard and Jeokinson, 1984). ICU patients
exhibit a wide variety of involuntary and semi-purposeful movements which could be
mistaken to be clinical accompaniments of a seizure. EEG monitoring helps distinguish
semi-purposeful jerks, spasms, head deviations, etc. from true clinical manifestations of

seizures.

In addition to the neurobiologic reasons discussed above, the technique of EEG

itself is non-invasive and an EEG monitoring system can operate at the patient’s bedside
without any interference to examination or patient care, However, interpretation of raw

EEG data requires skilled personnel who may not be available at all times in the ICU.



. Quantitative EEG discussed in the following section may be able to overcome this short-

coming.

1.2.3 Quantitative EEG

A neurophysiological EEG monitor should record brain activity of the patient in the
ICU over several hours continuously in order to provide authentic diagnostic information.
Thorough review and interpretation of the EEG requires the presence of a neurologist on-
site throughout the period of recording, This is quite unrcasonable. In practice, there is a
considerabie time lag between recording of the EEG and actual interpretation. Also, visual

interpretation of a 24 hour EEG recording is quite tedious and time-consuming.

Quantitative EEG (QEEG) relies on the transformation of digitized EEG signals into
mathematically derived parameters thereby performing a frequency analysis by computing
the Fast Fourier Transform, a period analysis for measuring half or full waves or an
amplitude analysis for determining the average atgplitude, its variance skewness and
kurtosis (Pronk, 1987). These parameters charactenize the EEG thus analyzed. This
information can be further interpreted by statistical analyses based on a select population
considered to be “normative”. It can also be displayed as topographic maps or graphs in a
form intelligible to the non-expert. Pattern recognition techniques may also be applied to the

parameters derived to classify them as normal or abnormal recordings.

Several factors in addition to the ones mentioned above, favor QEEG analysis.
Bickford (1973) has demonstrated that experienced electroencephalographers make

considerable errors in estimating amplitude values and consistently read higher than the
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computer estimate. In the presence of artifacts the human estimates are further degraded.
QEEG using computer-assisted frequency analysis has been reported to be more sensitive
than visual interpretation in several situations. QEEG monitoring systems can compress
data and thereby identify modulating backgrounds, intervals of physiologic sleep and
gradual shifts in dominant frequency. Long-term EEG trends of prognostic significance such
as those mentioned above may be missed by visual analysis. Also, the earliest manifestation
of cerebral ischemia subsequent to carotid surgery is a 5 to 15% drop in amplitude {(Chiappa
et. al., 1979). This goes unnoticed during visual interpretation but is reported by QEEG

analysis.

It would be quite useful to have a monitoring unit that would not only record EEG
but also interpret it on-line. Such ;'gl system would then extract features from the EEG and
based on those characteristics, raise an alarm at the aﬁpearance of abnormal EEG activity.
At this time a neurologist may be called in to confirm and act upon the finding of the
monitoring system. One place where such a system would make a definite impact on clinical

decision-making is the pediatric ICU.

1.3 Cardiac Surgery and Brain Injury

Innumerable children are bomn each year with congenital heart disease serious
enough to require surgery early in life. The use of deep hypothermic Cardiopuimonary
Bypass (CPB) with or without deep hypothermic Circulatory Arrest (CA) has improved
operating conditions for pediatric cardiac surgery. This has resulted in improved survival

and reduced cardiac morbidity.
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Hypothermic CA has been a widely used technique since its introduction in the
early 1960’s. CA creates an operative field free of perfusion cannulae and blood and this
proves to be a definitive advantage. The use of this technique is based on the premise that
there is a “safe” duration of total circulatory arrest, which bears an inverse relation to body

temperature; the organ with the shortest “safe” circulatory arrest time is the brain.

The perioperative period is an important time for the occurrence of brain injury
serious enough to be followed by neurologic sequelae. Results of a study at Duke
University Medical Center indicated that intracellular brain oxygenation decreases
significantly during circulatory arrest and remains impaired after rewarming and CPB,
despite normalization of oxygen availability (Greeley et. al,, 1989). Deep hypothermic CA
seems to be a factor in the delayed recovery of cerebral blood flow and metabolism in
patients. Some patients exhibit a normal response to low cerebral blood flow following
surgery, i.e. they demonstrate an increased oxygen extraction from the biood. However, the
cerebral oxygen metabolism in some patients is stunned and unable to exert a protective
response of increased oxygen extraction. It is therefore likely that low cardiac output and
pressure-passive cerebral blood flow potentiate brain ischemia after CPB and surgery in
some patients. Ischemia - a state of diminished blooci supply to the brain, is the initiating

event for the development of several brain lesions.

As the overall outcome of corrective surgery for congenital heart disease has
improved, the focus is now on neurologic dysfunction due to surgery. The incidence of
significant neurologic deficits following cardiac surgery in infants varies approximately

between 5% and 25% depending upon the sophistication of the follow-up measures.



Extensive research is going on, both to improve the existing methods of CA and bypass and

also to try and reverse ischemic damage when it occurs.

What the pediatric ICU could use is a neurophysiologic monitor which could
interpret the EEG and raise an alarm at the appearance of abnormal activity. As discussed in
section 1.2.2, the EEG is very sensitive to ischemia and EEG abnormalities set in prior to
neuronal dysfunction. Such a monitor would then detect abnormalities at a reversible stage

and provide a scope for therapeutic assistance. This in essence, is the aim of this project and

is further discussed below.

1.4 Project Definition

The aim of the project is to build an automatea Neurophysiological Monitor for the
pediatric ICU. The primary utility of the system is to serve as a bedside diagnostic tool for
pediatric cardiac patients subsequent to surgery. This may also be used to monitor other
ICU patients as the system basically detects abnormal EEG patterns, The EEG of cardiac
patients in the ICU is recorded for about 20 hours starting an hour or so after surgery. The
monitor being built is an off-line device which accepts several hours of raw EEG data as
input, performs quantitative analysis and classifies it' as normal or abnormal based on its
characteristics. Such a monitor aims at mimicking the neurologist, the expert. The features
used by the monitor for interpretation of an EEG will then be the quantitative equivalents of
the qualitative features used by the expert himself. Knowledge is acquired in collaboration
with the expert about the features that are crucial in differentiating a normal from an

abnormal EEG. This is discussed in Chapter 2.
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A continuous EEG recorded over long hours ié subject to various kinds of artifacts.
Rejection of artifacts of physiologic and environmental origin is quite essential for accurate
interpretation of the EEG. Once artifacts are rejected, the EEG is ready for quantification.
Chapter 3 discusses the EEG data acquisition system at the Montreal Children’s Hospital,
the source and nature of artifacts that are encountered during a long-term recording in the

ICU and the design of filters for artifact rejection.

Knowledge Engineering involves the design and development of quantitative
parameters equivalent to the qualitative features crucial in classifying an EEG. Chapter 4
discusses the various mathematically derived parameters extracted from the EEG. EEG is a
qualitative tool and no clear-cut quantitative boundaries exist between normal and abnormal
recordings. Statistical analyzes of the quantitative features extracted, discussed in Chapter
5, provides information about the normality of the EEG by comparing it with a population

considered normative,

A Knowledge-Based Expert System accepts the probability measures associated
with each of the parameters extracted and classifies the EEG into one of four categories,
normal, mildly abnormal, moderately abnormal, or severely abnormal. Machine Induction
principles are used to train the system with prior examples. Chapter 6 discusses this in
detail. The performance of the automated monitor is discussed and improvements are

suggested in Chapter 7.
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° 1.5 Literature Review

The literature reveals several instances of EEG monitoring in the ICU. EEG changes
correlate with regional ischemia during carotid artery endarterectomies (Trojaborg and
Boysen, 1973). As a result EEG monitoring is currently in extensive use during carotid
surgery (Chiappa et. al., 1979, Cho et. al., 1986) and this has made a definite impact on
clinical decision making. EEG monitoring is currently in practice during cardiac surgery as
well (Salerno et. al., 1978). Jordon and Stringer (1991) have reported a decisive impact of
EEG monitoring on clinical management decisions in 85% of the patients monitored
subsequent to cardiac surgery. EEG monitoring of pgﬁents in coma has provided clues to
the cause of coma and prognostic information (Cant and Shaw, 1984). EEG monitoring has
been used for monitoring barbiturate therapy for increased intra cranial pressure (Ropper

and Rockoff, 1983).

Much of the results presented in the literature referenced above relies on visual
analysis rather than on computer analysis. This is somewhat limited in scope and
enormously time-consuming. Computer-assisted analysis has been used by several
researchers, however the most sensitive variables to be monitored have not been
determined. The tool most commonly used is the .Compressed Spectral Array (CSA)
devised by Bickford et. al. (1971). Here the frequency spectra of EEG activity are
computed and plotted against a vertical time scale for successive epochs. Gross changes can
therefore be identified visually. Other display formats such as trend plotting of various EEG

and physiologic parameters have also been used.
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Pronk (1987) and Prior (1987) bave reviewed some EEG features that may be
useful in prognostication and clinical decision-making, These include spectral features,
period and amplitude features, measures of mobility and complexity, and autoregressive
filtering coefficients. Thomas et al. (1985) have reported that, subsequent to
cardiopulmonary bypass, the most significant changes concerned amplitude rather than

frequency parameters.

Devices designed to provide an automatic EEG monitoring system have been few.
Bickford (1950) estimated the depth of barbiturate and ether anesthesia with such a device
and automatically regulated the rate of drug administration by changes produced in the
EEG. Similar servomonitor mechanisms have been developed for other anesthetic agents as
well (Verzeano, 1951). The Cerebral Function Monitor (CFM) described by Prior (1973), is
the first device capable of artifact rejection in addition to automated interpretation. The
system also has an in-built electrode impedance monitoring system which maybe quite

important for long-term EEG monitoring systems.

Bickford et. al. (1971), in their monitoring system for diagnosis of irreversible coma,
bave concerned themselves with ECG artifact rejection using template subtraction
techniques. MacGillivray and Kennedy (1968) describe a monitoring system for patients
with grossly disturbed metabolic states. This system, involving analog devices, produces a
regular plot at short intervals of the relative proportions of different frequencies in the EEG.
They report that clinicians understand these frequency plots and interpret them in order to

assist management of comatose patients.
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Maulsby (1973) has described a multi-channel EEG analysis tool that displays
information extracted from the EEG in an anatomical format. This can be casily
comprehended by physicians having little formal training in EEG. The display consists of
four figures of the head upon each of which the activity corresponding to one of four

frequency bands is plotted as bar graphs.

Maynard and Jenkinson (1984) developed a system called the Cerebral Function
Analyzing Monitor (CFAM) an improvement of the CFM described above. This device
bandpass filters (2-20 hz) the EEG, performs amplitude rectification and smoothing and
then computes, every 2 sec, five amplitude measures and the percentage of activity in nine

frequency bands These are displayed as a function of time,

The Vital Signs Monitoring System (VSMS) (Chiappa and Hoch, 1993) is another
computer-assisted diagnostic tool. This system plots the trend over several hours, of various
EEG and physiological parameters such as peak, median power and spectral edge
frequencies, frequency bin activity totals, frequency bin ratios, blood pressure, heart rate
and intra-cranial pressure. In addition to data reduction, the plots generated by the CFAM
and the VSMS make visual interpretation of EEG trends easier and discernible by the non-

expert.

Artifact rejection is quite important for accurate interpretation of the EEG. Most of
the systems in the literature that rely on computer analysis do not reject artifact completely.
The literature does not show evidence for the presence of systems capable of completely

automated EEG interpretation. During feature extraction from the EEG, it would probably
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be wise to extract quantitative equivalents of the qualitative features used by the neurologist

for interpretation, The literature reveals some work in this direction.

This project attempts at complete automation of EEG interpretation. Rejection of all
kinds of artifacts is attempted prior to extraction of features that correspond to the

qualitative features used by the neurologist.
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2. THE ABNORMAL EEG
EEG abnormalities in children can be of three kinds.

* Background abnormalities - Background activity refers to the basic EEG rhythm which
are present at ali times. Sometimes, major EEG patterns and changes in activity are
superimposed on these basic rthythms. EEG background abnormalities correspond to

aberrations in the amplitude and frequency composition of these basic rhythms.

* Jctal abnormalities - Ictal abrormalities are those associated with seizures. These appear

most often as sharp waves and spikes, hypersynchronous rhythmic activity or as

paroxysmal slow wave activity.

*  Abnormalities of organization in states and maturation - Composition of EEG activity in
children varies considerably with age. Children who exhibit sleep rhythms that are
uncharacteristic of their age are said to have abnormalities of organization in sleep states

and maturation.

Background abnormalities appear to be most suitable fdr diagnostic applications especially
in long-term prognosis (Lombroso 1985). Studies indicate that background EEG is a good
indicator of prognosis subsequent to hypoxic-ischemic injury, if recorded for sufficient
duration in all states (Watanabe et.al., 1980). Serial récordings and follow-up studies have
disclosed a graded series of background abnormalities from maximally depressed EEG to
normal background EEG. Each grade of abnormality correlates closely with the subsequent
neurological outcome. The prognostic significance of the background abnormality depends

on the time of the recording as well. Studies indicate that recordings within the first 48
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hours of the illness serve as the best prognostid indicators (Kayser-Gatchalian and

Neundorfer, 1980).

Ictal abnormalities in children could be caused by the involvement of the central
nervous system or by metabolic derangement and are either transient or sustained. These
provide prognostic information as well. However, background abnormalities are, in general,
more reliable prognostic indicators (Lombroso, 1985). For instance, the prognosis of a child
with ictal abnormalities accompanied by a sustained background abnormality is worse than
that of another, whose ictal abnormalities are accompanied by a transient background
abnormality. The third category, abnormalities associated with maturation and organization
of states, consists of more subtle deviations of certain bioelectric parameters and their

usefulness is not well-established.

An automated EEG neurophysiological monito'r should be capable of detecting both
background abnormalities and ictal abnormalities in order to obtain maximum prognostic
information. An analysis of the background activity involves the study of long-term trends
and therefore superimposed bursts of activity which may represent ictal abnormalities are
smoothed out. Similarly, a system designed to detect ictal abnormalities pays no attention to
long-term trends. Therefore the detection of these two should be handied independently.
The intent of this project is to develop 2 monitoring system capable of identifying

background EEG abnormalities.
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Background EEG abnormalities manifest themselves in several forms.

. Depression - A depressed EEG is characterized by a 10-50 uV activity with mixed

frequencies, persistent through all states, sleep and wakefulness. This background
pattern requires caution in interpretation since transient depression could be caused by
various reasons and is not an indicator of unfavorable prognosis. Detection of depressed
activity is quite crucial since the first manifestation of cerebral ischemia is a 5 to 15%

drop in amplitude (Chiappa, 1979).

Inactive Pattern - This is characterized by cerebral activity below 10 pV almost
continuously, unreactive to stimulus. It occurs in disparate clinical conditions and carries

quite an unfavorable prognosis.

Burst Suppression - Periods of inactive background (lower than 10 nV) interrupted by
synchronous or asynchronous bursts of activity characterize this abnormal pattem. The
intermittent bursts themselves last between 0.5 to 6 sec and contain one or more
irregular slow waves with or without sharp transients. Studies show that a burst
suppression pattern heralds an unfavorable outcome and has a very high statistical

predictability associated with it (Lombroso, 1985).

Interhemispheric Amplitude Asymmetry - A persistent amplitude asymmetry in
background rhythms between corresponding channels of the two hemispheres is
considered abnormal. Here again transient or mild asymmetries are of no pathological
significance. A persistent voltage asymmetry recognizable in various states could denote

a depression in one hemisphere or large amplitude activity in the other, both of which
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point to an underlying abnormality. Bricolo et al.(1978), assessed the significance of
asymmetry and found that in most cases, the lower amplitude corresponded to the side

of the lesion.

. Monotonous Pattern - This consists of an almost invariant diffuse pattern present at all
times, poorly reactive to stimuli. Studies show that the second level response to a
diminished cerebral blood supply, after generalized depression, is a diffuse monotonous
delta pattern from all cerebral regions (Chiappa, 1979). Although the presence of sleep
patterns in comatose patients may have prognostic significance, the presence of
spontaneous alteration of tie EEG is more important. To study spontaneous variations
adequately, the EEG is to be recorded over an extended period of time. Bricolo and co-
workers (1973) and Bergamasco and associates (l§68) have found that a invariant EEG
carries worse prognosis than a cycling (alternating) EEG. In another study,
approximately 95% of the patients with a slow and monotonous CSA had unfavorable
outcomes against only 30% of those with a changing CSA (Bricolo et.al, 1978).
Although the cycling EEG patterns oply weakly correlate with the clinical state of the

patient, they still have significant independent prognostic value (Rumpl et.al., 1979).

Absence of Amplitude Gradient - The EEG of a normal child shows a sharp decline in
voltage from the posterior to the anterior head regions. This is usually accompanied by a
marked decrease in low frequencies in the same posterior anterior direction. Substantial
clinical evidence correlates an absence of such a gradient with severe neurologic

injury (Slater and Torres, 1979).
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The monitoring unit built aims at identifying these above-mentioned background

abnormalities by extracting quantitative features from the raw EEG. However, prior to this

the raw EEG data recorded is to be pre-processed in order to make interpretation easier.

This is discussed in chapter 3.
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3. DATA PRE-PROCESSING

3.1 DATA Acquisition

At the Montreal Children’s Hospital, EEG is recorded from 8-chammels by a
montage called “Little H” illustrated in Figure 3.1 below. Twelve electrodes including a
ground are glued onto the surface of the scalp and the electrode scalp junction is filled in
with conductive jelly. EEG recorded from channels 1 and 4 correspond to activity from ﬁe
frontal head regions of the left and right hemispheres respectively. Similarly, channels 2 and
5 represent right and left central parietal head regions, channels 3 and 6 represent the
posterior head regions and 7 and 8 record the central temporal head regions of the left and

right hemispheres. This is illustrated in Figure 3.1.

Figure 3.1 - “Little H” montage.
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After being picked up by the electrodes, the analog signal is amplified by a factor of
10000 and then digitized at 200 Hz sampling frequency. Prior to digitization, the signal is
filtered by a low pass filter (cut-off frequency 30Hz and attenuation 6db/octave) to prevent
aliasing and a high pass filter to remove artifacts due to respiration, sweating, etc. EEG is
recorded and displayed on a computer monitor using a software called MONITOR. Figure

3.2, on the next page, illustrates 20 seconds of such an 8-channel EEG record.

As explained earlier, analysis of the background activity involves a study of long-
term trends. EEG recorded continuously over a period of six hours produces approximately
60 MB of data. The first step toward trend and pattern analysis is data reduction. Further,
while detecting background EEG abnormalities, sustained rather than impulsive changes in

the EEG are of significance. Therefore, loss of detail as a result of data reduction does not

distort EEG interpretation.

Visual interpretation of the EEG involves for most parts, assessment of its frequency
composition. The neurologist estimates visually the amounts of EEG activity in the various
frequency bands, delta (1-3 Hz), theta (3-7 Hz), alpha (7-14 Hz) and beta (14-30 Hz),
compares and correlates them and arrives at a decision about the normality of the EEG. It
would therefore be quite useful to transform the entire EEG into the frequency domain.
This would provide information about the EEG activity in the various frequencies ranges
over a period of time. The EEG activity at various frequencies at different instants of time
could then be readily compared and the state of the EEG record could be arrived at. In

addition, it would also perform the task of data-reduction and facilitate trend analysis.
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Figure 3.2 - 20 seconds of an 8-channel EEG recorded usmg the “little H” montage. The
names written on the left corner indicate electrode - pair corresponding to that channel of

EEG.
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The frequency analysis of the EEG record is performed using a software called
ECLIPSE. The program divides the entire EEG recording into epochs of 30 second
duration. Each such epoch is referred to as a ‘page’. The choice of a 30-sec epoch is based
on the premise that any rhythm that lasts for a duration less than 30 seconds is impulsive
rather than sustained activity. After filtering using a cosine window, Fast Fourier
Transforms are computed for every 512 sample points (corresponding to 2.56 seconds) and
this amounts to eleven frequency domain distributions per channel per page. The epoch
duration is in fact 28.06 seconds and not exactly 30 seconds to facilitate this. The spectral
resolution is 0.39Hz. The frequency distributions for each page of a channel is obtained by
averaging the 11 distributions corresponding to it. The band activity is then the average of
the amplitudes of the activity within the frequency range of the corresponding band. The

frequency ranges of the various frequency bands are defined below.

Band Titles | Frequency Range(Hz)
Delta 1.17t03.13
Theta 3.52t07.03
Alpha 7.42t013.28
Total 1.17 to 14.06

Table 3.1 - Definition of EEG frequency bands.



The frequency of genuine cerebral rhythms could be as high as 50 Hz. However, the
total band spans only up to 14 Hz. The rationale behind such a narrow band is discussed in
the section on Artifact Rejection. Once the “activity” of the EEG record is computed, each
channel is associated with four average amplitudes of activity corresponding to the four
frequency bands for every page of the record. The activity values for a frequency band of a
channe] are then plotted against time thus forming a time series as shown in Figure 3.3.
Such a plot is called a band array and it represents the trend in activity in a particular
frequency range arising from a particular head region. For instance, Figure 3.3 represents
the activity over a 12 hour period in the delta, theta, alpha and total bands recorded from
the left posterior head region. Activity computation by ECLIPSE reduces 6 hours of raw
EEG data from 60 MB to about 500 KB. The oext hurdle to overcome prior to trend

analysis is artifact management discussed in the following section.
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. 3.2 Artifact Management

3.2.1 Artifacts

Artifacts are frequent and often intraciable during long-term EEG recordings in the
ICU. Here, unlike in the EEG laboratory, the technician is deprived of a controlled
environment. This is so since the prime concern in the ICU is the support of patient’s life
and, particularly in the early hours after surgery, many procedures both diagnostic and
therapeutic are in progress. The effect of these artifacts on computer analysis is quite
serious and their rejection is essential for authentic interpretation of the recofding. In the
ICU the sources and characteristics of artifacts are numerous and varied. The more

common types of EEG artifact are listed below.
* 60 Hz amtifact from the mains power.

* Patient movement.

*  Poor electrode contact.

60 Hz artifact is due to interference from nearby equipment or the very common
ground loop. Figure 3.4 illustrates 20 seconds of an EEG with 60 Hz artifact most
prominently visible in the right frontal head regions (channel f4-c4). In the ICU where
several electrical devices are operated simultaneously, power supply interference is quite
common. This artifact also occurs when a patient is grounded more than once and there is a
difference between the grounds. Yet another source.of 60 Hz artifact is when a ground

electrode is shorted to one of the active electrodes.
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Figure 3.4 - 20 seconds of an EEG record corrupted by 60 Hz artifact. The artifactual distortion is
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In addition to 60 Hz, the above-mentioned sources also generate harmonics at 120
Hz, 180 Hz, etc. which contaminate the EEG. Since the signal is digitized at 200 Hz, the
activity at 120 Hz aliases and appears as an activity peak at 80 Hz and 180 Hz activity
aliases as 20 Hz. The 20 Hz activity contaminates the beta band. Figure 3.5 above
illustrates the amplitude spectra (1.17 to 50 Hz) of the EEG shown in Figure 3.4. The peak

at 20 Hz is due to aliasing as explained earlier.

Patient-generated artifacts include body movement, muscle contraction of the scalp,
blinking, chewing, coughing, swallowing, hiccoughing and involuntary myoclonic jerks.
Contractions of the scalp muscles and other muscles due to chewing, coughing and
swallowing produces broad band activity referred to as the Electromyogram (EMG). The
EMG is quite useful for behavioral studies, however, while monitoring cerebral function
these rhythms are not of interest and they contaminate the EEG making interpretation
difficult. Another source of patient-generated artifact is the EOG (Electro-occulogram)

generated by eye-movement.

Patient movement causes artifactual signals both due to mechanical movements of
electrical contacts and movement of the conductors that carry current from the scalp
electrodes to the amplifiers. This conductor motion results in induction of an electric current
due to the earth’s magnetic field. The current through the conductor due to the potential
recorded at the scalp is very small due to the magnitude of the potentials themselves and the
very large impedances of the amplifiers. The induced currents are thus comparable to the
currents of cerebral origin and therefore contaminate the EEG signals, Patient examination

and physiotherapy also cause rhythmic artifact due to discharges of static current.
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Patient-generated artifacts are usually spiky, containing sharp elements and very
large amplitudes. They stand-out quite clearly from ine background. These are usually
impuisive not lasting for more than a second in duration. Figure 3.6 illustrates an EEG
contaminated by patient-generated artifact. In the band arrays, these artifacts clearly stand
out from the background and are usually solitary. Figure 3.7 illustrating the total band array
of the EEG in Figure 3.6, helps appreciate the difference in amplitude between EEG of
cerebral origin and patient-generated EEG artifact. Here the very large amplitude spiky

components correspond to patient generated artifact.

Artifact due to poor electrode contact is quite inevitable during a long-term
recording and this is illustrated in Figure 3.8. Electrodes are glued on to the surface of the
head and a jelly fills the gap between the electrode and scalp to make contact. During long-
term recordings, the jelly could dry up and this may impair the contact. Also, the electrode
itself may not be glued properly. Artifact due to poor contact is characterized by low
frequency and moderately high amplitude. Such artifacts however, are not impulsive and
remain until the electrode is glued again or fresh jelly is injected into the junction. In the
band arrays, the artifact is usually seen in the delta and total bands and occasionally in the
theta band as they are characterized by very low frequencies. The band array corresponding
to an EEG with poor electrode contact is illustrated in Figure 3.9a. The humps in activity
here comrespond to electrode contact artifact. Figuré 3.9b illustrates the band array of
another EEG where the humps cor:aspond to genvine fluctuations in the frequency

composition of the EEG.
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The humps in both 3.9a and 3.9b look quite alike even though one is artifactual
while the other is not. Removal of the artifactual humps while preserving the genuine humps

could be a difficult problem to solve.

Artifact Rejection

As discussed earlier, the aim of this diagnostic tool is to study gross changes of the
EEG background over several hours. The state of any EEG is determined mainly on the
basis of its frequency composition over several hours, average amplitude and symmetry in
activity between different regions of the head. It is therefore sufficient to reject artifacts
large enocugh to manifest themselves in the frequency spectrum. It is quite unnecessary to
identify and reject specific artifactual EEG waves in the time domain. Each point in the band
array of the activity file represents average activity over a 30 second pericd in the
corresponding frequency band for the particular channel. Artifact identification and rejection
from these band arrays would be sufficient for our purposes. It is important to realize that
artifact identification can be done visually only by examining the raw EEG record in the
time domain. However, suppression of the artifact is done in the frequency domain.
Therefore all examples of band arrays of artifactual or non-artifactual EEG presented in this
section are chosen subsequent to visual examination of the raw EEG itself and not by

examining the band activities.

The frequency range of background EEG of cerebral origin is 0-30 Hz. Some faster
thythms of cerebral origin up to 50 Hz may be present but usually correspond to ictal

activity. Therefore any activity at 60 Hz could be treated as artifact and rejected. The
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artifact due to harmonics however, alias and appear at lower frequencies and contaminate
the beta frequency band (14 to 30 Hz). This band itself is altered by medication and
administration of anesthetics (Mahla) thereby making interpretation difficult. To remove the
effect of these non-pathological confounders, the 60 Hz artifact and its harmonics, the total
band is defined from O to 14 Hz. As seen in the previous section, most background EEG
abnormalities manifest themselves in the delta (1 to 3 Hz) and theta (3 to 7 Hz) frequency

ranges. Therefore, such a definition of the total band is not likely to distort or handicap the

interpretation in a significant way.

To reject the artifacts due to patient movement and poor electrode contact discussed
above, a filter capable of rejecting both impulsive very high-amplitude artifact and sustained
moderately high amplitude artifact is required. Linear filters are used extensively, in several
signal processing applications today. However, they fail to perform well with high
amplitude impulsive noise components. Linear filters merely smear the effect of impulsive
noise components. The performance of a 5-point moving-average filter on an artifactual
EEQG is illustrated in Figure 3.10. (3.10a) illustrates the unfiltered band array with impulsive
EEG artifact and (3.10b) is the band array subsequent to fiitering using the 5-point linear
filter. (3.10d) illustrates the filtered output of the band array in Figure 3.10c with sustained
artifact. The filter averages the band array values within a 5-point window. Impulsive high-
amplitude artifact is merely smeared rather than removed as observed in the illustration

(3.10b). The linear filter does not reject sustained artifact either as is evident from Figure

3.10d.
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A pon-linear filter called the median filter has been used successfully with impulsive
noise components. The median filter replaces the value at each point by the median of the
signal values in some finite neighborhood about that point. The non-linear characteristics of
this filter help remove impulsive noise components while maintaining sharp edges at the
same time. However, it fails to reject sustained noise components. The performance of a 5-
point median filter on an EEG with impulsive artifact and on one with sustained artifact is
illustrated in Figure 3.11. Figure 3.11b illustrates the effect of median filtering on the band
array illustrated in Figure 3.11a. The median filters removes the artifact leaving no trace of
it. (3.11c) represents the band array of an EEG with sustained EEG artifact and (3.11d)
shows the effect of the median filter on it. In the case.of sustained artifact the median filter
performs rather poorly and most artifact passes right through and is unrejected as is evident

from (3.11d).

From the discussion above, it is clear that the median filter is efficient at rejecting
impulsive noise components. With sustained noise however, the performance of neither of
the filters discussed above is remarkable. Sustained artifacts in EEG recordings can extend
over several hours. In such cases, both linear and median filters dampen the artifactual
activity initially. After a certain period of time (depending on the size of the window) when
the entire neighborhood is artifactual and similar, these filters fail to recognize and reject
them as artifact. Therefore to get rid of artifacts that extend over long periods of time, a

hard-limiter threshold should be used.
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A median filter with a hard-limiter threshold performs well with the rejection of
sustained artifact. The data is first filtered with a 5-point median filter. If the median of any
window of total band activity is greater than a certain threshold, then the activities in ail
frequency bands of that particular epoch for that channel are replaced Uy the respective
average band activities averaged up to that point in time, thus rejecting the artifact. The
choice of the threshold is quite critical for the performance of the filter. An absolute
threshold may not be a good choice since the amplitude of the artifact itself is proportional
to the average amplitude of the background EEG. A high threshold may fail to reject
artifacts of depressed EEGs while a low threshold may reject genuine high amplitude
rhythms of cerebral origin. The threshold should therefore be relative to the average total

band activity.

The amplitude of most artifacts including that due to poor electrode contact is at
least 1.5 times the average EEG background activity, Extensive EEG review indicates that
genuine fluctuations of cerebral origin in total band activity, i.e. average EEG activity in the
0 to 14 Hz range over a 30 sec. period, is rarely greater than 25% of the average
background activity. Therefore, it is safe to assume that total band activity greater than the

overall average total band activity by at least 1.5 times is artifactual.

As explained earlier, the band arrays are first filtered with a S-point median filter
which rejects impulsive artifacts. If the median in any window of total band activity is
greater by 1.5 times than the corresponding running average up to that point in time, then
the activity values in all band arrays corresponding to that epoch and channel are replaced

by their respective running averages in activity. This requires that the first window that is
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filtered is artifact free in order to build an artifact free running average. This should be
ensured by the user. The monitoring system prompts the user to input the time to start
analysis. The user then should ensure that at least 3 minutes of “clean” EEG forms the start

of analysis.

The performance of a median filter with a hard-limiter threshold on the signals in
Figure 3.12a and 3.12c are illustrated in the Figures 3.12b and 3.12d respectively. Clearly,
the hard-limiter threshold rejects both sustained and impulsive artifacts quite effectively. All
other filters discussed above fail to perform well when the artifact fills the entire window.
All data points are then similar and the filter does not have a sample of true unartifactual
band array values. Further these filters reject as artifact, what does not conform with the
rest of the members of the same window. In the case of sustained artifacts therefore,
nothing is rejected. The hard-limiter threshold filter however, has a sample of true band
array values in the form of a running average. The filter has a reference uncontaminated by
artifact and is therefore able to reject artifact by comparison even when the artifact is

sustained and fills the entire window.
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Other threshold values have also been tried. A lower threshold tends to reject true
EEG as artifact. This is illustrated in Figure 3.13, where a threshold of 1.25 rejects genuine
EEG as artifact. Figure 3.13a represents the original band array and figure 3.13b the result
subsequent to filtering. A high threshold on the other hand accepts artifactual EEG as real
EEG. This is seen in Figure 3.14 which iilustrates the performance of the filter on the band
array shown in Figure 3.14a for different threshold values. Figure 3.14b shows output for a
threshold vaiue of 2.0 and figure 3.14¢ shows the output for a threshold of 1.5. Comparing

the two outputs, the superior performance of a threshold at 1.5 is clearly demonstrated.

Once artifact rejection is complete, the band array is ready for feature extraction

discussed in the following Chapter.
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4. FEATURE SELECTION

From the discussion on abnormal EEG patterns it is apparent that the nature of

background EEG activity is primarily assessed on the basis of four aspects, namely,
*  Amplitude

* Left / Right symmetry

*  Variability of the EEG

*  Anterior / Posterior gradient

A depressed EEG record is characterized by very low amplitude activity. The
inactive pattern discussed in Chapter 2 as an indicator of bad prognosts is also associated
with low amplitude values, lower than that of a depressed record. An amplitude measure is
therefore quite important to detect these patterns. The prognostic significance of a variable
EEG pattern, a gradient in slow activity from the anterior to the posterior head regions and
symmetry in activity between the two hemispheres is discussed in Chapter 2. These aspects

are crucial in classifying an EEG as normal or otherwise.

Quantitative equivalents of the above-mentioned four features are to be derived in
order to obtain information about the EEG record that would facilitate its classification as
normal or otherwise. To study spontaneous alterations and assess long-term trends
effectively, it is necessary to analyze an extended EEG record (> 6 hours). To detect or
evaluate variability of the EEG, data recorded for several hours is required. However, it is

important to obtain information about an abnormal EEG pattern at the earliest in order to
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be most useful. Taking both these factors into consideration, classification of the EEG is
done based on 6 hours of recording. Features are extracted from 6 hour long EEG records

and the classification is done based on these characteristics. The mathematical derivations of

the quantitative features extracted from an EEG prior to classification are discussed below,

4.1 Measure of Amplitude

Figure 4.1 illustrates total band activities of two EEG records, figure 4.1a
corresponding to a normal EEG and figure 4.1b corresponding to a depressed EEG, after
artifacts have been rejected from them. A depressed EEG record is characterized by low
amplitude values, and the severity of depression is inversely proportional to the amplitude of

the activity, A simple measure of the total band activity quantifies amplitude normality.

Sustained rather than impulsive amplitude abnormalities are bad prognostic
indicators. The amplitude measure is mathematically derived as the logarithm of the average |
over a 5 - minute period of the total band activity of 'any channel of the EEG record. In a
band array, this represents the logarithm of the average of 10 points of total band activity
since basic calculations are made every 30 seconds. The reason for using the logarithm of

the average rather than a simple average is explained in the chapter on Statistical Analysis.
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Depressed EEG activity may arise from one or more head regions, The amplitude of
the EEG activity recorded from the various channels should therefore be ascertained and
evaluated for depression. Eight measures of amplitude, corresponding to the eight channels,
are extracted from every EEG record that is to be evaluated. An amplitude measure
extracted every 5 minutes for every channel therefore amounts to 12 x 6 x 8 or 576

amplitude values for a 6 hour EEG record.

4.2 Measure of Left / Right Symmetry

~

Figure 4.2 on the following page, depicts delta band activities from. the posterior
head regions of the left and right hemispheres of two patients, one corresponding to a
symmetrical EEG illustrated in figure 4.2a and a second to an asymmetric pattern in figure
4.2b, according to the interpretation of the neurologist. A simple ratio of activity between
corresponding channels of the left and right hemiépheres could quantify the level of
symmetry. A ratio value closer to “1” implies a symmetrical EEG pattern. A value greater
than 1 implies a right hemispheric depression and a value less than 1, a left hemispheric
depression. The extent of the depression itself is directly proportional to the absolute
difference between 1 and the ratio value. With Left / Right symmetry, as in the case of
depression, sustained rather than impuisive abnormalities are of concern. Therefore, the
delta band activity is smoothed to remove impulsive transients prior to computing the ratio.

The formula for the Left / Right Symmetry parameter is given below.

average activity of channel in the left hemisphere
r = logarithm | ]
average activity of corresponding channel in right hemisphere
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Average activity here represents average delta band activity over a 5 - minute peniod

which corresponds to an average of 10 points of the delta band activity. Symmetry can also
be measured by comparing total band activities between hemispheres instead of delta band
activities. However, the total band activity is susceptible to noise over a larger frequency
range and could show asymmetries due to non-pathological reasons as well. On the other
hand, there is a high probability that an asymmetry in activity due to pathology would
manifest itself in the delta band in addition to any other frequency ranges and hence the

delta band is preferred.

Four Left / Right symmetry measures comresponding to the four pairs of channels
symmetrically located in the two hemispheres are extracted every 5 minutes of an EEG
record. Each channel pair monitors activity in one of the following four head regions —
anterior, central-parietal, posterior and the central-temporal and so the measures extracted
monitor symmetry in activity in the corresponding head region. A quantified 6 hour EEG
record is thus associated with 72 left / right symmetry values for each of the four channel

pairs.

4.3 Measure of Front / Back Differentiation

As explained in chapter 2, a normal EEG record is associated with a gradient in
amplitude of activity in the low frequencies with amplitude decreasing in the posterior to
anterior direction. This is referred to as Front / Back differentiation. Figure 4.3 illustrates
the delta band activities from the anterior and posterior channels of the right hemisphere of

two patients.
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The EEG of the patient in figure 4.3a shows a clear anterior posterior gradient while
that of the patient in figure 4.3b shows no such differentiation as confirmed by the
neurologist. A ratio of the delta band activity of the posterior channel to that of the anterior

channel of the same hemisphere reflects effectively the extent of their differentiation,

As explained earlier, four channels record activity from each hemisphere. The
channels that monitor the anterior and the central-parietal regions share a common
electrode. Similarly, the central-parietal and posterior channels share a common electrode.
As a result, large enough gradients do not exist between activities of these channel pairs
even for normal recordings and detection of abnormalities on their basis may not feasible.
Therefore anterior to posterior gradient in activity is measured by comparing the activities
recorded by the anterior and posterior channels. Two such measures are extracted for every
EEG record corresponding to the two hemispheres. The parameter is derived using the

formula given below.

average delta activity of the posterior head region
r = logarithm [ ]
average delta activity of anterior head region of the same hemisphere

Average delta activity in the formula above corresponds to an average overa 5 -
minute period of the delta band activity. A posterior predominance of delta activity during a
5 - minute period is reflected by a ratio value greater than 1 while an anterior predominance
is reflected by a ratio value less than 1. The boundary between normal and abnormal
gradient values is not clear-cut and this is further discussed in the section on Statistical
analysis. The front / back differentiation of every EEG record is described by 144 values, 72

corresponding to the left hemisphere and another 72 corresponding to the right hemisphere.
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' 4.4 Measure for Variability

This measure assesses the extent of spontaneous cvcling in an EEG record. The totat
and delta bands of the postenor channels of the two hemispheres are most reflective of a
cycling EEG. The total band however, is susceptible to noise of a wider frequency range

and it is therefore reasonable to measure vanability using the delta band activity.

Figure 4.4 illustrates three posterior delta band activities subsequent to armfact
rejection, one with spontaneous cycling figure 4.4a and two others figure 4.4b and figure
4.4c, without. Figure 4.4c shows an absolutely flat band activity with no signs of variability.
A solitary large hump such as the one present in Figure 4.4b is not representative of a
spontaneously varying EEG either. Both these examples were classified as monotonous, and
hence abnormal EEGs by the neurologist. The example in Figure 4.42a shows several humps
in the band acuvity each of which extend over a substantial period of time. Spontaneous
alterations in the EEG appear in the band array as humps that are signiﬁf:antly higher in
amplitude than the valleys that interrupt them. Each hump extends over a substantial period
of time and a 6 hour recording is usually characterized by several such humps. Therefore to

quantify variability, the number, duration and height of the humps are to be quaatified.

Figures 4.4a, 4.4b and 4.4c¢ can be treated as alternating signals, with components at
several frequencies, superimposed on a2 DC signal, the DC component being the average
delta band activity over the entire duration. The alternating signal of Figure (4.4c) would be
characterized by very low amplitude but high frequency components (20 to 30 cycles/6

hours) since it is a very flat time series. Figure (4.4b) on the other hand, will be associated
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with high amplimde low frequency components (1 to 2 cycles/6 hours) as it has one
extended hump. A band array representing genuine cycling, as in Figure (+.4a) would be
associated with high amplitude components with 5 to § cycles for the entire 6 hour period.
It is therefore essential to estimate roughly, both the range of frequencies and the
amplitudes of the aliernating components of the delta band arrays to quantify the variability.
This is accomplished by computing the zero-crossing rate and the energy of the alternating

signal as described below.

The DC component, which is a simple average amplitude of the delta band activity,
is subtracted from the band array values of the same channel and what remains is the
alternating signal. As explained earlier, frequency aiternations of about 3 to 8 cycles/6 hours
are to be identified. Fluctuations faster than 8 cycles/6 hours are removed by linear filtering
as they do not provide information about variability of the EEG that is of prognostic
significance. The band arrays of the two posterior channels from which the respective DC
components have been removed, are filtered with 5 point linear averaging filters This ﬁlter
replaces every point in the band array, by the average of activity within a 5-point window
centered about it. This filtering operation smoothes out the humps in activity that last for

less than a couple of minutes, thereby removing their influence on the zero-crossing rate.

As the name implies, the zero-crossing rate is a count of the number of times the
signal crosses the time axis. This is a rough estimate of the frequency of the alternating
signal. A low zero-crossing rate implies either a monotonous record or very few humps
which may be artifactual. Both these cases do not represent normally cycling EEGs. A high

zero-crossing rate corresponds to a band array depicting several humps. However, these
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humps may extend over a very short period of time or may have a very low maximum
amplitude and in neither case corresponds to a normally cycling EEG. The extent of the
humps is ascertained by computing the energy of change of the altemating signal using the

formula below.

i=120
w0 ZX7
e = log[ ]
(average delta band activity)®

where “x;” denotes the amplitude of each point of the band array after the DC component
has been removed from it. The energy of change is measured as a fraction of the average
delta band energy. The boundary for absolute fluctuations between normal and abnormal
EEGs is a function of the background amplitude of the EEG itself. Relative fluctuations on
the other hand, are patient independent. This norﬁaﬁmﬁon facilitates measurement of
 relative fluctuation of the EEG with respect to its average energy rather than absolute
fluctuations. The energy of change is a function of the extent and height of the humps. A
low energy of change corresponds to a short hump, s_hort either in duration or in extent or
both. These do not represent cycling EEGs. A high energy of change could correspond
either to a single Jarge hump or several humps, the former will have a low zero-crossiug rate

while the latter a large zero-crossing rate.

From the discussions above it is evident that in order to quantify variability of an
EEG, both zero-crossing rate and energy of change are essential. A zero-crossing rate and
an energy of change measure are extracted from the posterior channel of each of the two

hemispheres for every 6 hour EEG record and used for further interpretation.
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Eighteen quantitative measures describe 6 hours of raw EEG data after feature

extraction. Further interpretation is carried out by statistical methods discussed in chapter 3.
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5. STATISTICAL ANALYSIS

Upon feature extraction, the 500 KB activity file is reduced to a set of 1012 data
values, 576 of which describe its amplitude, 288 others describe the symmetry in activity
between the left and right hemispheres of the brain, 144 describe the anterior to posterior
gradient in activity and 4 describe the variability of the EEG. In the previous section on
feature extraction, several phrases such as “low amplitude”, “high frequency”, “values close
to 17, etc. were used without qualification. Where does the amplitude threshold lie between
a normal and depressed EEG? Below what value is 1he measure for anterior posterior
differentiation considered to represent an abnormal EEG? Where exactly doss the boundary
between normal and abnormal categories lie for all of the measures discussed in the
previous section? These problems must be solved to proceed further with the task of

interpreting the EEG.

The expert is unable to help with the definition of the quantitative boundaries for the
various measures extracted as he does not relate to these quantitative quantities. He does
not use them to visually interpret the EEG and no known boundaries or threshold values are

available for these features from other sources either.

Interpretation of quantitative EEG measures, as explained earlier, is usually
performed by statistical analyses based on a normal control population. The selection of a
representative normal control population is crucial for good system performance. For this
project, of the EEGs recorded, a group of eight post-cardiac surgery patients had normal

post-operative EEG recordings and normal short-term neurologic outcome and are chosen
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to comprise the control population. Long-term EEG recordings of these patients lasting
between 18 and 24 hours in duration evaluated as veing normal by the neurologist serve as
the control population. The measures describing amplitude, symmetry, anterior / posterior
differentiation and variability are extracted from each of these recordings. Upon extraction
. of these measures it was observed that three of these patients showed signs of asymmetry in
activity between hemispheres and one exhibited minimal anterior-posterior differentiation.
The abnormalities were very minimal, however. This is confirmed by the neurologist on re-
evaluation of the EEG visually. All other measures of these records were found to be
normal. Abnormal features of records were dropped from the corresponding control
population. Therefore, the control populations of each of the amplitude and variability
measures consists of eight patients, control populations of the measures of symmetry consist

of five patients and anterior / posterior differentiation consist of seven patients.

Cumulative frequency distributions of the control population are constructed for
each of the eighteen measures . The characteristic measures of a new patient whose EEG is
to be interpreted can then be statistically compared with the distributions of the control
population. A measure of similarity between them will indicate the level of normality of the

new patient. The construction of the distributions and the statistical tests are discussed

below.



5.1 Population Distributions

As seen in the previous chapter, all features extracted from the raw EEG are defined
as the logarithm of a certain estimate rather than the estimate itself. For instance, symmetry
measures are defined as a logarithm of the ratio rather than as the ratio itself, amplitude
measures are defined as the logarithm of average amplitudes rather than as the average
amplitudes themselves. The distributions of the estimates such as average amplitude do not
follow the characteristics of a normal distribution. This may either be due to the biological
mechanism generating the EEG or due to rigid boundaries associated with the estimates
themselves, To facilitate transformation of these distributions toward the normal
distribution, the logarithm of the estimate is used as the parametric definition {Gasser et.al.,

1982). The construction of the distributions for all of the 18 parameters is discussed below.

5.1.1 Amplitude Normality

Data values extracted from the EEGs of the eight “normal™ patients extracted at 5 minute
intervals is used to construct frequency distributions of each of the eight measures of
amplitude corresponding to the eight channels recorded. Each of these patients contribute
between 216 and 288 data points to the distributions (recordings last between 18 and 24
hrs) amounting to a total of 1738 points. The distributions appear in Figure 5.1. Values of
skew and normal tests lie between -1 and +1 confirming that all amplitude distributions are
within acceptable limits of the normal distribution. Averages and standard deviations of the

various distributions appear in Table 5.1,
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Head region (Channel) Average | Std. Deviation
Left Anterior 430 0.28
Left Central Parietal 4.28 0.29
Left Posterior 4.50 0.33
Right Anterior 4.34 0.24
Right Central Parietal 4,25 0.26
Right Posterior 448 0.35
Left Central Termporal 4.97 0.25
Right Central Temporal 4.99 0.26

Table 5.1

It was stated earlier that EEGs of normal children exhibit a posterior anterior gradient in
the amplitude of activity with decreasing values in the anterior direction. The average values
of activity presented in the table exhibit this posterior anterior gradient in the two
hemispheres demonstrating this aspect. The last two amplitude measures represent the
central temporal head regions. The inter-electrode distance for these two channels is twice
that of the other channels and hence the amplitude averages are higher than those of the

other channels.
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‘ 5.1.2 Symmetry

Data values from five patients evaluated normal by the neurologist are used to
construct the four frequency distributions for the left / right symmetry measures. These
distributions too are within acceptable limits of normal distributions. These distributions
consisted of 1085 points and are illustrated in Figure 5.2 above. The averages and standard

deviations of the four distributions are presented in Table 5.2.

Head region Average Std. Deviation
Anterior 0.99 0.07
Central Parietal 0.99 ’ 0.08
Posterior 1.01 0.07
Central Temporal 1.00 0.03

Table 5.2

As is evident from Figure 5.2 and the standard deviations listed in the table, the distribution
from the channel pair that monitors the central-temporal head region has a much smaller
range as compared to the other distributions. The two channels of this pair have a common
electrode i.e. the channel on the left hemisphere measures voltage between electrodes T
and C, while the channel on the right hemisphere measures voltage between electrodes T,
and C.. Hence the difference in activity between hemispheres is much less as compared to

the other channel pairs.
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0 5.1.3 Front / Back Differentiation

Seven patients coraprise the frequency distributions characterizing front / back
differentiation of the control population. Skew and nomal tests verify that these
distributions consisting of 1569 data values are within acceptable bounds of the normal
distribution, The averages and standard deviations of the two curves shown in Figure 5.3
corresponding to the two hemispheres is presented in Table 5.3. The posterior to anterior
activity ratios in young children may reach values as high as 4:1 (Slater and Torres,
1979).This explains the large standard deviations of these distributions as compared to

- those representing the symmetry in activity..

Hemisphere Average Std. Deviaticn
Left 1.14 0.10
Right 1.13 012

Table 5.3

5.1.4 Variability

Twenty one data points from eight patiehts constitute the four frequency
distributions - two for zero-crossing rate and two for energy change, corresponding to the
two hemispheres. Unlike all other parameter values that are extracted once every five
minutes, these parameters are extracted ooly once every six hours and hence the small
sample set. The averages and standard deviations of the four distributions represented in

Figure 5.4 is presented in Table 5.4.
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Parameter Average | Std. Deviation
Zero-crossing rate - Left 17.48 112
Zero-crossing rate - Right 15.62 1.09
Log energy of change - Left -3.80 0.13
Log energy of change - Right -3.64 0.13

5.2 Statistical tests

Table 5.4

Software apalyzes six hours of EEG data and extracts eighteen features from it

which amounts to 1012 data points. The aim at this point is to arrive at the level of

normality of each of these features by analyzing the corresponding sample sets of data. Each

of the eight amplitude measures, four symmetry measures and two front / back

differentiation measures are associated with 72 data values each. The amplitude and ratio

distributions of a new “normal” patient could be expected to be quite similar to the

corresponding distributions of the control population. An abnormal EEG, on the other

hand, would have distributions quite different from that of the control group. This is evident

from Figure 5.5 which illustrates the symmetry measure that compares the posterior head

regions in the three cases, (a) control population distribution, (b) distribution of a normal

patient and (c) distribution of an abn-»ymal patient.
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The distributions in (a) and (b) are similar in terms of the value corresponding to the
peak, the range of the distribution, etc. while (c) is quite different from both these

distributions.

A measure of the degree of similarity between the distributions of the control
population and the EEG being analyzed would give an estimate of the normality of the
feature concerned. An appropriate definition of the “measure of similarity” is crucial to
facilitate extraction of the required ii{crmation from the sample sets. For all of the fourteen
features i.e. eight amplitude and six ratio features, that provide such a sample set of data, an
overall measure of normality that ignores indi\.ridual fluctuations of the data values is
desirable, A comparison of the means of the data set and the corresponding control
distribution would serve as a suitable measure of similarity. The basic premise is that similar
distributions have similar means and arithmetic means provide a good estimate of overall
data trend, This is clearly evident in Figure 5.5, where the means of (a) and {c) are at 0.01
and 0.00 respectively, while the mean of (c) is far away at 0.10 indicating an abnormality. A
t-statistic measures the level of similarity between distributions by comparing their means.
This could be used to compare distributions of new patients with the control population to

extract information about their normality. This is further discussed in section 5.2.1 below.

5.2.1 T - Statistic

Very often inferential statistics is sought in order to make decisions about the value
of a parameter such as a population mean or population proportion. Often cross-correlation

techniques are used to compare populations. However, when the similarity of the means of
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distributions is to be compared rather than the forms of the distributions themselves
hypothesis testing is preferred. Hypothesis testing first involves making a suitable
hypothesis. Tests are then carried out on the population and the hypothesis is either
accepted or rejected on the basis of the values obtained for the test-statistic applicd. One

test-statistic often used for hypothesis testing is the t-statistic.

Suppose that independent random samples of sizes n, and n. are taken from two
normally distributed popuiations with means p, and p1. respectively. Let x, and s, represent
the sample mean and standard deviation of the sample from population with mean i, and x,

and s, the sample mean and standard deviation of the sample from the population with mean
U2, Then the random variable
(1 - %2) (1 - W2)

t= a1l
""(512/ n + Szzlﬂz)

has approximately the t-distribution with degrees of freedom given by

[(si*/m + 5,°/my))
df = .2
(S1zlﬂ| )2 + (S;-"/nz) :

nl‘l n--l

rounded to the nearest integer (Weiss and Hassett, 1991). The t curve is symmetric about
‘0> and extends indefinitely in both directions. Ac with the normal curve, the area under a t-

curve is equal to 1 and it approaches a normal curve as the number of degrees of freedom

get larger.

For the test of a hypothesis H : p; = ., therefore the random variabie,
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(x1 - x2)
L= .53

V(s + s,°/n;)

may be used as the test statistic and is called a t-statistic. A t-statistic value of 0 implies that
the hypothesis is absolutely true. If the t-statistic is > 0 then the area under the t-curve to
the right of it gives the probability of the truth of the hypothesis. Similarly, the area under
the t-curve to the left of a t-statistic value less than 0 gives the probability of the truth of the
corresponding hypothesis. The t-statistic essentially measures the normalized distance
between the means of the two distributions and hence greater its absolute value lesser is the

probability of the two means being equal.

The probability value associated with the t-statistic value corresponding to any two
distributions provides a measure of similarity between the arithmetic means of the two
distributions being compared. This is exactly what is desired while comparing parameter
distributions of the control population and a new paﬁent, and hence the t-statistic maybe
used to perform the task. The t-test maybe applied only to distributions that satisfy two
conditions: Independent Samples and Normal Populations. Two samples are independent if
the samples selected from one of the populations has no effect on those selected from the
other. For the problem at hand, the two samples are absolutely independent of each other
since they are from different patients and hence do not influence each other. The
distributions of the control populations themselves are within limits of a normal distribution
as discussed in section 5.1. The various distributions of most patients have also been found
to conform with the characteristics of a normal distribution. The t-test statistic may

therefore be applied to obtain information about similarity of these distributions.
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Subsequent to feature extraction from an EEG to be interpreted, the means and
standard deviations of the 14 parameters: 8 amplitudes, 4 symmetries and 2 front back

differentiations, are calculated. Thg t-statistic is then calculated as below.
tw=X-x)/ Vo/m+om)y 0 5.4
where,
X; = mean of a parameter distribution for the EEG being evaluated
x» = mean of the control population distribution for the same parameter
o, = standard deviation of the parameter distribution for the EEG being evaluated
o, = standard deviation of the control population distribution for the same parameter
n, = number of samples for the EEG evaluated
n. = number of sampies in the control population

The number of degrees of freedom of the t-curve as_sociatcd with the randcii variable is
defined above in Equation 5.2. Since n,is very large (> 1000), df = (n, -1) = 71. Beyond df
= 30, the t-curve converges to the normel distribution (Weiss and Hassett, 1991) and
therefore the probability values corresponding to the various t-statistic values are read off
the normal distribution tables. If the t-statistic > O then the mean of the control population is
less than that of the EEG being analyzed for the particular parameter. Similarly, if the t-

statistic < 0 the control population mean is greater than that of the EEG being evaluated.

The range of t-statistic values extends from - to +. Its value represents the level

of normality of the measure associated with it. For amplitude measures, depression in EEG
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activity is an abnormality and amplitudes greater tﬁan or equal to that of the control
population represent normal EEG. Therefore a t-statistic value greater than or equal to zero
irrespective of its magnitude implies absolute amplitude normality for the corresponding
amplitude parameter. Therefore the probability of normality is assigned a value of 1.0. A t-
statistic < 0 corresponds to a depression in activity of the EEG being evaluated and the
level of depression is a function of the absolute value of the t-statistic. It has been observed
that a t-statistic value < -50 indicates a very severe depression and is therefore assigned a
0.0 probability of amplitude normality. Therefore the t-statistic value range from -50 to 0 is
mapped linearly onto a probability range from 0.0 to 1.0, The probability of normality of an

amplitude parameter is thus defined as,
= 1.0, t-value = 0.0
Prob. of amp. normality = (50 + t-value)/ 50, -50 <t-value <0 v 5.5

= 0.0, t-value £-50

The symmetry parameters compare activity of the left hemisphere to that of the right
hemisphere. For normal EEGs the activity between hemispheres is symmetrical as is evident
from the means of the control population distributions for these parameters. A t-statistic
value > 0 for a symmetry parameter therefore implies that the mean of the distribution for
the EEG being analyzed is > mean of the control population which is ~ 1,0. This in turn
implies that the right hemisphere is relatively depressed as compared to the left hemisphere.

A t statistic < 0 on the other hand implies a relative left hemispheric depression. Unlike in
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the case of parameters for amplitude, for symmetry, a t-value different from 0.0 represents
an abnormality and the level of asymmetry is a function of the magnitude of the t-statistic, It
has been observed that a t-statistic value with magnitude > 50 indicates a very severe
asymmetry and is therefore assigned a probability of 0.0. A t-statistic value equal to 0.0
indicates absolute symmetry and is hence associated with a probability of normality of 1.0.
Thus each of the t-value ranges from -50 to 0 and from 0 to 50 is linearly mapped on to a

probability range of 0.0 to 1.0.
=0.0, t-value £-50
Prob. of norm. of symmetry = (50 - | t-value] )/ 50, -50<t-value< 50 e 36

= 0.0, t-value = 50

In the case of front / back differentiation measures, a front back ratio less than the
mean of the control population distribution indicates an insufficiency in differentiation in
activity between posterior and anterior head regions and the level of abnormality itself is a
ﬁmcﬁm of the magnitude of the mean of the parameter of the EEG being analyzed. A
parameter value greater than the mean of the control distribution indicates a greater
differentiation than average and this does not represent an abnormality. In terms of t-
statistic values therefore, t = or > 0 is considered normal and the probability of normality
associated with it is set to 1.0. Once again it was observed that a t-value < -50 indicated a

very severe lack of differentiation and the probability of normality associated with it is set to
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0.0. The probability of normality for a t-value between -50 and 0.0 is linearly mapped on to

2 0.0 to 1.0 probability range as below.
= 1.0, t-value=>0.0
Prob. of normality of diff. = (50 + t-value)/ 50, -50 <t-value <0 e 0.7

= 0.0, t-value<-50

A t-statistic is calculated for each of the eight amplitude parameters, four left / right
symmetry parameters and two front / back differentiation parameters. The various
parameter values are thus, mapped on to a 0.0 to 1.0 probability range, each reflecting the
probability of normality of the feature of the EEG that they measure, ie amplitude of a
particular channel or left/right symmetry of certain region of the brain, or front to back

differentiation.

5.2.2 Assessment of Variability

Unlike the amplitude and ratio characteristics which are summarized by data
distributions for each new incoming patient, variability is characterized by four values each
one summarizing a different aspect of variability. As @t is not a distribution, the t-test may
not be used to assess it. The variability of every six hour EEG record analyzed is
characterized by two sets of measures corresponding to the two hemispheres, each set
consisting of a zero-crossing rate and an energy of changelmeasure. As discussed earlier,

large enough values for both measures corresponding to a particular hemisphere indicates
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presence of varability in activity orginating from that hemisphere. The data values
themselves can be assessed for normality by comparing them with the corresponding
frequency distributions of the contrcl population. A measure of the relative standing of the
data values within the distributions of the control population may be treated as an estimate
of the level of normality of the measure itself. For instance, a zero-crossing rate greater than
all sample points of the control population implies a 100% normality in the zero-crossing
rate. A value less than all sample points of the control population would imply an absolute
abnormality and one equal to the mean would indicate a 50% probability of normality of the
zero-crossing rate. Such a measure of relative standing could be arrived at by computing the

z-score of the parameter value as discussed in the section below.

Any normal curve is defined by its two parameters : i, the mean about which it is
symmetrical and & its standard deviation. The total area under such a curve is equal to 1 and
most of it lies between W - 3¢ and p + 3. The area under a normal curve with parameters
u and o that lies between x = a and x = b is equal to the area under the standard normal

curve that lies between

a-p b-n
b A and A .....5.8
o) (v}

A standard normal curve has a mean of 0 and standard deviation equal to 1. The area under
a normal curve with parameters p. and o that lies to the left of a given value x can be found

in a similar way by first computing the corresponding z-score as

X- [
2 e 5.9
C
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The area to the left of the z-sco:e under the standard normal curve is equal to the required

area and can be read from standard tables.

While assessing the zero-crossing rate and energy of change parameters, the relative
position of these with respect to the control population data set is desired. This amounts to
finding the area to the left of the parameter value under the corresponding control
population distribution. Since all four distributions of the control population, 2 zero-
crossing rates and 2 energies of change, fall within limits of a normal curve the z-score

method described above maybe used to evaluate the areas required.

The z-score of the zero-crossing rate and energy of change parameters of an EEG
being analyzed are computcd using Equation 5.6, The area under the standard normal curve
to the left of z-score gives a measure of normality of the corresponding parameter.
Therefore, subsequent to computation of the z-score, the two zero-crossing rate parameters
and the two energy of change parameters are reduced to four probabilities of normality each

denoting the level of normality of the corresponding characteristic of the EEG.

5.3 Data Reduction

Subsequent to statistical analysis, an EEG'is characterized by 18 probability
measures lying between 0.0 and 1.0. From the information provided by these measures the
level of normality of the EEG is to be deciphered. This can be pe:fornied by an automated
learning machine which is trained by a lfgpresentative set of examples. However, the
efficiency of such a systeﬁn is dependent oii-:.';;ne number of variables provided to it and is

better if fewer variables are input to the system. Therefore it would be useful to minimize
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the number of variables provided to such a leaming device. With the automated EEG
monitor, the eighteen measures may be reduced to four by integrating the information from
the eight amplitude measures as one, the four symmetry measures as another, the two

differentiation measures as a third feature and the variability measures as a fourth feature.

Of the eighteen measures generated from an EEG to be evaluated, eight characterize
the amplitude of the EEG activity corresponding to the eight head regions. To obtain
information about the overall normality of EEG amplitude, the information from these eight
parameters should be suitably aggregated. Depression in several of the eight head regions is
indicative of a worse prognosis than depression in just ome region. To incorporate this
gradation into the overall amplitude normality parameter, the eight amplitude normality
parameters are averaged to provide one parameter of Ewerall amplitude normality. Similarly,
the four symmetry parameters that characterize symmetry in activity between the two
hemispheres in the various head regions are averaged to provide a parameter of left / right
symmetry. The front / back differentiation parameters corresponding to the two
hemispheres are averaged to provide the front / back differentiation parameter. An EEG is
said to be variable if it is characterized by a good zero-crossing rate AND a good-energy of
change. A high value for one of them with a low value for another is as bad a prognosis as a
low value for both parameters. The normality of variability is therefore indicated by the
magnitude of the lower of the two parameter values. Therefore the variability parameter can

be defined as

variability = min { probability of normality of zero-crossing rate, probability of normality of
energy of change}

..... 5.10
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The two variability parameters corresponding to the two hemispheres are then averaged to

provide an overall measure of variability of the EEG.

Subsequent to statistical analysis and data reduction therefore, the EEG is
characterized by four probability measures that speak about the amplitude, the left / right
symmetry, the front / back differentiation and the variability of the EEG. This information is
to be further interpreted to classify the EEG as being normal, mildly abnormal, moderately
abnormal or severely abnormal. This is done by automated machine learning from prior
examples of such classification done by the neurologist. This is discussed in the following

chapter.



6. KNOWLEDGE-BASED EXPERT SYSTEM

The aim at this stage is to develop a system which accepts the four indices, i.e.
amplitude, symmetry, front / back differentiation and variability measures of an EEG as
inputs and classifies the EEG as one of the four categories namely, normal, mildly abnormal,

moderately abnormal or severely abnormal (Figure 6.1).

System ——— Data System
Input -——— Interpretation Output
Figure 6.1

Such a system should mimic the neurologist’s criteria for classification. The data
interpretaticn in the figure above should correlate with the neurologisi’s decision-making
about the level of EEG abnormality based on its various characteristics. However, since the
neurologist interprets these EEGs visually and the characteristics themselves are not
quantified, knowledge acquisition by direct consultation with the neurologist is not feasible.
The system could acquire knowledge about the data interpretation from examples classified
by the neurologist. The EEGs classified by the .neurologist can be quantified and
characterized by the four indices which would form the inputs to the system. The
neurologists classification would serve as the corresponding output. Data interpretation is
intrinsically codified in the input-output relationship of these examples and suitable
automated techniques can be designed to extract the required knowledge. This chapter
discusses the concept of automated machine-learning from examples and describes the

knowledge-based expert system built to perform the task of EEG classification.
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' 6.1. Machine leaming from examples

Ore way to teach a system how to perform a task is by presenting it with examples
of how it should behave. The system treats the examples as highly specific pieces of
information which are then transformed into more general pieces of knowledge that maybe
used effectively by the performance element. Simon and Lea (1974) call the space of
possible training instances the instance space and the space of possible general rules the ruie
space. Then the system should search the rule space to come up with rules that would
describe the behavior of instances in the instance space. An intelligent learning system
would select its own instances to resolve ambiguities about rules in the rule space.
Therefore, if the program were unsure whether all dogs have four legs, it might search the

instance space to spot animals with different numbers of legs to see which ones are dogs.
Any system that learns from experience shouid address three component problems :

¢ Aggregation. The learner should identify the basic objects that constitute the instances

from which he will learn. He should first and foremost separate signal from noise.

¢ Clustering. The learner must identify which objects or events should be grouped
together into a class. He should develop extensional definitions for concepts based on

those data.

¢ Characterization. The learner must formulate some general description or hypothesis
that characterizes instances of the concept. In other words, he must generate an

intensional definition of the concept.
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The task of learning from examples maybe viewed as a degenerate case of the
general learning task as the tutor solves the problems of aggregation and clustering by
providing the learner with positive and negative examples of the concept to be learned.
Therefore the task of learning frot examples maybe viewed as simplified characterization,
since this is the only component of learning that must be addressed. This simplification has
proved quite useful to learning researchers, and many of the characterization methods that
were initially developed for the task of learning from examples have been successfully

transferred to more complex problems.

6.2. Concept Learning

A great many programs have been developed that learn one or a few concepts from
instances. A concept maybe called a predicate described in some language, which when
applied to a positive instance is TRUE and when applied to a negative instance is FALSE. A
concept partitions the instance space into positive and negative subsets. Thus, given a
representative language for concepts and a set of positive and negative training instances,
the concept learning problem itself is to find a unique description in the rule-space that
would encompass all the positive instances and none of the negative instances. Once the
concept is learned, the system is ready to classify new unknown instances as positive or

negative instances of the concept.



38

6.2.1. Concept Learning by Generalization

Concept learning from instances has primarily incorporated techniques of
generalization. In this paradigm, the system initially assumes that all aspects of the first
positive instance are relevant to the concept and systematically removes conditions as they
fail to occur in new instances. The basic premise is that one can artive at the definition of a
concept by determining those features that are held in commen by a set of positive
examples. The performance of such a system is primarily dependent on two features - the
manner in which the rule space is searched and the way in which negative instances are

made use of.

Many of the early systems used a depth-first search and often did not use the
negative instances at all. Bruner, et. al.(1956), developed a system to learn concepts that
could be represented as attribute-value pairs. This app.roach started with a positive instance
and initially all attributes were assumed relevant to the concept. Those attributes whose
alteration led to a negative instance were retained and all others were eliminated. Although
this strategy works well with conjunctive concepts connected by an AND, it cannot be used
to learn disjunctive concepts connected by OR. Winston (1970), extended this approach
further to learn more complex representations. In this case, with the introduction of new
positive instances, in some cases, more than one generalization was possible. Since the
system performed a depth-first search through the rule space, it needed the ability to
backtrack and this is when negative instances come into play. A misclassification of a
negative instance on the part of the system initiates backtracking to a prior more specific

definition.
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An advantage of breadth-first search strategies is that they need not retain positive
instances of a concept since they need never backtrack. Hayes and McDermoit (1977), have
incorporated this in their system. In this technique, if a generalization was formed that
covered non examples in addition to positive examples of the concept, it was considered
overly general and that hypothesis was dropped from consideration. This requires that

negative instances be stored to prevent over - generalizations.

The Version Space technique developed by Mitchell (1977) dispenses with such a
need too. In this technique, in addition to maintaining a set of generalizations or maximally
specific versions (MSVs) of a concept, a set of maximally general versions (MGVs) are also
maintained. The MGV starts off with the most general point in the rule space, the null
description, which places no constraints on the training instances and thus describes
anything. The MSV starts off with the first positive instance itself represented in the same
language as the rule space. New positive instances lead to a more general MSV due to
fewer conditions which correlates with the generalization in the previous methods. New
negative instances lead to more specific MGVs with additional conditions. An MSV
hypothesis that successfully matches a negative instance is removed. Similarly, an MGV
hypothesis that fails to match a positive instance is removed. This algorithm known as the
candidate - elimination algorithm is a least-commitment algorithm since it does not modify
the version space, a set of all plausible hypotheses, until it is forced to do 5o by the training
instances, Positive instances force the program to generalize - thus, very specific concept

descriptions are removed from the version space. Negative instances force the system to
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specialize, so very general concept descriptions are removed from the version space. Thus,

the version space gradually shrinks unti! only the desired concept description remains.

The basic approach of learning by generalization has a number of drawbacks that

limit its value as a path to knowledge acquisition.

1. Since the method examines features that are held in common by positive instances, it

tends to over generalize when confronted with examples of disjunctive ruies.

8]

Geuperalization based learning systems bave difficulty handling erroneous data. If even
one of these examples is faulty, the entire learning sequence is thrown into confusion.

Therefore, efficient error-handling procedures are to be built in.

3. Programs that learn through generalizations have difficulty responding to an environment

in which the conditions predicting an event actually change over time,

Recently, more work has been done in this field to alleviate the above-mentioned
shortcomings. Michalski and Larson (1978), have suggested the use of only the most-
representative training instances and a more robust learning algorithm. Leng .and Buchanan
(1992), have improved the performance of their inductive inferencing by lett.il)g the system
generate new terms e.g. ordering (> <) concepts. Clymer and others (1992), have buiit a

system that is context sensitive by including a measure of effectiveness for the various

parameters.
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. 6.3. Neural Networks

Neural Networks are arother form of automated machine learning from examples.
Here, a functional form is assumed for the unknown system. This functional form has a
vector of parameters, w, that must be determined from the instances. The most popular
form assumed for the unknown system is a linear function. With more complex systems

multiple layers are iacorporated and the system creates new features in the hidden layers,

If the rule space is considered to comprise all of the possible parameter vectors, then
finding these parameter vectors is a task of searching the rule space to describe the behavior
of the training instances. Inductive learning machines work exactly on this principle and
hence neural networks maybe likened to them. Unlike neural nets;, constructive induction
methods require either some prior knowledge of potentially useful features or ways to build
them. This could be a liability in a truly knowledge-free domain but an advantage when a

little is available since it can be directly encoded.

6.4 Knowledge-Based Expert System for EEG Classification

6.4.1 Neural Network or Induction by Generalization?

As discussed earlier, a Knowledge-Based Expert System (KBES) is to be designed
to perform automatic interpretation of the EEG.. Such a system should aggregate
information provided by the four characteristic parameters of the EEG and classity it
amongst one of four categories. The knowledge about how the information is to be

aggregated could be acquired from prior examples in two different ways. This could be
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treated as a neural network with the four indices as the inputs and the four classifications
may be quantified and used as the output of the system. The network could then be trained
with a large set of examples. An aliernative approach would be inductive concept learning
by generalization. The system would be provided with the instance space consisting of the
various examples and a rule space with an operative language that would be used by the
system to describe the rules that it would generate. The system would create the rules by

making generalizations based on its positive and negative examples.

As explained in section 6.3 a neural network is advantageous when no information is
available about the relationship between the input and the output of the system. If however,
a little information is available, an inductive mechanism is advantageous as this information
can be incorporated into the operative language of the rule space. In this case, where the
EEG is to be classified, one does have access to a little information about the relationship
between the inputs and the output of the system. A. patient p, with parameter indices greater
than or equal to another patient p, will belong to a grade better than that of p. : if p; were
moderately abnormal then p, could never be severely abnormal. This is so because all
parameter values are probabilities of normality. A higher value for a parameter implies a
greater probability of the parameter, and hence the EEG, being normal. While training a
neural network this information must be learnt by the system from the examples given to it.
However, it could be passed on to an inductive learning mechanism by incorporating < and
> signs in the operative language of the rule space. This is further discussed in the section
6.4.2. Thus, it will be advantageous to solve this problem by designing an inductive tool

that learns by generalization, However, the various shortcomings of the technique of
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. generalization discussed in section 6.2.1 are to be remedied for acceptable system

performance. The system design is discussed in the following section.

6.4.2 Defining the boundary

The problem at hand is to divide a four-dimensional space, each dimension
corresponding to a parameter, into four regions -- normal, mild, moderate and severe
categories of EEG classification. A new EEG to be classified would then be assigned the
region it falls in. The boundary between any two regions is 2 monotonous surface in four-
dimensions, Such a surface ensures that an EEG with all parameter values greater than or
equal to that of another EEG would be associated with a region indicating as much or a
lesser degree of abnormality. Figure 6.2 below illustrates the problem in two-dimensions,
The two axes correspond to two parameters based on the values of which the region
encompassed by them is divided. Here the regions are demarcated by monotonic lines. The

problem then is to define the three lines between the four regions of EEG classification.

normat

severe

Figure 6.2
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The automated EEG monitor learns concepts from examples by the technique of
generalization. Three boundaries between the four categories of EEG classification are to be
learnt. Each boundary may be treated as a concept and learnt independently. Every one of
these boundaries divides .the decision space into two regions. For instance, the boundary
between the mild and moderate regions divides the decision space into two regions, the one
to the right of the boundary consisting of the mild and normal regions and the other to the
left of it, consisting of the moderate and severe regions. To define any one of the boundaries
therefore, the exampies corresponding to the categories that are expected to be to the right
of the boundary are called positive iustances and those that are expected to be to the left are
treated as negative examples. The aim then is to come up with a boundary definition that
runs between these positive and negative instances. Such a definition of positive and
negative instances feeds the system information about the ascendancy of the categories i.e.

greater the parameter value, greater the level of normality.

The Most General Version (MGV) of any boundary starts at the origin of the four
dimensional space, thus declaring the entire space as the region of interest and progressively
cordons off regions with incoming negative instances to make the space more specific. The
MGYV interprets negative instances with the < operator. A negative instance teaches the
system that the region of the decision space with parameter indices < those of the negative
instance would lie to the left of the boundary. Each negative instance that alters the MGV
is represented as a point with four coordinates. Therefore the definition of the MGV is a set
of points. The negative instances that lie to the left of the existing boundary do not affect

the MGV. Progressively, the definition of the MGV moves to the right with new incoming
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instances. The Most Specific Version (MSV) starts with the first positive instance of that
region. With incoming positive instances the MSV relaxes its limits and makes the space
more geaeralized. The MSV uses the greater than operator to generalize, i.e. if a positive
instance comes in, then the system learns that parameter indices greater than or equal to that
of the positive instance would lie to the right of the boundary being defined. The MSV
boundary progressively moves to the right with incoming positive instances. Positive
instances that lie to the right of the current definition of the boundary do not alter the MSV,
Thus such an operative language in the rule-space, consisting of > and < signs also teaches
the system about the ascendancy of the categories. At any time during training, the
definition of the boundary could look like Figure 6.3 below. The +’s in the figure represent
positive instances of the boundary to be defined and x’s represent negative instances of the

boundary. The dashed line denotes the MSV definition of the boundary while the solid line

denotes the MGV definition.
++ MSV
pd X + ¥+
x MGV x—x——=x | Figure63

A good representative sample-set would ensure the convergence of the MSV and the MGV

and would therefore define the boundary uniquely.

Each boundary limit is stored as a point with four co-ordinates. For instance P, (p a,

Pas Pi3s Pas)s Po (Do, Przs Pozs Pos) @00 Pe(pes, Pe2, Pea, Pes) could be three points on the boundary
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between the normal and mild categories. A new EEG P, (p., Doz Pas Pas} Would be called

normal if,

{Pu 2Ppa AND p» 2 po AND pys 2 p3 AND pu2 pu} OR
{ Par 2 pus AND po2 2 poz AND pas = pry AND prpy } OR
{ Pa = pa AND pe 2 pee AND pys 2 pes AND pie 2 pai}

This design facilitates learning of both conjunctive concepts connected by AND and
disjunctive concepts connected by OR. Learning of disjunctive concepts is not possible with
most conventional generalized inductive learning techniques. The method developed here

overcomes this shortcoming,

6.4.3. Dealing with bad instances

A negative instance does not alter the MSV as long as it falls to the left of boundary
defined by it. However, if it falls to the right of the boundary, then a conflict between two
instances, one positive and another negative is taking place. The conflict occurs because a
negative instance has parameter indices greater than that of the positive instance and it is
necessary to identify the bad instance. To begin with, both instances are treated as erratic
data. The negative instance is dropped and does not alter the MGV, The MSV boundary is
pruned, i.e. it is made less generalized by dropping the bound set by the conflicting positive
instance. If a similar positive instance comes in a second time, then the system is reassured
that the positive instance was indeed genuine and the boundary is reinstated. If on the other
hand, a similar negative instance comes back, then no conflicting bounds exist in the MSV

and hence the instance goes on to alter the boundary of the MGV.
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A positive instance that falls to the right of the boundary defined by the MGV does
not affect its definition. If on the other hand it falls to the left of it, it is treated as above and
the MGV boundary is pruned by dropping the bound set by the conflicting negative
instance. The conflicting positive instance is dropped as well and it does not alter the MSV,
If however, a similar negative instance comes in again as a member of the training set, the

system resets the MGV boundary as with the case for the MSV.

Thus, erratic instances are dropped and the boundary that best suits the majority of
the data is taken as the definition. Such a technique for erroneous data management makes
the system robust and insensitive to errors in data. The knowledge-based expert system

described above is trained and tested. The results are presented and discussed in Chapter 7.



7. RESULTS AND CONCLUSION

7.1 Resulis of statistical analysis

After artifacts are rejected from the EEG, quantitative features are extracted from it.
These features are then compared with a normal population to estimate their level of
normality. As explained earlier, the t and z-statistic values estimate the levels of normality.
The measures extracted were found to quantify the level of abnormality quite well as is

evident from a few examples presented below.

Figure 7.1a depicts an EEG with normal amplitude and fipure 7.1b illustrates a
depressed EEG. The depression in activity is present in all channels and the neurologist
graded it as a moderate level of depression. The distributions of the amplitude measure for
the left frontal channel is presented in figure 7.2. Figures 7.2a and b corresponds to 6 hours
of the EEG in figures 7.1a and b respectively. The t-values associated with these
distributions are +10.12 and -28.35 respectively. As explained earlier, a t-value greater than
zero implies an absolute amplitude normality and is associcted with a probability of
normality 1.0. The EEG in figure 7.1b is associated -with a probability of normality 0.43
according to equation 5.5. A probability of normality is arrived at for each of the 8-channels
recorded and these are averaged to obtain the overall probability of normality of amplitude.
The probability of amplitude normality for the EEG in figure 7.1a was found to be 1.0 since
all channels had a t-value greater than 0.0. The amplitude normality probability for the EEG

in figure 7.1b was found to be 0.30, in keeping with the neurologist’s classification.
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Figure 7.1(a) - 20 secs of an 8-channel EEG of a patient with normal amplitude of activity.
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Figure 7.3 shown on the following page depicts an EEG with an asymmetry in
activity. Upon visual examination, the asymmetry in activity is found to be most pronounced
in the frontal head regions (f3-c3 vs f4-c4) with a right-sided relative depression in activity.
The central-parietal channels (c3-p3 vs c4-p4) also demonstrate an asymmetry in activity
though to a much lesser degree. The activity in the posterior appears quite symmetrical.
Figure 7.4 illustrates the symmetry measure distributions for the three channel pairs. Figure
7.4a corresponding to the frontal pair shows a clear right shift from 0.0, indicating a left-
sided predominance in activity, Figure 7.4b also shows a very slight right shift while figure
7.4c is quite well-centered about 0.0. The t-values associated with each of these
distributions capture well the observations made above. The frontal pair has a t-value
+40.32 indicating a severe asymmetry, the central pair has a t-value +7.21 indicating a miid
asymmetry and the posterior pair is associated with a t-value 0.94 indicating a symmetric
activity. The probabilities of normality associated with each of these is calculated using the
formula in equation 5.6 and they are 0.19, 0.86 .and 0.98 respectively. The overall
probability of symmetry of the EEG in figure 7.3 is found to be 0.68, obtained by averaging
the three measures of symmetry. The probability of symmetry associated with this EEG
does not indicate a very severe asymmetry since it is pronounced only in one of the three

channel pairs.



. ‘ I \ ;\‘ , : L ; ' pti i },"‘ i i
f“3 5t ;CB:N ’ﬁ 'J ’/ f W }‘-J-.f""‘.,"‘g !Lﬂff\""-(\"‘\\ I M\J\rf' L":\ﬂ\j\\ﬂ«m\k AP w"ﬁ‘"f ““ﬁ L{\"!’\'f VMM’
i ' B | i v | |

: ,N : ML l \ I /\
ci/g%pg"/w ljfwf‘ J’\f lx‘ﬂ lj,J\/'LIk/‘ \'_._',!' . ./‘f\/ \j!u/\.rlv a"‘lrr \[ w V;\Jh,{\ '\/1“\

“\?QPW H‘u/\/" \/M W '!‘QJH:/N\/\/"M\J\"\JﬂMVAJ\”:v\‘wﬁl\mﬁ/\m

“Wﬁvi\f TN Vit AN Sang el W-*M’W‘.["/” WiV

e

M“‘VW‘N\/’WL“MM\N’V\“ AN \ | f\,wm.l,\j\.ﬂm WA UW

| |
Tﬂ* W\ T/\W “W W/ VM/\AJW\/ i NW

1 t

»n ,, | |
&Wﬂ\ﬂ\/hmm M/\/"\/WNW%WW W“’\W\w ,

=

|

Levpghan| /ka AV V\M/\M w/w

| e Lo

Stellate Systems - L1c No. MO1 For Montresal Neurolnqmal Inst1tu

Figure 7.3 - 20 secs of an 8-channel EEG of a patient with assymmetric cerebral activity. A
relative depression on the right side is evident.



20

15

10 -

1

0 +H
-02 -011 -002 007 016 025 035 044

(@)

14
12
10

N bR OO o

R YT AR T

I

Mo

(b)

10

0 T
-02 -011-002 007 016 025 035 0.44

Figure 7.4 - Distributions of the measures of symmetry for the (a) frontal pair

©

104

(b) central-parietal pair and (c) posterior pair for the EEG in fig. 7.3.
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Variability of EEG is quantified by the zero-crossing rate and energy of change
measures. Figure 4.4 illustrates the delta band activity of three EEGs - figure 4.4a with
good spontaneous cycling and figures 4.4b and ¢ without. The values of the measures and

the corresponding z-statistics for the three examples are listed below.

Fig. No.| Zero-crossing rate Log of energy of change
measure | z-value measure z-value
4.4a 20 1.85 -3.46 2.56
4.4b 6 -10.19 -2.74 8.14
4.4c 26 7.85 -4.52 -5.56

The EEG corresponding to figure 4.4a is associated with high values for both the energy of
change and zero-crossing measures. These in turn correspond to positive z-statistic values.
Figure 4.4b is associated with a high value for the energy of change alone while figure 4.4c
is associated with a high value for the zero-crossing measure alone. In these cases too, high
values for the measure are associated with positive z-values and low values are associateci
with negative z-values. A positive z-value implies that at least 50% of the control
population lies below the patient being analyzed. The z-values obtained for the three

examples discussed above is in keeping with the discussions of chapter 4.

The probability associated with variability of the EEG is obtained using equation
5.10. EEG corresponding to figure 4.4a has a probability of having a normal level of

variability of 0.75 while figures 4.4b and ¢ are associated with a probability of 0.0. The
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probability measures for variability associated with the examples discussed above clearly
indicate that for good spontaneous cycling high values for both the zero-crossing rate and

the energy of change are required as explained in chapter 4.

Qualitative assessment of results obtained after statistical analysis indicates a good
level of correlation between the t and z-statistic values and visual interpretation. The feature
extraction techniques and the statistical analysis succeed well in characterizing the EEG in
terms of a few quantitative measures. The performance of the expert classifier is discussed
in section 7.3. The following section discusses the data acquired and the possible and

optimal ways of utilizing the data for training and testing of the expert system.

7.2 Training and Testing Data

Twenty two EEGs from as many patients recorded at the Montreal Children’s
Hospital are used as the training and testing data for the expert monitoring system. Each of
these recordings lasts between 18 and 22 hours ir duration and a majority are recordings
after corrective cardiac surgery. The recordings are evaluated by a neurologist and every 6
hour section is graded as nommal, mildly abnormai, moderately abnormal or severely
abnormal based on visual interpretation. Every one of the twenty two EEGs yields two or
three 6 hours sections depending upon the extent of artifact. In all, a set of 60 sections is
available from the twenty two patients, for training and testing the expert system, There are
several ways in which a data set can be divided into training and testing subsets. The merits

and demerits of the various schemes are discussed below.
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A popular technique used with perceptron-like learning algorithms is the
resubstitution method. Here, the entire data-set is used to train the system and the same
data-set is used to test it as well. One essential property of the perceptron algorithm and
also the inductive learning technique used for this project is that they converge to one
hyperplane that correctly classifies all the training examples. However, with small sample-
sizes the hyperplanes tend to be muitiple and the performance resuits on the design sets are
not replicated by independent test sets. For this project where the sample-size is quite small

the technique of resubstitution would be quite inappropriate.

The most obvious alternative to the resubstitution method is to partition the data
to two mutually exclusive subsets and to use one for testing and the other for training the
expert system. This scheme known as the holdout method makes poor use of the data since
a learning machine trained on a larger data set will, in general, perform better than one that
is trained on a smaller data. When the sample-size is siall the performance of a system that
is designed with only part of the data would suffer remarkably due to a non-representative
data-set. The holdout method is therefore, uneconomical in its way of using the data and

gives pessimistic error estimates.

The third method called the leave-one-out method goes a long way towards making
efficient use of the available data and reducing the bias of the error estimate. By this
technique, if the sample size is n, then, the system is trained with (n-1) samples and tested
with the other. This is carried out n times until all the samples have been used for testing.
- Here for each run almost the entire sample-set is used for training and uitimately all samples

are used in the tests, though each run consists of independent training and testing sets. The
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leave-one-out method has been found experimentally to be approximately unbiased
whatever be the classifier used. However, the extensive computation involved as n training

sessions are required, 1s a big drawback of this technique.

The rotation method 15 a compromise between the holdout and leave-one-out
methods. For this method, the n samples are divided into r sets with n/r samples each. In
each run one of the r sets serves as the testing set while all others are used to train the
learning machine. The performance of the system is then arrived at by calculating its
average performance for the r runs. The rotation method reduces both the bias inherent to
the holdout method and the computational complexity associated with the leave-one-out

method (Devijver, 1982).

For the purpose of this project, the rotation method of performance estimation is
used. The 60 sections are divided into six subsets with 10 sections each. Six training and

testing runs are carried out and the performance is the average of the six rums.

7.3 Results of the classifier

Features are extracted from each of the 60 six hour sections. For each run, the
learning machine learns from the inputs and outputs of the 50 training examples and is then
tested on the 10 testing examples. The cumulative result for the six runs is presented in a

matrix form in table 7.1 below.
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Table 7.1. Comparison of classification results from the automatic method

and the human expert.

“Expert’s Grade
Automated grade NORMAL | MILD { MODERATE | SEVERE
NORMAL 2 2 0 0
MILD 5 2 3 1
MODERATE 3 2 -4 3
SEVERE 1 16 10 6

In the 4X4 matrx presented, rows represent system classification and the columns
correspond to classification by the expert. The main diagonal represents the concordance
between the two methods. A clear bias in classification toward the left of the main diagopal
is evident. This implies a conservative performance by the monitoring device, ie. the
monitor in most cases, assigns to the EEG either the same grade as the neurologist or a
grade of greater abnormality. This may be due to the presence of an undefined gray area

between boundaries or due to an insufficiency in knowledge engineering,

According to the technique of generalization for inductive learning, the general and
specific versions of the boundary should converge and provide a unique solution (Mitchell,
1977). However, this requires a large enough sample-set. If the training set is not

representative enough, a gray area is present between the general and specific versions of
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any boundary(Figure 6.3). Such a system will perform conservatively if it uses the specific
version of the boundary as the gray area would then be included in the negative instance
domain. The performance of the system would be generous if the general version of the
boundary were used instead. Since the technique of inductive learning is used for this

monitoring ugit, its conservative performance maybe due to a arge gray area.

To ascertain the extent of the gray area, the system performance using the specific
and general versions of the boundaries maybe compared. The performance of the monitor
using the general version of the boundaries is summarized in table 7.2 below. Results
appearing in tables 7.1 and 7.2 are quite similar. This indicates that the two versions of all
boundaries (one between normal and mild, a second between mild and moderate and a third
between moderate and severe) are quite close to each other and the intervening gray area is
quite negligible. Therefore, the conservative behuvior of the system is not due to
insufficiency in the training set. The possibility of insufficiency in knowledge engineering is

discussed in the section below.
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Table 7.2 - Comparison of performance using the general

version of all boundaries,

Expert’s Grade
Monitor’s grade NORMAL | MILD | MODERATE | SEVERE
NORMAL 2 4 1 0
MILD 5 2 5 2
MODERATE 4 2 3 2
SEVERE 0 14 8 5

7.4 Discussion

The aim of the project has been to develop a monitoring system for automated
interpretation of long-term EEG in the pediatric ICU. Almost none of the systems that exist
today are capable of complete automatic interpretation. The cerebral function monitor
(CFM), extracts quantitative features from the EEG and these values are to be interpret by
the user. The compressed spectral array is used extensively by several systems. Here again,
the user is expected to interpret the spectral array by himself The system developed at the
Montreal Children’s Hospital tries to automate the entire process of EEG interpretation so

that no expertise is expected from the user.

The first step in this process is artifact rejection. Most other monitoring units with a

similar aim accomplish this task in the time domain by identifying and rejecting specific



112

artifacts usually with a single amplitude threshold (Bickford 1950, Pronk 1987, Prior 1987).
Artifact rejection of this monitoring unit performed in the frequency domain, has been more
efficient due to the following reasons : in the ICU it is quite difficult to anticipate the
waveforms of the various artifacts and also it is computationally economical to reject
artifacts in the frequency domain. By using a median filter and a hard-limiter thresholder,
artifacts are not separated from the underlying signal. The artifactual page is merely
replaced by the average activity of the preceding few hours. This simply ensures that long-
term interpretation does not suffer unduly from to this artifactual section. However, if the
entire recording is artifact-ridden, the output subsequent to artifact rejection ceases to
reflect true brain activity. Therefore for accurate EEG interpretation it is important to
ensure a good quality of recording, Most recordings performed in the pediatric ICU at the
Montreal Children’s Hospital, except an initial few, were found to have fewer artifacts than

was anticipated facilitating further interpretation.

Very few monitoring units developed so far make an attempt to mimic the
neurologist while performing quantitative analysis. All measures used for EEG
interpretation by this monitoring unit are quantitativé representations of qualitative EEG
features used by the neurologist. These measures quantify the EEG quite effectively and
their values demonstrate abnormalities observed by the expert on visual analysis. As
observed by Chiappa (1979), these quantitative measures can be very sensitive and on
several occasions picked up abnormalities missed by the expert on visual interpretation. On

review, the presence of abnormalities were confirmed by the expert.
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All of the four measures used by this monitoring unit fail to identify two very
impo‘rtant EEG patterns that reflect abnormality in brain function. One such pattern is the
burst suppression which heralds an unfavorable outcome reaching high statistical
predictability as observed by Lombroso (1985). Burst suppression is characterized by
periods of inactive background interrupted by synchronous or asynchronous bursts of
activity. This pattern may be reported as generalized depression by the amplitude measure if
the interrupting bursts are also low in amplitude. This is quite rare and in most cases the
burst suppression pattern is reported as being pormal by the monitor. The second pattern
that the monitor fails to report is generalized high amplitude slow ~wave activity. Chiappa
(1979) reports that generalized slowing is one of the first few signs of ischemic brain
damage. However, this is not identified by any of the fom quantitative measures used. It is

very crucial to add a few other measures that could identify the patterns described above.

Statistical analysis compares the attributes of new EEGs to be classified with those
of a group of “normal controls” and grades them based on the analysis. It is important to
choose the control population appropriately. The EEG of most patients in the ICU would
be abnormal, if their characteristics were compared with those of an absolutely normal child
due to the effects of anesthbetics, medication, etc. Normal EEGs were therefore chosen from
the recordings of ICU patients by visual analysis, Quantitative measures were then extracted
from these EEGs and if they indicated an abnormality the EEGs were reviewed to re-
confirm their classification. Thus the control population consists of patients in the ICU

whose EEGs are normal.
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When a t-test is used to compare distributions, it is general practice to quantify
similarities of the distributions by estimating the probability associated with the test-statistic
on the t-distribution. In this case the t-curve probability associated with the test statistic
estimates the probability of absolute normality of the corresponding feature. It does not
however, quantify the level of abnormelity since the control population consists only of
“absolutely normal” patients. According to the t-distribution, any t-statistic value > 3.08 is
associated with a 0.0 probability of 100% normality. The t-statistic value itself on the other
hand, quantifies the normalized distance between the means of the two distributions
compared, Since the degree of abnormality is a function of the distance between the means,
the t-statistic value measures the level of abnormality quite effectively. It is therefore more
meaningful to use the t-statistic value rather than its probability value from the t-
distribution. The expert system built uses the t-statistic value to quantify abnormalities. The
literature shows instances of t-statistic mapping to localize normal and abnormal functions

of the brain (Duffy e, al., 1981).

The EEG of children varies extensively from birth up to about 6 years of age, after
which the variation is much less pronounced. An EEG pattern considered normal for a 3
month-old may be an abnormal pattern for a 3 year old child. The neurologist takes the age
of the patient into account while classifying the corresponding EEG as normal or otherwise.
For this monitoring unit it would be ideal to define age intervals such as < 1 year, 1 to 3
years, 3 to 6 years, 6 to 10 years and > 10 years within which the characteristics of 2 normal
EEG recording are not expected to vary extensively. Independent “normal” control

populations for the various age intervals could then be created and training and testing
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could be done for each of these intervals. This would probably improve the accuracy of
classification of the EEGs. However, due to non-availability of representative populations

for the various age intervals such a scheme could not be implemented.

The control population used for this monijtoring device includes patients of all ages
up to 12 years. As mentioned earlier, the neurologist takes the age of the patient jnto
consideration while classifying the EEGs. Therefore, patients with similar quantitative
measures may be associated with different degrees of abnormality due to their age and this
would result in conflicting training examples when used to train the monitor. To make the
system robust and insensitive to erratic training ekamples a scheme for rejection of
conflicting training examples bas been incorporated as explained earlier. This mechanism
combined with the conflicting examples due to age could render the system conservative as

was observed in the results obtained.

In addition to age, the neurologist’s classification could be influenced by other
factors such as the coma scale and patient’s drug or anesthetic levels. The performance of
the system would mimic that of the neurologist’s better if the influence of these factors is

investigated and incorporated in the monitoring unit. -

The inductive learning technique by generalization used to train the expert system is
found to be superior to a neural network in terms of scope for system manipulation and
design. Ascendancy of grades of EEG abnormality (normal, mild, moderate and severe)
could be coded right into the decision space whereas t;nis would be impossible with a neural
network. However, the expert system buiit thus, does not lend itself to empirical analyses of

performance. It is quite difficult to get a feeling for the extent of influence of each of the
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measures on classification. In other words, it is quite difficult to comprehend the threshold
limits physically. To further improve the performance of the monitor, it is very important to
be able to gauge the importance of each of the measures used and consider alternative ways
of handling them. A feel for the importance of each of the measures could probably be got
by training and testing the system with three measures, dropping one each time. The nature
of the results thus obtained should summarize the importance of the measure that was not

used.

The system was trained with a set of fifty patients. It is possible that the training set
was not large enough for the system to learn the boundaries accurately. Training and testing
of the system could be performed with a set of simulated data. A large data set with various .
different combinations of the parameter values could then be simulated and the system

performance could be evaluated better.

The overall system performance of the EEG monitor built is not very impressive.
However, efficient methods of artifact rejection and f.'eature extraction have been devised.
Collection of more data for training the system could help the system leamn the boundaries
accurately. As explained earlier using small age intervals should go a long way in improving
system performance. Inclusion of few more quantitgtive measures suggested above and
better techniques to interpret the information provided by the measures would also enhance

system performance.
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