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This, thesis inéestigatés the’ sfabil%ty of a flexible

- centre-body, considered as a‘'clamped-clamped beam, in:narrow

annular flow. The equations of motion are derived, considering
inviscid and viscous fluid-dynamic ’qouplf\g for small
ampiitude oscillgtions of the beam. X
. For ,the fluid-dynamic problem, .two theéyetical models
have béen developed. In the first theoretical model, the
unsteady inviscid fluid-dynamic forces acting on the flexible
centre-bod; are derived by means of potential flow theory. In
tke second model, the viscous cqmﬁonents of the fluid-dynamic
forces acting on the bod; have been determined for evaluating_
the’lnmteadx‘and steady viscou; effects ﬁﬁsed on simplified
forms of the ‘Navier-Stokes and continuity equations.
A five-mode Galterkin d?%cretization_ of the continuous

system is employed in the solution of equationg of motion to

.yield a set of ordinary differential equatfons,® from which the

~#7

eigenffequencies are obtained. . - I

It is noted that the viscous effects on the system afe
important for annu;ar flow, as opposed fon unconfinéd flow;
moreover, the différence between the instabilities : given by
potential and viscous flow theories becomes laréer as the
viscosity of fluid is increased or the annulus decreased.

It was found thag the s&stem subjectéd to inviscid flow
becomes unstable by first-mode buckling and is monotonically
destabilized as the annular gap becomeg smaller; hOWevér, the
stabilizing influence of ‘the viscous effects increases with

diminishing' annultar gap ,. overcoming the déstabilizing

influence of the gap decrease in inviscid case.
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V' Cette thése présente une étude sur la stabilité d'un
cylindte central flexible, consideré comme une poutre
encastrée, dans un écoulement annulaire étroit. Les %quatioqs
de mouvement sont dérivées, en prenant en considération les

N
interactions dynamiques de fluide v#%queux et non-vi'squeux

pour des‘oscillﬁtions de Ya poutre de betiteoaﬁplitude. .
Poug le probléme de la dynamique .du fluide,.deux modéles

theériques “ont :été dévelopés. Dans le premier modéle

Ehéorique, les. forces. dynqmiques due a un égoulement non-

stationnaire ‘et non-visqueux agissgjt sur le. cylindre céntral
flexible sont dérivées & 1l‘’aide de la théorie de 1l'écoulement
pptentiel. Dans le second modéle, les composantes-visgueugps
des forces dynamiques du fluide aBissant sur le corps ont été
déetarminées ﬁour ’évaLu les .effets stationnaivwe®, et non:
stationnaires de la vilscosité en ucil$§an§ des formes
simplifiéLs des équ;tions e Navier-Stokes et de.continuité,
Une ‘discrétisatioﬁ de type Galerkin de cing modes . du
$ystéme continu est employéde dans la solution des équations de
mouvement dans Le’ but d'obtenir wun sysqém; d’équations
différentielles ordinaires, desquelles sont obtenues les
fréquences Propres. 2
Il est 4 noter que les gffets viséueﬁx sur le ;ystéﬁe
sont importants dans 1le cas dlun écoulement annulaire, par
oﬁpogition @ l'écoulement ndn-cdnfiné;,de plus, la difference
entre les instabilités obtenues par les théories d'écoulemqnt‘
potentiel et visqueux deviennent plus importantes 'lorsque 1la
viscosité du fluide est augmentée ou que l'espace annulaire
est diminué. " ’ . N ra
) Les résultats démontrent que le systéme/ sujet a un
ecoulement non-visqueux devient instable au niveau du flambage
du prémier mode, éé est d?stabilisé de "fagon ﬁonotone qusque
l'espace annulaire est _ réduit; ce%endaét, 17influence
stabilisatrice des effets visqueux a&gmeqte/avec la reduction

de i'espace annulaire, surmontant 1l’influence déstabilisatrice

dé la réduction de l'espace annula*r@ dans le cas non-visqueux.
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NOMENCLATURE"
Space symbols ‘ o
x*,r*,ﬂ | Cylindrical coordinates
T,%,T,.%, Ty Unit veétors associated with the coordinate
) system
— .
Ordinary symbols \
# .
a R;dius of the centre-body ) . ;
Ag Cross-sectional area of the centre-body",
Dy . Hydraulic diameter ' ‘
E Young's modulus of elasticity of the flexible
centre-body e !
E (X)) Comparison functions )
en Lateral disé&acement'of the centre-bob¥y axis
F Fluid-dynamic forces
R* Annular clearance A~
L Moment of inertia‘bf the centre-body
Ip,I1,Iy Integrals of the corresponding comparisoh
function products defined by equation (4-7d)
* Length of the oscillating flexible centre-bqd
M Mass of fluid contained in the annular passagé
per unit length
m E Mass of the centre-body per unit length
Re ¥ Reynolds number i
P Amplitude of the nondimensional counterpart of
fluid-dynamic forces o .
P Static pressure ;f fluid flow
fé ) Duct-wall radius .
T ‘ Tension acting on the centre-body
t¥ ‘ Time . ,
u¥ Mean flow‘veiocity

Uref:+ Urefl
z=f -1

Reference velocities defined by equation (2-3b)

" Nondimensional raé&al coordinate

!

+ These are the principal notations only; the nondimensionul

counterpart of some of these parameters are sHown, in
section, 2.3, equations (2-3a). .

‘ [




)

g,
s

Py
l,bsg*

. e .
vit
Greek letters \ . <;
By Eigenvalues
m . . Visc&sity of fluid
P ' \ Density of fluid ) .
Pg Density of the flexible centre-body
o4 Mass ratio defined by equatTGB'(2-12) ) .
T Shear stress acting on the wgll ' .
;_ Reduced-ﬂotion pot;ntial -
d ) Velocity potential
w - Complex eigenfrequency
Q . Circular frequency of the flexible centre-body
T \ ( )

. Matrix sywhols ,
[M],[C],IK] Mass, dampiﬁg and stiffness matrices - .
mjm»cjnvkjp Elemgpts of the corresponding matri§

.’ Rl

-
& Ay 1
- j




CHAPTER I ‘ , ¥

INTRODUCTION

i , o .
1. REVIEW OF PREVIOUS STUD;ES . - - == {"

- ° 2‘”‘

T-he flow of fluid around structures, although sometimes
generated for useful purposes (e.g., in promoting heat
transfer\), can cause destructive vibra'tions. Flow-i:nducéd
vibratdon problems are of great technical and financial
importance and- safety concern,a in many practical structures;
e.g., heat exchangers, nuclear reactors and skyscrapers. These
flow-induced vibration - problemsy have Dbecone increasingly
~important in 1;ecent years  because designers are using

-~

materials to their 1limit, :{ causing structures to bécome
progressively lighter and more flexible.- ’

The gtruct~ures immersed iIn fluid flow are subjected to
forces generated 'by the xf’lu:Ld flow;” as a result:,“ the fluid-
dynamic . forces cause the .structures to deform. When the
structures deform, hey change their orientgtions to. the -
f]:uid: and the fluidfdynamic forces may change, so that there
Is generally fluid-structure coupling and interaction. All.
these structures are subjected to f‘1'c>w-i'nduced vibration and
to fluidelést:,ic instabilities of different. types: depending on
the charagteristics of the struocture and the fluid field -
where‘ the term "fluidelastic tnstability"” generally implies a
self-excited divergence or ascillation, an inst;ability in the
linear sense.

For the motions of the structures and for the fluid flow, .

+ mathematical models “may be generated, In somne #cas,es,”
structural motions are r‘\ear-linear and the  structure,may thuws
be modeled as one oOFr more linear osciilators; however, a
general model for the fluid-dynamic forces acting on an
arbitrxary bluff struct‘ure does not exist. In many cases, the
fluid models rely .on extrapolétion of test measurements of

1ift, drag, or surface pressure,- which gené_ral\ly “ary

- e
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nonlinearly with motion of the structure. Therefore, the

’d_;ynam}c interaction of structures _ and fluid s generally

described by mnonlinear equations. As a result, few general
solutions are available. : g )
Broadly grouped according to flow configuration, the
v'ibratipn problems are classified as be‘in'g associated with (1)
cross-flow, (ii) intermal axial flow, (i{ii) external .axln‘l
flow and (iv) annular (to be discussed here). and leakage Flow.
The distinctjpon between confined axlal flow an‘d annular flow
is rather artifficial. In general, "annular” 1is used In I{ts
hydraulically generic sense, to include not only cylindrical
geometries, but also flat plates in narrow rectangular
conduits. This paper is concerned with a special case: that of
a flexible centre-body {n an axisymmetricnally narrow annular
Flow. . ' ' '

+ AN.brief review of the state of the art'in axial-flow- .
induced +vibrations, eithér internal or é&xternal, and in
annular-flow-induced vibrations may be a\}fx\mari%ed——as follows:
(i) the meche;nism of instgbilities induced by‘bxial flow 1s,

well understood; (ii) this 1is also true for th‘e m;.chanism of

the small, turbulence .induced, vfbratiens, but means -of
prediction of the excitation field are not yet adequate; 1if)
the fundamental mechanism of ° annular-f_llow-in <<d

instabilities 1is fairly well wunderstood, but, generally,

complexities of geometfy and fluid field make prediction of

the instabdilities difficulc. d ”

A considerable_ aemount of work has been done on the
dynamics of a c"ylindér immersed in stationary confined fluid.

The system was modeled as a cyfindrical beam githin a rigid

¢ylindrical container (1}, as a cylindrical beam within a
cylindrjcal shell [2] and as two coaxial shells [3]. The
common ‘faztor in all these studies is that motio of the
fluid were desciibed by means of potejnti\al flow. n most of

thése studies, in which, it 1is redlterated, there was no steady

state annular £low, the main distinguishing fdature of the
dynamics of th/syst:ems is associated wivh the large added

-~

0
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mass effect, which results from the large accelerations
suffered by the fluid in the narrow annular passage when the
structure vibrates As a result, the natufal frequencies of
the coupled system in stationary confined fluid are much lower
than those of the system without fluid.

The concept of the added or hydrodynamic mass has been
described by Stokes (4], Lamb (5], Fritz {l] and others These
invéstigators have génerafly considered the motion of a single
body in fluid The fluid-dynamic motion and associated steady
pressures and forces acting on the annulus inner and/or outer’
wall was described by means of ideal flow theory (mormally
potential flow theory) Nowadays, the added mass and damping
of a structural component with a simple geometry in a viscous
confined flow, in which mean flow effect 1is not considered,
can be calculated rather easily [6] Recent investigation of
the influence of viscosity [7] indicates that its effect on
the natural frequencies of the system is small; however, the
modal damping ratio 1is noticeably 1increased, especiall&, for
low frequency oscillations

To thes author's knowledge, the dynamics of “flexible
cylinders immersed in steady axial flow was first studied by
Paidoussis [8-10}, both «theoretically and experimentally,
based on elementary beam theory for the flexural motions of
the cylinder, slender body theory for the coupled inviscid
fluid-dynamic forces, and fairly simple lineagized
relatioﬁshiﬁs for the corresponding viscous fSrces, earlier
proposed by Taylor ([11].

Thif system was studied further, and more completely, by
Paidoussis [12] The theory was extended to the case where the
flow is confined by adjacentﬁstructures, so that the virtual
mass of fluid becomes larger, and the instabilities occur at
lower flow velocities, but, the fundamental mnature of the
stability behaviour 1is no:,t altered. In this respect, the
similarity in dyndmical behaviour between this system and that
of a pipe conveying fluid [13] should be remarked. ’

.‘\ ‘Q .
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An interesting aspect of the dynamics and scabili%y of
] cylinders in axial flow 1is that cylinders generally lose
stability by divergence (in fact, the stabilk&y of @
cantilevered cylinder is fhndamentally dependent on the shape
of the free end). Thé post-divergence bghaviour involves
coupled-mode flutter for cylindefs supported at both ends, or
single-mode fflutter for cantilevered ones. The experiments
with a flexible cylinder in confined flow [}A] have shown thut-
éhe the&retical model 1is 1in qualitative agreement with the
essential features of the observed dynamical behaviour, sand
the cylinders are greatly destabilized by confinement It is
of interest that frictio; ces, whether the flow-is confined
or unconfined, do notLg;::tT:\ﬁlte;cthe fundameﬁtnl,behnv!our
of the system as determined by the inviscid forces
On the effect of slenderness of the cylinder In confined
axial ﬁ&ow and compressibility of the fluid, a mathcm;ﬁdmﬂ
formulation and numerical solution for the problem were
presented by Paidoussis and Ostoja-Starzewski (15}, utilizing
the pgeneralized-force Fourier Transform techniques developed
earlier by Dowell and Widnall [16]. Interestingly, the effect
of compressibility on ' the stability of the .system w
s%}prisingly small in the subsonic region and once‘agﬁin the
fundamentals of the stability of the system are almoSt the
same as those described in the foregoing.
The dynamics and stability of clustered cylinders within
a confined flow was studied by _Chen [17)]) and by Paidoussis and .
Suss [18]. It was found that the dynamics of a system of N
cylinders is subject to 2N coupled modes for each flexural
deflection mode, and is considerably more complex than that of.. E@;
a solitary one. '
The analytical models developed 1in most of the above
studies for a confined flow are not particularly suitable for
-+ very narrow annuli. Although the inviscid part of the model is
clearly applicable, irrespective of the degree of confinement,
the viscous effects in very narrov passages cannot reliably be

adapted from the formulations for 1less severely confined
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geometries. Thus, the applicablity of . these models to very

narrow passages, espeJially'wiph regard to the viscous effect,

..

may be considered to be questionable. 3
In recent yeayrs, the‘dynamics of this system, by means of
formulations specially applicable to narrow annuli, which 1is
the oase frequently, associated with real problems, has
recelved considerable attentiJh\[20-23]. '
The 1initial motivation in the study of dynamics and
instability  of a cylindrical centré-body in a narrow annular
flow springs from a desire to wunderstand, the mechanism
underfying flow:inducedwvibrations in a numper‘Gf engineering
0 applications; e g , control rods in guide tubes of PWR-type
nuclear reactors, fuel-cluster stringers in coolant channels
in AGR-type reactors, and feedwater spargerss in BWR-type
reactors Flexible bodies, such as these, in narrowly confined
annular flow have been shown to be particularly prone to a
host of vibration-induced problems {19].
’ An attempt to generate a comprehensive analytical model
for these problems was perhaps first made by Hobson [20] .%n
that study, neglecting the radial variation of fluid velocity
’ _ and based on the assumption of a very mnarroyw ‘annular
clearance, the dynamics of a rigid cylindrical body, coaxially
positioned in an annular passage of generally‘ nonuniform
cross-sectional area and hinged at one point, was considered.
Hobson in effect attempts to so%Ye a problem similar to that
in this Thesis, and h%s work is therefore of direct interest;
however, the apgroach~and method of solution adopted by Hobson
are completely different - e
A more rigorous inviscid analytical model, but more
limited in its applicability to real engineering problems at
the same time (because it d not take viscous gffects into
account, nor discontinuitiegj&n the shape of the annulus), was
&eveloped by Mateescu apd Paidous;is [21]. In this study,
« radial variations in the unsteady annular flow were taken _into
_ account,” despite the assumption of sﬁall annular clearance

with respéct to the centre-body radius, The system, consisted

e

’
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of an axisymmetric rigid body pihnea at one point and
coaxially mounted in a cylindrical Auct; free motion was
constrained by a rotational spring and a rotational dashpot at
the - hinge pgint. n ofder to determine the Ggeneralized
unsteady fluid-dxnamic forces, potential flow theory, which isg
applicable for an(inpompressible irrotational flow, was used
in the anglytical model. In a .subsequent paper [52]. the
effect of ;1uid vi§cosity on the flow-induced vibration of the
rigid centfe-body was taken into account, using a simplified
form of the Navier-Stokes equation for*the three dimensional
incompressible fluid moti&n. . '

In the present analysis, the analytical model developed
in the two papers [21,22] for the dynamé%s of a rigid centre-

body in mnarrow annular passage, which may be considered as a

one *degree of’fTeedqm system, 1is extended to deal with the

case of a continuously flexible system; { e., for thg study of
the dynamics of a flexible centre-body in a narrow annular
passage. .t -
, v
F
‘- . ;
\ 1.2 OUTLINE OF THE THESIS : i
g L4
N In order to Investigate the flow-induced iInstabilities of

the system, a theoretical analysis will be developed for both
potential and viscous flgws past the flexiblg, centre-hody
oscillating in a narrow annuldr passage. The main feature -of
the dynamieal hehaviour of such a system Is that the flexible
centre-body ﬁay be subject to divergence (buckling) or. to
oscillatory instabildty (flugter) in the first and/or higher
flexural modes -at sufficiently high flow velocities Normallx,'
the determination of the lowest critical flow velocity fs the
main aim, in the'dyhaﬁical anglysis of such a system. N

The problem is“formulated ,as being made up of a
cylindrical beam with clamped ends,’subjected to fluid forces
generated in the annular flow passage, Lnitially éonsidered to

be inviscigd. In this Theiés; g rigorous method for invigecid’

A ]
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flom and an approximate method for viscous. flow have been
developed for obtaining the corresponding fluid-dynamic forces

acting on the flexible centre-body. ®

u In chapter‘II, the equation of the small lgteral motion
of the flexible centre-body, modeled as an Euler-Bernoulli
beam, 1s derived, subjecfed to external_forces, such as the
fluid-dynamic distributed forces. Thése fluidadynamic forces,
coupled with the motion of the flexible centrelbody, are
separated into two.parts; 1.e., inviscid and viscous fluid-
dynamic forces, which are obtained in- chapters III'and'\ﬂ
respectively. The problem is redefined in terms of

dimensionless parameters. An approximate solution subject to

"the boundary conditions {s obtained, using Galerkin’s method.

“In chapter III, neglecting the viscous effects, the
inviscid fluid-dynamic, forces acting on the ‘flexible centre-
body are deVeloped by means of potential flow theory. The
Laplace equgtion and the Bernoulli-Lagrange equation are
exp;essed in terms of a potential ¢, adaﬁted r the problem
at hand from the earlier work on a rigid bod;hpinned at one
point, as mentioned before.

In chapter IV, the fluid-dynamic coupling terms (thé
fluid-dynamic damping and stiffness and virtual mass matrices)
are determined from the results obtained in chapters(II and
I1T, based on Galerkin's method. Then, typical results,
{l1lustrating the general dynamical behaviour of systém due to
the inviscid fluid-dynamic force, are obtained and discussed.

In chapter V, using the linearized Navier-Stokes
equatioﬁ; goverding the viscous flﬁid motion and considering
the results obtained in chapter III (inviscid flow), the
normal and axial frictional forces 'are obtained. -

In chapter VI, tﬁe steady and unsteady effects, arising
from the viscous forces,vgre considered by means of Galerkin's
method. Here, the normal frictiogaf fgrce, which i; due to the
normal shear stress and viscous perturbation pressure, and
comgriées the unsteady visqou; effects and the steady wviscous

effects, are derived from the axial viscous, force according to



future work.

[

' . 8
the ax1a1 cdonstraints on the flexible centre- -body, which is

clamped at both emds. The general dynamical behaviour of the

system, as influenced by the unsteady and steady viscou§
-effects, 1is 'ifgustrated and is compared with that in which.
only. inviscid effects have: been taken into account,

. Fiﬂall¥,~ﬁhfpter VII is devoted'to:discussions on %ﬁe

obtained results and conclusions, as well as suggestions for

.
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. the o?cillating flexible centre-body 1is reasonabl& large and

N o

, . CHAPTER II

“ PROBLEM FORMULATION

-

2.1 GENERAL CONSIDERATIONS . P

The system considered “in the preée;; analysis consists
of a flexible cylindrical’centre-body coaxially mounted in a_
narrow cylindrical d;ct conveying fluid. The flexible part of
the centre-body has a length £* and is continued, upstream and'™
downstream, by two semi-infinite'rigid,cylinders of the same
radius} a; both ends of the flexible part of the centre-body
are supposed to be clamped, d4s showm in Fig. ke

The flexible centre-body is free to oscillate in flexure
inside the duct. Although the duct cross-section 18 considered

constant in th present analysis:.it is convenient to assume

.that the duct has a specified axial variation in its cross-

sectional area for further work. This system is coupled, by’
the fluid-dynamic distributed force acting on the flexible
centre-body, due to the annular flow, which is obviously

e

unsteady. .

Q

In thehpreéent analysis, it is assumed that the length of

the overall annular clearance is reasonably small, both with
respect to the centre>body radius a.'It is also supposad-thaé
the r{;id cylinders'and the duct have n0'oscéllatory motion. -

& Far upsFream, the annular flow is assumed to be steady

and is chafacteri;ed by the mean flow Qelocity-Ug, the static

pressd;e Po and the densfty Pg, which is comnsidered constant.

Several combinations of fluid and centre-body material

will be considered in the examples to be presented, such as

alr, water or oil for the -fluid and rubber or steel for the
centre-body material. N

The time-dependent lateral displacement g:(x*,t*) of the
centre-body axis is assumed to be smail with respect to its

radjus, which .permits to use linear theory for the flexural

v
3

=

-
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oscillations of . the centre-body; hence, 1) no- separa&ion
occurs in the annular flow, and 1ii) the fluid-dynamic forces
acting on each element of the flexible centie-body may ‘be
deteimiﬁed dsing:a convenient linearization of the: aerodynamfc
boghﬁqu conditions on the oscillating centre-body. This also

'mehné that,the assumption of small amplitude oscillations can
be .ﬁﬁiligéd in simplifying the féviscid and the viscous
analysis of the unsteady fluid-dynamic problem, in ;haptey I1I
and chapter V. . .

The following nolation'will be used In formulating the
analytical model (see also Fig. 1)}:

¥ ) length of oscillating flaxible centre-body
. & radius of the centre-body )
. m*,r*,ﬁ* gylindricél co-ordinate system .
Hg annular -clearance at upstream end
Hf(x*) annular clearance at location x*
eg(x*,t*) lateral displacement of centre-body axis
rg(x*)-a+H* duct-wall radius at'location x* *
Ug Qean flow velocity at upstream end .
U*(xt) mean _flow velocity at location x*. ’

The dimensionless quantities corresponding to qﬁb above, which
are more widely used, will be defined in section 2.3 without
superscript; e.g. x—x*/a or X-x*/l*.

!

1 3

2.2 EQUATION OF MOTION OF THE FLEXIBLE CENTRE-BODY
. B '

The oscillating flexible centre-body is considered as an
Euler-Bernoulli beam chéracterized by flexural rigidity EI,
lquth 2%, cross-sectional area Ag, and density‘ﬂs.

The derivation of the equation of small lateral motions,
is obkhined by considéring the equiligrium of forces acting on
a differentlal segment of the flexible centre-body, takén as
an Euler-Bernoulli beam, subjected to distributed external
forces;\ it is shown |in ’Appquix A, based on Hamflton's

principle. The distributed force is due to the fluid motion of

o

a
\'-' ‘ -
f
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this system which, as discussed before, 1is coupled to. the
flexible centre-body motion. Therefore, the equation of motion

of the flexible centre-body 1is exp}egsed, as fpllows;

a4e™* ale*® ’ i
o [o] * *
EI ;";7‘-+ Pghg -a—-t':vz-—- F(x ,t"), . (2-1)

E

wvhere F(x*,t¥) is the fluid-dynamic&distributed force acting
'on the-;entre—body per unit length. The first term and the
second term of tﬁe left-hand si&e of equation (2-1) may. be
interpreted ﬁhysically'as the flexural-restoring force and the

beam inertia force, respectively.

This unsteady fluid—dynamic force, F(x*,t*), represents

“the resultant of the pressure forces and of the viscous shear

stresgses acting on the centre-body surface. Thé analysi§
developed in chapter I1l.-agg chapter V has as its main aim the
determingtion of this unsteady fluid-dynamic force, firstly
assuming the case of an unsteady poteptial(inviscid)‘floy in

chaptef II1 and'then, in chapter V, considering ‘also the main

) effécts of fluid .viscosity. .

In this analysis, the flekible cylindrical centre-body is
considered to be a clamped-clamped. beam, for which the

boundary conditiows are

!

ef(0,c*) - o0, eg(e*, ¢*y = o, .
' ) , (2-2)
de¥(0,t™) - der (e, t™)
__2_¥____ - 0, : x - 0
ax ax

* These boundary conditions determine uniquely the formkof the

solution, leaving the amplitude arbitrary, and yiéld a charac-
teristic equation from which the ergenfrequeﬂcies of the
- r

[}

system may be determined. . )

It is noted that the differential equation of motion of
the flexible centré-boﬁy together with these boundary
‘conditions constitutes a boundary-value problem. Moreover,
thage boundary conditions are wused to- deri;; a typical
eigeﬁéalue problem, as shawn in Appendix A. ' |

»

-
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o The transition between the boundary wvalue problem and
@u%l the eigenvalue problem is effected by means of the separation

of variables method. The expansion theorem plays a major role
in the field of vibrations and will bebhsed here also to
obtain a.solution of the system by normal made analysis. This
underscqrés the _importance of sol;ing the eigenvalue problem
and obtaining & set, of eigenfrequencies and the corresponding
eigenmodes. ¢
. The \solution .0of the eigenvalue problém is noé as
straightforward, as for discrete systems. By using Galer&in's

LA
method, héwever, the system Is discretized, leading eventually

to the determination of the mass, damping and stiffness
g matrices of ‘the system. The discretized problem is then easy* ~
‘ i "
to solve. .
] ¢
=2 2.3 GENERAL METHOD OF APPROACH ) ¢

’ N ¥
©
4 t

In order to generalize the equatdion of motlon of the
system, it is convenient to define the following dimensionless

parameters:

- " * * * *
) 2 X
X=—%, 4 == X =—="—3X« fX,
. £ a a a
, S 2 LGN
r = , rd- ’ hael ' O- ]
a a a a
(2-3a)
* *
e _.e_o ‘e _i!. t_Ure t* w_.__n&t ‘
ul s u*(x*) u*(x%)
n U, = v o1 = T » U(X) = v O(X) = —5— , .
Upef . Urefl ref Uo
wherel
’ L : -
., U ' [ EI )h - ( .EI1 ]H- . (2-3b)
ref age¥2) ' Trefl T lp g,2,%7)
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and where the fluid veloc%ty U*(x*) is the mean fluid velocity
at 1ocatgpn x* (or X) and the circuyﬁr frequency of the
flexible centre-body is expressed by fi. For hollow cylinders,
pgAg appears to be more general. Here it® should be explained
that the dual nondimensional X and x, inter-related by x=2X,
are iIintroduced for convenience; X 1is most wuseful 1in the
overall analysis, whereas x is most useful in analysis of the
fluid flow. Some of these variables have been introduced in
refs. {13,21].

Substituting eduations (2-3a) 1into equation (2-1), the

equatign of motion 1is expressed in dimensionless form, as

follows: “\\ R

54e 62e -~ '2*4
© 4 —20. F(X,t), (2-4)
ax* a2 aEI ,
where . i
* -
eo aeo.

-

In order to solve ‘this equation with the boundary
conditions, equayions (2-22, various methods ;f‘approach have
been used. In some casésg it might be possible to obtain a
solution by means of an inteéral transform method, such as the
Laplace or Fourier transform method. Howgver, in gge method
adopted 1in .the present anélysis, it 1is assumed that the
solution has the form of an infinite series. This approach is

possible %f the'sepafation of variables method can be used to

’ nobtaiﬂ an eigenvalue \p}oblem and, furthermore, if the

eigenvalue problem is easily soluble. > e )

The seriés referred to ébove is, more specifically, a
normal mode expansion, which reduces the complex partial
differential equation describing the motion of the continuous
structure to' a set .0f much ;impler, ordinary differential
equations. Thus, solutions to equation (2-4) are sopghs in-

terms of the eigenfunctions of the associated eguation,

4 % 2 * .
d7e e
 EI —2 4+ 5 A 2 - 0, (2-5)
N ~ % 4 .8 8 at*z “
N
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i.e.; the equation of free vibratiom of the bean,
Hence, it 1s assumed that an approximate solution of
equation (2-1), which also satisfies the boundary{conditions

of equation (2-2), has the form of an infinite series, .

. * R
* *, _ iQt t
ey = a?(x )910 - aE(X)elwt - gelwt ; acEc(X), - (2-6)
where the cﬁmparison functions E.(X) are taken to be tKP
eigen%unctions of a clampedsclamped beam and it is recalled
that eo-E(x)eiwt as a solution of the equation (2-4). Fyrom

»
Appendix A, th% normal -mode expression for E(X) is glven by

E(X) = Y a,E (X) = 3. a, [Eq, (X) + Ey (X)], (2-7)
K K ' ®
where _

Ep,(X) = - cos(B.X) + o, sin(f, X),

Eyy(X) = _cosh(B,X) - o.sinh(fX),
S—
are the trigonometric and hyperbolic components of E,(X),

A

cosh(B,) - cos(f,)
[ 9% = “SToR(B ~ sTn(Bo \

and
cosh(B,) cos(Be) = 1, < (2-8),

hd a

i; .the characteristic equation for a clamped-clamped beam.
Solving equatgon (2-8) mnumerically, e.g.,. by the secant
method, it is' éossible to obtain _ the . infiniée set of
eigenvalues B, the first five being given below:

. B1 = 4.7300407,°
’ D By = 7.8532046,
B3 = 10.9956078, ’ < (2-9)
By = 14.1371655,
. PBs = 17.2787597.

Considering equation (2-7), the fluid-dynamic force per

L%

unit length F(X,t) can be conveniently expressed as .

. F(X,t) = - Pg U2 ¢ ar P(X) elwt, (2-10a)
. \

" where the amplitude of {ts nondimensional counterpart may be

L




expressed as \ ) g

P(X) = ¥ ax [ ~ w2Py(X) + fwPy,c(X) + Pog(X) 13- (2-10b)
K

-

the distributed force F(X,t) and_hence P(X) and its components,

are obtained in Qhapter ITI1 (for inviscid fluid flow) and VI
(for viscous fluid flow). . \ )

Because ego(X,t) is only an approximate solution, it will
not satisfy equation (2—45 exactly. Nevertheless, it 1is
"assumed that the differe&ge between the approximate and the
exact solution 1s small, and that‘difference is denoted by ¢,
such th;t subseﬁuent substitution of equation (2-6) and

equation (2-10) into equation ({-4) yi€lds

¢

d“E() T, :
t € = -—:1-;(—4— - w* E(X) + oP(X), (2-11)
where ‘ .
P *2 :
£ =f - -
g Ps AL - (2-12)
‘: According to Galerkin'’s method, it 1is required‘éﬁ t the
weighted ‘error integrated over the domain be zer The

v
weighted ?unctions are the comparison functions E (X), such

~

that : ) "\
' 1 ) ‘
: fo'e Ej(X)dX = 0, i=1,2,3,....,n, (2-13)
where j is a dummy index. - \
! Since Eé‘x) are the eigenfunktions of a clamped-clamped
beam, they satisfy the equation,
»
4 4
d"E_ (X) By .

- E, 1X).
ax% 2% Esl0)

Thus, equation (2-11) through equation (2-13) leads to
\ LY
0

¢ ¢ .
> + [BRE.(X) + Py, (%)) Ey(X) dX = 0. {2-15)

C . ,

1 2 2
; a, [ U - 0 [E (X)) + 0Py, (X)] + iwgPy, (X) :

Y




‘m, ;

16
‘ Accordingly, it is possible to express the équation of
motion in the form ‘\/
~w? M) (Arelet 4 osupcytarelet ¢ [kyj(aralivt - o, (2-16)
\ L) ‘
where the elemgnts of [M], [C] and [K] are given by <
1 ? - '
, mie = fo [Ex(X) + 0Py, (X)] Ej(X) dX, (2-17a)
1
Cjk = fo 0P, (X) Ej(X) dX, (2-17b)
&
1 4 )
. ’ kjg = fo [BREx(X) + oPoe(X)] Ej(X) dX, (2-17¢)

@

and (A) is the vector of the a, of equation (2-6). Once

equation (2-16) has been obtained by Galerkin's method, ;11
’ .

the matrix techiques of a distcrete system become available to

the solution of the continuous system.

5




¢ CHAPTER ITI

THE UNSTEADY POTENTIAL FLOW IN THE\ANNULAR PASSAGE
AROUND AN OSCILLATINg\CYLINDRICAL CENTRE-BODY

~,

3.1 BASIC EQUATIONS OF UNSTEADY FLOW
) )

In general,. thé princi fe of conservation of mass and
momentum is appligd to the analysis of the fluid flow. In this
chapter, the flow 1is presumed to be irrotational and incom-
pressible, in addition to being inviscid, so that Lap}ace
equation is'deri;ed from the contihuity equation Without the
complication of'viscosity, the momentum equation is reduced to
Bernoulli-Langrange equation. Considering the flexible centre-

body to be executing small motions, these two equations are

N 0

subfect’to boundary conditions, which imply that the'normal
velocities of the bodies are equal to those of the fluid aE
the boundary surface between the fluid and the body.

Ideally, the hydrodynamic force should be cahculated
through the use of the three-dimensional Navier-Stoke's
equation and the contfnuity equ;iion. However, the effects of
fluid viscosity and cgmpressibility gy the hydrodfnamic force
may be of secondary importance in some cases and may be
neglected in a first attempt to study the behaviour of the
system. . .
As discussed 1in the Inlroducﬂion (chapter I), the fluid-
dynamic force acting on an oScillating rigid body in a narrow
annular passage has been developed by means of potential flow
tKeory [21], thus, the stability of flow induced viwration of
the flexibly mounted_ centre-body has been studied 'with the ,aid
of thisg inyiscid fluid—dynamic force. Recently, the- viscous
effects for ghe flow in the narrow passage were taken into
account [22], as will be*discussed in chapter V

The equations of the unsteady \potential flow will be
discussed here, and then adapted to the problem at hand,

namely to the case af a flexible cyiipdrical centré-body. 4
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At the upstream end of the system shown in Fig. 1, the

fluid flow is assumed to be uniform and steady, with velocity
Ug, as mentioned in chapter II. The unsteady potential flow is
of course irrotational, and may be expressed in terms of the
potential Q(x*,r*,ﬁ,t*). Assuming an incompressible_ and
irrotational flow, the .equation of continuity in this case
reduces to the Laplace equation in terms of the potential

@(x*,r*,o,t*)n as follows"

1

o*2g 3% a%2 1 s 1 a2e . o1
- —%7 t —%y * %t %y —7 - , ' -
ax ar iwlar r a8
el
subject to boundary conditions
3% [ atb} *an* vy
PR = * P (3-2a)
ar r*=r§ - ax r*-rg dx
* * *
33 _ de .\ 33 de . R 1 33 1 Jde
ar* | » ot ax* | *__ ax” e 80 | *.' r¥ 30
r r =a r =a r =a
. (3-2b)
20 ' '
— - uy, (3-2¢)
ax X*—O—CO

where e?(x*,&,t*) represents the radial displacement of the

oscillating center-body surface, '1.e.

’ *
e?(x*,d,t*) - eo*(x*]t*) cosf = aE(x*)eiﬂt cos @8 . (3-3)

¢ .
The function E(x*) can be’ expanded in terms of the beam

eigenfunctions, depending on the type of end conditions of the
beam, as discussed in chapter II1. Based on the assumption of
small amplitude oscillations, the last term of the right-hand
side of equation (3-2b) can be neglected,

The wunsteady perturbation potential 1s determined by
integrating the partial di;ferential equation of the potential
subject to the boundary conditions on the oscillating centre-

body and on the fixed duct walls, in dylindrical coordinates;

e
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°

in this respect, the method developed Iin ref. [21] is here
extended to the case of oscillating flexible centre-body.

Ih order to obtain the inviscid £1luid-dynanmic foiFe
acting on the flexible centre-body, +the momentum equation may

be used, 1.e.,

. ® v
*
D"V 1
[ 1 *
- - =L v+ £, (3-4)
D*t* pf

where the last term of the right-hand side is often called the
body force and would here' be caugeq by gravity. In the present

-

analysis, it may bhe negleéted. -

The vector Fquation (3-4) can be put idto several diffe-
rent forms By.making use of some well-known properties of
vectors,. First it is convenient to make use of the conven-

tiona}{ldel" operator to write equation (3-4) as .

" .
D'V \'/ * 1 *
—_ =~ o+ (v.vMHv - +— v¥p. (3-5)
Dt at f

-

"An alternative expression of equation (3-5), which is of great

Usefulness, follows from the vector identity

£ VN(Vev) = ¥ (1 2y vy 4 VA(VF AV, © o (3-6)
where A represents the cross-product of vectors. Substituting
I

this\equation into equation (3-5) feads to

v * 12 1 oo*. * -
gi?+v(2.v)+prp VA(V AV) . (3-7)

-
-

For 1rrotatioqal motions (VAV=0), the fluid velocity V is

derived from the potential Q(x*,r*,@,t*), ’

- *
VaevVad. > - (3-8)

\

Thetefore, equation (3-7) may be expressed in terms of th;

potential Q(x*,r*,0,t*), as follows:

.

} = 0. (3-9)

s
s

in' the following form,

.
(‘?-%+1IV¢42

This equation can also be writte

IO—J
:3"*1

usually known as Bernoulli - Lagrange equation, "

-~ - L



do . % [v*¢i2 + L p - constant. (3-10)
at < pf
. ’
To get the pressure force acting on the centre-body, it
is convenient to reformulgte equation (3:10) into the
following form: 7 -
Y ! .
* *

P-Po = ¥ Pe ur? -k Py |vYe|? L ey g%;r. ‘ (3511)

%here potis the static pressure at the upstream end, and v¥e -
Ug. Thus, the 1inviscid or potential fluid-dynamic force
(denoted with the subscript "p") acting on the centre-body  per

4

unit length is given by integrating equation (3-11); 1i.e.-,

( ) = f [ p Py -
F X, t - a - cosf dé . 3-12
P 0 ’o * (, ),

BN

3.2 METHOD OF SOLUTION FOR THE UNSTEADY ANNULAR FLOW

L)

U
3.2.1 The Reduced-Motion Potentials

Introducing the dimensionless quantities defined |In
chapter II and separating the fluid flow 1into a steady

axi§ymmetric component (denoted with the subscfipt'"s") and an

., unsteady one (without suRscript), the potential ¢(x*,r*,0,t*)

becomes

. ’

$ 2(x*,r¥.6,c%) - USal dg(x,r) + $(x,r,0,t) ]. _(3-13)

-~
.

Substituting this equation into equation (3-1) and then

separating into two parts, corqé%ponding to the axisymmetric -

component and unsteady one, respectively, the potential flow

equation, in nondimensional form, becomes

2 2
- 1 4 ¢s a ¢s i 94
——y t 7+ - —E a0, (3-14a)
;7 dx ar r dr
& X




J p
' . 21
2 2 2 -
1 84¢ ¢ 1 3¢ 1 a8%¢ . .
—7 t g 4 - — + —y = 0, ] (3-14b)
}? aX dr r dr ;T aé .
subject to the boundary conditions
A
’ iﬁi - 0,, (3-15a)
dr r=1 .
¢ °
h 3 3 E 3h
C P L l s .04 ] o (3-15b)
* dr o~ ax _ 8x re-xrg ax
~ 3 .
_ié -1, . . ul (3-15¢)
~ ax Xm0 .
¢ 0
and <
3 1 de d 8 de v
* ild - [ —L 4 ¢? L2 = J elvteos g, (3-16a)
dr =1 U, at axe ar~ dx r=1
3 3
24 -0, 3¢ -0, . (3-16b)
\ ar 3 ax x—-a:

r-rd

where the last term of right-hand side of equation-(3-2b) has
(Y
bgen neglected and it is recalled that 2-2*/a: o

onditions, it

Taking into consideration these boundary
is convenient to define the - reduced-motion\_ potentials

3TN(X,r), and SHﬁ(x,r), a'ss follows: ' J

’ ' a A A .
P 0,0) = ;5: (1o (X,1) + g (X,x)] er¥®Ceosd, (3-17)

.

where the subscripts "T" and "H" represent the trigonometric
and hyperbolic components of ¢(X,r,0,ﬁf, respectivery.'In this

magner, equations (3-14b) may be reformulated into the

\

following reduced-potential equations: !

{

2A 21\

1 8%, 8%, 184y, 1

+ + - —=£ . -0, . 3-18a)
. 2 Tax? Tl T T Ay Z[%1e ¢
0 N R ‘ o
1 a2y, 2%y, 184y, 1 » ; (3 1:;)
*——%— + + — —HE - 0, -
27 Tax arl r ar o7 Phx

L \q -
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2
(3

subject to the boundary conditions \ » .
3¢ . .’
arT“ - 1wEp, (X) + U(X)EpL(X),

- r=1

. 24
aan - fwEy, (X) + U(X)Eg. (X)), - (3-19b)

r=1 '

a a . ) «
S -0, 9%uK -0, (3-19¢)
or r=rqg or r=rg

. . »
where Ey,(X) and E7,(X) are the hyperbolic and trigonometric

parts of the beam eigenfunctions introduced in chaper I1.

’

) ’
3.2.2 Linearization Pr?cedure

5 ~
. Based on the small disturbance assumption, equations (3-

18 a,b) are 1linearized 1in .order to obtain an -.analytical

solution of the problem,

For the case where the duct has

in its

specified axial

it is noted _that the

Fd

variations cross-gsection, usugl

procedure of linearization,. with respect to the undisturbed

*

gsince the
*

mean

could be

velocity U:, is not sufficiently
flow u*(x*) at

’ Eubitantially different from Ug.

accurate,

axial veiocity location x
Therefore,. a procedure of loecal linearization will be

used in order to obtain the local mean flow velocity, U*(x*)

The local dimébsionless‘mean flow velocity, UYX)-U*(X*)/U:,
may "be obtained by applying the equation of continuity in
flow

velocity vcan be “expressed in tetms of the rate of annular
-

integ}al forh; thus, the local dimensianless mean

- ~

clearance

o+ xl(a+n®)Z 1\ a2 hy - .
(X)) = —= % = — 3-20
G0 = T cwh Tk S
. ‘ ¢ - h

-



. : ' e 23
-3

* where ‘ho-h(O)-h*(O)/a is the dimensionless width ' of the _

( " annular passage at the upstream end. .
2 ’ . &
) - Taking .advantage of the assumption of a narrow annular

flow, one can define the following nondimensional variable:

-

o * )
z = =2« r.1, (3-20)

where the approximation, r =~ 1, could be used. Consequently, o

the potential flow equations (3-18 a,b) may be expressed as

. J: the follbwing linearized equations *in terms of the reduced- -
motion potentials: -~
. Y ’
. 24 ® 251 . a2 , -
1 3 8 ] YA
_% ¢gn + ¢§n + ¢Tf - ¢ = 0, (3-21a)
: PR} ¢ dz 3z B ] )
9 2/\ i 2)\ A i
1 9 ¢Hm 3 ¢Hn 3¢Hn P - )
+ + - ¢ - 0, (3-21b)
ry ax* 3z° ° | 8z He ’ .

-~
7

subject to the boundary’ conditions given by equgtions (3-19
a,b,c). ’

2 }

»

! 3.3 SOLUTION FOR THE REDUCED-MOTION POTENTIALS
£ .
According towslgnder body theory' [24], the first term of
/ equations (3-21 a,b) xﬁay be neglected. H‘owever, t’he slender
body approximation "is not sufficiently ac;;urat,e for h.igher
frequency oscillations; this is because the "virtual mass
coefficient and the coefficient of fluid dynamic dai‘nping,
which depend on the reduced-motion potentials aT:cv ;SH&, cannot
- be accurately reproduced if the slender body, approximation =
were adopted. Hence, the slender body approximation will not |

- be used in this analysis, )

g . ' Considering‘ ‘the complete form of partiai differential
equaf:ion_s (3-21 a,f:), expansions of the reduced-poténtials
M cou’ld be ass\‘u’med in the form ,
4 ” i R ! ..
( * bre = Ep (X) Fp (2), (3-22a)
® - ' A} ’



£

2

s f .
B .

© PHk ~ fRe (X) Fy(2). (
Thus, the linearized equations (3-21 a,b) become

1 £40(X) 1

1
2
- - - Fu ! F..' -F - ,
22 an(X)' FTN(Z) [ Tlc(z)+ TK.(Z) UT\,‘(Z)] '22 ﬁ,c

. \ * .
1 fyn(X) o1 (1

24
3-22b)

(3-23a)

b—  [Fy" (z)+Fy’(z)-Fp, (2) = - 2,
T B (0 Fg(m AR TR 7 T B

(3-23b)

v - (
- which reduce to/two sets of separate ordinary differential

.equations

.

\ o

fri(X) + B2fq, (X) =0,
‘ ; . L2
Fpa(2) + Fri(z) - (1 + o3 p2) Fro(z) = 0,

. Egn(R) - B2f, (X) =0, ,

‘ 1
‘H,uz) + Fyplz) - (1 - =3 B2 ) Fy(z) = 0.

These admit the following general solufions:
(i) for equations (3-24a),

fro = A] cos(B.X) + Ag sin(B.X),

. . Fpge = [ cosh(ggz) + Ry sinh(quz) ] ez,
where "= ' 1/2
) ) ﬁ 2
‘ A = { z+(7) ] ; ‘
- . N
T J (
(i1) for equations (3-24b), .0

fux = Bl cosh(fX) + By sinh(BX),

Fae = [ COS(C:Z) + Ry SIn(é:z) ] etz fgr ( ;ﬂ )&.>

(3-2%4a)

$3-24b)

(3-25a)
(3-25b)

1
)

(3-26a)

£

. . ! . i 2 o
Fx = | cosh(ckz) + Ry sinh(c,z) |} é-%2 for ( 5& ) <“% ,
. - .

where

‘.’ c: - l (

™

) 1/2
£ ) %] ,

(3-26b)

L4
-
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cx = l 7 - (-gi

o .
. - .

/ bsing the . boundary conditions (3-19 a-c) expressed in

above must satisfy - . -

.

terms of z rather than r (see equation (3-20)), the\solutiqns

Y | A . :
Jézn l - f?n(xo Frr(z) = 10Ep, (X) + U(X)Bpg (X% (3-27a)
A \- e .
a¢ o ,
gzﬂﬁ- 0- £, (XD ng(Z) = 1wEg, (X) + U(X)EHé(X?, (3-27b)
Z K ‘
3¢ .
. l)c ' J )
6z . lyon. fre(X) Fpe(z) = 0, . (3-27¢)
z— .
aA - , ) ) . 9
ﬂ& . B
P Fpi (X) Fypu(z) = 0. ‘ ) (3-274d)

In order to determine the unknown solution parameters
(A1, Ap, By, By, kl,* Ro), it 15 necessaf& to have six
equations, - Qbereas ‘apparently only four are available,
equations .(3-37 a:d). However, examining equafions (3-27 a,b)
more carefulli{ it is realized tﬁat each of the‘left(middég}/
and right-hand sides may be separated intao two parts, each
including sin(g.X) or cos(BcX) and sinh(B.X) or eosh(ﬂxxj,
tgus giving rise to six independent equations. Hence, solving

this closed problem, the unknown variables are found to be

(1) for the "téigonemetric“'equation, i.e., .the part of ’
“the solution with subscript T, - .
A" = G ( - 1o + U(X)o B ),
‘. R P -> by i . R
Ay = Gpx ( iwo, + U(X)Bx ), + (3-28a) -

.

q, sinh(q,h) -.% cosh(q,h)

- q, cosh(q.,h) -+ % sinh(q,h) ’

Rl-

v

»®
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. Gre = - q,+ tanh(g&h) ! 6(3-28b)
( q,° -'# ) tanh(q.h)
L

(ii) for the "hyperbolic" equation, i.e., the part of the

, solution with subscript H,
é .

By = Gyx ( 1w - U(X)oxBx ),

By = Gpx ( - lwog + U(X)Be O, « . (3-28¢)
* | 1 * * X ’
' ¢, sin(c_h) + cos(c_h 2
R2 - g K ) % ( : ) - for ( Eﬁ=) > 2 ,
c. cos(cnh) -7 sin(cnh) 2 4

- ¢, sinh(c,h) + % cosh(c, h) for ( Pust (s

Rg = c¢c. cosh(e_h) L inh 2 '
; - K . - 7 sinh(e,h) 4
whére '
* *
c - tan(c_h) v 2
. GHK - N *'zc %— fe % fOr ( ﬂ"'& ) > 2 ,
(¢ + ) tan(cKh) £ 4
) - (3-284)
oy - st % tanh(c, h) or YPu o los
* ( c,® - #) tanh(c,h) 2 4

~H@nce, the reduced-mation potential%, ng and QHK, on the,
. flexible centre-body surface at location X may be obtalned as

brn (X,2=0) = Gp, [ LwEq (X) + U(X)EgL(X) ] ,
1 . \ (3-29)
B (X, 2=0) = Gy, [ iwEp, (X) + U(X)Eyl(X) |

.

3
3.4 DETERMINATION OF THE UNSTEADY PRESSURE DfSTRIBUTION AND
THE RESULTANT FORCE ON THE CENTRE-BQDY

1

) The unsteady perturbation pressure, associated with body
motion, is obtained from the perturbation velocisty potenti;l
via the Bernoulli-Lagrange equation, given as equation (3-11)
in section 3.1. This perturbﬁtion pressure may be divided into

-
-
-

1
N
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pg(X,r) and pp(x,r.ﬂ,t), corresponding to the axisymmetric

steady component and unsteady component,"respectively.'Thus,

P - Po = Ps * Pp- _‘ (3-30)

I vy

The fluid-dynamic pressure force exerted on' the flexible

centre-body will be obtained by means of the potential flow

.theory [21]}, developed'in section 3.2 and 3.3. Substituting

equation (3-13) into equation.(3-11), the unsteady preésure is
expressed as thé }ollowing nondimensional equation in terms of
the steady axisymmetric component 3and the unsteady one of the

velocity possntial o \

Q
o .

——5;7 ( y - ! |ve ve |2 : (3-31)
- + - —— — o — + - -, -
PeUg Ps Pp U L 8t 2 s 2

where V¥ operator from equation (3-11) has been replaced by
* 1 1
Vet ety Lot et g7y -

In the above equation, the circumferential component 1is

neglected. i

Introducing the'lineari;ationlprocedure into the second
term of the right-hand sige of equation (3-3i) and then
considering the assumption of small amplitude motion of the
centre-body yields

-

Vée ~ T, (V)2 << (v§? (3-32)
where U (X) is defined in- equation (2-3). Therefare, it 1is
possible to rewrite the second term of the right hand-side of

a

equation (3-31) as -
$ . v .
|vés + Vgt « T2(x) + 20(x) §+ 9§ ; (3-33)
l
<

since, the radial and circumferential component of the flow

velocity 1is negligible as compared with the axial one. Thus,

£
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equation (3-31) Ray be written in terms of the nong}mensional
fluid velocity, U(X), at location X:

1 , ) 1 3¢
-.——7.2- p + p - — ——
Pfuo s P U 2 at
) ‘ 1 1 9 1
' ¢ + - [UZ(X) + 2U0(x) - —f ] - - . (3-34)
: 2 2 98X 2 .

’
v Taking 1into account the forms of the {inviscid flulid-

dynamic force and reduced-motion potentials, 1t is convenient
to rewrite these equations, with respect to the get of

reduced-motion potgntials defined in equation (3-17), 1i.e.,

-

1 1 2 A A 1
fwt
- P + - Y a_ ( + fwe osf -
pfuzz (Ps pp) £ "k (2"0) [ére bpelle ¢ 2

1 11 8 34
. = 02X 4 T(X)— = [ Pre , s lelwteoss .
2 ' 2t v aXs, X

(3-135)

y B
The wunsteady fluid-dynamic force acting on the wunit

:
\._length of the flexible ‘centre-body is then determined by

integrating circumferentially the pressure distribution, by

‘means of equation (3-12). Thus, substituting equation (3-35)

into equation (3-12), the inviscid fluid-dynamic force, acting

on the oscillating%centre-body, in the dimensionless form, 1is

.
i [

iw A A
ép(x't)'- g a, P Urgf ar e19F ( 22 (¢7x * FHk ]z—O
86y, by
+ U(X £y =

X7 U ax

’» - '

} . (3-36)
z=0

Hence, the above equation,in terms of Pjnp (3J=0,1,2) which are
the inviscid components of ij (j; %, 1, 2) defined in section

v

2.3, equations (2-10 a,b), may be written as %

2 iwt 2 |
FP(X,t) - - Pg U.Zgam e g a, ( - w PZNP + 1w91~p + POKP ),

; (3-37)

where"
~ L]

Pogp(®) = - [ GpyBp (X) + Gy By (X) 1/87, (3-38a)

-

‘ ~ r
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( Plap(X) = - 2 U(X) [ GpEpft(X) + Gy Eyc(X) 1/2%, (3-38b)

Poxp(X) = - UE(X) B2 [ - Gr Ep(X) + Gy, By, (X) 1722 (3-38c)

It is obvious that these terms, which in fact are related to
the Iinertial, damping and stiffress components, respectively,
of the generalized nondimensional fluid-dynamic force due to
inviscid flow, do not depend on the steady-mofion potential ¢g

. because of the axisymmetric shape of the flow passage.

N
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- CHAPTER IV
DYNAMICS AND STABILITY OF THE FLEXIBLE
CENTRE-BODY BASED ON POTENTIAL FLOW THEORY
4.1 FORMULATION OF THE EIGENVALUE PROBLEM USING GALERKIN'S
METHOD
4
This part of the: Thesis is devoted teo the determination
of the fluid-dynamic coupling terms, fluid-dynamic stiffness,
damping and virtual mass, of the system generated by inviscid
flow, by means of Galerkin’'s method. i~
Introducing the terms assoclated with the 1inviscid
4 fluid-dynamic force, as determined in the previous section,
into the equation of motion of the flexible centre-body, the
following equation may be obtaingd )
4 * 2 % .
a7e d°e
- EI —5% + p A, —39 = F (x™,t™). (4-1)
ax s S,at P
According to equation (3-35), the inviscid fluid-dynamic force
may be expressed nondimersionally as
F, = - Peule an P, (X) elwt, T(4-2)
where -
P (X) =) a [-wz‘P (X) + iwP (X) + P ]
P L “x 2ep lep Oxp '~
Recalling the approach to be used to obtain an approximate
. &
solution, which was introduced 1in chapter 11, and combining
equationé (2-11) and (4-1) ylelds : e
————-E-daE(X) 2g(x P_(X 4-3
Ep - ax - wLE< ) + o p(‘:)' (‘- )
' where the form of the complex eigenfrequencies w, which depend
Qj} on flow veloclty, indicates the stability of'instability of
the system. In order to investigate the dynamics and stability
¥

-4
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: " “of the system, Galerkin's method 'is applied t<\ this system.(In -
( .. this respact, “p mu:ltiplied by the weighting functions and
integrated over the domain must satisfy. \\ -

A}

1 ' .
, ; a, fo( -wZ[EN(X)°+ aPZKp(Xl] + iw aPlnp(X)

¢ (BREL(X), + aPo, (X)) ) Ey(X) dX = 0, (4-4)
]
LY

where each of the functions E, (X) is_a S\\J.itable comparison

function satisfying all the boundary conditions of a clamped-

clamped beam, 1in fact, a beam eigenfunction, as shown in
Appendix A. ) : -
‘ Introducing equations (3-38) in the @fve equation yields
\ 1 )

. ’-wz[u;] (A) etwt 4+ ju [c,1 (A) elwt 4 (K1 (A) elw® L o, (4-5)

r

where - s

1 ' :
Comy, - jo( EreBry * ErxEyjy + EucBrj + EpcBpj ) dX
‘ 1 1 € b b i
w0 oy 0 S 1 Cpg € BpygBry + EqeByy )

p . ®
t Gyx ( EyucBpy # EycEhy ) |

CPjn_-zuoa’JT m

Gtk ( ErgBEry + ETKEHJ )

} dX = 0, (4 -63)

L4

+ Gy, ( EHkETj + EygEgy ) ] dX ), (4-6b)

3 - .-

1 .
i
kpje = ﬂn‘fo ( BpgBpy + EpuByy + EggEpy + Ep,Eyy ) dX
’ ¢

1 1 h. 2 . -
& — 2 2 2o Y )
to g7 BeeUs f fo( ) L Crp O EqgBry +7Ep Eyy )

-

v * ’ . - GHK ( EHK.ETj + EHKBHj ) v] dx ) N ™ (Q’GC)

asgociated with the potential solutiongof the problem, and the

o
f

o =) . @ .
w\hére the subscript p is used to indicate that these ferms are

quantities ‘Erx, Eyx are defined in equation (2-7) with Gk »
J GHx having been determined in equations (3-27) and (3-28).

: Alternative expressions of equations (4-6 "aZc) in the

(i’ ° case of a constant agnular flow passage (h=hg=constant) may be

v obtained, based on the small disturbance assumption. In this

T
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case, the fluid dynamic stiffness and damping coefficients may

[

be linqarized to give

A M
A m

: [ Gpy Ip + Gy, Iy . (4-7a)

M4 A |4 , B
Cpie T 2 Uyy () (KE) [ G Ip' + Gy Iy" 1. (4-7b)

R~ ﬂilp + BE UL, L Gp, Tg - Gy Ty 1. (4-7c)
e
where

Ip = J  (EqpeEqy + EqcByy ) dX, -

. [}

o =~ O

Iy = f

3

1 "
I,=Ip + Iy- fO(ETNETj t EqcByy + EygEpy + EyByy) dX,
® >
(4-74)

1
1 = fo ( EpgEpy + EpgeByy ) dX,

n

1
ty' - fo ( EjeEry *+ EyueByy ) dX,
Af =7 { ( a + H* )2 - a2 Y, * A = 1 a“,

m o= pg Ag . “ - M= PL Ag

The integrals in the &bove equations could be evaluated by
using an anglytical method or &4 numerical .method. The
numerical solptioﬁa are shown in Appendix €, where they are
compared with the analytical ones. From the above eqhations,
it is obvious that the virtual mass coeffic&ent does nmnot
depeﬁﬁ on the flow v%locity, as expected; the *fluid-dynamic
stiffness and damping co;%ficients, however, are affected by
the fluid velocity. .

The problem has now been rendered discrete -and, upon

Jtruncating the summation at « ="n, equation (4-4) may bhe

writtten in matrix form, as follows;

§:§ } [MP] (q) + [Cp] (q) + [Kp],(q) -0, (4-8)
. . < )

L -
- ' o A - b
«
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where

7 iwt
{ (q)-(A).Q“. ’

r\

4 . \
Here, 1t is assumed thatJfEe order of this matrix equation is i
sufficiently high to allow the determinationggﬁ the response
nalysis this is

i ¢

within the desired accuracy,. In the present
aghieved with n=5. / .

In this case, the asymmetry in the matrices, [Cp] and
[Kpj, is\“entirely due to the presence of inviscid fluid-
dynamic forces; e.g. in the case of [Cp], the asymmetry is due
to the Coriolis force, which corresponds to equatd4on (4-7b).
Accordlngly, equation (4-8) can mnot be decoupled easily. A

quite general method of decoupling this equation is shown in

v P

Appendix B. .
In order to obtain the eigenvalues of this systenm,

equation (A-Sf may be ﬁaniéﬁlated further, yielding finally

a

2 ) - 0. (4-9)

det [ -0 m + iw ¢ + k

Pix pix plK

L4

This method 1is much easiew to apély and more efficient than
the general method shown in Appendix B. The méthod used to
find the roots of eduation (4-9) 1is based on a guadratic fit
called "ZANLYT". The general computer program for dypamic
stability of the system is given in Appendix D.

Because of  the numerous parameters characterizing the
system, no attempt has been made to %pvestigate tﬁe effect of
each one; e.g. length/radius ratio,lgpp width/radius ratio,
physical 'properties of the fluid and of the materials, etec.
[see the principal nondimensional p;rameters affecting éhe
system, introduced in chapter II, equations (2-3)]°. Here, the
effects of varying the fluid velocity and the fluid properties
are investigated, by-conducting calculations with air, water
and oil flow; the annulaf—gap/radius ratio 1is taken to be
1:5/10, 1/10 and 1/20, and 2*/8-20 throughout; the material of

. ¢ylinder 1is taken to be rubber, so that Uref~1.198 m/s- and

Uref1=36.77 mys (for-air),,1.287 m/s (for water) or 1.332 m/s
(for oil). N .

~ Pl

-
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4.2 ANALYSIS OF.DYNAMICS AND STABILITY OF THE FLEXIBLE
CENTRE-BODY.

#
Typical results, illustrating the pgeneral dynamiecal
behaviour of the system under consideration, subject *to

invisecid flow, are presented in this section. As discussed in
the previous sectioni the dynamical behaviour of this system
is modified (as compared to the basic peam &p vacuum) by the
fluid-dynamic force acting on it, which 1is function of the
flow velocity. For convenience the results will be presentéd
in terms of the nondimensional flow velocity Ugq, rather than
U, - see equations (2-3). ‘

At zero _flow velocity, it is obvious that thehrmtural
frequencies degend on (A/Ag)+*(M/m), considering the aned

mass; fluid-dynamic stiffness and damping coefé#tcilents are, of

course, equal to zero at zero flow velocit
»

corresponding virtual mass is not. With lincrea ing f{low

, but the

velocity, the frequipcies of most of the moded are diminished.
Because the system under the consideration here is
conservative (clamped ends), the eigenfrequencies remain real
with increasing Ug,j, at least up to the point of loss of the
stability; when the equivalent generalized centrifugaléforce
overcomes the flexural restoring’force. '

" At this point, one may note that the lowest criﬁical.flow
velocity indicating the onset of buckling may bé found easily,
taking into consideration Euler's method of equ}librium (see

Appendix E). At the buckling onset, the time derivatives in

the equation of motion of the centre-body could be eliminated;.

i.e., the determinant of '[Kp] should be zero. Thus, fr.om
equation (4-7c¢), it is obvious that ‘a4t divergence instabhility

the nondimensional critical £flow velocity, with respect to

Urefl, does not depend on the properkties of the fluid but only
on the geometry of the gystem (gap ratjio and length’ratio)n

N The dimensionless complex qﬁgenfrequencles, wno o ofithe
system are calculated using the computer program given |in

Appendix D. .

- - o

Iy S}
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Typical variations of the real and i@;giniry parts of the
complex eigknfrequencies, wp, with the nondimensional fluid
velocity Uy} are presented , for the lowest four modes (out of
five modes) in Figures 2, 3 and 4, for the 1/10 gap systems
rubber-air, 7~rubber-water and rubber-oil, respectively. The

fifth mode, also obtained, *is not shown because the results

are considered unreliable ., with a" five-mdde Galerkin‘

approximation (n=5). *

In Figure 2, it is noted that the frequencies of all
modes vanish in turn, indicating the onset of buckling in the
corresponding modes of the system with 1increasing flow
’ ocity. The frequency of the first mode vanishes at Uy} =
_;:i3 (point A in the diagram), which is the first critical
velocity for buckliné, being associated wit™h the point where w
changes from purely real to purely imaginary, and one branch
of the Dbifurcated 1locus on the Im(w)-axis 1is negative:

Similarly, the frequencies‘of Eﬁe‘other modes vanish at Ug,| =

" 3.21 (point B), .4.85, and 7.13.

- However, at. slightly higher flow velocities than
necessary for buckling in the first #nd second modes, the loci
of these two modes, and similarly ‘those of the third and
fourth modes, coalesce on the Im(w)-axis and leave the axis at
symmetrical points, indic;ting the onsét bof coupled-mode
fluttef{(for example, point- ¢ in Figure 2a), In the patr of
modes concerned. This beha§iour does not appear in thglgase of
higher mass ratio, M/m as shown Figures 3 and 4.

At this point, it is of intfest to mnote that the. main
Interest in the practical %ngipeering applicationg, for design
considerqtions, 1is the determination of the critical flow
.velocity for which the system loses stability. The dynamical
behaviour of the system at high velocities than the this
critical threshold is more of an academic interest; on the
other hand, the amplitude of the oscillations after the 1loss
of the stability may increase beyond the assumed limits of the
this theory, axthough it was shown’that, in some cases, a

linear theory is also capable of predicting the post-¢critical

: \ |
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behaviour of the system (see, *for example refs. 8 and 12). A
similar c¢apability will be presumed to exist heré also.

In Figures 3 -and 4, it 1is noted that e;en though - the
first mode frequency also vanishes at A (UO£L2.13), the loci
of’the 1
the system regains sfability in 1its first mode at B

ther modes ﬂoﬂnot reach the "Im(w)-axis directly. But

(Up1=3.21), the corresponding -buckling point of the second
N \
mode in the previous case. At slightly higher flow velocity,
the loci of the first and second modes coalesce on the Re(w) -
axis a‘p becomé compleX, indicating the onset of the coupled-
mode flutter at C. Interestingly, this behaviour was suggested
to bé related..to the well-known destabilizing 'effect of
gyroschic forcks, e.g. in connection with the whirling of
shafts [26}. According to this relation, the Coriolis, forces
being pfoportional to (M/m);i stabilize the system prlor éo the'
onset of coupled-mode flutter; therefore, oscillatory
instabilities connected to the presence of GCoriolis forces
could exist whenever (M/m)k#O ~ which 1is élways true for the
present system. Thesg fymgetric foupled-modes, with respect to
Re(w)-axis, bifurcate on the Re(w)-axis at D, where the system
regains stability. At slightly higﬁer flow velocity, one of
these bifucating mode's has pure 1imaginary value, 1indicating
the re-occurrence of buckling, at E‘(Uol -~ 4.85). Then, by a

similar process, coupled-flutter re-occurs at F, involving the

loci of the other bifurcated modes and the third mode. The

regions associated with higher flow velocity are quite
compfei. ‘

The effect of wvarying the relatfve gap h=H*/a for given
length to radius ratié E«i*/a is illustrated in Figures 5 and
6 for theﬂxj}se of  rubber-air and rubber-oil systems,

,respectivély'- Here, the first and second modes appear to

buckle at A and B in Figure S,Sbut in Figure 6 these pointg
are’ seen to correspond,.respectively, tolthe onfet of buckling
and re-stabilization therefrom. (for. the first mode), as

°

discussed before. W
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Table 1 Values of U,y for instabilities obtained with
' potential flow theory (4=20, 0=0.4246 and

1

Uref1-36:l<2/5) , o
annular gap l1st mode 2nd mode coupled mode (lst &
ratio, buckling, buckling, 2nd modes) flutter,
h . A* B , c '
/

0.05 1.49 2.24 2.34

0.10 2.13 3.21 3.40

0.15 2.64 3.97 . 4.25

Table 2 Values of Uo1 for instabilities obtained with
" potential flow theory (£2=20, o0=346.62 and
Uref1=1.287m/s)

annular gap lst mqgde lst mode re-’ coupled mode (lst &

ratio, buckling, - |stabilization,.] 2nd modes) flutter,
h . A B o]
0.05 1.49 : 2.24 2.47
0.10 2.13 3.21 3.51 .
0.15 T 2.64 3.97 4.31

T

n

. °
It .is of interest to see in Table 1 and, 2 that the

nondimensional critical flow velocities/for divergence and for
coupled-mode flut&er of the 1/20-gap system are lower than
those corresponding to systems with lager relative gap. It "is -
also shown that the lowest nondimensional flow velocity;for
ldlv;rgehce does not depend on o, for any considered relative
gap, while the coupled-mode -flutter critical wvelocity depend-
slightdy on o. This is because Uol-Uo/ak, and hence the lowest '
"wWondimensional critical flow veiocity for divergence, Ugi14iv,
is dependent on h and £, but not on ¢, as it can be seen from
equations (3-28) agd (4-7); one xﬂay note in the same sense
thdt flutter is\\affected ﬁy the damping matrix, while the
buckling is not affected (,by it. The destabilizing effect on
osckllatory instabilities of narrowing the annular gap was

“

well documented for a similar system [21].
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It 1is also of interest to com?aip‘ these -critical.
velocities with those obtained by approXimate method proposed
by Pgidoussis [14] for confined flow; this comparison is shown
in detail " in Appendix E. Satisfaction, 1in quantitative
agreement of critical flow velocity, is found to be adequate
for the narrow inviscid flow analyzed; howeveér, the
approximate method for thé'criticql‘flow veiocity ba;ed onqthe
virtual mass is suitable for a slender body. Moreover, it is
noted that the bynamical behaviour of the system, based on
inviscid flow theory for thq'ngfrow flow analyzed is similar
to. that of syétem with confined flow [25] or with {nternal
£low [13]: the system loses stability by the divergence in its
first mode, 1is restabilized according to the Coriolis forc;
and then becomes subject to coupled-mode flutter’ throughk
coalescence of the first- and second-mode loci.

Finally, " from the above results’, 1t 1s noted that the
system with the lowest density fluid requires a much higher
dimensional flny velocity ‘to cause 1nstébility - which 1is
reasonable; however, the lowest nondimensional critical flow
velocity 1is kept?the same, as discussed abovgi

It is:worfh noting the difference in behaviour between
systems of low and high mass ratio. .In summary, the following
way be' said. (i) The 10&§St nondimensional critical flow
vélocity with respect to Urefry, which 1s of course for
divergence, is not dependent on the properties of fluid but on
the geometry of the system. (ii) For small values of mass
ratio, thq.sjstem buckles fn the second mode before the onset
of flutter; for large values of mass éatLb, the system does
nét buckle in the second mode prior to the onset of flutter,
butbtheﬁ?oss of ;tabflity in the second mode is preceded by
regaining of‘stability in the first mode; moreover, at hfgher
flow, the regainiwmg of stability of this coupled-mode occurs
at a slightly lower Ugj tﬁan necessary for the onset of third--
mode 'flutter. It 1is well‘known [13] that these effects could

&
.be even more pronounced at higher mass ratio., (iii) As the

annular gap 1is diminished, Ug,1 is reduced. <(iv) The lowest

T
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density fluid fequires a much higher dimensional flow .

.

velocity, U¥, to cause instability.
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CHAPTER V

STUDY OF VISCOUS FLOW IN THE ANNULAR PASSAGE
' AROUND AN OSCIﬁLATING FLEXIBLE CENTRE-BODY

5.1 GENERAL CONSIDERATIONS

.The analytical modgl developed by Mateescu and Paldousslis
(22] for considering the viscous effects in the case of
oscillating rigid cylinder will be extended here to evaluate
the viscous effects of real fluid ff)w in the case of flexible
cylinders. Th% fluid-dynamic forces aé%ing on the centre-body
were obtained previously,L by means of potential flow theory,
neglecting viscous effect; however, it 1is well known that
viscous effects in real flows are enhanced in narrow passages,
aﬁd therefore it 1is even more important to take them 1into
account for the problem at hand,

In a viscous flow, the fluid-dynamic forces are
conside;ably more complicated than for inviscid flow and ig
general the Navier-Stokes equations are used to obtain them.

The principal purpose of ‘this work 1is to evaluate the
viscous effects on the dynamics of the flexible centre-body 1in
the .- annular flow. Actually, only the case of the system’
consisting of constant cross-sections of both the flexible
céntre-body .and the <cylindrical <coaxial duct, will be
cénsidered. ‘ . :

Based on the assumption of small amplitude oscillations
of the flexible centre-body  (In a narrow annular flow, the

following E;o flow fields are considered, in order to simplify
h of this problem: 5

.

the approat
a) a potential flow, which fepresents the perturbati&h -
flow field .according to inviscid flow tﬁeory,
b) a wviscous flow field, which includes the steady and
unsteady viscous effects.
In the present analysis, the annular flow 1is considered

as a laminar flow. However, the approach taken here could be

L]
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adopted.in the case of turbulent flow also, 1If desired; As
assumed in chapter 1II, an(fﬁ?ﬁypressible fluid of densify Pe
and: viscosity u flows in the annulus with mean flow velocity
U:. Assuming the fluid to be Newtonian, the shear =stress

Cbetween fluid layers is proportional to the velocity gradient
across the l4ayer.

«he viscous forcss acting on the flexiblf centre-body may
be separable into two parts according to their respective
orders of magnitude. The "zero-order" viscous forces!' are

derived from the longitudial(axial) frictional force and from

pressurization of the flow - necessary to overcome the
frictional ©pressure drop. They are known as the time-
independent viscous steady forces, and they may be quite

_ “important in dealing with flexible bodies in annular flow;

however, they nearly have no effect on the dynamics of rigid
bodies [22]. The "first-order" ;iscous forces arise from
normal friction forces containing the effect of the viscous
pressure distribution along the circumference. These forces
comprise the unsteady viscous effects, -
. Thus, free oscillations of the flexible centre-body under
consideration are influenced by both steady and unsteady
viscous forces.

it 1s necessary to get the normal'and tangenéial friction
forces acting on the flexible centre-body, and for thié
purpose the viscous tangential stress acting on the centre-
body surface and viscous pressure distribution must be
obtained first. From these resulté, the analysis is adapted to

determine the viscous steady and unsteady forces, as shown in

chtion 5.3. Here, the basic equations o6f the viscous floqﬁ

opted from the problem of a rigid cylindrical body in a
narrow annular duct [22], will be extended to deal withafhis

«

case (1.e., a flexible ceﬁtre-Body). . )

v
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5.2 THE BASIC EQUATIONS OF FLUID MOTION AND FCRMULATION OF
THE UNSTEADY VISCOUS PROBLEM

- \

In order to get a complete and fundamental %grstanding
of jj»id dynamic problems of viscous incompressibTe flow, it
is believed that the most general governing equations of con-

tinuity apd momentum should be first derived and explained,

- The complete solution for the gbverning equations of viscous

incompressibie flow is still not possible because of Insur-
mountable mathematical difficulties. However‘, many fluild

mechanics problems <can be treated via these governing
} »

hequations: which may be greatly simplified in special cases.

In the study of viscous incompressible flow, 1t 1is
necessary to obtain the three  components of veloclity and
pressure P, as a function of space and time. These four

unknowns can be determined in principle from governing

equations: 1) the continuity equation and 11i) Navier-Stokes
equations. ,
For our purposes’, it 1is convenient té wuse the mnon-

dimensionalf,components of flow velocity in «cylindrical

coordinates and nondimensional pressure perturbation

associated with the motion of the flexible centre-body, 1.e.,
\ 'S

Vix®, %, 0, t%) = Ukju(X,r,0,6) 4 v(X,r, 0,001+ w(X,r,0,6)T,],
_ : A ,
(5-1)
(P - P, ) ( + )
p(ﬂ*,r*,gnt"*) - *20 - p: *FZ)D
. £Yo

where the subscripts v and p stand for the viscous and
potentiél components, respectively.

Now, in terms qf the dimensionless cylindrical co-
ordinates defined in equations (2-3), continuity and Navier-

Stokes equations may be written, as follows:

du 14 1 3w
—t = ——(rv) + £ — — = 0. (5-2)
X r dr - r 84




1 av av av 1 av w2 ap
—— At U— 4+ VL — bW R —— e f — = - g —
U0 at . 38X ar r 8¢ r dr
(5-3)
2h 1 (azv 2L v ol 9%y 02 Lo 2%,
+— = (7 + - —(r—) + — - v —),
Re & 43X r dr dr ;T ad ;7 as
1 aw dw aw 1l 3w vw 1 3p
e u— 4+ VR — b WA —— ) — = - p = —
U, dt ax ar r 38 ¥ r 36
2h 1 (62w 2 L0 ( aw) ol 32w 2 1 , Zav))
+ — = + - —(r—) + - wo- 2—)).
Re £ 8x2 r ar  ar rZ 562 r? 36

In the above equations, Re denotes the Reynolds number

Re = P¢ U: Dy / u. (5-4)

based on the hydraulic diameter of the annulus,

Dy = 2 H¥ = 2 ha. - (5-5)

The velocity vector associated with potential flow was
denoted by Vg -“U’g((1+up)'ix + vpir + wpié), and the related
perturbation pressure by Pp -

. .

In this connection, the nondimensional components of the

flow velocity in cylindrical coordinates may be written as

u(X,r,8,t) = uy(X,r;8,t) + up(X,r,d,t),
v(X,r,0,t) = vy(X,r;0,t) + v(X,r,f,t),
v P : (5-6)
w(X,r,f,t) = wy(X,r;6,t) + wp(X.r.ﬂyt),
p(X,r,8,t) - py(X,r;6,t) + pp(X,r,7,t).

+

whete wuy, vy, w, and py are associated with the ,viscous
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y// effects of the real flow and depend s{ightly on # and t;
hehce, the above notation is used. 4“\\\
In the case oi potential flow (wu=0 or Re=®), ,equatibns
(5-3) may be reduced to Euler’'s equdtions of motion Now, sub-
tracting the partial differential equations of the potential
\\\\ flow from the full equations (5-2) and (5-3), the pgoverning
. . equations of the remaining viscous flow may be expressed in
’ form of the following nonlinear equations
du . 6;w
—<L + 4 - —(xv,) + £ - —% - (5-7)
ax r dr r.d46
1 4du u du du du
— Y s u—— + v g —YL rw - — s (u,-1)—R v 2
U, at ax dr r 484 X ar
2
1 du d 2h 1 du 14 du
bw, 2 -2 . Py b= = g+ 2 = —(r )
r 36 X . e 43X r 4r adr
221 Jd u ) * -
+
-~ LYY
S
-
1 dv v av 1 dv av
— —2 4 L v vt —Y 4+ wp —(—F- wy) + (ue -1 )—=L
» U, at ax r r'af ,AX
: 5 - 2
av 1 v ap 2h 1 a°v
+ v =B+ w b (=R - )~ L+ — - (—
ar r a6 &P ar Re 1 ax
2 : (5-8)
)2 a ( av) 22 1 38°%v P 1 ( 26 ) i
+ - —(r—) + —7 - v + 2— ,
- .1 dr dr ;7 ae ;7
1 aw aw 1 aw ° ’ aw
— X u—L + v 2 Y v ow b —(—2 + vy) + (u, -1 y—
U0 at aX ar r a8 a% -
dw 1.dp 2h 1 3%w
+v£——9-+w£—(-——9-+\'r)—-£——lt——-—1—-——2-
V' oor V'or a4 P r 44 Re £ X
52 14 ( aw) 22 62w 'l ( 2av) ) .
+ - —(r—) + - wo- 2=
r ar  ar 2 32 2 36 "
? On the basis of a set of assumptions to be introduted later,

D

equations (5-7) and (5-8) willwubd' linearized and swolved

4

o
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v analytically by an approximate miphod,xas shown in the next _
g
( section ' .
o

*e

5.3 SOLUTION OF VISCOUS FLOW.IN NARROW ANNULAR PASSAGE

The unsteady potential flow, which s of course irro-
tational, 1is exbressed in tefms of the potential (X, r,0,t),
@s shown 1in chapter III® This analyticﬁll solution of the,
'poteﬁtial flow is used .to get the approxim;te solution of the
viscous flow with Navier-Stokes equation, based on assumptions
¢ similar to those made in boundary layer theory.:
"The major assumptions madé. in invifcid flow may be
T e av;11351e for the viscous flow; i.e., i) the amplitude of
oscillation of the flexible qentre~body is small, 1ii) the
p an:?luSvis narrow (h<<1l), and hence z = r-1 <<‘1 ’
"Taking into gonsideration the order of magnitude of the

various terms in the nondimensional momentum and continuity

equations by assuming that the frequency of oscillation is not

very high and that the Reynolds number 1s relatively low, the
time-derivative terms may be considered to be sméll in
comparison to the radial™component of viscous term§ in Navier-
Sggkes ‘equation. Fur;hef: equations (5-7) and (5-8) may be
linearized and simpliﬁiéd drastically by introducing following
aésumptions similarly to the boundary-layer theory because of

- the harrowness of the a;nular pass;ge: ’ ) -

a) the radial component of viscous motion, Vy, 1is
consldered to be negligible;

bY) the circumferential and axial vartations in u and w

! ' are considered to be negligible, wheg compared with '

radial variations of the same velocit{.components.
& ’

4

Accordingly, equations (5-8) becom?

¢

.dzu Re 1 dp,, 62w Re 1 6pV
) az 2h £ 8ax 3z 2h.r 48
- . ’ £5-9) . .,
( . 0 = f}_)l’_ , 2 ‘
. o
' i , \

(25
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. which are considered as a first attempt-towards evaluating the
effect of the unsteady viscous terms To specify this problenm
completely, the necessary~‘boundary conditions are required.
Considering a solid surface, it -is clear;that the velocity
components normal and tangential to the surface must be equal
to those of the surface itself based on the no slip condition.
With the aid of Figure 7, the total mean veibcfty may be

4 .
approximated for the purpose of this viscous flow analysis as

byl U, 6,6) - UX (Tcos f+ Wsin B), (5-10)

where u and w are the average values of -the dimensionless
axial and circumferential flow velocities across the annular

_ gap, respectively, and, the angle B 1s expressed as

* —

Ug —_
sin. g = E%% = w'(X,0,¢t), . (5-11)

o

since the nondimensional total mean velocity is approximately
,equal to 1, ‘whigfl m;ans that the total _mean flow velocity
remains appr;ximately constant “in magnitude; however: t@e
direction of the total mean flow velocity oscillates through
an angle f, associated with the motion of the flexible centre-
body. ¢ ' — 4

According to potential flow theory, the dimensionless
circumferential fl%{ velocity 1is expressed &X terms of the

poteptial p(X,r,8,tx, as follows:

w-ligg 3 (5-12)

o
AN

Substituting equation (3-17) into the above aéqation and then
integrating over the annular gap, the average value of the
dimensionless circumferential flow velocity across the annular

gap, may be expressed as

r

. a
oW e Y —E (£ Wp, + Fy Wy ) sing el¥T, (5-13)
?; 20 ¥ T HeWHk
« h 9
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where fg.. fHk, and Wre, Wyxe are expressed as

Epe = O [ 10 Epg(X) + U Eq (X)) ], )
Fue = Opx [ 1w Ege(X) + U(X) Ege(X) ],
' (5-14) .
W fh =1 { h(q._z) + R7 sinh( z) ) eikz dz
Tk - 0 T+z coshiq, 1 q, ! |
X h | . T o-kz :>
Wy, = fO TT%,( cos(c,z).+ Ry sin(ec,z) ) e dz .

where Gr,, GHx. 9x.,» ¢k, R1 and Ry are given in section 3.3.
¢ Using the chain rule of differentiation, the first two of
equations -(5-9) may be combined, in terms of the new set of -

coordinates (£,() defined in Figure 7, after multipliq?tion by

césf and sinf, respectively, as
2 $ Y
acv Re 48
— = _____13_17_.' , (5-15)
dz 2Rt
where V_- v(z). ) /
Applying the above equation to the udsual no-slip boundary
condition (V(0)=0, V(h)=0) yields S
’ “ ) )
Re dp ¥ .
V(z) = - — —¥ (£ z (h-2) }. (5-16)
‘2h d¢

The relation between the preséure gradient and the total mean
flow velocity 1is important in engineering applieations. By ©
integration of the above equation over the entire annular
passage, the total mean *hondimensional flow veiocity, which is -
of course equal to 1 (approximately), is expressed in terms of

the viscq&s perturbation pressure graﬁiehc. Hence,

’_’H——Zﬂ' 2
fo fo (142) V(z) cosp dzdf = = { (1+h)" - 1 Y, © (5-17)

and the% ﬁnder consideration of the narrowness of the annular
clearance (h<<l), substituting equation (5-16) into the above

equation, evaluating the integral and simplifying yield

14
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¢

1.
Vv
—L e - — (5-18)
h

From the relationship between the »shear forces and the
. L]

velocity profile for the case of laminar flbw as an Newtonian

fluid, the tangential viscous stress on/the flexibie centre-

body surface is expressed as
1

*
u_ av 12
. F o= oy 2 — - — roukZ, (5-19)
a 8z 1,0 Re °
This shear stress is not dgpendent on time and 1is, In

magnitude, a little larger than that for a steady and £fully
developed annular flow having thé same pgeometry and the sanme
total mean flow velbcity [27f This means th&t the veloclity
variation in the radial direct{on i1s larger than that of the
steaQy annular flow. This difference may be due to the motion
cof the flexible centre-body. The shear stress acting on the
flexible centre-b;dy surface may be separated into two parts,
the circumferential and axial components (ry and r1y), as
follozs:- . .

T, ™= T hOSﬂ = T, .
) ’ (5-20).
Tg = T sing, ’ ~
)
where f 1is a function of axlial position along the flexible
centre-body, as given by equation (5-17). ;
//

. The viscous fluid-dynamic foroes acting on the flexlble

centre-body depend on the circumferential and axial components

L4
of the shegar stress and t:7/’viscosity—re¥ated pressure
' nd

component. The 1longitudinal normal frictional forces

acting on the flexible centre-body per unit length are given
by ‘integrating equation (5-20), as follows: ‘
L ” 2 .
F,L =~ f.o T, a 46,
‘ (5-21)
) (217 ¢ *2 ’ ’
Fon = - IO [74 sind + pro py, cosf] a dé.

[

<«
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Thus, the longitudinal friction force is easily obtained by

substituting equation (5-20) as
~ * . ‘
24 *2
FoL = ke "Prals" A (5-22)

However, some manipulation is required to bring p,, which is

an, implicit function of 4, into a convenient form. In this

respect;}pvcosa is modified as t\,/\

d dpv .
‘pvcosﬂ - E;—(pvsino) - g;—,ﬁlnﬂ . (5-23)
The integral of the first term of the right-hand side in thé
abbve equation over the domain is equal tq zero; hence, the
equation of normal frictional force 1is ﬁodified as follows:
S s
dp, d¢

sinfsing - — — sinf dg. (5-24)
e A d¢ dé ) .

.
2x

*2 1
.. Fuy = - 2P0 “a fo (

[a>]

=

Then, w?}h aid of Figure 7, the derivaqive_bf £, with respect
y

to 0,'m be written as
96 - - 2x sing $8 + r sing + 1 cosp §4 | (5-25)
in the vicinity ofia point on the surface. -Applying equation
(5-11) and (5-43) €o) the above equation, under the
consideration of small ﬁ\and r-+1, yields ’ ‘
dé 8x \ 8 iwt
;; - g ku h( fTKWTK + fHNWHN ) r §1n0 e . (S'ZGZ

2]

Finmally, substituting the above equation into equation (5-24)
and then integrating over the domain, the normal frictional

force acting on the flexible centfe-body is expressed as

(2 i-wt/ -
FVN - - prrefaﬂ' PVN(X) e Vo ' X (5‘27)

L) - [

whe e ,
.2+h *
Pon = Uo(%) &% 12 z';n( Ere¥re + FuxVWHe -

1
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Taking account of &quations (3-25), (3-26) and (3-28), it {is
possibe to define Pyy ap

¢

3

7

where Pan% and Pg.,)N are determined in the next chapter.
Hence, the normal frict;nnal force, derived from the normal
shear stress and the viscous perturbation pressure, comprises
the unsteady viscous effect, as discussed before. . .

The wunsteady and steady effects, arising Mrom the
longitudinal and axial frictional forces, respectively, will
be considered in the analysis of the stability of the system
at hand in the next chapter.

W




’ - CHAPTER VI

(" v VISCOUS EFFECTS ON THE DYNAMICS AND STABILITY "
. OF THE FLEXIBLE CENTRE~-BODY '

.6.1 FORMULATION OF. EIGENVALUE PROBLEM OF THE SYSTEM

. CONSIDERING UNSTEADY VISCOUS EFFECTS
B ) N *
- + The normal frictional force, derived from the normal

shear stress and viscous perturbation pressure, will generate
unsteady viscous effects on the system, according tq equations
(5-27) and (5-28). From these equations, wgich were derived
for the system under consideration and with the aid of a
> reasonabje set of assumgtions (i.e., small gmplitude motion of
the flexible, centre-body in a narrow annular passage), we
shall now proceed with the det;rminétion of the fluid-dynamic
damping and stiffness matrices of the system by means of
Galerkin's method. ) . . .
In the present ahalysis, consideriqg the éqg§tion of
motion of the flexible centre-body', expressed by equation (2-
1), and then subtractiné the terms associated with the
flexural .restoring and the iﬁertia force. from the result, the
fluid-dyﬂamic’damping‘and.stiffness terms arising from the
unstéady viscous force are obtaineds ' ‘ |
For th;t purpose, the equation of motion of the flexible
éeqtre~body, subjected to the unsteady_ potential and viscous

forces, may be expressed as follows; )

a4e 82e* * % % * ‘
EI 5;;% + PgAg g;;% = Fo(x7,t7) 4 Fyg(x", 7). (6-1)

Substituting © equation (2-3) into the above ' eq®ation, the
equation of motion could be re-written in dimensionless form
© as. \
‘ a*e, a%e, 24 ”: (Rot) & i) .
+ - , E + yE) 1. -2
(Q ax% " at? ~ aE1 ' P N : (6-2)

.
A Y -
.

7
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which can be derived from equations (5-27) and (5-28).

52
Now, téking account of equations (4-2) and (5-27) and then

s

using the game method as in chapter II; based on Galerkin's
method (see equation (2-15)), the following equiation may be
obtained: ‘ :

<

1 . ‘ .
acf ! -0l [Eg(X) + 0Py, (X)] + Lo 0[Py, (X) + Py (X))
+ (BB (X) + a(Pg (X) +Po,  n(X))] ) Ej(X) dX = 0, (6-3)

where Pj,yN and Pg,yny are the amplitudes of the nondimensional
fluid-dynamic damping and stiffness terms, respectively, which
are defined in equation (5-28); it 1is also recalleg that
o-(Pf/ps)-(nﬁ*z/As). Hence, the terms assoclated with the

unsteady force may be expressed as

1
Enan fo o (10PN (X) + Pouyn(X) ) ( Egy + Eyy ) dX,  (6-4)

< : .
where ’ : C
; ' 112 2+§
LwP) yn(X) + Poeyn(X) = U, T Re h ; ae(EpeWpe + Vi),
L} (6-5)

\

The next step 1s to determine Pq,yN and Pg,.yNn from cthe

above equations. Before doing that, consider\ing equations (3-
25 to 3-28), it is necessary to divide fr, and fy, Into two

terms for future use as folloys:

fppe = Gp, [ 1o Ep, (X)) + U(X)UoEf}(X) ],

. (6-6)
fian = Cux [ 10 By (O + TCOUELL () 1,

¢

- where U(X)=1 in the present analysis. Thus, substituting int%

equation’ (6-5) yields

1 12 2+h ' . -
Pieve = Yo T Re 52 Z 8¢ G, Wp Ep (X)) + Gy Wy Ey (X)) ],

' ' . (6-7)

2 1 12 2+h , :
Powvn = Us T k& B8 T ay [6qa¥p, Eqp(X) + Gy, Wy, Byy (X) 1,

i

NS

N

9
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wvhere Wy, and Wy,, given in equation €5-14), are not functions

of X. { -

Finally, substituting equation (6-7) into equation (6-4)
.and\then consfderiﬂg the relationship between equation-(2-15)
and equation (2-16), the elements of fluid-dynamic damping and

’
stiffness matfices due to the unsteady viscous force are given

by .

[N v

112 :
¢jkuv = Yo ¥ Re o [ GpeWrelry + Gye¥uelu 1o

[t
7
l=a

) (6-8)

Kyuv = U5 T KE gﬁ% o U Gpe¥rule’ * SuaWHeln' -
wvhere Ip, Iy, Ip’ and Iy', defined in equations (4-7d), are
numerically determined and the results are given in Appendix
c; the suffix "uv" stands f;r the ‘"unsteddy viscous"
éompénents of the corresponding matrix. Here, the first and
second terms of the numerator, 2+h, may be associated with the
viscous perturbation pressure and the shear stress,
respectively. Furghefmore, the two terms within theubg!chkts,
which are functions of b, may be related to Bei/at for the
damping terms. and to U*(x*)(aet/ax*)'for the stiffness tefms,
according-to theAboundary-conditions shown in equation (3-16a)
As expected, the unsteady viscous coupling -terms are
expressed in terms of Re and ﬁ. In the dbove equation, it is
expected that the system. is influenced by unsteady viscous
terms more and more as the annulus becomes narrower; however,
the coefficients within the brackets change with h and £ (this

change, however, may be small as compared with that of 1/h2).

3
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6.2 FORMULATION OF THE EIGENVALUE PROBLEM OF THE SYSTEM
CONSIDERING STEADY VISCOUS EFFECTS

ion of Motion of the Flexible Céﬁtre—Body,
ced by Viscous Forces

scussed before, small lateral motion of the centre-

body 1s assumed, such +that the displacement eg and 1its
derivatives with respect to x¥ are small. Thus, ,the steady

'

effect is represented by the axial wviscous stress, taking

S

cosfB=1 and rx-(12/Re)Pngz. Integrating oves _the
circumference, the 1longitudinal force, called the steady
viscous force, Fyj, was obtained in the pégvious chapter; 1.e.
FVL-(ZQ/Re)rang. The effegts on the fluid-dynamic coupling
termgy generated by inviscid and viscous forces (l.e., Fp and
Fyn), will UYe also considered in the present section.

The forces acting on a small ‘element, 6§x*, of the
flexible centﬁe—body, which has undergone a small lateral

motion, are shown in Figure 8(@),‘considering all invisecid,
"

steady and unsteady viscous terms. Force balances, in x - and
y*-directions, yield s
’ \ ’
aT . ded
-é—x;g + Fyp t pr - (F’p + Fon) -é—)-(-{: - Q,
! * * 2?2 % (6-9)

aQ de: ] de d“e

—_ + + + + 2 4 ) - w3 =0

8xf pr Fp FoN fvL ax™ 7 ¢ 6x*) " at '

where the terms Fpy and Fpy were introduced by Paidoussis
[12], wusing the artifice of a "frozen" deformed element
immersed totally (i.e., on the all sides). in a- fluld of static
pressure p and static-preésure gradient 6p/6x*, and Q 1{s the
transverse shear force. The forces prsx* and pr6x*; which
are 1like Dbuoyancy forces, are the resultants of the
hydrostatic pressure p (and of the pressure drop due to
viscosity) acting on the outer surface of the element.

Accordingly, assuming pzp(x*) is a linear function of x¥

s

(Qﬁich is reasonable, as the hydrostatic pressure distribution

fis modified by the frictional pressure drop - see equhtion (5-

1
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)

18)), the balance of forces, with aid of Figure 8(b), is given
by
*

a(pAy) a de ®
- Fpy | T+ [ R - S (A —% ) ] 6x7 3
7 2 | ik * 1 0
f{ pn dA = - ffiogp d(vol) = - P A  bx , (6-10)

where ©® 1is the normal unit vector acting on the surface and
"A" and "vol" represent the area and the volume, as domains of

integration. Hence,

F i _ d(pA;)

PX T ¥ s ax* '

@ , ? (6-11)
*

. _ ( \ 3eo )

Py ax Pas ax

In the above equation, it 1is noted that the term, pr is
equivalent, by analogy, to the tension terms acting on the

cross-section of the * flexible centre-body, and that if

'BAs/ax*-O, then pr-O; in this case it is_so. v
Under consideration fof smgll ampli\tude motion of the

flexible‘céntre-bo§>, if egzO(e), then Fp and Fyy are of the
same order, so that (Fb+FvN)Be§/8x*z0(52). Now, substituing.
equation (6-11) into equation (6-9), and retaining terms of
0(e), only yields ' .

Y

aT . N .
—5 + F =0, . (6-12a)
ax ; . . - .
4 * * * 2 *
d 4 de de 3
-EI——3+F + Foy + —%[(T + pA_) —2] + F o . 0,
VN T ax* PAs) o3¥] VLax* at*Z
n ! (6-12b)

92*
R 0
where, the .fact that Q = - p —5  ( EI ———%-) has been utilized, s
> 8x
and EI, in this case, 1is constant with\x* For convenience, .,

equation (6-i2a) may be re-written .as

d . ap , .
N 5?(,T+pAs)+FvL-'a—£;:As—0. (6‘-13)‘
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For future purposes, integrating the above equation from 0 to

x* and from x* to 2%, tha following equations &are obtained,

respecfively,
- x* * ap *
(T +rpAs) - (T + pAg)g + fo Fyp dx - ——% Agx’ = 0, (6-14a)
- *
2 * ap * *
(T + pAg)y - (T + pAg) + Jo Py ax - JoF A (LT - xT) =0,
x X (6-14b)
"since, ap/ax* is constant with x*; in these equations, the

subscripts "O" and np¥n represent the quantitifs Iin brackets
"at x¥=0" and "at x*-l*“, respectively, Here, taking Iinto
account equations (5-1) and (5-18), the static pressure drop

may be taken as

3 ap, Pcu*? 24 1
= =¥ £ FURZ, (6-15)
ax X3 a ah Re

which is obviously constant for &a system with given geometry .
and system parameters (i.e., a, h, p, U:z). Thus, substituting
equations (6-1l4a,b), respectively, into equation (6-12b), the
equation of motion of the flexible centre-body is expressed by
either of the followiné two equatiovns:

°

g%e* T N ap ‘ * fx*F ax® | aze:
EI —"—% - + pA + A_x" - X
ax* [ PRs0 © 5xF s o VL ax*2
ap ae: Bzez . . (6-168)
- —xA, —F +m - + , -16a
ax™ % 9x ac 2 P vN
d e P e
El —% - [ (T + pAy) 4 - —% As(z* S x*y o+ [0 Fyp ax* ] 238
ax A X X X
%% o deg 623& F_ + F (6-16b)
- —xA, —% +n —% - . ;
ax* 8 ax ™ P vN

The mnext step 1s to consider three cases of axial

(physical and fluid-static) boundary conditions, shown |in

s

Figure 9; 1i.e.,




a) case 1 : totally clamped upstream, but axially

sliding at downstream end;

b) case 1II : axially sliding at upstream end, and totally

clamped downstream;

¢) case III: both ends absolutely clamped.
0f course, the flexible centre-body: is subject to boundary
conditions appropriate ‘to an Euler-Bernoulli beam, as shown in
equation (2-2). - )

Considering a slice of the beam at the downstream end of
the beam (fo} case 1) or at the upstream end (for case II), it
is evident that the combined pressure-tension force at that
end 1s zero; i.e , (T+pAg )=0 at x*¥=2* for case I or (T+pAg)=0

at x*=0 for case 11, exting any "form" (or base) drag (if

"guarded" by a rigid

On the other hahd, he situation, is different for case

the total length of the flexible

III, which 1s case
centre-body remains cons en fixed supports. There 1is
also a\compressive load o radial contraction, arising via
the Poisson-ratio effect; for a thin tubular beam, this is
equal to -2v({pAg). This will be found to be negligible later
for pA5£*2<<EI, but this will come out naturally. Since .the
total extension of the beam in case III due to the tension 1is

zero at x =i%, Tp* is obt%&ned easily, as follows:
2* 2* ’
* * * *
f@de —fO(TL+FvL(£ - x7) ) dx
* *2 1 [ %2
where Fyp, 1¢ introduced in equation (5-22), which is obviously

constant with x*. Hence,

b for case III (6-18)
1 ,
T x= - 7 F . .

Thus, taking account of the relationships mentioned
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above, it is convenient to modify equations (6-16a,b) for each

case, as follows: . f

(a) for case 1

e dp * % 2 * e »
EI ——;% - - —3A (L7 - x7) o+ F dx ——;%
ox [ xS i* vL ] ax
p A ae: 6292 F F 6-19a)
e —% + m - + v - a
ax> S ax P P vN (

(b) for case II

4 * * 2 *
\\§§-6 e, ap * * 0%e,
ax¥l [ _;i'ASX - f Fyy dx° | —%7

X
a 0 ax
v ap Be: 82e:
- :a—x—-*-As 'é?; + m ;,::1:2— - Fp + FVN; (6-19b)
|
{(c) for case 111
4 * * ) x
37e 1 ap X e
f'o - * L * _ * o
ETX —a?*—zr -1 " FVL£ + ax* Agx fO F,p dx ] a—x*—z-
. 2035 azej dp ae: ,aze: §
-(1 - u)pAs ;;(‘;2" - E)_x-; s -a—x:;' + m s—t—;f - Fp + FVN‘('6'19C)

Clearly all three equations (6-19a,b,c) may be written as one;

thus, substituting equations (6-15) and (5-22) 1into the above

(

equations yields

4 * 2 %
d7e 24 1 %7 * 1 * dce
El —p+ — n (1L + =) Pca U x¥ - (Y- -s)2 —%3
3x* Re h f o [ ] ax
© 2 % * 2 *
. d%e 24 1 %2 de dce
S(TN20)6(2 - 6)PA, —33 + — = — PU%2 29 4 ¢ 9
, ) ¢ Pls ax Re h £ o Ix St 2
- Fp + Foy o+ ) (6-20)
N4
where ‘
ugét;eam end downstream end

§ =0 for case 1 (totally clamped, <clamped-sliding)
5§ = 2 for case II (clamped-sliding, totally clamped)
§ =1 for case III (totally clamped, totally clamped)
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It is importame~ta notice that the second term in the

-

¢

above. equation 1is positive; this 1is as it should be, as the
*

-

beam 1s under compression, increasing linearly with x for
case 1I; however, for case I(6=0.) it @ecomes‘negative, the
beam being under tension, decreasing linearly with x¥ It is

also ‘npted .that the existence of the third term "depends on
wheth;r the length, 1*, is fixed, as in case III, or not
6.2.2 Nondimensionalization and Formulation of the Eigenvalue

Problem, using Galerkin's Method

Befome ©proceeding with the _analysis, the w®»guation of
motion will be rendered dimensionless by introducing the
nondimensional parameters, defined in equations (2-3)
Recalling those nondimensional parameters ‘and, 0 "defined in
equation (2-11) edﬁation (6-20) is re-written in

nondimensional form as v !

1 32e

a%e, 24 1 5 1 .

-a—xz-—+;{—g(l +}_1-) UUOE[ X - (1 -55) ]EXT ' .

(1 -2v)6(2 - &) 0 3322 L2 L u? L2, figg
. aX Re h 2 38X 3t '

L i e

- —— (Fp o+ ), (6-21)
where _ %2 L .
_ PAst
EI

R

it is recalled that (1+1/h) ié the .same as (1+D/Dy), Dy being
r

the hydraulic diameter. , 4
- e ° °
, Now, considering the terms associated with steady viscous
forces by means of Galerkin's method, introduced in chapter II
and IV, the elements of the fluid-dynamic stiffness generated
by steagy viscous forces are given by
~ . P

D D, 1 ..
( B;‘(IT'+IH') + (1 + B;)ﬁn'{({ - ;5)(1T - I

2

b, 1"
Kygsv — E:auo n

+ gy - Igp) ) )+ (1 - 20)6(2 - 6)I 2(I, - 1), (6-22)
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=

where
> .

Iyg = J

O = O

(EygBry + EyeEypX dX,

and I, Iy, IT', Iy’ a;d_Ip, representéd by. equation (4-7d),
*are less than unity.' In the above equation, the subscript "sv"
représents the "steady viscous" cohponents of the matrix. .

In ordgr to evaluate the fluid-dynamic effects acting on
the flexible centre-body in real flow, it 1s obviously
..necessary ;tnmvaﬂd_,the<~1L££dy{;and unsteady, xiscous coupling
terms, ﬁﬁpresentea by equations (6-8) and (6-22), ‘to the

rl
equivalent idviscid terms, represented by equations (4-6b,c),

respectively. Hence, the elements of [M], [C] and [K] are
given by
"ie T Tpie : : '
ij - ijn + Cjnuv' P (6-23)
o ij = kpjn + kjnuv + klnsv’ . .
where the 1inviscid terms, expressed by subscript "p", are

given in equation (4-7a,b,c). Frop the above equations, it Is
obvious that the wvirtual mass is not affegted by viscols
forces (which should be ghe case) and that <he damping
coeffient is not influenced by steady viscous force. .

Cbnsidering equations (4-6), (6-8) and (6-22), 1t 1s
noted that the potential and the viscous coupling terms Are,
explicitly, functions of 1/22 and 1/4; respectively (except
far vase II1); thus, 1t is obvious that, when the length ratio
increases, the steady and unsteady viscous effects on ﬁBe
system‘become 1a%ger,‘as compared to the potential terms; also

the mean static pressure effects, for case III, become larger.

Id

-




6.3 DYNAMICS AND STABILITY OF THE FLEXIBLE CENTRE-BODY 2
IN VISCOUS FLOW

The purpose of, this section is to illustrate the general
dynamical behaviour of ‘the system, as influenced by the
viscous forces termined in chapter V. For that purpose,
fiuids having ‘high viscosity are chosen in some of the
caculations, to aécent&ate the effect.

In all of the calculations to be presentgd, the inviscid
fluid-dynamic coefficlents are obtained by rigorous solution
(chapter 111), but the ‘viscoﬁs ones are only given
approximately, ;hOWn in chapter V for convenience and
simplicity; however, it Bhould be emphasized by the author at
this point that, as will be seen later, the approximate
solution 1s good enough f&r evaluating the viscous effects
acting on the system. ] -

In the ©present analysis, rather than attempting an
exhaustive para;etric, study, the calculations have been
conducted according to the aﬁnylar gap width; so called 3/40,
1/10 and 3/20 gap oil-rubber systems (h=0.075, 0.1 and 0.15).
As the wording implies, the flexible centre-body is considered
to be made of rubber (Upof=1.198 m/s) and the fluid is takén.
to be o0il (pu=0.007 Paes). In order to investigate the unsteady.
viscous effect, calculations are done 'with” unsteady viscéus
term included and excluded (potential flow) and the results
compared. Then, calculationgfare-done with all viscous for@es
and the results are compared with those in the previous
calculations. In order to evaluate,'specfically, the ef%ect of
viscosity of fluid, another 1/10 gap oil-rubber system
considering the inviscid and unsteady viscous effects is

investigated with a viscosity, w=0.014 Pa-s, higher than the

- one (pu=0.007 Pass) mentioned above, and then the result _is

. >
compared with the corresponding one (u=0.007 Pa-s, 1/1

o

.

annular gap).

In general, it is impossible to assess the stability of a

—

continuous system directly by considering the dimensionless

o £
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damping and stiffness coefficients. Neverthless, considering

the orders of magnitude of the dquations (6-8) and (6-22), it
is possible to expect that the system should be 1;f1uenced by
the unsteady viscous forces more and more when the annulﬁg
becomes nargzwer, as discussed in section 6.1.

’

Effect ‘of increasing flow velocity

The dynamical behaviour of the system ‘with increasing
flow velocity will be discussed by means of an 1llustrating
example, as mentioned before. The dimensionless camplex
eig;nfrequencies, w, which are expressed in terms_of Im(w) and
Re(w), of the lowest three modes {n=5) of the oifl-rubber
system are plotted versus nondimensional flow velocity Ug1.
Here, if the imaginary part of w, Im(w), i{s positive, motions
will be damped, while if Im(w)<0, motions will be amplified;
i.e., the system will ‘be unstable. ‘

The effects of unsteady viscous forces on the 0.075 gap
system, which 1is compared with the results obtalned by
inviscid theory, .are shown 1in Figure 10. Of cougse, the
results taking wunsteady effects into account include the
inviscid effects.

At lower flow velocity, the system is influenced by the

‘unsteady'viscous damping coefficient, which is constant with

flow velocity. Of course, this behaviour did'not appeare 1in
the results by potential flow theory - - the "damping"
coefficient of the inviscid force 1s really a Coriolls effect
and it has no effect on system behaviour before divergence. As
shown in the Figure, the effects oqf urnsteady viscous forces
are primarily to diminish Re(w) and to produce Im(w)>0. These
effects are represented by P-V in Figures 10(a) and (b).

As flow ;elocity incr;ases, the firgst mode eigenfrequency
vanishes at point a, and the locus Qf Im(w) bilfurcatgs. But
the two branches of the loctis coalesce at pofnt b, without
ever reaching a negative wvalue. From this result, it 18

;ecognized that first mode buckling, which was shown to occur

- f
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in case of inviscid flow, does not appear in the case of this
viscous flow. However, the:. cylinder becomes unstable in its
second mode at much higher wvelocity, flutteriﬁgﬂat point ¢’
(in the case of {nviscid flow, tlke onset of coupled-mode
flutter occurs at péint C). And then, the system regains

stability in its second mode at point D’'. However, the systen

‘may lose stability again by buckling in its second mode, when

flow velocity increases further; i.e., at point E’.

Further rise of the flow velocity causes the system to
flutter in the third mode at a floWw velocity higher than that
required for the corresponding flutter in'inviscid flow: Here,
the third-mode flutter is of no particular intere;t for the
following reasons: (i) the value of Im(w) of the second mode
still remains negative, since the system 'already lost
stability at lower floy,velocity; (ii) the wvalidity of the
result 1s questionable at such hiﬁh flow velocities, since the
flow is turbulent there. ~

Interestingly, coupled-mode flutter (i.e., between the
first aﬁd second modes or the third and fougth modes in the
case of inviscid flow) does not appear in the case of this
viscous‘flow, as can be seen in Figure 10.

The eoeverall dynamical behaviour of the 0.075 gap oil-
rubber systems, cpnsidering the steady visc&us ,effects‘ as

well,' is shown in Figure il, according to end conditions

\erresponding to cases.I, II and III (see Figure 9). Here, in

order to evaluate the mean static pressure effect, two
different systems (with II=5 and II=50) are consiflered. As
eﬁpected, the steady viscous effect on the system- is smaller
than the inviscid and unsteady viscous effects; but, it should
be considered in real problems. Except for case 1II, the steady
viscous effect stabilizes the system; moreovwy, the system in
case I becomes unstable by second mode buckling, so that the
critical flow velocity is much higher than those for the other
cases. These results also suggest that the system {is

stabilized by increasing the mean static pressure calfulated

-
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from II; but, this effect, even for N=50, is very small for the
P .
%u§> system presented here (2=20).
* ‘ - o r
Table 3 Comparison of the nondimensional critical flow
velocities obtained by the potential flow and -
viscous flow theories of Sections III and
9 [2%/a=20, H*/a=0.075, 0=323.74 and Uref1=1)3316m/s ]
Unsteady Potential Flow ?heory
. lst mode . coupled-mode flutter
buckling (1st and 2nd mode)
onsetirestabliliza-|onset %%stabiliza-
s A (tion D (tion
1.837| 2.762 [3.030] 4.101
(’
Unsteady Viscous Flow Theory (u=0.007 Pars) ;
lst mode ) 2nd mode 2nd moge
buckling flutter buckling
—————--————————-———-‘—-1 ———————— ——— . o - — - o bo o e e o o] =
’ onset|restabiliza-|onset|restabiliza-| onse
A’ B’ (tion c’ D' (tion E"
unsteady ‘.7
viscous effects no buckling 3.342 3.735 4.272
included: / )
—————————————————————————— d-——t--——--L————-l-—-—~-.—~-—l——-d-¢-———-——
steady and
unsteady
. viscous effects o
T included: K s
‘ case I : no buckling no flutter 4.537
case II no buckling 2.967 3.532 3.960
-t case III (II=5) ng buckling 3.346 3.739 4,244
t , ¢ case III. (lI=50) no buckling 3.409 3.766 4,279
In order to evaluate the viscous effect more easily, the
nondimensional flow velocity of the critical points,‘shown in
| “Figure 10, are tabulated in Table 3. Considering this 13912
‘ and the corresponding Figure, it is expectad that the system
for case III "with a low mean static pressure is not nearly
Q influenced by the steady viscous effect and the system, for

case I, is more stable.

i
)
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Table 4 Comparison of the nondimensional critical flow
velocities obtaiped by the potential flow and
viscous flow theories of Sections III and V
[£%*/a=20, H¥*/a=0.1, 0=323.74 and ¥yif1=1.3316m/s]

e Unstgédy Potential Flow Theory
lst mode coupled-mode flutter
buckling (lst and 2nd mode)
___________________ e L
onset‘restabiliza- onset| restabiliza-
B (tion c D '(tion
2.133] 3.208 3.505 | 4.757

B! _

.Unsteady Viscous Flow Théory (u=0.007 Pa-s)

lst mode 2nd mode
buckling flutter
onset|restabiliza-]onset| restabiliza-
A’ B' (tion c' D' (tion
unsteady‘
viscous effects|{2.291 2.997 3.558 4,690
included: .
steady and . | & | T "1
unsteady :
viscous effects
included: )
case. I 2.492 3.170 3.798 4,915
case I1I 2.096 2.844 3.328 4.476
‘case III (MI=10)}2.302 3.014 3.570 4.700
cgse III (II=50)({2.371} _ 3.057 3.623 4.737

H

-+ The same analysis has been performed for the cases of the
0.1 gap and 0.15 gap oil-rubber systems (see Figures, 12-15).
The general ~dynamic behaviour of "these two systems is
qualitatively the same; however, it 1s different in the former
case (h=0.,075). As expected through inspection of equati%ns
(6-8), the unsteady damping effect, which can be represented
by P-V in the Figures, is decrea;ed-w;;h increasing h and each
of these two systems buckles at point A’ in its First mode ;
accordingly, the <critical flow velocities are decreased
dramatically as compared with former case (h=0:075).

The nondimensional flow velocities of the point§ shown in

Figures 12-15, where the po%nts A and A' represent the non-
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dimensional critical flow velocities for both inviscid and
viscous flow theory, are given in Table 4, for the 0.1 g&p
system, and in Table 5, for the 0.15 gap system. éy inspection
of the Tables and/ corresponding Figures, the range of the
first mode buckling region represented by A'-B' and of -the
second flutte}ing region represented by C’'-D‘, with respect to
the corresponding region of inviscid flow, are decreased with
increasing annular gap. It 1s also predicted that the
stabllity behaviour is govermned by the Iinviscid fluid-dynamic
forces more and more, when the annulus becomes larger;
however, viscous effects are taken into account.

' ~
Table 5 Comparison of the nondimensional critical flow
velocities obtained by the potential flow and
viscous flow theories of Sections III and V
’ [£*/a=20, H*/a=0.15, 0=323.74 and Upeg1=1.3316m/s]

1 ~

Unisteady Potential Flow Theory

lst mode coupled-mode flutter
buckling (lst and 2nd mode)
—————————————————— Th‘-*—ﬂ————-—--—-——‘--
onset|restabiliza-|{onset| resthhiliza-
A B {(tion C D (tion
, 2.639] 3.968 ° ]4.307] 5.875

i L

Unsteady Viscous Flow Theory (u=0.007 Pa-+s)

1st mode 2nd mode
buckling ° flutter
onset|restabiliza-]lonset|restablliza-
A’ B’ (tion c’ D' (tion
unsteady
-viscous effects|2.661 3.939 4.302 5.866
included: . , .
steady and - | | |77
unsteady ’ .
viscous effects x
included: 3
case I ‘ 2.785 . 4.075 4.471 6.028
case IT 2.538 3.810 4.149 1 5.709
case III (lI=5) |[2.668 3.947 4.315 5.872" ‘
4.388 5.924 o

case III (IO=50)(2.757 4,013
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Considering the difference in behaviour noted above apd
(h=0.075),

stabilizing influence of the viscous effects

recdlling
noted that .the
increases with diminishing h at a higher rate, to overcome the

destabilizing influence of the inviscid effects, at least for

this range
system of a much lower annular gap than those énalyzed here,
the eigenfrequenéy, Re(w), of the first mode %ay become zero
of the first mode may be bifurcated at lower

.and the

flow velocity.
does not
cylinder buckles in the second mode at higher flow velocity,
of Figure 10(b).

which 1is
The
critical

shown 1In

-

Table 6

(a) unsteady viscous effects included

locus

equivalent to point E’
typical var%ation with the relative gap of the lowest
flow vet‘city at which the system loses stability is

Table 6.

-

Effect of the relative annular gap

the results of the former

of h; furthermore, it is

lose stablity by second mode

v

Influence of the relative gap H*/a on the lowest
critical flow velocity at instability threshold

(unsteady viscous flow theory)

»
~

suggested that for a

4
ccordingly, it 1is expected that the systen

flutterxr:

~

(2% /a=20, 0=323.74, u=0.007 Paes and

Upgfi=1.3316m/s]

H*/a Type of instability | Critical flow welocity
olcr
0.075 2nd mode flutter 3.343
.1 lst mode buckling .291
0.15 lst mode buckling .661
(b) unsteady and steady viscous effects included
H*/a Type of instability|Critical flow wvelocity
- Uoler
- I 2nd mode buckling 4.537
2 0.075 II 2nd mode flutter 2.967
III H-5% 2nd mode flutter 3.346
ITI(=50) 2nd mode flutter 3.409
I 2.492
III ) 2.371
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Effect of the fluid viscosity
¥

The dynamical behayibur of the 0.1 gap oil-rubber system

§

considerin the inviscid and unsteady viscous effects with
p=0.014 Pges 1s presented in Figure 16. The general dynamical
behaviour \Qf this system is then compared to that for u=0.007
Pa*s and th same relative gap, shown in Figure 12. The
influence of the fluid viscosity.,s on the lowest critical flow
ve}ocity at instability threshold is shown in Table 7.

Table 7 Influence of the fluid viscosity uy on the lowest
critical flow velocity at instability threshold
(unsdeady viscous_effects included)

[2%/a=20, H¥/a=0.1, 0=323.74, Upgf1=1.3316m/s]

p pacs Type of instability CriticalUflow velocity
. oler
0 1st mode buckling ¢ 2.291
0.007 lst mode buckling - 2.661
. 0.014 2nd mode flutter 3.819
* potential flow theory

Finally, considering all the above, it 1is also of

,interest to remark that viscous effects on the dynamics of the"’

system increase with decreasing the ‘annular gap; the results
obtained with decreaging the annular gap are, qualitatively,
similar to those obtained with increasing the viscos{ty of the
fluid. Moreover, it is not surprising that the viscous terms
of the equationJof motion for a narrow annuldr flow have a
profound effect on the dynamical behaviour of the clamped- '
clamped beam, while hgving a minor effect for unconfined flow.

The overall dynamic behaviour of the system, i{llustrated
a60ve, is influenced much more by the unsteady viscous terms
than by the steady viscous terms, particularly by the unsteady

viscous damping term.

L]




CHAPTER VII
CONCLUSIONS \

7.1 GENERAL CONCLUSIONS AND DISCUSSION

s

This thesis has dealt with the dynamics of the %1exifle
centre-body in very narrow annular flow. Its main aim was to
evaluate the 1inviscid and viscous effects on the dynamical
behaviour of the system and, especially, on its stability. In
this paper, a rigorous method based on potential flow theory
and an approximate method for viscous flow have been
developed.

The inviscid fluid-dynamic force was derived under the
assumptions of small’ amplitude motion of the flexible centre-
body and a very narrow annulus, based on potentidl flow
theory. The @analytical model for viscous flow has been
developed usipg a gimplfied form of the Navier-Stokes and
continuity equations and necessary boundary conditions. '

System eigenfrequencies have been calculated while
vgrying (1) the density of fluid and (ii) the annular gap

ratio for inviscid flow; for viscous flow calculations were

conducted while varying (i) the annular gap ratio, (ii) the,

viscosity of fluid and (iii) the axial (physical and fluid-
static) boundary conditions (seg¢ Figure 9). In all cases, the
flexible <centre-body was takdn to be clamped at Dboth
extremities, so that, apart fro the unsteady viscous f;rces,
the system. is "in the category .of gyroscopic conservative

dynamical systems.

In general, the, stability characteristics of the systen,

being determined by the flui dynamic forces acting on the

flexible centre-body, are intimately related “to the hydro-
dynamic or "virtual" mass of the fluid, which in turn controls
the natural frequencies of the system at zero flow velocity:
the higher the virtual mass, the 1lower are the natural
frequencies at zero flow veloeity. Moreover, it has been knéwn

that the virtual mass becomes ldrge with decreasing the

1

«
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annular gap for confined flow. Thus, the instabilities of the

-
o

system for confined flow occur at lower flow velocitles, but
the fundamental nature of stability behaviour is not altered
yis-é-vis that of unconfined flow.

In general, it is known tﬁat for sufficiently high flow
velocity, di;;rgence and flutter are possible in wvarious
models. e.g, although the system for confined flow 1loses
stability by divergence, In principle, 1t could also subject
to coupled-mode flutter - by coalescence of two modes 1In -
complex frequency. Now, the question arises as to the
pertinence of all this complex dynamical behaviour of the real
system (see, for example, ngﬁYbs 2, 3, 10) beyond the
critical £flow velocity. Strictly speaking, 1linear theory 1is
only capable of yielding the critical flow velocity where the
system first loses stability, and 1is generally wunable to
predict postcritical behaviour. Neverthless, it has been shown
that, in some cases, it 1s also capable of predicting the
post-critical dynamical behaviour of the system (see, “for
//ﬁ\\\ , example, refs. 8 and 12). A similar capability will be
" presumed to exist here also. ’
: Both qualitative and quantitative aspects of the results

J obtained in Figures 2 to 6 and in Tables 1 and 2 having been
discussed 1In fair detail already (chapter 1IV), only some
general conclusions, for inviscid flow . first, will  Dbe
presenred here, as follows: '

(a) the flexible centre-body becomes unstable by flrst-mode
buckling; . .

(b) the system is generally subject to both divergence and
coupled-mode flutter; . '

(¢) the restabilization of the system in its first mode, prior
to the onset of coupled-mode flutter, depends on the
(M/m)k which is associated with the Coriolis forde.

, (d) the destabilizing fluid dynamic force becomes larger as

the annular passage becomes narrower;

q:; » (e) the critical flow velocity is lower if the fluld has
.///“"“”‘7\\\ larger density. i .
e . /
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of these conclusions are applicalbe to systems with

parameters in the range of those covered by the numerical

calculations undertaken in this Thesis.

Based on inviscid flow theory analyzed here, it is noted

that the dynamical behaviour of the system is similar to that

of

systems with unconfined flow or with internal flow, as

discussed 1in chapter 1V, Moreover, it turms out that the

approximate method for the critical flow velocity based omn the

virtual mass (see Appendix E) 1s suitable for very slender

bodies immersed in aflnarrow annular flow.

As stated in chapter VI, the dynamical behaviour of.the

system 1s mqdified by the viscous terms. In general, these

viscous terms affect only slightly the dynamics of the system

for
can

is

confined flow. The stability characteristics of the system
be approximately determined by potential flow theory; this

so, because, -as it 1s known, the frictional forces,

frdthough rendering the system nonconservative” do not greatly

alter its fundamental behaviour as determined by the inviscid

forces. However, the viscous effects become important as the

annulus becomes narrower [22].

The results . based on the approxkimate wviscous theory

developed in chapter V are compared with\ those obtained by the

potential flow theory in chapter VI in detail. Generally, 1t

turns out that viscous effects, as considered in this analysis

at least, have a stabilizing influence on the system. Some

interesting conclusions for the dynamic behaviour of the

! q
system subject to viscous flow are as follows:

(a)

. (b)

N

the system is subject to both divergence and single-mode
flutter, as opposed to coupled-mode flutter;

although the viscous efféct is taken into account, the
stability behaviour of a system having relativély

large ‘annular gap or lower viscosity of fluid is strongly
affected by the inviscid fluid-dynamic force; thus, the
system loses stability in the first mode by divergence
at-a little higher flow velocity as co?pared with the

results obtained by potential flow theory;

[ Y
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- .
(c) if the viscosity of the fluid is i;creased or the annular
gap ratio decreased, the system loses the stability by
second-mode flutter or buckling at a much higher flow

velocity than predicted obtained by potential flow theory;
(d) the steady viscous effect on the dynamics of the system,
i.e , due to the tension terms generated'by the
longitudinal viscous force, has been shown to be rather
weak and stabilizes the system except for end conditions
corresponding to case II, moreover, pressurjization
stabilizes the system, but 1ts effect 1s relatively swmall.
Thus, it 1is 1iInteresting to note that the difference in the
instability threshold as given by the two theories (i.e. the
potential flow theory and the viscous flow theory) 1is quite
large for very narrow annular flow
Although, the treatment of the viscous effects 1s based
on a considerable number of simplifying approximations, thdse
conclusions may be considered to be reasonable as an attempt
to assess the influence of viscous effects on the dynamlcs of
the system
It should be remarked tﬁft, in the present analyslis, the
flow in the narrow annular p&ﬁsage is assumedy to be a fully
developed laminar flow.%&t higher flow velocity,} approximately
beyond the second mode. buckling point, the vdlidity of the
results 1is questiogﬁgle, since, ,the flow 1is turbulent. TIn
general, the static pressure drop along the axis is different
in turbulent flow; furgher, the shear stresses acting on the
wal% are‘yuch larger than those in laminar flow. However, it
is questionable that the viscous effects on the dynamics of
the system in the turbulent flow region are more profound.
In summary, inviscid flow theory predicts that the system
would be monotonically destshilized as the annular gap ratio
becomes smaller, which means that the critical flow velocity

influenée of viscous effects increases with diminishing

N

would tend ?ﬁ become smaller; however, the stabilizing
the

annular gap ratio at a higher rate eventually overcoming the

destabilizing influéhbe of the relative gap decrease in

y;

e
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inviscid case (in fact, the steady viscous effects for end

~conditionstcorrespoﬁding to case 11 of Figures 11, 13 and 15

destabilize the svstem). This is one of the principal findings

of this work.

In view of the lack of reliable experimenca;{?za*in the
¥ble

area of very narrow viscous flow about -a fle lender
céntre-body, it is impossible to compare these results with

experiment, '

7.2 SUGGESTIONS FOR FUTURE WORK

A theoretical analysis has been developed in this thesis
for bvth potentiél and yiscous flow past the flexible centre-

(

body oscillating in a «c¢ylindrical duct having a constant,

annular passage, in  order to determine flow-induced
instabilities of the system. As ment;oned before, the wviscous
model developed here is obtained under several assumptions.
Therefore, there are several possible di;ectioﬁs in which this
work can be extened; e.g., it is suggested that for the
%urbulent aflow regime, viscous coupling terms should be
modified, as mentioned before. . ) ‘ N

An attempt should be made to extend the theory to more
comnlex geometries. Better analytical models for studying the
unsteady flow in narrow .passages would con;itqae a major step
forward, in order to obtain results with widerbapplicability
to real engineéring problems. In this respect the non-
cylindrical geometries involving axfally variable annular flow
pas;ages‘will be cons¥dered. This represents an important step

in solving the problem of the 'dxnamics and stability, of

A
.

noncylindrical configurations. .

In the present analysis, both ends of the flexible

centre-body are supposed to be clamped. Thus, it is needed to
. investigate the "dynamics -and stability of. other systems,

haying different boundary condition§; é.g., clamped-free  or
pinned-pinned beams. ;
. \, -
Finally, to be able to test the theory, it is obviously

necessary to get some experimental results of high quality.

o
Rl
o -
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Geometry of the oscillating centre-body inside a duct of
cross section .
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Figure 2 The nondimensional eigenfrequencies of the lowest four modes as
: functlons of the nondinensional fluid velocity, Poln for potential -
flow (2 /a-20 n* /a=0.1, o=0.4246 and Uref1=36.77m/s): o«
A first mode v second mode

. ~ O third mode @ O fourth mode '
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(b) Argand diagram of the real and
nondimensional eigeqfrequencies

imaginary parts of the nondimensional
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Figure 3 The nondimensional eig;nfrequencies of the lowest four modes as
functions of the nondimensional fluid velocity, U,;, for potential
. flow (2%/a=20, H*/a=0.1, 0-=346.62 and Uref1~1.287m/s): i
. A first mode” v second -mode
O third mode ¢ fourth mode
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Figure & The (a) real and (b) imaginary components of the
d nondimensional eigenfrequencies of the lowest
three modes as functions of the nondimensional
\ fluid velocity, Uy1, for potential flow (2*/3-20,
g H*/a=0.1, 0=323.74 and U,eg1~1.332m/8):
A first mode v second mode
n third mode




Figure 5
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The imaginary components of the nondimensional

eigenfrequencies of the lowest two or three modes

as functions of the nondimensional fluid velocity

, Up1., for potential flow, showing the effect of

varying H*/a (2*/&-20. 0=0,4246 and Uref1-36.77m/36//

——— H*/a=0.05 @ first mode
-0.1 A second mode

— ~0.15 - third mode
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The imaginary components of the nondimensional
eigénfrequencies of the lowest two -modes as .
functions of the nondimensional fluid velocity,
Up1, for gotent}‘al flow, showing the effect of
varying H'/a (£7/a=20, 0=346.62 and Uref1~1.287m/s):

v Figure 6

——— H*/a=0.05 ) first mode
-0.1 - Y second mode
—_— =-0.15 -
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of coordinates and
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(a) totally clamped at upstream end; clamped but
axially sliding at downstream end (case I)

(b) axially sliding at upstream end - and totally

clamped at downstream end (gase/II)
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(c) both ends absolutely clamped (case III)
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Fi;uru 9 Diagram showing the axial boundary conditions’
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Figure 10

 fluid velocity, Uy, for potential flow(——-) and

0 . .2

- . Uo1

The (a) real and (b) imaginary components of the
nondimensfional eigenfrequencies of the lowest”
three modes as functions of the nondimensional

viscous flow(—) considering potential and
unsteady viscous effects (!*/a-20, H*/a-0.075,
0=323.764 Uref1~1.3316m/s and p~0 and 0.007 Pa-.s, .
respectively): : I ' ' ’
A first mode > v second mode
B third mode - : ‘
3 ~ .
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Figure 11 The imaginary cbmponents of the nondimensional
eigenfrequencies of the lowest three modes as
functions of the nondimensional fluid velocity,

Uol, for viscous flow considering potential and
+ steady & unsteady viscous effects (!*/3—20,
H*/a=0.075, 0=323.74,Uyep1~1.3316m/s and p=0.007Pa-3);

el Jume case 1 - e cm/ymee cagse LI1 (lI=5)
. (e case 11 —rm(meew case 111 (M=50)
\’ where cases I, II and III corregspond to boundary
) _conditions as in (a), (b) and (c) of Fig. 9
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Figure 12 The (a) real and (b) imaginary components of  the

nondimensional eigenfrequencies of the lowest
three modes as functions of the nondimensional
fluid velocity, U,i;, for potential flow(---) and
viscous flow( ) considering potantial and
unsteady viscous effects (2*/a-20 H /a-O 1,
0=323.74 Upep1~1.3316m/s and 4=0 and 0.007Pa-s
respectively):

A first mode v .second mode

B cthird mode .
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Figure 13 The imaginary components of the nondimensional

eigenfrequencies of the lowest three modes as

functions of the nondimensional fluid velocity,

Us1, for viscous flow considering potential and

steady & unsteady viscous effects (2*/a=20,

H*/a=0.1, 0=323.74, Upef1~l.3316m/s and y=0.007Pa<s);
wmmed poeem c ase I e cage 111 (MI=10)
Qe ¢ a8e 11 ——rem(pmemcage 111 (N=50)

where cases I, I1I and III correspond to boundary

conditions as in (a), (b) and (¢c) of Fig. 9
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Figure 14
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Usi & 2

The (a) real and (b) imaginary components, of the
nondimensional eigenfrequencies of the lowest
thrée modes as functions of the nondinmensional
fluid velocity, Uy, for potential flow(--—) and
viscous flow( ) considering. potential and
unsteady viscous effects (l*/a—ZO, Hf/a-O:lS,
0=323.74 Upef1~1.3316m/s and p=0 and 0.007Pa-s,

respectively): ‘g
A first mode ¥ second mode
B third mode N
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Figurte 15 The imaginary components of the nondimensional
. ‘ eigenfrequencies of the lowest three modes as
| functions of the nondimensional fluid velocity,
Uo1l, for viscous flow considering potencial and
steaﬂy & unsteady viscous effects (2 /a=20,
H*/a=0.15, 0=323.74, Upagi=1.3316m/s andu=0. 007Pa-s),
case I o efpmemwcage 111 (M=5) -
., w——gp—cage II w—sm(pmee=cage 111 (NM=50)
" where cases I, II and III correspond to boundary
conditions as in (a), (b). and (c) of Fig 9
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nondimensional eigenfrequencies of e lowest
three modes as functions of the nondImensional
fluid velocity, Ugyy, for potential flow(-——) and
viscous flow( ) conaidering potential and
unsteady viscous effects (£ /a-20 H* /a=0.1,
0=323.76 Upeg1=1.3316m/s and p=0. 0l4Paes):

A. first mode ¥ second mode

B {third mode
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. , \ c e
" THE EIGENVALUE PROBLEM FOR THE EULER-BERNOULLI BEAM
o : ’ . . / 1

-a-
~

A.l1 Simple Derivation of Equation of Motion
Based on the Hamilton Principle W

Under the assumption of slender body theory, which

.represents that the motions of the flexible centre-body are

small enough for rotatory inertia and .transverse shear to be

negligible, the flexible centre-body 1is assymed to be an
Eulexz-Bernoulli beam. If they are not, one has to make use ,of -
the so-called Timoshenko-beam theory; but this more complex
theory will not be discussed here.

To formulate tt‘ue- boundary-value problem, the extend;ad
Hamilton principle should be used . The power of this approach~
becomes evident’ in that the c\orract nuber of boundary
conditions and their corrc;ct expression are furnished

automatically. .
The bending moment on a element'?z\-ll be

* %
' 3 t _
’M(x*,t*) = EI —'/:'(—:;(—,‘:——-)‘ , . (A-1) .
where $(x*,t¥) is the angle )
) de* (x* t*
p(x*, ¥y 4 TEQSE;———l : , (A-2)

ax

-

an% where the beam cross section 1is assumed to be uniform.
Now, the potergj.al energy, as@Soclated with deformation ofe the
beam (strain enérgy), and the kinetic energy due to trans-

‘lation are g'iven by

* 2 %
0p(x ,¢t a (x",t") 2
Vo= —f M(x¥,t%) - ) ax* - = " E1 | Qr 1 Tdx¥,
2 ax’ ' ax
' C g (A-3)
*
1 de_ 2 *
T = — f mS [ ___;_O ] dx - ,
2 ax — «
4
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l

-~ ) .
., o | l A-2
Hence, recalling the Hamilton principle for a\consetvative
system yields : . ~
ey ¥ Taera 32e* g*2 I
ft foc mg 5~w 3—;(8e ) - EI "‘?T ——¢7<ae ) sx*atE = 0, (A-4)
1

\ o

*

since the order of integrations with respect to x ‘and t is

interchangeable and the variational and differentiation
0 , . /
operators are commutative - .

Inﬂbgrating by paxts the fixst part of the integral, one

gets ) v
ae : 't t ¥ )
24.% 2 * *
' - f mg __>F e I dx"™ - f ——;;5— 6e dx" dt
t e do 9
1 1
\
and since the variation Se: must vanish at £1 and tjp, thus,
rd
v '( . * 2 v .
t d e
; 2 * *
+ I, - ftlfo -—7 6e ax” dt” . (A-5)

-

Similarly, for the second part of the integrdl, one obtains

¢
Ve 82e ger 2% t, 8 2% 2* o
tl N tl X , \
g% a2 2 _x ” .
+ fti I, 2 (BI—53) Seg dx™de™. (A-6)

Now, the virtual displacements 6§g and 6(8e3/8x*) are
arbitrary and independent, so they can be taken to be equal to
zero at x¥=0 and x¥=g%*, The  line integrals and surface

integrals may vanish indenpendently. Thus, combining (A-5) and

'(A-6), the surface integral yields

4* 2 %
d d%e
EI *-¥Z‘+ mg ggwf - 0. - ' . . (A-7)

.

The boundary conditions are obtained from the vanishing of the
line 1ntegra1s. yielding

v » - -~



2 % * * 2 & *

- 3%e de 2 a e 2
48 EI 25— | = o, —5(EI—x9) bes| = 0. A-§
& ax*? ag*'o e i) el (A-8)
Thus, for a- uniform Tbeam the following Dboundary

conditions are possible at each extremity:
(1) either EI(32ed/4x*2)=0 or del/ax*-0, anpd - 3

(11) ejther E1(33ek/ax*3)=0 or e¥-0. '

For a clamped-clamped beam, clearly eg-o and.aeg/ax*do must be -
satisfied. th;ourse, the differential equation of motion (A-
7) must b? satfsfied for Osx*se™.

A.2 The Eigenvalue Problem

Assuming that ‘the solution of (A-7) is separable in time

and space and of fthe form ¢

en(x™,t%) £ y(x*).T(tY). (A-9)

D e UV WP 3| - -~

Substitutfng’into (A;7)~gives

’ &
m, 1 d2 1 a%y L4 (A-10)
- —_ - - - R A-
EL T dt*2 Y dx'%

where the left side of the above depends on t, and the middle
’ side dependslﬂon x* only. Both x* and t are indepeﬁdent’w

variables, so (A-7) has a solution only if both sides are

- con§t£np. Hence, the solution takes the form
* \ "
. * - * it "
\ \ ] . e, = Y(x7) e ) ‘ (A-11)
' where
) EI B
a2 - —5x (™4, (A-12)
Mg
and
s
| Y(x*) - Acqux* + BsinAx* + CcoshAx* + Dsinhxx?. (A-13)

The Y(x*), called characteristic functions or eigenfuncti&ns,
will be determined by application of four boundarf'éonditions,
two at each end.” The four boundary conditions determine
uniquely the shape of the ;&iution, leaving the amplitude
0 arbit;:ary, ap'a ‘also yield a characteristic equation or

frequency equation, which,.when solved,-givéé the character- i |

» 4

)

-



7 ' : o
K - A-4
istic values of the problem. Here, 22* are the eigenvalues of.
the problem and are infinite in number; for each one of them,
there‘ié a corresponding eigenfrequency 0, given by {A-12).

Supposing that the beam has clamped ends,_ the deflection
and the slope of the deflection cu¥ve must be zero at the
clamped ends; thus, \

'ay

Y(0) = Y(£¥) = 0, () | x_y pxm O (A-14)

d o

Substituting equation (A-13) in the above gives

A+ C=0, ' - (A-15a)

AcosAl® + Bsinif® + Ccoshif™ + Dsinhag* = 0, (A-15b)
CA(B + D) = 0, : " (A-15¢)
A(-Asinr2¥ 4+ BcosAaf™ + Csinhi2® + Dcoshat®) = 0. (A-154d)

Equation (A-15a) yields A=-C and (A-15c) B=-D. Substituting
into -15b and -15d gives

A(cosif* - cosha2®) - - B(sinAf* - ‘sinhaf¥),

(A-16)
AA(-sinAI* - sinhki*) - - AB(cosAﬁ* - coshki*)\
Elimination A and B and then simplifying yields
) .
: ) coshf, cosf, - 1, . (A-17)

where f, = A2%.

Equation (A-17) 1is - the characteristic equation for a
clamped-clamped beam. It is a transcendental egquation, the
solution of which will give the infinite set of admissiblé
.solutions, i.e., the infinite set of eigenvalugs Bx. Solving
equagion (A-17) numericaliy, e.g., by the secant method, the

‘1 first five -of the infinite set of eigenvalues f, are given

.

below .
B1 = 4.7300407, . go - 7.3532046, |
p3 = 10.9956078, By = 14.1371655, (A-18)
Bs = 17.2787597 .



v A-5

535 Introducing the above in equation (A-12), it {is possfble
gﬁﬁl to obtain the infinite set of eigenfrequencieé. VO,C, as
follows: . ' L.
’ \ a, - B> (—fxm )" (A-19)
: ‘ K - n . -
[ i ms_/ ' L

| -

Now, introducing the nondimensional parameter X-x*/!* and
‘\\ comparisén functions E, (X), shown in Chtpter IT, and then
substituting back to equation (A-13X for the xth mode, Y, (X)

|
|
} ) are expressed as -

_ Yo (X) = a B 6X) = a, (Ep, + Ey,), (A-20) u
where . ) . _
Ep, (X) = - cos(f,X) +0 sin(B,X),
- e
L \ \
® Ege(X) = cosh(B, X) - o sinh(B,X),

are the trigonometric and hyperbolic compoments of E.(X), and

. . s cosh(f, ) - cos(B,) B (A-21)
" sinh(g,) - sin(f,) '

"



Q\/’\ . _ APPENDIX B’ » _

h ' THE GENERAL SOLUTION OF A DAMPED SYSTEM !

.

B.1 Gedéral Discussion
S )

a

In many ways the assumption that systems possess no
damping 1s a mathematical convenience rather than a éefIEZtion
of physical evidence. However, there arpg cases in which the
damping effec’t cannot be ignored.splso, in a limited number of
these cases, the analysis #f the corresponding undamped
systems “can e used to obtain the response of the démped
systems. .

There are many mathematical models repfesenting damping:
i.e., lithear viscous, Coulomb and struétural damping. The "most
important type of damping in vibration study is linear viscous
damping. Acéording to this model tWe damping takes the form of

a force proportional in magnitude to the velocity and acting

in the direction-opposite to the direction of the velocity. In X

contrast with viscous damping, Coulomb damping, which 1is also
refecred to as dry friction, has a constant magnitﬁde.
Structural damping is associated with internal energy
dissipation due to the hysteresi{s effect in cyclic stress, fo;
which reason it is also called:'hysteretic hamping.

) In some special cases, the <c¢lassical modal matrix,
obtained from the eigenvélue problem associated with the
undamped system, .can be used sﬁccessfql}y §o uncouple the
equations of motion of a viscously damped 1linear system.
Unfortumately, this is not always possible. The general case
of visqoué damping can be treated by transforming a set of n
ordinary differential equations of second order into a set of
2n  ordinary differential equations of first -order,? The‘
eigenvalues and eigenvectors asgociated with the latter set of

equations are complex quantities. §

Damped continuolis systems can sogetimes be treated by

a

"
[}

Id - .
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assuming q/solution, in the form of a superpositjon "of

-

:‘*i;x classical normal - modes, which leads .to a 'set of ordinary
differential equations. The, problem\pf solving rhe pnrtiai
diffferential equations associated with the conti_r‘mo'us. systems
is reduced to t}ne problem of solving a ‘set of ordinar);‘
differential equatioms resembling, in structure, the equations
des‘cribing a discrete system; this' is done by many of the

approximate methods of solution for continuous systems (e.g.,

Galerkin's -method) . .

"

In the next section, a {gechniq}le for obtdining a set (()f
uncoupled co-ordinates of the ;:lampe@ system, equlivélernc to
a

that of .the undamped system, will be shown. " - '

L Ay

- J - ‘ . . AL . _
B.2 The General Solution of a Damped System "
D .
-~ Using Galerkin's method based on t;l‘i,ef,ansi'on‘__theonem, .

. * )
the 'problem of solving the‘-"&qrtial dif ferential equation

- - ,assoclated with a continuous system has ‘now been rendered _—

discrete and, wupon truncating the summation at r-=n, .~the

- equation of motion may be written in matrix form as follows:
~ - f *.

. . ‘ Mq + Cq + Kq =~ Q. (B-1) .

Here, 1in order to -allow the determination of- the response
o within the desired accuracy, it is assumed that the order of .

this matrix equation is suffiéiently high.

- Ac'cording to the viscous flow thedry for the problem at

hand, 1t is_“ noted that M is diagonal, but C and K are not,

- and, moreover, they are not symmetric; howneveg‘. the inviscid .

flow theory, based on the slender body the‘ory, predicts that <

K should be symmetric. In the present thesis, the asymmetry in

C and K is entirely due "to the presence of fluid forces; e.g,
— " for the 1invisc{d flow, the asymmetry of ¢ 'is.due to the

Coriolis forces. Thus, equation (B-1) represents a coupled set

of equations and cannot be decoupled easily. Here, a gquite

-~ : . .

N
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general method will be presented.
( Let the following square and column partitioned matrices

of order 2n be defined as

SR S IR IS RPN H Nt

Hence, the equation of motion may be written in form

e
- - /

‘ B + Ez & F ', (B-3)

where B 1is generally not symmetric. This equation is the so-
called reduced equation For the homogeneous form of this

equation and with solution of the form

\

*
vz = ekt (B-4)

the eligenvalue problem

-

- (uI + Y;u - 0 (B-5)

is obtained, where Y represents B'l-E,Cand u are the corres-
; ponding eigenvectors.

- For mnontrivial solution, the determinant of the left-hand

side of the above equat~ic’)n is zero, which relationsh.ip gives

(e

p{ are either real and negative or complex conjugate with a
-

\
|
| 2n eigen-values of the matrix Y, by or a stable system, the
|
negative real part.

- Let consider now that 2n values of u have been found and
that they are dictinct. Proceeding in the same way as for
conservative systems, ic may be shown that weighted

orthogonality holds for this system also, namely

? uwlBuy = 0 and ulEu, - 0, for r-s. (B-6)

Defining the modal matrix

C -

A~ up, ug, seeves ugy 1;7 “(B-7)

-
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- one must have ATBA -« P = diag. an;\kTEA - 8§ = diag., an easily
‘%ﬁV proven result by virtue of the orthogonality of the set of ujy,
Reverting now to the non-homogeneous equation (B-3) and

introducing
z = Ay , (B-8)

&
| “one obtains
| .
i v Py + Sy =N, (B-9)
- or

- § o+ (uly = p7ln (B-10)

where N = ATF, and [u]-P'ls "in view of the orthogonality
property discussed above. Hence, the system has been decoupled

and equation (B-10) may be rewritten in the form

\ ¥yi + miyi = (1/P{j)Ny, i =14 2, ¢«+, 2n. (B-11),
i .
The solution is of the form -
* * *
pit 1 t" pe(t -t)
yi=(¥)ge t v+ — [ et N, (t) de. (B-12)
Pyy O )
% The solution in terms of the original co-ordinates can

now be obtained by the transformation z = Ay, so that

J - $" ' ]
zi ;_1 aijyi, _ (B 13)

which yields both qy and {g.




APPENDIX C

THE INTEGRALS OF THE EIGENFUNCTION PRODUCT
NEEDED FOR THE GALERKIN'S METHOD

-As shown in chapters IV and VI, the continuous system

must bDe rendered discrete, which may be accomplished by

application of Galérkin's method. Here, it is assumed that an °

approximate solution of the equation of motion of the flexible

centre-body has: the form of an infinite series,

<

_eg(X,t) = et ¥ a4 E_(X), (C-1)

r K

where the E,(X) 1is a set of suitable comparison functions

satisf all the boundary conditions of a clamped-clampedﬂ

Euler-Bernoullil beam.
In this respect, the added mass, stiffness and damping
matrices due to the fluid flow were expressed in terms of the

integrals of the eigenfunction products,

Ay
—
3
1
—

(Eqg(X)Eqq(X) + Eq, (X)Ey (X)) dX,

L)
=<}
i
—

(EHN(X)ETj(X) + EHk(X)EHj(X)) ax,

—
3
1
A

(Epg(X)Epy(X) + Epg (X)Ey; (X)) dX,

—t
jo ]
1
—
O M O O O

(Egp (X)Eqy(X) + Byl (X)Byy (X)) dX, (C-2)

Ip - IT + IH' Ipf - IT'+ IH',

(Eq,(X)Eqj(X) + ETN<X)EHj$::>x dx,

(EHN(X)ETJ(X) + EHn(x)EHj(X))X dX,

1
(Igp - Ixy) = fo E,"(X)Ej(X) dX,
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where the subscripts "T" and "H" represent the trigonometric
and hyperbolic components of E,, respectively. Thus, it is
possible to separate each of the integrals into two part;;
e.g., Ig=Ipr+ITy - one associated with purely trigonometric
terms and the other with trigonometric(x) and hygarbolic(i)
ones. ‘ '

In this Thesis, five-mode Galerkin descriptions of the
continuous system are employed in the solution of the equation
of motion, so that eaéh of the integrals could be represented
by a 5x5 matrix. It is possible to compute the elements of the
integrals in the ahbove equaﬁion, using an analytical method or
a numerical method. -

Because of economical benefit in computer programming,
the analytical method is adopted for evaluating the elements
of the integrals (i.e., Ipp, Ir+'g *=+++ etc.) in this Thesis;
but, the results are compared with those obtained numerically.
The numer}cal results are obtained by using Simpson's rule,
which was found to be most suitable for .this case. The
énalytical results and the numerical ones are shown in Tables
C-1'and -2, respectively. The numerical £esu1ts agree with the
analytical ones. 1 |

On the other hand, the constants Ip, Ip’' apd Ip", in view
of the orthonormal property of the comparison functions

utilized,’were given in reference {13}, as follows:

1 .
I, - fo E,(X)E4(X) dX = 0, ‘ - for Jmx
- 1, for j=«x
. 1 ® 4 p2p?
Ip% = [ EL(OE(X) dx = ——Edn (1)l 1y, for jmx
0 By - B :
_ - 0, ’ for j=«

R S o : (c-3)
Ip" - fo ER(X)E4(X)X dX = B (Iyy - Ixy)

2,92 ) 3 4 4
_ 4ﬁNﬁiiﬂnona Bio4) (-1)%+3 . _gﬁ*i_gl Ip', for yms
Be - Py Br - pj

- %’ﬂn"n(z - Byl for je=«x
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where o, and B, (or oy and Bj) are defined in Appendix A. T?ey

(:_ are ugseful to check the results obtained by the analytical and
numerical methods. B

In fact, it 1is tedious working to obtain the integrals

Ixr and Ixy analytically. Here, in order to compute the

elements of integral Ip", the above equation is used directly

in view of the economical benefit in computer pragramming.
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Table C-1 Analytical Results of the Integrals

ITT(J,K)=INTEGRALS OF ETK*ETJ

+ 774839920011436
000000000000000
- 128853274792887
000000000000000
~.081472084645410

3

.000000000000000
.873342081666445
.000000000000000
-.090860847978028
000000000000000

ITH(J,K)=INTEGRALS OF ETK*EHJ

.000000000000000
.000000000000205
~.088611259767203
-.000000000003437
-.078718284270662

>

LN

-

.000000000000000
000000000000000
000000000000010

-.048008430860180
000000000013045

’

IHT(J,K)=INTEGRALS OF EHK*ETJ

.000000000000000
000000000000000
\.088511259767178
.000000000000000
078718284251028

o

.000000000000005
.000000000000000
~.0600000000000002
.048008430862115
~.00000000000000%

IHH(J,K)=INTEGRALS OF EHK*EBJ

.225080079988564
-.000000000000011
.128853274782923
000000000004304
.091472084668227

-~

-.000000000000011
.126657918333572
:.000000000000037
080860847974378
-.000000000018842

IT'T(J,K)=INTEGRALS OF ET'K*ETJ
“

2.997371653432708
.00 OOOOOOOOQQQO
/09244 5634068419

- 000000000000004

.OQSOOOOOOOOOODO

~4,98973716534327086
.000000000000001
5a900384301615965
.000000000000000
1.667254852428517

IT'H(J,K)=INTEGRALS OF ET'K*EHJ

.000000000000002
1.401555905627957
~.000000000000287

.782616661001032
- 000000000158587

2 336745843801025
-.000000000000134

1.622202561844236 ~

.000390000053175
1 086370766194176

IH*T(J,X)=INTEGRALS QOF EH’K*ETJ

.000000000000000
-.336745843801027
-.000000000000001
-.388916571120401

00000000G000000

b

. 50844 4084372176
-.000000000000001
-.271033745208398

.000000000000025
-.411551608648602

I8’H(J,K)=INTEGRALS OF EH’K*EHJ

-.000000000000002
-.720165660144848
.000000000000154
~.488218611911797
-000000000103108

:1.27g834330855183
.000000000000134

- -.835452304118667

~.000000000028741
-.625847951503468

~. 12885327&79}67
000000000000000
.909024097627064
000000000000000
.070738587057529

088611259767178
- 000000000006002
.000000000000000
.000000000000788
028960118785307

¥

.088611250767203
.000000000000010
.000000000000000
.000000000000005

029960118777843

128853274792923
- 000000000000037
1 0909758023729087
.000000000003181
.070739587075183

000000000000000
-7.000384301615985%
.000000000000000
6.999072051174811
.000000000000000

.000000000000002

" 2.271033745208532

-.000000000000560
71.723048525813948
-.000000000368737

1

-.000000000000273
377787418158325
.0000000000000 00

-.,215351202733408

. .000000000000084

.000000000000385
-1.164547685882026
.000000000000560
-.B874875156766043
.000000000104212

>

-

.000000000000000
~.080880847978020
. 000000000000000
.928265808821772
.000000000000001

. 000000000000000 -

.048008430862115
~.000000000000005

.000000000000000

. 000000000003144

- .000000000003437
-.048008430860180
-.000000000000788
.000000000000000
.000000000000507

. 000000000004 304
.060860847674370
.000000000003181
.070734180172334
-.000000000013317

-2.992445634080410
~.000000000000001
-8.998972051174813
,000000000000000 ..
9.000001610670717

2.389916571120480
~.000000000000158
2.215351202734056

.000000000080490
1 782179455408007

)

1.207383338918478
.000000000027314
.276050474105562
. 000000000000000

~.17B8219262957089

-1.511780386007963
-.000000000051613
-1.125124843153130
- . 000000000080 490
~.000006814470%75

~. 08147208464 5410
.000000000000000
~.070730587057520
.000000000000001
L942125418419722

.078718284251028
~.000000000000004
.020080118777843
.000000000000507
.000000000000000

.

-.078718284270862
.000000000013045
-.020860118783307
..000000000003144
.000000000000000

.081422084688227
~,000000000019842
,070739587075103
~,000000000013317
,057874583600140

- 000000000Q00003
~3.887254852428516
-.000000000000001

~11.000001810870720

~.000000000000002

.$00000000000003
2.4115516086848733
-.000000000000852
2,178218262877507
~.000000000498861

~.000000000330204
.903620204304688
-.000000000120124
21782054 50928%
.000000000000002

.000000000403103
#1.374152048093303
,0000000003035108
~1.000003165047808
,000000000498661



- .774939010650388
.000000000000000

- .128853276467218

.000000000000000

. -.001472080241162

-.000000600000006

.600000000000005

- 088611260710328

. - ,000000000003305

. - 078718287772238

Table C-2

-

. ITT({J,K)=INTEGRALS OF ETK*ETJ

.000000000000000
,873342079983130
.000000000000000
~.080860852596808
.000000000000000

ITH(J,K)=INTEGRALS OF ETK*EHJ

.000000000000000
-,000000000000077
.000000000000022
- 048008432786313
.000000000019182

THT{J,K)=INTEGRALS OF EHK*ETJ

-,000000000000008 .000000000000005
.000000000000000 -.000000000000077
.088611260710356 - 000000000000003
.000000000000000 .048008432787870

» .078718287748852 -.000000000000004
° \)
THH(J,K)=INTEGRALS OF EHK*EHJ .
. .225080080340563 -,000000000000010

~.000000000000010 .126657920016260
.128B53276466658 -.000000000000055
.000000000004200 . .080860852580008
.091472089265303 -.000000000024772

h A
IT'T(J,K)=INTEGRALS OF ET'K*ETJ
1
Al ' .000000000000002 2,33674584107685,
1.401555803962348 -.000006000000148
- 000000000000415 1 622202571382817
[ .792616650183219 000000000051008
~,000000000174688 1.096370780566723
- o
IT'H(J,X)=INTEGRALS OF ET’K*EHJ
.000000000000000 ~-4,997371653582502

2.897371653460487 .000000000000001
.000000000000001 5.000384301730262
.992445635642961 .000009000000001
.000000000000000 1 667254855305057
IH'T(J,K)=INTEGRALS OF EH'K*ETJ
.000000000000000 .598444 096804806

. ~. 33674584 5204017 -.000000000000005
. 000000000000000 ~.271033750860648

~.389916580511707 .000000000000020

.000000000000000 -.411551637666602

IR'H(J,K)=INTEGRALS OF EH'K*EHJ

~.000000000000Q02
-.720165673200070
.000000000000256
~.488219625561150
.000000000126343

C -

-1 278834337589577
.000000000000134
~.B835452326946606

v =.000000000028173
-.625848005644773

~.128853276467218
.000000000000000
.808024083009563
.000000000000000
-.070738596673819

.088611260710356
-,000000000000003
-.0000000000004 24
-.000000000000771
-.029980122009308

-.088611260710329
.000000000000022
-.000000000000424
.000000000000004
.029960121083302

.128853276466659
~.000000000000055
.080975906987201
.000000000003121
.070739596884820

.000000000000002
2.271033730551539
-.000000000000805
1.723049489717693
-.000000000410580

.000000000000001
-7.000384301752223
.000000000000001

6 989972851321562
.000000000000000

-.000000000000079
.377797426084113
.000000000000100

~.2153513068576863
.000000000000250

.000000000000172
-1.164547727843871
000000000000560

- 874875232483575
.000000000250022

°

>

A

N

Numerical Results of the Integrals

2

.000000000000000
~.080860852596808
.000000000000000
.928265800005343
.000000000000000

©

. 000000000000000
. 048008432787970
+000000000000004
-.000000000001350
.000000000010884

-, 000000000003305
-.048008432786313
~.000000000000771
~.000000000001350

.000000800000253

. 000000000004 200
.090860852580008
.000000000003121
.070734199977328
~.000000000018488

2.380916566172267
-~.000000000000147
2.215351246306660
. 000000000074 784
1.782179363212716

~2.992445639493663
.000000000000001
-8.999872951366624

.000000.000000000-

9.000001610861107

1.207383366887110
, -000000000028713

.276950482282876
-.000000000001545
~.178218291365601

-1.511780428889665
-.000000000052645
-1.125124940514880
~.000000000080491
~.800007004656320

~.081472088241162
.000000000000000
~.070738586873819
.000000000000000
.942125388491749

+

r

.078718287748852
-.000000000000004
.029860121993302
.000000000000253
~.000000000012255

~.078718287772238
.000000000019182
~.028960122009308
.000000000010884

-.000000000012255
E

L4

.091472089265303
-.000000000024772
.070739596884920
-.000000300018488
.057874601515698

.000000000000002
2,411551574185962
- .000000000000881
2.178219150086121
-.000000000589675

2

.000000000000000
~3.667254858664959
-.000000000000002
~11.000001610803090
- .000000000000001

-.000000000248922
803626268062638
~.Q00000000007866
.217820579760917
.000000000143044

.000000000314117
-1.374152167942588
000000000217448
-1.0999883418218183
000000000498810
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THE COMPUTER PROGRAM

The ‘program is used for calculating the eigenfrequenciag
of the' system; moreover, from the results, it is possible to
determine the region of the stability of the flexible centre-
bodz subjected to an annularf flow. The dynamical behaviour of
the system can be studied at different annular mean flow*
velocities. The same program is applied to the system for
evaluating the inviscid effects and/or the unsteady and steady
effects by changing the coefficaﬁng "Delta".

The whole program is written in FORTRAN IV Language. It
can be run on a personal digital computer. All calculations,
excepﬁ subroutine SORT, are carried out in real anﬂ‘pomplex
arithmetic with -déuble ©precision. The program, has the

" " following structure: .
(1) MAIN PROGRAMt4fter calculating all the necessary
- eigenvalues, the elements of mass, damping and
stiffness matrix are computed); :
‘ (2) SUBROUTINE ANA (it is used for obtaining th; elements
- of the integrals shown in Appendix B); )
(3) SUBROUTINE ZANLYT (as an IMSL subroutine, Lﬂyis

useful fob\galculating the roots of functions;

¢

therefore, 1t could be used for obtaining the
gigenfrehuencies of the system with the aid of the
* subroutine DET and the necessary subroutines - 1,e.,
: " SUBROUTINE UERTST, USPKD and UGETIO);
(4) SUBROUTINE DET (it is called by subroutine ZANLYT to
compute the determinent - see equation 4-9);
’ (5) SUBROUTINE SORT (it is called by MAIN PROGRAM to sort.
the eigenfrequencies according to ascending order of
X magnitu&e). \
0 A Eventually, the annular mean floy velocity 1s incremented
in the MAIN PROGRAM and the iteration procedure is repeated,

as mentioned before.

- — -
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" ' ‘.
A sample listing of the program and its’ou;put results

(with * £=20, h=0.1,
B s 4
pages that follow.

0=323.74

and p=0.007)

are

shown

in the




448

452

o B~

- PROGRAM RZVES a
IMPLICIT REAL*8 (A-H, 0 Z)

DIMENSION EM(S,5), EC(S 5),ER(5,5),D1(5,5),D2(5,5),D3(5,5),D4(5,5)
DIMENSION D5(5,5),BT(5),SGM(5),AI(5),INFER(10),WT(5) WH(S)
DIMENSION GT(5),GH(5),DEL(3),A(S,5) ‘

REAL DATA1l(5,3),DATA2(5,3)

COMPLEX*16 EI(10),DET,CA(5,5)

COMMON EM,EC,EK °
EXTERNAL DET %
CHARACTER*80 ‘FNAME2 *

o
FORMAT (A)

WRITE(*,452)

FORMAT (' OUTPUT FILE NAME- '\) -

READ(*,448) FNAME2

OPEN(QVFILE—FNAME2,STATUS-'NEW') . ’

DATA EPS,NSIG,KN,NGUESS,IN,ITMAX/.1D-3,11,0,0,10,100/

DATA AI,NITER,N/4.6D0,7.7D0,10.8D0,14:0D0.17.2D0. 50,5/

DATA PIE,DATAL/.3141592D1,15%0. 0/ ,

DETA DEL/0.D0,2.D0,1.D0/ . .

SECANT METHOD

DO 2 I-1, N ‘ 2
XX=AI(I) ° o
X~AI(1)+0.2D0 .

F=DCOS (X)*DCOSH(X) - .1D1
FF=DCOS (XX)*DCOSH(XX) - . 1D1
DO 4 J=1, NITER - ,
XN=1.D6* (X*EF-XX*F) /((FF-F)*1.D6)
FN=DCOS (XN)*DCOSH(XN) - . 1D1 .
F~FF .
FF=FN , .
X=XX . } ’ .
XX==XN ) g N
C=DABS (FF-F) ’
CN=.1D-14
IF(C.LT.CN) GO TO 6
CONTINUE
SGM(I)=(DCOSH(XN)--DCOS (XN))/(DSINH(XN)-DSIN(XN))
BT(I)=XN
WRITE(6,50)I,BT(I),I,SGM(I)

WRITE (%, 80)

READ(*,*) FM,BL,HO,RA,UFI,SS,IK,VOF
WRITE(*,52) FM,BL,HO,RA,UFI,SS,IK,VOF = °
WRITE(*,82) /
READ(*,%) IANS

IF(IANS.EQ.2) GO TO 8

" He=HO/RA

10

WRITE(*,84)
READ(*,*) BM,E,POI,VFOF,IDELTA -

" WRITE(*,54) BM,E,POI,VFOF,IDELTA
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<16

20

‘18

WRITE(*,82) -
READ(*,*) IANS

IF(IANS:EQ.2) GO TO 10

WRITE(6,55) BM,FM,BL,RA,HO,VOF,E,POI,VFOF, IDELTA 9
CV=~,125D1 )

DO 12 J=1, N - -

BJ=BT (J)
SGMJI=SGM(J)
DO 12 K=1, N

BK=BT (K)

IF(J.NE.1) GO TO 18
RK=BK/ (BL/RA)
RKS=RK**2
QK=DSQRT (RKS+CV) -
Q=QK*H A ’
GT (K) = (-QK+, SDO*DTANH(Q))/(QK**Z .25D0) /DTANH(Q)
RT=(QK*DSINH(Q) - . 5DO*DCOSH(Q) ) /(-QK*DCOSH(Q)+.5DO*DSINH(Q))
IF(RKS.LT.CV) GO TO.14
CK=DSQRT(RKS-CV)
C=CK*H '
GH(K)=(CK-.5DO*DTAN(C) )/ (CK*x*2+, ZSDO)/DTAN(C) .
RH=(CK#DSIN(C)+.5D0*DCOS (C) )/ (CK*DCOS(C)-. SDO*DSIN(C))
GO TO 16

CKR=DSQRT (CV-RKS) ,

Cw=CK¥*H
GH(K)=(~CK+,5DO*DTANH(€) ) / (CK**2- . 25D0) /DTANH(C)
RH-(-CK*DSINH(C)+.SDO*DCOSH(C))/(CK*DCOSH(C)-.SDO*DSINH(C))

&

L

IF(IDELTA.EQ.1) GO TO 18
DA=0.0DO
SIMPT=FT(DA,RT,Q)
SIMPH=FH(DA,RH,C)
XH=DA
DO 20 I=1,NITER )
XH=XH+DH . ) -
TERMT=. 2D1*FT (XH,RT,Q) .
TERMH~, 2D1*FH(XH, RH, C)
SIMPT=SIMPT+TERMT
SIMPH=S IMPH+TERMH
IF(I.NE.I/2%2)<SIMPT=SIMPT+TERMT
IF(I.NE.I/2%2) SIMPH=~SIMPH+TERMH
WT (K)~=DH#* (SIMPT-TERMT/.2D1) /. 3D1
WH(K)=DH* (SIMPH-TERMH/ . 2D1) /. 3D1 .

]

SGMK=SGM(K) _
CALL ANA(BK,BJ,SGMK,SGMJ,Al,A2,A3,A4)
D1(J,K)=Al
D2(J,K)=A2 ’ . .
D3(J,K)=A3 ’
D4(J,K)=Ad
. IF(TDELTA.EQ.1) GO -TO 12
B4mBR¥*4 -BI¥k4
X=b . DO*(BK*BJ)**Z*(BK*SGMK -BJ*SGMJ ) /B4¥* (- 1 DO)**(K+J)
D5(J,K)=(X- (3.DO*BR¥*4+BJ**4 ) /B4* (A3+A4)) /BK**2

2



¥

12  CONTINUE -
CI=.25D0*PIE* (RA*¥%4 - (VFOF¥RA)*%4)
AREA=~PIE*RA**2
SAREA=PIE* (RA**2- (VFOF*RA)**2)
UREF=DSQRT(E*CI/(BM*SAREA*BL*%2))  _
UREF1=DSQRT (E*CI/(FM*AREA*BL**2)) ,
RO=PIE*BL**2 /SAREA* ( FM/BM)

RM=FM*AREA/ (FM*AREA+BM*AREA)
WRITE(6,56) RO,RM,YREF,UREF1,H
WRITE(*,56) RO,RM,UREF,UREF1,H
IF(IDELFA.NE.1) GO TO 22 N
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCe S
C INVISCID c e
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
WRITE(6,86)
WRITE(6,88) (I,I=1,5) .
WRITE(6,90)
UF=UF1
. 22 DO 24 L=1,IK
UO=UF /UREF
UOl—UF/UREF§
WRITE(*,*)UF,UO,U0L
DO 26 J=1,N v
DO 26 K=1, N
BK=BT (K)
EM1=(1.D0-RO*GT (K)*(RA/BL)%**2)*D1(J,K)
EM(J,K)=EM1+(1.D0-RO*GH(K)*(RA/BL)%**2)*D2(J,K)
ECN1=GT (K)*D3 (J,K)+GH(K)*D4 (J ,XK) _
EC(J,K)=-ROXUO* (RA/BL) **2% , 2D1*ECN1
- EKN1=BK**4% (D1 (J,K)+D2 (J,K))
EKN2=GT (K)*D1(J ,K) -GH(K)*D2(J,K)
26 EK(J, k) =EKN1+RO* (UO*BK#RA/BL) **2*EKN2
CALL ZANLYT(DET, EPS,NSIG,KN,NGUESS, IN,EI, ITMAX, INFER, IER)
DO 28 K=1,10
28 WRITE(*,58)K,EI(K) o
CALL SORT(EI,L,DATAl,DATA2)
WRITE(6,60) UOl, ((DATA2(I,J),J=1,3),I=1,5)
DO 30 I~1,5

. DO 30 K=1,3

30 DATA1(I,K)=DATA2(I,K) , .

24 UF=-8F+SS

IF(IDELTA.EQ.1) GO TO 47
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCEe
c INVISCID + UNSTEADY- c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
- WRITE(6,92) "

* WKITE(6,88) (I,I=1,5)

WRITE(6,90)

UF=UFI

DO 34 1=1,IK ‘
' UO=UF/UREF lij

UO1=UF/UREF1
O RE~=. 2D1*FM*UF*HO /VOF P
P WRITE(*,*)UF,U0,UO01,RE

i
3
M



DO 36 J~1,N
DO 36 K=l1, N
BK=BT(K)
ECN1=GT(K)*D3(J,K)+GH(K) *D4(J ,K) .
ECVL~=WT(K)*GT (K)*D1(J, K)+WH(K) *GH (K) *D2 (J ,K)
ECN=-ROXUO* (RA/BL)**2* , 2D1*ECN1
ECV=-RO¥UO*(RA/BL)*1.2D1%(2.DO+H) *ECV1 / (RE¥H**2)
EC(J,K)=ECN+ECY
EKN1=BK**4% (D1 (J,K)+D2(J ,K))
EKN2=GT (K)*D1(J ,K) -GH(K) *D2(J ,K)
EKN=EKN1+RO% (UO*BK*RA/BL ) **2*EKN? )
ERV1=WT(K)*GT(K)*D3 (J, K)+WH(K) *GH (K} *D4 (J , K)
EKV=-ROXUO**2# (RA/BL)*1 . 2D1#(2 . DO+H) *EKV1/ (RE*H**2 )
36 EK(J, K)=EKN+EKV
CALL ZANLYT (DET, EPS,NSIG, KN, NGUESS , IN, ET, LTMAX, INFER, TER)
DO 38 K=1,10 )
38  WRITE(*,58)K,EI(K)
CALL SORT(EI,L,DATAL,DATA2) .
WRITE(6,60) UOL, ((DATA2(I,J),J=1,3),1-1,5)
DO 40 I=1,5
DO 40 K=1,3 :
40  DATA1(I,K)=DATA2(I,K)
34 UF=UF+SS
CCECCELLCCCCCCECCCCCCCCCCCCCCCCCCCTCCCeae |

C INVISCID + UNSTEADY + STEADY G
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGCCC
WRITE(6, 94) &
DO 51 I1-1,3

DEL1~-1.D0-.5DO*DEL(I1)
IF(I1.NE.3) GO TO 42
41  WRITE(*,96)
READ(*,%) T .
42  UF=UFI - ,
WRITE(6,98)I1,T
WRITE(6,88) (I,I~1,5)
WRITE(6,90)
DO 44 1~1,IK
UO=UF /UREF
UO1=UF/UREF1
RE=. 2D1*FM*UF*HO/VOF -
WRITE (*,*)UF,U0,UO1,RE
DO 46 J=1,N .
DO 46 K=1, N )
BK=BT(K) - . -
IF(I1.NE.1) 60 TO 43
X=D3 ], K)+D& (J,K) - .
XX=D2(J,K)-D1(J,K)
A(J,K)-l.DO/H*X-BK**Z*(l.DO+1.DO/H)*(XX*DELI-DS(J,K))
TM—DEL(IL)*(ZTDO-DEL(II))*(1.D0-2.DO*POI)*T*BK**Z
43 ECNl-GT(K)*D3(J,K)+GH(K)*D4(J,K)
_ECVI-WT(K)*GT(K)*DI(J,K)+WH(K)*GH(K)*D2(J,K)
ECNe~-RO*UO* (RA/BL) **2% . 2D1*ECN1
ECV—-RQ*UO*(RA/BL)*I.2Q1*(2.DO+H)*ECV1/(RE*H**2)
EC(J,K)~ECN+ECY P :

\
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EKN1=BK#%4* (D1(J,K)+D2(J,K))
EKN2=GT(KR)*D1(J,K) -GH(K)*D2(J,K)
EKN=EKN1+RO* (UO*BK*RA/BL) **2*EKN?2
EKV1=WT(K)*GT (K)*D3(J,K)+WH(R)*GH(K)*D4 (J ,K)
EKV2=2 .4D1*RO*UQ**2 (RA/BL) /RE*AS (J ,K) -TM* (D2 (J ,K) -D1(J,K))
EKVe-RO*UO**2% (RA/BL)*1 2D1%(2.DO+H)*EKV1/(RE*H**2)
EK (J ,K) =EKN+EKV+EKV2
CALL ZANLYT(DET,EPS,NSIG,KN,6NGUESS, IN,EL, ITMAX, INFER, IER)
DO 48 K=1,10
WRITE(*,58)K,EI(K)
CALL SORT(EIL,L,DATAl,DATA2)
WRITE(6,60) UOL, ((DATA2(I,J),J=1,3),I=1,5)
DO 50 I-1,5 ?
DO 50 K=1,3
DATA1 (I,K)=~DATA2(I,K)
UF=UF+SS
IF(I1.NE.3) GO TO 51 ! , , .
WRITE(*,100) T .
READ (*,%*¥ IANS
IF(IANS.EQ.1) GO TO 41
51  CONTINUE ’
47  CONTINUE .
C . . .
"50_  FORMAT(5X,'BT(’,I1,’)=',F17.14,5X, 'SGM(',I1,')="*,F17.14)
52 FORMAT(//,5X,'FM=',D9.4,5X,'BL=",D9.4,5X, 'HO=',D9.4,5X, 'RA=' ,D9.4,
1 /,5X'UFI=',D9.4,5X,'SS=',D9.4,5X, 'IK=',15,5X, 'VOF="',D9.4)
_ 54 FORMAT(//,5X,'BM=',D9.4,5%X, 'E-' D9. &, 5X, POI-' D9.4,5X,/,5X,

46

%8

40
44

1 ‘VFOF=',D9. 4 5X, ' IDELTA’ LI1)

55 FORMAT(//,5X, BD-’ D9 4,5X,’ FD—' ,09.4,5X, 'Bl=~",D9.4,5X,
1 'RA=' ,D9.4, SX 'HO=',D9.4 / 5X,'VOF=',D8.3,5X,'E~',D10.5,
1 5X, POI-' D8 3 5X, 'VFOF—' D7.2,5X%, IDELTA—' I1)

56 FORMAT(// 5X, 'RO-' F9.4,5X,'RM="' ,F9.4,5X, 'URF=', F93Q SX

1 'URFl=',F9.4,5X, 'H=' F9. 4)
58 FORMAT(SX,'EIGENVALUE(' 12, ')— ,2D16.8)
60 FORMAT(2X,F7.4,5(2X,3F7.2)) ~
C N hY
80 FORMATY ' ENTER: (1) FM=MASS OF THE FLUID',/,7X,'(2) BL~LENGTH OF

1BODY',/,7X,'"(3) HO=~CLEARANCE',/,7X,’(4) RA=RADIUS OF BODY'’,/,7X,
1'(5) UFI=-IN. FLUID VEL',/,7X,’(6) S5= STEP SIZE OF F.VEL',/,
17X,'(7) IK= ITERATION NO.',/,7X,’'(8) VOF=VISCOSITY OF FLUID')

82 FORMAT(' **%* IS THIS TRUE 7 **%x 1= YES 2=NO') -

84 FORMAT(' ENTER: (1) BM~MASS OF THE BODY',/,7X,'(2) E=-YOUNG'S
1MODULUS ', /,7X, ' (3) POI=PQISSON‘RATIO’,/,7X,'(4) VFOF=VOID FACTOR
10F FLEX. BODY',/,7X,’(5) IDELTA - 1, ONLY INVISCID EFFECT',/,

1 18X,’= 2, ONLY VISCOUS EFFECT',/,18X,'= 3, BOTH EFFECT® )
» 86 FORMAT(///,5X,'INVISCID FLOW')
88 FORMAT(/,4X,'U02’,5%,5(7X,1Y'MODE
90 FORMAT(/,10X,5(' REALL REAL2 IMAG
92 FORMAT(///,5X,'INVISCID + UNSTEADY’)
94 FORMAT(///,5X,'INVISCID + UNSTEADY + STEADY') -
96 FORMAT(/,'T=?') ) - .
98 FORMAT(//,5X,’CASE ' ,I1,5X,'T=',F9.4)
100 FORMAT(/,’*** DO YOU WANT ANOTHER T ? **%* 1=YES,

'L I, 7XY)
1) /0 3X,125(7 7))

2=NO')
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FUNCTION FH(Z,RH,C) )
DOUBLE PRECISION Z,C,FH,RH

FH=(DCOS (C)+RH*DSIN(C) )*DEXP (- . 5D0%Z) /(1. DO+Z)
RETURN

END

FUNCTION FT(Z,RT,Q) °
DOUBLE PRECISION Z,Q, FT,RT
FT=-(DCOSH(Q)+RT*DSINH (Q) )*DEXP (- .5D0%Z) /(1. DO+Z)
RETURN :

END

o -

STOP
END

-
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*%% SUBROUTINE ANA C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCaae

10

20

40

SUBROUFINE ANA(BK,BJ,SGMK,SGMJ,Al,A2,A3,Ab)
IMPLICIT REAL*8 (A-H,0-2)

IF(BK.EQ.BJ) GO TO 10

BP=BK+BJ

BM=BK-BJ

SUMA=DSIN (BM)/.2D1/BM+DSIN(BP)/.2D1/BP

SUMB=SGMK* (DSIN(BM)/.2D1/BM-DSIN(BP) /. 2D1/BP) -
SUMC=-DCOS (BM) /. 2D1/BM+DGOS (BP) /. 2D1 /BP+BJ / (BP*BM) ,
SUMD=SGMK* (DCAS ( BM) /. 2D1/BM+DCOS (BP) / . 2D1/BP - BK/(BP*BM))
TT=SUNA+SGMJ* (SUMB+SUMG)-+SUMD

GO TO 20

SUM1=~DSIN(.2D *au}/ .4D1/BJ+SGMJ**2%( . 5D0-DSIN(.2D1*BJ)/.4D1/BJ)
TT=SUM1+ . 5D0-SGRIM(DSIN (BJ) )**2 /BJ

.v - -

BS=BJ**2+BK**2 ,
SUMA= (BJ*DCOS ( BK)+BK*DSIN (BK) ) /BS ,
SUMB=SGMK* (BJ*DSIN(BK) - BR*DCOS (BK) ) /BS -
SUMGC=(BJ+SGMK+*BK) /BS

SUMD=~SGMK* (BJ*DS IN(BK)+BK*DCOS (BK) ) /BS

SUME=( - BJ*DCOY (BK)+BK*DSIN(BK) ) /BS

SUMF~(SGMK*BK/ BJ ) /BS

SUM1=~.5DO* (SEMJ - . 1D1)*DEXP (BJ ) * ( SUMA - SUMB)

SUM2=-.5D0*(SGMJ - . 1D1)*SUMC

SUM3=- . 5D0*(SGMJ+. 1D1) *DEXP (- BJ ) * (SUMD+SUME)

SUMé4=.5DO%* (SGMJ+. 1D1)*SUMF

TH=SUM1+SUM2+@UM3+SUM4

SKP1=SGMK+. 1D1

SKM1=SGMK - . 1D1

SUMA~SKM1*DEXP ( BK) *(BK*DCOS (BJ ) +BJ*DS IN(BJ))/BS

SUMB=SKM1*DEXP ( BK)*SGMJ * (BK*DSIN(BJ) - BJ*DCOS (BJ))/BS

SUMC=SKM1* (BK+SGMJ*BJ) /BS

SUMD=SKP1*DEXP ( - BK)*SGMJ* (BK*DSIN(BJ ) +BJ*DCOS (BJ))/BS

SUME=SKP1*DEXP ( - BK) *( - BK*DCOS (BJ)+BJ*DS IN(BJ))/BS

SUMF=SKP1*(SGMJ*BJ -BK) /BS

SUM1=. 5D0% (SUMA - SUMB- SUMC)

SUM2=- . 5DO* (SUMD+SUME - SUMF)

HT=SUM1+SUM2 ,
IF (BK.EQ.BJ) GO TO 40 - ~
APB~=((.1D1+SGMI)*(.1D1+SGMK)) /(. am*ap)
AMB~((.1D1-SGMJ)*(.1D1-SGMK))/(.4D1*BP)

SMA~=AMB*DEXP (BP) - APB*DEXF(-BP)

SMB=(.1D1-SGMK*SGMJ)* MﬁINH(BM)+(SGMK SGMJ)*( . 1D1-DCOSH(BM) )
HH=SMB/ (. 2D1%*BM)+(SGMK+SGMJ) /(. 2D1*BP)+SMA .
GO TO 50

AMB=((.1D1-SGMJ)**2)/(.8D1*BJ)

APB=((.1D1+SGMJ)*%2) /( . 8D1*BF) )
SM1=AMB*DEXP(.2D1*BJ) - APB*DEXP(-.2D1*BJ) [/

HH~/(SGMJ /BJ+(.1D1-SGMI**2))/. 2D1+SM1



(: 50

60

70

80

SKB=SGMK*BK*BJ -

SUMA= (BK*BJ +SGMK*BK**2)*DEXP(BJ ) *DSIN(BK) /BS
SUMB=(SKB - BK*#2 ) *DEXP(BJ ) *DCOS ( BK) /BS
SUMC=(BK**2 - SKB) /BS

SUMD= (SGMK*BK**2 - BK#BJ ) *DEXP (- BJ ) *DSIN( BK) /BS
SUME= - (SKB+BK*%2 ) *DEXP ( - BJ )*DCOS (BK) /BS .
SUMFw=+(BK**2+SKB) /BS

SUM1=.5D0* (1.D0-SGMJ )*(SUMA+SUMB+SUMC)

SUM2=, 5D0%* (1.D0+SGMJ )*(SUMD+SUME+SUMF)
TDH=SUM1+SUM2 -

IF(BK.EQ.BJ) GO TO 60
SB=SGMK*SGMJ*BK -
SUMA=(BK+SB)*DCOS (BM)/.2D1/BM
“SUMPB=(BK-SB)*DCOS (BP)/.2D1/BP
SUMC= (SGMJ *BK - SGMK*BK)*DS IN(BM) /. 2D1/BM e
SUMD=- (SGM.J*BK+SGMK*BK)*DS IN(BP) /. 2D1/BP
SUME=- (BK+SB)/.2D1/BM- (BK-SB)/.2D1/BP
TDT=SUMA+SUMB+SUMC+SUMD+SUME
G0 TO 70
TDT=- . 5D0%( (DSIN(BJ ) )**2+SGMJ*DSIN( . 2D1*BJ ) - (SGMI*DSIN(BJ))**2)
1)
SKM=BK*.5D0*(1.D0O- SGMK)
SKP=BK*.5DO%* (1.DO+SGMK)
SUMA= - SKM* ( DEXP (BK ) * (BK*DCOS (BJ )+BJI*DSIN (BJ)) -BK) /BS
SUMB=SKP*( DEXP- -BK ) * ( -BK*DCOS (BJ ) +BJ*DSIN (BJ) )+BK) /BS
SUMC=SKM* (DEXP (BK ) % (BK*DS IN(BJ) - BJ*DCOS (BJ ) )+BJ ) /BS
SUMD=SKP* (DEXP( -BK) * (BK*DS IN(BJ)+BJ*DCOS (BJ))-BJ) /BS
HDT=SUMA+SUMB+SGMJI * ( SUMC+SUMD)

IF(BK.EQ.BJ) GO TO 80
SBK=SGMK*SGM.J*BK
APB= (BK*(,1D1+SGMJ)* (.1D1+SGMK))/( .4D1*BP) B
AMB= (BK*(,1D1-SGMJ)*(.1D1-SGMK))/ (.4D1*BP)
SMA=AMB*DEXP (BP)+APB*DEXP( -BP) - (BK+SBK) /(. 2D1*BP)
SMB=( BK-SBK) *DCOSH (BM) - (BK - SBK) - (SGMK-SGM.J ) *DSINH ( BM) *BK
HDH=SMB/(.2D1*BM)+SMA
TGO TO 85
APB=((.1D1+SGMJ)**2) /. 8D1
AMB=( (.1D1-SGMJ)**2)/.8D1 -
SMA=AMB*DEXP (.2D1*BJ)+APB*DEXP( - .2D1*BJ)
HDH=SMA- (. 1D1+SGMJ**2)/.4D1

AL=TT+TH ,
A2=HT+HH

A3=TDT+TDH .

A4=HDT+HDH .

RETURN »

END - , '\
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COMPLEX FUNCTION DET

c

CCCCCCCCCCCcCcecereeceeeccetecoeeeececcceceocceccccec

10

22

26

IQO

333

COMPLEX*16 FUNCTION DET(EIL)
IMPLICIT REAL*8(A-H,0-Z)

DIMENSION CA(5,5),L(5) ,M(5),DA2(5,5) ,DA1(5,5),DpA0(5,5)

COMPLEX*16 CA, PIVOT,HOLD,EI
COMMON DA2,DA1,DAO
N=5
DO 1 I=1,N
DO 1 J=1,N

CA(I,J)=ET**2%DA2(I,J)+EI+*DAL1(I,J)+DAO(L,J)

N1-N-1
DET=(1.D0,0.D0)
DO 10 I=1,N
L(I)=I

M(1)=1

DO 100 LMNT=1,N1
PIVOT=(0.D0,0.DO)
DO 20 I~LMNT,N
NROW=L.(T)

DO 20 J=LMNT,N
NCOL-M (J )

IF(CDABS (PIVOT) .GE.CDABS (CA(NROW,NCOL))) GO TO 20

NPR~I
NPC~J

PIVOT=CA (NROW, NEOL)
CONTINUE
IF(NPR.EQ.LMNT) GO TO 22

DET=-DET

KEEP=L (NPR)

L(NPR)=L(LHNT)

L (LMNT) ~KEEP

IF(NPC.EQ.IMNT) GO TO 26

DET=-DET

KEEP=M(NPC) )

M (NPC)~M (LMNT) .
M (LMNT)—KEEP

DET=DET*PIVOT .- /

IF(CDABS (PIVOT) .LT. 0.11)-8) GO TO 333
JAUG=LMNT+1

NPR~L(LMNT)

NPC~M(LMNT)

DO 100 I-JAUG,N

NROW-L(I) -
HOLD~CA (NROW,NPC) /PIVOT

DO 100 J=JAUG,N

NCOL-M(J)

CA (NROW, NCOL)=~CA (NROW, NCOL) - HOLD*CA(NPR NCOL)

DET~DET*CA(NROW, NCOL)
RETURN
END

—_—— e —
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SUBROUTINE ZANLYT(F,EPS,NSIG,KN,NGUESS,N,X, ITMAX, INFER, IER)
DOUBLE PRECISION RZERO,RTEN,RHUN,RPO1,AX,EPS1,QZ,EPS,TPQ

-

10

-2 1 5

20

25

30

35

DIMENSION X(1),INFER(1)

OMPLEX*16 X,D,DD,DEN,FPRT,FRT,H,RT,T1,T2,T3,TEM,Z0,21,22,BI,F,
XX,XL,Y0,Y1,Y2,X0,ZERO,P1,ONE,FOUR, P5
DATA ZERO,P1,0NE/(.0ODO, .0DO) ; ( #1D0, .0DO),(1.D0O,.0D0)/

DATA FOUR,P5/(4.D0,~0D0),(.5D0,.0D0)/
DATA RZERO,RTEN,RHUN, AX, ICKMAX ,RP01/.0D0,1.D1,1.D2, .1D0,3,.01D0/

IER=0

IF(N.LT.1) GO TO 9005
EPS1=RTEN#*#*(-NSIG)
EPS1=DMIN1(EPS1,RPO1) .
KNP1=KN+1

KNPN=KN+N
KNPNG=KN+NGUESS

DO 5 I=1,KNPN
INFER(I)=0

IF(I\,GT .KNPNG) X(I)=ZERO
CONTINUE

L=KNP1

JK=0

ICK=~0

XL=X (L)

1C=0

H=-AX -
H=P1*H ,
IF(CDABS (XL).GT.AX) H=P1#*XL
RT=XL+H

NN=20

GO TO 50

ZO=FPRT

YO=FRT

X0=RT

RT=XL-H -

NN=25

GO TO 50 -
Z1=FPRT

Y1=FRT

H=XL-RT

D=H/(RT-XO0)

RT=XL

NN=30

GO TO 50

Z2=FPRT

Y2=FRT

DD=ONE+D

T1=Z0*D*D

T2=Z1*DD*DD

XX=Z2*DD

T3=Z2%D
BI=T1-T2+XX+T3



45

50

55
60

65

DEN=BI*BI - FOUR* (XX*T1-T3*(T2-XX))
T1~=CDSQRT (DEN)
QZ=RHUN*DMAX1 (CDABS (BI) ,CDABS(T1))
T2=BI+T1

TPQ=CDABS (T2)+QZ

IF(TPQ.EQ,QZ) T2-=ZERO

T3=BI-T1

TPQ=CDABS (T3)+QZ

IF(TPQ.EQ.QZ) T3=ZERO

- DEN=T2

QZ~CDABS (T3) - CDABS (T2)
IF(QZ.GT.RZERO) DEN=T3

NN=30

IF(CDABS (DEN) .LE, RZERO) GO TO 65

D=-XX/DEN )

D=D+D’ . .

H~D*H

RT=~RT+H »

IF(CDABS (H) .LE. EPSl*DMAXl(CDABS(RT) AX)) co TO 70
IF(IC.NE.O) GO TO 15 {4}

NN=40

GO TO 50

QZ=CDABS (FPRT) - CDABS (22 ) *RTEN

IF(QZ.GE.RZERO) GO TO 45

Z0=21 - °

Z1=22 o
Z2=FPRT .
YO=Y1 :

Yl=Y2
Y2=FRT
GO TO 35
CONTINUE
D=D*P5
H=H*P5
RT=RT-H
JK=JK+1
IF(JK.GT.ITMAX) GO TO 75

+

. FRT=F(RT)

FPRT=~FRT

IF(L.EQ.1) GO TO 60

IM1=L-1

DO 55 I=1,LM1

TEM=RT-X(I)

IF(CDABS(TEM) .EQ.RZERO) GO TO 65
FPRT=FPRT/TEM

CONTINUE

IF(CDABS(FPRT).LE.EPS.AND. CDABS(FRT) LE. EPS) GO TO 80

IF(NN.EQ.20) GO TO 20
IF(NN.EQ.25) GO TO 25
IF(NN.EQ.30) GO TO BGV
IF(NN.EQ.40) GO TO 40
CONTINUE

IF(IC.NE.0) GO TO 15
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70

75
80

9005

-~

TEM=RTEN*EPS 1
IF(CDABS(RT) .GT.AX) TEM=TEM*RT
RT=RT+TEM

D= (H+TEM)*D/H .
H=H+TEM

GO TO 50

CONTINUE

IF(IC.NE.0) GO TO 80

IC=1

Z0=Y1

ZlmY2 o

Z2~F(RT)

XL=RT

ICK=ICK+1_
IF(ICK.LE.ICKMAX) GO TO 35
JK=ITMAX+JK

IER=33

X(L)=RT

INFER(L)=JK .
L=L+1

IF(L.LE.KNPN) GO TO 10

IF(IER.NE:0) CALL UERTST(IER,'ZANLYT')

RETURN
END
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SUBROUTINE UERTST(IER,NAME)

INTEGER IER, I, IEQ,IEQDF,IOUNIT,LEVEL,LEVOLD,NIN, NMTB
INTEGER NAME(1),NAMEQ(6),NAMSET(6) , NAMUPK(6) »
DATA NAMSET/’U’,’E','R’,'S’,'E','T'/ ,

DATA NAMEQ/6%' '/ :

DATA LEVEL,IEQDF;IEQ/4,0,'="/

CALL USPKD(NAME, 6, NAMUPK,NMTB)

CALL UGETIO(1,NIN,IOUNIT)

IF(IER.GT.999) GO TO 25

IF(IER.LT.-32) GO TO 55

IF(IER.LE.128) GO TO 5

IF(LEVEL.LT.1) GO TO 30

IF(IEQDF.EQ.1) WRITE(IOUNIT,35) IER,NAMEQ, IEQ,NAMUPK
IF(IEQDF.EQ.0) WRITE(IOUNIT,35) IER,NAMUPK

GO TO 30 ’

IF(IER.LE.64) GO TO 10
IF(LEVEL.LT.2) GO TO 30
IF(IEQDF.EQ.1) WRITE(IOUNIT,40) IER,NAMEQ,IEQ,NAMUPK
IF(IEQDF.EQ.0) WRITE(IOUNIT,40) IER,NAMUPK

GO TO 30

IF(IER.LE.32) GO TO 15

IF(LEVEL.LT.3) GO TO 30

IF(IEQDF.EQ.1) WRITE(TIOUNIT,45) IER,NAMEQ,IEQ,NAMUPK
IF(IEQDF.EQ.0) WRITE(IOUNIT,45) IER,NAMUPK

GO TO 30

CONTINUE

DO 20 I-1,6 \

IF(NAMUPK(I) .NE.NAMSET(I)) GO TO 25

CONTINUE e ‘

LEVOLD=LEVEL

LEVEL~IER

IER=LEVOLD

-

,IF(LEVEL.LT.0) LEVEL=4

IF(LEVEL.GT.4) LEVEL=A
GO TO 30 S
CONTINUE
IF(LEVEL.LT.4) GO TO 30
IF(IEQDF.EQ.1) WRITE(IQUNIT,50) IER,NAMEQ,IEQ,NAMUPK
IF(IEQDF.EQ.0) WRITE(IOUNIT,50) IER,NAMUPK
IEQDF=0
RETURN
FORMAT (19H *** TERMINAL ERROR,10X,7H(IER = ,I3,
20H) FROM IMSL ROUTINE ,6Al,Al,6Al)
FORMAT(27H #*** WARNING WITH FIX ERROR,2X,7H(IER = ,I3,
20H) FROM IMSL ROUTINE ,6Al,Al,641)
FORMAT(18H #*+%* WARNING ERROR,11X,7H(IER ~ ,I3,
20H) FROM IMSL ROUTINE ,6Al,Al,6Al)
FORMAT (20H #** UNDEFINED ERROR,9X,7H(IER = ,I5,
20H) FROM IMSL ROUTINE ,6Al1,Al,6Al)
IEQDF=-1 -
DO 60 1I-1,6
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NAMEQ(1)~NAMUPK (1)
RETURN )
END \

CCCCCCCCCCCCCCCLCCCGCCCCCCCCCCCCeeeeeee -

SUBROUTINE UGETIO c
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SUBROUTINE UGETIO(IOPT,NIN,NOUT)
INTEGER IOPT,NIN,NOUT,NIND,NOUTD
DATA NIND,NOUTD/5,6/
IF(I0PT.EQ.3) GO TO 10
IF(IOPT.EQ.2) GO TO 5
IF(IOPT.NE.1) GO TO 9005
NIN=NIND

NOUT=NOUTD

GO TO 9005

NIND=NIN

GO TO 9005

. NOUTD=NOUT

RETURN
END

CCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
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SUBROUTINE USPKD c
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110

200

210

SUBROUTINE USPKD (PACKED, NCHARS ,UNPAKD , NCHMTB)
INTEGER NC,NCHARS,NCHMTB

LOGICAL*2 UNPAKD(1),PACKED(1),LBYTE, LBLANK
INTEGER*2 IBYTE, IBLANK

EQUIVALENCE(LBYTE, IBYTE)

DATA LBLANK,IBYTE,IBLANK/3%' '/

NCHMTB=0
IF(NCHARS.LE.0) RETURN
NC=MINO (129 NCHARS)

NWORDS=NC*4

Jml -

DO 110 I=1,NWORDS,4
UNPAKD (1) =PACKED (J)

UNPAKD (I+1)=LBLANK
UNPAKD (1+2 )=LBLANK

UNPAKD( I+3)=LBLANK

JeJ+1

DO 200 N=-1,NWORDS,&

NN=NWORDS -N-2

LBYTE=UNPAKD(NN)
IR(IBYTE.NE.IBLANK) GO TO 210 .
CONTINUE

NN-0 -

NCHMTB=(NN+3) /4 -
RETURN

END l !
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c SORT PROGRAM c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCe
SUBROUTINE SORT(EI,L,DATAL,DATA?2)
IMPLICIT REAL (A-H,0-Z)
DOUBLE PRECISION AI,R
DIMENSION DATA1(5,3),DATA2(5,3),DATA3(10,2)
COMPLEX*16 EI(10) .
$=0.0 ' -
DO 1 I-1,10 P
AI=ATMAG(EI(I))
R=REAL(EI(I))
IF(DABS(AI).LT.1.D-5) AI=1.D-5
IF(DABS(R) .LT1.D-5) R=1.D-5
DI=SNGL(AI)
DR=SNGL(R)
ID=IFIX(DI)
IR=IFIX(DR)
DATA3(1,1)~FLOAT (YR)
S=-S+DATA3(1,1)/1.E1" .
1 DATA3(I,2)=FLOAT (ID) ]
DO 2 I=1,10,2 o L)
N=I+1
M=(1+1)/2
M1=0
DO 3 J=N,10
DAI=-DATA3(I,2) _
DAJ=-DATA3(J,2) .
IF(DAI.NE.DAJ) GO TO 3 \
IF(DATA3(I,1).EQ.DATA3(J,1)) GO TO 50 C —
IF(DAI.NE.0.) GO TO 3
SA~(DATA3(I,1)+DATA3(J,1))/2.
SC=ABS (SA-S)
IF(SC.EQ.0.) GO TO 50 .. .
M1=-M1+1 g .
IF(M1.EQ.1) GO TO 60
SB~(DATA3 (I,1)+DATA3(I+1,1))/2.
SD=ABS(SB-S) .
IF(Sb.LT.SC) GO TO 70 !
GO TO 60
50 M1=4
60 DO 4 K=1,2
DR~DATA3 (J,K)
DATA3(J,K)=DATA3 (1+1,K)
4 DATA3(I+1,K)=DR .
70 IF(ML.EQ.4) "GO TO 80 '
3 CONTINUE \
80 DATA2(M,3)=~ABS(DAI)
IF(DATA3(I,1).GT.DATA3(I+1,1)) GO TO 90
DR=DATA3(I,1) . R
DATA3(I,1)=DATA3(I+1,1)
DATA3(I+1,1)~DR
90 - DATA2(M,1)»~DATA3(I,1)
DATA2(M, 2)=DATA3(I+1,1)

»
~



140

12

150

13

160
11

T

CONTINUE

IF(L.EQ.1) GO TO 170
DO 10 1I=-1,5
DO 11 J=I,5

DI~ABS (DATA2(J,3)-DATAL(T,3))
IF(I.EQ.J) GO TO 160

- “IF(DI-D) 140,150,11

DO 12 K~1,3
DR=DATA2(J ,K)
DATA2(J ,K)=DATA2 (I ,K)
DATA2(I,K)=DR
GO TO 160
DR=ABS (DATAL(I,1)-DATA2(I,1))
DI=-ABS(DATAL(I,1)-DATA2(J,1))
IF¢DI.GT.DR) GO TO 10
DO 13 K=1,3
DR=DATA2 (J ,K)
DATA2(J ,K)=DATA2 (I,K)
DATA2(I,K)=DR
GO TO 10
D=DI

CONTINUE
10 CONTINUE
170 RETURN
END

T ey B naaat .o
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- BT(1)= 4.73004074486270  SP{(1)= .96250221457624 LT *
g BT(2)= 7.85320462408584  SQU(2)= 1.00077731190727
bt BT(3)=10 99560783800167 = S@(3)=  99996645012541
BT(4)=14.13716548125746  SQM(4)= 1.00000144889766 g\?
) BI(S)=17 27875065739848  SQM(S)= .89009893734438 'y
ED=.1154D10s  FD= G340DH03  HL= 5000400  RA= 2500D-01  HD= 2500D-02
VOF= 700D-02 B=, 26500007 ROI= 470D+00 VEOP= O0D+00 IDELTA= 3 -
RO= 323 7435 R 4473 URF= 1 1980 URF1= 1,3318 P
INVISCID -
. w1 MIE 1 MIE 2 MOE 3 MDE 4 MDE 3
MAG] DM REAL  IMAG] IMAG2 REAL  IMAG1 IMAG2 REAL  IMG1 IMAG2 REAL  IMAGL IMAGZ REAL
0000 00 00 7.67 .00 .00 21 80 00 .00 44 41 00 00 76.29 00 00 114.13
\A 1502 00 .00 764 00 00 2178 00 00 44 40 00 00 7627 00 114,17
‘.300‘6 .00 0 7.56 _z’ 00 00 2173 00 00 44 37 00 00 76.23 ’ ﬁ 00 314 31
24508 00 .00 743 ' 00 00 2165 00 00 44 31 0 00 7615 00 00 114.52
- 6008 00 0  7.24 00 00 21.53 00 00 44 23 00 00 78 05 00 00 114 B3
7509 00 .00 6% 00 00 2138 00 00 44.13 00 00 7583 00 .00 115 21
9011 .00 00 6.68 00 .00 21 18 00 00 44 01 00 00 75.78 00 00 115 67
| 1.0513 .00 .00 633 00 .00 20 97 00 00 43 86 00 .00 75 64 00 .00 118 21
| 1.2015 g0 0 5.61 W .00 20,71 00 00 43 68 00 00 75.48 00 .00 116,81
) 1.3517 00 00 5.42 00 00,20 42 .00 ' .00 43 48 00 00 75,31 o0 00 117 48
1.5019 .00 0 & 86 .00 ,00 20 08 00 00 43 24 .00 L00 75,15 00 00 118,20
1.6521 00 00 421 .00 .00 18 72 00 00 42 88 00 00 7500 .00 ,00 118,98
1 8023 .00 o 3 ASg 00 00 18 31 ° .00 .00 42 69 00 00 74 88 .00 .00 110,81
1 9525 00 .00 250 00 -{ 00 18 85 00 00 4237 00 00 7473 00 00 120 60
2.1027 00 .00 1.00 00 00 1835, 00 0D 4203 00 00 74.62 .00 .00 121 61
2.2528 192 -1, .00 00 .00 17.80 00 00 41,65 00 00 74 53 00 .00 122 58
2.4030 275 -275 00 o 01720 0 .00 4124 00 .00 74.47 00 00123.55
‘ 2.5532 322 -322 00 00 00 16 54 ° .00 00 40 81 00 00 74.43 .00 00 124 57
| 2.703 s -3.44 00 00 00 15.80 00 00 40 36 00 .00 7h 42 00 00 125 B)
| 2,853  3.39 -339 .00 00 .00 14.89 00 00 3988 00 00 74 44 .00 00 126 60
| 3.0038 2.88 298 00 oo bo 14,06 00 g, 00 3.3 00 00 7448 0 00 127.78
. 3.1540 1,76 -1 76 .00 00 .00 13‘[1)00 .00 ,00 38,85 00 00 74,55 .00 00 128,88
3.3062 0w  ® 276 00 .00 1168 00 .00 3831 W 00 74 64 00 .00 130,02
3 4544 0 00 5.5 00 .00 969 00 00 3775 00 00 7476 00 .00 13117
3.6046 -280 -280 781 28 2.80 78l 00 00 37.16 00 00 7490 00 00 132.33
3.7547 -4.21 421 797 421 421 7.97 00 00 36 56 00 .00 75.06 00 00 133.51
3.9048 504 -504 809 504 504 8.09 00 00 3584 0 00 7524 00 00 134.69
4.0551 -5.5% -5.5 8.17 5.54 55 817 .00 00 3529 00 00 75.44 00 D0 135 BR
4,2053 =574 -574 821 5.74 574 821 .00 00 34 62 060 _ 00 7588 00 00 137.08
43555 -564 -SG4_.B.20 564 564 8.20 00 .00 3391 00 00 75.80 .00 00 138 30
4.5057 -512 -5.12 812 512 512 812 00 00 3317+ .00 00 7614 00 .00 139 %2
‘ 46558 -3,77 -377 7.8 3.7 3.77 1.8 00 .00 32,36 0 00 7640 00 00 140 74
i 4 8061 .00 00 10.33 00 .00 3.67 00 00 3148 M 00 7667 00 00 141.86
) 4.9563 .00 .00 13.5% 517 -5.17 00 00 00 3047° 0 00 7885 %o 00 143.19
y < 5.1065 00 00 1823 7.25 -7.25 00 00 .00 2825 00 .00 7724 00 00 144 42
5 2566 0 .00 1916 85 -8.52 00 00 00 2755 00 .00 7753 00 00 145.86
5.4068 -2,10 -2.10 23.83 8.42 842 .00 210 210 2.9 0w .00 77.83 .00 00 148.80
5.5570  -4.91 -4.81 24 48  10.07 -10.07 00  4.81 4 81 24.49 00 .00 7813 00 .00 148 12
O 5.7072 +6.45 -6.45 25.04 10 52 -10.52 .00  b5.45 6 45 2504 00 00 7843 00 .00 149,38
58574 -7.%6 -7.5 25.58 10.80 -10.80 .00 7.5 7.3 2538 00 00 7873 0 001% %

5

v

/
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D}VIHIID+I!6’I’FADY
upL MXE 1 MIE 2 MIE 3 MIE 4 MIE 5
MG IMG2 REAL  IMAGL IMAGZ REAL DGl IMAG2 REAL  IMAG1 IMAG2 REAL  IMAGl DMAGZ RFAL

—— 7 -
0000 27 270 7.18 268 268 20,63 265 2.65 44 33 261 2.61 7624 261 2.61 114.10

1502 270 27 715 268 2.68 2162 |, 265 2.65 4432 261 2861 7623 261 2.61 114.14
3004 270 270707 288 288 2157 265 265 4429 261 261 J618 260 260 114,28
4508 2n 2 B 50 268 2868 2148 265 2865 4423 2861 261 7611 280 2 B0 114.48
6008 2.7i 271 674 267 267 2136 264 2.64 4415 261 261 7601 260 26011480
7509 272 272 648 2 8\7 267 2121 264 264 4405 261 261 7589 25 25911518
.8011 273 273 617 2 67 67 21 02 264 264 438 261 261 75175 250 259115764
1 0513 274 27 580 2 67 67 2b 80 264 2.64 4378 261 261 7559 258 258116,18
1.2015 275 275 538 267 67 20 53 266 2.66 4360 261 2861 7543 258 25811678
1,3517 278 276 4 B4 2 66 66 20 24 283 263 4339 2.61 2861 7527 257 2.57 11745
1 5018 278 278 24 2 66 66 19 80 263 263 43.16 26y 261 7511 256 256 118.17
1 6521 280 280 53 2,66 66 19 53 263 263 4290 261 2.61 74,95 255 25511885 °
1 8023 28 281 63 2 65 65 19 11 262 262 4260 260 2.60 7481 2.55 255 119.78
30
]

NN N NN

- L 2

1,8525 2.83 2.8 265 265 1865 2.62 262 4228 260 2.60 74.68 2.54 2 54 120.66
2 1027 463 108 2646 264 1814 262 262 4183 260 260 4% 2 53 2 53 121.57
2 2528 5 60 .16 00 264 2.64 17,58 261 261 4.5 259 2.59 7448 25 2521225
2.4030 618 -.37 00 263 263 1666 261 2.61 41.15 2,58 259 7442 2,51 2,51 123,51
2.5532 654 - 867 00 2,62 2,62 16,28 260 260 4072 258 2.58 74.38 2.50 2,50 124 53
2,7034 668 - 74 .00 261 2.61 155 260 2.60 4026 2.57 2,57 7437 2 49 2.49 125.58
2 8536 638 ~-355 00 260 2.60 14.68 2,59 259 3978 25 256 74,38 2 48  2.48 126 65
3 0038 6 08 04 00 25 257 137 25 2.58 39.27 2.5 2.56 74.42 2.47 2,47 127 75
3,1540 451 170 00 25 2 33 12,61 25 257 3B 255 255 7448 2 46 2.46 128.86
3.3042 3.28 3,28 330 242 2,42 1118 2% 256 3819 2,54 254 7458 2.45 2 45 129.99
3 A544 406 4,06 6,25 168 168 895 25 255 37.63 2,53 2.53 74.70 2.44 2 44 131 14
3,6046 6,29 6.28 7238 -.53 =53 826 254 254 3704 252 252 74,84 2.43 2,43 132.30
3,7547 749 7.48 7.67 -169 -169 827 25 252 36.43 25 25 7500 2.42 2 42 133.47
3.9049 825 825 788 -2 41%-2 41 832 , 251 251 3580 2.48 249 7518 2.40 2.40 134 66
4 0551 870 870 7.8 -282 -2.82 835 248 2,48 351% 248 248 7538 2.39 239 135.85
4,2053 888 88 807 -2.85 -2.85 8.35 2 46 2.46 34 46 2.47 2,47 75.6(2 2.3% 2.38 137.05
4 3555 876 876 810 =2,77 277 829 243 2,43 33.75 245 245 75.83 2,37 237 138.26
4.5057 821 821 807 ~21 -216 813 2.39 239 32.98 2.44 2,44 76,07 2.36 236 139 48
4.68559 8678 6,78 7.91 -65 -65 772 +« 234 236 3321 2.42 242 76.33 2.35 235 140.70
4 5061 3.4 3,66 1063 2,78 2,78 28 227 227 3B 241 241 7660 2 34 234 141.93
§ 9563 35 335 1380 8239 -2 67 ) 2 17 217 3023 239 238 76.88 2.32 23214315
35,1065 389 3.69 1650 10.36 -4 61 1,98 199 28.97 2.38 238 77.16 2 31 231 144.38
5.2566 4,10 4,189 1945 11.60 -5 83 1.51 151 272 2.36 2.36 77 45 2 30 2,30 145.62
5 4068 615 6,15 2238 12 48 -6 68 -.43 -.43 2549 2.36 238 77.75 2.28 229-146.85
5.5570 823 82 2% 13.12 -7 30 -2 5 -2.50 25.43 232 232 7805 2.28 2,28 148.09
5.7072 9.64  9.64 “24,31 1351 -1.72 -3.88 -3.89 2576 230 230 7835 2.26 226 149.32
5.8574 10.68 10.68 24.97 13.85 -7.98 -4.82 -4.92 26.19 2.28 2.28 78.65 2.25 225150.55
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INVISCID + UNSTEADY + STEADY
'
CASE 1 T 0000
w1 MDE 1 MOE 2 MOE 3 MIE & e s
MGl TMAGZ REAL  IMAGL IMAG2 REAL®  IMAG1L IMAG2 REAL  IMAG] DWG2 REAL  IMAGI IWMG2 REAL
o Bkttt e e e —————
Booo 270 270 718 268 268 2163 265 265 433 261 261 7628 261 261 114,10
1502 270 270 720 268 268 2168 265 265 44233 261 261 7630 ' 28] 261 11422 )
3006 270 270 716 268 268 2168 265 265 442 261 261 7633 260 260 114 43
4506 270 270 707 268 268 2166 265 265 443 262 262 7633 260 260 114 7
6008 271 271 69 268 268 2160 265 265 442 262 262 7630 259 259 11511
7508 272 272 672 267 267 2150 265 265 430 262 262 7625 258 25 11557
W1l 272 272 646 267 267 2137 264 264 4b3 262 26 7618 25 25 11611
1 0513 273 273 615 267 267 2120 2 64 264 4424 263 2863 76 10 258 25 116 72
12015 27 27 578 267 267 2100 264 264 413 263 263 7601\" 255 25511740 .
13517 276 276 535 267 267 276 264 266 4308 263 286 JST T 25 2.5 118 15
15018 277 277 48 26 267 2048 2064 264 4383 264 264 7562 25 25 116 05
18521 278 278 426 266 266 217 264 264 43.63 264 264 757 25 2% 11861
1823 280 260 35 265 266 108 264 264 44 264 264 7568 250 2% 12072 ,
19525 281 281 27 266 266 1942 264 264 4316 264 264 7560 248 2,48 121 B8
21027 28 28 15 266 2.66 1898 264 264 428 264 264 758 247 247 122 67
22528 4% 137 00 266 266 1849 264 264 425 266 266 7553 245 245123 71
24030 538 .37 00 265 265 17.96 ’}J 284 4223 264 280 755 243 2.43 124 78
2552 59 -20 00  2.65 2.65 12.37 ~~2 64 2.64 41.86  2.64 264 755 T 242 242 123 68
2703 637 -5 .00 265 2.65 1672 264 2.64 41.47 263 263 756 240 240 127.00
2.853 654 -66 00 264 ‘264 1600 260 263 4108 263 263 7569 238 23812818 :
3.0038 649 -52 00 2.63 263 1521 2.63.263 4.2 262 262 7578 237 23712833
3140 612 -08 .00 262 262 1432 263 263 40,16 2,62 262 758 235 2.35130.5
3362 511 105 00 260 280 1330 262 262 3969 261 261 7608 233 233131 74
345 316 316 235 25 254 1207 262 262 39.10 260 260 7628 232 2,32 132,00
36046 337 3,37 4.8 237 237 1039 261 2,61 38.68 260 260 7647 230 2.30 134 22
37547 518 518 727 ;59 .50 B840 260 260 3815 258 2% 7669 228 228 135.48
3004 680 6.80 767 -1.00 -1.00 828 260 260 3760 25 238 768 226 27613675
40551 7.7 7.74 78 -190 -190 B30 258 2,5 3704 25 25 7721 225 225138.4%
42050 833 8.33 707 -2.44 244 831 25 257 364 25 25 7748 223 223 13931 -
43555 B64 864 803 -271 -271 B30 25 255 358 255 255 7779 221 221140,61°
4557 868 B8.68 B804 -270 270 826 25 253 352 25 25 7811 218 210 141.81
46550  8.39 8.38 800 -236-236 810 251 251 345 252 25 784k 217 21714322
48061 7.5 756 71.84 -147 -147 781 248 248 3390 251 2,51 7878 216 2.16 144 53
4,953 4.7 497 758 119 118 69 24k 244 3316 250 2% 7913 21 20414585 >
54085 | 3.7 3.37 176 65 -82 .00 239 239 323 240 248 9950 212 21214717
52566 ¢ 3.44 3 44 1428  8.49 367 .00 231 231 3145 247 247 7987 210 210 148 49
5468 358 3.58 1662 11.01 -516 00 219 218 3040 246 246 80 2 w 2.08 208 149.82
5570 385 38§ 1911 12.05 617 00 185 185 2005 245 245 8062 206 20615113
5702 477 477 2200 12.81 -6.80 .00 104 106 27.18. 243 243 81 01> 2.05 2.051% 47
58574  7.05 7.05 2403 13.36 742 .00 -122 -122 26.28 242 242 BL4D 203 200153 80




T

MDE

0000

1

\

b

MDE

2

v

MXE
IMAG] IMAG2 REAL IMAG1 TMAG2 REAL IMAG1 IMAGZ REAL

3

ME 4
IMAG1 IMAG2 REAL IMG1 IMAG2 REAL

MIE 5

0000
1502
3004
4506
6008
7508
%011
0513
2015
3517
5019
6521
8023
8525
1027
2528
4030
5532
7034
8538
0038
1540
3042
4544
6046

7547
8049

.0551
2053

4,3555
4 5057
- 4,6559

-~ 4 8061

-y

A

P W W W W W W W NN RN NN N e e e

’ 4,0563

.5 1065
. 592566
) 5 4088
B 5 5570 5,
5 072
) 5 8574

¢

N

270
270
70
71
n
72
73
74
75
76
78
79
81
8d
74
32
67
79
64
01
13
36
37
Q7
07
70

L W WO WL NN NNNNRNN N NN

’

a
~

~N o O 0 o
o
&

525
349
an
457
7.30
8 19
10 50
11 49
1225
12 84

o

270
270
270
271
Zn
272
273
74
75
76
78
79
81
87
- 03

NN NN NN

56
85
- 80
66
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- CASE 3 T= 10 000C
w1 MIE 1 UE 2 MDE 3 MXE: & MOE 5
IMAG1 TG REAL m1g\:mm DMAGL IMG2 REAL  IMAG1 IMAG2 REAL  IMGI IMAG2 REAL
0000 270 270 726 2.68 268 2171 265 265 4 42 281 261 7638 281 2.61 114.20
1502 ,2.70 270 721 2.68 268 2170 265 265 44 41 261 261 7633 261 261 114,25
3006 270 270 713 268 268 2164 265 265 4438 261 261 7628 260 2601438
4506 . 270 270 69 268 268 215 265 265 432 262 26 7621 260 260 114 60
6008 271 271 680 268 268 214 265 265 4626 262 262 7611 25 2 50 114 00
7508 272 272 655 267 267 2129 265 265 4614 262 262 75988 25 25811520
W11 272 272 626 267 67 2110 264 264 4402 262 262 1584 25 257 11575
10513 273 273 58 267 287 208 264 264 4387 263 263 7563 25 2 56 116 28
12015 275 275 543 267 267 206 266 264 4363 263 263 755 255 2 55116,08
13517 276 276 49 267 267 2032 264 264 4348 263 26) 7536 25 25 117 58
15018 277 277 432 266 266 1993 264 264 4325 264 264 7520 25 253 118,28
P 16521 279 279 362 2.66 256 19.60 264 264 4299 264 264 7505 25 2 51 119 06
18023 280 28 275 266 265 1910 264 264 4260 264 264 7480 2% =2%1ilose
1925 28 282 149 266 266 1873 264 26k 4237 264 264 7477 248 248170 78
21027 448 120 00 265 265 1822 264 264 4202 264 264174 66 247 247 121 88
. 228 551 2 00 265 265 1766 264 264 41 65 264 264 74 58 245 2 45 122 64
24030 6.12 - 35 00 265 265 1705 264 264 4124 264 264 74 51 243 2 43 123,62
2552 650 ¢-.87 00 2,64 264 1637 263 263 4081 264 264 7447 242 2 42 124 B4
2703 666 -78 00 263 263 1562 263 261 4035 263 263 7446 240 2 40 125 60
. 2856 657 -60 00 262 262 14789 263 263 3087 263 263 7447 238 238128 6
30038 612 -06 00 260 260 138 262 262 3936 262 262 7451 2.3 236 127,86
. 3150 476 143 .00 256 25 1273 262 262 3883 262 262 7458 235 23512897
33042 3210321 310 248 248 1133 261 261 3828 261 261 7467 233 2,33 130.10
3.45 378 3,78 606 1.86 184 8312 261 261 3772 260 260 7% 78 231 23113125
360468 6.16 616 741 -40 -40 821 260 260 3713 2,59 259 7482 228 228132741
3,757  7.42 742 770 -1.62 -162 826 25 25 352 25 25 7508 2.7 2271335
, , 3ome 820 820 78 236 236 6.30 257 25 3588 25 25 7526 2% 22613477
4,051 8,68 868 800 -2.79 -279 833 256 256 35246 25 25 7546 22 2.24 135,07
42053 8.88 888 809 -2.84 -2.04 834 253 2.5 3456 255 255 7568 22 2,22 137,17
. 4355 8.78 878 8.12 -279 -2.79 8.28 251 251 3386 25 25 7581 220 2.20 138 38
4.5057 B.27 827 8.08 -2,22 -222, 8’15 248 248 3309 25 25 7616 2,18 2,18 130,80
4659 6.9 6.8 79 -8 -8 778 2,43 243 3227 251 2.5 76,41 216 2,16 140 82
;48061 ' 3.42 342 10.3 280 280 3.5 237 237 3137[ 25 25 7668 2.4 2,14 142,04
4.95%3 346 346,13 62 8.22 -2.44 00 228 228 3035 249 249 7896 212 2,12 143,27
5.1065 363 363 1633 10.29 -4.47 00 212 2.2 2011 247 247 772 210 2 10 1445
5256 4.06 406 18.25 115 -571 00 172 1.J2 27.43 246 248 7753 200 2 08 5 74
5.4068° 593 583 22.35 1246 -659 00 -.13 -.13 25.48 244 244 7783 2,07 2 07 146,87
5550 813 815 23.88 13.12 721 00, -2,31 -2.31 25.37 243 2.43 78.13  2.05 205 148.21
§7078 9,59 9059 24.34% 13.58 -7.64 .00 -375 -3.75 25.71  2.41 241 7842  2.03 2 03 140 44
- 5.8574 10.66 10,66 24.99 13.88 -781 .00 ~--4.80 -4 80 28,15 238 239 78,72 2,01 2,01 1%50.68
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CASE 3
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T= 50 0000

MXOE

1
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2
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MOE 5 -
IMG1 IMAG2 REAL MGl IMAG2 REAL IMG1 IMAG2Z REAL IMG1 IMAG2 REAL JIMAG] TMAG2 REAL

1027

2528

4030
2 5532
2 7034
2.8536
3.0038
3.1540
3.3042
3. 4544
3 6046
3.7847
3 9049
4,0551
4,2053
4.3555
§.3057
4.6559
4.8061

. h.8563

5.1065
3.2566
5.4068
5 5570
3.7072
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270
271
2.72
272
2.73
274
2.76
27
278
2.80
2.82
358
5,13
5,89
g 35
8 59
8.60
6.29
537
3.16
341
5,50
7.05
7.96
853
8 81
881
8.43
7.38
3.60
3.42
3.8
3.84
4.85
7.42
9,08

270 7.47
2,70 7.45
2,70 7.37
270 723
271 7 04
272 880
2,72 6.50
273 614
274 571
2,76 522
2.77 4 85
278 399
2.80 319
28 2.15
200 00

8 00
-12 00
-5 00
-722 .00
-.65 00
-.286 .00

77 .00
3.16 219
3.61  4.85
55 726
7.05 764
7.96 7.84
8.5 7.97
B8l 808
8.81 810
843 8.08
7.3 7 %4
3.60 8.83
3.42 12.83
3.55 15.53
384 18,28
4.85 21.56
742 2337
909 24.22

5.8574) 10.28 10.26 24.89

268 2,68
2.68 268
268 2.68
2.68 268
268 2.68
267 267
267 267
267 267
267 2.67
2.67 267
2.67 267
2.66 266
266 266
2.66 2.66
266 266
2.65 265
265 265
264 264
2.64 264
263" 2.83
2.61 2.61
258 2,58
25 2.5
231 2.31

25 .25
-1.26 -1.26
-2.13 -2,13
-2 65 -2 65
-2.88 -2 89
-2.83 -2 83
238 -2.39
-1.28 -1,28
2.5 2.50
744 -1,67
9.90 -4.08
11.31 -5.46
12.28 -6 41
12,99 -7.08
13.49 -7.56
13.83 -7.86

22 03
22.01
21 96
21 87
21.75
21.60
21.41
21 19
20 €3
20 63
20.30
18.92
19,51
19 05
18 55
17,98
17 39
16 72
15 98
15 17
14.25
13,20
11 81
10,10
828
8.24
8.29
8,32
8.33
8.30
817
7.88

2 65
265
2.65
2.65
265
2.65
2 64
2 64
2 64
2 64
2.64
2.64
2 64
2.64
2 64
2 64
2.64
2 64
2.63
263’
2.63
262
2.62
26
2.60
2.5
2.58
2%
2.5
2%
2.48
2.45
'2.40
2.32
2.19
1.9

.84
-1.61
-3.25
-4.82

2.657 44 78

2 85
2.65
2.65
2{g5
2.85
2 64
2 64
2 64
2 64
2.64
2 B4
2 64
2 64
2 64
2 64
2.64
2.64
2.63
2.63
2.63
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2 62
2.61
2.60
2,58
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2.56
2.54
2 52
2.49
2.45
2.40
2.32
2.18

44.77
44.73
44.68
44-60
44 50
44 38
44 22
44 05
43 84
43 61
43,35
43.06
42.74
42 33
42 01
41.60
41.17
40,71
40.23
38,73
38 20
38.65
38.09
37.50
36.90
36.28
35.63
34.96
34.25
33 51
32.72
31,85
30,88
28.74
28 27

261
2.61
2,61
2.62
262
2 62
2 62
2.63
2 63
2.63
2.64
264
2 64
2 64
2.64
28
2.64
2.64
2 63
2.63
2.62
2.62
2.61
2.60
2.5
2.58
2.57
2.5
255
2 5%
2.53
2.52
2.50
2.49
2.47
2,46
2,45
2.43
2.41
2.40

2.61
2.61
2.61
2.62
2 62
2.62
2.62
2.63
2.63
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2,50
2,48
2 47
2.46
2.45
+2.43
2.41
2.40

76 74
76.72
76.68
76.60
76.50
76 38
76.24
76 08
75 %2
7575
75 50
75 43
75.29
75 16
75 05
74 %
74 &9
74 85
74 83

.85
74.88
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75.15
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75.45
75 63
75.83
76.05
76.28
76.51
76.78
77 06
77.3
77 62
77.%2
78 21
78.51
78 81
79.12

2.61
2.61
2.60
2.60
259
2,58
257
2.56
255
2 54
253
2,51
2.5
2 48
2 47
2.45
2.43
2,42
2,40
2.38
2.36
2.35
2.33
2,31
2,28
228
2.'26
224
2.22
2.20
2,18
2.16
215
213
2.11
2.09
2,07
2.05
2.03

.01

~

2.61 114.62
2.61 114.66
2.60 114.80
2.60 115 01
2.59 115.32
2.58 115.70
2.57 116 16
2 56 116.70
2.55 117.30
2.54 117.97
2.53 118.70
2 51 119.48
2.50 120 31
2 48 121.19
2.4/ 122.10
2.45 123,06
2.43 124.05
2.42 125.07
2.40 126 12
2.38 127.18
2.36 128.28
2.35 129.40
2.33.130.53
2.31 131.68
2.29 132.84
2.28 136.02
2 26 135.21
2.24 136.4D
2.22 137.61
2 20 138.82
2.18 140.04
2.16 141.26
2.15 142.49
2 13 143.72, ~
2.11 144,95
2.09 146.18
2.07 147.42
2.05 148.68
2.03 149.89
2.01 151.13
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APPENDIX E

THE APPROXIMATE METHOD FOR CRITICAL FLOW VELOCITY
BASED ON SLENDER BODY THEORY AND COMPARISON WITH
THE RESULTS OF THIS THEORY & -

. (

Considering small lateral motion of the flexible centre-
body about its position oﬁarest and assuming that the angle of

incidence i and aiyax* are sufficiently small, based on
“

slender body theory the equation of motion of the flexible

centre-body immersed in inviscid flow is given by

EI iii§ + M (i—— + u¥ i——)ze* + m ii;% - 0,7 (E-1)
" ax* at* ° ax* ° S st F

as proposed by Lighthill [24]. Here, the virtual mass, M, 1is
equal to xpgfA, where A s the cross-sectional area of the
flexible centre-body. For confined flow, based on slender body

theory, x 1s expressed as follows:

(a+H*)2 + a
(a+H*)2 - a

x = ' (E-2)
where a is the radius of the flexible centre-body and H* 1s
the annular gap. Thus, it is clear that x 1Increases as the
annular gap ratio decreases. )

At this point, the criticai flow velocity corresponding
to onset of buckling may be found particularly easily, taking
into consideration Euler's method of equilifrium f13] s+ the
mechanism of instability 1is the same as compared with the
clamped-clamped pipe conveying fluid. It is noted that at
instability other equilibrium points eg(x*) exist near the
trivial position e:(x*)zo. Lateral displacement of the centre-
body axis eg(x*) must satisfy equatioWJ(E-l) with the time-
derivatives eliminated. Thus, -

4 % 2 %
d e d°e
o) *2 0 .
EI 5—;:;‘—4— + MUO -a—x:k-z' - 0, ‘(2-3)
¢ “




E-2
where, ef¥ ~ ¥ a, elo** _(the 'destabilizing force in this case
is proportional tg Mng). h ’

As a result, a system with clamped ends loses stabllity
by (xpfA/EI)HUgﬂ*-Zw

inviscid flow; therefore: the nondiyensional critical flow

approximately, for

divergence, at

Qelocity may‘be expressed by

*
U - - b o o2n (b, ) (E-4)
refl

where Uypory 1s defined in equation (2-3).
These approximate valges for Uy are compared with the
which
in Table E for 2=20 and 100 for sthree values of

are obtained by inviscid flow theory in

results Upq,
Chapter 1V,
the annular gap. As expected, it is shown that the di§crepanéy

becomes smaller as’' £ increases,' i.e., as the slender-body

theory becomes more valid.

It is also interesting to note that the two results agree
best gap (h=0.01),
assumption made by this theoryA effectively that 1/(a+h)=1l/a

for the smallest annular wvhere the

becomes more valid.,r

3

Table E Values of the nondimensional critical flow
. velocities, with respect to U,of1, for
potential flow
| : length|annular gap|approximate| present discrepancy
ratio ratio result result (Ubl-Ub)/beLOO
. 2=2%/a h=H*/a Uy, Up1 %
’ 0.05 1.39 1.49 7.2
20 0.10 1.94 2.13 9.8
0.15 2.34 2.64 12.8
| 0.01 0.627 0.631 .7
| . 100
- - - 0.05 1.387 1.425

L



