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ABSTRACT 

A Born approximation potential is derived from the 

one-boson-exchange model with the p-meson and the fO-meson 

exchanges, together with the direct and exchange pole terms of 

the ~-N scattering. A 'eut off' mass is introduced to regularize 

the singular part of the potential. The potential is inserted 

into the Klein-Gordon equation and the equation is then solved 

for the phase shifts. 2 The coupling constants G /4~, 

gf~~gfNN 
and the 'eut off' mass m are treated as adjustable 

4 ~ c 

parameters to fit the CERN(S) phase shifts. The best solution 

obtained in the 0-700 MEV energy range includes three resonances; 

The solutions are 

consistent with the CERN phase-shirt analysis especially for large 

positive phase shifts such as PlI' P33' DIS and D13' T.le P3l , P13 

and D33 cannot be accurately predicted in our model. 
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CHAPTER l 

Review 

1.1 Introduction 

The study of the low-energy pion-nucleon scat te ring the ory 

is one of the most basic subjects in the history of strong inter

action physics. A diversity of approaches has been exploited 

towards a solution of this profound problem, in order to have a 

complete and consistent picture of the n-N interactions. 

The first contribution to the low-energy n-N scattering 

theory was by Chew and Low(l), using the low-energy effective range 

approximation. On the basis of the cut off Yukawa Theory without 

nuclear recoil, it is found that the Chew-Low model provides a 

qualitative picture of the ~-wave n-N scattering, particularly a 

(3,3) resonance consistent with the experimental data. However, 

Chew-Low's model fails to predict the correct information for the 

S-wave. By means of current commutator algebra and the hypothesis 

of PCAC,the S and P wave scattering lengths are also studied(2). 

In the field theoretic approach, a Lagrangian model is used to 

understand the low-energy n-N interaction. In the framework of 

chiral symmetry(3) , the scattering lengths can be calculated. 

Recently, a Padé approximation approach has been presented by 

Remiddi et al. (4), to parametrize the low-energy elastic n-N 

scattering. The expansion of the S-matrix in terms of the n-N 
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coupling constants up to the four th order is used to fit the CERN(S) 

phase shifts. However, the fit to the T = ~ state is poor, with 

opposite signs in the S, P and D-wave phase shifts when compared 

with the corresppnding ones from CERN. 

The one-particle-exchange model has been considered as one 

of the most successful models in the past decade in the study of 

elementary particle physics. By taking the well-known existing 

elementary particles as exchange particles in a certain strong 

interaction process, it is possible, using simple mathematical tools, 

to calculate the physical observables to Obtain good agreement with 

the experimental data. A more elaborate review of this model will 

be given in Chapter II, section 2.1. 

In connection with the study of the TI-N scattering problem, 

we consider in the present work the so-called one-boson-exchange 

(OBE) mode l , to identify and estimate the contributions to the TI-N 

forces. An attempt is made to derive an OBE Born potential due to 

the exchanges of nucleon, p ,cr and fO. A 'cut off' method is 

introduced in order to regularize.the singular potential. The details 

are given in Chapter II. The Klein-Gordon equation is used to 

calculate the TI-N phase shifts in each channel. A discussion on the 

Klein-Gordon equation, including the justification for applying it 

to our problem, together with the basis of the assumptions inherent 

in our approach, is given in Chapter III. If the one -

boson-exchange is the basic mechanism, the masses of the exchange 

particles are not adjustable parameters. However, the coupling 
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constants of the exchange particles with the nuc~eon or pion, can 

be treated to a limited extent, as adjustable parameters. proper 

adjustments in the parameters are made until a reasonable fit to 

the CERN phase shifts is secured. One of the successes achieved in 

our approach is the ability to reproduce aIl the character±stic 

features of the lT-N resonances up to the energy: of 700 MEV. We 

have thus far considered only the elastic scattering; an extension, 

which includes the effects of the absorption is more realistic and 

most desir~le. 
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1.2 n-N Phase-Shift Analysis 

Phase shift analysis has played a considerably important 

role in the n-N scattering problem in the past half decade, beginning 

from the evidence of Roper ' s(6)P
ll 

resonance. The analysis of the 

phase shifts provi6es a meeting ground between the explanation of the 

experimental data and the various theoretical approaches. Moreover, 

it is also a powerful tool to detect resonant phenomena. Most resonances 

are not evident from the total cross-section, or from a Dalitz(7) plot. 

Conventionally, there are tWo ways to deal with the problem of 

phase shi ft analysis. One is an energy-dependent approach and the other 

an energy-i.ndependent approach. In the former, one parametrizes the part

ial wave amplitudes as functions of energy in order to fit the experi

mental data. This approach is practical provided only a few partial 

waves are taken into account and at the same time the energy range is 

sufficiently restricted. This approach has been applied by three groups 

Yale (8) , Livermore(9) and Chi 1 ton (10) • The disadvantage is that good 

statistical fits are not practically attainable; because of the incon

sistencies among experimental data at different energies. Nevertheless, 

energy-dependent analysis gives a smooth behaviour of the solution at 

various energies. 

For an energy-independent analysis, an extensive search 

at each energy for different solutions is performed. The disadvantage 

of this approach is that it is unable to produce smooth and continuous 

solutions at various energies. To impose continuity at different 
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energies is quite a difficult task. However, sophisticated techniques 

h b t d b th . . . (11) 1 (12) ave een a tempte y e groups 1n Hawa11 , Sac ay and 

CERN(13} to deal particularly with this problem in the energy-

independent analyses. 

1.3 Nucleon Resonances 

About two years ago the pion-nucleon phase shi ft analysis 

th 1 
(M). 

of e groups at Berke ey , CERN and Saclay, was extended to the 

GEV region, with 19 or more resonances found below 2.2 GEV (C.M. 

total energy) in the ~-N system. Recently, serious arguments have 

been raised to question the existence of a number of these previously 

unsuspected resonances. The traditional procedure to detect a 

resonance state is by means of the Argand diagram of the function 

2qf~ , where 

f~ = 

is the partial wave amplitude, q the C.M. momentum, n~the absorption 

parameters and ô~ the phase shifts. The existence of a resonance 

will always give rise to a counter-clockwise circle in the Argand 

diagram. However, the inverse is not necessarily true. (A counter-

clockwise circle in the Argand diagram does not necessarily imply 

that there is a resonance.) Much attention has been drawn to this 

criterion after schmidt (15) proclaimed that the partial-wave 

projections of Regge-pole amplitudes freely exhibit resonance-type 
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circles. A diversity of opinion has been expressed on this topic(16). 

However, no concrete conclusion has been drawn so far at this point. 

Accordingly, Donnachie(17) is convinced that aIl the structure 

observed in the TI-N scattering should be associated with resonances. 

To a greater or lesser extent, the resonances below 1.6 GEV (C.M. 

total energy) are quite reliable and have been confirmed by the 

five most recent phase-shift analysis groups(12), (13), (14), (18), (19) 

(see Table 1). 

Table 1 

COnjectured pion-nucleon resonance assignments below 2.2 BEV* 
with the status of the corresponding structure observed in the 
five most recent phase-shift analyses. 

Possible 
Resonances 

P33(1236) 
S31(1640) 
°33(1690) 
P33(1690) 
F35 (1910) 
P31 (1930) 
F37(1950) 
035 (1950) 

Pu (1470) 
°13(1520) 
Su (1550) 
°15(1680) 
F15 (1690) 
Su (1710) 
°13('\.01730) 
Pu (1750) 
PI3(1860) 
FI7(1980) 

013 ('\.02030) 
GI7(2l90) 

Berkeley (14) 

De fini te 
Possible 
Pl10bable 
Probable 
Probable 
De fini te 
Doubtful 

CERN It (5) Saclay (12) 

No argument about this one 
Definite Definite 
possible 
Probable 
Probable 
Probable 
De fini te 
Doubtful 

Ambiguous 
Ambiguous 
Ambiguous 
Ambiguous 
Definite 
Ambiguous 

De fini te Definite Definite 
Definite De fini te Definite 
Definite Definite Definite 
Definite Definite Definite 
Definite Definite Definite 
De fini te Oefinite Definite 

No Use imagination No 
No Possible No 
No possible No 
No Doubtful No 

No Probable No 
Ambiguous Oefinite 

(18) 
Glasgow 

Definite 
Definite 
Possible 
De fini te 
Definite 
Definite 

No 

Definite 
Definite 
De fini te 
Defini te 
De fini te 
Definite 

No 
Definite 
Definite 
Transferred 
to G17 

No 

* 
t 

The energy used in Table 1 refers to the total C.M. energy. 

In order to avoid confusion, CERN l refers to ref. (5), and 
CERN II to ref. (19). 

CERN II (19) 

De fini te 
De fini te 
De fini te 
De fini te 
De fini te 
Oefinite 
Possible 
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1.4 Generalized Interference Model 

Very recent work intimately related to the resonance 

phenomena in ~-N scatterinq is presented throuqh a newly developed 

'qeneralized interference model', by Donnachie and Kirsopp(20). 

A pure Breit Wigner type of expression is proposed to 

fit the difference D!;) , between the partial wave amplitudes and the 

respective Reqge amplitudes. Rere, the difference Di;)is defined 

by 

and is parametrized by 

0A.(T) 
1", 1± 

q e n, r(T)E 1 
n,l± 

n (S(T) Res·_S ) _ i q r(T)Tot 
n,1± 2 n,l± 

(1-1) 

(1-2) 

where fi!) are the usual partial wave amplituaes, and a!!) the 

projected Regge amplitudes; S and q are the total energy squared and 

momentum in the C.M. system. The summation in Equ. (1-2) indicates 

the number of resonances in a given partial wave. Here 

(T)El is the square of the mass of the n-th resonance, r n± n, ... 

seT) Res. 
n,l± 

d r (T)Tot 
an n± n, ... 

are the elastic and·total widths of the n-th resonance respectively 

and cp (T) is the arbi trary phase. 
n,l± 

Remarkable success has been shown by this model in describing 

the partial wave amplitudes and there is a consistency with the 
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Table II* 

Conventiona1 Interpretation Interference Mode1 Interpretation 

Mass Width E1asticity Mass width E1asticity 

531 1620 140 0.25 1605 230 0.30 

P31 1905 300 0.25 Interpretation ambiguous 

P33 1237 122.5 1.00 1241 120 . 1.00 

1690 280 0.10 1940 250 0.35 

(3 resonances improve fit) 

°33 1670 225 0.13 1850 350 0.22 

°35 Interpretation ambiguous 1715 375 0.20 

F35 1880 250 0.18 Interpretation ambiguous 

F37 1940 210 0.42 1870 250 0.32 

511 1525 80 0.34 1440 240 0.76 

1715 280 0.66 1685 220 0.54 

P11 1460 260 0.57 1420 140 0.32 

1783 405 0.34 1815 175 0.16 

P1~ 1855 335 0.27 1665 370 0.38 

°13 1515 115 0.52 1520 105 0.47 

1730 ? ? ? 1980 200 0.32 

2030 ? ? ? 

°15 1675 145 0.43 1650 135 0.29 

F15 1690 125 0.61 1705 120 0.67 

F17 - - - - - -

* The masses in Table IIrefer to total energy in the C.M. system. 
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existence of all the conjectured pion-nucleon resonances up to 1.5 GEV* 

(C.M. total energy of 2.0 GEV), with the exception that the P31 

resonance is absent and an extra D35 resonance is present. (See 

Table II). 

* From now onwards, energies in MEV mean pion labo kinetic energy 
except when otherwise specified. 



CHAPTER II 

One-particle-Exchange Model 

2.1 The Development of the One-Particle-Exchange Model 

The one-particle-exchange (OPE) model was first proposed 

by Hoshizaki et al. (21), in an attempt to explain nuclear forces 

in nucleon-nucleon (N-N) scattering. Since then similar models 

have been presented by a large number of authors on somewhat 

different grounds. There are two conventional approaches one can 

take with the OPE model. One is the dispersion theoretical approach 

and the other is using the one-particle-exchange potential (OPEP) 

to solve the non-relativistic SchrBdinger equation. In the former, 

the great advantage is that the whole treatment can be made fully 

relativistic. 

1. Partial Wave Dispersion Treatment •. The dispersion 

treatment of the OPE model has been dominated by the analysis of the 

partial-wave dispersion relations. Extensive work on this approach 

. . h b db' d (22) (23) ~n N-N scatter~ng as een one y Scott~ an Wong , Kantor , 

(24) . (25) 
MacGregor and Moravcs~k • Much of the early work on the partial 

wave dispersion relation in n-N scattering has been done by Hamilton 

t 1 
(26) 

e a. 

-10 -
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t . 
pllysieaJ eut 

Fig. 1 

We proceed to give a brief account of this matter. By 

definition, the TI-N partial wave amplitudes with orbital angular 

momentum 1 have the form 

The singularities of ft±(S) are shown in Fig. 1. The 

dispersion relation for f
1

±(S) is written as 

1 
co Imf n ± (S' ) 

- f dS' N 

TI (M+].I) 2 + 
1 llf1±(S') 

-2 . f dS' , S 
TI~ S -(unphysical cuts) S' - S 

(2-1) 

(2-2) 

where llf1±(S) is the discontinuity in ft±(S) across the cut at S'. 

On the R.H.S. of Equ. (2-2), the first integral along the physical 

cut gives the mscattering ,while . the second integral with various 

unphysical cuts, can be regarded as the forces producing the TI-N 
2 2 

scattering. The short Born cut, (M - ~ ) ~ S $ M2 +2].12; due to the 

cross Bom term of the N-exchange, correspondS totht!'long range force. 

The contribution from the cut 0 $ S ~ (M _].1)2 arises from the N*-

exchange and is a comparatively short range force. The circle 



". 

Isi = M2 - ~2 arises from the channel n + n + N + N. The left half 

of the circle gives the short range part of the n-N interaction. 

However, the right half of the circle, and in particular the region 

nearest the physical threshold S = (M + ~)2 , gives a comparatively 

long range interaction due to low-energy S-wave n-n contribution. 

The unphysical cut _00 $ S ~ 0 is due to very short range forces. 

Since little is known about this region, Donnachie and Hamilton(27) 

introduce a peripheral method, in which the very short range part of 

the interaction is almost suppressed. They define 

Instead of Equ. (2-2) the dispersion relation of F1±(S) is now 

written as 

œ ImF1±(S') 
f dS' 
(M+~)2 S' - S 

where 

âF1±(S) = 

l âF1±(S') 
+ -- f dS' S' - S 

2ni (unphysical cuts) 

(2-3) 

(2-4) 

(2-5) 

The factor q-21 suppresses the contribution from the unphysical cuts 

due to the unknown very short range force (i.e. from the left hand 

cut - 00 ~ S ~ 0, and the left hëQf circle)~ at the same time it also 
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ensures the proper threshold behaviour off~s). However, at very 

high energy the dispersion relation of Equ.(2-4) breaks down. This 

is due to the presence of inelasticity at high energy and in addition 

the very short ~ange interaction becomes important and can no longer 

be ignored. Further work to extenn the peripheral method in the high 

energy region has also been done by Donnachie and Hamilton(28). By 

using the unitary sum rule to estimate the short range part of the 

~-N interaction, an improved peripheral method can be achieved. 

2. The One-particle-Exchange Potential. We review the work 

based on the OPEP to solve the non-relativistic SchrHdinger equation, 

which is similar in form to the Klein-Gordon equation used by us. The 

similarity is illustrated in Chapter III, Section 3.4 . In general, 

there are two methods of utilizing the OPEP. A direct method is ~o 

calculate the phase shifts by solving the Schr8dinger equation with 

the OPEP. The other is an indirect method in which phenomenological 

potentials are analyzed in terms of OPEP. 

Very extensive work in N-N scattering based on the direct 

OPEP has been performed by Bryan, D~smukes and Ramsay(29~ Bryan and 

Scott(30) and Arndt, Bryan and MacGre~or(3l). 

The first systematic analysis on the indirect OPEP in 

N-N scattering has been done by Hoshizaki et al.(2l). The difference 

between the phenomenological nuclear potentials and the pion theoretical 

potential in the range greater than ~-l is examined in terms of OPEP. 

The hard core interaction in the inner region is discarded as 
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it is too co~licatedto handle using this Modele 

Babikov(32) analyzed the phenomenological Hamada-Johnson(33) 

potential in terms of OPEP in N-N scattering due to p , w and an 

l = 0 scalar Meson with mass 2.5~. An attempt to explain the hard 

core by a repulsive force due to the w-meson was made. 

Although the OPEP approach has been long used in N-N 

scattering,it has not been very popular in the ~-N scattering 

problem. On the basis of the OPE model, Kikugawa (34) gives an 

analysis of the low energy ~-N scattering, due to the exchange of 

N, N*, N**, a scalar Meson and a vector Meson. The isospin non-

flip amplitude a!+:I:)and the (-) 
~ isospin flip amplitude aR.:I: are expressed 

2T 1 3 . 
in terms of the tangents of the phase shift ôR. (T = 2' 2 ), Wl.th 

the following forms 

+ 2t"'Ulô (3)] 
R.:I: 

in order to analyze the experimental data. On the other hand, these 

amplitudes, due to the OPE model, are determined by matrix elements, 

corresponding to the lowest order Feynman diagrams. They depend on 

the C.M. momentum and the coupling constants. The resonances 

. th t ô 2T = reqUl.re a R.:I: and hence that the a!:)be infinitely large. 

In the absence of N* and N** exchanges, this implies the coupling 

constants are infinite. Thus it was necessary to take into account 

the exchanges of N* and N** and identify the contributions of the 

first and second resonances with the resonance regions of N* and 

N** respecti vely. The Feynman amplitude for the: resonance type 
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(Le. the exchanges of N* and N**> can be expressed in terms of the 

pole type contribution and the contact type contribution. The pole 

type contribution will be nearly equivalent to the pole approximation 

in the dispersion relations. The coupling constants G~3 and G~B 

of the NN*~ and NN** ~ vertices respectively are determined by 

3 3 fitting the experimental P(2) and D(2) phase shifts. For the isospin 

non-flip S (t> l 
and P (2) amplitudes, in addition to the exchanges of 

N, N* and N** a scalar meson is considered. The scalar meson 

coupling constant is determined by minimizing the least square fit 

of the experimental isospin non-flip amplitudes. However, in the 

case of the isospin flip amplitudes for s(;> and P e;>, instead of 

a scalar meson, a vector meson is included. By fitting the isospin 

flip set> and pet> experimental data, Kikugawa ob tains the two 

vector coupling constants. 

FV = -8.23 

Thus the ra.tio 

= ! > = 18 
g V 

has a value ten times larger than the accepted value obtained from 

the electro-magnetic form factor of the nucleon. Except for the 

isospin non-flip set> amplitude, the fits for both the isospin 
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flip and non-flip P{~) amplitudes and the isospin flip S(~), in the 

energy region greater than 1.5 ~, are rather poor. Moreover, 

Hiroshige et al(35), extend the work of Kikugawa, by taking into 

account the effects of the fO-meson exchange, in addition to the 

exchanges of N, N*, N**, a scalar meson and a vector meson. They 

conclude that if fO-meson be taken into account, another scalar 

1 meson will be necessary to improve both isospin non-flip S('2) and 

1 P ('2) states. Our approach is qui te different from the. We do not 

require the N* and N** exchanges, since we can reproduce the resonances 

by considering the exchanges of N, 0, P and fO mesons in our OPE 

potential approach. Further, instead of determining each coupling 

constant under a particular condition, as Kikugawa did, we try to 

determine the coupling constants once and for aIl by an overall fit 

to the S-, P- and D- wave phase shifts. It is hoped to ob tain a 

set of coupling constants with values as close to the accepted values 

as possible. Recently, Dutta-Roy et al(36)have considered the N, N*, 

p and E exchanges in low energy w-N scattering. An interaction 

Lagrangian model is used to calculate the scattering lengths for 

the S- and P- waves. The resul ts are in good agreement wi th the 

experimental data. 
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2.2 Assumptions for the OBE Model 

Before we embark on an elaborate analysis of the OBE model 

employed in our approach for the ~-N scattering, we would like to 

outline the basis for the OBE model. 

Assumptions for the OBE model: 

(i) The dynamic behaviour of the interaction is determined 

from the matrix element corresponding to the lowest order 

Feynman diagrams with no closed loop in them. 

(ii) The boson lines in the Feynman diagrams designate the 

(Hi) 

(iv) 

existing Mesons with known quantum numbers. 

The higher order contributions are omitted. 

The exchange of only even G parity mesons are consid~red 

in the OBE Modele 

N 

N 

Fig. 2 

1 ~ .. 
1 
1 

B 1 
1 ': = .:-_-_~ =-.:-----.1 
1 , .. 
1 , 
1 ~ 

Representation of ~-N scattering assuming 
only OBE contributio •• s 

The relevant diagram is shown in Fig. 2, where B denotes 

the exchange boson, which can have spin 0, 1 and 2. For B the isobars 

p + p-
with CI = 0, J = even ) or (I = l, J = odd ) are allowed. We have 
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assumed several invariant principles usually taken for strong interactions, 

such as time reversaI, space inversion and charge conjugation, and the 

coupling constants can take only the real values. For convenience, we 

use natural units ~ = c = ~ = 1. 

Using the standard notation for elastic ~-N scattering(37), 

the S-matrix is defined as 

(2-6) 

where ql' q2 and ~l' P2 are the initial and final four-moment a of 

the pions and the nucleons. Thus 

-72 .! 
w. = (~2 + q.)2 
~ ~ 

(i = l, 2) 

where M and ~ are the nucleon and pion masses. 

The invariant transition scattering amplitude T is of the 

form 

where Q~ = t(ql + q2)~ and y~ are the Dirac matrices. * A and B 

are invariant functions of two of the three Mandelstan variables 

* We adopt the notation developed in Ref. (38) except where specified 
otherwise. 
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s = 

are the Dirac spinors for the initial and final nucleon states. 

The invariant T matrix in Equ. (2-6) is computed by 

drawing the Feynman diagram for the process in question. The 

transition amplitude T is related to the 2 x 2 Pauli scattering 

ampl':'tude F by 

F = M 

41TW 
T 

where W is the total energy in the C.M. system. 

and also 

In the C.M. frame we have 

E. = E, 
~ 

w. = w 
~ 

I~.I = q 
~ 

C.M. Momentum 

(2-8) 

To evaluate the matrix elements of T in Equ. (2-7) we must 

use the explicit representation of the two-component spinors for the 

nucleon given by(38) 

U (r) (P) 
= 42: M -+1-+] cr.P 

E+M 

u (r) (0) (r=1,2), (2-9) 
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in order to calculate 

(2-10) 

and 

(2-11) 

where 

-+ 

~i = __ q;;;;.i_ 

/qi / 
-Ci = 1,2). 

In the C.M. frame we also get 

2.3 Elastic Force in Pion-Nucleon scattering 

The purpose of this section is to study and investigate 

the significance of the elastic force in ïo-N scattering. We consider 

the direct pole term and the nucleon exchange pole term of ~-N scattering 

through the Feynman diagrams in Fig. 3(a) and Fig. 3 (h) respectively. 

\ 

\ 
\ 
\ (1) 

.. ' 

P=Pl+ql 

(a) 

Fig. 3 

P=P -q 
1 2 

(h) 
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Fo11owing the Feynman ru1es (see Appendix A) we can write 

down the T-matrix given by 

1 

whe,re G is the 1T-N coup1ing constant. The first term in Equ. (2-12) 

refers to the direct pole term, while the second refers to the 

exchange pole terme 

(39) In terms of the isospin projection operators , we can 

rewrite Equ. (2-12) in the fo11owing form: 

with 

-+ 

3 
for T = { 2 

1 
2 

-+-+ 
(l+T. t) 

2 2 
(P -q ) -M 

1 2 

state, 

] , (2-12a) 

where 
T -+ 2 and t are the isospin operators of the nucleon and the pion 

respective1y. 

According to Equ. (2 - 7), it turns out that 

A = 0 

and 
-+-+ 

(l+T. t) 
-=-----'---] • 

2 2 
(P -q ) -M 

1 2 

(2-13) 
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If we use the scattering amplitude defined in Equ. (2-8), 

together with Equs. (2-l2a) and (2-11), we get 

2 ~ ~ 
G Cl-T.t) ~ A 

F = - ~(W+M) (W-M) [CE+M) (W-M) + (E-M) (W+M) (Q2· ql+icr •q2xql)] 

~~ 

(l+T.t) 

2 (Z-x) 

where X represents a two-component Pauli spinor, and 

z = 
2 

Jl - 2Ew 

2Q2 
< o. 

Thus we have 

81T W 

~~ 

(l-T. t) (E+M) 
(W+M) 

~ ~ 

(1 + T.t) (W-M)] 
2 (Z-.x;) (E-M) 

~~ 

[ (l-T. t) CE-M) 
CW-M) 

~+ 
(1 + T.t) (W+M)] 
2 (Z-X) (E+M) • 

The partial wave scattering amplitudes can be projected 

out by means of the following operation (37) • 

where X = cos8 = Q20Ql and 8 is the scattering angle. 

In a straightforward fashion, we substitute EQu. (2-l4a) 

(2-14) 

C2-l4a) 

(2-15) 

into EQu. (2-15) to obtain the partial wave amplitudes for Fig. 3. 
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.......... 1 
f 1 :1: = 

~2 
8'1J'W 

(l-T.t) 1 
{ (W+M) (W-M) [(E+M) (W-M) 21+1 01,0+ (E-M) (W+M) 2 (1:1:1)+1 ~ 1:1:1 ;0] 

.......... 
(l+T. t) 

- 2 (E+M) (E-M) [(E+M) (W-M)Q1(Z)+(E-M) (W+M)QR,:l:l(Z)]}. (2-16) 

1+1 
But since Q1(-Z)=(-1) Q1(Z), therefore Equ. (2-16) 

can be re~ritten as 

G2 .......... (E+M) 1 0 (E-M) 1 
f 1 :1: = 8'1J'W{ (l-nt) [ + 2(1:1:1)+101:1:1,0 (W+M) (21+1) 1,0 (W-M) 

.......... 
+(_1)1 (l+T. t) [ (W-M) 1 1 (W+M) 1 1 }. 

2 (E-M) Q1( Z ) - (E+M) Q1:1:1( Z )] (2-l6a) 

One remark concerning Equ. (2-16a) is worth mentioning. The 

first and second terms in the first parenthesis contribute respectively 

to the 511 and the PlI states only. The term-with the factor (-1) JI. 

indicates the exchange character of the 'IJ'-N interaction. 

2.4 Translation of Born Amplitudes into Potentials 

The conventional method of translating a Born scattering 

amplitude for a particular isospin state into a potential may be 

described as follows: The Born amplitude is rewritten as a function 

..... ..... 
of variables W, E, Q, and Pi where W and E are the total energy and 

..... - ..... 
and energy of nucleon in the C.M. system respectivelYi Q and P are 

respectively one half of the sum and the difference of the final 

and initial three-momenta of the pion in the C.M. system. AlI Dirac 

spin or contractions are then re-expressed in terms of the Pauli 

spin contraction. 
..... 

The amplitude in the P momentum space is Fourier 

..... 
transformed in the r configuration space to obtain the energy 

dependent potential, which in Born approximation gives back the 

original Born amplitude. 
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It has been customary +;0 define the Born potential* 

corresponding to the scattering amplitude F as 

++ 
+ 1 + + iP.r 3 

U(r,E,W) = - 411' (21T) 3 !F(E,W,Q,p)e d P (2-17) 

+ + + 
where U has dimensions of energy squared, Q = (ql+q2)/2 and 

+ + + + 
P = (q2-ql). The function U(r,E,W) is a sum of delta functions, 

Yukawa functions and their derivatives multiplied by simple rational 

functions of E, W, and spin and isospin factors. 

In order to evaluate the Born approximation potential from 

the scattering amplitude, one considers the most general form of ~~e 

scattering amplitude in the present case with the following expression: 

2 
+m x 

(2-18) 

where h's are the energy dependent functions. In order to express 

+ + 
the R.H.S. of Equ. (2-18) as a function of variables W,E,Q and P, 

we make use of the relations 

and 

* 

+2 2 2 
= 2Q - (E -M ) 

+ + = -Q x P 

(2-19) 

By Born potential we actually mean an "effective" Born potential, 
which gives the expression of the Born amplitude as Equ. (2-26). 
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The third term on the R.H.S. of Equ. (2-18) can now be 

rewritten, after some simplification, as 

-+ -+ -+ 
i 0 .Q x P - ] . (2-20) 

-+2 
P .. 2 +m x 

We now take the Fourier transform of Equ. (2-20) accordinq 

to Equ. (2-17). The first and second terms are straight-forward. 

They give rise to the delta function and the Yukawa function respective1y. 

We now manipu1ate the third terme Consider the expression 

1 .-+ -+ 
3 ~ o. Q x f --+"='2--2=-

(21T) P + m 
x 
-+-+ 

=~.QXV_1-f 
(21T) 3 

iP.r 
.;;e ___ d3p 
-+2 2 

= 

= 

= 

P + m 

-m r x 1 -+-+ -+ e 
-- o.Q x fil (~--
(41T) r 

x 

-m r 
1 -+-+ -+ 1 ~( e 

x 
O'.Q x r dr (41T) r r 

-m r 
1 1 d x -+ -+ (e 0 .L 

(41T) r dr r 
) . (2-21) 

-+ -+ -+ 
We have rep1aced L = r x Q (for the proof of this see Appendix BI). 

Thus 

. -+ -+ 
1 -+ -+ ~P.r 3 

---3=- f F3 (E,w,Q.p)e d P 
(21T) 

= 2~ h
3

(E,W) [03 (~) - (2E2_2M2+m!) 1 
41T 

e 
-m r x 

r 

-m r 
1 -+~! d x 

(e - -- o· dr 
2!T 

r r 

(2-22) 

) ] . 
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The second term on the R.H.S. of Equ. (2-18) can be 

-.. -+ 
written in terms of Q and P as 

(2-23) 

After Fourier transformation the first term of Equ. (2-23) 

will again give a delta function. We evaluate the second term here 

by considering 

1 -.. -.. 'p -.. 3 ~--~i a.Q x f P e~ .r d P 
(2'/1") 3 

-.. -.. 1 'p -.. 3 = a .Q x V ---- f e~ .r d P 
(2'/1") 3 

-.. -.. -.. 3 -.. 
= ia.Q x(P)op ô (r) • (2-24) 

In the last step of Equ. (2-24) we have rep1aced the 

-.. -.. -. 
The operator [-ia.Qx(p)op] will give the 

-.. -.. -.. 
operator (ia.q2xq1) again. (See Appendix B II) 

Using Equs. (2-19) and (2-24), one can obtain the 

Born approximation potentia1 from the scattering amplitude in 

Equ. (2-18), according to Equ. (2-17). This gives 
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-+-+ 
U(~,E.W) = 4~ (2;)3 r F(E,W,Q,P) e

ip
•
r 

d
3
p 

(2-25) 

The Born amplitude is defined by(40) 

B JL-f -+ -iP.~ d3 F = - 4~ U(r,E,W) e r (2-26) 

One can check the consistency of this calculation by carrying 

out the inverse transformation of Equation (2-26), and we indeed obtain 

the amplitude given by Equation (2-18). 

In order to find the Born approximation potential corresponding 

to the scattering amplitude in Equ. (2-14), one cannot use the straight-

forward method by just substituting to Equ. (2-17). In view of the 

expression for the partial wave amplitudes in Equ. (2-l6a), because of 

1 the angular momentum factors such as (-1) , ô n _ etc., we have to find 
6J ,0 

the Born potential for each particular angular momentum state. This 

'partial wave' Born potential under the Fourier transformation and also 

by the aid of Equs. (2-14) and (2-15), will give back the original partial 

wave-scattering amplitude as Equ. (2-l6a). 

As shown in Appendix D, we find the expression for the 'partial 

wave' Born potential corresponding to Equ. (2-l6a), in the following 

expression 

-+-+ 
+ (_1)1 (l+T.t) (W+M)} Ô3(~) 

2 ~ ? (E+M) 
~ -+ e-~r -+ -+ -~r 

+ (-1) 1 G
41T

·· (1+2WT• t) { [ (E+M) (W-M) _ (E-M) (W+M) 1 Z 1 ]~__ _ (W+M) ~ ~(e ) } 
r (E+M) r dr r 

(2-27) 
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2 

2Eoo - lJ We have rep1aced ( 2 ) by (1 
2q 

expression for the range 1 'th --W1 
mt 

Here we insert the factor eS n , 
.... 0 

and obtain an energy dependent 

mt = 12Ew - lJ2 - 2q2 which is 

eSl._1,0 (~ - J) into the first and 

rea1. 

second terme in the first parenthesis of Equ. (2-27) to ensure that the 

respective contributions are on1y for the SIl and PlI channe1s as 

dictated by Equ. (2-16a). It must he emphasized that in Eqü. (2-27), 

1. the terme with the factor (-1) refer to the exchange force in the 1T-N 

scattering. 

2.5 The' eut Off' Method and Singular potentials 

If we substitute the Born potential in Equ. (2-27) into the K1ein-

Gordon equation or the Schr6dinger equation, immediate1y we are confronted 

1 d -mtr 
with difficulties. The term - -dr(e ) appearing in the spin-orbit 

r r 

potentia1, is singu1ar because it varies as r -3 near the origine In 

order to e1iminate the r-3 divergence in the origin, it has been customary 

to introduce a 'eut off'. This has been done by Scotti and wong(22) for 

the vector meson case with an exponential 'eut off' as suggested by the 

Regge-po1e description for composite partic1es. Bryan et al. (29) have 

emp10yed a zero 'eut off' uniformly in aIl states for their OBE potentia1 

with 

Ver) 
o 

= {v (r) + Vs(r) + V (r) 
1T poo 

o<r<c 

c<r (2-28) 

where c = 0.54 fm. 

However, in a somewhat different manner we introduce the 'eut off' 

by replacing 
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(2-29) 
r 

not only for the spin-orbit potential term but also for the regular 

Yukawa potential terme 

The 'eut off' will appear as a 'screening effect', the 

larger the 'eut off' mass m , the smaller the effect on the potentia1. 
c 

Later on, m has been regarded as one of the adj us table parameters to 
c 

fit the phase shifts. We confine ourselves to the condition m >m 
c max, 

where m is the largest mass among the exchange particles in our 
max 

OBE potential. The purpose of doing so is to prevent the potential 

from changing sign when the 'eut off' is introduced. 

Moreover, apart from the singularity appearing in the spin-

orbit potential, the next question we would like to pose concerns the 

singularity from the ô 3 (;)function. The ô 3 (;) gives rise to a 

contact interaction, which is a very short range force. As the 

consequence of the ô3 (;) term which appears in the potential, the 

Klein-Gordon equation or the Schr6dinger equation cannot be solved 

numerically. It is therefore plausible to replace it by a very short 

range Yukawa potential, i.e., 

2 -m r mec 
-+ _c_ (2-30) 

41T r 

here we use the same 'cut off' mass. The larger the m 1 the faster 
2 c 

the term dies down. The factor ~ is the normalization constant; 
41T 

since 

2 -m r 
m c 

-2... J _e __ d 3r = 1. 
41T 

r 
(2-31) 
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-+-'" ~. 
As may be seen From Equ. (2-27) the factor (~ia.q2xql) 

inside the parenthesis in the ô 3(t) function term also causes trouble, 

sinee its exact value is not known. In order to escape from this 

difficulty we parametrize it in order to fit the phase shifts. 

Let 

.+ A A < 
(~+ 1a.q~xql) = Gp' 1. (2-32) 

It is perhaps worth mentioninq that the coefficient 

(E-M) (W+M) is a lot smaller than(E+M) (W-M) for moderate energy. 

In view of Equ. (2-27) the contribution from the term with coefficient 

-+ A A 

(E-M) (W+M) (~ + ia.Q2xql) is neqliqible as compared with the term with 

coefficient (E+M) (W-M). The justification for makinq this approximation 

is that it does not affect our result at aIl in aIl other channels 

except the PlI. Even in the PlI channel, this'approximation will have, 

an insiqnificant effect on the potential. 

After much effort, eventually we obtain a reqular modified ~ Wlve' 

Born approximation potential, which allows us to solve the Klein-

Gordon equation numerically. Thus 

J, 
V'ITN 

2 
m = G __ c_ 

1TN 2W 
{(I-:t. t) [ (E+M) ô + (E-M) ô (3 )] 

(W+M) t,o (W-M) Gp t-l,o 2 - J 

-+-+ 
+(_l)t (I+T.t) (W+M)} 

2 (E+M) 

e 
-m r 

c 

r 

-+ -+ -mtr 

(l+T. t) [(E+M~ (W-M) _ (E-M) (W+M) 1 z 1] (...;;..e __ 

t -(-1) G 
1TN 

2W 

-+ -+ 
(I+T. t) (W+M) 

2W (E+M) 

1 
r 

-mtr 
d (_e __ 
dr r 

-m r 
e c 

r 

r 

-+ -+ 
) a .L, 

-m r 
e c 

r 

(2-27a) 



- 31 -

For convenience, we write 

(2-27b) 

(2-33a) 
-+ -+ 

A
2 = (_l)lG (1+ T.t) [(E+M) (W-M) - (E-M) (W+M) 1 zl ] , (2-33b) 

'II'N 2W 
-+ -+ 

A3 
(_1)1+1G (1 +T • t) (W+M) -+-+ 

(2-33c) = (E+M) cr.L 'II'N 2W 

where the A's are the energy, spin and isospin dependent functions. 

New we introduce the 'partial wave' potential projection 

operator as Al ' so that the total Born approximation potential corresponding 

to Fig. 3 can be written as 

·V (r) = E 
1I'N 1 

where Al has the property 

1=0,1,2, ••• 

for a particular anqular momentum state Il> . 

(2-27c) 

2.6 The Vector Coupling of P-Exchange in the 'II'-N Scattering 

N 

(1) 

N 

11' 

P2 1 
1 
t 
1 
1 

- ':. = = = =p->= = = = =J (2) 

kp =q2-q 1 \ 

\ 
tql 
\ 

Pl \ 
11' 

Fig. 4 
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In this section we discuss the p-exchange contribution in 

n-N scattering according to Fig. 4. Lowest order perturbation 

the ory has been employed. The coupling of the vector meson to the 

nucleon consists of two parts, vector and tensor. First of aIl 

we consider the vector coupling. For the pNN coupling, corresponding 

to vertex (1) in Fig. 4, we have the interaction Lagrangian density 

as follows: 

(2-34) 

For the pnn coupling, corresponding to vertex (2) in Fig. 4, we 

have 

(2-35) 

where BK is the p-meson wave function with isospin component 
1J 

k(k = 1,2, 3), and E
K1m is the conventional totally antisymmetric 

tensor. 
. .. 

From the Lagrangian densities in Equs. (2-34) and (2-35), 

we can write down the vertices lI) and 

rules defined in Appendix A, i.e., 

vertex 

and 

K 
).J T 

(lI = -gPNN Y 2 

(2) according to the 

(2-36) 
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. K1 m( )v vertex (2)= -1g € q1+q2 
p1T1T 

(2-37) 

The propagator for p-exchange with 4-momentum kp is 

by (41) given 

g1.lv - (k) (k) 1m2 
p 1.1 P v P 

2 -m 
p 

where m is the mass of the p-meson. By the conservation of 
p 

4-momentum 

(2-38) 

The invariant T-~trix can be written out in straight-

forward fashion according to Appendix A, thus 

y1.l[g1.lv - (kp)1.I(kp)v/m:l 

k 2 _ m2 
p p 

where we have made use of the re1ation(42) 

<1·lt lm > = -it K K1m 

(2-39) 

(2-40) 

for the matrix e1ements of the isospin of the pion between the 

states of 11> and 1 m > • 

Since 

(2-41) 
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Equ. (2-39) reduces to 

-+-+ 
T = g g ~ Ü(p ) 

pNN p1T1T 2 . 2 (2-39~) 

Substituting Equ. (2-39a) together with Equ. (2-11) 

into Equ. (2-8), we obtain the expression for the scattering ~1itude 

-+-+ 
g g T.t 

pNN p1T1T {-(E-M) (W+M) + (E+M) (W-M) + (E-M) (W+M)Z + 
-+ 

(E-M) (W+M). f icr.1l2x41) ) F=-

where 

41Tq2 wT Z - ~ p 
p 

Z = 1 + 
p 

2 
m 
-p-
2q2 

Z - ~ 
P 

(2-42) 

Fo11owing the method adopted in Section 2.4, the Born 

approximation potentia1 for the vector coup1ing of p-exchange is 

thus 

v 
V = 

P 

(E-M) (W+M) 
2 

q 

-+-+ 
T .t 

2W 

-m r 

21T
2 

(E-M) (W+M)Ô 3(;)-[(E+M) (W-M)+ (E-M) (W+M)Z ] e p 
q p r 

1 
r 

-m r 
p 

d (_e __ 
dr r 

-+-+ cr.L } • (2-43) 

After introducing the 'cut off' to regu1arize the potentia1 

as before and a1so rep1acing the de1~a function 
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2 -m r m e c 
ô3 (;) -+ 

c 

4 'Il' r 

we ob tain the modified Born àpproximation potential for the vector 

coupling of p-exchange as follows: 

vV(r) = 
p 

e -mer (W+M) 
r ) - (E+M) 

2 -m r 
mJ.wtM)e c -m r 
- - [(E+M) (W-M) + (E-M) (W+M) Z ] (e e 
2 (E+M) r p r 

1 
r 

-m r 
p 

d (.;.e __ 
dr r 

-m r e c 
r 

-+ -+ 
) cr • L} • (2-44) 

2.7 The tensor coupling of p-Exchange in 'Il'-N scattering 

In addition to the vector coupling of the p-meson to the 

nucleon, there is a tensor coupling part, which is due to the anomalous 

magnetic moment of the nucleon. 

The corresponding interaction Lagrangian density is defined 

by 

where 

K 
T 

2 

The coupling constants f pNN 

(2-45) 

(2-46) 

and gPNN can be related 

to the corresponding residues YI 'Y2 of the annihilation amplitudes for 
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NN ~ 2TI used by Frazer and Fulco(43). 

V gPTITI gPNN 
Yp - =-3Yl 

4TI 
(2-47) 

T gpnfpNN 
3MY2 Yp - = 

4TI 

In their study of the nucleon electromagnetic form factors, 

BalI and wong(44) estimate that YI ~ -1.0 and that MY2/Yl~ 1.83. 

Bowcock et al. (45) and Hamilton et al. (26) have estimated 

that 

2 ~ 
gpTITIgPNN 

~ 2.5 (2-48) 
4TI 

From the p-width r '" 100 - 125 MEV we obtain 
P 

2 

2 .t:. 
gPTITI 

~ 2.5 (2-49) 
4TI 

Therefore a univers al constant can be adopted 

as postulated by Sakurai(46). 

The T-matrix for the tensor coupling is thus 



where 
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(47) (2-50) 
For the Gordon Reduction of the current we have 

(2-51) 

Substituting Equ. (2-51) into Equ. (2-50) gives 

(2-52) 

Let 

(2-53) 

This term has the same form as Equ. (2-39a) if we replace 

(2-54) 
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and a1so we have the corresponding scattering amplitude 

F =-
2 

2f g 
pNN p1T1T 

4'IT 

where y = 2 + 
p 2q2 

Substitution of Equ.(2-10j into Equ. (2-55) gives 

2f NNg ~ ~t Y ,. ,. ~,. 
P P'IT'IT.!..:- [ ..E...- _ 1] [ ( ) "" ( ) ( . ) ] F2=- 4'IT 8MW E+M . E-M Q2·q1+10·q2xq1 

Z -x 
p 

According to Equ. (2-14) we get 

~~ y 

fI = _ 2fg T.t (E+M) [ p 
-1] 4'IT 8MW Z -~ 

P 
~~ y 

f 2 
2fg T.t 

(E-M) [z P -1] = 4'IT 8MW -,)0 • 
p 

(2-55) 

(2-55a) 

The partial wave scattering amplitude corresponding to F
2 

can 

be found by the aid of Equ. (2-15), thus 

Repeating the procedure as described in Appendix'~, the 'partial 

wave' Born potential corresponding to Equ. (2-56) can be written as 

~ ~ -IIIpr 
(E-M).<!.!.!!. ~ (e ) ] } 

r dr r 

As before, we write the Born potential corresponding to F2 as 

where At is the partial wave projection operator. 

After regularizing the potentia1 as before, the rnodified 

Born approximation potential for both the vector and tensor coupling 

for p-exchange in the 'IT-N interaction has the fo1lowing expression 
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-m r 
c e 

-mcr -m r 
...;;;,e __ ) + B ! L( e P 

-m r 
c 

e 
r r 3 r dr ------r 

(2-57) 

with 

...... 
B = - G 'r.t m2 {(l- 2f)(W+M) + (ll) 2l M [~«EiM)8" -(E-~ 8".J. (1

2 
.-J»)A ... 

1 P 4W c â (E+M) g . .t XI,O P ArL,O "'1 

...... 
= G I...:.L {(l- 2f) (W+M) 

B3 p 2W g (E+M) 

where 

y 
.-e 
2M (E-M)} 

...... 
cr.L, 

(2-58a) 

(2-58b) 

(2-58c) 

Hence f has a negative 
g 

value with a magnitude of about 2 from the information obtained from 

the nucleon's electromagnetic structure. 

2.8. The Scalar Meson cr-Exchange in n-N Scattering 

The existence of a cr-meson is not weIl established, but there is 

evidence for a n-pair in the S-state (T = 0, "J = 0). Thus in order to 

supply the necessary attractive part to the OBE potential, we take into 

account the exchange of the cr-meson. The mass and coupling constant of 

r 

the cr are treated as two additional adjustable parameters in our potential. 

) 



N 
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1 
,q2 

1 
1 n 

cr 
=-==::>===~ 

Fig. 5 

~ 
1 
\ lT 
\ql 

The ~sosca1ar cr-meson with the n-n and N-N coup1ings 

are as fo11ows: 

(2-59) 

(2-60) 

where 9 and X are the coup1ing constants and wave function of the 

cr-meson. 

The invariant T matrix for cr-exchange according to the 

Feynman diagram in Fig. 5 has the fo11owing expression 

(2-61) 

where k and m are the respective 4-momentum and mass of cr-meson. 
p cr 

In view of Equ. (2~8), we have the corresponding 

scattering amplitude 

(2-62) 



where 

Z = l + a 
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and G = a 

Regularizing the singular part, the modified Born 

potential we ob tain 

with 

2.9 

-m r 
c 

Cl = -G _p_ 
a - 4W 

-m r -m r 
c a 

_e ___ ) + C .!.cL (..;;.e __ 
r 3 r dr r 

2 
m 

c .-
(E+M) 

C
2 

= -G II [(E+M) - (E-M)Z ] 
a .2 W a 

C =G....JL..- l 
3 a 2 W (E+M) 

o f -Meson Exchange in ~-N Scattering 

e 
-m r 

c 

r 

(2-63) 

(2-64a) 

(2-64b) 

(2-64c) 

o + f -meson (I=O, ~ ~ resonance at 1260 MEV) is first 

ob d
(48). th . serve 1n e react10n 

+ 
~ + P + n + ~ + ~ 

Later, Sodickson et al. (49) showed in the concerning experiment that 

o + the spin and pari ty of f are 2 • 
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Hiroshige et al. (50) and Ino et al. (51) have taken into 

account the fO-meson contribution in the p-p and N-N scattering 

respectively. They stressed that the effect of the tensor meson 
.+ 

is to cause a repulsive DS force for triplet odd states and to 

improve the fit of the 3p phase shift. The fO-exchange contribution 
o 

to ~-N scattering has also been investigated by Hiroshige et al. (35) 

In this section we investigate to what extent the fO_ 

meson exchange will contribute to our OBE model. First of all let 

us discuss the basic theory for a tensor field. The tensor field 

is expressedby Tll"(x) (1l,"~' 0, l, 2,3) which satisfies the 

subsidary conditions 

Tll" (x) = T"l1 (x) symmetric in fJ and 

a Tl1"(x) = 0 gauge invariance, 
11 

9 Tl1"(X) = 0 traceless condition. 
11" 

" (2-65a) 

(2-65b) 

(2-65c) 

We take the interaction Lagrangian density between the 

tensor field and the nucleon as 

(2-66) 

For the f~~ coupling we assume the interaction Lagrangian 

density to be 



N 

N 

- 4'3-

,q2 , 
tTr 

fO 1 
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\ 
~ 
\ 
\ql 

Fig. 6 

(2-67) 

The vertices (1) and (2) in Fig. 6 corresponding to the 

respective interactions in Equ. (2-66) and Equ. (2-67) are 

-œrtex (1) (2-68) 

vertex (2) (2-69) 

The invariant T matrix is thus 

where N Q is the numerator of the propagator of spin 2 particle. 
llv;al> 
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Aeeording to Appendix C, we have 

N . = -1 p p +! p p + fl. p p 
pv;aB 3 pv aB 2 pa vB 1r pB va 

where we define 

p 
pv 

o here P is the 4-momentum of f -meson. 

!:in ce 

and also 

we ean now rewrite Equ. (2-70) as 

From Equ. (2-9) we obtain 

(2-71) 

(2-72) 

(2-70a) 

(2-73) 
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Substituting Equs. (2-73) and (2-11) into Equ. (2-70a) 

together with (2-8) we obtain the following expression for the 

scattering amplitude 

+ 

with 

and 

G = 
f 

2 2 
4q + 4Ew + m

f 

2q2 

(2-74) 

(2-75) 
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According to Equ. (2-14) and Equ. (2-15) we can write the partial 

wave scattering amplitude corresponding to Equ. (2-74) as 

G~ W 2 
= - 2liW {[ (E+M) (M - '3) 

(2-76) 

The 'partial wave' Born potential (see method described in 

Appendix 0) corresponding to Equ. (2-76) , is thus 

(2-77) 

We employ the potential regularized method as described in 

Section 2.5 to modify the Born'partial wave' potential in Equ. (2-76). 

Eventually we obtain. the following expression 

where 

-m r 
c 

D ..;;.e __ 

l r 

-m~ -mcr -m~ 

+ D (~ _ e ) + D 1.!L (..;;.e __ 
2 r r 3rdr r 

-m r c e ..;;....-_.) , 
r 

(2-78a) 
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(2-78b) 

(2-78c) 

We thus have the Born potential for fO-exchange as 

(2~79) 



CHAPTER III 

Discussion on Klein-Gordon Equation 

The ideal solution in the study of n-N scattering problem .'--. 
is to find a complete and consistent theory, which is able to explain 

aU the physical phenomena involved in this proble.m,. and in addition 

does not violate any of the accepted laws:Unfortunately, up to now, 

no such theory exists. To find a way out,various approaches have 

been attempted, either by using some assumptions, or by using some 

approximation methods or both. One of the difficulties with these 

approaches is that some invariance principles or laws 1UIy- have to 

be violated. 

Our approach to this problem is to insert the sum of the OBE 

Born potentials derived in the previous chapter into the Klein-Gordon 

(K-G) equation and to solve for the phase shifts of the S-, P- and 

D-waves. 

Immediate1y, a series of arguments can be raised to question 

the justification for using the K-G equation. The method requires 

some discussion. 

3.1. Lorentz Covariance Property. 

First of al1, we would like to discuss the Lorentz covariant 

condition which the K-G equation should obey. The free particle K-G 

equation certain1y does so, but if we want to put in an interaction 

- 48 -
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through the use of a potential, then we must find a potential 

which can be absorbed into this equation in a Lorentz covariant 

manner. Thus we may search for a fOl1r,-vector VIJ.' and introduce 

the interaction into the K-G equation by modifying the operator from 

to 
2 

IJ. (3-1) 

The Lorentz covariance property is preserved, and we know that in 

the case of electrodynamics, this can be done by utilizing the fQ.ur. 

vector potential AIJ. and the minimal coupling. 

Furthermore, if we consider the case of a Lorentz scalar interaction 

U (for example, the interaction of a pionwitli a scalar (i.e. no spin) 

particle), the process can be regarded as a scattering problem, in 

which the pion is scattered due to an external field U. Then the 

K-G equation 

( 0 + 1J.2) 0 = - u 0 (3-2) 

is still manifestly covariant. 

Now we pick the C.M. frame. For elastic scattering, we have 

001 = 002, where 001 and ill2 are the energies of the pion before and 

after scattering respectively. In the static approximation, the inter-

action U can be treated as time independent. The pion wave function 0 
-+ 

in Equ.(3-2) is then separable with respect to X and t, and Equ.(3-2) 

reduces to the following form 
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(3-3) 

is the re1ativistic C.M. momentum and U is 

now time independent. 

At this point it shou1d be noted that ·the Bethe-Sa1peter 

equation(52) wou1d give a Lorentz covariant description. By the 

assumption. of a static interaction one 10ses the propagative character 

of the interaction. 

The scattering amplitude f(9) can be obtained from the 

asymptotic expression of 0(x), i.e., 

ik r 
_e __ f(9) • 

r 

On the other hand, one can obtain the invariant amplitude from 

field theory. Mo11er(53) showed that the invariant amplitude for 

zero spin is re1ated to f(9) by 

A = !! f 2 (3-4) 

where W is the total energy in the C.M. system. However, even 

though Equ.(3-3) is not an invariant form, through Equ.(3-4), one 

can still obtain the invariant amplitude, which a1so gives the 

correct unitarity condition. 
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In the case of rr-N scattering, the prôblem becomes complicated 

because of the presence of the nucleon spin. There appears to be no 

simple procedure which would yield a manifestly covariant expression 

for the interaction. We consider the problem as if the pion were 

scattered by an external field which is due to the OBE potential. 

An examination of the Born potential U(r) that was derived in 

the previous chapter, shows that even apart from the assumption of the 
..... ~ 

static approximation it contains terms such as o.L for wldch co-

variance is not manifeste The energy dependence of U(r) may cause 
........ 

nonlocality in the coordinate space; in addition,the o·L term is 

the non-relativistic form of a relativistic interaction. Nevertheless, 
.... ~ 

a term such as o.L is weIl defined in the C.M. System, where one 

may expect the form of the interaction to be simplified. 

Further, if the rr-N interaction is identified with the OBE potential, 

in the light of Feynman diagrams from field theory, we would be able 

to obtain the kinematical picture of the interaction. The object is to 

see, if to a certain extent, this "semi-phenomenological" potnetial 

will be able to reproduce some of the characteristic features of the rr-N 

scattering problem. Since in the C.M. frame our Born potential does not 

depend on time explicitly, for elastic scattering the energies of the 

pion before and after scattering are the same. In the static appro-

ximation, the K-G equation can be reduced to the form of Equ.(3-3). 

A proper covariant form of the K-G equation is not achieved, nevertheless, 

the relativistic connection between the energy and momentum of the 
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scattered particle, i.e. the pion, is correctly described. In addition, 

.... ~ the a L term is uniquely defined, if we project out the Born poten-

Ual into partial wave channe1s. We can match, in Born approximation, 

the partial wave scattering amplitude fJr with the fJT from the in

variant matrix e1ement given by field theory. The K-G equation can 

be used as a device to impose unitarity on a Born approximation. 

3.2. One Particle Theory 

We next proceed to the discussion of the one-partic1e theory in 

" the K-G equation. One may argue that the K-G equation has no place in 

(54)" 
a one-partic1e the ory • The major under1ying difficu1ties are two-

fold. First, the probability density is not positive definite •. Second, 

there is the possibi1ity of negative energy solutions. Obviously, the 

availability of negltive states without lower bound would 198d to collapse 

if the energy is a1lowed to transfer away from the partic1e in question. 

This difficu1ty will not arise if we stick tof~~ partic1es, or partic1es 

in stationary states of static potentials. Suppose a partic1e is 

original1y in a positive energy state. In the absence of any interaction, 

there will be no transfer of energy, and it will a1ways remain in a 

positive energy state. Fur thermore , from the expression of the proba-

bility density 

p i = , 

for a free partic1e in a positive energy state, p remains positive 

definite for aIl times by virtue of the equation of motion. This is 



-53-

still true for a stationary state of positive energy in a static 

potential. The one-particle Interpretation of the K-G equation in 

the presence of a non-static external field is no longer as simple 

as in the above special cases. However, even though it is not possible 

to give a complete satisfactory physical Interpretation for the K-G 

equation in the presence of an external field, Pauli and Weisskopf(55) 

showed that there is no difficulty in the one particle interpretatio,n 

if the K-G equation is regarded in the same sense as Maxwell's equation 

for electromagnetic field and quantized in the usual fashion. Furthermore, 

Feshbach and Villars(56) have presented a unified picture of the one-

particle treatment of the K-G equation by employing a two-component 

wave function in a two dimensional charge spa ce with an indefinite metric. 

The norm of the state vector is +1 for a positively charged particle 

and -1 for negatively charged particle. A treatment for the neutral 

particle is also described. In the light of the field theoretical 

reinterpretation ~he one-particie K-G equation with interaction continues to 

be OP physical relevance. We shall proceed with the discussion as 

follows (57) • 

.... 
Classically, the probability current j(x) of a field is related 

.... .... 
to the probability density ~(x) through j(x) = ~(x) v(x), where 
.... 
v(x) is the velocity field. Together, they satisfy the continuity 

equation 
o 
Ot p(x) + 

........ 
'fi} • j(x) = 0 
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In non-relativistic quantum. mechanics, p (x) is given by ~(x) r 
-+ 

and the velocity -iV • Indeed, we can verify from 

~ 1 * ~ Schrôdinger equation that the obvious generalization j~x) = ~ ~ (-iV)~(x) 

is indeed the probability current, in the sense that the equation of 

continuity is satisfied. 

If we take relativity into account, then -+ v = 

which is a non-local operator. Nevertheless, the energy-momentum 

, 

operator -iO~ is local. If we calculate, for example, the speed of 
.... 

propagation of a wav-e function ~(x,t) as a function of time (assuming 
.... .... 

say ~(x,O) = 5(x», we will get the anomaly." that although the 

energy density is pro~agating with a speed not greater than the speed 

of light, the same is not true for the probability density. We recall 

that similar anomalies occur in classical electromagnetic theory,in that 

group velocity (the velocity of energy propagation) never exceeds the 

speed of light, but the phase velocity (which carries no physical 

information) May. In a similar way, we insist that the speed of energy 

propagation is more physical than the speed of probability propagation, 

and we do not run into conflict with causality. If that is aIl we 

2 say, however, we will have to rule out probability I~I as having any 

direct physi.cal meaning at a11, contrary to the usual assumption of 

quantum mechanics. This May be salvaged by noticing the following. The 

apparent violation of causality for the propagation of probability 

- density is certainly related to the non-Iocality of the velocity oper.ator 
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But the size of the non-local region of this operator 

is only of order of 
-1 

~ ,the Compton wavelength of the particle. 

Quite obviously then we May salvage the probability interpretation 

by assuming that a relativistic particle can never be localized to 

anything smaller than its Compton wavelength. 

We can also verify from the K-G equation that the energy-

momentum density 

l * ~ p~ = 2 ~ (x) (-i 0 ) ~(x), 

is diy.ergenceless. 

i.e., that energy is conserved. 

As a consequence of the foregoing discussion, one can conclude 

that the one-particle theory interpretation of the K-G equation is 

still adequate to a certain extent. 

New we would like to discuss, to what extent, the one-particle 

theory interpretation remains adequate in our approach. The OBE 

potential can be looked upon in two equivalent and complementary ways. 

One is as the description of a peripheral- interaction, through the 

one-particle-exchange between the pion and the nucleon. The other is 

as the description of the behaviour of a field. Based on the field 

theoretic approach, the rr-N scattering process, can be illustrated 

by the aid of Feynman diagrams. 
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Fig. 7 gives the lowest order Feynman diagram. When we 

consider only the case of the pion field, the interaction comes 

from the boson-pion vertex. This in effect, makes it a one-particle 

theory problem with an external field (see Fig. 7b), in which the pion 

is scattered. 
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Fig. 8 refers to a two-'boson-exchange Feyman diagram for second 

order Born approximation. The inter.aeting pion field is described 

by two external sources acting at different times. The picture (Fi:g.8b) 

shows that the problem can be regarded as the one-particle theory problem, 

in which the pion moving forward in time with positive energy is scat-

tered at a earlier time by Ul and at a later time by U2 • 
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In Fig. 9, the Feynman diagram is still from the second order 

Born approximation. However, the interaction is not an ordinary 

scattering process. At vertex (1) there is a virtual pa~ creation 

process; on the other hand, at vertex (2) there is a pair annihilation process. 
The particle and antiparticle pair creation or annihilation in the inter-

mediate state of the interaction field, gives information beyond a one-

particle theory interpretation. In the same manner, if we consider 

more complicated Feynman diagrams corresponding to higher Born appro-

ximations, the interacting field will involve the many-particle theory 
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problem. We follow the method developed by Feynman(58) for the 

treatment of the K-G equation with an interacting field. In the 

present case, the Born potential is the interacting field. As 

mentioned before, the higher Born ter ms involve particles as weIl 

as antiparticles in the intermediate statés. This treatment avoids 

the Klëin paradox for the K-G equation in asymptotic states. A 

completely satisfactory expression for the interaction including 

higher Born terms is not feasible. For processes of increasingly 

higher orders, the complexity and difficulty increase rapidly, and 

the method becomes impractical in the present forme It does, however, 

seem satisfactory to a good approximation, to define the matrix elements 

of aIl real processes in the lowest order Born approximation (see 

Fig. 7). This has the advantage of reducing the many-particle problem 

to the one-particle problem, so that there is only a positive energy 

particle moving forward with time, and so that the causa lit y condition 

of the Green's function is satisfied. It appears that we now have 

available a method for applying the K-G equation in the n-N scattering, 

where the interaction is analyzed in terms of invariant amplitudes 

in Born approximation, although a complete covariant form is not achieved. 
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" 

3.3. Assumptions for the K-G Equation Approach 

Based on th~ above discussion, we wou1d 1ike to summarize the 

assumptions 1eading to our potentia1 approach for the n-N scattering 

whi1e using the K-G equation. 

1) . We fix our frame of reference in the C.M. System, where the Born 

potential derived gives the correct /kinematics of the n-N interaction. 

2) The dynamic behaviour of the interaction is determined from matrix 

elements corresponding to the lowest order Born approximation. 

·3) To the extent that the interaction is static, we sacrifice the 

* Lorentz covariance property • 

4) The whole treatment is not relativistic, but rather "semkelativistic", 

in the sense that the energy and momentum of the scattered particle 

are treated re1ativistica1ly. 

In our approach, we use the Born potentia1 for U{r) in Equ.{3-3), 

where 

* 

(3-5) 

As mentioned previously, only the Bethe-Salpeter equation could give 
an adequate representation of the Lorentz covariance property. 



- 60 -

3.4. Why Not the Schrodinger Equation? 

Equ. (3-3) hîlS a form similar to the time independent Schrodinger 

Equation. As a matter of fact, in the low energy limit, it gives the 

expression of the Schrodinger equation. 

It may be argued that, if the Lorentz covariance condition has 

been violated in the K-G equation, it would be simpler to use the non-

relativistic Schrodinger equation. As we knowJ the Schrodinger equation 

is adequate only for low energy problems. In the case of high energy 

problems, it breaks down. Many people(59) do use the Schrodinger equation 

for the high energy problem, with a relativistic correction. Instead 

of using the actual momentum q =J2 M E, they replace the q with the 
r 

relativistic momentum q = vb2 - ~2. Then the Schrodinger equation will 

have a form equivalent to Equ.(3-3), which is used in our approach, with 

u = 2M V ,where V is the actual potential of the problem with dimensions 
r 

of energy, and M is the reduced mass of the system. As Goldberger and 
r 

Watson(60) observe, "Actually the difference between the K-G equation 

and the Schrodinger equation (except for a profound difference in principle) 

is not so great under any circumstances". It is curious to note that, the 

two equations begin with two quite different mathematical formulations. 

Their apparently dissimilar approaches, under certain circumstances, are 

shown to be mathematically equivalent. 
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CRAPTER IV 

Phase Shift Solutions and Numerieal Computations 

4.1. Phase Shift Caleulations 

Sinee Uer) is a symmetrieal potential, the wave funetion ~ 

is separable. 

This leads to the radial equation 

2 
d u.t 2 
-- + [q -

dr2 
.t(.t + 1) 

2 - Uer)] u.t(r) = 0 
r 

Note that ~(o) must be finite, Equ. (4-2) implies the 

boundary condition 

for the radial wave funetion u.t(r). 

(4-1) 

The phase shifts are found by matehing the radialwave funetions, 

the spherieal Bessel funetions j.t(qr) and spherieal Neumann funetions 

~.t(qr) in the asymptotie region. Thus the phase shifts are given by 

uj(R) 

[l-R u i R) ] j lqR) + qR j i(qR) 
-1 = tan Hm (4-2) 

For elastie seattering ô.t is real. A repulsive potential gives 

rise to negative phase shifts. On the other hand, an attractive potential 

yields positive phase shifts. 
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~.2 Numerical COmputation 

since ~u. (~-l) cannot be solved in closed form with 

our potential, it has De~n customary to employ numerical calculation 

techniques. By using the conventional series expansion methOd(61) , 

we will be able to ob tain a good approximation for the initial 

value of a(r ), when r is sufficiently small, e.g. r = 0.01. 
~ 0 0 0 

Similarly we can also ob tain the first and second derivatives of 

- -
With ,\(ro),u,i (ro ) and ~ (ro ) as initial values, 

we can solve Equ. ,Q~l) numerically by employing the Runge-Kutta

Nystrom method(6Z). The logarithmic derivative is calculated up 

to the asymptotic region (i.e. R~4.5f). The initial step size 

h = 0.01 is used. For sufficiently large r we change the step size 

to nh where n = 2,3, 4 . At the beginning of each new step 

size we first calculate the phase shifts, and then compare them 

with the phase shifts calculated immediately before. When the 

two agree to within an acceptable amount we proceed with the 

calculations, otherwise we repeat the old step size for a greater 

range until we can change the step size. In this manner, we carry 

on our calculation up to r = Sf. In this region, the potential 

has no further effect on our phase shifts. 

Very intensive computer work is involved, both time 

consuming and laborious. The actual calculation was performed 
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by the McGill IBM 360/75 computer. We tried to fit the CERN 

phase shifts up to 700 MEV, for S-, P- and D- waves. Masses 

of nucleon and bosons are taken in terms of pion mass (140 MEV) 

as follows: 

nucleon mass M = 6.7 

vector meson mass m = 5.5 
p 

tensor meson mass m = 9 f 

scalar meson mass m = 3. 
0 

T~e search for a fit is performed and is subjected to 

the following restrictions: 

i) The pseudoscalar ~-N coupling constant is given a valuebetween 

14 'II 15. 

ii) The vector meson p coupling constant must be bounded 

within the range between 2 'II 3- , and we fix the 

value of (f) = -1.83 in accord with BalI and wong(44) • 
g p 

iii) The P 33 phase shift has to pass through 90° at about 

194 MEV. 

iv) The contribution from 0 ~ Gp ~ l does not affect the 

l 
J = 2 state P-wave significantly. We set Gp = 0 in 

order to eliminate one parameter. 

v) The 'cut off' mass is subjected to a lower bound limit 

mc > mf according to Chapter II, Section 2.5. 
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Under these conditions the phase shifts are expressed 

as a function of only three freely adjustable parameters (i.e. 

m a' G a and G~) and one partially adjustable parameter (i.e. 

m
c 

>m
f
)· 

It is found that if the P33 resonance is fitted, the 

potential is usually too strongly attractive to produce negative 

P3l phase shifts. The P13 phase shifts also have a tendency to 

be more positive as the energy increases. (A more elaborate 

discussion regarding this point will be given in the next chapter.) 

We abandon hope of a reasonable fit for the P3l phase shift if 

we insist on having a (3,3) resonance at the correct energy, but 

try to improve the P13 phase shift especially in the high energy 

region. The inclusion of a scalar meson in our OBE potential un-

doubtedly enhances the attractive potential in all channels. To 

improve the negative phase shifts of S3l' P3l , P13 and D35 we 

discard the scalar meson in our model. Furthermore, we eliminate 

two freely adj us table parameters ma and Ga 

4.3 Computational Techniques 

Much effort has been devoted in computational work 

to incorporate the requirement of a (3,3) resonance with the , 
prediction of the overall qualitative and quantitative features 

of the S-, P- and D-wave phase shifts. 

In thisparagraph we would like to illustrate the 

procedure used to obtain the sets of parameters with a P33 resonance 

at the correct energy. We adopt a systematic way of searching. 
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Although we expect finally to ob tain parameter values in agreement 

with those given in conditions (i) and (ii) of Section ~.2 , we 

start calculations wlth small values of parameters other than mc 

(fixing mc> mf ) and increase them one at a time to see the effects on 

the S-, P- and D-wave phase shifts and to ensure that no bound states 

of the system have been reached.After these checks have been completed, 

we pass on to the consideration of the P33 resonance. Now we choose 

a pair of values for GnN and Gp which are within the critical ranges 

( given in conditions (i) and (ii) of Section ~.2) and find values of 

mc (>mf ) which will give the P33 resonance at the correct energy for 

given values of G
f

. It should be remarked that for some values of Gf 

it is not possible to find any m to satisfy the constraints . We c 

then repeat the procedure by choosing another pair of values for 

~N andGp ' 

Several sets of parameter~ which satisfy conditions (i), (ii), 

(iii) and (vy. in Section 4.2 are given in Table III. 
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TABLE III 

Values of me with fixed values of G~N and Gp 

G~N = 14.0 

~ 2.0 2.2 2.5 2.8 3.0 

12 10.862 10.845 
13 10.935 10.920 10.895 10.872 10.858 
14 10.930 10.918 10.895 10.875 10.861 
15 10.927 10.914 10.898 10.876 10.862 
16 10.918 10.906 10.890 
17 10.908 10.898 10.882 

G~N = 14.4 G~N = 15.0 

~ 2.0 2.2 2.5 2.0 2.2 2.5 
G

f 1 

11 10.875 
13 10.893 
14 10.893 10.880 10.860 10.838 10.825 10.805 
15 10.890 10.878 10.858 10.838 10.828 10.808 
16 10.885 10.873 10.855 10.834 10.825 10.808 
17 10.878 10.867 10.85,0 10.830 10.820 10.805 

Gp = 2.0 

~ G
f 

14.0 14.2 14.4 14.6 14.8 15.0 

15 10.927 10.908 10.890 10.872 10.858 10.838 
17 10.908 10.893 10.878 10.860 10.846 10.830 

.. 



CHAPTER V 

Resu1ts, Discussion and Conclusion 

5.1. Resu1ts 

As seen from Table l, within an enètgy rang~ of 0 to 700 Mev, 

there are resonances conjectured from the phase shift analyses - a 

* P33 at 194 Mev (1236 Mev), a P11 at 532 Mev(1470 Mev) and a D
13 

at 

611 Mev (1520 Mev). In order to study the effects on the P33 , P11 and 

D13 resonances due to variations of Gf and the corresponding mc' 

we choose a random GnN - Gp pair, say G
nN 

= 14.4, Gp = 2.0 from Table III. 

With these values fixed, we look at the behaviour of the phase shifts 

for different and m • 
c 

In Table IV, three values of 

positions of corresponding resonances) are given. 

Table IV 

G
f m P33 Pu D13 c 

13 10.893 194 600 616 

15 10.890 194 500 512 

17 10.878 194 432 362 

Gf (with 

* The energies in the brackets refer to the total energies in the 

C.M. system. 
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A plot for P33 , Pll and D13 phase shifts against the energy 

using the parameters given in Table IV are presented in. Figs. 10,11 

and 12 respectively. 

As shown in Fig. 10, the smaller Gf value will give larger 

positive P33 phase shifts in the low energy region. The situation 

is reversed after passing the resonance. A larger Gf value will 

give a better fit for the P33 phase shifts. However, the improve

ment is not marked in the high energy region. 

In the case of the Pll channel, as seen from Fig. 11, the 

change of the Gf value affects the Pll phase shifts considerably. 

The larger the Gf value, the lower the energy at which the P
ll 

re

sonance occurs (see Table IV). At the same time, the P
ll 

phase shifts 

in the low energy region tend to have smaller negative values initially 

and the phase shifts become positive at a lower energy. The best fit 

for the Pil state is when Gf = 15 and m = 10.890. 
c 

The effect of Gf on the Dl3 channel is the same as that in 

the PlI case. As shown in Fig. 12 the larger the Gf the more the 

deviation from the CERN phases. This is due oc the very strong 

attractive contribution on the Dl3 state from the o f -exchange. The 

Dl3 resonances for different values of G
f 

are given in Table IV. 

Among the sets of parameters appearing in Table IV, we select 

the 'best' sets and list them in Table V together with the energies 

of the P33 , PlI and Dl3 resonances. These'best'sets of parameters 
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give a reasonab1e fit to the phase shifts in the maximum number 

of channe1s and reproduce the princip1e features. The most reason- . 

able fit in Table V is found for the parameters of set 1. The resu1ts 

for this set are presented in Figs. 13 to 22. There are three re-

sonances P33 (194), P11(600) and D13(616) which agree very we11 with 

the CERN and other phase shift analyses (see Table 1). 

Table V 

Set GrrN Gp Gf m P33 Pll D13 c 

l 14.0 3.0 12 10.845 194 600 616 

II 14.0., 2.8 12 10.862 194 606 614 

III 14.0 2.5 13 10.895 194 532 560 

IV 14.0 2.2 13 10.920 194 534 572 

V 14.0 2.0 13 10.935 194 536 573 

VI 14.4 2.5 15 10.858 194 488 502 

VII 14.4 2.2 15 10.878 194 493 510 

VIII 14.4 2.0 15 10.89G' 194 500 512 

The eight sets of parameters, as shown in Table V, give more or 

1ess the same resu1ts. A few remarks concerning the sma11 deviation 

among these eight sets of parameters are worth mentioning. The 

most significant feature of increasing GrrN is to improve the fit 

of P13 , D35 and D15 , but destroy the fit of 811 and 831 • The in-

crease of G p will cause the most effective attractive potentia1 

1 1 1 

in 

L 
the J 1 - - T=- states; a sma11 repu1sion in J - 1 + -- 2' T = -

2 ' 2 2 

states; repu1sion in the 1 3 a greater J = 1 - - T 2 2' 
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1 
T 3 

states; and a slight1y attractive potentia1 in the J = 1 + 2' = -2 

states. In the ca Be of 0 f -exchange, since it has no isospin (1=0) , 

both 1 and 3 
states receive repu1sive contributions T = - T = 2 isospin 2 

from the contact interaction term and attractive contribution from 

the Yukawa term. The attractive Yukawa contribution is stronger 

than the repu1sive contact interaction contribution, therefore the 

S-wave receives attractive contribution from the fO-meson weaker in 

10w energy region, stronger as energy increases. For the P- and D-waves, 
-+ -+ 

the L·S term a1so coatributes in addition to the contact interaction 
... -+ 

and the Yukawa terms. The L·S term gives rise to a strong repu1sion 

1 1 
for the J = .t + 2 states and a stronger attraction to the J = 1 - 2 

states. 1 The total contribution to the J = 1+ 2 states is moderate1y 

attractive in the 10w energy region and becomes more strong1y attractive 

as energy increases. 1 
However, for the J = 1 - 2 states the very 

strong attraction domina tes, especia11y in the high energy region. One 

can retrieve the experimenta1 features such as the resonances of P33 

P11 and D13 by invo1ving a large value of G
f

• Nevertheless, in order 

to maintain a reasonab1e fit for the negative phase shifts P31 , P13 

and D35 and the smaller positive phase shifts for D33 and D15' the 

value of Gf is not allowed to be too large. 

As shown in Talbe V, one can obtain better resonances for PlI 

and Dl3 from Sets IV and V. However, in Sets IV and V the phase 

shifts of Pl3 and D35 tend to be more positive as the energy increases. 

The parameters in Set I, on the whole provide a 'best' fit compared to 

the rest of Table V. (In view of demands on computer time a least square 

fit is not attempted.) 
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5.2. Discussion 

The mode1 deve10ped in Chapters II, III and IV has shown a 

satisfactory fit to the CERN phase shifts except for the discre-

pancies appearing in a few channe1s. This section is devoted to a 

detai1ed examination of the resu1ts appearing in Figs. 13 to 22 per-

taining to the parameters of Set l in Table V. Some of the resu1ts 

that we obtain have a much deeper significance than first meets the 

eye. The various aspects of these phase shifts that deserve special 

emphasis will now be discussed. 

1. Resu1ts for S-wave 

Examination of Fig. 13 revea1s that OUE fit for the S31 phase 

shifts has a 1arger negative value on the who le. As the energy in-

creases, the S31 phase shift tends to approach the CERN value. The 

reason for this discrepancy can be exp1ained as fo110ws: the strong 

repu1sion resu1ting from the 'muc1eon-exchange'* gives very large 

negative phase shifts especially in the 10w energy region. As the 

energy increases, the attractive contribution from the f~exahagge 

becomes evident and depresses the repu1sion due to the 'nuc1eon-ex-

change' in the high energy region. This is why the S31 phase shift 

* The term 'nuc1eon-exchange' here refers to the direct and exchange pole 
terms for rr-N scattering developed in Section 2.3. 
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decreases in the negative sense, at high energy region. The in-

clusion of a scalar meson, which gives strong attraction in low energy 

region, will be able to decrease the strongly repuslive effect at 

that region, and result in a better fit for the S3l phase shifts. 

In the case of the SIl phase shift as shown in Fig. 14, the fit 

is not satisfactory. Instead of having a plateau in the low energy 

region « 300 MEV), the SIl phase shift increases monotonically and 

almost linearly with the energy. On the whole, the attractive con-

tribution is not strong enough to give larger SIl phase shifts. The 
+ 

defect comes mainly from the strongly repus 1 ive 'contact interaction' 

term of the 'nuc1eon-exchange'. If the valœ of G~N is allowed to 

decrease below the accepted value, and at the same time a scalar 

meson exchange is taken into account to provide a strongly attractive 

contribution especially in the low energy region, a better fit for the 

SIl phase shift can be achieved. 

2. Results for the P-wave 

In the ca.se of the P 33 state, both 'nuc 1eon-exchange' and p

exchange give attractive contribution. However, without the inclusion 

o 
of the f -exchange, the attraction is not strong enough to produce 

a (3,3) resonance at the energy of 194 MEV. The P33 is dominated by 

o the strong attractive force due to f -exchange. A look at Fig. 15, 

+ 
. 

The contact 
2 

m 
i.e., c 

4~ 

interaction term refers to the modified 
-m r 

e c 
r 



\. 

-76-

re~ea1s that on one hand, in the 10w energy region « 194 MEV), 

the attractive force is too strong, and on the other hand, in the 

high energy region (> 300 MEV), the attraction is not strong enough 

to give the required large positive phase shifts. By increasing 

the coup1ing constant Gf , we are able to improve the fit,of the P33 

phase shifts in the 10w energy.region (see Fig. 10). However, in 

the high energy region the improvement is not marked. 

The most noticeab1e v~Q1ation occurs in the fit of the P
31 

phase 

shift. We are obvious1y faced with a number of glaring disagreements. 

The phase-shift ana1ysis by CERN shows that in the P
31 

channel the 

potentia1 must be moderate1y repu1sive, which makes it possible to 

produce negattve phase shifts. The enormous positive P
31 

phase shi ft 

appearing in Fig. 16 ref1ects the presence of a strong attractive poten-

tia1. Carefu1 study has been given to this channel, in connection with 

the contribution of each exchange particle to the potentia1, in order 

to analy~ the discrepancy. In the 'nuc1eon-exchange' contribution; the 

contact interaction'term gives a strong attractive force; the Yukawa 

~~ 

interaction provides a moderate attraction; whi1e the L·S force 

produces a strong repu1sion and exhibits an even stronger lepu1sive 

force as the energy increases. Consequently, the 'nuc1eon-exchange' 

term contributés an appropriate repu1sive force necessary for this 

channel. For the p-exchange, the potentia1 receives repu1sive contri-

butions from both vector and tensor terms, but it is not as strong as the 
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'nucleon-exchange' contribution. However, in the case of the fO_ 

exchange, the repulsive contribution from the contact interactio~ 

term is not strong enough to outweigh the very strong attractive 

-~ force due to both the Yukawa and L·S terms. The effect of the 

tensor-meson is to produce such a strong attractive force, that it 

suppresses all the repulsive effects from other contributions. 

Needless to say, this results in the large positive P3l phase shift. 

o The P
3l 

phase shift can be improved considerably provided the f -

exchange is not taken into account in this channel. Otherwise a 

very strong repulsive core is recommended to be added to the P3l 
o 

channel to overcome thestrongly attractive effect due to the f -exchange. 

As shown in Fig. 17 the fit of the Pl3 phase shift is reasonably 

good up to 200 MEV. As the energy increases the phase shift deviates 

markedly from thàt of the CERN results and tends to be more positive. 

The disparity is mainly due to the strong attractive force 

o contributed from the f -exchange. The repulsive contributions from 

both the 'nuc1eQ~-exchange' and p-exchange are incapable of cancelling 

this attractive effect in the high energy region (> 300 MEV). 

The most successfu1 fit in the model is the Pll phase shift. 

Most theoretica1 mode1s of rr-N scattering fai1 to produce the correct 

resonance feature in this channel. As shawn in Fig. 18 the P11 fit 
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is not only good qualitatively but also quantitatively. The PlI 

phase shift remains small and negative in low energy region, and 

has a shallow dip at about ~O MEV at a slightly higher energy than 

that of CERN (i.e. 100 MEV). It becomes positive beyond 250 MEV. The 

small negative phase shift region is slightly larger than the one 

from CERN. As the energy increases the phase shift increases swiftly. 

Eventually, a resonance at approximately 600 MEV is achieved. The 

CERN PlI resonance is 530 MEV which is slightly less than the Roper(9) 

PlI resonance (580 MEV). The PlI resonance in our fit agrees very 

weIl with both of them, but is near to the Roper one. The PlI phase 

shift can be improved considerably by increasing the value of Gf 

from 12 to 13 or 14 (e.g. see Fig. Il). By so doing, however, we 

shall cause more deviation for the P13 and ~5 phase shifts from those 

of the CERN. The main contribution to the very strong attractive force 

o 
especially in the high energy region comes from the f -exchange. The 

attractive effects from both 'nucleon-exchange' and p-exchange are 

insufficient to produce a PlI re~onance at the correct energy without 

o 0 the inclusion of the f -meson. To this end, the f -exchange is quite 

necessary in the PlI channel. A point to be stressed is that, 

according to the CERN and other phase shift analysés, the PlI state 

is highly absorptive above 300 MEV. In our mode, no absorption is 

taken into account. Nevertheless, a PlI resonance at 600 MEV is 

reproduced. 
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3. Results for D-wave 

As seen from Fig. 19, the fit of D35 is reasonably good up 

to 450 MEV. However, we are unable to obtain a larger negative 

phase shift beyond this region, where the phase shift tends to diminish 

in a negative sense as the energy increases. The disagreement in 

the high energy region (}450 MEV) can be explained by the strongly 

o 
attractive contribution due to the f -exchange. The D35 phase shift can 

be improved considerably by reducing the value of Gf • However, a 

smaller value of Gf is incapable of reproducing the resonance 

phenomena for P33 , Pll and Dl3 at the correct energies. 

As shown in Fig. 20, the CERN D phase shifts have rather small 
33 

positive values up to 700 MEV, with small fluctuations throughout 

this range. On the other hand, the D
33

'phase shifts analyzed by 

Roper et al.(9) have a rather smooth behaviour in this region and 

are slightly larger than the CERN phases. The D33 phase shifts fit 

the Roper results better than the CERN results. The D33 phases up to 360 

MEV are close to the Roper analysis. Beyond this region they increase 

rapidly as the energy increases. The discrepancy can be explained 

as follows. In the low energy region the strong repulsion due to the 

o p-exchange cancels part of the attraction due to the f -exchange. 
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As the energy increases the attractive contribution from fO_ 

exchange becomes very strong. On the other hand, the repulsion 

from the p-exchange is weakened. This is why the D has very large 
33 

positive phase shifts in the high energy· region. To improve the 

fit of D33 phases, one can either reduce the value of G
f 

or take 

into account the exchange of a high p-meson (1650 MEV). The treat-

ment for the high p-exchange is the same as the p-exchange that the mass 

of the high p H;'lIluJ!h larger. It is hoped that, due to this large roass 

value, the high p-exchange will be able to produce an effective repulsion 

in the ·high energy region to weaken the strong attraction due to the 

o 
f -exchange. 

As seen from Fig. 21 a very good fit to the CERN DIS phase shifts 

is attained. The DIS phase shifts remain small positive values throughout 

the energy range from 0 to 700 MEV. As the energy increases the DIS 

increases slowly. o The presence of the f -exchange gives the attractive 

contribution which is able to cancel the repulsive effect produced by 

the p-exchange. In addition, the attractive contribution produced by 

the 'nucieon-exchange' is not strong enough to attain the correct DIS 

phases in the 
o 

high energy region without consideration of the f -exchange. 

Oneconciudes that, the fO-exchange indeed improves the fit for the DIS 

phase shifts • 
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The fit of the Dl3 phase shifts, as shown in Fig. 22 is in 

good agreement with those of the CERN. One of the characteristic 

features is a Dl3 resonance appearing approximately at 616 MEV, 

which is consistent with the results from the phase shift analysés 

as shawn in Table I. The strongly attractive contributions from 

o both p-exchange and f -exchange, especially the latter, improve the 

D13 phase shift considerably. This is one of the successes which 

o result from taking into account the f -exchange in one mode1. One 

remark should be stressed is th~t, according CERN and other phase 

shift analyses the D13 phase shift is highly absorptive above 

400 MEV. In our model no absorption is taken into account. The 

inclusion of the absorption effect in our model will be more realistic. 

5.3. C1aim of Origin,~ity 

An OBE potential mode1 approach has never been very fashionable 

in the high energy rr-N scattering problem, altough such an approach 

has long been used in N-N scattering problem. We have derived an OBE 

o Born potential by taking into account the f -exchange, in addition to 

the usual p and N exchanges. The effect of the fO-exchange is the 

main source contributing to the strong attractive force required to 

reproduce resonance phenomena in the appropriate channeLs of rr-N 

scattering in the energy range 0-700 MEV. 
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It has been customary to use the Schrodinger equation as a 

device to calculate the ~hase shifts with the OBE potential. 

However, as mentioned befdre, the validity of utilizing the Schrodinger 

equation breaks down as soon as the problem enters into moderate or 

high energy regions. Our work is based on the OBE potential approach, 

to calculate rr-N scattering phase shifts by means of the Klein-Gordon 

equation. The K-G equation forms a viable means of generating unitarity. 

The re1ativistic connection between the energy and momentum is correct1y 

described, instead of imposing the re1ativistic correction for the 

high energy prob1em when using the Schrëdinger equaUon. 

Even though a ful1y covariant form is not aèhieved, the K-G equation 

has its essence in the static approximation. A fu11y re1ativistica11y 

covariant form of the rr~N scattering problem can be described on1y through 

the use of the Bethe Sa1peter(s2) equation. A manifestly covariant ex

pression for the corresponding matrix element of the rr-N scattering 

amplitude can be obtained by means of the Feynman diagram of the OBE 

mode1. If one can eva1uate the 4-dimensiona1 Fourier transformation of 

the invariant amplitude instead of the three-dimensiona1 one described 

by us in Equ.( 2-17), a covariant form of the Born potentia1 can be 

attained, provided the Dirac wave function and the y matrices can be 

transformed in a covariant manner by making use of the Foldy-Wouthuysen 

transformation(64). This approach is comp1icated and difficu1t, perhaps 

is not feasib1e in practice. 
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The original contribution of this work to general knowledge is 

that, such a sllnple model, based on tœ idea of the o t',f and 

'nucleon' exchanges is able to successfully reproduce the observed 

resonance phenomena. However, an extension of the general idea to 

include inelastic channels would be more realistic. 

5.4. Conclusion 

The model givesa good fit for the S-, P- and D-wave phase shifts 

with the exception of P3l . In addition, it is capable of reprodu

cing aIl the existing resonances conjectured in the ~-N scattering 

within tœ energy range from 0 to 700 MEV. The pseudoscalar pion-

nucleon coupling constant of 2 G /4~ = 14.0 and the resultant value 

f 
of (8) P.NN= - 1.83 from t)-exchange, are in good agreement with the 

experiments. The t)-exchange coupling constant g g -~4~ = 3.0 is 
~~ pNN 

o slightly larger than the accepted value 2 "V 2.5. The f coupling 

constant is not weIl determined. One May be able to obtain the value 

of Gf from the life tllne of 2~ decay of the fO-meson. 

In N-N scattering, Kantor(23) gives Gi/4~ = 5.71 and 

= 4.45; and Ino et al. (51) obtain Gi/4~ = 10",20 •. However, 

o we obtain the f -coupling constant of g g /4~ =·12 which is in 
f~~ fNN 

agreement with the value obtained by Ino et al .• The 'cut off' mass 

of m = 10.845~ is reasonable. With this large'cut off' mass, the c 

effects on the long range components of tœ potential are tnsignificant. It 

is able to produce very short range force to describe the hard èore type 

behaviour. 



o The resulls indicate that the p-exchange, f -exchange and 

'nucleon-exchange' play essential roles for rr-N scattering in the 

energy range 0-700 MEV. Of even greater importance, the model 

provides us with a theory that appears to be in accord with our 

empfrical knowledge of all the qualitative phenomena of rr-N scattering 

within the energy range 0-700 MEV except for absorption. 

If we go one step further, a consideration of inelastic processes 

with an optical potential would give a more realistic model especially 

in the high energy region (> 300 MEV), and would perhaps improve the 

fit in some channels. 
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Figure Captions 

Fig. l· The singularities of the partial-wave amplitudes 

fJ±(s) i~-the complex plane. 

Fig. 2 The one-boson~exchange diagram of the ~-N scattering. 

Fig. 3 Lowest order T-N scattering a) corresponding to the 

direct pole term and b) the nucleon exchange pole term. 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig.lO 

Fig.ll 

Fig.l2 

The Idwest order p-exchange diagram of TI-N scattering. 

The p~exchange diagram of TI-N scatteri~g. 

The ~-exchange diagram of U-N scattering. 

The one-boson-exchange Feynman diagram corresponding to 

the lowest Born approximation in ~-N scattering. 

Two-boson-exchange Feynman diagram in TI-N scattering. 

Two-boson-exchange Feynman diagram with virtual pair 

creation and pair annihilation processes in TI-N scattering. 

P33 : the solid circ les are the CERN phases 

---------------------- Gf=13 

-'-'-'-'-'-'-'-'- Gf=15 

------------------Gf=17 

Notations as for Fig.lO. 

Notations as for Fig.lO. 



Fig.13 

Fig.14 

Fig.15 

Fig.16 

Fig.17 

Fig.18 

Fig.19 

Fig.20 

Fig.21 

Fig.22 
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831 : the solid circ1es are the CERN phases, the open 

circ1es 0 are the Roper phases. The solid 1ine our OBE 

mode1 fit ta them. 

8U : notations as for Fig.13. 

P33 : notations as for Fig.13 , showing a resonance at 194 MEV, 

P notations as for Fig.13. 
31: 

P13 : notatkons as for Fig.13. 

PU: showing a resonance at approximate1y 600 MEV. 

Notations as for Fig.i3. 

D35: Notations as for Fig.13. 

D33 : Notations as for Fig.13. 

D Notations as for Fig.13. 
15: 

D13 : Notations as for Fig.13, showing a resonance at 

approximate1y 616 MEV. 



APPENDIX A 

Feynman Rules for T Matrix 

The S-matrix for elastic ~-N scattering is defined 

in Equ. (2-6) as 

S = 1 + i(2~)4 ô(P
l 

+ ql - P
2 

- q2): M T 

(1) 

N 

P 
2 

.; 4EiE2wlw2 

q2 , 
1 , 
~ 

B 1 

______ ----.1 ( ) 
---------,. 2. 

\ 
t , 

Pl ql 
, ~ 

Pig. Al 

Before we write down the rules for T-matrix, it is 

worthwhile to mention the procedures for obtaining the vertex 

from the interaction Lagrangian density in question. Here we 

outline the main points as follows: 

(A-l) 

1) If the Lagrangian density contains no derivatives 

for the wave functions, extract aIl the factors, 

except the wave functions from the interaction 

Lagrangian density. 
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2) If the Lagrangian density involves the derivatives* 

of the wave functions, we simply replace 

a ~(P) ~ ip ~(P) , 
II II 

where ~ (P) is the incoming wave function towards the 

vertex with four-momentum P. 

and 

a ~(P') ~ -ip' ~(P') 
II II 

where ~(P') is the out-going wave function leaving the 

vertex, with four-momentum P'. 

3) Multiply by a factor 

where n is the number of particles involved in the 

interaction at the vertex. 

Once the vertices are specified, we can write down the 

T matrix at once, provided the propagator of the exchange parti cIe 

. k t th ~s nown , us 

* 
t 

T = U(P2) vertex (1). propagator. vertex (2) U (Pl) 

We do not consider derivatives higher than the first order. 

Here we take a "-" sign in front of the propagator. 
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APPENDIX B 

Born Appro~imation Potential -
Fourier Transformation 

From Equ. (2-19) we have 

One can also express 

+ + 
q2 x ql = 

Since Equs. (B-l) and (B-2) are equal, therefore 
.J 

++ ++ 
peip •r + . iP.r 

1 ++ 
d3p 1 ++ P e 

--io.q x f = icr.Q x f 
Cl'lT) 3 1 '"*2 2 ( 2'lT) 3 +2 2 

P +m P +m 

Consider 

++ 

l 
1 .+ + 

x f 
P'eip •r 

d3p = l.cr·ql 
(2'lT) 3 +2 2 

P +m 

.+ + 
1 

l.P.r 
d3p ++ + e = cr·ql x V f 

(2'lT) 3 +2 2 
P +m 

1 
-mr + + + (e = cr·ql x V 

4'lT r 

1 + 1 d 
-mr ++ (_e_) = cr· q

1 
x r 

4'lT r dr r 

- .99 -

(B-l) 

(B-2) 

cfp (B-3) 

t 

(B-4) 



-100-" 

The orbital angular momentum of the pion-nucleon system 

is defined by 

In the C.M. system, 

-+ -+ 
ql = - Pl ' " 

. -+ -+ -+ -+ 
", .L = (r - r

N
) x êIl . 1T 

-+ -+ = r x ql (B-S. ) 

-+ -+ -+ 
where r = r r is the relative coordinate. 1T" - N 

By substituting Equ. (B-S) into Equ. (B-4) , we attain 

-+-+ 
-+ • P 

1 .-+ -+ pe1
•
r 

O 
br ____ d3p 

--31 ·ql A ~2 2 
(21T) P + m 

= 
1 -+ -+ 1 d -mr __ o.L _ (_e_) 

41T r di:' r 

Erom the relation of Equs. (B-6) and (B-3), gives 

1 -+ -+ -+ 1 d -mr -1 -+ -+ 1 d -mr _ o.Q x r __ (_e_) = ----a.L __ (_e_) 
41T r dr r 41T r dr r 

EqU. (B-7) implies that 

-+ -+ -+ 
L = r x Q 

(B-6) 

(B-7) 

(B-a) 



.'.-
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II) From Equ.· (2-24) we have 

1 
...... ... ~ ... ip·r 

icr • Q x f p e 

... 
= cr • 

~ ~ 3-t 
Q xV 8 (r) 

Thus the Born potentia1 due to the second term of F2 in 

Equ.(2-23) will have the form 

.... ~ -7 3-\ 
Q x V 8 (r) , cr • 

mu1tip1ied by a sca1ar function. 

If we now work backwards to obtain the corresponding Born 

scattering amplitude, using Equ.(2-26), we have 

After integration by parts, Equ.(B-l1) can he written as 

.... -? 
cr • Q x 

... 
= - cr • 

3 ........ 3 Q x f5 (t) V e -1P • r d r 

... -? .... 
icr'Qxp 

Therefore in this particu1ar case, we can replace 

(B-10) 

(B-ll) 

(B-12) 



or 
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........ -? 3-... .... -7 .... 3-+. 
cr • Q x V 8 (r) .... icr • Q x p 8 (r) 

Making use of Equ.(B-1), we can write 

-+ --+ -+ 3 -+. -+ -+ -+ 3 ...... 
icr • Q x p 8 (r) = -icr • q2 x q1 8 (r) • 

" 



APPENDIX C 

Propagator of Spin 2 particle 

For spin 2 particle the field transforma as a Lorentz 

group tensor of rank 2, wi th the subsidiary conditions as follows (63) : 

i) (C-Ia) 

ii) T = T (C-Ib) synunetric in Il and v CC-I) 
IlV Vil 

iii) ail T = 0 (C-Ic) gauge invariance 
IlV 

iv) IlV 
T = 0 (C -Id) traceless condition g 

IlV 

where T is the tensor field for spin 2 particle. 
IlV 

In order to calculate the spin 2 propagator, we define 

a most general form for the numerator of the propagator as 

N =a g g +a (g g +g 9 ) +a (g P P +g PP) 
IlViaS 1 IlV aS 2 ilS av lla vS 3 llV a S aS Il v 

+ a4 (g P Po+ g oP P + g P Po+go PP) + aSP
lI

P"PaPo Ila v p IIp v a av Il p pV Il a ~ v p 

(C-2) 

103-
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which also satisfies the subsidary conditions 

i) N = N = N =N (t -3a) 
ll"iaa aa,ll" "lliaa ll"iaCl 

ii) pllN = 0 (C-3b) 
ll"iaa 

iii) ll"N 
g ll"iaa = 0 (C-3c) 

The constants a.'s can be evaluated by employing these 
J. 

subsidary condi tions (Ç - 3) • 

By equating zero coefficients of gaa and PaPafrom 

(e,-3a) we get 

From (C-3b), by equating the coefficients of P g Q 

" a", 

(where y,a,a in aIl permutations) to zero gives 

2 
al + P a

4 = 0 

ai + 
2 P a4 = 0 

a3 + 2a4 + 2 
0 P aS = 

(c-4a) 

(C-4b) 

(C ·4c) 

(c -4d) 

(c-4e) 
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There are five equations (c-4a-e) with five unknowns, 

al' a2 , a 3 , a4 and aS' The solutions are trivial. On the mass 

shell we have 

2 m
f 

If we let al = A, where A is any arbitrary constant, we 

are able to solve the above five equations simultaneously. 

N 
llviae 

As the result we have 

A 
a 3 = - -2-i 

m· 
f 

(c-S) 

Thus (C-2) becomes 

3 +-
2 

1 2 
-2 (g P Po + g oP P + g P Po + go PP) - ~4 PPP Po] 

lla v 1.> lll.> v a av II 1.> I.>V II a II val.> 
~ ~ 

(c-2a) 

The next step is to eva1uate A, subjecting to the 

norma1ized condition 

where 

L. N 0 Nllviae = 1 
sp~n ll\l i al.> 

1 
2S+1 

Here we have S = 2. 

(c-7 ) 
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From Equ. (C-7) we have 

l 
or A = :!:. '3 

According to our convention to derive the T matrix we have to 

take the negative value i.e., A = - i. 
If we define 

(C-2a) can now be written as 

~ -9) 
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APPENDIX D 

'Partial Wave' Born Potentia1 

The partial wave scattering amplitudes for the direct pole term 

and the nucleon exchange pole term of ~-N scattering, according 

to Equ. (2-16a), have the following form 

-iL f..et =-
8 ~W 

( 1- -:. -:) [(E+M) 1 8 6 + (E-M) 1 8 ] 
(W+M) 2.&H .ct,o (W-M) IH 0 

with 

........ 
+ (_l)J (1+ ~.t) 

2 

Izl = > o. 

2( J.!::l)+l - , 

[ (W-M) (W+M) 
(E-M) Q.tClzl) - (E+M) Q~l <1 zl)] (D-l) 

For simp1icity, we rewrite Equ. (D-1) as 

(D-la) 

-iL 
........ 

where 
(l-If.. t) (E+M) 

a = 
- 8;tW (W+M) 

G2 ........ 
b 

(1--r . t) (E-M) 
= 

8nW (W-M) 

G2 ........ 
(1+1: .t) (W-M) 

(D-2) c = 
8nW 2(E-M) 



and 

d = 

(A) For S-wave, 
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(l-f't~ t) (W+M) 

2 (E+M) 

l = 0, we have 1 J=-2 State on1y, th us 

(D-3) 

From Equ. (2-16), the partial wave scattering amplitude is given by 

1 
f =Qi- 2 

1 
1 
-1 

Equ. (D-3) can be rewritten as 

fo+ = 
1 1 d 

1 {- [a +~] p (x) + -----1 1_ P1(x)} dx 
2 -1 Izl-x 0 Zt'X 

where we have used the relations 

(D-4) 

(D-5) 

1 2 
1 P lx) PlI (x)dx = 2M""" 8.e,.e l 

-1 

1 1 P .e(x)dx 
; "2 1_1 = Q,e<z) 

z -x 

Comparison of Equ.(D-5) with Equ.(D-4), yields 

c 
f 1 = - (a + ) 

1 zl -x 
(D-6) 

1 zl -x 
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One remark concerning Equ.(D-6) should be made when we substitute 

Equ. (D-6) into the expression of the total scattering amplitute in 

Equ. (2- ~4), it gives the correct S-wave scattering amplitude on1y, and 

it might not be adeq,uate for other partial waves. This 18 because the 

term with 'a' in Equ.(D-la), contributes on1y to the S-wave. 

Substitution of Equ.(D-6) into Equ (2-14), gives 

F = - [(a+d) + (c-dl zl) _1 11 
z -x 

d -." " -....;;..-.-·ia ~ x fI ] 
Izl-x 

(D-7) 

Consequently, ~qu.(D-7) indeed reproduces the correct form of for' 

Fo1lowing the procedure outlined in Section 2.4, we thus obtain the Born 

approximation potential for the S-wave, by the Fourier transformation of 

Equ.(D-7). Thus 

V (r) = 411: 
o 

3 -. 2 
(a+d) B (r) + .Ï; (c-dlzl) 

r 

-.-+ 
d d -mtr a L 

2; r dr 
(e -) 

r 

where J (2EtrJ)-
2 2 

) > 0 mt = J..l. - 2q 

(B) For p-wave, we have t 1. 

i) 
3 

J = 2' state, Equ.(D-la) gives 

) , (D-8) 
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f 1+ = c QI ( z ) - d Q2 e / z / ) 

1 
= "2 

1 
J 
-1 

Comparing Equ.(D-10) with Equ.(2-16), we obtain 

c 
= 

/z/ -x 

-d = 
/ z/ -x 

dx ( D-10) 

(D-11) 

As before, Eqo.(D-11) indeed gives the correctf1+ but not 

necessari1y the correct resu1ts for other partial waves. 

Substituting Equ.(D-ll) into Equ.(2-l4) we find an expression for 

the total scattering amplitude, which gives the correct f
l
+. The 

Born potential for the J=1, J = t state can be obtained, by the 

Fourier transformation of this total scattering amplitude. Thus 

... 
4n { d ô

3(r) + (c-d/z/) 
2 -m r 

!L e t 
2n -r--

~~ 

d (J ..• 1i~ '(1 -m r } 
. "(e-!-) 

2n Î' èi~' r 

(D-12) 

if) For 1, = l, 1 
J = 2 state, according to Equ.(D-1a), we have 

= -

1 
= 2 

(D-13) 
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Thus 

c = 
1 zl-x 

= _ (b + _d ___ ) (D-14) 
1 zl-x 

Comparing Equ.(D-14) with Equ.(D-11), we notice that they are 

a1most the same, except for an extra term "_b" in the expression for f 2 

in Equ.(D-14). This extra term, on substitution into the total scat-

tering amplitude and then upon Fourier transformation, will give a 

delta function with coefficient in the Born 

potential. 1 Thus the complete Born potential for t = l, J = ï state 

can be written as 

2 

{ 
... 1\ 1\ 3 -+ q -m r 

Vl - - 4rr [d-b(xti d.q2 x ql)] 8 (r) + 2rr (c-dlzl) e t 

- d 
1 
2rr 

..... -+ 
cr :t 

r 
d 
dr 

r 

-m r 
(e-L )} 

r 
(D-1S) 

Combining Equ.(D-12) and (D-1S), we obtain an expression for the 

Born potential for the P-wave as 

{ 
-+ 1\ 1\ 3 3 -+ 2 _m r 

= - 4rr [d-b(xti cr.q2 x q1)(ï - J)] 8 (r) + ]; (c-dlzl)~ 

d -+y:t 
~ 

2rr r 
d 
dr 

-m r 
(~ )} 

r 

(D-16 ) 



Here we insert the factor 3 
(- - J) 2 into the second term of the 

first parenthesis in Equ.(D-l6) to ensure that this term contributes 

only for the state. c) "For t > 2 repeating the same pro ce-

dure as before, we obtain a general form for the partial wave Born 

potential with orbital angular momentum t ~ 2, thus 

J, 3 ~ 2 -m r 
= (-1) 4n{ d B (r) + t,; (c-d/z/)~ 

r 

d 
2n 

d -m r 
(e -L 

dr r )} 

(D-l7) 

We can obtain a general expression for the 'partial wave'Born 

potential for any angular momentum state 1 t'>, by combin1ng Equs. 

(D-8), (D-16) and (D-:-l7), 

The factors 

t 2 
+ (-1) [(c-d/ z/ ) t,; 

B t,o and 

-m r 
e t ---

r 

~~ 
d cr·:t d ---2n r dr 

-m r 
(e t 

r 

(D-18) 

appearing in the first and 

second terms of the first parenthesis of Equ.(D-18), are co ensure that 

the respective contributions are for the SIl and PlI states only. 
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