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ABSTRACT

A POTENTIAL FOR 7m-N SCATTERING

A Born approximation potential is derived from the one-
boson-exchange model with the p-meson and the f°-meson exchanges,
together with the direct and exchange pole terms of the w-N
scattering. A 'cut off' mass is introduced to regularize the
singular part of the potential. The potential is inserted into
the Klein-Gordon equation and the egquation is then solved for the

g °) g g
phase shifts. The coupling constants G2/4", p“Z“pNN ' wa“fNN

and the 'cut off' mass m_ are treated as adjustable parameters to

(5)

fit the CERN phase shifts. The best solution obtained in the

0-700 MEV energy range includes three resonances; P33(194 MEV) ,
Pll (600 MEV) and Dl3 (616 MEV). The solutions are consistent with

the CERN phase-shift analysis especially for large positive phase

and D Th and D cannot

shifts such as Pll’ P 13° e P31, P13 33

33’ Dl5

be accurately predicted in our model.
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ABSTRACT

A Born approximation potential is derived from the
one-boson-exchange model with the p-meson and the f°-meson
exchanges, together with the direct and exchange pole terms of
the 7-N scattering. A 'cut off' mass is introduced to regularize
the singular part of the potential. The potential is inserted

into the Klein-Gordon equation and the equation is then solved

g __a._
for the phase shifts. The coupling constants G2/4w, -ﬁﬂ%kfﬁﬂi ,
= P |
_fﬂ%_%ﬁﬂ and the 'cut off' mass m, are treated as adjustable

(5)

parameters to fit the CERN phase shifts. The best solution

obtained in the 0-700 MEV energy range includes three resonances;

(600 MEV) and

P33(194 MEV), P 3(616 MEV) . The solutions are

11 !
consistent with the CERN phase-shift analysis especiélly for large

positive phase shifts such as E&l’ P33, D15 and D13. T.ie P31, P13

and D33 cannot be accurately predicted in our model.
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CHAPTER I

Review

1.1 Introduction

The study of the low-energy pion-nucleon scattering theory
is one of the most basic subjects in the history of strong inter-
action physics. A diversity of approaches has been exploited
towards a solution of this profound problem, in order to have a
complete and consistent picture of the 7-N interactions.

The first contribution to the low-energy m~N scattering
theory was by Chew and Low(l), using the low-energy effective range
approximation. On the basis of the cut off Yukawa Theory without
nuclear recoil, it is found that the Chew-Low model provides a
qualitative picture of the P-wave 7-N scattering, particularly a
(3,3) resonance consistent with the experimental data. However,
Chew-Low's model fails to predict the correct information for the
S-wave. By means of current commutator algebra and the hypothesis
of PCAC,the S and P wave scattering lengths are also studied(z).
In the field theoretic approach, a Lagrangian model is used to
understand the low-energy 7-N interaction. In the framework of
chiral symmetry(3), the scattering lengths can be calculated.
Recently, a Padé approximation approach has been presented by

(4)

Remiddi et al. , to parametrize the low-energy elastic w-N

scattering. The expansion of the S-matrix in terms of the m-N
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coupling constants up to the fourth order is used to fit the CERN(S)

phase shifts. However, the fit to the T = %-state is poor, with
opposite signs in the S, P and D?wave phase shifts wheh compared
with the corresﬁpnding ones from CERN.

The one-particle-exchange model has been considered as one
of the most successful models in the past decade in the study of
elementary particle physics. By taking the well-known existing
elementary particles as exchange particles in a certain strong
interaction process, it is possible, using simple mathematical tools,
to calculate the physical observables to obtain good agreement with
the experimental data. A more elaborate review of this model wili
be given in Chapter II, Section 2.1.

In connection with th? study of the m=-N scattering problem,
we consider in the present work the so-called one-boson-exchange
(OBE) model, td identify and estimate the contributions to the w-N
forces. An attempt is made to derive an OBE Born potential due to
the exchanges of nucleon, p , 0 and £°. A 'cut off' method is
introduced in order to regularize.;he singular potential. The details
are given in Chapter II. nThe Klein-Gordon equation is used to
calculate the 7-N phase shifts in each channel. A discussion on the
Klein-Gordon equation, including the justification for applying it
to our problem, together with the basis of the assumptions inherent
in our approach, is given in Chapter III ., 1If the. one -
boson-exchange is the basic mechanism, the masses of the exchange

particles are not adjustable parameters. However, the coupling
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constants of the exchange particles with the nucleon or pion, can
ke treated to a limited extent, as adjustable parameters. Proper
adjustments in the parameters are made until a reasonable fit to
the CERN phase shifts is secured. One of the successes achieved in
our approach is the ability to reproduce all the characteristic
features of the m-N resonances up to the energy of 700 MEV. We
have thus far considered only the elastic scattering; an extension,

which includes the effects of the absorption is more realistic and

most desirable.



1.2 T-N Phase-Shift Analysis ‘

Phase shift analysis has played a considerably important
role in the T-N scattering problem in the past half decade, beginning
from the evidence of Roper's(G)P11 resonance. The analysis of the
phase shifts provides a meeting ground between the explanation of the
experimental data and the various theoretical approaches. Moreover,
it is also a powerful tool to detect resonant phenomena. Most resonances
(7)

are not evident from the total cross-section, or from a Dalitz plot.

Conventionally, there are two ways to deal with the problem of
phase shift analysis. One is an energy-dependent approach and the other
an energy-independent approach. In the former, one parametrizes the part-
ial wave amplitudes as functions of energy in order to fit the experi-
mental data. This approach is practical provided only a few partial
waves are taken into account and at thé same time the energy range is
sufficiently restricted. This approach has been applied by three groups =--

(8), Livermore(g) and Chilton(lo). The disadvantage is that good

Yale
statistical fits are not practically attainable; because of the incon-
sistencies among experimental data at different energies. Nevertheless,
energy-dependent analysis gives a smooth behaviour of the solution at
various energies.

For an energy-independent analysis, an extensive search
at each energy for different solutions is performed. The disadvantage

of this approach is that it is unable to produce smooth and continuous

solutions at various energies. To impose continuity at different
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energies is quite a difficult task. However, sophisticated techniques

(11) (12) &

have been attempted by the groups in Hawaii , Saclay
CERN(IB) to deal particularly with this problem in the energy-

independent analyses.

1.3 ©Nucleon Resonances

About two years ago the pion-nucleon phase shift analysis

(14), CERN and Saclay, was extended to the

of the groups at Berkeley
GEV region, with 19 or more resonances found below 2.2 GEV (C.M.
total energy) in the m-N system. Recently, serious arguments have
been raised to question the existence of a number of these previously
unsuspected resonances. The traditional procedure to detect a

resonance state is by means of the Argand diagram of the function

'2qf2 , where

is the partial wave amplitude, g the C.M. momentum, nlthe absorption

parameters and 62 the phase shifts. The existence of a resonance

will always give rise to a counter-clockwise circle in the Argand

diagram. However, the inverse is not necessarily true. (A counter-

clockwise circle in the Argand diagram does not necessarily imply

that there is a resonance.) Much attention has been drawn to this
(15)

criterion after Schmidt proclaimed that the partial-wave

projections of Regge-pole amplitudes freely exhibit resonance-type
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(16)

circles. A diversity of opinion has been expressed on this topic

However, no concrete conclusion has been drawn so far at this point.

(17)

Accordingly, Donnachie is convinced that all the structure
observed in the w-N scattering should be associated with resonances.
To a greater or lesser extent, the resonances below 1.6 GEV (C.M.
total energy) are quite reliable and have been confirmed by the
five most recent phase-shift analysis groups(lz)’ 13), 4, Qas), (19).

(see Table 1).

Table 1

Conjectured pion-nucleon resonance assignments below 2.2 BEV*

with the status of the corresponding structure observed in the

five most recent phase-shift analyses.
Possible Berkeley(l4) CERN IT(S) Saclay(lz) Glasgcw(ls) CERN II(lg)
Resonances
P33(1236) No argument about this one
S31(1640) Definite Definite Definite Definite Definite
D33(1690) Possible Possible Ambiguous Definite Definite -
P33(1690) Probable Probable Ambiguous Possible Definite
F35(1910) Probable Probable Ambiguous Definite Definite
P33 (1930) Probable Probable Ambiguous Definite Definite
F37(1950) Definite Definite Definite Definite Definite
D35(1950) Doubtful Doubtful Ambiguous No Possible
P;;(1470) Definite Definite Definite Definite -
D;3(1520) Definite Definite Definite Definite -
S11(1550) Definite Definite Definite Definite -
D15(1680) Definite Definite Definite Definite -
F15(1690) Definite Definite Definite Definite -
S313(1710) Definite Definite Definite Definite -
D; 3(v1730) No Use imagination No No -
P13 (1750) No Possible No Definite -
P; 3(1860) No Possible No Definite -
F17(1980) No Doubtful No Transferred -

to Gy7

Dj 3(+2030) No Probable No No -
G17(2190) Ambiguous Definite - - -

* The energy used in Table 1 refers to the total C.M. energy.

* In order to avoid confusion, CERN I refers to ref.
CERN II to ref.

(19).

(5), and
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1.4 Generalized Interference Model

Very recent work intimately related to the resonance

phenomena in m-N scattering is presented through a newly developed
'generalized interference model', by Donnachie and Kirsopp(zo).

A pure Breit Wigner type of expression is proposed to

éf), between the partial wave amplitudes and the

respective Regge amplitudes. Here, the difference Déz)is defined

fit the difference D

by

p(T)

™ g ™ _ g™, (1-1)

%3 Lt

and is parametrized by

., (T)
o e1¢n,21‘ H(DE 2
4
p{T == Bt (1-2)
n (T) Res. i (T)Tot
(S, g2 S) - Fa Tl 4

(T)

(T) are the usual partial wave amplitudes, and Bzi the

2%
projected Regge amplitudes; S and g are the total enexrgy squared and

where £

momentum in the C.M. system. The summation in Equ. (1-2) indicates

. . . T) Res.
the number of resonances in a given partial wave. Here Sé ;i
’

is the square of the mass of the n-th resonance, FéTifg and Fn ot
14 14
are the elastic and total widths of the n-th resonance respectively
(T) . .
and ¢n ot is the arbitrary phase.
14
Remarkable success has been shown by this model in describing

the partial wave amplitudes and there is a consistency with the
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Table II*

Conventional Interpretation

Interference Model Interpretation

Mass Width  Elasticity Mass Width Elasticity
S31 1620 140 0.25 1605 230 0.30
P33 1905 300 0.25 Interpretation ambiguous
P33 1237 122.5 1.00 1241 120 - 1.00
1690 280 0.10 1940 250 0.35
(3 resonances improve fit)
D33 1670 225 0.13 1850 350 0.22
D35 Interpretation ambiguous 1715 375 0.20
F35 1880 250 0.18 Interpretation ambiguous
F37 1940 210 0.42 1870 250 0.32
Sy; 1525 ‘80 0.34 1440 240 0.76
1715 280 0.66 1685 220 0.54
P 1460 260 0.57 1420 140 0.32
1783 405 0.34 1815 175 0.16
Pja 1855 = 335 0.27 1665 370 0.38
D3 1515 115 0.52 1520 105 0.47
1730 ? ? ? 1980 200 0.32
2030 ? ? ?
D5 1675 145 0.43 1650 135 0.29
Fis 1690 125 0.6l 1705 120 0.67
Fi7 - .- - - - -

The masses in Table II refer to total energy in the C.M. system.




existence of all the conjectured pionwnucleon resonances up to 1.5 GEV*
(C.M, total energy of 2.0 GEV), with the exception that the Pz
resonance is absent and an extra D35 resonance is present. (See

Table II).

* From now onwards, energies in MEV mean pion lab. kinetic energy
except when otherwise specified.



CHAPTER 1II

One-Particle-Exchange Model

2.1 The Development of the One-Particle-Exchange Model

The one-pafticle—exchange (OPE) model was first proposed

(21), in an attempt to explain nuclear forces

by Hoshizaki et al.
in nucleon-nucleon (N-N) scattering. Since then similar models

have been presented by a large number of authors on somewhat
different grounds. There are two conventional approaches one can
take with the OPE model. One is the dispersion theoretical approach
and the other is using the one-particle-exchange potential (OPEP)

to solve the non-relativistic SchrBdinger equation. 1In the former,

the great advantage is that the whole treatment can be made fully

relativistic.

1. Partial Wave Dispersion Treatment. * The dispersion

treatment of the OPE model has been dominated by the analysis of the

partial-wave dispersion relations. Extensive work on this approach

in N-N scattering has been done by Scotti and Wong(zz), Kantor(23),

MacGregor(24) and Moravcsik(zs). Much of the early work on the partial

wave dispersion relation in 7-N scattering has been done by Hamilton

et al.(26)

-10 -



. phfysical cut

Fig. 1

We proceed to give a brief account of this matter. By
definition, the 7-N partial wave amplitudes with orbital angular

.momentum £ have the form

fg,:t(s) = [exp(2i62t) -11/2i g . (2-1)

The singularities of fg,t (S) are shown in Fig. 1. The

dispersion relation for f“(s) is written as

L I f ,.(s')
E ]
£,:(8 = =7 jast o * o L ogge (8D (2-2)
- —_—
(M) s' -8 2mi (unphysigal CISltS)

where Afgi (s) is the discontinuity in fu(s) across the cut at s'.
On the R.H.S. of Equ. (2-2), the first integral along the physical
cut gives the rescattering ,while . the second integral with various
unphysical cuts, can be regarded as the forces producing the w-N
scattering. The short Bofn cut, (M - ;—-) £ 8« M2 +2u2', due to the
cross Born term of the N-exchange, correspondstO‘the'long range forces
The contribution from the cut 0 € S € (M -p)2 arises from the N*-

exchange and is a comparatively short range force. The circle



-12-

ISI = 4% - y? arises from the channel m + T > N + N. The left half
of the circle gives the short range part of the w=N interaction.
However, the right half of the circle, and in particular the region
nearest the physical threshold S = (M + n)2 » gives a comparatively
long range interaction due to low-energy S-wave T—-% contribution.
The unphysical cut -®» & S £ 0 is due to very short range forces.
Since little is known about this region, Donnachie and Hamilton(27)

introduce a peripheral method, in which the very short range part of

the interaction is almost suppressed. They define

£,4(9)

F (8) = —————— o
+ -
2 q24 (2-3)
Instead of Equ. (2-2) the dispersion relation of ng(s) is now

written as

IF, ., (s") AF, . (S')
t +
th(S) =% fw ds' m L + 1 S dS'——;‘TT-S- (2-4)
(M+u) 2 s' - s 271i (unphysical ciuts)
where
Mg, (S)
AF . (S) = (2-5)
I 2 .
qcL(s)

The factor q-zz suppresses the contribution from the unphysical cuts
due to the unknown very short range force (i.e. from the left hand

cut - » £ § £ 0, and the left half circle), at the same time it also
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ensures the proper threshold behaviour offzés). However, at very
high energy the disgersion relation of Equ.(2-4) breaks down. This
is due to the presence of inelasticity at high energy and in addition
the very short range interaction becomes important and can no longer
be ignored. Further work to extend the peripheral method in the high
energy region has also been done by Donnachie and Hamilton(28) By
using the unitary sum rule to estimate the short range part of the

T-N interaction, an improved peripheral method can be achieved.

2. The One-éarticle-Exchange Potential, We review the work

based on the OPEP to solve the non-relativistic Schridinger equation,
which is similar in form to the Klein-Gordon equation used by us. The
similarity is illustrated in Chapter III, Section 3.4 . In general,
there are two methods of utilizing the OPEP. A direct method is to
calculate the phase shifts by solving the SchrBdinger equation with
the OPEP, The other is an indirect method in which phenomenological
potentials are analyzed in terms of OPEP.

Very extensive work in N-N scattering based on the direct
OPEP has been performed by Bryan, Dismukes and Ramsay(zgz Bryan and
Scott(ao) and Arndt, Bryan and MacGregor(31).

The first systematic analysis on the indirect OPEP in
N-N scattering has been done by Hoshizaki et al.(21). The difference
between the phenomenological nuclear potentials and the pion theoretical
potential in the range greater than u'l is examined in terms of OPEP,

The hard core interaction in the inner region is discarded as
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it is too comrlicated to handle using this model.

(32) (33)

Babikov analyzed the phenomenological Hamada-Johnson

potential in terms of OPEP in N-N scattering due top , w and an
I = 0 scalar meson with mass 2.5u. An attempt to explain the hard
core by a repulsive force due to the w-meson was made.

. Although the OPEP approach has been long used in N-N
scattering,it has not been very popular in the 7T-N scattering
problem. On the basis of the OPE model, Kikugawa(34)gives an

analysis of the low energy m-N scattering, due to the exchange of

N, N*, N**, a scalar meson and a vector meson. The isospin non-
(+) (=)
2% and the isospin flip amplitude “gt are expressed

in terms of the tangents of the phase shift 6iT(T = %u %-), with

flip amplitude o

the following forms

(+) _ 1 (1) (3)
@y = 3{tan6 + 21-=1n6,zli ]

- _1 (1) (3)
Aoy —-g[tanélt - tandli 1,
in order to analyze the experimental data. On the other hand, these
amplitudes, due to the OPE model, are determined by matrix elements,
corresponding to the lowest order Feynman diagrams. They depend on
the C.M. momentum and the coupling constants. The resonances

2T m

. (¥)
require that 62* > and hence that the LT

be infinitely large.
In the absence of N* and N** exchanges, this implies the coupling
constants are infinite. Thus it was necessary to take into account
the exchanges of N* and N** and identify the contributions of the

first and second resonances with the resonance regions of N* and

N** respectively. The Feynman amplitude for the resonance type
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(i.e. the exchanges of N* and N**) can be expressed in terms of the
pole type contribution and the contact type contribution. The pole
type contribution will be nearly equivalent to the pole approximation
in the dispersion relations. The coupling constants G§3 and Gig

of the NN*m and NN** 7 vertices respectively are determined by
fitting the experimental P(go and D(go phase shifts. For the isospin
non-flip S(%O and P (%0 amplitudes, in addition to the exchanges of
N, N* and N** a scalar meson is considered. The scalar meson
coupling constant is determined by minimizing the least square fit
of the experimental isospin non-flip amplitudes. Howewver, in the
case of the isospin flip amplitudes for S(%o and P (%9, instead of

a scalar meson, a vector meson is included. By fitting the isospin
flié S(%) and P(%O experimental data, Kikugawa cbtains the two

vector coupling constants.
G = -0.455
F_= -8.23

Thus the ratio

has a value ten times larger than the accepted value obtained from
the electro-magnetic form factor of the nucleon. Except for the

isospin non-flip S(%ﬁ amplitude, the fits for both the isospin
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flip and non-flip P(%) amplitudes and the isospin flié S(%Q, in the
energy region greater than 1.5 p, are rather poor. Moreover,

Hiroshige et al(35), extend the work of Kikugawa, by taking into
account the effects of the f°-meson exchange, in addition to the
exchanges of N, N*, N**,6 a scalar meson and a vector meson. They
conclude that if f°-meson be taken into account, another scalar

meson will be necessary to improve both isospin non-flip S(%é and

P(%Q states. Our approach is quite different from the: We do not
require the N* and N** exchanges, since we can reproduce the resonances
by considering the exchanges of N, ¢, p and £° mesons in our OPE
potential approach. Further, instead of determining each coupling
constant under a particular condition, as Kikugawa did, we try to
determine the coupling constapts once and for all by an overall fit
to the S~, P- and D~ wave phase shifts. It is hoped to obtain a

set of coupling constants with values as close to the accepted values
(36)

as possible. Recently, Dutta-Roy et al have considered the N, N*,

p and € exchanges in low energy m-N scattering. An interaction
Lagrangian model is used to calculate the scattering lengths for

the S- and P- waves. The results are in good agreement with the

experimental data.
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2.2 Assumptions for the OBE Model

Before we embark on an elaborate analysis of the OBE model
employed in our approach for the 7m-N scattering, we would like to

outline the basis for the OBE model.

Assumptions for the OBE model:
(i) The dynamic behaviour of the interaction is determined
from the matrix element corresponding to the lowest order
Feynman diagrams with no closed loop in them.
(ii) The boson lines in the Feynman diagrams designate the
existing mesons with known quantum numbers.
(iii) The higher order contributions are omitted.
(iv) The exchange of only even G parity mesons are considered
in the OBE model.
4 7
i
[
!
i
== :_——-y -
1
1
'y
\
\
T

Fig. 2 Representation of m-N scattering assuming
only OBE contributious

The relevant diagram is shown in Fig. 2, where B denotes

the exchange boson, which can have spin 0, 1 and 2. For B the isobars

with (I = 0, JP = even+) or (I =1, JP = odd—) are allowed. We have
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assumed several invariant principles usually taken for strong interactions,
such as time reversal, space inversion and charge conjugation, and the
coupling constants can take only the real values. For convenience, we
use natural units = c =y = 1.
(37)

14

Using the standard notation for elastic =N scattering

the S-matrix is defined as

M

)y ———————— T _.
V4E_E_w. £1

1271 2

= : L ok - - -
Sfi Gfi+ i(2am* § (P1 + dy P2 qa, (2-6)

where 0 9, and‘Pl, P2 are the initial and final four~-momenta of

the pions and the nucleons. Thus

1
Y] & =1, 2)

2+
. . w, = +
1 l), 5 (u q
where M and u are the nucleon and pion masses.

The invariant transition scattering amplitude T is of the

form

T = U(p,) [A(s, £, w) + "o B(s, t, w1 u(e,) (2-7)

u

where Qu = %{ql + qz)u and Yu are the Dirac matrices.* A and B

are invariant functions of two of the three Mandelstan variables

*
We adopt the notation developed in Ref. (38) except where specified
otherwise.
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2 2 2
S = (P1 + P2) , t = (ql - q2) . ua = (Pl - P2) . U(Pl) and U(Pz)
are the Dirac spinors for the initial and final nucleon states.
The invariant T matrix in Equ. (2-6) is computed by
drawing the Feynman diagram for the process in question. The

transition amplitude T is related to the 2 x 2 Pauli scattering

ampi.tude F by

F= M g (2-8)

where W is the total energy in the C.M. system.

In the C.M. frame we have

3 = -q,; |+ | = lg | = C.M. Momentum
1T T4y 0y i =
and also
E, = E, w, = w
i i

To evaluate the matrix elements of T in Equ. (2-7) we must

use the explicit representation of the two-component spinors for the

nucleon given by(38)

Y

v ey = Bt v’ (o) (r =1, 2), (2-9)

Qs
oy

E+M




in order to calculate

—_ 1 ' . ‘
U(Pz) U(Pl) = on [(E + M)-(E - M) (Qz-ﬁl + 1 0-421!@1-)] (2-10)
and
T u S - _ > -
T(R,)Y'Q U(R,) = Zy— [(E4M) (W-M)+(E-M) (W) (4,-4,+i0.4,x4,)1  (2-11)
wherxe

>

4, = G i=1, 2).
>
la; |

In the C.M. frame we also get

u(p,) 4, U(P)) = U(P,) 4, u(p,).

2.3 Elastic Force in Pion-Nucleon Scattering

The purpose of this section is to study and investigate
the significance of the elastic force in 7-N scattering. We consider
the direct pole term and the nucleon exchange pole term of m-N scattering

through the Feynman diagrams in Fig. 3(a) and Fig. 3 (b) respectively.

-~ /
~ 4
A ’I \\ /l
\
N /
a\ 4l"lz N S
< )
! VRN
\\ Il Q;/ \‘?.
- . - - / ~ = T,
€Y Ny (@) ¢ Y SYsTe ~f1y  (2) v TVsTi
= ' =p_ - P
P, P +q; P, P P=P -q, )

(a) (b)
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Following the Feynman rules (see Appendix A) we can write

down the T-matrix given by

2— 1 1
T . = =G U(P )[YST —_— YT, + Y. .T. —_— y.T
£ 2 £ 5 571 S'f
* P+, M * ¥ ~d,~M

1U(p,) (2-12)

where G is the m-N coupling constant. The first term in Equ. (2-12)

refers to the direct pole term, while the second refers to the

exchange pole term.

(39

In terms of the isospin projection operators

rewrite Equ. (2-12) in the following form:

> >
> > (l+T.t)
2— 1-T.t
T=-¢ U(Pz)YuQu U(Pl)ti"z"li"i - 2 2 It
(P1+ql) ~-M (Pl-q2) -M
with
> L 3
{roes {-5 for T ={2 state,
1
2

>

)

, We can

(2-12a)

->
where %-and t are the isospin operators of the nucleon and the pion

respectively.

According to Equ. (2—7), it turns out that

and

> > > >
B = _GZ[ (l1-1.t) . f(1+1.8)

2 .2 2 .2
(Py+q,) -M (Py-q,) -M

(2-13)
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If we use the scattering amplitude defined in Equ. (2-8),

together with Equs. (2-12a) and (2-11), we get

2 > >
- - G r (l-T-t) — — ~ ~ -+ ” -
F = o wl W) (W) [ (E+M) (W-M) + (E-M) (W+M) (qz.qluo.qzqu)]

G L NP U N

_) ~ ~
— (q,.q, + ic.q, x q,)1}
2(z-2¢) (EM) T (BHM) 2701 2 1

A ~ ~

+ > ~
= xf [f1 + f2 (qz.q1 + 1o.q2 qu)] Xi'

(2-14)
where X represents a two-component Pauli spinor, and
2
z =t 220 '22E“’ < o.
2q
Thus we have
2 > > > >
== S (-1.t) (E+M) _ (1 + T.t) (W—M)]
1 8T W (W+M) 2(2-x) (E-M)
(2-14a)
2 > > > >
= - & (Azt.t) (B-M) (1 + t.t) (WiM),
2 8w (W-M) 2(2-x) (E+M) °°
The partial wave scattering amplitudes can be projected
out by means of the following operation(37).
1 1
= 5 f_l [flpz(x) + fZPJLil(x)] ax (2-15)
where X = cosé = 9,9 and 8 is the scattering angle.
In a straightforward fashion, we substitute Equ. (2-14a)
into Equ.

(2-15) to obtain the partial wave amplitudes for Fig. 3.
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g2 (1-7.%) I . —
for = gmw U oo (romy | B (W) 538y oF (BM) (W) o €gan 3]
(1+7.£)
+t,
" F(em (LB (00, @)+ (E-) (g, (2)1. N

But since Qz(-z)=(-1)2+lQ2(Z), therefore Equ. (2-16)

can be rewritten as

2 .
= - G > (E+M) 1 (E-M) 1 R
for = " EEt T L Ry G0 T WM Z(ED e, !

> >
L (l+T.E) | (W-M) {W+M) (lzhi1 1. (2-16a)

HEDT S5 ey 242D - Gy %

One remark concerning Equ. (2-16a) is worth mentioning. The
first and second terms in the first parenthesis contribute respectively
to the s11 and the Pll states only. The term with the factor (-1)2

indicates the exchange character of the 7-N interaction.

2.4 Translation of Born A@glitudes into Potentials

The conventional method of translating a Born scattering
amplitude for a particular isospin state into a potential may be
described as follows: The Born amplitude is rewritten as a function

- > ->
of variables W, E, Q, and P where W and E are the total energy and

-

and energy of nucleon in the C.M. system respectively; 6 and-g are
respectively one half of the sum and the difference of the final

and initial three-momenta of the pion in the C.M. system. All Dirac
spinor contractions are then re-expressed in terms of the Pauli

spin contraction. The amplitude in the 3 momentum space is Fourier
transformed in the ; configuration space to obtain the energy
dependent potential, which in Born approximation gives back the

original Born amplitude.
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It has been customary to define the Born potential*

corresponding to the scattering amplitude F as

> >
U(z,E,W) = - 41f?Eiyg-fF(E,W,B,F)elp'r a’p (2-17)

> > >

where U has dimensions of enexgy squared, Q = (ql+q2)/2 and
> > > . -> . .
P = (qz-ql). The function U(r,E,W) is a sum of delta functions,
Yukawa functions and their derivatives multiplied by simple rational
functions of E, W, and spin and isospin factors.

In order to evaluate the Born approximation potential from
the scdttering amplitude, one considers the most general form of the
scattering amplitude in the present case with the following expression:

F > > h h (B > > + R
(E,W,Q,P) = l(E,W) + 2( ,W)(qz.ql 1o.q2qu)

(+ >, ig - x+ )

+ h. (E,W) f2% |
3 > 5 2 3
(@qy-q)) +m,

(2-18)

where h's are the enexrgy dependent funcfions. In order to express
> -
the R.H.S. of Equ. (2-18) as a function of variables W,E,Q and P,

we make use of the relations

> > +>2

2 2
q,-9; 20" - (E"-M)

and (2-19)

> > 2
qzqu =-0x

*
By Born potential we actually mean an "effective" Born potential,

which gives the expression of the Born amplitude as Equ. (2-26).
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The third term on the R.H.S. of Equ. (2=18) can now be

rewritten, after some simplification, as

2 2 2 > > >
> > 1 E ~-M + } : . . P
F3(E,W,Q,P) = h3(E,W)[- E.+ ( ) 4 /2 - i E__QJE___ 1. (2-20)
>2 2

;2 + m2 P +m
x x
We now take the Fourier transform of Equ. (2-20) according
to Equ. (2-17). The first and second terms are straight;-forward.

They give rise to the delta function and the Yukawa function respectively.

We now manipulate the third term. Consider the expression

L >
gelP.r
1 13.§x S d3P
3 >2 2
(27) P " +m
x
iB.7
=3.Qx_v*13_ri2 2d3P
(2m) P+ m
-m r
= 2 _33x7V & )
(4m) r
-m r
1 > > 1d4,e *
= c.Qxr = 3( )
(4m)
-m r
1 > >1 a4 ., ¥
= - — L - —_— ) . (2-21)
(4m) r dr r

>
We have replaced }: = ; x Q (for the proof of this see Appendix B I).

Thus

> 1 > > iB.r .3
U.(x,E,W) = - 4T / F_(EW,0.P)e" T a’p
3 3 3

(2m)
-mxr -mxr
- > 2 2 2. 1 e 1,71 a e
= 21rh3(E,W)[63 (x) (2E"-2M +mx) — L3z dr( — ).
4 r 2n

(2-22)
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The second term on the R.H.S. of Equ. (2-~18) can be

. -> -
written in terms of Q and P as
P (EW,3.5) = h,(&w28° - (%~ w¥) -i3.8 x B . (2-23)

After Fourier transformation the first term of Equ. (2-23)

will again give a delta function. We evaluate the second term here

by considering

[}

Q
10
H]
<1y
O

W
¥

.0 x(B) _ 83(2) . (2-24)

In the last step of Equ. (2~24) we have replaced the
-+ -++_. . .
operator 3 by l(P)oP . The operator [—16.Qx(P)oP] will give the -
Rl o -> . .
operator (1o.q2qu) again. (See Appendix B II)
Using Equs. (2-19) and (2-24), one can obtain the
Born approximation potential from the scattering amplitude in

Equ. (2-18), according to Equ. (2-17). This gives



> >
-> i -
U(Z,E,W) = 4 75%73-f F(E,W,0,8) eT°F ap

> > e 1 R 3
= ~47 {[hl(E,W) + hz(E,W)(qz.ql + 1o.q2xq1) - 5-h3\E,W)] 57 (x)

2 2 2
;h3(E'W)'( B N W il (2-25)
ar . 2 ! *“rdr r :
. . . (40)
The Born amplitude is defined by
R -i3.3
P = - 37 Ju@,ew e IBF g3 (2-26)

One can check the consistency of this calculation by carrying
out the inverse transformation of Equation (2-26), and we indeed obtain
the amplitude given by Equation (2-18).

In order to find the Born approximation potential corresponding
to the scattering amplitude in Equ. (2-14), one cannot use the straight-
forward method by just substituting to Equ. (2-17). In view of the
expression for the partial wave amplitudes in Equ. (2-16a), because of
the angular momentum factors such as (—l)l, 62"0 etc., we have to find
the Born potential for each particular angular momentum state. This
'partial wave' Born potential under the Fourier transformation and also
by the aid of Equs. (2-14) and (2-15), will give back the oéigin;l partial
wave “scattering amplitude as Equ. (2-16a).

As shown in Appendix D, we find the expression for the 'partial

wave' Born potential corresponding to Equ. (2-16a), in the following

expression
2 > >
2 _ & a-t.%) - - 1 .q.+ig.q. xq 3.
Vin(®) = o {(W4M)(W_M)[(E+M)(W M)62'°+(E M)(w+M)(qz.ql+1o.q2xq1)62_l,°(2
L (147.E) (M), .3,

+ (-=1) ——?%iﬁy———— } §7(x)
rent (——-—l+?'%){[(E+M) (W) (B0) (i) | 2] 1S - 040 5.1 & e T )

an 2W r (E+M) r dr' r '

(2-27)

J)]
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2Ew 2 "ﬁi
We have replaced (—___E-H_') by (1 + _—b) and obtain an energy dependent
2q 2q
expression for the range -ir-with m = Y2Ew - w2 - 2q2 which is real.

t
. 3 .. ' .
Here we insert the féctor 62'0, 62_1'0 (2 J) into the first and

second terms in the first parenthesis of Equ. (2-27) to ensure that the
respective contributions are only for the S11 and P11 channeis as
dictated by Equ. (2-16a). It must be emphasized that in Egu. {2-27),
the terms with the factor (-1)2 refer to the exchange force in the =N

scattering.

2.5 The 'Cut Off' Method and Singular potentials

If we substitute the Born potential in Equ. (2-27) into the Klein-

Gordon equation or the Schr8dinger equation, immediately we are confronted

-m r
with difficulties. The term %- g;-e rt ) appearing in the spin-orbit

potential is singular because it varies as r-3 near the origin. 1In
order to eliminate the r'-3 divergence in the origin, it has been customary

(22)

to introduce a 'cut off'. This has been done by Scotti and Wong for

the vector meson case with an exponential 'cut off' as suggested by the

(29) have

Regge-pole description for composite particles. Bryan et al.
employed a zero 'cut off' uniformly in all states for their OBE potential
with

vir) = {2 o<r<c

Vﬂ(r) + Vs(r) + me(r) cr (2-28)

where ¢ = 0.54 fm.

However, in a somewhat different manner we introduce the ‘cut off'

by replacing
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-mr “mxr ~m.xr
e.r — £ — - e - (2-29)

not only for the spin-orbit potential term but also for the regular
Yukawa potential term.

The ‘'cut off' will appear as a 'screening effect', the
larger the 'cut off' mass m,, the smaller the effect on the potential.
Later on, m has been regarded as one of the adjustable parameters to
fit the phase shifts. We confine ourselves to the condition mc>mmax,
where M oax is the largest mass among the exchange particles in our
OBE potential. The purpose of doing so is to prevent the'potential
from changing sign when the 'cut cff' is ;ntroduced.

Moreover, apart from the singularity appearing in the spin-
orbit potential, the next question we would like to pose concerns the
singularity from the 63(;)function. The 63(;) gives rise to a
contact interaction, which is a very short range force. As the
consequence of the 63(;) term which appears in the potential, the
Klein-Gordon equation or the Schr8dinger equation cannot be solved

numerically. It is therefore plausible to replace it by a very short

range Yukawa potential, i.e.,

m2 e-mcr
(2-30)

3 >
S (r) >
47 r

here we use the same ‘cut off' mass. The larger the L the faster
2

the term dies down. The factor Te is the normalization constant;
4
since
2 -m ¥
m c 3
-—cfer a’r = 1. (2-31)
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As may be seen From Equ. (2-27) the factor (:el-i},*.&zxal)

inside the parenthesis in the 53(?) function term also causes trouble,

since its exact value is not known. In order to escape from this

difficulty we parametrize it in order to fit the phase shifts.

Let
e : = L -
(= + 1o.q2qu) GP\ 1. (2-32)
It is perhaps worth mentioning that the coefficient
(E-M) (W#M) is a lot smaller than (E+M) (W-M) for moderate energy.
In view of Equ. (2-27) the contribution from the term with coefficient

(E-M) (W+M) (x + ig.&zx&l) is negligible as compared with the term with

coéfficient (E+M) (W-M). The justification for making this approximation

is that it does not affect our result at all in all other channels

except the Pll' Even in the Pll channel, this approximation will have

an insignificant effect on the potential.

After much effort, eventually we obtain a regular modified ‘partial wave'
Born approximation potential, which allows us to solve the Klein-

Gordon equation numerically. Thus

2 m’
_ c + > (E+M) (E-M) 3
V.=G {Q-1t.8)[ —= § + =—= G_§6 (= - T3]
™ N oW (W+M) 2,0 (W-M) P 2-1,0 2
. (1 > > -mcr
+(-1) +T.t) (W+M) } e
2 (E+M) r
. (1++ _{) —mtr | -m r
+ (176 AT (B (W-M) - (B-M) (W) |2]] - & )
2W ’ r r
> > -mtr —mcr
_i_1n X (1+t.t) (Ww+M) 1 4 e _ e > >
(-1) G'nN r ar ( - - Yo .L, (2-27a)

2w (E+M)
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G2

where GnN = an

For convenience, we write

-m_X -mtr -m_x -m x —mcr
2 _ c” e _e c-. ;_g_.e t e -
VﬁN(r) =A AZ( r r ) Y237 dr( r r ) (2-27D)
with
mcz: > > (E+M) (E-M) 3 L (1+7.E) (W+M)
Al = G‘er T {(1-1.t) [(m) 52,0 ('W——ﬁ)GP(sl-l,O(-z-- J)1+(-1) 2 (E4M) ]
(2-33a)
L. (14 1.1
A, = (-1) 6 T [(E+M) (W-M) - (E-M) (W+M) | 2| 1, ‘ (2-33b)
241 (1 47 .8)  (WHM) > >
A3 = (-1) G N > (E+M) o.L (2-33¢c)

where the A's are the energy, spin and isospin dependent functions.
Now we introduce the ‘'partial wave' potential projection
operator as Az , so that the total Born approximation potential corresponding

to Fig. 3 can be written as

. L

V“N(r) = i V"N(r)Az £ =0,1, 2, ... (2-27¢)
where Al has the property

A le> =68, 00>

for a particular angular momentum state |2> .

2.6 The Vector Coupling of P“Exchange in the T-N Scattering
i
NP )

/

4

/

[

o)

(1) _—_::=:>=::::{(2)
kp =a,-q \

|

ta
1

\

Py \
N m

Fig. 4
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In this section we discuss the p-exchange contribution in
7-N scattering according to Fig. 4. Lowest order perturbation
theory has been employed. The coupling of the vector meson to the
nucleon consists of two parts, vector and tensor. First of all
we consider the vector coupling. For the pNN coupling, corresponding

to vertex (1) in Fig. 4, we have the interaction Lagrangian density

as follows:

K

L ﬂ)‘ Yll T—¢BKu . (2-~34)

onN ~ FonN
For the pwm coupling, corresponding to vertex (2) in Fig. 4, we

have

L =g

) Km . u. 2 K
onm = Fpum € a¥e ¢mBu (2-35)

 where BX is the p-meson wave function with isospin component
u

k(k = 1, 2, 3), and '

is the conventional totally antisymmetric

tensor.

From the Lagrangian densities in Equs. (2-34) and (2-35),
we can write down the vertices (1) and (2) according to the

rules defined in Appendix A, i.e.,

(2-36)

NlA
A

- - H
vertex (1= gpNNY

and



. K& m \Y
vertex (2)= ~ig . n€ (ql+q2)

The propagator for p-exchange with 4-momentum kP is

given by(4l)
- (k k 2
Gy T k), (k) /2
(2-38)
k2 - m?
p p

where m is the mass of the p-meson. By the conservation of

4-momentum

The invariant T-matrix can be written out in straight-

forward fashion according to Appendix A, thus

- (k) (k) /m°]

1.2 Y %y p'u e v \ 2
= : U p B -
T = 9omTonn U(Pa) (q+a,) G(p;)  (2-39)
2 2 2
k - m
p P
. (42)
where we have made use of the relation
<t m > =it ) (2-40)
for the matrix elements of the isospin of the pion between the
states of |%2> and m> .
Since
k) (q, +a)’ = (@, -a), (g +q)° =0 (2-41)
p’v ql q2 q2 ql v ql q2
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Equ. (2-39) reduces to

v
T = E.iﬁ(p) Yy &t u(p,)
gpNngww 2 2 k2 - m? 1 . (2=-39a)
¢] [¢]

Substituting Equ. (2-39a) together with Equ. (2-11)

into Equ. (2-8), we obtain the expression for the scattering amplitude

> >
g g T.t S .
__ _pNNpmm e (E+M) (W=M) +(E~M) (W+M) Z (E-M) (W+M) o ( i0.45%47)
F= W E {- (E-M) (W+M)+ Z - x D + )
P 2, =%
(2-42)
where

2
mp
Z=l+.—.
p 2q2

Following the method adopted in Section 2.4, the Born

approximation potential for the vector coupling of p-exchange is

thus
-m r

v gONngnn ? Z 27 > e P
vV o= - : { 2L (E-M) (W+M) 83 (x) = [ (E+M) (W-M) + (E-M) (W+M)Z ] ———
[0} 2 o] r

4w 2w q

-mpr
S EMHM 14 e 3.z -
q2 T ar ( - ) o.L } . (2-43)

After introducing the 'cut off' to regularize the potential

as before and also replacing the delta function



. m2 ~M.r
§3(x) -+ = ,
4an r

we obtain the modified Born approximation potential for the vector

coupling of p-exchange as follows:

2 -m_xr
g..g > > m (\N‘%M)e c ~m,x
PNN"pTT T.t - [ (E+M) (W=M) + (E-M) (W+M) Zp] (i:g—

vir) = - {
e 4n 2 W 2(E+M) r
~mr -mx n_z
e _ (W+M) 1l 4 e _ & _
R ) (E4+M) r dr ( r r o . L} . (2-44)

2.7 The tensor coupling of p-Exchange in 7-N Scattering

In addition to the vector coupling of the p-meson to the
nucleon, there is a tensor coupling part, which is due to the anomalous

magnetic moment of the nucleon.

The corresponding interaction Lagrangian density is defined

by
K
f T
T _ PNN— uUv K _
oy = oM Vo 5 wBu'v (2-45)
where
B = 38- 58° . (2-46)
U,V pov v u

The coupling constants fp and gpNN can be related

NN

to the corresponding residues vy; ,Y, of the annihilation amplitudes for
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NN + 27 used by Frazer and Fulco(43).

g g

v _ “pmm “pNN

Yo = . B -3y, (2-47)

47

g _ f

YT s LTm P PNN_ _ 3My .

e 4m 2

In their study of the nucleon electromagnetic form factors,

Ball and Wong(44) estimate that Yy A -1.0 and that Myz/ylg_ 1.83.

(45) (26)

Bowcock et al. and Hamilton et al. have estimated

that

9. g -
2 ¢ LITPNN o 55 . (2-48)

4

From the p-width Pp A 100 - 125 MEV we obtain

2

2 < Zom

aT

A

2.5 . _ (2-49)

Therefore a universal constant can be adopted

n
gpﬂﬂ v gpNN

as postulated by Sakurai(46).

The T-matrix for the tensor coupling is thus
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(g, 06 o 6 ) g/me ]

£ o 5

g
PNNZpTT > 2> o Ha -
M T.t u(Pz)c (q2 ql_:)u

(q,+q,) B‘U () -

[V ge

T=i

ki = m

© N
'°

(47) (2-50)
For the Gordon Reduction of the current we have :

1

7. oy oL =g Moo BV N _
Tip,)vBR)) = TR ) (B 42 )" + 40" (p,-R)) 1 g(R)) . (2-51)

Substituting Equ. (2-51) into Equ. (2-50) gives

H _ u
- £ oonn 2o )[ZMY (%)) (qytq,)  (Py+P,) 7] o)
2M LA 2 2 u{¥1’ -
k= m
P P
(2-52)
Let
T=T +T,
where
vy (q.+q,)
- - > > 1 *2°u . _ _
1= ownTprn TEUE)T 00 Py (2-33)
P P

This term has the same form as Equ. (2-39%a) if we replace

- -
prNN gpNN .
g E’(PQﬁ(P )
pNNZpTT > <> 1 _
T2 = oM T.t k2 ; (ql+q2).(Pl+P2) ' (2-54)
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and also we have the corresponding scattering amplitude

2f g > > Y
__ Yo% 2 . w Y
F, = yw T [ 7% 11 u(p,)U(p;) (2-55)
4Ew + mg P

where Y = 2 + .
°r¢ o T 27
Substitution of Equ. (2-10; into Equ. (2-55) gives

2prngﬂn ?.% Yp R GRS
Fy== an 8MW [ - 1] [(E+M) < (E=M) (q2.q1+10.q2qu)] (2-55a)
zp-oc

According to Equ. (2-14) we get

_ _ 2fg T.t %
£, = - amw EMI 2 —= 1!

_ 2fg 1.t Y,
£ = “ar amq EM [Zp _x-ll.

The partial wave scattering amplitude corresponding to Fz can

be found by the aid of Equ. (2-15), thus

> >
_2fg T.E, (EHM) . (B-M) _ B
(£3.)5 = G o 2241 00,0 2(REDTI0021,0) Yp LEM Q) (Z))~(B-M)Q, ., (Z 0} .
(2-56)

Repeating the procedure as described in Appendix:D, the 'partial

wave' Born potential corresponding to Equ. (2-56) can be written as

5> >
% _ _ 2fgmi.t ey (e S NN 3 e 3,3
v, = 4_1r12-bTw—{[(E+M)69,,o (B=M) (q,-q)+i0.q,%q;) 8, , (5 -3)-(E-M)Y 167 (z)
Y -m_x > > -m,r
p 2, P g.L d e "p%.
- 37 [ B+~ (E-M) 2 ) - (E-M) = O3 )1}

As before, we write the Born potential corresponding to F2 as

2
v, (x) —i v, (r) AZ

where AR, is the partial wave projection operator.
After regularizing the potential as before, the modified
Born approximation potential for both the vector and tensor coupling

for p-exchange in the 7m-N interaction has the following expression
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= vY T
V, =V, + Vg
. e-mcr e-m T e-mcr . l.ﬂ_(e-m T e-m
= 1 r + BZ ( r - r 3rdr - r
r
(2-57)
with
- . r T 2 S M) 2f, 1 3 _
By= - G, g © {(1 Y ean * (G [ZUEROD, - (E-MG sH(,( ~IDA,
- (&MY 1} (2-58a)
oy 2f 2 qu
T p
= I=ia- = -M)+(E-M + (=) —= - ,
By = 6 gy {(1- 39 [(EADW-MHE )(W-I-M)Zp] (29 Pr(ean M)zp]}
(2-58b)
- Y
L ret 2£, (WM) 2. P L 2P _
By = G, ‘g~ {(1- ) G - ) o M} o.L, (2-58c)
8 A8 f
where G_ = —PNNZpr , and £f_ _oNN . Hence £ has a negative

value with a magnitude of about 2 from the information obtained from

the nucleon's electromagnetic structure.

2.8. The Scalar Meson g-Exchange in n-N Scattering

The existence of a g-meson is not well established, but there is
evidence for a n-pair in the S-state (T = 0, J= 0). Thus in order to
supply the necessary attractive part to the OBE potential, we take into
account the exchange of the g-meson. The mass and coupling constant of

the g are treated as two additional adjustable parameters in our potential.
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The {isoscalar o-meson with the 7m-m and N-N couplings

are as follows:

%Tﬂ= ugonn¢¢x ) . (2-59)
Lonn = Jonn V¥X , (2-60)

AN

where g and X are the coupling constants and wave function of the
o-meson.
The invariant T matrix for o-exchange according to the

Feynman diagram in Fig. 5 has the following expression

U (P2 yu (Pl)

onngoNN 2 2
ki - m
g (o]

= - ug (2-61)
where kp and m, are the respective 4-momentum and mass of o-meson.

In view of Equ. (2-8), we have the corresponding

scattering amplitude

My 1 v (PZ)U (Pl)

F = =
S W i z-x

(2-62)
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where
HF g g
Zo’=l+ -—% and GO=M R
2q 4m

Regularizing the singular part, the modified Born

potential we obtain

-m X -m X —mcr -m r -m X
_ e e _e la e _e
\ ¢, — ¢ * G r Y +CTE T3 r )
(2-63)
with
2
mC
¢, = -6, £ = (2-64a)
4W (E+M)
c, = -G [ (B+M) - (B-M)Z ] (2-64b)
o
-2 W
C; =G, Y— 1 _. (2-64c)
2W  (E+M)

2.9 £°%-Meson Exchange in m-N Scattering

+ . .
fo-meson (I=0, " m resonance at 1260 MEV) is first

(48)

observed in the reaction

- + -
T +P>+*n+uw + 71 .

Later, Sodickson et al.(49) showed in the concerning experiment that

the spin and parity of £° are 2+.
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(50) (51)

Hiroshige et al. and Ino et al. have taken into
account the £f°-meson contribution in the P-P and N-N scattering
respectively. They stressed that the effect of the tensor meson
is to cause a repulsive Eg force for triplet odd states and to
improve the fit of the 3Po phase shift. The fo-exchange contribution
to w=-N scattering has also been investigated by Hiroshige et al.(35)
In this section we investigate to what extent the £°-
meson exchanée will contribute to our OBE model. First of all let
us discuss the basic theory for a tensor field. The tensor field

is expressed by Tuv(x) (u,v =: 0, 1, 2, 3) which satisfies the

subsidary conditions

Tuv(x) = Tyu(x) symmetric inp and \Y (2-65a)
auT““(x) = 0 gauge invariance, (2-65b)

g Tuv(x) = 0 traceless condition. (2-65c)
Hv

We take the interaction Lagrangian density between the
tensor field and the nucleon as
9NN

- 7 - uv -
Logw = 4 = @20 — 3 vy T (2-66)

For the f%m coupling we assume the interaction Lagrangian

density to be
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g
e -
L™ ——:——[au¢(ql)av¢<q2)+au¢(q2)av¢(ql> (33,0 (a;)) ¢(q,)

uv
-4(q,) (2,2 ¢ (q,))]T , (2-67)
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|
N ik
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Fig. 6

The vertices (1) and(2)in Fig. 6 corresponding to the

respective interactions in Equ. (2-66) and Equ. (2-67) are

g
wrtex (1) = —= ¥ (e, + 2" (2-68)
2M
gfﬂﬂ o B
vertex (2) = - (ql+q2) (ql+q2) . (2-69)
i

The invariant T matrix is thus

N

9 amd
NN £ ~ u vV Tuv.af a B _
T= U (R)Y (P +R,) ——i—— (q,+q,) (q;+q,) ulp;) (2-70)
2My P - £

where N 8 is the numerator of the propagator of spin 2 particle.

-
’
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According to Appendix C, we have

-1 1 'H
Nuv;uB'— _E'Puvpa8+ 2 PuanB+:§PuBPva (2-72)
where we define
Pqu
Pu\) = gu\) - 3 ’ (2-72)
Me

here P is the 4-momentum of fo-meson.

Since
a —
Pm(q.1 + q2) =0

and also

v—
Pylp + B) =0,

we can now rewrite Equ. (2-70) as

Ienn?

fNNfrm 1l — 1u 2 ]

T= 5 U (R [y (By+R,), (@ +a)) =7, (q;+a,) (P +P,) (q,+q,) lu(®,) -
2Mu (P -mg

(2-70a)

From Equ. (2-9) we obtain

et H L
U(PZ)Y (P1+P2)JJ(P1) = [(E+M) ~ (E-M) (% + 1o.q2qu)]. (2-73)
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Substituting Equs. (2-73) and (2-11) into Equ. (2~70a)
together with (2-8) we obtain the following expression for the

scattering amplitude

1 W 2 w2 .
Fe=G, —— {[ (E+M) G = 3 )+E-M GG+ P =+ i0.4,x4,)]
2uW
1 W L/ >
+ [ (E+M) (zl+z2-ﬁ- Zz) (E-M) (zl+z2-lﬁzz) (mlc.qzqu) 1}
(Zf-:x:)
(2=-74)
with
G ngNgfnw
£ an ’
2
Me
2, =1+ —— , (2=75)
£ 2
2q
4u2- m2
Z. = £ ’
1 qu
and

4q2 + 4Ew + m

2 2q2
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According to Equ. (2-14) and Equ. (2-15) we can write the partial

wave scattering amplitude corresponding to Equ. (2-74) as

G

B w.2, _1 - (X4 2 1
foe =~ opw (LEM (@ - 536 + EME+ D T (L F12%1,0
HLEM) (2042, = 32,)Q (20) - (B-W) (2,+7,+ 3200, ()1} (2-76)

The 'partial wave' Born potential (see method described in
Appendix D) corresponding to Equ. (2-76), is thus

2G_7

L _f y @ .2 @2 3 _gye(e- W, 1632
Ve o {[(E+M) & 3)62’°+(E M) G+ 3)62_1'&(2 T) +(E-M) (2,+2,432,) 187 (r)
2 -mcr
- - il < e f
HU(ESMN) (242~ (2)) = (B=M) (2)+2,+ 37,) 2] 52 x
> > —mfr
W l o.L 4 e
- (B-M) (Z,+2,+ g2)) 50— == o= )} (2-77)

We employ the potential regularized method as described in
Section 2.5 to modify the Born'partial wave' potential in Equ. (2-76).

Eventually we obtain the following expression

-m r -m_r -m x -m_r -m r
2 e ¢ e £ e ¢ ld e £ e ¢
= - ) — — - \
Vgo () = D) =% * D= r ' *PyraE O r '’
where
2
Mo w2 w2, 3

Dy = G¢ g [EM(G - Py JHFEM G+ 3G, ) (G- +

W
+ (E-M)(Zl + ZZ + ﬁzz)] (2-78a)
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quz W W
= E(EM) (2,42, = Z,) = (E-M) (2,+2, 12.)2] (2-78b)
C_(E~-M)
- e (z4z + 2y 3.2 (2-78¢)

uw 1 72 M2

thus have the Born potential for f°-exchange as

(2-79)



CHAPTER III

Discussion on Klein-Gordon Equation

' The ideal solution in the study of n-N scattering problem
is to find a ;omplete and consistent theory, which is able to explain
all the physical phenomena involved in this problem, and in addition
does not violate any of the accepted laws,Unfortunately, up to now,
no such theory exists. To find a way out various approaches have
been attempted, either by using some assumptions, or by using some
approximation methods or both. One of the difficulties with these

approaches is that some invariance principles or laws m#&y- have to

be violated.

Our approach to this problem is to insert the sum of the OBE
Born potentials derived in the previous chapter into the Klein-Gordon
(K-G) equation and to solve for the phase shifts of the S-, P- and

D-waves.

Immediately, a series of arguments can be raised to question
the justification for using the K-G equation. The method requires

some discussion.

3.1. Lorentz Covariance Property.

First of all, we would like to discuss the Lorentz covariant
condition which the K-G equation should obey. The free particle K-G

equation certainly does so, but if we want to put in an interaction

- 48 -
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through the use of a potential, then we must find a potential
which can be absorbed into this equation in a Lorentz covariant
manner. Thus we may search for a four-vector Vu, and introduce

the interaction into the K-G equation by modifying the operator from

1 2
9, q K

to Lo 2
(q,~v)(q"-V7) = u" . (3-1)
KR
The Lorentz covariance property is preserved, and we know that in

the case of electrodynamics, this can be done by utilizing the four

vector potential AM and the minimal coupling.

Furthermore, 1f we consider the case of a Lorentz scalar interaction
U (for example, the interaction of a pion with a scalar (i.e. no spin)
particle), the process can be regarded as a scattering problem, in
which the pion is scattered due to an external field U. Then the

K-G equation
(D+u2)¢=- ug (3-2)

is still manifestly covariant.

Now we pick the C.M. frame. For elastic scattering, we have
O] =Wy, where Wy and w, are the energies of the pion before and
after scattering respectively. 1In Fhe static approximation, the inter-
action U can be treated as time independent. The pion wave function @
in Equ.(3-2) is then separable with respect to .; and t, and Equ.(3-2)

reduces to the following form
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( V2 + q2)¢ = U@ : (3-3)

where ¢ =u/w2 - “2 is the relativistic C.M. momentum and U 1is

now time independent.

At this point it should be noted that the Bethe-Salpeter

(52)

equation would give a Lorentz covariant description. By the

assumption of a static interaction one loses the propagative character

of the interaction.

The scattering amplitude £(©) can be obtained from the
asymptotic expression of @(x), i.e.,

dadl ik r

B » T &+ & o).
r

On the other hand, one can obtain the invariant amplitude from

(53)

field theory. Moller showed that the invariant amplitude for

zero spin is relafed to £(8) by

- ¥ -
A= S f (3-4)

where W 1is the total energy in the C.M. system. However, even
though Equ.(3-3) is not an invariant form, through Equ.(3-4), one
can still obtain the invariant amplitude, which also gives the

correct unitarity condition.
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In thé case of n-N scattering, the problem becomes complicated
because of the presence of the nucleon spin. There appears to be no
simple procedure which would yield a manifestly covariant expression
for the interaction. We consider the problem as if the pion were
scattered by an external field which is due to the OBE potential.

An examination of the Born potential U(r) that was derived in

the previous chapter, shows that even apart from the assumption of the
static approximation it contains terms such as ?-L' for which co-
variance is not manifest. The energy dependence of U(r) may cause
nonlocality in the coordinate space; in addition, the :: term is

the non-relativistic form of a relativistic interaction. Nevertheless,

e d
a term such as ¢.L. 1is well defined in the C.M. System, where one

may expect the form of the interaction to be simplified.

Further, if the n-N interaction is identified with the OBE potential,
in the light of Feynman diagrams from field theory, we would be able
to obtain the kinematical picture of the interaction. The object is to
see, if to a certain extent, this '"semi-phenomenological" potnetiala
will be able to reproduce some of the characteristic features of the n-N
scattering problem. Since in the C.M, frame our Born potential does not
depend on time explicitly, for elastic scattering the energies of the
pion before and after scattering are the same. In the static appro-
ximation, the K-G equation can be reduced to the form of Equ.(3-3).

A proper covariant form of the K-G equation is not achieved, nevertheless’

the relativistic connection between the energy and momentum of the
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scattered particle, i.e. the pion, is correctly described. In addition,
the ?-I'.’ term is uniquely defined, i1f we project out the Born poten-
tial into partial wave channels, We can mateh, in Born approximation,
the partial wave scattering amplitude f‘+ with the f£+ from the in-

variant matrix element given by field theory. The K-G equation can

be used as a device to impose unitarity on a Born approximation.

3.2, One Particle Theory

We next proceed to the discussion of the one-particle theory in
the K-G equation. One may argue that"the K-G equation has no place in
a one-particle theory(sa)? The major underlying difficulties are two-
fold. First, the probability density is not positive definite. - Second,
there is the possibility of negative energy solutions. Obviohsly, the
availability of negitive states without lower bound would lsad to collapse
if the energy is allowed to transfer away from the particle in question.
This difficulty will not arise if we stick to friee particlés, or particles
in stationary states of static potentials. Suppose a particle is
originally in a positive energy state. In the absence of any interaction,
there will be no transfer of eﬁefgy, and it will always remain in a

positive energy state. Furthermore, from the expression of the proba-

bility density

- L ¥ . _ E %

for a free particle in a positive energy state, p remains positive

definite for all times by virtue of the equation of motion. This is
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8till true for a stationary state of positive energy in a static
potential. The one-particle interpretation of the K-G equation in

the presence of a non-static external field is no longer as simple

as in the above special cases. However, even though it is not possible
to give a complete satisfactory physical interpretation for the K-G
equation in the presence of an external field, Pauli and Weisskopf(ss)
showed that there is no difficulty in the one particle interpretation

if the K-G equation is regarded in the same sense as Maxwell's equation

for electroﬁagnetic field and quantized in the usual fashion. Furthermore,
Feshbach and Villars(56) have presented a unified picture of the one-
particle treatment of the K-G equation by employing a two-component

wave function in a two dimensional charge space with an indefinite metric.
The norm of the state vector i1s +1 for a positively charged particle

and -1 for negatively charged particle. A treatment for the neutral
particle is also described. 1In the light of the field theoretical
reinterpretation the one-particle K-G equation with interaction continues to
be of physical relevance. We shall proceed with the discussion as

follows(57).

-
Classically, the probability current j(x) of a field is related
- -

to the probability density #(x) through j(x) = 8(x) v(x), where
-
v(x) is the velocity field. Together, they satisfy the continuity

equation

d = 7
S e+ V-i =0 .
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In non-relativistic quantum . mechanics, p(x) is given by Id(x)|2
- -2 '
- -1y
and the velocity v = B - 2V | Indeed, we can verify from

m M
o 1 Kk, >
Schrédinger equation that the obvious generalization j?k) = zﬁ'd (~iV) d(x)

is indeed the probability current, in the sense that the equation of

continuity is satisfied.

-
If we take relativity into account, then v = = '-:igl'; ,

o JVH4u

which is a non-local operator. Nevertheless, the energy-momentum
operator -18“ is local. If we calculate, for example, the speed of
propagation of a wave function ¢( ;;t) as a function of time (assuming
say 8(;10) = 5(;5), we will get the anmomaly .- that although the
energy density is propagating with a speed not greater than tﬁé speed
of light, the same is not true for the probability density. We recall
that similar anomalies occur in classical electromagnetic theory,in that
group velocity (the velocity of energy propagation) never exceeds the
speed of light, but the phase velocity (which carries no physical
information) may. In a similar way, we insist that the speed of energy
propagation is more physical than the speed of probability propagation,
and we do not run into conflict with causality. If that is all we

say, however, we will have to rule out probability |d|2 as having any
direct physical meaning at all, contrary to the usual assumption of
quantum mechanics. This may be salvaged by noticing the following. The
apparent violation of causality for the propagation of probability

- density is certainly related to the non-locality of the velocity operator
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- )
-i‘?é—vz + uz. But the size of the non-local region of this operator

is only of order of u-l, the Compton wavelength of the particle.
Quite obviously then we may salvage the probability interpretation
by assuming that a relativistic particle can never be localized to

anything smaller than its Compton wavelength.

We can also verify from the K-G equation that the energy-

momentum density

<>
$ (x) (-1 3" ) dx),

La-]
It
N|=

is divergenceless.

K =
a“ PP(x) = O

i.e., that energy is conserved.

As a consequence of the foregoing discussion, one can conclude
that the one-particle theory interpretation of the K-G equation is

still adequate to a certain extent.

Now we would like to discuss, to what extent, the one-particle
theory interpretation remains adequate in our approach. The OBE
potential can be looked upon in two equivalent and complementary ways.
One is as the description of a peripheral. interaction, through the
one-particle-exchange between the pion and the nucleon. The other is
as the description of the behaviour of a field. Based on the field
theoretic approach, the n-N scattering process, can be illustrated

by the aid of Feynman diagrams.
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Fig. 7 gives the lowest order Feynman diagram. When we
consider only the case of the pion field, the interaction comes
from the boson-pion vertex. This in effect, makes it a one-particle
thebry problem with an external field (see Fig. 7b), in which the pion

is scattered.
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Fig. 8 refers to a two-Boson-exchange Feyman diagram for second

order Born approximation. The interac ting pion field is described

by two external sources acting at different times. The picture (Fig.8b)
shows that the problem can be regarded as the one-particle theéry problem,
in which the pion moving forward in time with positive energy is scat-

tered at a earlier time by U1 and at a later time by U2.

N s 7
4 // - //
| B e T(2) + St
--------- A

N s L 7/
[N |
\ v XW > \K/
B I 7\ VRN
7\ =17 L\
Z===z======:b \ T X n-l- \
AN (1) \
A \ \\
\ \
N - \\Tt \ Jt+
(a) (b)
Fig. 9

In Fig. 9, the Feynman diagram is still from the second order
Born approximation. However, the interaction is not an ordinary
scattering process. At vertex (1) there is a virtual pain creation
process; on the other hand, at vertex (2) there is a pair annihilation process.
The particle and antiparticle pair creation‘or annihilation in the inter-
mediate state of the interaction field, gives information beyond a one-
particle theory interpretation. 1In the same manner, if we consider
more complicated Feynman diagrams corresponding to higher Born appro-

ximations, the interacting field will involve the many-particle theory

3811
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problem. We follow the method developed by Feynmag(sa) for the
treatment of the K-G equation with an interacting field. In the
present case, the Born potential is the interacting field. As
mentioned before, the higher Born terms involve particles as well

as antiparticles in the intermediate statés. This treatment avoids
the Klein paradox for the K-G equation in asymptotic states. A
completely satisfactory expression for the interaction including
higher Born terms is not feasible. For processes of increasingly
higher orders, the complexity and difficulty increase rapidly, and

the method becomes impractical in the present form. It does, however,
seem satlsfactory to a good approximation, to define the matrix elements
of all real processes in the lowest order Born approximation (see

Fig. 7). This has the advantage of reducing the many-particle problem
to the one-particle problem, so that there is only a positive energy
particle moving forward with time, and so that the causality condition
of the Green's function is satisfied. It appears that we now have
available a method for applying the K-G equation in the n-N scattering,
where the interaction is analyzed in terms of invariant amplitudes

in Born approximation, although a complete covariant form is not achieved.
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3.3. Assumptions for the K-G Equation Approach

Based on the above discussion, we would like to summarize the
agssumptions leading to our potential approach for the n-N scattering

while using the K-G equation.

1) - We fix our frame of reference in the»C.M. System, where the Born

potential derived gives the correct kinematics of the x-N interaction.

2) The dynamic behaviour of the interaction is determined from matrix

elements corresponding to the lowest order Born approximation.

:3) To the extent that the interaction is static, we sacrifice the

’

Lorentz covariance property*.
4) The whole treatment is not relativistic, but rather "semirelativistic",
in the sense that the energy and momentum of the scattered particle

are treated relativistically.

In our approach, we use the Born potential for U(r) in Equ.(3-3),

where

U(r) = V“N(r) + Vg(r) + Vp(r) + Vg (r). (3-5)

*
As mentioned previously, only the Bethe-~Salpeter equation could give

an adequate representation of the Lorentz covariance property.
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3.4, Why Not the Schrddinger Equation ?

Equ.(3-3) has a form similar to the time independent Schrodinger
Equation . As a matter of fact, in the low energy limit, it gives the

expression of the Schrddinger equation.

It may be argued that, if the Lorentz covariance condition has
been violated in the K-G equation, it would be simpler to use the non-
relativistic Schrddinger equation. As we know, the Schrodinger equation
is adequate only for low energy problems. In the case of high energy
problems, it breaks down, Many people(sg) do use the Schrodinger equation
for the high energy problem, with a relativistic correction. Instead
of using the actual momentum g ==J3—ﬁ;—i: they replace the q with the
relativistic momentum gq = sz - uz. Then the Schrodinger equation will
have a form equivalent to Equ.(3-3), which is used in our approach, with
U = 2MrV » where V 1s the actual potential of the problem with dimensions
of energy, and Mr is the reduced mass of the system. As Goldberger and
Watson(6o) observe, "Actually the difference between the K~G equation
and the Schrédinger equation (except for a profound difference in principle)
is not so great under any circumstances". It is curious to note that, the
two equations begin with two quite different mathematical formulations.

Their apparently dissimilar approaches, under certain circumstances, are

shown to be mathematically equivalent.



- 61 -

CHAPTER IV

Phase Shift Solutions and Numerical Computations

4.1. Phase Shift Calculations

Since U(r) is a symmetrical potential, the wave function ¢

is separable.

This leads to the radial equation

2
du AL+ 1

L2 - 22ED ) w0 =0 (4-1)
dr r .

Note that &(o) must be finite, Equ. (4-2) implies the

boundary condition

uz(o) =0

for the radial wave function uz(r).

The phase shifts are found by matching the radialwave functions,
the spherical Bessel functions jz(qr) and spherical Neumann functions

nz(qr) in the asymptotic region. Thus the phase shifts are given by

w(R)
o [1-R g ,® ] j ,(qR) + qR j)(qR)
Sz = tan lim (4-2)
R u'(R)

[1-R ;j(—R)- In,(qR) + R n)(qR)

For elastic scattering 83 is real. A repulsive potential gives

rise to negative phase shifts. On the other hand, an attractive potential

yields positive phase shifts.
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4.2 Numerical Computation

Since Equ. (4-1) cannot be solved in closed form with
our potential, it has Been customary to employ numerical calculation
techniques. By using the conventional series expansion method(Gl),
we will be able to obtain a good approximation for the initial
value of uh(ro), when r, is sufficiently small, e.gq. r, = 0.01.
Similarly we can also obtain the first and second derivatives of

Y., i.e., hi (ro) and ﬁﬁ (roi respectively.

With w(z ),u) (r)) and & (r) as initial values,
we can solve Equ. (6?1) numerically by employing the Runge-Kutta-
Nystrom method(62). The logarithmic derivative is calculated up
to the asymptotic region (i.e. R) 4.5f). The initial step size
h = 0.0l is used. For sufficiently large r we change the step size
to nh where n = 2,3, 4 ... . At the beginning of each new step
size we first calculate the phase shifts, and then compare them
with the phase shifts calculated immediately before. When the
two agree to within an acceptable amount we proceed with the
calculations, otherwise we repeat the old step size for a greater
range until we can change the step size. 1In fhis manner, we carry
on our calculation up to r = 5f. In this region, the potential
has no further effect on our phase shifts.

Very intensive computer work is involved, both time

consuming and laborious. The actual calculation was performed
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by the McGill IBM 360/75 computer. We tried to fit the CERN
phase shifts up to 700 MEV, for S~, P- and D- waves. Masses
of nucleon and bosons are taken in terms of pion mass (140 MEV)

as follows:

nucleon mass M = 6.7

vector meson mass m.p = 5.5

]
O

tensor meson mass mf

scalar meson mass mb = 3.

The search for a fit is performed and is subjected to

the following restrictions:

i) The pseudoscalar m-N coupling constant is given a value between
14 ~ 15,
ii) The vector meson p coupling constant must be bounded

within the range between 2 v 3.., and we fix the

value of (gop = -1.83 in accord with Ball and WOng(44).
iii) The P33 phase shift has to pass through 90° at about
194 MEV.
iv) The contribution from 0 £ GPS 1 does not affect the

J = %-state P-wave significantly. We set GP = 0 in

order to eliminate one parameter.

v) The 'cut off' mass ié subjected to a lower bound limit

m, > me according to Chapter II, Section 2.5.



Under these conditions the phase shifts are expressed
as a function of only three freely adjustable parameters (i.e.
m s G o and Gf) and one partially adjustable parameter (i.e.
m_ >m.).

c £
It is found that if the P resonance is fitted, the

33
potential is usually too strongly attractive to produce negative
P3l phase shifts. The P13 phase shifts also have a tendency to
be more positive as the energy increases. (A more elaborate
discussion regarding this point will be given in the next chapter.)
We abandon hope of a reasonable fit for the P31 phase shift if
we insist on having a (3,3) resonance at the correct energy, but

try to improve the P 3 phase shift especially in the high enexgy

1
region. The inclusion of a scalar meson in our OBE potential un-
doubtedly enhances the attractive potential in all channels. To
improve the negative phase shifts of 531, P31’ Pl3 and D35 we

discard the scalar meson in our model. Furthermore, we eliminate

two freely adjustable parameters m and Go .

4.3 Computational Techniques

Much effort has been devoted in computational work
to incorporate the requirement of a (3,3) resonance with’the
prediction of the overall qualitative and quantitative features
of the S-, P- and D-wave phase shifts.

In this paragraph we would like to illustrate the
procedure used to obtain the sets of parameters with a P33 resonance

at the correct energy. We adopt a systematic way of searching.



-65-

Although we expect finally to obtain parameter values in agreement
with those given in conditions (i) and (ii) of Section 4.2 , we

start calculations with small values of parameters other than m,
(fixing m. > m. ) and increase them one at a time to see the effects on
the S-, P- and D-wave phase shifts and to ensure that no bound states
of the system have been reached.After these checks have been completed,
we pass on to the consideration of the P33 resonance. Now we choose

a pair of values for qu and Gp'which are within the critical ranges

( given in conditions (i) and (ii) of Section 4.2) and find values of
m, (>>mf) which will give the P33 resonance at the correct energy for
given values of Gf' It should be remarked that for some values of Gf

it is not possible to find any m, to satisfy the constraints . We

then repeat the procedure by choosing another pair of values for

GwN and Gp .

Several sets of parameters which satisfy conditions (i), (ii),

(iii) and (v) in Section 4.2 are given in Table III.
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TABLE IIL

Values of m_ with fixed values of G and G
c N P

Gy = 14.0
G
P 2.0 2.2 2.5 2.8 3.0
G
£
12 10.862 10.845
13 10.935 10.920 10.895 10.872 10.858
14 10.930 10.918 10.895 10.875 10.861
15 10.927 10.914 10.898 10.876 10.862
16 10.918 10.906 10.890
17 10.908 10.898 10.882
Gy = Lol Gy = 15.0
G
P 2.0 2.2 2.5 2.0 2.2 2.5
G
f |
11 10.875
13 10.893
14 10.893 10.880 | 10.860 | 10.838 10.825 10.805
15 10.890 10.878 | 10.858 | 10.838 10.828 10.808
16 10.885 10.873 | 10.855 | 10.834 10.825 10.808
17 10.878 10.867 | 10.8%50 | 10.830 10.820 10.805
G, =2.0
GnN
6, 14.0 14.2 14.4 14.6 14.8 15.0
15 10.927 10.908 | 10.890 10.872 10.858 10.838
17 10.908 10.893 | 10.878 10.860 10.846 10.830




CHAPTER V

Results, Discussion and Conclusion

5.1. Results

As seen from Table I, within an enérgy range of 0 to 700 Mev,
there are resonances conjectured from the phase shift analyses - a

*
P33 at 194 Mev (1236 Mev ), a P 1 et 532 Mev(1470 Mev) and a D, at

1 13

611 Mev (1520 Mev). 1In order to study the effects on the P33, P11 and
D13 resonances due to variations of Gf and the corresponding m s
we choose a random G

- Gp pair, say G _ = 14.4, Gp = 2.0 from Table III.

1N nN
With these values fixed, we look at the behaviour of the phase shifts
for different Gf and m,. In Table IV, three values of Gf (with

positions of corresponding resonances) are given.

Table 1IV
Cg m, P3q P11 D3
13 10.893 194 600 616
15  10.890 194 500 512
17 10.878 194 432 362

* The energies in the brackets refer to the total energies in the

C.M. system.
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A plot for P33, P11 and D13 phase shifts against the energy
using the parameters given in Table IV are presented in Figs. 10,11

and 12 respectively.

As shown in Fig. 10, the smaller Gf value will give larger

positive P33 phase shifts in the low energy region. The situation
is reversed after passing the resonance. A larger Gf value will
give a bhetter fit for the P33 phase shifts. However, the improve-

ment is not marked in the high energy region.

In the case of the P11 channel, as seen from Fig. 11, the

change of the Gf value affects the P11 phase shifts considerably.

The larger the Gf value, the lower the energy at which the P11 re-

sonance occurs (see Table IV). At the same time, the P11 phase shifts
in the low energy region tend to have smaller negative values initially
and the phase shifts become positive at a lower energy. The best fit

for the P state is when G_. =15 and m = 10.890.
11 £ c

The effect of Gf on the D13 channel is the same as that in

the P,. case. As shown in Fig. 12 the larger the Gf the more the

11

deviation from the CERN phases. This is due to the very strong
attractive contribution on the D13 state from the fo-exchange. The

D13 resonances for different values of Gf are given in Table IV.

Among the sets of parameters appearing in Table IV, we select
the 'best' sets and list them in Table V together with the energies

1) ]
of the P33, P11 and D13 resonances. These'best' sets of parameters
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give a reasonable fit to the phase shifts in the maximum number

of channels and reproduce the principle features. The most reason- -
able fit in Table V is found for the parameters of set I. The results
for this set are presented in Figs. 13 to 22. There are three re-
sonances P33(194), P11(600) and D13(616) which agree very well with

the CERN and other phase shift analyses (see Table I).

Table V
Set Gy 6 Ce me P33 P11 D13
I 14.0 3.0 12 10.845 194 600 616
i1 14.0. 2.8 12 10.862 194 606 614
III  14.0 2.5 13 10.895 194 532 560
v 14.0 2.2 13 10.920 194 534 572
' 14.0 2.0 13 10.935 194 536 573
VI 14.4 2.5 15 10.858 194 488 502
VII 14.4 2.2 15 10.878 194 493 510
VIII 14.4 2.0 15 10.890- 194 500 512

The eight sets of parameters, as shown in Table V, give more or
less the same results. A few remarks concerning the small deviation
among these eight sets of parameters are worth mentioning. The

most significant feature of increasing GnN is to improve the fit

of P13, D35 and D15’ but destroy the fit of S11 and S31. The in-
crease of G_ will cause the most effective attractive potential in
the J = £ - % » T = % states; a small repulsion in J = £ + %, T = %

states; a greater repulsion in the J = £ - %, T = %



3

1
states; and a slightly attractive potential in the J = 4 + 3 T = 2

states. In the case of fo-exchange, since it has no isospin (I=0),
both T = % and T ='% isospin states receive repulsive contributions
from the contact interaction term and attractive contribution from

the Yukawa term. The attractive Yukawa contribution is stronger

than the repulsive contact interaction contribution, therefore the
S-wave receives attractive contribution_from the £°-meson weaker in

low energy region, stronger as energy increases. For the P- and D-waves,

- >

the L-S term also contributes in addition to the contact interaction

> >
and the Yukawa terms. The L:S term gives rise to a strong repulsion
for the J = £ + % states and a stronger attraction to the J = £ —'%

states. The total contribution to the J = !~+~% states is moderately

attractive in the low energy region and becomes more strongly attractive
as energy increases. However, for the J = /£ - % states the very

strong attraction dominates, especially in the high energy region. One
can retrieve the experimental features such as the resonances of P33

P,, and D., by involving a large value of Gf. Nevertheless, in order

11 13
to maintain a reasonable fit for the negative phase shifts P31, P13

and D35

value of Gf is not allowed to be too large.

and the smaller positive phase shifts for D33 and D15, the

As shown in Talbe V, one can obtain better resonances for P11

and D13 from Sets IV and V. However, in Sets IV and V the phase

shifts of P13 and D35

The parameters in Set I, on the whole provide a 'best' fit compared to

tend to be more positive as the energy increases.

the rest of Table V.(Inview of demands on computer time a least square

fit is not attempted.)
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5.2. Discussion

The model developed in Chapters II, III and IV has shown a
satisfactory fit to the CERN phase shifts except for the discre-
pancies appearing in a few channels. This section is devoted to a
detailed examination of the fesults appearing in Figs. 13 to 22 per-
taining to the parameters of Set I in Table V. Some of the results
that we obtain have a much deeper significance than first meets the
eye. The various aspects of these phase shifts that deserve special

emphasis will now be discussed,

1. Results for S-wave

31°

Examination of Fig. 13 reveals that our fit for the 831 phase
shifts has a larger negative value on the whole. As the energy in-
creases, the S31 phase shift tends to approach the CERN value. The
reason for this discrepancy can be explained as follows: the strong
repulsion resulting from the 'mucleon-exchange'* gives very large
negative phase shifts especially in the low energy region. As the
energy increases, the attractive contribution from the fgexhhagge
becomes evident and depresses the repulsion due to the 'nucleon-ex-

change' in the high energy region. This is why the S31 phase shift

* The term 'nucleon-exchange' here refers to the direct and exchange pole
terms for n-N scattering developed in Section 2.3,
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decreases in the negative sense, at high energy region. The in-
clusion of a scalar meson, which gives strong attraction in low energy
region, will be able to decrease the strongly repuslive effect at

that region, and result in a better fit for the S31 phase shifts.

1’

In the c#se of the Sll phase shift as shown in Fig. 14, the fit
is not satisfactory. 1Instead of having a plateau in the low energy
region (< 300 MEV), the S11 pﬁase shift increases monotonically and
almost linearly with the energy. On the whole, the attractive con-
tribution is not strong enough to give larger S11 phase shifts. The
defect comes mainly from the strongly repuslive 'contact interaction'+
term of the 'nucleon-exchange'. If the valwe of Ger is allowed to
decrease below the accepted value, and at the same time a scalar
meson exchange is taken into account to provide a strongly attractive

contribution especially in the low energy region, a better fit for the

S11 phase shift can be achieved.

2. Results for the P-wave

33°

In the case of the P,, state, both 'nucleon-exchange' and p-

33

exchange give attractive contribution. However, without the inclusion
o

of the f -exchange, the attraction is not strong enough to produce

a (3,3) resonance at the energy of 194 MEV. The P33 is dominated by

the strong attractive force due to fo-exchange. A look at Fig. 15,

-

+ The contact interaction term refers to the modified 63(r) term,
-m
i.e., mC e c .
4t T
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reveals that on one hand, in the low energy region (< 194 MEV),

the attractive force is too strong, and on the other hand, in the
high energy region (> 300 MEV), the attraction is not strong enough
to give the required large positive phase shifts. By increasing
the coupling constant Gf, we are able to improve the fit,of the P33
phase shifts in the low energy.region (see Fig. 10). However, in

the high energy region the improvement is not marked. .

31

The mosf noticeable vidlation occurs in the fit of the P3L phase
shift. We are obviously faced with a number of glaring disagreements.
The phase-shift analysis by CERN shows that in the P31 channel the
potential must be moderately repulsive, which makes it possible to
produce negative phase shifts. The enormous positive P31 phase shift
appearing in Fig. 16 reflects the presence of a strong attractive poten-
tial. Careful study has been given to this channel, in connection with
the contribution of each exchange particle to the potential, in order
to analyze the discrepancy. 1In the 'nucleon-exchange' contribution; the
‘contact interaction’ term gives a strong attractive force; the Yukawa
interaction provides a moderate attraction; while the Evg force
produces a strong repulsion and exhibits an even stronger i1epulsive
force as the energy increases. Consequently, the 'nucleon-exchange'
term contributés . an appropriate repulsive force necessary for this
channel. For the p-exchange, the potential receives repulsive contri-

butions from both vector and tensor terms, but it is not as strong as the
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'nucleon-exchange' contribution. However, in the case of the £°-
exchange, the repulsive contribution from the ‘contact interaction
term is not strong enough to outweigh the very strong attractive
force due to both the Yukawa and T.3 terms. The effect of the
tensor-meson is to produce such a strong attractive force, that it
suppresses all the repulsive effects from other contributions.
Needless to say, this results in the large poesitive P31 phase shift.

The P,. phase shift can be improved considerably provided the £0-

31
exchange is not taken into account in this channel. Otherwise a

very strong repulsive core is recommended to be added to the P31

o
channel to overcome the strongly attractive effect due to the f -exchange.

P13’
As shown in Fig. 17 the fit of the P13 phase shift is reasonably
good up to 200 MEV. As the energy increases the phase shift deviates
markedly from that of the CERN results and tends to be more positive.
The disparity is mainly due to the strong attractive f force
contributed from the fo-exchange. The repulsive contributions from

both the 'nucleon -exchange' and p-exchange are incapable of cancelling

this attractive effect in the high energy region (> 300 MEV).

11

The most successful fit in the model is the P11 phase shift.
Most theoretical medels of n-N scattering fail to produce the correct

resonance feature in this channel. As shown in Fig. 18 the P11 fit
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is not only good qualitatively but alee quantitatively. The P11
phase shift remains small and negative in low energy region, and

has a shallow dip at about 150 MEV at a slightly higher energy than
that of CERN (i.e. 100 MEV). It becomes positive beyond 250 MEV. The
small negative phase shift region is slightly larger than.the one
from CERN. As the energy increases the phase shift increases swiftly.
Eventually, a resonance at approximately 600 MEV is achieved. The
CERN P11 resonance is 530 MEV which is slightly less than the Roper(g)

P,. resonance (580 MEV). The P11 resonance in our fit agrees very

11
well with both of them, but is near to the Roper one. The P11 phase
.shift can be improved considerably by increasing the value of Gf

from 12 to 13 or 14 (e.g. see Fig. 11). By so doing, however, we

shall cause more deviation for the P13 and 355 phase shifts from those
of the CERN. The main contribution to the very strong attractive force
especially in the high energy region comes from the fo-exchange. The
attractive effects from both 'nucleon-exchange' and p-exchange are
insufficient to produce a P11 resonance at the correct energy without
the inclusion of the fo-meson. To this end, the fo-exchange is quite
necessary in the P11 channel. A point to be stressed is that,
according to the CERN and other phase shift analysés, the P11 state

is highly absorptive above 300 MEV. 1In our mode, no absorption is

taken into account. Nevertheless, a Pll resonance at 600 MEV is

reproduced.
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3. Results for D-wave

35

As seen from Fig. 19, the fit of D35 is reasonably good up
to 450 MEV. However, we are unable to obtain a larger negative
phase shift beyond this region, where the phase shift tends to diminish
in a negative sense as the energy increases. The disagreement in
the high energy region (Y450 MEV) can be explained by the strongly
attractive contribution due to the fo-exchange. The D35 phase shift can
bebimproved considerably by reducing the value of Gf. However, a

smaller value of Gf is incapable of reproducing the resonance

phenomena for P33, P11 and D13 at the correct energies.

33°
As shown in Fig. 20, the CERN D33 phase shifts have rather small
positive values up to 700 MEV, with small fluctuations throughout
this range. On the other hand, the D33'phase shifts analyzed by
Roper et al.(g) have a rather smooth behaviour in this region and
are slightly larger than the CERN phases. The D33 phase shifts fit
the Roper results better than the CERN results. The D33 phases up to 360
MEV are close to the Roper analysis. Beyond this region they increase
rapidly as the energy increases. The discrepancy can be explained
as follows. In the low energy region the strong repulsion due to the

p-exchange cancels part of the attraction due to the fo-exchange.
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As the energy increases the attractive contribution from £°-
exchange becomes very strong. On the other hand, the repulsion

from the p-exchange is weakened. This is why the 933 has very large
positive phase shifts in the high energy. region. To improve the

fit of D3

into account the exchange of a high p-meson (1650 MEV). The treat-

3 phases, one can either reduce the value of Gf or take

ment for the high p-exchange is the same as the p-exchange that the mass
of the high p ii:much larger. It is hoped that, due to this large mass
value, the high p-exchange will be able to produce an effective repulsion

in the ‘high energy region to weaken the strong attraction due to the

fo-exchange.

15°

As seen from Fig. 21 a very good fit to the CERN D15 phase shifts
is attained. The D15 phase shifts remain small positive values throughout
the energy range from 0 to 700 MEV. As the energy increases the D15
increases slowly. The presence of the fo-exchange gives the attractive
contribution which is able to cancel the repulsive effect produced by
the p-exchange. In addition, the attractive contribution produced by
the 'nucleon-exchange' is not strong enough to attain the correct D15
phases in the high energy region without consideration of the fo-exchange.
Oneconcludes that, the fo-exchange indeed improves the fit for the D15

phase shifts.
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13°

The fit of the D13 phase shifts, as shown in Fig. 22 is in
good agreement with those of the CERN. One of the characteristic
features is a D13 resonance appearing approximately at 616 MEV,
which is consistent with the results from the phase shift analyses
as shown in Table I. The strongly attractive contributions from
both p-exchange and fo-exchange, especially the latter, improve the
D13 phase shift considerably. This is one of the successes which
result from taking into account the fo-exchange in our model. One
remark should be stressed is that, according CERN and other phase
shif t analyses the D13 phase shift is highly absorptive above
400 MEV. In our model no absorption is taken into account. The

inclusion of the absorption effect in our model will be more realistic.

5.3. Claim of Originality

An OBE potential model approach has never been very fashionable
in the high energy n-N scattering problem, altough such an approach
has long been used in N-N scattering problem. We have derived an OBE
Born potential by taking into account the fo-exchange, in addition to
the usual p and N exchanges. The effect of the fo-exchange is the
main source contributing to the strong attractive force required to
reproduce resonance phenomena in the appropriate channel:s of m-N

scattering in the energy range 0-700 MEV.
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It has been customary to use the Schrddinger equation as a
device to calculate the phase shifts with the OBE potential.
However, as mentioned befdre, the validity of utilizing the Schrddinger
equation breaks down as soon as the problem enters into moderate or
high energy regions. Our work is based on the OBE potential approach,
to calculate n-N scattering phase shifts by means of the Klein-Gordon
equation. The K-G equation forms a viable means of generating unitarity.
The relativistic connection between the energy and momentum is correctly
described, instead of imposing the relativistic correction for the

high energy problem when using the Schrodinger equation.

Even though a fully covariant form is not acéhieved, the K-G equation
has its essence in the static appfoximation. A fully relativistically
covariant form of the n+N scattering problem can be described only through

the use of the Bethe Salpetercsz) equation. A manifestly covariant ex-

pression for the corresponding matrix element of the n-N scattering
amplitude can be obtained by means of the Feynman diagram of the OBE
model. If one can evaluate the 4-dimensional Fourier transformation of
the invariant amplitude instead of the three-dimensional one described
by us in Equ.( 2-17), a covariant form of the Born potential can be
attained, provided the Dirac wave function and the Yy matrices can be
transformed in a covariant manner by making use of the Foldy-Wouthuysen
C))

transformation™ *. This approach is complicated and difficult, perhaps

is not feasible in practice.
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The original contribution of this work to general knowledge is
that, such a simple model, based on the idea of the p,fo and
'nucleon' exchanges is able to successfully reproduce the observed
resonance phenomena. However, an extension of the general idea to

include inelastic channels would be more realistic.

5.4. Conclusion

The model givesa good fit for the S-, P- and D-wave phase shifts
with the exception of P31. In addition, it is capable of reprodu-
cing all the existing resonances conjectured in the zn-N scattering
within the energy range from 0 to 700 MEV. The pseudoscalar pion-

nucleon coupling constant of G2/4n = 14.0 and the resultant value

f
of CE) = - 1,83 from p-exchange, are in good agreement with the
PNN

experiments. The p-exchange coupling constant gpﬁn gpNﬁ4“ = 3,0 1is
slightly larger than the accepted value 2 ~2.5. The £° coupling
constant is not well determined. One may be able to obtain the value

of G, from the life time of 2x decay of the £°-meson.

f

(23)

In N-N scattering, Kantor gives G§/4n =5.71 and

GL obtain G§/4ﬂ = 10 ~-20.. However,

GiI /4 = 4.453 and 1Ino et al.
o .

we obtain the f -coupling constant of Bt ngN/4n =-12 .which is in

agreement with the value obtained by Ino et al.. The 'cut off' mass

of m, = 10.845n is reasonable. With this large 'cut off' mass, the

effects on the long range components of the potential are dnsignificant. It

is able to produce very short range force to describe the hard core type

behaviour.



The resulls indicate that the p-exchange, fo-exchange and
'nucleon-exchange' play essential roles for n-N scattering in the
energy range 0-700 MEV. Of even greater importance, the model
provides us With a theory that appears to be in accord with our
empirical knowledge of all the qualitative phenomena of x-N scattering

within the energy range 0-700 MEV except for absorption.

If we go one step further, a consideration of inelastic processes
with an optical potential would give a more realistic model especially

in the high energy region (> 300 MEV), and would perhaps improve the

fit in some channels.
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Figure Captions

The singularities of the partial-wave ampliéudes

f‘t(s) inthe complex plane.

The one-boson-exchange diagram of the T-N scattering.
Lowest order T-N scattering a) corresponding to the
direct pole term aﬁq b) the nucleon exchange pole term.

The lowest order p-exchange diagram of H-N.scattering.

~ The g-exchange diagram of T-N scattering.

The f°-exchange @iagram of T-N scattering.

The one-boson-exchange Feynman diagram corresponding to
the lowest Born approximation in T-N scattering.
Two-boson-exchange Feynman diagram in T/-N scattering.
Two-boson-exchange Feynman diagram with virtual pair
creation and pair annihilation processes in T-N scattering.

P33 : the solid circles are the CERN phases

G¢=13

P11 : Notations as for Fig.1O0.

D,., : Notations as for Fig.lO0.

13



Fig.13

Fig.l4
Fig.15
Fig.16
Fig.1l7

Fig.l18

Fig.19
Fig.20
Fig.21

Fig.22
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S

circles @ are the

model fit to them.

Sll’ notations as
P33: notations as
P notations as

31¢
P13: notatkons as

31 the solid circles are the CERN phases, the open

Roper phases. The solid 1line our OBE

for Fig.13.

for Fig.13 , showing a resonance at 194 MEV,

for Fig.13.
for Fig.13.

P,.° showing a resonance at approximately 600 MEV.

11

Notations as for Fig.i3.

D35: Notations as
D33: Notations as

D__., Notations as
15¢

D13: Notations as

for Fig.13.
for Fig.13.
for Fig.13.

for Fig.13, showing a resonance at

approximately 616 MEV,



APPENDIX A

Feynman Rules for T Matrix

The S-matrix for elastic m=N scattering is defined

in Equ. (2-6) as

. 4 . M
S =1+ i(2m) G(Pl + ql P2 qz)/ T (a-1)

/I Egqe,
4E1.E W

Pig. Al

Before we write down the rules for T-matrix, it is
worthwhile to mention the procedures for obtaining the vertex
from the interaction Lagrangian density in question. Here we
outline the main points as follows:

1) If the Lagrangian density contains no derivatives

for the wave functions, extract all the factors,

except the wave functions from the interaction

Lagrangian density.

- 97 -
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2) If the Lagrangian density involves the derivatives*

of the wave functions, we simply replace
] P) + ipP P
uw( ) uw< )

where § (P) is the incoming wave. function towards the
vertex with four-momentum P.

and
auw(?') > -iP'HW(P')

where E}P') is the out-going wave function leaving the
vertex, with four-momentum P'.

3) Multiply by a factor
-1)"

where n is the number of particles involved in the
interaction at the vertex.
Once the vertices are specified, we can write down the
T matrix at once, provided the propagator of the exchange particle

is knownf , thus

T = GYPZ) vertex (l). propagator. vertex (2) [J(Pl)

* We do not consider derivatives higher than the first order.

Here we take a "-" sign in front of the propagator.
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APPENDIX B

Born Approximation Potential -
Fourier Transformation

From Equ. (2-19) we have

->
94,

- > >
x ql =-Q0xP

One can also express

>

9,

Since Equs.

> > 3
qu— qlx

(B-1) and (B~2) are equal, therefore

>
r

>4
> iB.T > ip
iP.r . ip.
1 > > Pe 3 1 > > Pe
ia;qlx J ———5— 4P = 3 10.0 x I = 5
em3 P H (2m) P +m
Consider
> >
> iP.r
I= 1 5 10.q; x S Pig > d3P
(2m) P +m
.;-’
iP.x
S 3 g.ai xV /S —:5——5-d3p
(2m) P +m”
-mr
= 2L 3.3 x V (£ )
1 r
aT
_ 1 > > > 1 2_, (e_mr)
- 0:9) X T ¥ dr ' r
4T

(B-1)

(B-2)

(B-3)

(B-4)
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The orbital angular momentum of the pion-nucleon system

is defined by

3 --2
9 1’
- 2= ¢ 2y %3
2TL= (=) xq
> >
=rxaq (B-5.)

> > >
where r = r".- rN is the relative coordinate.

By substituting Equ. (B-5) into Equ. (B-4), we attain

> > Bl
——io.q, %/ 22 3 d®p
(2m) P +m
-mr
l »>>1 a4 e
=-—oly g (B=6)

From the relation of Equs. (B-6) and (B-3), gives

-mx -mr
-1l »>>14a e
) = — — -
( ) g.L T ar ( = ) (B=7)

Equ. (B-7) implies that

TL=rx0 . . (B-8)
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II) From Edu; (2-24) we have

- =
L 3.3.07. 0 &
(27) :
= 3.3x78®

Thus the Born potential due to the second term of

Equ.(2-23) will have the form

T.TxV 5@ ,

multiplied by a scalar function.

If we now work backwards to obtain the corresponding Born

scattering amplitude, using Equ.(2-26), we have

B - = - -i .
Feoeag-Qx [e P

F

2

in

After integration by parts, Equ.(B-11) can be written as

- 4. P 3 3
o x fe p-r (VAR ) (;5d r

ol

- = 3 = -i;’- T 3
c-Qx[s°() Ve &r

- =2 - -i?.?3 3
o Qxp Je 5°(T) d’r

Therefore in this particular case, we can replace

(B-10)

(B-11)

(B-12)
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Vel@ - ip 5

or - - -
S .QxV 5@ - ig-3xpsD) .

Making use of Equ.(B-1), we can write

-
Z-0x7 5@ =-1E’-E'2x?1'1 83(2) .



APPENDIX C

Propagator of Spin 2 Particle

For spin 2 particle the field transforms as a Lorentz

group tensor of rank 2, with the subsidiary conditions as follows

i) (1"2 - m2) T =0

" C=-1a)

ii) T =T (C=1b) symmetric inu and v

iii) la {C-1c) gauge invariance

iv) g € -1d) traceless condition

where Tu\) is the tensor field for spin 2 particle.
In order to calculate the spin 2 propagator, we define

a most general form for the numerator of the propagator as

Nuv ;a8=a1guvga8+a2 (gu Bgav+guag\)8) +a3 (guvPaPB+gaBPu Pv)

-

+ a4(guanPB+ guBPVPa+ gaquPB+ngPuPa ) + aSPquPaPB

(c-2)

-~ 103-

(83)

c-1)



~ 104-.

which also satisfies the subsidary conditions

1) Nuv;aB B NaB,uv = Nvu;ae = Nuv;ga (€ -3a)
i1) BN = (c-3b)
uv;ab
‘o uv _ i
1) g Wyes = O (c-3¢)

The constants ai's can be évaluated by employing these
subsidary conditions (¢-3).
By equating zero coefficients of gaB and PaPB from

{e-3a) we get

2
4a1 + 2a2 + P a; = 0 (c-4a)

2
4a3 + 4a4 + Pla, = o] (c-4b)

From (c-3b), by equating the coefficients of P\)gmB

(where y,a,B in all permutations) to zero gives

al+Pa4=0 (c -4c)

a2.+Pa4=0 (c -44)
2

a, +2a, + Pa_. =0 ) (c-4e)
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There are five equations (g~4a-e) with five unknowns,

, a, and a_. The solutions are trivial. On the mass

ayr 8y 830 3y 5

shell we have

If we let a; = A, where A is any arbitrary constant, we

are able to solve the above five equations simultaneously.

As the result we have

3 _ .2 _3a ., __2
a) =A; ay=-3Ai 3;=-"357 3 =35 3 i & ="
m m. m
£ £ £
(c-5)
Thus (c-2) becomes
N = A[ - 3 + y - g PP, +g P P )
uv;ap guvgaB 2 guBgav guagvs mfz guv a B gaB [FERAY)

3 1 2
+3 5(9,PPg + 9,6PuPq + T PP t IauPPo) " = P PP.Pg 1

MOV o
m a
(c-2a)
The next step is to evaluate A, subjecting to the
normalized condition
v;o
wiad _ (c=7)

.. N
spin uv;aB

where 1 . Here we have S = 2.

>
spin 25+1
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From Equ. (c-7) we have

2 1 1
A=;; orA=i-3- (c-8)

According to our convention to derive the T matrix we have to

take the negative value i.e., A = = %

If we define

P = g - 2 r Q:-g)

(C-2a) can now be written as

wlp—-t

; 2z 1 -
Nuv;a8 = PvFag ¥ 3 Pucfug T 2 Fugfua (¢-10)
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APPENDIX D

'Partial Wave' Born Potential
The partial wave scattering amplitudes for the direct pole term

and the nucleon exchange pole term of n-N scattering, according

to Equ. (2-16a), have the following form

2 ey 1 (E-M) 1

= - G -
fz: S W ( t)[ (VM) 2841 Bz,o + (W-M) 2( 4+1)+1 6&1,0 ]
L nD) (W)
- + .t M (W+M)
2EW- 2
with |z] = ——5= > o.

2q

For simplicity, we rewrite Equ. (D-1) as

= 8p0t —2—5 + (-1)% -d
b {2%1 2,0 2(8H1)+1 b1,0 (-1)7 e @,(]z]) Q&l(lzl)]}
(D-1a)
2 - -
where a = G (1-%.t) (E+M)
2 - -
b = G (l-7.t) (E-M)
8 (W=-M)
2 4
¢ = & _(Hr-t)(@-M) o2

8 2(E-M)
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and

Q2 (14 ©) (WHM)
8 n W 2(E+M)

(A) For S-wave, £ =0, we have J = % State only, thus

fp =~ La+ec Q(lz]) - 4 Ql(lZl) ] (D-3)

From Equ. (2-16), the partial wave scattering amplitude is given by

1
1
for = 7 f | 1) B0 + 5Py (0] & (D-4)

Equ. (D-3) can be rewritten as

1
= 1 c d _
fr = 2 1 {- Ia * 775 Pt o= P, (0} dx (D-5)

where we have used the relations

1 , 1 Py(x)dx
{1 P ,(x) P, (x)dx = Yl Bg gt 5 2 {1 —;——j;- = Qy(2)

Comparison of Equ.(D-5) with Equ.(D-4), yields

£ =~ (a+ < )
2| -x
(D-6)
¢

|z -x
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One remark concerning Equ.(D-6) should be made when we substitutex
Equ. (D-6) into the expression of the total scattering amplitute in
Equ.(2-¥4), it gives the correct S-wave scattering amplitude only, and
it might not be adequate for other partial waves. This is because the

term with ‘a’ in Equ.(D-la), contributes only to the S-wave.

Substitution of Equ.(D-6) into Equ (2-14), gives

F = - [(atd) + (c-d|z]) 1 - d *:Gz x&\'

|z|-x |z]|-x 1

] (D-7)

Consequently, Equ.(D-7) indeed reproduces the correct form of f0+.
Following the procedure outlined in Section 2.4, we thus obtain the Born
approximation potential for the S-wave, by the Fourier transformation of

Equ.(D-7). Thus

- 2 -m.T
V. (r) =4n ((atd) 8(r) + 7 (c-d|z]) & rt

b g -m.r
d oL d t
e i —dr (e r_) 1 (D-8)

where m_ = Jomoy- 12 - 242y >0 .

(B) For p-wave, we have g =1 .

i) J = state, Equ.(D-1la) gives

oW
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fi+ = ¢l 2)-dQ, €¢z])
1 _
1 1
=3 J [eP(x)-dP,(x)] dx (D-10)
-1 , lz] -x
Comparing Equ.(D-10) with Equ.(2-16), we obtain
c
f1 =
|z| -x
(D-11)
_ -d
f2 =
|z| -x

As before, Equ.(D-11) indeed gives the correct f1+ but not

necessarily the correct results for other partial waves.

Substituting Equ.(D-11) into Equ.(2-14) we find an expression for

the total scattering amplitude, which gives the correct fI+' The

Born potential for the 4=, ='% state can be obtained, by the

Fourier transformation of this total scattering amplitude. Thus

2 - - =
- mrxr I
- 3 4 e t g obd -mr }
Vv, = - 4n{ a8 + (c-d|z]) s S T (o)
(D-12)
ii) For £ =1, J = % state, according to Equ.(D-la), we have

- {b-reqlzh +a iz}

Hh
]

1-
1

1 c d
2 P (x) ~[ b+ 1P (x)p d

(D-13)
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Thus

C

£, =
|z]-x

-(b+|‘|l y (D-14)
Z|-X

Hh
]

Comparing Equ.(D-ié) with Equ.(D-11), we notice that they are
almost the same, except for an extra term "-b" in the expression for f2
in Equ.(D-14). This extra term, on substitution into the total scat-
tering amplitude and then upon Fourier transformation, will give a
delta function with coefficient -d (Qé.ﬁl + 1‘3.%2 X Gl) in the Born
potential. Thus the complete Born potential for £ =1, J =-% state

can be written as

2A _A 3,7 4 “HeT
Vy- = - 4n {[d-b(xeH G.Q, x 9] 87(x) + 35 (e-d|z]) e T
. r
- =
1 g E d -m.r
R T (—= )} (D-15)

r

Combining Equ.(D-12) and (D-15), we obtain an expression for the

Born potential for the P-wave as

2 -m r
vy = - bn{leber 0.8 x QDG - M1 8D + (c-dlzl)_e___r_f_
(D-16)

d -mtr
dr ( T )} '

d
25
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Here we insert the factor (% - J) 1into the second term of the
first parenthesis in Equ.(D-16) to ensure that this term contributes
only for the J ='% state. c¢) “For £ > 2 , repeating the same proce-
dure as before, we obtain a general form for the partial wave Bora

potential with orbital angular momentum £ > 2, thus

2 -m =2
~ £ 3~ . q° t* _d gL d ,"mF
Vét = (-1) 4ﬂ{:d 5 (r) + P (c dIZI)g_;__ "% T @& (e - )}

(D-17)

We can obtain a general expression for the'partial wave'Born

potential for any angular momentum state |£>, by combining Equs.

(D-8), (D-16) and (D-17),

V. = b {[a 8, GHb(wHL ’U’.Qz x {1\1)51;:130(% - o+ Dk 823D

£

2 - =
2 -m T ) -m
+ (-1) [(c-dlzl) %; e © - g; 9;5 T (e tr )]}_
r r

(D-18)

3
The factors Sz’o and 83_1,065 - J) appearing in the first and
second terms of the first parenthesis of Equ.(D-18), are to ensure that

the respective contributions are for the S11 and P11 states only.
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