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Abstract 

BACKGROUND: Diabetes is one of the largest global health emergencies of the 21st 

century, with type 2 diabetes mellitus (T2DM) accounting for 90% of all diabetes 

worldwide. T2DM is typically diagnosed after a clinical event (e.g., a heart attack) or 

during routine screenings for patients of older age. However, T2DM can emerge much 

earlier in life and is often unrecognized, with its onset occurring at least 4-7 years before 

a clinical diagnosis. Consequently, there is a largely unmet clinical need for low-cost, non-

invasive methods to screen for T2DM and pre-diabetes. Given that T2DM is a data-rich 

condition with various outcomes, artificial intelligence (AI) and machine learning (ML) 

models can be leveraged to learn from previous patient data and aid in early-detection 

and treatment of the disease. Electrocardiograms (ECGs) are data rich and when 

combined with AI may serve as an inexpensive, scalable, and effective method to screen 

for T2DM in the general population. 

METHODS: We developed and validated a ML-based model to detect the presence of 

T2DM from Lead-I of a standard 12-Lead ECG using Extreme Gradient Boosting 

(XGBoost).  The models were trained and tested on data from the CARTaGENE research 

project from CHU-St. Justine (n=7463). We conducted three experiments using time-series 

based, frequency-based and interval-based features of the ECG as input to the model.  

RESULTS: The best models used frequency-based and interval-based features, achieving 

an AUROC of 0.784 and sensitivity of 0.882. These findings suggest that it is possible to 

achieve similar results to state-of-the-art models without the deep learning (DL) 

approaches that they typically employ. Additionally, the models have demonstrated 

results on par with and exceeding gold standard screening strategies for T2DM: the 

CANRISK questionnaire and HbA1c testing.   

CONCLUSION: We demonstrate the use of a ML-based model for the screening of 

T2DM using the highly efficient XGBoost algorithm. The proposed model accurately 

detects the presence or absence of the disease based on single-lead electrocardiogram 

data in patients from the CARTaGENE dataset. Overall, this may serve as an effective 

way to conduct population-level screening for T2DM, facilitating earlier detection and 

intervention of the disease and improving patient outcomes. 
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Resumé 

CONTEXTE: Le diabète est l’une des plus grandes urgences sanitaires mondiales du 

21ème siècle, le diabète sucré de type 2 DT2 représentant 90 % de tous les diabètes dans 

le monde (1). Le DT2 est généralement diagnostiqué après un événement clinique (par 

exemple, une crise cardiaque) ou lors de dépistages de routine pour les patients plus âgés. 

Cependant, le DT2 peut apparaître beaucoup plus tôt dans la vie et demeure souvent 

méconnu, son apparition survenant au moins 4 à 7 ans avant un diagnostic clinique (2). 

Par conséquent, il existe un besoin clinique largement insatisfait de méthodes peu 

coûteuses et non invasives pour dépister le DT2 et le prédiabète. Étant donné que le DT2 

est une condition riche en données avec divers résultats, les modèles d’intelligence 

artificielle (IA) et d’apprentissage automatique (ML) peuvent être exploités pour 

apprendre des données antérieures des patients et aider à la détection précoce et au 

traitement de la maladie. Les électrocardiogrammes (ECG) sont riches en données et, 

lorsqu’ils sont combinés à l’IA, ils peuvent constituer une méthode peu coûteuse, 

évolutive et efficace pour dépister le DT2 dans la population générale. 

MÉTHODES: Nous avons développé et validé un modèle basé sur l’apprentissage 

automatique (ML) pour détecter la présence de DT2 à partir de Lead-I d’un 

électrocardiogramme (ECG) standard à 12 dérivations à l’aide du modèle Extreme 

Gradient Boosting (XGBoost). Les modèles ont été entraînés et testés sur les données du 

projet de recherche CARTaGENE (CHU-Sainte-Justine) (n=7463). Nous avons mené trois 

expériences en utilisant des caractéristiques de l’ECG basées sur des séries 

chronologiques, des fréquences et des intervalles comme données d’entrée du modèle. 

RÉSULTATS: Les meilleurs modèles utilisaient des fonctionnalités basées sur la 

fréquence et sur l’intervalle, atteignant Une aire sous la courbe ROC de 0,784 et une 

sensibilité de 0,882. Nos résultats suggèrent qu’il est possible d’obtenir des résultats 

similaires aux modèles de pointe sans les approches d’apprentissage en profondeur (DL) 

qu’ils utilisent généralement. De plus, nos modèles ont démontré des résultats 

comparables et supérieurs aux stratégies de dépistage de référence pour le DT2 : le 

questionnaire CANRISK et le test HbA1c.                          

CONCLUSION: Nous démontrons l’utilisation d’un modèle basé sur ML pour le 

dépistage du DT2 à l’aide de l’algorithme XGBoost très efficace. Le modèle proposé 

détecte avec précision la présence ou l’absence de la maladie sur la base des données 

d’électrocardiogramme à dérivation unique chez les patients de l’ensemble de données 
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CARTaGENE. Cela peut constituer un moyen efficace d'effectuer un dépistage du DT2 

au niveau de la population, de faciliter la détection et l'intervention précoces de la 

maladie et d'améliorer les résultats pour les patients. 
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1 Introduction 
1.1 BACKGROUND 

Diabetes is one of the largest global health emergencies of the 21st century, with 

type 2 diabetes mellitus (T2DM) accounting for 90% of all diabetes worldwide (1). In 

Canada, T2DM presents a significant challenge for our healthcare system and greatly 

impacts quality of life and longevity for those diagnosed. In 2015, the estimated 

prevalence of diabetes was 3.4 million and is predicted to rise by 44% to 5 million by 2025 

(2).This increase represents a cost of over 15 billion dollars over a 10-year period (3). A 

key factor in managing the diabetes epidemic is early diagnosis and treatment of the 

disease. In most cases, T2DM is diagnosed after a clinical event (e.g., a heart attack) or 

during routine screenings for patients of older age. However, T2DM can emerge much 

earlier in life and is often unrecognized, with its onset occurring at least 4-7 years before 

a clinical diagnosis (4). In fact, up to half of those with the disease are currently 

undiagnosed, and 87.5% of all undiagnosed cases of the disease are in low to middle 

income countries (LMICs) (1). The ability to screen for and detect the disease in its earliest 

stages can improve the lives of patients through early intervention and mitigate the 

burden on our healthcare system by controlling disease progression. Further, accessible 

screening tools may help to reduce the very high number of undiagnosed individuals in 

LMICs. Complications of T2DM are widespread across various systems in the body, 

including but not limited to cerebrovascular disease, retinopathy, heart attack, kidney 
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damage, and peripheral neuropathy. Consequently, there is a largely unmet clinical need 

for low-cost, non-invasive methods to screen for T2DM and pre-diabetes. Machine 

learning (ML), a subset of Artificial Intelligence (AI), is best known for its ability to detect 

patterns in complex data, making it an ideal method for analyzing patient data to identify 

undiagnosed T2DM patients. Given that T2DM is a data-rich condition with various 

outcomes, ML models can be leveraged to learn from previous patient data and aid in 

early-detection and treatment of the disease (5). While applications of AI in diabetes are 

popular for management and monitoring of disease progression, AI has yet to be 

successfully applied to large-scale screening for the disease itself. Electrocardiograms 

(ECGs) are data-rich and when combined with AI may serve as an inexpensive, scalable, 

and effective method to screen for T2DM in the general population. In this thesis, we seek 

to explore an efficient ML model for the screening of T2DM using single-lead ECG data 

from a standard 12-Lead ECG. We explore the use of time series based, frequency-based, 

and interval-based features using a highly efficient and scalable ML model for the 

detection of T2DM.  

1.2 THESIS AIMS 

1. Review the current digital tools available to screen, predict or diagnose type 2 

diabetes using electrocardiograms and machine learning. 

2. Develop and validate the use of a machine learning model for predicting diabetes 

from single-lead electrocardiogram data from a standard 12-Lead ECG. 
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1.3 RESEARCH QUESTIONS 

1. How are ML-based based tools for electrocardiograms used in screening for 

diabetes and/or pre-diabetes in the general population, and what is the clinical 

utility of these tools? 

2. Can a ML-based tool be used to accurately screen for T2DM using Lead-I from a 

12-lead electrocardiogram alone? 
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2 Literature Review 

2.1 PATHOPHYSIOLOGY OF T2DM  

T2DM is characterized by hyperglycemia and is a result of the body’s inability to 

adequately respond to insulin (1). In comparison to type 1 diabetes, the ability to produce 

insulin endogenously is partially preserved in T2DM, therefore, most patients are not 

insulin-dependent (6). Generally, the disease is marked by a combination of 1) deficient 

insulin secretion by pancreatic islet β-cells, 2) tissue insulin resistance (more commonly), 

and 3) consequent to points 1 and 2, an inadequate response to insulin secretion (7). 

2.2 GLYCEMIC CONTROL 

Insulin is a hormone that plays one an important role in glucose homeostasis and 

metabolism. The synthesis and secretion of insulin are largely controlled by circulating 

glucose levels. In healthy individuals, glucose stimulated insulin secretion is bi-phasic 

(8). In the first phase, increased levels of glucose induce the secretion of insulin from β-

cells rapidly, typically within one minute. The second phase has a slower onset, and 

persists for as long as glucose levels are elevated above normal levels (5 mmol/L) within 

the body (9), (10). Insulin then binds to specific insulin receptors on cell surfaces to 

increase the storage of glucose by increasing its uptake into fat and muscle cells from the 

bloodstream. The binding to these receptors activates a complex signal transduction 

pathway with many endpoints, one of which controls traffic of the transport of glucose 
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transporter type 4 (GLUT4) receptors from intracellular stores into the plasma membrane. 

Once glucose enters the cell, it is converted to glucose-6-phosphate, and then can be used 

either as a source of energy or converted to glycogen for storage (11). Glucose uptake, use 

and storage occurs in almost all cells within the body, but largely in skeletal, adipose and 

liver cells (12). When blood glucose levels begin to fall between meals, the glucose stored 

in the liver as glycogen will be released back into the bloodstream through 

glycogenolysis, as mediated by the other major hormone in blood glucose homeostasis – 

glucagon. Glucagon has a profoundly hyperglycemic effect, increasing blood glucose 

levels within minutes through the breakdown of liver glycogen and gluconeogenesis 

(synthesis of glucose inside the liver).  

2.3 GLOBAL INCIDENCE AND PREVALENCE 

Currently, there are an estimated 462 million individuals worldwide with T2DM 

(13) and this number is projected to grow to over 590 million by 2035 (14). Those who are 

between 40-60 years of age are at highest risk of developing T2DM, however T2DM can 

present itself in adolescents and children. In fact, T2DM accounts for 45% of newly 

diagnosed paediatric diabetes in the USA (14).  Given that ~ 90% of patients are obese or 

overweight at T2DM diagnosis, the aetiology of the disease is believed to be linked to risk 

factors such as sedentary behaviour and poor eating habits (15). Previously, T2DM was 

thought of only as a disease of the West, induced by high-calorie diets and sedentary 

lifestyles and in those of older age (14). Recently, however, two thirds of all cases are in 
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low to middle income countries and the disease has become more common in the 

paediatric population (16), raising questions about modifiable and non-modifiable risk 

factors for the disease. Interestingly, in Western populations, up to half of patients with 

T2D have a BMI >30, and 30-40% have a BMI of 25-30 (where a BMI > 25 is overweight) 

(17). However, in some Asian populations, approximately half of the patients are not 

overweight (18). This has since promoted increasing investigation into the interactions 

between genetics, environmental, and lifestyle factors as they contribute to the 

development of the disease. Overall, there is an alarming trend of an increase in both 

prevalence and incidence of the disease over time (Figure 1) (19).  

 

Figure 1. Global prevalence and incidence of T2DM from 1990-2019.  

Based on data from the Institute of Health Metrics and Evaluation (20). Created with 

BioRender.com  
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Further, it has been found that psychosocial factors such as stressful working 

conditions, traumatic events, and mental health disorders can increase the risk of 

developing T2DM. Kelly and Ismail (21) produced a comprehensive literature review of 

longitudinal studies focusing on the links between psychosocial factors and risk of T2DM. 

With the growing body of information that T2DM is not the disease we once thought it 

was, a gap in knowledge exists around additional factors that may be influencing the 

increasing prevalence and incidence of the disease. In their review, they propose that 

chronic activation of the physiological stress response (PSR) may increase the risk of 

developing T2DM. In fact, there is discussion around the role that inflammation plays in 

T2DM as demonstrated by the elevated levels of inflammatory factors in patients with 

the disease (22). The authors of this review posit that the inflammation induced by the 

PSR may contribute to the development of T2DM. In their analyses, they found 

statistically significant positive correlations between the scores of tools such as the Centre 

for Epidemiologic Studies Depression Scale (CES-D Scale), Short-Form 36 (SF-36) 

questionnaire, Zung self-rating depression inventory, burnout, and psychological 

distress (22).  

While the need to understand better the fundamentals behind the aetiology of the 

disease are critical, there is an equally critical need to identify T2DM patients earlier on 

and facilitate the well-established, evidence-based strategies to manage the progression 

of the disease. The combination of an increased understanding in the pathology of the 
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disease and ability to identify the disease earlier is important in identifying patients at 

risk, and intervening with novel, evidence-based approaches to reduce risk of developing 

the disease and slow the progression of it. 

2.4 RISK FACTORS 

The risk factors for T2DM can be considered as categorized as modifiable and non-

modifiable (Tables 1 and 2) (23) (24): 

Table 1. Non-modifiable risk factors for T2DM 

Risk Factor Details 

Ethnicity African, Arab, Asian, Hispanic, 

Indigenous, South Asian 

Family History Increased risk if parent(s) or sibling(s) 

have diabetes 

Age > 40 years of age 

Gestational Diabetes Increased risk for mother and baby 

 

Table 2. Modifiable risk factors for T2DM 

Risk Factor Details 

Diet & Lifestyle Unhealthy eating habits, high stress, 

alcohol consumption, smoking, poor 

sleep hygiene 

Obesity BMI > 30 

Other diseases Including but not limited to: High Blood 

Pressure, High Cholesterol, Polycystic 

Ovarian Syndrome (PCOS), Psychiatric 

Disorders, Sleep Apnea (non-exhaustive). 

 

 

A significant risk factor for T2DM is obesity, high body mass index (BMI) or high 

percentage of body fat (specifically around the abdominal region). Higher levels of 
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adipose (fat) tissue can result in insulin resistance through inflammatory mechanisms 

such as increased free fatty acid release (7). This is a modifiable risk factor and presents a 

means for early intervention to prevent the manifestation of T2DM or slow its 

progression. In fact, nutrition therapy can reduce HbA1c values by 1-2% (2), and lifestyle 

changes overall have been found to be more effective than pharmacotherapy in reducing 

disease incidence in some cases (25). Even modest weight loss of 5-10% of initial body 

weight can substantially improve insulin sensitivity, blood pressure, HDL-C and 

triglycerides, representing not only an improvement in disease state, but a reduction in 

risk for complications such as cardiovascular disease (26).  

2.5 TYPE 2 DIABETES DIAGNOSTIC GUIDELINES 

In Canada, the current diagnostic guidelines for Type 2 Diabetes for adults are as 

follows (Table 3) (2):  

Table 3. Canadian Diagnostic Guidelines for T2DM 

Parameter Threshold 

Fasting Plasma Glucose (FPG 

 

 ≥ 7.0 mmol/L 

HbA1c  ≥ 6.5% 

2-hour plasma glucose (2h-PG) in a 75g 

Oral Glucose Tolerance Test (OGTT) 

≥ 11.1 mmol/L 

 

Random plasma glucose (RPG) ≥ 11.1 mmol/L 
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Canadian guidelines suggest that upon diagnosis, the following should take place 

for each patient: identify a personalized target for HbA1c levels, assess their 

cardiovascular and renal function, educate on diabetes, and healthy behavioural 

interventions provided. Typically, patients are not started on pharmacotherapy unless 

their individualized HbA1c target is not met within 3 months of the lifestyle changes. It 

should be noted that healthy behaviours and weight loss can have a significant impact 

on a patient’s disease state. In fact, patients who start pharmacotherapy may improve 

their conditions behavioural and weight loss interventions, which can lead to withdrawal 

of pharmacotherapy and even remission in some cases (27). Additionally, remission can 

be observed in those who undergo bariatric surgery. In one study, 72% of T2DM patients 

achieved diabetes remission 2 years after their surgery (28).  

There are advantages and disadvantages to each test, but common to many of the 

tests are disadvantages in cost and convenience  (Table 4) (2). 
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Table 4. Advantages and disadvantages of diagnostic tests for diabetes. From Diabetes Canada 

Clinical Practice Guidelines (2)  

Parameter           Advantages           Disadvantages 

FPG 

• Established standard 

• Fast and easy 

• Single sample 

• Predicts 

microvascular 

complications 

• Sample not stable 

• High day-to-day variability 

• Inconvenient (fasting) 

• Reflects glucose homeostasis 

at a single point in time 

2hPG in a 75 g 

OGTT 

• Established standard 

• Predicts 

microvascular 

complications 

• Sample not stable 

• High day-to-day variability 

• Inconvenient 

• Unpalatable< 

• Cost 

A1C 

• Convenient 

(measure any time of 

day) 

• Single sample 

• Predicts 

microvascular 

complications 

• Better predictor of 

CVD than FPG or 

2hPG in a 75 g OGTT 

• Low day-to-day 

variability 

• Reflects long-term 

glucose 

concentration 

• Cost 

• Misleading in various medical 

conditions (e.g. 

hemoglobinopathies, iron 

deficiency, hemolytic anemia, 

severe hepatic or renal disease) 

• Altered by ethnicity and aging 

• Standardized, validated assay 

required 

• Not for diagnostic use in 

children and adolescents† (as 

the sole diagnostic test), 

pregnant women as part of 

routine screening for 

gestational diabetes‡, those 

with cystic fibrosis or those 

with suspected type 1 diabetes 
2hPG, 2-hour plasma glucose; A1C, glycated hemoglobin; CVD, cardiovascular disease; FPG, fasting plasma glucose; OGTT, 

oral glucose tolerance test. 

∗ Adapted from Sacks D. A1C versus glucose testing: a comparison (43). 

† See Type 2 Diabetes in Children and Adolescents chapter, p. S247. 

‡ See Diabetes and Pregnancy chapter, p. S255. 

 

https://www.diabetes.ca/health-care-providers/clinical-practice-guidelines/chapter-3#bib0220
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Additionally, all forms of testing are invasive, meaning that they require 

bloodwork to measure the values for FPG, HbA1c, 2h-PG, and RPG. The ability to screen 

for T2DM using ECG data would eliminate the need for blood tests that are invasive and 

costly to use as a screening tool at the population level. By nature, screening tools should 

be cost-effective, scalable, and easy to acquire. The cost of a glucose blood test in Canada 

was $19.15 (29) in 2015, a price that includes both the cost for the blood draw, and the 

single test for glucose levels ($15.62, and $3.53, respectively). To obtain HbA1c values, a 

test would cost $23.82, with the HbA1c test costing $12.69. In comparison, the cost of an 

electrocardiogram $11.05 (30) but this value includes interpretation of the results. In a 

scenario where an ECG is being used as a screening tool for T2DM, the cost for 

interpretation may be reduced as it would be automated by the machine learning 

algorithm. In addition to proposed cost-effectiveness, the ability to performing screening 

in rural areas may be increased using signal-based screening methods. For those living 

in rural parts of Canada, these costs are increased as patients may need to be flown out 

for routine labs due to access issues to healthcare in their region. Therefore, screening 

using ECG data may make accurate, population level screening for T2DM a reality in 

both urban and rural region, with great potential for scalability and cost-savings. 

Most forms of screening involve the calculation of risk scores. In Canada, 

CANRISK was developed by the Public Health Agency and is used to evaluate risk for 

pre-diabetes and type 2 diabetes in those aged 40 years or older (31). The values of the 
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risk score are related to the 10-year risk for developing T2DM, with scores between 0-32 

suggesting a 1-17% risk, scores between 33-42 suggesting a 33% risk, and scores between 

43-87 suggesting a 50% risk. The calculator takes inputs such as age, sex, BMI, waist 

circumference, family history of diabetes, history of high blood sugar, history of 

hypertension, daily activity levels, consumption of fruits and vegetables, gestational 

diabetes risk (for females), ethnicity, and level of education.  In a study that validated the 

CANRISK model in a multi-ethnic population, the area under the receiver operating cure 

(AUROC) was found to be 0.75 (95% CI: 0.73-0.78) (32). It should be noted that the 

CANRISK tool was not developed or validated in those younger than 40 years of age.  

2.6 SCREENING: GLYCATED HEMOGLOBIN (HBA1C) AND FASTING PLASMA 

GLUCOSE (FPG) 

In Canada, screening for T2DM is to be conducted through measurement of fasting 

plasma glucose and/or glycated hemoglobin every 3 years in individuals 40 years of age 

or older or those who score in the “high risk” category on the CANRISK calculator (2). 

HbA1c reflects the average plasma glucose over the previous 8-12 weeks (33), and the 

FPG test reflects the body’s ability to regulate glucose levels via insulin and glucagon – 

where a high value suggests some form of insulin resistance. The HbA1c test can both be 

used for screening and confirmatory testing for diagnosis, and additional testing may be 

required to rule in the disease if the patient’s results are at the borderline (6.5%) for the 

test.  
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In a 2022 retrospective population-based study of over 1 million adults, it was 

found that adherence to screening guidelines was suboptimal (34). Furthermore, the cut-

off age for screening may need to be re-evaluated as the early onset type 2 diabetes is 

becoming more prevalent (35). In fact, early onset T2DM can increase the risk of 

complications such as myocardial infarction by up to 14 times compared to control 

subjects (36).  

2.7 T2DM AND THE CARDIOVASCULAR SYSTEM 

 Based on the work of Harris et. al, the onset of non-insulin dependent diabetes 

mellitus (NIDDM) may occur up to 4-7 years before clinical diagnosis, based on a study 

that examined retinopathy images of over 5000 patients from the United States and 

Australia (4). Additionally, early signs of cardiac autonomic neuropathy may be 

identifiable through subtle ECG alterations (37). At more advanced stages of T2DM 

progression, cardiovascular disease may develop as a complication. The combination of 

insulin resistance, hyperinsulinemia and hyperglycemia triggers a signalling 

transduction pathway involving multiple cellular and molecular pathophysiological 

factors that ultimately lead to increased levels of inflammation and endothelial 

dysfunction. This presents an ideal environment for the development of atherosclerosis 

and atherosclerotic cardiovascular disease. Therefore, at all stages of T2DM progression, 

there are both major and minor effects on the cardiovascular system, both of which may 

be identifiable through techniques such as machine learning.  
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Machine learning presents an opportunity to develop novel approaches to 

screening for T2DM and other chronic diseases. As mentioned, T2DM is a data rich 

condition and machine learning can be used to detect patterns in electrocardiogram data 

that would be impossible to extract using other statistical methods or the naked eye. 

Therefore, the combination of the effects T2DM on the cardiovascular system, increased 

availability of digital data from mobile and wearable devices, and the need for more 

effective and scalable screening strategies presents the ideal opportunity to apply 

machine learning for the early detection of T2DM.  

2.8 RELATED WORK 

There are several approaches that have been developed to detect, monitor, or 

diagnose type 2 diabetes from electrocardiographic data; however, these are largely 

centered around deep learning (DL) models, require a full 12-Lead ECG, or require a 

combination of bio-signal data (38), (39), (40), (41).   
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Table 5. Overview of literature review findings 

Authors Model 

Architectur

e 

AUROC 

 

Accuracy Sensitivity (%) Specificity (%) 

Lin et. al Deep 

Learning 

82.55 N/A N/A N/A 

Dave et. al Random 

Forests 

86.5 N/A 79 79 

Nguyen et. 

al 

Artificial 

Neural 

Network 

N/A N/A 70.59 65.38 

Gupta et. al Intrinsic 

Time Scale 

Decompos

ition 

N/A 86.9 84.56 90.6 

      

 

In the work of Lin et al (38), the electrocardiogram was used to estimate the value 

of HbA1c for patients using DL. Additionally, they explored the use of XGBoost and 

elastic net – the former being a non-deep learning ML model, and the latter being a 

penalized linear regression model. Their DL model was able to achieve an AUROC of 

0.8255 for DM screening on their testing cohort. However, their models were not specific 

to type 2 diabetes mellitus, and included patients with type 1, type 2, gestational or 

specific types of diabetes due to other causes. The architecture of their best DL model 

involved an “attention mechanism”, which borrows its name from the attention 

mechanism in human visual processing. For example, when we read a book, most of our 

focus (attention) is on the word we are currently reading and trying to process, and not 

the remainder of the text on the page. Similarly, we would like the DL model to focus on 



   
 

  17 
 

the most relevant parts of the input while making a prediction. The attention mechanism 

or “module” is an additional network layer on top of an existing DL model that is used 

to boost the accuracy of predictions (42). In their best performing model, a positive 

correlation between actual HbA1c score and ECG derived HbA1c (ECG-HbA1c) was 

found, with r=0.577 (95% CI: 0.531-0.582). In subgroup analyses, it was found that patients 

with higher ECG-HbA1c had more risk factors for DM progression. This alludes to the 

potential for machine learning based approaches to provide more granular information 

in comparison to HbA1c. In conclusion, their work demonstrates the results of a novel 

biomarker estimating HbA1c in various forms of diabetes and compares a DL and non-

DL based approach with promising results. However, due to the inclusion of all types of 

diabetes in this study, the model cannot provide insight into the type of diabetes a patient 

has – an important characteristic for treating and managing disease progression.  

The work of Dave et al. (43) used a combination of electrocardiogram and 

accelerometer data to predict hypoglycemia and hyperglycemia with data acquired from 

the Medtronic Sephyr Biopatch, which collects both types of data in fives participants 

followed for 14 days. They explored the use of both classification models, and regression 

models. Their classification approach was based on random forests, while their 

regression approach was based on quantile regression forests. In the classification 

models, input features from the patients would be used to classify them either as hyper 

or hypoglycemic. In this study, 70 mg/dL was used as threshold for hypoglycemia and 
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180 mg/dL was used as threshold to define hyperglycemia. For the regression models, 

the actual values for glucose levels were predicted. Although there are limitations in the 

sample size for this study, the authors bolstered the number of training samples by 

separating each set of data for each patient into five equal partitions – one to be held out 

for testing, and one for training. They employed a fivefold cross validation technique in 

this manner to ensure that training and test sets were from non-overlapping time 

windows. They extracted a total of 45 ECG features and 20 accelerometer features per 

patient. They built two classifiers – one to detect hyperglycemic events, and one to detect 

hypoglycemic events. They reported a sensitivity and specificity for detecting 

hyperglycemia of 79%, and a best AUROC of  86.5. The classifier for predicting 

hyperglycemia performed better than the classifier for predicting hypoglycemia. This 

may suggest that the detection of hyperglycemia is more feasible using ML models, and 

therefore a more suitable target for screening purposes in the context of T2DM. 

Additionally, they explored the use of ECG features alone, and then a “fusion” model 

which combined ECG and accelerometer features. In all cases, the fusion model 

outperformed the ECG-only models. As accelerometer data is easily accessible through 

wearables and even smartphones, the use of their features may be important in 

identifying glycemic events and can be used to boost the performance of algorithms 

where the data is readily available. Overall, this work answers questions around the use 

of multi-modal sensor data for the detection of a T2DM related parameter: glycemic 
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control, through regression and classification-based approaches, but is limited by the 

small sample size (n=5) and by the number of hyper/hypoglycemic episodes in the 

participants. Additionally, all 5 participants were healthy, lending questions to how such 

a model would perform amongst those with any form of diabetes.  

Nguyen et al. developed a neural network approach for non-invasive detection of 

hyperglycemia using ECG signals in Type 1 Diabetic patients (40). Although the 

pathophysiology and complications of type 1 diabetes differs from those of T2DM, it is 

still important to consider models developed across the diabetes spectrum to better 

understand how physiological signals related to glycemic control. In their work, they 

developed a feed-forward multi-layer neural network model to detect the presence of 

hyperglycemic events. Ten type 1 diabetic patients. For each patient, a 30-minute segment 

of ECG data was recorded, while blood glucose samples were collected at the same time 

at regular intervals. For each patient, sixteen ECG features were derived, five of them 

being standard intervals that are easily observed from the ECG data (and are typically 

automatically generated by most 12-Lead ECG machines), and the remaining 11 features 

being a combination of time series and frequency domain features. For their results, the 

test set lead to 70.59% sensitivity and 65.38% specificity in identifying hyperglycemic 

events. Further, they compared their neural network model to two other models 

commonly used for classification: linear discriminant analysis and K-nearest neighbours. 

Their findings suggested that their neural network model was superior to the other 
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methods for hyperglycemia classification. This work demonstrates a unique approach to 

combining interval-based, time-based, and frequency-based features using a neural 

network-based model to detect hyperglycemia in patients with Type 1 Diabetes. This 

work is limited by its sample size (n=10) and the monitoring of blood glucose levels 

during an overnight period only. Future works should explore the use of this model in 

patients with Type 1 Diabetes for longer periods of time, as well as it’s applicability to 

patients with other forms of the disease (T2DM, gestational diabetes, etc.). 

Gupta et al. proposed a framework for automating screening of type 2 diabetic 

patients using ECG signals (41). They used single-lead electrocardiogram data and 

trained a decision tree classier on data from 35 patients with diabetes and 51 control 

patients. However, to boost the number of training samples, each 20–50-minute ECG 

reading was segmented into 5-second fragments and labelled as diabetic or normal, and 

it was not clear if patients from the test and train sets were kept separate. To extract 

relevant features for the 5-second fragments, intrinsic time scale decomposition (ITD) was 

used to decompose the signal into its rotational components. They did not report 

AUROC, but reported an accuracy of 86.90%, specificity of 90.60%, and positive 

predictive value of 84.56%. Overall, their work explores the use of single-lead ECG data 

for screening of T2DM through intrinsic time scale decomposition and provides 

promising results. However, because it was not clear whether splitting of the data for 

training and testing was performed at the ECG fragment level, or patient level,  validation 
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with an independent test set should be conducted to explore the generalizability of the 

model and confirm the observed results. 

Despite the strong trend of using deep learning and neural network-based 

approaches to detect T2DM and its associated parameters, there is a significant gap in the 

literature around scalable tools for T2DM detection. Further, there is no consensus on 

which features of the ECG are most appropriate to use, as what degree of explain ability 

is required for these models to be implemented in clinical settings. Typically, in deep 

learning, the neural network model can be thought of as a feature extractor where 

features are being extracted from the time series to predict the target variable – presence 

or absence of T2DM. However, these features may not be medically relevant or 

explainable in the context of the anatomy or physiology of the cardiovascular system and 

T2DM. This problem becomes increasingly relevant as we consider the fact that complex 

machine learning models are prone to overfitting, which is a term that describes models 

which are too closely fit to the training data, and therefore do not perform well on unseen 

data. Deep learning architectures are inherently more complex, and therefore the risk for 

overfitting is greater. When selecting a model architecture to solve a problem with 

machine learning, more complexity does not necessarily lead to better outcomes. 

Similarly, an overly simplified model cannot capture the trends in the data to make 

accurate predictions. The design of an effective model is a delicate balance between 

model complexity and appropriate feature engineering. Feature engineering involves 
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both the selection of features already present in the dataset (feature selection), and new 

features that are derived from already existing features (feature extraction). Evidently, 

the design of an accurate model for the early detection of T2DM should consider model 

complexity, scalability, explosibility, and feature engineering. 

The scalability of a model can be assessed in the development of the model, where 

one would consider how the model scales with increasing amounts of training data. 

Considerations at this stage are largely related to training time and the computational 

power required (how many machines are needed, is distributed learning necessary, etc.). 

Additionally, post-training considerations are of great importance; how long does the 

model take to produce predictions, and can the model be deployed on smaller devices 

such a mobile phones or smart watches? It is imperative that research on the use of ML 

for early detection of T2DM is forward-thinking, and considers the implications of model 

choice on scalability, accessibility, and amount of training data required. While neural 

network-based models may produce better predictions in some scenarios, when they are 

deployed at scale, the performance may decrease due to downsizing of the model 

architecture, computational efficiency, or limitations in access to training data. If similar 

results can be achieved with lighter-weight models such as XGBoost, this would result in 

significant benefits at later stages in terms of cost, infrastructure, and efficiency. 

Therefore, in this work, we seek to address this issue by developing a non-deep learning 

approach to predict T2DM using XGBoost as model of choice. We compared the use of 
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interval-based, time-series based, and frequency-based features as input to the model to 

examine their utility to predict T2DM.  

When designing a study on the use of electrocardiogram data for T2DM  detection, 

the question of how to partition the data becomes ever relevant. Most datasets contain 

ECG readings of 5-10 seconds in length for each patient; however, many previous studies 

have opted to partition each ECG reading into smaller fragments (with each fragment 

representing one cardiac cycle or one heartbeat). This is an effective way to improve the 

size of the training dataset, with an increase up to 10-fold. However, if individual 

heartbeats are being used as single samples, there should be no overlap of heartbeats 

from a single patient in both the training and testing datasets. The goal of the 

aforementioned models, as well as those being developed in this thesis, is to predict the 

presence of T2DM from unseen data based on the previously seen data used to train the 

model. In practice, if there is overlap of samples from the same patient in training and 

testing, then theoretically the model may be learning representations of T2DM specific to 

one patient, and then be tested on heartbeats from the very same patient. This may lead 

to unusually high results for AUROC, specificity and sensitivity. To validate such 

models, testing on an additional dataset with no patient overlap with the dataset used for 

training should be conducted. Therefore, results from studies where it is unclear whether 

the patients were separated in the training and testing sets should be interpreted with 

this in mind.  
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3 Methods 

3.1 OVERVIEW  

To evaluate the use of machine learning for the screening of T2DM, we developed 

a model that uses Extreme Gradient Boosting (XGBoost) in conjunction with various data 

pre-processing/feature extraction methods (Figure 2). We built a binary classifier using 

XGBoost that takes Lead-I of a 12-Lead as input, and outputs a label for patients from the 

following classes: (0) diabetes negative or (1) diabetes positive. All models were trained 

on a MacBook Pro (2018) with 2.3 Ghz Quad-Core Intel Core i5 processor and 8 GB 

memory. All code was written in Python 3.9 in Microsoft Visual Studio using Jupyter 

Notebooks. Pre-processing was done using Numpy and Pandas packages.  

We sought to develop a novel approach to applying XGBoost to time series data, 

as the model is typically used for complex datasets with tabular data and columns that 

represent time-independent features. However, as ECG data is inherently time dependent, 

we extracted time-independent features using various pre-processing and 

dimensionality reduction techniques to produce inputs to the XGBoost model. We 

evaluated feature extraction and pre-processing methods across three categories: 1) time 

domain analysis, 2) frequency domain analysis, and 3) automatically extracted ECG 

features. For all experiments, we tested the model with ECG features alone, as well as 
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ECG features in combination with the following patient metadata: age, sex, and body 

mass index (BMI). 

 
Figure 2. Methodology overview. Created with BioRender.com 

 
3.2 DATASET 

For all experiments, we trained and validated the model using data from the 

CARTaGENE study from CHU St. Justine (REB# 2017-3010). CARTaGENE is a public 

research platform that aims to accelerate health research. The platform contains both 

biological samples and data on the health and lifestyle of 43,000 Quebec men and women 

between the ages of 40 and 69 at recruitment.  The data was collected between 2009-2010, 
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and includes electrocardiogram data for N=7463 patients, and of these patients N=635 

have T2DM (Table 6). ECGs were acquired using the GE Cardiosoft electrocardiogram 

machine and software and sampled at 500Hz.  In this dataset, T2DM is defined as self-

reported diagnosis OR HbA1c value ≥ 6.5% (in line with current Canadian guidelines for 

T2DM diagnosis).  

Table 6. Demographics for CARTaGENE dataset 

Demographic Variable Overall  

Age, years 

Median (IQR) 53 (49-61) 

Mean ± SD  55.2 ± 7.6 

Gender 

Female  379 

Male 284 

Body Mass Index 

Median (IQR) 28.3 [25.2, 32.7] 

Mean ± SD 29.3 ± 5.8  

Race 

Non-Black 654 

Black 9 

Avg. Systolic Blood Pressure 

Median (IQR) 124 [113, 133] 

Mean ± SD  124 ± 15 

  

Avg. Diastolic Blood Pressure 
Median (IQR) 74 [66, 80] 

Mean ± SD  74 ± 11 

Glycated Hemoglobin (HbA1c) 

Median (IQR) 5.9 [5.5, 6.7] 

Mean ± SD 6.3 ± 1.39 
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Figure 3. Visualized demographics for CARTaGENE dataset. 

 
3.3 MODEL EVALUATION 

For each experiment, we calculated the area under the receiver operating curve 

(AUROC) sensitivity, specificity, positive predictive value (PPV), negative predictive 

value (NPV) and F1 Score for each classifier. Sensitivity and PPV are often referred to in 

the Computer Science literature as recall and precision, respectively.  The AUROC and 

F1 metrics are also more common in the field of machine learning, both describing the 

discriminative ability of the model. The AUROC describes a model’s classification 

abilities at different thresholds for classification by plotting the false positive rate against 

the true positive rate (or sensitivity against 1-specifictiy). The area under the curve 

represents the degree of separability between classes in terms of how the model classifies 

samples. For example, if a model can always correctly classify T2DM patients as having 
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the disease, and those without the disease as not having it, then the degree of separability 

between classes is perfect, which corresponds to an AUROC of 1. A binary classifier that 

randomly classifies patients as having the disease or not having the disease would have 

an AUROC of 0.5, meaning that only 50% of the time patients are correctly classified. 

Therefore, values of AUROC generally fall between 0.5-1.0. The F1 score is formally 

defined as the harmonic mean between the PPV (precision) and sensitivity (recall). A 

harmonic mean calculation will provide a lower score when either value is very low, or 

there is a large difference between the two values. This calculation is important as when 

increasing PPV, sensitivity may suffer and vice versa. Therefore, a high F1 score would 

indicate a well-balanced classifier, where the model has suitable performance when it 

produces a positive prediction (in other words, the PPV is adequate), and can adequately 

classify positive patients overall (sensitivity). 

3.4 MODEL ARCHITECTURE: XGBOOST  

For all experiments, we trained an XGBoost model and performed a grid-search 

for hyperparameter optimization. XGBoost is an efficient implementation of Gradient 

Boosting Trees: a machine learning algorithm that combines sequentially connected 

‘learners’ to produce predictions (44). Compared to deep learning, an architecture based 

on deeply layered neural networks, XGBoost often requires less data to train to achieve 

similar results. Given that data acquisition to train models can be difficult in clinical 

settings, we wanted to explore an approach to the T2DM screening problem that did not 
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require DL and was easily scalable and efficient for both training and inference. The 

sequential training of individual learners is described by the term ’boosting’ in gradient 

boosting trees and is built upon the concept of additive modelling: a complex function to 

describe the data is derived from the combination of more simple functions. Gradient 

boosted models take the weighted sum of the sequentially trained learners to produce a 

final function that describes the dataset in a way that minimizes the loss function. In 

building supervised learning models, the overall goal is to find a model that minimizes 

loss (45), a value that indicates how poorly the model performed at making a prediction 

on a single example.  There are various loss functions that can be chosen, but all have the 

goal of evaluating the model’s ability to make correct predictions. High loss would 

indicate poor predictions, and vice versa.  

Before discussing the algorithm in detail, the concept of bias-variance trade-off must 

be understood. Bias can be understood as how well the model matches the dataset – high 

bias meaning the model does not match the dataset well, and low bias meaning it closely 

matches the dataset. High bias models fail to capture trends in the data, may be overly 

simplified (underfitting to the training data) and have high error rates. Variance can be 

defined as the changes in model performance when training on different subsets of the 

training data. Also, models with high variance tend to perform well on training data, but 

poorly on test data; in other words, these models do not generalize well on unseen data. 

Therefore, if we train the model on different subsets of the data, and the model’s 
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performance varies greatly between these subsets, we understand the model has high 

variance and is likely overly complex (overfitting to the training data). Therefore, there is 

always a trade-off between bias and variance: a model cannot be both overly complex and 

overly simplified. Similarly, it cannot both fail to capture trends in the training data and 

capture these trends almost too closely in a way that does not generalize outside the 

training data.  

The algorithm (46) consists of three steps (Figure 3), which can be easily described 

by following an example, such as the model we have built in this work. The model is used 

to predict the presence of T2DM from ECG data, with the target variable (what we are 

trying to predict) being T2DM and the input variable being patient ECG data. 

In step one, we initialize a model with a constant value. Initially, we will assume 

a constant probability across all patients that they belong to the diabetes class. This value 

will serve as a starting point for building the first tree, which is called a weak learner. Weak 

learners generally perform poorly on their prediction task, but the mistakes of weak 

learners are the building blocks for subsequent trees. In other words, the mistakes made 

be the initial trees or weak learners are corrected for each subsequent tree, and we end up 

with a set of trees that makes accurate predictions. 

In the second step, we calculate the residuals, or the difference between the actual 

value and predicted value. After the initialization step, we assumed a constant value for 

the probability that a sample belongs to the diabetes class. For each patient, there is a 



   
 

  31 
 

ground truth which indicates whether they belong to the positive class (diabetes) or the 

negative class (no diabetes), which is often denoted by a 1 or 0, respectively. To calculate 

the residuals, probability that the patients belong to the positive class are subtracted from 

the actual value (either 0 or 1).  

In the third step, we fit a new model on what we failed to correctly classify in the 

previous model -- in essence, fitting a model on the mistakes of the previous model (47).  

The final model is a combination of the models that were built sequentially with the 

previously mentioned algorithm, and the larger “meta” tree is one that has greatly 

minimized the residuals (errors) (Figure 4).  

 

Figure 4. Gradient boosting algorithm (46)      

(46) 
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Figure 5. Extreme Gradient Boosting (XGBoost) algorithm overview. Created with 

BioRender.com 

3.5 DIMENSIONALITY REDUCTION 

A critical step in the use of XGBoost is dimensionality reduction: transforming 

data into a lower dimension, while still preserving the information present in the original 

representation (48). If we include all the data points or ‘features’ that we have for each 

patient from each ECG, we risk the model overfitting. Overfitting is a term used to 

describe a model whose prediction function is too closely fit to the training dataset, and 

as a result, performs poorly on unseen data (49). Recall that when building a machine 

learning model, fundamentally, the model is trained on a set of data (training set) and 

will be tested against unseen data to evaluate its performance. The purpose of the training 
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data is to serve as a means for the model to understand the relationship between the 

target variable (what you are predicting) and the input variable(s) (the features you are 

using the make the prediction). Overfitting is the result of a having an overly complex 

model, and can be mitigated through proper hyperparameter tuning, in other words, 

running experiments to choose the most appropriate parameters for the model. The ideal 

model produces a prediction function which adequately represents the training data, but 

still generalizes well – in other words, performs well on new examples. The opposite of 

overfitting is underfitting, and this occurs when the model is overly simple and fails to 

capture the trends in the training data related to the target variable (50). Models that are 

underfit typically perform poorly on both training and testing data. This can also be 

mitigated through adequate hyperparameter tuning, but also may require the selection 

of a more complex model. 

3.6 PRE-PROCESSING 

For all experiments, ECGs were pre-processed in the same manner. First, the ECG 

signal is de-trended, in other words, the mean is removed from the data. This allows us 

to view sub-trends in the data or unveil cyclical patterns, which in this case, may or may 

not be related to the presence of T2DM. Next, we apply the Savitzky-Golay (Savgol) filter 

to smooth the signal, which will remove high frequency and increase the precision of the 

data without distorting the signal’s overall shape (Figure 6) (51). This filter is applied to 

a signal with N points, and uses a window filter w, that slides across the signal. For each 
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window segment, the filter will fit a polynomial function of order o. Both the window 

size and polynomial order can be adjusted for more granularity in the control over the 

level of smoothing and de-noising (51). Finally, we apply a bandpass filter that only 

allows frequencies between 1-25Hz to pass through, to remove very low and high 

frequencies which may be attributed to noise while the 12-Lead ECG was being obtained.  

 

Figure 6. Savgol filter example. The Savgol filter is used to fit a quadratic function incrementally 

over the entirety of the signal, reducing noise and providing a smoothed version of the signal. 

(51) 

3.7 PRINCIPAL COMPONENT ANALYSIS  

Principal component analysis (PCA) is one of the most common methods for 

dimensionality reduction. PCA is a statistical method that reduces the number of 

dimensions of the data while preserving the maximum amount of variance (information) 

(52). Principal components are produced from the input data, with each component 
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accounting for a specific amount of variance in the data. The number of principal 

components produced can be controlled by either specifying the number of components 

desired explicitly, or by indicating a percentage of the total variance in the original data 

that you wish to maintain. For the purposes these experiments, we used thresholds of to 

maintain 80% and 90% of original variance in the data.  

3.8 TIME SERIES ANALYSIS 

For the time series analysis experiments, we sought to perform feature extraction 

from the time series data directly. To extract features, we used principal component 

analysis (PCA) as a form of dimensionality reduction, and effectively, as a feature 

extractor. PCA is one of the most common forms of dimensionality reduction, and is by 

definition a statistical method that reduces data into “principal components” which 

explain a certain amount of variance within the data. The amount of variance explained, 

and in turn, the number of principal components produced by the method can be set 

manually – either by specifying the number of components explicitly, or by specifying 

the amount of variance you wish to maintain (from which, a set number of components 

will be derived). In the experiments using PCA, we specified maintained variances of 

80% and 90%, which produced 162 and 236 principal components, respectively. 

3.9 FREQUENCY DOMAIN ANALYSIS  

For the frequency domain analysis experiments, we employed the Fast Fourier 

Transform (FFT) to transform the time series data from the time to the frequency domain. 
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The FFT decomposes a signal into its unique frequency components. Therefore, it 

provides information on the frequency trends in the data, rather than time dependent 

trends. In these set of experiments, we are using the FFT as a feature extractor.  

3.10 AUTOMATIC INTERVAL-BASED ELECTROCARDIOGRAM FEATURES 

The electrocardiogram machine will automatically calculate the following 14 

features upon recording a patient’s heart activity:  PP-interval, PQ-interval, P-axis, P-

duration, P-offset, P-onset, QRS-duration, QRS-number, QTC-interval, QT-interval, Q-

offset, Q-onset, RR-interval, and R-axis (Table 7).  
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Table 7.Electrocardiogram interval-based features & descriptions 

ECG Feature  Description 

PP-Interval Represents the time between successive P waves on the ECG. It 

measures the duration of the atrial depolarization and reflects the 

regularity of atrial rhythm. 

PQ-Interval Measures the time from the beginning of the P wave to the start of 

the QRS complex. It represents the conduction time from the atria to 

the ventricles and includes the atrioventricular (AV) node delay. 

Also known as PR interval. 

P-Axis Refers to the overall direction of the atrial electrical activity. It is 

determined by analyzing the P wave in multiple leads (53). 

P-Duration Measures the time duration of the P wave. 

P-Offset Represents the endpoint of the P wave, marking the completion of 

atrial depolarization. 

P-Onset Represents the starting point of the P wave, indicating the beginning 

of atrial depolarization. 

QRS-Duration Measures the time from the beginning to the end of the QRS 

complex. It reflects the time taken for ventricular depolarization 

(contraction of the ventricles) to pump blood out of the heart. 

QRS-Number Refers to the number of QRS complexes observed on the ECG during 

a specific period. 

QT-Interval Measures the time from the beginning of the QRS complex to the end 

of the T wave. It represents the total duration of ventricular 

depolarization and repolarization (54). 

QTC-Interval Represents the heart-rate adjusted QT interval Provides a more 

accurate assessment of ventricular repolarization due to the 

variation in QT interval as it relates to heart rate (54). 

 

Q-Onset Represents the beginning of the Q-wave. 

Q-Offset Represents the end of the Q-wave. 

RR-Interval Measures the time between successive R waves on the ECG. It 

represents the duration of one cardiac cycle and is used to assess 

heart rate and rhythm regularity. 

R-Axis Refers to the overall direction of the ventricular electrical activity. It 

is determined by analyzing the QRS complex in multiple leads 
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3.11 CLASS IMBALANCE  

Given that the data used in this work is highly imbalanced (large number of 

diabetes negative patients), we must employ a technique to rebalance the classes.  If we 

do not rebalance the classes, the model may simply learn to predict the majority class 

more often due to its oversampling. We experimented with three methods of correcting 

class imbalance: 1) Synthetic Minority Oversampling Technique (SMOTE), 2) Manually 

down sampling the majority class, and 3) Tuning of the parameter which scales the 

gradient for the positive class (i.e.. punishes the model more strongly for mistakes made 

against the positive class).  

Synthetic Minority Oversampling Technique (SMOTE):  

SMOTE is an oversampling technique in which the minority class is over-sampled 

by creating “synthetic” examples (55). The oversampling is achieved by taking each 

minority class sample and all its features and introducing new examples along the line 

segments joining all the k-nearest neighbours, with the value of k depends on the amount 

of oversampling needed (the larger the oversampling required, the nearest neighbours 

are used). The proposed approach involves first computing the difference between the 

feature vector of the sample under consideration and its nearest neighbor. Subsequently, 

this difference is multiplied by a random number between 0 and 1. The resulting value is 

then added to the original feature vector, effectively creating a random point along the 

line segment connecting the two initial features (55).  
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 For the purposes herein, each time point from the ECG will be considered a time-

dependent feature. Therefore, SMOTE will be generating artificial ECGs based on the 

distribution of the time points for neighbouring samples. However, it is important to 

understand that SMOTE will interpret each time-point as an independent feature. In other 

words, a new time point will be generated based on values for the same time point in 

other samples. Additionally, SMOTE will be oversampling based only on the minority 

class, in this case, the diabetes positive class. This technique was applied to the time series 

analysis experiments before and after applying PCA to examine the effects on synthetic 

data on raw times series data and its associated principal components, respectfully.  

Manual Down-Sampling of the Minority Class:  

When manually down-sampling the minority class, the number of negative 

samples is reduced so that the number of positive samples is equal to the number of 

negative samples. As a result, the training dataset consisted of N=930 samples with 465 

patients in each diagnosis category (diabetes negative and positive). The test set consisted 

of N=340 samples, with 170 patients in each diagnostic category.  

3.12 PARAMETER TUNING:  

We selected a Grid Search with Cross-Validation (Grid Search CV) as the method 

for optimizing the performance of a model. The cross-validation segment of this approach 

will be further discussed in the following section. The Grid Search is an exhaustive search 

approach, testing all possible combinations of a specified set of parameters for a model. 
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The following describes the hyperparameters used and their associated descriptions 

(Table 8) (56).    

Table 8. Hyperparameters of XGBoost and their associated descriptions 

Hyperparameter Description Values used 

η (Eta) Learning rate [0.05, 0.15, 0.2, 0.3] 

max_depth Maximum tree depth  [1, 3, 6, 9] 

 

min_child_weight Minimum weight for each 

child in of the tree 

[1, 2, 3, 4, 5] 

 

γ (gamma) Minimum loss reduction 

required to make a further 

partition on a leaf node of 

the tree. The larger gamma 

is, the more conservative 

the algorithm will be. 

[0.5, 1, 1.5, 2, 5, 10, 50, 100, 

150, 200] 

 

Scale_pos_weight Amount to scale the 

gradient for the positive 

class. 

 

Scales errors made by the 

model during training on 

the positive class and 

encourages the model to 

over-correct them. 

[25, 50, 75, 100] 

 

 

3.13 TRAIN/VALIDATION/TEST SPLITS 

The original dataset was split into training and test sets that represented ~5% of 

the total data. The decision to reserve a smaller test set was made as we had a limited 

number of positive patients in the dataset to begin with. Approximately 9.2% of patients 

were T2DM positive in the dataset for the time series and FFT experiments, and 7.0% of 

patients in the dataset for the automatic ECG features experiment. The cohorts for these 



   
 

  41 
 

two classes of experiment were different due missing data for automatic ECG features 

for 356 patients. Most importantly, there was no patient overlap between any of the 

training and validation data and testing data. This is to ensure the model is learning 

representations on an independent set of patients, and the discriminative ability is being 

evaluated on another independent set. 

 The training set was further divided into smaller training and validation steps for 

model optimization and hyperparameter tuning. To better evaluate the model’s 

performance and generalizability, we employed a technique called N-Fold cross-

validation during the hyperparameter tuning step to expose as many samples from the 

training data as possible during the hyperparameter exploration (57). The dataset is 

divided into N subsets or "folds" of approximately equal size, in this case, N=3 folds. First, 

the dataset is randomly partitioned into the specified number folds (typically 3 or 5). 

Next, the model is trained and evaluated N times. In each iteration, a different subset of 

the data is reserved for validation, while the remaining N-1 folds are used to form the 

training set (Figure 7). The model is trained on the training set, and the performance of 

the model using the hyperparameters in question is evaluated on the validation set. This 

is done exhaustively for all possible combinations of hyperparameters as specified by the 

hyperparameter grid (Table 8). The best model is chosen based on the value of the specific 

performance metric at each iteration. Models are typically optimized for AUROC, 

precision, recall, or F1 score. The model is then retrained on the entirety of the training 
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data using the combination of hyperparameters with the best performance during N-Fold 

cross validation.  

The purpose of this technique is to expose the model to as many subsets of the 

training data as possible, and to prevent overfitting. When we shuffle the training and 

validation step at each iteration, we are increasing the likelihood that the model will not 

learn representation that are overly specific to the training data, thereby increasing the 

likelihood of producing a model that performs well on unseen data. We reserved a held-

out test set, completely independent of the training and validation sets, which are used 

to evaluate the final performance of the model using the best hyperparameters found in 

the search.    

 

Figure 7. Training/validation/testing split and 3-fold cross-validation (CV) 
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4 Results 
 

4.1 TIME SERIES ANALYSIS WITH SMOTE AND PCA 

Time series analysis of the ECG data using SMOTE to rebalance the dataset and 

PCA for dimensionality reduction produced very high values for specificity, but very 

low values for sensitivity and AUROC (Table 9). 

Table 9. Time series analysis with SMOTE 

Experiment Sens. Spec. AUROC F1 Score PPV NPV 

PCA - 90% of 

variance 

conserved 

1.5 96.5 43.9 2.86 30.0 49.5 

PCA - 80% of 

variance 

conserved 

2.5 95.5 43.5 4.7 35.7 49.4 

 

4.2 TIME SERIES ANALYSIS WITHOUT SMOTE AND PCA 

Time series analysis of the ECG data using a manually rebalanced dataset and 

PCA at 90% and 80% of data variance maintained for dimensionality reduction (Tables 

10,11). These experiments produced high sensitivity, low specificity and moderate 

AUROC score in experiments that included patient metadata. The best performing 

model on sensitivity uses features with 90% explained variance, while the best 

performing model on AUROC uses features with 80% explained variance. 
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Table 10. Time Series analysis without SMOTE, 90% explained variance with PCA 

Experiment Sens. Spec. AUROC F1 Score PPV NPV 

PCA - 90% of 

variance 

conserved + 

Metadata 

84.7 50.6 73.3 72.4 63.2 76.8 

PCA - 90% of 

variance 

conserved 

48.8 63.5 58.0 52.7 57.2 55.3 

 

Table 11. Time series without SMOTE, 80% explained variance with PCA 

 

Experiment Sens. Spec. AUROC F1 Score PPV NPV 

PCA - 80% of 

variance 

conserved + 

Metadata 

84.1 52.3 74.8 72.6 63.8 76.7 

PCA - 80% of 

variance 

conserved 

7.6 89.4 51.1 12.9 41.9 49.2 

 

4.3 FREQUENCY DOMAIN ANALYSIS 

Frequency domain analysis of the ECG data using a manually rebalanced dataset 

and the Fast Fourier Transform to convert the time series signal into a frequency 

domain representation, optimized for both AUROC and F1 score (Table 12). Superior 

models consistently included patient metadata, and the model optimized for AUROC 

(including patient metadata) yielded the highest sensitivity across experiments. 
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Table 12. Frequency domain analysis, optimized for AUROC and F1 Score 

Experiment, 

Optimization 

Sens. Spec. AUROC F1 PPV NPV 

With 

Metadata, 

AUROC 

88.2 55.9 76.2 75.9 66.7 82.6 

Without 

Metadata, 

AUROC 

40.6 75.2 63.8 49.1 62.1 55.9 

 

With 

Metadata, F1 

75.8 63.5 76.5 71.4 67.5 72.5 

Without 

Metadata, 

AUROC 

 

87.1 19.4 64.0 65.1 51.9 60.0 

 

4.4 AUTOMATIC ECG INTERVAL FEATURE ANALYSIS 

Analysis of fourteen automatically extracted, interval-based features of the ECG 

data using a manually rebalanced dataset (Table 13). The best model across all metrics 

included automatically extracted ECG features and patient metadata, but an increase in 

sensitivity and specificity and a decrease in AUROC were observed when excluding age 

and BMI  from the patient metadata. 
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Table 13. Automatic interval based ECG feature analysis 

Experiment Sens. Spec. AUROC  F1 PPV NPV 

ECG 

features 

66.5 56.5 67 63.3 60.4 62.8 

ECG 

features + 

Metadata 

73.5 71.8 78.4 72.9 72.2 73.1 

ECG 

features (no 

axis) + 

Metadata 

  

45.3 84.7 73.3 56.4 60.8 74.7 

Metadata 71.1 70.0 75.6 70.8 70.4 70.8 

ECG 

features + 

SEX 

 

76.4 57.1 71.4 69.7 64.0 70.8 

Sex 71.7 52.9 62.3 65.6 60.4 65.2 

 

The best performing models were those that used the frequency-based features 

with patient metadata, as well as interval-based features with metadata (Table 14). The 

frequency-based model yielded a superior sensitivity, but a higher AUROC was observed 

in the interval-based model. 
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Table 14. Summary of best performing models 

Experiment Sens. Spec. AUROC  F1 PPV NPV 

FFT with 

Metadata 

88.2 55.9 76.2 75.9 66.7 82.6 

Automatic 

Interval-Based 

ECG features + 

Metadata 

73.5 71.8 78.4 72.9 72.2 73.1 

 

 

 

 

Figure 8. Feature importance plots for automatic interval-based features, with and without axis. 
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5 Discussion 
 

Overall, the results provide interesting insights into the use of time series data with 

XGBoost, as well as the utility of different pre-processing and class rebalancing 

techniques such as Principal Component Analysis (PCA), the Fast Fourier Transform 

(FFT), and Synthetic Minority Oversampling Technique (SMOTE). Additionally, we 

leveraged a large dataset (N=7463) of patients with 12-Lead ECG readings to train the 

models. The two best models used frequency-based and interval-based features as input, 

achieving an AUROC of 0.784 and sensitivity of 0.882 (Table 14). The frequency-based 

features were extracted using the FFT on the pre-processed time-series data, while the 

interval-based features (Table 7) were automatically extracted by the ECG machine. The 

frequency-based features were larger in number (400 features), while interval-based 

features were smaller (14 features), but contained clinically explainable features, aiding 

in the interpretation of the results and demonstrating superior performance on AUROC. 

The feature-based model, however, performed better on sensitivity. Overall, these 

findings suggest that it is possible to achieve similar results to state-of-the-art models 

without the deep learning (DL) approaches they typically employ. The ability to achieve 

results with XGBoost that are in line with neural network-based models is ideal for 

several reasons. First, less data is typically required for training XGBoost in comparison 

to DL models. It is generally accepted that DL models require large volumes of data to 

train the model accurately due to the very large number of hyperparameters that need 
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tuning (58). The rule of thumb for the number of training samples required for DL models 

is that the number of samples should be an order of magnitude higher than the number 

of features (59). In the dataset, each patient has 5000 ECG features (datapoints), and 

taking the most conservative form of this rule with an order of magnitude of two, this 

would require a minimum of 10,000 ECGs. In practice, however, orders of magnitude 

above two (often 10) are typically used, meaning that minimum number of samples 

required to produce accurate results expands exponentially. Additionally, training time 

and inference time may be more efficient with XGBoost compared to DL models, as 

XGBoost was designed to be highly efficient, leading to decreases in the time required to 

train a model and the time required to make predictions. This is well-demonstrated by 

the results of this work, where all the training and predictions were made on a MacBook 

Pro 2018. In contrast, most DL models require expensive Graphic Processing Units 

(GPUs) and Central Processing Units (CPUs) for training and making predications, and 

with large datasets may require multiple units to conduct distributed training. With more 

efficient models such as XGBoost, infrastructure costs can be reduced, and scalability of 

the models becomes increasingly accessible.  

We found positive results using training and testing datasets that were completely 

independent with no patient overlap.  This is especially important as some previous 

studies partition the ECG into individual heartbeats from the same patient, treating them 

as independent samples (60,61). Therefore, a single patient’s data may be present in both 
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the training and testing datasets, however, no single heartbeat can be present in both. In 

theory, this is a good approach for increasing the number of samples for training the 

model (a 10 second electrocardiogram could contain 10-16 beats at a normal heart rate). 

However, in practice, this means a model would be learning representations of the 

disease on a heartbeat of a patient and being tested on a different heartbeat from the same 

patient. While this may lead to favourable results, the model may simply be learning 

representations specific to patients in the training set. To validate the use of these models 

in real-world scenarios, testing with an independent dataset of different patients is 

required. Typically, however, all models will see a decrease in performance when being 

tested on unseen data. This is one of the integral questions in machine learning model 

development – how well does this model generalize? Generalization refers to the model’s 

ability to make accurate predictions on new data. For this reason, we decided to take each 

patient’s ECG reading in its entirety as a single sample, ensuring that no patients were 

present in both training and testing datasets. By doing this, we increase the likelihood 

that the model will generalize appropriately as it is being tested on data of unseen 

patients.  We compare our results to that of the literature, where the ECG-partitioning 

technique is often used (Table 15).  

 

 

 



   
 

  51 
 

Table 15. Comparison of results between the literature and the present study. 

Authors Model 

Architecture 

AUROC Sensitivity (%) Specificity (%) 

Lin et. al Deep 

Learning 

82.55 N/A N/A 

Dave et. al Random 

Forests 

86.5 79 79 

Nguyen et. al Artificial 

Neural 

Network 

N/A 70.59 65.38 

Present Work XGBoost: 

Frequency-

Based 

Features 

 

78.4 73.5 71.8 

 XGBoost: 

Interval-

Based 

Features 

76.2 88.2 55.9 

 

Time Series Analysis:  

 

In the time series experiments, the best AUROC and sensitivity achieved were  

0.743 and 0.847, respectively, in the experiments which used PCA as the form of 

dimensionality reduction (Tables 10 and 11). The best performing model for AUROC was 

trained on PCA features which conserved 90% of the data original variance (Table 10). 

The best performing model for sensitivity was trained on PCA features that conserved 

80% of the original variance.  

The use of SMOTE appeared to negatively impact model performance (Table 9). 

We hypothesize that the use of this technique introduced noise, and the artificial ECGs 

generated by it lacked the time-dependent features that relate heart function to diabetes 
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diagnosis. SMOTE is not a time-series specific method for up-sampling data, and 

therefore treats each data-point as independent in time. This, in turn, may result in the 

loss of the time-dependent features important for the model to make predictions. This 

finding raises the question of how to address limitations around sample size in datasets 

for models such as those outlined in this work. Training models on larger datasets of real 

patient data would be ideal but is not always feasible due to constraints around privacy, 

data-sharing, missing data, and patient consent. During the development of this model, 

Microsoft released a paper about a novel approach to imbalanced datasets for time series 

classification problems: Temporal-oriented Synthetic Minority Oversampling Technique 

for Imbalanced Time Series Classification  (T-SMOTE) (62). In this work, they propose an 

oversampling tool based on the original SMOTE that preserves the temporal information 

of time series data. This is achieved by the generation of “near-border” samples, meaning 

samples that are near the border of the two classes being examined – in this case, the 

presence or absence of T2DM.  Intuitively, samples near the class border will contribute 

more to classification model performance than those which are far from the border. From 

these near-border samples, additional samples are generated. Of all the near border 

samples (synthetic and original), a subset is randomly selected to construct the final, 

class-balanced dataset. In future iterations of this work, T-SMOTE should be applied to 

examine the effects of time-series specific oversampling techniques, and may provide a 
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means to augment medical datasets, leading to the development of more robust models 

that may generalize more effectively.   

In the time series experiments that did not employ any oversampling techniques 

(Tables 10 and 11), we opted to manually rebalance the dataset by under-sampling the 

majority (T2DM negative) class. The best model in these experiments yielded a AUROC 

of 0.748 and a sensitivity and specificity of 0.841, and 0.523, respectively when using PCA 

features that conserved 90% of the data’s variance (Nfeatures = 236). In experiments using 

PCA features that conserved only 80% of the data’s variance (Nfeatures = 162), the 

sensitivity and AUROC of the model significantly dropped. This suggests that a 

threshold for PCA variance of 80% may be too low to produce acceptable results. In the 

context of a screening tool, it is important that the model has adequate sensitivity and 

specificity. The sensitivity of a model is influenced by false negatives, in this case, patients 

that the model classifies as disease-negative who in fact, do have the disease. In any 

screening strategy, it is imperative that we ensure as many diseases positive cases are 

being detected as possible, and mistakes from the model in this context would mean 

delayed diagnosis of T2DM. Specificity, on the other hand, is influenced by false 

positives, or patients that the model classifies as disease positive who in fact, do not have 

the disease. A low specificity in a model may lead to unnecessary additional testing for 

patients who do not have the disease. This does not pose any significant health risks for 

patients; however, it would lead to unnecessary healthcare spend. Therefore, we would 
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favour optimizing sensitivity in models for disease screening, however we must ensure 

that this doesn’t come at the cost of a very low specificity. Additionally, the PPV and NPV 

of the models describes the likelihood that a patient is diabetes positive given a positive 

prediction from the model, and vice versa. The best performing model on these metrics 

used PCA features that conserved 90% of the data’s variance, resulting in a PPV and NPV 

of 0.632 and 0.768, respectively. Overall, in the context of population-level screening, it 

would be advisable to optimize for and select models that perform best based on 

sensitivity to ensure no disease-positive patients are missed, in our case, this would be 

the frequency based model.  

Frequency Domain Analysis:  

 

The frequency domain experiments examined the use of frequency-based features 

as input to the XGBoost model using the Fast Fourier Transform (FFT) to decompose the 

signal into its frequency components (Table 12). The output of an FFT is the amplitude of 

each frequency component that comprise the signal and gives information as to which 

frequencies are most prominent in a time-series. Converting a signal to the time series 

domain does not result in information loss, rather, it is simply a time-independent 

representation of the signal. The results of the frequency domain experiments were 

superior to that of the time-series experiments, with an AUROC, sensitivity and 

specificity of 0.759, 0.882, and 0.559, respectively. A model that was more balanced in 

terms of sensitivity and specificity was also derived, and the resulting AUROC, 
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sensitivity and specificity were 0.713, 0.758, and 0.635, respectively. Further, the PPV of 

this model was 0.675. Despite the reduction in sensitivity (from 0.882 to 0.758), we 

observed an increase in specificity, meaning this model may still be accurate enough as a 

screening tool without incurring unnecessary costs related to a high number of false 

positives. Further, if a patient did test positive when screened with the second model, 

this would correspond to a 67.5% chance that they truly have T2DM.  We suspect that 

models from this analysis outperformed the time-series based models as the technique 

for dimensionality reduction and feature extraction was more appropriate for use with 

time-series data. While PCA is a widely used and suitable method for dimensionality 

reduction, it is inherently a statistical method, and was not designed for use with time-

series data. The FFT, however, is designed to describe time-series data in the context of 

frequencies, making it a potentially more ideal way to reduce dimensionality for time 

series data for the use of machine learning.  

Automatic ECG Features: 

 

We examined the use of automatic, interval-based ECG features as input (Table 7), 

as they provide a more explainable interpretation of how the model makes predictions 

when detecting T2DM. Each feature relates to a different element of the cardiac cycle, and 

the direct link to the functional and structural aspects of the heart are well understood.  

The use of the 14 automatically extracted, interval-based features as input to the 

model produced an AUROC, sensitivity, specificity and PPV of 0.784, 0.735, 0.718, and 
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0.722, respectively (Table 13). It is important to note that two of the fourteen features can 

only be derived from a standard 12-Lead ECG. For this reason, we conducted an 

additional experiment with the features that can be derived from a single lead (12 features 

in total) and observed a decrease in sensitivity down to 0.453 and PPV down to 0.608. 

This suggests these features may be important in making correct predictions. From the 

feature importance plot of the experiment that included all 14 features, it can be observed 

that second to patient metadata, R-axis, QT-interval, QTC-interval, and RR-interval were 

most important when classifying patients (Figure 8). The R-axis is related to ventricular 

activity, and it has been found that patients with T2DM have a higher prevalence of left 

ventricular hypertrophy (LVH) (37). LVH typically develops due to hemodynamic 

overload (related to high blood pressure) and may be a strong predictor of cardiovascular 

disease in the T2DM population (63). QT-interval and QTC-interval both examine 

ventricular repolarization (where QTC-interval is the heart-rate adjusted QT-interval), or 

in other words, the time is takes for the heart to contract and then repolarize in 

preparation for the next heartbeat. Due to the effect of heart rate on QT-interval, the QTC 

interval is more commonly used in diagnosing various pathologies.  Prolonged QT/QTC-

intervals are associated with sudden death and may be observed in some T2DM patients 

secondary to cardiac autonomic neuropathy (CAN) and diabetic autonomic neuropathy 

(DAN) (64) (37). Finally, the RR-interval represents the duration of the cardiac cycle and 

is directly related to heart rate. Elevated heart rate may be observed in T2DM patients 



   
 

  57 
 

with autonomic dysfunction or due to increased levels of insulin in the blood 

(hyperinsulinemia) (65). 

. We observed similar trends in feature importance when excluding axis-related 

features, and interestingly, all ECG features were more important than gender in 

classifying patients (Figure 8). In future work, the exploration of the use of different 

combinations of ECG features may be informative as to what the minimum number of 

features are for the detection of T2DM from a single-lead ECG.  

A systematic review of the diagnostic accuracy of HbA1c testing (compared to the 

Oral Glucose Tolerance Test – OGTT) found that the sensitivity and specificity of HbA1c 

testing ranged from 24%-78% and 79%-100% respectively at a threshold of HbA1c=6.5% 

for diagnosis (66). The two best performing models had sensitivities of 73.5% and 88.2%, 

and specificities of 55.9% and 71.8%. Therefore, compared to one of the gold-standards 

for screening and diagnosis, we have demonstrated results with increased sensitivity. 

Some models produced higher specificities at 87.4% (using ECG features with no axis and 

patient metadata), however a decrease in sensitivity down to 45.3% was observed. 

Nonetheless, both results fall within the ranges observed in the systematic review. 

Therefore, we have demonstrated comparable results using only Lead-I of a 12-Lead ECG 

and an easily scalable machine learning model. As discussed in earlier sections the 

CANRISK tool is typically used to assess risk for T2DM and facilitate additional testing 

for patients at high risk for the disease. In a study validating the CANRISK model in a 
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multi-ethnic population, the area under the receiver operating cure (AUROC) was found 

to be 0.75 (95% CI: 0.73-0.78) (32). The best model in this work yielded an AUROC of 78.4, 

demonstrating superior performance to the CANRISK questionnaire-based tool. In an 

additional study that examined the effectiveness of CANRISK in First Nations and Métis 

in Canada, the sensitivity and specificity of the tool was 68% and 63% among individuals 

aged 40 or over and 27% and 87%, respectively, among those under 40 (67). In addition 

to achieving results above those cited in this study for sensitivity and specificity, it should 

be noted that the CANRISK tool was not developed for those under 40, and the drop in 

sensitivity in this age group further solidifies the need for flexible, adaptive tools for 

screening that are effective across larger demographics.  

5.1 LIMITATIONS 

The study is limited by the dataset in which we have trained, validated, and tested 

the model. To develop a more robust model that performs well across the general 

population, the dataset used for training should be as diverse as possible, and reflective 

of the population of interest. In the case of T2DM and the proposed use-case of an early 

screening protocol, the model should be further validated in a dataset that considers the 

sex, gender, and socio-demographic effects of T2DM. Further, we are limited by the 

parameters that were used for model optimization. Theoretically, a better model may be 

produced by doing a more thorough optimization of hyperparameters, which will be 

conducted in subsequent studies.  
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6 Conclusion 

The findings are in line with the current literature, which predominantly use deep-

learning approaches. However, the model architecture (XGBoost) is not deep learning 

based and is more efficient to train and deploy as a result. Further, the use of FFT based 

features for input was found to be superior to time series-based features of the ECG data. 

Finally, the best performing model was that which used the interval-based ECG features 

in combination with patient age, sex, and body mass index. Additionally, we have 

demonstrated results on par with and surpassing current screening strategies such as the 

CANRISK model and HbA1c testing. In future studies, the validation of the model with 

an external dataset is required to verify the results in this work. Further, a prospective 

study should be conducted to validate the use of the algorithm in a more diverse patient 

population, with an emphasis on socio-demographic groups that are disproportionately 

affected by T2DM. Additionally, studies should be conducted to examine the differences 

between the use of single-lead data from a 12-Lead ECG, and single-lead data from a 

wearable device, such as a smart watch. Due to the efficient nature of the algorithm, a 

proposed real-world use case would be for the automated screening of T2DM using 

single-lead data from a wearable device. In this case, the patient would be able to self-

screen for the disease by simply taking an ECG reading on their wearable, and running 

an application on the device which executes the algorithm. This application would 

determine whether the patient is at high risk for T2DM and if they should proceed to 
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confirmational testing. This use case may be increasingly relevant in remote communities 

and LMICs, where access to standard labs and healthcare overall is limited.  

 In summary, we have demonstrated a successful application of XGBoost for the 

detection of T2DM from ECG data and produced results in line with both the current 

literature around deep learning approaches, as well as the current gold-standard for 

screenings. The potential for the use of AI-based tools to improve screening protocols for 

diseases such as T2DM is great and presents an opportunity to revolutionize our current 

screening strategies.  
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