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Abstract

Opinion mining as a field aims to measure public opinion on a given topic in order to

facilitate decision-making. We argue that more emphasis should be placed on opinion

detection to generate better datasets for downstream tasks such as sentiment analysis.

We demonstrate the complexity of this task by applying it to the problem of detecting

opinions on Twitter regarding the COVID-19 vaccine. We find that a high proportion of

tweets contain an opinion, but comparatively few mention concrete effects of the vaccine.
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Abrégé

Le domaine du «Opinion Mining» cherche à quantifier l’opinion publique sur un sujet

particulier afin d’améliorer la prise de décisions. Nous affirmons qu’il faudrait mettre da-

vantage l’accent sur la détection des opinions pour créer de meilleurs banques de données

pour des tâches en aval comme l’analyse de sentiments. Nous démontrons la complex-

ité de cette tâche en l’appliquant au problème de la détection d’opinions reliés au vaccin

contre la COVID-19 sur Twitter. Nous trouvons qu’une proportion élevée de gazouillis

contiennent une opinion, mais peu mentionnent un effet concret du vaccin.
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Chapter 1

INTRODUCTION

1.1 Introduction

Social media platforms have become an important form of communication, news con-

sumption [47] and play a heavy role in shaping our worldview [4]. This is highlighted by

the fact that Twitter contains 199 million daily active users as of 2020 [79]. The tweets on

the platform range from casual conversation to debating and reporting on current events.

For many highly active users, it is primarily used as a "gateway to other news" [15] and

during active crises, Twitter is an important tool to "redistribute official information and

to provide eyewitness reports from people close to the crisis events" [50].

The open and immediate nature of social media platforms like Twitter generates inter-

est in running automated natural language processing (NLP) algorithms to gain insight

into the what the platform’s users are discussing. One particularly popular task, opinion

mining, involves extracting opinions from tweets about a subject. Such systems aim to
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enable better decision making for policymakers, government officials, and anyone else

who communicates with the general public.

In the literature, opinion mining is defined as "the automatic processing of documents

to detect opinion expressed therein" [68]. This is an intuitive definition, but it leaves a

lot of room for distinct operationalizations. In particular, the three most common tasks

used to address all or part of the high level definition are opinion mining, sentiment

analysis, and subjectivity analysis (also known as subjectivity identification or opinion

identification). At a high level, it is often considered appropriate to treat opinion mining

and sentiment analysis as a unified body of work [53].

In practice, this causes some confusion in the literature surrounding the term opin-

ion. Specifically, it is sometimes used as a synonym for sentiment [45]. In order to avoid

such ambiguity, in this thesis we will use the definition provided by Kim and Hovy [33]

which states that an opinion is: "a quadruple [Topic, Holder, Claim, Sentiment] in which

the Holder believes a Claim about the Topic, and in many cases associates a Sentiment,

such as good or bad, with the belief". This is not the only available operationalization

in the literature, but for our purposes the key point is that a sentiment is not a "personal

interpretation of information" [45] but rather a social construct that is prompted by emo-

tions [45].

It follows that a successful system should extract all four components of the defini-

tion from a document. Specifically, we argue that "opinion mining" systems using the

task labels "positive", "negative", and "neutral" to model opinion are oversimplifying the

problem by exclusively extracting a measure of sentiment and (sometimes) topic. This
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is insufficient in an applied setting because it rarely provides enough new information

about the underlying phenomenon to assist in decision making.

The second key ability of an applied opinion mining system is to predict the pres-

ence of an opinion. Typically [31, 37], the problem of opinion identification is carried out

implicitly as part of the data curation step of a sentiment analysis task. In many cases,

documents without opinions are filtered out manually [82]. In a production setting, this

would require human intervention before each document is supplied to the algorithm,

which is unrealistic. In other cases [17], a heuristic such as keyword filters is used to iso-

late documents containing opinions. This may be an appropriate choice, but it is rarely

part of the model selection steps because it filters out valuable training data. As a re-

sult, it is difficult to measure how representative are the predicted opinions of the overall

discourse on the subject of interest.

We argue that both of the implicit and heuristic approaches introduce errors because

they understate the difference between opinion identification and the task of interest such

as sentiment analysis, which should focus solely on a measure of polarity. A better way to

approach the task would be to have one component to identify the presence of an opinion

followed by another to predict the necessary components of the opinion quadruple. The

potential benefit of reinforcing this separation has been previously noted in the literature:

"the problem of distinguishing subjective versus objective instances has often proved to

be more difficult than subsequent polarity classification, so improvements in subjectivity

classification promise to positively impact sentiment classification" [41].

In this thesis, we carry out an applied opinion identification exercise using COVID-

19 vaccine data on Twitter in order to highlight the phenomenological insights it can

3



reveal as well as its benefits to a downstream task. The problem is motivated by the

fact that the vaccination campaign during the COVID-19 pandemic has been met with

resistance due to concerns regarding the vaccine’s safety [14]. It is therefore in the interest

of public health departments to understand and promptly address societal concerns in

order to attain a vaccination rate that will be sufficient to achieve herd immunity. Given

that public concerns related to a vaccine are likely to spread quickly on Twitter, having a

system that characterizes their presence and prevalence would be of immense value. As

the downstream task, we predict whether a tweet mentions a concrete effect of a COVID-

19 vaccine.

In order to achieve this, we assemble a dataset of Canadian tweets related to the

COVID-19 vaccine by searching for specific keywords within a nationally representa-

tive set of English tweets from 2020. The source dataset has previously been collected

in real time during the pandemic based on a list of approximately 1.6 million confirmed-

Canadian accounts [8].

Next, we annotate a portion of this dataset for the presence of an opinion and for

mentions of concrete effects tied to the vaccine. We crowdsource the annotation using

Amazon Mechanical Turk 1, then consider the impact of the obtained agreement measures

on the downstream task and weigh the choice of building a training dataset by using

majority labels versus only using cases with full annotation agreement.

Finally, we carry out the modeling exercise to predict whether tweets mentioning a

COVID-19 vaccine contain an opinion. We use traditional machine learning algorithms

such as Support Vector Machines (SVM) and Logistic Regression and experiment with

1https://www.mturk.com
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a number of features used in the opinion mining literature. We also experiment with

deep learning architectures as well as a number of different word embeddings as input

features. We evaluate the algorithms by executing a grid search over models and their

hyperparameters using different standard evaluation metrics applied over k-fold cross

validation. We discuss the value and limitations of the resulting models and comment on

how this translates to the real-world applicability of other applied opinion mining work.

1.2 Summary of Contributions

We summarize the contributions of this thesis as follows:

• We highlight some limitations of current applied opinion mining work and argue

in favor of extracting the opinion detection task into a separate step. Most applied

work has to implicitly solve the opinion detection problem along with the problem

of interest. This is a challenge because, to the best of our knowledge, there is little

recent literature providing benchmarks for various opinion detection models.

• We demonstrate the hardness of the opinion detection task by using a case study

on vaccine hesitancy on Twitter. We curate a dataset and annotate a subset for the

presence of opinions as well as the mention of effects. We find that obtaining an-

notator agreement for opinion detection is challenging because humans define the

term differently.
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• We experiment with various traditional and deep machine learning models that

correspond to the state of the art of NLP techniques. We find that deep learning

models outperform traditional algorithms under all metrics except weighted F1.

• We discuss model selection for opinion detection when separated from some down-

stream task and argue that weighted F1 is the best measure to use to produce a clean

dataset. Based on our performance results, we find that using a simple logistic re-

gression creates a better downstream dataset than deep learning models.

• Based on our annotation, we find that 67% of tweets contain an opinion while only

39% mention an effect. It seems that most conversations are using association to

attach a positive or negative connotation to the vaccine.

1.3 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 discusses prior work in opinion mining, stance detection, sentiment anal-

ysis, and the literature on differentiating the terminology used by the sub-problems.

It is followed by background knowledge on dataset curation, annotation method-

ology and evaluation, traditional and deep machine learning text classification, as

well as evaluation metrics used in this thesis.

• Chapter 3 argues for separating the tasks of opinion detection and mining. It also

describes techniques and datasets that are related to the opinion detection problem.
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• Chapter 4 describes the data collection process for the COVID-19 vaccination case

study, the design of the crowdsourced annotation tasks, and reports agreement mea-

sures on the annotations.

• Chapter 5 carries out the modeling exercise using traditional and deep learning ap-

proaches and reports on the performance obtained under a number of evaluation

metrics.

• Chapter 6 discusses the takeaways from the reported annotation agreements and

their impact on the modeling exercise. It also compares prediction scores with sim-

ilar applied modeling exercises and considers how the resulting models would be

selected to create a quality downstream dataset.

• Chapter 7 concludes the thesis by summarizing the contributions and suggests fu-

ture work along this line of research.
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Chapter 2

BACKGROUND

2.1 Opinion Mining and Related Problems

Opinion mining uses NLP to extract the beliefs expressed in the documents under inspec-

tion. The results are invaluable for many applications ranging from marketing campaigns

to government policy. Using the immense volume of data available on the Internet, the

NLP community has produced a rich applied opinion mining and sentiment analysis lit-

erature across many social media platforms: Twitter [31, 40, 51, 60, 66, 77, 83], YouTube

[48, 58, 69], Facebook [76], Reddit [1], and even traditional news media [59]. In addi-

tion, there are studies breaking down the difference between opinion and sentiment [45]

as well as the various tasks that fall under the opinion mining umbrella [22, 53, 81]. In

this section, we begin with a review of definitions and the literature surrounding the dis-

tinction between opinion mining, sentiment analysis, stance detection, and subjectivity

identification. We follow with a review of the common concepts to each task as well as
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the methods used to solve them. Finally, we review some of the general applied work in

opinion mining as well as vaccine and COVID-19 specific studies.

2.1.1 Terminology and Task Definition

We begin by defining what is an opinion in order to understand the differences between

various subtasks of opinion mining. While there are many options in the literature, the

most complete separate the notion of sentiment from opinion. Munezero et al. [45] focus

on five of the most common subjectivity terms found in the NLP literature: affect, feeling,

emotion, sentiment and opinion. They compile many definitions for each term and we

provide one for each term (with emphasis) in a way that highlights how they build on

one another to form the concept of opinion:

• Affects: "positive and negative evaluations of an object, behavior, or idea with intensity

and activity dimension" [78]

• Feelings: "affective phenomena to which we have direct conscious access" [39]

• Emotions: "affective manifestations to which we do not have direct conscious access,

but which can be inferred from behavioural clues" [39]

• Sentiments: "social constructs of emotions that develop over time and are endur-

ing" [45]. Critically, they emphasize that sentiments are necessarily targeted, unlike

emotions.

9



• Opinions: "personal interpretations of information that may or may not be emo-

tionally charged" [45]. The main difference is that sentiments are possessed while

opinions are expressed [72].

Using these definitions, the authors point out that a positive or negative label corre-

sponds to the optional affective component of an opinion representing an "emotional or

sentimental expression" [45]. Such a taxonomy highlights a level of inconsistency within

the NLP community, which blends various definitions together. As we proceed to review

the various tasks related to opinion mining, we will provide a framing that is consistent

with this clarified terminology.

We will follow the task hierarchy provided by Hemmatian and Sohrabi [22]. Alternate

hierarchies do exist in the literature. For example: Yadollahi and Sohrabi [81] define

opinion mining as a subset of sentiment analysis, but that does not make sense under our

terminology because we define sentiment as an (optional) component of an opinion.

Opinion Mining

The first stated goal of opinion mining was to "process a set of search results for a given

item, generating a list of product attributes (quality, features, etc.) and aggregating opin-

ions about each of them (poor, mixed, good)" [11]. This definition is similar to sentiment

analysis and therefore merging the two has been encouraged [53]. As the two fields pro-

gressed together, definitions have evolved and opinion mining has often become a parent

task to many others, including sentiment analysis.
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Sentiment Analysis

The usage of sentiment within the NLP community first appeared in 2001 by Das and

Chen [10], who predicted a positive or negative market sentiment using five different

classifiers and combining their predictions with a voting scheme. Since then, the number

of studies has grown rapidly, but the general goal has not changed. Definitions generally

state that sentiment analysis involves predicting whether the "text expresses positive or

negative (or sometimes neutral) opinion" [81]. With refinements in terminology, some

researchers have argued that such a classification is a better proxy for emotion or affect

than sentiment [45].

Stance Detection

A reasonable definition of stance detection states that it "focuses on identifying a person’s

standpoint or view toward an object of evaluation, either to be in favor of (supporting)

or against (opposing) the topic" [3]. The main difference with sentiment analysis is that

a target is available and the labels are typically "for", "against", and "neutral" instead of

"positive", "negative", and "neutral".

In fact, many studies have shown that sentiment is not sufficient to model the polarity

component of an opinion [2,73]. It is possible to be in favor of something without express-

ing any emotion that could be inferred. For example: a tweet saying "Life is sacred on all

levels. Abortion does not compute with my philosophy" argues against the legalization

of abortion without expressing sentiment [3].
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Opinion Identification

Also referred to as subjectivity identification, this task is a necessary precursor to the

others in a complete opinion mining system, though many models algorithms solve both

at the same time by adding a label that signals that no opinion is present. This task simply

involves assigning a "yes" or "no" label depending on whether or not a document contains

at least one instance of an opinion [67].

Khatua et al. [32] identify 2 million subjective tweets in a discussion about nuclear re-

actors using three deep learning models. They trained their models using a gold standard

dataset of 2308 tweets that obtained unanimous annotator agreement. They reached an

accuracy of 80.7% using a Convolutional Neural Network (CNN).

2.1.2 Concepts and Methods

Common to most opinion mining tasks is the concept of levels. In descending order of

granularity, we can classify documents, sentences, and aspects (or entities) [25]. Document-

level opinion mining is the simplest task, but it assumes that the entire document contains

a single opinion. Sentence-level eliminates that assumption but can be more challenging

because the system will typically aim to handle context arising from surrounding sen-

tences [46]. Tasks operating at the aspect-level, the most common being aspect-based sen-

timent analysis (ABSA), are the most challenging and require immense domain-specific

datasets. Algorithms operating at all levels can use three methods to make their pre-

dictions: lexicon-based approaches, machine learning techniques, and hybrid methods

(combining the first two) [22].
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Lexicon-based algorithms use dictionaries of sentiments which assign a polarity to a

set of words. For example, Taboada et al. [75] classify an Italian YouTube dataset using a

dictionary capturing semantic orientation in the form of a polarity and a strength. They

also incorporate the concepts of intensification ("this video is very good") and negation

("this video is "not" good"). The advantage of this method is that the dictionary can be in-

spected and criticized. The authors create their dictionary manually, but semi-automated

methods that expand on a set of seed words have existed since 1997 [21].

Machine learning algorithms will typically use one of three learning approaches: su-

pervised, unsupervised and semi-supervised. The most common option is a supervised

architecture where the dataset has access to labels provided by human annotators. Sev-

eryn et al. [69] build such a system using Support Vector Machines (SVM) to predict the

polarity of YouTube comments. Unlike lexicon-based methods, the algorithm does not

get any input regarding what words or features of the text are relevant for prediction

Hajmohammadi et al. [20] use a graph-based semi-supervised approach to classify po-

larity of unlabelled documents in one language based on labelled documents in another.

Such a method is promising because most languages do not have as many available cor-

pora as English. In their case, the challenge is to try to match the performance of a model

that is both trained and tested in the target language and they find that incorporating the

intrinsic structure of the document increases classification accuracy in most cases.

Finally, Li and Liu [36] leverage the K-Means clustering algorithm to split a dataset

of movie reviews encoded using a Term Frequency-Inverse document Frequency (TF-

IDF) weighting method to encode documents. They find that their model obtains an

accuracy of 77.17%-82%, which falls between that of a lexicon-based method (65.83%)
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and a supervised model (77%-82%). In terms of operation, the model is only slightly

slower than the lexicon-based approach. Moreover, it is significantly cheaper than the

supervised method because it does not require human annotation.

2.2 Dataset Curation

For any NLP task we need a corpus of data that was at some point assembled, cleaned,

and, if a supervised learning algorithm is used, annotated. Therefore, a proper data col-

lection procedure should be able to answer the following questions before any NLP model

is fit:

• Where did the data come from and what is it representative of?

• What kind of noise was identified and what steps were carried out to remove it?

• If we are annotating:

– Can we trust the annotators?

– How difficult is the task for humans?

– How do we handle disagreements by high quality annotators in hard cases.

2.2.1 Data Collection and Cleaning

In the case of social media research, the data is collected either using an Application Pro-

gramming Interface (API) or scraped directly from the web. In both cases, the text will

likely have to resort to numerous preprocessing and normalization steps.
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For example, Pandarachalil et al. [51] classified sentiment on Twitter but first had to

remove URLs, hashtags, mentions. They then removed all contractions, tokenized slangs,

acronyms, and emoticons, and removed all elongations. Finally, they lemmatized the

words in their document (replaced them with the root of the word) and replaced words

preceded by a negation with an antonym. In another case, Meduru et al. [40] simply re-

moved all stop words ("a", "the", etc.), slang, emoticons (which are usually preserved as

they reflect sentiment), hashtags, urls, and special characters. To the best of our knowl-

edge, there is no single best approach or set of "required" preprocessing steps in the liter-

ature. The goal is to produce a dataset that is easy for a machine learning model to work

with and that does not lose any expression of opinion and sentiment in the document.

2.2.2 Annotation

In parallel, the corpus will be annotated for the target observations if the machine learning

task is supervised. Part of the dataset will be provided to human annotators who will

manually carry out the same task as the NLP model. The implication is that the trained

model will not learn to predict an "true" answer to a question but instead will provide

answers that agree with the selected group of annotators. As a result, it is important to

get a sense of annotator quality as well as the bias introduced [19].

There are two main approaches to guarantee a level of annotator quality. The first

is to hire and train expert annotators. In this case, each individual is expensive but is

likely to carry out the task with a high level of effort. The other option is to crowdsource

the annotation on a platform such as AMT and add steps in the process that test for
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annotation quality. For example, we can reject annotators based on wrong answers to

known trivial examples or based on the time taken to perform a task.

Once we have high quality workers, it is important to have multiple annotators work

on each example to control for annotator bias and to understand the inherent task diffi-

culty. We will then use a statistic such as Cohen’s Kappa or Krippendorff’s alpha to score

annotator agreement while accounting for chance agreement. Typically, the quality of an

annotated dataset will be assessed by comparison with previous work in the literature. In

applied work it can be difficult to find an appropriate reference, because a lower agree-

ment on a more challenging task with the same possible answers does not imply that the

dataset should be discarded.

In order to finalize the labels, it is important to select a strategy for resolving disagree-

ments. Methods range from restrictive (by only keeping cases with full agreement) to

permissive (where the majority class label is assigned). The restrictive scenario will be

easier for the NLP model to classify, but harder cases that would no longer be modeled

tend to have significant phenomenological differences to the easy ones [30]. The other op-

tion is to convert the task to a regression problem where the label has a strength reflecting

the annotator agreement, but this is less common in the literature.

2.3 Text Classification

In this thesis, we experiment with a number of traditional machine learning algorithms

that are used in text classification. We first discuss some methods of transforming tweets

into feature vectors appropriate for NLP models. We then provide a brief explanation of
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the algorithms that resulted in a reasonable performance during the modeling task. We

also employ a number of deep learning models, so we will summarize various neural

network architectures and word embeddings that are often used with them.

2.3.1 Feature vectors

N-grams

The simplest feature vectors for an NLP task are vectors of n-grams. An n-gram is a

sequence of n consecutive items that are treated as a unit. The items can be either words

or letters and we can specify the minimum and maximum length of the sequence. As a

result, the feature space contains one dimension for every possible n-gram in the corpus.

For example, given a corpus with one document D = {"Chaz is a dog"}, the possible 2-

grams (bigrams) would be "Chaz is", "is a", and "a dog". Typically, stop words are removed,

which are part of a blacklist of words that tend to carry little meaning for an NLP task. In

the given example, "is" and "a" would be removed and the only remaining valid bigram

would be "Chaz dog", resulting in a one-dimensional feature set. Given a feature space,

we can then resort to a number of encoding schemes such as bag of words, count and

TF-IDF vectors.

Bag of Words

The simplest method of encoding a document into the feature-space is to count the occur-

rence of each N-gram and place the result in the appropriate dimension. The weakness
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of this method is N-grams that are very common across the corpus would appear more

important than rare ones.

TF-IDF Vectors

Term Frequency-Inverse Document Frequency is an operation that seeks to fix the issue

with count vectors by penalizing N-grams that occur many times across different docu-

ments. The theory is that the most significant features of a document are the N-grams

that it uses often which are also uncommon in the rest of the corpus. The formula for this

operation is:

TF-IDF(t, d, C) = TF(t, d) ∗ idf(t, C) (2.1)

t stands for the term (in our case, N-gram) of interest, d is the working document, and

C is the entire corpus. The TF(t, d) function is the term frequency, defined as the number

of times the N-gram occurred in the document divided by the total number of N-grams.

Finally, the inverse document frequency idf(t, C) is log of the inverse of the fraction of the

documents containing the N-gram:

idf(t, C) = log
|C|

|d ∈ C : t ∈ d|
(2.2)

where |C| is the size of the corpus and |d ∈ C : t ∈ d| stands for the number of

documents d in the corpus C containing the N-gram t.
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GloVe

An improvement introduced by the NLP community over count and TF-IDF vectors is

the concept of word embeddings. The idea is to embed words in a vector space where we

can reason mathematically about their semantics. These embeddings are usually learned

from massive corpora assembled for a given language.

GloVe [56] is an unsupervised learning algorithm that aims to encode semantic sim-

ilarity through vector distance. That is, vectors whose cosine similarity is smaller are

expected to be closer in meaning or "relatedness". It relies on the assumption that "certain

aspects of meaning can be extracted directly from co-occurrence probabilities" [56].

2.3.2 Traditional Machine Learning Algorithms

Logistic Regression

Logistic Regression is a popular choice when predicting the probability of a binary out-

come variable in statistics and machine learning. It is equivalent to a linear regression

where the outcome variable is measured on the logit scale. More specifically, given a

Bernoulli distributed outcome variable Y with outcomes 0 or 1, a vector of independent

predictors (in our case a feature vector) ~x, and a vector of weights ~θ, we are interested in

modeling the probability p = P (Y = 1|~x, ~θ). In order to do so, we fit a linear regression

that corresponds to the relationship in the following equation:

l = logit(p) = ln
p

1− p
= ~θT~x = θ0 + θ1x1 + θ2x2 + · · ·+ θnxn (2.3)

19



Given that we are trying to classify documents, we are interested in p itself so we

invert the logit operator using a sigmoid function:

σ(x) =
1

1 + e−x
(2.4)

In our case, the probability p is defined as:

p = P (Y = 1|~x, ~θ) = σ(~θT~x) (2.5)

1− p = P (Y = 0|~x, ~θ) (2.6)

In order to convert the probability obtained in Equation 2.5 to a classification label, we

can select a decision boundary by selecting the most likely class based on the probability.

In mathematical terms, we say Y = 1 if p > 0.5, otherwise Y = 0.

To fit this model, consider a dataset X , where each row is a feature vector ~x. We want

to maximize a likelihood function L(~θ|X, ~y).

L(~θ|X, ~y) =
∏
i

pi =
∏
i

pyii (1− p
1−yi
i ) (2.7)

Typically, the negative log likelihood is used, giving the final formulation:

− logL(~θ|X, ~y) = −
∑
i

(
yi log(σ(~θ

T~xi)) + (1− yi) log(1− σ(~θT~xi))
)

(2.8)
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In order to minimize the negative log likelihood, we need to take the derivative of this

function and set it to 0. Unfortunately, there is no closed form solution for this, so we

have to use gradient descent.

Finally, it is common to use regularization to keep the parameters ~θ reasonably bounded.

There are two ways to do this: Lasso and Ridge Regression. Both methods add a penalty

term to equation 2.8: the form uses the L1 norm λ
∑

i |θi|while the latter uses the L2 norm

λ
∑

i θ
2
i . In both cases λ is a hyperparameter that controls the strength of regularization

that is tuned using grid search.

Random Forests

In order to understand random forests, we first need to discuss decision trees [7], which

are also called classification trees in the appropriate context. The algorithm is based on

growing a tree by iteratively dividing the prediction space into boxes, also called nodes.

Specifically, the splitting is done in a top-down and greedy fashion. That is, at each iter-

ation, we split every box in our prediction space into two and then repeat this step again

on the smaller boxes until a stopping criteria is met. The split that we choose is the best

split according to a selected measure of node purity, which is typically either entropy or

the Gini index.

Both entropy and the gini index are a function of pi,k, the proportion of examples from

the training data that fit in the ith region and belong to the kth class. A low value in

either metric indicates that a node contains values that mostly belong to a single class.

The functions for entropy and the GINI index are given in the two equations below:
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Entropy = −
∑
k

pi,k log pi,k (2.9)

GINI =
∑
k

pi,k(1− pi,k) (2.10)

The benefit of a decision tree over a linear model such as logistic regression is that it

makes less assumptions about the structure of the data. They are also more interpretable

as it is possible to see the selection rules at each step during classification

A random forest is a model that builds upon decision trees by introducing the concept

of bagging [6]. We first bootstrap the dataset by building K new datasets by sampling N

predictors from M training examples belonging to the original dataset. We then train a

separate decision tree on each sampled dataset and select the most common prediction to

produce a final classification result.

Support Vector Machines

Support vector machines [5] are a generalized version of a maximal margin classifier. The

idea is to draw a line (or hyperplane) in the feature space that separates all the points

belonging to one class from those belonging to another. While there are many such lines,

we are interested in the one that also maximizes the distance to the nearest points (called

support vectors).

The issue, however, is that in most cases the data is not linearly separable. The easiest

way to rectify the issue is to introduce a slack variable that will create a soft decision

boundary, where cases that are close but on the incorrect side will be tolerated. This
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variable tolerance is a regularization parameter and can be tuned as a hyperparameter to

the SVM.

The second option is use a function to project the data into a higher dimension where

it is linearly separable. This is called the kernel trick and there are a number of possible

kernels such as a linear, polynomial, sigmoid, and more [24].

2.3.3 Deep Learning Algorithms

With the increase in available computing power, neural networks have become a viable

solution to many complex NLP tasks. Since then, architectures such as Recurrent Neural

Networks (RNN) and Convolutional Neural Networks (CNN) have achieved state-of-the-

art results in most tasks, including various subproblems of opinion mining. In this thesis,

we make use of feed-forward neural networks, CNNs, RNN architectures, and more ad-

vanced models such as ELMo. We also discuss GloVe, which is a model for representing

words as vectors.

Feed-forward Neural Networks

Feed-forward neural networks are built using perceptrons [63]. A perceptron consists of

four components: an input vector with elements x1, · · · , xN , randomly initialized weights

w1, · · · , wN and a bias term w0, a sum, and an activation function f . As a result, the output

y is defined as:

y = f(w0 +
N∑
i=1

wixi) (2.11)
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It is interesting to note that if f is the identity function f(x) = x, then a perceptron

model is exactly a linear regression. If we use a sigmoid activation function, then the

model becomes very similar to a logistic regression.

In order to train the perceptron, we will first make a (forward) prediction yt using the

weights we currently have wt
i and equation 2.11. Then we will compute an error term

and use it to update weights. This will produce new weights wt+1
i using the following

formula for each element in the input vector xi:

wt+1
i = wt

i + r(d− yt)xi (2.12)

Here, r ∈ [0, 1] is a learning rate that controls the strength of the weight change and d

is the desired output. It follows that a larger error d−y forces a bigger weight adjustment.

Moving on from a single perceptron, we can build a feed-forward neural network by

noticing that if we use M perceptrons (nodes) and give them the same inputs, then we

will obtain M different outputs in the early stages of training. Furthermore, we can send

these outputs into another set of N nodes, and the outputs of those into a final node. The

first two sets of perceptrons would then be called hidden layers and are responsible for

projecting the data from a previous layer into a different vector space.

Updating the weights works in a similar way to the individual perceptron, but the

hidden layers will not use the predicted output as their d. Instead, there is a backprop-

agation [65] process that transfers the output error into input errors that can be used by

the previous layer.
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Convolutional Neural Networks

Convolutional Neural Networks [35] were first introduced in the context of image classi-

fication, but have shown good performance in NLP tasks such as sentiment analysis [28].

Their new additions over a feed-forward achitecture are the concepts of convolution and

pooling layers. Convolution layers are regularizing as they require fewer parameters than

fully connected layers because of the convolution operation which essentially uses a filter

to scan the input space and produce an activation map. This activation map is responsi-

ble for detecting the presence of some features based on the combination many adjacent

inputs from the previous layer.

Recurrent Neural Networks

Recurrent Neural Networks [64] build on the feed forward architecture by sending some

connections backwards, effectively forming loops. This adds a temporal component to its

output which is very valuable for modeling sequential data such as text. When reason-

ing about their operation, we often use an unrolled version, which is an equivalent feed-

forward neural network whose behaviour is identical over a finite period of time [42]. In

this case, we reason about the model as a a network of cells whose weights are shared and

that are responsible for storing the memory of the network.

Bidirectional RNNs are another useful architecture. In NLP, this is done by combining

the outputs of an RNN that reads the text in the correct direction with one that does the

opposite. The result is that our model can encode the context for each step by also looking

ahead.
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Learning RNN models is more complicated than previous architectures and it requires

a modified backpropagation algorithm called Backpropagation Through Time [44]. The

other challenge that has a bigger impact in RNNs is that of vanishing or exploding gradients.

The issue is that the derivative term of the activation function during backpropagation

becomes so small (or large) that the weight update effectively stops (or increases uncon-

trollably). This issue can be mitigated through specific choices of activation functions or

by using special architectures such as Long Short Term Memory Networks (LSTM).

Long Short Term Memory Networks

LSTMs [23] were developed specifically to deal with the vanishing gradient problem in

RNNs. They introduce the concepts of input, output, and forget gates. Broadly speaking,

each cell has a forget gate that decides what information from the input and previous

hidden state to keep and ignore. It also has an input gate that will update its internal

state. Finally, the output gate sets the value of the hidden state provided to the next cell.

2.3.4 Deep Learning and Word Embeddings

There are a few strategies to feed textual data to a neural network. In the case of feed-

forward neural networks, we are free to use a similar feature vector as in the traditional

models. However, once we resort to RNNs, each timestep typically receives a new word

as a complete vector. A naive solution would be to use a one-hot encoding, where we

would provide a vector of 0s in all columns except the one corresponding to the current

word. This is not particularly useful and instead we will usually use some form of word

embedding like GloVe, or alternatives that rely on deep learning such as ELMo.
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ELMo

One limitation with GloVe is that it does not account for synonymy. In particular, a word

that has multiple meanings will have the same vector representation irrespective of which

definition is implied by the rest of the sentence. ELMo [57] attempts to account for this by

learning the word embeddings using a stacked bidirectional LSTM trained on a massive

corpus with over a billion words of data [9]. The result has proven to have excellent

performance in many NLP tasks including sentiment analysis.

2.3.5 Model Selection

When carrying out a supervised classification exercise, we are using a labeled dataset to

teach a model how to predict future examples that it will encounter in the real world.

With a perfect model, dataset, and with a subject matter that does not evolve over time,

we would be able to learn every single relevant case and classify every single data point

correctly. Unfortunately none of the three assumptions are true, but we can at least get a

sense of how well we think the model can do under the assumptions of the dataset that

we have. We have to choose an evaluation metric to score our model that most accurately

reflects the relative cost of different types of incorrect classifications. In order to estimate

the score our model will have on unseen data, we will use cross validation to train on a

partial dataset and test on the rest. Finally, in order to be able to find the best model, we

will execute a grid search over all models and their hyperparameters to find the one that

gives the best expected test score.
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Evaluation Metrics

In a binary classification problem, there are four types of results: true positives, true neg-

atives, false positives, false negatives. In the COVID-19 vaccination opinion identification

task, their interpretation is as follows:

• True positive (TP): The model correctly predicts that the tweet contains an opinion

• True negative (TN): The model correctly predicts that the tweet does not contain an

opinion

• False positive (FP): The model predicts that the tweet contains an opinion, when it

does not

• False negative (FN): The model predicts that the tweet does not contain an opinion,

when it does

By choosing a different scoring metric, we can specify which of these cases is more

important to us. Unfortunately, there is a trade-off. If we say that we we are interested in

true positives, then the way to maximize that number is by saying every tweet contains

an opinion, which would also maximize the number of false positives. If we decide that

this is unacceptable and we cannot have any false positives because that will pollute the

downstream opinion mining task, then the model can just say that no tweet contains an

opinion.

Typically, the priorities are then refined to the following evaluation metrics:
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Accuracy

Accuracy is the proportion of correct classifications divided by the total number of

predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.13)

This is an intuitive concept but it is sensitive to class imbalance. If only 10% of all the

tweets in the dataset contain an opinion, a classifier that always returns "no opinion" will

easily achieve 90% accuracy despite being useless.

Precision

Precision looks at how many of the predicted positive labels are actually positive:

Precision =
TP

TP + FP
(2.14)

In the example with the model returning "no opinion" for all tweets and having an

accuracy of 90%. It will have a precision of 0%, surfacing an issue with the model that

was missed by accuracy.

Recall

Recall is interested in measuring what is the percentage of the positive cases that were

labeled as positive:

Recall =
TP

TP + FN
(2.15)
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In the running example, we would also have a recall of 0%. The choice between pre-

cision and recall lies in whether a false positive is more costly than a false negative. If

it is absolutely unacceptable to flag a tweet that has no opinion as a positive case, then

we would favor precision. If we cannot afford to miss a single opinionated tweet but are

happy to sort through false positives, then recall is the better option.

F1 Score

If we are equally interested in controlling false positives and false negatives, we will

use the harmonic mean of precision and recall:

F1 Score = 2 ∗ precision ∗ recall
precision + recall

(2.16)

Balanced Accuracy

This metric is an improvement on accuracy that accounts for class imbalance. It corre-

sponds to the average per-class accuracy:

Balanced Accuracy =
Sensitivity + Specificity

2
=

TP
TP+FN

+ TN
TN+FP

2
(2.17)

The main reason to optimize balanced accuracy over an F1 Score is that the F1 score

is only interested in the positive class. For example, an extra true positive will be more

significant than an infinite amount of true negatives.

Cross validation

When we train a model, the result is the closest fit to the data that is possible. This data

is a sample of what the model will encounter in the real world, and the performance
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score against previously unseen data will be lower. In the extreme case, if our model

perfectly classifies a noisy training dataset, then it will "overfit" and will suffer a drastic

performance reduction in the real world. We can simulate this situation by splitting our

training dataset into a training and validation set and using the latter as a simulation of

the real world.

Cross validation is a generalization of this concept where the dataset is split into k

folds and the train-test exercise is run k times. In each iteration, one fold is the valida-

tion set and all the rest are combined to form a training set. We will use stratified cross

validation, which preserves the class imbalance across all folds.

When paired with a grid search over a model’s hyperparameters, we can control over-

fitting by selecting the model with the best validation performance rather than training

performance.

Grid Search

It is impossible to know ahead of time which algorithm will have the best performance,

or what its regularization settings should be. It is also difficult to predict which prepro-

cessing steps will best cooperate with each model. We carry this out by brute force by

specifying all the possible parameters for each component of our pipeline that we are

willing to try and trying a cross validation procedure on every possible permutation.
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Chapter 3

OPINION DETECTION

In this chapter we posit that there should be a separation between opinion detection and

downstream opinion mining tasks. We then discuss the techniques leveraged by current

applied research and the datasets available for advancing the state of the art of opinion

detection.

3.1 Opinion Mining or Detection

An important use case for opinion mining is to guide decision-making where it needs

to be informed by some population’s conversations. As a result, a step involving stance

detection or sentiment analysis is necessary to produce a classification that can inform

decisions. The workflow consists of a typical NLP pipeline beginning with data collec-

tion, followed by preprocessing and classification. While it is clear that design choices

made during preprocessing and data collection have an impact on the classification, the

effects have not always been clear [74]. In particular, researchers have to choose whether
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the final step will receive documents that all contain opinions or whether they will add a

label to signal that no opinion was detected.

This inherently requires that the final step be able to do both the work of detecting and

classifying opinions. We therefore need to use a more powerful model that is able to solve

two tasks at the same time, with the detection component often being more complex than

the classification task [41].

Jointly learning two tasks is challenging even for the most complicated models avail-

able because it requires an understanding of distinct concepts. It is clear, for example,

that opinion detection and sentiment analysis share indicators in the form of the pres-

ence of terms such as "like" and "hate". It is less obvious for an NLP model that the two

are not always correlated, with example phrases being "I think he loves vaccines" (opin-

ion, no sentiment) and "I am annoyed, but I am getting my vaccine later" (sentiment, no

opinion). A sentiment analysis model solving both tasks jointly would have to learn to

not only understand when the term "love" carries sentiment, but also when to ignore a

sentiment-laden phrase because it is not of value to a decision-maker.

3.2 Techniques

Another effect of the trend of combining the detection and classification of opinions is that

progress in detecting opinions is fragmented across various opinion mining tasks. As a

result, typical solutions for detecting opinions in applied work are not based on bench-

marked research. Most of the solutions can be grouped into three categories: manual,

heuristic, and lexicon-based.
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An example of a manual solution is the work of Yoon et al. [82], who classified the

polarity of tweets surrounding the 2014 Seoul mayoral election. After annotation of their

training set, the authors discarded the tweets that did not have a polarity. This is a rea-

sonable choice in a research context but could not scale to a production system because it

would be important to continue to manually filter out tweets without polarities especially

as the topics drift away with time from the training dataset.

Fan and Wu [17] use a heuristic method to summarize opinions of comments on var-

ious e-commerce products. They identify opinions by checking for the presence of ad-

jectives from an expanding list based on a seed set. Such a method might be reasonable,

but it would have to be compared to other methods using the same dataset before its per-

formance can be determined objectively. To the best of our knowledge, neither this nor

any other heuristic method has been established as a state of the art tool for identifying

opinions.

Sindhu et al. [70] use the Opinion Finder lexicon [80] to show how the performance

of a polarity classifier increases along with a threshold for subjectivity. While, Opinion

Finder is no longer competitive in sentiment analysis compared to more recent tools [62],

the benefit it provides to a downstream model remains valuable. Moreover, it is not clear

that a two-step process using more modern NLP tools could not achieve or surpass the

current state of the art.
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3.3 Datasets

Researchers interested in improving the state of the art for a task use benchmark datasets

to form a basis for comparison to prior work. There are few established datasets built for

opinion detection compared to popular tasks such as sentiment analysis (e.g. [29, 38]) or

stance detection (e.g. [12,43]). The ones that do exist tend to be older (e.g. [52]) and recent

literature often resorts to adapting datasets such as SemEval-2016 Task 6 [43] instead.

The dataset provided by Pang and Lee [52] requires a system to specify whether or not

a sentence is subjective. It was curated by combining mostly "objective" sentences from

plot summaries on the International Movie Database (IMDb) with "subjective" sentences

from reviews on the Rotten Tomatoes website. It is not clear, however, whether training

on the syntax of movie reviews is representative of how opinions are communicated in a

broader online conversation.

The SemEval-2016 Task 6 dataset [43] is sometimes used in the literature [13] whenever

opinion identification is carried out explicitly. It was created by collecting tweets for six

topics: "Atheism", "Climate Change is a Real Concern", "Feminist Movement", "Hillary

Clinton", "Legalization of Abortion", "Donald Trump". The tweets were then annotated

for their stance towards the given topic with the following categories: "favor", "against",

"neutral", and "no stance". The last two categories were merged because less than 0.1 % of

the data was assigned the "neutral" label. A second question asked annotators to specify

which of the following options is true for a given tweet:

1. The tweet explicitly expresses opinion/sentiment about the target
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2. The tweet expresses opinion/sentiment about something/someone other than the

target

3. The tweet is not expressing opinion/sentiment about anything

In order to train a model to identify opinions based on this dataset, the first two cat-

egories of the second question can be combined. However, such modified datasets are

rarely used as a standard benchmark for opinion detection performance. As a result, ap-

plied research that seeks to separate opinion identification from downstream tasks does

not have a clear reference for which models are likely to have the best performance.
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Chapter 4

DATA

The COVID-19 case study that we carry out in this thesis aims to help downstream NLP

systems characterize various opinions related to the vaccine held by Canadians on Twit-

ter. In this Chapter, we describe the collection and annotation processes to create our

labeled dataset.

4.1 Collection

In a true applied setting, it would be important to know how common is a conversation on

the vaccine compared to any other subject. Without such a measure, it would be difficult

to describe the likelihood of an average Canadian Twitter user expressing an opinion on

the COVID-19 vaccine. In order to prevent this issue, we use a Twitter dataset collected

by the Media Ecosystem Observatory (MEO) that focuses on capturing a representative

sample of the Canadian online Twitter population instead of searching for specific tweets

related to a narrow topic [8]. This was done by maintaining an expanding list of likely-
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Canadian users and collecting their complete posting histories. The list was initialized

during the 2019 Canadian elections and expanded in 2020 using the COVID-19 pandemic

as one of the topics for user discovery. Specifically, the procedure is as follows:

1. Initial seed user set creation: During the 2019 Canadian elections, a list of accounts

belonging to political parties was manually assembled and defined as a seed user

set.

2. New user discovery: A list of popular hashtags was also maintained during the

elections and a sample of tweets for each popular hashtag was collected.

3. Location retrieval: The self-reported locations (and mentions of locations in their

descriptions) for each user in Step 2 not already present in the seed set were col-

lected.

4. Location parsing: These locations were mapped to a country using Google’s Geocod-

ing API 1. Manual validation ensured that text with city names existing in other

countries such as Kingston (Canada, Jamaica, or many others) resolved to the cor-

rect location.

5. Seed user set expansion: Users with a Canadian self-reported location were then

added to the seed set.

6. Scraping and reexpansion: In 2020, the timelines of the seed users were scraped and

the previously unknown users that appeared in the mentions, retweets, and replies

of the seed set underwent steps 3, 4, and 5.

1https://developers.google.com/maps/documentation/geocoding/overview
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The result was a dataset of approximately 452 million tweets in 2020 from likely-

Canadian users. One limitation of this collection procedure is that the political conver-

sation from which it originated could contain bots or fake accounts that have an interest

in incorrectly self-reporting a Canadian location. It would be challenging to reliably filter

out such users given the difficulty of detecting inauthentic accounts [16].

We proceed with our case study by departing from the MEO dataset by filtering tweets

for the presence of keywords related to the vaccine. The keywords were selected by look-

ing at a co-occurrence matrix that included the terms "covid-19" and "vaccine" to find new

terms that would significantly increase the dataset size. The resulting keyword list is:

• "vaccine" and at least one of: "covid19", "covid-19", "coronavirus", "microchip", "ox-

ford", "mrna"

• "astrazeneca"

• "pfizer"

• "moderna"

The resulting dataset contains 8,161,582 tweets that mostly discuss a vaccine related

to COVID-19. The list was built over multiple iterations by manually inspecting for prob-

lematic cases. For example, the word "vaccine" on its own returned conversations unre-

lated to the COVID-19 vaccine. Meanwhile, "moderna" did not need to be tied to "vaccine"

because manual inspection of a sample did not surface unrelated tweets. This manual

process is analogous to sentiment analysis research that filters for opinions heuristically.

In our case, the upstream task that would be required to reduce the manual intervention
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step is topic modeling, where we train a model to predict whether a tweet is related to a

COVID-19 vaccine. Such an exercise is beyond the scope of this thesis and we therefore

simplify the task by filtering on topics as is standard practice in applied NLP literature

(e.g. [49, 77]).

Using the filtered COVID-19 vaccine dataset, we then clean up a tweet’s text by re-

moving all URLs and mentions from each tweet. This is important because labeling a

tweet as having an opinion based on the presence of either of the two elements would

be incorrect. The two key special features of tweets that we do ensure stay present are

emoticons and hashtags, because they often form a key part of the message the author is

trying to communicate.

4.2 Annotation

We carry out two annotation tasks on AMT for our case study with three annotators per

annotated example. In the opinion identification task (see instructions in Figure 4.1),

we randomly sample 5000 tweets and create 500 annotation tasks with 10 tweets each.

We require annotators to answer a number of questions including whether or not each

tweet contains an opinion. This question is difficult because we avoid providing a narrow

definition of opinion in order to obtain labels that reflect an intuitive human judgment.

More specifically, the casual definition of opinions is subjective and some annotators will

search for the presence of sentiment, while others focus on the veracity of the statement.

The consequence of allowing annotators to define opinion using their intuition is that

there is more room for disagreement and bias (see Table 4.1).
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Tweet Opinion Justification No Opinion Justification
So Pfizer announce
they’ve discovered a
Covid vaccine just days
after the election?

Author implies vaccine is
merely a political tool

The opinion presented is
unrelated to the vaccine it-
self, rather the politics sur-
rounding it

@thomaskaine5 My arm
was a little sore the night
of, mild muscle aches
the next day. I’ve had
mosquito bites more
painful than the covid
vaccine.

Author provides a sub-
jective description of vac-
cine’s side-effects with an
implication that the vac-
cine is safe

The tweet is a strict recol-
lection of what happened
to the author

Table 4.1: Examples of tweets where the presence of opinion was subject to disagreement

Figure 4.1: Instructions for annotation task with the opinion detection question

An additional problem that we handled is annotator effort. Many crowdsourced anno-

tators rushed through the task and after manual inspection, we observed that annotators

who finished in less than 2 minutes and 30 seconds (15 seconds per tweet) were answering

randomly.

In the effect mention task (see instructions in Figure 4.2), we ask the annotators whether

a tweet’s author explicitly identifies a good or bad effect of a vaccine. We also insist that

the effect does not have to be "true" or confirmed and that it does not have to apply specif-

ically to the COVID vaccine. We provide in the task instructions numerous examples of
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Figure 4.2: Effect mention task instructions

our annotation expectations and reject annotators who misunderstand the exercise. This

is tested by injecting the following two easy questions into their task:

• "SHOCK VIDEO: Bill Gates Admits COVID-19 Vaccine Will Kill And Maim 700,000!":

Effect mentioned

• "The Ontario government is making a $20 million investment towards provincially-

based research to help find a vaccine for COVID-19": No effect

In order to compute agreement on these two tasks, we generate sparse matrices with

columns assigned to annotators and rows assigned to each tweet. We obtain a Krippen-

dorff’s alpha of 0.27 for the opinion detection task and 0.45 for the effect mention task.

In terms of consensus, 50% tweets for opinion detection and 63% for effect mention have

agreement between all three annotators.

To some extent, the reliability measures obtained for the opinion identification anno-

tation are worrying and indicative of issues in the dataset. Even accounting for the fact
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that Krippendorff’s alpha is affected by class imbalance [27], we expect a high number

of misclassifications. This highlights the fact that intuitive definitions of opinion do not

form a sharp boundary. The impact is that the trained model will be more permissive in

what it identifies as an opinion. In fact, it will learn to predict whether a tweet is more

likely than not to be opinionated, which is sufficient for a downstream task. To train such

a model, we form a dataset by selecting tweets where a majority could be obtained af-

ter discarding low effort annotators. The result contains 3676 tweets, 2441 of which are

opinionated tweets and 1235 tweets that are not.

For the effect mention task, we have a higher agreement and consensus percentage

because we enforce a strict definition rather than relying exclusively on annotator judg-

ment. Given that the annotator is given precise acceptance criteria for the task, we can

filter workers more aggressively based on incorrect answers to easy questions. Never-

theless, some disagreements do occur and we account for them by assigning the majority

answer to the label. Having annotated 376 tweets from the 5000 belonging to the opinion

task, we form a dataset containing 112 tweets that mention an effect of the vaccine and

264 that do not.
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Chapter 5

MODELING

We carry out an opinion identification task on our COVID-19 dataset and also classify

whether or not a tweet mentions an effect of the COVID-19 vaccine. Both tasks are a

binary classification problem with the two possible answers being "yes" and "no". Despite

the outcome variable being binary, we need to remember that the models predict whether

a majority of annotators would think that a tweet is opinionated or mentions an effect. In

the case of opinion identification, the downstream model will have access to a smaller set

of tweets where identification was easier. On the other hand, the diffuse definition should

ensure that a varied set of opinionated tweets are preserved.

We present in this chapter the pipelines for the traditional and deep learning models.
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Pipeline Component Hyperparameter Values
Count & TF-IDF
Vectorizer N-gram sizes (min,max) (1,1), (2,2)

(3,3), (1,3)

Count & TF-IDF
Vectorizer

minimum n-gram corpus frequency
percentage

0.05, 0.11, 0.23,
0.5, 1.08, 2.32,
5.0, 10.77, 23.20,
50.0

SVM C ∈ [0, 1] (inverse of regularization strength) 0, 0.25, 0.5, 0.75, 1

SVM Kernel linear, polynomial
rbf, sigmoid

Logistic Regression Regularization Type None, L1, L2
Random Forest Number of Estimators 5, 10, 15

Random Forest Class Weight (to handle class imbalance) balanced
subsample

Table 5.1: Hyperparameter Grid

5.1 Traditional Machine Learning Methods

We will use logistic regression as a benchmark algorithm and try to improve on it using

an SVM and a random forest. For all three algorithms, we experiment with both count

and TF-IDF vectors based on word n-grams.

We carry out a grid search with a 5-fold stratified cross validation using each of the

following metrics for evaluating the validation set: precision, recall, f1, weighted f1, and

balanced accuracy. Table 5.1 summarizes the parameter ranges for each component of the

pipeline. The tuning process is focused on exploring various scales for the numerical hy-

perparameters and the minimums and maximums were defined after manual experimen-

tation. The model that will be selected could likely be further improved on by carrying

out an exhaustive search around its hyperparameter values. All traditional models were

implemented using Python’s scikit-learn library [55].
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5.2 Deep Learning Methods

With the rise of deep learning, a diverse set of neural network architectures has been

used to solve opinion mining tasks. These models aim to reduce the feature engineering

burden on the researcher by dealing with word tokens at the input level instead of feature

vectors. In applied research, the core of the work consists of designing an architecture that

is able to model the patterns and domain-related concepts that can be extracted from the

data.

In this thesis, we use an architecture that has three key steps: an embedding layer that

is followed by an encoder and which is finally fed into a feed-forward classifier (with a

softmax output). The embedding layer is responsible for converting each word in a tweet

into a vector representation. We experiment with GloVe, ELMo, and no embeddings. The

encoding step uses a deep neural network architecture to convert the sequence of vector-

izer words into a single vector. We try LSTMs, BiLSTMs, CNNs, and a Bag of Embeddings

(BOE) model, which sums up all the word vectors together. Finally, the feed-forward clas-

sifier uses a standard fully-connected neural network that outputs one value per possible

classification label and the softmax function at the end converts this output to a probabil-

ity.

As discussed throughout Chapter 4, both the opinion detection and effect-mention

datasets are highly skewed, so we must use a weighted cross entropy loss function [61].

In order to learn the network weights inside the system, we use the Adam optimizer [34]

for 30 epochs, but we stop training early if the validation loss and F1 score do not improve
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for 5 epochs. All models were built using AllenNLP [18], which in turn relies on PyTorch

[54].
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Chapter 6

EVALUATION & DISCUSSION

In this chapter, we first discuss the performance of deep learning and traditional NLP

models in the case study and reflect on how to use this model in an applied pipeline. We

also discuss the phenomenological findings related to the COVID-19 vaccine conversa-

tions on Twitter.

6.1 Model Performance

6.1.1 Opinion Identification

Deep learning models had worse opinion detection performance under the weighted

F1 score, but were stronger on all other metrics. The test scores of traditional models

and deep learning models are reported in Tables 6.1 and 6.2, respectively. This is the case

despite the fact that the model selection process for traditional algorithms specifically

used each scoring metric during cross validation whereas the deep learning models solely
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relied on the loss function. Traditional learning models trained to maximize recall failed

to learn the task correctly and obtained a perfect score by simply predicting that every

tweet contains an opinion.

We hypothesize that an important reason for this improvement is that the deep learn-

ing architectures we used are a form of transfer learning. This dataset is very small and

therefore extracting an understanding of English semantics using count or TF-IDF vec-

tors is challenging. Therefore, the extra prior knowledge injected into the model by the

contextual embeddings make it easier to train the opinion identification task on just a few

thousand tweets.

In our case study, a logistic regression model is a sufficient approach for detecting

opinions in tweets for a downstream task. During model selection for our case study,

we need to minimize the number of examples that are incorrectly labeled as containing

an opinion (false positives), which implies maximizing precision. However, we want to

generate as large and diverse a dataset as possible, meaning we want to find as many

of the opinionated tweets as possible, maximizing recall. This, coupled with the class

imbalance, means we should favor the weighted F1 metric over balanced accuracy (and

precision or recall). Balanced accuracy is less desirable because we are less concerned

with false negatives than false positives. Specifically, given that a majority of tweets do

contain an opinion, we can be strict with identifying opinions based on a diffuse defini-

tion implicitly defined by annotators and focus on correctly classifying the true positives.

We therefore have to concede that the deep learning models we have used do not seem

to have created a significantly better downstream dataset than a simple logistic regression

using N-grams. This is a similar result to Igarashi et al. [26], who carried out a stance
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Algorithm F1 F1 Weighted Balanced Accuracy Precision Recall
LogisticRegression 0.874 0.870 0.792 0.848 1.0
RandomForestClassifier 0.856 0.845 0.757 0.824 1.0
SVC 0.871 0.868 0.770 0.846 1.0

Table 6.1: Opinion identification performance metrics for traditional models

detection exercise using a CNN and traditional models and found that the traditional

approach resulted in a better performance on a test dataset, despite having higher scores

during cross validation.

Further, these results suggest one of two possibilities: either there are no further clues

about opinion in a tweet’s syntax or the deep learning models are not learning syntax. The

first option would imply that models based on N-gram frequencies are close to the limit

of task performance for this dataset and the errors are caused by annotation noise. The

second option implies that there is still room for improvement in task performance, but

deep learning models that are insensitive to syntax perturbations such as word order [71]

are not reasoning about language to an extent that is sufficient for detecting opinions.

More specifically, such models seem to reason about language in a way that is not signif-

icantly different from a bag of words approach, despite the additional complexity they

introduce.

6.1.2 Effect Mention

Based on the annotation results, only 40% of tweets containing an opinion mention an

effect of the vaccine. The dataset for the task was too small for models to learn to classify

whether a tweet contains an opinion. We see in Tables 6.3 and 6.4 that the expected advan-
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Embedding Encoding F1 F1 Weighted Balanced Accuracy Precision Recall
GloVe LSTM 0.840 0.802 0.803 0.903 0.785

BiLSTM 0.743 0.718 0.759 0.929 0.619
CNN 0.886 0.841 0.809 0.871 0.902
BOE 0.815 0.774 0.774 0.887 0.754

None LSTM 0.860 0.819 0.807 0.890 0.832
BiLSTM 0.893 0.845 0.805 0.861 0.928
CNN 0.867 0.799 0.745 0.821 0.918
BOE 0.870 0.831 0.818 0.896 0.846

ELMo LSTM 0.864 0.830 0.831 0.919 0.816
BiLSTM 0.887 0.840 0.805 0.867 0.908
CNN 0.905 0.863 0.829 0.878 0.932
BOE 0.845 0.810 0.817 0.918 0.783

Table 6.2: Opinion identification performance metrics for Deep Learning models

Algorithm F1 F1 Weighted Balanced Accuracy Precision Recall
LogisticRegression 0.280 0.280 0.576 0.500 0.143
RandomForestClassifier 0.491 0.444 0.525 0.667 0.833
SVC 0.373 0.414 0.589 0.600 0.262

Table 6.3: Effect mention performance metrics for Deep Learning models

tage from using pretrained deep learning models did not translate to a useful prediction

performance in a low data setting.

Embedding Encoding F1 F1 Weighted Balanced Accuracy Precision Recall
GloVe LSTM 0.551 0.210 0.500 0.381 1.000

BiLSTM 0.430 0.466 0.475 0.359 0.535
CNN 0.485 0.356 0.465 0.360 0.744
BOE 0.229 0.492 0.457 0.296 0.186

None LSTM 0.542 0.206 0.488 0.375 0.977
BiLSTM 0.551 0.210 0.500 0.381 1.000
CNN 0.551 0.210 0.500 0.381 1.000
BOE 0.526 0.217 0.472 0.367 0.930

ELMo LSTM 0.551 0.210 0.500 0.381 1.000
BiLSTM 0.551 0.210 0.500 0.381 1.000
CNN 0.513 0.195 0.453 0.358 0.907
BOE 0.476 0.197 0.414 0.337 0.814

Table 6.4: Effect mention performance metrics for Deep Learning models
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Stance Tweet
Pro-vaccine @NicolleDWallace @maddow @MSNBC @ChrisCuomo @CNN KEY

OFFICIAL -A VIROLOGIST WORKING ON A #COVID19 VACCINE-
TAKEN OFF THE JOB B/C HE HAD THE AUDACITY TO TELL
#trump #Hydroxychloroquine is BULLSHIT. Once again, trumps thin
skin comes b4 OUR LIVES. https://t.co/cpv8X2vUAg

Pro-vaccine @angryblkhoemo My sister is already "warning" us that the vaccines
will have microchips in them.

Pro-vaccine Dr. Rick Bright is a career not political official who was leading the
effort to develop a #coronavirus vaccine as the director of @BARDA.
That level of expertise is not mediocre. https://t.co/AvTUSgIou3

Against The whack-jobs telling me coronavirus kills or almost killed me..We
need to keep the country closed till we get a vaccine.. GET REAL!! I
was hit by a drunk police officer and almost died and had my last rights
read to me twice..should we ban cars, alcohol, or Police..NOT!

Against Thats a big hell no. Tom Hanks’ blood will be used to develop coron-
avirus vaccine https://t.co/1k9i2Bw6nu

Against @Mareq16 gates: "i want to microchip everyone when i vaccinate them"
bezos: "i want people out of work so my sales increase"
dems: "we want mail in voting so we can rig the election"
china: "i have a deal for all of you. bat soup anyone?"

Table 6.5: Examples of opinionated tweets that do not mention a vaccine’s effects

6.2 COVID Vaccine Takeaways

Many users express an opinion on the COVID-19 vaccine, but they rarely mention

a concrete effect. Instead, users usually express an opinion by making an associative

reference between the vaccine and something that has an implied positive or negative

connotation. Table 6.5 gives examples of opinionated tweets that do not specify an effect

caused by a vaccine and are typical of the online conversation.

We also find that amongst the tweets without an opinion, 20% mention an effect while

40% of opinionated tweets do so. This makes sense given that there is a significant volume

of unopinionated tweets that report on progress of vaccine development and other related

news.

52



Chapter 7

CONCLUSION

Debates and conversations on social media play an important part in shaping the world-

view of some users and many NLP tasks are defined to characterize the opinions that

circulate within. Systems solving these tasks could be valuable to policymakers and any-

one else who has an interest in the public’s opinion on a topic. The current trend in the

literature is to merge opinion detection with the downstream task of interest and solve

the two at the same time.

In this thesis, we first argued that this trend has created a difficult situation for applied

research because there is little recent work clarifying what is the state of the art for opinion

detection. Moreover, the trend in the literature seems to be one of overlooking the opinion

identification task to the detriment of general opinion mining work. We then carried out

a case study on COVID-19 vaccine hesitancy to demonstrate the hardness of the opinion

identification task. In order to do so, we first assembled a dataset of Canadian tweets

mentioning the COVID-19 vaccine. Next, we annotated 5000 tweets for the presence of

opinions and 376 for the mention of effects. Finally, we trained a number of traditional
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and deep learning NLP models and measured their ability to detect opinions under a

variety of metrics.

We found that annotators’ definitions of opinion vary significantly, which is a chal-

lenge for the creation of a clean annotated dataset because it reduces the likelihood of

obtaining a consensus. In terms of weighted F1, which we have argued is the metric of

interest for creating a downstream dataset, we found that logistic regression outperforms

other models, including a number of deep learning architectures. Finally, we reported

that the COVID-19 conversation by Canadians on Twitter has a high prevalence of opin-

ions but comparatively few mentions of the effects of the vaccine.

An interesting avenue for future work would be to reproduce the state of the art results

for stance detection and sentiment analysis, but using an opinion detection step before

the final prediction task. Moreover, there is an opportunity for refining the use of modern

NLP architectures on the opinion detection problem specifically, but it would first require

a standard benchmark dataset to be provided to the community.

In conclusion, we hope to have argued for the benefit to applied research provided by

isolating the opinion detection problem. Improving on the state of the art for this task

would directly benefit many popular challenges such as sentiment analysis and stance

detection. As a result, applied models that aim to directly support decision making will

be able to focus on solving the phenomenological problem instead of working on two

challenging tasks at the same time.
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