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Abstract

Integer least squares (ILS) is an important class of optimization problems that may arise

from estimating the integer parameter vector in a linear model with additive Gaussian noise

in applications such as communications, control and global navigation satellite systems. This

thesis is concerned with solving the underdetermined box constrained ILS (UBILS) problems.

We propose a modified alternating direction method of multipliers (ADMM) algorithm as a

heuristic approach. Simulation results show that such heuristic is much superior to original

ADMM on UBILS problems. Based on the existing direct tree search (DTS) algorithm, we

show how to incorporate ADMM methods for computing initial points and lower bounds

with the aim of improving the efficiency. Numerical results indicate that in most cases our

new approach is better than DTS and selected commercial solvers in terms of efficiency and

accuracy. Besides, the advantage of our new approach over DTS becomes more significant

when the search region becomes larger.
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Abrégé

Les moindres carrés en nombres entiers (ILS) sont une classe importante de problèmes

d’optimisation, qui peuvent résulter de l’estimation du vecteur de paramètre entier dans une

modèle linéaire avec bruit gaussien additif dans des applications comme les communications,

le contrôle et les systèmes mondiaux de navigation par satellite. Cette thèse s’intéresse à

la résolution des problèmes d’ILS sous-déterminés avec les contraintes de boites (UBILS).

Nous proposons une méthode modifiée de direction alternative des multiplicateurs (ADMM)

comme une approche heuristique. Les résultats de la simulation montrent que de telles

heuristiques sont bien supérieures à ADMM original sur les problèmes UBILS. Sur la base

de l’algorithme de recherche directe dans l’arbre (DTS), nous suggérons d’incorporer des

techniques ADMM pour calculer les points initiaux et les bornes inférieures dans le but

d’améliorer l’efficacité. Les résultats numériques indiquent que dans la plupart des cas,

notre approche de recherche est meilleur que DTS et certains solveurs commerciaux en

termes d’efficacité et de précision. L’avantage de notre nouvelle approche par rapport au

DTS devient plus significatif lorsque la zone de recherche devient plus grande.
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Chapter 1

Introduction

1.1 Integer Least Squares Problem

Suppose that we have the following linear model:

y = Ax∗ + v, v ∼ N (0, σ2I) (1.1)

where A ∈ Rm×n is a real matrix with full column rank, y ∈ Rm is an observation vector,

x∗ ∈ Zn is an integer parameter vector and may be subject to some constraints, v ∈ Rn is

a noise vector following the normal distribution N (0, σ2I). The goal is to recover x∗ based

on given A and y. This is an estimation or detection problem and may arise from different

applications such as wireless communications (see, e.g., [1, 25, 52]), GPS positioning (see,

e.g., [10, 21,41,65]) and control (see, e.g., [22]).

One approach to estimating x∗ in (1.1) is to solve the following integer least squares

(ILS) problem:

min
x∈Zn
‖y −Ax‖2

2. (1.2)

It is easy to show that the solution is the maximum likelihood estimator of x∗ (see, e.g., [41]).

To distinguish (1.2) from other ILS problems, we refer to it as an ordinary integer least

squares (OILS) problem. In the literature, A is referred to as a lattice generator matrix,
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which can generate the lattice L(A) = {Ax,x ∈ Zn} (see e.g., [1]). The OILS problem (1.2)

is equivalent to finding the closest point to y in the lattice L(A), so it can also be referred to

as the closest point problem. The OILS problem, which does not arise from the liner model

estimation, has applications in lattice cryptography (see e.g., [39, 40, 49, 50]) and number

theory (see, e.g., [53]).

Different from a real least squares problem, the OILS problem has been proven to be

NP-hard (see, e.g., [48, 67]). Various algorithms have been proposed to solve the OILS

problem, including deterministic and stochastic ones. The deterministic algorithms include

the Voronoi cell based approach (see, e.g., [51, 61]), the relaxation-based branch-and-bound

(see, e.g., [4]), and the enumeration approach which enumerates lattice vectors within the

search space until the optimal solution is found (see e.g., [34, 40, 43, 59]). Apart from

deterministic algorithms, some randomized algorithms have also been investigated (see,

e.g., [2, 3, 9, 39]).

In practice, the enumeration approach is often used, as it is often more efficient than

other approaches. An enumeration algorithm typically involves two phases, reduction and

search. The reduction phase is to reduce the problem (1.2) to an equivalent problem which

makes the search stage more efficient. The search phase aims at finding the optimal solution

of the reduced problem. For reduction, there are two well-known strategies: the Lenstra-

Lenstra-Lovász (LLL) reduction [46] and the Korkine-Zolotare (KZ) reduction [45]. Due to

the expensive computational cost of the KZ reduction, the LLL reduction is often used in

practice for solving OILS problems. However, since the KZ reduction can make the search

process more efficient than the LLL reduction, it is usually employed when one solves multiple

OILS problems with the same matrix A. The details of the LLL reduction will be given in

Section 2.1.1. The second phase is to find the optimal solution by enumerating integer

vectors in a region. There are two well-known search strategies: the Phost strategy (see,

e.g., [34]), which enumerates the integer vectors in a hyper-ellipsoid, and the Kannan strategy

(see, e.g., [43, 44]), which enumerates the integer vectors in a rectangular parallelotope. An

important improvement of the Phost strategy, known as the Schnorr-Euchner (SE) strategy,
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enumerates the integer vectors in a different order in the hyper-ellipsoid [59]. The hyper-

ellipsoid which the Phost strategy or the SE strategy enumerates integer points in is also

a hyper-sphere in terms of lattice points. For this reason, these search algorithms are also

referred to as sphere decoding (SD) algorithms in communications. A detailed comparison

between these search strategies can be found in [1]. As the SE strategy outperforms the

other two, it will be introduced in Section 2.1.2 and in this thesis we focus on the SE based

search strategies.

1.2 Box-constrained Integer Least Squares Problem

In some applications, such as wireless communications (see e.g., [25, 42, 54, 58]), the

parameter vector x∗ in the linear model (1.1) is constrained to a discrete set, which can be

easily transformed into an equivalent constraint box B:

B = {x ∈ Zn : l ≤ x ≤ u, l,u ∈ Zn}. (1.3)

Then the ILS problem (1.2) becomes:

min
x∈B
‖y −Ax‖2

2. (1.4)

We refer to (1.4) as a box-constrained integer least squares (BILS) problem. If m ≥ n and

A has full column rank, the BILS problem (1.4) is called an overdetermined box-constrained

integer least squares (OBILS) problem. Otherwise, when m < n and A has full row rank,

(1.4) is referred to as an underdetermined box-constrained least squares (UBILS) problem.

This thesis will focus on UBILS problems.

To solve the OBILS problem through the enumeration approach, the LLL reduction

cannot be applied because it would transform the box B to a more complex geometry and

make the search phase less efficient. In [70] and [72], the Vertical Bell Laboratories Layered

Space-Time (V-BLAST) reduction algorithm and the sorted QR decomposition (SQRD)
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reduction algorithm were suggested respectively. Both V-BLAST and SQRD use only the

information of A to determine column reordering. In [63], Su and Wassel proposed a new

column reordering algorithm that uses all information of the problem from a geometric point

of view. Independently, another reduction algorithm was given from an algebraic point

of view by Chang and Han in [16]. In [13], Breen and Chang showed that the reduction

algorithm in [63] and [16] give the same column reordering result in theory. They combined

the best part of these two algorithms and proposed a new mathematically equivalent but

computationally faster reduction algorithm. This algorithm is called all information based

permutation (AIP) reduction in [73] and will be introduced in Section 2.2.1. For the search

phase, several Schnorr-Euchner based strategies were proposed to find the optimal solutions

of the reduced OBILS problems. In [11], a direct extension of the Schnorr-Euchner search

algorithm was proposed by taking the box constraint into account. A more natural and

understandable search algorithm was suggested in [25]. The one proposed by Chang and

Han in [16] is an improvement of the former two. In Section 2.2.2, the search algorithm

in [16] will be reviewed in detail.

For the UBILS problem, the regular sphere decoding based search algorithm for OBILS

problems cannot be applied directly. Damen et al. proposed the so-called generalized sphere

decoding (GSD) algorithm [24]. Its main idea is to partition the vector x in (1.4) into two

subvectors x(1) ∈ Zm and x(2) ∈ Zn−m. For each candidate of x(2), it solves a corresponding

OBILS problem to find the corresponding x(1). After all the possible x(2) are enumerated, the

combination of x(1) and x(2) that gives the minimal residual, is the optimal solution to the

UBILS problem. In [27], Dayal and Varanasi proposed another generalized sphere decoding,

which can reduce the computational cost by splitting the candidate set for x(2) into disjoint

ordered subsets. Later, Yang et al. proposed a double-layer sphere decoder (DLSD) to

solve UBILS problems in [77], which is faster than the algorithm in [27]. Then in [18],

Chang and Yang proposed a recursive GSD algorithm, which modifies the algorithm in [27]

and incorporates a column reordering strategy in reduction, and is faster than the algorithms

in [27] and [77]. More recently, in [19], Chang and Yang proposed an direct tree search (DTS)
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algorithm, which integrates the two search processes in [77] into one process seamlessly and

presents a novel column reordering strategy to make search process more efficient, and this

DTS algorithm is faster than the algorithms in [18,77]. Since this DTS algorithm is employed

in this thesis, its detail will be reviewed in Section 2.3.1. All the above algorithms mainly

consider how to generate a sequence of sub-ILS problems and solve them to find the optimal

solution. In [20], Chang et al. proposed a partial regularization (PR) approach, which

can transform the UBILS problem into an OBILS problem through dimension expansion.

But this PR approach was designed for some communication applications and requires the

constraint box B in (1.4) to be in some specific forms. More details of this PR approach will

be reviewed in Section 2.3.3. For certain applications, we can obtain ‖x(2)‖2
2 as a constant

and the UBILS problem can be easily transformed, through adding a term associated with

‖x(2)‖2
2 in the objective function into OBILS problem, which takes much less computation

(see e.g., [23, 60, 66]). The modified ADMM method proposed in thesis is related to this

approach.

Since the computational cost for UBILS problems is very high, a number of near-optimal

approaches have also been developed to reduce the complexity (see e.g., [26,29,32,42,54–57]).

The main idea of these near-optimal methods is to replace exhaustive search with partial

search. In this thesis, we mainly focus on optimal algorithms for solving the UBILS problem

and some reviews of sub-optimal approaches will be given in Section 2.3.4.

The search methods for OBILS and UBILS problems mentioned above are both tree

search approaches. The search cost is proportional to the number of tree nodes. If some

techniques can be employed to prune the search tree, the search process can be accelerated.

Various lower bound techniques that can prune the search tree have been proposed (see.

e.g., [14, 36, 62, 78]). Most lower bound techniques can only deal with OBILS problems. In

this thesis, a new lower bound technique, which can boost the search efficiency for UBILS

problems, will be proposed in Section 4.2.
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1.3 Alternating Direction Method of Multipliers

Alternating direction method of multipliers (ADMM) is a simple but powerful algorithm

that is well suited to distributed convex optimization. It can be applied in many statistical

fields (see e.g., [12]), such as constrained sparse regression, sparse signal recovery, image

restoration and denoising, and so on. ADMM takes the form of a decomposition-coordination

procedure, in which the solutions to small local sub-problems are coordinated to find a

solution to a large global problem. It is worth mentioning that ADMM itself is not new,

although it has become popular recently. It was first introduced in the mid-1970s by Gabay,

Mercier, Glowinski, and Marrocco [35,37], though similar ideas emerged as early as the mid-

1950s. ADMM can be viewed as an attempt to blend the benefits of dual decomposition and

augmented Lagrangian methods for constrained optimization. It turns out to be equivalent

or closely related to many other algorithms (see e.g., Chapter 3 of [12]). In Section 3.1, the

theory of ADMM will be reviewed.

Although for convex problems ADMM is proved to show convergence under some mild

assumptions, for non-convex problems it need not converge and when it does converge, it

need not converge to an optimal point (see e.g., Chapter 9 of [12]). In [28], Diamond et

al. discussed how to use ADMM as a heuristic to approximately solve various optimisation

problems with convex objective and variables from a discrete set. In [64], Takapoui et al.

proposed an ADMM-based heuristic approach for mixed integer quadratic programming.

They showed that this approach has favourable computational costs and in many cases the

global solution can be found although it is not guaranteed. In [33, 71], it is shown that for

boolean optimisation problems where each variable takes either the value of 0 or 1, the 0-1

constraint can be transformed into continuous constraints and then ADMMwith transformed

constraints can be viewed as a global approach. In Section 3.2, these techniques mentioned

above of ADMM on integer problems will be reviewed in detail.

In general, the performance of ADMM on problems with discrete constraints, including

both speed (faster convergence) and accuracy (more likely to give the optimal solution),

6



is closely related to the choice of initial point and penalty parameter (see e.g., [75, 76]).

In Section 4.1, we will propose an useful and reasonable way of choosing initial point and

penalty parameter while extending ADMM to UBILS problems as a heuristic.

1.4 Goal, Organization and Contributions

The main goal of this thesis is to improve the efficiency of the tree search method

for UBILS problems. The thesis has two main contributions. The first one is that we

propose a modified ADMM method to find a sub-optimal solution, which is used as an

initial point of the tree search method. This is different from all the current approaches

for the UBILS problems, except the method proposed in [64]. Comparing with the latter,

our modified ADMM method is much more accurate. The second one is we propose an

ADMM-based lower bound technique in the tree search to prune the search tree. To the best

of our knowledge, there are no lower bounds that work well for general UBILS problem in

literature. Numerical experiments indicate our improved tree search method can often beat

well-know software packages for the UBILS problems.

The rest part of this thesis is organized as follows.

In Chapter 2, we will review existing algorithms for OILS, OBILS and UBILS problems.

In Chapter 3, we first review the general form of ADMM. Later we show how ADMM can

be employed as a local method for problems with discrete constraints. Then we will discuss

how ADMM can be considered as a heuristic approach for integer optimisation problems.

Some ideas in recent literature on how ADMM can be used as a global method for certain

integer problems will also be introduced.

In Chapter 4, we will propose a modified ADMM that can be viewed as a good heuristic

for UBILS problems, and discuss how to choose parameters. Then we focus on how the

modified ADMM can be incorporated to the tree search approach. We will propose ADMM-

based lower bound techniques to prune the search tree and improve search efficiency.
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In Chapter 5, simulation results for various algorithms as well as some well-known

commercial solvers on UBILS problems are given to show the efficiency and effectiveness of

our ADMM search approach.

In Chapter 6, we summarize our results and discuss some further research directions.

1.5 Notation

In this section, we introduce some notations and terms to be used in this thesis.

We denote scalars by normal type letters (usually lowercase letters, occasionally upper

case letters), column vectors by boldface lowercase letters and matrices by boldface upper

case letters.

We use R,Z and C to denote the sets of real scalars, integer scalars and complex numbers

respectively, Rn,Zn and Cn to denote the sets of n-dimensional real vectors, integer vectors

and complex vectors respectively, and Rm×n,Zm×n and Cm×n to denote the sets of m × n

real matrices, integer matrices and complex matrices respectively.

For a column vector x ∈ Rn, xi:j denotes the subvector composed of elements of x with

indices from i to j. For a matrix A ∈ Rm×n, Ai:j,k:l denotes the sub-matrix containing all

the elements of A whose row indices are from i to j and column indices are from k to l. We

use aij to denote the (i, j) element of A and Aij to denote the (i, j) block of A. We use AT

to denote the transpose of matrix A. If A ∈ Rn×n, we use dim(A) to denote n.

For a scalar α ∈ R, bαe denotes the nearest integer to α (if there is a tie, bαe is the one

with the smaller magnitude). Let bαc and dαe denote the integers we obtain after performing

the floor and ceiling operations of α, respectively. bαeB denotes the nearest integer in set B

to α. Analogously, for a vector x ∈ Rn, bxe denotes the closest integer vector to x, i.e., its

i-th entry is bxie, for i = 1, . . . , n.

We also define some special vectors and matrices here. We use 1(n) to denote the n-

dimensional vector of ones and 0(n) to denote the n-dimensional vector of zeros. We use I to

denote an identity matrix and ek to denote the k-th column of the identity matrix I.
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For a random vector x, we denote E{x} as its expectation vector and cov{x} as its

covariance matrix. For a random variable X, we use var{X} to denote the variance of X. If

a real-valued vector x is normally distributed with zero mean and covariance matrix σ2I, we

write x ∼ N (0, σ2I), and if a complex-valued vector is circularly complex normal distributed

with zero mean and covariance matrix σ2I, we write x ∼ CN (0, σ2I).

For the sake of reading convenience, we provide a list of acronyms in Table 1.1.

OILS: Ordinary Integer Least Squares
OBILS: Overdetermined Box-constrained Integer Least Squares
UBILS: Underdetermined Box-constrained Integer Least Squares
ADMM: Alternating Direction Method of Multipliers

Table 1.1: Acronyms
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Chapter 2

Algorithms for Solving Various ILS

Problems

This chapter reviews enumeration algorithms for different ILS problems. In Sections

2.1, 2.2, 2.3, algorithms for solving OILS, OBILS and UBILS problems are introduced

respectively. These algorithms provide a basis for the following chapters.

2.1 Ordinary ILS Problem

Given an OILS problem:

min
x∈Zn
‖y −Ax‖2

2 (2.1)

where y ∈ Rn and A ∈ Rm×n has full column rank, a typical approach is the Schnorr-

Euchner sphere decoding method, which consists of two phases: reduction and search. In

Section 2.1.1 the well-known LLL reduction is reviewed, and the Schnorr-Euchner search

strategy is covered in Section 2.1.2.

2.1.1 Reduction

A. QR and QRZ Factorization

10



The QR factorization of A has the following form:

A = [Q1
n
, Q2
m−n

]

R
0

 (2.2)

where [Q1
n
, Q2
m−n

] ∈ Rm×m is orthogonal and R ∈ Rn×n is non-singular upper triangular.

Without loss of generality, we assume that rii > 0 for i = 1, . . . , n throughout the thesis.

Under this assumption, both Q1 and R are uniquely determined by A.

If the search strategy to be introduced later is used, the algorithm efficiency will depend

on R. Thus, we want to obtain a better R by using the so-called QRZ factorization. Note

that what properties a good R should have will be introduced later. The QRZ factorization

of A that always exists has the following form (see e.g., [15]):

QTAZ =

R
0

 (2.3)

where Q = [Q1
n
, Q2
m−n

] ∈ Rm×m is an orthogonal matrix, Z ∈ Zn×n is a unimodular matrix,

i.e., det(Z) = ±1, and R ∈ Rn×n is an upper triangular matrix with positive diagonal entries.

Then we have:

‖y −Ax‖2
2 = ‖QT

1y −RZ−1x‖2
2 + ‖QT

2y‖2
2. (2.4)

Define ȳ = QT
1y, z = Z−1x. Then (2.1) can be transformed to an equivalent problem:

min
z∈Zn
‖ȳ −Rz‖2

2. (2.5)

Note that if the optimal solution to (2.5) is ẑ, then the optimal solution to (2.1) is x̂ = Zẑ.

B. LLL Reduction

In the QRZ factorization (2.3), Z is an unimodular matrix. If we take Z = I, the QRZ

factorization just becomes the QR factorization. The aim is to choose a unimodular matrix

11



Z so that R in (2.3) can make the search phase more efficient. The so-called LLL reduction,

proposed by Lenstra, Lenstra and Lovász in [46], can give a good R. The upper triangular

matrix R is called δ-LLL reduced if the following conditions hold

|rk−1,j| ≤
1

2
|rk−1,k−1|, j = k, ..., n (2.6)

δr2
k−1,k−1 ≤ r2

k−1,k + r2
kk, k = 2, ..., n (2.7)

where 1
4
< δ ≤ 1. The inequality (2.6) is called the size reduction condition, and the

inequality (2.7) is called the Lovász condition. Combining these two conditions, we can get:

|rk−1,k−1| ≤
2√

4δ − 1
|rk,k|. (2.8)

The LLL reduction can help to pursue the inequality:

|r11| << |r22| << ... << |rnn|. (2.9)

In [15], the benefits of R satisfying (2.9) are explained.

In [46], an algorithm was proposed for computing the LLL reduction. Under certain

conditions, the cost of the algorithm in the worst case is a polynomial function of m and

n. Chang et al. shown in [17] that the LLL reduction can reduce the complexity of sphere

decoding. There have been some proposed improvements to the LLL reduction algorithm.

Ling and Howgrave-Graham shown in [47] that when the LLL reduction is used to improve

the performance of the Babai point in the linear model (1.1) (see [5]), the reduction for the off-

diagonal entries of matrixR that are above the super-diagonal entries in the LLL algorithm is

not necessary mathematically. Therefore, they proposed the so-called effective LLL (ELLL)

algorithm by removing the unnecessary part from the LLL algorithm. The ELLL reduction

algorithm is more efficient, but it has a numerical stability issue [74]. In [74], Xie et al.

proposed the partial LLL (PLLL) reduction algorithm, which does size reductions for part of

super-diagonal entries of R and the corresponding off-diagonal entries in the same columns.

12



Compared with ELLL, the PLLL reduction eliminates unnecessary size reduction on some

super-diagonal entries such that the numerical stability problem in the ELLL reduction can

be avoided. In addition, the PLLL reduction is faster than ELLL, because the minimum

pivoting strategy is incorporated in the PLLL reduction process when computing the QR

factorization to reduce the number of column permutations. In [74], Xie et al. also proved

that the ELLL and PLLL reduction are equivalent to the LLL reduction in improving the

efficiency of the search process for solving (2.5). Thus, the PLLL reduction algorithm will

be used later in this thesis and its pseudocode is given in Algorithm 2.1.

Here we give some explanations for some lines in Algorithm 2.1:

• Line 1: The QR factorization with minimum column pivoting is applied to make the

matrixR have small diagonal entries at the beginning (top left inR) and large diagonal

entries at the end (bottom right in R).

• Line 7 and 10: The integer Gauss transformation (IGT) has the following form:

Zik = I− ζikeieTk , i 6= k, ζik ∈ Z.

Here we apply Zik to R from the right where ζik = brik/riie to ensure |rik| ≤ |rii|/2.

• Line 14: The goal of interchanging columns k and k− 1 is to increase rkk and decrease

rk−1,k−1.

• Line 15: After interchanging two columns of R, R is not an upper triangular matrix

and a Givens rotation is applied to R from the left to make R upper triangular again.

For more details on IGT, column permutation and Givens rotation matrix, see e.g., [15].

2.1.2 Search

In the following we introduce the well-known Schnorr-Euchner algorithm in [59], which

is an enumeration search algorithm with the goal of finding the optimal solution in (2.5).

The main reference for the following description is [15].
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Algorithm 2.1 Partial LLL Reduction
Input: The matrix A ∈ Rm×n with full column rank and the vector y ∈ Rm

Output: The PLLL-reduced upper triangular matrix R ∈ Rn×n, the vector ȳ ∈ Rn, the
unimodular matrix Z ∈ Zn×n
Function : (R,Z, ȳ) = PLLL-Reduction(A,y)

1: Compute the Householder QR factorization with minimum pivoting: QTAP =

[
R
0

]
where Q = [Q1,Q2] is orthogonal, P is a permutation matrix and R is upper triangular

2: Set Z = P, k = 2, ȳ = QT
1y

3: while k ≤ n do
4: ζ = brk−1,k/rk−1,k−1e, α = (rk−1,k − ζrk−1,k−1)2

5: if δr2
k−1,k−1 > (r2

kk + α) then
6: if ζ 6= 0 then
7: Apply the integer Gauss transformation Zk−1,k to reduce rk−1,k

8: Update Z: Z = ZZk−1,k

9: for i = k − 2, . . . , 1 do
10: Apply the integer Gauss transformation Zik to reduce rik
11: Update Z: Z = ZZik
12: end for
13: end if
14: Interchange columns k − 1 and k of R
15: Transform permuted R back to upper triangular by a Givens rotation
16: Interchange columns k − 1 and k of Z
17: Apply the same Givens rotation to ȳ
18: if k > 2 then
19: k = k − 1
20: end if
21: else
22: k = k + 1
23: end if
24: end while

Suppose that we have an upper bound β for the objective function in (2.5) such that

its optimal solution satisfies:

‖ȳ −Rz‖2
2 < β2 (2.10)

where β is referred to as the search radius. In fact, the inequality (2.10) is a hyper-ellipsoid

with the center R−1ȳ in z space. Then the problem is to find the optimal integer point

inside the hyper-ellipsoid. We first show the basic idea of the Schnorr-Euchner algorithm in

a recursive fashion and then discuss the choice of β.
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Suppose that we have the following partitioning for the matrix and the vectors in (2.10):

ȳ =

 ŷ

ȳn

 , R =

R̂ r

rnn

 , z =

 ẑ

zn

 .
Then (2.10) is equivalent to:

‖(ŷ − rzn)− R̂ẑ‖2
2 < β2 − (ȳn − rnnzn)2,

(ȳn − rnnzn)2 < β2.
(2.11)

Define:

cn := ȳn/rnn, ŷ(zn) := ŷ − rzn, β̂2(zn) := β2 − (ȳn − rnnzn)2.

Then (2.11) can be rewritten as:

‖ŷ(zn)− R̂ẑ‖2
2 < β̂2(zn), (2.12)

cn − β/rnn < zn < cn + β/rnn. (2.13)

The equation (2.13) gives the search interval at level n. The search method first tries to

find an integer zn satisfying (2.13). If there is no solution, then (2.13) does not hold for any

integer zn, which means the hyper-ellipsoid (2.10) does not contain any integer points, and

the search process stops. If an integer z†n satisfying (2.13) can be found, then the next step

is to find an (n− 1)-dimensional integer point within the (n− 1)-dimensional hyper-ellipsoid

(2.12), which is the solution to the following sub-problem:

min
ẑ∈Zn−1

‖ŷ(zn)− R̂ẑ‖2
2. (2.14)

We see that the problem (2.14) is still an OILS problem but the dimension is n− 1. There

are two possible cases for this sub-problem:
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• There is a solution ẑ† to the OILS problem (2.14). In this case, we first update the

search radius β2 =

∥∥∥∥∥∥ȳ −R

ẑ†
z†n

∥∥∥∥∥∥
2

2

, and then we go back to level n to find a new

suitable value for zn that satisfies (2.13). Then we continue the search process as

before.

• There is no solution to the OILS problem (2.14). In this case, we go back to level n

and find a new suitable value for zn satisfying (2.13). Then we continue the search

process as before.

Then we discuss how to choose a value for zn at level n. We first choose the nearest

integer to cn, i.e., bcne, as this choice makes (ȳn − rnnzn)2 minimal. Later on when we come

back to level n from level n− 1, we can choose zn to be the next nearest integer, namely, in

the order as follows:

bcne, bcne − 1, bcne+ 1, bcne − 2, ..., if cn ≤ bcne

or

bcne, bcne+ 1, bcne − 1, bcne+ 2, ..., if cn > bcne.

When there is no integer in the search interval at level n for the latest β, the algorithm stops,

and the latest point found is the optimal solution to (2.5). Note that when we solve the

(n − 1)-dimensional OILS problem (2.14), we use exactly the same method. Whenever we

find a new point inside the hyper-ellipsoid with radius β, we update the search radius β to

be smaller. Thus the search sphere gradually shrinks, and when there is only one point left

in the hyper-ellipsoid, that is the optimal solution. The pseudocode of the search process is

described in Algorithm 2.2. According to [39], the time complexity of Algorithm 2.2 can be

upper bounded by O(nn/2+o(n)).

From inequalities (2.11), it is easy to understand that the initial choice of β is important

for the efficiency of search process. If the initial value of β is too large, there will be too many

integer points inside the hyper-ellipsoid, and the search speed would be slow. On the other
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Algorithm 2.2 Schnorr-Euchner Search
Input: The upper triangular matrix R ∈ Rn×n with full column rank, the vector ȳ ∈ Rn

Output: The optimal solution to (2.5) zOILS ∈ Zn
Function : zOILS = SE-Search(R, ȳ)

1: Set k = n, β =∞, zOILS = 0(n)

2: Compute ck = (ȳk −
∑n

j=k+1 rkjzj)/rkk, zk = bcke, dk = sign(ck − zk)
3: if r2

kk(zk − ck)2 ≥ β2 −
∑n

j=k+1 r
2
jj(zj − cj)2 then

4: if k = n then
5: Terminate (The optimal solution has been found)
6: else
7: Set k = k + 1 and go to Line 13
8: end if
9: else if k > 1 then

10: Set k = k − 1 and go to Line 2
11: end if
12: (k = 1 and a valid point is found) Set β = ‖ȳ−Rz‖2, save zOILS = z and set k = k + 1
13: (Enumeration at level k) Set zk = zk + dk, dk = −dk − sign(dk) and go to Line 3

hand, if the initial search radius β is too small, there may be no points inside the hyper-

ellipsoid, and the algorithm will terminate without giving a solution. For the OILS problem

(2.5), we usually set the initial search radius β = ∞, and the first integer point obtained

in the search approach is called the (ordinary) Babai point [5]. Another simple method to

initialize β is to solve the corresponding real least squares problem, i.e., zRLS = R−1ȳ, and

then set β = ‖ȳ−RbzRLSe‖2. If there is no integer point inside this hyper-ellipsoid, it means

that bzRLSe is the optimal solution of (2.5).

2.2 Overdetermined Box-constrained ILS Problem

We rewrite the OBILS problem in (1.4):

min
x∈B
‖y −Ax‖2

2 (2.15)

where B = {x ∈ Zn : l ≤ x ≤ u, l,u ∈ Zn}, y ∈ Rm, A ∈ Rm×n (m ≥ n) has full column

rank.
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The main difference between (2.15) and the OILS problem is the constraint box B,

which makes it difficult for the reduction and search strategy mentioned in Section 2.1 to be

applied directly. Thus in this section, we will first introduce the AIP reduction algorithm

in [13] and then focus on the search algorithm proposed in [16] to solve the OBILS problem.

2.2.1 Reduction

The LLL reduction approach for OILS problems cannot be applied to OBILS problems

because the geometry of the constraint box would become complicated after x is changed to z

by the unimodular transformation and then the search process would be difficult. Therefore

we apply a column permutation matrix P to A in the OBILS problem (2.15) from right such

that:

AP = [Q1
n
, Q2
m−n

]

R
0

 (2.16)

where P is a n × n permutation matrix, [Q1
n
, Q2
m−n

] ∈ Rm×m is orthogonal and R ∈ Rn×n is

non-singular upper triangular. Then we have:

‖y −Ax‖2
2 = ‖QT

1y −RPTx‖2
2 + ‖QT

2y‖2
2. (2.17)

If we define:

ȳ = QT
1y, z = PTx, l̄ = PTl, ū = PTu, (2.18)

then the original problem (2.15) can be transformed to:

min
z∈B̄
‖ȳ −Rz‖2

2 (2.19)

where

B̄ = {x ∈ Zn : l̄ ≤ x ≤ ū, l̄, ū ∈ Zn}. (2.20)

Then in the search process, we try to find the optimal solution ẑ for the problem (2.19) and

get the solution for the problem (2.15) x̂ = Pẑ.
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There have been various column reordering strategies (different permutation matrices

P) (see e.g., [13,16,63,72,73]), which have the potential to improve search efficiency. Then we

give an effective approach —— the AIP (all information permutation) reduction algorithm

proposed in [13] in Algorithm 2.3.

Here we give some explanations for some lines in Algorithm 2.3:

• Line 4: AIP reduction first determines the nth column of R, and then the (n − 1)th

column and so on.

• Line 6: AIP reduction chooses column j = agrmaxi=1,2,..,kd
(k)
i to be the new kth column.

The motivation of this choice is to make the search radius for the (n− 1)−dimensional

subproblem small and at the same time to make rkk large (for more explanations we

refer to [16]).

2.2.2 Search

In this section, we will introduce the search algorithm for OBILS problems proposed

by Chang and Han in [16]. We refer to it as CH search algorithm. Suppose for the OBILS

problem (2.19) we can find β such that the optimal solution satisfies:

‖ȳ −Rz‖2
2 < β2. (2.21)

The CH search algorithm is a based on the Schnorr-Euchner approach and takes the

box constraint B in (2.20) into consideration. In the Schnorr-Euchner search process, at

level k, integer candidates for zk are enumerated by an increasing order of |zk − ck| where

ck = (ȳk −
∑n

j=k+1 rkjzj)/rkk. The same strategy is used in CH search except that zk should

be in the constrained interval [l̄k, ūk]. We choose the first nearest integer to ck in the interval

[l̄k, ūk] as the first candidate of zk, and choose the second nearest integer to ck in the interval

[l̄k, ūk] as the second candidate of zk, and so on until each integer in [l̄k, ūk] has been chosen.

The pseudocode of CH search method can be found in Algorithm 2.4.
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Algorithm 2.3 AIP Reduction
Input: The matrix A ∈ Rm×n with full column rank and the vector y ∈ Rm, the lower
bound vector l ∈ Zn and upper bound vector u ∈ Zn
Output: The reduced upper triangular matrix R ∈ Rn×n, the permutation matrix P ∈
Zn×n, the vector ȳ ∈ Rn, the permuted lower and upper bound vector l̄ and ū
Function : (R,P, ȳ, l̄, ū) = AIP-Reduction(A,y, l,u)

1: Compute the Householder QR factorization: QTA =

[
R
0

]
where Q = [Q1,Q2] is

orthogonal and R is upper triangular
2: Initialize l̄ = l, ū = u, ȳ = QT

1y, ỹ = ȳ,P = In and set L = R−T

3: Compute l̆ with l̆i = ‖L:,i‖2
2 for i = 1, 2, ..., n

4: for k = n : −1 : 2 do
5: Solve LTz̆ = y̆ and let zsi be the second closest integer in [l̄i, ūi] to z̆i for i = 1, 2, ..., k

6: Compute d(k)
i = (zsi − z̆i)2/l̆i for i = 1, 2, ..., k and let j = agrmaxi=1,2,..,kd

(k)
i

7: Compute zk = median(bz̆ie, l̄i, ūi) and ỹ = ỹ −R1:j,jzk
8: Remove column j of L and entry j of l̆
9: if i 6= k then

10: Interchange columns j and k of R
11: Interchange entry j and k of l̄ and ū
12: Interchange columns j and k of P
13: Use Givens rotations to bring R back to upper triangular
14: Apply the same Givens rotation to update L, ȳ, ỹ
15: end if
16: Update l̆i = l̆i − l2ki for i = 1, 2, ..., k
17: Remove row k of L and entry k of ỹ
18: end for

For the OBILS problem, we can also set the initial search radius β as ∞ like what we

have done for the OILS problem in Section 2.1.2. We can also compute the so-called Babai

point zBabai, which solves a sequence of n 1-dimensional OBILS problems (see e.g., [69]).

Then we set the initial β to be ‖ȳ −RzBabai‖2. Note that if there is no valid integer point

inside the hyper-ellipsoid with this β, then zBabai is the optimal solution of (2.19). Another

strategy is to solve the corresponding box-constrained real least squares problem:

min
z∈Rn ,̄l≤z≤ū

‖ȳ −Rz‖2
2. (2.22)

The methods for solving the box-constrained real least squares problem can be found in [8].

Suppose the optimal solution of (2.22) is zBRLS, then we take β = ‖ȳ −RbzBRLSe‖2. Note
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Algorithm 2.4 CH Search
Input: The upper triangular matrix R ∈ Rn×n with full column rank, the vector ȳ ∈ Rn,
the lower bound vector l̄ ∈ Zn, the upper bound vector ū ∈ Zn, the initial search radius β
Output: The optimal solution to (2.19) zOBILS ∈ Zn
Function : zOBILS = CH-Search(R, ȳ, l̄, ū, β)

1: Set k = n, z = 0(n)

2: Compute ck = (ȳk −
∑n

j=k+1 rkjzj)/rkk, zk = bcke
3: Set lboundk = 0 and uboundk = 0
4: if zk ≤ l̄k then
5: Set zk = l̄k, lboundk = 1, dk = 1
6: else if zk ≥ ūk then
7: Set zk = ūk, uboundk = 1, dk = −1
8: else
9: Set dk = sign(ck − zk)

10: end if
11: if r2

kk(zk − ck)2 ≥ β2 −
∑n

j=k+1 r
2
jj(zj − cj)2 then

12: if k = n then
13: Terminate (The optimal solution has been found)
14: else
15: Set k = k + 1 and go to Line 21
16: end if
17: else if k > 1 then
18: Set k = k − 1 and go to Line 2
19: end if
20: (k = 1 and a valid point is found) Set β = ‖ȳ−Rz‖2, save zOBILS = z and set k = k+ 1
21: (Enumeration at level k)
22: if lboundk = 1 and uboundk = 1 then
23: Go to Line 12
24: end if
25: Set zk = zk + dk
26: if zk = l̄k then
27: Set lboundk = 1 and dk = −dk − sign(dk)
28: else if zk = ūk then
29: Set uboundk = 1 and dk = −dk − sign(dk)
30: else if lboundk = 1 then
31: Set dk = 1
32: else if uboundk = 1 then
33: Set dk = −1
34: else
35: Set dk = −dk − sign(dk)
36: end if
37: Go to Line 11
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that if we cannot find any integer point with this β, it means that bzBRLSe is the optimal

solution to (2.19).

2.3 Underdetermined Box-constrained ILS Problem

The problem (1.4) is considered as the UBILS problem when m < n and A has full row

rank. We rewrite the UBILS problem:

min
x∈B
‖y −Ax‖2

2 (2.23)

where y ∈ Rm, A ∈ Rm×n (m < n) has full row rank, B = {x ∈ Zn : l ≤ x ≤ u, l,u ∈ Zn}.

Next, in Section 2.3.1, we introduce the direct tree search (DTS) method proposed in [19]

to solve the UBILS problem and in Section 2.3.2, we introduce how lower bound techniques

can improve the search efficiency. In Section 2.3.3, another approach that can transform

certain types of UBILS problems into equivalent OBILS problems by dimension expansion,

the partial regularization (PR) algorithm proposed in [20], is introduced. In Section 2.3.4

we review some sub-optimal approaches.

2.3.1 Direct Tree Search

Similar to the OILS and OBILS problem, the first phase is to reduce the UBILS problem

in (2.23). Like the reduction introduced in Section 2.2.1, we can apply a permutation matrix

P from the right to A such that the OR decomposition becomes:

AP = QR (2.24)

where P is a n × n permutation matrix, Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper

trapezoidal (rij = 0 for all i > j). Then we have:

‖y −Ax‖2
2 = ‖QTy −RPTx‖2

2. (2.25)
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If we define:

ȳ = QTy, z = PTx, l̄ = PTl, ū = PTu, (2.26)

then the original problem (2.23) can be transformed to:

min
z∈B̄
‖ȳ −Rz‖2

2 (2.27)

where

B̄ = {x ∈ Zn : l̄ ≤ x ≤ ū, l̄, ū ∈ Zn}. (2.28)

Then in the search process, we find the optimal solution ẑ for the problem (2.27) and get

the solution for the problem (2.23) x̂ = Pẑ.

We first introduce how the DTS approach in [19] conducts the search process, and then

focus on how it generates the reduced form of the UBILS problem (obtain the permutation

matrix P in (2.24) that helps to improve search efficiency).

2.3.1.1 DTS Search

Different from the OBILS problem (2.19), the matrix R in the UBILS problem (2.27) is

upper trapezoidal. Thus the search approach given in Section 2.2.2 cannot work here because

it has only one variable at each level but now we have, at level m, n −m + 1 variables. It

means that we have to determine n−m+1 variables first with only one inequality at the top

level, and that is why the UBILS problem is much more difficult to solve than the OBILS

problem in practice.

Suppose we have a constant β > 0 such that the optimal solution of (2.27) satisfies:

‖ȳ −Rz‖2
2 < β2. (2.29)

A method of finding β can be found in [18], which first solves a box-constrained real least

squares problem and then rounds the solution to an integer vector in B̄, say zBRLS, ant then
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takes β = ‖ȳ − RzBRLS‖2. Another method of finding the initial β will be proposed in

Chapter 4.

We can expand the left side of (2.29) and rewrite the inequality as:

m∑
i=1

(ȳi −
n∑
j=i

rijzj)
2 < β2. (2.30)

(2.30) is equivalent to:

(ȳm −
n∑

j=m

rmjzj)
2 < β2, (2.31)

m−1∑
i=1

(ȳi −
m−1∑
j=i

rijzj −
n∑

j=m

rijzj)
2 < β2 − (ȳm −

n∑
j=m

rmjzj)
2. (2.32)

It is easy to see that (2.32) is an OBILS problem if zm:n bas been determined, which can be

solved by CH search algorithm and is equivalent to the following set of inequalities:

(ȳk −
n∑
j=k

rkjzj)
2 < β2 −

m∑
i=k+1

(ȳi −
n∑
j=i

rijzj)
2, k = m− 1, ..., 1. (2.33)

For simplicity, we define:

ci = (ȳi −
n∑

j=i+1

rijzj)/rii, i = m− 1, ..., 1. (2.34)

Thus for level k = m − 1, ..., 1, we can define B̄k = {l̄k, l̄k + 1, ..., ūk} and have the feasible

set:

zk ∈Zk = B̄k ∩ (λk, ϕk)

λk = ck−

√√√√β2 −
m∑

i=k+1

r2
ii(zi − ci)2

2/|rkk|

ϕk = ck+

√√√√β2 −
m∑

i=k+1

r2
ii(zi − ci)2

2/|rkk|.

(2.35)
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Then we will show how the DTS approach deals with level m in inequality (2.31). Let

J + = {j|rmj ≥ 0,m ≤ j ≤ n}, J − = {j|rmj < 0,m ≤ j ≤ n}. Then (2.31) is equivalent to:

ȳm − β <
∑
j∈J+

rmjzj +
∑
j∈J−

rmjzj < ȳm + β. (2.36)

Define the following transformation for zj, j = m,m+ 1, ..., n:

z̄j =


−l̄j + zj if j ∈ J +

ūj − zj if j ∈ J −
(2.37)

so that the constraint B̄j becomes B̄′j:

z̄j ∈ B̄′j = {0, 1, ..., ūj − l̄j}. (2.38)

Define:

α = ȳm −
∑
j∈J+

|rmj l̄j|+
∑
j∈J−

|rmjūj|, (2.39)

then (2.36) becomes:

α− β <
n∑

j=m

|rmj|z̄j < α + β. (2.40)

Assume rmj 6= 0 for j = m,m + 1, ..., n (exceptions will be discussed later in this section),

then from (2.38) and (2.40) it is easy to get the feasible region Z̄j for j = n, n− 1, ...,m:

z̄j ∈ Z̄j = B̄′j∩(λ̄j, ϕ̄j)

λ̄j = (α− β −
n∑

i=j+1

|rmi|z̄i −
j−1∑
i=m

|rmi|(ūi − l̄i))/|rmj|

ϕ̄j = (α + β −
n∑

i=j+1

|rmi|z̄i)/|rmj|.

(2.41)

With inequalities (2.35) and (2.41), a depth-first tree search algorithm can be developed

to find the optimal solution of (2.27). Now we describe the DTS strategy starting from level
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n. First we take z̄n = b α
|rmn|e|Z̄n

, which denotes the nearest integer to α
|rmn| in the set Z̄n.

Then we move to level n − 1 and compute the set Z̄n−1. If Z̄n−1 is empty, it means that

the z̄n we choose is invalid. Then we move back to level n and choose z̄n to be next nearest

integer to α
|rmn| in the set Z̄n and go to level n − 1 again. If Z̄n−1 is not empty, we choose

z̄n−1 = bα−|rmnz̄n|
|rm,n−1| e|Z̄n−1

. We continue this process until we reach level m and find a valid

integer for z̄m. At this point, we have fixed z̄n, ..., z̄m and can transform z̄m:n to the original

integer vector zm:n by following (2.37). Then we move to the level m− 1 and compute Zm−1

with (2.35). If Zm−1 is empty, we move to level m and choose the next z̄m. Otherwise, we

choose zm−1 = bcm−1e|Zm−1 and move down to level m− 2. Continue this procedure until we

reach level 1 and choose a valid integer for z1. At this time, we have fixed all the variables

and a full integer point z∗ is found. Then we update β = ‖ȳ − Rz∗‖2. Next, we search

within the new hyper-ellipsoid. We go back to level 2 and choose z2 to be the next nearest

integer to c2 in the set Z2. Note that the candidate set Z2 should have been updated using

the new β in (2.35). If such z2 exists, we move down to level 1 to update the value of z1.

Otherwise, we move up to level 3 to update the value of z3, and so on. In general, in this

tree search process, if we find a valid integer at level j+1 we move down to level j. If we fail

to find an integer at level j, we move up to level j + 1. Finally, if we fail to find a new valid

integer for z̄n at level n, the search process terminates and the latest found integer point is

the optimal solution.

It is possible that in (2.41) rmj = 0 for some j. In this case all the integers in the set

Z̄j can be candidates for z̄j. When we go to level j from level j + 1, we choose z̄j to be the

smallest integer in the set Z̄j, i.e., z̄j = 0. And if we go to level j from level j − 1, we set z̄j

to be the next smallest integer in the set Z̄j. Fortunately, this case (rmj = 0) rarely occurs

in practice.

In Algorithm 2.5, the pseudocode of this DTS approach is presented.

In [78], Zhu found that α
|rmn| is usually larger than ūn in practice, which means that

the search process often starts with branch z̄n = ūn and enumerates all the branches by

the order of z̄n = ūn, z̄n = ūn − 1, ..., z̄n = l̄n. Zhu suggested that if the optimal solution is
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Algorithm 2.5 DTS Search
Input: The trapezoidal matrix R ∈ Rm×n with full row rank, the vector ȳ ∈ Rm, the lower
bound vector l̄ ∈ Zn, the upper bound vector ū ∈ Zn, the initial search radius β
Output: The optimal solution to (2.27) zUBILS ∈ Zn
Function : zUBILS = DTS-Search(R, ȳ, l̄, ū, β)

1: Step 1(Initialization)
2: Set k = n
3: end Step 1
4: Step 2
5: Compute λ̄k and µ̄k by following (2.41)
6: Set Z̄k = {0, 1, ..., ūk − l̄k} ∩ (λ̄k, µ̄k)
7: if Z̄k is empty then Go to Step 4
8: else
9: Compute ck =

α−
∑n

j=k+1 |rmj |z̄j
|rmk|

, z̄k = bcke|Z̄k

10: end if
11: end Step 1
12: Step 3
13: if k > m− 1 then Set k = k − 1 and Go to Step 2
14: else
15: Transform z̄m:n back to zm:n using (2.37)
16: Compute ỹ = ȳ1:m−1 −R1:m−1,m:nzm:n and Tm = (ȳm −Rm,m:nzm:n)2

17: Compute z1:m−1 = CH-Search(R1:m−1,1:m−1, ỹ, l̄1:m−1, ū1:m−1,
√
β2 − Tm) (See

Algorithm 2.4)
18: Set zUBILS = z and β =

√
(ỹ −R1:m−1,1:m−1z1:m−1)2 + Tm

19: end if
20: end Step 3
21: Step 4
22: if k = n then
23: Terminate
24: else
25: Set k = k + 1
26: end if
27: end Step 4
28: Step 5
29: Choose z̄k ∈ Z̄k to be the next nearest integer to ck
30: if z̄k does not exist then
31: Go to Step 4
32: else
33: Go to Step 3
34: end if
35: end Step 5
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in a branch with small value for z̄n, then the search process will come to this branch at a

late stage, making the search process inefficient. Thus Zhu proposed a new search ordering

strategy at level n in [78], which is based on upper bounds of the minimal value of the

objective function. The details are omitted here because for our ADMM search algorithm,

such reordering strategy may not have the potential to help improve the search efficiency,

which will be shown through numerical experiments in Chapter 5.

2.3.1.2 DTS Reduction

We introduce the reduction method proposed in [19] which transforms the original

UBILS problem (2.23) to the reduced form (2.27).

In the reduction, we first determine how to choose n−m+ 1 columns as the right part

of the permuted A, and the remaining m− 1 columns as the left part. Then we determine

how to order the columns for each part.

We suppose that the two parts of A have been determined, and we have a permuted A

and an associated upper trapezoidal matrix R. We show how to reorder the right part of R.

At level j (m ≤ j ≤ n), the integer set Z̄j can be computed in (2.41). To make the search

process more efficient, we prefer Z̄j to be smaller, which motivates the following reordering

strategy. Define:

Lj = min{uj − lj, bϕ̄jc+ sign(ϕ̄j + bϕ̄jc)− 1} −max{0, dλ̄je+ sign(λ̄j + dλ̄je)− 1} (2.42)

where Lj is the number of integers in Z̄j if greater than zero and otherwise, it means that

Z̄j is empty. Suppose that we have chosen the last n− j columns of R and now we need to

determine column j of R where j ≥ m. We first compute Lj with the current jth column of

R and then interchange jth and ith column of R for i = m,m + 1, ..., j − 1. Then we find

the smallest Lj and the corresponding column with this smallest Lj is chosen to be the jth

column of R before we move on to level j − 1. This procedure is repeated until we order
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all the last n−m+ 1 columns or we encounter a column whose smallest Lj is non-positive.

The detailed procedure is described in Algorithm 2.6.

Algorithm 2.6 Reorder columns of R:,m:n

Input: The trapezoidal matrix R ∈ Rm×n with full row rank, ȳm, β
Output: permuted R, the permutation matrix P ∈ Zn×n, variable index for which Z̄index
is empty, variable Prod =

∏n
j=index+1 Lj

Function : (R,P, index, Prod) = Reorder(R, ȳm, β)

1: Set P = In, index = m− 1, Prod = 1, j = n
2: while j ≥ m do
3: Compute Lj in (2.42) and set p = j
4: for i = m : j − 1 do
5: Set R′ = R and interchange column i and j of R′, and then compute the

corresponding L′j
6: if L′j < Lj then Set p = i, Lj = L′j
7: end if
8: end for
9: if p 6= j then Set index = j and break the while loop

10: end if
11: Compute z̄j = bα−

∑n
l=i+1 |rmlz̄l|
|rm,j | e|Z̄j

with α defined in (2.39)
12: Compute Prod = Prod× Lj and j = j − 1
13: end while

We make some explanations on two outputs in Algorithm 2.6. The output index is the

largest column number which have not been reordered. Another output Prod is the product

of numbers of candidates at levels higher than index. To make the search process more

efficient, we would like to get a larger index and smaller Prod.

In the following we describe the steps of the whole DTS reduction process:

1. We first compute the Householder OR decomposition with standard column pivoting

to ensure that the first m columns of R are linearly independent, i.e., rank(R(:, 1 :

m)) = m. After this step, the last n−m columns are as a group determined.

2. For j = 1 : m, we interchange columns j and m of R and bring R back to upper

trapezoid by Givens rotations. Note that as before we need to simultaneously update

ȳ using the same rotation. Then we use Algorithm 2.6 to reorder the last n −m + 1

columns of the new R and get the output index and Prod. After those m steps, we
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find the largest one among the m values of index and the corresponding order. If there

are more than one orderings having the same index, we choose the one that gives the

smallest Prod. Then if index > m + 1, we reorder columns m,m + 1, ..., index− 1 of

R such that |rmm| ≤ |rm,m+1| ≤ ... ≤ |rm,index−1| since a larger |rmj| is likely to lead to

a smaller Lj.

3. In this step we reorder the first m − 1 columns of R. Note that the last n − m + 1

columns have been determined and we can get the first valid z(2) by the DTS search

algorithm. Then the UBILS problem becomes an OBILS problem and we can employ

AIP reduction (see Algorithm 2.3) to reorder the first m− 1 columns of R.

The detailed pseudocode of the above reduction method is shown in Algorithm 2.7.

2.3.2 Lower Bounds

An example of the search tree for the DTS algorithm is depicted in Figure 2.1. Note

that the root node does not correspond to any search operation and is an artificial node.

In this example, the search tree has three different branches at level n (red, blue and green

respectively). In order to improve the search efficiency, we should prune the tree so that less

nodes will be traversed during search process. For example, if we can remove the green node

at level n, the whole green branch can be deleted throughout the search phase.

Then, we introduce lower bound techniques that can help to prune the search tree for

the DTS approach to UBILS problems. Suppose that we have computed the initial search

radius β, (2.30) is equivalent to the following set of inequalities:

(ȳk−
n∑
j=k

rkjzk)
2 < β2−

m∑
i=k+1

(ȳi−
n∑
j=i

rijzj)
2−

k−1∑
i=1

(ȳi−
n∑
j=i

rijzj)
2, k = 1, 2, . . . ,m. (2.43)

Note that when k = m the second term on the right hand side of (2.43) vanishes and when

k = 1 the third term vanishes. It is clear that the inequalities (2.43) are at least as tight

as the corresponding inequalities (2.31) and (2.33) of the previous DTS algorithm. The last
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Algorithm 2.7 DTS Reduction
Input: A ∈ Rm×n, y ∈ Rn of the UBILS problem (2.23)and an initial search radius β ∈ R
Output: Permutation matrix P ∈ Rn×n, upper trapezoidal matrix R ∈ Rm×n and ȳ ∈ Rm

satisfying AP = QR and ȳ = QTy where Q ∈ Rm×m is orthogonal
Function : (P,R, ȳ) = DTS-Reduction(A,y, β)

1: Compute AP = QR with standard pivoting and set ȳ = QTy, index = 0 and Prod =∞
2: for j = 1 : m do
3: Set R′ = R and ȳ′ = ȳ
4: if j 6= m then
5: Interchange columns j and m of R′ and transform R′ to an upper trapezoidal

matrix by Givens rotation. Apply the same Givens rotation to ȳ′

6: end if
7: (R′,P′, indextmp, P rodtmp) = Reorder(R′, ȳ′m, β) (See Algorithm 2.6)
8: if indextmp > index then
9: Set index = indextmp, p = j, Rtmp = R′, ȳtmp = ȳ′, Ptmp = P′

10: else if indextmp = index then
11: if Prodtmp < Prod then
12: Set Prod = Prodtmp, p = j, Rtmp = R′, ȳtmp = ȳ′, Ptmp = P′

13: end if
14: end if
15: end for
16: if p 6= m then
17: Interchange columns p and m of P
18: Set P = PPtmp, R = Rtmp and ȳ = ȳtmp
19: end if
20: if index > m+ 1 then
21: Reorder the columns of R:,m:index−1 such that |rmm| ≤ |rm,m+1| ≤ ... ≤ |rm,index−1|,

and reorder the columns of P correspondingly
22: end if
23: Use the DTS search algorithm to find the first z(2) and then use Algorithm 2.3 to reorder

the first m− 1 columns of R, leading to final R, ȳ and P

term
∑k−1

i=1 (ȳi −
∑n

j=i rijzj)
2 in (2.43) is considered as zero in the inequalities (2.31) and

(2.33). It is because during the search process, for example, at level k variables zk−1, ..., z1

have not been determined and thus
∑k−1

i=1 (ȳi −
∑n

j=i rijzj)
2 cannot be computed directly.

However, if we can find a good lower bound Tk satisfying (for k = m,m− 1, ..., 2):

Tk ≤
k−1∑
i=1

(ȳi −
n∑
j=i

rijzj)
2 = ‖ȳ1:k−1 −R1:k−1,k:nzk:n −R1:k−1,1:k−1z1:k−1‖2

2, (2.44)
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Figure 2.1: An example of search tree

we can clearly shrink the search region through replacing the inequalities (2.31) and (2.33)

with the following inequalities:

(ȳk −
n∑
j=k

rkjzk)
2 < β2 −

m∑
i=k+1

(ȳi −
n∑
j=i

rijzj)
2 − Tk, k = 1, 2, . . . ,m. (2.45)

Obviously, the tighter Tk is, the more nodes we can prune on the search tree. However, if the

cost of computing lower bounds is significant, we cannot achieve a good performance even

if the lower bounds are tight. Thus there always exists a trade-off between the tightness

and the computational cost of lower bounds. Note that T1, T2, ..., Tm−1 are different from

Tm in that for the former the right hand side of (2.44) is an OBILS problem because zk:n

have already been determined, but for Tm the right hand side can be an UBILS problem

since for example, when determining zn at the top level, all variables from zn−1 to z1 are still

unknown.
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There have been various methods that can compute lower bounds of OBILS problems

(see e.g., [14, 36, 62]). The key ideas are as follows. To simplify notation, we consider lower

bounds for the following OBILS model:

min
z∈B
‖y −Rz‖2

2 (2.46)

where R ∈ Rn×n has full column rank and other quantities are defined as before. Define

zRLS = R−1y as the real least squares solution to (2.46) if B is replaced by Rn. Now we

would like to find a lower bound T such that:

0 ≤ T ≤ ‖y −Rz‖2
2. (2.47)

Let C ∈ Rk×n be any arbitrary matrix. Then we have:

‖C(z− zRLS)‖2 = ‖CR−1(Rz− y)‖2 ≤ ‖CR−1‖2‖y −Rz‖2, (2.48)

leading to a lower bound on the objective function of the OBILS problem (2.46):

min
z∈B
‖y −Rz‖2

2 ≥
min
z∈B
‖C(z− zRLS)‖2

‖CR−1‖2

. (2.49)

The inequality (2.49) gives a framework for a class of lower bounds. There are different lower

bounds based on various choices of C. In [62], Stojnic et al. proposed a norm-wise based

lower bound where C = I. In [36], Garcia et al. proposed a component-wise based lower

bound where C = eTi for i = 1, 2, ..., n. In [14], Buchheim et al. suggested a basis reduction

based lower bound where C = tTi ∈ Z1×n for i = 1, 2, ..., n and T = [t1, ..., tn] ∈ Zn×n is a

unimodular matrix which reduces the lattice basis matrix R−T.

For more details on computing lower bounds for OBILS models (2.46), we refer to [78].

In Chapter 4, we will propose an effective approach for calculating lower bounds of UBILS

problems.
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2.3.3 Partial Regularization Algorithm

Different from the direct tree search algorithm introduced in Section 2.3.1, in this

subsection, the partial regularization (PR) approach proposed in [20] will be presented to

solve the following problem arising from multi-input multi-output (MIMO) communication

applications:

min
x∈Xn

p

‖y −Ax‖2
2,

X n
p = Xp ×Xp × · · · × Xp, Xp = {±1,±3, ...,±(2p − 1)}.

(2.50)

Note that (2.50) is the same as (2.23) except that the constraint box B is now replaced by

X n
p . Partition A and x as follows:

A = [A1
m

A2
l

], x =

x1

x2

 (2.51)

where l = n − m, x1 ∈ Xm
p and x2 ∈ X l

p. Following [20], we can write x2 as a linear

combination of x(i)
2 ∈ X l

1 for 0 ≤ i ≤ p− 1:

x2 =

p−1∑
i=0

2ix
(i)
2 . (2.52)

Define:

Ā2 =
[
A2 2A2 · · · 2p−1A2

]
∈ Rm×pl, x̄2 =


x

(0)
2

x
(1)
2

...

x
(p−1)
2


∈ Rpl. (2.53)

Note that ‖x̄2‖2
2 = pl is a constant. Then we obtain an equivalent form of problem (2.50)

as:

min
x1∈Xm

p ,x̄2∈X l
p

∥∥∥∥∥∥y −
[
A1 Ā2

]x1

x̄2

∥∥∥∥∥∥
2

2

+ α2‖x̄2‖2
2 (2.54)
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where α is a regularization parameter. Therefore with

Ā =

A1 Ā2

0 αI

 ∈ R(m+pl)×(m+pl), x̄ =

x1

x̄2

 ∈ R(m+pl), ȳ =

y
0

 ∈ R(m+pl),

X̄ =


x1

x̄2

 : x1 ∈ Xm
p , x̄2 ∈ X pl

1

 ,

(2.55)

then the problem (2.54) can be written as:

min
x̄∈X̄
‖ȳ − Āx̄‖2

2. (2.56)

Obviously, (2.56) is an overdetermined ILS problem and we can solve it by slightly modifying

the method introduced in Section 2.2.

It is difficult to extend the PR approach to a general UBILS problem, however, we can

extend it to the UBILS problem (2.23) with the following box constraint:

B = {x ∈ Zn, l ≤ x ≤ u, l,u ∈ Zn, uj − lj = 2pj − 1, pj ∈ Z+, j = 1, 2, ..., n}. (2.57)

First, for each xj, j = m+ 1,m+ 2, ..., n, we do the following shift:

x̄j = xj − lj ∈ {0, 1, ..., uj − lj}. (2.58)

Since x̄j is non-negative we can write it as a linear combination of x̄(i)
j ∈ {0, 1} for i =

0, 1, ..., pj − 1:

x̄j =

pj−1∑
i=0

2ix̄
(i)
j . (2.59)

Note that x̄(pj−1)
j x̄

(pj)
j · · · x̄(1)

j x̄
(0)
j is the binary representation of x̄j. Then we define:

Ā2 =
[
a

(0)
m+1 · · · a

(pm+1−1)
m+1 a

(0)
m+2 · · · a

(pm+2−1)
m+2 · · · a

(0)
n · · · a

(pn−1)
n

]
(2.60)
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x̄2 =
[
x̄

(0)
m+1 · · · x̄

(pm+1−1)
m+1 x̄

(0)
m+2 · · · x̄

(pm+2−1)
m+2 · · · x̄

(0)
n · · · x̄

(pn−1)
n

]T
∈ {0, 1}q

(2.61)

where a(i)
j = 2iA:,j and q =

∑n
j=m+1 pj. It is easy to see that the UBILS problem (2.23) with

the constraint box (2.57) can be transformed to the following equivalent problem:

min
x1∈B1:m,x̄2∈{0,1}q

∥∥∥∥∥∥y −
[
A1 Ā2

]x1

x̄2

∥∥∥∥∥∥
2

2

(2.62)

Since ‖x̄2 − (1/2)1(q)‖2
2 is a constant, the optimal solution to this problem is exactly the

solution to the following OBILS problem:

min
x̄∈X̄
‖ȳ − Āx̄‖2

2. (2.63)

where

Ā =

A1 Ā2

0 αI

 ∈ R(m+q)×(m+q), x̄ =

x1

x̄2

 ∈ Rm+q, ȳ =

 y

(1/2)1q

 ∈ Rm+q,

X̄ =


x1

x̄2

 : x1 ∈ B1:m, x̄2 ∈ {0, 1}q
 , α is a constant parameter.

(2.64)

This OBILS problem can be solved by the method introduced in Section 2.2.

2.3.4 Sub-optimal Methods

The DTS algorithm for UBILS problems discussed above usually costs a large amount of

computation due to insufficient information to determine variables in the underdetermined

part. Hence, researchers have investigated various sub-optimal methods with less complexity

for UBILS problems. We fist introduce the so-called λ generalized sphere decoding (λ-GSD)
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approach proposed by Wang and Le-Ngoc in [68], since most sub-optimal methods are based

on it.

The λ-GSD approach estimates x∗ in the following linear model from communications:

y = Ax∗ + v (2.65)

where y ∈ Rn is an observation vector, A ∈ Rm×n (m < n) is a channel matrix with full

row rank, x∗ ∈ Zn is an integer parameter vector and subject to the box constraint B =

{x ∈ Zn : l ≤ x ≤ u, l,u ∈ Zn}, v ∈ Rn is a noise vector following the normal distribution

N (0, σ2I). In order to avoid solving the associated UBILS problem min
x∈B
‖y−Ax‖2

2 directly,

λ-GSD partitions A = [A1
m
, A2
n−m

] ∈ Rm×n and x∗ = [x∗1
m

, x∗2
n−m

] ∈ Rn. By introducing a trivial

equation λx̄∗2 = λx∗2 − λ(x∗2 − x̄∗2) where x̄∗2 is the mean of x∗2 and λ is a weighting factor.

Then (2.65) becomes:

ỹ = Ãx∗ + ṽ

ỹ =

 y

λx̄∗2

 , Ã =

A1 A2

0 λI

 , ṽ =

 v

λ(x∗2 − x̄∗2)

 . (2.66)

Typically, the noise vector v and parameter vector x∗2 are independent. Hence, ṽ is also a

zero-mean noise vector with variance of diag(σ2, ..., σ2, λ2Pm+1, ..., λ
2Pn), where Pj represents

the variance of the j-th element of x∗ for j = m + 1, ..., n. Consequently, estimating x∗ in

(2.66) is to solve the following ILS problem:

min
x∈B
‖ỹ − Ãx‖2

2. (2.67)

Clearly, (2.67) is an OBILS problem which can be solved by the approach discussed in

Section 2.2. Compared with OBILS problems, UBILS problems are much more difficult to

solve because at top level, we have to pick values for (n−m+1) variables with information of

only one inequality. Note that the transformed OBILS problem (2.67) is not mathematically
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equivalent to the original UBILS problem (2.23) unless the term ‖x∗2− x̄∗2‖2
2 is constant, and

hence the optimal solution to (2.67) is not necessarily to be that of (2.23). Note that our

modified ADMM algorithm to be introduced in Chapter 4, which can also be viewed as a

sub-optimal approach for UBILS problems, has its first iteration very similar to this λ-GSD

approach. In [68], Wang and Le-Ngoc showed through numerical experiments on sphere

decoding problems that for the λ-GSD approach, when the parameter λ goes beyond certain

limits, the performances evaluated by symbol-error rate deteriorate significantly. Note that

such limits are different for each specific problem. Such experimental results guide us to

choose penalty parameter for our modified ADMM algorithm in Chapter 4.

Based on λ-GSD, researchers have proposed some other sub-optimal methods for UBILS

problems with faster speed and less accuracy. In general, these methods mostly focus on

replacing exhaustive search with partial search while solving the transformed OBILS problem

(2.67) for less computational complexity. In [26], Datta et al. applied Tabu search, which is a

heuristic method used to solve combinatorial optimization problems for further acceleration.

In [54], Qian er al. divided the tree structure of the transformed OBILS problem (2.67) into

two parts (level n to m+ 1 and level m to 1), and utilized an exhaustive tree search for the

top part while a constrained tree search for the bottom part. In [55], Qian et al. proposed

a way of adjusting the radius of the tree search based on the channel condition in order to

avoid exhaustive search while determining xm+1;n in (2.67). In [57], Qian et al. proposed

another scheme that explores only a subset of candidates when determining xm+1:n. Note

that all these sub-optimal approaches mentioned above have been shown to own faster speed

and acceptable degradation of accuracy compared with the standard λ-GSD approach for

UBILS problems arising from communication applications.
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Chapter 3

ADMM for Integer Optimisation

Problems

This chapter first reviews the standard form of ADMM in Section 3.1. Then in Section

3.2 we introduce ADMM as a heuristic approach to problems with discrete constraints and

discuss techniques of extending ADMM to integer optimisation problems.

3.1 Standard ADMM Algorithm

ADMM is an approach that is intended to blend the decomposability of dual ascent

with the superior convergence properties of the method of multipliers. For dual ascent and

method of multipliers, we refer to Chapter 2 of [12]. The algorithm solves problems in the

following form:

min f(x) + g(z)

s.t. Ax + Bz = c
(3.1)
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where f and g are convex functions, variables x ∈ Rn, z ∈ Rm, matricesA ∈ Rp×n, B ∈ Rp×m

and constant vector c ∈ Rp. We form the augmented Lagrangian:

Lρ(x, z,y) = f(x) + g(z) + yT(Ax + Bz− c) + (ρ/2)‖Ax + Bz− c‖2
2 (3.2)

where ρ > 0 is the penalty parameter, y ∈ Rp is the dual variable. Note that the augmented

Lagrangian can be viewed as the standard Lagrangian associated with the problem:

min f(x) + g(z) + (ρ/2)‖Ax + Bz− c‖2
2,

s.t. Ax + Bz = c.
(3.3)

This problem is clearly equivalent to the original problem (3.1) because for any feasible

x and z the term added to the objective function is zero. The associated dual objective

function is hρ(y) = inf(x,z)Lρ(x, z,y) and the dual problem is maximizing hρ(y). The benefit

of including the penalty term in (3.2) is that hρ can be shown to be differentiable under

rather mild condition on the original problem.

In the method of multipliers, we first minimize the augmented Lagrangian jointly with

respect to the two primal variables x and z. After finding (x+, z+) = argmin
x,z

Lρ(x, z,y),

we solve the dual problem using gradient ascent with the step size of ρ where the gradient

∇hρ(y) can be evaluated as Ax+ +Bz+− c, which is the residual of the equality constraint.

The method of multipliers consists of iterating the updates:

(x(k+1), z(k+1)) = argmin
x,z

Lρ(x, z,y
(k)) (3.4)

y(k+1) = y(k) + ρ(Ax(k+1) + Bz(k+1) − c). (3.5)

For ADMM, different from the method of multipliers, x and z are updated in an

alternating fashion, which accounts for the term alternating direction. Separating the

minimization over x and z into two steps is precisely what allows for decomposition when f
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and g are separable. Thus ADMM consists of the iterations:

x(k+1) = argmin
x

Lρ(x, z
(k),y(k)) (3.6)

z(k+1) = argmin
z

Lρ(x
(k+1), z,y(k)) (3.7)

y(k+1) = y(k) + ρ(Ax(k+1) + Bz(k+1) − c). (3.8)

We usually write ADMM in a slightly different form (scaled form) for convenience, by

combining the linear and quadratic terms in the augmented Lagrangian and scaling the dual

variable. Defining the residual r = Ax + Bz − c and the scaled dual variable u = (1/ρ)y,

we have:

yTr + (ρ/2)‖r‖2
2 = (ρ/2)‖r + u‖2

2 − (ρ/2)‖u‖2
2.

Then we can express ADMM as:

x(k+1) = argmin
x

(f(x) + (ρ/2)‖Ax + Bz(k) − c + u(k)‖2
2) (3.9)

z(k+1) = argmin
z

(g(z) + (ρ/2)‖Ax(k+1) + Bz− c + u(k)‖2
2) (3.10)

u(k+1) = u(k) + Ax(k+1) + Bz(k+1) − c. (3.11)

Defining the residual at iteration k as r(k) = Ax(k) + Bz(k) − c, we can see that u(k) =

u(0) +
∑k

j=1 r
(j) is the running sum of residuals. We call (3.6)-(3.8) the unscaled form of

ADMM and (3.9)-(3.11) the scaled form. The two are clearly equivalent.

ADMM is proved to possess convergence properties for convex problems under some mild

assumptions. There are various convergence analyses in the literature (see e.g., Chapter 3 of

[12] and [31]). In practice, ADMM can be slow to converge to high accuracy, but it is often the

case that ADMM converges to modest accuracy within a few tens of iterations, which makes

it practically useful in large-scale optimisation problems where modest accuracy is sufficient.

Many variations on the classic ADMM algorithm have been explored in the literature, such

as varying penalty parameter, other general augmenting terms, over-relaxation, inexact
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minimization and so on, and some of these methods can give superior convergence in practice

compared to the standard ADMM presented above (see e.g., Chapter 3 of [12]).

Define the primal residual r and the dual residual s at iteration k + 1 as:

r(k+1) = Ax(k+1) + Bz(k+1) − c

s(k+1) = ρATB(z(k+1) − z(k)).
(3.12)

These two residuals represent for primal and dual feasibility respectively. It can be proved

that these two residuals converge to zero as ADMM converges and the necessary and sufficient

optimality condition of ADMM on the problem (3.1) is that both primal and dual residual

reach zero (see e.g., Chapter 3 of [12]). In practice, a reasonable termination criterion is that

the primal and dual residuals are small, i.e., ‖r(k+1)‖2
2 ≤ σ1 and ‖s(k+1)‖2

2 ≤ σ2 where σ1 and

σ2 are tolerances for the primal and dual feasibility.

The penalty parameter ρ in the ADMM algorithm (3.9)-(3.11) plays an important role

in the practical performance of ADMM. In practice, this parameter, fixed over iterations,

usually needs to be manually tuned by users for their particular problem instances. With the

goal of making performances less dependent on the initial choice of the penalty parameter

as well as accelerating convergence, an adaptive method has been proposed to automatically

tune this parameter as the algorithm runs (see e.g., Chapter 3 of [12] and [76]). The scheme

is as follows:

ρ(k+1) =


τ incrρ(k) if ‖r(k)‖2 > µ‖s(k)‖2

ρ(k)/τdecr if ‖s(k)‖2 > µ‖r(k)‖2

ρ(k) otherwise

(3.13)

where r(k) and s(k) are the primal and dual residual at iteration k defined in (3.12), µ > 1,

τ incr, τdecr are parameters. Typical choices might be µ = 10 and τ incr = τdecr = 2. The

idea behind this penalty parameter update is to try to keep the primal and dual residual

norms within a factor of µ of one another as they both go to zero. The ADMM update

equations (3.9)-(3.11) suggest that large values of ρ place a large penalty on violations of
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primal feasibility and so tend to produce small primal residuals. Conversely, the definition

of s(k) suggests that small values of ρ tend to reduce the dual residual, but at the expense

of reducing the penalty on primal feasibility, which may result in a larger primal residual.

3.2 ADMM for Integer Optimisation Problems

In this section, we first show how ADMM can be applied to problems with discrete

constraints and then focus on extending ADMM to integer optimisation problems.

3.2.1 ADMM as a Heuristic for Integer Problems

We now explore the use of ADMM for problems with discrete constraints. Note that in

this case, ADMM need not converge and when it does converge, it need not converge to an

optimal point. Consider the following constrained optimisation problem:

min f(x)

s.t. x ∈ S
(3.14)

where f is a convex function and S is a discrete constraint set. Defining g as an indicator

function of the constraint set S:

g(z) =


0, if z ∈ S

∞, otherwise
(3.15)

then (3.14) can be rewritten in the standard form (3.1) as:

min f(x) + g(z)

s.t. x− z = 0.
(3.16)
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Applying the ADMM iteration formula (3.9)-(3.11) to this problem gives:

x(k+1) = argmin
x

(f(x) + (ρ/2)‖x− z(k) + u(k)‖2
2) (3.17)

z(k+1) = ΠS(x(k+1) + u(k)) (3.18)

u(k+1) = u(k) + x(k+1) − z(k+1) (3.19)

where ΠS is the projector onto the set S and (3.18) is due to:

z(k+1) = argmin
z

(g(z)+(ρ/2)‖x(k+1)−z+u(k)‖2
2) = argmin

z∈S
‖x(k+1)+u(k)−z‖2

2 = ΠS(x(k+1)+u(k)).

Many hard problems can be written in the form (3.14), including maximum coverage problem,

job selection, 3-satisfiability (see e.g., [28]), as well as the UBILS problem. For different

problems, the discrete set S can take various forms. For the integer optimisation problems,

the constraint set S becomes an integer set.

In [64], Takapoui et al. applied this ADMM algorithm (3.17)-(3.19) to mixed-integer

quadratic programming (MIQP) problems, which are NP-complete and have the following

form:

min (1/2)xTPx + qTx + r

s.t. Ax = b

x ∈ X

(3.20)

where P ∈ Rn×n is a symmetric positive semidefinite matrix, q ∈ Rn, A ∈ Rm×n, b ∈ Rm,

X = X1×X2×· · ·×Xn, with each Xi being an integer set or a convex subset of R. Rewriting

the constraint of (3.20) as:

A
I

x−

0
I

 z =

b
0

 , z ∈ X
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and applying the ADMM approach with scaled dual variable u ∈ Rm+n lead to the method

for solving (3.20) given in [64], which iterates the following updates:

x(k+1) = argmin
x

(1/2)xTPx + qTx + (ρ/2)

∥∥∥∥∥∥
A
I

x−

0
I

 z(k) −

b
0

+ u(k)

∥∥∥∥∥∥
2

2

 (3.21)

z(k+1) = ΠX (x(k+1) + [0
m
, I
n
]u(k)) (3.22)

u(k+1) = u(k) +

A
I

x(k+1) −

0
I

 z(k+1) −

b
0

 . (3.23)

Thus the x-update is to solve a strongly convex quadratic programming problem in real space

through solving a linear system and z-update involves projection onto the set X . For more

details on solving this real quadratic programming problem, we refer to [64]. This MIQP

example is illustrated here because it is easy to see that the UBILS problem (2.23) can

also be written into the form of (3.20) by rewriting the objective function ‖y − Ax‖2
2 =

xTATAx − 2yTAx + yTy and removing the linear constraint (note that the matrix A

here is different from the one in (3.20)). Takapoui et al. showed in [64] through numerical

experiments that this ADMM algorithm is an effective tool for MIQP problems arising from

many embedded optimisation applications, such as hybrid vehicle control, power converter

and control, since ADMM usually finds a feasible point with reasonable objective value and

is substantially faster than global optimisation methods. They also applied this approach to

a particular OBILS problem arising from message decoding in communications and shown

that satisfactory bit error rates can be obtained with substantially less computing time

than the relax-and-round method. However, in Chapter 5, our experimental results show

that this approach in [64] may not be a good heuristic for the UBILS problem in that

it hardly converges to the optimal solution. In Section 4.1, we will propose a modified

ADMM algorithm, which is different from the approach in [64] in that ours imposes integer

requirement for x-update, and can be a much more effective heuristic for UBILS problems.

For OBILS problems, our numerical experiments suggest that the modified ADMM is more

45



accurate than the standard ADMM in [64], but it is not as fast as the CH search approach

introduced in Section 2.3 and it does not always give the optimal solution like the CH search

approach. Thus we will focus on UBILS problems in the following chapters.

3.2.2 ADMM for Boolearn Problems

For the problem (3.14), a special case is the constraint set S is or can be transformed

to {x|xi ∈ {0, 1},∀i}. It is a special case of integer optimisation problems and we refer to

such kind of problems as boolean or binary optimisation problems. The boolean problems

arise from many applications such as 3-SAT, image segmentation, feature selection and so

on. The UBILS problem can be considered a boolean problem when the lower and upper

bound satisfy ui − li = 1 for i = 1, 2, ..., n.

An approach has been proposed to transform the boolean constraint into the intersection

of two continuous constraints (see e.g., [33,71]). Let 1(n) to denote the n-dimensional vector

of ones, we can transform the constraint S into:

S = {0, 1}n ⇔ {x|0 ≤ xi ≤ 1} ∩
{
x
∣∣‖x− (1/2)1(n)‖pp = n/4

}
. (3.24)

It means that the 0-1 constraint S can be equivalently replaced by the intersection of a box

and a sphere (defined through the `p norm). Then we can infuse this equivalence into the

ADMM framework, and ADMM update steps consist of manageable sub-problems in the

continuous domain. Researchers have demonstrated its efficacy and effectiveness in [33, 71].

Note that this technique of transforming 0-1 integer constraint into equivalent continuous

constraint can only be applied to certain UBILS problems where ui− li = 1 for i = 1, 2, .., n.

However, for such UBILS problems, since the penalty term ‖x − (1/2)1(n)‖2
2 is a constant

(xi can only be 0 or 1 for i = 1, 2, ..., n) , a common approach is to add this penalty term to

the objective function of UBILS problems and to transform UBILS problems into equivalent

OBILS problems that are much easier to solve as we have discussed in Section 2.3.

46



Chapter 4

ADMM for UBILS Problems

In this chapter, we will first propose a modified ADMM algorithm, which can be

viewed as an effective heuristic for the UBILS problems in Section 4.1.1, and then discuss

a reasonable way of choosing parameters in Section 4.1.2. Later, in Section 4.2, we will

incorporate ADMM to the tree search algorithm for the UBILS problems which can boost

search efficiency.

4.1 Modified ADMM Algorithm

4.1.1 Modified Form

For the sake of readability, we rewrite the UBILS problem in (2.23) here:

min
x∈B
‖y −Ax‖2

2 (4.1)

where B = {x ∈ Zn : l ≤ x ≤ u, l,u ∈ Zn} is the constraint box, y ∈ Rm, A ∈ Rm×n has full

row rank with m < n. Applying the ADMM algorithm in (3.9)-(3.11), we have the formula
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at step k + 1:

x(k+1) = argmin
x∈Rn

(‖y −Ax‖2
2 + (ρ/2)‖x− z(k) + w(k)‖2

2)

z(k+1) = ΠB(x(k+1) + w(k))

w(k+1) = w(k) + x(k+1) − z(k+1).

(4.2)

Here we solve a real least squares problem to get the real solution x(k+1), compute z(k+1) by

projecting x(k+1) + w(k) onto the constraint set B and then update the scaled dual variable

w(k+1).

In Chapter 5, we will show that the ADMM algorithm (4.2) given in [64] is not effective

for the UBILS problem in that it can hardly give the optimal solution. Thus we propose

to impose the integer requirement when updating x. For simplicity, we replace ρ by 2λ2

(λ > 0), and then ADMM for the UBILS problem consists of the following updates:

x(k+1) = argmin
x∈Zn

(‖y −Ax‖2
2 + λ2‖x− z(k) + w(k)‖2

2)

z(k+1) = ΠB(x(k+1) + w(k))

w(k+1) = w(k) + x(k+1) − z(k+1).

(4.3)

Since

‖y −Ax‖2
2 + λ2‖x− z(k) + w(k)‖2

2 =

∥∥∥∥∥∥
 y

λ(z(k) −w(k))

−
A
λI

x

∥∥∥∥∥∥
2

2

(4.4)

it can be seen that in (4.3), the x-update is to solve an OILS problem instead of a real

least squares problem in the standard form, and thus we refer to it as the modified ADMM

algorithm. The PLLL reduction and SE search algorithm for solving OILS problems have

been introduced in Section 2.1. In general, solving an UBILS problem is much more difficult

than solving an OILS problem mainly because, as discussed in Section 2.3, for the UBILS

problem, the tree search method has to determine (n−m+1) variables with the information of

only one equation at the beginning, and the number of equations is larger than the number of
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variables while it is the opposite for the OILS problem. Besides, the efficient LLL reduction,

which improves search speed, can only be applied to OILS problems as discussed in Chapter

2. Recall that the optimality condition of the standard ADMM on convex problems is that

the primal residual and dual residual both reach zero, for the modified ADMM (4.3) on the

UBILS problem it is clear that when the primal residual r(k+1) = x(k+1) − z(k+1) and the

dual residual s(k+1) = 2λ2(z(k+1)−z(k)) both reach zero, the algorithm stops (x and z update

will not change their values over further iterations). We find that in practice if a constant

λ is used over all iterations, the modified ADMM does not always converge and may end in

an infinite loop, which means that the above conditions are not always achieved. We have

observed that the parameter λ tends to trade off convergence and optimality: if λ is too

small, the algorithm may not converge, which means that the primal and dual residual often

cannot reach zero, but if the algorithm converges, the solution of the last iteration tends to

have small objective value; and if λ is too large, the algorithm is more likely to converge but

the last iteration usually corresponds to a larger objective value. It is reasonable because

with larger λ, when updating x in (4.3) we penalize more the second term λ2‖x−z(k)+w(k)‖2
2,

making x(k+1) get closer to z(k) − w(k). Then in (4.3) z(k+1) gets closer to z(k) and w(k+1)

closer to zero, and in the following iteration, we have x(k+2) closer to z(k+1) and so does z(k+2).

In this way, larger λ helps the term x(k+2) − z(k+2) and z(k+2) − z(k+1) move toward to zero,

and makes it easier for the algorithm to stop. Larger λ also means we put smaller weight

on the first term ‖y −Ax‖2
2, which is the objective function of original UBILS problem, is

likely to produce iterates resulting in larger objective values. In the next section, we will

discuss how to set λ and get the final solution for the UBILS problem from iterates as well.

4.1.2 Parameter Setting

In this section, we will discuss how to set parameters including z(0), w(0) and penalty

parameter λ when applying our modified ADMM algorithm to the UBILS problem.

It has been shown that in the convex case the choice of parameters in ADMM only affects

the speed of the convergence, while in the non-convex case the choice can have a critical role
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in the quality of approximate solution, as well as the speed at which this solution is found (see

e.g., [28,75,76]). Note that the integer constraint is a special type of non-convex constraint.

For w(0), it is reasonable to set it as 0(n) because the scaled dual variable w represents

the running sum of residuals and should start from 0(n). Then for z(0) and λ, we first

introduce the linear minimum mean square error estimator (LMMSE) (see e.g., [15]).

Throughout the rest of this thesis, we assume that the UBILS problem arises from

estimating the integer parameter vector in the linear model (1.1). For the sake of convenience,

we rewrite the linear model here:

y = Ax∗ + v (4.5)

where y ∈ Rm is an observation vector, A ∈ Rm×n (m < n) is a real matrix with full row

rank, x∗ is assumed to be uniformly distributed over the discrete box B = {x ∈ Zn : l ≤ x ≤

u, l,u ∈ Zn}, v ∈ Rn is a noise vector following the normal distribution N (0, σ2
vI). Without

loss of generality, we assume that ui − li are identical for i = 1, 2, ..., n. As discussed in

Chapter 1, the maximum likelihood estimator (MLE) xMLE for the parameter vector x∗ is

the solution to the UBILS problem (4.5):

xMLE = argmin
x∈B

‖y −Ax‖2
2. (4.6)

Since sometimes MLE is too time consuming to calculate, one may use other estimators with

worse performance but less computational cost in general. One such an estimator is linear

minimum mean square error (LMMSE) estimator xLMMSE, which is a solution of

min
x=By+c

E{(x− x∗)(x− x∗)T} (4.7)

where x = By+c restricts x to be a linear function of y. It can be shown that (see e.g., [15]):

xLMMSE = argmin
x
‖y −Ax‖2

2 +
σ2
v

σ2
x

∥∥∥∥x− 1

2
(l + u)

∥∥∥∥2

2

(4.8)
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where E(x∗) = 1
2
(l + u) (the center of the constraint box B) and σ2

x = (ui−li+1)2−1
12

is the

variance of the i-th element of x∗ (note that ui − li is independent of i according to our

earlier assumption).

The LMMSE guides us to set z(0) as 1
2
(l+u) and λ(0) as

√
σ2
v/σ

2
x, and then x(1) given by

the modified ADMM in the first iteration is exactly the integer LMMSE of x∗ in the model

(4.5). Like that observed in [68] (see the discussion in Section 2.3.4), in our numerical tests,

we find that if λ(0) is larger than
√
σ2
v/σ

2
x, the accuracy of the solution drops dramatically.

While α
√
σ2
v/σ

2
x (α is a factor smaller than one) is as good as

√
σ2
v/σ

2
x in terms of accuracy.

Therefore, we refer to
√
σ2
v/σ

2
x as a critical value for λ(0). The experimental verification will

be shown in Chapter 5. We give some theoretical explanations here. Intuitively we prefer

the modified ADMM algorithm stops with a small λ. Suppose that the modified ADMM

algorithm stops at iteration k∗ + 1, which means that x(k∗+1) = z(k∗+1) and z(k∗+1) = z(k∗),

then we have from the update formula (4.3):

‖y −Ax(k∗+1)‖2
2 + λ2‖w(k∗)‖2

2 ≤ ‖y −Ax‖2
2 + λ2‖x− x(k∗+1) + w(k∗)‖2

2, ∀x ∈ Zn. (4.9)

Let the optimal solution to the UBILS problem (4.1) be denoted by xMLE, where MLE is for

maximum-likelihood-estimator. Then we have:

‖y −Ax(k∗+1)‖2
2 − ‖y −AxMLE‖2

2 ≤ −λ2‖w(k∗)‖2
2 + λ2‖xMLE − x(k∗+1) + w(k∗)‖2

2. (4.10)

Considering that xMLE ∈ B = {x ∈ Zn : l ≤ x ≤ u, l,u ∈ Zn}, we can obtain an upper

bound for the gap between the objective values at x(k∗+1) and xMLE:

‖y −Ax(k∗+1)‖2
2 − ‖y −AxMLE‖2

2

≤− λ2‖w(k∗)‖2
2 + λ2

n∑
i=1

[max(|ui − x(k∗+1)
i + w

(k∗)
i |, |li − x(k∗+1)

i + w
(k∗)
i |)]2.

(4.11)
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Intuitively, the upper bound is likely to be tighter when λ is smaller, which means that

more probably x(k∗+1) can give a better objective value or more probably we can obtain

x(k∗+1) = xMLE as the optimal solution.

It has been shown that using appropriate varying penalty parameter over iterations

can make ADMM more efficient and effective to both convex and non-convex optimisation

problems (see e.g., [12, 28, 75, 76]). The typical scheme used by the ADMM method for

solving a general problem is given in (3.13). But for the modified ADMM algorithm for the

UBILS problem, we propose to increase the value of penalty parameter λ for every certain

number of iterations until the algorithm stops. The scheme is as follows:

λ(k+1) =


τλ(k) if (k mod q) = 0

λ(k) otherwise
(4.12)

where τ is a factor of inflating λ and (k mod q) is the remainder of the division of the current

iteration k by an integer parameter q. Note that when q is set as 1, it means that we inflate λ

for every iteration. In the following, several reasons explaining such approach will be given.

In Chapter 5, we will show through numerical experiments that for our modified ADMM on

UBILS problems, this proposed way of varying λ outperforms fixed λ that is used in [64].

First, it is inspired by the quadratic penalty function method (see e.g., [7]), whose idea

is to eliminate some or all of the constraints by adding to the objective function a penalty

term which prescribes a high cost to infeasible points. Associated with this method is a

penalty parameter λ, which determines the severity of the penalty and as a consequence the

extent to which the resulting unconstrained problem approximates the original constrained

problem. Thus the quadratic penalty method consists of solving a sequence of problems with

{λ(k)} as a sequence of penalty parameters satisfying:

∀k, 0 < λ(k) < λ(k+1), λ(k+1) →∞.
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Similarly, for the modified ADMM algorithm, if such sequence of penalty parameter {λ(k)}

is adopted, it can easily be seen that the algorithm is guaranteed to stop, which means that

it will eventually achieve x(k+1) = z(k+1) and z(k+1) = z(k). Otherwise, if λ does not change

over iterations, we find that in practice the algorithm may never converge and be stuck in

an endless loop. Specifically, we propose to increase the penalty parameter λ every certain

number of iterations instead of every iteration because we would like the algorithm to stop

with a relatively small λ, and the rational will be explained later in this section. Another

advantage of keeping λ unchanged over some iterations is that we benefit from skipping the

reduction phase while solving the associated OILS problem for x−update in (4.3) since the

channel matrix is the same as previous iteration.

Second, as we have discussed in Chapter 3, with the goal of making the performance

less dependent on the initial choice of the penalty parameter and accelerating convergence

as well, we would like to inflate the penalty parameter when the primal residual appears

large compared to the dual residual, and deflate it when the primal residual seems too small

relative to the dual residual. This scheme of varying the penalty parameter for the standard

ADMM (3.13) suggests us to increase our penalty parameter λ(k) over iterations because for

our modified ADMM algorithm on the UBILS problem, we find that in practice the primal

residual r(k+1) = x(k+1)−z(k+1) is much larger than the dual residual s(k+1) = 2λ2(z(k+1)−z(k))

over iterations. Thus our proposed approach of varying λ (4.12) gives similar performances

to the scheme (3.13) in practice, and we adopt (4.12) since it ensures that the algorithm

stops while the scheme in literature (3.13) does not.

All in all, for parameter setting of the modified ADMM algorithm, we suggest to set

w(0) as 0(n), z(0) as the center of the constraint box l+u
2

and λ(0) as α
√
σ2
v/σ

2
x where α is a

factor smaller than or equal to one, and to increase the value of penalty parameter λ by a

factor of τ for every q iterations until the algorithm stops. The pseudocode of the modified

ADMM algorithm on the UBILS problem can be found in Algorithm 4.1.

Here we give some explanations for some lines in Algorithm 4.1:
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Algorithm 4.1 Modified ADMM
Input: The matrix A ∈ Rm×n (m < n) with full row rank, the vector y ∈ Rm, the lower
bound vector l ∈ Zn, the upper bound vector u ∈ Zn, the variance of the noise vector in the
linear model (4.5) σ2

Output: The solution (not necessarily optimal) to the UBILS problem (4.1) xMA and the
associated residual norm β = ‖y −Ax̂‖2

Function: (xMA, β) = Modified-ADMM(A,y, l,u, σ2)

1: Set z(0) = l+u
2
, w(0) = 0(n) ∈ Rn, β = ∞

2: Select constants α, q and τ for initializing and updating penalty parameter λ
3: Select maximal number of iterations K
4: Compute var{X} where X ∼ U{l1, l1 + 1, ..., u1} and set initial λ = α

√
σ2

var{X}
5: for k = 1 : K do

6: x(k) = argmin
x∈Zn

∥∥∥∥[ y
λ(z(k−1) −w(k−1))

]
−
[
A
λI

]
x

∥∥∥∥2

2

(See Algorithm 2.1 and 2.2)

7: z(k) = bx(k) + w(k−1)eB
8: w(k) = w(k−1) + x(k) − z(k)

9: if β > ‖y −Az(k)‖2 then
10: Set xMA = z(k) and β = ‖y −Az(k)‖2

11: end if
12: if x(k) = z(k) = z(k−1) then
13: Terminate
14: end if
15: if k (mod) q = 0 then
16: λ = λτ
17: w(k) = w(k)/τ 2

18: end if
19: end for

• Line 2: α is the factor associated with initializing the penalty parameter λ. α < 1 is for

setting initial λ(0) = α
√
σ2
v/σ

2
x as we have discussed above. Note that if the variance

is unknown or the UBILS problem does not arise form linear model (4.5), we find that

in practice, it is usually acceptable to set initial λ as a small value (e.g., 1e-2) since λ

will inflate over further iterations. The parameters q ∈ Z and τ > 1 are for varying λ

over iterations. We inflate λ by a factor of τ every q iterations.

• Line 6: Every x-update is associated with solving an OILS problem since we haveA
λI

 ∈ R(m+n)×n,

 y

λ(z(k−1) −w(k−1))

 ∈ R(m+n). The PLLL reduction and SE search

algorithm for solving OILS problems have been introduced in Section 2.1. Note that

54



if λ is unchanged compared to last iteration, we can reuse the reduction result of last

iteration and start the search phase directly.

• Lines 9–11: Since the objective function may not decrease monotonically, after each

iteration, we check if the latest iterate z(k) is better than the current best solution x̂.

If so, we update x̂. This means that the final solution x̂ may not be the last iterate.

• Line 17: Recall thatw is the scaled form of the dual variable. Therefore, after updating

the penalty parameter λ, the scaled dual variable w must also be updated.

4.2 Using ADMM in the Tree Search

In this section, we incorporate the modified ADMM into the direct tree search (DTS)

approach for UBILS problems in order to improve the search efficiency.

Note that the modified ADMM algorithm shown in Section 4.1 is a heuristic approach

to the UBILS problem, which means that the optimal solution is not guaranteed as the

DTS algorithm introduced in Section 2.3. We propose to employ the solution given by the

modified ADMM as the initial point for the DTS algorithm.

Next, we show how to employ the modified ADMM algorithm to find lower bounds

for both OBILS and UBILS problems. Suppose we would like to compute a lower bound

on ‖y − Ax‖2
2, where y ∈ Rn, A ∈ Rm×n (m can be smaller, greater or equal to n),

x ∈ B = {x ∈ Zn : l ≤ x ≤ u, l,u ∈ Zn}. Recall that our modified ADMM for solving

min
x∈B
‖y −Ax‖2

2 consists of the following updates:

x(k+1) = argmin
x∈Zn

(‖y −Ax‖2
2 + λ2‖x− z(k) + w(k)‖2

2)

z(k+1) = ΠB(x(k+1) + w(k))

w(k+1) = w(k) + x(k+1) − z(k+1).

(4.13)
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From x-update in every iteration, x(k+1) minimizes (‖y −Ax‖2
2 + λ2‖x − z(k) + w(k)‖2

2) in

Zn. Thus,

∀x ∈ Zn, ‖y−Ax‖2
2 ≥ −λ2‖x− z(k) + w(k)‖2

2 + ‖y−Ax(k+1)‖2
2 + λ2‖x(k+1) − z(k) + w(k)‖2

2.

(4.14)

Then we have the lower bound:

∀x ∈ B, ‖y −Ax‖2
2 ≥− λ2

n∑
i=1

[max(|ui − zki + wki |, |li − zki + wki |)]2

+ ‖y −Ax(k+1)‖2
2 + λ2‖x(k+1) − z(k) + w(k)‖2

2.

(4.15)

In Chapter 5, we will show that for UBILS problems such lower bounds can be computed

within insignificant time compared to solving the corresponding UBILS problem and are

relatively tight as well in general. The pseudocode of computing such ADMM-based lower

bounds can be found in Algorithm 4.2.

Here we give some explanations for some lines in Algorithm 4.2:

• Line 2: If the entitiesA,y, l,u are from linear model (4.5), we set λ(0) as α
√
σ2
v/var{X}

as we have done in Algorithm 4.1. Otherwise, another strategy is to set λ(0) as a small

value, i.e., 1e-3 is usually good in practice because on the one hand, from (4.15) it is

clear that smaller λ may potentially lead to a tighter lower bound, and on the other

hand, it is reasonable to start with a small λ since it will be inflated over iterations.

• Line 7: We update the lower bound if the lower bound obtained from the current

iteration in (4.15) is larger than the existing one.

• Line 8: The algorithm terminates early if the current lower bound is larger than the

maximal allowed residual since the current lower bound has already been sufficiently

tight.

Hence, the modified ADMM algorithm can help us to find lower bounds for both OBILS

and UBILS problems. Then we can obtain the lower bound Tm satisfying Tm ≤
∑m−1

i=1 (ȳi −
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Algorithm 4.2 ADMM-based Lower Bound
Input: The matrix A ∈ Rm×n (either m ≥ n or m < n), the vector y ∈ Rm, the lower
bound vector l ∈ Zn, the upper bound vector u ∈ Zn, the variance of the noise vector in the
linear model (4.5) σ2, the maximal possible residual res
Output: The lower bound lb of minl≤x≤u,x∈Zn ‖y −Ax‖2

2 and Flag. If the lower bound is
found to be larger than res, Flag is 1 and otherwise 0
Function: (lb, F lag) = ADMM-LowerBound(A,y, l,u, σ2, res)

1: Set z(0) = l+u
2
, w(0) = 0(n) ∈ Rn, lb = 0, Flag = 0

2: Select λ(0) for initializing penalty parameter λ
3: Select q and τ for updating penalty parameter λ
4: Select maximal number of iterations K
5: for k = 1 : K do

6: x(k) = argmin
x∈Zn

∥∥∥∥[ y
λ(z(k−1) −w(k−1))

]
−
[
A
λI

]
x

∥∥∥∥2

2

(See Algorithm 2.1 and 2.2)

7: lb = max(lb, ‖y − Ax(k)‖2
2 + λ2‖x(k) − z(k−1) + w(k−1)‖2

2 − λ2
∑

i max((li − z(k−1)
i +

w
(k−1)
i )2, (ui − z(k−1)

i + w
(k−1)
i )2))

8: if lb > res then
9: Flag = 1

10: Terminate
11: end if
12: z(k) = bx(k) + w(k−1)eB
13: w(k) = w(k−1) + x(k) − z(k)

14: if x(k) = z(k) = z(k−1) then
15: Terminate
16: end if
17: if k (mod) q = 0 then
18: λ = λ× τ
19: w(k) = w(k)/τ 2

20: end if
21: end for

∑n
j=i rijzj)

2 in (2.44) and shrink the search region when determining zm:n with the inequality

set (2.45) to prune the search tree and improve search efficiency. The lower bound Tm is

independent of any value of zm:n we choose in the search process and it needs to be computed

only once. In (2.45) we have the lower bounds T1, T2, ..., Tm, but here we only compute Tm

because we observe that others are usually not worth calculating in terms of reducing the

total cost. Note the UBILS problem is much more difficult to solve than the OBILS problem

since we have to determine (n − m + 1) variables with information of only one inequality.
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Computing the lower bounds Tm is a way of including information of other levels into the

top level when determining zm:n.

Suppose we are now in the underdetermined part during the search process for solving

the reduced UBILS problem min
z∈B̄
‖ȳ −Rz‖2

2 with entities defined the same as in (2.27) and

the search radius of β, after choosing a zk ∈ Zk (m + 1 < k ≤ n), the current value of zk:n

is known and the following inequality holds:

min
z1:k−1∈B̄1:k−1

‖(ȳ −R1:m,k:nzk:n)−R1:m,1:k−1z1:k−1‖2
2 < β2 (4.16)

where B̄1:k−1 = {x ∈ Zk−1 : l̄1:k−1 ≤ x ≤ ū1:k−1}. It is clear that the left hand side of the

above inequality is an UBILS problem since zk:n is known. Then we can employ Algorithm

4.2 to compute a lower bound Tk on the minimum of the objective function in (4.16). If Tk is

found to be less than β2, then the choice of zk may be good and we can move down to choose

zk−1. Otherwise, it means that the choice of zk is invalid and the branch zk:n cannot be a

part of the optimal solution and it should be pruned from the search tree. Then we should

choose the next integer in Zk for zk. Note that the process of computing lower bounds can

also provide solutions z1:k−1 (zk:n has been fixed) to the original UBILS problems, but in

practice we find that such solutions almost never help to reduce the search radius β and thus

we do not make the use of this information for simplicity.

The marginal benefits of such pruning nodes techniques decrease with k because for

example in Figure 2.1, considering that computing a lower bound at levels n and n− 1 take

similar computation time, if we can prune the green node at level n then we remove the

whole green branch in the search tree, but when lower bound techniques help us to prune a

green node at level n− 1 we can only remove a part of the green branch. Thus in practice,

we select levellb for calculating lower bound when determining zn, zn−1, ..., zn−levellb+1. In

general, levellb satisfies 0 ≤ levellb ≤ n −m. When levellb = 0 we do not apply such lower

bound techniques and when levellb = n−m, it means that such techniques are employed for

determining zn, zn−1, ..., zm+1.
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In all, we have discussed how the modified ADMM algorithm can be incorporated into

the direct tree search approach for UBILS problems, which includes giving initial points and

computing lower bounds to shrink search region and to prune nodes. We refer to our new

algorithm for the UBILS problem (4.1) as ADMM tree search and its pseudocode can be

found in Algorithm 4.3.

Here we give some explanations for some lines in Algorithm 4.3 that make it different

from Algorithm 2.5:

• Line 2: We employ the modified ADMM appoach in Algorithm 4.1 to calculate the

initial point and search radius. If the UBILS problem (4.1) does not arise from the

linear model (4.5) or the noise variance is unknown, we can also set the initial λ in

Algorithm 4.1 as a small value, i.e., 1e-2 or 1e-3 as we have discussed above. If there

is no point found within this search radius β in the following tree search process, then

xUBILS is proved to be the optimal solution.

• Line 5: We use Algorithm 4.2 to compute the lower bound Tm as defined in (2.44) to

shrink the search region before determining zm:n. Note that Tm must not be greater

than β2.

• Line 6: We have discussed above that the marginal benefits of using lower bounds to

prune nodes decrease as level k goes down. Below certain level, the costs of computing

lower bounds may be even higher than the benefits of removing branches. Hence it

is reasonable to select a value for levellb so that we compute lower bounds only when

determining zn−levellb+1:n.

• Line 8-20: When the lower bounds fail to prune nodes, we may have to compute

lower bounds for more nodes when moving down to the next level. Thus the costs of

computing lower bounds may increase significantly. To avoid such snowball effect, we

adopt an adaptive strategy of computing lower bounds: we compute lower bounds at

level n for each z̄n ∈ Z̄n where Z̄n is the feasible set defined in (2.41), and if those

lower bounds can help to prune a certain percentage (γ = 50% in our experiments) of
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nodes we continue to compute lower bounds at level n − 1, otherwise we discard the

lower bound techniques since they may not be effective.

• Line 9 and 23: Note that now when computing λ̄k and µ̄k for k = n, ...,m, since we

have computed the lower bound Tm, β in (2.41) becomes
√
β2 − Tm.

• Line 15 and 50-62 (Step 6): When determining zn, ..., zn−levellb+1, we first compute a

lower bound using Algorithm 4.2 as in (4.16). If such lower bound is greater than β2

(flag = 1), it means that the choice of zk is invalid and we move to the next integer

in Zk.

Algorithm 4.3 ADMM Tree Search
Input: The matrix A ∈ Rm×n (m < n) with full row rank, the vector y ∈ Rm, the lower
bound vector l ∈ Zn, the upper bound vector u ∈ Zn, the variance of the noise vector in the
linear model (4.5) σ
Output: The solution to the UBILS problem (4.1) xUBILS

Function: xUBILS = ADMM-TreeSearch(A,y, l,u, σ2)

1: Step 1(Initialization and Reduction)
2: (xUBILS, β) = Modified-ADMM(A,y, l,u, σ2) (See Algorithm 4.1)
3: (P,R, ȳ) = DTS-Reduction(A,y, β) (See Algorithm 2.7)
4: Set l̄ = PTl, ū = PTu, zUBILS = PTxUBILS

5: (Tm,∼) = ADMM-LowerBound(R1:m−1,1:n, ȳ1:m−1, l̄, ū, β
2) (See Algorithm 4.2)

6: Select levellb for calculating lower bound with the goal of pruning nodes early when
determining zn, zn−1, ..., zn−levellb+1

7: Set k = n
8: Create an array Flagsn of size ūn − l̄n + 1 and fill it with initial values of 0
9: Compute λ̄n and µ̄n by following (2.41). Note that β in that formula is now replaced

by
√
β2 − Tm and set Z̄n = {0, 1, ..., ūn − l̄n} ∩ (λ̄n, µ̄n)

10: if Z̄n is empty then Terminate
11: else
12: for z̄n ∈ Z̄n do
13: Transform z̄n back to zn using (2.37)
14: Set R′ = R1:m,1:n−1, ȳ′ = ȳ −R1:m,nzn, l̄′ = l̄1:n−1, ū′ = ū1:n−1

15: (∼, F lagsn[z̄n]) = ADMM-LowerBound(R′, ȳ′, l̄′, ū′, β2) (See Algorithm 4.2)
16: end for
17: if number of entries with the value of 1 in Flagsn < γ|Z̄n| then
18: levellb = 0
19: end if
20: end if
21: end Step 1
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22: Step 2
23: Compute λ̄k and µ̄k by following (2.41). Note that β in that formula is now replaced

by
√
β2 − Tm. Set Z̄k = {0, 1, ..., ūk − l̄k} ∩ (λ̄k, µ̄k)

24: if Z̄k is empty then Go to Step 4
25: else
26: Compute ck =

α−
∑n

j=k+1 |rmj |z̄j
|rmk|

, z̄k = bcke|Z̄k

27: Go to Step 6
28: end if
29: end Step 2
30: Step 3
31: if k > m− 1 then Set k = k − 1 and go to Step 2
32: else
33: Transform z̄m:n back to zm:n using (2.37)
34: Compute ỹ = ȳ1:m−1 −R1:m−1,m:nzm:n and T = (ȳm −Rm,m:nzm:n)2

35: Compute z1:m−1 = CH-Search(R1:m−1,1:m−1, ỹ, l̄1:m−1, ū1:m−1,
√
β2 − T ) (See

Algorithm 2.4)
36: Set xUBILS = Pz and β =

√
(ỹ −R1:m−1,1:m−1z1:m−1)2 + T

37: end if
38: end Step 3
39: Step 4
40: if k = n then Terminate
41: else
42: Set k = k + 1
43: end if
44: end Step 4
45: Step 5
46: Choose z̄k ∈ Z̄k to be the next nearest integer to ck
47: if z̄k does not exist then Go to Step 4
48: end if
49: end Step 5
50: Step 6
51: if k > n− levellb then
52: if k = n then Flag = Flagsn[z̄n]
53: else
54: Transform z̄k:n back to zk:n using (2.37)
55: Set R′ = R1:m,1:k−1, ȳ′ = ȳ −R1:m,k:nzk:n, l̄′ = l̄1:k−1, ū′ = ū1:k−1

56: (∼, F lag) = ADMM-LowerBound(R′, ȳ′, l̄′, ū′, β2) (See Algorithm 4.2)
57: end if
58: if Flag = 1 then Go to Step 5
59: end if
60: end if
61: Go to Step 3
62: end Step 6
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Chapter 5

Numerical Experiments

In this chapter, we will demonstrate the effectiveness and efficiency of the modified

ADMM and ADMM tree search approach to the UBILS problem proposed in Chapter 4

through numerical experiments. In Section 5.1, how we set up the experiments will be

introduced and in Section 5.2, comparisons among our proposed algorithms and existing

algorithms as well as selected commercial optimisation packages will be conducted in terms

of both computational cost and accuracy.

Our proposed algorithms to be tested are implemented in MATLAB 2019a and all tests

are run on a laptop with 2.3 GHz 8-Core Intel i9 CPU, 16 GB memory and Mac OS.

5.1 Experiment Setup

We rewrite the linear model:

y = Ax∗ + v (5.1)

where A ∈ Rm×n (m < n) is a real matrix with full row rank, y ∈ Rm is an observation

vector, x∗ ∈ Zn is an integer parameter vector and is subject to the box constraint B =

{x ∈ Zn : l ≤ x ≤ u, l,u ∈ Zn}, x∗ is assumed to be uniformly distributed inside the box

B, v ∈ Rn is a noise vector following the normal distribution N (0, σ2I). The maximum
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likelihood estimator xMLE for the parameter vector x∗ in model (5.1) is the optimal solution

to the following UBILS problem:

xMLE = argmin
x∈B

‖y −Ax‖2
2. (5.2)

We introduce some MATLAB built-in functions which will be used in our experiments:

randn(p,q) generates a p×q matrix of normally distributed random numbers; randi([i, j],p,q)

generates a p × q matrix of random integers drawn from the discrete uniform distribution

on the interval [i, j]]; ones(p,q) generates a p× q matrix of ones. We consider two different

cases:

Case 1 (random case): We use σ∗randn(m,1) to generate a m-dimensional noise vector

v, use ones(n, 1)*l and ones(n, 1)*u to generate constraint box [l,u] where l, u ∈ Z and use

randi([l, u], n, 1) to generate the true parametric vector x∗. Then y can be generated by

following (5.1) after A is generated by randn(m,n).

Case 2 (MIMO flat-fading in communications) We consider a real-world application in

this case. In the multi-input multi-output (MIMO) linear flat-fading channel system, the

relation between received signal vectors and transmit signal vectors of this system can be

written as a complex linear system:

yc = Acx
∗
c + vc (5.3)

where Ac ∈ CNr×Nt represents the channel matrix with Nt transmitter antennas and Nr

receiver antennas. The elements of Ac are complex i.i.d Gaussian variables with distribution

CN (0, I) and vc ∈ CNr is the white Gaussian noise vector with distribution CN (0, 2σ2I).

The elements of the unknown vector x∗c are odd numbers in set X (p) = {p1 + p2j : p1, p2 =

±1,±3, ...,±(2p − 3),±(2p − 1)} where j2 = −1, p = 1, 2, 3 correspond to 4QAM, 16QAM,

64QAM constellations respectively. QAM stands for quadrature amplitude modulation,

which is a modulation scheme used by network operators for transmitting data. To deal
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with the complex case, we first transform (5.3) into a real linear model. Let

Ac = AR
c + jAI

c , yc = yRc + jyIc , x∗c = x∗Rc + jx∗Ic , vc = vRc + jvIc .

Then (5.3) is equivalent to the real linear model:

y = Ax∗ + v (5.4)

where

y =

yRc
yIc

 , A =

AR
c −AI

c

AI
c AR

c

 , x∗ =

x∗Rc
x∗Ic

 , v =

vRc
vIc

 . (5.5)

Thus A ∈ Rm×n with m = 2Nr, n = 2Nt and aij ∼ N (0, 1/2), v ∼ N (0, σ2I), x∗ ∈ X (p)n =

X (p)×X (p)× ...×X (p) with:

X (p) = {±1,±3, ...,±(2p − 3),±(2p − 1)} (5.6)

and estimating x∗c in (5.3) is equivalent to estimating x∗ in (5.4).

In this case, we can construct the matrix A by setting AR
c = 1√

2
randn(Nr, Nt), AI

c =

1√
2
randn(Nr, Nt). Then we show how to construct x∗. First we generate each element of

vector x̄∗ as x̄∗i = 2∗randi([1, 2p−1])−1. Then x∗i can be generated as x∗i = (3−2randi([1,2]))∗x̄∗i
for i = 1, 2, ..., n. The method of generating y and v is the same as Case 1. To get the

maximum likelihood estimator of x∗, we solve the following problem:

min
x∈X (p)n

‖y −Ax‖2
2. (5.7)

Note that the above problem is not a standard UBILS problem since the constraint on x is

not a box. However, we can transform it into a standard UBILS problem by defining for

i = 1, 2, ..., n the following transformation:

x̄i =
2p − 1 + xi

2
(5.8)
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so that x̄i ∈ X̄ (p) = {0, 1..., 2p − 1}. Then the problem (5.7) becomes a standard UBILS

problem:

min
x̄∈X̄ (p)

‖ȳ − Āx̄‖2
2 (5.9)

where ȳ = y + (2p − 1)A1(n), Ā = 2A.

Here we give the information of computing the associated signal-to-noise-ratios (SNR):

SNR = 10log10

(
(M − 1)/3

2σ2

)
(5.10)

which will be used later for M -QAM (see e.g., [78]).

We will use the existing MATLAB code for the Partial LLL reduction and SE search

algorithm on OILS problems from:

https://www.cs.mcgill.ca/∼chang/MILES_routine1.php.

We use the MATLAB code for the AIP reduction and CH search on the OBILS problem to

implement the PR approach from:

https://www.cs.mcgill.ca/∼chang/MILES_routine3.php.

5.2 Simulation Results

5.2.1 Performance of Modified ADMM with Different Parameters

In this section, we demonstrate the effectiveness of our parameter setting strategies

for Modified ADMM. We focus on Case 1 random generated problems in various scenarios

throughout this section.

We consider the UBILS problem (5.2) and generate 100 random instances of Case 1 for

each scenario as we have discussed in Section 5.1. These instances are generated with fixed

m = 15, n = 20, l = 0, u = 10 and varying noise standard deviation σ = 0.1 : 0.1 : 0.5 as

well as σ = 0.01.
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In running Modified ADMM (Algorithm 4.1), we choose values for the four parameters

α, q, τ and K. The parameter α = λ(0)/λ∗, where λ(0) is the initial value of λ, and λ∗ =√
σ2/var{X} with var{X} = ((u − l + 1)2 − 1)/12 = 10, and we take α = 0.2, 0.5, 1, 2, 5,

leading to five different initial values for λ(0). We take q = 2, τ = 1.05 and K = 200, see

Line 2, Line 2, and Line 3 of Algorithm 4.1, respectively.

In our tests, we record the experimental probability of the first iterate z(1) equal to

the ILS solution xILS, denoted by Pr(z(1) = xILS), the experimental probability of the final

output xMA equal to the ILS solution xILS, denoted by Pr(xMA = xILS), and the average

number of iterations over 100 tries under different scenarios. The optimal solution xILS to

the UBILS problem, which is the maximum likelihood estimator of x∗ in (5.1), can be found

by the DTS algorithm (Algorithm 2.5). The number of iterations is the number of steps

Modified ADMM takes to find the final output xMA and if the algorithm fails to stop within

the maximal number of iterations K, the number of iterations is just K. The experimental

results are shown in Table 5.1. Note that bold values in tables of this thesis represent for

the best results (e.g., in Table 5.1 they mark the highest probability and least number of

iterations). For comparison, we also give the results for the fixed λ strategy (i.e., λ is not

changed in Algorithm 4.1) in the last three columns of Table 5.1. Specifically, we take

λ = 0.5λ∗, λ∗, 2λ∗.

As the goal of the application is to estimate the true integer parameter vector x∗ in (5.4),

we also record the experimental probability that xMA is equal to x∗, denoted by Pr(xMA = x∗),

and the experimental probability that xILS is equal to x∗, denoted by Pr(xILS = x∗) over the

100 tries. Such probabilities are referred to as the success rates in the literature. The results

are displayed in Table 5.2.

Some interesting points can be seen from from Tables 5.1 and 5.2:

1. The performance of Modified ADMM drops as the noise standard deviation σ increases,

and when σ = 0.01 and σ = 0.1 Modified ADMM can usually give the optimal solution

in only one iteration.
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Table 5.1: Performance of Modified ADMM (K = 200, q = 2, τ = 1.05)

σ
α λ/λ∗

0.2 0.5 1 2 5 0.5 1 2

0.01
Pr(z(1) = xILS) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pr(xMA = xILS) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
# of iterations 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

0.1
Pr(z(1) = xILS) 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00
Pr(xMA = xILS) 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00
# of iterations 2.00 2.00 2.00 2.00 2.41 2.00 2.00 2.00

0.2
Pr(z(1) = xILS) 0.87 0.99 0.99 0.97 0.34 0.99 0.99 0.97
Pr(xMA = xILS) 1.00 1.00 1.00 0.97 0.48 1.00 1.00 0.99
# of iterations 4.21 2.20 2.70 2.67 6.42 2.24 2.34 2.52

0.3
Pr(z(1) = xILS) 0.40 0.75 0.87 0.66 0.07 0.75 0.87 0.66
Pr(xMA = xILS) 0.90 0.90 0.93 0.76 0.14 0.83 0.93 0.84
# of iterations 27.34 11.41 5.51 7.02 6.69 35.29 17.01 7.02

0.4
Pr(z(1) = xILS) 0.10 0.41 0.54 0.26 0.01 0.41 0.54 0.26
Pr(xMA = xILS) 0.73 0.74 0.73 0.37 0.08 0.46 0.73 0.43
# of iterations 58.67 29.92 14.49 9.90 5.91 111.74 46.61 23.56

0.5
Pr(z(1) = xILS) 0.02 0.17 0.29 0.14 0.00 0.17 0.29 0.14
Pr(xMA = xILS) 0.51 0.48 0.45 0.23 0.04 0.25 0.42 0.28
# of iterations 77.07 43.69 18.26 9.51 4.85 152.15 70.54 28.47

Table 5.2: Success rates of xMA and xILS

σ
Pr(xMA = x∗)

Pr(xILS = x∗)α
λ = λ∗0.2 0.5 1 2 5

0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00 0.95 1.00 1.00
0.2 1.00 1.00 1.00 0.97 0.48 1.00 1.00
0.3 0.90 0.89 0.90 0.75 0.14 0.90 0.95
0.4 0.67 0.66 0.67 0.33 0.07 0.64 0.76
0.5 0.28 0.29 0.29 0.18 0.02 0.28 0.42

2. In general, compared with varying λ with α = 1 or α = 0.5 (i.e., λ(0) = λ∗ or λ(0) =

0.5λ∗, the fixed λ strategy with λ = λ∗ or λ = 0.5λ∗ needs more iterations and gives

slightly worse results. We noticed that for fixed λ = λ∗, the algorithm sometimes fails

to converge (e.g., when σ = 0.5, 32% instances do not stop within 200 iterations.)

while for varying λ with different α, the algorithm always converges for all instances.

Thus, these test results favor varying λ.
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3. For each σ, Pr(z(1) = xILS) is the highest when α = 1. This is understandable because

when α = 1, λ(0) = λ∗ and x(1) is exactly the integer LMMSE estimator as we have

discussed in Section 4.1.2, while z(1) is the projection of x(1) into B (note that z(0) =

(l + u)/2 and w(0) = 0)

4. From number of iterations, we can see that larger α leads to faster convergence but

worse results especially when σ is large. In contrast, smaller α typically needs more

iterations but leads to more accurate results. We also observe in the experiments that

for the fixed λ strategy, the probability of xMA = xILS drops significantly especially

for large σ when the fixed λ moves away from λ∗. Thus if λ∗ is unknown, to avoid

fine-tuning λ as the fixed λ strategy requires, we can employ the varying λ strategy

with a relatively small λ(0) with α = 1, 0.5 or 0.2. If we know the noise variance is

relatively high, we can set α as 0.2 or 0.5.

5. The trend of the success rate Pr(xMA = x∗) is similar to that of Pr(xMA = xILS). In

addition, the optimal solution xILS, which is both the maximum a posterior estimator

and the maximum likelihood estimator of x∗, gives the highest success rate, which

decreases when σ increases.

From Table 5.1 and Table 5.2, we see α = 1 is a usually good choice. Then we run

Modified ADMM on the same test instances with fixed α = 1 but now we take different

τ = 1.02, 1.05, 1.1, 1.2, 1.5, q = 1, 2, 4, 8, and record Pr(xMA = xILS) and the average number

of iterations. The results are displayed in Table 5.3 and 5.4.

In the following we give some observations and comments.

1. We notice that there exists a general trend: if we increase λ more slowly over iterations

(i.e., choose smaller τ and larger q), we may (not necessarily) get higher probability

of obtaining the optimal solution xILS but need more iterations. The performance of

Modified ADMM is less sensitive on τ and q than on α and when σ is small, changing

τ and q hardly influences the results.
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Table 5.3: Performance of Modified ADMM (K = 200, q = 2, α = 1 and varying τ)

σ
τ

1.02 1.05 1.1 1.2 1.5

0.01 Pr(xMA = xILS) 1.00 1.00 1.00 1.00 1.00
# of iterations 2.00 2.00 2.00 2.00 2.00

0.1 Pr(xMA = xILS) 1.00 1.00 1.00 1.00 1.00
# of iterations 2.00 2.00 2.00 2.00 2.00

0.2 Pr(xMA = xILS) 1.00 1.00 0.99 0.99 0.99
# of iterations 2.63 2.70 2.53 2.35 2.16

0.3 Pr(xMA = xILS) 0.94 0.93 0.93 0.89 0.88
# of iterations 6.63 5.51 4.66 4.56 3.56

0.4 Pr(xMA = xILS) 0.77 0.73 0.61 0.56 0.54
# of iterations 20.28 14.49 12.32 10.01 6.89

0.5 Pr(xMA = xILS) 0.44 0.45 0.40 0.35 0.30
# of iterations 29.32 18.26 13.38 10.37 7.81

Table 5.4: Performance of Modified ADMM (K = 200, τ = 1.05, α = 1 and varying q)

σ
q

1 2 4 8

0.01 Pr(xMA = xILS) 1.00 1.00 1.00 1.00
# of iterations 2.00 2.00 2.00 2.00

0.1 Pr(xMA = xILS) 1.00 1.00 1.00 1.00
# of iterations 2.00 2.00 2.00 2.00

0.2 Pr(xMA = xILS) 0.99 1.00 1.00 1.00
# of iterations 2.51 2.70 2.68 3.82

0.3 Pr(xMA = xILS) 0.92 0.93 0.93 0.94
# of iterations 4.75 5.51 5.97 6.93

0.4 Pr(xMA = xILS) 0.62 0.73 0.78 0.76
# of iterations 12.08 14.49 19.04 26.27

0.5 Pr(xMA = xILS) 0.41 0.45 0.48 0.48
# of iterations 13.33 18.26 29.96 40.57

2. Our numerical tests indicate that there is no fixed choice for the parameters that can

work well for all problems. For each specific problem, to achieve high probability of

obtaining the optimal solution, we can fine-tune these three parameters α, τ and q

(e.g., for the case with σ = 0.4 and 0.5, if we choose α = 0.5, τ = 1.05, q = 3 and

α = 0.2, τ = 1.05, q = 4 we can further increase Pr(xMA = xILS) to 0.81 and 0.57

respectively).
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3. In the ADMM tree search approach, which first uses Modified ADMM to get the

initial point, we will not spend efforts on fine-tuning these parameters for each specific

problem. Instead, as long as the choice of parameters usually gives acceptable results,

we use it.

5.2.2 Comparisons of Modified ADMM and the Original ADMM

We compare Modified ADMM with the original ADMM algorithm in [64] (see Section

3.2.1). Note that we have λ as the parameter of Modified ADMM, and the penalty parameter

of the original ADMM algorithm ρ = 2λ2 in (3.21) is set as fixed 2(λ∗)2 over iterations where

λ∗ has the same definition as in Section 5.2.1. The main difference between these two is that

our Modified ADMM imposes the integer constraint while updating x in each iteration but

the original one computes x in the real space. The performances are evaluated in terms of how

average objective values or residuals change over iterations. We generate 100 experimental

instances for each scenario with fixed m = 15, n = 20, l = 0, u = 10 and σ = 0.01, 0.1, 0.5.

We set K = 200, α = 1, τ = 1.05 and q = 2 for Modified ADMM, which has been shown

before to be a good choice. The results of average objective value versus 200 iterations are

illustrated in Figures 5.1-5.3. Note that if the algorithm stops before iteration 200, we keep

its current objective value when the algorithm converges until iteration 200. To see how

good the two algorithms, we also plot the average optimal objective value, which is obtained

via computing the optimal solutions of the UBILS problems by the DTS approach.

It can be seen that for these cases, Modified ADMM is clearly much better than the

original one. When the noise increases, although Modified ADMM may take more iterations

before convergence, it can eventually give solutions with much smaller objective value than

the original ADMM can achieve. For these cases, Modified ADMM can give the optimal

solution for 100%, 100% and 45% instances respectively while the original ADMM algorithm

for mere 7%, 8% and 3% instances for σ = 0.01, 0.1, 0.5. In Figure 5.1 and 5.2, the objective

value of Modified ADMM coincides with the optimal value because for this case, Modified

ADMM gives the optimal solution for all instances in only one iteration.
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5.2.3 Performance of ADMM-based Lower Bounds

We check the tightness of ADMM-based lower bounds for UBILS problems that are

proposed in Section 4.2. The test set for each scenario includes 100 random Case 1 problems

with fixed m = 15, l = 0 and varying u, n, σ. When we run ADMM-based lower bound

(Algorithm 4.2), we need to choose values for four parameters λ(0), q, τ and maximal number

of iterations K (see Line 2, 3, 3 and 4 in Algorithm 4.2 respectively). Different from previous

experiments, we prefer smaller λ when computing lower bounds as discussed in Chapter 4.

Thus we set λ(0) = 0.02λ∗, where λ∗ =
√
σ2/var{X} is the same as before. We then set q

and τ as 2 and 1.5, K as 20, making λ vary from 0.02λ∗ to roughly 1.2λ∗ in the last iteration.

Note that we set less number of iterations and larger τ than Modified ADMM because in

general calculating lower bounds needs less accuracy than obtaining a solution.

The results are shown in Table 5.5. Note that in this table, "minimal value" refers to

the average optimal objective value of UBILS problems which can be computed through the

Figure 5.1: Comparison between modified and original ADMM for σ = 0.01,m = 15, n =

20, l = 0, u = 10
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Figure 5.2: Comparison between modified and original ADMM for σ = 0.1,m = 15, n =

20, l = 0, u = 10

Figure 5.3: Comparison between modified and original ADMM with σ = 0.5,m = 15, n =

20, l = 0, u = 10

DTS approach, "lower bound" refers to the average calculated lower bounds for the objective

value of UBILS problems, and "ratio" is the value of lower bound
minimal value .
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From Table 5.5 we can see that the ADMM-based lower bounds are extremely tight

when σ is relatively small and the tightness is hardly affected by the length of constraint box

(u−l) and the number of underdetermined levels (n−m). However, when the noise increases,

the effectiveness of such lower bounds for UBILS problems drops. As for the time cost,

computing such a lower bound takes significantly less time than solving the corresponding

UBILS problem via the DTS approach (e.g., for the case m = 15, n = 20, σ = 0.1, u = 10,

the latter needs around 400 times more CPU time than the former and the ratio enlarges as

the UBILS problem becomes more difficult to solve).

Table 5.5: ADMM-based lower bounds for UBILS problems

varying u and fixed n = 20, σ = 0.1
u 2 4 6 8 10
minimal value 0.1479 0.1479 0.1479 0.1479 0.1479
lower bound 0.1478 0.1478 0.1476 0.1475 0.1472
ratio 99.93% 99.93% 99.78% 99.73% 99.53%

varying n and fixed u = 10, σ = 0.1
n 16 17 18 19 20
minimal value 0.1561 0.1556 0.1433 0.1557 0.1479
lower bound 0.1560 0.1555 0.1431 0.1555 0.1472
ratio 99.94% 99.94% 99.86% 99.87% 99,53%

varying σ and fixed n = 20, u = 10
σ 0.1 0.2 0.3 0.4 0.5
minimal value 0.1479 0.5916 1.3213 2.1385 2.8261
lower bound 0.1472 0.5392 0.8236 0.9066 0.9006
ratio 99.53% 91.14% 62.33% 42.39% 31.87%

5.2.4 Comparisons of ADMM Search and DTS

In this section, we compare our ADMM tree search algorithm (Algorithm 4.3) with

the DTS algorithm (see [19], [78])1 to show that how techniques proposed in Chapter 4 can

improve the search efficiency. Note that for all the following simulation, we employ MATLAB

Coder toolbox to generate C functions from the original MATLAB code for all algorithms
1The MATLAB implementation is available from https://www.cs.mcgill.ca/ ∼chang/MILES_routine4.php
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because all commercial optimisation packages that we will use later are implemented in

C/C++.

The test set includes 100 Case 1 random instances with l = 0, m = 15, n = 20, two

different u (10 and 20) and three different σ (0.01, 0.1 and 0.5). For convenience, we use the

following abbreviations for different solvers:

DTS: The direct tree search algorithm (see Algorithm 2.7 for the reduction part and

2.5 for the search part) with top level search reordering technique in [78].

ADMM-Search-1: DTS with initial point and radius given by Modified ADMM.

ADMM-Search-2: ADMM-Search-1 plus ADMM-based lower bound techniques

proposed in Section 4.2. Note that for pruning nodes, we compute lower bounds for half of

the underdetermined part (e.g., when m = 15 and n = 20, we have levellb = 2 and calculate

lower bounds when determining z20 and z19), and the reason has been explained in Section

4.2.

ADMM-Search-3: Algorithm 4.3. Note that it is different from ADMM-Search-2

in that it removes the top level search reordering technique in [78]. We check whether this

technique will help improve search efficiency for our ADMM tree search algorithm.

Note that all three ADMM-Search algorithms run Modified ADMM to obtain an initial

point. Instead of fine-tuning the parameters of Modified ADMM for each problem we will set

K α, τ and q as 100, 0.2, 1.1 and 2, which usually gives acceptable outcomes for our problems.

ADMM-Search-2 and ADMM-Search-3 also run ADMM-based lower bound (Algorithm 4.2),

where we set parameters K, τ , q, λ(0) as 20, 1.5, 2 and 0.02λ∗ when computing Tm (See Line

5 of Algorithm 4.3) and change them to 5, 2, 1 and 0.05λ∗ when pruning the nodes (see Line

15 and 56 of Algorithm 4.3) since pruning nodes usually requires less accuracy. All choices

above will be kept for all of the rest experiments in this thesis.

Tables 5.6 and 5.7 summarize the minimum, maximum, median and average running

time of the same 100 Case 1 random instances for these four solvers.

In the following we give our observations from the two tables and some comments.

74



Table 5.6: Time comparison among different algorithms on Case 1 problems (u = 10)

100 Case 1 instances with m = 15, n = 20, l = 0, u = 10, σ = 0.01
Min(s) Max(s) Median(s) Average(s)

DTS 0.0048 4.1596 0.1362 0.2433
ADMM-Search-1 0.0026 0.0508 0.0160 0.0175
ADMM-Search-2 0.0162 0.0332 0.0216 0.0215
ADMM-Search-3 0.0143 0.0268 0.0206 0.0203

100 Case 1 instances with m = 15, n = 20, l = 0, u = 10, σ = 0.1
Min(s) Max(s) Median(s) Average(s)

DTS 0.0233 3.9949 0.1647 0.2619
ADMM-Search-1 0.0062 0.1242 0.0410 0.0431
ADMM-Search-2 0.0142 0.0307 0.0220 0.0217
ADMM-Search-3 0.0137 0.0298 0.0207 0.0204

100 Case 1 instances with m = 15, n = 20, l = 0, u = 10, σ = 0.5
Min(s) Max(s) Median(s) Average(s)

DTS 0.0114 4.6039 0.3248 0.4652
ADMM-Search-1 0.0418 0.8619 0.2735 0.2955
ADMM-Search-2 0.0549 0.9445 0.2994 0.3298
ADMM-Search-3 0.0506 0.7270 0.2919 0.3097

1. DTS is always slower in terms of maximal, median and average time than three other

algorithms which incorporate ADMM and the difference enlarges when u increases or

σ drops.

2. Compared with other three approaches that incorporate ADMM, DTS has larger

differences between minimal and maximal time and between median and average time.

3. ADMM-Search-1 takes less time than DTS, which indicates that the initial search

radius given by Mdified ADMM can improve the search efficiency.

4. ADMM-Search-2 and ADMM-Search-3 are slower than ADMM-Search-1 when σ = 0.5,

meaning that for this case, ADMM-based lower bounds, which are less tight when σ is

large as shown in Table 5.5, do not help to improve the search efficiency.

5. ADMM-Search-1 is also faster than other two ADMM-Search for the case u = 10, σ =

0.01 (the first sub-table in Table 5.6) because in this case although the lower bounds
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Table 5.7: Time comparison among different algorithms on Case 1 problems (u = 20)

100 Case 1 instances with m = 15, n = 20, l = 0, u = 20, σ = 0.01
Min(s) Max(s) Median(s) Average(s)

DTS 0.2187 161.9328 2.7011 5.3550
ADMM-Search-1 0.0290 1.0347 0.3104 0.3593
ADMM-Search-2 0.0297 0.2882 0.0438 0.0476
ADMM-Search-3 0.0273 0.1066 0.0375 0.0381

100 Case 1 instances with m = 15, n = 20, l = 0, u = 20, σ = 0.1
Min(s) Max(s) Median(s) Average(s)

DTS 0.2961 174.9038 3.0593 6.2585
ADMM-Search-1 0.0932 2.6411 0.8482 0.8937
ADMM-Search-2 0.0281 0.0636 0.0434 0.0439
ADMM-Search-3 0.0264 0.0528 0.0377 0.0374

100 Case 1 instances with m = 15, n = 20, l = 0, u = 20, σ = 0.5
Min(s) Max(s) Median(s) Average(s)

DTS 1.3706 24.1324 5.3079 6.3041
ADMM-Search-1 0.5064 10.2416 3.9285 4.2512
ADMM-Search-2 0.6964 12.8465 4.6955 5.1634
ADMM-Search-3 0.5609 11.1708 4.2607 4.3266

are tight enough to prune nodes, the search region is quite small and it may not be

rewarding to compute such lower bounds. From the case u = 20, σ = 0.01 (the first

sub-table in Table 5.7), we can see that when the search region increases, the lower

bounds become helpful.

6. Except the cases mentioned above (σ = 0.5 and σ = 0.01, u = 10), ADMM-Search-2

and ADMM-Search-3 are faster than ADMM-Search-1, indicating that for these cases,

lower bounds help to reduce the total costs.

7. ADMM-Search-3 is always slightly faster than ADMM-Search-2, which means that the

top level search reordering technique in [78] may even have a negative effect on the

ADMM tree search algorithm. Thus, in the following experiments, we will employ

ADMM-Search-3, which is Algorithm 4.3, for more comparisons and refer to ADMM-

Search-3 as the ADMM-Search algorithm.
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5.2.5 Comparisons of ADMM Search and Other Solvers

In the section, we compare our ADMM tree search algorithm (Algorithm 4.3) with

selected commercial optimisation packages (Cplex1, Gurobi2, and Mosek3) for both Case 1

and Case 2 problems. These three commercial solvers are chosen because they all declare

to provide global method for the mixed-integer quadratic programming (MIQP) problems

(see [28]). Note that the UBILS problem can be viewed as a type of MIQP problems. Besides,

Gurobi self-claims as the fastest solver for MIQP problems in benchmark datasets4. Note that

since Cplex, Gurobi and Mosek all employ multi-thread computing, in our ADMM tree search

algorithm we now compute lower bounds in parallel with the help of MATLAB’s Parallel

Computing toolbox (change "for"-loop to "parfor"-loop in MATLAB), i.e., when moving

down to level k and computing lower bounds, for each zk ∈ Z̄k where Z̄k is the associated

feasible set defined in (2.41), every thread runs ADMM-based lower bound (Algorithm 4.2)

independently and prune unfeasible nodes (those unfeasible zk are then removed from the

feasible set Z̄k.

5.2.5.1 Case 1 problems

Comparisons for different box constraints

Figure 5.4 displays the average running time of five solvers versus the constraint box

length u − l (l = 0) and Figure 5.5 shows the accuracy of solutions obtained by three

solvers Cplex, Gurobi and Mosek (note that the solvers DTS and ADMM-Search give the

optimal solutions). The test set for each u includes 100 Case 1 random instances with fixed

l = 0,m = 15, n = 20, σ = 0.1. Note the accuracy is defined as out of 100 instances, the

number of instances where the computed solution is equal to the optimal one.

From the figure we can see that only when u = 2, the DTS algorithm is the fastest one

in terms of average time but its running time grows significantly with u. In contrast, our
1IBM ILOG Cplex Optimization Studio V12.10.0
2Gurobi Optimizer 9.1
3Mosek Optimization Suite Release 9.2.32
4https://www.gurobi.com/wp-content/uploads/2018/12/benchmarks.pdf
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ADMM-Search algorithm becomes the fastest solver when u ≥ 4 and its average time grows

relatively smoothly with u. The advantage of ADMM-Search over DTS becomes much more

significant as u increases. The average running time for Cplex and Gurobi drops when u

is larger than 18 and it is because in that case, these two solvers provide much less robust

approach. Figure 5.5 shows that the accuracy of Cplex and Gurobi drops dramatically with

u while Mosek, despite of being slower than the former two solvers, can always give the

global solution. When u is 22, the accuracy of Cplex and Gurobi drops to mere 16% and 9%

respectively. Note that the accuracy comparison does not include ADMM-Search and DTS

because both algorithms are tree search based and always guarantee to provide the optimal

solution.

Figure 5.4: Case 1: Average Time vs. u with l = 0,m = 15, n = 20, σ = 0.1

Comparisons for different column dimensions

Figure 5.6 shows the average running time of all five solvers when n varies from 16 to

23. Here we generate 100 Case 1 random instances and m, l, u, σ are fixed as 15, 0, 10, 0.1

respectively, and n − m changes from 1 to 8 (n goes from 16 to 23), which is the number

of underdetermined levels. It can be seen that DTS has the least average running time

when n ≤ 17 and after the turning point n = 17, ADMM-Search remains the fastest solver.
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Figure 5.5: Case 1: Accuracy vs. u with l = 0,m = 15, n = 20, σ = 0.1

Similar to the length of box constraint, the advantage of ADMM-Search over DTS becomes

much more significant as the number of underdetermined levels (m−n) increases. That can

be a huge advantage of ADMM-Search over DTS. As for three commercial solvers, Gurobi

is faster than the other two and all these three are slower than ADMM-Search for all n.

Besides, from Figure 5.7 we can see that as n increases, the accuracy of Guorbi and Cplex

drops. For example, when n = 23, Gurobi and Cplex only give the optimal solution for 87%

and 89% instances. So similar to Figure 5.5, when the problem becomes more difficult to

solve, Cplex and Gurobi are less robust.

Comparisons for different row dimensions

Figure 5.8 shows the average running time of all five solvers when m varies from 13 to

19. Here we generate 100 Case 1 random instances and n, l, u, σ are fixed as 20, 0, 10, 0.1

respectively, and n −m changes from 7 to 1 (m goes from 13 to 19), which is the number

of underdetermined levels. The associated accuracy is displayed in Figure 5.9. A similar

trend can be seen here: when the number of underdetermined levels (n−m) increases, the

advantage of ADMM-Search over other solvers becomes larger.

Comparisons for different noise standard deviations
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Figure 5.6: Case 1: Average Time vs. n with l = 0, u = 10,m = 15, σ = 0.1

Figure 5.7: Case 1: Accuracy vs. n with l = 0, u = 10,m = 15, σ = 0.1

Figure 5.10 displays the average running time of five solvers versus σ and Figure 5.11

shows how the associated accuracy of Cplex, Gurobi and Mosek changes with σ. Here we

fix other parameters m = 15, n = 20, l = 0, u = 10 and for each σ = 0.05 : 0.05 : 0.5 we

generate 100 Case 1 random instances. From Figure 5.10 we can see that ADMM-Search
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Figure 5.8: Case 1: Average Time vs. m with l = 0, u = 10, n = 20, σ = 0.1

Figure 5.9: Case 1: Accuracy vs. m with l = 0, u = 10, n = 20, σ = 0.1

has the shortest average running time when σ ≤ 0.25 and after that point, Gurobi remains

the fastest solver. All solvers’ average running time increase with σ, which is reasonable

because when σ increases, more probably the residual becomes larger, making the search

region larger as well. While other four solvers’ running time grow smoothly with σ, ADMM-
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Figure 5.10: Case 1: Average Time vs. σ with l = 0, u = 10,m = 15, n = 20

Search’s time increases more dramatically. It is because when σ becomes large, the lower

bound techniques may not help to prune the search tree as we have shown in Table 5.5.

Note that with the adaptive strategy, we discard computing lower bound early if they are

shown to be non-effective. ADMM-Search is always faster than DTS as well as Cplex and

Mosek owing to its good initial search radius given by Modified ADMM. From Figure 5.11,

we can see that unlike DTS and ADMM-Search, all three commercial solvers cannot always

guarantee to provide the optimal solution.

Comparisons on performance and accuracy profiles

Above we use average running time over all experimental instances as a performance

metric to evaluate various solvers. However, the main drawback of this metric is that, a

small number of the most difficult instances can dominate the results. Therefore, to compare

various solvers further, we use a different metric, performance profiles to evaluate them.

Performance profiles provide an effective mean to compare performances for several

solvers, eliminating some of the bias that computing averages has. It was first proposed by

Dolan and More in [30], and is defined as a cumulative distribution function for a performance

metric. Then we show how performance profiles can be obtained from raw data. Suppose we
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Figure 5.11: Case 1: Accuracy vs. σ with l = 0, u = 10,m = 15, n = 20

solve a set of np problems denoted as P with ns different solvers denoted as S. Let p denote a

particular problem, s denote a particular solver and tp,s denote the computing time required

to solve problem p by solver s. We compare the performance on problem p by solver s with

the best performance by any solver in S on this problem, and thus we have the performance

ratio as:

rp,s =
tp,s

min{tp,s : s ∈ S}
. (5.11)

For practical purposes, if a solver does not solve a problem, which means in our experiments

exceeding the chosen time limit we set its tp,s as infinity. In order to obtain an overall

assessment of a solver on the given test set, we define a cumulative distribution function

ρs(τ) as:

ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ}. (5.12)

So ρs(τ) is the probability that a performance ratio rp,s is within a factor of τ of the fastest

solver. Plotting ρs(τ) for all solvers in a chosen interval of τ gives the so-called performance

profiles.
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Note that one drawback of performance profiles is that the relative performance of the

solvers may not be assessed. If performance profiles are used to compare more than two

solvers, we can determine which solver has the highest probability of being within a factor

τ of the best solver, but we cannot necessarily assess the performance of one solver relative

to another that is not the best, which means that we are unable to rank the solvers and tell

which solver is the second or third best (see e.g., [38]).

Apart from performance profiles, accuracy profiles are designed for fixed cost test sets

(see e.g., [6]). Accuracy profiles begin by defining for each problem p ∈ P and solver s ∈ S,

an accuracy measure as

γp,s =


−f acc

p,s if − f acc
p,s ≤M

M otherwise
(5.13)

where f acc
p,s = log10

f(x̄p,s)−f(x∗p)

f(x0p)−f(x∗p)
, f is the objective function, x̄p,s is the solution obtained by

solver s on problem p within the allowed time, x∗p is the optimal solution for problem p and

x0
p is the initial point. Then the performance of the solver s on the test set P is measured

using the following function:

Rs(τ) =
1

np
size{p ∈ P : γp,s ≤ τ}. (5.14)

The accuracy profile Rs(τ) shows the proportion of problems such that the solver s ∈ S,

given fixed computing time, is able to obtain a solution within an accuracy of τ of the

optimal solution (e.g., when τ is three, we say that the solution achieves three digits of

accuracy compared to the optimal solution). Note that for our simulation, the initial vector

x0
p is selected as a vector with all zeros and the maximal allowed time of each instance for

all solvers is the time when the fastest solver terminates, and the parameter M is set as 6.

Figure 5.12 shows the performance profiles of these five solvers. The test set includes

100 random Case 1 problems with l = 0, u = 10,m = 15, n = 20, σ = 0.1. It shows that

ADMM-Search can first finish around 75% of all instances when τ in (5.12) is one, which

means that for 75% instances, ADMM-Search is the fastest solver, and Gurobi can only
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finish around 20% when τ is one and other three solvers close to zero. ADMM-Search keeps

this advantage until the end (finish all instances). From this point, ADMM-Search is clearly

the best solver for this case.

Figure 5.12: Case 1: Performance Profiles with l = 0, u = 10,m = 15, n = 20, σ = 0.1

The corresponding accuracy profiles are shown in Figure 5.13. We can see that ADMM-

Search can always give the optimal solution within the allowed time, which is owing to the

effective initial points given by Modified ADMM as we have shown in Table 5.1. Besides,

Gurobi can give the optimal solution within the allowed time for around 40% instances,

followed by DTS (around 5%) and other two solvers (nearly 0%). For remaining instances

where Cplex, Gurobi, Mosek and DTS cannot provide optimal solution, most solutions are

within around 2-3 digits of accuracy. Hence, in this case, we can see that ADMM-Search is

the best one among these five solvers.

Next, we consider UBILS problems with larger search region. Figure 5.14 shows the

performance profiles of these five solvers on 100 random Case 1 instances with l = 0, u =

15,m = 15, n = 21, σ = 0.1. It is clear that now UBILS problems should be more difficult

to solve than the previous example. The associated accuracy profiles are illustrated in

Figure 5.15. It shows that ADMM-Search can first finish around 90% of all instances at
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Figure 5.13: Case 1: Accuracy Profiles with l = 0, u = 10,m = 15, n = 20, σ = 0.1

the beginning and solve all test problems before τ increases to three. In contrast, Mosek

and DTS are much slower and they can finish all problems when τ increases to around 1000

and 4000. We also find in the tests that in this case Cplex and Gurobi, similar to what is

shown in Figure 5.4, can only give the optimal solution for 56% and 53% instances. From

this point, the advantage of ADMM-Search over other four solvers becomes more significant

for UBILS problems with greater search region.

5.2.5.2 Case 2 problems

In this section, we consider Case 2 problems, which arise from real-world applications:

MIMO flat-fading systems. We first focus on 4QAM, 16QAM and 64QAM systems with

fixed SNR = 25, Nr = 8, Nt = 12, and compare these five solvers on randomly generated

experimental instances. Note that for the following comparisons, we also include the PR

approach introduced in Section 2.3.3 since PR can deal with UBILS problems of Case 2.

4QAM

Figures 5.16 and 5.17 show the performance and accuracy profiles of these solvers for

4QAM problems. The test set includes 100 random 4QAM instances with Nr = 8, Nt =

86



Figure 5.14: Case 1: Performance Profiles with l = 0, u = 15,m = 15, n = 21, σ = 0.1

Figure 5.15: Case 1: Accuracy Profiles with l = 0, u = 15,m = 15, n = 21, σ = 0.1
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12, SNR = 25. It shows that for around 90% instances, ADMM-Search remains the fastest

solver. Note that for 4QAM problems, x(1) given by Modified ADMM (see (4.3)) of ADMM-

Search in the first iteration is guaranteed to be the optimal solution if it is inside the

constrained box because the penalty term ‖x − z(0) + w(0)‖2
2 in (4.3) is a constant ‖1(n)

2
‖2

2

and thus we can terminate ADMM-Search early in this case. From the associated accuracy

profiles shown in Figure 5.17 we can see that ADMM-Search can always give the optimal

solution within the allowed time, followed by DTS which can solve around 90% instances.

In this case, other four solvers PR, Cplex, Gurobi and Mosek can only achieve 0-1 digits of

accuracy within the allowed running time. Hence, in this case, it is clear that ADMM-Search

is the best one among these solvers and ADMM-Search, DTS and PR are all superior to three

commercial solvers.

Figure 5.16: 4QAM: Performance Profiles with Nr = 8, Nt = 12, SNR = 25

16QAM

Figures 5.18 and 5.19 display the performance and accuracy profiles of these solvers

for 16QAM problems. The test set includes 100 random 16QAM instances with Nr =

8, Nt = 12, SNR = 25. Combining two figures, we can see that Gurobi is the fastest solver

for around 80% problems. Gurobi can finish all instances first when τ is around three,
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Figure 5.17: 4QAM: Accuracy Profiles with Nr = 8, Nt = 12, SNR = 25

followed by ADMM-Search when τ is roughly ten. But when required to terminate within

the allowed time for each instance, ADMM-Search can provide the optimal solution for

nearly all problems while Gurobi only roughly 90%. It is owing to the effective initial points

of ADMM-Search given by Modified ADMM. For other solvers, they can solve all problems

with almost the same τ as roughly 40 except PR that solves all instances when τ increases to

around 200, and they can achieve around 1-2 digits of accuracy in most cases within allowed

running time for each instance.

64QAM

Figures 5.20 and 5.21 show the performance and accuracy profiles of these solvers for

64QAM problems. The test set includes 100 random 64QAM instances with Nr = 8, Nt =

12, SNR = 25. Note that for this test, since PR can be extremely slow for certain experiment

instances, we set the time limit of single instance as 300 seconds, which means that all solvers

are forced to terminate when exceeding this limit. It shows that for around 70% instances,

ADMM-Search is the fastest solver and for the remaining 30%, Gurobi is the fastest one.

When τ is around 30, ADMM-Search can provide optimal solution for all test problems,

followed by Cplex, Gurobi, Mosek. DTS can solve all all instances when τ is larger than
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Figure 5.18: 16QAM: Performance Profiles with Nr = 8, Nt = 12, SNR = 25

Figure 5.19: 16QAM: Accuracy Profiles with Nr = 8, Nt = 12, SNR = 25
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2000 and PR terminates for only 60% instances within the time limit (300 seconds) for

each instance. From the associated accuracy profiles shown in Figure 5.21, we can see that

ADMM-Search can always give the optimal solution within the allowed time, followed by

Gurobi which can solve around 40% instances. In this case, other four solvers DTS, PR,

Cplex and Mosek can only achieve around 1-3 digits of accuracy for most instances within

the allowed running time. Hence, in this case, we can say that ADMM-Search is the best

one among these six solvers.

Figure 5.20: 64QAM: Performance Profiles with Nr = 8, Nt = 12, SNR = 25

Table 5.8 displays the minimal, maximal, median and average running time of these six

solvers for 4QAM, 16QAM and 64QAM problems. For each of 4, 16 and 64QAM, we generate

100 random instances with Nr = 8, Nt = 12, SNR = 25. Note that for 64QAM problems, we

set time limit for each instance as 300 seconds as we have done before. We can see that for

4QAM, ADMM-Search is the fastest solver and for 16QAM Gurobi is the fastest in terms of

all four running time metrics except maximal time. For 64QAM problems, Gurobi can give

the smallest minimal and Cplex the maximal time, while ADMM-Search is the fastest solver

in terms of median and average time. It can also be seen that ADMM-Search is significantly

faster than DTS and PR approach, especially for 64QAM problems. Such results are similar
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Figure 5.21: 64QAM: Accuracy Profiles with Nr = 8, Nt = 12, SNR = 25

to what we have obtained from performance profiles and state that ADMM-Search is better

than other solvers in general.

In the following, we will focus on 64QAM problems and investigate how the running

time or performance for these five solvers changes with Nt and SNR. Note that as we have

shown before PR is much slower than other solvers on 64QAM problems, and therefore we

exclude PR approach in the following comparison.

Comparisons for different transmitter antennas Nt

Figure 5.22 shows how average running time changes with Nt for these five solvers.

The test set includes 100 random generated 64QAM instances for each Nt with fixed Nr =

8, SNR = 25. Note that for all instances, all five solvers provide the optimal solution. We

can see that when Nt = 9, DTS is faster than other four solvers on average but its running

time increases dramatically with Nt since the size of the search tree grows exponentially with

Nt−Nr. When Nt ≥ 10, ADMM-Search is faster than DTS as well as other three solvers and

keeps this advantage . It is understandable that when Nt keeps increasing, the advantage

ADMM-Search over DTS in terms of average time will become greater.

Comparisons for different SNR
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Table 5.8: Running time for 4,16,64QAM with Nr = 8, Nt = 12, SNR = 25

Min(s) Max(s) Median(s) Average(s)
4QAM
DTS 0.0008 0.0092 0.0012 0.0013
PR 0.0003 0.0164 0.0007 0.0011
ADMM-Search 0.0002 0.0110 0.0004 0.0005
Cplex 0.1687 0.4637 0.1863 0.1945
Gurobi 0.0031 0.0241 0.0038 0.0047
Mosek 0.0255 0.1023 0.0305 0.0321
16QAM
DTS 0.0073 0.4093 0.0769 0.0918
PR 0.0051 5.1090 0.1750 0.3430
ADMM-Search 0.0147 0.0419 0.0250 0.0255
Cplex 0.0684 0.2015 0.1141 0.1100
Gurobi 0.0050 0.0978 0.0138 0.0164
Mosek 0.0355 0.2996 0.1655 0.1649
64QAM
DTS 1.5516 251.8253 8.8669 14.6173
PR 8.2537 300.0000 215.8300 195.5577
ADMM-Search 0.0299 3.6939 0.0442 0.0835
Cplex 0.0722 2.8594 0.2274 0.3454
Gurobi 0.0068 3.7462 0.0976 0.2409
Mosek 0.1196 32.8078 0.9479 2.2650

Figure 5.22: 64QAM: Average Time vs. Nt with Nr = 8, SNR = 25
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Figure 5.23 shows how average running time of 100 instances changes with SNR for these

five solvers. The test set includes 100 randomly generated 64QAM instances for SNR=15:5:35

with fixed Nr = 8, Nt = 12. Note that for all instances, all five solvers provide the optimal

solution except when SNR is euqal to 15, Mosek fails two instances. We can see that ADMM-

Search is the fastest solver when SNR≥ 25 but its running time increases significantly when

SNR drops. It is considered as the main drawback of ADMM-Search: when SNR is low or

noises become large, less probably the ADMM-based lower bounds can help prune the search

tree. For these cases, ADMM-Search is faster than DTS owing the effective initial search

radius given by Modified ADMM. Note that the success rate of the optimal solution becomes

less as SNR drops (e.g., when SNR is beyond 20, the optimal solution to the UBILS problem

is equal to the true parameter vector x∗ in (5.4) for 100% instances while when SNR is 15,

the percentage drops to 58%).

Figure 5.23: 64QAM: Average Time vs. SNR with Nr = 8, Nt = 12
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Chapter 6

Summary and Future Work

In this chapter we summarize the thesis and propose some related ideas that can be

investigated in the future.

In Chapter 2, we reviewed the existing sphere decoding algorithms for solving OILS,

OBILS and UBILS problems respectively.

In Chapter 3, we reviewed the ADMM approach for solving optimization problems

with linear constraints and for solving integer optimisation problems as a heuristic method.

In particular we introduced the existing ADMM algorithm for mixed-integer quadratic

programming problems.

The main contributions of this thesis are as follows.

In Section 4.1, we proposed a modified ADMM algorithm for UBILS problems which

imposes integer requirement for x−update. Then every iteration of the modified ADMM

algorithm consists of solving an OILS problem. We suggest how to choose associated

parameters for the modified ADMM algorithm and provide theoretical explanations.

In Section 4.2, we proposed to incorporate the modified ADMM algorithm into the DTS

algorithm for UBILS problems with the aim of improving search efficiency. First we used the

modified ADMM as a heuristic to provide a good initial search radius. Then we proposed an

ADMM-based method of find lower bounds for UBILS problems to prune the search tree.
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In Chapter 5, we conducted numerical simulation to first verify that the modified ADMM

is much superior to the original ADMM on UBILS problems in terms of accuracy. Then

we compared our ADMM-Search algorithm with DTS and PR approach plus three selected

commercial solvers (Cplex, Gurobi and Mosek) in terms of different metrics including running

time, performance and accuracy profiles. We test these solvers under two different cases:

random cases and MIMO flat-fading systems in communications. The experiment results

show that in most cases ADMM-Search is the best solver among these solvers in terms of

both speed and accuracy. The advantage of ADMM-Search over DTS becomes much more

significant as the size of the constrained box (u− l) or the number of underdetermined levels

(m− n) increases.

One main limitation of ADMM-Search is that when the noise variance is large or when

the residual is large its lower bound techniques may not help to reduce the total cost.

In the future work, we shall investigate the following problems:

• Since the ADMM tree search approach may not work well for UBILS problems with

large residual or noise variance if such problems arise form the linear model, how can

we improve the tree search approach to obtain better performance in this case? Can

we find some efficient and effective methods of computing lower bounds for UBILS

problems with large residuals?

• The theoretical analysis can be done to show the convergence properties of the modified

ADMM on UBILS problems.
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