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Abstract 

Though historically the word "tachyon" has been used to describe hypothetical par­

ticles which propagate faster than the speed of light, in a more modern context the 

term has been recycled to refer to certain unstable states in field theory. This thesis 

explores the role of tachyonic instabilities in cosmology considering tachyons which 

arise in string theory and also more conventional, field theoretic instabilities. Our 

study of such instabilities is, in part, motivated by attempts to embed inflation into 

string theory. We will argue that the study of string theory models of inflation is 

well-motivated and may provide a rare potential observational window into string 

physics. 

After reviewing the necessary background material concerning inflation, cosmolog­

ical perturbation theory and tachyonic instabilities we study in detail the dynamics 

of the tachyonic instability which marks the end of a particular string theory model 

of inflation, focusing on the pro cesses of reheating and co smic string production. We 

show that the peculiar dynamics of the open string tachyon leads to various novelties 

in these processes and consider also potential observational consequences. 

We consider tachyonic preheating at the end of hybrid inflation in a conventional 

field theory setting and show that the preheating pro cess can leave an observable im­

print on the Cosmic Microwave Background, either through n = 4 contamination of 

the power spectrum or else through large nongaussian signatures. The possibility of 

large nongaussianity is particularly interesting since it demonstrates that hybrid infla­

tion provides one of the few well-motivated models which can generate an observable 

nongaussian signature. 

Finally, we study a novel string theoretic model of inflation, p-adic inflation. This 

model is nonlocal, however, it is free of the usual problems (such as ghosts) which 

plague nonlocal theories. Furthermore, the nonlocal structure of the theory leads to 

a variety of unexpected dynamics including the possiblity of a slowly rolling inflaton, 

despite an extremely steep potential. 



Résumé 

Bien qu'historiquement le mot "tachyon" fut introduit pour désigner d'hypothétiques 

particules se déplaçant plus rapidement que la vitesse de la lumière, de nos jours il 

désigne aussi certaines configurations instables en théorie des champs. Cette thèse 

explore le rôle des instabilités tachyoniques en cosmologie, particulièrement celui des 

tachyons apparaissant en théorie des cordes, mais aussi celui de tachyons plus conven­

tionnels de la théorie des champs. Notre étude de ces instabilités est, en partie, mo­

tivée par une tentative d'inscrire l'inflation à l'intérieur de la théorie des cordes. Nous 

démontrerons que l'étude de modèles d'inflation en théorie de cordes est bien justifiée, 

et pourrait constituer une fenêtre d'accès privilégiée pour l'observation expérimentale 

de la théorie des cordes. 

Après avoir revu les notions nécessaire en matière d'inflation, de théorie cos­

mologique des perturbations ainsi que d'instabilités tachyoniques, nous examinons 

en détails la dynamique de l'instabilité tachyonique qui marque la fin d'un modèle 

particulier d'inflation en théorie des cordes, en mettant l'accent sur les processus de 

réchauffement de la matière et de production de cordes cosmiques. Nous montrons 

que les particularités de la dynamique du tachyon de la corde ouverte apportent des 

éléments nouveaux à ces processus, et discutons des conséquences possibles pour les 

observations. 

Dans le cadre conventionnel de la théorie des champs, nous étudions le pré­

réchauffement par le tachyon qui survient à la fin de l'inflation hybride et montrons 

que ce processus peut laisser des empreintes sur le fond diffus cosmologique (CMB), 

soit par une contamination n = 4 du spectre de puissance, soit par une importante 

signature non-gaussienne. La possibilité d'une importante non-gaussianité est parti­

culièrement intéressante, puisque parmi les modèles d'inflation qui soit bien motivés 

l'inflation hybride est l'un des rares possédant une telle signature. 

Finalement, nous considérons un nouveau modèle d'inflation s'inscrivant à l'intérieur 

de la théorie des cordes: l'inflation p-adique. Il s'agit d'un modèle non-local, mais 

néanmoins exempt des difficultés affectant habituellement ce genre de théories (tels les 
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fantômes). Cette non-localité confère au modèle des propriétés remarquables, notam­

ment la possibilité d'une inflation en roulement lent malgré un potentiel extrêmement 

abrupt. 
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Introduction 
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1.1 Modern Cosmology 2 

1.1 Modern Cosmology 

Inflation [8] plays a key role in modern cosmology. Inflation has become the dominant 

paradigm for explaining the high degree of homogeneity and isotropy of the uni verse. 

In addition to explaining why the universe is so homogeneous, inflation also provides 

a mechanism for explaining the existence (and scale invariant nature) of the small 

perturbations which are present in the Cosmic Microwave Background (CMB). As we 

will see, these are generated by the quantum fluctuations of the inflaton field during 

inflation. The literature on this subject contains a number of excellent review papers 

on the theory of inflation and cosmological perturbations, for example [9, 10, 11]. 

We begin with a very brief review of sorne of the salient features of modern cos­

mology. Modern cosmology is based on Einstein's theory of General Relativity (GR). 

One of the essential assumptions of modern cosmology (confirmed by observation) 

is that, to a first approximation, the universe is homogeneous and isotropie. This 

assumption turns out to be quite restrictive and the only met rie compatible with this 

assumption is the Friedmann-Robertson-Walker (FRW) metric1 

(1.1 ) 

where K = 0, ±1 defines the geometry on spatial hypersurfaces and a(t) is the scale 

factor of the universe. We will typically set K = 0 which is in good agreement with 

observation and is motivated by the assumption of a period of primordial inflation. 

The stress-energy tensor for matter content which is consistent with the assumption 

of homogeneity and isotropy is of the form 

Ti: = diag (-p(t), P(t), P(t), P(t)) (1.2) 

where p, P are the energy density and pressure respectively. It is conventional to 

define the equation of state w of the matter by 

P=wp (1.3) 

1 We employ the "mostly plus" convention for the metric signature throughout so that rhw = 

diag(-l,+l,.·. ,+1). 
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In many cases of interest w is constant. In particular, for a gas of nonrelativistic 

particles (pressureless dust) one has w = ° while for a gas of relativistic particles 

(radiation) one has w = 1/3. A pure cosmological constant (TJ-Lv ex: gJ-Lv) corresponds 

to w = -1. 

The dynamics of the system is described by the Einstein equations 

as weIl as the conservation equations 

1 
M2 T

J1,V 
p 

1 
M2 T

J1,V 
p 

(l.4) 

(1.5) 

Throughout Greek indices fJ" v = 0,1,2,3,4 run over the full spacetime while Latin 

indices only run over the spatial directions i, j = 1,2,3. In (l.4) GJ1,V is the Einstein 

tensor, RJ-Lv is the Riemann tensor, R is the Ricci scalar and Mp = (87rG N ) -1/2 rv 

2.43 x 1018GeV is the reduced Planck mass. Equations (1.4, 1.5), along with the 

ansatz (1.1), imply the following system 

° 

p K 
----
3M2 a2 

p 

p+ 3H(p + P) 
a 1 

- --(p+3P) 
a 6M2 

p 

(1.6) 

(1.7) 

(1.8) 

In the above the dot denotes differentiation with respect to cosmic time j = Bd and 

we have defined H _ à/a. Only two of these equations are independent, indeed (1.8) 

may be derived by differentiating (1.6) with respect to time and using (1.7). With 

(1.3) the two equations (1.6, 1.7) are sufficient to close the system. 
2 1 

For constant w =1= -1 and assuming K = ° one has p ex: a-3(1+w) and a(t) ex: {3 (Hw). 

For w = -1 we would have had p, H = const and a ex: eHt
. Notice that for both 

radiation and matter dominated cosmologies one has a decelerating uni verse , a < 0, 

while a universe dominated by a cosmological constant will accelerate, a > O. 

HistoricaIly, the development of inflation was motivated by several conceptual 

problems associated with big bang cosmology (none of which represented an actual 
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conflict with observation). Though the big bang model enjoyed immense phenomeno­

logical success in explaining Hubble's law, the existence (and backbody nature) of 

the Cosmic Microwave Background (CMB) radiation and the abundance of light el­

ements (nucleosynthesis), it nevertheless seemed to require unnaturally fine tuned 

initial conditions in order to explain the observed flatness and homogeneity of the 

universe. Perhaps the most serious conceptual problem with the simple big bang 

model was the difficulty in constructing a causal theory of structure formation. The 

resolution to these puzzles, which has now become a widely accepted part of the 

standard cosmologie al model, is to posit a phase of accelerated expansion known as 

inflation preceeding the big bang. Because the inflation is a predictive scenario (and 

these predictions are in excellent agreement with observation) we will not linger on 

its historie al motivation and will rather focus on the predictions. 

1.1.1 Inflation 

How can one obtain a prolonged phase of accelerated expansion? It is clear from 

our previous discussion that a universe dominated by dust or by radiation will not 

lead to acceleration. A pure cosmologie al constant would do the trick; however in 

that case inflation would never end and there could be no smooth transition to the 

big bang. The most popular (and perhaps simplest) implementation of this idea is 

inflation driven by a single scalar field, cp, which we refer to as the inflaton. The 

action for the inflaton field is 

(1.9) 

where V ( cp) is the potential energy of the field. For a homogeneous field configuration 

cp = cp(t) the stress tensor associated with the inflaton takes the form (1.2) with 

p 

p 

~cp2 + V( cp) 

~ cp2 _ V ( cp ) 
2 

(1.10) 

(1.11) 

To close the system of dynamical equations describing the inflaton cou pIed to gravit y 

we need only consider the Friedmann equation (1.6) and the Klein-Gordon equation 
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for the inflaton field 

H
2 

- 3~; [~02 + V()O)] 

o rp + 3H0 + V'()O) 

5 

(1.12) 

(1.13) 

where V'()O) = 8V/8)O. Equation (1.13) can be derived by minimizing (1.9) or equiv­

alently by inserting (1.10, 1.11) into (1.7). If we would like to use the inflaton field 

to drive a period of inflation we want p rv - P so that the field (temporarily) mimi cs 

a cosmological constant. From (1.10, 1.11) it is clear that this requires 02/2 « V. 

This will ensure that H rv const, however, if rp is too large large then this inflationary 

phase will not last very long. In order to ensure a long period of inflation we must 

also therefore demand that rp « H 0. It is conventional to quant if y this by defin­

ing the slow roll parameters. There are two logically distinct definitions of slow roll 

parameters which appear in the literature. The first definition, the Hubble slow roll 

parameters, is in terms of the dynamics of the fields 

1 02 

----
2M2H2 

P 

rp 
H0 

(1.14) 

(1.15) 

In the second equality in (1.14) we have used the fact that il = -(p + P)/(2M'ÇJ = 

-02/(2M;) and thus E = -il/H2
, which follows from (1.6) and (1.8). It is clear that 

if EH « 1, I1]HI « 1 then the time evolution of )O(t) and H(t) will be slow compare 

to the Hubble scale. An alternative definition is the potential slow roll parameters 

(1.16) 

1]v (1.17) 

so that for EV « 1, l1]vl « 1 the scalar potential is fiat. For a fiat potential one can 

show that EH rv EV, 1]H rv 1]v so in this case there is no need to distinguish between 

these two types of slow roll parameter. We will assume this to be the case throughout 

this chapter and hence we drop the subscipts and refer to the slow roll parameters 

sim ply as E, 1]. In chapter 7 we will consider a model of inflation where the distinction 

between Hubble and potential slow roll parameters is crucial. 
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The challenge of inflationary model building is to find potentials which are suffi­

ciently flat but are nevertheless well motivated from a particle physics perspective. 

We will return to this issue in a subsequent subsection. Assuming that we have found 

a potential for which E, 17J1 « 1, then the dynamics is described by the slow roll 

equations 

o ~ 3Hcp+ V' 

1 
H2 ~ 3M2 V(rp) 

p 

(1.18) 

(1.19) 

Notice that the time derivatives of the slow roll parameters are second order in the 

slow roll expansion2 

Iii 2E 17J - 2EI H « EH 

lill - 2EI7JIH« I7JIH 

which means that we are justified in treating E,7J as constant if we work only to 

leading order in a slow roll expansion. This fact will be quite useful when we solve 

the perturbation equations. 

During inflation the Hubble scale H remains approximately constant so that ex­

pansion of the universe is approximately that of de Sitter space a( t) l'V eHt . The 

acceleration of the sc ale factor can then be written as 

so that inflation will come to an end once E( rp f) l'V 1 where rp f = rp( t f) is the value of 

the inflaton field at the end of inflation. It is common to define the total number of 

e-foldings of inflation between sorne reference time t and the end of inflation t f as 

f
tf 

1 l'P f V N - Hdt rv -- -drn 
e M2 V' r 

t p <.p 

(1.20) 

so that typically Ne rv H (t f - t). 

2The equality for i} only strictly holds for V"I = 0 though this contribution will in general be 

small. 
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1.1.2 Cosmological Perturbation Theory 

In addition to explaining why the universe is so homogeneous and isotropie, inflation 

also provides a mechanism for generating the small inhomogeneities whieh lead to the 

temperature fluctuations of the CMB. In this subsection we will show how quantum 

fluctutations during the inflationary epoch lead to a nearly scale-invariant large scale 

power spectrum. 

Quantum Fields in de Sitter Space 

During inflation the expansion of the universe is approximately that of pure de Sitter 

spaee. N oting that the TJ slow roll parameter can be written as 

the slow roll condition ITJI « 1 therefore implies that the inflaton field must be light 

compared to the Hubble sc ale m « H. Henee the inflaton field fluctuation is expected 

to behave very much like a light quantum field in de Sitter spaee. 

As a warm-up exercise for the full calculation we therefore consider the dynamics 

of sorne quantum field, X, (not neeessarily the inflaton) in pure de Sitter spaee (see, 

for example, [12]). For the sake of simplicity we assume a potential of the form 

V = m~x2 /2. The x-field is expanded in terms of annihilation/creation operators as 

(1.21) 

where h.c. denotes the Hermitian conjugate of the preeeeding term. The annihila­

tion/ creation operators satisfy 

The c-number valued mode functions Xk(t) satisfy an equation of the form 

.. 3H' [k2 2] 0 Xk + Xk + a2 + mx Xk = (1.22) 

The calculation is simplest in terms of conformaI time, T, which is related to cosmic 

time as adT = dt. For pure de Sitter spaee a(T) = -l/(HT) and it is convenient to 
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define the conformaI time Hubble scale as 

a' 1 
1t - =--

a T 

In terms of conformaI time (1.22) becomes 

and, defining Vk = aXk, this equation simplifies to 

" [2 1 (m~ )] Vk + k + T 2 H2 - 2 Vk = O. (1.23) 

This is the variable in terms of which the action is canonically normalized 

so that the field V behaves like a quantum field in Minkowski space with a time varying 

mass, meff(T), which encodes information about the expansion of the universe. The 

general solutions to (1.23) are 

(1.24) 

where the order of the Hankel functions is Il = V9/4 - m~/ H2. This analysis makes 

no assumptions (yet) about the size of mx/ H and aU the formulae we derive are valid 

for arbitrary complex Il unless otherwise stated.3 Notice that -T 2 0 for all t so that 

the arguments of the Hankel functions are always positive definite. 

In the solution (1.24) there are two unknown coefficients ci(k), i = 1,2 corre­

sponding to the two initial data required to uniquely specify the solution of a second 

order differential equation. How should one fix the initial data? Inspection of (1.21) 

suggests that different choices of normalization for the mode functions Xk will lead 

to alternative definitions of the annihilation/creation operators. Since the vacuum 

is defined by aklO) = 0 it follows that different initial data correspond to different 

30f course, for X corresponding to the inftaton perturbation we are interested in mx « H. 

However, for the time being we leave mx unspecified. The behaviour of heavy fields in de Sitter 

space will be relevant for the analysis of chapter 6. 
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vacuum choices. This is a standard issue is curved space quantum field theory: there 

is no unique prescription for how to choose the vacuum state.4 There are many in­

teresting physical consequences associated with this ambiguity, however, a complete 

discussion would be out of place here. (Indeed, the above discussion can be put on 

rigorous footing using the tools of curved space quantum field theory.) For our pur­

poses it is sufficient to note that on small scales k/(aH) = -kT» 1 de Sitter space is 

indistinguishable from Minkowski space. Thus, a natural presciption for normalizing 

the modes Xk will one be which reproduces the weIl known Minkowski space result 

Vk = e-ikT /V2k on small scales. This choice is refered to as the Bunch-Davies vacuum 

prescription. Thus, we fix ci(k) by demanding that 

(1.25) 

for -kT» 1. The solution (1.24) reproduces the desired asymptotics (1.25) with the 

choice 

The solution for the Mukhanov variable Vk , for aIl k, becomes 

~ [i7r ( 1)] () Vi ( T) = 2 exp 2 v + 2 H} (-kT) (1.26) 

In terms of cosmic time and the original field variable (1.26) becomes 

Xk(t) = ~ j1f exp [i7r (v + ~)] H(l) (~) . 
2 Y -;Jjj 2 2 v aH 

(1.27) 

Ultimately we will be interested in the large scale behaviour of this solution. Taking 

the limit -kT ---+ 0 of (1.26) gives 

_V~_7rT exp ri; (v+~)] (1.28) 

x [r(v~ 1) (-k;)" -/~) (-k;f] 
4Indeed, this ambiguity is already present in flat-spaee quantum field theory. However, sinee 

Minkowski space enjoys a high degree of symmetry, once the zero-particle state has been defined 

then aU inertial observers will agree on this vacuum. 
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To simplify further we should foeus on either mx/ H > 3/2 or mx/ H < 3/2. 

We first eonsider a field which is heavy compared to the Hubble sc ale mx » H 

(not the infiaton) so that v ~ imx/ H is pure imaginary. How do the two terms 

in the square braces of (1.28) compare? The functions (_kT)±imx/H are oscillatory 

so the relative magnitude of these two terms depends only on the gamma function 

prefactors. Using the results (for (3 real and arbitrary complex z) 

r(1 + z) = zr(z), Ir(l + i(3) 1 = 
7r(3 

sinh(7r(3) 

from the theory of gamma functions we find that for mx/ H » 1 

1 
1 1 ~ (7rmx ) r-v --exp--

r(l + imx/ H) 27rmx 2H' 

f2rli (7rm) Ir( imx/ H) 1 r-v V -:;;;; exp - 2H
x 

so that the first term in the square braces on the second line of (1.28) dominates at 

large mx/ H. Going back to the original variable we find 

1 1 
-3/2 1 

Xk r-v a 23/2 y'mx for mx » H (1.29) 

on large scales -kT « 1. 

We consider now a field (sueh as the inflaton) which is light compared to the 

Hubble scale mx «H. In this case v ~ 3/2 is pure real and the first term in the 

square br aces in (1.28) goes to zero and we have 

on large sc ales - kT « 1. 

H 
IXk 1 r-v -- for mx « H 

y'2k3 
(1.30) 

Notice that for any value of mxl H we have, by construction, the asymptotics 

(1.31) 

on small sc ales - kT » 1. 
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We now define the power spectrum of the field in terms of the two-point funetion 

as 

(1.32) 

where 

(1.33) 

The quantity n in (1.33) is the spectral index. The spectrum is called scale-invariant 

if n = 1, blue-tilted if n > 1 and red-tilted if n < 1. 

From equation (1.29) we see that any heavy field in de Sitter space will have a 

large-seale spectrum with a spectral index n = 4 and which is damped as a(t)-3/2 = 

e-3Ht
/

2
. On the other hand, from equation (1.30) we see that any light field in de 

Sitter space will have a large-sc ale speetrum which is almost sc ale invariant 

n = 1 + 3 - 21/ c--.J 1 + 0 (;:) (1.34) 

and which suffers no exponential damping. We expect, then, that inflation should 

generate a nearly scale invariant spectrum of perturbations on large scales. In the 

next subsubsection we will confirm this intuition. 

The Full Calculation 

The previous calculation shed sorne light on the dynamics of quantum fields during 

inflation, however, this calculation neglected departures from pure de Sitter expan­

sion. Furthermore, this calculation negleeted the possibility of met rie perturbations. 

Because Einstein's equations (1.4) couple the geometry to the matter, it is clear that 

quantum fluctuations in the inflaton 8rp will induce fluctuations of the geometry 8g,J,//' 

A consistent calculation must include both. 

We exp and the inflaton field in perturbation theory as 

(1.35) 
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The most general expansion of the metric is 

goo -a( T)2 [1 + 2q)] 

gai - a(T? [OiW + Wi] 

gij a(T)2 [(1 - 2'lj;)6ij + DijX 

+ (OiXj + OjXi + Xij)] 

12 

(1.36) 

(1.37) 

(1.38) 

where D ij = OiOj - ~6ijOkOk is a trace-free operator. It is conventional to decom­

pose the metric perturbations according to their behaviour under three-dimensional 

rotations. The fluctuations are therefore decomposed such that the vector perturba­

tions are transverse OiWi = OiXi = 0 while the tensor perturbations are transverse, 

traceless and symmetric: OiXij = 0, X~ = 0, Xij = Xji' This scalar/vector/tensor de­

composition is an inherently nonlocal procedure, however, it is both conventional and 

convenient. 5 Clearly at linear order the scalar, vector and tensor modes will decou­

pIe and we can study each type of perturbation independently. Our calculation will 

focus on the scalar perturbations. It can be shown that vector perturbations decay 

in an expanding universe while tensor perturbations are suppressed with respect to 

the scalar perturbations by slow roll parameters. 

There is one further subtlety to this perturbative expansion. As we have men­

tioned, quantum fluctations in the matter sector 6cp will induce metric perturbations 

6gf-tv. However, it is easy to convince oneself that metric perturbations can also be 

induced by performing coordinate transformations of the form 

(1.39) 

where we assume that af-t is a small perturbation. Clearly fluctuations associated 

with (1.39) have no physical meaning. This problem is completely analogous to 

what occurs in ordinary electromagnetism: the Maxwell equations of-tFf-tV = 0 are 

insufficient to completely determine the vector potential Aw The ambiguity is related 

5 At linear order and focusing on inflationary perturbations this nonlocality is not manifest, how­

ever, if one considers second order perturbations or perturbations associated with field configurations 

having compact support (such as cosmic strings) then this nonlocality becomes quite evident [13]. 
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to the freedom to perform gauge transformations in electromagnetism AM -> AM +OMa. 

Of course, this ambiguity does not appear in the physical quantities; for example the 

field strength tensor FMV = 0MAv - ovAM is invariant under AM -> AM + 0Ma . Similarly, 

the freedom to perform coordinate transformations (1.39) represents a gauge freedom 

in cosmological perturbation theory. Just as in other gauge theories, there are two 

ways to proceed: 

1. Rewrite the system in terms of quantities which are gauge invariant and work 

only with those quantities. 

2. Fix the gauge by placing sorne constraints on the metric perturbations. One 

must still be careful to ensure that whatever physical quantities are computed 

in the end are independent of the gauge fixing. 

We will adopt the gauge-fixed approach which is typically simpler. We employ the 

longitudinal gauge, defined by w = X = 0, so that the metric, ignoring vector and 

tensor modes, takes the simple form 

The perturbed Einstein equations oC~ = M;;20T/) can be found in elsewhere (see 

[9] for example) and we do not reproduce them here. The oC; = Mp-2oTJ Einstein 

equation for i =/: j implies that cp = 'lj; which is a weIl known result. We apply this 

simplification in the following. The oC? = Mp-2oT'P Einstein equation is a constraint 

1 1 1 J: 
cp + Hcp = 2M2 CPo ucp 

p 

(1.40) 

which means that the first order metric perturbation cp and the first order infiaton 

perturbation orp are not independent. Once either q; or Jcp is known, the othcr may be 

computed from (1.40), though it is simplest to solve for cp and use (1.40) to compute 

ocp. One obtains a dynamical equation for the metric perturbation by applying (1.40) 

to the sum of ocg = M;;2oT3 and OC~ = M;;20Ti
i Einstein equations. The result is 

(1.41) 
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Notice that the perturbed Klein-Gordon equation for the inflaton is not needed to 

close the system of equations. We now discuss the slow roll solutions of (1.41). 

The conformaI time slow roll parameters are 

E 
Ji' rt,2 c.p~2 

1 - Ji2 = 2" Ji2 ' (1.42) 

E-Tl 
c.p~ 

Jic.p~ - 1. (1.43) 

During a pure deSitter phase E = Tl = 0 and the scale factor evolves as a( T) = 

-l/(HT) with H constant. During inflation, however, the Hubble scale evolves slowly 

as (1.42) so that for small E one has [9] 

and 

1 1 
a(T) = ---­

HT1- E 

a' -1 
Ji = - = iL = aH = ----,-----,-

a T(l - E) 
(1.44) 

The dynamical equation for cjJ(l) (1.41) can be rewritten in terms of the slow roll 

parameters as 

(1.45) 

where we used (1.44) and dropped higher order terms in E, Tl. Treating the slow roll 

parameters as constant, the equation (1.45) has an exact solution 

(1.46) 

where v rv 1/2 + (3E - Tl) to lowest order in slow roll parameters. 

It remains to fix the coefficients cI(k), c2(k) in (1.46). The variable in terms of 

which the action is canonically normalized is the Mukhanov variable [10] 

Vk = a [6c.pk + ~ cjJk] 

where the inflaton fluctuation is solved for using the constraint equation (1.40). We 

fix cl(k), c2(k) by requiring that Vk rv e-ikT /..J2k on small scales -kT» 1 which 

corresponds to the usual Bunch-Davies vacuum choice. This leads to 

( ) _ . .!ifiE exp ri; (v + 1/2)] 
Cl k - 1, M 2 2k ' 

p 
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The solution for the metric perturbation, then, lS 

i fiE ~ exp [~(v + 1/2)] 
V 2 Mp 2k 

X (_T)1/2+'fJ-EHS1) (-kT). (1.47) 

It is straightforward to construct the inflaton fluctuation using (1.40). The quantity 

relevant for observation i8 the curvature perturbation 

1-{ 1-{ 
(= --V = -cjJ- -bcp 

acp~ cp~ 

This quantity is gauge invariant and is approximately constant on large sc ales (in the 

absence of nonadiabatic pressure). The resulting large scale power spectrum (defined 

as in (1.32)) is 

( 
k ) n-l 

Pt;, = A2 aH (1.48) 

where the amplitude of the spectrum is 

(1.49) 

and the spectral index is 

n - 1 = 2ry - 61: (1.50) 

so that ln - 11 « 1. The spectrum (1.48) is meant to be evaluated when sc ales 

relevant for CMB observations exited the horizon, roughly 60 e-foldings before the 

end of inflation. It turns out that Ne rv 60 also coincides with the minimal amount 

of inflation necessary to resolve the horizon problem of big bang cosmology. 

Quantum fluctuations which are "born" on small sc ales -kT» 1 are redshifted by 

the expansion of the universe and become classical as they cross the horizon -kT = 1. 

The quantum to classical transition is most easily seen by writing the hamiltonian in 

the form Hk = wk(nk+1/2) where Wk is the energy eigenvalue and nk is the occupation 

number. It is straightforward to show that 
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so that once -kT « 1 we have nk » 1, the "quantum" factor of 1/2 in Hk can be 

neglected and the fluctuations may indeed be considered classical. 6 

The CMB 

During inflation quantum fluctuations of the inflaton field with comoving wavenumber 

k are generated by the usual Minkowski space vacuum fluctuations on small scales 

k »aH, as in (1.31). The physical wavenumbers kphys = k/a rv e-Htk are redshifted 

by the expansion of the universe (while H(t) remains approximately constant) until 

horizon crossing k = aH (or - kT = 1). Once a mode exits the horizon it becomes 

"frozen in" as a classical perturbation, as in (1.30). 

After inflation the energy density in the inflaton field must be transferred to visible 

radiation in or der to make contact with the successes of the big bang model. This 

pro cess is called reheating (see [14] for a review). Immediately after reheating the 

universe is radiation dominated so that a(t) rv tl/2 , H(t) rv rI. However, because 

Prad rv a-4 while Pdust rv a-3 it follows that eventually pressureless dust will come 

to dominate. During the matter dominated The crucial point is that after inflation 

physical wavenumbers red-shift as k/a rv kt-a with sorne Ct < 1 while H(t) rv rI. 

Thus modes which crossed the horizon during inflation will subsequently re-enter the 

horizon at sorne point after reheating. 

As perturbation modes (k re-enter the causal horizon during radiation- or matter­

domination they create density perturbations bpk by the gravitational attraction of 

potential wells and ultimately induce the observed temperature fluctuations bT in the 

CMB. The amplitude of the spectrum Aç (equation (1.49)) fixes the amplitude of the 

temperature fluctuations bT /T in the CMB. Consistency with observation requires 

bT /T rv 10-5 on large angular sc ales [15] which translates into 

( )

1/4 

~ = 6.7 x 1016GeV (1.51 ) 

We refer to (1.51) as the COBE normalization of the inflaton potential. 

6 Another way to see the quantum-to-classical transition is by considering the commutator 

[Oip, 00]. It is straightforward to show that this quantity damps to zero exponentially as -kT --* O. 
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The prediction ln - 11 « 1 (equation (1.50)) is in excellent agreement with ob­

servation. Indeed, recent WMAP analysis [16] suggests that n "-' 0.95. Inflation 

also predicts a nearly scale-invariant spectrum of tensor perturbations (gravitational 

waves) with an amplitude that is suppressed by a factor of E as compared to AC, 

though these have yet to be observed. 

1.1.3 Gaussianity of the Perturbations 

In simple single-field models of inflation (which, so far, we have limited our discussion 

to describing) the perturbations are almost gaussian. Working strictly to linear order 

in perturbation theory we find that 

((kl (k2(kJ 

((kl (k2 (k3 (k4) 

o 

((kl (k2) ((k3 (k4) + perms 

where "perms" denotes various permutations of the momenta ki . Similarly all higher 

odd n-point functions vanish while aIl even n-point functions can be reduced to prod­

ucts of two-point functions. This result is simply a consequence of Wick's theorem 

and the fact that ( contains only one annihilation/creation operator. Thus, working 

strictly to linear order in perturbation theory, the two-point function is the only in­

dependent statistic. This is precisely the definition of gaussian perturbations. Since 

the inflationary perturbations are small (they are indeed suppressed as compared to 

the homogeneous background by bT /T "-' 10-5) it follows that linear theory should 

be applicable and that the perturbations must be approximately gaussian. 

However, Einstein's equations are nonlinear and one generically expects some 

nongaussianity to be generated during inflation, though one must work beyond linear 

or der in perturbation theory in order to see this effect (for a review see [17]). From 

the above discussion it is clear that the three-point function (the bispectrum) is the 

lowest order statistic which will allow us to discriminate between gaussianity and 
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nongaussianity. Defining P, B by 

((k1 (kJ 

((kl (k2(k3) 

P(k) 8(k1 + k2 ) 

(27r)-3/2 B(k) 8(k1 + k2 + k3 ) 

it is conventional to define the nonlinearity parameter fNL by 

18 

The nonlinearity parameter provides a dimensionless measure of the nongaussianity 

in a particular model of inflation. 

We will return to the issue of calculating fNL using second order cosmological 

perturbation theory in chapter 6. For the time being we sim ply cite the result of a 

full calculation. In a simple, single field inflationary model (such as we have discussed 

in the previous subsection) one finds that [18] 

5 
fNL rv -(n - 1) 

12 

so that IfNLI « 1. On the other hand, observation provides the rather weak constraint 

IfNLI :s 100 [16]. Even though the simplest models predict negligible nongaussianity 

there is still considerable interest in computing fNL in various scenarios because this 

quantity is extremely model dependent and can (at least in principle) be used as a 

powerful tool to discriminate between various realizations of inflation. Furthermore, 

an observation of IfNLI ~ 0(10) would be strongly indicative of sorne novelty in the 

dynamics during inflation or shortly afterwards. 

1.1.4 Inflation from String Theory 

Despite the great phenomenological success of inflation, it remains a paradigm in 

search of a theory. There are a number of unresolved problems concerning this sce­

nario including: 

1. What is the infiaton? The above construction gives no information about how 

the field <p should be interpreted from a particle physics perspective. 
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2. How does reheating after inflation take place? A complete understanding of 

reheating after inflation will require that we understand how the inflaton field 

couples to standard model degrees of freedom. We will discuss this issue in 

much greater detail in chapters 2 and 4. 

3. The issue of fine tunings. The requirements E, 1171 « 1 and (1.51) seem to require 

considerable fine tuning of the inflaton potential. For ex ample , the chaotic 

inflation model [19J with V = m 2<p2/2 requires <p » Mp in order to achieve 

slow roll. At such large field values one might expect nonrenormalizable terms 

in the potential to become important and generically such corrections would 

spoil the flatness of the potential. Furthermore, the COBE normalization in 

this model demands m rv 1013 Ge V which means that we have introduced a 

hierarchy into the particle physics model building. It remains an outstanding 

problem to explain convincingly why the inflaton potential should be so flat and 

how this flatness is protected against quantum corrections. 

4. The trans-Planckian problem. If inflation lasts much longer than the minimal 

rv 60 e-foldings then physical scales of current interest will have started out 

smaller than the Planck scale. However, on sc ales comparable to the Planck 

scale one expects quantum gravit y effects to become important and the semi­

classical analysis detailed above to be invalidated. 

This list could be extended (see, for example, [10]). These, and other, outstanding 

problems provide a strong motivation to try to embed inflation into sorne complete 

theory of particle physics which incorporates quantum gravity. lndeed, it is difficult 

to imagine a convincing resolution to the above problems which does not involve 

identifying the inflaton as a physical degree of freedom in sorne ultra-violet (UV) 

complete theory of particle physics. To date there is only one viable candidate for 

such a theory: string theory. 

The starting point of string theory is the assumption that elementary particles 

are not point-like but are, in fact, one-dimensional extended objects (or strings). The 

characteristic string length is taken to be extremely small so that these objects will 
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appear as point-like at low energies. These strings may appear as closed loops or they 

may be open. In this picture the various species of particles which we observe in nature 

arise as distinct vibrational modes of the string. Remarkably, one of these excitations 

describes a massless spin-2 particle - the graviton - which mediates the gravitational 

interaction in the same way that the photon mediates electromagnetic interactions. 

Hence string theory is a quantum theory of gravit y which has the potential to unify 

aIl the observed forces in nature. (In fact, despite considerable effort, string theory 

seems to be the only such theory.) It is weIl known that string theory predicts the 

existence of compact extra spatial dimensions (in addition to the three large spatial 

dimensions which we observe). The theory also predicts the existence of extended 

higher dimension al objects known as "branes" (short for "membrane") on which open 

strings can end. The difficulty of finding direct laboratory probes of string theory is 

weIl known. We will discuss below the possibility of gaining an observational window 

into string theory through cosmology. 

Why can string theory help with the aforementioned problems of inflation? String 

theory provides inflationary model builders with a vast number of scalar fields, sorne 

of which may provide candidates for the inflaton. Since string theory is a unified 

theory of particle physics, it is in principle possible to identity how sorne candidate 

inflaton couples to standard model degrees of freedom and hence it should be possible 

to address the reheating issue quantitatively. Furthermore, it seems to be possible to 

generate large hierarchies in string theory in a natural way by taking advantage of the 

properties of warped compactifications [20, 21] so there may be hope to resolve the 

naturalness issues which plague inflation. FinaIly, string theory is a complete theory 

of quantum gravit y, hence it should be able to describe dynamics aIl the way down to 

the Planck scale and it is at least in princip le possible to resolve the trans-Planckian 

problem. 

We have argued that the search for inflation in string theory is of practical interest 

for a cosmologist because it is probably necessary in order to resolve the "big" open 

questions associated with inflation. Embedding inflation into string theory is also 

interesting from the perspective of a string theorist because it might provide a rare 
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observational window into the theory. 

For the reasons described above there has been intense effort on the part of both 

cosmologists and string theorists to develop inflationary models in string theory (there 

are far too many proposaI to cite here, see [22] for a review and see subsequent 

chapt ers for more comprehensive referencing of the literature). Though none of the 

existing proposaIs is completely satisfactory, there has been considerable progress 

recently. In particular, there has been progress in developing fully string theoretic 

brane inflation models for which the moduli (scalar fields describing the size and shape 

of the compact dimensions) are stabilized7 by the addition of fluxes [24]. Furthermore, 

in this construction it is possible to identify where the standard model degrees of 

freedom should reside [25]. In such a construction it is possible to address the issue 

of reheating after inflation in a quantitative manner [3] (see also [26] for subsequent 

work). This constuction is not without problems [27J; however, we feel that it is 

encouraging that realistic string theory constructions can begin to address (at least 

sorne of) the aforementioned problems of inflation. 

In chapter 7 we will describe a novel string inflation model for which slow roll 

inflation can proceed even with an extremely steep potential. This provides a partic­

ularly interesting possibility for circumventing the issue of fine tuning of the inflaton 

potential. 

It is worth spending sorne time thinking about why string theory and cosmology 

can usefully interact with one another [28]. It seems surprising that this should be pos­

sible since cosmology deals with the properties of the large scale universe while string 

theory (ostensibly) describes physics on the smallest scales. Shouldn't the principle of 

decouplingS forbid string theory from playing any interesting role in cosmology? It is 

7This stabilization is required for consistency with observation. Time variation of the extra 

dimensions willlead to a time variation in the four-dimensional effective Newton's constant. Such 

time variation is tightly constrained by observation (see, for example, [23]). 

8For example, we know that atoms are made up of smaller constituent electrons, protons and 

neutrons and futhermore that the protons and neutrons are made up of quarks and gluons. However, 

a detailed understanding of atomic properties (like chemistry) do es not depend on the complicated 
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quite remarkable that string theory and cosmology can usefully inform one another. 

Indeed the fact that this is possible was already evident from the trans-Planckian 

problem (above). The possibility that inflation could be sensitive to quantum gr av­

ity effects means that, from the perspective of a string theorist, the trans-Planckian 

problem is really the trans-Planckian window of opportunity [10]. There appear to 

be two main reasons why inflation and string theory can interact [28]: 

1. Access to high energy scales. Inflation probably took place at an extremely high 

energy scale, close to 1016 GeV, for which stringy degrees of freedom would 

be relevant. (From eq. (1.51) it is clear that the scale of inflation must be 

V 1
/

4 ~ 1016 GeV because E < 1. A priori there is no reason why we should be 

close to the upper bound since almost any value E ~ 10-2 is compatible with 

observation. However, one might argue that because E « 1 requires fine tuning 

it follows that the most natural value of E is the largest value which is compatible 

with observation. Furthermore, recent reconstructions of the inflaton potential 

from the CMB data seem to suggest a large value of E [30].) 

2. Dependence on UV sensitive properties. The phenomenological success of in­

flationary model building relies on properties of the underlying particle physics 

model (like the flatness of the potential) which are UV sensitive. Inflation re­

quires light scalar masses m < H (to keep 1171 < 1), but scalar masses are 

notoriously difficult to keep small when integrating out high energy degrees of 

freedom. 

1.2 Tachyonic Instabilities 

Historically the term "tachyon" has been used to refer to hypothetical particles which 

travel faster than light. Such particles would carry negative mass-squared (m2
) since 

the relativistic relation v = pl Jp2 + m 2 between velocity v and momentum p clearly 

details of the interactions between quarks. In retrospect, the decoupling of small sc ales from large 

scale physics was a prerequisite for the suc cess of physics as a discipline. 
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gives v :s; 1 unless m2 < O. From a more modern perspective the idea of faster­

than-light propagation is abandoned and the term "tachyon" is recycled to refer to a 

quantum field with m2 
- V" < o. Clearly V" can be negative about a maximum of the 

potential. Fluctuations about such a point will be unstable (since the dynamics of the 

system will tend to minimize the energy) and hence tachyons are associated with the 

presence of sorne physical instability. Tachyons play an important role in symmetry 

breaking and the formation of cosmic defects. We will illustrate this below using an 

extremely simple example: a single real scalar field with a double well potential. The 

results below generalize readily to more complicated theories. 

1.2.1 Tachyons in Field Theory 

Consider the field theory 

s = - J d4x [~é)flo-é)flo- + ~ (0-2 - v
2)2] (1.52) 

The potential is V(o-) = ). (0-2 - V 2)2 /4 and the Klein-Gordon equation 

has static solutions at the critical points where V' = O. This potential has critical 

points a = 0 and a = ±v. 

Let us first con si der linearizing the the ory about the point 0- = 0 which has 

V"(O) < 0 and hence represents a tachyonic maximum. Writing 0- = 0 + So- for sorne 

small fluctuation Sa the mode functions obey 

(1.53) 

80 that 

S 1 VÀv 2 -k2 t 
O-k t'V v'2ke 

and the modes with k < V).v grow exponentially. Quickly the fluctuations become 

large and the linearized approximation breaks down once «(Sa)2)1/2 t'V v. We see that 



1.2 Tachyanic Instabilities 24 

if the field is initially lacalized near a = 09 then it will quickly roll towards the critical 

points a = ±v. 

One the other hand, one might imagine linearizing about the critical points ±v 

as a = ±v + 6a. In this case the mode functions obey 

so that 

À 1 iV2Àv2 +k2 t Uak rv --e 
V2k 

which describes small, stable oscillations about the vacuum. The critical points with 

V" > 0 therefore correspond to the true vacua of the theory while the point a = 0 is 

the false (unstable) vacuum. 

To see the connection to symmetry breaking, notice that the original field theory 

(1.52) enjoys a refiection symmetry associated with a ----+ -a. However, writing 

a = +v + X (we could equally weIl have chosen -v + X, the point is that we have to 

choose some vacuum) we get an action for the X field of the form 

which cantains a term proportional to X3
• We see that the refiection symmetry of the 

original action is spontaneously broken by the vacuum. 

It is interesting to note that the action (1.52) admits a classical soliton solution 

depending on one spatial coordinate Xl = X 

a(x) = vtanh (V>.. v x) (1.54) 

called the "kink". This solution interpolates between the vacua a = -vat X = -00 

and a = +v at x = +00 while the field remains trapped in the false vacuum at 

x = 0 (the core of the kink). Embedded into the full 3 + I-dimensional spacetime 

the kink describes a two-dimensional membrane callcd a domain wall, with thickness 

90ne could imagine trapping the field near the unstable maximum by thermal effects or else by 

interactions with other fields. We will give an explicit example below. 
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~x rv À -1/2V-1, which is most easily seen by constructing the stress-energy tensor 

associated with this topological defect 

T OO _T22 = _T33 = À~4 sech (V:\ v x) 
o (1.55) 

These results generalize in a straightforward manner to more complicated tachyon 

actions. Of particular interest is the generalization of (1.52) to a complex tachyon. 

In that case the symmetry which is spontaneously broken is U(l). The theory admits 

a soliton solution called the vortex which appears as a one-dimensional topological 

defect called the cosmic string, when embedded into the full spacetime. 

1.2.2 Hybrid Inflation and Tachyonic Preheating 

The discussion of the previous subsection can be made more concrete by considering 

an explicit cosmological application. We will consider hybrid inflation [31], which is 

described by the action 

s = ~; J d4xv1-9 R 

J d4xv1-9 [~(a<p)2 + ~(ao-? + V(o-,<p)] (1.56) 

with 

(1.57) 

Initially we take g2<p2 > Àv2 so that 0- has a positive mass-squared and remains 

trapped in the false vacuum (T = O. This is the inflationary phase. The effective 

potential driving inflation is then 
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where we assume that Àv4 « 2m2rp2 throughout inflation. lO The slow roll parameters 

along the inflationary trajeetory are 

so that if Àv4 « 2m2rp2 then E « 1] and n - 1 A.J 21]. During the slow roll phase the 

inflaton evolves as 

À1/2V (m2(t - te)) À1/2V (a(t) )-r] 
rp(t) = --exp - = -- --

9 3H 9 a(te) 

where te is the time at whieh rp = rpe - À1/2V/g and H A.J À1/2V2/(2V3Mp). One 

ean show that the COBE normalization in this model fixes the inflaton mass as 

m 2 
A.J 230gÀv5 

/ M; while the eonstraint ln - 11 ~ 10-1 requires gv / Mp ~ 5 X 10-5 . 

Notice that 1] > 0 so that this model always gives a blue-tilted speetrum whieh is 

disfavoured by the recent WMAP data. 

Once t > te the field 0" beeomes tachyonic. The subsequent evolution is called 

tachyonic preheating [32, 33]. If the dimensionless eouplings g, À are not too small 

then the system experiences a very strong force along the unstable direction in field 

space and the tachyonie instability will bring inflation to an end very quickly (this 

corresponds to satisfying the so-called "waterfall conditions" of hybrid inflation). In 

this regime the tachyonic preheating completes in a time which is very short compared 

to H-1 and we are justified in neglecting the expansion of the universe to describe 

this phase. It is also common to make the "instantaneous queneh" approximation 

in which one negleets also the time variation of the mass term m; _ -Àv2 + g2rp2. 

In this approximation one takes the 0" field to be massless at t = te while quiekly at 

t > te a tachyonic mass m; = -Àv2 is turned on. The large sc ale mode functions 

grow exponentially as in (1.53) and the variance of the fluctuations grows as [34] 

1 1)..v2 

Àv
2 

[ J ((60")2) = - dk2 
2 2 sinh2 (t - t e )JÀv2 - k2 

8n 0 Àv - k 

I°It is not necessary to demand that the false vacuum energy Àv4 /4 dominate to achieve successful 

inflation, however, if the mass term dominates then this model is not different from chaotic inflation. 
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where we have neglected the divergent vacuum contribution. This tachyonic growth 

persists until (( 6(J?) rv v2 at which point the dynamics is dominated by oscillations 

about the true minima ±v and the symmetry breaking proeess has completed. 

We will discuss sorne cosmological implications of tachyonic preheating after hy­

brid inflation in chapter 6, showing that preheating can le ad to observable conse­

quences in the CMB. In particular, we will show that it is possible to generate signif­

icant nongaussianity during tachyonic preheating. 

We see that once t > te the tachyon field rolls down the unstable direction towards 

the true minima ±v. Causality forbids the tachyon field (J from rolling to the same 

vacuum in two spatial regions which are causally disconnected. The universe therefore 

fragments into domains of (J = +v and (J = -v. Continuity of the field (J means that 

there must be sorne region in between these domains where the field remains trapped 

at (J = 0: this is exactly the kink solution (1.54). This me an that tachyonic preheating 

will pro duce a network of domain wall topological defects in the early universe. Since 

during radiation/ dust domination the causal horizon is rv H-1 it follows that we 

must expect at least one defect per Hubble volume. However, this is merely a lower 

bound on the produced number of defects and typically the microscopie dynamics 

will pro duce a network with characteristic defect separation rv À -1/2v-1 [32, 33, 34]. 

(The argument above is a caricature of the Kibble mechanism [35] which ensures that 

topological defects will be formed at cosmological phase transitions. See [36] for a 

more modern review.) After formation the defect network will undergo sorne highly 

nontrivial nonlinear dynamics which is thought to le ad to a scaling solution so that 

at late times there is roughly one defect per Hubble volume, regardless of the initial 

density.ll We will discuss the formation of topological defects at the end of brane 

inflation and the cosmological consequences of the defect network in chapter 5. 

We should mention that a cosmologieal network of domain walls is not compatible 

with late-time cosmology sinee these defects will overdose the universe unless their 

11 In the case of a cosmic string network, the existence of such a scaling solution is fairly well 

understood. For a do main wall network this remains to be demonstrated conclusively [37, 38], 

however, a scaling solution is expected. 
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tension is fine tuned to be unreasonably small. The above discussion also holds with 

only minor modifications for preheating with a complex tachyon which leads to the 

formation of a network of cosmic strings. Cosmic string networks are not ruled out 

and lead to a variety of interesting observational consequences. 

1.2.3 Tachyons in String Theory 

Certain D-brane configurations in string theory carry no conserved charges and hence 

are unstable to decay (see [39, 40J for reviews). In particular, the following systems 

are unstable: 

1. The brane-antibrane system. The lightest stretched string mode between a 

parallel brane and antibrane separated by a distance y has a mass-squared 

given by 

2 = 2 [_~ + (m sy )2] 
m ms 2 (27f)2 

where ms is the string mass. This state become tachyonic once the branes are 

sufficiently close, signaling that the system has become unstable to decay. 

2. Wrong dimensional bran es. In type lIA/lIB string theory odd/ even dimension al 

branes contain a tachyonic excitation in the spectrum of open strings ending on 

the brane. 

3. The brane-brane system with fluxes. Certain brane-brane systems with fluxes 

turned on have tachyonic instabilities. One example in the D3/D7 system [209J 

in which case the presence of non-self-dual D7 fluxes can generate a negative 

contribution to the mass-squared of the stretched string modes between the 

branes so that a tachyon develops at sufficiently small inter-brane separation. 

The decay of unstable objects in string theory may lead to interesting cosmological 

consequences. In order to explore these consequences we must first derive an effective 

field theoretic decription of the open string tachyon. To do so we recall that the 

Dp-brane in string theory is described by the Dirac-Born-Infeld (DBI) action (see, for 
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example, [41]) 

The brane tension is 
mP+1 

T, = _8_ 

p (2n)p 

29 

(1.58) 

while the dilaton cp is related to the string coupling as e-</J = g;l and a' _ m;2. 

We define indices A, B = 0, ... ,p which run over the directions parallel to the brane 

while J-L, v = 0,'" ,D - 1 run over the full D-dimensional spacetime and a, b = 

p + 1, ... ,D - 1 run over the directions perpendicular to the brane. The coordinates 

o-A parameterize the embedding of the brane into the full spacetime. In (1.58) CAB 

is the pull-back of the spacetime metric g/-lV to the hypersurface of the brane 

CAB = 8o-
A 

8o-
B 

g/-lV 
8x/-l8xv (1.59) 

Similarly BAB and FAB are the pull-backs of the antisymmetric tensor and the open 

string U(1) gauge field strength respectively. Setting FAB = BAR = 0 and assuming 

a constant dilaton field the action becomes 

where 
m P+1 1 

T, - _8 __ 

P - (2n)p g8 

(1.60) 

Intuitively this action makes sense because 88 = 0 minimizes the surface area of the 

D-brane. We can choose the coordinates along the brane such that 

(this choice is referred to as the static gauge) so that (1.60) becomes 

8 = -Tp J dP+1xFfj JI + 8abg/-lV8/-lYa8vYb (1.61) 

where the fields ya(x) are the transverse scalars which describe the fluctuations of 

the brane surface. Notice that in the absence of transverse fluctuations the stress 
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tensor associated with the Dp-brane is of the form TAB 

while Tab = TAb = 0 (here Xo gives the position of the brane in the spaee spanned by 

We would like to generalize the Dp-brane action (1.61) to incorporate the tachyon 

field which appears on the world-volume of a wrong dimension al brane. A natural 

generalization, usually called the Sen action, is [42, 43, 44] 

(1.62) 

where T is a real scalar field describing the open string tachyon and V(T) is the 

tachyon potential which satisfies 

V(O) 

V (Tmin ) 

Tp , V"(O) < 0, 

0, V"(Tmin ) > 0 

and Tmin is the value of T which minimizes the potential (we will eventually be 

interested in the limit T min -7 (0). The configuration T = 0 is an unstable maximum 

of the potential which describes a system consisting of a single wrong-dimensional Dp­

brane. One expects the tachyon to roll to Tmin , the true minimum, which describes 

the vacuum without any Dp-brane (sinee V(T) plays the role of a time-varying brane 

tension). In a full string theory calculation the brane will decay to a gas of closed 

strings [45]. 

Though it has not been derived from first principles, the simple action (1.62) does 

a remarkably good job of describing the dynamics. In particular: 

1. This action can be obtained from string theory in sorne limit [46] with the 

potential 

V(T) = T
p 

cosh [Jls] 
(1.63) 

where ls - m;l is the string length. (For the remainder of the chapter we 

assume this potential.) 

2. This action reproduees the correct tachyonic mass in the unstable vacuum [45]. 
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3. It yields the correct stress tensor for homogeneous tachyon condensation [45, 

47,49]. 

4. The action admits soliton solutions corresponding to lower dimensional branes. 

The tension of the defect reproduces the expected D-brane tension [50]. 

5. The action for the fluctuations about the defect solutions reproduces the ex­

pected DBI action for a brane [50]. 

6. In studies of dynamical defect formation using this action, the gradient of the 

tachyon field blows up in a finite time near the core of the defect [4, 51], leading 

to a delta function divergence in the stress tensor [1]. The same result was 

observed in a fully string theoretic calculation in [47, 48]. 

7. The late time solutions close to the tachyon vacuum give a coarse-grained de­

scription of the gas of closed strings which are produced during brane decay 

[52]. 

In chapter 3 we will describe in detail the dynamics of the tachyon field close to the 

true vacua T ---+ ±oo. In particular, we will show that small initial inhomogeneities 

in the field profile will lead to the formation of caus tics where second (and higher) 

spatial derivatives of the field blow up, invalidating the effective description (1.62). 

Let us now try to construct a kink solution the action (1.62) neglecting the trans­

verse scalars ya = o. The following discussion follows closely [50]. We are interested in 

a profile which depends on only one spatial coordinate Xl x. The (x, x) component 

of the stress-tensor is 
T _ V(T) 

xx - \/1 + (oxT )2 

and energy-momentum conservation gives 8xTxx = 0 so that Txx is constant. Far 

from the core of the kink (which we take to be at x = 0) the tachyon should be in 

the true vacuum T = ±oo (recall eq. (1.54)) so that Txx = o. At the core of the 

kink T = 0 so that Txx = 0 requires oxT = 00. Clearly the solution appears singular, 

however, the stress tensor is well-defined and is inde pendent of how we regularize the 
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kink solution. Consider the profile 

T(x) = f (;) (1.64) 

where f ( u) satisfies 

f(u) = - f( -u), f'(u) > 0 V u, f(±oo) = ±oo 

but is otherwise arbitrary. This profile is meant to be understood in the limit E -+ O. 

Such a field profile satisfies energy-momentum conservation and is a solution of the 

full equation of motion for T. The resulting stress tensor gives the expected result 

for an infinitely thin defect (compare to eq. (1.55)) 

Too - -T22 = ... = Tp_10(X) 

Txx - Tox = ... = 0 

(For finite E one obtains a strongly peaked function which tends to a delta function in 

the limit E -+ O.) The fact that the kink solution is singular no longer seems surprising 

when one recalls that the D-brane should be infinitely thin. Sinee the D-brane stress 

tensor has a delta function profile, it is not surprising that tachyon kink solution must 

also be a distribution. When we consider the dynamical formation of such a tachyon 

defect in chapt ers 2 and 5 we will see that the defect forms within a finite time te and 

that the role of the parameter E which regulates the kink is played by te - t. 

As we have mentioned previously, the action describing small fluctuations about 

this kink solution exactly reproduees the expected DBI action for a stable D(p - 1)­

brane. We see that the tachyon kink, which would be expected to form during brane 

decay, is a lower dimension al brane. The above discussion also generalizes to the 

brane-antibrane system in which case the tachyon is a complex field and the resulting 

vortex-like singular soliton solution describes a codimension-two brane, which results 

as a decay product from brane-antibrane annihilation. 
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Abstract 

When p-dimensional branes annihilate with antibranes in the early universe, as III 

brane-antibrane inflation, stable (p - 2)-dimensional branes can appear in the final 

state. We reexamine the possibility that one of these (p .!.... 2)-branes could be our 

universe. In the low energy effective theory, the final state branes are cosmic string 

defects of the complex tachyon field which describes the instability of the initial state. 

We quantify the dynamics of formation of these vortices. This information is then 

used to estimate the production of massless gauge bosons on the final branes, due 

to their coupling to the time-dependent tachyon background, which would provide a 

mechanism for reheating after inflation. We improve upon previous estimates indi­

cating that this can be an efficient reheating mechanism for observers on the brane. 

2.1 Introduction 

In the last few years significant progress has been made in constructing string theoretic 

cosmological models where inflation is driven by the naturally occuring potentials 

between D-branes and their antibranes [24, 25], [53J-[55J. The formation of lower­

dimension al branes at the end of inflation can le ad to interesting signaIs: cosmic­

string-like or higher dimension al defects could be observable remnants [56, 57, 58], 

possibly providing a rare clue to the stringy origin of inflation. A more radical idea 

was explored in [59J: perhaps our own observable universe is such a defect in the 

higher-dimensional spaeetime predicted by string theory. Sinee the stable branes in 

Type lIB string theory have spatial dimensionalities which are odd, a 3-brane would 

have deseended from annihilation of 5-branes in this picture, and thus they would be 

codimension-two defects in of the effective 6D theory. Codimension-two braneworlds 

have attracted interest lately because of their novel features, which might have sorne 

bearing on the cosmological constant problem [60, 61J. 

Our interest in this scenario is motivated by questions about the efficiency of 

reheating in brane-antibrane inflation [62J. It is possible that the energy density lib-



2.1 Introduction 35 

erated from the brane collisions will be converted mostly into closed string states, 

ultimately gravitons, and not necessarily into visible radiation [63]. A generic mech­

anism which could avoid this problem was proposed in [59], wherein the reheating 

in D-brane driven inflation is due to the coupling of massless gauge fields to a time­

dependent tachyon condensate, which describes the annihilation process. However, 

ref. [59] considered only the formation of a tachyon kink instead of the more realistic 

case of a vortex, and it used a somewhat crude ansatz for the background tachyon 

field. The problem of finding the actual tachyon background predicted by string 

theory was studied numerically in [51] but no attempt was made to improve on the 

reheating computation. In this chapter we aim to analytically determine the dynam­

ics of formation of lower dimension al branes described as tachyon defects-both kinks 

and vortices-and to improve on the reheating calculation of [59]. 

Let us begin by describing the scenario we have in mind. In the simplest version of 

D-brane inflation a parallel brane and antibrane begin with sorne separation between 

them in one of the extra dimensions. Although parallel branes are supersymmetric 

and have no force between them, the brane-antibrane system breaks supersymmetry 

so that there is an attractive force and hence a nonvanishing potential energy. It is 

the latter which drives inflation. Once the branes have reached a critical separation 

one of the stretched string modes between the branes, T, becomes tachyonic and the 

branes become unstable to annihilation. The tachyon field starts from the unstable 

maximum T = 0 and roUs towards the vacuum T -+ ±oo. However, topological 

defects may form through the Kibble mechanism [56, 57, 58] so that T = 0 stays 

fixed at the core of the defect. These defects are known to be consistent descriptions 

of branes whose dimension is lower than that of the original branes [50, 64, 65]. For 

example, the brane-antibrane system has a complex tachyon field, leading to vortices 

which represent codimension-two branes. On the other hand, an unstable brane has 

a real tachyon which leads to kinks representing codimension-one branes. 

The formation of tachyon defects at the endpoint of D-brane inflation is a dy­

namical pro cess where the tachyon couples to gauge fields which will be localised on 

the descendant brane. It is thus expected that sorne radiation will be produced by 
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the rolling of the tachyon and the problem of reheating becomes quantitative: can 

this effect be efficient enough to strongly deplete the energy density of the tachyon 

fluid so the the uni verse starts out being dominated by radiation rather than cold 

dark matter? It is important to stress that though the situation is somewhat anal­

ogous to that of hybrid inflation (where the tachyon plays the role of the unstable 

direction in field space which allows for inflation to end quickly) the mechanism for 

reheating is qualitatively different. The difference is that in the low energy effective 

field theory which describes the tachyon T, the potential is minimized at T = ±oo 

and there are no oscillations about the minimum of the potential. In a normal hybrid 

inflation model, T would have a minimum at sorne finite value and the oscillations of 

T around its minimum would give rise to reheating in the usual way. In the present 

case, the time dependence of the background is monotonie, not oscillatory. Reheating 

thus might seem to resemble gravitational particle production [66] rather than the 

standard picture in which the inflaton decays. However, in this work we highlight an 

important difference between reheating through tachyon condensation and gravita­

tional particle production, which can make the former much more efficient: there is a 

divergence in the stress-energy tensor of the tachyon field within a finite time, which 

corresponds to the formation of the lower-dimension D-brane. 

In this chapter we study analytically the dynamical formation of the tachyon 

vortex and improve the reheating calculation, using a slightly simplified model of 

particle production by tachyon condensation, which captures the essential physics 

revealed by the analysis of vortex formation. In section 2.2 we review the formation of 

tachyon kinks which describes the condensation of a brane to a brane of codimension­

one. In sections 2.3-2.5 we study analytically the formation of a tachyon vortex on 

the brane-antibrane pair. Section 2.3 introduces Sen's action for the complex tachyon 

field describing this situation. Section 2.4 presents new analytic results for the time­

dependent, complex tachyon field representing vortex formation, both near to and 

far from the vortex core. In section 2.5 we show that the stress-energy tensor for 

the system splits into a localized, singular piece describing the descendant branes, 

plus a bulk contribution that describes the rolling tachyon condensate. Section 2.6 
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introduces the effective action for U(l) gauge bosons which become localized on the 

final-state 3-brane, in the rolling tachyon background. This provides a model for the 

visible radiation produced during reheating. In section 2.7 we calculate the energy 

density of this produced radiation on the 3-brane, using some reasonable simplifying 

assumptions. Section 2.8 gives our conclusions, including speculation about how the 

final brane-antibrane system could be stabilized. 

2.2 Dynamical Tachyon Kink Formation on Un-

stable Dp-branes 

In this section we review the dynamical formation of a D(p-1)-brane through tachyon 

condensation on an unstable Dp-brane, and derive a few new results. The equations 

of motion in this case are simpler than in the case of the vortex and we will use the 

analysis of this section to reinforce our conclusions when we analyze the vortex since 

many of the results are quite analogous. 

2.2.1 Effective Field Theory and Equations of Motion 

We will work with the effective action for the tachyon on an unstable Dp-brane 

[42,44]1 

(2.1) 

where we have set the gauge fields and transverse scalars to zero. We use the potential 

V (T) = Tp exp ( - T 2 / a2 ) where Tp is the tension of a Dp-brane and a = 2.) 7rO/. The 

value of the constant a is chosen so that the potential satisfies the normalization 

condition 

1
+00 

-00 V(y) dy = 27r#Tp = Tp-l (2.2) 

IThe convention for indices is that upper case roman indices {M, N} run over the full space-time 

coordinates {O,l, ... ,p}, greek indices {M,V} run over the defect coordinates {O,l} and "hatted" 

greek indices {P, i>} run over the remaining spatial coordinat es {2, 3,'" ,p}. We use metric signature 

diag( -1,1,1,···). 
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proposed in [50]. This normalization was used in [50] to fix the tension of the singular 

static kink solution of the action (2.1) to correspond to the tension of a D(p - 1)­

brane. For a time-dependent kink solution we take T to be a function of xJ.L = (t, x) 

so that the action (2.1) becomes 

(2.3) 

Static solutions of the theory (2.3) are well studied in the literature [50, 67]. lnho­

mogeneous solutions have also been studied in sorne detail [59, 51, 68, 69, 70]. The 

energy momentum tensor for (2.3) is 

(2.4) 

and the Euler-Lagrange equation of motion is 

(2.5) 

where V' (T) = a~r;:). It is worth noting, as in [71], that the equation of motion 

(2.5) is equivalent to conservation of energy 8J.LTJ.LV = 0 for nonconstant T sinee 

8J.LT J.Lv = éJVT [8J.L (a(~~T») - ~~]. It will be useful in the ensuing analysis to define 

(2.6) 

2.2.2 Solutions Near the Core of the Defect 

At the core of the kink we expeet the field to stay pinned at T = o. Consider initial 

data T(t = 0, x) = Ti, (x) and T(t = 0, x) = t(x) = 0 2. One expeets the field to start 

to roll where Ti,(x) =/:- 0 due to the small displaeement from the unstable maximum 

V'(T) = o. At t = 0 the equation of motion (2.5) is 

Ïi(x)(l + T;(x?) = T:'(x) + 2a-2Ti,(x) (1 + T;(x?). 

2For the remainder of this section the dot denotes differentiation with respect to time while the 

prime denotes differentiation with respect to the x coordinate. 
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Clearly any point Xo where 1i(xo) = T:'(xo) = 0 will be a fixed point where T(t, xo) = 

o = T(t, xo) throughout the evolution. We restrict ourse Ives only to considering 

intial data such that sgn(Ïi(x)) = sgn(1i(x)) for aU x to ensure that the solutions are 

increasing. 

At the site of the kink (which we take to be Xo = 0) we have T = 0; henee 

there should always be sorne neighbourhood of the point x = 0 where we can take 

V'(T) rv 0 so that (2.5) yields 

(2.7) 

This has an increasing solution with Til = 0 

T(x, t) = xtan [~ (t - te) +~] . (2.8) 

Near the site of the kink the slope of the tachyon field diverges as (te - t)-l as t 

approaches the critical time te, similar to the solutions in [51]. 

The finite-time slope divergence was observed both numerically and analytically 

in [51] and leads to the formation of a singularity in the energy density at t = te. This 

effect was also found in an exact string theoretic calculation in [48J. As t -+ te we 

have L:(t -+ te, X rv 0) -+ o. The case L: = const arises as a first integral of the motion 

in the static case and the limit L: -+ 0 corresponds to the singular soliton solution of 

Sen [67J. It is natural to expect, then, that as t -+ te, near x = 0, the tachyon field 

T(t = te, X = 0) coincides with the stable kink solution of Sen and the time evolution 

in this neighbourhood stops. We will argue that at this point a codimension-one 

brane has formed. 

2.2.3 Vacuum Solutions 

Away from the site of the kink the field is expected to roll towards the vacuum T -+ 

±oo so that V(T) -+ 0 at late times for x i= O. To analytically study the dynamics 

near the vacuum it is easiest to work in the Hamiltonian formalism [72, 73J sinee the 

Lagrangian vanishes in the limit V(T) -+ 0, whereas the Hamiltonian remains well­

defined. Defining the momentum conjugate to T as II = bS / bT the Hamiltonian is 
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given by H = JIP + V(T)2Jl + aiTaiT. It is useful to rewrite Hamilton's equations 

of motion, il = - ~~ and T = ~~, in a manifestly covariant way as 

aP,T8 T + 1 = V(T)2 
P, ~2 

(2.9) 

and 

(2.10) 

where ~ = niT is defined in (2.6). In the limit V(T) -t 0 equations (2.9), (2.10) 

yield 

(2.11) 

and 

(2.12) 

The solutions of (2.11) were found for arbitrary Cauchy data in [68J using the method 

of characteristics. The generic solutions exhibit the formation of caustics where sec­

ond and higher order derivatives become singular. Caustics are known to form in 

systems with a pressureless fiuid, which is a good description of the tachyon field as 

it approaches its ground state T -t 00. It is not known whether the caustics are 

a genuine prediction of string theory or just an artifact of the derivative truncation 

which leads to the Born-Infeld Lagrangian for the tachyon. 

In any case, caustics are not present in the simplest solution of eq. (2.11), T = ±t, 

which is the asymptotic form for the homogeneously rolling tachyon. For T2 = 1, 

eq. (2.12), which is equivalent to energy conservation, implies that ~(t,x) = ~(x) 

is an arbitrary function of x. In this regime the energy momentum tensor (2.4) is 

identical to that of pressureless dust Tp,v = ~(x)up,uv where up, = 8p,T is interpreted 

as the local velocity vector and ~ is interpreted as a Lorentz-invariant matter density 

[44, 72, 73]. 

2.2.4 Stress-Energy Tensor 

We are interested in the behavior of TMN as t -t tc. First we consider the neighbour­

hood near x = 0 where T(t, x) ~ kxl(tc - t) as t -t tc (see 2.8). Near x = 0, the 
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Hamiltonian is 

Too 

and 

lim Too = .;7raTp8(x) = Tp_18(x) (2.13) 
t---+t-;; 

using the normalization (2.2) for the potential. Similarly 

and Tu ---+ 0 as x ---+ O. 

Consider now the late-time behavior of TMN away from the site of the kink. Using 

the solutions of section 2.2.3 we find Tao ---+ I:(x) while Tu, TOI and TfJ,() tend to zero 

for x i:- O. 

To summarize, we find that in the li mit of condensation the energy momentum 

tensor is identical to that of a D(p - l)-brane: 

Too Tp-I 8(x) + I:(x) 

Tu - TOl = 0 

TfJ,() -Tp- 1 8(x) 8fJ,()' 

The extra bulk energy density I: (x) is similar to the result in [71] and corresponds to 

what has been dubbed tachyon matter. 

2.3 Effective Tachyon Field Theory on the Brane-

Antibrane Pair 

We would like to generalize the results of the previous section to study the dynamical 

formation of a tachyon vortex and hence a codimension-two brane. This is the more 

realistic situation, sin ce the stable D-branes of a given string theory are those whose 

dimensions differ by multiples of two. We will work with an effective action proposed 

by Sen [50] for the tachyon on a brane-antibrane pair. The field content for this system 
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is a complex tachyon field T, massless gauge fields A~l) , A~2) and scalar fields 1({), 1(~) 

corresponding to the transverse fluctuations of the branes. The index (i) = (1), (2), 

which we calI the brane index, labels which of the original branes (actually the brane 

or the antibrane) the field is associated with. The effective action is: 

s = - J V(T, 1({) - 1(~») (yi - det M(l) 

+ yi - det M(2») dP+1x (2.14) 

where 3 

'F(i) a y;I a y;I 9MN + ex MN + M (i) N (i) 

+ ~DMTDNT* + ~DMT*DNT, 
2 2 

(2.15) 

F (i) - a A(i) - a A(i) D - a _ ·A(l) + ·A(2) MN - M N N M' M - M Z M Z M· (2.16) 

For the remainder of this chapter we will ignore the transverse scalars and choose 

V(T,O) = V(T) = Tp exp(-ITI 2 ja2
) where a is chosen so that the static singular 

vortex solutions of the theory (2.14) have the correct tension to be interpreted as 

codimension 2 D-branes according the the normalization proposed in [50]. We will 

discuss the normalization of the potential proposed in [50] in more detail when we 

calculate the energy momentum tensor for the theory (2.14). 

Though the action (2.14) was not derived from first principles it obeys several 

necessary consistency conditions which are discussed in [50]. There have been various 

other proposaIs for the tachyon effective action and vortex solutions on the brane­

antibrane pair [74,75,76]. See [77] for a discussion ofvarious models including (2.14). 

3Greek indices {Il, v} are now understood to run over the coordinates {a, 1, 2} on which the vortex 

solutions depend, and hatted greek indices {il, f)} run over the spatial coordinates parallel to the 

vortex {2, 3,··· ,pl, where p = 6 for a vortex which describes a 3-brane. Upper case roman indices 

{M,N} still run over the full space-time coordinates {a, 1,··· ,pl. Finally it will be convenient later 

on to refer to lower case roman indices {m, n} which run over only the time and radial coordinates 

{a,I}. 
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2.4 Vortex Solutions on the Brane-Antibrane Pair 

To construct vortex solutions we ignore the transverse scalars and take the remaining 

fields to depend only on the polar coordinates xJ.t = (xO,X 1 ,X2) = (t,r,()) with metric 

gJ.tvdxJ.tdxl/ = -dt2 + dr2 + r2d()2. Since the vortex solution should have azimuthal 

symmetry we make the ansatz: 

T(t,r,B) = eiOf(t,r), A~l) = _A~2) = ~g(t,r) (2.17) 

with an other components of A~) vanishing. This generalizes the ansatz used in [50] 

to include time-dependence in the fields f and g. For (2.17) one has 

ie . ie , DtT = e f(t, r), DrT = e f (t, r), 

DeT = eiei(l - g(t, r))f(t, r) 

and 

F(1) = !g' (t r) = - F(2) F(1) = !g'(t r) = _ F(2) te 2' te, re 2' re 

where the dot denotes differentiation with respect to time and the prime now den otes 

differentiation with respect to the radial coordinate. The matrices Mf) N are 

-1 + j2 jf' a' 9/2 0 

[M~~] 
jf' 1 + f'2 dg' /2 0 

-d 9/2 -dg' /2 r2 + (1 - g)2 P 0 

0 0 0 6flD 

[MZ~] - [M~~]T . (2.18) 

We also have det(M(l)) = det(M(2)) since M~~ = M;;lr and so we omit the brane 

index (i) on det(M(i)) in subsequent calculations. 

The action for this ansatz simplifies to: 

(2.19) 
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wherexm = (XO,Xl) = (t,r) andgmndxmdxn = -dt2+dr2. Fornotationalconvenienee 

we define the scalar quantity 

L: t r = V(f) (,) J - det (M) 

in analogy with (2.6). The equation of motion for the tachyon is 

and the nontrivial component of the equation of motion for the gauge field is 

12 

Œ4 8m [L:érg - L:(Eab8af8bg)Emn8nf] 

- L:(1 + 8m f8mf)f2(g - 1). 

(2.20) 

(2.21) 

(2.22) 

Alhough these equations are somewhat cumbersome, inspection of (2.22) tells us 

that there should exist a solution g(t, r) such that at 9 = 1, the vacuum, we have 

8m g = O. This is the asymptotic behavior which corresponds to a vortex solution; it 

is already known from [50] that the static solution g(r) is a monotonically increasing 

function which varies between 0 and 1. Thus we shall only con si der solutions with 

the asymptotic behavior 8mg(t, r) -7 0 as g(t, r) -7 1. We will take initial data 

g(O, r) = gi(r) such that gi(O) = 0, 0 ::; gi(r) ::; 1 for aIl rand g:(r) 2:: 0 for aIl r. In 

addition we will focus on initial tachyon profiles f(O, r) = fi(r) such that fi(O) = 0 

and fI (r) > 0 for aIl r. For these initial conditions the tachyon must start rolling 

for r =1=- 0 due to its displaeement from the unstable vacuum V' (f) = o. Sinee the 

asymptotic gi(r -7 (0) -7 1 is an exact solution of (2.22) and g(t, r = 0) = 0 by 

construction, we therefore expect g(r, t) to increase towards unit y for finite r =1=- o. 

2.4.1 Solutions Near the Core of the Defect 

As in [51], to analytically study the dynamics near the core of the vortex, r = 0, we 

make the ansatz: 

f(t, r) r-v p(t)r, g(t, r) r-v q(t)r (2.23) 
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Figure 2.1: Numerical solution for p(t) and q(t) of (2.24-2.25) showing the finite-time 

slope divergence. l/p and l/q are also shown, demonstrating the linearity of these 

functions near the critical time. 

for small r. Dropping terms which are subleading in r yields a set of coupled ODEs 

for p(t) and q(t) 

(2.24) 

from (2.21) and 

(2.25) 

from (2.22). Although (2.24,2.25) are difficult to solve analytically it is straightfor­

ward to verify that in the regime where p, q and higher derivatives are large compared 

to p, q there exists an approximate solution to (2.24-2.25) where both p(t) and q(t) 

are divergent in finite time te: 

( ) Po q(t) = t
e

q
_O t pt = te - t' (2.26) 

in analogy with the kink solution of [51]. Numerical solutions to (2.24-2.25) agree 

with this prediction, as shown in figure 2.1. 
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2.4.2 Solutions Away From the Core of the Defect 

We are interested in solutions where omg -+ 0 as 9 -+ 1 and where f(t, r) -+ 00 as 

t -+ 00. Since, as we have se en above, g/(t, r = 0) is diverging in finite time, therefore 

9 must be increasing to unit y for r =j:. 0 so that at late times we expect g(t, r) to 

resemble a step function. Thus to study the dynamics away from the core of the 

defect we begin with the ansatz: 

g(t, r) = 1 - E(J"(t, r) (2.27) 

and work only to leading order in E. The leading order contribution to (2.21) de couples 

completely from (J"( t, r) 

[1(1 + 1'2) - f"(l- p) - 2j1'j' - ~{ (1- P + 1'2)] r 

[ 1 - P + 1'2] l' = o. (2.28) 

We can consistently find solutions of (2.28) by taking f to be a solution ofthe eikonal 

equation 1 - j2 + f'2 = O. Subject to this constraint the second term in the square 

braces in (2.28) vanishes trivially. The constraint that the first term in the square 

braces in (2.28) vanishes is exactly the same as the equation of motion one would 

derive from .c = - V (1) JI + omf8m f, the Born-Infeld Lagrangian. The eikonal 

equation yields the Born-Infeld equation as a differential consequence, which is not 

surprising since this amounts to minimizing the action by setting .c = O. Thus the 

PDE (2.28) is automatically satisfied wh en f is a solution of the eikonal equation. 

We find, then, that when g(t, r) rv 1 the tachyon field must obey 

(2.29) 

as in section 2.2. 

The ansatz (2.27) yields no simplification of (2.22); however, we may solve for 

(J"(t, r) given (2.29) based on more fundamental constraints. The argument of the 

square root in (2.19) must be nonnegative to ensure reality of the Lagrangian. Thus 

for f(t, r) given by (2.29) the requirement that the Lagrangian be real translates to 
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or, with f given by (2.29), 

(2.30) 

For real fields it is clear that (2.30) can only be solved when the equality is taken. 

It is worth noting that since the Lagrangian vanishes when the equality is taken in 

(2.30), this constraint ensures that the full equations of motion are satisfied. 

As in section 2.2 we can avoid the difficulties of caustic formation in the general 

solutions of (2.29) found in [68] by taking the Cauchy data to be linear and using the 

one-parameter family of solutions 

f(t,r) = at+ va2 -1r. (2.31) 

Reality of the Lagrangian requires 

aÔ" - Va2 - 1 a' = o. 

This PDE is separable and we find the solution 

( r) (t fd2=1) g( t, r) = 1 - E exp - R exp - R V ~ (2.32) 

where R is a separation constant. Note that the solution (2.32) becomes static in 

the limit a 2 ---7 1, the homogeneous rolling tachyon. In fact, for a 2 = 1 any function 

a(t,r) = a(r) satisfying the necessary boundary condition a(r ---7 (0) ---7 0 will 

generate a solution. We will ultimately be interested in this limit.4 

It is noteworthy that taking g(t, r) close to unit y (2.27) ultimately translates 

into the requirement that det(M) must vanish. The solutions (2.31-2.32) should be 

thought of as late-time asymptotics where VU) ---7 0 since f ---7 00. In this limit 

~(t, r) defined in (2.20) has the indeterminant form § as in section 2.2. The quantity 

I; is of sorne interest for two reasons. First, it parametrizes the manner in which we 

take the limits VU) ---70 and det(A) ---7 0 as we approach the vacuum state. Second, 

4The exact functional form of CT at large rand late times turns out to be of litt le importance to 

the ensuing analysis. 
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the form of I; for r # 0 will determine the form of the energy-momentum tensor in 

that regime, as in the case of the kink. Following the discussion in section 2.2 we will 

use energy-momentum conservation to place constraints on the aymptotic form of I;. 

2.5 Stress-Energy Tensor 

In this section we demonstrate that the vortex solutions found above give rise to 

the formation of a singularity in the stress-energy tensor of the tachyon field, which 

corresponds exactly with that of a codimension-two D-brane in the final state, whose 

tension has the value expected from string theory. We also derive the bulk stress­

energy tensor for the leftover tachyon matter, which continues to roll even after the 

formation of the D-brane. 

The stress-energy tensor for the action (2.14) is 

V(T y/ - y/) 
_ '(1) (2) [J _ d t M(l) (M-l)MN 

r e (1) s 

+ y''---d-et-M-(-2) ( M(2)) ~ N] (2.33) 

where the subscript S denotes the symmetric part of the matrix, z.e., (M(i} )!fN -

~[(M(inMN + (M(inMN]. The components of TMN parallel to the vortex simplify to 

(2.34) 

For the components involving t, r, e, it is useful to rewrite TlLv in terms of I; and the 

symmetrized cofactor matrix of M~2, which we define as C~)' 5 Since C(0 = C(~ we 

drop the brane index on the cofactor matrices. In the t, r, e directions, then, we have 

(2.35) 
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The nonzero components of the cofactor matrix for the Lagrangian (2.19) are 

0/2 

- [1'2 + f2(1 - g)2] (1 + f'2) + T g'2, 
/2 

- [1'2 + p(1- g)2] jf' - °4 gg/, 

/2 

- [1'2 + p(1- g)2] (1 - p) + °4 g2, 

-(1 - P + f'2). 

2.5.1 Normalization of the Potential 

In [50J Sen finds that the action (2.14) provides a good effective description of the 

tachyon on the brane-antibrane system provided the potential V(T) is chosen to 

satisfy the normalization constraint 

(2.36) 

where Tp -2 = (27r)20/Tp is the tension of a (p - 2)-brane, G(z) = G(F-1(z)), and 

{f(1') = F(b1'), g(1') = G(b1')} are the static soliton solutions to be understood in the 

limit that b -7 00. This constraint is neeessary to ensure that the vortex solution has 

the correct tension to be interpreted as a D(p - 2)-brane. In the time-dependent case 

there is some ambiguity as to how to interpret (2.36) sinee this statement appears to 

de pend on the functional form of the solutions, which would make the right-hand-side 

apparently time-dependent.6 

But physicaIly, it makes sense to impose (2.36) at t ;::: te sinee te is the time by 

which the brane has actually formed, and in the limit t -7 te the time-dependent 

solutions should coincide with the soliton solutions in the neighbourhood of l' = O. 

In the time-dependent case, it is (te - t)-l which tends to infinity (as t -7 te) and 

plays the role of b. Although the exact functional forms of G(z), F(z) are not known 

for aIl z, we can infer from (2.26) that G(z) rv qaz and F(z) rv PaZ near z = o. 

6 Arguments are presented in [50J for why (2.36) is in fact only a constraint on V(T) and not on 

the solutions T(x) themselves. 
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Furthermore, we know that G(z) ---+ 1 for sufficiently large z by construction. We 

also have F(z = 0) = 0 and F(z ::1 0) ::1 0 so that F-I(O) = 0 and F-I(z ::1 0) ::1 O. 

Let us consider the two terms under the square root in (2.36). The first term, 

z2(1 - G(Z))2, is small near z = 0 due to the overall multiplicative factor of Z2. 

On the other hand, at large z this term is also small since F-I(z) is large and hence 

G(z) = G(F-I(z)) rv 1. We conclude that the derivative term under the root in (2.36) 

dominates. At small z we have F-I(z) rv PülZ and thus G(z) rv qoF-I(Z) rv !1SL z so Po 
that G'(z) rv qo. For simplicity we take G'(z) rv qo for aIl z sinee this expression is Po Po 

multiplied by V(z) which tends to zero quickly for large z. We find then that 

(2.37) 

The normalization (2.37) is equivalent to a = 4fopo. We shall see later on that 
qo 

the relation a = 4foPO may be equivalently viewed as a constraint on the arbitrary 
qo 

function ~(t, r). 

2.5.2 Stress-Energy Tensor at r = 0 

At r rv 0 and t ---+ te the solutions (2.26) are valid and the Hamiltonian is 

T OO 2~ ([r2 + 12(1- g?J (1 + 1'2) + Œ~2 gl2) 

~ Tp qoŒ' ( P6r2 ) 
-:;: te - t exp - a2(te - t)2 

to leading order in r. Then, using a = 4fopo, 
qo 

8(r) 
471Tp _2 -­

r 

Tp -2 8(r cos e) 8(r sin e) 

and the components parallel to the vortex are 

TÎ1v -~8Î1VV(jh/ - det(M) 
r 

---+ -Tp -2 8fj,v 8(r cos e) 8(r sin e). 

The remaining components, T ll and TOI, are vanishing at r = O. The angular com­

ponent T 22 = Tee contains a delta function at r = 0; however this is an artifact of e 
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being a bad coordinate at r = 0; it can be se en that T(}(} = 0, and going to Cartesian 

coordinates confirms that the T/-Lv = 0 for the transverse coordinates, as should be 

the case for a D-brane. This result is the same as in the static case [50]. 

2.5.3 Stress-Energy Tensor at r > 0 

For r > 0 at late times the solutions (2.31,2.32) are valid. For simplicity we take 

a 2 = 1 and work only to leading order in c. The Hamiltonian is 

T OO 
t'V 2r~(t,r) 

and the remaining components of T MN vanish at late times for r > O. Notice that 

conservation of energy aM TM N = 0 at large r forces 

~(t, r) = ~(r). 

That is, ~ is an arbitrary function of r as in section 2.2. 

To summarize, we find that in the limit of condensation the energy momentum 

tensor is identical to that of a D(p - 2)-brane 

T OO 
Tp-2 8(r cos e) 8(r sin e) + 2r~(r) 

(2.38) 

with all off-diagonal components vanishing. The extra bulk energy density 2r~(r) is 

similar to the result in [71] and section 2.2 and corresponds to tachyon matter rolling 

toward T --7 00 in the bulk. 

2.5.4 Conservation of Energy 

We can constrain ~(r) using conservation of energy. Initially the system consists of 

two Dp-branes with energy density 2Tp Y2 in the (p-2)-dimensional subspace spanned 

by {xil}, where Y2 is the volume of the 2-dimensional subspace spanned by {r, el. 
At late times, after the codimension 2 brane and its antibrane have formed, the 
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energy density in the (p - 2)-dimensional space is given by the sum of the D(p - 2)­

brane tensions, 2Tp-2, and the energy density due to tachyon matter 41f J r2:E(r) dr. 

Conservation of energy thus implies 

2Tp V2 - 2Tp _2 + 41f J dr r2:E( r) 

(2V2-2(21f)2o/)Tp - 41f J drr2:E(r). 

Since :E(r) is arbitrary we can take 

:E (r) = Tp + t ( r ) 
r 41fr2 

where t(r) satisfies the constraint 

(2.39) 

J dr t(r) = -81f2ciTp • (2.40) 

The conditions (2.39),(2.40) are equivalent to (2.37) and may be thought of as an 

alternative to the normalization (2.36). 

2.6 Inclusion of Massless Gauge Fields 

We will now restrict ourselves to a (5+1)-dimensional spacetime with {M, N}={O, 1,· .. ,5}, 

{p" v }={O, 1, 2} and {P, f; }={3, 4, 5}. There are two gauge fields in the problem: A([) 

and Art), or equivalently A~ = A([) + Art) and A~ = A([) - Art), which have different 

couplings to the tachyon. We have already shown that A~ is the field which condenses 

in the vortex, hence its associated gauge symmetry is spontaneously broken. For re­

heating it is thus A! which most closely resembles the Standard Model photon. We 

will ignore fluctuations of the heavy fields A~, A~, and A~, keeping only the back­

ground solution for A~ (which was given in section 2.4), and the fluctuations of the 

photon A!. This leads to considerable simplification since it ensures that Dp,T = O. 

To compute the production of photons in the time-dependent background, we want 

to exp and the action (2.14) to quadratic order in A!. 

The matrix Mf)N of eq. (2.15) can be written in block diagonal form as 

(2.41) 
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where v~2 = M~2 is the contribution from the vortex background given in (2.18), 

s~i2 = 0/ 8/-,A~) is the contribution from {t, T, B} derivatives of A~), and FJ2 is the 

field strength tensor for A~). Using a well-known identity for determinants we can 

write 

(2.42) 

Expanding det(l + a/F(i) + S(;)V(i)lS(i)) to quadratic order in A~), the action (2.14) 

becomes 

S ~ -al2~J dP+1xV(f)V-detV ((V-1
)/-'1/ 8 A""±-8 AP, 4 (S) /-' /-' 1/ + 

+ 8p,At8P, A~) (2.43) 

where we have chosen the gauge 8p,A! = 0 and disregarded the piece which does 

not depend on A!. We omit the brane index on V(i) since the determinant and the 

symmetric part of V(i)l are equal for both i = {l,2}. Defining an effective metric 

GMN by 

[0] ] 
[6p,D] 

(2.44) 

the action (2.43) may be written as 

(2.45) 

From (2.45) one sees that the fluctuations of the photon behave like a collection of 

massless scalar fields propagating in a nonflat spacetime described by the metric G MN, 

with a position- and time-dependent gauge coupling given by g2 = ljV(f(t, T)). 

To get an intuitive sense for the behavior of the action (2.45) we note that the 

stress-energy tensor derived in section 2.5 can be written as 

T MN = -~V(f)V-GGMN. 
T 

In the limit of condensation, T MN is given by (2.38), so that once the brane has 

formed the action (2.45) reduces to a description of gauge fields propagating in a 

(3+1)-dimensional Minkowski space, with an additional component which couples 

the gauge fields to the tachyon matter density in the bulk. In other words, the 
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effective metric GMN starts off being smooth throughout the bulk, but within the 

time te, its support collapses to become a delta function b(2) (i) in the relevant extra 

dimensions {r, e}. 

The equations of motion resulting from the effective action (2.45) are difficult to 

solve analytically since the effective metric GMN depends nontrivially on both rand t 

and is nondiagonal in the subspace of {t, r}. For this reason we would like to propose 

a simplified model of the condensation which captures the essential features of the 

action (2.45). We have derived solutions for the vortex background valid at small 

r, r ~ (te - t), and at large r, r ::.- (te - t). Similarly, the energy momentum tensor 

we have derived corresponding to these solutions has very different behavior in the 

r :::; (te - t) and r > (te - t) regions of the spacetime. 

For r :::; (te - t) the energy momentum tensor contracts to a delta function centered 

at r = 0, with (te - t) playing the raIe of the small parameter which regularizes the 

delta function. That is to say, 

at small r, where the matrix entries H Oo , HPÎI are finite as t ---+ te and the remaining 

components of HMN tend to zero (near r = 0) as t ---+ te. 

In the r > (te-t) region, the energy momentum tensor has quite different behavior. 

After condensation of the defect has completed at t = te, the energy density in the 

bulk (r > 0) is due entirely to tachyon matter, while the part of the stress-energy 

which is going into the tension of the defect vanishes in this region. Hence 

as t ---+ te, for r > (te - t). 

In our simplified model of the particle production due to the tachyon conden­

sation we therefore split the energy momentum tensor into brane and bulk pieces 

T MN = T::::ne + T~~ where T::::ne contracts to a delta function as t ---+ te and 

T~~ ---+ 2bffb~r~(r) in the same limit. The action (2.45) then splits into two com­

ponents S = Sbulk + Sbrane. We expect most of the particle production to occur near 
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the end of the condensation, when the background tachyon field is becoming singular 

near the vortex, so the best approximations for the simplified gauge field action are 

those which describe the exact expression most accurately near t = te: 

Sbrane ex: 

and 

Sbulk ex: - J r 2I:(r) ( _8/l fJ ÀtÀt) dtdrdedxâ
. 

At earlier times the coefficient of the bulk part of the Lagrangian would have time 

dependence, and the bulk Lagrangian would contain contributions from aIl the deriva­

tive of the gauge field, but this form is valid close to te. 

Finally we argue that the bulk part of the action can be ignored. To this end, let 

us change to coordinates which are comoving with the contraction of the vortex core: 

_ r -
r=--, t=te-t. 

te - t 
(2.46) 

In terms of these coordinat es the "small r" solutions are valid for f :::; 1 and the "large 

r" solutions are valid for r > 1. The Jacobian of this transformation is -t so that 

To lowest order in f2 the matrix entries H MN in terms ofthese new coordinates are aIl 

constant. Consider now the piece of the action which couples to the tachyon matter 

density in the bulk, written in terms of these new coordinates: 

Since I:(z) is not singular at z = 0, the bulk piece of the action become negligible 

near the end of the contraction t -t O. This is a consequence of the fact that as the 

condensation proceeds the gauge field is confined to the descendant brane. 
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2.7 Simplified Model of Reheating 

In the previous section we argued that the gauge field couples most strongly to the 

part of the tachyon background which is collapsing to form the defect. This closely 

resembles a gauge theory defined on a manifold in which a two-dimensional subspace 

which is shrinking with time. As a simplified model of the interaction we thus consider 

a massless spin-l field 

propagating in a FRW-like background 

(2.47) 

The coordinate r in (2.47) is fixed with the expansion and is thus corresponds to r 

defined in (2.46). However for simplicity of notation we will drop the tilde and write 

r instead of r in the remainder of the chapter. We take r to be dimensionless while 

t, xp, and R have dimensions of length. 

If we restrict ourselves to configurations with Ait = 0, AP, -=1- 07 and impose the 

gauge condition op,AP, = 0 then the action simplifies to 

(2.48) 

Notice that for the metric (2.47) and the gauge field configuration Ait = 0 we have 

chosen, one has \7 MAp, = oMAp, and RMNAM AN = Rp,DAp' AD = o. 

We will impose homogeneous boundary conditions at r = 1 and take the scale 

factor in (2.47) to be 

Ro if t < 0; 

R(t) = Ro - TJt if 0 ::; t ::; tc; (2.49) 

Ro - TJtc = E if t > tc. 

7This restriction will only underestimate the reheating. Since we want to show that the reheating 

can be efficient, this approximation will not weaken the ensuing argument. 



2.7 Simplified Model of Reheating 57 

where Ro represents the initial radial size of the extra dimensions. This approxima­

tion for the time-dependence of the vortex core is the simple st form which has the 

same qualitative behavior as the true background, while still allowing us to solve an-

alytically for the gauge field wave functions in the background. A shortcoming of this 

approximation is that R is discontinuous at the interfaces, which leads to an ultravi­

olet divergence in the production of gauge bosons. The behavior of the actual R(t) is 

smooth, and must yield a finite amount of particle production [59]. In addition, we 

will find a separate UV divergence in the particle production in the limit as the vortex 

core thickness goes to zero. This is presumably an artifact of the effective field theory 

which is not present in the full string theory, and we deal with it by introducing the 

cutoff E on the final radius of the defect core, which we will take to be of order the 

string length ls. 

2.7.1 Gauge Field Solutions 

The first step in computing the production of photons in the time-dependent back­

ground is to solve their equation of motion following from (2.48): 

(2.50) 

where the dot and prime denote differentiation with respect to t and r, respectively. 

Equation (2.50) separates as 

where 

and c is a separation constant. 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 
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The particular solutions of (2.52) are labeled by the momenta k in the 3 large 

dimensions ({ x4 
, x5

, x6
}) and we take them to be normalized according to 

J A A 4 5 6 
x'fx'f,dx dx dx = 0fk'· 

The particular solution of (2.53) is a sum of sines and cosines. The odd parity and 

even parity modes (under B --+ -B) do not mix with the even ones, and for simplicity, 

we restrict our attention to the even modes, which include the massless one. This can 

underestimate the effciency of the reheating by a factor of 2 at most. The solution of 

(2.53) is thus 
1 

8 m (B) = ..fi cos(mB). 

These are orthogonal for different values of m, and requiring that the solution be 

single-valued restricts m to be an integer. 

So far we have not been specifie about the geometry of the two extra dimensions 

around which the original annihilating branes were wrapped. One simple possibility 

is a 2-sphere, where the descendant brane and antibrane (vortices) form at antipodal 

points. Since all the singular behavior of the tachyon background is localized near 

these points, the curvature and topology in the bulk should have little effect on particle 

production near the defects. To simplify the mathematics, we therefore replace either 

of the two hemispheres of the sphere with a fiat disk, in the coordinate region r ::; 1. 

The correct boundary condition on radial eigenfunctions of the bulk Laplacian is that 

their derivatives vanish at r = 1, so that they are smooth at the interface where the 

two halves of the space are glued together. 

The solution of (2.54), subject to the boundary condition rp'(r = 1) = 0 and the 

requirement that rp( r) be regular at the origin, is 

(2.56) 

where Cmn is the nth zero of J:n(r). The solutions (2.56) are orthogonal for different 

values of n. The zero mode n = 1, m = 0 must be treated separately; it is the 

constant solution, where COI = 0 and rp01 (r) = 1. 



2.7 Simplified Model of Reheating 59 

The solution of (2.55) depends on the scale factor. For t < a and t > tc the 

solutions are trivial and are given by 

~ (t) = 1 (a e-iwmnt + at eiWmnt) 
'f'mn R ~ mn mn 

OV"-Wmn 
(2.57) 

and 

(2.58) 

respectively. We have defined w!n = cR;':!' + k2 and w!n = c~n + k2• The mutiplicative 
o E 

factors in (2.57) and (2.58) are introdueed for later convenienee and ensure that 

amn and dmn will be properly normalized annihilation operators in the appropriate 

spaeetime region when the gauge field is quantized. It will be convenient for what 

follows to introduee phase-shifted annihilation and creation operators in the region 

t > t . d = e-iG!mntcd and dt = eiG!mntcdt In terms of these operators (2.58) c' mn mn mn mn' 

becomes 

We are suppressing the dependenee of the annihilation/creation operators on the 

3-momenta k. 
In the region 0 < t < tc where the sc ale factor depends nontrivially on time, the 

solution of (2.55) is 

v'R01_ TJt (BmnJpmn [~(Ro - TJt)] 

+ CmnJ-Pmn [~(Ro - TJt)]) (2.59) 

where Pmn = 2~ JTJ2 - 4c?nn. Sorne comments are in order coneerning this solution, 

which has different behavior for massive and massless modes. 

In the massless case Crnn = 0, Prnn = 1/2 and Jp , J_ p are linearly independent, 

sinee pis noninteger. The constants Bmn and Cmn in (2.59) should be interpreted as 

independent, real-valued constants so that CPmn(t) is real. 

In the massive case Cmn =1- 0, TJ2 ::; 1,8 and the or der of the Bessel functions in 

(2.59), Pmn, is pure imaginary. Such Bessel functions are complex-valued and there 

are several options for constructing real solutions. Sinee (Jv(x))* = Jv*(x) for real 
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x, we can impose Cmn = B1nn. Calculating the Wronskian of Jis , J- is verifies that 

for real 8 =F 0 these two solutions are linearly independent. Since we do not need to 

explicitly quantize the field in the region 0 < t < te, the dagger can be thought of 

simply as complex conjugation. The interpretation of Bmn and BJnn as annihilation 

and creation operators is unneeessary, since there are no asymptotic states in this 

region. 

We summarize this subsection by putting these results together to write the gen­

eral solution of (2.50) as 

AP(xM
) = I: I: X~(xP)em(())cPmn(t)'Pmn(r). 

m,n k 

where 

if t > te. 

2.7.2 Spectra of Produced Particles 

The next step is to impose continuity of AP and 8M AP at t = 0 and t = te in order 

to compute the Bogoliubov coefficients, which relate the annihilation and creation 

operators for t > te (dmn and dJnn) to those in the region t < 0 (amn and aJnn). 9 

Smoothness of the solutions at the interfaces is ensured by the continuity of cPmn and 

~mn, sinee cPmn is the only part of AP which changes between the different spaeetime 

regions. 

80ne might expect TJ2 :::; 1 on physical grounds. In fact, for the ensuing arguments to hold one 

need only restrict TJ :::; 3.7 to ensure that Pmn is pure imaginary and nonzero for aU massive modes. 

9We are ultimately interested in calculating the number of dmn quanta in the vacuum annihilated 

byamn . For this purpose it is just as good to use dmn , dtnn as dmn , dtnn sin ce the phase shift cancels 

out of the number operator. dtnndmn = dtnndmn. 
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Massive Modes 

For the massive modes continuity of rPmn(t) and ~mn(t) at t = 0 implies 

(2.60) 

The entries of the matrix U are given by 

Continuity at t = te similarly gives 

(2.61 ) 

The matrix entries Vi are obtained from Ui by replacing Ra with E and Wmn with wmn . 

From (2.60), (2.61) we can write 

The last equality defines the Bogoliubov coefficients. Note that there is no summation 

implied over any of the indices in the above expression. The indices m and n label 

the mode's of the in- and out-states, and the summation which appears in the general 

definition of the Bogoliubov coefficients is not present here. 

We can now determine the spectrum of Kaluza-Klein (KK) excitations of the 

photon which is produced in the tachyon vortex background. Observers in the future 

see a spectrum of massive particles in the final state given by 
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Figure 2.2: NN/~o(k) versus k for increasing values of the radial quantum number n 

showing decreased production of heavier modes. 

The determinant is 

detU 
2i"7 . 

det V = -- sm (nPmn) 
n 

2"7 sinh (.!!.-J 4c2 - "72) 
7r 2"7 mn 

(2.62) 

which may be obtained by using the Wronskian of Jp and J_p • The fact that the two 

determinants are equal ensures the appropriate normalization IŒmnl2 - l,Bmnl2 = 1 

of the Bogoliubov coefficients. The explicit expression for NJ{}jr;,o (k) can be obtained 

analytically, but it is complicated and we do not write it out here; instead we will 

give numerical results. 

The mass of a KK mode with quantum numbers m, n is cmn / E, which increases with 

m and n. Figures 2.2-2.3 illustrate the dependence of NJ{}jr;,o(k) on the 3-momentum 

k for the lightest few massive modes. The parameters of the vortex background are 

taken to be Ro = 10 ls, E = ls and "7 = 1. (The dependence of NJ{}j~o(k) on Ro, E and 

"7 is essentially the same as that of the spectrum for massless modes, NM=o(k), which 

we will discuss in the next section.) 
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Figure 2.3: Same as fig. 2.2, but varying the angular quantum number m. 

Massless Modes 

The analysis for the massless modes proceeds similarly to the calculations in the 

preceding section, but more simply since in this case Pmn = 1/2 and Wmn = wmn = k. 

The Bogoliubov coefficients do not depend on the mode indices: 

( 
~mn ) [a j3] (amn

). 

dt j3* a* at 
mn mn 

The observed spectrum of particles in the final state 

(2.63) 

where the second line shows the leading small-E behavior. The exact result can also 

be obtained in closed form. Using explicit representations of Jn j2, we will be able to 

integrate this expression exactly to obtain the energy density of produced radiation. 

Figures 2.4-2.6 show plots of NM=o(k) as a function of k for various values of the 

parameters Ra, E and 7]. 

2.7.3 Energy Density 

To find the total energy density of radiation produced by the massive modes we 

should integrate over aH k and sum over the mode indices m and n and the number 
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Figure 2.6: NM=o(k) versus k for different values of TJ. Ro = 10 ls and E = ls' 

of polarizations (3 for massive vector bosons): 

(2.64) 

For the massless modes we only integrate over k and sum over the 2 polarizations, 

since NM>o(k) has no dependence on the mode indices: 

(2.65) 

As anticipated ab ove , the integrals in (2.64), (2.65) are not convergent due to the 

fact that the simplified tachyon background (2.49) has discontinuous time derivatives 

at t = 0 and t = te. This has the consequence that the spectrum N(k) decreases like 

k- 2 for large k, which is too slow for convergence. In reality nth derivatives of R(t) do 

not exceed O(1/l~), so the production of modes with k > l;l should be exponentially 

suppressed. We therefore introduce a UV cutoff, kmax = A rv l;l. Moreover N(k) is 

divergent as the vortex radius E -+ 0, SO E is also presumably limited by the string 

scale, E rv ls' 

In the final state, the heavy KK modes have mass given by cmn / E, where the Cmn 's 

are order unit y and larger. These are near the cutoff, so their contributions are of 

the same or der as other UV contributions which we are omitting. For consistency 

we should thus neglect the massive states' contribution to the total energy density 



2.7 SimpliB.ed Model of Reheating 66 

on the vortex. Again, this underestimates the efficiency of particle production and 

makes our estimates conservative. Henceforth we will refer to PM=a as simply p. 

Although the integral (2.65) can be performed analytically, the resulting expres­

sion for P is cumbersome. Rather than write it out explicitly we will discuss sorne 

noteworthy features, plot P with respect to the parameters of the model and present 

sorne useful simplifications of the complete expression in various limits. 

Figures 2.7-2.8 show the dependence of p on the initial size of the brane. For Ra 

greater than a few times ls, the energy density is relatively insensitive to changes in 

Ra. We can therefore reduce the dimensionality of the parameter space by simply 

assuming that the extra dimensions are somewhat larger than ls. In fact in the limit 

of large Ra, the energy density takes the very simple form 

(2.66) 

which is the main result of this section. We recall that 'r/, which parametrizes the 

speed at which the vortex forms, is predicted from eq. (2.46) to be 'r/ = 1. 

As a check on our calculations, we have also considered the limit as Ra -+ E, which 

corresponds to a static background, with no vortex condensation. As expected, the 

energy density of produced particles goes to zero, 

as Ra -+ E. 

2.7.4 Efficiency of Reheating 

To quant if y the efficiency of the reheating we need to determine how much energy 

is available to pro duce the photons on the final-state 3-brane. Initially the system 

consisted of a D5-brane plus antibrane, whose 3D energy density was given by 2T5112, 

where T5 is the tension of a D5-brane and V2 is the volume of the compact 2-space 

{r, e} wrapped by the branes. The final state consists of a D3-branejantibrane with 

total tension 2T3. Until now we considered just half of the 2-sphere and focused on a 

single vortex located at r = O. Conservation of Ramond-Ramond charge requires the 
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second vortex, which we place at the south pole of the sphere to preserve azimuthal 

symmetry. These two defects are identical and are matched at the equator of the 

sphere. The vortex at the south pole represents the D3-antibrane. 

Since reheating on each final-state brane should be equally efficient, the 3D energy 

density available for reheating on one them, which we call the critical energy density 

Pc, is half the differenee between the initial and final tensions of the branes and 

antibranes: 

Pc - T5 V2 - T3 = T3 ( 11.22 - 1) 
47r a' 

where we have used the recursion relation 27r#Tp = Tp-l. The tension of a D3-brane 

is given by [78] 
1 1 

T3 =-
gs (27r)3a'2· 

The string coupling gs, in 5+ 1 dimensions of which two are compact, is determined 

by the gauge coupling evaluated at the string scale, a(Ms) [54]: 

Thus we have 

V2 
gs = -2 2 ,a(Ms). 

7ra 

(2.67) 

In the regime where V2 rv 27r R6 » l;, which was where we could most easily quan­

tif Y the particle production, the second term in parentheses can be neglected, and 

in any case it would be unimportant for a rough estimate unless it accidentally 

caneeled the first term (1) to high accuracy. Henee we drop this term and take 

l;pc rv (167r3a(Ms))-1. 

The energy density Pc is the critical value at which the conversion into radiation 

would be 100% efficient. In our analysis we take a(Ms) rv 2
1
5 [54] which gives Pel; = 

0.05. The critical energy density is shown as a dashed horizontal line in figures 2.7 

and 2.8. We see that the criterion for efficient reheating can be achieved for moderate 

values of the parameters. We only need for the length-scale cutoffs 1/ A and E to be 

somewhat smaller than the string scale, while the size of the extra dimensions should 
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exceed a few times ls' Using (2.66), we can write the criterion for efficient reheating 

as 

(2.68) 

We have not taken into account the back-reaction of the particle production on the 

tachyon background, which is why our calculation allows for more reheating than is 

energetically possible. The back reaction will suppress somewhat the actual efficiency 

of reheating, but we don't expect a dramatic reduction. Given that we have been 

conservative in our estimates, such as ignoring the contributions from produced KK 

photons which will decay into massless photons, our result makes it plausible that a 

large fraction of the original energy can be converted into visible radiation. 

2.8 Conclusions 

We have argued for the possibility that our visible uni verse might be a codimension­

two brane left over from annihilation of a D5-brane/antibrane pair at the end of 

inflation. In this picture, reheating is due to production of standard model particles 

(e.g. photons) on the final branes, driven by their couplings to the tachyon field 

which encodes the instability of the initial state as weIl as the vortex which represents 

the final brane. We find that reheating can be efficient, in the sense that a sizable 

fraction of the energy available from the unstable vacuum can be converted into visible 

radiation, and not just gravitons. 

The efficiency of reheating is greatest if the radius of compactification of the 

extra dimensions is larger than 2-3 times the string length ls' The efficiency also 

depends on phenomenological parameters we had to introduce by hand in or der to 

cut off ultraviolet divergences in the calculated particle production rate: namely E, a 

nonvanishing radius for the final brane, and A, an explicit cutoff on the momentum 

of the photons produced. The latter must be introduced to correct for discontinous 

time derivatives in our simplified model of the background tachyon condensate; the 

actual behavior of the condensate corresponds to a cutoff of order A r-...J l/ls. It is less 

obvious why the effective field theory treatment should give divergent results as the 
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thickness of the final brane (21") goes to zero, but it seems clear that a fully string­

theoretic computation would give no such divergence, and therefore it is reasonable 

to cut off the field-theory divergence at f rv ls. Given only these mild assumptions, 

our estimates (2.66,2.67) predict that the fraction of the available energy which is 

converted into visible radiation is pl Pc rv 7rŒ(Ms ) rv 0.25. This simple estimate 

counts only photons; in a more realistic calculation, it would be enhanced by the 

number of light degrees of freedom which couple to the tachyon, which could be much 

greater 1. Moreover it could also be enhanced by the production of massive KK 

modes, which correspond to string excitations when the vortex has formed [76, 79J. 

Our analysis makes significant improvements to the previous work of [59J. We 

considered the formation of a vortex in the tachyon field rather than a kink, in line 

with the descent relations for stable Dp-branes. We found analytic solutions for the 

tachyon field which give the time dependence in the vicinity of the defect while it is 

forming, for both the vortex and the kink solutions. In the latter case we verified that 

this solution reproduces the known dynamics of kink formation which was determined 

numerically in [51], giving us more confidence in the vortex solutions, which are 

quite analogous. Our explicit solution for the tachyon background is nevertheless too 

complicated for computing the production of particles on the defect. We therefore 

approximated it by a simpler ansatz with the same qualitative behavior, which allows 

for analytic solutions of the gauge fields in the background. This ansatz resembles 

a gauge field in a 6D spacetime with two compact spatial dimensions which are 

contracting with time, and leads to simple analytic results for the energy density of 

photons produced during the contraction, in the regime where the extra dimensions 

are large compared to the string scale. 

There are still sorne outstanding questions to be addressed concerning this sce­

nario. First, we have made reference to the Kibble mechanism for the creation of the 

final state defects. If we assume the causal bound of one defect per Hubble volume 

then this would imply that the size of the extra dimensions must exceed the inverse 

Hubble rate; otherwise there would be enough time for the fields to straighten them­

selves out and the putative vortex-antivortex pair would immediately annihilate. For 
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example if we take the string scale Ms to be 1016 Ge V then H rv M; / Mp and we would 

need the compactification scale to be of order Ra rv (Mp/Ms)ls. Our results indicate 

that efficient reheating is compatible with a large compactification scale. However, 

taking the remaining four extra dimensions (which the initial 5-brane/antibrane pair 

do not wrap) to be string sc ale is not consistent with getting inflation since the initial 

state 5-brane and antibrane cannot be sufficiently separated to satisfy the slow roll 

conditions. 

One the other hand, our results indicate that the reheating can be efficient for 

Ra only a few times the string length, though in this scenario a naive application of 

the Kibble mechanism does not favor having the final state defects span the three 

large dimensions. These requirements may not be prohibitive since the question 

of how these defects form dynamically at the end of inflation is a quantitative one 

which merits further investigation. In principle the correlation length for the initial 

fluctuations of the tachyon field could be as sm aIl as the string length. We point 

out also that it is possible that the dynamics of the formation of tachyon defects 

is qualitatively different from defect formation in a conventional scalar field theory. 

For example, the numerical investigation of [51], it was found that small kinks in the 

initial configuration which are in causal contact with each other do not dynamically 

straighten themselves out as they would in a conventional, nontachyonic field theory. 

Instead, every place where the field crosses zero in the initial state develops a full­

blown kink, so long as there was enough energy in the bulk to pro duce the required 

number of kinks. Another indication that the dynamics of the tachyon field may 

be qualitatively different from an ordinary scalar field theory cornes from the [80] in 

which the causal structure of the tachyon Dirac-Born-Infeld action was studied. The 

authors of [80] found that small fluctuations of the tachyon field propagate according 

to an effective met rie which depends on the tachyon background. In the case of a 

homogeneous rolling background it was found that as the condensation proceeds the 

effective met rie contracts to the Carrolllimit of the Lorentz group so that the tachyon 

light cone collapses into a timelike half line and the tachyon fields at different spatial 

points are decoupled. We feel that quantitatively determining the dynamics of the 
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Figure 2.9: Warped compactification with branes localized in throats on opposite 

sides of a stack of branes. 

formation of tachyon defects at the endpoint of D-brane inflation is a question which 

deserves further investigation. 

In the present analysis we have not included the gravitational or Ramond-Ramond 

forces between the vortex and antivortex which would attract them toward each other 

and lead to their eventual annihilation. How do we insure that the braneworld on 

which we are supposed to live is safe from annihilation with an antibrane in the bulk? 

One possibility is to have warping caused by a stack of branes which wraps only the 

equator of the extra dimensions, as illustrated in fig. 2.9. Such a braneworld scenario 

using the AdS soliton solution for the bulk has been considered in ref. [81, 82, 61J. 

The advantage for our scenario is that the warping can provide a barrier to the 

annihilation of the brane-antibrane pair, sinee it is energetically favorable for them 

to remain within their respective throats. In chapter 4 we will consider a model of 

reheating in brane-antibrane inflation which does not suffer from this difficultly. 

In solving for the tachyon background we have also ignored the possibility of 

caustic formation in the bulk [68J by taking initial profiles without too much curvature. 

It is possible that caustic formation may be an artifact of the derivative truncation 

which leads ta the Barn-Infeld type of Lagranian for the tachyon. We will study this 

issue in greater detail in chapter 3. 

Brane-antibrane inflation and braneworld cosmology are two of the most impor­

tant applications of string theoretic ide as to cosmology. We find it intriguing that 

these two ideas might be combined in the way we have described. An outstanding 
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challenge is ta find sorne observable signatures that would be able ta test our sce­

nario, for example through the gravitational wave component which is expected to 

be a major component of the radiation produced during reheating. 
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Abstract 

Certain configurations of D-branes, for example wrong dimensional branes or the 

brane-antibrane system, are unstable to decay. This instability is described by the ap­

pearance of a tachyonic mode in the spectrum of open strings ending on the brane(s). 

The decay of these unstable systems is described by the rolling of the tachyon field 

from the unstable maximum to the minimum of its potential. We analyticaIly study 

the dynamics of the inhomogeneous tachyon field as it roIls towards the true vacuum 

of the theory in the context of several different tachyon effective actions. We find 

that the vacuum dynamics of these theories is remarkably similar and in particular 

we show that in aIl cases the tachyon field forms caustics where second and higher 

derivatives of the field blow up. The formation of caustics signaIs a pathology in the 

evolution since each of the effective actions considered is not reliable in the vicinity 

of a caustic. We speculate that the formation of caustics is an artifact of truncating 

the tachyon action, which should contain aIl orders of derivatives acting on the field, 

to a finite number of derivatives. FinaIly, we con si der inhomogeneous solutions in 

p-adic string theory, a toy model of the bosonic tachyon which contains derivatives 

of aIl orders acting on the field. For a large class of initial conditions we conclusively 

show that the evolution is weIl behaved in this case. It is unclear if these caustics are 

a genuine prediction of string theory or not. 

3.1 Introduction 

Recently effective actions describing the open string tachyon have recieved consider­

able attention in the literature. These effective actions are interesting to study since 

they permit a relatively simple formulation of the complicated open string dynamics 

in terms of classical field theories. In particular, the use of effective actions has trig­

gered significant interest in the possible role of the tachyon in cosmology. For example, 

there have been numerous attempts to make use of the tachyon as either the inflaton 

or as quintessence [83J (see [84J for reviews of tachyon cosmology). Constraints and 
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shortcomings of these scenarios have been discussed in [85]. 

Perhaps the most promising application of the tachyon to cosmology cornes from 

D-brane inflation [24, 25], [53]-[55] In the context of D-brane inflation, the annihilation 

of a brane-antibrane pair at the endpoint of inflation is described by the rolling of the 

tachyon, T, from the unstable maximum T = 0 to the degenerate vacua of the theory 

T = ±oo. The tachyon field may roll to the same vacuum everywhere in the space or 

topological defects may form through the Kibble mechanism [56, 57, 58]. The latter 

possibility corresponds to the formation of lower dimensional branes at points where 

T = O. In the regions between the descendant branes the tachyon field asymptotically 

rolls towards the true vacuum of the theory. The formation of lower dimensional 

branes is of sorne phenomenological importance since the resulting cosmic-string-like 

or higher dimensional defects could be observable remnants of inflation [56, 57, 58]. 

In [86, 1] a more radical ide a was explored: it was proposed that our own observable 

universe could be such a defect in the higher dimension al spacetime predicted by 

string theory. In this scenario the coupling of the time dependent tachyon condensate 

to gauge particles which will be localized on the descendant brane can provide an 

efficient mechanism for reheating at the end of brane-antibrane inflation. 

Applications of the tachyon to cosmology generically involve the tachyon field 

rolling from the unstable maximum of its potential to the true vacuum of the theory, at 

least in sorne region of the space, so it is of sorne interest to study the dynamics in this 

regime. Often only homogeneous tachyon profiles are considered, though a consistent 

study of the tachyon field in cosmology must include spatial inhomogeneities. In 

the context of the formation of lower dimension al branes at the endpoint of D-brane 

inflation spatial inhomogeneity is unavoidable since the field must cross T = 0 at one 

or more points in the space. However, even in the absence of topological defects one 

expects that spatial inhomogeneities will be generated starting from a homogeneous 

profile by vacuum fluctuations of the tachyon field. 

The full tachyon action contains an infinite number of derivatives acting on the 

field, though the action is not known explicitly to aIl orders in derivatives. Rather, 

numerous effective actions describing the tachyon have been proposed in the literature 
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on different grounds and have been shown to reproduce various nontrivial aspects of 

the full dynamics expected from string theory. Most studies of the tachyon dynamics 

in terms of effective actions have considered actions involving only first derivatives of 

the field and it is not clear how higher derivative corrections may alter the dynamics. 

Indeed, studies of p-adic string theory suggest that there may be fundamental differ­

ences between dynamical equations with an infinite number of derivatives and those 

with a large finite number of derivatives. In [87] it was shown that the initial value 

problem is qualitatively different in these two cases. 

In this chapter we study analytically the dynamics of the inhomogeneous tachyon 

field as it roUs towards the vacuum in the context of several different effective field 

theories. Our interest is motivated by [68, 69] in which inhomogeneous vacuum solu­

tions were discussed using the popular tachyon Dirac-Born-Infeld (DBI) action. The 

authors of [68, 69] found that in general the inhomogeneous solutions of the DBI 

action formed caustics where the second and higher derivatives of the tachyon field 

blow up at some point. In the vicinity of these caustics the tachyon DBI action is not 

reliable since the higher derivative corrections which have been ignored will become 

important. It is thus not known if the formation of caustics is a genuine prediction of 

string theory or an artifact of the DBI action for the tachyon. To shed some light on 

this question it is interesting to study inhomogeneous vacuum solutions of different 

tachyon effective actions and look for caustics or similar singularities. 

The finite time formation of caustics found in [68, 69] must be distinguished from 

the finite time divergences in the first derivatives of the tachyon field at points where 

T = 0 [1, 51] which corresponds to the formation of topological defects. In both 

cases the divergences in the derivatives of the tachyon field lead to divergences in the 

energy density. In the case of topological defect formation, however, this finite time 

divergence in the energy density has the form of a delta function and hence leads to 

finite total energy [1]. We point out that similar behaviour was found in [88] where the 

decaying tachyon on the supergravity background corresponding to space-like branes 

in string theory was studied. In this case the first derivative of the tachyon field and 

the energy density of the tachyon matter both divergence in finite time producing a 
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space-like curvature singularity in the metric. 

The organization of this chapter is as foIlows. In section 3.2 we consider three 

tachyon effective actions, an of which contain only first derivatives of the field and 

show that aIl three display surprisingly similar dynamics near the true vacuum of 

the theory. In section 3.3 we briefly review how this universal vacuum structure 

leads to the formation of caustics. In section 3.4 we consider the vacuum dynamics 

of the tachyon in the context of yet another effective action which contains terms 

with second derivatives of the field and show that the problem of caustic formation 

is not ameliorated. In section 3.5 we briefly review the bosonic tachyon action of 

p-adic string theory and study small spatial inhomogeneities about a time dependent 

solution which roIls towards the minimum of the potential (which is unbounded from 

below). We find that for a large class of initial data our perturbative expansion is 

reliable throughout the evolution and the solutions are well behaved. Finally we 

conclude and discuss the difficulty of interpreting caustic formation physically. 

3.2 First Derivative Tachyon Effective Actions and 

the Eikonal Equation 

For simplicity we restrict ourselves to studying real tachyon fields in 1 + 1-dimensional 

Minkowski space with metric 'fJ/-tvdx/-tdxv = -dt2 + dx2
• In the context of brane 

annihilation the rolling of the tachyon in 1 + 1 dimensions from the unstable maximum 

to the ground state describes the decay of an unstable Dp-brane to either the vacuum 

(in the case that the tachyon rolls to the same vacuum everywhere) or to a brane of 

codimension one (in the case that kinks form). We work in units where a' = 2. 

3.2.1 The Tachyon Dirac-Born-Infeld Action 

We first consider the tachyon Dirac-Born-Infeld action [42, 43, 50] 

(3.1) 
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with potential 

U(T) _ Tp 

- cosh(T/2) 
(3.2) 

where Tp is the Dp-brane tension. Solutions of this theory have been widely studied in 

the literature [86, 1,68,69,50,89,90]. This action can be obtained from string theory 

in sorne limit [46] and has been shown to reproduce numerous nontrivial aspects of 

the full string theory dynamic, as discussed in chapter 1. 

The action (3.1) should be thought of as describing tachyon profiles which are 

"close" 1 to the homogeneous rolling tachyon solution 

(3.3) 

We are interested in the dynamics of (3.1) close to the vacuum T ~ ±oo, 

U(T) ~ O. The vacuum structure of this theory has been studied analytically in 

[43, 90] which we briefiy review. The vacuum structure is most easily described in 

the Hamiltonian formalism since the Lagrangian does not survive the limit U(T) ~ 0, 

but the Hamiltonian does. Defining the momentum conjugate to T as II = aL/ai' 2 

the Hamiltonian is given by 

In the limit as U(T) ~ 0 one finds 

In the vacuum Hamilton's equations of motion are 

and 

. (TI) 
II = ax II 1 + T'2 

IThat is to say taking T+, T_ to be slowly varying functions of xi-'. 

2Here and throughout this chapter 'Î' = 80T = 8tT and T' = 8I T = 8xT. 

(3.4) 

(3.5) 

(3.6) 
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for II > O. Equation (3.5) is precisely the eikonal equation 

(3.7) 

It was observed numerically in [68, 69J that the general solutions of (3.1) tend towards 

the first order equation (3.7). 

3.2.2 The Boundary String Field Theory Action 

The action 

(3.8) 

where the potential is 

(3.9) 

and the kinetic term is 

(3.10) 

can be derived from boundary string field theory (B8FT) assuming a linear profile 

T = a + uJ-txJ-t, and summed to aIl orders in UJ-t [91J. This action should therefore be 

considered reliable only when describing profiles where second and higher derivatives 

of the tachyon field are small. 

The dynamics of the action (3.8) have been discussed in [71J which we briefly 

review. Before attempting to describe the vacuum dynamics of the theory (3.8) we 

discuss sorne limiting behaviour of the function F(z). 

At small z the function F(z) has a Taylor expansion 

F(z) rv 1 + In(4)z + ... 

and at large positive z the function F(z) has the behaviour 

F(z) -t v:rrz as z -t 00. (3.11) 
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It is also noteworthy that F(z) is singular at z = -n (n = 1,2,' .. ). Of particular 

interest to the ensuing analysis will be the limiting behaviour of F(z) near the singular 

point z = -1 

-1 
F(z) ~ --­

-2(z+I)' 
F'(z) ~ ---:--_1~ 

- 2(z + 1)2' 
-1 

F"(z) ~ --:---::-:::­
- (z + 1)3 

(3.12) 

We now proceed to study the dynamics ofthe action (3.8). The equation of motion 

which follows from (3.8) is 

(3.13) 

where z = 0/J-To/J-T. We will assume initial conditions such that z ~ 0 initially. 

Furthermore, we assume that z does not cross the singularity at z = -1 3. 

The homogeneous solutions of (3.13) have the asymptotic behaviour T ---+ ±t at 

late times [92] so we expect that the tachyon will roll towards the vacuum T ---+ ±oo 

as t ---+ 00. We consider first the case where z do es not approach -1 as T ---+ 00. 

In this case F(z), F'(z) and F"(z) are well-behaved and the leading contribution to 

(3.13) is 

F(z) - 2zF'(z) = O. 

It is easy to show that the quantity F(z) -2zF'(z) is greater than or equal to 0 for aIl 

z> -1 and that F(z) - 2zF'(z) ---+ 0 as z ---+ +00 (see equation (3.11)). We conclude 

then that for solutions where z is increasing the equation of motion requires z ---+ +00 

as T ---+ ±oo. 

We now consider the possibility that z ---+ -1 at late times. N ear z = -1 the func­

tion F(z) and its derivatives are given by (3.12) and hence the leading contribution 

to (3.13) is 

(3.14) 

3This is not a particularly restrictive assumption since if z did cross the singularity it would lead 

to infinite action. Note that this does not exclude the possibility that z -> -1 as V(T) -> O. 
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This equation can be satisfied for profiles where z -> -1. Sinee z + 1 -> 0 as T -> ±oo 

it is reasonable to assume that we can write z + 1 = f(T). This is consistent with 

(3.14) which implies 

It is important to stress that, barring any asumptions on the form of the solution, 

the equation of motion (3.13) requires that 0/-LTo/-LT tends to either +00 or -1 as 

T -> ±oo. The former case describes tachyon kinks of the form T(x) = xiE to be 

understood in the limit that E -> O. The latter case describes the rolling tachyon and 

corresponds to the vacuum structure we are interested in. We conclude then that 

close to the vacuum the tachyon field obeys the eikonal equation 

3.2.3 The Lambert and Sachs Action 

The action 

(3.15) 

where the potential is given by (3.9) and the kinetic term is 

K(z) = e-z + J1fZerf (JZ) (3.16) 

was proposed in [93]. This action is derived by requiring that the profile 

(
X - xo) T(x) = X sin 2 

be an exact solution to the equations of motion. The residual freedom is fixed by 

demanding that .c = V2Tp exp ( - T 2 1 4) for constant profiles for agreement with (3.8). 

Before proceeding to study the dynamics of (3.15) we consider the asymptotic 

behaviour of the kinetic term (3.16). For z 2 0 the function K(z) is remarkably 

similar to the BSFT function F(z) given by (3.10). Near z = 0 the function K(z) 

has a Taylor expansion 
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K(z) rv 1 + z + .... 

For large positive values of z the function K(z) has the aymptotic behaviour 

K(z) -+ VJ[Z, K'(z) -+ ~ E, K"(z) -+ - V:/2 
2 V -;; 4z 

(3.17) 

so that K (z) tends to infinity slowly as z -+ +00 while K' (z), Kil (z) tend to zero. 

Finally we consider the behaviour of K(z) for large negative z. Using the formula 

for y -+ 00 it is easy to show that 

e1zl 
K"(z) -+ --

21z1 (3.18) 

for large negative z. Note that though K(z) has very similar behaviour to F(z) and 

v'l+Z for large positive z, these three kinetic terms have very different behaviour 

on z < o. 
The equation of motion which follows from (3.15) is 

(3.19) 

where z = 0J1-ToJ1-T. By construction equation (3.19) has the homogeneous solution 

Comparing this to the homogeneous solution (3.3) demonstrates that a field redefini­

tion is necessary to make accurate comparisons between the two theories. Notice that 

in the case of the homogeneous solution the tachyon field rolls towards the vacuum 

T -+ ±oo at late times with z -+ -00. 

We proceed now to study the vacuum structure of the theory (3.15). First we 

consider the possibility that z tends to sorne finite positive value as T -+ ±oo. In 

this case the leading contribution to (3.19) is 
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TzK'(z) = ~TK(Z) (3.20) 

or 

This suggests that we require z --t +00 if z > 0 and indeed, using the limiting 

behaviour (3.17) the leading contribution to (3.19) for T --t ±oo with z --t +00 is 

satisfied. 

We consider now possibility that z approaches some finite negative value as T --t 

±oo. Assuming z =1= -00 then K(z), K'(z) and K"(z) are aIl weIl behaved and the 

leading contribution to (3.19) is still (3.20) or equivalently 0 = e1zl which has no 

solution. 

Finally we consider the possibility that z --t -00 as T --t ±oo. In this case the 

limiting behaviour (3.18) is applicable and K(z) rv -K'(z) rv K"(z) so that the 

leading contribution to (3.19) is 

(3.21 ) 

Sinee z --t -00 as T --t ±oo it is reasonable to assume z = f(T) in this regime. 

This assumption is consistent with (3.21) and we find f(T) = -T2 up to an arbitrary 

additive constant which is irrelevant as T 2 
--t 00. One may verify that given these 

assumptions the leading behaviour (3.21) is order T 3 while the terms we have disre­

garded in (3.19) are order T so that this series of approximations is self-consistent. 

We conclude that for z < 0 the equation of motion requires that the tachyon field 

obeys 

0/-tTo/-tT + T 2 = o. 

Defining T = exp(T) we find that T obeys the eikonal equation 
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We stress that the equation of motion (3.19) requires either z ---> +00 or z ---> -00 

as T ---> ±oo. The former case describes tachyon kink solutions while the latter 

case describes the rolling tachyon and corresponds to the vacuum structure we are 

interested in. 

3.3 Caustic Formation 

We have found that aH three actions (3.1,3.8,3.15) predict that the tachyon field is 

described by the eikonal equation (3.7) close to the vacuum. lnhomogeneous solutions 

of (3.7) were found in [68, 69] for arbitrary Cauchy data by the method of charac­

teristics. The solution is given along a set of characteristic curves which, in 1 + 1 

dimensions, are defined by 

x( t)- - T!(q) t 
q, - q JI + T!(q)2 

(3.22) 

where the parameter q defines the initial position of the curve on the x axis such that 

x(q, t = 0) = q and Ti(x) is the Cauchy data at time t = O. The parameter q should 

be thought of as labelling the curves. The value of the tachyon field along a given 

characteristic curve is 

t 
T(q, t) = 1i(q) + JI + T!(q)2 (3.23) 

lt is also worth noting that the derivatives of the field are constant along the curves 

T'(q, t) = T!(q) and T(q, t) = JI + T!(q)2. From (3.22) it is clear that in general for 

initial data where TI' =1= 0 there will be curves originating from different initial points 

on the x axis which will cross in sorne finite time. At points where the char acter­

istic curves intersect the field becomes multi-valued sinee evolving (3.23) along two 

different curves leads to two different values of T at the point of intersection. This 

corresponds to the formation of caustics and signaIs a pathology in the evolution. To 

illustrate the problem, con si der Til along a characteristic curve 
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T:'(q) 
T"(q, t) = Tf'(q) 

1 - (l+Tf(q)2)3/2 t 

At sorne time te and point qe where Tf' (qe) > 0 the denominator vanishes and the 

second derivative blows up. For a given qe the caustics form at time 

(1 + Tf(qe)2)3/2 
te = T['(qe) 

In each of the three effective actions considered above (3.1,3.8,3.15) this caustic for­

mation signaIs a breakdown of the theory sinee terms in the action involving second 

and higher derivatives of the field which have been neglected will become important. 

3.4 Vacuum Dynamics in a Higher Derivative Ac-

tian 

In light of the analysis of the preeeeding section it is tempting to speculate that the 

caustic formation described above is an artifact of the derivative truncation which 

leads to (3.1,3.8,3.15) sinee these effective descriptions break down in the vicinity 

of a caustic. We would like to reconsider the effective description of the tachyon 

near the vacuum in the context of an action which do es contain terms with second 

derivatives of the field. One might consider attempting to generalize the action (3.8) 

to a profile of the form T = a + uJ-LxJ-L + vJ-LVxJ-Lxv to obtain an action which is valid 

for profiles where oJ-LT =1 0 and oJ-LoVT =1 0 without constraint on the size of the 

first and second derivatives. However, deriving such an action (following [91]) would 

involve performing a path integral which is no longer Gaussian. On the other hand, 

the superstring tachyon effective action has been calculated in an expansion in small 

moment a (derivatives) around a constant profile up to six orders in derivatives (0(06
)) 

in [94]. The action, in units where ci = 2 and truncated to fourth order in derivatives, 
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is 

.c = -V(T) ( 1 + ln(4)8/-tT8/-tT + G(1n(4))4 - ((2)) (8/-tT8/-tT)2 + ((2)T8/-t8vT8/-tT8vT 

+ [(2((2) - 8(ln(2))2) + (~)T2] 8/-t8vT8/-t8vT ) (3.24) 

where ((z) is the Riemann zeta function. The action (3.24) is valid to all orders in 

T but for small derivatives and hence naively does not seem applicable to studying 

the vacuum dynamics where, the analysis of the preceeding sections would suggest, 

8/-tT8/-tT is or der unit y or larger. However, one might expect the vacuum structure of 

the theory to be significantly modified due to the presence of terms like T28/-t8vT8/-t8vT 

in the action (3.24) which are vanishing on linear profiles but are large in the vacuum 

for nonlinear profiles. One might hope that the vacuum structure of the theory 

(3.24) is su ch that when one considers Cauchy data where the derivatives of Tare 

small but nonzero, then the derivatives stay small throughout the evolution and the 

approximations which lead to (3.24) remain self consistent. This turns out not to be 

the case, as we will show. 

The equation of motion which follows from (3.24) is cumbersome and we do not 

write it out here. In the vacuum, as T ---+ ±oo, assuming that the derivatives of the 

field are well behaved 4 the leading contribution to the equation of motion is 

(3.25) 

where the subleading terms are of order T- 1 and smaller. 

We note that (3.25) may be re-written as 

so that the solution set of (3.25) contains the solutions of the first order equation 

where fi, is a constant which may be set to + 1, -1 or 0 by rescaling T. The case fi, = -1 

corresponds to the eikonal equation and we conclude that (3.25) does admit solutions 

4If we drop this assumption then (3.24) ceases to be a reasonable description of the dynamics. 



3.5 Inhomogeneous Solutions in p-adic String Theory 88 

with caustic formation in the case of Cauchy data such that ii(x)2 - 1 + Tf(x)2. 

However, equation (3.25) is second order and of course it is not necessary to cons train 

the Cauchy data in this manner. For completeness we discuss the construction of more 

general solutions of (3.25) in appendix A. 

It is beyond the scope of this chapter to perform a comprehensive analysis of 

the derivative singularities admitted by (3.25). We have shown an explicit reduction 

of (3.25) to the eikonal equation, which exhibits caustics. As discussed in the ap­

pendix, we believe more general solutions of (3.25) exhibit similar pathologies. For 

our purposes, this is sufficient to demonstrate that the higher derivative action (3.24) 

does not ameliorate the problem of caustic formation. In light of these results, it is 

tempting to speculate that it is necessary to use an action which contains aIl orders of 

derivatives acting on the field to obtain a fully consistent description of the dynamics 

of the tachyon near the vacuum. 

As an illustrative example we will discuss inhomogeneous solutions in a p-adic 

string theory, a toy theory of the bosonic string tachyon which contains an infinite 

number of derivatives acting on the field which is known explicitly to aIl orders in 

derivatives. 

3.5 Inhomogeneous Solutions in p-adic String The-

ory 

The action of p-adic string theory is [95] 

(3.26) 

where cP is the open string tachyon, 9 is the open string coupling constant and, though 

the action was derived for p a prime number, it appears that pean be continued to any 

positive integer (the action makes sense even in the limit p ---+ 1 [96]). The diffcrcntial 

operator p-~ap,ap, is to be understood as the series expansion 
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The equation of motion which follows from (3.26) is 

(3.27) 

and the potentiai is 

(3.28) 

-1 

Figure 3.1: Plot of the potentiai V(cp) for even p. 

-1 0 

</> 

Figure 3.2: Plot of the potential V(<I» for odd p. 

The cases of odd and even pare qualitatively different. For odd p the potentiai is 

an even function of cp and for even p the potentiai is an odd function of cp. In both 

cases the potentiai is unbounded from below. In the case of even p the perturbative 

vacuum is at cp = 1 and in the case of odd p there is an equivaient faise vacuum at 
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cp = -1. In both cases the true vacuum ofthe theory is at cp = o. Figures 3.1 and 3.2 

show plots of the potential (3.28) for the cases of even and odd p respectively. 

We note that the action (3.26) is intended to describe the bosonic string tachyon, 

rather than the superstring tachyon which we have considered in our previous anal­

ysis (3.1,3.8,3.15,3.24). Furthermore, (3.26) is a toy model which is only expected to 

qualitatively reproduce sorne aspects of a more realistic theory. These points should 

be kept in mind when comparing analysis using (3.26) to the previous analysis using 

(3.1,3.8,3.15,3.24). That being said we note that there are several nontrivial qual­

itative similarities between p-adic string theory and tachyon matter. For example, 

near the true vacuum of the theory cp = 0 the field naively has no dynamics since its 

mass squared goes to infinity 5. This is the p-adic version of the statement that there 

are no open string excitations at the tachyon vacuum. A second similarity between 

p-adic string theory and tachyon matter is the existence of lump-like soliton solu­

tions representing p-adic D-branes [65]. The theory of small fluctuations about these 

lump solutions has a spectrum of equally spaced masses squared for the modes [97], 

as in the case of normal bosonic string theory. On the other hand, there are sorne 

important differences between the theory (3.26) and (3.1,3.8,3.15,3.24). In the case 

of tachyon matter the vacuum is at infinity and the tachyon never reaches this point, 

whereas in the case of the p-adic string the vacuum is at a finite point in the field 

configuration space and homogeneous solutions rolling towards the vacuum typically 

pass this point without difficulty [87]. In fact, the numerical studies of [87] found no 

homogeneous solutions which appeared to correspond to tachyon matter (vanishing 

pressure at late times). 

Keeping in mind that the connection between (3.26) and (3.1,3.8,3.15,3.24) is not 

entirely clear we proceed to study inhomogeneous solutions of (3.26) as an example 

of a theory with an infinite number of derivatives which may have sorne qualitative 

similarities to the string theory tachyon. At first glance it is not immediately clear 

5Reference [87] found anharmonic oscillations around the vacuum by numerically solving the full 

nonlinear equation of motion. However, these solutions do not correspond to conventional physical 

states. 
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how to proeeed sinee (3.27) is difficult to solve for profiles with nontrivial dependence 

on more than one variable. The simplest solution is to study small fluctuations about 

sorne known time-dependent solution of (3.27). We are interested in the dynamics near 

the vacuum and [87] found anharmonic homogenous oscillations near cp = 0 so one 

might consider small spatial inhomogeneities about these solutions. However, these 

anharmonic oscillations cannot be found by solving the linearized equation of motion 

and hence we should not expect to be able to study small inhomogeneities near the 

vacuum by linearizing about these oscillators. One might con si der the closest analogy 

to the solutions found in the preeeeding sections to be small fluctuations about a time 

dependent solution which interpolates between the unstable vacuum cp = 1 (or also 

cp = -1 in the case of odd p) and the stable vacuum cp = O. However, it was shown 

in [87, 98] that no such time dependent solution to (3.27) exists 6. We therefore will 

consider inhomogeneous fluctuations about the rapidly increasing solution 

CPo(t) = p2(p-l) exp ___ t2 • 1 (1P-1) 
2plnp 

(3.29) 

We stress that this solution does not roll from the unstable maximum of the potential 

to the true vacuum of the theory (indeed no such solution appears to exist) and thus 

the ensuing analysis may be of limited relevanee sinee the connection between p-adic 

string theory and tachyon matter is unclear. The homogeneous solution (3.29) does 

bear sorne qualitative similarity to the solutions of (3.1,3.8,3.15,3.24) in the sense that 

this solution represents the tachyon rolling down the potential though in the case of 

(3.29) the tachyon rolls towards V -+ -00 and not V = O. 

Writing cp(t,x) = CPo(t)+6cp(t,x) with CPo(t) given by (3.29) the equation of motion 

(3.27) is 

(3.30) 

to linear or der in 6cp/cpo. The particular solutions of (3.30) may be written as 

(3.31) 

6More precisely, it was shown that there exists no homogeneous nonnegative bounded continuous 

solution of (3.27) with cjJ(t -+ -00) = 1 and cjJ(t -+ +00) = o. 
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where 

0:= 
I p2 - 1 

2 plnp 

and K),(z) is any solution of the Hermite equation 
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(3.32) 

Plugging (3.31) into (3.30) one finds that the spatial modes X),(x) are determined by 

the equation 

(3.33) 

Before attempting to solve (3.33) for the spatial dependence of the particular 

solutions of (3.30) sorne comments are in order concerning the separation of variables 

(3.31). It is straightforward to show that the solutions of (3.30) separate as (3.31) 

using the identity [97] 

(1 - 4ab)-1/2 1 + ao: 
( 

4 2) >./2 
1- 4ab 

K ( io:t ) (bt
2 )(3 34) 

x ), J(1 _ 4ab)(1 _ 4ab + 4a0:2) exp 1 - 4ab . 

This identity was considered in [97] for À = n = 0,1,2,· .. and Kn(z) = Hn(z), the 

Hermite polynomials, though it holds for arbitrary À which is most easily shown by 

noting that the two solutions of (3.32), K),(z) = P),(z) and K),(z) = Q),(z), have 

contour integral representations [99] 

(3.35) 

and 

(3.36) 

where the curves Cl and C2 are given in figure 3.3. The standard definition of the 

Hermite polynomials for À = n = 0,1,2,· .. is given by 

(3.37) 
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where C is the contour given in figure 3.4. For subsequent ca1cu1ations we will be 

particu1ar1y interested in defining the Hermite functions H>.(z) on À ~ 1. For Re(À) < 

o we can contract the path of integration C to the origin and write 

(3.38) 

where the normalization has been chosen to agree with [100J. Note that when Re(À) > 

-1 we can a1so represent the Hermite functions by a rea1 integral [100] 

(3.39) 

which coincides with the standard definition of the Hermite polynomials when À = 

n = 0, 1,2,' . '. With these conventions the Hermite functions are normalized so that 

H (0) = 2>'f(1/2) 
>. f (1;>') , 

H' (0) = 2>'f( -1/2) 
>. f(-À/2) . 

~ Cl 
.-____ J' '~.~ ________ _ 

o 

~C~2----~·~~--------~ 

Figure 3.3: The contours of integration Cl and C2 • 

We now proceed to determine the spatial dependence of the modes (3.31). Equa­

tion (3.33) has solutions 

(3.40) 

where w>. = V2(1 - À). For initial data which are periodic on sorne interval [-L, +LJ 

one takes w>. = 1rm/ L where m = 0,1,2,···. With this choice the degree of the 

Hermite function is 
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c 

<:::.------------

Figure 3.4: The contour of integration C. 

For the zero mode m = 0 we have À = 1 and for aIl other m we have À i= 0,1,2,'" 

unless L is chosen so that vI2 L / 1r is an integer. 

The Hermite equation (3.32) is second order and we expect to be able to find 

two linearly independent solutions for each À. It is most convenient to choose one of 

these to be the Hermite functions as defined by (3.37,3.38,3.39). To obtain a second 

solution we note the Wronskian formula [100] 

so that 

. . 2.HIJ1f z2 

W [HÀ(zz) , HÀ( -zz)] = r( -À) e- . 

6cPi+) (t, x) 

6cPi-) (t, x) 

cPo(t)HÀ (+iat) xi+) (x), 

cPo(t)HÀ ( -iat) xi-) (x) 

(3.41) 

are linearly independent for À i= 0,1,2,'" (the spatial eigenmodes xi±) are any 

linearly independent conbinations of cos( wÀx) and sin( wÀx)). The linear independence 

of these two solutions fails in the exceptional case À = 1 for an L. The linear 

independence of these two solutions may also fail on other values of m if vI2 L/1r is 

an integer. For simplicity we exclude the case of integer vI2 L/1r from the present 

analysis and take À = 1 to be the only special case. (We note, however, that is is 

straighforward to extend our analysis to include integer values of vI2 L / 1r.) In the 

case À = 1 (m = 0) we can take, as one solution of (3.32), the Hermite polynomial 

(3.37) 
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The second solution may be written formally as 

where the functions P)" and Q)" are given by (3.35,3.36). The function obtained in 

this manner does not have a simple closed form expression as does H1(z). 

Putting the results ofthis section together we write the general solutions of (3.30) 

as 

(3.42) 

ri. ( ) ,",00 - (1) () (1) ( ) ( ) ,",00 - (2) () (2) ( ) 
'PO t L....m=l Hl-7r2m2/2L2 t Xm x + q;o t L....m=l Hl-7r2m2/2L2 t Xm x 

where we have defined the functions 

- (1) re;),,) 1. . 
H)" (t) = 2)"r(1/2) 2 (H),,(zat) + H),,( -uJ:t)) 

and 
- (2) r( ->"/2) 1. . 

H)" (t) = 2)"r( -1/2) 2ai (H),,(zat) - H),,( -zat)). 

The normalizatiolls have been chosen so that fI2) (0) = 1 and OtfIi2) (t) 1 t=o = 1. The 

spatial modes {X~} are 

X~(x) = a~ cos (7r~X) + b~ sin (7r~X) 

for i = 1,2. The coefficients {a~), b~;?} determine the fourier expansion of bq;/ q;o at 

t = 0 and the coefficents {a~),b~)} determine the fourier expansion of Ot(bq;/q;o) at 

t = O. 

For practical numerical computations it is simple st to consider initial data where 

a61
) = 0 to eliminate the function g(iat) - Ql(iat) from the expression (3.42). For 

example, this will be true for any initial data such that bq;/ q;o at t = 0 is an odd 

function of x. 

Recall that the linearized equation (3.30) is valid for Ibq;(t, x)/q;o(t) 1 ~ 1. The 

stability of the solution (3.42) therefore depends on the asymptotic behaviour of the 

functions fIi1)(t) and fIi2)(t) at late times. It is straightforward to show that fIi1)(t) 

and fI?) (t) have the asymptotic behaviour 
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for large t. That these two solutions become linearly dependent as t -+ 00 was to be 

anticipated from (3.41). We find, then, that for modes with .À = 1 - 7r;;J2 < 0 one 

has Jtj/tl(t, x)/CPo(t) -+ 0 and the linearized approximation is stable. On the other 

hand, modes with .À = 1 - 7r;;J2 > 0 7 are increasing functions of time and hence the 

linearized approximation will eventually break down. In the case that L < 7r / v'2 and 

a~l) = a~2) = 0 then aIl of the modes are decreasing and the perturbative expansion 

is reliable throughout the evolution. In this case we can make definitive statements 

about the absence of caustics or similar singularities in the theory (3.26). In fact, for 

initial data which satisfy these restrictions, the profile cp( t, x) becomes homogeneous 

at late times. One might argue that (3.42) implies the absence of caustic formation 

even for more general initial data (for example when L is large and many of the 

modes Jlt2(t,x)/cpo(t) are increasing) since in this case the homogeneous zero mode 

of Jcp / CPo increases faster than aIl other modes. 

,--... 0.001 ..... 
'--" 

~ 
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~ ..... 
'--" -e-
c.o -0.001 

o 0.5 
X 
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.- t=0.8 
- t",LO 

Figure 3.5: Plot of the spatial profiles Jcp/cpo for a series of increasing time steps. 

The initial data is such that the linearized approximation is valid throughout the 

evolution. 

Figure 3.5 shows a plot of the spatial profiles Jcp/ CPo given by (3.42) for a series of 

increasing time steps for the case p = 2, L = 1. The initial data are Jcp(O, x)/CPo(O) = 

0.01xe-(x/0.4)2 and Ot(Jcp(t,x)/CPo(t))/t=o = 0.001 sin(7rx/L) on -L:S x:S +L. For 

7Recall that we are excluding the case À = O. 
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Figure 3.6: Plot ofthe spatial profiles 8c/J/ c/Jo for a series of increasing time steps. The 

initial data is such that the linearized approximation breaks down at late times. 

this choiee of initial data a~l) = a~2) = 0 and À < 0 for aIl m. The perturbative 

expansion is stable for this ex ample and the field tends towards a homogeneous profile 

at late times. Figure 3.6 shows the same plot for the initial data 8c/J(0, x)/c/Jo(O) = 

0.01xe-(xj0.4)2 and at(8c/J(t,x)/c/Jo(t))lt=o = 0.01 on -L ~ x ~ +L. With this choiee 

of initial data 8c/J / c/Jo rv t at late times sinee a~2) =f. 0 and the linearized approximation 

will eventually break down. 

Finally we comment on the interpretation of the Cauchy problem for the linearized 

differential equation (3.30). We have found a general solution of (3.30) for which we 

are free to specify the initial field 8c/J / c/Jo at t = 0 and the time derivative at (8c/J / c/Jo) 

at t = O. This may seem surprising sinee (3.30) contains an infinite number of time 

derivatives and one might naively expect to have the freedom to specify an infinite 

number of initial data a~n) (8c/J/ c/Jo) It=o for n = 0,1,2, .. '. However, the initial value 

problem for homogeneous solutions of (3.27) was studied in [87] and it was found that 

the equation of motion itself imposes an infinite number of consistency conditions on 

the initial data which one can consider. In fact, it was speculated in [87] that the 

spaee of allowable initial conditions for (3.27) may be finite. This conjecture seems 

consistent with our results. It is interesting to note that (3.30) seems to be an example 

of an equation containing an infinite number of derivatives whose solution space is 

surprisingly similar to that of equations containing only two time derivatives. 
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3.6 Conclusions 

We have studied several different effective actions describing the open superstring 

tachyon. In the case of actions containing only first derivatives of the tachyon field 

we have studied three different theories proposed on different grounds. These three 

actions are expected to be valid in different limits of string theory, however, we find 

that that vacuum structure of all three theories is remarkably similar. In particular, 

we have shown that all three theories le ad to the formation of caustics where the field 

becomes multi-valued and where second and higher derivatives of the field blow up. 

Each of these three actions cannot be trusted in the vicinity of a caustic since higher 

derivative corrections which have been neglected become important. We considered 

also an effective action containing second order derivatives of the field and found a 

similar structure of derivative singularities. Finally, in the context of p-adic string 

theory, we studied small inhomogeneities about a time dependent solution which rolls 

from the unstable vacuum to infinity in field configuration space. In this case we 

found that for a broad class of initial data the linearized approximation is reliable 

throughout the evolution and we could conclusively show the absence of caustics or 

similar pathologies. This result seems suggestive that the formation of caustics is an 

artifact of truncating a theory with an infinite number of derivatives, however, the 

connection between p-adic string theory and tachyon matter is still unclear. 

Since we have restricted our analysis to the study of effective actions we cannot 

conclude if the phenomenon of caustic formation is a genuine prediction of string 

theory or not. If this prediction is borne out by string theory it will be necessary to 

find some physical interpretation of the caustics, though none is obvious to us. As 

pointed out in [68, 69] such an interpretation could depend on the dimensionality of 

the theory. One avenue for future study would be to try to interpret caustic formation 

in terms of the gas of massive closed strings which is described by the tachyon fiuid 

[52]. 

If these caustics are in fact a real prediction of string theory it will also be nec­

essary to find some way to predict the field value in the vicinity of a caustic. The 
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situation is qualitatively similar to the formation of shock waves in nonlinear gas 

dynamics. In that case the multi-valued continuous solution in the vicinity of a shock 

is replaced with a single valued discontinuous solution using the Rankine-Hugoniot 

jump condition to quantify the discontinuity in the field. It is possible that some 

similar auxiliary condition could be used to predict the value of the tachyon field in 

the vicinity of a caustic. 
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Abstract 

We examine how reheating occurs after brane-antibrane inflation in warped geome­

tries, such as those which have recently been considered for Type IIB string vacua. We 

adopt the standard picture that the energy released by brane annihilation is dom­

inantly dumped into massive bulk (closed-string) modes which eventually cascade 

down into massless particles, but argue that the this need not mean that the result 

is mostly gravitons with negligible visible radiation on the Standard Model brane. 

We show that if the inflationary throat is not too strongly warped, and if the string 

coupling is sufficiently weak, then a significant fraction of the energy density from 

annihilation will be deposited on the Standard Model brane, even if it is separated 

from the inflationary throat by being in sorne more deeply warped throat. This is 

due to the exponential growth of the massive Kaluza-Klein wave functions toward the 

infrared ends of the throats. We argue that the possibility of this pro cess removes 

a conceptual obstacle to the construction of multi-throat models, wherein inflation 

occurs in a different throat than the one in which the Standard Model brane resides. 

Such multi-throat models are desirable because they can help to reconcile the scale of 

inflation with the supersymmetry breaking sc ale on the Standard Model brane, and 

because they can allow cosmic strings to be sufficiently long-lived to be observable 

during the present epoch. 

4.1 Introduction 

There has been significant progress over the past years towards the construction of 

bona fide string-theoretic models of inflation. The main progress over early string­

inspired supergravity [102J and BPS-brane based [103J models has come due to the 

recognition that brane-antibrane [104, 105] and related [106, 107] systems can provide 

calculable mechanisms for identifying potentially inflationary potentials. Even better, 

they can suggest new observable signatures, such as the natural generation of cosmic 

strings by the brane-antibrane mechanism [104, 56, 57, 58]. The central problem 
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to emerge from these early studies was to understand how the many string moduli 

get fixed, since such an understanding is a prerequisite for a complete inflationary 

scenarIo. 

Recent developments are based on current progress in modulus stabilization within 

warped geometries with background fluxes for Type IIB vacua [20, 108, 21]. Both 

brane-antibrane inflation [24] and modulus inflation [109] have been embedded into 

this context, with an important role being played in each case by branes living in 

strongly-warped 'throat-like' regions within the extra dimensions. These inflationary 

scenarios have generated considerable activity [110, 111] because they open up the 

possibility of asking in a more focused way how string theory might address the many 

issues which arise when building inflationary models. For instance, one can more 

fully compute the abundance and properties of any residual cosmic strings which 

might survive into the present epoch [58]. Similarly, the possibility of having quasi­

realistic massless particle spectra in warped, fluxed Type IIB vacua [113] opens up 

the possibility of locating where the known elementary particles fit into the post­

inflationary world [25], a prerequisite for any understanding of reheating and the 

subsequent emergence of the Hot Big Bang. 

Even at the present preliminary level of understanding, a consistent phenomeno­

logical picture seems to require more complicated models involving more than a single 

throat (in addition to the orientifold images).l This is mainly because for the single­

throat models the success of inflation and particle-physics phenomenology place con­

tradictory demands on the throat's warping. They do so because the energy scale in 

the throat is typically required to be of order Mi t'V 1015 Ge V to obtain acceptably 

large temperature fluctuations in the CMB. But as was found in ref. [25], this scale 

tends to give too large a supersymmetry breaking sc ale for ordinary particles if the 

Standard Model (SM) brane resides in the same throat. This problem appears to be 

reasonably generic to the KKLT-type models discussed to date, because these models 

tend to have supersymmetric anti-de Sitter vacua until sorne sort of supersymmetry-

ITwo-throat models are also considered for reasons different than those given here in ref. [112]. 
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breaking physics is added to lift the vacuum energy to zero. The problem is that the 

amount of supersymmetry-breaking required to zero the vacuum energy also implies 

so large a gravitino mass that it threatens to ruin the supersymmetric understanding 

of the low-energy electroweak hierarchy problem. 

No general no-go theorem exists, however, and there does appear to be consider­

able room to try to address this issue through more clever model-building. Ref. [114] 

provides a first step in this direction within the the framework of 'racetrack' inflation 

[109]. Another possibility is a picture having two (or more) throats, with inflation 

arising because of brane-antibrane motion in one throat but with the Standard Model 

situated in the other (more about this proposaI below). By separating the scales asso­

ciated with the SM and inflationary branes in this way, it may be possible to reconcile 

the inflationary and supersymmetry-breaking sc ales with one another. 

Besides possibly helping to resolve this problem of scales, multi-throat models 

could also help ensure that string defects formed at the end of inflation in the infla­

tionary throat have a chance of surviving into the present epoch and giving rise to new 

observable effects [58]. They are able to do so because if the Standard Model were 

on a brane within the same throat as the inflationary branes, these defects typically 

break up and disappear by intersecting with the SM brane. 

At first sight, however, any multi-throat scenario seems likely to immediately 

founder on the rock of reheating.2 Given the absence of direct couplings between 

the SM and inflationary branes, and the energy barrier produced by the warping of 

the bulk separating the two throats, one might expect the likely endpoint of brane­

antibrane annihilation to be dump energy only into closed-string, bulk modes, such 

as gravitons, rather than visible degrees of freedom on our brane. In such a universe 

the energy which drove inflation could be converted almost entirely into gravitons, 

leaving our observable universe out in the cold. 

It is the purpose of the present work to argue that this picture is too pessimistic, 

because strongly-warped geometries provide a generic mechanism for channelling 

2See ref. [115] for a discussion of issues concerning brane-related reheating within other contexts. 
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the post-inflationary energy into massless modes localized on the throat having the 

strongest warping. They can do so because the massive bulk Kaluza-Klein (KK) 

modes produced by brane-antibrane annihilation prefer to decay into massless par­

ticles which are localized on branes within strongly-warped throats rather than to 

decay to massless bulk modes. As such, they open a window for obtaining acceptable 

reheating from brane-antibrane inflation, even if the inflationary and SM branes are 

weIl separated on different throats within the extra dimensions. 

The remainder of the chapter is organized as follows. In §2 we introduce a sim­

ple generalization of the Randall-Sundrum (RS) model [116] containing two AdSs 

throats with different warp factors, as a tractable model for the lKLMT inflationary 

scenario [24] with two throats. Here we recall the form of the KK graviton wave 

functions in the extra dimension. This is followed in §3 by an account of how the 

tachyonic fluid describing the unstable brane-antibrane decays into excited closed­

string states, which quickly decay into KK gravitons. §4 Discusses the tunneling of 

the KK modes through the energy barrier which exists between the two throats be­

cause of the warped geometry. §5 Gives an estimate of the reheating temperature on 

the SM brane which results from the preferential decay of the KK gravitons into SM 

particles. Our conclusions are given in §6. 

4.2 Tale of Two Throats 

We wish to describe reheating in a situation where brane-antibrane inflation occurs 

within an inflationary throat having an energy sc ale of Mi, due to the warp factor 

ai = Md Mp, where Mp is the 4D Planck mass. This throat is assumed to be separated 

from other, more strongly warped, throats by a weakly warped Giddings-Kachru­

Polchinski (GKP) manifold [20] whose volume is only moderately larger than the 

string scale, so Ms ~ Mp. In the simple st situation there are only two throats (plus 

their orientifold images), with the non-inflationary (Standard Model) throat having 

warp factor asm « ai' 

There are two natural choices for the SM warp factor, depending on whether 
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or not the SM brane strongly breaks 4D supersymmetry. For instance, if the SM 

resides on an anti-D3 brane then supersymmetry is badly broken and the SM warp 

factor must describe the electroweak hierarchy à la Randall and Sundrum [116], with 

asm rv Mw/Mp rv 10-16
. Alternatively, if the SM resides on a D3 or D7 brane which 

preserves the bulk's N = 1 supersymmetry in 4D, then SUSY breaking on the SM 

brane is naturally suppressed by powers of 1/ Mp because it is only mediated by virtual 

effects involving other SUSY-breaking anti-D3 branes. In this case the electroweak 

hierarchy might instead be described by an intermediate-scale scenario [117], where 

asm rv Mint/Mp rv (Mw/Mp)1/2 rv 10-8 . 

A potential problem arises with the low-energy field theory approximation if asm < 

a;, because in this case the string scale in the SM throat, Msm rv asmMp , is smaller 

than the infiationary Hubble scale Hi rv Ml / Mp rv a; Mp [118]. In this case string 

physics is expected to become important in the SM throat, and stringy corrections 

may change the low-energy description. The intermediate scale, where asm ~ a;, is 

more attractive from this point of view, sinee for it the field-theory approximation 

may be justified. 

To proeeed we use the fact that within the GKP compactification the geometry 

within the throat is weIl approximated by 

(4.1) 

where y represents the proper distance along the throat, a(y) = e-klYI is the throat 's 

warp factor and dn~ is the metric on the base spaee of the corresponding conifold 

singularity of the underlying Calabi-Yau spaee [119]. Of most interest is the 5D 

metric built from the observable 4 dimensions and y, which is weIl approximated by 

the metric of 5-dimensional anti-de Sitter space. 

A simple model of the two-throat situation then consists of placing infiationary 

brane-antibranes in a throat at y = -Yi and putting the Standard Model brane at 

Y = +Ysm, as is illustrated in Fig. 4.1. Our analysis of this geometry follows the spirit 

of ref. [120]. Since most of the interest is in the throats, we simplify the description of 

the intervening bulk geometry by replacing them with a Planck brane at Y = 0, with 
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the resulting discontinuity in the derivative of a(y) chosen to reproduce the smoother 

(but otherwise similar) change due to the weakly-warped bulk. This approximation 

is illustrated in Fig. 4.2, with the smooth dashed curve representing the warp factor 

in the real bulk geometry and the solid spiked curve representing the result using an 

intervening Planck brane instead. 

Calabi-Yau 

SM 
throat 

Figure 4.1: A Type lIB vacuum with a mildly warped infiationary throat and a 

strongly warped Standard Model throat. This diagram suppresses any image throats 

arising due to any orientifolds which appear in the compactification. 

warp factor 

--~----~------------~--~~y 
inflation 
brane 

Planck 
brane 

SM 
brane 

Figure 4.2: The warp factor as function of a bulk radial coordinate in a simplified 

model of two asymmetric throats. As shown in the figure, the part of the internaI 

space outside of the throats can be regarded as a regularization of a 'Planck' branc 

of a Randall-Sundrum geometry. 

Of particular interest in what follows are the massive Kaluza-Klein modes in the 

bulk, since these are arguably the most abundantly-produced modes after brane­

antibrane annihilation. For instance, focussing on the 5 dimensions which resemble 
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AdS space in the throat, a representative set of metric fluctuations can be parame­

terized as h(x, y) in the line element, 

( 4.2) 

In the static AdS background, the KK modes have spatial wavefunctions of the form 

( 4.3) 
n 

with p. x = -Ent + p. x, and cPn(Y) satisfying the equation of motion 

_~ ( -4klyl dcPn ) _ 2 -2kIYIA. 
dy e dy - m n e 'f'n . ( 4.4) 

Here m; = p' pis the mode's 4D mass as viewed by brane-bound observers. 

Exact solutions for cPn(Y) are possible in the Planck-brane approximation [116, 

120, 121], and are linear combinations of Bessel functions times an exponential 

( 4.5) 

where, for low lying KK modes (mn « k) one has 

(4.6) 

while for heavy KK modes (mn / k rv 1) one has 

bn rv -0.47 + 1.04 (~n) . (4.7) 

Nn is determined by the orthonormality condition, which ensures that the kinetic 

terms of the KK modes are independent of asm : 

l::m 

dy e-2klYlcPncPm = I5nm . (4.8) 

These wavefunctions are graphed schematically in Fig. 4.3. 

For strongly-warped throats it is the exponential dependence which is most im-

portant for the KK modes. Because of the exponential arguments of the Bessel func­

tions in eq. (4.5), the presence of the Bessel functions modifies the large-y behaviour 

slightly. Due to the asymptotic forms J2 (z) ex Z-1/2 for large Izl, and similarly for 
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Y2 (z), we see that cjyn (y) rv éklYI/2 for mné lYI » k. It is only this behaviour which we 

follow from here on. Taking the most warping to occur in the SM throat we find that 

m n is approximately quantized in units of M sm asmMp , which is either of order 

Mw rv 103 GeV or Mint rv 1010 GeV depending on whether or not supersymmetry 

breaks on the SM brane. Keeping only the exponentials we find that orthonormality 

requires N;;2 rv JYsm dy e-2ky (ékIYI/2) 2 rv (k asm ) -1, and so 

(4.9) 

showing that these modes are strongly peaked deep within the throat. This is intu­

itively easy to understand, since being localized near the most highly-warped region 

allows them to minimize their energy most effectively. 

Thus, even the most energetic KK modes still have exponentially larger wave 

functions on the Te V brane, with the more energetic modes reaching the asymptotic 

region for sm aller y. This is illustrated in Figure 4.4, which shows ln 1 cjyn (y) 1 versus y 

in the representative case of a throat having warp factor a = e- lO , for a series of KK 

states with masses going as high as Mp (n = 20,000). As the figure shows, the wave 

functions grow exponentially toward the Te V brane, with the onset of the asymptotic 

exponential form setting in earlier for larger mode number. 3 This behaviour is central 

to the estimates which follow. 

Among the KK modes it is the zero modes which are the exceptional case because 

their wavefunction is constant, cjyo rv v'k, and so they are not exponentially peaked 

inside the throat. It is the strong exponential peaking of the lightest massive KK 

modes relative to the massless modes which is central to the reheating arguments 

which follow. 

In our simplified model, the presence of two throats is not much more complicated 

than the original RS model. Mathematically it is the same, except that RS identified 

the two sides y +-+ -y through orbifolding. Instead we interpret them as two separate 

3For the lowest-Iying modes having the smallest nonzero masses it can happen that the asymptotic 

form of the Bessel functions is not yet reached even when y = Ysm, in which case the exponential 

peaking is slightly st ronger than discussed above. 
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Figure 4.3: Wave functions of KK gravitons on the internal space. 
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Figure 4.4: Unnormalized wave functions for highly excited KK gravitons with KK 

numbers n = 1, 100, 1000 and 20,000. 
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Figure 4.5: How to place two throats on an 8 1 with Z2 orbifold symmetry. 
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throats with different depths defined by the brane locations -Yi and +Ysm. One can 

imagine doubling this entire system on SI and orbifolding as shown in Fig. 4.5, to 

define the boundary conditions on the metric and its perturbations at the infrared 

branes. In this figure, the orbifold identification acts horizontally so that the inflation 

and SM branes are distinct fixed points. 

4.3 Brane-Antibrane Annihilation 

In brane-antibrane inflation the energy released during reheating is provided by the 

tensions of the annihilating branes. Although this annihilation pro cess is not yet 

completely understood, present understanding indicates that the energy released 

passes through an intermediate stage involving very highly-excited string states, be­

fore generically being transferred into massless closed-string modes. The time frame 

for this pro cess is expected to be the local string scale. 

For instance many of the features of brane-antibrane annihilation are believed 

to be captured by the dynamics of the open-string tachyon which emerges for small 

separations for those strings that stretch between the annihilating branes. 4 In flat 

space and at zero string coupling (gs = 0), the annihilation instability has been argued 

to be described by the following tachyon Lagrangian [43] 

( 4.10) 

where T is the complex tachyon field, TO is the tension of either of the branes, and ls 

is the string length scale. During inflation, when the brane and anti-brane are well 

separated, T = 0 and the pressure of the system Pi is sim ply the negative of the 

tension of the two branes, Pi = -Pi, while afterward T ~ 1 and Pi ~ o. In this 

description the pressureless tachyonic fluid would dominate the energy density of the 

universe and lead to no reheating whatsoever. 

4See, however, ref. [122] for a discussion of an alternative mechanism for which the relevant 

highly-excited strings are open strings, but for which the annihilation energy nonetheless eventually 

ends up in massless closed string modes. 
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However, for nonvanishing gs, the time evolution of the tachyon fluid instead very 

quickly generates highly excited closed-string states [45, 40]. For Dp systems with 

p > 2 the rate of closed string production in this process is formally finite, whereas it 

diverges for p ::; 2 (and so passes beyond the domain of validity of the calculation). 

This divergence is interpreted to mean that for branes with p ::; 2 aIl of the energy 

liberated from the initial brane tensions goes very efficiently into closed string modes. 

For spatially homogeneous branes with p > 2 the conversion is less efficient and so 

can be dominated by other, faster processes. In particular, it is believed that these 

higher-dimensional branes will decay more efficiently inhomogeneously, since they can 

then take advantage of the more efficient channels which are available to the lower­

dimensional branes. For example a D3 brane could be regarded as a collection of 

densely packed but smeared-out DO branes, each of which decays very efficiently into 

closed strings. Since the decay time is of order the local string scale, ls = 1/ Ms, the 

causally-connected regions in this kind of decay are only of order ls in size, and so 

have a total energy of order the brane tension times the string volume, Tol~ "-' Ms/ gs. 

These flat-space calculations also provide the distribution of closed-string states as 

a function of their energy. The energy density deposited by annihilating D3-branes 

into any given string level is of or der Mi, and so due to the exponentially large 

density of excited string states the total energy density produced is dominated by the 

most highly-excited states into which decays are possible. Since the available energy 

density goes like 1/ gs the typical closed-string state produced turns out to have a 

mass of order Ms/ gs, corresponding to string mode numbers of order N "-' 1/ gs. On 

the other hand, the momentum transverse to the decaying branes for these states 

turns out to be relatively small, PT "-' Ms/ -JJE [45, 40], and so the most abundantly 

produced closed-string states are nonrelativistic. 

How do these flat-space conclusions generalize to the warped Type liB geometries 

which arise in string inflationary models? If the annihilating 3-branes are localized 

in the inflationary throat, then the tension of the annihilating branes is of order 

TO"-' (aiMs)4/e4'i, where CPi denotes the value taken by the dilaton field at the throat's 

tip. The highly-excited closed-string states that are produced in this way live in the 
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bulk, with the energy density produced being dominated by those whose masses are 

of order aiMs/ e<Pi. Once produced, these closed-string bulk modes decay down to 

lower energies and, as might be expected from phase space arguments, most of them 

typically drop down to massless string states very quickly. An important exception 

to this would arise for those states carrying the most angular momentum at any 

given string mass level, since these must cascade more slowly down to lower energies 

in order to lose their angular momentum [123]. However these seem unlikely to be 

produced in appreciable numbers by brane-antibrane annihilation. 

We are led in this way to expect that the annihilation energy is distributed 

relatively quickly amongst massless string states, or equivalently to KK modes of 

the higher-dimensional supergravity which describes these states. Although the ini­

tial massive string modes would be nonrelativistic, with M rv aiMs/ e<Pi and PT rv 

aiMs/ e<Pd2
, the same need not be true for the secondary string states produced by 

their decay, whose masses are now of order the KK mass scales. Consequently these 

states may be expected not to remain localized in the inflationary throat, and so if 

the extra dimensions are not too large compared with the string scale these modes 

would have time to move to the vicinity of the SM throat before decaying further. 

Once there, they would be free to fall into the potential wells formed by the throats 

as their energy is lost by subsequent decays into lower-energy levels. 

This physical picture is supported by the exponential peaking of the KK-mode 

wave-functions in the most deeply-warped throats. In order to estimate the efficiency 

with which energy can be transferred amongst KK modes, we can use the approximate 

behavior of the wave functions given in the previous section to keep track of powers 

of the throat's warp factor, asm ' For instance, consider the trilinear vertex among 3 

KK states having mode numbers nl, n2 and n3 which is obtained by dimensionally 

reducing the higher-dimensional Einstein-Hilbert action, y'9R. Keeping in mind that 

y'9g/L1/ ex: a2 and that 1/Jn ex: a!{;/a3/ 2 for the nonzero modes (eq. (4.9)), we find that 

the trilinear vertex involving 0 ::; r ::; 3 massive KK modes (and 3 - r massless KK 



4.3 Brane-Antibrane Annihilation 

modes) has the following representative estimate 

where 

Cint rv [:~m dy v19T glW gCi.(3 gM gP8 hCi./J}JLhO"p8v h(38 

rv [:~m dye-2klyl TjJLV 'l/Jn 1 (x, y) 8 JL'l/Jn2(X, y) 8 v'l/Jn3(X, y) 

rv 'l/Jnl (X) 'l/Jn2 (x) 'l/Jn3 (x) P2 'P3 a:t; [:~m dy e-2klYI (ékIYI/2y 

rv 'l/Jnl (X) 'l/Jn2 (X) 'l/Jn3 (x) (P2 t 3
) a~m 

Tj=2-r if r;::: 2, and 
r 

Tj=-
2 

if r = 0,1. 

113 

(4.11) 

( 4.12) 

Notice for this estimate that since derivatives in the compactified directions are pro­

portional to gmn rather than gJLv, they suffer from additional suppression by powers 

of a = e-ky within the throat. Here m, n label the internaI directions perpendicular 

to the large 3 + 1-dimensional Minkowski space. 

Thus a trilinear interaction amongst generic KK modes (r = 3), even those with 

very large n, is proportional to l/(asmk) rv l/Msm' and so is only suppressed by 

inverse powers of the low scale. Similarly, r = 2 pro cesses involving two massive 

KK modes B and B', and one massless bulk mode Z M - such as the reaction 

B -+ B' + ZM - are ex: l/k rv l/Mp and so have the strength of 4D gravit y 

inasmuch as they are Planck suppressed. The same is also true of the r = 0 couplings 

which purely couple the zero modes amongst themselves.5 Finally, those couplings 

involving only a single low-Iying massive mode and two zero modes (r = 1) - such 

as for B -+ Z M + Z M' - are proportional to a!{.; / k rv (Msm/ M;) 1/2 and so are even 

weaker than Planck-suppressed. 

Similar estimates may also be made for the couplings of the generic and the 

massless KK modes ta degrees of freedom on a brane sitting deep within the most 

strongly-warped throat. Using the expressions CPo(Ysm) rv 1 and CPn(Ysm) rv l/asm for 

5The appendix shows that this agrees with the size of the couplings found in the effective 4D 

supergravity lagrangian which describes the zero-mode and brane couplings. 
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massless and massive KK modes respectively, this gives: 

M;' (h~~q,o(Y,m) + ~ h~':Jq,n(Y,m)) Tt::. 

( 

(0) (n) ) 
hJ),V + '" hp,v TJ),V 
M LM sm' 

P n sm 
(4.13) 

We see here the standard Planck-suppressed couplings of the massless modes (such as 

the graviton) as compared with the 0(1/ Msm ) couplings of the massive KK modes. 

The picture which emerges is one for which the energy released by brane-antibrane 

annihilation ends up distributed among the massive KK modes of the massless string 

states. Because the wavefunctions of these modes tend to pile up at the tip of the most 

warped (SM) throat, their couplings amongst themselves - and their couplings with 

states localized on branes in this throat - are set by the low scale M sm rather than 

by Mp. Furthermore, because the 0(1/ Msm ) couplings to the massless modes on the 

SM branes are much stronger than the Planck-suppressed couplings to the massless 

bulk modes, we see that the ultimate decay of these massive KK modes is likely to 

be into brane states. If it were not for the issue of tunneling, which we consider 

below, the final production of massless KK zero modes would be highly suppressed. 

Although we make the argument here for gravitons, the same warp-counting applies 

equally well to the other fields describing the massless closed-string sect or. 

In summary, we see that strong warping can provide a mechanism for dumping 

much of the energy released by the decay of the unstable brane-antibrane system 

into massless modes localized on branes localized at the most strongly-warped throat, 

regardless of whether the initial brane-antibrane annihilation is located in this throat. 

It does so because the primary daughter states produced by the decaying brane­

antibrane system are expected to be very energetic closed strings, which in turn 

rapidly decay into massive KK modes of the massless string levels. The strong warping 

then generically channels the decay energy into massless modes which are localized 

within the most strongly-warped throats, rather than into massless bulk modes. 
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4.4 Tunneling 

However the above arguments are too naive, since they ignore the fact that there is 

an energy barrier which the initial KK gravitons must tunnel through in or der to 

reach the Standard Model throat. The efficiency of reheating on the SM brane will 

be suppressed by the tunneling probability. 

The tunneling amplitude for a KK mode with energy En' in a Randall-Sundrum­

like two-throat model just like ours, has been computed exactly in [120J: 

(4.14) 

where Mi is the characteristic energy scale at the bottom of the inflation throat, out 

of which the particle is tunneling. Intuitively, this can be understood in the following 

way. For a mode with minimum (but nonzero) energy, the tunneling amplitude is 

given by the ratio of its wave function at the bottom of the throat to that at the top: 

(4.15) 

Since energies in the throat sc ale linearly with the warp factor, a high-energy mode, 

with energy En, should have the larger tunneling amplitude given by (4.14). In the 

present case, the highest KK modes have energies determined by the tension of a 

DO-brane (as argued above); but we must remember that it is the warped tension 

which counts, so the maximum energy scale is given by En rv ainf Ms/ gs whereas the 

characteristic energy scale in the throat is Mi rv ainf Ms. The tunneling probability 

is therefore 

(4.16) 

To maximize this, we need a high scale of inflation (so that the inflationary warp 

factor is not too small) and a small string coupling. Optimistically, we could imagine 

that inflation is taking place near the GUT scale, 1016 GeV, which saturates the 

bound on the inflation scale coming from gravitational waves contributing to the 

CMB anisotropy, and gs = 0.01. Then ainf = 10-3 and the tunneling probability is 

P = 10-4 . 
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With a small tunneling probability P, the universe immediately after reheating 

would be dominated by massless gravitons, the final decay product of KK gravitons 

confined to the inflation throat. Only the small fraction P of the original false vacuum 

energy density which tunneled into the SM throat would efficiently decay into ulti­

mately visible matter on the SM brane. Such a distribution of energy density would 

be strongly ruled out by big bang nucleosynthesis were it to persist down to low 

temperatures. There are several natural ways in which this outcome can be avoided 

however. Since reheating occurs at a high scale (given that P is not too small, as we 

shall quantify in the next section), the number of effectively massless degrees of free­

dom N(Trh ) could be quite large at the temperature of reheating. As the heavier of 

these species go out of equilibrium, they transfer their entropy into the lighter visible 

sect or particles, resulting in a relative enhancement factor N (Trh ) 1 N (Tnue ) of the en­

tropy in visible radiation at the nucleosynthesis temperature Tnue . On the other hand 

the entropy density in gravitons remains fixed because they were already thermally 

decoupled from the moment they were produced. If this is the only mechanism for 

diluting gravitons, we would require P N(Trh)IN(Tnue) ~ 10, so that gravitons make 

up no more than 10% of the total energy density at BBN. 

Additionally, gravitons can be efficiently diluted if any heavy particles decay out 

of equilibrium at a temperature Tdee before BBN, so that they come to dominate the 

energy density during a significant interval. 6 In this case the gravitons are diluted by 

an additional factor of Tdecl M by decaying particles of mass M. Similarly, a period 

of domination by coherent oscillations of a scalar field (for example a flat direction 

with a large initial VEV, that gets lifted during a phase transition) will behave as 

though matter-dominated, and give the same kind of dilution. 

There is one more criterion which must be satisfied in order for tunneling to be 

significant: the lifetime of the heaviest KK states should be of the same or der as or 

longer than the typical tunneling time. The typical momentum of the KK modes is 

of order Mil V!f;, hence the velo city transverse to the decaying brane is of order V!f; 

6We thank Andrei Linde for pointing out this possibility. 
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[45], and the length ofthe throat is of or der R = CM;l where c ~ 10 in order to have 

a reliable low-energy description of the inflationary dynamics. Thus the tunneling 

time is 
M- 1 

T > 1O_8 _p-l t rv
lï1 y98 

while the lifetime of a KK mode is estimated to be 

(4.17) 

( 4.18) 

where the factor of 9; cornes from the squared amplitude for the two-body decay 

and Md 98 is the phase space. This translates into the requirement 10 9;/2 < arnf. 

To satisfy this, we need to take a string coupling which is somewhat smaller than 

0.01, say 98 = 0.006. The bound is then saturated for an inflationary warp factor of 

ainf = 10-3 . In this case the tunneling probability is 8 X 10-4 • 

It would be interesting if there exist warped compactifications in which the back­

ground dilaton field is varying between the two throats. In this case it may be 

possible to have a sm aller string coupling in the inflation throat, as would be desir­

able for the tunneling problem, while keeping the string coupling in the SM throat at 

a phenomenologically preferred value. 

It is worth emphasizing that even when the tunneling probability for energetic 

KK modes is large enough for reheating, the lifetime of cosmic strings in the infla­

tion throat is still cosmologically large. Copeland et al. [58] estimate the barrier 

penetration amplitude for a string to be 

(4.19) 

which makes the strings stable on cosmological time scales. 

4.5 Warped Reheating 

From the previous sections we see that the endpoint of brane-antibrane inflation can 

be considered as a gas of nonrelativistic closed strings with mass Md 98' density Ml 
and decay rate r rv 98 Mi, localized in the inflationary throat. These heavy states 
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cascade down to massless gravitons through a sequence of KK gravitons, a fraction 

P (eq. 4.16) of which tunnel to the SM brane and decay into visible sect or particle. 

Initially there will be two relevant reheat temperatures: one for the massless 

gravitons, Tgrav and one for the visible sector, Tvis . By the standard reheating estimate 

[125J we see that 

( 4.20) 

where the last estimate uses ai rv 10-3 . and Ms rv Mp/lO. On the other hand, since 

a fraction P of the false vacuum energy was converted to visible sector particles, we 

de duce that 

(4.21 ) 

using the optimistic estimate of the previous section for P. This estimate is high 

enough to avoid potential problems to which a low reheat temperature can give rise. 

One should take this result with a grain of salt sinee it is marginally larger than 

both Mi and Msm, and because it is larger than the string scale in the throats it 

invalidates the 4D field-theoretic calculation on which it is based. A more careful 

calculation must instead be based on a higher-dimensional, string-theoretic estimate 

of the energy loss, which goes beyond the scope of this article. 

In conventional inflation models, such a high reheating temperature would be in 

conflict with the gravitino bound (overproduction of gravitinos, whose late decays 

disrupt big bang nucleosythesis). It is interesting in this regard that the KKLT 

scenario gives a very large gravitino mass, around m3/2 = 6 x 1010 GeV [114], which 

is so large that there is effectively no upper limit on the reheat temperature (see 

for instance ref. [133]). The disadvantage of such a large gravitino mass is that 

supersymmetry is broken at too high a scale to explain the weak sc ale of the SM. If 

SUSY is this badly broken, one possibility for explaining the weak hierarchy is that 

the large landscape of string vacua provides a finely-tuned Higgs mass, as well as 

cosmological constant, as has been suggested in ref. [134J. If this is the case, then the 

degree of warping in the SM model brane would not be crucial for determining the 
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Te V scale, and the existence of an extra throat to contain the SM model brane would 

be unnecessary. However, given the large number of 3-cycles in a typical Calabi-Yau 

manifold, each of which can carry nontrivial fluxes, the existence of many throats 

should be quite generic, and it would not be surprising to find the SM brane in a 

different throat from the inflationary one. 

4.6 Conclusions 

We have argued that for brane-antibrane inflation in strongly-warped extra-dimensional 

vacua - such as have been considered in detail for Type lIB string models - there is 

a natural mechanism which channels a fraction of the released energy into reheating 

the Standard Model degrees of freedom. This is because a nonnegligible fraction of the 

false vacuum energy of the brane-antibrane system naturally ends up being deposited 

into massless modes on branes which are localized inside the most strongly-warped 

throats, rather than being dumped completely into massless bulk-state modes. 

This pro cess relies on what is known about brane-antibrane annihilation in flat 

space, where it is believed that the annihilation energy dominantly pro duces very 

massive closed-string states, which then quickly themselves decay to pro duce massive 

KK modes for massless string states. What is important for our purposes is that the 

wave functions for aIl of the massive KK modes of this type are typicaIly exponentiaIly 

enhanced at the bot tom of warped throats, while those for the massless KK bulk 

modes are not. This enhancement arises because the energies of these states are 

minimized if their probabilities are greatest in the most highly warped regions. This 

peaking is crucial because it acts to suppress the couplings of the massive KK modes 

to the massless bulk states, while enhancing their couplings to brane modes in the 

most warped throats. 

Although the couplings of the KK modes to SM degrees of freedom are enhanced, 

the KK modes must first tunnel from the inflation throat to the SM throat. This 

results in most of the energy density of the brane-antibrane system ending up as 

massless gravitons, and only a small fraction P going into visible matter. Nevertheless, 
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for reasonable values of the string coupling and the warp factor of the inflationary 

throat, P can be as large as 10-3 - 10-4 . Since the initial reheat temperature is 

high, there are many decades of evolution in temperature during which the de cou pIed 

gravitons can be diluted by events which increase the entropy of the thermalized 

visible sect or particles relative to the gravitons. In this way it is quite plausible that 

big bang nucleosynthesis bounds on the energy density of gravitons can be satisfied. 

From this point of view, it is possible to efficiently reheat the SM brane after brane­

antibrane inflation, so long as there are no other hidden branes lying in even deeper 

throats than the SM, which would have a larger branching ratio for visible sector 

decay than the SM. This observation is all the more interesting given the attention 

which multiple-throat inflationary models are now receiving, both due to the better 

understanding which they permit for the relation between the inflationary scale and 

those of low-energy particle physics, and to the prospects they raise for producing 

long-lived co smic string networks with potentially observable consequences. We will 

discuss the formation and evolution of such co smic string networks in chapter 5. 
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Abstract 

We show that the naive application of the Kibble mechanism seriously underestimates 

the initial density of cosmic superstrings that can be formed during the annihilation 

of D-branes in the early universe, as in models of brane-antibrane inflation. We 

study the formation of defects in effective field theories of the string theory tachyon 

both analytically, by solving the equation of motion of the tachyon field near the 

core of the defect, and numerically, by evolving the tachyon field on a lattice. We 

find that defects generically form with correlation lengths of order Ms-l rather than 

H-1
. Hence, defects localized in extra dimensions may be formed at the end of 

inflation. This implies that brane-antibrane inflation models where inflation is driven 

by branes which wrap the compact manifold may have problems with overclosure by 

cosmological relies, such as domain walls and monopoles. 

5.1 Introduction 

Although it is notoriously difficult to test string theory in the laboratory, exciting 

progress has been made on the cosmologie al front through the realization that su­

perstrings could appear as cosmic strings within recent popular scenarios for brane­

antibrane inflation [56, 58]. Gravit y wave detectors and pulsar timing measurements 

could thus give the first positive experimental signaIs coming from superstrings [135] 

(see, however, [136]). If seen, it will be challenging to distinguish cosmic super­

strings from conventional cosmic strings. One distinguishing feature is the possibility 

that superstrings have a smaller intercommutation probability than ordinary cosmic 

strings [137]. In this chapter we consider whether the mechanism of formation of 

cosmic superstrings might provide another source of distinction, by studying in detail 

the formation of string and brane defects, emphasizing differences with the standard 

picture of defect formation. 

To set the stage, let us briefly recall how defect formation works in a standard 

theory [35] (see chapter 1 for a review). Consider a scalar field theory with potential 
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~(14)12 - fJ2)2. In the standard picture as the universe cools below sorne critical tern­

perature Tc the U(l) symmetry is broken and 4> roUs to the degenerate vacua of the 

theory 1<p1 = fJ· Causality implies that the field cannot be correlated throughout the 

space and hence the field roUs to different vacua in different spatial regions leading to 

the formation of topological defects. The defect separation is set by the correlation 

length, ç. For a universe expanding with Hubble rate H one expects ç < H- I and 

hence a minimum defect density of about one per Hubble volume. However, this is 

only an upper bound on ç. A more careful estimate can be made using condensed 

matter physics methods: equating the free energy gained by symmetry breaking with 

the gradient energy lost. Very close to Tc thermal fluctuations which can restore the 

symmetry are probable; however, once the universe cools below the Ginsburg temper­

ature, TG, there is insufficient thermal energy to excite a correlation volume into the 

state <p = 0 and the defects "freeze out." For the scalar field theory described above 

this estimate yields a correlation length of or der the microscopie scale: ç rv ). -lfJ-I. 

The physics of tachyon condensation on the unstable Dp brane-antibrane system 

is quite different however, due to the peculiar form of the action [43] 

(5.1) 

The tachyon potential has a "runaway" form and there are no oscillations of the field 

near the true vacuum which can restore the symmetry. The decaying exponential 

potential of the complex tachyon field multiplies the kinetic term. Once condensation 

starts, TroUs quickly to large value, and damps the gradient energy exponentially. 

This essentially eliminates the restoring force which would tend to erase gradients 

within a causal volume in an ordinary field theory. 

In this chapter we perform a quantitative analysis of the formation of string de­

fects starting from the unstable tachyonic condensate that describes unstable brane­

antibrane systems. Having established that defects form with an energy density com­

parable to that which is available from the condensate, we then examine the possible 

cosmological consequences of this larger-than-expected initial density. 

The organization of this chapter is as foUows. In section 5.2 we briefly dis-
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cuss brane-antibrane inflation and the formation of defects at the end of brane­

antibrane inflation by tachyon condensation. In section 5.3 we study the formation 

of codimension-one branes in the decay of a nonBPS brane both analytically as weIl 

as through lattice simulations. In section 5.4 we repeat the study, this time for the 

formation of codimension-two branes in the decay of the brane-antibrane system. We 

contrast these results with the formation of conventional cosmic strings in section 

5.5. The reader who is interested in the cosmological implications may wish to skip 

directly to section 5.6 where we consider new constraints on brane inflation models 

which may arise due to the large initial density of defects. Conclusions are given in 

section 5.7. In an appendix we justify the assumed initial conditions for the tachyon 

fluctuations which lead to defects. 

5.2 Brane Inflation 

Relic cosmic superstrings can form at the end of inflation driven by the attractive 

interaction of branes and antibranes [24, 25], [53]. In this picture, inflation ends 

when the brane and antibrane (or a pair of branes oriented at angles) become suf­

ficiently close that one of the open string modes stretching between the branes be­

cornes tachyonic. The subsequent rolling of this tachyon field describes the decay of 

the brane-antibrane pair. Quantum fluctuations pro duce small inhomogeneities in 

the tachyon field, which will cause it to roll toward different vacua in different spa­

tial regions, leading to the formation of topological defects which are known to be 

consistent descriptions of lower dimension al branes. 

The branes which drive inflation must span the three noncompact dimensions 

and may wrap sorne of the compact dimensions. The defects which form are lower 

dimension al branes whose world-volume is within the world-volume of the parent 

branes. The argument was made in [56] (illustrated in figure 5.1) that by applying 

the reasoning of the Kibble mechanism to the formation of the lower-dimensional 

branes one concludes that the branes which are copiously produced as topological 

defects will always wrap the same compact dimensions that the parent branes wrap 
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and hence these branes appear as co smic strings to the 3-dimensional observer. 1 This 

argument is based on the fact that the size of the compact dimensions is orders of 

magnitude sm aller than the Hubble distance during (and at the end of) inflation and 

hence there are no causally disconnected regions along the compact dimensions (a 

reasonable estimate is H-l rv 6 X 103 M;l while typically the extra dimensions are 

compactified at a scale R doser to Ms-l). Therefore along these directions the tachyon 

field would always roll toward the same vacuum and no topological defects would 

form. The causally disconnected regions occur only along the extended directions, 

so the defects are localized along the extended directions. An identical argument 

implies that co smic strings should form with a density of about one string per Hubble 

volume. 

l/V"" ... <.:.i/H 

Figure 5.1: Illustration of the Kibble argument in the case of branes spanning ex­

tended dimensions and wrapping compact ones. The compact dimension is much 

smaller in size than the Hubble distance, 1/ H » fil' so there are no causally discon­

nected regions along this dimension. The branes that will form as topological defects 

will wrap the same compact dimensions as the parent branes, and will be localized 

on the extended dimensions. 

Reference [56] uses the analogue of the condensed matter physics argument para­

phrased in section 5.1 to estimate the correlation length of the tachyon field at the 

end of inflation. Since the universe has zero temperature at the end of inflation the 

thermal fluctuations are replaced by the quantum fluctuations of de Sitter space: 

Hj(27r). In that analysis the potential depends on the brane separation and as a 

result of the relative motion of the brane and the antibrane, the curvature of the 

potential at T = 0 changes sign. It is also assumed that the tachyon potential, V(T), 

IThe production of phenomenologically dangerous monopole-like and do main wall-like defects is 

suppressed. 
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has a minimum for sorne finite value of T. In this case there is an interplay between 

the correlation length, çc given by the curvature of the potential at T = 0, and the 

Ginsburg length, ça, which is the largest scale on which quantum fluctuations of the 

field can restore the symmetry. As the brane separation decreases and the shape of 

the potential changes, the correlation length and the Ginsburg length change as weIl. 

The density of defects freezes when çc = çG. This analysis yields a correlation length 

which is not much different from the Hubble scale: ç f"V 1.6 X 104M;1 f"V 2.7H-1. 

There are several reasons to consider a more quantitative study of defect formation 

at the end of brane inflation. Firstly, the estimate of one defect per Hubble volume 

provides only a lower bound on the defect density via causality. The actual network 

of defects produeed is determined by the complicated tachyon dynamics as it rolls 

from the unstable maximum of its potential to the degenerate vacua of the theory. 

Second, the effective field theory which describes the dynamics of the tachyon [43] 

has a rather unusual causal structure [138] and the usual reasoning of the Kibble 

mechanism may not be applicable. In [138] it was found that in the case of the 

homogeneous rolling tachyon the small fluctuations of the field propagate according 

to a "tachyon effective metric" which depends on the rolling tachyon background. 

As the tachyon rolls towards the vacuum the tachyon effective metric degenerates, 

the tachyon light cone collapses onto a time-like half line and the tachyon fields at 

different spatial points are causally decoupled. 

Finally we comment on the validity of the effective field theory description. At 

sorne point the effective field theory description of the decaying brane will become 

inappropriate and the correct degrees of freedom will be the decay products of the 

brane annihilation. Since the topological defects of the tachyon field form in a short 

time of order M;l, [48, 1], the effective field theory description should be applicable 

during the period of defect formation. Furthermore, there are reasons to believe 

that the effective field theory is valid even at late times when the tachyon is close to 

the vacuum, sinee in this regime the tachyon effective field theory may give a dual 

description of the closed strings which are produced during brane decay [52]. 
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5.3 Tachyon Kink Formation in Compact Spaces 

In this section we consider the formation of codimension-one branes from tachyon 

condensation on a nonBPS brane. We study defect formation both by solving the 

full nonlinear equations of motion on a lattice, as well as providing analytical ap­

proximations to the behavior of the tachyon field in different regimes of interest. We 

study the evolution of the tachyon field starting from a profile which is close to the 

unstable vacuum T = 0 (in this respect our analysis is similar to [32, 33, 34]). In 

our analysis there is no parameter which causes continuous variation of the potential, 

we con si der the brane-antibrane system to be coincident at t = 0 when the initial 

conditions are imposed (this potentially important difference should be kept in mind 

when comparing our results to [56]). 

5.3.1 Action and Equation of Motion 

We will work with the tachyon Dirac-Born-Infeld effective action [43, 42, 50] 

(5.2) 

The action (5.2), with V(T) = Vo/cosh(T/v'2Ct), can be derived from string theory 

in sorne limit [46] and has been shown to reproduce various nontrivial aspects of the 

full string theory dynamics [50, 45]. Here we take the potential to be 

(5.3) 

where Tp is the Dp-brane tension. The constant b determines the tachyon mass in 

the perturbative vacuum as MT = V2b-1 
rv 1/#. Qualitatively the results will 

depend very little on the specifie functional form of V(T). In fact, for much of 

the analytical analysis which follows we will not even need to make reference to the 

specific functional form of V(T).2 We con si der real tachyon fields in a spacetime with 

three expanding, noncompact dimensions {Xi} (where i = 2,3,4) and one compact 

2Provided of course that V' (T = 0) = 0 and V (T --'> ±oo) --'> o. 
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dimension Xl = X which we take to be static. The metric is 

(5.4) 

For simplicity we take the tachyon field to depend only on time, X O = t, and the 

compact spatial coordinate Xl = x. The equation of motion which follows from (5.2) 

with the metric (5.4) is 

(1 + T '2
) T = Til (1 - y 2

) - (3HY + ~ ~?) (1 - y 2 + T 12
) + 2 Y T' y' (5.5) 

where Y = 80T = 8tT, T' = 8l T = 8x T, V'(T) = 8V/8r and H = a/a. 

5.3.2 Lattice Simulation of Kink Formation 

We have solved (5.5) on a lattice for different values of the compactification radius and 

the Hubble parameter H (which we take to be constant for simplicity). We consider 

vanishing initial velo city Y(t = 0, x) = ii(x) = o. The initial profile T(t = 0, x) = 

~(x) is a Fourier series truncated such that the minimum wavelength is comparable to 

the lattice spacing. 3 The amplitudes of the Fourier coefficients are given by a random 

Gaussian distribution and the overall amplitude of the initial profile is chosen to be 

small compared to b. 

As in [51] we find that the gradient of the tachyon field near the core of the kink 

becomes infinite in a finite time, forcing us to haIt our evolution. After this point the 

codimension-one branes have formed and if one wants to follow the evolution beyond 

this time it is necessary to con si der the dynamics between branes and antibranes in 

a compact space; the field theory description is no longer adequate. 

Typically the initial profile crosses T = 0 at many points. In the early stages of the 

evolution the field begins to grow due to the small displacement from the unstable 

vacuum. During this phase of the evolution many of the small fluctuations of the 

field will straighten themselves out. Large Hubble damping tends to kill off the high 

3See the appendix for a discussion of the validity of these initial conditions. 
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frequency fluctuations faster. At the end of this initial stage there may be several 

locations where the field stays pinned at T = 0, depending most crucially on the 

radius of compactification. The evolution very quickly enters a nonlinear regime in 

which the field begins to roll quickly towards T -------t +00 where T > 0 and T -------t -00 

where T < o. 

The most important parameter for determining the density of the defect network 

once the daughter branes have formed is the radius of compactification, R. Perhaps 

surprisingly, we find that for a compactification radius as small as a few times b, 

tachyon kinks will form. Once the field enters the nonlinear regime the defect forma­

tion depends only on the local physics near the core of the kink. In figures 5.2, 5.3 

we plot the tachyon field versus t and x, showing the formation of codimension-one 

branes from the decay of a nonBPS brane for radii of compactification R = 8Mil 

and R = 15Mil. The Hubble constant is taken to be vanishing, H = 0, in these 

figures. We have also considered H =J- 0 and find that the Hubble damping has little 

effect on the final kink/ anti-kink network. Hence we find that tachyon kinks do form 

in the compact directions even when the field is initially in causal contact throughout 

the extra dimension. 

o 

o 

Figure 5.2: Formation of tachyon kinks for R = 8Mil. The time axis is measured in 

units of Mil. 
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o 

-1 

Figure 5.3: Formation of tachyon kinks for R = 15Mil. The time axis is measured 

in units of Mil. 

5.3.3 Analytical Study of Tachyon Kink Formation 

Here we describe analytically the formation of tachyon kinks. Sinee the full equation 

of motion (5.5) is difficult to solve analytically for arbitrary initial data, we study 

the dynamics of (5.5) in different regimes: near the core of the defect, where the field 

stays pinned at T = 0, and away from the core, where TroUs towards the vacuum. 

To simplify our analysis we neglect the compact topology of the extra dimension x, 

which should be a good approximation sinee the defect solutions are infinitely thin 

and therefore highly localized. 

Solutions N ear the Core of the Defect 

Here we briefly review the analytical studies of kink formation near the core of the 

defect presented in [1]. Consider initial data T(t = 0, x) = Ii(x) and T(t = 0, x) = 

Ti (x) = O. The field should start to roll where Ii (x) =1= 0 due to the smaU displaeement 

from the unstable maximum V' (T) = 0, and furthermore it must stay pinned at T = 0 

at the core of the kink. At t = 0 the equation of motion (5.5) is 

t(x) (1 + Tf(x?) = Tf'(x) + ~ Ii (x) (1 + Tf(x)2) . 

Clearly any point Xo where Ti(xo) = T['(xo) = 0 will be a fixed point where T(t, xo) = 

o = T(t, xo) throughout the evolution. We restrict ourselves to considering only 
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initial data such that sgn(Ïi (x)) = sgn(Ti (x)) for all x to ensure that the solutions 

are increasing. To analytically study the dynamics near Xo it is therefore reasonable 

to make the ansatz 

T(t, x) rv u(t)(x - xo). (5.6) 

For u(t) = const ---+ 00 this solution corresponds to the singular static soliton solution 

of Sen [50]. Inserting the ansatz (5.6) into (5.5) and working only to linear or der in 

(x - xo) one obtains an ordinary differential equation for the slope 

.. 2 uiL2 
• 

u=b2u + 2 2-3Hu. (5.7) 
l+u 

We have solved (5.7) numerically for both constant H and H rv l/(t + to). We find 

that generically the solutions of (5.7) become singular in a finite time t = te. Larger 

H tends to delay the onset of the singularity and soft en the singular behaviour. To 

understand this finite time slope divergence analytically it is simplest to consider 

H = O. In this case if we assume that initially iL is close to zero then the second term 

on the right hand side of (5.7) can be neglected and therefore 

at early times. Clearly iL grows quickly and the second term on the right hand side 

of (5.7) very quickly becomes important. In the regime where u and its derivatives 

become large the solution has the behaviour 

k 
u(t) rv--

te - t 

where the critical time te depends on the initial conditions. We find that within finite 

time the slope becomes singular and the time dependent tachyon field near the core 

of the kink coincides with the singular soliton solution of Sen [50]. Hence we conclude 

that the codimension-one brane forms in a finite time. 

This finite-time slope divergence was observed both numerically and analytically in 

[51] and leads to a finite-time divergence in the stress-energy tensor. This divergence 
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-2 

Figure 5.4: Behavior of the slope at the core of the kink for different initial conditions. 

The time axis is measured in units of b. 

was also found in an exact string theory calculation in [48]. For the potential (5.3) 

the stress-energy tensor near x = Xo and t = te, with H = 0, is [1] 

T, ~ Tpk ex (_ k
2
(x - xo?) 

00 - te - t p b2(te - t)2 . 

Renee, with the normalization b = 2-) na' proposed in [50], as t --+ te we have Too --+ 

Tp _ 16(x - xo). Similarly one can show that in this regime TOI = Tu = 0 and that 

Tij = -Tp - 16ij6(x - xo). In the limit of condensation, then, the stress-energy near 

x = Xo is identical to that of a D (p-l)-brane. If we take into account the rolling of the 

tachyon for x =1= Xo then there will be an additional component to T1u/ corresponding 

to tachyon matter, as in [71]. 

Solutions Near the True Vacuum 

Away from the site of the kink the field will roll towards the true vacuum T --+ ±oo 

so that V(T) --+ 0 at late times for x =1= xo. Solutions in this regime were discussed in 

detail in chapter 3. 

5.4 Tachyon Vortex Formation in Compact Spaces 

In this section we generalize the results of section 5.3 to con si der the formation of 

codimension-two branes from tachyon condensation on the brane-antibrane pair. This 
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situation is of more direct interest to brane-antibrane inflation since inflation ends 

when a brane-antibrane pair annihilate. This situation is also more realistic since the 

stable branes in a given string theory are those whose dimension differs by a multiple 

of two. 

5.4.1 Action and Equations of Motion 

We wish to generalize the results of the previous section to consider complex tachyon 

fields which depend on time and two spatial coordinates which we compactify on a 

square torus. We generalize the action (5.2) to 

(5.8) 

with metric 

where Xl = X and X2 = y are Cartesian coordinates on the torus and Xi denotes the 

three noncompact dimensions, as in section 5.3. We con si der tachyon fields which 

depend on XO = t, Xl = X and x3 = y. If we separate the tachyon field into into real 

and imaginary components as 

T(t, x, y) = Tl (t, x, y) + i T2 (t, x, y) 

then (5.8) may be rewritten in terms of components as 

where the upper-case Roman indices label the real and imaginary components of the 

tachyon field (1 = 1, 2). The equation of motion is (no sum over l, sum over J and 

K): 
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We note that the action (5.8) has not been derived from first principles and has 

several drawbacks from a theoretical perspective. For other proposaIs of the effective 

field theory on the brane-antibrane pair see [50],[139]-[141]. One theoretical difficulty 

is that the action (5.8) does not evade Derrick's theorem [67]. This is of no practical 

coneern to us sinee we study time dependent solutions and sinee our interest is in de­

fect formation in a compact space where charge conservation precludes the possibility 

of isolated defect solutions. More seriously, for the action (5.8) a static profile of the 

form T = u( x + iy) with u ----+ 00 does not correctly reproduce the stress tensor for a 

codimension-two brane. We will attempt to address this difficulty by considering an 

alternative description of the complex tachyon dynamics in a subsequent subsection. 

5.4.2 Lattice Simulations of Vortex Formation 

We solve the system of two coupled partial differential equations (5.9). As in sub­

section 5.3.2 we find that the gradient of tachyon field becomes singular near the 

core of the defect in a finite time, forcing us to haIt our lattice evolution. As in 

the case of the kink we choose as initial data T(t = 0, x, y) = t(x, y) = 0 and 

T(t = O,x,y) = Ti(x,y) given by a truncated Fourier series with random Gaussian 

coefficients with the overall amplitude small compared to b. We take H = 0 for our 

examples, sinee the Hubble damping plays litt le qualitative role in the dynamics. In 

figures 5.5, 5.6, 5.7 and 5.8 we plot -ITI = - JT1
2 + Ti against {x, y} with the T 

axis measured in units of b. Figure 5.5 shows typical initial conditions used for our 

numerical analysis. In figures 5.6, 5.7 and 5.8 we plot the final configurations close to 

t = te when the gradients become infinite for various radii of compactification. (Note 

that because we are plotting -ITI rather than +ITI the vortices appear as spikes in 

the final configuration.) Again we find that vortices do form for radii of compactifi­

cation as small as a few times MT 1
, even though the field is initially in causal contact 

throughout the compact space. 



5.4 Tachyon Vortex Formation in Compact Spaces 135 

-0.2 

-0.4 

-0.6 

-0.8 

Figure 5.5: Typical initial configuration for numerical studies of vortex formation. 
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Figure 5.6: The final configuration of the complex tachyon field for R = 7 Mil. 

Figure 5.7: The final configuration of the complex tachyon field for R = 15Mil. 
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Figure 5.8: The final configuration of the complex tachyon field for R = 25My l
. 

5.4.3 Analytical Study of Vortex Formation 

As in subsection 5.3.3 we expect that in the case of the vortex there will exist fixed 

points where the field stays pinned at T = ° throughout the evolution. To see 

this we consider the equation of motion for Tl at t = ° for initial data such that 

T(t = 0, x, y) = O. To simplify the expression we write the equation evaluated at a 

point (xo, Yo) such that T(t = 0, Xo, Yo) = 0: 

[-Tl + 8;TI + 8;TI ] [ 1 + (8xTI )2 + (8y TI )2 + (8xT2? + (8y T2 )2] 

- [ (8xTI? 8;TI + (8yTI )2 8;TI + 2 8xTI 8yTI 8x8yTI 

8xTI 8xT2 8;T2 + 8yTI 8yT2 8;T2 + (8xTI 8yT2 + 8yTI 8xT2 ) 8x8yT2] = O. 

The equation for T2 is identical with 1 +--+ 2. It is clear, then, that any point (xo, Yo) 

where TI(O, xo, Yo) = 8; TI 1 (O,xO,yo) = 8; TI 1 (O,xO,Yo) = 8x8yTI I(o,xo,Yo) = ° (for l = 

1,2) will be a fixed point of the evolution where THt, xo, Yo) = TI (t, xo, Yo) = ° for 

all t and hence the field T stays pinned at zero throughout the evolution. In the 

neighborhood of the point (xo, Yo) we thus should be able to write the field in the 

form T rv u(t)(x - xo) + v(t)(y - Yo) with u and v complex. Therefore to study 

analytically the dynamics of the field near the core of the vortex we make an ansatz 

of the type: 

Tl (t, x, y) = u (t) (x - xo), T2 (t, x, y) = u (t) (y - Yo). (5.10) 
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We have chosen v(t) = iu(t) and u(t) real sinee the vortex solution is expected to 

take the form 

T (t, z, z) = u (t) II (z - Zi) II (z - Zi) 
j 

(5.11) 

where we have defined complex coordinates Z = x + iy, z = x - iy. The profile (5.11), 

with u(t) = const -+ 00 was used for the multi-vortex solutions of [139] where it was 

shown that each holomorphic zero of (5.11) corresponds to a brane and each anti­

holomorphie zero of (5.11) corresponds to an antibrane. We insert now the ansatz 

(5.10) into the equations of motion (5.9) whieh corresponds to studying the dynamies 

close to the core of a single vortex located at Zo = Xo + iyo. In this regime the 

equations of motion for the real and imaginary parts of the field, Tl and T2 , give the 

same equation for the slope near z = Zo: 

.. 2 ( 2) 3 U ü
2 

U = b2 U 1 + u + 1 + 2u2 
(5.12) 

where we have taken H = a for simplicity. We have verified numerically that this 

equation yields solutions which diverge in a finite time for generie initial data. In the 

regime where u(t) and its derivatives are large the dominant contribution to (5.12) is 

2u3 3 ü2 

ü"'-+--
b2 2 u 

(5.13) 

which has the solution 
b 

u(t) = ( )" 2 tc - t 
(5.14) 

where the critieal time when the slope diverges, t c , is fixed by the initial data. This 

singular behavior corresponds to the finite-time formation of a codimension-two brane 

in the annihilation of a brane-antibrane pair. 

5.4.4 Alternative Complex Tachyon Action 

The action (5.8) used above has the advantage of making the analysis tractable, 

and the resulting dynamics is analogous to kink formation. However, as discussed in 

subsection 5.4.1 this action has theoretical drawbacks. Here we consider an alternative 

description of the complex tachyon dynamics. 
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The tachyon action has been calculation in boundary string field theory (BSFT) in 

[140] by assuming a linear tachyon profile. For a linear profile, gauge and space-time 

transformations allow one to write T = UIX + i U2Y, and the action one derives is 

where the function F(z) is given by 

F(z) = 4
Z
zr(z)2 

2r(2z) 

To make our analysis tractable we generalize the action (5.15) to nonlinear profiles 

using two simplifications. The first is to consider a generalization which reduces to 

(5.15) for linear tachyon profiles only when Ul = U2 = u. We feel this is a reasonable 

simplification since for the profile T = UIX + i U2Y to minimize the action one requires 

both UI and U2 to be infinite. 

Our next simplification is to replace the complicated function F(z) by VI + 7rZ. 

As justification we note that these two functions have identical behavior at large z 

since F(z) ---+ Fz for z ---+ 00. 

We consider, then, the action 

.(5.16) 

where we have performed a rescaling of T and, for consistency with (5.15), b = V7rŒ'. 

This action has also been studied in connection with tachyon condensation in [64]. 

Writing the tachyon field in real and imaginary components as T( t, x, y) . Tl (t, x, y) + 

i T2(t, x, y) the equation of motion one derives from (5.16) is 

(5.17) 

We have solved the system of two coupled partial differential equations (5.17) 

on a lattice, as in subsection 5.4.2. The results are similar to those following from 

the action (5.8), though in this case the nonlinear effects are less dramatic. One 

still has defect formation, though on a longer time sc ale and defects begin to form for 

somewhat larger radius of compactification (R rv 30Mi1 is sufficient). The qualitative 
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result that cosmic strings can form even for compactification sc ales well below the 

Hubble scale is unchanged. We consider now the dynamics near the core of the defect 

by plugging the ansatz 

Tl (t, x, y) = u(t)(x - xo), T2 (t, x, y) = u(t)(y - Yo) 

into (5.17) and working only to leading order in (x - xo), (y - Yo). For H = 0 the 

equation for the slope of the field at the core of the kink is 

1 
Ü - -u = 0 

b2 
(5.18) 

leading to an exponentially increasing slope. We see that in this case the slope do es 

not become singular in finite time, which can result in a different final density of 

defects. 

5.5 Comparison with Ordinary Cosmic String For-

mation 

If the potential for the tachyon has the usual runaway form, exp (-T2 jb2
), then once 

the field starts rolling, it continues rolling towards T = ±oo. The gradient force is 

insufficient to stop or reverse the rolling. In this section we remind the reader how 

this differs from the mechanism for formation of defects in conventional field theories, 

where their production is much more strongly suppressed. The conventional case 

corresponds to a theory with a global U (1) symmetry, the potential i (14)1 2 
_ (J2)2 

and a standard kinetic term. 

In the case of 4>4 theory, the evolution is well-behaved and one can follow the 

formation and the annihilation of kinks and anti-kinks indefinitely into the future. 

Comparing the two potentials exp (_T2 jb2 ) and i (14)1 2 
- (J2)2 (see figure 5.9), we see 

that in the 4>4 theory one expects oscillations of the field which can restore symmetry 

and wipe out the defects. 

In that case the final density of defects formed depends strongly on how fast the 

oscillations are damped, either through Hubble expansion, or through the coupling of 
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Figure 5.9: Comparison of the tachyon and <jJ4 potentials. In the case of the <jJ4 theory, 

the finiteness of the slope of the kink, as well as large oscillations of the field, strongly 

suppress the formation of defects. 
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Figure 5.10: The effect of damping on the formation of vortices in the <jJ4 theory. 

Small damping results in a large number of oscillations of the field, and effective 

homogenization. 
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Figure 5.11: The effect of damping on the formation of vortices in the 4;4 theory. An 

unphysically large damping is used in order to show that the density of defects which 

survive is larger. 

the field 4; to other fields. In figures 5.10 and 5.11 we show the effect of the damping 

in the 4;4 theory for radius of compactification R = 60M;1. A large value of H 

results not only in a higher density of defects, but also slows down the motion of the 

defects that have formed, effectively reducing the rate at which they annihilate. This 

is in contrast to the tachyon field theory, in which case the Hubble damping plays 

essentially no role in determining the final density of defects. 

5.6 Cosmological Consequences 

5.6.1 String defects 

Our studies of defect formation in compact space can easily be extrapolated to imply a 

density of roughly one defect per string volume in the non-compact directions aswell. 

We now turn to the cosmological implications of having a very large initial density 

of strings. In normal cosmic string networks, the details of the initial conditions are 

not important because the network quickly reaches a scaling solution. This can be 

demonstrated quite simply, using the "one-scale" model for the energy density p in 

long strings whose characteristic length is L [142]: 

p rv -2Hp - j(p)f. 
L 

(5.19) 
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The terms on the r.h.s. represent respectively the effects of dilution through expansion 

and the loss due to breaking off smallloops, which eventually disappear by shrinking 

and emitting gravit y waves. f(P) is a function of the intercommlltation probability, 

which is believed to go like f rv vP [143, 144]. Taking p = /1/ L 2 (where /1 is the 

string tension) and H = (3/t, one can verify that this has a stable attractor solution 

L = "I(t) t _ f(P) t 
2(1 - (3) 

(5.20) 

known as the scaling solution, since the string length becomes a constant fraction of 

the horizon size H-1
, and the energy density in long strings also tracks that of the 

dominant component, 

(5.21) 

If the initial energy density was much greater than the scaling value, we can find the 

time sc ale for reaching scaling by solving (5.19) in the approximation that the Hubble 

expansion term is negligible compared to the loop-emission term, giving the solution 

"I(t) = "10 + ~ f(P) ln(t/to). Inverting, we find that the time required to reach a value 

"1 = f /(2 - 2(3), starting from high densities where "10 « 1, is 

(5.22) 

which is not much greater than to. For a radiation dominated universe, with (3 = 1/2, 

the scaling solution is reached in e2/2 Hubble times in the usual case, and subsequent 

evolution is quite insensitive to the initial conditions. This conclusion is unchanged 

even for very small intercommutation probabilities. 

We have investigated the approach to the scaling solution using a more detailed 

model of network evolution, which takes into account the possibility that loops may 

reconnect to long strings when the initial density is very high, and thereby possibly 

delay the onset of scaling. Suppose that the density of smallloops with characteristic 

size 1 is 1/ x 3 , defining the average distance between loops at a given time. One can 

estimate that the rate per unit volume for loops to recombine with long strings is 

(5.23) 
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Here f is the probability of a reconnection, x-3 and L -3 are the number densities 

of loops and long strings, respectively, Vrel is the relative velo city between loops and 

strings, which we take to be 0(1), and min(x, L) is the distance a loop typically 

travels before reaching a string. The probability of a collision must be proportional 

to l, not l2, since the size of the loop in the direction parallel to the long string does 

not affect the cross section. 

In this model, long strings and smallloops are treated as two separate components, 

PB = p,/ L2 and Pz = p,l/x3
, whose energy densities are governed by 

P dnr 
PB -2HpB - f L +p,l dt ' 

P dnr 2 1 
Pz -3Hpz + f L - p,l dt - fGp, x 3 • (5.24) 

The last term represents the power emitted by loops due to gravitational radiation, 

fGp,2 [146], where f l'V 50 and 10-11 ~ Gp, ~ 10-6 [56, 58]. The loop size is taken to 

always be a fixed fraction of the long string correlation length: l/ L = fG p" so long 

as this is not sm aller than the fundamental string length scale lB. We have integrated 

these equations numerically, together with the Friedmann equation and the evolution 

equations for energy density in visible and gravitational radiation, keeping the short 

distance cutoff lB on the size of the loops (in fact the results do not change noticeably 

if we assume the loops remain as small as this cutoff). This more detailed study 

confirms that the scaling solution is attained in only a few Hubble times, as can be 

seen from the time evolution of the fractions of the critical density for each component, 

shown in figure 5.12. We note, however, that in the above analysis we assumed that 

string velocities remain of order unit y; if there is significant freezing out of the relative 

string motions in the large in the large dimensions this could have significant impact 

on the approach to scaling [142]. We note also that the effect of friction due to particle 

scattering may also significantly alter this picture [145].4 

The initial density of strings is many orders of magnitude greater than the Kibble 

estimate, which gave the initial correlation length L as l'V H-1 at the moment of for­

mation of the network; instead, the initial energy density of the network is comparable 

4We thank J.J. Blanco-Pillado and Carlos Martins for bringing this to our attention. 
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Figure 5.12: Fraction of critical density versus time for long strings, loops, and visible 

radiation starting from initial values ns = 0.4, nz = 0.1 and nrad = 0.5. Not shown 

is the fraction of energy density in gravit y waves produced by decay of the loops. 

to the total energy density available, t'V /12, so that L t'V /1-1/2, smaller by a factor of 

/1-1/2/ Mp than the Kibble value. Since p = /1/ L2, the initial density is greater by a 

factor of M; / /1 than the Kibble value. However, this huge excess is so shortlived that 

it has no observable effects. For instance, the contribution from the early nonscaling 

regime to the gravit y wave background is negligible due to the small size of the loops 

which are formed and subsequently radiate during this era. Following ref. [146], one 

can estimate the amplitude of these gravit y waves at frequency w as being of order 

(G )7/6 7/12 
h t'V /1 Po t'V 10-66 

M 2w1/ 3 
p 

(5.25) 

where Po is the present energy density of the universe. The estimate (5.25) is sorne 

40 orders of magnitude below the sensitivity of LIGO at the frequencies of interest, 

w t'V 100 Hz. As for the cosmic microwave background, the wavelength of density 

perturbations created during the nonscaling regime of the network is too short to be 

relevant: initially). t'V /1-1/2, which gets stretched to the sc ale of the present energy 

density ). t'V p~1/4 t'V 0.1 mm. This length sc ale is also too small to be relevant for 

the formation of primordial black holes (PBH's) since the mass contained in volume 

).3 is far below that needed for cosmologically long-lived PBH's. 
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5.6.2 Domain Walls 

Thus the fast approach to the scaling solution for three-dimensional string networks 

erases aIl sensitivity to the initial conditions, even though the initial density is orders 

of magnitude greater than for conventional cosmic strings, and this is true regardless 

of the reduced intercommutation probability. However, there are situations where 

our modified understanding of the network's initial conditions may make a dramatic 

differenee: namely, in the case of higher dimension al defects. Let us illustrate with 

the example of D5-D5 annihilation, where two of the dimensions are wrapped on an 

internaI manifold with coordinates (Yl' Y2) and the remaining three dimensions span 

the euclidean spaee (Xl, X2, x3 ). The codimension-two defects which form from the 

annihilation are D3 branes, and these can have various orientations with respect to 

the world-volume of the parent branes. The choiees are exemplified by the three 

situations: 

1. extended in X3, Yl, Y2 directions, localized in Xl, X2: looks like Dl in 3D. 

2. extended in X2, X3, Y2 directions, localized in Xl, Yl: looks like D2 in 3D. 

3. extended in Xl, X2, X3 directions, localized in Yl, Y2: looks like D3 in 3D. 

The first case looks like ordinary co smic strings to the 3D observer sinee the 

defects have only one long direction among the three large ones. Their effects have 

already been discussed. Case 3 is a network of 3-branes, an of whose dimensions 

are large. Their tension will contribute to the effective 3D cosmological constant. 5 

Case 2, illustrated in fig. 5.13, is the interesting one because these appear as domain 

walls to the 3D observer, and their energy density redshifts too slowly: p rv 1/a2 in 

terms of the sc ale factor of the large dimensions. A single domain wall of tension 

72 = 'r/3 within our horizon would dominate the present energy density unless 'r/ :::., 1 

MeV. The effective tension of a 3-brane wrapping one compact dimension of size Ris 

72 = R73 rv ft3/2; hence the string sc ale would have to be :::., 1 MeV, absurdly small. 

5These can be safely assumed to annihilate quickly since they are not separated in the expanding 

space (xl, x 2 , x 3 ). 
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Figure 5.13: An array of codimension-two D3-branes from D5-anti-D5 annihilation, 

partially localized in the compact dimensions, which look like strings in the Xl-YI 

plane, and domain walls in the large Xi dimensions. 

Our conclusion differs from that of ref. [57], which speculated that no defects 

partially localized in compact directions can form. The argument was based on the 

Kibble mechanism, and thus assumed the correlation length could not be smaller than 

H- I 
rv Mp/ Il, whereas the size of the compact dimensions must be much sm aller , of 

order Il- I
/

2
• We have se en that in fact the initial correlation length is of the same 

order as the string scale, so that this argument is invalidated. 

Still, one might be skeptical as to whether defects partially localized in the com­

pact directions can survive until today, since intuitively they might be able to find 

each other and annihilate very quickly in the compact space. Ref. [147J attempts 

to address this question, and concludes that domain wall defects like those in case 

2 cannat effieiently annihilate, sinee thcy arc not eompletcly loealized in the com­

pact (nonexpanding) space. The analysis of [147] assumes that the number density 

of Dp-branes satisfies a rate equation which is nearly the same as that governing 

monopoles: 

(5.26) 
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where Pli is the number of dimensions of the brane spanning the large dimensions, 

and D is the total number of spacetime dimensions. This ignores the effect of self­

intersections for reducing the density of long defects, which is known to be the dom­

inant me ans for string networks to reach scaling (cf. eq. (5.19)). Further, it unrealis­

tically assumes that the defects are parallel, so that they will annihilate rather than 

intercommute when they meet. It is therefore not immediately clear how far we can 

trust their conclusions [147]. 

On the other hand, numerical evolution of domain wall networks shows that self­

intersections are not generic, and it is suggested that the dominant energy-loss mech­

anism is direct gravitational radiation rather than through collisions [148]. Further­

more it is observed that the approach to the scaling solution is slower for domain 

walls than for cosmic strings [149]. 

5.6.3 Full String Network Simulations 

To attcmpt to address the issue of whether domain walls disappear or not, we have 

considered the dynamics of D3-branes in (5 + 1) dimensions in the approximation 

of projecting out the dynamics in one compact direction, y2, and one noncompact 

direction, x3 , to give an effective 3 + 1-dimensional system. In this case the D3-

branes appear as one-dimensional objects (see figure 5.13) and the dynamics can be 

modeled by considering string evolution in an anisotropie space with two large and 

one small dimension. In this setup those "strings"-string-like from the (xl, X2, yl) 

point of view-which span the large dimensions Xl and x2 appear as domain walls to 

the 3D observer while the "strings" which span the compact dimension yl appear as 

cosmic strings in 3D. 

Following the setup of Smith and Vilenkin [150] we performed numerical simu­

lations of the defect evolution in this approximation, keeping track of the extent to 

which defects preferentially spanned the compact direction yl-thus appearing as 

strings in the Xl, x 2
, x 3 subspace, relative to spanning the large directions, which ap­

pear as domain walls. Figure 5.14 shows the fractional energy density in wound strings 

wrapped about the three directions Xl, x 2 , yl as a function of time. This particular 
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run started with equal energy in each direction so that the correlation lengths, and 

hence the interaction rates, were roughly the same. We observe that the branes wrap­

ping the large directions lose their winding energy more quickly than those wrapping 

the compact direction: this can be attributed to sever al factors, including the smaller 

cross-sectional area of the long strings, and the greater energy radiated away when 

two long strings annihilate. The implication is that defects which look like strings 

to the 3D observer tend to survive preferentially over those that appear as domain 

walls. However since this is a toy model for the actual higher-dimensional defects, 

such a conclusion awaits validation from actual domain wall simulations. 

energy in long strings 

0.4 

Figure 5.14: Fraction of wound string density about the three anisotropie directions 

(two large and one small) starting from equal energy density in strings wrapping each 

direction. Top curve is for strings winding in the sm aIl direction. 

As further evidence that defect evolution after formation tends to favor the defects 

which are localized in the large dimensions (and hence tends to favor the survival 

of cosmic string-like defects) we con si der a field theory simulation of domain wall 

evolution for a real scalar field with potential ~ (cjJ2 - (J"2)2 and standard kinetic term 

6 We studied the formation and evolution of domain walls in this theory in an 

anisotropie (3 + l)-dimensional space with two large and one compact dimension. 

6Though it is of more direct interest to consider the dynamics of the tachyon field theory with 

action (5.2) the finite time slope divergence prevents us from following the dynamics after the defects 

have formed. 
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Starting from a random initial profile close to the false vacuum (as in subsection 

5.3.2) we find that the evolution of the defects after formation tends to annihilate 

domain walls which are localized in the compact direction and to favor the survival 

of domain walls which are localized in the large directions. Figure 5.15 shows a plot 

of the domain wall network late in the evolution after the do main walls localized in 

the compact direction have disappeared. 

We also explored the effect of increasing the anisotropy, varying the initial dis­

tribution of winding modes, and varying the intercommutation probability; however, 

the system consistently evolved to favor winding about the compact direction. These 

results seem to corroborate the claim that domain wall-like defects are suppressed. 

Figure 5.15: Plot of domain wall network in an anisotropic space with two large and 

one small dimensions with L = 80Ms-
1

• This snapshot is taken late in the evolution 

and shows that domain walls which are localized in the large dimensions are preferred 

by the defect evolution. 

We note that there are several factors which we have not taken into account which 

may radically alter the picture. For example, in figure 5.14 we have unrealistically 

neglected the dynamics in two dimensions to facilitate numerical studies. Further­

more, in both of the examples ab ove we have neglected the expansion of the large 

dimensions-an effect which could play an important role in the dynamics. It is 

therefore unclear whether domain walls will pose a cosmological problem in models of 

brane-antibrane inflation where the branes driving inflation wrap the compact space. 

We feel that this is a problem which merits further investigation and it is likely that 

a complete resolution of this issue will require full simulations of 3-brane dynamics 

in an anisotropic (5 + l)-dimensional spacetime with 3 expanding dimensions. While 
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such simulations would be of interest, they are beyond the scope of the present work. 

5.6.4 Monopoles 

Finally con si der an example of how monopole-like defects may be formed through 

a cascade of annihilations in D5-D5 inflation. The initial state D5 and D5 span 

the three large dimensions and wrap two compact dimensions. These may produce 

D3 and D3 which wrap the two compact dimensions and are extended in one large 

dimension; hence these defects appear string-like to the 3-dimensional observer. A 

parellel D3-D3 pair may then annihilate to pro duce Dl branes and antibranes which 

can span the same large dimension as the parent D3-D3, or alternatively could wrap 

the compact dimensions. Those D1-branes which span the large dimension appear 

as co smic string defects to the 3-dimensional observer while those which wrap the 

compact dimensions will appear as point-like (monopole) defects. If the compact 

dimensions admit nontrivial 1-cycles (like T 2 for example) then these monopoles will 

be stable. Our results indicatc that in gencral both string-likc and monopole-like 

defects should be produced in this cascade. To understand the subsequent evolution 

of such defects we consider numerically the dynamics of D 1-branes in a 3D space 

with one large dimension and two small dimensions. Figure 5.16 shows the fractional 

energy density in wound strings wrapped about the three directions Xl, yI, y2 as a 

function of time. Strings wrapping the large direction Xl appear as genuine cosmic 

strings to the 3D observer while strings wrapping small directions yI, y2 appear as 

monopole-like defects in 3D. As in subsection 5.6.2 we start with equal energy in each 

direction so that the correlation lengths are roughly equal. Again we find that strings 

wrapping the large direction lose their winding energy quicker than those wrapping 

the compact directions. Physically, this suggests that monopoles are preferentially 

produced over co smic strings in this particular cascade of annihilations. 

The question of whether such monopole-like defects will pose a cosmological prob­

lem depends crucially on the long-range forces between these defects and is, we feel, 

an issue which merits further investigation (see [151] for a solution of the monopole 

problem which is independent of inflation). 
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Figure 5.16: Fraction of wound string density about the three anisotropie directions 

(one large and two smaIl) starting from equal energy density in strings wrapping each 

direction. 

5.7 Summary and Conclusions 

We have studied the formation of topological defects during the decay of a nonBPS 

brane or a coincident brane-antibrane pair. The problem was treated both analyti­

caIly, by solving the equation of motion for the tachyon field at the core of the defect, 

as weIl as numericaIly, by evolving the tachyon field on a lattice. We showed that 

defects form with a correlation length proportional to the string length rather than 

the horizon. Defects localized within compact dimensions can form even if the com­

pactification radius is as small as 7 MSl and the tachyon dynamics is insentitive the 

the Hubble damping. Depending on the exact form of the action (e.g., Sen's version, 

or the boundary string field theory version) the slope of the field at the defect could 

either increase exponentially in time, or else diverge within a finite time, potentially 

changing the initial density of defects. We compared the evolution of the tachyon 

field to that of a scalar field in the </;4 theory and noted that the most efficient way tü 

suppress the formation of defects is through symmetry restoration, caused by large 

oscillations of the scalar field. This is not possible if the potential has a runaway form, 

as for the string tachyon, which inevitably leads to the formation of a higher density 

of defects in the string case. Once the defects form the field theory description is no 
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longer adequate, so in order to analyze the annihilation of the defects formed one has 

to use a description in terms of branes and antibranes interacting in a compact space. 

As a result, the initial density of string defects is much greater than previous 

estimates. For strings which are genuine ID objects, we showed that the string 

network nevertheless attains scaling behavior within just a few Hubble times, so that 

there are no observable consequences of the initial high string density. Of course 

this assumes that the network is not frustrated [152], so that scaling can indeed be 

achieved. Whether this is the case for cosmic superstrings which are bound states of 

fundamental and D-strings is an interesting open question [153]. 

On the other hand, we argue that in models where inflation is driven by branes 

which wrap the compact manifold (for example D5-D5), do main wall-like and monopole­

like defects are inevitably produced. The stability and subsequent evolution of such 

defects is complicated and may depend crucially on the details of the compactifica­

tion, for example, on whether or not the compact manifold which the parent branes 

wrap admits nontriviall-cycles. We leave detailed studies of whether such models are 

phenomenologically viable to future investigations; however, we have shown that the 

formation of defects at the end of brane-antibrane inflation is much more complicated 

and model-dependent than one might have expected. 
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Abstract 

We show that in hybrid inflation it is possible to generate large second-order pertur­

bations in the cosmic microwave background due to the instability of the tachyonic 

field during preheating. We carefully calculate this effect from the tachyon contri­

bution to the gauge-invariant curvature perturbation. We clarify sorne confusion in 

the literature concerning nonlocal terms in the tachyon curvature perturbation; we 

show explicitly that such terms are absent. We find that large nongaussianity occurs 

only when the tachyon remains light throughout inflation, whereas n = 4 contamina­

tion to the spectrum is the dominant effect when the tachyon is heavy. We compute 

quantitatively the amount of nongaussianity or spectral distortion generated during 

preheating and use this calculation to place constraints on the parameter space of 

hybrid inflation. We apply our results also to popular brane-antibrane, F-term and 

D-term models of inflation. In the case of warped-throat brane-antibrane inflation 

we find interesting constraints from nongaussianity. For F-term and D-term inflation 

models from supergravity, we obtain nontrivial constraints from the spectral distor­

tion effect. Finally, we also establish that our analysis applies to complex tachyon 

fields. 

6.1 Introduction 

In the simple st models of inflation, the primordial density perturbations have a negli­

gible degree ofnongaussianity. The parameter fNL which characterizes nongaussianity 

is of the or der of ln - 11 « 1 (where n is the spectral index) in conventional inflation 

models [156]-[158], [18] whereas the current experimentallimit is IfNLI ~ 100 [16]; one 

can additionally characterize the nongaussianity using the trispectrum, which is also 

small in conventional models [159]. Nevertheless, there have been intense theoretical 

efforts to find models which predict observably large levels [160] (see chapter 1 for a 

review). These efforts are motivated, in part, by the fact that fNL can potentially 

be used as a powerful tool to discriminate between various theoretical realizations of 
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inflation. 

It has been difficult to find examples which can give large fNL. In single field 

inflation models a small inflaton sound speed is necessary to achieve large nongaus­

sianity [161], as in the models of [162, 163] (unless the inflaton potential has a sharp 

feature [164]). It is also possible to generate significant nongaussianity using the 

curvaton mechanism [165] for the generation of cosmological perturbations. lndeed, 

the curvaton scenario may be ruled out by future non-observation of nongaussianity 

[166] (see, however, [167]). The simplest multi-field models do not seem to give large 

nongaussianity [168], though it is not clear if this is true also of more complicated 

models. 

We will show that one of the most prevalent classes of models, hybrid inflation [31, 

169], is able to yield large nongaussianity for certain ranges of parameters (see [170] for 

constraints on the parameter space of hybrid inflation coming from the WMAP data). 

The effect is due to the growth of the waterfall field-tachyonic preheating-which 

contributes to the curvature perturbation, and hence the temperature anisotropy, only 

starting at second order in cosmological perturbation theory; see also [171]-[177]. 

The scenario is summarized as follows. During hybrid inflation the inflaton field cp 

is displaced from its preferred value, and inflation is driven by the false vacuum energy 

of the "waterfall" or tachyon field a which is trapped in its false vacuum by inter­

actions with the inflaton. When the inflaton reaches sorne critical value the tachyon 

effective mass squared becomes negative and its fluctuations grow exponentially due 

to the spinodal instability. The exponential growth continues until the fluctuations 

of the tachyon start to oscillate about the true vaccuum. At this stage the tachyon 

fluctuations become nonperturbative and their back-reaction brings inflation to an 

end. Here we study the evolution of the second-order curvature perturbation due to 

the tachyonic instability and find that it can lead to a large level of nongaussianity, if 

the tachyon was lighter than the Hubble scale ma < 3H/2, during a sufficient part of 

the inflationary epoch. If ma » H, the fluctuations of a are exponentially suppressed 

during inflation (see section 1.1.1), however, in this case it is still possible for preheat­

ing to impact the Cosmic Microwave Background (CMB) in a nontrivial way (if the 



6.1 Introduction 156 

exponential growth of the tachyonic fluctutations during preheating is so large that it 

overcomes the exponential damping during inflation). In the case of a heavy tachyon 

the preheating phase generates a nonscale-invariant (n = 4) contribution to the power 

spectrum. For certain parameter values this nonscale-invariant contribution can be 

made so large that it dominates over the sc ale invariant contribution coming from the 

inflaton. 

The possibility that preheating may impact the large scale curvature perturbation 

has also been considered in [178]-[181] (though these studies were restricted to first 

order in perturbation theory). In particular, [179, 181] showed that, contrary to 

previous daims, there is no violation of causality necessary for preheating to amplify 

the large sc ale curvature perturbation. This is so because inflation has already set up 

correlations on large scales, the preheating dynamic sim ply amplifies those existing 

large sc ale fluctuations. 

We apply our results for nongaussianity and spectral distortion to popular models 

of hybrid inflation induding brane inflation [24] and P-term inflation [182], which 

is a synthesis of supergravity inflationary models interpolating between F-term and 

D-term inflation. In the case of brane inflation we find that large nongaussianity is 

possible, while for P-term inflation spectral distortion is the dominant effect. 

Finally we demonstrate that our analysis applies not only to real tachyon fields 

but also to the case of complex tachyon fields. The latter situation is more realistic 

since in that case co smic strings, rather than domain walls, are formed at the end of 

inflation. 

We begin in section 6.2 by defining the perturbations up to second order in the 

metric and matter fields. In section 6.3 the hybrid inflations model is reviewed, 

starting with the dynamics of the fields at zeroth order, and then their first or der 

perturbations, with emphasis on the dynamics of the tachyon field fluctuations toward 

the end of inflation. In section 6.4 we solve for the second or der curvature perturbation 

which is induced by the tachyonic fluctuations. This is used in section 6.5 to compute 

the bispectrum (three-point function) and the nonlinearity parameter fNL as well 

as contributions to the spectrum itself. In section 6.6 we incorporate experimental 
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constraints on nongaussianity, as well as on the spectrum, ta derive excluded regions 

in the parameter space of the hybrid inflation model. We then adapt these constraints 

to the cases of brane-antibrane inflation in section 6.7 and P-term inflation in section 

6.8. We further extend our analysis to the more realistic case of a complex tachyon 

field in section 6.9, showing that the extra components ofthe tachyon add in a simple 

way and modify the real-field results by factors of order unity. Conclusions are given 

in section 6.10. Appendix D-1 gives details about the mat ching between early- and 

late-time WKB solutions of the tachyon fluctuation mode functions. Appendix D-2 

gives details about the second order perturbed Einstein equations. Appendix D-3 

deals with the construction of the inflaton curvature perturbation. Appendix D-4 

discusses the Fourier transforms of convolutions. Appendix D-5 provides technical 

details concerning the constructions of the tachyon curvature perturbation. Finally, 

appendix D-6 gives details about the source term of the curvature perturbation for 

complex tachyons. 

6.2 Metric and Matter Perturbations 

In this section we write down the perturbations of the metric and matter fields about 

a spatially flat Robertson-Walker background following [157J. Greek indices run over 

the full spacetime IL, li = 0,1,2,3 while latin indices run only over the spatial direc­

tions i, j = 1,2,3. We will frequently employ conformaI time T, related to co smic 

time t by dt = adT. Differentiation with respect to conformaI time will be denoted 

by l' = ar ! and with respect to cosmic time by j = ad. 
The metric is expanded up to second order in fluctuations as 

gaa -a(T)2 [1 + 2qP) + 4/2)] 

gOi a( T? [aiw(l) + ~aiW(2) + W~2)] 

9ij a(T)2 [(1- 2'ljJ(1) - 'ljJ(2))Oij + Dij(X(l) + ~X(2») 

+ !(a'X\2) + a'X~2) + x~~»)] 2 ~ J J ~ ~J 

(6.1) 

(6.2) 

(6.3) 
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where Dij = BiBj - ~c5ijBkBk is a traee-free operator. The fluctuations are decomposed 

such that the vector perturbations are transverse Biw?) = 8iX~2) = 0 while the 

tensor perturbations are transverse, traeeless and symmetrie: 8iX~~) = 0, X;(2) = 0, 

X~~) XJ~) . In the above we have neglected the vector and tensor perturbations 

at first order, whieh are small, sinee vector perturbations decay with time, while 

tensors are suppressed by the slow roll parameter E. The same is not true at second 

or der , however, sinee the second order tensors and vectors are soureed by the first 

order scalar perturbations. We adopt the generalized longitudinal gauge defined by 

w(l) = W(2) = w?) = 0 and X(l) = X(2) = O. The metric in this gauge beeomes 

gOi 0 

gij a(T)2 [(1 - 2'IjJ(1) - 'IjJ(2») bij 

+ ~ (8iXJ
2
) + 8jX~2) + X~:»)] . 

(6.4) 

(6.5) 

(6.6) 

In hybrid inflation the matter content consists of two scalar fields which are ex­

panded in perturbation theory as 

<p(T, if) 

0"( T, if) 

<PO(T) + b(1)<p(T, if) + ~b(2)<p(T, if) 

0"0 ( T) + b(l) 0"( T, if) + ~b(2) 0"( T, if). 
2 

(6.7) 

(6.8) 

where <p is the inflaton and 0" the tachyon (or "waterfall" field). In hybrid inflation 

the time-dependent vacuum expectation value (VEV) of the tachyon field is set to 

zero O"O(T) = 0, about which we will say more later. 

The perturbations are defined so that (b(i)<p) = 0, hence (<p(T,if)) = <PO(T). At 

first order in perturbation theory this is automatic sinee b(l) <p contains only one 

annihilation/creation operator. However, at higher order in perturbation theory the 

homogeneous k = 0 mode of the fluctuation must be subtracted by hand in or der 

to ensure that an of the zero mode of the field is described by the nonperturbative 

background. 

The Einstein tensor and stress-energy tensor expanded up to second order in 

perturbation theory can be found in [183]. We do not reproduee these results here, 
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but we have carefully checked aIl the results from [183] which are relevant for our 

analysis. 

6.3 Hybrid Inflation 

We consider hybrid inflation in which both the inflaton and the tachyon are real fields 

with the potential 

(6.9) 

This potential will give ri se to topological defects at the end of inflation-domain 

walls in the (J field-which could pro duce large nongaussianities apart from the ones 

which we consider. To avoid overclosure of the universe by do main walls we must 

either render the domain walls unstable (for example through the addition of a sm aIl 

term like f.w3 to the potential) or else consider the generalization to complex tachyon 

field. In the case of a complex tachyon the symmetry breaking pro cess will lead to 

the formation of cosmic strings, which are much more phenomenologically viable than 

domain walls. We will return to this possibility in a subsequent section, showing that 

our analysis generalizes to complex fields in a straightforward manner. 

6.3.1 Background Dynamics 

At the homogeneous level, the usual Friedmann and Klein-Gordon equations for the 

scale factor and the matter fields are 

o 

2 
'" (.2 .2) 2V 2 CPo + (Jo + '" , 
.. 3H' 8V 

CPo + CPo + 8rp 

(6.10) 

(6.11) 

where ",2 = M;2 = 87rG N. Here and elsewhere the potential and its derivatives 

are understood to be evaluated on the background values of the fields so that V = 

V(cpo, (Jo) and 8V/8cp = 8V/8cp!{<p=<po,a=ao} , for example. For the potential (6.9) we 

have 8V/8(J = 82V/8(J8cp = 0, provided that 0"0 = O. We will apply this simplification 

to an subsequent results. 
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Ta see why one should set 0"0 (7) = 0, notice that initially the tachyon effective 

mass is m; = 92rp6 - Àv2 > O. That is, the tachyon mass squared starts out being 

positive during inflation. Provided that there was a long enough prior period of 

inflation, any initial departure of 0" from zero would be exponentially damped. At 

sorne point, m; becomes negative, and the tachyonic instability begins. However, it 

is still true that 0"0(7) remains zero even then, since the universe will consist of equal 

numbers of domains with 0" > 0 and 0" < o. On average, these give zero, which is 

the definition of the zeroth or der field 0"0. The departures of 0" from zero between 

domain walls which form are taken account in the fluctuations of the field. Thus it is 

consistent to set 0"0 (7) = 0 for all times in our analysis. 

Notice that we do not need to replace the average of the fluctuations ((6(1)0")2//2 

with an effective homogeneous background 0"0(7) because we work to second order 

in perturbation the ory and the effect of these fluctuations enters into the calcula­

tion through the second order perturbed energy momentum tensor (6(2)T/:} When 

(6(2)T/:) becomes sufficiently large the backreaction will stop inflation. We take 

(( 6(1) 0")2) 1/2 = V /2 (below) as our criterion for the end of inflation. We have checked 

numerically that this is a somewhat more stringent constraint than demanding that 

the energy density in the fluctuations 6(1) 0" does not dominate over the false vacuum 

energy which drives inflation Àv4 
/ 4. 

We will make extensive use of the slow roll parameters, defined by 

K,2 06 if rv Mi; (8V) 2 

E = 2 H2 = - H2 = 2V2 8rp , 

.. M2 (82V) rpo rv P 
--=E-- --
H00 V 8rp2 

E-rJ 

so that, during inflation 

M
2

m
2 

rv (Mpm~rpo)2 
rJ rv 4 {v4 'P, é - 8 Àv4 (6.12) 

Notice that if m~rp6 « Àv4 , then E «rJ. This is equivalent to demanding that the false 

vacuum energy of the tachyon dominates during inflation, which is the assumption 

usually made for hybrid inflation: 

Àv4 m 2 Àv4 

V(rpo,O"o = 0) = 4 + 2'P rp6 rv 4· 
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During the slow roll phase the inflaton equation of motion 3H <Po + m~'Po rv 0 has 

solution 

() ( 
m~(t-ts)) (a(t))-TJ 

'Po t = 'Ps exp - 3H = 'Ps ---;;:; (6.13) 

where we used a(t) = aseH(t-ts ), with ts an arbitrary time. The Hubble scale remains 

approximately constant, 3H2 
rv Àv4 j(4M'j;). Sinee 'Po is decreasing and (Jo = 0, 

the slow roll parameter é actually decreases slowly during inflation while 'Tl remains 

constant. 

For (Jo = 0 the first order metric and inflaton perturbations obey exactly the 

same equations as in single field inflation. Hence, the analysis presented in chapter 

1 aIl applies without modification. Indeed, the results of section 1.1.1 will come 

in handy since similar equations will arise when we study the second order metric 

perturbations. 1 

6.3.2 Conditions for a slowly varying tachyon mass 

Now we come to an important point for this chapter, that if 'Tl is sufficiently small, 

then the tachyon is a light field during sorne part of the observable period of inflation. 

The tachyon mass is given by m; = -Àv2 + 92'P6(t). If we choose the arbitrary time 

ts in (6.13) to be when m; = 0, then g2'P; = Àv2, and 

m~ -Àv' (1 - (a~~)) "')~ -2~ÀV2 H(t - t,) 

-2'TlÀV2 N (6.14) 

where N is the number of e-foldings of inflation occurring after the tachyonic instabil­

ity begins. At sorne maximum value N = N*, inflation will end. If the inflaton rolls 

slowly enough, then the tachyon mass remains close to zero for a significant number 

1 As will be shown, the second order metric fluctuation cp(2) obeys an inhomogeneous equation 

whcre the differential operator is identical to the one which determines the dynamics of cp(l); thus 

an understanding of the first order solutions simplifies the construction of the Green function for 

the second order fluctuations. 
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of e-foldings. In general, we will have - Ni - Ne - N* e-foldings of inflation before 

the spinodal time, followed by N* e-foldings during the preheating phase. 

The approximation in (6.14), that the tachyonic mass changes slowly enough for its 

time dependence to be approximated as linear, is true so long as 121]NI « 1. This can 

be rephrased using the definition of 1] in (6.12), and eliminating m~ using the COBE 

normalization of the inflationary power spectrum: Vj(M:E) t'V 1507T2 (2 x 1O-S)2 = 

6x 10-7 (see chapter 1). Using V = ~Âv4 and eq. (6.12) for E, the COBE normalization 

gives 
VS 

m~ t'V 230 gÂ M3 
p 

(6.15) 

Then with N t'V 60, the requirement 121]NI < 1 becomes 

(6.16) 

Interestingly, the bound (6.16) turns out to be a requirement that must often be 

satisfied for different reasons, namely the experimental limit on the spectral index of 

the first-order inflaton fluctuations. In terms ofthe slow-roll parameters, the deviation 

of the spectral index from unit y is given by 

n - 1 = 21] - 6E ~ 21] 

where we have used the fact that E « 1] in hybrid inflation (this is equivalent to the 

requirement that the energy density which drives inflation is dominated by Âv4 j 4). 

The experimental constraint on the spectral index is roughly ln -11 ::., 10-1. Writing 

1] in terms of model parameters this translates into the constraint 

V 
9 - < 5 X 1o-s 

Mt'V 
P 

This is just five times weaker than the technical assumption (6.16). 

(6.17) 

In passing, we note that there is also a lower bound on 9 from the assumption that 

the false vacuum energy density is dominated by Âv4 j4 > m~<p6l2. Using g2<p; = Âv2 

and (6.15), one finds 

(6.18) 
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6.3.3 Tachyonic Instability 

To quantify the evolution of the tachyonic instability at the end of inflation, we 

consider the equation of motion for the tachyon field fluctuation in Fourier space, 

8(1) ak + 3H 8(1) ak + [~: + (g2cp~ - .Àv2) ] 8(1) O"k = O. (6.19) 

Once CPo < .À 1/2V / 9 the tachyon effective mass parameter fJ2V /80"2 becomes negative 

and the fluctuations 8(1) 0" are amplified due to the spinodal instability. The efficient 

transfer of energy from the false vacuum energy .Àv4 / 4 to the fluctuations 8(1) 0" is 

refered to as tachyonic preheating in the literature [32]-[34]. 

Tachyonic Preheating in the Instantaneous Quench Approximation 

The initial studies of tachyonic preheating focused on the flat space dynamics of 

8(1)O"k in the instantaneous quench approximation. In this approximation the field 

8(1) 0" is initially assumed to have zero mass and at t = 0 a negative mass squared 

term -lm;I(8(1)0")2/2 is turned on. We briefly review these dynamics here following 

closely [32]. Initially the tachyon has the usual Minkowski space mode functions 

e-ikt+ik.x / vI2k 2. Once the negative mass squared term is turned on the modes with 

k = Ikl < Imul grow exponentially with a dispersion 

1 l,mu' 1(8(1)0"?) = _ dkke2tvlm~l-k2 
\ 4n2 0 

(6.20) 

Im;1 (eG:(a -1) + 1); a _ 21mult 
4n2a 2 

which pro duces a spectrum with an effective cutoff kmax = Imul. The tachyonic 

growth persists until the dispersion saturates at the value 

(6.21) 

at which point the curvature of the effective potential vanishes and the tachyonic 

growth is replaced by oscillations about the true vacuum. This pro cess completes 

2Even in deSitter space the Bunch-Davies vacuum choice will ensure that this behaviour is re­

spected on small scales k » aH regardless of the tachyon mass during inflation. See chapter 1 for 

a review. 
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within a time 

(6.22) 

which we caU the spinodal time. At this point a large fraction of the vacuum energy 

Àv4 /4 has been converted into gradient energy of the field b(l) 0" so that the universe is 

divided into domains with O"±V oftypical size l "-' Ima l-1 and on average one still has 

(0") = 0 so that O"o(t) = O. These analytical argument are backed up by semi-classical 

lattice field theory simulations in [32, 33]. 

Dynamics of Tachyonic Preheating Beyond the Instantaneous Quench Ap-

proximation 

The discussion of the dynamics of tachyonic preheating above apply strictly only 

in Minkowski space. The dynamics of tachyonic preheating including the dynamics 

of the infiaton but neglecting the expansion of the universe were considered in [34]. 

The dynamics of tachyonic preheating including both the dynamics of the infiaton 

and the expansion of the universe were considered in [184] wherein the authors reach 

conclusions identical to those discussed above. The authors of [184] also find that 

the spinodal time is somewhat modified from (6.22) due to the background dynamics 

(see also [185, 186]). 

In the present work, we are interested in a situation which is different from the 

instantaneous quench, where the instability may turn on slowly compared to the 

Hubble expansion, rather than suddenly. Of course, all of our analysis will also apply 

to the case where the instability turns on quickly. We are approximating the time 

dependence of the tachyon mass as being linear around the time when it vanishes, eq. 

(6.14), so the mode equation can be written in the form 

(6.23) 

where N = H(t - ts), k - k/ H and, incorporating the COBE normalization as in 

(6.15), 

c "-' 22000 9 Mp/v. (6.24) 
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From eq. (6.16), c is limited to values 

(6.25) 

for the validity of the approximation that the tachyon mass squared varies linearly 

with time. The quantum mechanical solution in terms of annihilation and creation 

operators ak, al has the usual form 3 

,,(1) ( ) - J d 3
k (: ( ) ikx h 

U (J X - (27r)3/2 ak <."k N e + .c. (6.26) 

but the mode functions Ç,k will be complicated by the time-dependence of the tachyon 

mass. We normalize the mode functions Ç,k according to the usual Bunch-Davies 

prescription which is discussed in 1.1.1. 

Since (6.23) has no closed-form solution, we approximate it in two regions. First, 

when k2e-2N > clNI, we ignore the mass term and use the massless solutions, Ç,k rv 

a-3
/
2 H~~;(ke-N). We match this onto the solution in the region where k2e-2N < clNI, 

where the term k2e-2N is ignored in the equation of motion. The transition between 

the two regions occurs at different times N k for different wavelengths, given implicitly 

by 
k 

Nk = ln Vë -ln JfN,J (6.27) 

This is a multivalued function of x = k/Vë, because for x < (2e)-1/2, the k2 term in 

the differential equation comes to dominate again for a short period around N = 0, 

the moment when the tachyon is massless. To de al with this, we are going to assume 

that the solution is still well-approximated by the massive one during this short 

period. This amounts to replacing the multivalued function with the single-valued 

one shown in figure 6.1. We checked this approximation in conjunction with other 

approximations we will make for the mode functions, as described below eq. (6.30). 

Appendix D-1 provides some technical details about the mat ching time N k • 

In the second region, with N > N k , the solutions are approximated by Airy 

functions, but it is more convenient to use the WKB approximation to obtain an 

30ur conventions for fourier transforms and mode functions are discussed in detail in appendix 

D-4. 
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Figure 6.1: Exact solution and our approximation for the function Nk in eq. (6.27). 

expression in terms of elementary functions. Ignoring overall phases (which will cancel 

out of the final result), in this way we obtain 

with 

and 

b _ 1 - iJC/lVJ (1 + IZkl)1/4 

k - V2H(c/Nk/)3/4 exp (icZ~/2) 

(6.28) 

(6.29) 

(6.30) 

In the above expressions, we have for sim pli city matched the amplitudes but not 

derivatives of the solutions at N = N k . This will not affect the estimates we make 

below. We used (6.27) to reexpress exponential dependence on N k as power law 

dependence. Notice that exponent in (6.29) becomes purely imaginary when ~CNk < 

-1. We also replaced /Z/1/4 --+ (1 + /Z/)1/4 to correct the spurious singularity at Z = 0 

where the WKB approximation breaks down. We numerically verified that this gives 

a good approximation to the exact Airy function solutions. 

Moreover, we have checked the approximate solution by numerically integrating 

the mode equations, starting from the small-N region k 2e-2N » clNI, where the 

massless solutions with known amplitude tell us the initial conditions, and integrating 

into the large-N region where the exponential growth due to the tachyonic instability 
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becomes important. We did this for two orthogonal solutions to the mode equations, 

6,2, whose behavior in the small-N region is 

6 (2Hk3)-le-N (k cos(ke-N
) - sin(ke-N

)) 

6 (2Hk3)-le-
N (k sin(ke-N ) + cos(ke-N )) 

Evolving these initial conditions to large N, the envelope of these functions, which 

is also the modulus of the complex solutions, is ç = v' çr + ç~. We compared this 

numerical solution to the modulus IÇkl of our approximation (6.28) for a large range 

of c and k values. In the large N-region, IÇkl agrees with ç up to a numerical factor 

of order unity. This factor, the ratio of the actual solution to the approximation, is 

shown in figure 6.2. Because the exponential growth of the mode function is a very 

steep function of N, these small errors have an imperceptible effect on the exclusion 

plots we will present in section 6.6. Furthermore, we have checked which values 

of c and k actually give constraints in the parameter space of the hybrid inflation 

model below, and found that in the regions where c is large, k is exponentially small. 

Extrapolating the results of figure 6.2 indicates that the error becomes quite small as 

k ~ O. Therefore our approximations for the mode functions are quite good for the 

purposes of this chapter. 

1.4 

1.2 

0.4 

-3 -2 

\ , 

-1 0 
log

lO 
k1H 

2 3 

Figure 6.2: Ratio of the exact mode functions to the approximation (6.28), at large 

times. 

With the above approximate solution, we are in a position to recompute the 

dispersion of the tachyon fluctuations taking into account both the dynamics of the 
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tachyon mass and also the background evolution of the scale factor, ((15(1) (})2) = 

(21T)-3 J d3klçkl 2
• Following the discussion of subsection 6.3.3, we set this equal to 

v2 /4 at the end of inflation, N = N*: 

4 
(6.31) 

which implicitly determines N* in terms of parameters of the hybrid inflation model, 

(6.32) 

The main contribution to the integral at N = N* cornes from wave numbers for which 

the exponentially growing solution in (6.28) applies. These modes satisfy k < kmax -

H eN * y' cN*. We have numerically performed the integral for a wide range of values 

of c and N*. The result is displayed in figure 6.3, where contours of ln Mi; / Àv2 are 

shown in the plane of N* and ln c. Recall that c = 22000 9 (Mp/ v), eq. (6.24). 

1.5 

u 1 
,.S 

0.5 

Figure 6.3: Contours of ln Mi; / Àv2 in the plane of N* and ln c. 
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6.4 Second Order Fluctuations in the Long Wave­

length Approximation 

6.4.1 The Master Equation 

The authors of [183J have derived a "master equation" for the second order potential 

cjJ(2) which can be written as 

cjJ//(2) + 21i('f] - E)cjJ/(2) + [21i2('f] - 2E) - 8k8k] cjJ(2) 

J(T, x) (6.33) 

where the source terms are constructed entirely from first or der quantities and can 

be split into inflaton and tachyon contributions 

J(T, x) = JCT(T, x) + J'f'(T, x). (6.34) 

Although we have explicitly inserted the slow roll parameters, equation (6.33) is quite 

general and we have not yet assumed that 'f], E are small (although recall that we have 

set (Jo = 0). We have verified both the second or der Einstein equations and the master 

equation presented in [183J and these results are discussed in appendix D-2. 

Because the equation (6.33) is linear we can split the solutions cjJ(2) into three 

parts: the solution to the homogeneous equation, the particular solution due to the 

inflaton souce and the particular solution due to the tachyon source. The solution to 

the homogeneous equation will be proportional to cjJ(l) since the differential operator 

on the left hand side of (6.33) is identical to the operator which determines cjJ(1) 

(see section 1.1.1). In cosmological perturbation theory the split between background 

quantities and fluctuations is unambigiuous, since background quantities depend only 

on time while fluctuations de pend on both position and time. However, the split 

between first order and second order fluctuations is arbitrary and the freedom to 

include in the solution for cjJ(2) a contribution which is proportional to cjJ(1) reflects 

this. We fix this ambiguity by including only the particular solutions for cjJ(2) which 

is due to the source, J (T, x). 
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During the preheating phase the tachyon fluctuations are amplified by a factor 

v / H and so JO" will come to dominate. This implies that the particular solution for 

rjJ(2) which is due to JO" will come to dominate over the particular solution which is 

due to J'P. Although our analysis will focus on this part of the solution, we will also 

con si der the inflaton source in appendix D-3 in order to verify that our formalism 

reproduces previous results. 

6.4.2 The Green Function 

In this subsection we construct the Green function for the master equation so that 

cp(2) may be determined in terms of first order quantities. As discussed previously 

we con si der only the particular solution for cp(2) due to the source J and neglect the 

solution to the homogeneous equation, which is equivalent to assuming that the second 

or der fluctuations are zero before the source is turned on. During a quasi-deSitter 

phase the master equation can be written as 

8T [( -T )2(E-1) 8TCP~2)] + ( -T )2(t-1) [:2 CT} - 2E) + k2] cp~2) 
(_T?(E-1)Jk(T) (6.35) 

where it is assumed that E, 'TJ « 1, and the differential operator on the left hand side 

of the master equation is written in a manifestly self-adjoint form. In deriving (6.35) 

we used (1.44) and treated the slow roll parameter as constant, which is consistent at 

first order in the slow roll expansion. The causal Green function for this operator is 

(6.36) 

where the order of the Bessel functions is l/ rv 1/2 + 3E - 'TJ as in section 1.1.1. 

The solution for the metric perturbation rjJ(2) can then be written as 

cp~2)(T) = 10 

dT'Gk(T,T') (_T,)2(E-1) Jk(T') 
-(1+E)/aiH 

(6.37) 

where ai = a(ti) is the scale factor at the sorne initial time, well before the tachyonic 

instability has set in. This solution is quite general; it applies during any slow roll 

phase, including during the tachyonic instability. 
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There are several interesting lirniting cases of (6.36). In the long wavelength lirnit 

k --7 ° the Green function reduces to 

Gk(T, T') = 8(T - T')(l + 21] - 6E) 

[_ (-T )1+2E (_T')2(rJ- 2E) + ( _T')1+2E( -T )2(rJ-2E)] . 

In the case of pure deSitter expansion E = 1] = 0, but for aIl k, the Green function 

reduces to 

Gk(T, T') = 8(T - T')~ sin [k (T - T')]. 

Finally, the forrn of the Green function in the case of E = 1] = 0 and k --7 0 may be of 

sorne interest 

Gk(T, T') = 8(T - T')(T - T'). (6.38) 

6.4.3 The Tachyon Source 

We now study the tachyon contribution to the source (6.34). In position space Ja 

takes the forrn (see equation (D-21)) 

Ja (T, x) a2/'î,2m; (15(1) (J) 2 _ 2/'î,2 (15(1) (J') 2 

+ 2/'î,2'H(1 +1] - E)6- l 8i (b(1)(J'8ib(1)(J) 

+ 4/'î,26 - l 8y 8i (b(1)(J'8ib(1)(J) 

'H(1 + 2E - 21])6 -l"f~ + 6 -l"f~. (6.39) 

The quantity "fa can be written in the forrn (see equation (66) of [183], or equivalently 

(D-20)) 

"fa _/'î,26- l [38i (8k8kb(1)(J8ib(1)(J) 

+ ~akak (ai b(1)(Jai8(1)a)] 

-3/'î,2 6 -lai (ak akb(l) aaib(l) a) 
2 

~ (8i b(1) aai 15(1) a) . 

Notice that the terrns in the first line of the (6.39) are local, the terrns in the second 

and third line are non-local (containing an inverse laplacian ~ -1) and the fourth line 
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contains terms which are both local and doubly non-local (containing L:. -2). The 

Fourier transforms of the source terms are computed in appendix D-4 wherein we 

also discuss our conventions for the inverse laplacian operators. 

In the following, we will need the Fourier transform of terms like L:. -1

'

0"' 

This expression is operator-valued and can be written in terms of annihilation/creation 

operators and mode functions as b(l)o-k = akç,k(t) + a~kç,-k(t) (see appendix D-4 for 

more details). In the Fourier transformed expression for L:. -1

'

0"' the scale dependence 

of the mode functions b(l)o-k is integrated over so that L:. -1

'

0" gets contributions from 

the tachyon fluctuations on all scales. The large scale limit of terms like L:. -1
'

0" is not 

transparent and therefore we do not neglect any terms in the tachyon source which 

contain inverse Laplacians. 

In order to consistently compute cjJi2) (6.37) in the large scale limit it is necessarly 

to keep the next-to-Ieading order terms in the small (k/1i)2 expansion of the Green 

function (6.36). To see this, notice that powers of k 2 cancel inverse Laplacians in the 

source: 

k2 JO" " 'l.J' k = -'O",k + 'LIO",k + ... (6.40) 

where ... denotes gradient terms which are small on large scales. In appendix D-2 it 

is shown that 10" can be written on large scales as (D-19) 

10" c::! 3;2 [( b(l) 0"') 2 _ a2m; (b(l) 0") 2] 
3K;2 L:. -lOTOi (b(l)O"'Oib(l)O") 

61iK;2 L:. -lOi (b(l) 0"' oib(l) 0") . 

Plugging this result into (6.40) and comparing to (6.39) we see that k2 Jg /1i2 contains 

terms which are of the same form as those which appear in Jg (6.39). Hence these 

terms must be included to consistently study cjJi2) (and hence the curvature pertur­

bation) on large scales. Will we see shortly that the inclusion of such terms is crucial 

for the cancellation of nonlocal terms in the curvature perturbation. 
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6.4.4 The Gauge Invariant Curvature Perturbation 

The curvature perturbation is expanded to second order as 

In hybrid inflation, where ao = 0, the first order contribution cornes entirely from the 

inflaton sect or 

((1) = _cjJ(l) _ H b(l) p 

p~ 

where Po = -(ToO)(o), b(1) p = -b(l)Tg are the unperturbed and first or der stress tensor 

respectively. It is also conventional to define the comoving curvature perturbation at 

first or der 

which, on large scales, is related to ((1) as 

Because ao = 0 the inflationary trajectory is straight the case of hybrid inflation 

and ((1) is conserved on large scales [190]-[193]. However, this is not the case at second 

order [187] and one expects that ((2) will be amplified due to the tachyonic instability. 

This amplification of ((2) will continue until N = N* at which point the backreaction 

sets in and stops inflation. For N > N* the inflaton is no longer dynamical since all 

of its energy has been converted into tachyon fluctuations. Thus for N > N* the large 

sc ale curvature perturbation is conserved at all orders in perturbation theory since 

only one field (the tachyon) is dynamical and there are no non-adiabatic pressures. 

The definition of the first order curvature perturbation ((1) is generally agreed 

upon in the literature (up to a sign). At second order, however, there are several def­

initions of the curvature perturbation in the literature (see [187] for a comprehensive 

discussion). The definition we adopt follows [188] and generalizes the definition of 

Malik and Wands [189] (valid on large scales) to multiple scalar fields. (Our definition 

differs from [183]. The definition of [183] generalizes [157] to two scalar fields and 

applies only during inflatoin [193, 187J since it is conserved only in the slow rolliimit.) 
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In [188] the second order large sc ale curvature perturbation is written in terms of 

the first and second or der Sasaki-M ukhanov variables as 

where the first order Sasaki-Mukhanov variables 4 are 

and the second or der Sasaki-M ukhanov variable is 

(6.41) 

(6.42) 

(6.43) 

(6.44) 

In writing (6.41-6.44) we have restricted ourselves to hybrid inflation, made use of 

the background equations and inserted E, 'fJ (but not assuming slow roll). 

We split ((2) into contributions coming from the inflaton and the tachyon as 

and study each piece separately. This splitting is different from the one discussed in 

[188], where the curvature perturbation is defined for each fluid in such a way that 

the total curvature perturbation is a weighted sum of the individu al contributions. 

4Notice that Q&l) is related to the variable V(1) discussed chapter 1 by V(1) = a Q&l). 
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Instead, we sim ply divide ((2) into terms which depend respectively on the tachyon 

and inflaton fluctuations, b(l)O" and b(1)ip, qP), which is only possible because 0"0 = o. 

The tachyon part of the curvature perturbation ( 2
) gets contributions from the 

first and second line of (6.41), both explicitly through Q~l) and implicitly through 

b(2)ip, 'ljJ(2). The inflaton part of the curvature perturbation (~2) contains contributions 

from the last three lines of (6.41) as weIl as from the first line of (6.41), both implicitly 

through b(2)ip, 'ljJ(2) and explicitly through the definition of Q~2). 

The inflaton part of the curvature perturvation, (~2) coincides with the ((2) of single 

field inflation and has been derived previously [18, 158]. We have considered the 

construction of (~2) using our formalism and these results are presented in appendix 

D-3. 

6.4.5 The Tachyon Curvature Perturbation 

We now compute d2
). Our focus is on the leading order contribution to ((2) in the slow 

roll and large scale limit. If we work only to leading order in the slow roll parameters 

it is sufficient to use the Green function (6.36) in the limit E = r] = 0 and keep only the 

terms in the tachyon source (6.39) which are not slow-roll suppressed. However, to 

consistently compute d2
) we must keep the next-to-Ieading order terms in the small 

(k/H)2 expansion of the Green function, as we have discussed in subsection 6.4.3. 

In appendix D-5 we use the second order Einstein equations and the previously 

derived expressions for the Green function and tachyon source to write d2
) (equation 

(6.41)) in terms of first order fluctuations. The result is 

(6.45) 

where the tachyon fluctuations b(1) 0" are functions of the integration variable T'. The 

corrections to (6.45) are either subleading in the slow roll expansion or are total 

gradients which can be neglected on large scales. Equation (6.45) is the main result 

of this section. 
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Several comments are in order concerning (6.45). First, note that the integration 

by parts which we have performed gives rise to terms which are evaluated between 

the initial and final time of the form [ .. ']~/=-l/aiH' Since we are interested in the 

preheating phase during which the fluctuations are amplified exponentially we can 

safely drop the contribution at T' = -1/aiH relative to the contribution at T' = T. 

Consistency of this approximation requires that the tachyonic growth of the perturba­

tions overcomes any damping which may have occured during inflation. (If this is not 

the case then we can safely assume that no significant nongaussianity is produced.) 

We will return to this issue. 

The expression (6.45) satisfies an important consistency check, namely that it is 

a local expression. Nonlocal operators !::,. -n appeared in many of the intermediate 

steps in the calculation. These nonlocal terms arise due to the decomposition of the 

metric perturbations into scalar, vector and tensor components. One expects that the 

nonlocal terms should cancel out of physical quantities, similarly to electrodynamics in 

Coulomb gauge. The second or der curvature perturbation is related to the observable 

CMB temperature fluctuations in a nontrivial way, so this by itself does not prove 

that ((2) must be local. However [194] has recently shown that under the conditions 

present in our model, ((2) should indeed by local. 

To clarify, we have shown that at leading order in slow roll parameters the nonlocal 

contributions to Ô2
) cancel. We have not checked that such terms cancel at higher 

or der in the slow roll expansion, though we believe that they do. This cancellation 

was not observed in previous studies because the subleading (in k 2
) corrections to the 

Green function were not included and thus the large sc ale expansion was inconsistent. 

A comment is in order concerning the long wavelength approximation which we 

have used in deriving (6.45). In writing the expression for k2Jk we have dropped 

terms which are total gradients even though such terms will be integrated over time 

in computing Ô2
), due to the time integral in (6.37). Strictly speaking, one should 

only apply the large sc ale limit kT « 1 after the time integral has been performed. 

The reason for this is that the time integral extends from when the modes are well 

within the horizon, where they oscillate, to when the modes are outside the horizon, 
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including horizon crossing. Mode-mode coupling near the epoch of horizon crossing 

can contribute momentum-dependent terms which are not suppressed on large scales 

[18, 195]. However in our application, we are justified in dropping the contributions 

which are generated near horizon crossing since they are exponentially suppressed 

compared those which are produced during the preheating phase. 

6.4.6 Time-integrated tachyon perturbation 

We can make our main result (6.45) more explicit by substituting in the solutions 

(6.26,6.28). The result is simplified by taking the Fourier transform of ((2) and eval­

uating it at vanishing external wave number, and at the final time corresponding to 

the end of inflation, N = N*: 

",2 J d
3
p ~ (27r)3/2 (ap bp a; b_p + perms) 

rN
• 

x ln f(c, N, N*) dN 
max(Np,Ni) 

(6.46) 

where Ni denotes the value of N at the beginning of inflation, f(c, N, N*) is given by 

f(c, N, N*) = e-3N+:f;:z3/2 (1 + Izl)-1/2 x 

[~ ( _ 3(N-N.)) 1 r: _ _ 2c sign(z) 1

2 

4 1 e v z 1 27(1 + Izl) 

eN é iN- N
.) 1 (6.47) 

where z _ (1 + ~cN), and "perms" in (6.46) indicates the three other combinat ions 

of ap bp and ab b_p . 

For illustration, we show the behavior of the function f(c, N, N*) for sample pa­

rameter values N* = 22.5 and ln c = 1. Figure 6.4 plots (sign(j) In(1 + Ifl) as a 

function of N. The function is exponentially peaked at the initial value N = Ni, and 

at the final value N = N*. Moreover it always becomes negative at N* because the 

negative mass squared term in (6.47) cornes to dominate. Although it is not obvi­

ous in the figure, the negative value is orders of magnitude larger than the positive 

maximum just preceding it, so the negative extremum dominates in the integral in 

(6.4 7). 
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Whether the extremum of f at N* or at Ni dominates overall depends on how 

13Ni l compares to 9/(2c)z3/2 evaluated at N*. To see this, note that the dominant 

time-dependenee of fis determined by the combinat ion -3N + icZ3/2 in the exponent. 

The e-3N decay factor is typical of massive modes, which redshift as 6Œk rv a-3/ 2 . 

The e-fc- z
3

/
2 growth factor is a result of the tachyonic instability. As we noted in 

the discussion following eq. (6.45), (6.46) is valid only when the late-time behavior 

dominates (sinee otherwise terms which we have discarded are no longer subdominant 

to the terms which appear in (6.45)). Therefore an important consistency condition 

for aIl of our analysis is that 

9 9 ( 4 ) 3/2 
_z3/2 = - 1 + -eN > 3IN·I. 
2e * 2c 9 * t 

(6.48) 

If this condition is violated then the preheating is not playing any significant role in 

the dynamics and we can safely assume that no significant nongaussianity is produeed. 

Because of the exponential growth of f at its extrema, it is a very good approx­

imation to the integral to write f = eg and expand 9 = gm + g~(N - Nm) in the 

vicinity of the maximum value, whether it is at Ni or N*. Sinee the integral is so 

strongly peaked near the extremum, there is an exponentially small error in extending 

the range of integration to the half-line. In this way one obtains 

J 
egm 

dN f rv Ig~1 

We will use this approximation below to numerically evaluate the integral. 

(6.49) 

6.5 Bispectrum and spectrum of second or der met-

ric perturbation 

6.5.1 The tachyon contribution to the bispectrum 

Here we calculate the leading contribution to the three-point function (bispectrum) 

of the second-order curvature perturbation due to the tachyon, 

/((2) ((2) ((2) \ = (21f)-3/2 6(3) (k + k + k ) B(k k k) 
\ kl kz k3 / 1 2 3 1, 2, 3 (6.50) 
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Figure 6.4: sign(f) In(l+lfl) versus N, showing behavior ofthe the function f defined 

in (6.47), for lnc = 1, N* = 22.5 

It is understood that only the connected part of the correlation function is computed, 

which is equivalent to subtracting the expectation value of ((2) from the quantum 

operator. This three-point function is straightforward to compute, using the free­

field two-point functions 

(6.51) 

Carrying out the contractions of pairs of fields which contribute to the connected 

part of the bispectrum, one finds eight terms, which in the limit of vanishing external 

wave-numbers, are aU equal. The result is 

(6.52) 

The integrand of the p-integral is exponentially strongly peaked, either near ln(p / JCH) t'V 

Ni if f has its global maximum near N = Ni, or else near ln(p/ JCH) t'V 0 if f is 

dominated by its behavior near N*. The logarithm of the integrand for a typical 

case is shown in figure 6.5. If the cusp-like peak is dominating, we can use the same 

approximation as in (6.49) to evaluate the p integral, on both sides of the maximum. 

If the other local maximum at larger values of p is the global maximum, as sometimes 

happens, then we should treat the integral as a gaussian, sinee the derivative of the 

integrand vanishes at the maximum. In this case we similarly write the integrand of 
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the P integral as f = e9 and exp and g = gm + ~g~(p - Pm?, where g~ < 0; then 

(6.49) is replaced by 

JdNf - J 2" e"m 
Ig~1 

(6.53) 

We have carried out the evaluations numerically over a range of values of lnc and N*. 

In figure 6.6 we plot contours of ln lEI, where E is defined by 

-100 

e-6Ni (/'\,2)3 _ 
B=-- - B 

21[2 Cf 

-2Q.q 00 -80 -60 -40 -20 
ln [p/(H'!c)) 

o 20 

(6.54) 

Figure 6.5: Log of the integrand of the p integral in eq. (6.52), for a case where the 

maximum occurs near ln(p/ .;cH) = Ni . 

The boundary between the two regions in fig. 6.6 is described analytically by the 

relation 

31N.1 = ~Z3/2 
t 2c * (6.55) 

with z* = 1 + ~cN*. Only the region to the right, where icZ~/2 > 31Ni l, is relevent 

for our analysis (see eq. (6.48)). 

To make contact with experimental constraints, we want to compare the predicted 

bispectrum with that of single-field inflation, where nongaussianity is conventionally 

expressed via a nonlinearity parameter fNL, defined through 

(6.56) 
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Figure 6.6: Contours of ln IBI, defined in (6.54), in the plane of N* and ln c. Ni = -30 

in this example. 

where PcjJ(k) is the usual infiationary power spectrum, PcjJ(k)1/2 rv 10-5 (2n)/k3
/
2. If 

we assume that all ki are the same, ki rv k, then 

(6.57) 

We can thus convert our predicted bispectrum into an effective fNL, for which the 

present experimental constraint is roughly IfNLI < 100. 

Using (6.54) in (6.57) and recalling that Ne = INil + N* we find that 

(6.58) 

where we used H2 = V/(3M'Ç;) as well as the COBE normalization V/(EMi) = 

6 x 10-7• The contours of B can thereby be converted into contours of fNL, and 

demanding that IfNLI < 100 gives a constraint in the parameter space c, N*, Ni' 

6.5.2 The tachyon contribution to spectrum 

The analogous calculation can also be carried out for the tachyon contribution to the 

two-point function of the curvature perturbation. 

Closely following the preceding calculation, it is straightforward to show that, in 
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the limit of vanishing external wave numbers, 

(6.59) 

In analogy to (6.54), we definè 

-3N· H ( 2)2 e t K,-s----- - s - 47r2 C3/ 2 E (6.60) 

and we display contours of S in fig. 6.7. Analogously, only the right-hand region is 

relevent for our analysis (sinee this is the region where 6.48 is satisfied). 
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Figure 6.7: Contours of ln ISI in the plane of N* and lnc, at Ni = -30. 

Demanding that the tachyon contribution to the spectrum is sub-dominant to the 

infiaton contribution gives 

\
r(2) r(2) ) < (27r)2 8(k + k ) P 
':,kl ':,k2 - k3 1 2 ( 

con 
(6.61) 

with p~/2 rv 10-5 . Combining this with (6.59) and (6.60), we define the linearity 

parameter 

(6.62) 

5The powers of H and c can be understood as follows: bp cv H-l/2c- 3/ 4, whereas p cv yfëH. 
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The linearity parameter quantifies the tachyon contribution to the power spectrum. 

Binee we would like the spectrum to be generated by the inflaton, we will demand 

that Ihl < 1. One might con si der being more conservative and imposing, say, Ihl < 

0.01 rather than Ihl < 1, as we have done. Our exclusion plots are actually quite 

insensitive to the value assumed for h (this is also true for fNL) sinee the effect turns 

on exponentially fast. 

6.6 Constraints on hybrid inflation parameter space 

We have shown that contours of E, Scan be converted into contours of fNL, h. 

Demanding that IfNLI < 100, Ihl < 1 gives constraints in the parameter spaee of c, 

N*, Ni. The only obstacle to working directly in the model parameter spaee g, À, vis 

the implicit dependenee of N* on (g, À, v). We have numerically inverted the relation 

depicted in fig. 6.3 to determine N*(g, À, v). It then becomes straightforward to scan 

the model parameters, recomputing fNL and h. In the next section we will display 

our constraints in the spaee of 10glO À, 10glO 9 for a range of values of 10glO (v / Mp ). 

Note that onee a set of values for À, 9 and v / Mp are chosen and N* has been 

calculated, one must still determine Ni in order to calculate the parameters h and 

fNL. We do so by first computing the total number of e-foldings using the standard 

result 

(
10

16 
Gev) 1 (V1

/
4

) 
Ne = 62 - ln V1/4 - "3 ln ----vT 

Pr.h. 
(6.63) 

where V rv Àv4 /4 is the energy density during inflation, and Pr.h. is the energy density 

at reheating. In the following, we will ignore the gravitino bound P;:h~ ~ 1010 GeV 

and assume instant reheating, Pr.h. = V. The value of Ni then follows from Ni = 

N* - Ne. We have checked that incorporation of the gravitino bound does not create 

a notieeable change in the excluded regions. 
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6.6.1 The issue of scale invariance 

In evaluating the tachyonic contributions to the spectrum or bispectrum we find that 

these are either nearly sc ale invariant (S rv 1/k3
, B rv 1/k6

), or else to sc ale invariance 

is badly violated (S, B rv kO). In the latter case, the spectral index for the tachyon 

contribution to the two-point function is n = 4 (this is characteristic of massive fields 

and respects the Traschen integral constraints on causality in general relativity [196]). 

The two regimes, scale-invariant and nonscale-invariant, can be understood in 

reference to the condition (6.48) which must be satisfied in order for tachyonic pre­

heating to play any significant role. There are two ways to satisfy (6.48). One is to 

take cN* » 1, which usually requires c> 1. This is the regime in which the tachyon 

mass is not small compared to H during most of inflation, and so it corresponds to 

nonscale-invariant fluctuations of 6(7. The tachyon fluctuations are Hubble damped 

as 6(7 rv a(t)-3/2 prior to inflation, but this suppression can be overcome on large 

scales if the amplification during the preheating phase is sufficiently large, which typ­

ically requires very smaU values of the self-coupling À « 1. This nonscale-invariant 

regime corresponds to a region of the parameter space where the waterfall condition 

of hybrid inflation is satisfied (and one typically has N* « 1). 

The second way to satisfy (6.48) is to take clNI < 1 for aU N E [Ni, N*]. This gives 

a scale-invariant spectrum for the tachyon and also for ( 2
), which is most easily se en 

by writing the tachyon mass-squared as Im;l/ H 2 = ciNI. It is clear that if clNI < 1 

for aU N E [Ni, N*] then the tachyon field will have been light compared to the 

Hubble sc ale for all rv 60 e-foldings of inflation which ensures a nearly scale-invariant 

spectrum for the tachyon. AIso, in this case the instability will typically take several 

e-foldings to complete so that N* > 1. This scale-invariant regime corresponds to a 

region of the parameter space where the usual waterfall condition of hybrid inflation 

is violated (which is equivalent to saying N* ~ 1). 
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6.6.2 Nonscale-invariant case 

In the nonscale-invariant case h and fNL de pend on k. Because the tachyon spectrum 

is blue in this case the strongest constraint cornes from evaluating h, fNL at the 

largest values of k which are measured by the CMB. In deriving our constraints we 

conservatively take this to be k = é He-Ne where Ne is the total number of e-foldings 

of inflation (6.63). The resulting constraints in the plane of 10glO 9 and 10glO À are 

shown in the right-hand region of figure 6.8, for several values ofloglO vi Mp. We find 

that in this region the most stringent constraints come from h rather than fNL, so we 

expect to see distortions of the spectrum rather than nongaussianity at the left-hand 

boundaries of the excluded regions. (The other boundaries are excluded for different 

reasons described in the next paragraph.) 
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Figure 6.8: Excluded regions of the hybrid inflation parameter space, for 10glO vi Mp = 

-1, -3, -5, -7, -9. 

In computing h, fNL over a wide range of g, À, vlMp we also checked that several 

additional assumptions were respected: the tachyon mass-squared m; varies linearly 

with the number of e-foldings, which was shown previously to require gv / Mp < 10-5 ; 

the false vacuum energy density Àv4 14 dominates during inflation, leading to the 

bound 9 > 460À (vi Mp)3; the reheat temperature exceeds 100 GeV, so that baryoge­

nesis can occur at least during the electroweak phase transition, leading to the lower 

bounds on À. 
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6.6.3 Scale-invariant case; the adiabatic approximation 

On the left-hand side of fig. 6.8, we display new constraints for which the spectrum 

and bispectrum are scale-invariant. In contrast to the right-hand side, fNL provides 

the dominant constraint here, so that nongaussianity is playing the important role. 

To obtain these results, we employ a different approximation for the tachyon mode 

functions, namely the adiabatic approximation (described in sorne detail in appendix 

F of [5]). Because the tachyon has a small mass during the entirety of inflation 

(subsequent to horizon crossing), its mass is changing slowly, and we can use the 

standard mode functions for light fields, but with a time-dependent mass: 

(6.64) 

Here TJa = M;v'aa/V is the slow-roll parameter for the tachyon, given by 

(6.65) 

where TJ = M;V,'P'P/V, We have also verified that the solution (6.64) can be repro­

duced by (6.28) in the appropriate limit. 

Since the mode functions have a simple form in the adiabatic approximation, it 

is possible to go farther analytically in this case. Notably, we can find an implicit 

equation for N* after evaluating the integral (6.31): 

(6.66) 

This expression for N* is much easier to evaluate than the one which arises in the 

WKB approximation since the latter leads to a numerical integral F(N; À, g, v) which 

must be inverted to find the N* which satisfies F (N*; À, g, v) = v2 
/ 4. 

Moreover, the time (N) integral in (6.45) can be evaluated explicitly using the 

saddle point method, since it is dominated by the exponential growth near N = N*. 
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6 Defining rit to be 11]<71 at N = N*, this results in the expression 

(6.67) 

for the bispectrum,7 where d* = H2K,21]je2TJfN* j(2f). In the limit of small c t'V 1]j, this 

is manifestIy nearly scale invariant, B t'V 1 j k:(1+ TJf), by power-counting the divergent 

behavior of the integral in the infrared. The divergence must be cut off in the usual 

way, by ignoring modes with p sm aller than the horizon. Numerically evaluating the 

remaining p integral for ki t'V k, and using kT* t'V eNi for modes near the horizon,8 we 

find 

(6.68) 

Further using the CO BE normalization to write K,2 H 2 j f = 2 X 10-7, we find that the 

nonlinearity parameter is 

(6.69) 

Moreover the CO BE normalization implies 1]j = 7360N*gMp jv. Demanding that 

IfNLI < 100 gives the new exduded regions on the left-hand side of fig. 6.8. 

We have daimed that in the scale-invariant regime the dominant constraint is 

coming from fNL and not from h, contrarily to the nonscale-invariant regime. We 

now justify this daim. Repeating the steps above for the tachyon spectrum, 5, one 

obtains 

(6.70) 

Thus, in the scale-invariant regime, the linearity and nonlinearity parameters are 

related as 

(6.71) 

6 As discussed previously, an integral of the form J dN e g is approximated by ego / M where g* 

is the maximum value (at N = N*) and g~ is the derivative evaluated at the same point. 

7In [5], the conformaI time when the instability starts is (perhaps confusingly named) T* = -1/ H, 

due to our choice of N = 0 for the beginning of the instability. 

BThe horizon-crossing condition is kTi = 1, and T*/Ti = eN; /eO. 
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80 that liNLI > Ihl except when liLI is extremely small. This demonstrates that it 

is indeed possible to obtain significant nongaussianity in this region of the parameter 

space. We have verified that the result (6.71) can also be derived using the mode 

function solutions (6.28). 

6.7 Implications for Brane-Antibrane Inflation 

We now apply our results to a popular model of inflation from string theory, brane­

antibrane inflation [24]. This can be done by mapping the low-energy effective action 

for the brane-antibrane system onto the hybrid inflation model. We focus on the 

popular KKLMMT scenario [24, 25] which reconciles brane inflation with modulus 

stabilization using warped geometries with background fluxes for type lIB string 

theory vacua [21]. In this model, the antibrane is at the bottom of a Klebanov­

Strassler (KS) throat [197], with warp factor ai « 1, and the brane moves down the 

throat.9 Within the KS throat the geometry is well approximated by 

where y is the distance along the throat, a(y) ~ é Y is the warp factor and dn~ is the 

metric on the base space of the corresponding conifold sigularity of the underlying 

Calabi-Yau space. In the subsequent analysis we ignore the base space and treat the 

geometry as AdS5 . 

In the following we compute only the nongaussianity which is due to the preheating 

dynamics and ignore the possible effects of the inflaton sound speed [162, 163, 199]; 

hence our results may be thought of as a lower bound on the nongaussianity from 

brane inflation. 

In string theory the open string tachyon T between a D3-brane and antibrane, 10 

9See [198] for other discussions on nongaussianity in string theory models of inflation. 

lOWe restrict ourselves to inflation models driven by D3-branes sinee inflation driven by higher 

dimensional branes have problems with overclosure of the universe by defect formation [4]. 
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separated by a distance y, is described by the action [43] 

-J d4xyCgC 

C V (T, y) Jr-1 -+-(-ai-M-S-) --2 g-jL-V fj-jL-T-* fj-v-T (6.72) 

Here the small-ITI expansion of the potential is 

V(T,y) ~ 2atT3 [1+ ~ ( (~~y)' ~ ~) ITI' 

+ O(ITI4
) + ... ]. (6.73) 

where Ms is the string mass scale, T3 = g;lM:/(27r)3 is the D3-brane tension, and gs 

is the string coupling. Notice that in the warped throat scenario the instability does 

not set in until the branes are separated by the unwarped string length,l1 M;l. An 

interesting difference between the string tachyon and that of ordinary hybrid inflation 

is that (at y = 0) the tachyon potential V(ITI) in the string case does not have a 

local minimum; rather 

(6.74) 

The potential is minimized as T ~ 00. Therefore T does not have a VEV. Never­

theless, the unstable brane-antibrane system decays into closed strings soon after the 

instability begins, and the large-T part of the potential is not meaningful for deter­

mining the actual evolution of the tachyon. In hybrid inflation, it is also true that 

the end of inflation occurs somewhat before the fluctuations of the tachyon become 

as large as the VEV. We will see that even in the absence of a T 4 coupling, we can 

still define the equivalent of À and v for the brane-antibrane system, by equating 

~ÀV4 to the false vacuum energy, and Àv2 to the tachyon mass scale. This amounts 

to replacing the condition for the end of inflation (6.31) by 

false vacuum energy 

Itachyon massl 2 
(6.75) 

l1There is sorne confusion on the literature on this point, with sorne papers having stated that 

the instability is deterrnined by the warped string length, but this is not the case [163]. We thank 

L. Leblond for pointing this out to us. 
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Despite that fact that the tachyon potential is only minimized at ITI ---+ 00 the 

condition (6.75) is quite reasonable. Detailed numerical simulations of the symmetry 

breaking in the theory (6.72) were performed in [4]. Comparing to the analysis of 

[4] one finds that N* as defined in (6.75) roughly corresponds to the time at which 

singularities in the spatial gradients of the tachyon field form [51]. The appearance 

of singularities within a finite time corresponds to the formation of lower dimensional 

branes [1] and henee by N = N* the inflaton field eeases to exist as a physical degree 

of freedom. This me ans that, as in our previous analysis, for N > N* there no longer 

exists any nonadiabatic pressure (sinee only one field, the tachyon, is dynamical) and 

the large scale curvature perturbation becomes conserved to aIl orders in perturbation 

theory [192, 194]. 

The effective values of the couplings can be found by rewriting the action in terms 

of the canonically normalized fields (J = aiyT3T / Ms and cp = yT3Y (see equations 

3.6, 3.10 or C.1 in [24]), and then matching to the hybrid inflation potential (6.9). 

This gives the correspondenee 

v 

9 

(6.76) 

(6.77) 

(6.78) 

For the analysis of the preeeding sections to be valid, the inflaton potential must 

be well-described by Vo + ~m~cp2 during the relevant e-foldings of inflation. The full 

potential can be written as 

m~ 2 ( V Va) Vinf = 2:CP + Va 1 - 47r2 cp4 (6.79) 

where Va = 2atT3 and v is a geometrical factor which is given v = 27/16 for the KS 

throat. It is typical to parameterize the inflaton mass in terms of the dimensionless 

quantity {3 as m~ = (3H'6 where H'6 = Va/(3M;). Using the COBE normalization, we 

find that 

{3 = 107
/
2 al ( MM;)3 (6.80) 
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Demanding that the mass term in (6.79) dominate over the Coulomb term even when 

the branes are separated by the local string length yields a lower bound on (3: 

(3 > 324,,' g;a:o (~) 2 

The parameter (3 is also bounded from above by the requirement that ln - 11 ~ 10-1 

which corresponds to 9;a;O(Mp/ Ms)2 « 5 x 10-6
. 

Our results apply only in the case that (3 > 0; moreover the case where (3 < 0 does 

not make sense from the string theory point of view, sinee cp = 0 denotes the bottom 

of the throat, and the brane must roll toward that point, not away from it [27]. 

As in hybrid inflation, we still have three parameters even after normalizing the 

spectrum, which we can take to be 9s, ai and the ratio of the warped string scale to 

the Planck scale, aiMs/ Mp. Taking into account the additional restrictions on (3, we 

find that the scale-noninvariant exclusions (right-hand side of fig. 6.8) do not survive 

at aIl in the KKLMMT model; however aIl the scale-invariant ones do. Therefore this 

model has the potential for producing large nongaussianity, and is even constrained 

by producing too high levels of nongaussianity. 

~,r 

'" i 
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Figure 6.9: Excluded regions of the KKLMMT brane-antibrane inflation parameter 

spaee, in the plane of loglQai versus log109s for loglOaiMs/Mp = -13, -11, ... ,-5 

from nongaussianity. 

The constraints in the string parameter spaee are shown in figure 6.9. The ex­

cluded regions shown here correspond to very small values of 9s ~ 10-10 . In the 
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simple st way of connecting type lIB string theory to low-energy phenomenology, the 

gauge couplings of the Standard Model are related to 98 by running down from the 

string scale, which would render such small values of 98 incompatible with observa­

tions. However, type lIB strings are dual to themselves under SL(2,Z) transformations 

which take 98 -+ 1/98' In the dual picture, the string coupling is very large, and the 

gauge dynamics at the string sc ale would be confining. It is coneeivable that the 

Standard Model arises as a remnant of a strongly coupled gauge theory at the high 

scale, similar to technicolor models. In this case, the small values of 98 which give rise 

to large nongaussianity could still be compatible with particle physics constraints. 

6.8 Implications for P-term Inflation 

In realistic models of hybrid inflation from supergravity, the potential is generated 

by F- or D-terms. P-term inflation is a class of models which combines the two kinds 

of terms and can interpolate between them [182]. The potential for P-term inflation, 

along the inflationary trajectory, is 

V; f = 9
2e (1 + LIn rp2 + L rp4 + ... ) 

III 2 87r2 rp~ 8 Mi (6.81 ) 

where ... denotes terms of order rp6 / M; and higher. Here rpc = ç = Jlç+12 + ç~ is 

defined in terms of two Fayet-Iliopoulos parameters ç+ and 6, and in (6.81) f must 

lie in the interval 0 :S f :S 1, sinee it is defined as f = lç+12/e. The limits f = 0 and 

1 correspond to D-term [200] and F-term [201] models, respectively. We will consider 

each of these limits separately. We do not consider the complications which arise 

when these models are coupled to moduli fields [202]. 

As in the models previously considered the false vacuum energy dominates during 

inflation and the Hubble sc ale is given by 

H r--J 9 ç (6.82) 
\l'6Mp 

The inflaton couples to two scalar fields <I>±, of which one linear combination (5 is 

tachyonic. Its mass-squared is given by 

(6.83) 
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By comparing (6.82) and (6.83) to the hybrid inflation potential (6.9) we can deter­

mine the hybrid inflation model parameters as 

v 

The coupling 9 retains its original meaning in P-term inflation. 

6.8.1 D-term Inflation 

(6.84) 

(6.85) 

D-term inflation corresponds to taking f = 0 in (6.81). During a slow roll phase the 

inflaton field evolves as 

'PO(t)2 = 'P~ - ~é, (t - tc) 
2 67r2 

which implies that m; varies linearly with the number of e-foldings. Scales relevant 

for the CMB left the horizon when 'P = 'P N where 

Two distinct regimes are possible depending on the value of the coupling g. It is 

often assumed that 9 is relatively large so that g2N/(27r2) » é,/Mi; [203] which 

gives the correct amplitude of density perturbations with é, t'V 10-5 Mi; and requires 

9 ~ 2 X 10-3 for consistency. In this regime 'PN » 'Pc so that slow roll at the onset 

of the instability is not guaranteed and our previous analysis of the tachyon mode 

functions does not apply. However, in this regime it is also difficult to satisfy the 

constraints coming from the cosmic string tension, to avoid overproduction of cosmic 

strings, é, :::, 4 X 10-7 Mi; [204]. (Ref. [205] has pointed out that the constraints on 

the cosmic string tension can be weakened by incorporating the effect which strings 

have on the observed spectral index.) 

We are therefore driven to consider D-term inflation in the regime of small coupling 

g2 so that g2N/(27r2) « é,/Mi; and 'PN t'V 'Pc. In this case we are guaranteed that 

the universe will still be in a slow roll phase at the onset of the instability and 

our previous analysis holds without modification. This corresponds to very small 
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couplings 9 « 2 x 10-3, however, there is no obstruction to taking such a small 

coupling sinee g2 is not neeessarily related to the gauge coupling constant in a GUT 

[182J. In this regime the COBE normalization fixes ç C'.:::< 7 X 1O-4g2/ 3 M; so that 9 is 

the only independent model parameter. The cosmic string constraint ç ~ 4 X 10-7 M; 
then restricts the coupling 9 to be sm aller than 9 ~ 1.3 X 10-5. 

Applying our previous analysis of hybrid inflation to D-term inflation,12 including 

the additional constraints mentioned above, we find that there is a range of couplings, 

-10.0<log10g~ -8.7 (6.86) 

which is ruled out because of the spectral distortion constraint, in the scale-noninvariant 

region of figure 6.8. On the other hand there is no constraint coming from nongaus­

sianity for this model. 

6.8.2 F-term Inflation 

F-term inflation [201, 207J corresponds to taking f = 1 in (6.81). In this case the 

dynamics are somewhat more complicated than the D-term model. Again there are 

two possible regimes: a large coupling regime where tpN » tpc and our previous 

analysis does not apply and also a small coupling regime where tpN rv tpc and our 

previous analysis does apply. The large coupling regime corresponds to 9 ~ 2 X 10-3 

and again the cosmic string tension constraints are difficult ta satisfy (see, however, 

[208]). We are therefore driven to consider only the small coupling regime, 9 ~ 2 X 

10-3 . For couplings 3 x 10-7 « 9 ~ 2 X 10-3 it can be shown that the quadratic 

term tp4jM: in the potential (6.81) can be neglected and the dynamics is identical 

to D-term inflation, which we have already considered. Thus we con si der only the 

F-term model for 9 « 3 x 10-7 sinee this is the only region of parameter space for 

which the model differs significantly from the D-term model. 13 

12See [206] for further discussion of preheating in D-term inflation. 

13We have neglected the intermediate regime 0.06 :s g :s 0.15 which will not yield significant 

nongaussianity or spectral distortion. 
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For 9 :;, 3 X 10-7 , sa the f -term is dominating the potential, the slow roll parameter 

E = e/(8M;), and the COBE normalization fixes ç rv 6.7 x 106g2M; and the cosmic 

string tension is within observational bounds for 9 :;, 2 X 10-7 . Again applying the 

general hybrid inflation constraints, we find the excluded region 

-13.0 :;, 10glO g:;' - 9.5 (6.87) 

which, as in the case of D-term inflation, cornes from the k3 spectral distortion effect 

rather than nongaussianity. 

For more general P-term models with 0 < f < 1 we expect the excluded regions 

to interpolate between (6.86) and (6.87). In deriving our constraints we have been 

driven to the small coupling regime by the requirement that the cosmic sting tension 

be within observational bounds. Our analysis does not give any significant constraint 

on the string theoretic D3/D7 model [209] sinee in this case the co smic strings are 

not stable and there is no motivation to consider the small values of the coupling 9 in 

(6.86) and (6.87). Indeed, such small couplings are difficult to motivate from string 

theory [210]. 

6.9 The Case of a Complex Tachyon 

In the preceeding sections we have applied results which were derived under the 

assumption that (J' is a real field, to models in which the tachyon is actually complex. 

In doing so we have assumed that the generalization of the analysis of [5] to the case 

of a complex tachyon does not significantly modify the exclusion plot, figure 6.8. Here 

we verify this claim. 

6.9.1 Cosmological Perturbation Theory for an O(M) Multi­

plet 

Before restricting to the case of a complex tachyon we consider the somewhat more 

general case of an O(M) symmetric multiplet oftachyon fields (J'A with A = 1, ... , M. 
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The matter sector is expanded in perturbation the ory as 

cp( T, x) - cp(O) (T) + 8(1) cp( T, x) + ~8(2) cp( T, x) 

(JA(T,X) 8(1) (JA (T, x) + ~8(2)(JA(T,X). 

196 

(6.88) 

(6.89) 

As before the time-dependent vacuum expectation value (VEV) of the tachyon fields 

are set to zero ((J A) _ (J(O) = 0 which is a consequence of the 0 (M) symmetry of the 

theory. Notice, however, that the tachyon field does develop an effective VEV for the 

radial component 

We also assume that 

but V is, for the time being, otherwise arbitrary. Here and elsewhere the potential 

and its derivatives are understood to be evaluated on background values of the fields 

so that V = V( cp(O) , (J(O)), for example. 

We consider only the 8(2)Cg = K,28(2)Tg, Oi8(2)Cb = K,20i8(2)Tj and 8;8(2)ci = 

K,28;8(2)T! equations since the second or der vector and tensor fluctuations decouple 

from this system. In the case that (J~) = 0 the second order tachyon fluctuations 

8(2)(J A decouple from the inflaton and gravitational fluctuations up to second order 

and hence we do not need to solve for 8(2) (J A. Note also that the Klein-Gordon 

equation for the inflaton fluctations is not necessary to close the system. In this 

section we sometimes insert the slow roll parameters E and fi explicitly though we 

do not yet assume that they are small. We also introduce the shorthand notation 

m~ - o2VjOcp2. 

The second order (0,0) equation is 

31i1j;'(2) + (3 - E)1i2 cjJ(2) - akak 1j;(2) 

_ K,2 [cp' 8(2) cp' + a2 oV 8(2) cp] + y 1 
2 0 ocp 

(6.90) 

where Y 1 is constructed entirely from first order quantities. Dividing Y 1 into inflaton 

and tachyon contributions we have 
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where 

Yi 4(3 - E)1i2 (4/1») 2 + 2",,2<.p~q)1)8(1)<.p' 
2 2 2 2 
~ (8(1)<.p,)2 _ ~ a2m~ (8(1)<.p)2 _ ~ (V8(1)<.p) 

+ 8q)1)f}kf}kcjJ(1) + 3 (cjJ'(1»)2 + 3 (VcjJ(1)r (6.91) 

and 

2 
yiT _ ~ [8(1) a' 8(1) a'A + f}.8(1) aAf}i 8(1) a A 

1 2 A ~ 

+ a2 f}
2
V 8(1)a A8(1)aB] . 

f}aAf}aB 

The divergence of the second order (0, i) equation is 
2 

f}kf}k [1/;'(2) + 1icjJ(2)] = ~ <.p~f}kf}k8(2)<.p + Y 2 

(6.92) 

(6.93) 

where Y 2 = Y~ + Yg is constructed entirely from first or der quantities. The inflaton 

part is 

Y~ 2",,2<.p~f}i (cjJ(1)f}i 8(1)<.p) + ",,2f}i (8(1)<.p'f}i 8(1)<.p) 

8f}i (cjJ(l) f}i cjJ'(l») _ 2f}i (cjJ,(l) f}i cjJ(1)) 

and the tachyon part is 

The trace of the second order (i, j) equation is 

31/;"(2) + f}k f}k [cjJ(2) _ 1/;(2)] + 61i 1/;'(2) 

+ 31icjJ'(2) + 3(3 - E)1i2cjJ(2) 

3",,2 [ , ,(2)' 2 f}V ,(2)] Y - <.pou <.p - a -u <.p + 3 
2 f}<.p 

(6.94) 

(6.95) 

(6.96) 

where Y 3 = Y~ + Yg is constructed entirely from first arder quantities. The inflaton 

part is 

Y~ _ 12(3 - E)1i2 (cjJ(1»)2 _ 6",,2<.p~cjJ(1)8(1)<.p' 

3 2 3 2 2 2 
+ ; (8(1)<.p,)2_ ; a2m~(8(1)<.p)2_~ (V8(1)<.p) 

+ 3 (cjJ'(l)/ + 8cjJ(1)f}kf}kcjJ(1) + 241icjJ(1)cjJ,(1) 

+ 7 (VcjJ(1)r (6.97) 
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and the tachyon part is 

(6.98) 

The derivation of the master equation which was presented in appendix D-2 follows 

here unmodified except for the new definitions of If, 1~ and 13. The master equation 

is 

(6.99) 

where the source is 

J Il - 13 + 46 -11; + 2(1 - E + 77 )'H6 -112 

+ 6-1," - (1 + 2E - 277)'H6 -l,'. (6.100) 

and the quantity , is defined as 

, = 13 - 36-11; - 6'H6 -112 (6.101) 

We can split the source into tachyon and infiaton contributions J = J'P + J(7 in the 

obvious manner, by taking the tachyon and infiaton parts of Il,12,13,,. 

In appendix D-6 we prove the identity (see eqn. D-41) 

2 '(7 - ~ (ai b(l)aA a i b(l)aA ) 

3/1;26 -lai (aka kb(l)a Aaib(l)aA ) 

which is analogous to the result for a real tachyon field. 

We now proceed to derive the tachyon curvature perturbation. The derivation of 

Ô2
) presented previously follows unmodified except, of course, for the change in the 

definitions of If, 1~, 13 and ,(7. From this point onwards we assume that E, 1771 « l. 

The leading contribution to the tachyon curvature perturbation is 
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Now, using equations (D-8) and (D-14) we can write this in terms of the tachyon 

fluctuation 15(1) 0" as 

(6.102) 

expansion. In deriving (6.102) we have restricted ourselves to the preheating phase 

during which the fluctuations 15(1) 0" A grow exponentially. 

Using (6.102) the second order tachyon curvature perturbation can be computed 

once the fluctuations 15(1) 0" A are determined. The first order tachyon fluctuations are 

described by the perturbed Klein-Gordon equation 

b(l)O"~ + 21tb(1)O"A - OkOkb(l)O"A + a 2 02V b(l)O"B = 0 
OO"AOO"B 

(6.103) 

6.9.2 Complex Tachyon Mode Functions 

At this point we restrict our attention to the case with M = 2 and the potential 

,\ ( A 2) 2 g2 2 A 
V = 4" O"AO" -v +2'PO"AO" 

(6.104) 

For O"~) = 0 the mass matrix is diagonal 

02V 

so that the tachyon fluctuations with A = 1 and A = 2 evolve independently (see 

eqn. 6.103). 

As previously the quantum mechanical solutions 15(1) 0" A are written in terms of 

annihilation and creation operators a:, a~t in the usual way 

.. (1) () _ J d
3
k Ac () ikx h 

u O"A X - (27r)3j2 ak <"k t e + .c. (6.105) 
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Both components A = 1 and A = 2 have the same time dependence owing to the fact 

that the mass matrix is diagonal. The Çk in (6.105) are thus identical to the solutions 

(6.28), which we have already studied. 

6.9.3 The End of Symmetry Breaking 

For a multi-component tachyon the condition defining N* must be modified as (0(1) CJ A 0(1) CJA) (N = 

N*) = v2/4 which, for the case M = 2, changes (6.31) to 

8 

6.9.4 Tachyon Curvature Perturbation 

For the potential (6.104) the tachyon curvature perturbation d2
) decomposes into a 

sum of term 

d2) = L (~2) 
A=1,2 

where ç~) is the contribution to d2
) coming from CJ A. Consider, as an example, the 

spectrum of the tachyon curvature perturbation 

Because the annihilation/creation operators a1 and a~ are independent the cross­

terms on the last line do not contribute to the connected part of the correlation 

function. This means that 

The quantity (d~kl d~k2) = (d~kl d~k) will be identical to the ((~~L (~~k2) which we have 

already computed for the real tachyon field. We see, then, that the effect of having 

a complex tachyon field (as opposed to a real field) is to multiply h and fNL by a 

factor of 2 and also to slightly reduce N*. The net change in h, fNL is order unit y 

and the new exclusion plot is difficult to visually distinguish from figure 6.8. This 
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justifies our previous daims that our constraints do not change significantly when one 

considers a complex tachyon field. 

6.10 Conclusions 

In this chapter we have studied the evolution of the second order curvature pertur­

bation during tachyonic preheating at the end of hybrid inflation. We have found 

that, depending on the values of certain model parameters, two interesting effects are 

possible: 

• Preheating generates a scale-invariant contribution to the curvature perturba­

tion. In this case significant nongaussianity can be generated during preheating 

and the model is even constrained by producing too high a level of nongaus­

sianity . 

• Preheating generates a nonscale-invariant contribution to the curvature pertur­

bation with spectral index n = 4. In this case the strongest constraint cornes 

from the distortion of the power spectrum and no significant nongaussianity can 

be produced. 

In both cases one typically requires fairly small values of the dimensionless couplings 

g, À in order to obtain a strong effect. Note that a small coupling 9 does not re­

quire fine tuning in the technical sense, since g2 is only multiplicatively renormalized: 

j3 (g2) rv 0 (g2 À, g4) / (167[2). That is, if 9 is small at tree level then loop corrections 

do not change its effective value significantly. 

We have applied our constraints on hybrid inflation to several popular models: 

brane inflation, D-term inflation and F-term inflation. In the case ofbrane inflation we 

have found that significant nongaussianity from preheating is possible for sufficiently 

small values ofthe warp factor. For both D- and F-term inflation we have shown that 

no nongaussianity is produced during preheating, however, we still put interesting 

constraints on the model due to the distortion of the spectrum by nonscale-invariant 

fluctuations. 



6.10 Conclusions 202 

We have also generalized our results to the case of a complex tachyon field, con­

firming the claim that this modification does not significantly alter our exclusion 

plots. 

We should note that the model of hybrid inflation considered here always gives a 

small blue tilt to the spectral index, n > 1, which is disfavoured by recent data [16]. 

One avenue for future study [211] is to generalize our results to the case of inverted 

hybrid inflation [212] which always gives n < 1. 
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Abstract 

We construct approximate inflationary solutions rolling away from the unstable max­

imum of p-adic string theory, a nonlocal theory with derivatives of all orders. Novel 

features include the existence of slow-roll solutions even when the slow-roll parame­

ters, as usually defined, are much greater than unit y, as weIl as the need for the Hubble 

parameter to exceed the string mass scale ms. We show that the theory can be com­

patible with CMB observations if gs/ vIP rv 10-7 , where gs is the string coupling, and 

if ms < 10-6 Mp. A red-tilted spectrum is predicted, and the scalar-to-tensor ratio 

is bounded from above as r < 0.006. The p-adic theory is shown to have identical 

inflationary predictions to a local theory with superPlanckian parameter values, but 

with the advantage that the p-adic theory is ultraviolet complete. 

7 .1 Introduction 

Many string theorists and cosmologists have turned theiI' attention to building and 

testing stringy models of inflation in recent years. The goals have been to find natural 

realizations of inflation within string theory, and novel features which would help to 

distinguish the string-based models from their more conventional field theory counter­

parts. The more popular categories include brane-antibrane [24, 25, 53], D3/D7 [209], 

modular [213], DBI [162] and tachyon-driven [214] inflation (see [22] for a review). 

In most examples to date, string theory has been used to derive an effective 4D 

field theory operating at energies below the string scale. Since string theory provides 

a complete description of dynamics also at higher energies, it may be interesting to 

consider a model which takes advantage of this distinctive feature. This is usually 

daunting since the field theory description should be supplemented by an infinite 

number of higher dimensional operators at energies above the string scale, whose 

detailed form is not known. In the present work, we propose to take a small step in 

the direction of overcoming this barrier, by considering a simplified model of string 

theory invented in 1987 [95], in which the world-sheet coordinat es of the string are 



7.1 Introduction 205 

restricted to the field of p-adic numbers. Scattering amplitudes of open string theory 

can be related to those of the p-adic strings. A great advantage in p-adic string the ory 

is that it is possible to compute all amplitudes of its lowest state and to determine 

a simple field-theoretic Lagrangian which exactly reproduces them. The result is a 

nonlocal field theory which is nevertheless sensible in the far ultraviolet. 

The p-adic string resembles the bosonic string in that its ground state is a tachyon, 

whose unstable maximum presumably indicates the presence of a decaying brane, 

analogous to the unstable D25-brane of the open bosonic string theory [215J. Similarly 

to the bosonic string, the potential is asymmetric around the maximum, with one 

direction leading to a zero-energy vacuum, while in the other direction the potential 

is unbounded from below. We will consider whether it is possible to get successful 

inflation from rolling toward the bounded direction. This has been tried before in 

the context of the open string tachyon, and is difficult [216J because the tachyon 

potential is not flat enough to give a significant period of inflation, and there are 

no parameters within the theory which can tune the potential to be more flat. In 

contrast, we will show that the p-adic string tachyon can roll slowly enough to give 

many e-foldings of inflation. There are two distinct regions of parameter space which 

a110w for successful inflation. There is a region with p = 0(1) for which the p-adic 

field potential is flat and slow roll inflation proceeds in the usual manner. However, 

there is also a region of parameter space with p » 1 for which the potential is 

exfremely steep (1 '171 = M; IV" IV 1 may be as large as 1011
) but the p-adic scalar field 

nevertheless ro11s slowly. This remarkable behaviour relies on the nonlocal nature of 

the theory: the effect of the higher derivative terms in the action is to slow down 

the field sufficiently, despite its steep potential. This new effect manifests itself only 

in the regime where the higher derivative interactions cannot be ignored. It is also 

interesting that in our model the kinetic energy is responsible for driving inflation for 

a significant number of e-foldings, unlike in conventional models of inflation. 

One may worry about the presence of these higher derivative terms, because they 
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are usually known to introduce ghosts1 into the theory. In fact, it is easy to check that 

for a scalar field theory if one introduces only a finite number of higher derivatives, 

then the model invariably contains ghost degrees of freedom. The reason why the p­

adic string action can evade this problem is because it is intrinsically nonperturbative 

in nature, the propagator being modified in such a way as to not contain any poles. 

In other words there are no physical states, ghosts or otherwise, around the true 

vacuum. This novel way of curing the problem of ghosts in higher derivative theories, 

while retaining sorne nice properties such as improved UV behaviour, was already 

pointed out in [218] in the context of gravity. It was also pointed out in [218] that 

such theories can exibit interesting new cosmological features. For instance, one can 

obtain nonsingular bouncing solutions by making gravit y weak at short distances. 

More recently, such models have also been shown to possess inflationary solutions 

[219]. However, the models of [218, 219] are phenomenological, while the p-adic 

action that we con si der is an actual (albeit exotic) string theory and reproduces 

many nontrivial features of conventional string theories. 

We start by reviewing the salient features of p-adic string theory in section 7.2. 

In section 7.3 we show that this theory does not give inflation if the higher-derivative 

terms in the action are ignored. However, near the top of the potential, the energy 

can be large enough to justify keeping all higher derivative terms. In section 7.4 we 

IOne may also worry about classical instabilities which usuaIly plague higher derivative theories; 

genericaIly they go by the name of Ostrogradski instabilities (see [217] for a review). These are 

the classical manifestations of having ghosts in the theory: they can have arbitrarily large negative 

energy, which leads to classical instability. Since the nonlocal theory under consideration does not 

contain any ghosts we also do not expect to find such instabilities. One way to see how such theories 

may avoid the Ostrogradski instability argument, valid for finite higher derivative theories, is by 

noting that one cannot construct the usual Ostrogradski Hamiltonian because there is no highest 

derivative in such nonlocal actions. AIso, in arriving at the Ostrogradski Hamiltonian, one assumes 

that aIl the derivatives of the field (except the maximal one) are independent canonical variables. 

This is no longer true for theories with derivatives of infinite order. For instance, it is not possible 

to independently choose an initial condition with arbitrarily specified values of aIl the derivatives of 

the field. See ref. [87] for a discussion of this point. 
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show how to resum their contributions and we construct approximate inflationary 

solutions valid near the top of the potential, by solving the coupled equations for the 

tachyon and scale factor of the uni verse. We give two different approximate methods 

in this section. In section 7.5 we solve for the fluctuations around this background to 

determine the power spectrum of scalar and tensor perturbations which can be probed 

by the cosmic microwave background (CMB). There we show that it is possible to 

choose parameters which are compatible with the measured amplitude and spectral 

index, and that the scalar-to-tensor ratio is bounded from above as r < 0.006 in this 

model. We also argue that it can be natural to have initial conditions compatible with 

inflation in the p-adic theory. We give conclusions in section 7.6. Appendix E-1 gives 

details about the p-adic stress tensor and the approximate inflationary solution of the 

Friedmann equation. Appendix E-2 gives mathematical details about the incomplete 

cylindrical functions of the Sonine-Schaefli form. Appendix E-3 explains a formaI 

equivalence between the dynamics of the p-adic tachyon and those of a local field 

theory with a super-Planckian vacuum expectation value (VEV). 

7.2 Review of p-adic string theory 

The action of p-adic string theory is given by [95] 

s = 

(7.1) 

where 0 = -8; + \72 in flat space and we have defined 

1 1 p2 2m2 _ = ___ andm2 _ __ s 
g~ g'; p - 1 P ln p 

(7.2) 

The dimensionless scalar field <jJ(x) describes the open string tachyon, ms is the string 

mass scale and gs is the open string coupling constant. Though the action (7.1) was 

originally derived for p a prime number, it appears that it can be continued to any 

postive integer and even makes sense in the limit p -+ 1 [96]. Setting 0 = 0 in the 
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action, the resulting potential takes the form V = (m!/g~)(~q} - P!l <j>P+l). Its shape 

is shown in figure 7.1. 

V 

0.4 

0.3 

0.2 

0.1 

-1 -0.5 0.5 <P 
-0.1 

Figure 7.1: The potential of the p-adic tachyon for p = 19. 

The action (7.1) is a simplified model of the bosonic string which only qualitatively 

reproduces sorne aspects of a more realistic theory. That being said, there are several 

nontrivial similarities between p-adic string theory and the full string theory. For 

example, near the true vacuum of the theory cp = 0 the field naively has no particle­

like excitations sin ce its mass squared goes to infinity. 2 This is the p-adic version 

of the statement that there are no open string excitations at the tachyon vacuum. 

A second similarity is the existence of lump-like soliton solutions representing p-adic 

D-branes [65]. The theory of small fluctuations about these lump solutions has a 

spectrum of equally spaced masses squared for the modes [65],[97], as in the case of 

normal bosonic string theory. 

It should also be noted that the connection between (7.1) and the DBI-type 

tachyon actions, which have been widely studied in the literature in the context 

of tachyon matter [43], is not entirely clear (see [220] for a discussion of the relation 

between p-adic and ordinary strings). In the case of tachyon matter, solutions which 

roll towards the vacuum T -+ 00 have late time asymptotics T rv t and hence the 

2Reference [87] found anharmonic oscillations around the vacuum by numerically solving the full 

nonlinear equation of motion. However, these solutions do not correspond to conventional physical 

states. 
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tachyon never reaches this point [47], whereas in the case of the p-adic string the 

vacuum is at a finite point in the field configuration space and homogeneous solutions 

rolling towards the vacuum typically pass this point without difficulty [87J (at least 

in fiat space). In fact, the numerical studies of [87J found no homogeneous solutions 

which appeared to correspond to tachyon matter (vanishing pressure at late times). 

This issue has been considered in the case of cubic string field theory in [221]. Related 

rolling tachyon solutions in cubic string field theory have been discussed in [222]. 

It is worth pointing out that one obtains very similar actions to (7.1) with expo­

nential kinetic operators (and usually assumed to have a cubic or quartic potential) 

when quantizing strings on random lattice [223]. These field theories are also known 

to reproduce several features, such as the Regge behaviour [224], of their stringy 

duals. Although our analysis focuses on the specifie p-adic action, it can easily be 

applied to such theories as well. The connection between p-adic string theory and 

ordinary string theory on a discrete lattice was explored in [225]. 

The field equation that results from (7.1) is 

(7.3) 

We are interested in perturbing around the solution cjJ = 1, which is a critical point 

of the potential, representing the unstable tachyonic maximum. For odd p one also 

has another unstable point at cjJ = -1, but we will restrict our attention to solutions 

that start to evolve from the omnipresent cjJ = 1 maximum. In passing we also note 

that there is also the stable vacuum of the tachyon, at cjJ = O. For both even and odd 

p the potential is unbounded from below. 

It is also worth commenting on the physical interpretation of the fact that the 

potential is unbounded from below. The instability associated with the decay of the 

"closed string vacuum" cjJ = 0 to the "true vacuum" cjJ = 00 is thought to be associated 

with the closed string tachyon instability [215]. 

Notice that in the limit p ~ 1 the equation of motion (7.3) becomes a local 

equation 

DcjJ = 2cjJ ln cjJ 
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Therefore p -+ 1 is the limit of local field theory. In the present work we will also 

consider a very different limit, p » 1, in which the nonlocal structure of (7.1) is 

playing an important role in the dynamics. 

7.3 Absence of Naive Slow Roll Dynamics 

One may wonder whether the field theory (7.1) naively allows for slow roll inflation 

in the conventional sense. N aively one might expect that for a slowly rolling field the 

higher powers of 0 in the kinetic term are irrelevant and one may approximate (7.1) 

by a local field theory. The action (7.1) can be rewritten as 

where we have defined the field X as 

X XoCP 

Xo 
p{lr:;-
gs V 2(P=1) ms 

and the potential is 

v X _ m; X2 _ m; p2 (K) p+l 

( ) - lnp g; p2 - 1 XO 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

In (7.4) the· .. denotes terms with higher powers of o. The truncation (7.4) is quite 

analogous to what is usually performed in the literature when one studies inflation 

from the string theory tachyon [214J. In the case of the usual string the ory tachyon 

corrections involving 0 2 and higher are expected, but the full infinite series of higher 

derivative terms is not known explicitly (see, however, [94J for a calculation of the 

string theory tachyon action up to order 86 ). Thus, the standard approach is to simply 

neglect such terms. We will show, however, that under certain circumstances the 

higher derivative corrections may play an extremely important raIe in the inflationary 

dynamics. 

Working in the context ofthe action (7.4) let us consider the slow roll parameters 

describing the flatness of the potential (7.7) about the unstable maximum X = Xo. It 
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is straightforward to show that 

M; 1 (8V(X)) 2 

2 V(Xo)2 8X 
o (7.8) 

X=Xo 

(7.9) 

Thus one would naively expect that inflation is only possible in the theory (7.1) for 

9sMp/h/lnpms) « 1. For p = 0(1) we will see that this expectation is correct, 

however, for p » 1 this intuition is incorrect and that successful inflation can occur 

even with M;V- 182V/8X2 
rv _1016 ! The reason for this surprising result is that the 

dynamics of the p-adic tachyon field is set by the mass scale which appears in the 

kinetic term, ms, rather than the mass scale which is naively implied by the potential 

2 ( ) = 8
2
V 1 __ 2(p - 1) 2 

mx Xo - 8 2 - l ms 
X X=Xo np 

(7.10) 

Clearly for p» 1 we have Im~1 » m;. 

7.4 Approximate Solutions: Analytical techniques 

In this section we construct the approximate solutions for the scalar field and the 

quasi-de Sitter expansion of the uni verse , in which ljJ starts near the unstable maxi­

mum (1jJ = 1) of its potential and rolls slowly toward the minimum (1jJ = 0). Cosmo­

logical solutions of similar nonlocal theories have also been considered in [226]. 

We use two different formalisms to construct inflationary solutions. We first devise 

a perturbative expansion in e>..t similar to what was carried out in [87] to study rolling 

solutions in flat spacetime. Our second formalism is the analogue of the usual slow 

roll approximation: we assume that the friction term in the 0 operator dominates 

over the acceleration term and also neglect the time variation of H. 

We first discuss the perturbative expansion in powers of e>..t. Our starting point 

is the ansatz 
00 

ljJ(t) = 1 - I: IjJrer>..t (7.11) 
r=l 
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and 
00 

H(t) = Ho - L Hrer>.t (7.12) 
r=l 

We have chosen the parameterisation such that at t ----t -00, cP starts from the top of 

the hill where the universe is undergoing de Sitter expansion with Hubble constant 

Ho. As t ----t -00, e>.t ----t ° and aIl the correction terms, which quantify the departure 

from the pure de Sitter phase, vanish. As t increases, the field rolls toward the true 

vacuum cP = 0, in fact reaching it at a finite time. Classically, the model admits 

infinitely many e-foldings of inflation, although only the last 60 e-foldings before the 

end of inflation are relevant for observation. This idealized behaviour is an artifact of 

neglecting quantum fluctuations; quantum mechanically the field cannot sit at cP = 1 

for an infinite amount of time. We will return to this issue later and show that the 

inclusion of quantum fluctuations does not spoil inflation, which it would in ordinary 

local field theory if the fi parameter is large. 

Given the ansatz (7.11,7.12), we can exp and the field equation for the p-adic 

scalar (7.3) and the Friedmann equation as a series in e>.t and then determine the 

coefficients {cPTl Hr} systematically, order by order. We will show that this can be 

do ne consistently. The zeroth order Klein-Gordon equation is trivially satisfied, by 

virtue of the fact that we start from a maximum of the potential. 

7.4.1 p-adic Scalar Field Evolution 

Let us first find an approximate solution for the scalar field equation of motion (7.3). 

We note that to compute quantities such as one>.t to the order of interest, it is 

sufficient to use a truncation of (7.11) and (7.12): 

(7.13) 

where we have used the freedom to choose the origin of time to set cPl - 1, and for 

convenience we have defined the new variable 

(7.14) 
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in terms of which the 0 operator takes the form 

0=-.\ u -+ 1+- u-2 [ 2 8
2 

( 3H) 8 ] 
8u2 .\ 8u 

(7.15) 

We wish to compute quantities such a one-~t up to O(u2
). This can be do ne recursively. 

Writing on4> (where n 2: 1) as 

(7.16) 

and applying another 0 operator one finds the following recursion relations for the 

coefficients An and En: 

(7.17) 

and 

(7.18) 

Equation (7.17) has the solution 

(7.19) 

with al = -1 (from examination of 04» while a suit able ansatz for En is given by 

(7.20) 

The coefficients bl , b2 can be deduced from (7.18) using the initial values 

(7.21) 

which follow from explicitly computing 04> and 0 24>. Putting everything together we 

now have 

On,O - (.\2 + 3Ho.\tu + [ (H~~.\ - 4>2) (4.\2 + 6Ho.\t 

- H~~.\ (.\2 + 3Ho.\)n] U
2 + O(u3

) (7.22) 

which works also for the case n = O. Using (7.22) one can resum the contributions 

coming from all the powers of 0 in the exponential operator e-D/m~ to give 

(7.23) 
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where we have introduced 

Hl 
(7= ---

Ho+À 

214 

(7.24) 

We conjecture that such resummations are possible for higher or der terms as weIl. 

Notice that (7.23) reduces to cp in the limit mp ---+ 00, as it should. 

To solve the equation of motion for the scalar field, we must equate (7.23) to the 

right-hand-side of (7.3): 

[ 2] (p -1) 2 cjJP = 1 - u - CP2U P = 1 - pu - P CP2 - -2- u + ... (7.25) 

mat ching coefficients for each order in u. The zeroth order equation is identically 

satisfied, as promised earlier, while mat ching at first order gives 

(7.26) 

which, using (7.2) can be rewritten in the form 

(7.27) 

which is independent of p. Later we will see that Ho » ms is necessary for getting 

inflation, so the solution of (7.27) is approximately 

À rv 2m; 
3Ho 

Finally, mat ching coefficients at second order gives 

(7.28) 

(7.29) 

In summary, by solving the scalar field equation of motion (7.3) to second or der 

in the expansion in powers of u = eÀt
, we have obtained two relations, (7.27) and 

(7.29). The former determines the parameter À while the latter determines CP2. 

7.4.2 The Stress Energy Tensor and the Friedmann Equation 

To complete our approximate solution for the classical background, we must solve the 

Friedmann equation 
2 1 

H = 3M2 Pc/> 
p 

(7.30) 
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to second order in u. To find the energy density PcjJ, we turn to the stress energy 

tensor for the p-adic scalar field. A convenient expression for T1J,V was derived in [227] 

(see also [228]) 

(7.31 ) 

One may verify that the TllV is symmetric by changing the dummy integration variable 

T ---+ 1 - T in the last term. For homogeneous 4>(t) the above expression simplifies, 

and for Tao we find 

1 t TD) ( ~ )] + m~ Jo dT 8t (e-~4> 8t e- mp 4> (7.32) 

One can evaluate the above expression term by term, keeping up to O(e2.\t) rv u2
. 

The final result reads 

Tao = m; [1 _ u(l + eM) _ 2[1 - (p + l)u] + u(eM - 1)] + O(u2 ) 

2g~ p + 1 

_ m;(p - 1) + O(u2) (7.33) 
2g~(p + 1) 

The O(u) terms cancel out and matching the coefficients in the Friedmann equation 

gives us the simple results 
H 2 _ m; p -1 

a - 6MJ g~(p + 1) 
(7.34) 

and 

(7.35) 

for zeroth and first order respectively. 

The O(u2
) contribution to Tao is quite complicated (see appendix E-l) but once we 

use (7.35) it simplifies greatly. Matching coefficient at order O(u2
) in the Friedmann 

equation gives 

(7.36) 
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Because of our sign convention for Hr, the fact that H2 > 0 means that the expansion 

is slowing as cf; ro11s from the unstable maximum, as one would expect in a conventional 

inflationary model. 

Using (7.28), (7.34) and (7.36) to compute H2/ Ho r--J P lnp it is dear that the 

perturbative expansion in u breaks down once u r--J (p lnp )-1/2 (reca11 that H r--J 

Ho - H2u2). Thus one expects that once u r--J p-1/2 then inflation ends. We verify 

this daim using an alternative formalism in the next subsection. 

To summarize, we have determined the five parameters À, cf;2, Ho, Hl and H2 which 

appear in the solutions for cf;(t) and H(t) up to O(u2) through the equations (7.27-

7.29), (7.34-7.36). As a check of our result, we can take Ho « ms and compare it to 

the the Minkowski background solution that was found in [87J. For Ho « ms we see 

from (7.27) that 

(7.37) 

the first term corresponding to the known Minkowski result. We can also compute 

the coefficient cf;2 in this limit from (7.29), 

(7.38) 

This too coincides with the coefficient that was determined in [87J for p = 2. 

7.4.3 The Friction-Dominated Approximation 

In the previous subsections we have constructed an approximate solution for the p­

adic scalar rolling down its potential by performing an expansion of cf;, H in a power 

series in u. Furthermore, we have shown that once u r--J p-1/2 then this solution breaks 

down (because the O(u2) term in H(t) become larger than the zeroth order term, Ho). 

At this point inflation has ended. Because the equations of motion are complicated, 

we now verify this behaviour using an alternative formalism which does not rely on 

small u. 

The method is the same as the slow-roll approximation in ordinary inflation, which 

assumes that ~ « H cf;. To justify it within the p-adic theory, we will provisiona11y 
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assume that 

so that the evolution is friction-dominated in the usual sense. The consistency of this 

approximation will be established when we match the theory to the observables from 

the inflationary power spectrum later, in eqs. (7.70), (7.71). It follows that it is a 

good approximation to take 

Then the p-adic scalar field equation becomes 

where we have defined 
3Ho a--

2
-

mp 

(7.39) 

(7.40) 

Our procedure is to treat Ho as exactly constant, solve for cp(t) and compute the 

energy density P</J. If P</J is approximately constant then this series of approximations 

is self-consistent and the solution is reliable. Once P</J begins to deviate significantly 

from a constant value then the solution breaks down and we conclude that inflation 

has ended. 

We now proceed to solve (7.39) for constant Ho. To this end we expand cp(t) in 

Fourier modes as 

so that 

cp( t) = ~ ;+00 dke -ikt cpk 
V 27f -00 

The p-adic scalar equation of motion (7.39) then takes the simple form 

cp(t + a) = cp(t)P 

(7.41) 

(7.42) 

(7.43) 

(7.44) 

(7.45) 
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It is quite remarkable that this equation admits dynamical solutions. It is straight­

forward to check that (7.45) has the solution 

cp(t) = e-u(t) (7.46) 

where u(t) = eM and À = a-1lnp = 2m;/(3Ho), as before. One can easily check by 

acting on (7.46) with the full operator -0 = a; + 3Hoot that indeed the friction term 

dominates as long as u ~ 1. 

Performing a Taylor expansion of (7.46) about u = 0 gives 

1 2 cp rv 1 - u +"2u + ... 

which reproduces our solution in the small-u expansion in the limit that ms « H03 

(see equations 7.13 and 7.72). We also have 

e-D/m~cp = e-up rv 1 _ pu + ~p2U2 
2 

which again reproduces our previous results (which can be verified by inserting the 

solutions for Ih, f.t2, (Y and CP2 into equation 7.23). 

We now proceed to construct the energy density for cp( t) in this approximation. 

It is straightforward to show that 

We write Pc/> (7.32) as 

where 

exp (_UpT) 

exp ( _Upl-T) (7.47) 

(7.48) 

(7.49) 

(7.50) 

(7.51 ) 

(7.52) 

3We will see later that this is the same as taking the spectral index equal to unit y ns ---- 1. 
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Using the scalar field equation (7.3) and (7.46) the first two terms, (7.49) and (7.50), 

are trivial 
P -1 

T + 'Tl _ -up-u 
1 12 - --e 

p+1 
(7.53) 

Sinee this term is proportional to cp+1 we identify it with the potential energy of the 

p-adic scalar. 

The next simple st term to evaluate is T4 (7.52) which gives 

À
2

U
2 11 T4 = -2 2p1np dT exp [-u (pT + p1-T)] 

ms 0 

It is useful to change the variable of integration to w = UpT and cast this result in 

the form 

À
2 

2 jUP dw [ pu
2

] T4 = -2 (pu ) -exp -w --
2ms U w w 

(7.54) 

The dw integral can be performed exactly (though not in closed form) in terms of 

special functions. Sinee T4 is subdominant to a contribution coming from T3 we will 

not investigate the behaviour of (7.54) any further. 

We now study T3 (7.51). This can be written in the form 

T
3 

= - À2
2 

jUP dwwexp [-w _ pu
2

] 
2ms U w 

+ --2 1 + __ 0 dwexp -w - -À
2 

( 3E ) JUP 

[ pu
2

] 
2ms À U w 

(7.55) 

The dominant contribution to T3 is the one proportional to Ho sinee the evolution 

is friction-dominated. This term is also larger than T4 . The leading contribution to 

T3 + T4 is then 

jUP [ pu2] Ts + T4 '" U dwexp -w - --:; (7.56) 

where we have used the fact that 3HoÀ/ (2m;) '" 1 which follows from (7.27) when 

À 2 «3HoÀ. Sinee T3 and T4 contain time derivatives acting on cp it is natural to 

identify (7.56) with the kinetic energy of the p-adic scalar. 

Let us study the behaviour of the kinetic energy, equation (7.56), as a function 

of u. The integral in (7.56) can be performed in terms of the incomplete cylindrical 

functions of the Sonine-Schlaefii form [230J (see appendix E-2 for a review). 

J
UP 

[ pu
2
] U dwexp -w - --:; = 27rUp1/2 8_1 ( -u, -up; 2iup1/2) 
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We now study the behaviour of this integral in various limits. We assume that p » 1 

throughout sinee the previous method of expanding in u is valid in the case where 

p rv 1. At very early times, u < l/p, this integral goes to zero as 

l
UP 

[ pu
2
] U dwexp -w - -z;- rv up for u < l/p 

For intermediate times, 1/ p « u ~ 1/ pl/2, it is a good approximation to treat the 

upper and lower limits of integration as 0 and +00 respectively. In this approximation 

we can write the incomplete cylinder function in terms of a Hankel function of order 

1J = -1 (see appendix E-2 for details). The small argument asymptotics of H~l{ gives 

l
UP 

[ pu
2

] U dwexp -w - -z;- rv 1 + 2u2p ln(2upl/2) for l/p « u < 1/pl/2 

Finally we consider late times, u > 1/ pl/2. It is still reasonable to extend the integral 

as J:P dw rv Jooo dw and henee the integral can still be written in terms of H~l{. This 

time the large-argument asymptotics of the Hankel function are appropriate and one 

has l UP 
dw exp [-w - p:2] rv v' 7rupl/2e-2Upl/2 for u > 1/pl/2 

We have verified these asymptotic expressions numerically. 

We can now write the dominant contribution to Pep in the friction-dominated 

approximation, 

m
4 

p2 (p - 1 l up 
[ pu

2
] ) Pep = _8 -- __ e-UP- U + dwexp -w --

2g; p - 1 p + 1 U w 
(7.57) 

The first term, proportional to e-up , represents the potential energy and the second 

term represents the kinetic energy. Using our previous analysis of the kinetic energy 

the behaviour of Pep as a function of u (assuming p » 1) is clear. At early times 

u < l/p the potential energy dominates and we have (J,p rv m!/(2g;). At intermediate 

times 1/ p « u ~ 1/ pl/2 the potential energy goes to zero and the kinetic energy 

dominates and we have (J rv m;/(2g;). At late times u > 1/pl/2 and Pep damps to 

zero as e-2upl/2. We have verified this behaviour numerically. Figure 7.2 shows the 

behaviour of Pep as a function of t, verifying that Pep is approximately constant for 

u < p-l/2. The time evolution of both the potential energy and the kinetic energy 
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contributions ta Pc/> are shawn, demonstrating that the latter dominates in the interval 

p-l < U < p-l/2. In this figure we have taken p = 105 for illustrative purposes. 
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Figure 7.2: Plot of the energy density of the p-adic scalar as a function of t, for 

p = 105
. This figure shows that Pc/> is approximately constant for u < p-l/2. The 

individu al contributions from the potential and kinetic energy are also shown. 

We conclude that for u :5, 1/pl/2 the scalar field energy density Pcj; is approximately 

constant and inflation proceeds. At u = 1/pl/2 the energy density of the p-adic scalar 

begins to decrease quickly and the analysis of this subsection is no longer applicable. 

We conclude that inflation ends, roughly, when u = 1/pl/2. 

It is quite interesting that during the intermediate phase p-l < u < p-l/2 it is in 

fact the kinetic energy which is driving inflation, rather than the potential energy. 

This is quite different from what occurs in a local field theory. 

7.5 Fluctuations and Inflationary Predictions 

In this section we consider the spectrum of cosmological fluctuations produced dur­

ing p-adic inflation. The full cosmological perturbation theory for the p-adic string 

model (7.1), which should include met rie perturbations and also take into account 

the departure of the background expansion from pure de Sitter, is complicated and 

beyond the scope of the present chapter. We leave a detailed study of these matters 

to future investigation [235]. To simplify the analysis we will neglect scalar met rie 
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perturbations as weIl as deviations of the background metric from pure de Sitter space 

during horizon crossing. In standard cosmological perturbation theory these approx­

imations reproduce the more exact results to reasonable accuracy and we therefore 

assume that the situation is similar for the action (7.1). 

7.5.1 p-adic Tachyon Fluctuations 

We are approximating the background dynamics as de Sitter which amounts to work­

ing in the limit u ---+ 0 so that 

H 2 _ m; p -1 
o - 6M'j; g~(p + 1) 

<jlo - 1 

We exp and the p-adic tachyon field in perturbation theory as 

<jl(t, fi) <jl(O)(t) + 6<jl(t, fi) 

1 + 6<jl( t, fi) 

The perturbed Klein-Gordon equation (7.3) takes the form 

(7.58) 

(7.59) 

(7.60) 

(Inhomogeneous solutions in p-adic string theory have also been considered in [2J.) 

One can construct solutions by taking 6<jl to be an eigenfunction of the D operator. 

If we choose 6<jl to satisfy 

-D6<jl = +B 6<jl (7.61 ) 

then this is also a solution to (7.60) if 

(7.62) 

where in the second equality we have used (7.2). 

The solutions of (7.61) are well known. However, III or der to make contact 

with the usual treatment of cosmological perturbations we need to define a field 

in terms of which the action appears canonical. This presents a serious difficulty be­

cause, in general, there is no local field redefinition which will bring the kinetic term 
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cjJ (1 - e-D/m~) cjJ into the canonical form cjJDcjJ. (One might imagine simply truncat­

ing the expansion in powers of D as we have described in section 7.3, however, the 

higher order terms are not negligible in general.) Fortunately, for fields which are 

on-shell (that is, when (7.61) is solved) the field obeys 

(1 - e-D/m~) 8cjJ (1 - eB/m~) 8cjJ 

( 1 - eB/m~) _1_ ( - B)8cjJ 
(-B) 

_ (1 - eB/m~) _1_ D8cjJ 
(-B) 

P - 1 D8cjJ 
2m2 

s 

Thus, for on-shell fields the kinetic term in the Lagragian can be written as 

.con-shell = 
m; 1 A.( D/m2)A. --<p 1 - e- P <p + ... 
g~ 2 
m;p-11 
----cjJDcjJ + ... 
g2 2m2 2 

p s 

1 
-'PD'P + ... 
2 

In (7.63) we have defined the "canonical" field 

'P - AcjJ 

where 

A= msp 
- J2gs 

(7.63) 

(7.64) 

(7.65) 

The field 'P has a canonical kinetic term in the action, at least while (7.61) is satisfied. 

Notice that 'P is distinct from the field X (see (7.5)) which we introduced in section 7.3. 

The field X corresponds to the canonical field which one would naively define when 

neglecting terms 0(D 2
) and higher in the action (as is typical in studies of tachyonic 

inflation) while 'P is the appropriate definition of the canonically normalized field 

when taking into account the infinite series of higher derivative corrections. 

Now, let us return to the task of solving (7.61), bearing in mind that 8'P = A8cjJ 

is the appropriate canonically normalized field. We write the quantum mechanical 



7.5 Fluctuations and Infiationary Predictions 224 

solution in term of annihilation/creation operators as 

and the mode functions CPk(t) are given by 

(7.66) 

where the order of the Hankel functions is 

(7.67) 

and of course a = eHot . In the second equality in (7.67) we have used (7.62) and (7.2). 

In writing (7.66) we have used the usuai Bunch-Davies vacuum normalization so that 

on small scaIes, k » aHo, one has 

which reproduces the standard Minkowski space fluctuations. This is the usuai pro­

cedure in cosmoIogicai perturbation theory. However, we note that the quantization 

of the theory (7.1) is not transparent and it might turn out that the usuai prescrip­

tion is incorrect in the present context. We defer this and other subtleties to future 

investigation.4 On large scales, k « aHo, the solutions (7.66) behave as 

which gives a large-scale power spectrum for the fluctuations 

with spectral index 

ns -1 = 3 - 2v 

40ur prescription for choosing the vacuum has the property that in the local limit p --7 1 the 

cosmological fluctuations are identical to the well-known solutions in local field theory. 
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From (7.67) it is clear that to get an almost scale-invariant spectrum we require 

ms « Ho. In this limit we have 

(7.68) 

which gives a red tilt to the spectrum, in agreement with the lat est WMAP data 

[16]. For ns rv 0.95 one has ms rv 0.2Ho. Comparing (7.66) to the corresponding 

solution in a local field theory we see that the p-adic tachyon field fluctuations evolve 

as though the mass-squared of the field was -2m; which may be quite different from 

the mass scale which one would infer by truncating the infinite series of derivatives: 

82V/8X2 (X = Xo) (see eq. (7.10)). The fact that Ho > ms is an unusual feature; we 

will comment on it below. 

It is worth pointing out that we have constructed solutions of a partial differen­

tial equation with infinitely many derivatives, for which we are free to specify two 

initial data; to obtain eq. 7.66 we fixed these using the Bunch-Davies prescription. 

Precisely the same result was obtained when inhomogeneous solutions were studied 

in [2]. Partial differential equations with infinitely many derivatives constitute a new 

class of equations in mathematical physics about which little is presently known. In 

particular, it is not clear how to pose the intial value problem for such equations. We 

conjecture that the most general solutions of (7.3) are specified by two initial data 

(for ex ample 4>(0, x) and ~(O, x)), just like equations containing only one power of D. 

See [229] for mathematical work on constructing solutions of equations with infinitely 

many derivatives. 

7.5.2 Determining Parameters 

We now want to fix the parameters of the model by comparing to the observed fea­

tures of the CMB perturbation spectrum. There are three dimensionless parameters, 

98' p and the ratio ms/ Mp. The important question is whether there is a sensible 

parameter range which can account for CMB observations, i. e. ,the spectral tilt and 

the amplitude of fluctuations. Using (7.34) in (7.68), we can relate the tilt to the 
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model parameters via 

1 _ 11 = 8(p + 1) (Mp ) 2 2 ns 2 gs 
p ms 

8(p+1) g; 

p2 Ins - 11 (7.69) 

Thus one can have a small tilt while ensuring that the string sc ale is sm aller than 

the Planck scale, provided that g;/p « 1. Henceforth we will use (7.69) to determine 

ms/Mp in terms of p, gs, and Ins - 11 rv 0.05. AIl the dimensionless parameters in 

our solution, ms/Ho, À/ms, q;2 and H2/ms, are likewise functions of ns - 1,p and gs. 

From (7.34) and (7.69) we see that for p » 1, 

ms rv J6gp Mp rv gs ~ Mp rv ~J3lns - 11 
Ho ms V p ms 2 

(7.70) 

It may seem strange to have H exceeding ms since that means the energy density 

exceeds the fundamental scale, but this is an inevitable property of the p-adic tachyon 

at its maximum, as shown in eq. (7.33). This is similar to other attempts to get tachy­

onic or brane-antibrane inflation from string theory, since the false vacuum energy is 

just the brane tension which goes like m;/ gs. 

Next we determine À/ms, where À is the mass scale appearing in the power series 

in eÀt which provides the ansatz for the background solutions. Consider eq. (7.26) for 

À in the Ho » ms limit. The positive root for À gives 

(7.71) 

From (7.70) and (7.71) we find that 3HoÀ » À2 which means that the evolution is 

friction-dominated in the usual sense. As for q;2, from eq. (7.29) it follows that 

(7.72) 

with 

so that f3 « 1. Notice that for p » 1, we have q;2 c:o:! -0.5p-!3. Finally we have H2 
which from eq. (7.36) is given by 

H2 P P - 1 lnp 

ms J3p + lins - 11 1
/

2 
(7.73) 
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To go further, we must impose the COBE normalization on the amplitude of the 

density perturbations, to show that it is possible to satisfy all the experimental con­

straints while keeping ms/ Mp < 1. The latter requirement is usually needed for the 

validity of any 4D effective description of string theory. In a compactification of the 

d extra dimensions whose volume is of order Vd r-v m;d, we would have Mp r-v ms 

whereas more generally Mi; = m;+dVd. The 4D effective theory would normally need 

to be supplemented by higher dimension operators if Vd was small compared to m;d. 

7.5.3 Curvature Perturbation and COBE normalization 

In order to fix the amplitude of the density perturbations we consider the curvature 

perturbation (. We assume that 

H 
( r-v --;-6cp 

cp 

as in conventional inflation models. To evaluate the prefactor H / cp we must work 

beyond zeroth order in the small u expansion. We take 1; = 1 - u to evaluate the 

prefactor, even though the perturbation 6X is computed in the limit that 1; = 1. This 

should reproduce the full answer up to O(u) corrections. The prefactor is 

H Ho c:::< --
cp AÀu 

c:::< 
23/2 gs 1 1 -1 -m 

p Ins-llu s 

We should evaluate u at the time of horizon crossing, t*, defined to be approximately 

60 e-foldings before the end of inflation tend, assuming that the energy scale of inflation 

is high (near the GUT scale). We must therefore estimate tend. We have shown in 

the last subsection that inflation ends when u r-v 1/ p1/2. From eqs. (7.70-7.71) we see 

that Hal À = 2/1ns -11; therefore we can write the scale factor a(t) ~ eHot in the form 

a(t) r-v u(t)2/lns-11 

so that a* = e-60aend corresponds to 

1 u - e-30Ins-1Iu = e-30Ins-11_ 
* - end - p1/2 

(7.74) 

(7.75) 
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The power spectrum of the curvature perturbation is given by 

where the amplitude of fluctuations A( can now be read off as 

8 g2 éOlns-11 A2 __ ~ __ _ 
( - 37r2 pins - 11 3 

228 

(7.76) 

(7.77) 

As an example, taking ns rv 0.95 one can fix the amplitude of the density perturba­

tions A~ rv 10-10 by choosing 

gs rv 0.48 X 10-7 

vP 
(7.78) 

To get a more general ide a of how the inflationary observables constrain the pa­

rameters of the model, we will allow ns to vary away from the value 0.95, which is 

a fit to the WMAP data under the assumption that the tensor contribution to the 

spectrum is negligible. Setting A~ = 10-10 and using (7.77) gives and expression for 

gs in terms of p and Ins - 11 

(7.79) 

Combining (7.79) with (7.69), we also obtain 

ms = v'37r2 vP + 1 e-30Ins-11Ins - 11 x 10-5 

Mp p 
(7.80) 

We graph the dependence of gs and ms/ Mp on p for sever al values of the spectral 

index in figures 7.3 and 7.4. We see that the string scale is bounded from above 

as ms/ Mp ~ 0.94 X 10-6 and that for typical values of p, ns it is close to ms/ Mp rv 

0.61 X 10-6
. We also see from (7.79) that gs is unconstrained and that gs, pare not 

independent parameters. If we wish to take 9s rv 0(1) then we must choose extremely 

large values p rv 1014 . If we restrict ourselves to the perturbative regime gs < 1 then 

this places an upper bound on p: 

p < 4.3 X 1014 



7.5 Fluctuations and Inflationary Predictions 

_ 0,-1=-0.1 

-15 

n,1 =-0.01 
0,1 = -0.001 
0,1 = -0.0001 
0,1 = -0.00001 

-200';--~-----75 -~-~10;;--~--'1!-;5 -~----;<20 

]oglO P 

229 
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7.5.4 Comments on Slow Roll and the Relation to Local Field 

Theory 

It is quite remarkable that our predictions for inflationary observables and also the 

solutions for X, H are essentially identical to the results from local field theory with 

potential V(?,b) = 9s(?,b2 - v2)2j4 where 9sv2 _ 2m; (see appendix E-3 for a detailed 

comparison). Indeed, the dynamics of the p-adic tachyon are fixed by the mass scale 

in the kinetic term, ms, rather than by the naive mass sc ale J-82Vj8X2 (see section 

7.3), which may be much larger than ms. 

It is an interesting feature of this theory that the canonical p-adic tachyon, cP, can 

roll slowly despite the fact that, working in a derivative truncatation (as in section 

7.3), one would conclu de that the tachyon has an extremely steep potential. To see 

this we first define the Hubble slow roll parameters EH, TJH by 

1 ep2 
----
2M2H2 

P 

rp 
Hep 

(7.81 ) 

(7.82) 

These are the appropriate parameters to describe the rate of time variation of the 

inflaton as compared to the Hubble scale. Using the solution cP '" 1 - u (recall that 

t.p = AcP, A = mspj(V29s)) we find that 

EH ~ ~p; 1 e-6oln-Illns - 11 (7.83) 

Ins -11 
2 

(7.84) 

We see that the Hubble slow-roll parameters, as defined above, are small. This means 

that the p-adic tachyon field rolls slowly in the conventional sense. One reaches the 

same conclusion if one defines the potential slow roll parameters using the cO'r'rect 

canonical field, which is t.p (7.64): 

o (7.85) 

(7.86) 
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On the other hand, consider the potential slow roll parameter which one would 

naively define using the the derivative truncated action (7.4): 

M; (~ÔV)2 
2 V ÔX 

1 Ô
2VI 

M; V ÔX2 

X=Xo 

X=Xo 

o (7.87) 

_ 
( PIn-pl) 1 21 n 8 - 11 (7.88) 

where in (7.88) we have used equations (7.9) and (7.69). We see that (7.88) can be 

enormous, though the tachyon field ralls slowly. Taking the largest allowed value of 

p, p rv 1014 , and n 8 rv 0.95 we have M;V-1Iô2V/ÔX21 t'V 101l! 

Since large values of pare required if one wants to obtain 98 rv 1, it follows 

that it is somewhat natural for p-adic inflation to operate in the regime where the 

higher derivative corrections play an important role in the dyanimcs. However, in 

the regime where p t'V 1 (corresponding to very small coupling 98) this novel fea­

tures is not present. For example, with p = 3, n 8 = 0.95 one has 98 rv 10-7 and 

M;V-1lô2V/8X2
1 rv 0.05 and so the slow-roll dynamics are not surprising. 

7.5.5 Tensor Modes 

Since the p-adic stress tensor (7.32) does not contribute any anisotropie stresses up to 

first order in perturbation theory it follows that the first order tensor perturbations 

of the metric do not couple to the first order tachyon perturbation. In fact, the action 

for the tensor perturbations is given by 

M; J 3 3 1 i' Sgrav = 2 dt d x a(t) 2Ôj..thij ôj..th J 

The standard procedure gives a power spectrum for the gravit y waves 

with amplitude 

(7.89) 
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We would like to compare this to the power in scalar modes (7.77). Defining the 

tensor-to-scalar ratio in the usual way 

we find that 
1 02 

r = 2M2 H2 = EH 
p 0 

(7.90) 

which reproduces the usual result from local field theory. Using (7.83), we can evaluate 

r as a function of p and ns - 1 

1p+ 1 1 1 r = ___ e-60ns-1 Ins - 11 
2 p 

(7.91) 

It is easy to see that r is maximal when p = 2, ns = 1 - 1/60 and hence it follows 

that the scalar-tensor ratio is bounded from above as r < 0.006, which is very small. 

7.5.6 Comments on Initial Conditions 

As we have previously noted, our c1assical solution 1;(t) sits at the unstable maximum 

of the potential for an infinite amount of time, thus this model would seem to admit 

infinitely many e-foldings of inflation. Of course, this cannot be the case quantum 

mechanically and one expects quantum fluctuations to displace 1; from the false vac­

uum and cause it to roll down the potential (we have assumed that this rolling takes 

place towards 1; = 0, rather than down the unbounded si de of the potential). As a 

consistency check we note that 

(7.92) 

We should compare this to u* (see equation 7.75), the distance the field has rolled 

classically at horizon crossing. It is straightforward to show that 

where we have used (7.78). Since ((61;)2)1/2 « u* for all parameter values it follows 

that the de Sitter space fluctuations (which are present as u ---+ 0) will not displace the 



7.5 Fluctuations and Inflationary Predictions 233 

field far enough from the maximum of the potential to have any significant effect on 

the number of observable e-foldings of inflation, although they prevent inflation from 

being past-eternal. We note, however, that if one incorporates thermal fluctuations 

(and initial momentum) then this model may suffer from problems related to fine 

tuning the intial conditions as in small field inflationary models [231]. However, it is 

not clear if these objections apply to our model for several reasons. The first reason 

is that the dynamics of this theory is peculiar and it is not clear how (or if) the phase 

space arguments of [231] apply. The second reason is that it is not clear what initial 

conditions for the field r/J are most natural from a string theory perspective. Finally 

we note that since the field cp rolls a distance A > Mp in field space, our model is not 

a "small field" model in the conventional sense.5 

If p-adic superstrings exist, it might also be possible to justify the initial conditions 

for inflation by having topological inflation [232], if the tachyon potential is symmetric 

about the unstable maximum. This distinction exists between the tachyon of the 

open bosonic string [215] (describing the instability of D25 branes), and the tachyon 

of unstable branes in superstring theory [233]. Any realistic extension of the model 

should have a potential which is bounded from below, and if it is supersymmetric, 

the minima should be at zero, hence the additional minima will be degenerate with 

the one at r/J = O. The existence of domains of the universe in the different minima 

ensures that there will be regions in between where inflation from the maximum of 

the potential is taking place, so long as the minima are discrete and not connected 

to each other by a continuous symmetry. 

As we have noted previously the fact that the potential V ( r/J) is unbounded from 

below is thought to be a reflection of the closed string tachyonic instability of bosonic 

string theory. If this conjecture is correct then the addition of supersymmetry should 

indeed lead to a symmetric potential for the p-adic tachyon which is bounded from 

below, as we have suggested above. 

5The skeptical reader might have reservations about the validity of our analysis sinee A > Mp. 

We note that the action (7.1) is not a low energy effective field theory and henee we believe that we 

are justified in using this action even for super-Planckian symmetry breaking scale. 
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7.6 Conclusions 

In this chapter we have constructed for the first time approximate solutions of the 

fully nonlocal p-adic string theory coupled to gravit y, in which the p-adic tachyon 

drives a sufficiently long period of inflation while rolling away from the maximum of 

its potential. In our solution, the nonlocal nature of the theory played an essential 

role in obtaining slow-roll, since with a conventional kinetic term the potential would 

have been too steep to give inflation. One of the novel features of this construction is 

that the Hubble parameter is larger than the string scale during inflation, a condition 

which would usually invalidate an effective field theory description, but which is 

consistent in the present context because of the ultraviolet-complete nature of the 

theory. 

We found that the experimental constraints on the amplitude of the spectrum of 

scalar perturbations produeed by inflation require a small value of the string coupling 

gs, and can be consistent with a large range of values of the parameter p, 1 ~ p ~ 1014. 

The regime p » 1 is interesting because it exhibits qualitatively different behavior 

relative to conventional inflationary models: slow roll despite the potential being 

steep, and inflation being driven by the kinetic as weIl as potential energy of the 

field. This regime is also interesting because it corresponds to gs = 0(1) and henee 

appears more natural from a string theory perspective. Sinee the p-adic string is 

not construed to be a realistic model by itself, it may not be very meaningful to 

question how natural such values might be. However, it may not be unreasonable 

to think of real strings as being composed of constituent p-adic strings because the 

Veneziano amplitude of the p-adic the ory is related to that of the full bosonic string 

by A-1 = np Ap where the product is over aIl prime numbers p. Thus it may not be 

unreasonable to expeet similar behavior to the large-p results from a more realistie 

model. 

The model predicts a red spectrum, in agreement with the latest WMAP data, 

who se tilt is related to the ratio of the string seale to the Hubble rate during inflation 

via H/ms = 2/J31ns - 11- For ns = 0.95 this gives H/ms rv 5. This is in contrast to 
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most stringy models of inflation which require H < ms in order for the effective field 

theory to be valid. We find the bound r < 0.006 on the tensor modes. It has been 

estimated that future experiments could eventually have a sensitivity of r rv 6 X 10-5 

[234] and hence the tensor components may in fact be observable. 

We noted that the p-adic model succeeds with inflation where the real string theory 

tachyon fails. But our analysis makes it clear that this could be due to the failure to 

keep terms with arbitrary numbers of derivatives in the action. The effective tachyon 

action of Sen [43] is a truncation which keeps arbitrary powers of first derivatives 

but ignores higher order derivatives, which were essential for obtaining our solution. 

Thus the new features for inflation which we find in p-adic string theory could also 

be present in realistic string theories, if we knew how to include the whole tower of 

higher dimension al kinetic terms. 
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Note Added 

Upon completing this analysis a related work appeared [236] in which an alternative 

normalization for the fluctuations of the p-adic scalar was proposed. Motivated by this 

work, we reconsidered our choice of normalization and concluded that (7.64,7.65) is 

the most appropriate definition of a "canonical" field. Notice, however, that our field 

cp differs from the definition of a canonical field which was proposed in [236]. In [236] 

a field redefinition is advocated which puts the stress tensor TJ1-v into canonical form, 

though this definition does nat have cananical kinetic term in the action. Though 

we believe that our definition is more natural, we stress that in the case of current 

interest, p-adic inflation, the distinction does not generate any significant quantitative 
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difference because our definition differs from that of [236] by a factor proportional 

to y'lnp (which is less than an order of magnitude for the values of p which we 

consider). We are grateful to J. Lidsey for sending us a draft of his manuscript prior 

to publication and also for interesting and enlightening discussions. 



Chapter 8 

Conclusions and Discussion 

All l know is what the words know, and dead things, and that makes a handsome little 

sum, with a beginning and a middle and an end, as in the well-built phrase and the 

long sonata of the dead. -Samuel Beckett 

Inflation offers an elegant resolution to the coneeptual problems associated with 

the simple big bang model, however, this resolution brings with it a new list of 

coneeptual problems to be addressed. Lest the reader fear that we have simply traded 

one set of coneeptual problems for another (neither representing an actual conflict 

with observation) we remind the reader that inflation is a predictive framework and 

that, to date, these predictions have recieved spectacular confirmation by observation. 

(Indeed, the predictions of inflation are so weIl confirmed by observation that it is 

difficult, at this point, to imagine any measurement which could falsify inflation.) 

We have argued that a proper resolution to the outstanding coneeptual problems of 

inflation will require embedding into (or at least input from) a complete theory of 

particle physics which incorporates quantum gravity. Sinee the only viable candidate 

is string theory, we have argued that the construction of string theoretic inflationary 

models is weIl motivated and provides a rare (perhaps the only) potential window into 

stringy physics. It is quite a remarkable feature of the interaction between cosmology 

and particle physics that it may be possible to glean information about extremely 

high energy physics (as high as 1016 Ge V) through observations which will be made 
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within our lifetimes. 

In this thesis we have explored the cosmological consequences of tachyonic in­

stabilities, both within the context of string theory and also in more conventional 

field theory models. Motivated by the KKLMMT model of brane inflation, we have 

considered the cosmological consequences of D-brane decay in chapt ers 2, 3, 4 and 5. 

We have studied in detail post-inflationary dynamics like reheating and cosmic string 

production in such models. We have shown that the dynamics of these pro cesses may 

be quite different from the dynamics of analogous field theory models. We have also 

examined the cosmological consequences of these peculiar dynamics. 

In chapter 6 we have studied tachyonic preheating at the end of hybrid inflation, 

showing that this phase of violent, nonperturbative particle production can have 

highly nontrivial implications for the observed spectrum of cosmological perturba­

tions. We have shown that, depending on the values of certain model parameters, 

preheating may leave its imprint on the CMB either through n = 4 distortions of 

the spectrum or else through large nongaussian signatures. If large nongaussianity is 

observed in future missions it will certainly demonstrate the existence of sorne novel 

dynamics during (or shortly after) the inflationary epoch. There are very few infla­

tionary models which can give rise to observably large nongaussianity and many of 

the models which do are somewhat contrived or are difficult to motivate from a par­

ticle physics perspective. Thus it is quite significant that large nongaussianity can be 

obtained in hybrid inflation, a simple and well-motivated model of inflation which ap­

pears to arise naturally in string theory and supergravity. We have used our analysis 

of nongaussianity from tachyonic preheating to show that current CMB observations 

constrain several popular string theory and supergravity models of inflation. 

Finally, in chapter 7 we have explored a novel string theory model of inflation 

based on the tachyonic mode of the fully nonlocal p-adic string theory. The nonlocal 

structure of this theory leads to extremely peculiar dynamics, including the possibility 

of slow roll with a steep inflaton potential. This result opens up the possibility of 

addressing the issue of fine tuning of the inflaton potential in a new and novel way. 

We feel that the work presented in this thesis represents sorne small progress in the 
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direction of producing a realistic and natural string theory model of inflation. Though 

we (as a eommunity) are still far from this goal, it is encouraging that signifieant 

progress has been made in recent years. Furthermore, the interface between string 

theory and eosmology is one whieh has been mutually beneficial. lndeed, even if 

string theory turns out not to be the theory of quantum gravit y which nature has 

chosen, we feel that the exercise has still been a fruit fuI one since it has revealed 

a wealth of previously unexpected possibilities for inflationary model building. We 

look forward to future surprises (from both theory and observation) and the exeiting 

possibility that future cosmological measurements may provide a window into new 

physics at extraordinarily high energy seales. 
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A-l The Legendre Transformation 

In 1 + 1 dimensions equation (3.25) takes the form 

(A-1) 

To construct general solutions of (A-1) we preform the Legendre transformation (see 

[101] for example) defined by the relations 

é, = T', rJ = T, T(t, x) + w(rJ, é,) = xé, + trJ (A-2) 

where w(rJ, é,) is a new dependent variable and {rJ, Ç} are the new independent vari­

ables. It follows from (A-2) that 

8w 
x= 8é,' 

It is straightforward to verify the relations 

where the Jacobian of the transformation is 

8w 
t = 8rJ' (A-3) 

(A-4) 

(A-5) 

which we assume is nonzero. Note that this analysis excludes any solutions where 

J = O. The nonlinear partial differential equation (A-1) is transformed to a linear 

partial differential equation in terms of the new variables 

82w 82w 82w e 8rJ2 + rJ2 8e + 2rJé, 8çorJ = O. (A-6) 

Given a solution w(rJ, é,) of (A-6) the relations (A-3) along with 

8w 8w 
T = é, 8é, + rJ 8rJ - w(rJ,é,) (A-7) 

define the solution of (A-1) parametrically. 
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We consider now solutions of the linear partial differential equation (A-6). To 

simplify the ensuing analysis we will restrict ourselves to solutions where [)f1,T[)f1,T 

do es not change sign. This is expected to be a reasonable restriction for the vacuum 

structure of the theory (3.24) sin ce previous analysis of the actions (3.1,3.8,3.15) 

suggests that [)f1,T[)f1,T is either increasing or decreasing as T ---+ ±oo. We only consider 

the case [)f1,T[)f1,T :::; 0, which we expect to most closely resemble the vacuum structure 

of the actions (3.1,3.8,3.15). In this regime we can define new coordinates {p, O'} by 

'Tl = p cosh 0', ç = p sinh 0' (A-8) 

such that 

In terms of these new variables (A-6) takes the remarkably simple form 

[)w [)2w 
-p [)p + [)0'2 = o. (A-9) 

with particular solution 

for arbitrary m, am, !3m. The most convenient way to fix the Cauchy data is to specify 

w and [)w / [)p at 0' = O. In this case we write the general solution of (A-9) as 

00 

w(p, 0') = L pn (an cosh ( Vn 0') + bn sinh ( Vn 0')) (A-lO) 
n=O 

where {an} determine the coefficients in the taylor expansion of w at 0' = 0 and {bn} 

determine the coefficients in the taylor expansion of [)w / [)p at 0' = O. 

It is straightforward to compute x('Tl, ç), t('Tl, ç) from (A-3) and 

00 

T(p,O') = Lpn(n -1) (ancosh (VnO') + bnsinh (VnO')) 
n=O 

from (A-7). Because this solution is not in closed form and defined parametrically, 

it is difficult to get an intuitive feeling for the behaviour of T as a function of t and 

x. However, we believe that these general solutions do admit derivative singularities 
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and have, for several choices of {an, bn}, found points (Pc,o"c) corresponding to finite 

x and t > 0 at which T f1 is singular though T, Tf and tare regular. In this case 

the second derivative blows up because the Jacobian of the Legendre transformation 

(A-5) is singular. 
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B-I The 4D View 

In this appendix we compute the low-energy couplings amongst the bulk zero modes 

and brane modes in the effective 4D supergravity obtained after modulus stabiliza­

tion à la KKLT [21]. Besides checking the scaling of the kinetic terms obtained by 

dimensionally reducing the Einstein-Hilbert action, this also allows the study of the 

couplings in the scalar potential which arise from modulus stabilization and so are 

more difficult to analyze from a semiclassical, higher-dimensional point of view. 

To this end imagine integrating out all of the extra-dimensional physics to obtain 

the low-energy effective 4D supergravity for a Type lIB GKP vacuum having only the 

mandatory volume modulus (and its supersymmetric friends) plus various low-energy 

brane modes (such as those describing the motion of various D3 branes). The terms 

in this supergravity involving up to two derivatives are completely described once the 

Kahler function, K, superpotential, W, and gauge kinetic function, fab, are specified. 

Denoting the bulk-modulus supermultiplet by T and the brane multiplets by <pl, 

we use the Kahler potential [126, 21, 24, 127] 

K = -3 log [r] , (B-1) 

where r = T + T* + k(<p, <P*). For instance, if <pl denotes the position of single brane, 

then k is the Kahler potential for the underlying 6D manifold. This implies the scalar 

kinetic terms are governed by the following Kahler metric in field space 

3 
KTT* = 2' r 

with inverse 

K
T*T __ _ r [ L*N ] r - k kL*kN , 

3 

and (B-2) 

J*I 
and KJ*I --~ - 3· (B-3) 

In the absence of modulus stabilization the superpotential of the effective theory 

is a constant [128], W = Wo, and the supergravity takes the usual no-scale form [129], 

with vanishing scalar potential. If, however, there are low-energy gauge multiplets 

associated with any of the D7 branes of the model then their gauge kinetic function 
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is fab = T Oab. For nonabelian multiplets of this type gaugino condensation [130, 131] 

can generate a nontrivial superpotential, of the form 

W = Wo + A exp [-a T] , 

where A and a are calculable constants. 

With these choiees the Kahler derivatives of the superpotential become 

3W 
DTW=WT --, 

r 
and 

and so the supersymmetric scalar potential [132] becomes 

(B-4) 

(B-5) 

(B-6) 

Notice that use ofthese expression implicitly requires that we work in the 4D Einstein 

frame, and so are using 4D Planck units for which Mp = 0(1). 

If we specialize to the case of several branes, for which {4/} = {4>~}, with i 

labelling the fields on a given brane and n = 1, ... ,N labelling which brane is involved, 

then we typically have 

(B-7) 
n 

In this case the Kahler metric built from k is block diagonal, with k injm = k~) Omn, 

d k I*Jk k '" ki*jk(n)k(n) d an so 1* J = ~n (n) i* j an so on. 

We may now see how strongly the bulk KK zero modes, glu/ and T, couple to one 

another and to the brane modes. Setting k = 0 in the above shows that the couplings 

of T and glJ,V to one another are order unit y, and sinee our use of the standard 4D 

supergravity formalism requires us to be in the Einstein frame, this implies these are 

aIl of 4D Planck strength (in agreement with our higher-dimensional estimates). 

Couplings to the branes are obtained by keeping k nonzero, and in the event 

that the branes are located in highly warped regions, we must take k(n) = O( a~) 

with an « 1 denoting the warp factor at the position of brane n. 1 In this case the 

b · t' ki*jk(n)k(n). l ir'l( 2) corn ma Ion (n) i* j IS a so v an . 

1 For instance, this power of an reproduces the an-dependence of the factor y7jg i-'V obtained by 

dimensionally reducing the higher-dimensional kinetic terms. 
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Suppose we now exp and the functions k(n) in powers of 1> and keep only the leading 

powers: 

(B-8) 

Then, since the 1>n kinetic terms are O(a~), we see that the canonically-normalized 

fields are x~ = an1>~. Once this is done the leading couplings to T and gf1V are those 

which involve those parts of k(n) that are quadratic in x~, and since these are also 

order unit y, these couplings are also of Planck strength (again in agreement with our 

ear lier estimates). 

Alternatively, consider now those couplings which only involve the brane modes. 

Working to leading order in a~, we see that a term in k(n) of the form (X~)k has 

a strength which is of order a~-k. For instance the case k = 3 generates cubic 

couplings from the kinetic lagrangian of order a;;Ixoxox, whose coefficient is of order 

(anMp)-l = Ms--;;". These are larger than Planck suppressed ones, as expected. 
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C-I Initial Conditions for Defect Formation 

Here we briefly discuss the initial conditions for defect formation at the end of brane 

inflation. During the slow roll inflationary phase the tachyon behaves as an ordinary 

massive Klein-Gordon scalar field (provided T « l-;l). We consider here for simplicity 

a standard field theory of a scalar X in 3+1-dimensions whose mass squared parameter 

abruptly becomes negative. This type of theory has been considered in detail in 

[32, 33, 34]. 

During the de Sitter phase (before the mass parameter becomes tachyonic) vacuum 

fluctuations yield a blackbody spectrum ofproduced particles (OINkIO) = (eWk /
T _1)-1 

with temperature T = H/(27r) (see, for example, [154] for a review). However, in any 

region of de Sitter space which is small compared to the Hubble scale, the space 

is locally Minkowski, and even in the vacuum state there are quantum fluctuations 

quantified by the two point functions of the fields 

(X*(k)X(k') 

(11*(k)11(k') = 

~(27r)383(k - k') 
21kl 

Ikl (27r)383(k - kt) 
2 

where 11 = X. 1 The initial stages of the string tachyon condensation are identical 

to the tachyonic preheating scenario described in [32, 33]. The tachyonic instability 

amplifies exponentially those modes with Ikl < m where the X field has mass squared 

parameter -m2 and the variance of the fluctuations grows as [34] 

11m2 2 
(X2(t) = (X2(O) + - dk2 

2
m 

k2 sinh2 (tvm2 - p) 
87r 0 m -

where (X2(O) is a divergent vacuum contribution. The above result was derived in 

(3+1) dimensions, but the generalization to higher dimensions must have the form 

(X2(t) = (X2(O) + cL 1m2 
dk2 

m2 _~: _ m; sinh
2 (tJm2 - k2 - m;) 

~ 

where mi are the masses of the Kaluza-Klein excitations. These fluctuations grow to 

be of arder the classical VEV, (X2 (t) - (X2 (0) rv m 2 /).. before the linear treatment 

lSimilar initial conditions are taken for defect formation at the end of inflation in [155]. 
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breaks down. Notice that this growth occurs on a microscopie time scale. Since in the 

case of the string theory tachyon the potential has no minimum, we can conservatively 

take the initial exponential growth to be over a shorter time scale, (X2 ) rv m2 
rv M;. 

These fluctuations are much larger than the de Sitter fluctuations (X2) rv H2 and are 

thus the dominant seeds for defect formation. Furthermore, these fluctuations have a 

minimum wavelength comparable to the string sc ale which is sufficient to initiate the 

formation of defects localized in the compact dimensions. This justifies our choice 

of random initial conditions for the tachyon field in the numerical studies of defect 

formation. 
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D-I The Matching Time Nk 

The mat ching time Nk which determines the boundary between large- and small-scale 

behaviour of the mode functions (6.28) is determined by the transcendent al equation 

INk le2Nk = k
2 

c 
(D-1) 

The solutions may be written exactly in terms of the branches of the Lambert-W 

functions. In the region k < J cj (2e) the solution is triple-valued and may be written 

as 
~W-l (_2~2) for the branch with N k < -1; 

N k = ~Wo (_2~2) for the branch with -1 < N k < 0; (D-2) 

~ Wo ( + 2~2 ) for the branch with Nk > O. 

In the region k > J cj (2e) the solution is single valued and can be written as 

(D-3) 

One may derive sorne asymptotic expressions for N k in various regions of interest. 

When INkl » 1 we have 

(D-4) 

which describes Nk at k » Jcj(2e) and also the lower branch of Nk at k« Jcj(2e). 

For k :s Jcj(2e) there are two more branches of the solution with approximate be­

haviour 

(D-5) 

In our analysis we have used the approximation that N k is a single-valued function, 

described by 

/Vk. - ~e (';c/(2e) - k) W-1 (_ 2!') 
+ ~e(k_';C/(2e))Wo(+2!2) 

where 8(x) is the Heaviside step function. We have verified both numerically and 

analytically that this approximation does not alter our result 
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D-2 Perturbed Einstein Equations and the Master 

Equation 

Using Maple we have carefully verified the results of [183] for the perturbed Einstein 

equations and the master equation. Here we briefly review those results relevent 

for the computation of ((2). We present only the <5(2)Gg = K,2<5(2)Tg, 8i <5(2)Gb = 

K,28i <5(2)T,oi and <5i.<5(2)Gj = K,2<5i <5(2)Tj equations since the second order vector and 
J ~ J ~ 

tensor fluctuations decouple from this system. In the case that ao = 0 the second order 

tachyon fluctation <5(2) a decouples from the inflaton and gravitational fluctuations. 

Analogously to the first order fluctuations, the Klein-Gordon equation for the inflaton 

fluctation at second order <5(2) rp is not necessary to close the system of equations. In 

the subsequent text we sometimes insert the slow roll parameters E and 'fJ explicitly 

though we make no assumption that they are small. We also introduce the shorthand 

notation m~ = 82Vj8rp2 and m; = 82Vj8a2 and assume that 82Vj8a8rp = O. 

The second order (0,0) equation is 

31hj/(2) + (3 - E)1{2cjJ(2) - 8k 8k 1jJ(2) 

_ K,2 [rp' <5(2) rp' + a2 8V <5(2) rp] + YI 
2 0 8rp 

(D-6) 

where YI is constructed entirely from first order quantities. Dividing YI into inflaton 

and tachyon contributions we have 

where 

Yi 4(3 - E)1{2 (cjJ(l)) 
2 + 2K,2rp~cjJ(1)<5(1)rp' 

2 2 2 2 
~ (<5(1) rp') 2 _ ~ a2m~ (<5(1) rp) 2 _ ~ (V <5(1) rp ) 

+ 8cjJ(1) 8k 8k cjJ(1) + 3 (cjJ,(l)) 2 + 3 (V cjJ(l) ) 2 (D-7) 

and 

yr _ - ~2 [( <5(1) a') 2 + (V<5(l)a) 2 

+ a2m; (<5(1) a) 2] . (D-8) 
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The divergence of the second order (0, i) equation is 

2 

okOk ['Ij!'(2) + 1i1P )] = ~ cp~OkOkb(2)cp + Y2 (D-9) 

where Y 2 = Y~ + Y2" is constructed entirely from first order quantities. The inflaton 

part is 

Y~ - 2K,2cp~Oi (1P )Oib(1)cp) + K,20i (b(l)cp'Oib(1)cp) 

80i (qP) Oi 1jJ'(l») _ 20i (1jJ'(1) Oi 1jJ(1») 

and the tachyon part is 

The trace of the second order (i, j) equation is 

3'1j!"(2) + Ok Ok [1jJ(2) _ 'Ij!(2)] + 61i 'Ij!'(2) 

+ 31iIjJ'(2) + 3(3 - E)1i21jJ(2) 

3K,2 [ '<5(2), 2 oV <5(2)] Y 2 CPo cp - a ocp cp + 3 

(D-lO) 

(D-ll) 

(D-12) 

where Y 3 = yr + Y[ is constructed entirely from first order quantities. The inflaton 

part is 

yr - 12(3 - E)1i2 (1jJ(1») 2 
- 6K,2cp~IjJ(1)b(1)cp' 

3 2 3 2 2 2 
+ ; (b(1)cp,)2 _ ; a2m~ (b(1)cp)2 _ ~ (Vb(l)cp) 

+ 3 (1jJ'(l») 2 + 81jJ(1) ok OkljJ(l) + 241i1jJ(1) 1jJ'(l) 

+ 7 (VIjJ(l)r 

and the tachyon part is 

yu 
3 K,2 [~(b(1)o-,)2 - ~ (Vb(l)o-r 

~a2m; (<5(1)0-)2] 

(D-13) 

(D-14) 

We now proceed to derive the master equation. Adding (D-6) to the inverse 

laplacian of the time derivative of (D-9) and then using (D-9) to eliminate b(2)cp 
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yields 

7j;"(2) _ (1 + 2E - 2TJ) H 7j;'(2) + HcjJ'(2) 

2(2E - TJ)H2cjJ(2) - akak 7j;(2) = YI + 6 -ly; 

2(2 + E - TJ)H6 -Ir 2. 
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(D-15) 

Notice that we have decoupled 7j;(2) and cjJ(2) from the infiaton perturbation 8(2)cp. It 

remains now to express 7j;(2) in terms of cjJ(2). To this end we subtract the inverse 

laplacian of (D-9) from (D-12) and again use (D-9) to eliminate 8(2)cp which gives 

or, equivalently 

(D-16) 

Following the notation of [183J we have defined 

(D-17) 

which can be split into inftaton and tachyon components , = 'i.p + ,u in an obvious 

fashion. Our Y 2 is related to the quantities a, f3 defined in [183J by 

Now, using (D-16) to eliminate 7j;(2) from (D-15) gives the master equation 

cjJ"(2) + 2(TJ - E)HcjJ'(2) + [2(TJ - 2E)H2 - akak] cjJ(2) 

- YI + 6 -ly; - 2(2 + E - TJ)H6 -Ir 2 -, 

(1 + 2E - 2TJ)H6 -l,' + 6-1," 

Inserting explicitly the expression for, (D-17) this can be written as 

where the source is 

J YI - Y3 + 46 -ly; + 2(1 - E + TJ)H6 -lY2 

+ 6-1," - (1 + 2E - 2TJ)H6- l
,'. (D-18) 
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We can split the source into tachyon and inflaton contributions J = J'P + JŒ in the 

obvious manner, by taking the tachyon and inflaton parts of Y 1, Y 2, Y 3, l' 

We now derive some results concering the tachyon source terms which will be 

useful in the text. First we consider the tachyon contribution to 1 (D-17): 

U sing equations (D-ll) and (D-14) we can write this as 

IŒ /'1,2 [~(6(1)(J')2 - ~ai6(1)(Jai6(1)(J - ~a2m;(6(1)(J)2] 
3/'1,26 -laT

ai (6(1)(J'ai6(1)(J) 

6/'1,21-l6 -lai (6(1)(J'ai6(1)(J) 

We now write IŒ as 

IŒ = /'1,26 -1 [~akak(6(1)(J'? - ~akak(ai6(1)(Jai6(1)(J) 

~a2m2aka (6(1)(J)2 - 38 8·(6(1)(J'ai6(1)(J) 2 Œ k T t 

61-lai (6(1) (J'ai 6(1) (J)] 

and, after some algebra, we have 

IŒ /'1,26- 1 [-~akak(ai6(1)(Jai6(1)(J) 
3ai (6(1) (J" + 21-l6(1) (J' + a2m;6(1) (J) ai 6(1) (J 

3 (6(1) (J" + 21-l6(1) (J' + a2m;6(1) (J) ak ak6(1) (J] 

(D-19) 

The last two lines can be simplified using the equation of motion for the tachyon 

fluctuation 

which gives 

/'1,26 -1 [-~akak (ai6(1)(Jai6(1)(J) 

3ai (a
k ak6(1) (J )ai 6(1) (J - 3aia

i 6(1) (Jak ak6(1) (J] 

/'1,26 -1 [-~akak (ai6(1)(Jai6(1)(J) 

3ai (ak ak6(1) (Jai 6(1) (J) ] (D-20) 
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This result has also been derived in [183]. We now consider the tachyon contribution 

to the source. We take 

JŒ _ Yf - Y~ + 4L:, -18T Y~ + 2(1 - E + 'I})HL:, -ly~ 

+ L:, -1"Y~ - (1 + 2E - 2'1}) HL:, -1"Y~ 

and, using (D-8), (D-ll) and (D-14), we have 

D-3 

f' (T, x) a2 K,2m; (c5(1) (J) 2 _ 2K,2 (c5(l) (J') 2 

+ 2K,2H(1 + '1} - E)L:, -18i (c5(1)(J'8i c5(1)(J) 

+ 4K,2L:,-18
T
8i (c5(1)(J'8i c5(1)(J) 

H(l + 2E - 2'1})L:, -1"Y~ + L:, -1"Y~. 

The Inflaton Contribution to ((2) 

(D-21) 

In this appendix we consider the calculation of the infiaton part of the second or der 

curvature perturbation d2
) using results from appendix D-2 and following closely the 

calculation of the tachyon part of the second order curvature perturbation. 

The last four lines of (6.41) are relatively simple to evaluate in the large scale 

and slow roll limit. On the other hand, the first line of (6.41) is somewhat more 

complicated and its evaluation requires the second order Einstein equations. We first 

focus first on the following contribution to ((2) 

((2) :3 _1 ___ 1_ [cp' Q'(2) + a28V Q(2)] . (D-22) 
3 - E (<p~)2 0 'P 8<p 'P 

From the definition of Q~) it is clear that this contains a contribution of the form 

<p~c5(2)<p' + a28V/8<p c5(2)<p which also appears in the second order (0,0) Einstein equa­

tion (D-6). We therefore use (D-6) to eliminate c5(2)<p from (D-22). We also eliminate 

1/;(2) in favour of cp(2) using (D-16). The result is that (D-22) takes the form 

((2) :3 __ 'f' _ _ _ + 1 cpC) + ____ 'f'_ 
A-.'(2) (1 ) 2 1 8k8k A-.(2) 

éH é 3 - E EH2 

1 l' 1 1 1 
+ EH L:, - "Y + L:, - "Y - 3 _ E EH2 "Y 

+ 1 Y 1 1 (Y~ a
2 

8V y ) 
3 - E EH2 + 3 - E <p~ + (<p~)2 8<p 4 

(D-23) 
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where the quantities YI, 'Y are constructed entirely from first or der fluctuations and 

are defined explicitly in appendix D-2 in equations (D-7, D-8, D-10, D-l1, D-13, D-

14). The quantity Y 4 is also contructed from first order fluctuations and is defined 

as the last two lines of (6.44). That is, 
, 

Y 4 - (2+2E-1J)~ (q'p))2 

+ 2~~cjJ(1)cjJ'(I) + ~cjJ(I)8(I)cp'. (D-24) 

The first line of (D-23) can be solved for using the Green function for the master 

equation as: 

cjJ~2) _ cjJ~2) _ k2cjJ~2) 

E1i E 3Eh2 

~ 1° dT'8(T - T') Jk(T') 

X [T' + (_~T'3 + ~T2T' - ~T3) k2] . (D-25) 

This equation aUows us to remove aU of the explicit dependence of ((2) on the second 

order metric perturbation cjJ(2). 

Having removed the explicit dependence of ((2) on the second order metric per­

turbation cjJ(2) we next eliminate cjJ(1), 8(I)cp in favour of ((1). Using the solution (1.47) 

and the first order eonstraint equation (1.40) one may verify that on large sc ales 

((1) r-v _cjJ(1) _ cp~ 8(1) cp r-v _ !cjJ(l) 
h E 

and 

On large sc ales the first order eurvature perturbation is approximately constant since 

[190] 
('(1) = f)kf)k cjJ(l) 

Eh 

using the faet that (Jo = 0 (so that there are no anisotropie stresses, whose absence 

guarantees the conservation of ((1) on super-Hubble seales). Thus on large sc ales we 

have 
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It is straightforward to compute the last three Hnes of (6.41) using the fact that 

Q&1) ~ _cp~((1) /1-l and Q~l) ~ -(2E - 1'])cp~((1) on large scales. The result is 

((2) 3 [~ (a ~'P ) 2 + 2 + 2E _ 21']] (((l)? (D-26) 

where we have dropped terms which are higher order in slow roll parameters or which 

contain gradients. Notice that the quantity (am'P/1-l)2 is first order in the slow roll 

expansion because 

~ ~~ 02V = ~ m~ ~ ~ ( am'P)2 
1'] 11,2 V Ocp2 11,2 V 3 1-l . 

To (D-26) we must add the contribution coming from the fist line of (6.41) which can 

be written explicitly in terms of first or der quantities using the Green function for 

the master equation. Here we consider only the particular solution for rjJ(2) due to the 

infiaton source J'P. 

In or der to compute J'P we first study the quantities YI, Y 2 , Y 3 , Y 4 " which are 

defined in appendix D-2. On large scales and to leading order in slow roll we have 

Yi ~ [12E2 
- E (a~'Pr] 1-l2(((1))2. 

The quantity 6 -1y~ can be written as (see equation 39 of [183]) 

2 

~(E -1'])1-l(J(1)cp)2 + 31-l(rjJ(1)? - 2rjJ(1)rjJ'(l) 
2 

+ ~6 -1 (OiOkOkrjJ(l)OiJ(l)cp 
cpo 

+ OkOkrjJ(1)OiOiJ(1)cp ) . 

The inverse laplacians on the last two Hnes contribute only to the momentum de­

pendence of J'fn which we neglect. On large scales and in the slow roll Hmit we 

have 

where the· .. denotes momentum dependent terms. On large scales and in the slow 

roll limit we also have 
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The quantity Y4 defined in (D-24) depends only on the inflaton fluctuation and is 

given by 

on large scales and in the slow rolllimit. Using these results one may readily verify 

that Î'P/1{2 is third order in slow roll parameters 

Using these results one may verify that the only term on the first line of (6.41) 

which contributes at lowest order in slow roll parameters is the term proportional to 

Yi / E1{2. Thus, the contribution to the second order curvature perturbation due to 

the first line of (6.41) is 

Adding an the contributions together we find 

The contribution 2(((1))2 stems from using the Malik and Wands [189] definition of 

the second order curvature perturbation. It can be related to the definition of Lyth 

and Rodriguez [187] (which also agrees with Maldacena [18]) using 

The Lyth-Rodriguez curvature perturbation, due to the inflaton up to second order, 

can thus be written as 

where 

'P _ 5( ) f N L - "6 2rJ - 6E . 

In writing (tR above we have suppressed the homogeneous k = 0 mode of ( which 

should be subtracted to ensure that (() = O. This result differs from previous studies 

[18, 158] by a factor of two. The calculation of [18, 158] takes into account the 
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effect of nonlinear evolution aswell as the effect of computing the bispectrum in the 

vacuum of the interacting theory, as opposed to the vacuum of the free theory. Our 

calculation does not consider the effect of the change in vacuum which is the same 

or der of magnitude. Thus we should not expect to reproduee exactly the results 

of [18, 158]. The change in vacuum will not change the caIcuIation of the tachyon 

part of the curvature perturbation d2
) sinee ((1) do es not depend on b(1) (J and henee 

contributions to (u due to the change in vacuum will be higher than second order in 

perturbation theory. 

D-4 Fourier Transforms, Mode Functions and In-

verse Laplacians 

We define the Fourier transform of sorne first order quantity bf(t, fi) by 

bf(t, fi) (D-27) 

(D-28) 

where ak is an operator and bfk(t) is a c-number valued mode function. We then 

re-write the Fourier transform as 

bf(t, x) = J (2~)~/2 [akçk(t)eikX + a~kç_k(t)*eikX] 

J d3 k [ c (t) ikx t c (t)* -ikX] 
(21f )3/2 ak<",k e + ak<",k e . 

In this form it is clear that ak is the usual creation operator satisfying 

and one should expect 
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on small seales, which corresponds to the Bunch-Davies vacuum aklO) = O. This is 

consistent with the usual definition of the power spectrum in terms of the two-point 

function 

so that 

We now discuss the Fourier transform of the tachyon source. Typical terms in the 

source have the form 

J(1) (t, i) 

J(2) (t, i) 

J(3)(t,i) 

b(t)8j(t, i)8g(t, i), 

b(t)6 -1 [8j(t, i)8g(t, i)] , 

b~)6-2~j~,i)8g~,~] 

where Sj, Sg are some first order quantities and b is constructed from zeroth order 

quantities. The Green's function for the laplacian is defined as appropriate in the 

absence of boundary surfaces 

(6 -1 j)(t, i) = J d3x'G(i - X')j(t, X') 

where 

In Fourier space we have 

G( ~ '"") 1 1 
x-x =--4 I~ ~'I' 7r x - X 

G(x, x') 

(21f)3/2 k2 . 

In Fourier space the souce terms contain convolutions 

Jk1
) (t) -

Jk2
) (t) 

Jk3)(t) 

b(t)(8j * 8gh(t), 
1 -

-b(t) k2 (8j * 8g)k(t), 

1 -
b(t) k4 (8j * 8g)k(t). 
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where lk, 9k are operator valued Fourier transforms defined as in (D-27). These may 

be related to the mode functions as (D-28). Finally, we have defined convolution by 

D-5 Construction of The Tachyon Curvature Per-

turbation 

In this appendix we include technical details about the contruction of d2
) using the 

Green function for the master equation. For clarity we repeat sorne details which are 

included in the text. We con si der only contributions to the equations which depend 

on the tachyon field and we remind the reader that ((1) is independent of (J. The 

second order curvature perturbation is (see (6.41-6.43)) 

where the second order Sasaki-Mukhanov variable is 

, 
0(2) rp + rpo 'IjJ(2) 

'}-{ 

+ infiaton contributions 

(D-29) 

(D-30) 

Inserting (D-30) into (D-29) and using the (0,0) Einstein equation (D-6) to eliminate 

the contribution rp~0(2)rp' + a2oVjorpo(2) rp gives 

-- - - + 1 cjJ() + -----cjJ'(2) (1 ) 2 1 Ok OkcjJ(2) 

EH E 3 - C c1t2 

1 -1' -1 1 1 + --;ut:::" "Yu + t:::" "Yu - -3 - '1..12 "Yu 
CIL - CCIL 

(D-31) 

where we have also eliminated 'IjJ(2) in favour of cjJ(2) using (D-16). Notice that using 

(D-6) introduces a term proportional to Yr to the curvature perturbation which 

cancels the contribution proportional to (o(ll(J'? + a2m;(0(1l(J)2 on the second line 
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of (D-29) up to a gradient term C98(1)(J)2 which can be negleeted on large seales. 

The result (D-31) is valid only on large sc ales but we have not yet assumed slow roll. 

In (D-31) it is understood that rjJ(2) denotes only the particular solution due to the 

tachyon source, JO". We now use the Green function (6.36) to solve for rjJ(2) in terms 

of the tachyon source (D-21). We work only to leading or der in slow roll parameters. 

We also work in the large scale limit. To lowest order in E, 71 and up to order k2 we 

can write 

x (D-32) 

using the Green function (6.36) and the relation (6.37). Equation (D-32) allows us 

to eliminate the dependence of (;;) on rjJ(2). At leading order in slow roll parameters 

the tachyon source is (see (D-lS)) 

(D-33) 

We must now insert (D-33) into (D-32), perform numerous integrations by parts, 

and then insert this result into (D-3l). We evaluate term-by-term the last line of 

(D-32). The first contribution (the term proportional to ka) is 

_ rjJ~2) _ rjJ~2) _ k2rjJ~2) :3 _ ~ 1T dT' Ja (T') . 
EH E 3EH2 E Ti H( T') 

Inserting (D-33), noting that H(T') = -liT' at leading order in slow roll and inte­

grating by parts gives 

(D-34) 
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where the terms under the dT' integral are evaluated at T' while the terms in the 

square braces on the second line are evaluated at T. The··· denotes constant terms 

evaluated at T = Ti which arise from the integration by parts. Since our interest is in 

the preheating phase during which the fluctuations 15(1) a are amplified exponentially 

we can safely drop these constant terms. 

The second contribution to the last line of (D-32) has the form 

_ cfJ~2) _ cfJ~2) _ k2cfJ~2) ~ ~ 1T dT' k2 JI: 
E1i E 3E1i2 6E Ti H( T')3' 

In evaluating this we need only con si der terms in k2 JI: which are not suppressed on 

large scales. Using (D-33) one may verify that 

k2 JU rv -," + H,' k u,k u,k 

on large sc ales (recall that Y2" is a gradient, see (D-ll)) so that we have 

cfJ~2) _ cfJk
2
) _ k

2 
cfJk

2
) ~ ~ 1T 

dT' k
2 JI: 

EH E 3EH2 6E Ti H( T')3 

rv ~ 1T 

dT' [_~ Ys + 6,0, -lyg] 
E Ti 3 H 

+ [_~ ,~ _ ~ ,u + 2,0, -lY2"] + ... 
6E H3 3E H2 H 

(D-35) 

(D-36) 

Equation (D-35) shows why it was necessary to include the k2 terms in the large scale 

expansion of the Green function (D-32), noting that ,u may be written as (D-17) and 

comparing to (D-33) we see that k2 Jk contains terms which are of the same size as 

those in Jk , on large scales. Thus a consistent large scale expansion of d2
) requires 

that we work up to order k2 in the expansion of the Green function. 

The third contribution to the last Hne of (D-32) is 

ifJ~2) _ ifJk
2
) _ k

2 
cfJk

2
) ~ _ ~ 1T 

dT' k
2 JI: 

EH E 3EH2 6E Ti H( T')H( T)2 

rv :E[;ls]+'" (D-37) 

using the same procedure as above. 
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Finally, the fourth contribution to the last line of (D-32) is 

cp~2) _ cpr) _ k2cp~2) :3 ~ 1T dT' k2 J'k 
EH E 3EH2 3E Ti H(T)3 

c;,;; 2 1 1T 

, (')2 eT -- 'l../( )3 dT H T Y3 3E 1 ~ T Ti 

+ ! [2 Li -1 Y 2 + ~ '"'(eT _ ~ '"'(~] + ... 
E H 3H2 3H3 
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(D-38) 

Summing up (D-34), (D-36), (D-37) and (D-38) and inserting the result into (D-31) 

gives 

Now, using equations (D-8) and (D-14) we can write this in terms of the tachyon 

fluctuation 8(1) (J as 

(D-39) 

D-6 An Identity Concerning f(J 

In this appendix we derive an identity concering the tachyon source term '"'(eT (6.101): 

Using equations (6.95) and (6.98) we can write this 

leT 1),
2Li-1 [~akak(8(1)(J~8(1)(J'A) 

~ak ak (ai8(1) (J A ai 8(1) (JA) 

~a2 a
2
v akak(8(1)(JA8(1)(JB) 

2 a(JAa(JB 
3a

T
ai (8(1) (J~ ai 8(1) (JA) 

6Hai (8(1) (J~ ai 8(1) (JA) ] 
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and, after sorne algebra, we have 

(D-40) 

In deriving this equation we have used that fact that 

02V 02V 
oaAoaB oaBoaA 

which follows frorn the O(M) syrnmetry of the theory. The last two lin es of (D-40) 
can be simplified using the equation of motion for the tachyon fluctuation (6.103) 
which gives 

2 
"fa- - ~ (oi o(1)aAoio(l)aA) 

3",2t:-,. -lOi (ok Ok 0(1) a AOiO(l) a A) (D-41) 
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E-l The Stress Energy Tensor and the Friedmann 

Equation 

Here we compute the O( u2 ) term of the approximate solutions 

We write the different terms appearing in the energy density as 

(E-1) 

where Tl) T2 ) T3 and T4 are defined as in (7.49-7.52). We now evaluate this expression 

term-by-term. 

We first consider Tl + T2 ) which can be written as 

T + r. = p - 1 ~+1 
l 2 p+1'f/ 

using (7.3). Using (E-1) we have 

Tl + T2 = P - 1 + (_p + l)u + (p - 1) [-ch + E] u2 + O(u3
) (E-2) 

p+1 2 

To evaluate T3 ) T4 we note that 

(see equation 7.23 with (J = 0). It is straightforward to show that 

We are now in a position to compute T3 . Using (E-3) and (E-4) we have 

T3 ~ t dT [(..\2 + 3Ho..\)eTfl1u 
mp Jo 

+ [_(..\2 + 3Ho..\)efll + 4>2(4..\2 + 6Ho..\)eTfl2 ] u2 + ... ] 

(E-3) 
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The dT integrals are trivial to perform using the identity 

We find that 

11 d ŒT eŒ 
- 1 

Te =--
o Ct 

We now consider the integrand of T4 : 

The dT integral is trivial and gives 

270 

(E-5) 

(E-6) 

(E-8) 

It is straightforward to sum up the various contributions to Too . We find that 

m; [p - 1 

2g~ p + 1 

+ [( -p + eJt2 )(P2 + ~(p - 1) - p lnp + p ~;] u 2 + ... ] (E-9) 

The fact that the coefficient of the O(u) term is zero verifies that Hl = O. We now 

solve the Friedmann equation 

noting that 

2 1 
3H = M2 P</J 

p 

Matching the coefficients at order U
O gives 

H 2 _ 1 m; p-1 
0- 6g~ Mi p+ 1 

as before. Matching the coefficients at order u 2 gives 
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In the first equality we have used that fact that 

which follows from the second order Klein-Gordon equation and in the second equality 

we have used 
,\2 Ho'\ 
- + 3- = Ml = lnp 
m2 m2 

p p 

which follows from the first order Klein-Gordon equation. Finally we arive at the 

result for H 2 : 

(E-IO) 

E-2 Incomplete Cylindrical Functions of the Sonine-

Schaefli Form 

The Bessel function can be represented by a contour integral of the Sonine-Schaefli 

form 

Jv(z) = -. - w-v- l exp w - - dw 1 (Z) v l c

+
ioo 

[Z2] 
2-7['Z 2 c-ioo 4w 

(E-ll) 

as long as Re(v) > -1. In (E-ll) c is an arbitrary positive constant. The incomplete 

cylindrical function, Sv(r, s; z) generalizes (E-ll) to arbitrary limits of integration 

Sv(r, s; z) = -. - w-v- l exp w - - dw 1 (Z)V 18 

[Z2] 
27r'Z 2 r 4w 

(E-12) 

It follows that 

18 [Z2] . (Z) -v 
r w-v

-
I exp -w - 4w dw = 27rieWIr

/
2 "2 S( -r, -s; iz) (E-13) 

Taking the limits r -t 0 and s -t +00 this integral can be written in terms of Hankel 

functions of imaginary argument, Kv(z), as 

{OO [Z2] (Z)-V Jo w-v- l exp -w - 4w dw = 2"2 Kv(z) (E-14) 

The function Kv(z) is real-valued for real z and is related to the usual Hankel function 

as KAz) = (i7r/2)ei1rV/2H~I)(iz). Using the well known large-argument asymptotics 
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of the Hankel functions one may show that 

100 [Z2] (2;(Z)-V o w-v
-

1 exp -w - 4w dw f"V V -;- 2" e-z (E-15) 

for z » 1. 

E-3 Comparison to Local Field Theory 

In this appendix we perform a detailed comparison of our results for the action (7.1) 

to the theory 

(E-16) 

with potential 

V('Ij;) 

(E-17) 

where we have defined m; 2gsv2
• We are interested in obtaining inflation near 

the unstable maximum 'Ij; = o. The flatness of the potential is parameterized by the 

dimensionless slow roll parameters 

(E-18) 

(E-19) 

Unlike in the p-adic theory we do not need to distinguish between Ert, TJrt and EV, TJv 

(see equations 7.81-7.88) and hence we drop the subscripts on the slow roll parameters. 

For 'Ij; « v the E parameter (E-18) is automatically small while 

which is small compared to unit y for v » Mp. The fact that the symmetry breaking 

scale is large compared to the Planck sc ale may be reason to doubt the validity of the 

field theory (E-16). However, for our purposes this is irrelevant. 
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It is instructive to consider solving the equations of motion for this theory using 

the formalism of section 7.4. We begin by speculating solutions of the form 

H 

(E-20) 

(E-21) 

and solving order by order in e>..t. The ansatz (E-20,E-21) is analogous to (7.11,7.12) 

sinee in both cases the (classical) field spends an infinite amount of time at the 

unstable maximum, driving a past-eternal de Sitter phase, before rolling towards the 

true minimum of the potential. We suppose that e>..t « 1 so that 1jJ « v initially. 

The Klein-Gordon equation is 

Plugging in the ansatz (E-20) we obtain 

(E-22) 

at first order in e>..t. This result is identical to (7.27). At second and third order 

respectively we find 

The Friedmann equation is 

o 
2m; + 3H2>' 
9>.2 - 2m2 

s 

At zeroth order in e>..t we obtain the familiar result 

At first and second order we find that 

(E-23) 

(E-24) 

(E-25) 
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In writing the second equality in (E-25) we have used À2 + 3HoÀ = 2m;. 

Though a complete treatment of inhomogeneities including metric perturbations 

and nonzero slow roll parameters is straightforward in this context we choose to 

analyze this theory using the same approximations as we used in section 7.5 in order 

to make more explicit the comparison between the two theories. The perturbed 

Klein-Gordon equation (neglecting met rie fluctuations and in the limit e),t ----t 0) is 

where a = eHot . The large scale solution is 

where 
92m2 

v = "4 + H2
s 

o 

Near scale-invariance of the spectrum requires ms «Ho. In this limit we have 

n _ 1 r-..J _~ m; = -8 (Mp ) 2 
s 3HJ v 

(E-26) 

which is identical to (7.68). This result also reproduces the full calculation incorpo­

rating met rie perturbations: ns - 1 r-..J 2ry - 6E r-..J -8Mi;/v2
• 

We can use (E-26) to write the dimensionless quantities Ho/ms, H2/ms and À/ms 

in terms of Ins - 11. The solution of (E-22) can be written as 

which is identical to (7.71). For this solution we of course have 3ÀHo » À 2 so that 

the evolution is friction dominated. It is also straightforward to show that 

Ho 2 

ms J31ns -11 
H 2 Ho 

We see that the solutions H, X for the theory (E-16) are identical to those of the 

theory (7.1) up to order e),t. At order e 2),t and higher, however, the dynamics of the 

two theories differs. 
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From (E-18) one can check that E f'V 1 at'IjJ :s v so that it is a good approximation 

to suppose that inflation ends at e>..t ~ 1. It is straightforward to impose the COBE 

normalization V/(EMi) = 6 x 10-7 for this model (which will impose gs « Ins -

11 2
), however, this is unnecessary for our purposes. It is clear that the inflationary 

dynamics and predictions predictions of the theory (E-16) are identical to those of 

the theory (7.1). 
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