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SUMMARY 

The problem of determining the growth of a 

turbulent boundary layer under conditions occurring on 

ramjet air-intakes is discussed. A modified Stewartson 

transformation is employed to transform the compressible 

integral momentum equation to an equivalent incompressible 

plane, adopting approximate temperature-velocity relations 

of the Crocco and van Driest forme A semi-empirical 

auxiliary equation, developed by MoR. Head for 

incompressible flow and using the concept of mass 

entrainment into the boundary layer, is rearranged for 

use in the transformed plane. The theoretical results 

obtained by this method are then compared to McLafferty's 

lag-length theory, and to experimental data obtained by 

C.Eo Kepler and R.L. O'Brien. It is seen that the mass 

entrainment theory is in good qualitative agreement with 

the reported data, and in reasonable quantitative agree­

ment. The latter may be improved by postulating a 

relationship between temperature and velocity in the 

boundary layer which is in closer agreement with 

experiment. It appears that the mass entrainment theory 

indicates the point of separation of the compressible, 

turbulent boundary layer, in accordance with 

conventional incompressible separation criteria. 
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INTRODUCTION 

The study of turbulent boundary layers is 

generally recognized to be a task of more than slight 

complexity, for the random eddying motion of the 

turbulent fluid is not amenable to simple mathematical 

descriptiono In addition, such phenomena as shearing 

stresses and beat transfer across a turbulent layer are 

no longer proportional to parameters which are properties 

of the fluid alone, as in the case of laminar flowsQ 

The shear stress distribution is not known 

analytically for turbulent motion. Therefore, the 

averaged or integral method is widely used in analyzing 

turbulent boundary layers, since a knowledge of the 

shear stress variation is not required in this methodo 

For most engineering applications, the solutions of the 

integral equations provide sufficient informationo The 

momentum thickness yields a measure of the drag on the 

surface due to the viscosity of the fluid and the 

displacement thickness accounts for the modification of 

the inviscid flow field about the surface again due to 

the fluid viscosityc The behavior of these parameters 

in many cases also yields information concerning the 

separation of the flow from the surfacee 
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Such prediction of separation is primarily based 

on the magnitude and behavior of the ratio of displacement 

thickness to momentum thickness (Ref. l)Q This ratio 9 

known as the shape factor, is a parameter of the 

integral momentum equation ~nd must be determined in 

the course of calculationa This entails the use of an 

auxiliary equation describing the variation of the shape 

factor. Such an equation is usually empirical or semi­

empirical, since the concepts of conservation of mass 9 

momentum and energy in the boundary layer do not yield 

a relation involving the shape factor variationo 

Severa! auxiliary equations, used in 

conjunction with the von Karman {integral) momentum 

equation~ have yielded satisfactory resulta for 

incompressible flows (Ref. 1). For compressible flow 9 

however, largely due to the lack of experimental data 

in the supersonic Mach Number range, few original 

auxiliary equations have been developedo A notable 

exception is the lag-length theory of G.Ho McLafferty 

and RoEo Barber (Ref. 2)o For the most part, auxiliary 

equations for compressible turbulent boundary layers 

have been obtained through the use of a mathematical 

transformationo Using such a transformation, the 

compressible integral momentum equation is reduced to 

the incompressible form and is then used in conjunction 



with an auxiliary equation obtained from experiments 

with incompressible fluids. The transformation thus 

allows the application of the large amount of 

incompressible data to compressible flows. It bas been 

demonstrated {Ref. 3 and Ref. 4) that a modified form 

of the Stewartson-Illingworth transformation may be 

applied to the compressible turbulent momentum equation, 

thus reducing it to the incompressible form. Perhaps 

the best known application of such a method is that of 

Reshotko and Tucker (Ref. 5). 

Methods involving the use of transformations 

have not met with a great deal of success in the past~ 

largely because of difficulties with the auxiliary 

equationso In addition, the variation of density across 

the boundary layer, which must be considered in 

compressible flows, is difficult to describe 

analyticallyo Such a description requires the solution 

of the energy equation 9 usually in a form yielding a 

relation between temperature and velocity in the 

boundary layer. Under certain conditionss such a 

solution may be achieved, (Ref. 1) but the simultaneous 

occurrence of heat transfer to the surface and pressure 

gradients in the flow direction violate the required 

conditionse A temperature-velocity relationship 

including the effects of heat transfer and pressure 
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gradient is unavailable at this timeo 

In addition to such phenomena as compressibility 

of the fluid, adverse pressure gradients in the flow 

direction and beat transfer between the fluid and its 

bounding surface, other complexities such as centrifuga! 

forces acting on the fluid (which have been neglected 

in the order of magnitude analysis of the boundary layer 

equations) and surface roughness are often engineering 

realities which cannot be ignored. An example of 

knowing accurately the behavior of boundary layers 

under these conditions is found in the study of super­

sonic combustion ramjets. The inlet diffuser of such a 

ramjet is a non-adiabatic surface over which flows 

high Mach Number air under an adverse pressure gradiento 

Due to the high recovery temperatures of high speed 

flight, the inlet surface must necessarily be cooled~ 

resulting in beat transfer from the fluid to the 

surfaceo These are the basic conditions experienced by 

a turbulent boundary layer on a ramjet diffuser, and 

consequently comprise the parameters of this analysiso 

ANAL Y SIS 

In the following analysis, an ideal gas has 

been assumed, with a specifie beat ratio of lo4. The 
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experiment with which the theoretical results were 

compared was performed at a total temperature of about 

400°F and a maximum Mach Number of 6, (Ref. 6) and it 

was felt that the ideal gas assumptions were sufficiently 

accurate in this thermodynamic regime. Real gas effects 

may be included without too much alteration or 

difficulty. 

(A) Momentum Equation 

The integral momentum equation for compressible 

turbulent flow is obtained by integrating the Prandtl 

momentum equation across the boundary layer thickness 

(Refo l)o If the turbulent flow properties are 

represented as the sum of time-mean values and 

fluctuating components, then certain terms involving 

the fluctuating components appear in the integral 

momentum equation (Refo 7)o These terms usually may be 

neglected except in the region of separation or in the 

presence of large centrifugal forces acting on the fluid 

(Refo 6 and 7). In Ref. 6 it is observed that these 

fluctuation terms, which include the variation of 

static pressure in the direction normal to a curved 

compression surface, may be neglected for moderately 

curved surfaces. Thus, the compressible integral 

momentum equation becomes 
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d9 + 
dx 

(2) 

Normal pressure gradients due to centrifuga! 

forces may be neglected on compression surfaces where 

the radii of curvature are large in comparison with the 

boundary layer thickness. 

The skin friction coefficient Cr must also be 

defined for turbulent flowG In the present analysis, 

the Ludwig-Tillman equation for incompressible flow is 

used, with fluid properties evaluated at Eckert~s 

reference temperature, following the procedure of Refo 5o 

The resulting expression employing Sutherland's law of 

viscosity is 

(3) 

The momentum equation is now transformed to a 

form similar to the integral momentum equation for 

incompressible flow. A modified Stewartson transformation 

(Refo ) and 4) is used. Defining the transformation 

for the normal coordinate by 
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dY : f ae dy 
foao 

and equating the compressible stream function to the 

transformed stream function, there resulta 

u 

(4) 

( 5) 

Under the transformation, the velocity ratio 

u/ue is equal to the ratio of transformed velocities 

U/Ue• 

Employing the Stewartson transformation to 

the integral boundary layer quantities, then, and re­

calling that the static pressure remains constant 

through the boundary layer, the transformed integral 

parameters are defined (Ref. 4) as 

6· 
~ 

• ~tr = 

H = T 
0 

~ 

(6) 

(See App .. A) 

- 1 

Substituting equations (6) into the 
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compressible momentum equation (2), the transformed 

momentum equation is obtained 

e. dM 
l. e 

JÇ dx 
C ( T )3 - t e 

- 2 T':' 
0 

(7) 

This transformed equation is still not of the 

form of the incompressible momentum equation, however, 

since the transformation of the longitudinal coordinate 

"x" is undefined, and since the friction coefficient 

term is not equivalent to the incompressible skin frictiono 

In addition, the transformed shape factor must be related 

to an equivalent incompressible shape factor. 

(B) Temperature Distribution 

A relationship between temperature and 

velocity at any point in the boundary layer is now 

required in order to relate the transformed shape factor 

to an equivalent incompressible shape factor (Appendix B)~ 

Such a temperature-velocity relationship was 

obtained by Crocco as an exact solution of the momentum 

and energy equations under zero pressure gradient, 

assuming a Prandtl Number of unityo Van Driest also 

obtained a similar relationship for a non unit Prandtl 

Number, although he assumed that the thermal boundary 
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layer was the same thickness as the velocity layer~ 

The first of these analyses resulted in a linear 

relationship between temperature and velocity 9 of the 

form 

T 
s = a + b u 
~ Ue 

with "a" and "b" constanto 

Van Driest's equation was a quadratic in 

velo city ratio, 

--

The second derivative of this relation is 

positive, after evaluation of the constants from the 

boundary conditionso 

(8) 

( 9) 

However, under adverse pressure gradients 9 

temperature-velocity curves obtained from experiments 

(Refo 6) exhibit a negative second derivative (Figo 6)o 

It appears that the temperature distribution is at 

least of second order in velocity ratio, and has co­

efficients which yield negative second derivatives when 

the pressure gradient is considereda 

The difficulty in obtaining an equation for 
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the temperature distribution suggests the use of a 

simpler, although less accurate approximatione Conse­

quently, both the Crocco and Van Driest temperature 

distributions were used. Since the temperature 

distribution appears in integral or averaged relations 

only, the resulting error is not too severes 

(C) Auxiliary Equation 

In either the compressible or transformed 

momentum equations, it is still necessary to evaluate 

the shape parameter Ho Since this shape factor varies 

with the growth of the boundary layer, an equation 

defining its variation must be obtainedo 

A concept of the rate of entrainment of 

external flow into the incompressible turbulent 

boundary layer, suggested by M.R. Head (Refo 8} 9 has 

led to the formulation of an auxiliary equation 

describing the shape parameter variationo Head 9 s 

auxiliary equation is a more promising approach to the 

problem since it involves the investigation of a 

physical phenomenon which is the basis of boundary layer 

growth. 

In his derivation, (Ref. 8), Head assumes 

that the rate of entrainment into a turbulent boundary 

layer depends upon a boundary layer thickness 
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parameter, the free stream velocity and the velocity 

distribution in the outer portion of the layer~ Using 

non-dimensional terms, Head arrived at a form of the 

auxiliary equation 

d ( 6- Â*) = F - (Ll- .6*)/M dMe (10) 
ëii . 9 dr 

Using the experimental results of several 

papers, Head obtained an empirical correlation between 

the function F(Ht1_6*) and the shape factor HA-6.* : 

(.6 -.6*)/81 , and a correlation between Hll-A* and H1 ~ 

Figsc (1) and (2). It should be emphasized that these 

results were obtained for incompressible flowo 

(D) Solution of the Equations 

The transformation of the momentum equation is 

completed by defining the x-coordinate transformation as 

(Refo(3) and Appendix C) 

and by relating the transformed and equivalent 

incompressible shape factors (Appendix B)$ 

Head's auxiliary equation, Eqne(lO), is put 

into workable form by fitting equations to the curves 
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in Figs. (1) and (2). The equations so obtained are 

(11) 

corresponding to Fig. (2), and 

(12) 

corresponding to Fig. {1). 

The resulting form of the auxiliary equation is 

___!.. • - i • . F dX - A -A* dMe - 41-D.* _! dH (H - 7)3o715[ H H d9 ](13) 

dx 4.17 51 dx Me· dX ei dx 

where HD.-A* and Fare given by Eqn. (11) and (12)o 

The derivation of this form is presented in Appendix c. 
The momentum and auxiliary equations were 

solved using a simultaneous numerical solution of the 

Runge-Kutta typeo The integral parameters so computed 

were then transformed to the compressible plane by 

means of Eqn. (6). 
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COMPARISON TtiiTH EXPERIMENT · 

A comparison of the calculation results with 

experiment will be limited to four sets of data obtained 

by Kepler and QVBrien (Ref. 6) e This data consist's of 

boundary layer measurements on flat plates at Mach 

Numbers of 3 and 6~ a circular arc compression surface 

at an initial Mach Number of 3 and an isentropic 

compression ramp at Mach 6. Two different rates of 

wall cooling have been applied to each surfaceo 

Although these measurements appear to be quite precise~ 

any conclusions which are drawn on the basis of such a 

limited comparison must be regarded as preliminary 

observa ti ons o 

A. Mach 3 Flat Plate 

The cross plot of the velocity and temperature 

profiles reported by Kepler and QYBrien is shown in 

Fig.(5). The Crocco temperature-velocity relation 

appears to be a good approximation to both the cooled 

and uncooled wall conditionso The quadratic temperature­

velocity relationship {Eqno(9) and Appendix B(b)) would 

afford a better fit for the uncooled wall case~ but at 

a Mach Number of 3 and at the high wall temperature the 

difference between the linear and quadratic relations 

is smallo For convenience, thereforeP the Crocco relation 
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was used. 

The variation of momentum thickness and dis­

placement thic.kness wi th distance along the flat pla te 

is presented in Fig.(6). The theoretical variation is 

in good qualitative and quantitative agreement with 

experiment, any discrepancies being within the magnitude 

of the repeatability of the experiment. The McLafferty 

lag-length prediction of the uncooled momentum thickness 

is not shown as it is coïncident with the corresponding 

curve of the mass entrainment theory. 

B. Mach 6 Flat Plate 

The calculation results for the flat plate at 

Mach 6, Fig.(à), do not show as good agreement with 

experiment as in the Mach 3 case. It is difficult to 

compare the theory with the experiment qualitatively 

since only three measurements of the boundary layer 

parameters were made. However, it is seen from 

experiment that the momentum thickness of the boundary 

layer over the cooled wall is greater than the momentum 

thickness of the flow over the uncooled wall. It appears 

that the magnitudes of these thicknesses become nearly 

equal in the downstream direction but such a trend 

cannet be established due both to the lack of further 

experimental points and to the experimental errer involved, 
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represented by the repeatability of the measurement. 

The mass entrainment theory indicates that the cooled 

momentum thickness increases at a slower rate than the 

uncooled thickness, and that the magnitude of the cooled 

boundary layer momentum thickness eventually becomes 

less than the magnitude of the uncooled momentum thick­

ness. On the ether band, McLafferty's lag-length theory 

predicts the same trends exhibited by the experiment. 

For the uncooled wall case, the mass entrainment theory 

and the lag-length theory are in close agreemento 

Neither the mass entrainment theory nor the 

lag-length theory yield good quantitative agreement with 

the experimental variation of displacement thickness, 

although both exhibit the same qualitative behavior as 

the experimental data. The magnitude of the cooled 

displacement thickness as given by the mass entrainment 

theory could be increased and thus improved by using a 

temperature-velocity relationship in closer agreement 

with experiment. The experimental temperature relation 

is illustrated in Fig.(?). 

The temperature-velocity curve obtained from 

experiment is well approximated, in the uncooled wall 

case, by the Crocco relation. In the absence of a 

pressure gradient, the quadratic relation should yield 

the best description of the actual temperature-velocity 



curve, as in Fig.(5a) and (12a). However, a small adverse 

pressure gradient was reported to exist on the flat 

plate at Mach 6 and this factor caused the deviation of 

the temperature-velocity curve from that predicted by 

the quadratic relation to a form more closely described 

by the Crocco linear equation. The temperature 

distribution in the boundary layer over the cooled wall 

is at variance with even the Crocco relation, suggesting 

that another factor in addition to the adverse pressure 

gradient must be considered. This is discussed more 

fully in a later section. 

The existence of the adverse pressure gradie~t 

was taken into account in both the momentum and auxiliary 

equations. Following the argument set forth in the 

ANALYSIS, the Crocco temperature-velocity relation was 

not corrected for adverse pressure gradient effects in 

the cooled wall caseo 

c. Mach 3 Circular Arc Surface 

The Mach Number distribution on the circular 

arc surface, reported in Ref. 6, was described 

analytically by a series of linear and semi-logarithmic 

equations. Each of these equations was chosen to represent 

best the experimental Mach Humber data within a 

particular interval on the compression surface. 

The temperature-velocity relations obtained 
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from the data of Ref. 6 are illustrated in Fig.(5) and 

(9). Figure (5) shows the relationship at the beginning 

of compression, under a negligible pressure gradient. 

It is identical to the case of the flat plate at Mach 3. 

Figure {9) depicts the temperature-velocity relation­

ship at the end of compression, where the adverse 

pressure gradient is present, for both the cooled and 

uncooled wall conditions. It is seen in Fig. (9) tbat 

the experimental points are reasona bly well approxima ted 

by the Crocco linear relation in the uncooled boundary 

layer. The temperature relation in the cooled boundary 

layer, however, is in poor agreement with Crocco's linear 

relation, and vividly exhibits the negative second 

derivative characteristic of the temperature-velocity 

profiles from Ref. 6 under adverse pressure gradients 

with considerable beat transfero 

The curves of the variation of momentum thick­

ness, Fig. (10), and displacement thickness, Fig. (11), 

with distance along the circular arc are in poor 

quantitative agreement with expe riment. Qualitative! y, 

however, the mass entrainment theory does bear sorne 

resemblance to the experimental variations. In this 

respect it is more accurate than McLafferty's lag-length 

theory, also shown in these figures. McLafferty's 

theory does predict values of the momentum and displace­

ment thicknesses which are nearer in magnitude to the 
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experimental results than is the mass entrainment theory. 

This is more or less expected since the lag-length 

theory was formulated on the basis of experimental 

resulta obtained in the Mach 3 range on various 

compression surfaces, sorne of which were similar ta the 

circular arc under consideration. 

The experimental momentum thickness, Fig.(lO), 

shows a larger value initially for the cooled wall 

than for the uncooled surface. The cooled momentum 

thickness remains greater than the uncooled thickness 

to a distance of approximately 7.6 inches along the 

surface (1.6 inches downstream of the start of 

compression)e At this point the uncooled momentum 

thickness, increasing rapidly, exceeds the cooled values. 

This same trend is predicted by the mass entrainment 

theory, although the slopes of the theoretical curves 

for both wall cooling rates are negative at the start 

of compression, while the slopes of the experimental 

curves are nearly zero, or slightly positive in the 

uncooled case. 

The same qualitative agreement is apparent 

concerning the displacement thickness variation, Fig.(ll). 

According to the data of Ref. 6, the magnitude of the 

uncooled displacement thickness is greater than that of 

the cooled displacement thickness at all points on the 
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compression surface. This same behavior is predicted 

by the mass entrainment theory, which also indicates a 

more rapidly increasing magnitude of the uncooled 

displacement thickness in comparison to the cooled 

displacement thicknesse This comparison is also 

evident in the experimental data. Again, however, the 

mass entrainment theory predicts decreasing values of 

both uncooled and cooled displacement thickness after 

the start of compression, whereas the experimental 

values in this region show only a small decrease in the 

cooled boundary layer, and nearly constant values for 

the uncooled flow. 

Improvement in the values of cooled displace­

ment thickness could be achieved if an analytic relation 

between temperature and velocity, more closely 

approximating the experimental relation at all points 

on the compression surface 1 were usedo Mathematically, 

from Eqn., (A5L, it is se en that values of the total 

temperature ratio Ts/To greater than those predicted by 

the Crocco relation would yield larger values of the 

transformed displacement thickness, and thus, in equation 

~4),larger values of the compressible displacement 

thickness. The increase of displacement thickness values 

would be reflected to a lesser degree in the values of 

the momentum thickness, which would also tend to 
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increase. Since the values of both the momentum thick­

ness and displacement thickness at the start of 

compression (x. 6.0 in.) are fixed as initial or starting 

conditions in the calculation, the increase of the 

integral parameters at succeeding points on the surface 

would reduce the negative slopes of the theoretical 

curves for the cooled boundary layer, and bring the curves 

into closer agreement with experimento This improvement 

is discussed more fully in a later sectiono 

Little improvement in the curves of the 

uncooled thicknesses could be expected by means of this 

correction, however, since the Crocco temperature­

velocity equation provides good agreement with the 

experimental relations throughout the compression. 

Indeed, it is not expected that an adjustment to the 

cooled temperature relation would induce sufficient 

improvement in the curves of the cooled thicknesses to 

provide satisfactory agreement with experiment. Some 

additional factor must be considered in the flow over 

this particular compression surface, and this factor 

should be common to both the uncool.ed and cooled 

conditions. It is suggested that the consideration of 

centrifuga! forces in the boundary layer may provide the 

n~cessary correction to the curves. An analysis of the 

magnitude of terms in the integral momentum equation 
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at the start of compression for the uncooled flow case 

indicated that a relatively small positive addition to 

the right side of Eqn.(?)would change the slope of the 

compressible momentum thickness curve from a negative 

value to a small positive value. An order of magnitude 

analysis indicated that the inclusion of centrifugal 

force effects in the momentum equation would provide at 

least a partial correction in the desired directiono 

However, the difficulty of describing these effects 

analytically in the integral momentum equation precluded 

their immediate application in the circular arc case. 

Of the four experimental surfaces considered in this 

study, it is expected that centrifugal force effects 

would be of importance only on the circular arc, due to 

the relatively smaller ratio of the boundary layer thick­

ness to radius of curvature of that surface. 

D. Mach 6 Isentropic Surface 

An examination of the velocity profiles 

reported by Kepler and O'Brien, Figs. (3) and (4) 

indicates a full profile for both the uncooled and 

cooled surfaces at the initiation of compression, and 

inflected profiles for both wall temperatures in the 

final stages of compression. 

Using such profiles in conjunction with total 
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temperature profiles obtained by Kepler and O'Brien at 

five stations on the compression surface, temperature­

velocity curves were plotted. Examples of these are 

given in Figs •. (12} and (13). It was observed that the 

van Driest temperature-velocity relation provided good 

agreement with the experimental points over more than 

half of the compression surface for the uncooled wall 

condition. In the case of the cooled wall, neither the 

van Driest nor the Crocco relation lay among the 

experimental points, but the Crocco distribution was the 

nearer of the two. Consequently in accordance with the 

argument set forth in ANALYSIS, the van Driest relation 

was used for the calculation of the uncooled boundary 

layer, and the Crocco equation for the cooled layer. 

The calculation results are shown in Figs. (14) 

and (15}. These curves indicate a better qualitative 

than quantitative agreement with experiment, although 

the uncooled wall results are in reasonable proximity 

to the experimental points. This is believed to be due 

to the closer agreement between the van Driest temperature 

distribution and experiment in the uncooled wall case, 

than between the Crocco relation and experiment in the 

cooled boundary layer. As a check on this assumption, 

the van Driest relation, giving even poorer agreement 

with experiment than the Crocco equation (Fig.(l3)) was 
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used in the cooled wall calculation. The values of both 

the momentum thickness and displacement thickness were 

found to be lower at all points on the compression 

surface than those obtained using the Crocco relation. 

Although the difference was not great (of the order of 

5%) it was significant enough to indicate that a closer 

approximation to the true temperature-velocity relation­

ship would yield better values of the integral 

parameters. 

The calculation of the integral parameters 

using McLafferty's lag-length procedure was performed 

by Kepler and O'Brien, and is shown in Figs. (14) and 

(15). It is noted that the results of the lag-length 

theory indicate no increase in either the momentum 

thickness or displacement thickness in the final stages 

of compression, as is shown by the experimental data. 

The mass-entrainment method, however, doe~ indicate 

such an increase, or at least a levelling-off, of the 

integral values in this region. The value of the 

equivalent incompressible shape factor, Hi, was between 

2.4 and 5.0 at this point, and was increasing rapidly. 

Such behavior of the shape factor in incompressible flow 

is generally accepted as a criterion of incipient 

separation. Although Kepler and O'Brien reported no 

occurrence of separation in their experiment (Ref. (6)), 
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the existence of inflected profiles and the increase of 

integral values suggest that separation was ap}~oaching. 

As was pointed out in Ref. (6), the expansion of the 

flow at the end of the compression surface, occurring 

when the flow was returned to its original direction, 

could well have influenced the behavior of the boundary 

layer in this region. The influence would be exhibited 

mainly in the subsonic portion of the boundary layer near 

the wall, and would have the effect of relaxing the 

inflected velocity profile, thus discouraging separation. 

The calculation of the boundary layer presented 

here is a first o.rder consideration. The addition of 

the displacement thickness to the surface profile would 

modify the Mach Number distribution, especially near the 

end of compression where the displacement thickness 

increases rapidly. In this region, the modification 

would result in a locally increased adverse pressure 

gradient. One would expect that this result, wben included 

in the calculation, would tend to increase the tbeoretical 

values of,the integral parameters in this area. 

E. Modification of Temperature-Velocity Relation 

In the preceding discussion, it bas been 

noted that the existence of an adverse pressure gradient 

causes the experimental temperature-velocity relationship 
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in the boundary layer to deviate from the flat plate 

van Driest quadratic relation. It is also noted that 

this deviation is always in a direction such that the 

total temperature ratio is greater than the van Driest 

value at a given value of the velocity ratio. This 

deviation is expected, since the quadratic temperature­

velocity equation (Eqn.(9) and App.B(b)) was derived on 

the basis of zero pressure gradient. The effect of an 

adverse pressure gradient is to retard the fluid near 

the surface and so reduce the fluid velocity across most 

of the boundary layer (Fig.4), causing only minor changes 

in the temperature profile (Ref. 6). The modification 

of the velocity profile under the adverse pressure 

gradient results in a larger total temperature ratio at 

a given velocity ratio than for the zero pressure 

gradient, or flat plate case. 

For the near-adiabatic (uncooled) surfaces 

described in Ref. 6, the linear Crocco equation 

(Eqn.(8)) provides reasonably satisfactory agreement 

with the experimental temperature-velocity curves in 

the presence of adverse pressure gradients (Fig.(9a) and 

{13a)). It is emphasized that such agreement is not due 

to the inclusion of pressure gradient effects in the 

Crocco equation, for this equation was derived also on 

the basis of zero pressure gradient. The agreement is 
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due to the approximate linearity of the experimental 

data points, and thus is largely fortuitous. 

The experimental temperature-velocity relations 

in the boundary layers over the cooled compression 

surfaces of Ref. 6 are another matter, however. The 

linear Crocco relation yields either poor agreement or 

no agreement at all. Since the cooled flow over either 

of the compression surfaces is under the same external 

pressure gradient as the uncooled flow (neglecting the 

modification of the inviscid flow field due to the 

boundary layer), the temperature-velocity relation for 

both rates of heat transfer would be expected to show 

the same deviation from the quadratic equation. Indeed, 

the process of cooling the boundary layer increases the 

velocity of the fluid in the layer as compared to the 

uncooled flow. On the basis of the argument presented 

above, the increase of velocity should reduce the 

deviation of the experimental temperature-velocity 

relation. Such is not the case, however, and the 

explanation for the reported temperature-velocity 

relationships is most likely to be found in the method 

by which the wall was cooled. As described in Ref. 6, 

the boundary layer developed initially over an uncooled 

surface upstream of the test surface. At sorne distance 

upstream of the model cooling was applied to the 
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area on which the boundary layer was growing, and 

was oontinued to the end of the test surface. Kepler 

and O'Brien pointed out that under this system only 

the portion of the boundary layer near the wall would 

be cooled. The upper regions would have insufficient 

time to adjust to the heat transfer at the wall surface. 

Consequently, the major portion of the boundary layer 

away from the wall would exhibit higher total temperatures 

than would be found at corresponding levels in a fully 

cooled boundary layer. In fact, the temperature profiles 

reported in Ref. 6 indicate total temperatures in the 

upper two thirds of the cooled boundary layers equal or 

nearly equal to those in the corresponding uncooled 

boundary layers. This factor is believed to be 

principally responsible for the extreme deviations from 

theory of the cooled temperature-velocity relations. 

It is suggested that the reported temperature­

velocity curves be approximated by a quadratic relation 

of the form of Eqn.(9). Such an approximation should 

not be of a higher degree than a quadratic since the 

derivation of Appendix B would not then apply. 

The coefficient of the second order term (the 

coefficient "c" in Eqn.(9)) must be negative, in order 

that the second derivative of the expression be negative 

and thus describe the correct curvature of the 
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relationship. The constant term (term nan in Eqn. (9)) 

must necessarily equal the ratio of wall temperature to 

free stream total temperature in order to satisfy the 

boundary condition at the wall. The remaining coefficient 

(coefficient "b" in Eqn. ( 9)) is th en de fine d by the 

boundary condition at the outer edge of the boundary 

layer, namely, that the temperature ratio be unity when 

the velocity ratio is unity. The determination of the 

value of the coefficient "c" should include consideration 

of the effects of pressure gradient and heat transfer. 
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CONCLUSIONS 

The conclusions reached in the preceding 

discussion may be summarized as follows: 

(1) The concept of mass entrainment by a 

turbulent boundary layer appears to provide the basis 

of a suitable auxiliary equation for calculation of the 

shape parameter H of the boundary layer. Empirical 

relations describing such an entrainment in incompressible 

flow are applicable to compressible flows as well, 

through a suitably defined·mathematical transformationo 

The good qualitative agreement between experiment and 

theory obtained through this concept suggests that the 

entrainment relationship shoulù be investigated further, 

and established on a better theoretical and mathematical 

ba sis. 

(2) Better quantitative theoretical results 

may be expected if a temperature-velocity relationship, 

providing closer agreement with experiment than the 

Crocco or van Driest form, is used. This implies the 

inclusion of pressure gradient and beat transfer effects 

in such a relationshipo 
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(3) The mass entrainment method indicates 

separation of the boundary layer in a region where 

inflected velocity profiles and increasing values of 

integral parameters were observed in experiment. 

Separation was indicated by the behavior of the 

incompressible shape factor Hi, in accordance with the 

usual criteria for incompressible flow. Further 

comparison with experiments must be undertaken before 

the capability of this method to predict incipient 

separation is established. 
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(a) 

APPENDIX A 

Derivation of Transformed Integral Parameters 

using Stewartson's Transformation 

Momentum Thickness 

By definition 9 • f~~e (1 ) dy 

0 

Substituting equation {4), and recalling that 

u/ue = U/Ue, we have 

(1 - it ) 
e 

dY 

where ~ is the transformed boundary layer thicknesso 

With o • 1.4, this becomes 

A 1 

where 

( ei = u 
( 1 - ~ ) dY A 2 ue e 

0 

so ei • e { Te )J A 3 
~ 



(b) Displacement Thickness 

By definition • 

5 

( ( 1 - ..JU:_ ) dy 
}_ feue 
0 

or (~ ( R_e - u ) dy 
p Ue 

0 

Again using equation (4), we obtain 

( dY 

0 

By assuming constant static pressure normal 

to the wall, 

and 

now 

&_ = T 
p T; 

T )3 
{ 0 

~ 
f~ 
0 

dY 



Gathering tenns 

T T T 
T - U : o ( s - U ) + ( o - 1) U (1- U ) r; u; re To u; T; u; u; 

or A 4 

using Eqn. (A 2) and defining 

t:. 

r (:§.- L) dY 
To Ue 

0 

A 5 

Now, using Eqn. (A. 4) and (A 1), we obtain 

H • 6* To H T 
0 - 1 6 • T: tr + r. e 

where 

A 6 

Htr - b*tr - s-i 



APPENDIX B 

Derivation of Relations between Shape Factors 

(a) Crocco Temperature Distribution 

From Eqn. (8) we have 

u 
a+b lÇ 

where, from boundary conditions, 

a • 
T 
w 

T;;" 
b -- T 

1 - w 
~ 

Then, in Eqn. (A 5), 

-- r (a + (1-a} ge 

0 

(fla U 
)_ (1 -ue> dY 

0 or 

= 

where 
u 

-- 1 - a 

- !:!._) dY 
Ue 

= - ü;' ) dY as usual. 

Now, from Eqn. (6) 

= b*tr 
~ 

T = w 
To 

T 
B 1 



Then, from Eqn. (A 6) 

H • - 1 

{b) van Driest Temperature Distribution 

From Eqn. (9} we have 

u . -. 
T - u 2 s • a + b ue + c ( ue ) 
T; 

u u 
• a + b u; + c ( U';) 2 

where the coefficients are d efined as 

T 
b = Taw T 1 

T 
a • w - w . c - - aw 
~ ~ !;; ' - T 0 

and thus b T 
1 - c - a • aw - a -

T;- -

Then, in Eqn. (A 5), 

~* • tr · 
(t a + lt,; (1-c-a) + c <!!;; ) 

2 -!!;; ) dY 

0 

so 

" na (1 - l!;;l - c l!;; (1 - ~) ] dY 

0 

t' *t = a ~ *
1
. - c e1 li r 

Then, from Eqn. (6) 

B 2 



T 
Htr • a Hi - c • w H + To i 

T 
aw - 1 

To 
B 3 

And from Eqn. {A 6} 

H • 
T T 

w Hi + aw - 1 
'!; re B 4 



APPENDIX C 

Development of Momentum and Auxiliary Equations 

(a) Momentum Equation 

From Eqn. ( 7) 

or 

de1 8. dM - cr (re )3 + ~ (2 + Htrl e 
dx dx -r e - ~ 
de1 e. dM :.t: ( Te )3 cf + zê (2 + Htrl ê = dx 
dX = e ar- di 2 ~ 2i 

by transi'orming the longitudinal coordinate "x". 
Th us 

dX 
dx 

where 

--

-
Then, using Eqn. (3), 

.9! _ Te ( Tr) •402 
( To + 198 ) .268 (~0 )3 

dx - T; ·ra Tr + 198 .L .... 

or 9.! = Te (Te )3 
dx T; T:' 

0 

( ~) ,268 c 1 



• 

• 

(b) Head's Auxiliary Equation 

From Eqn. (10) 

But 

or 

Th en 

F dX - 9iHA-A* dMe u d9i 
dx - L•A-A"" dx M

8 
dx -r-

or 

dH H dMe _ HA-A* dQi A-A* = F dX_ A-A* 
dx tr.' dx Me dx 91 dx i 

But 

dHA-A* - Ô HA-A* dH1 
dx - 0 Hi dx 

and, from Eqn. (11) 

0 HA A"" (. ) -3 • 715 - ~ • - 4.17 Hi - .7 ~~::.H.,;:.i:.... 



• 

So 

d6i ] 
dx 

where dX is given by Eqn. (C 1) 
di 

c 2 
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