
Arithmetic aspects

of Triangle Groups

Luiz Kazuo Takei

Department of Mathematics and Statistics

McGill University

March 2014

A thesis submitted to McGill University

in partial fulfillment of the requirements for a Ph.D. degree

c○ Luiz Kazuo Takei 2014



Abstract

We study some arithmetic properties of Triangle Groups, a family of

Fuchsian groups that generalize the modular group. We first recall the ba-

sic theory of Fuchsian groups and define precisely a Triangle Group. Sec-

ondly, we define congruence subgroups and compute the genus of the curves

they uniformize. Thirdly, we characterize the normalizers of certain Triangle

Groups and corresponding congruence subgroups. Finally, we study a family

of curves that is closely related to Triangle Groups. In particular, we study

modular embeddings defined by those curves and their ordinary locus.



Résumé

Cette thèse est consacrée à l’étude de certains aspects arithmétique d’une

famille de groupes fuchsiens engendrés par des reflections par rapport aux

arrêtes d’un triangle hyperbolique. On commence par rappeler la théorie

de groupes fuchsiens et la définition de cette famille de groupes. On définit

ensuite les sous-groupes de congruence et on calcule le genre des courbes

qu’ils définissent. Ensuite, on décrit les normalisateurs de ces groupes.

Les dernières sections sont consacrées à l’étude d’une famille de courbes al-

gébriques étroitement liée à ces groupes. On étudie notamment son image

dans certains espaces de modules et son lieu non-ordinaire.
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Introduction

The theory of modular forms has been studied for more than one hundred

years, dating back, at least, to Felix Klein and his contemporaries. In the

previous century, modular forms for the classical modular group SL2(Z) and

its congruence subgroups were extensively studied. It is now possible to

say that we have a polished theory of modular forms. Good textbooks like

[Miy06] and [DS05] are evidences of this fact.

The recent interest in modular forms is related to its connection with

number theory questions. In particular, motivated by the Taniyama-Shimura

conjecture and Fermat’s Last Theorem, the second half of the twentieth cen-

tury witnessed a gigantic effort to understand the relation between modular

forms and elliptic curves, culminating in the celebrated proof of Fermat’s

Last Theorem, more than 350 years after its first appearance in Pierre de

Fermat’s notes. Since the modular forms of interest for this particular prob-
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lem are those for SL2(Z) and its congruence subgroups, much of the focus

was directed toward those groups.

Although much less understood, non-congruence subgroups of SL2(Z)

have also been studied in recent years. The pioneering article in this field

is probably [ASD71], where Atkin and Swinnerton-Dyer proved some results

and conjectured some other results about congruences involving the Fourier

coefficients of modular forms for non-congruence subgroups of SL2(Z). Scholl

([Sch85], [Sch86]) and Winnie-Li ([LLY05b]) have also contributed to this

area. A slightly disappointing but (maybe exactly because of that) inter-

esting fact proved by Serre-Thompson in [Tho89] and by Berger in [Ber94]

states that Hecke operators, which play a prominent role in the theory of

modular forms for congruence subgroups, yield no new information for non-

congruence subgroups. A survey article about this area can be found in

[LLY05a].

Even less understood than the non-congruence subgroups of SL2(Z) are

the so called triangle groups. These form a special class of Fuchsian groups

which includes SL2(Z) as a particular example. From a number-theoretic

point of view, it is an interesting family of Fuchsian groups because, via

Bely̆ı’s Theorem ([Bel79]), every algebraic curve defined over a number field

6



is uniformized, when viewed as a Riemann surface, by a triangle group. More

recently, Darmon speculated in [Dar04] that triangle groups can be used to

study the so called generalized Fermat’s equation. An example of this strat-

egy can be seen in [DG95] and [Dar97]. Among others, Y. Yang [Yan13] and

Doran-Gannon-Movasati-Shokri [DGMM] have studied automorphic forms

for triangle groups. A valuable resource to learn about triangle groups and

facts of interest to number theory is [CV], by Clark and Voight.

We present in the following chapters a study of triangle groups, the al-

gebraic curves they uniformize and, in particular, their relations to number

theory. Chapter 0 recalls the basic theory of Fuchsian groups that will be

necessary for the later chapters and defines a triangle group.

In Chapter 1, we define subgroups of triangle groups in analogy to the

congruence subgroups of SL2(Z). The first natural question then arises: what

are the genera of the curves uniformized by those subgroups? We answer this

question as well as another interesting question, related to the nature of the

quotient of a triangle group by one of these subgroups.

In Chapter 2, we recall a relation found by Hecke in 1928 ([Hec28]) be-

tween the class number of some quadratic number fields and the represen-

tation of certain quotient groups on the space of holomorphic differentials
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of classical modular curves. We then prove a generalization of that result,

which also appears in [Tak12], to the case where the group SL2(Z) is replaced

by an arbitrary triangle group.

Chapter 3 studies normalizers of triangle groups. In particular, we give

explicit computations of the normalizers of triangle groups and proceed to

the computation of the normalizers of their “congruence” subgroups.

Chapter 4 closely investigates a family of hyperelliptic curves with real

multiplication. Originally studied by Tautz-Top-Verberkmoes in [TTV91],

the TTV family of curves also appeared in [Dar00], where Darmon finds a

relation between them and certain triangle groups. We first analyze the case

of genus 2 and compute its Igusa-Clebsch invariants. We then study how this

family of curves embeds in a certain Hilbert modular space.

Finally, Chapter 5 recalls the theory of Hasse-Witt and Cartier-Manin

matrices and uses it to study the non-ordinary locus of the reduction mod

𝑝 of the TTV family of curves. We then end the chapter with a comparison

between that and the genus of certain “congruence” subgroups of triangle

groups.
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Chapter 0

Fuchsian Groups and Triangle

Groups

In this chapter we review the basic theory of Fuchsian Groups and, in par-

ticular, of Hyperbolic Triangle Groups. Unless otherwise stated, the results

stated in this chapter, as well as their proofs, can be found in [Shi94].

0.1 Topological Groups

Definition 0.1.1. A topological group is a group 𝐺 with a topology such

that the following maps are continuous:
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𝐺×𝐺→ 𝐺 𝐺→ 𝐺

(𝑔, ℎ) ↦→ 𝑔ℎ 𝑔 ↦→ 𝑔−1

Remark 0.1.2. All topological groups will be assumed to be Hausdorff.

Definition 0.1.3. Let 𝐺 be a topological group and 𝑆 a topological space.

We say that 𝐺 acts continuously on 𝑆 if a continuous map

𝐺× 𝑆 → 𝑆 (𝑔, 𝑠) ↦→ 𝑔𝑠

is given and satisfies the following:

(i) (𝑎𝑏)𝑠 = 𝑎(𝑏𝑠) for every 𝑎, 𝑏 ∈ 𝐺 and 𝑠 ∈ 𝑆

(ii) 𝑒𝑠 = 𝑠 for every 𝑠 ∈ 𝑆 (𝑒 denotes the identity element of 𝐺)

Proposition 0.1.4. Let 𝐺 be a locally compact group, 𝐾 a compact subgroup,

ℎ : 𝐺→ 𝐺

𝐾
the natural projection. If Γ is a discrete subgroup of 𝐺, then for

every 𝑧 ∈ 𝐺

𝐾
𝑆 there exists a neighborhood 𝑈 of 𝑧 such that

{𝑔 ∈ Γ|𝑔(𝑧) = 𝑧} = {𝑔 ∈ Γ|𝑔(𝑈) ∩ 𝑈 ̸= ∅}.

Definition 0.1.5. Two subgroups Γ and Γ′ of a group 𝐺 are said to be

commensurable if Γ ∩ Γ′ is of finite index in Γ and in Γ′.
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Proposition 0.1.6. (1) If Γ1 is commensurable with Γ2 and Γ2 is commen-

surable with Γ3, then Γ1 is commensurable with Γ3

(2) Let Γ and Γ′ be commensurable subgroups of a topological group 𝐺. If Γ

is discrete, then so is Γ′.

(3) Let Γ and Γ′ be commensurable subgroups of a locally compact group 𝐺.

If Γ∖𝐺 is compact, then so is Γ′∖𝐺.

Remark 0.1.7. If Γ is a subgroup of a topological group 𝐺, then we can

consider Γ∖𝐺 (the set of all left cosets of 𝐺) as a topological space (with the

quotient topology).

0.2 Fuchsian Groups

We will start with a brief study of the group GL2(C), which is a (Hausdorff)

topological group (when considered as a topological subspace of C5 defined

by (𝑥𝑤 − 𝑦𝑧)𝑢 = 1).

For 𝜎 =

⎛⎜⎜⎝ 𝑎 𝑏

𝑐 𝑑

⎞⎟⎟⎠ ∈ GL2(C) and 𝑧 ∈ C∪{∞}, we define 𝜎(𝑧) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
.

If 𝜎 is not a multiple of the identity matrix, the Jordan canonical form of

𝜎 is one of the following:
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⎛⎜⎜⎝ 𝜆 1

0 𝜆

⎞⎟⎟⎠ or

⎛⎜⎜⎝ 𝜆 0

0 𝜇

⎞⎟⎟⎠ , 𝜆 ̸= 𝜇

Definition 0.2.1. In the first case, we say 𝜎 is parabolic. In the second

case, letting 𝑐 := 𝜆
𝜇
, we call 𝜎 elliptic if |𝑐| = 1, hyperbolic if 𝑐 is real and

positive and loxodromic otherwise.

Proposition 0.2.2. Let 𝜎 ∈ SL2(C), 𝜎 ̸= ±𝐼. Then

𝜎 is parabolic ⇔ tr(𝜎) = ±2

𝜎 is elliptic ⇔ tr(𝜎) is real and | tr(𝜎)| < 2

𝜎 is hyperbolic ⇔ tr(𝜎) is real and | tr(𝜎)| > 2

𝜎 is loxodromic ⇔ tr(𝜎) is not real.

We will now restrict our attention to GL2(R).

It is not hard to show that if 𝛼 ∈ GL2(R) and 𝑧 ∈ C, then

det(𝛼) · Im(𝑧) = Im(𝛼(𝑧)) · |𝑗(𝛼, 𝑧)|2

where 𝑗(𝛼, 𝑧) := 𝑟𝑧 + 𝑠 and 𝛼 =

⎛⎜⎜⎝ 𝑝 𝑞

𝑟 𝑠

⎞⎟⎟⎠
So, if we take 𝛼 ∈ GL+

2 (R) = {𝛼 ∈ GL2(R)| det(𝛼) > 0}, then 𝛼 maps

ℋ := {𝑧 ∈ C| Im(𝑧) > 0} onto itself. Since 𝛼 induces the identity map if and
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only if it is a multiple of the identity matrix, we may restrict our attention

to
GL+

2 (R)
R* · 𝐼

=
SL2(R)
{±𝐼}

.

Proposition 0.2.3. Let 𝜎 ∈ SL2(R), 𝜎 ̸= ±𝐼. Then,

𝜎 is parabolic ⇔ 𝜎 has only one fixed point on R ∪ {∞}

elliptic ⇔ 𝜎 has one fixed point in 𝑧 ∈ ℋ and the other is 𝑧

hyperbolic ⇔ 𝜎 has two fixed points on R ∪ {∞}

Proposition 0.2.4. Let 𝜎 ∈ SL2(R), 𝜎 ̸= ±𝐼 and let 𝑚 ∈ Z such that

𝜎𝑚 ̸= ±𝐼. Then, 𝜎 is parabolic (resp. elliptic, hyperbolic) if and only if 𝜎𝑚

is parabolic (resp. elliptic, hyperbolic).

Proposition 0.2.5. ℋ is homeomorphic to
SL2(R)
SO(2))

. Moreover the homeo-

morphism preserves the left action of SL2(R).

Definition 0.2.6. A subgroup Γ of SL2(R) is a Fuchsian group if it is

discrete.

From now on, let Γ be a Fuchsian group.

Definition 0.2.7. A point 𝑧 ∈ ℋ is an elliptic point of Γ if there exists

an elliptic element 𝜎 ∈ Γ such that 𝜎(𝑧) = 𝑧. A point 𝑠 ∈ R∪{∞} is a cusp

of Γ if there exists a parabolic 𝜎 ∈ Γ such that 𝜎(𝑠) = 𝑠.
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Proposition 0.2.8. If 𝑧 is an elliptic point if Γ, then {𝜎 ∈ Γ|𝜎(𝑧) = 𝑧} is a

finite cyclic group.

Let 𝑠 be a cusp of Γ. Then, we define

𝐹 (𝑠) := {𝛼 ∈ SL2(R)|𝛼(𝑠) = 𝑠}

𝑃 (𝑠) := {𝛼 ∈ 𝐹 (𝑠)|𝛼 is parabolic or ±𝐼}

Proposition 0.2.9. Let 𝑠 be a cusp of Γ and Γ𝑠 = {𝜎 ∈ Γ|𝜎(𝑠) = 𝑠}. Then

Γ𝑠

Γ ∩ {±𝐼}
is isomorphic to Z. Moreover, an element of Γ𝑠 is either ±𝐼 or

parabolic, i.e., Γ𝑠 = Γ ∩ 𝑃 (𝑠).

Proposition 0.2.10. The elements of finite order of Γ are exactly the elliptic

elements and ±𝐼.

Proposition 0.2.11. The set of all elliptic points of Γ has no limit point in

ℋ.

Proposition 0.2.12. Let 𝜎 is an elliptic element of Γ. If 𝜎 as a matrix is

of order 2ℎ (even), then Γ contains −𝐼 and the transformation 𝑧 ↦→ 𝜎(𝑧) is

of order ℎ.

Corollary 0.2.13. If Γ does not contain −𝐼, then every elliptic element of

Γ is of an odd order.
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Sometimes it is useful to look at the image Γ of Γ via the natural map

SL2(R) −→
SL2(R)
{±𝐼}

= PSL2(R)

Definition 0.2.14. If 𝑧 is an elliptic point of Γ, the order of z (relative

to Γ) is the order of the group {𝜎 ∈ Γ|𝜎(𝑧) = 𝑧} ⊆ Γ.

Proposition 0.2.15. Let 𝛼 of SL2(R) be an elliptic or parabolic element.

Then 𝛼 is not conjugate to 𝛼−1 in SL2(R) .

0.2.1 The topological space Γ∖ℋ*

As before, Γ denotes a Fuchsian group. We define ℋ* := ℋ ∪ {cusps of Γ}.

It is not hard to see that the elements of Γ act on ℋ* and, thus, the

quotient is meaningful. Let us define a topology on ℋ*. For every 𝑧 ∈ ℋ,

as a fundamental system of open neighborhoods of 𝑧, we take the usual one.

For a fundamental system of open neighborhoods of a cusp 𝑠 ̸= ∞ we take

all sets of the form:

{𝑠} ∪ {the interior of a circle in ℋ tangent to the real axis at 𝑠}.

For 𝑠 = ∞ we take the sets

{∞} ∪ {𝑧 ∈ ℋ| Im(𝑧) > 𝑐}
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for all positive numbers 𝑐.

Now we can consider the quotient space Γ∖ℋ* as a topological space (with

the quotient topology). It is not hard to show it is a Hausdorff space and

that the elements of Γ act on it as homeomorphisms.

Lemma 0.2.16. For every cusp 𝑠 of Γ, there exists a neighborhood 𝑈 of 𝑠

in ℋ* such that Γ𝑠 = {𝜎 ∈ Γ|𝜎(𝑈) ∩ 𝑈 ̸= ∅}.

Theorem 0.2.17. The quotient space Γ∖ℋ* is Hausdorff.

Proposition 0.2.18. The quotient space Γ∖ℋ* is locally compact.

Definition 0.2.19. A Fuchsian group Γ is of the first kind if Γ∖ℋ* is

compact.

Proposition 0.2.20. Let Γ and Γ′ be mutually commensurable Fuchsian

groups. Then Γ and Γ′ have the same set of cusps.

Proposition 0.2.21. Let Γ and Γ′ be as in the previous proposition. Then

Γ is of the first kind if and only if Γ′ is of the first kind.

Proposition 0.2.22. If Γ is of the first kind, then the number of Γ-inequivalent

cusps (resp. elliptic points) is finite.

Proposition 0.2.23. If Γ∖ℋ is compact, then Γ has no parabolic element.
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0.2.2 Γ∖ℋ* as a Riemann surface

We will now define a Riemann surface structure on Γ∖ℋ*. Let 𝜙 : ℋ* →

Γ∖ℋ* be the natural projection. For each 𝑣 ∈ ℋ*, define

Γ𝑣 := {𝛾 ∈ Γ|𝛾(𝑣) = 𝑣}.

By Proposition 0.1.4 and Lemma 0.2.16, there exists an open neighborhood

𝑈 of 𝑣 such that

Γ𝑣 = {𝛾 ∈ Γ|𝛾(𝑈) ∩ 𝑈 ̸= ∅}.

This induces a natural injection Γ𝑣∖𝑈 → Γ∖ℋ* and Γ𝑣∖𝑈 → is an open

neighborhood of 𝜙(𝑣) in Γ∖ℋ*.

If 𝑣 is neither an elliptic point nor a cusp, Γ𝑣 contains only 𝐼 and possibly

−𝐼. So, 𝑈 = Γ𝑣∖𝑈 and we take (Γ𝑣∖𝑈,𝜙−1) as a member of the atlas of

Γ∖ℋ*.

What if 𝑣 is an elliptic point? Let Γ𝑣 =
{±𝐼} · Γ𝑣

{±𝐼}
and 𝜆 be a holomorphic

isomorphism of ℋ onto the unit disc 𝐷 such that 𝜆(𝑣) = 0. We know Γ𝑣 is a

cyclic group of finite order (Proposition 0.2.8). If its order is 𝑛, then 𝜆Γ𝑣𝜆
−1

consists of the transformations

𝑤 ↦→ 𝜁𝑘𝑤, 𝑘 = 0, 1, ..., 𝑛− 1, 𝜁 = 𝑒
2𝜋𝑖
𝑛 .
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This allows us to define a map 𝑝 : Γ𝑣∖𝑈 → C by 𝑝(𝜙(𝑧)) = 𝜆(𝑧)𝑛, which is

a homeomorphism onto an open subset of C. Thus, we include (Γ𝑣∖𝑈, 𝑝) in

our atlas.

It remains to study the case of a cusp 𝑠. Let 𝜌 ∈ SL2(R) such that

𝜌(𝑠) = ∞. Then, by Proposition 0.2.9, we have

{±𝐼} · 𝜌Γ𝑠𝜌
−1 =

⎧⎪⎪⎨⎪⎪⎩±

⎛⎜⎜⎝ 1 ℎ

0 1

⎞⎟⎟⎠
𝑚 ⃒⃒⃒
𝑚 ∈ Z

⎫⎪⎪⎬⎪⎪⎭
for some positive number ℎ. Hence, we can define a homeomorphism 𝑝 of

Γ𝑠∖𝑈 onto an open subset of C by 𝑝(𝜙(𝑧)) = 𝑒
2𝜋𝑖𝜌(𝑧)

ℎ and include (Γ𝑠∖𝑈, 𝑝) in

our atlas.

These charts endow Γ∖ℋ* with a Riemann surface structure. By abuse

of language, we will still call points of Γ∖ℋ* elliptic points and cusps if they

come from elliptic points and cusps in ℋ*.

Let Γ be a Fuchsian group of the first kind and Γ′ a subgroup of Γ of

finite index.

Exercise 0.2.24. The natural map 𝑓 : Γ′∖ℋ* → Γ∖ℋ* is holomorphic.

Furthermore, the degree of 𝑓 is
[︀
Γ : Γ′

]︀
.

We therefore have the commutative diagram
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ℋ* 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 //

𝜙′

��

ℋ*

𝜙

��
Γ′∖ℋ*

𝑓
// Γ∖ℋ*

As before, let Γ and Γ′ denote the images of Γ and Γ′ by the natural map

SL2(R) →
SL2(R)
{±𝐼}

.

For every 𝑧 ∈ ℋ* we define

Γ𝑧 := {𝛾 ∈ Γ|𝛾(𝑧) = 𝑧}, Γ
′
𝑧 := Γ𝑧 ∩ Γ′.

Let 𝑧 ∈ ℋ*, 𝑝 = 𝜙(𝑧) and 𝑓−1(𝑝) = {𝑞1, ..., 𝑞ℎ}. Choose points 𝑤𝑘 ∈ ℋ*

such that 𝑞𝑘 = 𝜙′(𝑤𝑘).

Proposition 0.2.25. The ramification index 𝑒𝑘 of 𝑓 at 𝑞𝑘 is
[︁
Γ𝑤𝑘

: Γ
′
𝑤𝑘

]︁
.

Moreover, if 𝑤𝑘 = 𝜎𝑘(𝑧) with 𝜎𝑘 ∈ Γ, then

𝑒𝑘 =
[︀
Γ𝑧 : (𝜎

−1
𝑘 Γ′𝜎𝑘) ∩ Γ𝑧

]︀
and Γ =

ℎ
∪
𝑘=1

Γ′𝜎𝑘Γ𝑧 (disjoint union).

Especially, if Γ′ is a normal subgroup of Γ, then

𝑒1 = ... = 𝑒ℎ and
[︀
Γ : Γ′

]︀
= 𝑒1ℎ.

0.2.3 Signature of a Fuchsian Group

In this subsection we assume Γ satisfies 𝜇(Γ∖ℋ) <∞ (an explanation of this

condition is found in [Kat92], especially Theorem 3.1.1). For the purposes
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of this thesis, it suffices to say that every Fuchsian group in what follows

satisfies this condition.

With this hypothesis, Γ is of the first kind (cf. Theorem 4.5.2 in [Kat92]).

Moreover, it has a fundamental region with finitely many sides (Theorem

4.1.1 in [Kat92]) and, hence, Γ has finitely many conjugacy classes of maximal

elliptic cyclic subgroups (Theorem 3.5.2 in [Kat92]) with periods 𝑚1, · · · ,𝑚𝑟.

Also, Γ has 𝑠 conjugacy classes of maximal parabolic cyclic subgroups. Let

𝑔 denote the genus of Γ∖ℋ*. With that notation, we define the signature of

Γ as follows.

Definition 0.2.26. The tuple (𝑔;𝑚1, . . . ,𝑚𝑟; 𝑠) is the signature of Γ.

Remark 0.2.27. Since parabolic elements are of infinite order (cf. Proposi-

tion 0.2.9), the signature is sometimes written

(𝑔;𝑚1, . . . ,𝑚𝑟,𝑚𝑟+1, . . . ,𝑚𝑟+𝑠)

where 𝑚𝑟+1 = · · · = 𝑚𝑟+𝑠 = ∞.

Proposition 0.2.28. If Γ has signature (𝑔;𝑚1, . . . ,𝑚𝑟; 𝑠) then, as a group,
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Γ is given by the following presentation:

generators: 𝐴1, . . . , 𝐴𝑔, 𝐵1, . . . , 𝐵𝑔, 𝑋1, . . . , 𝑋𝑟, 𝑃1, ..., 𝑃𝑠

relations: 𝑋𝑚1
1 = · · · = 𝑋𝑚𝑟

𝑟 = 1, and

𝑃1 · · ·𝑃𝑠𝑋1 · · ·𝑋𝑟𝐴1𝐵1𝐴
−1
1 𝐵−1

1 · · ·𝐴𝑔𝐵𝑔𝐴
−1
𝑔 𝐵−1

𝑔 = 1

Proof. (see end of section 4.3 in [Kat92])

0.3 Triangle groups

Consider 2 ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 (integers or ∞) such that

1

𝑎
+

1

𝑏
+

1

𝑐
< 1.

Definition 0.3.1. A triangle group of type (𝑎, 𝑏, 𝑐) (or (𝑎, 𝑏, 𝑐)-triangle

group) is a subgroup of SL2(R) whose image in 𝑃𝑆𝐿2(R) is generated by

𝑟1𝑟2, 𝑟2𝑟3 and 𝑟3𝑟1, where 𝑟1, 𝑟2, 𝑟3 are the reflections across the sides of a

hyperbolic triangle with angles 𝜋
𝑎
, 𝜋
𝑏
, 𝜋
𝑐
.

This definition does not tell us explicitly that a triangle group is a Fuch-

sian group. The next theorem tells us exactly that and also gives a charac-

terization of triangle groups in terms of the signature.
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Theorem 0.3.2. (Theorem 10.6.4 in [Bea83]) A group G is an (𝑎, 𝑏, 𝑐)-

triangle group if and only if it is a Fuchsian group of the first kind with

signature (0; 𝑎, 𝑏, 𝑐).

Remark 0.3.3. From the proof of Theorem 10.6.4 in [Bea83], we obtain a

precise statement about the triangle group and its stabilizers. Let 𝑃1, 𝑃2, 𝑃3

be the vertices of a hyperbolic triangle with angles 𝜋/𝑎1, 𝜋/𝑎2, 𝜋/𝑎3 respec-

tively. Consider the triangle group 𝐺 associated to this hyperbolic triangle.

Take generators 𝛾1, 𝛾2, 𝛾3 of 𝑃 whose fixed points are 𝑃1, 𝑃2, 𝑃3. Then the

stabilizers of 𝑃1, 𝑃2 and 𝑃3 (in 𝐺 ≤ PSL2(R)) are

𝐺𝑃𝑖
= ⟨𝛾𝑖⟩

and, moreover,

|⟨𝛾𝑖⟩| = 𝑎𝑖.

Remark 0.3.4. In view of the Proposition 0.2.28, we obtain that an (𝑎, 𝑏, 𝑐)-

triangle group is generated by elements 𝛾1, 𝛾2, 𝛾3 whose images in PSL2(R)

satisfy the following defining relations:⎧⎪⎪⎨⎪⎪⎩
𝛾1𝛾2𝛾3 = 1

𝛾𝑎1 = 𝛾𝑏2 = 𝛾𝑐3 = 1

(if 𝑎 = ∞, the relation 𝛾𝑎1 = 1 is omitted; and similarly for 𝑏 and 𝑐).
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The next theorem (proved in [Tak77]) tells us that an (𝑎, 𝑏, 𝑐)-triangle

group is essentially unique. Because of its importance, we present an outline

of its proof. In what follows, the identity matrix ( 1 0
0 1 ) will be denoted 𝐼.

Theorem 0.3.5. Let 2 ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 (integers or ∞) such that

1

𝑎
+

1

𝑏
+

1

𝑐
< 1.

Let 𝑟 be the number of those which are not ∞. Then

(i) If 𝑟 ≥ 1 and at least one of 𝑎, 𝑏, 𝑐 is even, then there exists an (𝑎, 𝑏, 𝑐)-

triangle group Γ0 such that any (𝑎, 𝑏, 𝑐)-triangle group is 𝑆𝐿2(R)-conjugate

to Γ0. The group Γ0 contains −𝐼.

(ii) If 2 ≤ 𝑟 ≤ 3 and 𝑎, 𝑏, 𝑐 are all odd (or ∞), then there exist two (non-

conjugate) (𝑎, 𝑏, 𝑐)-triangle groups Γ0 and Γ1 such that any (𝑎, 𝑏, 𝑐)-

triangle group is SL2(R)-conjugate to one of them. The group Γ0 con-

tains −𝐼, while Γ1 does not contain −𝐼. Moreover, Γ1 is a subgroup of

index 2 in Γ0

(iii) If either (𝑟 = 1 and 𝑎 is odd) or (𝑟 = 0), then there exist three (non-

conjugate) (𝑎, 𝑏, 𝑐)-triangle groups Γ0, Γ1 and Γ2 such that any (𝑎, 𝑏, 𝑐)-

triangle group is SL2(R)-conjugate to one of them. The group Γ0 con-
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tains −𝐼, while Γ1 and Γ2 do not contain −𝐼. Moreover, both Γ1 and

Γ2 are subgroups of index 2 in Γ0.

Furthermore, all (𝑎, 𝑏, 𝑐)-triangle groups are conjugate to each other in PSL2(R)

(for a fixed triple (𝑎, 𝑏, 𝑐)).

In order to prove this we need the following lemmas

Lemma 0.3.6. Let Γ and Γ′ be two triangle groups of the same type. Then

Γ and Γ′ are 𝑃𝑆𝐿2(R)-conjugate.

Proof. Let Δ and Δ′ be the hyperbolic triangles (with angles 𝛼, 𝛽, 𝛾) associ-

ated with Γ and Γ′ respectively. Since these triangle groups are of the same

type, the angles of the triangles are the same. It is enough to show that

there is an element 𝑔 ∈ 𝑃𝑆𝐿2(R) that sends each edge of Δ to an edge of Δ′.

Since Δ and Δ′ may have different orientations, such a 𝑔 does not necessarily

exist.

But we can assume they have the same orientation. In fact, notice that,

by the definition of a triangle group, Γ = 𝑟𝑖Γ𝑟
−1
𝑖 for any 𝑖 (where 𝑟𝑖 are the

reflections across the edges of Δ). So, by applying some 𝑟𝑖 if necessary, we

may assume that the orientation of Δ and Δ′ are the same.

Now we will show that we can construct such a 𝑔. First we will define
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Figure 1: map g

a map ℎ that sends 𝐶1 ↦→ ∞, 𝐵1 ↦→ 0 𝐶2 ↦→ 1 and a map ℎ′ that sends

𝐶 ′
1 ↦→ ∞, 𝐵′

1 ↦→ 0 𝐶 ′
2 ↦→ 1. Then we define 𝑔 := ℎ′−1 ∘ ℎ (cf. figure 1).

The transformation ℎ can be defined by ℎ(𝑧) := 𝑧−𝐵1

𝑧−𝐶1
· 𝐶2−𝐶1

𝐶2−𝐵1
and ℎ′ can

be defined similarly. One can check that 𝑔 is in fact in PSL2(R).

Now we have to show that 𝑔 sends 𝑎 to 𝑎′, 𝑏 to 𝑏′ and 𝑐 to 𝑐′.

It obviously sends 𝑐 to 𝑐′.

Now 𝑏 is sent to a line starting at 𝐵1 and intersecting 𝑐 with an angle

of 𝛼. Notice there are two such lines (one of them being 𝑏′). But since 𝑔

preserves orientation, 𝑏 must be sent to 𝑏′.

Similarly, 𝑎 is sent to 𝑎′.

The following result was shown in [Pet37].
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Lemma 0.3.7. Let 2 ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 (integers or ∞) such that

1

𝑎
+

1

𝑏
+

1

𝑐
< 1.

Then there exists an (𝑎, 𝑏, 𝑐)−triangle group Γ0 generated by

𝛾01, 𝛾02, 𝛾03, and − 𝐼

such that

tr(𝛾01) = 2 cos
(︁𝜋
𝑎

)︁
, tr(𝛾02) = 2 cos

(︁𝜋
𝑏

)︁
, and tr(𝛾03) = 2 cos

(︁𝜋
𝑐

)︁
.

Moreover, the elements 𝛾0𝑗 satisfy the following defining relations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛾01𝛾02𝛾03(−𝐼) = 1

𝛾𝑎01(−𝐼) = 𝛾𝑏02(−𝐼) = 𝛾𝑐03(−𝐼) = 1

𝛾0𝑗(−𝐼)𝛾−1
0𝑗 (−𝐼) = 1 for all j

(−𝐼)2 = 1

(if 𝑎 = ∞, the relation 𝛾𝑎01(−𝐼) = 1 is omitted; and similarly for 𝑏 and 𝑐).

We are now ready to prove Theorem 0.3.5.

Proof. (of Theorem 0.3.5)

Consider the group Γ0 given by the previous lemma and the natural pro-

jection 𝜋 : 𝑆𝐿2(R) → 𝑃𝑆𝐿2(R).
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(i) Suppose 𝑎 is even (the cases 𝑏 even or 𝑐 even are completely analogous).

Let Γ be an (𝑎, 𝑏, 𝑐)-triangle group. First we will show that −𝐼 ∈ Γ. Then

Γ has an element 𝛾 whose image in PSL2(R) has order 𝑎. So, 𝛾𝑎 = ±𝐼. If

it is −𝐼, then we are done. If we had 𝛾𝑎 = 𝐼, then 𝛾𝑎/2 = ±𝐼 and then

ord 𝛾 ≤ 𝑎/2, a contradiction. Hence, Γ = 𝜋−1(𝜋(Γ)).

By Lemma 0.3.6, 𝜋(Γ) = 𝑔𝜋(Γ0)𝑔
−1 for some 𝑔 ∈ SL2(R). So,

Γ = 𝜋−1(𝜋(Γ)) = 𝜋−1(𝑔𝜋(Γ0)𝑔
−1) = 𝜋−1(𝜋(𝑔)𝜋(Γ0)𝜋(𝑔

−1))

= 𝜋−1(𝜋(𝑔Γ0𝑔
−1)) = 𝑔Γ0𝑔

−1

where the last equality follows from the fact that −𝐼 ∈ 𝑔Γ0𝑔
−1.

(ii) Let 𝛾1𝑗 := −𝛾0𝑗 and define Γ1 := ⟨𝛾11, 𝛾12, 𝛾13⟩. From the defining

relations of the 𝛾0𝑗’s, we obtain defining relations for the 𝛾1𝑗’s:⎧⎪⎪⎨⎪⎪⎩
𝛾11𝛾12𝛾13 = 1

𝛾𝑎11 = 𝛾𝑏12 = 𝛾𝑐13 = 1

(if 𝑎 = ∞, the relation 𝛾𝑎01 = 1 is omitted; and similarly for 𝑏 and 𝑐)

It is clear that Γ1 is also of type (𝑎, 𝑏, 𝑐) since 𝜋(Γ1) = 𝜋(Γ1). Looking

at the defining relations of Γ1 and of 𝜋(Γ1) (= 𝜋(Γ0)), we see that 𝜋|Γ1

is an isomorphism of Γ1 onto 𝜋(Γ1). This shows that −𝐼 ̸∈ Γ1 and that

[Γ0 : Γ1] = 2. Since −𝐼 ̸∈ Γ1 and −𝐼 ∈ Γ0, Γ1 and Γ0 are not SL2(R)-

conjugate.
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Let Γ be any (𝑎, 𝑏, 𝑐)-triangle group. If −𝐼 ∈ Γ, then Γ is SL2(R)-

conjugate to Γ0 (proof is similar to the proof in case (i)). Suppose now

that −𝐼 ̸∈ Γ. By Lemma 0.3.6 we may assume 𝜋(Γ) = 𝜋(Γ0) (in fact, the

lemma says 𝜋(𝑔Γ𝑔−1) = 𝜋(Γ0) and if Γ0 is conjugate to 𝑔Γ𝑔−1, then it is also

conjugate to Γ). Since −𝐼 ̸∈ Γ, Γ is isomorphic to 𝜋(Γ) = 𝜋(Γ1). Hence,

we can find a set {𝛾1, 𝛾2, 𝛾3} of generators of Γ such that 𝛾𝑗 = 𝛾1𝑗. Thus,

𝛾𝑗 = 𝜖𝑗𝛾1𝑗, where 𝜖 = ±𝐼. So, 𝛾𝑎1 = 𝜖𝑎1𝛾
𝑎
11 = 𝜖𝛾𝑎11 = 𝜖1 and, since −𝐼 ̸∈ Γ,

𝑒𝑝𝑠𝑖𝑙𝑜𝑛1 = 𝐼. Similarly, 𝜖2 = 𝐼. Also, 𝛾1𝛾2𝛾3 = 𝜖1𝜖2𝜖3𝛾11𝛾12𝛾13 = 𝜖1𝜖2𝜖3 and,

hence, 𝜖1𝜖2𝜖3 = 1. Thus, 𝜖3 = 𝐼. So, Γ = Γ1.

(iii)[case (𝑎, 𝑏, 𝑐) = (𝑎,∞,∞) with 𝑎 odd] Let Γ0 and Γ1 be as in (ii).

Define 𝛾21 := −𝛾01, 𝛾22 := 𝛾02, 𝛾23 := 𝛾03 and Γ2 := ⟨𝛾21, 𝛾22, 𝛾23⟩. Like in the

proof of (ii), we can show that Γ2 is isomorphic to 𝜋(Γ2) and that −𝐼 ̸∈ Γ2

(and, thus, Γ2 is not SL2(R)-conjugate to Γ0). Let us show now that Γ2 is

not SL2(R)-conjugate to Γ1. Suppose it is. Since 𝛾23 is a primitive parabolic

element of Γ2 with tr(𝛾23) = 2, Γ1 also contains a primitive parabolic element

𝛾 with tr(𝛾) = 2. So, ∃𝛿 ∈ Γ such that 𝛾 = 𝛿𝛾𝜈12𝛿
−1

or 𝛾 = 𝛿𝛾𝜈13𝛿
−1

, where

𝜈 = ±1. Since −𝐼 ̸∈ Γ1, we obtain 𝛾 = 𝛿𝛾𝜈12𝛿
−1 or 𝛾 = 𝛿𝛾𝜈13𝛿

−1. But

tr(𝛾12) = tr(𝛾13) = −2, a contradiction.

Now let Γ be any (𝑎,∞,∞)-triangle group. We will show that Γ is SL2(R)-
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conjugate to one of the Γ𝑖’s. By Lemma 0.3.6 we may assume 𝜋(Γ) = 𝜋(Γ0).

If −𝐼 ∈ Γ, then Γ = Γ0. Assume now −𝐼 ̸∈ Γ. Then Γ is isomorphic to 𝜋(Γ).

So Γ = ⟨𝛾1, 𝛾2, 𝛾3⟩, where 𝛾1 = 𝛾01, 𝛾2 = 𝛾02 and 𝛾3 = 𝛾03. Proceeding as

in the proof of (ii) and using the fact that 𝑎 is odd, we can then prove that

Γ = Γ1 or Γ2.

(iv)[case (𝑎, 𝑏, 𝑐) = (∞,∞,∞)] We define Γ0 as an (∞,∞,∞)-triangle

group with respect to the hyperbolic triangle having sides 0, 1, and ∞ by

giving its generators:

𝛾01 =

⎛⎜⎜⎝1 2

0 1

⎞⎟⎟⎠ 𝛾02 =

⎛⎜⎜⎝ 1 0

−2 1

⎞⎟⎟⎠ 𝛾03 =

⎛⎜⎜⎝−1 2

−2 3

⎞⎟⎟⎠ .

Now define Γ1 := and ⟨−𝛾01,−𝛾02,−𝛾03⟩ and 𝛾2 := ⟨−𝛾01, 𝛾02, 𝛾03⟩. As

before, we can see that Γ1 and Γ2 do not contain −𝐼. Since 𝛾02 is a primitive

parabolic element of Γ2, Γ2 is not SL2(R)-conjugate to Γ1.

Let Γ be any (∞,∞,∞)-triangle group. By Lemma 0.3.6, we may assume

that 𝜋(Γ) = 𝜋(Γ0). If −𝐼 ∈ Γ, then Γ = Γ0. Assume now that −𝐼 ̸∈ Γ. Since

𝜋(Γ) = 𝜋(Γ0), Γ = ⟨𝛾1, 𝛾2, 𝛾3⟩ such that 𝛾𝑗 = 𝛾0𝑗 for each 𝑗 = 1, 2, 3. Hence,

𝛾𝑗 = 𝜖𝑗𝛾0𝑗 where 𝜖𝑗 = ±𝐼. Using the defining relations of Γ0 and the fact

that −𝐼 ̸∈ Γ, we obtain that

(𝜖1, 𝜖2, 𝜖3) = (−1,−1,−1) or (−1, 1, 1) or (1,−1, 1) or (1, 1,−1).
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From the relations⎛⎜⎜⎝ 0 1

−1 0

⎞⎟⎟⎠ 𝛾02

⎛⎜⎜⎝ 0 1

−1 0

⎞⎟⎟⎠
−1

= 𝛾01,

⎛⎜⎜⎝ 0 1

−1 1

⎞⎟⎟⎠ 𝛾03

⎛⎜⎜⎝ 0 1

−1 1

⎞⎟⎟⎠
−1

= 𝛾01,

⎛⎜⎜⎝ 0 1

−1 0

⎞⎟⎟⎠ 𝛾01

⎛⎜⎜⎝ 0 1

−1 0

⎞⎟⎟⎠
−1

= 𝛾02,

⎛⎜⎜⎝ 0 1

−1 1

⎞⎟⎟⎠ 𝛾01

⎛⎜⎜⎝ 0 1

−1 1

⎞⎟⎟⎠
−1

= 𝛾02, and

⎛⎜⎜⎝ 0 1

−1 1

⎞⎟⎟⎠ 𝛾02

⎛⎜⎜⎝ 0 1

−1 1

⎞⎟⎟⎠
−1

= 𝛾03

we see that Γ is SL2(R)-conjugate to Γ2 if (𝜖1, 𝜖2, 𝜖3) = (1,−1, 1) or (1, 1,−1).
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Chapter 1

Congruence subgroups and

modular curves

In the theory of classical modular forms for SL2(Z), an important role is

played by the congruence subgroups

Γ(𝑝) = {𝐴 ∈ SL2(Z) | 𝐴 ≡ ( 1 0
0 1 ) (mod 𝑝)},

Γ1(𝑝) = {𝐴 ∈ SL2(Z) | 𝐴 ≡ ( 1 *
0 1 ) (mod 𝑝)}, and

Γ0(𝑝) = {𝐴 ∈ SL2(Z) | 𝐴 ≡ ( * *
0 * ) (mod 𝑝)}
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and their respective modular curves

𝑋(𝑝) = Γ(𝑝)∖ℋ*,

𝑋1(𝑝) = Γ1(𝑝)∖ℋ*, and

𝑋0(𝑝) = Γ0(𝑝)∖ℋ*.

In this chapter, we define and study the basic properties of congruence

subgroups of some triangle groups and their corresponding modular curves.

In Section 1, we will see how to define congruence subgroups of certain tri-

angle groups and, therefore, also define their corresponding modular curves.

Those groups will be denoted Γ𝑞,𝑟,∞(p), Γ
(1)
𝑞,𝑟,∞(p) and Γ

(0)
𝑞,𝑟,∞(p) in analogy to

the classical case.

Section 2 will be devoted to the study of the groups Γ𝑞,𝑟,∞(p). First we

find the genus of the modular curve associated to it. In this process we

answer an interesting question: what is the quotient group Γ𝑞,𝑟,∞/Γ𝑞,𝑟,∞(p)?

In the classical case, this group is simply SL2(F𝑝). We will see this is not

always the case for triangle groups.

Finally, we end this chapter with the computation of the genus of the

modular curve associated to the group Γ
(0)
𝑞,𝑟,∞(p) in Section 3.
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0 1-1

π/q

π/r

-cos(π/q) cos(π/r)

Figure 1.1: Hyperbolic triangle with angles 𝜋/𝑞, 𝜋/𝑟, 0 = 𝜋/∞

1.1 Basic definitions and notations

From now on, unless otherwise stated, for a triple (𝑞, 𝑟,∞), which is assumed

to satisfy 𝑞 ≤ 𝑟 ≤ ∞, the symbol Γ𝑞,𝑟,∞ will denote a ‘standard’ realization of

a (𝑞, 𝑟,∞)-triangle group: namely, it is the triangle group constructed from

the hyperbolic triangle having as sides an arc of the unit circle and vertical

half-lines as shown on figure 1.1. Such a triangle group is generated as a

subgroup of SL2(R) by 𝛾1, 𝛾2, and 𝛾3, where

𝛾1 =

⎛⎜⎜⎝−2 cos(𝜋/𝑞) −1

1 0

⎞⎟⎟⎠ , 𝛾2 =

⎛⎜⎜⎝ 0 1

−1 2 cos(𝜋/𝑟)

⎞⎟⎟⎠ ,
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𝛾3 =

⎛⎜⎜⎝1 2 cos(𝜋/𝑞) + 2 cos(𝜋/𝑟)

0 1

⎞⎟⎟⎠ .

Moreover, as was explained in the previous chapter, they satisfy

𝛾1𝛾2𝛾3 = 1 and 𝛾1
𝑞 = 𝛾2

𝑟 = 1.

So, letting 𝜁𝑛 = exp(2𝜋𝑖/𝑛),

Γ𝑞,𝑟,∞ ⊆

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
SL2(Z[𝜁2𝑞 + 𝜁−1

2𝑞 ]), if [𝑞 ̸= ∞, 𝑟 = ∞] or [𝑞 = 𝑟 ̸= ∞]

SL2(Z[𝜁2𝑞 + 𝜁−1
2𝑞 , 𝜁2𝑟 + 𝜁−1

2𝑟 ]), if 𝑞, 𝑟 ̸= ∞, 𝑞 ̸= 𝑟

SL2(Z), if 𝑞, 𝑟 = ∞.

Each of these rings is the ring of integers of a number field, denoted 𝒪.

In particular, Z[𝜁2𝑞 + 𝜁−1
2𝑞 ] is the ring of integers of Q(𝜁2𝑞 + 𝜁−1

2𝑞 ), the maximal

real subfield of the cyclotomic field Q(𝜁2𝑞) (cf. Prop. 2.16 in [Was82]).

This remark makes it possible to give the following definitions in analogy

with the case of the modular group SL2(Z).

Definition 1.1.1. Given a prime ideal p of 𝒪, we can define mock congruence

subgroups of Γ𝑞,𝑟,∞ with level p as

Γ𝑞,𝑟,∞(p) :=

⎧⎪⎪⎨⎪⎪⎩𝑀 ∈ Γ𝑞,𝑟,∞

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑀 ≡

⎛⎜⎜⎝1 0

0 1

⎞⎟⎟⎠ (mod p)

⎫⎪⎪⎬⎪⎪⎭ ,
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Γ(1)
𝑞,𝑟,∞(p) :=

⎧⎪⎪⎨⎪⎪⎩𝑀 ∈ Γ𝑞,𝑟,∞

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑀 ≡

⎛⎜⎜⎝1 *

0 1

⎞⎟⎟⎠ (mod p)

⎫⎪⎪⎬⎪⎪⎭ , 𝑎𝑛𝑑

Γ(0)
𝑞,𝑟,∞(p) :=

⎧⎪⎪⎨⎪⎪⎩𝑀 ∈ Γ𝑞,𝑟,∞

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑀 ≡

⎛⎜⎜⎝* *

0 *

⎞⎟⎟⎠ (mod p)

⎫⎪⎪⎬⎪⎪⎭ .

Notice that, as in the case of SL2(Z), the group Γ𝑞,𝑟,∞(p) is normal and

of finite index in Γ𝑞,𝑟,∞.

In analogy with the classical case, we also define the mock modular curves

associated to those groups:

𝑋𝑞,𝑟,∞ := Γ𝑞,𝑟,∞∖ℋ*,

𝑋𝑞,𝑟,∞(p) := Γ𝑞,𝑟,∞(p)∖ℋ*,

𝑋
(1)
𝑞,𝑟,∞(p) := Γ

(1)
𝑞,𝑟,∞(p)∖ℋ*, and

𝑋
(0)
𝑞,𝑟,∞(p) := Γ

(0)
𝑞,𝑟,∞(p)∖ℋ*.

(1.1)

We know that the genus of 𝑋𝑞,𝑟,∞ is zero. In the first section, we will

find the genus of 𝑋𝑞,𝑟,∞(p) in terms of the index [Γ𝑞,𝑟,∞ : Γ𝑞,𝑟,∞(p)] and then

proceed to compute when the quotient Γ𝑞,𝑟,∞/Γ𝑞,𝑟,∞(p) is equal to PSL2(Fp).

In the second section, we compute the genus of 𝑋
(𝑖)
𝑞,𝑟,∞(p) for some ideals p.

We will focus on the case 𝑟 = ∞ and call

𝜆𝑞 = 𝜁2𝑞 + 𝜁−1
2𝑞 and 𝜇𝑞 = 2 + 𝜆𝑞
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so that

𝛾1 =

⎛⎜⎜⎝−𝜆𝑞 −1

1 0

⎞⎟⎟⎠ , 𝛾2 =

⎛⎜⎜⎝ 0 1

−1 2

⎞⎟⎟⎠ , and 𝛾3 =

⎛⎜⎜⎝1 𝜇𝑞

0 1

⎞⎟⎟⎠ .

Let us start by defining the following map:

𝜌 : Γ𝑞,∞,∞ −→ SL2

(︂
Z[𝜆𝑞]
p

)︂
(1.2)

which sends each matrix to the matrix with reduced entries. It is easy to

see that the kernel of this map is exactly Γ𝑞,∞,∞(p). In particular, the group

Γ𝑞,∞,∞(p) is normal in Γ𝑞,∞,∞.

1.2 Computing the genus of 𝑋𝑞,∞,∞(p)

The genus of the curves associated to the Hecke triangle groups (that is,

Γ2,𝑟,∞(p)) were computed in [LLT00]. In this section we deal in a similar way

with the triangle groups Γ𝑞,∞,∞.

The next proposition shows that if we know 𝜇 =
[︁
Γ𝑞,∞,∞ : Γ𝑞,∞,∞(p)

]︁
,

then we can compute the genus of 𝑋𝑞,∞,∞(p) (for some ideals p), where

Γ𝑞,∞,∞ and Γ𝑞,∞,∞(p) are the images of Γ𝑞,∞,∞ and Γ𝑞,∞,∞(p) respectively in

PSL2(Z[𝜆𝑞]).
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Proposition 1.2.1. Suppose 𝑞 is an odd prime number and p is a prime

ideal of Z[𝜆𝑞] lying above 𝑝Z. Suppose also that 𝑝 ̸= 𝑞. Then the genus of

𝑋𝑞,∞,∞(p) is

1 +
𝜇

2

(︂
1− 2

𝑝
− 1

𝑞

)︂
Proof. To simplify notation, let us call Γ = Γ𝑞,∞,∞.

Let 𝜙 : Γ(p)∖ℋ* −→ Γ∖ℋ* be the natural map. We know this map is

holomorphic and has degree 𝜇 (exercise 0.2.24). So we can use Riemann-

Hurwitz formula to compute the genus 𝑔 of Γ(p)∖ℋ*:

2𝑔 − 2 = 𝜇(2 · 0− 2) +
∑︀

𝑃∈Γ(𝐽)∖ℋ*
(𝑒𝑃 − 1)

= −2𝜇+
∑︀

𝑃∈Γ(𝐽)∖ℋ*
(𝑒𝑃 − 1)

where 𝑒𝑃 is the ramification index of 𝜙 at 𝑃 .

By Proposition 0.2.25, we see that the only points 𝑃 which may have

𝑒𝑃 > 1 are the points which are mapped to cusps or elliptic points.

By looking at a fundamental region of Γ (figure 1.2) we see that this

group has:

(i) 2 Γ-inequivalent cusps: 1 and ∞

(ii) 1 Γ-inequivalent elliptic point: 𝑧0 = 𝑒𝑖(𝜋−
𝜋
𝑞
).
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Figure 1.2: A fundamental region for Γ𝑞,∞,∞

Moreover, Remark 0.3.3 implies that Γ1 = ⟨𝛾2⟩, Γ∞ = ⟨𝛾3⟩ and Γ𝑧0 = ⟨𝛾1⟩.

In particular, |Γ𝑧0| = 𝑞.

Consider {𝑤1, . . . , 𝑤𝑘(1)} = 𝜙−1(1) and let 𝑒
(1)
1 , . . . , 𝑒

(1)

𝑘(1)
be their respective

ramifications indices. Since Γ(p)�Γ, Proposition 0.2.25 says that 𝑒
(1)
1 = · · · =

𝑒
(1)
𝑘 =

[︁
Γ1 : Γ(p)1

]︁
and 𝑘(1)𝑒

(1)
1 = 𝜇.

Γ1 = ⟨𝛾2⟩ and Γ(p)1 = Γ1 ∩ Γ(p). Since 𝛾𝑛2 =

⎛⎜⎜⎝ −𝑛+ 1 𝑛

−𝑛 𝑛+ 1

⎞⎟⎟⎠ and
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p ∩ Z = 𝑝Z, then Γ(p)1 = ⟨𝛾𝑝2⟩. So,

𝑒
(1)
1 = · · · = 𝑒

(1)
𝑘 = 𝑝 and 𝑘(1) =

𝜇

𝑝
(1.3)

Let us now compute the ramification indices of 𝜙−1(∞). For this we need

a claim (recall that 𝜇𝑞 = −2− 𝜁2𝑞 − 𝜁−1
2𝑞 ):

Claim. NQ(𝜁2𝑞)/Q(𝜇𝑞) = 𝑞2.

In fact, notice that 𝜇𝑞 = −(1 + 𝜁2𝑞)(1 + 𝜁−1
2𝑞 ). Since 𝑞 is odd, −𝜁2𝑞 is a

primitive 𝑞-th root of unity. So, the minimal polynomial of 𝜁2𝑞 is 𝜑𝑞(−𝑥),

where 𝜑𝑞 is the 𝑞-th cyclotomic polynomial. So, the minimal polynomial of

1+𝜁2𝑞 is ℎ(𝑥) = 𝜑𝑞(−(𝑥−1)) = 𝜑𝑞(−𝑥+1) = (−𝑥+1)𝑞−1+ · · ·+(−𝑥+1)+1.

Thus, the constant term of ℎ is 𝑞. Hence, NQ(𝜁2𝑞)/Q(1 + 𝜁2𝑞) = 𝑞. Similarly,

NQ(𝜁2𝑞)/Q(1 + 𝜁−1
2𝑞 ) = 𝑞. So, NQ(𝜁2𝑞)/Q(𝜇𝑞) = (−1)𝑞−1 · NQ(𝜁2𝑞)/Q(1 + 𝜁2𝑞) ·

NQ(𝜁2𝑞)/Q(1 + 𝜁−1
2𝑞 ) = 𝑞2.

Hence, there exists 𝑓(𝑥) ∈ Z[𝑥] such that 𝜇𝑞𝑓(𝜇𝑞) = 𝑞2 (𝑓(𝜇𝑞) is the

product of all the Galois conjugates of 𝜇𝑞 except for 𝜇𝑞 itself). Since 𝑝 ̸= 𝑞,

this implies 𝜇𝑞 ̸∈ p (in fact, if 𝜇𝑞 ∈ p, then 𝑞2 = 𝜇𝑞𝑓(𝜇𝑞) ∈ p, which is
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impossible because p ∩ Z = 𝑝Z).

Now, since 𝛾𝑛3 =

⎛⎜⎜⎝ 1 𝑛𝜇𝑞

0 1

⎞⎟⎟⎠ and Γ∞ = ⟨𝛾3⟩, we see that Γ(p)∞ = ⟨𝛾3𝑝⟩.

And, hence,
[︁
Γ∞ : Γ(p)∞

]︁
= 𝑝.

Therefore, if {𝑣1, . . . , 𝑣𝑘(∞)} = 𝜙−1(∞) and 𝑒
(∞)
1 , . . . , 𝑒

(∞)

𝑘(∞) are their re-

spective ramification indices, by Proposition 0.2.25, we get

𝑒
(∞)
1 = · · · = 𝑒

(∞)

𝑘(∞) = 𝑝 and 𝑘(∞) =
𝜇

𝑝
(1.4)

Now we shall compute the ramification indices of 𝜙−1(𝑧0). We need to

compute Γ(p)𝑧0 . Since Γ(p)𝑧0 = Γ𝑧0 ∩ Γ(p) and Γ𝑧0 has only elliptic ele-

ments (in addition to the identity), the next claim tells us that |Γ(p)𝑧0| = 1.

Therefore,
[︁
Γ𝑧0 : Γ(p)𝑧0

]︁
= 𝑞.

Claim. Γ(p) has no elliptic element.

Since 𝑧0 is the only inequivalent elliptic point and Γ𝑧0 = ⟨𝛾1⟩, we see

that any elliptic element of Γ is conjugate to some (non-trivial) power of 𝛾1.

Since Γ(p) � Γ, if Γ(p) contains an elliptic element, it would also contain

some (non-trivial) power of 𝛾1. But since ord(𝛾) = 𝑞 is a prime, Γ(p) would
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contain 𝛾1. But 𝛾1 =

⎛⎜⎜⎝ * *

* 0

⎞⎟⎟⎠ and, hence, 𝛾1 /∈ Γ(p) (1 ̸≡ 0 (mod p)).

Hence, if 𝜙−1(𝑧0) = {𝑦1, . . . , 𝑦𝑘(𝑧0)} and 𝑒
(𝑧0)
1 , . . . , 𝑒

(𝑧0)

𝑘(𝑧0)
are their respective

indices, Proposition 0.2.25 tells us that

𝑒
(𝑧0)
0 = · · · = 𝑒

(𝑧0)

𝑘(𝑧0)
= 𝑞 and 𝑘(𝑧0) =

𝜇

𝑞
(1.5)

Using the Riemann-Hurwitz formula with the information given by (1.3),

(1.4) and (1.5) we get:

2𝑔 − 2 = −2𝜇+ 𝜇
𝑝
(𝑝− 1) + 𝜇

𝑝
(𝑝− 1) + 𝜇

𝑞
(𝑞 − 1)

= 𝜇
(︁
−2 + 2− 2

𝑝
+ 1− 1

𝑞

)︁
= 𝜇

(︁
1− 2

𝑝
− 1

𝑞

)︁
.

Hence,

𝑔 = 1 +
𝜇

2

(︂
1− 2

𝑝
− 1

𝑞

)︂
.

1.2.1 Special linear groups over finite fields

In this section we will use the facts below. Their proofs can either be found

in the given reference or be easily deduced by the reader.
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Fact 1. For any prime 𝑝, we have | SL2(F𝑝𝑚)| = (𝑝𝑚 + 1)𝑝𝑚(𝑝𝑚 − 1).

Fact 2. A presentation for SL2(F5) is given by

SL2(F5) = ⟨𝑥, 𝑦 | 𝑥5 = 𝑦3 = (𝑥𝑦)4 = 1⟩.

(cf. Example 4, Section 6, Chapter 2 in [Suz82])

Fact 3. Let ⟨𝑋 | 𝑅⟩ be a presentation of a group 𝐺. If 𝑅′ is another set of

relations, then the group 𝐻 = ⟨𝑋 | 𝑅 ∪ 𝑅′⟩ is a homomorphic image of 𝐺.

(cf. Result 6.7, Chapter 2 in [Suz82])

We state a theorem due to Dickson (Theorem 6.17, Chapter 3 in [Suz82]).

Theorem 1.2.2. Let 𝐹 be an algebraically closed field of characteristic 𝑝 ≥ 2

and 𝐺 be a finite subgroup of SL2(𝐹 ) such that |𝐺| is divisible by 𝑝 and 𝐺

admits at least two Sylow 𝑝-subgroups of order 𝑝𝑟. Then 𝐺 is isomorphic to

one of the following groups:

(i) 𝑝 = 2 and 𝐺 is dihedral of order 2𝑛 where 𝑛 is odd

(ii) 𝑝 = 3 and 𝐺 ∼= SL2(F5)

(iii) SL2(𝐾)

(iv)

⟨
SL2(𝐾), 𝑑𝜋 =

⎛⎜⎜⎝ 𝜋 0

0 𝜋−1

⎞⎟⎟⎠
⟩
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where 𝐾 is a field of 𝑝𝑟 elements and 𝜋 is an element such that 𝐾(𝜋) is a

field of 𝑝2𝑟 elements and 𝜋2 is a generator of 𝐾×.

This allows us to prove the following:

Corollary 1.2.3. Let 𝑝 ≥ 3 be a prime number and 𝐸 = F𝑝(𝑧) be the field

with 𝑝𝑚 elements, where 𝑧 ̸= 0. Let 𝐺 be the subgroup of SL2(𝐸) generated

by ⎛⎜⎜⎝ 0 1

−1 2

⎞⎟⎟⎠ and

⎛⎜⎜⎝ 1 𝑧

0 1

⎞⎟⎟⎠
Then,

(i) 𝐺 ∼= SL2(F5) if 𝑝 = 3 and 𝑧2 = 2

(ii) 𝐺 ∼= SL2(𝐸) otherwise.

Proof. Denote by 𝑣 and 𝑢𝑧 the matrices⎛⎜⎜⎝ 0 1

−1 2

⎞⎟⎟⎠ and

⎛⎜⎜⎝ 1 𝑧

0 1

⎞⎟⎟⎠
respectively. Note that ord(𝑣) = ord(𝑢𝑧) = 𝑝. We shall prove that 𝑣 and 𝑢𝑧

belong to two distinct Sylow 𝑝-subgroups.
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Claim. Let 𝑈 = {𝑢𝑎 : 𝑎 ∈ F𝑞} ⊆ SL2(𝐸) where 𝑞 = 𝑝𝑚 and 𝑢𝑎 =

⎛⎜⎜⎝ 1 𝑎

0 1

⎞⎟⎟⎠.

Then 𝑈 ∩𝐺 is a 𝑝-Sylow of 𝐺. More generally, 𝑈 ∩𝐺 is the only 𝑝-Sylow of

𝐺 that contains 𝑢𝑧.

Let 𝑃 be a 𝑝-Sylow of SL2(𝐸) containing 𝑢𝑧. We will prove 𝑃 = 𝑈 .

The claim would then follow by one of the Sylow theorems (namely the one

which says that any 𝑝-subgroup is contained in a 𝑝-Sylow). In fact, by one

of the Sylow theorems, 𝑃 = 𝛼𝑈𝛼−1 for some 𝛼 =

⎛⎜⎜⎝ 𝑎 𝑏

𝑐 𝑑

⎞⎟⎟⎠ ∈ SL2(F𝑞)

(because 𝑈 is a 𝑝-Sylow of SL2(F𝑞)). So, there exists 𝑧′ ∈ F𝑞∖{0} such that

𝑢𝑧 = 𝛼𝑢𝑧′𝛼
−1 =

⎛⎜⎜⎝ 1− 𝑎𝑐𝑧′ 𝑎2𝑧

−𝑐2𝑧 1 + 𝑎𝑐𝑧

⎞⎟⎟⎠. Hence, 𝑐 = 0. Thus, 𝑃 = 𝑈 .

Hence, 𝑣 and 𝑢𝑧 belong to two distinct 𝑝-Sylows of 𝐺. Therefore, we can

use 1.2.2.

Since we are assuming 𝑝 > 2, there are only 3 possibilities for 𝐺: SL2(F5)

(this can only happen when 𝑝 = 3), SL2(F𝑝𝑟) or ⟨SL2(F𝑝𝑟), 𝑑𝜋⟩, where 𝑝𝑟 is

the order a 𝑝-Sylow of 𝐺.

Claim. 𝐺 � ⟨SL2(F𝑝𝑟), 𝑑𝜋⟩.
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Let 𝐻 = ⟨SL2(F𝑝𝑟), 𝑑𝜋⟩. If 𝐺 ∼= 𝐻, then their respective abelianizations

are also isomorphic: 𝐺ab ∼= 𝐻ab. Since 𝐺 = ⟨𝑣, 𝑢𝑧⟩ and ord(𝑣) = ord(𝑢𝑧) = 𝑝,

every element of 𝐺ab has order 𝑝. We claim that 𝑑𝜋 (the image of 𝑑𝜋 in 𝐻ab)

can’t have order 𝑝.

In fact, ord(𝑑𝜋) = ord(𝜋). We know that ord(𝜋2) = 𝑝𝑟 − 1. On the other

hand,

ord(𝜋) =

⎧⎪⎪⎨⎪⎪⎩
ord(𝜋2) , if ord(𝜋) is odd

2 ord(𝜋2) , if ord(𝜋) is even

So, ord(𝜋) = (𝑝𝑟 − 1) or 2(𝑝𝑟 − 1).

Since ord(𝑑𝜋) | ord(𝑑𝜋) and 𝑝 - 2(𝑝𝑟 − 1), ord(𝑑𝜋) ̸= 𝑝.

It remains to show that if 𝑝 = 3, then 𝐺 ∼= SL2(F5) if and only if 𝑧2 = 2.

Claim. If 𝑝 = 3 and 𝐺 ∼= SL2(F5), then 𝑧2 = 2.

By the corollaries of Theorem 9.8, Chapter 1 in [Suz82], we have 𝑍(𝐺) =

{±𝐼} and, thus, |𝑍(𝐺)| = 2. So, by the corollary of Theorem 9.9, Chapter

1 in [Suz82], 𝐺
𝑍(𝐺)

is a simple group of order 60. Therefore, by Exercise 9,

Section 3, Chapter 3 in [Suz82], 𝐺
𝑍(𝐺)

∼= 𝐴5.

Let 𝑣 and 𝑢−1
𝑧 be the images of 𝑣 and 𝑢−1

𝑧 respectively in 𝐴5. Since 𝑣
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and 𝑢−1
𝑧 are clearly not in 𝑍(𝐺) and their order is 3, we get that ord(𝑣) =

ord(𝑢−1
𝑧 ) = 3. So, 𝑣 = (𝑎𝑏𝑐) and 𝑢−1

𝑧 = (𝑑𝑒𝑓). Obviously we need to have

{𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} = {1, 2, 3, 4, 5}. Without loss of generality, 𝑣 = (123) and

𝑢−1
𝑧 = (145). So, 𝑣𝑢−1

𝑧 = (12345). So, (𝑣𝑢−1
𝑧 )5 = ±𝐼. Thus, ord(𝑣𝑢−1

𝑧 ) = 5

or 10. Hence, looking at the Jordan canonical form of 𝑣𝑢−1
𝑧 , we get

𝑧 + 2 = tr(𝑣𝑢−1
𝑧 ) = ±(𝑥+ 𝑥−1)

for some 𝑥 primitive fifth root of unity over F3.

Since 𝑥4 + 𝑥3 + 𝑥2 + 𝑥+ 1 = 0,

(𝑧 + 2)2 = ∓(𝑧 + 2) + 1 , i.e., 𝑧2 = 𝑧 + 1 or 𝑧2 = 2

If 𝑧2 = 𝑧 + 1, then 𝐺 = ⟨𝑣, 𝑢𝑧⟩ has 720 elements1. Hence, 𝑧2 = 2.

Claim. If 𝑧2 = 2, then 𝐺 ∼= SL2(F5).

We also have1 that |𝐺| = 120. So, |𝐺| = | SL2(F5)| (by fact 1). Let

ℎ = (𝑣𝑢𝑧)
2 =

⎛⎜⎜⎝ 2 2 + 2𝑧

𝑧 + 1 2 + 2𝑧

⎞⎟⎟⎠. Notice ℎ5 = 𝑢3 = (ℎ𝑢)4 = 1. Moreover,

𝛼 = ℎ−1𝑢ℎ. Hence, 𝐺 = ⟨ℎ, 𝑢⟩. Then, since 𝐺 = | SL2(F5)|, by facts 2 and 3

we obtain 𝐺 ∼= SL2(F5).

1Verified using the computer algebra system Sage [S+12].
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1.2.2 A bit of algebraic number theory

Our goal in this section is to state some basic facts from algebraic number

theory and give an explicit formula for 𝑓(B+|𝑝) that will be used later. Unless

otherwise mentioned, the facts and definitions in this section can be found

in most algebraic number theory textbooks like [Mar77] and [FT93].

Let us start fixing our notation:

· 𝑒(− | −) := ramification index of one prime above another one,

· 𝑓(− | −) := inertia degree of one prime above another one,

· 𝑟(− | −) := number of distinct primes above a given one at the base

field.

Moreover, in this section, we assume that

· 𝑞 is an odd number and 𝑝 is a prime number,

· 𝐿𝑞 := Q(𝜁𝑞) is the 𝑞-th cyclotomic field and 𝐿+
𝑞 := Q(𝜁𝑞 + 𝜁−1

𝑞 ),

· B+ is a prime in 𝒪𝐿+
𝑞

above 𝑝 and B is a prime in 𝒪𝐿𝑞 above B+,

· 𝑟 is the number of primes in 𝒪𝐿𝑞 above 𝑝 and 𝑟+ is the number of

primes in 𝒪𝐿+
𝑞

above 𝑝,

· 𝐷(B) = 𝐷(B|Q) = {𝜎 ∈ Gal(𝐿𝑞|Q) : 𝜎B = B} is the decomposition
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group of B over Q and 𝐾𝐷 is the respective decomposition field (i.e.,

the subfield of 𝐿𝑞 that is fixed by 𝐷(B)).

Remark 1.2.4. Notice 𝐿𝑞|Q is a Galois extension and 𝐿+
𝑞 is the field fixed

by 𝐻 := {1,−1} (where −1 is the complex conjugation). In particular,

[𝐿𝑞 : 𝐿
+
𝑞 ] = 2.

Fact 4. 𝑟(𝐿𝑞|B+) = number of elements in the 𝐻-orbit of B.

Fact 5. If 𝑝 - 𝑞, then

(i) 𝑒(B|𝑝) = 1 (hence, 𝑒(B+|𝑝) = 𝑒(B|B+) = 1)

(ii) 𝑓(B|𝑝) = 𝑓 , where 𝑓 is the order of 𝑝 in
(︁
Z
𝑞Z

)︁*
(iii) 𝑟 = 𝜙(𝑞)

𝑓

Fact 6. Let 𝑅 be a Dedekind domain, 𝐾 its field of fractions, 𝐿 a finite

Galois extension of 𝐾, 𝒪𝐿 the ring of integers of 𝐿 and 𝐺 = Gal(𝐿|𝐾). Let

p be a prime ideal in 𝑅 and B1, . . . ,B𝑠 the distinct prime ideals in 𝒪𝐿 above

p. Then

(i) 𝑒(B1|p) = · · · = 𝑒(B𝑠|p) and 𝑓(B1|p) = · · · = 𝑓(B𝑠|p)

48



(ii) 𝑒(B𝑗|p) · 𝑓(B𝑗|p) · 𝑠 = [𝐿 : 𝐾] (for every 𝑗 = 1, . . . , 𝑠)

Fact 7. [Gal(𝐿𝑞|Q) : 𝐷(B)] = 𝑟

Fact 8. The map Gal(𝐿𝑞|Q) → Gal
(︁

𝒪𝐿𝑞

B

⃒⃒
Z
𝑝

)︁
defined by 𝜎 ↦→ 𝜎 is surjective.

Fact 9. If 𝑙 is a prime and 𝛼 is a positive integer, then
(︀ Z
𝑙𝛼Z

)︀*
is a cyclic

group of order 𝜙(𝑙𝛼) = 𝑙𝛼−1(𝑙 − 1).

Fact 10. (Theorem 2.13 in [Was82]) If (𝑝, 𝑞) = 1, then 𝑓(B|𝑝) is the smallest

positive integer 𝑓 such that 𝑝𝑓 ≡ 1 (mod 𝑞).

Proposition 1.2.5. Suppose (𝑝, 𝑞) = 1. Then,

𝑓(B+|𝑝) =

⎧⎪⎪⎨⎪⎪⎩
𝑓(B|𝑝) , if − 1 ̸∈ 𝐷(B)

𝑓(B|𝑝)
2

, if − 1 ∈ 𝐷(B)

Proof. Since the inertia degree is multiplicative, we get that 𝑓(B+|𝑝) =

𝑓(B|𝑝) if and only if f(B|B+) = 1. By fact 6 and 5, we have 𝑓(B|B+) ·

𝑟(𝐿𝑞|B+) = 2. So, it is enough to show that 𝑟(𝐿𝑞|B+) = 1 if and only if

−1 ∈ 𝐷(B). But this follows easily from fact 4.

Proposition 1.2.6. 𝐷(B) ∼= Z
𝑓Z
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Proof. We want to use fact 8 to show this.

Let us start by noting that |𝐷(B)| = 𝑓 . In fact, by facts 7 and 5, we

have that |𝐺𝑎𝑙(𝐿𝑞 |Q)|
|𝐷(B)| = 𝑟 = 𝜙(𝑞)

𝑓
. Since |Gal(𝐿𝑞|Q)| = 𝜙(𝑞), we obtain what

we claimed.

Notice now that, by definition of inertia degree,
𝒪𝐿𝑞

B
= F𝑝𝑓 .

Hence, since Gal(F𝑝𝑓 | F𝑝) =
Z
𝑓Z , we obtain what we wanted.

Let us now prove a particular case of our main goal.

Lemma 1.2.7. If 𝑞 = 𝑙𝛼 is a prime power, then −1 ∈ 𝐷(B) if and only if 𝑓

is even.

Proof. Suppose 𝑓 is odd. Since −1 is an element of order 2, Proposition 1.2.6

tells us that −1 ̸∈ 𝐷(B).

Now suppose 𝑓 is even. So, Sylow’s Theorem and Proposition 1.2.6 says

that 𝐷(B) has at least one element of order 2. But since Gal(𝐿𝑞|Q) =
(︁
Z
𝑞Z

)︁×
is cyclic (fact 9), it has only one element or oder 2, namely −1.

Proposition 1.2.8. If (𝑝, 𝑞) = 1 then 𝑓(B+|𝑝) is the smallest positive integer

𝑓+ such that 𝑝𝑓
+ ≡ ±1 (mod 𝑞).
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Proof. By Proposition 1.2.5 and the previous lemma, we have that

𝑓(B+|𝑝) =

⎧⎪⎪⎨⎪⎪⎩
𝑓(B|𝑝) , if 𝑓(B|𝑝) is odd

𝑓(B|𝑝)
2

, if 𝑓(B|𝑝) is even.

The result now follows from fact 10.

We are finally ready to tackle the general case:

Proposition 1.2.9. If 𝑝 is any prime number, than 𝑓(B+|𝑝) is the small-

est positive integer 𝑓+ such that 𝑝𝑓
+ ≡ ±1 (mod 𝑞′), where 2𝑞 = 𝑝𝑎𝑞′ and

(𝑝, 𝑞′) = 1.

Proof. This follows from the previous proposition and the fact that 𝑝 is totally

ramified in 𝐿𝑝 (Lemma 1.4 in [Was82]).

1.2.3 Computing
[︁
Γ𝑞,∞,∞ : Γ𝑞,∞,∞(p)

]︁
Let 𝜌 be the map defined in (1.2). We define

𝜌 : Γ𝑞,∞,∞ −→ PSL2(𝐸)

𝑔 ↦−→ 𝜌(𝑔)

where 𝐸 = Z[𝜆𝑞 ]

p
and¯denotes the image in PSL2. This map is well-defined

because 𝜌(−𝑔) = −𝜌(𝑔).

Therefore, we have a commutative diagram
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Γ𝑞,∞,∞
𝜌 //

����

SL2(𝐸)

����
Γ𝑞,∞,∞ 𝜌

// PSL2(𝐸)

Lemma 1.2.10. ker(𝜌) = Γ𝑞,∞,∞(p).

Proof. Since ker(𝜌) = Γ𝑞,∞,∞(p), it is clear that Γ𝑞,∞,∞(p) ⊆ ker(𝜌).

Now, take 𝑔 ∈ ker(𝜌), i.e., 𝜌(𝑔) = ±𝐼 (𝐼 is the identity matrix). Since

𝜌(−𝑔) = −𝜌(𝑔), we get ±𝑔 ∈ ker(𝜌) = Γ𝑞,∞,∞(p). So, 𝑔 ∈ ±Γ𝑞,∞,∞(p).

Hence, 𝑔 ∈ Γ𝑞,∞,∞(p).

This shows that Γ𝑞,∞,∞ / Γ𝑞,∞,∞(p) ∼= img(𝜌).

Fact 11. The center 𝑍(SL2(𝐹 )) of SL2(𝐹 ) (where 𝐹 is any field) is equal to

{±𝐼}. (cf. Corollary 2 of Result 9.8, Chapter 1 in [Suz82])

Fact 12. If a ⊆ Z[𝜆𝑞] is a non-zero ideal, then Z[𝜆𝑞 ]

a
is finite.

Fact 13. If 𝑛 is odd, then 𝑍(𝐷2𝑛) = {𝑒}. (easy exercise)

Lemma 1.2.11. If p is a prime ideal lying above 2Z and 𝑞 is odd, then

img(𝜌) ∼= 𝐷2𝑠 (for some odd 𝑠 dividing 𝑞). Moreover, if 𝑞 is a prime, then

𝑠 = 𝑞.

Proof. Notice img(𝜌) = img(𝜌).
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If 𝑝 = 2, one can easily check that ord(𝜌(𝛾2)) = ord(𝜌(𝛾3)) = 2. Hence,

by the first claim in the proof of corollary 1.2.3, 𝜌(Γ𝑞,∞,∞) has 2 distinct

2-Sylow subgroups. Hence, 𝜌(Γ𝑞,∞,∞) is one of the groups listed in Theorem

1.2.2.

One can check that 𝜌(𝛾1)𝜌(𝛾3) = 𝜌(𝛾3)𝜌(𝛾1)
−1 and 𝜌(𝛾3)

2 = 𝜌(𝛾1)
𝑞 = 𝐼.

Hence, since 𝜌(Γ𝑞,∞,∞) = ⟨𝜌(𝛾1), 𝜌(𝛾3)⟩, fact 3 tells us that 𝜌(Γ𝑞,∞,∞) is a

homomorphic image of 𝐷2𝑞. In particular, |𝜌(Γ𝑞,∞,∞)| | 2𝑞. Since 𝑞 is odd,

by Theorem 1.2.2, 𝜌(Γ𝑞,∞,∞) can only be 𝐷2𝑛 (for some odd 𝑛) or SL2(2).

But, one can check that SL2(2) = 𝐷2·3. So, in any case, 𝜌(Γ𝑞,∞,∞) ∼= 𝐷2𝑠 (for

some odd 𝑠).

Now, since char(𝐸) = 2, 𝐼 = −𝐼 in SL2(𝐸). Hence, PSL2(𝐸) = SL2(𝐸).

Thus, img(𝜌) ∼= img(𝜌) ∼= 𝐷2𝑠. So, 2𝑠 | 2𝑞. Therefore, since 𝑞 is odd, 𝑠 | 𝑞.

Finally, since 𝛾1 =

⎛⎜⎜⎝ −𝜆𝑞 −1

1 0

⎞⎟⎟⎠, 𝜌(𝛾1) ̸= 𝐼 (because 0 ̸≡ 1 (mod p)).

So, if 𝑞 is prime, ord(𝜌(𝛾1)) = 𝑞 (because ord(𝜌(𝛾1)) | ord(𝛾1) = 𝑞).

Lemma 1.2.12. Suppose p is a prime ideal lying above 𝑝Z with 𝑝 ≥ 3. Then,

img(𝜌) is isomorphic to

(i) PSL2(F5), if 𝑝 = 3 and 𝜇2
𝑞 − 2 ∈ p

(ii) PSL2(𝐸), otherwise (where 𝐸 = Z[𝜆𝑞 ]

p
)
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Proof. Notice img(𝜌) = img(𝜌).

If 𝑝 = 3 and 𝑚𝑢2𝑞 − 2 ∈ p, fact 12 and corollary 1.2.3 says that img(𝜌) ∼=

SL2(F5). We have to prove that img(𝜌) ∼= PSL2(F5). Notice that img(𝜌) =

img(𝜌)
{±𝐼}∩img(𝜌)

.

We can verify that −𝐼 ∈ img 𝜌. In fact, there are only two cases to

consider and they were computed explicitly using Sage [S+12].

So, img(𝜌) = SL2(F5)
𝑍(SL2(F5)) = PSL2(F5).

Otherwise, fact 12 and corollary 1.2.3 says that img(𝜌) = SL2(𝐸), i.e., 𝜌

is surjective. Hence, img(𝜌) = PSL2(𝐸).

Theorem 1.2.13. Let 𝑞 ≥ 3 be an odd integer and p be a prime ideal of

Z[𝜆𝑞] lying above 𝑝Z where 𝑝 ≥ 2.

(i) If 𝑝 = 2, then Γ𝑞,∞,∞ / Γ𝑞,∞,∞(p) ∼= 𝐷2𝑠 (for some odd 𝑠 that divides

𝑞) and, hence,
[︁
Γ𝑞,∞,∞ : Γ𝑞,∞,∞(p)

]︁
= 2𝑠. Moreover, if 𝑞 is prime, then

𝑠 = 𝑞.

(ii) If 𝑝 = 3 and 𝜇2
𝑞 − 2 ∈ p, then Γ𝑞,∞,∞ / Γ𝑞,∞,∞(p) ∼= PSL2(F5) and,

hence,
[︁
Γ𝑞,∞,∞ : Γ𝑞,∞,∞(p)

]︁
= 60;
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(iii) Otherwise, Γ𝑞 / Γ𝑞(p) ∼= PSL2(Z[𝜆𝑞]/p) and, hence,
[︁
Γ𝑞,∞,∞ : Γ𝑞,∞,∞(p)

]︁
=

(𝑝𝑚 + 1)𝑝𝑚(𝑝𝑚 − 1)/2.

Moreover Z[𝜆𝑞]/p ∼= F𝑝𝑚, where 𝑚 is the smallest positive integer such

that 𝑝𝑚 ≡ ±1 (mod 𝑞′) (2𝑞 = 𝑝𝑎𝑞′ with gcd(𝑝, 𝑞′) = 1).

Proof. The theorem follows from Lemmas 1.2.11 and 1.2.12.

The fact that Z[𝜆𝑞]/p is a field with 𝑝𝑚 elements with 𝑚 as in the state-

ment of the theorem follows from Proposition 1.2.9.

1.3 Computing the genus of 𝑋
(0)
𝑞,∞,∞(p)

In this section, the genus of 𝑋
(0)
𝑞,∞,∞(p), where p is a prime above 𝑝, is com-

puted. It is assumed that Γ𝑞,∞,∞
⧸︀
Γ𝑞,∞,∞(p) ∼= PSL2(Fp) (which is always

true when 𝑞 ≥ 5 according to Theorem 1.2.13) and 𝑝 ̸= 𝑞 are prime numbers

strictly greater than 2.

Using the Riemann-Hurwitz formula and the natural map 𝜙 : 𝑋
(0)
𝑞,∞,∞(p) →

𝑋𝑞,∞,∞(1) = 𝑋𝑞,∞,∞, it suffices to compute the ramification indices of 𝜙.

Recall that

(︀
Γ𝑞,∞,∞

)︀
∞ =

⟨
𝛾3 =

⎛⎜⎜⎝1 𝜇𝑞

0 1

⎞⎟⎟⎠
⟩
,
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(︀
Γ𝑞,∞,∞

)︀
1
=

⟨
𝛾2 =

⎛⎜⎜⎝ 0 1

−1 2

⎞⎟⎟⎠
⟩
,

(︀
Γ𝑞,∞,∞

)︀
𝑧0
=

⟨
𝛾1 =

⎛⎜⎜⎝−𝜆𝑞 −1

1 0

⎞⎟⎟⎠
⟩
.

It can be shown, with the help of Proposition 0.2.25, that the mon-

odromy of this map over ∞ is given by the action of 𝛾3 on the set of cosets

Γ𝑞,∞,∞

⧸︁
Γ
(0)
𝑞,∞,∞(p) . Similarly, the monodromy of this map over 1 (resp. 𝑧0)

is given by the action of 𝛾2 (resp. 𝛾1) on Γ𝑞,∞,∞

⧸︁
Γ
(0)
𝑞,∞,∞(p) .

Lemma 1.3.1. Let 𝛾 ∈ Γ𝑞,∞,∞. The action of 𝛾 on Γ𝑞,∞,∞

⧸︁
Γ
(0)
𝑞,∞,∞(p) is

equivalent to the action of (𝛾 mod p) ∈ PSL2(Fp) on P1(Fp) via fractional

linear transformations, i.e., the cycle decomposition of 𝛾 (viewed as an ele-

ment of the group of permutations of Γ𝑞,∞,∞

⧸︁
Γ
(0)
𝑞,∞,∞(p) is the same as the

cycle structure of (𝛾 mod p) (viewed as an element of the group of permu-

tations of P1(Fp)).

Proof. The action of Γ𝑞,∞,∞ on P1(Fp) via linear fractional transformations

is transitive (since Γ𝑞,∞,∞/Γ𝑞,∞,∞(p) ∼= PSL2(Fp)). Moreover, the stabilizer

of ∞ ∈ P1(Fp) is Γ
(0)
𝑞,∞,∞(p). Hence, by group theory, the action of Γ𝑞,∞,∞ on

P1(Fp) is equivalent to the action of Γ𝑞,∞,∞ on Γ𝑞,∞,∞

⧸︁
Γ
(0)
𝑞,∞,∞(p) .
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Lemma 1.3.2. The monodromy over ∞ is given by

(0)(1 · · · 𝑝)(𝑝+ 1, · · · , 2𝑝) · · · (𝑝𝑓−1 + 1, · · · , 𝑝𝑓 ),

where Fp = F𝑝𝑓 . So, 𝜙−1(∞) = {𝑤0, 𝑤1, . . . , 𝑤𝑝𝑓−1} and

𝑒𝑤0 = 1 and 𝑒𝑤𝑖
= 𝑝, for 1 ≤ 𝑖 ≤ 𝑝𝑓−1.

Proof. Notice that (𝛾3 mod p) =

⎛⎜⎜⎝1 𝛽

0 1

⎞⎟⎟⎠, where 𝛽 = (𝜇𝑞 mod p) ∈ Fp∖{0}

(the fact that 𝛽 ̸= 0 is part of the proof of Proposition 1.2.1).

Hence, ∞ ∈ P1(Fp) is fixed by (𝛾3 mod p). Furthermore, since

(𝛾3 mod p)𝑛 =

⎛⎜⎜⎝1 𝑛𝛽

0 1

⎞⎟⎟⎠
and char(Fp) = 𝑝, all other points of P1(Fp) generate an orbit of size 𝑝.

Lemma 1.3.3. The monodromy over 1 has the same cycle decomposition.

So, 𝜙−1 = {𝑤0, 𝑤1, . . . , 𝑤𝑝𝑓−1} and

𝑒𝑤0 = 1 and 𝑒𝑤𝑖
= 𝑝, for 1 ≤ 𝑖 ≤ 𝑝𝑓−1,

where Fp = F𝑝𝑓 .

Proof. Notice that (𝛾2 mod p) =

⎛⎜⎜⎝ 0 1

−1 2

⎞⎟⎟⎠.
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It is easily seen that the only point of P1(Fp) that is fixed by (𝛾2 mod p)

is the point 1.

Now, consider the natural map

𝜓 : 𝑋𝑞,∞,∞(p) → 𝑋𝑞,∞,∞(1).

Since 𝑒𝑣,𝑔 = 𝑝 for all 𝑤 = 𝜓−1(1) (this is part of the proof of Proposition

1.2.1) and 𝜓 factors as

𝑋𝑞,∞,∞(p) // 𝑋
(0)
𝑞,∞,∞(p)

𝜙 // 𝑋𝑞,∞,∞(1) ,

we have that 𝑒𝑤,𝑓 = 1 or 𝑝 for all 𝑤 ∈ 𝜙−1(1).

The previous calculation says that there is only one point above 1 having

ramification degree 1. Hence, the result follows.

Lemma 1.3.4. Let Fp = F𝑝𝑓 as before. The ramification behavior above 𝑧0

is given as follows:

𝜙−1(𝑧0) = {𝑤1, . . . , 𝑤𝑛, 𝑤
′
1, . . . , 𝑤

′
𝑚},

where

𝑒𝑤𝑖
= 𝑞 , 𝑒𝑤′

𝑖
= 1 , 𝑝𝑓 + 1 = 𝑞𝑛+𝑚 ,

𝑚 =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑝𝑓 ≡ −1 (mod 𝑞)

2, if 𝑝𝑓 ≡ 1 (mod 𝑞),

58



Proof. Notice that (𝛾1 mod p) =

⎛⎜⎜⎝𝛽 −1

1 0

⎞⎟⎟⎠ for some 𝛽 ∈ Fp.

As in the proof of the previous lemma, 𝑒𝑤 = 1 or 𝑞 for any 𝑤 ∈ 𝜙−1(𝑧0).

Let 𝑛 denote the number of points whose ramification degree is 𝑞 and let

𝑚 denote those whose ramification degree is 1.

Then 𝑚 is also the number of points in P1(Fp) fixed by (𝛾1 mod p).

Hence 𝑚 ≤ 2.

Since deg(𝜙) = 𝑝𝑓 + 1,

𝑝𝑓 + 1 = 𝑛𝑞 +𝑚.

Since 𝑞 and 𝑝 are distinct primes, it follows that 𝑚 ̸= 1. Taking the

previous equality mod 𝑞, the precise value of 𝑚 (in terms of (𝑝𝑓 mod 𝑞))

follows.

Proposition 1.3.5. The genus of the curve 𝑋
(0)
𝑞,∞,∞(p) is given by

𝑔 =
(𝑞 − 1)

2
𝑛− 𝑝𝑓−1,

where 𝑛 and 𝑓 are as in the previous lemma.

Proof. Follows from the Riemann-Hurwitz formula applied to 𝜙, the previous

three lemmas and the fact that 𝑔(𝑋𝑞,∞,∞(1)) = 0.
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Chapter 2

Action of PSL2(Fp) on mock

modular curves

In 1930 Hecke [Hec30] (cf. [Hec11] for a translation) studied the natural

representation of

PSL2(F𝑝) = SL2(Z)
⧸︁
Γ(𝑝)

on the space of holomorphic differentials of the modular curve 𝑋(𝑝) of prime

level 𝑝. The interesting case arises when 𝑝 ≡ 3 (mod 4), i.e., when −1 is not

a square modulo 𝑝.

The character table of PSL2(F𝑝) for 𝑝 ≡ 3 (mod 4) contains only two

irreducible representations (here denoted 𝜋′ and 𝜋′′) that are not isomorphic
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to their complex conjugate. In fact, the complex conjugate of one is iso-

morphic to the other. Denoting 𝑚′ and 𝑚′′ the multiplicity of 𝜋′ and 𝜋′′ in

Ω1(𝑋(𝑝)), Hecke showed that 𝑚′ − 𝑚′′ = ℎ(−𝑝), where ℎ(−𝑝) denotes the

class number of the quadratic field Q(
√
−𝑝). In this chapter, whose main

content was published in [Tak12], we study what happens when the modular

group SL2(Z) is replaced by the triangle groups Γ𝑞,𝑟,∞ and modular curves

are replaced by mock modular curves (as defined in (1.1)).

Notation 2.0.6. 𝛼𝑖 = image of 𝛾𝑖 in Γ𝑞,𝑟,∞
⧸︀
Γ𝑞,𝑟,∞(p).

Remark 2.0.7. There is a natural (Galois) covering map given by

𝑋𝑞,𝑟,∞(p)⎮⎮⌄
𝑋𝑞,𝑟,∞.

The Galois group of this covering map is exactly Γ𝑞,𝑟,∞
⧸︀
Γ𝑞,𝑟,∞(p) and the

𝛼𝑖 are the local monodromies around the branch points of 𝑋𝑞,𝑟,∞. The goal

is, therefore, to study the representation of the Galois group on the space of

holomorphic differentials.

61



2.1 Character table of PSL2(F𝑝2𝑛+1) for 𝑝 ≡ 3

(mod 4)

In order to state the main result, it is necessary to recall the character table of

PSL2(F𝑝2𝑛+1). This section will follow the ideas of paragraph 5.2 of [FH91],

where the character table of SL2(F𝑝2𝑛+1) is presented. It is then possible

to obtain the character table for PSL2(F𝑝2𝑛+1) simply by taking a subset

of the representations of SL2(F𝑝2𝑛+1). It is important to mention that the

representations considered in this section are left representations.

From now on, denote 𝑓 := 2𝑛 + 1 and F := F𝑝𝑓 . Moreover, 𝐸 := F(𝑝𝑓 )2

and 𝐸1 := {𝜀 ∈ 𝐸 | 𝑁𝐸/F(𝜀) = 𝜀𝜀 = 1}. Note that −1 is not a square in F,

since it is not a square in F𝑝 and 𝑓 is odd.

Looking at the eigenvalues, the following classification of the conjugacy

classes of PSL2(F) is obtained:

∙ Id, having ( 1 0
0 1 ) as a representative.

∙ The split semi-simple conjugacy classes

𝑐𝑠(𝑥) for all 𝑥 ∈ F− {±1} ,

having
(︀
𝑥 0
0 1/𝑥

)︀
as a representative. These correspond to the matrices
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having two distinct eigenvalues in F: 𝑥 and 1/𝑥. Note that 𝑐𝑠(𝑥) =

𝑐𝑠(−𝑥) = 𝑐𝑠(1/𝑥) = 𝑐𝑠(−1/𝑥).

∙ The non-split semi-simple conjugacy classes

𝑐𝑛𝑠(𝜀) for all 𝜀 ∈ 𝐸1 − {±1} .

These correspond to the matrices having two distinct (and conjugate)

eigenvalues in 𝐸 − F: 𝜀 and 𝜀. Note that 𝑐𝑛𝑠(𝜀) = 𝑐𝑛𝑠(−𝜀) = 𝑐𝑛𝑠(𝜀) =

𝑐𝑛𝑠(−𝜀).

∙ The unipotent conjugacy classes

𝑐𝑢(Δ) for Δ ∈ F×/(F×)2 ,

having ( 1 Δ
0 1 ) as representative. These correspond to the matrices whose

characteristic polynomial has only one root: 1 or −1. (Since −1 is not

a square in F, the condition “Δ ∈ F×/(F×)2" may be replaced by

“Δ ∈ {±1}".)

The number of classes in each family and the number of elements in each
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class are given in the table below:

conj. class # of classes in the family # of elements in the class

Id 1 1

𝑐𝑠(𝑥) (𝑝𝑓 − 3)/4 𝑝𝑓 (𝑝𝑓 + 1)

𝑐𝑛𝑠(𝜀0) 1 𝑝𝑓 (𝑝𝑓 − 1)/2

𝑐𝑛𝑠(𝜀) (𝑝𝑓 − 3)/4 𝑝𝑓 (𝑝𝑓 − 1)

𝑐𝑢(Δ) 2 (𝑝2𝑓 − 1)/2

where 𝜀0 is a root of 𝑋2 + 1.

Since 𝐸1/{±1} has a unique element of order 2, it also has a unique

character of order 2, here denoted 𝜙0.

The irreducible representations of PSL2(F) are the following:

∙ the trivial representation of dimension 1;

∙ the Steinberg representation;

∙ representations 𝜌𝛼 parametrized by the characters 𝛼 ̸= 1 of the group

F×/{±1};

∙ representations 𝜋𝜙 parametrized by the characters 𝜙 ̸= 1, 𝜙0 of the

group 𝐸1/{±1}; and

∙ representations 𝜋′ and 𝜋′′, corresponding to the character 𝜙0.
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The character table is given by:

Id 𝑐𝑠(𝑥) 𝑐𝑛𝑠(𝜀) 𝑐𝑢(1) 𝑐𝑢(−1)

𝑖𝑑 1 1 1 1 1

𝑆𝑡 𝑝𝑓 1 −1 0 0

𝜌𝛼 𝑝𝑓 + 1 𝛼(𝑥) + 𝛼(1/𝑥) 0 1 1

𝜋𝜙 𝑝𝑓 − 1 0 −𝜙(𝜖)− 𝜙(1/𝜖) −1 −1

𝜋′ (𝑝𝑓 − 1)/2 0 −𝜙0(𝜖) G G

𝜋′′ (𝑝𝑓 − 1)/2 0 −𝜙0(𝜖) G G

Table 2.1: Irreducible representations of PSL2(F𝑝2𝑛+1)

where

G =
𝑝𝑛 − 1

2
+ 𝑝𝑛

∑︁
( 𝑦
𝑝)=1

exp(2𝜋𝑖𝑦/𝑝) =
𝑝𝑛 − 1

2
+ 𝑝𝑛

∑︁
( 𝑦
𝑝)=1

𝜁𝑦𝑝

and G is its complex conjugate.

Note that each irreducible representation with the exception of 𝜋′ and 𝜋′′

can be distinguished from all the other ones: it may be the trivial represen-

tation, the Steinberg representation or a representation that comes from a

character of either F×/{±1} or 𝐸1/{±1}.
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On the other hand, it is not so clear how to distinguish the representations

𝜋′ and 𝜋′′. It is possible to tell these two representations apart from all the

other ones: they are the representations associated with 𝜙0 of 𝐸1/{±1}, they

are the only irreducible representations that have non-real traces and one is

the complex conjugate of the other. But the problem arises when trying to

tell apart 𝜋′ from 𝜋′′. The main theorem, stated in the next section, gives a

way to distinguish these two representations: namely 𝜋′ is chosen to be the

one that appears more often in the representation of Γ𝑞,∞,∞/ Γ𝑞,∞,∞(p) on

Ω1(𝑋𝑞,∞,∞(p)) in the case where Γ𝑞,∞,∞/ Γ𝑞,∞,∞(p) ∼= PSL2(Fp).

2.2 Statement of the main result

The main result of this chapter can now be stated using the character table

2.1.

Let p denote a prime of 𝒪 above 𝑝 and let

𝑓 := 𝑓(p/𝑝) = 2𝑛+ 1

denote the inertia degree, which is assumed to be odd. Moreover, 𝑝 is still

assumed to satisfy 𝑝 ≡ 3 (mod 4).
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The quotient group Γ𝑞,𝑟,∞
⧸︀
Γ𝑞,𝑟,∞(p) will be denoted by 𝐺 and is assumed

to satisfy

𝐺 ∼= PSL2(Fp).

This does not always hold but Theorem 1.2.13 from the previous chapter

guarantees this holds for many cases. A more general discussion can be

found in [CV].

In order to obtain a left representation, the natural representation of

𝐺 on Ω1(𝑋𝑞,𝑟,∞(p)) is adapted in the following way. Let 𝑔 ∈ 𝐺 and 𝜔 ∈

Ω1(𝑋𝑞,𝑟,∞(p)). Then the action of 𝑔 on 𝜔 is given by the pull-back of 𝜔 under

𝑔−1:

𝑔 · 𝜔 := (𝑔−1)*𝜔. (2.1)

Let 𝑚′ and 𝑚′′ denote the multiplicity of 𝜋′ and 𝜋′′ in Ω1(𝑋𝑞,𝑟,∞(p)).

As mentioned before, in the case Γ2,3,∞ = SL2(Z) studied by Hecke,

𝑚′ −𝑚′′ = ℎ(−𝑝). Note that Γ2,3,∞ has only one cusp (up to equivalence).

Also, in that case, 𝒪 = Z and, thus, the inertia degree of p is always 𝑓(p/𝑝) =

1. So this is a special case of the following theorem, which states roughly

that 𝑚′ −𝑚′′ = (number of cusps) × ℎ(−𝑝𝑓 ).
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Theorem 2.2.1. Let 𝑚′ and 𝑚′′ denote the multiplicity of 𝜋′ and 𝜋′′ in the

representation of 𝐺 on the space of holomorphic differentials of 𝑋𝑞,𝑟,∞(p).

Moreover, let ℎ(−𝑝𝑓 ) denote the class number of the order of discriminant

−𝑝𝑓 . Then

𝑚′ −𝑚′′ = [𝛿(𝛼1) + 𝛿(𝛼2) + 𝛿(𝛼3)]ℎ(−𝑝𝑓 ),

where 𝛿 : PSL2(Fp) → {−1, 0, 1} is the function defined by

𝛿(𝛾) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1, 𝛾 ∈ 𝑐𝑢(1)

−1, 𝛾 ∈ 𝑐𝑢(−1)

0, otherwise.

Corollary 2.2.2. Let 𝑚′, 𝑚′′ and ℎ(−𝑝𝑓 ) be as in the previous theorem.

(i) If 𝑞 = 𝑟 = ∞, then

𝑚′ −𝑚′′ = 3ℎ(−𝑝).

(ii) If 𝑟 = ∞, 𝑞 is a prime number and 𝑞 ̸= 𝑝, then

𝑚′ −𝑚′′ =

⎧⎪⎪⎨⎪⎪⎩
2ℎ(−𝑝𝑓 ), ord(𝑝 mod 𝑞) is even

0, otherwise.

(iii) If 𝑞, 𝑟 ̸∈ {𝑝,∞} are prime numbers and (𝑞, 𝑟) ̸= (2, 2), then

𝑚′ −𝑚′′ = ±ℎ(−𝑝𝑓 ).

68



Moreover, it is + if and only if 𝜁2𝑞 + 𝜁−1
2𝑞 + 𝜁2𝑟 + 𝜁−1

2𝑟 is a square modulo

p.

Remark 2.2.3. Under the same assumptions of (ii) or (iii) in the theorem,

the inertia degree 𝑓 = 𝑓(p/𝑝) can be easily computed. Since 𝑝 ̸∈ {𝑞, 𝑟}, the

prime 𝑝 is unramified in 𝒪. This implies that 𝑓 is the order of the Frobenius

element, which is defined by

𝜁𝑥 + 𝜁−1
𝑥 ↦−→ 𝜁𝑝𝑥 + 𝜁−𝑝

𝑥 , for all 𝑥 ∈ {𝑞, 𝑟} − {∞}.

As a consequence of this, it is not hard to see that 𝑓 is the smallest positive

integer such that

𝑝𝑓 ≡ ±1 (mod 𝑥) , for all 𝑥 ∈ {𝑞, 𝑟} − {∞}.

The proofs of Theorem 2.2.1 and corollary 2.2.2 are postponed until Sec-

tion 2.4. The current section will proceed with the computation of some

examples.

Example 1. Hecke’s result can be recovered using (iii). In fact, if 𝑞 = 2 and

𝑟 = 3, then 𝜁2𝑞 + 𝜁−1
2𝑞 = 0 and 𝜁2𝑟 + 𝜁−1

2𝑟 = 1. Thus 𝜁2𝑞 + 𝜁−1
2𝑞 + 𝜁2𝑟 + 𝜁−1

2𝑟 = 1,

which is always a square. Moreover, 𝒪 = Z, which implies that the inertia

degree 𝑓 is always 1. Thus, 𝑚′ −𝑚′′ = ℎ(−𝑝).
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Notice that when 𝑞 < 𝑟 = ∞ (case (ii)), the difference 𝑚′ −𝑚′′ depends

only on the prime number 𝑝 chosen and not on the prime ideal p above

it. When 𝑞, 𝑟 ̸= ∞, this is not the case: given a prime 𝑝, the difference

𝑚′ −𝑚′′ may depend on the specific prime ideal p above it. The examples

below, computed using the Magma algebra system ([BCP97]), illustrate this

phenomenon.

Example 2. Let 𝑞 = 3 and 𝑟 = 7. Then 𝒪 = Z[1, 𝜁2·7 + 𝜁−1
2·7 ] = Z[𝜁2·7 + 𝜁−1

2·7 ]

(the ring of integers of Q(𝜁2·7 + 𝜁−1
2·7 ), which has degree 3 over Q).

Consider the prime 𝑝 = 43. Above 43, there are three prime ideals in 𝒪:

p1 =
(︀
43, 8 + 𝜁52·7 − 𝜁22·7

)︀
, p2 =

(︀
43, 15 + 𝜁52·7 − 𝜁22·7

)︀
,

p3 =
(︀
43, 19 + 𝜁52·7 − 𝜁22·7

)︀
.

Finally, Magma verifies that 𝜁2𝑞 + 𝜁−1
2𝑞 + 𝜁2𝑟 + 𝜁−1

2𝑟 = 1+ 𝜁2·7 + 𝜁−1
2·7 is a square

modulo p2 and p3 but not modulo p1.

Example 3. Now let 𝑞 = 7 and 𝑟 = 11. In this case,

𝒪 = Z[𝜁2·7 + 𝜁−1
2·7 , 𝜁2·11 + 𝜁−1

2·11]

is the ring of integers of Q(𝜁2·7+ 𝜁−1
2·7 , 𝜁2·11+ 𝜁−1

2·11), which has degree 15 over

Q. Also,

Q(𝜁2·7 + 𝜁−1
2·7 , 𝜁2·11 + 𝜁−1

2·11) = Q(𝜇),
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where 𝜇 = 𝜁582·7·11 − 𝜁472·7·11 + 𝜁302·7·11 − 𝜁192·7·11.

𝒪 has five prime ideals above 𝑝 = 23:

p1 =
(︀
23, 𝜇3 + 4𝜇2 + 14𝜇+ 5

)︀
, p2 =

(︀
23, 𝜇3 + 6𝜇2 + 20𝜇+ 14

)︀
,

p3 =
(︀
23, 𝜇3 + 10𝜇2 + 7𝜇+ 12

)︀
, p4 =

(︀
23, 𝜇3 + 11𝜇2 + 11𝜇+ 3

)︀
,

p5 =
(︀
23, 𝜇3 + 14𝜇2 + 22𝜇+ 16

)︀
.

In this case, Magma shows that 𝜁2·7+𝜁
−1
2·7 +𝜁2·11+𝜁

−1
2·11 is a square modulo

p2 and p3 but not modulo the other prime ideals.

(The inertia degree of these prime ideals is 3 and the Magma function

IsSquare is not implemented for the rings 𝒪/p𝑖. So the order of 𝜁2·7 + 𝜁−1
2·7 +

𝜁2·11 + 𝜁−1
2·11 modulo p𝑖 is computed and, using this information, it is deduced

whether that number is a square or not.)

2.3 A formula of Chevalley-Weil

In order to prove the main result, a formula of Chevalley and Weil ([CW34])

will be used. The theorem below is a more modern version of its statement

that can be found in [GGH91] (cf. [EL80] for another modern version).

Theorem 2.3.1. Let �̃� be a complete algebraic curve over the complex num-

bers C. Consider a finite group 𝐺 acting faithfully on �̃�. Let 𝑔 be the genus
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of 𝐺∖�̃�. Choose representatives {⟨𝑡𝑖⟩}𝑖 for the 𝐺-classes of stabilizers such

that the 𝑡𝑖 have index +1 about the fixed point. Then, denoting by 𝜌Ω1(�̃�) the

representation of 𝐺 on the holomorphic differentials and by 𝜌 any irreducible

representation of 𝐺,

(𝜒𝜌Ω1(�̃�)
, 𝜒𝜌) = (𝑔 − 1)𝜒𝜌(1) +

⎛⎝∑︁
𝑖

ord(𝑡𝑖)∑︁
𝑘=1

𝑁𝜌,𝑖,𝑘
ord(𝑡𝑖)− 𝑘

ord(𝑡𝑖)

⎞⎠+ 𝛿𝜌,𝑖𝑑

where 𝑁𝜌,𝑗,𝑘 = dimEig
(︁
𝜌(𝑡𝑗), exp(

2𝜋𝑘
ord(𝑡𝑗)

)
)︁

is the dimension of the eigenspace

of 𝜌(𝑡𝑗) associated to exp( 2𝜋𝑘
ord(𝑡𝑗)

) and 𝛿𝜌,𝑖𝑑 is 1 if 𝜌 is the identity representa-

tion and 0 otherwise.

In the case of interest for this chapter,

̃︀𝑋 = 𝑋𝑞,𝑟,∞(p) and 𝐺 = Γ𝑞,𝑟,∞
⧸︀
Γ𝑞,𝑟,∞(p).

Moreover, the action on Ω1( ̃︀𝑋) was adapted in order to obtain a left repre-

sentation. Finally, recall that 𝛼𝑖 = image of 𝛾𝑖 in Γ𝑞,𝑟,∞
⧸︀
Γ𝑞,𝑟,∞(p). So the

following corollary is obtained:

Corollary 2.3.2. If 𝜌 is an irreducible representation of 𝐺 = Γ𝑞,𝑟,∞
⧸︀
Γ𝑞,𝑟,∞(p)

and 𝜌Ω1 is the representation on the space of holomorphic differentials of

𝑋𝑞,𝑟,∞(p) defined by (2.1), then

(𝜒𝜌Ω1 , 𝜒𝜌) = −𝜒𝜌(1) +

⎛⎝ 3∑︁
𝑖=1

ord(𝛼𝑖)∑︁
𝑘=1

𝑀𝜌,𝑖,𝑘
ord(𝛼𝑖)− 𝑘

ord(𝛼𝑖)

⎞⎠+ 𝛿𝜌,𝑖𝑑,
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where 𝑀𝜌,𝑗,𝑘 = dimEig
(︁
𝜌(𝛼−1

𝑗 ), exp( 2𝜋𝑘
ord(𝑡𝑗)

)
)︁
.

Proof. It follows from the previous theorem and the fact that 𝐺∖ ̃︀𝑋 = 𝑋𝑞,𝑟,∞

has genus 0.

The change from 𝑁𝜌,𝑗,𝑘 to 𝑀𝜌,𝑗,𝑘 reflects the change from the natural right

representation to the left representation defined in (2.1).

2.4 Proof of the main result

The difference 𝑚′ −𝑚′′ will be computed using corollary 2.3.2.

First it is shown that if ord(𝛼𝑖) is prime, then 𝑀𝜌,𝑖,𝑘 depends only on

𝜒𝜌(1) and 𝜒𝜌(𝛼𝑖).

Lemma 2.4.1. Let 𝑢 = ord(𝛼𝑖). Then 𝑀𝜌,𝑖,𝑘 satisfy the following equations:

𝑀𝜌,𝑖,0 +𝑀𝜌,𝑖,1 + . . .+𝑀𝜌,𝑖,𝑢−1 = 𝜒𝜌(1) 𝑎𝑛𝑑

𝑀𝜌,𝑖,0 +𝑀𝜌,𝑖,1𝜁𝑢 + . . .+𝑀𝜌,𝑖,𝑢−1𝜁
𝑢−1
𝑢 = 𝜒𝜌(𝛼

−1
𝑖 ).

In particular, if 𝑢 is a prime number, all 𝑀𝜌,𝑖,𝑘 (𝑘 = 0, . . . , 𝑢− 1) are deter-

mined by these equations.

Proof. Let 𝜌 : PSL2(Fp) → GL(𝑉𝜌). The equations are then a consequence

of the following facts:
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· 𝜌(𝛼𝑖) is diagonalizable;

· 𝜒𝜌(1) = dim𝑉𝜌; and

· 𝜒𝜌(𝛼𝑖) is the sum of the eigenvalues of 𝜌(𝛼𝑖) (counted with multiplicity).

The next lemma tells us that the order of the 𝛼𝑖 are always prime numbers.

Lemma 2.4.2. Assume 𝑝 > 2 and that

∙ 𝑞, 𝑟 ∈ P ∪ {∞}, where P = set of all prime numbers;

∙ 𝑞 ≤ 𝑟;

∙ (𝑞, 𝑟) ̸= (2, 2);

∙ 𝑞 ̸= 𝑝.

Then

ord(𝛼1) =

⎧⎪⎪⎨⎪⎪⎩
𝑞, if 𝑞 ̸= ∞

𝑝, otherwise

, ord(𝛼2) =

⎧⎪⎪⎨⎪⎪⎩
𝑟, if 𝑟 ̸= ∞

𝑝, otherwise

and ord(𝛼3) = 𝑝.
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Proof. First, assume 𝑞 is a prime. Since ord(𝛾1) = 𝑞 is a prime, ord(𝛼1) = 1

or 𝑞 but ord(𝛼1) ̸= 1 because 𝛼1 is clearly not the identity matrix in PSL2(Fp).

If 𝑞 = ∞, then ⎛⎜⎜⎝1 0

1 1

⎞⎟⎟⎠𝛼1

⎛⎜⎜⎝1 0

1 1

⎞⎟⎟⎠
−1

=

⎛⎜⎜⎝1 1

0 1

⎞⎟⎟⎠ ,

which has order 𝑝.

Now, assuming 𝑟 is a prime, it is also true that ord(𝛼2) = 𝑟. On the other

hand, if 𝑟 = ∞, then⎛⎜⎜⎝0 −1

1 −1

⎞⎟⎟⎠𝛼2

⎛⎜⎜⎝0 −1

1 −1

⎞⎟⎟⎠
−1

=

⎛⎜⎜⎝1 1

0 1

⎞⎟⎟⎠ ,

which has order 𝑝 .

For the last claim, assume first that 2 < 𝑞 < 𝑟 ̸= ∞. It is enough to

see that 𝜁2𝑞 + 𝜁−1
2𝑞 + 𝜁2𝑟 + 𝜁−1

2𝑟 ̸≡ 0 (mod p). Actually, it can be shown that

𝜁2𝑞 + 𝜁−1
2𝑞 + 𝜁2𝑟 + 𝜁−1

2𝑟 ∈ 𝒪×. In fact, let 𝜁 = 𝜁2𝑞𝑟 and notice that

𝜁2𝑞 + 𝜁−1
2𝑞 + 𝜁2𝑟 + 𝜁−1

2𝑟 = 𝜁𝑟 + 𝜁−𝑟 + 𝜁𝑞 + 𝜁−𝑞

= 𝜁𝑟(1 + 𝜁𝑞−𝑟)(1 + 𝜁−𝑞−𝑟).

In case 𝑞 < 𝑟 = ∞, it suffices to show that 𝜁2𝑞 + 𝜁−1
2𝑞 + 2 ̸≡ 0 (mod p). But

𝜁2𝑞+𝜁
−1
2𝑞 +2 = (1+𝜁2𝑞)(1+𝜁

−1
2𝑞 ) and their norm are 𝑁(1+𝜁2𝑞) = 𝑁(1+𝜁−1

2𝑞 ) =

𝑞. This finishes the proof in this case because 𝑞 ̸∈ p (since 𝑞 ̸= 𝑝).
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The other cases are easy.

Using the notation

𝑆𝜌,𝑖 :=

ord(𝛼𝑖)∑︁
𝑘=1

𝑀𝜌,𝑖,𝑘
ord(𝛼𝑖)− 𝑘

ord(𝛼𝑖)
,

the difference can be written as

𝑚′ −𝑚′′ = (𝑆𝜋′,1 − 𝑆𝜋′′,1) + (𝑆𝜋′,2 − 𝑆𝜋′′,2) + (𝑆𝜋′,3 − 𝑆𝜋′′,3).

Now notice that 𝜒𝜋′(𝑔) = 𝜒𝜋′′(𝑔) for all 𝑔 ∈ PSL2(Fp) except when 𝑔 ∼ 𝑃

or 𝑃−1 (cf. table 2.1), where 𝑃 = ( 1 1
0 1 ) ∈ PSL2(Fp) (note 𝑃 has order 𝑝). In

order to obtain 𝑚′ −𝑚′′, it thus suffices to compute 𝑀𝜋′,𝑖,𝑘 and 𝑀𝜋′′,𝑖,𝑘 for

those 𝑖 such that 𝛼𝑖 is in the class of 𝑃 or of 𝑃−1. Looking at the traces and

the order of the 𝛼𝑖, it can be seen that they turn out to be the 𝑖 such that

ord(𝛾𝑖) = ∞ (i.e., those elements which are parabolic).

In order to compute those differences, the following theorem will be used:

Theorem 2.4.3. (i) (Chapter 5, Section 4 in [Bor66]) ℎ(−𝑝) = −1
𝑝

𝑝−1∑︀
𝑘=1

𝑘
(︁

𝑘
𝑝

)︁
.

(ii) (Cor. 7.28 in [Cox89]) ℎ(−𝑝2𝑛+1) = 𝑝𝑛ℎ(−𝑝).

The lemma below can now be proved:

Lemma 2.4.4. Let Δ ∈ {±1} such that 𝛼𝑖 ∼ ( 1 Δ
0 1 ). Then

𝑆𝜋′,𝑖 − 𝑆𝜋′′,𝑖 = Δ · ℎ(−𝑝𝑓 ).
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Proof. Note that, under this assumption, ord(𝛼𝑖) = 𝑝.

First assume Δ = 1. Then use Lemma 2.4.1 to obtain

𝑀𝜋′,𝑖,𝑘 =

⎧⎪⎪⎨⎪⎪⎩
1
2
𝑝𝑛
[︁
𝑝𝑛 +

(︁
𝑘
𝑝

)︁]︁
,
(︁

𝑘
𝑝

)︁
̸= 0

1
2
[𝑝2𝑛 − 1] , 𝑘 = 0

and

𝑀𝜋′′,𝑖,𝑘 =

⎧⎪⎪⎨⎪⎪⎩
1
2
𝑝𝑛
[︁
𝑝𝑛 −

(︁
𝑘
𝑝

)︁]︁
,
(︁

𝑘
𝑝

)︁
̸= 0

1
2
[𝑝2𝑛 − 1] , 𝑘 = 0.

The final formula for 𝑆𝜋′,𝑖 − 𝑆𝜋′′,𝑖 is then obtained using Theorem 2.4.3.

The same argument proves the case Δ = −1.

This finishes the proof of Theorem 2.2.1. The proof of corollary 2.2.2 is

broken down into the following 3 cases.

Case (i): 𝑞 = 𝑟 = ∞

In this case, all 𝛾𝑖 are parabolic and the 𝛼𝑖 satisfy:⎛⎜⎜⎝1 0

1 1

⎞⎟⎟⎠𝛼1

⎛⎜⎜⎝1 0

1 1

⎞⎟⎟⎠
−1

=

⎛⎜⎜⎝1 1

0 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝0 −1

1 −1

⎞⎟⎟⎠𝛼2

⎛⎜⎜⎝0 −1

1 −1

⎞⎟⎟⎠
−1

=

⎛⎜⎜⎝1 1

0 1

⎞⎟⎟⎠ ,
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𝛼3 =

⎛⎜⎜⎝1 4

0 1

⎞⎟⎟⎠ ∼

⎛⎜⎜⎝1 1

0 1

⎞⎟⎟⎠ .

Since 𝛼1, 𝛼2, 𝛼3 are all in the same conjugacy class,

𝑆𝜋′,1 = 𝑆𝜋′,2 = 𝑆𝜋′,3 and 𝑆𝜋′′,1 = 𝑆𝜋′′,2 = 𝑆𝜋′′,3.

The result now follows from Lemma 2.4.4 and the fact that 𝒪 = Z.

Case (ii): 𝑟 = ∞ and 𝑞 ̸= ∞ is a prime number with 𝑞 ̸= 𝑝

In this case, 𝛾1 is not parabolic but 𝛾2 and 𝛾3 are. Moreover, 𝛼2 and 𝛼3

satisfy: ⎛⎜⎜⎝0 −1

1 −1

⎞⎟⎟⎠𝛼2

⎛⎜⎜⎝0 −1

1 −1

⎞⎟⎟⎠
−1

=

⎛⎜⎜⎝1 1

0 1

⎞⎟⎟⎠

𝛼3 =

⎛⎜⎜⎝1 2 + 2 cos(𝜋/𝑞)

0 1

⎞⎟⎟⎠
After using Lemma 2.4.4, it remains only to characterize when

2 + 2 cos(𝜋/𝑞) = 2 + 𝜁2𝑞 + 𝜁−1
2𝑞

is a square modulo p. To simplify notation, let 𝜆2𝑞 = 𝜁2𝑞 + 𝜁−1
2𝑞 .

Lemma 2.4.5. 2 + 𝜆2𝑞 is a square mod p if and only if 𝑓(̂︀p/𝑝) = 2𝑓(p/𝑝),

where ̂︀p is a prime in Z[𝜁2𝑞] above p.
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Proof. Recall that Z[𝜁2𝑞] is the ring of integers of Q(𝜁2𝑞) (cf. Chapter 2 of

[Was82]). Now note that, since [Q(𝜁2𝑞) : Q(𝜆2𝑞)] = 2, the inertia degree

𝑓(̂︀p/𝑝) is either 𝑓 := 𝑓(p/𝑝) or 2𝑓 .

There is an inclusion

F𝑝𝑓
∼= Z[𝜆2𝑞]/p →˓ Z[𝜁2𝑞]/̂︀p.

Note that 2 + 𝜆2𝑞 = 2 + 𝜁2𝑞 + 𝜁−1
2𝑞 = 2 − 𝛼𝑞 − 𝛼−1

𝑞 , where 𝛼𝑞 := −𝜁2𝑞 =

exp( 𝑞+1
𝑞
𝜋). So, letting 𝛽𝑞 := exp( 𝑞+1

2𝑞
𝜋) ∈ Z[𝜁2𝑞], then 2+𝜆2𝑞 = −(𝛽𝑞−𝛽−1

𝑞 )2.

Suppose 𝑓(̂︀p/𝑝) = 𝑓 . In this case the inclusion is actually an isomorphism.

Thus 2 + 𝜆2𝑞 = −(𝛽𝑞 − 𝛽−1
𝑞 )2 is a square modulo p if and only if (−1) is a

square modulo p but since 𝑝 ≡ 3 (mod 4) and 𝑓 is odd, (−1) is not a square

modulo p. Hence, 2 + 𝜆2𝑞 is not a square modulo p.

Conversely, suppose 𝑓(̂︀p/𝑝) = 2𝑓 . Since (−1) is not a square mod p,

it suffices to show that (𝛽𝑞 − 𝛽−1
𝑞 )2 is not a square in F𝑝𝑓

∼= Z[𝜆2𝑞]/p. If

(𝛽𝑞 − 𝛽−1
𝑞 )2 is a square mod p, then 𝛽𝑞 − 𝛽−1

𝑞

2
= 𝑟2 where 𝑟 ∈ Z[𝜆2𝑞]. So,

𝛽𝑞 − 𝛽−1
𝑞 = ±𝑟 viewed in F𝑝2𝑓

∼= Z[𝜆2𝑞]/̂︀p. This implies that 𝛽𝑞 − 𝛽−1
𝑞 ∈ F𝑝

∼=

Z[𝜆2𝑞]/p. It is also true that 𝛽𝑞 + 𝛽−1
𝑞 ∈ Z[𝜆2𝑞] (in fact, Z[𝜆2𝑞] = Z[𝛽𝑞 + 𝛽−1

𝑞 ]

because 𝛽𝑞 is also a primitive 2𝑞-root of unity; cf. Chapter 2 of [Was82]).

So 𝛽𝑞 ∈ Z[𝜆2𝑞]/p (recall that 𝑝 > 2). But Z[𝜁2𝑞] = Z[𝛽𝑞] and, hence, F𝑝𝑓
∼=

Z[𝜆2𝑞]/p = Z[𝛽𝑞]/̂︀p ∼= F𝑝2𝑓 , a contradiction.
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Lemma 2.4.6. Using the same notation as in the previous lemma,

𝑓(̂︀p/𝑝) = 2𝑓(p/𝑝) ⇐⇒ ord(𝑝 mod 𝑞) is even.

Proof. It is known that 𝑓(̂︀p/𝑝) = ord(𝑝 mod 𝑞) (thm 2.13 in [Was82]). Sup-

pose ord(𝑝 mod 𝑞) is even. Since 𝑝 is not ramified in Z[𝜁2𝑞] (Prop. 2.3 in

[Was82]), |𝐷(̂︀p/𝑝)| = 𝑓(̂︀p/𝑝), where 𝐷(̂︀p/𝑝) is the decomposition group. So,

𝐷(̂︀p/𝑝) has an element of order 2. Since Gal(Q(𝜁2𝑞)/Q) is cyclic, it has only

one element of order 2, namely, the complex conjugation (denoted here by

−1).

Now, it is known that 𝑓(̂︀p/p)·𝑟(Z[𝜁2𝑞]/p) = 2, where 𝑟 := 𝑟(Z[𝜁2𝑞]/p) is the

number of primes in Z[𝜁2𝑞] above p. It is also known that 𝑟 is the number of

elements in the 𝐻-orbit of ̂︀p, where 𝐻 = {1,−1} = Gal(Q(𝜁2𝑞)/Q(𝜁2𝑞+𝜁−1
2𝑞 )).

But by what was seen before, −1 ∈ 𝐷(̂︀p/𝑝), which implies 𝑟 = 1 and 𝑓(̂︀p/p) =
2. Hence, 𝑓(̂︀p/𝑝) = 2𝑓(p/𝑝).
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Case (iii): 𝑞, 𝑟 ̸∈ {𝑝,∞} are prime numbers and (𝑞, 𝑟) ̸=

(2, 2)

In this case, 𝛾1, 𝛾2 are not parabolic but 𝛾3 is:

𝛾3 =

⎛⎜⎜⎝1 𝜁2𝑞 + 𝜁−1
2𝑞 + 𝜁2𝑟 + 𝜁−1

2𝑟

0 1

⎞⎟⎟⎠ .

Hence it is easy to see that

𝛼3 ∼

⎧⎪⎪⎨⎪⎪⎩
( 1 1
0 1 ) , if 𝜁−1

2𝑞 + 𝜁2𝑟 + 𝜁−1
2𝑟 is a square modulo p

( 1 −1
0 1 ) , if 𝜁−1

2𝑞 + 𝜁2𝑟 + 𝜁−1
2𝑟 is not a square modulo p.

This finishes the proof.

Remark 2.4.7. Recall that the numbers 𝑚′ and 𝑚′′ refer to the represen-

tation of Γ/Γ(p) ∼= PSL2(Fp) on the space of holomorphic differentials of

𝑋(Γ(p)) and, hence, a priori depend on p. Nevertheless, a consequence of

the last theorem is that the difference 𝑚′−𝑚′′ does not depend on the prime

ideal p (nor on q) above a fixed prime 𝑝.
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Chapter 3

Normalizers of triangle groups

The normalizer of a Fuchsian group gives us automorphisms of the corre-

sponding curve. These automorphisms can provide valuable information as

illustrated in the case of classical modular curves by the important role played

by the Fricke-Atkin-Lehner involution (which arises as a normalizer element

of Γ0(𝑁)).

More generally, we can study the commensurator of a Fuchsian group

(which, in the classical setting, gives rise to the Hecke operators, crucial

objects in the modern theory of modular forms). By a deep result of Margulis

(cf. [Mar91]), if a group is not arithmetic, than it has finite index in its

commensurator. In our case, Takeuchi showed in [Tak77] that there are
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only finitely many triangle groups that are arithmetic. In particular, all the

triangle groups Γ𝑞,∞,∞ where 𝑞 > 3 are not arithmetic. So, contrary to the

classical case SL2(Z), we do not have infinitely many “Hecke operators” but

it would still be interesting to understand what they can possibly say about

general triangle groups.

In this chapter, we will study the normalizers (in PSL2(R)) of triangle

groups and some of their congruence subgroups. Unless otherwise stated,

throughout this chapter all normalizers are with respect to PSL2(R), i.e.,

𝑁(−) = 𝑁PSL2(R)(−).

In Section 1, we fix the notation that will be used in this chapter and

prove a result that will guide our study in the following sections.

As a first application of that result, in Section 2, we prove that the nor-

malizer of any Hecke triangle group is trivial, that is, it is equal to the triangle

group itself.

In Section 3, we find an explicit characterization for the normalizer of

triangle groups of the form Γ𝑞,∞,∞. In particular, we will see that the quotient

𝑁(Γ𝑞,∞,∞)/Γ𝑞,∞,∞ has only one non-trivial element. Moreover, we prove that

the quotient 𝑁(Γ
(0)
𝑞,∞,∞(p))/Γ

(0)
𝑞,∞,∞(p) also has only one non-trivial element

when p sits above a split prime.
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3.1 Basic facts about normalizers of Fuchsian

groups

Let Γ ⊆ PSL2(R) be a Fuchsian group and 𝐶(Γ) its set of cusps, i.e.,

𝐶(Γ) := {𝑟 ∈ R ∪ {∞} | 𝛾𝑟 = 𝑟 for some 𝛾 ∈ Γ parabolic}.

Denote by 𝒞(Γ) the set of equivalence classes of cusps, i.e.,

𝒞(Γ) := Γ∖𝐶(Γ),

and by 𝑁(Γ) the normalizer of Γ in PSL2(R), i.e.,

𝑁(Γ) := 𝑁PSL2(R)(Γ) = {𝑔 ∈ PSL2(R) | 𝑔Γ𝑔−1 = Γ}.

Proposition 3.1.1. If Γ′ is a subgroup of finite index in Γ, then

𝐶(Γ′) = 𝐶(Γ).

(For a proof, cf. Proposition 1.30 in [Shi94].)

Definition 3.1.2. If 𝑟 ∈ 𝐶(Γ), the orbit of 𝑟 under the action of Γ is denoted

[𝑟] = [𝑟]Γ = Orb(𝑟) = OrbΓ(𝑟) = {𝛾 · 𝑟 | 𝛾 ∈ Γ},

where the subscript Γ is omitted when it is clear to which group it refers to.
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Proposition 3.1.3. Let 𝑔 ∈ PSL2(R).

1. The map

𝐶(Γ) −→ 𝐶(𝑔Γ𝑔−1)

𝑟 ↦−→ 𝑔 · 𝑟

is a bijection.

2. The previous map induces the bijection

𝒞(Γ) −→ 𝒞(𝑔Γ𝑔−1),

i.e., if [𝑟]Γ = [𝑠]Γ, then [𝑔 · 𝑟]𝑔Γ𝑔−1 = [𝑔 · 𝑠]𝑔Γ𝑔−1.

Corollary 3.1.4. If 𝑔 ∈ 𝑁(Γ), then 𝑔 induces a permutation of the set 𝒞(Γ)

via

[𝑟] ↦−→ [𝑔 · 𝑟].

This induces a group homomorphism

𝜙 : 𝑁(Γ) −→ Perm(𝒞(Γ))

𝑔 ↦−→ ([𝑟] ↦→ 𝑔 · [𝑟] := [𝑔 · 𝑟])

Let

𝐻 := ker(𝜙) = {𝑔 ∈ 𝑁(Γ) | 𝑔 · [𝑟] = [𝑟], for all [𝑟] ∈ 𝒞(Γ)}.
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Remark 3.1.5. Let 𝜀 = |𝒞(Γ)| be the number of cusps (up to Γ-equivalence).

Then

[𝑁(Γ) : 𝐻] ≤ 𝜀!.

It is easy to see that Γ ⊆ 𝐻. As a consequence of this discussion, the

following holds

Theorem 3.1.6. Γ = 𝑁(Γ) if and only if

(i) 𝐻 = Γ

(ii) [𝑁(Γ) : 𝐻] = 1.

This means that Γ = 𝑁(Γ) if and only if

(i)
(︀
𝑔 ∈ 𝑁(Γ) such that 𝑔 · [𝑟] = [𝑟] for all [𝑟] ∈ 𝒞(Γ)

)︀
⇒
(︀
𝑔 ∈ Γ

)︀
(ii)

(︀
𝑔 ∈ 𝑁(Γ)

)︀
⇒
(︀
𝑔 · [𝑟] = [𝑟], for all [𝑟] ∈ 𝒞(Γ)

)︀
.

Remark 3.1.7. Notice that the question whether 𝑁(Γ) is equal to Γ or not

is independent of the conjugacy class of Γ in PSL2(R), i.e.,

𝑁(Γ) = Γ ⇐⇒ 𝑁(𝑔Γ𝑔−1) = 𝑔Γ𝑔−1

for any 𝑔 ∈ PSL2(R). (This is because 𝑁𝐺(𝑔𝐻𝑔
−1) = 𝑔𝑁𝐺(𝐻)𝑔−1, for any

group 𝐺, 𝑔 ∈ 𝐺 and 𝐻 ≤ 𝐺.)
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3.2 (𝑞, 𝑟,∞)-triangle groups

In this section, the group Γ is assumed to be the triangle group with para-

menters (𝑞, 𝑟,∞), with 𝑞, 𝑟 ̸= ∞, i.e.,

Γ = Γ𝑞,𝑟,∞.

For these triangle groups, 𝜖 = 1 (there is only one cusp up to Γ-equivalence).

This means that [𝑁(Γ) : 𝐻] = 1. So Theorem 3.1.6 in this case reads:

Proposition 3.2.1. Let Γ = Γ𝑞,𝑟,∞ and 𝑟0 ∈ 𝐶(Γ) be a representative of the

cusp of Γ. The normalizer 𝑁(Γ) is equal to Γ if and only if

(︀
𝑔 ∈ 𝑁(Γ) such that 𝑔 · 𝑟0 = 𝑟0

)︀
⇒
(︀
𝑔 ∈ Γ

)︀
.

Proof. Suppose that

(︀
𝑔 ∈ 𝑁(Γ) such that 𝑔 · 𝑟0 = 𝑟0

)︀
⇒
(︀
𝑔 ∈ Γ

)︀
holds.

Since 𝜀 = 1, condition (ii) in Theorem 3.1.6 is automatically satisfied. It

remains to show (i).

So let 𝑔 ∈ 𝑁(Γ) such that 𝑔 · [𝑟] = [𝑟] for all [𝑟] ∈ 𝒞(Γ). In particular,

this implies that

𝑔 · 𝑟0 ∈ Orb(𝑟0),
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i.e.,

𝑔 · 𝑟0 = 𝛾 · 𝑟0

for some 𝛾 ∈ Γ.

Therefore 𝛾−1𝑔 · 𝑟0 = 𝑟0. Hence, by assumption, 𝛾−1𝑔 ∈ Γ and, thus,

𝑔 ∈ Γ.

Thus, by Theorem 3.1.6, Γ = 𝑁(Γ).

Theorem 3.2.2. The normalizer of any Hecke triangle group is the group

itself, i.e.,

𝑁(Γ2,𝑞,∞) = Γ2,𝑞,∞ =: Γ

for 𝑞 ≥ 4. In particular, 𝑁(SL2(Z)) = SL2(Z) (because SL2(Z) = Γ2,3,∞).

Proof. Because of Remark 3.1.7 and the fact that any two triangle groups

with the same parameters are conjugate (by Theorem 0.3.5), any realization

of Γ2,𝑞,∞ in PSL2(R) will suffice to show the desired property. In particular,

we can assume that

Γ2,𝑞,∞ = ⟨𝛾1, 𝛾3⟩,

where

𝛾1 =

⎛⎜⎜⎝0 −1

1 0

⎞⎟⎟⎠ and 𝛾3 =

⎛⎜⎜⎝1 𝜆𝑞

0 1

⎞⎟⎟⎠ ,
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and 𝜆𝑞 = 2 cos(𝜋/𝑞) = 𝜁2𝑞 + 𝜁−1
2𝑞 ∈ Z[𝜆𝑞]. Notice that Γ ⊆ PSL2(Z[𝜆𝑞]).

In this realization of Γ, one possible representative of the cusps is ∞ ∈

𝐶(Γ).

Let 𝑔 ∈ 𝑁(Γ) such that 𝑔 · ∞ = ∞. It suffices to show that 𝑔 ∈ Γ.

Since 𝑔 · ∞ = ∞, the matrix 𝑔 is of the form ( 𝑎 𝑏
0 𝑑 ). Therefore⎛⎜⎜⎝1 𝑎2𝜆𝑞

0 1

⎞⎟⎟⎠ = 𝑔𝛾3𝑔
−1 ∈ Γ.

Hence 𝑔𝛾3𝑔
−1 ∈ StabΓ(∞) = ⟨±𝛾3⟩. Therefore 𝑎2 ∈ Z. Similarly, consid-

ering 𝑔−1𝛾3𝑔, it follows that 𝑑2 ∈ Z.

Since 𝑎𝑑 = det(𝑔) = 1, it yields that 𝑎 = 𝑑 = ±1. Without loss of

generality (in PSL2(R)), 𝑎 = 𝑑 = 1. Hence

𝑔 =

⎛⎜⎜⎝1 𝑏

0 1

⎞⎟⎟⎠ .

Now, ⎛⎜⎜⎝𝑏 *

* *

⎞⎟⎟⎠ = 𝑔𝛾1𝑔
−1 ∈ Γ.

In particular, 𝑏 ∈ Z[𝜆𝑞]. If 𝑏 = 𝑚𝜆𝑞 = 𝛾𝑚3 , for some 𝑚 ∈ Z, the 𝑔 ∈ Γ and

the proof is complete.

Suppose, therefore, that 𝑏 ̸= 𝑚𝜆𝑞. Then 𝑏 and 𝜆𝑞 are linearly indepen-

dent over Q. Therefore the group generated by them accumulates at 0. In
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particular, for all 𝛿 > 0 there are 𝑚,𝑛 ∈ Z such that 0 < Δ := 𝑚𝑏+𝑛𝜆𝑞 < 𝛿.

Hence, ⎛⎜⎜⎝1 Δ

0 1

⎞⎟⎟⎠ = 𝑔𝑚𝛾𝑛3 ∈ 𝑁(Γ).

But then⎛⎜⎜⎝1 Δ

0 1

⎞⎟⎟⎠
⎛⎜⎜⎝ 1 0

𝜆𝑞 1

⎞⎟⎟⎠
⎛⎜⎜⎝1 Δ

0 1

⎞⎟⎟⎠
−1

=

⎛⎜⎜⎝1 + Δ𝜆𝑞 Δ𝜆𝑞

𝜆𝑞 1−Δ𝜆𝑞

⎞⎟⎟⎠ ∈ Γ,

which implies that Γ is not discrete, a contradiction.

In the last equation, it was used that⎛⎜⎜⎝ 1 0

𝜆𝑞 1

⎞⎟⎟⎠ = 𝛾−1
3 𝛾−1

1 ∈ Γ.

3.3 (𝑞,∞,∞)-triangle groups

In this section, the group Γ is assumed to be the triangle group with param-

eters (𝑞,∞,∞) with 𝑞 ̸= ∞, i.e.,

Γ = Γ𝑞,∞,∞.

For these triangle groups, 𝜀 = 2 (there are two cusps up to Γ-equivalence).
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Let 𝑟1, 𝑟2 ∈ 𝐶(Γ) be representatives of the cusps, i.e.,

𝐶(Γ) = Orb(𝑟1) ⊔Orb(𝑟2)

The translation of Theorem 3.1.6 to this context reads

Proposition 3.3.1. Let Γ = Γ𝑞,∞,∞. Then Γ = 𝑁(Γ) if and only if

(i)
(︀
𝑔 ∈ 𝑁(Γ) such that 𝑔 · 𝑟1 = 𝑟1

)︀
⇒
(︀
𝑔 ∈ Γ

)︀
(ii)

(︀
𝑔 ∈ 𝑁(Γ)

)︀
⇒
(︀
𝑔 · 𝑟1 ∈ Orb(𝑟1)

)︀
.

To further study the normalizer of Γ𝑞,∞,∞ (and that of some of its con-

gruence subgroups), we will fix a realization of Γ𝑞,∞,∞ different from the

‘standard’ realization from Chapter 1, namely:

Γ := Γ𝑞,∞,∞ = ⟨𝛾2, 𝛾3⟩,

where

𝛾2 =

⎛⎜⎜⎝ 1 0

−𝜇 1

⎞⎟⎟⎠ and 𝛾3 =

⎛⎜⎜⎝1 1

0 1

⎞⎟⎟⎠ ,

𝜇 = 𝜆+ 2 ∈ Z[𝜇] = Z[𝜆] = 𝒪Q(𝜆)

and

𝜆 = 𝜆𝑞 = 2 cos(𝜋/𝑞) = 𝜁2𝑞 + 𝜁−1
2𝑞 .
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This realization is simply a

⎛⎜⎜⎝1/
√
𝜇 −1/

√
𝜇

0
√
𝜇

⎞⎟⎟⎠-conjugation of the stan-

dard one. This conjugation also preserves the congruence subgroups with

respect to primes p that are not prime divisors of 𝑞.

In particular, this implies that representatives for the two (inequivalent)

cusps of Γ𝑞,∞,∞ can be taken to be

𝑟1 = ∞ and 𝑟2 = 0. .

Denote by 𝛾1 the following element

𝛾1 = (𝛾2𝛾3)
−1 =

⎛⎜⎜⎝1− 𝜇 −1

𝜇 1

⎞⎟⎟⎠ ∈ Γ𝑞,∞,∞.

Notice that, under this realization,

Γ = Γ𝑞,∞,∞ ⊆ PSL2(Z[𝜇]).

In what follows, it is assumed that

𝑞 ≥ 5 is a prime number

and, moreover, that

Z[𝜇] is a PID.

This assumption holds at least for 𝑞 = 5, 7, 11, 13, 17, 19, 23, 29, 31, as can

be verified using a computer algebra system but it is not always true. For
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a discussion about this hypothesis, cf. [Was82] (in particular Theorem 4.10

and page 230) and [Sch03].

Lemma 3.3.2. The element 𝜇 ∈ Z[𝜇] satisfies

NormQ(𝜇)/Q(𝜇) = 𝑞.

In particular, it is a prime element of Z[𝜇] above 𝑞 ∈ Z.

Proof. First note that

𝜇 = −(1 + 𝜁2𝑞)(1 + 𝜁−1
2𝑞 ).

Since 𝑞 is odd, −𝜁2𝑞 is a primitive 𝑞-th root of unity. So, the minimal poly-

nomial of 𝜁2𝑞 is 𝜑𝑞(−𝑥), where

𝜑𝑞(𝑥) = 𝑥𝑝−1 + · · ·+ 𝑥+ 1

is the 𝑞-th cyclotomic polynomial. Therefore, the minimal polynomial of

1 + 𝜁2𝑞 is 𝜑𝑞(−(𝑥 − 1)) = 𝜑𝑞(−𝑥 + 1)), which has constant term equal to 𝑞.

Hence,

𝑁Q(𝜁2𝑞)/Q(1 + 𝜁2𝑞) = 𝑞.

Similarly,

𝑁Q(𝜁2𝑞)/Q(1 + 𝜁−1
2𝑞 ) = 𝑞.

93



Thus,

𝑁Q(𝜁2𝑞)/Q(𝜇) = 𝑞2,

which, combined with the fact that

[Q(𝜁2𝑞) : Q(𝜁2𝑞 + 𝜁−1
2𝑞 )] = 2,

finishes the proof.

Lemma 3.3.3. If 𝑔 = ( 1 𝑏
0 1 ) ∈ 𝑁(Γ𝑞,∞,∞) for some 𝑏 ∈ Z[𝜇], then 𝑔 ∈ Γ𝑞,∞,∞.

Proof. It suffices to show that 𝑏 ∈ Z.

By hypothesis, 𝑏 = 𝑎0 + 𝑣, where 𝑣 = 𝑎1𝜇 + · · · + 𝑎𝑛𝜇
𝑛, 𝑎𝑖 ∈ Z and

𝑛 = (𝑞−1)/2. If 𝑣 = 0, there is nothing to do. Suppose therefore that 𝑣 ̸= 0.

Then 𝑏 and 1 are linearly independent over Q and, thus, the group

Z𝑏+ Z1

accumulates at 0.

Therefore, for each 𝛿 > 0, there are 𝛼, 𝛽 ∈ Z such that 0 < Δ := 𝛼𝑏+𝛽 <

𝛿.

Now take

𝑔′ :=

⎛⎜⎜⎝1 Δ

0 1

⎞⎟⎟⎠ = 𝑔𝛼𝛾𝛽3 ∈ 𝑁(Γ𝑞,∞,∞).
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Then, since 𝛾2 ∈ Γ𝑞,∞,∞, it follows that⎛⎜⎜⎝1− 𝜇Δ Δ2𝜇

−𝜇 1 + 𝜇Δ

⎞⎟⎟⎠ = 𝑔′𝛾2𝑔
′−1 ∈ Γ𝑞,∞,∞,

which shows that Γ𝑞,∞,∞ is not discrete, a contradiction.

Lemma 3.3.4. If 𝑔 ∈ 𝑁(Γ𝑞,∞,∞) is such that

𝑔 · ∞ = ∞

then 𝑔 ∈ Γ𝑞,∞,∞.

Proof. Any such 𝑔 is of the form 𝑔 = ( 𝑎 𝑏
0 𝑑 ). Since det(𝑔) = 1, it follows that

𝑑 = 1/𝑎.

Therefore, because 𝛾3 ∈ Γ𝑞,∞,∞,⎛⎜⎜⎝1 𝑎2

0 1

⎞⎟⎟⎠ = 𝑔𝛾3𝑔
−1 ∈ Γ(0).

So 𝑔𝛾3𝑔
−1 ∈ StabΓ𝑞,∞,∞(∞) = ⟨±𝛾3⟩. Hence

𝑎2 ∈ Z.

Similarly, using that⎛⎜⎜⎝1 𝑑2

0 1

⎞⎟⎟⎠ = 𝑔−1𝛾3𝑔 ∈ Γ𝑞,∞,∞,
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it follows that

1

𝑎2
= 𝑑2 ∈ Z.

Thus the only possibility is that 𝑎 = ±1. Since all these matrices are

being viewed in PSL2(R), one can take 𝑎 = 1. So

𝑔 =

⎛⎜⎜⎝1 𝑏

0 1

⎞⎟⎟⎠
The goal now is to show that 𝑏 ∈ Z[𝜇]. The previous lemma then implies

that 𝑔 ∈ Γ𝑞,∞,∞, finishing the proof.

Using that 𝛾2 ∈ Γ𝑞,∞,∞, it follows that⎛⎜⎜⎝1− 𝜇𝑏 𝜇𝑏2

* *

⎞⎟⎟⎠ = 𝑔𝛾2𝑔
−1 ∈ Γ𝑞,∞,∞.

In particular,

𝜇𝑏 , 𝜇𝑏2 ∈ Z[𝜇].

From the first containment, it results that

𝑏 =
𝑘

𝜇

for some 𝑘 ∈ Z[𝜇].

From the second one,

𝑘2

𝜇
∈ Z[𝜇].
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Since 𝜇 is a prime in Z[𝜇], it follows that

𝜇 | 𝑘

in Z[𝜇] (recall that Z[𝜇] is a unique factorization domain) and, thus,

𝑏 ∈ Z[𝜇].

Lemma 3.3.5. The element

𝑔 =

⎛⎜⎜⎝ 0 1/
√
𝜇

−√
𝜇 0

⎞⎟⎟⎠ ∈ PSL2(R)

is in 𝑁(Γ𝑞,∞,∞).

Proof. This follows from the following easy computations:

𝑔𝛾2𝑔
−1 = 𝛾3 and 𝑔𝛾3𝑔

−1 = 𝛾2.

Theorem 3.3.6. The normalizer of Γ𝑞,∞,∞ is given by

𝑁(Γ𝑞,∞,∞) = Γ𝑞,∞,∞ ⊔ Γ𝑞,∞,∞ · 𝑔,

where

𝑔 =

⎛⎜⎜⎝ 0 1/
√
𝜇

−√
𝜇 0

⎞⎟⎟⎠ .
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In particular,

𝑁(Γ𝑞,∞,∞)

Γ𝑞,∞,∞
∼= Z/2Z.

Proof. Lemma 3.3.4 says that ker(𝜙) = Γ𝑞,∞,∞ (in the notation of corollary

3.1.4). Therefore Remark 3.1.5 implies that [𝑁(Γ𝑞,∞,∞) : Γ𝑞,∞,∞] ≤ 2. The

previous lemma then finishes the proof.

3.3.1 Congruence subgroups

In this subsection, the group Γ := Γ𝑞,∞,∞ still refers to the realization fixed

at the beginning of Section 3.3 where 𝑞 ≥ 5 is, again, a prime number such

that Z[𝜇] is a PID.

The idea is to study the normalizer of the following congruence subgroups

Γ(0)(p) := Γ(0)
𝑞,∞,∞(p) = {𝛾 = ( 𝑎 𝑏

𝑐 𝑑 ) ∈ Γ | 𝑐 ≡ 0 (mod p)},

for p a prime ideal of Z[𝜇] above a totally split prime 𝑝 ∈ Z. In particular

𝑝 ̸= 𝑞.

In the classical case (i.e., SL2(Z) = Γ2,3,∞), its analogous congruence

subgroup has a non-trivial normalizer. In fact, the existence of the Fricke

involution is an important tool in the study of classical modular curves. In

[LT99], it was proved that these congruence groups (when the parent group
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is the Hecke triangle group Γ2,5,∞) have a trivial normalizer. So it is natural

to ask whether a similar result holds for Γ𝑞,∞,∞.

Let p = (𝜏) a prime ideal above a totally split prime 𝑝 ∈ Z (i.e., 𝑝 =

𝜏1 · · · 𝜏𝐷, where 𝜏𝑖 are distinct prime ideals in Z[𝜇] above 𝑝 and𝐷 = (𝑞−1)/2).

The group Γ(0)(p) will also be denoted Γ(0)(𝜏).

Lemma 3.3.7. Write 𝑝 = 𝜏1𝜏2 · · · 𝜏𝐷, for 𝜏𝑖 ∈ Z[𝜇] prime elements. Then

there are 𝑛1, 𝑛2, . . . , 𝑛𝐷 ∈ Z such that

(i) 𝜏𝑖 | (𝑛𝑖𝜇+ 1) for all 𝑖

(ii) 𝜏𝑗 - (𝑛𝑖𝜇+ 1) for all 𝑖 ̸= 𝑗.

In the proof of this lemma, the notation below will be used.

Notation 3.3.8. If 𝜙(𝑥) = 𝑥𝑛 + 𝑎1𝑥
𝑛−1 + · · ·+ 𝑎𝑛−1𝑥+ 𝑎𝑛, then

̃︀𝜙(𝑥) := 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + · · ·+ 𝑎1𝑥+ 1.

Remark 3.3.9. If 𝜙(𝑥) factors completely into linear terms, so does ̃︀𝜙(𝑥).
Moreover, if the roots of 𝜙 are all distinct, the same holds for ̃︀𝜙.

Proof. (of Lemma 3.3.7) Let 𝜇(𝑖), 𝑖 ∈ {1, . . . , 𝐷} be all the Galois conjugates

of 𝜇. Then

Norm(𝑚𝜇+ 1) = (𝜇(1) · · ·𝜇(𝐷))𝑚𝐷 + · · ·+ (𝜇(1) + · · ·+ 𝜇(𝐷))𝑚+ 1.
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Let

𝜓(𝑥) = 𝑠𝐷𝑥
𝐷 + · · ·+ 𝑠1𝑥+ 𝑠0 ∈ Z[𝑥],

where

𝑠𝑟 =
∑︁

𝑖1<···<𝑖𝑟

𝜇(𝑖1) · · ·𝜇(𝑖𝑟).

So

Norm(𝑚𝜇+ 1) = 𝜓(𝑚).

Note that 𝜓(𝑥) = 𝜙(−𝑥)̃︀, where 𝜙 is the minimal polynomial of 𝜇.

By the assumption that 𝑝 is totally split in Z[𝜇], it follows that 𝜙(𝑥) ∈

F𝑝[𝑥] factors completely into linear terms and all its roots lie in F𝑝. So, by

the previous remark, the same is true for 𝜓(𝑥) ∈ F𝑝[𝑥].

Take 𝑚1, . . . ,𝑚𝐷 ∈ Z/𝑝Z the (distinct) roots of 𝜓.

Now consider

𝑔(𝑥) = 𝑠
(𝑚)
𝐷 𝑥𝐷 + · · ·+ 𝑠

(𝑚)
1 𝑥+ 𝑠

(𝑚)
0 ∈ Z[𝑥],

where

𝑠(𝑚)
𝑟 =

∑︁
𝑖1<···<𝑖𝑟

𝑚(𝑖1) · · ·𝑚(𝑖𝑟).

Note that

𝑔(𝜇) = (𝑚1𝜇+ 1) · · · (𝜇𝐷𝜇+ 1).
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Using that 𝑚1, . . . ,𝑚𝐷 are roots of 𝜙(−𝑥)̃︀ mod 𝑝, it follows that

𝑔(𝜇) ≡ 0 (mod 𝑝).

Therefore

𝜏1 · · · 𝜏𝐷 = 𝑝 | (𝑚1𝜇+ 1) · · · (𝑚𝐷𝜇+ 1).

If there are 𝑘1, . . . , 𝑘𝐷 ∈ Z such that

𝑛𝑖 = 𝑚𝑖 + 𝑘𝑖𝑝

satisfies

Norm(𝑛𝑖𝜇+ 1) ̸≡ 0 (mod 𝑝2),

then the lemma is proved.

The existence of the 𝑘𝑖 is guaranteed by the fact that Norm(𝛼𝜇 + 1) =

𝜓(𝛼) and the next lemma.

Lemma 3.3.10. Let 𝑓(𝑥) ∈ Z[𝑥] such that 𝑚 ∈ Z/𝑝Z is a simple root of

𝑓(𝑥) ∈ (Z/𝑝Z)[𝑥]. If 𝑓(𝑚) ≡ 0 (mod 𝑝2), then 𝑓(𝑚+ 𝑝) ̸≡ 0 (mod 𝑝2).

Proof. Suppose

𝑓(𝑥) = 𝑎𝑑𝑥
𝑑 + · · ·+ 𝑎1𝑥+ 𝑎0.
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Then, mod 𝑝2,

𝑓(𝑚+ 𝑝) = 𝑎𝑑(𝑚+ 𝑝)𝑑 + · · ·+ 𝑎1(𝑚+ 𝑝) + 𝑎0

≡ 𝑑𝑎𝑑𝑚
𝑑−1𝑝+ · · ·+ 𝑎1𝑝

= 𝑝𝑓 ′(𝑚) ̸≡ 0 (mod 𝑝2).

The last conclusion follows from the fact that 𝑚 is a simple root of 𝑓 in

Z/𝑝Z.

Proposition 3.3.11. The group Γ(0)(p) has 4 inequivalent cusps:

∞, −𝜇+1
𝜇
, 0, 𝛾2𝛾

−𝑛0
3 · 0,

where 𝑛0 ∈ Z is taken from the Lemma 3.3.7 satisfying

𝜏 | (𝑛0𝜇+ 1).

Proof. (To simplify notation, Γ(0) will denote Γ(0)(p) throughout this proof.)

As explained before, the cusps of Γ := Γ𝑞,∞,∞ (up to Γ-equivalence) are

[∞]Γ and [0]Γ, the question, basically, is: how many cusps (up to Γ(0)(𝜇+1)-

equivalence) are there above [∞]Γ and [0]Γ?

Since 𝑝 is totally split, it follows from Lemmas 1.3.2 and 1.3.3 that there

are two cusps above each cusp of Γ𝑞,∞,∞ (i.e., above [∞]Γ and [0]Γ). The

proof will be finished after the following is showed:
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1. [−𝜇+1
𝜇

]Γ = [∞]Γ and [𝛾2𝛾
−𝑛
3 · 0]Γ = [0]Γ; but

2. [−𝜇+1
𝜇

]Γ(0) ̸= [∞]Γ(0) and [𝛾2𝛾
−𝑛
3 · 0]Γ(0) ̸= [0]Γ(0)

The second part of first item is trivial. As for the first part, it follows

from:

𝛾1 · ∞ = −𝜇+1
𝜇
.

For the first part of the second item, assume, by contradiction, that

[−𝜇+1
𝜇

]Γ(0) = [∞]Γ(0) . Then there exists 𝛾 ∈ Γ(0) such that

𝛾 · ∞ =
−𝜇+ 1

𝜇
= 𝛾1 · ∞.

This would imply that

𝛾−1
1 𝛾 ∈ StabΓ(∞) = ⟨±𝛾3⟩

and, hence,

𝛾 = ±𝛾1𝛾𝑛3 = ± ( * *
𝜇 * ) ,

which is impossible because 𝜇 ̸∈ (𝜏) (in fact, by Lemma 3.3.2, Norm(𝜇) = 𝑞).

Finally, assume, by contradiction, that [𝛾2𝛾
−𝑛0
3 · 0]Γ(0) = [0]Γ(0) . Then

there exists 𝛾 ∈ Γ(0) such that

𝛾 · 0 = − 1

𝜇+ 1
= 𝛾2𝛾

−𝑛0
3 · 0.
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This would imply that

(𝛾2𝛾
−𝑛0
3 )−1𝛾 ∈ StabΓ(0) = ⟨±𝛾2⟩

and, hence,

𝛾 = ±𝛾2𝛾−𝑛0
3 𝛾𝑚2 = ±

⎛⎜⎜⎝ * *

−𝜇−𝑚𝜇(𝑛𝜇+ 1) *

⎞⎟⎟⎠ ,

which is impossible because

𝜏 | (𝑛0𝜇+ 1) and 𝜏 - 𝜇.

Theorem 3.3.12. Let p ⊆ Z[𝜇] be a prime ideal above a split prime 𝑝 ∈ Z

and Γ(0) = Γ
(0)
𝑞,∞,∞(p). Then

𝑁(Γ(0)) = Γ(0) ⊔ ℎΓ(0),

where

ℎ = 𝛾2𝛾
−𝑛0
3

⎛⎜⎜⎝ 0 1/
√
𝜇

−√
𝜇 0

⎞⎟⎟⎠ =
√
𝜇

⎛⎜⎜⎝ 𝑛0 1/𝜇

−(𝑛0𝜇+ 1) −1

⎞⎟⎟⎠
and 𝑛0 is as in Proposition 3.3.11.

Proof. The following claims are proved in various lemmas below:
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1. if 𝑔 ∈ 𝑁(Γ(0)) and 𝑔 · ∞ = ∞, then 𝑔 ∈ Γ(0);

2. if 𝑔 ∈ 𝑁(Γ(0)) and 𝑔 · 0 = 0, then 𝑔 ∈ Γ(0);

3. there is no 𝑔 ∈ 𝑁(Γ(0)) such that 𝑔 · ∞ = 0;

4. there is no 𝑔 ∈ 𝑁(Γ(0)) such that 𝑔 · ∞ = (−𝜇+ 1)/𝜇; and

5. there is a ℎ ∈ 𝑁(Γ(0)) such that ℎ · ∞ = 𝛾2𝛾
−𝑛0
3 · 0.

Note that the first claim implies that Γ(0) = ker(𝜙) (using the notation

of corollary 3.1.4) and, hence,

𝑁(Γ(0))

Γ(0)
≤ Perm(𝒞(Γ(0))).

In particular, this implies that the element ℎ from claim 5 satisfies

ℎ · [𝛾2𝛾−𝑛0
3 · 0] = [∞].

In fact, if this was not true, then ℎ · [𝑟] = [∞] for [𝑟] ∈ {[0], [𝛾2𝛾−𝑛0
3 · 0]}. But

then ℎ−1 · [∞] = [𝑟] for some [𝑟][𝑟] ∈ {[0], [𝛾2𝛾−𝑛0
3 · 0]}, contradicting either

claim 3 or claim 4.

For a similar reason, claim 2 implies that

ℎ · [0] = [
−𝜇+ 1

𝜇
] and ℎ · [−𝜇+ 1

𝜇
] = [0].
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All this shows that, modulo Γ(0), there can be only one non-trivial element

in 𝑁(Γ(0)), finishing the proof of the theorem.

Lemma 3.3.13. If 𝑔 ∈ 𝑁(Γ(0)) is of the form⎛⎜⎜⎝1 𝑏

0 1

⎞⎟⎟⎠ or

⎛⎜⎜⎝1 0

𝑏 1

⎞⎟⎟⎠
for 𝑏 ∈ Z[𝜇], then 𝑔 ∈ Γ(0).

Proof. The proof in the case 𝑔 = ( 1 𝑏
0 1 ) is similar to the proof of Lemma 3.3.3

(just replacing 𝛾2 by 𝛾𝑝2).

Assume now that

𝑔 =

⎛⎜⎜⎝1 0

𝑏 1

⎞⎟⎟⎠ .

By hypothesis, 𝑏 = 𝑎0 + 𝑣, where 𝑣 = 𝑎1𝜇 + · · · + 𝑎𝑛𝜇
𝑛, 𝑎𝑖 ∈ Z and

𝑛 = (𝑞−1)/2. If 𝑣 = 0, there is nothing to do. Suppose therefore that 𝑣 ̸= 0.

Then 𝑏 and 𝑝 are linearly independent over Q and, thus, the group

Z𝑏+ Z𝑝

accumulates at 0.

Therefore, for each 𝛿 > 0, there are 𝛼, 𝛽 ∈ Z such that 0 < Δ := 𝛼𝑏−𝑝𝛽 <

𝛿.
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Now take

𝑔′ :=

⎛⎜⎜⎝ 1 0

Δ 1

⎞⎟⎟⎠ = 𝑔𝛼𝛾𝑝𝛽2 ∈ 𝑁(Γ(0)).

Then, since 𝛾3 ∈ Γ(0), it follows that⎛⎜⎜⎝1−Δ 1

−Δ2 1 + Δ

⎞⎟⎟⎠ = 𝑔′𝛾3𝑔
′−1 ∈ Γ(0),

which shows that Γ(0) is not discrete, a contradiction.

The following lemma proves the first and second claims stated in the

proof of Theorem 3.3.12.

Lemma 3.3.14. If 𝑔 ∈ 𝑁(Γ(0)) is such that

𝑔 · ∞ = ∞ or 𝑔 · 0 = 0

then 𝑔 ∈ Γ(0).

Proof. Assume first that 𝑔 · ∞ = ∞. Then it is of the form 𝑔 = ( 𝑎 𝑏
0 𝑑 ). Since

det(𝑔) = 1, it follows that 𝑑 = 1/𝑎.

Therefore, because 𝛾3 ∈ Γ(0),⎛⎜⎜⎝1 𝑎2

0 1

⎞⎟⎟⎠ = 𝑔𝛾3𝑔
−1 ∈ Γ(0).
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So 𝑔𝛾3𝑔
−1 ∈ StabΓ(0)(∞) = ⟨±𝛾3⟩. Hence

𝑎2 ∈ Z.

Similarly, using that ⎛⎜⎜⎝1 𝑑2

0 1

⎞⎟⎟⎠ = 𝑔−1𝛾3𝑔 ∈ Γ(0),

it follows that

1

𝑎2
= 𝑑2 ∈ Z.

Thus the only possibility is that 𝑎 = ±1. Since all these matrices are

being viewed in PSL2(R), one can take 𝑎 = 1. So

𝑔 =

⎛⎜⎜⎝1 𝑏

0 1

⎞⎟⎟⎠
The goal now is to show that 𝑏 ∈ Z[𝜇]. The previous lemma then implies

that 𝑔 ∈ Γ(0), finishing the proof.

Using that 𝛾𝑝2 ∈ 𝑁(Γ(0)), it follows that⎛⎜⎜⎝1− 𝑝𝜇𝑏 𝑝𝜇𝑏2

* *

⎞⎟⎟⎠ = 𝑔𝛾𝑝2𝑔
−1 ∈ Γ(0).

In particular,

𝑝𝜇𝑏 , 𝑝𝜇𝑏2 ∈ Z[𝜇].
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From the first containment, it results that

𝑏 =
𝑘

𝑝𝜇

for some 𝑘 ∈ Z[𝜇].

From the second one,

𝑘2

𝑝𝜇
∈ Z[𝜇].

Since gcd(𝜇, 𝑝) = 1, 𝜇 is a prime and 𝑝 is a product of distinct primes in

Z[𝜇] (since 𝑝 is assumed to be totally split), it follows that

𝑝𝜇 | 𝑘

in Z[𝜇] (recall that Z[𝜇] is a unique factorization domain) and, thus,

𝑏 ∈ Z[𝜇].

A similar argument (with the roles of 𝛾3 and 𝛾2 switched) shows that if

𝑔 · 0 = 0, then 𝑔 = ( 1 0
𝑏 1 ) for some 𝑏 ∈ Z[𝜇]. The previous lemma then implies

that 𝑔 ∈ Γ(0).

Lemma 3.3.15. If 𝑔 ∈ 𝑁(Γ(0)) and 𝑔 · ∞ = 0, then

𝑔 =

⎛⎜⎜⎝ 0 −1/
√
𝑝𝜇

√
𝑝𝜇 𝑟

√
𝑝𝜇

⎞⎟⎟⎠
for some 𝑟 ∈ Z[𝜇].
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Proof. Any 𝑔 ∈ PSL2(R) such that 𝑔 · ∞ = 0 is necessarily of the form

𝑔 =

⎛⎜⎜⎝0 𝑏

𝑐 𝑑

⎞⎟⎟⎠ .

From det(𝑔) = 1, it follows that

𝑐 = −1

𝑏
.

Since 𝛾3, 𝛾
𝑝
2 ∈ Γ(0)(p),

𝑔𝛾3𝑔
−1 =

⎛⎜⎜⎝ 1 0

−𝑐2 1

⎞⎟⎟⎠ , 𝑔−1𝛾𝑝2𝑔 =

⎛⎜⎜⎝1 𝑝𝑏2𝜇

0 1

⎞⎟⎟⎠ ∈ Γ(0)(p)

Since 𝑔𝛾3𝑔
−1 · 0 = 0,

𝑔𝛾3𝑔
−1 ∈ StabΓ(0)(p)(0) = ⟨±𝛾𝑝2⟩,

and, thus,

𝑐2 ∈ 𝑝𝜇Z,

i.e.,

𝑐2 = 𝑝𝜇𝑛

for some 𝑛 ∈ Z.

A similar analysis for 𝑔−1𝛾𝑝2𝑔 yields

1

𝑛
= 𝑝𝑏2𝜇 ∈ Z.
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Since 𝑝𝜇𝑛 = 𝑐2 > 0, it implies that 𝑛 = 1 and, hence, (up to multiplication

by ±𝐼)

𝑐 =
√
𝑝𝜇 and 𝑏 = − 1

√
𝑝𝜇
.

Now, ⎛⎜⎜⎝1 + 𝑑
√
𝑝𝜇 𝑑2

* *

⎞⎟⎟⎠ = 𝑔−1𝛾3𝑔 ∈ Γ(0).

In particular,

𝑑
√
𝑝𝜇 , 𝑑2 ∈ Z[𝜇].

The first condition says that

𝑑 =
𝑟′

√
𝑝𝜇
,

for some 𝑟′ ∈ Z[𝜇].

The second condition then implies that

(𝑟′)2

𝑝𝜇
∈ Z[𝜇].

Since Z[𝜇] is a UFD and 𝑝𝜇 is square-free, it follows that (𝑝𝜇) | 𝑟′ and,

thus,

𝑑 = 𝑟
√
𝑝𝜇

for some 𝑟 ∈ Z[𝜇].
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The next lemma proves the third claim stated in the the proof of Theorem

3.3.12.

Lemma 3.3.16. There is no 𝑔 ∈ 𝑁(Γ(0)) such that 𝑔 · ∞ = 0.

Proof. By the previous lemma, such a 𝑔 would be of the form

𝑔 =

⎛⎜⎜⎝ 0 −1/
√
𝑝𝜇

√
𝑝𝜇 𝑟

√
𝑝𝜇

⎞⎟⎟⎠
for some 𝑟 ∈ Z[𝜇].

Take 𝑛0 as in Proposition 3.3.11. Note that

𝛾 = (𝛾2𝛾
−𝑛0
3 )𝛾−1

2 (𝛾2𝛾
−𝑛0
3 )−1 =

⎛⎜⎜⎝ * *

𝜇(𝑛0𝜇+ 1)2 *

⎞⎟⎟⎠ ∈ Γ(0)(𝜏).

In fact, by the choice of 𝑛0 and lemma 3.3.7,

𝜏 | (𝑛0𝜇+ 1).

Then 𝑔𝛾𝑔−1 ∈ Γ(0)(𝜇+ 1). But

𝑔𝛾𝑔−1 =

⎛⎜⎜⎝* − (𝑛0𝜇+1)2

𝑝

* *

⎞⎟⎟⎠ .

By the choice of 𝑛0 and Lemma 3.3.7, 𝑝 - (𝑛0𝜇+ 1)2 and, thus,

−(𝑛0𝜇+ 1)2

𝑝
̸∈ Z[𝜇],

a contradiction.
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Lemma 3.3.17. If 𝑔 ∈ 𝑁(Γ(0)) and 𝑔 · ∞ = −𝜇+1
𝜇

, then

𝑔 =

⎛⎜⎜⎝
√︀
𝑝(𝜇− 1)(−𝜇+ 1) 1

(𝜇−1)3/2

(︁
1√
𝑝
− 𝑟𝜇

√
𝑝
)︁

√︀
𝑝(𝜇− 1)𝜇

𝑟
√
𝑝√

𝜇−1

⎞⎟⎟⎠
for some 𝑟 ∈ Z[𝜇].

Proof. Any such 𝑔 would be of the form

𝑔 =

⎛⎜⎜⎝𝑎(−𝜇+ 1) 𝑏

𝑎𝜇 𝑑

⎞⎟⎟⎠ .

Note that, since 𝛾1 · ∞ = (−𝜇+ 1)/𝜇,

StabΓ((−𝜇+ 1)/𝜇) = 𝛾1 StabΓ(−∞)𝛾−1
1 = ⟨±𝛾1𝛾3𝛾−1

1 ⟩ = ⟨±𝛾4⟩ ,

where

𝛾4 = 𝛾1𝛾3𝛾
−1
1 =

⎛⎜⎜⎝1− 𝜇(−𝜇+ 1) (−𝜇+ 1)2

−𝜇2 1 + 𝜇(−𝜇+ 1)

⎞⎟⎟⎠ .

It is easy to check that

𝛾𝑛4 =

⎛⎜⎜⎝1− 𝑛𝜇(−𝜇+ 1) 𝑛(−𝜇+ 1)2

−𝑛𝜇2 1 + 𝑛𝜇(−𝜇+ 1)

⎞⎟⎟⎠ .

Since 𝜏 - 𝜇, it follows that

StabΓ(0)((−𝜇+ 1)/𝜇) = ⟨±𝛾𝑝4⟩.
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Note that 𝑔𝛾3𝑔
−1 · −𝜇+1

𝜇
= −𝜇+1

𝜇
and, thus,⎛⎜⎜⎝* 𝑎2(−𝜇+ 1)

* *

⎞⎟⎟⎠ = 𝑔𝛾3𝑔
−1 = ±𝛾𝑝𝑛4

for some 𝑛 ∈ Z.

Therefore

𝑎2 = ±𝑛𝑝(−𝜇+ 1).

Since 𝑔−1𝛾𝑝4𝑔 · ∞ = ∞,

𝑔−1𝛾𝑝4𝑔 = ±𝛾𝑚3

for some 𝑚 ∈ Z.

Hence,

𝛾3 = ±𝛾𝑚𝑛
3 .

This implies that 𝑛 = 𝑚 = ±1 and either

𝑔𝛾3𝑔
−1 = 𝛾𝑝𝑛4 and 𝑔−1𝛾𝑝4𝑔 = 𝛾𝑚3

or

𝑔𝛾3𝑔
−1 = −𝛾𝑝𝑛4 and 𝑔−1𝛾𝑝4𝑔 = −𝛾𝑚3 .

In any case, 𝑎 = ±
√︀
𝑝(𝜇− 1). Since all matrices are being viewed in

PSL2(R), there is no loss of generality in assuming that

𝑎 =
√︀
𝑝(𝜇− 1),
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that is,

𝑔 =

⎛⎜⎜⎝
√︀
𝑝(𝜇− 1)(−𝜇+ 1) 𝑏√︀

𝑝(𝜇− 1)𝜇 𝑑

⎞⎟⎟⎠
Now, ⎛⎜⎜⎝1 + 𝑑

√︀
𝑝(𝜇− 1)𝜇 𝑑2

* *

⎞⎟⎟⎠ = 𝑔−1𝛾3𝑔 ∈ Γ(0)

implies that

𝑑
√︀
𝑝(𝜇− 1), 𝑑2 ∈ Z[𝜇].

The first containment says that

𝑑 =
𝑟′√︀

𝑝(𝜇− 1)𝜇

for some 𝑟′ ∈ Z[𝜇]. The second would then imply that

𝑑2 =
𝑟′2

𝑝(𝜇− 1)𝜇2
∈ Z[𝜇].

Since Z[𝜇] is assumed to be a UFD, it follows that

𝑝 | 𝑟′ and 𝜇 | 𝑟′

and, so,

𝑟 =
𝑟
√
𝑝

√
𝜇− 1

.

The lemma is finished then by taking into account that

det(𝑔) = 1.
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The next lemma proves the fourth claim stated in the the proof of The-

orem 3.3.12.

Lemma 3.3.18. There is no 𝑔 ∈ 𝑁(Γ(0)) such that 𝑔 · ∞ = −𝜇+1
𝜇

.

Proof. By the previous lemma, any such 𝑔 would be of the form

𝑔 =

⎛⎜⎜⎝
√︀
𝑝(𝜇− 1)(−𝜇+ 1) 1

(𝜇−1)3/2

(︁
1√
𝑝
− 𝑟𝜇

√
𝑝
)︁

√︀
𝑝(𝜇− 1)𝜇

𝑟
√
𝑝√

𝜇−1

⎞⎟⎟⎠ .

Note that

𝛾 :=

⎛⎜⎜⎝1− 𝑛0𝜇(𝑛0𝜇+ 1) −𝑛2
0𝜇

𝜇(𝑛0𝜇+ 1)2 1 + 𝑛0𝜇(𝑛0 + 1)

⎞⎟⎟⎠ = (𝛾2𝛾
−𝑛0
3 )𝛾−1

2 (𝛾2𝛾
−𝑛0
3 )−1 ∈ Γ(0).

Therefore

( * 𝐵
* * ) = 𝑔𝛾𝑔−1 ∈ Γ(0)

and, in particular,

𝐵 ∈ Z[𝜇].

Computing 𝐵 yields

𝐵 = 𝐵0 +
𝜇(𝑛0𝜇+ 1)2

(𝜇− 1)𝑝
,

where 𝐵0 ∈ Z[𝜇].
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Since

𝑝 - 𝜇 and 𝑝 - (𝑛0𝜇+ 1),

that contradicts the fact that 𝐵 ∈ Z[𝜇].

The next lemma proves the fifth claim stated in the the proof of Theorem

3.3.12.

Lemma 3.3.19. Let 𝑛0 be as in Proposition 3.3.11. Then

𝛾2𝛾
−𝑛0
3

⎛⎜⎜⎝ 0 1/
√
𝜇

−√
𝜇 0

⎞⎟⎟⎠ ∈ Γ(0)(p).

Moreover its action on 𝒞(Γ(0)(p)) is given by

[∞] ↦−→ [𝛾2𝛾
−𝑛0
3 · 0]

[−𝜇+1
𝜇

] ↦−→ [0]

[0] ↦−→ [−𝜇+1
𝜇

]

[𝛾2𝛾
−𝑛0
3 · 0] ↦−→ [∞].

Proof. By Theorem 3.3.6,

𝑔 :=

⎛⎜⎜⎝ 0 1/
√
𝜇

−√
𝜇 0

⎞⎟⎟⎠ ∈ 𝑁(Γ𝑞,∞,∞).

It is therefore clear that ℎ := 𝛾2𝛾
−𝑛0
3 𝑔 ∈ 𝑁(Γ𝑞,∞,∞). Hence, in order

to show it is in the normalizer of Γ(0)(𝜏), it suffices to show that if 𝛾 =
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( 𝑎 𝑏
𝑐 𝑑 ) ∈ Γ(0)(𝜏), then the (2, 1)-entry of ℎ𝛾ℎ−1 is a multiple of 𝜏 . A simple

computation shows that

ℎ𝛾ℎ−1 =

⎛⎜⎜⎝ * *

𝜇(𝑛0𝜇+ 1)(𝑎− (𝑛0𝜇+ 1)𝑏− 𝑑) + 𝜇𝑐 *

⎞⎟⎟⎠ ,

Since 𝜏 | (𝑛0𝜇 + 1) (by Lemma 3.3.7) and 𝜏 | 𝑐 (by the assumption that

𝛾 ∈ Γ(0)(𝜏)), it follows that the (2, 1)-entry is a multiple of 𝜏 .

For the action of ℎ on 𝒞(Γ(0)(p)), the key information is that the action

of 𝑔 (and, thus, of ℎ) on 𝒞(Γ𝑞,∞,∞) is given by:

[∞] ↦−→ [0]

[0] ↦−→ [∞].

Because of this, the action of ℎ on 𝒞(Γ(0)(p)) has to send a cusp above ∞ to

a cusp above 0 and vice-versa. The definition of ℎ shows that it will send

[∞] to [𝛾2𝛾
−𝑛0
3 · 0]. Therefore, it will send [−𝜇+1

𝜇
] to [0]. Finally, Claim 3 in

the proof of Theorem 3.3.12 shows that ℎ will send [0] to [−𝜇+1
𝜇

] and, thus,

it will send [𝛾2𝛾
−𝑛0
3 · 0] to [∞].

3.3.2 Final remarks

Theorem 3.3.12 completely characterizes the normalizer of Γ𝑞,∞,∞(p) when

p sits above a split prime 𝑝: namely those groups have only one non-trivial
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normalizer and it comes from the non-trivial normalizer of Γ𝑞,∞,∞. What

happens when 𝑝 is an inert prime is not clear. In fact, the next example

shows a possible member of the normalizer of Γ5,∞,∞(7) which does not come

from the normalizer of Γ5,∞,∞.

Example 4. We now try to understand a specific example when 𝑝 is inert.

Here we take 𝑞 = 5 and 𝑝 = 7 and study the normalizer of Γ5,∞,∞(7).

The first remark is that, just like in the split case, the group Γ5,∞,∞(7)

has a non-trivial normalizer coming from a normalizer of Γ5,∞,∞. In fact,

using a computer algebra system one can check that

𝛾42𝛾
6
3𝛾2𝛾3

⎛⎜⎜⎝ 0 1/
√
𝜇

−√
𝜇 0

⎞⎟⎟⎠ =
√
𝜇

⎛⎜⎜⎝ 6𝜇− 7 −1
5
𝜇− 5

−91𝜇+ 119 24𝜇− 5

⎞⎟⎟⎠
is indeed a normalizer of Γ5,∞,∞(7). This can be done by finding a list of

generators of Γ5,∞,∞(7) and checking that every generator, when conjugated

the above element, remains in Γ5,∞,∞(7) (that is, its (2,1)-entry is a multiple

of 7). Using the same computer algebra system, we can show that this is in

fact the only normalizer coming from the normalizer of Γ5,∞,∞ (this is done

by finding a list of representatives of the cosets of Γ5,∞,∞(7)∖Γ5,∞,∞).

Now, contrary to the split case, there are other elements that are strong

candidates for being in the normalizer but for which we cannot prove one

119



way or another. One such element is the following:⎛⎜⎜⎝
√
7 1

𝜇
√
7
− 3

√
7

𝜇

−𝜇
√
7 3

√
7

⎞⎟⎟⎠ .

To find this element, we investigated if it would be possible to have an element

ℎ ∈ 𝑁(Γ
(0)
5,∞,∞(7)) such that ℎ·∞ = −1/𝜇 in the same spirit of Lemma 3.3.17.

After that, we were not able to show that such normalizers do not exist (as

was proved in Lemma 3.3.18 for the split case) and, in fact, found this possible

candidate for being in the normalizer.

We would like to make one last observation regarding cusps. As men-

tioned at the beginning of the previous section, a similar study for the Hecke

triangle group Γ2,5,∞ was conducted in [LT99]. The results there were proved

using the fact that the set of cusps of Γ2,5,∞ is known explicitly (cf. [Leu67]

and [Leu74]). On the other hand, the results from the previous section were

obtained without using any description of the set of cusps of Γ5,∞,∞. In fact,

to the best of our knowledge, there is no known explicit description of that

set. It would be interesting to study whether the results from the previous

section can say something about that set.
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Chapter 4

The TTV family of curves

In [Dar00], H. Darmon constructed Frey representations (cf. definition 1.1 in

[Dar00] and definition 8 in [Dar04]) associated to the triangle groups Γ𝑞,∞,∞

with the use of two families of hyperelliptic curves:

𝐶−
𝑞 (𝑡) : 𝑦2 = ℎ(𝑥) + 2− 4𝑡

𝐶+
𝑞 (𝑡) : 𝑦2 = (𝑥+ 2)(ℎ(𝑥) + 2− 4𝑡),

(4.1)

where

ℎ(𝑥) = 𝑥𝑔(𝑥2 − 2) = 𝑔(−𝑥)2(𝑥− 2) + 2 = 𝑔(𝑥)2(𝑥+ 2)− 2,

𝑔(𝑥) is the minimal polynomial of −𝜁𝑞 − 𝜁−1
𝑞 , for 𝜁𝑞 a primitive 𝑞-th root

of unity over Q. These curves were originally studied in [TTV91], where it
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was shown that their Jacobians have real multiplication by 𝒪𝐿, the ring of

integers of 𝐿 = Q(𝜁𝑞)+ = Q(𝜁𝑞 + 𝜁−1
𝑞 ).

In this chapter we will study the family of curves 𝐶±
5 (𝑡):

𝐶−
5 (𝑡) : 𝑦2 = 𝑥5 − 5𝑥3 + 5𝑥+ (2− 4𝑡)

𝐶+
5 (𝑡) : 𝑦2 = (𝑥+ 2)(𝑥5 − 5𝑥3 + 5𝑥+ (2− 4𝑡)).

(4.2)

(which will be referred to as 𝐶±
𝑡 to simplify notation). In the first section, we

will investigate how they sit in the moduli space of genus 2 curves studied by

Igusa (cf. [Igu60]). In the following section, we study the modular embedding

defined by them into the moduli space SL2(𝒪,𝒪*)∖ℋ2 of Abelian surfaces

having RM by an order 𝒪 in a totally real quadratic field.

4.1 Invariants

In this section we compute the Igusa-Clebsch invariants of 𝐶±
5 (𝑡). We, then,

obtain the degree of the map from P1∖{0, 1,∞} into the moduli space of

genus 2 curves defined by the families defined in (4.2).
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4.1.1 Igusa-Clebsch invariants

Following Section 2.2 of [GL12], we recall the definition of the Igusa-Clebsch

invariants.

Let

𝑦2 = 𝑓(𝑥) = 𝑢0𝑥
6 + 𝑢1𝑥

5 + · · ·+ 𝑢5𝑥+ 𝑢6

be a hyperelliptic curve. Denote by 𝑥1, 𝑥2, . . . , 𝑥6 the roots of 𝑓(𝑥). In what

follows, (𝑖𝑗) is a notation for (𝑥𝑖 − 𝑥𝑗). The Igusa-Clebsch invariants are

defined to be

𝐴 = 𝑢20
∑︀

fifteen

(12)2(34)2(56)2,

𝐵 = 𝑢40
∑︀
ten

(12)2(23)2(31)2(45)2(56)2(64)2,

𝐶 = 𝑢60
∑︀
sixty

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2, and

𝐷 = 𝑢100
∑︀
𝑖<𝑗

(𝑖𝑗)2.

(4.3)

The subscript “fifteen” in 𝐴 refers to the fact that there are 15 ways of

partition 6 objects into 3 groups of 2 elements, the subscript “ten” in 𝐵 refers

to the fact that there are 10 ways to partition 6 objects into 2 groups of 3

elements. Finally, the subscript “sixty” refers to partitioning 6 objects into 2

groups and then finding a matching between those 2 groups.

In [GL12], it is explained that those invariants belong to the weighted
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projective space P3
2,4,6,10 and completely determine the genus 2 curve. In other

words, let 𝐴1, 𝐵1, 𝐶1, 𝐷1 and 𝐴2, 𝐵2, 𝐶2, 𝐷2 be the Igusa-Clebsch invariants

of two curves, then those two curves are isomorphic if, and only if, there is a

non-zero 𝑟 such that

𝐴1 = 𝑟2𝐴2 , 𝐵1 = 𝑟4𝐵2 , 𝐶1 = 𝑟6𝐶2 and 𝐷1 = 𝑟10𝐷2.

4.1.2 Computing the Igusa-Clebsch invariants

Proposition 4.1.1. The Igusa-Clebsch invariants of the hyperelliptic curve

𝑦2 = 𝑥5 − 5𝑥3 + 5𝑥+ (2− 4𝑡) (4.4)

are

𝐴 = 350 = 2 · 52 · 7,

𝐵 = 2500 = 22 · 54,

𝐶 = −11250(2− 4𝑡)2 + 295000 = −24 · 54 · (18𝑡2 − 18𝑡− 25), and

𝐷 = 3125(2− 4𝑡)4 − 25000(2− 4𝑡)2 + 50000 = 28 · 55 · 𝑡2 · (𝑡− 1)2.

In particular, the map from P1∖{0, 1,∞} to the moduli space of genus 2

curves defined by (4.4) is 2 : 1.

Proof. To use the definition of the Igusa-Clebsch invariants given in (4.3),

we must have a degree 6 polynomial. For this reason, we first remark that
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the curve

𝑦2 = 𝑥5 − 5𝑥3 + 5𝑥+ (2− 4𝑡),

is isomorphic to

𝑦2 = 𝑓(𝑥) = (2− 4𝑡)𝑥6 + 5𝑥5 − 5𝑥3 + 𝑥,

which can be seen, for instance, as a consequence of Proposition 7.4.24 in

[LE06].

Now, from (4.3), it is clear that 𝐴, 𝐵, 𝐶, and 𝐷 are symmetric polyno-

mials in the roots of 𝑓(𝑥). Since 𝑓(𝑥) is known

𝑓(𝑥) = 𝑡𝑥6 + 5𝑥5 − 5𝑥3 + 𝑥,

the elementary symmetric polynomials in the roots of 𝑓(𝑥) are also explicitly

known:

𝑠1 = −5/(2− 4 * 𝑡), 𝑠2 = 0, 𝑠3 = 5/(2− 4 * 𝑡),

𝑠4 = 4, 𝑠5 = −1/(2− 4 * 𝑡), 𝑠6 = 0.

Therefore, by the Fundamental Theorem of Symmetric Polynomials, it is

possible to compute the Igusa-Clebsch invariants explicitly.

The values of 𝐴, 𝐵, 𝐶, and 𝐷 were computed using the computer algebra

system Sage [S+12] and an algorithm given in Section 26 of [vdW49].
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Proposition 4.1.2. The Igusa-Clebsch invariants of the hyperelliptic curve

𝑦2 = (𝑥+ 2)(𝑥5 − 5𝑥3 + 5𝑥+ (2− 4𝑡)) (4.5)

are

𝐴 = 23 · 52,

𝐵 = 22 · 54 · (4𝑡− 5)2,

𝐶 = 23 · 54 · (4512𝑡3 − 9712𝑡2 + 2500𝑡+ 3125), and

𝐷 = 212 · 55 · 𝑡4 · (𝑡− 1)2.

In particular, the map from P1∖{0, 1,∞} to the moduli space of genus 2

curves defined by (4.5) is 1 : 1.

Proof. The invariants 𝐴, 𝐵, 𝐶 and 𝐷 were computed using the same method

as in the previous proposition. The fact that it therefore defines a 1 : 1 map

can be checked manually.
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4.2 Modular embedding

We start with a review the moduli space of Abelian surfaces with Real Multi-

plication. Then we proceed to the computation of the Jacobians of the TTV

curves and study how they sit in that moduli space.

4.2.1 Moduli space of Abelian surfaces with

Real Multiplication

Let us start fixing the notation. Throughout this chapter,

𝐿 = Q(
√
5) = Q(𝜁5 + 𝜁−1

5 ) , 𝒪 = 𝒪𝐿 = Z [𝜆] ,

where

𝜆 =
1 +

√
5

2
.

Notice that 𝐿 is a totally real field of degree 2. Given 𝑥 ∈ 𝐿, we denote

𝑥(𝑖) = 𝑖-th embedding of 𝑥 in R.

As usual, 𝒪* will denote the dual of 𝒪 with respect to the trace, i.e.,

𝒪* = {𝑟 ∈ 𝐿 | Tr𝐿/Q(𝑟𝑥) ∈ Z for all 𝑥 ∈ 𝒪},

which in our case is given by

𝒪* =
1√
5
𝒪.
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Moreover

SL2(𝒪,𝒪*) =
{︀
( 𝑎 𝑏
𝑐 𝑑 ) ∈ SL2(𝐿) | 𝑎, 𝑑 ∈ 𝒪, 𝑐 ∈ 𝒪*, 𝑏 ∈ (𝒪*)−1

}︀
.

There is a natural action of SL2(𝒪,𝒪*) on ℋ2 as follows: let 𝑧 = (𝑧1, 𝑧2) ∈

ℋ2 and 𝛾 = ( 𝑎 𝑏
𝑐 𝑑 ) ∈ SL2(𝒪,𝒪*), then

𝛾 · 𝑧 :=
(︀
𝛾(1)𝑧1, 𝛾

(2)𝑧2
)︀
,

where

𝛾(𝑖) :=

⎛⎜⎜⎝𝑎(𝑖) 𝑏(𝑖)

𝑐(𝑖) 𝑑(𝑖)

⎞⎟⎟⎠
and

𝛾(𝑖)𝑧𝑖 :=
𝑎(𝑖)𝑧𝑖 + 𝑏(𝑖)

𝑐(𝑖)𝑧𝑖 + 𝑑(𝑖)
.

In this section we briefly explain how SL2(𝒪,𝒪*)∖ℋ2 parametrizes Abelian

surfaces with real multiplication (RM) by Z[(1+
√
5)/2]. For details, consult

[Gor02] and [HvdG81].

We first explain the map

SL2(𝒪,𝒪*)∖ℋ2 −→ {Abelian surfaces with RM by 𝒪}.
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Given 𝑧 = (𝑧1, 𝑧2) ∈ ℋ2, we can construct

𝐿𝑧 : 𝐿⊕ 𝐿 −→ C2

(𝛼, 𝛽) ↦−→ 𝛼𝑧 + 𝛽 :=
(︀
𝛼(1)𝑧1 + 𝛽(1), 𝛼(2)𝑧2 + 𝛽(2)

)︀ .
Taking 𝑀 = 𝒪 ⊕𝒪*, define the lattice

Λ𝑧 := 𝐿𝑧(𝑀) ⊆ C2.

So

PSL2(𝒪,𝒪*)∖ℋ2 −→ Abelian surfaces with RM by 𝒪

𝑧 ↦−→ 𝐴𝑧 := C2/Λ𝑧.

A few remarks about this construction:

1. Λ𝑧 = Z
(︁

1√
5
,− 1√

5

)︁
⊕ Z

(︁
𝜆(1)
√
5
,−𝜆(2)

√
5

)︁
⊕ Z (𝑧1, 𝑧2)⊕ Z

(︀
𝜆(1)𝑧1, 𝜆

(2)𝑧2
)︀
.

2. The RM by 𝒪 structure on 𝐴𝑧 is given by

𝒪 −→ End(𝐴𝑧)

𝑟 ↦−→
(︂
(𝑥1, 𝑥2) ↦→ (𝑟(1)𝑥1, 𝑟

(2)𝑥2)

)︂
.

Notice that with this action, 𝑟 · Λ𝑧 = Λ𝑧 for all 𝑟 ∈ 𝒪, as it should.

3. With the action of 𝒪 on 𝐴𝑧, we have that

Λ𝑧 = 𝒪 · (𝑧1, 𝑧2)⊕𝒪* · (1, 1),
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that is, every element 𝑤 ∈ Λ𝑧 can be written as

𝑤 =

(︂
𝑟(1)𝑧1 +

𝑠(1)√
5
, 𝑟(2)𝑧2 −

𝑠(2)√
5

)︂

for some 𝑟, 𝑠 ∈ 𝒪.

Now we are ready to explain the map in the opposite direction:

{Abelian surfaces with RM by 𝒪} −→ SL2(𝒪,𝒪*)∖ℋ2.

Let 𝐴 = C2/Λ be an Abelian surface with RM by 𝒪. Up to isomorphism,

we can assume that the action of 𝒪 on 𝐴 is given by

𝑟 · (𝑥1, 𝑥2) = (𝑟(1)𝑥1, 𝑟
(2)𝑥2).

Since this action has to send Λ to Λ, we obtain that Λ is an 𝒪-module.

Since it is a lattice of rank 4 without torsion,

Λ = 𝒪 · (𝑣1, 𝑣2)⊕𝒪* · (𝑤1, 𝑤2)

for some (𝑣1, 𝑣2), (𝑤1, 𝑤2) ∈ C2.

Note that we must have 𝑣1, 𝑣2, 𝑤1, 𝑤2 ̸= 0 because otherwise Λ would not

have rank 4.
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Now we can consider the linear map

𝜙 : C2 −→ C2

(𝑥1, 𝑥2) ↦−→ (𝑥1/𝑤1, 𝑥2/𝑤2)

or in matrix form

𝜙 =

⎛⎜⎜⎝1/𝑤1 0

0 1/𝑤2

⎞⎟⎟⎠ .

This map induces an isomorphism (which we still call 𝜙)

𝜙 : C2/ (𝒪(𝑣1, 𝑣2)⊕𝒪*(𝑤1, 𝑤2)) −→ C2/ (𝒪(𝑧1, 𝑧2)⊕𝒪*(1, 1))

which preserves the action of 𝒪 of both sides, i.e.,

𝜙(𝑟(𝑥1, 𝑥2)) = 𝑟 · 𝜙(𝑥1, 𝑥2),

where (𝑧1, 𝑧2) = (𝑣1/𝑤1, 𝑣2/𝑤2).

Now we just need to check whether (𝑧1, 𝑧2) ∈ ℋ2. From its construction

we just have 𝑧𝑖 ∈ ℋ±. If they are both in ℋ+ or both in ℋ−, this is not a

problem because 𝒪(𝑧1, 𝑧2) = 𝒪(−𝑧1,−𝑧2).

If one of them belongs to ℋ+ and the other to ℋ−, we use 𝜆: since

𝜆 ∈ 𝒪×,

𝒪(𝑧1, 𝑧2) = 𝒪(𝜆(1)𝑧1, 𝜆
(2)𝑧2)

but 𝜆 has the nice property that one of its embeddings in R is positive and

the other one is negative.
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4.2.2 Jacobians of the TTV curves

In this section we study the Jacobians of the curves 𝐶±
𝑡 := 𝐶±

5 (𝑡) defined in

(4.2). We start with

𝐶−
𝑡 : 𝑦2 = 𝑥5 − 5𝑥3 + 5𝑥+ (2− 4𝑡).

First, recall that the Jacobian of 𝐶−
𝑡 is defined by

𝐽(𝐶−
𝑡 ) =

Ω1(𝐶
−
𝑡 )

*

Λ
,

where Ω1(𝐶
−
𝑡 )

* is the space of linear functionals from Ω1(𝐶
−
𝑡 ) to C and

Λ =

{︂∫︁
𝛾

⃒⃒⃒⃒
𝛾 ∈ 𝐻1(𝐶

−
𝑡 ,Z)

}︂
.

It is well known (cf. Prop. 7.4.26 in [LE06]) that

Ω1(𝐶
−
𝑡 ) =

⟨
𝑑𝑥

𝑦
, 𝑥

𝑑𝑥

𝑦

⟩
.

So, via the identification

Ω1(𝐶
−
5 (𝑡))

* −→ C2

𝜓 ↦−→
(︁
𝜓(𝑑𝑥

𝑦
) , 𝜓(𝑥𝑑𝑥

𝑦
)
)︁ (4.6)

we have that

𝐽(𝐶−
𝑡 ) =

C2

Λ
,
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where

Λ =

{︂(︂∫︁
𝛾

𝑑𝑥

𝑦
,

∫︁
𝛾

𝑥
𝑑𝑥

𝑦

)︂ ⃒⃒⃒⃒
𝛾 ∈ 𝐻1(𝐶

−
𝑡 ,Z)

}︂
.

Let 𝛼 := 𝜁5 + 𝜁−1
5 ∈ 𝐿 = Q(

√
5). Recall that 𝒪 = 𝒪𝐿 = Z[𝛼].

Lemma 4.2.1. The Jacobian 𝐽(𝐶−
𝑡 ) has RM by 𝒪.

𝛼 · 𝑑𝑥
𝑦

= (𝑒2𝜋𝑖/5 + 𝑒−2𝜋𝑖/5)𝑑𝑥
𝑦
,

𝛼 · 𝑥𝑑𝑥
𝑦

= (𝑒4𝜋𝑖/5 + 𝑒−4𝜋𝑖/5)𝑥𝑑𝑥
𝑦
.

(4.7)

In particular, using the identification (4.6) and the conventions from the

previous section, the action of any 𝑟 ∈ 𝒪 is given by

𝑟 · (𝑥1, 𝑥2) =
(︀
𝑟(1)𝑥1 , 𝑟

(2)𝑥2
)︀
.

Proof. Cf. [TTV91] and fact 17 below.

Our goal in this section is to describe the points

(𝑧1, 𝑧2) ∈ SL2(𝒪,𝒪*)∖ℋ2

that represent the Jacobians 𝐽(𝐶−
𝑡 ) of the TTV family. By the previous

section, we only need to write

Λ = 𝒪 · (−,−)⊕𝒪* · (−,−).
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We know that Λ is generated (as a Z-module) by

∫︀
𝑎1

,
∫︀
𝑎2

,
∫︀
𝑏1

,
∫︀
𝑏2

where 𝐻1(𝐶
−
𝑡 , 𝑍𝑍) = ⟨𝑎1, 𝑎2, 𝑏1, 𝑏2⟩ (generated as a Z-module).

We now need to understand how 𝒪 acts on the elements of Λ (not only

how it acts on Λ as a subset of Ω1(𝐶−
𝑡 )

*), that is, how 𝒪 transforms elements

of Λ into other elements of Λ. In other words, we want to know how to write

(︂∫︁
𝛾

𝑟 · 𝑑𝑥
𝑦
,

∫︁
𝛾

𝑟 · 𝑥𝑑𝑥
𝑦

)︂

(for all 𝛾 ∈ {𝑎1, 𝑎2, 𝑏1, 𝑏2}) as a Z-combination of

(︁∫︀
𝑎𝑖

𝑑𝑥
𝑦
,
∫︀
𝑎𝑖
𝑥𝑑𝑥

𝑦

)︁
and

(︁∫︀
𝑏𝑖

𝑑𝑥
𝑦
,
∫︀
𝑏𝑖
𝑥𝑑𝑥

𝑦

)︁
for 𝑖 = 1, 2. For this, we need to understand the curves 𝐶−

𝑡 in more detail.

Let us first recall some facts about 𝐶−
𝑡 that were proved in [TTV91].

Fact 14. The curve 𝐶−
𝑡 is a quotient of

𝐷−
𝑡 : 𝑦2 = 𝑥(𝑥10 + (2− 4𝑡)𝑥5 + 1)

by the involution

𝜎 : (𝑥, 𝑦) ↦→
(︀
1
𝑥
, 𝑦
𝑥6

)︀
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and the projection map is given by

𝜙 : 𝐷−
𝑡 −→ 𝐶−

𝑡

(𝑥, 𝑦) ↦−→
(︀
𝑥+ 1

𝑥
, 𝑦
𝑥3

)︀
.

Fact 15. The map 𝜙 induces an injection

𝜙* : Ω1(𝐶−
𝑡 ) −→ Ω1(𝐷−

𝑡 ).

Fact 16. There is an automorphism 𝜁5 of 𝐷−
𝑡 defined by:

𝜁5 · (𝑥, 𝑦) = (𝜁𝑥, 𝜁3𝑦) , where 𝜁 = exp(2𝜋𝑖/5) ∈ C

that defines an action of Z[𝜁5], the ring of integers of the 5-th cyclotomic

field, on the Jacobian 𝐽(𝐷−
𝑡 ).

Fact 17. Under the injection 𝜙*, the Jacobian 𝐽(𝐶−
𝑡 ) inherits multiplication

by Z[𝛼] (where, again, 𝛼 = 𝜁5 + 𝜁−1
5 ). That is, if 𝜔 ∈ Ω1(𝐶−

𝑡 ), then

[𝛼] · (𝜙*𝜔) ∈ 𝜙*(Ω1(𝐶−
𝑡 )),

where [𝛼] denotes the action of 𝛼 ∈ 𝑂𝐾 in Ω1(𝐷−
𝑡 ). More precisely,

[𝛼] ·
(︁
𝜙* 𝑑𝑥

𝑦

)︁
= 𝛼(1)

(︁
𝜙* 𝑑𝑥

𝑦

)︁
and [𝛼] ·

(︁
𝜙*𝑥𝑑𝑥

𝑦

)︁
= 𝛼(2)

(︁
𝜙*𝑥𝑑𝑥

𝑦

)︁
where

𝛼(1) = exp(2𝜋𝑖/5) + exp(2𝜋𝑖/5)−1 and 𝛼(2) = exp(4𝜋𝑖/5) + exp(4𝜋𝑖/5)−1.

In particular, we obtain that (4.7) holds.
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Fact 17 shows how 𝒪 acts on Ω1(𝐶−
𝑡 )

*. In order to understand how it

acts on Λ, we need to fix a basis for 𝐻1(𝐶
−
𝑡 ,Z). To do that, we will first

consider a convenient model for the hyperelliptic curves 𝐷−
𝑡 and 𝐶−

𝑡 . We will

then see how to naturally choose a basis for 𝐻1(𝐷
−
𝑡 ,Z) and 𝐻1(𝐶

−
𝑡 ,Z).

Note that the ramification points of 𝐷−
𝑡 (with respect to the 𝑥-projection,

i.e., the map 𝐷−
𝑡 → P1 given by (𝑥, 𝑦) ↦−→ 𝑥) are given by:

∞ , (0, 0) , (𝜁 𝑖𝑐+, 0) , (𝜁 𝑖𝑐−, 0)

where 𝑖 = 0, 1, . . . , 4, 𝜁 = exp(2𝜋𝑖/5) and 𝑐+ and 𝑐− are complex numbers.

Let us call

𝑒1 = (𝜁𝑐−, 0) , 𝑒3 = (𝜁2𝑐−, 0) , . . . , 𝑒9 = (𝜁5𝑐−, 0) = (𝑐−, 0) ,

𝑒2 = (𝜁𝑐+, 0) , 𝑒4 = (𝜁2𝑐+, 0) , . . . , 𝑒10 = (𝜁5𝑐+, 0) = (𝑐+, 0) ,

and

𝑒11 = (0, 0) , 𝑒12 = ∞.

Following pp. 96-97 of [FK92], we can consider a model for 𝐷−
𝑡 consisting of

two copies of P1 connected via “cuts” from 𝑒2𝑖−1 to 𝑒2𝑖 and define the following

basis for 𝐻1(𝐷𝑡):

𝑎𝑖 = curve around the cut 𝑒2𝑖−1𝑒2𝑖

and
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𝑏𝑖 = curve starting at the cut 𝑒11𝑒12, going to the cut 𝑒2𝑖−1𝑒2𝑖, and going

back to the initial cut through the other branch.

e e

e

e

e

e

e

e

e

e

e
e

1 2

3

4

5

6

8

7

9

10

11

12

a
b

1

1

Figure 4.1: Basis for 𝐻1(𝐷
−
𝑡 ,Z)

In figure 4.1, we show 𝑎1 and 𝑏1 drawn on the aforementioned model. It

is now clear that the lemma below holds.

Lemma 4.2.2. The element 𝜁5 acts as following on 𝐻1(𝐷
−
𝑡 ,Z):

(𝜁5)*𝑎1 = 𝑎2 , (𝜁5)*𝑎2 = 𝑎3 , . . . ,

(𝜁5)*𝑏1 = 𝑏2 , (𝜁5)*𝑏2 = 𝑏3 , . . .
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𝑒8∙ 𝑒7∙ 𝑒6∙ 𝑒5∙ 𝑒12∙ 𝑒10∙

∙
𝑒1

∙
𝑒2

∙
𝑒3

∙
𝑒4

∙
𝑒11

∙
𝑒9

∙
𝑒1

∙
𝑒2

∙
𝑒3

∙
𝑒4

∙
𝑒5

∙
𝑒6

𝐶−
𝑡

𝐷−
𝑡

��

𝜙

Figure 4.2: Where 𝜙 sends the ramification points of 𝐷−
𝑡

It can be easily checked that 𝜙 fits in the following commutative diagram

𝐷−
𝑡

𝜙 //

��

𝐶−
𝑡

��
P1

𝑥↦−→𝑥+1/𝑥
// P1

(4.8)

where the vertical arrows are just the 𝑥-projections of 𝐷−
𝑡 and 𝐶−

𝑡 .

By abuse of notation, we also denote by 𝑒𝑖 the ramification points of 𝐶−
𝑡

and by 𝑎𝑖 and 𝑏𝑖 the basis of 𝐻1(𝐶
−
𝑡 ,Z) analogous to the one constructed for

𝐻1(𝐷
−
𝑡 ,Z). So the ramification points of 𝐷−

𝑡 are mapped to the ramification

points of 𝐶−
𝑡 as shown in image 4.2. Since the ramification points of 𝐶−

𝑡 are

away from the branch points of the map 𝑥 ↦→ 𝑥 + 1/𝑥 (see diagram (4.8)),
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we obtain the following lemma.

Lemma 4.2.3. The map 𝜙* : 𝐻1(𝐷
−
𝑡 ,Z) → 𝐻1(𝐶

−
𝑡 ,Z) acts as follows:

𝜙*𝑎1 = 𝑎1 , 𝜙*𝑎2 = 𝑎2 , 𝜙*𝑎3 = 𝑎2 ,

𝜙*𝑏1 = 𝑏1 , 𝜙*𝑏2 = 𝑏2.

We can finally understand how 𝒪 acts on Λ. Since 𝒪 = Z[𝛼], it suffices

to understand how 𝛼 acts on Λ. Recall that 𝛼 = 𝜁5 + 𝜁−1
5 . Let 𝜔 ∈ Ω1(𝐶−

𝑡 ).

Then, using lemmas 4.2.2 and 4.2.3, we obtain

∫︀
𝑎2
[𝜁5] · 𝜔 =

∫︀
𝑎2
(𝜙*)−1 ∘ [𝜁5] ∘ 𝜙* · 𝜔 =

∫︀
𝜙*𝑎2

(𝜙*)−1 ∘ [𝜁5] ∘ 𝜙* · 𝜔

=
∫︀
(𝜁5)*(𝜙*)−1𝜙*𝑎2

𝜙* · 𝜔 =
∫︀
(𝜁5)*𝑎2

𝜙* · 𝜔 =
∫︀
𝜙*(𝜁5)*𝑎2

𝜔 =
∫︀
𝜙*𝑎3

𝜔

=
∫︀
𝑎2
𝜔

and ∫︀
𝑎2
[𝜁−1

5 ] · 𝜔 = · · · =
∫︀
𝜙*(𝜁

−1
5 )*𝑎2

𝜔 =
∫︀
𝜙*𝑎1

𝜔

=
∫︀
𝑎1
𝜔.

Therefore

∫︀
𝑎2
[𝛼] · 𝜔 =

∫︀
𝑎1
𝜔 +

∫︀
𝑎2
𝜔 , for any 𝜔 ∈ Ω1(𝐶−

𝑡 ,Z). (4.9)

Similarly,

∫︀
𝑏2
[𝛼] · 𝜔 =

∫︀
𝑏1
𝜔 +

∫︀
𝑏2
𝜔 , for any 𝜔 ∈ Ω1(𝐶−

𝑡 ,Z). (4.10)

Combining (4.9) and (4.10), we can conclude that
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Theorem 4.2.4. The action of 𝒪 on Λ yields the following decomposition:

Λ = 𝒪 ·
∫︁
𝑎2

⊕ 𝒪 ·
∫︁
𝑏2

.

In particular, the point

(𝑧1, 𝑧2) ∈ SL2(𝒪,𝒪*)∖ℋ2

representing 𝐽(𝐶−
𝑡 ) is given by(︃

𝛿(1)

∫︀
𝑎2

𝑑𝑥
𝑦∫︀

𝑏2

𝑑𝑥
𝑦

, 𝛿(2)

∫︀
𝑎2
𝑥𝑑𝑥

𝑦∫︀
𝑏2
𝑥𝑑𝑥

𝑦

)︃
,

where 𝛿 ∈ {±1,±𝜆}.

A very similar result holds for

𝐶+
𝑡 : 𝑦2 = (𝑥+ 2)(𝑥5 − 5𝑥3 + 5𝑥+ (2− 4𝑡)).

The facts about this curve that are used in order to prove that result are the

following:

Fact 18. The curve 𝐶+
𝑡 is a quotient of

𝐷+
𝑡 : 𝑦2 = 𝑥10 + (2− 4𝑡)𝑥5 + 1

by the involution

𝜎 : (𝑥, 𝑦) ↦→
(︀
1
𝑥
, 𝑦
𝑥5

)︀
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and the projection map is given by

𝜙 : 𝐷+
𝑡 −→ 𝐶+

𝑡

(𝑥, 𝑦) ↦−→
(︀
𝑥+ 1

𝑥
,
(︀

1
𝑥2 +

1
𝑥3

)︀
𝑦
)︀
.

Fact 19. The map 𝜙 induces an injection

𝜙* : Ω1(𝐶+
𝑡 ) −→ Ω1(𝐷+

𝑡 ).

Fact 20. There is an automorphism 𝜁5 of 𝐷+
𝑡 defined by:

𝜁5 · (𝑥, 𝑦) = (𝜁𝑥, 𝑦) , where 𝜁 = exp(2𝜋𝑖/5) ∈ C

that defines an action of Z[𝜁5], the ring of integers of the 5-th cyclotomic

field, on the Jacobian 𝐽(𝐷+
𝑡 ).

Fact 21. Under the injection 𝜙*, the Jacobian 𝐽(𝐶+
𝑡 ) inherits multiplication

by Z[𝛼] (where, again, 𝛼 = 𝜁5 + 𝜁−1
5 ). That is, if 𝜔 ∈ Ω1(𝐶+

𝑡 ), then

[𝛼] · (𝜙*𝜔) ∈ 𝜙*(Ω1(𝐶+
𝑡 )),

where [𝛼] denotes the action of 𝛼 ∈ 𝑂𝐾 in Ω1(𝐷+
𝑡 ). More precisely,

[𝛼] ·
(︁
𝜙* 𝑑𝑥

𝑦

)︁
= 𝛼(2)

(︁
𝜙* 𝑑𝑥

𝑦

)︁
, and

[𝛼] ·
(︁
𝜙*𝑥𝑑𝑥

𝑦

)︁
= (𝛼(1) + 𝛼(2))

(︁
𝜙* 𝑑𝑥

𝑦

)︁
+ 𝛼(1)

(︁
𝜙*𝑥𝑑𝑥

𝑦

)︁
where

𝛼(1) = exp(2𝜋𝑖/5) + exp(2𝜋𝑖/5)−1 and 𝛼(2) = exp(4𝜋𝑖/5) + exp(4𝜋𝑖/5)−1.
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Hypergeometric periods

We finish this chapter with a more detailed description of the points (𝑧1, 𝑧2)

representing the curves 𝐶−
𝑡 . More specifically, we will see that the periods of

those curves are hypergeometric functions, i.e., they are solutions to hyper-

geometric differential equations. For this reason they are sometimes called

“hypergeometric curves”.

Let us define

𝜋1(𝑡) :=
∫︀
𝛾

𝑑𝑥
𝑦

and 𝜋2(𝑡) :=
∫︀
𝛾
𝑥𝑑𝑥

𝑦

where 𝛾 = 𝛾(𝑡) ∈ 𝐻1(𝐶
−
𝑡 ) is a family of cycles on 𝐶−

𝑡 .

Theorem 4.2.5. The function 𝜋1(𝑡) satisfies a hypergeometric differential

equation with parameters

𝑎 = 3/10 , 𝑏 = 7/10 , 𝑐 = 1.

The function 𝜋2(𝑡) satisfies a hypergeometric differential equation with pa-

rameters

𝑎 = 9/10 , 𝑏 = 1/10 , 𝑐 = 1.

Proof. The idea is essentially the one found in [Sch].
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We show how to deduce the equation satisfied by 𝜋1(𝑡). The proof for

𝜋2(𝑡) is analogous. Let

𝜔(𝑡) =
𝑑𝑥

𝑦
∈ Ω1(𝐶𝑡).

We claim that

𝑑2𝜔

𝑑𝑡2
+

1− 2𝑡

𝑡(1− 𝑡)
· 𝑑𝜔
𝑑𝑡

− 21/100

𝑡(1− 𝑡)
· 𝜔 = 𝑑( − ),

which would imply what was stated (to justify differentiation under the in-

tegral sign, cf. Section 9.3, Lemma 12 in [BK86]).

In fact, the right-hand side can be taken to be a linear combination of

𝑑
(︁

𝑥𝑘

𝑦3

)︁
for 𝑘 = 0, 1, . . . , 6.

This computation was carried out using a computer algebra system. For

more details on the computation, cf. Section “Brute-force approach” of [Sch].

Remark 4.2.6. Unfortunately the method used in the proof of the previous

theorem does not yield a degree 2 differential equation if 𝐶−
𝑡 is replaced by

𝐶+
𝑡 .

There is at least one other instance in the literature where a modular

embedding of the sort obtained here was also studied: in 1990, Cohen and
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Wolfart [CW90] constructed modular embeddings for all triangle groups. In

their study, the Jacobians also have hypergeometric periods. However, the

periods associated to the triangle group Γ5,∞,∞ satisfy a hypergeometric dif-

ferential equation with different parameters, namely:

𝑎 = 2/5 , 𝑏 = 2/5 , 𝑐 = 4/5

and

𝑎 = 1/5 , 𝑏 = 1/5 , 𝑐 = 2/5.
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Chapter 5

The ordinary locus of the TTV

family of curves

In this chapter we continue studying the TTV family of curves 𝐶±
𝑡 := 𝐶±

5 (𝑡)

defined in (4.1). More specifically, we study the behavior of the reduction

modulo 𝑝 of these curves (and their Jacobians) via the Cartier-Manin matrix.

The first section recalls the basic about the Cartier-Manin matrix theory.

The second section proceeds to the study of those curves and, in particular,

finds a relation between the non-ordinary locus of that family of curves and

the genus of 𝑋
(0)
5,∞,∞(p).
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5.1 The Hasse-Witt and Cartier-Manin ma-

trices

This section is mainly based on Chapters 9 and 10 of [Ser58] and [Yui78].

5.1.1 Hasse-Witt matrix

Let 𝑘 be a perfect field of characteristic 𝑝 > 2 and 𝐶 a hyperelliptic curve

of genus 𝑔 > 0 defined over 𝑘. This notion can be defined in a more general

context but we will focus on hyperelliptic curves.

Definition 5.1.1. Fix a basis of 𝐻1(𝐶,𝒪𝐶). The Hasse-Witt matrix of 𝐶

is the matrix of the 𝑝-linear operator 𝐹 : 𝐻1(𝐶,𝒪𝐶) → 𝐻1(𝐶,𝒪𝐶), where 𝐹

is the Frobenius operator.

Remark 5.1.2. Notice that the Hasse-Witt matrix is dependent on the basis

chosen. Because of the 𝑝-linearity of the Frobenius operator, if 𝐻 and 𝐻 ′ are

Hasse-Witt matrices with respect to different bases, then there is a matrix

𝑈 such that

𝐻 ′ = 𝑈−1𝐻𝑈 (𝑝),

where 𝑈 (𝑝) is the matrix obtained from 𝑈 by raising all its entries to the 𝑝-th

power.
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There is another way to essentially define the Hasse-Witt matrix of a

curve. This is done in terms of the so called Cartier operator, which is

studied in the next section.

5.1.2 Cartier-Manin Matrix

Suppose 𝐶 is given by

𝑦2 = 𝑓(𝑥) (5.1)

where 𝑓(𝑥) is a polynomial over 𝑘 without multiple roots of degree 2𝑔 + 1.

Every element of Ω1
𝐶 can be written as

𝜔 = 𝑑𝜙+ 𝜂𝑝𝑥𝑝−1𝑑𝑥

for some 𝜙, 𝜂 ∈ 𝑘(𝐶).

Definition 5.1.3. The Cartier operator C : 𝐻0(𝐶,Ω1
𝐶) → 𝐻0(𝐶,Ω1

𝐶) is

defined by

C (𝑑𝜙+ 𝜂𝑝𝑥𝑝−1𝑑𝑥) = 𝜂𝑑𝑥.

Definition 5.1.4. The Cartier-Manin matrix is the matrix of the 1/𝑝-linear

operator C : 𝐻0(𝐶,Ω1
𝐶) → 𝐻0(𝐶,Ω1

𝐶).

Remark 5.1.5. Because of the 1/𝑝-linearity of the operator C , if 𝑀 and

𝑀 ′ are Cartier-Manin matrices with respect to different bases, then there is
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a matrix 𝑈 such that

𝑀 ′ = 𝑈−1𝑀𝑈 (1/𝑝),

where 𝑈 (𝑝) is the matrix obtained from 𝑈 by raising all its entries to the 𝑝-th

power.

Remark 5.1.6. The Cartier operator, as defined here, is called the modified

Cartier operator in [Yui78]. Moreover, the definition of the Cartier-Manin

matrix given by N. Yui is slightly different (cf. page 381 of of [Yui78]).

The relation between the Hasse-Witt matrix and the Cartier-Manin ma-

trix arises as follows. It is known that 𝐻0(𝐶,Ω1
𝐶) is the dual of 𝐻1(𝐶,𝒪𝐶).

Under this identification, the following result (cf. Prop. 9, Section 10 in

[Ser58]) holds.

Proposition 5.1.7. The map C : 𝐻0(𝐶,Ω1
𝐶) → 𝐻0(𝐶,Ω1

𝐶) is the dual of

𝐹 : 𝐻1(𝐶,𝒪𝐶) → 𝐻1(𝐶,𝒪𝐶).

N. Yui (cf. pages 380-381 in [Yui78]) gives a concrete way of computing

the Cartier-Manin matrix of a curve:

Proposition 5.1.8. Let 𝐶 be given by (5.1). Then the Cartier-Manin matrix

of 𝐶 with respect to the basis

𝑑𝑥

𝑦
, 𝑥
𝑑𝑥

𝑦
, . . . , 𝑥𝑔−1𝑑𝑥

𝑦
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of 𝐻0(𝐶,Ω1
𝐶) is given by

𝑁 (1/𝑝),

where

𝑁 = (𝑐𝑖𝑝−𝑗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐𝑝−1 𝑐𝑝−2 . . . 𝑐𝑝−𝑔

𝑐2𝑝−1 𝑐2𝑝−2 . . . 𝑐2𝑝−𝑔

. . .

𝑐𝑔𝑝−1 𝑐𝑔𝑝−2 . . . 𝑐𝑔𝑝−𝑔

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

𝑓(𝑥)(𝑝−1)/2 =
∑︁

𝑐𝑟𝑥
𝑟.

5.1.3 Jacobian of 𝐶

From now on, 𝑘 will be a finite field of characteristic 𝑝 > 2.

Recall the following definitions:

Definition 5.1.9. An abelian variety 𝐴 of dimension 𝑔 over 𝑘 is called

∙ ordinary if its 𝑝-rank is 𝑔, i.e., #(𝐴[𝑝]) = 𝑝𝑔;

∙ supersingular if 𝐴 is 𝑘-isogenous to a power of a supersingular elliptic

curve.

Remark 5.1.10. As explained in Section 3.2 of [Zhu00], if 𝐴 is supersingular,

then 𝐴[𝑝] = 0. The converse holds if 𝑔 = 1 or 2 but not necessarily if 𝑔 > 2.
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Let 𝐽 = 𝐽(𝐶) be the Jacobian of the curve 𝐶.

The results below show the relation between the Cartier-Manin matrix of

𝐶 and 𝐽 .

Proposition 5.1.11. The 𝑝-rank of 𝐽 is bounded above by the rank of the

Cartier-Manin matrix, i.e., 𝜎 ≤ rk(𝑀), where #(𝐽 [𝑝]) = 𝑝𝜎 and 𝑀 denotes

the Cartier-Manin matrix.

Proof. This is a corollary of Proposition 10 in Section 11 of [Ser58].

Proposition 5.1.12. Let 𝑀 be the Cartier-Manin matrix of 𝐶 and 𝑁 =

𝑀 (𝑝). The following holds:

(a) det(𝑁) ̸= 0 if and only if 𝐽 is ordinary.

(b) 𝑁 = 0 if and only if 𝐽 is a product of supersingular elliptic curves.

(c) If the genus of 𝐶 is 2, then 𝑁 (𝑝)𝑁 = 0 if and only if 𝐽 is supersingular.

Proof. Cf. [Yui78] (Theorems 3.1 and 4.1), [Nyg81] (Theorem 4.1) and

[Man63] (p. 78).

5.1.4 Curves with real multiplication

Let 𝐿 be a totally real number field such that [𝐿 : Q] = 𝑔 and 𝑝 a prime

number that is unramified in 𝐿. In this subsection 𝐶 will denote a projective

150



algebraic curve of genus 𝑔 and 𝐽 its Jacobian, which is assumed to have real

multiplication by 𝒪𝐿, that is, with an embedding of rings

𝜄 : 𝒪𝐿 −→ End(𝐽)

as explained in definition 2.2.1 of [Gor02].

In this section, the Cartier operator C (hence, the Cartier-Manin matrix)

is studied via the corresponding operator on the Jacobian of 𝐶.

𝐶 𝐽

action of C on 𝐻0(𝐶,Ω1
𝐶) action of 𝑉 on 𝐻0(𝐽,Ω1

𝐽)

action of 𝐹 on 𝐻1(𝐶,𝒪𝐶) action of 𝐹 on 𝐻1(𝐽,𝒪𝐽)

The vector spaces on the left column are isomorphic to the ones on the

right column. Furthermore, the semi-linear operators on the left column

coincide (via that isomorphism) to the ones on the right column.

Theorem 5.1.13. As an 𝒪𝐿 ⊗ 𝑘-module, the space 𝐻1(𝐽,𝒪𝐽) decomposes

as

𝐻1(𝐽,𝒪𝐽) =
⨁︁
𝜎∈𝐵

𝑊𝜎,

where

𝐵 = {𝜎 : 𝐿→ 𝑘 | 𝜎 a ring homomorphism} and dim𝑘𝑊𝜎 = 1.
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Moreover, the action of 𝐹 commutes with the action of 𝒪𝐿 ⊗ 𝑘 and satisfies

the following

𝐹 (𝑊𝜎) ⊆ 𝑊Fr ∘𝜎.

Proof. Cf. Lemma 2.3.1 and Remark 2.2.8 in [GO00].

Remark 5.1.14. Being the dual of 𝐹 , a similar statement holds for the

action of 𝑉 on 𝐻0(𝐽,Ω1
𝐽).

Remark 5.1.15. Consider the factorization of 𝑝 in 𝒪𝐿 given by

𝑝𝒪𝐿 = p1p2 · · · p𝑟.

Then, it is not hard to see that, with the notation of Theorem 5.1.13, 𝐵

decomposes as

𝐵 = 𝐵1 ⊔𝐵2 ⊔ · · · ⊔𝐵𝑟,

where #𝐵𝑖 = 𝑓 = 𝑓(p𝑖/𝑝) = [𝒪𝑙/p𝑖 : F𝑝]. Furthermore, Fr acts transitively

on each 𝐵𝑖, i.e.,

𝐵𝑖 = {𝜎𝑖 = Fr𝑓 ∘𝜎𝑖 , Fr ∘𝜎𝑖 , . . . , Fr𝑓−1 ∘𝜎𝑖}.
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5.2 Studying 𝐶±
𝑞 (𝑡) for 𝑞 = 5

In this section we return to the families of curves defined in (4.1) for the

specific value 𝑞 = 5. These curves have genus 𝑔 = 2 and, as was mentioned

in the previous chapter, they have real multiplication by 𝒪𝐿 (where 𝐿 =

Q(
√
5)).

Consider a prime 𝑝 > 2 that is unramified in 𝐿.

Lemma 5.2.1. There are only two possibilities for such a 𝑝:

∙ 𝑝 is a product of two primes in 𝒪𝐿 (when 𝑝 ≡ 1, 4 (mod 5)); or

∙ 𝑝 is inert in 𝒪𝐿 (when 𝑝 ≡ 2, 3 (mod 5)).

Proof. Cf. (1.1) in Chapter V of [FT93].

In this section, to simplify notation, 𝐶−
5 (𝑡) and 𝐶+

5 (𝑡) will simply be

denoted 𝐶−
𝑡 and 𝐶+

𝑡 respectively (or simply 𝐶− and 𝐶+). The equations

(4.1) in this case are:

𝐶−
𝑡 : 𝑦2 = 𝑥5 − 5𝑥3 + 5𝑥+ 2− 4𝑡 , and

𝐶+
𝑡 : 𝑦2 = (𝑥+ 2)(𝑥5 − 5𝑥3 + 5𝑥+ 2− 4𝑡).
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5.2.1 The Cartier-Manin matrix of the curve 𝐶−

Example 3.5 (or the proof of the main result) in [TTV91] shows that the

action of 𝒪𝐿 on 𝐻0(𝐶−,Ω1) has two distinct eigenvectors, namely:

𝑑𝑥

𝑦
, 𝑥
𝑑𝑥

𝑦

Thus, Lemma 5.2.1, Theorem 5.1.13 and the remarks that follow it yield

the result below.

Theorem 5.2.2. The Cartier-Manin matrix of 𝐶− with respect to the basis

{𝑑𝑥
𝑦
, 𝑥𝑑𝑥

𝑦
} of 𝐻0(𝐶−,Ω1) is given by

𝑀 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎝* 0

0 *

⎞⎟⎟⎠ , if 𝑝 ≡ 1, 4 (mod 5)

⎛⎜⎜⎝0 *

* 0

⎞⎟⎟⎠ , if 𝑝 ≡ 2, 3 (mod 5).

,

where * are elements of F𝑝[𝑡].

Remark 5.2.3. A curious consequence of this fact is the following non-trivial

result. Let 𝑝 be a prime number such that 𝑝 ̸= 2, 5, 𝑓(𝑥) = 𝑥5 − 5𝑥3 + 5𝑥+

2− 4𝑡 ∈ Z[𝑡][𝑥] and 𝑓(𝑥)(𝑝−1)/2 =
∑︀
𝑐𝑟𝑥

𝑟. If

∙ 𝑝 ≡ 1, 4 (mod 5), then

𝑐𝑝−1 ≡ 𝑐2𝑝−2 ≡ 0 (mod 𝑝)
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∙ 𝑝 ≡ 2, 3 (mod 5), then

𝑐𝑝−2 ≡ 𝑐2𝑝−1 ≡ 0 (mod 𝑝).

Proof. Follows from the previous result and Proposition 5.1.8.

Corollary 5.2.4. If 𝑝 ≡ 2 or 3 (mod 5), then the Jacobian of the curve 𝐶−

is either supersingular or ordinary.

Proof. This is a direct consequence of the previous theorem and of Proposi-

tion 5.1.12.

In fact, using Proposition 5.1.12, we have that the Jacobian 𝐽− of 𝐶− is

ordinary if and only if det(𝑁) ̸= 0, where 𝑁 = 𝑀 (𝑝) and 𝑀 is the Cartier-

Manin matrix of 𝐶−. Also, since 𝑟 = 5 (and, thus, the genus of 𝐶− is 2),

𝐽− is supersingular if and only if 𝑁 (𝑝)𝑁 = 0. So it suffices to check that

det(𝑁) = 0 if and only if 𝑁 (𝑝)𝑁 = 0. This follows easily from the previous

theorem.

5.2.2 The Cartier-Manin matrix of the curve 𝐶+

Following the ideas of the proof of the main result of [TTV91], one can

compute the action of 𝒪𝐿 on 𝐻0(𝐶+,Ω1).
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Proposition 5.2.5. The Jacobian of the curve 𝐶+ has real multiplication by

𝒪𝐿. Moreover, the action of 𝒪𝐿 on 𝐻0(𝐶+,Ω1) has a basis of eigenvectors,

namely:

𝑑𝑥/𝑦 , 𝑑𝑥/𝑦 + 𝑦𝑑𝑥/𝑦

Proof. Tautz-Top-Verberkmoes ([TTV91]) showed that 𝐶+ is the quotient

𝐷𝑡/𝜎, where

𝐷𝑡 : 𝑦
2 = 𝑥10 + 𝑡𝑥5 + 1

and 𝜎 ∈ End(𝐷𝑡) defined by

𝜎 : (𝑥, 𝑦) ↦→ (1/𝑥, 𝑦/𝑥5).

Using that

𝑋2𝑛 + 1 = 𝑋𝑛(𝑋 +𝑋−1) · 𝑔(𝑋2 +𝑋−2) ∈ 𝑘[𝑋,𝑋−1]

for any odd 𝑛, it follows that the map 𝜙 : 𝐷𝑡 → 𝐶+ given by

𝜙 : (𝑥, 𝑦) ↦→ (𝑥+ 1/𝑥, 𝑦(𝑥+ 1)/𝑥3)

is well-defined and corresponds to the natural quotient map 𝐷𝑡 → 𝐷𝑡/𝜎.

Moreover, it makes the diagram below commutative

𝐷𝑡
𝜙 //

��

𝐶+

��
P1 // P1

,
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where

P1 → P1

𝑥 ↦→ 𝑥+ 1/𝑥

and the vertical maps are just

(𝑥, 𝑦) ↦→ 𝑥.

The curve 𝐷𝑡 has multiplication by 𝒪Q(𝜁5) coming from the map

𝜁 : (𝑥, 𝑦) ↦→ (𝜁5𝑥, 𝑦).

To prove that the Jacobian of 𝐶+ has multiplication by 𝒪𝐿, it is enough to

show that the action of 𝜁* + (𝜁−1)* preserves the space (Ω1
𝐷𝑡
)𝜎 of 𝜎-invariant

differentials of 𝐷𝑡. One checks that a basis for (Ω1
𝐷𝑡
)𝜎 is given by

𝜔1 = (𝑥2 − 𝑥)𝑑𝑥/𝑦 , 𝜔2 = (𝑥3 − 1)𝑑𝑥/𝑦.

Now, by the definition of 𝜁, one computes that

[𝜁* + (𝜁−1)*]𝜔1 = (𝜁25 + 𝜁−2
5 )𝜔1

and

[𝜁* + (𝜁−1)*]𝜔2 = (𝜁5 + 𝜁−1
5 )𝜔2.

Now it remains only to show that

𝑑𝑥/𝑦 , 𝑑𝑥/𝑦 + 𝑦𝑑𝑥/𝑦 ∈ Ω1
𝐶+
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are eigenvectors for the action of 𝒪𝐿.

Notice that the action on Ω1
𝐶+ comes from the action on (Ω1

𝐷𝑡
)𝜎 (these

spaces are identified via 𝜙). Now, the definition of 𝜙 yields

𝜙*(𝑑𝑥/𝑦) = 𝜔1

𝜙*(𝑑𝑥/𝑦 + 𝑦𝑑𝑥/𝑦) = 𝜔2.

From the previous computations, this finishes the proof.

This result and Lemma 5.2.1 yield

Theorem 5.2.6. The Cartier-Manin matrix of 𝐶+ with respect to the basis

{𝑑𝑥
𝑦
, 𝑥𝑑𝑥

𝑦
} of 𝐻0(𝐶−,Ω1) is given by

𝑀 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎝𝑎 𝑏− 𝑎

0 𝑏

⎞⎟⎟⎠ , if 𝑝 ≡ 1, 4 (mod 5)

⎛⎜⎜⎝𝑎 𝑏

𝑎 −𝑎

⎞⎟⎟⎠ , if 𝑝 ≡ 2, 3 (mod 5).

for some

𝑎, 𝑏 ∈ F𝑝[𝑡].

Corollary 5.2.7. If 𝑝 ≡ 2 or 3 (mod 5), then the Jacobian of the curve 𝐶+

is either supersingular or ordinary.

Proof. This is a direct consequence of the previous theorem and of Proposi-

tion 5.1.12. The proof is similar to the proof of corollary 5.2.4.
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5.2.3 A relation between 𝑋
(0)
5,∞,∞(p) and the family 𝐶−

supersingular
points

Figure 5.1: Reduction

of 𝑋0(𝑝) modulo 𝑝

It is known that 𝑋0(𝑝) = Γ0(𝑝)∖ℋ* admits an

integral model for which the reduction modulo 𝑝

consists of two copies of 𝑋0(1)F𝑝 = P1
F𝑝 crossing

transversally at the supersingular points as shown

in figure 5.1 (cf. Theorem 6.9, page DeRa-144, in

[DR73]). In particular, there is a relation between

the genus of 𝑋0(𝑝) and the number of supersingular

elliptic curves modulo 𝑝.

In this subsection we investigate a similar prop-

erty for the mock modular curve𝑋
(0)
5,∞,∞(p): we show that in certain cases, the

genus of the curve 𝑋
(0)
5,∞,∞(p) is closely related to the number of non-ordinary

elements of the family of curves 𝐶−. More specifically, the following result

holds:

Theorem 5.2.8. Let 𝑝 > 5 be a prime number such that 𝑝 splits in 𝒪Q(
√
5)

(i.e., 𝑝 ≡ 1 or 4 (mod 5)) and take p a prime ideal above 𝑝. Furthermore, let

𝑔 be the genus of 𝑋
(0)
5,∞,∞(p) and 𝑑(𝑡) = det(𝑀 (𝑝)), where 𝑀 is the Cartier-
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Manin matrix of 𝐶− (as computed in Theorem 5.2.2). Then

𝑔 = deg(𝑑(𝑡)) + 𝛿,

where

𝛿 =

⎧⎪⎪⎨⎪⎪⎩
−1, if 𝑝 ≡ 1 (mod 5)

1, if 𝑝 ≡ 4 (mod 5).

Proof. Since 𝑝 is assumed to be split, Proposition 1.3.5 implies that the genus

of 𝑋
(0)
5,∞,∞(p) is given by

𝑔 = 2𝑛− 1,

where

𝑝+ 1 = 5𝑛+𝑚

with

𝑚 =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑝 ≡ −1 (mod 5)

2, if 𝑝 ≡ 1 (mod 5).

Thus,

𝑔 =
2

5
(𝑝+ 1−𝑚)− 1.

It follows from Theorem 5.2.2 that the Cartier-Manin matrix is given by

( * 0
0 * ) , it suffices to compute the degree of the entries of the main diagonal,

which is done in the next lemma.

160



Lemma 5.2.9. Let 𝑝 be as in the statement of the previous proposition and⎛⎜⎜⎝𝑎(𝑡) 0

0 𝑏(𝑡)

⎞⎟⎟⎠
be the Cartier-Manin matrix of 𝐶− with respect to 𝑝. Then

deg(𝑎(𝑡)) =

⎧⎪⎪⎨⎪⎪⎩
3
2
𝑘, if 𝑝 = 5𝑘 + 1

3
2
𝑘 − 1, if 𝑝 = 5𝑘 − 1

and

deg(𝑏(𝑡)) =

⎧⎪⎪⎨⎪⎪⎩
1
2
𝑘, if 𝑝 = 5𝑘 + 1

1
2
𝑘 − 1, if 𝑝 = 5𝑘 − 1

Proof. By Proposition 5.1.8, 𝑎(𝑡) is the (𝑝 − 1)-th coefficient of 𝑓(𝑥)(𝑝−1)/2,

where

𝑓(𝑥) = 𝑥5 − 5𝑥3 + 5𝑥+ 2− 4𝑡.

Since this lemma is only concerned about the degree (with respect to 𝑡) of a

certain coefficient, 𝑓 can be assumed to be

𝑓(𝑥) = 𝑥5 − 5𝑥3 + 5𝑥+ 𝑡.

By the Multinomial Theorem,

𝑓(𝑥)(𝑝−1)/2 =
∑︁
𝑎,𝑏,𝑐,𝑑

(𝑎, 𝑏, 𝑐, 𝑑)! (−1)𝑏 5𝑏+𝑐 𝑥5𝑎+3𝑏+𝑐 𝑡𝑑,
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where the sum is taken over all integers 𝑎, 𝑏, 𝑐, 𝑑 ≥ 0 such that 𝑎+ 𝑏+ 𝑐+𝑑 =

(𝑝− 1)/2 and

(𝑎, 𝑏, 𝑐, 𝑑)! =
((𝑝− 1)/2)!

𝑎! 𝑏! 𝑐! 𝑑!
.

Therefore the (𝑝− 1)-th coefficient is given by

𝑎(𝑡) =
∑︁

5𝑎+3𝑏+𝑐=𝑝−1

(𝑎, 𝑏, 𝑐, 𝑑)! (−1)𝑏 5𝑏+𝑐 𝑡𝑑.

This implies that deg(𝑎(𝑡)), at least over Z, is given (possibly) by the

largest 𝑑 such that

𝑑 = 4𝑎+ 2𝑏− (𝑝− 1)

2

and ⎧⎪⎪⎨⎪⎪⎩
5𝑎+ 3𝑏 ≤ 𝑝− 1

𝑎 ≥ 0 , 𝑏 ≥ 0.

Assume now that that 𝑝 = 5𝑘 + 1. One checks (using the graphical

method of linear programming) that the solution is

𝑑 =
3

2
𝑘

attained only once when

𝑎 = 𝑘 and 𝑏 = 0.
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Since this is attained only once, deg(𝑎(𝑡)) over Z is actually 3
2
𝑘. Using

the fact that 𝑝 > 5, it follows that the coefficient of the degree 3
2
𝑘 term is

not zero modulo 𝑝. Hence, deg(𝑎(𝑡)) = 3
2
𝑘 over F𝑝.

A similar argument proves all the other cases. The only exception is the

last case (deg(𝑏(𝑡)) when 𝑝 = 5𝑘−1), where the maximum 𝑑 is attained twice.

But in this case a straight forward computation shows that the coefficient is

still non-zero modulo 𝑝.

Remark 5.2.10. Theorem 5.2.8 presents an interesting relation between the

genus of 𝑋
(0)
5,∞,∞(p) and the number of non-ordinary elements in the family

𝐶− modulo 𝑝 when 𝑝 is split. Unfortunately when 𝑝 is inert, the same does

not hold. The example below shows that the difference between the degree

of 𝑑(𝑡) and the genus of 𝑋5,∞,∞(p) grows with 𝑝 when 𝑝 is inert.

It would be interesting to understand why there is this discrepancy be-

tween primes that are split and primes that are inert.

Example 5. Contrary to the split case, the difference between the genus of

𝑋
(0)
5,∞,∞(p) and the degree of 𝑑(𝑡) is not ±1 when 𝑝 is inert. Here are the

first few inert primes and their corresponding data as calculated using the

computer algebra system SAGE ([S+12]):
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𝑝 genus of 𝑋
(0)
5,∞,∞(p) degree of 𝑑(𝑡) genus - degree

7 13 2 11

13 55 4 51

17 99 6 93

23 189 8 181

37 511 14 497

43 697 16 681

47 837 18 819

53 1071 20 1051

67 1729 26 1703

Remark 5.2.11. Note that Theorem 5.2.8 actually describes a relation be-

tween the genus of 𝑋
(0)
5,∞,∞(p) and the degree of 𝑑(𝑡) (not exactly the number

of non-ordinary elements). In our computations, the difference between the

degree and the exact number of non-ordinary elements is reasonably small,

as the following table shows:
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𝑝 degree of 𝑑(𝑡) # of non-ordinary curves difference

11 4 3 1

19 6 5 1

29 10 10 0

31 12 11 1

41 16 16 0

59 22 21 1

61 24 22 2

71 28 25 3

79 30 27 3

89 34 32 2

101 40 38 2

109 42 42 0

131 52 45 7

139 54 53 1

149 58 54 4

151 60 57 3

179 70 69 1
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181 72 68 4

191 76 75 1

199 78 75 3

211 84 79 5

229 90 90 0

239 94 91 3

241 96 92 4

251 100 95 5

269 106 106 0

271 108 105 3

281 112 110 2

311 124 123 1

331 132 129 3

349 138 134 4

359 142 139 3

379 150 147 3

389 154 154 0
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Chapter 6

Future Directions

As we mentioned in the introduction, the arithmetic of non-congruence mod-

ular forms and, especially, those related to triangle groups still present many

open questions that require further studies. In this thesis, we have touched

on some of those questions. As usual, some of them could only be partially

answered and this gives rise to the first category of possible future studies:

1. Chapter 3 completely characterized the normalizers of Γ𝑞,∞,∞(p) but

only for split primes p. An understanding of what happens when p is

inert would be desirable. See Section 3.3.2 for more details.

2. In 4.2, we studied the modular embedding defined by the TTV family of

curves. A first comparison between this embedding and the one found
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in [CW90] is given via hypergeometric differential equations. Another

interesting direction would be to understand more thoroughly their

relation.

3. In 5.2, we have found a relation between the genus of 𝑋5,∞,∞(p) and

the number of non-ordinary curves in the corresponding TTV family

of curves. This relation was proved, again, only in the case where p is

a split prime. A natural problem would, therefore, be to understand

the case where p is an inert prime.

Secondly, in the process of answering some of the questions tackled in

this thesis, other questions naturally arose:

1. The set of cusps of a triangle group is known explicitly in very few

cases, one such case being Γ2,5,∞. In fact, Lang and Tan ([LT99]) used

that knowledge to study the normalizers of Γ2,5,∞(p). In Chapter 3, we

have conducted a similar study about the group Γ𝑞,∞,∞(p) but without

an explicit knowledge of the set of cusps of Γ𝑞,∞,∞. We wonder whether

our study can shed some light on the explicit characterization of the

set of cusps of those triangle groups.

2. It is known that 𝑋0(𝑝) admits an integral model containing an inter-
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esting connection to supersingular elliptic curves (see Section 5.2.3).

Theorem 5.2.8 presents evidence that a similar connection should also

exist between 𝑋5,∞,∞(p) and non-ordinary TTV curves, at least in the

split case.

There are also many interesting questions motivated by the work done

for non-congruence subgroups of SL2(Z). For instance:

1. It was shown in [Tho89] (cf. also [Ber94]) that Hecke operators do not

give any new information in that case. The same question could be

asked about triangle groups: how much new information, if any, can

be obtained from “Hecke operators" in the context of triangle groups?

2. There are also the so called Atkin and Swinnerton-Dyer congruences

for non-congruence modular forms, which resemble eigenforms in the

classical case (see, for instance, [Sch85]). Is there an analogous set of

relations in the case of a triangle group?
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