
Massively Parallel Computing

and Polynomial GCD's

by

Martin Santavy

School of Computer Science

McGill University

Montreal, Canada

A thesis submitted to the Faculty of Graduate Studies

and Research in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

~ Martin Sa.nta.vy, 1987

January 1987

ABSTRACT

This thesis studies mz.ssively parallel synchronous processing models and
algorithms. We survey the basic models, discuss their interrelationships and
analyze properties of some feasible network models. A new definition of
Gentleman's 0'-function is given. We present routines that simulate the CUBE
ASCEND /DESCEND class algorithms on the CCC (cube-connected cycles) and
the PERFECT SHUFFLE machines· of any sufficient size. We give the exact
(non-asymptotic) computation times and prove the correctness of the algorithms.
This extends the previous results of Stone (1971) and Preparata-Vuillemin (1979).
Borodin-von zur Gathen-Hopcroft (1984) laid out ·a program to obtain a "theory
package for parallel algebraic manipulation". We continue work in this program
and focus on the GCD of two polynomials, which is one of the basic problems of
algebraic manipulation algorithms. B-G-H gave a GCD algorithm that works
over arbitrary fields in 0 (log2n) time and requires polynomial number of proces­
sors on a general type of parallel machine, such as P-RAM or algebraic circuits.
The algorithm uses a system of (n+m- 2i) X (n+m- 2i) asymmetric matrices. If
the result of Berkowitz (1984) is applied, the required number of processors is
0 (n a+2+E). We modify the algorithm and present the following results: A new
matrix formula for polynomial GCD is given that uses a system of upper left
principal minors of a symmetric n X n matrix. The Berkowitz (1984) paralleliza­
tion of the Samuelson (1942) method is modified and combined with the previous
result. This allows us to decrease the required number of processors by the factor
of 0 (n). Morover, the full strength of the general parallel models is not needed
for the algorithm. We present a CUBE-feasible algorithm (composed of
ASCEND /DESCEND subroutines) that computes the GCD of two polynomials
over arbitrary field in 0 (log2n) time and requires n a+l+E processors, a = 3. A
Hoare-style axiomatic verification system for CUBE-feasible algorithms is
developed and used to prove correctness of the presented routines.

i

RESUME

Cette these discute d'algorithmes et de modeles de traitement synchrones
massifs. Nous presentons les modeles de base et nous discutons de leur
reciprocite; de plus, nous analysons les proprietes de quelques modeles plausibles ·
de reseaux. Une nouvelle definition de la fonction-u de Gentleman est presentee.
Nous discutons egallement de procedures qui simulent les algorithmes CUBE
ASCEND /DESCEND aupres du CCC (cycles cube-connecte') et des machines
PERFECT SHUFFLE de n'importe quelle taille. Nous donnons les temps de cal­
culs exacts (non-asymptotiques) et nous prouvons !'exactitude des algorithmes.
Ceci ajoute au resultats precedents de Stone (1971) at de Preparate-Vuillemin
(1979). Borodin-von zur Gathen-Hopcroft (1984) precisa un programme afin
d'obtenir un "groupement de theories pour la manipulation algebrarque
parallele". Nous ajoutons a ce programme tout en mettant un emphase sur le
plus grand diviseur en commun (PGDC) de deux polyn6mes, qui se presente
comme un des problemes de base de la manipulation algebrai'que d'algorithmes.
B-G-H donne un algorithme pour determiner le PGDC a l'interieur de champs
arbitraires; cet algorithme est d'un temps 0 (log2n) et requiert un nombre
polyn6me de processeurs sur une machine parallele de genre commun, tel que P­
RAM ou des circuits algebrarques. L'algorithme utilise un systeme de
(n +m- 2i) X (n +m- 2i) matrices asymetriques. Si le result at de Ber kowitz
(1984) est utilise, le nombre requis de processeurs est 0 (n o:+2+!). Nous
modifions cet algorithme et nous presentons les resultats suivants: une nouvelle
formule matricielle pour le PGDC d'un polyn6me qui utilise un systeme de
mineurs principals du coin superieur de gauche de matrices symetriques n X n Le
parallelisme de Berkowitz (1984) avec la methode de Samuelson (1942) est modifie
et combine avec le resultat precedent. Ceci nous permet de reduire le nombre de
processeurs par un facteur de 0 (n). De plus, la puissance totale des modeles
generales paralleles n'est pas requise pour l'algorithme. Nous presentons un
algorithme CUBE-plausible (compose de procedures ASCEl\TD /DESCEND) qui
calcul le PGDC de deux polyn6mes a l'interieur d'un champs arbitraire en util­
isant un temps 0 (log2n) et qui requirert n o:+l+f processeurs, a = 3. Une
verification axiomatique du style Hoare pour les algorithmes CUBE -plausible est
developpee et utilisee pour prouver !'exactitude des procedures presentees.

ii

CONTENTS

ABSTRACT ... i

RESUME .. ii

CONTENTS .. iii

ACKNOWLEDGEMENTS V

1 Introduction 1

2 Taxonomy of Parallel Algorithms and Architectures 4

2.1 Characteristics of Parallel Algorithms .. 4

2.2 Matching Parallel Algorithms with Parallel Architectures 5

3 Synchronous parallel machines 8

3.1 Fixed versus modifiable structure models ... 8

3.2 Speedups of sequential machines by synchronous parallel machines g

3.3 Uniform circuits .. 11

3.4 Alternating Turing machines .. 13

3.5 Conglomerates•... 15

3.6 Aggregates 16

3. 7 Universal parallel machines ... 17

3.8 Hardware modification machines .. 19

3.9 Global memory machines .. 19

3.10 Practical and impractical models and their relations 22

4 Practical network machines 25

4.1 Notation 25

4.2 Function a .. 26

4.3 a-polynomial models ... 27

4.4 o--exponential models .. 29

iii

5 Equivalence of CCC, PERFECT SHUFFLE and CUBE 35

5.1 ASCEND and DESCEND classes .. 35

5.2 Simulation of CUBE by PERFECT SHUFFLE 36

5.3 Simulation of CUBE by CCC ... 39

6 GCD algorithms on a CUBE 47

6.1 Introduction .. 47

6.2 A matrix formula for the GCD ... 50

6.3 Characteristic polynomials of upper left principal minors 60

6.4 GCD algorithm ... 64

7 Subroutines 69

7.1 Introduction .. 69

7.2 The method of program verification 70

7.3 Program GOD ... 76

7.4 Subroutine INIT ... 77

7.5 Subroutine PVVR.A .. 80

7.6 Subroutine PVVR.B .. 83

7.7 Subroutine DAC .. 86

7.8 Subroutine CIJ .. 88

7.9 Subroutine CK .. go

7.10 Subroutine ~ .. 93

7.11 Subroutine PVVR.C .. 96

7.12 Subroutine RES .. 98

CONCLUSIONS .. .

REFERENCES ... iii

iv

ACKNOWLEDGEMENTS

I thank Prof. Nathan Friedman, my thesis supervisor, for his advice and

support. I am indebted to the N.S.E.R.C. and McGill University for their finan­

cial support. I also thank the family van Wijlen and Prof. Michael Mackey for

their help and encouragement.

V

- 1-

Chapter 1

Introduction

In the last decade, there has been an enormous growth in the attention given

to the field of parallel computing. Massively parallel computers based on various

geometrical architectures offer an alternative to traditional supercomputers at far

lower cost.

An example of how rapid the development is, can be found in the history of

the binary hypercube architecture. It has been known to researchers for a quar­

ter of century [Squire, Palais (1962,1963)]. Only recently, however, has the tech- .

nology to produce real machines been available. The first working hypercube

architecture was the 64-node Cosmic Cube at Caltech in 1983 [Seitz (1985)]. The

first commercial production started in the middle 1985 with the Intel Personal

Supercomputer [Intel (1986)], which had 128 node processors. The Amdek Sys­

tem/14 which followed has 256 nodes, while NCUBE/ten [NCUBE (1986)] can

accommodate 1024 processors with throughput potential 500 MFLOPS. The

maximum sized 12-cube of Floating Point Systems, Inc. [Gustavson, Hawkinson

and Scott (1986)] has 4096 processors with 65 GFLOPS peak performance. Other

machines are under development [Hillis (1985)].

Such activity should have a good theoretical support. Unfortunately, a

unified general theory of parallel computing is still missing. Various models exist.

Their differences, however, are much deeper and much more fundamental than

the differences among sequential models. Algori'thms for the general models of

- 2-

parallel computing, widely used in the literature for their power and convenience,

may prove hard or even impossible to implement on restricted but practical

architectures of existing machines. Another important and unresolved issue is

the verifiability of massively parallel algorithms. This thesis addresses both

issues and, using the example of the problem of computing polynomial GCD's,

demonstrates some problems associated with an efficient implementation of a

theoretically fast algorithm on the restricted architecture of a practical model.

The GOD of two polynomials is an important practical problem which

occurs frequently in fields such as symbolic and algebraic manipulation [Knuth

{1973)] or error detecting codes [MacWilliams (1977)]. We use the main ideas of

the fast parallel GCD algorithm of Borodin-von zur Gathen-Hopcroft (1984),

which was designed for a general parallel machine, such as P-RAM. We decrease

the required number of processors in a general model and also implement the

algorithm on the CUBE. We also show how "CUBE-feasible" algorithms can be

simulated on other practical models: the PERFECT SHUFFLE and the CCC.

Finally, we design an axiomatic verification system for CUBE-feasible programs

and use it to prove the correctness of our algorithm.

Chapters 2 and 3 survey main models of parallel machines. Chapter 4

characterizes some frequently used network machines. A new definition of

Gentleman's a-function is presented. The function is evaluated for given models.

Chapter 5 extends results of Stone (1971) and Preparata and Vuillemin

(1979,1981) and presents simulations of an ASCEND/DESCEND CUBE algo­

rithms on the PERFECT SHUFFLE or the CCC of any sufficient size. The

- 3- .

computation time is given in terms of the size of the problem. In chapter 6 a

new matrix formula for the GCD of two polynomials is given. The Berkowitz

parallelization of Samuelson's method is modified and combined with the previ­

ous formula. The resulting algorithm computes the GCD of two polynomials

over arbitrary field in 0 (log211) time using 0 (n a+l+c) processors. This is an

0 (n) improvement of the processor bound of the algorithm of B-G-H (1984).

Chapter 7 develops an axiomatic verification system and presents the implemen­

tation of the GCD algorithm on the CUBE and its verification. The implementa­

tion uses a simple matrix multiplication technique with a= 3. We believe this is

the first presentation of an efficient algorithm for this problem on this model.

- 4-

Chapter 2

Taxonomy of Parallel Algorithms and Architectures

The following characteristics and taxonomies were given by Kung (1980).

They reflect hardware considerations of algorithms for practical parallel architec-

tures.

2.1. Characteristics of Parallel Algorithms

From a practical point of view, a parallel algorithm can be seen as a collec­

tion of independent task modules that can be executed in parallel and that com­

municate with each other during the execution of the algorithm. Because more

than one module can be executed at a time, concurrency control is needed to

enforce desired interactions among modules and to ensure the correctness of the

concurrent execution. Kung (1980) recognizes three main categories of con-

currency control:

1. centralized control (execution is synchronous),

2. distributed control (execution synchronous or asynchronous),

3. control via shared data (execution asynchronous).

Other practical characteristics are module granularity and communication

geometry. Module granularity refers to the maximal amount of computation a

typical task module can do before having to communicate with other modules.

Communication geometry is the geometric layout of the network representing

intermodule eo mm unication.

- 5 -

2.2. Matching Parallel Algorithms with Parallel Architectures

In order to assess the correspondence between parallel algorithms and paral-

lel machines, the communication geometry properties or the concurrency control

and module granularity properties of the algorithms can be used. The communi-

cation geometry classification is demonstrated in fig.l.

Flynn (1972) categorized various classes of computers based on the way they

operate and handle data. These categories are: SISD (Single Instruction Stream,

Single Data Stream), SIMD (Single Instruction Stream, Multiple Data Stream),

MISD (Multiple Instruction Stream, Single Data Stream), MIMD (Multiple

Instruction Stream, Multiple Data Stream). Kung (1980) used SIMD and MIMD

as two of three categories of the matching of parallel algorithms and parallel

machines according to their concurrency control and module granularity.

1. SIMD machines correspond to synchronous, lock-step algorithms
that require central controls.

2. MIMD machines correspond to asynchronous algorithms with large
module granularities.

3. Systolic machines.

The third, technologically practical category of systolic machines reflects the

trend to have special purpose machines-on-a-chip with a large number of identi-

cal processors arranged in regular structures motivated by VLSI design technol-

ogy. Each processor periodically moves data in and out, each time performing

some short computation, so that a regular flow of data is kept up in the network.

The geometry of the communication paths in asystolic machine must be simple

- 6-

and regular. Systolic machines correspond to synchronous algorithms that use

distributed control achieved by simple local control mechanisms and have (small)

constant module granularities.

Tree

One·
dimensional

Square

Comm.
Geometry

Regular

Array

Two­
dimensional

Hexagonal

- 7-

Irregular

Shuffie

. . .

Triangular

Fig.l: Classification cf the coomunication geometry.

•••

. .. .

~ 8-

Chapter 3

Synchronous parallel machines

3.1. Fixed versus modifiable structure models

Cook (HJ81) has classified the synchronous parallel models according to

whether the interconnection among processors during a computation is fixed or

modifiable. This classification has its analog in the sequential computing theory.

The sequential fixed structure models are represented by various types of Turing

machines. The examples of sequential modifiable structure models are storage

modification machines [Schonhage (1979)] and random access machines (SSM's

are equivalent to RAM's that can only add and subtract one).

The parallel fixed structure models include uniform Boolean circuits [Borodin

(1977), Ruzzo (1981)], aggregates [Dymond and Cook (1980)], conglomerates

[Goldschlager (1978)], and alternating Turing. machines [Chandra, Kozen and

Stockmeyer (1981)].

The parallel modifiable structure models include P-RAM's [Fortune and

Wyllie (1978)], SIMDAG's (Goldschlager (1978)], and hardware modification

machines [Dymond and Cook (1980)].

Time bounds of all these models are roughly equivalent to each other, and

they are equivalent to the space bound of a deterministic Turing machine. This

is stated in the "parallel computation thesis" [Goldschlager (1978)}: The sets of

functions computed by a parallel computer in time S 0 (l) (i.e time polynomial in

- g-

S) are the same as those computed by a deterministic Turing machine in space

8 o(l).

For the models mentioned above the thesis can be formulated in a more

specific way [Cook (1981)]:

Fixed- Time (T) C DSP ACE (T) C Modifiable- Time (T) C Fixed- Time (T 2) ,

where Fixed-Time (T) can represent the class of languages accepted in time T

by any one of the fixed structure models mentioned above. Similarly,

Modifiable- Time (T) can represent the class of languages accepted in time T by

any one of the modifiable structure models. DSPACE (T) refers to the languages

accepted by a T space bounded deterministic Turing machine [Hopcroft and Ull­

man (1979)].

3.2. Speedups of sequential machines by synchronous parallel

machines

The processing of the input and output of a sequential algorithm alone

requires time that is linear in their size. There is, however, no lower time limit

on parallel machines.

The most favorable extreme is a completely parallelizable problem which can

be totally decomposed into a reasonable number of independent parallel opera­

tions. A proper parallel machine can process such an algorithm in constant time.

The opposite extreme is a completely unparallelizable problem. An example

[Kung (1979)] is the task of raising a number x to a large power x 2t. One pro­

cessor can compute the output by successive squarings. No speedup, however,

- 10-

can be achieved by using more than one processor (of the same type).

Therefore, for a general unspecified problem, the replacement of sequential

machines by parallel ones can be expected to save no significant amount of com­

putation time. The general speedups of deterministic machines by parallel

machines reflect mostly the structural differences among models. They

correspond to similar speedups attained by a structural change of a sequential

model. For a better evaluation of the speedups, only a subclass of "reasonably"

parallelizable algorithms should be considered. Dymond and Tompa (1983) gave

the general speedup of deterministic Turing mac~ines by (fixed structure) alter­

nating Turing machines as

DTIME (T) C ATM-TIME (T I logT) ,

which corresponds to the sequential speedup of time-bounded deterministic Tur­

ing machines by space-bounded machines [Hopcroft, Paul and Valiant (1977)]

DTIME (T) C DSPACE (T I logT) ,

The second general speedup reflects a quadratic advantage of modifiable structure

machines (namely P-RAM's) over fixed structure machines:

DTIME (T) C PRAM-TIME (Vr) .

(The SIMDAG's are at least as fast as P-RAM's.) Similar speedup can be

achieved for sequential RAM's [Hopcroft, Paul and Valiant (Hl75)].

Classes of problems with a "good" parallel solution on some models of paral­

lel machines and their relationships are given in [Cook (1985)]. In the following

- 11-

sections we will discuss the main models of synchronous parallel machines and

relationships among them.

3.3. Uniform circuits

A combinational (Boolean) circuit [Borodin (1977), Pippinger (1979), Ruzzo

(1981), Cook (1981), Cook (1985)] is a labeled acyclic directed graph (a network).

Each node of the graph can be labeled as an input node, an Al'ID-gate, an OR­

gate, or a NOT-gate (or possibly another boolean function-gate). Input nodes

must have fan-in zero, and NOT-gates must have fan-in one. Fan-in of AND­

and OR-gates is bounded by two in some models, or unbounded in others. In

addition, certain nodes are designated as output nodes. (There is no fan-out

bound on any node.)

The size of a circuit is the number of gates. The depth of a circuit is the

length of the longest path from some input to some output. Let the nodes of a

network be assigned to levels in the following way. The inputs are assigned to

level zero; gates and outputs to the level one greater than the maximum level of

the inputs and gates upon which they depend. The thickness of a network at

level l is the number of gates at levels not exceeding l upon which one or more

gates at levels exceeding l depend. The width of a network is the maximum of

its thicknesses at all levels.

An interconnection function determines the gate whose output is connected

to a given input of a given gate. A gate function determines the boolean function

performed by a given gate. For k input nodes and l output nodes, the circuit

- 12-

computes a function f : {O,l}k -+{0,1}1 in the obvious way.

A uniform circuit is an infinite family C = (C 0 , C 1 , · · ·) of combina­

tional circuits, one for each input size, such that the interconnection and gate

functions can be computed by a deterministic Turing machine in space

0 (log c(n)), where c(n) is the size of Cn.

The uniform circuit (uniform Boolean circuit family) is considered to be a

fundamental model, since it reflects the basic hardware structure of real comput­

ers without many additional restrictions. The circuit complexity of Boolean func­

tions is an appealing mathematical subject, studied since Shannon (1949), and the

uniform circuit model is reasonably attractive for an enduring mathematical

theory.

A drawback of the model is that the circuit depends on the problem and its

input size. Uniform circuits are incompatible with a concept of a practical

universal machine with simple geometry and (preferably) identical processors,

which could be easily reconfigured for many different computational problems.

Note: Some algorithms use a modification of boolean circuits, called arith­

metic circuits and arithmetic networks. An arithmetic circuit corresponds to a

boolean circuit with boolean gates replaced by arithmetic gates (performing arith­

metic operations). An arithmetic network combines both boolean and arithmetic

circuits [Berkowitz (1984), Eberly (1984)].

The equivalences between the size and the depth of uniform circuits and

time and space of deterministic Turing machines can be written as

- 13-

USIZE (n °(1)) = DTIME (n °(1)) ,

UDEPTH (n °(1)) = DSPACE (n O(l)) ,

where USIZE and UDEPTH are the classes of languages accepted by size

bounded and depth bounded uniform circuits, respectively (Pippinger (1979),

Cook (1981)].

The simultaneous bound on the size and depth of uniform circuits relates to

the simultaneous bound on the time and reversal of deterministic Turing

machines, where the resource reversal is the number of so called reversal steps in

a computation, when one or more heads change direction.

USIZE-DEPTH(n °(1), log0 (1)n) = DTIME-REVERSAL (n O(l), log 0 (1ln)

The simultaneous bound on the time and size of deterministic Turing machines

relates to the simultaneous bound on the size and width of uniform circuits.

USIZE- WIDTH(n °(1), log0 (1)n) = DTIME-SPACE (n °(1), log 0 (1)n)

Note: The relations above can be reformulated with only slight changes for

different definitions of circuit uniformity. Instead of comparing Turing machines

to uniform families of circuits, one can also compare "nonuniform" Turing

machines to (nonuniform) families of circuits (Pippinger (1979)].

3.4. Alternating Turing machines

An alternating Turing machine (Kozen (1976), Chandra and Stockmeyer

(Hl76), Chandra, Stockmeyer and Kozen (1979,1981)] is a generalization of a non­

deterministic multitape Turing machine. A nondeterministic machine has

- 14-

existential states, for which there are several possible next states. At least one of

the alternatives must lead eventually to an accepting state. In addition to the

existential states, an alternating Turing machine (ATM) has universal states, for

which all possible next states must lead to an accepting state. The accepting

state can be, for example, a universal state with no successors. (No rejecting

states are then defined.) An alternative definition uses special accepting and

rejecting states, which are halting states.

ATM M accepts input x iff there is a finite tree whose nodes are labeled

with configurations of M , such that the root of the tree is the initial

configuration, all leaves are accepting configurations, every universal node (i.e.

node whose configuration has a universal state) has all possible next

configurations as children, and every existential node has at least one possible

next configuration as a child. Such a tree is called an accepting computational

tree of M on input x .

An ATM M is S (n) space bounded if any configuration reachable from the

initial configuration of M on input x uses at most S (lx I) cells on the

worktape, where lx I is the size of input x . An ATM M is T (n) alterna­

tion bounded if the accepting tree of M on input x has any path from root to

leaf of length at most T (I x I) .

ATM's represent a sightly restricted form of parallel computation, since they

limit the "processors" to be Turing machines organized as an and-or-tree. How­

ever, there is a close correspondence between resources of an ATM and resources

of a deterministic Turing machine. Ruzzo (H179,1Q81) has shown the equivalence

- 15-

of the simultaneous bound on the depth and size of uniform circuits and that on

the alternating time and space of ATM's:

ATM-TIME-SPACE (log 0 (1)n, 0 (log n)) = USIZE-DEPTH (n °(1), log0 (1)n) .

The space bound definition of uniformity for the families of circuits does not need

to be so strong in this case. The equivalence above still holds for a weaker

definition of uniformity with only time bound of 0 (log c (n)) for the deter­

ministic Turing machine that computes interconnection and gate functions of a

circuit.

Several definitions of uniformity of circuits can be used for specific purposes.

One advantage of ATM's over uniform circuits is that there is no uniformity

problem. Each ATM is automatically uniform.

3.5. Conglomerates

Conglomerates, introduced in [Goldschlager (1Q78)], are a generalization of

parallel machines which "could be feasibly built using fixed connections". A

conglomerate is an infinite set of identical finite controls connected together in

some manner. Each finite control has r > 1 inputs and one output. A connec­

tion function f specifies the finite control whose output is connected to a given

input of a given finite control. Cycles are allowed in the connection graph.

Conglomerate time corresponds to the space bound of deterministic Turing

machines. In order to relate both resources, conglomerates must satisfy a unifor­

mity condition given by a linear space bound computability of the connection

function f by a deterministic Turing machine. Goldschlager (1Q78), however,

. 16-

did not discuss the size of conglomerates and their possible relationship to

resources of other models.

3.6. Aggregates

Dymond (1980) developed a generalization of circuits called an aggregate.

Unlike a circuit, the directed graph of an aggregate is not necessarily acyclic.

This offers a better relation of model resources to the hardware size. A computa­

tion of the aggregate is a sequence of configurations. A configuration is an

assignment of 0 or 1 to each node. In the initial configuration, values of all

nodes except the input nodes are 0 . Subsequent configurations assign a value of

the gate function to each node. Arguments of the gate function are values

assigned by the previous configuration to those nodes that are given by the inter­

connection function. The input nodes of an aggregate are not fed directly by the

input values, but rather provided with a flog n 1 register and a flog n 1 initial

time delay. This construction allows the input to be read by fewer input nodes

than its size is, i.e. sublinear hardware bounds can be considered for aggregates.

There are two output nodes. The output of the aggregate is the the value of the

first output node in the first configuration that assigns 1 to the second node.

That configuration also ends the computation.

A hardware size of an aggregate is the number of its nodes. A running time

is the maximum length of a successful computation over all inputs of a given

length. The uniformity condition of a family {.Bn} of aggregates is given by com­

putability of the interconnection and gate functions of !3n by

- 17-

0 (log (h(f3n) +log n)) space bounded deterministic Turing machine, where

h(/3n) is the hardware size of aggregate !3n (with an input of length n).

The hardware size and running time of uniform families of aggregates are

equivalent to the space of deterministic Turing machines and the depth of uni­

form circuits, respectively.

3.7. Universal parallel machines

An efficient general-purpose parallel machine should simulate any special­

purpose machine with only a small loss of efficiency. Galil and Paul (1983) pro­

posed a parametrized class of computers. By fixing the parameter, namely the

type of the individual processors, different models are obtained.

A parallel computer consists of an infinite recursive graph G . On designated

nodes in this graph the input is read, and on other nodes the output is produced.

Identical processors are attached to the nodes of G by a recursive function.

Formally, the parallel computer is specified by a pair C = (S, ~) . The

geometrical structure of the computer is described by a skeleton

S = p:::, V , D, g, I, 0) , where ~ is a finite alphabet, and V C.~"' a set of

names of processors. Connections between processors are assumed to be fixed;

each processor can communicate with a bounded number, d , of other proces-

sors. D is a set of "directions" with cardinality ID I= d , and

g : V X D -+ VU n , n ~ V , is a recursive interconnection function. The

value n means that a given processor in a given direction has no neighbor.

Two one-to-one recursive functions I, 0 : {0,1}"' -+V specify the input and

- 18-

output nodes. Processors are described by a recursive mapping .A: V -{0,1},

which specifies a binary encoding for a given processor.

Galil and Paul (1Q83) explicitly mentioned five processor models:

1. finite automata;

2. RAM;

3. k -RAM, i.e. a RAM with only k registers;

4. RAC, i.e. a RAM which in computation of t steps and with p
active processors generates register contents of length
0 (log (t + p)) ;

5. k-RAC.

In one computation step of the parallel computer every processor makes one step.

In the beginning only input nodes are active. Inactive nodes are activated during

the computation by an activity of its neighbors. The obvious complexity meas-

ures are the number of steps and the number of processors active during a com-

putation.

There are further (uniformity) restrictions imposed on the model:

1. functions A, g, I, and 0 must be computable by an 0 (n)
space bounded and 0 (n 2) time bounded deterministic Turing
machine, and

2. the address of any active node is bounded by 0 (log p) , where
p is the number of all active nodes.

An efficient general-purpose parallel machine U is then defined as a parallel

computer with a sorting network (e.g. cube connected cycles) as its skeleton.

Galil and Paul (1983) showed that U can simulate any parallel computer C

that uses p processors and makes t steps in only 0 (t log2p) steps using

- 10-

0 (p) processors. Moreover, the same result holds when a much stronger

model of parallel computer C is to be simulated, in which there is no underly­

ing graph but each processor can request information from any other processor.

3.8. Hardware modification machines

Hardware modification machines, developed by Dymond (1Q80), are similar

to conglomerates where each finite control is given an additional power to modify

its input connections. The machine is automatically uniform because it con­

structs itself.

Hardware modification machines have a "truly" modifiable structure in the

sense that processors modify the explicit links among themselves. Processors of

other modifiable structure machines, P-RAM and SIMDAG, have no direct links

to each other and communicate only indirectly via shared (or global) memory.

These communication patterns can be viewed as logical modifiable links among

processors. The modifiable structure of the links, however, has nothing in com­

mon with the hardware structure of the computer.

3.0. Global memory machines

A global memory machine consists of an infinite number of processors

attached to a globally accessible shared memory. Such a machine was introduced

in the SIMDAG model (Goldschlager (H}78)] or in the P-RAM model [Fortune

and Wyllie (1Q78)]. "SIMDAG" stands for "single instruction stream, multiple

data stream, global memory"; "P-RAM" stands for "parallel random access

machine". (Note: PRAM's of Savitch and Stimson (1Q7Q) have no global

- 20-

memory, but a given processor can initiate offspring processors. They are not

global machines but rather a special case of a parallel computer model of Galil

and Paul (1983).)

Each processor in a global memory machine possesses an infinite number of

general purpose registers and a unique read-only processor identity register which

is preset to i in the i -th processor, i EN. A program consists of a finite list of

instructions in one of the following forms:

1. Read a value from a specified place in the global memory.

2. Write a value to a specified place in the global memory.

3. Perform an internal computation.

4. Conditional transfer, halt.

The allowable internal computations usually consist of direct and indirect

register transfers, logical and arithmetic operations.

Each machine is specified by program P and a processor bound P (n) .

The computation starts with the n words of an input of size n placed in the

first n locations of common memory. All other memory locations and general

purpose registers are set to zero. The first P (n) processors are activated si m ul­

taneously; they synchronously execute program P . The computation halts

when all P (n) processors are halted. The output is then to be found in some

specified place in the global memory.

The most important resources are the processor bound P (n), the number of

processors used as a function of input size, and the time bound T (n), the number

- 21-

of steps executed as a function of input size.

In order to obtain closer relation with other models, Parberry (1985) used

another two resource bounds. Space S (n) is the maximum num her of non-zero

entries in the global memory and registers at any time during the computation.

The machine is said to have wordsize W (n) if every value placed into a register

or global memory location during the computation has absolute value less than

2W(n).

Memory access conflicts can be dealt with in several ways. SIMDAG's, or

CRCW PRAM's (for concurrent-read concurrent-write), allow simultaneous read­

ing and writing of several processors from and to the same global memory loca­

tion. In the case of the writing conflict only the lowest numbered processor

succeeds. P-RAM's, or CREW PRAM's (for concurrent-read exclusive-write),

allow no simultaneous writing to the same location. EREW PRAM's allow nei­

ther writing nor reading conflicts.

Stockmeyer and Vishkin (1984) studied the correspondence between CRCW

PRAM's and circuits. They obtained the following:

Theorem. A CRCW PRAM with P (n) processor bound that operates in time

T (n) can be simulated by a family of circuits of size polynomial in P (n),

T (n), and n , and depth linear in T (n). The result holds also for CREW

PRAM.

Theorem. A circuit of size S and depth T with n inputs and at most n

outputs can be simulated by a nonuniform CRCW PRAM with processor

- 22-

bound linear in (S + n) , program size logarithmic in (S + n) , that runs in

time linear in T . For CREW PRAM the time bound is to be changed to

0 (T +log n).

Note: A nonuniform CROW PRAM allows programs to depend on the size

of the input.

3.10. Practical and impractical models and their relations

Global memory models are popular for their theoretical power and universal-

ity. They are, however, highly impractical. Another universal but impractical

model is a network machine, which is similar to a conglomerate [Goldschlager

(1978)] or a parallel machine of Galil and Paul (1983).

A network machine consists of an infinite family of finite graphs, one for

each input size. Each node represents a processor. Each edge represents a com-

munication link between processors. The resources defined for global memory

machines, (P (n), S (n), T (n), W (n)) remain the same for network machines.

Since there is no global memory for a network machine, only the registers are

considered for S (n) and W (n).

Amongst more practical models are uniform circuits and feasible network

machines. A feasible network machine is a network machine with:

1. constant number of general purpose registers in each processor,

2. degree 3 of underlying graphs

3. interconnection function computable by a 0 (log P (n)) time
bounded deterministic Turing machine.

- 23-

These constraints are designed to make the model more suitable for fabrication in

a VLSI-like environment.

Parberry (1985) showed that all of the abovementioned machines can be

unified by "reduction to sorting". An important consequence of the reduction is

a possibility to simulate unpractical global memory machines and networks by

practical models of feasible networks and uniform circuits. His results include:

Theorem. There is a feasible network machine which can simulate any global

memory machine or network of P (n) processors, space S (n) , time T (n)

and wordsize W (n) using S (n) processors, wordsize W (n) and time

log2P (n)
0 (T (n) 1 S () 1 p () + T (n) log S (n)) . og n-og n+l

Theorem. Every global memory or network machine of P (n) processors,

space S (n) , time T (n) and wordsize W (n) can be simulated by a uni-

form circuit of depth 0 (T (n) log S (n) log W (n)) and width

O(S(n) W(n)).

The correspondence to deterministic Turing machines can be stated as fol-

lows:

Theorem. Every global memory or network machine of P (n) processors,

space S (n) , time T (n) and wordsize W (n) can be simulated by a

deterministic Turing machine using 0 (S (n) W (n)) space and

0 (T (n) (log2P (n) +logS (n))) reversals.

- 24-

Theorem. An S (n) space, R (n) reversal bounded k -tape deterministic Tur-

ing machine can be simulated on a global memory machine with processors

and space 0 (8 (n)k) , time 0 (R (n) log S (n)) and wordsize
logS (n)

0 (log S (n)) •

Upfal (1984) gave an interesting result for probabilistic simulation of

(CRCW) PRAM:

Theorem. Any PRAM of P (n) processors, space S (n) and time T (n) can

be simulated by a feasible network machine of P (n) processors and space

S (n) . The simulation terminates within 0 (t log2n) steps with proba­

bility 1 - 0 (min [e -St , e -S logn]) , for some S > 0 (independent of n

and t).

- 25-

Chapter 4

Practical network machines

4.1. Notation

Suppose we are given n processors, n = 2q , and i , i E [0, 2q -1], an

address with binary representation iq _1 iq _2 · · · i 0 • Each processor has local

registers and there is some communication geometry between the processors.

Then

zk == (i div 2k) mod 2 is the k -th bit of z

-:-
"k = 1 - ik is the complement of ik ;

i{k) = i+~2k-ik2k = iq_1iq_2 · · · ik+I~ik-1 · · · io;

"<k = i mod 2k = ik-I ik_2 · · · i 0 ;

z~k = i div 2k = i i · · · ik • q-1 q-2 '

PE(i) is the processor with address '

A (i), B(i), etc. are the contents of registers of PE (i).

A general type of operation a network machine can do in one computational

step is to replace the contents of a processor register by a new value, which is

given by some function applied to the previous register contents of the processor

and its neighbors. This is done for all processors at once.

Assuming only one register, A , per processor, the computational step is

represented by an assignment

- 26-

which means that if condition P is satisfied, function g (· ; y 1, y 2, · · ·) is

applied to arguments A (x 1), A(x2), and the value is then assigned to

register A of PE (p) • The variahles x1 , x2 , · · · , y 1 , y2 , must

not depend on the contents of the registers.

4.2. Function q

The communication geometry of the more technologically practical models

from the previous chapter, feasible networks and universal circuits, may depend

on the computed problem and its size. In this chapter, a more restricted subclass

of network machine models is discussed. The communication geometry of the

following models is extremely simple and regular, and universal for a wide class of

problems. The power of the models is, however, limited.

Two classes of communication geometries can be recognized. Structures of

the first class, which we call "0'-polynomial" structures, have links between physi­

cally close processors. Structures of the second, "O"-exponential" class, have links

between processors with similar addresses. The names of the classes come from

the behavior of a function o(m) , defined by Gentleman (1978) as "the maximum

number of processors at which data originally available only at a single processor

can be made available in m or fewer data movement steps". A more precise

definition will be used here.

Definition 4.2.1. If a communication geometry model is represented by a family

of graphs r , then its a(m) is the cardinality of the largest graph G

from the family r of radius at most m :

- 27-

a(m) = max I V(G) I ,
GEf, ra.d(G):5 m

rad(G)-:- min max d0 (x, y),
xEV(G) yEV(G)

where do is the distance between vertices x and y in graph G .

Definition 4.2.2. A ;nodel is called o--polynom£al iff it.s a(m) is m 0 (1) •

Definition 4.2.3. A model is called o--exponential iff its a(m) is not m 0 (l) .

4.3. o--polynomial models

A RING computer (flg.Oc) provides processors with only two links. PE (i)

isconnectedto PE((i+l)modn) and PE((i-l)modn).

A k -dimensional MESH computer (flg.Oa) requires 2k connections per pro-

cessor. In this model, processors may be thought of as logically arranged as in a

k -dimensional array. Processors are connected to their neighbors along each

dimension. Let i (i) be the part of address i that correspond to the J -th dimen-

sion, i.e. j -th "coordinate" of PE (i). Let n (i) be the number of processors in

the j-th dimension. PEUu:-l)' ~ (i)' · · · , i (o)) is connected to

for 0 < j < k and 0 < i (j) < n (j)· Processors on the boundaries (~· (j)= 0 or

i (i)= nU)) have less than 2k connections.

A k -dimensional TORO ID computer (flg.Ob) is a combination of a RING

and a k -dimensional 1-'IESH. Like in a k -dimensional MESH, processors have a

logical form of a k -dimensional array. Connections in each dimension, however,

form a ring. PE (i(k-l)' · · ·, t(i)' · · ·, i(o)) is connected to PE (i(k-l)'

· · ·, Uu)+l)modn(j)' · · ·, i(o)) and PE(i(k-1), · · ·, (iu)-l)modn(j)'

· · · , i (O)) , for 0 < J. < k and 0 < i (j) < n (j)·

- 28-

By a simple geometrical argument, o(m) is 0 (m k) for both k-

dimensional lvfESH and TOROID models. Since the radius of a k-dimensional

lvfESH or TOROID with x 1 X x 2 X · · · X xk processors is

function o(m) is given by

k
o(m)== max IT xi ==

E lx;/2 J $ m i - 1
•-1

where a == m div k and b == m mod k •

Note: a RING is a special case of a one-dimensional TOROID.

Since the lvfESH and the TOROID have more than three connections per

processor (for k > 1), only the RING is a feasible network. However, the most

common types of a lvfESH and a TOROID are the 2-dimensional versions with 4

connections per processor. If the definition of feasible networks is extend~d to

allow degree 4 graphs, the 2-dimensionallvfESH and TOROID are feasible.

The three abovementioned structures and other similar models have been

used in many graph and matrix algorithms [e.g. Levitt and Kautz (1972), Nassimi

and Sahni (1979), Kung and Leiserson (1980), Brent and Kung (1983)]. These

architectures are very attractive for VLSI design because of the simple intercon-

nection pattern and high utilization of processors. Unlike the more powerful

models of parallel computation, o--polynomial structures do not achieve loga-

rithmic times for standard numeric problems, such as FFT. Gentleman (1978)

studied lower bounds on the time requirements of computers with various o(m) .

- 29-

He showed that if o(m) is 0 (m2), matrix multiplication requires at least

linear time. Similar results can be obtained for other algorithms with large data

movements and for other o--polynomial models.

Note: The number of processors n for the RING, the MESH and the

TOROID is not required to be a power of 2.

4.4. o--exponential models

A CUBE computer (fig.2d) with n = 2g processors has q links per pro­

cessor [Pease (1977)]. Processors are connected along edges of a q -dimensional

cube, i.e. PE(i) is connected to PE(i(k)), for O<k<q. Set of all links

along k-th dimension, i.e. { (PE(i),PE(i(k))) I o< i <2q}, is called a

sheaf k .

Trivially, o(m)= 2m • Since q is not bounded by 3 , a CUBE is not a

feasible network.

Note: A CUBE and a MESH can be viewed as opposite extremes of one type of

architecture. While the MESH has a bounded number of dimensions and an

unbounded num her of processors along each dimension, the CUBE has an

unbounded number of dimens.ions and a bounded (by 2) number of processors

along each dimension.

A PERFECT SHUFFLE computer (fig.3a) has three links per processor

[Stone (1971)]. PE(i) is connected to PE(i(0)), PE(shuffle(i)) and

PE (unshuffle (i)) , where shuffle (i) and unshuffle (i) are defined to be, respec­

tively, the integers with binary representations iq -2 · · · i 0 iq -1 and

-30-

i0 iq -1 · · · i1 • Another, equivalent definition of shuffle and unshuffie maps

(fig.3b) has the form

shuffle (i) = if i < h /2 then 2i else 2i -n + 1 ,

unshuffle(i) = if i is even then i /2 else (i-1)/2+n /2

Since the distance (the number of links) between PE (0) and any other

PE (p) is at most 2n-l , the radius of a PERFECT SHUFFLE graph is at most

2n -1 , i.e. o{ m)> 2m 12 • A PERFECT SHUFFLE is a feasible network.

A cube-connected-cycles (CCC) computer (fig.4) is a combination of a CUBE

and a RING (Preparata and Vuillemin (1979),{1981)]. Processors are connected

along edges of a (q -r)-dimensional cube that has its vertices replaced by 2'­

cycles (rings). More precisely, let n = 2q be the number of processors and r

be some positive integer such that 2' > q -r > 0 . Then the q -bit address of a

processor PE (p) , 0 < p < 2q , can be divided into two parts: a r-bit part

h , 0 < h < 2' , that corresponds to the RING-type links among processors,

and a (q-r)-bit part i , o< i < 2q-r , that corresponds to the CUBE-type

links. Without loss of generality, let PE (p) = PE (h 2q-r +i) = PE (h, i).

Processor PE (h, i) , 0 < h < 2r , 0 < i < 2q-r , is connected precisely to

three other processors, PE((h-l)mod2,..,j), PE((h+l)mod2r,j), and

PE (h, j(i)) . The first two links belong to the neighboring processors within

the 2r -cycle. The third link corresponds to an edge of the (q -r)-cube.

The radius of a CCC graph is 2r -1 +q -r . A choice of r and q is valid

iff conditions m > 2r -1 +q -r and 2r > q -r are satisfied. It is easy to show

- 31-

that a(m)> 2(m+l)/4 for r = llog m:l j , q = l m: 1 j+ r . In reality,

a(m) behaves like 2(m+l)/2 for m >> 1 and 2r ~ q -r . The CCC is a feasi­

ble network.

The unbounded number of links per processor makes the CUBE architecture

impractical for computers with a large number of processors. The CUBE model

is, however, a practical tool for the development of algorithms for the PERFECT

SHUFFLE and the CCC . .As will be discussed in the following chapter, CUBE

algorithms with certain restrictions are compatible with PERFECT SHUFFLE

and CCC computers.

Note: An UL TRACOJvlPUTER, which was introduced and described with

many technological details by Schwartz (1980), has links of both a PERFECT

SHUFFLE and a RING.

- 32-

a) MESH b) TOROID

c) RING d) CUBE

Fig.2: MESH, TOROID, RING and CUBE for sixteen processors.

- 33-

Fig.3a: PERFECT SHUFFLE for sixteen processors.

shuffle ---:!11

(Vr------------'0

G)f------iG)

111111 unshuffie

Fig.3b: Shuffle (unshuffle) mapping for eight processors.

- 34-

Fig.4: Cube-conn~cted cycles for q=5 and r=2.

- 35-

Chapter 5

Equivalence of CCC, PERFECT SHUFFLE
and CUBE

5.1. ASCEND and DESCEND classes

For a wide class of problems there are algorithms whose data exchange pat-

terns correspond to the links of a binary multidimensional cube. Preparata and

Vuillemin (lg7{)) proposed two dual classes of such algorithms. Assume that

input data are stored in a continuous block of addresses from [0, 28 -1].

An algorithm in the ASCEND class performs a sequence of basic operations

on pairs of data with relative offsets successively 2°, 21, · · · , 28
-
2, 28

-
1 •

Assuming only one register per processor, an ASCEND-type CUBE algorithm

(operating on the block of the first 28 addresses in s steps) has the following

form:

form= Otos-ldo A(p)+-f(A(p),A(p(m));m,p), (O<p<28
),

where f (· ; m, p) is some function that depends only on the address of the

processor, p , and the order of the sheaf, m . Its arguments, A (p), A (p(m)) ,

are the register contents of the processor and its neighbors in the given sheaf.

An algorithm in the DESCEND class performs a sequence of basic operations

on pairs of data with relative offsets successively 28
-
1, 28

-
2, · · · , 21, 2°, i.e.

the sheaf-index m is running in the opposite direction. An algorithm from one

class can be simulated by an algorithm from the other class, reversing the order

- 36-

of address bits by the bit reversal permutation.

Many fundamental algorithms can be decomposed into ASCEND- or

DESCEND-type subroutines that use the same block of addresses. We will call

them CUBE-feasible algorithms. Algorithms for some applications, such as

bitonic merge or cyclic shift, are directly in the ASCEND or DESCEND classes.

These algorithms run in 0 (log n) steps. Other applications, such as permuta-

tion, shuffle, unshuffle, bit-reversal-permutation, odd-even-merge, Fast-Fourier-

Transform, convolution, or matrix transposition, have programs consisting of a

short sequence of ASCEND- or DESCEND -type algorithms and run also in

0 (log n) steps. Some applications, such as bitonic sort, odd-even-sort, or cal-

culations of symmetric functions, have algorithms with loops or recursive calls

and have higher time bounds.

We will show that algorithms for a CUBE machine from the ASCEND and

DESCEND classes (and, consequently, CUBE-feasible algorithms) can be

efficiently simulated on PERFECT SHUFFLE and CCC machines of any

sufficient size and give the bounds in terms of the size of the problem. In the fol-

lowing proofs, only one register, A , per processor is considered, since allowing

more registers would not bring any significant change.

5.2. Simulation of CUBE by PERFECT SHUFFLE
•

Stone (1971) described the similarities between the PERFECT SHUFFLE

architecture and a binary hypercube, which implicitly included the main idea of

the algorithm bellow. However, the sizes and computation times were not dis-

- 37-

cussed.

Theorem 5.2.1. An ASCEND-type algorithm running on the first 28

addresses of a CUBE computer in s steps can be simulated on a PER-

FECT SHUFFLE computer with at least 28 processors in 3s steps.

Proof. Let 2q be the size of the PERFECT SHUFFLE for arbitrary q > s .

Let A 0 (p) be the initial contents of register A of PE(p) of the CUBE,

and Ak (p) , 0 < k < s , be the contents of the same register after k

iterations of the for-loop of the simulated ASCEND-type CUBE algorithm

for m= 0 to s-1 do A(p) +-I (A(p), A(p(m)); m, p),

(o< p< 2"),

i.e. immediately after the iteration with m = k -1 . Let A' k (p) and

A"k (p) have similar meanings for, respectively, the first and second loop of

the simulating PERFECT SHUFFLE algorithm below. Let A'0 (p) ==

A 0 (p) for 0 < p < 28
• The simulating algorithm is correct iff A"8 (p) =

Algorithm 5.2.1.

for m= 0 to s-1 do begin

end·
'

A(p) +-I (A(p), A(p(o)); m, P<m 2g-k+P?::m), (P);

A(p) +-A(shuffie (p));

for m= 0 to s-1 do A(p) +-A(unshuffle(p));

where P = 0 < p <m 2q-k+P;::: m< 28
•

J ustiflcation.

Note that unshufflek (p) = p <m 2q-k+p~ m , unshufflek (p (o)) =

unshufflek (p)(k) and shufflek (unshufflek (p)) = p for 0 < p < 2q and

k > 0 . Assume that

A' k (p) = Ak (unshufflek (p))

for 0 < unshufflek (p) < 28 and 0 < k < l < s .

Then

A't+1(shuffle(p)) = f(A't(p),A1t(p(0)); l, unshuffie1 (p))

== f (At (unshuffle1 (p)), A1 (unshuffle1 (p)U)); l, unshuffle1 (p))

= At+l (unshuffle1 (p)) for 0 < unshuffle1 (p) < 28
,

i.e.

A't+l (p) = At+l (unshufflel+1(p)) for 0 < unshuffle1+1(p) < 28
•

By mathematical induction

A'b (p) = A's (p) = As (unshuffle8 (p)) for 0 < unshuffles (p) < 28
,

or equivalently,

A'~(shuffles (p)) = A8 (p) for. 0 < p < 28
•

Since

A"k+l (p) = A"k (shuffle (p)) for 0 < p < 2q and 0 < k < s ,

by mathematical induction

A", (p) = A"0 (shuffle" (p)) = A8 (p) for 0 < p < 28
•

It is easy to see that the algorithm runs in 3s steps. D

-3D-

5.3. Simulation of CUBE by CCC

Preparata and Vuillemin (1979,1981) discuss in detail the simulation of an

ASCEND /DESCEND CUBE algorithm on a CCC. The size of the CCC matched

the size of the CUBE and had a special form 22' +r • The computation time was

given in terms of the size of the machines. We extend this result and simulate an

ASCEND /DESCEND CUBE algorithm on a CCC of any sufficient size. The

computation time is given in terms of the size of the problem.

Theorem 5.3.1. An ASCEND -type algorithm running on the first 28

addresses of a CUBE computer in 8 steps can be simulated on a CCC com­

puter with at least 28 processors in 3s + 5·2t- t -7 steps, where

s= min(s, q-r), t= max(O,s-q+r), 2q is the size of the CCC,

q > 8 , and 2r , 2r > q -r , is the size of its cycles.

Proof. Let 2q , q > 8 , be the size of the CCC; the highest r bits of a pro­

cessor address correspond to the RING -type connections, while the lowest

q-r bits correspond to the CUBE-type connections. In the CUBE being

simulated only the lowest 8 bits of a processor address are used. Without

a loss of generality, we can consider the size of the CUBE to be 2q . If the

actual size is higher, we ignore the higher bits of the processor address. If it

is lower, we add (but do not use) virtual higher bits to the address. In both

the CUBE and the CCC we will use separate indices, i and i , for each

part of the address, i.e. PE(p) = PE(i 2q-r+ i) = .PE(i,;") , 0 < i < 2r ,

0 < i < 2q -r. These bounds are also assumed for any further reference to i

~ 40-

or j in the proof. Using this notation, the ASCEND -type CUBE algorithm

to be simulated reads:

(1) for m== 0 to s-1 do

A (i, j) +- f (A (i, j), A (i, j (m)); m , p) , (P) ;

(2) for m== 0 to t-1 do

A (i, J.) +- f (A (i, j), A (i (m), j); m +q -r , p) , (P) ;

where s == min (8 , q -r) and

t == max (0, 8 -q +r) . The simulating algorithm is divided into two parts

that correspond, respectively, to the two loops of the algorithm above.

Using the following lemmas, loop (1) can be simulated in 3·(s+2t) -5 steps;

loop (2) can be simulated in 2·2t- t -2 steps. Therefore, the whole simula­

tion runs in 3s + 5·2t- t -7 steps. D

Lemma 5.3.1. Loop (1) can be simulated in 3·(s+2t)-5 steps.

Proof. The following three loops on the CCC simulate loop (1) on the CUBE.

Similarly to the previous proof, let Ak (i ,j) be the contents of register A

of PE(i ,j) after the k-th step of (1), and A' k (i ,j), A"d i ,j),

A"'k (i,j) be the contents of PE(i,j) after the k-th step of each of the

three simulating loops, respectively. Let A'0 (i,j) = A 0 (i,j) for

0 < i < 2t and 0 < J. < 28
• The simulation is correct iff A"'s-l (i,j) ==

A 0 (i,j) for the same range of i and j .

Algorithm 5.3.1.

for m== 0 to 2t-2 do A(i,j) +-A((i+k) mod 2r ,j);

- 41-

for m = 0 to s +2t-2 do begin

A (i ,j) +-A ((i -k) mod 2r ,j) , (m> 0);

A(i,J·) +- f(A(i,j), A(i,jU)); i, p), (P);

end;

for m = 0 to s -2 do A (i, j) +-A ((i +k) mod 2r, J.) ;

where p = (o< i< 2t and o< p = (i+2t-m-l)·2q-r+j < 28).

J ustiflcation.

The first loop shifts data within each zr -cycle, so that in the end, sheaf 0

is accessible to data with the original address (2t-1)'2q-r+ j , 0 < j < 28
:

A't (i,j) = A1
0 ((i+k) mod 2r ,j) for any i , j .

Hence

The second loop applies function f on appropriate data. Note that data in

PE(i,j) can access sheaf i only. By mathematical induction (details

omitted)

!
A0 ((i+2t-k)mod2r,j) if P 1 and O< j<28

A'~(i,j)= Ak((i+2t-k)mod2r,j) if P 2 and O<j<28

A8 ((i+2t_k)mod2r,j) if P 3 andO<j<28

for o<k<s+2t-l and

P 15 (2r-2t+l < i < 2r),

P 2 = (max (k -zt,o) < i < min (k ,s)),

P 3= (s< i< min(k,2r) or o< i< k-2r). Hence

- 42-

The last loop shifts data back to the initial locations:

A"'k (i,j) = A"~((i-s+l) mod 2r,j) for any s , J •

Hence

A"'8 _1 (i,j) = A"~((i+s-1) mod 2r,j) = A8 (i,j)

for 0 < i < 2t and 0 < j < 28
,

and we are done. If the empty step in the second loop,

"A(i,j)-E-· · · ,(m>O)" for m= 0, is not counted, the three loops

run in 3·(s+2t) -5 steps. 0

Lemma 5.3.2. Loop (2) can be simulated in 2·2t- t -2 steps.

Proof. An auxiliary subroutine SHUFFLE(x) performs the shuffle operation on

consequent s z+1-size blocks of processors in each 2r -cycle of the CCC, i.e.

Algorithm 5.3.2.

Subroutine SHUFFLE(x):

for m= 1 to 2x-1 do begin

. . {A((i+l) mod 2r,j), (i0= m0 and P);
A('t,J) -E-

A((i-1) mod 2r,j), (i0= m0 and P);

end·
'

• 43-

Justification.

Let

1 < m < 2z , be a (2·m + 2)- size block of processors. Mter each step of

the loop, each block B;~:2, i, 0 < i < 2r, 0 < j < 2q-r, is shuffled, while

the remaining locations are left unchanged (see fi.g.5). In the end, every

2x+1_size block B
1
• (

2"-l
1
). , 0 < i < 2r , 0 < J. < 2q-r , is shuffled. If each

i::::s+l• - -

iteration of the loop is counted as one step, SHUFFLE(x) runs in 2z-l

steps.

The following two loops on the CCC simulate loop (2) on the CUBE. Let

Ak (i,j) be the contents of PE(i,j) after the k-th step of (2), and

A'k(i,j), A"k(i,j) be the contents of PE(i,j) after the k-th step of

each of the two simulating loops, respectively. Let A'0 (i,j) = A 0 (i,i)

for 0 < i < 2t and · 0 < j < 2" . The simulation is correct iff

A"tC i,j) == A0 (i,J·) for the same range of i and j .

Algorithm 5.3.3.

for m== 0 to t-1 do begin

SHUFFLE(m);

A(i,j) +- { f(A(i,j), A((i+l) mod 2r,j); m+q-r,p), (P and Q);
f(A(i,i), A((i-1) mod 2r,j); m+q-r,p), (P and Q);

end;

for m= 0 to t-1 do SHUFFLE(m);

- 44-

where P = (i 0= 0), P = (i 0= 1) and

Justification.

Note that RING-type links of the CCC can be used as a sheaf q -r

()
{

A ((i + 1) mod 2r, j)
A(. o .)

t ,J = A((i-l)mod2r,j)

if i 0= 0,

if i 0= 1.

The first loop uses SHUFFLE(m) to bring required data to the sheaf q-r

and then applies function f on them. By mathematical induction (details

omitted)

Hence

A't (i,j) == At (ir-1 · · ·it ioi1 · · · it-1, i)

for i;::: t 2k = 0 and 0 < j < 28
•

The second loop brings data back to the original locations:

A''k(iJ") = A"(i · · · i i i · · · i J.) ' 0 r-1 k 0 1 k-1'

for any i , J. , and 0 < k < t .

Hence

- Ad i,j) for 0 < i < 2t and 0 < j < 28
,

and we are done.

- 45-

t-1
The two loops run in I; (2·2m-1) = 2·2t-t -2 steps. 0

m-0

5 .4. Discussion

The algorithm (that simulates ASC /DESC alg's on the CCC) is very similar

to that of Preparata and Vuillemin (1979, 19th). However, in their algorithm:

1. the size of the CCC matched the size of the CUBE and had a spe­
cial form 22' +r ,

2. the computation time was given in terms of the machine size, and

3. the algorithm was presented in the notation "foreach < condi­
tion> pardo <operation> odpar",

while in our algorithm

1. the CCC is of any sufficient size, depending only on the problem
size,

2. the computation time is given in terms of the size of the problem,
and

3. the algorithm is presented in the notation ''<assignment>,
(<condition>)".

It is our opinion that the "foreach ... " notation is harder to read and verify,

since it specifies the operation for a set of processors instead of each individual

processor. This is especially true when nested foreach-blocks are used. (E.g.

both versions of Preparata's and Vuillemin's (1979,1981) algorithm contain a

hard-to-detect error in the procedure DESCEND: the condition

"a= l2r+((p+i-1)mod2r)" in a double-nested foreach-block should read

"a= l2r + ((p-i -1) mod2r)", which can be be verified by setting l = 0 and

processor

address

-46-

time ____ ,..,.

----{0 0 0 Or---

Fig.5: Data transfers by SHUFFLE(x) procedure

in a block of 2z -l addresses, x .:.. 2.

- 47-

Chapter 6

GCD algorithms on a CUBE

6.1. Introduction

The theoretical foundations for fast parallel computation for widely used

problems of symbolic manipulation in an algebraic context are laid by Borodin,

von zur Gathen and Hopcroft (Hl84). The problems investigated include compu-

tation of polynomial GCD's, solution of linear equations, computation of the

determinant and rank of matrices. Von zur Gathen (1984) continues in the pro­

gram and gives fast parallel solutions for the Extended Eucledian Scheme of two

polynomials, polynomial factorization over finite fields and square free decomposi­

tion of polynomials over fields of characteristic zero and over finite fields.

Recently [von zur Gathen (1986)], fast algorithms for conversion among polyno­

mial base representations have been introduced. This includes Taylor expansion,

partial fraction decomposition, the Chinese remainder algorithm, elementary sym­

metric functions, Pade approximation and interpolation problems.

These algorithms are designed for general models of parallel machines, such

as P-RAM's or algebraic circuits. All algorithms run in time 0 (log2n), using a

polynomial number of processors.

The fundamental part of these results is a fast 0 (log2n) matrix deter­

minant algorithm that works over arbitrary fields. Borodin, von zur Gathen and

Hopcroft (1984) do not give the algorithm explicitly, but rather prove its

- 48-

existence: A general parallelization result of Valiant, Skyum, Berkowitz and

Rackoff (1981, 1983) is applied to an 0 (n 5) sequential division-free determinant

algorithm, which can be, according to Strassen (1973), derived from an ordinary

0 (n 3) Gaussian elimination algorithm. The required num her of processors is

Berkowitz (1984) improves this result and gives an 0 (log2 n) time algo-

rithm that uses only 0 (n o:+l+e) processors. 0 (no:) is the number of proces-

sors that are required for matrix multiplication in time 0 (log n). (Coopersmith

and Winograd (1981) proved the existence of algorithms with o: < 2.5 .) c is an

arbitrary positive constant; c 1 acts as a multiplicative time constant. Although

a part of the proof is incorrect (see the following note), the overall

t = 0 (log2 n j, p = 0 (n o:+l+e) bounds hold.

Note: Claim 4 of Berkowitz (1984) incorrectly states that the product of

n X m and m X p lower triangular Toeplitz matrices is lower triangular and

Toeplitz. An example shows that this is untrue for matrices with n > m > p :

1
2 1
3 2 1
4 3 2

1
4 1

10 4
16 7

Claim 4 is the basis for the (0 (log2 n), 0 (n 3)) (t, p)-bounds on the compu-

tation of the coefficients of the characteristic polynomial. Without the claim,

these bounds must be replaced by (0 (log2 n), 0 (n o:+I)). These bounds are,

however, still sufficient to keep the overall bounds (0 (log2 n), 0 (n o:+l+E)) of

- 49-

the determinant algorithm.

For more restricted domains, such as fields of characteristic zero or integer

numbers, the processor bound of a determinant algorithm can be improved

[Csansky (1976), Preparata, Sarwate (1978)]. The best bound is achieved by a

new iteration method of Pan and Reif (1985), which requires only 0 (n ll) pro­

cessors to solve a related problem of matrix inversion in 0 (log2 n) time.

In the following, we focus on the polynomial GOD algorithm, which is basic

for the whole package of symbolic manipulation algorithms. Borodin, Hopcroft,

von zur Gathen (1984) suggest a matrix approach to the polynomial GOD prob­

lem. Let n , m be the degrees of the polynomials. Let Ai be an

(n +m -2i)X (n +m -2i) (asymmetric) matrix of a system of linear equations 81

that correspond to the polynomial equation p = fa+ gb with p of degree i.

The algorithm then reads:

1. Compute in parallel det Ai , i E [1,n] ;

2. Set k = min { i I det Ai + 0 };

3. Compute a solution (f, g) of Sk ;

4. Compute gcd (a, b)= fa+ gb;

We reduce the size of the matrices to (n -i)X (n -i) and show that the

reduced matrices are upper left principal minors of a symmetric n X n matrix.

We use a modification of the Berkowitz (1984) parallelization of the Samuelson

method [Samuelson (1942)] to compute characteristic polynomials (and deter­

minants) for the system of upper left principal minors in 0 (log2 n) time with

-50-

0 (n a-+l+e) processors. The characteristic polynomial of the largest nonsingular

(upper left principal) minor is then used to invert the minor. This allows us to

decrease the processor bound for the GCD algorithm by a factor of n .

The full strength of the general paralfel machine models that ~re suggested

for the algorithm is not needed. We develop a CUBE-feasible GCD algorithm

that uses a simple matrix multiplication technique with a= 3 and runs on a

CUBE or equivalent (PERFECT SHUFFLE, CCC) computer with n o:+l+e pro­

cessors in 0 (log2 n) time.

Section 6.2. gives a new matrix formula for the GCD of two polynomials.

Section 6.3. gives a matrix formula for the coefficients of the characteristic poly~

nomials of a matrix and its upper left principal minors, which is similar to the

formulas used by Berkowitz (1984). Note: Berkowitz (1984) uses incorrect

indices and sizes of matrices; there is, however, no effect on the resulting bounds

in the big-oh notation. Section 6.4. outlines the GCD algorithm. The exact

definition is left to the next chapter, where an axiomatic system of verification is

developed for the CUBE-feasible algorithms and used to verify the program.

6.2. A matrix formula for the GCD

In this chapter a matrix formula for the GCD of two polynomials is derived.

The theorem 6.2.1 is based on the claim of lemma 6.2.3, w hi eh is a modification

·of two known properties of polynomials, stated in lemma. 6.2.1 and 6.2.2. Nota­

tion: F is an arbitrary field and F [x J the ring of polynomials over F . o (p) is

the degree of a polynomial p .

-51-

Definition 6.2.1. Let a , h E F [x J • Then h divides a iff

(:3 a'E F[x]) (a= a'h).

Definition 6.2.2. Let a, b, h E F[x], a =I= 0, b =I= 0. Then h = gcd (a, b), i.e.

h is the greatest common divisor (GCD) of a , b , iff

h divides a , h divides b , h is monic and

- - - -(\rl h E F [x]) ((h divides a and h divides b) ~ h divides h).

Note: A simple argument can show that the GCD is unique.

Lemma 6.2.1.

(V a, b E F [x], a =I= 0, b =I= 0) (:3 f, g E F [x]) (gcd (a, b) = fa + gb)

Proof. Let R= {pEF[x],p=I=O I (:3f,gEF[x])(p= fa+gb)}.

Note that R is non-empty (at least a ER and b ER) and partially

ordered by o. Let h be a minimum of R with ordering o. Since any

nonzero scalar multiple of an element of R is also in R , h can be chosen

monic. We will prove that h = gcd (a, b) :

Let a', a', f, g E F[x], such that h = fa+ gb and a= a' h +a" , where

either o(a') < o(h) or a'= 0. Since

a' = a-a'h = (l-a'f)a + (-g)b ER U {o}

and (V pER) (o(p)> o(h)),

a"= 0 and h divides a . Similarly, h divides b , i.e. h is a monic com-

-
mon divisor of a , b • Any other common divisor h of a , b , such that

a = a h and b = b h ' divides h :

-52-

h == fa + gb == (ra: + g b) h .

Therefore, h is the greatest common divisor of a , b •

Lemma 6.2.2 ..

0

(V a, bE F[x], s.t. a =I= 0, b =I= 0, 8(a) > 8(b), a is not a scalar mul-

tiple of b) (j,g E F[x])

(gcd(a,b)= fa+gb and 8(g) < 8(a)-8(gcd(a,b))).

Note: When a is a scalar multiple of b, 0 = 8(g) = 8(a)-8(gcd(a,b))

or g = 0.

Proof. Let h=gcd(a,b), a=a'h, b=b 1h. By lemmal, :3/,gEF[x],

h = fa + g b . It is easy to see that g is not divisible by a': Suppose

g == g1 a1 for some g1 E F[x]. Then h = (f+g' b1
) a, i.e a divides h.

Since h divides b and 8 (b) < 8 (a), a must be a scalar multiple of b .

This contradicts the lemma's assumption. Thus g is not divisible by a',

i.e.

(:3 g E F[x], g =I= 0) (g= g'a'+g and 8(g) < 8(a')= 8(a)-8(h)).

Then

h = fa'h+g'a'b'h+gb 1h- fa+gb,

where f = f + g1 b'. Lemma 6.2.2 is proved. 0

Lemma 6.2.3. Let a, bE F[x], a =I= 0, b =I= 0, 8(a) > 8(b) and a is not a

scalar multiple of b • Let

Ri = { p E F[x], p manic I 8(p) = i and

(:3/,gEF[x])·(p= fa+gb and 8(g)<8(a)-i)}

for i > 0 . Then

-53-

{ gcd (a' b) } = R m in { i I R; ,a 0} .

Proof. Let

R';= {pEF[x] j8(p)=i and (3/,gEF[x]) (p= fa+gb)}.

Note that R' i :::> Ri and R = U R 1 i , where R is the set defined in the
;::::;

proof of lemma 6.2.1. From the proof of lemma 6.2.1,

gcd(a, b) E R'min{ i 1 R';+ 0}.

By lemma 6.2.2,

gcd(a,b) E Rmin{ i I R';+ 0} C R'min{ i I R';+ 0} ·

Since the GCD is unique, { gcd(a, b)}= R min{ i 1 R';+ 0} ·

Since R; C R' i , min { i I R' i =I= 0} < min { i I Ri =I= 0}.

Since 0 =I= R min { i I R'',. 0} '

min { i I R' i =I= 0} > min { i I Ri =I= 0} .

Therefore

{ gcd (a' b) } = R min { i 1 R' 1 ,a 0} = R min { i I R; ,a 0} ·

Lemma 3 is proved.

Note. The polynomials f and g are unique. The argument goes as follows:

0

Let h = gcd (a, b)= fa+ gb = fa +g b, a= a1 h and b = b1 h for

a, a', b, b1
, /, /, g, g, h E F[x]. Then and

gcd (a', b1
) = 1. This is possible only in two ways. Either

I-f = g -g = 0 , or b' divides f- f and a1 divides g -g . The latter

alternative is excluded by

-54-

8(g 1-g) < max{ 8(g),8(g')} < 8(a 1
) = 8(a)-8(h).

Hence, the polynomials f = f and g == g are unique.

Notation. Let a" = b" = 0 for k < 0. Let i = 0, 1, ... , n-1 . Then X;, Y;

are upper triangular (n -i)X (n -i) Toeplitz matrices

an an-1 ai+l bn bn-1

an ai+2 bn
xi - y.

l -

U;, V; are (n-i)X (n-i) Hankel matrices

an-1 an-2 a; bn-1 bn-2

an-2 an-3 ai-l bn-2 bn-3
U; - vi -

ai ai-1 ...
a2i+l-n b· bi-1 t

S;, T; are i X (n-i) Hankel matrices

ai-l ai-2 a 2i-n bi-1 bi-2 b 2i-n

ai-2 ai-3 a 2i-n-l bi-2 bi-3 b 2i-n-l
Si= T;=

ao 0 0 bo 0 0

Note that V0 X 0 = [V; ·]. [~· ·] =
T; · 0 · [

V; X; ·].
T; X; . , similarly for

U0 Y0 • Thus, (V; X;- U; Y;) =

[the first n-i rows and columns of (V0 X 0 - U0 Y0)],

and (T; X; - S; Y;) =

[the last ~ rows and the first n -i columns of (V0 X 0 - U 0 Y0)].

Theorem 6.2.1. Let a,bEF[x], where a (:\) = 2.: a; A i ,
i?! 0

b(A)= 2.: b;Ai, 8(a)= n >m= 8(b), and a is not ascalarmultiple
i?! 0

-55-

of b • Then

gcd(a,b }(A) = Ak + [Ak-1, Ak-2, ... , 1]

· (Tk xk - sk Yk) · (vk xk - uk Yk t 1 · [o, ... , o, 1 J T ,

where k = min { i I det (vi xi - ui Y;) + 0 } .

Proof. Let p,J,g E F[x], p (A) = E Pi).J '
i 2: 0

/('A)= E /jAi'
i 2: 0

g (A) = E gi Ai . Let Ri, i = 0, 1, ... , n-1, be the set defined in
i 2: 0

lemma 6.2.3. We will examine the sufficient and necessary conditions for

p E Ri . Clearly, polynomials p, f, g satisfy the conditions:

p is monic and 8 (p) = i and 8 (g) < n -i and p = fa + gb

iff their coefficients satisfy the following system of linear equations:

an bm 0

fo
0 an am-n+i+l

an-1 am-n+i f m-i-1
0

bm bn-m+i+1 go
bm-1 bn-m+i -

ai azi-m+1 bi bzi-n+l 1

ai-1 azi-m bi-1 bzi-n gn-i-1 Pi-l

ao ai-m+l bo bi-n+l Po

Since an + 0 and b1 == 0 for l > m , the system above is equivalent to

the system

-56-

an bn

bn bi+l
fo

an ai+l

an-1 ai bn-1 b;
f n-i-1

a·
' a2i-n+l b· b2i-n+l

9o

'
ai-l a2i-n bi-1 b2i-n

gn-i-1

ao ai-n+l bo bi-n+l

w hi eh after reordering the first n -i rows becomes

x. y.
s '

u. v:. • •
S· T· I I

where

E; = [0, ... J 1] T '

pi= [Pi-1, · · ·, Po]T'

oi = (o, ... , o 1 T •

Q.
*

E· I

p.
I

0

0

0

=
1

Pi-1

Po

Fi, G;, Ei and 0; are (n-i)-vectors (or (n-i)X 1 matrices); Pi is an

i -vector.

We can conclude that

(3j,g EF[x]) (p = fa+gb ERi) iff (:3Fi,G,.)

([xi Y;] . [Fj] _ [oi]
U· v:. G· - E· and [Si

I I I '

-57-

By lemma 6.2.3 and the note, p = gcd (a, b) iff

(:3 unique /, g E F[x])

(p = fa + gb E Rk , k = min { i I . Ri =F 0}) ,

i.e. p = gcd(a, b) iff

P• = Is, T, I · [~:

[
X· y. J

k = min { i I det ~- ~ · =F 0 } .

Note that

1. The inverse of of an invertible, square, upper triangular Toeplitz
matrix is invertible, square, upper triangular and Toeplitz.

2. The product of two square, upper triangular Toeplitz matrices is
square, upper triangular and Toeplitz.

3. Matrix multiplication is commutative for square, upper triangular
Toeplitz matrices.

Since an =F 0, Xk is invertible. Let Ik be the (n -k) X (n -k) identity

matrix. Then

-58-

Since .

[

1-

= det U-~--l
• •

p = gcd (a, b) iff

P,. = (T,. x,. - s,. Y,.) . (v,. x,. - u,. Y,.)-l . E,. I

k = min { i I det (vi xi - ui Yi) + o } .

Since p (~) = ~" + [~"-1, ~"-2, ... I 1]. P,.' k = o(p),

gcd(a, b)(~) = ~k + [~k-1, ~k-2, ... I 1 J

· (T~cX~c-Sk Y~c) · (V,~:Xk-Uk Y~c)-1 · E,~:,

k = min { i I det (vi xi - ui Yi) + o } .

The theorem is proved.

Lemma 6.2.4. (V0 X 0 - U0 Y0) is symmetric.

0

Note: Since all upper left principal minors of a symmetric matrix are sym-

metric, matrices (Vi Xi- U; Yi), i E [O,n-1] are symmetric.

-59-

Proof. We will omit the index 0 of the matrices X 0 , Y0 , U0 , V0 • M;1 is

the i, i -th element of a matrix M , i , J. E [0, n -1] .

~* - ~ Since
x+y- 2n-1-i-j

{~-1-;-k k<n-1-i
{ ~•+>-i ' uik = else

and Yti==

the i, i -th element of matrix (U · Y A is

n min(n-1\;, j)
(UY)ij = ~ U;t Yti = ~ an-1-i-k bn+k-i

k-1 k-1

- ~ axby-
z+y- 2n-1-i-j
O< x < n-i-1
n=i.-j~ y~ n

Similarly,

Then

~* ax by .
o< x < n-i-1
n=i.-j~ y~ n

(VX- UY)if- (VX- UY);i

~* ax by)
o< x < n-i-1
n=i-j~ y '.5. n

- (:E* a:c b11 - :E* ax by)
n-1-i< x < n 0'.5, x '.5. n-j-1
0~ y 5 n-]-1 n-1-i'.5, y'.5. n

= (~* ax by + E* ax b11)
n-1-1'.5. x $ n
0'.5, y '.5. n-•-f

0'.5, x '.5. n-j-1
n-1-i'.5,y'.5,n

- (E* ax b11 + E* ax b11)
n-1-i< x< n O< x < n-i-1
0'.5, 1!5 n-]-1 n=i-j~ 11 ~ n

'
k<" _J

else

Let

- 60·-

i.e. (VX- UY)·· = (VX- UY) ·· IJ Jl '
0

6.3. Characteristic polynomials of upper left principal minors

!I.t. this chapter a matrix formula for all upper left principal minors is given.

The main theorem is based on lemmas 6.3.1-3, which correspond, respectively, to

claim 1, claim 2 and a part of theorem 5 of Berkowitz (1984) parallelization

scheme of the Samuelson method [Samuelson (1942)] for determining the

coefficients of characteristic polynomials. The notation and the structure of the

matrices has been, however, changed to support our needs.

Notation. Let M be an (l+l)X (l+l) matrix and N its l X l upper left

principal minor, l > 1 .

Let p , q be their characteristic polynomials, respectively.

p(f-)= ~ Pif-i = det(M-f-1),
i~ 0

q(f-)= ~ qif-i= det(N-f-J).
i~ 0

Lemma 6.3.1. det(M) = a· det(N) + R ·adj(N)· S.

Note: The adjoint of a one-element matrix is the identity matrix.

Proof. Expand det (1\1) by the cofactor expansion on the last row and then on

the last column.

l-1 l-i-1
Lemma 6.3.2. adj (N- f-I) = - :E ~ N j qi+l+ j f_i.

i-Oj-=0

0

Proof. Multiply both sides of the equation by (N- f-I). The left-hand side is

then equal to q (f-)·!. The right-hand side is

- 61-

l-1 l-i -1
(- E E Ni qi+l+j>J). (->-I+ N)

i-oj-o

l-1 l-i-1 l-1 l-i-1 . '+1 '+1 . == E E NJ qi+l+j>..• - E E NJ qi+l+j>-.
1

i-0;'-0 i-Oi-0

l-i l .
== I ql >..l + E I qi >..i - E N J qj

i-1 j-1

l .
== q (>..)·I- E NJ qj == q (>..)·I.

i- 0

l .
(Note that E N J qi = 0 by the Caley-Hamilton theorem.) The lemma

i- 0

is proved for q (>..) + 0 . Since the matrix coefficients of both sides of the

equation are polynomials in >.. , the lemma holds for any >.. .

Lemma 6.3.3. [p0 , ... , Pt+lV == C· [qo, ... , ql V,
where

i.e.

Po

0 ' j-i < -1
-1

a
-RN i-i-18

' i-i = -1

' i-i == 0

' j-i > 0

a -RS -RNl-l

-1 a -RNl-2

=
0 0 a
0 0 -1

D

- 62-

Proof. For l = 0 the claim obviously holds. Let l > 0 . By lemma 1 and

lemma 2,

p (>.) == [1, >., ... , >.1+1] · [p0 , ... , Pl+ljT = det(M- >.I)

= (a->.)· det (N- >.I)+ R · adj (N- >.I)· S

The lemma is proved.

Notation. Let A== [Aii] 0 ::; i < n be an n X n

t M= [Aii] o < i < t '
o:gi<l

1 a = Au , l E [0, n J , i.e.

0$ i <n

l+1M= [:~ :~], .M-A.

matrix.

[J

Let

and

Let 1 C and 1 C , l E [0, n-1], be, respectively, (l+2)X (l+l) and n X n

matrices:

l C··= lj

0 ' j"-i < -1
-1

la

-~R tM i-i-llS '

j-i == -1

j-i == 0

j-i > 0

- 63-

{
1Cii , i < l+l and i < l

10iJ = 0 , else

Let 1c;, lE [O,n-1], i E [O,l+l], be the i-th coefficient of the charac-

teristic polynomial of matrix l+lM , i.e.

l+l .
~ 1ci'A' = det(l+lM- 'AI),
i- 0

where I is the (l+l)X (l+l) identity matrix. The operator IT denotes

matrix multiplication "from the leftn:

b
IT Ni = Nb · Nb-1 · · · · ·Na
i- a

Theorem 6.3.1.

l
- ITmC).

m-o

Proof. The lemma holds for l = 0:

[oco,ocl]T = [~:] = oC = IT mC .
m-0

By lemma 3,

for l > 0 . The claim follows by mathematical induction.

Lemma6.3.4. (V i,i,l E [O,n-1])

Proof. It is easy to see that

i = 0 < i < l + 1 < n and i < n

, else

D

- 64-

l
IT me= for l = 0, 1, ... , n-2 ,

m-o

where 0 is the zero matrix of appropriate size. The claim follows from the

l
theorem applied to the first column of the matrix IT m C . When

m-o

l
l = n -1 , the last element (row) of IT m C is not used.

·m-o D

6.4. GCD algorithm

We assume that o(a) = n = 2q > o(b). This restriction is not critical: If

8 (a) is not a power of 2, both polynomials a , b can be multiplied by

x 2'-o(a), where q = rlogo(a) 1. Then the resulting gcd is divided by the

same amount. This can be easily achieved by a simple shift in the arrays of

coefficients.

The matrix GCD formula of theorem 6.2.1 implies the following algorithm

for the gcd(a, b):

Algorithm GCD 1:

1. Construct V0 X 0 - U0 Y0 •

2. Compute det(V;X;- U; Y;), i E [O,n-1].

3. Find k = min { i I det (V; X; - ui yi) =F 0 } .

4. Compute (Vk Xk - Uk Yk t 1 •

5. Compute [0, ... , 0, 1, Pk-l' ... , p 0JT =
[the first n-k columns of (V0 X 0 - U0 Y0)] ·

[the last column of (vk xk - uk yk t 1] •

- 65-

Note that the algorithm is similar to that of Borodin-von zur Gathen-Hopcroft

(1984). However, the structure of the matrices is different. The last step of the

algorithm yields the coefficients of the gcd (a, b) :

gcd(a, b)(>-.)= [)._n-l, xn-2, ... , 1] · [0, ... , 0, 1, Pk-1, ... , Po]T ·

Note: If required, the polynomials f and g, gcd (a, b) = fa+ gb , can be

computed as

J(>-.) = [>-.n-k, >-.n-k-l, ... , 1] · (-Yk) · (V~cXk -Uk Yk t 1 · Ek and

g (>-.) = [>-.n-k, >-.n-k-1, ... , 1] · xk-1 · (VkXk -Uk Yk t 1 · E~; ·

Let A = nM = (V0 X 0 - U0 Y0). Using the notation from section 6.3, the

algorithm reads:

Algorithm GGD 1:

1. Construct A = nM.

2. Compute det l+lM = le 0 , l E [0, n-1].

3. Find l * = max { l I le 0 =F 0}.

4. Compute t•+ 1M-1 .

Using the matrix formula for characteristic polynomials from theorem 6.3.1 and

lemma 6.3.4, we replace step 2 by

2'.1 Compute 1R 1Mk 1S, k E [0, l-2], lE [0, n-1].

2'.2 Construct 1Gii, i E [0,1+1], j E [O,l), lE [O,n-1].

l
2'.3 Compute tCi = (IT me)i ' i E [0, 1+1], lE [O,,n-1].

m-o

- 66-

Coefficients 1·ci, iE[O,l*+l], are then used to compute 1·+1lvf-1 by the

Caley-Hamilton theorem:

t• +1
t•Co. t•+lAf-l = E z•Cm . t•+ll\l[m-l =

m-1

[
N O' lk+l [Nk+l O' l
W O" = WNk 0 6 '

t•
E t•Cm+l · t•+llvfm -

m=O

where O', 0 1 are the zero matrices of appropriate sizes. Thus, steps 4 and 5 can

be replaced by

[
N O' lk+l

4'. Computez·i:+1 = w O" ,kE[o,t*].

5'. Compute [0, ... , 0, 1, Pn-l·-1 , ... , PoJT -

I •
[the l * -th column of E -(1·cm+lft•C 0) Z m+l].

m-o

Step 2' .1 seems to reg.uire 0 (n 2) matrix multiplications, i.e. 0 (n a+2)

processors. However, a simple divide-and-conquer technique can be used to

reduce the required number of processors. The basic idea for the "conquer" step

is to compute {tl'vfk 1S }o::; k < x2 by the block-matrix formula:

L i\1 ix + 1 t S] o < i < x = L 1\1 ix] o < i < x · L .ivf 1 1 S J o == k ·
o<:j::;x O==k O<j$;x

Each "conquer" step quadratically decreases required number of processors but

increases computation time. It is easy to see that the tradeoff can be controlled

by a constant c > 0:

E

TllvfE
------- :::::: const.
PROCESSORS

1\.fAX ; { step 3 }

INV ; { step 4' }

RES ; {step 5' }

where

JNIT

- 68-

{ ai }i, { bi }i --+- A --+- {tlYf }t

PWRA
{t.LVf }t --+- {t i\tf h }h, l

PWRB

{ h 2"} --+- tAl h, t

CIJ

{riVIk tB h, 1 _.... {t c h

m=O

RES

nj'vf' {t•Ck h' {zk h - {Pt }t ·

The implementation and verification of the subroutines is shown in

chapter 7. It is easy to see that all subroutines run in 0 (log2n) time. Since

h E [0, 2r] and i, J, k, l E [0, 2q] , the address of a processor contains r +i + y· +k +l

bits. Therefore, the algorithm requires 24 q+r = n 4+t processors, where

7 .1. Introduction

- 60-

Chapter 7

Subroutines

In this chapter we present CUBE-feasible version of the subroutines that

were introduced in the end of section 6.4. We develop an axiomatic verification

system for CUBE-feasible algorithms and apply it to our subroutines.

Suppose we have a CUBE of size n 4+E = 249+r . The processor address

consists of five fields, h, i, j, k, l , with r, q, q, q, q bits, respectively. We will

omit the separating commas in the address. When not specified otherwise,

indexes have their the default ranges, which are [0, 2r -1] for h , and [0, 29-1]

for i, j, k, l . All subroutines use two registers, A , B , per processor.

We extend the notion of CUBE-feasibility to algorithms decomposable into

subroutines that are of type ASCEND or DESCEND on the sheaves of h, i, j, k

or l , or that access no sheaves at all. Since the majority of the loops work for

both ASCEND and DESCEND orders, we replace "for m= 0 to 2g -1 do" or

"for m = 29-1 down to 0 do" by "for mE [0, q -1] do ", whenever possible.

For practical reasons, we also allow an access of a single sheaf between two for-

loops. It should be clear, however, that the algorithms still can be efficiently

simulated by a CCC or a PERFECT SHUFFLE.

Each subroutine is presented in three parts:

- 70-

1. The algorithm, which is a sequence of steps or a loop.

2. The set of input (P), output (Q) and intermediate ({AS; } i > 0)

assertions. Each assertion is a predicate about the contents of
processor registers.

3. The proof of correctness, which is an application of the basic ax­
ioms and lemmas to the set of assertions.

7 .2. The method of program verification

The standard Hoare's formalism [Hoare (1969)] is used here to verify the

CUBE algorithms. The verification of a statement S has the form:

{ precondition } S { postcondition }.

The program is correct i:ff

{input condition } program { output condition}.

To infer the program correctness, two rules of inference are used.

Sequencing: {P}S{R}, {R}T{Q}
{P}S;T{Q}

Looping:

7 .2.1. Axioms

P~R0 , {R;} Si {Ri+1}, Rd~ Q
{ p} for i = 0 to d-1 do si { Q}

The following two axioms suffice for our proofs.

Al. (Assignment).

{ A(p)= x(p),B(p)== y(p), ... }

A(p)+-c (p,A(p),A(p(m)),B(p),B(p(m)), ...)

{ A(p)= c (p,x(p),x(p(m)),y(p),y(p(m)), ...)}

- 71-

Justification. The new contents of register A of PE (p) is the result of the

function c (·) applied to the previous contents of the registers of PE (p) and

its neigh bors.

A2. (Data transfer).

{ A (p) = x (p) }

A(p)+-A(p(m)), (Em(P)= 0)

{ A(p)= X(P>m+l2m+l+(Pm Ef> Em(P))2m +P<m)}

0

Justification. If em (p) = 0 , data are transferred along sheaf m , i.e. from

PE(p~ to PE(p), where p1 == p(m) -

P2:m+l2m+l+(Pm Ef> Em(P))2m +P<m . If Em(p)= 1, data do not move,

Le. are "transferred" from PE (p~ to PE (p) , where p1 == p =

p~ m+12m+l+(Pm Ef> Em(P))2m + P<m . (Note: X EB y = (x+y)<2 for

X, y E [0, 1]). 0

7 .2.2. Lemmas

The following technical lemmas describe the results of some common assign­

ments and loops. Lemmas 1-8 are straightforward. Lemma 9 describes a shift of

adrresses by a constant d. Lemma 9 is equivalent to lemma 3, which uses a

different notation that simplifies the proof. Lemmas 1-2 are used by lemma 3.

Ll. Let d > 0.

{ A (p) = x(p) }

A (p) +-A (p(m)), (Pm= dm_t)

- 72-

{A(p)= X(P;:;:m+12m+l+dm-t2m+P<m)}

Proof. By A2 with Em(P) = Pm Ef> dm-t ·

L2. Let d > 0.

{ A (p) = x(p) }

for mE [t, s+t-1] do A(p)+-A(p(m)), (Pm== dm-t)

{ A(p)= X(P;:,::.Ht 2s+t +d<s 2t +P<t)}

Proof. From L1 by mathematical induction.

L3. Let k be any integer. Then

{ A (p) = x(p) }

A(p)+-A(p(m)), (Pm= Pm+k)

{ A(p)= X(P;:;:m+12m+l+Pm+k 2m +P<m)}

Proof. By A2 with Em (p) = Pm Ef> Pm+k ·

L4. Let k ~ [0, s-1]. Then

{ A (p) = x(p) }

for mE [t, s+t-1] do A(p)+-A(p(m)), (Pm= Pm+k)

{ A (p) = x(P;:: s+t 2s+t + (P;:: t+k)< 8 2t + P <t) }

Proof. From L3 by mathematical induction.

Lo.

{A (p) = x(p) }

A (p) +-A (p (m))

{ A(p)= X(P!;:m+l2m+l+ Pm 2m +P<m)}

0

0

0

0

- 73-

Proof. By A2 with Em (p) = 0.

L6.

{ A (p) = x(p) }

for mE [t, s+t-1] do A(p) +-A(p(m))

{ A(p)= x(p~s+t 2s+t +(2m-1-(P~t)<s)2t +P<t)}

mathematical induction.

L7. Let 0 be an operation. Then

{ A (p) = x(p) }

A(p)+- A(p) 0 A(p(m))

{ A(p)= x(p) 0 x(p(m))}

Proof. By Al with c (p,A(p),A(p(m))) = A(p) 0 A(p(m)).

L8. Let 0 be an associative operation. Then

{ A(p)= x(p)}

for mE[t,s+t-1] do A(p)+-A(p) 0 A(p(m))

{ A(p)= 0 X(P>a+t 28 +t +i2t +P<t)}
i E [0, 2' -1] -

Proof. From L7 by mathematical induction.

L9. Let d > 0 ..

{ A(p)= x(p)}

for m= t to s+t-1 do

D

D

D

D

- 74-

Note:

is equivalent to

which is equivalent to

_ { 1 , (P<m~t < d<m-t
dm-t Ef> lm = 1' lm t - (\ > d

- 0 ' P<mJ?!t _ <m-t

Proof. L9 is equivalent to the lemma 3 with

'= P~s+t' 0

The only purpose of the following lemmas is to provide a proof for L9.

Lemma 1. Let d, j, m > 0 . Then (j - d) mod 2m = (j <m - d <m) mod 2m .

Proof. (j -d)mod2m

= ((i~m -d~m)2m + j <m -d<m)mod2m

= ({ (i~m -d~m)2m)mod2m + { j <m -d<m)mod2m)mod2m

0

Lemma 2. Let d, j, m > 0. Then

Proof. Using lemma 1,

-75-

(j -d)mod2m+l

= (J.<m+Cd<m+l)mod2m+l

= (((im -dm)2m)mod2m+l + (j <m-d<m)mod2m+l) mod2m+l

= (((jm-dm)mod2)2m +'1'm2m +(i<m-d<m)mod2m)mod2m+l

LemmaS. Let d,i,k>O,jE[0,28 -l]. Then

{ A(i,j,k) = x(i,j,k))}

for m= 0 to s-1 do A(i,J·, k) +-A(i, j(m),k), (dm EB'I'm = 1)

{ A (i, j, k) = x (i, (j -d) mod 28
, k) },

{
1 , i<m < d<m

· where 'I'm = . > d
0 ' J<m- <m

Proof. For a given step, assume

Abejore(i, j, k) = x(i, i~m 2m +(j-d)mod2m, k).

By A2 with Em (p) = dm EB 'I'm ,

A after (i' j' k)

= Abefore (i, j~ m+l2m+l + (im EB dm EB 'I'm) 2m + j <m' k)

= x(i, i~m+12m+l+(im EB dm EB 'I'm)2m + i<m, k)

By lemma 2,

The claim follows by mathematical induction.

0

0

- 76-

7 .3. Program GCD

Using intermediate assertions, program GCD from section 6.4 reads:

Algorithm 7.3.1.

Program GOD:

!NIT;

for c == 0 to r q fr l-1 do begin

if c == 0 then PWRA else PWRB ;

DAC;

end;

{AS5}

CIJ; {AS6} Cl; {A~} MAX; {AS8} PWRC; {AS9} RES;

{AS10}

Assertions.

p _ {A(h~J:kl)= akZ'+l , (h=i=J=OandO<k2q+l<2q= n)

B(htJkl) = bk Z'+l , (h = i = J. = 0 and 0 < k2q+l < 29 = n)

- 77-

Assertions AS0 · • • AS10 are the preconditions (postconditions) of the procedures

that follow (precede) them.

Theorem 7.3.1. { P} GCD { Q }.

Proof. Let "{!NIT}", "{PWRA}", ... be an abbreviation for "Theorem

7 .4.1 ", "Theorem 7 .5.1", Then

{!NIT}
P = AS 0 > AS 1 > AS 2 o ;

I

{PWRA} {DAC}
AS 2 0 ::::::S> AS 3 0 > AS 4 0 = AS 2 1 ;

I I I 1

{PWRB} {DAC}

(V c E[l, rq/r l-1]) ASz,c ::::::S> ASa,c ::::::S> AS4,c = ASz,c+l;

{ C/J} { C/} {MAX} {PWRC} {RES}

AS 2, f q 1 r 1 > AS 5 ::::::S> AS 6 ==> AS 7 > AS 8 ::::::S> AS 9 ==>

AS 10 = Q •

Using the rules of inference from section 7.2.,

{P} GCD { Q }. 0

7 .4. Subroutine !NIT

Subroutine !NIT computes entries of matrix (V0 X 0 - U0 Y0). The input con-

sists of the coefficients of polynomials a, b loaded in the lowest 2q addresses.

The output consists of_ values (V0 X 0 - U0 Y0)ij. These two conditions are for-

malized in assertions P and Q, respectively. Let ax = bx = 0 for x out of

range, i.e. x ~ [0, 2q] .

Algorithm 7.4.1.

Subroutine !NIT:

A(hijkl) -+-0 , (k 2q +l > 2q) ;

B(hijkl) +-0 , (k 2q +l > 2q) ;

{AS1}

- 78-

{
A (hijkl) +-A (hij(m)kl)

for mE 0 -1 do
['q) B(hijkl) +- B(hi§(m)kl)

{
A (hiJ'kl) -A (hi(m)J·kl)

for mE 0 -1 do
['q] B(hijkl) +- B(hi(m)J'kl)

{
A (hijkl)-+- A (h(m)ijkl)

for mE 0 r-1 do
['] B(hijkl)-+- B(h(m)ijkl)

' (im = 1) i

' (im = 1) ;

' (im = 1);

, (im = 1) ;

, (hm = 1);

, (hm = 1);

{
A(hijkl)+-A(hijkl(m)) , (l<m< i<m+l < 2m+l<m);

for m =Oto q-1 do
B(h;J'kl) -B(h;J·kz(m)) (l · < 2m+ l) • • ' <m< ~<m+l- <m ;

{AS3}

A(hijkl)-A(hijk(0)l) , (l<i);

B(hijkl)-B(hijk(o)z) , (l>i);

{AS4}

{
A(hijkl)+-A(hij(m)kl) , (Jm= im andk= 1);

for mE [0, q-1] do B(h;J'kl)+-B(h;J·(m)kl) -• • , (im = im and k = 0) ;

{AS5}

formE[O,q-l]do {A(hiJ'kl)+-A(hijkl(m)), (k=O);
B(hijkl)+-B(hijkt(m)) , (k= 1);

- 79-

A(hi'kl)~{A(hijkl)·B(hijkl), (k=O);
J B(hijkl) ·A (hijkl) , (k = 1) ;

{AS7}

A(hijkl)~A(hijk(0)l)-A(hijkl);

{AS8}

for mE [0, q -1] do A(hijkl) ~A (hUkz(m)) +A(hijkl) ·;

{AS9}

for mE[O,q-1] doA(hijkl)~A(hijk(m)z), (km= 1);

{AS10}

Assertions.

p _ {A(h~J:kl}= akZ'+l , (h=i=j=OandO<k21f+l<2q= n)

B(hzJkl)= bkZ'+l , (h = i = j =0 and o< k21f+l < 2q = n)

Q - A(hijkl) = (V0 X 0 - U0 Yo)ij

AS 0 - P

AS 1 -

AS 2 -

AS 3 -

AS 4 -

{
A(hijkl)= ak2'+l , (h=i=j=O)

B(hijkl) = b~~: Z'+t , (h = i = j = 0)

{ A(h~J~kl)= akZ'+l

B(h~Jkl) = bk 2,+1

{
A (h~J~kl) = ak 2'+(l-i)mod2'

B(h~Jkl) = bk 2'+(l-i)mod2'

A(hijkl)= {a,~ , (k=O)

a 2'+1-i ' (k= 1)

B(hi;'kl)= { b 2'+1~ ' (k= 0)

bl . (k = 1) -I '

ASs

AS 6

- 80-

A(hijkl)=
{ .,_, ' (k= 0)

a Z'+l-f ' (k= 1)
-

{ b 2'+1-j ' (k= 0)
B(hijkl)=

bz . ' (k= 1) -I

A(hijkl)= {a 2'-J-1-1 ' (k= 0)

a 2'+l-f ,(k=1)
-

{ b 2'+1-j ' (k= 0)
B(hijkl)=

bz'-1-l-i ,(k=l)

{
a 2'-I-l-i b Z'+l-f ' (k = 0)

- A(hijkl)=
b 2'-1-l-i a 2'+l-f ' (k = 1)

- A (hijkl) = a 2'-1-l-t" b 2'+l-f - b 2'-I-l-i a 2'+1-f ' (k = 0)

2'-1

ASg - A(hiJ.kl)= :E a2'-1-x-i b2'+x-j- bz'-1-x-i a2'+x-j
X- 0

= (V0 X 0 -U0 Y0);1 , (k=O)

AS 10 = A(hijkl) = (V0X 0- U0 Yo)if

Theorem 7.4.1. { P} !NIT { Q }.

M U U M U
Proof .. P = AS 0 > AS 1 > AS 2 > AS 3 > AS 4 > ASs

U M U U U
> AS 6 > AS 7 > AS 8 > AS 9 > AS 10 = Q . 0

7 .5. Subroutine PWRA

Subroutine PWRA computes powers of the (symmetric) matrices { 1M},.

The input consists of the coefficients 1Mij , (i, J. < l), the output consists of the

coefficients 1Mi}, (i, j < l). Note that for nM = (V0 X 0 - U0 Y0) and £, j < l

the output assertion of subroutine !NIT is equivalent to the input assertion of

- 81-

P'WRA.

Algorithm 7 .5.1.

Subroutine PWRA:

B(hijkl) -+-A(hijkl) ;

{AS1}

for d = 0 to r-1 do begin

for mE[O,r-1] do B(hijkl)-+-B(h(m)ijkl), (m< d and hm= 0);

for mE [0, q-1] do B(hijkl)-+- B(hi(m)jkl) , (im = km) ;

B(hijkl) ,.._ { A
0

(hi2"kl) · B(hijkl) , (j < l) ;
'(j>l);

for mE [0, q -1] do B(hijkl)-+- B(hijkl) + B(hij(m)kl) ;·

for mE [0, q-1] do B(hiJ"kl)-B(hijk(m)t) , (km= Jm);

A(hijkl)-B(hijkl) , (hd = 1 and i, j < l);

- 82-

sh 2 _ 7 5

end;

for m= 0 to r-1 do A(hijkl)+-A(h(m)ijkl) , (h<m = 0);

{AS10}

A (hijkl) +- {

0
1 , (i = J. and h = 0 and i, j < l) ;

, (i:;f j and h= 0 and i,j < l);

Assertions.

Note: Predicates about values that (trivially) do not change in the assignments

are omitted from the intermediate assertions.

P = A(hijkl)= tMij , (i, j < l)

Q = A(hijkl)= {
t Mi~ , (i, i < l)
unchanged , else

AS 0 - P

AS 1 - A(hijkl)=B(hijkl)=tMij ,(i,J'<l)

ASz,d - { A(hijkl)=tMi~«+l, (i,j<l)

B(hijkl)= tMir , (h<d = 2d-1 and i, j < l)

AS 3, d - B(hijkl)= tMi]" , (i,;' < l)

- 83-

ASs,d

x-0

ASsd -
I

{

A(hiJ.kl)= tMif+h<d+l+l , (i,} < l)

B(h . "kl) M zil+h<•+l+l_ M z•+l (h 2d+l 1 d .. < l) tJ =z ij -z ij ' <d+I= - an t,J

AS 9 = A(hiikl) = 1Mi~+l , (i,} < l)

AS 10 - A(hi}kl)= zMijh-l)mod2'+1, (i,} < l)

{

llij , (h=Oand i,}<l)
AS 11 = A(hiikl) = h . .

1 Mij , (h > 0 and t ,J < l)

Theorem 7 .4.1. { P} PWRA { Q }.

AI
Proof. P == AS 0 ====$> AS 1 > AS 2 o ;

'
L2 L4 Al L8

('v' dE [0, r -1]) AS 2, d ===:> AS 3, d ===:> AS 4, d ===:> ASs, d ===:>

L4 Al
AS 6 d > AS 7 d > AS 8 d = AS 2 d + 1 ;

I I I I

L9 Al

AS 2 r > AS g ====$> AS 10 > AS 11 = Q
I

0

7 .5. Subroutine PWRB

Subroutine PWRB computes powers of the (symmetric) matrices { zM 2" }1 •

from powers of the matrices { 1M
2

'c-r } 1 • The input consists of the coefficients

zMi' 2"·', (i, j < l), the output consists of the coefficients 1 Mi~ 2", (i, i < l).

- 84-

Note that PWRB does not alter A(hijkl) fori> l or j > l.

Algorithm 7 .5.1.

Subroutine PWRB :

B(hijkl)+-A(hijkl) ;

{ASJ

ford =0 to r-1 do begin

for mE [0, q-1] do B(hijkl) +-B(hi(m)jkl) , (im = km) ;

B(hijkl) +- { A
0

(hijkl) · B(hijkl) , (j < l) ;
'.(i>l);

for mE [0, q-1] do B(hijkl) +-B(hijkl) + B(hij(m)kl) ;

for mE [0, q-1] do B(hijkl)+-B(hijk(m)z) , (km= Jm);

A (hiJ.kl) +- B(hijkl) , (hd = 1 and i, j < l) ;

end;

- 85-

Assertions.

{

1 M;~ 2" , (i, j < l)
Q 5 A (hi;'/cl) = else unchanged ,

AS0 - P

AS 1 - A(hijkl)= B(hijkl)= zMi~ 2"""', (i,j < l)

AS 2, d - A (hij/cl) = B(hijkl) = 1Mi; 2"""'+' , (i, j < l)

As B(h . 'kl) M.h. 2,. , · M~ 2"...,+~ (. . k < l)
4, d - ~J = l lJ l Jk ' 't ,J'

ASs d - B(hijkl) = tMii zrc-r+d+l , (i, k < l)
'

AS 6, d - B(hijkl) = tMi; 2'"'"'+<~+l , (i, j < l)

AS1,d - A(hijkl)= B(hijkl)= 1Mi'z••-•+t-..l, (i, j < l)

AS 8 = A(hijkl)= 1Mi~ 2" ,(i,j<l)

Theorem 7.5.1. {P} PWRB { Q }.

Al
Proof. P = AS 0 > AS 1 = AS 2 0 ;

'

u ~ u u
(V d E [0, r -1]) AS 2, d > AS 3, d > AS 4, d > ASs, d =>

Al

AS6,d > AS7,d = ASz,d+l;

AS 2 r > ASs = Q .
I

0

- 86-

7.7. Subroutine DAC

Subroutine DAC multiplies matrices { M h zrc}
l h, l by vectors

{ tM"<'"tS h,l, for any l. The input consists of the coefficients 1 Mi~zrc,

(i, j < l), and (1M"<•• 1S)i, (i < l). The output consists of the coefficients

(tM"<rc+r lS)i, (i < l).

Algorithm 7. 7 .1.

Subroutine DA C :

B(hijkl)-A(hiJ'kl) ;

{AS1}

for mE[O,q-1] do B(hijkl)-B(hiim)kl), (jm= lm);

{AS2}

B(hijkl) _ { A
0

(hijkl) · B(hijkl) , (i, j < l) ;
, else ;

{AS3}

for mE [0, q -11 do B(hijkl)- B(hijkl) + B(hi(m)jkl) ;

{AS4 }

for mE[O,r-1] do B(hijkl)-B(h(m)ijkl), (hm= krc+m);

{AS5}

for mE[O,q-1] doB(hijkl)-B(hij(m)kl), (jm= im);

- 87-

A(hiikl) B(hiikl), (i< land i= l);

Assertions.

{
tMi; 2" = tMft 2

,. , (i, J < l)
P - A (hijkl) =

(1Mk<•• 1S)i ,(i<landJ=l)

{

(1Mk<rc+r 1S)i , (i < l and j = l)
Q = A(hii~l) = unchanged else

AS 0 - P

AS 1 - B(hiikl)=(1M"<" 1S)i ,(i<l andj= l)

AS 2 - B(hijkl) == (,Mk<•• ,s)i , (i < l)

AS 3 -

AS 4 -

AS 5 =
AS 6 -
AS 7 -

{l
MA 2"·(1Mk<" 1S)· , (i,j<l)

B(hijkl) =
0

J• '
, else

B(hijkl) = (1Mh 2"+k<,. 1S)1 , (i < l)

. B(hiJkl)= (tM(k<rc+r~rc2"+k<,.lS)j = (,Mk<rc+r lS)j '(J< l)

B(hijkl)== (,Mk<rc+r ,S)i , (i< l)

A(hiJ.kl) = (1Mk<rc+•lS)i ,(i<l andj=l)

Theorem 7.7 .1. { P} DAC { Q }.

M U M ~ U
Proof. P = AS 0 =S> AS 1 =S> AS 2 > AS 3 > AS 4 > AS 5

U Al
> AS 6 =S> AS 7 == Q . 0

- 88-

7 .8. Subroutine CIJ

Subroutine GIJ computes entries of the matrices { 1 G }z . The input consists

of {1M* 1Sh,t· The output consists of { 1G}1 for h=O, and 11 M =

Algorithm 7 .8.1.

Subroutine GIJ:

for m E [0, q -1] do A (hi }kl) +-A (hijkt(m)) , (h > 0 and lm = I) ;

for mE[O,q-1] doA(hijkl)+-A(hi;'(m)kl), (h=Oand im= lm);

B(hijkl) +- A(hijkl) ;

{AS3}

for mE [0, q -1] do B(hi}kl) +- B(hijk(m)z) , (km= 1) ;

{AS4}

B(hiikl)-- {Bo (hijkl)·A(hijkl) , (i < j);
,(i>j);

{AS5}

for mE [0, q -1 J do B(hijkl) +- B(hijkl) + B(hi(m);'kl) ;

{AS6}

B(hijkl)+-0, (k ::fo j-i-1);

{AS1 }

for mE[O,q-1] do B(hiJ'kl)-B(hijkl) +B(hijk(m)z);

{AS8}

for mE [0, q-l J do A(hijkl)-A(hi(m)jkl) , (h . 0 and im == Tm);

-1 , (j-i == -1 and i < l+l and j < l and h = 0)
A(hijkl)- -B(hijkl) , (J·-i > 0 and i < l+l and j < l and h = 0)

0 , ((j-i < -1 or i > l+1 or j > l) and h = 0)

Assertions.

nMij , (l= 0);

P - A(hijkl) = (1Mk 1S)i (i <land j= l);

1a ,(i,j=l);

{

nMij , (h > 0) ;
Q = A(hijkl) =

, cij , (h = o) ;

AS 0 = P

l
nMij , (h > 0)

AS 1 - A(hijkl) = (1Mk 1S)i (i < l and j = l and h = 0)

1 a , (i, j = l and h = 0)

{

(1Mk 1S)i , (i < l and h = O)
- A(hijkl) =

la , (i= l and h = 0)

- B(hijkl) == ' {

(lM k 1 S) · , (i < l and h = 0)

1 a , (i = l and h = 0)

- B(hijkl)= 1Si = 1Ri , (i < l and h = o)

ASs

AS 9

- 90-

{
tRi·(zMktS)i ,

- B(hijkl) ==
0 '

- B(hijkl)= 1R tMk tS , (h = 0)

(i < l and h = 0)

(i > l and h == 0)

. • _ { 1R 1Mi-i-1
1S, (k== j-i-1 and h= o)

- B(h~Jkl) - (k . . d h 0) 0 , =I= J -z -1 an =

= B(hijkl)= 1R lMi-i-llS , (h = 0)

- A(hijkl)= 1a, (h = 0)

AS 10 = A(hijkl)= tCij, (h= 0)

Theorem 7.8.1. { P} ClJ { Q }.

W U M U M
Proof. P = AS0 > AS 1 > AS 2 > AS 3 > AS 4 > AS 5

U M U U M
==> AS 6 > AS 1 > ASs==> AS 9 > AS 10 = Q . 0

7 .9. Subroutine Cl

Subroutine Cl computes the characteristic polynomials of matrices {tM }z •

The input consists of the (asymmetric) matrices { l C h . The out put consists of

the coefficients { l c; };,l.

Algorithm 7 .9.1.

Subroutine Cl:

ford =0 to r-1 do begin

B(hijkl)+-A(hijkl);

- Ql-

for mE [0, q-1] do B(hi}kl) -+-B(hijkt(m)) ,

((m < d and lm == 0 or m == d and lm == 1) and h == 0) ;

for mE [0, q-1] do A(hijkl) -+-A(hij(m)kl) ,

(im = km and la == 1 and h == 0) ;

for mE [0, q-1] do B(hijkl)-+-B(hi(m)jkl) , (im =km and h == 0);

A (hijkl)-+-- A (hijkl) · B(hijkl) , (la= 1 and h == 0) ;

for mE [0, q-1] do A(hijkl)-+-A(hijkl) + A(hijk(m)z) ,

(la == 1 and h == 0) ;

end;

{AS8}

for mE [0, q-1] do A(hijkl) -+-A(hij(m)k[) , (im = 1 and h = 0);

Assertions.

P - A(hiJkl)= 1Cii ,(h=O)

_ {A(hijkl)= zci , (h = 0)
Q unchanged , (h > 0)

- 92-

AS0 = P

l<d
AS 2,d - B(hijkl)= (IT 1?. 42•+mC);j, (h= 0)

m-o

24-1
AS3,d - B(hijkl)= (IT b.tZ"+mC)ij, (h= 0)

m-o-

AS4,d

24-1
ASs,d - B(hijkl)= { IT b• 2"+mC)kj, (h= 0)

m-o-

AS6 d = A(hijkl) =
)

l<ll+l

{
(IT bt~+t2"+1+m C)ij
m-o-
l<tl+l 24-1

(IT ba+12
4+1+m C)ik · (IT l>a+12&+1+m Chi

m- 24 - m- 0-

l<ll+l
AS 1, d - A(hijkl) = { IT b.t+12HJ..rm C);j , (h = 0)

m-o-
l

AS 8 - A (hijkl) = (IT m C)ij , (h = 0)
m-o

l
AS 9 = A(hijkl)= (TI mC)iO= 1ci, (h= 0)

m-0

Theorem 7 .9.1. { P} Cl { Q }.

Proof. P = AS 0 = AS 1 o ;
I

Al 12 14 14
('\{ dE [0, r -1]) AS 1, d ?> AS 2, d > AS 3, d AS4d >

I

- 93-

Al L8
ASs,d > AS 6,d > AS 1,d = AS 1,d+I;

L2
AS 1, r = AS 8 > AS 9 = Q . 0

7 .10. Subroutine MAX

Subroutine .MA.X finds the index l * of the largest nonsingular matrix 1M.

The input consists of the coefficients { l c; } i, l • The output consists of

Algorithm 7 .10.1.

Subroutine MAX:

{AS0}

B(hijkl) +-- {

0
z , (h, i = 0 and A(hijkl) =F 0);

, else) ;

{AS1}

for mE[O,q-1] do B(hijkl)+-max(B(hijkl),B(hijk(m)z));

{AS2}

for mE [0, q -1] do B(hijkl) +-- B(hi(m)jkl) , (im = 1) ;

for mE [0, r -1] do B(hi).kl) +-- B(h(m)iJ"kl) , (hm = 1) ;

B(hijkl) +--A (hiJ.kl) , (h = 0) ;

{AS4}

for mE [0, q-1] do B(hijkl)+-B(hi(m)jkl) , (im = 1 and h = 0);

- 94-

{AS5}

A(hijkl).--A(hijkl)/B(hijkl), (h= 0);

{AS6}

B(hijkl) .-. B(h(m)ijkl) , (h = 0) ;

{AS7}

for m =0 to q-1 do A(hijkl).-A(hi(m)jkl) , (i<m = 2m-1 and h = 0);

{AS8}

A (hiJ'kl) ._. {
0

1 , (i = 2q -1 and l = 2q -1 and h = 0) ;
, (i= 2q-1 and l <2q-1 and h= 0);

A (hijkl) .-o , (l =fo B(hijkl) and h = 0 or l > B(hijkl) and h > 0) ;

{AS10}

for mE [0, q-1] do A (hijkl) .-.A (hijkl) +A (hijkl(m)) , (h = 0) ;

{AS11}

for mE [0, q-1] do A(hijkl).-A(hi(m)jkl) , (im =km and h = 0);

{AS12}

Assertions.

P - A(hijkl) =
nMii , (h > 0) ;

lci , (h=O);

nMij , (J. < l * and h > 0)

Q -
A= 0 , (j > l * and h > 0)

-~·ck+dt•C o J (h = 0)

B= l * , (h = 0)

- 05.

AS 0 - p

AS 1 - A (hiikl) =
{ l , (h , i - 0 and 1 c 0 + 0)

0 , else

AS 2 - B(hiikl) = max { l I l c 0=/: 0 } == l * , (h , i == 0)
lE [0,2' -1]

AS 3 - B(hiikl)== l *

{ l' , (h >O)
AS 4 - A(hiikl) ==

l Cj (h = 0)

AS 5 - A(hiikl) = {I' , (h>O)
1c 0 , (h=O)

{ •Mij , (h > 0)
AS 6 - A(hiikl) ==

-lci ftc o (h==O)

AS7 - B(hiikl)== l *

AS 8 - A(hijkl) ==
nMij , (h > 0)

-lci+dtco , (h == 0 and i < 2g-2)

nMii = Zii , (h > 0 and i, i < l *)
0= Zii , (h > 0 and i < l * and j > l *)
- 1·ci+dt•Co , (h= 0 and l= l*)

AS 10 - A(hiJ'kl) =

0 , (h = 0 and l =/: l *)

AS 11 - A(hijkl)= - 1·ci+dz•c 0 , (h= 0)

Theorem 7 .10.1. { P} .MAX { Q }.

- 96-

M U U M U
Proof. P = AS 0 > AS 1 > AS 2 > AS 3 > AS 4 > AS 5

A1 Ll L9 Al Al L8 L4

> AS 6 > AS 7 > AS 8 > AS 9 > AS 10 > AS 11 >

AS12 = Q 0

7 .11.· Subroutine PWRC

Subroutine PWRC computes powers of the matrix Z. The structure of the

subroutine is similar to that of PWRA. Unlike matrices { 1M }1 , matrix Z is not

symmetric.

Algorithm 7 .11.1.

Subroutine PWRC:

{AS0}

B(hijkl) +-A (hiJ'kl) , (h > 0) ;

{AS1}

for d = 0 to q-1 do begin

for m E[O, q-1] do B(hiJ'kl)+-B(hijk(m)z),

(m < d and km = 0 and h > 0) ;

for mE [0, q-1] do A(hiJ'kl) +-A(hiim)kl) ,

- 97-

for mE[O,q-1] doB(hijkl)-+-B(hi(m)J'kl), (im= lm and h >O);

B(hijkl)-+-A(hijkl)·B(hijkl), (h >O);

for mE [0, q-1] do B(hijkl)-+-- B(hiJ'kl) + B(hijkz(m)) , (h > 0) ;

A(hijkl)-+-B(hijkl), (kd= 1 and h >O);

end;

Assertions.

P - A(hijkl)= Zii, (h >O)

Q = A(hijkl)= {Z;j+l '(h>O)
unchanged , else

AS 0 - P

AS 1 - A(hijkl)= B(hijkl)= Zii , (h >O)

{
A(hijkl)=Zi;<•+l, (h>O)

B(hijkl)=Zi]d , (k<d=2d-landh>O)

AS3d
'

_ B(hiJ'kl) = zi]" , (h > o)

AS4d
'

- 98-

ASs,d - B(hijkl)==Zzr ,(h>O)

ASs,d - { A(hijkl)==Z;~<Hl+I , (h>O)

B(hijkl) == Zi~<d-rl+I == Z.}
4
+

1
, (k<d+l== 2d+ 1-I and h > 0)

AS 9 = A(hijkl) == Zi}+1 , (h > 0)

Theorem 7.11.1. { P} PWRC { Q }.

Al
Proof. P == AS o > AS 1 > AS 2 o ;

I

12 L4 14 Al
(V' d E [0, q -1]) AS 2 d =::::9 AS 3 d

1 I
> AS 4 d > ASs d ==9

I I

L8 Al

AS6
1

d AS1
1

d =::::9 ASs
1

d == AS2,d+l;

AS 2, q > AS 9 == Q . 0

7 .12. Subroutine RES

Subroutine RES computes the GCD coefficients. The input consists of

powers of the matrix Z and the coefficients { z•Ck } k • The output consists of the

GCD coefficients stored in the lowest (n -l *) addresses. The remaining registers

are set to zero.

Algorithm 7 .12.1.

Subroutine RES :

- 99-

B(hiJ'kl)+-B(h(0)iJ'kl), (h 0 = 1);

{AS1}

B(hiJ'kl)+-B(h(0)iy'kl), (h 0 = 0);

{AS2}

A(hiy'kl)+-A(hiy'kl)·B(hiy'kl), (h = 0);

{AS3}

for mE [0, q-1] do A (hiy'kl) +-A (hiy'kl) +A (hiy'k(m)z) , (h = 0) ;

{AS4 }

B(hiy'kl)+-B(h(0)iy'kl), (h 0 = 0);

{AS5}

A(hiJ'kl)+-0, (B(hiy'kl)=F o or h =F o);

{AS6 }

for mE [0, q -1] do A (hiy'kl) +-A (hiy'kl) +A (hi(m)y'kl) ;

{AS7}

for mE [0, q-1] do A(hiy'kl) +-A(hi(m)ikl) , (im = lm);

Assertions.

p = A(hiJ'kl) = l A(hijkl)= { ~:::~+1/,·co ,
B(hiJ'kl)= l*, (h= 0)

(h > 0)

(h = 0)

- 100-

AS 0 - p

AS 1 - B(hijkl)=l* ,(h=l)

AS 2 - B(hijkl) = zj~+l , (h = o)

AS 3 - A(hijkl) = - 1·ck+IIz•c 0 · Z;}+1 , (h = 0)

AS 4 -
l •

A(hijkl)=- 2:: z•Cz+l/z•C 0 · Zij+ 1 , (h = 0)
z-0

ASs - B(hijkl) = l *

{ ~; , (j = l * and h == 0)
AS 6 - A(hijkl) = else

{ ~; , (h=O)
AS1 - A(hijkl) = else

{ ~~ , (h=O)
AS 8 = A(hijkl) = , else

Theorem 7.12.1. { P} RES { Q }.

Ll Ll Al L8 Ll
Proof. P = AS0 ~ AS 1 > AS 2 AS 3 ~ AS 4 , ASs

Al L8 L4
AS 6 ~ AS 7 AS 8 = Q. 0

CONCLUSIONS

As chapters 2 and 3 showed, there is a variety of models of parallel

machines. The differences among them are deeper than the differences among

sequential models. Unlike the sequential models, general theoretical parallel

models are much more powerful than the existing real parallel computers. As a

result of this situation, the parallel algorithms designed for general parallel

models, such as P-RAM, usually do not have the same potential for practical use

as their sequential counterparts.

We discussed architectures of some more practical network machines and

defined two classes of models, c:r-polynomial and c:r-exponential. We conjecture

that c:r-exponential models are more powerful than u-polynomial models. We also

presented algorithms that simulate ASCEND /DESCEND CUBE algorithms on

the PERFECT SHUFFLE and the CCC.

The algorithm of Borodin-von zur Gathen-Hopcroft (1984) provided the

main idea for our CUBE-feasible polynomial GCD algorithm that works over

arbitrary fields, runs in 0 (log2n) time and uses n a+l+E, a == 3, processors. We

presented a new matrix formula for the GCD of two polynomials and modified

Berkowitz (1984) - Samuelson's (1942) formula for characteristic polynomials.

The combination of both results allowed us to decrease the required number of

processors by 0 (n).

i

We developed an axiomatic verification system for Cu'BE-feasible algorithms

and used it to prove the correctness of our routines.

The processor bound n He seems to be unrealistic. It is not. Restricted, reg­

ular architectures of some network machines allow parallel computer with a rela­

tively large number of processors to be built with current technology. Currently,

220 processors on a CCC is implementable; a 230 processor machine is considered

to be feasible [Wagner (1983), Duval, Wagner, Han and Loveland (1986)]. It is,

however, desirable to decrease the required number of processors at least by

another 0 (n). The following directions seem to be promising.

1. Upper left principal minors of a matrix have closely related structures.

Their simultaneous powering "should" require less than 0 (n a+l+e) processors.

Indeed, Berkowitz (1984) conjectured that only 0 (n a) processors are necessary.

2. The matrix (V0X 0 -U0 Y0) has a special structure: The (+)-displacement

rank of the matrix with the reversed row order is 2. The (+)-displacement rank

of any matrix is equal to the the (-)-displacement rank of its inverse [Kaliath,

Kung and Morf (1979)]. This allows us to construct a sequential algorithm for

the inversion of matrices with low displacement ranks [Bitmead, Anderson

(1980)]. Some of these results might be applicable in parallel.

3. Bini (1984) showed that matrices from a certain class, including upper

triangular Toeplitz matrices, can be inverted in 0 (log n) time using 0 (n 2) pro­

cessors. The structure of our matrices is similar to that class, suggesting that

similar techniques might be found for it.

ii

REFERENCES

Aho, A. V., Hopcroft, J. and Ullman, J. D. (1984), The Design and Analysis of
Computer Algorithms, Addisson-Wesley, Reading, MA.

Ald, S. (1985), Parallel Sorting Algorithms, Academic Press.

Basu, A.(1984), A classification of parallel processing systems, Proc. IEEE Intl.
Conf. Comp. Design: VLSI in Computers ICCD'84, pp. 222-225, (1984).

Batcher, K. E. (1968), Sorting Networks and Their Applications, AFIPS Spring
Joint Computer Conference·, pp. 308-314.

Berkowitz, S. J. (1984), On Computing the Determinant in Small Parallel Time
Using a Small Number of Processors, Inf. Proc. Letters 18(3), pp. 147-150.

Bini, D. (1984), Parallel Solution of Certain Toeplitz Linear Systems, SIAM J.
Comput. 13(2), pp. 268-276.

Bitmead, R. R., Anderson, B. D. 0. (1980), Assymptotically Fast Solution of
Toeplitz and Related Systems of Linear Equations, Lin. Alg. Appl. 34, pp. 103-
116.

Borodin, A. (1977), On relating time and space to size and depth, SIAM J.
Comput. 6(4), pp. 733-744.

Borodin, A., von zur Gathen, J., Hopcroft, J. (1984), Fast Parallel ... \1atrix and
Gcd Computations, Inf. Contr. 52(~), pp. 241-256.

Brent, R. P., Kung, H. T. (1983), Some linear-time algorithms for systolic arrays,
Inf. Processing '83 (R.Mason, editor).

Chandra, A. K., Stockmeyer, L. J. (1976), Alternation, Proc. 17th FOCS, pp.
338-345.

Chandra, A. K., Kozen, D. C., Stockmeyer, L. J. (1981), Alternation, J. ACM
28(1), pp. 114-133.

Cook, S. A. (1981), Towards a Complexity Theory of Synchronous Parallel
Computation, in L'enseignement mathematique, Ser.II, Tome XXVII, fasc.1-2.

Cook, S. A. (1985), A Taxonomy of Problems with Fast Parallel Algorithms, Inf.
Contr. 64(1-3), pp. 2-22.

Coopersmith, D., Winograd, S. (1981), On the Asymptotic Complexity of Matrix
Multiplication, Proc. 22nd FOCS, pp. 82-90.

Csansky, L. (1976), Fast Parallel Matrix Inversion Algorithms, SIAM J. Comput.
5, pp. 618-623.

iii

Duval, L. D., Wagner, R. A., Han, Y., Loveland, D. W. (1986), F£nding Test­
and-treatment Procedures Us£ng Parallel Computation, Proc. Intl. Conf. Parallel
Processing, pp. 688-690. ·

Dymond, P. (1980), Simultaneous Resource Bounds and Parallel Computation,
Ph.D. thesis, U. of Toronto, Dept. of Camp. Sci.

. Dymond, P. W., Cook, S. A. (1980), Hardware Complexity and Parallel
Computation, Proc. 21st FOCS, pp. 360-372.

Dymond, P ., Tompa, M. (1983), Speedups of Deterministic Machines by
Synchronous Parallel 1.\lfachines, Proc. 15th STOC, pp. 336-343.

Eberly, W. (1984), Very Fast Parallel 1\lfatrix and Polynomial Arithmetic, Proc.
25th FOCS, pp. 21-31.

Flynn, M. J. (1972), Some Computer Organizations and Their Effectiveness, IEEE
T. Computers C-21(9), pp. 948-960.

Fortune, S., Wyllie, J. (1978), Parallelism in Random Access Machines, Proc.
lOth STOC, pp. 114-118.

Galil, Z., Paul, W. J. (1983), An Efficient General-Purpose Parallel Computer,
J.ACM 30(2), pp. 360-387.

Gentleman, W. M. (1978), Some Complexity Results for Matrix Computations on
Parallel Processors, J. ACM 25(1), pp. 112-115.

Goldschlager, L. M. (1978), A Unified Approach to Models of Synchronous Parallel
Machines, Proc. lOth STOC, pp. 89-94.

Gustavson, J. L., Hawkinson, S., Scott, K. (1986), The Architecture of a
Homogenous Vector Supertcomputer, Proc. Intl. Conf. Parallel Processing, pp.
649-652.

Hillis, W. D. (1985), The Connection Machine, MIT Press.

Hoare, C. A. R. (1969), An Axiomatic Basis of Computer Programming, CACM
12(10), pp. 576-580.

Hopcroft, J. E., Ullman, J. D. (1979), Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley. .

Hopcroft, J., Paul, W. J., Valiant, L. J. (1975), On Time Versus Space and
Related Problems, Proc. 16th FOCS, pp. 57-84.

Hopcroft, J., Paul, W. J., Valhint, L. J. (1977), On Time Versus Space, J.ACM
24, pp. 332-337.

Intel Corp. {1986), iPSO System Overview,

Kaliath, T., Kung, S.-Y., Morf, M. (19.79), Displacement Ranks of Matrices and
Linear Equations, J. Math. Anal. Appl. 68{2), pp. 395-659.

iv

Knuth, D. E. (1973), The Art of Computer Programming: Fundamental
Algorithms, Vol.l, Addison-Wesley.

Kozen, D. (1976), On Parallelism in Turing Machines, Proc. 17th FOCS, pp. 89-
97.

Kung, H. T. (1979), New Algorithms and Lower Bounds for the Parallel
Evaluation of Certain Rational Expressions and Recurrences, J. ACM 23(2), pp.
252-261.

Kung, H. T. (1980), The Structure of Parallel Algorithms, in Advances in
Computers 19, New York: Academic.

Kung, H. T., Leiserson, C. L. (1980), Algorithms for VLSI Processor Arrays, in
Introduction to VLSI Systems, Addison-Wesley, pp. 271-292.

Levitt, K. N., Kautz, W. H. (1972), Cellular Arrays for the Solution of Graph
Problems, CACM 15(9), pp. 789-801. ·

MacWilliams, F. J. (1977), The Theory of Error Correcting Codes, North­
Holland, Amsterodam.

Nassimi, D., Sahni, S. (1979), Bitonic Sort on a lvfesh-connected Parallel
Computer, IEEE T. Computers C-28(1), pp. 2-7.

NCUBE Corp. (1986), NCUBE Handbook, Version 1.0, Beaverton, Ore.

Pan, V., Reif, J. (1985), Fast and Efficient Parallel Solution of Linear Systems,
Proc. 17th STOC, pp. 143-152.

Parberry, I. (1985), Some Practical Simulations of Impractical Parallel Machines,
VLSI: Algorithms and Architectures.

Pease, M. C. (1977), The Indirect Binary n-cube Microprocessor Array, IEEE T.
Computers C-26(5), pp. 458-473.

Pippinger, N. (1979), On Simultaneous Resource Bounds, Proc. 20th FOCS, pp.
307-311.

Preparata, F. P., Sarwate (1978), An Improved Parallel Process-bound in Fast
Matrix inversion, Inf. Proc. Letters 7, pp. 148-151.

Preparata, F. P., Vuillemin, J. (1979), The Cube-Connected Cycles: a versatile
network for Parallel Computation, Proc. 20th FOCS, pp. 140-147.

Preparata, F. P ., Vuillemin, J. (1981), The Cube-Connected Cycles: a versatile
network for Parallel Computation, CACM 24(5), pp. 300-309.

Ruzzo, vV. L. (1979), On Uniform Circuit Complexity, Proc.. 20th FOCS, pp. 312-
318.

Ruzzo, W. L. (1981), On Uniform Circuit Complexity, J. Comp. Sys. Sci. 22(3),

V

pp. 365-383.

Savitch, W., Stimson, M., (1979), Time Bounded Random Access Machines with
Parallel Processing, J. ACM 26, pp. 103-118.

Schonhage (1979) Storage Afodification Machines, Tech. Rep., Math. Inst. Univ.
Tubingen, Germany.

Schwartz, J. T. (1980), Ultracomputers, ACM T. Prog. Lang. Sys. 2(4), pp. 484-
521.

Seitz, C. L. {1985), The Cosmic Cube, CACM 28, pp. 22-23.

Shannon, C. E. (1949), The Synthesis of Tho Terminal Switching Circuits, BST J
28, pp. 59-98.

Squire, J. S. , Palais, S. M. (1962), Physical an Logical Design of A Highly Parallel
Computer, Tech. Note, Dept. of Elec. Eng., U. of Michigan.

Squire, J. S. , Palais, S. M. (1963), Programming and Design Considerations for a
Highly Parallel Computer, Proc. Spring Joint Comput. Conf., pp. 395-400.

Stockmeyer, L, Vishkin U. (1984), Simulation of Practical Random Access
Machines by Circuits, SIAM J. Comput. 13(2), pp. 409-422.

Stone, H. S. (1971), Parallel Processing with the Perfect Shuffle, IEEE T.
Computers C-20(2), pp. 161-163

Strassen, V., (1973). Vermeidung von Divisionen, J. Reine Angew. Math. 264,
184-202.

Upfal, E. (1984), A Probabilistic Relation Between Desirable and Feasible Models
for Parallel Computation, Proc. 16th STOC, pp. 258-265.

Valiant, 1., Skyum, S., Berkowitz, S., Rackofi, C. (1983), Fast Parallel
Computation of Polynomials Using Few Processors, SIAM J. Comput. 12(3), pp.
641-644.

Von zur Gathen, J. (1984), Parallel Algorithms for Algebraic Problems, SIAM J.
Comput. 13, pp. 802-824.

V on zur Gathen, J. (1986), Representations and Parallel Comp·utations. for
Rational Functions, SI.A..i.\11 J. Comput. 15, pp. 432-452.

Wagner, R. A. (1983), The Boolean Vector 1\lfachine {BVMJ, Proc. IEEE Intl.
Symp. Comp. Arch., pp. 59-66.

vi

