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ABSTRACT 

This thesis studies mz.ssively parallel synchronous processing models and 
algorithms. We survey the basic models, discuss their interrelationships and 
analyze properties of some feasible network models. A new definition of 
Gentleman's 0'-function is given. We present routines that simulate the CUBE 
ASCEND /DESCEND class algorithms on the CCC (cube-connected cycles) and 
the PERFECT SHUFFLE machines· of any sufficient size. We give the exact 
(non-asymptotic) computation times and prove the correctness of the algorithms. 
This extends the previous results of Stone (1971) and Preparata-Vuillemin (1979). 
Borodin-von zur Gathen-Hopcroft (1984) laid out ·a program to obtain a "theory 
package for parallel algebraic manipulation". We continue work in this program 
and focus on the GCD of two polynomials, which is one of the basic problems of 
algebraic manipulation algorithms. B-G-H gave a GCD algorithm that works 
over arbitrary fields in 0 ( log2n) time and requires polynomial number of proces­
sors on a general type of parallel machine, such as P-RAM or algebraic circuits. 
The algorithm uses a system of ( n+m- 2i) X ( n+m- 2i) asymmetric matrices. If 
the result of Berkowitz (1984) is applied, the required number of processors is 
0 ( n a+2+E ). We modify the algorithm and present the following results: A new 
matrix formula for polynomial GCD is given that uses a system of upper left 
principal minors of a symmetric n X n matrix. The Berkowitz (1984) paralleliza­
tion of the Samuelson (1942) method is modified and combined with the previous 
result. This allows us to decrease the required number of processors by the factor 
of 0 ( n ). Morover, the full strength of the general parallel models is not needed 
for the algorithm. We present a CUBE-feasible algorithm (composed of 
ASCEND /DESCEND subroutines) that computes the GCD of two polynomials 
over arbitrary field in 0 ( log2n ) time and requires n a+l+E processors, a = 3. A 
Hoare-style axiomatic verification system for CUBE-feasible algorithms is 
developed and used to prove correctness of the presented routines. 
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RESUME 

Cette these discute d'algorithmes et de modeles de traitement synchrones 
massifs. Nous presentons les modeles de base et nous discutons de leur 
reciprocite; de plus, nous analysons les proprietes de quelques modeles plausibles · 
de reseaux. Une nouvelle definition de la fonction-u de Gentleman est presentee. 
Nous discutons egallement de procedures qui simulent les algorithmes CUBE 
ASCEND /DESCEND aupres du CCC (cycles cube-connecte') et des machines 
PERFECT SHUFFLE de n'importe quelle taille. Nous donnons les temps de cal­
culs exacts (non-asymptotiques) et nous prouvons !'exactitude des algorithmes. 
Ceci ajoute au resultats precedents de Stone (1971) at de Preparate-Vuillemin 
(1979). Borodin-von zur Gathen-Hopcroft (1984) precisa un programme afin 
d'obtenir un "groupement de theories pour la manipulation algebrarque 
parallele". Nous ajoutons a ce programme tout en mettant un emphase sur le 
plus grand diviseur en commun (PGDC) de deux polyn6mes, qui se presente 
comme un des problemes de base de la manipulation algebrai'que d'algorithmes. 
B-G-H donne un algorithme pour determiner le PGDC a l'interieur de champs 
arbitraires; cet algorithme est d'un temps 0 ( log2n) et requiert un nombre 
polyn6me de processeurs sur une machine parallele de genre commun, tel que P­
RAM ou des circuits algebrarques. L'algorithme utilise un systeme de 
( n +m- 2i) X ( n +m- 2i) matrices asymetriques. Si le result at de Ber kowitz 
(1984) est utilise, le nombre requis de processeurs est 0 ( n o:+2+! ). Nous 
modifions cet algorithme et nous presentons les resultats suivants: une nouvelle 
formule matricielle pour le PGDC d'un polyn6me qui utilise un systeme de 
mineurs principals du coin superieur de gauche de matrices symetriques n X n Le 
parallelisme de Berkowitz (1984) avec la methode de Samuelson (1942) est modifie 
et combine avec le resultat precedent. Ceci nous permet de reduire le nombre de 
processeurs par un facteur de 0 ( n ). De plus, la puissance totale des modeles 
generales paralleles n'est pas requise pour l'algorithme. Nous presentons un 
algorithme CUBE-plausible (compose de procedures ASCEl\TD /DESCEND) qui 
calcul le PGDC de deux polyn6mes a l'interieur d'un champs arbitraire en util­
isant un temps 0 ( log2n ) et qui requirert n o:+l+f processeurs, a = 3. Une 
verification axiomatique du style Hoare pour les algorithmes CUBE -plausible est 
developpee et utilisee pour prouver !'exactitude des procedures presentees. 
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Chapter 1 

Introduction 

In the last decade, there has been an enormous growth in the attention given 

to the field of parallel computing. Massively parallel computers based on various 

geometrical architectures offer an alternative to traditional supercomputers at far 

lower cost. 

An example of how rapid the development is, can be found in the history of 

the binary hypercube architecture. It has been known to researchers for a quar­

ter of century [Squire, Palais (1962,1963)]. Only recently, however, has the tech- . 

nology to produce real machines been available. The first working hypercube 

architecture was the 64-node Cosmic Cube at Caltech in 1983 [Seitz (1985)]. The 

first commercial production started in the middle 1985 with the Intel Personal 

Supercomputer [Intel (1986)], which had 128 node processors. The Amdek Sys­

tem/14 which followed has 256 nodes, while NCUBE/ten [NCUBE (1986)] can 

accommodate 1024 processors with throughput potential 500 MFLOPS. The 

maximum sized 12-cube of Floating Point Systems, Inc. [Gustavson, Hawkinson 

and Scott (1986)] has 4096 processors with 65 GFLOPS peak performance. Other 

machines are under development [Hillis (1985)]. 

Such activity should have a good theoretical support. Unfortunately, a 

unified general theory of parallel computing is still missing. Various models exist. 

Their differences, however, are much deeper and much more fundamental than 

the differences among sequential models. Algori'thms for the general models of 
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parallel computing, widely used in the literature for their power and convenience, 

may prove hard or even impossible to implement on restricted but practical 

architectures of existing machines. Another important and unresolved issue is 

the verifiability of massively parallel algorithms. This thesis addresses both 

issues and, using the example of the problem of computing polynomial GCD's, 

demonstrates some problems associated with an efficient implementation of a 

theoretically fast algorithm on the restricted architecture of a practical model. 

The GOD of two polynomials is an important practical problem which 

occurs frequently in fields such as symbolic and algebraic manipulation [Knuth 

{1973)] or error detecting codes [MacWilliams (1977)]. We use the main ideas of 

the fast parallel GCD algorithm of Borodin-von zur Gathen-Hopcroft (1984), 

which was designed for a general parallel machine, such as P-RAM. We decrease 

the required number of processors in a general model and also implement the 

algorithm on the CUBE. We also show how "CUBE-feasible" algorithms can be 

simulated on other practical models: the PERFECT SHUFFLE and the CCC. 

Finally, we design an axiomatic verification system for CUBE-feasible programs 

and use it to prove the correctness of our algorithm. 

Chapters 2 and 3 survey main models of parallel machines. Chapter 4 

characterizes some frequently used network machines. A new definition of 

Gentleman's a-function is presented. The function is evaluated for given models. 

Chapter 5 extends results of Stone (1971) and Preparata and Vuillemin 

(1979,1981) and presents simulations of an ASCEND/DESCEND CUBE algo­

rithms on the PERFECT SHUFFLE or the CCC of any sufficient size. The 
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computation time is given in terms of the size of the problem. In chapter 6 a 

new matrix formula for the GCD of two polynomials is given. The Berkowitz 

parallelization of Samuelson's method is modified and combined with the previ­

ous formula. The resulting algorithm computes the GCD of two polynomials 

over arbitrary field in 0 ( log211 ) time using 0 ( n a+l+c ) processors. This is an 

0 ( n) improvement of the processor bound of the algorithm of B-G-H (1984). 

Chapter 7 develops an axiomatic verification system and presents the implemen­

tation of the GCD algorithm on the CUBE and its verification. The implementa­

tion uses a simple matrix multiplication technique with a= 3. We believe this is 

the first presentation of an efficient algorithm for this problem on this model. 
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Chapter 2 

Taxonomy of Parallel Algorithms and Architectures 

The following characteristics and taxonomies were given by Kung (1980). 

They reflect hardware considerations of algorithms for practical parallel architec-

tures. 

2.1. Characteristics of Parallel Algorithms 

From a practical point of view, a parallel algorithm can be seen as a collec­

tion of independent task modules that can be executed in parallel and that com­

municate with each other during the execution of the algorithm. Because more 

than one module can be executed at a time, concurrency control is needed to 

enforce desired interactions among modules and to ensure the correctness of the 

concurrent execution. Kung (1980) recognizes three main categories of con-

currency control: 

1. centralized control (execution is synchronous), 

2. distributed control (execution synchronous or asynchronous), 

3. control via shared data (execution asynchronous). 

Other practical characteristics are module granularity and communication 

geometry. Module granularity refers to the maximal amount of computation a 

typical task module can do before having to communicate with other modules. 

Communication geometry is the geometric layout of the network representing 

intermodule eo mm unication. 
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2.2. Matching Parallel Algorithms with Parallel Architectures 

In order to assess the correspondence between parallel algorithms and paral-

lel machines, the communication geometry properties or the concurrency control 

and module granularity properties of the algorithms can be used. The communi-

cation geometry classification is demonstrated in fig.l. 

Flynn (1972) categorized various classes of computers based on the way they 

operate and handle data. These categories are: SISD (Single Instruction Stream, 

Single Data Stream), SIMD (Single Instruction Stream, Multiple Data Stream), 

MISD (Multiple Instruction Stream, Single Data Stream), MIMD (Multiple 

Instruction Stream, Multiple Data Stream). Kung (1980) used SIMD and MIMD 

as two of three categories of the matching of parallel algorithms and parallel 

machines according to their concurrency control and module granularity. 

1. SIMD machines correspond to synchronous, lock-step algorithms 
that require central controls. 

2. MIMD machines correspond to asynchronous algorithms with large 
module granularities. 

3. Systolic machines. 

The third, technologically practical category of systolic machines reflects the 

trend to have special purpose machines-on-a-chip with a large number of identi-

cal processors arranged in regular structures motivated by VLSI design technol-

ogy. Each processor periodically moves data in and out, each time performing 

some short computation, so that a regular flow of data is kept up in the network. 

The geometry of the communication paths in asystolic machine must be simple 
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and regular. Systolic machines correspond to synchronous algorithms that use 

distributed control achieved by simple local control mechanisms and have (small) 

constant module granularities. 
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Chapter 3 

Synchronous parallel machines 

3.1. Fixed versus modifiable structure models 

Cook (HJ81) has classified the synchronous parallel models according to 

whether the interconnection among processors during a computation is fixed or 

modifiable. This classification has its analog in the sequential computing theory. 

The sequential fixed structure models are represented by various types of Turing 

machines. The examples of sequential modifiable structure models are storage 

modification machines [Schonhage (1979)] and random access machines (SSM's 

are equivalent to RAM's that can only add and subtract one). 

The parallel fixed structure models include uniform Boolean circuits [Borodin 

(1977), Ruzzo (1981)], aggregates [Dymond and Cook (1980)], conglomerates 

[Goldschlager (1978)], and alternating Turing. machines [Chandra, Kozen and 

Stockmeyer (1981)]. 

The parallel modifiable structure models include P-RAM's [Fortune and 

Wyllie (1978)], SIMDAG's (Goldschlager (1978)], and hardware modification 

machines [Dymond and Cook (1980)]. 

Time bounds of all these models are roughly equivalent to each other, and 

they are equivalent to the space bound of a deterministic Turing machine. This 

is stated in the "parallel computation thesis" [Goldschlager (1978)}: The sets of 

functions computed by a parallel computer in time S 0 (l) (i.e time polynomial in 
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S) are the same as those computed by a deterministic Turing machine in space 

8 o(l). 

For the models mentioned above the thesis can be formulated in a more 

specific way [Cook (1981)]: 

Fixed- Time ( T ) C DSP ACE ( T ) C Modifiable- Time ( T ) C Fixed- Time ( T 2 ) , 

where Fixed-Time (T) can represent the class of languages accepted in time T 

by any one of the fixed structure models mentioned above. Similarly, 

Modifiable- Time ( T ) can represent the class of languages accepted in time T by 

any one of the modifiable structure models. DSPACE (T) refers to the languages 

accepted by a T space bounded deterministic Turing machine [Hopcroft and Ull­

man (1979)]. 

3.2. Speedups of sequential machines by synchronous parallel 

machines 

The processing of the input and output of a sequential algorithm alone 

requires time that is linear in their size. There is, however, no lower time limit 

on parallel machines. 

The most favorable extreme is a completely parallelizable problem which can 

be totally decomposed into a reasonable number of independent parallel opera­

tions. A proper parallel machine can process such an algorithm in constant time. 

The opposite extreme is a completely unparallelizable problem. An example 

[Kung (1979)] is the task of raising a number x to a large power x 2t. One pro­

cessor can compute the output by successive squarings. No speedup, however, 
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can be achieved by using more than one processor (of the same type). 

Therefore, for a general unspecified problem, the replacement of sequential 

machines by parallel ones can be expected to save no significant amount of com­

putation time. The general speedups of deterministic machines by parallel 

machines reflect mostly the structural differences among models. They 

correspond to similar speedups attained by a structural change of a sequential 

model. For a better evaluation of the speedups, only a subclass of "reasonably" 

parallelizable algorithms should be considered. Dymond and Tompa (1983) gave 

the general speedup of deterministic Turing mac~ines by (fixed structure) alter­

nating Turing machines as 

DTIME (T) C ATM-TIME (T I logT) , 

which corresponds to the sequential speedup of time-bounded deterministic Tur­

ing machines by space-bounded machines [Hopcroft, Paul and Valiant (1977)] 

DTIME (T) C DSPACE (T I logT) , 

The second general speedup reflects a quadratic advantage of modifiable structure 

machines (namely P-RAM's) over fixed structure machines: 

DTIME (T) C PRAM-TIME (Vr) . 

(The SIMDAG's are at least as fast as P-RAM's.) Similar speedup can be 

achieved for sequential RAM's [Hopcroft, Paul and Valiant (Hl75)]. 

Classes of problems with a "good" parallel solution on some models of paral­

lel machines and their relationships are given in [Cook (1985)]. In the following 
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sections we will discuss the main models of synchronous parallel machines and 

relationships among them. 

3.3. Uniform circuits 

A combinational (Boolean) circuit [Borodin (1977), Pippinger (1979), Ruzzo 

(1981), Cook (1981), Cook (1985)] is a labeled acyclic directed graph (a network). 

Each node of the graph can be labeled as an input node, an Al'ID-gate, an OR­

gate, or a NOT-gate (or possibly another boolean function-gate). Input nodes 

must have fan-in zero, and NOT-gates must have fan-in one. Fan-in of AND­

and OR-gates is bounded by two in some models, or unbounded in others. In 

addition, certain nodes are designated as output nodes. (There is no fan-out 

bound on any node.) 

The size of a circuit is the number of gates. The depth of a circuit is the 

length of the longest path from some input to some output. Let the nodes of a 

network be assigned to levels in the following way. The inputs are assigned to 

level zero; gates and outputs to the level one greater than the maximum level of 

the inputs and gates upon which they depend. The thickness of a network at 

level l is the number of gates at levels not exceeding l upon which one or more 

gates at levels exceeding l depend. The width of a network is the maximum of 

its thicknesses at all levels. 

An interconnection function determines the gate whose output is connected 

to a given input of a given gate. A gate function determines the boolean function 

performed by a given gate. For k input nodes and l output nodes, the circuit 
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computes a function f : {O,l}k -+{0,1}1 in the obvious way. 

A uniform circuit is an infinite family C = ( C 0 , C 1 , · · · ) of combina­

tional circuits, one for each input size, such that the interconnection and gate 

functions can be computed by a deterministic Turing machine in space 

0 (log c(n)), where c(n) is the size of Cn. 

The uniform circuit (uniform Boolean circuit family) is considered to be a 

fundamental model, since it reflects the basic hardware structure of real comput­

ers without many additional restrictions. The circuit complexity of Boolean func­

tions is an appealing mathematical subject, studied since Shannon (1949), and the 

uniform circuit model is reasonably attractive for an enduring mathematical 

theory. 

A drawback of the model is that the circuit depends on the problem and its 

input size. Uniform circuits are incompatible with a concept of a practical 

universal machine with simple geometry and (preferably) identical processors, 

which could be easily reconfigured for many different computational problems. 

Note: Some algorithms use a modification of boolean circuits, called arith­

metic circuits and arithmetic networks. An arithmetic circuit corresponds to a 

boolean circuit with boolean gates replaced by arithmetic gates (performing arith­

metic operations). An arithmetic network combines both boolean and arithmetic 

circuits [Berkowitz (1984), Eberly (1984)]. 

The equivalences between the size and the depth of uniform circuits and 

time and space of deterministic Turing machines can be written as 
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USIZE (n °(1)) = DTIME (n °(1)) , 

UDEPTH (n °(1)) = DSPACE (n O(l)) , 

where USIZE and UDEPTH are the classes of languages accepted by size 

bounded and depth bounded uniform circuits, respectively (Pippinger (1979), 

Cook (1981)]. 

The simultaneous bound on the size and depth of uniform circuits relates to 

the simultaneous bound on the time and reversal of deterministic Turing 

machines, where the resource reversal is the number of so called reversal steps in 

a computation, when one or more heads change direction. 

USIZE-DEPTH(n °(1), log0 (1)n) = DTIME-REVERSAL (n O(l), log 0 (1ln) 

The simultaneous bound on the time and size of deterministic Turing machines 

relates to the simultaneous bound on the size and width of uniform circuits. 

USIZE- WIDTH(n °(1), log0 (1)n) = DTIME-SPACE (n °(1), log 0 (1)n) 

Note: The relations above can be reformulated with only slight changes for 

different definitions of circuit uniformity. Instead of comparing Turing machines 

to uniform families of circuits, one can also compare "nonuniform" Turing 

machines to (nonuniform) families of circuits (Pippinger (1979)]. 

3.4. Alternating Turing machines 

An alternating Turing machine (Kozen (1976), Chandra and Stockmeyer 

(Hl76), Chandra, Stockmeyer and Kozen (1979,1981)] is a generalization of a non­

deterministic multitape Turing machine. A nondeterministic machine has 
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existential states, for which there are several possible next states. At least one of 

the alternatives must lead eventually to an accepting state. In addition to the 

existential states, an alternating Turing machine (ATM) has universal states, for 

which all possible next states must lead to an accepting state. The accepting 

state can be, for example, a universal state with no successors. (No rejecting 

states are then defined.) An alternative definition uses special accepting and 

rejecting states, which are halting states. 

ATM M accepts input x iff there is a finite tree whose nodes are labeled 

with configurations of M , such that the root of the tree is the initial 

configuration, all leaves are accepting configurations, every universal node (i.e. 

node whose configuration has a universal state) has all possible next 

configurations as children, and every existential node has at least one possible 

next configuration as a child. Such a tree is called an accepting computational 

tree of M on input x . 

An ATM M is S ( n) space bounded if any configuration reachable from the 

initial configuration of M on input x uses at most S ( lx I) cells on the 

worktape, where lx I is the size of input x . An ATM M is T (n) alterna­

tion bounded if the accepting tree of M on input x has any path from root to 

leaf of length at most T ( I x I ) . 

ATM's represent a sightly restricted form of parallel computation, since they 

limit the "processors" to be Turing machines organized as an and-or-tree. How­

ever, there is a close correspondence between resources of an ATM and resources 

of a deterministic Turing machine. Ruzzo (H179,1Q81) has shown the equivalence 
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of the simultaneous bound on the depth and size of uniform circuits and that on 

the alternating time and space of ATM's: 

ATM-TIME-SPACE (log 0 (1)n, 0 (log n )) = USIZE-DEPTH (n °(1), log0 (1)n) . 

The space bound definition of uniformity for the families of circuits does not need 

to be so strong in this case. The equivalence above still holds for a weaker 

definition of uniformity with only time bound of 0 ( log c ( n)) for the deter­

ministic Turing machine that computes interconnection and gate functions of a 

circuit. 

Several definitions of uniformity of circuits can be used for specific purposes. 

One advantage of ATM's over uniform circuits is that there is no uniformity 

problem. Each ATM is automatically uniform. 

3.5. Conglomerates 

Conglomerates, introduced in [Goldschlager (1Q78)], are a generalization of 

parallel machines which "could be feasibly built using fixed connections". A 

conglomerate is an infinite set of identical finite controls connected together in 

some manner. Each finite control has r > 1 inputs and one output. A connec­

tion function f specifies the finite control whose output is connected to a given 

input of a given finite control. Cycles are allowed in the connection graph. 

Conglomerate time corresponds to the space bound of deterministic Turing 

machines. In order to relate both resources, conglomerates must satisfy a unifor­

mity condition given by a linear space bound computability of the connection 

function f by a deterministic Turing machine. Goldschlager (1Q78), however, 
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did not discuss the size of conglomerates and their possible relationship to 

resources of other models. 

3.6. Aggregates 

Dymond (1980) developed a generalization of circuits called an aggregate. 

Unlike a circuit, the directed graph of an aggregate is not necessarily acyclic. 

This offers a better relation of model resources to the hardware size. A computa­

tion of the aggregate is a sequence of configurations. A configuration is an 

assignment of 0 or 1 to each node. In the initial configuration, values of all 

nodes except the input nodes are 0 . Subsequent configurations assign a value of 

the gate function to each node. Arguments of the gate function are values 

assigned by the previous configuration to those nodes that are given by the inter­

connection function. The input nodes of an aggregate are not fed directly by the 

input values, but rather provided with a flog n 1 register and a flog n 1 initial 

time delay. This construction allows the input to be read by fewer input nodes 

than its size is, i.e. sublinear hardware bounds can be considered for aggregates. 

There are two output nodes. The output of the aggregate is the the value of the 

first output node in the first configuration that assigns 1 to the second node. 

That configuration also ends the computation. 

A hardware size of an aggregate is the number of its nodes. A running time 

is the maximum length of a successful computation over all inputs of a given 

length. The uniformity condition of a family {.Bn} of aggregates is given by com­

putability of the interconnection and gate functions of !3n by 
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0 ( log ( h(f3n) +log n)) space bounded deterministic Turing machine, where 

h(/3n) is the hardware size of aggregate !3n (with an input of length n ). 

The hardware size and running time of uniform families of aggregates are 

equivalent to the space of deterministic Turing machines and the depth of uni­

form circuits, respectively. 

3.7. Universal parallel machines 

An efficient general-purpose parallel machine should simulate any special­

purpose machine with only a small loss of efficiency. Galil and Paul (1983) pro­

posed a parametrized class of computers. By fixing the parameter, namely the 

type of the individual processors, different models are obtained. 

A parallel computer consists of an infinite recursive graph G . On designated 

nodes in this graph the input is read, and on other nodes the output is produced. 

Identical processors are attached to the nodes of G by a recursive function. 

Formally, the parallel computer is specified by a pair C = ( S, ~) . The 

geometrical structure of the computer is described by a skeleton 

S = p:::, V , D, g, I, 0) , where ~ is a finite alphabet, and V C.~"' a set of 

names of processors. Connections between processors are assumed to be fixed; 

each processor can communicate with a bounded number, d , of other proces-

sors. D is a set of "directions" with cardinality ID I= d , and 

g : V X D -+ VU n , n ~ V , is a recursive interconnection function. The 

value n means that a given processor in a given direction has no neighbor. 

Two one-to-one recursive functions I, 0 : {0,1}"' -+V specify the input and 
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output nodes. Processors are described by a recursive mapping .A: V -{0,1}, 

which specifies a binary encoding for a given processor. 

Galil and Paul (1Q83) explicitly mentioned five processor models: 

1. finite automata; 

2. RAM; 

3. k -RAM, i.e. a RAM with only k registers; 

4. RAC, i.e. a RAM which in computation of t steps and with p 
active processors generates register contents of length 
0 ( log ( t + p) ) ; 

5. k-RAC. 

In one computation step of the parallel computer every processor makes one step. 

In the beginning only input nodes are active. Inactive nodes are activated during 

the computation by an activity of its neighbors. The obvious complexity meas-

ures are the number of steps and the number of processors active during a com-

putation. 

There are further (uniformity) restrictions imposed on the model: 

1. functions A, g, I, and 0 must be computable by an 0 ( n) 
space bounded and 0 ( n 2 ) time bounded deterministic Turing 
machine, and 

2. the address of any active node is bounded by 0 (log p ) , where 
p is the number of all active nodes. 

An efficient general-purpose parallel machine U is then defined as a parallel 

computer with a sorting network (e.g. cube connected cycles) as its skeleton. 

Galil and Paul (1983) showed that U can simulate any parallel computer C 

that uses p processors and makes t steps in only 0 ( t log2p ) steps using 
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0 ( p ) processors. Moreover, the same result holds when a much stronger 

model of parallel computer C is to be simulated, in which there is no underly­

ing graph but each processor can request information from any other processor. 

3.8. Hardware modification machines 

Hardware modification machines, developed by Dymond (1Q80), are similar 

to conglomerates where each finite control is given an additional power to modify 

its input connections. The machine is automatically uniform because it con­

structs itself. 

Hardware modification machines have a "truly" modifiable structure in the 

sense that processors modify the explicit links among themselves. Processors of 

other modifiable structure machines, P-RAM and SIMDAG, have no direct links 

to each other and communicate only indirectly via shared (or global) memory. 

These communication patterns can be viewed as logical modifiable links among 

processors. The modifiable structure of the links, however, has nothing in com­

mon with the hardware structure of the computer. 

3.0. Global memory machines 

A global memory machine consists of an infinite number of processors 

attached to a globally accessible shared memory. Such a machine was introduced 

in the SIMDAG model (Goldschlager (H}78)] or in the P-RAM model [Fortune 

and Wyllie (1Q78)]. "SIMDAG" stands for "single instruction stream, multiple 

data stream, global memory"; "P-RAM" stands for "parallel random access 

machine". (Note: PRAM's of Savitch and Stimson (1Q7Q) have no global 
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memory, but a given processor can initiate offspring processors. They are not 

global machines but rather a special case of a parallel computer model of Galil 

and Paul (1983).) 

Each processor in a global memory machine possesses an infinite number of 

general purpose registers and a unique read-only processor identity register which 

is preset to i in the i -th processor, i EN. A program consists of a finite list of 

instructions in one of the following forms: 

1. Read a value from a specified place in the global memory. 

2. Write a value to a specified place in the global memory. 

3. Perform an internal computation. 

4. Conditional transfer, halt. 

The allowable internal computations usually consist of direct and indirect 

register transfers, logical and arithmetic operations. 

Each machine is specified by program P and a processor bound P ( n) . 

The computation starts with the n words of an input of size n placed in the 

first n locations of common memory. All other memory locations and general 

purpose registers are set to zero. The first P ( n) processors are activated si m ul­

taneously; they synchronously execute program P . The computation halts 

when all P ( n) processors are halted. The output is then to be found in some 

specified place in the global memory. 

The most important resources are the processor bound P ( n ), the number of 

processors used as a function of input size, and the time bound T ( n ), the number 
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of steps executed as a function of input size. 

In order to obtain closer relation with other models, Parberry (1985) used 

another two resource bounds. Space S ( n) is the maximum num her of non-zero 

entries in the global memory and registers at any time during the computation. 

The machine is said to have wordsize W (n) if every value placed into a register 

or global memory location during the computation has absolute value less than 

2W(n). 

Memory access conflicts can be dealt with in several ways. SIMDAG's, or 

CRCW PRAM's (for concurrent-read concurrent-write), allow simultaneous read­

ing and writing of several processors from and to the same global memory loca­

tion. In the case of the writing conflict only the lowest numbered processor 

succeeds. P-RAM's, or CREW PRAM's (for concurrent-read exclusive-write), 

allow no simultaneous writing to the same location. EREW PRAM's allow nei­

ther writing nor reading conflicts. 

Stockmeyer and Vishkin (1984) studied the correspondence between CRCW 

PRAM's and circuits. They obtained the following: 

Theorem. A CRCW PRAM with P ( n) processor bound that operates in time 

T (n) can be simulated by a family of circuits of size polynomial in P (n ), 

T ( n ), and n , and depth linear in T ( n ). The result holds also for CREW 

PRAM. 

Theorem. A circuit of size S and depth T with n inputs and at most n 

outputs can be simulated by a nonuniform CRCW PRAM with processor 
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bound linear in ( S + n) , program size logarithmic in ( S + n) , that runs in 

time linear in T . For CREW PRAM the time bound is to be changed to 

0 (T +log n). 

Note: A nonuniform CROW PRAM allows programs to depend on the size 

of the input. 

3.10. Practical and impractical models and their relations 

Global memory models are popular for their theoretical power and universal-

ity. They are, however, highly impractical. Another universal but impractical 

model is a network machine, which is similar to a conglomerate [Goldschlager 

(1978)] or a parallel machine of Galil and Paul (1983). 

A network machine consists of an infinite family of finite graphs, one for 

each input size. Each node represents a processor. Each edge represents a com-

munication link between processors. The resources defined for global memory 

machines, ( P ( n ), S ( n ), T ( n ), W ( n)) remain the same for network machines. 

Since there is no global memory for a network machine, only the registers are 

considered for S ( n) and W ( n ). 

Amongst more practical models are uniform circuits and feasible network 

machines. A feasible network machine is a network machine with: 

1. constant number of general purpose registers in each processor, 

2. degree 3 of underlying graphs 

3. interconnection function computable by a 0 ( log P ( n) ) time 
bounded deterministic Turing machine. 
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These constraints are designed to make the model more suitable for fabrication in 

a VLSI-like environment. 

Parberry (1985) showed that all of the abovementioned machines can be 

unified by "reduction to sorting". An important consequence of the reduction is 

a possibility to simulate unpractical global memory machines and networks by 

practical models of feasible networks and uniform circuits. His results include: 

Theorem. There is a feasible network machine which can simulate any global 

memory machine or network of P ( n) processors, space S ( n) , time T ( n) 

and wordsize W ( n) using S ( n) processors, wordsize W ( n) and time 

log2P (n) 
0 ( T ( n) 1 S ( ) 1 p ( ) + T ( n) log S ( n) ) . og n-og n+l 

Theorem. Every global memory or network machine of P ( n) processors, 

space S ( n) , time T ( n) and wordsize W ( n) can be simulated by a uni-

form circuit of depth 0 ( T ( n) log S ( n) log W ( n) ) and width 

O(S(n) W(n)). 

The correspondence to deterministic Turing machines can be stated as fol-

lows: 

Theorem. Every global memory or network machine of P ( n) processors, 

space S ( n) , time T ( n) and wordsize W ( n) can be simulated by a 

deterministic Turing machine using 0 ( S ( n) W ( n) ) space and 

0 ( T (n) ( log2P (n) +logS (n))) reversals. 
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Theorem. An S ( n) space, R ( n) reversal bounded k -tape deterministic Tur-

ing machine can be simulated on a global memory machine with processors 

and space 0 ( 8 ( n )k ) , time 0 ( R ( n) log S ( n) ) and wordsize 
logS (n) 

0 ( log S ( n) ) • 

Upfal (1984) gave an interesting result for probabilistic simulation of 

( CRCW) PRAM: 

Theorem. Any PRAM of P ( n) processors, space S ( n) and time T ( n) can 

be simulated by a feasible network machine of P ( n) processors and space 

S ( n) . The simulation terminates within 0 ( t log2n ) steps with proba­

bility 1 - 0 ( min [ e -St , e -S logn ] ) , for some S > 0 (independent of n 

and t ). 
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Chapter 4 

Practical network machines 

4.1. Notation 

Suppose we are given n processors, n = 2q , and i , i E [ 0, 2q -1], an 

address with binary representation iq _1 iq _2 · · · i 0 • Each processor has local 

registers and there is some communication geometry between the processors. 

Then 

zk == ( i div 2k ) mod 2 is the k -th bit of z 

-:-
"k = 1 - ik is the complement of ik ; 

i{k) = i+~2k-ik2k = iq_1iq_2 · · · ik+I~ik-1 · · · io; 

"<k = i mod 2k = ik-I ik_2 · · · i 0 ; 

z~k = i div 2k = i i · · · ik • q-1 q-2 ' 

PE(i) is the processor with address ' 

A ( i), B( i), etc. are the contents of registers of PE ( i ). 

A general type of operation a network machine can do in one computational 

step is to replace the contents of a processor register by a new value, which is 

given by some function applied to the previous register contents of the processor 

and its neighbors. This is done for all processors at once. 

Assuming only one register, A , per processor, the computational step is 

represented by an assignment 
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which means that if condition P is satisfied, function g ( · ; y 1, y 2, · · · ) is 

applied to arguments A (x 1), A(x2), and the value is then assigned to 

register A of PE (p) • The variahles x1 , x2 , · · · , y 1 , y2 , must 

not depend on the contents of the registers. 

4.2. Function q 

The communication geometry of the more technologically practical models 

from the previous chapter, feasible networks and universal circuits, may depend 

on the computed problem and its size. In this chapter, a more restricted subclass 

of network machine models is discussed. The communication geometry of the 

following models is extremely simple and regular, and universal for a wide class of 

problems. The power of the models is, however, limited. 

Two classes of communication geometries can be recognized. Structures of 

the first class, which we call "0'-polynomial" structures, have links between physi­

cally close processors. Structures of the second, "O"-exponential" class, have links 

between processors with similar addresses. The names of the classes come from 

the behavior of a function o( m) , defined by Gentleman (1978) as "the maximum 

number of processors at which data originally available only at a single processor 

can be made available in m or fewer data movement steps". A more precise 

definition will be used here. 

Definition 4.2.1. If a communication geometry model is represented by a family 

of graphs r , then its a( m) is the cardinality of the largest graph G 

from the family r of radius at most m : 
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a(m) = max I V(G) I , 
GEf, ra.d(G):5 m 

rad(G)-:- min max d0 (x, y), 
xEV(G) yEV(G) 

where do is the distance between vertices x and y in graph G . 

Definition 4.2.2. A ;nodel is called o--polynom£al iff it.s a( m) is m 0 (1) • 

Definition 4.2.3. A model is called o--exponential iff its a( m) is not m 0 (l) . 

4.3. o--polynomial models 

A RING computer (flg.Oc) provides processors with only two links. PE ( i) 

isconnectedto PE((i+l)modn) and PE((i-l)modn). 

A k -dimensional MESH computer (flg.Oa) requires 2k connections per pro-

cessor. In this model, processors may be thought of as logically arranged as in a 

k -dimensional array. Processors are connected to their neighbors along each 

dimension. Let i (i) be the part of address i that correspond to the J -th dimen-

sion, i.e. j -th "coordinate" of PE ( i). Let n (i) be the number of processors in 

the j-th dimension. PEUu:-l)' ~ (i)' · · · , i (o)) is connected to 

for 0 < j < k and 0 < i (j) < n (j )· Processors on the boundaries ( ~· (j )= 0 or 

i (i )= nU)) have less than 2k connections. 

A k -dimensional TORO ID computer (flg.Ob) is a combination of a RING 

and a k -dimensional 1-'IESH. Like in a k -dimensional MESH, processors have a 

logical form of a k -dimensional array. Connections in each dimension, however, 

form a ring. PE (i(k-l)' · · ·, t(i)' · · ·, i(o)) is connected to PE (i(k-l)' 

· · ·, Uu)+l)modn(j)' · · ·, i(o)) and PE(i(k-1), · · ·, (iu)-l)modn(j)' 

· · · , i (O)) , for 0 < J. < k and 0 < i (j) < n (j)· 
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By a simple geometrical argument, o( m) is 0 (m k) for both k-

dimensional lvfESH and TOROID models. Since the radius of a k-dimensional 

lvfESH or TOROID with x 1 X x 2 X · · · X xk processors is 

function o( m) is given by 

k 
o(m)== max IT xi == 

E lx;/2 J $ m i - 1 
•-1 

where a == m div k and b == m mod k • 

Note: a RING is a special case of a one-dimensional TOROID. 

Since the lvfESH and the TOROID have more than three connections per 

processor (for k > 1 ), only the RING is a feasible network. However, the most 

common types of a lvfESH and a TOROID are the 2-dimensional versions with 4 

connections per processor. If the definition of feasible networks is extend~d to 

allow degree 4 graphs, the 2-dimensionallvfESH and TOROID are feasible. 

The three abovementioned structures and other similar models have been 

used in many graph and matrix algorithms [e.g. Levitt and Kautz (1972), Nassimi 

and Sahni (1979), Kung and Leiserson (1980), Brent and Kung (1983)]. These 

architectures are very attractive for VLSI design because of the simple intercon-

nection pattern and high utilization of processors. Unlike the more powerful 

models of parallel computation, o--polynomial structures do not achieve loga-

rithmic times for standard numeric problems, such as FFT. Gentleman (1978) 

studied lower bounds on the time requirements of computers with various o( m) . 
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He showed that if o(m) is 0 (m2 ), matrix multiplication requires at least 

linear time. Similar results can be obtained for other algorithms with large data 

movements and for other o--polynomial models. 

Note: The number of processors n for the RING, the MESH and the 

TOROID is not required to be a power of 2. 

4.4. o--exponential models 

A CUBE computer (fig.2d) with n = 2g processors has q links per pro­

cessor [Pease (1977)]. Processors are connected along edges of a q -dimensional 

cube, i.e. PE(i) is connected to PE(i(k)), for O<k<q. Set of all links 

along k-th dimension, i.e. { (PE(i),PE(i(k))) I o< i <2q}, is called a 

sheaf k . 

Trivially, o( m)= 2m • Since q is not bounded by 3 , a CUBE is not a 

feasible network. 

Note: A CUBE and a MESH can be viewed as opposite extremes of one type of 

architecture. While the MESH has a bounded number of dimensions and an 

unbounded num her of processors along each dimension, the CUBE has an 

unbounded number of dimens.ions and a bounded (by 2) number of processors 

along each dimension. 

A PERFECT SHUFFLE computer (fig.3a) has three links per processor 

[Stone (1971)]. PE(i) is connected to PE(i(0)), PE(shuffle(i)) and 

PE ( unshuffle ( i)) , where shuffle ( i) and unshuffle ( i) are defined to be, respec­

tively, the integers with binary representations iq -2 · · · i 0 iq -1 and 
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i0 iq -1 · · · i1 • Another, equivalent definition of shuffle and unshuffie maps 

(fig.3b) has the form 

shuffle ( i) = if i < h /2 then 2i else 2i -n + 1 , 

unshuffle(i) = if i is even then i /2 else (i-1)/2+n /2 

Since the distance (the number of links) between PE (0) and any other 

PE (p) is at most 2n-l , the radius of a PERFECT SHUFFLE graph is at most 

2n -1 , i.e. o{ m)> 2m 12 • A PERFECT SHUFFLE is a feasible network. 

A cube-connected-cycles (CCC) computer (fig.4) is a combination of a CUBE 

and a RING (Preparata and Vuillemin (1979),{1981)]. Processors are connected 

along edges of a ( q -r )-dimensional cube that has its vertices replaced by 2'­

cycles (rings). More precisely, let n = 2q be the number of processors and r 

be some positive integer such that 2' > q -r > 0 . Then the q -bit address of a 

processor PE (p ) , 0 < p < 2q , can be divided into two parts: a r-bit part 

h , 0 < h < 2' , that corresponds to the RING-type links among processors, 

and a (q-r)-bit part i , o< i < 2q-r , that corresponds to the CUBE-type 

links. Without loss of generality, let PE (p) = PE (h 2q-r +i) = PE ( h, i). 

Processor PE ( h, i) , 0 < h < 2r , 0 < i < 2q-r , is connected precisely to 

three other processors, PE((h-l)mod2,..,j), PE((h+l)mod2r,j), and 

PE ( h, j(i)) . The first two links belong to the neighboring processors within 

the 2r -cycle. The third link corresponds to an edge of the ( q -r )-cube. 

The radius of a CCC graph is 2r -1 +q -r . A choice of r and q is valid 

iff conditions m > 2r -1 +q -r and 2r > q -r are satisfied. It is easy to show 
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that a( m)> 2(m+l)/4 for r = llog m:l j , q = l m: 1 j+ r . In reality, 

a( m) behaves like 2(m+l)/2 for m >> 1 and 2r ~ q -r . The CCC is a feasi­

ble network. 

The unbounded number of links per processor makes the CUBE architecture 

impractical for computers with a large number of processors. The CUBE model 

is, however, a practical tool for the development of algorithms for the PERFECT 

SHUFFLE and the CCC . .As will be discussed in the following chapter, CUBE 

algorithms with certain restrictions are compatible with PERFECT SHUFFLE 

and CCC computers. 

Note: An UL TRACOJvlPUTER, which was introduced and described with 

many technological details by Schwartz (1980), has links of both a PERFECT 

SHUFFLE and a RING. 
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a) MESH b) TOROID 

c) RING d) CUBE 

Fig.2: MESH, TOROID, RING and CUBE for sixteen processors. 
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Fig.3a: PERFECT SHUFFLE for sixteen processors. 

shuffle ---:!11 ....... 

(Vr------------'0 

G)f------iG) 

111111 unshuffie 

Fig.3b: Shuffle (unshuffle) mapping for eight processors. 
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Fig.4: Cube-conn~cted cycles for q=5 and r=2. 
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Chapter 5 

Equivalence of CCC, PERFECT SHUFFLE 
and CUBE 

5.1. ASCEND and DESCEND classes 

For a wide class of problems there are algorithms whose data exchange pat-

terns correspond to the links of a binary multidimensional cube. Preparata and 

Vuillemin (lg7{)) proposed two dual classes of such algorithms. Assume that 

input data are stored in a continuous block of addresses from [ 0, 28 -1]. 

An algorithm in the ASCEND class performs a sequence of basic operations 

on pairs of data with relative offsets successively 2°, 21, · · · , 28
-
2, 28

-
1 • 

Assuming only one register per processor, an ASCEND-type CUBE algorithm 

(operating on the block of the first 28 addresses in s steps) has the following 

form: 

form= Otos-ldo A(p)+-f(A(p),A(p(m));m,p), (O<p<28
), 

where f ( · ; m, p) is some function that depends only on the address of the 

processor, p , and the order of the sheaf, m . Its arguments, A (p), A (p(m)) , 

are the register contents of the processor and its neighbors in the given sheaf. 

An algorithm in the DESCEND class performs a sequence of basic operations 

on pairs of data with relative offsets successively 28
-
1, 28

-
2, · · · , 21, 2°, i.e. 

the sheaf-index m is running in the opposite direction. An algorithm from one 

class can be simulated by an algorithm from the other class, reversing the order 



- 36-

of address bits by the bit reversal permutation. 

Many fundamental algorithms can be decomposed into ASCEND- or 

DESCEND-type subroutines that use the same block of addresses. We will call 

them CUBE-feasible algorithms. Algorithms for some applications, such as 

bitonic merge or cyclic shift, are directly in the ASCEND or DESCEND classes. 

These algorithms run in 0 (log n ) steps. Other applications, such as permuta-

tion, shuffle, unshuffle, bit-reversal-permutation, odd-even-merge, Fast-Fourier-

Transform, convolution, or matrix transposition, have programs consisting of a 

short sequence of ASCEND- or DESCEND -type algorithms and run also in 

0 (log n ) steps. Some applications, such as bitonic sort, odd-even-sort, or cal-

culations of symmetric functions, have algorithms with loops or recursive calls 

and have higher time bounds. 

We will show that algorithms for a CUBE machine from the ASCEND and 

DESCEND classes (and, consequently, CUBE-feasible algorithms) can be 

efficiently simulated on PERFECT SHUFFLE and CCC machines of any 

sufficient size and give the bounds in terms of the size of the problem. In the fol-

lowing proofs, only one register, A , per processor is considered, since allowing 

more registers would not bring any significant change. 

5.2. Simulation of CUBE by PERFECT SHUFFLE 
• 

Stone (1971) described the similarities between the PERFECT SHUFFLE 

architecture and a binary hypercube, which implicitly included the main idea of 

the algorithm bellow. However, the sizes and computation times were not dis-
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cussed. 

Theorem 5.2.1. An ASCEND-type algorithm running on the first 28 

addresses of a CUBE computer in s steps can be simulated on a PER-

FECT SHUFFLE computer with at least 28 processors in 3s steps. 

Proof. Let 2q be the size of the PERFECT SHUFFLE for arbitrary q > s . 

Let A 0 (p) be the initial contents of register A of PE(p) of the CUBE, 

and Ak (p) , 0 < k < s , be the contents of the same register after k 

iterations of the for-loop of the simulated ASCEND-type CUBE algorithm 

for m= 0 to s-1 do A(p) +-I ( A(p), A(p(m)); m, p), 

(o< p< 2"), 

i.e. immediately after the iteration with m = k -1 . Let A' k (p) and 

A"k (p) have similar meanings for, respectively, the first and second loop of 

the simulating PERFECT SHUFFLE algorithm below. Let A'0 (p) == 

A 0 (p) for 0 < p < 28 
• The simulating algorithm is correct iff A"8 (p) = 

Algorithm 5.2.1. 

for m= 0 to s-1 do begin 

end· 
' 

A(p) +-I (A(p), A(p(o)); m, P<m 2g-k+P?::m ), (P); 

A(p) +-A(shuffie (p)); 

for m= 0 to s-1 do A(p) +-A(unshuffle(p)); 

where P = 0 < p <m 2q-k+P;::: m< 28
• 



J ustiflcation. 

Note that unshufflek (p) = p <m 2q-k+p~ m , unshufflek (p (o)) = 

unshufflek (p )(k) and shufflek ( unshufflek (p)) = p for 0 < p < 2q and 

k > 0 . Assume that 

A' k (p) = Ak ( unshufflek (p)) 

for 0 < unshufflek (p) < 28 and 0 < k < l < s . 

Then 

A't+1(shuffle(p)) = f(A't(p),A1t(p(0)); l, unshuffie1 (p)) 

== f (At ( unshuffle1 (p) ), A1 ( unshuffle1 (p )U)); l, unshuffle1 (p)) 

= At+l ( unshuffle1 (p)) for 0 < unshuffle1 (p) < 28 
, 

i.e. 

A't+l (p) = At+l ( unshufflel+1(p)) for 0 < unshuffle1+1(p) < 28 
• 

By mathematical induction 

A'b (p) = A's (p) = As ( unshuffle8 (p)) for 0 < unshuffles (p) < 28 
, 

or equivalently, 

A'~( shuffles (p)) = A8 (p) for. 0 < p < 28 
• 

Since 

A"k+l (p) = A"k (shuffle (p)) for 0 < p < 2q and 0 < k < s , 

by mathematical induction 

A", (p) = A"0 ( shuffle" (p)) = A8 (p) for 0 < p < 28 
• 

It is easy to see that the algorithm runs in 3s steps. D 
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5.3. Simulation of CUBE by CCC 

Preparata and Vuillemin (1979,1981) discuss in detail the simulation of an 

ASCEND /DESCEND CUBE algorithm on a CCC. The size of the CCC matched 

the size of the CUBE and had a special form 22' +r • The computation time was 

given in terms of the size of the machines. We extend this result and simulate an 

ASCEND /DESCEND CUBE algorithm on a CCC of any sufficient size. The 

computation time is given in terms of the size of the problem. 

Theorem 5.3.1. An ASCEND -type algorithm running on the first 28 

addresses of a CUBE computer in 8 steps can be simulated on a CCC com­

puter with at least 28 processors in 3s + 5·2t- t -7 steps, where 

s= min(s, q-r), t= max(O,s-q+r), 2q is the size of the CCC, 

q > 8 , and 2r , 2r > q -r , is the size of its cycles. 

Proof. Let 2q , q > 8 , be the size of the CCC; the highest r bits of a pro­

cessor address correspond to the RING -type connections, while the lowest 

q-r bits correspond to the CUBE-type connections. In the CUBE being 

simulated only the lowest 8 bits of a processor address are used. Without 

a loss of generality, we can consider the size of the CUBE to be 2q . If the 

actual size is higher, we ignore the higher bits of the processor address. If it 

is lower, we add (but do not use) virtual higher bits to the address. In both 

the CUBE and the CCC we will use separate indices, i and i , for each 

part of the address, i.e. PE(p) = PE( i 2q-r+ i) = .PE( i,;") , 0 < i < 2r , 

0 < i < 2q -r. These bounds are also assumed for any further reference to i 
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or j in the proof. Using this notation, the ASCEND -type CUBE algorithm 

to be simulated reads: 

(1) for m== 0 to s-1 do 

A ( i, j ) +- f ( A ( i, j ), A ( i, j (m) ); m , p ) , ( P ) ; 

(2) for m== 0 to t-1 do 

A (i, J. ) +- f ( A ( i, j ), A ( i (m), j ); m +q -r , p ) , ( P ) ; 

where s == min ( 8 , q -r ) and 

t == max ( 0, 8 -q +r ) . The simulating algorithm is divided into two parts 

that correspond, respectively, to the two loops of the algorithm above. 

Using the following lemmas, loop (1) can be simulated in 3·(s+2t) -5 steps; 

loop (2) can be simulated in 2·2t- t -2 steps. Therefore, the whole simula­

tion runs in 3s + 5·2t- t -7 steps. D 

Lemma 5.3.1. Loop (1) can be simulated in 3·(s+2t)-5 steps. 

Proof. The following three loops on the CCC simulate loop (1) on the CUBE. 

Similarly to the previous proof, let Ak ( i ,j) be the contents of register A 

of PE( i ,j) after the k-th step of (1 ), and A' k ( i ,j), A"d i ,j), 

A"'k ( i,j) be the contents of PE( i,j) after the k-th step of each of the 

three simulating loops, respectively. Let A'0 (i,j) = A 0 (i,j) for 

0 < i < 2t and 0 < J. < 28 
• The simulation is correct iff A"'s-l ( i,j) == 

A 0 ( i,j) for the same range of i and j . 

Algorithm 5.3.1. 

for m== 0 to 2t-2 do A( i,j) +-A( (i+k) mod 2r ,j); 
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for m = 0 to s +2t-2 do begin 

A ( i ,j) +-A ( ( i -k) mod 2r ,j) , (m> 0); 

A( i,J·) +- f(A( i,j ), A( i,jU)); i, p), (P ); 

end; 

for m = 0 to s -2 do A ( i, j ) +-A ( ( i +k) mod 2r, J. ) ; 

where p = (o< i< 2t and o< p = (i+2t-m-l)·2q-r+j < 28 ). 

J ustiflcation. 

The first loop shifts data within each zr -cycle, so that in the end, sheaf 0 

is accessible to data with the original address (2t-1)'2q-r+ j , 0 < j < 28 
: 

A't (i,j) = A1
0 ((i+k) mod 2r ,j) for any i , j . 

Hence 

The second loop applies function f on appropriate data. Note that data in 

PE( i,j) can access sheaf i only. By mathematical induction (details 

omitted) 

!
A0 ((i+2t-k)mod2r,j) if P 1 and O< j<28 

A'~(i,j)= Ak((i+2t-k)mod2r,j) if P 2 and O<j<28 

A8 ((i+2t_k)mod2r,j) if P 3 andO<j<28 

for o<k<s+2t-l and 

P 15 ( 2r-2t+l < i < 2r ), 

P 2 = ( max ( k -zt,o) < i < min ( k ,s) ), 

P 3= (s< i< min(k,2r) or o< i< k-2r ). Hence 



- 42-

The last loop shifts data back to the initial locations: 

A"'k ( i,j) = A"~( (i-s+l) mod 2r,j) for any s , J • 

Hence 

A"'8 _1 ( i,j) = A"~( (i+s-1) mod 2r,j) = A8 ( i,j) 

for 0 < i < 2t and 0 < j < 28 
, 

and we are done. If the empty step in the second loop, 

"A(i,j)-E-· · · ,(m>O)" for m= 0, is not counted, the three loops 

run in 3·(s+2t) -5 steps. 0 

Lemma 5.3.2. Loop (2) can be simulated in 2·2t- t -2 steps. 

Proof. An auxiliary subroutine SHUFFLE(x) performs the shuffle operation on 

consequent s z+1-size blocks of processors in each 2r -cycle of the CCC, i.e. 

Algorithm 5.3.2. 

Subroutine SHUFFLE(x ): 

for m= 1 to 2x-1 do begin 

. . {A( (i+l) mod 2r,j), (i0= m0 and P); 
A( 't,J) -E-

A( (i-1) mod 2r,j), (i0= m0 and P); 

end· 
' 
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Justification. 

Let 

1 < m < 2z , be a ( 2·m + 2 )- size block of processors. Mter each step of 

the loop, each block B;~:2, i, 0 < i < 2r, 0 < j < 2q-r, is shuffled, while 

the remaining locations are left unchanged (see fi.g.5). In the end, every 

2x+1_size block B
1
• (

2"-l
1
). , 0 < i < 2r , 0 < J. < 2q-r , is shuffled. If each 

i::::s+l• - -

iteration of the loop is counted as one step, SHUFFLE(x) runs in 2z-l 

steps. 

The following two loops on the CCC simulate loop (2) on the CUBE. Let 

Ak ( i,j) be the contents of PE( i,j) after the k-th step of (2), and 

A'k(i,j), A"k(i,j) be the contents of PE(i,j) after the k-th step of 

each of the two simulating loops, respectively. Let A'0 ( i,j) = A 0 ( i,i) 

for 0 < i < 2t and · 0 < j < 2" . The simulation is correct iff 

A"tC i,j) == A0 ( i,J·) for the same range of i and j . 

Algorithm 5.3.3. 

for m== 0 to t-1 do begin 

SHUFFLE(m); 

A(i,j) +- { f(A(i,j), A((i+l) mod 2r,j); m+q-r,p ), (P and Q ); 
f(A(i,i), A((i-1) mod 2r,j); m+q-r,p ), (P and Q ); 

end; 

for m= 0 to t-1 do SHUFFLE(m); 
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where P = ( i 0= 0 ), P = ( i 0= 1) and 

Justification. 

Note that RING-type links of the CCC can be used as a sheaf q -r 

( ) 
{ 

A ( ( i + 1) mod 2r, j ) 
A(. o . ) 

t ,J = A((i-l)mod2r,j) 

if i 0= 0, 

if i 0= 1. 

The first loop uses SHUFFLE(m) to bring required data to the sheaf q-r 

and then applies function f on them. By mathematical induction (details 

omitted) 

Hence 

A't ( i,j) == At ( ir-1 · · ·it ioi1 · · · it-1, i) 

for i;::: t 2k = 0 and 0 < j < 28 
• 

The second loop brings data back to the original locations: 

A''k(iJ") = A"(i · · · i i i · · · i J.) ' 0 r-1 k 0 1 k-1' 

for any i , J. , and 0 < k < t . 

Hence 

- Ad i,j) for 0 < i < 2t and 0 < j < 28 
, 

and we are done. 
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t-1 
The two loops run in I; (2·2m-1) = 2·2t-t -2 steps. 0 

m-0 

5 .4. Discussion 

The algorithm (that simulates ASC /DESC alg's on the CCC) is very similar 

to that of Preparata and Vuillemin (1979, 19th). However, in their algorithm: 

1. the size of the CCC matched the size of the CUBE and had a spe­
cial form 22' +r , 

2. the computation time was given in terms of the machine size, and 

3. the algorithm was presented in the notation "foreach < condi­
tion> pardo <operation> odpar", 

while in our algorithm 

1. the CCC is of any sufficient size, depending only on the problem 
size, 

2. the computation time is given in terms of the size of the problem, 
and 

3. the algorithm is presented in the notation ''<assignment>, 
(<condition>)". 

It is our opinion that the "foreach ... " notation is harder to read and verify, 

since it specifies the operation for a set of processors instead of each individual 

processor. This is especially true when nested foreach-blocks are used. (E.g. 

both versions of Preparata's and Vuillemin's (1979,1981) algorithm contain a 

hard-to-detect error in the procedure DESCEND: the condition 

"a= l2r+((p+i-1)mod2r)" in a double-nested foreach-block should read 

"a= l2r + ((p-i -1) mod2r )", which can be be verified by setting l = 0 and 
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time ____ ,.. ... ....,. 

----{0 0 0 Or---

Fig.5: Data transfers by SHUFFLE( x) procedure 

in a block of 2z -l addresses, x .:.. 2. 
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Chapter 6 

GCD algorithms on a CUBE 

6.1. Introduction 

The theoretical foundations for fast parallel computation for widely used 

problems of symbolic manipulation in an algebraic context are laid by Borodin, 

von zur Gathen and Hopcroft (Hl84). The problems investigated include compu-

tation of polynomial GCD's, solution of linear equations, computation of the 

determinant and rank of matrices. Von zur Gathen (1984) continues in the pro­

gram and gives fast parallel solutions for the Extended Eucledian Scheme of two 

polynomials, polynomial factorization over finite fields and square free decomposi­

tion of polynomials over fields of characteristic zero and over finite fields. 

Recently [von zur Gathen (1986)], fast algorithms for conversion among polyno­

mial base representations have been introduced. This includes Taylor expansion, 

partial fraction decomposition, the Chinese remainder algorithm, elementary sym­

metric functions, Pade approximation and interpolation problems. 

These algorithms are designed for general models of parallel machines, such 

as P-RAM's or algebraic circuits. All algorithms run in time 0 ( log2n ), using a 

polynomial number of processors. 

The fundamental part of these results is a fast 0 ( log2n) matrix deter­

minant algorithm that works over arbitrary fields. Borodin, von zur Gathen and 

Hopcroft (1984) do not give the algorithm explicitly, but rather prove its 
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existence: A general parallelization result of Valiant, Skyum, Berkowitz and 

Rackoff (1981, 1983) is applied to an 0 ( n 5 ) sequential division-free determinant 

algorithm, which can be, according to Strassen (1973), derived from an ordinary 

0 ( n 3 ) Gaussian elimination algorithm. The required num her of processors is 

Berkowitz (1984) improves this result and gives an 0 ( log2 n) time algo-

rithm that uses only 0 ( n o:+l+e) processors. 0 (no:) is the number of proces-

sors that are required for matrix multiplication in time 0 (log n). (Coopersmith 

and Winograd (1981) proved the existence of algorithms with o: < 2.5 .) c is an 

arbitrary positive constant; c 1 acts as a multiplicative time constant. Although 

a part of the proof is incorrect (see the following note), the overall 

t = 0 ( log2 n j, p = 0 ( n o:+l+e) bounds hold. 

Note: Claim 4 of Berkowitz (1984) incorrectly states that the product of 

n X m and m X p lower triangular Toeplitz matrices is lower triangular and 

Toeplitz. An example shows that this is untrue for matrices with n > m > p : 

1 
2 1 
3 2 1 
4 3 2 

1 
4 1 

10 4 
16 7 

Claim 4 is the basis for the ( 0 ( log2 n), 0 ( n 3 )) ( t, p )-bounds on the compu-

tation of the coefficients of the characteristic polynomial. Without the claim, 

these bounds must be replaced by ( 0 ( log2 n), 0 ( n o:+I)). These bounds are, 

however, still sufficient to keep the overall bounds ( 0 (log2 n), 0 ( n o:+l+E)) of 
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the determinant algorithm. 

For more restricted domains, such as fields of characteristic zero or integer 

numbers, the processor bound of a determinant algorithm can be improved 

[Csansky (1976), Preparata, Sarwate (1978)]. The best bound is achieved by a 

new iteration method of Pan and Reif (1985), which requires only 0 ( n ll) pro­

cessors to solve a related problem of matrix inversion in 0 ( log2 n ) time. 

In the following, we focus on the polynomial GOD algorithm, which is basic 

for the whole package of symbolic manipulation algorithms. Borodin, Hopcroft, 

von zur Gathen (1984) suggest a matrix approach to the polynomial GOD prob­

lem. Let n , m be the degrees of the polynomials. Let Ai be an 

( n +m -2i)X ( n +m -2i) (asymmetric) matrix of a system of linear equations 81 

that correspond to the polynomial equation p = fa+ gb with p of degree i. 

The algorithm then reads: 

1. Compute in parallel det Ai , i E [ 1,n ] ; 

2. Set k = min { i I det Ai + 0 }; 

3. Compute a solution ( f, g) of Sk ; 

4. Compute gcd (a, b)= fa+ gb; 

We reduce the size of the matrices to ( n -i)X (n -i) and show that the 

reduced matrices are upper left principal minors of a symmetric n X n matrix. 

We use a modification of the Berkowitz (1984) parallelization of the Samuelson 

method [Samuelson (1942)] to compute characteristic polynomials (and deter­

minants) for the system of upper left principal minors in 0 ( log2 n ) time with 
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0 ( n a-+l+e) processors. The characteristic polynomial of the largest nonsingular 

(upper left principal) minor is then used to invert the minor. This allows us to 

decrease the processor bound for the GCD algorithm by a factor of n . 

The full strength of the general paralfel machine models that ~re suggested 

for the algorithm is not needed. We develop a CUBE-feasible GCD algorithm 

that uses a simple matrix multiplication technique with a= 3 and runs on a 

CUBE or equivalent (PERFECT SHUFFLE, CCC) computer with n o:+l+e pro­

cessors in 0 ( log2 n ) time. 

Section 6.2. gives a new matrix formula for the GCD of two polynomials. 

Section 6.3. gives a matrix formula for the coefficients of the characteristic poly~ 

nomials of a matrix and its upper left principal minors, which is similar to the 

formulas used by Berkowitz (1984). Note: Berkowitz (1984) uses incorrect 

indices and sizes of matrices; there is, however, no effect on the resulting bounds 

in the big-oh notation. Section 6.4. outlines the GCD algorithm. The exact 

definition is left to the next chapter, where an axiomatic system of verification is 

developed for the CUBE-feasible algorithms and used to verify the program. 

6.2. A matrix formula for the GCD 

In this chapter a matrix formula for the GCD of two polynomials is derived. 

The theorem 6.2.1 is based on the claim of lemma 6.2.3, w hi eh is a modification 

·of two known properties of polynomials, stated in lemma. 6.2.1 and 6.2.2. Nota­

tion: F is an arbitrary field and F [x J the ring of polynomials over F . o (p) is 

the degree of a polynomial p . 
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Definition 6.2.1. Let a , h E F [x J • Then h divides a iff 

( :3 a'E F[x]) (a= a'h ). 

Definition 6.2.2. Let a, b, h E F[x], a =I= 0, b =I= 0. Then h = gcd (a, b), i.e. 

h is the greatest common divisor ( GCD) of a , b , iff 

h divides a , h divides b , h is monic and 

- - - -( \rl h E F [x]) ( ( h divides a and h divides b) ~ h divides h). 

Note: A simple argument can show that the GCD is unique. 

Lemma 6.2.1. 

( V a, b E F [x ], a =I= 0, b =I= 0) ( :3 f, g E F [x] ) ( gcd (a, b) = fa + gb ) 

Proof. Let R= {pEF[x],p=I=O I (:3f,gEF[x])(p= fa+gb )}. 

Note that R is non-empty (at least a ER and b ER ) and partially 

ordered by o. Let h be a minimum of R with ordering o. Since any 

nonzero scalar multiple of an element of R is also in R , h can be chosen 

monic. We will prove that h = gcd ( a, b) : 

Let a', a', f, g E F[x], such that h = fa+ gb and a= a' h +a" , where 

either o(a') < o(h) or a'= 0. Since 

a' = a-a'h = (l-a'f)a + (-g)b ER U {o} 

and (V pER) ( o(p)> o(h)), 

a"= 0 and h divides a . Similarly, h divides b , i.e. h is a monic com-

-
mon divisor of a , b • Any other common divisor h of a , b , such that 

a = a h and b = b h ' divides h : 
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h == fa + gb == ( ra: + g b) h . 

Therefore, h is the greatest common divisor of a , b • 

Lemma 6.2.2 .. 

0 

(V a, bE F[x], s.t. a =I= 0, b =I= 0, 8(a) > 8(b), a is not a scalar mul-

tiple of b ) ( j,g E F[x]) 

(gcd(a,b)= fa+gb and 8(g) < 8(a)-8(gcd(a,b))). 

Note: When a is a scalar multiple of b, 0 = 8(g) = 8(a)-8(gcd(a,b )) 

or g = 0. 

Proof. Let h=gcd(a,b), a=a'h, b=b 1h. By lemmal, :3/,gEF[x], 

h = fa + g b . It is easy to see that g is not divisible by a': Suppose 

g == g1 a1 for some g1 E F[x]. Then h = ( f+g' b1
) a, i.e a divides h. 

Since h divides b and 8 (b) < 8 (a), a must be a scalar multiple of b . 

This contradicts the lemma's assumption. Thus g is not divisible by a', 

i.e. 

( :3 g E F[x], g =I= 0) ( g= g'a'+g and 8(g) < 8(a')= 8(a)-8(h)). 

Then 

h = fa'h+g'a'b'h+gb 1h- fa+gb, 

where f = f + g1 b'. Lemma 6.2.2 is proved. 0 

Lemma 6.2.3. Let a, bE F[x], a =I= 0, b =I= 0, 8(a) > 8(b) and a is not a 

scalar multiple of b • Let 

Ri = { p E F[x], p manic I 8(p) = i and 

(:3/,gEF[x])·(p= fa+gb and 8(g)<8(a)-i )} 

for i > 0 . Then 



-53-

{ gcd ( a' b ) } = R m in { i I R; ,a 0} . 

Proof. Let 

R';= {pEF[x] j8(p)=i and (3/,gEF[x]) (p= fa+gb )}. 

Note that R' i :::> Ri and R = U R 1 i , where R is the set defined in the 
;::::; 

proof of lemma 6.2.1. From the proof of lemma 6.2.1, 

gcd( a, b) E R'min{ i 1 R';+ 0}. 

By lemma 6.2.2, 

gcd(a,b) E Rmin{ i I R';+ 0} C R'min{ i I R';+ 0} · 

Since the GCD is unique, { gcd( a, b)}= R min{ i 1 R';+ 0} · 

Since R; C R' i , min { i I R' i =I= 0} < min { i I Ri =I= 0}. 

Since 0 =I= R min { i I R'',. 0} ' 

min { i I R' i =I= 0} > min { i I Ri =I= 0} . 

Therefore 

{ gcd ( a' b ) } = R min { i 1 R' 1 ,a 0} = R min { i I R; ,a 0} · 

Lemma 3 is proved. 

Note. The polynomials f and g are unique. The argument goes as follows: 

0 

Let h = gcd (a, b)= fa+ gb = fa +g b, a= a1 h and b = b1 h for 

a, a', b, b1
, /, /, g, g, h E F[x]. Then and 

gcd (a', b1
) = 1. This is possible only in two ways. Either 

I-f = g -g = 0 , or b' divides f- f and a1 divides g -g . The latter 

alternative is excluded by 
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8(g 1-g) < max{ 8(g),8(g')} < 8(a 1
) = 8(a)-8(h). 

Hence, the polynomials f = f and g == g are unique. 

Notation. Let a" = b" = 0 for k < 0. Let i = 0, 1, ... , n-1 . Then X;, Y; 

are upper triangular ( n -i)X ( n -i) Toeplitz matrices 

an an-1 ai+l bn bn-1 

an ai+2 bn 
xi - y. 

l -

U;, V; are (n-i)X (n-i) Hankel matrices 

an-1 an-2 a; bn-1 bn-2 

an-2 an-3 ai-l bn-2 bn-3 
U; - vi -

ai ai-1 ... 
a2i+l-n b· bi-1 t 

S;, T; are i X (n-i) Hankel matrices 

ai-l ai-2 a 2i-n bi-1 bi-2 b 2i-n 

ai-2 ai-3 a 2i-n-l bi-2 bi-3 b 2i-n-l 
Si= T;= 

ao 0 0 bo 0 0 

Note that V0 X 0 = [ V; ·]. [~· ·] = 
T; · 0 · [ 

V; X; ·]. 
T; X; . , similarly for 

U0 Y0 • Thus, (V; X;- U; Y;) = 

[the first n-i rows and columns of (V0 X 0 - U0 Y0 )], 

and ( T; X; - S; Y; ) = 

[ the last ~ rows and the first n -i columns of ( V0 X 0 - U 0 Y0 )]. 

Theorem 6.2.1. Let a,bEF[x], where a (:\) = 2.: a; A i , 
i?! 0 

b(A)= 2.: b;Ai, 8(a)= n >m= 8(b), and a is not ascalarmultiple 
i?! 0 
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of b • Then 

gcd(a,b }(A) = Ak + [ Ak-1, Ak-2, ... , 1] 

· ( Tk xk - sk Yk ) · ( vk xk - uk Yk t 1 · [ o, ... , o, 1 J T , 

where k = min { i I det (vi xi - ui Y; ) + 0 } . 

Proof. Let p,J,g E F[x], p (A) = E Pi ).J ' 
i 2: 0 

/('A)= E /jAi' 
i 2: 0 

g (A) = E gi Ai . Let Ri, i = 0, 1, ... , n-1, be the set defined in 
i 2: 0 

lemma 6.2.3. We will examine the sufficient and necessary conditions for 

p E Ri . Clearly, polynomials p, f, g satisfy the conditions: 

p is monic and 8 (p) = i and 8 (g) < n -i and p = fa + gb 

iff their coefficients satisfy the following system of linear equations: 

an bm 0 

fo 
0 an am-n+i+l 

an-1 am-n+i f m-i-1 
0 

bm bn-m+i+1 go 
bm-1 bn-m+i -

ai azi-m+1 bi bzi-n+l 1 

ai-1 azi-m bi-1 bzi-n gn-i-1 Pi-l 

ao ai-m+l bo bi-n+l Po 

Since an + 0 and b1 == 0 for l > m , the system above is equivalent to 

the system 
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an bn 

bn bi+l 
fo 

an ai+l 

an-1 ai bn-1 b; 
f n-i-1 

a· 
' a2i-n+l b· b2i-n+l 

9o 

' 
ai-l a2i-n bi-1 b2i-n 

gn-i-1 

ao ai-n+l bo bi-n+l 

w hi eh after reordering the first n -i rows becomes 

x. y. 
s ' 

u. v:. • • 
S· T· I I 

where 

E; = [ 0, ... J 1] T ' 

pi= [Pi-1, · · ·, Po]T' 

oi = ( o, ... , o 1 T • 

Q. 
* 

E· I 

p. 
I 

0 

0 

0 

= 
1 

Pi-1 

Po 

Fi, G;, Ei and 0; are (n-i)-vectors (or (n-i)X 1 matrices); Pi is an 

i -vector. 

We can conclude that 

(3j,g EF[x]) (p = fa+gb ERi) iff (:3Fi,G,.) 

( [xi Y; ] . [ Fj ] _ [ oi ] 
U· v:. G· - E· and [Si 

I I I ' 
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By lemma 6.2.3 and the note, p = gcd ( a, b ) iff 

( :3 unique /, g E F[x] ) 

( p = fa + gb E Rk , k = min { i I . Ri =F 0} ) , 

i.e. p = gcd( a, b) iff 

P• = Is, T, I · [ ~: 

[
X· y. J 

k = min { i I det ~- ~ · =F 0 } . 

Note that 

1. The inverse of of an invertible, square, upper triangular Toeplitz 
matrix is invertible, square, upper triangular and Toeplitz. 

2. The product of two square, upper triangular Toeplitz matrices is 
square, upper triangular and Toeplitz. 

3. Matrix multiplication is commutative for square, upper triangular 
Toeplitz matrices. 

Since an =F 0, Xk is invertible. Let Ik be the ( n -k) X ( n -k) identity 

matrix. Then 
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Since . 

[ 

1-

= det U-~--l 
• • 

p = gcd (a, b ) iff 

P,. = ( T,. x,. - s,. Y,. ) . ( v,. x,. - u,. Y,. )-l . E,. I 

k = min { i I det ( vi xi - ui Yi) + o } . 

Since p (~) = ~" + [ ~"-1, ~"-2, ... I 1]. P,.' k = o(p), 

gcd(a, b)(~) = ~k + [ ~k-1, ~k-2, ... I 1 J 

· (T~cX~c-Sk Y~c) · (V,~:Xk-Uk Y~c)-1 · E,~:, 

k = min { i I det ( vi xi - ui Yi ) + o } . 

The theorem is proved. 

Lemma 6.2.4. ( V0 X 0 - U0 Y0 ) is symmetric. 

0 

Note: Since all upper left principal minors of a symmetric matrix are sym-

metric, matrices (Vi Xi- U; Yi ), i E [O,n-1] are symmetric. 
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Proof. We will omit the index 0 of the matrices X 0 , Y0 , U0 , V0 • M;1 is 

the i, i -th element of a matrix M , i , J. E [ 0, n -1] . 

~* - ~ Since 
x+y- 2n-1-i-j 

{~-1-;-k k<n-1-i 
{ ~•+>-i ' uik = else 

and Yti== 

the i, i -th element of matrix ( U · Y A is 

n min(n-1\;, j) 
(UY)ij = ~ U;t Yti = ~ an-1-i-k bn+k-i 

k-1 k-1 

- ~ axby-
z+y- 2n-1-i-j 
O< x < n-i-1 
n=i.-j~ y~ n 

Similarly, 

Then 

~* ax by . 
o< x < n-i-1 
n=i.-j~ y~ n 

(VX- UY )if- (VX- UY);i 

~* ax by ) 
o< x < n-i-1 
n=i-j~ y '.5. n 

- ( :E* a:c b11 - :E* ax by ) 
n-1-i< x < n 0'.5, x '.5. n-j-1 
0~ y 5 n-]-1 n-1-i'.5, y'.5. n 

= ( ~* ax by + E* ax b11 ) 
n-1-1'.5. x $ n 
0'.5, y '.5. n-•-f 

0'.5, x '.5. n-j-1 
n-1-i'.5,y'.5,n 

- ( E* ax b11 + E* ax b11 ) 
n-1-i< x< n O< x < n-i-1 
0'.5, 1!5 n-]-1 n=i-j~ 11 ~ n 

' 
k<" _J 

else 

Let 
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i.e. (VX- UY)·· = (VX- UY) ·· IJ Jl ' 
0 

6.3. Characteristic polynomials of upper left principal minors 

!I.t. this chapter a matrix formula for all upper left principal minors is given. 

The main theorem is based on lemmas 6.3.1-3, which correspond, respectively, to 

claim 1, claim 2 and a part of theorem 5 of Berkowitz (1984) parallelization 

scheme of the Samuelson method [Samuelson (1942)] for determining the 

coefficients of characteristic polynomials. The notation and the structure of the 

matrices has been, however, changed to support our needs. 

Notation. Let M be an (l+l)X (l+l) matrix and N its l X l upper left 

principal minor, l > 1 . 

Let p , q be their characteristic polynomials, respectively. 

p(f-)= ~ Pif-i = det(M-f-1), 
i~ 0 

q(f-)= ~ qif-i= det(N-f-J). 
i~ 0 

Lemma 6.3.1. det(M) = a· det(N) + R ·adj(N)· S. 

Note: The adjoint of a one-element matrix is the identity matrix. 

Proof. Expand det (1\1) by the cofactor expansion on the last row and then on 

the last column. 

l-1 l-i-1 
Lemma 6.3.2. adj (N- f-I) = - :E ~ N j qi+l+ j f_i. 

i-Oj-=0 

0 

Proof. Multiply both sides of the equation by (N- f-I). The left-hand side is 

then equal to q (f-)·!. The right-hand side is 
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l-1 l-i -1 
(- E E Ni qi+l+j>J). (->-I+ N) 

i-oj-o 

l-1 l-i-1 l-1 l-i-1 . '+1 '+1 . == E E NJ qi+l+j>..• - E E NJ qi+l+j>-.
1 

i-0;'-0 i-Oi-0 

l-i l . 
== I ql >..l + E I qi >..i - E N J qj 

i-1 j-1 

l . 
== q (>..)·I- E NJ qj == q (>..)·I. 

i- 0 

l . 
(Note that E N J qi = 0 by the Caley-Hamilton theorem.) The lemma 

i- 0 

is proved for q (>..) + 0 . Since the matrix coefficients of both sides of the 

equation are polynomials in >.. , the lemma holds for any >.. . 

Lemma 6.3.3. [p0 , ... , Pt+lV == C· [qo, ... , ql V, 
where 

i.e. 

Po 

0 ' j-i < -1 
-1 

a 
-RN i-i-18 

' i-i = -1 

' i-i == 0 

' j-i > 0 

a -RS -RNl-l 

-1 a -RNl-2 

= 
0 0 a 
0 0 -1 

D 
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Proof. For l = 0 the claim obviously holds. Let l > 0 . By lemma 1 and 

lemma 2, 

p (>.) == [1, >., ... , >.1+1 ] · [p0 , ... , Pl+ljT = det(M- >.I) 

= (a->.)· det (N- >.I)+ R · adj (N- >.I)· S 

The lemma is proved. 

Notation. Let A== [Aii ] 0 ::; i < n be an n X n 

t M= [ Aii] o < i < t ' 
o:gi<l 

1 a = Au , l E [ 0, n J , i.e. 

0$ i <n 

l+1M= [ :~ :~], .M-A. 

matrix. 

[J 

Let 

and 

Let 1 C and 1 C , l E [ 0, n-1], be, respectively, (l+2)X (l+l) and n X n 

matrices: 

l C··= lj 

0 ' j"-i < -1 
-1 

la 

-~R tM i-i-llS ' 

j-i == -1 

j-i == 0 

j-i > 0 
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{ 
1Cii , i < l+l and i < l 

10iJ = 0 , else 

Let 1c;, lE [O,n-1], i E [O,l+l], be the i-th coefficient of the charac-

teristic polynomial of matrix l+lM , i.e. 

l+l . 
~ 1ci'A' = det( l+lM- 'AI), 
i- 0 

where I is the (l+l)X (l+l) identity matrix. The operator IT denotes 

matrix multiplication "from the leftn: 

b 
IT Ni = Nb · Nb-1 · · · · ·Na 
i- a 

Theorem 6.3.1. 

l 
- ITmC ). 

m-o 

Proof. The lemma holds for l = 0: 

[oco,ocl]T = [~:] = oC = IT mC . 
m-0 

By lemma 3, 

for l > 0 . The claim follows by mathematical induction. 

Lemma6.3.4. (V i,i,l E [O,n-1]) 

Proof. It is easy to see that 

i = 0 < i < l + 1 < n and i < n 

, else 

D 



- 64-

l 
IT me= for l = 0, 1, ... , n-2 , 

m-o 

where 0 is the zero matrix of appropriate size. The claim follows from the 

l 
theorem applied to the first column of the matrix IT m C . When 

m-o 

l 
l = n -1 , the last element (row) of IT m C is not used. 

·m-o D 

6.4. GCD algorithm 

We assume that o(a) = n = 2q > o(b). This restriction is not critical: If 

8 (a) is not a power of 2, both polynomials a , b can be multiplied by 

x 2'-o(a), where q = rlogo(a) 1. Then the resulting gcd is divided by the 

same amount. This can be easily achieved by a simple shift in the arrays of 

coefficients. 

The matrix GCD formula of theorem 6.2.1 implies the following algorithm 

for the gcd( a, b): 

Algorithm GCD 1: 

1. Construct V0 X 0 - U0 Y0 • 

2. Compute det( V;X;- U; Y; ), i E [O,n-1]. 

3. Find k = min { i I det ( V; X; - ui yi ) =F 0 } . 

4. Compute ( Vk Xk - Uk Yk t 1 • 

5. Compute [ 0, ... , 0, 1, Pk-l' ... , p 0JT = 
[ the first n-k columns of (V0 X 0 - U0 Y0 )] · 

[ the last column of ( vk xk - uk yk t 1 ] • 



- 65-

Note that the algorithm is similar to that of Borodin-von zur Gathen-Hopcroft 

(1984). However, the structure of the matrices is different. The last step of the 

algorithm yields the coefficients of the gcd ( a, b ) : 

gcd(a, b)(>-.)= [ )._n-l, xn-2, ... , 1] · [ 0, ... , 0, 1, Pk-1, ... , Po]T · 

Note: If required, the polynomials f and g, gcd (a, b) = fa+ gb , can be 

computed as 

J(>-.) = [ >-.n-k, >-.n-k-l, ... , 1] · (-Yk) · (V~cXk -Uk Yk t 1 · Ek and 

g (>-.) = [ >-.n-k, >-.n-k-1, ... , 1] · xk-1 · (VkXk -Uk Yk t 1 · E~; · 

Let A = nM = (V0 X 0 - U0 Y0 ). Using the notation from section 6.3, the 

algorithm reads: 

Algorithm GGD 1: 

1. Construct A = nM. 

2. Compute det l+lM = le 0 , l E [ 0, n-1]. 

3. Find l * = max { l I le 0 =F 0}. 

4. Compute t•+ 1M-1 . 

Using the matrix formula for characteristic polynomials from theorem 6.3.1 and 

lemma 6.3.4, we replace step 2 by 

2'.1 Compute 1R 1Mk 1S, k E [0, l-2], lE [0, n-1]. 

2'.2 Construct 1Gii, i E [0,1+1], j E [O,l), lE [O,n-1]. 

l 
2'.3 Compute tCi = ( IT me )i ' i E [0, 1+1], lE [O,,n-1]. 

m-o 
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Coefficients 1·ci, iE[O,l*+l], are then used to compute 1·+1lvf-1 by the 

Caley-Hamilton theorem: 

t• +1 
t•Co. t•+lAf-l = E z•Cm . t•+ll\l[m-l = 

m-1 

[
N O' lk+l [Nk+l O' l 
W O" = WNk 0 6 ' 

t• 
E t•Cm+l · t•+llvfm -

m=O 

where O', 0 1 are the zero matrices of appropriate sizes. Thus, steps 4 and 5 can 

be replaced by 

[
N O' lk+l 

4'. Computez·i:+1 = w O" ,kE[o,t*]. 

5'. Compute [ 0, ... , 0, 1, Pn-l·-1 , ... , PoJT -

I • 
[ the l * -th column of E -(1·cm+lft•C 0) Z m+l ]. 

m-o 

Step 2' .1 seems to reg.uire 0 ( n 2 ) matrix multiplications, i.e. 0 ( n a+2 ) 

processors. However, a simple divide-and-conquer technique can be used to 

reduce the required number of processors. The basic idea for the "conquer" step 

is to compute {tl'vfk 1S }o::; k < x2 by the block-matrix formula: 

L i\1 ix + 1 t S ] o < i < x = L 1\1 ix ] o < i < x · L .ivf 1 1 S J o == k · 
o<:j::;x O==k O<j$;x 

Each "conquer" step quadratically decreases required number of processors but 

increases computation time. It is easy to see that the tradeoff can be controlled 

by a constant c > 0: 

E 

TllvfE 
------- :::::: const. 
PROCESSORS 



1\.fAX ; { step 3 } 

INV ; { step 4' } 

RES ; {step 5' } 

where 

JNIT 
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{ ai }i, { bi }i --+- A --+- {tlYf }t 

PWRA 
{t.LVf }t --+- {t i\tf h }h, l 

PWRB 

{ h 2"} --+- tAl h, t 

CIJ 

{riVIk tB h, 1 _.... {t c h 

m=O 

RES 

nj'vf' {t•Ck h' {zk h - {Pt }t · 

The implementation and verification of the subroutines is shown in 

chapter 7. It is easy to see that all subroutines run in 0 ( log2n) time. Since 

h E [ 0, 2r ] and i, J, k, l E [ 0, 2q ] , the address of a processor contains r +i + y· +k +l 

bits. Therefore, the algorithm requires 24 q+r = n 4+t processors, where 
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Chapter 7 

Subroutines 

In this chapter we present CUBE-feasible version of the subroutines that 

were introduced in the end of section 6.4. We develop an axiomatic verification 

system for CUBE-feasible algorithms and apply it to our subroutines. 

Suppose we have a CUBE of size n 4+E = 249+r . The processor address 

consists of five fields, h, i, j, k, l , with r, q, q, q, q bits, respectively. We will 

omit the separating commas in the address. When not specified otherwise, 

indexes have their the default ranges, which are [ 0, 2r -1] for h , and [ 0, 29-1] 

for i, j, k, l . All subroutines use two registers, A , B , per processor. 

We extend the notion of CUBE-feasibility to algorithms decomposable into 

subroutines that are of type ASCEND or DESCEND on the sheaves of h, i, j, k 

or l , or that access no sheaves at all. Since the majority of the loops work for 

both ASCEND and DESCEND orders, we replace "for m= 0 to 2g -1 do" or 

"for m = 29-1 down to 0 do" by "for mE [ 0, q -1] do ", whenever possible. 

For practical reasons, we also allow an access of a single sheaf between two for-

loops. It should be clear, however, that the algorithms still can be efficiently 

simulated by a CCC or a PERFECT SHUFFLE. 

Each subroutine is presented in three parts: 
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1. The algorithm, which is a sequence of steps or a loop. 

2. The set of input ( P ), output ( Q ) and intermediate ( {AS; } i > 0 ) 

assertions. Each assertion is a predicate about the contents of 
processor registers. 

3. The proof of correctness, which is an application of the basic ax­
ioms and lemmas to the set of assertions. 

7 .2. The method of program verification 

The standard Hoare's formalism [Hoare (1969)] is used here to verify the 

CUBE algorithms. The verification of a statement S has the form: 

{ precondition } S { postcondition }. 

The program is correct i:ff 

{input condition } program { output condition}. 

To infer the program correctness, two rules of inference are used. 

Sequencing: {P}S{R}, {R}T{Q} 
{P}S;T{Q} 

Looping: 

7 .2.1. Axioms 

P~R0 , {R;} Si {Ri+1}, Rd~ Q 
{ p} for i = 0 to d-1 do si { Q} 

The following two axioms suffice for our proofs. 

Al. (Assignment). 

{ A(p)= x(p),B(p)== y(p), ... } 

A(p)+-c (p,A(p),A(p(m)),B(p),B(p(m)), ... ) 

{ A(p)= c (p,x(p),x(p(m)),y(p),y(p(m)), ... )} 
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Justification. The new contents of register A of PE (p) is the result of the 

function c (·) applied to the previous contents of the registers of PE (p) and 

its neigh bors. 

A2. (Data transfer). 

{ A (p ) = x (p) } 

A(p)+-A(p(m)), (Em(P)= 0) 

{ A(p)= X(P>m+l2m+l+(Pm Ef> Em(P))2m +P<m)} 

0 

Justification. If em (p) = 0 , data are transferred along sheaf m , i.e. from 

PE(p~ to PE(p), where p1 == p(m) -

P2:m+l2m+l+(Pm Ef> Em(P))2m +P<m . If Em(p)= 1, data do not move, 

Le. are "transferred" from PE (p~ to PE (p) , where p1 == p = 

p~ m+12m+l+( Pm Ef> Em(P) )2m + P<m . (Note: X EB y = (x+y )<2 for 

X, y E [ 0, 1] ). 0 

7 .2.2. Lemmas 

The following technical lemmas describe the results of some common assign­

ments and loops. Lemmas 1-8 are straightforward. Lemma 9 describes a shift of 

adrresses by a constant d. Lemma 9 is equivalent to lemma 3, which uses a 

different notation that simplifies the proof. Lemmas 1-2 are used by lemma 3. 

Ll. Let d > 0. 

{ A (p) = x(p) } 

A (p) +-A (p(m)), (Pm= dm_t) 
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{A(p)= X(P;:;:m+12m+l+dm-t2m+P<m)} 

Proof. By A2 with Em(P) = Pm Ef> dm-t · 

L2. Let d > 0. 

{ A (p) = x(p) } 

for mE [t, s+t-1] do A(p )+-A(p(m)), (Pm== dm-t) 

{ A(p )= X(P;:,::.Ht 2s+t +d<s 2t +P<t)} 

Proof. From L1 by mathematical induction. 

L3. Let k be any integer. Then 

{ A (p) = x(p) } 

A(p )+-A(p(m)), (Pm= Pm+k) 

{ A(p)= X(P;:;:m+12m+l+Pm+k 2m +P<m)} 

Proof. By A2 with Em (p) = Pm Ef> Pm+k · 

L4. Let k ~ [0, s-1]. Then 

{ A (p) = x(p) } 

for mE [t, s+t-1] do A(p )+-A(p(m)), (Pm= Pm+k) 

{ A (p) = x( P;:: s+t 2s+t + (P;:: t+k )< 8 2t + P <t) } 

Proof. From L3 by mathematical induction. 

Lo. 

{A (p) = x(p) } 

A (p) +-A (p (m)) 

{ A(p )= X(P!;:m+l2m+l+ Pm 2m +P<m)} 

0 

0 

0 

0 
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Proof. By A2 with Em (p) = 0. 

L6. 

{ A (p) = x(p) } 

for mE [t, s+t-1] do A(p) +-A(p(m)) 

{ A(p )= x(p~s+t 2s+t +(2m-1-(P~t)<s )2t +P<t)} 

mathematical induction. 

L7. Let 0 be an operation. Then 

{ A (p) = x(p) } 

A(p )+- A(p) 0 A(p(m)) 

{ A(p )= x(p) 0 x(p(m))} 

Proof. By Al with c (p,A(p),A(p(m))) = A(p) 0 A(p(m)). 

L8. Let 0 be an associative operation. Then 

{ A(p)= x(p)} 

for mE[t,s+t-1] do A(p)+-A(p) 0 A(p(m)) 

{ A(p)= 0 X(P>a+t 28 +t +i2t +P<t)} 
i E [0, 2' -1] -

Proof. From L7 by mathematical induction. 

L9. Let d > 0 .. 

{ A(p)= x(p)} 

for m= t to s+t-1 do 

D 

D 

D 

D 
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Note: 

is equivalent to 

which is equivalent to 

_ { 1 , (P<m~t < d<m-t 
dm-t Ef> lm = 1' lm t - ( \ > d 

- 0 ' P<mJ?!t _ <m-t 

Proof. L9 is equivalent to the lemma 3 with 

'= P~s+t' 0 

The only purpose of the following lemmas is to provide a proof for L9. 

Lemma 1. Let d, j, m > 0 . Then ( j - d ) mod 2m = ( j <m - d <m ) mod 2m . 

Proof. ( j -d )mod2m 

= ( ( i~m -d~m )2m + j <m -d<m )mod2m 

= ( { ( i~m -d~m )2m )mod2m + { j <m -d<m )mod2m )mod2m 

0 

Lemma 2. Let d, j, m > 0. Then 

Proof. Using lemma 1, 
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( j -d )mod2m+l 

= (J.<m+Cd<m+l)mod2m+l 

= ( ( ( im -dm )2m )mod2m+l + ( j <m-d<m)mod2m+l) mod2m+l 

= (((jm-dm)mod2)2m +'1'm2m +(i<m-d<m)mod2m)mod2m+l 

LemmaS. Let d,i,k>O,jE[0,28 -l]. Then 

{ A(i,j,k) = x(i,j,k))} 

for m= 0 to s-1 do A( i,J·, k) +-A( i, j(m),k ), ( dm EB'I'm = 1) 

{ A ( i, j, k ) = x ( i, (j -d) mod 28
, k ) }, 

{ 
1 , i<m < d<m 

· where 'I'm = . > d 
0 ' J<m- <m 

Proof. For a given step, assume 

Abejore( i, j, k) = x( i, i~m 2m +(j-d)mod2m, k). 

By A2 with Em (p) = dm EB 'I'm , 

A after ( i' j' k) 

= Abefore ( i, j~ m+l2m+l + ( im EB dm EB 'I'm) 2m + j <m' k) 

= x( i, i~m+12m+l+( im EB dm EB 'I'm )2m + i<m, k) 

By lemma 2, 

The claim follows by mathematical induction. 

0 

0 
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7 .3. Program GCD 

Using intermediate assertions, program GCD from section 6.4 reads: 

Algorithm 7.3.1. 

Program GOD: 

!NIT; 

for c == 0 to r q fr l-1 do begin 

if c == 0 then PWRA else PWRB ; 

DAC; 

end; 

{AS5} 

CIJ; {AS6} Cl; {A~} MAX; {AS8} PWRC; {AS9} RES; 

{AS10} 

Assertions. 

p _ {A(h~J:kl)= akZ'+l , (h=i=J=OandO<k2q+l<2q= n) 

B(htJkl) = bk Z'+l , ( h = i = J. = 0 and 0 < k2q+l < 29 = n) 
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Assertions AS0 · • • AS10 are the preconditions (postconditions) of the procedures 

that follow (precede) them. 

Theorem 7.3.1. { P} GCD { Q }. 

Proof. Let "{!NIT}", "{PWRA}", ... be an abbreviation for "Theorem 

7 .4.1 ", "Theorem 7 .5.1", ... . Then 

{!NIT} 
P = AS 0 > AS 1 > AS 2 o ; 

I 

{PWRA} {DAC} 
AS 2 0 ::::::S> AS 3 0 > AS 4 0 = AS 2 1 ; 

I I I 1 

{PWRB} {DAC} 

(V c E[l, rq/r l-1]) ASz,c ::::::S> ASa,c ::::::S> AS4,c = ASz,c+l; 

{ C/J} { C/} {MAX} {PWRC} {RES} 

AS 2, f q 1 r 1 > AS 5 ::::::S> AS 6 ==> AS 7 > AS 8 ::::::S> AS 9 ==> 

AS 10 = Q • 

Using the rules of inference from section 7.2., 

{P} GCD { Q }. 0 

7 .4. Subroutine !NIT 

Subroutine !NIT computes entries of matrix (V0 X 0 - U0 Y0 ). The input con-

sists of the coefficients of polynomials a, b loaded in the lowest 2q addresses. 

The output consists of_ values (V0 X 0 - U0 Y0 )ij. These two conditions are for-

malized in assertions P and Q, respectively. Let ax = bx = 0 for x out of 

range, i.e. x ~ [ 0, 2q ] . 

Algorithm 7.4.1. 



Subroutine !NIT: 

A(hijkl) -+-0 , ( k 2q +l > 2q ) ; 

B(hijkl) +-0 , ( k 2q +l > 2q ) ; 

{AS1} 
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{
A (hijkl) +-A (hij(m)kl) 

for mE 0 -1 do 
[ 'q ) B(hijkl) +- B(hi§(m)kl) 

{
A (hiJ'kl) -A (hi(m)J·kl) 

for mE 0 -1 do 
[ 'q ] B(hijkl) +- B( hi(m)J'kl) 

{
A (hijkl)-+- A ( h(m)ijkl) 

for mE 0 r-1 do 
[ ' ] B(hijkl)-+- B(h(m)ijkl) 

' ( im = 1) i 

' ( im = 1) ; 

' (im = 1); 

, ( im = 1) ; 

, ( hm = 1); 

, ( hm = 1); 

{
A(hijkl)+-A(hijkl(m)) , (l<m< i<m+l < 2m+l<m ); 

for m =Oto q-1 do 
B(h;J'kl) -B(h;J·kz(m)) ( l · < 2m+ l ) • • ' <m< ~<m+l- <m ; 

{AS3} 

A(hijkl)-A(hijk(0)l) , (l<i); 

B(hijkl)-B(hijk(o)z) , (l>i); 

{AS4} 

{
A(hijkl)+-A(hij(m)kl) , (Jm= im andk= 1); 

for mE [0, q-1] do B(h;J'kl)+-B(h;J·(m)kl) -• • , ( im = im and k = 0) ; 

{AS5} 

formE[O,q-l]do {A(hiJ'kl)+-A(hijkl(m)), (k=O); 
B(hijkl)+-B(hijkt(m)) , (k= 1); 
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A(hi'kl)~{A(hijkl)·B(hijkl), (k=O); 
J B(hijkl) ·A (hijkl) , ( k = 1) ; 

{AS7} 

A(hijkl)~A(hijk(0)l)-A(hijkl); 

{AS8} 

for mE [ 0, q -1] do A(hijkl) ~A (hUkz(m)) +A(hijkl) ·; 

{AS9} 

for mE[O,q-1] doA(hijkl)~A(hijk(m)z), (km= 1); 

{AS10} 

Assertions. 

p _ {A(h~J:kl}= akZ'+l , (h=i=j=OandO<k21f+l<2q= n) 

B(hzJkl)= bkZ'+l , ( h = i = j =0 and o< k21f+l < 2q = n) 

Q - A(hijkl) = (V0 X 0 - U0 Yo)ij 

AS 0 - P 

AS 1 -

AS 2 -

AS 3 -

AS 4 -

{
A(hijkl)= ak2'+l , (h=i=j=O) 

B(hijkl) = b~~: Z'+t , ( h = i = j = 0) 

{ A(h~J~kl)= akZ'+l 

B(h~Jkl) = bk 2,+1 

{
A (h~J~kl) = ak 2'+(l-i)mod2' 

B(h~Jkl) = bk 2'+(l-i)mod2' 

A(hijkl)= {a,~ , (k=O) 

a 2'+1-i ' (k= 1) 

B(hi;'kl)= { b 2'+1~ ' (k= 0) 

bl . ( k = 1) -I ' 



ASs 

AS 6 
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A(hijkl)= 
{ .,_, ' (k= 0) 

a Z'+l-f ' (k= 1) 
-

{ b 2'+1-j ' (k= 0) 
B(hijkl)= 

bz . ' (k= 1) -I 

A(hijkl)= {a 2'-J-1-1 ' (k= 0) 

a 2'+l-f ,(k=1) 
-

{ b 2'+1-j ' (k= 0) 
B(hijkl)= 

bz'-1-l-i ,(k=l) 

{ 
a 2'-I-l-i b Z'+l-f ' ( k = 0) 

- A(hijkl)= 
b 2'-1-l-i a 2'+l-f ' ( k = 1) 

- A (hijkl) = a 2'-1-l-t" b 2'+l-f - b 2'-I-l-i a 2'+1-f ' ( k = 0) 

2'-1 

ASg - A(hiJ.kl)= :E a2'-1-x-i b2'+x-j- bz'-1-x-i a2'+x-j 
X- 0 

= (V0 X 0 -U0 Y0 );1 , (k=O) 

AS 10 = A(hijkl) = (V0X 0- U0 Yo)if 

Theorem 7.4.1. { P} !NIT { Q }. 

M U U M U 
Proof .. P = AS 0 > AS 1 > AS 2 > AS 3 > AS 4 > ASs 

U M U U U 
> AS 6 > AS 7 > AS 8 > AS 9 > AS 10 = Q . 0 

7 .5. Subroutine PWRA 

Subroutine PWRA computes powers of the (symmetric) matrices { 1M},. 

The input consists of the coefficients 1Mij , ( i, J. < l ), the output consists of the 

coefficients 1Mi}, ( i, j < l ). Note that for nM = (V0 X 0 - U0 Y0 ) and £, j < l 

the output assertion of subroutine !NIT is equivalent to the input assertion of 
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P'WRA. 

Algorithm 7 .5.1. 

Subroutine PWRA: 

B(hijkl) -+-A(hijkl) ; 

{AS1} 

for d = 0 to r-1 do begin 

for mE[O,r-1] do B(hijkl)-+-B(h(m)ijkl), (m< d and hm= 0); 

for mE [ 0, q-1] do B(hijkl)-+- B(hi(m)jkl) , ( im = km) ; 

B(hijkl) ,.._ { A
0 

(hi2"kl) · B(hijkl) , ( j < l ) ; 
'(j>l); 

for mE [ 0, q -1] do B(hijkl)-+- B(hijkl) + B(hij(m)kl) ;· 

for mE [0, q-1] do B(hiJ"kl)-B(hijk(m)t) , (km= Jm); 

A(hijkl)-B(hijkl) , ( hd = 1 and i, j < l); 
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sh 2 _ 7 5 

end; 

for m= 0 to r-1 do A(hijkl)+-A(h(m)ijkl) , (h<m = 0); 

{AS10} 

A (hijkl) +- { 

0
1 , ( i = J. and h = 0 and i, j < l) ; 

, (i:;f j and h= 0 and i,j < l); 

Assertions. 

Note: Predicates about values that (trivially) do not change in the assignments 

are omitted from the intermediate assertions. 

P = A(hijkl)= tMij , ( i, j < l) 

Q = A(hijkl)= { 
t Mi~ , ( i, i < l ) 
unchanged , else 

AS 0 - P 

AS 1 - A(hijkl)=B(hijkl)=tMij ,(i,J'<l) 

ASz,d - { A(hijkl)=tMi~«+l, (i,j<l) 

B(hijkl)= tMir , (h<d = 2d-1 and i, j < l) 

AS 3, d - B(hijkl)= tMi]" , ( i,;' < l) 
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ASs,d 

x-0 

ASsd -
I 

{

A(hiJ.kl)= tMif+h<d+l+l , ( i,} < l) 

B(h . "kl) M zil+h<•+l+l_ M z•+l (h 2d+l 1 d .. < l) tJ =z ij -z ij ' <d+I= - an t,J 

AS 9 = A(hiikl) = 1Mi~+l , ( i,} < l) 

AS 10 - A(hi}kl)= zMijh-l)mod2'+1, ( i,} < l) 

{

llij , (h=Oand i,}<l) 
AS 11 = A(hiikl) = h . . 

1 Mij , ( h > 0 and t ,J < l ) 

Theorem 7 .4.1. { P} PWRA { Q }. 

AI 
Proof. P == AS 0 ====$> AS 1 > AS 2 o ; 

' 
L2 L4 Al L8 

( 'v' dE [ 0, r -1] ) AS 2, d ===:> AS 3, d ===:> AS 4, d ===:> ASs, d ===:> 

L4 Al 
AS 6 d > AS 7 d > AS 8 d = AS 2 d + 1 ; 

I I I I 

L9 Al 

AS 2 r > AS g ====$> AS 10 > AS 11 = Q 
I 

0 

7 .5. Subroutine PWRB 

Subroutine PWRB computes powers of the (symmetric) matrices { zM 2" }1 • 

from powers of the matrices { 1M
2

'c-r } 1 • The input consists of the coefficients 

zMi' 2"·', ( i, j < l ), the output consists of the coefficients 1 Mi~ 2", ( i, i < l ). 
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Note that PWRB does not alter A(hijkl) fori> l or j > l. 

Algorithm 7 .5.1. 

Subroutine PWRB : 

B(hijkl)+-A(hijkl) ; 

{ASJ 

ford =0 to r-1 do begin 

for mE [ 0, q-1] do B(hijkl) +-B(hi(m)jkl) , ( im = km) ; 

B(hijkl) +- { A
0 

(hijkl) · B(hijkl) , ( j < l ) ; 
'.(i>l); 

for mE [ 0, q-1] do B(hijkl) +-B(hijkl) + B(hij(m)kl) ; 

for mE [0, q-1] do B(hijkl)+-B(hijk(m)z) , (km= Jm); 

A (hiJ.kl) +- B( hijkl) , ( hd = 1 and i, j < l) ; 

end; 
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Assertions. 

{ 

1 M;~ 2" , ( i, j < l ) 
Q 5 A (hi;'/cl) = else unchanged , 

AS0 - P 

AS 1 - A(hijkl)= B(hijkl)= zMi~ 2"""', (i,j < l) 

AS 2, d - A (hij/cl) = B(hijkl) = 1Mi; 2"""'+' , ( i, j < l) 

As B(h . 'kl) M.h. 2,. ...... , · M~ 2"...,+~ ( . . k < l) 
4, d - ~J = l lJ l Jk ' 't ,J' 

ASs d - B(hijkl) = tMii zrc-r+d+l , ( i, k < l) 
' 

AS 6, d - B(hijkl) = tMi; 2'"'"'+<~+l , ( i, j < l) 

AS1,d - A(hijkl)= B(hijkl)= 1Mi'z••-•+t-..l, ( i, j < l) 

AS 8 = A(hijkl)= 1Mi~ 2" ,(i,j<l) 

Theorem 7.5.1. {P} PWRB { Q }. 

Al 
Proof. P = AS 0 > AS 1 = AS 2 0 ; 

' 

u ~ u u 
( V d E [ 0, r -1 ] ) AS 2, d > AS 3, d > AS 4, d > ASs, d => 

Al 

AS6,d > AS7,d = ASz,d+l; 

AS 2 r > ASs = Q . 
I 

0 
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7.7. Subroutine DAC 

Subroutine DAC multiplies matrices { M h zrc} 
l h, l by vectors 

{ tM"<'"tS h,l, for any l. The input consists of the coefficients 1 Mi~zrc, 

( i, j < l ), and (1M"<•• 1S )i, ( i < l ). The output consists of the coefficients 

(tM"<rc+r lS )i, ( i < l ). 

Algorithm 7. 7 .1. 

Subroutine DA C : 

B(hijkl)-A(hiJ'kl) ; 

{AS1} 

for mE[O,q-1] do B(hijkl)-B(hiim)kl), (jm= lm); 

{AS2} 

B(hijkl) _ { A
0 

(hijkl) · B(hijkl) , ( i, j < l) ; 
, else ; 

{AS3} 

for mE [ 0, q -11 do B(hijkl)- B(hijkl) + B(hi(m)jkl) ; 

{AS4 } 

for mE[O,r-1] do B(hijkl)-B(h(m)ijkl), (hm= krc+m); 

{AS5} 

for mE[O,q-1] doB(hijkl)-B(hij(m)kl), (jm= im); 
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A(hiikl) .... B(hiikl), (i< land i= l); 

Assertions. 

{ 
tMi; 2" = tMft 2

,. , ( i, J < l) 
P - A (hijkl) = 

(1Mk<•• 1S)i ,(i<landJ=l) 

{ 

(1Mk<rc+r 1S )i , ( i < l and j = l) 
Q = A(hii~l) = unchanged else 

AS 0 - P 

AS 1 - B(hiikl)=(1M"<" 1S)i ,(i<l andj= l) 

AS 2 - B(hijkl) == (,Mk<•• ,s )i , ( i < l) 

AS 3 -

AS 4 -

AS 5 = 
AS 6 -
AS 7 -

{l
MA 2"·(1Mk<" 1S)· , (i,j<l) 

B( hijkl) = 
0 

J• ' 
, else 

B(hijkl) = (1Mh 2"+k<,. 1S )1 , ( i < l) 

. B(hiJkl)= (tM(k<rc+r~rc2"+k<,.lS)j = (,Mk<rc+r lS)j '(J< l) 

B(hijkl)== (,Mk<rc+r ,S)i , (i< l) 

A(hiJ.kl) = (1Mk<rc+•lS)i ,(i<l andj=l) 

Theorem 7.7 .1. { P} DAC { Q }. 

M U M ~ U 
Proof. P = AS 0 =S> AS 1 =S> AS 2 > AS 3 > AS 4 > AS 5 

U Al 
> AS 6 =S> AS 7 == Q . 0 
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7 .8. Subroutine CIJ 

Subroutine GIJ computes entries of the matrices { 1 G }z . The input consists 

of {1M* 1Sh,t· The output consists of { 1G}1 for h=O, and 11 M = 

Algorithm 7 .8.1. 

Subroutine GIJ: 

for m E [ 0, q -1] do A (hi }kl) +-A ( hijkt(m)) , ( h > 0 and lm = I ) ; 

for mE[O,q-1] doA(hijkl)+-A(hi;'(m)kl), (h=Oand im= lm); 

B(hijkl) +- A(hijkl) ; 

{AS3} 

for mE [ 0, q -1] do B(hi}kl) +- B(hijk(m)z) , (km= 1) ; 

{AS4} 

B(hiikl)-- {Bo (hijkl)·A(hijkl) , (i < j); 
,(i>j); 

{AS5} 

for mE [ 0, q -1 J do B(hijkl) +- B(hijkl) + B(hi(m);'kl) ; 

{AS6} 

B(hijkl)+-0, (k ::fo j-i-1); 



{AS1 } 

for mE[O,q-1] do B(hiJ'kl)-B(hijkl) +B(hijk(m)z); 

{AS8} 

for mE [ 0, q-l J do A(hijkl)-A(hi(m)jkl) , ( h . 0 and im == Tm); 

-1 , ( j-i == -1 and i < l+l and j < l and h = 0) 
A(hijkl)- -B(hijkl) , ( J·-i > 0 and i < l+l and j < l and h = 0) 

0 , ( ( j-i < -1 or i > l+1 or j > l) and h = 0) 

Assertions. 

nMij , (l= 0); 

P - A(hijkl) = (1Mk 1S)i (i <land j= l); 

1a ,(i,j=l); 

{ 

nMij , ( h > 0) ; 
Q = A(hijkl) = 

, cij , ( h = o) ; 

AS 0 = P 

l 
nMij , ( h > 0) 

AS 1 - A(hijkl) = (1Mk 1S )i ( i < l and j = l and h = 0) 

1 a , ( i, j = l and h = 0) 

{ 

( 1Mk 1S )i , ( i < l and h = O) 
- A(hijkl) = 

la , ( i= l and h = 0) 

- B( hijkl) == ' { 

( lM k 1 S ) · , ( i < l and h = 0) 

1 a , ( i = l and h = 0) 

- B(hijkl)= 1Si = 1Ri , ( i < l and h = o) 
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AS 9 
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{
tRi·(zMktS)i , 

- B(hijkl) == 
0 ' 

- B(hijkl)= 1R tMk tS , (h = 0) 

( i < l and h = 0) 

( i > l and h == 0) 

. • _ { 1R 1Mi-i-1
1S, (k== j-i-1 and h= o) 

- B(h~Jkl) - (k . . d h 0) 0 , =I= J -z -1 an = 

= B(hijkl)= 1R lMi-i-llS , (h = 0) 

- A(hijkl)= 1a, (h = 0) 

AS 10 = A(hijkl)= tCij, (h= 0) 

Theorem 7.8.1. { P} ClJ { Q }. 

W U M U M 
Proof. P = AS0 > AS 1 > AS 2 > AS 3 > AS 4 > AS 5 

U M U U M 
==> AS 6 > AS 1 > ASs==> AS 9 > AS 10 = Q . 0 

7 .9. Subroutine Cl 

Subroutine Cl computes the characteristic polynomials of matrices {tM }z • 

The input consists of the (asymmetric) matrices { l C h . The out put consists of 

the coefficients { l c; };,l. 

Algorithm 7 .9.1. 

Subroutine Cl: 

ford =0 to r-1 do begin 

B(hijkl)+-A(hijkl); 
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for mE [0, q-1] do B(hi}kl) -+-B(hijkt(m)) , 

( ( m < d and lm == 0 or m == d and lm == 1 ) and h == 0 ) ; 

for mE [0, q-1] do A(hijkl) -+-A(hij(m)kl) , 

( im = km and la == 1 and h == 0) ; 

for mE [0, q-1] do B(hijkl)-+-B(hi(m)jkl) , ( im =km and h == 0); 

A (hijkl)-+-- A (hijkl) · B(hijkl) , (la= 1 and h == 0) ; 

for mE [0, q-1] do A(hijkl)-+-A(hijkl) + A(hijk(m)z) , 

( la == 1 and h == 0) ; 

end; 

{AS8} 

for mE [0, q-1] do A(hijkl) -+-A(hij(m)k[) , ( im = 1 and h = 0); 

Assertions. 

P - A(hiJkl)= 1Cii ,(h=O) 

_ {A(hijkl)= zci , (h = 0) 
Q unchanged , ( h > 0) 
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AS0 = P 

l<d 
AS 2,d - B(hijkl)= ( IT 1?. 42•+mC);j, (h= 0) 

m-o 

24-1 
AS3,d - B(hijkl)= ( IT b.tZ"+mC)ij, (h= 0) 

m-o-

AS4,d 

24-1 
ASs,d - B(hijkl)= { IT b• 2"+mC)kj, (h= 0) 

m-o-

AS6 d = A(hijkl) = 
) 

l<ll+l 

{ 
( IT bt~+t2"+1+m C )ij 
m-o-
l<tl+l 24-1 

( IT ba+12
4+1+m C )ik · ( IT l>a+12&+1+m Chi 

m- 24 - m- 0-

l<ll+l 
AS 1, d - A(hijkl) = { IT b.t+12HJ..rm C );j , ( h = 0) 

m-o-
l 

AS 8 - A ( hijkl) = ( IT m C )ij , ( h = 0) 
m-o 

l 
AS 9 = A(hijkl)= ( TI mC)iO= 1ci, (h= 0) 

m-0 

Theorem 7 .9.1. { P} Cl { Q }. 

Proof. P = AS 0 = AS 1 o ; 
I 

Al 12 14 14 
( '\{ dE [ 0, r -1] ) AS 1, d ?> AS 2, d > AS 3, d AS4d > 

I 
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Al L8 
ASs,d > AS 6,d > AS 1,d = AS 1,d+I; 

L2 
AS 1, r = AS 8 > AS 9 = Q . 0 

7 .10. Subroutine MAX 

Subroutine .MA.X finds the index l * of the largest nonsingular matrix 1M. 

The input consists of the coefficients { l c; } i, l • The output consists of 

Algorithm 7 .10.1. 

Subroutine MAX: 

{AS0} 

B(hijkl) +-- { 

0
z , ( h, i = 0 and A(hijkl) =F 0); 

, else) ; 

{AS1} 

for mE[O,q-1] do B(hijkl)+-max(B(hijkl),B(hijk(m)z)); 

{AS2} 

for mE [ 0, q -1] do B(hijkl) +-- B(hi(m)jkl) , (im = 1) ; 

for mE [ 0, r -1] do B(hi).kl) +-- B(h(m)iJ"kl) , ( hm = 1) ; 

B(hijkl) +--A (hiJ.kl) , ( h = 0) ; 

{AS4} 

for mE [0, q-1] do B(hijkl)+-B(hi(m)jkl) , ( im = 1 and h = 0); 
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{AS5} 

A(hijkl).--A(hijkl)/B(hijkl), (h= 0); 

{AS6} 

B(hijkl) .-. B(h(m)ijkl) , ( h = 0) ; 

{AS7} 

for m =0 to q-1 do A(hijkl).-A(hi(m)jkl) , ( i<m = 2m-1 and h = 0); 

{AS8} 

A (hiJ'kl) ._. { 
0

1 , ( i = 2q -1 and l = 2q -1 and h = 0) ; 
, (i= 2q-1 and l <2q-1 and h= 0); 

A (hijkl) .-o , ( l =fo B(hijkl) and h = 0 or l > B(hijkl) and h > 0) ; 

{AS10} 

for mE [ 0, q-1] do A (hijkl) .-.A (hijkl) +A (hijkl(m)) , ( h = 0) ; 

{AS11} 

for mE [0, q-1] do A(hijkl).-A(hi(m)jkl) , ( im =km and h = 0); 

{AS12} 

Assertions. 

P - A(hijkl) = 
nMii , ( h > 0) ; 

lci , (h=O); 

nMij , ( J. < l * and h > 0) 

Q -
A= 0 , ( j > l * and h > 0) 

-~·ck+dt•C o J ( h = 0) 

B= l * , ( h = 0) 
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AS 0 - p 

AS 1 - A (hiikl) = 
{ l , ( h , i - 0 and 1 c 0 + 0 ) 

0 , else 

AS 2 - B(hiikl) = max { l I l c 0=/: 0 } == l * , ( h , i == 0 ) 
lE [0,2' -1] 

AS 3 - B(hiikl)== l * 

{ l' , (h >O) 
AS 4 - A(hiikl) == 

l Cj (h = 0) 

AS 5 - A(hiikl) = {I' , (h>O) 
1c 0 , (h=O) 

{ •Mij , (h > 0) 
AS 6 - A(hiikl) == 

-lci ftc o (h==O) 

AS7 - B(hiikl)== l * 

AS 8 - A(hijkl) == 
nMij , ( h > 0) 

-lci+dtco , (h == 0 and i < 2g-2) 

nMii = Zii , ( h > 0 and i, i < l * ) 
0= Zii , ( h > 0 and i < l * and j > l * ) 
- 1·ci+dt•Co , (h= 0 and l= l*) 

AS 10 - A(hiJ'kl) = 

0 , ( h = 0 and l =/: l * ) 

AS 11 - A(hijkl)= - 1·ci+dz•c 0 , (h= 0) 

Theorem 7 .10.1. { P} .MAX { Q }. 
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M U U M U 
Proof. P = AS 0 > AS 1 > AS 2 > AS 3 > AS 4 > AS 5 

A1 Ll L9 Al Al L8 L4 

> AS 6 > AS 7 > AS 8 > AS 9 > AS 10 > AS 11 > 

AS12 = Q 0 

7 .11.· Subroutine PWRC 

Subroutine PWRC computes powers of the matrix Z. The structure of the 

subroutine is similar to that of PWRA. Unlike matrices { 1M }1 , matrix Z is not 

symmetric. 

Algorithm 7 .11.1. 

Subroutine PWRC: 

{AS0} 

B(hijkl) +-A (hiJ'kl) , ( h > 0) ; 

{AS1} 

for d = 0 to q-1 do begin 

for m E[O, q-1] do B(hiJ'kl)+-B(hijk(m)z), 

( m < d and km = 0 and h > 0) ; 

for mE [0, q-1] do A(hiJ'kl) +-A(hiim)kl) , 
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for mE[O,q-1] doB(hijkl)-+-B(hi(m)J'kl), (im= lm and h >O); 

B(hijkl)-+-A(hijkl)·B(hijkl), (h >O); 

for mE [ 0, q-1] do B(hijkl)-+-- B(hiJ'kl) + B(hijkz(m)) , ( h > 0) ; 

A(hijkl)-+-B(hijkl), (kd= 1 and h >O); 

end; 

Assertions. 

P - A(hijkl)= Zii, (h >O) 

Q = A(hijkl)= {Z;j+l '(h>O) 
unchanged , else 

AS 0 - P 

AS 1 - A(hijkl)= B(hijkl)= Zii , (h >O) 

{
A(hijkl)=Zi;<•+l, (h>O) 

B(hijkl)=Zi]d , (k<d=2d-landh>O) 

AS3d 
' 

_ B(hiJ'kl) = zi]" , ( h > o) 

AS4d 
' 
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ASs,d - B(hijkl)==Zzr ,(h>O) 

ASs,d - { A(hijkl)==Z;~<Hl+I , (h>O) 

B(hijkl) == Zi~<d-rl+I == Z.}
4
+

1 
, ( k<d+l== 2d+ 1-I and h > 0) 

AS 9 = A(hijkl) == Zi}+1 , ( h > 0) 

Theorem 7.11.1. { P} PWRC { Q }. 

Al 
Proof. P == AS o > AS 1 > AS 2 o ; 

I 

12 L4 14 Al 
( V' d E [ 0, q -1 ] ) AS 2 d =::::9 AS 3 d 

1 I 
> AS 4 d > ASs d ==9 

I I 

L8 Al 

AS6
1

d AS1
1

d =::::9 ASs
1

d == AS2,d+l; 

AS 2, q > AS 9 == Q . 0 

7 .12. Subroutine RES 

Subroutine RES computes the GCD coefficients. The input consists of 

powers of the matrix Z and the coefficients { z•Ck } k • The output consists of the 

GCD coefficients stored in the lowest ( n -l * ) addresses. The remaining registers 

are set to zero. 

Algorithm 7 .12.1. 

Subroutine RES : 
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B(hiJ'kl)+-B(h(0)iJ'kl), (h 0 = 1); 

{AS1} 

B(hiJ'kl)+-B(h(0)iy'kl), (h 0 = 0); 

{AS2} 

A(hiy'kl)+-A(hiy'kl)·B(hiy'kl), (h = 0); 

{AS3} 

for mE [ 0, q-1] do A (hiy'kl) +-A (hiy'kl) +A (hiy'k(m)z) , ( h = 0) ; 

{AS4 } 

B(hiy'kl)+-B(h(0)iy'kl), (h 0 = 0); 

{AS5} 

A(hiJ'kl)+-0, (B(hiy'kl)=F o or h =F o); 

{AS6 } 

for mE [ 0, q -1] do A (hiy'kl) +-A (hiy'kl) +A (hi(m)y'kl) ; 

{AS7} 

for mE [0, q-1] do A(hiy'kl) +-A(hi(m)ikl) , ( im = lm); 

Assertions. 

p = A(hiJ'kl) = l A(hijkl)= { ~:::~+1/,·co , 
B(hiJ'kl)= l*, (h= 0) 

(h > 0) 

(h = 0) 
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AS 0 - p 

AS 1 - B(hijkl)=l* ,(h=l) 

AS 2 - B(hijkl) = zj~+l , ( h = o) 

AS 3 - A(hijkl) = - 1·ck+IIz•c 0 · Z;}+1 , ( h = 0) 

AS 4 -
l • 

A(hijkl)=- 2:: z•Cz+l/z•C 0 · Zij+ 1 , ( h = 0) 
z-0 

ASs - B( hijkl) = l * 

{ ~; , ( j = l * and h == 0) 
AS 6 - A(hijkl) = else 

{ ~; , (h=O) 
AS1 - A(hijkl) = else 

{ ~~ , (h=O) 
AS 8 = A(hijkl) = , else 

Theorem 7.12.1. { P} RES { Q }. 

Ll Ll Al L8 Ll 
Proof. P = AS0 ~ AS 1 > AS 2 AS 3 ~ AS 4 , ASs 

Al L8 L4 
AS 6 ~ AS 7 AS 8 = Q. 0 



CONCLUSIONS 

As chapters 2 and 3 showed, there is a variety of models of parallel 

machines. The differences among them are deeper than the differences among 

sequential models. Unlike the sequential models, general theoretical parallel 

models are much more powerful than the existing real parallel computers. As a 

result of this situation, the parallel algorithms designed for general parallel 

models, such as P-RAM, usually do not have the same potential for practical use 

as their sequential counterparts. 

We discussed architectures of some more practical network machines and 

defined two classes of models, c:r-polynomial and c:r-exponential. We conjecture 

that c:r-exponential models are more powerful than u-polynomial models. We also 

presented algorithms that simulate ASCEND /DESCEND CUBE algorithms on 

the PERFECT SHUFFLE and the CCC. 

The algorithm of Borodin-von zur Gathen-Hopcroft (1984) provided the 

main idea for our CUBE-feasible polynomial GCD algorithm that works over 

arbitrary fields, runs in 0 ( log2n) time and uses n a+l+E, a == 3, processors. We 

presented a new matrix formula for the GCD of two polynomials and modified 

Berkowitz (1984) - Samuelson's (1942) formula for characteristic polynomials. 

The combination of both results allowed us to decrease the required number of 

processors by 0 ( n ). 

i 



We developed an axiomatic verification system for Cu'BE-feasible algorithms 

and used it to prove the correctness of our routines. 

The processor bound n He seems to be unrealistic. It is not. Restricted, reg­

ular architectures of some network machines allow parallel computer with a rela­

tively large number of processors to be built with current technology. Currently, 

220 processors on a CCC is implementable; a 230 processor machine is considered 

to be feasible [Wagner (1983), Duval, Wagner, Han and Loveland (1986)]. It is, 

however, desirable to decrease the required number of processors at least by 

another 0 ( n ). The following directions seem to be promising. 

1. Upper left principal minors of a matrix have closely related structures. 

Their simultaneous powering "should" require less than 0 ( n a+l+e) processors. 

Indeed, Berkowitz (1984) conjectured that only 0 ( n a) processors are necessary. 

2. The matrix (V0X 0 -U0 Y0 ) has a special structure: The (+)-displacement 

rank of the matrix with the reversed row order is 2. The (+)-displacement rank 

of any matrix is equal to the the (-)-displacement rank of its inverse [Kaliath, 

Kung and Morf (1979)]. This allows us to construct a sequential algorithm for 

the inversion of matrices with low displacement ranks [Bitmead, Anderson 

(1980)]. Some of these results might be applicable in parallel. 

3. Bini (1984) showed that matrices from a certain class, including upper 

triangular Toeplitz matrices, can be inverted in 0 ( log n) time using 0 ( n 2 ) pro­

cessors. The structure of our matrices is similar to that class, suggesting that 

similar techniques might be found for it. 

ii 
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