INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

A GIS Editor for a Database Programming

Language

YuLing Chen

School of Computer Science
McGill University, Montreal
March 2001

A Thesis Submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements of the degree of

Master of Science in Compater Science
Copyright © 2001 YuLing Chen

i~l

National Library Bibliothéque nationale
of Canada du Canada e
Mgm :ogrv‘:ees bi:li:'oraphiques
oo
Canade Canada
Your fle Vowe riidrerce
Ouwr e Nowe réideance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-70400-9

Canada

Abstract

Geographical Information Systems (GIS) have become a more and more important application of
database sysicms. Most general-purposc databasc systems do not contain a graphical display inter-
face which is indispensable in GIS applications. This thesis presents the design and implementation
of a GIS editor (Geditor) for a relational databasc programming language. It builds a graphical map
display interface into the database language and integrates a set of GIS functions.

Two interfaces are built in Geditor. One is with the database programmer and the other is with
the GIS End-User. The former interface implements a new syntax (gedit) into the database language
for the database programmer to call and display the Geditor GUL The latter implements a GUI with
the GIS End-User to view the map and perform a serics of fundamental GIS functions.

Geditor stores both spatial and non-spatial data in the relational database. The impiementation
utilizes the spatial capabilities of the relational databasc programming language to the largest ex-
tent. This demonstrates the feasibility and the simplicity of implementing GIS applications in an
integrated approach using relational databases. It also provides a flexible and extendable frame-
work by designing an extendable syntax and utilizing the event handler mechanism which is the
characteristic of active databases. Java, especially the JFC Swing package is used extensively in the

implementation.

Résumé

Les Systemes d’Information Géographiques (SIG) deviennent des applications de plus en plus im-
portantes des systéemes dc bases de données. La plupart des systémes de bases de données n'ont
pas besoin d"unc interface graphique utilisateur qui est pourtant indispensable pour les applications
des SIG. Ceue thése présente la conception et la réalisation d'un éditeur de SIG (Geditor) pour
un langage de programmation de bases de données relationnelles. Celui-ci intégre une interface
d"affichage graphique de cartes ainsi que certaines fonctionnalités des SIG au langage de bases de
données.

Deux interfaces sont construites pour le Geditor. Une est pour le programmeur de bascs de
données et I'autre pour I"utilisateur du SIG. La premiere interface implante une nouvelle syntaxe
(gedit) dans le langage de base de données pour que le programmeur puisse appeler et afficher le
GUI du Geditor. La demniére implante un GUI pour I'utilisateur du SIG pour qu’il puisse voir la
carte et utiliser une série de fonctionnalités fondamentales des SIG.

Le Geditor conserve les données spatiales et non-spatiales dans la base de données relationnelle.
L’implantation utilise au maximum de ses possibilités les capacités du langage de programmation a
traiter les données purement spatiales. Cette thése démontre le faisabilité et la simplicité de réaliser
des applications de SIG avec une approche intégrée utilisant les bases de données relationnells. Elle
apporte aussi un cadre flexible et extensible en concevant une syntaxe extensible et en utilisant un
mécanisme de gestion d'événements qui est la caractéristique des bases de données actives. Le
langage Java, et plus particuliérement le paquetage JFC Swing, sont utilisés de fagon extensive dans

cette implantation.

Acknowledgements

First and forcmost. [wish to express my gratitude to my supervisor, Professor Tim H. Merreut, for
his attentive guidance, invaluable advice. and continuous encouragement throughout the research
and preparation of this thesis. His carcful reading and constructive criticism makes this thesis better
and better. In addition. [am also grateful for his generous and constant financial support during this
program.

[would like to thank Ian Garton. an officcmate and friend. who helped me a lot in lab operations
and latex commands. [would also like to thank WeiZhong Sun for providing great information
and help in the jRelix implementation, cspecially the Event Handlers. I am also grateful to all the
secretaries and system staff for their continuous administrative help and technical assistance. Spe-
cial mention should be made of Lise Minogue, Franca Cianci, Lucy St-James, Tercsa De Angelis.
Andrew Bogecho. and Philippe Ciaravola.

Special thanks to Julien Mazloum. who translated the abstract to French. [also thank Delize
Williams. who did a great job in proofreading the thesis.

Thanks must go to my parents and brother for their endless love, support. and encouragement.
Without their guidance, teachings, and advices throughout my life, this thesis would not have been
possible.

Finally, I would like to send my appreciation to my husband, Hao Wu, for his love, encourage-

ment, and support during my studies.

To my parents, HongMing Chen and Ying Zhang,

for always encouraging me to pursue higher education

and to my husband, Hao Wu,

for studying with me and sharing the joy together.

Contents

1 Introduction 1
1.1 Relational Database System o e 3
1.1.1 RelationalModel 3

1.1.2 DataBase Programming Languages 5

1.1.3 ActiveDatabases 8

L14 jRelix e e 9

1.2 Overview of GIS capabilities 9
1.2.1 ImtroductiontoGIS 9

1.2.2 GIScapabilities e 10

1.3 Geditorfunctions e e e e e 3l

1.4 ThesisOutline 33

2 jRelix Overview 35
21 Declarations e e e e e 36
2.1.1 DomainDeclaration 36

2.1.2 RelationDeclaration, 37

22 Relational Algebra e e e 40
2.2.1 Assignment and Incremental Assignment 40

222 Relational EXpressionst 40

23 DomainAlgebra. e e 4
24 Computaltions ittt e e e e e e e e e e e e e e e e e e 48

CONTENTS i

25 Updates e e e e e e e e e e e e e 50
26 EventHandler e 51
26.1 NamingEventHandlers 52
26.2 DefininganEventHandler 53

2.63 EventHandlerOn/Off 53

264 PrintingEventHandlers 54

2.6.5 DeletingEventHandlers 54

3 User’s Manual for Geditor L]
3.1 Suarting and Exiting Geditor 56
3.1 SwartingjRelix 0L 56
3.2 MapRelation oL e 56

313 SwartingGeditor L e e e 58
3.1.4 Exiting GeditorandjRelix, 61

32 Layers i e e e e e e e e e e e e e e e e e e 61
321 AddLayer e e e e e e e e e e e 61

322 LayerConuol e e e 64

33 VW . . e e e e e e e e e e e e e e e e e 65
330 UniformLayer 65
332 ThematicMapping e e 69

333 RangeMap e e e e e 71
334 LegendEditor. 74

34 Query . .. e e e e e e e e e 76
341 IdentifyTool 76

342 ExpressionBuilder o o oL 77

343 SpatialQueries e e 81
344 ClearSelection 83

345 OpHoms e e e e e e e e e e e e 83

35 Help o e e e e e e e e e e e 83
36 EventHandlerforGeditor 84

CONTENTS iii

4 Geditor Implementation 87
41 Overview L e e e e e e e e e 87
4.2 Interface for the jRelix Programmer-User 88

4.2.1 jRelix System Architecutre L. 89
422 BuildingthegeditSyntax, 90
4.2.3 exccuteRelixCommand() algorithm 93
43 Interfaceforthe GISEnd-User 93
4.3.1 Geditorarchitecture e 94
432 GeditorController e 96
433 MapDisplay e e e 98
434 Layers. e e e e e e e e e e e 100
435 VIeW . . e e e e e e e e e e e e e 101
436 QUCTY e e e e e e e e e 105

5 Conclusion 110
S.1 Summary e e e e e e e e e e e e e e e 110
52 FutwreWork 111

5.2.1 Extension of the second attribute listof gedit 111
5.2.2 EnhancementofMapDisplay 112
5.23 Integraionofmore GIS functions 113
5.2.4 Issues of Time and Space in the Implementation 116
A Backus-Naur Form for gedit 117

Bibliography 121

List of Figures

Thematic Layers L . e e e e e
Query Window Generation
Spatial Query e e e e e e e e
Three Cases of “not strictly contained™
PointCounting e e
Buffering e
Two Phasesof Polygon Overlay
GeometricPhase L.
Polygon Overlay Operations in Arc/Info (Non-spatial phase)
Dissolve L e e e e e e

Different Charts e e e e e e e e e e e

Contentsof MapData e
Results of LayerName, MapAZ,and LargePop
Exampleofijoin e
Resultsof RandS.
Resultof Relaion T,

Resultof Relation R e e e e e e e e e

imtScreenof jRelix,

geditExample (1) e e

LIST OF FIGURES v

33

34

35

3.6

37

38

39

3.10
311
312
3.13
314
315
3.16
3.17
3.18
3.9
3.20
321
3.2
3.23
3.24
335
3.26
3.27
3.28
3.29
3.30
3.31

gedit Example (2) e e 59
geditExample 3) L. e 59
Geditor Window e e e e 60
Layers Menu e e e e e 61
AddLayerDialog e 62
Updated Map View Window after AddLayer 63
Layer Control dialogbox 64
Updated Map View after LayerControl 66
ViewMenu e e e e 66
UniformLayerSubmenu L o oo 66
ColorEditorDialog 67
SymbolEditor 68
Updated Map View after SymbolEditor 69
Thematic Mapping Submenu 69
Individual ValueMapDialog 70
Updated Map View after Individual Value MapDialog 71
RangeMapDialog 73
Updated Map View after RangeMapDialog 74
Legend Editor DialogBox 75
Updated Map View after LegendEditor 76
QueryMenu e e e 77
Identify Tool e e 78
Expression Builder Dialog Box 79
Updated Map View after ExpressionBuilder 80
Spatial Query DialogBox 81
Updated Map View after Spatial Query Dialog 82
OptionsDialogBox 84
OptionsDialogBox 84
Event Handler for Spatial Operator: “Contain™ 86

LIST OF FIGURES

4.1
42
4.3
4.4
45

vi
Two Interfaces of Geditor e 87
System Architecture L e e e e e e e e e e 90
Example of Map Relationmaprel 92
Append Color Attribute tomaprel L oL, 92
Geditor Architecture

List of Tables

1.1

1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

1.12
1.13
1.14
1.15

o
—

2.2
23
24
2.5

Relational Model 3
Operators of Spatial Retrieval 14
Point Counting Operator i it it et e 16
BufferingOperators e 16
Operators of PolygonOverlay 18
Dissolve Operator e e e e e e e e 21
Operators of ThematicMapping 23
Charts Operators i ittt it e 24
Identifying Operator e e 26
LabellingOperator i e 26
Line Measurement Operatorst i it it e . 27
Polygon Measurement Operators vt vt b u e 28
Operators of Map Sheet Manipulation 28
Operators of Spatial Editing 31
Operators of Some Display Functions 31
DataTypesinjRelix, 36
MapRelationl 39
MapRelation2 e 39
Result of MapUnion from the ujoinExample 4

Result of MapRelation1 from: update MapRelationl change Temp<—18 using ijoin
O 51

wey

LIST OF TABLES

3.1
3.2
33

4.1

viii
Example of Map Relation:MapRelationl 57
Example of Map Relation:MapRelation2 59
Example of Map Relation:MapRelation3 60

Geditor Classes

Chapter 1

Introduction

GIS has developed rapidly in the past two decades. It integrates spatial and non-spatial data into
one system and provides powerful tools and various operations to decal with these data. Since spatial
data are usually large-scale. this makes it inevitable for GISs to usc a database to manage the data.
This thesis presents the implementation of a GIS application (Geditor) which is focused on utilizing
database capabilities to build an independent GIS application.

Relational database systems., which provide mechanisms for managing data. achieve great suc-
cess in the commercial world. Most GISs also adopt a relational database system to manage the data.
Based on whether the spatial data are stored in the database management system (DBMS) or not,
the data management of current GISs is divided into two categories: the integrated approach and the
hybrid approach [Wor99]. In the integrated approach. the GIS puts all the data including both spatial
and non-spatial (descriptive) data in the relational database. In the hybrid approach. however, only
the descriptive data are stored the relational database. The benefits of using an integrated architec-
ture are obvious. Since DBMS treats all data uniformly, in the integrated architecture, the spatial
data are treated equally with the descriptive data. Furthermore. a professional DBMS enforces the
integrity. concurrency and security of the data, which is another advantage of using integrated ar-
chitecture. However. because SQL lacks the expressive power for spatial queries and because of
performance issues. the integrated approach is not widely adopted [Wor99].

However. the integrated approach is feasible when an advanced general-purpose relational database
is adopted. This thesis presents an implementation of a GIS application (Geditor) which stores both

CHAPTER 1. INTRODUCTION 2

spatial and non-spatial data in jRelix — a relational database programming language developed at
the School of Computer Science, McGill University. jRelix contains a DBMS and a programming
language named Aldat. This Geditor implements a graphical display interface which becomes a
new component of jRelix and utilizes the programming capability of Aldat to complete the imple-
mentation of GIS functions.

With this implementation. users will enter or import data into jRelix format. display the map
graphically using Geditor, and perform GIS operations such as thematic mapping, spatial query.
and layer control.

It is the aim of this thesis to demonstrate the feasibility of using a relational database program-
ming language to implement an independent GIS application. Martinez [Mar98] has already proved
the Aldat capability of spatial analysis which is the basic requirement for developing GIS appli-
cations. However, this implementation has to export spatial analysis results into other software
packages to display the map because jRelix did not provide a graphical display interface. This is not
satisfactory for a complete and independent GIS application. This Geditor implementation builds
a graphical display interface into jRelix and utilizes the Aldat spatial analysis capabilities to build
an independent GIS application. Geditor keeps the graphical display interface succinct and utilizes
Aldat spatial analysis capability to the greatest extent. This demonstrates that the Geditor imple-
mentation is not only a feasible but also a simple approach in an integrated architecture using a
relational database.

A high performance implementation is not the central issue in this work. We do not expect
Geditor to be very fast. Performance improvement can be obtained by tuning the spatial analysis
algorithms. choosing a different data model, and other spatial database techniques.

As a result of this Geditor impiementation, we (1) built a graphical display interface to display
the map based on the map data stored in jRelix format; (2) integrated a series of core GIS function-
ality into Geditor by utilizing Aldat spatial analysis capabilities: and (3) built the new syntax (gedit)
into jRelix to allow jRelix programmer to call the Geditor. It is beyond the capability of this thesis
to implement all possible GIS functionality into Geditor. However. our work is complete enough to
perform interesting studies of impiementing spatial applications using a relational database. Conse-

quently. this thesis will provide a resource for a GIS implementation in a jRelix cnvironment, and

CHAPTER |. INTRODUCTION 3

the fundamental framework for further studies on this issue.

The rest of this chapter is organized as follows. In Section 1.1, an overview of the relational
database systems is presented. General concepts and topics related to the Geditor implementation
are discussed in this section. Section 1.2 provides an overview of GIS capabilities. The GIS opera-
tions in this section are categorized as being cither binary or unary according to the operands these
operations have. Section 1.3 lists all the GIS functions Geditor includes. The thesis outline is given

in Section 1.4.

1.1 Relational Database System

Relational database systems have developed rapidly since 1970s. Not only the strict and consistent
mathematical model has been defined. but relational database systems also achieved great success in
the commercial world. Nowadays. relational databases are still developing very fast to incorporate
advanced properties and constructs to deal with modern data-intensive applications. In this scction.

we are going 10 review the basic concepts of relational database systems.

1.1.1 Relational Model

The relational model was first proposed by Dr. E.F. Codd in his famous paper * A Relational Model
of Data for Large Shared Data Banks™ [Cod70]. In his relational model, Codd uses a collection
of tables that he terms relations. 10 model and store data about objects in the real world. Each
relation resembles a table which consists of rows and columns. “tuples” is used to refer to rows and
“attributes” is used to refer to the column header. The term “domain” refers to the set of legal values
that an attribute can have, i.¢. the data type of an autribute. Table 1.1 shows the data about different

states in the U.S.A. represented in a relational model.

Mapfeature | Name Pop Temp
polygonl Arizona 2350725 | 20
polygon2 California | 29760021 | 20
polygon3 Nevada 1201833 | -10
polygond Oregon 2842321 | 8

Table 1.1: Relational Model

CHAPTER 1. INTRODUCTION 4

As indicated in the paper. the relations in the relational model have the following characteristics:

All tuples are distinct.

The ordering of the tuples is immaterial.

Each attribute is unique so that the order of columns is irrelevant.

The domain of each attribute is of a simple type such as integer. float, etc. which cannot be

further decomposed.

Operations on Relations

In the relational model. all data within a relational database arc held in tables or relations. A sys-
tem that supports the relational model should be able to perform well-defined operations on these
relations to retrieve information. Relational algebra, which is also proposed by Codd. consists of a
sct of operations applied on relations. In the relational algebra. there is no operation performed on
individual tuples. The relational operators take relations as operands and return a relation as a result
which can be further manipulated.

The relational algebra operations are usually classified as unary or binary, according to the num-
ber of their operands. Unary operators take a single relation as operand and binary operators take

two relations as operands. Both of them produce a single relation as their result.
e Unary operations

~ Projection: makes a copy of a relation with a specific subset of the attributes

- Selection: selects tuples that satisfy a specific condition
e Binary operations

- u-join: join operators that generalize set-valued set operations

— o-join: join operators that generalize logic-valued set operations

CHAPTER 1. INTRODUCTION 5
Operations on Domains

The arithmetic and related processing of the values of attributes in individual tuples also becomes
necessary. Merrett [Mer84) proposed the domain algebra which consists of a set of such operations.
It allows the user to create new domains from existing ones. The generation of a new value from
many values within a tuple or from values along an attribute also becomes possible. The domain

algebra operations are defined as follows:

e horizontal operations: new value is generated from the values with a tuple.

- Constant
- Rename
— Functon

- lf-then-else

e vertical operations: new value is generated from values along an attribute.

- Reduction
- Equivalence Reduction
-~ Functional Mapping

- Partial Functional Mapping

Various combinations and permutations of the above operations of relational algebra and domain
algebra are used in practice to retrieve information from a collection of relations in a relational
database. Some of these, but notably not domain algebra, have been implemented on commercial

DBMS in the form of SQL (Structured Query Language) and other specialized devices.

1.1.2 DataBase Programming Languages

The relational model has attracted much attention both in the academic world and in industry. It

has proven itself exceptionally useful for many business applications. However, the commercial

CHAPTER 1. INTRODUCTION 6

implementations of the relational model are lacking in expressive power and in the ability to han-
dle complex data. Many applications are arising in science and engineering for which these im-
plementations are inadequate tools. The relational model itself. however, is not limited to these
implementaions. This has led to continued research in the field of databasc programming languages
(DBPL).

The applications that drive the efforts in the research of database programming languages have

the following properties:[Hul89]

e involve large amounts of complex. shared, concurrently accessed. persistent data

reliability requirements

involve distribution of data storage and processing over networks

design orientation

complex behavior involving inference or rule-based computation

sophisticated graphical interfaces

Computer automated design (CAD), VLSI chips design and Geographic Information Systems
are examples of such applications.

DBMS are capable of dealing with large amounts of persistent data, that is, the data siored in the
secondary storage. It allows concurrent access to the data even if it is distributed among several sites.
Programming languages provide well-proven and powerful techniques for creating. organizing and
manipulating data that is in memory. Therefore, database programming languages seek to integrate
the technologies and paradigms of programming languages and database management in order to
solve the problem of developing the above data-intensive applications.

An early approach to creating a database programming language has been to embed a database
query language into an existing programming language. For example. the INGRES relational
database system [Sto76] embedded its query language QUEL into the C programming lanugage
to produce the EQUEL language. QUEL variables and statements are inserted into a C program in
lines that begin with ‘##°. A major disadvantage of this approach is that it requires the programmer

CHAPTER 1. INTRODUCTION 7

to be fluent with both the host language and the query language. It also yields an awkward pro-
gramming environment by fitting the bulk types of the query language, such as the relation, together
with the typing system of the host language. This inspired the search for more integrated solutions
to database programming languages.

Another approach to creating a DBPL is to add database features to an existing programming
language. For example, Pascal/R [Sch77] combines the relational data model with the Pascal pro-
gramming language [Jen85]. The type record which represents a tuple of a relation is added to
the language. The constructor relation of. database, new iteration construct for each, and a set of
operators that permit the traversal of a relation —low, next, high and eor are also added to the lan-
guage. This extension to Pascal allows the manipulation of relations together with the mechanism
to support persistence and efficiency.

An important step was the demonstration of the possibility to design a programming language
with uniform persistence. A problem with conventional programming languages is that their con-
structs (e.g. arrays and records) do not correspond to those for persistent storage (e.g. the abstraction
of a file or of a relation). The programmer must map the data from the forms used in primary mem-
ory to those used on the persistent storage. The typing mechanism provided by the programming
language is usually lost across this mapping. In a Persistent Programming Language, such as PS-
algol [Mor88] {Atk83] [Atk84]. the mapping becomes unnecessary because data of any type may
persist. The value persists whenever it has a persistent label or it is a part of some structure with a
persistent label. This saves the programmer’s effort of data mapping and also keeps the data type
completeness which is essentially that all data types have equal rights.

At the same time, the research efforts in database programming languages are devoted to the
incorporation of the facilities of a DBMS with the object-oriented computing paradigm. For ex-
ample, ObjectStore [Lam91] adds persistence to the C++ programming language which makes the
accessing of persistent data scamless to the programmer. A number of bulk types such as ordered
lists, sets and bags are also added to the language to manage large amounts of data. Queries are
contained between delimiters ‘[:" and *:]". Other features such as transactions, locks and logging
for recovery are aiso supported in ObjectStore.

Efforts have also been put into the investigation of the connection between logic and databases.

CHAPTER |I. INTRODUCTION 8

The Knowledge-Base Management Systems (KBMS) combine the traditional feature of a DBMS
with the logic programming paradigm. Attempts have been made to combine database features with
Prolog {Boc86] [Cha86] [loa94]. Datalog [UlI85] [Mor86] [Mor87] [Cer89] is one of them. It is
based on Prolog and developed for use with relational databases. The predicate can be stored in a
relation of the same name. Every tuple of this relation represents a fact. Some extensions of Datalog
also support bulk type constructors to deal with large amount of data. An object-oriented extension

to Datalog also includes methods. classes. instantiation, overloading and late binding [Abi93].

1.1.3 Active Databases

Traditional database systems are passive because commands are executed by the database when
requested by the user or application programs. The system cannot respond to happenings of intcrest
without the user intervention. An Active Database System is a conventional passive database systcm
extended with the capability of reactive behavior. The desired behavior is expressed in rules that are
defined and stored in the database [V1a98].

For example, an inventory control system needs to monitor the inventory database. so that when
the quantity in stock of some item falls below a threshold. a re-ordering activity will be initiated.
In an active database system, a corresponding rule can be defined and the active database system is
responsible for detecting the quantity in stock. When the quantity in stock falls below a threshold,
the request of order will be triggered by the active database without the user’s intervention.

In active database systems, the event-condition-action (ECA) model is widely used. According

to McCarthy [McC89]. an event-condition-action model consists of three components.

e Event: “An event is the occurrence of pre-defined state which triggers the rule and causes the

system to evaluate the condition™.
e Condition: “Conditions are typically predicates or queries against the database system”.

e Action: “An action is a sequence of operations which are executed when the condition of the

triggering event is satisfied”.

CHAPTER 1. INTRODUCTION 9

1.1.4 jRelix

jRelix (the java implementation of a Relational database programming language in Unix) was de-
veloped at the Aldat lab of the School of Computer Science at McGill University. jRelix contains a
database management system (DBMS) which is responsible for organizing and storing data, and a
programming language Aldat — Algebraic Data Language, based on relational algebra and domain
algebra [Mer77] [Hao98] [Yua98]. jRclix incorporates complex constructs such as computations
(procedures) and some object-oriented paradigms, such as instantiation [Bak98]. The cvent han-
dler, which is the characteristic of an active database system, is also implemented in jRelix [Sun00].
Therefore. jRelix is a full-featured modern relational database system, which is an ideal candidate
for the implementation of current data-intensive applications. such as GIS.

In [Mar98], Martinez proved the spatial capability of jRelix by implementing in Aldat an es-
sentially complete set of the spatial operations of Arc/Info and Mapinfo. The Aldat codes of these
operations such as polygon overlay. buffering, and spatial queries are presented in that thesis. Since
jRelix has no graphical editor. Martinez exported the result of the spatial operations to Arc/Info to
display the map. For a complete GIS application. this map display was obviously not satisfactory. [t
was very inconvenient for the user to view the map, let alone more advanced functions related with
the display of the map. such as editing the color of map features and thematic mapping. This led to
the motivation of building a GIS editor which provides a graphical interface that allows the user to
display and edit the map. Common GIS spatial operations should also be incorporated in this editor
to allow the user to call them directly from this graphical interface. This is the objective of this
thesis. In the next section. an overview of GIS capabilities will be presented in order to investigate

what functions the GIS editor should incorporate.

1.2 Overview of GIS capabilities

1.2.1 Introduction to GIS

Geographic Information Systems are designed to handle information relating to spatial locations
[Sta90). It is a system of hardware, software, data, people. organizations, etc. for collecting, stor-

ing, analyzing and disseminating all types of geographically referenced information [Due89]. The

CHAPTER 1. INTRODUCTION 10

most common understanding of a GIS emphasizes it as a tool for storing and retrieving, transform-
ing and displaying spatial data [Bur86]. Five essential elements must be contained in a GIS: data
acquisition, preprocessing, data storage and retrieval. manipulation and analysis, and data report-
ing [Peu90] [Cla99]. These five clements actually capture the flow of work in a GIS system. In cach
stage of the continuous process. a GIS provides powerful tools for the user to complete the work.
Refer to section 1.3 to see what elements Geditor currently contains.

GIS developed rapidly since 1980 and achieved great popularity in the commercial worlds in the
past ten years. This is because a GIS is not only a tool for displaying and making maps, but most
importantly, it is a tool for the analysis of spatial data and the creation of more interesting and real
studies resulting from the combination of data from different sources. A GIS not only combines
spatial and non-spatial data into one system, it combines a collection of thematic layers (coverages)
that can be linked together. Each of the layers can be manipulated separately and various operations
are allowed on the combination of multiple layers. Figure 1.1 shows a typical example of thematic

layers stored in a GIS.

Cities

States

Rivers

Figure 1.1: Thematic Layers

Based on the various source of data the GIS captures and stores, it provides powerful function-

ality for the user to process the data. An overview of GIS capabilities will be presented next.

1.2.2 GIS capabilities

GIS provides powerful tools for processing both spatial and non-spatial data. From a mathematical
point of view, these tools are operators applied on spatial or non-spatial operands. Therefore, we
are going 1o categorize the various functions of GIS packages into operators in the following discus-

sions. According to the number of operands each function acts on, these functions are divided into

CHAPTER 1. INTRODUCTION 11

unary and binary operators. For each operator, the number and types of operand(s) are discussed.
The functions of each operation are also described. Moreover, after the data (including both spatial
and non-spatial) have been imported and stored into the system. all the functions GIS provides arc
related with two parts: daia manipulation and display. Since we are going to use jRelix to manage
the data (both spatial and non-spatial), the data manipulation will be performed in Aldat language
of jRelix. In the following discussions, we also indicate whether the operation is a pure data manip-
ulation. therefore an Aldat problem (Aldat), or a pure display problem (Display), or both (Aldat &
Display). The purposc of this indication is to identify those functions that are related with graphical
display. Notice that a function is identified as a display-related problem only if a graphical interface
is needed during the process of data manipulation of this function. After the data manipulation, all
the results need to be displayed. This can be achieved by a common map-display module. which
our Geditor will definitely include.

There is a set of operations based only on descriptive data, such as displaying the descriptive
data table. browsing. editing, selecting. and joining descriptive data tables. Sincce this sct of opera-
tions is not related to spatial data and are common operations in a conventional relational database
management system, we omit the discussion of them in the following discussions.

A. Binary operators

Most operations in GIS are binary operators. For example, the polygon overlay is a typical
binary operator applied on two layers with polygon topology. Other operations such as spatial query,
buffering, dissolve. and thematic mapping are also binary operators. In this subsection. we discuss
1. two operations of spatial retrieval: query window generation and spatial query, 2. measurement
of points. 3. buffer generation, 4. polygon overlay, 5. dissoive. and 6. thematic mapping.

In the following discussions. first, the function of the operation is explained. then an operator
table is presented as the summary of this function. The first column of the table indicates whether
this is a display or Aldat related function. The second and third columns describe the two operands

of this operation. The fourth column presents the description of the operations on the two operands.

1. Spatial Retrieval — Query window generation and spatial query

GIS packages allow the user to spatially extract both spatial and non-spatial information.
This group of operations includes identifying, labelling. query window generation, and spa-

CHAPTER I. INTRODUCTION 12

tial query. Among these operations, query window generation and spatial query are binary

operations.

(a) Query window generation
This function involves the ability to generate points, irregular shaped polygons, squares,
circles. etc. for interactively overlaying with map features contained in certain cover-
age. The map features that coincide in space with these generated query windows are
retrieved (or selected) according to a certain spatial relationship. Three techniques are

usually used in this set of operations [Pcu90]:

e Adjacency
The map features that are adjacent to a uscr-generated point are selected.

e Sclect by polygon
The map features that are cntirely within or partially within the user-generated poly-
gons are sclected.

e Seclect by polygon overlay
Only the portions of the map features which fall within the boundaries of the query
window polygon are sclected. In this case, all lines as well as parts of polygons
which fall outside of the query window are snipped off using polygon overlay tech-

niques (polygon overlay will be discussed in the following section).

Figure 1.2 shows examples of the above threc query window generation techniques.

In Figure 1.2, the map features that are sclected by the user are displayed in solid lines or
shaded areas. Those that are not selected are displayed in dashed lines. User generated
points are represented as dash-dotted mouse arrow. User generated polygons are shown
in dash-dotted lines.

For example, in Figure 1.2 (1), the point. line, and polygon that are adjacent to the user-
generated mouse arrow, are selected, that is, shown in solid lines. In Figure 1.2 (2), the
point, line and polygon that are entirely within or partially within the user-generated
polygons (rectangles) are selected. In Figure 1.2 (3), the point and line segment that

are entirely within a user-generated polygons (rectangles) are shown in solid lines (se-

CHAPTER 1. INTRODUCTION 13

(3) Select by polygon overlay

Figure 1.2: Query Window Generation

lected). and the parts of polygons that fall within the user-gencrated query window are

shown in shaded area (selected).

(b) Spatial query
This operation locates map features in relation to a given existing map feature (Hut97]
[Whi99] [Zei97]. For example. “show the lakes that are within Quebec province” is a
query which locates all the polygons that are “entirely within™ a particular polygon. See

Figure 1.3. Notice that the two map features can be from two different layers.
(c) Operator table

From the operator point of view, query window generation and spatial query are the
same. Both of them retrieve map features by investigating the spatial relationship be-
tween two graphical objects. The only difference is that the query window generation
uses user-generated graphical objects to locate existing map features by studying their
spatial relationship, while the spatial query uses an existing map feature to perform such
an operation. Table 1.2 summarizes the spatial retrieval operations as binary operators.
The above table includes all the operations in spatial retrieval. Moreover, NOT is al-

lowed to be added in front of each operator. For example, “not strictly contained™ is

CHAPTER 1. INTRODUCTION

7

S

Quebec

Figure 1.3: Spatial Query

Map features

Window Object

(existing or user-generated)

How to combine

Display & Aldat | Point
Line
Polygon

Point
Line
Polygon

Select the map feature

if it has the following
relation with the window
object:

Strictly contained
Adjacent

Intersection

Overlap

Disjoint

Select the part of the
map feature using
polygon overlay

Table 1.2: Operators of Spatial Retrieval

also an operator which locates the three cases as Figure 1.4 shows.

(n

~

)

p.

Figure 1.4: Three Cases of “not strictly contained™

14

CHAPTER 1. INTRODUCTION 15

To achieve this function, an interface is needed to capture the user input of the win-
dowing objects by cither selecting an existing map feature or drawing graphical objects
on screen. Aldat is capable of computing and locating the map features that are in the
particular relationship to the windowing objects. [Mar98] provides Aldat codes for this

set of operations.

2. Measurement of Points

In GISs. points. lines and polygons (or areas) arc the three basic graphical objects. The most
common types of measurcment tasks involve the mcasurement of the three basic objects.
Among them, the measurement of points is a binary operator. The measurement of lines and

polygons are unary operators.

Notice that the term “lines” in GISs actually means polylines, that is. a continuous line com-
posed of onc or more line scgments. In this thesis, “lines™ and “polylines” which will be used

alternatively in the following text. refer to the same graphic object.
Objects with zero dimension are represented as points. Cities in a province, hospitals and
schools in a city arc usually represented as points. There is no formal calculation of the size

of points. The measurement related with points is the total number of points falling in a

polygon or in a buffering area [Peu90]. Sce Figure 1.5.

6 7 —
i

+ + Lo

(]

Total number number in a polygon number in a user
in the coverage generated buffer

Figure 1.5: Point Counting

The counting of points can be represented as the binary operator as Table 1.3 shows.

An interface is needed to capture the user input of the window polygons. Aldat is capable
of locating the points entirely within the window polygon and counting the number of such

CHAPTER 1. INTRODUCTION 16

Map features | Window polygon How to combine
(existing or user
generated)
Display & Aldat | Points Polygon Strictly contained
(the whole coverage,
user generated buffer,

etc.)

Table 1.3: Point Counting Operator

points. The operation “entircly within” is one of the spatial operators discussed in the last

section. The counting of the points is a conventional database operation.

3. Buffer generation

Buffering is a commonly uscd operation in the GIS world. It creates new polygons from
points, lines, and polygon features within a specific distance. Figure 1.6 shows the summary
of different types of buffers [Peu90].

Map features | Distance Value Operations
Aldat | Points dist Square_buff(p1.dist)
Circle_buff(p1.dist)
Lines dist Narrow_buff(line1.dist)
Broad_buff(line2.dist)
Polygons dist Interior_buff(poly1.dist)
Exterior_buff(poly 1.dist)

Table 1.4: Buffering Operators

In Table 1.4, all the buffering operations are sutnmarized as different operators. Except for the
routine display of the results, this operation is a pure data manipulation. Aldat is responsible
for generating all the graphic data of all sorts of buffers of different map features. [Mar98]
also provides such Aldat codes.

4. Polygon Overlay

Overlay operations play an important role in GIS applications. This is because most appli-

cations of geographic information must integrate information from different resources. In

CHAPTER 1. INTRODUCTION 17

R @]

Circle buffer Square buffer
line
Narrow buffer Broad buffer
Exterior buffer Interior buffer

Figure 1.6: Buffering

the output coverage. all the attribute values from different parents of the map feature (poly-
gon in this case) can be accessed. The most commonly used polygon overlay operations in

commercial products include Clip, Split, Erase. Update, Identity, etc.

Actually. polygon overlay involves two phases: geometric phase and non-spatial phase [Chr97].
In the geometric phase, two layers are combined to produce a composite geometric represen-
tation where each area has a key linking to the attribute tables of the two source layers. For
example. in Figure 1.7, suppose polygon 1 is from coverage A, and polygon 2 is from cover-
age B. Through geometric phase. a composite geometric representation is generated as Figure
1.7(b) shows. For each area (1,2. or 3), the link to the attribute table is indicated. Then to
produce the output coverage, either select polygon in Figure 1.7(b) by indicating the source
of layer, or select polygons with the attribute values these areas link to. For example, the user

can select areas that are from both layer A and B as Figure 1.7(c) does. The user can also

CHAPTER 1. INTRODUCTION

18

select areas that are banana field and rainforest at the same time. Since the data manipulation

in this phase only involves non-spatial (descriptive) data, it is called non-spatial phase.

Based on the above understanding, the polygon overlay operations can be summarized as
indicated in Table 1.5.

Input coverage | Overlay coverage How to combine
Aldat | Polygon Polygon Compose new polygon coverage from two
different layers using geometric
intersection processing techniques
Aldat | descriptive descriptive Select polygons in the composite
data table data table coverage by indicating the source layer

using AND and OR Boolean operators.

Sclect polygons in the composite
layer using the descriptive
data table each polygon links to.

Table 1.5: Operators of Polygon Overlay

fruit-type Layer

1 banana A

id weather Layer

[B]

(a)

rainforest B

2 &

id LinkA
I A
2 X
3 A
Composite Table

(b)

select polygons that are
from both A and B

(9]

Figure 1.7: Two Phases of Polygon Overlay

All polygon overlay operations can be achieved using the above binary operators. For exam-

ple, as listed in Figure 1.9, the seven overlay operations that are supported in Arc/Info [Zei97]

can be implemented by first generating the composite coverage and then selecting the areas

by indicating the source of layers the areas are from.

CHAPTER 1. INTRODUCTION 19

In the example, two polygons are from coverage A and B respectively. In the geometric phase,
new vertices 3 and 10 are generated and the composite table is also produced as Figure 1.8
shows. 1.2, and 3 areas are generated after this phase.

| fromA? fromB?
A

W —
=<

A B

generate two new vertices: 3 and 10

Figure 1.8: Geometric Phase

In the non-spatial phase. different selection conditions produce the result of different polygon
overlay operations of Arc/Info. Sec Figure 1.9. In this figure, there are four columns. The
first column lists the name of cach operation. The second column presents the visualization of
the corresponding operation. The operation results are presented in the shaded area. The third
column lists the selcction condition to produce the corresponding result. The tfourth column

describes the operation results using area numbers(1, 2, and 3).

Obviously, Aldat is capable of the operations in the non-spatial phase because only conven-
tional database operations are involved in this phase. Aldat is also capable of data processing

in the geometric phase. Related Aldat codes are already available in [Mar98].

5. Dissolve

This operation is an inverse operation of polygon overlay. Instead of splitting polygons to
generate new areas by overlaying two map layers, it merges adjacent polygons based on the
similar attributes the polygons have [Hut97]. For example, the merging of Federal Republic of
Germany and Democratic Republic of Germany can be achieved by merging all the adjacent
polygons that have the same attribute value of political_name. After the merge of the two
countries, the polygons 1, 2 and 3 have the same political_name. Consequently, the three
adjacent polygons are merged to produce a single polygon as Figure 1.10 shows.

This operation involves the modification of the geometric data based on identical attribute

CHAPTER 1. INTRODUCTION 20

) Selection Result
But usually, "clip” uses a smaller B inside A -1 @
overlay coverage
datasetl: 3
; ! 2 heet heet2 dataset2: 4
Split 3 3 shee shee A o C s
5 6 shee3 sheetd da 6
7 8
- A and nt B 1
Erase 3 2
AorB ,2,3
UN"E 0
A
But usually, B is smaller and inside A @
Identity A L3
Intersect - B 1,23
Union <3 AorB 1,2,3

Figure 1.9: Polygon Overlay Operations in Arc/Info (Non-spatial phase)

values. Only those adjacent polygon data needs to be updated. Table 1.6 represents the dis-
solve operation as a binary operator. Aldat is capable of performing this operation. [Mar98]

CHAPTER 1. INTRODUCTION

i
Poly-ID Political-name Poly-ID | Political-name _
I Federal Republic of ‘ Federal Republic of
Ge Germany
ooany
2 Democratic Republig -
of Germany N Notice that the geometry data of
3 Federal Republic of |*~_~ Polygon I has been changed
Germany \.Changed to Federal Republic of Germany
after the merge of the two countries
Figure 1.10: Dissolve
provides the related codes.
Map features Attribute Operations
Aldat | Polygons Attribute name | Put all the polygons
with the same

attribute value into
one group and update
their coordinates to
dissolve the shared
boundaries

Table 1.6: Dissolve Operator

6. Thematic mapping

One of the GIS’s capabilities is to generate different maps based on the same map data. The-
matic mapping helps the user to achieve this goal. Individual Value map., Range Map, Dot
density, Graduate Symbol, and chart symbols are commonly used thematic maps in commer-

cial products [Whi99] [Zei97] [Hut97].

CHAPTER |. INTRODUCTION 22

Individual value maps classify map objects by different colors or fill patterns. The map objects
that have the attribute with a certain value are filled in the same color or pattern. For example,
in the following figure, the polygons filled in the same pattern show the same type of field.

Com
Wheat

Cotton

Range maps allow the user to group map objects according to the range of values the map
objects linked to. The map objects that have the attribute in a certain range are filled in the
same color or pattern. For example, in the following figure. the polygon filled in the same

color shows a cenain range of temperature, say -10 to -5 Celsius degrees.

/—_v -15..-10 degree

-10..-5 degree

-5..0 degree

Graduated symbol maps display symbols in graduated size for polygons or points according
to the value of an atribute. For example, in the following figure, the larger the circle, the
greater the population in the polygon.

0O

Dot Density thematic maps display randomly dispersed dots within a region. The dots depict

CHAPTER 1. INTRODUCTION 23

the amount of the selected data each region contains by the number of dots placed within the

region. For example, in the following figure. 1 dot represents 100 people.

Chart symbol maps display pic charts or bar charts within a polygon. The chart in each
polygon shows the distribution of an attribute value. For example, in the following figure, the
pic chart in each polygon shows the age distribution of the population in the area.

3 age>30

8 age<=40 or age>20
< age<20

®
S ® @

The operations of thematic mapping can be summarized as binary operations as Table 1.7

shows.
Map coverage Attribute Operations
Aldat & display | Map with any type | Attribute name | update command
of map features in Aldat
(usually polygons) Commands in
Aldat to generate
tuples in relations

Table 1.7: Operators of Thematic Mapping

An interface is needed to allow the user to specify the attribute name that the thematic map-
ping is based on. The other part of this set of operations is related to the manipulation of the
map data. Individual value and range maps change the color of the map features based on the
value of an attribute. This can be achieved by the update command in Aldat. Graduate sym-

CHAPTER |. INTRODUCTION 24

bol maps generate new graphical objects, such as circles and squares. according to a certain
attribute linked to existing map features. This can be done by commands in Aldat to create
graphic data (tuples) in map relations. Dot density thematic maps generate points based on an
attribute and chart symbol maps generate pie or bar charts based on an attribute value. These
operations can also be obtained using commands in Aldat to create graphic data (tples) in

map relations.

7. Drawing Charts

When two attribute names are specified, a graph of their relation to each other can be presented

as poini charts, bar charts, pie charts, line charts. and shaded charts.

i e G

.

Bar Line Shade

Figurc 1.11: Different Charts

Although this set of functions is not found only in GIS packages. they are widely used in
them. The value of the two attributes needs to be retricved and the display interface needs
to draw the charts according to the values. This can be summarized as the following binary

operator shown in Table 1.8.

Attribute Attribute Operations
Aldat& Display | Attribute name | Attribute name | Retrieve the

attribute values
according to the
given attribute names
and display different
type of charts: Bar,
Point, Pie, Shade,
Line, etc.

Table 1.8: Charts Operators

CHAPTER |. INTRODUCTION 25

For example, if attribute names year and population are given, a bar chart can be generated

showing the population of each year as Figure 1.12 shows.

Populgtion
1.5 million

=
ZZ

1million éé
_
_
ZZ
ZZ
ZZ

s e % ’.
91 92 93 94 95 year

Figure 1.12: Bar Chart

Aldat needs to retrieve the value of the two attributes. This is a conventional database opera-
tion. Then a display interface needs to draw the chart according to the values.

B. Unary operators

Other operations in GISs are unary operators. This includes some operations in spatial retrieval,
measurement, map shect manipulation, map generalization and some map display functions, such
as legend display. print layout. and repont generating. In this subsection. we discuss 1. two other
operations of spatial retrieval: identifying and labelling, 2. the measurement of lines and polygons.
3. map sheet manipulation. 4. spatial data editing, and 5. some display functions.

In the following discussions, first, the function of the operation is explained. then an operator
table is presented as the summary of this function. The first column of the table indicates whether
this is a display or Aldat related function. The second columa describes the two operands of this

operation. The third column presents a description of the operations on the two operands.
1. Spatial Retrieval — Identifying and labelling
(a) Identifying

Most GIS packages allow the user to specify the position of a map object (usually by

placing the mouse close to the map feature and clicking the mouse) and then display

CHAPTER 1. INTRODUCTION 26

all the linked attributes of this map feature. This is called idenrifying ([Hut97]. This

operation can be represented as the following unary operator:

Position of the Operations
map featare
Display & Aldat | User input by clicking | Obtain the X.Y coordinate
mouse close to the map | from the user input and then
feature retrieve all the attributes
related with this map feature

Table 1.9: Identifying Operator

An interface is needed to obtain the position of the map feature and then translate it into
the X and Y coordinates. Aldat operations can complete the attribute value retrieval.
Finally, a display interface needs to display the result of all the auribute values in a

proper place on the screen.

(b) Labelling
Labelling is another common operation in GIS packages [{Zei97] [Whi99] [Hut97]. It
is also called automatic labelling. By specifying an attributc name. the value of this
attribute will be displayed as labels close to corresponding map features, for example,

inside the polygon if the map feature is a polygon. This operation can be represented as
the unary operator indicated in Table 1.10.

Attribute How to display
Display & Aldat | Auribute name | Retrieve the value of the
attribute name as the label
value and display properly on
the map.

Table 1.10: Labelling Operator

Aldat commands are needed to retrieve the attribute values as labels and the display
function is needed to calculate the proper position to show the label.

2. Measurement - lines and polygons

Besides points. measurement operations involve the lines and polygons [Peu90].

CHAPTER 1. INTRODUCTION

(a) lines

27

Polyines have one single dimension of length. Rivers, roads, rails are usually repre-

sented as lines. The calculation of length includes the length of the whole line and the

length of a single edge.

— ‘/'—"__.

Caiculation of the length of lines can be represented as the unary operators shown in

Table 1.11.

drawn by user)

Map features Computation
Display & Aldat | line or edge Line_len(linelD)
(existing map featurc or | Edge_len(edgelD)

Table 1.11: Line Measurement Operators

Interface is needed to allow the user to specify the line or edge and display the result of

the measurement. Aldat operations can compute the length of a line or an edge.

(b) Polygons

Polygons have two dimensions. length and width. Provinces, lakes and parks are usu-

ally represented as polygons. The two basic measurement types of a polygon are the

perimeter and the area of the polygon.

¢

$

Perimeter

The calculation of area and perimeter can be represented as unary operators as Table 1.12

shows.

An interface is needed to allow the user to specify the polygon and display the result of

measurement. Aldat is capable of the computation of the perimeter and area of the polygon.

CHAPTER i. INTRODUCTION

Map features Computation
Display & Aldat | Polygons Perimeter(polyID)
(existing or user generated)
Display & Aldat | Polygons Area(polyID)
(existing or user generated)

3. Map Sheet Manipulation

Table 1.12: Polygon Measurement Operators

28

A series of techniques manipulate the x.y coordinates for a given map. This includes pro-

jection change, coordinate translation. scale change and rotations (Pcu90}. These can be
summarized as Table 1.13 shows.

Value

Comutations

Aldat

Scale value

Scale change: X.Y multiply
a coefficient

Projection name

Projection change: change
X. Y according to a projection
formula

Constant value

Coordinate translation:
X. Y plus or minus a constant

Rotation angle

Rotation: change X. Y
according to a formula

Table 1.13: Operators of Map Sheet Manipulation

The update or assignment operator in Aldat can be used to update X, Y coordinates in the

above series of operations. Therefore. this set of operations is a pure Aldat computation.

4. Spatial data editing

After digitizing. a lot of editing operations need to be performed on the map features to correct

the errors in the data capture stage. Map generalization. rubber sheeting, and snapping are

common operations of spatial data editing [Hey98] [DeM97].

(a) Map generalization

Map generalization tools are frequently used when map scales are changed. This series

CHAPTER 1. INTRODUCTION 29

of operations is also used to edit the map features that are digitized during the data

capture stage.

e Line coordinate thinning — This is a technique for reducing the number of coordi-

nates defining a given line.
(')_.Lo /’—_\—-o

e Dropline — This is a technique to drop the line which is shared by two polygons.

The remaining line segments of the two polygons make up a new polygon.

D -

e Polygon thinning — This is a similar exercise to line thinning.

Q Q
o Edge matching — Edge matching consists of a series of procedures for bringing
together a large number of map sheets and composing them into one continuous
map. Problems which must be resolved are: joining lines and polygons from ad-

Jjacent maps, matching of the boundaries between the maps and dropping the lines

which separate polygons having the same characteristics.

CHAPTER 1. INTRODUCTION 30

V|
I

(b) Rubber sheeting

Rubber sheeting involves stretching the map in various directions as if it were drawn on

a rubber sheet. Fixed points and control points are believed to be correct.

® Fixed points
+ Control points

-~ original boundary
-+~ Rubber-sheeted boundary

In operation, fixed points are kept still while others are stretched to fit the control points.
(c) Node snapping

In node snapping, points that are close to each other that should indeed be the same

point are merged to generate an identical point in the graphic database.

(VARIAY

All the above operations need an interface for the user to specify the map feature to be edited
and to edit the map feature interactively. After that, the result of editing needs to be saved
into the graphic database using the update command in Aldat.

Therefore, the above operations can be summarized as a unary operator as Table 1.14 shows.

CHAPTER 1. INTRODUCTION 31

Map features Operations
Display & Aldat | Lines Using display interface to
Polygons capture the user editing of
the map feature and Aldat
update command to update
the graphic database

Table 1.14: Operators of Spatial Editing

5. Some display functions

Besides thematic mapping. display issues involve the legend display. printing layout and ex-

porting graphic maps to different graphic file formats.

These display functions can be represented as unary operators as Table 1.15 shows.

Operations
Display Arnribute name Display the legends
and labels based on
the attribute value
Display Graphic objects such as | Move and edit the
the title. north arrow, title. north arrow,
scale bar and legend scale bar and legend
Data Conversion | Map coverage Convert data of maps to
graphic files

Table 1.15: Operators of Some Display Functions

1.3 Geditor functions

From the above discussions about the relational database concepts and the overview of GIS capa-
bilities. we can conclude that all the GIS functions can be implemented using Aldat capabilities
and a display interface. In the above discussions, some more sophisticated functions such as spatial
interpolation in terrain analysis, network analysis and image processing are omitted. In commer-
cial products, they are often incorporated in extended packages such as ARC Network (for network
analysis). ARC TIN (for terrain analysis), and MGE Grid Analyst (for image and raster analy-
sis) [Kor97]. However, we believe that from the observation of the whole family of the GIS core

CHAPTER 1. INTRODUCTION 32

functions, all the GIS functions including those extended ones can be implemented using Aldat
capabilities and a graphical display interface.

It is beyond the scope of this thesis to incorporate all the possible GIS functions into our GIS
editor. Our purpose is to implement the typical common functions of GIS packages, especially those
display-related functions. More importantly. we are going to provide a flexible and dynamic imple-
mentation to allow the further extension of this editor. The event handler. which is the characteristic
of active databases, is adopted in this Geditor. Proper events are generated when the user requests
for an operation and the corresponding event handlers are invoked. Customized event handlers
written by Aldat programmers become possible. which makes the Geditor flexible and dynamic.

The following functions are incorporated in Geditor:
1. Mult-layering

e Add Layer — allows the user to add layers to the current desktop.

e Layer Control — allows the user to control the states of the layers.
2. Changing the view of the map
o Editing uniform layer — allows the user to change the color and symbol of a uniform
layer.

e Thematic mapping — allows the user to create thematic maps.

o Legend Editor — allows the user to edit the legends.

3. Querics

o Identifying — displays all the attribute values of a particular map feature selected by the

user.

e Expression Builder — allows the user to query the spatial database by creating expres-

sions.

e Spatial Query — provides sorts of spatial operators o retrieve map features according
to proper spatial relationships.

CHAPTER 1. INTRODUCTION 33

The following functions are left out in Geditor either because they are not display-related or
because they are often left out in GIS core functions.
e Buffer Generation

This function is left out because it is not a display-related problem. Only the result needs to

be displayed and the other part of the function can be achieved by Aldat capabilities.

e Polygon Overlay

This is also an Aldat only operation.

e Dissolve

Aldat is capable of completing this function.

e Mecasurement (of points, lines and polygons)

This function is a both Aldat and Display related operation. We omit it because it is not as

closc to the core of GIS functions as those we include in Geditor.

e Spatial data editing

This set of functions are used during the data capture stage which is not as close to the core

of GIS functions as those we included in Geditor.

e Map Sheet Manipulation
This sct of functions can be achieved by Aldat capabilities only.

Because of the above reasons, according to the work flow mentioned in Section 1.2.1, Geditor
incorporates the functions of data storage and retrieval, manipulation and analysis, and data

reporting, but leaves out the functions of data acquisition and preprocessing elements.

1.4 Thesis Outline

. This chapter has discussed the fundamentals for the implementation of the Geditor. Now, we are
ready to discuss the implementation in detail.

CHAPTER 1. INTRODUCTION 34

Chapter 2 provides an overview of jRelix, containing the basic elements to understand the sub-
sequent discussions about the Geditor implementation. It covers all commands and statements used
in the implementation.

Chapter 3 presents the User’s Manual of Geditor. The usage of all the functions are explained
in detail in the order that they appear on the menu bar of Geditor window from the left to the right.
Examples are provided with graphics and relations data to illustrate the operation usage.

Chapter 4 describes the implementation of Geditor. The system architecture is presented and the
algorithms of the main classes are explained in detail. The sequence of the algorithm description is
kept the same as that of the description of the corresponding functions in the User’s Manual.

Chapter 5 presents the conclusions of this work and suggestions for related future work.

Chapter 2

JjRelix Overview

jRelix. a rclational database programming language. was developed at the Aldat lab of the School of
Computer Science at McGill University. It contains a database management system (DBMS) which
is responsible for organizing and storing data. and a programming language Aldat — Algebraic
Data Language. based on relational algebra and domain algebra [Mer77]. This chapter presents a
tutorial on jRelix so that the user will understand the rest of the thesis. This tutorial focuses on the
parts of jRelix that are relevant to the implementation and use of the Geditor.

Section 2.1 explains how to declare a domain and relation in jRelix. Relation initialization is also
discussed in this section. Section 2.2 discusses assignments and rclational expression in relational
algebra. Section 2.3 describes domain algebra. Section 2.4 briefly explains computations. Section
2.5 discusses update commands in jRelix. Section 2.6 describes the event handler which will be
used in the implementation of Geditor.

In the following discussions, the jRelix syntax and examples will be given when necessary. The
syntax will be presented in typewriter font. Terminals will be quoted and non-terminals will be
otherwise. The sign | means or. (...|...|...) means choosing one of the components separated by |

inside the brackets. (...)? repeats the component inside the brackets zero or one time.

R

CHAPTER 2. JRELIX OVERVIEW 36

2.1 Declarations

Declarations of attributes and relations must be made before any further operations can be performed
on them. This section describes both domain and relatdon declarations, initialization of relations,

and some system commands to do the house-keeping work.

2.1.1 Domain Declaration

Domain Declaration declares the data type of attributes used in relations. The syntax is as follows:
"domain®™ IDList data.type ";"
IDList specifies the list of attributes being declared separated by comma, and data_type
specifies the type of the attributes.

jRelix provides eight atomic data types as Table2.1 shows.

Data Type | Short Form Size
Boolean bool 1 byte
Short 2 bytes
Integer intg 4 bytes
Long 8 bytes
Float real 4 bytes
Double 8 bytes
String surg variable
Text variable

Table 2.1: Data Types in jRelix

>domain G strg;
>domain T strg;
>domain S. X. Y. Cintg;
>domain L strg;
>domain Name strg;
>domain Temp intg;
>domain Pop intg:

Complex data types such as computation and nested relational domain are also supported in the
current jRelix. For further details, refer to {[Bak98] and [Yua98).

CHAPTER 2. JRELIX OVERVIEW 37

To show the information of a specific domain or all the domains currently declared in the system,
use the following command:

"sd®™ (Identifier)? ";"

When Identifier is specified, the above syntax shows the information about this particular
domain; otherwise, it shows all the currently declared domains.

To delete a domain from the current system, use the dd command:

"dd™® IDList ";"

Notice that if any of the attributes specified in the IDL1i st are being used in any existing relation,
the command will fail. This requires the user to delete all the relations associated with the specified
attributes before deleting the attributes.

>sd Symb:;
>sd.
>dd Pop:

2.1.2 Relation Declaration

The syntax of relation declaration is as follows:
"relation® IDList " (" IDList ")" (Initializatiocn)? ";"
The first IDList specifies the relation being created, and the second IDList specifies the
attributes of this relation. Relations must have at least one attribute and all these attributes must
have been previously declared.

Initialization is optional. The following is the syntax of initialization:

Initialization:= "<-" ("{" ConstantTupleList "}" | Identifier)
According to the Initialization syntax, there are two ways of initializing relations: providing a

list containing the constant tuples, or providing a file name specified by Identifier.

CHAPTER 2. JRELIX OVERVIEW 38

Examples:
>relation MapRelation1(G,T.S.X,Y.C,Symb,L.Name,Temp,Pop);
>relation MapRelation1(G.T.S.X,Y,C,Symb,L .Name,Temp,Pop)<—
{
(“S1”,“Polygon™.1.-11481,3257,153204.0,"States”,“AZ",20,2350725),
(“S1”.“Polygon™.2,-11471,3271,153204.0,“States”,“AZ",20.2350725),
(“S1”."Polygon™.3.-11453,3275,153204,0.“States” . “AZ" .20,2350725),
(“S2"."Polygon”.1,-11475,3271,153204.,0.“States”,“CA”",20,29760021).
(“S2".“Polygon™.2.-11449,3300,153204,0.“States".“CA”,20,29760021),
(*S27.“Polygon™.3.-11462,3343,153204,0,"States”,“CA”,20.29760021),
(“S3"."Polygon”.1.-11963,3401.153204,0,States”,“CA",20,29760021),
}:
>relation MapRelation2(G,T.S.X.Y.C.Symb.L . Name. Temp.Pop)<—"MapData™;
The meaning of the attributes in the above cxample is the same as that in Table 3.1. For the
detailed description of these attributes, please refer to page 56.
File “MapData” is a jRelix rclation file containing the dawa of all the atwibutes of MapRelationl.
Figure 2.1 shows the content of this file.

r A
C62°FPoint "F1°F-11840"F3393°F51000051"F201 "FCities FLos Angeles F25

"F3485398°F

C87°FPolnt "F1 F-12238"F3761°F255255000"F201"FCities"FLos Angeles F25
“F723959°F

C89°FPoint “F1 F-12193"F3736°F255051051°F201"FCities "FSan Jose AP F25
“F782248°F

\— J

Figure 2.1: Contents of MapData

Table 2.2 and 2.3 shows the result of MapRelationl and MapRelation2.

To show information on relations, use the sr command:

"sr"™ (Identifier}? ";"

39

CHAPTER 2. JRELIX OVERVIEW
G T S X Y C Symb L Name | Temp Pop
S1 | Polygon | 1 | -11481 | 3257 | 153204 | O States | AZ 20 2350725
S1 | Polygon | 2 | -11471 | 3271 | 153204 | O States | AZ 20 2350725
S1 | Polygon | 3 | -11453 | 3275 | 153204 | O Staates | AZ 20 2350725
S2 [Polygon | 1 | -11475 | 3271 | 153204 | O States | CA 20 29760021
S2 | Polygon | 2 | -11449 | 3300 | 153204 | O States | CA 20 29760021
S2 | Polygon | 3 | -11462 | 3343 | 153204 | O States | CA 20 29760021
S3 | Polygon | 1 | -11963 | 3401 | 153204 | O States | CA 20 29760021
Table 2.2: MapRelation1
G T S X C Symb L Name Temp Pop
C62 | Point | | | -11840 | 3393 | 51000051 | 201 Cities | Los Angeles | 25 3485398
C87 | Point | 1 | -12238 | 3761 | 51000051 | 201 Citics | Los Angeles | 20 723959
C89 | Point | | | -12193 | 3736 | 51000051 | 201 Cities | San Jose AP | 25 782248

Table 2.3: MapRelation2

Identifier specifies a particular relation name. If a relation name is specified. the sr com-

mand shows the information on this relation: otherwise. it shows information on all the relations

currently defined in the system.

To print the content of a relation on screen. use the pr command:

Syntax

"pr" Expression ";"

The command dr is used to remove the relations specified in IDList from the system:

Syntax

| Examples:

"dr™ IDList ";"

>sr MapRelation|;

>Ssr.

>pr MapRelation2;

>dr MapRelation1, MapRelation2;

CHAPTER 2. JRELIX OVERVIEW 40

2.2 Relational Algebra

Relational algebra consists of a set of functional operations on one or two relations and produces a
result relation. jRelix first constructs expressions by using various operators and then produces the
result relation by assignment or incremental assignment. In this section. we first examine how to

use assignment and incremental assignment, and then we discuss relational expressions.

2.2.1 Assignment and Incremental Assignment

An assignment (< —) creates a relation using the result of a relational expression. An incremental
assignment (<+) adds the result of a relational cxpression to an existing relation. The syntax is as

follows:
! Syntax |

Identifier ("<-" | "<+") Expression |
Identifier "(["™ IDList("<-" | "<+")Express:ionlist "]" Expression

Identifier specifies the name of the result relation. Expression indicates the source
relation. For assignment operation, jRelix creates a new relation named by Identifier which
consists of the same domain and data as the source relation. If the result relation has the same name

as an existing relation in the current system, the existing relation witl be removed first. The source

relation remains unaffected.

>MapCopy<—MapRelation1;
>MapRelation | <+MapRelation2;
In the above examples, MapCopy obtains a copy of original MapRelationl. The result MapRela-

tionl is a merge of the original MapRelationl and MapRelation2.

2.2.2 Relational Expressions

Relational Expressions can be divided into two categories: unary operations and binary operations.
Unary operations take one relation as input and generate one relation as output. Binary operations

take two relations as input and produce one result relation.

CHAPTER 2. JRELIX OVERVIEW 41

Unary Operations

Projection, selection and T _selection are unary operations.

e Projection

Projection creates a subset of the source relation specified by Expression. It extracts a subset
of the attributes of the source relation by IDList. Duplicate tuples will be removed from

the result relation. The syntax is as follows:

"[™ (IDList)? "]"™ in Expression

e Selection

Selection also returns a subset of the source relation specified by Expression. Unlike projec-
tion. the result relation contains all the attributes of the source relation. However, the tuples

in the result relation are thosc satisfying the condition of the SelectionClause. The syntax is

as follows:

"where" SelectClause "in" Expression

o T_selection

Projections and selections can be combined into one expression to form T_Selections. In a
T _Selection. first perform the selection. and then perform the projection. The syntax is as

follows:

"[" (IDList)? "]"™ "where" SelectClause "in" Expression
Examples:
>LayerName<~[L.Name] in MapRelationl:

>MapAZ<—where Name="AZ" in MapRelation1;

CHAPTER 2. JRELIX OVERVIEW 42

>LargePop<—[Name.Pop]where Pop> 10000000 in MapRelationl;

In the above examples. the LayerName obtains a relation containing all the layers and all the
different map feature names in MapRelationl. MapAZ contains a subset of MapRelationl
that contains only the tuples of Arizona state. LargePop contains the Name and Pop of the
state(s) whose population is over 10,000,000 (Pop> 1000000).

L Name Name Pop

States AZ CA 29760021

States CA

LayerName LargePop
G T S X Y C {Symb| L Name | Temp Pop
S1 | Polygom 1 | -11481 | 3257153204} O States | AZ | 20 | 2350725
S1 | Polygony 1 | -11471 | 3271(153204| O States | AZ | 20 2350725
S1 | Polygony 1 -11453 | 32751153204 | O States | AZ | 20 2350728
MapAZ

Figure 2.2: Results of LayerName, MapAZ, and LargePop

Binary Operations

Binary operations in jRelix include u_joins and o _joins. The result of u_joins and o_joins arc also

relations.

The syntax of join is as follows:
| Syntax

Expression JoinOperator Expression |
Expression "[" Exprlist ":" JoinOperator (":")? Exprlist
*]1"™ Expression

Since Geditor does not use o _joins, we only discuss g _joins in this section.
u_joins are a generalization of set operations on relations. The most popular two u_joins are nat-

ural join (ijoin) and union join (ujoin). In general, u_join operators can be defined in terms of three

components — center, left and right. Given two relations R(X,Y). S(Y.Z), the three components are

CHAPTER 2. JRELIX OVERVIEW 43
defined as follows:
center(R,S)={(x.y.2)|(x.y)€R and(y.z)eS}
left(R.S)={(x,y.dc)|(x.y)ER and Vz((y,z)¢S)}
right(R.S)={(dc.y.z)|(y.2)ES and Vx((x.y)¢S)}
where dc is a null value.
For ijoin. we have R ijoin S=center(R.S).
For ujoin. we have R ujoin S=center(R.S)Jleft(R.S)| Jright(R.S).
Example:
>domain Humid intg;
>relation Humidity(Name.Humid)<—-{(*AZ".80).(*CA".90)}:
>MapNecw < —MapRelation1 ijoin Humidity
G T S X Y C |Symb| L Name| Temp Pop Name Humid
SI | Polygonl | | -11481 | 3257(153204 | O (States | AZ | 20 | 2350725 AZ %0
S1 | Polygony 2 | -11471| 3271153204 | 0 |States | AZ | 20 | 2350725 on %
S1 | Polygond 3 | -11453 | 3275|153204| 0 |States | AZ | 20 | 2350725
S2 | Polygony 1 | -11475 [3271[153204| 0 [States | CA | 20 [29760021 Humidity
S2 | Polygony 2 | -11449 | 3300153204 | 0 |Staes | CA | 20 | 29760021
S2 | Polygon| 3 | -11462 | 3343[153204 | 0 [States | CA | 20 | 29760021
S3 | Polygon{ | | -11963 | 3401153204 | 0 [Statws | CA | 20 | 29760021
MapRelation]
G T S X Y C |Symb| L Name|Temp Pop Humid
SU | Polygond 1 | -11481 | 3257{153204 [0 |States | AZ | 20 | 2350725 80
S | Polygony 2 | -11471 | 3271153204 | 0 |States | AZ | 20 | 2350725 80
St | Polygonf 3 | -11453 | 3275{153204| 0 [swtes | AZ | 20 2350725 80
S2 | Polygor{ 1 | -11475 | 3271]153204] 0 |States | CA | 20 | 29760021 90
s2 Polyqu 2 | -11449 | 3300{153204 | 0 |States | CA | 20 | 29760021 90
s2 polygonl 3 | -11462 | 3343[153204| 0 |swues | ca | 20 | 29760021 %
s3 Polygov{ 1 | -11963 | 3401|153204 | 0 |States | CA | 20 | 29760021 90
MapNew

Figure 2.3: Example of ijoin

CHAPTER 2. JRELIX OVERVIEW 4

In the above example, the result MapNew obtains a new attribute, Humid, which indicates the
humidity of each state. In MapNew, the humidity of AZ and CA is 80 and 90 respectively. This is
exactly the same as relation Humidity specifies. See Figure 2.3.

In this example, the common attribute of MapRelation! and Humidity is Name. Since this at-
tribute has the same name in both relations, it is not necessary to specify the attribute name explicitly
in the above ijoin expression. If the common attribute names are different in the two source rela-
tions, for example, the attribute Name in Humidity relation changes to State_Name, we must specify
the common attribute in the ijoin expression as follows:

MapNew <—MapRelation1[Name ijoin State_Name] Humidity;

As a result, both Name and Statc_Name appear in the MapNew relation and the values of the two
attributes for all tuples in MapNew are identical.

MapUnion<— MapRelationl ujoin MapRelation2;

Since the number, names. and types of the attributes in MapRelation|1 are the same as those in
MapRelation2, the MapUnion in the above example is a merge of MapRelationl and MapRelation2

as Table 2.4 shows. This is not the full ujoin, which can combine relations with different attributes.

G T S| X Y C Symb | L Name Temp | Pop

C62 | Point 1 | -11840 | 3393 | 51000051 | 201 Cities | Los Angeles | 25 3485398
C87 | Point 1 | -12238 | 3761 | 51000051 | 201 Cities | Los Angeles | 20 723959
C89 | Point 1 [-12193 | 3736 | 51000051 | 201 Cities | SanJose AP | 25 782248
S1 Polygon | 1 | -11481 | 3257 | 153204 0 States | AZ 20 2350725
S1 Polygon | 2 | -11471 | 3271 | 153204 0 States | AZ 20 2350725
S1 Polygon | 3 | -11453 | 3275 | 153204 0 States | AZ 20 2350725
S2 Polygon | 1 | -11475 | 3271 | 153204 0 Swaies | CA 20 29760021
S2 Polygon | 2 | -11449 | 3300 | 153204 0 Swates | CA 20 29760021
S2 Polygon | 3 | -11462 | 3343 | 153204 0 Sttes | CA 20 29760021
53 Polygon | 3 | -11963 | 3401 | 153204 0 Swates | CA 20 29760021

Table 2.4: Result of MapUnion from the ujoin Example

2.3 Domain Algebra

Domain Algebra provides a set of operations applied on attributes. A thorough description of do-
main algebra can be found in [Mer84). In this section, we are going to discuss virtual domains,

horizontal operations and vertical operations.

CHAPTER 2. JRELIX OVERVIEW 45

e Virtual domains

Virtual domains are declared on a set of actual domains or virtual domains which are subse-
quently based on actual domains. They belong to no relation until they are actualized by a

projection or selection operation.
The syntax is as follows:

"let" Identifier Expression ";"
Examples:
>let State_Name be Name; < <virtual domain declaration

>StateNames< —[State_Name] where L="States” in MapRelationl;
< <virtual domain actualization

e Horizontal Opcrations

Horizontal operations of domain algebra work on a single tuple of a relation. When the Ex-
pression in the above syntax is a horizontal_expression, such as constant definition, renaming,
arithmetic functions. and conditional expression(if-then-else), it becomes a horizontal opera-

tion.

Examples:
>let twopie be 3.1415926; < <constant definition
>let angle be acos(twopie); < <arithmetic functions

>let sign be if X<O then -1 else if X>0 then 1 else O;
< <conditional expression

>let px be X; < <renaming

>let POP be Pop/100;

CHAPTER 2. JRELIX OVERVIEW 46

e Vertical Operations

Vertical operations of domain algebra work on attribute values of all tuples in a relation. Four
types of vertical operations are defined in jRelix. (Only the first two are implemented in the

current version.)

- Simple reduction
- Equivalence reduction
- Functional mapping

— Partial functional mapping

Simple reduction produces a single result from the values of all tuples of a single attribute in
a rclation. Equivalence reduction first divides all the tuples into groups based on the grouping
expression (by). and then generates one result from the values of tuples of an attribute in cach
group.

The syntax is as follows:

"let" Identifier "be" "red" AssoCommuOperator "of" Expression”";"
"let" Identifier "be" "equiv" AssoCommuOperator "of™ Expression
"by" ExpressionList ";"

The AssoCommuOperator can be one of the following associative and commutative oper-

alofSI (uorﬂlul'!) (“m‘ld“!“&")l"ﬂliﬂ”

>let tot_pop be red + of Pop;

umaxnlu+"|u*"l(“ijoin"

“natjoin”)|“ujoin

9’[‘!

sjoin”

>let sub_tot be equiv + of Pop by Name;
>R <~[Name, tot_pop] in MapRelation2;

>S <—[Name, sub_tot] in MapRelation2;

CHAPTER 2. JRELIX OVERVIEW 47

Name tot_pop Name sub_tot
Los Angeles 4991607 Los Angeles 4209357
San Jose AP 4991607 San Jose AP 782748

R S

Figure 2.4: Results of Rand S

The tot_pop in the first example calculates the total population of all the cities in MapRela-
tion2. The sub.tot in the second cxample calculates the sub-totals of the population in each
city.

e Functional mapping
Functional mapping processes a relation by first sorting it according to a specified set of

attributes. Then instead of working with a set of tuples as a whole, it manipulates individual

tuples according to the specified operator.

The syntax is:

"let™ Identifier "be”™ "fun" Operator "of" Expression
order ExpressionList ";"

The Operator in the above syntax includes the AssoCommuOperator discussed above and

the following ordered operators: “cat”|“="|"/"|“mod”|“*="|"“pred”|“succ”

Examples:
>R <~ where Name="AZ" in MapRelation1;
>let X* be fun succ of X order S;
>T<~ [S.XX']inR;

In the above example, first, all the tuples in MapRelation] are sorted by S. Then for each
tuple, generate X’ as the successor of X. The calculation of successor is cyclic, that is, for

each tuple except the last one, the successor of X is the X value of the next tuple. For the last

CHAPTER 2. JRELIX OVERVIEW

48

tuple. the successor of X is the X value of the first tuple. The result of T is displayed in Figure

2.5.
S X X’
1 -11481 -11471
2 -11471 -11453
3 -11453 -11481

Figure 2.5: Result of Relation T

e Partial functional mapping

Partial functional mapping first divides the tuples into groups based on the grouping expres-

sion (by). Then in cach group. it sorts the tuples according to the ordering expression (order).

Finally, according to the Operator. it manipulates each tuple in cach different group similar

to functional mapping.

The syntax is as follows:

"let" Identifier "be" "par" Operator "of" Expression
"order" Exprssionlist "by" ExpressionList ";"

>let X' be par succ of X order S by G;

>R<~[G.S,X,X"] in MapRelationl;

2.4 Computations

Computations are user-defined constructs that implement procedural abstraction in jRelix. Each

computation contains a group of statements that perform a specific task. The formal syntax is as

follows:

CHAPTER 2. JRELIX OVERVIEW 49
G S X X’
sl 1 -11481 -11471
s1 2 -11471 -11453
S1 3 -11453 -11481
s2 1 -11475 -11449
s2 2 -11449 -11462
s2 3 -11462 -11475
S3 1 -11963 -11963
R

Figure 2.6: Result of Relation R

"comp"” Identifier " (" (ParameterList)?")" is ComputaicnBody ";"

In this section, we briefly discuss computation with an example relevant to Geditor implementa-

tion, which does not use parameters. Please refer to {Bak98] for a complete explanation of compu-

tations in jRelix.

comp AssignComp () is

{
MapCopy <—MapRelationl;
}

This computation can be invoked by means of a top_level call in jRelix as indicated below:

>AssignComp();

As a result. MapCopy obtains a copy of the MapRelation|.

CHAPTER 2. JRELIX OVERVIEW 50

2.5 Updates

The update operation allows the user to change values of specified attributes in certain tuples.
These attributes could be selected by a using clause that selects tuples from the relation by relational
algebra operations. Updates could also be used to add or delete tuples from the relation. The syntax
for update statements is as follows:

"update" Identifier ("add" | "delete")Expression ";" |
"update" Identifier "change"™ (StatementList)? (UsingClause)? ";"
UsingClause:="using" JoinCperator Expression |
"using" "{" IDList ":" JoinOperator (":")? ExpressionList
"]" Expression |
"using” Identifier|
"using" " (" Expression ™)"

Examples:

>update MapRelation] add MapRelation2;

<< MapRelationl becomes a merge of MapRelation2 (Cities) with original
MapRelationl (States)

>MapCity <—where L="Cities” in MapRelation1;
< < MapCity contains the Cities tuples in MapRelationl

>update MapRelation1 delete MapCity;
<< MapRelation] now does not contain any Citics tuples.

>relation CA(Name)<—{(“CAM};
<< arelation only has one attribute and one wple

>update MapRelation1 change Temp<— 18 using ijoin CA;
< < The temperature (Temp) of CA in MapRelation] changes from 20 to 18 degree.

When using update to add tuples. the number, types and positions of all the attributes of the two
relations must be the same. When using update to delete tuples, the attributes in the using clause can
be a subset of the relation being updated. In the above example, MapRelation! and MapRelation2,
MapRelationl and MapCity have the same attribute number, types and positions. When using

CHAPTER 2. JRELIX OVERVIEW 51

update to change the relation MapRelationl. first perform the relational algebra specified in the
using clause with MapRelationl: MapRelationl ijoin CA. Then in the MapRelationl. change the
temperature (Temp) of those tuples that participated in the ijoin (having common attribute values in
MapRelation1 and CA) from 20 to 18 degrees. The result of this operation is shown in Table 2.5.

G T S| X Y C |[Symb| L | Name | Temp| Pop

S1 | Polygon | 1 | -11481 | 3257 | 153204 | O Sawes | AZ | 20 2350725
ST | Polygon | 2 | -11371 | 3271 | 153204 | 0 Sates | AZ | 20 3350725
ST | Polygon | 3 | -11453 | 3275 | 153203 | 0 Saes | AZ | 20 3350725
S3 | Polygon | 1 | -11475 | 3271 | 153204 | 0 Sates | CA_ | I8 29760021
S2 | Polygon | 2 | -11349 | 3300 | 153203 | 0 Swates | CA | 18 29760021
S2 | Polygon | 3 | -11462 | 3343 | 153204 | 0 Satcs | CA | 18 29760021
S3 | Polygon | 1 | -11963 | 3301 | 153204 | 0 Satcs | CA | 18 29760021

Tabie 2.5: Result of MapRelation! from: update MapRelation] change Temp<—18 using ijoin CA;

2.6 Event Handler

Event handlers are procedures (computations) to process events. Events are system-generated pro-
cedure calls. In the jRelix version before Geditor was implemented. events were generated by
updates. However, generally speaking. events may arise from operations such as executing a com-
mand (such as update). user’s mouse click. a database read. and a notice from the Internet. In this
section. we discuss the event handlers for updates. In chapter 4. the new event handler that includes
those processing events generated by user’s mouse click will be discussed in detail.

Current events are generated by updates. When jRelix meets an update command, an event
is generated. Before jRelix executes the update command, it searches the system table to find the
particular event handler that should be invoked before executing the command. If such an event
handler exists. it will be triggered. After the update command is executed, jRelix searches the
system table again to find the particular event handler that should be invoked after the executing of
this update command. If such an event handler is found, it will be invoked and exccuted.

Computations are used to define event handlers in jRelix. To distinguish between event handlers

and user-defined computations, special names must be assigned to event handlers.

CHAPTER 2. JRELIX OVERVIEW 52
2.6.1 Naming Event Handlers

The syntax of Computations is expanded to include event handlers as follows:

! Syntax |

Computation:= "Comp" CompName " ("™ (Parameterlist)? ®)" "is"
ComputationBody

CompName := Identifier | EventName

EventName = (prefix ":")? action ":" relation ("{" attribute-list

"1)?
According to the above syntax, there are four components of EventName:

e prefix

orefix could be either pre or post. If prefix is omitted. it is post by default. Pre means
that the event handler could be invoked before the execution of the corresponding event. Post

means the event handler could be executed afier the execution of the corresponding event

e action

action specifies what update operation this event handler would process. There are three

possible types of action: add. delete or change.

o relation

relation specifies the name of the relation o be updated.
e attribute-list

attribute-list is optional. For action add or delete, it is always omitted. For action

change. the attribute-1ist could be any subset of the original attributes. If the subset
is not empty. change action on this subset of attributes will trigger the event handler. If the
subset is empty, change action on any attribute(s) in the relation will trigger this event handler.

The following are some examples of valid event names for relation R with attributes a,b.c.
Examples:

pre: add: R

CHAPTER 2. JRELIX OVERVIEW 53

post:delete:R

add: R

delete: R
pre:change:Rfa.b.c]
post:change:R

Now we are ready to define an cvent handler.

2.6.2 Defining an Event Handler

Since computation is used to define an event handlcr. defining an event handler is similar to defining

a computation with a special event_name.

"comp" event.name() "is"
statements;

For update events. the event handlers do not take parameters.

2.6.3 Event Handler On/Off

When an event handler is defined. its state is set to On which means it will be executed when the
corresponding event occurs. To turn an event handler Off. use the following command:
Syntax
"eventoff” event_name ";"
When an event handler is turned Off. it will not be invoked when the corresponding event happens
even if this event handler exists in the system.
To wrn an event handler On again. use the following command:

Syntax |

"aventon®™ event.name ";"

CHAPTER 2. JRELIX OVERVIEW 54

2.6.4 Printing Event Handlers

The command
"pr®" command ";"

will print out the definition of the event handler with the specified eventname.

2.6.5 Deleting Event Handlers

To delete an event handler from the current system. use the command

[Syntax]

"dr" event_name ";"

For the update opcration, the affected relation would be separated into three pieces: Trigger,
New and Rest. These three pieces are useful to achieve the undo operation which recovers the
former state of the database before the update command is executed. For more details, please refer
to [Sun00].

Herc is a simple example of event handlers:

Examples:

>relation CA(Name)<—{(“CA™M};
>comp pre:change:MapRelation 1() is
{
MapCopy<—MapRelation|;
}

>update MapRelation! change Temp< - 18 using ijoin CA;

The above example defines an event handler for the change act ion of the update command of
MapRelationl. Since the prefix in the event_name of this event handler is pre, before updating
MapRelation |, the relation MapCopy obtains a copy of the original MapRelation].

Chapter 3

User’s Manual for Geditor

This chapter is a tutorial that describes how to use the GIS cditor (Geditor) in jRelix to display and
edit maps. Section 3.1 describes the functions in the Layers menu which are related to starting and
exiting Geditor. Section 3.2 discusses how 1o add layers and change the states of the layers. Section
3.3 explains how to change colors and symbols in a particular [ayer. The operations of editing the
titles and labels of the legends are also discussed in this section. In section 3.4, the three different
ways of querying the map are presented. Some details such as changing the default color of selected
map features are also explained. Section 3.5 briefly explains the Help message the Geditor provides
for the user.

Users of Geditor can be classified into two categories: Programmer-User and End-User. The
Programmer-Users work in the jRelix environment. They are responsible for the preparation of map
data in relations. using the correct syntax to call the Geditor and writing the correct event handlers
to perform the spatial queries. The End-Users work in the Geditor window. They edit the map,
generate thematic maps, perform spatial queries, and so on. They have different interests in the
data. Programmer-Users are interested in the manipulation of the map data using jRelix statements
or commands. End-Users are interested in viewing the map data graphically and generating new
meaningful and real data by using the functions provided in the Geditor window.

]5

CHAPTER 3. USER’S MANUAL FOR GEDITOR 56

3.1 Starting and Exiting Geditor

J.1.1 Starting jRelix

Geditor must be invoked from jRelix as a gedit operator. Therefore. jRelix must be started first.
Suppose both the Java run-time system and jRelix software are successfully installed on the user
system. To start jRelix. the folowing command is typed on the command line of the operating

system:
> java JRelix

As a result. jRelix copyright information is displayed as illustrated in Figure 3.1 . After that.

JRelix shows its prompt sign *>" and waits for the user input.

TIXy .zzazlhome/yshenis/ (Re . .x;loge 3va JRel:ix
Fel:.x ava vers:.cn J.7
Cspyrignt (z) 1337 333, Alzat Lun
Sznzsc. cf CZomputer Sc.ance
MeZLll Univers:.=

Figure 3.1: init Screen of jRelix

3.1.2 Map Relation

Before starting the Geditor, the map relation that stores both the graphical and descriptive data of
the map must also be created. In the map relation. the attributes that represent graphical information
of the map, such as the shape. color. x and y coordinates are called graphical anributes. Other
attributes such as population, temperature and income. are called descriptive attributes because
they are non-spatial or descriptive data that describe the features of the corresponding map feature.
Moreover. the graphical attributes are divided into two categories: the basic graphical antributes and
the additional graphical attributes. The five attributes representing group. type, sequence. X coor-
dinate and v coordinate of the points that will be drawn on the screen are called the basic graphical
attributes. They are required by every map relation in this implementation of Geditor. Other graph-

ical attributes representing items such as color. symbol, and layer, are the additional graphical

CHAPTER 3. USER’S MANUAL FOR GEDITOR

57

attributes. They are optional. The following is an example of the correct attributes definition of a

map relation used by Geditor:

Attribute_category

Group
Type
Seq

X

y
Color
Symb
Layer

Attribute_type

string

string

int
int
int
int

int

string

In the above list. the attribute names could be chosen arbitrarily by the user, but it is the user’s

responsibility to provide correct types for these attributes. Table 3.1 shows a sample map relation

which contains all the eight graphical attributes: G(Group). T(Type). S(Seq). X(x). Y(y). C(Color),

S(Symb) and L(Layer). The other three attributes:

Name. Temp and Pop are descriptive attributes.

G T S X Y C Symb L Name Temp Pop
Cl1 | Point 1| -11840 | 3393 | S1000051 | 201 Cities | Los Angeles 25 3485398
C2 | Point 1 | -12238 | 3761 | 51000051 | 201 Cities | San Francisco AP | 20 723959
R1 | Polyline | 1 { -12062 | 3483 | 153000000 | O Rivers | Mississipi 14 0
Rl | Polvline | 2 | -11561 | 3280 | 153000000 | O Rivers | Mississipi 14 0
S1 | Polygon | I | -11481 | 3257 | 153204 0 States | AZ 20 2350725
S1 | Polygon | 2 | -11471 | 3271 | 153204 0 States | AZ 20 2350725
S2 | Polygon | 1 | -11450 | 3396 | 153204 0 States | CA 20 29760021
S2 | Polygon | 2 | -11445 | 3399 | 153204 0 States | CA 20 29760021
S3 | Polygon | 1 | -12000 | 3906 | 153204 0 States | NV -10 1201833
S3 | Polygon | 2 | -12000 | 3900 | 153204 0 States | NV -10 1201833
S4 | Polygon | 1 | -11689 | 4415 | 153204 0 States | OR 8 2842321
S4 | Polygon | 2 | -11691 | 4412 | 153204 0 States | OR 8 2842321

Table 3.1: Exampie of Map Relation:MapRelation

As indicated in Table 3.1, Color must be an integer showing its RGB values. The first, second

and third three digits show the red value R. green value G, and blue value B respectively. The value

range of every three digits is 0..255. For example. if the color has R value 51, G value 0, and B

CHAPTER 3. USER’S MANUAL FOR GEDITOR 58

value 51, the value of the color attribute in the map relation should be 51000051. Notice that the
leading 0 must be omitted.

The type of symbol is integer. In the current version of Geditor, only point map features can be
represented by different symbols. Geditor ignores all the symbol values for polylines and polygons.
Six different symbols are implemented for points. They are: 201—solid oval, 202—double hollow
circle. 203—hollow circle with a solid oval inside, 204—hollow triangle, 205—solid triangle, 206—
flag. When the value of the symbol attribute of a point is none of the above, Geditor assigns value
201 1o this point. As a result, the point will be displayed as a solid oval.

3.1.3 Starting Geditor

Now, we are ready to start the Geditor using gedit operator. In general, the syntax to start the GIS

cditor is as follows:
basic_graphical_attribute_list(additional _graphical_attribute_list] gedit rel_name |

The first list is required by every gedit expression. It contains the five basic graphical attributes
by positions. From the left to the right, the sequence of the five attributes must be those representing
group, type. sequence, x coordinate and y coordinate respectively. The user is responsible for
providing the correct number and order of the attributes in the first list. For the MapRelation|

indicated by Figure 3.2, the only possible correct basic_graphical_attribute_list is [G.T.S.X.Y].

>’<-.G,7,8,X,Y¥! [Colzz=C, Symbo=Symb, _Layer=L gedit MapRelatisni;

Figure 3.2: gedit Example (1)

The second list is optional. It shows the additional graphical attributes in the map relation by
category-name pair. Arbitrary number of equations are allowed in the second list, but we have
implemented three: Color=artr_name, Symbol=attr_name, and Layer=attr_name. For example, in

Figure 3.2, the second list of the gedit operator contains three equations: Color=C, Symbol=Symb,

CHAPTER 3. USER’S MANUAL FOR GEDITOR 59

and Layer=L. The positions of these equations do not matter, and some or all may be omitted. When
the Color and/or Symbol equation in the second list is missing, Geditor assigns default color and/or
symbol to each layer of the map; when the Layer equation is missing in the second list, Geditor
assumes that the map relation contains only one layer. For example, in Table 3.2, MapRelation2
has only one layer so that it has no layer attribute. Therefore, the corresponding gedit expression
contains only two equations: Symbol=Symb and Color=C as Figure 3.3 shows. (Note that Figure
3.3 should also work for MapRelation1.) In an extreme case as Table 3.3 shows, MapRelation3 has
only onec layer and no color or symbol attributes. The gedit expression omits the whole second list

as illustrated in Figure 3.4.

| G T S X Y C Symb | Name | Temp Pop

{ St | Polygon | 1 | -11481 | 3257 | 153204 | O AZ 20 2350725
S1 | Polygon | 2 | -11471 | 3271 | 153204 | 0 AZ | 20 2350725
S2 | Polygon | 1 | -11450 | 3396 | 153204 | O CA 20 29760021
S2 | Polygon | 2 | -11445 | 3399 | 153204 | O CA 20 29760021
S3 | Polygon | 1 | -12000 | 3906 | 153204 | O NV -10 1201833
S3 | Polygon | 2 | -12000 | 3900 | 153204 | 0 NV | -10 | 1201833
S4 | Polygon | I | -11689 | 4415 | 153204 | O OR 8 2842321
S3 | Polygon | 2 | -11691 | 4412 | 153204 | 0 OR 8 2842321

Table 3.2: Example of Map Relation:MapRelation2

»>R<-1G,7,8,X, Y. Syrpoec .=Syre, C

0

~or=Clgediz MapRelatioanZ;

Figure 3.3: gedit Example (2)

>R<-7%,7,S8,X,Y. sedit MapRelaticnZ;

Figure 3.4: gedit Example (3)

CHAPTER 3. USER’S MANUAL FOR GEDITOR 60

G T S X Y Name | Temp Pop
S1 | Polygon | 1 | -11481 | 3257 | AZ 20 2350725
S1 | Polygon | 2 | -11471 | 3271 | AZ 20 2350725
S2 | Polygon | 1 | -11450 | 3396 | CA 20 29760021
2 | Polygon | 2 | -11445 | 3399 | CA 20 29760021
S3 | Polygon | 1 | -12000 | 3906 | NV -10 1201833
S3 | Polygon | 2 | -12000 | 3900 | NV -10 1201833
S4 { Polygon | 1 | -11689 | 4415 | OR 8 2842321
S4 | Polygon | 2 | -11691 | 4412 | OR 8 2842321

Table 3.3: Example of Map Relation:MapRelation3

After the user inputs the statement containing the gedit expression, a Geditor window appears.(Sce
Figure 3.5.) Initially. the internal frame “Map View" is empty.

Figure 3.5: Geditor Window

As a unary operator. gedit is functional. It does not change the content of its operand, that is,
the map relation. Furthermore, the value of the gedit expression is also the same as its original
operand (the map relation). Therefore, R will be assigned to the original map relation, which is
MapRelation1, MapRelation2 or MapRelation3 in the above examples. Actually, as soon as gedit
calls and displays the Geditor window, the statement containing the gedit expression retums. The

CHAPTER 3. USER’'S MANUAL FOR GEDITOR 61

jRelix system continues to accept commands and statements in the command line at the same time

the End-User performs GIS operations in the Geditor window.

3.1.4 Exiting Geditor and jRelix

To exit the Geditor Window, the user clicks the Close command at the upper left corner of the
window or clicks Exit in the “Layers™ menu. Upon receiving this user operation, jRelix closes the
Geditor window and returns to the command line environment with a “>" prompt sign waiting for
user input.

To further exit the jRelix system. the user types “quit;"after the system prompt sign. The jRelix

performs its clean-up procedures and returns to the original operating system.

3.2 Layers

A layer is a logical separation of map data. such as city, road, and river. Usually the map relation
contains more than one layer and Geditor allows the user to work on a single layer or multiple layers.
As described in section 3.1, initially. the Map View window is empty. The user needs to add layer(s)
to let the Geditor know what layer(s) should be displayed in the Map View window. After a layer is
added, a set of switches is attached to the layer to indicate its current state. This section describes
how to add layers and change their states through “Add Layer™” and “Layer Control”. These two
functions are included in the leftmost pull-down menu “Layers” as Figure 3.6 shows.

Add Layer

Layer Control
Exit

Figure 3.6: Layers Menu

32.1 Add Layer

On the top of the Geditor window is a menu bar containing the names of four pull-down menus.

Click the Layers puli-down menu and select the Add Layer item. A dialog box titled “Add Layer”

CHAPTER 3. USER’S MANUAL FOR GEDITOR 62

Cnessc a tlayer tram feft et snd add L Pight st C
: ok i Camcal |- o

Figure 3.7: Add Layer Dialog

pops up as illustrated in Figure 3.7. In the dialog box. there are two lists and four buttons. The left
list shows all the layers in the map relation and the right list displays the layers that have been added
by the user. Clicking an item in the left list and then clicking the Add button adds this layer to the
right list. The user can also sclect an item from the right list and click Remove button to remove
this layer. Only one item can be sclected in any list at a time. Under the two lists, there is a message
line reminding the user what to do next. When the user’s operations are not in a proper sequence,
error messages are displayed on this message line. Clicking on OK button records the user's input
and closes the dialog. The Cancel button discards the user’s input and closes the dialog. Notice that
the functions of the OK and Cancel buttons are the same in every dialog box in Geditor. Therefore,
the description of their functions will not be mentioned again in the following discussions.

After the Add Layer dialog box is closed with the OK button, the Geditor updates the Map View
window. It draws all the layers added by the user in a sequence exactly the same as the sequence
of the layers that appear on the right list of Add Layer dialog. A latter layer could overwrite part or
all of a former layer on the screen. Figure 3.8 shows the updated Map View resulting from the Add
Layer dialog in Figure 3.7. There are three layers in the map relation: Cities, States and Rivers.
The user adds two layers to the right list: States and Cities respectively. Therefore, Geditor draws

CHAPTER 3. USER’S MANUAL FOR GEDITOR 63

Layers SEEE— TG Toun sk ¥
MD Vinw > W Lo tea L

imCrms

TN 0 . ADEE o JEOETRA o
. Lo

P e

e

PR i

PN

AT M

Figure 3.8: Updated Map View Window after Add Layer

states first and then the citics. As a result, both Cities and States are displayed properly in Map
View as Figure 3.8 shows. However, if the user adds Cities and then the States in the Add Layer
dialog, Geditor will draw the cities first and then the states. As a result, the user can only sce one
States layer in the Map View window because all the cities are overwritten by the states. Almost all
the standard GIS products perform this operation in the same way. Therefore, the user should pay
attention to the sequence of adding layers in the Add Layer dialog.

After the Add Layer operation is performed, cvery layer in the map relation obtains a pair of
Boolean switches showing its state: Show/Hide and Active/Inactive. At any time, zero, single or
multiple layers can be shown, but among the shown layer(s), only one layer can be active. When the
Add Layer operation has just been performed, the states of these layers are as follows: Those that
appeared in the right list of the Add Layer dialog are currently “Show”; others are “Hide”. The last
one in the right list of Add Layer dialog is currently “Active”; others are “Inactive”. The user can

tell the current state of each layer from the legend split window of Map View. Each layer has a title

CHAPTER 3. USER’S MANUAL FOR GEDITOR 64

and a graphical sample legend in the legend window. If the layer is “Show™, the title of the layer
is checked with a tick; otherwise it is unchecked. If the layer is “Active”, the title is highlighted in
the legend window. See the legend split window in Figure 3.8 for the results from the Add Layer
operation in Figure 3.7. The default highlight color is yellow and this can be changed if the user
uses the “Options” function. Details will be discussed in Section 3.4.5.

An active layer may be used for thematic mapping, expression builder, spatial query, etc. in the
View and Query menus. In this case, the purpose of activating a layer is to select that layer for

subsequent functions.

Figure 3.9: Layer Control dialog box

3.2.2 Layer Control

On the menu bar. click the Layers menu and select the Layer Control item. A Layer Control di-
alog box pops up as Figure 3.9 shows. All the layers in the original map relation are listed in
this Layer Control dialog. There are three columns showing the layer names, the Show/Hide and

CHAPTER 3. USER’S MANUAL FOR GEDITOR 65

the Active/Inactive state of each layer. If the checkbox under the Show/Hide column is checked,
the corresponding layer is currently shown; otherwise it is hidden. If the radio box under the Ac-
tive/Inactive column is checked, the corresponding layer is active; otherwise, it is inactive. Since
only one layer can be active at any time, the radio boxes are mutual exclusive. The user can change
the current active layer by simply clicking the radio boxes. The Show/Hide state cannot be changed
using Layer Control. If users need to change a “Show” layer to “Hide”, they must remove a layer
using the Add Layer function. Similarly. if users need to change a “Hide” layer to “Show™, they
must add it using the Add Layer dialog. Click the OK button after finishing the input in the Layer
Control dialog.

If the Layer Control is closed with the OK button, Geditor updates the current state of each
layer according to the user input. The Map View window does not need to be updated because no
Show/Hide statec was changed in the Layer Control dialog. The legend window will be updated
accordingly. For example, if the user changes the current active layer to States in the Layer Control
dialog as Figure 3.9 shows, the legend window of Map View will be updated as Figure 3.10 shows.

The user will notice the yellow bar changed from Cities to States in this legend window.

3.3 View

Up to now, we can display a map from a relation using the Layers menu. The next operation the
user may need is to change the view of the current map, such as to change the color of map features.
In this section. we are going to discuss how to change the color and symbol in a uniform layer and
how to perform thematic mapping in a non-uniform layer. Legend Editor will also be explained in
this section. All these functions are included in the View pull-down menu of Geditor as Figure 3.11

shows.

3.3.1 Uniform Layer

The layers can be divided into uniform layers and non-uniform layers. If all the map features in
the same layer have the same color and symbol, this layer is called uniform layer; otherwise, it

is called non-uniform layer. The user can use the Uniform Layer submenu to generate a uniform

CHAPTER 3. USER’S MANUAL FOR GEDITOR 66

Figure 3.10: Updated Map View after Layer Control

Unifermilayer ~ »:
__Thematic Mapping »
Legend Editer

Figure 3.11: View Menu

layer and the Thematic Mapping submenu to generate a non-uniform layer. This section explains

the functions of Color Editor and Symbol Editor in the Uniform Layer submenu.(See Figure 3.12.)

— B - Coler Editer
Thematic Mapping > | symbel Editar -
Legend Editer

Figure 3.12: Uniform Layer Submenu

CHAPTER 3. USER'S MANUAL FOR GEDITOR 67
Color Editor

Suppose there are two layers shown in Map View: Cities and States. No matter whether the States
layer is a uniform layer or not, the user can make the States layer a red uniform layer using Color
Editor. First, the user must activate the States layer using the Layer Control function as discussed in
Section 3.2. Then click View menu from the menu bar and select the Color Editor from the Uniform

Layer submenu. A dialog box pops up as Figure 3.13 shows.

. . FCules Lddoy =~ S T
V7 siares : ACEive JLAYArI dTReAs - - Y
‘swaiciee

] o B

Figure 3.13: Color Editor Dialog

At the top of the dialog box. the name of the current active layer is displayed. In the middle is
the color chooser. “Swatches”™ that allow the user to click color patches on a palette is the default
way of choosing a new color. “HSB” and “RGB” are the other two alternative ways. Click the
corresponding tabs when these color choosing methods are needed. In the Preview section, the
original color and the new color selected by the user are displayed. After finishing the selection of
new color, click OK to close the dialog.

If the dialog was closed using the OK button, Geditor updates Map View according to the new

CHAPTER 3. USER’S MANUAL FOR GEDITOR 68

color. For example, if the user changes the color of the States layer from original blue to red, all the
states polygons will be filled in red. The legend split window will also be updated accordingly.

vehe T
AN LAYIr. Citis.

i

Figure 3.14: Symbol Editor

Symbol Editor

The user can also change the symbol of points using Symbol Editor. For example. suppose that the
user would like to change the cities in current Map View from solid ovals to flags. First, activate
the Cities layer using Layer Control. Then click the Symbol Editor item from the Uniform Layer
submenu. A dialog titled as Symbol Editor appears as Figure 3.14 shows.

As usual, the name of the current active layer is displayed at the top of the dialog. The current
symbol and the new selected symbol are displayed on the left part of the dialog. The right box
contains the six symbols that could be chosen. We click the flag symbol and the OK button to close

the dialog. After that, the Map View window will be updated as Figure 3.15 shows. Notice that the
cities have been changed to flags in the figure.

CHAPTER 3. USER’'S MANUAL FOR GEDITOR 69

Figure 3.15: Updated Map Vicw after Symbol Editor

3.3.2 Thematic Mapping

Non-uniform layers can be generated through Thematic Mapping. Two thematic maps are provided
in current Geditor: Individual Value map and Range map. An Individual Value map maps individual
values of a certain descriptive attribute to different colors. A Range map maps ranges of values to a

color ramp. Figure 3.16 is the Thematic Mapping submenu.

_Uniform Layer T
CR—— _ _individual Value Map
Legend Editor | Range Map

Figure 3.16: Thematic Mapping Submenu

CHAPTER 3. USER’S MANUAL FOR GEDITOR 70
Individual Value Map

Individual value maps are useful when the user needs to group map features by the individual values
of a certain descriptive attribute. For example, in the States uniform layer displayed in Figure 3.15,
all the state polygons have the same color. We cannot tell whether any of the states have the same
value of temperature or not. However. we can show this using the Individual Value Map.

First, activate the States layer using Layer Control. Then click the View menu and then select the
Individual Value Map from the Thematic Mapping submenu. A dialog box pops up as Figure 3.17

shows.

. AITlws L awpr S1aten

N . oo Atnbarlar Lot
. H ; ~are Y
7. Swates t .
H TOMmp

| 3 ro

":,.,,& -: ;.}......,....»-..._...

[

Piease selectan attsiBure frem sbeve lises

Figure 3.17: Individual Value Map Dialog

On the top line of the dialog, the current active layer name States is displayed. The middle list
shows all the descriptive attributes in the map relation. We choose Temp in the list and click OK to

. close the dialog box. The Cancel button discards the user input and closes the dialog.
After the dialog box is closed with the OK button, the Geditor assigns different colors to the map

CHAPTER 3. USER’S MANUAL FOR GEDITOR 71

BT A S

b
i
X
<
i
i
-3

FE VA

R T

NOUUR L VT

Figure 3.18: Updated Map View after Individual Value Map Dialog

features according to the different values of the Temp attribute. Then Geditor updates the Map View
including the legend split window as Figure 3.18 shows. The user will notice that California(CA)
and Arizona(AZ) appear in the same color which means they have the same temperature. Others
are in different colors indicating that their temperatures are different. In the legend split window, a
label showing the temperature value is displayed next to each graphical legend of the States layer.
The labels can be changed by Legend Editor that will be discussed in Section 3.3.4.

Notice that the number of different colors is limited. When the number of different values of the
attribute is over 256*256*256, Geditor will display an error message indicating that there are too

many different values of this attribute in the current map relation.

3.3.3 Range Map

Although the largest number of different colors allowed in the individual value map is 256*256*256,

when the number of colors is more than, say, 40, the map will become overwhelming. For example,

CHAPTER 3. USER’S MANUAL FOR GEDITOR 72

if every state in the United States has a different temperature in January, there will be 51 different
colors in an individual value map. In this case, users might need to reduce the number of colors by
regrouping the map features using a range map.

Range maps assign different colors to different ranges of values of a descriptive attribute. For
example, a range map showing the distribution of temperature for January in the United States fills
the state polygons with white if the temperature is in range [-20.0, -11.0), light green if in range
[-11.0, -2.0). green if in range [-2.0, 7.0). dark green if in range [7.0, 16.0), and deep green if in
range [16.0, 25.0]. Notice that the descriptive attribute that the range map is based on must be of a
quantitative type. Otherwise, the range is meaningless.

To gencrate the above range map. first activate the States layer using Laycr Control. Then click
the View menu and select Range Map from the Thematic Mapping submenu to open the Range
Map dialog as Figure 3.19 shows. The first line of the dialog shows the current active layer name:
States. The left list contains all the quantitative descriptive attributes of the map relation. Next to
this attribute list is a list of pre-defined color ramps. They are red ramp. blue ramp, green ramp, and
gray ramp. When the user selects a color map in the list, the colors are displayed as five patches in
the right most list of the dialog. These colors can be edited by the user. When the user clicks on a
color patch. a color chooser pops up for the user to choose a new color.

After the user selects an attribute in the attribute list. Geditor generates four numbers in the third
list . The four numbers divide the range [min,max] into five equal ranges. where min and max are
the minimal and maximal values of the selected attribute in the map relation. All the range numbers
including min. max and the four auto-generated numbers are listed in the third column in a non-
decreasing order from top to bottom. The color patches between two range numbers show that all
the map features with the values between these two numbers will be displayed with this color. For
example, in Figure 3.19. the color patch between the two numbers -2.0 and 7.0 is green. Therefore,
all the state polygons with temperatures in [-2.0,7.0) will be filled in green. The min and max on the
top and bottom are not editable, but the other four auto-generated range numbers can be edited by
the user. Remember to keep all the range numbers in a non-decreasing order from top to bottom and
in the range [min.max]. Type Rewmn after editing. Geditor will perform the checking and if there
is any error such as those with the order of the range numbers, the error message will be displayed

CHAPTER 3. USER’S MANUAL FOR GEDITOR 73

on the message line. In an extreme case, when all the values of this selected attribute are the same
in the whole map relation, all the range numbers are equal. Geditor assigns one color to all the map

features in this layer.

Figure 3.19: Range Map Dialog

To generate the range map of the January temperature distribution of the United States. we select
Temp from the attribute list. then the green ramp from the color ramp list. Keep the ranges generated
automatically by Geditor. and finally click on the OK button to close the dialog. Different from the
examples in other sections, we choose the whole map instead of the West Coast of the United States
in this section. This is because range maps are usually used when many map features with different
attribute values exist in the map.

The Map View will be updated as Figure 3.20 shows. Notice that the legend window is also
updated accordingly. The labels next to each legend color patch show the temperature range the
color represents. The labels can be changed using Legend Editor that will be discussed in the next
Section.

CHAPTER 3. USER’S MANUAL FOR GEDITOR 74

=208 ILE g
-1LE.-2.0

~ 2050

160

A Y R R W W ST W P I

16.0.25.0

v ey o

Figure 3.20: Updated Map View after Range Map Dialog

33.4 Legend Editor

In this section. we are going to discuss how to edit the legend window. In the legend window, each
layer has a title, one or a series of graphical legends. and a label next to each graphical legend to
show what this graphical legend represents. The graphical legend cannot be changed arbitrarily
using Legend Editor because it shows the type, color and symbol of the map features of the corre-
sponding layer in the current Map View window. However, the title and label can be edited by the
user.

Similar to the other functions in the View menu, only the legend of the active layer can be
changed. Therefore. first, the user needs to activate the layer whose legend needs to be edited.
Then. click the View menu on the menu bar and select the Legend Editor item. A dialog box with
the title Legend Editor pops up as Figure 3.21 shows. There are five columns in the dialog. The
first column lists the name of the active layer in the map. The second column displays the title
of this active layer that is currently displayed in the legend split window. The third and fourth

CHAPTER 3. USER’S MANUAL FOR GEDITOR 75

TR activw Baywe: 0 Eitta

1.4 : ; Con R Staues 25---4 wett cmq
. N 1

Figure 3.21: Legend Editor Dialog Box

columns display the graphical color and symbol of this layer. The fifth column shows the labels
corresponding to the pair of color and symbol. If the layer is a uniform layer, only one pair of
color and symbol will be displayed and the label of this layer is initially blank; if the layer is a
non-uniform layer, more than one pair of color and symbol values are displayed for the layer and
the default labels that have been attached by Geditor are also displayed in the fifth column.

Among the five columns, the Title and Label columns are editable. For example, the user can
change the labels of the States layer as shown in Figure 3.21. The States abbreviations are added
next to the temperature numbers. The title of States can also be changed to “States(West Coast)” as
Figure 3.21 shows. Finally, click on the OK button to close the dialog. The legend window will be
updated as Figure 3.22 shows. Notice the change of the title and labels of the States layer.

CHAPTER 3. USER’S MANUAL FOR GEDITOR 76

‘v Swares(Wase Coass)
Temy 4

Y L10Nvy

- cadazy o e

- . !
R
-2awA) L

Figure 3.22: Updated Map View after Legend Editor

3.4 Query

The information displayed on the screen is always limited. As a GIS editor, Geditor provides the
function to allow the user to query the map to obtain additional data that is not currently displayed
on the map. For example, the user may need to know the population of San Francisco city. Using the
Query function of Geditor. the user can obtain the population number by simply clicking on the city.
Geditor provides three ways of querying the map: Identify Tool, Expression Builder, and Spatial
Query. This section describes how to use Geditor to query the map using these three methods.
Figure 3.23 shows the Query menu on the menu bar.

34.1 Identify Tool

Click the Query menu and then select the Identify Tool item. An internal frame titled as Identify
Tool pops up. The name of the current active layer is displayed at the top of the frame. On the

CHAPTER 3. USER’S MANUAL FOR GEDITOR 77

identify Teel .
.- -Expression Bullder
. Spatial Query .
| Clear Selections . -
_Oettens .- -

Figure 3.23: Query Menu

bottom of the frame, there is an Identify toggle button. Initially. this button is pressed, which means
the Identify operation is currently active. At this time, if the user clicks the map feature in the
current active layer, the data of all descriptive attributes will be displayed in the center pan of the
Identify Tool. To deactivate the Identify operation. the user just needs to release the Identify toggle
button by clicking on it. Then no data will be displayed in the frame when the user clicks the map
feature in the current active layer. The user can keep the Identify Tool on the desktop or close it by
clicking on the Close button on the right top corner of the frame. See Figure 3.24. The data in the
Identify Tool shows the results of clicking on San Francisco city in the Map Vicw.

3.4.2 Expression Builder

The user can also obtain information by creating a query expression. For example. if users need
to know which state has a population over 29760021 and the January temperature over 8 Celsius
degrees. they can build an expression using Expression Builder.

First, activate the States layer using Layer Control. Then select the Expression Builder item from
the Query menu to open the dialog as Figure 3.25 shows.

As usual, the first line indicates the current active layer: States. The upper left list contains all
the descriptive attribute names. In the middle is a list of operators and brackets for the user to build
the expression. The right list is the values of the selected attribute. The left lower part is a text area
showing the expression being built according to the user input. The user can also type an expression
from the keyboard in this area. There are three buttons in the right lower part: Clear, OK and Cancel.
Clicking on the Clear button clears the text area. The OK button records the user input and closes
the dialog. and the Cancel button discards the user input and closes the dialog.

To build the expression we mentioned at the beginning of this section, we first click on the Pop

CHAPTER 3. USER’S MANUAL FOR GEDITOR

Name San Francisco AP]
A/ ~emo 28 o o
R i pop 23939
i s

[T T

.
b
*

Figure 3.24: Identify Tool

78

attribute in the attribute list. Notice that the value list changes according to the selected item in the

attribute list. Click on the “>=" operator and 2976021 in the values list. Click on the “and” operator

in the middle list. After that, choose the Temp attribute. the “>" operator and 8 in the valuelist. The

text area shows “Pop >= 2976021 and Temp > 8" which is exactly the expression we need to query

the map. Finally, we close the dialog by clicking on the OK button.

After the dialog is closed, Geditor updates the Map View as Figure 3.26 shows. The California

state is highlighted as yellow. This is the default color for selected map features by Expression

Builder. The user can change it by using the Options menu that will be discussed in Section 3.4.5.

All the expressions built using Expression Builder must observe the following syntax:

Expression:=Conjunction((‘‘or’’ | **|'’)Conjunction)*
Conjunction:=Compariscn((‘‘and’’ | *‘&’’)Comparision)*
Comparison:=Primary | Primary ComparativeOperator Primary

Primary:=Literal | Identifier | *‘(’’ Expression ‘')’

CHAPTER 3. USER’S MANUAL FOR GEDITOR 79

T LR Actine tayer: staren
Suyibuses 3
Nama

.
T
é
!
{
i
b
i

e e P e

Pom »2= 2974C02 1 and Teme > ¢

o

Figure 3.25: Expression Builder Dialog Box
ComparativeOperator:= ‘‘'=/’/|‘ M=/’ >rr| 7| ' >=rr]rg=""

Identifier specifies the attribute name and Literal specifies the value of the attributes. ()* in the
first and second formulac means repeating the component inside the brackets zero or more times.

The following are some examples of legal expressions:

Exmaplel: Pop> 10000000

This is a simple Comparison composed of Primary ComparativeOperator Primary,
where the first Primary is Pop — an Identifier, and the second Primary is 10000000 — a
Literal. According to the second formula. a single Comparison is a Conjunction, and ac-
cording to the first formula, a single Conjunction is an Expression. Therefore, it is a legal
expression.

Example2: Pop> 10000000 and Temp>8

This is a Conjunct ion composed of two Comparisons combined by “and”. According to the

CHAPTER 3. USER’S MANUAL FOR GEDITOR 80

Figure 3.26: Updated Map View after Expression Builder

first formula. a Conjunctionis an Expression.

Example3: Pop> 10000000 and Temp>8 or Name="Arizona™
This is an expression composed of two Conjunctions:“Pop>10000000 and Temp>8", and

orey

“Name="Arizona™". The two Conjunctions are combined by “or”. According to the first formula,

two Conjunctions combined by “or” forms a legal Expression.

Example4: (Pop> 10000000 and Temp>8 or Name="Arizona™) and Temp<!8

“Pop> 10000000 and Temp>8 or Name="Arizona™" is an Expression. Therefore. “(Pop> 10000000
and Temp>8 or Name="Arizona")" isaPrimary. A Primary is also aComparison. “Temp<18”
is a Comparison to. According to the second formula, two Comparisons combined by “and” is

a Conjunction. According to the first formula, a Conjunctionis alegal Expression.

Notice that all the above expressions are also legal jRelix expressions in the where clause of

CHAPTER 3. USER’S MANUAL FOR GEDITOR 81

selections. Actually, the Geditor expressions form a subset of jRelix expressions.

3.4.3 Spatial Queries

Spatial queries are unique in GIS editors. The user extracts data from the map relation by indicating
the spatial relationships between map features. For example. the user may ask:* Show me all the
citics that arc within 50 miles of San Francisco™. This is a typical spatial query. The given map
fcaturc is San Francisco. and the query is searching the map features in the Cities layer that sat-
isfy the following spatial relationship with San Francisco: within 50 miles. Therefore, this query
must be performed in the following steps: First, select the given map feature with the expression,
“Name=San Francisco”. using Expression Builder. As a result, San Francisco will become yellow
as Figure 3.27 shows. Then activate the Cities layer that the query result belongs to. After that,
click on the Spatial Query item in the Query menu to open the Spatial Query dialog as Figure 3.27

shows.

Active Layer. imes

AnAUAL Dnraiars -
“Completely San~un

‘Comoletely Witnir

‘Contmn

B N I e

witmp
rrevect

Wiehin Distancs OF

5
¥
&

L

LR T

ol

v

B X e

5 P o 8

Figure 3.27: Spatial Query Dialog Box

CHAPTER 3. USER’S MANUAL FOR GEDITOR 82

In the upper part of the dialog, Geditor shows the current active layer. In this example. it is
the Cities layer. A list of spatial operators is displayed in the middle of the dialog. We choose the
“Within Distance of” operator from the list. Next to the spatial operators list is a text field that
allows the user to input a value. This area is only enabled when the selected operator is “Within
Distance Of™’ since this is the only operator that needs a value. We type 50 in this value area. Finally,
click on the OK button to close the window.

After the dialog is closed with the OK button, Geditor updates the Map View as Figure 3.28
shows. The user will notice that San Jose city is turned red in the Map View. Red color is the
default color of the selected map features from Spatial Query. Users can change it using the Options

menu.

Figure 3.28: Updated Map View after Spatial Query Dialog

In the implementation of Geditor, when the user selects a spatial operator. Geditor generates a
jRelix event. An event handler for such an event should be already written and submitted by the
Aldat programmer in the current jRelix system. If the corresponding event handler is not there,

CHAPTER 3. USER’'S MANUAL FOR GEDITOR 83

an error message is displayed. A detailed discussion about event handers used in Geditor will be

presented in section 3.6.

3.4.4 Clear Selection

This function clears the user selections from Expression Builder and Spatial Query. It displays the
map that was shown before the Expression Builder and Spatial Query operations were performed.
To clear the current selections, select the Clear Selection item from the Query menu. The Map View

will be updated and the highlighted map features will disappear.

34.5 Options

There are three default colors used in Geditor: the highlight color used in the legend window to
show the current active layer, the color to show the selected map features from Expression Builder.
and the color to show the selected map features from Spatial Query. All of them can be changed
using the Options function in Geditor.

Select the Opdons item from the Query menu. A dialog box titled as “Options™ pops up as
Figure 3.29 shows. Three default colors are displayed as color patches in the dialog. Clicking on
the color patches causes a color chooser to be displayed. which allows the user to choose a new
color. After choosing a new color. click on the OK button to close the color chooser dialog. Click
on the OK button again in the Options dialog. The default color(s) will be changed to the new
color(s) the user selected. Clicking on the Cancel button discards user input.

For example. if the user changes the default color of the Expression Builder from yellow to cyan,
all the map features that satisfy the user’s expression will be turned to cyan the next time the user

queries the map with Expression Builder.

3.5 Help

The Help menu in Geditor provides the current Geditor version information and a link to this User’s
manual. The Help contains two menu items as Figure 3.30 shows.

When User’s Manual is selected. ghostview shows the text of this chapter in a separate window.

CHAPTER 3. USER'S MANUAL FOR GEDITOR 84

EY0ap VIOW wk. i . AR Ao

i

’ uchuh suler atmwimg aclive taves :

Ll om | Camemr | f

- ‘rwvnteTech Swngte Yoar

i TG CaiE BTt Cha Ree e celél "! . ZaMpis Teve Zuvoie Tess '

‘Coi)i camest | Wmsen’ i

i
H

Figure 3.29: Options Dialog Box

" user's Manual
About

Figure 3.30: Options Dialog Box

[f the About menu item is selected, a window is displayed that shows the version description of the

current Geditor.

3.6 Event Handler for Geditor

As discussed in section 3.4.3, when a spatial query needs to be performed, an event is generated.
For example, if the user selects the “Within Distance Of” operator in the Spatial Query dialog box
as Figure 3.27 shows, Geditor gencrates a “withindist:” event. If the user selects “Contain™ as the

spatial operator. Geditor generates a “contains:” event. Corresponding to the six spatial operators

CHAPTER 3. USER’S MANUAL FOR GEDITOR 85

built in Geditor. there are six events: “contains:”, “cmpcontains:”, “within:”, “cmpwithin:”, “in-
tersect:”, and “withindist:”. Different from the Update events [Sun00], no prefix “post:” or “pre:”
is needed in front of these event names because all the above Geditor event handlers should be
invoked after the user’s mouse click. Since the parameter list has not been built in the current ver-
sion of jRelix computation package, Geditor cannot pass any relation as a parameter to the event
handler. Therefore, Geditor makes an agreement with the Aldat Programmer on the four relation
names: .ActLRel, .SelRel. .SpqRel, and .ValueRel. Notice that all of these relation names have a

leading ".". This indicates that they are system relations instead of user-defined relations.

e .ActLRel: This relation contains all the map features in the current active layer.
o .SelRel: This relation contains the map features selected by the user using Expression Builder.
e .ValueRel: This relation contains the value needed by the “Within Distance Of™ operator.

o .SpqRel: This relation contains the results of the event handler. It should contain all the map

features that satisfy this spatial query.

Figure 3.31 shows a simple example of the event handler for the “contains:™ event generated by
the spatial operator: “Contain™. It checks if polygons in the active layer (.ActLRel) contain points
selected by the user (.SelRel). To handle the more complex events generated by the “Contain”
spatial operator on all possible map objects including points-in-polygons. lines-in-polygons, and
polygons-in-polygons, a more complicated polymorphism event handler should be written. This is
out of the scope of this thesis.

CHAPTER 3. USER’S MANUAL FOR GEDITOR

86

.

<< Check if Points are in the Polygon
comp contains:() is

{

}:

<<.SelRel: relation of the selected points

< <.ActlLRel: relation of the current active layer

< <.SpqRel: relation of the polygons in the active layer that contains points in .SelRel
< <the structures of the above three relations are the same:

<<[GTS.X.Y,C.Symb.L Name, Temp,Pop|]

let px be X;

let py be Y;

T2 « [px.py} in .SelRel;

T3 « .ActLRel ijoin T2 <<create the Cartesian product of .ActLRel and .SelRel

let X' be par succ of X order S by G:

let Y" be par succ of Y order S by G:

let asquare be ((px-X)=(px-X)+(py-Y)=(py-Y)):

let bsquare be ((px-X")*=(px-X"}+py-Y)=(py-Y).

< <calculate the sign through the determinant

letdet be px=Y*1+X+Y # 1+ X »py= 1-px=12Y -Xxpy*1-X"xY=1;
let sig be if det< O then -1 else if det >0 then 1 else O;

let csquare be (X' -X)*=(X -X)+(Y -Y)=(Y'-Y):

let twoab be 2=sqrt(asquare)=sqrt(bsquare);

let up be asquare+bsquare-csquare;

let val be (real up)/twoab;

let angle be acos(val)=sig;

let sum be equiv + of angle by px.py. G:

let D1 be 6.28319; <<inside the polygon
let D2 be 3.14159; < <on the boundary of the polygon

.SpqRel + [G.T.S.X.Y.C.Symb.L.Name,Temp.Pop] where abs(sum-D1)<=0.03
or abs(sum-D2)<= 0.03 in T3;

Figure 3.31: Event Handler for Spatial Operator: “Contain™

Chapter 4

Geditor Implementation

In this chapter, we are going to describe the implementation of Geditor in detail. Section 4.1 gives
the overview of the Geditor implementation. Two interfaces of Geditor are explained in this section.
In Section 4.2, the implementation of the interface for the jRelix Programmer-User is described.
The new gedit syntax in jRelix will be discussed. Section 4.3 explains the implementation of the

interface for the GIS End-User. This includes the Geditor GUI and a series of GIS functions.

4.1 Overview

The purpose of this implementation is to build a Graphical GIS editor (Geditor) into the current
JjRelix 50 as to allow the jRelix Programmer-User to invoke Geditor from jRelix and allow the GIS

End-User to perform a series of GIS operations in the graphical interface.

jRelix |
program
Geditor
—————
jRelix Programmer-User GIS End-User

Figure 4.1: Two Interfaces of Geditor

R7

CHAPTER 4. GEDITOR IMPLEMENTATION 88

Therefore, there are two interfaces of Geditor. One is the interface for the jRelix Programmer-
User and the other is the Geditor graphical user interface (GUI) for the GIS End-User. The goal of
the interface with jRelix Programmer-User is to build the new syntax (gedit) into jRelix to allow
the programmer to call and display the Geditor GUI interface. The Geditor GUI provides a series of
GIS operations for the End-User to view and edit the map, generate thematic maps, perform spatial
queries, elc.

JDK1.2.2 is used in this implementation. This is because the JDK1.2.2 contains JFC/Swing
components, which are used extensively in our GUI implementation. The Java Foundation Classes,

or JFC. is a collection of Java APIs for developing graphical user interfaces [Gea99). It contains the
following APIs:

e Abstract Window Toolkit (versions 1.1 and beyond)
e 2D API

e Swing Componcnts

e Accessibility API

The Abstract Window Toolkit, or AWT, is Java's original toolkit for developing user interfaces.
The AWT provides the foundation upon which the rest of the JFC is built. The original AWT was
designed to develop simple user interfaces. Swing, however, has more components expected in an
object-oriented UI toolkit, is more platform independent, more stable and bug-free, and is capable
of supporting the dcvelopment of a high-powered user interface. Therefore, in this implementation,
the Geditor GUI is built with Swing components. The 2D API offers two-dimensional rendering
capabilities, such as providing a variable-sized pen for graphical operations. The Accessibility API
consists of a set of classes enabling Swing components to interact with assistive technologies for

users with disabilities. These two APIs are not used in our Geditor implementation.

4.2 Interface for the jRelix Programmer-User

To build the interface for the jRelix Programmer-User, we must first understand the original jRelix

system architecture and add the Geditor to it. Section 4.2.1 explains the original system architecture

CHAPTER 4. GEDITOR IMPLEMENTATION 89

and displays the updated system architecture with the new Geditor component. Section 4.2.2 dis-
cusses the building of the gedit syntax into the jRelix system. Section 4.2.3 explains the algorithm
of executeRelixCommand() method which is added to the Interpreter to allow Geditor to call and

execute jRelix commands or statements.

4.2.1 jRelix System Architecutre

The current jRelix system contains three main parts. the Parser, the Interpreter. and the Execution
Engine. The Parser is created using JavaCC [{San96]. a Java Compiler Compiler that automatically
generates parsers by compiling a high-level grammar stored in a text file. The JJTree {San96]
preprocessor is used to build a syntax tree while parsing. The Interpreter (implemented in class
Interpreter.java) repeatedly calls the Parser, gets the syntax trec gencrated by the Parser, traverses
the syntax trec and decomposes it into a set of method calls executed by the Execution Engine.

In order to allow the jRelix programmer to call Geditor from jRelix, we must build the new gedit
syntax into jRelix. The overall system architecture of jRelix is as Figure 4.2 shows.

In the above architecture. the Execution Engine is the same as that in the original version. The
new gedit syntax needs to be added to the Parser and Interpreter. Notice that in Figure 4.2, there are
two arrows of method call from Geditor to the Interpreter and Execution Engine. This is because
Geditor needs to modify the map data (copy) during its running time. There are three ways to
complete the modification: 1. Generate the method calls and pass them to the Execution Engine.
Then the Execution Enginc methods operate directly on the map data. 2. Call the Interpreter with
executeRelixCommand() method and pass the jRelix commands or statements as arguments to it.
Refer to Section 4.2.3 for the algorithm of executeRelixCommand(). 3. Generate events and pass
them to the Interpreter that searches the system table for the predefined event handler to handle
the events. Section 4.3.6(C) discusses the related algorithm in detail. These are represented by the
arrows of method calls from Geditor to the Interpreter and Execution Engine in Figure 4.2.

Since the gedit is a functional operator, Geditor cannot change the original map data. Therefore,
a copy of the map data is made and Geditor performs the data modification only on this copy. In
our implementation, when Interpreter calls Geditor. it spawns a new thread for Geditor to run. As

soon as Geditor is called. the statement which contains the gedit expression returns. As a unary

CHAPTER 4. GEDITOR IMPLEMENTATION 90

Parser

lSymaxtrec

Interpreter

ethod call

method
method call

Execution Engine |~ — | Geditor

operate on

Copy of
map data

copy

map data

Figure 4.2: System Architecture

functional operator, the value of the gedit expression is the same as its operand: the original map
relation. Since Geditor runs on an independent thread, the Interpreter can still accept the jRelix
programmer’s commands and statements while the GIS End-User is working interactively in the
Geditor GUL

4.2.2 Building the gedit Syntax

The syntax of gedit has aiready been specified in Section 3.1.3. Here, we summarize it as follows:
basic_graphical_attribute_list{ additional_graphical_attribute_list] gedit rel_name
The first list specifies the five attributes representing group. type, sequence, x coordinate, and
y coordinate respectively. The second list is optional. It specifies the attribute names of some
predefined attributes. An arbitrary number of equations are allowed in the second list and we have

CHAPTER 4. GEDITOR IMPLEMENTATION 91

implemented the following three: Color=attr_.name, Symbol=attr_name, Layer=attr_name.

To implement the above syntax, we first modify the grammar specification text file by adding the
new specification of the gedit syntax. Then we generate the new Parser using JavaCC and JJTree.
In Interpreter.java, we add the EvaluateGedit() method to analyze the syntax tree and then call and
display Geditor.

The algorithm of EvaluateGedit() is as follows:

EvaluateGedit()

e Analyze the expression tree to obtain the attribute lists and the map relation of gedit.

o Create the array of domains: doms[0..7]). where doms[0] .. doms[4] record the following
five domains of the map relation respectively: group, type. sequence, x coordinate, and y

coordinate. These are the five attributes specified in the first list of gedit.

e doms(S].. doms[7] record color, symbol and layer domains of the map relation respectively.
If the second list specifies all the three attributes, the corresponding domains of the three
attributes will be stored in doms[S].. doms(7]. If any of them is missing, a default atiribute
with a default value will be first appended to the map relation and then the domain of the
appended attribute will be stored in doms(S].. doms(7].

e Call Geditor(doms, map_relation) to create the Geditor object. The graphical Geditor window
will be displayed.

e Return the relation object of map_relation as the return value.

In the above algorithm, when any one of the three attributes in the second list is missing, a default
attribute with a default value will be appended to the map relation. For example, Figure 4.3 shows
the data of a map relation called maprel.

The gedit expression is as follows:
R<—[G.T.S.X.Y][Symbol=Symb.Layer=L] gedit maprel;

Then, EvaluateGedit() appends a default color attribute to the maprel as Figure 4.4 shows.

CHAPTER 4. GEDITOR IMPLEMENTATION

.C

204055055

G| T S | X Y Symby L Name
S1 |Polygon | 1 |12286 | 3369 | 203 | Siates| California
S1{Polygon |2 |12278 | 3345 | 203 | States| California
St |Polygon | 1 |13588 | 3399 | 203 | States| Washington
S1 | Polygon 2 114000 3379 | 203 | States| Washington
Figure 4.3: Example of Map Rclation:maprel
G T S| X Y Symbl L Name
St | Polygon | 1 | 12286 | 3369 {203 |[States| Catifomia ijoin
S1| Polygon |2 | 12278 | 3345 |203 |States| Califomia
S2| Polygon | 1 | 13588 | 3399 [203 |States| Washington
$2} Polygon | 2 | 14000 | 3379 (203 |[States| Washington
maprel
G T S| X Y Symb| L Name .C
S1 | Polygon | 1 [12286 | 3369 | 203 | States| California 204055055
Sl | Poiygon | 2 | 12278 | 3345 203 | States| California 204055055
S2 | Polygon | 1 | 13588 | 3399 203 | States{ Washingion 204055055
S2 | Polygon | 2 |14000 | 3379 | 203 |States{ Washington 204055055

updated maprel

Figure 4.4: Append Color Attribute to maprel

COLOR

In Figure 4.4, COLOR is the default relation name used in appending the color attribute to the

map relation. .C is the default attribute name. The default color value is 204055055 (red). After
the appending, the domain of .C will be recorded in the array doms(0..7} and be passed to Geditor

object.

Similarly, when the attribute of symbol is missing in the second list, a default attribute will be

appended to the map relation as well. SYMBOL is the default relation name used in appending
and .Symb is the default attribute name. The default symbol value is 201 (solid oval). The default

CHAPTER 4. GEDITOR IMPLEMENTATION 93

relation for appending the layer attribute is LAYER and the default attribute name is .L. The default
layer value is “defaultlayer™.

Since the three attributes we implemented in the second list (Color, Symbol, and Layer) arc
required for the map display, when any one of them is missing, a default value must be appended.
However. in future work. when more attributes are implemented in the second list, if they are not

related to the map display, it will not be necessary to append the defauit attribute values.

4.2.3 executeRelixCommand() algorithm

In this section, the algorithm of executeRelixCommand() is explained. This is a method written
in Interpreter.java. With this method, other classes can exccute jRelix commands or statements by
calling the executeRelixCommand() and passing these commands or statements as arguments to this
method.

executcRelixCommand(jRelix_command_or_statement)

1. Redirect the input of the Parser and Interpreter from the standard input to ByteArraylnput-

Stream.

[£9]

Feed the argument of jRelix_.command_or_statement to the input of the Parser and Interpreter.
3. Call parser.Start() to parse the jRelix_.command_or_statement and build the syntax tree.

4. Call interpret() to analyze the syntax tree and decompose it into method calls and pass them

to the Execution Engine.

5. Redirect the input of the Parser and Interpreter back to the standard input.

4.3 Interface for the GIS End-User

Building the interface for the GIS End-User includes the displaying of the GUI with menus of GIS
functions. performing the GIS operations according to the user-input in the GUI, and displaying
the results of these operations as graphical maps on screen. Section 4.3.1 presents the architecture
of Geditor. Section 4.3.2 explains the algorithm of Geditor.java that behaves as the controller of

CHAPTER 4. GEDITOR IMPLEMENTATION 94

Geditor and lays out the Geditor GUL Section 4.3.3 describes the algorithm of the map display
function of Geditor. Section 4.3.4 explains the classes used to implement the GIS functions in the
Layers menu. Section 4.3.5 describes the classes to implement functions in View menu. The classes

to build the functions in Query menu are discussed in Section 4.3.6.

4.3.1 Geditor architecture

The main class of Geditor is implemented in Geditor.java. The architecture is shown as Figure 4.5.

As Figure 4.5 shows, Geditor is invoked from Interpreter (Interpreter.java) with the parameters
of the map relation and the array of domains:doms{0..7]. After Geditor is called. it displays a GUI
with menus containing a sct of GIS operations. Corresponding to the GIS End-User’s input in the
GUI, Geditor calls the related class to perform the GIS operations. These operations include Add
Layers. Layer Control. Color Edit, ..., etc. These GIS functions modify the copy of the map data (in
relation format) when necessary and call the map display class to show the most recently updated
Map View on screen. The map display class is implemented in CvDraw.java. When it is called, it
reads the most recently updated data from the copy of the map relation and displays it on screen.
Notice in Figure 4.5. the read and write opeations of the map data are displayed using dashed lines.
This means the map data is not directly accessed by Geditor. Instead. as discussed in Section 4.2.1,
Geditor calls the Execution Engine to read and write the map data copy.

As indicated in Figure 4.5. Geditor is implemented using more than a dozen classes. Table 4.1
summarizes the main classes of Geditor and their functions.

With the exception of Geditor.java and CvDraw.java, all the other classes in Table 4.1 build the
GIS functions corresponding to the menu items in Geditor GUI. These classes are implemented in
a similar way. First. they lay out components such as text fields, lists, color choosers, and radio
buttons inside the dialog box and display the dialog. The purpose of the dialog is to allow the user
to input the values required as parameters for completing the GIS functions. The classes wait for
the user’s input until the user closes the dialog with the OK or Cancel button. If the user closes
the dialog with Cancel. these classes return to their parent: Geditor.java. If the user closes the
dialog with OK, these classes use methods such as getText(), getElementAt(), getSelectedValue(),
and getColor() to obtain the user input in the dialog. After updating the map data copy according to

CHAPTER 4. GEDITOR IMPLEMENTATION 95
% GIS end user
: I Add Layers
: (GeditAddLayers.java) :
GUI
Al Layer Control
(Gediter java) (GeditlayerControl.java) :
1““' input Color Edit :
invoke : (GeditColorEdit java) :
from : Con}ro?er E
: (Geditor.java) cal! Symbol Edit :
Interpreter : (GeditSymbol Edit java) :
E lcall Individual ValudViap =
{Gedit ValueClass.java) \
: Map Range M :
: . rs—— ge Ma
: Display | call [chimnngccmsf.java) |
: (CvDraw.java) 1
: r Legend Editor 1
\ (GeitLegendEdit.java) :
: '
; | Identify Tool)
. : : (Geditldentify java) .
. |
G : Expression Builder !
‘e ! {GeditExpression.java))
. |
d ! Spatial Query :
i : (GeditSpatialQ.java) !
't | !
o ! Clear Selections :
: 1 (Geditor_java) 1
:r : !
: ' re tions !
1 read (Gegil:o;nions.java) :
! 1
X Help !
Y (Geditor_java) :
1
! About :
: {Gedilor.java) '
e | B : ol
R y
Copy of - -
map data change(write)

Figure 4.5: Geditor Architecture

the user input. these classes update the map in the Map View window.
. There are other classes that are used to facilitate the implementation of the classes listed in Ta-
ble 4.1. GeditSpatial.java provides methods which determine the spatial relationship of the map

CHAPTER 4. GEDITOR IMPLEMENTATION 96

Class Name Function Description
Geditor.java Geditor Controller. It lays out the Geditor GU1. waits for the user input
and calls the corresponding classes o perform the user required tasks.
CvDraw.java Draws the map in the Map View window.

GeditAddL ayers.java Adds layers to the Map View window.

GeditLayerControl.java | Changes the state of each layer shown in the Map View window.

GeditColorEdit.java Changes the color of the active layer to form a uniform layer.

GeditSymbolEdit.java | If the active layer has the Point type, changes the symbols of the map features in
this layer to form a uniform layer.

GeditValueClass.java Creates an individual value thematic map based on a descriptive attribute.

GeditRangeClass.java Creates a range thematic map based on a descriptive attribute.

GedillLegendEdit.java Edits the title and label of the active layer in the legend window.

Geditldentify.java Lists the values of all the descriptive attributes of a map feature close to the
mouse in a pop-up window.

GeditExpression.java Allows the user to build a Boolean expression and highlights the map feature
that satisfics the expression.

GeditSpatialQ.java Highlights the map feature having particular spatial rclationship with a given map
feature.
GeditOption.java Allows the user to change the default colors used in Geditor.

Table 4.1: Geditor Classes

features used in GeditSpatialQ.java. GeditSymbollcon.java draws the symbol icons used in Ged-
itSymbolEdit.java . GeditLegend.java defines the GeditLegend class used by Geditor.java to build
the legend array.

In the rest of this chapter, the implementation of the Geditor classes listed in Table 4.1 will be

discussed in detail.

4.3.2 Geditor Controller

The controller of Geditor is implemented in Geditor.java. The main task of this class is to record the
system state with a set of variables, lay out and display the Geditor GUI, wait for the user input, and
call the corresponding functions to perform the required GIS operations. As described in Chapter
3, the main pan of Geditor GUI contains a Geditor window with a menu bar on the top. From the
left to the right, the menu bar contains the Layers, View, Query and Help menus. In the middle of
the Geditor window is the Map View internal frame that displays the map. The left split pane of the
Map View window shows the legends of the map.

The following are some important variables that record the Geditor system state:

CHAPTER 4. GEDITOR IMPLEMENTATION 97

e showlayers[] array: records the layers that are shown in the Map View window.

e legend array: records the necessary data of each layer for displaying both the text and graph-

ical elements in the legend window. The data of each array element include the name, title,

color value, symbol value, label, labelattr, visible, active, and type of each layer.

The labelattr is used in thematic mapping. It uses the same attribute name as that used by the
map feature classification. It is used in the legend window to show the attributc name where
the labels of different graphical legends come from. When the thematic maps are generated,
the labels of different graphical legends are generated using this attribute value.

Show/Hide are two values the visible variable can have. Active/Inactive are two possible

values of the active variable. The three possible values of type are Polygon, Point, or Polyline.

The algorithm of Geditor.java is as follows:

9
H

. Obtain a copy of the map relation to tmprel.

tprel <—[layer. type. color, symbol] in tmprel.

. Use tprel to create the legend array.

Lay out the components inside the Geditor window. Display the Geditor window with the

menu bar and an empty Map View window. Wait for the user input in the Geditor window.

. If the user selects the Add Layer or Layer Control menu item in the Layers menu, call Add

layers or Layer Control functions by invoking GeditAddLayers or GeditL.ayerControl classes
accordingly. After that, call the updateMapView(maprelation_name) to update the map in
Map View window. The updateMapView method selects a subset of the map relation ac-
cording to the showlayers[] array and calls the Map Display function to display the map with
shown layers. Then, call updateLegend() to update the legend window according to the legend
array which has been updated using the Add Layer function.

If the user selects a menu item in the View menu, call the related function by creating the

corresponding object. For example, if the user the chooses the Color Editor menu item in

CHAPTER 4. GEDITOR IMPLEMENTATION 98

the View menu, call the Color Editor function by creating the GeditColorEdit object. After
that, call the updateMapView(maprelation_name) to update the map in the Map View win-
dow. The map relation should be the updated one with the changed color. Then, also call
updateLegend() to update the legends.

If the user selects a menu item (except the Clear Selection) in the Query menu, call the
rclated function and update the map and legends in the Map View window. Before the query
is performed, store the current map relation to “stored_maprelation™. When the user chooses
the Clear Selection function, call the updateMapView(stored_maprelation_name) to restore

the original Map View before the query is performed.

If the user sclects User's Manual in the Help menu. use “gv helpfilename™ to call the ghostview
to show the text of the User's Manual chapter of this thesis. If the user selects the About item

in the Help menu. display a window with the version message of the current Geditor.

4.3.3 Map Display

The map display function is implemented in CvDraw.java. This function is called to display the

result of the set of GIS functions that are going to be discussed in the following sections. For

example. at the end of the Add Layer function, this map display function is called to display the

map with the layers selected by the user in the Add Layer dialog. In another case, when a new color

is assigned to a map feature using the Color Editor function, the map display function is called to

display the map with the updated color. To make it possible for this map display function be reused

by all GIS functions. we design the following algorithm.

!\)

. Get the positions of the attributes: group, sequence, x coordinate, y coordinate, color, symbol,

and layer in the map relation.

According to the maximum and minimum x. y coordinates in the map relation, calculate the

factor for mapping them to the screen pixels.

. Read the first tuple in the map relation (sorted relation).

CHAPTER 4. GEDITOR IMPLEMENTATION 99

4.

If the type value of the tuple is point, draw a symbol in the Map View window. The shape of
the symbol is determined by the symbol value of the tuple, the position is determined by the

x, y coordinates, and the pen color is determined by the color value of the wple.

If the type of the tuple is polygon. read the next tuple (sorted relation) until it is not in the same
group as the former one. Each tuple in the same group is one of the vertices of the polygon.
Store all the vertices in an array. Then draw and fill a polygon in the Map View window. The
x. y coordinates of each vertex determines the shape and position of the polygon. The filling

color is determined by the color value.

. If the type of the tuple is polyline. read the next tuple (sorted relation) until the next tuple is

not in the same group as the former one. Each tuple is one of the vertices of the polyline.
Draw a line from the former vertex to the next. The shape and position of the polyline is

determined by the x, y coordinates of each vertex. The color value determines the pen color.

. Repeat step 4. S. 6 until the end of the map relation is reached.

The above algorithm is based on the following assumptions:

e The map relation that is passed to the CvDraw class must contain at least the following eight

attributes: group, type. sequence. x coordinate. y coordinate, color, symbol, and layer. The
relation must be sorted by group. type. sequence. x coordinate, y coordinate as well. The
tuples in the same polygon group must represent the vertices of the polygon in a counter-

clockwise sequence. Otherwise. the map would be displayed in an unexpected shape.

The color values of the tuples in the same polygon group should be the same. Different tuples
in the same polygon group represents the different coordinates of the vertices in the same
polygon. Since the color attribute represents the filling color of this polygon, the values of the
color attribute in the same polygon group should be the same. The Program_User should take
the responsibility to garantee this property and CvDraw assumes that this property is well
kept. Therefore, using the value of the color attribute of any tuple in the same polygon group
to fill it should have the same result. In this implementation, CvDraw picks up the color value
of the last tuple in the same group to fill the polygon.

CHAPTER 4. GEDITOR IMPLEMENTATION 100

The color values of the tuples in the same group of polyline could be different. When CvDraw
draws a line from the former vertex to the next, the color value of the start vertex is used as

the pen color.

In the above algorithm, when the polygons and polylines are drawn, the symbol values are ig-
nored. Strictly speaking, the symbol values of polygons and polylines could have meanings. The
symbol values of polygons could represent the filling patterns and the symbol values of polylines
could represent the line thickness or line styles, such as the dashed line and dotted line. Since we
use JDK 1.2.2 10 implement Geditor and it only contains the AWT and Swing components of JFC
(refer to Section 4.1 for more details), it is very complicaied to implement the filling pattems of
polygons as well as the line thickness and styles of polylines. For further implementation. the JFC
2D package could be used for the map display. Please refer to Chapter S for further information.

4.3.4 Layers

There are two functions in the Layers menu: Add Layer and Layer Control. When the Geditor
is called. Geditor displays the Geditor window with a menu bar on the top and a Map View win-
dow in the middle. Iritially, the Map View window is empty. The uscr needs to add layer(s) to
let the Geditor know what layer(s) should be displayed. After a layer is added to Map View win-
dow. two switches are attached to this layer to record its state: Show/Hide, Active/Inactive. The
Active/Inactive state can be changed using Layer Control function.

A. Add Layer

The following is the algorithm of Add Layers function.

1. Lay out the components inside the Add Laver dialog and display it. Wait for the user input

until the user closes the dialog with OK or Cancel button.

!\J

If the user closes the dialog with the OK button. store the layer names that the user selects in
the Geditor.showlayers[] array.

3. Update the legend array. Change the visible variable of each layer added by the user to
“Show”. The last layer added by the user in the Add Layer dialog is the current active layer.

Therefore. change the active variable of this layer to “Active”.

CHAPTER 4. GEDITOR IMPLEMENTATION 101

When the Add Layer function returns to the Geditor controller (Geditor.java), according to the
updated showlayers[] array and the legend array, the controller calls updateMapView and updateLe-
gend methods to update the map and legends in the Map View window.

B. Layer Control

Layer Control changes the Active/Inactive state of each shown layer in the Map View window.

The algorithm is as follows:

1. Lay out the components inside the Layer Control dialog and display it. Wait for the user input
until the user closes the dialog with OK or Cancel button. The two switches of all the layers
are displayed in the dialog.

2. If the user cioses the dialog with the OK button. change the active variable of the Geditor

legend array of the corresponding layer to “Active™ according to the user input in the dialog.

There is no need for the Geditor controller to update the map or legend in the Map View window

when the Layer Control function returns.

4.3.5 View

There are three main functions in this menu: color and symbol editing in a uniform layer, thematic
mapping. and legend editor.

1. Uniform Layer

In a uniform layer (refer to Section 3.3.1 for the definition). the color and symbol of all the map
features in this layer can be changed by Color Editor and Symbol Editor.

A. Color Editor

The Color Editor changes the color of the map features in the current active layer. The algorithm

is as follows:

1. Lay out the components inside the Color Editor dialog and display it. The current active layer
name and a color palette are displayed. The active layer name is obtained from the Geditor
legend array. Wait for the user input until the user closes the dialog with the OK or Cancel

button.

CHAPTER 4. GEDITOR IMPLEMENTATION 102

2. If the user closes the dialog with OK, change the color value of the wples of the current active

layer in the map relation to what the user chose in the dialog.

3. Update the color variable of the current active layer in the legend array with the new color

valuc the user input in the dialog.

When the Color Editor function returns to the Geditor Controller, it updates the map and legend
in the Map View window according to the updated map relation and legend array.

B. Symbol Editor

The Symbol Editor function is enabled only when the current active layer has the “Point™ type.
It changes the symbol valuc of the points in the current active layer. The algorithm is as follows:

1. Lay out the components inside the Symbol Editor dialog and display it. The current active
layer name and a list of predefined graphical symbols are displayed. Wait for the user input

until the user closes the dialog with the OK or Cancel button.

9

If the user closes the dialog with OK. change the symbol value of the tuples of the current

active layer in the map relation to what the user chose in the dialog.

3. Update the symbol variable of the current active layer in the legend array with the new symbol

value the user input in the dialog.

When the Symbol Editor function returns to the Geditor Controller. it updates the map and
legends in the Map View window according to the updated map relation and legend array.

2. Thematic Mapping

Two types of thematic maps are provided in this Geditor: Individual Value Map and Range Map.

A. Individual Value Map

Individual value maps group map features by the individual values of a certain descriptive at-
tribute (refer to Section 3.1.2 for the definition). In this Geditor implementation, the grouping is
shown using different colors. All the map features in the same group are displayed in the same
color. The map features in different groups are displayed in different color. The algorithm goes as

follows:

CHAPTER 4. GEDITOR IMPLEMENTATION 103

1. Lay out the components inside the Individual Value Map dialog and display it. The current
active layer name and a list of all the descriptive attributes are displayed in the dialog. The
current active layer name can be obtained by reading the Geditor legend array. Wait for the

user input in the dialog and wait until the user closes the dialog with the OK or Cancel button.

9

If the user closes the dialog with OK, update the color value of the active layer in the map

relation as follows:

e Geu different values of the selected attribute by running the jrelix statement:
tmprel < —|[selectedattribute] where layer=activelayer in maprelation;
We use executeRelixCommand() as described in Section 4.2.3 to run the above state-
ment.

e Rcad the tmprel and construct the following array of values:
{(value[1]. color[1]). (value[2}. color{2]), (value[n], color[n])}.
where color[i]=(255-i*colorgap.i*colorgap, i*colorgap) and colorgap=256/(number of
tuples in tmprel). The above three values for a color represents the R, G, and B respec-
tively.

e Use the above array to update the original map relation. For example, if the value of the
selected attribute is value[i]. the color value of this tuple must be changed to colorfi].

Therefore. the tuples with different values of the selected attribute obtain different color

values.
3. Update the Geditor legend array accordingly.

When this function returns to the Geditor Controller. the controller will update the map and
legend in the Map View window with the updated map relation and legend array.

B. Range Map

Range maps assign different colors to different ranges of values of a descriptive attribute. The

algorithm goes as follows:

1. Lay out the components inside the Range Map dialog and display it. The active layer name,
the list of descriptive attributes. a list of color ramps, the range values and the sample of

CHAPTER 4. GEDITOR IMPLEMENTATION 104

(&)

the selected color ramp are displayed in the dialog. The active layer name is also obtained
from the Geditor legend array. The range values of the selected attribute can be obtained by
dividing the range of [min,max] into five equal ranges, where min and max are the minimum
and maximum values of the selected attribute. Then wait for the user input in the dialog until

the user closes the dialog with the OK or Cancel button.

. If the user closes the dialog with OK button. update the color value of the tupies of the

active layer in the map relation. Suppose there arc five ranges: r[1], rf2]. r[3]. r[4], rS]
which have been calculated according to the user input in the dialog. The color values cir(1],
clr2]).clr{3].clr[4).clrf5] for the five ranges can be obtained from the user choice of the pre-
defined color ramp. Therefore, change the color value of the tuples in the map relation as
follows: if the value of the selecied attribute is in range r{1]. change the color value to clr1],
if the value of the selected attribute is in range r{2], change the color value to clr{2], and so

on.

When this function returns to the Geditor Controller. the controller will update the map and

legend in the Map View window with the updated map relation and legend array.
3. Legend Editor
The legend window can be changed using Legend Editor. The title of each layer and the label

beside each graphical legend can be changed. The algorithm is as follows:

1.

2

Lay out the components inside the Legend Editor dialog and display it. The name, title, color.
symbol and the label of the active layer are displayed in the dialog. Notice that if the current
active layer is a uniform layer. there is only one row displayed in the dialog. If the current
active layer is a non-uniform layer. there are multiple rows showing different colors, symbols

and labels of map features in this layer.

Wait for the user input in the dialog until the user closes the dialog with the OK or Cancel
button.

. If the user closes the dialog with OK button, update the Geditor legend array according to the

user input.

CHAPTER 4. GEDITOR IMPLEMENTATION 105

When this function returns, the Geditor controller updates the legend according to the updated
legend array. The map does not need to be updated in the Map View window.

43.6 Query

Geditor provides three ways of querying the map: Identify Tool, Expression Builder, and Spatial
Query. With Identify Tool, when the user clicks the mouse close to a map feature, all the values of
descriptive attributes will be listed in a pop-up window. With Expression Builder, the map feature
that satisfies the user’s expression will be turned yellow (default color). With Spatial Query, the map
feature that satisfies the user-defined spatial relationship with a given map feature will be tumed red
(default color). The user selection in both Expression Builder and Spatial Query can be cleared
using Clear Sclections. The Options menu item provides the capability of changing the default
color values used in Geditor.

A. Identify Tool

Identify Tool lists the descriptive attribute values (refer to Section 3.1.2 for the definition) of the
map feature in the current active layer when the user clicks the mouse close to this map feature. The

algorithm is as follows:

1. Lay out the components inside the Identify Tool window and display it. Obtain the active
iayer name from the Geditor legend array and display it on the top of the pop-up window.
In the middle of the pop-up window, display an empty list that will be filled with attribute
values. An “Identify” toggle button is displayed on the bottom of the window.

2. Then, check the type of the map features of the current active layer.

e If it is Point type, find the point that is within a small distance of the mouse position on

screen.

|~ mouse
o
b2
. ﬂ
point close to mouse

CHAPTER 4. GEDITOR IMPLEMENTATION 106

e If it is Polygon type, find the polygon that contains the mouse.

’0‘

if the angles 142+3+4+5+6=2pi, then the mouse point is in the polygon

e I[f it is Polyline type. find the polyline that is closest 1o the mouse point.

polyline

P2

Pl mouse point

If the determinant of P, P1, and P2 equals zero, the mouse point P is on the line of (P1, P2)

In the above figure. the “determinant of P, P1 and P2” means the area of the triangle P, P1 and
P2

3. When the map feature is found. if it is a point, display all the descriptive attribute values
of this point in the pop-up window. If it is a polygon or polyline. we assume that all the
descriptive attribute values in the same polygon or polyline group in the map relation are the
same. Therefore. a tuple is picked randomly in the same group and the corresponding attribute
values are displayed in the pop-up window. If there is no map feature that is close enough to

the mouse. no value is displayed in the pop-up window.

4. In the pop-up window. the “Identify” button is initially pressed. If the user needs to keep the
pop-up window on the desktop, but disable the Identify function, click the “Identify” button to
bounce it up. After that, nothing will be displayed in the pop-up window when the user clicks
the map feature. To enable the Identify function again, just click on the “Identify” button.

CHAPTER 4. GEDITOR IMPLEMENTATION 107

B. Expression Builder

The Expression Builder provides a dialog box which enables the user to select the map features in
the current active layer with an expression. In the dialog, the active layer name, a list of descriptive
attributes, a list of operators, and the list of values of the selected attribute are displayed. The
expression is also displayed in the text area of the dialog while the user is building the expression.
The algorithm of this function is as follows:

1. Lay out the components inside the dialog and display it. The active layer name is obtained
from the Geditor legend array. Wait for the user input and display the user’s input in the

bottom text area of the dialog.

!\)

If the user closes the dialog with the OK button. obtain the user’s input from the text arca.

This is the expression the user created.

3. Assemble the following jRelix statement: .SelRel<~where expression in maprelation;
Then call executeRelixCommand() to execute the above statement.
.SelRel contains the selected map feature.

If the execution fails, display an error message showing that the expression the user built was
illegal. Otherwise. make a copy of the current map relation and update this map copy by

changing the color value of the seiected map feature to yellow.

When this function returns to the Geditor Controller, it updates the map in the Map View window
with the above updated map copy. The legends do not need to be updated.

C. Spatial Query

Spatial Query allows the user to select a map feature that has a particular spatial relationship
with a given map feature. The given map feature is the one that is selected by Expression Builder.

that is. the current yellow map feature in the Map View window. The algorithm is as follows:

1. Lay out the components inside the Spatial Query dialog and display it. The current active
layer name is displayed on the top. A list of spatial operators is displayed in the middle. The
value field is only enabled when the spatial operator is “Within Distance Of”.

CHAPTER 4. GEDITOR IMPLEMENTATION 108

2

. Wait for the user input until the user closes the dialog with the OK or Cancel button.

3. If the user closes the dialog with the OK button, generate the EventName according to the
user’s choice in the spatial operator list. For example, if the user chose “Within Distance Of™",
the EventName will be “withindist:".

4. Generate the four necessary relations needed in the execution of the event handler: .ActLRel,
.SelRel. .ValueRel (only needed when the operator is “Within Distance Of™). and .SpqRel.

The definition of these relations can be found in Section 3.6.

5. Call executeEventH(EventName. env) to execute the event hander. The executeEventH searches
the current system table to find the corresponding event handler. If the event handler has been
defined. it will be executed. Otherwise display an error message reminding the jRelix pro-

grammer to write the event handler before performing this Spatial Query.

When the Spatial Query function returns, the Geditor updates the map in the Map View window
according to the result of the event handler (.SpqRel relation). The legends do not need to be
updated.

D. Clear Selections

This function restores the Map View window before the query is performed. Section 4.3.2 has
discussed about the implementation of this function.

E. Options

The Options function provides the dialog for the user to change the three default colors used in
Geditor: the highlight color used in the legend window to show the current active layer. the color
to show the selected map features from Expression Builder, and the color to show the selected map
features from Spatial Query. The values of the above three colors are stored as three variables in
the Geditor class. These are selcolor (for Expression Builder), spqcolor (for Spatial Query) and
activecolor (for highlighting the active layer).

Therefore, the algorithm is as follows:

1. Lay out the components inside the Options dialog and display it. Obtain the current value of
the three default colors from the Geditor variables: selcolor, spqcolor and activecolor. Three

CHAPTER 4. GEDITOR IMPLEMENTATION 109

color patches shows these three color values. A color palette is displayed when the user clicks
on a color patch. This allows the user to change the corresponding default colors. Wait for

the user input until the user closes the dialog with the OK or Cancel button.

[

Change the corresponding Geditor variables (selcolor, spqcolor, or activecolor) to record the
changed default color according to the user input in the dialog.

Chapter S

Conclusion

This chapter begins with a summary of the work that has been accomplished. It concludes with

suggestions for possible extensions and future enhancements.

5.1 Summary

This thesis presents the design and implementation of a GIS editor (Geditor) which becomes a jRelix
component that allows the user to view and edit the map graphically. With this Geditor. a series of
GIS functions related to the map can also be performed.

Geditor builds two interfaces for the user. One is the interface for the jRelix Programmer-User
which builds the gedit syntax that allows the jRelix programmer to call and display the Geditor
GUIL. The other is a graphical interface for the End-User that allows the End-User to display the
map and complete GIS functions.

The principle of the design and implementation of Geditor is to provide a flexible and extendable
framework. Firstly, the second artribute list of the gedit syntax is extendable, therefore further im-
plementations can accommodate more attributes in the second list. Secondly, by utilizing the event
handler machanism of jRelix. Geditor generates proper events according to the users’ requirements
and transfer the task to the event handlers written by jRelix programmers. This makes it possible to
customize the implementation of the corresponding GIS functions and change it dynamically during

the running time.

110

CHAPTER S. CONCLUSION 111

Geditor incorporates a series of GIS core functions that are implemented using Aldat capabilities
and a graphical display interface. This accomplished the goal of building GIS applications in an in-
tegrated architecture using a relational database. All the data including both spatial and non-spatial
data are treated cqually in jRelix. Some DBMS do not offer the flexibility of implementing the nec-
essary spatial operations needed for GIS functions. However, jRelix definitely has the capabilities
and the Geditor implementation is a good test. It is beyond the scope of this thesis to integrate all
the possible GIS functions within Geditor. However, this thesis builds thc fundamental elements

and provides an extendable framework for future work on this issue.

5.2 Future Work

S.2.1 Extension of the second attribute list of gedit

As discussed in Section 3.1.3 and 4.2.2, the sccond attribute list of gedit could be extended. Cur-
rently, three attributes: color. symbol, and layer are implemented. The following is an example of a
legal syntax:

[G.T.S.X.Y][Color=C, Symbol=Symb. Layer=L] gedit maprelationl:,

where maprelation1 is the same as what Table 3.1 shows.

In the future. Geditor may necd more data to accomplish more advanced GIS applications. For
example. if the more sophisticated map display requires the capital of each country to flash on
screen. a flash speed attribute might be needed. In this case, a fourth attribute could be added to the
second list of the above example:

[G.T.S.X.Y][Celor=C. Symbol=Symb. Layer=L, Fspeed=F] gedit maprelation:,

where maprelation should include the attribute F that indicates the flash speed of each map
feature.

As another example. if the user needs to display the map in three dimensions, a third coordinate
Z might be needed. Therefore, another attribute that shows the Z coordinate must be added to the
second attribute list of gedit as follows:

[G.T.S.X.Y][Color=C. Symbol=Symb. Layer=L, Fspeed=F, Zvalue=Z] gedit maprelation;

In maprealtion, the attribute Z indicates the Z coordinate of each map feature.

CHAPTER 5. CONCLUSION 112

If more thematic maps are built in Geditor, more attributes need to be added to the second list
of gedit. Recall the example about the Dot Density map in Section 1.2.2.A.6. The dots inside each
polygon are based on the number of people in that area. Therefore, the second attribute list of gedit
could be extended as follows:

[G.T.S.X.Y]{Color=C. Symbol=Symb. Layer=L. Fspeed=F, Zvalue=Z, DotDens=Pop] gedit maprela-
tion;

This is similar to the Graduate Symbol map and the Chart Symbol map discussed in Section
1.2.2.A.6.

When other functions are added to Geditor. more attributes might also be needed in the second
attribute list of gedit. For example, if Geditor implements the contour map, the attribute for drawing
the contour lincs needs to be added to the second attribute list. Suppose the contour lines arc drawn
based on the altitude of each polygon vertex. the gedit syntax becomes:

[G.T.S.X.Y][Color=C.Symbol=Symb. Layer=L. Fspecd=F, Zvalue=Z, DotDens=Pop. Contour=Hgt|
gedit maprelation:,

where maprelation contains the attribute Hgt that shows the altitude of each polygon vertex.

When the contour lines arec drawn., interpolation techniques must be used to generate these lines.

The examples could go on and on and the second attribute list could become very long. However,
regardless of the number of attributes that are added, the Parser does not have to be rewritten because
the gedit syntax allows the second attribute to be extended. Only the Interpreter needs to be modified
accordingly.

5.2.2 Enhancement of Map Display

In this version of Geditor. all polygons are filled with colors and all polylines are drawn in solid
lines with the same line thickness (one pixel). The different filling patterns of polygons and the
different polyline styles are not implemented. in the further implementation, the values of the
symbol attribute could be used to indicate the line types and polygon filling patterns. As mentioned
in Section 4.3.3, in future work, the JFC 2D package could be used. There are existing methods for
filling polygons with different patterns and drawing lines with vaiable thickness and different styles
in the JFC 2D package.

CHAPTER S. CONCLUSION 113

After these display features are added, different line styles can show different road types, such as
highway, freeway, streets, railroad, and subway. Polygons can also be filled with different patterns,
which is important when black and white pictures are needed.

The current version of Geditor displays maps in two dimensions. However, 3D display is be-
coming increasingly popular in GIS applications. To achieve this goal, firstly, in addition to the X,Y
coordinates already stored in the map relation, the Z coordinate would have to be added. Secondly,
the second attribute list of gedit would have to be extended as discussed in Section 5.2.1. Thirdly,
a 3D display package nceds to be used to achieve the 3D visualization. Java 3D[tm] API which

enables programmers using Java[tm] technology to do 3D visualization might be a good choice.

5.2.3 Integration of more GIS functions

As discussed in Section 1.3, Geditor implements the typical common functions of GISs. especially
those display-related functions. Some GIS functions are left out and it would be nice to incorporate
them into Geditor in the future.

A. Polygon Overlay, Dissolve, and Buffer Generation

Polygon overlay. dissolve. and buffer generation functions are left out in Geditor because they
arc not display-related cxcept for the results display. These functions can be achieved within Al-
dat capabilitics and Martinez has already provided the Aldat codes for these functions [Mar98).
However, since the above three functions play an important role in GIS applications, perhaps in the
future, Geditor can integrate them into Geditor window. This can be achieved easily by utilizing
the event handler mechanism of jRelix. Similar to the implementation of Spatial Query function,
when the user requires these functions, say polygon overlay, Geditor generates a proper event. Then
the corresponding event handler written by the jRelix programmer will be called and executed to
complete the operation. The results can be displayed using the map display class (CvDraw.java)
already implemented in this Geditor.

B. Measurement

o Measurement of Points

As discussed in Section 1.2.2.A.2, the measurement of points is related to the counting of
points in a user defined windowing polygon. Therefore, an interface is needed to capture the

CHAPTER S. CONCLUSION 114

user input of the windowing polygon. Then the Aldat capabilities can locate the points en-
tirely within the windowing polygon and count the number of such points. When integrating
this function into Geditor, a component necds to be added to capture the user’s windowing
polygon. Aldat codes which locate and count the points entirely within the windowing poly-
gon, can be executed using executeRelixCommand() method. Finally, the result (number of

points) can be displayed in a pop-up window or a fixed text field in the Geditor window.

e Measurement of Lines and Polygons

As discussed in Scction 1.2.2.B.2, an interface is nceded to allow the user to specify the
polygon or the polyline to be measured. This can be achieved by the selection of map features
using Expression Builder. which has already been implemented in the current Geditor. The
user might also need another selection tool to highlight the map feature using the mouse. A
minor modification of Identify Tool can accomplish this. When the user clicks thc mouse
close enough to the map feature. instead of showing all the descriptive attribute values of
thc map feature, the selection tool may simply highlight the map feature on scrcen. Then,
Aldat codes which calculate the area or perimeter of the polygon. edge length or the whole
length of the polyline can be passed to executeRelixCommand(). Finally, the results of the

measurcment can be displayed in a pop-up window or a fixed text ficld in the Geditor window.

C. Spatial data editing

This set of editing operations is used to correct the errors in the data capture stage. It includes
map generalization. rubber sheeting, and snapping that are discussed in detail in Section 1.2.2.B.4.
A Graphical editing interface needs to be added to Geditor to allow the user to specify the map
feature and edit it interactively. Different specific editing interfaces need to be implemented for
different editing functions. For example, for polygon thinning, an interface for the End-User should
allow the user to delete vertices by clicking them and show the result polygon with the remaining
vertices. Finally. when the user is satisfied with the modified map feature, the results need to be
saved for future use.

To implement the saving of the graphic data with the modified map features, there are two op-
tions. One is keeping gedit functional, the other is changing gedit to a non-functional operator.

CHAPTER 5. CONCLUSION 115

Currently, gedit is a functional unary operator, that is, gedit does not change the value of its
operand (the map relation). Furthermore, the value of the gedit cxpression is also the same as
its operand: the original map relation. When the spatial editing is implemented, if we keep gedit
functional. we still do not change the value of the operand of gedit, but let gedit return a different
value from the original operand (the original map relation). In this case, Geditor cannot run on
an independent thread from the Interpreter as Section 4.2.1 describes. When the Interpreter calls
Geditor, it has to wait when Geditor interacts with the End-User in its GUL As discussed in Section
4.2.1. Geditor obtains a copy of the original map relation and updates this copy when necessary.
In the spatial editing case, when the user is satified with the modified map features, the result will
be saved in this map relation copy. When Geditor finishes and returns to the Interpreter, the gedit
expression obtains the map relation copy as its value. This value can be assigned to a new map
relation for future use. The original map relation is kept unchanged during the whole process.

The other approach to implementing the saving is to change the gedit to a non-functional unary
operator. In this case. gedit must fit into update syntax, not expression. gedit will be allowed to
change the value of its operand. that is. the original map relation. The Interpreter still has to wait
until Geditor finishes and returns. but the content of the original map relation can be changed during
the Geditor interaction with the End-User in its GUI. As far as spatial editing is concerned, when
the user is satisfied with the modified map features, the result will be saved into the original map
relation directly. This implementation approach changes gedit to a non-functional operation.

D. Map Sheet Manipulation

Map sheet manipulation includes projection change, coordinate translation, scale change and
rotations. With the exception of the result display, these functions can be achieved using Aldat
capabilities. Dialogs with the user need to be added to Geditor (o obtain the parameter data for
completing those operations. Then the corresponding Aldat codes can be executed using event
handler mechanism or the executeRelixCommand() method. For example, for the scale change,
Geditor needs to know how much percent smaller or larger the user wants the map to be. This can
be captured by displaying a list of percentages in a dialog or on the toolbar to allow the user to
choose. Then the X.Y coordinates can be updated in the map relation by multiplying by the chosen
percentage. Aldat codes with the Update command can achieve this. The executeRelixCommand()

CHAPTER 5. CONCLUSION 116

method or event handler mechanism can be used to run these Aldat codes. Finally, Geditor calls the
map display class (CvDraw.java) to display the map with the updated map relation. As a result, the
map will be zoomed in or out.

There are other functions that could be added to Geditor. For example. more thematic maps
(such as dot density map and chart symbol map), spatial interpolation in terrain analysis, network
analysis. image processing, and so on. With the development of GIS applications, more and more
functions will emerge and therefore need to be included in Geditor. By implementing this Geditor
with GIS core functions, this thesis leads the way for the implementation of more complicated GIS

applications using Aldat capabilities and a graphical interface.

5.2.4 Issues of Time and Space in the Implementation

The goal of this thesis is to demonstrate the feasibility of using a relational database programming
language to implement an independent GIS application. Performance issues are beyond the scope
of this thesis because they depend on the implementation of the underlying database system, jRelix.
Measurements of time and space requirements of Geditor would bc measurcments of the perfor-
mance of jRelix. which was built by others. However, as mentioned in Chapter 1. performance
issues are very important for the integration of GIS data management. The reason that most com-
mercial GISs do not use database to store graphical data is that their inefficiency in storing, retrieving
and updating graphical data compared to specialized binary file formats. Therefore, in future work,
jrelix must be re-implemented for time and space performance. and the implementation of Geditor
then measured and compared with standard GIS approaches. such as ESRI Arc/Info, maplnfo, and
ESRI Map Objects.

Appendix A

Backus-Naur Form for gedit

This appendix presents the extended Backus-Naur form (BNF) of the grammar in our implementa-
tion. Only the new added syntax (gedit) and the modified syntax will be provided here. A complete
documecntation of the original jRelix grammar/syntax in BNF format is given in [Sun00].

The grammar is created from the grammar specification (in file Parser.jjt). using the JavaCC
documentation generator called ;jdoc. In the BNF definition. terminals will be quoted and non-
terminals will be otherwise. The sign | means or. (...|...|...) means choosing one of the components
separated by | inside the brackets. (...)? repeats the component inside the brackets zero or one time.

In this Geditor implementation. we created the gedit grammar/syntax and modified the syntax of
event handlers in jRelix. The following is the BNF notation of the new gedit syntax and the updated

event handler syntax.
Projection := Projector (("in" | "from"™) Projection
| Projector "gedit® Expression
| "gedit" Expression | Selection)
EventName := (Prefix ":")? Action ":" (Identifier)?
Action := "add" | "delete" | "change" | "contains" | "cmpcontains"

| "cmpwithin®” | "intersect® | "within" | "withindist"

Bibliography

[Abi93]

[Atk83]

[Atk84]

[Bak98]

[Boc86]

[Bur86]

[Cer89]

Serge Abitcboul, Georg Lausen, Heinz Uphoff, and Emmanuel Waller. Methods
and rules. SIGMOD Record (ACM Special Interest Group on Management of Data),
22(2):32-41, June 1993.

M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott, and R. Morrision. PS-
algol: A language for persistent programming. In /Oth Australian National Computer

Conference, pages 70-79, Mclbourne, Australia, 1983.

M. P. Akinson, W. P. Cockshott, P. Bailey. K, J. Chisholm, and R. Morrison, PS-algol
reference manual. Technical Report PPR-4-83, Department of Computer Science, Uni-
versities of Edinburg and St. Andrews, January 1984.

Patrick Baker. Java Implementation of Computations in a Database Programming Lan-

guage. Master’s thesis, McGill University, 1998,

J. Bocca. EDUCE: A marriage of convenience: Prolog and a relational DBMS. In
Proceedings of the International Symposium on Logic Programming, pages 36-45. [IEEE
Computer Society, The Computer Society Press. September 1986.

Burrough P.A.. Principles of Geographical Information Systems for Land Resources
Assessment, Oxford:Clarendon Press, 1986.

Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always wanted to know about
Datalog(and never dared to ask). IEEE Transactions on knowledge and Data Engineer-
ing. 1(1): 146-166, March 1989.

BIBLIOGRAPHY 119

[Cha86]

[Chr97]

[Cla99]

[Cod70]

[DeM97]

[Due89|

[Gea99]

[Hao98)

[Hey98]

[Hul89]

[Hut97]

(Ioa94]

C. L. Chang and A. Walker. PROSQL.: A Prolog programming interface with SQL/DS.
In L. Kerschberg, editor, Expert Database Sys., page 233. Benjamin/Cummings, Menlo
Park, CA, 1986.

Nicholas Chrisman. Exploring Geographic Information systems. John Wiley&Sons,
1999.

Keith C. Clarke. Getring Started with Geographic Information Systems, Prentice Hall,
Upper Saddle River, New Jersy, 1999.

E.F.Codd. A relational model of data for large shared data banks. Communications of
the ACM. 13(6):377-387. June 1970.

Michael N. DeMers. Fundamentals of Geographic Information Systems, John Wi-
ley&Sons, Inc., 1997.

K. J., Dueker and D. Kjeme. Multipurpose cadastre: Terms and definitions, Falls Church,
VA:ASPRS and ACSM.. 1989.

David M. Geary. Graphic JAVA: Mastering the JFC, third Edition, Sun Microsystems
Press, Java Series, Palo Alto, California, 1999.

Biao Hao. Implementation of the nested relational algebra in Java, Masters thesis,

McGill University, Montreal. Canada. 1998.

[an Heywood, Sarah Comnelius, Steve Carver. An Introduction to Geographical Informa-
tion Systems, Longman, New York, 1998.

Richard Hull. Ron Morrison, and David Stemple. Proc. of the 2nd workshop on Database
Programming Languages, Salishan Lodge, Oregon, page xi. June 1989.

Scott Hutchinson, Larry Daniel. Inside ArcView GIS, OnWord Press, U.S.A., 1997.

Y. E. loannidis and M. M. Tsangaris. The design, implementation, and perfomance evalu-
ation of BERMUDA. IEEE Transactions on Knowledge and Data Eng, 6(1):38, February
1994.

BIBLIOGRAPHY 120

(Jen85]

[Kor97]

Kathleen Jensen and Niklaus Wirth. PASCAL User Manual and Report (third edition),
Springer - Verlag, New York, N.Y., 1985. Revised to ISO Standard by Andrew B. Mickel

and James F. Miner.

George B. Korte, P.E. The GIS Book, OnWord Press, U.S.A., 1997.

[Lam91] Charles Lamb, Gordon Landis. Jack Orenstein, and Dan Weinreb. The ObjectSiore

[Mar98]

[McC89]

(Mer77}]

[Mer84]

[Mor86]

[Mor87]

[Mor88]

[Peu90]

database system, Communications of the ACM, 34(10):50-63, October 1991.

Martinez Angelica Valdivia. Implementing of G.1.S. Spatial Operations in a Database
System, Master’s thesis, School of Computer Science, McGill University, Montreal,
1998.

D. McCarthy and U. Dayal. The architecture of an active data basc management system,
Proceedings of ACM SIGMOD, Portland, Oregon 1989, 215-224.

T. H. Merrett. Relations as programming language clements. Information Processing
Letters, 6(1):29-33, 1977.

T. H. Merrett. Relational Information Systems. Reston Publishing Co.. Reston, VA,
1984.

K. Morris. J.D. Ullman, and A. Van Gelder. Design overview of the Nail! system, Proc.

of International Conference of Logic Programming. New York: Academic, 1986.

K. Morris. J. Naughton, Y. Saraiya, J. Ullman, and A. Van Gelder. YAWN!(Yet another
window on NAIL!), Special Issue on Databases and Logic, /[EEE Data Engineering, vol.
10. Dec. 1987.

R. Morrison. PS-algol reference manual. Technical Report 12, University of St. Andrews,
St. Andrews, Scotland, Febrauvary 1988.

Donna J. Peuquet and Duane F. Marble. Introductory readings in Geographic Informa-
tion Systems, Taylor&Francis, London, 1990.

BIBLIOGRAPHY 121

[San96]

[Sch77])

[Sta90]

[Sto76]

(Sun00]

[ULI8S]

[Via98)

[Whi99]

[Wor99]

(Yua98]

[Zei97)

Sriram Sankar. Rob Duncan, and Screenivasa Viswanadha. Java Com-
piler compiler(JavaCC)-The Java Parser Generator, JavaCC web site at:
http://www.suntest.com/JavaCC/, 1996. The web site contains documentation, FAQs,

newsgroups, and software for JavaCC and JJTree.

Joachmim W. Schmidt. Some high level language constructs for data of type relation.
ACM Transactions on Database Systems, 2(3):247-261, September 1977.

Jeffrcy Star and John Estes. Geographic Information Systems: An Introduction, Prentice
Hall, New Jersey, 1990.

M.R.Stonebraker, E. Wong, P. Kreps, and G.D. Held. The design and implementation of
INGRES. ACM Transactions on Database Systems. 1(3):189-222, September 1976.

Weizhong. Sun. Updates and Events in a Nested Relational Programming Language,
Master's thesis. McGill University, Montreal, Canada, 2000.

J. D. Ullman. Implementation of logic query languages for databasecs. ACM Trans.
Database Syst.. vol. 10, no. 3. 1985.

I. Vlahavas and N. Bassiliades. Parallel, Object-oriented, and Active Knowlege Base
Systems., Kluwer Academic Publishers, Boston/Dordrecht/London, 1998.

Anela Whitener, Paula Loree, and Larry Daniel. /nside Mapinfo Professional, OnWord
Press, 1999.

M.F. Worboys. Relational databases and beyond, in Geographi-
cal Information Systems, Volume 1. John Wiley & Sons, Inc., New
York/Chichester/Weinheim/Brisbane/Singapore/Toronto, 1999.

Zhongxia Yuan. Implementation of the domain algebra in Java, Master’s thesis, McGill
University, Montreal, Canada, 1998.

Michael Zeiler. Inside Arc/Info, OnWord Press, U.S.A., 1997.

