
INFORMATION TO USERS

This manuscript has been reproduced trom the microfilm master. UMI films

the teX! directly tram the original or copy submittecl. Thus, sorne thesis and

dissertation copies are in typewriter face, while others may be trom any type of

computer printer.

The quallty of this reproduction is dependent upon the quallty of the

copy submitted. Broken or indistinct print, colored or paer quality illustrations

and photographs, print bteedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the untikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright materiat had to be rernoved, a note will indicate the deletion.

Oversize materiats (e.g., maps, drawings, charts) are reproduced by

seetioning the original. beginning at the upper left-hand corner and continuing

trom left to right in equat sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

800-521-0600

•

•

•

A GIS Editor for a Database Programming

Language

YuLing Chen
School of Computer Science

McGill University~ Montreal

March 2001

A Thesis Submitted lo the Faculty of Graduate Studies and

Research in panial fulfillment of the requirements of the degree of

Master of Science in Computer Science

Copyright@ 2001 YuLing Chen

1+1 National Ubrary
ofCaNda

Acquisitions and
Bibliographie Services

385 tJ.......gIDn SIr'"
e.-ON K1AC»M
c.n.a

~nationale
duCuada

Acquilitionl et
services bibliographiques

315. ,.We119Dft
OI.-ON K1A0N4
c....

The author bas granted a DOD­
exclusive licence allowing the
Natioual Library ofCanada ta
reproduce, loan, distnbute or sen
copies of this thesis in microform,
paper or electroDÎc formats.

The author retains ownership ofthe
copyright in tbis thesis. Neither the
thesis Dor substantial extracts from it
may he printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction SlU' papier ou sm format
électronique.

L'auteur coDSelVe la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse Di des extraits substantiels
de ceUe-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-70400-9

Canadl

•

•

•

Abstract

Geographical Infonnalion Systems (GIS) have become a more and more imponant application of

database systems. Most general-purposc databasc systems do not contain a graphical display inter­

face which is indispensable in GIS applications. This thesis presents the design and implementation

of a GIS editor (Geditor) for a relational database programming language. ft builds a graphical map

display interface into the database language and integrates a set of GIS functions.

Two interfaces are blIilt in Geditor. One is with the database programmer and the other is with

the GIS End-User. The former interface implements a new syntax (gedit) into the database language

for the database programmer to caU and display the Geditor GUI. The latter implements a GUI with

the GIS End-User to view the map and perfonn a series of fundamental GIS functions.

Geditor stores bath spatial and non-spatial data in the relational database. The implementation

utilizes the spatial capabilities of the relational database prognunming language to the largest ex­

tent. This demonstrates the feasibility and the simplicilY of implementing GIS applications in an

integrated approach using relational databases. It also provides a flexible and eXlendable frame­

work by designing an extendable syntax. and utilizing the event handler mechanism which is the

characteristic of active databases. Java. especially the IFC Swing package is used extensively in the

Implementation.

•

•

•

Résumé

Les Systèmes d'Infonnation Géographiques (SIG) deviennent des applications de plus en plus im­

portantes des systèmes de bases de données. La plupart des systèmes de bases de données n'ont

pas besoin d'une interface graphique utilisateur qui est pourtant indispensable pour les applications

des SIG. Celte lhèsc présente la conception et la réalisation d'un éditeur de SIG (Geditor) pour

un langage de programmation de bases de données relationnelles. Celui-ci intègre une interface

d'affichage graphique de cartes ainsi que certaines fonctionnalités des SIG au langage de bases de

données.

Deux interfaces sont construites pour le Geditor. Une est pour le programmeur de bases de

données et l'autre pour l'utilisateur du SIG. La première interface implante une nouvelle syntaXe

(gedit) dans le langage de base de données pour que le programmeur puisse appeler et afficher le

GUI du Geditor. La dernière implante un GUI pour l'utilisateur du SIG pour qu'il puisse voir la

cane et utiliser une série de fonctionnalités fondamentales des SIG.

Le Geditor conserve les données spatiales el non-spatiales dans la base de données relationnelle.

L' implantation utilise au maximum de ses possibilités les capacités du langage de programmation à

traiter les données purement spatiales. Cette thèse démontre le faisabilité el la simplicité de réaliser

des applications de SIG avec une approche intégrée utilisanlles bases de données relationnells. Elle

appone aussi un cadre flexible et extensible en concevant une syntaxe extensible el en utilisant un

mécanisme de gestion d'événements qui est la caractéristique des bases de données actives. Le

langage Java. et plus particulièrement le paquetage JFC Swing. sont utilisés de façon extensive dans

cette implantation.

•

•

•

Acknowledgements

Fiesl and foremost. 1 wish to express my gratitude to my supervisor. Profcssor TIro H. Merrett. for

his attentivc guidance. invaluable advice. and continuous encouragement throughout thc rescarch

and preparation of this thesis. His carcful rcading and constructive criticism makes this thesis better

and better. In addition. 1am also gralcful for his gencrous and constant financial support during this

program.

1would like lo thank [an Ganon. an officemalc and friend. who helpcd me a lot in lab operations

and latcx commands. 1 would aIso Iikc lo thank WeiZhong Sun for providing grcat infonnation

and help in the jRelix implemcntation. cspccially thc Event Handlers. 1 am aIso grateful to ail the

secretaries and system staff for their continuous administrative help and technical assistance. Spe­

cial mention should he made of Lise Minogue. Franca Cianci. Lucy St-James. Teresa De Angelis.

Andrew Bogecho. and Philippe Ciaravola.

Special thanks to Julien Mazloum. who translated the abstraet to French. 1 also thank Delize

Williams. who did a great job in proofreading the thesis.

Thanks must go to my parents and brother for their endless love. suppon. and encouragemenL

Without their guidance. leachings. and advices throughoul my lire. this thesis would not have been

possible.

Finally. 1 wouId like to send my appreciation to my husband. Hao Wu. for bis love. encourage­

ment. and support during my studies.

•

•

•

To my parents, HongMing Chen and Ying Zhang,

for always encouraging me to pursue higher education

and to my husband, Hao Wu,

for studying with me and sharing the joy together.

•

Contents

1 Introduction 1

1.1 Relaùonal Database System 3

1.1.1 Relational Model .. 3

1.1.2 DataBase Prograrnming Languages 5

• 1.1.3 Active Databases 8

1.1.4 jRelix 9

1.2 Overview of GIS capabilities 9

1.2.1 Introduction to GIS . . 9

1.2.2 G15 capabilities . 10

1.3 Geditor functions . 31

1.4 Thesis Oulline 33

2 jRelix Overview J5

2.1 Declarations 36

2.1.1 Domain Declaration 36

2.1.2 Relation Declaration 37

2.2 Relaùonal Aigebra 40

2.2.1 Assignment and incrementai Assignment 40

2.2.2 Relational Expressions 40

• 2.3 Domain Algebra. 44

2.4 Computations 48...

•

•

•

CONTENTS

2.5 Updates

2.6 Event Handler .

2.6.1 Naming Event Handlers ...

2.6.2 Dcfining an Event Handler .

2.6.3 Event Handler On/Off . . .

2.6.4 Printing Event Handlers

2.6.5 Deleting Event Handlers

3 User's Manual for Geditor

3.1 Startîng and Ex.iùng Geditor

3.1.1 Startïng jRelix.

3.1.2 Map Relation

3.1.3 Starting Geditor .

3.1.4 Exiting Geditor and jRelix

3.2 Laycrs....

3.2.1 Add Layer

3.2.2 Layer Control ..

3.3 View .

3.3.1 Unifonn Layer

3.3.2 Thcmatic Mapping

3.3.3 Range Map ..

3.3.4 Lcgend Editor .

3.4 Query .

3.4.1 ldentify Tool

3.4.2 Expression Builder .

3.4.3 Spatial Queries

3.4.4 Clear Selection

3.4.5 Options .

3.5 Help .

3.6 Event Handler for Geditor .

ii

50

51

52

53

53

54

54

SS

56

56

56

58

61

61

61

64

65

65

69

71

74

76

76

77

81

83

83

83

84

• CONTENTS Hi

.- Ged.itor Implementation 87

4.1 Overview 87

4.2 Interface for the jRelix Programmer-User 88

4.2.1 jRelix System Architecutre 89

4.2.2 Building the gedit Syntax 90

4.2.3 execuleRelixCommandO algorilhm 93

4.3 Interface for the GIS End-User 93

4.3.1 Gedilor architecture 94

4.3.2 Gcdilor Controller 96

4.3.3 Map Display 98

4.3.4 Laycrs .. 100

4.3.5 View 101

• 4.3.6 Query 105

S Conclusion 110

5.1 Summary · 110

5.2 Future Work III

5.2.1 Extension of the second attribule list of gedit III

5.2.2 Enhancement of Map Display .. 112

5.2.3 Integration of more GIS functions · 113

5.2.4 Issues of lime and Space in the Implementation · 116

A Backus-Naur FOnD for gedit 117

Bibliograpby 121

•

•

List of Figures

3.1 init Screen of jRelix .

2.3 Example of ijoin .

2.1 Contents of MapData .

2.2 Results of LayerName. MapAZ. and LargePop

10

13

14

14

15

17

18

19

20

21

24

. 25

38

42

43

47

48

49

56

58

Polygon Overlay Operations in Arcllnfo (Non-spatial phase) ...

Buffering

Point Counting ..

Two Phases of Polygon Overlay

Geometrie Phase .

Query Window Generation

Spatial Query

Three Cases of "not strictly containedn
•

Thematic Layers .

2.4 Results of R and S .

2.5 Result of Relation T

2.6 Result of Relation R

1. 10 Dissolve

1.11 Different Charts .

1.12 Bar Chan

3.2 gedit Example (1)•..

LI

1.2

1.3

1.4

• 1.5

1.6

1.7

1.8

1.9

•

•

•

•

LIST OF FIGURES

3.3 gedit Example (2)
3.4 gedit Example (3) . ••• II> •

3.5 Geditor Window.

3.6 Layers Menu
3.7 Add Layer Dialog .

3.8 Updated Map View Window after Add Layer

3.9 Layer Control dialog box .

3.10 Updatcd Map View after Layer Control

3.11 View Menu .

3. 12 Unifonn Layer Submenu

3. 13 Color Editor Dialog .

3.14 Symbol Editor. . . .

3.15 Updated Map View after Symbol E<tilor

3.16 Thematic Mapping Subrncnu

3.17 Individual Value ~fap Dialog

3.18 Updated Map View after Individual Value Map Dialog

3.19 Range Map Dialog .

3.20 Updated Map View after Range Map Dialog

3.21 Legend Editor Dialog Box .

3.22 Updated Map View after Legend Editor

3.23 Query Menu.

3.24 Identify Tooi .

3.25 Expression Builder Dialog Box ..

3.26 Updated Map View after Expression Builder .

3.27 Spatial Query Dialog Box.

3.28 Updated Map View after Spatial Query Dialog .

3.29 Options Dialog Box

3.30 Options Dialog Box

3.31 Event Handler for Spatial Operator: '"Containn
• • • • • • • • • • • • • • • • •

v

59

59

60

61

62

63

64

66

66

66

67

68

69

69

70

71

73

74

75

76

77

78

79

80

81

82

84

84

86

•

•

•

LIST OF FIGURES

4.1 Two Interfaces of Geditor

4.2 System Architeeture

4.3 Example of ~tap Relation:maprel .

4.4 Append Color Attribute to maprel

4.5 Geditor Architecture .

VI

87

90

92

92

95

2.5 Result ofMapRelation1 from: update MapRelationl change Temp<-18 using ijoin
CA; 51

•

•

•

List of Tables

1. 1 Relational Model .

1.2 Operators of Spatial Retrieval .

1.3 Point Counting Operator . . .

1.4 Buffering Operators .

1.5 Operators of Polygon Overlay

1.6 Dissolve Operator

1.7 Operators of Thernatic Mapping

1.8 Chans Operators ...

1.9 Identifying Operator ..

1.10 Labelling Operator .

1.11 Line Measurernent Operators .

1.12 Polygon Measurernent Operators .

1.13 Operators ofMap Sheet Manipulation

1.14 Operators of Spatial Editing ...

1.15 Operators of Sorne Display Functions

2.1 Data Types in jRelix

2.2 MapRelation 1

2.3 MapRelation2.

2.4 Result of MapUnion from the ujoin Example

3

14

16

16

18

21

23

24

26

26

27

28

28

31

31

36

39

39

44

•

•

•

LIST OF TABLES

3.1 Example of Map Relation:MapRelation 1 . .

3.2 Example of Map Relation:MapRelation2 . .

3.3 Example of Map Relation:MapRelation3 . . .

4. 1 Geditor Classes

vüi

57

59

60

96

•

•

•

Chapter 1

Introduction

GIS has dcvcloped rapidly in the past two decades. lt integrates spatial and non-spatial data into

one system and provides powcrful tools and various operations to dcal with thcse data. Since spatial

data are usually large-scale. this makcs it inevitable for GISs to use a database to manage the data.

This thcsis presents the implcmentation of a GIS application (Geditor) which is focused on utilizing

database capabilities to build an indepcndent GIS application.

Relational databasc systems. which providc mechanisms for managing data. achievc great suc­

cess in the commercial world. Most GISs also adopt a relational database system to manage the data.

Based on whether the spatial data are stored in the database management system (DHMS) or not.

the data management of current GISs is dividcd into two categories: the integrated approach and the

hybrid approach [Wor99). In the integrated approach. the GIS puts all the data including both spatial

and non-spatial (descriptive) data in the relational database. ln the hybrid approach. however. only

the descriptive data are stored the relational database. The benefits of using an integrated architec­

ture are obvious. Sînce OHMS treats ail data unifonnly. in the integrated architecture. the spatial

data are treated equally with the descriptive data. Funhennore. a professional DBMS enforces the

integrity. concurrency and security of the data. which is another advantage of using integrated ar­

chitecture. However. because SQL lacks the expressive power for spatial queries and because of

perfonnance issues. the integrated approach is not widely adopted [Wor99] .

However. the integrated approach is feasible wiJen an advanced general-purpose relational database

is adopted. This thesis presents an implementation of a GIS application (Geditor) which stores both

• CHAPTER 1. INTRODUCTION 2

•

•

spatial and non-spatial data in jRelix - a relational database programming language developed at

the School of Computer Science. McGill University. jRelix contains a DBMS and a programming

language named AldaL This Geditor implements a graphical display interface which becomes a

new component of jRelix and utilizes the programming capability of AIdat to complete the imple­

mentation of GIS functions.

With this implcmentation. users will enter or import data into jReüx format. display the map

graphically using Geditor. and perform GIS operations such as thematic mapping. spatial query.

and layer control.

It is the aim of this thesis to demonstrate the feasibility of using a rclational database program­

Ming language to implernent an independent GIS application. Martinez [Mar98] has a1ready proved

the Aldat capabilîty of spatial analysis which is the basic requircment for developing GIS appli­

cations. However. this implementation has 10 export spatial analysis results inlo other software

packages to display the map bccause jRelix did nol providc a graphical display interface. This is not

satisfactory for a complete and independcnt GIS application. This Geditor implementation builds

a graphical display interface into jRelix and utiüzes the Aldat spatial analysis capabilities to build

an indcpcndent GIS application. Geditor keeps the graphical display interface succinct and utilizes

Aldat spatial analysis capability to the greatest extent. This dernonsttates that the Geditor imple­

mentation is not only a feasible but also a simple approach in an integrated architecture using a

relational database.

A high perfonnance implementation is nOl the central issue in this work. We do not expect

Geditor to he very fast. Performance improvement can he obtained by tuning the spatial analysis

algorithms. choosing a different data model. and other spatial database techniques.

As a result of this Geditor implementation.. we (1) built a graphical display interface to display

the map based on the map data slored in jRelix format; (2) integrated a series of core GIS function­

ality into Geditor by utilizing Aldal spatial analysis capabilities; and (3) built the new syntax (geclit)

into jRelix to allow jRelix programmer 10 call the Geditor. It is beyond the capability of this thesis

to implement aIl possible GIS functionality into Geditor. However. our work is complete enough to

perform interesting studies of implementing spatial applications using a relational database. Conse­

quently. this thesis will provide a resource for a GIS implementation in a jRelix cnvironmen~ and

• CHAPTER 1. INTRODUCTION 3

•

•

the fundamental framework for further studies on this issue.

The rest of this chapter is organized as follows. In Section 1.1. an overview of the relational

database systems is presented. General concepts and topics related to the Geditor implementation

are discussed in this section. Section 1.2 provides an overview of GIS capabilities. The GIS opera­

tions in this section are categorized as being cither binary or unary according to the operands these

operations have. Section 1.3 lists aU the GIS functions Geditor includes. The thesis outline is given

in Section 1.4.

1.1 Relational Database System

Relational database systems have developed rapidly since 1970s. Not only the strict and consistent

mathcmatical model has been dcfined. but relational database systems also achieved great success in

the commercial world. Nowadays. relational databases arc still dcveloping very fast to incorporatc

advanccd properties and construets to deal with modem data-intensive applications. In this section.

wc are going to review the basic concepts of relational database systems.

1.1.1 Relational Model

The relational model was first proposed by Dr. E.F. Codd in his famous paper ., A Relational Model

of Data for Large Shared Data Banks" [Cod701. In his relational modcl. Codd uses a collection

of tables that he tenns relations. to model and store data about objects in the real world. Each

relation resembles a table which consists of rows and columns. "tuplcs" is used to refer 10 rows and

"attributes" is used to refer to the column header. The tenn "domain" refers to the set of legal values

that an atuibute can have. i.e. the data type of an attribute. Table 1.1 shows the data about different

states in the U.S.A. represented in a relational model.

Mapfeature Name Pop Temp
polygonl Arizona 2350725 20
polygon2 Califomia 29760021 20
polygon3 Nevada 1201833 -10
polygon4 Oregon 2842321 8

Table 1.1: Relational Model

• CHAPTER 1. iNTRODUCTION 4

•

•

As indicated in the paper. the relations in the relational model have the foUowing characteristics:

• AH tuples are distinct

• The ordering of the tuples is immaterial.

• Each attribute is unique 50 that the order of columns is irrelevant.

• The domain of each attribute is of a simple type such as integer. Ooat. ete. which cannot he

funher decomposed.

Operations on Relations

ln the relational modet all data within a relational databasc are held in tables or relations. A sys­

tcm that supports the relational model should be able to perform well-defined operations on thesc

relations to retrieve information. Relational algebra. which is al50 proposcd by Codd consists of a

set of operations applied on relations. ln the rclational algebra. there is no operation performed on

individual tuples. The relational operators take relations as operands and return a relation as a result

which cao be further manipulated.

The relational algebra operations arc usually classificd as unary or binary. according to the num­

ber of their operands. Unary operators take a single relation as operand and binary operators taire

two relations as operands. Both of them produce a single relation as their result

• Unary operations

- Projection: makcs a copy of a relation with a specifie subset of the attributes

- Selection: selects tuples that satisfy a specifie condition

• Binary operations

- ~-join: join operators that generalize set-value<! set operations

- CT-jOïn: joïn operators that generalize logie-valued set operations

• CHAPTER 1. INTRODUCTION 5

•

•

Operations on Domains

The arithmetic and related processing of the values of attributes in individual tuples also becomes

necessary. Merrett [MerS4] proposed the domain algebra which consists of a set of such operations.

Il allows the user 10 create new domains from existing ones. The generalion of a new value from

many values within a tuple or from values along an attribute also becomes possible. The domain

algebra operations are defined as follows:

• horizontal operations: new value is generaled from the values with a (upie.

- Constant

- Rename

- Function

- lf-then-else

• vertical operations: new value is generated from values along an auribute.

- Reduction

- Equivalence Reduction

- Functional Mapping

- Partial Functional Mapping

Various combinations and pennutations of the above operations of relational algebra and domain

algebra are used in practice to retrieve infonnation from a collection of relations in a relational

database. Sorne of these.. but notably not domain algebra.. have been implemented on commercial

DBMS in the fonn of SQL (Struetured Query Language) and other specialized devices.

1.1.2 DataRase Programming Languages

The relational model has attraeted much attention bath in the academic world and in industty. It

has proven itself exceptionally useful for many business applications. However. the commercial

• CHAPTER 1. INTRODUCTION 6

•

•

implementations of the relational model are lacking in expressive power and in the ability to han­

die complex data. Many applications are arising in science and engineering for which Ùlese im­

plementations are madequate tools. The relational model itself. however. is not limited to these

implementaions. This has led 10 continued research in the field of databasc programming languages

(OBPL).

The applications that drive the effons in the research of database programming languages have

the following properties:[HuI89]

• involvc large arnounts of complex. shared. concurrently accessed. persistent data

• reliability rcquircments

• involve distribution of data s10ragc and processing over networks

• design orientation

• complex bchavior involving inference or rule-hased computation

• sophisticated graphieal interfaces

Computer automated design (CAO). VLSI chips design and Geographie lnfonnation Systems

arc examples of such applications.

DBMS are capable of dealing with large amounts of persistent data. that is. the data slored in the

secondary storage. Il alIows concurrent access to the data even if il is distributed among several sites.

Programming languages provide weil-proven and powerful techniques for creating. organizing and

manipulating data that is in rnemory. Therefore. database programming languages seek to integrate

me technologies and paradigms of programming languages and database management in order to

solve the problem of developing me above data-intensive applications.

An early approach to creating a database programming language has been to embed a database

query language into an existing programming language. For example. Ùle INGRES relational

databa~ system [5t076] embedded ils query language QUEL into the C programming lanugage

10 produce the EQUEL language. QUEL variables and statements are inserted into a C program in

lines Ûlat begin with ••'. A major disadvantage of this approach is that it requires the programmer

• CHAPTER 1. INTRODUCTION 7

•

•

to be fluent with both the host language and the query language. Il also yields an awkward pro­

gramming environment by fitting the bulk types of the query language~ such as the relaùon~ together

with the typing system of the oost language. This inspired the search for more integrated solutions

to database programming languages.

Another approach to creating a OBPL is to add database features to an existing programming

language. For example~ PascaIIR [Sch771 combines the relational data model with the Pascal pro·

gramming language [Jen85]. The type record whieh represents a tuple of a relation is added to

the language. The constructor relation of. database. new iteration construet for eacb~ and a set of

operators mat permit the traversai of a relation -Iow, nex~ high and eor are also added 10 the lan­

guage. This extension to Pascal allows the manipulation of relations together with the mechanism

to support persistence and efficieney.

An important step was the demonstration of the possibility to design a programming language

wilh uniform persistenee. A problem with conventional programming languages is that thcir con­

structs (e.g. arrays and records) do not correspond to those for persistent storage (e.g. the abstraction

of a file or of a relaùon). The programmer must map the data from the forms uscd in primary mem·

ory to those used on the persistent storage. The typing mechanism provided by the programming

language is usually lost across this mapping. In a Persistent Programming Language. sueh as PS­

algol [Mor88) [Atk83] [Atk841. the mapping becomes unnecessary because data of any type may

persisl The value persists whenevee il bas a persistent label or it is a part of sorne structure with a

persistent label. This saves the programmer's effon of data mapping and aIso keeps the data type

completeness which is essentially that ail data types have equal rights.

At the same time~ the research effons in database programming languages are devoted to the

incorporation of the facilities of a DBMS with the objecl~riented computing paradigme For ex·

ample. ObjectStore [Lam91) adds persistence to the C++ programming language which makes the

aecessing of persistent data seamless 10 the programmer. A number of bulk types such as ordercd

lists. sets and bags are also added 10 the language to manage large amounts of data. Queries aœ

contained between delimiters "[:. and ":1'. Othee featuees sueh as transactions. Iodes and logging

for recovery are also supponed in ObjectStore.

Effons have also been put into the investigation of the connection bctween logie and databases.

• CHAPTER 1. INTRODUCTION 8

•

•

The Knowlcdge-Base Management Systems (KBMS) combine the traditional feature of a DBMS

wilh the logic programming paradigm. Attempts have becn made to combine database features with

Prolog (Boc861 (Cha86] [Ioa94]. Datalog [U1l85] [Mor86] [Mor8?] (Cer89] is one of them. It is

based on Prolog and developed for use with relational databases. 'The predicate can he stored in a

relation of the same name. Every tuple of this relation represents a fact Sorne extensions of Datalog

also support bulk type constnlctors to deaI with large amount of data. An object-oriented extension

to Datalog aIso includes methods. classes. instantiation. overloading and late binding [Abi93].

1.1.3 Active Databases

Traditional database systems are passive because commands are executed by the database when

requested by the user or application programs. The system cannot respond to happenings of interest

wilhout the user intervention. An Active Database System is a conventional passive database system

extended with the capability of reactive behavior. The desired behavior is expressed in mies lhat are

defined and stored in the database [Vla981.

For cxample. an invenlory control system needs to monitor the inventory database. sa thal when

the quantity in stock of sorne item falls below a threshold. a re-ordering activity will he initiated.

ln an active database system. a corresponding mie can he defined and the active database system is

responsible for detecting the quantity in stock. When the quantity in stock falls bclow a threshold.

the request of order will he triggered by the active database without the user's intervention.

ln active database systems. the event-condition-action (ECA) model is widcly used. According

to McCarthy [McC89]. an event-condition-action model consists of three components.

• Event: '"An event is the occurrence of pre-defined state which triggers the rule and causes the

system to evaluate the condition"'.

• Condition: "Conditions are typically predicates or queries against the database system".

• Action: ··An action is a sequence of operations which are executed when the condition of the

triggering event is satisfie(r~.

• CHAPTER 1. INTRODUCTION

1.1.4 jRelix

9

•

•

jRelix (the java implementation of a Relational database programming language in Unix) was de­

veloped al the AIdaI lab of the School of Computer Science al McGilI University. jRelix contains a

database management system (DBMS) which is responsible for organizing and storing data. and a

programming language Aldat - Algebraic Data Language. based on relational algebra and domain

algebra [Mer771 [Ha0981 [Yua98]. jRelix incorporates complex constructs such as computations

(procedures) and sorne objecl-oriented paradigms. such as instantiation [B~8). The cvent han­

dler. which is the characteristic of an active database system. is aIso irnplemcnted injRclix [SunOO).

Thereforc. jRelix is a full-featured modem rclational databasc system. which is an ideal candidate

for the implcrncntation of current data-intensive applications. such as GIS.

ln [Mar98 J. Martinez provcd the spatial capability of jRelix by implcmenting in AidaI an es­

sentially complete set of the spatial operations of ArclInfo and Maplnfo. The Aldat codes of these

operations such as polygon overlay. buffering. and spatial queries are presented in that thesis. Since

jRelix has no graphical editor. Martinez exponed the result of the spatial operations to Arcllnfo (0

display the map. For a complete GIS application. this map display was obviously not satisfactory. lt

was very inconvenient for the user to vicw the map. let alone more advanced functions relatcd with

the display of the map. such as editing the color of map features and thematic mapping. This Icd to

the motivation of building a GIS editor which provides a graphical interface that allows the user to

display and edit the map. Common GlS spatial operations should also he incorporated in this editor

to allow the user to calI them directly from this graphical interface. This is the objective of this

thesis. ln the next section. an overview of GIS capabilities will he presented in order to investigate

what functions the GlS editor should incorporate.

1.2 Overview of GIS capabilities

1.2.1 Introduction to GIS

Geographic Infonnation Systems are designed ta handle information relating 10 spatial locations

[St39O). It is a system of hardware. software. data. people. organizations. ete. for coUecting. stor­

ing. analyzing and disseminating aU types of geographically referenced information [Due89]. The

• CHAPTER 1. INTRODUCTION 10

•

most common understanding of a GIS emphasizes it as a tool for storing and retrieving. transfonn­

ing and displaying spatial data [Bur86]. Five essential elements must he contained in a GIS: data

acquisition. preprocessing. data storage and retrieval. manipulation and analysis. and data repon­

ing [peu90] (Cla99]. These five elements actually capture the flow of work in a GIS system. ln each

stage of the continuous process. a GIS provides powerful 100ls for the user 10 complete the work.

Refer to section 1.3 to see whal elements Geditor currently contains.

GIS developed rapidly since 1980 and achieved greal popularity in the commercial worlds in the

past ten years. This is because a GIS is not only a 1001 for displaying and making maps. but most

imponantly. it is a Looi for the analysis of spatial data and the creation of more interesting and rcal

studies resulting from the combination of data from different sources. A GIS nol only combines

spatial and non-spatial data inlo one system. it combines a collection of thcmatic layers (covcrages)

thal can be linkcd togethcr. Each of the layers can be manipulated scparately and various operations

are allowed on the combination of multiple layers. Figure 1.1 shows a typical example of thematic

layers stored in a GIS.

Cilies

States

Rivers

Streets

•

Figure 1.1: Thematic Layers

Based on the various source of data the GIS caplUres and stores. il provides powerful funclion­

ality for the user to process the data. An overview of GIS capabilities will be presented next.

1.2.2 GIS capabiUties

GIS provides powerful 100ls for processing both spatial and non-spatial data. From a rnathematical

poinl of view. these tools are operators applied on spatial or non-spatial operands. Therefore. we

are going 10 categorize the various functions of GIS packages into operators in the foUowing discus­

sions. According ta the number of operands each function acts on. these functions are divided into

• CHAPTER 1. INTRODUCTION 11

•

•

ullary and binary operators. For each operator, the nwnber and types of operand(s) are discussed.

The functions of each operation are also described. Moreover, after the data (including bath spatial

and non-spatial) have been imported and stored into the system. aU the functions GIS provides are

related with two pans: dala manipulation and display. Sinee we are going to use jRelix 10 manage

the data (both spatial and non-spatial). the data manipulation wiu he perfonned in Aldat language

of jRelix. In the foUowing discussions. we also indieate whether the operation is a pure data manip­

ulation. therefore an Aldat problem (Aldat), or a pure display problem (Display). or bath (Aldat &

Display). The purpose of this indication is to identify those funetions thal are related with graphical

display. Notice that a function is identified as a display-relatcd problem oniy if a graphical interface

is needcd during the process of data manipulation of this function. After the data manipulation. ail

the results nced to he displayed This can he achieved by a common map-display module. which

our Geditor will definitely include.

Thcre is a set of operations based only on descriptive data, such as displaying the descriptive

data table. browsing. cditing. selecting. and joining descriptive data tables. Since this set of opera­

tions is not related to spatial data and are common operations in a conventional rclational database

management system. we omit the discussion of them in the following discussions.

A. Binary operators

Most operations in GIS arc binary operators. For example. the polygon overlay is a lypical

binary operator applied on two layers with polygon topology. Other operations such as spatial query.

buffering, dissolve. and thematic mapping are also binary operators. In this subsection. we discuss

1. two operations of spatial retrieval: query window generation and spatial query. 2. measuremenl

of points. 3. buffer generation. 4. polygon overlay, 5. dissolve. and 6. thematic mapping.

ln the following discussions. first. the function of the operation is explained. then an operator

table is presented as the summary of this function. The first column of the table indicates whether

this is a display or Aldat related function. The second and third columns describe the two operands

of this operation. The fourth column presents the description of the operations on the two operands.

1. Spatial Retrieval-Query window generatioD and spatial query

GIS packages allow the user 10 spatially extraet both spatial and non-spatial infonnation.

This group of operations includes identifying. labelling. query window generatio~ and spa-

• CHAPTER 1. INTRODUCTION 12

•

•

tial query. Among these operations. query window generation and spatial query are binary

operations.

(a) Query window generation

This function involves the ability to generate points. irregular shaped polygons. squares.

cirdes. ete. for interactively overlaying with map features contained in cenain covcr­

age. The map features that coincide in space with Lhese generated query windows are

retrieved (or selected) according to a cenain spatial relationship. Three techniques are

usuaUy used in this set of operations [pcu90l:

• Adjacency

The map features that are adjacent to a user-generated point are selectcd.

• Select by polygon

The map features that are cntirely within or partiaily within the uscr-gencrated poly­

gons arc sclccted

• Select by polygon overlay

Only the portions of the map fcatures which fall within the boundaries of the query

window polygon arc selccted. In this case. all lines as weil as pans of polygons

which fall outside of the query window are snipped off using polygon overlay tech­

niques (polygon overlay will he discussed in the following section).

Figure 1.2 shows examples of the above three query window generation techniques.

ln Figure 1.2. the map features thal are sclected by the user are displayed in solid lines or

shaded areas. Those that are not selected are displayed in dashed lines. User generated

points are represented as dash-dotted mouse arrow. User generated polygons are shown

in dash-doned lines.

For example. in Figure 1.2 (1), the point. line. and polygon that are adjacent to the user­

generated mouse arrow, are selected. that is. shown in solid lines. In Figure 1.2 (2), the

point. line and polygon that are entirely within or partially within the user-generated

polygons (rectangles) are selected. In Figure 1.2 (3), the point and line segment that

are entirely within a user-generated polygons (rectangles) are shown in solid lines (se-

• CHAPTER 1. INTRODUCTION

-b
.,~......... "l' -;

1
-r-

I

t 1) Adjacency

" " " " ,
1

... 1
'1-----

1-,.-,
;-'-'-',

! ±J'1 •

1 •
"---- -'

l2) Select by polygon

13

1- ,. -
1

;-----ï

!Jj'1 •

1 "0_._0 J

:r---r' (1'~'"" -' LLJ
tIf# "1 ,,'" 1

1,' _'-"
" ---

•

•

(3) Select by polygon overlay

Figure 1.2: Query Window Generation

lccted). and the pans of polygons thal faU within ÙlC user-generaled query window are

shown in shaded area (selected).

(b) Spatial query

This operation locales map features in relation 10 a given existing map fcaturc [Hu197]

[Whi99] [Zei971. For example. "show the lakes thal are within Quebec province" is a

qucry which localeS all the polygons that are ,oentirely within" a particular polygon. See

Figure 1.3. Notice thal the two map features can be from two different layers.

(c) Operator table

From the operator point of view. query window generation and spatial query are the

same. 80th of them retrieve map features by investigating the spatial relationship be­

tween !wo graphical objects. The only difference is that the query window generation

uses user-generated graphical objects to locale existing map features by studying their

spatial relationship. while the spatial query uses an existing map feature to perfonn such

an operation. Table 1.2 summarizes the spatial retrieval operations as binary operators.

The above table includes all the operations in spatial retrieval. Moreover. Nor is al­

lowed 10 he added in front of each operator. For example. ··not strictly contained" is

• CHAPTER 1. INTRODUCTION 14

'.

•

Quebec

:'. lake4':

"."

Figure 1.3: Spatial Query

Map realures Window Object Dow 10 combine
(existilll or user-generated)

Display & AIdat Point Point Select the map feature
Une Une if it ha.') the foUowing
Polygon Polygon relation with the window

object:
Strictly CODtaïned
Adjacent
Intersection
Overlap
tmjoint
Select the part of the
map fealUre using
polygon overlay

Table 1.2: Operalors of Spatial Retrieval

also an operalor which locales the three cases as Figure 1.4 shows.

•
(1) (3)

Figure 1.4: Three Cases of "not strictly contained"

• CHAPTER 1. INTRODUCTION 15

To achieve this function. an interface is needed to capture the user input of the win­

dowing objects by either selecting an existing map feature or drawing graphical objects

on screen. Aidal is capable of computing and locating the map features that are in the

particular relationship to the windowing objects. [Mar98) provides Aldat codes for this

sel of operations.

2. Measurement of Points

•

[n GISs. points, fines and polygolls (or areas) are the three basic graphical objects. The most

common types of measurement tasks involve the measurement of the threc basic objects.

Among them. the measurement of points is a binary operaloc. The measurement of lines and

polygons arc unary operators.

Notice that the term "Unes" in GISs actually means polylines. that is. a continuous line com­

poscd of one or more line segments. ln this thesis. ulines" and "polylines" which will he used

altcmativcly in the following text. cefee to the sarne graphic object.

Objects with zero dimension are represented as points. Cities in a province. hospitals and

schools in a city are usually represented as points. There is no fonnal calculation of the size

of points. The measurement related with points is the total number of points falling in a

polygon or in a buffering arca [peu90J. See Figure 1.5.

6

number in a user
generated buffer

3

number in a poLygonToul number
in the coverage

•
Figure 1.5: Point Counting

The counting of points can he represented as the binary operalOr as Table 1.3 shows.

An interface is needed to capture the user input of the window polygons. AIdat is capable

of locating the points entirely wiÙlin the window polygon and counting the number of such

• CHi\PTER 1. INTRODUCTION

Map Ceatures Window polygon How to combine
(existing or user

generated)
Display & Aldat Points Polygon Strictly contained

(the whole coverage~

user generated buffer~

etc.)

Table 1.3: Point Counting Operator

16

•

•

points. The operation ··entirely within" is one of the spatial operalors discussed in the last

section. The counting of the points is a conventional database operation.

3. Butler generation

Buffcring is a commonly u~d operation in the GIS world. Il crcates new polygons from

points. Lines. and polygon features within a specifie distance. Figure 1.6 shows the summary

of diffcrcnt types of buffers [Peu90).

Map features Distance Value Operations
Aldat Points dist Squ8ft_bufl'(p l.dist)

Cirde_butr(p I.dist)
Lines dist Narrow_buff(line I.dist)

Broad_bufr(line2.dist)
Polygons dist Interior_bufl'(poly l.dist)

Exterior_but1'(poly l.dist)

Table 1.4: Buffering Opcrators

ln Table 1.4. all the buffering operations are swnmarized as different operators. Except for the

routine display of the results. this operation is a pure data manipulation. Aldat is responsible

for generating ail the graphie data of all sons of buffers of different map features. [Mar98]

also provides such Aldat codes.

4. Polygon Overlay

Overlay operations play an important role in GIS applications. This is because most appli­

cations of geographic infonnation must integrate infonnation from different resources. In

• CHAPTER 1. INTRODUCTION

Point • 0 0
Circle buffer Square buffer

0 fi. .· .
line · .· .·

.. a. *: .: .O'

Narrow buffer Broad buffer

17

• poIygon o
Extcrior buffer

Figure 1.6: Buffering

:··.0···
..... ~

lmener buffer

•

the output coverage. all the atuibute values from different parents of the map feature (poly·

gon in this case) can he accessed. The most commonly used polygon overlay operations in

commercial products include Clip. Split. Erase. Update. ldefJIity. etc.

Actually. polygon overlay involves two phases: geometric phase and IIon·spatial phase (Chr97].

ln the geometric phase, two layers are combined to produce a composite geometric represen­

talion where each area has a key linking to the attribute tables of the two source layers. For

example. in Figure 1.7. suppose polygon 1 is from coverage A. and polygon 2 is from cover­

age B. Through geomeuic phase. a composite geometric representation is generated as Figure

1.7(b) shows. For each area (1.2. or 3). the link 10 the aUribute table is indicated. Then to

produce the output coverage. either select polygon in Figure 1.7(b) by indicating the source

of layer. or select polygons with the atuibute values these areas link to. For example. the user

can select areas that are from both layer A and B as Figure 1.7(c) does. The user can also

• CHAPTER 1. INTRODUCTION 18

•

•

select areas that are banana field and rainforest al the same time. Since the data manipulation

in this phase ooly involves non-spatial (descriptive) data. it is called lion-spatial phase.

Based on the above understanding. the polygon overlay operations cao he surnrnarized as

indicated in Table 1.5.

Input coverage Overlay coverage Dow to combine
Aldat Polygon Polygon Compose new polygon coverage from two

different layecs using geometric
intersection processing techniques

Aldat descriptive descriptive Select polygons in the composite
data table data table coverage by indicating the source layer

using AND and OR Boolean operalors.
Select polygons in the composite
layer using the descriptive
data table each polygon links to.

Table 1.5: Operators of Polygon Overlay

c&J <)

~
fruit-type Lay~r id linkA LinkB -7l LinkA LinkB

banana A X A 8
A

2 X 8

~
weather LaYt':r

3 A B
select polygons thal. are

rainforesr. 8 Composite Table
from bolh A and B

(a) (b) (c)

Figure 1.7: Two Phases of Polygon Overlay

Ali polygon overlay operations can he ~hieved using the above binary operators. For exam­

pie. as listed in Figure 1.9. the seven overlay operations that are supponed in ArclInfo [Zei97]

can he implemented by first generating the composite coverage and then selecting the areas

by indicating the source of layers the areas are from.

• CHAPTER 1. INTRODUCTION 19

In the example, two pllygons are from coverage A and B respectively. In the geometric phase,

new vertices 3 and 10 are generated and the composite table is also produced as Figure 1.8

shows. 1.2, and 3 areas are generated after this phase.

2 7

8

fromA?

A

2
3 A

fromB?

B
B

•

•

5 9

gcnerate two ncw venices: 3 and 10

Figure 1.8: Geometrie Phase

In the non-spatial phase. different selection conditions produce the result of different polygon

overlay operations of Arcllnfo. Sec Figure 1.9. In this figure. there are four columns. The

first column lists the name of each operation. The second column presenL'\ the visuaiization of

the corresponding operation. The operation results are presented in the shaded area. The third

column lists the selection condition to produce the corresponding result. The founh column

describes the operation results using area numbers(1. 2. and 3).

Obviously, Aldat is capable of the operations in the non-spatial phase because only conven­

tional database operations are involved in this phase. Aldat is also capable of data processing

in the geometric phase. Related Aldat codes are already available in [Mar98 J.

5. Dissolve

This operation is an inverse operation of polygon overlay. Instead of splitting polygons to

generate new areas by overlaying two map layers. it merges adjacent polygons based on the

similar attributes the pllygons have [Hut97]. For example, the merging of Federal Republic of

Gennany and Democratie Republic of Germany can he achieved by merging ail the adjacent

pllygons that have the same attribute value of politicaLname. ACter the merge of the two

countries, the polygons 1. 2 and 3 have the same politicalJtaIJle. Consequently. the three

adjacent polygons are merged to produce a single polygon as Figure LlO shows.

This operation involves the modification of the geometric data based on identical attribute

• CHAPTER 1. INTRODUCTION

Selection Result

20

aip AodH
....

A··· ..

J

BUl usually, "clip" uses Al smaller B inside A

•

Split

Erase

Updale

ovc:rlay coverage

shccll shcet2

shceù shcet4

But usually, B is smaller and inside A

A

A and DOt B

AorB

da""l: J
dala5eU: 4
datuetJ: 5
datasct4: ,

1

Idenüty

Intenecl

Union

1

2 A

B

AorB

•
Figure 1.9: Polygon Overlay Operations in ArclInfo (Non-spatial phase)

values. Only those adjacent polygon data needs to he updated. Table 1.6 represents the dis­

solve operation as a binary operator. Aldat is capable of perfonning this operation. [Mar98]

• CHAPTER 1. INTRODUCTION 21

Figure 1.10: Dissolve

Notice that the gcometry data of
polygon 1 has becn ehanged

•

PoIy·ID Political·name
1 Federal Rcpublic of

G

2 Democratie RcpubH,
ai Gcnnanv ...

3 Federal Rcpublie of
Gennany

provides the related codes.

PoIy·ID Polilical·..me
1 Federal Republie of

Gennany

..
... 'Changcd to Federal Rcpublie of Gcrmany

after the mergc of the two countries

•

Map features Attribule Operations
Aldat Polygons Attribute name Put all the polygons

with the same

1

attribute value into

1

one group and update
their coordinates to
dissolve the shared
boundaries

Table 1.6: Dissolve Operator

6. Themalic mapping

One of the GIS's capabiliùes is to generate different maps based on the same map data. 1be­

matie mapping helps the user to achieve this goal. Individual Value map. Rallge Map. Do,

density. Graduate Symbol. and chan symbols are commonly used themaùe maps in commer­

cial prodUClS [Whi99] [Zei97] [Hut97].

• CHAPTER 1. INTRODUCTION 22

•

•

Individual value maps classify map objects by different colors or fiU patterns. 1be map objects

that have the attribute with a certain value are filled in the same color or pattern. For example.

in the following figure. the polygons filled in the same pattern show the same type of field.

Range maps allow the user to group map objects according to the range of values the map

objects linked to. The map objects that have the attribute in a certain range are filled in the

same color or pattern. For cxamplc. in the following figure. the polygon filled in the sarnc

color shows a cenain range of tempcraturc. say -10 to -5 Celsius degrees.

-15..-10 dcgree

-10..-5 degree

-5..0degree

Gradualed symbol maps display symbols in graduated size for polygons or points according

to the value of an attribute. For example. in the foUowing figure. the larger the circle. the

greater the population in the polygone

/O~
Lo~

Dol Density thematic maps display randomly dispersed dots within a region. 1be dots depict

• CHAPTER 1. INTRODUCTION 23

•

•

the amount of the selected data each region contains by the nwnber of dots placed within the

region. For example. in the following figure. 1 dot represents 100 people.

Ciran symbol maps display pic chans or bar chans within a polygon. The chan in each

polygon shows the distribution of an attribute value. For cxample. in the following figw-e. the

pic chan in cach polygon shows the age distribution of the population in the area.

~ agc>40
~ agc<=40 or ago20

tœ~~
The operations of thematic mapping can he summarized as binary operations as Table 1.7

shows.

Map coverage Attribute Operations
1 Aldat & display Map with any type Attribute name update command

of map features in Aldat
(usually polygons) Commands in

Aldat to generate
tuples in relations

Table 1.7: Operators of Thematic Mapping

An interface is needed 10 allow the usee 10 specify the attribute name that the thematic map­

ping is based on. The othee part of this set of operations is related to the manipulation of the

map data. Individual value and range maps change the color of the map features based on the

value of an attribute. This can he achieved by the update command in AldaL Graduate sym·

• CHAPTER 1. INTRODUCTION 24

bol maps generate new graphical objects. such as circles and squares. according to a certain

attribute Iinked to existing map fcalures. This can he done by commands in Aldat to create

graphie data (tuples) in map relations. Dot density thematic maps generate points based on an

attribute and chan symbol maps generate pie or bar chans based on an attribute value. These

operations can also he obtained using commands in Aldat to create graphie data (tuples) in

map relations.

7. Drawing Cbarts

When two attribute names are speci fied. a graph of theic relation to each other can he presented

as poilu chans. bar chans. pie chans. fine c/wrts. and shaded c/rart.'i.

Point

• ••• ••• •..- -.-•
• •• •

ïL~ak~
Bar Linc Shadc Pic

Figure 1.11: Different Chans

•

Although this set of functions is not round only in GIS packages. they are widely used in

them. The value of the two anributes needs to he retrieved and the display interface needs

to draw the chans according 10 the values. This can he summarized as the following binary

operator shown in Table 1.8.

Attribute Attribute Operations
Aldat& Display Attribute name Attribute name Retrieve the

attributc values
according to the
given attribute names
and display ditTerent
type of chans: Bar.
Point. Pie. Shade..
Line. ete.

Table 1.8: Chans Operators

• CHAPTER 1. INTRODUCTION 25

•

•

For example. if attribute names year and population are given. a bar chan can he generated

showing the population of each year as Figure 1.12 shows.

Popul tion

1.5 million

1million

91 92 93 94 95 ycar

Figure 1. 12: Bar Chan

Aidal ncedt; to retricve the value of the lwo attributes. This is a conventional database opera­

tion. Then a display interface needs to draw the chan according 10 the values.

B. Unary operators

Other operations in GISs are unary operalors. This includes sorne operations in spatial retrieval..

measuremenL rnap sheet manipulation. map generalization and sorne map display functions. such

as Icgend display. print layoul. and repon generating. In this subsection. we discuss 1. two other

operations of spatial retrieval: identifying and labelling. 2. the measurement of lines and polygons.

3. map sheet manipulation. 4. spatial data editing. and 5. sorne display functions.

ln the following discussions. first. the function of the operation is explained. then an operator

table is presented as the summary of this function. 1be first column of the table indicates whether

this is a display or Aldat rclated function. The second column describes the two operands of this

operation. The third column presents a description of the operations on the two operands.

1. Spatial Retrieval - Identifying and labeDing

(a) Identifying

Most GIS packages allow the user to specify the position of a map object (usually by

placing the mouse close 10 the map featw'e and clicking the mouse) and then display

• CHAPTER 1. INTRODUCTION 26

•

•

all the linked attributes of mis map feature. This is called ïdelltïfyirlg [Hut97]. This

operation cao he represented as the following unary operator:

Position of tIIe Operations
mapreature

Display & AIdat User input by c1iclcing Obtain the X.y coordinaœ
mouse close to the map from the user input and then
fcawrc rctrieve all the attributes

rclated with this map feawrc

Table 1.9: Identifying Operator

An interface is needed to obtain the position of the map feature and then translate it into

the X and Y coordinates. Aldat operations can complete the attribute value retrieval.

Finally. a display interface needs to display the result of all the attribute values in a

propcr place on the screen.

(b) LabeUing

Labelling is another common operation in GIS packages [Zei97] [Whi99) [Hut971. [t

is also called aulomatic labelliflg. By specifying an attribute name. the value of mis

attribute will be displayed as labels close to corresponding map fearures. for example.

inside the polygon if the map feature is a polygon. This operation cao be represcnted as

the unary operator indicated in Table 1.10.

Attribule Bowto6p1ay
Display & AIdat Attribute name Retrieve the value of the

anribute name a~ the label
value and display properly on
the map.

Table 1.10: Labelling Operator

AIdat commands are needed to retrieve the attribute values as labels and the display

function is needed to calculate the proper position to show the label.

2. Measurement - Unes and poIygons

Besides points. measurement operations involve the lines and polygons [Peu90].

• CHAPTER 1. INTRODUCTION

(a) lines

27

Polyines have one single dimension of length. Rivers. roads. rails are usually repre­

sented as Unes. The calculation of length includes the length of the whole Une and the

length of a single edge.

• • ./ '..---.•

•

Calculation of the length of lines can he represented as the unary operators shown in

Table 1.11.

Map features Computation
Display & Aidai line or edge LiDeJea(lineID)

(existing map featurc or EdgeJenCcdgeID)
drawn by user)

Table 1.11: Line Measurcment Opcrators

lnterfacc is needed to allow the user to specify the line or edge and display the result of

the measuremenl Aldat operations can compute the length of a line or an edge.

(b) Polygons

Polygons have (Wo dimensions. Iength and width. Provinces. lalres and parks are usu­

ally represented as polygons. The two basic measurement types of a polygon are the

perimeter and the area of the polygon.

Arca Perimeter

•
The calculation of area and perimeter can he represented as unary operators as Table 1.12

shows.

An interface is needed 10 allow the user to specify the polygon and display the result of

measurement. Aldat is capable of the computation of the perimeter and area of the polygon.

• CHAPTER 1. INTRODUCTION

Map features Computation
Display & Aldal Polygons Perimeter(polyID)

(existing or user generated)
Display & Aldal Polygons Area(polyID)

(existing or user gcnerated)

Table 1.12: Polygon Measuremenl Operators

3. Map Sheet Manipulation

28

•

•

A series of techniques manipulate the x.y coordinates for a given map. This includes pro­

jection change. coordinate translation. scale change and rotations [peu90). These can he

summarized as Table 1.13 shows.

Value Comutations

1 Aldat Scale value Scale change: X.y multiply
a coefficient

Projection name Projection change: change
X. y according to a projection
fonnula

Constant value Coordinate translation:
X. y plus or minus a constant

Rotation angle Rotation: change X. y
according 10 a fonnula

Table 1.13: Operators of Map Sheet ~1anipulation

The update or assignment operator in Aldat can be used to updale X. y coordinates in the

above series of operations. Therefore. this set of operations is a pure Aldat computation.

4. Spatial data editing

Afler digitizing. a lot ofediting operations need to he perfonned on the map features to correct

the eITors in the data capture stage. Map generalization.. rubber sheeting. and snapping are

common operations of spatial data editing [Hey98] [DeM97].

(a) Map generalization

Map generalization tools are frequently used when map scales an: changed. This series

• CHAPTER 1. INTRODUCTION 29

of operations is also used to edit the map features that are digitizcd during the data

capture stage.

• Lille coordi1lale ,11;11";118 - This is a teehnique for rcducing the numbcr of coordi­

nates defining a given line.

~.--....... '.._-......

•
• DropUne - This is a technique to drop the Hne which is sharcd by two polygons.

The rcmaining Hne segments of the lWo polygons make up a new polygon.

• Po/ygon 1lIinlli1l8 - This is a similar excrcisc to Hnc thinning.

•
• Edge malcllillg - Edge matehing consists of a series of procedures for bringing

together a large number of map sheets and composing them into one continuous

map. Problems which must he resolved are: joining lines and polygons from ad­

jacent maps, matehing of the boundaries between the maps and dropping the lines

which separate polygons having the same characteristics.

• CHAPTER 1. INTRODUCTION

(b) Rubber sbeeting

30

Rubber sheeting involves stretching the map in various directions as if il were drawn on

a rubber sheet. Fixed points and control points are believed 10 he correct.

•
• Fixed points

+ Control points

/'- original boundary

.... Rubber-shceted boundary

ln operation. fixed points are kCpl still while others are strelched lO fil the control points.

Cc) Node snapping

ln node snapping. points mal are close 10 each other mat should indeed he the same

point are merged lO generate an identical point in the graphic database.

•
AlI the above operations need an interface for the user to specify the map feature to he edited

and 10 edit the map feature interactively. After tha~ the result of editing needs to he saved

into the graphic database using the update command in Aldat.

Therefore, the above operations can he summarized as a unary operator as Table 1.14 shows.

• CHAPTER 1. INTRODUCTION

Map features Operations
Display & Aldat Lines Using display interface to

Polygons capture the user editing of
the map feature and Aldat
update eommand to update
the graphie database

Table 1.14: Operators of Spatial Editing

5. Some display fonctions

31

•

•

Besides thematie mapping. display issues involve the legend display. printing layout and cx­

poning graphie maps to diffcrent graphie file formats.

These display funetions ean he reprcscnted as unary operators as Table 1.15 shows.

Operations
i Display Attribule name Display the legends

and labels based on
the attribute value

Display Graphie objeets sueh as Mo\'e and edi t the
the title. nonh arrow. tille. nonh arrow.

1

scale bar and legend scale bar and legend
Data Conversion Map eoverage Convert data ofmaps to

graphie fi les

Table 1.15: Operalors of Sorne Display Functions

1.3 Geditor funetions

From the above discussions about the relational database concepts and the overview of GIS eapa­

bili ties. we can eonclude that ail the GIS functions can be irnplemented using Aldat capabilities

and a display interface. In the above discussions, sorne more sophistieated functions such as spatial

interpolation in terrain analysis. network analysis and image processing are omitted. In commer­

cial prodUCLS. they are often incorporated in extended packages such as ARC Network (for network

analysis). ARC TIN (for terrain analysis), and MGE Grid Analyst (for image and raster analy­

sis) [Kor97]. However. we believe that from the observation of the whole family of the GIS core

• CHAPTER 1. INTRODUCTION 32

•

•

functions. ail the G[5 functions including those extended ones can he implemented using Aldat

capabilities and a graphical display interface.

Il is beyond the scope of mis thesis to incorporate ail the possible GIS functions into our GIS

editor. Our purpose is lo implement the typical common fonctions of GIS packages. especially those

display-related functions. More imponantly. we are going to provide a flexible and dynamic imple­

mentation ta allow the further extension of this editor. The event handler. which is the characleristic

of active databases. is adopted in this Gedilor. Proper events are generated when the user requests

for an operation and the corresponding event handlers are invo1œd. Custamized event handlers

written by Aldat programmers become possible. which makes the Geditor flexible and dynamic.

The following functions are incorporated in Gcditor:

l. Multi-Iayering

• Add Layer - allows the user to add layers to the CUITent desktop.

• Layer Control - allows the user to control the states of the layers.

2. Changing the view of the map

• Editing uniform layer - allows the user ta change the color and symbol of a unifonn

layer.

• Thematic mapping - allows the user to create thematic maps.

• Legend Editor - allows the user to edit the legends.

3. Queries

• [dentifying - displays ail the attribute values of a particular map feature selected by the

user.

• Expression Builder - allows the user to query the spatial database by creating expres­

sions.

• Spatial Query - provides sorts of spatial operalors ta reuieve map features according

to proper spatial relationships.

• CHAPTER 1. INTRODUCTION 33

•

•

The following funcùons are left out in Geditor either because they are not display-related or

because they are often left out in GIS core funcùons.

• Buffer Generaùon

This funcùon is left out because it is not a display-related problem. Only the result needs to

be displayed and the other part of the function can be achieved by Aldat capabilities.

• Polygon Overlay

This is a1so an Aldat only operation.

• Dissolve

Aldat is capable of completing this function.

• Mcasurement (of points. Iines and polygons)

This function is a both Aldat and Display related operation. We omit it because it is not as

close to the core of GIS functions as those we includc in Geditor.

• Spatial data editing

This set of functions are used during the data capture stage which is not as close to the core

of GIS functions as those we included in Geditor.

• Map Sheet Manipulation

This set of functions cao be achieved by Aldat capabiliùes only.

Because of the above reasons. according to the work tlow mentioned in Section 1.2.1. Geditor

incorporates the functions of data storage and rctrieval. manipulation and analysis. and data

reporting. but leaves out the functions of data acquisition and preprocessing elements.

1.4 Thesis Outline

This chapter has discussed the fundarnentals for the implementation of the Geditor. Now, we are

ready to discuss the implementation in detail.

• CHAPTER 1. INTRODUCTION 34

•

•

Coopter 2 provides an overview of jRelix. containing the basic elements to understand the sub­

sequent discussions about the Geditor implementation. Il covers aU commands and statements used

in the implementation.

Chapter 3 presents the User's Manual of Geditor. The usage of aU the funetions are explained

in dctai) in the order that they appear on Ü1e menu bar of Geditor window from the left to the right.

Examples are provided with graphies and relations data to illustrate the operation usage.

Chapter 4 describes the implementation of Geditor. The system architecture is presented and the

algorithms of the main classes are explained in detait. The sequence of the algorithm description is

kept the sarne as that of the description of the corresponding functions in the User's Manual.

Chapter 5 presents the conclusions of this work and suggestions for related future work.

•

•

•

Chapter 2

jRelix Overview

jRelix. a relational dalabasc programming language. was developed at the Aldat lab of the School of

Computer Science at McGill University. Il contains a dalabasc management system (OBMS) which

is responsible for organizing and storing data. and a programming language Aldat - Algebraic

Dala Language. bascd on relational algebra and domain algebra [Mer771. This chapter presents a

tutorial on jRelix so that the user will understand the rest of the thesis. This tutorial focuses on the

pans of jRclix that are relevant to the implemenlation and use of the Geditor.

Section 2.1 explains how to dcclare a domain and relation injRelix. Relation initialization is also

discussed in this section. Section 2.2 discusses assignments and rclational expression in relational

algebra. Section 2.3 descrihes domain algebra. Section 2.4 briefly explains computations. Section

2.5 discusses update commands in jReLix. Section 2.6 descrihes the event handler which will he

used in the implementation of Geditor.

In the foLlowing discussions. the jRelix syntax and examples will he given when necessary. The

syntax will he presented in typewriter fonl Tenninals will he quoted and non-tenninals will he

otherwise. The sign 1means or. (...1...1...) means choosing one of the components separated by 1

inside the brackets. (...)? repeats the component inside the brackets zero or one time.

• CHAPTER 2. IRELIX OVERV/EW

2.1 Declarations

36

•

•

Declarations of anributes and relations must he made hefore any funher operations can he perfonned

on them. This section describes both domain and relation declarations~ initialization of relations.

and sorne system commands 10 do the house-keeping work.

2.1.1 Domain Declaration

Domain Declaration declares the data type of auributes used in relations. The syntax is as follows:

ISyn1aX 1

"domain" IDL~st data_type ";"

IDList specifies the list of attributes being declared separated by comm~ and data_type

specifies the type of the attributes.

jRelix provides eight atomic data types as Table2.1 shows.

Daia Type Short Form Sue
Boolean bool 1 byte
Shon 2 bytes
lntegcr intg 4 bytes
Long 8 bytes
Aoal real 4 bytes
Double 8 bytes
String sU'g variable
Text variable

Table 2. 1: Data Types in jRelix

1 Examples: 1

>domain G strg;
>domain T sug;
>domain S. X. Y. C intg;
>domain L strg;
>domain Name strg;
>domain Temp intg;
>domain Pop intg;

Complex data types such as computation and nested relational domain are aIso supported in the

current jRelix. For further details. refer to [Bak98] and [Yua98].

• CHAPTER 2. JRELIX OVERVIEW 37

•

To show the information of a specifie dornain or all the domains eurrently declared in the system.

use the following comrnand:

1 SYDIu 1

ftsd" (Identifier)?

When Identifier is specified. the above syntax shows the infonnation about this particular

dornain; otherwise. it shows all the currently declared domains.

To detete a domain from the currenl system. use the dd command:

ISynlu 1

"dd" rDL~st ft;"

Notice that if any of the altributes specified in the ID Li st are bcing used in any existing relation.

the command will rail. This requires the user 10 delele all the relations associated with the specified

altributes before deleting the attribules.

1 Examples: 1

>sd Symb;

>sd;

>dd Pop;

2.1.2 Relation Declaration

The syntax of relation dcclaration is as follows:

1SYDIu 1

"relation" IDL~st "(" IDList ft)" (Initialization)? ". ",

•

The tirst IDList specifies the relation being created. and the second IDList specifies the

altributes of this relation. Relations must have al [east one altribute and all these altribules must

have been previously declared

Initialization is optional. The foUowing is the syntax of initialization:

1 SYDtu 1

Initialization:= "<_" (R{" ConstantTupleList ft}" 1 Identifier)

According to the lnitialization syntax. there are two ways of initializing relations: providing a

list containing the constant tuples. or providing a file name specified by Identifier.

• CHAPTER 2. JRELIX OVERVIEW

1 Examples: 1

> relation MapRelation 1(G.T.S.x.Y.C.Symb.L.Name.Temp.Pop);

>relation MapRelation 1(G.T.S.x.Y.C.Symb.L.Name.Temp.Pop)<-

{

38

•

•

("S ··Polygon··.l.~11481.3257.153204.0:·S1ates":·AZ".20.2350725).

("S 1 ··Polygon 2.~ 11471.3271.153204.0.··States":·AZ".20.2350725).

C'S 1 Polygon 3.-11453.3275.153204.0:·States'..··AZ...20.2350725).

C·S2 Polygon 1.-11475.3271.153204.0:·States'..·"CA".20.297600(1).

("S2"."Polygon".2.~11449.3300.153204.0:·States··:'CA" .20.29760021).

("S2··:·Polygon".3.~11462.3343.153204.0:·States":·CA".20.297600(1).

(..S3.....Polygon... l.-l1963.3401.153204,O...States...·"CA".20.29760021).

};

>relation MapRelation2(G.T.S.X.Y.C.Symb.L.Narne.Temp.Pop)<- "MapData";

The rneaning of the aUributes in the above example is the same as that in Table 3.1. For the

detailcd description of thesc attributes. please refer to page 56.

File "MapData" is a jRelix relation file containing the data of all the atuibutes of MapRelation 1.

Figure 2.1 shows the content of this file.

C62~FPoint~Fl-F-11B40~F3393-F51000051~F201~FCities-FLos Angeles-F25
-F3485398-F
C87-FPo~nt-Fl-F-12238~F3761-F255255000-F201-FCities-FLosAngeles-F25
-F723959-F
c89-FPoint-Fl-F-12193-F3736-F255051051-F201-FC~ties-FSanJose AP-F25
-F782248-F

Figme 2.1: Contents of MapData

Table 2.2 and 2.3 shows the result of MapRelation1 and MapRelation2.

To show information on relations. use the sr command:

1 Syatax!

~sr~ (Identifier)? ".",

• CHAPTER 2. JRELIX OVERVlEW

G T S X y C Symb L Name Temp Pop
SI Polygon 1 -11481 3257 153204 0 Slates AZ 20 2350725
SI Polygon 2 -11471 3271 153204 0 Slates AZ 20 2350725
SI Polygon 3 -11453 3275 153204 0 Slates AZ 20 2350725
S2 Polygon 1 -11475 3271 153204 0 Slates CA 20 29760021
S2 Polygon 2 -11449 3300 153204 0 Slates CA 20 29760021
S2 Polygon 3 -11462 3343 153204 0 Slates CA 20 29760021
53 Polygon 1 -11963 3401 153204 0 States CA 20 29760021

Table 2.2: MapRelation 1

39

•

G T S X y C Symb L Name Temp Pop
C62 Point 1 -11s.w 3393 51000051 201 Cilies Los Angeles 25 3485398
C87 Point 1 -12238 3761 51()()()()51 201 Cilies Los Angeles 20 723959
C89 Point 1 -12193 3736 51()()()()51 201 Cilies San Jose AP 25 782248

Table 2.3: MapRelation2

Identifier specifies a particular relation name. lf a relation name is spccifie<l the sr com­

mand shows the infonnation on this relation: otherwise. it shows infonnation on all the relations

currenûy defined in the system.

Ta print the content of a relation on sereen. use the pr command:

1 SYDIu 1

~pr~ Expression ";"

The command dr is used to remove the relations specified in IDLi st from the system:

1 SYDIu 1

1 E.QlllpIes: 1

"dr" IDL~st " . ",

•

>sr MapRelation 1;

>sr;

>pr MapRelation2;

>dr MapRelation 1. MapRelation2;

• CHAPTER 2. JRELIX OVERVlEW

2.2 RelationaI Aigebra

40

•

•

Relational algebra consists of a set of functional operations on one or two relations and produces a

result relation. jReLix first constnlCts expressions by using various operators and men produces the

result relation by assignment or incremental assignment. In this section. we first examine how to

use assignment and incremental assignment. and men we discuss relational expressions.

2.2.1 Assignment and incrementai Assignment

An assignmcnt « -) creates a relation using the result of a relational expression. An incremental

assignrncnt « +) adds the result of a relational expression to an cxisting relation. The syntax is as

follows:

1Syntax 1

rdentifl.er ("<-" 1 "<+") Expressl.on 1

Ident l.fier "[" IDLl.st ("<-" l "<+")Express:-onLl.st "1" Expressl.on

Idenr.ifier specifies Ù1C name of the result relation. Expression indicates the source

relation. For assignment operation. jRelix creates a new relation named by l dentif i e r which

consists of the same domain and data as the source relation. If the result relation has the same name

as an existing relation in the current system. the existing relation will he removed firsl The source

relation remains unaffected.

1 K:'-amples- 1
I~ -,

>MapCopy<- MapRclation 1;

>MapRelation 1<+MapRelation2;

In the above examples. MapCopy obtains a copy oforiginal MapRelation 1. The result MapRela­

tion 1 is a merge of the original MapRelation 1 and MapRelation2.

2.2.2 Relational Expressions

Relational Expressions can he divided into two categories: unary operations and binary operations.

Unary operations taire one relation as input and generate one relation as output Binary operations

take two relations as input and produce one result relation.

• CHAPTER 2. JRELIX OVERVlEW

Unary Operations

Projection. selection and T...selection are unaty operations.

41

•

•

• Projection

Projection creates a subset of the source relation specified by Expression. lt extraets a subset

of the attributes of ÙlC source relation by IDList. Duplicate tuples wiU he removed from

the result relation. The syntax is as follows:

1 SynlU 1

"[" (IDList)? "]W in Expression

• Selection

Selection also returns a subset of the source relation specificd by Expression. Unlike projec­

tion. the result relation contains all the attributes of the source relation. However. the tuples

in the result relation arc thosc satisfying the condition of the SelectionClause. The syntax is

as follows:

1 SYDIU 1

"where" SelectClause "in" Expression

• T-Selection

Projections and selections can be combined into one expression to fonn T_Selections. In a

T-Selection. first perform the selection. and then perfonn the projection. The syntax is as

foUows:

1 SYDIU 1

"[W (IDList)? "]W "where W SelectClause -in w Expression

1 Examples: 1

>LayerName<-[L.Name] in MapRelationl;

>MapAZ<-where Name=··AZ' in ~fapRelationl;

• CHAPTER 2. JRELIX OVERVIEW

>LargePop<-[Name.Pop]where Pop> 0oooooס1 in MapRelaùonl;

42

ln the above examples. the LayerName obtains a relation containing ail the layers and aIl the

different map feature names in MapRelaùon 1. MapAZ contains a subset of MapRelation1

that contains ooly the tuples of Arizona state. LargePop contains the Name and Pop of the

state(s) whose population is over 10.000.000 (pop> 1000ooo).

L Na..

Swcs AZ

States CA

Name Pop

CA 29760021

•
LayerNamc LargePop

G T S X y C Symb L Name Tanp Pop

St Polygon 1 -11481 3:57 153:04 0 Sl.at.es AZ ~ 2350715

SI Polygon 1 -11471 3:71 153204 0 Sl.alCS AZ 20 2350715

SI Polygon 1 -11453 3275 153204 0 Sl.aleS AZ 20 2350715

MapAZ

Figure 2.2: Results of LayerName. MapAZ. and LargePop

Binary Operations

Binary operations in jRelix include ~.Ljoins and q _joins. The result of ~_joins and q _joins are aIso

relations.

The syntax of joïn is as follows:

ISyntax 1

Expression JoinOperator Express~on 1

Expression R[R ExprList R.R JoinOperator
"lit Express~on

" . ")? ExprList

•
Since Geditor does not use q _joins. we only discuss Il-joins in this section.

.L'-joins are a generalization of set operations on relations. The most popular two ~Ljoins are nal­

wal joïn (ijoiD) and union join (ujoin). ln general. JLjoin operators can be defined in tenus of three

components -center. left and right. Given two relations R(X.Y). S(YZ). the three components are

Name Humid

AZ 80

CA 90

•

•

CHAPTER 2. JRELIX OVERVIEW

defi ncd as follows:

center(R.S)={(x.y.z)1 (x.y)E R and(y.z)ES}

left(R.S)={(x.y.dc)l(x.y)ER and 'Vz«y.z)~S)}

right(R.S)={(dc.y.z)I(y.z)ES and 'v'x«x.y)~S)}

where de is a null value.

For ijoïn. wc have R ijoin S=center(R.S).

For Djoïn. we have R ujoin S=center(R.S)Uleft(R.S)Uright(R.s).

1 Example: 1

>domain Humid intg;

>relation Humidity(Name.Humid)<- {C·AZ",80).("CA".9O)};

>MapNew<-MapRelationl ijoin Humidity

G T S X y C Symb L Namr Temp Pop

SI Polygon 1 -11481 3257 153~04 0 SUies AZ 20 23507:!5

SI PolygOfl :! -11471 3271 153~04 0 Slall:S AZ 20 2350715

SI Polygofl 3 -1 [453 3:!75 153~04 0 SlalCS AZ 20 2350715

S2 Po[ygofl [-11475 3:!71 153204 0 Slales CA 20 29760021

S2 Polygol1 2 -11449 3300 153204 0 5laLes CA 20 ~9760021

S2 Polygon 3 -11462 3343 153204 0 SUies CA 20 29760021

53 Polygon 1 -11963 3401 153204 0 SlaLes CA 20 29760021

MapRc:lalion 1

Humidily

43

•

G T S X y C Symb L Name Tanp Pop Humid

51 Polygon 1 -11481 32S7 153204 0 States AZ 20 23S072S 80

51 Polygon 2 -11471 3271 153204 0 Slalc:s AZ 20 23S072S 80

51 Polygon 3 -11453 3275 153204 0 Slales AZ 20 23S072S 80

52 Polygon 1 -11475 3271 153204 0 Slates CA 20 29760021 90

S2 PoIygOfl 2 -11449 3300 153204 0 Slales CA 20 29760021 90

52 PoIygOll 3 -11462 3343 153204 0 Stalcs CA 20 29760021 90

53 PoIygOll 1 -11963 3401 153204 0 5lalCs CA 20 29760021 90

MapNew

Figme 2.3: Example of ijoin

• CH.~PTER 2. JRELIX OVERVIEW 44

ln the above example. the result MapNew obtains a new altribule. Humid which indicates the

humidity of each stale. ln MapNew. the humidily of AZ and CA is 80 and 90 respectively. This is

exactly the same as relation Humidity specifies. See Figure 2.3.

ln this example. the common altribule of MapRelation 1 and Humidity is Name. Since lhis at­

trib\1te has the same name in both relations. it is not necessary to specify the auribule name explicitly

in the above ijoin expression. If the common attribute names are differenl in the two source rela­

tions. for example. the attribule Name in Humidity relation changes to State-.Name. we must specify

the common attribute in the ijoin expression as follows:

As a result. both Name and Stale...Name appear in the MapNew relaùon and the values of the two

attributcs for aU tuples in MapNew are identical.

Since the numbcr. names. and types of the attributes in MapRelation 1 are the sarne as those in

MapRclation2. the MapUnion in the above example is a merge of MapRelation 1 and MapReiation2

as Table 2.4 shows. This is not the fuU ujoin. which can combine relations with different attributes.
•

1 Example: 1

1 Example: 1

MapNew<- MapRelation 1[Name ijoin Stale-Name) Humidity;

MapUnion<- MapRelaùonl ujoin MapRelation2;

•

G T iS x y C Symb L Name Temp Pop
C6:! Point 1 -1I840 3393 51000051 201 Cilies Los Angeles 15 3485398
CS7 Point 1 ·12138 3761 51000051 201 Cilies Los Angeles 20 713959
C89 Point 1 -12193 3736 51000051 201 Cilies San Jose AP 25 782248
SI Po1ygon 1 ·11481 3257 153204 0 States AZ 20 2350725
SI Po1ygon :! ·1I471 3271 153204 0 States AZ 20 2350725
SI Po1ygon 3 -11453 3275 153204 0 States AZ 20 2350725
S:! Po1ygon 1 -11475 3271 153204 0 States CA 20 29760021
S2 Polygon 2 -11449 3300 153204 0 States CA 20 29760021
S2 Po1ygon 3 -1I462 3343 153204 0 States CA 20 29760021
S3 Po1ygon 3 •II 963 3401 153204 0 States CA 20 29760021

Table 2.4: Result of MapUnion from the ujoin Example

2.3 Domain Aigebra

Domain Algebra provides a set of operaùons applied on anributes. A thorough descripùon of do­

main algebra cao he found in [Mer84]. ln this section. we are going 10 discuss virtual domains.

horizontal operations and venical operations.

• CHAPTER 2. JRELIX OVERVlEW

• Virtual domains

45

Virtual domains are declarcd on a set of actual domains or virtual domains which are subse­

quently based on actual domains. They belong 00 no relation until they are actualized by a

projection or selection operation.

The syntax is as follows:

1 Sy.tu 1

1 Examples: 1

"let" Ident~fier Expression If.",

•

•

>let State-Name he Narne; «virtual domain declaration

>StateNarncs<-[State-Narnc) whcre L="Statcs" in MapRclation 1;
< < virtual domain actualization

• Horizontal Operations

Horizontal operations of domain a1gcbra work on a single tuple of a relation. When the Ex­

pression in the above syntax is a horizontal_expression. such as constant definition. renaming.

arithmetic functïons. and conditional expression(if-then-else). it becomes a horizontal opera­

lion.

1 Examples: 1

>let twopie be 3.1415926; «constant definition

>Iet angle be acos(twopie); < <arithmetic functions

>let sign he if X<O then - Lelse if X>O then 1 cise 0;
< <conditional expression

>let px be X; < <renaming

>Iet pop be Pop/JOO;

• CHAPTER 2. JRELIX OVERVIEW

• Vertical Operations

46

•

•

Vertical operations of domain algebra work on attribute values of all tuples in a relation. Four

types of vertical operations are defined in jRelix. (Only the first two are implemented in the

current version.)

- Simple reduction

- Equivalence reduction

- Functional mapping

- Partial functional mapping

Simple reduction produces a single result from the values of ail tuples of a single altribute in

a relation. Equivalence rcduction tirst divides all the tuples into groups basai on the grouping

expression (by). and then generates one result from the values of tuples of an attribute in each

group.

The syntax is as follows:

1Synlax 1

"let" Identifier "ben "red" AssoCommuOperator "of" Expression";"
"let" Ident~fier "ben "equiv" AssoCommuOperator "of" Expression

"by" ExpressionL~st ";"

The As soCommuOperator can he one of the following associative and commutative oper­

alOrs: (Uof'I"1 ")1C"and"1 '"&")l"min"l"max"I'"+"I".'"('"ijoin''1 '"naljoin")l"ujoin", '"sjoin"

1Examples: 1

> let toLpop he rcd + of Pop;

>let sub_tot he equiv + of Pop by Name;

>R<-[Name. tOLPOP] in MapRelation2;

>S<-[Name. sub_tot] in MapRelation2;

• CHAPTER 2. JRELIX OVERVIEW

Name tot-pop

Los Angeles 4991607

San Jose AP 4991607

R

Name IUb_tot

Los Angeles 42093S7

San Jose AP 782248

s

47

•

•

Figure 2.4: Results of R and S

The toLpop in the first example calculates the total population of all the cities in MapRela­

tion2. The sub_lot in the second example calculales the sub-lOtals of the population in each

city.

• Functional mapping

Funcûonal mapping processes a relation by firsl soning it according to a specified set of

auributes. Then instead of working with a set of tuples as a whole. il manipulates individual

tuples according lo the specified operalor.

The syntax is:

1Syntax 1

"let" Identifier "be" "fun" Operator "of" Expression
order Express~onL~st ";"

The Operator in the above syntax includes the AssoCommuOperatordiscussed above and

the following ordered operalors: ·..cal"j.. -·'!·ï·'!··mod"!...."I·..pret..'l'·succ·,

j Example5: 1

>R<- where Name=··AZ" in MapRelationl;

>let X' be fun succ of X order S;

ln the above example, first. all the tuples in MapRelation1 are soned by S. Then for each

tuple, generate X' as the süCcessor of X. The calculation of successor is cyclic. thal is. for

each tuple except the last one. Ihe successor of X is the X value of the nexl tuple. For the last

• CHAPTER 2. JRELIX OVERVlEW 48

•

•

tuple. the successor of X is the X value of the first tuple. The result of T is displayed in Figwe

2.5.

s X X'
1 -11481 -11471

:! -11471 ·114S3
3 -114S3 -11481

T

Figure 2.5: Result of Relation T

• Partial funetional mapping

Partial funetional mapping first divides the tuples into groups based on the grouping expres­

sion (by). Then in cach group. it sorts the tuples aeeording to the ordering expression (order).

Finally. aecording to the Ope rat 0 r. it manipulates eaeh tuple in cach diffcrent group similar

to functional mapping.

The synta.'\ is as follows:

1 Syntax 1

"let" Identifier "be" "par" Operator "of" Expression
"order" ExprssionL~st "by" Express~onList "i"

1 Examples: 1

>Iet X· be par suce of X order S by G;

>R<- [O.S.X.x·] in MapRelation 1;

2.4 Computations

Computations are user.œfined constructs that implement procedural abstraction in jRclix. Each

computation contains a group of statements that perfonn a specific task. TI1e fonnal syntax is as

foUows:

• CHAPTER 2. JREUX OVERVlEW

G S X X'
SI 1 -11481 -11471
51 1 -11471 -11453
SI 3 -11453 -11481

S2 1 -11475 -11449
S2 1 -11449 -11462
S2 3 -11462 -11475

S3 1 -11963 -11963

R

Figure 2.6: Result of Relation R

ISyntu 1

49

•

•

"comp" Ident~f~er "("(ParameterL~st)?")" is Computa~onaody ";"

In lhis section. we briefty discuss computation with an ex.amplc relevant to Gcdilor implementa­

tion. which docs not use pararneters. Plcase rcfcr to [Bak981 for a complete ex.planation of compu­

tations in jRelix..

1 Example: 1

comp AssignComp 0 is

{

MapCopy<- MapRelation1;

};

This computation can he invoked by means of a top-level cali in jRelix as indicated beJow:

>AssignCompO;

As a result- MapCopy obtains a copy of the MapRelation 1.

• CHAPTER 2. JRELIX OVERVIEW

2.5 Updates

50

•

•

The update operation allows the user to change values of specified attributes in cenain tuples.

These attributes could he selected by a using clause that selects tuples from the relation by relational

algebra operations. Updates could also he used to add or delete tuples from the relation. The syntax

for update statements is as follows:

1Syn&ax 1

"update" Identifier ("add" 1 "delete") Expression ";" 1

"update" Identifier "change" (StatementList)? (UsingClause)? ";"
UsingClause:="using" Jo~nOperator Expression 1

"using" "[" IDList ft:" JoinOperator (":")? ExpressionList
"1" Express~on 1

"using" Identifierl
"using" "(" Expression ")"

1 Examples: 1

>updatc MapRelation 1 add MapRelation2;
< < MapRelation 1 hecomes a merge of MapRelation2 (Cilies) with original

MapRelation 1 (States)

>MapCity<-where L="Cities" in MapRelationl;
< < MapCity contains the Cities tuples in MapRelation 1

>update MapRelation 1 delete MapCity;
< < MapRelation 1 now does nol contain any Cities tuples.

>relation CA(Name)<-{("CA")};
<< a relation only has one attribute and one tuple

>update MapRelationl change Temp<-18 using ijoin CA;
< < The temperature (Temp) of CA in MapRelation 1 changes from 20 to 18 degree.

When using update to add tuples. the number. types and positions of ail the attributes of the two

relations must he the same. When using update to delete tuples.. the attributes in the using clause cao

he a subset of the relation being updated. In the above example. MapRelation1 and MapRelation2.

MapRelation 1 and MapCity have the sante attribute numher. types and positions. When using

• CHAPTER 2. JRELIX OVERVlEW 51

•

•

update to change the relation MapRelation 1. firsl perfonn the relational algebra specified in the

using clause with MapRelation 1: MapRelation 1 ijoin CA. Then in the MapRelation 1. change the

temperature (Temp) ofthose tuples that panicipated in the ijoin (having common awibute values in

MapRelation 1 and CA) from 20 to 18 degrees. The result of this operation is shown in Table 2.5.

G T S X y C Symb L Name Temp Pop
SI Polygon 1 -11481 3257 153204 0 Stucs AZ 20 2350725
SI Polygon 2 -11471 3271 153204 0 SlaleS AZ 20 2350725
SI Polygon 3 -11453 3275 153204 0 States AZ 20 2350725
S2 Polygon 1 -11475 3271 153204 0 StaleS CA 18 29760021
S2 Polygon 2 -11449 3300 153204 0 Stales CA 18 29760021
S2 Polygon 3 -11462 3343 153204 0 Stales CA 18 29760021
S3 Polygon 1 -11963 3401 153204 0 Star.cs CA 18 29760021

Table 2.5: Result of MapRelation 1 from: update MapRelation 1 change Temp<-18 using ijoin CA;

2.6 Event Handler

Event handlers are procedures (computations) to proccss evcnts. Events are system-generated pro­

cedure caUs. In the jRelix version bcfore Geditor was implemented. evcnts were generated by

updates. However. generally speaking. events May arise from operations such as executing a com­

mand (such as update), user"s mouse click. a database read. and a notice from the Internet ln this

section. we discuss the event handlers for updates. In chapter 4, the new evenl hand1er thal includes

those processing events generated by user's mouse click will he discussed in detail.

Current events are generated by updates. When jRelix meets an update command. an evenl

is gcnerated. Bcfore jRelix executes the update commando it searclles the system table lo find the

particular event handler thal should bc invoked before executing the command If such an evenl

handler exists. il will he triggered. After the update command is executed. jRelix searches the

system table again to find the panicular event handler that should he invoked after the executing of

this update command. If such an event handler is round. it will he invoked and executed.

Computations are used to define event handlers in jRelix. To distinguish between evenl handlers

and user-defined computations.. special names must he assigned ta event handlers.

• CHAPTER 2. JRELIX OVERVlEW

2.6.1 Naming Event Handlers

The syntaX of Computations is expanded to include event handlers as follows:

52

1S'Diu 1

Computat~on:=

CompName
EventNarne

~Cornp~ CompName ~(a (ParameterList)? .). "is"

ComputationBody
.= Identifier 1 EventName
:= (prefix ".w l? act~on a." relat~on (W[" attribute-list

"]")?

•

•

According to the above syntax.. there are four components of EventName:

• prefix

prefix could he cither pœ or post. lfprefix is omitted. il ispost by dcfault. Pœ means

that the event handler could be invoked before the execution of the corresponding event. Post

means the event handler could he executed after the execution of the corresponding evenL

• action

aCL ion specifies what update operation mis evenl handler would proccss. There are thrce

possible types of action: add. delete or change.

• relation

relation specifies the name of the relation 10 he updated

• attribute-Iist

attribute-list is optional. For action add or delete. it is always omitled For action

change. the attribute-list could he any subset orthe original attributes. If the subset

is not empty. change action on mis subset of attribues will trigger the evenl handler. If the

subset is empty. change action on any attribute(s) in the relation will trigger this event handler.

The following are sorne examples of valid event names for relation R with attributes a.b.c.

1Eumples: 1

pœ: add: R

• CHAPTER 2. JRELIX OVERVIEW

post:delete:R

add: R

delete: R

pre:chatlge:R[a,b,c1

post:change:R

Now we are ready to define an event handler.

2.6.2 Defining an Event Handler

53

•
Since computation is used to define an event handlcr. defining an event handler is similar to defining

a computation with a special evenLname.

ISyntul
"camp" event..name () n is"

{
statementSi

}

For updaae events. the event handlers do not take parameters.

2.6.3 Event Handler On/Olt

When an event handler is defined. its state is set to 0" which means il will be executed when the

corresponding event occurs. To turn an event handler Off. use the following command:

!Syntu 1

"eventoff" event..name "i"

When an event handler is turned Off. it will not he invoked when the corresponding event happens

even if this event handler exists in the system.

Ta turn an event handler 0" again. use the following command:

1 Syntu 1

• "eventon" event-name " .",

• CHAPTER 2. JRELIX OVERVIEW

2.6.4 PrintiDg Event HandJers

Thecommand

ISynlax 1

will print out the definition of the event handIer with the specified eventname.

2.6.5 Deleting Event HaDdlers

To dclete an event handler from the current system. use the command

ISynlu 1

"dr" event-name ";"

54

•

•

For the update operation. the affected relation would he separated into three pieces: Trigger.

New and Rest. These three pieces are usefui to achieve the ""do operation which recovers the

fonner state of the database before the update command is executed. For more dctails. please refer

to (SunOO).

Here is a simple cxample of event handlcrs:

1 Examples: 1

>rclation CA(Name)<-{C'CA")};

>comp pre:change:MapRelation lOis

{

MapCopy<- MapRelation 1;

}

>update MapRelation 1 change Temp<-18 using ijoin CA;

The above example defines an event handler for the change action of the update command of

MapRelationl. Since the prefix in the evenLname of this event handler is pre. before updating

MapRelation 1. the relation MapCopy obtains a copy of the original MapRelation 1.

•

•

•

Chapter 3

User's Mannal for Geditor

This chapter is a tutorial that describes how lo use the GIS editar (Geditor) in jRelix lO display and

edit maps. Section 3.1 describes the functions in the Layers menu which are related to starting and

exiting Geditor. Section 3.2 discusses how 10 add layees and change the states of the laycrs. Section

3.3 explains how to change colors and symbols in a particular layer. The operations of editing the

tilles and labels of the legends are also discussed in this section. In section 3.4. the three different

ways of querying the map are presented. Sorne details such as changing the default color of selected

map features are also explained. Section 3.5 briefly explains the Help message the Geditor provides

for the user.

Usees of Geditor can he classified into two categories: Programmer-User and End-User. The

Programmer-Usees work in the jRelix environment. They are responsible for the preparation of map

data in relations. using the correct syntax to call the Geditor and writing the correct event handlers

to perfonn the spatial queries. The End-Usees work in the Geditor window. They edit the map.

generate thematic maps. perfonn spatial queries. and 50 on. They have different interests in the

data. Programmer-Usees are interested in the manipulation of the map data using jRelix statements

or commands. End-Users are interested in viewing the map data graphically and generating new

meaningful and real data by using the functions provided in the GedilOr window.

• CHAPTER 3. USER'S MANUAL FOR GEDlTOR

3.1 Starting and Exiting Geditor

3.1.1 Starting jRelix

56

•

•

Geditor must he invoked from jRelix as a gedit operator. Therefore. jRclix must he staned first

Suppose both the Java run-ume system and jRelix software are successfully installed on the user

system. To stan jRelix. the following command is typed on the command Hne of the operating

system:

> java JRelix

As a resull. jRelix copyright infonnation is displayed as ilIustrated in Figure 3.1 . After mat.

jRelix shows its prompt sign .'>" and waits for the user input

~e~~x:ava ve=s:c~ ~.7

: :: F y :- : :; ~ :. (:: J : 3 '3 7, : '1 ~ :: ,)\ ~ ~a ': ~=

5=~::c: ::! :=~p~:'c= 5~:e~=e

~=~::: ~~:~e~s~:y.-------------------------------------
>

Figure 3.1: init Screen of jRelix

3.1.2 Map Relation

Before starting the Geditor. the map relation that stores both the graphical and descriptive data of

the map must aIso he created. ln the map relation.. the attributes that represent graphical infonnation

of the map. such as the shape. color. x and y coordinates are called graphical anribules. Other

attributes such as population. temperature and incorne. are called descriptive attribules because

they are non-spatial or descriptive data that describe the feaw.res of the corresponding rnap feature.

Moreover. the graphical anributes are divided into [WO categories: the basic graphical anribules and

the additional graphical altributes. The five attributes representing group. type. sequence. x coor­

dinate and y coordinate of the points that will he drawn on the screen are called the basic graphical

altribules. They are required by every rnap relation in this implementation of Geditor. Other graph­

ical attributes representing items such as color. symbol. and layer. are the additional graphical

• CHAPTER 3. USER'S MANUAL FOR GEDITOR 57

altribules. They are optional. The foLlowing is an example of the correct attributes definition of a

map relation used by Gedilor:

In the above lisl. the attribute names could be chosen arbitrarily by the user. bUl il is the uscr's

responsibiüty lO provide correct types for these attributes. Table 3.1 shows a sample map relation

which contains all the cight graphical attributes: G(Group). T(Type). S(Seq). X(x). Vey). C(Color)~

S(Symb) and L(Layer). The other three attributes: Name~ Temp and Pop are descripùve anribules.

•

Attribute_C8tegOry

Group

Type

Seq

y

Color

Syrnb

Layer

Attribute-type

string

string

inl

int

int

int

int

string

•

GI T S X y C Symb L Name Temp Pop
CI Point 1 -11840 3393 51000051 201 Cilies Los Angeles 1 25 3485398
C2 Point 1 1 -12238 3761 51000051 201 Cilies San Francisco AP 20 723959
RI Polyline 1 1 -12062 3483 15300000o 0 Rivers Mississipi 14 0
RI Polylinc 2 -11561 3280 15300000o 0 Rivers Mississipi 14 0
SI Polygon 1 -11481 3257 153204 0 States AZ 20 2350725
SI Polygon 2 -11471 3271 153204 0 States AZ 20 2350725
S2 Polygon 1 1 -11450 3396 153204 0 States CA 20 29760021
S2 Polygon 1 2 -11445 3399 153204 0 States CA 20 29760021
S3 Polygon 1 1 -12000 3906 153204 0 Statcs NV -10 1201833
53 Polygon 2 -12000 3900 153204 0 States NV -10 1201833

1 S4 Polygon 1 -11689 1 4415 153204 0 States OR 8 2842321
54 Polygon 2 -11691 4412 153204 0 States OR 8 2842321

Table 3.1: Example of Map Relation:MapRelation 1

As indicated in Table 3.1. Color must he an integer showing ils RGB values. The firs~ second

and third three digits show the red value ~ green value G. and blue value B respectively. 'The value

range of every three digits is 0 ..255. For example~ if the color has R value 51, G value O. and 8

• CHAPTER 3. USER·S MANUAL FOR GEDITOR 58

•

•

value 51. the value of the color attribute in the map relation should he 510000s 1. Notice that the

leading 0 must he omittcd.

The type of symbol is integer. ln the current version of Geditor. only point map features can he

representcd by different symbols. Geditor ignores aIllhe symbol values for polylines and polygons.

Six different symbols arc implemented for points. They are: 201-solid oval. 202--double hoUow

circle. 203-hollow circle with a solid oval inside. 204-hollow triangle. 205-solid triangle. 206­

flag. When the value of the symbol attritxue of a point is none of the above. Geditor assigns value

201 to this point. As a result.. the point will be displayed as a solid oval.

3.1.3 Starting Geditor

Now. we arc rcady to stan the Geditor using gedit operator. In general. the syntax to stan the GIS

editor is as follows:

ba.fic_grapllicaLattribute_li.ft(additiollaLgraplzicaLattribute_list] gcdit relJJOme ;

The tirst list is required by every gedit expression. (t contains the five basic graphical attributes

by positions. From the left to the right.. the sequence of the five attributes must he those represcnting

group. type. sequence. x coordinate and y coordinate rcspectively. The user is responsible for

providing the correct number and order of the attributes in the tirst list. For the MapRelation 1

indicated by Figure 3.2. the only possible correct basic_graphicaLattribute-list is [G.T.S.X.Y].

Figure 3.2: gedit Example (1)

The second list is optional. Il shows the additional graphical attributes in the map relation by

category-name pair. Arbitrary number of equations are allowed in the second list.. but we have

implemented three: Color=attr-name, Symbol=anrJlame, and Layer=anrJlame. For example. in

Figure 3.2. the second list of the geclit operator contains three equations: Color=C, Symbol=Symb.

• CHAPTER 3. USER'S MANUAL FOR GEDITOR 59

•

•

and Layer=L. The positions of these equations do nol maner, and sorne or all may be omined. When

the Color and/or Symbol equation in the second liSl is rnissing. Geditor assigns default color and/or

symbol to each layer of the map; when the Layer equation is missing in the second list. Geditor

assumes that the map relation contains only one layer. For example. in Table 3.2, MapReiation2

has only one layer 50 thal il has no layer attribute. Therefore, the corresponding gedit expression

contains only two equations: Symbol=Symb and Color=C as Figure 3.3 shows. (Note that Figure

3.3 should also work for MapRelation 1.) In an extrerne case as Table 3.3 shows. MapReiation3 has

only one layer and no color or symbol attributes. The gedit expression ornilS the whole second liSl

as iIlustrated in Figure 3.4.

G T S X y C Symb Name lemp Pop
51 Polygon 1 -11481 3257 153204 0 AZ 20 2350725
51 Polygon 2 -11471 3271 153204 0 AZ 20 2350725
52 Polygon 1 -11450 3396 153204 0 CA 20 29760021
52 Polygon 2 -11445 3399 153204 0 CA 20 29760021
53 Polygon 1 -12000 3906 153204 0 NV -10 1201833
53 Polygon 2 -12000 3900 153204 0 NV -10 1201833
54 Polygon 1 -11689 4415 153204 0 OR 8 2842321

1 54 Polygon 2 ·11691 +:112 153204 0 OR 8 2842321

Table 3.2: Example of Map Relation:MapRelation2

>R<- :::;,:-, s, x, '!: :Syr..b0 >Syrrb, ':8.:'-:)r=C: '.:;eè::. :-'!apRe':'a:.i.':l::2;

Figure 3.3: gedit Example (2)

Figure 3.4: gedil Example (3)

• CHAPTER 3. USER 's MANUAL FOR GEDITOR

G T S X y Name Temp Pop
SI Polygon 1 -11481 3257 AZ 20 2350725
SI Polygon 2 -11471 3271 AZ 20 2350725
S2 Polygon 1 -11450 3396 CA 20 29760021
S2 Polygon 2 -11445 3399 CA 20 29760021
S3 Polygon 1 -12000 3906 NV -10 1201833
S3 Polygon 2 -12000 3900 NV -10 1201833
S4 Polygon 1 -11689 4415 OR 8 2842321
S4 Polygon 2 -11691 4412 OR 8 2842321

Table 3.3: Example of Map Relation:MapRelation3

60

•

•

After the user inpuls the statement containing the gedit expression. a Geditor window appears.(See

Figure 3.5.) Initially. the internai frame "'Map View" is empty.

Figure 3.5: Geditor Window

As a unary operator. gedit is functional. Il does not change the content of ils operand. that is.

the map relation. Funhermore. the value of the gedit expression is aIso the same as ils original

operand (the map relation). TIlerefore. R will he assigned to the original map relation. which is

MapRelation 1. MapRelation2 or MapRelation3 in the above examples. Actually. as soon as geclit

calls and displays the Geditor window. the statement containing the gedit expression retums. The

• CHAPTER 3. USER'S MANUAL FOR GEDITOR 61

•

•

jRelix system continues to accept commands and statements in the command Une at the same time

the End-User perfonns GIS operations in the Geditor window.

3.1.4 Exiting Geditor and jRelix

To exit the Geditor Window. the user clicks the Close command at the upper left corner of the

window or clicks Exit in the ULayers" menu. Vpon receiving this user operation. jRelix closes the

Geditor window and returns to the command Hne environment with a ">" prompt sign waiting for

user input.

To further exit the jRelix system. the user types "quit;"after the system prompt sign. The jReli:\

performs its clean-up procedures and returns to the original opcrating system.

3.2 Layers

A layer is a logical separation of map data. such as city, road and river. Usually the map relation

contains more than one layer and Geditor allows the user to work on a single layer or multiple layers.

As described in section 3.1. initially. the Map View window is empty. The user needs to add layer(s)

to let the Geditor know what layer(s) should he displayed in the Map View window. After a layer is

added. a set of switehcs is attaehed to the layer to indicate its currcnt state. This section describcs

how 10 add layers and change their states through "Add Layer" and "Layer Conttol". These two

functions are included in the leftrnost pull-down menu "Layers" as Figure 3.6 shows.

AddLA"r !
Layer Cenue' !

'=-h-it~~, .' .. :--_.~

Figure 3.6: Layers Menu

3.2.1 Add Layer

On the top of the Geditor window is a menu bar containing the names of four pull-down menus.

Oick the Layers pull-down menu and select the Add Layer item. A dialog box tided uAdd Layer"

•

•

CHAPTER 3. USER'S MANUAL FOR GEDlTOR

Figure 3.7: Add Layer Dialog

62

•

pops up as illustrated in Figure 3.7. In the dialog box. there are two lisLS and four buttons. The left

list shows ail the layers in the map relation and the right list displays the layers that have been added

by the user. Clicking an item in the left list and then clicking the Add button adds this layer to the

right Iist. The user can also select an item from the right list and click Remove button to remove

this layer. Only one item can he sclected in any list at a lime. Vndcr the two lists. there is a message

line reminding the user what to do nexL When the user"s operations are not in a proper sequence.

crror messages are displayed on this message line. Clicking on OK button records the user"s input

and closes the dialog. The Cancel button discards the user"s input and closes the dialog. Notice that

the functions of the OK and Cancel buttons are the same in every dialog box in Geditor. Therefore.

the description of their functions will not be mentioned again in the following discussions.

After the Add Layer dialog box is c10sed with the OK button. the Geditor updates the Map View

window. Il draws aIl the layers added by the user in a sequence exactly the same as the sequence

of the layers that appear on the right list of Add Layer dialog. A latter layer could overwrite pan or

aIl of a fonner layer on the screen. Figure 3.8 shows the updated Map View resulting from the Add

Layer dialog in Figure 3.7. There are three layers in the map relation: Cities. States and Rivees.

The user adds two layers 10 the right List: States and Cilies respectively. Therefore. Geditor draws

•

•

CHAPTER 3. USER'S MANUAL FOR GEDlTOR

Figure 3.8: Updated Map View Window after Add Layer

63

•

states first and then the cilies. As a result. both Cities and States are displayed properly in Map

View as Figure 3.8 shows. However. if the user adds Cities and then the States in the Add Layer

dialog. Geditor will draw the cities first and then the states. As a resul~ the user can only see one

States layer in the Map View window because ail the cities are overwritten by the states. Almost all

the standard GIS prodUClS perform this operation in the same way. Therefore. the user should pay

attention to the sequence of adding layers in the Add Layer dialog.

After the Add Layer operation is perfonned. every layer in the map relation obtains a pair of

Boolean switehes showing its state: ShowlHide and Aclivellnactive. At any lime. zero. single or

multiple layecs can he shown. but among the shown layer(s). only one layer can he active. When the

Add Layer operation has just bœn perfonned. the states of these layers are as follows: Those thal

appeared in the right list of the Add Layer dialog are currently "Show"; others are ··Hide". The last

one in the right list of Add Layer dialog is currently "Active"; others are ··Inactive". 1be user can

tell the cuttent state of each layer from the legend split window of Map View. Each layer bas a tille

• CHAPTER 3. USER'S MANUAL FOR GEDITOR 64

and a graphical sample legend in the legend window. If the layer is ·~Show". the tille of the layer

is checked with a tick; otherwise il is unchecked. [f the layer is o4Active". the tille is highlighted in

the legend window. See the legend split window in Figure 3.8 for the results from the Add Layer

operation in Figure 3.7. The default highlight color is yeUow and this can he changed if the user

uses the "Options" function. Details wiU he discussed in Section 3.4.5.

An active layer may he used for thematic mapping. expression builder. spatial query. ete. in the

View and Query menus. In this case. the purpose of 3Ctivating a layer is to select mal layer for

subsequent functions.

•

.......
t .." ..

•
IV

-
"...

Figure 3.9: Layer Control dialog box

•
3.2.2 Layer Control

On the menu bar. click the Layers menu and select the Layer Control item. A Layer CODual di­

alag box pops up as Figure 3.9 shows. AIl the layers in the original map relation are listed in

this Layer Control dialog. There are three columns showing the layer names. the ShowlHide and

• CHi\PTER 3. USER '5 MANUAL FOR GEDITOR 65

•

•

the Active/Inactive stale of each layer. If the checkbox under the ShowlHide column is chec~

the corresponding layer is currenûy shown; otherwise il is hidden. If the radio box under the Ac­

livellnactive column is checked, the corresponding layer is active; otherwise. il is inactive. Since

only one layer cao he active al any lime. the radio boxes are mutual exclusive. The user cao change

the current active layer by simply clicking the radio boxes. The ShowlHide state cannot he changed

using Layer Control. If users need to change a "Show" layer to "Hide". they must remove a layer

using the Add Layer function. Similarly. if users nced to change a ·'Hide" layer to "Show". they

must add it using the Add Layer dialog. Click the OK button after finishing the inpul in the Layer

Control dialog.

[f the Layer Control is closed with the OK button. Geditor updates the current state of each

layer according to the user input The Map View window does not need to he updaled bccause no

ShowfHide state was changed in the Layer Control dialog. The legend window will he updated

accordingly. For example. if the user changes the current active layer to States in the Layer Control

dialog as Figure 3.9 shows. the legend window of Map View will he updated as Figure 3.10 shows.

The user will notice the yellow bar changed from Cities to States in this legend window.

3.3 View

Up to now. we can display a map from a relation using the Layers menu. The nexl operation the

user May need is to change the view of the currenl map. such as 10 change the color of map features.

ln this section. we are going to discuss how to change the cQlor and symbol in a unifonn layer and

how (0 perform thematic mapping in a non-uniforrn layer. Legend Editor will also he explained in

this section. AIl these functions are included in the View pull-down menu of Geditor as Figure 3.11

shows.

3.3.1 Unifonn Layer

The layers can he divided into uniform layers and non-uniform /ayers. If ail the map features in

the same layer have the same color and symbole this layer is called uniform layer. otherwise. il

is called llOn·uniform layer. The user can use the Uniform Layer submenu to generate a uniform

•

•

CHAPTER 3. USER'5 MANUAL FOR GEDITOR

Figure 3.10: Updated Map View after Layer Control

Unltor... u.-r ". ',. ~

ThelMaclIIÎln•.• ~

---~..ndidiÎ.r·-"'·- __1

Figure 3.11: View Menu

66

•

layer and the Thematic Mapping submenu (0 generate a non-uniform layer. This section explains

the functions ofColor Editor and Symbol Editor in the Uniform Layer submenu.(See Figure 3.12.)

.........ùc:......qj•.

t·EdIt_

Figure 3.12: Uniform Layer Submenu

• CHAPTER 3. USER 's MANUAL FOR GEDITOR

Color Editor

67

•

•

Suppose there are two layers shown in Map View: Cities and States. No matter whether the States

layer is a unifonn layer or no~ the user can make the States layer a red unifonn layer using Color

&litor. First, the user must activate the States layer using the Layer Conuol function as discussed in

Section 3.2. 1ben click View menu from the menu bar and select the Color Editor from the Unifonn

Layer submenu. A dialog box pops up as Figure 3.13 shows.

Figure 3.13: Color &titor Dialog

At the top of the dialog box~ the name of the current active layer is displayed. In the Middle is

the color chooser. "Swatehesn that aIlow the user to click color patches on a palette is the default

way of choosing a new color. ··HSBn and '·RGBn are the other !wo alternative ways. Click the

corresponding tabs when these color choosing methods are needed. In the Preview section. the

original color and the new color selected by the user are displayed. ACter finishing the selection of

new color. click OK to close the dialog.

[f the dialog was closed using the OK button. Geditor updates Map View according to the new

• CHAPTER 3. USER'S MANUAL FOR GEDITOR 68

•

•

color. For example. if the user changes the color of the States layer from original blue ta red. all the

states polygons will he filled in rcd. 'The legend split window will also he updated accordingly.

.' ..

·w..... :
N.···'::·

......-

; ~,:.-
--------~------_.-:..:

Figure 3.14: Symbol Edilor

Symbol Editor

The user can also change the symbol of points using Symbol Editor. For example. suppose thal the

user would like to change the cilies in current Map View from solid avals to flags. First. activale

the Cilies layer using Layer Control. Then click the Symbol Editor item from the Uniform Layer

submenu. A dialog titled as Symbol Editor appears as Figure 3.14 shows.

As usuat the name of the current active layer is displayed al the top of the dialog. The current

symbol and the new selected symbol are displayed on the lefl part of the dialog. 'The right box

contains the six symbols that could he chosen. We click the ftag symbol and the OK button to close

the dialog. ACter that. the Map View window will he updated as Figure 3.15 shows. Notice that the

cilies have been changed lO ftags in the figure.

•

•

CHAPTER 3. USER'S MANUAL FOR GEDITOR

iif~·.. ,
.•:>., .':

Figure 3.15: Updatcd Map View after Symbol Editor

3.3.2 Thematic Mapping

69

•

Non-uniform layers can he generated through Thematic Mapping. Two thematic maps are provided

in current Geditor: Individual Value map and Range map. An Individual Value map maps individual

values of a certain descriptive attribute to ditTerent colors. A Range map maps ranges of values to a

color ramp. Figure 3.16 is the Thematic Mapping submenu.

. ~:3':~' ':~>"'._p

••dIV....rv._ue'..... ;:
"~•.:.":>':":' .

Figure 3.16: Thematic Mapping Submenu

• CHA.PTER 3. USER'S MANUAL FOR GEDITOR

Individual Value Map

70

Individual value maps are useful when the user needs to group map features by the individual values

of a certain descriptive atuibute. For example~ in the States unifonn layer displayed in Figure 3.15.

all the state pllygons have the same color. We cannot teU whether any of the states have the same

value of temperature or not. However. we cao show this using the lndividual Value Map.

First, activate the States layer using Layer Control. Then click the View menu and then select the

lndividual Value Map from the Thematic Mapping submenu. A dialog box pops up as Figure 3.17

shows.

•
•=........

IV

-
A,.r.1I'. 1.__0: ".w"

'"u..........~

f; 1
1 ~ .
f
L

: ~.

r~ .~ F·~-:i '. . .
...._a_........ tn• .:.... a••.

Figure 3.17: Individual Value Map Dialog

•
On the top line of the dialog. the current active layer name States is displayed. The middle list

shows all the descriptive attributes in the map relation. We choose Temp in the list and click OK to

close the dialog box. The Cancel button discards the user input and closes the dialog.

After the dialog box is closed with the OK bunen. the Geditor assigns different colors to the map

•

•

CHAPTER 3. USER'S MANUAL FOR GEDITOR

:it.11&-..

".~

-:-ro-.....
--;l~-.

Figure 3.18: Updatcd Map Vicw after Individual Value Map Dialog

71

•

featurcs according to the different values of the Temp attribute. Then Geditor updates the Map View

including the legend split window as Figure 3.18 shows. The user will notice that Califomia(CA)

and Arizona(AZ) appear in the same color which means they have the same tempcrarure. Others

are in different colors indicating that their temperatures are differenl. In the legend split window. a

label showing the temperature value is displayed next to each graphical legcnd of the States layer.

The labels can he changed by Legend Editor that will he discussed in Section 3.3.4.

Notice that the nurnber of differenl colors is limited. When the number of differenl values of the

anribute is over 256*256*256. Gedilor will display an error message indicating mal there are 100

Many different values of this attribute in the currenl map relation.

3.3.3 Range Map

Although the largest numher ofdifferent colors allowed in the individual value map is 256*256*256.

when the number of colors is more than, say, 40, the map will become overwhelming. For example,

• CHAPTER 3. USER'S MANUAL FOR GEDlTOR 72

•

•

if every state in the United States bas a different temperature in January, there will be 51 different

colors in an individual value map. In this case. usees might need to reduce the numher of colors by

regrouping the map features using a range map.

Range maps assign different colors ta different ranges of values of a descriptive attribute. For

example. a range map showing the distribution of temperatw'e for January in the United States tills

the state polygons with white if the temperature is in range [-20.0. -11.0). light green if in range

[-11.0. -2.0). green if in range [-2.0. 7.0). dark green if in range [7.0, 16.0), and deep green if in

range [16.0. 25.0). Notice that the descriptive attribute that the range map is based on must he of a

quantitative type. Otherwise. the range is meaningless.

To generate the above range map. first activate the States layer using Layer Control. Then click

the Vicw menu and select Range Map from the Thematic Mapping submenu to open the Range

Map dialog as Figure 3.19 shows. The fiest line of the diaIog shows the CUITent active layer name:

States. The left list contains all the quantitative descriptive attributes of the map relation. Next to

this attribute list is a list of pre-defined color ramps. They are red ramp. blue ramp. green ramp. and

gray ramp. When the user selccts a color map in the Iist. the colors are displayed as five patehes in

the right Most list of the dialog. Thesc coloes can he edited by the uscr. Whcn the user clicks on a

color patch. a color chooser pops up for the user to choose a new color.

After the user selccts an attribute in the attribute liSL Geditor generates four numbers in the third

list. The four numbees divide the range [min.max) into five equaI ranges. whcre min and max are

the minimal and maximal values of the selected attribute in the map relation. AlI the range numhers

including min. max and the four auto-gencrated numbers are listed in the third column in a non­

decreasing order from top to bonom. The color patelles between two range numbees show that a11

the map features with the values between these two numbees will he displayed with this color. For

example. in Figure 3.19. the color patch between the two numbers -2.0 and 7.0 is green. Therefore.

aIl the state polygons with temperatures in [-2.0.7.0) will he filled in green. The min and max on the

top and bottom are Dot editable. but the other four auto-generated range numbers can he edited by

the user. Remember to lœep ail the range numbers in a non-decreasing order from top ta bottom and

in the range [min.max). Type Return after editing. Geditor will perform the checking and if there

is any error such as those with the order of the range numbers. the error message will he displayed

• CHAPTER 3. USER'S MANUAL FOR GEDITOR 73

•

•

on the message lîne. In an extreme case. when all the values of this selected attribute are the same

in the whole map relation. all the range numbers are equal. Gcditor assigns one color to all the map

features in this layer.

f;'llaIn ..••

Figure 3.19: Range Map Dialog

To generate the range map of the January ternperature distribution of the United States. we select

Temp from the attribute list. then the green ramp from the color ramp List. Keep the ranges generated

automatically by GedilOr. and finally click on the OK button to close me dialog. Different from the

examples in other sections. we choose the whole map instead of the West Coast of the United States

in this section. This is because range maps are usually used when many map features with different

attnbute values exist in the map.

The Map View will he updated as Figure 3.20 shows. Notice that the legend window is also

updated accordingly. The labels next to eacb legend color patch show the temperature range the

color represents. The labels can he cbanged using Legend Editor that will he discussed in the next

Section.

•

•

CHAPTER 3. USER·S MANUAL FOR GEDlTOR

III

JIJ;,/

Figure 3.20: Updated Map View after Range Map Dialog

3.3.4 Legend Editor

74

•

ln this section. we are going to discuss how to edit the legend window. In the legend window. each

layer ha.~ a tille. one or a series of graphical legends. and a label nexl 10 each graphical legend to

show whal this graphical legend represents. The graphical legend cannot he changed arbitrarily

using Legend Editor because it shows the type. color and symbol of the map features of the corre­

sponding layer in the current Map View window. However. the title and label can be edited by the

user.

Similar to the other functions in the View menu. only the legend of the active layer can he

changed. Therefore. first. the user needs to activate the layer whose legend needs to be edited.

Then. click the View menu on the menu bar and select the Legend Editer item. A dialog box with

the tille Legend Editor pops up as Figure 3.21 shows. 1bere are five columns in the dialog. The

first colmnn lists the name of the active layer in the map. The second column displays the title

of this active layer that is currently displayed in the legend split window. The third and founh

• CHAPTER 3. USER '5 MANUAL FOR GEDITOR 75

•

-:n

-:-iO..'•
:1

,~
Î
.ft
,1

..,:,.,.,,:';"':!8"::';:::>":
" .,::":" ·-."'.··c.::,·.· ,j-:c l'lr~

.,.>.':'~".. .':. CCII)

Figure 3.21: Legend Editor Dialog Box

•

columns display the graphical color and symbol of this layer. The fifth column shows the labels

corresponding to the pair of color and symbol. If the layer is a unifonn layer, only one pair of

color and symbol will he displayed and the label of this layer is initially blank; if the layer is a

non-unifonn layer. more than one pair of color and symbol values are displayed for the layer and

the default labels that have been attached by Geditor are also displayed in the fUth column.

Among the five columns. the Tille and Label columns are editable. For example. the user can

change the labels of the States layer as shown in Figure 3.21. The States abbreviations are added

next to the temperature numbers. The tille of States can also be changed to "States(West Coast)" as

Figure 3.21 shows. Finally, click on the OK button to close the dialog. The legend window will he

updated as Figure 3.22 shows. Notice the change of the titie and labels of the States layer.

•

•

CHAPTER 3. USER'S MANUAL FOR GEDITOR

-II

=~.--. -0-- ~ .;:.. _. :... ~ .

Figure 3.22: Updated Map View after Legend Editor

3.4 Query

76

•

The infonnation displayed on the screen is always limited. As a GIS editor. Geditor provides the

function to allow the user to query the map to obtain additional data that is not currently displayed

on the map. For example. the user may need to know the population of San Francisco city. Using the

Query function of Geditor. the user can obtain the population number by simply clicking on the city.

Geditor provides three ways of querying the map: Identify Tooi. Expression Builder. and Spatial

Query. This section describes how to use Geditor to query the map using these three methods.

Figure 3.23 shows the Query menu on the menu bar.

3.4.1 Identify Too.

Click the Query menu and then select the ldentify Tool item. An internai frame titled as ldentify

Tooi pops up. The name of the current active layer is displayed at the top of the frame. On the

• CRAPTER 3. USER'S MANUAL FOR GEDITOR

•·.:,.ftdfj.~.li·>C ",:
!.' ·Ex.,. ,••,·
··.s ~~··

i '. c.....·....ètI.-~.'.,·..:
~_~n~~.:.:- : ...:. __

Figure 3.23: Query Menu

77

•

•

bottom of the frame. there is an ldentify toggle bunon. Initially. this button is presse<l which means

the ldentify operation is currently active. At this time. if the user clicks the map feature in the

current active layer. the data of all descriptive attributes will he displayed in the center pan of the

ldentify Tocl. To deactivate the Identify operation. the user just needs to release the ldentify toggle

button by clicking on il Then no data will he displayed in the frame when the user clicks the map

feature in the cunent active layer. The user can keep the Identify Tooi on the desktop or close it by

clicking on the Close button on the right top corner of the frame. Sec Figure 3.24. The data in the

ldentify Tooi shows the results of clicking on San Francisco city in the Map Vicw.

3.4.2 Expression BuUder

The user can also obtain infonnation by creating a query expression. For example. if users nced

to know which state bas a population over 29760021 and the January temperature over 8 Celsius

degrees. they can build an expression using Expression Builder.

Fics!. activate the States layer using Layer Control. Then select the Expression Builder item from

the Query menu to open the dialog as Figure 3.25 shows.

As usual. the first line indicates the current active layer: States. The upper left List contains all

the descriptive attribute names. In the midd1e is a list of operators and brackets for the user to build

the expression. TIae right List is the values of the selected attribute. The left lower pan is a text area

showing the expression being built according ID the user input The user can also type an expression

from the keyboard in this area. There are three bunons in the right lower pan: Oear. OK and Cancel.

Clicking on the Clear bunon clears the text area. The OK bunon records the user input and closes

the dialog. and the Cancel hunon discards the user input and closes the dialog.

To build the expression we mentioned at the beginning of this section. we first click on the Pop

•

•

CHAPTER 3. USER'S MANUAL FOR GEDITOR

1\1

iié....-
11
~ j
~ ~
i~

1~

IJ
i -;

l~
1 ~
1 :
, <

--- -- -----~ ~

...

78

•

Figure 3.24: Identify Tooi

attribute in the auribute list. Notice that the value list changes according to the selected item in the

attribute List. Click on the '''>='' operator and 2976021 in the values list. Click on the "and" operalor

in the middle lisl. Afler tha~ choose the Temp altribute, the ">.. operator and 8 in the valuelisl The

text area shows ··Pop >= 2976021 and Temp > 8" which is exactly the expression we need to query

the map. Finally. we close the dialog by clicking on the OK butlon.

After the dialog is closed, GedilOr updates the Map View as Figure 3.26 shows. The Califomia

state is highlighted as yellow. This is the defaull color for selected map features by Expression

Builder. The user can change it by using the Options menu that will he discussed in Section 3.4.5.

Ali the expressions built using Expression Builder must observe the following syntax:

Expressl.on: =Conjunction «("or" l "1")Conjunction) ..

ConJunction:=Comparison« "and" l "'")Comparision)*

Comparison:=Primary 1 Primary ComparativeOperator Primary

Primary:=Literall Identifier l "(" Expression ")"

•

•

CHAPTER 3. USER'S MANUAL FOR GEDITOR

.•.
N

Figure 3.25: Expression Builder Dialog Box

Comparat~veOperator: = "=" l' ,! =" l' '>' , l' '<' , l' '>=" l' '<="

79

•

Identifier specifies the attribute name and LilCraI specifies the value of the attributes. ()* in the

first and second formuJae rneans repeating the comlXment inside lhe brackets zero or more limes.

The following are sorne examples of legal expressions:

Exmaplel: Pop> 100000oo

This is a simple Comparison composed of Primary ComparativeOperator Primary.

where me first Primary is Pop - an Identifier, and the second Primary is 1()()()()()()() - a

Literal. According lO the second formul~ a single Comparison is a Conjunction. and ac­

cording lo the first form~ a single Conjunction is an Expression. Therefore, it is a legal

expression.

Example2: Pop> l()()()()()()() and Temp>8

This is a Conjunction composed oftwo Comparisonscombined by ·'and99
• According to the

•

•

CHAPTER 3. USER'S MA.NUAL FOR GEDlTOR

Figure 3.26: Updated Map \'ïew after Expression Builder

first fonnula a Conjunctl.on is an ExpresSl.on.

80

•

Example3: Pop> 100000oo and Temp>8 or Name=··Arizona·'

This is an expression composed of two Conjunctions:··Pop> l(x)()()()()() and Temp>S·'. and

··Name=··Arizona·...'. The two ConJunct~ons are combined by ··or·'. According to the first fonnula.

two ConJunctl.ons combined by "or" forms a legal Expression.

Example4: (pop> 100000oo and Temp>8 or Name="Arizona") and Temp< 18

"Pop> 1()()(t)(X)() and Temp>8 or Name=··Arizona·...• is an Expression. Therefore. "(pop> 100000oo

and Temp>8 or Name="Arizona")" is a Primary. A Primary is aIso a Comparison. ''''emp< IS"

is a Comparison lOO. According to Û1e second fonnula two Comparisons combined by "and" is

a Conjunction. According to Û1e first fonnula. a Conjunction is a legal Expression.

Notice tbat an the above expressions are aIso legal jRelix expressions in the ",bue clause of

• CHAPTER 3. USER'S MANUAL FOR GEDITOR 81

selections. Actually. the Geditor expressions form a subset of jRelix expressions.

3.4.3 Spatial Queries

•

Spatial queries are unique in GIS editors. The user extraets data from the map relation by indicating

the spatial relationships between map features. For examplc. the user may asle" Show me aIl the

cilies that are within 50 miles of San Francisco". This is a typical spatial query. The given map

feature is San Francisco. and the query is searching the map fcatures in the Cities layer thal sat­

isfy the following spatial relationship with San Francisco: within 50 miles. Therefore. this query

must he perfonned in the following steps: First. select the given map fcature with the expression.

··Name=San Francisco", using Expression Buildcr. As a result. San Francisco will become yellow

as Figure 3.27 shows. Then aCùvate the Cilies layer that the query result belongs to. After that.

click on the Spatial Query item in the Query menu to open the Spatial Query dialog as Figure 3.27

shows.

Figure 3.27: Spatial Query Dialog Box

~<t._ 'la,... ~., <:mR~

!!Ol!!U!~u'?m:.~".!:!!~. ~_....,.....
~Comolft••• .::.c"-.." '.'-0'·· '~

···..·_····..·..l·ëiil·~· ..~·T···_·..··_·

, ~~~.~i~~.~~~!.~.~~ ..~ _ 1

• DA.,....

!J:

.H -
U

~. ~~

:i.

•

'iI!"_

!.J.....

.IV

-

........ .,... ea-..

•

• CHAPTER 3. USER'S MANUAL FOR GEDITOR 82

ln the upper part of the dialog. Geditor shows the current active layer. ln this example. it is

the Cities layer. A list of spatial operators is displayed in the middle of the dialog. We choose the

"Within Distance of' operator from the lisl Next to the spatial operalOrs list is a text field mat

allows the user to input a value. This area is only enabled when the selected operator is ·'Within

Distance or' since this is the only operator that needs a value. We type 50 in this value area. Finally.

click on the OK button 10 close the window.

After the dialog is closed with the OK button. Geditor updates the Map View as Figure 3.28

shows. The user will notice that San Jose city is turned rcd in the Map View. Red color is the

default color of the selected map features from Spatial Query. Users can change it using the Options

menu.

•
v....."...

•
Figure 3.28: Updated Map View after Spatial Query Dialog

ln the implementation of Geditor. when the user selects a spatial operalOr. Geditor generates a

jRelix evenL An event handler for such an event should he already wrinen and submitted by the

Aldat programmer in the current jRelix system. [f the corresponding event handler is not there.

• CHAPTER 3. USER'S MANUAL FOR GEDlTOR 83

•

•

an error message is displayed. A detailed discussion about event handers used in Geditor will be

presented in section 3.6.

3.4.4 Clear Selection

This function clears the user selections from Expression Builder and Spatial Query. Il displays the

map that was shown before the Expression Builder and Spatial Query operations were perfonned.

To clear the current selections. select the Clear Selection item from the Query menu. The Map View

will he updated and the highlighted map features will disappear.

3.4.5 Options

There are three default colors used in Geditor: the highlight color used in the legend window to

show the current active layer. the color to show the selected map features from Expression Builder•

and the color to show the selected map features from Spatial Query. All of them can bc changed

using the Options function in Geditor.

Select the Options item from the Query menu. A dialog box titled as "'Options" pops up as

Figure 3.29 shows. Three default colors are displayed as color patches in the dialog. Clicking on

the color patehes causes a color chooser to be displayed. which allows the user 10 choose a new

color. Afler choosing a new color. click on the OK button 10 close the color chooser dialog. Click

on the OK button again in the Options dialog. The default color(s) will he changed to the new

color(s) the user selected. Clicking on the Cancel button discards user input

For example. if the user changes the default color of the Expression Builder from yeUow 10 cyan,

all the map fcatures that satisfy the user's expression will he turned to cyan the next time the user

queries the map with Expression Builder.

3.5 Help

The Help menu in Geditor provides the current Geditor version infonnation and a link 10 this User's

manual. The Help contains two menu items as Figure 3.30 shows.

When User's Manual is selccted. ghostview shows the text of this chapter in a separate window.

•

•

CHAPTER 3. USER'S MANUAL FOR GEDITOR

Figure 3.29: Options Dialog Box

About

Figure 3.30: Options Dialog Box

&4

•

[f the About menu item is selected. a window is displayed that shows the version description of the

cunent Geditor.

3.6 Event Handler for Geditor

As discussed in section 3.4.3. when a spatial query needs to he performed. an event is generated.

For example. if the user selects the ·~thin Distance Of' operator in the Spatial Query dialog box

as Figure 3.27 shows, Geditor generates a "withindisc" event If the user selects '"Contain" as the

spatial operator. Geditor generates a "contains:" event Corresponding 10 the six spatial operators

• CHAPTER 3. USER'S MANUAL FOR GEDITOR 8S

•

•

built in Geditor, there are six events: '4contains:", '4cmpcontains:", '·within:", ucmpwithin:", "in­

tersect", and "withindist:". Different from the Update events (SunOO), no prefix "post" or "pre:"

is needed in front of these event names because all the above Geditor event handlers should he

invoked aCter the user's mouse click. Since the parameter List bas not been built in the current ver­

sion of jRelix computation package, Geditor cannot pass any relation as a parameter ta the event

handIer. Therefore, Geditor makes an agreement with the Aldat Programmer on the four relation

names: .ActLRel, .SeIRel•.SpqRel. and .ValueRel. Notice that all of thcse relation names have a

leading .':'. This indicates that they are system relations instead of user-defined relations.

• .ActLRel: This relation cantains ail the map features in the current active layer.

• .SelRel: This relation contains the map features selected by the user using Expression Builder.

• .ValueRel: This relation contains the value needed by the "Within Distance or' operator.

• .SpqRel: This relation contains the results of the event handIer. It should contain all the map

features that satisfy this spatial query.

Figure 3.31 shows a simple example of the event handler for the "contains:" event generated by

the spatial operator: ·"Contain". It checks if polygons in the active layer (.ActLRel) contain points

selected by the user (.SeIRel). To handle the more complex events generated by the '"Contain"

spatial operator on all possible map objects including points-in-polygons, Lines-in-polygons, and

polygons-in-polygons, a more complicated polymorphism event handler should he wriuen. This is

out of the scope of this thesis.

•

•

•

CHAPTER 3. USER'S MANUt\L FOR GEDITOR

<< Check ifPoints are in the Polygon
romp rontains:O is
{ <<.SeIRel: relation oftlle selected points

< <.ActLRe/: relation ofthe current active layer
< <.SpqRel: relation ofthe polygoras in lhe active layer lIraI conta;lIs points in .SeIRel
«the .vtrucrures ofthe above three relations are the same:
< <[G. T.S.x. y. C.Symb. L.Name. Temp. Pop1
let px he X;
let py he y;
T2 ~ [px.py1in .SeIRel;
T3 ~ .AetLRel ijoin T2; < <create the Cartesian product of.ActLRel and .SelRel

let X' he par suce of X order S by G;
let Y~ he par suce of Y order S by G;
let asquare he «px-X).(px-X)+(py-Y).(py-y);
let bsquare he «px-X·).(px-X·)+(py-Y~).(py-Y'»;

<<ca/cu/ale the sign through the determinant
let det be px.Y.I+X.Y'. I+X·.py. I-px...Y'-X.py.l-X·.Y.l;
let sig he if det< 0 then -) else if det >0 then 1 eise 0;
let esquare he (X' -X).(X· -X)+(Y' -Y).(Y· -Y);
let twoab he 2.sqrt(asquare).sqrt(bsquare);
let up he asquare+bsquare-csquare;
let val he (rea1 up)/twoab;
let angle he acos(val).sig;
let sum he equiv + of angle by px.py~ G;

let Dl he 6.283 19; <<inside the polygon
let 02 he 3.14159; «on the boundary ofthe polygon

.SpqRel ~ [G.T.S.x.Y.C.Symb.L~ame~Temp~Pop]where abs(sum-01)<=O.03
or abs(sum-D2)<= 0.03 in TI;

1 };

Figure 3.31: Event Handler for Spatial Operator: '"Contain"

86

•

•

Chapter 4

Geditor Implementation

ln mis chapter. we are going to describe the implementation of Geditor in detail. Section 4.1 gives

the overview of the Geditor implementation. Two interfaces of Geditor are explained in this section.

ln Section 4.2. the implementation of the interface for the jRelix Programmer-User is described.

The new gedit syntax in jRelix will be discussed. Section 4.3 explains the implementaùon of the

interface for the GIS End~User. This includcs the Geditor GUI and a series of GIS funcùons.

4.1 Overview

The purpose of mis implementation is to build a Graphical GIS editor (Geditor) into the current

jRelix so as to allow the jRelix Programmer·User to invoke Geditor from jRelix and allow the GIS

End~User to perfonn a series of GIS operations in the graphical interface.

•
Geditor

jRelix Programmer-User""--- -'

Figure 4.1: Two Interfaces of Geditor

R7

GIS End-User

• CHAPTER 4. GEDITOR IMPLEMENTATION 88

•

•

Therefore. there are two interfaces of Geditor. One is the interface for the jRelix Programmer­

User and the other is the Geditor graphical user interface (GUO for the GIS End-User. The goal of

the interface with jRelix Programmer-User is to build the new syntax (gedit) into jRelix to aUow

the programmer to caU and display the Geditor GUI interface. The Geditor GUI providcs a series of

GIS operations for the End-User to view and edit the map. generate thematic maps. perfonn spatial

queries. ete.

JDK 1.2.2 is used in titis implementation. This is because the JDK 1.2.2 contains JFC/Swing

components. which are used extensively in our GUI implementation. The Java Foundation Classes.

or JFC. is a collection of Java APis for developing graphical user interfaces [Gea99]. Il contains the

following APis:

• Abstract Window Toolkit (versions 1.1 and beyond)

• 2D API

• Swing Components

• Accessibility API

The Abstract Window Toolkit. or AWT. is Java's original toolkit for dcveloping user interfaces.

The AWT provides the foundation upon which the rest of the IFC is built The original AWT was

designed to develop simple user interfaces. Swing. however. has more components expected in an

object-oriented UI toolkit. is more platform independent. more stable and bug-free. and is capable

of supporting the development of a high-powered user interface. Therefore. in this implemenlation.

the Geditor GUI is built with Swing components. The 2D API offers two-dimensional rendering

capabilities. such as providing a variable-sized pen for graphical operations. The Accessibility API

consists of a set of classes enabling Swing components to interact with assistive technologies for

users with disabilities. These two APis are not used in our Geditor implementation.

4.2 Interface for the jRelix Programmer-User

To build the interface for the jRetix Programmer-User. we must first understand the original jRelix

system architecture and add the Geditor to it. Section 4.2. 1 explains the original system architecture

• CHAPTER 4. GEDITOR IMPLEMENTATION 89

•

•

and displays the updated system architecture with the new Geditor comp<ment. Section 4.2.2 dis­

cusses the building of the gedit syntax into the jRelix system. Section 4.2.3 explains the a1gorithm

of executeRelixCommandO method which is added to the Interpreter to a110w Geditor to caU and

execute jRelix commands or statements.

4.2.1 jRelix System Architecutre

The current jRelix system contains three main pans. the Parser. the lnterpreter. and the Execution

Engine. The Parser is created using JavaCC [S30961. a Java Compiler Compiler that automatically

generates parsers by compiling a high·level grammar storcd in a lext file. The JJTree [S3096]

preprocessor is used to build a syntax tree while parsing. The Interpreter (implemented in class

Interpreter.java) repeatedly caUs the Parsec. gets the syntax tree generated by the Parsec. traverses

the syntax teee and decomposes it into a set of method calls executed by the Execution Engine.

ln order to allow the jRelix programmer to cali Geditoc from jRelix. we must build the new gedit

syntax into jRelix. The overall system architecture of jRelix is as Figure 4.2 shows.

ln the above architecture. the Execution Engine is the same as that in the original version. The

new gedit syntax needs to he added to the Parser and Interpreter. Notice that in Figure 4.2. there are

two arrows of method calI from Geditor to the Interpreter and Execution Engine. This is because

Geditor needs to modify the map data (copy) during its nmning time. There are three ways to

complete the modification: 1. Generale the method caUs and pass them to the Execution Engine.

Then the Execution Engine methods operate directly on the map data. 2. Cali the Interpreter with

executeReüxCommandO method and pass the jRelix commands or statements as arguments to il

Refer to Section 4.2.3 for the a1gorithm of executeRelixCommandO. 3. Generate events and pass

them to the Interpreter that searches the system table for the predefined event handler lO handle

the events. Section 4.3.6(C) discusses the related algorithm in detail. These are represented by the

arrows of method calls from Geditor to the Interpreter and Execution Engine in Figure 4.2.

Since the geclit is a funcùonal operator. GedilOr cannot change the original map data. Therefore.

a copy of the map data is made and Geditor perfonns the data modification only on this copy. In

our implementation. when Interpreter calis Geditor.. it spawns a new thread for Geditor to run. As

soon as Geditor is called.. the statement which contains the ged.it expression returns. As a unary

• CHAPTER 4. GEDITOR IMPLEMENTATION

Parser

SyntaX tree

90

Interpreter

method caU

jRelix

Execution Engine method calI
Geditor

•

•

opcrate on

Copyof
mapdata

Figure 4.2: System Architecture

functional operalor. the value of the gedit expression is the same as ilS operand: the original map

relation. Since Gedilor runs on an independenl thread, the Interpreter can still accepl the jRelix

programmer's commands and statemenlS while the GIS End-User is working interactively in the

Geditor GUI.

4.2.2 Building tbe gedit Syntax

The syntax of gedit has already been specified in Section 3.1.3. Here. we summarize it as follows:

basic_grapllicaLanribute-list[additionaLgrapilicaLanribute_list] gedit reLname

The fust list specifies the five attributes representing group. type. sequence. x coordinate. and

y coordinate respectively. The second list is optional. Il specifies the auribute names of sorne

predefined attributes. An arbitrary number of equations are allowed in the second liSl and we have

• CHAPTER 4. GEDITOR IMPLEMENTATION 91

•

•

implemented the following three: Color=anr_name. Symbol=DItr_name. Layer=ottrJJame.

To implement the above syntax.. we first modify the grammar specification text file by adding the

new specification of the gedit syntax.. Then we generate the new Parsec using JavaCC and JJTree.

In Interpreter.java. we add the EvaluateGeditO method to analyzc the syntax tree and then cali and

display Geditor.

The algorithm of EvaluateGeditO is as foUows:

EvaluateGeditO

• Analyze the expression tree 10 obtain the auribute lists and the map relation of gedit.

• Create the array of domains: doms(O..71. where doms(O] .. doms(4) record the following

five domains of the map relation respcctively: group. type. sequence. x coordinate. and y

coordinate. These are the five anributes specified in the first list of gedit.

• doms[5] .. doms[7] record color. symbol and layer domains of the map relation respectively.

[f the second list spcci fies aU the three attributes. the corresponding domains of the three

attributes wiU he stored in doms[5] .. doms(7]. [f any of them is missing. a default attribute

with a default value will he ficst appended to the map relation and then the domain of the

appended attribute will he stored in doms(51.. doms(7].

• Call Geditor(doms. map..relation) to create the Geditor object. The graphical Gcditor window

will he displayed.

• Return the relation object of map..relation as the retum value.

ln the above algorithm. when any one of the three attributes in the second list is missing. a default

attribute with a default value will be appended to the map relation. For example. Figure 4.3 shows

the data of a map relation called maprcl.

The gedit expression is as follows:

R<-[G.T.S.x.Y][Symbol=SymbLayer=L] gedit maprel;

Then. EvaluateGcditO appends a default color attribute 10 the maprel as Figure 4.4 shows.

• CHAPTER 4. GEDITOR IMPLEMENTATION

G T S X y Symb L Name

SI Polygon 1 12286 3369 203 States Califomia

SI Polygon 2 12278 3345 203 States Califomia

SI Polygon 1 13588 3399 203 States Washington

SI Polygon 2 14000 3379 203 States Washington

Figure 4.3: Example of Map Rclation:maprel

92

maprcl•

G T S X y Symb L Name

SI Polygon 1 12286 3369 203 States Califomia

SI Polygon 2 12278 3345 203 States Califomia

S2 Polygon 1 13588 3399 203 States Washington

S2 Polygon 2 14000 3379 203 States Washington

.C

ijoin 204055055

COLOR

•

G T S X y SY1Db L Name .c
SI Polygon 1 12286 3369 203 States California 204055055

SI Polygon 2 12278 3345 203 States Califomia 204055055

52 Polygon l 13588 3399 203 States Washington 204055055

52 Polygon 2 14000 3379 203 States Washington 204055055

updated maprel

Figure 4.4: Append Color Attribute to maprel

ln Figure 4.4. COLOR is the default relation narne used in appending the color altribute la the

rnap relation. .C is the defaull attribute narne. The default color value is 204055055 (rOO). After

the appending~ the dornain of .C will he recorded in the array doms(O..71 and he passed 10 Geditor

objecte

Similarly. when the attribute of symbol is missing in the second list. a default altribute will he

appended to the map relation as weU. S YMBOL is the default relation name used in appending

and .Symb is the default attribute name. The default symbol value is 201 (saUd oval). The default

• CHAPTER 4. GEDITOR IMPLEMENTATION 93

•

•

relation for appending the layer attribute is LAYER and the default attribute name is .L. The default

layer value is "defaultlayer".

Since the three attributes we implemented in the second list (Color, Symbol, and Layer) are

required for the map display. when any one of them is missing. a dcfault value must he appended.

However. in future work. when more attributes are implemented in the second list. if they are not

relatcd to the map display. it will not he neccssary to append the default attribute values.

4.2.3 executeRelixCommandO algorithm

ln this section. the algorithm of executeRelixCommandO is explaincd. This is a method written

in Interpreter.java. With this melhod. other classes can execute jRclix commands or statements by

calling the executeRelixCommandO and passing these commands or statements as arguments lo this

rnethod.

executeRelixCommandGRelix_command_or..statement)

1. Redirect the input of the Parser and Interpreter from the standard input to ByteArraylnput­

Stream.

1. Feed the argument ofjRelix_command_or..statement to the input of the Parser and Interpreter.

3. CalI parser.StartO to parse the jReli'Lcommand-or-statement and build the synlax tree.

4. CalI interprelO to analyze the syntax tree and decompose it into method caUs and pass them

to the Execution Engine.

5. Redirect the input of the Parser and Interpreter back to the standard input.

4.3 Interface for the GIS End-User

Building the interface for the GIS End-User includes the displaying of the GUI with menus of GIS

functions. perfonning the GIS operations according to the user-input in the GUI, and displaying

the resullS of these operations as graphical maps on sereen. Section 4.3. 1 presents the architecture

of Gedïtor. Section 4.3.2 explains the algorithm of GedilOr.java that behaves as the controller of

• CHAPTER 4. GEDITOR IMPLEMENTATION 94

•

•

Geditor and lays oul the Geditor GUI. Section 4.3.3 describes the algorithm of the map display

function of Gedilor. Section 4.3.4 explains the classes uscd to implement the GIS functions in the

Layers menu. Section 4.3.5 describes the classes to implement functions in View menu. The classes

to build the functions in Query menu are discussed in Section 4.3.6.

4.3.1 Geditor architecture

The main class of Geditor is implemented in Geditor.java. The architecture is shown as Figure 4.5.

As Figure 4.5 shows. Geditor is invokcd from Interpreter (Interpreter.java) wilh the paramelers

of the map relation and the array of domains:doms[O..71. After Gcditor is called. it displays a GUI

with menus containing a set of GIS operations. Corresponding to the GIS End-Usec's input in the

GUI. Geditor caUs the related class to perfonn the GIS operations. These operations include Add

Layers. Layer Control. Color Edit..... ete. 11lese GIS functions modify the copy of the map data (in

relation format) wOOn necessary and caU the map display c1ass to show the most recently updated

Map View on sereen. The map display class is implemented in CvDraw.java. Whcn it is called. it

reads the most recently updated data from the copy of the map relation and displays it on sereen.

Notice in Figure 4.5. the read and write opeations of the map data are displaycd using dashed lines.

This means the map data is nOl directly accessed by Geditor. Instead. as discussed in Section 4.2.1.

Geditor calls the Execution Engine to read and write the map data copy.

As indicaled in Figure 4.5. Gcdilor is implemented using more than a dozen classes. Table 4.1

summarizes the main classes of Gedilor and their functions.

With the exception of Geditor.java and CvDraw.java. aIl the other classes in Table 4.1 build the

GIS functions corresponding to the menu items in Gcditor GUI. These classes are implemented in

a similar way. FirsL thcy lay out components such as text fields. lists. color choosers. and radio

bunons inside the dialog box and display the dialog. The purpose of the dialog is to allow the user

10 input the values required as parameters for completing the GIS functions. The classes wait for

the user's input until the user closes the dialog with the OK or Cancel bUlton. If the user closes

the dialog with Cancel. these classes retum lO their parent: Geditor.java. [f the user closes the

dialog with OK. these classes use methods such as gelTexlO. getElementAlO. getSelectedValueO.

and getColor() lO obtain the user inpul in the dialog. After updating the map data copy according 10

• CHAPTER 4. GEDITOR IMPLEMENTATION 95

l GIS end user

_................ .. "' "'

Add Layers 1• 1 (GeditAddLayers.java) 1

GUI
(Geditor.java) 1 Layer Control 1

1 (GcditLaye!Conuol.java) 1

user input: 1 Color Edit 1

Controler 1 (GeditColorEdiLjava) 1

~- (Geditor.java) 1 1Symbol Edit
ter : 1 (GeditSymbolEdiLjava) 1

caU ~•• 1 Individual Valuddap 1

1 (GedilValueClass.java) 1
Map

1 Range Map 1Display caU
1 (GeditRangeClass.java) 1

(CvDraw.java)
1 Legcnd Edilor 1

1 1 (GeitLcgendEdil.java) 1
1

1 1 Identify Taol 1

1 (Geditldcntify.java) 1

:G
1 Expression Buildcr 1

:e 1 (GcditElprl:Ssion.java) 1

:d 1 S~atia1 Qucry 1'. 1 1: 1 (Ge itSpatialQ.java)

: t
:0 1 Clear Selections 1

1 (Gcditor.java) 1:r
rcad 1 Options ! 1

1 (GeditOptions.java) 1
1

1
1 Hclp

1
1

1 (Geditor.Java) 1
1

1 1
1 1 About

1
1

1
1 (Geditor.java) 1

1 1 :..................... '" i ..

invoke
irom

Interprc

•

Copyof
mapdata

----------------- J
change(write)

Figure 4.5: GedilOr Architecture

•
the user inpuL these classes update the map in the Map View window.

There are other classes that are used to facilitate the implementation of the classes listed in Ta­

ble 4.1. GeditSpatial.java provides methods which determine the spatial relationship of the map

• CHAPTER 4. GEDITOR IMPLEMENTATION 96

•

•

CJassName Fundioa Description
GedilOr.java Gedilor Controller. Il lays oui the Geditor GUI. wailS for the user inpul

and caUs the corresponding classes 10 perfonn the user required lasks.
CvDraw.java Draws the map in the Map View window.
GedilAddLayers.java Adds layers to the Map View window.
GedilLayerConuol.java Changes the swe of each layer shown in the Map View window.
GedilColorEdil.java Changes the color of the active layer 10 fonn a unifonn layer.
GedilSymbolEdil.java If the active layer has the Point type. changes the symbols of the map fearures in

this layer to fonn a unifonn layer.
GeditValueclass.java Creares an individual value thematic map based on a descriptive aUribute.
GeditRangeCla~s.java Creaaes a range thematic map based on a descriptive attribute.
GeditLegendEdil.java Edits the tille and label of the active layer in the legend window.
Gcdilldcntify.java LiSlS the values of allthe descriptive attributes of a map feature close 10 the

mause in a pop-up window.
GcdilExpression.java Allows the user to build a Boolean expression and highlights the map fealUre

mal salisfies the expression.
GedilSpatialQ.java Highlights the map fealUre having panicular spatial rclationship with a given map

fealure.
GcditOption.java Allows the user 10 change the default rolors used in Geditor.

Table 4.1: Gcditor Classes

features used in GeditSpatialQ.java. GedilSymbollcon.java draws the symbol icons used in Ged­

Î1SymbolEditjava . GeditLegendjava defines the GeditLegend class used by Geditor.java to build

the legend array.

ln the rest of mis chapter. the implementation of the Geditor classes Listed in Table 4.1 will he

discussed in delaÎl.

4.3.2 Geditor ControUer

The controller of Geditor is implemented in Geditor.java. The main task of this class is to record the

system state with a set of variables. lay out and display the Gedilor GUI. wail for the user input. and

caU the corresponding functions to perfonn the required GIS operations. As described in Chapler

3. the main part of Geditor GUI contains a Geditor window with a menu bar on the top. From the

left 10 the righl. the menu bar contains the Layers~ View~ Query and Help menus. In the middle of

the Gedilor window is the Map View internai frame that displays the map. The left split pane of the

Map View window shows the legends of the map.

The foUowing are sorne important variables that record the Geditor system state:

• CHAPTER 4. GEDITOR IMPLEMENTATION

• showlayersD array: records the layers that are shown in the Map View window.

97

•

•

• legend array: records the necessary data of each layer for displaying both the text and graph­

ical elements in the legend window. The data of each array element include the name. title.

color value. symbol value. label. /abelattr, visible. active. and type of each layer.

The !abelmlr is used in thematic mapping. Il uses the sarne attribute name as that used by the

map feature classification. Il is used in the legend window LO show the auribute name where

the labels of different graphical legends come from. When the thematic maps are genera~

the labels of different graphicallegends are generated using this attribute value.

ShowlHidc arc two values the visible variable can have. ActivclInactive are two possible

values of the active variable. The threc possible values of type arc Polygon. Point. or Polyline.

The algorithm of Geditor.java is as follows:

1. Obtain a copy of the map relation LO Lmprel.

2. tprel<- [layer. type. color. symbol1 in tmprel.

3. Use Lprel to create the legend array.

4. Lay out the components inside the Geditor window. Display the Gcditor window with the

menu bar and an empty Map View window. Wait for the user input in the Geditor window.

5. lf the user selects the Add Layer or Layer Connol menu item in the Layers menu. calI Add

layers or Layer Control functions by invoking GeditAddLayers or GeditLayerConuol classes

accordingly. After thal. calI the updateMapView(maprelation_name) to update the map in

Map View window. The updateMapView method selects a subset of the map relation ac­

cording to the showlayersD array and caUs the Map Display function to display the map with

shown layers. Then. call updateLegendQ to update the legend window according to the legend

array which bas been updated using the Add layer function.

6. If the user selects a menu item in the View men~ cali the related function by creating the

corresponding objecte For example. if the user the chooses the Color Editer menu item in

• CHAPTER 4. GEDlTOR IMPLEMENTATION 98

•

•

the View menu. cali the Color Editor function by creating the GeditColorEdit object. After

that. call the updateMapView(maprelation_name) 10 update the map in the Map View win­

dow. The map relation should he the updated one with the changed color. 1ben. also cali

updateLegendO 10 update the legends.

7. If the user selects a menu item (except the Clear Selection) in the Query menu. cali the

related function and update the map and legends in the Map View window. Before the query

is pcrformed. store the current map relation to "stored-maprelation". When the user chooses

the Clear Selection function. cali the updateMapView(store(Lmaprelation_name) to restore

the original Map View before the query is performed.

8. [[the user selects User's Manual in the Help menu, use "gv helpfilename" to call the ghostview

to show the teXl of the User's Manual chapter of this thesis. ff the user selects the About item

in the Help menu. display a window with the version message of the current Geditor.

4.3.3 Map Display

The map display function is implemented in Cv Draw.java. This function is called 10 display the

result of the set of GIS functions thal are going to he discussed in the following sections. For

example, at the end of the Add Layer function. this map display function is called to display the

map with the layers selected by the user in the Add Layer dialog. ln another case. when a new color

is assigned to a map feature using the Color Editor function. the map display function is called to

display the map with the updated color. To make il possible for this map display function he reused

by aU GIS functions. we design the following algorithm.

1. Gel the positions of the attributes: group. sequence. x coordinate. y coordinate. color. symbol.

and layer in the map relation.

2. According to the maximum and minimum x, y coordinates in the map relation. calculate the

factor for mapping them to the sereen pixels.

3. Read the first tuple in the map relation (sorted relation).

• CHAPTER 4. GEDITOR IMPLEMENTATION 99

•

•

4. If the type value of the tuple is point. draw a symbol in the Map View window. The shape of

the symbol is delennined by the symbol value of the tuple. the position is detennined by the

x. y coordînales. and the pen color is detennined by the color value of the tuple.

s. If the type of the tuple is polygon. read the nexllUple (soned relation) until il is nol in the same

group as the former one. Each tuple in the same group is one of the vertices of the polygone

Store all the verlices in an array. Then draw and fill a polygon in the Map View window. The

x. y coordinates of each vertex detennines the shape and position of the polygone The filling

color is detennined by the color value.

6. If the type of the tuple is polyline. read the next tuple (sorted relation) until the next tuple is

nol in thc samc group as the former onc. Each tuple is one of the vertices of the polyline.

Draw a line from the former vertex to the nexl The shape and position of the polyline is

detennined by the x. y coordinales of each vertex. The color value determines the pen color.

7. Repeat step 4.5.6 until the end of the map relation is rcached.

The above algorithm is based on the following assumptions:

• The map relation that is passed to the CvDraw class must contain at least the following cighl

auributes: group. type. sequence. x coordinate. y coordinate. color. symbol. and layer. The

relation must he soned by group. type. sequence.. x coordinate.. y coordinate as weil. The

tuples in the same polygon group must represent the vertices of the polygon in a counter­

clockwise sequence. Otherwise. the map would he displayed in an unexpected shape.

• The color values of the tuples in the same polygon group shouId he the same. Different tuples

in the same polygon group represents the different coordinates of the verlices in the same

polygone Since the color attribute rcpresents Ûle filling color of this polygon. the values of the

color altribute in the same polygon group shouId he the same. The Program_User should take

the responsibility to garantee this property and CvDraw assumes that this property is weil

kepl Therefore. using the value of the color attribute of any tuple in the same polygon group

to fill il should have the same result ln this implementation. CvDraw pieks up the color value

of the last tuple in the same group to fill the polygone

• CHAPTER 4. GEDITOR IMPLEMENTATION 100

•

•

The color values of the tuples in the same group of polyline could he differenl When CvDraw

draws a line from the fonner venex to the nex~ the color value of the stan venex is used as

the pen colora

In the above algorithm. when the polygons and polylines are drawn. the symbol values are ig­

nored. Strictly speaking. the syrnbol values of polygons and polylines could have meanings. The

symbol values of polygons could represent the filling patterns and the syrnbol values of polylines

could represent the line thickness or line styles, such as the dashed Hne and dottOO line. Since we

use JDK 1.2.2 lO implement Geditor and it onJy contains the AWT and Swing components of JFC

(refcr to Section 4.1 for more details), it is very complicated to implement the filling patterns of

polygons as weIl as the Hne thickness and styles of polyLines. For further implementation. the JFC

ID package could he used for the map display. Please refer to Chapter 5 for funher infonnation.

4.3.4 Layers

There are two functions in the Layers menu: Add Layer and Layer Conuol. When the Gedilor

is called. Gedilor displays the Geditor window with a menu bar on the top and a Map View win­

dow in the middle. lnitially. the Map View window is cmpty. The user needs to add layer(s) to

let me Geditor know what layer(s) should he displayed. After a layer is addOO to Map Vicw win­

dow. two switehes are attaehed to this layer 10 record its state: ShowlHide. ActivelInactive. The

Activcllnactive state can he changed using Layer Control funclion.

A. Add Layer

The following is the algorithm of Add Layers function.

1. Lay out the components inside the Add Layer dialog and display il. Wait for the user input

until the user closes the dialog with OK or Cancel button.

2. If the user closes the dialog with the OK button. store the layer names that the user selects in

the Geditor.showlayers[] array.

3. Update the legend array. Change the visible variable of each layer added by the user to

"Show". The last layer added by the user in the Add Layer dialog is the cunent active layer.

Therefore. change the active variable of this layer 10 ··Active".

• CHAPTER 4. GEDITOR IMPLEMENTATION lOI

•

•

When the Add Layer function retums to the Geditor controller (Geditor.java). according to the

updated showlayersD array and the legend array. the controller caUs updateMapView and updateLe­

gend methods to update the map and legends in the Map View window.

B. Layer Control

Layer Control changes the Activellnactive state of each shown layer in the Map View window.

The algorithm is as follows:

1. Lay out the components inside the Layer Control dialog and display il Wait for the user input

until the user closes the dialog with OK or Cancel button. The two switehes of all the layers

are displayed in the dialog.

") lf the user closes the dialog with the OK button. change the active variable of the Geditor

legend array of the corresponding layer to "Active" according to the user input in the dialog.

There is no necd for the Gcditor controller to update the map or legend in the Map View window

when the Layer Control function returns.

4.3.5 View

There are three main functions in this menu: color and symbol editing in a unifonn layer. thematic

mapping. and Icgend editor.

1. Unifonn Layer

ln a uniform layer (refer to Section 3.3.1 for the definition). the color and symbol of all the map

features in this layer can he changed by Color Editor and Symbol Editor.

A. Color Editor

The Color Editor changes the color of the map features in the cunent active layer. The algorithm

is as follows:

1. Lay out the components inside the Color Editor diaIog and display it. The current active layer

name and a color palette are displayed. The active layer name is obtained from the Geditor

legend array. Wait for the user input until the user closes the dialog with the OK or Cancel

button.

• CHAPTER 4. GEDITOR IMPLEMENTATION 102

•

•

2. If the user closes the dialog with OK~ change the color value of the tuples of the current active

layer in the map relation to what the user chose in the dialog.

3. Update the color variable of the correnl active layer in the legend array with the new color

value the user input in the dialog.

When the Color Editor function returns to the Gcditor Conttoller. il updates the map and legend

in the Map View window according to the updated map relation and legend array.

B. Symbol Editor

The Symbol Editor function is cnablcd ooly whcn the current active layer has the "Point" type.

It changes the syrnbol value of the points in the current active layer. The algorithm is as fol1ows:

1. Lay out the components inside the Symbol Editor dialog and display il The current active

layer name and a List of predefined graphical symbols are displayed. Wait for the user input

until the user closes the dialog with the OK or Cancel button.

2. li the user closes the dialog with OK. change the symbol value of the tuples of the cureent

active layer in the map relation to what the user chose in the dialog.

3. Update the symbol variable of the corrent active layer in the legend array with the new symbol

value the user input in the dialog.

When the Symbol Editor function retums to the Geditor Controller. it updates the map and

legends in the Map View window according ta the updated map relation and legend array.

2. Thematic Mapping

Two types of thematic maps are provided in this Geditor: lndividual Value Map and Range Map.

A. Individual Value Map

Individual value maps group map features by the individual values of a cenain descriptive at­

tribute (refer to Section 3.1.2 for the definition). In this Geditor implementation. the grouping is

shown using different coloes. AlI the map feawres in the same group are displayed in the same

color. The map features in different groups are displayed in ditIerent color. The aIgorithm goes as

follows:

• CHAPTER 4. GEDITOR IMPLEMENTATION 103

•

•

1. Lay out the components inside the lndividual Value Map dialog and display it. The current

active layer name and a list of all the descriptive atuibutes are displayed in the dialog. The

current active layer name cao he obtained by reading the Geditor legend array. Wait for the

user input in the dialog and wait until the user closes the dialog with the OK or Cancel button.

2. If the user closes the dialog with OK. update the color value of the active layer in the map

relation as follows:

• Gel different values of the selected atuibute by running the jrelix statement:

unprel<-[selectedattribute] where layer=activelayer in maprelation;

We use executeRelixCommandO as described in Section 4.2.3 to run the above stale­

ment.

• Read the unprel and construct the following array of values:

{(value[1]. coloe[1D. (value[21. color[2])•...• (value[n). color[nJ)}.

where color[iJ=(255-i*colorgap.i*colorgap. i*colorgap) and colorgap=2561(number of

tuples in tmprel). The above three values for a color represents the R. G. and B respec­

tively.

• Use the above array to update the original map relation. For example. if the value of the

selected attribute is value[il. the color value of this tuple must he changed to color[i).

Therefore. the tuples with different values of the selected attribute obtain different color

values.

3. Update the Geditor legend array accordingly.

When this function returns to the Geditor Controller. the controller will update the map and

legend in the Map View window with the updated map relation and legend array.

B. RangeMap

Range maps assign different coloes to different ranges of values of a descriptive atuibute. The

algorithm goes as follows:

1. Lay out the components inside the Range Map dialog and display il. The active layer name.

the list of descriptive attributes. a list of color ramps. the range values and the sample of

• CHAPTER 4. GEDITOR IMPLEMENTATION 104

•

•

the selected color ramp are displayed in the dialog. The active layer name is also obtained

from the Geditor legend array. The range values of the selected atttibute can he obtained by

dividing the range of [min..max] into five equal ranges.. where min and max are the minimum

and maximum values of the selected altribute. Then wait for the user input in the dialog until

the user closes the dialog with the OK or Cancel button.

2. If the user closes the dialog with OK bUllon. update the color value of the tuples of the

active layer in the map relation. Suppose there are five ranges: r[1J. r[2 J. r[3J. r[4]. r[51

which have been calculated according to Ûle user input in the dialog. The color values clr[Il.

clr[21.clr[3].clr[4].clr[5] for the five ranges can he obtained from the user choice of the pre­

defined color rampe Thcrefore. change Ûle color value of the tuples in the map relation as

fol1ows: if the value of the selectcd auribute is in range r[Il. change Ûle color value to clr[Il.

if the value of the selected attribute is in range c[21. change the color value to clr(2]. and so

on.

When this function rcturns to the Geditor Controllcr. the control1er will update the map and

legend in the Map Vicw window with Ûle updaled map relation and legend array.

3. Legend Editor

The lcgend window can he changed using Lcgend Editor. The tille of each layer and the label

beside each graphical legend can be changed. The algorithm is as follows:

1. Lay out the components inside the Legend Editor dialog and display it. The name. tille. color.

symbol and the label of Ûle active layer are displayed in the dialog. Notice tbat if the current

active layer is a unifonn layer. Ûlere is only one row displayed in the dialog. lf the current

active layer is a non-unifonn layer. Ûlere are multiple rows showing diffcrent colors. sYffibols

and labels of map features in Ûlis layer.

2. Wait for the user input in the dialog until the user closes the dialog with the OK or Cancel

button.

3. If the user closes Ûle dialog with OK button. update the Geditor legend array according to the

user input.

• CHAPTER 4. GEDITOR IMPLEMENTATION 105

•

•

When this function returns. the Geditor controUer updates the legend according to the updated

legend array. The map does not need to he updated in the Map View window.

4.3.6 Query

Geditor provides three ways of querying the map: Identify Tooi. Expression Builder. and Spatial

Query. With [dentify Tooi. when the user clicks the mouse close ta a map feature. all the values of

dcscripùve attributes will he listed in a pop-up window. With Expression Builder. the map feature

that satisfies the user's expression will he turned yellow (dcfau1t color). With Spatial Query. the map

fcaturc that satisfies the user-defined spatial relationship with a given map feature will he turned rcd

(dcfault color). The user selection in both Expression Buildcr and Spatial Query can he cleared

using Clcar Selections. The Options menu item provides the capability of changing the dcfault

coloc values used in Geditor.

A. Identify Tool

Identify Toollists the descriptive auribute values (cefer to Section 3.1.2 for the dcfinition) of the

map feature in the current active layer when the user clicks the mousc close to this map featurc. The

algorithm is as follows:

1. Lay out the componenls inside the Identify Tooi window and display il. Obtain the active

layer name from the Geditor legend anay and display it on the top of the pop-up window.

ln the rniddle of the pop-up window. display an empty list that will be filled with attribute

values. An "Identify" toggle button is displayed on the bottom of the window.

2. Then. check the type of the map features of the cureent active layer.

• If it is Point type. find the point that is within a small distance of the mouse position on

sereen.

E~~

point close [0 mouse

•

•

CHAPTER 4. GEDITOR IMPLEMENTATION

• If it is Polygon type. find the polygon that contains the rnouse.

if the angles 1+2+3+4+5+6=2pi. men the mouse point is in the polygon

• If it is Polyline type. find the polyline that is clOSCsl 10 the mouse poinL

polylinc

Pl

If the dctcrminant of P. Pl, and P2 equals zero, the mousc point P is on the linc of (Pl. P2)

106

•

ln the above figure. the "detenninant of R Pl and P2" mcans the area of the triangle ~ Pl and

Pl.

3. When the map feature is found. if it is a point. display all the descriptive attribule values

of this point in the pop-up window. If il is a polygon or polyLine. we assume thal all the

descriptive attribute values in the same polygon or polyline group in the map relation are the

same. Therefore. a tuple is picked randomly in the same group and the corresponding attribute

values are displayed in the pop-up window. If there is no map feature that is close enough 10

the mousc. no value is displayed in the pop-up window.

4. In the pop-up window. the ,oIdcntify" button is initially presscd. If the user needs 10 keep the

pop-up window on the desktop" but disable the ldentify function. click the 'O[dentify" button 10

bounce it up. After that, nothing will he displayed in the pop-up window when the user clicks

the map feature. To enable the ldentify function again. just click on the ··Identify'· button.

• CHAPTER 4. GEDITOR IMPLEMENTATION 107

•

•

B. Expression Builder

The Expression Builder providcs a dialog box which enables the user 00 select the map features in

the current active layer with an expression. In the dialog, the active layer narne, a list of descriptive

attributes, a list of operators, and the List of values of the selected attribute are displaycd. The

expression is also displayed in the text area of the dialog while the user is building the expression.

The algorithm of this function is as follows:

1. Lay out the components inside the dialog and display il. The active layer narne is obtained

from the Geditor legend anay. Wait for the user input and display the user's input in the

bottom text area of the dialog.

2. If the user closes the dialog with the OK button. obtain the user's input from the text area.

This is the expression the user created.

3. Assemble the following jReLix statemenc .SeIRel<-where expression in maprelation;

Then cali executeRelixCommandO to exccute the abovc statemenL

.SeIRcl contains the selected map feature.

If the execution fails. display an error message showing that the expression the user built was

illegal. Otherwise. make a copy of the CUITent map relation and update this map copy by

changing the color value of the selccted map feature to yeUow.

When this function returns to the Geditor Conuoller. it updates the map in the Map View window

with the above updated map copy. The legends do nOl need to he updated.

C. Spatial Query

Spatial Query allows the user 10 select a map feature that has a particular spatial relationship

with a given map feature. The given map featurc is the one that is selected by Expression Builder.

that is. the current yellow map feature in the Map View window. The algorithm is as follows:

1. Lay out the components inside the Spatial Query dialog and display il The current active

layer name is displayed on the top. A list of spatial operators is displayed in the middle. The

value field is only enabled when the spatial operator is "Within Distance or'.

• CHA.PTER 4. GEDITOR IMPLEMENTATION

2. Wait for the user input until the user closes the dialog with the OK or Cancel bunon.

108

•

•

3. (f the user closes the dialog with the OK button. generate the EventName according to the

user's choice in the spatial operator list. For example. if the user chose "Within Distance Of',

the EventName will he "withindist".

4. Generate the four necessary relations needed in the cxecution of the event handler: .ActLRcl•

.SeIRel. .ValucRel (ooly needed when the opcrator is "Within Distance Or'), and .SpqRcl.

The definition of these relations can he found in Section 3.6.

5. CalI executeEventH(EventName. env) to execute the event hander. The executeEventH searches

the current system table to find the corresponding event handler. If the event handler has been

defined it will he executed. Otherwise display an error message reminding the jRelix pro­

grammer to write the event handler before performing this Spatial Query.

When the Spatial Query function returns. the Geditor updates the map in the Map View window

according LO the result of the event handler (.SpqRel relation). The legends do not need to he

updated.

D. Clear Selections

This function restores the Map View window before the query is perfonned. Section 4.3.2 has

discussed about the implementaùon of this function.

E. Options

The Options function provides the dialog for the user to change the three default colors used in

Geditor: the highlight color used in the legend window to show the current active layer. the color

to show the selected map features from Expression Builder. and the color to show the selected map

features from Spatial Query. The values of the above three colors are slOred as three variables in

the Geditor class. These are selcolor (for Expression Builder), spqcolor (for Spatial Query) and

activecolor (for highlighting the active layer).

Therefore. the algorithm is as follows:

1. Lay out the components inside Ùle Options dialog and display il. Obtain the current value of

the three default colors from the Geditor variables: selcolor. spqcolor and activecolor. Three

• CHAPTER 4. GEDITOR IMPLEMENTATION 109

•

•

color patches shows these three color values. A color palette is displayed when the user clicks

on a color patch. This allows the user 10 change the corrcsponding default colors. Wait for

the user input until the user closes the dialog with the OK or Cancel button.

2. Change the corresponding Geditor variables (selcolor. spqcolor. or activecolor) to record the

changed defauIt color according to the user input in the dialog.

•

•

•

Chapter 5

Conclusion

This chapter bcgins with a summary of the work that has bcen accomplishcd. It concludes with

suggestions for possible extensions and future enhancements.

5.1 Summary

This thesis presents the design and implementation of a GIS edilor (Gcditor) which bccomes ajRelix

campement that allows the user to view and edit the map graphically. With this Geditor, a series of

GIS functions rclated to the map can also he perfonned.

Geditor builds two interfaces for the user. One is the interface for the jRelix Programmer-User

which builds the gedit syntax that allows the jRelix programmer to cali and display the Geditor

GUI. The other is a graphical interface for the End-User that allows the End-User 10 display the

map and complete GIS functions.

The principle of the design and implementation of Geditor is to provide a nexible and extendable

framework. Firstly. the second attribute List of the gedit syntax is extendable. therefore further im­

plementations can accammodate more attribules in the second liSl Secandly. by utilizing the event

handler machanism of jRelix. Gedilar generates proper events according 10 the users' requirements

and transfer the task ta the event handlers written by jRelix programmees. This makes il possible to

customize the implementation of the corresponding GIS functions and change it dynamically during

the running tîme.

lIn

• CHAPTER 5. CONCLUSION 111

•

•

Gcditor incorporates a series of GIS core functions that are implemented using Aldat capabilities

and a graphical display interface. This accomplished the goal of building GIS applications in an in­

tegrated architecture using a relational database. Ali the data including both spatial and non-spatial

data are treated cqually in jRelix. Sorne DBMS do not offer the flexibility of implementing the nec­

essary spatial operations needed for GIS functions. However. jRelix dcfinitely has the capabilities

and the Geditor irnplementation is a good test. Il is beyond the scope of this thesis to integrate all

the possible GIS functions within Gedïtor. However. this thesis builds the fundamental elements

and providcs an eXlendable framework for future work on this issue.

5.2 Future Work

5.2.1 Extension of the second attribute list of gedit

As discussed in Section 3.1.3 and 4.2.2. the second attribute list of gedit could he extended. Cur­

rcnlly. three altribulcS: color. symbol. and layer are implemented. The following is an example of a

legal syntax:

[G.T.S.X.Yl[Color=C. Symbol=Symb. Layer=Ll gedil maprelationl;.

where maprelation 1 is the same as what Table 3.1 shows.

ln the future. Geditor may necd more data to accomplish more advanced GIS applications. For

example. if the more sophisticated map display requires the capital of each country to flash on

screen. a flash speed attribute might be needed. In this case. a fourth attribute could he added to the

second list of the above example:

(G.T.S.x.Y][Color=C. Symbol=Symb. Layer=L.. Fspeed=F1 gedit maprelation;..

where maprelation should include the altribute F that indicates the flash speed of each rnap

feature.

As another example. if the user needs to dïsplay the map in three dimensions.. a third coordinale

Z might he needed. Therefore.. another attribute that shows the Z coordinate must he added to the

second attribute list of gedit as foUows:

[G.T..S.X.Y][Color=C. Symbol=Symb. Layer=L.. Fspeed=F. Zvalue=Z] gedit maprelation;

ln maprealtio~ the attribute Z indicates the Z coordinate of each map feature.

• CHAPTER 5. CONCLUSION 112

•

•

If more thematic maps are built in Geditor. more attributes need to he added to the second list

of gedit. Recall the example about the Dot Density map in Section 1.2.2.A.6. The dots inside each

polygon are based on the number of people in that area. Therefore. the second attribute list of gedit

could he extended as foUows:

(G.T.S.X.Y][Color=C. Symbol=Symb. Layer=L. Fspeed=F. Zvalue=Z. DotDens=Pop] gedit maprela­

tion;

This is similar to the Graduate Symbol map and the Chan Symbol map discussed in Section

1.2.2.A.6.

Whcn olhcr functions are added to Geditor. more auributes might also he needcd in the second

attributc list of gedit. For example. if Geditor implements the contour map. the attribute for drawing

lhe contour lines nccds to he added to the second anribute liSL Suppose the contour lines are drawn

based on the altitude of each polygon venex. the gedit syntax bccomes:

[G.T.S.X.Y)lColor=C.Symbol=Symb. Layer=L. Fspecd=F. Zvalue=Z. DotDens=Pop. Contour=Hgt]

gedil maprelation:.

where maprclation contains the attribute Hgt that shows the altitude of each polygon venex.

When the contour lines arc drawn. interpolation techniques must he used lO gencrate thesc lines.

The examples could go on and on and the second attribute list could become very long. However.

regardless of the number of attributes that are added. the Parser does not have to he rewritten because

the gedit syntax allows the second attribute to he extended. Only the Interpreter needs to be modified

accordingly.

5.2.2 Enbancement of Map Display

In this version of Geditor. all polygons are filled with colors and aU polylines are drawn in solid

lines with the same line thickness (one pixel). The different fiUing patterns of polygons and the

different polyline styles are not implemented ln the further implementation. the values of the

symbol attribute could he used to indicate the line types and polygon filling pauerns. As mentioned

in Section 4.3.3. in future work. the JFC ID package could he used. There are existing methods for

filling polygons with different patterns and drawing lines with vaiable thickness and different styles

in the JFC 2D package.

• CHAPTER 5. CONCLUSION 113

•

•

After these display features are added different line styles can show different road types. such as

highway. freeway. streets. railroad. and subway. Polygons can also he filled with different patterns.

which is important when black and white pictures are needed.

The CWTent version of Geditor displays maps in two dimensions. However. 3D display is he­

coming increasingly popular in GIS applications. To achieve this goal. firstly. in addition to the x.y
coordinates already stored in the map relation. the Z coordinate would have to he added. Secondly.

the second attribute list of gedit would have to he extended as discussed in Section 5.2. 1. Thirdly.

a 3D display package needs to he used to achicve the 3D visualization. Java 3D[nn) API which

enables programmers using Java[un) tcchnology to do 3D visualization might he a good choiee.

5.2.3 Integration of more GIS functions

As discusscd in Section 1.3. Geditor implements the typieal common funetions of GlSs. especially

those display-rclated functions. Sorne GIS functions are left out and it would he niee to ineorporate

them ÎnlO Geditor in the future.

A. Polygon Overlay, Dissolve, and Buifer Generation

Polygon overlay. dissolve. and buffcr gencration functions are left out in Geditor because they

are not display-related except for the results display. 1bese funetions can he achieved within AI­

dat capabilities and Maninez has already provided the Aldat codes for these funetions [Mar98).

Howcver. since the above three funetions play an imponant role in GIS applications. perhaps in the

future. Geditor can integrate them into Geditor window. This ean he aehieved easily by utilizing

the event handler mechanism of jRelix. Similar to the implementation of Spatial Qucry function.

when the user requires these funetions. say polygon overlay. Geditor generates a proper event. Then

the corresponding event handler wrilten by the jRelix programmer wiU he called and executed to

complete the operation. The results can he displayed using the map display class (CvDraw.java)

already implemented in this Geditor.

B. Measurement

• Measurement of Points

As discussed in Section 1.2.2.A.2. the measurement of points is related to the counting of

points in a user defined windowing polygone Therefore. an interface is needed to capture the

• CHAPTER 5. CONCLUSION 114

•

•

user input of the windowing polygon. Then the Aldat capabilities can locale the points en­

tirely within the windowing polygon and count the numher of such points. When integrating

this function into Geditor. a component necels to he added to captw'e the user's windowing

polygon. Aldat codes which locate and count the points entirely within the windowing poly­

gon. cao he cxecutcd using executeRelixCommandO method. Finally. the result (number of

points) cao he displaycd in a pop-up window or a fixed text field in the Geditor window.

• Measurement of Lines and Polygons

As discussed in Section 1.2.2.8.2. an interface is needed to allow the user lo specify the

polygon or the polyline to he measurcd. This can he achieved by the selection of map fealUres

using Expression Builder. which has already been implementcd in the current Geditor. The

user might also nced another selection tool to highlight the map feature using the mousc. A

minor modification of Idcntify Tool cao accomplish this. When the user clicks the mouse

close enough to the map fealUre. instead of showing ail the descriptive auribute values of

the map feature. the selection tool May simply highlight the map feature on sereen. Then.

Aldat codes which calculate the area or pcrimeter of the polygon. edge length or the whole

lcngth of the polyline cao he passed to executeRelixCommandO. Finally. the results of the

measurcment can be displayed in a pop-up window or a fixed text field in the Gedilor window.

c. Spatial data editing

This set of editing operations is used to correct the errors in the data captw'e stage. It includes

map generalization. rubber sheeting. and snapping that are discussed in detail in Section 1.2.2.B.4.

A Graphical editing interface needs to be added to Geditor to allow the user to specify the map

feature and edit il interactively. Different specifie editing interfaces need to he implemented for

different editing functions. For example. for polygon thinning, an interface for the End-User should

allow the user to delete vertices by clicking them and show the result polygon with the remaining

vertices. Finally. when the user is satisfied with the modified map feature. the results need to he

saved for future use.

To implement the saving of the graphic data with the modified map features, there are two op­

tions. One is keeping gedit functional the other is changing gedit to a non-funcùonal operator.

• CHAPTER 5. CONCLUSION 115

•

•

Currently. gedit is a functional unary operator. that is. gedit does not change the value of its

operand (the map relation). Funhennore. the value of the gedit expression is also the same as

its operand: the original map relation. When the spatial editing is implemented.. if we keep gedit

functional. we still do not change the value of the operand of gedit. but let gedit return a different

value from the original operand (the original map relation). In this case. Geditor cannot run on

an independent thread from the Interpreter as Section 4.2.1 describes. When the Interpreter caUs

Geditor. it has to wait when Geditor interacts with the End-User in its GUI. As discussed in Section

4.2.1. Geditor obtains a copy of the original map relation and updates this copy when necessary.

ln the spatial editing case. when the user is satified with the modified map features. the result wiU

he saved in this map relation copy. When Geditor finishes and returns to the Interpreter. the gedit

expression obtains the map relation copy as its value. This value can he assigned to a new map

relation for future use. The original map relaùon is kept unchanged during the whole process.

The other approach to implementing the saving is to change the gedit to a non-functional unary

opcrator. ln this case. gedit must fit into update syntax. not expression. gedit will he allowed to

change the value of its operand. that is. the original map relation. The Interpreter still has to wait

until Geditor finishes and rctums. but the content of the original map relation can he changed during

the Geditor interaction with the End-User in its GUI. As far as spatial editing is concemed. when

the user is satisfied with the modified map features. the resuit will he saved into the original map

relation directly. This implementation approach changes gedit to a non-functional operation.

D. Map Sbeet Manipulation

Map sheet manipulation includes projection change. coordinate translation. scale change and

rotations. With the exception of the result display. these functions can he achieved using Aidat

capabilities. Dialogs with the user need to he added to Geditor to obtain the parameter data for

completing those operations. Then the corresponding Aidat codes can he executed using event

handler mechanism or the executeRelixCommandO method. For example. for the scale change.

Geditor needs to know how much percent smaller or larger the user wants the map ta he. This cao

he captured by displaying a list of percentages in a dialog or on the toolbar lO allow the user to

choose. Theo the X.y coordinates cao he updated in the map relation by multiplying by the chosen

percentage. Aidai codes with the Update command can achieve this. The executeRelixCommandO

• CHAPTER 5. CONCLUSION 116

•

•

method or event handler mechanism can he used to run these Aldat codes. FinaUy. Geditor caUs the

map display class (CvDraw.java) to display the map with the updated map relation. As a result. the

map will he zoomed in or out

There are other functions thal could he added to Geditor. For example. more thematic maps

(such as dot density map and chan symbol map). spatial interpolation in terrain analysis. network

analysis. image processing. and 50 on. With the development of GIS applications. more and more

functions will emerge and therefore need to he included in Geditor. Dy implementing this Geditor

with GIS core functions. this thesis leads the way for the implementation of more complicated GIS

applications using Aldat capabilities and a graphical interface.

5.2.4 Issues of Time and Space in the Implementation

The goal of this thesis is 10 demonstrate the feasibility of using a relational database programming

language to implement an independent GIS application. Performance issues are bcyond the scope

of mis tbesis because they depend on the Implementation of the underlying databasc system. jRelix.

Measurements of tirne and space requiremenlS of Gedilor would he measurements of the perfor­

mance of jRelix. which was buill by others. However. as mentioned in Chapter 1. performance

issues are very important for the integration of GIS data management The reason mat mosl com­

mercial GISs do not use database to store graphical data is mal their inefficiency in storing. retrieving

and updating graphical data compared to specialized binary file fonnats. Therefore. in future work.

jrelix must he re-implemented for time and space performance. and the implementation of Gedilor

then measurcd and compared with standard GIS approaches. such as ESRI ArclInfo. maplnfo. and

ESRI Map Objects.

•

•

•

AppendixA

Backus-Naur Form for gedit

This appcndix presents the extended Backus-Naur form (BNF) of the grammar in our implementa­

tion. Only the new added syntax (gedit) and the modified syntn wiU he providcd herc. A complete

documentation of the original jRelix grammar/synlaX in BNF format is given in [50000].

The grammar is created from the grammar specification (in file Parser..üt). using the JavaCC

documentation generator called j jdoc. ln the BNF definition. terminais will he quoted and non­

terminals will be otherwisc. The sign 1 means or. (... I... I...) means choosing one of the components

separated by 1 inside me brackets. (...)? repeats the component inside me brackets zero or one time.

ln this Geditor implementation. we created me gedit grammar/syntax and modified the syntax of

event handlers in jRelix. The following is me BNF notation of me new gedit synlaX and the updated

event handler syntax.

Projection := Projector (("in" 1 "from") Projection
1 Projector "gedit" Expression
1 "gedit" Expression 1 Selection

EventName := (Prefix ":")? Action ":" (Identifier)?

Action := "add" l "delete" 1 "change" l "contains" l "cmpcontains"
1 "crnpwithin" l "intersect" l "within" l "withindist"

11 '7

•

•

•

Bibliography

[Abi93] Serge Abiteboul~ Georg Lausen. Heinz Uphoff. and Emmanuel Waller. Methods

and mies. SIGMOD Record (ACM Special buerest Group 011 Management of Data).

22(2):32-41. June 1993.

[Alk83 1 M. P. Alkinson~ P. J. Bailey. K. J. Chisholm. W. P. Cockshou. and R. Morrision. PS­

algol: A language for persistent programming. In 10tll Au.wraliall National Computer

Conference. pages 70-79. Melbourne. Australia. 1983.

[Alk84) M. ~ Alkinson~ W. P. Cockshott. P. Bailey. K. J. Chisholm. and R. Morrison. PS-algol

referellce ",allual. Technical Report PPR-4-83. Deparunent of Computer Science. Uni­

versities of Edinburg and St. Andrews. January 1984.

[Bak98) Patrick Baker. Java Implementatio" ofComputations in a Dalabare Programming u;m­

guage~ Master's thesis.. McGill University. 1998.

[Boc86] J. Bocca. EDUCE: A marriage of convenience: Prolog and a relational DBMS. In

Proceedillgs ofthe Internatiorral Symposium 01' Logic Programming, pages 36-45. IEEE

Computer Society.. The Computer Society Press. September 1986.

[Bur86] Burrough P.A.. Prilrciples of Geograpllical lIifonnatioll Systems for Land Resources

Assessmelrl. Oxford:Clarendon Press. 1986.

[Cer89) Stefano Ceri. Georg Gottlob. and Letizia Tanca. What you always wanted to know about

Datalog(and never dared to ask). IEEE Transactions 01' knowledge and DaIa Engineer­

ing. 1(1): 146-166. March 1989.

l1R

• BIBLIOGRAPHY 119

•

•

[Cha86] C. L. Chang and A. Walker. PROSQL: A Prolog programming interface with SQUOS.

In L. Kerschberg, editor, Expert Database Sys., page 233. BenjaminlCummings. Menlo

Par~ CA. 1986.

[Chr971 Nicholas Chrisman. ExplorillS Geographie Illformatioll systems. John Wiley&Sons.

1999.

[Cla99] Keith C. Clarke. Gettillg Starred with Geographie Illformatioll Systems. Prentice Hall.

Upper Saddle River, New Jersy. 1999.

[Cod701 E.F.Codd. A relational model of data for large shared data banks. Communications of

the ACM. 13(6):377-387. June 1970.

[DeM971 Michael N. DeMers. Fu,uJamental.'i of Geographie l''fomlation System.'i. John Wi­

ley&Sons. Inc.• 1997.

[Due891 K. J.• Dueker and D. Kjcrne. Multipurpose cadastre: Terms alld definüiolls. Falls Church.

VA:ASPRS and ACSM.• 1989.

[Gea991 David M. Geary. Graphie JAVA: MasterÎ1,g the JFC, third Edition. Sun Microsystems

Press. Java Series. Palo Alto. California. 1999.

[Hao98] Biao Hao. Implementation of the nested relational algebra in Java. Masters thesis.

McGill University. Montreal. Canada. 1998.

[Hey98] lan Heywood Sarah Cornelius. Steve Carver. Ail I1llrot1uctioll to Geographicallnforma­

tiOll Systems. Longman. New York. 1998.

[Hul89] Richard Hull. Ron Morrison. and David Stemple. Proc. ofthe 2t1dworkshop 011 Database

Programming Languages. Salishan Lodge. Oregon. page xi. June 1989.

[HU197] Scon Hutehinson. Larry Daniel. Insille AIt'View GIS.. OnWord Press. U.S.A... 1997.

[loa94] Y. E. loannidis and M. M. Tsangaris. The design.. implementation. and perfomance evalu­

ation ofBE~'fUDA.IEEE Transactions on Knowledge and Data Eng.. 6(1):38.. February

1994.

• BIBLIOGRAPHY 120

•

•

[Jen85) Kathleen Jensen and Niklaus Wlfth. PASCAL User MamUJI and Repon (third edition).

Springer - Verlag. New York. N.Y.• 1985. Revised to ISO Standard by Andrew B. Mickel

and James F. Miner.

[Kor971 George B. Kone. P.E. n,e GIS Book. OnWord Press. U.S.A.• 1997.

[Lam91) Charles Lamb. Gordon Landis. Jack Orenstein. and Dan Weinreb. The ObjectStore

database system. Commwlications of the ACM. 34(10):5()..63. October 1991.

[MarJ8] Maninez Angelica Valdivia. Implementir.g ofG.1.S. Spatial Operations ill a Database

System. Master's thesis. School of Computer Science. McGill University. Montreal.

1998.

[McC89) D. McCarthy and U. Dayal. The architecture of an active data base management system.

Proceedings ofACM SIGMOD. Portland. Oregon 1989. 215-224.

[Mer77] T. H. Merren. Relations as programming language clements. lnformation Processing

Lettcrs. 6(1):29-33. 1977.

[Mcr84) T. H. Merren. Relatiollal Information Systems. Reston Publishing Co.• Reston. VA.

1984.

[Mor86] K. Morris. J.O. Ullm~ and A. Van Gelder. Design overview of the Naîl! system. Proc.

oflnternational Conference ofLogic Programming. New York: Academie. 1986.

[Mor87) K. Morris. J. Naughton. Y. Saraiya. J. Ullman. and A. Van Gelder. YAWN!(Yet another

window on NAll..!). Special Issue on Databases and Logic./EEE Data Engineering. vol.

10. Dec. 1987.

[Mor88) R. Morrison. PS-algol reference manual. Technical Report 12. University of St. Andrews.

St. Andrews. ScotlantL Febrauary 1988.

[peu90] Donna J. Peuquet and Duane F. Marble. Introduetory readings in Geographie Informa­

tion Systems. Taylor&Francis. London. 1990.

• BIBLIOGRAPHY 121

•

[San96] Sriram Sankar. Rob Duncan. and Screenivasa Viswanadha. Java Com-

piler cornpiler(JavaCC)-The Java Parser Generator. JavaCC web site al:

hup://www.suntest.comlJavaCC/. 1996. The web sile contains documentation. FAQs.

newsgroups. and software for JavaCC and JJTree.

(Sch77] Joachmim W. Schmidt. Sorne high levellanguage construets for data of type relation.

ACM Transactions on Database Systems. 2(3):247-261. September 1977.

(Sta90) Jeffrey Star and John Estes. Geographie Information Systems: An Introduction. Prentiee

Hall. New Jersey. 1990.

[St0761 M.R.Slonebraker. E. Wong. P. Kreps. and 0.0. Held. TIle des;g" and implementation of

INGRES. ACM Transactions on Database Systems. 1(3): 189-222. September 1976.

(SunOOI Weizhong. Sun. Updates and Evellls in a Nesled Relational Programming Lallguage.

Master's thesis. McGill University. Montreal. Canada. 2000.

[UU85] J. O. Ullman. lmplementalion of logie query languages for databases. ACM Trans.

Database Syst.. vol. 10. no. 3. 1985.

[Vla98) 1. Vlahavas and N. Bassiliades. Parallel. Object-oriented. and Active Knowlege Base

Systems. Kluwer Academie Publishers. BostonlDordrechtlLondon. 1998.

[Whi991 Anela Whitener. Paula Loree. and Larry Daniel. I".ride Maplnfo Professional. OnWord

Press. 1999.

[Wor99] M.F. Worboys. Relational databases and beyond. in

cal Information Systems. Volume 1. John Wiley & Sons.

YorklChichester/WeinheimIBrisbaneJSingaporefforonto. 1999.

Geographi­

Ine.. New

•
[Yua981 Zhongxia Yuan. lmplementatioll ofthe domain algebra in Java. Master's thesis. MeGill

University. Montreal. Canada. 1998.

(Zei91] Michael Zeiler. [nsille Arc/lnfo. QnWord Press. U.S.A.• 1997.

