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Abstract

Drug development is a time-consuming, expensive area of research that requires the
collaboration of different fields of expertise. In this context, computer-aided
methods have the potential to critically shorten the times and monetary expense
required for preclinical development. Very early in a drug discovery effort, docking
programs are used to virtually screen large libraries of compounds searching for a
lead compound that can be developed into an efficient and safe drug. One of the
critical components of a docking program is the one providing an estimate of the
binding affinity of the formed complex: the scoring function. The central goal of this
work was to develop methods to predict the binding affinity of potential drugs for
application in virtual screening campaigns. Towards this goal, we first examined the
current status of docking programs and scoring functions applied to a
metalloprotein target relevant for medicinal chemistry, Golgi a-mannosidase II. This
triggered a more in-depth analysis of scoring functions, which led us to assemble a
set of protein complexes and analyze the performance of different available scoring
functions in flexible and solvated proteins. We then set out to develop a scoring
function based on molecular mechanical force fields and additional parameters
accounting for entropic costs and solvation. We also reached into the development
of molecules binding to nucleic acids by developing a hybrid docking/molecular
dynamics method to study transition metal complexes binding to G-quadruplexes.
Our docking program, FITTED, was prepared for the application to virtual screening
campaigns with the implementation of the developed scoring functions and the
development of additional tools to manipulate, select and prepare large libraries of
ligands. With this goal, we developed a module for FITTED, termed SMART, to prepare
ligands prior to the docking. The core of SMART was used to build two other modules,
REACTOR and SELECT, that have applications in the preparation and clustering,

respectively, of virtual libraries of ligands.
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Résumé

Le développement de médicaments est un domaine de recherche exigeant une
quantité considerable de financement et de temps, ainsi que la collaboration étroite
de spécialistes dans diverses disciplines des sciences de la vie. Dans ce contexte, les
méthodes assistées par ordinateur ont le potentiel d’améliorer la situation. Par
exemple, des programmes de docking moléculaire sont souvent utilisés pour faire
des criblages virtuels sur de grandes bibliotheques de molécules, a la recherche de
candidats qui peuvent étre convertis en médicaments efficaces et sécuritaires. L'une
des composantes critiques d’'un programme de docking est celui chargé de faire
’évaluation de I'affinité du complexe formé entre le ligand et la cible: la fonction de
score. L’objectif central de ce travail est d’étudier des méthodes pour estimer
'affinité de médicaments potentiels pour des biopolymeres, avec l'intention de les
utiliser pour le criblage virtuel. Nous avons tout d’abord examiné la performance
des fonctions de score appliquées a une métalloprotéine importante pour le
développement de médicaments, la a-mannosidase II du Golgi. Ensuite, nous avons
approfondi cette analyse en sélectionant un groupe de complexes de protéines qui a
été utilisé pour prédire leur affinité tout en considérant la flexibilité
conformationelle et le solvant. Nous avons ensuite développé une fonction de score
sur la base des calculs de mécanique moléculaire et de parametres additionnels
prenant en compte l'entropie et la solvatation. De plus, nous avons étudié des
molécules que interagissent avec des acides nucléiques en développant une
meéthode hybride de docking/dynamique moléculaire pour I'étude des complexes de
métaux de transition avec des G-quadruplexes. Notre programme de docking,
FITTED, a été modifié pour entreprendre des études de criblages virtuels avec les
nouvelles fonctions de score et le développement de nouveaux outils pour la
manipulation, sélection et préparation de grandes bibliothéques de molécules. A cet
effet, nous avons préparé les programmes SMART, pour préparer les ligands avant le
docking, et REACTOR et SELECT, qui peuvent préparer et filtrer, respectivement, des

bibliotheques virtuelles.
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Chapter 1: Introduction

1.1 Drug discovery and design

1.1.1 Drugs

A drug, in the widest definition of the term, is a chemical substance used in the
treatment, cure, prevention, or diagnosis of a condition or used to otherwise
enhance physical or mental well-being. 1 As such, they have been present in human
life from the beginning of history, having been linked to spiritual and religious use
through the ages. In molecular terms, and in the context of the work presented in
this thesis, a drug is a chemical substance that exerts a biological effect on an
organism by binding to, or otherwise activating, a biomacromolecular receptor
(most commonly a protein or a nucleic acid), leading to a measurable biological

response, or lack thereof (e.g., in the case of receptor antagonists).

Traditionally herbs, plant leaves and roots, as well as mushrooms, have been used as
treatment and cures for ailments, as well as for the mind- and perception-altering
states they provoke. More recently, it has been shown that chemicals isolated from
extracts of these organisms have drug qualities; these are the so-called natural
products. Natural product chemistry is an endless source of inspiration for organic
chemists, out of the desire to reproduce complex chemical structures found in
nature,?3 as well as for medicinal chemists, for the very desirable biological

activities they exhibit. 4>
1.1.2 Drug discovery and development

1.1.2.1 Serendipity

Many of the early drugs used in modern pharmacology were discovered by random
events. Alexander Fleming, for example, reportedly discovered the antibiotic
penicillin when he noticed the inhibition of bacterial growth around a mold

contaminant (a strain of Penicillium notatum) in a Staphylococcus aureus gel culture



plate in 1928, a discovery that earned him the 1945 Nobel Prize in Medicine or
Physiology.6 Dorothy C. Hodgkin, using X-ray crystallography, solved the chemical
structure of penicillin only in 1949 (this accomplishment partly led to her being
awarded the Nobel Prize in Chemistry in 1964).” The mechanism of action of
penicillin troubled scientists for some more time, until Park and Strominger defined
it in 1957.8 Unsatisfactory pharmacokinetics (rapid drug clearance through the
kidneys) as well as the narrow spectrum of activity (it was only active against
certain Gram-positive bacterial strains) were thought to be the drug’s demise,
although chemical alterations of the side-chains around the B-lactam core led to

clinically useful antibiotics.?

1.1.2.2 Rational drug design

Although serendipitous discoveries yielded important advances in drug
development, they are an unreliable source of new treatments. Rational drug design,
on the other hand, attempts to follow a scientific method for the development of
novel bioactive molecules. As a field of research, it is strongly related to the concept
of “magic bullet” developed by German scientist Paul Ehrlich, co-winner of the 1908
Nobel Prize in Physiology or Medicine. An experienced histologist, Ehrlich
recognized that the biological effect of a chemical agent was given simultaneously by
the chemical structure of the agent, as well as by the cellular target on which it
acts.10 This gave rise to the lock-and-key concept (first proposed by Emil Fischer in
189411) by which a drug and the receptor it binds to share complementary
features.l? With this in mind, drug design can be viewed as, given a lock (a

biomolecular target), trying to design a key (a drug) to act on it.

Rational drug design is an iterative and sequential process requiring, first of all, the
identification of a plausible target to be acted on.13 The latter can be of a varied
nature; drugs have exploited enzymes, protein receptors, DNA sequences, organelles
and membranes (or other organisms’ boundaries, such as cell walls,
lipopolysaccharides or viral capsides) as molecular targets. Once a target has been

determined and validated, the rational drug design protocol starts from a hit



compound (e.g., the natural ligand or substrate of the target, or an unrelated
compound identified by screening), which is found to be at least moderately active
against the target. Increase of the effectiveness through chemical modification turns
the hit into a lead compound, which is further transformed into a drug candidate by
improving its pharmacological (i.e., pharmacokinetics and pharmacodynamics) and
safety profiles on cell cultures and animal models. A promising drug candidate
would be assayed in clinical trials, upon which demonstration of effectiveness and

safety would lead to its consideration as a drug.

1.1.3 Experimental measurement of binding affinities

Binding of a small molecule to a biomolecule can be quantified in different ways.
Biochemical methods act by measuring a biological effect, for example the loss of
enzymatic activity, the inhibition of bacterial growth or reduction in tumour size.
The result of these experiments is usually reported as the amount of drug required
to provoke the effect on half of the systems observed (e.g., ICso, LDso, etc.). On the
other hand, biophysical methods attempt to detect binding by measuring changes in
some physical properties of the system. Isothermal titration calorimetry (ITC)!* and
surface plasmon resonance (SPR),15> among others (e.g., spectrometric), fall into this
category. With these methods, thermodynamical parameters of the binding (AG, AH,

AS) can be directly measured or calculated.

1.1.4 High throughput screening

Beginning in the mid-1980’s, the pharmaceutical industry implemented radical
changes in the assaying of biological activity for drug design.1® These developments
involved a drastic reduction in sample volumes and the use of multiple-well plates
instead of single tubes, leading to a large increase in assay throughput. In the late
1990’s and early 2000’s, further miniaturization and automation, together with
developments in combinatorial synthesis revolutionized the way drug development
was done.1” In high throughput screening (HTS) campaigns, libraries of compounds
(in the 104-10° range) are quickly assayed for activity against a biological target.

Once potentially active compounds are identified, slow-throughput assaying at
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multiple concentrations is performed. One of the weakest points of HTS is the large
amount (~10% or higher!?) of false positives (i.e.,, compounds that are incorrectly
flagged as active) reported; besides some of them appearing as an artefacts of the
assay itself, aggregation caused by promiscuous inhibitors has been shown to be a

relevant matter.1819

1.1.5 Computer-aided drug design

Modern drug design efforts rely heavily on the use of computers at some stage.20:21
Computational methods were first used for drug design in the 1960’s, when X-ray
crystal structures of drug-protein complexes were first solved with the use of
computers. Computer-aided drug design (CADD) methods can, in the broadest
sense, be separated into structure-based drug design, or receptor-based methods,
and ligand-based methods, mostly represented by quantitative structure-activity
relationship (QSAR) techniques and chemical similarity search methods.?? While the
former require the availability of structural information about the receptor (in
decreasing order of confidence: 3-D crystallographic models, NMR structures,
pharmacophores, homology models), the latter can be applied when little or no
information about the receptor is available, but binding affinities for families of

compounds are on hand.

1.1.6 Virtual screening

Besides classical HTS (see above), CADD methods can be applied to identify new
biologically active small molecules, in virtual screening (VS) campaigns.?3-27 In the
latter, virtual libraries of compounds are assessed by CADD methods for their
affinity towards targets of interest, with molecular docking being the most popular
technique (see section 1.3). With around 500 proteins currently being targeted by
available drugs and an estimate 10,000 druggable targets (i.e., their activity can be
modulated by small molecules),?8 the increase in screening throughput attainable by
screening libraries of compounds virtually with computer-aided techniques might

pave the way for the treatment of new diseases. Besides these differences at the



receptor space level, the ligand chemical space explorable by virtual methods is

orders of magnitude larger than the one attainable by synthetic efforts.29.30
1.2 Energetics of ligand-biomacromolecule binding

1.2.1 Thermodynamical considerations

Most drugs (only about 5% of drugs in the market are covalent) bind non-covalently
to their intended target, which allows for the formation of a chemical equilibrium

between the ligand, the biomolecular receptor and the complex (Equation 1.1).

Equation 1.1. Chemical equilibrium for drug binding. L is a ligand, R a receptor, C a complex.

L+R == C

Equation 1.2. Association constant for ligand L to receptor R.
__la
* [LIx[R]

Equation 1.3. Dissociation constant for ligand L to receptor R.
_[LIx[R]
=
[C]

The equilibrium constant of this transformation (K, or association constant,
Equation 1.2) dictates the free energy of binding (or binding affinity) of the ligand
for this specific receptor (Equation 1.4); the higher the constant, the higher the
binding affinity. A more common representation of the binding affinity is given by
the reciprocal of the association constant, Ky (Equation 1.3), termed the dissociation
constant. The advantage of the latter is that the value of Ky has units of
concentration (e.g., mol/L), and represents the concentration of free ligand such that
50% of the binding sites are occupied. A change in K of an order of magnitude
corresponds to ~1.4 kcal/mol change in free energy of binding at room temperature
(from Equation 1.4).

Equation 1.4. Relationship between Gibbs free energies of formation (AG°) and equilibrium
constants (K).

AG’ = -RTInK



Equation 1.5. Relationship between free energies (AG°), enthalpies (AH®) and entropies (AS°) of
formation.

AG° = AH’ =T x AS"°

The free energy of binding has itself enthalpic and entropic contributions (Equation
1.5); a more favourable (more negative) change in enthalpy of binding or an
increase in entropy will decrease the free energy of binding. It is important to recall
that the binding process takes place in aqueous solutions, hence the participation of

water molecules in the energetics of binding cannot be neglected.

In many fields of biomolecular simulations, such as docking, the free energy of
binding is decomposed in a series of additive terms, what Southall et al. call the
BIPSE model: “Break Into Pieces, Sum the Energies”.31 The following sections
describe the different components of the free energy of binding from the BIPSE

perspective.

1.2.2 Electrostatic contributions

Biomacromolecules (proteins and nucleic acids) are charged molecules at
physiological pH. In proteins, ionizable side chains (Asp, Glu, His, Lys, Arg) are
charged at physiological pH (with the possible exception of His, pK, ~7), while in
nucleic acids the phosphate diester backbone makes the chain highly negatively
charged. In addition to formal charges, the presence of heteroatoms in aminoacids
and nucleotides leads to the existence of permanent and induced dipoles. With this
in mind, the electrostatic interactions among ions, permanent dipoles and induced
dipoles make a large contribution to the binding affinity in a drug-target complex.
Coulomb’s law (Equation 1.6) is the most common treatment of electrostatic
interactions in biomolecular simulations; the energy of the electrostatic interaction
is calculated as a pair-wise potential, proportional to the product of the charges of
both atoms and inversely proportional to their distance, with the proportionality

constant being given by the dielectric constant «.



Equation 1.6. Coulomb’s law. g; and g; are the point atomic charges, ¢ denotes the dielectric constant
of the medium and ry is the interatomic distance.

q;%4;
Ecoul = E
8)(7"[7

i,j=i

The source of the point charges for molecular mechanical simulations is a delicate
topic, as force field energies are meant to be self-consistent with one charge
derivation mechanism. Charges are usually derived by fitting the electrostatic
potential generated by point charges to the one obtained at a high-level of theory,
most commonly DFT (B3LYP/6-31G), HF or semiempirical methods such as AM1-
BCC.3233 A large enough parameter set can allow for charges among pairs of atoms
to be converted to bond increments,3* therefore reducing the computational

expense of the charge assignment greatly.

1.2.3 van der Waals forces

These are short-range interactions that arise from the interpenetration of the
electron clouds when atoms become in contact through London forces. They are also
referred to as “non-polar” forces as they are the dominating contribution in the
interaction among non-polar groups; the low polarizability of electronegative atoms
such as oxygen and nitrogen when compared to a methylene group partly accounts
for this effect.

Equation 1.7. Lennard-Jones potential with two alternate sets of parameters. 4;, Bj and oy are
parameters (fit to experimental data) specific for each (i,j) atom pair; ry; is the interatomic distance.
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Figure 1.1. Lennard-Jones potential. Depicts the interaction of a pair of oxygen atoms with 0=3.816 A
and £=0.1094 kcal/mol.

The interaction is weakly attractive at relatively large distances, while at short
distances it becomes highly repulsive. Most commonly, this effect is modelled as a
combination of terms of a Lennard-Jones potential (Equation 1.7): an unfavourable
(repulsive) term acting at short distances (usually scaling as r12), and a favourable
(attractive) term that becomes dominant at larger distances (scaling as r, or as an

exponential).

1.2.4 Hydrogen bonds

A hydrogen bond formed between a hydrogen atom covalently bound to an
electronegative atom (e.g., -OH in alcohol, water and carboxylic acids; -NH in amines,
amides, ammoniums and heterocycles) that is shared with another electronegative
atom having a free pair of electrons (e.g., oxygen in carbonyls, alcohols and water;
nitrogen in aromatic heterocycles). The former is termed the hydrogen bond donor,

HBD, while the latter is referred to as the hydrogen bond acceptor, HBA.
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Figure 1.2. Hydrogen bonding interactions in biopolymers. Top: generic arrangement for hydrogen
bonding; D is a HBD, A is a HBA. Middle: peptide hydrogen bonding; backbone hydrogen bonding,
His-Asp/Glu side chain hydrogen bonding. Bottom: nucleic acid base pairing; A-T base pair, G-C base
pair.

Biopolymers exhibit a number of polar moieties capable of acting as hydrogen
bonds donors and/or acceptors. In fact, hydrogen bonding is the main feature

leading to the secondary structure of proteins (e.g., a-helix, B-sheet) and nucleic

acids (e.g., double helix, quadruplexes).

Figure 1.3. Hydrogen bonding interactions in biopolymers. a: peptide -sheet; b: peptide a-helix; c:
DNA duplex (G-C and A-T base pair indicated). This figure was prepared with PyMol.

Molecules binding to biopolymers usually make extensive use of the possibility of

hydrogen bonding with their target, as the short range and the directionality (i.e.,
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optimal orbital overlaps favour strong hydrogen bonds) enforced by this type of
interaction convey them a powerful mechanism for selectivity.3> A single hydrogen
bond between neutral groups has been calculated to add 0.5-1.5 kcal/mol to the
binding affinity, while the interaction involving an ionic group can add up to 4.7
kcal/mol.3637 Weaker hydrogen bonds (~1 kcal/mol) are feasible when the

hydrogen bond acceptor is an aromatic ring.38

1.2.5 minteractions

The flat, delocalized cloud of electrons of aromatic groups confers them distinct
properties.3® Aromatic rings play an important role in the structural properties of
proteins and nucleic acids, and are a key component of the molecular recognition
pocess.#041 The stacking of rings can lead to orientations that are especially
favoured: the “sandwich” or parallel stacking, and the T-shaped or edge-to-face

(Figure 1.4).

® i

(-t

T

Figure 1.4. - interactions: parallel stacking (shown with 30° displacement), edge-to-face, C-H/m,
cation-Tt.

Additionally to the interactions between m-systems, interactions with entities of a
different nature are also relevant (Figure 1.4). A weak type of hydrogen bond (~0.5-
1.5 kcal/mol) is found between the non-traditional carbon donor and an aromatic
acceptor, in the termed C-H/m interactions.#? Cation-T interactions are responsible
for the orientation of basic aminoacids (Arg, Lys and His) in proximity of aromatic
residues (Phe, Trp and Tyr).#3 These cation-m interactions have been measured to be
up to 18 kcal/mol in the case of K* and benzene, in the same range of the water
solvation energy for K*. Aromatic systems are also able to act as hydrogen bond

acceptors (vide supra).
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1.2.6 Solvation effects

It is important to bear in mind that, cells being composed mostly of water, most
interactions between small molecules and biopolymers occur in aqueous solution;
the role of water in ligand binding is, therefore, not trivial. On one hand, its large
dielectric constant modulates the electrostatic interactions between charged groups.
On the other hand, the property of water molecules to act as hydrogen bond donors
and acceptors means that they occupy the sites available for interaction with a
ligand; this requires the solvent to be displaced prior to the formation of hydrogen
bonds between the biopolymer and a ligand. With this in mind, one could define two

types of solvent molecules: bulk water and point water.

There are two ways to consider solvation effects in computer simulations: explicitly
or implicitly. In the former, atomistic models of solvent molecules are considered
part of the system, usually with limitations in order to reduce the complexity of the
system. Multiple explicit water models (e.g., SPC,4* TIP3P,4> TIP4P,4> TIP5P4¢) have
been developed over the years; they differ in the geometry of the molecules (0O-H
bond length, H-O-H angle) and the non-bonded parameters (Lennard-Jones
parameters, partial charge values and placement). Implicit solvation, also known as
continuum-solvent methods, involves simulating the presence of the solvent by
treating the electrostatics of the system in a special way, mainly by solving the
Poisson-Boltzmann equation (PB) or by using the generalized Born model (GB).
Both methods of solvation have their advantages and disadvantages. On one hand,
the explicit solvent molecules add computational expense to the simulations; on the
other hand, the use of implicit solvation leads to the loss of detail on the specific

water interactions with ligand and biopolymers.

Besides the direct interactions with water, mostly leading to polar interactions, the
desolvation of hydrophobic groups is favoured by exchanging disfavoured
interactions between water molecules and the hydrophobic groups while forming
favoured water-water interactions and the formation of new favoured van der

Waals contacts between the non-polar portions. The interaction of hydrophobic
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groups between a ligand and a receptor gives rise to a contribution to binding
affinity of about 28 cal mol! A-247 This is an overly simplistic model, as the
energetics of non-polar contacts depend not only on the surface area, but also on the
structure and geometry of the interface.*84° However, the solvent-accessible surface

area (SASA) has been found to be proportional to the hydrophobic binding affinity.>°

1.2.7 Entropic considerations

The factors considered so far have an impact mostly in the enthalpic term of the free
energy of binding, however the changes in entropy upon ligand binding are also
relevant.>! Entropy is a measure of the chaos of a system; the more configurations a
system is able to achieve, the higher its entropy will be. With this in mind, as binding
is a process that brings two molecules together, it reduces the degrees of freedom of
the system. On the other hand, the solvent molecules displaced upon binding
partially counteract this effect. As a result, the change in entropy of binding is mostly
negative, hence opposed to the process. The enthalpic contribution to the free
energy of binding is usually a fairly large, favourable amount, while the entropic
term (TAS) is unfavourable, and about the same order of magnitude. This fact,
known as enthalpy-entropy compensation, results in binding free energies being

orders of magnitude smaller than the individual contributions.52

The most obvious entropic contribution to model is the one arising from the loss of
degrees of freedom from the torsions that become frozen upon binding. When in
solution ligand torsions are mostly free to rotate, but when interacting with a
biopolymer the restrictions imposed by the binding site topology lead to much of
this freedom being lost. With this in mind, a term proportional to the number of
rotatable bonds present in a molecule has been used as an estimator for the entropic
penalty upon binding.>354 In multi-conformational assessment of structures, a quasi-

harmonic analysis can be used to estimate the entropy of binding.>>
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1.3 Docking and scoring

One of the easiest-to-grasp, graphical and powerful methods in computational drug
design is molecular docking.56-61 Essentially, it consists of finding the best relative
orientation (i.e., the best pose) of a ligand in a macromolecular binding site, thus
constituting a global optimization problem. To achieve this, potential binding modes
have to be generated and their fitness assessed. In the first implementation of a
docking program (DOCK),%? the ligand and the receptor were considered both
rigidly, that is, the program would evaluate the match of a single conformation of the
ligand (considered rigid, but translating the centre of mass and rotating it in space)
and the receptor at a time. With increasing computing power, conformational
sampling engines were embedded into docking programs, hence increasing the

search space many-fold and leading to better predictions.

The best binding mode is assessed by an estimate of the binding affinity on a single
pose by a scoring function. The goal of the latter is two-fold: i) it should assign a
better score to the native (i.e., experimentally obeserved) pose of a ligand; ii) it
should assign a better score to a stronger binder. From this perspective, it is clear
that the two goals can be better achieved by two different functions: one (simpler,
faster) that can distinguish among different conformers of the same compound, thus
guiding the docking; another function (more complex, slower) that can distinguish
final docked poses of different compounds, thus providing a way to discriminate
compounds based on their predicted affinity. The following sections describe

scoring functions according to their derivation.

1.3.1 Empirical scoring functions

Since the pioneering work of Bohm in the development of LUDI>3 a significant
amount of work has been devoted to the development and improvement of
empirical scoring functions (SFs). With empirical SFs, the evaluation of the
energetics of the ligand binding (mostly derived from protein/ligand crystal
structures) is decomposed into simpler, scalable contributions arising from, for

example, hydrogen bonds, metal ligation, hydrophobic effects and freezing of
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rotatable bonds (Equation 1.8). The various scaling factors (AG; in Equation 1.8) are
then defined by regression to fit experimentally determined protein-ligand
affinities.

Equation 1.8. Empirical scoring functions, exemplified by functional form of ChemScore. AG; are
coefficients obtained by regression. Subindices denote different interaction types; HB: hydrogen
bonds, met: metal interaction, lipo: lipophilic interaction, rot: entropic penalty for frozen rotors. f{Ar)

is a certain function of interatomic distance, f{Aa) is a certain function of torsional angle, N’ is a
count of rotatable bonds (see text)

AG,,, =AG’ +AG,, Y f(AR) f(Aa)+AG,,, Y f(Ar) + AG,, Y f(Ar)+AG,,N),,
HB met lipo

Among the most commonly used SFs is ChemScore>* (Equation 1.8), which has been
implemented in various docking programs (e.g., GOLD,364 FRED®5). Standalone SFs
have also been devised and include X-Score,®® DrugScore,®768 VALIDATE®® and
HINT.7? Each empirical SF differs by the number and nature of the terms used to
make up its equation. For instance, several include an explicit directional hydrogen
bond energy term (e.g., ChemScore, X-Score and the SFs implemented in eHiTS,”1
FlexX,’2 and Surflex’3), while only a few include an explicit directional metal-ligand
interaction term (e.g, eHiTS, Surflex and X-Score). Functions such as the eHiTS and
PLP74 SFs evaluate the internal energy of the ligand in its bound conformation, while
solvation and/or predicted captured water molecules (within GlideScore’>) are
computed in a different manner. Many empirical scoring functions take into account
the hydrophobic effect in the binding, mostly either by computing the hydrophobic
surface buried in the complex (e.g., SCORE1/2,5376 LigScore’?), or by evaluating the
match of the hydrophobicity of an atom with its environment (e.g., FlexX, SCORE,”8
SLIDE??), while several combine both approaches (e.g., eHiTS, GlideScore,
HammerHead,”3 X-Score®®). On the other hand, HINT7? computes the logP of the
ligand as a measure of its water solvation. The entropic contribution to the binding
energy due to the freezing of torsional degrees of freedom upon binding is often
estimated by a term proportional to the number of sp3-sp3 and sp?-sp3 rotatable
bonds. In some cases (e.g.,, ChemScore,>* GlideScore,”> VALIDATE,®® X-Score®¢), the

environment of a bond is taken into consideration to assess the extent of its effect,
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while RankScore®8? attempts to include the freezing of protein side chains by scaling

the interaction with flexible side chains.

1.3.2 Force-field based scoring functions

Force fields (FFs) were originally developed to reproduce conformational behaviour
and thermodynamic and kinetic properties of small molecules and macromolecules.
When applied to protein-ligand complexes, FFs are often found to significantly
overestimate the binding affinity (Equation 1.9) even when applied in conjunction
with highly accurate, time-consuming techniques (e.g., Linear Interaction Energy
method), which consider the bulk water either explicitly or implicitly.8! Scaling
factors applied to the non-bonded terms (van der Waals and electrostatics) were

found to restore part of the predictiveness of FFs in this area.8283

Equation 1.9. Force field-based scoring functions. See captions for Equation 1.6 and Equation 1.7
for a description of the symbols.

lig rec | 4. B q .
AG,, = 33 |- L 433200

T ij i

When compared to empirical SFs, a smaller number of functions were developed
exclusively from FFs. More commonly, non-bonded FF terms (illustrated in Equation
1.9) are combined with terms from empirical SFs, such as the solvation and ligand
entropy terms in the AutoDock SF.84 The choice of force field parameters is varied:
AutoDock,84 DOCK8> and RankScore8? SFs combine the van der Waals, electrostatic
and hydrogen bond interaction energy computed using the AMBER force field
(sometimes with additional non-FF terms), while GoldScore®* makes use of the

Tripos FF parameters and ICM8¢ implements a hybrid AMBER-ECEPP/2 approach.

1.3.3 Knowledge-based scoring functions

Other popular SFs, such as DrugScore®’.68 and PMF,87.8% have been developed from
statistical analysis of crystal structures of ligand-protein complexes. These analyses
report the distribution of ligand-protein atom type pairs (histograms in Figure 1.5)

and convert this data into pairwise potentials (curves in Figure 1.5). When
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considering the interaction between charged species (left), there is often a sharp
preference (maximum in the histogram; minimum in the score) at a relatively close
distance, and a secondary extreme at a larger separation that accounts for the
interaction via a bridging water molecule. In contrast, the potential for a pair of
aliphatic carbons (right) shows little preference over a wide range of interatomic
distances. The score is calculated by the sum of all interaction pairs between each
ligand and protein atom lying within a sphere of a given cutoff (usually 6-12 A).
Although these functions are expected to capture all the data needed for predicting
the free energy of binding, some of the interactions are underrepresented in the
available crystal structures (e.g. interactions with metals and/or halogens) and are
not well parameterized. As for force field-based SFs, correcting/additional terms

were implemented as exemplified by the solvation term included in DrugScore.%8
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Figure 1.5. Sample potential of mean force for (left) a positively charged nitrogen interacting with a
negatively charge oxygen and (right) a pair of aliphatic carbons.

1.4 Free energy calculations

Scoring functions attempt to predict the binding affinity of a pair of molecules by
assessing a single conformation; this is clearly a simplification of the problem, as the
binding process is a dynamic one. The binding energy is in reality determined by a

Boltzmann distribution of binding modes. Additionally, most scoring functions
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disregard the effect of water on binding (both as a solvent and as relaying

interactions).

Molecular dynamics (MD) simulations8® provide a time-evolution of a system
following Newton’s equation of motion, while Monte Carlo (MC) simulations®®
provide a stochastic sampling of the different conformations attainable by a system.
Both methods can yield an ensemble of binding modes considering explicit solvent

molecules.

1.4.1 Free energy perturbation (FEP) and thermodynamic integration (TI)

AG,
+ A A

AG AG

1 2

K e¢-Ee

Figure 1.6. Thermodynamical cycle of alchemical transformation of protein-ligand complexes; P is a
protein, A and B are ligands. AAGa.=AGa-AGg=AG1-AG3.

AG,

MD or MC simulations on alchemical systems (Figure 1.6) can be used to calculate
relative binding affinities by gradually converting one ligand into the other. Two
statistical mechanics-derived formalisms can be applied for this purpose: FEP
(Equation 1.10) and TI (Equation 1.11).°1 In both methods, the relative binding
affinity of two ligands, i.e., AAGas = AGg-AGa, is calculated through the
thermodynamical cycle depicted in Figure 1.6. The free energy changes AG; and AG>
are calculated by performing simulations where one ligand is gradually converted

into the other, by altering the MM parameters describing them.

Equation 1.10. Free energy perturbation theory. AE = Eg - Ex, () denotes an ensemble average.

AG, ., =G, -G, =-RTIn{e™'"")
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Equation 1.11. Thermodynamic integration. A denotes a parameter varying between 0 and 1 for
states A and B respectively; H, is the energy of the system as a function of A; { ) denotes an ensemble
average.

"/ oH
AG, ,=G,-G, = f<a_f> dA
A A

The advantage of these methods is that they explicitly consider the sampling of
conformational ensembles of both protein and ligand, as well as the effect of solvent
molecules upon binding. One of the main drawbacks of these methods is the high
computational cost involved, as the two simulations required may be hard to
converge (i.e., provide a realistic conformational ensemble). By the same token, the
applicability is limited to closely related ligands, such as ones differing in one atom
or pseudo-atom (e.g., a CHz group to O or NH groups). Despite this, these methods
have been successfully applied to predict relative ligand binding affinities on

different systems, such as streptavidin®? and the estrogen receptor.?3

1.4.2 Linear interaction energy (LIE)

The LIE method relies on the scaling of the average van der Waals and electrostatic
interaction energies on a conformational ensemble obtained from a pair of
molecular dynamics simulations, one of the bound ligand and another of the free
species.82 Huang and Caflisch modified this method to include a continuum
electrostatics term calculated by the solving the Poisson-Boltzmann equation, and
used it on a single energy-minimized structure instead of sampling a set of multiple
conformers.?* Their results showed that, at least for BACE-1 and HIV-1 protease, the
MD sampling was indeed not required for accurate predictions, but the parameters

derived for one system were not transferable to the other.

Equation 1.12. Linear interaction energy method. o and f are regression-based parameters
modulating the conformational ensemble average van der Waals and electrostatic contributions.

AEbind =a- <AEvdW> + ﬁ : <AEelec>
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1.4.3 MM-PB/SA and MM-GB/SA

Equation 1.13. MM-PBSA and MM-GBSA methods. G is the free energy of binding, Ewm is the MM
energy as calculated with a given forcefield, Esqlv is the desolvation energy calculated by either GB/SA
or PB/SA methods, TS is the entropic energy.( ) denotes an ensemble average.

(G)=(Eyp ) +(E..,) - TS

These methods use explicit solvent MD simulations of the free ligand and receptor
as well as the bound species to generate conformational ensembles.?> Post-
processing of snapshots from the simulations involves the removal of solvent
molecules and computation of the potential energies on the three systems (complex,
ligand and receptor) with a molecular mechanical force field, the solvation energies
with a continuum model (either Poisson-Boltzmann or Generalized Born), and
calculation of the solvent-accessible surface area. An estimate of the entropic
contribution to binding can also be obtained from a quasi-harmonic analysis of the
snapshots.>> The requirement for three independent simulations poses a dual
challenge of increased computational cost and difficulty in convergence,”® hence an
interesting modification involves the use of a single simulation on the bound system,
which is then stripped of either ligand or biomolecule to calculate the averages on

the free systems.

1.5 Quantum mechanics-based binding affinity calculations

Methods relying on first principles have seen much more limited application in drug
development problems, mostly due to the sheer increase in computational cost
associated with them.” One important application is in QM /MM simulations, where
one part of the system is described with molecular mechanics and another quantum
mechanically; these techniques have proven useful in the study of enzymatic
mechanisms.”® Additionally, a combination of docking, QM/MM and molecular
dynamics was applied successfully to a set of MMP-9 inhibitors.?® Recently, Caflisch
and co-workers observed that considering QM interactions (using the RM1
semiempirical hamiltonian) improved the predictions on highly charged systems,
likely accounting for polarization effects.190 Likewise, recent results by different

groups points to the benefits of using QM/MM methods linked to SBDD
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techniques,101.102 a5 3 way of overcoming the lack of predictivity of the latter for lead

optimization.103
1.6 Thesis objectives

1.6.1 General objectives

The central goal of this work was to develop methods to predict the binding affinity
of potential drugs for application in virtual screening campaigns. Towards this goal,
we first examined the current status of docking programs and scoring functions
applied to a metalloprotein target relevant for medicinal chemistry, Golgi o-
mannosidase II (Chapter 2). This triggered a more in-depth analysis of scoring
functions, which led us to assemble a set of protein complexes and analyze the
performance of different available scoring functions in flexible and solvated proteins
(Chapter 3). We then set out to develop a scoring function to apply in VS, based on
MM force fields and additional parameters accounting for entropic costs and
solvation (Chapter 4). We reached into the development of molecules binding to
nucleic acids by developing a hybrid docking/molecular dynamics method to study
transition metal complexes binding to G-quadruplexes (chapter 5). After
implementation of the developed scoring functions, our docking program FITTED
was set to be used in VS campaigns. However, additional tools were required to to
manipulate, select or prepare large libraries of ligands. With this goal in mind, we
developed a module for FITTED, termed SMART, to prepare ligands prior to the
docking (Chapter 6). The core of SMART was used to build two other modules,
REACTOR and SELECT, that have applications in the preparation and clustering,

respectively, of virtual libraries of ligands (also in Chapter 6).

1.6.2 Evaluation of docking programs for Golgi a-mannosidase inhibitors

Chapter 2 describes a first approximation to the current state of docking techniques,
where the performance of diverse docking programs was assessed in the context of
metalloenzymes. It is well established that metal-containing receptors are a

challenging case for docking, both for the prediction of the binding mode when
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multiple coordination of the ligand is possible, as well as for the evaluation of the
binding affinity including the metal ligation. Through the evaluation of seven
available docking programs, including an early development version of FITTED, we
found that Glide was the most successful one at pose prediction in this system. A
simulated VS with this software resulted in the recovery of 80% of the seeded

actives in the top 15% of a library of 1000 members.

1.6.3 Assessment of scoring functions for flexible docking

Chapter 3 deepens the study of the performance of SFs by assessing the effect of
protein flexibility and solvation on a panel of 18 scoring functions acting on a
challenging training set of protein-ligand complexes. In some sets of protein-ligand
complexes, ligand descriptors such as molecular weight or number of heavy atoms
were better predictors of the binding affinity than the score calculated by a SF. We
assembled a set of 209 protein-ligand complexes exhibiting little correlation
between ligand MW and binding affinity, among other stringent selection criteria.
The evaluation of the ability of the evaluated scoring functions to reproduce the
experimentally observed ranking of complexes resulted in the eHiTS SF being the
most predictive, followed by DrugScore and ChemScore. We also found that the
consideration of explicit water molecules did not affect the scoring, and that the
accuracy dropped significantly when considering docking to non-native receptor

conformations.

1.6.4 Development of scoring functions for protein-ligand interactions

Chapter 4 describes our efforts towards the development of force field-based
scoring functions for implementation in a docking program for VS applications.
While assessing the ability of different force fields to reproduce binding affinities,
we found that the energies predicted by different force fields were highly correlated
among each other. We considered a scoring function including MM terms, a GB/SA
term, and a term accounting for the entropic penalty due to the loss of ligand
torsional degrees of freedom upon binding. The different terms were tuned by an

iterative approach, optimizing the correlation of the calculated scores with
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experimentally determined binding affinities on a set of 209 complexes. Validation
on an independent set of protein-ligand complexes confirmed the good accuracy of
the SF. Additionally, we produced a SF derived from a VS-like approach, were the
fitness to optimize was the recovery of known actives in a library containing decoys.
This SF was validated against a separate library of ligands/decoys on different

protein targets.

1.6.5 Modelling of platinum complexes as G-quadruplex binders

Chapter 5 describes the development and application of a hybrid docking/MD
technique for the evaluation of transition metal complexes as potential G-
quadruplex binders and telomerase inhibitors. G-quadruplex structures are
secondary structures of DNA observed in guanine-rich sequences, most notably
telomeric DNA. Stabilization of this secondary structure of DNA can lead to
inhibition of telomerase activity, which is sought as an anticancer therapy. In
collaboration with researchers from the Sleiman and Autexier labs, we undertook
the modelling of platinum (II) complexes for use as G-quadruplex binders. We
developed MM force field parameters for the platinum (II) centers from ab initio
data, which were then applied to the docking of these complexes onto two different
foldings of the G-quadruplexes: parallel and anti-parallel. The resulting poses were
used as starting points for MD simulations in explicit solvent, which were then
processed to calculate the binding affinity of the compounds by the MM-PB/SA
method. The calculated values were found to be in good agreement with

experimental data from biophysical and biological sources.

1.6.6 Development of SMART, REACTOR and SELECT

Chapter 6 describes the development of programs for the handling of ligands for a
docking-based VS campaign. The first program is SMART, developed as a module of
FITTED, which assigns the generalized Amber atom types used in FITTED for the
scoring of the poses and marks rotatable bonds whose degrees of freedom are to be
scanned. Additionally, a set of descriptors for toxic and reactive groups as well as

various properties (partially based on Lipinski’s rule of five) was implemented,
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where the presence of these groups is used as a filter (i.e., skipping the ligand in the
docking run) in order to reduce the time spent in a VS campaign. Furthermore, the
ability to assign point charges was implemented in order to streamline the docking
process. The framework of this program was used for the development of a pair of
programs to facilitate the production of structures for VS. A first program, REACTOR,
takes virtual libraries of reactants and combines them following user-defined rules
to generate virtual libraries of compounds. The second one, SELECT, features a
similarity search algorithm that allows for the selection of representative structures
from a virtual library (filtering) and the extraction of a set of compounds similar to a

query molecule from a virtual library (analog search).
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Chapter 2: Case study: crystallographic and docking

studies of Golgi a-mannosidase II inhibitors

2.1 Introduction

2.1.1 Protein glycosylation

Glycoproteins and glycolipids are major components of the outer surface of
mammalian cells and the majority of cell surface and secreted proteins of
eukaryotes are glycosylated. The carbohydrates are commonly bound to an
asparagine residue within the sequence Asn-X-Ser (or Thr) through an N-glycosidic
linkage.! The glycosylation process corresponds to a post-translational modification
involving a large panel of specific glycosidases and glycosyltransferases, and is
responsible for proper processing of proteins. The biosynthesis of Asn-linked
glycoproteins?# starts in the endoplasmic reticulum then progresses in the Golgi
apparatus to produce the mature glycosylated structure on the nascent protein.>¢
This second step is highly dependent on species, tissues and cells, thus resulting in
the diverse nature of the final branched oligosaccharides. The Golgi a-mannosidase
II (GMII) is responsible for the specific trimming of 2 mannose residues from the
branched GlcNAcMansGlcNAc; mannose intermediate, with retention of sugar
anomeric configuration, and is therefore a key enzyme of the Golgi processing

pathway.

2.1.2 Golgi a-mannosidase and cancer

In various tumor cells, the distribution of cell surface N-linked oligosaccharides is
altered and correlates with disease progression, metastasis and poor prognosis.’-10
GMII has consequently been viewed as a potential target in the development of new
anti-cancer therapies. In clinical trials, swainsonine, a natural inhibitor of GMII
featuring a 4-amino-4-deoxy-mannofuranoside unit'12 has been shown to reduce
certain tumors and hematological dysfunctions.131* However, the co-inhibition of

lysosomal mannosidases prevents further development of this compound towards
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medicinal treatments. It is thus highly important to find highly specific inhibitors of

GMII that would exhibit anti-cancer activity.

In an ideal scenario, medicinal chemists use three-dimensional structures of the
various protein targets to design potent and selective inhibitors. In fact, docking
studies performed on various mannosidases would aid in the computational
evaluation of the selectivity of the inhibitors. Unfortunately, mammalian
mannosidases are difficult to purify in suitable quantities and to date only a single
structure of bovine lysosomal mannosidase is available with a suboptimal resolution
of 2.70 A, which hinders the possibility of performing accurate docking experiments

on it.

Jack bean a-mannosidase was first found to be a readily available and reliable model
enzyme for assaying inhibition of mammalian GMII, however its crystal structure
and primary sequence has not yet been determined.!> More recently, Drosophila
melanogaster GMII (dGMII), which displays high sequence identity with human GMII
(hGMII), 40% identity and 70% homology, was used as a valid model of the
structural and functional features of the mammalian enzyme.16-18 In particular, it has
been shown that the exposed residues in the active site cavity are almost completely
conserved between hGMII and dGMIL17 As a consequence, the latter was used in
place of hGMII in various crystallographic studies and has recently provided a series
of crystal structures of GMII:inhibitor complexes.1® This newly available structural
data could now be the starting point for the structure-based design of potentially
active and selective GMII inhibitors. For this purpose, we naturally turned our

attention to the available computational structure-based drug design methods.

For the last two decades, computational methods for structure-based drug design
have evolved significantly. Their increasing accuracy has been followed with
growing interest by the pharmaceutical industry. Among these methods, docking
techniques have been extensively investigated and exploited in medicinal chemistry
projects. Unfortunately, no universal method (i.e., applicable to any protein target)

has been discovered and the choice of the software has to be done wisely.2? While
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the accuracy of existing methods is increasing, remaining limitations have been
identified. The flexibility of the enzyme and the presence of key water molecules are
major issues yet to be addressed.?22 To account for the induced-fit of the protein

upon binding of a ligand, several strategies have been proposed.?3

2.1.3 Goals of this research

We report herein our efforts in the structural determination of dGMIl:inhibitor
complexes and their use in docking studies. In particular, three new structures of
dGMII:inhibitor complexes are presented. The present work had two main goals, the
additional validation of our recently developed software FITTED and the
identification of accurate software for designing and screening potential GMII
inhibitors. Thus, a large section of this report will be devoted to a comparative study
of the most accurate docking programs, namely Glide,2* GOLD,25 FlexX,2¢ LigandFit,27
eHiTS,28 AutoDock?® and FITTED3? in combination with a large panel of scoring
functions. This study was not intended to fully evaluate these docking programs but
to find the best one in the context of mannosidase inhibition. A last section will

describe the assessment of the accuracy of Glide in a virtual screening study.

2.2 Materials and methods

2.2.1 Enzyme assays and crystallography

Measurement of inhibition, crystallization, data collection and structural refinement
were carried out essentially as outlined by Kuntz et al.3! with the exceptions noted
below. Crystals of dGMII were grown overnight, washed with phosphate buffered
reservoir solution (as per Shah et al.32) and soaked with 10 mM 8 and 9 for at least 3
hours. In the case of 10, crystals were soaked in Tris-buffered reservoir solution
without phosphate washing. Data were collected on Beamline 191D at the Advanced
Photon Source for crystals of 8 and 9 and at Beamline A1 at the Cornell High Energy
Synchrotron Source for 10. 400 frames with 0.5 degree oscillation/frame were
collected. To obtain a data set with good completeness, data on 2 crystals of 9 were

collected and the data merged with Scalepack.
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2.2.2 Preparation of structures for docking

The structures of the dGMII complexes were retrieved from the Protein Data Bank
(PDB codes: 1THWW, 1HXK, 1PS3, 1R33, 1R34, 1TQS, 1TQT, as well as the newly
determined 2F18, 2F1A, 2F1B presented here) and prepared using Maestro 7.033
from Schrodinger as follows. Water molecules were removed and the resulting
proteins were aligned based on the a-carbon trace. Hydrogen atoms were added to
both proteins and ligands, and bonds to the zinc atom were broken. The atom types
and partial charges were first assigned automatically. Charges of the catalytic site
residues were corrected following a DFT calculation at the B3LYP/6-31G** level of
theory (Jaguar 6.034) on a truncated site consisting of His90, His471, Asp92, Asp204
and Zn; Mulliken populations were considered as the source of the charges. These
charges were assigned at different stages depending on the docking software used.
Appropriate zinc atom van der Waals parameters were obtained from the
literature3> and implemented in each program requiring these parameters. The
structures of the ligands were optimized through energy minimization (Tripos force
field) prior to the docking (MLS, minimized ligand structures); the original crystal
structure (CLS, crystal-derived ligand structures) conformations were kept for

RMSD measurements.

2.2.3 Glide

Neutral zones (as defined in Glide) of 10-20 A around the ligands were first defined
and the inhibitor/proteins were refined using the local optimization procedure
proposed in Glide. The zinc parameters were added to the OPLS2003 force field
definition and specific charges were assigned to the catalytic residues and zinc atom.
The rest of the protein and the ligands were assigned Macromodel/OPLS2003
charges and atom types. Grids were prepared for each protein with the exact same
center and a size of 40 A. A constraint that forced the interaction with the metal ion
was included. A specific keyword (CMAE) was employed for the DFT-derived partial
charges (see above) to be maintained during the grid preparation. Preparation,
refinement and grid calculation took about 4 hours per protein on an SGI R16K. The
ligands were minimized using the OPLS2003 forcefield and submitted to Glide for
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docking. In order to ensure convergence, an exhaustive search was secured by using
search parameters set to their maximum values and a set of 25 runs. Using this
exhaustive search led to the docking of the ten inhibitors on a single receptor in an
average time of 44 minutes on an SGI R16K. The following parameters were used:
ligvdwscale factor 1.0; maxkeep 50,000; maxconf 10,000; nreport 5,000; maxref
4,000; scorecut 100. A specific keyword (reference) was needed to report the RMSD.

2.2.4 Glide VS

Default parameters were used to dock with Glide; the time-consuming exhaustive
search described above was discarded in order to better simulate a realistic virtual
screening study. The protein target 1PS3 was used as prepared for the Glide docking
described above. Ligands 11-17 were prepared for docking as described in

Preparation of structures for docking.

2.2.5 FlexX

The input structures were prepared using the Sybyl 7.0 interface.3® Binding sites
based on proteins truncated at 7.0 A around the inhibitors were used; ligand MLS
structures were used as recommended in the FlexX User Manual. The RIGID _RING
mode was selected in order to keep the input conformation as the sole ring
conformation (as for Glide and AutoDock). The torsion-standard.dat library of
torsions was used. All the other default parameters for the various incremental
construction stages or for the input file setup were used. An additional metal
pharmacophore-filter using the FlexX-Pharm module was used. All the successful
poses were kept for further analysis. Rescoring with the scoring functions
implemented in CScore of both the non-relaxed (FlexX output) and relaxed (Tripos
force field) docked poses was performed on a receptor featuring the free

coordination sites of the Zn atom as dummy atoms (Tripos atom type “Du”).

2.2.6 AutoDock

The AutoDock Tool interface was used to prepare the ligands and the proteins.

Kollman charges and solvation parameters were assigned to the protein. The
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created pdbgs proteins files were modified to account for the presence of a metal
(called M) and the calculated charges for the catalytic site residues and the zinc ion.
Grids of identical size and center as for the Glide study were computed. Gasteiger-
Marsili charges were assigned to the inhibitors whenever possible.3” Otherwise,
when non-parameterized groups (e.g., sulfur cation) were present, partial charges
were computed using the MOPAC semi-empirical method (Mulliken charges). Both
the CLS and MLS were used as input. 25 runs with a maximum of 1,000,000 energy
evaluations and a population size of 100 individuals were performed. The same
calculations were also done with a maximum of 5,000,000 energy evaluations and a
population of 200 individuals but did not show any improvement. This last set of
computations indicates a good convergence using a maximum of 1,000,000 energy
evaluations and a population size of 100 individuals. The default parameters for the

Solis and Wets optimization and the genetic operators were used.

2.2.7 eHiTS

No interface is provided with eHiTs. The protein input structures were given as pdb
files and the ligands as mol2 files. The receptor was truncated keeping any residue
with at least one atom within 7.0 A from any of the inhibitors. The CLS and MLS
were alternatively used. The docking was performed using the default parameters
for the docking (fragment docking, graph matching algorithm and pose

optimization) and scoring. The highest accuracy was selected.

2.2.8 GOLD

The protein and ligand (MLS) mol2 files prepared previously were used for this
study. Most of the optimized parameters were set as defaults (population size of 100
individuals, 5 islands, niche size of 2 and a selection pressure of 1.1). However, in
order to ensure an exhaustive search for each ligand, the following parameters were
used: 200,000 as maximum operations allowed and a binding site defined using a
radius of 18 A. A substructure constraint (alcohol functional group within 2.5 A from
the zinc atom with a spring constant of 5.0 kcal/A2) was also used in a set of runs.

The docking terminated when the top three solutions were within 1.0 A, otherwise
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25 runs were carried out. ChemScore and GoldScore scoring functions were used
alternatively. Although the metal coordination can be automatically determined, we
overruled the automatic definition and set two possible metal coordination

geometries (trigonal bipyramidal and octahedral).

2.2.9 LigandFit

The protein and ligand (MLS) structures prepared previously were loaded on
Cerius2.38 Self docking with the zinc atom defined as a “feature” was first attempted
with the three scoring functions (PLP, CFF, Dreiding); cross-docking was carried out

only with PLP. Default parameters were used.

2.2.10 FITTED

The protein and ligands were processed using ProCESS and SMART, two modules in
FITTED.3? Population sizes of 100 individuals were used and a maximum of 100
generations were carried out. All other default parameters were used as defined
elsewhere.3? In order to avoid a strong bias of the docking, a sphere as large as 6.0 A
centered on the zinc atom was used to orient the metal-binding moieties in the

docking.
2.3 Results and discussion

2.3.1 Docking data set

Seven structures of dGMII:inhibitor complexes were selected from available crystal
structures in the Protein Data Bank (PDB)3° and added to the three described below.
Structures with ligands that are not competitive inhibitors or structures with
resolution worse than 2.0 A were discarded. Ligands 1-7 (Table 2.1) were selected
to represent a wide range of activity against dGMIL. The seven dGMIl:inhibitor
complexes were imported from the Protein Data Bank: 1THWW (swainsonine),”
1HXK (1-deoxymannojirimycin),!” 1PS3 (kifunensine),32 1R33,40 1R34,40 1TQS
(salacinol),3! and 1TQT.31 We also included in this study three polyfunctionalized
pyrrolidine derivatives (8-10) related to the family of a-mannosidase inhibitors
developed by Vogel and co-workers*! which were co-crystallized in the active site of
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dGMII (2F18, 2F1A, 2F1B). The latter inhibitors could be described as consisting of a
pyrrolidine head coupled to a phenylglycinol tail.

2.3.2 Crystallography

We report here the information retrieved from the analysis of the crystal structures
of dGMII complexed with inhibitors 8, 9 and 10. Resolution of the synchrotron
collected data was 1.30-1.45 A and Rgee was 18-19% for the three structures.
Detailed data collection and refinement statistics are presented in Table 2.2. Figure
2.1 shows the quality of the electron density around the bound inhibitors. The
density for inhibitors 8 and 10 was much cleaner in the “tail” region of the aromatic
ring than the similar region of inhibitor 9. For 9, the electron density of the aromatic
ring was only visible when the contour levels of the maps were lowered
significantly. The average temperature factors for the aromatic groups of 8 and 10
were 16 and 17.6, respectively, while for 9, it was 32.5. This indicated that this
region of 9 was in an unfavorable location, and might be oscillating between
numbers of positions so that it did not show up clearly in the electron density map.
This lack of good density correlated well with the poorer inhibitory activity for 9
(ICso = 720 uM vs. ICso = 80 uM for 8). The configuration of the phenylglycinol

residue was thus a determinant of the recognition process.

Figure 2.1 Electron density representation of the inhibitors 8, 9 and 10 bound in the active site of
dGMII. Maps are simulated annealing omit maps (F,-F¢) of only the inhibitors contoured at 3.5 o. For
orientation purposes the active site zinc ion is represented as a magenta ball. This figure was
generated with PyMOL.

40



Table 2.1 Selection of structures of a-mannosidase/inhibitor complexes. The inhibitory activity (ICso) was measured on dGMII (EC 3.2.1.114) at 37°C,
pH = 5.75. All protein crystal structures correspond to Drosophila melanogaster GMII.

Compound ICso (uM) PDBcode Resolution (A) R/Rfree lnhibitor Structure
1 0.01716 1HWW17 1.87 0.18/0.21
(Swainsonine) Cb
2 40019 1HXK?” 1.50 0.20/0.22
(DMN]) . @
3 5200235 1PS33> 1.80 0.20/0.22 OH
(Kifunensine) Qi(
4 7036 1R3336 1.80 0.16/0.19 ~NH;
OH
5 9003¢ 1R3436 1.95 0.15/0.20 N
Ph
1 NH2
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6 750037 1TQS37 1.30 0.16/0.18 OH
(Salacinol) -/k-AOH
®S. 0s0Y
™)
HO  OH
7 750037 1TQT37 1.90 0.15/0.18 C:)H
2 S
©s. 0so;
o™
HO OH
8 80P 2F18b 1.30 0.17/0.18 HO,,{ ;OH
D\/E
N j/\OH
H Ph
9 720b 2F1Ab 1.45 0.17/0.19 HQ_ QH
[N
N '/ﬁOH
H Ph
10 1000p 2F1Bb 1.45 0.17/0.19 HQ_ QH
— H
|
\\\"Q\/N OH
v Ph
a K value; b This work.
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Table 2.2 Data collection and structural refinement statistics

Compound 8 9 10
PDB code 2F18 2F1A 2F1B
HET symbol GB1 GB2 GB3
Data Collection

X-ray Source APS APS CHESS

Cell dimensions (A)

68.97X109.7X138.9 68.90X109.4X138.6 69.43X110.6X139.9

Data Processing (Denzo/Scalepack)

Resolution (A) 30-1.30/ 30-1.45/ 30-1.45
(overall/hi_res) 1.35-1.30 1.50-1.45 1.48-1.45
Redundancy

(overall/hi_res) 10.8/5 12.5/10 3.9/3
[/sigma

(overall/hi_res) 39/5.1 18.5/3.7 15/2.8
% Completeness

(overall/hi_res) 99.9/99.6 96.3/88.0 95.8/97.7
R merge

(overall/hi_res) 0.066/0.35 0.06/0.57 0.066/0.50
Refinement (CNS)

Rtest/Riree 0.168/0.180 0.168/0.189 0.173/0.194
Amino Acids 1014 1015 1014
Alternate

Conformations 33 29 35
Water Molecules 1172 1099 1158
rmsd bonds (A) 0.019 0.016 0.023
rmsd angles (°) 2.2 1.8 1.9
Ayerage B-Factors

(A?)

Overall 15.3 20.9 17.6
Protein Main Chain 125 18.0 14.7
Protein Side Chain 14.9 20.9 17.2
Water 26.0 31.3 28.6
Inhibitor 12.7 25.5 15.0
(MPD,NAG,P04,Zn) 30.5 38.0 33.0




The binding of the highly active inhibitor 8 in the active site of dGMII is illustrated in
Figure 2.2 and a list of interactions between the three inhibitors and the protein
where the interaction distance was less than 3.2 A is given in Table 2.3. For
comparison, the interaction distances with swainsonine 1 (ICso=17 nM) are also
indicated. These distances were derived from a high resolution (1.30 A) dGMII:1 co-
crystal structure.l” The major changes between the three pyrrolidine-based
inhibitors occurred in the interaction with the terminal hydroxyl group (OH-9). The
importance of the two hydroxyl groups on the pyrrolidine ring was clear. There
were tight interactions between the hydroxyl moieties and the active site zinc as
well as interactions with His90, Asp92, Asp204, His471 and Asp472. An unusual
feature of the inhibitors presented in this article was that there was no hydroxyl
group occupying the space between Asp472 OD1 and Tyr727 OH (Figure 2.2). In all
the structures that we have previously examined there has been a hydroxyl group
on the bound compound sitting between Asp472 OD1 and Tyr727 OH. In the case of
phosphate-washed crystals where no compound was bound in the active site, the
position was occupied by a water molecule.*? As a result of this absence of hydroxyl
group, the Tyr727 OH was shifted about 0.6A towards the Asp472 OD1. Other
interactions with the inhibitors were also seen, in particular with N7 in the “tail”
region. Trp95 made two important interactions with the inhibitors. There was a T-
shaped interaction between the aromatic ring in the inhibitor and the indole in the
tryptophan side-chain, the two planes being at near right angles of each other.
Trp95 also made stacking hydrophobic interactions with the pyrrolidine ring, a

common feature of GMII complexes.1”
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His471

Figure 2.2 a) Interaction of 8 with residues in the active site of dGMIL. Interactions closer than 3.2 A
are indicated with cyan dotted lines; interactions with the zinc ion are indicated in magenta. Water
molecules appear as orange balls. Distances are presented in Table 2.3. This figure was generated
with PyMOL.

In the dGMII:8 complex, the terminal oxygen (09) made numerous hydrogen bonds.
It was 2.7 A from Asp340 OD1, 2.8 A from a water molecule, 3.3A from Tyr269 OH
and 3.5 A from Asp341 OD1. An almost identical bonding pattern was seen for
inhibitor 10, although the interaction distances were slightly longer. The oxygen
(09) was 2.7 A from Asp340 OD1, 2.8 A from a water molecule, 3.5 A from Tyr269
OH and 3.7 A from Asp341 OD1. Because of the different stereochemistry of the
inhibitor 9, the 09 oxygen sat in a different location and was now 4.8 A from Asp340
OD1 and 4.5 A from Asp341 OD1. Nevertheless, there were still interactions with

Tyr269 and two water molecules (Table 2.3).

45



Table 2.3 Summary of interatomic distances (A) between the inhibitors and dGMII. Distances in bold
represent distances greater than 3.5 A, where no significant hydrogen bonding is expected to occur.

Zinc Interactions

Compound 1 8 9 10
PDB 1HWW 2F18 2F1A 2F1B
Protein or Inhibitor Distance Distance Distance Distance
Atom 4) A) A) (A)
H90 NE2 2.10 2.12 2.11 2.14
D92 0OD1 2.24 2.13 2.16 2.17
D204 OD1 2.17 2.09 2.08 2.11
H471 NE2 2.09 2.11 2.09 2.13
OH-1 (1) / OH-3 (8- 2.20 2.18 2.20 2.20
10)
OH-2 or OH-4 2.13 2.26 2.35 2.31

Protein/ligand Interactions

Compound 1 8 9 10
PDB 1HWW 2F18 2F1A 2F1B
Protein Atom Distance Atom Distance Atom Distance Atom Distance
Atom (A) A) (A) (A)

D92 OD1 OH-1 3.03 OH-3 2.99 OH-3 2.98 OH-3 3.03
OH-2 2.92 OH-4 3.11 OH-4 3.18 OH-2 3.12
D92 ODZ2 OH-2 2.54 OH-4 2.69 OH-4 2.61 OH-2 2.59
D204 0D1 OH-1 2.83 OH-3 2.76 OH-3 2.81 OH-3 2.77
OH-2 2.97 OH-4 2.93 OH-4 2.96 OH-4 2.98
N-4 2.75 N-1 2.81 N-1 2.88 N-1 2.81
D204 OD2 N-4 3.45 N-1 3.34 N-1 3.36 N-1 3.38

Y269 OH N-7 3.00 N-7 2.88 N-7 3.14

OH-9 3.30 OH-9 2.97 OH-9 3.52
D340 OD1 OH -9 2.67 OH -9 4.82 OH -9 2.66
D341 0D1 OH-9 3.49 OH-9 4.48 OH-9 3.70

D3410D2 OH-8 2.56 N-7 2.78 N-7 2.85 N-7 2.80
OH-4 3.42 OH-4 3.49 OH-4 3.45
D472 0D1 - - - - - -
D472 0D2 OH-1 2.60 OH-3 2.49 OH-3 2.46 OH-3 2.59
Y727 0H  OH-8 2.64 - - - - - -
WATERS OH-9 2.78 OH-9 2.63 OH-9 2.78
N-1 2.91 N-1 2.94 N 2.96
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Inhibitors 8 and 10 exhibited virtually identical binding modes in the active site of
dGMII (Figure 2.3), despite the additional methyl group on the pyrrolidine ring in 10
(labeled C21 in the PDB file). In the protein, however, the active site region was
opened up in the structure of 10 compared to the structure of 8, Phe206 and Tyr727
being pushed away from the inhibitor. The distance between C2 in the inhibitors
and CZ of Phe206 was 4.8 A in the 10:dGMII complex, while it was 4.3 A in the
8:dGMII adduct. The Tyr727 OH was shifted 0.4 A away from C21. The additional
methyl group in 10 was in a position normally occupied by a polar hydroxyl in other
inhibitors; the conformational stress put on the enzyme to accommodate its binding

might be a reason for the poorer affinity of 10 relative to 8 (ICs0 = 1000 uM vs. ICso =
80 uM).

His471

Figure 2.3 Comparison of the conformation of the active site residues in the complexes of 8 (ligand
green, protein grey) and 10 (ligand and protein orange) with dGMII. The zinc atoms appear as
magenta balls. This figure was generated with PyMOL.

The position of the aromatic group was similar to that occupied by the ends of the
chain of the salacinol analog complexes.3! An overlay of the crystal structure binding
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mode of the diastereomer of salacinol (7) with 8 is shown in Figure 2.4b. Both of
these inhibitors exhibited very clear density in their "tail" regions. This suggested
that these parts of the inhibitors were occupying a favorable area of the active site
space. Nevertheless, a major difference was that the zinc ion was bound to two
hydroxyl groups of the inhibitor 8, but only to one hydroxyl group of the
diastereoisomer of salacinol (7). This might account for the poor inhibitory

properties of 7 in comparison with 8 (ICso = 7.5 mM vs. ICs5o = 80 uM).

Figure 2.4 Overlays of the binding of 8 with (a) swainsonine 1 (PDB code 1THWW) and (b) the
diastereomer of salacinol 7 (PDB code 1TQT). 8 is drawn in green, 7 and 1 are drawn in grey. The
active site zinc is represented as a magenta ball.

The binding modes of 8 and swainsonine (1) are compared in Figure 2.4b. It was
obvious that although the interatomic distances were almost identical (Table 2.3),
there was a slight shift in the binding position of 8. This shift along with the
presence of the long and flexible aromatic tail (leading to entropy loss upon
binding), the additional ammonium group (high desolvation cost upon binding) as
well as the lack of a third hydroxyl interacting with the protein, might account for its

weaker inhibitory potency (ICso = 80 uM for 8 vs. ICso =17 nM for 1).

2.3.3 Docking of GMII inhibitors: general considerations

A close look at the crystal structures revealed challenges for the accurate docking of
GMII inhibitors. First, a zinc atom was involved in the catalytic activity of this
enzyme and in the strong binding of the selected inhibitors. Second, a few of the
active inhibitors featured solvent-exposed moieties that were not specifically

interacting with any of the enzyme residues as exemplified by the electron density
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of compound 9 in Figure 2.1. Third, there were bound water molecules that made
important interactions with the inhibitors (in the case of 8, at the amino group in
the pyrrolidine ring and the 09 oxygen in the tail region). It was therefore expected
that docking accuracy would be linked to a proper handling of the zinc ligation and
solvation/desolvation by both the conformational sampling engine and the scoring
function. Water molecules were present in some of the complexes; however their
locations were not conserved among the different complexes. As it would have been
impossible to keep them without biasing the self-docking of an inhibitor to its
natural solvated receptor, they were not considered for the present docking study.
Ideally, when performing virtual screening or de novo design of enzyme inhibitors,
water molecules should be properly located or displaced by the docking program, a
feature not implemented or in development in most of the available software. To
date, only FITTED can move and displace water molecules*? while GOLD can toggle

their presence on or off.2>

After addition of the hydrogen atoms to the crystal structures, the ligands were
removed and the proteins were charged and prepared for their use in the
subsequent docking study. Special attention was given to the catalytic site including
two histidines, two aspartates and a zinc ion. Although the formal charge of the zinc
atom is +2, it was clear that this charge was delocalized onto the chelating
residues.** The charges for the catalytic site residues and for the zinc atom were
derived from density functional theory (DFT) calculations of a truncated binding site
and used for AutoDock, Glide, LigandFit and FITTED. The van der Waals parameters
for the zinc atom required for both the protein preparation and the docking study
were obtained from the literature.#* For the following studies, the crystal-derived
ligand structure (CLS) and/or optimized energy-minimized ligand structure (MLS)
were used as input. A comparative study aiming at identifying a program for future
virtual screening of drug design could not provide useful results if CLS's were
required as input. In a real drug design scenario, one does not know the final pose

and would guess an input structure as MLS. As we will describe in the following
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sections, selection of the input structures has an impact on the accuracy of some of

the docking programs.

2.3.4 Docking methods used in this comparative study and parameterization

Many comparative studies discussed in a recent review have shown Glide and GOLD
to be amongst the most accurate docking programs.2? For instance, Rognan and co-
workers#> ranked GOLD, Glide and Surflex as the most accurate docking programs
for their set, followed by FlexX. We have previously obtained good results for the
docking of zinc-containing enzyme inhibitors with AutoDock.*¢47 In addition, a
recent review of eHiTS indicates that this docking program is a new candidate of
interest.#® We decided to assess GOLD, Glide, FlexX, AutoDock, LigandFit and eHiTS
to see which one, if any, would provide accurate docking results for GMII inhibitors.
In order to add to the validation of our own software, the current version of FITTED39
was also assessed. It is also worth noting that Glide, FlexX (FlexE), AutoDock and
FITTED have versions where flexibility of the protein is accounted for. Induced-fit
docking using Glide/Prime relies on a combination of rigid protein docking and
homology modeling techniques to construct the backbone and residue side chains.*?
FlexE relies on docking to composite structures,”® while AutoDock grids can be
combined using appropriate weighting schemes into virtual conformational
ensembles.>! The flexibility of the protein / ligand complexes in FITTED relies on the
use of chromosomes to describe the whole complexes.3%52 A section on the use of

these functionalities is included in this manuscript.

The assessed programs covered a variety of conformational search methods: genetic
algorithms (GOLD, AutoDock and FITTED), incremental construction (FlexX), rigid
fragment docking and linking (eHiTS), Monte Carlo/matching algorithm (LigandFit)
and multi-level search (Glide) and a large panel of scoring functions (e.g, ChemScore,
GlideScore, GoldScore, F-Score, AutoDock scoring function, PMF, RankScore). Some
of the evaluated methods came with an interface that was used to prepare the
protein and ligand structure and initial keyword files. However, in order to obtain

the best performance from each docking program, the standalone versions with
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optimized parameters were used. In addition, although the computation of the
atomic root mean square deviations (RMSD) was part of the output of Glide, FlexX
and FITTED, we made our own scripts to compute the RMSD’s for the AutoDock and
eHiTS studies. The deviations were evaluated using the CLS’s as references, taking
into account only the coordinates of the heavy atoms but accounting for equivalent
atoms that can be exchanged by rotation. One of the main issues addressed is the
evaluation of the metal coordination as all the assessed programs treat the metal /
ligand interaction differently. Therefore the deviations of the docked ligand
structures from the CLS’s were also computed for the metal ligation (only for the

one or two oxygen atoms bound to the metal center).

As all these programs have been reported, we will describe them succinctly,
emphasizing the way they treat binding to metal ions and solvation and their

application to GMII.

Glide 3.5.2453 Glide uses a funnel-type of approach to search the conformational
space and the best poses are scored using GlideScore,>* a scoring function derived
from ChemScore.>> Among the many terms of this scoring function is a term
accounting for metal-ligand interactions. However, this term is restricted to anionic
ligands, single atom ligation (we will consider diols) and does not account for the
specific geometry of metal-ligand complexes. In the present study, the ligands were
neutral, and the metal ligation would therefore be modeled as purely electrostatic.
GlideScore also includes a unique solvation term which accounts for solvation of
solvent-exposed moieties as well as water molecules captured in hydrophobic
protein pockets. Glide also proposes the use of constraints to force specific
interactions. The user-defined constraints add an additional filter to the hierarchical
filtering. In order to evaluate the impact of constraints on accuracy, two studies -
with and without constraints- were carried out. Unexpectedly, filtering off the poses
where no groups were in close proximity to the zinc ion did not significantly

increase the accuracy of the binding mode prediction.
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FlexX 1.13265856/CScore36. FlexX is conceptually very different to Glide. Rather
than using grids, FlexX models the protein with an all-atom representation of the
binding site, and while Glide uses an exhaustive conformational search, FlexX builds
up the ligand within the binding site by incremental construction.>” One similarity
between Glide and FlexX is the possibility of using pharmacophore-like constraints
to force specific interactions between the ligands and the receptor.>8 Poses that do
not satisfy the pharmacophoric constraints are removed. In the present work, we
imposed the requirement that at least one zinc-binding atom of the ligand should
interact with the zinc ion. The incremental construction algorithm accounts for the

geometry of ligand-metal interactions but not for metal coordination geometry.

The poses proposed by FlexX were submitted to rescoring by a panel of four scoring
functions implemented in CScore, namely PMF, GoldScore, DockScore and
ChemScore. ChemScore includes a specific (but non-directional) term for
metal/ligand binding while there is no specific term for metal/ligand interaction in

the FlexX, PMF, GoldScore, and DockScore scoring functions.

AutoDock 3.0.2959 The inhibitors, modeled using a united atom representation, are
flexibly docked into the grids modeling the proteins by means of a Lamarckian
genetic algorithm (LGA). The LGA optimizes the ligand pose to find the local
minimum by perturbing the genes of the ligand. The scoring function available with
the version 3.0 of this suite of programs does not include any specific term for
metal-ligand interaction, the metals being treated as charged spheres with no
specific coordination geometry. In contrast to other methods used herein, in the

current version (version 4.0 is under validation®9), no constraint can be specified.

GOLD 3.0.2561 GOLD also samples the ligand conformational space using a genetic
algorithm (GA). However, in contrast to AutoDock, it uses the atomic description of
the protein (or a truncated binding site) and allows for the hydroxyl (Ser, Thr, Tyr)
and ammonium (Lys) hydrogen atoms to relax upon ligand docking. A large number
of parameters can be optimized to improve the accuracy of the conformational

search, although only a few were optimized in the present work according to the
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observed poses of initial runs (e.g., torsion angle distribution databases, constraints
to direct the docking towards the observed binding modes, parameters for the GA,
and user-defined scoring functions). Upon docking, GOLD makes use of virtual
coordination points (which can be specified by the user) to model the chelation of
metals, a potentially very important feature for GMII inhibitor docking. In this study,
two possible metal coordination geometries were assessed (trigonal bipyramidal
and octahedral). The GOLD scoring function (GoldScore) as well as ChemScore do
not consider the metal coordination geometry, the metal-ligand interaction strength
being only distance dependent. As for Glide and FlexX, GOLD allows for the use of

constraints (harmonic constraints) to direct and speed up the docking process.

eHiTS.2862 A recent software review revealed the high accuracy of eHiTS for docking
small molecules to rigid proteins.48 This review together with a comparative study
from the developers®3 prompted us to evaluate eHiTS in the prospect of accurately
docking oa-mannosidase inhibitors. The conformational search sampling is
performed by rigid fragment docking followed by linkage and optimization of the
reconstructed ligands. This approach, claimed to be “truly exhaustive”, is quite
different from the methods used by the other programs described herein. The
original scoring function is an empirical scoring function with many terms, including
a specific term for angle-dependent metal coordination. However, although angles
around the ligand atoms are considered, the metal coordination geometry is not
optimized. This piece of software is still under development and only a very few
parameters are accessible for modification by the user. While this manuscript was in
preparation, a new and more accurate scoring function was implemented but has

not been assessed in our study.%*

LigandFit.?738 LigandFit first defines the binding site as a series of grid points used
to locate the binding site, defines its shape and further docks the flexible ligands.
The docking is performed by generating sets of ligand conformations using a Monte
Carlo technique and matching these ligand conformations to the binding site
partitions. Three scoring options are available, namely CFF and Dreiding force fields,

as well as the PLP scoring function. Neither these two force fields nor PLP include a
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specific treatment of metal ligation. LigandFit also allows for additional constraints
using filters. The LigandFit constraint matches a feature atom such as a polar
hydrogen with a complementary ligand atom such as a hydrogen bond acceptor

oxygen.

FITTED 1.0.3° To complete the comparative study, FITTED, a program recently
developed in our laboratory has been assessed.3? FITTED exploits a LGA to model the
flexibility of both the ligands and proteins. It also includes a specific function for
displaceable water molecules. Unlike AutoDock, FITTED optimizes the ligand pose
through a Fletcher-Reeves conjugate gradient minimization.6> The scoring function
(RankScore) does not include any specific term for metal/ligand interactions which
are treated as hydrogen bonds.>2 Constraints are implemented in FITTED to direct
the binding to a specific atom or group of atoms and will be used to select poses

with metal chelation.

2.3.5 Application to the docking of mannosidase inhibitors

The ten selected weak to strong ligands were docked to the ten protein structures
using each of the assessed programs for a total of 100 docking runs (10 self-docking
runs and 90 cross-docking runs) for each program. Thus, Glide/GlideScore,
FlexX/FlexXScore, FlexX/PMF, FlexX/GoldScore, FlexX/ChemScore,
FlexX/DockScore, AutoDock/AutoDock scoring function, eHiTs/eHiTs scoring
function, GOLD/GoldScore, GOLD/ChemScore, LigandFit/PLP, LigandFit/CFF,
LigandFit/Dreiding and FITTED/RankScore were successively assessed. Figure 2.5

summarizes the collected data.

The FlexX docking engine allowed us to evaluate the generated poses. Thus, when
we considered the use of FlexX to dock inhibitors 1-10 into GMII, all the docked
poses were kept for post-docking analysis and rescoring with 4 other scoring
functions (DockScore,®¢ PMF,%7 GoldScore,?> ChemScore>®) included in the CScore
module of Sybyl. Only the results with the ChemScore scoring function are shown as
the other four functions were less accurate. In the present study, a pose with an

RMSD below 2.0 A was generated in only 75% on the cases and was identified by the
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scoring function in less than 40% of the cases. This revealed that a significant
portion of the failures was due to poor conformational sampling and not only to

inaccurate scoring.

Within GOLD, GoldScore was found to be marginally better than ChemScore.
Interestingly, the use of ChemScore with GOLD and FlexX led to similar results while
the enhanced version of ChemScore, GlideScore, led to significantly better accuracy
when used in conjunction with Glide. LigandFit was found to be inaccurate when
CFF or Dreiding force fields were used to score the generated poses. Unexpectedly,
CLS provided significantly better results than MLS with eHiTs. When a simple
rotation in space or a change in one torsion angle was applied to the CLS used as

input structures, the accuracy dropped.
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Figure 2.5 Rigid protein docking. Accuracy for the 7 programs assessed to dock the 10 ligands to the
10 protein structures (self-docking and cross-docking) measured as the RMSD between the docked
poses and the crystal structure binding mode for (a) all ligand heavy atoms; (b) metal-binding atoms.

Glide clearly appeared as the most accurate program in this comparative study. The
ligands were docked with RMSD’s below 1.0 A in 40% of the cases and below 2.0 A
in 48%. eHiTs was much less accurate with an accuracy of 28% at 2.0 A RMSD, while
the other five programs showed accuracies ranging from 32% (LigandFit) to nearly
40% (FITTED). We were also pleased to see that the accuracy of FITTED was

equivalent to that of Glide at RMSD = 2.5 A.
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In general, the computed RMSD’s indicated better accuracy for the self-docking of
the smaller ligands 1, 2, 3, 4, and 5 with all the programs. For instance, 1-5 were
docked back to their protein structure (self-docking) with RMSD’s below 1.1 A when
the MLS’s were used as input with the Glide program. These data are consistent with
the results reported in the original Glide publication from Friesner and co-workers
where nearly 50% of the compounds from the testing set were docked back with
RMSD’s below 1.0 A.24 In that same study, about a third of the compounds were
docked with RMSD between 1.0-2.0 A, although in our case ligands 6 to 10 were
self-docked with RMSD’s higher than 2.5 A.

To further evaluate the apparent poor docking accuracy observed for ligands 6-10,
we inspected the docked and experimentally observed conformations. First, we
noticed that the experimentally observed zinc chelation by the diol or alcohol
moieties was correctly predicted in almost all of the one hundred complexes when
Glide was used, but with poorer accuracy when the other programs were used
(Figure 2.5b). Second, a close look at the docked structures indicated that the
docked pose was for the most part correct in many cases, the main deviation coming
from the solvent-exposed moieties and the orientation of the aromatic groups. For
instance, compound 8’s phenyl group was predicted to interact with Arg228
through m interactions, while it was involved in a T-shaped 1 interaction with Trp95
in the crystal structure (see Figure 2.6). In fact, none of the programs predicted the
T-shaped interaction between the phenyl ring of 8 and Trp95. This was probably
due to the poor description of this type of interaction by the commonly used scoring
functions. Nevertheless, the pyrrolidine ring was perfectly oriented (Figure 2.6a) in
all cases. Similar conclusions were drawn for compounds 9 and 10. As discussed
above, the complex with 9 showed large B-factors for the phenyl ring and a poorly
defined electron density map for this solvent-exposed group. The chelation by a
single alcohol of 6 and 7 was predicted to occur by Glide (Figure 2.6b), but the main
deviation arose from the positioning of the solvent-exposed sulfate predicted to
interact with Tyr267 and/or with Arg228 (Figure 2.6b). In the crystal structures,

this moiety was solvated while not specifically interacting with a protein residue.
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Owing to the solvation/desolvation term of GlideScore, this situation was predicted

in a few cross-docking situations (e.g., ligand 7 docked into 1HXK protein structure).

°Zn2'
[f \_His471 / \\\.) [P\ Hisa71

a4 His90 VA

Figure 2.6 Glide docked vs. crystallographically observed binding mode of compound 8 (a) and 7 (b).
The crystal structure appears in green, the docked structure in orange. This figure was generated
with PyMOL.

When using minimized ligands as input, the ring conformation in the input structure
was already different from the crystal structure. This structure optimization stage
contributed to a small fraction of the RMSD (< 0.3 A). Compounds in the crystal
structures of dGMII were not in their lowest energy conformation but rather in a
higher energy conformation induced by environmental constraints in the active
site.32 The effect of the zinc ion and the active site environment on inhibitor

distortion has recently been discussed.8

2.3.6 Metal ligation

In order to further evaluate the program’s ability to dock the GMII inhibitors, a
closer inspection of the poses around the Zn cation was carried out. A clear
indication of the predictive power of Glide was given by the computed RMSD’s of the
metal ligating groups (Figure 2.5b). In 54% and 91% of the cases (cross- and self-
docking respectively), the chelating alcohols or diols were positioned within 0.5 A
and 1.0 A of the observed positions respectively, even though this docking/scoring
method did not account for coordination geometry. AutoDock suffered from the lack
of constraints and in a few cases, 8 did not even interact with the zinc cation. The

other programs offered the use of constraints to direct the docking and the zinc was
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chelated is most of the cases. Compounds 1, 3 and 5 were generally docked in a
binding mode similar to the crystal structure but in a few cases a single alcohol was
interacting with the metal, the second alcohol interacting with Asp204, or a different
second hydroxyl group was chelating the zinc. Similarly, 2 was often docked with a
single alcohol (e.g., 06) interacting with the metal. Interestingly, although the metal
chelation was treated as a standard non-bonded interaction in AutoDock, only 5% of
the docked structures did not involve the binding of at least one alcohol to the zinc
atom. These observations were consistent with our previous report.#¢ However, the
detailed geometry was not accurately predicted, with only 35% of the ligation being
predicted with a deviation of less than 1.0 A relative to the crystal structure.
Surprisingly, even though LigandFit was not among the most accurate docking
programs, the metal ligation was fairly well predicted as shown in Figure 2.5b. In
contrast, FITTED was not very predictive when considering the metal chelation even
though overall it ranked second. The lack of a specific metal binding term in the

FITTED scoring function may be responsible for this observation.

Overall, Glide clearly outperformed the other programs. As discussed above the
apparent poor accuracy of nearly 50% should be taken with great care as most of
the compounds were docked properly, the main deviation being attributed to the
solvent exposed moieties. When these moieties were not considered, accuracies
higher than 90% were recorded with Glide. The other programs poorly predicted

both the metal chelation and the location of the solvent exposed groups.

2.3.7 Docking to conformational ensembles and flexible proteins

Comparing the self-docking data to the cross-docking data revealed the sensitivity of
the seven programs for the protein structure. Figure 2.7 shows a superposition of 5
of the 10 selected crystal structures. In this figure only the largest side chain moves
are shown. For these five residues (Tyr727, Trp95, Arg228, Tyr269 and Asp92),
moves of about 1 A for specific atoms were observed. The location of the zinc atom

also varied. Although 1 A can be seen as negligible, it is roughly the size of an atom
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and can preclude the proper binding of a functional group of the ligand, significantly

affecting the docking accuracy.

Figure 2.7 Superposition of ITHWW, 1HXK, 1R34, 1TQT and 2F18 protein structures (backbone
green, side chains grey), and ligand 8 (green). Only selected residues of each structure are shown to
illustrate the largest displacements. This figure was generated with PyMOL.

The clear dependence of the docking accuracy of ligands (i.e., 7 and 10) on the
protein structure led us to consider docking to flexible proteins. One obvious
method was to dock the compounds to the 10 protein structures. Then, the best
scoring pose among the ten docked structures for each inhibitor was considered.
Using this approach (docking to multiple conformations), slight to good
improvement was observed (Figure 2.8). Again, Glide and FITTED appeared as the
best two programs. However, these data were collected for only 10 ligands and
should not be considered as representative of the overall accuracy of the assessed
programs. At low RMSD’s (below 1.0 A), LigandFit/PLP and Glide outperformed the
other programs. Their ability to predict the zinc chelation allowed these two

programs to very accurately predict the binding mode of the smallest inhibitors.
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Figure 2.8 Docking to protein ensembles. Accuracy for the 7 programs assessed to dock the 10
ligands to an ensemble of the 10 protein structures, measured as the RMSD between the docked
poses and the crystal structure binding mode for all ligand heavy atoms.

We next looked at the flexible versions of the programs. An induced-fit docking
protocol has recently been made available by Schrédinger.#® However, the average
CPU time required for a single run exceeds 10 hours and would therefore be a major
limitation to the use of this protocol for drug design. We decided not to include this
method in our study. Flexible protein versions of AutoDock>! and of FlexX, namely
FlexE,>? have been proposed and were used together with FITTED3? as a complement
to the cross-docking studies. However, no significant improvement comparatively to
the docking to multiple conformations was observed (data not shown). This
indicated that the failures observed were not due to the flexibility of the protein, but
to inherent limitations of the docking/scoring methods used by each of the

programs evaluated.

2.3.8 Scoring accuracy

When looking at the predicted activities of these weak to strong inhibitors with any
of the programs assessed, the scores did not correlate well with the observed
activities. The most active swainsonine (1) was predicted to be one of the least
active inhibitors of the set with all the scoring functions. This revealed that the
scoring functions used can accurately discriminate between the different poses,
hence predicting reasonable binding modes, but not between compounds of

different affinities. In fact, it is well known that the accuracy of current scoring
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functions for small compounds is still poor,®?7° with large compounds being often

assigned higher scores than small compounds by most of the scoring functions.”?

2.3.9 Virtual screening using Glide

We next turned our attention to the use of docking-based virtual screening (VS) tool
to screen potential a-mannosidase inhibitors. As discussed above, Glide/GlideScore
was more accurate in predicting the correct binding mode than any of the other
programs assessed. We therefore decided to restrict the VS study to Glide alone, as
VS data from a program unable to provide the correct binding mode would be hard
to interpret. However, although the overall accuracy of Glide was excellent, the
apparent poor accuracy of the scoring function may be a hurdle in virtual screening.
In order to evaluate the performance of Glide for VS, we seeded a library of decoys
with previously reported GMII inhibitors and docked the complete library to a single
dGMII protein structure. The protein structure from complex 1PS3 was found to be a
fair representative (by visual inspection and comparison of active site side chain
RMSD) of the set of 10 proteins used in the docking study, hence its selection as the
target for the VS. Then, a set of 1000 decoys used by the Schrodinger team to
benchmark Glide>* was seeded with ten active compounds shown in Table 2.4.
Compound 3 (protein 1PS3 natural ligand) was purposely not selected to prevent
biasing self-docking. The activity for some of the compounds was measured on jack
bean GMII, a common model for hGMII as discussed in the introduction. At first sight
these active compounds 11-1772-78 can be viewed as poor inhibitors, however low
micromolar inhibitors are considered strong inhibitors of GMIL7%80 In addition, one
needs to bear in mind that the primary goal of a VS study is to discover micromolar
lead compounds from large libraries and not nanomolar compounds, which are

often developed through lead optimization.
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Table 2.4 Structures of a-mannosidase inhibitors used for virtual screening evaluation. The
inhibitory activity is given as ICso on Drosophila GMII unless otherwise noted.

Compound ICs0 (WM) Inhibitor structure

1 0.017 OH, oH

4 70
8 80

11 0.8171
12 91,72

13 10%73
14 12774
15 0.5175
16 40176
17 2077




t Kj on jack bean GMII; * ICs0 on jack bean GMII

Figure 2.9 shows the number of known hits retrieved when increasing the fraction
of the ranked list. A charge of 1 or 2 (protonated amines) was assigned to each
compound and alternate protonation modes were considered. For instance,
compound 17 had to be monoprotonated to be able to properly chelate the zinc
cation. The tetrazole ring of compound 13 could be protonated at different
locations, or not at all, having an estimated pK, of around 5. The dark blue line in
Figure 2.9 shows the accuracy of docking all the compounds with all the amines
protonated and the tetrazole ring of 13 protonated at position 2. The light blue lines
represent the results based on the best or worst scores of each compound when
considering all the possible protonation states. Obviously, the final score did not
take into account the energy required to change the protonation state from the one
stable in solution to the one in the protein binding site. As can be seen in Figure 2.9,
half of the active compounds were retrieved in the top 10% regardless of the
protonation states selected. However, between 3 and 5 compounds were recovered
in the top 2% depending on the chosen protonation states. We noticed that the
protonation state was a critical factor to consider, as compounds with two amines
(ie, 1, 16 and 17) provided quite different scores with alternative protonation

states.

number of actives retrieved

% library covered

Figure 2.9 Number of known active compounds recovered as a function of the percentage of the
ranked list. Dark blue: standard protonation states, light blue: best and worse scores with various
protonation states, brown: random.
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Overall, this was a very promising result that correlated well with the good
performance of Glide in virtual screening studies.>* Using the same decoy set,
Halgren and co-workers recovered from 50 to 90% of the actives in the top 10%
with most of the proteins studied and less than 50% with p38 MAP kinase. Clearly,
Glide is a promising tool for the virtual screening of o-mannosidase inhibitors
considering the known poor performance of docking methods with metal-
containing proteins. As can be seen in Table 2.5, the most active compounds 1, 11
and 15 were assigned lower scores than less active inhibitors, which confirmed the
lack of accuracy of GlideScore to rank some of the actives. Nevertheless, having 8 out
of 10 seeded actives in the top 15% of the ranked library demonstrated that
GlideScore is indeed appropriate for the retrieval of mannosidase inhibitors.

Table 2.5 Results for the virtual screening of mannosidase inhibitors. The ranking corresponds to

the order of the compound in the sorted list of scores; the score is the GlideScore value of the best
docked pose for the compound.

Compound Ranking Score ICs0/K;

(wM)
4 2 -11.99 70
8 3 -10.72 80
14 8 -10.16 12*
13 27 -9.94 10*
12 15 -9.82 9*
17 30 -9.38 20°
15 110 -8.25 0.5*
11 147 -8.04 0.8"
1 222 7.71 0.017
16 362 7.22 40°

* Activity value for jack bean GMII

2.4 Conclusions

In medicinal chemistry, crystallography and computational chemistry are well
established tools at the lead generation stage. We have described herein three new
three-dimensional structures of Drosophila melanogaster Golgi a-mannosidase
[:inhibitor complexes and their application to assessing the ability of seven
available docking programs to predict the binding mode and binding affinity of a-

mannosidase II inhibitors. Overall, Glide outperformed the other docking programs
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followed by FITTED, GOLD, AutoDock and FlexX. eHiTs was found to be the least
accurate. Unexpectedly, the prediction of the metal coordination geometry appeared
to be best with Glide/GlideScore even compared to other programs that included a

specific term for metal ligation and coordination geometries.

Although the docked poses were often close to the observed binding modes, the
predicted binding constants were not well correlated with the observed inhibition
data. The highly active inhibitor swainsonine (1) was ranked among the least actives
in most of the cases. We believe that metal ligation and solvation were not
adequately evaluated in the tested scoring functions, and that large molecules were
over-scored. In order to evaluate the impact of this apparently poor scoring on the
performance of Glide, we carried out a VS study and were pleased to obtain
enrichment factors in the range observed with non-metal containing proteins. As
previously observed, swainsonine, the most active inhibitor considered, was found

to be the outlier of the set with a score much lower than less active inhibitors.

In summary, using Glide, small inhibitors were docked with excellent accuracy
(RMSD < 1.1 A), while larger inhibitors with solvent-exposed polar and nonpolar
functional groups were docked with good accuracy (RMSD ~ 2.5 A). More
specifically, the zinc ligation was well predicted in most cases of self and cross-
docking, while the largest deviations arose from the solvent-exposed moieties.
Finally, we believe that the application of Glide to the VS of large libraries of

compounds is a promising strategy for the discovery of novel GMII inhibitors.
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Chapter 3: Assessment of the performance of scoring
functions on complexes with flexible and solvated

proteins

3.1 Introduction

As the timeframe and costs of the traditional drug discovery approach are ever-
increasing, computational /virtual approaches arose as promising techniques in the
medicinal chemist toolkit. In particular, docking-based virtual screening (VS)
methods are becoming increasingly popular as a fast, cost-effective alternative or
complement to classical high throughput screening (HTS).! The purpose of docking
methods in this context is twofold: i. prediction of the binding mode of a ligand to a
given biologically relevant target receptor, enzyme or nucleic acid, and ii. prediction
of the binding affinity of the complex formed.? To carry out these two tasks, docking
programs rely on two major components: a conformational search algorithm and a
scoring function. The former samples the translational, rotational and
conformational space of the complex, and several approaches that accurately dock
flexible ligands to proteins have been disclosed.3* As soon as a putative binding
mode of the ligand -referred to as a pose- is proposed, its binding affinity must be
predicted. Scoring functions often provide a fast evaluation of the free energy of
binding during and after the conformational sampling stage.> Despite the intense
effort in the area of docking methods in recent years, the moderate performance of
scoring functions revealed by independent comparative studies remains the chief
issue to address in the improvement of docking methods? and strategies have been

developed to increase the identification of actives compounds.®

Commonly used scoring functions can be classified into force-field based,

knowledge-based and regression-based, even though some functions may combine

two approaches (e.g., regression and FF-based AutoDock scoring function). Several

issues need to be considered when assessing or selecting scoring functions for

docking and scoring of potential drugs. First, force fields (e.g., AMBER in DOCK
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scoring function) are known to overestimate the binding affinities and the
calculated intermolecular energy values need to be scaled down for more accurate
predictions. An example is the Linear Interaction Energy (LIE) method.” In addition,
force fields only approximate the enthalpic interaction energy, disregarding some
contributions to the free energy of binding such as entropy and solvation. Second,
knowledge-based potentials are developed from statistical analysis of
protein/ligand complexes regardless of their affinities. Third, regression-based
scoring functions, also called empirical scoring functions, are also trained against a
set of protein/ligand complexes that are related to known 3D structures and
affinities. Clearly, the scoring functions from the last two categories are strongly
dependent on the training set used to derive them and rely on the accuracy of the
binding affinity data, crystallographic experiments, model fitting and transferability
of the parameters to other complexes not present in the training sets.8 To partially
address this issue, large data sets (i.e., the whole PDB database) can be used.
However, as these training sets do not contain compounds that are too large to fit
into the binding site or are otherwise inactive, the potentials derived from these sets
may fail to discriminate inactive compounds from actives thus leading to the

occurrence of false positives.

We have recently reported the development of FITTED (versions 1.0, 1.5 and 2.6), a
docking program accounting for protein flexibility and essential water molecules.?-11
In parallel, we have reported the evaluation of the impact of ligand and protein
structures and presence of water molecules on the pose prediction accuracy of
major docking programs.!! In order to complement this previous study and later
develop a scoring function that accounts for these two aspects, we have investigated
the impact of protein flexibility and water molecules on the accuracy of several
commonly used scoring functions including our current version of RankScore.l!
Thus we report herein the development of two sets of protein/ligand complexes,
their selection criteria, their preparation as well as their use as testing sets for the

evaluation of 18 commonly used scoring functions.
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3.2 Methods

3.2.1 Training set selection criteria

The accuracy of a scoring function is largely dependent on the training set used to
calibrate it. It has been reported that several commonly used scoring functions are
less accurate than the ligand molecular weight (MW) used as a descriptor.1213
Indeed, a close look at training sets used in the development and evaluation of
scoring functions shows that there is sometimes a strong correlation between
binding affinities and MW, an artifact that should be considered. It is well known
that truncating a large ligand often results in a significant loss of binding affinity, a
property clearly captured by several scoring functions. However, as VS is often
carried out with libraries of drug-like, lead-like and even fragment-like molecules
with similar molecular weights, these scoring functions do not perform as well. The
current challenge is therefore to develop a scoring function able to discriminate
between actives and inactives of similar sizes. Some training sets also lack diversity
in protein and ligand structures. For instance, scoring functions may be developed
from training sets excluding metalloenzymes and/or highly polar enzymes (e.g.,
neuraminidase), therefore being poorly transferable to these classes of targets. In
addition, most of these sets are developed from crystal structures and therefore
trained to perform well in self-docking experiments. This is a significant limitation
as cross-docking is a more realistic experiment simulating a VS situation. More
recently, Verdonk and co-workers have reported a training set carefully prepared
using strict criteria.1#1> In order to evaluate the state-of-the-art in the development
of scoring functions, we propose herein to report our training/testing sets that

follow a number of restrictions and conditions:

i. The training set should be large enough to be statistically relevant. We targeted a
minimum of 200 complexes in order to guarantee an accurate evaluation of existing
scoring functions and a good predictivity of the scoring function that will be

eventually developed.1®
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ii. The ligands should be as diverse as possible (both in shape, bioactivity and
functional groups) to assess the transferability of scoring functions and eventually

ensure transferability of the scoring function to be developed.
iii. The ligand molecular weight should be higher than 250, and not exceed 700.
iv. The affinity of the ligand towards the co-crystallized receptor should be known.

v. Crystal structures should be available at a good resolution (<2.5 A). Although this
criterion is not strict enough to evaluate the “quality” of the complexes, it is easily

accessible.l7

vi. Some proteins should appear more than 5 times in this set so that cross-docked

structures can be considered.

vii. Proteins with both hydrophobic and hydrophilic binding sites should be

included.

viii. Different aspects of protein-ligand binding, such as water-mediated binding and

metal binding should be represented.

ix. Correlation between ligand molecular weight and binding affinities should be as

small as possible.

X. Metal-containing and covalently bound ligands should not be included as they

may be poorly defined in scoring functions and would require specific terms.

xi. Binding affinities should cover a range as wide as possible without overweighting

one range of affinities and should include as many poor binders as possible.

Due to these many criteria, the set developed herein is very different from the set

we have previously used to assess docking programs.11

3.2.2 Correlation metrics and statistical significance

Most commonly, the square of Pearson’s correlation coefficient (r?) and Spearman’s

p are used to assess the correlation between observed and predicted affinities.
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While r? is the traditional correlation metrics, measuring the correlation between
experimental binding affinities and scores, p is a non-parametric measure of the
correlation between the ranked lists of experimental binding affinities and predicted
scores. A p of +1.0 corresponds to a perfect match between the two ranked lists (but
a negative p indicates an inverse order for one of the lists), while a value of 0.0 is
consistent with random ordering. As suggested by Nicholls and Jain, and a reviewer
of this manuscript, we also considered Kendall’s tau (t) as an alternative to
Spearman’s for the assessment of the rank-ordered correlation.l” Kendall's has the
advantage of being more robust than Spearman’s, while also being easier to
interpret, as it is an estimate of the probability of having the same trend between
two sets of ranks. We used the bootstrap technique to assess the statistical
significance of the correlation coefficients: random subsets of the data set were
drawn, allowing for duplicates, and the correlation of each subset was calculated.
The range containing 95% of the values is taken as the confidence interval for the

given descriptor (either p or 1).

3.2.3 Training set preparation

A meticulous preparation of the complexes was believed to be essential to provide
objective results. As described above, the ligands were chosen to be varied in shape,
size, bioactivity and functional groups, with known activity towards a given
receptor. To follow the criterion vi, a careful selection of complexes from the PDB
led to the selection of 58 complexes of five highly studied proteins: HIV-1 protease,
thrombin, trypsin and matrix metalloproteases (MMP-3 - stromelysin 1 and MMP-8 -
collagenase 2). This set was next expanded through the addition of complexes from
the PDBBind database,'819 taking into account the chemical diversity of the ligands
(criteria ii and x), an even distribution of the binding affinity of the complexes
(criterion xi) and a proper selection of proteins (criteria vii and viii). After filtering
out the complexes that were not well characterized (i.e., missing residues, multiple
ligands in binding site), a set of 223 complexes was obtained. In order to meet
criterion ix, another 14 complexes were removed and led to a final set of 209
complexes with 82 proteins represented (Table 3.1, see also Appendix Table A.1).
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This first set -referred to as Set 1- was used to evaluate SFs in a self-docking
situation as described below. Proteins for which 5 or more structures were found
were further processed. For these systems, protein and ligand structures were
swapped to generate cross-docked structures. This second set of nearly 1,000

complexes was used to evaluate SFs in a cross-docking context (Set 2).
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Figure 3.1. Properties of the training set. a) Profile of molecular weight and binding affinity
dependence; b) distribution of ligand MW; c) distribution of ligand binding affinities.
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Table 3.1. Proteins represented more than once. Set 1 is the self-docking set while Set 2 includes the
cross-docked structures. The complete sets are given in the appendix (Tables A.1 and A.2).

Proteins Number of ligands  Sets
Thrombin 22 1,2
Trypsin 13 1,2
HIV-1 protease 10 1,2
MMP-8 8 1,2
Factor Xa 7 1,2
Purine nucleoside phosphorylase 6 1a
Scytalone dehydratase 6 1,2
Urokinase-type plasminogen activator 6 1,2
Carbonic anhydrase 5 1,2
MMP-3 5 1,2
PTP-1b 5 1,2
Acetylcholinesterase 4 1
Neuraminidase 4 1
Retinoic acid receptor gamma-1 4 1
Xylanase beta-1 4 1
2,2-Dialkylglycine decarboxylase 3 1
Cyclin dependent kinase 2 3 1
Glutathione s-transferase 3 1
Ribonuclease a 3 1
Thymidylate synthase 3 1
Carboxypeptidase 2 1
Orotidine 5'-monophosphate 2 1
decarboxylase

Serine/threonine-protein kinase chk1 2 1
Sex hormone-binding globulin 2 1

a2 The PNP proteins were from different species and thus were not included in set #2.

As shown in Figure 3.1 (and Table 3.3), only little correlation between MWs and
affinities was obtained (r?=0.109; p=0.330; t=0.230). In addition, the values of
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affinity constants span 9 orders of magnitude, with an even distribution in the 0.1
uM - 0.1 nM range. Unfortunately a very low number of millimolar ligands fulfilling
the constraints defined above were found in the PDB, and this extreme range of
activities is underrepresented (criterion ix). In fact, in order for a crystal structure of
a protein/ligand complex to be solvable, a ligand needs to present a measurable
binding affinity. In addition, crystal structures with highly active compounds
provide more information to medicinal chemists and are prioritized by

crystallographers.

Careful manipulations were necessary to set up the complexes for calculations. For
most of the steps, the preparation was not fully automated in order to reduce
potential errors. First, critical water molecules were carefully selected. To do so,
crystallographic water molecules were removed unless they were involved in at
least 3 hydrogen bonds with the ligand and the protein simultaneously. Next, ligand
bond orders (not present in the source PDB files) were properly set, hydrogens
were added and atom types and partial charges were assigned. Special attention was
given to the protonation state of ionizable groups in the complexes. For instance, the
catalytic dyads in most aspartyl proteases (such as HIV-1 protease) are required to
be monoprotonated for the catalytic mechanism to proceed.?’ However, X-ray
crystallography and modeling studies indicate that fully protonated states are also
observed with some diol ligands.?! Klebe and co-workers suggested that ligands
with an ammonium group facing the catalytic dyad might stabilize the di-
deprotonated state.?? Histidine protonation was also carefully assigned by
optimizing the hydrogen bond network with neighboring residues. On the ligand
side, reasonable protonation states of ionizable groups were assumed. The next step
was the full optimization of the hydrogen positions and ligand position (see
Experimental Section) through energy minimization. Initial attempts to fully relax
the complexes led to unreliable structures often far from the crystal structure.
Freezing the protein and water heavy atoms and constraining (K = 5 kcal/mol-A?)
ligand heavy atoms was necessary to restrict large motion of some of the ligands,

thus keeping the poses close to the experimentally observed ones. As pointed out by
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a reviewer, the accuracy of scoring functions may be dependent on the method of
preparation of the systems. We assesed the scoring functions on unoptimized (i.e.,
raw PDB files) structures and observed poorer predictions. In the following sections,

we will consider only the optimized poses.

3.2.4 Cross-scoring training set

To explore the sensitivity of scoring functions to the protein conformation, we
decided to score every ligand/protein combinations for proteins in set 2 (see Table
A.2, Appendix). First, all complexes within a family were superimposed by aligning
the alpha carbons on the proteins. Then new complexes were constructed by
swapping ligand and protein structures. To relieve any undesired clashes between
ligand, protein and waters in these manually docked structures, a local
conformational search of the ligand was performed on each complex. For this
purpose, we have implemented a local search mode in our docking program FITTED.
This conformational search mode was designed to optimize the intermolecular
interactions among ligand, protein and waters, without greatly disturbing the initial
conformation of the ligand. The RMSD (vs. crystal structure) of the resulting ligand
conformations was below 1.5 A in 84% of the cases while in the case of ligands in
their cognate receptor, all poses were below 1.5 A RMSD from the experimentally
observed ones. In order to evaluate the impact of water molecules in the final scores,
the cross-docked structures were optimized using the local search algorithm
keeping the water molecules, and then scored with or without the water molecules
present in the binding site. Alternatively, the ligand poses were also optimized with

no waters included and then scored.
3.3 Results and discussion

3.3.1 Accuracy of the selected scoring functions on the entire set

With the MW-unbiased set (Set 1) in hand, we evaluated the accuracy of well-
established scoring functions. Thus, two implementations of PMF (Cerius2 and

CScore),23 PLP1/2,24 LigScorel/2,2> ChemScore,26 GoldScore,?” XScore,1® six
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different versions of DrugScore,!3 GlideScore,?8 the eHiTS scoring function,?? the
Surflex scoring function3? and its predecessor, the Hammerhead scoring function,
and our first version of RankScore3! were used to predict the binding affinities of the
ligand set (Table 3.2). These scoring functions have been derived using different
training sets, as shown in the rightmost column of Table 3.2. At this stage, we can
only discuss the reported training sets used to derive these scoring functions,
although we are aware that some changes may have been made to the latest
releases. Knowledge-based scoring functions (PMF, DrugScore) feature the largest
training sets, although in these cases the training sets are not used to adjust
coefficients by regression. Of the disclosed training sets used by empirical scoring
functions, XScore features the largest training set, followed by the eHiTS scoring
function. The latter, includes an additional tunable property: the set of regression
coefficients has been calibrated against multiple subsets of the whole Protein Data

Bank, and a specific scoring function is selected for each complex to be scored.

We next looked at the overlap between these sets and our sets. In fact, our Set 1 has
little in common with the previous training sets used in the development of these
regression-based scoring functions: either one (FlexXScore, Hammerhead/Surflex),
three (LigScore), five (ChemScore) or seven (XScore) complexes were shared. In
addition, although the sets used to train DrugScore and the eHiTS scoring functions
are larger and may share a greater number of structures with our Set 1, the use of
most of the available PDB structures in their training dilutes the effect of a single

one.

The relative ranking of the ligands for their binding affinity were also computed. The
correlation between experimental and calculated data was next evaluated and
compared to the reported accuracies computed with a more MW-biased testing set
(Wang’s set).12 In the upcoming sections, we may suggest that a scoring function is
better than another one although in many cases the differences are within the error

bars.
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Table 3.2. Selected scoring functions used in this study.

Scoring function Implementation Class Training sets used for development?

ChemScore Sybyl Empirical 82 complexes in 5 classes

DockScore Sybyl FF-based No training set

DrugScoretsP standalone Knowledge-based 28642 small molecules

DrugScorePPB standalone Knowledge-based 6026 complexes

eHiTS SF eHiTS Knowledge-based 133 complexes + extended training set, protein class-
specific

FlexXScore Sybyl Empirical 45 complexes (LUDI SCORE1)

GlideScore Glide Empirical 82 complexes in 5 classes (ChemScore)

GoldScore Sybyl FF-based No training set

Hammerhead Cerius?2 Empirical 34 complexes

LigScorel Cerius?2 Empirical 50 complexes

LigScore2 Cerius2 Empirical 112 complexes

PLP1 Cerius2 Empirical 3 complexes (DHFR, FKBP, HIV-1P)

PLP2 Cerius2 Empirical 3 complexes (DHFR, FKBP, HIV-1P)

PMF Sybyl Knowledge-based 697 complexes

PMF Cerius?2 Knowledge-based 697 complexes

RankScore Fitted FF-based 50 BACE-1 inhibitors and 4 complexes

Surflex SF Surflex Empirical 34 complexes

XScore standalone Empirical/consensus 200 complexes

aThese training sets are those reported. In some cases, improved versions have been released but the training sets used to derive them have

not been reported.
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As previously noted, some reported biological activities can be highly dependent on
the experimental conditions of the assay.? In order to remove part of the noise due
to experimental errors, we removed the worst 5 predictions for each scoring
function. A close look at these reduced sets showed that 1bn4, 1bnn, 1mOn, 1mOo,
1mOq and losv are the most frequently found within the selected 5 outliers and
their activities were poorly predicted with all the scoring functions. We also looked
at a reduced set with no metalloenzymes as it is known that metal coordination is

often poorly scored and/or scoring functions not trained on metalloenzymes.32

The correlation between the scores computed with the selected scoring functions
and the experimental binding affinities is low (see Table 3.3), with XScore
(r’=0.320) being the most predictive followed by ChemScore (r?=0.276),
DrugScore®P (r?=0.241), GoldScore (r?=0.235), the eHiTS scoring function
(r?=0.228) and RankScore (r?=0.216). However, although this correlation is a good
indicator of the potential of scoring functions, we -as others-33 believe that the
correlation between the ranked lists using either Spearman p or Kendall t provides
a more useful indication of the predictive power of scoring functions in the context
of virtual screening. p and t also identify XScore (p=0.606,t=0.416), as the most
accurate scoring functions followed by ChemScore (p=0.547,1=0.374), the eHiTS
scoring function (p=0.487,7t=0.353) RankScore (p=0.482,1=0.353), GoldScore
(p=0.543,t=0.342), DrugScore®P (p=0.559, t=0.337), and PLP1 (p=0.516, t=0.306).
Clearly, r?, p and 7 identified the same scoring functions as the most accurate with
insignificant changes in the ranking. Among these top-scoring functions, the eHiTS
scoring function is the least sensitive to the presence of outliers while GlideScore
and LigScorel are very sensitive to the presence of metalloenzymes and outliers
respectively. When correlations were computed on non-metal containing enzymes,

XScore remains the most accurate scoring function.
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Figure 3.2. Spearman (a) and Kendall (b) coefficients for three subsets of the training set: in blue,
209 complexes (whole set); in red, 5 outliers removed (204 complexes); in green, all transition metal-
containing proteins removed (188 complexes).

Interestingly, the collected data summarized in Table 3.3 and Figure 3.3 reveals the
change in accuracy when going from Wang’s set to ours and also confirms the
variety of accuracies measured with this set of scoring functions. Comparing Wang’s
data to our data indicates that the accuracy of all the scoring functions but
ChemScore, LigScore and FlexXScore were affected by the reduced dependence on
MW. In fact, the major difference between the scoring functions accuracy on our set
and on Wang’s set is the data collected with ChemScore and LigScore2. These
scoring functions were previously found to be poorer than MW used as a descriptor
while in the present work, they were found to perform better, clearly capturing
some of the binding aspects other than ligand size. It is not clear why these two

scoring functions perform better with our more challenging set.
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Figure 3.3. Comparison of the Spearman correlation for ten scoring functions. Blue columns indicate
the correlation of the “no outliers” set (204 complexes); red bars denote the Spearman coefficients as
reported by Wang et al.12

When considering the error bars arising from bootstrapping the data set with either
correlation coefficient (Figure 3.4), XScore appears to be better than most of the
other scoring functions by a marginal value, while LigScorel, FlexXScore and both
implementations of PMF poorly rank-ordered the set by scores. As a matter of fact,
with the CScore implementation of PMF and LigScorel, one cannot rule out the
possibility of a chance correlation, as a null correlation coefficient is included in the

respective interval of confidence for both scoring functions.

Although the eHiTS scoring function and DrugScore have been trained on large sets,
their accuracy does not exceed the ones observed with some regression-based
scoring functions. We believe that the uneven number of protein complexes
represented in the Protein Data Bank (e.g., several hundreds of thrombin/ligand
complexes, 1% of the PDB) may lead to the overtraining of these scoring functions
for these specific proteins. As a result, increasing the number of structures in the
training set if not accompanied by an increase in the diversity is not expected to

improve the training and transferability of the developed scoring functions.
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Table 3.3. Accuracy of the scoring functions on the complete Set 1 and on two reduced sets compared to previously reported data.2

Entire set 5 outliers removed Metalloenzymes removed  From ref. 12 and 13
(209 complexes) (204 complexes) (188 complexes)

r2 P T r2 P T r2 P T P
ChemScore (Sybyl) 0.197 0.469 0.324 0.276 0.547 0374 0.224 0.510 0.351 0.431/0.432
DockScore (Sybyl) 0.098  0.342 0.231 0.166 0421 0.281 0.123 0.389 0.263 0.475/0.476
DrugScoretsP 0.176  0.427 0.292 0.241 0.498 0.337 0.251 0.472 0.320 0.624
DrugScoreFPPB 0.121 0.383 0.264 0.169 0.455 0.309 0.148 0.431 0.296 0.587 / 0.589
eHiTS SF 0.208 0.421 0.296 0.228 0.513 0.353 0.228 0.446 0.315 -
FlexXScore 0.038  0.195 0.133 0.094 0272 0.183 0.046 0.216 0.149 0.283 / 0.287
GlideScore 0.114 0.378 0.26 0.176 0.454 0.309 0.365 0.423 0.292 -
GoldScore (Sybyl) 0.169 0.434 0.295 0.235 0.507 0.342 0.205 0.487 0.330 0.569 / 0.570
Hammerhead 0.115 0.345 0.237 0.166 0415 0.282 0.144 0.383 0.262 -
(Cerius2)
LigScorel 0.011  0.112 0.074 0.030 0.176 0.116 0.017 0.141 0.094 -
(Cerius2)
LigScore?2 0.096  0.332 0.225 0.141 0401 0.269 0.122 0.367 0.248 0.363 /0.368
(Cerius2)
PLP1 (Cerius2) 0.139 0.387 0.262 0.190 0.453 0.306 0.173 0.434 0.292 0.592 / 0.593
PLP2 (Cerius2) 0.116 0.364 0.248 0.185 0.443 0.299 0.122 0.400 0.273 -
PMF (Sybyl) 0.000 0.012 0.011 0.011 0.073 0.051 0.000 0.023 0.021 -
PMF (Cerius2) 0.050 0.212 0.141 0.093 0.284 0.186 0.054 0.236 0.156 0.369 / 0.370
RankScore 0.148 0.418 0.298 0.216 0.503 0.353 0.177 0.458 0.328 -
Surflex SF 0.143  0.409 0.274 0.161 0.476 0.317 0.167 0.448 0.301 -
XScore 0.239 0.526 0.365 0.320 0.605 0.416 0.259 0.566 0.392 0.660 / 0.660
MW 0.109  0.349 0.230 0.117 0422 0.277 0.110 0.350 0.229 0.560

a AutoDock scoring function has not been included in the present study.In bold if better than MW.

88



3.3.2 Accuracy of the selected scoring functions within protein classes

A scoring function is of interest for VS applications (e.g., hit compound discovery)
only if it can discriminate between active and inactive compounds in a given library
against a particular target. In structure-activity relationship (lead optimization), a
scoring function should rank compounds with subtle structural changes. To evaluate
this ability, one has to investigate families of protein/ligand complexes. We used the
collected data and extracted the scores obtained with serine proteases (thrombin,
trypsin and factor Xa, 42 complexes), HIV-1 protease (11 complexes) and thrombin
alone (22 complexes) (Figure 3.5). Although XScore was found to be the most
accurate on the entire set, RankScore, GoldScore and DockScore were found to be
the most predictive with the selected serine proteases inhibitors and the only 3
scoring functions that are likely more predictive than the MW descriptor. Similarly,
ChemScore demonstrates very good accuracy with HIV-1 protease with T = 0.62,
while it is not predictive at all with thrombin (t < 0.1) or the serine proteases (t =
0.27). It is worth noting that affinities of these subset ligands are more MW-
dependent than the complete set and that only three of the assessed functions
(RankScore, GoldScore and DockScore) were consistently more accurate than MW
(although within the computed errors) used as a descriptor with these families of
proteins. In contrast to Wang’s report, we found XScore and ChemScore reliable
with HIV-1 protease. In fact, many scoring functions were at least marginally
predictive against this protein class, while MW was likely a chance correlation. We
relate this better accuracy to the care taken to prepare the systems: the protonation
state of this aspartic protease was carefully assigned to each of the complexes and
the essential water molecule was kept when necessary (see Experimental Section).
These two features ensured that the scores reflect the binding energies of the
complexes. Interestingly, FlexXScore was found among the most accurate with HIV-
1 protease and the least accurate with the thrombin and serine protease ligands,
further demonstrating the poor transferability of some scoring functions and the
need for a broad set when carrying a comparative study or developing a scoring

function or for protein-specific scoring functions. When we attempted to expand this
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analysis to other families of proteins, we found that their representation in our set
prevented us from making statistically significant predictions (that is, discarding the

possibility of a chance correlation).
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Figure 3.5. Accuracy (1) of the scoring functions on 3 subsets of set 1.

3.3.3 Hydropathicity and accuracy

When a computational medicinal chemist starts a docking study, a recurrent
question is always about the selection of the docking/scoring program best suited
for the ongoing study. To partially answer this question, we previously investigated
the accuracy of docking programs as a function of the hydropathicity of the
proteins,’1 while herein we looked at the accuracy of scoring functions. The
hydropathicity of the binding sites was evaluated by considering all the residues
within 6.0 A of the ligands on a combination of the Hopp-Woods, Kyle-Doolittle and
Grantham scales of hydrophobicity.34-3¢ From the 209 initial complexes, the 85 most
hydrophobic and the 93 most hydrophilic were selected (Figure 3.6). Three classes
of scoring functions emerged from this study. First, XScore performed well with
both hydrophobic and hydrophilic protein classes. Second, RankScore, DrugScore,
PLP1 and the eHiTS scoring functions were found to be more predictive with
hydrophilic proteins. This is an indication for further improvement of FITTED, as we
have also found that FITTED docks small molecules very accurately to hydrophilic

proteins but performed poorly with hydrophobic proteins.!! These observations are
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most likely related to the prediction of hydrophobic interactions on one side and
hydrogen bonds and ionic interactions on the other side, the latter being easier to
identify and quantify. At the other end of the spectrum, GlideScore is more accurate
with hydrophobic proteins. Nevertheless, as these subsets demonstrate different
dependence between MW and affinities, drawing conclusions might require
considering larger sets. Finally, the data collected for the 23 metalloenzymes does
not allow one to rule out a chance correlation for any of the scoring functions, except
for DrugScorePPB that exhibited an unexpected modest anti-correlation. These
observations clearly confirmed that current scoring functions are not reliable when
metal chelation is the key interaction, as none of the scoring functions considered

were more predictive than the ligand molecular weight.

0.6 - M Hydrophobic M Hydrophilic M Metals
0.5

04 -

0.3 -

0.2 -

0.1 -

Kendall tau

0,

0.1 -

MW

GoldScore

-0.2 -

eHiTsS
PLP1

SurFlex
Xscore

-0.3 -

LigScore1
FlexXScore
GlideScore
DockScore
LigScore2
RankScore

ChemScore

PMF-Cscore
Hammerhead

0.4

PMF-LigScore
DrugScorePDB
DrugScoreCSD

Figure 3.6. Accuracy (Kendall t correlation) of the scoring functions on three subsets of Set 1,
classified by the hydropathicity of the binding sites. Error bars calculated with the bootstrap method.

3.3.4 Scoring function correlation

As discussed above, the accuracy of scoring functions varies significantly from one
protein class to another and is very dependent on the testing set used (as shown by
the error bars). A closer look at the data revealed that some of the scoring functions
varied following the same patterns. In order to further investigate this trend, we
computed the correlations between scoring functions regardless of the protein

target and binding affinities (Figure 3.7). Some of the scoring functions are highly
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correlated, with values of T computed for each pair often over 0.60, with a maximum
of 0.75 between XScore and ChemScore. In these cases, they are more correlated to
each other than to the observed binding energies, as the best coefficient obtained
between scoring functions and observed binding affinities was 0.37 (with XScore).
In fact, the four scoring functions previously identified as the most accurate in Table
3.3 (XScore, GoldScore, ChemScore and DrugScore®P) are all highly correlated (t
ranging from 0.50 to 0.75). Our scoring function, RankScore, correlates with 8
scoring functions with t greater than 0.50, while GoldScore correlates with 11
scoring functions at the same threshold of t. On the other side, PMF and FlexXScore,
which were found to be poorly accurate, are not highly correlated with the other
scoring functions assessed. It is striking that scoring functions derived by different
groups in very different manners exhibit this high level of correlation. It is worth
recalling that DrugScore is a knowledge-based scoring function, while XScore is an
empirical/consensus scoring function and ChemScore is empirical. In addition, they
are made up of terms accounting for different properties (e.g., no entropy term in
DrugScore). Interestingly, GlideScore has been originally derived from ChemScore

but does not show a high degree of correlation with it.
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Figure 3.7. Ranked-list correlation coefficients (t) calculated between predicted ranking lists of SFs;
the darker the shading, the higher the correlation (see key). The numbers 1-18 represent the scoring
functions as specified in the top row.

3.3.5 Consensus scoring

A scoring function aims to predict the binding affinities of ligands for proteins
and/or to compute the free energy of binding. The results from the previous section
demonstrated that the best performing scoring functions capture the same
information, showing high correlation between their scores (often with Tt > 0.60),
while the moderate correlation (0.20 < T < 0.35) between these functions and the
observed binding affinities also indicates that these functions may disregard the
same aspects of the binding process. From these conclusions, we hypothesized that
consensus scoring may not lead to significantly better accuracy and that only a very
few scoring functions can be considered in this context. In order to test this
hypothesis, the accuracy for each pair of scoring functions was assessed. In order to
normalize the data, we combined the ranks computed with each scoring function
and not the scores. As illustrated in Figure 3.8, most of the combinations (shown in
white) led to t coefficients that are not better than each of the t coefficients
computed for each scoring function. More interestingly, there was no case where the

predictiveness of a pair of functions was lower than both individual scoring
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functions. In all cases, combinations that led to the best t values included either
XScore, the eHiTS scoring function, RankScore or ChemScore, which were already
found to be among the four most predictive scoring functions with Tt greater than
0.30. This data validates our hypothesis and demonstrates that consensus scoring
using a combination of traditional scoring functions can at best provide a moderate
increase in accuracy and that consensus scoring should be developed from more

different scoring approaches3” or include additional information.38
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Figure 3.8. t calculated for combinations of scoring functions. The numbers 1-18 on the second row
and leftmost columns represent the scoring functions as described in the top row of Figure a). (a)
Pairs of scoring functions: darker boxes represent increase of the combined scoring functions over
the individual scoring functions (see key; value in key indicates the increase of the value of T over the
value for the individual scoring function in the same row). The yellow boxes correspond to the
individual scoring functions. (b) Groups of three scoring functions: darker boxes represent increase
with respect to XScore alone (yellow box)
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3.3.6 Impact of protein conformation and water molecules

Cross-docking is a more appropriate experiment than self-docking when one wants
to mimic virtual screening studies. A set of cross-docked ligands (i.e., Set 2) was
therefore assembled and used to assess scoring functions in this context. With this
second set, we aim to assess the impact of the selected protein conformation and
presence/absence of water molecules on scoring function accuracy. Each cross-
docked complex was first optimized in presence of water molecules and then
assigned two scores: one corresponding to the scoring considering water molecules
(wet/wet) and one corresponding to the scoring with no waters included (wet/dry).
As a third subset, we performed the local optimization of the ligands without the
water molecules and scored the resulting complexes without any water molecules
(dry/dry). This resulted in three subsets: one with the key water molecules retained
for both docking and scoring, one with all the key water molecules retained for
docking but removed for scoring, and one with all the water molecules removed for
both docking and scoring. As each of the nearly 1000 complexes can be found in the
three subsets, each complex was assigned three scores. With all this data in hand,
one can simulate the displacement of the water molecule, by selecting the best score

out of the three for each complex (water displaceable).

At this stage, each of the 92 ligands had been scored with all the structures (native
and non-native) of the same protein. In order to evaluate the impact of the selection
of the protein conformation on the scoring accuracy, scripts were written to
evaluate the correlation coefficients with various random selections of cross-docked
complexes. For this purpose, a protein structure (e.g.,, HIV-1 proteasela30) out of
the non-native protein structures of the same protein was randomly selected for
each ligand (e.g., HIV-1 protease ligand 1b6l) and the resulting complex scored.
From this set of predictions, the ranking of ligands by predicted binding affinity was
computed, compared to the observed ranking and a value of T was generated. Then
the process was reiterated with a different random selection (e.g., HIV-1 protease
ligand 1bé6l alternatively cross-docked to all the HIV-1 protease conformations but

the 1b6l native protein conformation). This process was iterated 10,000 times with
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a different population of cross-docked structures each time, thus providing a range
of values for the correlation coefficient T (see Figure 3.8). The median values for the
T obtained under the different conditions are given in Table A.5 (see Appendix) and

graphed in Figure 3.9.
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Figure 3.9. Accuracy (t) of the scoring functions on set 2 with different water considerations.
Waters were kept for docking and scoring (wet/wet, blue), kept for docking and removed for scoring
(dry/dry, red), removed for docking and scoring (dry/dry, green) or made displaceable (yellow). For
comparison, the correlation of the scores obtained for the native structures in wet/wet conditions is
shown (light blue).

Although the presence of water molecules bridging the intermolecular interaction
between ligands and biomacromolecules is known to be critical for binding in some
cases, docking and scoring programs do not commonly handle water molecules. Two
aspects can be affected by water molecules: the binding mode can be optimized
differently whether the waters are kept or not, and the score of the same pose can
be different if the scoring function scores the water-mediated interactions. As can be
seen in Figure 3.8 (and Table A.5 in Appendix), XScore, DrugScore, and the eHiTS
scoring function demonstrated the best correlations when the waters are kept,
although within errors from more than half of the other scoring functions. When
comparing the Kendall coefficients for the different water treatments, it is clear that
none of the scoring function is significantly affected by the presence or absence of
water molecules. It is worth mentioning that RankScore has been optimized to

account for the presence of water molecules and demonstrates slightly enhanced
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accuracy when displaceable water molecules are used. Overall, making the water
molecules displaceable increases the accuracy of most of the scoring functions as

expected although by only a small increment.

Next we looked at the drop in accuracy when going from native protein structures to
cross-docked complexes. It clearly appears (Figure 3.10, see also Table A.6 in
Appendix) that some of the scoring functions including GlideScore and RankScore
are greatly affected by the protein structures considered. The selection of the
protein conformation when more than one crystal structure is available should be
done with care. Once more, XScore and the eHiTS scoring function were the most
accurate, likely an outcome of the larger training sets used in the parameterization
of these scoring functions. Alternatively, each ligand was docked to all the non-
native protein conformations available for each protein and the best score was
retained. The selected score corresponds to a docking experiment carried out on a
conformational ensemble of protein structures, therefore considering the protein
flexibility (conformational ensemble, see Figure 3.10). By moving to conformational
ensembles, we expected to restore part of the accuracy lost when moving from self-
to cross-docked structures. In fact, while most of the scoring functions are
negatively affected by the use of conformational ensembles, the accuracy of the
eHiTS scoring function significantly increases when conformational ensembles are
used in place of the native protein conformation. A closer look at the data did not
allow any explanation for this behavior. We believe that scoring functions based on
soft proteins are less sensitive to the protein conformation. In fact, the steep
Lennard-Jones 12-6 employed by some of the scoring functions (e.g., RankScore) is
very sensitive to subtle moves while the soft function used by eHiTS scoring

function is not (Figure 3.10).
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Figure 3.10. Accuracy of the scoring functions (t) on the complete set 2 when protein
conformational ensembles (best scored complex among the cross-docked ones) were considered.

3.4 Conclusions

We have carefully developed two sets of protein/ligand complexes with reduced
correlation between MW and binding affinities. The first set was scanned for
accuracy in scoring of native poses (analogous to self-docking) using a large number
of available scoring functions. This screening revealed the good accuracy of XScore,
the eHiTS scoring function, DrugScore (PDB- and CSD-derived), GoldScore and
ChemScore. Analysis of the results on subsets of complexes indicated a large
dependence on the protein, analogously to the one observed previously with
docking programs.l! This can be in part explained by the training sets used in the
derivation of these scoring functions: eHiTS and XScore are the empirical scoring
functions with the largest training sets considered in this study. In particular, the
eHiTS scoring function implements specific parameters based on the protein class
involved, which might (at least in part) account for this enhanced accuracy. In a
subsequent section, we demonstrated that consensus scoring can only lead to
moderate increase in accuracy and that other strategies should be proposed (i.e.,
smart post-processing of poses) or novel (i.e., more predictive) scoring functions
should be developed to address the scoring issue in docking methods. Finally, we
have shown that some scoring functions lose all predictive power when applied to

cross-docked structures, demonstrating the need to incorporate protein flexibility in
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docking programs. From this information we draw the conclusion that using softer
proteins or conformational ensembles should lead to more predictive scoring
functions for use in docking-based virtual screening. More surprisingly, the
consideration of ligand-water molecule interactions has been shown to be of little
importance for scoring. However, most of these scoring functions were trained on
“dry” proteins and often do not consider the water molecules even if present. Our
scoring function RankScore performed well in the self-docking experiment and
when using conformational ensembles (as does our docking program FITTED), but
poorly with cross-docked structures. In addition, although we have found that
considering displaceable water molecules improves the docking accuracy, the
present work showed that it affects the scoring. In subsequent work, we will

develop a more accurate scoring function for these situations.

3.5 Experimental section

Scripts were required in order to automate many repetitive tasks in each of the
interfaces; to this effect Python scripts were used in Maestro, SPL scripts in Sybyl
and BCL scripts in InsightIl. Awk, shell and Python scripts were written to pre- and
post-process the structures, input and output files from each of the scoring functions
as necessary. Calculations were run on SGI Fuel workstations with a single R16000

processor and Linux workstations (AMD Opteron and/or Intel Core2 processors).
3.5.1 Selection of the training set structures

3.5.1.1 PDB

Queries on the Protein Data Bank3° were performed looking for X-ray crystal
structures of either HIV-1 protease (HIVP), thrombin or matrix metalloproteases
(MMPs) in complexes with small molecule ligands. The structures found were
filtered by keeping the ones with resolution better than 2.5 A, and among those, the
ones containing non-covalent ligands with reported activity. A set of 20 complexes
for each protein was selected ensuring chemical diversity and a homogeneous

representation of 7 orders of magnitude of Ki. For HIVP, the 20 complexes included
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11 wild-type structures and 9 mutants, with all the point mutations located away
from the first layer of residues in contact with the ligand. For thrombin, the 20
structures correspond to wild-type human thrombin; the MMP training set is
composed of 6 structures of MMP-3 (stromelysin-1), 2 structures of MMP-7
(matrilysin), 9 structures of MMP-8 (collagenase-2) and 3 structures of MMP-13

(collagenase-3).

3.5.1.2 PDBBind

Two hundred and twenty complexes from the refined PDBBind databasel®1° were
selected for chemical diversity and even distribution of affinity spanning 9 orders of
magnitude (from pKd=3 to 12). Naturally, the affinity ranges between pKd=5 to 10
(the most common affinity of a good lead) are the better represented. The
compounds selected have a lead-like molecular weight of between 250 and 600, and
the complexes for which there was more than one and different affinities reported

within the PDBBind database were not selected.
3.5.2 Preparation of the training set

3.5.2.1 Generalities

Preparation of the complexes for further calculations was performed with Maestro
7.0 (Schrodinger, Inc.) and MacroModel 9.0. (Schrodinger, Inc.). Succinctly, it
involved completion of the side-chains missing from the PDB structure (exposed to
solvent); capping of the protein termini as either ammoniums or carboxylates;
assignment of bond orders and protonation states in the ligand and active site
residues; and removal of all extraneous molecules (e.g., ions far away from the
ligand binding site, ethyleneglycol). In the cases where more than one pose for the
ligand was present in the PDB file, the one with the highest occupancy was chosen;
otherwise the first pose described was used. Water molecules were treated as
described in the following section. Hydrogen atoms were added and minimized with
all other atoms fixed (MMFFs94, up to 500 steps of conjugate gradient). The binding
mode of the ligands was relaxed by an energy minimization in which only ligand

atoms and hydrogens bound to heteroatoms were allowed to move (MMFF94s, up to
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2000 steps of conjugate gradient), and heavy atoms were constrained by a harmonic

potential (k = 5 kcal mol-! A1) to their crystal structure positions.

3.5.2.2 Treatment of water molecules

All explicit water molecules were removed from the complexes, except for the ones
that were contained in the intersection of a volume 3.0 A around all atoms of the
ligand and a volume 3.0 A around all the atoms of the receptor. These remaining
water molecules (varying in number between 0 and 20) were examined more
closely, and the ones capable of forming at least 3 hydrogen bonds with both the

ligand and the receptor were kept.

3.5.2.3 Assignment of protonation states for aspartyl proteases

The two catalytic aspartyl residues in HIV-1 protease (Asp25) are considered to
exist in a monoprotonated (monoionized) state for catalytic activity.2? The exception
has to be made for ligands binding to the catalytic dyad by means of a 1,2-diol,
where NMR and X-ray data points to both Asp25 being protonated, formed a tight
hydrogen bonding network with the two hydroxyls in the ligand,?! as well as ligands
with an ammonium group facing the catalytic dyad, which might stabilize the di-
deprotonated state.??2 A careful observation of the environment around the Asp25,
defining how the hydrogen bond network could be formed, together with the co-
planar (or not) orientation of the Asp25 carboxylates led us to define the

protonation state of each of the complexes.

3.5.2.4 Thrombin

Crystal structures for thrombin usually contain 3 chains: the 2 chains (L and H)
resulting from the self-cleavage of the protein, plus a hirugen peptide, which binds
to an alternate binding site in the protein. Given that the hirugen peptide and the
low-molecular weight chain of thrombin lie far away (more than 15A) from any
atoms of the ligand, they were removed in all cases, and only the heavy chain was
used for the calculations. The protonation state of all residues in the protein was

assigned as expected at pH 7, except for the artificial terminal groups resulting from

101



the missing loop in the crystal structures between residues 146 and 149E, which
were considered neutral (COOH and NH:) for the sake of not adding artificial
charges in the binding site. All ligands contain at least one protonated basic moiety

(ammonium, amidinium, guanidinium), which interacts with Asp45 in the receptor.

3.5.2.5 Metalloenzymes

Zinc-containing proteins (e.g.,, MMP-3, MMP-8, carbonic anhydrase) were prepared
by breaking all bonds between the metal ion and heteroatoms in ligands and

protein, and specifying a formal charge of +2.

3.5.2.6 PDBBind complexes

The complexes retrieved from the PDBbind database were prepared in a way
analogous to the previous complexes. Ligand protonation states where checked and
corrected where applicable (e.g., in some cases nitrogens attached to aryl groups
where incorrectly protonated); aspartyl proteases (e.g., penicillopepsin,
endothiapepsin, SIV and HIV-1 protease) where identified as such and the catalytic
dyad treated as described above; metalloenzymes’ Zn atoms where treated as in
MMPs. In the case of multimeric complexes, the minimum number of chains
necessary to describe the complex was kept. The number of atoms for the proteins
was kept under 10,000 by removing residues far away (i.e., > 20 A) from the ligand

binding site if necessary.

3.5.2.7 Preparation of cross-scoring set (set 2)

Proteins represented with at least 5 complexes in set 1 were selected (with the
exception of PNP, for which not all proteins were from the same source species).
Crystal structures of the complexes were prepared as described above, and all
complexes from the same protein superimposed to the alpha carbon trace of one of
them. FITTED was used in local search mode to adjust the binding mode of the
ligands to each protein binding site separately, with each protein being treated

rigidly. Due to the presence of flexible side chains, the maximum allowed translation
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in the generation of the initial population was set as 5A. The resulting binding

modes were used as input for all scoring methods.
3.5.3 Scoring

3.5.3.1 CScore

The stand-alone CScore module from Sybyl v7.3 was used, with default parameters
for the DScore (DockScore), GScore (GoldScore), PMF and ChemScore scoring

functions.

3.5.3.2 GlideScore

Glide v4.5 was used in all calculations. Grids were generated in a box of 204 around

the ligand, with default parameters. Scoring was performed in place.

3.5.3.3 eHITS

The score.sh script supplied with eHiTS v6.2 was used. Two ligands, 1h22 and 1h23,
were not assigned a score by eHiTS for having more than 10 rotatable bonds in a
linear fragment; a few others failed to be optimized, hence the non-optimized score

was considered.

3.5.3.4 Surflex

Surflex v2.301 was used. Protomol files for the protein structures were first
generated with the “proto” option, and then scores were calculated with the
“score_list” option. The non-optimized score was considered, as the optimized one

gave poorer correlations.

3.5.3.5 Cerius2

Cerius2 v4.10 was used on all calculations. PDB-formatted protein structure files
and SD-formatted ligand files were used as input for the LigScorel/2, PLP1/2, PMF

and Jain (Hammerhead) scoring functions.
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3.5.3.6 XScore

X-Tool v.1.2.1 was used. Protein and ligand structures were first prepared with the
“~fixpdb” and “-fixmol2” options respectively, prior to running the score

computation with the “-score” option.

3.5.3.7 DrugScore

Executables of DrugScorePPB and DrugScore®SP v1.2 were used under [RIX.

3.5.3.8 RankScore

The scores were calculated with the FITTED 2.6 docking program, after pre-

processing the protein and ligand structures with ProcEss and SMART, respectively.

3.5.4 Bootstrap analysis

The scores for each protein/ligand complex with every scoring function, as well as
the molecular weight and the experimental binding affinities were organized in a
CSV file and processed with a Python script. A random subset of observations of the
same size as the original (repetition was allowed) was selected, and the correlation
coefficients for each scoring function were calculated using the functions provided
in the SciPy module; this process was iterated 10,000 times. For each scoring
function, the range of correlation coefficients spanning 95% of the obtained in the
previous trials was taken as the uncertainty in the correlation coefficient for the
original set. In the case of the cross-docked structures, a random protein was
selected for each ligand on each iteration and the correlation calculated with one

complex for each ligand.
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Chapter 4: Development of scoring functions for

virtual screening from force field data

4.1 Introduction

For the last decade or so, docking methods have been widely used in structure-
based drug design. However, although many successful studies have been reported,
scoring of the docked ligands is still often poorly predictive and highly target
dependent.! In practice, the prediction of binding affinities in protein-ligand
complexes can be achieved with various levels of accuracy and speed. On one side of
the spectrum, molecular dynamics (MD) simulations (e.g., free energy perturbation
and linear interaction energy (LIE)?3 methods) take into account the average
interaction energy of a Boltzmann distribution of conformers in explicit or implicit
aqueous media. On the other end of the spectrum, scoring functions implemented in
docking programs, and/or used in virtual screening studies, deal with a single ligand
pose and often in vacuo. This certainly yields a different time frame for the
calculation but with a concomitant decrease in accuracy. These scoring functions are
traditionally classified as being either force-field based, empirical (regression-

based) or based on a potential of mean force.

The application of molecular mechanical force fields to the scoring of docked poses
(i.e., scoring functions implemented in docking programs) has been limited to the
AMBER force field (AutoDock,* Dock,> FITTED®), the Tripos force field (Gold”) as well
as the Dreiding and CFF force fields (LigandFit8). In these cases, the selection of a
specific force field was often based on its availability (e.g., Amber parameters are
publicly available). To date, force fields have never been assessed in detail to
evaluate their ability to reproduce binding free energies of ligands to proteins. In
fact, although force fields have been developed to reproduce a number of
thermodynamic and kinetic properties of molecules, they have not been specifically

developed to predict binding free energies and often overestimate them.

109



We have recently developed a docking program that accounts for protein flexibility
and bridging water. 210 The scoring function used with this software is a force field-
based scoring function reported earlier.? Although this scoring function was found
to extract new active compounds from large libraries,!° and rank compounds by
activity with accuracy similar to the state-of-the art scoring functions,!! we believe
that the number of false positives can be reduced by the use of a more advanced
scoring function. We report herein our efforts toward the development of a new
force field-based scoring function starting from an exhaustive comparative study of
the ability of popular force fields to predict the binding affinity of ligands to
proteins. In a second section, we describe the development of a scoring function
derived from crystallographic structures and docked complexes, as well as another
scoring function trained from virtual screening data. Finally, the validation of the
developed scoring functions on benchmark sets of protein/ligand complexes and
sets of active compounds and decoys is described. As with our docking program, we
focused on a scoring function that would be suited for flexible proteins including

bridging water molecules.

4.2 Results and discussion

4.2.1 RankScore

Our previous version of RankScore (referred to as RankScorel in this publication)
was derived from a set of docked ligands and crystal structures of BACE-1
inhibitors.? In the present study, we envisioned three different approaches. A
scoring function as implemented in docking programs can have two major
applications. First, scoring functions can be used to rank potential ligands by their
predicted binding affinity (i.e., as in a lead optimization problem). Second, they can
be used to discriminate active compounds from inactive compounds (i.e., as in a hit

identification problem).

Based on these premises, we exploited our previously reported set of 209
protein/ligand crystal structures!! to derive a scoring function (referred to as
RankScore2). This second version of RankScore was, consequently, developed from
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active compounds (exhibiting weak to strong binding affinities) and will have
potential application in the ranking of actives. However, this scoring function was
based on the assumption that the protein conformation is fine-tuned to each of the
ligands. To address this issue, we also developed a scoring function, namely
RankScore3, from our set of 946 cross-docked ligand/protein complexes. Finally, we
will describe the development of a third scoring function (RankScore4) from large
sets of active and inactive compounds. This last variant will have application in

virtual screening (discrimination between binders and non-binders).

4.2.2 Screened force fields

When considering the development of a force field-based scoring function, there is
no rationale for the selection of one force field over another. The first goal of this
research project was therefore to assess various class I and class II molecular
mechanics force fields to identify the one(s) that would be better suited to make a
quick yet accurate estimation of the binding energy between a ligand and a receptor
and to compare their accuracy to that of commercially available scoring functions.
We selected 5 force fields implemented in Discover (Accelrys), namely CVFF, CFF91,
CFF, ESFF and AMBER84; 6 force fields implemented in MacroModel (Schrodinger),
namely OPLS2001, OPLS2003, MMFF94, MMFF94s, MM2*, MM3* and AMBER*; and
3 force fields implemented in Sybyl (Tripos), namely Tripos force field, AMBER99
and AMBERO2 (which is the only polarizable force field used in this study). MM3
and MM4 have been developed with more accurate but more computationally
expensive terms such as dipole-dipole electrostatic term, stretch-bend cross terms
and a Buckingham potential term for the van der Waals interaction energy
evaluation. As the use of these force fields in VS would significantly reduce the
throughput, they were not evaluated in the present work. Although some of these
force fields are overall very similar, their parameterization is inherently different
(e.g., experimental data such as microwave and NMR spectroscopy, neutron
diffraction for AMBER!? and high quality -MP2/6-31G*- ab initio data for MMFF13)
and the mathematical functions used vary from one force field to another. For

instance, the van der Waals interaction energy is often computed using a Lennard-
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Jones (L]) potential, most commonly with 6-12 exponents, but 6-9 (CFF, ESFF) and
buffered 7-14 (MMFF) exponents are also used. All the force fields use the Coulomb
equation to calculate the electrostatic interaction between point charges centered
on the nuclei. Older versions of AMBER (such as the AMBER84 implemented in
Discover) and the MMx* family add an explicit term for hydrogen bonding, in the

form of a 10-12 Lennard-Jones potential.

4.2.3 Training sets and scoring function

The starting point for our comparative study was the two training sets of protein-
ligand structures reported in the preceding manuscript of this series. 11 Efforts were
devoted to the development of an unbiased training set, showing little correlation
between binding affinities and ligand molecular weights. In this previous report, we
also applied 18 commonly used scoring functions to evaluate their accuracy with
these testing sets. This study shed light on the poor to moderate accuracy of some of
these scoring functions when a challenging testing set is used. It also set the lower
limit for the development of an accurate scoring function as XScore and ChemScore
were found to be the most accurate, with Kendall t coefficients never exceeding

0.37.11

4.2.4 General considerations

A first set of calculations was performed with the force fields as they were shipped
in the corresponding software packages, which in some cases prevented the
calculation to proceed because of the lack of parameters. With the addition of
parameters to the force field definitions (see Derivation of additional parameters for
force fields), all systems were run with all the force fields. As expected, preliminary
runs with HIV-1 protease inhibitors have shown that the inclusion of the key water
molecules (the so-called water 301) was critical for a greater predictive power of
the method, and only these results will be discussed. The hydrogen-bond terms
arising from the force field energy were taken into account, in the cases where they
existed (AMBER84, MM2*, MM3*). The first step of the computation was to reconcile

the structures with the assessed force fields. These relaxation steps when

112



performed with each the force fields led to large deviation in some of the cases. In
order to address this issue, the ligands were energy-minimized in the binding sites
with the ligand heavy atoms constrained to the crystal structure coordinates. As
expected, the resulting structures were much closer to the crystal structures and
were further processed, with a global average RMSD of 0.32 A, a standard deviation
of 0.20 A and a maximum RMSD of 1.6 A for 10kl when minimized with the Amber99
force field. A closer look at the energy-minimized structures indicated that the
deviations were only slightly force field dependent, with the Sybyl-implemented
force fields exhibiting larger RMSDs than the Discover and MacroModel ones.
However, it was seen that the distribution was highly complex-dependent: 81 out of
the 209 ligands had RMSDs of less than 0.5 A with all the force fields, while only 14
ligands displayed RMSD’s higher than 1.0 A with at least one force field. This may
indicate either weaknesses of the force fields to reproduce crystal structures, the
impact of computation in vacuo, inaccuracies in the fitting of the models to the
electron density in the crystal structures or the effect of crystal packing. In crystals,
protein/ligand complexes are packed and using a single structure may lead to a
misinterpretation of the binding mode. For example, we may believe that some of
the ligands are exposed to the aqueous medium, (which may exhibit a high ionic
strength) while they may interact with a second complex (next cell of the crystal).
Observing a large change in the potentially solvent-exposed portions of ligands is

therefore expected.

4.2.5 Force field energy terms

The first step of our study was to compare the various force fields and their
implementations for their ability to reproduce binding affinities. We therefore
looked at the correlations between force fields van der Waals and coulombic
energies as computed with each of the force fields. For this, we calculated the
respective components of the binding affinity as the difference between the non-
bonded interactions observed in the complex and the ligand and protein, and
computed the Pearson correlation for each pair of values. As can be seen in Figure

4.1, the van der Waals and electrostatic terms of all the investigated force fields
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considered were highly correlated. The only force field that appeared to have less of
a correlation is Tripos. This was not unexpected, as the recommended charge
treatment for its use is through formal charges, while all other force fields consider
some kind of partial charges. MMFF94 also appeared to produce van der Waals
energies that are less correlated to the other force fields. The van der Waals
functional form, a buffered 14-7 Lennard Jones, is different from the more

traditional Lennard Jones 12-6 or 9-6 used by the other force fields.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CFF91 0.79 0.79
AMBER 0.74 0.74
CFF 0.80 0.80
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Figure 4.1 Correlation of van der Waals and electrostatic terms for the different force fields in use.

4.2.6 RankScore2, 3 and 4: novel scoring functions

From that initial study, it became clear that any force field would most probably
perform as well when implemented in a more complex scoring function. We

therefore turned our attention to the publicly available AMBER/GAFF force field
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already implemented in our docking program FITTED 2.6.6 An ideal scoring function
would accurately predict the binding affinity of any given ligand for any given
protein or nucleic acid target. In practice, this can be reduced to the prediction of the
free energy of binding (AGuvinding) representing the complex formation illustrated on
Figure 4.2. When developing such a function, many researchers relied on the
additivity of contributions.?14-18 Following this approximation, we broke apart the
free energy of binding into the change in entropy and enthalpy measured upon
complex formation. As this Michaelis complex forms in water, these contributions

are accompanied by a change in solvation (Equation 4.1).

AHsolv,L b ( - w ( |
) AHL,‘lnt-\ ) ASwrat -
AR Y L

Figure 4.2. Ligand /protein complex formation

Equation 4.1. Free energy of binding.
AG i = AG +AG

complex formation solvation

Equation 4.2. Decomposition of the free energy complex formation.
AG = AFlcomplex - AH ligand ~ AHprotein -
-TAS +TAS +TAS

protein

complex formation

complex ligand

4.2.7 RankScore formalism

Each of these contributions to the free energy of binding had next to be computed as
accurately and as quickly as possible. To do so, we implemented various approaches
into FITTED and tried a number of combinations. The first three terms of the right
hand side of Equation 4.2 were computed using the GAFF force field (Equation 4.3).
In the present study, we assume the protein potential energy (internal energy) to be

constant (C in Equation 4.3) as the energetic aspect of protein conformational
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changes would be difficult to evaluate accurately with high throughput. It is clear
that C should be different from one complex to the next as the protein may adjust its
conformation upon ligand binding.

Equation 4.3. Change of enthalpy of complex for formation of the ligand-protein complex, calculated

as the difference of force field energies of the complex, unbound ligand and protein with bound
waters (E/F).

AHcomplexformation = AHcomplex - AH ligand - AH protein
FF FF FF
- Ecamplex - E[igand(unhound) - Epmtein+water + C

In practice, these contributions were computed following these steps: i.
Optimization through conjugate gradient energy minimization of the ligand pose
within the protein binding site using FITTED and computation of the ligand internal
energy and intermolecular energy between protein and water molecules, and the
ligand. ii. Optimization of the ligand in vacuo and computation of the ligand potential
energy. As the developed scoring function is to be used with FITTED, we thought that
optimizing the pose using the function implemented in FITTED would be more

representative of a docked pose.

The fourth term of Equation 4.2 was computed by penalizing the number of
rotatable bonds (Nrot in Equation 4.4) that are frozen upon binding, defined as all
single bonds not in rings. Many scoring functions give each rotatable bond the same
penalty. However, as already mentioned by Eldrigde et al. some bonds become
“more frozen” than others when a ligand binds.1” First, it is well known that a long
hydrophobic chain does not move as freely as a polar chain in water and is less
frozen than hydrogen-bonded groups when bound to the protein. Second, a portion
of a ligand in close contact with a protein cannot move as much as a solvent-exposed
group. In order to account for these two aspects, we developed a function (Equation
4.4) where the penalty given to the ligand is a function of the number of rotatable

bonds, the polarity of the bonds and their deepness in the protein.
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Equation 4.4. The entropic contribution on the ligand side is calculated as a function of the number
of rotatable bonds (Ny.), affected by the polarity of the bond and the buriedness of the bond, as
estimated by the numbe of contacts with the protein (see text).

AS, =f (N,m, polarity,contact)

lig —

Two strategies accounting for bond polarity were evaluated. Either the atom types
of the rotatable bonds (identified as “polar”, “semipolar” or “apolar”) or the solvation
energy of the entire ligand were used as polarity descriptors. Only the first of these

two descriptors led to an increase in accuracy when added to the scoring function.

The freezing of the bond is next evaluated and defined by the value “frozen”. Once
more, two options were evaluated: i. the number of protein atoms within a certain
distance of the “frozen” bond (e.g., 10 A) or ii. the presence or absence of a contact
with the protein. The former value was used as a descriptor of the deepness of the
rotatable bond in the protein binding site, while the latter is a measure of the
freezing effect of the neighboring protein atoms. Although the former had a
negligible effect on the scoring function accuracy, the latter significantly increased it.
In this formalism, a bond was defined as completely frozen (frozen = 1.0) if the two
atoms making this bond (atom 1 and atom 2) were within 0.5 A of any protein atom
van der Waals surface, each atom contributing 0.5 to frozen. If one of the atoms (i.e.,
atom 1) is not in close contact with the protein (atom 1 does not contribute to
frozen), the atoms covalently bound to atom 1 are examined. If at least one of these
connected atoms is within 0.5 A of any protein atom van der Waals surface, atom 1
contributes 0.25 to frozen. If none of the atoms connected to atom 1 are in close
contact with the protein, atom 1 does not contribute to frozen. In the example in
Figure 4.3, atoms 1 and 3 have contacts with the protein, while atoms 2 and 4 do
not. When considering the frozen value of bond 1-2, atom 1 would contribute 0.5,
while atom 2 would contribute 0.25 (for being attached to atom 3, having a contact
with the protein), yielding a frozen value of 0.75 for that bond. Analogously, bond 2-

4 would have a frozen value of 0.25, stemming from the contribution of atom 2 only.
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Figure 4.3. Frozen bond determination. Atoms 1 and 3 have van der Waals contacts (distance
between van der Waals surfaces < 0.5 A) with the protein (purple surface), while atoms 2 and 4 do
not. In this case, the bond between atoms 1 and 2 would have a frozen value of 0.75, while the bond
between atoms 2 and 4 would have a value of 0.25.

Conformational entropy loss upon ligand binding has two major components. First,
the potential energy surface well in which a given conformation lies may get
narrower. Second, some wells may disappear in the presence of the protein. Clearly,
although strategies we investigated may lead to a more accurate description of the
ligand entropy change than a function of Ny alone, they evaluate the first
component and not the second one, which would require a more exhaustive search
of the ligand potential energy surface. This has indeed been proposed and

implemented within AutoDock.1®

The change in entropy of the protein upon binding (sixth term of Equation 4.2) was
accounted for by reducing the interaction between ligand atoms and flexible side
chains. This approach discussed previously?!?2 has been shown to increase the
accuracy of the previous version of RankScore.” In the previous implementation,
each side chain atom was assigned a scaling factor (A in Equation 4.5) ranging from

0.6 to 1.0, which was next used to scale down the non-bonded interactions. In this
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early implementation, the value of A was residue-dependent (0.6 for arginine and 1
for alanine). However, interaction of the ligand with the beta carbon of an arginine
does not lead to the freezing of the entire side chain and should not be penalized
much while interactions with the guanidinium group of this same side-chain
significantly reduce the mobility of the whole side chain. To account for this fact, the
scaling factor A is now dependent on the location of the atom on the side chain.

Equation 4.5. The entropic contribution to the binding from the protein is estimated by scaling down
the interaction with the ligand (Erotig) calculated through a force field by a factor A.

AS = EAEFF

prot prot-lig
non-bond pairs

partially flexible

Figure 4.4. Flexibility of side chain atoms. The further away from the peptide backbone an atom is,
the more flexible it is considered, therefore the entropic penalty upon binding will be larger.

Finally, the solvation/desolvation contribution was evaluated using a generalized
Born (GB) approach combined with an evaluation of the change in solvent accessible
surface area (SASA) known to be proportional to the apolar change in solvation

(Equation 4.6).20 For this purpose, GB/SA has been fully implemented in FITTED.

Equation 4.6. Free energy of solvation is calculated as a function of the solvent-accessible surface
area (SASA) and the generalized Born approach.

AG = f(SASA,GB)

solvation

4.2.8 Development of RankScore2 and RankScore3

The value for each of these terms was computed for the 209 complexes of the self-

docking set 1 and for the nearly 1000 complexes of the cross-docking set 2.11 Next,
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random weights between 0 and 1 were generated for each term and the Kendall
T measuring the correlation between the predicted and observed rankings was
computed (Figure 4.5). This strategy will therefore lead to a scoring function
optimized to predict the ranking of compounds and not to reproduce binding free
energies. These steps were repeated 25,000 times and the corresponding table with
25,000 entries was sorted by decreasing T. In order to ensure a better
transferability, we did not immediately select the best one but opted for an iterative
approach. To do so, statistical analysis of the sets of weights leading to the top 4%
(1,000 entries) correlation coefficients was carried out (Figure 4.6). Based on this
information, the ranges for the different coefficients were constrained to the
weights with the higher chance of leading to a better correlation with experimental
binding affinities, and the protocol described in Figure 4.5 reiterated with the new
ranges. For example, in a second iteration the coefficients for the van der Waals

interaction were randomly generated between 0.00 and 0.40.

Compute terms for all complexes
in the set with FITTED

) i )l )

-12.231 -2.271 -0.231 0.112 1.023 nd
nd

209 -10.332 -0.723 -0.892 0.005 2.032 nd

Archive set of weights
and Kendall t

0.234 0.702 0.105 0502 .. 0.994 0.323

Randomly generate weights
{W} for each term

0.234 0702 0.105 0.502 .. 0994 nd

Compute Kendall t
Compute scores

for the set

R R

=122 2 E252:71 -0.231 0.112 1.023 -14.123

209 =10} 232p) -0.723 -0.892 0.005 2.032 -11.928
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Figure 4.5. Procedure used to derive RankScore2 and RankScore3. In each case, 25,000 loops were
performed, yielding an identical amount of sets of weights with their associated Kendall t value.
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Figure 4.6. Distribution of scaling factors for van der Waals (blue) and electrostatic (red)
interactions.

After five iterations of the entire protocol, RankScore2 was produced (Equation 4.7).
This value is similar to those obtained previously with the same training set and the
most accurate scoring functions assessed. The same procedure was carried out with
the second set (cross-docked structures). Expectedly, as cross-docked structures are
not as accurate as crystal structures (i.e., the amount of signal might be buried under
the noise of the data), the trends (as the one shown in Figure 4.6) were not as
marked and the function (referred to as RankScore3) derived from this set is not
expected to be as accurate as RankScore?2. In fact, most of the terms did not show
any preferred range of values and none of the random set of weights led to Kendall ©
values as high as those observed with the previous set and RankScore?2.
Interestingly, these two functions RankScore2 and 3 were found to be very similar
but RankScore3 will not be considered further.

Equation 4.7. Functional form of RankScore2. The different terms relate the different components
(Evdw, Eelec, EHB) of the intermolecular energy in the complex (Ecomplex), the generalized Born polar

solvation energy (AGgs), the non-polar solvation energy proportional to the SASA (AGsasa), the
number of captured water molecules (Nwat) and the number of rotatable bonds (Nrot).

RankScore2 =0.680E*" +0.040E““ +0.100E™®

complex complex wmplevc

+0.000AG,, +0.100AG,, +0.040N,  +

+0.450| N, +2- E f(N,,,.polarity contact)

bonds
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With Nyq: being the number of captured water molecules, Nro: being the number of
rotatable bonds. Interestingly, the weight for the polar contribution to the solvation
was found to be very low and setting it to zero reduces the computation time
necessary to compute a score. This observation is consistent with our previous

report.?

4.2.9 Development of RankScore4

The last scoring function was developed using a slightly different approach. Six
proteins (purine nucleoside phosphorylase, acetylcholinesterase, neuraminidase,
oestrogen receptor, trypsin and P38 map kinase) and the corresponding decoys and
active compounds were selected from the DUD set.?! For each of the proteins, three
or four conformations were considered. All the compounds were docked using
FITTED in the flexible protein mode and the iterative protocol illustrated in Figure
4.5 applied. However, instead of computing t for the correlation between scores and
binding affinities, we computed the area under a receiver operating characteristic

(ROC) curve for the retrieval of known actives.

Once more the protocol was iterated five times with increasingly smaller ranges of
coefficient values. At the end of this procedure RankScore4 was derived (Equation
10) with ROC values of 0.85 (PNP), 0.47 (AC), 0.73 (NA), 0.87 (ER), 0.95 (trypsin)
and 0.67 (P38) with an average of 0.79 When comparing RankScoreZ and
RankScore4, it clearly appears that these two scoring functions are capturing very
different information. While in RankScore 1, 2 and 3, the electrostatic interaction
term was almost turned off, it became a major term in RankScore 4. In fact when
RankScore2 was applied to these same 6 proteins and ligand sets, the ROC values
were much lower (0.82, 0.40, 0.42, 0.67, 0.73, 0.47) with an average of 0.60. In
addition, RankScore 2 provided rankings that were not better than random for AC,
NA and P38 while only AC remained problematic after extensive training of the

scoring function into RankScore4.
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Equation 4.8. Functional form of RankScore4. See caption to Equation 4.7 for description of the
terms.

RankScore4 =0.184- E™"  +0.746- E““ +0.595-E™ =+

complex complex complex

+0.000- AG,;,; +0.160- AG,,,, +0.050- N, +
+0.664 E f(N,,,.polarity contact)

bonds

4.2.10 Application of the RankScore scoring functions to benchmark sets

In order to evaluate the predictive power and compare RankScoreZ to other
available functions, we applied it to the Wang's set of 100 protein/ligand
complexes.?? To our surprise, a close look at this set revealed some discrepancies
and prompted us to curate it. Seven covalent inhibitors were removed and metal
ions were added to metalloenzymes. With this set in hand, we applied 11 scoring
functions including some that Wang and co-workers used. We observed that
ChemScore was much better than previously reported with this set. In a previous
report, we found that the accuracy of the scoring functions both Wang and co-
workers and us looked at correlated well except for ChemScore.ll With the set
cleaned, accuracies obtained with both sets now correlate well. As shown on Figure
4.7 (see also Table A.7, Appendix), RankScoreZ2 stands within the best scoring
functions, behind X-Score and DrugScore, and within range of ChemScore,
DockScore and PLP2. More interestingly, the correlation of the scores calculated
with RankScore4 were among the least predictive of all the scoring functions

considered.
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Figure 4.7. Pearson correlation and Kendall < for a variety of scoring functions when applied to the
testing set of 93 complexes.

As an additional validation, RankScore2 and 4 were also applied to the screening of
libraries of known actives and decoys against thymidine kinase (TK), HIV-1
protease, thrombin, CDK2 and HIV reverse transcriptase. As can be seen in Table
4.1, RankScore4, developed for this specific purpose, is much more accurate than

RankScore2 that was developed to reproduce binding affinities.

Table 4.1. AUC for the docking of libraries containing about 1000 ligands and decoys to 11 proteins
(6 in the training set and 5 in the testing set)

SF Training set Testing set Avg
PNP AC NA ER TRP P38 TK HIVP THR CDK2 HIVRT

RS2 082 040 042 0.67 0.73 047 056 0.63 0.63 0.65 0.61 0.60

RS4 085 047 0.73 087 095 0.67 0.88 087 090 0.83 0.65 0.79

This data indicates that distinct scoring functions for hit identification and lead

optimisation should be developed.

4.3 Conclusions

It is well established that molecular mechanical force field energy on a single
conformation is often not sufficient to provide a predictive tool for the fast
estimation of the binding energy of ligands to proteins. However, the addition of

other terms simulating other aspects of the energetics of binding to the equation
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provides more predictive methods. In a first section we have shown that the
intermolecular potential energies computed with many common force fields are
highly correlated, showing that any force field would potentially perform as well in
predicting ligand binding affinities. We next developed RankScore2 and RankScore
3, built around the general Amber force field (GAFF), from an iterative process that
optimized the scoring function weights in order to maximize the correlation of the
calculated scores with experimental binding affinities. Validation of RankScore2
against a previously reported set of protein-ligand complexes indeed found it to
perform better or as well as many commonly used scoring functions. We then
trained RankScore4 to discriminate between active and inactive compounds in an
analogous iterative fashion. Testing of RankScore2 and RankScore4 on other
libraries of ligands and proteins revealed that RankScore4 perform significantly
better than RankScore2, indicating that scoring function for VS should not be

developed from active compounds only.
4.4 Experimental Section

4.4.1 Preparation of the training set structures

The preparation of the training set has been described in a previous report (see
Chapter 3).11 Succinctly, it involved: i. removal of all water molecules except the
ones making bridging interactions (at least 3 hydrogen bonds) with both ligand and
protein; ii. assignment of appropriate protonation states to both ligand and protein
side chains; iii. constrained optimization by energy-minimization of the ligand with

a force field.

4.4.2 Derivation of additional parameters for force fields

Some of the force fields did not contain some parameters that were relevant to the
calculations, so ad hoc parameters were derived for them. Some of the ligands
featured moieties that were not included in the original force field parameterization,
however they were deemed fairly rigid and starting from a crystalline structure, not

much optimization would be necessary. Parameters (mostly bond stretch, and
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torsions) for these moieties were derived by defining the new parameters so as to
conserve the values observed in the crystal structure. For bond stretches, the
equilibrium distance (ro) was defined as the average of the interatomic distance
observed in all the molecules containing the particular moiety in the training set,
with a stretch constant defined by analogy with another pair of atoms existing in the
force field definition, or by default a large stretch constant to keep the bond stiff.
The same strategy was used for bending and torsional parameters when needed.
This study focuses on non-bonded interactions; hence the guessed parameters

should not have much impact on the final result.

4.4.3 Force field charges

The forcefields included for use with Discover use a bond-charge increments system
to assign partial charges, while Macromodel uses a bond dipole definition. When
charge definitions were missing from the force field definition, semiempirical
calculations using the AMPAC module in Insight Il were performed on model
molecules (e.g., for carbamates, N-methyl-methoxycarbamate was used) to
determine appropriate bond increments. The bond increments were defined
appropriately to reproduce the charge distribution observed by the semiempirical

method.

4.4.4 Development and validation of RankScore2 and RankScore4

The sets used to develop RankScore2 and RankScore3 are those previously reported
and were used with no further modifications. The set of protein-ligand complexes
reported by Wang et al. used to validate RankScore2 was curated by a) removing
covalent complexes (1a46, 1a5g, 1ba8, 1bb0, 1exw, 1yyy, 1zzz). In addition, missing
metal atoms in metalloproteins (1af2, 1bzm, 1cbx, 1€96, 1mnc, 1tlp, 1tmn, 2ctc,
2tmn, 2xim, 2xis, 3cpa, 3tmn, 4tln, 4xia, 5p21, 5tln, 7tln, 8xia) were re-added from
the original Protein Data Bank entry. Scores were re-calculated following the
protocols recommended by the developers of the different scoring functions and
described previously.!! Proteins, active compounds and decoys used to derive and

validate RankScore4 were retrieved from the DUD library.?! A maximum of 1000
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decoys were selected for each of the 11 proteins considered (AC: 1e66, 1gpn, 1h22,
1h23; CDK2: 1pxp, 1dm2, 1laql, 1pxn; ER: 1sj0, lerr, 3ert; HIVP: 1b6l, 1hpo, 1hpv,
1pro; HIVRT: 1vrt, 1fk9, 1rtl, 1clb; NA: 1f8d, 1f8e, 2qwe, 2qwf; P38: 1a9u, 1w7h,
1w82, 1w84; PNP: 1b8n, 1b8o, 1v48; THR: 1dwc, letr, 1tmt, lett; TK: 1e2k, 1ki3,
1of1, 2ki5; Trypsin: 1fOu, 1ghz, 102h, 1gb9).

The ligands from the various sets were docked using the FITTED2.6 suite and all the
energy terms were output and tabulated. Python scripts were used to randomly
generate the weights, compute the scores and either Kendall T (RankScore2) or area
under ROC curves (RankScore4). Another Python script was used to analyze the

generated data and define the range for the next cycle (see Figure 4.5).
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Chapter 5: Modeling of supramolecular compounds

binding to guanine quadruplex DNA structures

5.1 Introduction

5.1.1 Cancer

Cancer is a disease characterized by the invasive and uncontrolled growth of
malignant tumour cells.! It is responsible for 13% of all human deaths (30% in
developed countries), having claimed 7.4 million victims worldwide in 2004.2 A
malignant tumour can originate in many organs, and if left untreated it can
metastasize to other parts of the organism eventually leading to death. The strong
chemotherapeutics required for cancer treatment target different stages of the DNA
transcription and replication pathways, and their high toxicity stems from their lack

of specificity, which do not spare healthy cells.

5.1.2 Telomeres

The end of a eukaryotic DNA chromosome contains the telomere, a repetitive non-
coding sequence of DNA that protects the genome from damage. Telomeres are
around 10-15 kilobases in length and are mostly a duplex, except at the extreme 3’
termini where they have a single strand.3-> A variety of proteins are associated to the
DNA at the level of the telomeres, notably the shelterin complex, TRF1, TRF2 and
POT1,% as well as the enzyme telomerase.” Due to the inefficient replication of the
DNA the telomere becomes shorter after each replication round, losing 25-200
bases after each generation of cells and eventually reaching a critical length.8 At this
point, tumour suppressor mechanisms (e.g., p53, Rb) are activated forcing the cell
into senescence, preventing further cell division. If the tumour suppressor
mechanisms fail, cell division continues leading to the complete loss of the telomere,
which in turn usually leads to apoptosis. Nevertheless, in some cases (a frequency of

~10-7) cells can prevent apoptosis by activating a mechanism to maintain telomere
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length, thus immortalizing the cell. In 85-90% of cancerous cells, this mechanism

involves the enzyme telomerase.’

5.1.3 Telomerase

Telomerase is a ribonucleoprotein, consisting of an RNA template and a reverse
transcriptase domain (hTERT), with the ability of extending the genomic DNA by
inserting tandem repeats of a sequence complementary to its template.l® The
repetitive sequence varies with the species; in the case of the human telomerase,
this motif is GGGTTA.” The observation that telomerase is active in cancerous cells
but not in normal somatic cells, makes it an attractive target for therapeutic
intervention. Inhibition of telomerase activity has been attempted at different levels,
namely: modulating the activity of the catalytic hTERT domain, targeting the RNA
component, affecting other proteins binding to telomeres or interacting directly

with telomeric DNA.11

5.1.4 Guanine quadruplexes

The folding of guanine-rich single strands of DNA into quadruplexes through
Hoogsteen base-pairing has received a lot of attention from the scientific
community.1? First identified in telomeric regions of the eukaryotic chromosome, G-
quadruplexes (G4) have been since found in varied regions of the genome, notably
in the promoter regions of the oncogenes c-kit and c-myc.13 The structure of a
guanine tetrad is shown in Figure 5.1. The structure of G4s has been studied by
diverse biophysical techniques, including X-ray crystallography, NMR and circular

dichroism (CD) spectroscopy.
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Figure 5.1. Guanine quadruplex hydrogen-bonding structure showing Hoogsteen base-pairing.

The arrangement of single-stranded DNA to form a unimolecular G4 can lead to
diverse foldings,* although few have been experimentally observed. In the case of
the human telomeric sequence, 5’-d(GGG[TTAGGG]3)-3’, Patel and co-workers found
a basket-like folding for the human telomere in sodium buffer solution by NMR.1>
Later, Neidle and co-workers solved the crystal structure of a propeller-like folding
in presence of potassium cations.!® In addition to these two structures, a hybrid

folding was observed by NMR in K*-containing solutions.1”

5.1.5 G-quadruplex binders as telomerase inhibitors

Zahler et al. observed that telomerase activity could be inhibited by the formation of
G-quadruplexes in telomeric DNA.18 The stabilization of G-quadruplexes with small
molecules emerged then as a potential strategy for telomerase inhibition, with the
first success reported by Hurley and co-workers for a 2,6-diamidoanthraquinone-
based ligand.1® Since then, different organic molecules have been used for this
purpose, such as telomestatin,?® BRACO-19,2! cationic porphyrins,?? anthracene-

9,10-diones?3 and bisquinolinium derivatives.24

5.1.6 Molecular modeling of G-quadruplex binders

Although the reports of modeling techniques applied to protein targets outnumber
those applied to nucleic acids, most of the methods used for the former are
applicable to the latter. Molecular dynamics simulations involving quadruplex DNA

have been recently reviewed by Sponer and Spackova,?> but little is mentioned
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about systems including small molecules. Read et al. developed a method for
calculating relative binding affinities from molecular dynamics time-averaged
structures, which was successful at predicting the ranking of a family of compounds
binding to the human telomere G-quadruplex.2®¢ Similar experiments using
automated docking and simulated annealing refining were used to study the binding
of peptides conjugated to acridines and acridones?’” and square planar nickel
complexes.?8 When reporting the crystal structure of BSU6039 with the two-strand
G-quadruplex from the Oxytricha nova telomeric sequence, a 2 ns molecular
dynamics simulation was used to assess the stability of the pseudo-intercalating
binding mode proposed.?? While this work was in progress, the ICM docking
program3? was used for the automated docking of a library of compounds to the

crystal structure of the human telomere G-quadruplex.3!

5.1.7 Summary of work presented in this chapter

The present chapter describes the efforts performed to design and model platinum
(II) complexes with a variety of heteroaromatic ligands as potential guanine
quadruplex binders and telomerase inhibitors. In particular, we describe the
development and application of a method to assess binding affinities of platinum
complexes to G-quadruplex DNA. The first section describes the derivation of
molecular mechanical terms compatible with the GAFF force field3? for these
inorganic complexes. In subsequent sections, we applied these parameters to the
docking and molecular dynamics simulation of a platinum molecular square and

different platinum complexes with extended m-surface ligands.

Part of this work has been published as a communication in the Journal of The

American Chemical Society,?3 while other manuscripts are currently in preparation.
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inhibition assays.

5.2 Results and discussion

5.2.1 Development of molecular mechanical parameters for platinum (II)

complexes with heteroaromatic ligands

The modeling of platinum complexes poses the challenge of the lack of parameters
describing square planar complexes within biomacromolecular force fields.
Extension of the Amber force field is straightforward to implement, as new atom
types and interactions are defined in an external force field modification file
(frcmod). Development of a new parameter set requires the calculation of the
energies of a set of distorted structures at a high level of theory. In the case of the
Amber force field, the latest parameter set (parm99) was developed from
calculations at the MP2/6-31G* level of theory.3435 An extension of this parameter
set to general organic molecules (GAFF, Generalized Amber Force Field), also
developed from ab initio data at the MP2/6-31G* level, allows for the simulation of
most organic molecules with the Amber force fields, but it does not include
organometallic compounds or transition metal complexes.32 The choice of a basis set
to treat platinum nuclei precludes the use of the 6-31G* basis set used in the GAFF
force field, which is not parameterized for transition metals, hence we decided to
use the LACV3P** basis set available in the Jaguar software, which includes
parameters for all transition metals. This basis set is a triple-zeta contraction of the
LACVP basis set, including the effective core potentials developed by Hay and Wadt
for elements in the 4th, 5th and 6t periods of the periodic table;36-38 light atoms are

treated with 6-311G basis sets.

Development of force field parameters for each interaction requires the adjustment
of a pair of parameters (K and xo) to fit a quadratic equation of the type E = K-(x-xy),
so that the relative energies of different conformers are accurately described by the
molecular mechanical potential. To this effect, we constructed a series of structures
distorted from the optimized conformation and calculated the energy at the
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B3LYP/LACV3P** level of theory, varying one internal coordinate (bond length,
angle, torsion) at a time, sequentially covering all the parameters missing from the
force field. We then calculated the energy using molecular mechanics with the set of
available force field parameters using the GAFF force field. Figure 5.2 shows the

format of the final frcmod file with the developed parameters.

MASS

Pt 195.08 2.000 Square planar platinum (II)
n5 14.01 0.530 idem n4

nz 14.01 0.530 idem na

DU 1.0 0.000 Dummy atom

BOND

Pt-n4 133.171 2.089 B3LYP/LACV3P**
Pt-n5 133.171 2.089 B3LYP/LACV3P**
Pt-na 128.571 2.054 B3LYP/LACV3P**
Pt-nz 128.571 2.054 B3LYP/LACV3P**
c3-n5 293.6 1.499 same as c3-n4

hn-n5 369.0 1.033 same as hn-n4

ca-nz 470.3 1.350 same as ca-na

Pt-DU 500.0 1.000 Dummy atom

ANGLE

Pt-n4-c3 26.906 119.664 B3LYP/LACV3P**
Pt-n5-c3 26.906 119.664 B3LYP/LACV3P**
Pt-n4-hn 19.277 106.877 B3LYP/LACV3P**
Pt-n5-hn 19.277 106.877 B3LYP/LACV3P**
Pt-na-ca 12.170 122.977 B3LYP/LACV3P**
Pt-nz-ca 12.170 122.977 B3LYP/LACV3P**
n4-Pt-nb5 78.428 86.918 B3LYP/LACV3P**
na-Pt-nz 122.886 91.663 B3LYP/LACV3P**
n5-Pt-na 26.633 90.800 B3LYP/LACV3P**
n4-Pt-nz 26.633 90.800 B3LYP/LACV3P**
n4-Pt-na 0.000 180.000 B3LYP/LACV3P**
n5-Pt-nz 0.000 180.000 B3LYP/LACV3P**
na-ca-ha 51.200 112.420 same as ha-c2-na
nz-ca-ha 51.200 112.420 same as ha-c2-na
hn-n5-c3 46.200 110.110 same as hn-n4-c3
n5-c3-hx 49.000 107.910 same as n4-c3-hx
hn-n5-hn 40.500 108.110 same as hn-n4-hn
ca-ca-nz 70.2 118.34 same as ca-ca-na
ca-nz-ca 67.1 119.80 same as ca-na-ca
c3-c3-n5 66.0 108.93 same as c3-c3-n4
DU-Pt-nz 500.000 90.000 Dummy atom
DU-Pt-na 500.000 90.000 Dummy atom
DU-Pt-n4 500.000 90.000 Dummy atom
DU-Pt-n5 500.000 90.000 Dummy atom
DU-Pt-DU 0.000 180.000 Dummy atom

DIHE

n5-Pt-n4-c3 1 1.013 0.000 2.000 B3LYP/LACV3P**++
n4-Pt-n5-c3 1 1.013 0.000 2.000 B3LYP/LACV3P**++
n4-Pt-na-ca 1 0.755 0.000 1.000 B3LYP/LACV3P**++
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n5-Pt-nz-ca
n4-Pt-nz-ca
n5-Pt-na-ca
na-Pt-nz-ca
nz-Pt-na-ca
c3-n4-Pt-na
c3-n5-Pt-nz
c3-n5-Pt-na
c3-n4-Pt-nz
n5-Pt-n4-hn
n4-Pt-n5-hn
hn-n4-Pt-na
hn-n5-Pt-nz
hn-n4-Pt-nz
hn-n5-Pt-na
X -c3-n5-X
X —-ca-nz-X
ca-nz-Pt-DU
ca-na-Pt-DU
hn-n4-Pt-DU
hn-n5-Pt-DU
c3-n5-Pt-DU
c3-n4-Pt-DU

IMPROPER

ca-ca-na-Pt
ca-ca-nz-Pt
X -X -ca-ha
X -X -cp-cp

NONBON
Pt
nb
nz
DU
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.000 same as X -c3-n4-X
.000 same as X -ca-na-X
.000 Dummy atom

.000 Dummy atom

.000 Dummy atom

.000 Dummy atom

.000 Dummy atom

.000 Dummy atom

.000 B3LYP/LACV3P**++
.000 B3LYP/LACV3P**++
.000 based on X-X-ca-hc
.000 based on X-X-ca-hc
idem n4

idem na

Dummy atom

Figure 5.2. Sample force field modification file (frcmod) for a platinum (II) square planar complex
containing two aromatic nitrogen ligands and two aliphatic nitrogen ligands.

5.2.2 Platinum (II) square complex

The geometric arrangement of guanines in a G-quadruplex exposes a large flat m-

surface with four aromatic groups equidistant from each other. As a model for

complementarity, a molecular square was designed featuring four platinum (II)

centers bridged by an aryl linker. The synthesis of these platinum squares is

expeditive, relying on the self-assembly of the platinum ethylenediamine corners (as

the nitrate) with the 4,4’-bipyridyl linkers.33
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Figure 5.3. Structure of molecular square 1.

Molecular modeling studies were conducted to understand the mode of binding and
the fit of complex 1 within the G-quadruplex structure. For this, an approach that
combines automated docking, molecular dynamics (MD) simulations, and evaluation
of binding affinity was examined. We modified our recently developed docking
program FITTED,3° previously found to accurately predict binding modes of protein
ligands,*° to be able to dock ligands onto nucleic acids. With this tool, we docked 1
to the X-ray crystal structure of a G-quadruplex 22-mer;1¢ a total of 100 docking
runs were computed, with representative binding modes shown in Figure 5.4a. The
predicted most favorable binding mode was one where the platinum square 1 is
parallel to the plane of the terminal G-quartet (Figure 5.4b). In this mode, short Pt-P
distances are consistent with electrostatic interaction of each of the Pt atoms of 1
with the backbone phosphates. Moreover, we observed that the NH; groups of each
of the ethylenediamine ligands are hydrogen-bonded to the phosphate oxygens, as it
was found previously for a monometallic platinum (II) complex interacting with an
intermolecular G-quadruplex.*! As well, one of the aromatic rings in each of the 4,4'-
bipyridyl ligands interacts with a guanine base in a distorted T-shape geometry (see

Figure 5.4b).
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Figure 5.4. Docking of platinum square 1 to G-quadruplex structure 1kf1. (a) Representative docked
conformations; (b) stacked conformation. This pictures were produced with PyMol.42

This binding mode, along with other representative docked complexes (Figure 5.4a),
was further evaluated by running 4 ns MD simulations. Snapshots of these
simulations were post-processed with the MM-PBSA formalism.*3 Relative free
energies of binding show a stabilization of ~10 kcal/mol for the parallel mode over
all other structures, consistent with end-stacking of previously reported G-
quadruplex binders. Thus, molecular modeling studies confirmed the excellent
complementarity in size and interactions between square 1 and the quadruple, in a

parallel end-stacked mode.

The binding ability of square 1 to the human telomere G-quadruplex was first
evaluated using a FRET melting assay, which showed large stabilization of the G-
quadruplex, with an increase of 34.5 °C in the thermal denaturation temperature
with 0.75 uM of 1. This significant increase is competitive with many of the best
reported quadruplex binders, such as telomestatin (30.3 °C),** a nickel salen
complex (33.2 °C),?8 a macrocyclic oligoamide (33.8 °C),** a bisquinolinium (29.7
°C),** and BRACO-19 (27.5 °C),?8 which required 1 uM of the ligand to achieve these
values. Thus, platinum square 1 is an excellent stabilizer of the G-quadruplex motif.
A subsequent FRET assay was performed to evaluate the selectivity of 1 for G-
quadruplex versus duplex structures (Figure 5.5). It was found that 1 indeed
stabilizes duplex DNA, undoubtedly because of its high positive charge; however, far

greater stabilization for G-quadruplex DNA was observed.
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Figure 5.5. FRET stabilization curve of square 1 with quadruplex (red) and duplex DNA (blue).

We were then interested in the potential of complex 1 to inhibit the enzyme
telomerase. For this, a modified version of the telomeric repeat amplification
protocol (TRAP) assay was performed (Figure 5.6). Inhibition of telomerase by
complex 1 was found to be one of the strongest of reported G-quadruplex binders,

with an ICso value of 0.197+£0.056 uM.
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Figure 5.6. TRAP assay of complex 1, showing ladders generated by the action of telomerase on a TS
primer (PCR amplified). The lower band is an internal control primer (ITAS).

5.2.3 Extended m-surface platinum (II) complexes as G-quadruplex binders

Platinum complexes having a single metal center can expose a large m-surface with
the potential to complement the exposed surface of G-quadruplexes. Previously,
complex 2 (see Figure 5.7) was reported as a duplex DNA binder with a constant of
106 M-1;45 however, a contemporaneous study reported that larger complexes such
as platinum ethylenediamine dipyridophenazine exhibit lower binding constants
towards B-DNA, two orders of magnitude smaller.#¢ This fact would point out a
potential mismatch of sizes between both binding partners as the m surface
increases, which could be exploited for binding to the larger surface available in G-
quadruplexes. In a previous study, Kieltyka et al. showed that, indeed, extending the
1 surface of the aromatic ligand bound to the platinum center (i.e., moving from
complex 2 to 3 and 4, see Figure 5.7) increased the binding affinity of the platinum
complex for an intermolecular G-quadruplex, while at the same time exhibiting a

higher selectivity for quadruplex vs. duplex DNA.#7

141



N “NH

Figure 5.7. Structures of platinum (II) complexes: platinum ethylenediamine 2,2’-bipyridyl,
Pt(en)bipy, 2; platinum ethylenediamine phenylphenanthroimidazole, Pt(en)PIP, 3; platinum
ethylenediamine naphthylphenanthroimidazole, Pt(en)PIN, 4.

The folding of the human telomeric sequence can lead to different topologies,
among which we consider a propeller structure with all G strands oriented parallel
to each other, observed in the crystal structure in presence of potassium cations;16
and a basket structure, where one pair of strands flows in the opposite direction to
the other pair in the quadruplex, observed in the NMR structure in Na*-containing

medium (see Figure 5.8).15

Figure 5.8. Foldings of the human G-quadruplex considered. a: parallel structure (PDB code 1kf1); b:
anti-parallel structure (PDB code 143d). This pictures were produced with PyMol.#2
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The goals of modelling in this project are two-fold: to determine the binding mode of
the platinum (II) complexes to the G-quadruplex structure, and to explain the
difference in activity of both complexes. To this effect, we applied a hybrid
docking/molecular dynamics technique, previously developed to study the binding
of a platinum molecular square to G-quadruplexes.#® Briefly, different plausible
binding modes were generated with the docking program FITTED,3%4950 and their
binding affinity was then evaluated by analyzing snapshots of a MD simulation with
the MM-PBSA formalism. We first considered the binding of the platinum complexes
to the X-ray crystal structure of the G-quadruplex (PDB 1kfl, see Table 5.1),

following a protocol previously reported.48
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Figure 5.9. Schematic depiction of the binding modes considered as starting structures for
complexes interacting with different foldings of a G-quadruplex. (a) Poses interacting with 1kf1;
yellow: top; purple: bottom; teal: loop; red: groove. (b) Poses interacting with 143d; yellow: handles;
purple: bottom; red: groove.
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Table 5.1. Binding affinity of platinum (II) complexes to human telomere G-quadruplex parallel
folding (1kfl) and antiparallel folding (143d) by the MM-PBSA method on 5 different initial
conformations for each. Errors are one standard deviation from the average.

Binding mode2 Eping (kcal/mol) Binding mode? Epbina (kcal/mol)
top -22.37 £3.15 handles -33.68 £4.19
2 bottom -22.18 £3.40 bottom -20.79 £ 7.58
loop -17.29 £ 2.80 groove -15.32 £3.50
groove -19.56 £ 4.20 groove -14.18 + 4.40
top -32.86 £ 4.06 handles -50.00 + 3.84
3 bottom -32.79 + 2.68 bottom -44.85 +4.51
loop -22.02£3.91 groove -15.30 £ 4.89
groove -15.30 £3.29 groove -32.51£3.96
top -39.62 £ 5.83 handles -56.23 £ 6.77
4 bottom -36.59 + 3.63 bottom -40.07 £ 7.66
loop -36.46 * 4.36 groove -29.57 £5.62
groove -23.48 + 2.40 groove -17.16 + 3.43

a see Figure 5.9

Following the experimental observation that an anti-parallel structure is
favoured in presence of PIP, we turned our attention to the basket-like folding of the
human telomeric sequence solved by NMR spectroscopy.!® In this structure, the TTA
loops are oriented on top of the guanine quadruplex stacks instead of away from
them as in the all-parallel folding (see Figure 5.8); as a result, there are m-m stacking
interactions between the bases in the loops and the quadruplexes, and a binding
molecule would be able to intercalate within this environment. To assess this
possibility, we first docked the platinum complexes to a G-quadruplex structure
missing the TTA loops. The binding modes obtained from these experiments were
used as a starting structure for molecular dynamics simulations on the complete
anti-parallel folded structure to assess the binding affinity through MM-PBSA (Table
5.1).

From these binding affinity values several conclusions can be drawn. First,
stacking seems to be the preferred binding mode for all these platinum (II)
complexes, as they show the best binding affinity among all other modes considered.
Second, it is clear that the platinum (II) complexes with extended m-surface ligands

have a much better binding affinity for the G-quadruplexes than the 4,4’-bipyridyl
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complex, mainly stemming from a larger van der Waals contribution in the former
structures. Finally, the binding affinities for the PIN and PIP complexes predicted by
the MM-PBSA method appear to be very similar, as both values are within the
standard deviations in both G-quadruplex foldings considered (see Figure 5.10).
This correlates well with the small difference in ICso observed in the experimental
assays (vide infra), where both complexes exhibit binding affinities within the same

order of magnitude.

-70 1

-60 -

i 1kf1
143d

MM-PBSA binding affinity (kcal/mol)

2 3 4
Complex

Figure 5.10. Binding affinities for stacking modes of complexes 2, 3 and 4. In blue, binding to parallel
G-quadruplex folding (PDB code 1kf1); in red, binding to anti-parallel G-quadruplex folding (PDB
code 143d). Error bars correspond to one standard deviation for the binding energy as calculated
from the molecular dynamics snapshots.

5.2.4 Hydrogen-bonded ligands for an even larger n-surface

From the results obtained for the PIP and PIN ligands, it became evident that
extending the m-surface of the ligands increased the binding affinity of the
compounds for the G-quadruplex motif. However, the n-surface did not appear to be

continuous, as the biphenyl-type bond (see Figure 5.12) between the imidazole
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carbon and the aryl group forced the latter out of the plane of the rest of the ligand.
We wished then to assess a new family of ligands featuring an internal hydrogen
bond between one of the imidazole nitrogens and a new hydrogen bond donor or

acceptor (Figure 5.11).

2+

Figure 5.11. Structures of platinum (II) complexes: platinum ethylenediamine
indolylphenanthroimidazole, Pt(en)PII, 5; platinum ethylenediamine quinolylphenanthroimidazole,
Pt(en)PIQ, 6.

The additional contribution to the binding brought by the internal hydrogen bond in
the PII and PIQ ligands would arise from two effects. First, the presence of an
internal hydrogen bond would reduce the internal strain of the ligand and the
entropic penalty upon binding, by locking the biphenyl torsion in place. Second, the
increase in m surface area arising from stabilizing the conformation with a 0°
torsional angle would lead to higher binding affinities when stacking on the G-

quadruplex motif.
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Figure 5.12. The biphenyl! torsional angle is shown in blue.

The first effect was studied by analyzing the energy profile for the biphenyl torsion
around the N-C-C-C bond (see Figure 5.12) with DFT. Calculations were performed
at the B3LYP/LACV3P** level of theory, scanning the torsional angle around the
biphenyl moieties for PIP, PIN, PIQ and PII ligands at 5° increments. As expected, the
ligands having an internal hydrogen bond exhibit a minimum in the potential energy
surface for a torsion value of 0° in both cases, with a sharp increase in energy for
deviations of more than 10-15°. The phenyl and naphthyl derivatives, on the other
hand, have energy minimums at about 15° and 35° respectively. These energy
minimums are shallower than the ones for the hydrogen bonded ligands, leading to
the conformations with 0° torsional angles lying about 1.5-2.0 kcal/mol higher than

the respective minimumes.

The second effect was investigated by estimating the binding affinity of the platinum
(I) complexes to the G-quadruplexes, in an analogous way as performed with the
previous ligands. The calculated binding affinity (see Table 5.2) was highest for
Pt(PIQ)en; the value significantly higher than the one for Pt(PIP)en but at the same
level as the one for Pt(PIN)en, while the PII complex seems to be equipotent with
the PIN one (see Figure 5.13). The effect of the entropic contribution to the binding

is unclear: a normal mode analysis of the snapshots did not exhibit significant
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changes in the entropic contribution to the binding affinity for the different

complexes.

Table 5.2 MM-PBSA binding affinities for the different platinum(II) complexes to the human
telomere G-quadruplex motif in a stacking binding mode. Energies in kcal/mol.

Compound # Propeller Basket
2 -23.78 £3.15 -33.68 £4.19
3 -32.86 + 4.06 -50.00 + 3.84
4 -39.62 +5.83 -56.23 £ 6.77
5 -38.00 £ 3.35 -57.20 £ 4.61
6 -46.31 +5.77 -59.70 + 4.92
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Figure 5.13 Binding affinities for complexes 1-5 calculated with the MM-PBSA method. Error bars
are one standard deviation.

5.3 Conclusions

A hybrid docking/molecular mechanics method was developed to study the binding
of square planar transition metal complexes to DNA quadruplexes. As a necessity,

molecular mechanical parameters compatible with the GAFF force field were
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developed that enabled the FITTED docking program to place this type of compounds
within the G-quadruplex and propose potential binding modes. Furthermore, the
same molecular mechanical potentials allowed us to perform molecular dynamics

simulations on the Pt complex/DNA systems to assess their stability.

This hybrid docking/DNA technique was used for the assessment of a platinum
molecular square as a G-quadruplex binder, and found the stacking mode to be the
most favoured one. When applied to a family of monometallic complexes with
extended m-surfaces, the MM-PBSA method exposed the increase in binding affinity

observed experimentally, within the error of the method.

This technique can potentially be applied to the virtual screening of libraries of
complexes, thus reducing the synthetic effort required for the development of new

G-quadruplex binders.
5.4 Methods

5.4.1 Development of molecular mechanics parameters for Pt complexes

A model of Pt(en)(bipy)2 was built in the Maestro 8.0 interface (Schrodinger) and
optimized at the B3LYP/LACV3P** level of theory using Jaguar 7.0 (Schrodinger).
Missing parameters (bond stretching, bending and torsions involving the Pt atom)
from the GAFF force field were obtained running the parmchk module from Amber
10 on this model. Distorted structures around the equilibrium points were
generated for each of the parameters that had to be defined, varying the bond
distances by +0.1 A at 0.01 A intervals and angles by +10° at 1° intervals. The energy
was calculated at the B3LYP/LACV3P** level of theory for each distorted
conformation. At the same time, RESP charges were assigned to the different
conformations and their energy calculated with the available parameters within the
GAFF force field. The difference between the DFT and the GAFF energies was fit to a
quadratic term of the form K-(x-x0). The resulting parameters were added to the

GAFF force field as a frcmod file.
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5.4.2 Docking

Models of the G-quadruplex structures were obtained from the Protein Data Bank
(PDB IDs 1kf1, 143d). Hydrogens were added (at pH = 7.0), bond orders were fixed
and structural cations were added if necessary (Na* in the case of 143d). In the case
of 143d, a structure devoid of TTA loops was also constructed and prepared as
follows. Models of the platinum(Il) complexes were built in the Maestro 8.0
interface and optimized at the B3LYP/LACV3P** level of theory using Jaguar 7.0.
Two-stage RESP charges were assigned from the electrostatic potential (ESP)
calculated by Jaguar at the B3LYP/LACV3P** level of theory and the antechamber,
respgen and resp modules of Amber 10. The Prockss and SMART modules of FITTED
were used to prepare the G-quadruplexes and the ligands for docking, respectively.
A total of 100 docking runs were performed for each ligand/G-quadruplex
combination; the docked poses were clustered using XCluster (Schrodinger) and

representative modes were selected by visual inspection.

5.4.3 Molecular dynamics simulations

The leap module form Amber 10 was used to assign parm993435 and parmbscO
parameters*’ to the DNA G-quadruplex, and GAFF and the ad hoc parameters
developed as described above to the platinum (II) complexes. The DNA:platinum (II)
adducts were solvated by a 10 A truncated octahedron of TIP3P water molecules
and neutralized by the appropriate cation (K* for 1kfl, Na* for 143d). The solvent
molecules were first relaxed by a conjugate gradient minimization, followed by a
relaxation of the complete system. Heating of the system from 0K to 300K (20 ps, 1.6
fs time step) at constant volume and relaxation at constant pressure (1 atm, 100 ps,
1.6 fs time step) was followed by a 4 ns production run at constant pressure (1 atm,

1.6 fs time step).

5.4.4 Binding affinity calculations

Snapshots taken at 10 ps intervals from the production run processed to calculate
binding affinities with the MM-PBSA method using the mm_pbsa.pl scripts (relying

on sander) included in Amber10.
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Chapter 6: Development of programs for the
handling of ligands for virtual screening: SMART,
REACTOR and SELECT

6.1 Introduction

6.1.1 Ligand treatment for docking
As was mentioned in Chapter 1, docking methods attempt to predict the

binding mode of a small molecule within a biomacromolecular receptor, and
provide insight on the relative binding affinities of a group of compounds. In
order for a docking program to satisfactorily handle the ligands, the correct
representation needs to be used in terms of atom types and charges.
Additionally, the conformational sampling of ligands during the docking
requires the definition of which torsional degrees of freedom are to be

scanned, i.e., defining which bonds are rotatable.

6.1.2 Molecular mechanical force fields
The multiple molecular mechanical force fields described in the literature

and in common use in structure-based drug design are well parameterized
for biomacromolecules (proteins and nucleic acids),’? or for organic
molecules,3 but few have been designed to be of general applicability for both
types of molecules. For the docking of small molecules to proteins and
nucleic acids the recently developed generalized Amber force field (GAFF)# is
particularly attractive as an extension of the Amber parameters for
biomolecules in use (with modifications) in the last 25 years,2>¢ and was
therefore chosen for the description of ligands within the FITTED docking

program.’

6.1.3 Atomic charges
The treatment of electrostatics in molecular mechanics requires the

assignment of point charges on each atom. Charges can be assigned by
different strategies, with variable computational requirements. The most

CPU-intensive method (but also the golden standard), RESP or Restrained
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ElectroStatic Potential fitting® requires an optimization of the structure at the
HF/6-31G* level of theory, followed by a calculation of the electrostatic
potential (ESP) around the molecule and further fitting of atomic point
charges to reproduce the ESP. This method is impracticable for large virtual
libraries containing hundreds of thousands of compounds, due to the vast
amount of CPU time that would be needed. An intermediate method, AM1-
bec,® has been reported to reproduce RESP charges with good fidelity,10.11
requiring a semiempirical calculation with the AM1 set of parameters and a
further adjustment. With a much lower computational requirement, methods
relying on the equalization of atomic electronegativities have been
established in the 1980’s, and are widely applied to drug design due to their
simplicity and speed.'? On the fastest end of the spectrum, methods
parameterized from the analysis of multiple ab initio-derived parameters can
be used to quickly establish a set of charges, although in some cases they may

disregard electronic effects that alter the charge distribution.13

6.1.4 Virtual libraries of ligands
As part of a structure-based virtual screening (VS) workflow, one needs to

provide the computational method with 3D structures for the ligands under
study. The 3D coordinates can be obtained either i) by manually drawing out
the structures in a graphical interface, ii) by using 2D to 3D conversion
tools#4 or iii) from ligand collections, either public repositories!>17 or
corporate databases. The three alternatives have their own drawbacks: i) can
become prohibitively time-consuming for large libraries; ii) still requires the
exact 2D representation (e.g., SMILES string) of each member of the library;
iii) limits the library to available structures. Besides these considerations, a
library containing only currently available compounds limits the coverage of

chemical space being screened.

6.1.5 Combinatorial libraries
Especially for the case of lead optimization, there is interest in exploring

Markush structures'® where one or several regions of a molecule can be
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varied among different possible groups. Traditionally, this could be
attempted by combinatorial synthesis, yielding libraries of related
compounds that could be assayed for activity against a specific receptor.
Analogously, a virtual library of compounds could be assayed by computer-
aided drug design techniques; this library could be assembled from the

combination of different fragment libraries.

6.1.6 Virtual SAR (VSAR)
Once a hit compound is found by screening techniques, it is common practice

to probe plausible substitution sites in order to increase the activity of the
compound, yielding a structure-activity relationship (SAR). Given a hit from a
VS campaign, a virtual SAR could be obtained by applying computational
methods to a library of derivatives of the hit. It has been observed that the
scoring functions used in docking methods are not sensitive enough for this
type of experiments;!® however other higher-level techniques (e.g., LIE,2°
FEP?21) for the prediction of binding affinity could be applied to this problem

of hit-to-lead optimization.

6.1.7 Fingerprints and similarity metrics
When handling large libraries of ligands, it is necessary to be able to assess

how similar their member compounds are. The inherent complexity of
chemical structures requires the simplification of the molecular structure in
order to make the search more efficient, especially when handling large
libraries of molecules.?223 The most common simplification is the
construction of fingerprints by analyzing the presence or absence of
functional groups or substructures. This leads to a sequence of “0”s and “1”s
(Figure 6.1) that globally can be used to evaluate the pairwise similarity of
compounds by different metrics. Of the latter, the most commonly used for

chemical similarity is the Tanimoto coefficient (Equation 6.1).

159



Figure 6.1. Molecular fingerprints. The two-dimensional structures of neuraminidase
inhibitors oseltamivir 1 and zanamivir 2 are converted into a fingerprint based on their
molecular features.

Equation 6.1. Tanimoto coefficient. T(A,B) is the Tanimoto similarity between A and B, that
is, the ratio between the bits that are “on” in both A and B (ANB) and the total number of bits
(AUB). In the third term, y,a is the i-th bit of item A (=0 if off, x=1 if on), and analogously for

XuB-
ANB _ Ex,-Ax,-B
AUB EXiA +EX,-B +EXiAXiB

T(A,B) =

The values of the Tanimoto coefficient vary, therefore, between 0 (i.e., there
are no similarities in the features considered between the two molecules)
and 1 (the same features are present in both compounds, although they may

still be not identical).

6.1.8 Goals

6.1.8.1 SMART

The goal of this project was to construct a module for the preparation of
libraries of ligands to perform virtual screening on either FITTED (docking)7.24
or ACE (asymmetric catalyst evaluation).24 The resulting module was termed
SMART (Small Molecule Atomtyping and Rotatable Torsion assignment) (see
Figure 6.2). Separating the pre-processing of a library of ligands from the

docking can save time in a VS campaign, as the operations are deterministic
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(i.e., with a unique and defined result, not dependent of a random number
generator) and therefore can be performed just once, while the library could
potentially be reused for different screens on the same or different targets.
Additionally to the atom typing, a system to assign atomic point charges was

implemented, based on the Merck Molecular Force Field (MMFF).3

GAFF atomtyping

0.907

-0.520

-0.520
Atom charges

Figure 6.2. Ligand properties assigned by SMART.

6.1.8.2 REACTOR

With the framework for the description of ligands laid down for SMART, we
looked at constructing a program that would provide a virtual library of
compounds when given a pair of virtual libraries of reactants and a set of
rules for their conversion into products as input (Figure 6.3). With the
application of structure-based methods in mind, the representation of input
and output molecules was to be done in 3D coordinates, therefore yielding a
library of compounds that would be ready for docking with FITTED or for

further calculations with any other structure-based drug design tool.
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Reactant 1
Products

Reactant 2

Figure 6.3 Information flow in REACTOR.

6.1.8.3 SELECT

We wanted to construct a program to handle virtual libraries of ligands in
order to cluster ligands by similarity and to extract ligands resembling a
query molecule (Figure 6.4, right-to-left and left-to-right respectively). Both
tasks rely on the measurement of chemical similarity metrics, and their
interest rely on the principle that similar molecules exhibit similar
properties.??2 Based on this, one might argue that a screening performed on a
subset of a library containing only one molecule from each similarity-derived
cluster would yield as much information as screening the whole library, but
at a fraction of the computational time. By the same token, if a given
compound exhibits a certain biological activity, compounds similar to it are

more likely than others to share that trait and also be active.

f

f p . ]
N Y SNXT Y
Analog search ‘)VV ? )VV /':) } . %

f 5 | > ,lﬂ
Yoy Y& ¥Y)
\ \ =

Clustering

Figure 6.4. SELECT. Left to right: given a query molecule and a Tanimoto cutoff, the program
can retrieve a subset of compounds from a library. Right to left: given a library and a
Tanimoto cutoff, SELECT can extract a representative library of compounds with increased
diversity.
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6.2 Methods
The entire codes of SMART, REACTOR and SELECT were written in C++, and

tested to work with gcc (Windows, Linux, Mac OS X) and Microsoft compilers.

The following sections describe the different portions of the program.

6.2.1 SMART

6.2.1.1 GAFF atom typing

The atom types defined in the generalized Amber force field* are specified in
Table 6.1. The atom type assignment is performed on a per-element basis,
and for each element the connectivity and chemical environment is defined
so as to unequivocally assign an atom type to each atom. Some atom types
defined in the original GAFF description are not used in the SMART
assignment, namely the cc/cd and ce/cf types for conjugated systems (and
their N and P counterparts), as well as the h1-h5 types for hydrogens on

carbons with electron-withdrawing groups.

Table 6.1. GAFF atom types defined by SMART.

Element Atom type Description

C C sp? C bound to heteroatom (C=0, C=S)
cl spC
c2 aliphatic sp? C
c3 sp3 C
ca aromatic sp? C
cp/cq biphenyl bridging C
cu sp? C in three-membered rings
cv sp? C in three-membered rings
cx sp? C in four-membered rings
cy sp? C in four-membered rings
N n sp? N in amides
nl spN
n2 sp? N with 2 substituents
n3 sp? N with 3 substituents
n4 sp? N with 4 substituents
na sp? N with 3 substituents
nh N connected to aromatic ring (e.g., aniline N)
no N in nitro groups
nb aromatic N
0 0 sp? O in carbonyl, carboxylate, etc.
oh sp? O in hydroxyls
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0s sp? O in ethers and esters

S s2 sp? S (e.g., thiocarbonyl)
sh sp? S in thiol groups
ss sp? S in thioether and disulfide groups
s4 hypervalent S with 3 substituents
s6 hypervalent S with 4 substituents
P p3 sp? P with 3 substituents
p4 hypervalent P with 3 substituents
p5 hypervalent P with 4 substituents
H hc H on aliphatic C
ha H on aromatic C
hn HonN
ho HonO
hs HonS$S
hp HonP
F f fluorine
Cl cl chlorine
Br br bromine
I i iodine

6.2.1.2 MMFF charge assignment
The assignment of point charges with the MMFF forcefield is a three-step

process, requiring first the assignment of MMFF atom types (analogous to the
other force fields described above),? followed by the assignment of bond-
charge increments to each pair of atoms,!3 and finally the spreading of the
formal charge arising from resonance structures.2> Bond-charge increments
are defined for select pairs of atom types bonded together,!3 while a general
mechanism for deriving bond-charge increments relies on the combination of

partial bond increments defined for an individual atom type.2>

6.2.1.3 Cycle perception
Cyclic groups have to be specially recognized, as the conformational

sampling of rings requires a different algorithm for it to work.2¢ To this
effect, a graph of each molecule is constructed and scanned for connected
paths via a depth-first search algorithm. Larger rings are then split into
smaller rings if necessary, in order to retrieve the smallest set of smallest

rings (SSSR) via an algorithm inspired by the one published by Fan et al.?”
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6.2.1.4 Toxicophores and functional groups definitions
Compounds containing potentially toxic functionalities or structures that

would not match a pharmacophore in the target should be filtered out as
early as possible in a screening campaign.?® To facilitate this, we
implemented a mechanism to identify a series of functional groups as
toxicophores, potentially not acceptable in a library for virtual screening. A
bitstring identifying the presence of functional groups is appended to the
description of a molecule, allowing for the filtering criteria to be defined by
the user in a FITTED docking run. In addition to filtering by presence of a
toxicophore, compounds can be filtered out if they do not contain features
(i.e., filtering by absence) known to be necessary for binding to the target (or
other desirable properties). For example, one might be interested in looking
for compounds able to chelate a metal atom through a sulfonamide, but not
having an aldehyde present. The groups defined as potential toxicophores

are defined in Table 6.2.

Table 6.2. List of functional groups recognized by SMART. In the figures, blue lowercase
indicates a GAFF atom type, while a green uppercase label denotes an element.

Functional

Description
group
C.o
N
‘K)J\CJF_ cl f is bound
. an atom of type c is bound to an
Acyl chloride atom of type c1 or br
Cc \O
E)J\ Br— br
)
Aldehvde E)J\H -—H an atom of type c is bound to a
y T hydrogen atom
C
i R an atom of type c is bound to an
: NN atom with of type n, and not
Amide # OS/' T Il?\ bound to an atom of type os;
cC n both c and n atoms are acyclic




Ammonium

Aromatic

Azide

Boronate

Carbamate

Carboxylic acid

Ester

Imine

Isocyanate

Ketone

an atom with an n4 atom type is
present in the molecule

an atom of type ca is present in
the molecule

three acyclic nitrogen atoms in a
linear arrangement are present
in the molecule

a boron atom is bound to a
carbon and two oxygen atoms

an atom of type c is bound to an
atom of type n and an atom of

type os

an atom of type c is bound to
two atoms of type o

an atom of type c is bound to an
atom of type os, but not bound
to an atom of type n; both ¢ and
os atoms are acyclic

an atom of type c2 is bound to
an atom of type n2, both acyclic;
the nitrogen cannot be bound to
oxygen

an atom of type c is bound to
one atom of type n2 and another
of type o, where the c-n2 bond is
acyclic.

an atom of type c is bound to 2
carbon atoms
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Lactame

Lactone

Michael acceptor

Nitrile

Nitro

Oxime

Primary amine

Secondary amine

Sulphonamide

an atom of type c is bound to an
atom of type n, but not bound to
an atom of type os; with both ¢
and n atoms being cyclic

an atom of type c is bound to an
atom of type os, but not bound
to an atom of type n; with both c
and os atoms being involved in a
ring

an atom of type c2 is bound to
either 1) an atom with a ¢ atom
type which is not a carboxylate,
or 2) a nitrile group; the bond
between c2 and c/cl must be
acyclic

an atom of type c1 is bound to
an atom of type nl

an atom of type no is present in
the molecule

an atom of type c2 type is bound
to an atom of type n2, which in
turn is bound to an oxygen atom

an atom of type n3 is bound to
two hydrogens

an atom of type n3 is bound to a
single hydrogen

an atom of type s6 is bound to
an atom of type n
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6.2.1.5 Lipinski’s rules
In a seminal paper in the ADME-Tox field, Lipinski and co-workers analyzed

a large number of marketed drugs and established a number of criteria a
compound needs to meet in order to have good chances of being an orally
available drug (i.e, to have good enough permeation and absorption
properties).2° These criteria are given in terms of molecular weight less than
or equal to 500, number of hydrogen bond acceptors (HBA) less than or
equal to ten, number of hydrogen bond donors (HBD) less than or equal to
five, and calculated log P less than or equal to 5.0.2° SMART calculates the
molecular weight and counts the HBA/HBD groups A HBA group is defined as
an electronegative atom with a lone pair of electrons such as an sp? oxygen
(e.g., in a carbonyl or a sulfone group), a hydroxyl oxygen (e.g., an alcohol) or
an sp? nitrogen with a free lone pair (such as a N in pyridine). On the other
hand, a HBD group requires a hydrogen atom attached to an electronegative

atom such as oxygen, sulphur or nitrogen.

H |N\ N
DY

H 0
R—N R
FI{ R-0O i
S
H R
R-S~ R-S~ M

Figure 6.5. Hydrogen bond donor and acceptor groups. Left: hydrogen bond donor atoms
shown in blue; right: hydrogen bond acceptor atoms coloured red. R groups can be
hydrogen, alkyl, aryl or acyl, among other possibilities. Double-bonded O and S can be
attached (*) to C, S, N or P.

6.2.1.6 Assignment of rotatable bonds

The assignment of rotatable bonds is two-fold. On one hand, the bonds that
will be considered rotatable for the conformational sampling during the
docking need to be identified; on the other hand, the total number of
rotatable bonds is a factor in the scoring of docked poses (see Chapters 3 and

4). The main difference between the two counts is that symmetric or
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terminal groups need to be considered rotatable during the docking (for an
optimal fit), however as a rotation around that bond would make an

indistinguishable molecule, it is not counted for scoring purposes.

Figure 6.6. Rotatable bond assignment. Rotatable bonds assigned for docking are shown
with red arrows; bonds considered rotatable for scoring are shown with blue arrows.

6.2.1.7 Bond order assignment

One of the more challenging topics is the correct assignment of the bond
orders of a ligand. This is relatively simple for a compound containing only
carbon, hydrogen (or halogens) and oxygen atoms, as the valence (i.e., the
sum of the bond orders) is unique for each element. However, problems arise
when considering nitrogen atoms, as they can equally attain valences of 3 (in
a neutral form, as in amines, amides, pyridines or imines) or 4 (in a cationic
form, such as in ammoniums, guanidiniums or pyridiniums). A mechanism
inspired by the one used in the antechamber program was implemented to
assign bond orders (Figure 6.7).39 A first round of assignment takes care of
the obvious single bonds with elements having single valences (i.e,
hydrogen, halogens). At this point, the order of bonds involving carbons with
all bond orders but one defined can be unequivocally assigned; otherwise,
pre-defined functional groups (e.g., carbonyl/carboxyl derivatives, aromatic
cycles) are assigned and a new round is attempted. For some groups
(especially heterocycles), this does not allow for an unequivocal assignation,
therefore a bond order guess leading to multiple possible resonance
structures are attempted in order to find a most reasonable one (Figure 6.8).
In these cases, multiple attempts at defining a resonance structure are

performed, and the most reasonable one is kept.
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Figure 6.7. Bond order assignment in a molecule containing only C, H and O atoms. Bonds
with (yet) unassigned order are pictured with dashed bonds, bonds assigned after each step
are coloured red.
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Figure 6.8. Bond order assignment in a heterocycle containing nitrogen atoms. The same
colour convention as in previous figure applies, and in addition a bond order guess is

coloured

blue.

6.2.2 REACTOR

6.2.2.1 Encoding of chemical transformations

Chemical transformations can be described by different parameters. The

connectivity of each atom in the reactant molecules can remain invariant

(e.g., peptide bond, substitutions, metathesis), or it can change (e.g.,

additions, reductions/oxidations). The number of bonds formed upon the
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transformation is usually one, but could also be two (e.g., Diels-Alder and
other cycloadditions), or multiple (cascading or tandem reactions). The
number of reactants involved in the transformation can be one (e.g,
elimination, reduction, oxidation), two (e.g., substitutions, additions), or
more (e.g., Ugi reaction, multi-component couplings). Given that most
commonly combinatorial libraries are assembled piece-wise, with highly
predictable addition or substitution reactions, we first focused our attention
in reactions between two reactants, with no change in connectivity of the

reacting centers with one new bond formed.

6.2.2.2 Functional group recognition
For any transformation to take place, the site for the reaction needs to be

identified. To this effect, a reaction center is defined as a functional group,
consisting of a central atom bound to accessory atoms. This recognition can

be done by GAFF atom type, by atom name or by element.

accessory atoms

A

central atom J

Figure 6.9. Functional group depiction: a central atom is bound to accessory atoms.

The definition of functional groups is stored in a text file under
keyword/rules_definitions.txt, and it is user-editable. Figure 6.10 shows
an example of rules_definitions.txt. The first column specifies the name
of the functional group to be defined, which is then referred to in the
definition of a transformation (vide infra). The second column defines the
central atom; by default it expects GAFF atom types, but atom names can be
specified preceding the name by an “@” sign, and elements by preceding
them with an “&” character. The third column specifies the accessory atoms
required, following the same rules as for the central atom. The fourth column
specifies atoms that need not be present as accessory atoms (once again,

following the conventions for the two previous columns); this feature is
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useful for defining specific groups that otherwise fall to a default one, e.g., for

aliphatic or aromatic versions of specific functional groups.

#funct_group ctr_atom acc_atoms no_atoms
g
carboxyl C 0,0h -
carboxylate C 0,0 -
ester C 0,0sS -
acyl_chloride C o,cl -
acyl_bromide C o,br -
alkyl_chloride c3 cl -
alkyl_bromide c3 br -
alkyl_iodide c3 i -
aryl_chloride ca cl -
aryl_bromide ca br -
aryl_iodide ca i -
anhydride 0s c,C -
amine_1 n3 hn,hn,c3 -
ammonium_1 n4 hn,hn,hn,c3 -
amine_2 n3 hn,c3,c3 -
ammonium_2 n4 hn,hn,c3,c3 -
amine_3 n3 c3,c3,c3 -
ammonium_3 n4 hn,c3,c3,c3 -
ammonium_4 n4 c3,c3,c3,c3 -
aldehyde C 0, hc -
boron_acid_ar b ca,oh,oh -
boron_ester_ar b ca,o0s,0s -
boron_acid_al b c3,0h,oh -
boron_ester_al b c3,0s,0s -
boron_acid_vi b c2,oh,oh -
boron_ester_vi b c2,0s,0s -
ketone C 0,c3,c3 -
sulfonyl_cl s6 0,0,cl -
sulfonyl_br s6 0,0,br -
vinyl_chloride c2 cl -
vinyl_bromide c2 br -
vinyl_iodide c2 i -

Figure 6.10. Sample rules_definitions.txt file.

6.2.2.3 Specification of a transformation

A transformation is defined between a functional group in the first reagent
and a corresponding one in the second reagent. A connecting point is defined
in each functional group (which may or may not be the central atom as

defined in the functional group specification), and the new bond is made
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between them. Out of the atoms bound to the connecting point, atoms to be

kept (keep_atom) and to be removed (rm_atom) are specified (Figure 6.11).

#rule funct_group cp keep_atom rm_atom new_atom
H-—--- — o ——— S,
Rulel carboxyl C o} oh -
Rulelcarboxylate C o o -
Rulel ester C 0 0s -
Rule2 amine_1 n3 hn,c3 hn -
Rule2 ammonium_1 n4 hn,c3 hn, hn -
Rule2 amine_2 n3 hn,c3,c3 hn -
Rule2 ammonium_2 n4 hn,c3,c3 hn, hn -

R I

N~ ~OH
keep_atom
Rz/\ | o rm_atom
H

Figure 6.11. Example of a rule for peptide bond formation. Top: content of rules.txt for a
peptide bond formation (in bold, rules matched by bottom structures). Bottom: schematic
representation of compounds matching Rulel and Rule2, with atoms colour-coded for their
function in the rule.

REACTOR includes a set of defined reactions that were used during the
development and application of the program under keyword/rules.txt,
although a different location for the rules can be specified. This becomes
particularly useful for the generation of multi-step combinatorial libraries,
where each step corresponds to a different rule, and each step can be

encoded in a separate file (such as stepl. txt, step2. txt, etc.).

In the case of transformations where dummy atoms are specified in each
reactant molecule, it might not be practical to define a functional group for
each case. For these cases, a quick definition of a functional group can be

«n,
L

specified by preceding the name of the functional group by this instructs
the program to not attempt to match the name of the functional group to a

definition in rules_definition. txt.
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#rule funct_group cp keep_atom rm_atom new_atom

Rulel !'X1 * - @Xx1 -
Rule2 ! X2 * - @X2 -
R1/*\ X, connect_point
RZ/*\ X2 rm_atom

Figure 6.12. Example for a rule specified with dummy atoms. content of rules.txt for
formation of a bond between fragments with X1 and X2 dummy atoms respectively. Bottom:
schematic representation of compounds matching Rulel and Rule2, with atoms colour-
coded for their function in the rule; * specifies any atom.

6.2.2.4 Conversion of reactants into products

The cycle of the program is described in Figure 6.13. First, the program reads
the description files (functional group definition and reaction rules), to then
sequentially read the libraries provided for reactant 1 and reactant 2. For
every reactant, a match of one of the specified rules is attempted; if the
compound does not match any of the rules, the reactant is skipped. For every
pair of successfully matched reactants, the transformation is performed:
atoms to be removed are stripped and a new bond between the connecting

points is made.

Reactant 1 Reactant 2

Read reactants ‘—" M

Match rules?

T
Make product -

Remove clashes

Products

Figure 6.13. Schematic of the algorithm of REACTOR.
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At this point, a rapid optimization of the torsions around the bond is done in
order to remove the clashes that may arise as a consequence of the two
groups coming together (Figure 6.14). The hybridization of both connecting
points defines how this search is performed: connections between two sp?3-
hybridized atoms require a search every 30° if one of the atoms is sp?-
hybridized the search happens every 60° degrees. These searches are
performed in a way so as to ensure that the configuration around chiral
centers remains unchanged. The final product is saved to an output file, and a

new pair of reactants is read.

1
\_3\
2\—\:>4

1

N = W & &

Figure 6.14. Assignment of new torsions upon product formation. Top and middle: the
values for the torsions where the new bond is terminal (i.e., 1-2-3-4 and 3-4-5-6) are
assigned the value of a torsion from the reactant (i.e.,, 1-2-3-X; and X;-4-5-6 respectively).
Bottom: the torsion around the newly formed bond (i.e., 2-3-4-5) is scanned to minimize
clashes.

6.2.3 SELECT

6.2.3.1 MACCS fingerprints

We implemented a subset of the MDL keys (also referred to as MACCS keys)
as a 2D fingerprint,3! that use molecular descriptors involving atom
connectivity, element identity and the presence of functional groups. In total,
there are 31 atom-based descriptors, 32 atomic environment descriptors and

351 atom-bond-atom combination descriptors.
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6.2.3.2 C(Clustering
Once the fingerprints are calculated for all the input structures, pairwise

similarities can be computed through the Tanimoto coefficient. The library is
then associated in as many clusters as specified by the user, each containing

compounds with maximum similarity.

6.2.3.3 Analog search
In the case of performing a search for analogs similar to a query molecule,

the fingerprint of the query is compared to each of the members of the
library. If the Tanimoto coefficient between both is higher than specified by

the user, the library member is selected for output.

6.3 Application to the design of HDAC inhibitors

In collaboration with synthetic chemists from the Gleason research group
(Dept. Chemistry, McGill University), there was interest in performing virtual
screening of libraries of potential hybrid inhibitors of histone deacetylases
(HDACs). HDACs are a family of zinc-containing enzymes that play a role in
the remodeling of chromatin by deacetylating lysine residues on histone
tails.32:33 Histone deacetylation leads to transcriptional repression due to the
formation of a condensed form of chromatin; inhibition of HDAC activity by
small molecule inhibitors (HDAC inhibitors or HDACI) has been shown to be
effective in the treatment of cancer.3234-36 Of the different families of HDAC],
the hydroxamic acids have been among the most studied. For example,
trichostatin A 1 (Figure 6.15, top) is an antifungal antibiotic exhibiting strong
HDAC inhibition and preventing the growth of breast cancer tumour cell
lines. 3738 Suberoylanilide hydroxamic acid 2 (SAHA, vorinostat) is an HDACi
approved by the FDA for the treatment of cutaneous T cell lymphoma.3940
These HDACis conform to a pharmacophore comprising a metal binding
group linked to a hydrophobic chain and terminated by an aromatic group or
a peptide;*! we used this pharmacophore in the design of a virtual library of
potential HDAC inhibitors (Figure 6.15, bottom). Zinc-binding groups

included a variety of metal chelators such as hydroxamic acids, sulfonamides
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and carboxylates. The hydrophobic linker was between five and nine atoms
long, while the capping group was chosen from a diverse set of aromatic and

aliphatic groups, as well as peptides.

Figure 6.15. Histone deacetylase inhibitors. Top: HDACis trichostatin A 1 and
suberoylanilide hydroxamic acid (SAHA) 2. Bottom: schematic representation of a library of
HDAC inhibitors. In yellow, a capping group; in green, a hydrophobic linker of varying
length; in yellow, a zinc-chelating moiety.

A protocol for the generation of a library of hybrid inhibitors is depicted in
Figure 6.16. The first stage involves the enumeration of the library members
for each of the fragments in the hybrid inhibitors; this can be done either by
using a 3D interface (e.g., Maestro*?) or a 2D drawing program (e.g.,
ChemDraw, ChemAxon) followed by a 3D coordinate generator (e.g.,
CORINA,*3 CONCORD,* OpenBabel*>). With the fragment libraries in hand,
the fragments are combined in as many REACTOR runs as necessary, resulting
in a large combinatorial library. At this stage, redundancy in the library
resulting from the combination of similar fragments can be achieved by
filtering the library through SELECT, in an attempt to reduce the CPU time

required for the virtual screening.
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Figure 6.16. Workflow for the generation of a combinatorial library from libraries of 2D or
3D fragments. Libraries of three-dimensional fragments are fed to reactor, which outputs a
combinatorial library with all possible products. The redundance of this library can be
reduced by removing compounds below a Tanimoto cutoff with SELECT. Finally, the filtered
library can be fed to SMART and then docked with FITTED.

This virtual screening is ongoing, and its results will be reported in due

course.

6.4 Conclusions
SMART, a module for the preparation of libraries of organic ligands for virtual

screening was developed. It can be used to increase the throughput of virtual
screening methods based on docking (FITTED) or in the evaluation of catalysts
for asymmetric reactions (ACE). In addition to the assignment of suitable
atom types for two different molecular mechanical force fields, the module is
capable of assigning atomic charges based on the MMFF94 force field. We
also implemented the ability of filtering compounds containing potentially
toxic groups and/or not matching required features (such as the
presence/absence of aromatic groups or hydrogen bond donors or
acceptors), with a potential increase in VS throughput. Based on the basic
components of SMART, we constructed a program to make combinatorial
libraries of ligands from the combination of other libraries in a user-defined

way. REACTOR is a simple yet powerful addition to the toolbox of the
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computational medicinal chemist. Using data from publicly available
databases containing three-dimensional structures from vendors, it is
capable of providing a structure ready to be used in a structure-based drug
design method such as docking. It is designed with the organic chemist in
mind, allowing for the definition of reactions on chemical transformations in
a simple language. It also allows for the formation of combinatorial libraries
using Markush fragments. Multiple rounds of transformations can be used to
build libraries from multiple components, as exemplified on the applications

to VDR and HDAC.

6.5 Future developments and applications
Future developments of these programs could include the incorporation of

more powerful filtering techniques, such as skipping pairs of compounds that
would make an unsuitable candidate (e.g., by using Lipinski’s rules). One of
the main present limitations of REACTOR is its inability to handle reactions
where more than one bond is made at one time and where the connectivity of
one of the reaction centers changes; however, these limitations are by
application and not by design. The formation of multiple bonds in a single
step can be attained by a redefinition of the rules specification, allowing for
multiple cases to be matched. The circumvention of the requirement of fixed
connectivity calls for the implementation of functions that would alter the
geometry of a reaction center (e.g., changing from a 4-coordinate sp3 C to a 3-
coordinate sp? C), predicting the placement of the newly formed bonds upon

a transformation.
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Chapter 7: Contributions to knowledge

7.1 Conclusions

7.1.1 Evaluation of docking programs for Golgi a-mannosidase

We have assessed scoring functions used in molecular docking in the context of the
application to the design of a-mannosidase inhibitors. We found that most scoring
functions assessed had problems at reproducing the binding modes of the ligands in
the binding site, although in most cases they successfully predicted the binding
mode around the metal centre. Despite these shortcomings, a virtual screening
application of Glide was successful at retrieving seeded known actives from a library

of decoys.

7.1.2 Assessment of scoring functions for flexible docking

In an attempt at deepening our assessment of scoring function performance, we
have developed a challenging set of protein-ligand complexes for the assessment of
structure-based CADD methods. Additionally, we prepared a set of cross-docked
structures that can be used for the consideration of protein flexibility. The
evaluation of the ability of several scoring functions to predict binding affinity
showed that XScore, the eHiTS scoring function, DrugScore, GoldScore and
ChemScore were the most reliable scoring functions overall. In particular, eHiTS and
XScore were the least sensitive to the use of conformational ensembles instead of

protein native structures as targets.

7.1.3 Development of scoring functions for protein-ligand interactions

We used the general Amber force field (GAFF) as the basis to develop new scoring
functions, for its parameterization allows for broad applicability to organic
molecules. The entropic energy of the ligand was best modeled by a count of
rotatable bonds modified by a function that accounted for the polarity and
buriedness of the bonds within the binding site. Entropic effects on the protein were

considered by scaling down of the interactions with side chain atoms. Each term of
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the scoring function was tuned in an iterative way, optimizing an objective function
within increasingly focused ranges. The objective function was either the correlation
between the ranked lists of binding affinities and predicted scores, or the area under
the curve of a receiver-operating characteristic for the retrieval of actives in a VS
application. Validation of these scoring functions with standard benchmark sets
showed that the first developed scoring function (RankScore2) was among the best
scoring functions at binding affinity prediction, while the second one (RankScore4)
was successful at retrieving known actives from libraries of decoys in a different set

of targets.

7.1.4 Modelling of platinum complexes as G-quadruplex binders

We have applied a hybrid docking/molecular dynamics/MM-PBSA scoring
technique for the development of platinum square-planar complexes as DNA G-
quadruplex binders. With this technique, we were able to gain evidence for the
parallel stacking mode these compounds exhibit, as well as explain differences in
activity in congeneric series of compounds. Furthermore, when applying the
technique to a pair of alternate foldings of the human G-quadruplex motif, the

preference of different Pt complexes for each folding could be explained.

7.1.5 Development of programs for the handling of ligands for virtual

screening: SMART, REACTOR and SELECT

Finally, we described the development of a set of programs to handle one part of the
input for docking programs: the ligands. The SMART module of FITTED automates the
setting up of the ligands prior to a docking run, assigning GAFF atom types, and
MMFF charges and setting up rotatable bonds. An implementation of the MACCS
fingerprint led to the development of SELECT, which exploits 2D similarity search to
cluster libraries of ligands and to extract analogs to a query from a library. A third
program, REACTOR, is able to construct combinatorial libraries of ligands with user-
defined transformations, either with a defined chemistry or with a target-oriented
behaviour. These programs are currently being used for the preparation of libraries

to be used in the virtual screening of histone deacetylase inhibitors.

186



7.2 Papers and conference presentations

7.2.1 Papers published

Englebienne, P.; Moitessier, N. Docking Ligands into Flexible and Solvated
Macromolecules. 4. Are Popular Scoring Functions Accurate for this Class of

Proteins? J. Chem. Inf. Model., 2009, 49, 1568.

Kieltyka, R.; Englebienne, P.; Fakhoury, ].; Autexier, C.; Moitessier, N.; Sleiman, H. F. A
platinum supramolecular square structure as a G-quadruplex interactive agent. J.

Am. Chem. Soc. 2008, 130, 10040.

Corbeil, C. R.; Englebienne, P.; Yannopoulos, C. G.; Chan, L.; Das, S. K; Bilimoria, D.;
L’Heureux, L., Moitessier, N. Docking Ligands into Flexible and Solvated
Macromolecules. 2. Development and Application of FITTED 1.5 to the Virtual

Screening of Potential HCV Polymerase Inhibitors. . Chem. Inf. Model. 2008, 48, 902.

Moitessier, N.; Englebienne, P.; Lee, D.; Lawandi, ].; Corbeil, C. R, Towards the
development of universal, fast and highly accurate docking/scoring methods: A long

way to go. Br. . Pharmacol. 2008, 153, S7.

Englebienne, P.; Fiaux, H.; Kuntz, D. A.; Corbeil, C. R.; Gerber-Lemaire, S.; Rose, D. R;;
Moitessier, N. Evaluation of Docking Programs for Predicting Binding of Golgi alpha-
Mannosidase II Inhibitors: A Comparison with Crystallography. Proteins: Struct,

Funct., Bioinf. 2007, 69, 160.

Corbeil, C. R;; Englebienne, P.; Moitessier, N. Docking Ligands into Flexible and
Solvated Macromolecules. 1. Development and Validation of FITTED 1.0. J. Chem. Inf.

Model. 2007, 47, 43.

Moitessier, N.; Englebienne, P.; Chapleur, Y. Directing-protecting groups for
carbohydrates. Design, conformational study, synthesis and application to

regioselective functionalization. Tetrahedron 2005, 61, 6839.

187



7.2.2 Book chapters
Kieltyka, R.; Englebienne, P.; Moitessier, N.; Sleiman, H. F. Quantifying interactions
between G-quadruplex DNA and transition metal complexes. Methods in Molecular

Biology, Special Issue on G-quadruplexes, submitted.

7.2.3 Forthcoming papers

Englebienne, P.; Moitessier, N. Docking Ligands into Flexible and Solvated
Macromolecules. 5. Force Field-Based Prediction of Binding Affinities of Ligands To

Proteins.

Kieltyka, R.; Englebienne, P.; Fakhoury, ].; Autexier, C.; Moitessier, N.; Sleiman, H. F.
Interaction of Platinum Phenanthroimidazole Complexes with the Human G-

Quadruplex Sequence.

Kieltyka, R.; Englebienne, P.; Fakhoury, J.; Langille, A.; Autexier, C.; Moitessier, N.;
Sleiman, H. F. Increasing Planarity of Platinum Phenanthroimidazole G-Quadruplex

Binders Through Hydrogen Bonding.

7.2.4 Conference presentations

Kieltyka, R.*; Englebienne, P.; Fakhoury, |.; Autexier, C.; Moitessier, N.; Sleiman, H. F.
Platinum complexes with variable n-surfaces and their interactions with the guanine
quadruplex. 236th ACS National Meeting, Philadelphia, PA, Aug/2008. (oral

presentation)

Kieltyka, R.*; Englebienne, P.; Fakhoury, |.; Autexier, C.; Moitessier, N.; Sleiman, H. F.
Platinum-based G-quadruplex binders as potential telomerase inhibitors. 6t
Canadian Symposium on Telomeres and Telomerase, Lake Winnipeg, MB,

May/2008. (oral presentation)

Englebienne, P.*; Corbeil, C. R.; Moitessier, N. FORECASTER: A new platform for drug

discovery. 8t CERMM Symposium, Montreal, QC, Apr/2008.

Englebienne, P.*; Corbeil, C. R.; Moitessier, N. FORECASTER: A new platform for drug
discovery. 235t ACS National Meeting, New Orleans, LA, Apr/2008.
188



Englebienne, P.*; Moitessier, N. RankScore2: A novel scoring function for ligand-

protein binding affinities. 235t ACS National Meeting, New Orleans, LA, Apr/2008.

Kieltyka, R.*; Englebienne, P.; Fakhoury, |.; Autexier, C.; Moitessier, N.; Sleiman, H. F.
Platinum phenanthroimidazole complexes as G-quadruplex binders. 235t ACS

National Meeting, New Orleans, LA, Apr/2008. (oral presentation)

Englebienne, P.*; Moitessier, N. Development of a docking scoring function from a
challenging training set. Computer-Aided Drug Design Gordon Research Conference,

Tilton, NH, Jul/2007.

Moitessier, N.*; Corbeil, C. R.; Englebienne, P. FITTED 1.0, docking to flexible and
solvated macromolecules. 6% Canadian Computational Chemistry Conference,

Vancouver, BC, Jul/2006.

Englebienne, P.*; Moitessier, N. Prédiction in silico de I'affinité ligand/protéine par

fonctions de score. 74t ACFAS, Montreal, QC, May/2006. (oral presentation)

Englebienne, P.*; Moitessier, N. Predictive tools for structure-based drug design: A
comparative study of force field-based scoring functions. 230t ACS National

Meeting, Washington, DC, Aug/2005.

Englebienne, P.*; Moitessier, N. Development of Novel Software for Docking Ligands
to Flexible Proteins. 88th CSC National Conference & Exhibition, Saskatoon, SK,
May/2005.

Corbeil, C.R*; Englebienne, P.*; Moitessier, N. Development of a novel software to
predict the binding affinity of ligands to flexible proteins. 5t CERMM Symposium,
Montreal, QC, Feb/2005.

Englebienne, P.*; Moitessier, N.; Chapleur, Y. Carbohydrate Protecting-Directing
Groups. 15t QOMSBOC, Ottawa, ON, Dec/2004. (oral presentation)

189



[ This page was intentionally left blank |

190



Appendix

A.1 Supplementary information for Chapter 3

Table A.1. Description of the 209 complexes included in Set 1.

Ebind

PDB Protein (keal mol) MW

1a30 HIV-1 protease -5.86 375.29
1a85 MMP-8 -6.16 393.45
ladl Trp RNA-binding attenuation protein -7.30 303.47
lafé Maltoporin -2.48 342.30
lafk Ribonuclease a -9.01 504.16
laid HIV-1 protease -6.57 453.07
lajv HIV-1 protease -10.51 574.70
lapw Penicillopepsin -10.89 506.64
1b8n Purine nucleoside phosphorylase -14.33 282.28
1b8o Purine nucleoside phosphorylase -14.48 267.27
1bdl HIV-1 protease -7.97 520.68
1biw MMP-3 -9.51 415.53
1bma Elastase -6.25 521.61
1lbmn  Thrombin -11.49 531.66
1bn4 Carbonic anhydrase -12.67 362.45
1bnn Carbonic anhydrase -13.61 374.46
1br5 Ricin -3.68 253.22
1br6 Ricin -4.38 311.28
1bxo Penicillopepsin -13.61 638.70
1c3x Pentosyltransferase -5.01 277.02
1c4u Thrombin -14.12 582.51
1c4v Thrombin -14.70 531.68
1c5c¢ chimeric decarboxylase antibody 21d8 -9.48 343.34




Ebind

PDB Protein MW
(kcal mol-1)

1c5q Trypsin -8.66 303.15
1cet Lactate dehydrogenase -3.93 320.89
1lciz MMP-3 -10.13 502.62
1d3p Thrombin -10.06 545.75
1d3t Thrombin -8.90 543.73
1d4p Thrombin -8.58 361.47
1d8m  MMP-3 -11.58 419.46
1db1 Vitamin d nuclear receptor -12.61 416.65
1dmp HIV-1 protease -13.00 536.68
1dvz Transthyretin -9.68 280.23
1dy4 Cellobiohydrolase I -5.94 258.34
lelx Cyclin dependent kinase 2 -8.02 251.29
le2k Thymidine kinase -6.73 252.27
le4h Transthyretin -11.45 488.62
le5a Transthyretin -10.40 330.82
1le66 Acetylcholinesterase -13.46 298.82
lebl Thrombin -14.20 439.58
lecv PTP 1b -6.61 333.04
lefy ADP-ribose polymerase -11.19 267.29
lejn Urokinase-type plasminogen activator -7.65 342.47
lelc Elastase -9.07 507.58
lerb Retinoic acid receptor rxr-alpha -9.60 327.51
levh Mena evh1 domain -4.38 594.69
lezq Factor xa -12.32 460.58
1f0u Trypsin -9.75 460.58
1f4e Thymidylate synthase -4.03 268.31
1f4g Thymidylate synthase -8.82 496.48
173 n-Acetyl neuraminate lyase -3.25 310.28
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Ebind

PDB Protein MW
(kcal mol-1)

1f8d Neuraminidase -4.63 290.28
1f8e Neuraminidase -6.57 290.30
1fcx Retinoic acid receptor gamma-1 -9.79 387.50
1fcy Retinoic acid receptor gamma-1 -11.60 385.49
1fcz Retinoic acid receptor gamma-1 -12.55 361.47
1fd0 Retinoic acid receptor gamma-1 -11.44 400.50
1fh7 Xylanase beta-1 -7.13 266.27
1fh8 Xylanase beta-1 -9.38 250.27
1fh9 Xylanase beta-1 -8.75 294.26
1fhd Xylanase beta-1 -9.28 302.29
1fjs Factor xa -13.56 526.50
1fkh FK506 binding protein -11.10 455.64
1fmb EIAV protease -13.61 566.77
1g21 Factor xa -9.86 526.62
1g30 Thrombin -9.33 526.62
1g4o Carbonic anhydrase -11.23 290.34
1ghv Thrombin -5.92 254.27
1ghw Thrombin -5.72 253.29
1ghz Trypsin -6.53 254.27
1gil Trypsin -6.49 253.29
1gi6 Trypsin -8.47 252.30
1gi8 Urokinase-type plasminogen activator -6.87 253.29
1gj4 Thrombin -5.75 362.84
1gj5 Thrombin -7.16 329.38
1gj7 Urokinase-type plasminogen activator -10.74 362.84
1gj9 Urokinase-type plasminogen activator -10.18 382.46
1gja Urokinase-type plasminogen activator -7.38 256.29
1gpn Acetylcholinesterase -8.82 257.36
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Ebind

PDB Protein MW
(kcal mol-1)
1h0a Epsin -7.41 417.07
1hls Cyclin dependent kinase 2 -11.19 402.48
1h22 Acetylcholinesterase -12.38 468.69
1h23 Acetylcholinesterase -11.36 496.74
1h46 Exoglucanase | -4.86 257.34
1hpo HIV-1 protease -12.55 504.61
1lhpv HIV-1 protease -12.55 505.64
1htf HIV-1 protease -9.30 575.76
lhwr HIV-1 protease -11.34 406.53
1hy7 MMP-3 -7.34 402.45
1i73 MMP-8 -7.48 449.47
ligj Precursor of periplasmic sugar receptor -13.61 520.67
likt Estradiol 17 beta-dehydrogenase 4 -4.63 352.52
ligy Beta-d-glucan glucohydrolase isoenzyme 401 358,37
exol

ljan MMP-8 -6.43 301.37
ljao MMP-8 -8.06 323.42
ljaq MMP-8 -6.10 302.33
1jj9 MMP-8 -7.85 332.38
ljwt Thrombin -10.69 493.61
1k22 Thrombin -11.43 430.53
1k4g tRNA-guanine transglycosylase -7.96 288.33
1k9s Purine nucleoside phosphorylase -8.88 282.28
1kbc MMP-8 -10.48 399.53
1kdk Sex hormone-binding globulin -12.32 290.45
1kel 28b4 fab -9.91 345.27
1koj Glucose-6-phosphate isomerase -9.12 260.12
1ksn Factor xa -12.80 447.52
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Ebind

PDB Protein MW
(kcal mol-1)

1kts Thrombin -10.93 500.59
1kzk HIV-1 protease -14.14 575.73
112s Lactamase beta -6.25 316.76
118b Eukaryotic translation initiation factor 4e -9.33 535.20
1lee Plasmepsin II -10.54 531.70
112 Plasmepsin II -10.24 531.70
1lhw Sex hormone-binding globulin -11.11 302.42
1lnm Digal6 -11.84 374.53
1loq Orotidine 5'-monophosphate decarboxylase = -5.04 323.18
1llor Orotidine 5'-monophosphate decarboxylase  -15.06 339.18
1mOn  2,2-Dialkylglycine decarboxylase -3.02 392.24
1mOo 2,2-Dialkylglycine decarboxylase -3.14 380.23
1mOq  2,2-Dialkylglycine decarboxylase -4.03 352.18
1m48 Interleukin-2 -6.93 447.56
1mai Phospholipase C delta-1 -9.09 417.07
1mfa 14-3-3-like protein c -6.86 486.47
1mfl Erb-b2 interacting protein -5.30 540.64
1lmmb  MMP-8 -11.30 477.65
1mnc MMP-8 -12.25 349.43
1moq Glucosamine 6-phosphate synthase -4.71 259.15
1mq6 Factor xa -15.18 568.87
Imrw  Pol polyprotein -13.21 527.69
1mu6é  Thrombin -11.41 432.41
1mu8  Thrombin -12.25 446.44
1n3i Purine nucleoside phosphorylase -12.10 265.29
1n46 Thyroid hormone receptor beta-1 -14.32 367.41
1n4k Inositol 1 -13.68 417.07
1nfw Factor xa -12.20 436.94
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Ebind

PDB Protein MW
(kcal mol-1)
1nfy Factor xa -12.10 463.99
1nje Thymidylate synthase -5.17 306.19
1njj Ornithine decarboxylase -2.86 500.59
Injs Phosphoribosylglycinamide 065 543,46
formyltransferase

1nl9 PTP 1b -8.11 531.57
1Inm6  Thrombin -13.68 511.07
1no6 PTP 1b -10.09 333.30
1nq7 Nuclear receptor ror-beta -9.26 339.50
1nvq Serine/threonine-protein kinase chk1 -11.23 481.54
1nvr Serine/threonine-protein kinase chk1 -11.04 467.55
1nw4 Uridine phosphorylase -12.35 267.27
1nwl PTP 1b -3.25 468.58
1lo0m Ribonuclease a -7.01 323.18
1o0n Ribonuclease a -5.57 323.18
1000 Ribonuclease a -6.94 425.19
loZ2h Trypsin -8.37 336.42
lo2p Trypsin -6.60 359.84
lo36 Trypsin -8.11 488.44
lo3d Trypsin -9.71 329.38
lo3f Trypsin -10.84 328.40
locq Endoglucanase 5a -7.07 310.33
loe8 Glutathione s-transferase -7.51 306.32
1okl Carbonic anhydrase -8.21 250.32
lony PTP 1b -9.22 588.64
losv Bile acid receptor -4.74 419.63
low4 Pheromone binding protein -7.73 299.35
1p57 Serine protease hepsin -5.99 253.29
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Ebind

PDB Protein MW
(kcal mol-1)
pk Bifunctional purine biosynthesis protein 9.42 363.20
purh
1pme Erk2 map kinase -12.80 377.44
1pr5 Purine nucleoside phosphorylase -5.34 266.26
1pvn Inosine-5'-monophosphate dehydrogenase -13.37 338.19
1pzi Heat-labile enterotoxin b subunit -5.74 331.28
1pzp Beta-lactamase tem -4.51 305.34
1qlg Uridine phosphorylase putative -11.67 297.36
1q66 Queuine trna-ribosyltransferase -7.86 313.40
1qb9 Trypsin -10.13 490.63
1qbv Thrombin -7.33 382.49
1qk4 Hypoxanthine phosphoribosyltransferase -5.73 347.20
Lrbo Ribulose bisphosphate 1732 353,09
carboxylase/oxygenase (rubisco)

1s13 Thrombin -16.13 552.33
1sqa Urokinase-type plasminogen activator -12.54 413.49
1sqn Progesterone receptor -12.80 300.44
1sr7 Progesterone receptor -13.75 523.46
1sri Streptavidin -8.28 269.28
1stc Cyclin dependent kinase 2 -11.03 467.55
1ta6 Thrombin -12.43 480.03
1tom Thrombin -11.30 388.56
1ttm Carbonic anhydrase -10.00 309.34
1tyr Transthyretin -9.53 303.47
lur8 Chitinase b -5.92 422.39
lurg Maltose-binding protein -7.92 342.30
lusn MMP-3 -10.54 427.38
1v2k Trypsin -8.43 499.04
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Ebind

PDB Protein MW
(kcal mol-1)
1v2o Trypsin -6.44 433.51
1v48 Purine nucleoside phosphorylase -10.61 335.21
1vpo Anti-testosterone (light chain) -12.96 288.43
1vyf 14 kda fatty acid binding protein -10.96 281.46
wld 3-phosphoinositide = dependent  protein 888 196,05
kinase-1

1xkk Epidermal growth factor receptor -11.60 582.08
lyej Ig antibody d2.3 (light chain) -10.16 400.33
2bpv HIV-1 protease -10.45 622.84
2gss Glutathione s-transferase -6.73 302.14
2qwe Neuraminidase -10.19 332.32
2qwf Neuraminidase -7.71 341.37
2rkm Oligo-peptide binding protein -5.31 276.38
2std Scytalone dehydratase -13.41 334.68
3gst Glutathione S-transferase -9.15 500.55
3std Scytalone dehydratase -15.12 364.45
4sga Proteinase a -9.94 471.54
4std Scytalone dehydratase -14.06 338.18
5std Scytalone dehydratase -14.28 375.42
6¢cpa Carboxypeptidase -15.69 476.43
6std Scytalone dehydratase -11.76 413.17
7std Scytalone dehydratase -14.59 334.68
8cpa Carboxypeptidase -12.45 462.40
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Table A.2. Listing of 87 complexes included in Set 2.

PDB code Proteins
1bn4 Carbonic anhydrase
1bnn Carbonic anhydrase
1okl Carbonic anhydrase
1ttm Carbonic anhydrase
lezq Factor xa
1fjs Factor xa
1g21 Factor xa
1ksn Factor xa
1mqg6 Factor xa
1nfw Factor xa
1nfy Factor xa
1a30 HIV-1 protease
laid HIV-1 protease
lajv HIV-1 protease
1bdl HIV-1 protease
1dmp HIV-1 protease
1hpo HIV-1 protease
1lhpv HIV-1 protease
1htf HIV-1 protease
lhwr HIV-1 protease
1kzk HIV-1 protease
2bpv HIV-1 protease
1biw MMP-3
1ciz MMP-3
1d8m MMP-3
lusn MMP-3
1a85 MMP-8
1i73 MMP-8
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ljan
1ljao
ljaq
1jj9
1kbc
1mmb
1mnc
lecv
1nl9
1no6
1nwl
lony
2std
3std
4std
5std
6std
7std
1bmn
1c4u
1c4v
1d3p
1d3t
1d4p
lebl
1g30
1ghv
1ghw
1gj4
1gj5

MMP-8

MMP-8

MMP-8

MMP-8

MMP-8

MMP-8

MMP-8

PTP 1b

PTP 1b

PTP 1b

PTP 1b

PTP 1b

Scytalone dehydratase
Scytalone dehydratase
Scytalone dehydratase
Scytalone dehydratase
Scytalone dehydratase
Scytalone dehydratase
Thrombin

Thrombin

Thrombin

Thrombin

Thrombin

Thrombin

Thrombin

Thrombin

Thrombin

Thrombin

Thrombin

Thrombin

200



ljwt Thrombin

1k22 Thrombin

1kts Thrombin

1mu6 Thrombin

1mu8 Thrombin

1nm6 Thrombin

1qbv Thrombin

1s13 Thrombin

1ta6 Thrombin

1tom Thrombin

1c5q Trypsin

1f0u Trypsin

1ghz Trypsin

1gil Trypsin

1gi6 Trypsin

loZh Trypsin

lo2p Trypsin

lo36 Trypsin

lo3d Trypsin

lo3f Trypsin

1qb9 Trypsin

1v2k Trypsin

1v2o Trypsin

lejn Urokinase-type plasminogen activator
1gi8 Urokinase-type plasminogen activator
1gj7 Urokinase-type plasminogen activator
1gj9 Urokinase-type plasminogen activator
1gja Urokinase-type plasminogen activator
1sqa Urokinase-type plasminogen activator
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Table A.3. Accuracy of the scoring functions on 5 subsets of set 1. Each cell presents the ranked correlation coefficient t for each scoring
function within a subset of proteins.

Thrombin  HIV-1P  Trypsin MMP-3/8 trypsin/thrombin/FXa

(22) (11) (13) (14) (42)
Min Ebind -16.1 -14.1 -10.8 -12.2 -16.1
Max Epind -5.7 -5.8 -6.4 -6.1 -5.7
ChemScore (Sybyl) 0.056 0.624 0.564 0.341 0.266
DockScore (Sybyl) 0.368 0.624 0.385 0.297 0.459
DrugScoretsP 0.42 0.55 0.462 0.077 0.443
DrugScorePPB 0.558 0.477 0.179 0.077 0.556
eHiTS SF 0.455 0.367 0.077 0.209 0.388
FlexXScore (Sybyl) -0.022 0.661 0.385 0.209 0.075
GlideScore 0.307 0.514 0.308 0.165 0.333
GoldScore (Sybyl) 0.55 0.44 0.179 0.077 0.503
Hammerhead 0.304 0.477 0.487 0.253 0.313
(Cerius2)
LigScorel (Cerius2) 0.429 0.44 0.179 0.088 0.369
LigScore2 (Cerius2) 0.451 0.514 0.245 0.165 0.419
PLP1 (Cerius2) 0.481 0.587 0.308 0.099 0.487
PLP2 (Cerius2) 0.394 0.587 0.308 0.143 0.447
PMF (Sybyl) 0.29 -0.183 -0.026 -0.209 0.303
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PMF (Cerius2) 0.247 0.55 0.359 -0.209 0.354
RankScore 0.68 0.55 0.359 0.099 0.605
Surflex SF 0.177 0.477 0.308 0.231 0.298
XScore 0.312 0.734 0.436 0.199 0.414
MW 0.489 0.257 0.128 0.341 0.459
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Table A.4. Accuracy (t) of the scoring functions on three subsets of Set 1.

Hydrophobic proteins Hydrophilic proteins Metalloproteins
Scoring function (23 complexes, all
(85 complexes) (93 complexes) hydrophobic)

ChemScore (Sybyl) 0.301 0.277 0.043
DockScore (Sybyl) 0.230 0.282 0.083
DrugScoretsP 0.218 0.357 -0.036
DrugScorePPB 0.176 0.346 -0.107
eHiTS SF 0.227 0.365 0.02

FlexXScore 0.223 0.211 0.083
GlideScore 0.288 0.240 0.04

GoldScore (Sybyl) 0.278 0.315 0.02

Hammerhead (Cerius2) 0.292 0.221 0.043
LigScorel (Cerius2) 0.109 0.109 0.083
LigScore2 (Cerius2) 0.190 0.317 0.051
PMF (Sybyl) 0.245 0.380 -0.051
PMF (Cerius2) 0.269 0.352 -0.043
PLP1 (Cerius2) 0.109 -0.064 0.075
PLP2 (Cerius2) 0.255 0.004 0.051
RankScore 0.223 0.402 -0.012
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Surflex SF 0.282 0.238 0.067
XScore 0.307 0.361 0.1

MW 0.153 0.289 0.249
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Table A.5. Accuracy of the scoring functions (t) on set 2 when waters are kept for docking
and scoring, kept for docking and removed for scoring, removed for both docking and
scoring, or made displaceable.

Native
Scoring function protein Non-native protein conformation?

conformation

Waters kept  Wet/wet Wet/dry Dry/dry Displaceable

ChemScore (Sybyl) 0.338 0.307 0.307 0.328 0.330
DockScore (Sybyl)  0.280 0.273 0.274 0.267 0.281
DrugScoretsP 0.351 0.295 0.296 0.320 0.326
DrugScorePPB 0.333 0.336 0.340 0.337 0.342
eHiTS SF 0.366 0.359 0.380 0.380 0.386
FlexXScore (Sybyl) 0.164 0.081 0.048 0.069 0.100
GlideScore 0.307 0.071 0.076 0.126 0.133
GoldScore (Sybyl)  0.259 0.274 0.274 0.272 0.286
Hammerhead SF 0.176 0.116 -0.009 0.001 0.116
(Cerius2)

LigScorel 0.114 -0.017 -0.026 0.007 0.015
(Cerius2)

LigScore?2 0.266 0.076 0.064 0.101 0.135
(Cerius2)

PLP1 (Cerius2) 0.289 0.261 0.253 0.276 0.280
PLP2 (Cerius2) 0.305 0.260 0.241 0.261 0.270
PMF (Sybyl) 0.230 0.209 0.209 0.203 0.212
PMF (Cerius2) 0.315 0.297 0.288 0.292 0.296
RankScore 0.295 0.242 0.243 0.286 0.286
Surflex SF 0.218 0.050 0.055 0.056 0.073
XScore 0.413 0.403 0.405 0.412 0.412
MW 0.276

a random sampling of cross-docked structures, 1 protein per ligand; maximum and

minimum correlation values displayed for 10,000 trials.
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Table A.6. Accuracy of the scoring functions (t) on the complete set 2 when protein
conformational ensembles were considered.

Scoring function  Self-docking Protein conformational ensemble?

Wet/wet Wet/wet Wet/dry Dry/dry displaceable

ChemScore (Sybyl) 0.338 0.317 0.317 0.290 0.305
DockScore (Sybyl) 0.280 0.260 0.260 0.235 0.261
DrugScoretspP 0.351 0.296 0.297 0.311 0.315
DrugScorePPB 0.333 0.329 0.333 0.320 0.336
eHiTS SF 0.366 0.451 0.441 0.441 0.451
FlexXScore (Sybyl) 0.164 0.102 0.052 0.058 0.098
GlideScore 0.307 0.228 0.219 0.267 0.276
GoldScore (Sybyl) 0.259 0.287 0.287 0.251 0.282
Hammerhead SF 0.176 0.135 0.007 0.002 0.135
(Cerius2)

LigScorel (Cerius2) 0.114 0.072 0.046 0.048 0.057
LigScore2 (Cerius2) 0.266 0.170 0.113 0.129 0.177
PLP1 (Cerius2) 0.289 0.294 0.280 0.281 0.290
PLP2 (Cerius2) 0.305 0.298 0.279 0.280 0.298
PMF (Sybyl) 0.230 0.215 0.215 0.215 0.219
PMF (Cerius2) 0.315 0.281 0.280 0.272 0.277
RankScore 0.295 0.302 0.302 0.305 0.314
Surflex SF 0.218 0.105 0.075 0.075 0.112
XScore 0.413 0.391 0.391 0.390 0.390
MW 0.277

a best scored complex for each ligand.
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A.2 Supplementary information for Chapter 4

Table A.7. Correlations between predicted score and experimental binding affinity for the test set of
93 complexes.

Scoring function  Pearson Spearman Kendall

LigScore2 0.209 0.449 0.313
LigScorel 0.281 0.414 0.287
PMF-Sybyl 0.309 0.295 0.208
RankScore4 0.317 0.395 0.268
FlexXScore 0.345 0.417 0.271
Jain 0.388 0.401 0.264
PMF-Cerius2 0.419 0.382 0.282
GlideScore 0.437 0.452 0.314
MW 0.538 0.552 0.395
PLP1 0.544 0.560 0.397
GoldScore 0.549 0.530 0.374
RankScore2 0.553 0.524 0.362
PLP2 0.555 0.579 0.413
DockScore 0.569 0.574 0.410
ChemScore 0.577 0.562 0.396
DrugScorePDB 0.590 0.577 0.392
DrugScoreCSD 0.612 0.585 0.415
X-Score 0.672 0.682 0.494
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A.3 Supplementary information for Chapter 5

A.3.1 Fluorescence resonance energy transfer assay (FRET) experiment

details

Complex 1 is highly soluble in water and as a result, a stock solution of 10 mM was
prepared in deionized water. Both duplex (5’FAM-TATAGCTATA-HEG-
TATAGCTATA-TAMRA-3’ where FAM = fluorescein,
TAMRA=tetracarboxylrhodamine, and HEG = hexaethyleneglycol) and a quadruplex
(F21T = 5-FAM-GGG(TTAGGG)3-TAMRA-3') forming FRET oligonucleotides
(SigmaGenosys) were dissolved in deionized water and their stock solutions were
quantified by UV/Vis spectroscopy. Any dilutions past this point were performed in
a 10 mM sodium cacodylate buffer with 100 mM LiCl (pH 7.4).

A 400 nM solution of each oligonucleotide was prepared in the aforementioned
cacodylate buffer and heated to 90°C in the UV/Vis instrument for 5 minutes and
then allowed to cool within the instrument for 2-3 hours. In the meantime, several
solutions of varying concentration of the molecular square, 1, were prepared 2x as

concentrated as to be used in the assay, from 0.1 uM to 2 uM.

The Fluorescence Resonance Energy Transfer (FRET) assay was performed as a high
throughput screen in 256-well format with F21T and duplex DNA. Fluorescence
measurements were recorded in an Applied Biosystems Real-Time PCR (ABI HT
7900). Solutions of quadruplex or duplex DNA and complex 1 (20 uL of each
component) were pipetted into the wells to give a total reaction volume of 40 uL.
The emission of FAM was followed with its excitation at 494 nm and emission at 522
nm. Samples were first equilibrated within the instrument at 25°C prior to heating
to 95°C in 71 cycles at 1°C/min. Fluorescence readings were recorded every

0.5°C/min.

AT1/2 values were obtained by normalizing the FRET data from 0 to 1 using a

concentration of less than 1 pM in platinum square. ATi,2 was taken as the
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temperature at which the normalized emission is equal to 0.5. Each concentration

value was collected as a triplicate and experiments were repeated 2-3 times.
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Figure A.1. Titration of complex 1 (0.1 to 1.25 uM) with G-quadruplex DNA.

A.3.2 TRAP assay protocol

Inhibition of telomerase activity was detected by a modified, two-step version of the
telomeric repeat amplification protocol (TRAP).3 Telomerase extract was prepared
from 1 pg of exponentially growing HeLa cells and was used for every reaction in a
final volume of 50 pl consisting of TRAP buffer (final concentration of 20 mM Tris-
HCI pH 8.3, 1.5 mM MgCl;, 63 mM KCl, 1 mM EGTA pH 8.0, 0.01% Tween-20,
100 ng/uL BSA), 2.5mM dNTP mix, 40 pmol TS primer, 20 pmol NT primer, 1x10-13
M TSNT internal control primer. Each reaction was incubated with increasing
concentration or without complex 1 for 30 minutes at 30°C. To each reaction, 5 uCi
of [3?2P]dGTP, 2 units of Taq polymerase, and 20 pmol of ACX reverse primer were
added. Reactions were amplified by the polymerase chain reaction (PCR) for 30
cycles with the following conditions: 30 seconds at 94°C, 30 seconds at 60°C, and 30
seconds at 72°C. DNA products were resolved on a 10% acrylamide gel that was

dried and exposed to an autoradiography film (GE Healthcare, Canada).
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Quantification of inhibition was performed by using Imagequant software (GE
Healthcare, Canada). Telomeric ladder products were normalized to the internal
control, and the ratio obtained for inhibited telomerase reactions were compared
the ratio of uninhibited telomerase. We determined the ICso obtained when the
ligand is added after the telomerase extension step. As a control experiment, we find
that the ICso obtained when the ligand is added after the telomerase extension step
to be 0.304 uM, higher than when added during the telomerase extension step (ICso
= 0.197 uM). These results are consistent with results obtained with other G-
quadruplex ligands such as telomestatin that have been established as specific

telomerase inhibitors.4
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Figure A.2. Percent activity of telomerase upon addition of increasing amounts of complex 1.

A.4 Circular dichroism (CD) study

A circular dichroism study was conducted to observe the effect of complex 1 on the
structure of the G-quadruplex. CD studies were performed on a JASCO J-810
spectrophotometer with a 1 cm path length cuvette. Scans were taken from 350-

235 nm at a scan speed of 200 nm/min with 5 acquisitions. A solution of complex 1
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was prepared as a 400 uM solution in water. The human telomere sequence,
5-AGGGTTAGGGTTAGGGTTAGGGT-3" (SigmaGenosys), was dissolved in a
10 mM sodium phosphate buffer with 100 mM NaCl (pH 7.2) and heated to 902C for
5 minutes and then cooled to 252C over 1 hour in a UV/Vis spectrophotometer to
obtain the intramolecular quadruplex structure. The 400 uM solution of complex 1
was then titrated, 3 uL at a time, to a 3 uM solution of the G-quadruplex in the
abovementioned buffer. A cuvette filled with the sodium phosphate buffer solution
was used as a blank and subtracted from previously recorded spectra. This

experiment was also repeated in K* based buffer with similar results.
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Figure A.3. Titration of complex 1 with a 3 uM solution of G-quadruplex in a sodium phosphate
buffer. The solid black line represents the G-quadruplex with no complex added. There is a slight
decrease in the peak near 300 nm and an increase in the signal around 250 nm.
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Figure A.4. Titration of complex 1 with a 3 uM solution of G-quadruplex in potassium phosphate
buffer. Solid black line is the G-quadruplex without complex 1. Successive additions of complex 1 lead
to a slight decrease in the peak at 295 nm with each aliquot.

In a subsequent experiment, complex 1 (3 uM) was added to the G-quadruplex (3
uM) after its formation and a CD spectrum was recorded. Then, this solution was
heated to 90°C and allowed to cool to room temperature, where another CD
spectrum was recorded. This experiment was conducted with aforementioned

sodium and potassium based buffers with different results shown below.

mdeg

-20 T T T T T
240 260 280 300 320 340

wavelength (nm)

Figure A.5. Heating and cooling of complex 1 and the G-quadruplex in a sodium phosphate buffer.
The solid black line represents G-quadruplex after annealing. The dotted line is the result of the
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addition of 1 to the G-quaduplex. The dashed line arises from the heating and cooling of the mixture
of the G-quadruplex and 1. The signal for the intramolecular G-quadruplex is retained.
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Figure A.6. Heating and cooling of platinum square 1 and G-quadruplex in a potassium phosphate
buffer. Black solid line represents the annealed G-quadruplex. The dotted line shows the effect of
addition of the platinum molecular square 1 to the annealed G-quadruplex. The dashed line is the
result after heating the platinum molecular square with the G-quadruplex and cooling the mixture to
room temperature. There appears to be a slight change in the conformational preference from the
original quadruplex structure upon the addition of the platinum square complex 1. However, after
heating and cooling this signal is also maintained.
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