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bstract 
Carbon fiber precursors are spun frorn carbonaceous mesophases using standard 

melt spinning techniques. These melt spun carbon fibers exhibit a multitude of cross 

sectional fiber textures. The two widely reported textures in literature are planar radial 

(PR) and planar polar (PP). This thesis uses a mesoscopic model, based on the classical 

Landau de-Gennes theory of liquid crystals and adapted here to carbonaceous 

mesophases, to study the steady state and transient phenomena involved in the mesophase 

carbon fiber texture formation. The model is successfully able to capture the 

microstructure and the formation of the PR and PP textures. A phase diagram for 

classical PR and PP textures has been constructed cylindrical carbon fibers in terms of 

temperature and fiber radius, thus estabilismng the processmg conditions and geometric 

factors that lead to the selection ofthese textures. The multi-path formation process ofthe 

planar polar texture through defect splitting, direct pl anar polar formation, and defect 

annihilation has been thoroughly characterized. A detailed analysis of defect core 

structure for defects of strengths s = +1 and s = + 1/2 has be undertaken. The effect of 

various parameters namely temperature, elastic anisotropy, and fiber radii on the defect 

core structures of commonly observed fiber textures has been studied. The model is well 

suited for studying the defect core textures which are in the nano range and could be 

applied to the new emerging field of nano fibers. The results of this thesis provide us with 

knowledge for optimization and control of mesophase carbon fiber texture, and lay the 

ground work for the study of nana scale phenomena in nano fibers. 
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JI? JI? 

esume 
Les fibres de carbone sont filées à partir de mésophases carbonées utilisant les 

techniques standard de filage à chaud. En coupe, ces fibres de carbone filées fondues 

exhibent une multitude de textures. Les deux textures les plus abondamment reportée 

dans la littérature sont: la planaire radiale PR et la planaire polaire Dans cette thèse 

un modèle mésoscopique basé sur la théorie classique des cristaux liquides de Landau-de 

Gennes, et adaptée aux mésophases carbonées, est utilisé pour étudier les phénomènes 

d'états d'équilibres et transitoires impliqués dans la formation des textures des fibres de 

carbone. Un diagramme de phase pour les textures classiques PR et pp des mésophases 

carbonées cylindriques a été construit en fonction de la température et du diamètre de la 

fibre, établissant de ce fait les conditions de traitement et les facteurs géométriques 

menant à la sélection des textures. Le procédé de formation à trajet multiple de la texture 

planaire polaire à été complètement caractérisé dans les cas d'un dédoublement de 

défauts, d'une formation directe, et d'une annihilation de défauts. Une analyse détaillée a 

été menée sur la structure du noyau des défauts d'ordre s=+l et s= +112. L'effet de 

paramètres tel que la température, l'anisotropie élastique, et le rayon des fibres a été 

étudié pour la texture des défauts couramment observés dans les fibres. Le modèle est 

bien adapté pour l'étude de la texture des défauts qui se trouve à l'échelle nanoscopique 

et pourrait être de ce fait appliqué au secteur émergent des fibres nanoscopiques. Les 

résultats de cette thèse nous fournissent des connaissances pour l'optimisation et le 

contrôle des textures des mésophases de fibre de carbone et établie les fondations d'une 

étude texturale sur les fibres nanoscopiques. 
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Chapter 1 - Introduction 1 

Chapter 1 

Introduction 

1.1 Tbesis Motivation 

Materials are probably more deep-seated in our culture than most of us 

realize. Transportation, housing, clothing, communication, recreation and food 

production - virtually every segment of our everyday lives is influenced to one 

degree or another by materials. Material engineers use the understanding of 

structure-property relations to produce better materials with pre-determined 

properties. Today we are consistently on the look out for better materials to 

replace traditional materials. Carbon fibers belong to such a class of material, 

which are becoming increasingly popular for their desirable properties. 

High performance carbon fibers possess exceptional mechanical and 

thermal transport properties. They exhibit ultrahigh Young's modulus; low 

density; extremely high thermal conductivity; and negative thermal coefficient of 

expansion. They are increasingly being employed in the construction of next 

generation composite materials for aerospace, electronics and the automotive 

industries. The superior set of product property profile of carbon fibers depends 

on their microstructure that evolves during their spinning [1, 2] and is a strong 

function of the operating conditions, geometry and material precursor properties. 

There has been a great interest in understanding the texture evolution of carbon 

fibers in response to various parametric conditions. This thesis is one such 

endeavor-specifically to understand the texture evolution of mesophase pitch

based carbon fibers. 
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1.2 Carbon Fibers 

There are three different types of commercial carbon fibers manufactured 

from three different precursor materials. They are namely rayon carbon fibers, 

acrylic carbon fibers, and mesophase pitch-based carbon fibers [2,3]. The rayon 

carbon fibers have relatively low tensile strength and low Young' s modulus, and 

have been used mainly as composites designed for use in rocket and space shuttle 

applications. The acrylic carbon fibers, commonly known as PAN-based (poly

acrylonitrile) carbon fibers, are copolyrners containing acrylonitrile in excess of 

85% along with other co-monomers, which are used to improve processability. 

The P AN-based carbon fibers have high strength, high modulus and semi

conducting properties and are used in a wide variety of applications [3-5]. Piteh

based carbon fibers can be manufactured from two different states of the same 

precursor material (coai or petroleum pitches): the liquid crystalline state or 

mesophase, and the isotropic state. The isotropie pitch-based carbon fibers have 

low modulus and strength. The mesophase pitch-based carbon fibers have 

ultrahigh strength and modulus, and can be used in the same applications as P AN

based carbon fibers. Figure 1 shows thermal conductivity and electrical resistivity 

for a number of metals and Arnoco series of mesophase pitch-based (suffix 'P') 

and PAN-based carbon fibers [4]. The thermal conductivity ofmesophase carbon 

fibers is considerably higher than that of copper and PAN carbon fibers. These 

high values of thermal conductivity are due to the inherent graphitic crystallinity 

in the well-ordered textures of the mesophase carbon fibers. The thermal 

conductivity of mesophase carbon fibers is due to phonon conduction as opposed 

to electronic conduction [5] and is influenced by various factors such as: high 

degree of crystallinity, large size of crystallites etc. PAN-based carbon fibers 

eannot exhibit high values of thermal conductivity due to their fibrillar 

microstructure. Moreover, P AN-based carbon fibers, due to their fibrillar nature, 

are unable to develop any extended graphitic structure, hence their modulus 1S 

considerably less than the theoretical value, a limit which is nearly achieved by 

mesophase carbon fibers, as shown in Figure 2. 
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Figure 1: Thermal conductivity versus electrical resistivity product property phase plane for 
various metals and carbon fibers. The thermal conductivity of mesophase carbon, P-130X, p-
120X etc., is considerably higher than that of the most conductive metals like copper. Adapted 
from [4]. 
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Figure 2: Tensile strength versus modulus of elasticity (stiffness) product property phase plane 
of various carbon fibers. The P AN-based carbon fibers have considerably higher strength than 
the mesophase carbon fibers, however the former lack considerably in terms of stiffness. The 
stiffness of mesophase carbon fibers reaches the theoreticallimits of pure graphite. Adapted from 
[6]. 
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1.3 Carbonacecms Mesophascs (Mesophase Pitches) 

Raw pitch, a high molecular weight by-product formed during petroleum 

or coal refining operations, i8 composed of large polynudear aromatic 

hydrocarbon molecules with molecular weights approximately near 2000 [7]. The 

CMs or MPs are employed as low co st precursor materials in the manufacture of 

high performance mesophase carbon fibers [8]. There are currently three main 

processes that are used to produce spinnable MPs. The dassical way is the liquid 

phase pyrolysis of coal tar or petroleum pitches. The second more recent process 

is the catalytical polymerization of pure aromatic hydrocarbons, such as 

naphthalene. The third technique, developed recently by Hutchenson et al. [9], 

uses a solvent in its supercritical state to extract mesophase fractions from 

isotropie pitches. 

Figure 3 shows the thermodynamic and structural changes brought about 

by heating a non-volatile organic compound, such as coal or petroleum pitch, in 

the absence of air. The organic component melts in heating and becomes an 

isotropie pitch or liquid. As the temperature rises over 3500 C, optically 

anisotropie spheres known as spherules, appear in the isotropie matrix [10,11]. 

The formation of the carbonaeeous mesophase follows a nudeation and growth 

process, typical of metastable thermodynarnie systems. Attractive forces among 

the spherules give rise to droplet coalescence and overall growth of the 

mesophase. As hydrogenative polymerization reactions continue, the molecules 

get larger and at an average molecular weight of 2000, they are sufficiently large 

and flat to favour the formation of a liquid crystalline discotie nematic phase 

called carbonaceous mesophase or simply mesophase pitch. The mesophase 

transformation was first observed by Brooks and Taylor [12] as an intermediate 

phase of spherules with a mosaic structure. The drop lets or spherules are easily 

observed because of their optical anisotropy (figure 4). Selected area electron 

diffraction patterns indicate that each mesophase spherule possesses at its center a 

single direction of preferred orientation. The characteristic mesophase mechanism 

that are involved in establishing the mesophase morphology are spherule 

precipitation, coalescence of spherules to form a bulk mesophase, and distortion 

of mesophase by mechanical deformations. 
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Figure 3: Changes in the non-volatile organic compounds like coal or petroleum pitches brought 
about by heating in the absence of air. Adapted from [13] . 
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Figure 4: Lamellar structure of mesophase spherule before coalescence. The aromatic planes are 
normal to the spherule surface. The spherule grows as the aromatic molecules fuse together due 
to hydrogenative polymerization. Adapted from [12]. 

Chwastiak and Lewis [14] modified the above simplistic heat soaking process for 

isotropie pitehes by propelling an inert gas into the reaction vessel. An alternative 

heat soaking meehanism developed by Dienfendorf and Riggs [15] used solvents 

like benzene and toluene to extraet the high moleeular components from the 

isotropie piteh. The extracted portion was then polymerized for only ten minutes 
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at relatively lower temperatures, 230°C to 400°C to yield a 75% to 100% 

anisotropie piteh. The primary advantage ofheat soaking and solvent extraction of 

natural petroleum pitches is inexpensive nature of the feedstock, however 

there are Inherent disadvantages as well. First, natural pitch contains heavy 

impurities that accumulate in the high-density mesophase, which in turn have 

detrimental effects on the final properties of earbon fibers. Moreover, the 

composition of a natural isotropie piteh varies depending on the erude oil 

composition; therefore the properties of the resulting MP also tend to be highly 

variable. Thirdly, the MPs exhibit broad moleeular weight distribution, whieh 

hinders spinning. 

The other two techniques, namely supercritical fluid extraction and 

catalytic polymerization, were an effort to alleviate the above mentioned 

problems. Hutchenson et al. [9] have reported that supercritieal fluid extraction, 

using supercritical toluene, can be employed to fractionate pitches. By 

continuously varying pressure and/or temperature, thereby changing the soivent 

strength, selective piteh fractions of relatively narrow molecular weight 

distribution can be isolated in a cascading process. Such a pro cess offers the 

potential of producing a unifonn product from an ever changing raw material. 

Catalytic polymerization of synthetic precursors like naphthalene, anthracene, and 

methyl-naphthalene etc offers another alternative for pitch manufacture [16]. For 

example, naphthalene can be polymerized in an autoclave with the aid of "super 

catalyst" HF/BF3, at temperatures ranging from 260°C to 300°C and under 

pressures from 2.1 MPa to 3.1 MPa for approximately 4 hours. The contents of 

the autoclave are heated to 340°C and purged with nitrogen to distill off the 

catalyst, the unreacted monomer, and other volatile eomponents, thereby leaving 

100% anisotropie piteh in the autoclave. However, the resulting mesophase 

pitches, derived from an of these processes, consist of aromatie disc-like 

moleeules exhibiting discotic liquid crystalline properties. The earbonaceous 

mesophase consists of dise-like molecules that display long-range orientational 

order, sueh that the moleeules lie approximately parallel to each other with no 

point-to-point registry between adjacent moleeules. The orientation of each 
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molecule may be defined by its normal. A schematic model of carbonaceous 

mesophase stacking in the bulk 1S given in figure 5. The model suggests that the 

stacking size and the possible shapes of the disc-like moleeules maybe quite 

irregular and that material may have vacant sites and holes. 

Figure 5: Schematic model representing stacking arrangement of polyaromatic molecules in 

carbonaceous mesophases or mesophase pitches. The disc-shaped molecules lie more or less 

paraUel to each other. Adapted from [2]. 

Although the degree of symmetry is the same for a discotic (disc-like) nematie 

and a conventional rod-like nematic, yet the molecular geometrical differences, 

for the discotic (rod-like) nematics the axis of symmetry is normal (along) to the 

long dimension, have important consequences on optical properties, response to 

extemal fields such as mechanical stresses, electrical and magnetic fields etc. In 

this dissertation we foeus on the distinguishing mierostructural textures of discotie 

mesophases. 

The main micro structural features of the carbonaceous mesophases 

(uniaxial discotic nernatic liquid crystals) are captured by the director n, and the 

degree of orientation order S. The director n is a unit vector that describes the unit 

average rnolecular orientation of the unit normals to the disc-like rnolecules, and 

the degree of orientation order (alignrnent) S is the rneasure of the average 

rnolecular alignrnent along n. In discotic nematics the unit normals are more or 

less aligned in the direction of n. The dispersion of molecular orientation along n 

1S captured by the magnitude of S (- Y:t :::; S:::; 1): when S = 0 the phase is isotropie, 
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when S = l an the mole cules are perfectly aligned along the direction of n. For 

normal discotic nematics the order parameter S is restricted to the range 0 s S s 1. 

The basic rheological and the morphological phenomena have to at least include a 

description of spatial-temporal changes of Sand n. In certain circumstances, 

uniaxiality may be 10st and a more complex description that includes biaxial 

ordering may be necessary. 

1.4 MeU Spinning of Carbonaceons Mesophases 

Mesophase carbon fibers are manufactured from mesophase pitch in 

mainly three steps: melt spinning, stabilization and heat treatment. In the melt 

spinning step, the fibers are drawn usmg the molten mesophase pitch to acmeve 

preferred orientation in the as-spun fibers. The texture of the fiber depends on a 

number of variables such as the composition of the pitch, the spin temperature, 

whether or not the melt pool is stirred, the geometry of the orifice, etc [17, 18]. 

Figure 6 provides one indication of the effect of the spinning temperature on MP 

carbon fiber texture and figure 7 shows the effect of spinning temperature on the 

carbon fiber properties. There are similar strong correlations between the other 

processing variables and the fiber textures and properties. Thus it is important to 

understand these underlying correlations to optimize the physical properties of 

carbon fibers. Figure 8 shows the three steps employed in the spinning of molten 

mesophase into carbon fibers. 

1.4.1 MeU Spinning 

A conventional high-speed melt spinning process used for many 

thermoplastic polyrners is employed to convert palletized mesophase pitch into 

fibers. Norrnally, an extruder meUs and pressurizes the pitch, and pumps it 

through the spin pack. The molten pitch is filtered before being extruded through 

a multi-holed spinneret. The pitch is subjected to high extensional and shear 

stresses as it approaches and flows through the spinneret capillaries. The 

associated flow-induced torques tend to orient the disc-shaped molecules in a 

regular transverse pattern. 
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Figure 6: Variation of mesophase fiber texture with melt spinning temperature for two different 
pitches. Adapted from [2]. 
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Figure 7: Effect of heating rate and [mal temperature with a 15 minute soak in air during 
stabilization on the carbon yield and mechanical properties. Adapted from [2). 
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Figure 8: Processing sequence of mesophase carbon fibers, showing continuous conventional 
melt spinning of mesophase pitch, and subsequent processes: oxidization stabilization, and 
carbonization. The oxidation, stabilization, and carbonization steps are conducted continuously. 
Adapted from [1]. 

As the basic fiber microstructure is detennined during the spinning and drawing 

processes, several spinning process variables have a significant impact on fiber 

properties (e.g. flow rate, winder speed, spinnerette geometry, etc.). Vpon 
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emerging from the spinnerette capillaries, the as-spun fibers are drawn to improve 

axial orientation and are coUected on a wind-up device. 

1.4.2 Fiber StabiUzatiml 

The as-spun mesophase fibers are extremely weak, and must be heat

treated to develop their ultimate mechanical and thelIDal properties. The purpose 

of oxidation is to prevent the fiber from melting during the subsequent 

carbonization process, thus to "lock in" the structure developed during the 

extrusion process. The stabilization is accomplished by exposing the fibers to 

flowing air at a temperature of approximately 300° C for a duration of time 

ranging from a few minutes to a few hours, depending on the precursor, the fiber 

size, and the oxidation temperature [1]. During this process, oxygen tends to first 

react with aliphatic side groups, cross-linking and adding weight to the fiber [19]. 

If insufficient time is allowed for stabilization, there is a gradient of oxygen 

across the filament radius, and a skin core texture may result. Fibers thinner than 

10j..tm do not exhibit a skin core texture because of rapid oxygen diffusion, unless 

the oxygen content of the oxidizing atmosphere is reduced. Because of the length 

of time required, the oxidation process adds significantly to the overall processing 

cost for mesophase pitch-based carbon fibers. Once the fibers have been 

adequately stabilized, carbonization is possible. 

1.4.3 Fiber Carbonization 

Carbonization or high temperature heat treatment of stabilized fibers may 

consist of two separate steps: first heating to around 1000°C in order to reduce the 

rate of gas evolution and then to temperatures between 1200 and 3000°C, 

depending upon the desired tensile strength and modulus. The tensile strength for 

MP fibers continuously increases with heat treatment temperature in contrast to 

P AN-based fibers. The high temperature mesophase pitch-based fibers have a 

higher modulus and usually a lower tensile strength compared to PAN-based 

fibers at the same temperature. During carbornzation, dislocations in the initial 

disordered carbon stacks are annealed out, eventually resulting in the formation of 
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a three-dimensional graphite lattice. The graphitization process primarily 

involves atomic diffusion and crystallite growth. 

1.5 Vapor Gmwn Carbon Fibers 

Another method that can be employed to manufacture carbon fibers is 

vapor grown carbon fiber (VGCF) [30]. VGCFs are prepared by the decomposition 

of gaseous hydrocarbons at temperatures between 300 and 2500°C in presence of 

an ultra-fine metallic catalyst (e.g. Fe, Ni, and Co). These carbon fibers are 

characterized by the high-preferred orientation of graphitic basal planes parallel to 

the fiber axis, which give high mechanical performance, excellent electrical 

conductivity and high graphitizability to the fibers. Two methods of forming 

VGCFs have been developed: seeding catalysts on a substrate and fluidizing 

catalysts in space. VGCFs maybe grown on several types of substrates (e.g. carbon, 

silicon, quartz) and from many hydrocarbons (e.g. acetylene, benzene, natural gas, 

etc.), but in aIl cases growth is favored in a hydrogen atmosphere. Filament 

diameter may range from 100nm to several hundred micrometers. The process 

leads to the formation of fibers having various cross-sections, namely circular, 

helical, and twisted etc. 

Because of the VGCFs unique structure and excellent performance, such 

as high mechanical, electrical and thermal properties, etc., they are expected in 

different fields of application as structural and functional materials. Thus, VGCF is 

emerging in markets as a new type of carbon and graphite whisker and is under 

extensive study for both basic research and future applications. This type of carbon 

fiber could be sufficiently low priced in the future to replace ordinary carbon fibers 

in discontinuous yam and thus serve as useful filler for composites. Applications 

have already been developed; for example, the VGCF by modifying the surface has 

been proved to be an excellent adsorbent with high surface area. In addition, using 

nanometer sized fibers, thermoplastic composites with electrical conductivity have 

been fabricated with a microscopically smooth surface, allowing for electrostatic 

painting [30]. In this thesis however we would be mainly concentrating on the 

mesophase pitch-based carbon fibers fabricated by melt spinning. 
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Since mesophase carbon fibers belong ta a category of matter called liquid 

crystals, it is necessary to give sorne background on liquid crystals. 

1.6 General Background on Liquid Crystals 

For many organic compounds the phase transition between the soUd state 

and liquid state is not a single-phase transition but they assume one or more 

intermediate states caHed mesophases. The mesomorphic phases possess both 

liquid-like fluidity and solid-like moleeular order [20]. The centers of masses of 

molecules constituting solid crystals are located in a three dimensional periodie 

lattice, hence they have both orientational as weIl as positional order. In the case 

of isotropie liquids, only short-range order prevails among the constituent 

molecules. The ordering in mesophases (anisotropie liquids) 1S intermediate 

between that of a solid and of an isotropie liquid as shown in figure 9. Based on 

the partial ordering two fundamentally different types of mesophases have been 

observed [21]. The first type shows a transition from a strongly ordered state to a 

phase where each molecule commutes between several equivalent orientations. 

The positional order is still present but the orientational order has disappeared or 

is strongly reduced, and this phase 1S called disordered crystal mesophase or 

plastic crystal. The second type shows a low temperature phase where the 

positional order 1S reduced or has even completely disappeared but exhibits long

range orientational order, and this phase is called ordered fluid mesophase or 

liquid crystal. The shape of the molecule is an important factor for 

mesomorphism to occur. During early studies of liquid crystals, researchers 

believed that the molecules must possess a rod-like shape to exhibit thermotropic 

mesomorphism. It has been discovered in the last two decades that various 

compounds, both naturally occurring and synthetic, consisting of disc-like 

molecules can also exhibit thermotropie mesomorphism. Naturally oecumng 

carbonaceous mesophases, which are derived from pyrolysis of coal and 

petroleum pitches, display discotic liquid crystalline behavior [13]. Our focus will 

be on the study of discotic nematic liquid crystal material behavior. 
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Figure 9: Schematic representation of rnolecular alignment a crystalline solid, a liquid crystal, 
and an isotropie liquid. As is apparent liquid crystals are not as ordered as crystalline solids, yet 
have sorne degree of alignrnent. Adapted frorn [23]. 

1.7 Classification of Liquid C:rystals 

There are two important methods of classifying liquid crystals based on 

their physical composition or behaviour (i.e. thermotropic and lyotropic) and 

molecular order or orientation (nematic, cholesteric, smectic). There are two other 

classifications based on the qualitative differences in the molecules: shape of 

molecules (rod-like, disc-like) and weight of the constitutive molecules 

(polymerie liquid crystals and low molecular weight liquid crystals LMWLC) 

1.7.1 Classification based on Physical Composition 

(a) Thermotropic Liquid Crystals 

Single component systems that show mesomorphic behaviour in a definite 

temperature range, are called thermotropic or non-amphiphilic liquid crystals and 

are primarily associated with low molecular weight liquid crystals. Every 

molecule in the thermotropic liquid crystalline phase participates in the long

range ordering. The material exhibits liquid crystalline behavior below transition 

temperature TN/. The liquid crystalline phase is isotropie above the transition 

temperature. Thermotropics are of interest for application in eleetro-optical 

display, temperature and pressure sensors, organic fibers, and special materials of 

construction such as bullet-proof jackets, etc. [2]. Most computer and watch 

displays use a mixture of low molecular weight liquid crystals, such as 8CB(p

octyl-p-cybobiphenyl). 
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(b) Lyot.ropic Liquid Crystals 

Lyotropies show mesomorphie behaviour solution and are usually the 

solution of rigid, high moleeular weight molecules in various solvents, with 

concentration (as opposed to temperature for thermotropies) as the driving force 

behind the mesomorphie behaviour [3, 21]. The anisotropie behaviour 18 shown 

above a partieular concentration. A well-known commercial example of 

lyotropics is Kevlar, which is a solution of poly-p-phenylene terepthalmide in 

sulphuric acid. The temperature range in which lyotropic liquid crystals are stable 

depends mainly on the phase concentration. The long-range order is mainly 

controlled by the rigid rod-like (solute) molecules. Lyotropic liquid crystals are of 

great interest in living systems, and appear to play an important role in living 

systems. 

1.7.2 Classification Based on Molecular Order 

(a) Nematic Liquid Crystals 

Figure 10 gives a schematic representation of the molecular order in the 

nematic phase. The molecules tend to align parallel to each other along some 

n 

(a) (b) (c) 

Figure 10: Schematic representation of (a) rod-like nematic liquid crystals, and (b) discotic 
nematic liquid crystals. The director n represents the average preferred orientation of the 
molecules for (c) rod-like nematics, whereas in discotic nematics n is the average preferred 
orientation of the unit normals to the disc-like molecules. 

common axis caUed director n. The director is a unit vector (n.n = 1), and gives 

the average preferred orientation. Long-range orientational order and cylindrical 
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symmetry are exhibited by this phase. The centres of gravit y of the moleeules are 

distributed at random in spaee. Thus, nematic liquid erystals possess orientational 

order like that of erystals but positional disorder like that of isotropie fluids. In 

rod-like nematics, the director Il represents the average preferred direction of the 

molecules, as shown in figure 10a. 'Vhereas the case of disk-like nematies, the 

director Il represents the preferred direction of the unit normal to the disk-like 

constitutent molecules, as shown in figure 1 Oc. The degree of alignment of the 

individual molecules along the director Il is given by a scalar quantity known as 

scalar order parameter S: 

(3 2 1) S = 2" cos e - 2" (1.1) 

where e is the angle between the director Il and the long axis of each rod-like 

molecule in rod-like nematics, and between the director Il and unit normal of each 

disc-like molecule in discotic nematics. The braekets denote an ensemble average 

over of the moleeules. In an isotropie liquid S~O whereas for a perfeet crystal 

S~ 1. Typical values for the scalar order parameter of a liquid crystal range from 

0.3 to 0.9, with the exact value being determined by temperature in our case. We 

attempt to elucidate further on the texture transformations of discotic nematic 

liquid crystals in this thesis. 

(b) Cholesteric Liquid Crystals 

Cholesteric liquid crystals are typically composed of nematie mesogemc 

molecules containing a chiral center, which produces intermolecular forces that 

favour alignment between molecules ai a slight angle to one another. This results 

in formation of a structure, which can be visualized as a stack of very thin 2-D 

nematic-like layers with the director in each layer twisted with respect to those 

above and below. In this structure, the directors actually form a continuous 

helical pattern about the layer normal as illustrated by the black arrows in Figure 

Il. The lack of long-range translational order imparts fluidity to the cholesteric 
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Figure 11: Schematic arrangement ofrod-like molecules in a cholesteric liquid crystalline phase. 

The localized director n follows a helical trajectory along the z-axis. Please note that the 

successive planes are drawn for convenience, and do not have any physical meaning. Adapted 

from [24]. 

phase. On a local scale, the cholesteric order is similar to the nematic order, since 

the molecules tend to align along the director n. On a larger scale, the cholesteric 

director follows a helical path as shown. Thus, an important characteristic of the 

cholesteric liquid crystals is the pitch, the distance that the cholesteric director 

traverses to rotate one full turn (360° ) in the helix. 

(c) Smectic Liquid Crystals 

A smectic phase has, in addition to the orientation order of nematics and 

cholesterics, a single degree of translational order, which results in a layered 

structure. In the smectic phase, the molecules maintain the general orientational 

order of nematics, but also tend to align themselves in layers or planes. Motion is 

restricted to within these planes, and the separate planes are observed to flow past 

each other. The layer spacing is of the order of 20A. Smectic phases always 

occur at temperatures below the nematic range, since they are more ordered. The 

increased order means that the smectic state is more "solid-like" than the nematic 

phase. More than twelve smectic phases have been identified, however: the best 

known are smectic-A and smectic-c. Figure 12 shows the schematics of a 
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smectic-A phase and smectic-C phase. smectic-A phase the molecule director 

is aligned perpendicular to the smectic plane (or parallel to the layer normal) and 

there i8 no positional order within each layer. Similarly, 8mectic-B liquid crystal 

phase orients with the director perpendicular to the smectic plane, but positional 

order is also present which leads to the molecules being arranged in a network of 

hexagons within the layer. In the smectic-C phase the molecules are oriented a 

similar way but the director i8 at a constant tilt angle (j) measured normaUy to the 

smectic plane. 
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(b) 

Figure 12: Schematic arrangement of rod-like molecules in (a) Smectic A, and (b) Smectic C 
liquid crystalline phases. The shown smectic phases have 2-dimensional layered structure. In 
smectic C phase the constituting molecules are tilted at an angle OJ normal to the smectic plane. 
Adapted from [24]. 

1.8 Mesophase Pitch-based Carbon Fiber Textures 

The carbon fibers melt-spun from mesophase pitch exhibit a spectrum of 

transverse textures that are associated with various mechanical and thermal 

transport properties. 
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Figure 13: Schematics of the observed mesophase carbon fiber textures. The !ines represent the 
locus of the side view of the disc-like molecules, such that in a radial texture, the discs orient with 
their unit normais describing circles concentric with the fiber axis, while in an onion-like texture, 
the discotic molecules themselves follow a circular path concentric with the fiber axis. Adapted 
from [1]. 

w ~ ~ 00 
Figure 14: SEM images of mesophase pitch-based carbon fibers with (a) radial texture, (b) 
random texture, (c) onion texture, and (d) radial-folded-texture. The fiber diameter range is 5-15 
microns. Adapted from [2]. 
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The microstructure is defined by the spatial arrangement of the flat disc-like 

molecules in fibers of different cross-sectional 8hapes. The commonly observed 

transverse textures are random, radial, onion-like, and planar polar or a mixture of 

these textures across a fiber radius. Figure 13 shows schematicaHy some of the 

textures reported the literature. The lines in the figure inside the fiber cross

section represent the loci of the side view of the disc-like molecules. a radial 

texture, the discotic molecules orient with their unit normals describing circles 

eoncentric with the fiber axis, while in the onion-like texture the discotic 

molecules themselves follow a circular path coneentric with the fiber axis. The 

scanning electron micrographs (SEM) of radial, random, onion-like, and radial 

folded are shown in figure 14. The cores of the mesophase carbon fibers may be 

isotropie or anisotropie, the latter would give rise to a singular defect line running 

across the fiber core. Although the strength and thermal conductivity of 

mesophase carbon fibers are generally very high, these properties can vary 

signifieantly with fiber textures. For radial textures, the presence of a singular line 

along the fiber axis introduces a potential fast failure mode by longitudinal crack 

propagation [25], sueh failure modes are absent in the onion-like outer layer 

textures. Commonly, the textures are not perfeet and some degree of folding of 

the crystallites i8 observed. This appears to improve the resistance of the fiber to 

crack propagation, and thereby increasing its tensile strength [1]. Folding may be 

an artifact of the disclinations in the mesophase pitch, which are not annihilated 

by the strong deformations. Creation of the random texture, no c1early defined 

morphology, may be due to complete disruption of the flow fields inside the 

spinneret [26], and such fibers also offer the potential of improved compressive 

strengths. The fiber microstructure can be eontrolled by the pretreatment of 

mesophase pitches, the constitution and spinnability of pitches, the spinning 

conditions, the spinneret geometry, the proeessing conditions, the fiber size and 

shape, and numerous other factors. A great majority of authors attribute the cross

sectional microtextures to spinning [29]. A variable spinneret design and variable 

melting temperature range are related to the occurrence of various mÏcrotextures 

and to the preferred orientation degree of the final graphitized fiber. When the 

flow through the spinneret capillary is laminar, radial arrangements are obtained 
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(spinneret devoid of stirrer). The onion or the random microtexture are attributed 

to the increasingly turbulent flow due to the mobile stirrer increasingly 

approaching the stirrer die [26]. A decreasing viscosity ofthe pitch only increases 

the preferred orientation ofthe fiber. Many researchers have captured the effect of 

temperature on the carbon fiber morphology. They have shown that radial texture 

is preferred at lower temperature and onion texture prevails at higher spinning 

temperature [27]. This phenomenon of texture transformation of the carbon fiber 

at different temperature has also been theoretically proved by Wang and Rey [28] 

by computation simulation of the minimization of the Frank long-range elasticity 

of the fiber. Matsumoto managed to control the transverse texture by extruding 

the precursors through capillaries of different diameters. It was shown that larger 

diameter capillaries yielded onion-skin texture, whereas capillaries with smaller 

diameters tended to produce radial textures. 

1.9 Thesis Objectives 

It is apparent that there is a strong structure property relationship for 

mesophase pitch carbon fibers and the microstructure in turn is closely related to 

processing conditions. Thus, there is a need to clearly understand the underlying 

principles that govem the texture transformation in the mesophase carbon fibers. 

Radial 
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Figure 15: Sehematic of the two eharaeteristic textures name1y Planar Radial (PR) and 
Planar Polar (PP) observed in the carbon fibers. The lines represent the side view of the 
dise-like molecules. The unit normals to the dises are perpendieular to the solid hnes. 
Adapted from [1, 2]. 
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Figure 15 represents the two characteristic textures that will be the focus of study 

this thesis. As a first step we will define the theoretical framework or model by 

selecting the appropriate constitutive equation that defines our system 

unambiguously. Theory and simulation of liquid crystalline materials continues 

to be perfonned using macroscopic, mesoscopic, and molecular models [3]. 

Macroscopic models are vector (director) models based on the Frank: elasticity 

and are unsuitable here because of the presence of defects, represented by dark 

dots in figure 15, which introduces singularities our system. Therefore we use 

the tensor model based on well-established Landau-de Gennes theory of liquid 

crystals [23]. This theory takes lnto consideration necessary contributions to the 

free energy namely the homogeneous contribution and the non-homogenous 

contribution. The main objectives ofthis studyare listed below: 

e To characterize using well-established theories and computer simulation 

the texture fonnation of the characteristic textures, namely the planar 

radial (PR) and planar polar (PP). 

e To obtain the characteristic phase diagram representing the phase 

transition between the planar radial (PR) and the planar polar (PP) with 

respect to the temperature and fiber radius. 

e To characterize the driving forces namely the long-range energy (non

homogeneous) and the short-range energy (homogeneous) that promote 

the selection ofPR and PP texture. 

e To establish the physical parameters I.e. operating conditions and 

geometric considerations respectively that lead to the two characteristic 

textures. 
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Chapter 2 

Theo and athematical odel 

This chapter presents basic princip les of liquid crystal physics, govemmg 

equations to describe structure evolution in liquid crystalline materials, and the 

formulation and solution methodology of the mathematical model that describes 

texture formation in mesophase carbon fibers. 

2.1 Orientation al Ordering 

The description of the thermodynamics of phase transitions in uniaxial 

nematic liquid crystals requires the specification of the average molecular 

orientation (known as the unit vector or director fi) and the degree of molecular 

alignment along the average orientation, known as the uniaxial scalar order 

parameter [1]. The first idea would have been to use the average, < cos e >, of the 

co sine of the angle between the direction of a particular molecule a, and director 

n, for uniaxial nematics (i.e. oriented along a single direction). However, this 

vanishes identically for nematics given the fact the directions fi and -fi are 

equivalent. Thus a higher moment of the uniaxial molecular orientation 

distribution needs to be used. The lowest order one giving a non-trivial answer is 

the order parameter or scalar order parameter S, defined as [2]: 

(3 2 1) S = "2 cos e - 2 (2.1) 

where the angular brackets denote an ensemble average over an possible 

molecular configurations. For more general (than uniaxial) molecular orientations, 
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the tensorial equivalent of the scalar order parameter S, denoted by Q and defined 

in tenus ofthe distribution ofthe orientation unit vector a, ofthe molecules as [3] 

(2.2) 

The tensor Q is a symmetric and traceless second order tensor and is defined 

using a tensorial physical property such as the magnetic susceptibility, the 

dielectric polarizability or the dielectric constant and extraeting its anisotropie 

part [2,4]. Q vanishes in the isotropie phase. In biaxial nematics there 1S a second 

scalar order parameter P, corresponding to the biaxial director m, that specifies 

the transverse ordering. The tensor order parameter Q can be represented in tenus 

of the two order parameters namely Sand P and the three directors n, m and 1 by 

the fonu 

1 P 
Q = S(nn--o)+-(mm-U) 

3 3 

where the following restrictions apply 

Q = QI ; tr(Q) = 0; 
1 

--<S<I' 3 - - , 

n·n =m·m=H= 1; nn + mm + U= 0 

(2.3) 

(2.4 a,b,c,d) 

(2.4e,f) 

The uniaxial director n corresponds to the maximum eigenvalue 2 S , the biaxial 
3 

1 
director m corresponds to the second largest eigenvalue - '3 (S - P), and the 

second biaxial director 1 (= nxm) corresponds to the smallest eigenvalue 

- 1:. (S + P). This ordering of eigenvalues from smallest to the largest is valid as 
3 

long S > P . The orientation is defined by the orthogonal director tri ad (n, m, 1). 
3 

The magnitude of the uniaxial scalar order parameter, S 1S a measure of the 

alignment along the uniaxial director n. and can be expressed as: 

3 
S=-(n·Q·n) 

2 
(2.5) 

Similarly the biaxial scalar order parameter P, representing the degree of 

alignment along the biaxial director m can be expressed as: 
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3 
p=-(m·Q·m-I·Q·l) (2.6) 

2 

Therefore the tensor order parameter can be represented its diagonal form by 

[5]: 

1 
0 0 --(S-P) 

3 
1 

0 (2.7) 0 --(S+P) 
3 

0 0 
2 

3 

If the nematic is uniaxial, P = 0, equation (2.3) representing the Q in terms of the 

two scalar order parameters and the three orthogonal vectors n, m, 1 reduces to 

1 
Q=S(nn--o) 

3 
(2.8) 

In tms uniaxial case, if the coordinate system is so chosen that n is along the z

axis then Q can be expressed in the diagonal form: 

o 
Q-L 
o 

(2.9) 

where Q-L stands for the two equal eigenvalues of Q in the plane normal to n and 

ql refers to the largest one paraUel to n. 

As a symmetric second order tensor, Q can be represented geometrically 

by a quadratic surface in the form [6]: 

(2.10) 

where the Einstein summation convention is used. The quadratic surface given by 

equation (2.10), in its principal axes, takes the form: 

(x] )2 + (Xz}2 + (XJ2 = 1 

11 À] 1/ À2 11 À3 
(2.11) 

where À; (i = 1,2,3) are the three eigenvalues of Q. If they are positive, the 

surface is an eHipsoid with semiaxes of length: 
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111 

A'JÇ'jA; 
(2.12) 

For negative eigenvalues, their absolute values can be used to construct the 

ellipsoid. In this thesis we use a similar princip le for our visualization technique 

as explained later. 

2.2 Long-Range Elastic Distortions in Liquid Crystals 

In an ideal, nematic, single crystal, the molecules are (on average) aligned 

along one common direction ± n. The system is uniaxial, and the tensor order 

parameter has the form given by equation (2.8). However, in most cÏrcumstances 

this ideal conformation is not compatible with the constraints imposed by the 

limiting surfaces of the sample (e.g. walls of the container) and by extemal fields 

acting on the molecule. There will be sorne deformation of the alignment, the 

order parameter will vary from point to point. The characteristic distances 

involved in these phenomena are large compared to molecular dimensions [4]. 

Thus these deformations maybe described by a continuum theory disregarding the 

details of the structure on the molecular scale. Such a description has been put 

forward by F.C. Frank [7] by describing the distorted state entirely in terms of a 

vector field (l'). It is assumed that n varies slowly and smoothly with l' (except 

possibly on a few singular points or singular lines). The free energy density or 

Frank distortion energy can be written as: 

l 2 1 2 l 2 FD =-KJl('\l·n) +-K22 (n·Vxn) +-K33 (nxVxn) 
222 

(2.13) 

Where the constants KlI ,K22 , and K33 are, respectively, the splay, twist, and bend 

elastic constants and are named collectively as the Frank elastic constants. It is 

possible to generate deformations that are pure splay, pure twist or pure bend. 

Thus each constant Ku must be positive, if not, the undistorted nematic 

conformation would not correspond to a minimum of the free energy. The three 

deformations are shown in Figure 16. 
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(a) (b) (c) 

Figure 16: Schematic of the characteristic defonnation modes in nematics. (a) Splay defonnation 
Ch) Twist defonnation (c) Bend Defonnation. The Hnes in the figure represent the director 
trajectory. 

Note that in contrast to rod-like molecules, for disc-like mole cules the bending 

disc's trajectories give rise to a splay deformation, and the splaying of disc's 

trajectories leads to a bend deformation [8]; disc trajectory means the curve 

locally orthogonal to the director. The configuration (a) Splayand (c) Bend are 

planar, whereas (b) Twist is a non-planar configuration. Aiso for disc-like 

molecules the twist elastic (K22 ) constant is greater than the splay (Ku) and bend 

( K 33 ) elasticity, which in other words implies that discotics favor splay and bend 

configuration more than the twist. 

2.3 Disdinations (Defects) in Liquid Crystals 

Aimos! an the observed textures in nematic discotic liquid crystals have the 

presence of defects called disclination(s). Hence a brief introduction to 

disclinations is necessary before moving to the details of the problem at hand. A 

disclination is a discontinuity in orientation i.e. a discontinuity in the director field 

[2]. Disclinations are associated with a strength (s) and dimensionahty (d) and are 

characterized by these two properties. Sorne of the most common disc1inations are 

shown in figure 17 [9]. The continuous black hnes show the director trajectory 

around the disclination. The dimensionality of the defect denotes whether the 

discontinuity in the director field is located at one point (point defect), on a line 
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(line defect), or on a surface (wall defect). The strength indicates the degree of 

rotational discontinuity when encircling the defect. The strength of a disclination 

$=1 s=-t 

.1=1, c=o s=l, c= rd4 

3=3/2 3=2 

~I~ 

~W 
3=-1 

3=1, c= rc/2 

Figure 17: Classes of various disclinations in a nematic, with the disclination lille perpendicular 
to the plane of the page. The Hnes around the defect represent the director trajectories around the 
disclination for the discotic nematics. Adapted from [9]. 

is detennined by the angle e = 2ru through wmch the director rotates as one 

orbits through an angle 2n (a complete rotation) around the defect. When 

observed under a polarized light microscope, the nematic material with defects 

displays schlieren textures as shown in Figure 18 [9]. The black brushes 

originating from the dark points are line defects (Iine singularities), perpendicular 

to the layer. The brushes are regions where the director (or the local optical axis) 

is either parallel or perpendicular to the plane of polarization of the incident light. 

The polarization is unchanged by the material in these regions and is therefore 
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Figure 18: Carbonaceous Mesophases exhibiting schlieren textures as observed by polarized light 
microscopy. Orientation of the crossed polarizers is indicated by the plotted cross. Strength of the 
points: No. 1: s = +112, No. 2: s = -1, Nos. 3 and 4: s = +1, No. 5: s = -112. A, B, C, D indicate the 
rotation sequence of the polarizers (+22.5° counter-clock-wise). 

extinguished by the crossed analyzer. Sorne points have four black brushes while 

others have only two. The position of the dark points remains unchanged on 

rotating the crossed polarizers but the brushes themselves rotate continuously 

showing that the orientation of the director changes continuously about the 

disclinations. The sense of rotation may be either the same as that of the polarizers 

(corotating or positive) or in the opposite direction to that of the polarizers 

(counter rotating or negative) [10]. The direction of rotation characterizes the 

positive and negative signs of a defect as shown in figure 17. The rate of rotation 

is about equal to that of the polarizers when the disclination has four brushes and 

is twice as fast when it has only two. The strength of a disclination can also be 

defined as s = ~ x (number ofbrushes). The most commonly observed 

disclinations in carbonaceous mesophases are of strength s = ± ~ or s = ± 1. The 

concept of internaI distortions in a continuous body was developed at the turn of 

the century by Volterra [12]. Governed by the curvature elasticities namely splay, 

twist and bend (figureI6), the basic configurations of disclinations that may exist 

in the carbonaceous mesophases can be developed by certain conceptual 

operations known as the Volterra process. Referring to figure 19, where the 
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lamellae represent the preferred orientation of mesophase molecules, consider a 

eut in a body of lamelliform texture along a surface parallel to the lamellae an 

unperturbed region (figure 19a). The shape of the surface is arbitrary, and thus the 

disclination Hne, the line defining the edge of the surface, can be curved. The 

direction of the tangent to the disc1ination line is defined in a right-handed sense 

in that for a clockwise circuit when looking in the direction of the tangent, face C+ 

is encountered first. The two faces of the eut are then rotated with respect to each 

other about an axis of rotation. 

TANGENT 'f 
ro OISCLINATION 

UNE 

lb) lei 

Figure 19: Formation of a negative wedge disclination in a discotic nematic liquid crystal by the 
Volterra process. (a) A eut is made midway between two adjacent lamellae. (b) Face c+ is rotated 
about one edge of the cut relative to face C- . The axis of rotation is antiparallel to the dischnation 
hne. (c) Layers are added to heal the eut, retaining the paraUe1 staeking away from the 
disc1ination core. Adapted from [10]. 

The direction of rotation is right handed about the rotation vector and thus the 

face C+ is rotated with respect to the C- face. The symmetry of the carbonaceous 

mesophase requires that the rotations be only multiples of n. If the two eut faces 

are rotated apart as shown in figure 19b, the rotation vector ro is antiparallel to the 

tangent to the disc1ination line; this is negative wedge disc1ination. Additional 

material must be added to heal the cut. For a positive wedge disclination, the 

rotation vector is parallel to the tangent to the disclination line, and the material 

must be removed to heal the cut. Therefore in the cases in which the rotation 

vector is paraUel to the tangent to the disc1ination Hne, it gives rise to wedge 
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disclinations. In the other case of the rotation vector being perpendicular to the 

tangent to the disclination line gives tise to twist disclinations as shown in figure 

20. In a path circumnavigating a twist disclination, the molecule normals will vary 

out of plane of the path. Thus we can also term them as out of plane disclinations 

or deformations. It has been shown that elastic anisotropy controls the stability of 

the different classes of disclinations [13], and thus the relative abundance of 

certain types of defects. The effects of anisotropy on stability of s = ± ~ hnes are: 

(a) wedge disclinations are favoured whenK22 > (Kll + K33)/2, and are stable 

against out-of-plane perturbations; Ch) twist disclinations are favoured 

whenKn < (Kil + K33)/2, and are unstable against out-of-plane perturbations. It is 

known that for discotic nematics [14] that K 22 > KIl' K22 > K33' This implies that 

for discotic mesophases wedge disclinations of s = ± ~ should be more abundant 

than twist disclinations of the same strength. A stability analysis has aiso shown 

[15] that twist disclinations are less favourable than wedge disclinations in 

elastieally anisotropie media. Thus, wedge disc1inations are much more common 

in discotic nematic liquid crystal and we will focus on wedge disc1inations of 

strength s = ± ~ and s = ± 1 from this point onwards. 

t 

DlSCUNATION 
TANGENT 

Figure 20: Model of a twist disc1ination with uniform rotation about the core. Adapted from [10]. 
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2.3.1 Disdination Core St:mcrure in Discotic Nematic Liquid Crystal 

The detennination of the nature of the coré of discotic nematic liquid 

crystal is an interesting problem with various theories being put forward by 

various scientists [16-20]. For a single disclination the free energy density can be 

written as: 

(2.14) 

Erieksen [16] postulated the concept of an isotropie core based on the fact that 

since the free energy expression tends to infinity on approacrung the center of the 

defect, below a certain critical radius rc it should be large enough to transfonn the 

material from the nematie to the isotropie phase. Thus, the core should consist of 

a region of isotropie material separated from the nematie phase. In contrast to the 

proposed isotropie core, mean-field Landau theory prediets an oblate molecular 

orientation disribution. Recent studies have shown that the core structure of 

s = -~ and s = + 1 [19, 20] is umaxial at the center of the defeet core 

surrounded by strongly biaxial nematic material eventually tending to the bulk 

nematic properties. A disclination line of stength s = ± l in a cylindrical 

geometry can on the other hand become unstable for very large lengths and avoid 

the pl anar rugh-energy state by escaping into the non-planar direction (along the 

cylinder axis) as shown in figures 21 and 22 and thus giving a disclination with a 

continuous core with lower energy. 

(a) 

//-
1//-
1//-
1//-
1//-

Figure 21: (a) Director escape at the center of a disclination of strength s = l in a thln capillary: 

the wall alignment is homeotropic and changes by 90° from wall to the axis (b) Projection of the 
structure on a plane normal to the capillary axis. Nails signifY that the director is tilted with 
respect to the plane of the paper. Adapted from [9]. 
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Figure 22: Escaped configurations of (a) onion like s = land (b) s = -ldisc1inations. Nails 
signify that the director is tilted with respect to the plane of the paper. Adapted from [9]. 

(a) Cb) 

Figure 23: Polarized light micrographs of (a) s = -1/2 and (b) s = +1 wedge disclinations. It is 

c1early visible that s = -1/2 have thin centers or nodes where as s = +1 have thick nodes 
indicating a escape of the director in the axial direction. 
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The free energy in this case sc ales as s instead of S2 unlike the planar case. This 

has been experimentally observed in polarized light micrographs where the 

extinction contour crosses denoting a s = ± 1 wedge disclinations usually have 

broad centers compared to the sharp, pinched-down centers of the nodes denoting 

s = ± ~ wedge disclinations. The broad center as shown in figure 23 1S an 

indication of the continuous core structure [10]. Since the nature of the core 

strongly affect the fracture properties of carbon fiber spun from CMs precursors, 

it 1S important to study the stability of various textures with different defect 

structures. On the other hand if the capillary radius is very small or the elastic 

constant very large (in the one constant approximation i.e. Ku = K 22 = K 33 ), the 

planar solution maybe more favorable energetically. 

2.3.2 Formation and Interaction of Disclinations 

Initial structural studies of the carbonaceous mesophase were either made 

on specimens of mesophase glass, solidified from liquid crystalline state by 

cooling to room temperature or hot stage studies of mesophase specimens 

between glass slides [22, 23] but direct observation of the dynamic behavior of 

the mesophase seemed to be inhibited by the reduced mobility of the mesophase. 

An important step in experimental technique was made by Hoover et al. [24] by 

direct observation on the free surface of the pyrolizing liquid; their films provide 

dynamic evidence of such micro structural processes as mesophase coalescence 

and disclination annihilation. This technique has been further extended by 

designing a quenching capability into the hot stage [25J so that specimens 

representative of critical points in pyrolysis can be quenched to solidification 

specimens and studied on polished sections to relate the bulk microstructure to the 

observations made on the free surface. 

During the isotropic-nematic mesophase phase transition, when spherules 

grow and coalesce to produce large mesophase regions, a large number of 

disclinations nucleate [10]. The nucleation of disclinations occurs because of a 

lack of orientation registry between the uncoalesced mesophase regions, such that 

when they come into contact, orientation incompatibility is resolved by the 
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nucleation of disclinations. For example when three droplets coalesce a 

disclination of strength s = ± ~ results, similarly a higher order disclination such 

as s = ± 1 will require the coalescence of four orientationally incompatible 

spherules. The material overall has zero topological charge or in other words the 

sum of strengths of aU disclinations in a sample tends to be zero [9]. 

Figure 24: Observation of disclination reactions by hot-stage microscopy (crossed polarizers): 
(A) generation of s = +1 and s = -1 disclinations; CB) annihilation of s = +1 and 

s = -1 disclinations; (C) disclination reaction (s = + 1/ 2 ) + (s = -1) ~ (s = -1/2). Adapted from 
[10]. 

As explained above, after a symmetry breaking phase transition the mesophase 

exhibits a distribution of defects of various strengths. Textures undergo a 

coarsemng processes involving defect-defect reactions and annihilations. This 
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phenomenon is shown figure 24. It shows the nucleation of s = +1 and s =-1 

disclinations which annihilate each other. Further it shows the reaction of 

s = + ~ and s = -1 into a disclination of strength s = - ~ as shown in the spatial 

sketch in figure 25. 

" " ..-
" 

'" ; 

i 
i 
1 
1 
1 
1 

,)- --

Figure 25: Spatial sketch of a disclination reaction in bulk mesophase showing the reaction. 
Adapted from [10]. 

Thus texture coarsemng is driven by a defect density reduction. Also as the 

disclination energy is proportional to 32 (square of the strength) and since the 

most commonly observed defects in CMs are s = ± ~ and s = ± 1 [10]. This 

should dictate an abundance of s = ± ~ defects as compared to defects of s = ± 1 . 

The defect-defect reactions and annihilations that drive texture coarsening have 

been documented by Zimmer and White [10]. They report the observation of the 

following wedge disclination interactions: 

3 =+1 + s =-~ ~ 3 =+~ 
2 ~ 2 

3 =-1 + s =+~ ~ 3 =-~ 
2 ~ 2 

3=+~+ S =-~ ~ 0 
2 2 ~ 

(2. 15a,b,c,d,e,f) 
s =+1 + s= -1 ~ 0 ~ 

s =+~+ s =+~ ~ s =+1 
2 2 ~ 

1 + S =-~ s =-1 s =-- ~ 

2 2 ~ 
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These disclinations reachons were observed on the free surface of a CM and 

provide an important insight into bulk reactions. Moreover the recovery by defect 

annihilation was rapid when the mesophase was quite fluid. As the viscosity 

increased by continued pyrolysis, the extent of recovery decreased, leaving 

increasingly fine deformed microstructures in the hardening mesophase. They 

made the critical observation that deformation processes can be imposed on the 

mesophase well beyond the point at which disclinations interact appreciably. This 

explains the relatively high densities of disclinations in carbon products. The 

focus in this thesis will be on the commonly observed disclinations (s = ± ~ 

and s = ± 1 ) in mesophases and their interactions. 

2.4 Governing Equations and Mathematical Model 

The use of vector theory which uses a unit vector u to describe the 

orientation excludes from the problem formulation interesting physics and 

experimentally observed behaviors which occur in Les. This is because there are 

inherent drawbacks in the vecior theory. First it cames no information on the 

deviations from a perfect uniaxial state. Also any realistic model of LCs has to 

account for changes in the degree of orientation communicated through the scalar 

order parameter S or tensor order parameter Q (defined earlier in section 2.1) in 

order to be able to predict phase transition. Moreover, one cannot describe a 

biaxial Le (i.e. a Le with two characteristic directions of orientation). This is 

especially true in regions around the defects, which are predominantly biaxial. 

Thus, a tensor theory model including homogeneous (space-independent) and the 

non-homogeneous (Frank gradient elasticity) is needed for a systematic study of 

liquid crystals. In order to unify the representation of elastic and thermal free 

energy, de Gennes [26] wrote a second order tensor representation of free energy 

density in terms of Q and gradients of Q given by 

f = ± Atr ( Q2 ) + j Btr ( Q3 ) + ± Ctr ( Q2)2 + .... 

+!LQ Q !L Q Q! - h e 2 1 aj3,y aj3,y + 2 2 aj3,j3 ay,y + 2 L3Qaj3Qyo,aQy5,j3 - F + F 

(2.16) 
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The homogeneous Fh (short-range) and elastic Fe (long-range) free energy 

contributions are given by: 

A, B and C are phenomenological coefficients and C must be positive order for 

the homogeneous energy to have a minimum. 

Fe = .lL] ('1Q):('1Q)T +.lL2 (V· Q) ·(V .Q) +.lL3Q:(VQ:'1Q) 
222 

(2.18) 

Where LI' L2 and L3 are elastic constants similar to Frank' s elastic constants 

presented earlier (see section 2.2). The elastic free energy density inc1udes aH 

three invariants. When we inc1ude terms of order higher than two in Q then the 

expression written in equation (2.18) is no longer unique. There are six 

independent ~ terms to be found in the literature [28]. One of these six terms 

is: QapQy8,aQy8,p (shown in equation 2.18) which is able to reproduce 

experimental data. In the ab ove written expression for the elastic free energy 

density we have a one-to-one correspondence between tensor theory elastic 

constants and the Frank elastic constants from the vector theory in the uniaxial 

limit (P=O). The relations can be written as follows [1]: 

J = 3Kn -KIl +K33. L = KI] -K22 • andL = K33 -Kil 
-'-1 6S2 ' 2 S2' 3 2s3 (2.19a, b, c) 

In addition the third order L3 term in elastic free energy contribution eqn.(2.18) 

can be omitted under the assumption that splay elastic constant (Kil) is equal to 

the bend elastic constant (K33 ). In case of Dirichlet boundary condition used in 

our work, tbis assumption simplifies the problem without loss of generality [29]. 

After omitting L3 terms and retaining terms up to second order in Q, the 

relationship between our reduced elastic constants L, and L2 to Frank's elastic 

constants simplifies to [1]: 

_ K22 d _ K - K22 • _ 
1, - --2 an ~ - 2 ' K - Kllor K33 

2S S 
(2.20 a, b) 
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But the simplified equations impose an additional constraint of equal splay and 

bend elastic constants (Kil = K 33 ) on the system. In addition thermodynamic 

stability considerations impose the following inequality: 

(2.21) 

Another restriction imposed on the elastic constant is L2 <0 due to the molecular 

geometry involved (because of disc-like molecules). 

In order to obtain the equilibrium configuration of discotic nematic liquid 

crystals (DNLCs), we should minimize the free energy for an the variations of Q. 

For this purpose, we must derive its variational derivative. This can be 

mathematically expressed in terms of time evolution of Q as [30]: 

_ (Q) dQ = ôF = al _ v. 8f 
[ ]

[S] 

y dt ÔQ BQ aVQ 
(2.22) 

Where [S] indicates symmetric and traceless properties, y ( Q) is the rotational 

viscosity coefficient, and ôF is the functional derivative of the total free energy 
ôQ 

density (both homogeneous and elastic energy). For the phenomenological 

coefficients A, B, and C in the short-range energy, Doi [30] proposed the 

following expressions: 

A= CkT(l_ U). B = -ckT U. C = ckT U 
2 3' 3' 4 

(2.23a, b, c) 

In the above expressions c is the number density of the dises, k is the Boltzman's 

constant, and U is the nematic potential, an indication of the stability of the 

nematic phase. In other words as U increases the temperature decreases. It is 

given by U = 3 T* , where T* is a reference temperature just below the isotropic-
T 

nematic phase transition. Substituting the expressions for the homogeneous and 

elastic energy (namely equations 2.17 and 2.18) into equation (2.22) yields the 

following expression for Q as a function oftime and space: 
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~~ ~-6D,{(1- ~)Q-U(Q'Q-~(Q :Q)6)+ U(Q :Q)Q} (2. 24a) 

+6Dr{lV2Q+~(V(V .Q)+[V(V ·Q)T _.3. tr[V(V oQ)Jo)1 
ckT 2ckT 3) 

1 - ckT 
Dr ;::::!Dr 2; Dr =- (2.24b) 

(1-(3j2)Q:Q) 617 

Where Dr is the rotational diffusivity coefficient and is a function of the 

microstructure; Dr is the pre-averaged rotational diffusivity or isotropie 

diffusivity independent of the microstructure and r; is the viscosity of the material. 

By comparing equations (2.22) and (2.24b) the relation between y(Q) and Dr 

can be deduced and Dr is a driving force coefficient similar to the ones found in 

other diffusion phenomena since our goveming equation is a gradient system 

where evolution is dictated by energy minimization. 

Generally, it is useful to introduce a scaling or non-dimensionalization 

into the Landau de Gennes minimization problem to bring out the characteristic 

length and time scales. Thus, from here on we will non-dimensionlize our 

goveming equation and solve the derived scaled equation. The scaling of the 

goveming equation (2.24a) is worked out below: 

dQ 
= 

dt 

(HQ :Q)' ~~ ~-6{(1- ~)Q-U(Q.Q-j(Q:Q)6)+ U(Q :Q)Q} (2.26) 

+ ~c:~ {V 2

Q+ ~ (v(v .Q)+[V(V ·Ql]' -ftr[v(v .Q)]O)} 
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(HQ: Q)' ~? ~~6{(1~ ~)Q~ U{Q'Q~~(Q:Q)o)+ U(Q :Q)Q} (2.27) 

+ ~ {V2Q +L,( V{V.Q)+[V(VQ)r -%tr[v(v.Q)]o)} 

where the quantities with ( - ) represent their dimensionless form. The different 

2 • 
dimensionless parameters that emerge out of the above equation are R = H ckT , 

24 

3T' ~ L
2 U=-- andL = The dimensionless parameter R represents the ratio of 

T 2 4 

short-range order elasticity and long-range order elasticity [31], and also the 

short-range (internaI) time scale and long-range (external) time scale. Moreover R 

( R ~ ~,') scales as the square of the mtio of the liber radius (macroscopi c length 

scale H) to the molecular length scale (microscopic length scale ç). The 

molecular length scale 1S given as ç = ~ c~~* and H representing the fiber radius 

. h . 1 h 1 Th . 3T*. h d' . 1 lS t e macroscoplC engt sca e. e quantIty - IS t e 1menSlOn ess 
T 

temperature denoted by U and also known as the nematic potential describing the 

extent of the stability of the nematic phase. A high value of U indicates a low 

temperature. For U<8/3, the stable phase is isotropie, for 8/3 :::; U :::; 3 there is 

biphasie equilibrium, and for nematie potential greater than three (U>3) the stable 

phase is uniaxial nematic. It also governs the equilibrium value of the scalar order 

parameter S that the system will tend to acrneve. An expression relating the 

nematic potential U to the scalar order parameter put forward by Doi [30] 1S given 

below: 

s ~ .!.+~)(l- 8 ) 
eq 4 4 3U 

(2.28) 

The trnrd dimensionless parameter 1S L2 = L2 
, the ratio of the two elastic constants 

LI 

and is a measure of the elastic anisotropy of the material. As mentioned before, 
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the exclusion of L3 tenus in our governing equation restricts the Frank elastic 

constants to KIl = K33 [1] (splay is equal to the bend) but if in addition we put 

L
2 

= 0 in our equation then we end up with the relation Kll = K22 = K33 (i.e. splay 

elastic constant i8 equal to the twist and bend elastie constants). In other words a 

case of isotropie elasticity meaning the system does not gain any special 

advantage by opting for a specifie mode of defonuation. The dimensionless 

parameter R is ratio of the two length seales (internaI and external) or ean aiso be 

expressed as the ratio of two time seales, beeause R controls the relative 

magnitudes of the short-range and long-range order elastieity. A change in R 

causes a change in their relative magnitude and consequently in their ability to 

impose uniaxiality (short-range) and minimize gradients (long-range) thus leading 

to a change in the time scales of these two phenomena. The two length scales can 

be written as: 

L = H' and L. = ;: = ~ LI 
e , 1 ':> ckT* (2.29) 

The external length seale is usually the fiber radius and the internaI length seale 

represents the eharaeteristic length over which the scalar order parameter varies 

and is usually mueh smaller than the fiber radius (Li « Le)' The internaI length 

seale i8 related to the evolution of scalar order parameters Sand P and the external 

length 1S related to the gradients of the tensor order parameter Q. On the other 

hand the time seales ean be represented as: 

fj fjH
2 

ri =--.; and re =--
ckT LI 

(2.30) 

Similar to the length seales, the internaI time seale is mueh sm aller than the 

external time scale (ri « re)' The internaI time seale ri governs the sealar 

order parameters and external time seale re governs the evolution of the 

orientation of the molecules (represented by the director n). 

The governing equation for our mathematieal model is equation (2.27) 

along with its dimensionless parameters namely R ratio of the short-range order 

el asti city to the long-range order elasticity, U the nematie potential, and L
2 

the 

elastie anisotropy. The governing equation is a set ofnon-linear coupled diffusion 
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reaction partial differential equations describing the evolution of the 

microstructure. For simpllcity, from here on we will omit (-) denoting 

dimensionless quantities in our governing equation. This set of partial differential 

equations will be solved numerically to study the stability of different carbon fiber 

microstructures under different parametric (U, R, L2 ) conditions. A short 

description ofthe solution methodology along with the numerical methods used i8 

given below. 

2.5 Numerical Methodoiogy of Solution 

The types of mathematical models encountered by scientists and engineers 

may be as simple as solving a system of linear algebraic equations or as difficult 

as solving a set of partial differential equations in three spatial coordinates, in 

addition to the time coordinate. While the derivation of the governing equations is 

not unduly difficult, their solution by exact methods of analysis is a formidable 

task in Ïtself. In such cases alternative methods of analysis provide the means of 

finding approximate solutions. These methods are commonly known as numerical 

methods or computational methods since the majority of them make use of 

computers for doing the computation work involved in these methods. One of 

these, the Galerkin Finite Element Method (GFEM) has been widely used for 

solving problems governed by ordinary differential equations, partial differential 

equations and Integral equations in many applications [32]. When we suppose 

that the given differential equation with appropriate initial condition and boundary 

conditions in two dimensions can be expressed as: 

L(u) =0 (2.31) 

in a domain D (x,y). The Galerkin method assumes that U can be accurately 

represented by an approximate solution as: 

N 

ua(x,y,t) = Luj(t)<pj(x,y) (2.32) 
j;j 

where <Pj sare known analytical functions, called global trial and test functions 

and U j sare time dependent unknown coefficients. Replacing U in eqn. (2.32) with 

Ua in eqn. (2.31), we obtain the following expression: 
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(2.33) 

where R is the residual. An approximate solution ua is assumed to be composed 

of piecewise approximate functions, so that if the piecewise approximation is 

correctly constructed, then it will approach the corresponding exact solutionu . 

other words, the aim of the method of residual is to force R to zero and 

consequently make an approximate solution ua approach the exact solution. To do 

this, we need to set the iooer product of the residual R and an independent weight 

function wi equal to zero: 

(2.34) 
D D 

In the Galerkin method, the weight function wi is chosen from the same family of 

functions as the global test and trial functions in eqn. (2.32), hence eqn. (2.34) can 

be rewritten as: 

(2.35) 
D D 

where i, j = 1,2, .. .. N. Note that the equation (2.33) can be expressed as a set ofN 

differential equations to be solved for the unknown coefficients ua when we apply 

Gaussian integration. Consequently, equation (2.31) has been reduced to a set of 

ordinary differential equations (2.35). 

In tms thesis, the given differential equation L(Q) is represented by the 

goveming equation (2.27) and can be rewritten as: 

(l-iQ: Q)' ~~ +6{ (1- ~)Q - U( Q.Q -j(Q: Q)o)+ U(Q: Q)Q} (2.35) 

-~ {V'Q+L,( V(V .Q)+[V(V ·Q)r - ~ tr[V(V .Q)Jo )}~ 0 

After obtaining the residual and taking its iooer product with weight functions 

similar to that represented in eqn. (2.35) leads to the following equation: 
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F, ~ !{ (l-i Q : Q )' dQ ] <p,dxdy (2.37) 

+ lj6{(1- ~)Q - U( Q 0 Q - à(Q :Q)o)+ U(Q :Q)Q ~,<lxdY 

-!{ ~ {V'Q + L,( V(V oQ)+[ V(V oQ)]' -~tr[ V(VQ)]S) }]<p,dXdY ~ 0 

Applying the following tensor identities and the divergence theorem to equation 

(2.37) to simplify the equation as well as lower the order of the derivatives 

involved. 

v 2Qcp = V . (VQcp) - V cp' VQ 

[V(V.Q)Jcp=V[(V.Q)cp J-(Vcp)(V.Q) 

[V(V·Q)T cp=[V(V.Q)cp T 

[V(V.Q)cp T =[V{(V·Q)cp}T -[(Vcp)(V·Q)T 

(vwf =(wv) 

IfaV . vdA = cjan. vdS - IfVa. vdA 
D s D 

(2.38a) 

(2.38b) 

(2.38c) 

(2.38d) 

(2.38e) 

(2.38f) 

where v, w represent vector quantities and equation (2.38f) represents the 

divergence theorem which relates the total flux of a vector field out of a surface S 

surrounding a finite volume V to the properties of the field inside the volume. 

Therefore, the equation that we ob tain can be expressed as: 

F; = fl(l-~Q :Qr dQ]CPidXdY (2.39) 
~L dt 

+!{ 6{(1- ~)Q-U(QoQ-j(Q :Q)o)+ U(Q :Q)Q } 'l', + ~ {(V 'l',) o (V'Q)) rdY 
+ !ei ((V <p,)(V oQ) +('1 oQ)(V '1',)- ~ tr[(V<p,)(V Q)]Ii) ]dxdY ~ 0 

-j[ ~ {fi 0 (VQ<p,) + L, (n[ (V 0 Q)<p,] + [(V 0 Q)<p,]. - ~ tr[ n {(V Q)<p,) Jo)} ]dxdY 
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where Q is expressed as: 

N 

Q(x,y,t) = IQ/t)ÇDj(x,y); j = 1,2, .... N (2.40) 
j=l 

Once the goveming equation has been set up in the Galerkin fonn, the next step is 

domain discretization, that is, the domain must be divided into a number of 

smaller sub-domains, called finite elements as show in figure 26. The dark dots 

represent the vertices of each element and are also known as nodes. 

Figure 26: A schematic diagram showing the spatial discretization of our domain into smaller 
sub-domains called the finite elements. Each dark dot represents a Node. Note that this figure 
does not depict the actual discretization but is shown as an example. 

For two-dimensional problems, either triangles or quadrilaterals can be used as 

finÏte elements, depending on the boundary geometry. The number of nodes has to 

be properly chosen to represent the solution more effectively where rapid changes 

in the solution are expected. A balance between the number of elements and 

computational time and memory requirements should also be taken into account. 

As shown in equation (2.32), an approximate solution has been expressed 

as the summation of the product ofunknown coefficients uj(t), also known as the 
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nodal unknowns and the global trial and test functionslPj(x,y). However, in 

computations, by using the local test and trial functions instead of the global one, 

the given problems can be solved very economically. This is plausible because the 

test and trial functions span a very small section of the spatial domain. A 

schematic representation of two-dimensional global and local domains is shown 

in figure 27. Where t; and v represent the local orthogonal coordinate system. 

Figure 27: Element configurations in a two-dimensional global domain and corresponding local 
domain. x and y represent the global two-dimensional coordinate axes while t; and v represent the 
local coordinate axes. 
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The test and trial functions are non-zero in the vicinity of the node node 

and zero outside of this range. If local, low order polynomial interpolating 

functions are used as trial functions then it leads to low-order integrands in 

evaluating the inner product of the residual with the weight functions. A lower 

order integrand permits a lm,ver order quadrature formula to be used. 

Consequently an important computational economy is achieved when N is large 

[32]. 

The elements represented in the representative domain of our problem in 

figure 26 are not rectangular but quadrilaterals of arbitrary shapes. We need a 

method to map these arbitrary quadrilaterals into our local orthogonal coordinate 

system in ç and 1] . One such method that we use is called isoparametric mapping. 

A transformation between physical space (x,y) and the element space ((,v) for a 

given element (as shown in figure 28) is expressed as: 

4 v=l 1 

ç=o Ç=l 

v=o 2 

Figure 28: Isoparametric mapping of arbitrary quadrilaterals ln the global space to local 
orthogonal coorrunate system ç and 1] . 

1=1 
(2.41 a, b) 

4 

Y = I CPI ( ç, V)Yl 
1=1 
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where X; and YI are the coordinates of the lth corner of an element in physical 

space and rpl ( ç ,v) are the same interpolating functions as used in the trial 

functions. Equation (2.41) is called isoparametric transformation. Since it is also 

easier to evaluate the residual integral in the local ( ç, v) space, Brp j Bx , 

Brp} / By are related to Brp j / BÇ, Brp} / B v by the following equations: 

Brp} Brp} 

BÇ = [J] Bx 
(2.42) 

Brp} Bep} 

Bv By 

where the Jacobian J 1S the matrix of transformation from the global to the local 

coordinates and J is given by 

Bx By 
BÇ BÇ 

Bx By 
(2.43) 

Bv Bv 

This completes our mapping to the orthogonal local coordinate system (Ç, v) and 

now a short discussion of the test functions is presented below. 

The local, low order polynomial interpolating functions that are used as 

trial functions are also called basis functions. We employ bilinear basis functions 

for solving our governing equation. The bilinear basis functions are constructed 

from linear basis functions used for one-dimensional problems. A visual 

representation ofbilinear basis functions is represented in figure 29. Note that the 

localized basis functions are non-zero only on the concerned node in the local 

coordinate system as shown in the figure. The four localized basis functions can 

be expressed as: 

(jJ! (Ç , v) = (1- v )( 1 - Ç) 

(jJ2(Ç,V) = (v )(l-Ç) 

(jJ3 (Ç, v) = (1 - v) ( ç) 
(jJ4(Ç,V) = (v )(Ç) 

(2.43 a,b,c,d) 
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There are four local hasis functions corresponding to the four nodes of the 

rectangular element and are constructed in such a way so as to fulfill the 

requirement of heing non-zero at the corresponding node and zero at the other 

nodes. 

node3 

?ç 

node 1 
node4 

nodeZ ~ V 
1~ 

V 

1 ~ 1 ~ 
V V 

Figure 29: Two dimensionallocal bilinear basis functions for rectangular elements. Note that 
there are four basis functions corresponding to each node in the rectangular element. Adapted 
from [33]. 

In a two dimensional rectangular mesh (figure 27) the (i,j)th node is surrounded 

by four elements. Approximate solutions can he defined independently in each 

element using the local coordinate system ( ç, v). Thus in an element we obtain 
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4 

U = Lq>j (Ç,v) uj (2.44) 
j~1 

where u. are the nodal values of u, and m. is the interpolating function associated } YJ 

with the jth node. Note that uj (j going from 1 to 4) defined at the local level 

becomes u.. at the global level. The above expression can be written for the 
I,J 

complete spatial domain as: 

N 4 

U = LLÇDj(Ç,v) ~,j (2.45) 
i~l j;! 

In the above equation the subscript i (1 ... N) goes over each global element 

traversing the whole spatial domain whereas the subscript j goes from 1 to 4 

representing the mapping of each global element into local element with local 

bilinear basis functions. Here U.. represents the global nodal unknowns. We can 
I,J 

represent eqn. (2.45) in a simpler form by lumping together the coefficients in the 

above equation as Ui and the basis functions as lfIi , which gives: 

N 

U = LUilfli 
i;1 

We can obtain a similar equation for Q as: 

N 

Q= LQilfli 
;;1 

(2.46) 

(2.47) 

Inserting equation (2.47 ) into equation (2.39) and after applying the boundary 

conditions, we obtain a set of equations a matrix form given by: 

-L' Q = -F (2.48) 

where -L is the Jacobian matrix and can be obtained by Ji,} = ôF;/ôQ} and F; is 

given by equation (2.39). Finally the above equation (2.48) is solved for the 

unknown coefficients Qi using the Newton-Raphson iteration scheme. 

Convergence is assumed when the difference between two consecutive solution 

vectors is less than 10-6
. Moreover a set of non-linear time dependent equations 

has been reduced to a set of ordinary time dependent differential equation. A first

order implicit Euler predictor-corrector method is used for time descritization 

[34]. In addition, an adaptive time step control method [33] 1S used to capture the 
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essential physics of the problem and mirumize computing time while maintaining 

accuracy. Prior to presenting typical examples of stable two-dimensional liquid 

crystal configurations, sorne explanation of our visualization technique is 

presented below. 

Figure 30: Ellipsoid of visualization, which represents the eigen vectors and eigen values of our 
tensor order parameter Q, which in retum he1p us to depict the orientation of the molecules and 
degree of orientation in one single picture. 

2.6 Visualization Technique 

We have seen that a stationary point of the Landau-de Gennes free energy 

functional is a field, which describes at each point in the domain a symmetric, 

traceless matrix Q. We aiso recall that Q contains an information (at a point) 

about the preferred direction of orientation of the molecules of the material in 

question, the nature of fluctuations about this preferred orientation, and the degree 

of the order of the phase. In other words the three eigen vectors n, m,lof the 

tensor Q provide information on the orientation of the molecules at each of the 

nodes in our domain. The degree of order in each of these principal directions is 

given by the three eigen values corresponding to three eigen vectors n, m, l. Since 

in our case the limiting values of the eigen values can be represented 

as-~ < ApA2,A3 < ~. We scale our eigen values so that limiting values span from 

zero to one (0 < AI' A2 )"3 < 1). To represent a solution field, we determine the 

principal directions of Q (the eigen vectors n, m, 1) at the nodes of our mesh. As 

mentioned before a symmetric second order tensor, Q can be represented 
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geometricaUy by a quadratic surface. We then construct an ellipsoid whose 

principal axes are determined by the three eigen vectors and whose axes lengths 

are determined by the corresponding eigen values. These ellipsoids then depict 

not only a preferred direction of orientation (if such a direction exists) of the 

molecules but also the magnitude of fluctuations about this direction. An example 

of such a representation is shown in figure 30 and figure 31. We now have aU the 

necessary ingredients to compute the solution field and present the equilibrium 

configurations of the discotic nematic liquid crystal (DNLC) materials, which we 

will commence in the next chapter. 

s=o 
(a) 

n 

O<S<l 
(b) 

o 
uniaxial 

(e) 

S::::::l 
(c) 

Biaxial 
(f) 

n 

Figure 31: Visualization techniques used for a tensor order parameter. The slendemess of the 
ellipsoid depicts the degree of order. Thus a circle in (a) represents an ispotropic state and a very 
slender ellipsoid in (c) represents a high scalar order parameter S. The second row of figures 
depicts the biaxial order parameter i.e if the cross-section at centre of the ellipsoid is (e) a circle it 
is uniaxial, otherwise it is biaxial. The principal axes capture the alignment of the molecules. 

2.7 Conclusions 

A theoretical framework was developed with a brief overview of the basic 

concepts of the theory of liquid crystals like orientational order, tensor order 
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parameter Q, and elastic distortions. An understanding of the concept and theory 

of disclinations in liquid was developed as disclinations ( defects) fonn the 

characterizing feature for various microstructures observed in carbon fibers. AlI 

these concepts then led to the fonnulation of a tensor order theory involving Q 

and gradients of Q describing the free energy of a liquid crystal system. A 

governing equation describing the equilibrium configuration of a discotic nematic 

liquid crystal (DNLC) was obtained from the tensor order theory by minimizing 

the free energy equation. A set of parameters namely R ratio of the short-range 

order elasticity to the long-range order elasticity, U the nematic potential, and L2 

the elastic anisotropy were clearly outlined and their physical interpretation 

explained. This was followed by an explanation of the numerical methods that are 

used to solve the governing equation especially Galerkin Finite Element Method. 

The Galerkin Finite Element method was chosen for spatial discretization of the 

governing equations. In addition, a first-order implicit Euler predictor-corrector 

method and an adaptive time scheme were chosen for temporal discretization. In 

summary, a mathematical model describing the microstructure evolution along 

with the solution methodology based on numerical methods was developed. 
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Chapter 3 

omputer 
Formation in 

imulation of Texture 
arbon Fibers 

3.1 Introduction 

A mathematical mode! has been developed for the time evolution of 

carbon fiber microstructure based on the classical Landau-de Gennes theory. The 

mathematical model is based on the tensorial description of the microstructure and 

always yields a smooth solution even if the director field is discontinuous. This 

model is also able to capture biaxiality observed around the disclination regions 

[1]. Moreover, the more common director description is more suitable for 

problems with a constant order parameter. This chapter is devoted to the 

numerical study of the Landau-de Gennes free energy equation that includes the 

bulk terrns as well as the spatial variations of the tensor order parameter Q, for a 

circular geometry. The study of liquid crystals in cylindrical confinement is of 

interest because the carbon fibers have cylindrical geometry and numerical 

computation offers a better alternative to superior product design based on 

understanding of the carbon fiber microstructure. 

3.2 Goveming Equations and Amdliary Conditions 

The results presented in tbis chapter are based on the numerical solution to 

the following equation: 

(l-iQ :Q)' ~~ +6{(1- ~)Q-U(QQ-~(Q:Q)5)+ U(Q: Q)Q} (3.1) 

-~ {V'Q+ L, ( V(VQ)+[V(V .Q)]' - ~ tr[V(V .Q)Jo)} ~ 0 
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Note that the equation 18 in dimensionless form and ( -) has been removed for 

the sake of clarity. Equation (3.1) can be further written as: 

(1- 3 Q : Q)2 dQ + Fh+Fe = 0 
L dt 

(3.2) 

The above equation describes the dynamical evolution of the carbon fiber 

microstructure and Fh
, Fe represent the homogeneous and elastic contributions to 

the free energy. As previously mentioned the short-range elasticity governs the 

isotropic-nematic transition and tends to keep the molecular order (S and P) equal 

to that of the equilibrium state in a local domain. The long-range order elasticity, 

on the other hand, tends to minimize the spatial gradients in the system. The 

3T' 
dimensionless parameters of our model are U=--, known as the nematic 

T 

. H 2ckT* 
potentlal, R = ---

2~ 

H 2 
-- (ratio of short-range order elasticity to long-range 
2.;2 

order elasticity), and L2 = L2 (measure of elastic anisotropy). Where T* denotes 
~ 

the isotropic-nematie phase transition temperature, T is the temperature, H 

represents the liber radii, L, and L, are the Landau coefficients, and ç ~ J r, * is 
ckT 

the characteristic defect core length. The nematic potential U is the reciprocal of 

the dimensionless temperature and controls that equilibrium order parameter Seq at 

the phase transition. The expression relating the equilibrium sealar order 

parameter to the nematic potential ls given as [2]: 

s =.!.+~ ~l-8 ) 
eq 4 4 vl1 

- 3D) (3.3) 

Aceordingly for our model the isotropic-nematic phase transition oceurs at a value 

of U = 8/3 and the isotropie phase is stable below this value. For the range of 

8/3:::;;U:::;;3, there ls biphasic equilibrium. The nematic phase ls the only stable 

phase for values ofU > 3. For the computations in tbis work we use 2.7:::;;U:::;;6. The 

parameter R ls the ratio of the fiber radius to the internaI Iength seale (Ç).It 

signifies the relative effects of the short-range order elastieity and the long-range 



Chapter 3 - Computer Simulation of Texture Formation in Carbon Fibers 61 

elasticity. When R« 1, long-range energy dominates and tends to avoid spatial 

gradients thu8 leading to the selection of homogenous states. On the other hand, 

when R» 1, long-range energy 18 insignificant as compared to the short-range 

energyand defects proliferate, sinee spatial gradients are not as eostly as the non-

homogenous states. the results presented here values of R used are 

0<R::::;300. The third dimensionless parameter is L2, a measure of the elastic 

anisotropy. When L2 = 0, aH the elastic modulii are equal (Kll=K22= K 33 ) and the 

system lS elastically isotropie in the sense neither of the elastic modes of 

deformation (splay, twist, bend) ls energetically favourable over the other modes. 

A non-zero value of L2 in our model denotes that the splay elastic modulus of 

deformation lS equal to the bend modulus of elastic deformation (Kl1= K33). 

Moreover, the thermodynamic restrictions [3] imply that the elastic constants 

satisfy the following condition: 

3 
L >--

2 5 
(3.4) 

In addition, smce for discotic nematie liquid erystals it lS weIl known that 

K22>Kll , andK33>Kll. We get the following limits for L2 : 

3 
--<L2 ::::;0 

5 
(3.5) 

We have used L2=-0.5 for the computations in this chapter. The govermng 

equation (3.1) is solved numerically in a circle of unit radius. For the numerical 

computation the quenching phenomenon ls used i.e. when time t = 0, the system lS 

in isotropie state with Q::::;O and U=Uiso. This implies that the system is above the 

isotropic-nematie transition temperature and isotropie phase is the only stable 

phase. The initial condition ean be written as: 

(3.6 a, b) 
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where Sin! and P ini are the initial uni axial and biaxial order parameters generated 

randomly and Sim-';::;O, Pim-,;::;O. The initial local orientation of the system is given by 

generating a set of orthogonal vectors üini, mini, lini at each point on the mesh. 

A visua1Ïzation ofthe initial condition used for the solution is given in figure 32. 

(a) (b) 

Figure 32: Visualization of the initial condition used for the numerical computations. In Ca) the 
initial condition is visualized according to the technique given in Chapter 2. For a very low order 
parameter the ellipsoids become circ1es. Cb) represents the same initial condition in terms of 
molecular orientation (orientation of the disc-like molecules). Note that since we are solving for 
only the planar components of Q, the orientation of the molecules is in plane only. 

For t > 0 (t = E i.e. time just after 0) we decrease the temperature (increase the 

nematic potential) of our system to a value U > 8/3 in which the nematic phase is 

stable. In other words we freeze the initial orientation of our system and let it 

evolve as per the parametric conditions specified. We also apply the Dirichlet 

boundary condition on the boundary of the circle. We specify the equilibrium 

scalar order parameter at the boundary given by the equation (3.3) as well as the 

molecular orientation at the boundary. For this work a strong homeotropic 

anchoring boundary condition has been used for an the cases. Moreover, this leads 

to the simplifying assumption, that due to the strong anchoring boundary 

condition, the director orientation 1S always planar. This assumption reduces our 

tensor parameter to the following form: 
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o 
o 

î 

Qzz (= -Qxx -Qyy)) 

63 

(3.7) 

The boundary condition used for numerical computation of the govemmg 

equation can be written as follows: 

t=8, Qini = Seq ( nbcnbc - jo ) 

cos(~+e ) 
mbc = sin ( ~ + e ) (3.8 a, b) 

o 

where e is always homeotropic to the boundary at all the points on the grid. 

(a) (b) 

Figure 33: Visualization of the boundary condition used for the numerical computations. In (a) 
the initial condition is visualized according to the technique given in Chapter 2. The narrow sharp 
ellipsoids on the boundary indicate a high scalar order parameter as weIl as the homeotropic 
boundary orientation is clearly visible. (b) represents the same boundary condition in terms of 
molecular orientation (orientation of the disc-like molecules). 
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The molecular orientation 1S perpendicular to the surface whereas the director 

orientation is tangential at the surface (because in DNLCs a bend director 

trajectory gives rise to splay configuration and splay director trajectory gives rise 

to a bend configuration). The visualization for the boundary condition in terms of 

ellipsoids and molecular orientation is presented in figure 33. 

3,3 Results and Discussion 

3.3.1 Typical Two-Dimensional Textures 

The two characteristic textures obtained by numerical solution to the 

goveming equation together with its auxiliary conditions are Planar Radial (PR) 

and Planar Polar (PP) textures. A molecular profile of the typical PR and PP 

textures obtained is shown in figure 34. 

(PR) (PP) 

Figure 34: The two characteristic textures obtained as solutions to the goveming equation. The 
pl anar radial (PR) with is characteristic disclination of strength + 1 is shown on the 1eft and planar 
polar (PP) texture with two disclinations of strength + 1/2 is shown on the right. The parametric 

H 
conditions used are (i) for PR, U = 6.0, L 2 = -0.5, and - = 2.25 (ii) for PP, U = 6.0, L2 = -0.5, ç 

H =5.0 
ç 

The molecules are aligned in the radial direction (perpendicular) at the 

boundaryand continue to be radially aligned as we move towards the center of 

the fiber. A disclination of strength s = +1 forms at the center of the fiber cross

section. The planar radial (PR) configuration is rotationally symmetric. The only 
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fi) 

defonnation mode that exists in the PR texture is bend (K33 ), although the 

molecular trajectories in the visualization scheme display splay. This is due to the 

fact that for discotic nematics the major dimension of the molecules is 

perpendicular to the director n. In contrast the planar polar (PP) texture is the 

symmetry-breaking configuration solution [4] to the goveming equation (3.1). In 

addition the PP texture configuration contains two defects of strength s = +1/2 

collinear with the fiber axis as shown in figure 34. A texture obtained by the 

rotation of the pp texture through an angle cp about the axis of the cylinder has the 

same free energy and is also a solution to our goveming equation. Therefore an 

textures obtained by rotation are equivalent. The pp texture has bend (K
33

) as 

well as splay ( Kll ) modes of elastic deformation. In addition, the pp texture has a 

perfectly-aligned region in between the two defects close to the center of the 

fiber. 

0.5 
~ 0.0 

.1,0 
.,,5 t 

.1,0.1,0 

(a) (h) 

0,5 jft 
0,0 

.0,5 
.1,0 f 

(c) (d) 

Figure 35: Surface plots showing the uniaxial scalar order parameter Sand biaxial arder 
parameter P. (a) & (h) represent Sand P for a Planar Radial (PR) texture, (c) & (d) represent S 
and P for a Planar Polar texture (PP). The parametric conditions are the same as used in figure 34. 
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The scalar order parameter deviates considerably from its bulk value near the 

defects in both the characteristic textures namely, PR and pp [5]. In figure 35 we 

present a surface plot of the variation of the uniaxial scalar order and biaxial 

scalar parameters across the fiber cross-section. It is clearly visible from the 

surface plots ofthe pp and PR textures that troughs in the surface plots (a) & 

(c) represent the center of the defect and the value of the uniaxial scalar order 

parameter S is the lowest at this point. On the contrary the peaks in plots (b) & (d) 

aiso represents the center of a defect and the value of the biaxial order parameter 

P is the highest at the core of the defect. We have also calculated a phase diagram 

for the two stable characteristic textures (pR and PP) that preructs which of the 

solutions is stable for a given temperature and given capillary size. The phase 

diagram is shown in figure 36. 
0.45 -,----------------------, 

0.40 

:ffi 0.35 

ë 
-5 
Il. 0.30 .., 
~ 
! 0.25 

0.20 

Isotropie 

f---.---.-----------------.-----

o 5 10 15 20 25 30 
Dimensionless Radius HI/; 

Figure 36: Phase diagram which predicts the type of solution for a given dimensionless 
temperature and dimensionless radius. The two stable characteristic textures observed are the 
planar radial (PR) and the planar polar (PP). 

The solid Hne identifies the texture transition hne. The phase diagram predicts that 

carbon fibers of smaller cross-section favor the PR texture whereas fibers of larger 

cross-section prefer the PP texture. It aiso predicts that the region of stability for 

the PR texture increases with increase in temperature (decrease in the nematic 

potential) until U=3.0, after which the PR texture is stable for aH fiber radii. 

Therefore if the carbon fibers are spun at higher temperature then they should 

exhibit a planar radial (PR) texture irrespective of the fiber radius. In contrast if 

they are spun at a lower temperature they should exhibit planar polar (PP) texture 
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as well as planar radial (PR) texture depending upon the radius of the fiber. This is 

confinned by experimentalists [6].The phase transition from planar radial (PR) to 

planaI polar at large U is controlled by the long-range elastic effects, i.e. the fiber 

size is the controHing parameter whereas for large fiber size, the short-range 

elastic effects are responsible for the phase transition. Thus for higher fiber radii, 

the temperature is the controlling factor for phase transition. A comprehensive 

analysis of our problem should also involve the study of the dynamical 

phenomena in the evolution of the two characteristic textures, namely PR and PP. 

This analysis is done in the following section. 

3.3.2 Dynamical Structure Evolution of PlanaI' Radial (PR) and PlanaI' Polar (PP) 

In tbis section we present the transient evolution of the two characteristic 

textures, namely planar radial (PR) and planar polar (PP). We also present the 

time evolution of the different energies of the system (short-range order elasticity, 

and long-range order elasticity) for the two textures. The time evolution of the PR 

texture is shown in figure 37. It is clearly apparent the order diffuses from the 

boundary towards the center of the fiber similar to that seen in various diffusion 

processes. Another characteristic of the transient process is the different time 

scales that are clearly visible in figure 37. The external time scale in this study is 

given by re = 17
H2 

and as such will increase with increase in the value of R. For 
LI 

the parametric conditions used in figure 37, the external time scale re is 

approximately of the same order of magnitude as the internaI time scale ri . 

Although the system reaches the steady molecular orientation of a PR texture 

before the scalar order parameter S reaches its steady state value, the time scales 

are of the same order of magnitude as shown in the time evolution of the long

range energy and short-range energy in figure 38. Moreover for the value of the 

H 
parameter- = 2.45, U=6.0, the long-range energy and the short-range energy are 

ç 

equally costly and the rotationally symmetric PR texture optimizes both the free 

energies to give the minimum total energy. 
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t= 0.00036 t= 0.00036 

t = 0.00788 t= 0.00788 

t= 0.03627 t= 0.03627 

t = 0.24412 t = 0.24412 
Figure 37: Transient evolution of the PR texture. The parametric conditions used here are 

H 
U=6.0, - == 2.45, L2 = -0.5. Left column: Orientation profile. Right column: Scalar order 

~ 
parameter (S). 
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Figure 38: Time evolution of the long-range energy and short-range energy for 

U=6.0, H = 2.45,L2 = -0.5. The difference in two time sc ales is clearly visible. The long-range 
4 

energy reaches a steady state at t >::: 0.036 whereas the short-range energy reaches steady 
state ad >::: 0.24. 

Now we move to the transient evolution of planar polar texture. We present a 

slightly different phase diagram than that given by Davis [7] in figure 39 to 

clearly explain the transient evolution of the planar polar texture. 

1.04 / ____ .. _..... ._. __ ~, ...... 

PR /.---/ _~ 
~ 1.02 rJi:I / --,/'" 
:;; IC),/ /" -e r pp (PR) ( pp (ER PR) 

i 1

,00 ,('@j" 
~0,9B 
<li 
a-
I: 0.96 

~ 0.94 {/ 

"5l 0.92 
Il:: 

PP (ER) 

ER (PP) 
0.90 +-'---,-----L.,--r---r-,----,--r-..,L-,---J 

o 10 20 30 40 50 60 70 80 90 100 
Scaled Capillary Radius (R) 

Figure 39: Phase diagram showing various textures that are stable for various parametric 
conditions of temperature and capillary radius. The textures are PR (Planar Radial), PP (Pl anar 
Polar), and ER (Escape Radial). The textures given in the parentheses are textures that are stable 
but with higher energy. Adapted from [7]. 

Before we actually look at the transient evolution of the pp texture a brief 

description of the phase diagram is necessary. The various acronyms are the same 

as those used before except ER, which represents the Escaped Radial (ER) texture. 

In the ER texture the director escapes in the fibre axis direction (z direction in a 

cylindrical coordinate system) as we move from the boundary to the center of the 

fibre axis as explained in Chapter 2. The contrasting features of this diagram 

(figure 39) is that in addition to the most stable textures it also lists other stable 
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textures of higher energy that are shown in the parenthesis. Since dynamical 

simulations are performed in study we always obtain textures with the 10west 

energy. Thus, we obtain only planar radial for region A and planar polar for region 

B in our simulations. Moreover, we never obtain the escape radial texture because 

the form of the tensor order parameter that we employ restricts director in the 

fibre cross-section plane (r-8 plane in the cylindrical coordinate system).The 

transient evolution of the planar polar texture has three pathways depending on the 

parametric values used. The first path involves the formation of the intermediate 

PR texture and then the classical defect split of a defect of strength +1 into two 

defects of strength + ~ . 

"'=+1~ s=+~ + s=+~ 
'" ~ 2 2 (3.9) 

The system takes this path when the parametric values used lie in the region of the 

phase diagram where the PR texture is metastable. The first path that leads to the 

PR texture is shown in figure 40. It 1S clearly visible in the figure that the system 

attains a planar radial texture with a defect of strength of + 1 at the center and then 

it transforms into two defects of strength + ~ . This path for the evolution of the pp 

texture is essentially a three-stage process. The early stage involves the formation 

of the intermediate PR texture followed by the intermediate stage consisting of a 

topological transformation of the + 1 defect into two defects of strength + ~. The 

final step is the relocation of the two defects to their fmal equilibrium position. 

This process can be clearly explained by looking at the transient evolution of the 

short-range order elasticity and long-range order elasticity of a given PR texture 

for specified parametric conditions. In figure 41 we show the long-range order 

elasticity and short-range order e1asticity for different values of H that follow the 
ç 

defect splitting path for planar polar texture formation. We observe that there are 

three stages in the evolution of the long-range elasticity and short-range elasticity. 

The long-range elasticity in the first stage of evolution reaches a minimum value. 

This is followed by increase in the long-range elasticity until it reaches an 

intermediate plateau value. 
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t= 0.0007 t == 0.000719 

t=0.103 t == 0.103 

t= 0.843 t=0.843 

t=2.119 t=2.119 

Figure 40: Transient evolution of the pp texture. The intermediate PR texture is clearly visible 
before the texture transforms into pp through defect splitting. The parametric conditions used 

H 
here are U=6.0, - == 31.6, L2 == -0.5. Left column: Orientation profile (n). Right column: Scalar 

q 
order parameter (S). 
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Figure 41: Long-range and short-range energy plots for different values of dirnensionless fibre 
radii< The evolution of long-range energy and short-range energy follows three different stages. 
The dashed hnes indieate various stages sinee they are not c1early visible in sorne cases. 

Finally there is further increase/decrease in the long-range elasticity signifying the 

beginning of the late stage. ID the early stage (i.e. at the bottom of the trough-like 

structure in the plot of long-range e1asticity) the microstructure is planar radial 

(PR). fu the intermediate stage the microstructure is still planar radial up until the 

later stages of the intermediate steady state in stage two when the + 1 defect splits 

into two + ~ defects. ID the late stage the main phenomenon involved is the 

re1ocation of two defects at their final equilibrium position. The dashed vertical 

line separates the early, intermediate, and later stages since in sorne cases it is not 

clearly apparent by looking at the plot. In the time evolution of short-range energy 

an early stage with an exponential decrease is followed by an intermediate state 

with a plateau followed by a step like decrease before reaching the final steady 

state. The step like decrease following the intermediate stage signaIs the beginning 
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of the late stage. It is interesting to note that the onset of the late stage for both 

short-range energy and long-range energy evolution begins at almost the same 

time. The splitting of the + 1 defect in a PR texture does not cause a change in the 

short-range energy, and therefore at the end of intermediate stage in the short-

range the texture is planar polar but the two + ~ defects are very close to each 

other. In other words the width of existence of the first (intermediate) steady state 

(stage two) in the short-range energy plot is proportional to the extent that PR 

texture is metastable before it transforms to the pp texture. Thus from the plots we 

observe that for the given value of U=6.0, the PR texture ceases to be metastable 

for H > 10.0. For fibres of larger thickness the evolution of pp texture ls not ç 
through the defect splitting process. With these results we can present a coherent 

picture for the whole pp texture evolution process. First the system minimÎzes the 

elastic energy by forming a planar radial texture but the relative magnitude of the 

short-range elasticity is higher as compared to parametric values for which the PR 

texture is completely stable which for the CUITent case of U=6.0 is H ~ 2.82. This ç 
implies a stronger force promoting uniaxiality and therefore decreases the defect 

core radius and results in a higher energy of deformation as given by the energy 

equation (3.10) for a defect of strength + 1 [8]. 

W ~ Tv, +JrKIn( ~ J (3.10) 

where ~ is the core energy and rc is the core radius. This ls the reason for the 

increase in long-range energy after reaching a minimum value because the short

range energy is still decreasing when the long-range starts to increase after 

reaching its minima. Therefore the system can reduce the free energy by shrinking 

the defect core radius only up to a limit and beyond that the only way is by 

splitting the + 1 defect into two + ~ defects because the energy sc ales as square of 

the defect strength. After the defect split there is a sudden drop in short-range 

free energy due to relocation of the two +~ defects after the split. Next we will 

look at the second method of the formation of the planar polar texture. 
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t=0.295 1=0.295 

t=0.325 1=0.325 

t=O.523 1=0.523 

1=4.519 t=4.519 
Figure 42: Second pathway for planar polar texture evolution without the formation and splitting 

H 
of defect of strength +1. The parametric conditions used are U=6.0,- = 14.15, L2 = -0.5. Left 

ç 
column: Orientation profile (n). Right column: Scalar order parameter (S). 
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Figure 43: Long-range energy and short-range energy plots for different dimensionless fibre 
radii. The long-range energy profile shows behaviour similar as before but short-range energy 
does not show a step function like drop but reaches steady state without any intermediate steady 
states in between. 

The second pathway for the evolution of the planar texture is shown in figure 42. 

For this pathway the long-range energy shows behaviour similar to the first case. 

The minimum of the long-range energy (i.e. the lowest point of the trough like 

shape in the plot) no longer corresponds to a planar radial (PR) orientation 

configuration but has a texture that we will refer to as isotropie core (lC), as 

shown in the top most texture in figure 42 at t=0.2953. The characteristic of the 

isotropie core texture is that there is a radial rim sUITounding an isotropic core. 

The scalar order parameter S in the core region is non zero but is very small for 

the parameters used in figure 42. Once the long-range energy has reached its 

minimum value the scalar order parameter is still diffusing inwards reducing the 

region of nucleation of the two + ~ defects and thereby leading to an increase in 
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the long-range elasticity. In the beginning the diffusion of scalar order parameter 

is radial1y symmetric until the long-range reaches its minimum value at the 

boHom of the trough. 

(a) (b) 
Figure 44: Selective scalar order diffusion during the formation of planar polar texture for two 

H H H 
different values of-. For (a) - = 14.15 and (b)- = 17.32. The value ofU=6.0 and L2 = -0.5 

~ ~ ~ 
for both the cases. 

(a) 

(b) 

Figure 45: The above figure shows that the distance of the nucleation of the two +~ defects 

increases with increasing fibre radius befme they relocate to their equilibriurn postion. The value 

of H is 14.15 for (a) and 20.0 for (b). The value ofU is 6.0 andL2 = -0.5 forboth the cases. 
/; 
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After that this symmetry is broken and there i8 selective diffusion of the short

range elasticity. This pro cess of selective diffusion is shown clearly in figure 44. 

Another interesting phenomenon to note 1S that the time at which the long-range 

energy reaches its local maxima for the transition into the late stage coincides 

with the short-range energy reaching its steady state value. Finally the two + ~ 

defects repel each other to an equilibrium position with a smaU decrease in the 

long-range energy. The distance between the nucleation of the two + ~ defects in 

the polar planar texture before they move apart increases with increasing fibre 

radius as shown in figure 45. Furthermore as we move towards higher fiber radii 

H 
(- >=::: 30) for the same value ofU=6.0 the number of defects that form before the 

ç 

steady state polar texture is observed increases. This is clearly depicted in figure 

46 showing the transient evolution of the planar polar texture at U=6.0 

and H = 31.6. Initially there are four defects that are formed, followed by defect-
~ 

defect interaction leading to the annihilation oftwo defects and eventually leaving 

us with two + ~ defects. The defect annihilation reactÏon can be given as: 

1 1 
s = +- + S = --~ 0 

2 2~ 
(3.11) 

This defect-defect interaction is due to the fact that defects of opposite signs 

attract each other and the attractive force per unit length between two wedge 

disclinations of ~ strength Ïs given by [9]: 

~ reK 
J. =-

12 2d (3.12) 

Where K represents the elastic constant in the case of one constant approximation 

and d represents the distance between the two disclinations. In addition, the fiber 

size is not too large to render long-range elastic effects (like the defect interaction) 

negligible as the attractive force reduces with the increase in distance between the 

defects. 
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1=0.523 t=0.523 

t=0.927 t=0.927 

t=5.419 t=5.419 

t=50.019 t=50.019 
Figure 46: The formation of the pp texture through initial coarsening of multiple defects and 
consequent annihilation of two defects. The parametric values used in the ab ove case are 

H 
U=6.0, - = 31.6 and Lz = -0.5. The annihilation of two ~ defects is clearly visible at t=5.419. 

,; 
The figures on the left show ellipsoid representation and on the right show director representation. 
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Figure 47 shows the long-range and short-range energy evolution for the ab ove 

methodology of the formation of planar polar (PP) texture through the texture 

coarsening process. The minimum of the long-range energy corresponds to the 

topmost set of figures in figure 47 and can be characterized by an ordered 

boundary layer and isotropie central region. In addition, the direetor profile at this 

stage shows apparent coarsening of multiple defects at a future time. As the scalar 

order parameter diffuses in, some of the apparent defects in direetor orientation 

never coarsen into defects but the molecules become oriented with the diffusion 

of the scalar order parameter. Eventually only four defects coarsen as the scalar 

order parameter diffuses inwards leading to an increase in the long-range energy. 

The local maximum following the minimum in the long-range energy is 

characterized by four ~ defects (3 defects of + ~ and one defect of - ~). This point 

corresponds to the second set of figures in figure 46 at t=0.93. As pointed out 

previously, the time at which the long-range energy reaches it local maximum is 

the same time at which the short-range energy reaches its minimum steady state 

value. 
15,----------------, 
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Figure 47: Time evolution of long and short-range energy for the formation of planar polar 
texture by defect annihilation process. The parametric values used the above case are U=6.0, 
H - = 31.6 and L2 = -0.5. A sudden reduction is visible in the long-range energy at t=5.61 where 
ç 

the two ~ defects combine to annihilate each other and leave only two + ~ defects. 

After this point the reduction in energy of the system is solely due to reduction in 

the long-range energy. The local maximum in the long-range energy 1S followed 
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by a steady decay the long-range energy indicating the movement of the two ~ 

defects of opposite signs towards each other. Finally there i8 a sudden reduction in 

the long-range energy, which is an indication of the annihilation of two half 

defects followed by a smaU steady decrease in the long-range energy denoting the 

reorientation and relocation of the two remaining + ~ defect8. Moreover the long

range energy reaches the steady 8tate later than the short-range energy because the 

long-range order time scale is much larger than the short-range order time scale 

for the fibre radius involved. In summary the formation of the planar polar texture 

in the present case i8 by both by defect splitting and defect annihilation by 

combination of two defects of ~ strength but of opposite sign. In the next section 

we will take a detailed look at the defect core structure for the defect of strength 

+1. 

3.3.3 Defect Core St.ructure of the +1 Defect ln Pbmar Radial Texture 

0.4 

0.3 

02 

:J .: 
~ 0.1 
c 

~ 
0.0 

-0.1 

-0.2 

-1.0 

In this section we will begin with the defect core structure of the PR and pp 

texture and move on to focusing in detail on the + 1 defect of the planar radial 

texture. Figure 48 depicts the core of PR and pp texture in terms of eigenvalue 

plots across the fibre diameter of a planar radial texture and across the hne joining 

the two defects of a planar polar texture. 
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Figure 48: The variation of three eigen values of the tensor Q across the fibre diameter. The 

figure on the left is for PR texture (+ l defect) with U=2.90, H = 24.5 . The figure on the right is 
S 

for pp texture exhibiting the eigen value variation across the line joining the two ( + ~ ) defects. 

H 
The value for U= 3.30 and - = 17.3 for pp texture. 

S 



Chapter 3 - Computer Simulation of Texture Formation Carbon Fibers 

The eigenvalues are defined as foHows: 

Àn = 2/3S 

Àru = (P-S)/3 

/"1 = -cP + S)/3 

81 

(3.Ba, b, c) 

Note that ,ln+,lm+,ll = 0 and hence only two eigenvalues are independent. We 

observe that the tensor order parameter Q is uni axial far from the defect and as we 

move closer to the defect it becomes increasingly biaxial and finally becomes 

uniaxial again at the centre of the defect [10, Il]. We aiso observe that the value 

of the biaxial scalar order parameter P = 3S at the centre of the defect. This is true 

for both defects of strength + 1 and + ~. It is apparent from the eigenvalue plots 

shown in figure 48 that at the center of the defects the two largest eigenvalues (,ln 

and ,lm) become equal and the only distinct eigenvalue 1S À], thus making tensor 

order parameter uniaxial. From here on we will focus on the defect core of + 1 

defect. We will start with an explanation of the scalar order parameter S-P triangle 

[12] that we will use to elucidate the defect core texture. The S-P triangle can 

represent various order parameter fields since the eigenvalues are directly related 

to the two scalar order parameter S and P. The S-P is shown in fig.49. 
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Figure 49: Orientation S-P triangle in terms of scalar order parameters Sand P. Inside the 
triangle the orientation is biaxial (distinct eigen values), except on the uniaxial (two equal eigen 
values) Hnes P= 0, P= +3S, P= -3S. 
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The order parameter triangle S-P exhibits the following orientation fields: 

(a) Isotropie orientation (three equal eigenvalues): S = 0 and P = o. 

82 

(b) Uni axial orientation (two equal eigenvalues): (i) P = 0 (horizontal full line 

through origin), (ii) P= +3S (dashed line through the origin), and (iii) P= -3S 

(dashed line through the origin) 

A plot of the trajectory of S and P on orientation triangle corresponding to 

planar radial (PR) texture with a +1 defect at the center is shown in figure 50 

below. 
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Figure 50: Plot of the trajectory of the scalar order parameter 8 across the fiber diameter of 
planar radial texture (for a + l defect) plotted on the 8-P triangle. The center of the defect (defect 
core center) always lies on the uniaxialline P= 38. 

It can be observed that the order parameter Q is uniaxial with a positive order 

parameter on one end of the fibre diameter and it goes to the other equivalent 

uniaxial state at the other end with negative order parameter through the 

mechanism of eigenvalue exchange [13]. It is apparent that the system takes the 

straight line path through the biaxial region with the defect center lying on the 

uniaxial line (P= 38) through which the eigen value exchange occurs because on 

this line the two biggest eigen values are equal (Àn = Àm) and the distinguishing 

eigen value is ÀI' For a given U the point characterizing the scalar order 
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parameters S and P moves along the uniaxial line P= 3S and moving towards the 

isotropie point (S = 0, P = 0) as the value of nematic potential decreases. Next, 

using DoÎ's mesoscopic nematodynamic theory the dynamic equation for the 

tensor order parameter Q can be written as: 

(3.14) 

After rewriting the eqn. (3.13) in the principal axes ofQ, we obtain the following 

equations for the evolution of sealar order parameters Sand P: 

(3.15a, b) 

dP = -~{9P-9S+ U( _3P_P2 +2p3 +3S +6SP-2SP2 +3S2 +6S2P-6S3
)} 

dt 27 
Phase plane analyses of the above equations were performed using standard 

procedure under the assumption that the unstable root would give the value of the 

scalar order parameter at the defect centre. The results of the phase plane analysis 

have been summarized in figure 51. 
p p 

U=6.0 U=2.8 
o NodalSink 
II1II Saddle Point 

Figure 51: Phase plane analyses of eqn. (3 . 14a, b) are summarized in the two s-p triangle figures 
above. The direction of the arrows in the 1eft figure indicates the direction in which the different 
solution points move as the value ofU decreases. Another important change is that for U<3.0, the 
isotropie state (S = 0, P = 0) beeomes a nodal sink as opposed to a nodal source for the value of 
U>3.0. 

We obtain seven solution points from the phase plane analysis of the Eq. 3.14a, b. 

For U>3.0 there are three nodal sinks indicated by empty cirdes, three saddle 

points indicated by black squares and one source located at S = 0, P = O. As 

indicated in figure 51 above the six solutions (nodal sinks and saddle points) 

converge towards the isotropie state (S = 0, P = 0) as we reduce the value of 

U=6.0. 
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Figure 52: Comparison of the scalar order parameter values (S and P) at the defect core obtained 
from the simulation with the solutions obtained from the phase plane analysis. The best match 
occurs for 3.5<U<4. For U<3.0 we show aIl the three saddle points obtained from the phase plane 
analysis since the saddle point on the P= 3S Une attains negative values for Sand P. 



Chapter 3 - Computer Simulation of Texture Formation in Carbon Fibers 85 

The value ofU=3.0 is critical because as we decrease the value ofU further, the 

isotropic solution changes from a nodal soUrce to a nodal sink and furthermore the 

three saddle points go through the isotropie state and emerge on the other side of 

the origin of the S-P triangle. Next we compare the scalar order parameter values 

at the center of the defeet obtained from the simulations with those obtained from 

the phase plane analysis. 

The scalar order parameter values (S and P) at the defect center, obtained 

from the simulations are higher than those obtained from phase plane analysis for 

high values of U (i.e. for low temperature) as shown in figure 52. The predicted 

phase plane values for the order parameters match nicely with the simulated 

values for high temperature range (3.5 < U < 4). We also observe that phase plane 

analysis predicts the isotropie state as one of the possible stable solutions to our 

system for U<3.0 but simulation results indicate clearly that the defect core is 

never isotropie in nature. It has been mentioned that close to the defects our tensor 

order parameter deviates from uniaxiality and is increasingly biaxial in the region 

surrounding the defects. To quantify and visualize these highly strained localized 

biaxial regions, we utilize the parameter: 

(3.16) 

The parameter /32 has been used in [14, 15] for similar purposes. This parameter 

ranges in the interval [0, 1]. In aU uniaxial states [32=0 and astate with maximal 

biaxiality would correspond to /32=1.In figure 53 we show a surface plot of the 

biaxiality parameter /32 for a defect of strength + 1. We show a cross-section 

across the fiber diameter for a more clear representation. In the figure as we move 

across the fiber diameter beginning from one end, the biaxiality parameter is zero 

(as the tensor order parmeter Q is uniaxial) and it increases as we move towards 

the center of the defect reaching a maximum value of 0.98 before eventually 

reducing to zero at the center of the carbon fiber (tensor order parameter Q again 

becomes uniaxial). The biaxiality parameter forms a kind of ring of maximal 

biaxiality around the defect and is termed as biaxial toros around nematic point 

defects in [14]. 
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Figure 53: Surface plot of the biaxiality parameter pZ across the fibre diameter with a + l defect 
at the center of the fibre. The biaxiality parameter reaches a maximal value of 0.98 at approx. 
1.2~ and forms a kind of ring of maximal biaxiality around the defect. The Parametric values are 

H 
U=2.80,- = 10.0, andL2 = -0.5. 
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Figure 54: Plot showing p2 across the fiber diameter for two different values of U. For small 
fiber radii there is no appreciable effect of temperature on the defect core size. The value of 
H - = 2.45 for the above plot. 
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Next wc look at the effect oftemperature (nematic potential U) on the defect core 

structure. For this we have plotted the parameter 132 across the fibre diameter for 

two different values of U. It is dearly apparent that for smaUer fiber radius there 

is no significant effect of temperature on the defect core texture. The graphs for 

two different values almost overlap each other as shown in figure 54. On the other 

hand there Is an increase in the defect core size with increase temperature for 

high fiber radii[ Il] as shown in figure 55. 
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Figure 55: Plot showing p2 across the fiber diameter for two different values of U at higher 
fiber radii than figure 54. There is a significant increase in defect core size with an increase in the 

H 
temperature. - = 10.0. 

S 
Another interesting point to note is that the increase in the defect core is on the 

outside of the biaxial torus (there is an increase in the strained or the biaxial 

region) whereas the biaxial torus radii (the distance between the center and the 

maximal biaxiality ring) remains the same. We denote the distance between the 

center of the defect and the point of maximum biaxiality (i.e. biaxial radii torus) 

for a PR texture as rb and look at the variation of this radius with the fiber size. 

The variation orthe biaxial torus radii with fibre size is shown in figure 56. 

1.0 
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Figure 56: The influence of confinement on the characteristic biaxial tOTUS radii rb. This 

characteristic radius shows an asymptotic behavior. 

The characteristic radius rb increases linearly until H ~ 10.0 and after that it 
1; 

asymptotically reaches a value close to 2f The results presented above 

qualitatively match the analytical results obtained in [14]. The results aiso indicate 

fuat the fiber radii has a strong effect on the core texture for smaller fiber railli. 

For fibers larger than H ~ 10.0, there is no effect of the fiber size on the defect 
1; 

core texture. 

3.4 Conclusions 

The results obtained from the numerical simulation of the govermng 

Landau de Gennes mesoscopic theory have been presented in fuis chapter. The 

two characteristic textures, namely Planar Radial (PR) and Planar Polar (PP) were 

obtained from the simulations. A phase diagram showing the regions of favored 

textures was constructed. We do not observe regions of common textures (i.e. 

regions where both the textures PR and PP are stable) as obtained in [4] because 
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we perfonn dynamical simulations. Instead, we get the texture with the lowest 

energy only. We also do not observe the so called Escaped Radial (ER) texture 

due to the simplifying assumptions of our model. The model can easily be used to 

simulate ornon texture by changing the boundary condition from tangential 

molecular orientation to homeotropic molecular orientation although we only 

simulate PR and pp texture in this study. Next we analyzed the transient evolution 

of the PR and pp textures, in particular the various pathways that lead to the 

formation of the pp texture. This analysis was followed by the examination of the 

defect cores of defects of strength + 1 and +~ with special emphasis on the defect 

of strength +1. In short, a detailed analysis of the PR and pp textures has been 

performed. This should provide us with a framework for practical application of 

this analysis to the real world fabrication of carbon fibers, where texture control 

and optimization ofthermo-mechanical properties is required. 
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Chapter 4 

ect of Elastic 
efect ore 

nisotropy on the 

This chapter presents a rigorous analysis of the effect of elastic anisotropy on the 

defect core structure. A complete characterization of carbon fibers should include 

structure fonnation at the nano scale. Defect core sizes are in the nano-range and 

hence embodied structural features are found at these small scales. One of the 

most important features of the nano scale structure of defect cores is their 

sensitivity to elastic anisotropy. What follows provides a summary of the main 

order and orientation phenomena induced by elastic anisotropy at the nano scale. 

4.1 Effect of Elastic Anisotropy (L2 ) on the Defect Core Structure of + 1 Defect 

We will explore the effect of elastic anisotropy (L2 ) on the core structure 

ofboth the defect types that we encounter in our texture fonnation process namely 

defect of strength + land defect of strength + ~. We begin with the + 1 defect 

before eventuaUy moving onto the+~ defect. Figure 57 exhibits the three 

eigenvalues of the tensor order parameter profiles for three different values of L2 • 

The two main characteristics that are clearly apparent are the different pathways 

that the three eigenvalues take in traversing from the boundary to the center of the 

defect, and the higher values of the two scalar order parameters at the center of 

the defect as the value of (L2 ) increases from -0.5 to 5.0. Although the values of 

the scalar order parameter (S and P) are higher, the tensor order parameter Q is 

still uni axial at the defect core. 



Chapter 4 - Effect of Elastic Anisotropy on the Defect Core 92 

w 
41 
::::i 
ië :::-
c: 
41 
Cl 
W 

0.3 

0.2 

0.1 

0.0 

-0.1 

L2/L 1= -0.5 
L2/L 1 = 0.0 
L2/L 1 = 5.0 

. , . 

...... ~ ".", 

.... "'... +" 

l··· .. ·•· ,.,." ..... <" ""<",,. 

,/ ;' 
~ ,JI" 

-0.2 -1......------,-------,-------.,----------1 

-1.0 -0.5 0.0 
Dimensionless Fiber Diameter 

0.5 1.0 

Figure 57: Plot showing the variation of the three eigenvalues across the fiber diameter. The 
three different sets of eigenvalue plots are for three distinct values of L2 • The values of the 

scalar order parameters Sand P at the center of the defect increase as the value of L2 is increased 
from -0.5 to 5.0. The tensor order parameter remains uni axial at the center of the defect. 

It is clear1y apparent from the figure above that the slope of the principal eigen 

value connected to the director orientation decreases in the radial direction as we 

increase the value of L2 • This can be explained by looking at the long-range 

energy term associated with the elastic amsotropy parameter L2 [see equation 

(2.18) of chapter 2]. Using equation (2.18) of Chapter 2 tms term can be 

expressed in cylindrical coordinates as: 

[3. oS + .!.(s _ p)]2 
3 or r 3 

(4.1) 

We see that this term contains two contributions. The first part contains the 

gradient of S in the radial direction and the second term controls the uniaxiality of 

the tensor order parameter at the center of the defect. As we increase the elastic 

anisotropy parameter, the cost of elastic deformation increases and the system 

tries to minimize the long-range energy for the same amount of deformation 
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present (since the fiber texture still remains planar radial with a +1 defect at the 

center) by decreasing the gradient of the scalar order parameter S the radial 

direction, or in other words increasing the biaxial region (decreasing the uniaxial 

region) around the defect center. In addition the second term diverges to infinity 

as r -tO leading to infinite long-range energy. Therefore P = 3S at the center 

order to keep the long-range energy finite and in tum maintaining the uniaxiality 

of the tensor order parameter at the center of the defect. As mentioned before, the 

system increases the region of biaxiality around the defect center as the value of 

the elastic anisotropy parameter increases. This implies that the defect core size of 

a defect of strength + 1 increases with increase in the value of L2 • 
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Figure 58: Plot showing the effect of elastic anisotropy parameter L2 on biaxial region around a 

defect of strength + l.The two main effects of increase in the value of L2 are increase in the defect 

core radius as well as an increase in the biaxial region around the defect with an increase in the 
value ofL2 • 

This lS also clearly visible if we plot p2 [biaxiality parameter, introduced and 

used in the previous chapter, see equation (3.14) in Chapter 3] across the fiber 
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diameter of a planar radial texture for increasingL2 • Figure 58 shows the plot of 

p2 across the fiber diameter for three different values of L2' The peaks indicating 

a ring of maximal biaxiality (biaxial torus) around the + l defect are observed to 

move further apart with an increase in the elastic anisotropy parameter L2 

indicating an increase in the defect core. Furthennore the maximal biaxiality 

peaks tend to lose their sharpness and become broader with increasing L2 • This 

clearly indicates an increase in the overall biaxial region for the planar radial (PR) 

texture. This increase in the biaxial region ls an effort by system to minimize the 

long-range energy for the same defonnation but with an increased penalty for the 

defonnation withL2 going from -0.5 to 5.0. Next we study the effects of elastic 

anisotropy on the planar polar (PP) texture and on the defect of strength + ~ . 

4.2 Effect of Elastic Anisotropy (L2 ) on the Defect Core Structure of +~ Defect 

As mentioned in the previous chapters, the planar polar (PP) texture with it 

characteristic two +~ defects is the symmetry-breaking solution to our goveming 

equation for certain parametric values (see, for example, figure 36 in Chapter 3). 

When we plot the contour plot of the variation of the scalar order parameter for a 

planar polar texture, the contour hnes around the two +~ defects are elliptical in 

shape far away from the defect center as shown in figure 59. As we move inwards 

towards the center of the defect the contour Hnes become circular in shape. This 

would indicate different characteristic distances for the variation of scalar order 

parameter in two different directions. Thus, we ehose to explore the effeet of 

elastic anisotropy on the core of +~ defect for planar polar texture in two 

different directions. These two characteristie directions and the nomenclature 

used are explained in the caption for figure 60. 
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Figure 59: Contour plot of the variation of scalar order S for a planar polar texture. The elliptical 
shape of the contours is clearly visible far away from the defect center. As we move towards the 
center of the defect the contours take circular shape. 
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Figure 60: Schematic showing the two characteristic directions that we use to explore the effect 
of elastic anisotropy (L2 ) for planar polar texture. The hne starting from one end and joining the 

two defects is taken as horizontal direction represented by H and the direction perpendicular to 
this direction is taken as the perpendicular direction represented by P. 
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The hne joining the two +~ defects in the planar polar texture is taken as the 

horizontal direction and represented by H in figure 60. The other direction P is 

perpendicular to the horizontal direction H and passing through one of the defects 

as shown. Now we start the analysis of the planar polar texture by presenting a 

plot of the set ofthree eigenvalues of the tensor order parameter for three different 

values of elastic anisotropy parameter ( L2 ). 
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Figure 61: Plot showing the variation of the three eigenvalues across the fiber diameter for a 
planar polar texture. With increasing value of L2 the three eigenvalues indicate an increase in 

defect core radius and increase in biaxial region similar to that for + 1 defect of the PR texture but 
with an important difference that the scalar order parameter values Sand P at the defect center do 
not change with changes in L2 • 

The variation of eigenvalues in the horizontal direction for planar polar texture for 

three different values of elastic anisotropy parameter (L2 ), as shown in figure 61, 

indicates two phenomena similar to that seen for the planar radial (+1 defect) 

texture namely an increase in the defect core radius and an increase in the biaxial 

region around the defect with an increase in the value of L2 • In addition, there is 

an important difference in that the values of scalar order parameters Sand P at the 
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defect center do not change with a change in the value of L2 • Using equation 

(2.18) of Chapter 3 the tenn relating to the elastic anisotropy contribution in the 

long-range free energy for +~ defect can be written in cylindrical coordinates as: 

(4.2) 

In the above expressed tenn as r -tO S and Pare independent of the azimuthal 

direction and only depend on r. The above tenn, unlike that for +1 defect, 

depends on the gradient of the biaxial order parameter P in the radial direction in 

addition to the gradient of S. This tenn contains the SUffi of the squares of these 

two gmdients (( !~)' and ( :: )' J and a docrease in the gradient of S willlead to 

an increase in the gradient of P to fulfill the uniaxiality of the tensor order 

parameter at the center of the defect. Therefore, in the case of +~ defect, the 

system does not realize any benefit by changing the scalar order parameter values 

at the defect core. The only effects of increasing L2 are therefore an increase in 

the defect core and the biaxial region around the defect, as shown in the plot of 

the biaxiality parameter in the horizontal direction in figure 62(In the figure the 

biaxiality parameter does not reach zero at the defect core due to lack of 

computation precision) for three different values of L2 • Another interesting 

phenomenon that is not apparent by looking at the variation the eigenvalues (but 

is dearly visible from the biaxiality parameter plot) along the horizontal direction 

is that increase in the defect core and the biaxial region is unidirectional. In other 

words, there is no perceptible increase in the defect core and the biaxial region 

that is doser to the carbon fiber boundary but an the changes in the defect core 

and biaxial region occur towards the center region of the fiber. This is due to the 

fact that we have used a fixed boundary condition (strong anchoring at the 

boundary). This does not allow the effects on the defect core structure to diffuse 

towards the boundary and limits them to onlyone side. 
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Figure 62: Plot showing the effect of elastic anisotropy parameter L2 on biaxial region around a 

defect of strength +~ for a planar polar texture. We can clearly observe that an the effects on 

the defect core due to increase in the value of L2 from -0.5 to 5.0 are confined to only one side of 

the defect. 
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Figure 63: Plot showing the effect of e1astic anisotropy parameter L2 in the perpendicular 

direction of the defect of strength + ~ for a planar polar texture. The effects of the changes in 

L2 from -0.5 to 5.0 are more even about the defect in this direction. 
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In contrast, the effects of the increase in elastic anisotropy parameter L2 are more 

symmetrical about the defect in the perpendicular direction as compared to the 

horizontal direction due to the fact that boundary effects become less pronounced 

in the perpendicular direction. The plot of the biaxiality parameter p2 in the 

perpendicular direction is given in figure 63. This completes our analysis of the 

effect of elastic anisotropy parameter L2 the defect core of defects of strength +1 

(planar radial texture) and + ~ (planar polar texture). We end this chapter by 

summarizing our results. 

4.3 Conclusions 

A basic nanoscopic analysis of the effects of elastic anisotropy (L2 ) has 

been performed for both the planar radial and planar polar textures. The two main 

effects observed for increased elastic anisotropy are increase in the defect core 

size as well as increase in the biaxial region around the defect for defects of both 

strength + 1 (planar radial texture) and +~ (planar polar texture). Both these effects 

are due to the increased cost of elastic deformation as a result of increase in elastic 

anisotropy. The increase in the scalar order parameter (S and P) has been 

explained for + 1 defect. On the contrary, the scalar order parameter values at the 

defect core do not change for defects of strength +~ due to the fact that the 

system does not gain any advantage by increasing these values. Although this is in 

no way a complete analysis of the elastic anisotropy effects on the defect core due 

to the computation limitations involved, we expect that the observations made 

from the above results hold true in a more general sense. More detailed analysis 

would serve to add more details to these observations. 
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Chapter 5 

onclusions 

A multi-scale model of texture formation in mesophase carbon fibers based on the 

Landau de-Gennes equations has been formulated, solved, and validated. The 

model is able to reproduce frequently observed textures in the industrial spinning 

of mesophase carbon fibers. The solution to our model predicts two commonly 

observed textures, namely planar radial (PR) and planar polar (PP). A phase 

diagram showing the regions of stability for the PR and PP texture has been 

constructed. A comprehensive analysis of the transient process of texture 

formation reveals three different pathways to the formation of pl anar polar 

textures: (a) defect splitting, (b) direct nucleation of two defects, and (c) multiple 

defect annihilation. These findings provide a means to predict and control the 

cross-section of mesophase carbon fibers through control of temperature, time and 

fiber radii. A comprehensive analysis of the defect core structure for a defect of 

strength + 1 has aiso been undertaken and the results are in conformance with the 

published literature. The effects of temperature and fiber radii on the defect core 

texture of a + 1 defect have been well characterized, the main effects being that the 

defect core radius increases with increase in the fiber radii. Temperature has no 

effect on the defect core for thinner fibers whereas for thicker fibers the defect 

core increases with increase in temperature. A basic analysis of the effect of 

elastic anisotropy on the defect core texture of defects of strength + 1 and + ~ has 

aiso been performed. This analysis has provided us with sorne interesting insights 

that could form the basis for future work involving a much more detaüed analysis 

of the defect core texture for various types of defects. Although the Landau de-
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Gennes mesoscopic model has worked weIl for our simulations, it is not without 

its drawbacks. The model contains a coupling of the form: 

(5.1) 

Where ~ is the intrinsic length scale and H 1S the geometric length scale of the 

model, and Aulk and hlastic are namely the ordering potential and elastic forces 

contributions. Therefore for 1-70 the system becomes ill-conditioned as there is 
H 

no elasticity, no penalty associated with spatial variations in the director field. 

Only the ordering potential remains, which only coerces a certain degree of order. 

Another aspect that needs more attention 1S the choice of numerical methods. 

Although implicit numerical schemes are the natural choice for stiff problems 

such as the one we deal with in this work, they have an Ïnherent computational 

cost that prevents a high spatial resolution. On the other hand, the explicit 

numerical methods require relatively low computational power but suffer from 

stability concems, which render them ineffective for stiff problems. Thus a good 

compromise would be to have the best of both the worlds i.e. stability and low 

computation cost. For this purpose a stabilized explicit method like Runga Kutta 

Chebyshev would enable us to increase the performance of our integration 

scheme (time and space). This would enable us to do a more comprehensive 

analysis for certain aspects of our work where we have faced computational 

limitations. 

The numerical results obtained from this work provide a better 

understanding of the texture transformation in carbon fibers of circular cross

section. This knowledge should enable us to better control transient evolution and 

the final fiber texture. This work also lays the foundation for more detailed future 

work into defect core texture and the effects of various parameters on the defect 

core texture with better and more refined numerical schemes that reduce our 

computational cost. This work could also act as a stepping stone for texture 

analysis of the newly emerging field of nana fibers and nana scale phenomena in 

carbon fibers. 


