
Can We
Teach Computers

Magic Tricks?

Yunhao Luo
Master of Computer Science

School of Computer Science
McGill University

Montreal, Quebec, Canada

July 23, 2024

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Master of Computer Science

©Yunhao Luo, 2024

Contents

List of Figures iv

List of Tables v

Abstract vi

Abrégé vii

Contribution viii

Acknowledgements ix

1 Introduction 1

2 Literature 6

2.1 Modeling and Simulation . 6

2.2 Control Algorithm and Learning . 7

2.3 Hand Animation . 9

2.4 Works in Robotics and Neuroscience . 10

2.5 Summary . 11

3 Methodology 12

3.1 Catching and Throwing with RL . 12

3.1.1 Hand and Arm Modeling . 13

i

3.1.2 Nominal Controller Structure . 14

3.1.3 Palm Trajectory . 16

3.1.4 Inverse Kinematics . 17

3.1.5 PD Control . 17

3.1.6 Hand Pose . 18

3.1.7 Trajectory Planning . 18

3.1.8 Reinforcement Learning . 19

3.2 Card Manipulation with Optimization . 20

3.2.1 Fingertip and Card Modeling . 21

3.2.2 Codimensional Incremental Potential Contact 21

3.2.3 Bone-based Control . 22

3.2.4 Optimizing the Control . 22

3.3 Discussion on Methodology . 23

4 Result 25

4.1 Catching and Throwing with RL . 25

4.1.1 Rigid Body Simulation . 26

4.1.2 Throwing to Desired Heights . 27

4.1.3 Throwing to Hit Target . 29

4.1.4 Can Flipping . 30

4.2 Card Manipulation with Optimization . 31

4.2.1 Soft Body Simulation . 32

4.2.2 Initial Conditions . 32

4.2.3 Discretization . 32

4.2.4 Card Snapping . 33

4.2.5 Double Lift . 35

4.3 Discussion on Result . 38

ii

5 Conclusions and Future Work 39

Appendix 51

Abbreviations and Glossary of Terms . 51

Nomenclature of Card Tricks . 52

iii

List of Figures

3.1 Example of catching and throwing with reinforcement learning. 13

3.2 Arm and hand with fingers in its neutral pose. 14

3.3 The finite state machine used by our controllers. 15

3.4 The actor-critic network. 20

3.5 Tetrahedral fingertip example. 21

3.6 Regular card triangulation example. 22

4.1 Example motions produced by our controller. 26

4.2 Error distribution of catching and throwing a sphere to the desired height. . 27

4.3 Learning curve of throwing to a desired height. 28

4.4 Learning curve of catching and throwing the sphere to hit a target box. . . . 29

4.5 Distance to the center for the position of the box where the agent succeed

in or fail the hitting box task. 30

4.6 Learning curve of flipping the can. 31

4.7 Randomized card discretization example. 33

4.8 Card Snapping example. 34

4.9 Optimization history of optimizing Card Snapping in 89 trials. 35

4.10 Double Lift example. 36

4.11 Pareto front of optimizing Double Lift in 297 trials. 37

iv

List of Tables

4.1 Optimization runtime summary. 36

v

Abstract

This thesis explores the challenges of synthesizing animations of a human hand interact-

ing with various objects and aims to answer the following question: Can we teach com-

puters magic tricks? To address this question, we experiment with various methods and

present two systems for synthesizing animations of hand-object interactions. The first sys-

tem simulates a fully articulated human hand and arm catching and throwing objects in a

rigid body simulation. We design a nominal controller based on a finite state machine to

control the hand and use reinforcement learning to automatically tune the control param-

eters. The second system simulates a soft hand manipulating thin-shell cards to change

their configuration in a soft body simulation. In this system, we use optimization to find

the movement trajectory for each fingertip. As a result, we successfully train reinforce-

ment agents to complete various catching and throwing tasks using a nominal controller,

and we optimize multiple card sleights performed by fingertips simulated as soft bodies.

Hence, we believe that, with these two systems as the foundation, the ultimate goal of

teaching computers to perform magic tricks in simulation is within reach.

vi

Abrégé

Cette thèse explore les défis liés à la synthèse d’animations d’une main humaine in-

teragissant avec divers objets et vise à répondre à la question suivante : peut-on ap-

prendre aux ordinateurs à faire des tours de magie? Pour répondre à cette question,

nous expérimentons diverses méthodes et présentons deux systèmes pour la synthèse

d’animations d’interactions main-objet. Le premier système simule une main et un bras

humains entièrement articulés, attrapant et lançant des objets dans une simulation de

corps rigides. Nous concevons un contrôleur nominal basé sur une machine à états finis

pour contrôler la main et utilisons l’apprentissage par renforcement pour régler automa-

tiquement les paramètres de contrôle. Le deuxième système simule des bouts de doigts

manipulant des cartes à enveloppe mince pour modifier leur configuration dans une

simulation de corps mou. Dans ce système, nous utilisons un processus d’optimisation

pour trouver la trajectoire de mouvement de chaque bout de doigt. En résumé, nous

réussissons à entraı̂ner des agents de renforcement à accomplir diverses tâches d’attraper

et de lancer en utilisant un contrôleur nominal, et nous optimisons plusieurs tours de

cartes réalisés par des bouts de doigts simulés en tant que corps mous. Par conséquent,

nous croyons qu’avec ces deux systèmes comme fondement, l’objectif ultime d’apprendre

aux ordinateurs à exécuter des tours de magie en simulation est à portée de main.

vii

Contribution

The thesis writing are supervised and advised by Professor Paul Kry at the McGill Uni-

versity and Professor Sheldon Andrews at the École de technologie supérieure.

The first project of catching and throwing mentioned in Section 3.1 and Section 4.1

are adapted from Luo et al. (2021), which is an original work of mine in collaboration

with the fellow student Kaixiang Xie at McGill University. This project is supervised

and advised by Professor Paul Kry and Professor Sheldon Andrews. I am responsible

for designing and implementing the controller and simulation framework, modeling the

hand and arm, applying reinforcement learning to the controller, conducting major exper-

iments, and writing the paper. The fellow student Kaixiang helps me in designing and

training the reinforcement learning agent as well as conducting the experiments relating

to reinforcement learning.

The second project of optimizing card manipulation mentioned in Section 3.2 and Sec-

tion 4.2 is an original work of mine supervised by Professor Paul Kry and Professor Shel-

don Andrews, where I implemented all code and conducted all experiments.

viii

Acknowledgements

All project are supervised and advised by Professor Paul Kry at the McGill University

and Professor Sheldon Andrews at the École de technologie supérieure.

Especially, the project of catching and throwing mentioned in Section 3.1 and Sec-

tion 4.1 was funded in part by NSERC Discovery 2018-05665, and in collaboration with

the fellow student Kaixiang Xie at McGill University.

ix

1
Introduction

Synthesizing realistic hand animation has always been an interesting but challenging task

in the field of computer animation. To synthesis convincing hand animation, we would

like to teach computer how to do hand manipulation by itself in physical simulation.

Amongst the many hand motions, we choose to synthesis catching, throwing and in-hand

card manipulations. These cases are chosen for their complex motion and rich involve-

ment of fingers. Hence, if a computer can master them all, it is reasonable to say they can

master more general hand manipulation tasks.

Various methods have been proposed in the Computer Graphics community for mod-

eling and animation virtual human hands in the past decades. Related works have also

been done on physical anthropomorphic hands in the Robotics community. Amongst

the many different methods, including but not limited to motion capturing, data-driven

synthesis, physics-based algorithms, and surface modeling. But none of them have con-

1

structed a system for synthesizing animations of fully articulated hand model interacting

with thin shells in real time. Therefore, we aim to fill this gap by synthesizing animation

of human hands doing complex tasks.

First, we simulate a fully articulated human hand with an arm for catching and throw-

ing objects in a rigid body simulation. We design a nominal controller for animating a

fully-articulated physics-based human arm model including the hands and fingers, where

all joints are preserved and animated, to catch and throw objects. Here, the term nominal

controller refers to a minimal functional finite state machine controller, which should be

assisted by reinforcement learning to achieve its full potential. The controller is based on a

finite state machine that defines the target poses for proportional-derivative (PD) control

of the hand, as well as the orientation and position of the center of the palm using the so-

lution of an inverse kinematics solver on the palm and the arm. Especially, the PD targets

of the fingers are generated using a mixture of base hand poses. We then use reinforce-

ment learning (RL) to train agents to improve the robustness of the nominal controller

for achieving many different goals. Imitation learning based on trajectories output by a

numerical optimization is used to accelerate the training process. The success of our con-

trollers is demonstrated by a variety of throwing and catching tasks, including flipping

objects, hitting targets, and throwing objects to a desired height, and for several different

objects, such as cans, spheres, and rods.

Creating convincing animations of human catching and throwing is important for

many computer animation, virtual reality, and video game applications. While the most

straight forward method is to use motion capture, this approach may require capturing

many individual motion clips, or blending between multiple clips so that many differ-

ent scenarios can be handled. Another strategy is to synthesize hand and arm motions

using procedural and learning-based approaches. Catching and throwing control has

been previously investigated in this context, but most approaches use a simplified hand

model that is not fully articulated. Rather, our approach uses a fully articulated arm and

2

hand model to generate physically plausible and human-like animations for throwing

and catching. At the core of our method is a nominal controller that can catch and throw

objects of different shapes, and for a variety of different tasks. With the help of reinforce-

ment learning, controller parameters are learned such that the controller may be used for

many different simulation states.

Inspired by the work of Pollard and Zordan (2005), the controller is structured as a

finite state machine (FSM) that sets the desired hand pose and palm position and orienta-

tion for several phases: approaching, pre-grasp, stable grasp, and release. This is likewise

similar to the work of Andrews and Kry (2013), but with a focus on catching and throw-

ing rather than in-hand manipulation. Each state of the FSM defines a Hermite curve

specifying the trajectory of the target position for the hand to track, as well as the target

rotation. Given the target position and rotation, inverse kinematics (IK) is used to solve

for the corresponding joint angles. Most of the control points for Hermite curves are com-

puted by the planning algorithm, except those of the THROW state, which are controlled

by the reinforcement learning agent. The main idea is that it is relatively straightforward

to set up the planner to produce a trajectory resembling what is necessary to accomplish

the task, and the tacit knowledge necessary for successful completion of the task can be

acquired through reinforcement learning.

Our goal is to create a controller that can be easily applied to human hand models to

generate natural catching and throwing animations by focusing on three objectives:

• Simple parameter tuning. The user should only need to adjust a small number of

control parameters, and the remaining ones are automatically determined.

• Natural motion. The catching and throwing motions generated by our system should

be convincing, with smooth and continuous trajectories, no abrupt unnatural move-

ments, and without awkward poses and joint rotations that are not humanly possi-

ble.

3

• Robustness. The controllers should be able to handle several different types of ob-

jects, and in this work, we work with spheres, cylinders, cuboids, and clubs; the

shape of these objects can vary within a certain tolerance.

Second, we use optimization methods to make human hand doing more complex

magic tricks in a soft body simulation. For the card magic tricks, we referred to the classic

book by Hugard and Braue (1974).

Card magic is the art of deceiving. In a magic show, each individual unit performance

is considered a trick, and in the course of a card trick, sleights of hands are used as se-

cret processes to manipulate the card in a deceiving way. When employing the sleights,

techniques are used to perfect the details. Meanwhile, the flourishes are used to garnish

the performance. In this thesis we mainly explore two sleights: Card Snapping, which

means snapping cards apart evenly, and Double Lift, which means lifting 2 cards as one.

A nomenclature of card tricks can be found in the Appendix.

Cards are hard to simulate due to their relatively small dimensions and rich defor-

mation behaviour. The cards used in card manipulation are called playing cards, which

includes a variety of different card formats. Amongst them, we choose to simulate the

poker card, which is the most-used format in modern card magics. A standard poker

card typically has dimensions of 88.9 mm long by 63.5 mm wide. The thickness of poker

cards are not specified in a universal standard and can approximately range from 0.14 mm

to 0.36 mm. Hence, we choose the median value 0.25 mm as the default card thickness

in our simulation. The playing cards are thin and delicate comparing to the dimensions

of human hands. To preserve their fidelity in simulation, we use deformable thin shells

with thickness to model these poker cards.

Human hands have complex biological structures, and cards are relatively thin com-

paring to the hand. Therefore, careful modeling is critical to the success. We model the

fingertips of the hand as deformable 3D body using tetrahedral mesh and the card as

deformable thin shell using triangle mesh. To ensure the hand and card are penetration

4

free, we use the codimensional incremental potential contact (Codim-IPC) model by Li

et al. (2021). Additionally, to simulate such delicate scenarios, careful parameter tuning

and model discretization are important. We explore a wide range of simulation parame-

ters and different discretization of both hand and card. Besides, the initial conditions of

the card and hand are important to the stability and efficiency of simulation. Hence, we

warm start the simulation by saving a suitable initial state to speedup the simulation and

avoid numerical turbulence.

To control the hand model with such a high degrees of freedom, we use optimization

method with bone based control. Full simulation of joints and muscles has been done

before by Lee et al. (2019); they use two-level imitation learning algorithm that handles a

full-body musculoskeletal model with 346 muscles. But a full simulation is too time con-

suming for our uses. Instead, we control part of the tetrahedral model to drive the entire

hand. This is analog to how human bones rotating around the joints and driving the sur-

rounding tissues. The center part of the mesh are driven by Dirichlet boundary condition

to simulate the mechanisms of human joints and muscles. For the optimization, consid-

ering the expensive time and space cost of soft body simulation, we use Multiobjective

Tree-structured Parzen Estimator (MOTPE) by Ozaki et al. (2020), which is designed to

address expensive multi-objective optimization problems.

Overall, we build two different systems to simulate different complex hand manip-

ulation jobs. One is a nominal controller assisted by reinforcement learning to complete

complex catching and throwing, and the other is an optimization framework of synthesiz-

ing in-hand card manipulation. They both provide novel ways to approach synthesizing

animation of human hand doing complex jobs.

5

2
Literature

A complete physics-based system that synthesizes convincing hand animation can gener-

ally be decomposed into several components: hand modeling, simulation environment,

and control algorithm. Multiple related surveys already exist. Wheatland et al. (2015) pre-

sented a survey on virtual hand and finger modeling and animation. Zhang et al. (2020)

presented a survey on robotic hands. Kwiatkowski et al. (2022) presented a survey on the

reinforcement learning methods in character animation. Therefore, this report focus more

on the more recent technological advancements in hand control and animation while still

accounting previous works.

2.1 Modeling and Simulation

Hand modeling is the foundation of hand control and animation. Under physical sim-

ulation, proper joint constraints and shaping of the hand components can be critical to

6

generating realistic hand motion sequences. Various hand models were presented in the

Graphics community, which can be found in the aforementioned survey by Wheatland

et al. (2015). Meanwhile, different types of robotics hand were created for fitting piratical

purpose in the Robotics community. Abondance et al. (2020) created 4 finger deformable

robotic hand that has strong grasping capabilities. Xiong et al. (2016) designed and im-

plemented an anthropomorphic hand that can replicate human grasping functions.

Physical simulation techniques are critical in creating a fast and reliable environment

for hand animation. A single interaction between a human hand and an object can create

rich contact information in reality, which can be considered as continuous at the macro

level. Simulating such continuity could be a challenging task. In addition, human hand

is deformable on surface and flexible in terms of joint connection. Jain and Liu (2011a)

applied soft tissue deformation only at the site of contact, and concluded that soft contact

provides robustness and is important to produce more realistic motion. Dexterous hand

manipulation tasks can involve fast motion and thin, delicate objects. Lan et al. (2022)

combined projective dynamics and the IPC to simulates complicated models on the GPU

at an interactive rate or even in real time.

2.2 Control Algorithm and Learning

Control algorithm drives the hand model to complete desired task in physical simulation,

and can consist of multiple layers. Witkin and Kass (1988) proposed that by specifying

the desired tasks as a series of spacetime constraints, the control can be treated as an

optimization problem. ElKoura and Singh (2003) proposed a data-driven approach to re-

construct sympathetic hand posture, and they used this approach to build a procedural

virtual guitar player. Kry and Pai (2006) captured motion and contact forces altogether

for hand-object interactions, estimated the reference trajectory and joint compliance from

captured data, and then resynthesised the detailed hand motion in physical simulation.

Ye and Liu (2012) synthesized detailed hand movements of the captured motion of full-

7

body and object of interest, by randomly tree-searching a set of feasible contact point tra-

jectories and then reconstructing their hand motions. Mordatch et al. (2012a,b) used con-

tact invariant optimization to synthesize complex human full-body behavior and hand

manipulation. Kim et al. (2021) added modulated assistive forces to enhance the perfor-

mance of optimization, and the resulting control policy can even work with the assis-

tive forces. Smith et al. (2020) combined motion capture and physical simulation, and

can track complex hand gesture with high fidelity using 43 or more cameras. Li et al.

(2022b) used graph convolutional network with pyramid image feature attention module

and cross hand attention module to reconstruct two interacting hands from a single im-

age. Lee et al. (2019) build a comprehensive musculoskeletal model which encompasses a

full-body musculoskeletal structure with 346 muscles, enabling the simulation of a wide

spectrum of human movements under various anatomical conditions, such as differences

in bone geometry, muscle strength, and flexibility. It is possible to tailor and apply this

model to local structures like human hands.

Learning based methods have recently gained much popularity in simulation and con-

trol. Peng et al. (2018) adapted reinforcement learning methods to learn robust control

policies that can imitate a variety of input sample motions while achieving user-specified

goals. Juravsky et al. (2022) further integrated natural language processing to develop a

language-directed controller for character animation using an adversarial imitation learn-

ing approach. Zhang et al. (2021) presented a system to synthesize animation of hand

manipulating various virtual objects in real-time with a new hand-object spatial repre-

sentation. On each frame, they fed current frame finger pose, hand trajectory, and values

of various virtual sensors into their trained neuron network ManipNet to predict a new

finger pose for the next frame as an auto-regressive model. Chen et al. (2022) used a

model-free reinforcement learning to learn reorienting objects using a robotic hand un-

der physical simulation. Their policy directly takes a point-cloud observation as input

and then outputs the incremental action to the current finger pose. They claimed that it is

8

possible to learn control strategies for general in-hand object re-orientation that are shape-

agnostic. However, most learning based method typically requires a large collection of

training data. Inspired by Goodfellow et al. (2020), many works are using generative ad-

versarial networks (GAN) to generate more sample motions from limited collection. Li

et al. (2022a) presented a generative model that can learn from a single motion sequence.

Xu and Karamouzas (2021) presented a GAN-like method that enables interactive control

tasks. Meanwhile, autoencoders provide an elegant approach to reduce the dimensional-

ity. Starke et al. (2022) used a periodic autoencoder to learn periodic features from large

unstructured data collection.

2.3 Hand Animation

In terms of the overall system of generating hand animation, synthesis of complex hand

motions has been studied by several previous works in computer graphics. Chemin and

Lee (2018) use a reinforcement learning approach to train 2D physics-based characters to

juggle multiple balls. Their controller relies on continually switching between throwing

and catching modes. Earlier work by Jain and Liu (2009) used an optimization frame-

work to generate physically plausible trajectories for objects that match character motion,

such as juggling. Their approach is efficient enough for interactive editing of the tra-

jectories, yet real-time control in a dynamics setting was not demonstrated. Yeo et al.

(2012) combine gaze tracking with hand, head, and upper body control to generate plau-

sible hand-eye coordination during catching tasks. Other work has demonstrated that

low-dimensional feedback controllers are often sufficient for performing simple ball hit-

ting tasks Ding et al. (2015). Dribbling basketballs has been studied by Liu and Hodgins

(2018), which requires precise and agile control of the fingers. They propose learning the

arm and locomotion control separately, where the arm controller is responsible for hand

position and manipulation of the ball. Their approach combines trajectory optimization

with reinforcement learning to learn a robust control policy.

9

Grasping and hand animation is a related topic that has been extensively studied in

computer graphics, and Wheatland et al. (2015) provide an excellent survey. Ye and Liu

(2012) synthesized realistic hand animations that matched body and object motions cap-

tured by an optical marker system while satisfying frictional contact constraints. Pollard

and Zordan (2005) synthesized grasping and handshake animations using a a finite state

machine that controlled the target pose. Andrews and Kry (2013) similarly based their

controller on a finite state machine, but learned control policies for a variety of in-hand

manipulation tasks. Liu (2009) performed dexterous manipulation of objects given an

initial grasping pose and a desired object trajectory.

Simulation of detailed hand motion like magic tricks has rarely been studied. Li

et al. (2020, 2021) used incremental potential contact (IPC), to provide intersection- and

inversion-free at large time step, and showed an example of perfect riffle shuffling, using

hard-coded application of forces, but without the involvement of hands.

2.4 Works in Robotics and Neuroscience

Hand manipulation have also been studied in robotics. Kober et al. (2012b) learn a catch-

ing control policy for a robotic apparatus with a net. They further demonstrate that a con-

trol policy for hitting a ball can handily be transformed into one for catching a ball. Kober

et al. (2012a) perform robotic catching and juggling using a state machine to open and

close the gripper. Their approach also benefits from an approach that combines vision-

based tracking and inverse kinematics. Related work by Kim et al. (2014) uses a Gaussian

mixture model to plan grasping poses for catching. Belousov et al. (2016) demonstrate

that a robust catching policy alternates between reactive and predictive strategies based

on the amount of observation noise. Lampariello et al. (2011) compute control parameters

offline for many different catching scenarios using a constrained optimization framework,

and real-time control is then realized by regression to estimate optimal control parame-

ters.

10

Work in the neuroscience community has analyzed human arm motion for catching

tasks to identify district phases Kajikawa et al. (1999). A key insight is that the motion

depends on whether or not an object is being caught with caution, and the catching mo-

tion may vary according to the velocity of the object. Salehian et al. (2016) leverage these

insights to perform “soft” catching control, which improves the success rate of grasping

fast moving objects. The state machine used by our controller also imitates the phases of

catching observed by Kajikawa et al. (1999). Additionally, they noted straight trajectories

were used for movement of the palm in pre-catching phases, and our controller uses a

similar strategy to compute trajectories for the palm based on predicted object motion.

2.5 Summary

Although many works exist in the relevant fields, simulation of detailed hand motion like

magic tricks has rarely been studied. In our works, in contrast to all the works discussed

above, we do not target robots or build on known neuromuscular control models. Instead,

fine adjustments necessary for successful motion control are either learned starting from

an easily specified nominal plan for the control or optimized using a reward function.

In addition, we stress the involvement of the fingers, because we believe the posture of

fingers, the orientation of the palm, and the overall coordination of all joints are critical to

synthesizing successful realistic hand motions. Exceptionally, our catching and throwing

simulation runs in real-time at 60 frames per second.

11

3
Methodology

To approach the target of animating hand doing complex jobs, we attempted two dif-

ferent paths as explained in the following two sections. First, is a nominal controller

assisted by reinforcement learning synthesizing catching and throwing different objects.

Second, is an optimization based controller synthesizing manipulation of cards by finger-

tips. Note that they are simulated in different setups as for achieving different goals. This

is because we found that during our experiments the reinforcement learning-assisted con-

troller tends to handle dynamic and repetitive tasks more effectively, while the optimization-

based controller can often achieve higher precision in delicate simulation scenarios.

3.1 Catching and Throwing with RL

We design a nominal controller assisted by reinforcement learning for animating an ar-

ticulated physics-based human arm model, including the hands and fingers, to catch and

12

Figure 3.1: Example of catching and throwing with reinforcement learning.

throw objects as shown in Figure 3.1. The controller is based on a finite state machine that

defines the target poses for proportional-derivative control of the hand, as well as the ori-

entation and position of the center of the palm using the solution of an inverse kinematics

solver. We then use reinforcement learning to train agents to improve the robustness of

the nominal controller for achieving many different goals. Imitation learning based on

trajectories output by a numerical optimization is used to accelerate the training process.

The success of our controllers is demonstrated by a variety of throwing and catching

tasks, including flipping objects, hitting targets, and throwing objects to a desired height,

and for several different objects, such as cans, spheres, and rods.

3.1.1 Hand and Arm Modeling

For simulating catching and throwing, our hand model includes a fully articulated arm

and hand with 32 degrees of freedom (DOF) in total, as shown in Figure 3.2 where joints

are represented by line segments with different colors. The upper arm is connected to a

fixed shoulder (not shown in the figure) with a ball joint. The angular limits and anchor

points of the joints are similar to that of human joints. The shape, size, and mass of the

model are based on the 50th percentile of American male NASA (1995). Following the

work of Pollard and Zordan (2005), we use a simple mesh to approximate collisions with

the human hand for a better grasp (i.e., the cup-like shape of the palm) which is a common

practice for real-time simulation with contact as suggested in Bender et al. (2014). The

motion of the whole model is driven relative to a neutral pose, which provides good

parametric control of joints over a range of motion suitable for catching.

13

ball joint with 3 DOF

hinge joint with 1 DOF

Figure 3.2: Arm and hand with fingers in its neutral pose.

3.1.2 Nominal Controller Structure

The scheme of nominal controller is defined as a finite state machine as shown in Fig-

ure 3.3. This state machine determines the trajectory of the center of the palm (position

and orientation) at each frame, as well as the timing for opening and closing the hand.

The palm trajectory is generated by a Hermite curve, which is then tracked using IK.

Whereas the hand posture is tracked using PD (proportional-derivative) control and a set

of predefined poses. PD control is a type of feedback control system commonly used in

engineering and robotics. It applies torques or forces based on its two components. Its

proportional control component reacts to the current error, which is the difference be-

tween the desired target state and the current state. The derivative control component

reacts to the rate of change of the error, for example, the velocity of the object under con-

trol. A detailed explanation of PD control is given in Section 3.1.5.

The FSM consists of four states:

• CATCH: The hand opens and moves to the interception point to intercept the projec-

tile at time hit time, which is dynamically calculated by the nominal controller for

each catch. The hand closing is triggered by the first collision between the hand and

the projectile since the beginning of each CATCH state, either in this state or in the

following MIDDLE state.

14

CATCH MIDDLE

GOBACK THROW

t > hit_time

t > 0.1s
t > 0.2st > 0.2s

Figure 3.3: The finite state machine used by our controllers.

• MIDDLE: The hand decelerates to zero velocity while moving the projectile to the

neutral position, which is suitable for throwing the projectile.

• THROW: The hand throws the projectile. See Section 3.1.8.

• GOBACK: The hand goes back to a position which is suitable for the next catch. See

Section 3.1.7.

The timing of the transition between states is defined as in Figure 3.3, where t is the

elapsed time since the beginning of each state. These values are based on our intuition

of how humans handle projectiles, and they were adjusted to produce natural motion for

simple cases, such as catching and throwing a ball.

Note that the Hermite curves specify the trajectory of the center of the palm, and in-

verse kinematics (Section 3.1.4) is used to to solve for the corresponding joint angles of the

arm. All parameters defining the curves for each state are either specified by the nom-

inal controller or computed by reinforcement learning. Rotational motion is generated

using spherical linear interpolation (SLERP) between the beginning and ending rotations

of each state. Most target rotations are specified by the nominal controller, except for the

final rotation of the palm during the THROW state, which is determined by an RL agent.

Similarly, the timing of opening the hand during THROW is a parameter that is automati-

cally adjusted by the RL algorithm, which is explained in more detail later in Section 3.1.8.

Conversely, during the CATCH and MIDDLE states, the hand closes when contact between

the hand and the projectile is detected.

15

3.1.3 Palm Trajectory

In each state, we calculate a trajectory for the palm of the hand, which is defined by a

Hermite curve that interpolates the position, orientation, and velocity of the palm from

an initial configuration to the target configuration at the end of the state. PD control is

used to actuate the joints of the arm and wrist in order to drive the hand to that target.

In order to ensure a smooth and natural motion for the arm, intermediate PD joint angle

targets are computed by interpolating along the Hermite curve for the duration of the

state.

At each time-step, an intermediate target configuration for the palm is computed in

the time interval [t0, t1], where t0 is the time when the controller transitioned to the current

state, and t1 is the time when the controller will transition to the next state.

The intermediate position of the palm p(t) at some time t ∈ [t0, t1] is thus computed as

p(t) = (2t3 − 3t2 + 1)p0 +∆t(t3 − 2t2 + t)v0

+ (−2t3 + 3t2)p1 +∆t(t3 − t2)v1 ,

(3.1)

where ∆t = (t1 − t0), p0 is the initial position of the palm, v0 is the initial velocity, p1

is the ending position, v1 is the ending velocity, and p(t) gives the desired position at

time t ∈ [t0, t1]. However, for the orientation of the palm, SLERP is used to compute an

intermediate rotation.

The Hermite curve ensures that both the position and velocity of the hand are contin-

uous during the time interval. For the CATCH, MIDDLE, and GOBACK states, the planning

algorithm computes the parameters of the Hermite curve according to the position, ori-

entation, linear and angular velocity of the projectiles. Further details on catch planning

are discussed in Section 3.1.7. For the THROW state, the parameters are controlled by the

reinforcement learning agent and further details are discussed in Section 3.1.8.

16

3.1.4 Inverse Kinematics

The spline and SLERP interpolations compute the target position and orientation of the

palm at any time t. Our controller then uses a damped least squares IK algorithm Buss

and Kim (2005) to solve for the joint angles of the shoulder, elbow, and wrist joints. This

gives an update for the joint angles at each time step, such that

∆θ = JT (JJT + λ2I)−1∆e , (3.2)

where J is the end effector Jacobian matrix, I is a identity matrix, λ is a non-zero damping

constant, and ∆e is a vector encoding the transform from the current palm configuration

to the target configuration. Note that the position and orientation of the end effector

(i.e., the center of the palm) are weighted differently in the Jacobian matrix J for better

catching. Hence, ∆θ gives the changes for the joint angles to track the desired trajectory

of the palm.

3.1.5 PD Control

Proportional-derivative (PD) control is used to perform low-level control of the arm and

hand by computing joint torques that actuate the joints toward the desired pose. At each

time step, a torque is computed for each articulated degree of freedom i, such that

τi = kp

(
θ̃i − θi

)
︸ ︷︷ ︸

∆θi

+kdθ̇i, (3.3)

where kp is the joint stiffness, kd is the damping of the joint, θ̃i and θi are the target angle

and current angle of the degree of freedom, respectively, and θ̇ is the relative angular

velocity of the joint. The control torque τ is then applied equally and oppositely to bodies

coupled by the joint. Furthermore, the torques are clamped so that the value does not

exceed typical human strength.

17

For every joint, the kp and kc is calculated by

kp = wp mjoint
2 + kbase , kd = wd mjoint , (3.4)

where wp and wd are constant scaling factors for the stiffness and damping, respectively,

mjoint is the total mass driven by the joint, and kbase is a constant base stiffness. The values

wp = 500, wd = 0.2, and kbase = 0.1 are used for all experiments, but they can be easily

adjusted to simulate different muscle strengths. We use PD control on IK results smoothly

interpolated by Hermite curves. And from the intuition that the hand grasp is tighter

as it closes harder, we set the PD target of a closing hand to fit a smaller shape than the

projectile. Additionally, we expect the learning process should compensate the inaccuracy

of PD.

3.1.6 Hand Pose

We found that performance is improved by applying the IK control only for positioning

the joints from the shoulder to the wrist. This gave sufficient control from positioning the

wrist, whereas the posture of the fingers and thumb were more effectively controlled by

using a set of predefined poses. That is, the target hand pose is one of three predefined

poses: neutral, open, and closed. The neutral pose is used during the GOBACK phase. The

closed pose is used for the CATCH and MIDDLE phases of the controller, whereas the hand

model transitions to the open pose for the THROW phase. To smoothly transition between

the different hand postures, we use SLERP to generate intermediate joint angle targets for

the PD controllers of the fingers to achieve natural opening or closing motions.

3.1.7 Trajectory Planning

Given the initial position and velocity of the projectile, our controller predicts the trajec-

tory of the projectile. The intersection of the trajectory and the interception plane (the

plane where we want the hand to catch the projectile) is the target intersection point. For

18

the shapes whose orientation also matters, we also take the orientation into account. After

we find the interception point, the end position of the Hermite curve for the CATCH state

is simply the interception point. The end velocity of the curve is set by the nominal con-

troller to 70% of the velocity of the projection at the interception point, which is intuitively

similar to human catching behavior and makes the projectile less likely to slip away. The

start position and velocity of the curve are the position and velocity of the hand when

the controller just enters the CATCH phase. As for the orientation, our controller aligns

the normal of the dorsal side of the hand with the velocity of the projectile at the inter-

ception point. Additionally, for projectiles similar to can or club, our controller aligns the

z-axis of the hand (as in the right-hand rule) with the longest axis of the projectile at the

interception point of the catch.

For the MIDDLE state, the end position is the neutral position while the end velocity is

zero. For the GOBACK state, the end position is the projection of the hand position on the

rest plane (y = 0.6 m) when the controller just enters the GOBACK state. The end velocity

is also zero. The start positions and velocities of curves are the positions and velocities of

the hand when the controller enters these states.

3.1.8 Reinforcement Learning

We use a reinforcement learning agent to control the throwing process, for example, the

parameters of the Hermite curve of the THROW state. The state vector is (ph, rh, pp, rp),

where ph and rh is the hand position and rotation vector in the world frame, pp is the

object position in the hand’s frame, and rp is object rotation vector in the world frame.

The action vector is (doffset, rtarget, topen), where doffset controls the throwing direction, rtarget

controls the hand rotation, and topen is the time when opening the hand. The output

(ph, rh, pp, rp) is sent to the nominal controller to plan the trajectory and set the PD targets

for the hand and arm. The reward function varies with different task (see Section 4.1).

19

state

action

state action

Q(s, a)

Actor Critic

Figure 3.4: The actor-critic network.

We use deep deterministic policy gradient (DDPG) by Lillicrap et al. (2019) to train

our agent. DDPG is chosen because it is well-suited for problems with continuous action

spaces as we have here. Furthermore, its model-free, off-policy approach enhances the

sample efficiency and allows learning from experiences. The structure of the actor and

critic networks is shown in Figure 3.4. Each fully connected layer has 64 nodes. We use

ReLU activation as the activation function except for the output of the action network,

where we use tanh as the activation function.

3.2 Card Manipulation with Optimization

We develop an optimization-based controller to simulate card manipulation tasks done

by soft fingertips. The fingertip is modeled as a tetrahedral mesh and simulated via the

Finite Element Method (FEM), while the cards are represented as two-dimensional thin

shells. These thin shells and tetrahedral meshes are coupled using the Codim-IPC (codi-

mensional incremental potential contact by Li et al. (2021)) to enhance interaction fidelity.

A bone-based controller is employed to drive the central parts of the hand model, ef-

fectively simulating the movement of human bones and the consequent driving of sur-

rounding soft tissues. The controller’s parameters are optimized using MOTPE (Multi-

Objective Tree-structured Parzen Estimator by Ozaki et al. (2020)), with objective func-

20

(a) Surface of the fingertip. (b) Clip of the fingertip.

Figure 3.5: Tetrahedral fingertip example.

tions that captures the dynamic state of the cards at each step of manipulation, ensuring

realistic and precise animation outputs.

3.2.1 Fingertip and Card Modeling

For simulating card manipulation, we use tetrahedral mesh to model the fingertips which

directly interact with the cards. The fingertips are tetrahedral ellipsoid as shown in Fig-

ure 3.5, where each fingertip consists of 6851 cells and 1760 points. The cards are modeled

as 2-dimensional triangulated grids with rounded corners as shown in Figure 3.6, where

each card consists of 141 triangles and 93 vertices in total. A regular pile of poker cards

has 54 such cards perfectly aligned and stacked together.

3.2.2 Codimensional Incremental Potential Contact

To address the coupling of 3-dimensional hands and 2-dimensional cards, we adapt the

Codim-IPC by Li et al. (2021). Interaction of hands and cards involves a large number of

contacts between objects of different dimensions, especially 2-dimensional thin shells and

3-dimensional hands. Traditional methods often struggle with these interactions by in-

ducing numerical instability or inaccuracies, which can lead to interpenetration between

object or unnatural contact forces on surfaces. Codim-IPC addresses these issues by incre-

21

Figure 3.6: Regular card triangulation example.

mentally updating the simulation’s potential energy of all types with their barrier contact

model and additive continuous collision detection method.

3.2.3 Bone-based Control

Different from controlling the movement of rigid bodies in the Section 3.1 where we ap-

ply torques directly on rigid parts to make them rotate around their respective joints as a

whole, controlling the soft bodies requires some portions of the bodies remain soft to de-

form when having contacts with the other bodies. This can be solved by applying a mov-

ing constraint on a set of chosen points inside the soft bodies. We use Dirichlet boundary

condition to drive the inner parts of the hands as rigid bones doing rigid movements as in

the Section 3.1 while maintaining the superficial parts soft as muscles and skins to interact

with the soft thin-shell cards.

3.2.4 Optimizing the Control

In a most straight forward way, we can optimize a complete magic trick as a whole where

the decision variables are the trajectories of bones and the multi-objective function spec-

ifies the differences from target card configuration on each checkpoint where the card

22

configuration matters. However, this is almost impossible considering the size of prob-

lem. As mentioned in Chapter 1, magic trick can be decomposed into multiple sleights.

Hence, for each individual sleight, we tailor the decision variables and objective function

to fit the specific goal card configuration. That is, each sleight starts with an initial con-

figuration of hand and cards, the decision variables are the trajectories of bones and the

objective function describes the difference from the end card configuration to the target

card configuration after the expected time to finish the sleight elapsed in the simulation.

Considering the expensive cost of Codim-IPC simulation with complex geometries,

we use the MOTPE to optimize the bone-based control of hand, because the MOTPE is

designed to search the high-dimensional space efficiently using a tree-structured Parzen

estimator to provide promising solutions, and generally requires less trails comparing the

other optimization methods. In addition, MOTPE can also provide a list of best trials for

exploring multiple ways to perform the task.

In addition, similar to the catching and throwing controller problem, to leverage the

high cost of dealing with the high dimensionality during optimization, we set constrains

for the decision variables by making a reasonable guess of its possible range. That is,

when snapping cards apart, the finger should not release the card by moving in the direc-

tion perpendicular to the card surface, and when lifting cards, the upward component of

the average velocity of the fingertips must be positive and no faster beyond human abil-

ity. Hence, by providing reasonable domains for the decision variable, the optimization

via MOTPE can be fast and reliable.

3.3 Discussion on Methodology

In this chapter, we present the methodologies of our two systems for animating a human

hand performing various tasks in physical simulations. Our first system employs a fi-

nite state machine and PD control to manage the hand’s movements, with reinforcement

learning further enhancing the controller’s robustness and adaptability for various tasks.

23

Our second system uses a bone-based controller, optimized via the MOTPE, to obtain

detailed control parameters that ensure effective card manipulation. Although the two

systems are constructed upon different simulation settings and object models, they share

the idea of allowing the computer to automatically generate control parameters, which

are usually hard or time-consuming for humans to work on, in synthesizing hand-object

interactions.

24

4
Result

Here we present the various results for the two systems introduced in the Chapter 3.

In the following sections, we report the detailed parameters for simulation, reward func-

tions or objective functions for each scenario, error analysis, learning curves, optimization

statistics, and illustrations of the motions generated by our controllers.

4.1 Catching and Throwing with RL

For the catching and throwing, we present three scenarios in which our controller learns

a desired catching and throwing motion: throwing to a desired height, throwing to hit

a target, and flipping an object. Below we describe the simulation environment, and the

reward necessary for each scenario. Our controller can do the catch-and-throw in consec-

utive loops just like in the acrobatics. And the reinforcement learning greatly improves

the performance of our controller. Starting from the same initial configuration on the same

25

Figure 4.1: Example motions produced by our controller.

task, the nominal controller with hand-tuned parameters usually fails at the 2-5th loop of

catch-and-throw, but the RL controller with learned parameters appear to be able to loop

infinitely. The example motions produced by our controller are shown in Figure 4.1 line

by line and the details of these motions will be explained in their respective sections.

4.1.1 Rigid Body Simulation

Physics simulations are performed using ode4j, which is a java port of the Open Dynamic

Engine. All experiments use a time step of h = 0.2 ms , which is the same as Pollard and

Zordan (2005). We found that is was necessary to carefully tune simulation parameters

in order for successful grasping of ballistic objects. Specifically, the error reduction pa-

rameter (ERP) and constraint force mixing (CFM) term, which are used by the engine for

Baumgarte constraint stabilization, were tuned to give the behavior of compliant contacts.

We note that other researchers have also noted the importance of compliant contacts for

26

Error (meter)

0

25

50

75

100

-0.32
-0.22

-0.12
-0.02 0.08 0.18

Co
un

t

Figure 4.2: Error distribution of catching and throwing a sphere to the desired height.

successful grasping of objects Jain and Liu (2011b). A stiffness coefficient of ks = 5 × 104

was used for all contact constraints. A critical damping coefficient was also computed,

such that kc = 2
√

ks(m1 +m2) where m1 and m2 are the masses of the two colliding bod-

ies. The ERP and CFM parameters are then computed as

ERP =
hks

hks + kc
, CFM =

1

hks + kc
. (4.1)

The simulator resolves collision by creating a temporary contact joint which applies

forces to the two colliding bodies. The contact joint is used to detect collisions between

the hand and projectile as mentioned in Section 3.1.2.

Additionally, a small amount of world damping is applied to the linear and angular

velocities of all bodies in order to model air resistance. A linear velocity damping of 0.01

and angular damping of 0.03 were used for all of our simulations. We also observed that

damping helped to reduce oscillations that can occur due to stiff PD controllers.

4.1.2 Throwing to Desired Heights

Our first example shows throwing a sphere to the desired height, and then catching the

sphere and repeating this process with different heights. The sphere weights 0.1 kg and

its radius is 0.03 m. The desired height changes over time. In our implementation, we

embed the goal to the state vector. In this example, it is the desired height ytarget. The

27

0 1000 2000 3000 4000 50000

10

20

30

40

Episode

Reward
Episode Reward
Average Reward
Episode Q0

Figure 4.3: Learning curve of throwing to a desired height.

reward function we use is

r =

{
e10|y−ytarget| if the hand catches the sphere

−0.1 |pp − pd| if the hand misses the sphere
(4.2)

where y is the maximum height the sphere reaches, ytarget is the desired height, pp is the

position of the sphere when it hits the ground, and pd is the target position to prevent

the hand from throwing the object far away from the hand. We only use the error term

y − ytarget because we want to learn how to deal with different heights. Note that the

ground needs to be explicitly defined here to determine if the hand has missed the sphere.

That is, when the sphere goes beyond the reach, the simulation should terminate and

report a miss.

Before learning, the nominal controller has to be hand-tuned for every different height.

With the help of reinforcement learning, the controller can catch and throw the sphere to

different heights with learned parameters in real-time. Figure 4.2 shows the error dis-

tribution in 320 consecutive catch-and-throw loops with learned parameters, where the

desired height is randomly set in each loop. The slightly left skewed error distribution

with mean around 0.01 m shows that the learned controller can generally achieve the task

28

0

10

20

30

0 1000 2000 3000 4000 5000

Episode

Reward

Episode Reward
Average Reward
Episode Q0

Figure 4.4: Learning curve of catching and throwing the sphere to hit a target box.

within 0.1 m of error. Figure 4.3 shows the learning curve, where the episode and average

reward fluctuates around 10 and the Episode Q0 increases linearly. Here, the Episode

Q0 is the estimate of the discounted long-term reward at the start of each episode, given

the initial observation of the environment. Top row of Figure 4.1 shows the visual result

where the target height is indicated by a transparent red plane.

4.1.3 Throwing to Hit Target

The second example shows throwing a sphere to hit a box, catching it when it bounces

back, and repeating this process. The box has a size of 0.1 m × 0.1 m × 0.1 m. The position

of the box is encoded into the state vector in order to hit the box in different positions. The

reward function we define is

r =

{
1 if ”hit then catch” is successful

−0.1 d otherwise
(4.3)

where d is the minimum distance between the sphere and the cube. Note that a successful

hit and catch is rewarded by a constant here because the point of hit does not matter in

this setup.

29

distance to the center of distribution (meter)

0

25

50

75

100

0.0
2

0.0
5

0.0
8

0.1
1

0.1
4

0.1
7

0.2
0

0.2
3

0.2
6

Success (count)

Failure (count)

Figure 4.5: Distance to the center for the position of the box where the agent succeed in or
fail the hitting box task.

Before learning, the nominal controller has to be hand-tuned for every different box

position. After learning, the agent can throw the sphere to hit boxes with different po-

sition in real-time. Figure 4.4 shows the learning curve, where the learning speeds up

around the 3000th episode but the rewards greatly fluctuate. Middle row of Figure 4.1

shows the visual result. Event though the agent can hit the box at many locations, there

are still some positions where the agent fails to hit the box or cannot catch the sphere

when it rebounds, especially near the boundary. We test the agent by setting the target

box to different positions across the space. Each test is considered successful if the agent

can consecutively hit a fixed box 6 times. Figure 4.5 shows the distribution of successes

and failures in 538 tests. Generally, as the box goes further from the center, the rate of

success decreases.

4.1.4 Can Flipping

Our third example shows flipping a can over and over. The can weights 0.1 kg. The radius

of the can is 0.03 m and the height is 0.1 m. To encourage flipping, we define the reward

function as

r =

{
e10|pp−pd| + rflip if ”flip then catch” is successful

−0.1 |pp − pd| otherwise
(4.4)

where rflip is 1 if there is a flip, and 0 if there is not. We use the idea of imitation learning

in order to speed up the training process. In detail, we use covariance matrix adaptation

30

Episode Reward
Average Reward
Episode Q0

0 1000 2000 3000 40000

40

80

120

160

200

Episode

Reward

Figure 4.6: Learning curve of flipping the can.

evolution strategy Hansen (2006) to learn how to make a single flip with different initial

conditions. Then we use these examples to train an actor-network, which we use as the

initial actor-network for the agent.

Before learning, the nominal controller usually fails around the 2nd to 5th flip. With

the help of reinforcement learning, the controller appears to be able to do the flipping

infinitely. The result animation can be seen in the bottom row of Figure 4.1, while the

learning curve can be seen in Figure 4.6.

4.2 Card Manipulation with Optimization

For the card manipulation, we present two scenarios in which we optimize the fingertips

to do a desired card sleight: Card Snapping and Double Lift. Below, we discuss the

necessary components for a successful simulation of card manipulation: the simulation

environment, the initial conditions, the discretization of cards, the decision variables, and

the objective functions. Additionally, we interpret and analyze the optimization statistics

and the simulation results.

31

4.2.1 Soft Body Simulation

Setting up the soft body simulation properly according to their respective physical prop-

erties in real world is the cornerstone of card manipulation. The cards are set to thin shells

made of 100% polyester (PES), which is the most common material of playing cards. And

the hand is set to have a density of 1500 kg/m3, a Young’s modulus of 5000 kPa, and a

frictional coefficient of 0.4, similar to a ordinary human hand.

4.2.2 Initial Conditions

The stability and runtime of simulation in a single trial greatly depends on the initial con-

ditions. Especially, for a resting card stack of 54 cards, ill-conditioned initial configuration

of cards can lead to undesired shifting of cards caused by ghost forces, longer time for the

card stack stabilizing itself to static, and even interpenetration between cards. To address

this problem, we first set the distance between every two adjacent cards to be the exact

thickness of a card plus a small offset ϵ which is 5% of the card thickness, and then warm

up the simulation for a few seconds to make sure the card stack come to a total rest. This

rest state is saved as a checkpoint and reused at the beginning of every trial. Note that

we use the same perfectly aligned card stack reconstructed from the checkpoint in every

Double Lift trial. Comparing to a trial without warm-up, a trial starts with the saved

warm-up checkpoint is 2 minutes faster.

4.2.3 Discretization

We also explore how the discretization of cards affect the performance of simulation.

When two cards of the same regular triangulation as shown in Figure 3.6 are perfectly

aligned and stacked together, each vertex on one card may form primitive contact pairs

with the aligned vertex on the other card and all the surrounding faces and edges of that

aligned vertex, causing numerical perturbation, redundant contact information, and pos-

sibly slow-down of simulation. In contrast, when the two aligned cards have different

32

Figure 4.7: Randomized card discretization example.

triangulation, a vertex on one card may only form one contact pair with a face on the

other card, or may form contact pairs with an edge on the other card and its two sur-

rounding faces. To alleviate numerical perturbation, enrich the contact information, and

possibly speeding up the simulation, we try randomizing the mid-surface vertices of the

card on the resting mid-surface plane during the triangulation, except for the boundary

vertices, by a small radius as shown in Figure 4.7. However, this method does not provide

noticeable speed up in trials. At the mean time, this method may lead to different bending

behavior of the cards, especially when bending two aligned cards together. This bending

behavior is due to the fact that these edges are not parallel to the borderline edges of card

any more. Therefore, randomization on the card triangulation is not adapted in our ex-

ample scenarios. In the meantime, a uniform, regular triangulation of cards can make the

bending and stacking behavior of cards more consistent, which is a desired feature of a

set of playing cards in reality.

4.2.4 Card Snapping

The first example of card manipulation shows Card Snapping, which means snapping

two cards apart by a desired angle of certain degrees by two or three fingers. Initially,

33

(a) Initial Configuration (b) End Configuration

Figure 4.8: Card Snapping example.

two cards are perfectly aligned and loosely held by two fingers as shown in Figure 4.8a.

And the target end card configuration Ctarget is that the two cards are apart by a desired

angle αtarget. Generally, this requires the two fingers to pinch the cards and then slide

them apart. To specify these two action, we set the movement trajectory T of bones inside

the two fingers over the time limit t as a combination of pinching in time duration [t0, t1]

with average velocity vp and sliding in time duration [t2, t3] with average velocity vs. For

optimizing this problem, the decision variables are the movement trajectory T , and the

objective function to be minimized is

f(Cend) = |αtarget − αend| (4.5)

where the Cend is the end configuration of cards, αend is the angle between cards. Here,

the objective function specifies the angle of snapping. The resulting end configuration is

shown in Figure 4.8b, where two cards are snapped apart by an angle.

Figure 4.9 shows the optimization history of 89 trials, where each blue dot represents

a single trial. The best objective value quickly get minimized close to zero within 20 trials

and stays almost 0 after 46 trials. Hence, the optimization is successful and converges very

34

0 20 40 60 80
0

0.2

0.4

0.6

Best Value

Trial

O
bj

ec
tiv

e
V

al
ue

:1276149.0.0.15 1/1

Objective Value

Figure 4.9: Optimization history of optimizing Card Snapping in 89 trials.

fast in terms of the number of trials. Note that some trials still get large objective values

due to the sampling strategy of the MOTPE and the discrete nature of cards. Besides, the

average runtime for each trial is 41.0 seconds, while the minimum runtime is 30.1 seconds

and the maximum runtime is 72.4 seconds as summarized in Table 4.1. The fluctuation

of runtime between trials is expected, because the simulation step takes longer when the

fingertips pinch the cards harder and more contacts are created.

Note that for this example we use a simplified card which has sharp corners. The sharp

corner consist of two triangles instead of five as in Figure 3.6 or Figure 4.7. Surprisingly,

the optimization result of snapping using sharp corner cards cannot be applied directly

onto the snapping using rounded corner cards. We suspect that this is due to the change

of frictional forces. This may worth further investigation.

4.2.5 Double Lift

The second example of card manipulation shows the sleight Double Lift, which means

lifting two cards as one. Initially, 54 cards are perfectly aligned and stacked on a static

horizontal table and two fingers starts around the top of the card pile one on each side

(not touching the cards) as shown in Figure 4.10a. And the target end card configuration

Ctarget is that the top two cards are apart from the rest of cards by a certain height htarget.

35

(a) Initial configuration. (b) End configuration.

Figure 4.10: Double Lift example.

Table 4.1: Optimization runtime summary.

Study Name Trials Best trial no. Time avg. Time min. Time max.

Card Snapping 89 46 41.0s 30.1s 72.4s
Double Lift 297 152 79.2s 22.9s 808.1s

Generally, this requires the two fingers to pinch two cards on the edges and then lift

them as one. To specify these two action, we set the movement trajectory T of bones

inside the two fingers over the time limit t as a combination of pinching in time duration

[t0, t1] with average velocity vp and lifting in time duration [t2, t3] with average velocity vs.

For optimizing this problem, the decision variables are the initial height hstart of the two

fingers and the movement trajectory T , and the objective functions to be minimized are

f(Cend) = (|h1 − htarget|, |h2 − htarget|, ∥d3∥) (4.6)

where h1, h2 are the heights of the top two cards in the end card configuration Cend, and

d3 is the displacement of the third card. The resulting end configuration is shown in

Figure 4.10b, where two cards are magically lifted as one.

36

50

100

150

200

250

Trial

0

50

100

150

200

250

Best Trial

127.0.0.1:57343 1/1

(9

o.oî.S •
0 ~

0
I.J,)
'"\
0-
0 o,oî. 0
a-......
(1)

&.
"-(1) •• o

oO~ ()) • C: O·
(1)

0

0.015

0.01

0.005

3rd O
bjective V

alue

0.015

0.005
0.01

0.015
0

0

0

0 0.01

0.005

2n
d O

bje
cti

ve
 V

alu
e

1st Objective Value

Figure 4.11: Pareto front of optimizing Double Lift in 297 trials.

The Pareto front of optimizing Double Lift is shown in Figure 4.11, where each sphere

represents a single trial with its coordinates correspond to its objective values. The red

and orange dots represent the best trials that are on the Pareto frontier. The first best trial

is trial number 72 and is surrounded by multiple best trials (some are obstructed due to

the limitation of showing a 3D graph in 2D). Hence, although the objective functions are

simple and non-continuous (because the cards are discrete objects), the optimization is

successful and converges fast in terms of the number of trials. Besides, the average run-

time for each trial is 79.2 seconds, while the minimum runtime is 22.9 seconds and the

maximum runtime is 808.1 seconds as summarized in Table 4.1. The fluctuating runtime

is due to the nature of Codim-IPC in simulation thin shell deformables. To find the min-

imum time step of inversion-free and penetration-free time step, Codim-IPC may search

in tiny intervals with tiny stepping which takes a significant amount of time.

37

4.3 Discussion on Result

In this chapter, we present the results for the two animation systems described in the

Chapter 3, focusing on various scenarios involving catching and throwing objects with

reinforcement learning and in-hand card manipulation with optimization. For the RL-

based system, we detail three tasks: throwing objects to a desired height, hitting a chang-

ing target, and flipping a can. We highlight the simulation parameters, reward functions,

and performance improvements achieved through reinforcement learning, noting that the

learned controllers can consistently perform the tasks with high accuracy and robustness

in a loop. In the optimization-based card manipulation, we explore Card Snapping and

the Double Lift, emphasizing the importance of precise initial conditions, discretization

techniques, and optimization of bone-based controls to achieve realistic and efficient sim-

ulations. Our results demonstrate the effectiveness of these two systems in generating

lifelike and precise hand animations for complex hand-object interactions.

38

5
Conclusions and Future Work

We present two different systems of synthesizing animations of hand-object interaction.

Our first system is designed for catching and throwing objects with a physically based

control of a simulated hand, where the nominal controller is straightforward to design

with human intuition while the fine control producing successful motion is obtained

through reinforcement learning. Our second system is designed for manipulation of thin

shells with fingertips in a codimensional soft body simulation, where we use optimization

with manually crafted objective function to achieve various sleights of cards.

Even though we did not teach the computer how to do a complete, flawless magic

trick, we believe that with these two systems as the foundation, the ultimate goal of mak-

ing computer mastering hand manipulation in simulation is within reach. These two sys-

tems shares the idea of letting the computer to assist the control of simulated human hand

39

in various hand-object interaction tasks, and thus can be applied in multiple scenarios to

make synthesizing hand animation easier and faster.

Besides, although our methods can complete throwing and catching different objects,

as well as achieve different in-hand manipulation of thin shells, there are some potential

improvements we can seek in the future.

First, the target poses for opening and closing the hand in catching and throwing are

set manually. To adapt different objects and tasks, we need to train different policies

with manually tuned poses. We consider these poses are learnable by the reinforcement

learning agents. Learning in full space, i.e., all possible target poses of fingers that can be

simulated without interpenetration by adjusting all finger joints within their joint limits,

can be extremely hard due to the curse of dimensionality. A potential way to overcome it

is to do a principal component analysis on a set of representative poses, and use a reduced

set of coordinates.

Second, our current RL agent only learns how to throw. For the catching part, it is

controlled by the manually tuned nominal control. For more complicated tasks, we need

to learn a catching policy as well to increase its flexibility. We will need to modify our

existing DDPG implementation, by tackling the increased dimensionality in combining

catching and throwing actions, to train a throwing policy and a catching policy simulta-

neously.

Third, for the discretization of thin shell like cards, if all the diagonal edges generated

during the triangulation with a regular grid are parallel, the card can be bend easier in the

direction perpendicular to the parallel diagonal edges and harder in the direction along

the diagonal edges. Making the diagonal edges taking different directions can possibly

resolve this problem, but requires further experiments.

Forth, for the optimization of card manipulation, the objective function is hard to de-

sign manually. The primitives that should be sampled to calculate the objective function

have to be chosen carefully, and the objective function has to be meaningful for each in-

40

dividual sleight. A possible solution might be letting the artificial intelligent to perceive

the magic trick and then design the objective functions. Hence, there is much more to be

explored in this direction.

Overall, the results validate the effectiveness of the our systems for simulating com-

plex hand tasks. The RL-based system excels in dynamic and repetitive tasks, while the

optimization-based controller is well-suited for precise, detailed manipulations. Future

work could explore integrating these approaches, leveraging the strengths of both to cre-

ate even more versatile and robust hand animation systems.

In addition, there are other interesting tasks we would like to try in the future too. For

example, interactions between multiple hands, juggling different objects, and ultimately

teaching the computer to do a flawless card magic trick.

41

Bibliography

Sylvain Abondance, Clark B. Teeple, and Robert J. Wood. 2020. A Dexterous Soft Robotic

Hand for Delicate In-Hand Manipulation. IEEE Robotics and Automation Letters 5, 4

(2020), 5502–5509. https://doi.org/10.1109/LRA.2020.3007411

Sheldon Andrews and Paul G. Kry. 2013. Goal Directed Multi-finger Manipulation: Con-

trol Policies and Analysis. Computers and Graphics 37, 7 (2013), 830–839. https:

//doi.org/10.1016/j.cag.2013.04.007

Boris Belousov, Gerhard Neumann, Constantin A. Rothkopf, and Jan Peters. 2016. Catch-

ing heuristics are optimal control policies. In Proceedings of the 30th International Confer-

ence on Neural Information Processing Systems (Barcelona, Spain) (NIPS’16). Curran Asso-

ciates Inc., Red Hook, NY, USA, 1434–1442. https://dl.acm.org/doi/10.5555/

3157096.3157257

Jan Bender, Kenny Erleben, and Jeff Trinkle. 2014. Interactive Simulation

of Rigid Body Dynamics in Computer Graphics. Computer Graphics Fo-

rum 33, 1 (2014), 246–270. https://doi.org/10.1111/cgf.12272

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12272

Samuel R. Buss and Jin-Su Kim. 2005. Selectively Damped Least Squares for Inverse

Kinematics. Journal of Graphics Tools 10, 3 (2005), 37–49. https://doi.org/10.

1080/2151237X.2005.10129202

42

https://doi.org/10.1109/LRA.2020.3007411
https://doi.org/10.1016/j.cag.2013.04.007
https://doi.org/10.1016/j.cag.2013.04.007
https://dl.acm.org/doi/10.5555/3157096.3157257
https://dl.acm.org/doi/10.5555/3157096.3157257
https://doi.org/10.1111/cgf.12272
https://doi.org/10.1080/2151237X.2005.10129202
https://doi.org/10.1080/2151237X.2005.10129202

Jason Chemin and Jehee Lee. 2018. A Physics-Based Juggling Simulation Using Reinforce-

ment Learning. In Proceedings of the 11th Annual International Conference on Motion, Inter-

action, and Games (Limassol, Cyprus) (MIG ’18). Association for Computing Machinery,

New York, NY, USA, Article 3, 7 pages. https://doi.org/10.1145/3274247.

3274516

Tao Chen, Jie Xu, and Pulkit Agrawal. 2022. A System for General In-Hand Object Re-

Orientation. In Proceedings of the 5th Conference on Robot Learning (Proceedings of Ma-

chine Learning Research, Vol. 164), Aleksandra Faust, David Hsu, and Gerhard Neumann

(Eds.). PMLR, London, UK, 297–307. https://proceedings.mlr.press/v164/

chen22a.html

Kai Ding, Libin Liu, Michiel van de Panne, and KangKang Yin. 2015. Learning Reduced-

Order Feedback Policies for Motion Skills. In Proceedings of the 14th ACM SIGGRAPH

/ Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA ’15).

Association for Computing Machinery, New York, NY, USA, 83–92. https://doi.

org/10.1145/2786784.2786802

George ElKoura and Karan Singh. 2003. Handrix: Animating the Human Hand. In Pro-

ceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation

(San Diego, California) (SCA ’03). Eurographics Association, Goslar, DEU, 110–119.

https://dl.acm.org/doi/10.5555/846276.846291

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative Adversarial Networks.

Commun. ACM 63, 11 (oct 2020), 139–144. https://doi.org/10.1145/3422622

Nikolaus Hansen. 2006. The CMA Evolution Strategy: A Comparing Review. Springer

Berlin Heidelberg, Berlin, Heidelberg, 75–102. https://doi.org/10.1007/

3-540-32494-1_4

43

https://doi.org/10.1145/3274247.3274516
https://doi.org/10.1145/3274247.3274516
https://proceedings.mlr.press/v164/chen22a.html
https://proceedings.mlr.press/v164/chen22a.html
https://doi.org/10.1145/2786784.2786802
https://doi.org/10.1145/2786784.2786802
https://dl.acm.org/doi/10.5555/846276.846291
https://doi.org/10.1145/3422622
https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1007/3-540-32494-1_4

Jean Hugard and Frederick Braue. 1974. Expert Card Technique. Dover Publications, New

York, NY, USA. https://books.google.ca/books?id=oKpzDQAAQBAJ

Sumit Jain and C. Karen Liu. 2009. Interactive Synthesis of Human-Object Interaction. In

Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation

(New Orleans, Louisiana) (SCA ’09). Association for Computing Machinery, New York,

NY, USA, 47–53. https://doi.org/10.1145/1599470.1599476

Sumit Jain and C. Karen Liu. 2011a. Controlling Physics-Based Characters Using Soft

Contacts. In Proceedings of the 2011 SIGGRAPH Asia Conference (Hong Kong, China) (SA

’11). Association for Computing Machinery, New York, NY, USA, Article 163, 10 pages.

https://doi.org/10.1145/2024156.2024197

Sumit Jain and C. Karen Liu. 2011b. Controlling Physics-Based Characters Using Soft

Contacts. ACM Trans. Graph. 30, 6 (Dec. 2011), 1–10. https://doi.org/10.1145/

2070781.2024197

Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng. 2022. PADL: Language-

Directed Physics-Based Character Control. In SIGGRAPH Asia 2022 Conference Papers

(Daegu, Republic of Korea) (SA ’22). Association for Computing Machinery, New York,

NY, USA, Article 19, 9 pages. https://doi.org/10.1145/3550469.3555391

Shinya Kajikawa, M. Saito, Kohtaro Ohba, and Hikaru Inooka. 1999. Analysis of human

arm movement for catching a moving object. In IEEE SMC’99 Conference Proceedings.

1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028),

Vol. 2. IEEE, Tokyo, Japan, 698–703 vol.2. https://doi.org/10.1109/ICSMC.

1999.825346

44

https://books.google.ca/books?id=oKpzDQAAQBAJ
https://doi.org/10.1145/1599470.1599476
https://doi.org/10.1145/2024156.2024197
https://doi.org/10.1145/2070781.2024197
https://doi.org/10.1145/2070781.2024197
https://doi.org/10.1145/3550469.3555391
https://doi.org/10.1109/ICSMC.1999.825346
https://doi.org/10.1109/ICSMC.1999.825346

Nam Hee Kim, Hung Yu Ling, Zhaoming Xie, and Michiel van de Panne. 2021. Flexi-

ble Motion Optimization with Modulated Assistive Forces. Proc. ACM Comput. Graph.

Interact. Tech. 4, 3, Article 35 (sep 2021), 25 pages. https://doi.org/10.1145/

3480144

Seungsu Kim, Ashwini Shukla, and Aude Billard. 2014. Catching Objects in Flight. IEEE

Transactions on Robotics 30, 5 (2014), 1049–1065. https://doi.org/10.1109/TRO.

2014.2316022

Jens Kober, Matthew Glisson, and Michael Mistry. 2012a. Playing catch and juggling

with a humanoid robot. In 2012 12th IEEE-RAS International Conference on Humanoid

Robots (Humanoids 2012). IEEE, Osaka, Japan, 875–881. https://doi.org/10.

1109/HUMANOIDS.2012.6651623

Jens Kober, Katharina Muelling, and Jan Peters. 2012b. Learning throwing and catching

skills. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,

Vilamoura-Algarve, Portugal, 5167–5168. https://doi.org/10.1109/IROS.

2012.6386267

Paul G. Kry and Dinesh K. Pai. 2006. Interaction capture and synthesis. ACM Trans. Graph.

25, 3 (2006), 872–880. https://doi.org/10.1145/1141911.1141969

Ariel Kwiatkowski, Eduardo Alvarado, Vicky Kalogeiton, C. Karen Liu, Julien Pettré,

Michiel van de Panne, and Marie-Paule Cani. 2022. A Survey on Reinforcement Learn-

ing Methods in Character Animation. Computer Graphics Forum 41, 2 (2022), 613–639.

https://doi.org/10.1111/cgf.14504

Roberto Lampariello, Duy Nguyen-Tuong, Claudio Castellini, Gerd Hirzinger, and Jan

Peters. 2011. Trajectory planning for optimal robot catching in real-time. In 2011 IEEE

International Conference on Robotics and Automation. IEEE, Shanghai, China, 3719–3726.

https://doi.org/10.1109/ICRA.2011.5980114

45

https://doi.org/10.1145/3480144
https://doi.org/10.1145/3480144
https://doi.org/10.1109/TRO.2014.2316022
https://doi.org/10.1109/TRO.2014.2316022
https://doi.org/10.1109/HUMANOIDS.2012.6651623
https://doi.org/10.1109/HUMANOIDS.2012.6651623
https://doi.org/10.1109/IROS.2012.6386267
https://doi.org/10.1109/IROS.2012.6386267
https://doi.org/10.1145/1141911.1141969
https://doi.org/10.1111/cgf.14504
https://doi.org/10.1109/ICRA.2011.5980114

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang. 2022.

Penetration-free projective dynamics on the GPU. ACM Trans. Graph. 41, 4, Article 69

(jul 2022), 16 pages. https://doi.org/10.1145/3528223.3530069

Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable muscle-

actuated human simulation and control. ACM Trans. Graph. 38, 4, Article 73 (jul 2019),

13 pages. https://doi.org/10.1145/3306346.3322972

Mengcheng Li, Liang An, Hongwen Zhang, Lianpeng Wu, Feng Chen, Tao Yu, and Yebin

Liu. 2022b. Interacting Attention Graph for Single Image Two-Hand Reconstruction.

In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

Computer Society, Los Alamitos, CA, USA, 2751–2760. https://doi.org/10.

1109/CVPR52688.2022.00278

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele

Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental potential con-

tact: intersection-and inversion-free, large-deformation dynamics. ACM Trans. Graph.

39, 4, Article 49 (aug 2020), 20 pages. https://doi.org/10.1145/3386569.

3392425

Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional incremental

potential contact. ACM Trans. Graph. 40, 4, Article 170 (jul 2021), 24 pages. https:

//doi.org/10.1145/3450626.3459767

Peizhuo Li, Kfir Aberman, Zihan Zhang, Rana Hanocka, and Olga Sorkine-Hornung.

2022a. GANimator: neural motion synthesis from a single sequence. ACM Trans. Graph.

41, 4, Article 138 (jul 2022), 12 pages. https://doi.org/10.1145/3528223.

3530157

46

https://doi.org/10.1145/3528223.3530069
https://doi.org/10.1145/3306346.3322972
https://doi.org/10.1109/CVPR52688.2022.00278
https://doi.org/10.1109/CVPR52688.2022.00278
https://doi.org/10.1145/3386569.3392425
https://doi.org/10.1145/3386569.3392425
https://doi.org/10.1145/3450626.3459767
https://doi.org/10.1145/3450626.3459767
https://doi.org/10.1145/3528223.3530157
https://doi.org/10.1145/3528223.3530157

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval

Tassa, David Silver, and Daan Wierstra. 2019. Continuous control with deep reinforce-

ment learning. arXiv:1509.02971 [cs.LG] https://arxiv.org/abs/1509.02971

C. Karen Liu. 2009. Dextrous Manipulation from a Grasping Pose. ACM Trans. Graph. 28,

3, Article 59 (July 2009), 6 pages. https://doi.org/10.1145/1531326.1531365

Libin Liu and Jessica Hodgins. 2018. Learning Basketball Dribbling Skills Using Trajectory

Optimization and Deep Reinforcement Learning. ACM Trans. Graph. 37, 4, Article 142

(July 2018), 14 pages. https://doi.org/10.1145/3197517.3201315

Yunhao Luo, Kaixiang Xie, Sheldon Andrews, and Paul Kry. 2021. Catching and Throw-

ing Control of a Physically Simulated Hand. In Proceedings of the 14th ACM SIG-

GRAPH Conference on Motion, Interaction and Games (Virtual Event, Switzerland) (MIG

’21). Association for Computing Machinery, New York, NY, USA, Article 15, 7 pages.

https://doi.org/10.1145/3487983.3488300

Igor Mordatch, Zoran Popović, and Emanuel Todorov. 2012a. Contact-invariant opti-

mization for hand manipulation. In Proceedings of the ACM SIGGRAPH/Eurographics

Symposium on Computer Animation (Lausanne, Switzerland) (SCA ’12). Eurographics As-

sociation, Goslar, DEU, 137–144. https://dl.acm.org/doi/10.1145/2185520.

2185539

Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012b. Discovery of complex be-

haviors through contact-invariant optimization. ACM Trans. Graph. 31, 4, Article 43 (jul

2012), 8 pages. https://doi.org/10.1145/2185520.2185539

NASA. 1995. Man-Systems Integration Standards. National Aeronautics and Space Admin-

istration. https://msis.jsc.nasa.gov/sections/section03.htm

47

https://arxiv.org/abs/1509.02971
https://doi.org/10.1145/1531326.1531365
https://doi.org/10.1145/3197517.3201315
https://doi.org/10.1145/3487983.3488300
https://dl.acm.org/doi/10.1145/2185520.2185539
https://dl.acm.org/doi/10.1145/2185520.2185539
https://doi.org/10.1145/2185520.2185539
https://msis.jsc.nasa.gov/sections/section03.htm

Yoshihiko Ozaki, Yuki Tanigaki, Shuhei Watanabe, and Masaki Onishi. 2020. Multiobjec-

tive tree-structured parzen estimator for computationally expensive optimization prob-

lems. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference (Cancún,

Mexico) (GECCO ’20). Association for Computing Machinery, New York, NY, USA,

533–541. https://doi.org/10.1145/3377930.3389817

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018. Deep-

Mimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character

Skills. ACM Trans. Graph. 37, 4, Article 143 (jul 2018), 14 pages. https://doi.org/

10.1145/3197517.3201311

Nancy S. Pollard and Victor Brian Zordan. 2005. Physically Based Grasping Control

from Example. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation (Los Angeles, California) (SCA ’05). Association for Computing

Machinery, New York, NY, USA, 311–318. https://doi.org/10.1145/1073368.

1073413

Seyed Sina Mirrazavi Salehian, Mahdi Khoramshahi, and Aude Billard. 2016. A Dynam-

ical System Approach for Softly Catching a Flying Object: Theory and Experiment.

IEEE Transactions on Robotics 32, 2 (2016), 462–471. https://doi.org/10.1109/

TRO.2016.2536749

Breannan Smith, Chenglei Wu, He Wen, Patrick Peluse, Yaser Sheikh, Jessica K. Hodgins,

and Takaaki Shiratori. 2020. Constraining Dense Hand Surface Tracking with Elasticity.

ACM Trans. Graph. 39, 6, Article 219 (nov 2020), 14 pages. https://doi.org/10.

1145/3414685.3417768

Sebastian Starke, Ian Mason, and Taku Komura. 2022. DeepPhase: Periodic Autoencoders

for Learning Motion Phase Manifolds. ACM Trans. Graph. 41, 4, Article 136 (jul 2022),

13 pages. https://doi.org/10.1145/3528223.3530178

48

https://doi.org/10.1145/3377930.3389817
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/1073368.1073413
https://doi.org/10.1145/1073368.1073413
https://doi.org/10.1109/TRO.2016.2536749
https://doi.org/10.1109/TRO.2016.2536749
https://doi.org/10.1145/3414685.3417768
https://doi.org/10.1145/3414685.3417768
https://doi.org/10.1145/3528223.3530178

Nkenge Wheatland, Yingying Wang, Huaguang Song, Michael Neff, Victor Zordan, and

Sophie Jörg. 2015. State of the Art in Hand and Finger Modeling and Animation.

Computer Graphics Forum 34, 2 (2015), 735–760. https://doi.org/10.1111/cgf.

12595

Andrew Witkin and Michael Kass. 1988. Spacetime constraints. In Proceedings of the

15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH

’88). Association for Computing Machinery, New York, NY, USA, 159–168. https:

//doi.org/10.1145/54852.378507

Cai-Hua Xiong, Wen-Rui Chen, Bai-Yang Sun, Ming-Jin Liu, Shi-Gang Yue, and Wen-Bin

Chen. 2016. Design and Implementation of an Anthropomorphic Hand for Replicat-

ing Human Grasping Functions. IEEE Transactions on Robotics 32, 3 (2016), 652–671.

https://doi.org/10.1109/TRO.2016.2558193

Pei Xu and Ioannis Karamouzas. 2021. A GAN-Like Approach for Physics-Based Imi-

tation Learning and Interactive Character Control. Proc. ACM Comput. Graph. Interact.

Tech. 4, 3, Article 44 (sep 2021), 22 pages. https://doi.org/10.1145/3480148

Yuting Ye and C. Karen Liu. 2012. Synthesis of detailed hand manipulations using contact

sampling. ACM Trans. Graph. 31, 4, Article 41 (jul 2012), 10 pages. https://doi.

org/10.1145/2185520.2185537

Sang Hoon Yeo, Martin Lesmana, Debanga R. Neog, and Dinesh K. Pai. 2012. Eyecatch:

Simulating Visuomotor Coordination for Object Interception. ACM Trans. Graph. 31, 4,

Article 42 (July 2012), 10 pages. https://doi.org/10.1145/2185520.2185538

Baohua Zhang, Yuanxin Xie, Jun Zhou, Kai Wang, and Zhen Zhang. 2020. State-of-the-

art robotic grippers, grasping and control strategies, as well as their applications in

agricultural robots: A review. Computers and Electronics in Agriculture 177 (2020), 105694.

https://doi.org/10.1016/j.compag.2020.105694

49

https://doi.org/10.1111/cgf.12595
https://doi.org/10.1111/cgf.12595
https://doi.org/10.1145/54852.378507
https://doi.org/10.1145/54852.378507
https://doi.org/10.1109/TRO.2016.2558193
https://doi.org/10.1145/3480148
https://doi.org/10.1145/2185520.2185537
https://doi.org/10.1145/2185520.2185537
https://doi.org/10.1145/2185520.2185538
https://doi.org/10.1016/j.compag.2020.105694

He Zhang, Yuting Ye, Takaaki Shiratori, and Taku Komura. 2021. ManipNet: Neural Ma-

nipulation Synthesis with a Hand-Object Spatial Representation. ACM Trans. Graph.

40, 4, Article 121 (jul 2021), 14 pages. https://doi.org/10.1145/3450626.

3459830

50

https://doi.org/10.1145/3450626.3459830
https://doi.org/10.1145/3450626.3459830

Appendix

Abbreviations and Glossary of Terms

CFM: constraint force mixing.

Codim-IPC: codimensional incremental potential contact model by Li et al. (2021).

DDPG: deep deterministic policy gradient.

Episode Q0: For agents with a critic, this is the estimate of the discounted long-term

reward at the start of each episode, given the initial observation of the environment.

ERP: error reduction parameter.

FEM: finite element method.

FSM: finite state machine.

IK: inverse kinematics

MOTPE: Multi-Objective Tree-structured Parzen Estimator by Ozaki et al. (2020).

Nominal controller: refers to our minimal functional finite state machine controller,

which should be assisted by reinforcement learning to achieve its full potential.

PD control: proportional-derivative control

Pareto front (or Pareto frontier): the set of all Pareto efficient trials (i.e. best trials) in a

multi-objective optimization.

RL: reinforcement learning.

SLERP: spherical linear interpolation.

51

Nomenclature of Card Tricks

This nomenclature is based on the classic card magic book by Hugard and Braue (1974).

Card Trick: An individual unit performance in a card magic show. A good card trick has

a definite plot, reveal some am using incidents, and has a definite climax.

Sleight of Hand (Card Sleight, or simply Sleight): A series of deceiving hand

movements that changes the configuration of the cards.

Card Snapping: Snapping cards apart evenly.

Double Lift: Lifting 2 cards as one.

52

	List of Figures
	List of Tables
	Abstract
	Abrégé
	Contribution
	Acknowledgements
	Introduction
	Literature
	Modeling and Simulation
	Control Algorithm and Learning
	Hand Animation
	Works in Robotics and Neuroscience
	Summary

	Methodology
	Catching and Throwing with RL
	Hand and Arm Modeling
	Nominal Controller Structure
	Palm Trajectory
	Inverse Kinematics
	PD Control
	Hand Pose
	Trajectory Planning
	Reinforcement Learning

	Card Manipulation with Optimization
	Fingertip and Card Modeling
	Codimensional Incremental Potential Contact
	Bone-based Control
	Optimizing the Control

	Discussion on Methodology

	Result
	Catching and Throwing with RL
	Rigid Body Simulation
	Throwing to Desired Heights
	Throwing to Hit Target
	Can Flipping

	Card Manipulation with Optimization
	Soft Body Simulation
	Initial Conditions
	Discretization
	Card Snapping
	Double Lift

	Discussion on Result

	Conclusions and Future Work
	Appendix
	Abbreviations and Glossary of Terms
	Nomenclature of Card Tricks

