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ABSTRACT

High-temperature superconductivity in the cuprates has been at the heart of many de-

bates since its discovery more than 30 years ago. No consensus has been reached yet about

the underlying physics, but plausible descriptions usually fall into two categories each car-

rying various propositions. The quantum oscillations data acquired over the past few years

for the normal state of the cuprates under a strong magnetic field has recently been used to

obtain the electronic Berry phase of different compounds, which manifests through the phase

mismatch in quantum oscillations [13]. This analysis revealed an electronic Berry phase of 0

mod 2π in three hole-doped compounds and 1.4π mod 2π in one electron-doped compound.

To investigate mysterious pseudogap phase of the cuprates, the theoretical candidate known

as the circulating current state of Varma [51] as approached by Bulut [7] is analyzed to

numerically evaluate through a semiclassical approach the electronic Berry phase in this

normal state. Under a typical parameter set in line with experimental data, a phase of π

is found. A comparison of the semiclassical approach with the Peierls substitution applied

to this model confirms this result and further leads to an uncertainty on the phase of order

0.01π. Hence, the circulating current state is incompatible with quantum oscillations data

according to the Berry phase.
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ABRÉGÉ

La supraconductivité à haute température dans les cuprates a été au coeur de plusieurs

débats depuis sa découverte il y a plus de 30 ans. Aucun consensus n’a été établi jusqu’à

maintenant à propos de la physique sous-jacente, mais les descriptions plausibles sont

généralement classées sous deux catégories possédant chacune diverses propositions. Les

données acquises au cours des dernières années sur les oscillations quantiques pour l’état nor-

mal des cuprates sous un fort champ magnétique ont récemment été utilisées pour obtenir la

phase électronique de Berry de différentes substances, se manifestant à travers le déphasage

des oscillations quantiques [13]. Cette analyse a révélé une phase électronique de Berry de

0 mod 2π dans trois substances dopées aux trous et de 1.4π mod 2π dans une substance

dopée aux électrons. Pour étudier la mystérieuse phase pseudogap des cuprates, le candidat

théorique connu comme étant la phase de courant circulant de Varma [51] tel qu’approché par

Bulut [7] est analysé pour évaluer numériquement au travers d’une approche semi-classique

la phase électronique de Berry de cet état normal. En fonction d’un ensemble typique

de paramètres s’accordant avec les données expérimentales, une phase de π est trouvée.

Une comparaison de l’approche semi-classique avec la substitution de Peierls appliquée à ce

modèle confirme ce résultat et implique additionellement une incertitude quant à la phase

de l’ordre de 0.01π. Par conséquent, la phase de courant circulant est incompatible avec les

données d’oscillations quantiques en terme de la phase de Berry.
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1. INTRODUCTION

For transparency purposes: this work is based on Massarelli’s thesis [29] as the methods

are almost identical in both cases, although the theoretical models investigated are different.

1.1. Cuprates

Figure 1.1: Crystal structure of a
CuO2 plane in cuprates. The lattice
spacing typically ranges from 3.7 Å
to 3.9 Å depending on the doping,
the compound, and the axis in some
cases [41]. Reproduced from [18].

High-temperature superconductivity was first de-

tected in La2−δBaδCuO4 by Bednorz and Müller in

1986 [4]. The family of copper-oxide compounds shar-

ing similar properties known as cuprates has since

then been extensively studied and still is an open field

of research. Indeed, no agreement has been reached

yet in the scientific community over various parts of

the phase diagram [32, 43], shown in figure 1.3.

Cuprates consist of CuO2 planes stacked one on

top of the other with spacer layers in-between, form-

ing a three-dimensional compound similar to what is

found in figure 1.1. As superconductivity in cuprates is believed to be mostly confined to

the CuO2 planes, these compounds are regarded as quasi-two-dimensional in their super-

conductive state [18]. The crystal structure of such materials slightly differs depending on

their electron doping, as shown in figure 1.2. Although the models considered later may be

employed in more general cases than those addressed, hole-doped compounds will be the

main center of interest.

Figure 1.2: Crystal structure of (left) an electron-doped and (right) a hole-doped cuprate.
Three CuO2 layers are visible in both structures with R a placeholder for potential
rare-earth ions. Different orientations of the CuO2 plane are shown. Reproduced from [2].
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Figure 1.3: Phase diagram as a function of doping p and temperature T of hole-doped
cuprates. (a) Fermi surfaces at zero magnetic field obtained in photoemission experiments
for an underdoped and an overdoped compound. The location of a node and of an
antinode in the Brillouin zone are shown. (b) Relative area of Fermi surfaces for
compounds with different dopings according to quantum oscillations experimental data.
The dashed line denotes the boundary of the superconducting dome at zero field.
Reproduced from [43]; see references therein for experiments.

1.2. The Cuprates’ Phase Diagram

An antiferromagnetic Mott insulator dome extending up to about 5% hole-doping is

observed in the cuprates’ phase diagram [32, and therein], as seen in figure 1.3. Electronic

interaction is the cause of such an insulating phase. However, copper sites in undoped

cuprates possess an odd number of electrons: a metallic state is thus expected according to

simple band theory and because of the half-filled band represented in figure 1.4.

For higher doping, a superconducting dome with high critical temperature Tc is found

more or less between 5% and 25% hole-doping. We call optimal doping the point where

the highest Tc is attained while overdoped and underdoped are used to denote the regions

respectively above and below this point. The optimal doping approximately occurs at 15%

doping. Some properties of the BCS theory have been detected in the superconducting

phase of cuprates, such as a Cooper pairs condensate with long-lifetime quasiparticle-like

2



Figure 1.4: Schematic of the dispersion relation along high-symmetry directions in the
Brillouin zone for cuprates. The node and the antinode are shown. Reproduced from [18].

excitations that have Bogoliubov-type dispersion relations [32, and therein]. However, con-

trary to the s-wave symmetry found in typical BCS superconductors [3], a d-wave symmetry

is observed in the Cooper pairing and the superconducting gap function [18]. Accordingly,

nodal and antinodal are used to denote the corresponding locations in the Brillouin zone of

the d-wave symmetric superconducting gap function, as shown in the inset of figure 1.3 (a).

ARPES measurements above Tc in the overdoped region [43, and therein] show that the

Fermi surface is hole-like and quite large since it covers more than half of the Brillouin zone,

as pictured in figure 1.3. This result matches the band structure calculations found in figure

1.4 [43, and therein], which is in line with the fact that cuprates are in a simple Fermi liquid

state within this regime [2, 32, 43].

Nonetheless, the mystery surrounding the cuprates concerns the underdoped region of

the phase diagram, more specifically the state directly above superconductivity called the

normal state [32, 43]. ARPES measurements above Tc in the underdoped region and up

to 20% doping [43, and therein] show that the Fermi surface is disjoint, taking the form of

Fermi arcs at the nodal regions of the Brillouin zone like in figure 1.3. Additionally, quantum

oscillations experiments have led to the observation of a Fermi surface much smaller than the

one in the overdoped region: it only covers about 2% of the Brillouin zone for underdoped

YBa2Cu3O6+x [43, and therein].

Moreover, part of the underdoped normal state is in what is known as a pseudogap phase:

this expression is commonly used although it is still unclear if it is a true thermodynamic

phase. In BCS superconductors, the s-wave gap emerges at Tc; in underdoped cuprates, the

d-wave gap starts appearing as a pseudogap at T ∗ > Tc as noted in figure 1.3 to gradually

attain its full range at Tc [32].
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The functional form of the d-wave gap below Tc appears in figure 1.5: around the hole-like

Fermi surface’s boundary seen on the right of figure 1.3 (a), it vanishes at the nodes while

it attains its maximum at the antinodes — respectively when |kx| = |ky| and when kx = 0

or ky = 0. Experiments have shown that the gap slowly closes starting at the nodes as the

temperature increases above Tc to completely vanish at T ∗ [18, and therein]. As a matter of

fact, the Fermi arcs of the pseudogap phase take their origin from these extended ungapped

regions centered at the nodes.

Additionally, the pseudogap phase of underdoped cuprates has been shown to display

many unusual properties [32], such as magnetic, transport, thermodynamic, and optical

properties. Notably, resistivity depends linearly on temperature over a wide range [28] while

time-reversal symmetry breaking in this phase has seemingly manifested through neutron

scattering [15] and Kerr effect [53] experiments.

Figure 1.5: Energy gap as a function of angle θ in the Brillouin zone of underdoped
Bi2Sr2CaCu2O8+δ where Tc = 92 K at 8 K and 102 K. The inset shows the geometry of θ.
Reproduced from [18].
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1.3. Modeling of the Pseudogap Phase

According to Norman et al., “superconductivity is an instability of the normal state.

Therefore, to understand the origin of superconductivity, one must understand the nature

of the normal state from which it arises.” [32] This turns out to be hard to accomplish for

underdoped cuprates as their normal state is still not well-understood [23]. The two most

likely underlying phenomena are pre-formed Cooper pairs and competing order [32]. On the

one hand, Cooper pairs are thought to start forming below T ∗, but that the onset of phase

coherence which causes superconductivity only takes place below Tc. On the other hand, the

superconducting order is presumed to be competing with another distinct, incompatible state

— a hidden order, where the name comes from how difficult it is for ordinary probes to couple

to them — over the electrons around the Fermi surface. The hidden order becoming more

favorable than superconductivity as the doping decreases would be the cause of Tc going down

as T ∗ goes up. Among the suggestions for such hidden order are the d-density wave state

of Chakravarty [10] and the circulating current state of Varma [51]. Both proposals detail

time-reversal symmetry breaking states generating a quantum critical phase distinct from the

Fermi liquid phase for which a linear dependence of resistivity on temperature is a signature.

Thus, both are consistent with experiments. Besides, additional signatures of quantum

criticality have manifested through experiments, such as linearly dependent linewidths on

both temperature and binding energy in photoemission spectra [32, and therein].

Competing order has been identified as a probable scenario in recent experiments, but

preformed incoherent pairs is also a possibility according to other results [18, and therein].

1.4. Rationale of this Work

A clear and simple test is thus needed to compare the theoretical models of the cuprates

with unambiguous experimental measurements. Experimental data on the electronic Berry

phase has been available for some time, but it has not been used before to analyze theories of

the cuprates. Hence, the objective of this work is to establish if one of the theoretical models

is unfit for cuprates according to its Berry phase after comparing with experimental results.

The model investigated here is the circulating current state of Varma [51] as approached by

Bulut et al. [7], which presents a staggered pattern of intra-unit cell loop currents.
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2. THE BERRY PHASE

By definition, the Berry phase — also known as the geometric phase — is the phase

accumulated by a quantum state during an adiabatic process over the course of a cycle

[46]. Although the phenomenon was discovered in the 1950s [26, 34], the concept was only

generalized in 1984 in a publication by Sir Michael Berry [5]. His paper received much

attention at the time and has stayed relevant since then because of its extensive and crucial

implications, especially in the field of electron dynamics [54]. Notably, the Berry phase

plays an integral part in the microscopic explanation of both spontaneous polarization in

ferroelectric materials [38, 54] and spontaneous magnetization in ferromagnetic materials

[47, 54]. Likewise, it is fundamental to the theory of topological materials along with the

Chern number [1].

According to the Adiabatic Theorem, an instantaneous energy eigenstate will evolve

into its corresponding smoothly connected later-time eigenstate if subjected to an adiabatic

process [6, 20]. But how does the phase change with time? Berry showed in his paper that

the phase evolution known as the geometric phase which is separate from the dynamical

phase eiEt/~ or its generalization cannot be removed by any gauge transformation of the

eigenstates, contradicting what was believed at the time. Besides, he showed that this

phase could be physically meaningful in some cases and even measurable [5].

2.1. From the Adiabatic Theorem

Although Berry assumed the Adiabatic Theorem to derive the phase evolution in his

original paper, we can instead obtain the geometric phase while proving the theorem, as it

was done in appendix A. Only the result is reported here.

Consider a time-dependent Hamiltonian H(t) with t ∈ R≥0 over the course of an adiabatic

process and let {|n(t)〉} be the orthonormal set of instantaneous energy eigenstates such that

they satisfy

H(t) |n(t)〉 = En(t) |n(t)〉 , (2.1)

where En(t) is the energy corresponding to eigenstate |n(t)〉. We assume furthermore non-

degenerate eigenstates.
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Any state |Ψ(t)〉 which satisfy the time-evolution equation

d

dt
|Ψ(t)〉 = − i

~
H(t) |Ψ(t)〉 (2.2)

will then evolve in time according to

|Ψ(t)〉 =
∑
n

cn(0)eiθn(t)eiγn(t) |n(t)〉 , (2.3)

where the phase eiθn(t) is the generalization of the dynamical phase, such that cn(0) ∈ C,

θn(t) = −1
~

∫ t
0
En(t′) dt′, and

γn(t) = i

∫ t

0

〈n(t′)| d
dt′
|n(t′)〉 dt′ . (2.4)

While the dynamical phase is indeed a part of the total phase as expected, the less intuitive

phase evolution given by the real function γn(t) is what we refer to as the Berry phase.
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2.2. Generalization to Parameter Space

For the most part, expressing the Hamiltonian as a function of a time-dependent pa-

rameter R(t) =
(
R1(t), R2(t), ... , RN(t)

)
∈ RN for smooth functions Ri(t) and N ∈ N>0

gives essential insight on the Bery phase. In agreement with this, the notation is modified

to make the Hamiltonian, the energy eigenvalues, and the energy eigenstates depend on the

parameter R(t) instead of t. According to the chain rule,

γn(t) = i

∫ t

0

〈n(R(t′))| d
dt′
|n(R(t′))〉 dt′

= i

∫ t

0

〈n(R(t′))| ∇ |n(R(t′))〉 · dR
dt′

dt′

= i

∫
C

〈n(R)| ∇ |n(R)〉 · dR

≡
∫
C

An(R) · dR ,

(2.5)

where ∇ is the gradient with respect to R and where the path of integration C is the path

taken of the adiabatic process from R(0) to R(t) in parameter space. We assume that

the eigenvalues are non-degenerate along the path C. Additionally, we have introduced

An(R) = i 〈n(R)| ∇ |n(R)〉, which is commonly known as the Berry vector potential.

Suppose we make a gauge transformation such that |n(R)〉 → eiδ(R) |n(R)〉 for some

δ(R) ∈ R, then

An(R) = i 〈n(R)| ∇ |n(R)〉

→ i
[
e−iδ(R) 〈n(R)|

]
∇
[
eiδ(R) |n(R)〉

]
= ie−iδ(R) 〈n(R)|

[
eiδ(R)∇ |n(R)〉+ ieiδ(R) |n(R)〉∇δ(R)

]
= i 〈n(R)| ∇ |n(R)〉 − ∇δ(R)

= An(R)−∇δ(R) .

(2.6)

Thus, An(R) obtains an additional gradient term under a gauge transformation. As such,

it is not gauge-invariant. In any case, one can easily see the similarities with a quantum

particle in an electromagnetic field with the magnetic vector potential replaced by the Berry

vector potential. Although not a physical quantity, the vector potential can be used in both

cases to obtain gauge-invariant physical quantities.
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Under the previous gauge transformation, the Berry phase becomes

γn(t) =

∫
C

An(R) · dR→
∫
C

[An(R)−∇δ(R)] · dR

= γn(t)− [δ(R(t))− δ(R(0))] .

(2.7)

As such, the Berry phase may not always be gauge-invariant, but it will be for R(t) = R(0).

This last condition is equivalent to having the path of integration C be a loop. Then,

assuming that this condition holds, the notation can be modified to make the Berry phase

depend on the path C instead of t. This notation has the advantage of explicitly stating the

path taken in parameter space of the adiabatic process.

Furthermore, let’s assume that C ∈ R3. Consequently, by Stokes’ Theorem

γn(C) =

∮
C

An(R) · dR

=
x

S

[∇×An(R)] · dS

≡
x

S

Bn(R) · dS ,

(2.8)

where the surface of integration S is any smooth connected compact surface bounded by

C. Additionally, we have now introduced Bn(R), commonly known as the Berry curvature.

Moreover, it is now clear that the Berry phase only depends on the geometry of the path in

parameter space and not on the specific parametrization of the path — which is why it also

goes by the name of geometric phase.

Under the previous gauge transformation, the Berry curvature becomes

Bn(R) = ∇×An(R)→∇× [An(R)−∇δ(R)]

= Bn(R) .
(2.9)

Thus, the Berry curvature is gauge-invariant because the curl of a gradient is always equal

to zero, which implies that the Berry phase must also be gauge-invariant. The similarities

with electromagnetism continue when replacing the magnetic field by the Berry curvature.
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2.3. The Berry Curvature

The Berry curvature is our most important tool to calculate the Berry phase. At the

moment, it is expressed in a rather complicated way. A much simpler expression can be

obtained by first noting that

Bn(R) = ∇×An(R)

= ∇× i 〈n(R)| ∇ |n(R)〉

= iêiεijk∂j
[
〈n(R)| ∂k |n(R)〉

]
,

(2.10)

where εijk is the Levi-Civita symbol, êi is the unit vector along the ith axis in parameter

space, and ∂i ≡ ∂
∂Ri

. Then, by the product rule and as ∂j∂k = ∂k∂j,

Bn(R) = iêiεijk
{[
∂j 〈n(R)|

] [
∂k |n(R)〉

]
+ 〈n(R)| ∂j∂k |n(R)〉

}
= iêiεijk

[
∂j 〈n(R)|

] [
∂k |n(R)〉

]
.

(2.11)

Moreover, inserting the complete basis of energy eigenstates leads to

Bn(R) = iêiεijk
∑
m

[
∂j 〈n(R)|

]
|m(R)〉 〈m(R)|

[
∂k |n(R)〉

]
= iêiεijk

∑
m 6=n

{
〈m(R)|

[
∂j |n(R)〉

]}∗ 〈m(R)|
[
∂k |n(R)〉

]
,

(2.12)

where the last step is a consequence of the generalization of (A.9). Finally, by going back

to vector notation and using the generalization of (A.11):

Bn(R) = i
∑
m 6=n

[〈m(R)| ∇ |n(R)〉]∗ × 〈m(R)| ∇ |n(R)〉

= i
∑
m 6=n

〈n(R)| [∇H(R)] |m(R)〉 × 〈m(R)| [∇H(R)] |n(R)〉
[En(R)− Em(R)]2

,
(2.13)

where the hermicity of∇H(R) is a consequence of the hermicity of H(R). This last equation

makes it explicit that the Berry curvature is gauge-invariant. Besides, it can be inferred from

those results that ∑
n

Bn(R) = 0 , (2.14)
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because of the anticommutativity of the cross product: for any a, b ∈ R3, a×b+b×a = 0.

As a result, for any path C ∑
n

γn(C) = 0 . (2.15)

Soon after Berry’s demonstration came experiments that would confirm his results [40,

Section 5.6] and prove the Berry phase to be a valid measurable quantity. Resta captures

perfectly well the importance of this fact: “[the] main message of Berry’s milestone paper

can be spelled out by saying that there are also observable effects of a completely different

nature: the [Berry] phase cannot be expressed in terms of the eigenvalues of any operators,

whereas it is by definition a gauge-invariant phase of the state vector [38].”

Before long, it was suggested that the Berry phase could have some connection with

the motion of electrons in a crystal lattice since the Brillouin zone is a parameter space

with different eigenstates defined at every point [55]. Indeed, an electron’s quantum state

can technically acquire a non-trivial Berry phase as it loops in the Brillouin zone due to

an external perturbation. Accordingly, a slow dynamical variable needs to be used as a

parameter [54].
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2.4. Linear Two-Level Systems

A clear consequence of (2.8) and (2.13) is that degeneracy points have particular impor-

tance in the Berry phase even if they are not near the path taken in parameter space.

A two-level Hamiltonian linear in the parameter R ∈ R3 is a perfect example of such

a situation. For simplicity, the Hamiltonian is normalized by some unitary dimensionful

constant in order to share units with R.

Recall that the set {I,σ1,σ2,σ3} where σi are the Pauli matrices forms a basis for the

vector space of 2 × 2 Hermitian matrices. Thus, this Hamiltonian can be written after an

appropriate coordinate transformation as

H(R) = R0I +R1σ1 +R2σ2 +R3σ3 , (2.16)

for some R0 ∈ R. Then, the energy eigenvalues are simply

E±(R) = ±
√

[R1]2 + [R2]2 + [R3]2 = ± |R| , (2.17)

with corresponding energy eigenstates |±(R)〉. Furthermore, note that the sole point of

degeneracy is at the origin.

We want to evaluate the Berry phase γ+(C) of the eigenstate |+(R)〉 as R is driven

around a loop C in parameter space. In particular, it is essential that 0 /∈ C because of the

eigenstates being degenerate at R = 0 and since 0 ∈ C would contradict the assumption

that the eigenvalues are non-degenerate along C.

We start by deriving the Berry curvature B+(R). It can be accomplished by taking

the curl of the Berry vector potential A+(R) = i 〈+(R)| ∇ |+(R)〉; however, this method

involves many steps. Instead, we will make use of (2.13): it only requires to know that both

∇H(R) =
(
σ1, σ2, σ3

)
≡ σ and E+(R)− E−(R) = 2 |R| for all R. Hence, we obtain

B+(R) = i
〈+(R)|σ |−(R)〉 × 〈−(R)|σ |+(R)〉

4 |R|2
. (2.18)

We do not have an explicit expression for |+(R)〉 nor |−(R)〉. To approach this part

of the problem, fix R and rotate the coordinate system such that R̂ → ẑ. In this new

coordinate system, |+(R)〉 and |−(R)〉 are the eigenstates of σ3 and the Berry curvature
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equals to

B+(R) = i
[x̂− iŷ]× [x̂+ iŷ]

4 |R|2

= −1

2

ẑ

|R|2

→ −1

2

R̂

|R|2
,

(2.19)

where we have rotated back to the original coordinate system in the last step by taking

ẑ → R̂. Additionally, note that B−(R) = −B+(R) according to (2.14). Once again we

note the similarities with electromagnetism: as the divergence of B±(R) vanishes at every

point except for the origin, or explicitly

∇ ·B±(R) = ∇ ·

[
∓1

2

R̂

|R|2

]
= ∓2πδ3(R) ,

(2.20)

the degeneracy must generate a field identical to one from an electric or magnetic monopole

of charge of magnitude 1
2
. This property was expected from the beginning because the

Berry curvature is defined as the curl of the Berry potential and the divergence of a curl is

everywhere zero except at singular points. Therefore, the property that points of degeneracy

act as monopoles for the Berry curvature and that fields may only originate from them holds

for any Hamiltonian.

To conclude, the Berry phase is evaluated to be

γ±(C) =
x

S

B±(R) · dS

= ∓1

2

x

S

R̂ · dS
|R|2

≡ ∓1
2
Ω(C) ,

(2.21)

where S can be any smooth connected compact surface bounded by C as seen before and

Ω(C) is the solid angle subtended by C relative to the origin. This is a beautiful result

which demonstrates the geometric nature of the Berry phase.
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2.4.1. Special Case: 2D

An important special case to consider is when the parameter space is two-dimensional.

In this case, Ω(C) is equal to 2πn where n is the winding number of C around the point

of degeneracy. In particular, it means that it equals 0 when C does not surround the point

of degeneracy. To get some intuition behind this, fix a plane in R3 and a closed curve on

the plane. Then, the solid angle subtended by the curve relative to a point arbitrarily close

to the plane either approaches zero or half of the total solid angle of a sphere, leading to a

Berry phase

γ±(C) = ∓πn . (2.22)

A rigorous mathematical proof of this will be given using precisely this method in the

next subsection. A real-life example of this result can be found in monolayer graphene where

a Berry phase of π has been confirmed experimentally [56].
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2.5. Generalized Two-Level Systems in 2D

It is crucial to remember that only two-level Hamiltonians linear in the parameter R as

been considered so far. Dropping this assumption, the Hamiltonian can be written as

H(R) = Q0(R)I +Q1(R)σ1 +Q2(R)σ2 +Q3(R)σ3 , (2.23)

for smooth real functions Qi(R) having the same units as R. In particular, the vector

Q(R) =
(
Q1(R), Q2(R), Q3(R)

)
∈ R3 can be viewed as a parameter in a different pa-

rameter space. In such a way, we can define D as the path taken of the adiabatic process

from Q(R(0)) to Q(R(t)) in this parameter space. In other words, D is the image of the

path C under Q. And since the Hamiltonian evolves in the same way through time if it

follows path C in the original parameter space or path D in the new parameter space, their

Berry phase has to be the same. Hence, we must have that

γ±(C) = ∓1
2
Ω(D) . (2.24)

We will only consider the case where both parameter spaces R and Q(R) are two-

dimensional surfaces with a unique point of degeneracy approached linearly with R in the

parameter space Q(R). Without loss of generality, let the point of degeneracy be at the

origin of the parameter space and R1 = 0. Consequently, Q(R) must be a smooth connected

surface passing through the origin since R varies in two-dimensional parameter space. We

start by parameterizing the parameter space asR(r, θ) where r = |R| and θ = atan2(R3, R2).

Thus, Q(r, θ) ≡ Q(R(r, θ)) is a parametrization of the surface spanned by Q(R) with θ

periodic with period 2π. Therefore,

Ω(D) =
x

T

Q̂ · dS
|Q|2

=
x

S

Q(r, θ)

|Q(r, θ)|3
·
[
∂Q

∂r
× ∂Q

∂θ

]
dr dθ ,

(2.25)

where T can be any smooth connected compact surface bounded by D and where we have

defined S ≡ {(r, θ) ∈ R≥0 × [0, 2π) |Q(r, θ) ∈ T}. Although T is not uniquely defined, the

surface S is.
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Let Π be the tangent plane to the surface Q(R) at the origin and let n̂ be the unit

normal vector of this plane. Because Q(r, θ) is a smooth connected surface in 2D, it can be

expressed as

Q(r, θ) = rΘ(θ) + V (r, θ) , (2.26)

for some vectors Θ(θ),V (r, θ) ∈ Π for all (r, θ) such that Θ(θ) 6= 0 and V (r, θ) = O(r2),

both periodic in θ with period 2π. Assume that the surface with V (r, θ) = 0 for all (r, θ)

denoted as the linear surface has no singular point. As a result, Θ(θ)×Θ′(θ) ≡ g(θ)n̂ for

some smooth real function g(θ) which is either strictly positive or strictly negative. This

condition is equivalent to having the gap amplitude proportional to O(r) in every direction.

We begin by translating the surface Q(R) by ξn̂ for some ξ > 0 known as the mass term

although it carries units of R. It has the effect of shifting the point relative to which we

evaluate the solid angle. We will later take the limit ξ → 0. As such,

Q(r, θ)→ Qξ(r, θ) ≡ rΘ(θ) + V (r, θ) + ξn̂ . (2.27)

The vector Qξ(r, θ) has a squared length of

|Qξ(r, θ)|2 = |rΘ(θ)|2 + 2rΘ(θ) · V (r, θ) + |V (r, θ)|2 + ξ2

≡ |rΘ(θ)|2 [1 + v(r, θ)] + ξ2 ,
(2.28)

where v(r, θ) = O(r) includes all terms responsible for the difference in the length of the

vectorQ(r, θ) from the linear case. Furthermore, the normal vector of the parametric surface

Qξ(r, θ) at any point (r, θ) is

∂Qξ

∂r
× ∂Qξ

∂θ
=
∂Q

∂r
× ∂Q

∂θ

=

[
Θ(θ) +

∂V

∂r

]
×
[
rΘ′(θ) +

∂V

∂θ

]
= rΘ(θ)×Θ′(θ) + Θ(θ)× ∂V

∂θ
+ r

∂V

∂r
×Θ′(θ) +

∂V

∂r
× ∂V

∂θ

≡ rg(θ) [1 + w(r, θ)] n̂ .

(2.29)

where w(r, θ) = O(r) includes all terms responsible for the difference in the surface area

between the tangent plane at (r, θ) and the linear surface at the same point.
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Combining all results into (2.25) yields

Ω(D) = lim
ξ→0

x

S

ξrg(θ)[1 + w(r, θ)]{
|rΘ(θ)|2 [1 + v(r, θ)] + ξ2

} 3
2

dr dθ

≡ lim
ξ→0

x

S

ξrg(θ)[1 + w(r, θ)][
|rΘ(θ)|2 + ξ2

] 3
2

dr dθ + Ω̃(D)

= lim
ξ→0

x

S

g(θ)

|Θ(θ)|2
[r/ξ] |Θ(θ)|−1 [1 + w(r, θ)]{

[r/ξ]2 + |Θ(θ)|−2} 3
2

d[r/ξ] dθ + Ω̃(D)

≡ lim
ξ→0

x

S

g(θ)

|Θ(θ)|2
f(r/ξ, θ) d[r/ξ] dθ + Ω̃(D)

= 2πḡn+ Ω̃(D) ,

(2.30)

where n is the winding number, and

ḡ =
1

2π

∫ 2π

0

g(θ)

|Θ(θ)|2
dθ , (2.31a)

f(r/ξ, θ) =
[r/ξ] |Θ(θ)|−1{

[r/ξ]2 + |Θ(θ)|−2} 3
2

[1 + w(r, θ)] , (2.31b)

Ω̃(D) = lim
ξ→0

x

S

g(θ)

|Θ(θ)|2

{1 +
|rΘ(θ)|2 v(r, θ)

|rΘ(θ)|2 + ξ2

}− 3
2

− 1

 f(r/ξ, θ) d[r/ξ] dθ . (2.31c)

The last step of (2.30) can be understood very simply by making a change of variable.

For any range of integration [ri, rf ] in r where 0 ≤ ri ≤ rf and fixed θ, we must obtain for

any k ∈ N0 that

∫ rf

ri

rk[r/ξ] |Θ(θ)|−1{
[r/ξ]2 + |Θ(θ)|−2} 3

2

d[r/ξ] = ξk
∫ rf/ξ

ri/ξ

rk+1 |Θ(θ)|−1{
r2 + |Θ(θ)|−2} 3

2

dr . (2.32)

Any non-zero limit of integration will go to infinity when ξ → 0 while a zero limit of

integration will stay zero. Hence, after taking ξ → 0 the integral in (2.32) will equal zero

unless k = 0 and 0 = ri < rf where it will converge to 1. Therefore, fixing θ and evaluating

the integral over r in (2.30) will follow this rule and give the appropriate result since we

have in the expression of f(r/ξ) that w(r, θ) = O(r).

Notice that we have not made any approximation in the calculation so far. In such a way,

an explicit and exact expression for the solid angle has been obtained up to a correction
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term Ω̃(D) which equals to the difference with the solid angle calculated from the linear

surface. However, there should be no correction since the surface Q(r, θ) lies on the linear

surface itself. Thus, it must be the case that Ω̃(D) = 0. A rigorous proof of this proposition

is given in appendix C. Consequently, (2.30) becomes

Ω(D) = 2πḡn . (2.33)

It is important to note that (2.33) is exact for Q(r, θ) as described initially. No approxima-

tion has been made to obtain this result. According to (2.24), the Berry phase in this case

must be

γ±(C) = ∓πḡn . (2.34)

2.5.1. Special Case: Simple Dirac Point

An important special case under the conditions found in this section is when Θ(θ) allows

a simple Dirac point at the origin. Let Θ(θ) =
(

0, r̂ · v2, r̂ · v3

)
for r̂ =

(
cos θ, sin θ

)
and

for v2,v3 ∈ R2 some constant vectors satisfying |v2 × v3| 6= 0. There is no singular point if

and only if |v2 × v3| 6= 0. Hence, let σ ∈ {±1} be such that v2 × v3 = σ|v2 × v3|ẑ. In this

case, it is obtained after some simplification that

ḡ = σ
|v2 × v3|

2π

∫ 2π

0

dθ

[r̂ · v2]2 + [r̂ · v3]2
. (2.35)

The easiest way to solve this integral is to define the complex variable z(θ) = r̂ · [v2 + iv3].

It satisfies |z|2 = [r̂ · v2]2 + [r̂ · v3]2 and z∗z′ = |z||z|′ + i|v2 × v3|. Thus, in terms of z

ḡ = σ
|v2 × v3|

2π

∮
1

|z|2
· dz
z′

= σ .

(2.36)

according to Cauchy’s integral formula. Therefore, the Berry phase equals

γ±(C) = ∓σπn . (2.37)
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2.6. Avoided Band Crossings

This analysis of two-level systems shows how a non-zero Berry phase can arise from

avoided band crossings: the space spanned by Q(R) ∈ R3 should not include the origin.

The electrons orbiting in parameter space can still acquire a Berry phase because the solid

angle does not necessarily have to equal zero. As an example, take the Hamiltonian

H(R) = ξσ1 +R2σ2 +R3σ3 , (2.38)

for small mass ξ > 0. It is equivalent toQξ(R) as defined earlier with Θ(θ) =
(

0, cos θ, sin θ
)

and V (r, θ) = 0. For simplicity, let the surface of integration S to be the disk centered at

the origin with radius ρ. Following the derivation of (2.30), the Berry phase is then

γ±(C) = ∓π

[
1− 1√

[ρ/ξ]2 + 1

]
. (2.39)

By a simple change of coordinates R2 → aR2 and R3 → bR3 for some a, b ∈ R \ {0}, the

same equation (2.39) holds when one takes the surface of integration S to be the ellipse

centered at the origin with the semi-axes of length aρ and bρ in the R2-direction and in the

R3-direction respectively. In these simple cases, the dispersion has the form of a parabolic

avoided crossing. More generally, the different types of parabolic avoided crossings in two-

dimensional systems are classified by their Diracness, which determines the degree to which

the Hamiltonian has Dirac-like features [17].
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3. QUANTUM OSCILLATIONS

Quantum oscillations are oscillatory variations detected in most measurable quantities

when changing the magnetic field strength [12]. This effect was first discovered experimen-

tally in 1930 in magnetization by Wander Johannes de Haas and Pieter M. van Alphen —

called the de Hass–van Alphen effect — and in magnetoresistance by Lev W. Shubnikov and

de Haas [36] — called the Shubnikov–de Haas effect. It was only twenty years later that

Lars Onsager showed that it could be used to map a metal’s Fermi surface [33]. Since then,

quantum oscillations have been a powerful tool to determine with high precision and along

any direction the Fermi surface’s extremal cross-sectional areas [44].

Similar to the physics of Landau quantization of electrons, that of quantum oscillations

is described from a semi-classical perspective. To obtain some insight on the subject, it is

valuable to recall the Landau quantization problem [22, Chapters 110–111]. First, consider

a free electron in a constant uniform magnetic field B. As the spin part of the Hamiltonian

commutes with the other parts, the spin of the electron has no impact on the dispersion

relation. The electronic dispersion relation for band n ∈ N under the Landau gauge is then

εn(py, pz) =
~e|B|
me

[
n+

1

2

]
+

p2
z

2me

. (3.1)

Note that the energy being degenerate in py is not physical but instead comes from a choice.

Still, the fact that it is degenerate in exactly one momentum coordinate is physical and is

the cause of degeneracies in Landau levels. At a fixed energy ε, it gives

n =
me

~e

[
ε− p2

z

2me

]
· |B|−1 − 1

2
. (3.2)

We thus expect the energy levels to pass through a fixed energy with a period proportional

to |B|−1. Although very simple, this derivation outlines the essential physics of quantum

oscillations.

3.1. Semiclassical Electron Dynamics

We first lay out the fundamentals of semiclassical electron dynamics in a crystal lattice

as formulated by Kittel and McEuen [21]. Assume a Bloch electron wave packet such that
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the position uncertainty is much larger than the lattice spacing and at the same time much

smaller than the scale on which considerable changes occur in external fields [16]. In this way,

the single momentum plane wave analysis is valid while the effect of external fields is particle-

like on the electron. Additionally, assume that we can neglect interband transitions. Let

the average position of the wave-packet be denoted by x and the average canonical crystal

momentum by ~q. Suppose furthermore that the electron is in a constant uniform magnetic

field B. The kinetic crystal momentum is then ~k = ~q + eA where A is the magnetic

vector potential. The equations of motion are

ẋ = 1
~∇εn(k) , (3.3a)

~k̇ = −e[ẋ×B] , (3.3b)

where ∇ is the gradient with respect to k and εn(k) is the dispersion relation of band n at

k. Combining both equations leads to k̇ ∝ −[∇εn(k)×B], meaning that k̇ ⊥ ∇εn(k) and

k̇ ⊥ B. Because ∇εn(k) is perpendicular to the Fermi surface for an electron at the Fermi

energy, k must lie in a plane parallel to the Fermi surface. Moreover, the component of k

parallel to B must be constant. Thus, an electron at the Fermi energy will go around the

Fermi surface in a plane perpendicular to the magnetic field.

The momentum-space orbit and the projection perpendicular to B of the position-space

orbit can be related with one another through (3.3b). The first thing to notice is that for

any vectors a, b, c where c is a unit vector and such that a = b × c, we have b⊥ = c × a

where b⊥ is the perpendicular part of b with respect to c. Consequently,

ẋ⊥ = − ~
e|B|

B̂ × k̇ . (3.4)

Recall that B remains constant in time. After integrating (3.4) with respect to time,

x⊥(t)− x⊥(0) = − ~
e|B|

B̂ × [k(t)− k(0)] . (3.5)

Accordingly, the orbits are related with one another through a π/2–rotation and a scale

factor of l2B ≡ ~/[e|B|], which is the squared magnetic length. This relation is represented

in figure 3.1.
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Figure 3.1: Orbit in momentum space under an external magnetic field B and its
projection perpendicular to the field in position space obtained through rotating by π/2
and scaling by l2B. The field points out of the plane in both cases. Reproduced from [29].

3.2. Semiclassical Orbit Quantization

The Bohr-Sommerfeld quantization rule is normally the starting point of semiclassical

orbit quantization [35]. Formulated before the development of modern quantum mechanics,

it gives the spectrum of allowed semiclassical states through the quantization condition

∮
p dx = h

[
n+

1

2

]
, (3.6)

where the 1
2
–shift comes from the Maslov contribution, or in other words the number of

caustics on the orbit integrated over. The JWKB approximation can be used to derive

this by matching the phases of the wave functions near the classical turning points [22,

Chapter 48] — but it is not the only way to attain this result. In 1966, the same result was

obtained through a different method relating to semiclassical electron dynamics [39]. On top

of leading to an analysis to higher order in the magnetic field, it showed that the right-hand

side of (3.6) depends more generally on the electron orbit. It was shown many years later

that the Berry phase along the momentum-space orbit takes part in the generalization of

the quantization condition [30].

There is an intuitive, physical interpretation given by Fuchs [16, appendix A] to explain

this generalization. In essence, the quantization condition emerges from periodicity as the

particle’s phase difference over a position-space orbit C must be a multiple of 2π~. Then,

the zeroth order contribution in ~ to the phase is
∮
C
p · dx as the linear momentum p is the

variable conjugate to x. It is thus a valid assumption to take p = ~q [16]. In turn, the next

contributions to the phase are to first order in ~ and consist of the momentum-space Berry

phase and of the Maslov contribution.
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Combining all the contributions with the quantization condition and rearranging the

terms leads to
1

2π

∮
C

q · dx = n− Γn(C̄) +
1

2
, (3.7)

such that Γn(C̄) ≡ γn(C̄)/[2π] for γn(C̄) the Berry phase of state n ∈ N0 over the momentum-

space orbit C̄.

The quantization condition is then applied to a semiclassical electron in a crystal lattice.

We consider the position-space orbit orthogonal to B to be closed and to correspond to

the position-space orbit C as defined above. In other words, we assume a two-dimensional

Brillouin zone where there is a single Fermi surface cross-section, leading to a unique value

of the area enclosed within the orbit. In this manner, allowed orbits form a spectrum similar

to the Landau levels spectrum.

The next derivation is based on Chang’s course notes [11].

The magnetic field appears in this situation through ~q = ~k − eA. It follows that

∮
C

~q · dx =

∮
C

~k · dx− e
∮
C

A · dx . (3.8)

Integrating (3.3b) with respect to time yields ~k = ~k0 − e [x− x0]×B, leading to∮
C

~k · dx = −e
∮
C

[x×B] · dx

= −e
x

S

{∇ × [x×B]} · dS ,
(3.9)

by applying Strokes’ theorem and where S is the plane perpendicular to B enclosed by C.

Note that the constant terms vanish by integrating over C because it is a closed loop. It is

straightforward to evaluate ∇× [x×B] using component notation, resulting in

∇× [x×B] = −2B . (3.10)

Consequently, ∮
C

~k · dx = 2e
x

S

B · dS . (3.11)
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By applying Stokes’ theorem to the next term we obtain that

−e
∮
C

A · dx = −e
x

S

[∇×A] · dS

= −e
x

S

B · dS .
(3.12)

Finally, combining both results gives

∮
C

~q · dx = e
x

S

B · dS . (3.13)

The right-hand side of (3.13) is the magnetic flux through C multiplied by e. Recall that

S is perpendicular to B; hence,
s
S
B · dS = |B|A(C) where A(C) is the area enclosed by

C. However, we are interested in expressing this in terms of the momentum-space orbit C̄.

As the orbits are related by a rotation of π/2 radians and a scale factor of l2B = ~/[e|B|], it

means that A(C) = l4BA(C̄). In such a way,

∮
C

q · dx = l2BA(C̄) . (3.14)

The quantization condition for a semiclassical electron in a crystal lattice then becomes

l2B
2π
A(C̄) = n+

1

2
− Γn(C̄) . (3.15)

This quantization condition is known as the Lifshitz-Onsager quantization rule. The

spacing between allowed cross-sectional areas is set by the magnetic field strength |B| found

in l2B through this relation. Since the allowed areas appear as modulations in the electronic

density of states thanks to level broadening [44], any observable depending on the density of

states will exhibit quantum oscillations. Note in particular that the Fermi energy oscillates

around a fixed value as |B| changes [44, Section 2.5], but this is only noticeable for small

n where the semiclassical analysis does not hold regardless. Hence, the allowed levels will

pass through the effectively constant Fermi surface periodically as a function of the inverse

magnetic field strength |B|−1 with a frequency of

f =
~

2πe
A(C̄) . (3.16)
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The last equation is known as the Onsager’s relation. Besides, the phase offset stems from

the Maslov contribution and the Berry phase.

Consequently, quantum oscillations data can be used to derive the Berry phase. To

achieve this, the allowed energy levels n found through the crests or troughs in quantum

oscillations data are plotted against |B|−1 as shown in figure 3.2 and (3.15) is rearranged to

fit their relationship:

n = f · |B|−1 + Γn(C̄)− 1

2
, (3.17)

where Onsager’s relation gives the frequency f . Accordingly, the Berry phase γn(C̄) — which

equals to 2πΓn(C̄) — associated with the electronic momentum-space orbit C̄ is obtained by

finding the intercept of the free linear fit which results from extrapolating to |B|−1 → 0+.

Note that the numbering of the energy levels must be chosen such that Γn(C̄) ∈ [0, 1].

In the more general three-dimensional case, there is of course a continuum of possible

Fermi surface cross-sections orthogonal to B, but only the ones with the area as local

extrema are relevant [33]. As a consequence, different quantum oscillation frequencies given

by the Onsager’s relation can coexist.
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3.3. Cuprate Superconductors

A large amount of quantum oscillations data for the high-field normal state of the cuprates

has been collected over the past few years [43], but it only has been used to obtain the Berry

phase not long ago [13]. Using the method described in the previous section, Doiron-Leyraud

et al. found according to their data shown in figure 3.2 that the Berry phase is equal within

error to 0 mod 2π in the hole-doped cuprates YBa2Cu3Oy, YBa2Cu4O8, and HgBa2CuO4+δ,

and to 1.4π mod 2π in the electron-doped compound Nd2−xCexCuO4 [13]. Although these

are three-dimensional materials, there is a unique quantum oscillation frequency since they

are quasi-two-dimensional in their superconductive state [18].

According to Doiron-Leyraud et al., their results constrain the possible theoretical models

of the high-field normal state of cuprates, especially for the hole-doped compounds where

the Berry phase was determined to be zero as it must imply that the Fermi pockets are

formed in decoupled bands without Dirac-like features [13]. Additionally, they consider the

non-zero Berry phase found in the electron-doped compound to be a robust result because

the same value is obtained at different dopings with high precision.
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Figure 3.2: (Left column) Quantum oscillations in specified material under an external
magnetic field B pointing along the c-axis in terms of |B|−1. All plots correspond to
measurements of the electrical resistivity where the electric field points along specified axis
except for the third plot which corresponds to measurements of the resonant-frequency
shift of a tunnel diode oscillator (TDO). The in-plane resistivity is inversely proportional
to the c-axis resistivity while it is proportional to changes in the TDO resonant frequency.
The level indices n are associated with their corresponding peak or trough accordingly.
(Right column) Level indices n in terms of |B|−1 with the corresponding linear fit. The
equation for every linear fit and the frequencies obtained through fast Fourier transform
are given. The Berry phase contribution is equal to the intercept. Reproduced from [13].
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4. πLC MODEL OF THE PSEUDOGAP IN THE CUPRATES

In an effort to describe the pseudogap phase of cuprates, Varma suggested in 1997 a com-

peting order model, a three-band model with the particularity of having current circulating

in each unit cell as in figure 4.2, leading to this phase being referred to as the circulating

current phase [50]. It was argued then and shown later that the properties of this phase are

similar to those of the pseudogap phase [51]. A few years later, weak magnetic moments were

detected below T ∗ through spin-polarized neutron scattering experiments [15, 24, 25, 45],

influencing Varma to put forward the idea of intra-unit cell loop currents (LCs) [52].

More recently, Bulut et al. have investigated a phase having a staggered pattern of LCs,

which they called πLC phase [7]. It features the ordering wave vector Q =
(
π
a
, π
a

)
where a

is the lattice spacing. This wave vector is the one relevant to cuprates [29] and can also be

found in other proposals for competing order, such as the d-density wave (DDW) state [9].

As demonstrated in figure 4.1, it plays an essential role in the Fermi surface reconstruction

suggested to be behind the small Fermi surface of the pseudogap phase and the hole and

electron pockets observed in experiments [8]. As it will be shown throughout this section, a

d-wave-symmetric gap will be maintained in the energy spectrum of the πLC state, similar to

the DDW state and in agreement with the pseudogap phase [29]. Additionally, the πLC state

breaks time-reversal symmetry and could explain the Kerr effect observed in the pseudogap

phase through experiments [7].

Figure 4.1: Fermi surface reconstruction due to the ordering wave vector Q =
(
π
a
, π
a

)
.

(a) Without ordering wave vector, the Fermi surface is formed by one hole pocket. The
area within the green square corresponds to the reduced Brillouin zone BZ ′ and the black
lines are contour lines. (b) Fermi surface shifted by Q on top of the original Fermi surface.
(c) Reconstructed Fermi surface formed by hole and electron pockets, shown in red and
blue respectively. This dispersion shares its periodicity with BZ ′. Adapted from [8].
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The πLC model analyzed in this work is the same as the one explored by Bulut et al. [7],

but an alternate current pattern will also be investigated — ultimately leading to the same

Berry phase.

Figure 4.2: Staggered pattern
of loop currents studied by
Bulut et al. [7] Cudx2−y2 , Opx,
and Opy orbitals are
represented by open
circles,“x”, and “y”
respectively. The directional
hopping on p–d and p–p bonds
are shown by black and green
arrows respectively.
Reproduced from [7].

The πLC Hamiltonian is written on a square lattice and

each site corresponds to a unit cell, i.e., a CuO2 plane con-

taining a copper dx2−y2 orbital and oxygen px and py or-

bitals, denoted by Cudx2−y2 , Opx, and Opy. The relevant

bonds are the nearest neighbour p–d and p–p bonds. As

discussed before, these bonds exhibit intra-unit cell loop

currents, equivalent to directional hopping. Additionally,

the current must switch direction between unit cells like in

figure 4.2 to obtain the Fermi surface reconstruction found

in figure 4.1. Any state under such considerations breaks

both time-reversal and lattice-translation symmetries. The

specific staggered pattern of intertwined LCs studied by

Bulut et al. [7] is shown in figure 4.2. Note that this state

has 4-fold rotational symmetry and conserves current.

The πLC Hamiltonian denoted by Ĥ can be broken

down in two parts: the kinetic energy Ĥ0 and the charge

order Ĥ ′. Each one can be solved separately. However, a mean-field approach is needed

to solve the charge order, which will lead to the final diagonalized Hamiltonian being a

mean-field approximation.

4.1. The Mean-Field Hamiltonian

4.1.1. Kinetic Energy

The choice of unit cell for a single CuO2 plane and of orbital phase convention can be

found in figure 4.3. The inequivalent bonds are numbered to distinguish them from one

another. We assume a total of N2 unit cells with periodic boundary conditions. Each unit

cell will be labeled by its position through a vector i =
(
ix, iy

)
∈ Z2

N . Also, the orbitals

will be labeled by d for Cudx2−y2 , x for Opx, and y for Opy. Let Riα be the position vector
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of orbital α in unit cell i: it can be expressed as Riα = Ri + δα with Ri ≡ ai where a

is the lattice spacing corresponding to the distance between two d orbitals, and δα is the

displacement vector defined such that δd ≡ 0, δx ≡ a
2
x̂, and δy ≡ a

2
ŷ.

Let ĉiασ/ĉ
†
iασ/n̂iασ be the annihilation/creation/number operator for an electron in orbital

α of unit cell i and spin σ. Let εα be the orbital energy of orbital α and tjβ,iα the tunneling

matrix element from orbital α in unit cell i to orbital β in unit cell j. The kinetic energy is

then

Ĥ0 =
∑
iασ

εαn̂iασ +
∑

〈iασ,jβσ〉

tjβ,iαĉ
†
jβσ ĉiασ , (4.1)

where the sum over 〈iασ, jβσ〉 includes nearest neighbor p–d and p–p bonds [7]. The spin

labels can be omitted here. Note that tjβ,iα can be expressed as tnβα, in terms of α, β, and n

the inequivalent bond between iα and jβ. What is interesting about this expression of the

tunneling matrix elements is that i or j are not needed anymore and only the inequivalent

bond and corresponding orbitals are required. Under a typical parameter set, tpd = 1 is set

to define the unit energy with tpp = −0.5 and εd − εp = 2.5, along with other parameters

— which will be defined later — set to Ud = 9, Up = 3, Vpd = 2.2, Vpp = 1, zpd = 0.04, and

zpp = zpd/3, in accordance with experimental data [7, 19].

Let ĉkα/ĉ
†
kα/n̂kα be the annihilation/creation/number operator for an electron in orbital

α with crystal momentum ~k for k =
(
kx, ky

)
∈ 2π

aN
Z2
N . By periodicity, the Brillouin zone

BZ is taken to be the set 1
a
[−π, π]× 1

a
[−π, π]. The momentum-space operators are related

2
37
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pd

t
pd

-t
pd

-t
pd

-t
pd

t
pd

t
pd

t
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Figure 4.3: All inequivalent bonds of the CuO2 plane. The unit cell chosen is indicated by
the dashed box. All inequivalent bonds are numbered in green and their orbital phase
convention is given by the sign of its hopping matrix element. Adapted from [7].
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to their position-space counterparts through the Fourier transform:

ĉkα = 1
N

∑
i

e−ik·Riα ĉiα ĉ†kα = 1
N

∑
i

eik·Riα ĉ†iα

ĉiα = 1
N

∑
k

eik·Riα ĉkα ĉ†iα = 1
N

∑
k

e−ik·Riα ĉ†kα .
(4.2)

Let δnβα ≡ Rjβ −Riα be the bond vector from orbital α to β on the inequivalent bond

n for corresponding i and j. To generalize this further, let also δnαα = 0 for any α and n.

Consequently, it is obtained that

ĉ†jβ ĉiα = 1
N2

∑
k,k′

e−ik
′·δnβαei[k−k

′]·Riα ĉ†k′β ĉkα , (4.3)

for n the inequivalent bond between iα and jβ. In particular, the information about j is

not needed in the expression above if n is known, meaning that a sum over j can be replaced

by a sum over n instead. Since 1
N2

∑
i e

ik·Riα = δk,0, it follows that

∑
iα

εαn̂iα =
∑
kα,k′

εα

[
1
N2

∑
i

ei[k−k
′]·Riα

]
ĉ†k′αĉkα

=
∑
kα

εαn̂kα ,

(4.4)

∑
〈iα,jβ〉

tjβ,iαĉ
†
jβ ĉiα =

∑
kα,k′β,n

tnβαe
−ik′·δnβα

[
1
N2

∑
i

ei[k−k
′]·Riα

]
ĉ†k′β ĉkα

=
∑
kαβ,n

tnβαe
−ik·δnβα ĉ†kβ ĉkα

≡
∑
kαβ

fβα(k)ĉ†kβ ĉkα ,

(4.5)

where fβα(k) must clearly satisfy f ∗βα(k) = fαβ(k). Letting Ψ†k ≡
[
ĉ†kd ĉ

†
kx ĉ†ky

]
,

Ĥ0 =
∑
k

Ψ†k


εd f ∗xd(k) f ∗yd(k)

fxd(k) εx f ∗yx(k)

fyd(k) fyx(k) εy

Ψk

≡
∑
k

Ψ†kH0(k)Ψk .

(4.6)
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Introducing the ordering wave vector Q =
(
π
a
, π
a

)
for the Fermi surface reconstruction,

Ĥ0 =
∑
k∈BZ′

[
Ψ†k Ψ†k+Q

]H0(k) 0

0 H0(k +Q)

 Ψk

Ψk+Q

 , (4.7)

where BZ ′ is the reduced Brillouin zone pictured in figure 4.4 consisting of the closed ball

of radius π
a

centered at the origin with the p-norm L1.

Figure 4.4: Full and reduced
Brillouin zone shown by the
solid and the dashed square
respectively. The red points
denote D. Adapted from [29].

Next, a gauge transformation is applied:

ĉkx → iĉkx ĉky → iĉky

ĉ†kx → −iĉ
†
kx ĉ†ky → −iĉ

†
ky .

(4.8)

explicitly, we have after the gauge transformation that

H0(k) =


εd 2tpdsx −2tpdsy

2tpdsx εp 4tppsxsy

−2tpdsy 4tppsxsy εp

 , (4.9)

as εx = εy ≡ εp and for sx ≡ sin
(
a
2
kx
)

and sy ≡ sin
(
a
2
ky
)
.

It is useful to investigate the eigenvalues En(k) of H0(k) and their corresponding eigen-

states |n(k)〉 for k ∈ BZ under a typical parameter set [7, 19]. The details of this analysis

can be found in appendix D. What comes out of it is that there is an energy gap εd − εp
between the highest energy band and the two other bands. Furthermore, the energy bands

have the property that En(k +Q) = En(k) if and only if k ∈ ∂BZ ′.

4.1.2. Mean-Field Decomposition of the Charge Order

Let Uα and Vβα be the intraorbital and interorbital Coulomb interactions respectively.

The charge order in position space is

Ĥ ′ =
∑
iα

Uαn̂iα↑n̂iα↓ + 1
2

∑
〈iασ,jβσ′〉

Vβαn̂jβσ′n̂iασ , (4.10)

where the sum over 〈iασ, jβσ′〉 includes nearest neighbor p–d and p–p bonds [7].
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From H ′, it is possible to obtain its mean-field version Ĥ ′MF which includes circulating

currents. The intraorbital interactions lead to Hartree shifts to the orbital energies which

merely renormalize in εd and εp. Since we are looking for solutions that do not break spin-

rotational symmetries, the spin labels are omitted for the rest of this work. The interorbital

interactions can be decomposed in terms of the circulating current: the Hermitian operator

Ĵjβ,iα = −itjβ,iα[ĉ†jβ ĉiα− ĉ
†
iαĉjβ] is the current operator for the bond between iα and jβ such

that the current flows from iα to jβ if 〈Ĵjβ,iα〉 ≡ zjβ,iα > 0 and from jβ to iα if zjβ,iα < 0.

The framework described above to obtain the mean-field version of H ′ has been done

explicitely in appendix E, leading to

Ĥ ′MF =
∑
k∈BZ′

[
Ψ†k Ψ†k+Q

] ε̃ H1(k)

H†1(k) ε̃

 Ψk

Ψk+Q

 , (4.11)

where an explicit expression for H1(k) depends on the current pattern. Note that ε̃ simply

represents a shift in the orbital energies equivalent to ε̃d = Vpd + 2Vpp and ε̃p = 2Vpd.

The focus needs to be made on physical current patterns — meaning that the current

is conserved on each orbital site — with 4-fold rotational symmetry. Such current patterns

have the particularity that all elements of H1(k) after the gauge transformation are purely

imaginary. There are only two possible inequivalent physical current patterns with 4-fold

rotational symmetry, and the one investigated by Bulut et al. [7] shown in figure 4.2 is one

of them. The second current pattern can be obtained from the one in figure 4.2 by merely

inverting the current along p–p bonds.

Throughout the rest of this work, the two current patterns satisfying the above conditions

will be distinguished by φ ∈ {±1} with the current pattern investigated by Bulut et al. [7]

corresponding to φ = 1. Explicitly, we have for these two current patterns under the gauge

transformation from (4.8) that ε̃ stays invariant while

H1(k) =


0 2iRpdcx 2iRpdcy

−2iRpdsx 0 −4iφRppsxcy

−2iRpdsy 4iφRppcxsy 0

 , (4.12)

for Rpd ≡ Vpdzpd
tpd

, Rpp ≡ Vppzpp
tpp

, cx ≡ cos
(
a
2
kx
)

and cy ≡ cos
(
a
2
ky
)
.

33



4.1.3. Full Mean-Field Hamiltonian

Combining both (4.7) and (4.11) yields the effective mean-field πLC Hamiltonian:

ĤMF =
∑
k∈BZ′

[
Ψ†k Ψ†k+Q

]H0(k) H1(k)

H†1(k) H0(k +Q)

 Ψk

Ψk+Q


≡
∑
k∈BZ′

Ψ
†
kHMF (k)Ψk ,

(4.13)

where εd → εd + ε̃d ≡ εd and εp → εp + ε̃p ≡ εp in H0(k). HMF (k) has the particularity of

having real diagonal block matrices and imaginary off-diagonal block matrices.

Define the unitless parameter λ ≡ zpd/tpd. Then,

HMF (k) =

 H0(k) −iλV (k)

iλV T (k) H0(k +Q)

 , (4.14)

for real matrix V (k) ≡ iλ−1H1(k). Note that the matrix elements of V (k) are of the order

of magnitude of 1 or lower for any k while λ� 1 under a typical parameter set. Four points

are of particular interest here: the points k∗ such that |k∗x| = |k∗ y| = π
2a

, which form a set

that we denote by D. As seen in figure 4.4, they are located in the middle of the quadrants

of the full Brillouin zone. As discussed in appendix F, V (k) has the property that within

each individual hole pocket, 〈n(k)|V (k) |n(k +Q)〉 = 0 for k ∈ ∂BZ ′ if and only if k ∈ D.

Hence, the momenta in D correspond to the degeneracy points.

Recall from section 4.1.1 that En(k+Q) = En(k) if and only if k ∈ ∂BZ ′. According to

this along with the property of V (k) above, the eigenstates of HMF (k∗) for k∗ ∈ D are

|n↑(k∗)〉 =

|n(k∗)〉

0

 |n↓(k∗)〉 =

 0

|n(k∗ +Q)〉

 , (4.15)

where both |n↑(k∗)〉 and |n↓(k∗)〉 share the eigenvalue En(k∗) for every n. Hence, all the

eigenvalues of HMF (k∗) for the momenta k∗ ∈ D are 2-fold degenerate. An alternate and

more rigorous proof is given in appendix F.
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4.2. Projection of the Hamiltonian on the Two Highest Energy Bands

We put our focus on the two highest energy bands which are half-filled and related to

the energy of the Cudx2−y2 orbital [49]; the other energy bands are irrelevant because they

are restricted to energies well below the Fermi energy. We start our investigation by looking

at the energy bands in the reduced Brillouin zone BZ ′. We can try to find the eigenvalues

of HMF (k) at any point k ∈ BZ ′, but those eigenvalues are practically impossible to find

analytically because it requires solving a polynomial equation of degree 6.

We must rely on perturbation theory for an energy subspace as described in Section B.2 to

simplify the task of finding explicit expressions for the dispersion relation. The unperturbed

Hamiltonian is taken to be H0(k) 0

0 H0(k +Q)

 . (4.16)

Let the energy eigenvalues and corresponding eigenstates of H0(k) be denoted by En(k)

and |n(k)〉 for n ∈ {±, 0} such that E+(k) ≥ E0(k), E−(k). Hence, the unperturbed energy

(a) (b)

Figure 4.5: (a) Dispersion relation over the full Brillouin zone for the mean-field πLC
Hamiltonian as investigated by Bulut et al. [7] (φ = 1) under a typical parameter set. The
zero energy corresponds to the Fermi energy. (b) Zoom on the highest energy bands. The
Dirac points are visible at k ∈ D.
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eigenvalues are En(k) and En(k +Q) with respective corresponding eigenstates

|n↑(k)〉 =

|n(k)〉

0

 |n↓(k)〉 =

 0

|n(k +Q)〉

 . (4.17)

As pointed out above, we are only interested in the two highest energy bands. According

to section 4.1.1, the two highest energy bands are separated from the four other bands by

∆ε ≡ εd − εp under a typical parameter set. As maxi,j |λVij(k)|/|∆ε| . λ� 1 in this case,

the two highest energy eigenstates |+↑(k)〉 and |+↓(k)〉 form a subspace that is separated

well enough energetically from the rest of the Hilbert space to apply perturbation theory

as layed out in appendix B.2 and effectively project the mean-field Hamiltonian onto this

subspace. Thus, the projected Hamiltonian at any point k is

HU(k) =

E+(k) −iλ∆(k)

iλ∆(k) E+(k +Q)


= Ē(k)I + λ∆(k)σ2 + ε(k)σ3 ,

(4.18)

where we have defined Ē(k) ≡ 1
2
[E+(k) + E+(k + Q)], ∆(k) ≡ 〈+(k)|V (k) |+(k +Q)〉,

and ε(k) ≡ 1
2
[E+(k)− E+(k +Q)].

The first thing to notice is that ε(k) = 0 if and only if k ∈ ∂BZ ′. Since we have within

each individual hole pocket that ∆(k) = 0 for k ∈ ∂BZ ′ if and only if k ∈ D, it means

that the projection does not lift the degeneracies of momenta in D and that there is also no

other degeneracy. Thus, the highest energy bands of the full mean-field Hamiltonian and of

the projected Hamiltonian share the same degeneracy points located at the momenta in D

and there is no other degeneracy. Supporting this fact, it can easily be observed numerically

through figure 4.5 (b) that there is no other degeneracy associated with the two highest

energy bands.
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4.3. Berry Phase of the Projected Hamiltonian

As we are interested in the hole pockets surrounding the degeneracy points, we have to

consider the Hamiltonian in a shifted momentum space. We thus express any point k in

the Brillouin zone BZ in terms of a vector k̃ centered at one of the degeneracy points. As

detailed in appendix G, taking k =
(
σx[

π
2a

+ k̃x], σy[
π
2a

+ k̃y]
)

for σx, σy ∈ {±1} yields

ε(k) = k̃ · ε(1) +O(|k̃|2) , (4.19a)

∆(k) = k̃ ·∆(1) +O(|k̃|2) , (4.19b)

for some vectors ε(1) and ∆(1) which satisfy |∆(1) × ε(1)| 6= 0. Let σ ∈ {±1} be such that

∆(1) × ε(1) = σ|∆(1) × ε(1)|ẑ. For the Hamiltonian HU(k), the Berry phase along a path

C corresponding to an orbit around the hole pocket surrounding the point π
2a

(
σx, σy

)
∈ D

where σx, σy ∈ {±1} in momentum space can be calculated with the help of section 2.5.1:

γ±(C) = ∓σσxσyπ . (4.20)

(a) (b)

Figure 4.6: (a) Zoom on the highest energy bands of the dispersion relation over the full
Brillouin zone for the mean-field πLC Hamiltonian as investigated by Bulut et al. [7]
(φ = 1) under a typical parameter set. The green plane is at the Fermi energy. (b)
Resulting Fermi surface with hole and electron pockets shown in orange and blue
respectively.
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4.3.1. Numerical Evaluatation

It is possible to evaluate numerically the Berry phase accumulated by an electron orbiting

a hole pocket. The method is straightforward: first, the Hamiltonian in momentum space

in its matrix form is diagonalized numerically on a discrete grid of points; then, the Berry

curvature is calculated at all points using (2.13); finally, the Berry phase is evaluated by

integrating over the area of the hole pocket which is enclosed by the electron’s orbit as in

(2.8). This approach is more straightforward numerically than calculating the line integral of

the Berry vector potential given in (2.5) since there is no derivative of eigenstates involved.

Special considerations must be taken in the presence of a Dirac point because numerical

methods do not adequately work at discontinuous points. In the case of a two-level system

in 2D, we have seen in section 2.5 that a mass term must be added to the Hamiltonian in

order to evaluate the Berry phase. Given a small finite value, the mass term provides a way

to approximate the Dirac delta function located at the Dirac points in the Berry curvature.

In such a way, numerical methods can be used to approximate the Berry phase without any

problem. In order to make this precise, the mass term should be small enough to make the

delta function’s weight negligible outside the area of integration whereas the grid resolution

must be taken high enough to approximate around the peak accurately.

In our case, adding the mass term to evaluate the Berry phase accumulated by an electron

orbiting a hole pocket in one of the two highest energy bands is done by

HU(k)→HU(k) + αξσ1 , (4.21)

for small mass ξ > 0 and for α a unitary dimensionful constant carrying units of energy

times length. Regarding the full mean-field Hamiltonian, it is equivalent to having

HMF (k)→HMF (k) + αξ
[
|+↑(k)〉 〈+↓(k)|+ {|+↑(k)〉 〈+↓(k)|}†

]
= HMF (k) + αξ

 0 |+(k)〉 〈+(k +Q)|

{|+(k)〉 〈+(k +Q)|}† 0

 .
(4.22)

As pointed out above, the mass term needs to be appropriately chosen. Recall from (2.39)

that for a simple linear dispersion, a fraction {1 + [ρ/ξ]2}−
1
2 of the delta function’s weight

is lost outside of a radius ρ around the Dirac point. Hence, ρ and ξ must be set such that
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Figure 4.7: (a) Magnitude of the Berry curvature in units of [a/π]2 close to a degeneracy
point for the mean-field πLC Hamiltonian as investigated by Bulut et al. [7] (φ = 1) under
a typical parameter set. Similar results are obtained for φ = −1. The momentum space
has been translated to the degeneracy point

(
π
2a
, π

2a

)
and rotated by π/4 clockwise, the

grid spacing is 4 · 10−6 [a/π]−1 in the kx-direction and 4 · 10−5 [a/π]−1 in the ky-direction,
and the mass term ξ = 1 · 10−5 [a/π]−1. (b) Zoom on the plot.

ρ/ξ is big enough. In particular, about 1% of the delta function’s weight is lost when taking

ρ/ξ = 100. For a more general dispersion, more can be lost through the correction to the

solid angle found in (2.31c), but we can assume this to be negligible because it is of order

λ� 1 under a typical parameter set. Additionally, asymmetry in the rate of growth of the

gap needs to be considered when choosing the mass term and the grid.

It should be noted that the Berry phase accumulated by an electron orbiting a hole pocket

will be equal with opposite signs in the two highest energy bands. Moreover, it should also

give the same value around every hole pocket with alternating signs as found in (4.20). This

is in line with the fact that Dirac points come in pairs of opposite topological charge [54].

Therefore, it is enough to merely compute the Berry phase of the hole pocket surrounding(
π
2a
, π

2a

)
for an electron in the lowest of the two highest energy bands.

The desired Berry phase can be evaluated by taking a few things into considerations

specific to the mean-field πLC Hamiltonian under a typical parameter set. It can be seen

numerically that the distance between the Dirac point and the boundary of the surrounding

hole pocket ranges from approximately 0.025 [a/π]−1 to 0.16 [a/π]−1 for both current pat-

terns. To make the calculation more efficient, the elongated shape of the hole pocket and

39



φ +1 −1

γ−(C)/π 99.1% 98.9%

Table 4.1: Berry phase for the counterclockwise orbit around the hole pocket surrounding(
π
2a
, π

2a

)
in percentage of π of the lowest of the two highest energy bands for the mean-field

πLC Hamiltonian with φ = ±1 under a typical parameter set.

its positioning need to be taken into account. Thus, the momentum space is translated

such that the origin corresponds to the degeneracy point considered, and it is then rotated

clockwise by π/4. Furthermore, a rectangular grid centered at the origin of this transformed

momentum space is taken with the horizontal 10 times smaller than the vertical. The same

number of discrete points is taken horizontally and vertically. Specifically, the vertical side

is set to have a length of 2 · 10−2 [a/π]−1 with a grid spacing of 4 · 10−5 [a/π]−1 along this

direction. Finally, a mass term of ξ = 1 · 10−5 [a/π]−1 is chosen.

For both possible current patterns, a Berry phase approximately equal to π is obtained,

in accordance with (4.20). The results are listed in table 4.2 and are all within expectations:

almost equal to π, but not exactly because of the delta function’s weight that is lost outside

of the grid. No specific uncertainty on the Berry phase can be derived because of the

nature of the approximation leading to unknown discretization errors. On the one hand, the

contribution from discretizing the grid is assumed to be negligible because of the high grid

resolution. On the other hand, the delta function’s weight loss can be approximated to be

around 1% by taking ρ/ξ ≈ 100.

The above analysis of the semi-classical electron orbits does not take into account the

effect of strong magnetic fields as used in quantum oscillations experiments. As such, the

mean-field πLC Hamiltonian derived and investigated in this section could turn out to be

invalid if magnetic suppression occurs. Still, it has been shown in mean-field-theoretic studies

that the gap is insensitive to strong magnetic fields when the gap amplitude is sufficiently

large in the non-magnetic regime [31]. This supports the assumption of a constant gap

amplitude under any magnetic field that can be attained in laboratories.

To conclude, the results obtained so far lead one to believe that the πLC state is incon-

sistent with quantum oscillations data: an electron orbiting the Fermi surface acquires a

nonzero Berry phase, in contradiction with recent experiments.
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4.4. Quantum Treatment of the Magnetic Field through Peierls Substitution

A different method which does not rely on the semiclassical approach can be used to derive

the Landau-like quantization relation. Known as the Peierls substitution, this particular

approach allows us to incorporate an external magnetic field in a Bloch electron problem.

In quantum mechanics, an external magnetic field is typically introduced in equations by

redefining the canonical momentum of a particle in terms of the magnetic vector potential

A(r) in function of position r [48, Appendix E]:

p→ p− qA(r) , (4.23)

where q is the particle’s charge. However, the energy eigenstates of electrons in a crystal

lattice are no longer the usual Bloch states, but modified Bloch states instead as the initial

discrete translational invariance of the Hamiltonian is now broken [27, and therein].

When the vector potential varies slowly over a lattice cell, the effect of the transformation

done in (4.23) is to add a phase factor dependent on the vector potential to the hopping

terms of the Hamiltonian [14]:

ĉ†j ĉi → exp

[
i2π

q

h

∫ Rj

Ri

A(r) · dr
]
ĉ†j ĉi , (4.24)

where the path of the integral is by convention the shortest path from Ri to Rj . This result

can easily be derived from the path-integral formulation of quantum mechanics [48, Section

14.1]: as the classical action changes through the redefinition of the canonical momentum,

the amplitude of a path gets a phase factor from the line integral over the path.

According to the justification found at the end of section 4.3.1, the gap amplitude is

assumed to be approximately constant over the range of magnetic field magnitudes relevant

to quantum oscillation experiments which are considered in this section. In such a way, all

of the terms in the mean-field πLC Hamiltonian are assumed to transform following (4.24)

under a typical parameter set.

Fortunately, the mean-field πLC Hamiltonian can be diagonalized for the specific mag-

netic fields which make the modified hopping terms share the same periodicity. Under such

fields, a magnetic cell is defined. As derived in appendix H, the strength of an external

constant magnetic field B = Bẑ perpendicular to the CuO2 plane which would allow di-
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agonalization of our model is related to the dimensionless constant χ = eBa2/[2h]. Notice

that χ = Φ/Φ0 for Φ = Ba2/4 the magnetic flux through one unit cell and Φ0 = h/[2e]

the magnetic flux quantum. By taking a = 3.9 Å, the strength of the magnetic field is

B ≈ 5.4χ · 104 T in terms of χ. In any case, the Hamiltonian can be diagonalized by trans-

forming to momentum space specifically when χ is a rational number. If we let χ = p/q be

an irreducible fraction where p ∈ Z and q ∈ N, the magnetic cell is composed of 2q unit cells

in one of the diagonal directions as shown in figure 4.8. Therefore, a magnetic cell of many

unit cells is required in order to have a magnetic field strength equivalent to what is found

in experiments.

Rotating the system by π/4 clockwise like in section 4.3.1 leads to magnetic cells elongated

in the y-direction. Furthermore, the magnetic Brillouin zone BZq associated with a system

having χ = p/q is the rectangle 1
a
[−π, π] × 1

aq
[−π, π]. A few factors need to be taken into

consideration when diagonalizing the Hamiltonian on a discrete grid in momentum space.

First, the number of grid points in the x-direction has to be q times greater than in the y-

direction in order to have a square grid in momentum space. However, it is computationally

expensive to take such a grid because of the increasing number of points as q gets large. On

top of this, the mean-field πLC Hamiltonian matrix is a 6q×6q matrix and thus takes longer

to diagonalize at any point as q increases. Thankfully, taking a low-resolution rectangular

grid is enough in flat-level regimes [29], which we are solely concerned with.

Figure 4.8: Different types of cells for the πLC state. The full and empty circles denote
CuO2 unit cells as found in figure 4.3 having opposite directional hopping due to Q. The
dashed lines determine the current cells of the system, corresponding to the true unit cells
once the direction of the current is taken into account. The solid lines encompass a
magnetic unit cell of 2q unit cells equivalent to q current cells with q = 4 in this case.
Reproduced from [29].
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Figure 4.9: Energy distribution given by the Peierls substitution for the mean-field πLC
Hamiltonian as investigated by Bulut et al. [7] (φ = 1) under a typical parameter set for
different values of χ on a 3× 3 discrete grid over the magnetic Brillouin zone. Similar
results are obtained for φ = −1. The dashed orange and blue lines denote the energy at
which hole and electron pockets appear respectively while the solid black horizontal line
denotes where they both disappear. The solid red line denotes the energy at which the
area of the hole pockets goes to zero, or in other words where the two bands meet.
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Figure 4.10: Zoom on the energy distribution given by the Peierls substitution for the
mean-field πLC Hamiltonian as investigated by Bulut et al. [7] (φ = 1) under a typical
parameter set for χ = 1/1500, corresponding to B ≈ 36T , on a 3× 3 discrete grid over
BZ1500. Similar results are obtained for φ = −1. The dashed orange and blue lines denote
the energy at which hole and electron pockets appear respectively while the solid black
horizontal line denotes where they both disappear. The solid red line denotes the energy at
which the area of the hole pockets goes to zero, or in other words where the two bands
meet. The green flat levels are those of the lowest of the two highest energy bands in the
range where hole pockets are formed by this band.
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Examples of resulting energy distributions where all states within BZq are sorted by

energy for different χ = p/q are shown in figure 4.9. It mainly consists of flat levels except

at energies where there are changes in the Fermi surface topology. More specifically, those

changes occur at the minimum and maximum energies attained by the two highest energy

bands in the non-magnetic regime along the border of the reduced Brillouin zone. Note that

the density of flat levels — and hence their total number — increases with q.

On the one hand, there is only a small overlap between the energy distribution of the

lower and upper electronic bands. In particular, most of the energy range where the lower

band forms the hole pockets is not overlapped with any other energy state, and the flat levels

from this band are clearly visible. Even where there is an overlap, the flat levels of this

particular band are distinguishable for high enough q because of their distinct size, as seen

in figure 4.10 (b). On the other hand, the energy range where the upper band forms the hole

pockets is completely overlapped with the one where the electron pockets are formed. The

flat levels from this electronic band for the hole pockets are thus impossible to distinguish.

Accordingly, it is then possible to extract the frequency and the phase of the quantum

oscillations associated with the energy levels for any allowed magnetic field through the

Onsager’s relation and the Lifshitz-Onsager quantization rule respectively. In particular, the

former is obtained by evaluating the area enclosed by the contour around a single hole pocket

in momentum space at the energy level and using (3.16) while the latter is directly connected

to the relation between the numbering of the allowed energy levels and the magnetic field

as |B| → ∞ through (3.17). This analysis is explicitely found in the next section.
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4.5. Comparison of the Semiclassical Approach with the Peierls Substitution

As a test of validity, the semiclassical approach can be compared to the Peierls substi-

tution method. We begin by assuming the validity of the results obtained in section 4.3,

specifically that the Berry phase acquired by an electron orbiting a hole pocket correspond-

ing to a contour C in momentum space is equal to ±π where the sign depends on the contour

and on the electronic band. Note that there is always a contour with Berry phase equal to

+π at any energy in the range of interest. Hence, (3.15) implies for the allowed levels that

l2B
2π
A(Cn) = n , (4.25)

where A(Cn) is the area enclosed by Cn the contour of level n ∈ N0 in momentum space.

Recall that l2B = ~/[eB] while χ = eBa2/[2h], leading to

1

2χ

A(Cn)

[2π/a]2
= n . (4.26)
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Figure 4.11: Numbering of the energy levels of the lower band given by the Peierls
substitution for the mean-field πLC Hamiltonian as investigated by Bulut et al. [7] (φ = 1)
under a typical parameter set when χ = 1/1500, corresponding to B ≈ 36T , on a 3× 3
discrete grid over BZ1500. Similar results are obtained for φ = −1. The dashed orange and
blue lines denote the energy at which hole and electron pockets appear respectively while
the solid black horizontal line denotes where they both disappear. The solid red line
denotes the energy at which the area of the hole pockets goes to zero, or in other words
where the two bands meet. The green flat levels are those coming from the lower of the
two highest energy bands in the range where hole pockets are formed by this band.
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The last result is obtained through the semiclassical approach only. Comparing this

approach with the Peierls substitution method is then possible by defining

nSC ≡
1

2χ

A(CnPS)

[2π/a]2
, (4.27)

where A(CnPS) is the area of a hole pocket in momentum space under no external magnetic

field at the energy level of nPS obtained through the Peierls substitution. In such a way,

similarity beween nSC and nPS over a range of values would signify that both approaches

are consistent with one another and consequently confirm the prior assumption. Still, the

mismatch between nSC and nPS can be quantified through δ ≡ nSC − nPS. This value is in

fact a measure of the difference from an exact Berry phase of π. More specifically, letting

γn(C) = π − 2πδ in (3.15) yields

1

2χ

A(Cn)

[2π/a]2
= n+ δ , (4.28)

in line with the definition of δ and (4.27). In such a way, δ or more explicitly 2πδ may be

used to obtain a bound on the Berry phase found from the mean-field πLC Hamiltonian.

The analysis was carried out for both possible current patterns under a typical parameter

set with χ = 1/1500, corresponding to B ≈ 36T . The resulting energy distribution and the

numbering of the energy levels for φ = 1 can be found in figure 4.11, where similar results

were obtained for φ = −1. To derive nSC , the area was calculated numerically at the energy

level of nPS for each level. The values of δ obtained are listed in table 4.2. In particular,

zero is within error with high precision, and there is an excellent agreement between nSC

and nPS over an extensive range of values. Additionally, the largest standard deviation on

2πδ is 0.014π. It thus confirms that the Berry phase accumulated by an electron orbiting a

hole pocket according to the mean-field πLC Hamiltonian equals to π with an uncertainty

of order 0.01π.

φ +1 −1

δ −0.001± 0.004 0.002± 0.007

Table 4.2: Mean and standard deviation of δ for the lower of the two highest energy bands
of the mean-field πLC Hamiltonian with φ = ±1 under a typical parameter set.
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4.6. Conclusions

To conclude, the electronic Berry phase was found to be π within error for an electron

orbiting a hole pocket in the Brillouin zone of the mean-field πLC Hamiltonian under a

typical parameter set, for all possible physical current patterns with 4-fold rotational sym-

metry. This was done in two different ways semiclassically: analytically and numerically.

Additionally, a Peierls substitution analysis was used to compare with the semiclassical ap-

proach, thus confirming the Berry phase of π mod 2π and giving an uncertainty of order

0.01π on this value. These results contrast with the electronic Berry phase found to be 0

mod 2π and 1.4 mod 2π through the quantum oscillations experiments on hole-doped and

electron-doped cuprates respectively.

In such a way, we conclude that the theoretical model of cuprates exhibiting circulating

currents is inconsistent with present quantum oscillation data because of the discrepancy

in the range of validity of their electronic Berry phases. Accordingly, this suggestion of a

hidden order is unfit for cuprates.
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Appendix A: The Adiabatic Theorem

This analysis is based on Sakurai [40, Supplement I]. Consider a time-dependent Hamil-

tonian H(t) with t ∈ R≥0 that evolves slowly in time, where “slow” will be defined rigorously

later in this analysis. Essentially, it means that the system has enough time to adapt be-

fore the conditions change significantly. The instantaneous energy eigenstates {|n(t)〉} are

orthonormal and satisfy

H(t) |n(t)〉 = En(t) |n(t)〉 , (A.1)

where En(t) is the energy corresponding to eigenstate |n(t)〉.

Assume nondegenerate eigenstates. We must solve the time-evolution equation

d

dt
|Ψ(t)〉 = − i

~
H(t) |Ψ(t)〉 (A.2)

in order to derive the time dependence of any state |Ψ(t)〉. To accomplish this, we have to

express |Ψ(t)〉 as a superposition of the instantaneous eigenstates of H(t). Accordingly,

|Ψ(t)〉 =
∑
n

cn(t)eiθn(t) |n(t)〉 , (A.3)

where cn(t) ∈ C and θn(t) ≡ −1
~

∫ t
0
En(t′) dt′. The phase eiθn(t) — the known time depen-

dence and generalization of the dynamical phase — is factored out explicitly to simplify the

analysis. In such a way, the coefficients cn(t) hold the unknown time dependence.

Replacing |Ψ(t)〉 as expressed in (A.3) on the right-hand side of (A.2) gives

− i
~
H(t) |Ψ(t)〉 = − i

~
H(t)

[∑
n

cn(t)eiθn(t) |n(t)〉

]
=
∑
n

− i
~
cn(t)eiθn(t)En(t) |n(t)〉 ,

(A.4)

while it gives on the left-hand side

d

dt
|Ψ(t)〉 =

d

dt

[∑
n

cn(t)eiθn(t) |n(t)〉

]

=
∑
n

eiθn(t)

[
ċn(t) |n(t)〉 − i

~
cn(t)En(t) |n(t)〉+ cn(t)

d

dt
|n(t)〉

]
,

(A.5)
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as θ̇n(t) = −1
~En(t). By combining (A.4) and (A.5), it should be clear that

0 =
∑
n

eiθn(t)

[
ċn(t) |n(t)〉+ cn(t)

d

dt
|n(t)〉

]
. (A.6)

By then taking the inner product with 〈m(t)| from the left,

0 = eiθm(t)ċm(t) +
∑
n

eiθn(t)cn(t) 〈m(t)| d
dt
|n(t)〉 . (A.7)

By rearranging the terms, we end up with a differential equation for the coefficients:

ċm(t) = −
∑
n

ei[θn(t)−θm(t)]cn(t) 〈m(t)| d
dt
|n(t)〉 . (A.8)

Here, we need to take into account that d
dt
|n(t)〉 will be different depending on the phase

we choose for |n(t)〉 as t changes. Nevertheless, the final result should be invariant of this

phase. Hence, it can be assume that the phase of |n(t)〉 is such that d
dt
|n(t)〉 is well behaved

at any time t. Note that by orthogonality of {|n(t)〉},

0 =
d

dt
(〈m(t)|m(t)〉)

= 〈m(t)| d
dt
|m(t)〉+

[
d

dx
〈m(t)|

]
|m(t)〉

= 2 Re

(
〈m(t)| d

dt
|m(t)〉

)
.

(A.9)

Consequently, 〈m(t)| d
dt
|m(t)〉 must be purely imaginary.

Differentiating the instantaneous Schrödinger equation (A.1) with time and taking the

inner product with 〈m(t)| 6= 〈n(t)| from the left gives

〈m(t)|
[
Ḣ(t) |n(t)〉+H(t)

d

dt
|n(t)〉

]
= 〈m(t)|

[
Ėn(t) |n(t)〉+ En(t)

d

dt
|n(t)〉

]
〈m(t)| Ḣ(t) |n(t)〉+ Em(t) 〈m(t)| d

dt
|n(t)〉 = En(t) 〈m(t)| d

dt
|n(t)〉 ,

(A.10)

which yields after rearranging the terms

〈m(t)| d
dt
|n(t)〉 =

〈m(t)| Ḣ(t) |n(t)〉
En(t)− Em(t)

. (A.11)
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In fact, (A.9) and (A.11) can easily be generalized to any non-degenerate orthogonal set and

for the derivative with respect to any variable by going through the exact same steps taken.

Making use of the last equation, ċm(t) can be expressed as

ċm(t) = −cm(t) 〈m(t)| d
dt
|m(t)〉 −

∑
n 6=m

ei[θn(t)−θm(t)]cn(t)
〈m(t)| Ḣ(t) |n(t)〉
En(t)− Em(t)

. (A.12)

Here is where the assumption that H(t) evolves slowly with time takes its meaning. Indeed,

we make here the assumption that at any time t and for all m

max
n 6=m

∣∣∣∣∣〈m(t)| Ḣ(t) |n(t)〉
En(t)− Em(t)

∣∣∣∣∣�
∣∣∣∣〈m(t)| d

dt
|m(t)〉

∣∣∣∣ . (A.13)

In other words, the mixed terms of Ḣ(t) which are responsible for the mixing between energy

eigenstates with time are negligible. Hence, changes in the Hamiltonian occur slowly enough

such that there is no mixing of the energy eigenstates. As a result, a state starting in an

energy eigenstate stays the same up to a phase at all time and the second term on the

right-hand side of (A.12) can be dropped.

Solving the equation of motion of the coefficients in the adiabatic regime yields

cn(t) = cn(0)eiγn(t) , (A.14)

where γn(t) is a real function defined as

γn(t) ≡ i

∫ t

0

〈n(t′)| d
dt′
|n(t′)〉 dt′ . (A.15)

Ultimately, a state will evolve in time according to

|Ψ(t)〉 =
∑
n

cn(0)eiγn(t)eiθn(t) |n(t)〉 . (A.16)

While the dynamical phase is indeed a part of the total phase as expected, the less intuitive

phase evolution is given by γn(t), known as the Berry phase.
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Appendix B: Time-Independent Perturbation Theory

Most problems in quantum mechanics are impossible to solve exactly. However, there are

powerful approximation methods that can reduce considerably the complexity of a problem.

Those methods can also provide us with a better undertanding of the underlying processes

by putting the focus on what is important.

One of the most important approximation methods is the time-independent perturbation

theory. It was first presented in 1926 by Erwin Schrödinger [42] who was referring to Lord

Rayleigh [37] — hence it is also known as the Rayleigh-Schrödinger perturbation theory.

The basic idea is to describe a complicated system using a simple one. We will base our

description of this method on Sakurai [40, Sections 5.1-5.2].

B.1. For a State

We start by considering a time-independent Hamiltonian H which can be expressed as

H = H0 + λV , (B.1)

for which it is assumed that the exact energy eigenvalues E
(0)
n of H0 and corresponding

eigenstates |n(0)〉 are known:

H0 |n(0)〉 = E(0)
n |n(0)〉 . (B.2)

The set {|n(0)〉} must satisfy the closure relation 1 =
∑

n |n(0)〉 〈n(0)| and we assume that

the eigenvalues E
(0)
n are nondegenerate. Additionally, note that λ is a continuous parameter

that keeps track of the strength of the perturbation V .

We are then interested in solving

[H0 + λV ] |n〉 = En |n〉 , (B.3)

where the eigenvalues En and eigenstates |n〉 are functions of λ. As λ changes from zero,

the energy eigenvalue En also changes from E
(0)
n . This energy shift as a function depending

on λ can be defined as

∆n ≡ En − E(0)
n . (B.4)
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In particular, it means that ∆n = 0 when λ = 0. Consequently, (B.3) can be rewritten as

[E(0)
n −H0] |n〉 = [λV −∆n] |n〉 . (B.5)

We cannot invert the operator E
(0)
n −H0 because 1/[E

(0)
n −H0] is ill defined when acting

on |n(0)〉. Nevertheless, by defining the complementary projection operator

φn ≡ 1− |n(0)〉 〈n(0)| =
∑
m 6=n

|m(0)〉 〈m(0)| , (B.6)

we see that 1/[E
(0)
n −H0] is well defined when multiplied by φn on the right:

1

E
(0)
n −H0

φn =
∑
m 6=n

1

E
(0)
n − E(0)

m

|m(0)〉 〈m(0)| . (B.7)

Clearly, it follows that

1

E
(0)
n −H0

φn = φn
1

E
(0)
n −H0

= φn
1

E
(0)
n −H0

φn ≡
φn

E
(0)
n −H0

. (B.8)

Notice that [λV −∆n] |n〉 has no component along |n(0)〉 since multiplying (B.5) on the

left by 〈n(0)| yields

〈n(0)| [λV −∆n] |n〉 = 0 . (B.9)

Hence, it satisfies

[λV −∆n] |n〉 = φn[λV −∆n] |n〉 . (B.10)

That being so, simply multiplying (B.5) by 1/[E
(0)
n −H0] would lead to

|n〉 =
φn

E
(0)
n −H0

[λV −∆n] |n〉 . (B.11)

However, this equation is not right because we do not obtain that |n〉 = |n(0)〉 when λ = 0. To

solve this problem, notice that (B.5) does not change upon adding to |n〉 a term proportional

to |n(0)〉. Thus, the left-hand side of (B.11) is in fact φn |n〉 and it is then possible to add

to |n〉 a term equal to |n(0)〉 — but keep note that |n〉 will not be normalized in this case.
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Therefore,

|n〉 = |n(0)〉+
φn

E
(0)
n −H0

[λV −∆n] |n〉 . (B.12)

Furthermore, rearranging (B.9) now yields

∆n = λ 〈n(0)|V |n〉 . (B.13)

The state |n〉 can then be renormalized by defining the state

|n〉N ≡ Z
1
2
n |n〉 , (B.14)

for a constant Zn such that Z−1
n = 〈n|n〉. As Z

1
2
n = 〈n(0)|n〉N , its value can be understood

as the probability of finding the perturbed state in its corresponding unperturbed state.

Although very simple expressions involving |n〉 have been found, solving exactly (B.12)

to obtain |n〉 may be difficult or even impossible. The strategy is then to expand ∆n and

|n〉 in powers of λ and to match the coefficients of same power. In order to do so, we have

to assume the analyticity of both En and |n〉 as functions of λ in a complex λ-plane around

zero. Accordingly, let

∆n = λ∆(1)
n + λ2∆(2)

n + · · · =
∞∑
k=1

λk∆(k)
n , (B.15a)

|n〉 = |n(0)〉+ λ |n(1)〉+ · · · =
∞∑
k=0

λk |n(k)〉 . (B.15b)

In such a way, for k ∈ N

∆(k+1)
n = 〈n(0)|V |n(k)〉 , (B.16a)

|n(k+1)〉 =
φn

E
(0)
n −H0

[V |n(k)〉 −
k∑

k′=0

∆(k−k′+1)
n |n(k′)〉] , (B.16b)

along with

Z−1
n = 1 +

∞∑
k=2

λk ·
k−1∑
k′=1

〈n(k′)|n(k−k′)〉 . (B.17)

Higher order terms are negligible when
∣∣∣ 〈m(0)|λV |n(0)〉

E
(0)
n −E

(0)
m

∣∣∣ � 1 for all m 6= n. In this case, we
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can focus on first order where

∆(1)
n = 〈n(0)|V |n(0)〉 , (B.18a)

|n(1)〉 =
∑
m 6=n

〈m(0)|V |n(0)〉
E

(0)
n − E(0)

m

|m(0)〉 , (B.18b)

while

Zn = 1− λ2
∑
m 6=n

∣∣∣∣〈m(0)|V |n(0)〉
E

(0)
n − E(0)

m

∣∣∣∣2 +O(λ3) . (B.19)

In the more general case that λV → λV + F (λ) for some F (λ) that can be expanded in

powers of λ and such that F (λ) = O(λ2), the strategy is the same and we have that (B.18)

remains invariant, i.e. only the first order perturbation to the Hamiltonian is needed to find

the first order corrections.

B.2. For a Subspace

Instead of looking at the perturbation of a single unperturbed eigenstate, it can be inter-

esting to look at the perturbation of a subspace of unperturbed eigenstates that is separated

energically from the rest of the states.

Suppose that we are interested in a subspace M of unperturbed eigenstates which will

be denoted by {|m(0)〉}. Assume that there is an energy gap of at least ∆E between the

subspace M and the rest of the Hilbert space and that ∆E is large enough where “enough”

will be rigorously defined later on. As the perturbation changes from 0, the perturbed

eigenstates which evolved from M will form a set {|l〉} such that |l〉 → |l(0)〉 as λ→ 0 where

the set {|l(0)〉} spans M . Note that {|l(0)〉} need not to coincide with {|m(0)〉}, but

|l(0)〉 =
∑
m∈M

〈m(0)|l(0)〉 |m(0)〉 . (B.20)

To approach this problem, let P0 be a projection operator onto the subspace {|m(0)〉}

and P1 ≡ 1 − P0 be the projection onto the remaining states of the Hilbert space. The
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Schrödinger equation for the state |l〉 can then be rewritten as

0 = [El −H0 − λV ] |l〉

= [El −H0 − λV ]P0 |l〉+ [El −H0 − λV ]P1 |l〉 .
(B.21)

We can then separate (B.21) into two equations by simply projecting by P0 and by P1 from

the left:

[El −H0 − λP0V ]P0 |l〉 − λP0V P1 |l〉 = 0 , (B.22a)

−λP1V P0 |l〉+ [El −H0 − λP1V ]P1 |l〉 = 0 . (B.22b)

First, the assumption that the energy bands of subspace M are separated enough energically

from the others means in particular that P1[El − H0 − λP1V P1] is not singular in the P1

subspace. In such a way, (B.22b) can be solved in this subspace and we have

P1 |l〉 = λ
P1

El −H0 − λV
V P0 |l〉 . (B.23)

By then substituting (B.23) in (B.22a) and letting ∆l ≡ El−E(0)
l where E

(0)
l ≡ 〈l(0)|H0 |l(0)〉,[

E
(0)
l −H0 + ∆l − λP0V P0 − λ2P0V

P1

El −H0 − λV
V P0

]
P0 |l〉 = 0 . (B.24)

Following the same logic as before, we can impose the normalization convention that

〈l(0)|l〉 = 1 so that by rearranging (B.21) and multiplying it on the left by 〈l(0)|

∆l = λ 〈l(0)|V |l〉 . (B.25)

The state |l〉 can then be renormalized by defining the state

|l〉N ≡ Z
1
2
l |l〉 , (B.26)

for a constant Zl such that Z−1
l = 〈l|l〉. As Z

1
2
l = 〈l(0)|l〉N , its value can be understood once

again as the probability of finding the perturbed state in its corresponding unperturbed

state.
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Note that it is still not clear what |l(0)〉 is explicitly in terms of {|m(0)〉}. The previous

strategy of expanding ∆l and |l〉 in the powers of λ and matching the coefficients of same

power will not allow us to solve the problem unless M is a degenerate subspace, i.e. when

E
(0)
m = E

(0)
M for all m for some E

(0)
M , as [E

(0)
l −H0]P0 |l〉 = 0 in that case. Still, there is valuable

information to be found in (B.23) and (B.24) when M is not a degenerate subspace.

Let H0 and V be matrix operators sharing the same basis and let λ̃ ≡ maxi,j |λVij|/|∆E|.

Suppose that λV is such that λ̃� 1. Thus, 〈l|P1 |l〉 / 〈l|P0 |l〉 = O(λ̃)� 1 from (B.23) and

El · P0 |l〉 = P0{H0 + λV [1 +O(λ̃)]}P0 · P0 |l〉 ≈ P0{H0 + λV }P0 · P0 |l〉 , (B.27)

from (B.24) sinceH0P0 |l〉 = [P0H0P0]P0 |l〉. In particular, it implies that |l〉 ≈ P0 |l〉 and that

|l〉 approximately satisfies the Schrödinger equation of the perturbed Hamiltonian projected

onto the subspace M . Hence, it means that we can effectively project the Hamiltonian

onto the subspace M when investigating the perturbed eigenvalues and eigenstates from

this subspace.
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Appendix C: Absence of Berry Phase Correction Term in 2D

Recall that with v(r, θ) = O(r) and w(r, θ) = O(r) we had

f(r/ξ, θ) =
[1 + w(r, θ)][r/ξ] |Θ(θ)|−1{

[r/ξ]2 + |Θ(θ)|−2} 3
2

, (C.1a)

Ω̃(D) = lim
ξ→0

x

S

g(θ)

|Θ(θ)|2

{1 +
|rΘ(θ)|2 v(r, θ)

|rΘ(θ)|2 + ξ2

}− 3
2

− 1

 f(r/ξ, θ) d[r/ξ] dθ . (C.1b)

Let B0 = {(r, θ) ∈ R≥0 × [0, 2π) | |v(r, θ)| < 1}. Since v(r, θ) = O(r) and by continuity

of the function, there exists ε > 0 such that (r, θ) ∈ B0 for all r ∈ [0, ε) and θ. Hence, any

(r, θ) ∈ S\B0 has the property that r > ε. Consequently, |rΘ(θ)|2v(r,θ)

|rΘ(θ)|2+ξ2
< 1 for all (r, θ) ∈ B0

and

x

S∩B0

g(θ)

|Θ(θ)|2

{1 +
|rΘ(θ)|2 v(r, θ)

|rΘ(θ)|2 + ξ2

}− 3
2

− 1

 f(r/ξ, θ) d[r/ξ] dθ

=
∞∑
k=1

(
−3

2

k

) x

S∩B0

g(θ)

|Θ(θ)|2

{
|rΘ(θ)|2 v(r, θ)

|rΘ(θ)|2 + ξ2

}k

f(r/ξ, θ) d[r/ξ] dθ

=
∞∑
k=1

(
−3

2

k

) x

S∩B0

g(θ)

|Θ(θ)|3
[1 + w(r, θ)][r/ξ]2k+1vk(r, θ){

[r/ξ]2 + |Θ(θ)|−2}k+ 3
2

d[r/ξ] dθ .

(C.2)

As v(r, θ) = O(r), it implies that vk(r, θ) is a sum of terms proportional to rl with l ≥ k.

Additionally, 1 +w(r, θ) is a sum of terms proportional to rm with m ≥ 0. However, for any

l ≥ k ≥ 1 and m ≥ 0

lim
ξ→0

x

S∩B0

g(θ)

|Θ(θ)|3
rm[r/ξ]2k+1rl{

[r/ξ]2 + |Θ(θ)|−2}k+ 3
2

d[r/ξ] dθ

= lim
ξ→0

ξl+m
x

S∩B0

g(θ)

|Θ(θ)|3
[r/ξ]2k+l+m+1{

[r/ξ]2 + |Θ(θ)|−2}k+ 3
2

d[r/ξ] dθ

= 0 ,

(C.3)

since the integral over r in the second line converges, but is multiplied by a stricly positive

power of ξ which then goes to zero on the next step.

57



On top of this, we must obtain that

lim
ξ→0

x

S\B0

g(θ)

|Θ(θ)|2

{1 +
|rΘ(θ)|2 v(r, θ)

|rΘ(θ)|2 + ξ2

}− 3
2

− 1

 f(r/ξ, θ) d[r/ξ] dθ = 0 (C.4)

Note that v(r, θ) 6= −1 as it would imply a second degeneracy point otherwise — which we

assumed there is not. In such a way,

∣∣∣∣{1 + |rΘ(θ)|2v(r,θ)

|rΘ(θ)|2+ξ2

}− 3
2 − 1

∣∣∣∣ < M for all (r, θ) ∈ S \ B0

for some M ∈ [0,∞). However, we have already proven in section 2.5 that

lim
ξ→0

x

R

g(θ)

|Θ(θ)|2
f(r/ξ, θ) d[r/ξ] dθ = 0 (C.5)

for any set R such that 0 /∈ R. Thus, the integral in (C.4) must equal zero since 0 ∈ B0.

Therefore, by combining both results, one must come to the conclusion that Ω̃(D) = 0

as it was argued in section 2.5.
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Appendix D: Analysis of the Kinetic Energy

Without loss of generality, let H0(k) → H0(k) − εpI so that εd → εd − εp ≡ ∆ε and

εp → 0. The energy eigenvalues of H0(k) then satisfy the equation

[En(k)−∆ε][E2
n(k)− 16t2pps

2
xs

2
y]− 4En(k)t2pd[s

2
x + s2

y] + 32t2pdtpps
2
xs

2
y = 0 . (D.1)

The first thing to notice is that En(k) is even with respect to the kx-axis, the ky-axis, and

both the diagonal axes, and that it is periodic with a period of 2π. Although we cannot solve

exactly for En(k), finding the extrema of En(k) is still possible and will give some intuition.

To achieve this, we can take the gradient of (D.1) with respect to k and let ∇En(k) → 0.

It yields that the extrema of En(k) are located at k = π
(
nx, ny

)
for nx, ny ∈ Z.

Although this tells us where the extrema are and the energy at those points, it does not

indicate what band they correspond to. To find this, we need to derive explicit formulas for

En(k) that can connect the extrema. It is enough to derive En(k) for the two cases ky = 0

and ky = kx because of the symmetry between kx and ky in (D.1) and periodicity. When

ky = 0, the eigenvalues are given by the set {0, 1
2
[∆ε±{∆ε2 +4t2pds

2
x}

1
2 ]} while when ky = kx

they are given by the set {4tpps2
x,

1
2
[∆ε− 4tpps

2
x ± {[∆ε+ 4tpps

2
x]

2 + 32t2pds
2
x}

1
2 ]}.

Under the condition that ∆ε > −4tpp > 0 and tpd > 0, there is an energy band that is

separated from the other two bands. This band attains its minimum ∆ε at the origin while

the other two bands equal to 0 at the same point. More importantly, it never crosses any of

the two lowest bands at any point because their maximum value is strictly less than −4tpp.

Hence, this energy band is higher in energy than any other band. In the particular case

that tpp = −tpd/2 and ∆ε < 4tpd — which is satisfied under a typical parameter set of the

cuprates — the maximum value attained by the two lower bands is 0. Hence, there is an

energy gap of ∆ε between the highest energy band and the rest.

Furthermore, it follows from everything above that En(k + Q) = En(k) if and only if

k ∈ ∂BZ ′ under a typical parameter set.

Although the system cannot be solved exactly in function of k, it is possible to solve

it at individual points. Points of particular interest are of the form k∗ = π
2a

(
σx, σy

)
for
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σx, σy ∈ {±1}. By defining

J ≡


1 0 0

0 σx 0

0 0 σy

 , (D.2)

we have at such points

JH0(k∗)J =


∆ε

√
2tpd −

√
2tpd

√
2tpd 0 2tpp

−
√

2tpd 2tpp 0

 . (D.3)

The eigenvalues are easy to find, especially considering that we have already obtained

the characteristic equation (D.1). They are E± = 1
2

{
[∆ε− 2tpp]±

√
[∆ε+ 2tpp]2 + 16t2pd

}
and E0 = 2tpp. The corresponding eigenstates are then

|n〉 =
cn√

2


√

2an

1

(−1)n

 , (D.4)

for a± ≡ [E± + 2tpp]/[2tpd] = [2tpd]/[E± − ∆ε], c± ≡ 1/[1 + a±]
1
2 , and a0 ≡ 0, c0 ≡ 1.

Therefore, the eigenstates of H0(k∗) are |n(k∗)〉 = J |n〉 with eigenvalues En(k∗) = En.
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Appendix E: Mean-Field Version of the Charge Order

First, the current operator Ĵjβ,iα = −itjβ,iα[ĉ†jβ ĉiα− ĉ
†
iαĉjβ] for the bond between iα and

jβ satisfies the operator identity

2n̂jβn̂iα = −

[
Ĵjβ,iα
tjβ,iα

]2

+ n̂iα + n̂jβ , (E.1)

for iα different from jβ, which leads to

1
2

∑
〈iα,jβ〉

Vβαn̂jβn̂iα =
∑
iα

ε̃αn̂iα − 1
2

∑
〈iα,jβ〉

Vβα
2t2jβ,iα

Ĵ2
jβ,iα , (E.2)

for ε̃d ≡ Vpd + 2Vpp and ε̃p ≡ 2Vpd. The current amplitudes zjβ,iα = 〈Ĵjβ,iα〉 are then used to

decouple the interorbital interactions in mean-field:

1
2

∑
〈iασ,jβσ′〉

Vβαn̂jβσ′n̂iασ
MF−−→

∑
iα

ε̃αn̂iα − 1
2

∑
〈iα,jβ〉

Vβαzjβ,iα
t2jβ,iα

Ĵjβ,iα

=
∑
iα

ε̃αn̂iα +
∑
〈iα,jβ〉

i
Vβαzjβ,iα
tjβ,iα

ĉ†jβ ĉiα

≡
∑
iα

ε̃αn̂iα +
∑
〈iα,jβ〉

iRjβ,iαe
−iQ·Ri ĉ†jβ ĉiα ,

(E.3)

since Vβα = Vαβ, tjβ,iα = tiα,jβ, and zjβ,iα = −ziα,jβ. We have defined above the parameters

Rjβ,iα =
Vβαzjβ,iα
tjβ,iα

eiQ·Ri which share similarities with tjβ,iα since they can be expressed in

terms of α, β, and n the inequivalent bond between iα and jβ as Rn
βα. In light of this, we

let Rpd ≡ Vpdzpd
tpd

and Rpp ≡ Vppzpp
tpp

. Note that the sign of Rn
βα depends on both the orbital

phase convention and the direction of the current from α to β on the inequivalent bond n.

Hence, the order of the orbitals in the notation is essential. Notice the difference with the

tunneling matrix elements: tnβα = tnαβ while Rn
βα = −Rn

αβ.

As a result, the mean-field version of the charge order in position space is expressed as

Ĥ ′MF =
∑
iα

ε̃αn̂iα +
∑
〈iα,jβ〉

iRjβ,iαe
−iQ·Ri ĉ†jβ ĉiα , (E.4)

where the sum over 〈iα, jβ〉 includes nearest neighbor p–d and p–p bonds.
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According to (4.3) and together with the fact that 1
N2

∑
i e

ik·Riα = δk,0,

∑
iα

ε̃αn̂iα =
∑
kα,k′

ε̃α

[
1
N2

∑
i

ei[k−k
′]·Riα

]
ĉ†k′αĉkα

=
∑
kα

ε̃αn̂kα ,

(E.5)

∑
〈iα,jβ〉

iRjβ,iαe
−iQ·Ri ĉ†jβ ĉiα

=
∑

kα,k′β,n

ieiQ·δαRn
βαe
−ik′·δnβα

[
1
N2

∑
i

ei[k−{k
′+Q}]·Riα

]
ĉ†k′β ĉkα

=
∑
kαβ,n

ieiQ·δαRn
βαe
−ik·δnβα ĉ†kβ ĉk+Qα

≡
∑
kαβ

gβα(k)ĉ†kβ ĉk+Qα .

(E.6)

Because of Hermicity and by definition of the momentum operators,

∑
kαβ

gβα(k)ĉ†kβ ĉk+Qα =
∑
kαβ

e2iQ·δβg∗αβ(k +Q)ĉ†kβ ĉk+Qα . (E.7)

In such a way,

Ĥ ′MF =
∑
kα

ε̃αn̂kα +
∑
kαβ

gβα(k)ĉ†kβ ĉk+Qα

=
∑
k

Ψ†k


ε̃d 0 0

0 ε̃p 0

0 0 ε̃p

Ψk +
∑
k

Ψ†k


0 g∗xd(k +Q) g∗yd(k +Q)

gxd(k) 0 −g∗yx(k +Q)

gyd(k) gyx(k) 0

Ψk+Q

≡
∑
k

Ψ†kε̃Ψk +
∑
k

Ψ†kH1(k)Ψk+Q

=
∑
k∈BZ′

[
Ψ†k Ψ†k+Q

] ε̃ H1(k)

H†1(k) ε̃

 Ψk

Ψk+Q

 ,

(E.8)

where explicit expressions for gβα(k) depend on the current pattern. Note that the gauge

transformation from (4.8) has not been applied yet.
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Appendix F: Alternative Way of Expressing the Mean-Field Hamiltonian

Without loss of generality, let HMF (k)→HMF (k)− εpI so that εd → εd− εp ≡ ∆ε and

εp → 0. By defining K ≡ 1√
2

J −I
J I

 for J as defined in (D.2), one finds

KHMF (k)K† =

H+
0 (k) +H+

1 (k) H−0 (k)−H−1 (k)

H−0 (k) +H−1 (k) H+
0 (k)−H+

1 (k)


≡

H+(k) H∗−(k)

H−(k) H∗+(k)

 ,

(F.1)

for H±0 (k) ≡ 1
2
[JH0(k)J ±H0(k+Q)] and H±1 (k) ≡ − λ

2i
[JV (k)∓V T (k)J ]. To simplify

further the analysis around points in D, k must be expressed in terms of another vector k̃

such that k(k̃) =
(
σx[

π
2a

+ k̃x], σy[
π
2a

+ k̃y]
)

. In such a way,

KHMF (k(k̃))K† =

H+(k(k̃)) H∗−(k(k̃))

H−(k(k̃)) H∗+(k(k̃))


≡

H ′+(k̃) H ′ ∗− (k̃)

H ′−(k̃) H ′ ∗+ (k̃)

 .

(F.2)

Although it may look complicated, it leads to very simple matrices:

H ′+(k) =


∆ε

√
2t∗dcx −

√
2tdcy

√
2tdcx 0 2t∗psxsy + 2tpcxcy

−
√

2t∗dcy 2tpsxsy + 2t∗pcxcy 0

 (F.3a)

H ′−(k) =


0

√
2tdsx −

√
2t∗dsy√

2tdsx 0 2tpsxcy + 2t∗pcxsy

−
√

2t∗dsy 2tpsxcy + 2t∗pcxsy 0

 , (F.3b)

where we have defined td ≡ tpd + iRpd and tp ≡ tpp + iφRpp. This form shows that all the

eigenvalues at points in D are 2-fold degenerate since H ′−(0) = 0.

It is valuable to express HMF (k(k̃)) in its original form in terms of the two matrices

found in (F.3). It can be done by doing a matrix transformation on (F.2) using K. In turn,
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new expressions for the block matrices are obtained:

H0(k(k̃)) = J Re[H ′+(k̃) +H ′−(k̃)]J (F.4a)

H0(k(k̃) +Q) = Re[H ′+(k̃)−H ′−(k̃)] (F.4b)

V (k(k̃)) = Jλ−1 Im[H ′+(k̃) +H ′−(k̃)] . (F.4c)

In fact, these expressions are easier to work with when investigating the vicinity of any

point of the form π
2a

(
σx, σy

)
∈ D. When expanding in powers of |k̃| specifically, H ′+(k̃) will

only contain even powers while H ′−(k̃) will only contain odd ones. Consequently, it should

be the case that H0(k(k̃) + Q) = JH0(k(−k̃))J , leading the eigenstates to then satisfy

|n(k(k̃) +Q)〉 = ±J |n(k(−k̃))〉. Notice furthermore that Re[H ′±(k̃)] and Im[H ′−(k̃)] are

symmetric matrices while Im[H ′+(k̃)] is antisymmetric.

It is under such considerations that we can make the assumption that along k ∈ ∂BZ ′

in the vicinity of D, 〈n(k)|V (k) |n(k +Q)〉 = 0 if and only if k ∈ D. First, by letting the

dependence of k on k̃ implicit on the left-hand side:

〈n(k)|V (k) |n(k +Q)〉 = ±λ−1 〈n(k(k̃))|J Im[H ′+(k̃) +H ′−(k̃)]J |n(k(−k̃))〉 . (F.5)

However, since Im[H ′+(k̃)] is antisymmetric, 〈n(k(k̃))|J Im[H ′+(k̃)]J |n(k(−k̃))〉 is identi-

cally zero when |n(k(k̃))〉 ∝ |n(k(−k̃))〉. On top of this, since Im[H ′−(k̃)] is symmetric,

〈n(k(k̃))|J Im[H ′−(k̃)]J |n(k(−k̃))〉 is identically zero when Im[H ′−(k̃)] = 0. Both condi-

tions are satisfied at k̃ = 0, i.e. when k ∈ D. More generally, it is practically impossible for

both terms to sum up to zero at any other point around — more evidences will be given in

appendix G.

In fact, the assumption made above is something observed numerically: for any k ∈ ∂BZ ′,

〈n(k)|V (k) |n(k +Q)〉 = 0 if and only if k ∈ D for both the lowest and highest energy

bands, or if k ∈ D and either kx = 0 or ky = 0 for the middle energy band. However, note

that momenta along ∂BZ ′ with kx = 0 or ky = 0 are not part of the hole pockets surrounding

the points in D. Having 〈n(k)|V (k) |n(k +Q)〉 = 0 at some point k ∈ ∂BZ ′ \ D means

that there is another degeneracy point; hence, there must be a single degeneracy within each

individual hole pocket.
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Appendix G: Absence of Singular Points

The focus needs to be made on the degeneracies and their vicinity. It can be achieved

by letting k(k̃) =
(
σx[

π
2a

+ k̃x], σy[
π
2a

+ k̃y]
)

for σx, σy ∈ {±1}. Furthermore, it helps to

consider the block matrices of HMF (k) as expressed in (F.4). In light of this, we now

consider the eigenvalues En(k) and corresponding eigenstates |n(k)〉 of H0(k) with k in

terms of k̃. By taking |k̃| as the perturbation parameter and θ such that k̃ = |k̃|r̂ for

r̂ =
(

cos θ, sin θ
)

, JH0(k(k̃))J can be expressed in powers of |k̃| as

JH0(k(k̃))J = Re[H ′+(0)] + |k̃|r̂ · Re[∇H ′−(0)] +O(|k̃|2) , (G.1)

where ∇ is the gradient with respect to k̃.

Perturbation theory can be used by taking Re[H ′+(0)] as the unperturbed Hamiltonian

and |k̃| as the perturbation parameter. Let |n(0)〉 be the eigenstates of Re[H ′+(0)] with

corresponding eigenvalues E
(0)
n . The solutions have been derived in appendix D, but with

∆ε instead of ∆ε. According to perturbation theory in section B.1:

E+(k(k̃)) = E
(0)
+ + |k̃|r̂ · 〈+(0)|Re[∇H ′−(0)] |+(0)〉+O(|k̃|2) , (G.2a)

|+(k(k̃))〉 = J |+(0)〉+ J |k̃|r̂ ·
∑
n 6=+

〈n(0)|Re[∇H ′−(0)] |+(0)〉
E

(0)
+ − E

(0)
n

|n(0)〉+O(|k̃|2) . (G.2b)

Furthermore, recall that H0(k(k̃) +Q) = JH0(k(−k̃))J from (F.4). Consequently, it must

hold that E+(k(k̃) +Q) = E+(k(−k̃)) and |+(k(k̃) +Q)〉 = ±J |+(k(−k̃))〉.

It is now possible to find explicit expressions for Ē(k), ε(k), and ∆(k) by taking k in

terms of k̃. In such a way, Ē(k(k̃)) = E
(0)
+ + O(|k̃|2), ε(k(k̃)) = |k̃|r̂ · ε(1) + O(|k̃|2) and

∆(k(k̃)) = |k̃|r̂ ·∆(1) +O(|k̃|2) for

ε(1) = 〈+(0)|Re[∇H ′−(0)] |+(0)〉 , (G.3a)

∆(1) = ±

 〈+(0)|λ−1 Im[∇H ′−(0)] |+(0)〉

+
∑

n 6=+

2〈n(0)|λ−1 Im[H′+(0)]|+(0)〉
E

(0)
+ −E

(0)
n

〈n(0)|Re[∇H ′−(0)] |+(0)〉

 . (G.3b)

It is reassuring so far that ε(1) and ∆(1) are not identically zero.
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It is in fact possible to find explicit expressions for both ε(1) and ∆(1). Since

Re[∇H ′−(0)] =
a

2




0
√

2tpd 0
√

2tpd 0 2tpp

0 2tpp 0

 ,


0 0 −
√

2tpd

0 0 2tpp

−
√

2tpd 2tpp 0


 , (G.4)

we obtain ε(1) = 1
2
ac2

+E
(0)
+

(
1, 1

)
while 〈0(0)|Re[∇H ′−(0)] |+(0)〉 = 1

2
ac+a+tpd

(
1, −1

)
and

〈−(0)|Re[∇H ′−(0)] |+(0)〉 = 1
4
ac+c−[∆ε− 2tpp]

(
1, 1

)
. Additionally,

λ−1 Im[∇H ′−(0)] =
a

2




0
√

2rpd 0
√

2rpd 0 2φrpp

0 2φrpp 0

 ,


0 0
√

2rpd

0 0 −2φrpp
√

2rpd −2φrpp 0


 , (G.5)

where rpd ≡ Rpd/λ = Vpd and rpp ≡ Rpp/λ =
zpp/zpd
tpp/tpd

Vpp which are both of the order of

magnitude of 1, and 〈+(0)|λ−1 Im[∇H ′−(0)] |+(0)〉 = ac2
+ [a+rpd − φrpp]

(
1, −1

)
. Finally,

with

λ−1 Im[H ′+(0)] =


0 −

√
2rpd −

√
2rpd

√
2rpd 0 2φrpp
√

2rpd −2φrpp 0

 , (G.6)

we obtain 〈0(0)|λ−1 Im[H ′+(0)] |+(0)〉 = 2c+ [a+rpd − φrpp].

Those multiple results yield in the end that

|ε(1) ×∆(1)| = a2c4
+E

(0)
+ tpd |1 + fE| |a+rpd − φrpp| , (G.7)

for fE ≡ 1
2

E
(0)
+ +E

(0)
0

E
(0)
+ −E

(0)
0

. Under a typical parameter set, |ε(1)×∆(1)| 6= 0 for any current pattern.

More generally, the parameters still need to be fine-tuned for |ε(1) ×∆(1)| = 0 to hold.
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Appendix H: Peierls Substitution for the πLC Hamiltonian

We start by expressing the full mean-field Hamiltonian in terms of the position-space

operators:

ĤMF =
∑
iα

εαn̂iα +
∑
〈iα,jβ〉

tjβ,iαĉ
†
jβ ĉiα +

∑
〈iα,jβ〉

iRjβ,iαe
−iQ·Ri ĉ†jβ ĉiα

=
∑
iα

εαn̂iα +
∑
〈iα,jβ〉

t′jβ,iαĉ
†
jβ ĉiα ,

(H.1)

where t′jβ,iα ≡ tjβ,iα + iRjβ,iαe
−iQ·Ri . This form has the advantage of grouping together all

the hopping terms from one specific site to another.

In order to simplify the next derivation, we take a current unit cell of two primitive

unit cells corresponding to the true unit cells of the system once the direction of the cur-

rent is taken into account. explicitly, a current cell labeled by i will be composed of the(
ix − iy, ix + iy

)th
and

(
ix − iy, ix + iy + 1

)th
primitive cells. Then, we rotate the frame

by 45◦ counterclockwise, which is equivalent to rotating the position of the atoms by 45◦

clockwise. In such a way, the Hamiltonian can be expressed in terms of operators ĉiαν where

i labels each current cell of two primitive cells, α labels the orbitals, and ν ∈ {1, 2} labels

the primitive cells within the current cell:

ĤMF =
∑
iαν

εαn̂iαν +
∑

〈iαν,jβµ〉

t′jβµ,iαν ĉ
†
jβµĉiαν , (H.2)

where t′jβµ,iαν ≡ tjβµ,iαν+iRjβµ,iαν(−1)ν−1. Note in particular that Q =
(

π√
2a
, 0
)

. Without

loss of generality, let t′jβµ,iαν → tjβµ,iαν + iRjβµ,iαν(−1)ν .

To include an external magnetic field in the Hamiltonian, we apply the Peierls substition:

ĉ†jβµĉiαν → exp

[
−i2π e

h

∫ Rjβµ

Riαν

A(r) · dr
]
ĉ†jβµĉiαν , (H.3)

where e is the charge of the electron, A(r) is the magnetic vector potential in function of po-

sition r, andRiαν ≡ Ri+[ν−1]
(

a√
2
, a√

2

)
+δα such that Ri is the position vector of current

cell i. explicitly, Ri =
√

2ai =
(√

2aix,
√

2aiy

)
, while δd =

(
0, 0

)
, δx =

(
a

2
√

2
, − a

2
√

2

)
and δy =

(
a

2
√

2
, a

2
√

2

)
. Without loss of generality, let Riαν → Ri + ν

(
a√
2
, a√

2

)
+ δα.
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Consider a constant magnetic field B = Bẑ. The Landau gauge chosen is such that

A(r) = −Byx̂. Then, let Riαν = Xiανx̂+ Yiανŷ. Hence,

∫ Rjβµ

Riαν

A(r) · dr = −B
∫ Rjβµ

Riαν

y(x) dx

= −B
∫ Rjβµ

Riαν

[
Yiαν +

Yjβµ − Yiαν
Xjβµ −Xiαν

{x−Xiαν}
]
dx

= −B

[
Yiαν {Xjβµ −Xiαν}+

Yjβµ − Yiαν
Xjβµ −Xiαν

{Xjβµ −Xiαν}2

2

]
= −B [Xjβµ −Xiαν ]

[
Yiαν + 1

2
{Yjβµ − Yiαν}

]
= −B x̂ · δjβµiαν

[
Yiαν + 1

2
ŷ · δjβµiαν

]
,

(H.4)

where δjβµiαν ≡ Rjβµ −Riαν . Accordingly, it leads to

−i2π e
h

∫ Rjβµ

Riαν

A(r) · dr = i2π
eB

h
x̂ · δjβµiαν

[
Yiαν + 1

2
ŷ · δjβµiαν

]
. (H.5)

In our case, x̂ · δjβµiαν ≡ ωjβµiαν
a

2
√

2
should always hold for ωjβµiαν ∈ Z. In light of this, it is useful

to define χ ≡ eBa2

2h
along with Γαν ≡ 1√

2a
Y0αν = 1

2
ν + 1√

2a
ŷ · δα and Υjβµ

iαν ≡ 1√
2a
ŷ · δjβµiαν . By

doing so,

−i2π e
h

∫ Rjβµ

Riαν

A(r) · dr = i2πχωjβµiαν

[
iy + Γαν + 1

2
Υjβµ
iαν

]
. (H.6)

Therefore, introducing an external magnetic field Bẑ in the system through the Peierls

substitution has the effect of tranforming ĤMF as

ĤMF →
∑
iαν

εαn̂iαν +
∑

〈iαν,jβµ〉

t′jβµ,iανe
i2πχωjβµ

iαν [iy+Γαν+ 1
2

Υjβµ
iαν ]ĉ†jβµĉiαν

≡ ĤB
MF .

(H.7)

We cannot go to momentum space just yet because of the dependence on i — more

specifically on iy — in the second term of (H.7). Fortunately, it is periodic when χ ∈ Q. In

particular, setting χ = p/q an irreducible fraction where p ∈ Z and q ∈ N, the y-direction

periodicity will be of q current cells. Therefore, the Hamiltonian can be diagonalized by

transforming to momentum space and by taking a magnetic unit cell in the y-direction

composed of q current cells of two primitive cells each. We will assume that q ≥ 3.
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Let ir ≡ ixx̂+(qiy+r)ŷ and ĉriαν/ĉ
r †
iαν/n̂

r
iαν be the annihilation/creation/number operator

for an electron in orbital α of primitive cell ν in current cell ir where i =
(
ix, iy

)
∈ Z2

now indexes the grid of magnetic cells and r ∈ {1, 2, ..., q} indexes the lattice sites within a

magnetic cell. The Hamiltonian of the system under an external magnetic field can then be

rewritten in a much simpler way:

ĤB
MF =

∑
iανr

εαn̂
r
iαν +

∑
〈iανr,jβµr′〉

τ r
′,r
jβµ,iαν ĉ

r′ †
jβµĉ

r
iαν , (H.8)

where τ r
′,r
jβµ,iαν ≡ t′jβµr′,iανre

i2πχωjβµr′
iανr

[
r+Γαν+ 1

2
Υjβµr′

iανr

]
.

Similar to tjβ,iα which can be expressed as tnβα where n is the inequivalent bond between

iα and jβ, τ r
′,r
jβµ,iαν can be expressed as τ r

′,r;n
βµ,αν where n is the inequivalent bond between

iανr and jβµr′. The notation then changes accordingly and we can use the results from

section 4:

ĤB
MF =

∑
k

Ψ̃†k

HB
1,1(k) HB †

2,1 (k)

HB
2,1(k) HB

2,2(k)

 Ψ̃k , (H.9)

for

HB
ν,ν(k) ≡



H1,1
ν,ν (k) H1,2

ν,ν (k) . . . H1,q−1
ν,ν (k) Hq,1 †

ν,ν (k)

H1,2 †
ν,ν (k) H2,2

ν,ν (k) . . . H2,q−1
ν,ν (k) H2,q

ν,ν (k)
...

...
. . .

...
...

H1,q−1 †
ν,ν (k) H2,q−1 †

ν,ν (k) . . . Hq−1,q−1
ν,ν (k) Hq−1,q

ν,ν (k)

Hq,1
ν,ν (k) H2,q †

ν,ν (k) . . . Hq−1,q †
ν,ν (k) Hq,q

ν,ν(k)


, (H.10a)

HB
2,1(k) ≡


H1,1

2,1 (k) H1,2
2,1 (k) . . . H1,q

2,1(k)

H2,1
2,1 (k) H2,2

2,1 (k) . . . H2,q
2,1(k)

...
...

. . .
...

Hq,1
2,1(k) Hq,2

2,1(k) . . . Hq,q
2,1(k)

 , (H.10b)

where Ψ̃†k ≡
[
Ψ†k1 Ψ†k2

]
for Ψ†kν ≡

[
Ψ1 †
kν Ψ2 †

kν ... Ψq †
kν

]
with Ψr †

kν ≡
[
ĉr †kdν ĉr †kxν ĉr †kyν

]
where

ĉrkαν/ĉ
r †
kαν is the annihilation/creation operator for an electron in orbital α of primitive cell

ν in current cell r with crystal momentum ~k for k =
(
kx, ky

)
∈ 2π

aN
ZN × 2π

aqN
ZN . The

Brillouin zone BZq can be taken to be the set 1√
2a

[−π, π] × π√
2aq

[−π, π]. In fact, we have
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that

Hr′,r
µ,ν (k) =




εd f r,r ∗xν,dν(k) f r,r ∗yν,dν(k)

f r,rxν,dν(k) εp f r,r ∗yν,xν(k)

f r,ryν,dν(k) f r,ryν,xν(k) εp

 , µ = ν, r′ = r


0 f r

′,r
dµ,xν(k) f r

′,r
dµ,yν(k)

f r
′,r
xµ,dν(k) 0 f r

′,r
xµ,yν(k)

f r
′,r
yµ,dν(k) f r

′,r
yµ,xν(k) 0

 , otherwise

, (H.11)

where f r
′,r
βµ,αν(k) ≡

∑
n τ

r′,r;n
βµ,αν e

−ik·δr
′,r;n
βµ,αν for δr

′,r;n
βµ,αν ≡ Rjr′βµ −Rirαν the bond vector on the

inequivalent bond n from orbital α in primitive cell ν of current cell r to orbital β in primitive

cell µ of current cell r′ for corresponding ir and jr
′
.

Additionally, the matrices HB
ν,ν(k) and HB

2,1(k) can be simplified because of the hopping

occuring between nearest neighbors only. Accordingly, many block matrices and matrix

elements are equal to zero; explicitly,

HB
ν,ν(k) =



H1,1
ν,ν (k) H2,1 †

ν,ν (k) 0 . . . 0 H1,q
ν,ν (k)

H2,1
ν,ν (k) H2,2

ν,ν (k) H3,2 †
ν,ν (k) 0 . . . 0

0 H3,2
ν,ν (k)

...
... 0

. . . 0

0
... Hq,q−1 †

ν,ν (k)

H1,q †
ν,ν (k) 0 . . . 0 Hq,q−1

ν,ν (k) Hq,q
ν,ν(k)


, (H.12a)

HB
2,1(k) =



H1,1
2,1 (k) H1,2

2,1 (k) 0 . . . 0 0

0 H2,2
2,1 (k) H2,3

2,1 (k) 0 . . . 0

0 0
...

... 0
. . . 0

0
... Hq−1,q

2,1 (k)

Hq,1
2,1(k) 0 . . . 0 0 Hq,q

2,1(k)


. (H.12b)

In such a way, a set of only 4 matrices has to be found in order to obtain the matrix form

of the full mean-field Hamiltonian in momentum space under an external magnetic field.
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Many of the matrix elements are equal to zero. Explicitly, the matrices are given by

Hr,r
ν,ν(k) =


εd f r,r ∗xν,dν(k) f r,r ∗yν,dν(k)

f r,rxν,dν(k) εp f r,r ∗yν,xν(k)

f r,ryν,dν(k) f r,ryν,xν(k) εp

 Hr+1,r
ν,ν (k) =


0 0 0

0 0 f r+1,r
xν,yν (k)

0 0 0



Hr,r
2,1(k) =


0 0 f r,rd2,y1(k)

f r,rx2,d1(k) 0 f r,rx2,y1(k)

0 0 0

 Hr−1,r
2,1 (k) =


0 f r−1,r

d2,x1 (k) 0

0 0 0

f r−1,r
y2,d1 (k) f r−1,r

y2,x1 (k) 0


(H.13)

where the matrix elements are equal to

f r,rxν,dν(k) = − [tpd + iRpd(−1)ν ] ei2πχ[r+
4ν−1

8 ]e
−i a

2
√
2

[kx−ky ]
, (H.14a)

f r,ryν,dν(k) = [tpd − iRpd(−1)ν ] ei2πχ[r+
4ν+1

8 ]e
−i a

2
√
2

[kx+ky ]
, (H.14b)

f r,ryν,xν(k) = [tpp − iφRpp(−1)ν ] e
−i a√

2
ky , (H.14c)

f r+1,r
xν,yν (k) = [tpp − iφRpp(−1)ν ] e

−i a√
2
ky , (H.14d)

f r,rx2,d1(k) = [tpd − iRpd] e
−i2πχ[r+ 5

8 ]e
i a
2
√
2

[kx−ky ]
, (H.14e)

f r,rd2,y1(k) = − [tpd + iRpd] e
i2πχ[r+ 7

8 ]e
−i a

2
√
2

[kx+ky ]
, (H.14f)

f r,rx2,y1(k) = −2

 tpp cos
{

a√
2
kx − 4πχ

[
r + 3

4

]}
+φRpp sin

{
a√
2
kx − 4πχ

[
r + 3

4

]}
 , (H.14g)

f r−1,r
y2,d1 (k) = − [tpd + iRpd] e

−i2πχ[r+ 3
8 ]e

i a
2
√
2

[kx+ky ]
, (H.14h)

f r−1,r
d2,x1 (k) = [tpd − iRpd] e

i2πχ[r+ 1
8 ]e
−i a

2
√
2

[kx−ky ]
, (H.14i)

f r−1,r
y2,x1 (k) = −2

 tpp cos
{

a√
2
kx − 4πχ

[
r + 1

4

]}
−φRpp sin

{
a√
2
kx − 4πχ

[
r + 1

4

]}
 . (H.14j)
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