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ABSTRACT

This thesis investigates the properties of an analysis and re-synthesis method

of a class of nonlinear systems, with an application to audio effects for guitar. The

goal of this work is to develop a straightforward method to characterize certain

types of nonlinear systems (the analysis), and subsequently use this characteriza-

tion to create a generic structure for the model of the system. The model imitates

the nonlinear system’s behaviour such that the output of the model to a given

input signal is the same as the output of the actual nonlinear system under study

(the synthesis). A method for system identification of linear systems is first pre-

sented, and then the method is extended to analyze nonlinear systems as well.

An in-depth presentation of how the method works is presented. The informa-

tion extracted by the analysis is then used as parameters in a synthesis model

to emulate a particular nonlinear system under study. The analysis/synthesis

method is then tested on some simple memoryless nonlinear systems with simple

inputs. Finally, three ‘real-world’ nonlinear systems are then used to validate the

analysis/synthesis method developed in this work. The nonlinear systems are

all distortion effects intended for electric guitar. Outputs of the model agreed

well with the actual system output when the input was a simple sinusoid. The

model’s performance did however suffer when a wide-bandwidth musical signal was

used as input. Outputs were lacking in higher harmonic content and overall gain.

This is thought to be due to the limited bandwidth of the chirp used as well as a

limitation on the number of harmonics that can be modeled.
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ABRÉGÉ

Cette thèse porte sur l’étude des propriétés d’une technique d’analyse/synthèse

appliquée à une classe particulière de systèmes non-linéaires, avec une application

numérique aux effets audio pour guitare. L’objectif de ce travail est de développer

une méthode simple de caractérisation de cette classe de systèmes (l’analyse), pour

ensuite ré-injecter cette paramétrisation dans un modèle générique (la synthèse).

Ce dernier va alors imiter le comportement du système étudié de sorte que leurs

signaux de sortie soient identiques pour un signal d’entrée donné. Une méthode

d’identification des systèmes linéaires est d’abord présentée, pour ensuite être

étendue à l’analyse des systèmes non-linéaires. Le fonctionnement de la méthode

est exposée en détail. Les informations extraites durant l’analyse sont injectées

comme paramètres dans le modèle de synthèse pour simuler le système non-linéaire

étudié. La méthode d’analyse/synthèse est ensuite appliquée à plusieurs modèles

non-linéaires simples, sans mémoire, soumis à des signaux d’entrée élémentaires.

Enfin, trois systèmes non-linéaires existants sont utilisés pour valider la méthode

présentée. Ces dispositifs sont tous des effets de distorsion pour guitare électrique.

Les sorties de chacun des systèmes et de leur modèle associé sont très similaires

lorsqu’ils reçoivent une sinusöıde simple en entrée. Les performances du modèle

sont cependant un peu moins bonnes dans le cas d’un signal musical à bande

large. Le signal de sortie manque alors de contenu harmonique dans les hautes

fréquences, et présente un gain global plus faible. Ce phénomène est sans doute lié
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soit à la bande passante réduite du chirp utilisé, soit aux contraintes sur le nombre

d’harmoniques présentes dans le modèle.
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Chapter 1
Introduction

The analysis and identification of audio systems is an important and common

task in digital signal processing. Applications such as simulated room acoustics,

enhanced digital audio effects, source/filter modeling, physical modeling of systems

and instruments, improved loudspeakers, etc. can be understood by studying the

temporal and spectral properties of these systems.

The study of the behavior of physical systems usually begins with a basic

modeling process. A model is a way of predicting the behavior of a system through

the use of functions and operators, and defining how the input and output of

the system are related. The relation between the operators and signals can be

illustrated by way of a block diagram [1]. As the need for greater accuracy in

predicting or simulating a system’s behaviour increases, the complexity of the

model often increases as well. There are many approaches to selecting a model,

and the choice of which model to use depends on a number of factors including

desired accuracy, computational load or complexity, and personal preferences.

General common approaches in signal processing for audio applications include

physical modeling, statistical, and psychoacoustic models, among many others.

Once a model is chosen and implemented, the computation usually involves

the calculation or estimation of model’s parameters. This process is called system

identification. Once a system has been characterized, the information can be used

1



to learn more about the system under study, or try to simulate the system in

hardware or software. Regardless of the type of model used, the characterization

of a system, followed by a recreation of the system by some other means is an

example of the analysis/synthesis approach. In general, analysis is defined as

the procedure by which an intellectual or substantial whole is broken down into

parts or components. Synthesis is defined as the opposite procedure: to combine

separate elements or components in order to form a coherent whole. Analysis and

synthesis, as scientific methods complement one another. Every synthesis is built

upon the results of a preceding analysis, and every analysis requires a subsequent

synthesis in order to verify and correct its results [2].

Farina [3][4] developed a simple novel method for characterizing a linear

system which also shifted any nonlinear responses from the system earlier in time.

While the initial application was for characterizing linear systems, Farina’s method

allows for the extraction of both linear and nonlinear responses of a system in

a single measurement. These responses provide temporal and frequency domain

information about how a nonlinear system processes an input signal.

The responses can then be used in a model to imitate the nonlinear system

under study. The goal of the model is to imitate the nonlinear system’s behaviour

such that the output of the model to a given input signal is the same as the output

of the actual nonlinear system under study.

This thesis describes an analysis and re-synthesis method of a class of

nonlinear systems, with a particular focus on audio effects for guitar. The goal

of this work is to develop a straightforward method to characterize certain types
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of nonlinear systems (the analysis), and subsequently use this characterization to

create a generic software model of the system (the synthesis).

It is convenient at this point to first define a few more key terms that are

often used in this dissertation.

(Nonlinear) system under test (SUT/NSUT) The SUT is the actual

physical or virtual system is to be modeled.

Excitation An excitation signal s(t) is a time varying signal s(t) that is used for

system identification. It is the test signal that is first sent to the SUT.

Response The response r(t) of a system is the measured output of a system

under test to an excitation signal. The analysis method used in this work

(Chapter 2) uses both s(t) and r(t) to extract the important information

about the SUT.

‘Re-synthesized’, or ‘simulated’ system The re-synthesis of a nonlinear

system is the recreation or emulation of the behaviour of a ‘real’ nonlinear

system through a model, either software or hardware based, such as the

model summarized in this thesis. The re-synthesized version of the nonlinear

system can be compared to the SUT by sending identical input signals to

each system and comparing the output of each (See Figure 1–1).

Input signal The input is any signal x(t) that is input to a nonlinear system

that will produce an output y(t). The input can be directed into either the

real physical SUT or the simulated system. An input is different from an

excitation in that the excitation is a specific signal used for the analysis of
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a nonlinear system, and an input is simply a signal to be processed by the

nonlinear system or its simulated counterpart.

Figure 1–1: The re-synthesis model can be compared to the NSUT by sending
identical signals to both and comparing the outputs.

In the context of audio, the analysis/synthesis approach aims to extract the

important features of a system as parameters, then use these parameters as

elements in a synthesis model. This model can be used to emulate the sound

(i.e. output) of the real-world object or system in response to some input, or

even to add flexibility to an audio system not possible in the ‘real world’. The

analysis/synthesis concept for systems whose input is known1 is illustrated in

Figure 1–2. Once the parameters are estimated and a synthesis model is in place,

it can then be compared to the SUT by sending an identical signal to both systems

and comparing the outputs in some way, as illustrated in Figure 1–1.

1 The approach differs somewhat when the input signal to a system is unknown.
In these cases, the analysis method is statistically-based and the input signal is
often assumed to white Gaussian noise or some other signal derived from a random
or pseudo-random process.
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Figure 1–2: The analysis and synthesis framework.

1.1 Overview

This dissertation focuses on an analysis/synthesis approach to the modeling

of certain nonlinear audio systems. The dissertation is organized into 4 chapters.

Chapter 1 presents background information on the analysis of both linear and

nonlinear systems, the differences between the two, and typical ways in which

linear systems are measured in practice. Chapter 2 illustrates Farina’s method [3]

[4] for identifying linear and nonlinear systems and explains how the method works

in detail. Chapter 3 describes a synthesis method for nonlinear systems called the

MISO Polynomial Hammerstein Model, and how the information extracted from

nonlinear convolution is used in this model. Finally, Chapter 4 summarizes the

implementation of this analysis/synthesis system in MATLAB, and compares the

results of real nonlinear systems to their re-synthesized versions using this method.

1.2 Background

Often analysis methods at some point make the assumption that the system

under study is linear. Linear systems are relatively easy to understand mathe-

matically and have some very useful properties. The defining property of linear

systems is that they satisfy the principle of superposition. This states that for any

given inputs to a linear system x1 and x2 with respective outputs y1 and y2, then
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any linear combination of the inputs ax1 + bx2 to the linear system will produce

a proportionally scaled and summed output ay1 + by2. As a consequence, a signal

consisting of many partials (as is the case with most sounds) passed through a

linear system will retain all of these partials in the output signal, with only their

relative magnitudes and phases changed. No new frequency content can be intro-

duced into a signal by a linear system. This and the principle of superposition are

in fact equivalent and merely express the same idea in the frequency and temporal

domains, respectively.

A second property of a linear system is the time-dependence of its parameters.

A linear system whose parameters do not change in time is called a Linear Time-

Invariant (LTI) system, and a linear system that is time-dependent is called a

Linear Time-Variant (LTV) system. The properties of LTI systems make their

characterization straightforward. An LTI system is completely characterized by its

impulse response (IR), denoted h[n] (or h(t) in continuous time). The IR is the

time-domain output of a system to an impulse input signal. In discrete time, this

input signal to the system is (ideally) a Kronecker function δ[n] which equals 1 at

n = 0, and 0 for all other time samples n. Figure 1–3 illustrates an impulse in the

digital domain, and the impulse response of a LTI.

Systems that do vary in time cannot be represented by a simple impulse

response of the form hi(t). For LTV systems to be represented in terms of impulse

responses, one must know the impulse response hv(τ, t) at each time instant t to

an impulse applied τ time before [6]. Thus in this notation, for an LTI system

hv(τ, t) = hi(τ).
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Figure 1–3: a. Unit impulse δ[n]. b. Output impulse response h[n] = 0.9n. c. In-
put delayed-impulse δ[n − 5]. d. Output delayed-impulse response h[n − 5]. Taken
from [5].

Another way of characterizing an LTI system is through its frequency re-

sponse. The frequency response is defined as the spectrum of the output signal

divided by the spectrum of the input signal. It specifies the attenuation of a signal

as a function of the frequency of that signal. In addition, it also specifies the

phase delay of a signal as a function of frequency. The frequency response and

impulse response are related through the Fourier Transform. They are completely

analogous and convey the same information in different domains. The Fourier

Transform of the IR shown in Figure 1–3b is shown in Figure 1–4.

Convolution

Once the impulse response of the system is measured, the output of the

system y(t) to any input can be calculated using only the input x(t) and the

impulse response h(t). The output is given by the convolution of the impulse

response with the input signal as shown in Eq. (1.1). Because no new frequency
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Figure 1–4: Frequency response of the filter shown in Figure 1–3b. with a sample
rate of 1 kHz.

content is generated by the convolution process, convolution is a linear operation.

y (t) = (h ∗ x) (t) =
∫ ∞

−∞
x (τ)h (t− τ) dτ (1.1)

In order to give a more concrete description of the convolution in Eq. (1.1), the

operation is illustrated graphically in Figure 1–5. First, h(τ) (in red) is reversed in

time to give h(−τ), which flips the signal about t = 0. h(−τ) is then shifted left

by a time t towards −∞ to give h(t − τ). Since in practice the signals are of finite

length the time-reversed signal h(t − τ) is shifted far enough left that it does not

overlap with x(τ) (in blue). If x(τ) and h(τ) are causal, then merely time-reversing

h(τ) is sufficient to eliminate any overlap between the two functions. Then as t is

incrementally increased, h(t− τ) is shifted to the right, and the product of the two

functions x and h is integrated (indicated by the yellow area) yielding the output

y(t) (in black). This shifting of h(t − τ) and integrating is performed until there
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Figure 1–5: Sequenced plots of the convolution of a unit square function and a
damped exponential function, for increasing values of the shift t. In each shift,
the product of the two functions is integrated (yellow area), to give a value on the
black curve at that shift value. Code from [7].

is no more overlap between the two functions. Thus the length of the convolution

of signals x and h of lengths t1 and t2 respectively is t1 + t2. This graphical view

of convolution is important for the explanation of Farina’s method which will be

discussed in Section 2.4.

Performing a convolution as in Eq. (1.1) can be quite computationally

intensive for audio signals, due to the many multiply and add operations required

for any signal of appreciable length. Fortunately, convolution is expressed much
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more simply in the Frequency Domain. The Convolution Theorem [8] states that

given two time domain functions x(t) and h(t), and their respective spectra X(f)

and H(f), denote y(t) = (x ∗ h)(t) and it’s spectrum Y (f). Then,

Y (f) = X(f)H(f) (1.2)

Thus convolution of two sequences in the time domain is equivalent to the

multiplication of their corresponding Fourier transforms. Because of the efficiency

of the Fast-Fourier-Transform algorithm [9], it takes fewer operations to transform

each of the signals to the frequency domain with the FFT, perform the complex-

valued multiplication, and inverse FFT back to obtain the time-domain convolved

result than to perform the convolution directly. A number of methods [8] [10] [11]

[12] have been developed for performing ‘fast convolution’. While they differ in the

details, they all use the FFT to perform the convolution in the frequency domain.

Nonlinear Systems

Often real-world systems do not exactly obey superposition, and new fre-

quency content can be introduced into the output that was not present in the

input signal. These systems are said to be nonlinear.2 Thus nonlinear systems

cannot be simply characterized by an impulse response, since convolution is a

linear operation.

2 Linear Variant Systems can also introduce new frequency content in the out-
put signal. However these systems are beyond the scope of this work. Attention
will be restricted to time-invariant systems.
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The generation of new frequencies in the output signal that were not present

in the input signal is called distortion. Distortion can either be a desired or

undesired consequence of a system. For example, the distortion of an electric

guitar signal can produce very full and rich guitar sounds high in harmonic

content. FM synthesis [13] and distortion by waveshaping [14] are other examples

of nonlinear systems with musical applications, producing many frequencies

from just two or more input frequencies. On the other hand, in the case of audio

reproduction, distortion of the signal from poor quality speakers can give a harsh,

unpleasant quality to the original sound.

Nonlinear systems will typically generate two types of distortion - harmonic

distortion and intermodulation distortion. Harmonic distortion creates harmonics

of the input signal in the output. A harmonic is a component of the signal that is

an integer multiple of the fundamental frequency of the signal. Thus if the input

signal has a fundamental frequency fo, a harmonic distorting system will generate

frequencies at fo, 2fo, 3fo, etc. in varying strengths. The highest harmonic of

significant power generated by a system is called the order of the nonlinearity, and

so an nth order system produces (up to) n harmonics of the original input.

Intermodulation distortion occurs when a signal containing two different

frequencies f1 and f2 is introduced to a nonlinear system. The result is the

generation of frequencies at sums and differences of the input frequencies. In

general, components at frequencies pf1 + qf2, p, q ∈ Z will be produced, with

typically decreasing strength as p + q increases. Thus the most prominent

frequencies will be at f1 + f2, 2f1 + f2, ... and f1 − f2, f1 − 2f2, ....
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Although many real systems are in fact nonlinear, when a system only

introduces a relatively small amount of new frequency content into the output, it

is said to be weakly nonlinear and a linear approximation can be sufficient. This

simplification is for good reason: the fact that nonlinear systems can produce

new frequencies makes them much more difficult to analyze than their linear

counterparts. If however the distortions are too large to ignore, or they are of

interest such as in the context of guitar distortion, the use of a linear model cannot

produce accurate results.

On the other hand, nonlinear models can become computationally demanding

very quickly even for models of low order. If a nonlinear model must be used, a

balance must be found between its complexity and accuracy. The decision whether

to use a linear or nonlinear model depends on the specific application and required

level of accuracy of the model.

Harmonic and intermodulating distortion systems are the most common types

of nonlinear system. Other types, such as chaotic, hysteretic, or quasi-stable/multi-

stable exist [15] but are far less common and not considered in this dissertation.

1.3 Motivation

Having a unified representation of a class of nonlinear system is very valuable.

As mentioned above, nonlinear systems are often approximated as linear due to

the complexity of nonlinear models. However an accurate and relatively simple

representation of these nonlinear systems could improve linear models without

much increase in computational cost. This unified representation also allows for a

way to compare nonlinear systems of this class using a single framework.
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One application to this research is amplifier and effects box simulation. The

sound of classic tube amplifiers and vintage effects boxes are highly desired by the

guitar community [16] [17]. The development of digital simulations of classic audio

components, often times involving nonlinear components, has been commercially

popular over the last 10 years or so. Examples include the Guitar Rig product line

[18] and Universal Audio suite of plugins [19]. Owning a large suite of such units

or their software simulation counterparts can be very costly. On the other hand,

having an analysis/synthesis system that can simulate many different nonlinear

systems using the same framework, such as the saturating or clipping systems

often present in guitar distortion circuits can be an attractive alternative to the

high cost of owning these actual units. Furthermore, the ability to automatically

characterize, modify, and recreate any new systems or effects allows for non-

specialists to take a do-it-yourself approach to creating custom-made sounds.

1.4 IR and Distortion Measurement Techniques

As stated above, the IR of a system is the response of a system to an impulse.

In practice, an ideal Dirac distribution is virtually impossible to create. An

ideal impulse has a flat spectrum and provides enough energy to the system to

give a reasonable signal-to-noise ratio. Sounds like electrical sparks, popping

balloons, and pistol or cannon shots are often sufficiently loud sound sources,

but lack the spectral flatness, repeatability and omni-directionality required for

most applications [20]. On the other hand, when direct IR measurements were

commonplace at least 30 years ago, the loudspeakers used could be sent an impulse

from a digital source which was more spectrally flat, but lacked sufficient power
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to obtain a good signal-to noise ratio [21]. Alternatively, several indirect but more

reliable methods have been developed to extract the impulse response of a linear

system. These methods do not measure the impulse response of a room directly,

but rather excite the system with a known signal and measure the response. The

IR is then extracted through mathematical operations involving the input and

response. The specific operations of course depend on the method chosen. Some of

the most popular IR measurement methods are described briefly below. It will be

shown in Chapter 2 that the sine sweep method described below can be applied to

analyze both linear and nonlinear systems.

Maximum Length Sequences (MLS)

Schroeder [21] devised a method to measure the impulse response of linear

systems using pseudo-random binary sequences as test signals to the system.

An MLS is a periodic sequence of binary digits, usually -1 and +1. It can be

generated by an n-stage shift register in a feedback loop, along with an ’exclusive-

OR’ operation. The most important property of an MLS is that the Fourier

Transform is flat, like the Fourier Transform of an impulse. Furthermore, the

circular autocorrelation function [8] of an MLS approaches a Kronecker as the

length of the MLS increases. Thus to measure the impulse response of a system,

the MLS is repeatedly sent through the system and its output is measured. When

this is cross-correlated with the input MLS, a train of impulse responses results. A

greater signal-to-noise ratio can be obtained by averaging these multiple impulse

responses, and the measurement is very tolerant to background noise. Details and

further explanations can be found in [21] and [22].
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Time Delay Spectrometry (TDS)

TDS is a clever technique for measuring the frequency response of a linear

system [23]. When performing acoustic measurements on a piece of equipment,

the room that it is done in often becomes a part of the measurement as well. TDS

allows for anechoic measurements of a system without the need of a specialized

room. The two basic pieces of equipment in a TDS measurement are the audio

generator and tunable receiver. The audio generator feeds the system to be tested

with a sinusoidal chirp. The tunable receiver is a device that can be made to

respond to signals only within some controlled bandwidth. When tuned manually,

it is analogous to a radio tuner, except in the auditory frequency range. The

generator and receiver can be coupled to one another, such that frequency that the

generator creates is tracked and tunes the central frequency of the tunable receiver

[24].

To measure a system, a microphone is connected to the tunable receiver and

placed at a fixed, measured distance away from the system. The audio generator

sends the test signal (a sinusoidal chirp) to the system under study, which creates

pressure waves through the air. This is picked up by the microphone and the

signal is sent to the receiver. As the frequency of the chirp increases, the receiver

changes its central frequency along with the chirp, offset by an amount to account

for the time-of-flight delay of the sound from the system to the microphone. The

idea is that when the sound pressure wave directly from the system reaches the

microphone, it will be tuned to accept that particular frequency, with almost all

others blocked out. When the pressure waves from reflections off of the walls,
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etc. reach the microphone (taking a longer path length and a longer time), the

frequency of these waves will already be outside of the bandwidth of the receiver

and are suppressed. Thus it is possible to measure only the direct sound from a

system, thanks to the difference in arrival time of the direct and reflected sound.

By adjusting the offset, one can discard the direct sound and instead measure

reflection/absorption characteristics of a particular spot in a room, or measure the

acoustic properties of a test material [23] [24].

Sine Sweeps

Farina [3] popularized a method for measuring impulse responses using

sinusoidal sweeps, or ’chirps’ as the excitation signal to the system. MLS and TDS

techniques are based on the assumptions that the system under study is linear

and time-invariant. While both methods are sensitive, MLS in particular is very

intolerant of any non-linear behaviour or time-variance of the system [3]. While

the use of chirps in acoustical measurements was nothing new [20] [23], Farina’s

sine sweep technique for measuring systems became popular due to its simplicity.

This technique came out of research attempting to overcome this limitation in

MLS through the use of TDS measurements. A sinusoidal chirp (whose frequency

increased linearly or exponentially) is input to the system and the output is

recorded. When the output is convolved with a time-reversed version of the input

signal, the resultant signal contains the linear impulse response, with any nonlinear

artifacts shifted earlier in time. This method is comparatively simpler than MLS

or TDS, and can also be used to investigate nonlinear systems. Thus [3] serves as a

starting point for this research.
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Basic Nonlinear System Measurements

One way of characterizing the degree to which a system is nonlinear is by

measuring its total harmonic distortion (THD). The power THD of a system is the

ratio of the sum of the power in all of the harmonics produced Pn to the power of

the fundamental P1 in a sinusoidal signal fed through the system.

THD =

∑∞
n=2 Pn

P1

(1.3)

Since individual harmonic amplitudes are measured for the THD, it is necessary

to specify the frequency (or frequency range) of the test signal and its amplitude

for a proper THD measurement. The THD of a system is generally specified with

the input signal close to full-scale, although it can be specified at any level [25].

THD measurements are often given for loudspeakers, amplifiers and microphones.

As described on page 10, intermodulation distortion (ID) produces frequencies

in the output that are the sum and difference multiples of frequencies in the input.

Similar to THD, an intermodulation distortion measurement gives the power ratio

of these various sum and difference frequencies to the power of the fundamental

frequencies in the input signal.

A simple comparison derived from the THD measurement, called the spectral

flatness (SF) can be made which is useful for comparing the outputs of a nonlinear

system to its simulated model’s. The spectral flatness plots the spectral amplitude

ratio (or difference in dB) of the response of one system to another in response to
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a simple input signal. Mathematically the spectral flatness is given by

SF = 10 log

(
FFT (|Θ|)
FFT (|Θ̂|)

)
(1.4)

Where Θ and Θ̂ are the outputs of the two systems under comparison. Typically

the input signal to both systems is a simple sinusoid or simple combination thereof

in order to resolve all of the harmonics and/or intermodulation products produced.

The spectral flatness has the same frequency resolution as the FFT’s under

analysis. For simple signals, this is often less than helpful, because disagreement in

unimportant areas of the spectrum (i..e areas where there is no frequency content)

can overshadow those frequency bins which are the most important perceptually

for recreation of the signal. Thus the spectral flatness is evaluated at the expected

location of harmonics and intermodulation products to give a more local picture of

the accuracy compared to a percentage THD or ID measurement.

Obviously, linear characterizations like the IR and nonlinear characterizations

like the THD or intermodulation distortion are done separately. However Farina’s

[3] sine-sweep method allows characterizations of both linear and non-linear

aspects of the system in a single measurement. Furthermore, the nonlinear system

characterizations are far more informative than simple power ratios given by THD

and ID measurements. This is described in detail in the following chapter.
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Chapter 2
Nonlinear Convolution

2.1 Method

Farina [3][4] developed a simple novel method which he called nonlinear

convolution for measuring both the linear and nonlinear responses of a system in a

single measurement. This name is somewhat misleading as the actual convolution

operation performed is the same linear operation as the one in Eq. (1.1). However,

the signals used for the analysis of linear systems can also be used to extract

information about nonlinear characteristics of the system. The general method will

first be outlined qualitatively, followed by an explanation of how each stage works.

At certain stages in the outline of the method, some details or explanations will be

omitted until later in the chapter in order to provide a more general concept of the

method first.

First, the nonlinear system is fed with an excitation signal s(t). The excita-

tion in this case is a chirp with an exponential frequency evolution and is defined

as

s(t) = cos

 ω1T

ln
(

ω2

ω1

) (e t
T
ln

(
ω2
ω1

)
− 1

) (2.1)

Where ω1 and ω2 are respectively the start and end angular frequencies of the

chirp and T is the length of the chirp in seconds. To illustrate the concepts of

nonlinear convolution, we will use a chirp with ω1 = 1 Hz, ω2 = 4000 Hz, and
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T = 10 s. A spectrogram of this exponential chirp is given in Figure 2–1. An

example nonlinear system is also chosen which generates 10 harmonics of the

input signal, with the nth harmonic having strength 1/n. The response r(t) of the

nonlinear system contains the original signal plus harmonics of the input signal.

The system’s response to s(t) is given in Figure 2–2. The linear response is the

lowest curve on the plot, and the nonlinear responses are the higher curves. Notice

that for an input signal with bandwidth [ω1, ω2], an nth order nonlinear system

will have a bandwidth of [ω1, nω2]. Thus one must be mindful of the bandwidth

of the input signal to a nonlinear system in discrete time, as aliasing can easily

occur from a high-order nonlinear system. After the response is measured, it

Figure 2–1: Spectrogram of an exponential chirp from f1 = 1 Hz to f2 = 4000 Hz.

is then convolved with the input’s inverse system. The inverse system shall be

defined as the signal s̃(t) such that its convolution with s(t) yields a scaled impulse
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Figure 2–2: Response of a 10th order nonlinear system to a sinusoidal exponential
chirp from f1 = 1 Hz to f2 = 4000 Hz.

shifted in time.1 s̃(t) is considered a system in this context because it is used

in the same way as a filter’s impulse response in convolution. Thus depending

on the context, s̃(t) will be called either a signal or a system (or in this case, a

filter). For chirps, s̃(t) is a time-reversed and shifted version of the input, possibly

scaled by a temporal envelope depending on the type of chirp. The frequency

evolution of s(t) and s̃(t) for the case of exponential chirps are given in Figure

2–3. The result of the convolution of the response r(t) with s̃(t) is a single time-

domain sequence h(t) containing multiple band-limited impulses, called Multiple

1 Strictly speaking, the impulse occurs at t = 0, since the inverse system exists
for t < 0 only when time-reversed. In a practical realization however, both signals
start at t = 0 and thus the impulse is shifted in time.
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Figure 2–3: Frequency evolution of forward chirp s(t) (blue) and inverse chirp s̃(t)
(red).

Impulse Responses (MIR), as shown in Figure 2–4, which are separated in time

and occur at very precise delays after one another. The linear impulse response

appears furthest to the right, and preceding it are (typically smaller) impulses. In

fact, these impulses can be thought of as higher-order impulse responses. Higher

order responses appear in the MIR with a smaller delay, and so the highest order

response appears first in the MIR sequence, followed by progressively lower order

responses until the linear response. Each Harmonic Impulse Response (HIR)2

describes how one of the generated harmonics of the input are filtered, analogous

2 MIR refers to the time-domain sequence output from the convolution con-
taining several (or a single) band-limited impulse(s). HIR refers to an individual
impulse in the MIR that is usually separated out by temporal windowing.
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to how the impulse response describes how the input is filtered in a linear system.

Thus nonlinear convolution characterizes the system by multiple impulse responses,

one for each order of the nonlinearity. The impulses are easily separated into

individual HIR, denoted here as hi(t) by temporal windowing3 such that each

impulse response occurs at the same time in its window. A flow diagram of the

nonlinear convolution process is given in Figure 2–5.
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Figure 2–4: Multiple impulse responses after convolving the response in Figure 2–2
with the time-reversed input.

2.2 Why an exponential chirp?

Chirps for acoustical measurements were in use long before Farina’s method.

Heyser [23] used linear sweeps for performing Time Delay Spectrometry, which

3 We consider here for the sake of simplicity that the impulse responses do not
overlap in time.
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Figure 2–5: Flow diagram of nonlinear convolution.

was Griesinger’s basis for his work with sweeps [20] in room measurement. He

began to use sweeps with an exponential frequency evolution, and seemed to

anticipate that they could be used to push out distortion when measuring impulse

responses. For nonlinear convolution to produce multiple impulse responses,

a chirp whose frequency varies exponentially must be used. However, it is not

immediately obvious why this must be. This section aims to show what happens

when different types of chirps are used as excitation signals for a nonlinear system,

and the outputs produced when attempting to produce the MIR output by

Farina’s method. Some of the attractive features of exponential chirps will then be

presented.

Linear Sweeps have a frequency evolution of the form:

ωlin(t) = ω1 +
ω2 − ω1

T
t (2.2)

Where ω1 and ω2 are the start and end angular frequencies of the chirp respec-

tively, and T is the chirp duration. Integrating this equation gives the phase

ϕlin(t), and thus the equation for the linear chirp is:

slin(t) = cos

[
ω1t+

ω2 − ω1

2T
t2 + ϕo

]
(2.3)
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Figure 2–6: Frequency evolution of forward and reverse linear chirps over time.

Where ϕo may be tuned to specify the initial or final phase of the chirp. The

inverse system s̃lin(t) is again the time-reversed version of slin. When T − t is

substituted for t in Eq. (2.3) or any chirp, the frequency evolves from −ω2 to

−ω1. Figure 2–6 shows the frequency evolution of a linear chirp from 100 Hz to

10000 Hz.

When slin(t) is fed through a nonlinear system and the response is con-

volved with s̃lin(t), we get what is supposed to be the MIR for the system. The

nonlinear system generates 10 harmonics of the output, with the nth harmonic

having strength 1/n. Thus we expect the MIR output to contain 10 band-limited

impulses, one for each harmonic order. In this case the impulses should be band-

limited to [ω1, ω2] and have no reverberant character. The spectrogram is shown in

Figure 2–7.
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Figure 2–7: Spectrogram of deconvolved MIR when using linear chirps. The higher
order IRs are smeared in time. The linear impulse response does appear as ex-
pected at 10 s (length of the chirp) with some artifacts surrounding it.

Here the higher order responses do not ’pack’ at a precise time into impulses,

but rather are smeared out over time before the linear impulse at 10 s. The linear

impulse response is present however. Some artifacts also appear around the linear

response.

Cosine sweeps have a frequency evolution of the form

ωcos(t) =
ω1 + ω2

2
+

(
ω1 − ω2

2

)
cos

πt

T
(2.4)

Where again the frequency evolves from ω1 to ω2 in a time T . Thus the equation

for the chirp is

scos(t) = cos

[
ω1 + ω2

2
t+

(
ω1 − ω2

2

)
T

π
sin

πt

T
+ ϕo

]
(2.5)
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The frequency evolution of scos and the time reversed version s̃cos(t) are given in

Figure 2–8. After sending scos(t) through a nonlinear system, nonlinear convolu-

tion using cosine chirps yields the spectrogram given in Figure 2–9.

Figure 2–8: Frequency evolution of forward and reverse cosine chirps.

The situation is similar to that of the linear chirps. The higher order re-

sponses do not pack into impulses but rather are smeared in time before the linear

impulse, and the linear impulse is present with some artifacts surrounding the

impulse.

Exponential chirps have a different behaviour when used for nonlinear

convolution however. The frequency evolution of a chirp is given by

ωexp(t) = ω1e
t
T
ln

(
ω2
ω1

)
(2.6)
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Figure 2–9: Spectrogram of deconvolved MIR when using cosine chirps. The higher
order IRs are also smeared in time like the linear chirp case. Again, the linear
impulse response does appear as expected at 10s (length of the chirp).

Eq. (2.1) gives the expression for the exponential chirp sexp(t). The frequency

evolution of sexp(t) and s̃exp(t) are given in Figure 2–3. The spectrogram of

the result is shown in Figure 2–10. Here, the higher order responses pack into

band-limited impulses at precise anticipatory times before the linear response as

expected. Some artifacts appear to be present, but in actuality they are of much

lower energy than the impulses ∼ 5× 10−4.

There appears to be something special about the exponential chirp. While all

the chirps produced an impulse at time T , only the exponential packed the higher

order response of the nonlinear system into impulses.

Exponential sine sweeps spend an equal amount of time in each octave. For

example, the chirp takes the same time to go from f1 to 2f1 as it does to go from
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Figure 2–10: Spectrogram of deconvolved MIR when using exponential chirps.
Each higher order response packs into an individual impulse at precise anticipatory
times before the linear response.

2f1 to 4f1. Thus the magnitude of the Fourier Transform of the chirp is not flat

within the chirp boundaries and instead declines by 3 dB per octave. Every octave

shares the same energy (in terms of the squares of the magnitudes of the frequency

domain samples), but this energy spreads out over an increasing bandwidth.

Therefore the energy at a particular frequency decreases as the frequency increases.

The equal time per octave property of the exponential chirp is the key to why the

higher responses pack into impulses. A thorough and more precise explanation will

be provided in Section 2.4. Before this can be done, it is necessary to see how the

convolution of the inverse filter with the system’s response to a chirp produces an

impulse response in a linear system.
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2.3 Deconvolution

Section 2.2 showed that an exponential chirp could be used in the nonlinear

convolution process to extract multiple impulse responses for a nonlinear system.

While other types of chirp would not pack the higher order responses into im-

pulses, they did however extract a linear impulse. The goal of this section is show

how convolution of a time-reversed chirp with the system’s response to the chirp

produces an impulse response, and why the particular form of the chirp does not

matter for extracting simply the linear response.

Since we are not exciting the system under study with an ideal impulse but

rather a chirp, some work must be done to extract the impulse response h(t) from

the system response. The idea of deconvolution is to solve for a function h in the

convolution equation, knowing the input s(t) and the response r(t):

(s ∗ h) (t) = r(t) (2.7)

In general, the problem of deconvolution is ill-posed, and can produce nonsen-

sical results if the response is exactly zero for some output sample [26]. For the

purposes of extracting one or more impulse responses, it suffices to find an in-

verse system s̃(t) such that convolving it with s(t) approximates a scaled, shifted

impulse:

(s ∗ s̃)(t) ≈ Aδ(t− to) (2.8)

Where Aδ(t− to) is the Dirac delta function delayed in time by an amount to and

scaled by A. A derivation of the inverse system will now be presented, inspired
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by [1] with some details filled in. We will restrict the focus slightly such that the

amplitude A of the Dirac delta function is δ(t).

For mathematical convenience, we shall use the analytic versions [8] zs(t) and

zs̃(t) of s(t) and s̃(t) respectively. Thus

zs(t) = as(t)e
iϕs(t) (2.9)

zs̃(t) = as̃(t)e
iϕs̃(t) (2.10)

Both are Fourier Transformed to give Zs(f) and Zs̃(f). Therefore we seek Zs̃(f)

such that, ideally

Zs(f)Zs̃(f) = 1 (2.11)

Which is the frequency domain analog of Eq. (2.8).4 If Zs(f) and Zs̃(f) are both

expressed in the form

Zs(f) = Bs(f)e
jΨs(f) (2.12)

then by Eq. (2.11),

Bs(f) =
1

Bs̃(f)
(2.13)

Ψs(f) = −Ψs̃(f) (2.14)

4 In practice, we are actually seeking Zs̃(f) such that Zs(f)Zs̃(f) = e−2πjfto to
incorporate a possible delay to in the arrival of the impulse as per Eq. (2.8).
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To find the amplitude as̃(t) of s̃(t), we first look at the expression for the

Fourier Transform of zs̃(t):

Zs̃(f) =

∫ ∞

−∞
as̃(t)e

−i[−ϕs̃(t)+2πft]dt (2.15)

In the case of chirp signals, Eq.(2.15) can be viewed as an oscillatory integral.

This integral can be approximated by the Method of Stationary Phase [27] [28]

[29] [30]. A requirement of this method is that the phase Φs̃(t) = −ϕs̃(t) + 2πft

is monotonically modulated, meaning that the phase is consistently changing

in only one direction. Since we are dealing with chirps, this method is valid for

approximating the integral in Eq. (2.15). We first assume that the variations in

the phase Φs̃(t) are fast compared with the variations in the envelope as̃(t). Rapid

oscillations of the exponential mean that the integral is roughly zero in the areas

where the oscillation is very fast. Thus the essential contribution to the integral is

the region where Φs̃(t) varies slowly, i.e. a point of stationary phase tstat where5

Φ′
s̃(tstat) = 0 (2.16)

Because as̃(t) is assumed to vary slowly compared to Φs̃(t), as̃(t) is assumed to be

constant around tstat. We then Taylor expand Φs̃(t) about tstat to 2nd order:

Φs̃(t) = Φs̃(tstat) +
1

2
Φ′′

s̃(tstat)(t− tstat)
2 (2.17)

5 When the expression for Φs̃(t) is substituted in Eq. (2.16), it is clear that
we are looking in the area around where ϕs̃(t) has almost linear phase, i.e.
ϕ′
s̃(tstat) ≈ 2πf .
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Plugging the above back into Eq.(2.15), we have

Zs̃(f) = as̃(tstat)e
−iΦs̃(tstat)

∫ ∞

−∞
e−

i
2
Φ′′

s̃ (tstat)(t−tstat)2dt (2.18)

This has the form of a Gaussian integral over infinite bounds. The result is

Zs̃(f) = Bs̃(f)e
iΨs̃(f) ≈ as̃(tstat)

√
2π

ϕ′′
s̃(tstat)

e−i(−ϕs̃(tstat)+2πftstat)+iπ
4 (2.19)

Then we can define the instantaneous frequency and group delay as follows [31]:

fs̃(t) =
1

2π

dϕs̃(t)

dt
(2.20)

ts̃(f) = − 1

2π

dΨs̃(f)

df
(2.21)

Evaluating Eq.(2.16) using Eq.(2.20) we can see that the instantaneous frequency

at tstat is simply the frequency f as we expect. We can also use Eq.(2.21) to show

that the group delay from Eq.(2.19) is simply tstat.

fs̃(tstat) = f (2.22)

ts̃(f) = tstat (2.23)

Thus Eq.’s (2.20) and (2.21) can be regarded as inverses of one another, and

if one is known, then the other can be derived. Using the result of Eq.(2.14) in

Eq.(2.21) we obtain a simple relation between the group delay of s(t) and s̃(t).

This also allows us to calculate the phase relation between ϕs(t) and ϕs̃(t):

ts̃(f) = −ts(f) (2.24)

ϕs̃(t) = ϕs(−t) (2.25)
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This tells us that the inverse filter s̃(t) has a phase that is time-reversed from s(t).

The phase of the input signal ϕs(t) can be obtained from Eq.(2.1). To evaluate

Bs̃(f) in Eq.(2.19) we make the substitution K ≡ T
ln

ω2
ω1

and using Eq. (2.25), we

have

ϕ′′
s(ts) = ϕ′′

s̃(ts̃) =
2π

K
f(−ts̃) (2.26)

Where f(t) = f1e
t/K . Now we substitute the above results into the magnitude

portion of Eq. (2.19):

Bs(f) = 1×

√
2π

ϕ′′
s̃(ts̃)

=

√
K

f(−ts̃)
(2.27)

Bs̃(f) = as̃(ts̃)

√
2π

ϕ′′
s̃(ts̃)

= as̃(ts̃)

√
K

f(−ts̃)
(2.28)

Now because Bs(f) and Bs̃(f) are inverses of one another, we can equate Eq.’s

(2.27) and (2.28) to solve for as̃(t):

as̃(t) =
f(−t)

K
=

f1
K

e−t/K (2.29)

Thus we see that the inverse filter has an exponential amplitude envelope.

Substituting the results of Eq.’s (2.29) and (2.25) into the expression for zs̃(t):

zs̃(t) =
2πf1
K

e−t/Kejϕs(−t) (2.30)
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Finally, going back to the time domain signal and substituting back in for K,

we have our equation for the inverse filter.

s̃(t) =
ω1 ln

(
ω2

ω1

)
T

e
−t ln

(
ω2
ω1

)
/T

cos

 ω1T

ln
(

ω2

ω1

) (e−t ln
(

ω2
ω1

)
/T − 1

) (2.31)

This derivation is general and thus can be applied to other types of chirps, so long

as the chirp’s frequency evolution is monotonic. In general the inverse filter will

consist two parts: an amplitude envelope containing the frequency evolution of the

forward chirp but reversed in time f(−t), and a time-reversed version of the chirp

itself as the oscillatory part, ejϕs(−t).

2.3.1 Analysis of the Generation of Impulses

The nonlinear system response to the chirp s(t) can be broken up into two

stages:

• The generation of harmonics of the input signal si(t)

• The convolution of each of the harmonics with the corresponding harmonic

IR hi(t)

Each of these harmonics convolved with an IR are then mixed together to form the

output r(t). A diagram illustrating the relationship of these elements is shown in

Figure 2–11. Mathematically, we can write:

r =
N∑
i=1

si ∗ hi (2.32)

The task then is to disentangle the impulse responses hi(t) from the input signal.

If an inverse filter s̃(t) can be found that satisfies Eq. (2.8), the impulse responses
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Figure 2–11: The creation of the response r(t) of a nonlinear system to a chirp
s(t).

hi(t) can be extracted by convolving it with the response r(t).

(s̃ ∗ r) = s̃ ∗

(
N∑
i=1

(si ∗ hi)

)
(2.33)

=
N∑
i=1

(s̃ ∗ si) ∗ hi

=
N∑
i=1

δ(t+∆ti) ∗ hi

= h(t)

Where δ(t +∆ti) are pure unit impulses, delayed by a time ∆ti. The end result is

a single time-domain signal h(t) which contains the impulse responses hi(t) spaced

in time and packed into impulse responses. Each impulse response occurs at a
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precise time delay, with the higher order responses occurring earlier than the lower

ones.

At this point in the discussion, nonlinear convolution still has some mysteries

to reveal. Why do the higher order responses pack into impulses at precise time

delays? How does the inverse filter deconvolve the higher order responses? Farina

[3] [4] did not provide the details of how the method generated these higher order

responses and oddly, no precise explanation of exactly why nonlinear convolution

works could be found in the literature. These questions are addressed in the

following section.

2.4 Convolution

The equivalence between convolution in the time domain and multiplication

in the frequency domain (see Eq (1.2)) means that the convolution of the system’s

nonlinear response r(t) with the inverse filter s̃(t) can be analyzed in two different

but equivalent ways. Each view highlights some important features of the MIR

sequence and about why Farina’s method works. In this section, some empirical

and qualitative reasoning will first be presented in both the time and frequency

domains, followed by a more formal quantitative explanation of how Farina’s

method produces the MIR output.

2.4.1 Frequency Domain

When the spectra of s(t) and s̃(t), denoted S(f) and S̃(f) are multiplied,

the result should have a magnitude response which is flat within the bounds of

the chirp, since the spectrum of an impulse is flat. As mentioned in Section 2.2,

a chirp with an exponential frequency evolution has more energy in the lower
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Figure 2–12: Spectra of forward and reverse chirps, and resultant impulse. Chirps
sweep from 100 Hz to 10 000 Hz, and thus the impulse has a flat spectrum through
these frequencies.

frequencies. Thus if a flat spectrum is desired in the convolved result, then s̃(t)

must have proportionally less energy in the lower frequencies and more in the

higher frequencies. This is the role that the amplitude envelope plays in Eq.

(2.31). The magnitude spectra of S(f) and S̃(f), as well as the spectrum of the

resultant band-limited impulse from their convolution are shown in Figure 2–12.

From this Figure, it is clear that the product of magnitude spectra of s(t) and s̃(t)

will give the spectra of the impulse. This however, is not definitive proof that the

magnitude spectrum of the impulse in Figure 2–12 actually yields an impulse in

the time domain. Two different complex spectra can share the same magnitude

spectrum, but differ in their phase spectrum, yielding a different time-domain

signal upon inverse FFTing [8]. For example, a linear chirp can also have a flat
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spectrum, but is clearly very different from an impulse. Time domain arguments in

the following section will show how impulses result when performing the nonlinear

convolution.

The effect of convolving s̃(t) with a harmonic generated by a nonlinear

system is much the same as the case of convolving s(t) and s̃(t), with a few minor

differences. This is best illustrated by example. Consider a nonlinear system whose

input/output relation is a 3rd order Chebyshev Polynomial:

y(x) = T3(x) = 4x3 − 3x (2.34)

The Chebyshev polynomials Tn(x) have a very useful property that when a cosine

function is applied to Tn(x), one gets purely the nth harmonic of the cosine:

Tn(cos(x)) = cos(nx) (2.35)

Thus if the exponential chirp s(t) has a bandwidth of [f1, f2], the response r(t)

has a bandwidth of [3f1, 3f2]. Convolving the response r(t) with the inverse

filter yields a spectra as shown in Figure 2–13. The spectrum of (r ∗ s̃)(t) is

flat in the region where both functions have significant energy, but sharply

drops off outside the bandwidth of s̃(t). Thus as the order of the nonlinearity

increases, the bandwidth of the harmonic IR decreases. It is bounded above

by the maximum frequency of s̃(t) and below by nf1. Novak [1] dealt with this

problem by extending the bandwidth of s̃(t) out to nf2, where n is the number

of harmonics to be extracted, thus yielding a much broader bandwidth in the

resulting impulse. This is discussed further in the following chapter. However, even
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without this modification, the result of the convolution still packs into a sharp

impulse in the time domain.

Figure 2–13: Spectra of forward and reverse chirps, the response of the nonlinear
system of Eq.(2.34), and resultant impulse. The system response’s bandwidth is
increased to 3 times the bandwidth of s(t). The impulse spectrum is only flat in
the region where both r(t) and s̃(t) have significant energy.

2.4.2 Time Domain

To illustrate how these higher order responses pack into MIR upon deconvo-

lution, we will proceed by stepping through a number of plots at different times

during the convolution. The example nonlinear system will be an even mix of the

first three Chebyshev polynomials Tn(x):

T1(x) = x

T2(x) = 2x2 − 1 (2.36)

T3(x) = 4x3 − 3x
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Thus the nonlinear system response can be written as in Eq.(2.37). It will

produce equal strength 1st, 2nd, and 3rd harmonics of the input.

r(t) =
1

3
(T1(s(t)) + T2(s(t)) + T3(s(t))) (2.37)

For illustration purposes, s(t) evolves exponentially from 1 Hz to 5 Hz in this

example in order to show the convolution process clearly. Because of the band-

limited nature of the chirps, the resultant impulses are not ideal, and a lot of

’pre-ringing’ and ’post-ringing’ artifacts are evident surrounding the impulse.

When using this method with audio-bandwidth chirps, these extraneous effects

become very small compared with the magnitude of the chirps, which are typically

orders of magnitude larger.

Figure 2–14 shows the beginning of the convolution between s̃(t) and r(t). s̃(t)

is time-reversed for the convolution as in Eq. (1.1). Since both s(t) and s̃(t) are

originally causal, they do not exist for t < 0 and s̃(t) does not need to be shifted

towards −∞. s̃(t) is then progressively moved to the right, and at each step, the

product of the functions is integrated.

The important spots in the convolution will be illustrated in the following

Figures, namely those points in time that produce an impulse. To see where

the impulses occur, we can look at the MIR result in Figure 2–15. If we observe

graphically the convolution at the locations of the peaks, it starts to become

apparent why the impulses occur. The convolution plots at the three marked

points are shown in Figures 2–16, 2–17, and 2–18. In each Figure, a full view

of both functions is provided, followed by a zoomed in image of the interaction
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Figure 2–14: The beginning of the the convolution between s̃(t) and r(t). s̃(t) is
time-reversed and shifted until there is no overlap between the functions. Blue
arrows indicate the direction of shifting of s̃(t).

Figure 2–15: MIR of the system in Eq. (2.37).
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region, which shall be defined as the region where the two functions overlap during

the convolution. The parts of the function in the interaction region at a given time

contribute to the convolution at that time.
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Figure 2–16: Graphical convolution at the time of the 3rd order impulse. (a) Full
view of the convolution. (b) Interaction Region of the two functions.
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Figure 2–17: Graphical convolution at the time of the 2nd order impulse. (a) Full
view of the convolution. (b) Interaction Region of the two functions.

The plot in Figure 2–16 shows the large peaks of the response lining up

with every 3rd peak of s̃(t). At this instant the interaction region consists of

approximately the last 3 seconds of s̃(t) and the first 3 seconds of r(t). Because
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Figure 2–18: Graphical convolution at the time of the 1st order impulse. (a) Full
view of the convolution. (b) Interaction Region of the two functions.

exponential chirps and hence s̃(t) spend equal time in each octave, the frequency

range spanned by s̃(t) in the interaction region is the same as that of the 3rd

harmonic of the response at the time of the impulse. Furthermore note that from

the point of view of the convolution, both functions are of increasing frequency

from left to right. Thus when these functions are multiplied and integrated, a

large value in the integral at that time results. The case is similar for all other

impulse responses as shown in Figures 2–17 and 2–18. When the frequency range

spanned by s̃(t) and a harmonic of r(t) in the interaction region is the same, a

large value results in the integral. Figure 2–19 shows how the frequency content of

r(t) and s̃(t) evolve in the interaction region over the course of the convolution. As

indicated in the Figure by the arrows, there are times along the convolution where

both s̃(t) and a harmonic of r(t) have the exact same frequency content in the

interaction region. Thus each resulting band-limited harmonic impulse response
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contains the frequencies common to both signals in the convolution at the time of

the impulse.
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Figure 2–19: Frequency content of exponential chirps in the interaction region.
The content of a harmonic of r(t) or s̃(t) in the region is bounded above and below
by the curves of the same colour. The impulses occur when the inverse chirp s̃(t)
has identical frequency content in the interaction region of the convolution as a
harmonic of the nonlinear response.

For other types of chirps, this is not the case. Figure 2–20 shows how the

frequency content of r(t) and s̃(t) evolve in the interaction region when a linear

chirp excitation is used. When both s̃(t) and a harmonic of r(t) have the same

maximum frequency in the interaction region, their minimum frequencies do

not line up at the same instant, and thus the response does not ‘pack’ into a

sharp impulse as is apparent in the spectrograms of Figures 2–7 and 2–9. This

is indicated in Figure 2–20 by the non-vertical lines showing the higher order

responses ‘smearing’ in time.
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Figure 2–20: Frequency content of linear chirps in the interaction region. The con-
tent of s̃(t) or a harmonic of r(t) in the region is bounded above and below by the
curves of the same colour. The higher order responses smear out in time because
s̃(t) and a given harmonic of r(t) never share the exact same frequency content at
any instant.

Because s(t) and s̃(t) are deterministic, and the nonlinear system response

produces integer harmonics of the input, the arrival times of the impulses in the

MIR are easily calculated a priori. To find the amount of time the nth harmonic

IR precedes the linear one (which occurs at time T ), we look at when the instan-

taneous frequency of s(t) is n times the current frequency [3]. In other words, we

solve the following equation for ∆tn:

n
dϕs(t)

dt
=

dϕs(t+∆tn)

dt
(2.38)

Where ϕs(t) is the phase of s(t). For the exponential chirp, the result is:

∆tn =
T ln(n)

ln
(

ω2

ω1

) (2.39)
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Eq.(2.39) gives the advance time that the nth harmonic appears ahead of the

linear impulse at time T . Thus in the MIR output, the highest order IR appears

first at time T −∆tN and are followed by the next lower one at time T −∆tN−1 ,

and so on until the linear IR (n = 1) at time T .

Eq.(2.38) also provides insight as to why the exponential chirp sets itself

apart from the other types of chirp for nonlinear convolution. The critical outcome

is that when Eq. (2.38) is solved for ∆tn, the result is independent of both the

current frequency ω(t) and on t itself. When the expressions for the frequency

of the linear (Eq. (2.2)) and cosine (Eq. (2.4)) chirps are used in Eq. (2.38) and

solved for ∆tn, we see that the times at which the instantaneous frequency is n

times the current frequency are dependent on ω(t) and t. For linear chirps the

result is

∆tn = n− 1
ωlin(t)

(ω2 − ω1)/2
(2.40)

and for cosine chirps

∆tn = −t+
T

π
arccos

[
2

ω1 − ω2

(
nωcos(t) +

ω1 − ω2

2
− ω1

)]
(2.41)

This explains why when using linear and cosine chirps the higher order responses

from nonlinear convolution do not pack into impulses but instead are smeared out

over time (See Figures 2–7 and 2–9). Both the linear and cosine chirps do however

yield an impulse for the linear response (n=1) , and solving the above equations

with n = 1 yields a constant ∆t1 = 0 as expected.
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Eq.(2.39) implies that the impulses are spaced unevenly in time, with the

higher order impulse responses being spaced closer together. This can be prob-

lematic if the system is highly reverberant; the higher order impulse responses can

overlap in time with each other. The impulse responses can however be spaced

further apart by making the length of the chirp T longer. If one knows the length

of the longest impulse response (or the T60 [32]), then the length of the chirp

required to extract the MIR without overlap is given by using Eq. (2.39) for two

different values of n and subtracting to give the time delay between two adjacent

HIRs. This time lag must be greater than the length of the longest IR (or longest

T60) in the system:

T >
Tlongest ln

(
ω2

ω1

)
ln
(
n+1
n

) (2.42)

To conclude, nonlinear convolution is a relatively simple method for the charac-

terization of nonlinear systems. The method takes advantage of the equal time

per octave property of exponential chirps, which allows the response of a nonlinear

system to be deconvolved into multiple impulse responses, which provide more

detailed information about the nonlinear system than a simple THD or ID mea-

surement. These impulse responses can then be used in a nonlinear model for the

system under study. This is the subject of the next chapter.
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Chapter 3
Re-Synthesis of Nonlinear Systems

The previous chapter has explained the method of nonlinear convolution and

how it can be used to extract MIR, which describe which harmonics are generated

by a nonlinear system, their relative strengths, and how each harmonic of the

input is filtered. In the analysis/synthesis approach, the extraction of the MIR is

the analysis phase of the procedure, and the MIR are the pieces of information, or

the ‘parameters’ necessary to the synthesis phase.

This chapter focuses on a model for the software simulation of nonlinear

systems. The MIR obtained from the nonlinear convolution method are used as

parameters in this model. The goals of this chapter are as follows: to describe the

re-synthesis model used and some closely related models, to describe modifications

to the nonlinear convolution method necessary for accurately re-synthesizing

nonlinear systems, and to show the results of simulating some synthetically created

nonlinear systems with this model.

The model employed here (Section 3.4) is based on the polynomial Hammer-

stein and MISO models, which are briefly discussed in Sections 3.2 and 3.3. Before

the synthesis models are discussed, some modifications to the signals used in the

nonlinear convolution method are necessary to improve the final result. This is

detailed in Section 3.1 below. Finally Section 3.5 presents results of synthesizing

some simple synthetic nonlinear systems.
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3.1 Modifications to the Nonlinear Convolution Method

When Farina [3][4] first presented the method for nonlinear convolution, his

intent was to use only the rightmost HIR as a linear impulse response with any

nonlinear distortion artifacts ’pushed out’ of the response. The higher order HIR

were regarded as artifacts and not used. If these HIR are to be used in synthesis,

some modifications to the excitation signals must be made.

3.1.1 Synchronization of Harmonics of s(t)

The first modification is described in [1], and involves the synchronization of

the phases at harmonics of the excitation signal. That is, it is desired that s(t)

have the same value and sign of the slope when its instantaneous frequency is n

times the start frequency of the chirp f1. A diagram showing the desired result for

s(t) being an exponential chirp is given in Figure 3–1. First, an expression is found
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Figure 3–1: Illustration of synchronized harmonics of the exponential chirp. The
value of the chirp when finst = nf1 is the same for integers n.
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for the times at which the instantaneous frequency equals Nf1. The equation for

the instantaneous frequency (Eq.(2.6)) is equated to Nf1 and solved for t = tN :

tN = K lnN (3.1)

where K ≡ T
ln

ω2
ω1

as before. When the above is substituted into the equation for

the phase of the exponential chirp (see Eq. (2.1)), we obtain

ϕ(tN) = 2πKf1(N − 1) (3.2)

Now if ϕ(tN) were an integer multiple of 2π, then s(tN) = 1 for every N. This

condition is thus satisfied if we modify K such that

K ≡ 1

f1
round

(
f1T̂

ln ω2

ω1

)
(3.3)

Where T̂ is an approximative time length of the chirp s(t) used for the design [1].

This modification of K is manifested in the length of the chirp T , such that

T =
ln ω2

ω1

f1
round

(
f1T̂

ln ω2

ω1

)
(3.4)

Finally using Eq.(3.3) in Eq.(2.1) we have the modified chirp:

s(t) = cos
[
2πf1K

(
e

t
K
−1
)]

(3.5)

Thus by slightly modifying the length of s(t), we can be assured that the phase of

the chirp is equal to 2π at multiples of the start frequency f1. This is important

for obtaining large values for the impulses in the MIR output of nonlinear convo-

lution. If the phases of the harmonics were not synchronized, artifacts such as pre
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and post-ringing of the impulses would be larger relative to the main peaks in the

impulses, and thus a less ideal impulse with smaller signal-to-noise ratio would

result.

3.1.2 Extension of the Inverse System

When testing systems that were only weakly nonlinear, Farina could allow the

bandwidth of the excitation to be from the subsonic region to near the Nyquist

frequency [33]. However for nonlinear systems the bandwidth of the excitation

must be limited because the presence of an nth order nonlinearity increases the

bandwidth of the system response n times. For an excitation of bandwidth [f1, f2],

the nth harmonic response of a nonlinear system will have a bandwidth [nf1, nf2].

The inverse system used in the nonlinear convolution method has the same

bandwidth as the excitation, and when nonlinear convolution is performed the

bandwidth of each of the HIR contains those frequencies common to both s̃(t)

and the nth harmonic response. Therefore all HIR have an upper bandwidth limit

f2. An example of the spectra of the chirp, system response, inverse system, and

resultant impulse can be found in Figure 2–13.

Novak [1] addressed this problem by allowing the bandwidth of the inverse

system s̃(t) to extend out to Nf2, where N is the number of harmonics to be

considered. If the amplitude envelope is left unchanged then the nth HIR will have

a bandwidth of [nf1,min(nf2, Nf2)]. This is done by extending the length of the

inverse chirp, such that it starts at a frequency of Nf2 and ends at f1. The length

of the chirp T is changed to

Ts̃ =
K

f1
ln

(
Nf2
f1

)
(3.6)
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With K unchanged from Eq.(3.3). Due to the presence of K above, s̃ undergoes a

similar phase alignment to s(t) as described above in Section 3.1.2. Finally keeping

the amplitude envelope the same, Ts̃ can be substituted into the argument of the

cosine of Eq.(2.31) to arrive at the equation for the modified inverse system:

s̃(t) =
ω1 ln

(
ω2

ω1

)
T

e
−t ln

(
ω2
ω1

)
/T

cos

 ω1Ts̃

ln
(

ω2

ω1

) (e−t ln
(

ω2
ω1

)
/Ts̃ − 1

) (3.7)
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Figure 3–2: Magnitude spectra of forward and extended reverse Chirps, the re-
sponse of the nonlinear system of Eq.(2.34), and resultant impulse. s̃(t)’s band-
width (1-25000 Hz) is increased to 5 times that of s(t)(1-5000 Hz). The nonlinear-
ity increases the response’s bandwidth to 3 times the bandwidth of s(t).

A figure showing the magnitude spectra of a chirp, the extended inverse

system, the response of a chirp to the nonlinearity described in Eq. (2.34), and the

result of convolving the response of this system with the inverse system is shown in

Figure 3–2. This figure presents the same concepts as Figure 2–13, except Figure

3–2 shows the signal spectra with the modifications above implemented. In this
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example s̃(t) is extended to 5 times the bandwidth of s(t). The resultant impulse

now has a larger bandwidth, extending in this case out to the bandwidth of r(t).

3.2 Polynomial Hammerstein Model

The Polynomial Hammerstein model [37] is a method for the simulation of

nonlinear systems. The so-called simple Hammerstein model consists of a zero

memory polynomial operator followed by a linear dynamics element such an

impulse response. A zero-memory or static non-linear system modifies the signal

by some instantaneous process. This means that the output of the system at some

time t depends solely on the input at that same time and not on past or future

inputs. An example of a simple Hammerstein model is shown in Figure 3–3. The

Figure 3–3: A simple Hammerstein model with general memoryless nonlinearity
and linear part with impulse response h(t).

Hammerstein representation of a nonlinear system is advantageous because the

nonlinear parts of the system are separated from the linear part, simplifying the

conceptualization of a nonlinear system. The idea of the simple Hammerstein

model can be expanded into a parallel branched structure containing multiple

different nonlinearities and linear elements, thus expanding the model’s flexibility.

This idea is illustrated in Figure 3–4, where we restrict the nonlinearity to be a

polynomial of order N . Any polynomial nonlinearity of the form a1x + a2x
2 +
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a3x
3 + . . . can be represented by multiplying the respective linear impulse response

hi(t) by ai.

Figure 3–4: Multiply branched polynomial Hammerstein model.

This model can be thought of as an expansion to the classical waveshaping

paradigms initally proposed in [34] and [35], which processes a signal by specifying

an input/output relationship of a system as a polynomial function. The difference

in the Polynomial Hammerstein model is that each of the branches has its own

independent filter, which could be used to control the transients or colourize

different powers of the input independently.

3.3 MISO Model

Bendat and Piersol [36] proposed a statistically-based model similar in

structure to the Polynomial Hammerstein model of Section 3.2 called the Multiple

Input Single Output (MISO) Model. The MISO model was originally developed

for the identification of systems and is primarily used under the assumption that

the input signals are statistical in nature such as Gaussian white noise. The goal

was the identification of the linear filters hi(t) and polynomial coefficients of the
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nonlinearities from the input and output signals using multiple cross-correlations

and autocorrelation techniques [37] [36] [38].

The MISO model can also serve as a framework for re-synthesis if the impulse

responses and nonlinear functions are known. In this case, the MISO model takes

up the same form as the polynomial Hammerstein model shown in Figure 3–4, but

each of the nonlinear functions can be any function of the input signal, rather than

a simple power xn. That is, the nth nonlinear function can be written as Pn[x(t)],

where Pn depends solely on the input x at the instant t. Thus the Polynomial

Hammerstein model is a specific case of the MISO model.

3.4 Re-Synthesis Model

The synthesis model developed in this work for the re-synthesis of nonlinear

systems has structure similar to both the Hammerstein and MISO models. The

impulse responses hi(t) are known, derived from the nonlinear convolution method.

The nonlinear functions P [x(t)] however have yet to be identified.

The approach taken in this re-synthesis method is called a ‘blind identifica-

tion’, because no assumptions are made about the nonlinear system under study.

Thus the nonlinear system to be re-synthesized is treated as a black box having

one input and one output. In this case the nonlinearities could simply be powers

of x(t). However these nonlinear elements would not be compatible with the MIR

derived from the nonlinear convolution method, since the hi(t) are responses to a

pure harmonic of the input signal. For harmonic signals like the excitation s(t),

56



the simple power-laws xn are related to harmonics of the input signal by

cosn θ =


2
2n

∑n−1
2

k=0

(
n
k

)
cos((n− 2k)θ) n odd

2
2n

∑n
2
−1

k=0

(
n
k

)
cos((n− 2k)θ) + 1

2n

(
n
n
2

)
n even

(3.8)

This implies that applying a power-law nonlinearity would produce multiple

harmonics instead of just one. For example, Eq.(3.8) with n = 5 implies the signal

contains harmonics of 1st, 3rd, and 5th order of differing strengths:

cos5 θ =
10cosθ + 5cos3θ + cos5θ

16
(3.9)

3.4.1 Change of basis of the HIR

There are two options to solve this problem. One option is to perform a

change of basis on the set of HIR, as done in [1]. Eq.(3.8) gives expressions for

cosn(θ) as linear combinations of cos(nθ). It is possible to write out Eq.(3.8) for

each n and create a matrix equation:

1

cos(θ)

cos2(θ)

cos3(θ)

...


= A



1

cos(θ)

cos(2θ)

cos(3θ)

...


(3.10)

Where A is the matrix of coefficients given by Eq.(3.8). We then create a vector

of the HIR hi(t) obtained by nonlinear convolution, denoted H. The goal is to find

a set of impulse responses G that are compatible with power-law nonlinearities. It
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can be shown that

H = (AT )G (3.11)

The equation can then be inverted to get an expression for the impulse responses

G to be used in the re-synthesis model:

G = (AT )−1H (3.12)

Thus by a change of basis the set of impulse responses H obtained through

nonlinear convolution can be changed into the set G for use with power-law

nonlinearities.

3.4.2 Use of Chebyshev Polynomials as nonlinear elements

Instead of performing a complicated change of basis, which involves a matrix

inversion, it would be advantageous if the nonlinearities could instead be chosen

such that they are compatible directly with the HIR hi(t). That is, we seek a

nonlinearity such that when it is applied to the input, a single pure harmonic of

the input results. The Chebyshev polynomials Tn(x) have the useful property that

when they are applied to a cosine function, a pure harmonic results:

Tn(cos θ) = cos(nθ) (3.13)

Chebyshev polynomials are most simply defined recursively:

T0(x) = 1

T1(x) = x

Tn(x) = 2xTn(x)− Tn−1(x) (3.14)
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Similar to the process of creating the matrix A in Section 3.4.1, a matrix, denoted

here as C can be created by taking the coefficients of the Chebyshev polynomials

such that (
T0(x) T1(x) T2(x) . . .

)
=

(
1 x x2 . . .

)
C (3.15)

Perhaps unsurprisingly, it turns out that this matrix C is related to the matrix A

by

C = (AT )−1 (3.16)

This makes sense if we consider that in Section 3.4.1 the change of basis was done

to express the set of impulse responses in terms of a basis of powers of x, where

the Chebyshev polynomials are used to express the nonlinearities in the same basis

as the hi(t). It is also even more apparent when we make the substitution x = cosθ

in Eq. (3.8) and also utilize Eq. (3.13). Thus Eq. (3.8) can be written as [39]

xn =
n∑

k=0

an,kTk(x) (3.17)

Where an,k are the constants defined in Eq. (3.8). Thus Eq. (3.17) is simply the

inverse of Eq. (3.15) as is confirmed by Eq. (3.16).

Since the Tn(x)’s are easily defined, this is the method chosen in this work.

Therefore the HIR are the exact same ones extracted via the nonlinear convolution

method, and the nonlinearities chosen for each branch of the synthesis model are

the Chebyshev polynomials. A block diagram is shown in Figure 3–5.

3.5 Implementing and Testing the Algorithm

In order to demonstrate the entire analysis and synthesis method, two

artificially created nonlinear systems were analyzed by the nonlinear convolution
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Figure 3–5: Synthesis model with Chebyshev polynomials.

method and then re-synthesized using the Hammerstein/MISO model described

in the previous section. Both the NSUT and simulated system will be compared

by sending an identical input to both systems and comparing the outputs in the

time and frequency domains. The first system will be a system that generates

a square wave out of a sine wave, and the second system is a simple power-law

nonlinearity with memory. The nonlinear convolution and re-synthesis algorithms

were developed and tested in the MATLAB programming environment.

3.5.1 Fast Convolution

To perform the convolutions necessary in both the analysis and synthesis

stages, a fast convolution algorithm was developed making use of the efficiency

of the FFT [9]. The excitation and system response signals have a length on

the order of 106 samples each. Convolving two of these sequences in direct form

(see Eq. (1.1)) is extremely costly, O(n2). The FFT algorithm employed here

uses the overlap-add approach [10] and extends it to segment both functions into

chunks for FFT-ing, creating a double overlap-add algorithm for fast convolution.
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The computational savings are tremendous (O(n log2 n)), and the convolution of

r(t) and s̃(t) can be done quickly and efficiently. This convolution algorithm is

used in both the nonlinear convolution method and in the re-synthesis model for

convolving the signals with the HIR.

3.5.2 Square Wave Generator
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Figure 3–6: Square waveform.

The square waveform is common in signal processing, and is illustrated in

Figure 3–6. An even square wave of amplitude 1 and frequency fo in continuous

time is given by

xfo,square(t) = sgn(cos(2πfot)) (3.18)

Where sgn((x)) is +1 when x > 0, and -1 when x < 0. A more useful definition of

the square waveform is the Fourier Series definition:

xfo,square(t) =
4

π

∞∑
n=0

(−1)n
cos(2π(2n+ 1)fot)

2n+ 1
(3.19)

An even square wave is composed of the sum of odd harmonics of a cosine scaled

inversely by the harmonic number. Therefore in order to generate n harmonic
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components of the input signal, the highest multiple of the fundamental that needs

to be generated is 2n + 1. Because the square wave can be written as a sum of

harmonics of a cosine function, a square wave of some frequency fo can be thought

of as the output of a nonlinear system to a cosine input with the same fo. The

nonlinear system would ideally generate harmonics of the same strength as those in

the Fourier Series definition given in Eq.(3.19). A simple block diagram illustrating

the concept of this system is given in Figure 3–7.

Figure 3–7: Concept of using a nonlinear system to turn a sine wave into a differ-
ent waveform. In this case a square wave is being generated. The actual result will
be a band-limited square wave and will not have such sharp edges.

This function is of particular interest in the case of re-synthesis because the

cosine term in Eq. (3.19) allows for us to take advantage of the pure harmonic-

generating property of the Tn(x) (see Eq. (2.35)) to generate harmonics of the

excitation s(t).

This system was chosen for a number of reasons. First, it is very easy to cal-

culate the amplitude of the nth generated harmonic through Eq.(3.19). Secondly,

the only signals involved in the re-synthesis stages are sinusoids and pure impulses.

Thus this example serves as a simple introduction to the re-synthesis scheme in

practice.
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In discrete time, it is not possible to have an arbitrary number of harmonics

due to aliasing, thus the notion of a band-limited version of the square wave is

such that sum in Eq. (3.19) goes to the the highest harmonic that does not cause

aliasing. Because only a finite number of harmonics are used, the band-limited

version is not a perfect square wave but exhibits oscillations along the flat sections

of the square wave. This is the nonlinear system that was investigated in this

section.

The nonlinear response r(t) was artificially created for this case and consists

of the excitation s(t) with 5 scaled harmonics components as in xfo,square(t).
1

Thus the response can be written as

r(t) =
4

π

5∑
n=0

(−1)n
s((2n+ 1)t)

2n+ 1
(3.20)

Where s(t) is the chirp defined in Eq. 2.1.

Convolution of the response r(t) with s(t) should produce an MIR output

consisting of pure impulses. Each HIR’s strength is proportional to the inverse

of its harmonic number. By convolving the original input s(t) with each of the

HIR as described in the re-synthesis method of Section 3.4, we expect simply

scaled versions of the input sinusoid. Upon summation the result should give a

band-limited square wave, exactly as Eq.(3.20) describes.

1 Therefore, up to the 11th harmonic of s(t) was generated.
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The parameters of the first test were as follows: T = 10 s, f1 = 10 Hz,

f2 = 9000 Hz, fs = 96 kHz with the actual length of the chirp adjusted to

synchronize the harmonics as explained in Section 3.1.1.

The MIR were extracted by the nonlinear convolution method and appropri-

ately windowed to get separate HIR which were then used as the filters hi(t) as in

Figure 3–5. For a test input x(t), a full-amplitude cosine wave of frequency 400 Hz

was used. This was chosen again because of the nature of the nonlinear system and

its use of harmonics of cosine functions. x(t) was fed both to the re-synthesized

model and the NSUT as given in Eq. (3.20), with s(t) replaced by x(t). Figure

3–8 shows a comparison of a portion of the output of the actual and simulated

systems.
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Figure 3–8: Comparison of output waveforms for the band-limited square wave
generator. (a) the NSUT , and (b) the re-synthesized version.

A look at the spectra of both outputs in Figure 3–9 show close qualitative

agreement. The amplitude of each harmonic of the re-synthesis is very close to the

64



respective harmonics of the NSUT (< 0.1 dB). A comparison of the spectral phase

is also given in Figure 3–10. To give a general quantification of the closeness of

−5000 0 5000

0

20

40

60

80

Spectra of Actual and Simulated Nonlinear System Output

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

 

 
NSUT
Re−synthesized System

Figure 3–9: Comparison of the magnitude spectra of both waveforms.

the output of the MISO/Hammerstein model to the NSUT, we use the spectral

flatness (SF) as described in Section 1.4, which gives a good measure of the

precision of the re-synthesis model:

SF = 10 log

(
FFT (|Θ|)
FFT (|Θ̂|)

)
(3.21)

Where Θ and Θ̂ are the NSUT and re-synthesized system outputs, respectively.

The spectral flatness of the square wave re-synthesis is shown in Figure 3–11,

evaluated at harmonics n · 400 Hz of the input signal. Overall the re-synthesis

performed extremely well. One can see a few locations (harmonics n = 4, 6, 8, 10)

where the re-synthesis significantly underestimates the magnitude of the harmonic.
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Figure 3–10: Comparison of the spectral phase of both waveforms.

However, the square wave only consists of odd harmonics and thus the inaccuracies

lie in the ‘valleys’ of the spectrum, which are far less perceptually important than

the accuracies of the peaks which are in fact accurate to 0.1 dB in this case.

This example illustrates an interesting consideration. Here a more complex

waveform was constructed out of simple harmonics of a sinusoid of some frequency.

While Fourier analysis is over 200 years old, it is the means by which these

harmonics were generated that is interesting. By using the Chebyshev polynomials

to generate harmonics of the input signal, one can then interpret any harmonic

signal with overtones of the fundamental as being generated by a nonlinear

system with an input consisting of just a single frequency. The generation of

complex signals by the combination of a few simple signals was very advantageous

for musical synthesis in the 1970’s when computing costs were of the utmost
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Figure 3–11: Spectral flatness at relevant points on the spectrum for the square
wave generator.

importance. By using only a few sinusoidal oscillators and performing simple

operations on them, complex spectra could be produced with little computational

cost. Some examples include AM and FM synthesis, and simple waveshaping

via lookup tables [32]. In the context of this work, the Chebyshev polynomials

Tn(x) generate harmonics of the input, and the strength of a purely impulsive HIR

convolved with one of the Tn(x)’s act as a gain control for the nth harmonic of the

input. Of course this method in general offers greater flexibility by being able to

specify an impulse response rather than a simple gain control to each harmonic,

but in the context of constructing a more complicated waveform from a sine wave

and its harmonics, purely impulsive HIRs of varying strengths are sufficient.

With this in mind, the analysis/synthesis method described in this work could

also have applicability as a type of function generator. For the analysis phase, if a

chirp of fundamental frequency f1 to f2 can be generated whose waveform is the

intended function to model, then the nonlinear convolution procedure would work
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in the same way as for any nonlinear system: by convolution of this signal with a

sinusoidal chirp, extracting the HIR, and using them in the MISO model.

Alternatively, if the Fourier coefficients an, bn can be extracted for a period of

the intended function, then the MISO method could be used in a slightly different

manner to re-create the function. The re-synthesis method is slightly modified to

include two input signals, which are a sine and cosine function. Both signals would

have a frequency equal to the fundamental frequency of the function to generate.

The Tn(x) nonlinearities are then applied to the both inputs separately, thus

creating 2n branches for the MISO model. The HIR in the MISO model can then

be created from the an, bn by creating pure impulses scaled by the appropriate

Fourier coefficient to encode the strength of that particular harmonic. A block

diagram of this setup is shown in Figure 3–12. This method of Fourier synthesis

is advantageous because only two sinusoidal signals are required to recreate a

complex waveform, rather than the 2n oscillators required to traditionally model a

function up to harmonic number n. Furthermore, the MISO method also offers the

flexibility to filter the harmonics of the input independently.

3.5.3 power-law Nonlinearity with Memory

The next nonlinear system under test consisted of two nonlinear branches with

fourth and fifth-order nonlinearities, each followed by a different linear filter. A

block diagram representation is shown in Figure 3–13.
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Figure 3–12: Block diagram of the MISO method used as a function generator.
The an’s and bn’s are the Fourier Coefficients and δ[n] is the Kronecker function.

Figure 3–13: Block diagram of the NSUT: branched power-law nonlinearity with
independent filters for memory effects.
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The filters gi(t) were impulse responses taken from a free online IR reposi-

tory2 and chosen for their short length and character.

4th and 5th order nonlinearities generate different harmonics of the input

as implied by Eq. (3.8). The 5th order term generates 1st, 3rd, and 5th order

harmonics, while the quartic generates the 2nd and 4th and also introduces a DC

component.3 Thus the odd order harmonics will have a different reverberant

characteristic than the even ones since they are filtered by different impulse

responses g1(t) and g2(t) in separate branches of the model.

The parameters of this test were as follows: T = 20 s, f1 = 10 Hz, f2 =

9000 Hz,fs = 96 kHz. A particularly long excitation chirp had to be used because

the NSUT is highly reverberant. Therefore to avoid overlap of the transients of one

HIR with another, the length of the chirp must be sufficiently long as discussed on

page 47.

To test this system, a full amplitude sine wave of frequency f0 = 1000 Hz

and duration 2 s was used as a test signal in both the NSUT and re-synthesized

system. Figures 3–14 and 3–15 show a comparison of the time-domain outputs of

each system.

2 www.irlibrary.org

3 The DC component is easily filtered out of the nonlinear response to the ex-
citation by subtracting the mean value of the response. Since the re-synthesis
method does not detect zero order components, and has no audible effect on the
output in this context, it is filtered out in the system’s nonlinear response to both
the chirp and input signal.
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Figure 3–14: Comparison of output envelopes for the power-law nonlinear system
with memory. (a) the NSUT, and (b) the re-synthesized version.
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Figure 3–15: Comparison of output waveforms for the power-law nonlinear system
with memory.
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It appears from Figure 3–14 that the method has some difficulty representing

the transients of the system. This is likely a consequence of only considering a

finite number of harmonics of the input. The steady state characteristic however

is well modeled as indicated in Figure 3–15. This can also be seen by looking at

the spectra and phase of a portion of the steady-state part of the output in Figures

3–16 and 3–17.
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Figure 3–16: Comparison of the magnitude spectra of both waveforms.

The spectral flatness of the steady state portion of the output is shown in

Figure 3–18. The spectral peaks of the re-synthesis agree with expected values

to within 0.3 dB, for the first 4 harmonics, and within 0.5 dB for the fifth4 . The

4 There is a prominent DC component in the NSUT from the quartic nonlinear-
ity that is not modeled. Since this only affects the mean value of the signal and is
inaudible, it is considered insignificant.
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Figure 3–17: Comparison of the unwrapped spectral phase of both waveforms.
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Figure 3–18: Spectral flatness at relevant points on the spectrum for the power-law
nonlinearity with memory.
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phase plot also matches closely, however it appears as though at around zero

frequency the re-synthesis does not account for a decrease in phase delay, and thus

all frequencies > 0 have a greater spectral phase shift than the NSUT. This is

likely because the DC component was not modeled in the re-synthesis, and thus

the spectral phase is different at 0.

3.5.4 Problems with Chebyshev Polynomials

While the idea of Chebyshev polynomials as the nonlinear elements in the

synthesis model is conceptually simpler than performing a linear transformation

on the hi(t) (Section 3.4.1), it presents a particular problem. The Tn(x)’s only

produce a pure harmonic of x if it is a full-amplitude sinusoidal signal. Otherwise,

applying Tn to a signal of amplitude < 1 will produce a harmonic at order n

but additional harmonics at order n − 2k, k an integer in [0 n/2]. This poses

a fundamental problem if the input signal is to be arbitrary. Even if the signal

can be decomposed into a sum of sinusoids, none of them could possibly be of

full-amplitude. To test the severity of this issue, a simple clipping nonlinearity

was created and is shown in Figure 3–19. This system does not affect samples less

than α, and clips any samples greater than α. As the input/output relationship

is an odd function, this system will produce only odd harmonics of the input.

It was analyzed and then re-synthesized with Chebyshev polynomials as the

nonlinear elements in the MISO model, followed by the hi(t) as linear filters

following each nonlinearity. The hi(t) are the HIR produced by the nonlinear

convolution method. The same re-synthesis procedure was also performed using

simple power-law nonlinearities with a corresponding linear transformation to
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Figure 3–19: Input/Output relationship for the hard clipping nonlinearity. Any
input values > α/a are clipped to a value of α.

the HIR for the MISO method as described in Section 3.4.1. Sinusoidal inputs

of differing amplitude and character were used to investigate the severity of the

amplitude problem. Temporal and spectral comparisons of the outputs of both

synthesis methods along with the actual output of the hard clipper are shown

below for different sinusoidal inputs.

For these tests, 10 harmonics were modeled, with a sweep from 1 − 9000 Hz

@ 192 kHz. Because only a finite number of harmonics can be used in the re-

synthesis, the bandwidth of the output will be limited. A compromise has to

always be made in this analysis/synthesis method between the number of harmon-

ics to model and the bandwidth of the chirp used. Too small of a chirp bandwidth

will not capture the high frequencies in the linear and low-order responses; too few

harmonics will not capture the sound of the nonlinear effect correctly.

75



0 50 100 150 200
−1

−0.5

0

0.5

1
Comparison of Waveforms for Hard Clipper amp=0.9, alpha=0.8, a=1

Time (samples)

A
m

pl
itu

de

 

 
NSUT
T

n
(x) Re−synthesis

Power Law Re−Synthesis

Figure 3–20: Waveform comparison of the outputs of the NSUT, the Chebyshev re-
synthesis, and the power-law re-synthesis. The input sine amplitude is 0.9, clipping
value is 0.8, and 10 harmonics were used in the re-synthesis.
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Figure 3–21: Spectral comparison of the outputs of the NSUT, the Chebyshev re-
synthesis, and the power-law re-synthesis. The input sine amplitude is 0.9, clipping
value is 0.8.
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Figure 3–22: Spectral comparison of the outputs of the NSUT, the Chebyshev
re-synthesis, and the power-law re-synthesis, showing only the locations where
harmonics were modeled. The input sine amplitude is 0.9, clipping value is 0.8.
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Figure 3–23: Spectral Flatness for the hard clipper spectrum in Figure 3–21, show-
ing the spectral flatness of each synthesis method compared with the NSUT out-
put. The re-synthesis only models harmonics up to order 10 and only these values
of the spectral flatness are shown.
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The first two tests have the hard clipper threshold at α = 0.8. The first input

used is a simple sinusoid of amplitude 0.9 producing a slightly clipped output

waveform. Temporal and spectral comparisons are shown in Figures 3–20, 3–21,

3–22 and 3–23. It is apparent that both re-synthesis schemes perform well and

that the re-synthesis outputs are nearly identical to each other.

Analysis of the spectral flatness in Figure 3–23 shows that the re-synthesis for

both methods performed quite well, with all harmonics modeled (except the 9th)

being within 5 dB for both synthesis methods.
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Figure 3–24: Waveform comparison of the outputs of the NSUT, the Chebyshev re-
synthesis, and the power-law re-synthesis. The input sine amplitude is 0.7, clipping
value is 0.8, and thus the output should pass unaffected.

The same clipper is used in the next comparison. The input is again a

sinusoid but of amplitude 0.7 - less than the clipping threshold α = 0.8. Thus

we expect the output waveform to remain unaffected by the nonlinear system
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Figure 3–25: Spectral comparison of the outputs of the NSUT, the Chebyshev re-
synthesis, and the power-law re-synthesis. The input sine amplitude is 0.7, clipping
value is 0.8.
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Figure 3–26: Spectral Flatness for the hard clipper spectrum in Figure 3–25, show-
ing the spectral flatness of each synthesis method compared with the NSUT out-
put. The re-synthesis only models harmonics up to order 10.
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since the system only clips samples at 0.8 and greater. Comparisons are shown in

Figures 3–24, 3–25, and 3–26.

As expected neither the NSUT output nor the either model’s output clip the

waveform. Both re-synthesis methods perform identically. When looking at the

spectra in Figure 3–25, it is interesting to note that higher harmonics still appear

to be present in the output. However they are approximately 55 dB lower than

the power of the fundamental. Because the model is modeling a nonlinear system,

there exist HIRs of order > 1 which have some meaningful content in them in

order to model harmonics when the input is actually clipped as in the first clipping

example. As such, it is expected that there would be some frequency contribution

from the higher harmonics in the output. Fortunately, these higher harmonics are

very weak compared to the fundamental in this case and the time domain outputs

in Figure 3–24 appear indistinguishable for this case.

The 2nd clipping system identified had a different threshold for clipping at α =

0.55. The input signal used was also more complicated than a simple sine wave.

The input signal used was an AM signal consisting of two sinusoids at frequencies

125 Hz and 2000 Hz. This is equivalent to two inputs at frequencies 2125 Hz and

1875 Hz. This input was chosen to produce a more dense spectral response with

the clipper and to illustrate how the system produces intermodulation distortion.

In addition, 20 harmonics were modeled in this case, however the excitation chirp

bandwidth was cut in half to 4500 Hz. The nonlinear system tested is merely

the same clipper as in the previous two cases, with a modified value of α, and

the AM signal is the input signal to the nonlinear system which is used here to
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compare the NSUT with the two methods of re-synthesis. For clarity, the method

is characterizing the clipping system only, and using the AM signal as the input to

this nonlinear system.

Temporal and spectral comparisons of the re-synthesis methods to the

NSUT output are given in Figures 3–27, 3–28 and 3–29. The spectral flatness is

plotted for multiples of 125 Hz, since the intermodulation distortion will produce

harmonics at some multiples of 125 Hz. Strong components are produced at the

two input frequencies 125 Hz and 2000 Hz as well as intermodulation products at

sums and differences of the two. Again both synthesis methods perform essentially

identically and appear to produce the intermodulation products fairly well. It

is apparent that the method has some difficulty accurately representing higher

harmonics however, and the spectral flatness in Figures 3–29 shows increasing

disagreement as the frequency increases. There is general agreement at frequencies

< 10 kHz usually within 5dB, with the accuracy degrading as frequency increases.

However these higher order components are roughly 60-70 dB lower than the

highest peaks of the output and are not as important perceptually compared to

lower harmonics.

These tests show that the amplitude not a significant source of error when

using simple inputs. Furthermore, these tests also confirm that the two methods

described in Sections 3.4.1 and 3.4.2 are indeed equivalent. This is to be expected,

as the matrix of coefficients C of Chebyshev polynomials is related to the matrix

A used for the linear transformation of the HIR by Eq. (3.16). The Chebyshev

method uses the Tn(x) as nonlinearities to isolate specific harmonics of the input,
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Figure 3–27: Waveform comparison of the outputs of the NSUT, the Chebyshev
re-synthesis, and the power-law re-synthesis. The input is an AM signal consisting
of 2 sine waves of frequency f1 = 125 Hz, f2 = 2000 Hz. The clipping value is 0.55.
20 harmonics were considered in the model.
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Figure 3–28: Spectral comparison of the outputs of the NSUT, the Chebyshev re-
synthesis, and the power-law re-synthesis. The input is an AM signal consisting of
2 sine waves of frequency f1 = 125 Hz, f2 = 2000 Hz. The clipping value is 0.55.
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Figure 3–29: Spectral Flatness for the hard clipper spectrum in Figure 3–28, show-
ing the spectral flatness of each synthesis method compared with the NSUT out-
put. The re-synthesis models harmonics up to order 20.
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and the MIR control the gain of each harmonic. The power-law method uses

simple xn nonlinearities with each nonlinearity generating multiple harmonics of

differing strengths. The linear transformation of the HIR then combines the HIR

in such a way that it takes into account the strength of the different harmonics

generated by applying each xn.

Concerns of the Tn(x) nonlinear elements producing harmonics other than

the nth (i.e. harmonics n − 2k) is not an issue. While the reason why may not

be obvious from the Chebyshev method, we can take advantage of the fact that

the method is equivalent to the method using power-law nonlinearities and a

linear transformation. When a power-law nonlinearity is applied to a signal x(t),

we get simply xn(t). If x(t) is instead accompanied by an envelope a(t), where

0 < a < 1 and |x| < 1, then applying an nth order nonlinearity to a(t)x(t) yields

an(t)xn(t). Thus the output scales as the input to the power of the power-law

applied. For example, if the input was a scaled cosine a(t) cos[θ(t)], then the

harmonics produced by applying a power-law nonlinearity (see Eq. (3.8)) would

all simply be scaled by an(t). The re-synthesis would then continue as before and

yield simply a scaled output.

While certainly the application of the Tn(x) polynomials does not give the

desired harmonic content after application to a signal of amplitude < 1, the

equivalency of both methods described in Sections 3.4.1 and 3.4.2 means that upon

summation of all the Tn(x)’s after applying the HIR’s, this effect disappears.

Since it is equivalent to use either method in terms of the end result, re-

synthesis using the Tn(x) as the nonlinear elements offers an advantage in that
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no linear transformation of the HIR is necessary; they are instead used directly

as the filters following the nonlinearities. This method is also more intuitive and

conceptually simpler than the power-law method.

To conclude, this chapter has discussed two modifications to the signals used

in the nonlinear convolution method: the synchronization of the phase of the exci-

tation with its instantaneous frequency, and the bandwidth extension of the inverse

system (Section 3.1). Brief descriptions of some nonlinear synthesis methods have

been given in Sections 3.2 and 3.3, followed by a discussion of how the MIR ex-

tracted by the nonlinear convolution can be used directly in a re-synthesis method

for nonlinear systems, or used after a suitable linear transformation of the HIR

is performed (Section 3.4). Two artificially created nonlinear systems were then

analyzed and re-synthesized using Chebyshev polynomials as nonlinear elements.

The input used was a simple full-amplitude sinusoid, and the performance of the

method is discussed in Section 3.5. Results in general showed good agreement with

the NSUT. Finally, a comparison of the two re-synthesis methods was performed

using a hard clipping nonlinearity in Section 3.5.4. The input signals used were

simple sinusoids and combinations thereof with amplitudes less than 1 to test

the effects of the input amplitude on the re-synthesis. Results showed that both

methods were equivalent and provided good agreement with the intended output

waveform. Having simple inputs of amplitude less than 1 did not adversely affect

the re-synthesis.

The use of complicated or musically interesting input signals to these systems

was avoided in this chapter in order to clearly show how the re-synthesis model
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emulates the NSUT. The next chapter puts the synthesis method to the test

by emulating some real nonlinear systems. A guitar distortion pedal, practice

amplifier with on-board distortion, and home-made distortion pedal are analyzed

and tested with both a pure signal as well as a musically interesting input signal.

Because of the wide bandwidth of real musical inputs signals, further modifications

to the re-synthesis method are required and will be discussed.
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Chapter 4
Testing Nonlinear Systems

Chapter 2 introduced the concept of nonlinear convolution and explained

how the use of exponential chirps could be used as input to a nonlinear system

to extract information about the system. By de-convolving the system’s response

with the input, multiple impulse responses (MIR) could be extracted which

describe the strength and transient nature of each harmonic response to the input

by the nonlinear system. Chapter 3 described a re-synthesis method for emulating

the sound of the particular nonlinear system under study. The MIR were used

in a Hammerstein/MISO framework as linear filters, preceded by Chebyshev

Polynomials which were used to create harmonics of the input signal. Some simple

‘synthetic’ nonlinear systems were then tested to ensure the model was functioning

properly. Finally this chapter tests the analysis/synthesis method in a musical

context with real nonlinear systems. The nonlinear systems to be tested are in

the realm of guitar distortion pedals. While the method is applicable to any other

harmonic-generating nonlinear system, guitar effect and amplifier emulation is the

primary goal of this research.

Three nonlinear effects were tested. The first was a Roland Micro Cube

Practice Amplifier. The second was a DigiTech RP-6 Multi-Effects Pedal, and
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the third is a home-made effects pedal created by a fellow student in the Music

Technology Department at McGill University.1

4.1 Further Modifications to the MISO Method

The inputs used to the nonlinear systems studied in Chapter 2 produced fairly

accurate re-creations through the MISO method. Upon initial study with real

nonlinear systems however, it was observed that in particular low amplitude input

signals were not being re-synthesized as closely as with the synthetic nonlinear

systems. In general, the re-synthesis was lacking in high-harmonic content. This

was due to the issues described in Section 3.5.4. When a low-amplitude input

or component of amplitude a (where a < 1) is passed through an kth order

nonlinearity such as Tk(x), the amplitude of this component is reduced to ak.

For high-order polynomials, this greatly suppresses weaker components in the

input. Two solutions have been implemented to attempt to counteract this effect:

envelope following and pre-emphasis. Each are explained in the following sections.

4.1.1 Envelope Following

Envelope following is a method of tracking the amplitude variations of a

signal to be used for the control of some parameters, or to produce another signal

that resembles purely these variations. An example of an audio signal and its

corresponding envelope is shown in Figure 4–1.

1 Pedal designed and built by Avrum Hollinger - http://idmil.org/people/avrum hollinger.
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Figure 4–1: Example of envelope following of an audio signal.

There are a few basic methods to perform envelope following. One class of

envelope tracking algorithms employ the Hilbert Transform [8]. From a time-

domain standpoint, the Hilbert Transform applied to a signal x(t), denoted

as H(x(t)) causes a 90◦ phase shift on x(t). One can use the analytic signal

z(t) = x(t)+ iH(x(t)) to generate an approximation of the envelope for x(t). There

are two common approaches from here to generate an envelope. The first approach

rectifies the real and imaginary parts of the analytic signal individually, and then

sums the result:

Envabs = |Re(z)|+ |Im(z)| (4.1)

Because the imaginary part is phase shifted by 90◦, the summing together of

the real and imaginary parts has a low-pass filtering effect, and the rectification

ensures that the envelope is always positive. The second approach is similar,

except that the rectification is intrinsically done while calculating the energy of the

real and imaginary parts of the analytic signal:

Envenergy =
√
Re(z)2 + Im(z)2 (4.2)
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The result is a positive-definite signal that approximates the envelope. In either of

these methods however the envelope varies far too quickly, almost at the same rate

as the audio signal. Thus the result is low-pass filtered to give an envelope that

varies slowly in comparison to the frequency of the signal.

The other class of envelope follower uses a sliding window on the signal and

calculates an average quantity based on samples in the window. A window of some

length is chosen and the signal’s RMS or mean absolute value is calculated for the

signal samples in that window. The window then slides forward by one sample,

and the calculation is repeated. Because the value of the calculated quantity at

a given point is based on an averaging of the signal around it, the envelope is

inherently smoothed relative to the audio signal. Low pass filtering however is

also necessary after this to provide a smoother measure for the envelope. Care

must be taken to choose the appropriate window length to achieve a balance

between responsiveness of the envelope function to sharp attacks and decays, and

smoothness of envelope function.

After much experimentation with the four methods, the use of a sliding

window which calculates the energy in the current window was found to be the

best in terms of amplitude tracking and smoothness after low pass filtering:

Envsliding[n] =

√√√√ 1

w

n+w−1∑
k=n

x[k]2 (4.3)

Where the window length is given by w. Low pass filtering was performed with

a biquad filter with a cutoff frequency of 40 Hz. This cutoff was chosen as a
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compromise between the responsiveness of the filter and the smoothness of the

envelope, during signal transients.

The idea of envelope following in the MISO method is to boost low-amplitude

signals in order to preserve their harmonic content after the Tn(x) are applied. The

envelope is first extracted and scaled accordingly. The mathematical inverse of

the envelope is then applied to the signal to (ideally) make the signal of uniform

amplitude. Division by 0 is controlled by a thresholding value. This signal is

then sent as the input to the MISO method. Following the application of the

nonlinearities and filtering of the branches, the envelope is re-applied to the output

signal in order to restore the dynamic character of the signal.

Envelope following did improve the harmonic content when testing real

nonlinear systems. However it was apparent that further compensation of the high

harmonics was necessary.

4.1.2 Pre-Emphasis

A second solution to compensate for the lack of high harmonics is to antic-

ipate the losses that will occur when the input passes through the nonlinearities

and ‘pre-emphasize’ the high harmonics with a high-pass filter.

The filter was carefully tuned to boost the high-frequencies sufficiently

without compromising the sound of the lower harmonics. A biquad treble shelving

filter [5][40] was used to accomplish this and its frequency and phase response are

shown in Figure 4–2.
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Figure 4–2: Frequency and phase response for the pre-emphasis treble-shelving
filter.

At the end of the signal chain, a ‘de-emphasis’ filter is placed to ‘undo’

what was done with the pre-emphasis filter. This filter has the same form as the

shelving filter but is instead the treble cutting shelving filter.

4.1.3 Revised Synthesis

With the two modifications described above, the MISO re-synthesis method

can be summarized with the block diagram in Figure 4–3. The pre-emphasis

filter is placed immediately at the input. The envelope following algorithm then

generates an envelope for the input. The signal input is then divided by this

amplitude envelope to boost low-amplitude signals before the the polynomial

nonlinearities. The remainder of the MISO method continues as before, and

just before the output the envelope is placed back onto the re-synthesized signal

for dynamics, and the de-emphasis filter just precedes the output to restore the

balance of high and low frequencies.
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Figure 4–3: Revised MISO method, with envelope tracking and pre-emphasis filter.

With these modifications, the analysis/synthesis method is ready to be tested

with real nonlinear devices. Results of these tests are summarized in the next

section.

4.2 Tests of Real Nonlinear Systems

Three distortion effects were used to test the analysis/synthesis method laid

out in this work in a musical context: a Roland Micro Cube Practice Amplifier,

a DigiTech RP-6 Multi-Effects Pedal, and finally a home-made fuzz effect pedal.

After the analysis of each system, the system was fed a sinusoidal input, and

then a musical guitar pluck to be used to compare the system’s output with the

model’s. Results are presented in the following sections.
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4.2.1 Roland Micro Cube practice amp

The Roland Micro Cube practice amp is a small 2 Watt Amplifier and speaker

combo intended as a portable/practice amplifier for guitarists.2 It has a built-

in DSP and offers 6 built-in effects, and 7 simulated guitar amp models. The

amplifier and its controls are shown in Figure 4–4.

(a) (b)

Figure 4–4: Roland Micro Cube practice amp. a. amp unit, b. control panel.

For this test, the amplifier was set to ‘Classic Stack’ with the following

parameters: gain - 2, volume - 7, tone - 8. The Classic Stack setting is a model

of a Marshall JMP1987, a popular amplifier in classic and hard rock [41]. These

settings produce pleasant subtle overdriven sound without being too ‘harsh’

sounding or strong in the higher harmonics. The power THD was measured for

these settings and found to be 13% at 1000 Hz with harmonics up to 20 kHz.

2 http://www.roland.com/products/en/Micro-CUBE/ - last accessed 2011 02 04.
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Since the re-synthesis method can only model a finite number of harmonics,

this was reasoned to be a good starting point for testing the method with a real

nonlinear device.

To give a sense of how the Roland modifies the input signal, Figure 4–5

shows the two outputs of the system to two different sine wave inputs of different

frequencies.
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Figure 4–5: Input/Output waveforms for the Roland Amplifier at a. 200 Hz,
b. 2000 Hz.

An exponential chirp was first sent through the system and the extraction of

the MIR was performed. The parameters of the sweep were the same ones used

in the hard clipping nonlinearity in Section 3.5.4: f1 = 10 Hz, f2 = 9000 Hz,

T = 10 s, fs = 192 kHz. Figure 4–6 shows the MIR output. It is clear that

the Roland produces many strong odd-order harmonics, and weak even-order

harmonics. The MISO re-synthesis was then performed with two different input

signals: a simple sine wave of amplitude 0.5 at 1000 Hz, and a guitar pluck, note
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Figure 4–6: MIR output of the nonlinear convolution method for the Roland Micro
Cube.

C2. These two inputs were used as the signals for comparison of the nonlinear

system to its model for each nonlinear system under investigation in this work. In

the re-synthesis 15 harmonics were modeled. While harmonics > 10 alias during

the sine sweep, this only occurs when the chirp is near its end. In addition, these

harmonics are very weak compared to the lower order ones and therefore their

inclusion is not considered problematic.

Temporal and spectral comparisons of the MISO output with the actual

system output are shown in Figures 4–7, 4–8, and 4–9 for the sine wave input, and

in Figures 4–10, 4–11, and 4–12 for the guitar pluck input.

Sinusoidal Input

Since the input was a pure sinusoid, it was convenient to make a THD

measurement for the re-synthesis. The power THD at 1000 Hz for the MISO
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Figure 4–7: Waveform comparison for the Roland Micro Cube with a sinusoidal
input of frequency 1000 Hz.
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Figure 4–8: Spectral comparison for the Roland Micro Cube with a sinusoidal
input of frequency 1000 Hz.
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Figure 4–9: Spectral Flatness for Roland Micro Cube with a sinusoidal input of
frequency 1000 Hz.

re-synthesis was 13.6%, while the THD of the actual system was measured to be

13%.

From Figure 4–9, it is clear that the re-synthesis has performed well. Lower

order odd harmonics were modeled very accurately (< 0.1dB), with the error

increasing to < 2dB past 10 kHz. The weak even harmonics are not represented

as well, but the general trend of high accuracy at low frequencies with decreasing

accuracy as frequency increases is apparent. Perceptually the two sound nearly

identical, with the actual system output having slightly more high frequencies,

which agrees with the analysis. It is worth noting that the harmonics n = 11

to 15 are reasonably modeled and within 3dB of the system’s output. This is

comforting despite the fact that these harmonics alias at the higher frequencies of

the exponential chirp.

98



Musical Input

The system and the MISO were then fed with a simple guitar pluck at note

C2 (f0 = 130.81 Hz). Comparisons with the actual system output are given in

Figures 4–10, 4–11, and 4–12. Spectra were calculated on a section of the signal

1 second into the signal. From the temporal plot in Figure 4–10, it is clear that

the method has some difficulty representing this waveform. Figures 4–11 and

4–12 show that the method does not perform as well with a more complex input

signal. Most of the harmonics considered in the model are within 5 dB of the

NSUT output, somewhat greater than with a sinusoidal input. Perceptually, the

emulation output does have a significant overdriven character, but seems to lack

the gain of the actual effect, which is in agreement with the spectral plots.

It appears as though despite the method’s accuracy in simulating the system’s

behaviour in response to simple inputs, the method has difficulty when presented

with a musical input signal. This could be due to the wide bandwidth and/or rich

harmonic content of a musically interesting signal. This is disccused further in

Section 4.3.

4.2.2 DigiTech RP-6

The DigiTech RP-6 (Figure 4–13) is a multi-effects guitar pedal intended for

guitar. It includes two different distortion types, a noise gate, 3 band-equalizer,

compressor, speaker cabinet modeling, 8 modulation effects, dual delay, a reverb

unit, and expression pedal for continuous control of some parameters. Despite

being a digital pedal, employing an ADC and DAC, the distortion module is

analog and placed before the ADC in the pedal [42].
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Figure 4–10: Waveform comparison for the Roland Micro Cube with a musical
signal as input.
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Figure 4–11: Spectral comparison for the Roland Micro Cube with a musical signal
as input. The relevant part of the spectrum is shown only.
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Figure 4–12: Spectral Flatness for the Roland Micro Cube with a musical signal as
input.

Figure 4–13: DigiTech RP-6 multi-effects pedal.
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The analysis of the RP6 was performed with the following parameters:

The distortion type was set to ‘grunge’, which is an over-the-top high gain

distortion [42], with a gain setting of 0.6, and the noise gate activated to prevent

the characteristic hum from the unit (and most non-gated overdrive pedals and

amplifiers) from sounding when there was a very small input signal. All other

parameters and effects were de-activated to purely look at the distortion effect.

Figure 4–14 shows in/out relationship for two sine waves of different frequency. A

power THD measurement was made at 1000 Hz and found to be 70% with these

settings. Thus this is a more extreme nonlinearity to model compared with the

Roland Micro Cube, with a THD measurement of 13%.
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Figure 4–14: Input/Output waveforms for the RP6 at a. 200 Hz, b. 2000 Hz.

Nonlinear convolution was performed by sending an exponential chirp through

the system and recordings its response. The parameters of the sweep were the

same as when testing the Roland Micro Cube (Section 4.2.1) and hard clipping

nonlinearity (Section 3.5.4). Figure 4–15 shows the MIR output. The RP-6

appears to exhibit the same behaviour as the Roland Micro Cube: many strong
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odd-order harmonics are produced, and weak even-order harmonics are also

present. The MISO re-synthesis was then compared to the system’s behaviour with
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Figure 4–15: MIR output of the nonlinear convolution method for the DigiTech
RP6.

the same two input signals as in Section 4.2.1: a simple sine wave of amplitude 0.5

at 1000 Hz, and a guitar pluck, note C2.

Temporal and spectral comparisons of the MISO output with the actual

system output are shown in Figures 4–16, 4–17, and 4–18 for the sine wave input,

and in Figures 4–19, 4–20, and 4–21 for the guitar pluck input.

Sinusoidal Input

A power THD measurement at 1000 Hz for the MISO output gives 76%, 6%

higher than the system’s output, despite not modeling all of the harmonics. It

was observed that although not all of the harmonics are represented in the MISO

output, the odd-order harmonics are slightly stronger than the RP6 ouput, and the
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Figure 4–16: Waveform comparison for the RP6 with a sinusoidal input of fre-
quency 1000 Hz.

−1 −0.5 0 0.5 1

x 10
5

−10

0

10

20

30

40
Spectra of Actual and Simulated Nonlinear System Output for Digitect RP6, Sine Input

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

 

 
NSUT
Re−synthesized

Figure 4–17: Spectral comparison for the RP6 with a sinusoidal input of frequency
1000 Hz.
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Figure 4–18: Spectral Flatness for RP6 with a sinusoidal input of frequency
1000 Hz.

even-order ones are slightly weaker than the RP6 output. This is the cause for the

difference in harmonic distortion in this case.

Figure 4–18 shows that the prevalent odd harmonics of the nonlinearity are

well modeled. Their accuracy, shown in Figure 4–18 show agreement to within

0.3dB. The weak even harmonics are not as well modeled, but are still fairly

accurate. The re-synthesis has the even-order harmonics on average 2dB lower

than the system’s output. Once again the two sound nearly identical, with the

actual system output having slightly more high frequencies, which agrees with the

analysis. It is also encouraging again to see that harmonics higher than n = 10 are

represented as well as the lower harmonics, despite the aliasing issue mentioned

in the previous section. Thus for high order harmonics that are relatively weak,
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aliasing of the harmonic response when a system is excited with a chirp is not

devastating to their re-synthesis in the MISO method.

Musical Input

The system and the MISO model were then fed with a simple guitar pluck

at note C2 (f0 = 130.81 Hz) as with the Roland. Comparisons with the actual

system output are given in Figures 4–19, 4–20, and 4–21. The temporal plot in

Figure 4–19 shows not much resemblance to the NSUT’s output. From the spectral

plots of Figures 4–20 and 4–21 we see that the model represents the harmonics 1

to 15 fairly accurately, with the accuracy ususally within 5 dB for each harmonic

modeled. While the re-synthesis performed well for the harmonics considered, the

accuracy of the re-synthesis when musical inputs are used seems to suffer some

when compared to when a sinusoidal input was used. As with the Roland, the

model’s output to the pluck does have an overdriven character, but it is lacking in

high harmonic content and overall gain. Results are discussed further in Section

4.3.

4.2.3 Home-Made Distortion Pedal

The final nonlinear system tested in this framework is a ‘Fuzz’ distortion

pedal designed and built by Avrum Hollinger, a fellow student in the Music

Technology department at McGill University.3 A schematic of the pedal is shown

in Figure 4–23. The pedal uses pre-gain, comparator, and gain stages (op amps

U1A, U1B, and U1D respectively) to produce a highly clipped waveform that is

3 Avrum Hollinger - http://idmil.org/people/avrum hollinger.
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Figure 4–19: Waveform comparison for the RP6 with a musical signal as input.
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Figure 4–20: Spectral comparison for the RP6 with a musical signal as input. The
relevant part of the spectrum is shown only.
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Figure 4–21: Spectral Flatness for the RP6 with a musical signal as input.

very rich in harmonic distortion [43]. The three knobs on the pedal control the

pre-gain (R4), output volume (R11), and the amount of mix between the original

and distorted signal (R9).

Figure 4–22: Home-made fuzz pedal.

For this test, the pedal was experimented with and adjusted to give a pleasant

highly overdriven sound with a midrange mix of the clean and overdriven signal.
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Figure 4–23: Fuzz pedal schematic.

Figure 4–24 shows the input/output relationship for two sine waves of different

frequency. The pedal appears to have a slight DC offset and a sharp clipping

character. A power THD measurement was made at 1000 Hz and found to be 23%

with these settings.

Nonlinear convolution was performed in the usual way to extract the MIR.

The parameters of the sweep are again the same as those for the testing of the

other real systems. Figure 4–25 shows the MIR output. It is apparent that the

fuzz pedal generates both even and odd-order harmonics of appreciable strength.

The MISO re-synthesis was then tested with the same sine wave and guitar pluck

as before. Parameters of the MISO model are the same as those used in the testing

of the Roland and RP6. Temporal and spectral comparisons of the MISO output
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Figure 4–24: Input/Output waveforms for the home-made fuzz at a. 200 Hz,
b. 2000 Hz.
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Figure 4–25: MIR output of the nonlinear convolution method for the home made
fuzz pedal.

110



with the actual system output are shown in Figures 4–26, 4–27, and 4–28 for the

sine wave input, and in Figures 4–29, 4–30, and 4–31 for the guitar pluck input.
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Figure 4–26: Waveform comparison for the home made fuzz with a sinusoidal input
of frequency 1000 Hz.

A power THD measurement at 1000 Hz for the MISO output gives 23%,

which agrees with the system output’s THD. This does not mean necessarily that

the model works perfectly in this case, but rather states that the re-synthesis and

the system output produce an equal amount of harmonic content, but does not

however specify where that harmonic content is. The spectral flatness in Figure

4–28 gives a clearer picture of this. The re-synthesis of the fuzz pedal is on par

with the other systems tested. Both odd and even harmonics of the re-synthesis

are within 3dB of the system output. What is interesting to note are the signs

of the points in Figure 4–28. Previous spectral flatness plots have usually stayed
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Figure 4–27: Spectral comparison for the home made fuzz with a sinusoidal input
of frequency 1000 Hz.
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Figure 4–28: Spectral Flatness for the home made fuzz with a sinusoidal input of
frequency 1000 Hz.
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on one side of zero, but here there are a comparable number of points both above

and below zero, implying that some harmonics were too strong and others too

weak. There does not appear to be a pattern (such as the odd harmonics being

too strong and the even ones being too weak) as was the case with the Roland and

RP6.

Harmonics n = 11 to 15 are again well modeled and of comparable accuracy

to the lower order harmonics despite their potential for aliasing. Perceptually,

the system output and re-synthesis sound equivalent to one another with the

re-synthesis lacking in the highest harmonic content, which is to be expected.

Musical Input

The fuzz pedal and the MISO model were then fed with a guitar pluck at

note C2 (f0 = 130.81 Hz) as with the other effects. Comparisons with the actual

system output are given in Figures 4–29, 4–30, and 4–31. The temporal plot in

Figure 4–29 again shows that the model does not simulate the temporal behaviour

of the system well. From the spectral plots of Figures 4–30 and 4–31 it is clear

that the model is much less accurate with a musical input than with a sinusoidal

input. Harmonics 1 to 15 of the model are in agreement to within 10 dB. The

timbral qualities again are lacking in high harmonic content and gain as with

the re-synthesis of the Roland and RP6 with a guitar pluck as input. Results are

discussed further in Section 4.3.

4.3 Discussion

Sound examples for the results presented in this chapter can be found at

http://mt.music.mcgill.ca/∼collicuttm/Sound Examples/index.html.
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Figure 4–29: Waveform comparison for the home made fuzz with a musical signal
as input.
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Figure 4–30: Spectral comparison for the home-made fuzz with a musical signal as
input. The relevant part of the spectrum is shown only.
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Figure 4–31: Spectral Flatness for the home-made fuzz with a musical signal as
input.

The three nonlinear guitar effects were analyzed with Farina’s method and

MIR were extracted for each system. These MIR were used in the MISO/Hammerstein

re-synthesis model to emulate the behaviour of each of the systems. The accuracy

of each model was measured by sending both the NSUT and its model a sine wave

of amplitude 0.5, and a musical guitar pluck.

The model performed generally well for a sinusoidal input with these systems.

Strong harmonics were often modeled to within 1 dB of what the NSUT produced.

Weaker harmonics produced by the NSUT were not as accurately modeled, but

still within 3 dB of the NSUT’s harmonics. Perceptually the model’s response to a

sinusoidal input was very close to its NSUT fed with the same signal. The model’s

output seemed to be missing the highest harmonics compared to the NSUT which

was expected, since only a finite number of harmonics can be modeled in this

framework.
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The model did not perform as accurately with a musical input signal. Spectral

flatness plots show general agreement to only within 10 dB at the harmonic

locations of the plucked note for the harmonics considered.

Each of the effects tested produced harmonics up to roughly 20 kHz regardless

of the fundamental frequency of the input signal. Because a low note (C2) was

used as the input to the systems under test and the model, a very large number

of harmonics are generated in the nonlinear systems just from the fundamental of

input. Thus many harmonics must be considered in the model in order to produce

the same timbre as the NSUT output for low notes. Because of the trade-off be-

tween chirp bandwidth and number of harmonics to model, it becomes impractical

at some point to model many harmonics, due to the highly band-limited nature

of each HIR that will result. The lack of bandwidth of the harmonics is most

important in the linear and low order harmonics, which are typically the strongest.

Thus perceptually, the re-synthesis sounds lacking in harmonic content and overall

gain.

Higher harmonics (n > 15) of the output were not recreated as well. Because

the input is a wide-bandwidth signal (containing overtones of the fundamental of

the note C2), the nonlinear system also generates harmonics of these overtones

as well as the fundamental. Therefore we would expect harmonics higher than

n = 15 in the output of the NSUT and model. Indeed this is the case, and

the NSUT output contains spectral content all the way up to about 20 kHz.

Because the input to the model is the same as that of the NSUT, we would also

expect the output of the model to contain spectral content up to 20 kHz and even
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beyond. What was observed was that the spectral content of the model’s output

dropped off very quickly relative to the NSUT output as the frequency increased,

suggesting that the model did not generate harmonics of weaker overtones of the

input signal sufficiently. This could be due to the issue of low-amplitude signals

being suppressed by the polynomial nonlinearities in the model, as discussed

in Section 4.1, and shows that potentially the countermeasures described in

Sections 4.1.1 and 4.1.2 were insufficient in addressing this amplitude issue. Thus

perceptually, the model’s output in response to the guitar pluck does have a

significant overdriven character, but seems to lack the gain of the actual effect,

which is in agreement with the spectral plots.
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Chapter 5
Conclusions and Future Work

The goal of this thesis was to develop, test, and validate a largely automatic

analysis/re-synthesis method for harmonic nonlinear systems. The method extracts

meaningful parameters in the analysis that characterize a NSUT, and then use

these parameters in a generic synthesis model to emulate the response of the

NSUT to any input signal as closely as possible. While the focus of this work is

on nonlinear audio systems, the methods employed here are intended to be valid

across many scientific disciplines where nonlinear systems may arise.

Farina [3] developed a method using sinusoidal sweeps to extract the impulse

response of a linear system while simultaneously ‘pushing out’ any nonlinear

responses of the system. Because of this feature, he soon realized that this

method could also be used to extract multiple impulse responses which provided

information about the strength and character of harmonics generated by nonlinear

systems as well. By sending a exponentially varying sinusoidal chirp to the system

and measuring the response, a convolution of the response with the time-reversed

chirp would produce multiple impulse responses separated in time, with each

impulse response providing information about a harmonic generated by the

nonlinear system. Farina did not provide a precise explanation as to how the

method worked to push out these artifacts. One major goal in this work was to

provide a more complete mathematical explanation of how nonlinear convolution
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works as well as illustrate the nonlinear convolution process qualitatively in order

to provide a sense of intuition with the method.

A re-synthesis model was developed based on the Multiple Input Single

Output and polynomial Hammerstein models. It uses Chebyshev polynomials

in a branched structure as the nonlinear elements to generate harmonics of

the input signal. Following each Chebyshev polynomial is a linear filter whose

impulse response is one of the multiple impulse responses output by the nonlinear

convolution method. The branches of the re-synthesis are then combined to form a

re-synthesis of the NSUT’s output for a given input.

The method was first tested with a few ’synthetic’ nonlinear systems created

using polynomials or lookup tables as the nonlinear element. Inputs consisted

of sinusoids or simple combinations thereof and were sent to both the actual

nonlinear system and model and were compared both temporally and spectrally.

Results showed that the analysis/synthesis method could accurately reproduce the

response of these nonlinear systems with simple inputs.

The analysis/synthesis method was then put to the test with real nonlinear

systems. Three guitar distortion effects were tested: a Roland Micro Cube Practice

Amplifier with built-in effects, a DigiTech RP6 multi-effects guitar pedal, and

a home-made fuzz pedal. It was observed with all of these systems that the

re-synthesis was not reproducing higher harmonics to the same degree as with

the synthetic nonlinear systems, even with the same input used. To compensate

for this apparent weakness in the high harmonics, a pre-emphasis filter was

implemented to boost the high-frequency content of the input before being
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processed by the nonlinearities. In addition an envelope-tracking algorithm was

implemented. The envelope was used to boost low-amplitude segments of the input

before the applied nonlinearities. This was done because the application of any

polynomial to a signal of amplitude less than 1 inherently reduces its amplitude.

This effect becomes more drastic as the order of the nonlinearity increases. The

amplitude envelope of the signal is then restored after the application of the

nonlinearities and filters and the branches summed followed by a ‘de-emphasis’

filter to counteract the pre-emphasis filter at the beginning of the signal chain.

Both compensation measures improved the presence of high harmonics in the

re-synthesis, particularly when the systems were tested with simple sinusoids.

The re-synthesis model of the three nonlinear systems was then evaluated

using a musical guitar pluck as the input. The signal was sent to both the NSUT

and the synthesis model and compared. Results showed that the re-synthesis

modeled the nonlinear response of the fundamental of the input reasonably well.

It was observed however that in general the outputs lack higher harmonic content

compared to the system output. For these distortion modules, the re-synthesis

does have a pleasant overdriven, distorted quality, however it sounds as if the

traditional ’gain’ setting on an amplifier of distortion device is too low. This

is thought to be due to the issue of low-amplitude signals or weaker overtones

of the input being suppressed by the polynomial nonlinearities in the model,

which is inherent in using polynomials. The countermeasures to this issue of

envelope following and pre-emphasis therefore require further refinement. The

compromise that must be made between the number of harmonics to model and
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the bandwidth of the chirp also affects high harmonic content in the output. Fewer

harmonics considered means that fast transients and high harmonic content cannot

be represented, and a low bandwidth chirp means that frequencies higher than

f2 will not be re-synthesized in the linear portion of the output. The analysis

could benefit from an upsampling scheme which allows for the expansion of the

bandwidth of the chirps while performing the convolution in the analysis. Finding

a more elegant solution to capturing the high harmonic content produced by

nonlinear systems such as the ones investigated is left as future work.

This analysis/synthesis system was developed in the MATLAB programming

environment and hence all computations with input signals were not performed

in real-time. Based on this study, the implementation of the re-synthesis method

for real-time processing seems feasible and computationally tractable. The re-

synthesis involves passing the input into a number of different branches for

separate processing on each one, and a convolution operation for each branch.

While this sounds like a high-bandwidth scheme, the entire input signal does not

need to be stored at once, and convolution techniques involving the FFT can

be employed efficiently in real-time [12]. Thus the employment of this synthesis

method for real-time use is also proposed as future work.

This thesis focused on the analysis and re-synthesis of nonlinear audio

systems, and in particular guitar overdrive and distortion effects. The method

however is applicable to other nonlinear systems that may arise in other areas

of engineering and science. So long as the system has a single input and single

output, and produces harmonic distortion, the method can be applied. Because the
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analysis method takes a ’black box’ approach to the system’s characterization and

makes very few assumptions, little has to be known about the nonlinear system

under study before conducting the analysis. This is advantageous as it allows non-

specialists to be able to analyze how a signal is affected by the nonlinear system.

This can be of particular interest to musicians interested in emulating audio effects

in software. Having a framework that can automatically characterize, modify,

and emulate new nonlinear systems or effects could allow for someone with little

technical knowledge to be able to create their own amplifier or effect emulations, or

even create truly unique new effects.
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