
THE DERIVATION OF THE CHI-sQUARE TEST OF GOODNESS OF FIT 

Jacqueline Prillaman 

Submitted to McGill University in partial 

fulfilment of the requirements for the 

de6ree of Master of Science, August, 1956 



I wish to express my gratitude to 

Prof. W. Kozakiewicz for his generous 

assistance and valuable guidance in 

the preparation of this thesis. 



TABLE OF CONTENTS 

Introduction .................................................. 1 

Part One: An Intuitive Approach to the Chi-Square 

Test of Goodness of Fit ............................ 5 

I: Presentation of the Test 

II: The Number of Degrees of Fre?dom 

III: Greenhood's Derivation of the Chi-Square 

Test of Goodness of Fit 

Part Two: A Rigorous De velopment of the Chi- Square 

Test of Goodness of Fit .......................... 22 

I: The Normal Distribution in the Space 

of n-Dimensions 

II: The Limiting Distribution of the Chi-Square 

Variable by the Method of Characteristic 

Functions 



Introduction 

Let ~, ~, . . . ., x
5 

be s independent sample values drawn from 

a population of normally distributed values with zero mean and unit 

variance. Then the variable 
2 2 2 

u = x1 + x2 + . . . + xs 

is said to follow the ~t distribution with parameter s. This para­

meter is called the number of degrees of freedom for reasons which 

will be explained later. Using the moment-generating function we 

shall prove that 

(1) f(u) = r(~) (!) 
s s-2 
2 2-

u e 

u 
2 u > o. 

Since the basic variable, x, in the population has the frequency 

function 

f(x) = m.- e 

l we have, for G < 2 , 

M 2(&) = Mx2(&) = 
xi 

, 

+• 2 1 -~ (1-2&) 
= 1 e 2 dx 

rh -· 

= ( 1 

1 
- 2 

2&) 
1 

- 2 
= ( 1 - 2&) 

1 m L .. 2 

e- ~ dy ·-
And since the xi are independent, all have the same distribution 

as the variable x. We obtain 

s 
2 

by the well known property of moment-generating functions. 

; ~·· 1 - · · - - ·• - ~ 
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Now it can be seen that this is the moment-generating function 

of the distribution having the frequency function defined by (1). 

IndeedJ the corresponding moment-generating function is given by 

the formula 

f"rh) (}) s s-2 u 

Mu(e-) 2 -2- - 2 e e-u du = u e 

/">y s l l ( 2y ) 2 2 
= ----- 1-29- 1-29- dy 

~ { s) 
2 2 r 2 

0 

s /œe-Y 2 s - 1 ( l-29-) 2 = -rrrr y dy 
0 

s 

= ( 1 - 29-) 2 
• 

Since a moment-generating function uniquely determines a dis-

tribution function.it follows that the distribution function of u 

2 2 2 is given by (1). Henceforth we shall denote x 1 + x2 + ... +x
8 

by x~. 

Let us now suppose that a population can be divided into k 

mutually exclusive classes and that pi is the proportion of indi­

viduals belon3ing to the ith class. Suppose that we select a sample 

of rn individuals from that population and that the sample contains 

n1 individuals from the first classJ n2 individuals from the second 

classJ etc. Each variable. ni . follows the binomial distribution with 

mean mpi and standard deviation Vmpiqi J where qi= 1 - pi . From 

the fact that the binomial distribution can be approximated well 

for large m by the normal distribution with mean mp1 and standard 

deviation ~mpiqi J it follows that the variable 
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ni - mpi ----v mpi qi 

has a distribution which approaches the normal distribution with 

mean zero and unit standard deviation as the size of the sample , rn, 

becomes increasingly large. That is, each variable ni- mpi follows 
V mpiqi 

approximately the normal standard distribution. If we could assume 

for the moment that the ni are independent, then the variable 

2 2 2 
(nl~pl) (n2~p2) (nk~pk) 
---- + ----- + . . + 

mplql mp2q2 mpkqk 

would follow approximately the x.~ distribution with k degrees of 

freedom. However, the n1 are not completely independent,since in 

repeated sampling, their sum must always be m. Thus, if k - 1 of 

the ni are known, then the kth is necessarily already determined. 

As it turns out , by modifying the above expression by omitting the 

qi in the denominator, we obtain a variable which approximately 

follows the X«. distribution with k - 1 degrees of freedom. It 

is obvious that if the pi are small, omitting the qi will not 

seriously alter the above expression. 

Indeed the purpose of this paper is first to show that the 

expression 

( 2) 

X
~ 

follows the distribution with k - 1 degrees of freedom and 

furthermore to consider t he distr ibution of ( 2 ) when the pi are not 

known and have to be estimated from the sample. To do t his , we 

shall present two independent deriva t ions of the Chi-Square tes t of 

goodne ss of fit. The firs t one , of fe red in Part One , i s very 
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intuitive but not completely rigorous. It uses geometrical argu-

ments and simple approximation formulae. The second derivation, 

offered in Part Two, is based on the theory of definite positive 

quadratic forms and the theory of characteristic and moment-generating 

functions. However, the second derivation concerns only the case 

when the pi are· known. 



Part One 

An Intuitive Approach to the Chi-Sguare 

Test of Goodness of Fit 

fi: Presentation of the Test 

5 

Let us suppose that we have a sample of m individuals which 

have been classified into k mutually exclusive classes, and that 

the observed frequency of the ith class is ni. We wish to deter­

mine whether this sample could have been obtained by random sampling 

from a given parent population in which pi is the proportion of 

individuals belonging to the ith class. Since the sum of the 

theoretical frequencies must equal m, then mpi will be the theo­

retical frequency of the i th class. 

Let us consider the variable 

X
2. 

( 3) 

Obviously, X.(. 
is a measure of the compatibility between the sets 

of observed and theoretical frequencies. If t he value of A&. ob­

tained is small, this would indicate near agreement between the 

observed and t he expected frequencies while increasingly large 

values of ""!-... would indicate increasingly poor agreement. If 

we coul d devise sorne test by which we can judge whether or not a 

specifie ~~ indicates reasonable compatibility between the two 

sets of frequencies , we would then be in a position to determine 

whe ther or not our se t of observed f r equenc ie s ha s been obta ined 

in random samplin~ from the gi ven population. 

As an example , suppose that a die is tossed 24 times and that 

we set up a f requency dis tri bution of the results. If t he die is 

unbiased, each face has the probabili t y 1/S of occurring in a single 
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roll. We would then gét the following set of observed, (ni),and 

theoretical\(mpi),frequencies: 

Face: 1 2 3 4 5 6 

Observed: 2 4 3 

Theoretical: 4 4 4 4 4 4 

Let us calculate )C~ as defined by (3). 

X" = 
(2-4) 2 

+ (5-4) 2 
+ (6-4) 2 

+ (4-4) 2 
+ (4-4) 2 

+ (3-4)
2 

4 4 4 4 4 4 

= 2.5 

If we could determine that this value of x.c. showed reasonable 

compatibility between the two sets of frequencies , we could then 

assume that our set of observed data is not unusual and could have 

been obtained by rolling an unbiased die. 

Let us ima.z;ine that we perform this experiment many times and 

va. calculate the l' value correspondin~ to each set of observed 

data. The X" ·.;alues can take any value in the range o ~ )( .t. < oo 

Sorne of our values of "f-a. will be smaller than 2. s, sorne larger. 

If we were to classify these values of ~~ into a relative fre­

quency table, this table would tell us approximately into what 

percentage of such experiments various ranges of values of /(~ 

could be expected to be obtained. In particular we could determine 

wha t percentage of such experiments would g i ve )( z. values grea ter 

than 2.5. If this percentage were large, we could assume that 

the sets of frequencies were reasonably compatible, i.e. , our 

obser ved set was not unusual . If , however, that percentage were 

small, i.e., that there are hardly any ether values of )(~ which 

are larger than our observed 2. 5 , we would conclude that the 
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observed frequencies were not compatible with the frequencies 

expected for an unbiased die, and hence conclude that our die was 

biased. Thus we have for our "test of compatibility" the ratio 

of the number of all samples whose )l~ is greated than 2.5 to 

the total number of samples. We denote this ratio by P. 

In the above discussion we have defined a certain ratio P by 

means of which we can test the compatibility between sets of ob-

served and theoretical frequencies, i.e., a means by which we can 

determine the unusualness of our observed set as compared to the 

expected set, and we have proceeded empirically to determine the 

value of this ratio, P, by determining approximately the frequency 

distribution of )(~ for one particular problem. It is possible, 

however, to obtain an approximation to the frequency _function of )(~ 

in the general case by theoretical methods. Indeed, we shall show 

that the frequency function defined by (1) is a close approximation 

to the frequency distribution of the X. :t given by formula (3) 

wheri mis large. Hence, we are able to determine values of P for 

all values of ~~ and these values of P are exactly what we find 

when we employ the JL~ tables. 

~II: The Number of De~rees of Freedom 

Let us continue the example with the die, and determine the 

value o f P from the y_a. table. To f ind the value of P corres-

v~ pondint; to t- = 2 . 5 we need also to know the "number of degrees 

of freedom" which we will denote by s. The number of degrees of 

freedom, s, is defined to be 

s = k - q 

where k is the number of classes in the frequency distribution and 

q is the number of restrictions placed on the difference between 

the observed and theoretical frequencies, (ni- mpi). I n the probl€m 
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of the die, there are six classes corresponding to the six faces 

on the die, hence k = 6. In determining the theoretical fre-

quencies corresponding to each class it had to be assumed that 

the sum of the theoretical frequencies was equal to 24, the total 

of the observed frequencies. In effect, what we have assumed is 

which transposed is 

' 2_(ni- mpi) =o. 
' 

Thus,in this example, we have placed a restriction on the 

(ni - mpi) that their sum from l to 6 must equal zero. Therefore 

the number of degrees of freedom in our problem is s = 6 - 1 = 5. 

v.t. Looking in the tables with /- = 2.5 and s = 5, we find P = 0.77, 

which tells us that 77~ of all the other samples would have a 

~~ ) 2.5. Thus we can conclude that our sets of observed and 

theoretical frequencies are compatible and therefore our die was 

not biased. 

In the example of the die, we knew l/6 to be the probability 

for a given face to appear on a die from purely a priori consi-

derations. We then obtained the theoretical frequencies for each 

class by determining the mpi. 

Suppose, however, that there were no a priori considerations 

given by which to determine the theoretical probabilities associated 
e~c.l! 

withhclass and that these probabilities must be determined from 

the sample. This problem of determining the pi is usually done 

by the process of "fitting" a hypothetical distribution in the popu-

lation to the observed data. Suppose, for example, that our sample 

has been derived from a supposedly normal population. Then to "fit" 

a normal curve to the data we find the sample mean and standard 
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deviation, and use them as the corresponding parameters in the 

equation of the normal curve. We then can determine the pi by 

finding those areas under the normal curve which correspond to the 

class intervals of the sample data. We then test the goodness of 

fit of this curve to the observed data by calculating JL~ as de­

fined in (3), establish what the number of degrees of freedom is, 

and read the value of P from the tables. 

To determine the value of '"X. 1 we must again assume that the 

sum of the theoretical frequencies is equal the total number of 

observed frequencies, i.e. 

( 4) ! (ni - mp i) = o. 

It is evident that this is an assumption that is essential to the 
y%. calcula ti on of ,_ as defined by (3) in all cases. Renee, we 

shall always have lost at least one degree of freedom by the above 

restriction. 

Let us examine what ether restrictions we have placed on the 

(ni - mpi) by making the sample mean and standard deviation serve 

as the population parameters. In determining the population mean 

we notice that approximately 

, 1$ 1 1( 

ill = 2 ai Pi = - ~ai ( mp i ) r- , rn , 

, 
where ~1 is the theoretical lst moment about the origin, and ai 

LL'l is the class mark of t he ith class. Note that /-- would be exactly 
1( 

equal to ~ aipi when the pi are given and the distribution is 

discrete. By demanding that the sample mean x serve as the popu-

lation mea n, we 
1( 

~?ai ni 

i.e., 

have 

= 



lü 

( 5) 

Hence we have placed another restriction on the difference (ni - mpi). 

Further, if we wish the standard deviation of the theoretical dis-

tribution to agree with that of the observed distribution, we should 

have, besides the condition x=;"~' which is equivalent to (5) , 
, 

/""2 
, 

where j'-
2 

is 

m"" 
2 

= 

the theoretical second moment about the origin and 

1 /( 2 
= rn f ai ni. 

Notice , however, that approximately 

= = 

This gives 

(6) 1_ a 2 
1 i 0 

In all, we have placed three restrictions on the (ni - mpi). Hence, 

sin a problem of this type would then be k- 3. 

Note that all three equations, (4), (s), and ( 6) , are linea r 

and homoseneous in (ni mpi). By extension, it can be seen that 

this is 6enerally true of all restrictions where parameters of 

the theoretical distribution are derived from the observed data. 

Thus we see the precise relationship between degrees of freedom 

and linear, homo6eneous restrictions in (ni - mpi). The result 

is s iven in the followinz rule : The number of deg rees of freedom, 

s, equals k - q,where k is the number of classes and q is the num­

ber of linear, homogeneous restrictions in (ni - mpi) which arise 

in making parameters of the theoretical distribution agree with 

the parameters of the observed data. 

Now we shall ~xp lain why the parameter s present in (1) is 

called the number of degrees of f reedom. We shall prove in the 
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next section that if the number of degrees of freedom is s, the 
v.t 

variable defined by (3) follows the ~ distribution with para-

meter s. 

!III: Greenhood's Derivation of the )(_~, Test of Goodness of Fit 

We have said that a close approximation to the ratio P may 

be reached by theoretical methods. We now proceed with a theoreti-

cal approach to the determination of P. Let us suppose that we 

are given a set rn of observed data [v1 , v2 , ... ,vk] and that we 

wish to discover how unusual a sample our observed data is with 

respect to the theoretical frequencies mp1 , mp2 , . . mpk' where 

the pi are known from a priori considerations. That is, we want 

to find P for the set [v1 ~ ... , vk]. We know that the exact proba­

bility of getting the sample [n1 ~ ... ,nk] is given by the multi­

nomial expansion 

( 7) 

If we now think of all the different possible samples [n1 , ... , 

nk] or [nk] for short, that might be drawn, we can find for each 

sample, from ( 7 ~ the exact probability p[nk] as s ociat ed with it. 

Obviously , unusual samples will have comparatively small proba­

bilities, while usual samples will have larger values of p [nk]. 

We shall s ee t hat the value of p [nk] is connec ted wi t h the 

Vall'e of -v .t 1 b f la ( 3) A ~ as g ven y ormu . [Compare formula ( 13 ).] 

It is intuitively obvious that the sma ller the value of p[nk], 

the larger the va lue of 

v.t samples for which ~ 

-v& 
~ To de t ermine the proport ion of 

y~ is larger than a g iven value ~~ we 

cons i der t he specifie sample [vk], wi t h the corre sponding val ue of 

-y_'- equa l to 'X-! , and try t o de te rmine the proporti on of 
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samples whose probability of occurrence, p[nk], is less than p[vk] 

to the total number of samples. 

Let us give concrete expression to this connection between 

values of )lL and values of p[nk]. Having determined P to be 

the ratio of samples whose probability of occurrence is less than 

p[vk] to the total number of samples, we need to examine the mul­

tinomial distribution function given in (7). We know that the 

point binomial 

( 8) [pi + ( 1 - pi )J rn 

gives the distribution of the probabilities associated with the 

number of observations falling into the ith class , and that function 

(7) is the combination of k distributions like (8), with each (8) 

along a different axis. SinGe it is impossible to picture ( 7 ) in 

the general case we shall content ourselves with picturing the 

three-dimensional frequency surface corresponding to k = 2. The 

three-dimensional surface corresponding to k = 2 resembles a 

mountain rising out of a plane. A plane parallel to the base plane 

intersects the f requency surface in a contour ellipse approxi­

mately. We re we to projec t the surface ont o the plane, all the 

points tha t lie wi t hin the e llipse would have probabilitie~ greater 

than points on the ellipse, while all the points lying outside the 

ellipse would ha ve smaller probabilitie:;;. Letting the probability 

of the points lying on the elli pse be p [v1 , v2 ], then a l l points 

with smaller probabilitie~p[n1 , n2 J ~ p[v1 , v2 J, lie outside the 

ellipse. Obvious ly , different-sized ellipses correspond to dif­

ferent gi11en p [v1 , v2 ]. \r.Je can, by an appropri ate transformat ion , 

chan~e the ellipses into circles with a common center lyin~ directly 

beneath the peak of the f r equency surface. By doinz this, we can 
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express the region where p[n1 J n2 J is smaller th~n a certain value 

p[v1 J v2 ] as a function of the radius of the circle corresponding 

to p[v
1

J v
2

]. 

By extension to the case of the arbitrary kJ we haveJ instead 

of contour ellipses) ellipsoids. The transformation would give 

us hyperspheres. Different values of p[vk] now correspond to 

different layers of a k-dimensional ellipsoid. Let us denote the 

particular layer that corresponds to the p[vk] by SP. 

From this picture we now have the ratio P expressed by 

' ( 9 ) p = 

where the upper summation is over the outside of the surface Sp 

and the lower summation is over the entire space. HoweverJ we 

should note here that both summations in (9) must be confined to 

points that satisfy the restriction imposed by (4) and other linear 

restrict ions i f they are present. 

By Stirlin::;'s approximation for lar:::;e factorials we have 

p[nk] 
rn! nl n2 

= nÎ ! n ;T-:--=-:-nk ! pl p2 

m+l/2 -rn 
m e f2rr. 

n 1+1/2 n 2+1/2 nk+l / 2 
pl p2 pk 

(10) 

To make the transformation which will reduce our ellipsoids 

to a hypersphere with center at the originJ we use 
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or 

(11) 

Substitutins (11) for ni in the general term of (lo),which is 

we get 

(
mpi)ni+l/2 

ni "' 

= 

= 

(

mpi +Xi vmpi) --mpi-xi yrnpi-1/2 

mpi 

x . --mpi-xi1mpi-l/2 

+ Vm~i) 
as the general term which we shall call hi. 

By usin3 the .expansion 

log (l+x) = 

.. 

we perform the following transformat ion on h1 . We tem ) orarily drop 

the subscript i for convenlence of notation. 

h 
x ) --mp-xVffiP-1/2 

+-
Vmp 

( 
x )--mp-x~-l/ 2 

loc:; h = log 1 + - . 
Vmp . 

-loc; h = (mp + x~mp + 1/ 2) log ( 1 + ...lS._) 
tmp 

= .. ) 



- loz; h 

where 

B 

·=> x3 x~ 4 x = xvmp --+--- + .. 2 . + x 

4 
+ x 

Jmp 

2 

- ... + 

x2 
= x(ffi'p + + B 

2 

2 x x = - --- + 
2V'ffip 4mp 

4mp 

x ----+ .... 
2 mm 4mp 

3 4 x x . - --- + 
ô ~ 12mp 

15 

2Vl'I'!P 

We can neglect B sin ce x is small with respect t vmp. Therefore 

log h -- xvmp 
x2 

+ 2 · 

- x vmo-l/2x 2 
h N e ~ 

Substituting this result in (lo) we get 

( 12) 

From (11) we have 

~xi ~mpi = t (ni - mpi) 

which equals zero by restriction ( 4) . Thus ( 12) reduces to 

1 

where 

Furthermore, since 

e 

2 r 
2 
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2 y(. 
it is evident that r is the ~ of the Chi-Squ re test defined 

in ( 3) . 

We have shown, through proper approximations and transforma- r2 

2 tions, that p(nk] can be approximated well by a co stant times e 

i.e., 

(13) 

2 y~ 
where r is our familiar ~ defined in (3). We also know that 

the volume over which we wish to sum, in the num of ( 9) , is 

outside of the sphere SP, whose radius is given 

2 2 
(v 1 --mp l) (v k -rn pk) 

= + . . . + 

The last approximation in our proof is to replac the discrete 

summations in (9) by definite integrais. Howeve we have already 

noted that both summations in (9) must be confin to points that 

satisfy any restrictions that exist such as (4), (5) and ( 6). Let 

us investigate what effect such linear,homogeneo s restrictions 

would have on the space over which we wish to in egrate in order 

to determine P. 

Let us begin by considerin[; our three-dimen ional fre.quency sur-

face. The height of the ordinate erected at any point in the plane, 

say (x1 ,y1 )~ gives the probability that such a co bination of events 

will occur. If we think of our point as being f ee to move over 

the x,y-plane, the height of the ordinate erecte over the point 

increases or decreases as it moves , giving the e act probab~lity 

for ever y point in the plane . : 

Now suppose that we are interested only in ~he probabilities 

1 

1 
1 
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of a certain set of the points on the plane, say hose points for 

which the sum of the coordinates is 10. That is, we restrict our 

movement to only those points which lie on e x + y = 10. 

Suppose that, in addition, we specify that interested only 

in those points which satisfy the condition 3x - r = 14. Thus, 

we are only interested in the probability of the oint x = 6, y = 4, 

or the intersection of the two lines x + y = lü d 3X y = 14. 

We note that we started with a plane over w ich we could move, 

but by imposing the linear restriction x + y = 1 , our space was 

reduced to aline. Similarily, by imposin3 two restrictions, 

our space was restricted to a single point. We ave, for every 

linear restriction, stepped down one dimension t e space in which 

we can move. In zeneral, this is true no matter how many dimen-

sions has the space we are in. We have insisted that the restric-

tions be linear for the following reason. Linea equations are 

lines, planes, or hyperplanes while higher-power d equations are 

curves, curved surfaces and curved hypersurfaces If we change 

from a three-space to a two-space curved surfac , we have stepped 

down a dimension, but we are now moving over a h ghly complicated 

curved surface as compared with a flat plane . R calling that the 

next step in our proof involves inte3ration over a region similar 

to the one on which we are now movingJ it is evi if we 

are to integrate over curved hypersurfaces, we rn st use highly 

complicated line or surface integrals. Hence we insist on linear 

restrictions. 

However, we have seen t ha t restric tion (4) ,/ and any others 

that migh t be present, are, in general, linear ~ homogeneous in 
' 

(ni- mpi). Let us see what effect the homo2;ene~ty has on the 
1 
1 

1 

j 

1 



18 

space over which we are movin0. Again consider a sphere ln three-
~ 2 2 2 dimensional space, radius r, equation x- + y + z = r . If we 

restrict our movement by sorne condition ziven as a linear homo-

geneous equation, we are in effect passing a plane through the cri­

gin which intersects our sphere in a circle x• 2 + y• 2 = r 2 . In 

other words, we move down one dimension in the general family of 

hyperspheres, and stlll keep the same important constant r. If 

the restrictions had not been homogeneous, i.e., if the plane had 

not passed throuzh the origin yet still lntersected the sphere, 

the intersection would still have glven a clrcle, but its radius 

would not have been the same r. 

Generalizin6 the above, we have: The intersection of an n-

dimenslonal hyperplane throu~h the ori~ln and an n-dimensional 

hypersphere with origin as center and radius r, is an n-1-dimen-

sional hypersphere with radius r. 

Thus we conclude that the effect of lmposing q linear homo-

heneous restrictions in (n1 - mpi) on our summation in (9) is to 

re strict the space o·rer which we can sum to s = k - q dimensions, 

while at the same tlme, not distorting the important constant r. 

Let us procede with the final step ln our proof, i.e., re­

placing the discrete su~nations in (9) by definite integrals. From 

(13), the inte6ral whlch we seek is of the form 

(14) KhY-. e 

where dV is an element of volume in s-dimensional space. The 

cons tant K takes care of the cons tant multipl ier in (1 3 ) plus any 

factor involved when we chan3ed from an element of volume in the 

variables [nk] to an element of volume in [xk]. 
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By replacin,2; the su.rns in (9) by definite inte.:;rals over the 

proper limits (9) becomes 

(15) p = 

where the constant K has cancelled out and the integral in the 

denominator is over the entire s~imensional space. 

Let us see how our element of volume in the inte,5ration, dV, 

can be expressed more explicitly. As the intes rand is a function 

of r alone, it would be appropriate to take dV as the volume be-

tween two hyperspheres of radius r and r + dr. In three space an 

element of volume, dV, between two spheres of radius r and r + dr 

would be . 4~r2dr, the surface of the sphere multiplied by dr. In 

two~imensional space dV is 0iven by 2~rdr. In general, dV is a 

constant multiplied by r raised to a power one less than the number 

of dimensions of the hypersphere. Hence 

(16 ) dV = Grs-ldr 

Substitutin0 (1 6 ) in (15) we zet 

i:-1 2 r 
2-

dr 
~ e 

(17) p = j:s-1 r2 
2 dr e 

0 

where, once again, the constant t erms cancel out. 

Let u s calculate the va lue of the denominator. Usin0 

= /

00 

m-l z 
t> 

e-z dz 
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2 
and letting z = 

y , we have 2 

!(y:) m-l y2 

{(m) e 2 dy = y 

Letting m s th en = 2 ) 

lw s 
? 

s - 1 - 1 z:. 
f( ~) (è) 2 (y2)2 2 = e y dy 

D 

-1 /~ 2 s s-2 y 

( ~) 2 2 
= y e y dy 

j""s-1 2 y 
1 - 2-

= ·u e dy s-2 v 

-2 ~ 
2 . 

The re fore 

/~-1 2 s-2 r 

(18) 
2-

dr (2) ~ r ( ~) e = 
0 

Substituting (18) in (17) we get 

s-2 f""r s-1 2 r 
p __ J_ (~) ~ e 2 dr = r ( ~) Xo 

To arrive at our final frequency curve : the 

stitute first x = r 2 , which gives 

)é ~ -curve , we sub-

( 19) 

p = 
1 ( 1 ) ~ ( 1 )_

1/oc:as;l ----- ~ - x e 
r(~) 2 ~~ 

-r~~) m ~ i.""xs;2 e- ~ dx 
XQ 

= 

x 
2 1 -x 2 

1 
2 dx 

Therefore, we see that the proportion of samples having )(t 
XtD greater than a given value is obtained by the integration of 



Xto the frequenc;<.r func ti on gi ven in ( 1) from 
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to ce. Hence it 
~t. is proved that the distribution of ~ as defined in (3), is 

given b~r (1). 
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Part Two 

A Ri.r;orous Development of the Chi-Square 

Test of Goodness of Fit 

ÇI: The Normal Distribution in the Space of n-Dimensions 

If 

where Q(x1 , ... , xn) is a definite positive quadratic form of matrix 

A, then, with the proper choice of d, f(x1 , ... ,xn) defines a fre­

quency function inn-dimensions. The distribution with that fre-

quency function is called the normal non-singular distribution. 

We may write 

(20) Q( x 1 , ... ,xn) = X'AX =! Aijxixj 2. o , 
'l""' 

where 

and X' denotes , as usual, the transpose of the matrix X. It is well 

known that there exists an orthos onal transformation, X = CY, 

which reduces X'AX to the dia6onal form 

(21) Y'KY = 
,., 2 
~ l{iyi 

1 

where 

0 
K = 

If ( 2 0) i s definite positive , then (21) will be de finite positive, 

s ince t hat pr operty i s obvious ly invariant under any non- singular, 

linear transfor mation. It follows tha t all the ~i are positive. 
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Also, since 

K = C 'AC 

then 

where, in a general way, we will denote the determinant of a matrix 

D by !Dj. 

To determine d, and for future purposes, i t is convenient to 

find the moment-senerating function corresponding to f(x1 , ... ,xn), 

defined by 

T'X - -X'AX 1-j_- l 
( 2 2 ) ~ ( t 1 , . . . , t n ) = d . . . e 

2 
dx 1 . . . dxn 

-oca -CIIII:> 

To determine (22), we make the above considered substitution, 

X = CY, and also we replace the vector T with a new vector U by 

means of the contragredien t substitution, T = (C') 7 1u, which 

reduces t oT = CU, since C is orthogonal. We obtain 

T'X= (CU) 'CY = U'(C'C)Y = U'Y 

and, as we have seen, 

X•AX = Y'KY . 

Consequently 

T'X - ~ X'AX = U'Y - ~ Y'KY 

Hence the moment-0eneratinz function, with the t's expressed 

in terms of u's, becomes 
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since, f. or a ) o, 

J- l 2 

e
bx - 2 ax 

dx = -- ... 
Nm·r 

2 
2 1f. 

-~ Illjl 2 
= u. 

llj J 
1 

= U'K-1U = U' ( C 'AC) -lu 

= U '{C-1A -le )U 

= U•(C'A-1C)U 

= (CU)' A-1CU 

= T'A-1T 

Hence we 3et 

Substitutins T = o, we obtain 

n 

<P< 0' ... '0) 

? 

= 
(21t): d = l 

ViAl ' 

he nee 

d. = 

The re fore 
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{iAi l 
Q(xl' ... , xn) 

(23) f(x1 , ... ,xn) 2 = ---- e n 
(21C)2 

m l X'AX 2 
= e n 

. 0 
(21C ) '-

and 

( 24) 

\Ile shall prove now that if the variables x 1 , ... .. xn follow a 

non-singular normal distribution with the frequency function 

d = 

l x. 
2-4 Ai .xix. 

t1Jsf J J 

then the expression 

follows the Chi-Square distribution wi t h n de: rees of freedom. 

The moment-generating fun c tion of Q(x1 , ... ,xn) is given by 

(25) f œ ic:o Q ~ - } Q, 
= . . . e d e ~ 

-co -oo 

1 

1 c:IO j«J -2 ( l-2&) Q 
= . . . de -- -·· 

For & < ! 
2

, ~A . (l-2&)x.x. is a definite positive quadr a t ic form. ~ iJ l J '•J 
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It has been found, in the determination of the constant d, 

that 

= 1 

Hence 

= 

Consequentl:.r 

= 

where 

= (l-2e)A 

and 

Substitutine this result in (25), we find 

n 

<)l(e) = (l - 2e) 2 

which is the moment-generating f unction of the Chi-Square distri-

bution wi t h n degrees of freedom. Hence t he theorem is proved. 

9II: The Limiting Distribution of the Chi-Square Variable by 

the Method of Characteristic Functions 

Suppose we have, as before, a population in which each element 

belongs to one and only one of the classes c1 , c2 , ... , Ck. Let 

p1 , P2 , ... , Pk' t, Pt = 1, be the probabilities as soc iated with 

c1 , c2 , ... , Ck respectively. In a sample of size n,let n1 , ... ,nk 

-,J 
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be the numbers of elements falling into c1 , ... ,Ck respectively. 

We have seen that the probability law of the ni is given by 

We have E(ni) = npi. In view of the Central Limit Theorem, it is 

clear that the limiting distribution, as n-tC)C), of each of the 

quantities 

i = 1, ... ,k 

is the normal distribution with mean 0 and standard deviation 1. 

We shal l now investigate the limitins joint distribution of the 

set 

i = 1, ... ,k 

1( 

Since ~xi = o, only k - 1 of t he x i are func tionally independent. 

It is sufficient to consider the limiting joint distribution of 

the first k- 1 of the xi. 

We know that t he moment-genera ting function of x 1 , ... , xk-l' 

say ~( e-1 , ... , e-k-l ), is equal to qi( e-1 , ... , e-k-l, o), where ~ e-1 , ... , ~) 
is the moment-generating function of x 1 , ... , xk. However 

= E( e t &1X1 

~ n 
P e7lf) 

k . + + ... + 
• 
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Consequently 

(26) . . . + 

Expanding each of the exponentials in (26) and taking loga-

rithms, we have 

( 2 7) 

K-1 

log ~ = -rn ~91pi + nlog {1 

Noticing that 

log (l+x) = x + IR(x) f 

where 

+ ... 

.5.. lxl
3 

+ 
3 

1 ~ = 3 1-lxJ 

we find that 

lot; ( l+x) = x 

lxi 4 
+ . 

3 

2 lxi 3 .s.. 3 

3 + o( x 

Hence we get from (27) 

K·l 

' 

2 r L 91P1 
log ~ = 1 - '·1·•91 9 jpi p j_ 

2 2 

Therefore we have 

lim ~ = 

1 1<-li. 
-2 4A J 91èj 

e ··~·' 
n-too 

. 

for 

K-1 2 
L91P1 
·-- + 

2n 

lxf ~ 
1 
2 

fD( 1 < 1 for txl ~ ~ 

+ 0( 1 ) 
Yn 

èij = 1, i=j 

= o, ifj 
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/(' 1 

We shall prove that ~ Aijei ej is a defini te positive quad-
''1:.' 

ra tic form. Considering 

~ ij ~ 2 
1~A eiej = ~ejpj 

and letting 
K·l 

; = ~ejpj 

we ha.;e 

~ i' ~ ""'2 -2 
(28) LA Jeiej = L_ p .(ej - e) ~ pke 

i,j: 1 1 J 
/(·1 

In this forrn it is evident thatZ,Aijeie. 
~J·' J 

is non-negative and 

equal to zero if and only if ê = o and ej -= e, i.e., if ej = o for 

j = 1' ... 'k-1. 

It follows, therefore, from the previous discussion that the 

limiting frequency function for the joint distribution of the 

xi is given by 
1<- 1 

(29) VIAL 
k-1 

- _21 Z Aijxix. 
e '•J"' J 

(21r)-2 

where Aij = (Aij)-1 . 

It may be verified readily, by t he multiplication of matrices, that 

. Aij = 
~ij 1 + 
pi pk 

and the re fore 

1 
(30) + 

We have seen that f-f x1 , ... ,xk-l are random variables having 

distribution ( 29) then ~Ai .xix. is distributed according to the 
,;js.l J J 

Chi-Square law with k-1 degrees of freedom . 

1 

... J 
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We now replace xi by (ni- npi)/fff in (30) , denoting the 

re sul t by X t , and we obtain the familiar expression of X t as 

seen before in (3), i.e. 

"' We wish to conclude that the limitin5 distribution of ~ is 

"' identical wi th the distribution of 1~, Aijxix j where the xi are 

distributed ac cording to (29). That is, the limiting distribution 

of the expression in (31) is the Chi-Square distribution with k-1 

degrees of freedom. To do this we prove the following theorem. 

Consider the random vector variables (X(l) x(l) x(l)) 1 ' 2 ' .. . , p J 

(2) (2) (2) . 
(X1 , X2 , ... , Xp ), ... , (X1 , X2 , ... , Xp), with the pro-

bability functions P1 (S), P2 (S), ... , P(S) and the distribution 

respectively. (We use here Cramer's terminology.) Assume that 

the sequence Fn(x1 ,x2 , ... ,xp) converges to F(x1 ,x2 , ... ,xp) 

in all non-excluded points of the latter. 1 ) Let f(x1 , ... ,xp) be 

a function which is continuous and de f ined e verywhere in the p­

dimensional space. Then the distribution furiction of the variable 
(n) (n) (n) f(X1 , x2 , . . . , XP ) converges to the dis t ribution function 

of f(X1 , x2 , ... , XP ). 

We shall give the proof only in the two-dimensional case as 

it is technically simpler. However, ~eneralization to any finite 

number of dimensions is immediate. 

We shall complete the proof by using the method of characteristic 

1) See Cramer, (Ref. 1), p. 83. 



function~ It is sufficient to prove that the characteristic 

function of f(X~n), X~n)), say ~ n(t), converges to that of 

f (X1 , X2 ), say'? (t). 

We have 
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Let K be a continuity rectangle of F(x1 ,x2). Then by the Helly­

Bray conver,3;ence theorem2) we have 

(32) = 

for every t. 

Let E be an arbitrary positive number. The continuity rec-

tan6 le K can be chosen such that 

P(K) > 1 - E 

Representing P(K) and Pn(K) as the 2nd difference it fo1lows 

that 

11m Pn(K) = P(K). 
n-,-

Consequent1y there exists a number n0 such that 

P n (KJ > 1 - 2E 

for n > n0 . 

However 

tP n (t) = t if(x1 ,x2 )t 
dPn !K• 1f(x1,x2 )t 

dPn e + e 

~ ( t) = ;: if(x1 ,x2)t 
dP /K• 1f(x 1,x2 )t 

dP e + e 

where K* = R2 - K, and 

2) See Cramer, (Re f . l) ' p. 74. 



for n / n 0 • 

ft. 
By (32), for all sufficiently 

r t e if(xl,x2)t dPn - t 
dP P(K*) 

Consequently, for all sufficiently large n, we ha ,e 

1 tf n ( t) - ~ ( t) 1 ~ 4E 

whichproves that Pn(t) converses to ~(t). 
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1 - P{K) < € 

< € 

The problem of the limiting Chi-Square distribution in the 

case where the probabilities are not known and have to be estimated 

from the sample can be treated in a similar way. Howeve~ the proof 

then is much more difficult, requiring sorne special techniques, 

and will be omitted here. The interested reader is referred to 

texts by Cramer, (Ref. 1), pp. 42 6-434, and Wilkes, (Ref. 5), pp. 

219-220. 
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