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Introduction

Iet IR TS be s independent sample values drawn from
a population of normally distributed values with zero mean and unit
variance. Then the variable
u = x2 + x2 + + x2
= X3 5 e s
2
is said to follow the J(; distribution with parameter s. Thls para-—
meter is called the number of degrees of freedom for reasons which
will be explailned later. Using the moment-generating function we
shall prove that

(1) f(u) = u e , u > 0.

Since the basic variable, x, in the population has the frequency

function
_ 2
1 - %
f(.'X'.) = n?— e 2 .
we have, for 6 < % s
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= (1 - 28) m / oo

= (1 - 28)
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And since the x, are independent, all have the same distribution

i
as the variable x. We obtain

e R

S -—
Mu(e) = Mxi + ...+ xz (e) = Mxe(e) = (1 - 26)

by the well known property of moment-generating functions.




Now it can be seen that thils is the moment-generating function
of the distribution having the frequency function defined by (1).
Indeed, the corresponding moment-generating function is given by

the formula
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Since a moment-generating function uniquely determines a dis—
tribution function,it follows that the distribution function of u
is given by (1). Henceforth we shall denote xi + xg
by )(;z. |

Let us now suppose that a population can be divided into k

+ X2
R

mutually exclusive classes and that Py is the proportion of indi-
viduals belongling to the ith class. Suppose that we select a sample
of m individuals from that population and that the sample contains

1 individuals from the first class, n, individuals from the second
class, etc. Each variable.a, follows the binomial distributlon with

n

mean mp, and standard deviation Vmpiqi , Where qy = 1l - Dy - From
the fact that the binomial distribution can be approximated well

for large m by the normal distributlion wilth mean mp, and standard

deviation VMDyqy , it follows that the variable




has a distribution which approaches the normal distribution wlth

mean zero and unit standard deviation as the size of the sample, m,

becomes increasingly large. That is, each variable Ny = mpi follows

MP319y
approximately the normal standard distribution. If we could assume
for the moment that the n, are independent, then the variable

2 2 2
(n,—mp,) (n,—mp, ) (ny —mp, )

—_— =

MP;19; P45 o Dy ay
would follow approximately the ):2. distribution with k degrees of
freedom. However, the n, are not completely independent,sincelin
repeated sampling, their sum must always be m. Thus, if k - 1 of
the ny are known, then the kth 1s necessarily already determined.
As it turns out, by modifying the above expression by omitting the
ay in the denominator, we obtain a variable which approximately
follows the )ﬁz distribution with k — 1 degrees of freedom. It
is obvious that if the py are small, omitting the Q3 will not
seriously alter the above expression.

Indeed the purpose of this paper i1s flrst to show that the

expression

(n, - mp, )=
(2) E nl pi

! mpi

follows the ‘):1 distribution with k - 1 degrees of freedom and
furthermore to consider the distribution of (2) when the Py are not
known and have to be estimated from the sample. To do this, we
shall present two independent derivations of the Chi-Square test of

goodness of fit. The first one, offered in Part One, is very
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intultive but not completely rigorous. It uées geometrical argu-—
ments and simple approximation formulae. The second derivation,
offered in Part Two, 1s based on the theory of definlite positive
guadratic¢c forms and the theory of characteristic and moment-generating
functions. However, the second derivation concerns only the case

when the Py are known.




An Intuitive Approach to the Chi-Square
Test of Goodness of Fit

5
Part One
!

§I: Presentation of the Test
Let us suppose that we have a sample of m individuals which
have been classifled into k mutually exclusive classes, and that
the observed frequency of the ith class 1is ny . We wilsh to deter-
mine whether this sample could have been obtained by random sampling
from a given parent population in which Py is the proportion of
individuals belonging to the ith class. Since the sum of the
theoretical frequencies must equal m, then mpy will be the theo-
retical frequency of the ith class.
Iet us consider the variable

A3

(n, — mp,)°
(3) )(z ) :Z; i i

7 mp

Obviously, )CL is a measure of the compatibility between the sets
of observed and theoretical frequencies. If the value of 7(‘ ob-—-
tained is small, this would indicate near agreement between the
observed and the expected frequenciles while increasingly large
values of XK* would indicate increasingly poor agreement. If
we could devise some test by which we can judge whether or not a
specific 7C} indlicates reasonable compatibility between the two
sets of frequencies, we would then be in a position to determine
whether or not our set of observed frequencies has been obtained
in random sampling from the given population.

As an example, suppose that a dle 1s tossed 24 times and that
we set up a frequency distribution of the results. If the die is

unbiased, each face has the probability 1/4 of occurring in a single




roll. We would then get the following set of observed,(ni),and

theoreticals(mpi),frequencies:

Face: 1 2 3 4 5 6
Observed: 2 5 5 4 4 3
Theoretical: 4 4 4 4 4 4

Iet us calculate X% as defined by (3).

)2

X* - (2~4)° L, (5=4)" | (6—4)° + (a-2)2 N (2-12)° + (3-4)°
4 4 4 4 4 4
= 2.5
If we could determine that this value of X* showed reasonable
compatibility between the two sets of frequencies, we could then
assume that our set of observed data 1s not unusual and could have
been obtained by rolling an unbiased die.

[let us 1imazine that we perform this experiment many times and
calculate the )(1 value corresponding to each set of observed |
data. The X?* values can take any value in the range 0 )(z £ oo
Some of our values of )(1 will be smaller than 2.5, some larger.
If we were to classify these values of K* into a relative fre-
quency table, this table would tell us approximately into what
percentage of such experiments various ranges df values of K%
could be expected to be obtained. In particular we could determine
what percentage of such experiments would give }(z values greater
than 2.5. If this percentage were large, we could assume that
the sets of frequencies were reasonably compatible. 1l.e., our
observed set was not unusual. If, however, that percentage were
small, i.e., that there are hardly any other values of X* which

are larger than our observed 2.5, we would conclude that the




observed frequencles were not compatible with the frequencies
expected for an unblased die, and hence conclude that our dle was
biased. Thus we have for our "test of compatibility" the ratio
of the number of all samples whose )Lz is greated than 2.5 to
the total number of samples. We denote this ratio by P.

In the above discussion we have defined a certaln ratio P by
means of which we can test the compatibility between sets of ob-
served and theoretical frequencies, i.e., a means by which we can
determine the unusualness of our observed set as compared to the
expected set, and we have proceeded empirically to detefmine the
value of this ratio, P, by determining approxlmately the frequency
distribution of )4‘ for one particular problem. It is possible,
however, to obtain an approximation to the frequency function of )(Z
in the general case by theoretical methods. Indeed, we shall show
that the frequency function defined by (1) i1s a close approximation
to the frequency distribution of the )1Q given by formula (3)
when m is large. Hence, we are able to determine values of P for
all values of )ﬁ‘ and these values of P are exactly what we find
when we employ the )éz tables.

§II: The Number of Dezrees of Freedom

Iet us continue the example with the dle, and determlne the
value ol P from the )ﬁz table. To find the value of P corres—
pondlng to )ﬁl = 2.5 we need also to know the "number of degrees
of freedom" which we will denote bj s. The number of degrees of
freedom, s, 1s defined to be

s =k —-q
where k is the number of classes in the frequency distribution and
q 1s the number of restrictions placed on the difference between

the observed and theoretical frequencies, (n1 - mpi). In the probiem




of the die, there are six classes corregsponding to the six faces
on the die, hence k = 6. In determining the theoretical fre-
quencies corresponding to each class 1t had to be assumed that
the sum of the theoretical frequencies was equal to 24, the total
of' the observed frequencies. In effect, what we have assumed is
that

2 (ny) = i(mpi
which transposed 1s

i(nfL - mpi) = 0.
Thus, in this example, we have placed a restriction on the

(n, - mpi) that theilr sum from 1 to 6 must equal zero. Therefore

1
the number of degrees of freedom in our problem 1s s =6 — 1 = 5.
Looking in the tables with )Cz =2.5and s = 5, we find P = 0.77,
which tells us that 77% of all the other samples would have a

Y2 > 2.5. Thus we can conclude that our sets of observed and
theoretical frequencies are compatible and therefore our dle was

not bilased.

In the example of the die, we knew 1/6 to be the probability
for a given face to appear on a die from purely é priori consi-
derations. We then obtained the theoretical frequencies for each
class by determining the mp; -

Suppose, however, that there were no a_priori considerations
given by which to determine the theoretical probabilities assoclated
witﬁféﬁass and that these probabilities must be determined from
the sample. Thils problem of determining the pi 1s usually done
by the process of "fitting" a hypothetical distribution in the popu-
lation to the observed data. Suppose, ifor example, that our sample
has been derived from a supposedly normal population. Then to "fit"

a normal curve to the data we find the sample mean and standard

R



deviation, and use them as the corresponding parameters in the
equation of the normal curve. We then can determine the Py by
finding those areas under the normal curve which correspond to the
class intervals of the sample data. We then test the goodness of
fit of this curve to the observed data by calculating yf' as de-—
fined in (3), establish what the number of degrees of freedom is,'
and read the value of P from the tables.

To determine the value of )(z we must agaln assume that the
sum of the theoretical frequencles is equal the total number of
observed frequencies, 1.e.

(¢ 5 (ny —mpp) - 0.

It is evident that this is an assumption that 1is essential to the
calculation of )ﬁz as defined by (3) in all cases. Hence, we
shall always have lost at least one degree of freedom by the above

restriction.

Let us examine what other restrictions we have placed on the
(ni - mpi) by making the sample mean and standard deviation serve
as the population parameters. In determining the population mean

we notice that approximately

»
A1 " ﬁaipi - % Say(mpy)

where ,A41 is the theoretical 1lst moment about the origin, and a,
is the class mark of the ith class. Note that /443 would be exactly
equal to ‘ﬁ,aipi when the p; are oiven and the distribution is
discrete. By demanding that the sample mean X serve as the popu-

lation mean, we have

X K
;aini = IZaimpi

S~
=11
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(5) jfai(ni - mpi) = 0.

/

Hence we have placed another restriction on the difference (ni - mpi).

Further, if we wish the standard deviation of the theoretical dis-
tribution to agree with that of the observed distribution, we should

have, besides the condition X =//Li, which is equivalent to (5),

I'd

o = My
/
where /“2 1s the theoretical second moment about the origin and

3.2
’ain

=
1
F

q-
Notice, however, that approximately
K

IR S
This gilves
(6)  £a%(n ~my) = 0
In all, we have placed three restrictions on the (ni - mpi). Hence,
s in a problem of this type would then be k - 3.

Note that all three equations, (4), (3), and (5), are linear
and homogeneous in (ni - mpi). By extension, 1t can be seen that
thils 1s generally true of all restrictions where parameters of
the theoretical distribution are derived from the observed data.
Thus we see the preclse relationship between degrees of freedom
and linear, homozgeneous restrictions in (ni - mpi). The result
is ziven in the following rule: The number of degrees of freedom,
s, equals k -~ g,where k 1s the number of classes and q 1s the num-
ber of linear, homogeneous restrictions in (ni - mpi) which arise
in making parameters of the theoretical distribution agree with
the parameters of the observed data.

Now we shall =¥nlain why the parameter s present in (1) is

called the number of degrees of freedom. We shall prove in the
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next sectidn that if the number of degrees of freedom 1s s, the

variable defined by (3) follows the Jﬁz distribution with para-

meter s. .

$III: Greenhood's Derivation of the 7(f Test of Goodness of Fit
We have sald that a close approximation to the ratio P may

be reached by theoretical methods. We now prbceed with a theoreti-

cal approach to the determination of P. ILet us suppose that we

are given a set m of observed data [vl, v .,vk] and that we

o9
wish to discover how unusual a sample our observed data 1s with
respect to the theoretical frequencies mpy, MPs, - . . MP, where
the py are known from a_priori considerations. That is, we want
to find P for the get [vl,...,vk]. We know that the exact proba-
bility of getting the sample [nl,...,nk] 1s given by the multi-

nomial expansion

n n n
: n' 1 2 k
(7) plnyn,...n ] = pln, ] = A thy T Py P - - - Py

If we now think of all the different possible samples [nl,...,
nk] or [nk] for short, that might be drawn, we can find for each
sample, from (7), the exact probabllity p[nk] associated with it.
Obviously, unusual samples will have comparatively small proba-
bllities, while usual samples will have larger values of p[nk].

We shall see that the value of p[nk] is connected with the
value of )Lz as given by formula (3). [Compare formula (13).]

It 1s intuitively obvious that the smaller the value of p[nk],

the larger the value of 7(‘ . To determine the proportion of
samples for which )ﬁz is larger than a given value )Li we
congider the specific sample [Vk], with the corresponding value of

w* equal to )(: , and try to determine the proportion of
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samples whose probability of occurrence, p[nk], 1s less than p[vk]
to the total number of samples.

Iet us glve concrete expression to this connection between
values of 7Lz and values of p[nk]. Having determined P to be
the ratio of samples whose probability of occurrence 1is less than
p[vk] to the total number of samples, we need to examine the mul-
tinomial distribution function given in (7). We know that the
polnt binomial
(8) fog + 1 - oy )f
gives the distribution of the probabillities associated with the
number of observations falling into the ith class, and that function
(7) is the combination of k distributions like (8), with each (8)
along a different axis. Since it 1s impossible to picture (7) in
the general case we shall content ourselves with picturing the
three—-dimensional frequency surface corresponding to k = 2. The
three—dimensional surface corresponding to k = 2 resembles a
mountain rising out of a plane. A plane parallel to the base plane
intersects the frequency surface 1n a contour elllpse approxi-
mately. Were we to project the surface onto the plane, all the
points that 1lie within the ellipse would have probabilities greater
than points on the ellivse, while all the points lying outside the
ellipse would have smaller probabllities. Letting the probability
of the points lying on the ellipse be p[vl, v2], then all points
with smaller probabilities,p[nl, n2] < p[vl, v2],lie outside the
ellipse. Obviously, different-sized ellipses correspond to dif-
ferent ziven p[vl, VE]. We can, by an appropriate transformation,

chanze the ellipses into clrcles with a common center 1lying directly

beneath the peak of the frequency surface. By doing this, we can
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express the region where p[nl, n2] i1s smaller than a certain value
p[vl, v2] as a function of the radius of the circle corresponding
to p[vl, ve].

By extension to the case of the arbitrary k, we have, instead
of contour ellipses, ellipsoids. The transformation would give
us hypersphefes. Different values of p[vk] now correspond to

different layers of a k—dimensional ellipsold. Iet us denote the

particular layer that corresponds to the p[vk] by S

D
From this plcture we now have the ratio P expressed by
; 2 oln,]
(9) P = - —
2pln;]

where the upper summation is over the outside of the surface Sp

and the lower summatlion is over the entire space. However, we
should note here that both summations in (9) must be confined to
points that satisfy the restriction imposed by (4) and other linear
restrictions 17 they are present.

By Stirling's aﬁproximation for larze factorilals we have

oln ] - m! o1 pne pnk
= : - s e e T
k R 2 k
! / 2
mm+1/2 e—m - n,+1/2 n,y+1/2 Onk+l/2
1 P, P, P
- nl+1]é n2+1/2 ng+1/2

n n

-Nn,-N,—...-N k/2
12 ok
1 - P e (2n) \}plpz...pk

n.+1/2 n,+1/2
1 mp,\ 17 mp,\ 2 7’ mp,. Oy

————— ——

n

(10)

(Vomm Dbs-- D, \ "1 N, n

To make the transformation which will reduce our ellipsoids
to a hypersphere with center at the origin, we use

ny = mpy + ;iVmpi

+1/2
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or
n, — mp
(1) x, - 2
v mpi
Substituting (11) for ny in the general term of (10),which.is
(mpi>ni+l/2
—HI X
we get t
(n@i>ni+l/2 ( mp, ) mpi+xiVmpi+1/2
ny mpi+xivm§i
mp., +%, VD, \ TPy *; Dy -1/2
I Bl S Sl
mo .

—mpi—xifﬁﬁi—l/z

%4
G
Vi

as the general term which we shall call hi'

By usinz the expansion

log (1+x) =

we perform the following transformation on hi’

the subscript 1

o)
1

loz h

-loz h

2 3 4

O S
3 4

*= =z
We temoorarily drop

for convenience of notation.

1+ -

Vb

(1

) -mp—xXVmp-1/2

+  em—

vmp

-mp—-xVAp~1/2
X
log )

(mp + xVTp + 1/2) log (1 + o
(mp
(o X x° x> x*

+ XYWD + 1/2) - + —
VIip  2mp i

)




2 3 4

oxp - XX,
2 3 VD 4mp
4 2
PR S . X _ X +
3mp 2 YD 4mp
X2
— loz h = xymp + =— + B
el
where
2 3 4
B = = S . + =
2 Vmp 4mp 5 ¥ip 12mp

15

We can neglect B since x 1s small with respect tgq Vmp. Therefore

2

— loz h = xVWp + §3_
~ —xVﬁ6—1/2x2
h =e § .

Substituting this result in (10) we get

1 —l/2(x§+. . X

(12) pln, 1 & e

k-1
(VZ27rm) VEngTi.pk
From (11) we have

" 5
in‘ﬁ_n?i = (ni —mpi)

which equals zero by restriction (4). Thus (12)

. P2
1 - =
~ 2
pln,.l = e
k-1
(VZrm) Vplpe'...pk
where
r2 = x2 + X2 + + X
I 2 k

Furthermore, since

2
3 = ™Py)

mpi

(n

reduces to




of the Chi-Squ

2 is the ):L

it is evident that r
in (3).
We have shown, through proper approximations

tions, that p[nk] can be approximated well by a co

i.e.,
A2
(13) pln,] = ce 2
k
2 2 '
where r~ is our familiar ): defined in (3). We

the volume over which we wilsh to sum, in the nume

outslide of the sphere Sp, whose radius 1s ziven by

2 2
X (Vl—mpl) (Vk—mpk)
o = —————————— + ——
Py Py

The last approximation in our proof 1s to replacs
summatlions in (9) by definite integrals.
noted that both summations in (9) must be confine
satisfy any restrictions that exist such as (4),
us investigate what effect such linear, homogeneoy
would have on the space over which we wish to int

to determine P.
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rre test defined

and transforma-— r2
~ 5

nstant times e

b

also know that

rator of (9), is

F .
.

the discrete

Howevey, we have already

d to points that

(3) and (6). IlLet

is restrictions

fegrate 1in order

ILet us begin by considering our three-dimengional frequency sur-—

face. The height of the ordinate erected at any

point in the plane,

say (xl,yl),gives the probability that such a comblnation of events

will occur. If we think of our polnt as being r
the x,y-plane, the height of the ordinate erecte

increases or decreases as 1t moves, glving the e:

ree to move over
i over the polnt

xact probability

for every point in the plane.

Now supposé that we are interested only in #he probabilities

|

|

|




of a certain set of the points on the plane, say

which the sum of the coordilnates is 10. That is,
movement to only those points which lie on the 11

Suppose that, in additlon, we specify that we are

in those points which satisfy the condition 3x -~
we are only interested in the probability of the

10 &

or the intersection of the two lines X + ¥

We note that we started with a plane over wh

but by imposing the linear restriction x + ¥y 10

reduced to a line. Similarily, by imposinz two 1
our space was restricted to a single point. We h
linear restriction, stepped down one dimension th

we can move. In zeneral, this 1s true no matter

sions has the space we are in. We have insisted
tions'be linear for the following reason. Lineapy
lines, planes, or hyperplanes while higher-powers
curves, curved surfaces and curved hypersurfaces
from a three—space to a two-space curved surfacd
down a dimension, but we are now moving over a hi
curved surface as compared with a flat plane. Rg
next step in our proof involves intesration over
to the one on which we are now movingzg, 1t 1s evig
are to integrate over curved hypersurfaceé, we my

complidated line or surface integrals. Hence we

restrictions.
However, we have seen that restriction (4),

that might be present,are, in general, linear an

17

those polnts for

we restrlcet our

ne x + y 10.

Interested only

v = 14. Thus,
point X = 6, y = 4,
nd 3x —y = 14.

ich we could move,
, our space was
inear restrictions,
ave, for every

e space 1n which
how many dimen-

that the restric-

P equations are

d equations are
If we change

>, we have stepped
lohly complicated
rcalling that the

a region similar

lent that if we

st use highly

insist on llnear

and any others

i homogeneous 1n

(ni - mpi). Let us see what effect the homogene

ity has on the
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space over which we are moving. Agaln consider a sphere in three-
dimensional space, radius r, equation x2 + y2 + 22 = re. If we -
restrict our movement by Some condition ziven as a linear homo-—
geneous equation, we are in effect passing a plane through the oril-
gin which intersects our sphere 1in a circle x'2 + y'2 = r2. In
other words, we move down.one dimension in the zeneral family of
hyperspheres, and still keep thé same important constant r. If
the restrictions had not been homogeneous, i.e., if the plane had
not passed throggh the origin yet still intersected the sphere,
the intersection would still have given a circle, but 1ts radius
would not have been the same r.

Generalizing the above, we have: The intersection of an n-
dimensional hyperplane through the orizin and an n—dimensional
hypersphere with origzin as center and radius r, is an n-l1-dimen-
sional hypersphere with radius r.

Thus we conclude that the effect of imposing q linear homo-—
heneous restrictions in (ni - mpi) on our summation in (9) is to
restrict the space over which we can sum to s = k — q dimensions,
while at the same time, not distorting the important constant r.

Iet us procede with the final step in our proof, i.e., re-—
placing the discrete summations in (9) by definite integrals. From
(13), the integral which we seek 1s of the form

2

(14) K e av

pzy;

where dV 1s an element of volume in s—dimenslonal space. The
constant K takes care of the constant multiplier in (13) plus any
factor involved when we changed from an element of volume in the

variables [nk] to an element of volume in [Xk]'
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By replacinz the sums in (9) by definite intesrals over the

proper limits (9) becomes

>0

where the constant K has cancelled out and the integral in the
denominator is over the entire s-dimensional space.

Iet us see how our element of volume in the integration, 4V,
can be expressed more explicitly. As the integrand is a functilon
of r alone, it would be appropriate to take dV as the volume be-
tween two hyperspheres bf radius r and r + dr. In three space an
element of volume, dV, between two spheres of radius r and r + dr
would be‘4nr2dr, the surface of the sphere multiplied by dr. 1In
two-dimensioﬁal space dV is given by 2xrdr. In general, 4V 1s a
constant multiplied by r raised to a power one less than the number
of dimensions of the hypersphere. Hence

s5—1

(16) av = Gr dr

Substituting (1s) 1in (15) we get

2
_r_
x Ps_l e 2 dr
(17) P = a_
o« 2
-
pS—L e 2 dr

where, once azain, the constant terms cancel out.

Iet us calculate the value of the denominator. Using




2
and letting z = %T , we have
o0
5 m=1 _ﬁ
[ (m) = Ll e %y
(] 2
letting m = g , then
-]
S S
r(g) - (3 z "1 (522
2 - 2 v
(-
S )
= 5 g
o
o0 ye
— l Wrs—l —_2-
- s—2 v ©
2=/,
22
Therefore
. .
r s—2
-1 = 3= ~5—
(18) S r e % oar = (2)° [

Substituting (18) in (17) we get

)

—2
2

=

1 (1
2

iy

Xo

To arrive at our final frequency curve, the

stitute first x r2, which gives

(

- -]

r

ay
2
- - 4
1 2
e y dy
2
— L
e ° y dy
dy
2)
2
2
S=1 = =
e 2 dr

2
)ﬁ —curve, we

. 1 'g‘ 1yt NE; ‘}5( 1 "%
Fos T(E) (z) (5) / xooe o opE
L 1 'g' “'8‘5?' '}2i
(19) = - =
19 /"(-2—) (2) Xz X e dx

20

sub-—

KA
Therefore, we see that the proportion of samples having )C

2
greater than a gilven value )(o is obtained by the integration of
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. _

the frequency function given in (1) from )(o to ee@. Hence 1t
2

is proved that the distribution of x , as defined in (3), 1is

ziven by (1).
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Part Two

A Rizorous Development of the Chi—Square

Test of Goodness of Fit

§I: The Normal Distribution in the Space of n-Dimensions

If 1
—EQ(Xl,X2,...,Xn)
f(xl,xg,...,xn) =de ,
where Q(xl,...,xn) i1s a definite positive quadratic form of matrix

A, then, with the proper choice of 4, f(xl,...,xn) defines a fre-

quency function in n-dimensions. The distribution with that fre-

quency function 1is called the normal non-singular distribution.
We may write

(20) Q(xl,...,xn) = X'AX =§ AiniXJ >0,

"ljtl
where
*n
and X' denotes, as usual, the transpose of the matrix X. It 1s well

known that there exists an orthogonal transformation, X = CY,

which reduces X'AX to the diagzonal form

x L.
(21)  Y'KY = > K4V

where

If (20) is definite positive, then (21) will be definite positive,
since that property 1s obviously invariant under any non-singular,

linear transformation. It follows that all the H’i are positive.
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Also, since

K = C'AC ,
then

K| = [a] = KK, - . .H, >o0,
where, in a general way, we will denote the determinant of a matrix
D by IDJ.

To determine d, and for future purposes, 1t is convenlent to

find the moment—generating function corresponding to f(xl,...,xn),

defilned by

(=" o 1
’ T'X—gX'AX
(22)  Q(t,,...,t ) =d ) ... [ e dx, . ..dx,
-ca

-

To determine (22), we make the above considered substitution,
X = CY, and also we replace the vector T with a new vector U by
means of the contragredient substitution, T = (C')" lU, which
reduces to T = CU, since C is orthogonal. We obtain

T'X

]

(CU)'CY = U*(C'C)Y = U'Y

and, as we have seen,

X'AX = Y'KY
Conseguently
71X - L X'aX = Uty - & veky

. 1 2 2
= Uy 4o . . Uy - E(Klyl ... fF{nyn).
Hence the moment—generating function, with the t's expressed

in terms of u's, becomes

= =y - R
(p(tl,...,tn) d/../e ! j j = J J dyl"'dyn
<o 1y .2
g ;‘,/eujyj" 2 vy ar

!
-0

I}




NA

s
e
<
L:Cl\)

uk~ty = ur(crac)tu

e aTio)u

I

Ut (cATic)U

(cu) A tcu

gl

Hence we zet

hence

Therefore




25

: 1
[A] -5 Q(xy,...,%x)
2 1’ n
(23) f(Xl,...,Xn) = —--—-—-ie
(2x)?
[A] -5 XA
= n e
5
(2x)
and
Z roa~hp
(24) Pty,...,t,) = e
We shall prove now that if the variables s eweaXy follow a
non-sinzular normal distribution with the frequency function
lZEA. X

f(xl,. ,X_ ) =d e e i 1J 1 J s

(2n)
then the expression
Q(xl,...,xn) = :E-Aijxixj
follows the Chi-Square distribution with n degzgrees of freedom.

The moment—zenerating function of Q(xl,...,xn) is given by

=) ® 0o _ Q

(25) ¢(e) = ... e d e 6x, .. .dx,
oo-—— (1-20)Q

,// dxl...dxn

” ;SA (1-—29)xix.
/. /d e hiz1 J dxl...dxn

For & < 2, ﬁ?A (1-26)x, 1% 5 is a definite positive quadratic form.

’Jj

o]
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It has been found, 1n the determination of the constant d,

that
f 1Al f?,..“i 1%3
i dx ..an = 1
(2n) 2
Hence
- 2
/. e é:“ij 1% J dx .dx = (_g_.’E)__
. n =
- OO0 - iAI
Consequently
” n
A, . x.x.(1-2e 3
J//’ J//-e 2fm 1 ( ) dx, ...dx. = (21)7
oo 1 n
/Y
where
and
IE] = (1-2e)"|A]

Substituting this result in (23), we find

s

Ge) = (1-20) ° ,
which 1s the moment-generating function of the Chi-Square distri-
bution with n degrees of freedom. Hence the theorem 1s proved.
§I1: The Limiting Distribution of the Chi-Square Variable by
the Method of Characteristic Functions
Suppose we have, as before, a population in which each element

belonzgs to one and only one of the classes C C . Ck' Let

2’’
Pys Poseees Ppo ﬁég& = 1, be the probabilities associated with

YEERD Ck respectively. In a sample of size n, let Nyy eyl
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be the numbers of elements falling into Cl,...,Ck respectively.
We have seen that the probability law of the ny is given by

nt n n n

1 ™ Kk
n','pl Py » - Py
.oy !

1
nl.

We have E(ni) = np, . In view of the Central Limit Theorem, it is

clear that the limiting distribution, as n=2ee , of each of the

quantities

vpi(l—pi)

is the normal distribution with mean 0 and standard deviation 1.

We shall now investigate the limiting Jjoint distribution of the
set
(ni - npi)

X, = —s——2 41 =1,...,k

1 '

K
Since %Exi = 0, only k — 1 of the X, are functionally 1ndependent.

It is sufficient to consider the limitingzg Jjoint distribution of
the first k — 1 of the Xy -

We know that the moment-generating function of L SEEREFE R
say O(e,,...,e, _;), 1s equal to G(el,...,ek_l,o), where Eﬂel,..”

is the moment—-generating function of L SWRRRPS However

m(el;"-;ek) = E(e )
K K e n
i i
-Vnh_e QE n' K —
e 2.0;p; s 7,T(p o VT )
' nl!...nk! 1
K o (=]
1 2
V7 2, D, -
= e 1 (plerﬁ_ + p2em + + pye

&)
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Consequently

K1
61 &

_fiQe,p k-1 n
(26)  O(ey,...;0 ;) =€ R (pleTﬁF + .. .+ pk_leiH + b/ -

Expanding each of the exponentials in (26) and taking loga-

rithms, we have

X K~ K-| 2
| ZoP 2P

. o = - . X g 1 .
(27) log ¢ .ﬁngelpi + nloo[l + p— - + o(_;g7é) ]

Noticing that

2
log (1l+x) = x — E; + IR(X)'

where

lR(X)' liLi + JELE +

3 4
3
< 24 TR »'{ B
3 3
:L|x|3 2 3 1
= z < z lX, for lX' < 5 s
1—|xl
we find that
x2 3 1
log (1+x) = x — =— + & x , 4] < 1 for x| < 5 -
2
‘Hence we get from (27)
Sele, 2
e.p ©;8.:D.D.
log ¢ = 5 B o S N S = sl R O(fL )
2 2 n
Therefore we have
Kl 4 .
% AiJ eiej
1im ¢ = e“ "
ne=—eo
v
where ATY = piéij - pipj, i,j=1,...,k=1, and éij =1, 1=]

0, 1#J
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K~ 1

We shall prove that‘ZfAijeiej is a definite positive quad-
hy=t

ratic form. Considering

ZA” =§egp (3 p,)2
l)- ' J j ¢ J J
and letting
Ay K.'
¢ = ZGJpJ
we have

1j _g 2 a2
(28) ZE A"ve, ej = ' pj(eJ e)” % P&

it
In this form it is evident that;i iJ ej is non-negative and
nge!
equal to zero if and only if ° =”O and eJ = g, i1.e., 1if ej = 0 for
Jo=1,...,k-1.
It follows, therefore, from the previous dlscussion that the

limiting frequency function for the joint distribution of the

Xy is given by

(29) _—_lﬁzl e
(2x) °
13,-1
where Aij (A™7Y)

It may be verified readily, by the multiplication of matrices, that

: o)
Aij = _..H + _;i_
| Py Py

and therefore

2
AL X 1 K-1
(30) zA XX =Z—}- + — (in)2

/,J = ok pi pk
We have seen that if Kyy-worX, q are random variables having
distribution (29) then :iAinixJ is distributed according to the

IJ;I
Chi-Square law with k-1 dezrees of freedom.
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We now replace Xy by (n1 - npi)/fﬁ in (30), denoting the
result by Xt , and we obtain the famillar expression of )4' as

seen before in (3), 1i.e.

K 2
(31)  X*- Z (n; - np,)
[ npi

2
We wish to conclude that the limiting distribution of X~ 1is
n
identical with the distribution of ;Z, Aijxixj where the x, are
J® -

distributed according to (29). That is, the limiting distribution
of the expression in (31) is the Chi-Square distribution with k-1

degrees of freedom. To do this we prove the following theorem.

Consider the random vector variables (X§l), Xél), ey Xél)),
2 2 2)\
(Xg ), X; ),..., Xé )), C e e (Xl’ XE""’ Xp), with the pro-

bability functions Pl(S), PE(S)""’ P(S) and the distribution

functions Fl(xl,x2,...,xp), F2(xl,X2,...,xp), e e, F(xl,xe,...,xp)

respectively. (We use here Cramer's terminology.) Assume that

the sequence Fn(xl,xg,...,xp) converzes to F(xl,xz,...,xo)

<

in all non—excluded points of the 1atter.l)

Let f(xl,...,xp)-be
a function which 1s continuous and deflned everywhere in the p-
dimensional space. Then the distribution function of the variable
f(Xﬁn), Xgn), e e Xén)) converges to the distribution function

of f(Xl, X2’ e e Xp).
We shall give the proof only in the two-dimensional case as
it 1s technically simpler. However, zenerallzation to any finite

number of dimensions 1is immediate.

We shall complete the proof by using the method of characteristic

1) See Cramer, (Ref. 1), p. 83.
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functions. It is sufficient to prove that the characteristic

function of f(Xgn), Xén)), say sé n(t), converges to that of

£(Xy, X,), say ¢, (t).

We have
eif(xl,xg)t 5 eif(xl,xe)t 2r
R2 n = R n

)
1£(x,,%,)t 1£(x,,x,)t
¢ () /c{ . Xy,%, . }/ }( (xy,%,) 25
2

Let K be a continuity rectangle of F(x Then by the Helly-
2)

Bray converzence theorem’,

if(xl,xa)t if(xl,xg)t
(32) %Eﬁ. Kk € dPn = x| € dp

for every t.

we have

Ilet ¢ be an arbitrary positive number. The continulty rec-—-
tangle K can be chosen such that
P(K) >1 - ¢

Representingz P(K) and Pn(K) as the 2nd difference 1t follows

that
1im Pn(K) = P(K).
n-es
Consequently there exists a number n_ such that

0
Pn(K) > 1 -2

[}

forn > n..
o} > Ny

However

Yt

if(x,,%x,)t if(x,,x,)t
1°%2 1°%2
ﬁ( e AP+ [yx © aP_

if(x,,x.)t if(x,,x,)t
17%2 1272
W (t) /K e dP o+ /K* 2 dP

where K¥ = R2 - K, and

2) See Cramer, (Ref. 1), p. 74.
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if(xl,xe)t

e ap <

- " dP = P (K*) = 1 - P_(K) < 2¢

K* n

for n > no. Similarily

if(xl,xo)t
kx € 5 dP| < kx 4GP = P(K¥) = 1 - P(K) < €
By (32), for all sufficiently large n
if(x.,x,)t if(x,,x,)t
‘/i e e dPn - Kk € e dpP < €

Consequently, for all sufficlilently large n, we ha-e

f¢n(t) - %(t)/ < te

which proves that )Z/n(t) converges to ¢(t) .

The problem of the limiting Chi-Square distribution in the
case where the probabilities are not known and have to be estimated
from the sample can be treated in a similar way. However, the proof
then is much more difficult, requiring some special techniques,
and will be omitted here. The interested reader 1s referred to
texts by Cramer, (Ref. 1), pp. 426-434, and Wilkes, (Ref. 5), pp.

219-220.
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