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CHAPTER I 

INTRODUCTION 

FOUNDATIONS OF PROBABILITY 

The calculus of probability is a branch of mathematics. 

Its foundations have so far not been fully investigated. There are, per­

haps, many such branches of mathematics, but the calculus of proba­

bility is unique among them regarding the specifie course of the 

development of its fondamental principles. This is bound up with what 

H. Steinhaus calls the 11tavern11 origin of probability. A theory of 

gambling games at first, it gradually extended its range of applica­

bility, becoming finally a mathematical theory of great practical and 

theoretical importance. 

It was at a very early stage of development of the cal­

culus of probability that mathematicians felt the need of formulating 

its foundations more precise ly. The first attempt in this direction was 

probably the definition of 11 classical probability11 given by Laplace. 

However, it was the introduction of axiomatic methods, which made it 

po ssible to investigate the principles of probability along new lines. 

The first axiomatic treatment of probability was given 

by Bohlmann .r 2 J about the year 1904. This viewpoint developed 

in the twentieth century at the h ands of such great probabilists as E. 

Borel, H. Steinhaus, P. Lévy and A. Kolmogorov. The first systematic 
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presentation of probability theory on an axiomatic basis was made in 

1933 by A. Kolmogorov [l3 J. 

In principle it is the aim of every axiomatic theory 

of probability to answer the following two questions: 

1) What are events, i.e. what are tho se objects 

supposed to be probable? 

2) What kind of a function of events should probability 

be? 

Experience shows that, in answering the se two questions, 

certain parts of algebra (especially the theory of Boolean algebras) 

and certain parts of the theory of functions (measure theory) control 

the foundations of probability to such an extent that they almost absorb 

them. J. !..os caUs this (see [ 1&> 1 ) a useful process of complete 

mathematization of the calculus of probability. 

We proceed now to give a brief resumé of developrre nts 

in the axiomatic foundations of probability theory from the logical point 

of view. All historical and philosophical problems connected with the 

subje ct are omitted. 

1. What should an axiomatic foundation for the theory 

of probability be like ? Suppose we are to choos.e a point at random 

from the interval [ o ) 1 J . What is the probability of this point belonging 

to a given set? Such a problem leads at once to the consideration of 
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Lebesgue measure in the interval [ 0, 1] and to the considera-

tion of a field of measurable sets. Let B be a subinterval of [ 0, 1 ] 

It is natural to take the probability of any point belonging to this in­

terval as the length of the interval. Let this length of B be denoted 

by P(B). If more generally the set B is a Borel subset of [ 0, 1 J 

the preceding choice leads us to take as the value of P(B) the Lebesgue 

measure of B. We are given then the Lebesgue measurable Borel sets 

of [ 0 1 1 J to determine P(B) for any subinterval B of [ 0, 1 J 

Th us, in general, we have: 

(a) a certain set S (e. g. interval [ 0 1 1 ] ) , 

{b) a certain algebra 6t of subsets of S (measurable 

sets) 

(c} a certain measure P on Gt (e. g. Lebesgue measure). 

The occurrence of the triplet [ S, 6t , P ] is observ­

ed in nearly all problems of probability theory and none of its elements 

is superfluous. 

(a0 ) The set S, called the set of elementary events, is 

necessary to define random variables as real functions onS measurable 

with respect to the algebra Gt. 

{bo) The algebra GL , called the algebra (field) of events, 

is the set of thos e objects which are suppo sed to be probable. In this 

class of sets the set - theoretical operations correspond to the classical 

operations on e vents. 
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{C0 ) The measure P on tl is the probability at­

tributed to the events of a' 

The re are certainly many such triplets ( S, a , P] 

to which the probabilistic reasoning may refer. The aim of the 

axioms of probability is to select that clas s of them which is essential 

for probabilistic problems, i.e. triplets {which will be called pro­

bability spaces) with which the calculus of probability is concerned. 

While selecting probability spaces from the triplets 

r s, a , P J we must proceed as follows: 

(1. 1) Every such triplet that appears in the problems 

of probability theory must be a probability space. 

(1. 2) The fundamental notions of probability theory 

should be definable for every probability space (e. g. notions like 

random variable, stochastic independence, mathematical expectation, 

etc.) and the fundamental theo rems of probability theory, for instance 

the laws of large numbers, should be provable. 

2. First interpretation of Kolmogorov 1s Axiomatic 

Foundation of Probability Theory. A. N. Kolmogorov pub li shed his 

11Grundbegriffe der Wahrscheinlichkeitsrechnung11 in 1933, in which 

he gave not only an axiomatic foundation of probability theory but 

also showed how it satisfies the postulates (1. 1) and (1. 2). 

There is no need to emphasize the decisive meaning 

of that work since, in order to a void redundancy, we already adopted 
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Kolmogorov 1s standpoint in Chapter 1 above. When reading older 

textbooks and papers which deal with probability theory it becomes 

clear that Kolmogorov 1s work has indeed given mathematical foun-

dations to this branch of knowledge. This has been achieved by an 

exact formulation of as sumptions, a precise definition of notions and 

by establishment of the close connection of the calculus of probability 

with other mathematical theories, namely the theory of measure and 

integration which were already fully developed in those days by 

Lebesgue and Fréchet. 

Kolmogorov 1s set of axioms demand that probability 

should be a normed measure (i.e. a non-nega tive and additive set 

function normed by the condition P(S) = 1) on an algebra a_ of 

subsets of S satisfying the axiom of continuity,_ i.e. for a decreasing 

sequence of events. 

oO 

:::::> 
A')..-

of a , for which Il A..,_= 0, the following equation holds: 
"h · 1 

lim P{An) • 0 as n _____,.-> This is equivalent to the condition 

of denumerable additivity. 

It is a c onsequence of the axiom of continuity that there 

exists a unique e x t ension of the measure P to the denumerably additi ve 

measure on the smallest denumerably additive class of sets which 

contains the algebra of sets 6t . 
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Therefore, we can al ways assume that 19 is already a denumerably 

additive class of sets (G -algebra) and that Pis a denumerably ad­

ditive measure { 6 -additive measure) on 9. . 

We are not going to discuss in detail how different 

probabilistic notions are defined on the basis of Kolmogorov 1s axioms. 

It is suffice to note that every real function X on S measurable with 

respect to the b -algebra a is called a random variable and the 

integral of X onS with respect to the measure Pis the expected value 

of the random variable X. 

From the intuitive point of view the essence of 

Kolmogorov 1s axiomatic theory is that only one kind of events is 

examined, namely those events which can be described as consisting 

of random points (elementary events) a which belong to a subset 

A of S {a E. A S S). It appears that such an interpretation is always 

possible. 

3. Objections against Kolmogorov 1s axioms of probability 

Theory. Kolmogorov 1s axiomatic treatment of probability theory is 

accepted by the great m a jority of mathematici ans of today. lt h a s also 

been criticized and Kolmogorov has done this himself f 14 J 

The first objection concerns the representation of every 

event in the form a E A, which may be considered as an impoverishment 

of the formalism of proba bility theory, or a t l east of i ts in tui tive side 
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and as a deviation from its tradition. 

The second objection points out that his axioms do 

not admit the identification of almost identical events (i.e. events 

which are such that their symmetric difference is of measure 0), 

or, which in fact is exactly -the same, that in most of the cases 

considered, it does not permit the introduction of a strictly positive 

measure (i.e. a measure which is equal to zero only on the empty set). 

The third objection points out that there are certain 

problems which give rise to probability spaces which cannat be norm­

ed; i.e. unbounded measures occur in them, while in the theory of 

Kolmogorov probability is a bounded measure normed by the 

condition P(S) = 1. 

The first two objections are handled by introducing 

Boolean algebras in the axiomatic treatment of probability theory and 

by proving their isomorphism to an algebra of sets. This induced 

Kolmogorov [ 14 ] to suggest a somewhat different attitude towards 

the foundations of probability theory which is developed in paragraph 

6 of this chapter. 

The third objection was raised by A. Rényi in his 

paper: "On a New Axiomatic Theory of Probability11 [ 
22 J where 

he presented a new set of axioms which use conditional probability 

as the fundamental concept. 
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Boo lean a ige bras and their isomorphism to an 

algebra of sets ,probability in Boolean algebras and Kolmogorov 1s 

suggestions in this regard will be touched only briefly here. In re­

gard to A. Renyi 1s work, the whole thesis is devoted to presenting 

his theory in detail. 

4. Boolean atgebras and fields of sets. By a 

Boolean algebra we understand a class of abjects furnished with 

operations governed by the same laws as the operations on sets. 

The notion of Boolean algebra is of essential importance for the 

foundations of probability. A set of events is a Boolean algebra, 

i.e. there is a correspondence between the operations of the Boolean 

algebra and operations among events. For the latter we refer to the 

first chapter of W. Feller 1s book. ( 5 ]. From the definition of 

Boolean algebras it follows that an algebra of sets is its particular 

case. M. H. Stone (2.b] has proved that the converse also holds and 

so we have: every Boo lean algebra is isomorphic to an algebra of sets. 

Thus denoting by cP the impossible event, by C the certain event and 

any other events by the capital letters A, B, D, .•. , we are given 

then a system of elements cp , A, B, D, .... , C and operations on 

them governed by the same laws a s the operations on sets, ~ 

playing the role of the empty set and C that of the entire space. Such 

a system is referred to as a Bodlean algebra and denoted by $. 

Stone 1s cons tructi o n of an alge b r a of sets 6{, 
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isomorphic to a given Boolean algebra t3 consists of the subsets 

of the spa ce S the elements (point~ of which are the prime ideals 

of the Boolean algebra '/3. 

set of events 

Algebraically a prime ideal is defined as su ch a 

J C B that fulfills the following three conditions: 

(4.I) XE J, Y E J implies X . Y Ë J , 

(4. 2) X Ë J, Y E e implies X + Y ~ j 

(4. 3) from two complementary events X and X 

one and only one belongs to J. 

In the above conditions the event X· Y occurs if 

and only if both X and Y occur; the event X+Y occurs if and only 

if at least one of them occurs and finally the event X occurs if 

and only if the event X does not occur. 

Suppose we carry out some trials on the occurrence 

of a certain physical phenomenon. Each trial in each case gives 

actually a set of events, J , which have occurred in the given case. 

It is never one event, be cause from the occurrence of an event X 

certainly follows the occurrence of the event X + Y (Y is an arbi­

trary event) generally different from X (e. g. rolling a die we get 

the number I; it also means that the event 11 I or 3 11 has also been 

realized) and so X + Y is also in J . The occurrence of the event X 

ma y a lso mean the occurrence of X· Y. To continue with our previous 

example, when rolling a die the realization of the event 11 I 11 also rre ans 
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the realization of the event "odd", i.e. x. Y has also occurred and 

so X· Y ~ 'J . If X has occurred then X did not occur in a 

certain trial of an experiment. Therefore each trial gives rise to 

a set of events and this set of events is a prime ideal. This allows 

the prime ideals to be considered as elementary events. 

The isomo.rphism , constructed by Stone, maps 

the Boolean algebra of events ~ on an algebra of sets 6t situated 

in the space S of all prime ideals of~- This mapping makes the 

event X t. 13 correspond to the set cp(x) of all those prime ideals 

J to which X belongs. If we considera prime ideal as a result 

of a trial, that is, in the ro le of an elementary event, then 

is the set of all those trials in which X occurs. The mapping thus 

defined proves to be an isomorphism; the algebra e of all sets 

f(x) is isomorphic to the Boolean algebra ~. i.e. 6t consists of 

all sets cp(x) and f(x) consists of all those prime ideals 

of~ to which X belongs. The points of the set ~(X) are 

prime ideals of ~ and, therefore, if we consider the space S of all 

the prime ideals of ~ and accept the sets of 6(, as neighbourhoods 

in S, then S becomes a compact topo logical spa ce and &!.. consists 

of aH the subsets of Sand is isomorphic to the Boolean algebra ~. 

By a Boo lean rO -a lgebra we mean a Boo lean 

algebra which, be sides the operations dis eus sed, is furnished with 

the operations of denumerable addition and multiplication. Similarly 
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to the finite ope rations, the infinite operations are also governed 

by the same laws as the infinite operations on sets. Two important 

things must be kept in mind: 

1) Not every Boolean algebra is a Boolean 

6- algebra; if we assume that B is one (i.e. if we assume countable 

additivity) then it is an essential restriction. 

2) A Boolean 6 -algebra need not be isomorphic 

to a b -algebra of sets. 

However, Loomis and Sikorski (17,1.3 J have shown 

that each Boolean e; -algebra is isomorphic to a quotient <0 -algebra 

of subsets of sorne space S, i.e. 

() -ideal. 

a E? -algebra of sets divided by a 

Here we shall briefly explain the operation of divid­

ing an algebra by an ideal, in particular a 0 -algebra by a e -ideal. 

A subset J of a given Boolean algebra ~ is called 

an ideal if it satisfies the conditions (4. 1) and (4. 2) (if it also satisfies 

the condition (4. 3) it is called a prime ideal). For instance the set 

of events of probability one is an ideal. As we shall see, in this 

interpretation the construction of quotient algebra has a clear probabi­

listic meaning. In fact, this is the idea used by Kolmogorov in ( 14 J 

to which we shall return later. 

To continue the algebraic discussion of dividing 
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an algebra by an ideal, let ":1 be an ideal of the Boo lean algebra 

of events ln the quotient algebra B 1 J two events 

X, Y 6. B whose simultaneous occurrence or non-occurrence 

is certain (i.e. the event X• Y belongs to J ) are treated as 

identical. 

An ideal J is a 6 -ideal (denumerably multipli-

cative ideal) if it satisfies in addition to (4. 1) and (4. 2) the following 

condition: 

(4. 4) if the events x, , X2 , x?> , ••• belong to J 
<::>0 

then the pro du ct rr 
f'l•l Xn also belongs to J . 

If J is a e -ideal of a Boolean 6 -algebra t?J 

then the quotient algebra f3 1 "j is also a Boolean 0 -algebra. 

5. Probability in Boolean algebras. The fir s t two 

objections against Kolmogorov 1s axiomatic treatment of probability, 

mentioned above in 3., can be handled by omitting the assumption 

that events supposed to be probable are sets and assuming only that 

they form a Boolean algebra. Such an attitude towards probability 

ha s be en sugge sted by Gli venko [ 6 ] and Halmos [ Ci ] In 

this sense the mathematical theory of probability consists of the 

study of Boolean 6 -algebras and numerical probability is a measure 

function, that is a finite, non-negative, and countably additive function 
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p of elements in a Boolean 6 -algebra 0 , such that if the 

null and unit elements of 0 are ~ and C respectively 

then P(A) = 0 is equivalent to A = cp and P(A) • 1 is 

equivalent to A = C. This is a return to the classical traditions, 

according to which events need not be sets and this also allows 

the introduction of a strictly positive measure; i.e. that 

P(A) = 0 if and only if A = cp . 

Howe ver, such an attitude de prives the probability 

fields of one element, namely of the space S. In a probability 

field we shall now have only B , the Boolean b -algebra and a 

measure P, in place of the triplet [ S, 6t , P] This causes 

difficulties in defining many probabilistic notions and, in the first 

place, in defining random variables and their expected values. 

Attempts have been made to eliminate this difficulty. 

They all reduce the notion of a random variable to the notion of a 

(Ô -homomorphism of a field of Borel sets of the real axis into 

a Boolean Ô -algebra. A unification of these attempts has been 

deve loped by Sikorski [ 24 ] . 

Let .l) be an algebra of Borel sets situated on 

the real axis. The mapping h of J) into a Boolean algebra 'B 

is ca lled a homomorphism if, for A 1 , A:~.. E. .:8 
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h (A 1 + A.t ) = h(A 1)+h(A.t), 

h(A,· A 1 ) 

h(A.,) = h(A 1 ) 

Moreover, if -e, is a Boolean 6 -algebra and 

o<> 

h L h(Ac) 
i =1 

for any A 1 , A 1. , ••• E 1?> , then h is called a b -homomorphism 

(a denumerably additive homomorphism). 

In order to show how a homomorphism of an algebra 

of Borel sets into an algebra of events may, for probabilisttc pur-

poses, replace a random variable, we shall considera real function 

fon the space S measurable with respect to a certain 6 -algebra 

a of subsets of s. 6t is regarded as an algebra of events, fis 

regarded as a random variable; i.e. we are given a probability space 

[ S, 6t , P ] , where Pis a denumerably additive measure on é:t 

and a random variable f on S defined above. 

Let A be an arbitrary Bore 1 set on the real axis. 

Let h be a çJ -homomorphism of the algebra )) of Borel sets 

situated.. on the real axis into &. Define h as 

h(A} • { all X 6. S / f(X) 6:. A ] = f -l (A) 6 tt 



-15-

This homomorphism is closely connected with 

the distribution function of f. If A is the interval [- oa a] 
J 

and a 0 -additive measure P is given on é{ , th en putting 

}f (a. ) = P (h{A)) we obtain the distribution function of f 

with respect to the measure P. 

In or der to define Lebesgue ts integral of the 

function f with respect to the measure P, it is not necessary 

to know the function f itself, it suffices to know its distribution 

function or the homolJlo.t"phistn. 'h.. This allows us to replace the 

notion of a measurable function by the notion of homomorphism 

in the foundations of probability constructed on Boolean algebras 

provided the a Lgebra in question is a 6 -algebra. 

We thus obtain an equivalent to the usual descrip-

tion of random variables, in the form of these homomorphisms. 

If we have a homomorphism h of the algebra J? of Borel sets 

into a Boolean E$ - algebra ~ furni shed with a Ef -additive mea-

sure P, then taking the integral in the Lebesgue sense, the in-

tegral of the homorphism h can be defined, which acts as the 

expected value and has all the p r ope rties generally a s s ociated 

with the expected value. 

6. Making use of the connections of Boolean 

a l gebras w ith a lgebra s of sets. Kolm ogorovts s e cond interpreta tion. 
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We have seen above that the introduction of Boolean algebras 

into probability theory causes difficultie s in defining the 

random variable and its expected value. The attitude des­

cribed at the end of the former paragraph is possible, but 

the same results may be obtained by making use of the con­

nections between Boolean algebras and algebras of sets. The 

treatment by means of these connections is based on the fact 

that each Boolean G -algebra is isomorphic to a quotient 

6 -algebra of sets proved by Loomis and Sikorski. 

Using this fact Halmos [ 9 ] proposed the 

fo llowing construction. If 13 is any Boo lean 6 -algebra 

and Pis a probability measure on !) , then there exists a 

measure space S such that the system B is isomorphic to 

a -algebra of subsets of S reduced by identification 

according to sets of measure zero, and the value of P for 

any event A is identical with the value of the measure for the 

corre sponding subset of S. 

Reduction by identification according to sets of 

measure zero is meant as follows. P(A) = 0 should appear 

if and only if A = <P It is proposed that we agree to 

coœ ider as identical two sets of S whose symmetrical difference 
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has probability zero. Through this agreement we are com­

mitted in particular to identifying any set of probability zero 

with the empty set ~ , and it follows therefore that in the 

reduced ô -algebra of sets & all the axioms of pro­

bability, which were introduced at the beginning of paragraph 

5 on Boole an 6 -algebras, are va lid. We are also given 

back the space S of which we were deprived when it was 

supposed only that events form a Boolean e! -algebra. 

The above construction culminates therefore in 

the same set of axioms as Kolmogorov 1s set of axioms, 

when starting with a 6 -algebra of sets 6t: and with a 

e) -additive measure P on tSt , but starting with a Boolean 

6 ... algebra isomorphic to a <0 -algebra & of subsets 

reduced by the suggested identification a strictly positive 

0 -additive measure is introduced on events which need not 

be looked upon as sets. It seems then that the first two 

objections, mentioned in paragraph 3., were taken care of. 

But making use of the connections of Boolean 

algebras with algebras of sets more than that can be achieved. 

In the above discussions we always started with a Boolean 

6 -algebra furnished with a 6 -additive measure when 
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making use of their isomorphism to algebras of sets to 

get back the spa ce S, or, wh en the notion of G- homo­

morphism was introduced to handle random variable 

problems, though it is remarked in paragraph 4. above 

that not every Boolean algebra is a Boolean 6 -algebra; 

if we assume that 8 is one (i.e. if we assume countable 

additivity) then it is an essential restriction. In fact, we 

do not need a Boolean rê5 -algebra to start with. 

We shall beg.ih here with the description given 

by Kolmogorov [ 14 ] He remarked, above all, that 

it was easier to apply probability on Boolean algebras as 

it allows us to assume tha t probability is a strictly positive 

measure. 

He then remarked that in the case of Boolean 

algebras we did not have to assume the denumerable addi­

tivity of measure or the denumerable additivity of the 

algebra because for every Boolean algebra Bo with a 

strictly positive measure P 0 the re exists a unique (with 

an exactitude to the isomorphism ) 0 -algebr a 'B with 

strictly positive Ô -additive measure P such that 
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~ is an extension of 130 , 

Pis an extension of P
0

, 

~ itself is the least 0-algebra of 'âo which 

contains ~0 • 

For a given algebra ~0 with a strictly positive 

measure P 0 the algebra S and the measure Pare con­

structed as fo llows: 

As can be se en from Stone 1s construction, the 

algebra B 0 is isomorphic to an algebra of both closed and 

open sets & of a certain compact space S. By means 

of this isomorphism the measure P 0 can be transferred to 

ét The measure P
0 

in Gt satisfies the condition of 

continui ty which follows from the compactness of the space 

S, and therefore it can be extended to a 6 -additive 

me a sure on the least 10 -algebra of sets tSl* which in-

eludes 6{,. The measure in &* need not be strictly 

positive, whereas dividing 19.,* by the ideal of sets whose 

symmetric difference is of meas ure zero (i.e. by the ideal 

of events whose simultaneous occurrence or non-occurrence is 

certain) we obtain a quotient tO -algebra of sets isomorphic to 

a Boolean Ô -algebra ~ and a strictly positive rO -additive 

measure P. This not only allows us to omit the condition of 

denumerable additivity but also gi ves a convenient foundation for 



-20-

defining random variables as functions on the space S, the 

elements of which are the prime ideals in B0 whose treatment 

as elementary events has been justified. Interpreted that way 

we can always start with the triplet [S, ét , P] assuming that eSt 

is already a denumerably additive algebra and that Pis a denu­

merably additive measure on 6t . In what follows we shall always 

use these triplets in the sense of Kolmogorov's second interpre­

tation. 

7. The problem of unbounded measures. 

Conditional probabilities. 

This thesis as a whole is devoted to presenting 

A. Rényi 1 s axiomatic treatment of probability theory (11 1 22 } 

which uses conditional probability as the fundemental concept. 

A detailed discussion of his work follows in the next 2 chapters. 

Here, we shall only give a brief account of those ideas which can 

lead us to think about probability in his terms. 

The theory of Kolmogorov furnished an ap­

propriate and mathematically exact ba sis for the rapid deve lop­

m ent of probability theory which took place in the last 30 years, 

as well as for its fruitful application in a great number of branches 

of science, including other parts of mathematics too. The second 

interpretation of his the ory gi ven above is free of the first two 

objections mentioned in paragraph 3 of this chapter. Nevertheles s, 
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in the course of development there arose sorne problems concerning 

probability which cannot be fitted into the frames of the theory of 

Kolmogorov. 

The common feature of these problems is that 

in them unbounded measures occur, while in the theory of Kolmo­

gorov probability is a bounded measure normed by the condition 

P (S} = I. Unbounded mea8.1 res occur in statistical mechanics, 

in sorne problems of mathematical statistics, in connection with 

the applications of probability concepts in number theory etc. In 

the theory of Kolmogorov, for instance, it has no sense to say 

that we choose an integer in such a way that all integers (or all 

non-negative integers} are equiprobable. 

At the first glanee it seems that unbounded 

measurs can play no role in probability theory, be cause, in view 

of the connection between probability and relative frequencey, 

probability clea r ly cannot take on any value greater than I. But 

if we observe how unbounded measures are used in all cases 

mentioned above, we see that unbounded measures are used only 

to calcula te condi tional p r obabilities as th e quotient of the value s 

of the unbounded measure of two sets (the first being contained in 

the second} and in this way reasonable values (not exceeding 1} a re 

obtained. This i s the r eason why unboun ded m easures can be used 

with success in calculating conditional probabilities. But \Sinc e 
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the use of unbounded measures cannot be justified in the theory 

of Kolmogorov, the necessity arises to generalize this theory. 

Such an attempt was made by Rényi in his paper { 1.2 }. 

ln a theory of probability in which unbounded 

me asures are to be allowed, which are used to calcula te con­

ditional probabilities anyway but their use cannot be justified in 

the theory of Kolmogorov, we should perhaps take conditional 

probability as the fundamental concept. Using conditional pro­

bability as the fundamental concept is also natural from another 

point of view, namely, that probability of an event depends es­

sentially on the circumstances under which the event pos sibly 

occurs, and it is a commonplace to say that in reality every 

probability is conditiona l. 

This has been realized by several authors. 

H. Jeffreys {n }, H. Reichenbach ( 1q}, J. Keynes ( 12 }, 

R.Koopman{ 15 J, A.Copeland( 3], G.A.Barnard( 1 ), 

and I J. Good { 7 } , are mentioned by A. Rényi. None of the se 

author s deve loped his theory on a measure theo re tic ba sis. 

The axiomatic theory developed by Rényi 

combines the measure-theoretic treatment of Kolmogorov with 

the idea proposed by the authors mentioned (and also by others) 

to consider conditional probability as the fundamental concept. 

This new theory should be considered as a generaliz ation of that 
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of Kolmogorov. In fact, it contains the theory of Kolmogorov 

as a special case, but also includes cases which cannat be 

fitted into the theory of Kolmogorov, namely cases in which 

conditional probabilities are calculated by means of unbounded 

measures. Ac cor ding to information given by B. V. Gnedenko 

to A. Rényi in Prague in 1954, A.N. Kolmogorovhimselfhas 

put forward the idea, in a lecture held sorne years ago in 

Moscow, to develop his theory in such a manner that conditional 

probability should be taken as the fundamental concept, but did 

not publish his ide as re garding this question. According to 

this information Rényi 1s attempt follows the lines which have 

been pointed out by Kolmogorov at that time. Sorne measure-

theoretic problems, which arase in connection w i th Rényi 1s 

/ 

work, have bee n solved by A. Csaszar ( 4 ); his results settle 

the question under what conditions can the conditional probability, 

introduced by A. Rény i as a set function of two set variables, be 

expre s sed in quotient form by m e ans of (one or m ore) s e t 

functions of one variable. 
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CHAPTER II 

AXIOMS FOR CONDITIONAL PROBABILITY SPACES AND THEIR 
IMMEDIATE CONSEQUENCES 

2. 1. Notations. In what follows if A and B are sets, 

we denote by A + B the sum (union) of the sets A and B (i.e. the set 

of those elements which belong to at least one of the sets A and B; 

AB denotes the product (intersection) of the sets A and B (i.e. the 

set of those elements which belong to both of the sets A and B); to 

denote the sum and the product of a finite or infinite family of sets, 

we also use the notations L and TI respectively. The empty 

set will be denoted by ~ ; A ç B expresses the fact that Ais a sub-

set of B; the subset of B consisting of those elements of B which do 

not eelong to A will be denoted by B-A. If a is an element of the set 

A, this will be denoted by a E A. If a does not belong to the set A, 

this will be denoted by a q A. 

2. 2. Definitions and axioms. Let there be given 

an arbitrary set S; the elements of S which will be denoted by small 

letters a, b, will be called e lementary events. Let 6t denote 

a rO -algebra of subsets of S; the subsets of S which are elements 

of Û will be denoted by capital letters A , B, C, .•. and called 

random events, or simply events. ( The supposition that 6t is 

a ~ -algebra of subsets of S me ans 6( is a non-empty class of 

sets closed under the formation of complements and countable unions; 
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i. e. l. if An 6 tl (n = l , 2, .•• } we have 

2. if A 6. & , we have S-A E tt; 3. ét is not empty. This implies 

that ~E. &l and so S- ~ !!! S E & Therefore a 6 -algebra is 

a 0 -ring containing S). Let us suppose further that a non empty 

subset ~ of bt is given; we do not suppose any restrictions regard­

ing the set 9J . {It will be seen that our axioms imply that ~ 4- %1 

but it is possible that 50 contains all the elements of a except cp 

it is also possible that ~ contains only one set}. We suppose finally 

that a set function P(A B} of two set variables is defined for 

A E: Et and B e:. Jb ; P(A J B} will be called the conditional probability 

of the event A with respect to the event B. As the conditional probability 

of the event A G 6t with respect to the event B is defined if and only if 

BE P.> , PJ may be called the class of possible conditions. We suppose 

that the set function P(A / B} satisfies the following axioms: 

Axiom I. P(A / B} ~ 0 

further P(B 1 B} : l, if BE 'lb . 

if AG 6t and 

Axiom II. For any fixed B t. 5.3 , P(A 1 B} is a measure, 

i.e. a countably additive set function of A 6 a_ , i.e. if 

An 6 & (n• l, 2, .•. } and AjAk • <{> for j =f= k (j, k = I , 2 , •.. } , 

we have 
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Axiom III. If A € ~ , B € 6t , C E: P.J , and B C G. ~ 

we have 

P{A 1 BC). P(B / C) = P(AB / C} 

If the axioms l-Ill are satisfied, we shall call the set S, 

together with the 6 -algebra tt of subsets of s. the subset Jb of a 
and the set function P(A/ B) defined for A E. &t , Bé:. 5b , a conditional 

probability space and denote it for the sake of brevity by 

[ S, {;t , .1>J , P{ A / B)) 

2. 3. Immediate consequences of the axioms. In what 

follows, if P(A 1 B} occurs, it is always tacitly assumed that A E. & 

and B ~ .Jb • We denote the set S-A by A. 

Theo rem I. P(A 1 B) = P(AB 1 B) 

Proof. Put C = B in Axiom III. Then we have 

P(A 1 B} P(B 1 B) = P(AB / B) and so P(A / B}: P(AB 1 B) since by 

Axiom I P(B 1 B) = 1. 

Remark I. It follows from Theorem 1 that P(S 1 B}= 1; 

namely, by Theorem 1 P(S 1 B) -"·· P(SB 1 B) = P(B 1 B) and thus, by 

Axiom I, P(S 1 B} = I. 

Remark 2. If we have 

if i + j, i. e. 

if AI, A2, .•. , An are mutually exclusive and exhaustive events then 

, 1), 

'2::: P(Ak \ B) • P( 'i: Ak 1 B) 
~' ~1 

= 1 fo r e very fixed B G. Jb. 

Remark 3. P(A 1 B) = 1 if B c:: A. By Theorem 1 



-27-

P(A 1 B) = P(AB 1 B) • P(B 1 B) = I. Note: From this remark the 

result of Remark l automatically follows. 

Theorem 2. If B ~ B1 
, then P(AB1 1 B) = P(A 1 B) 

Proof. Applying Theorem l twice we get 

P(AB 1 IB) = P(AB'B lB)= P(ABIB)-=-P(AlB). 

Theorem 3. P{A 1 B) ~ I. 

Proof. According to Axiom II we have 

P(AB 1 B)+P(AB 1 B) = P(AB+AB 1 B) = P(B 1 B) = I. Also 

P(AB B) :?. 0 by Axiom I. It follows then that P(AB 1 B) = P(A) B) ~ 1. 

Remark. By Axiom 1 and by Theorem 3 we have: 

0~ P(A )B) ~ I. 

Theorem 4. P( <P 1 B) = 0 

Proof. According to Axiom II J;=>(A 1 B) = 

= P( q> +A lB)= P( ~ 1 B)+P(AjB) and so P(o/ 1 B) =O. Or, 

P{ ~ 1 B) = P( ~ + ~ f B) = P( ~ 1 B)+ P( ~ 1 B) = 2. P( ~ 1 B) and th us 

again P( o/ / B) = O. 

Remark. It follows from Theorem 4 that cp f fP.> . 

If ~ belonged to fYJ , we should have P( ~ 1 cp ) = l by Axiom I and 

P( ~ 1 ~ ) = 0 by Theo rem 4 ; thus the as sumption cp 6 Jb leads 

to a contradiction. 

Theo rem 5. If AB = cp , then P(A / B) = O. 

Proof. P(A j B) = P(AB J B) = P{ <P 1 B) = 0 by Theorem 4. 
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Theo rem 6. P(A \ BC)P(B 1 C) = P(B 1 AC)P(A 1 C), 

if C, BC, AC belong to P.>. 

Proof. Both expressions are equal to P(AB 1 C) by 

Axiom III and thus to each other. 

Theorem 7. If Ac= A c= B C:::::B', we have 

P(A 1 B' ) f P{A' 1 B). 

To prove this Theorem we need the following 

Lemma. IfE C A then, for any fixed B G:.. 16 , we have 

P(A-E 1 B) = P(A) B) - P(E 1 B). 

Proof. We have A !!! E + (A-E) and E, (A-E) are 

disjoint. So P{A 1 B) • P(E+(A-E) j B) 

= P(E 1 B)+P(A-E 1 B) by Axiom II. 

Now on both sides any P( · J · ) is such that 0 ~ P( · l · ) ~ 1 

and therefore P(A-E 1 B) = P(A \ B) - P(E 1 B) 

Proof of Theorem 7. We have 

P(A 1 B ') -- P(AA' B 1 B ). Al\. B = A 

= P{AA' 1 BB
1

) P(BIB'), Axiom III 

f P(AA' 1 B), since P·(BjB ) '~ 1 and BB 1 = B 

= P(A' -AA' 1 B) since ~ -A~ • AA' 

= P(A' 1 B)-P(AA.' 1 B), by A A ç; A and prev. Lemma. 

- ' ~ P(A' 1 B), since P(AA 1 B) ? 0 by Axiom I. , i.e. we have 

P(A 1 B 1 
) ~ P(A' 1 B) 

Remark 1. If A = A' , we obtain the following special 



-29-

case of Theorem 7: If A C B c:: B 1
, we have 

P(A 1 B') f. P(A \ B) 

Remark 2. If B = B 1 
, we obtain the following special 

case of Theo rem 7.: If AÇ X , we have, without supposing that 

ACE, P(AI B) '5 P{X 1 B) and Axiom III is not needed in proof. 

Proof of this remark. We have P(A\B) • P(A.A \ B) ,AA • A 

1 - 1 - 1 = P(A \ B) -P(AA \ B), by AA C A1 and pre v. Lemma. 

~ P(A' 1 B), since P(AX 1 B) ~ 0 by Axiom I,and we did not use 

Axiom III. 

Theorem 8. If A 1 +Al. C B1 B'l.~ 2 , further 

P(Al 1 B.) P(A 1 1 B1 )) 0, we have 

P(A1 \ B1 ) P(A1 1 B?.. ) 
= 

Proof. According to Axiom III 

and similarly 

and A'l. B 1 = A?- , for by hypothe sis A 1 +A 2. C B 1 B 2 and this 

Dividing (I) by (2) we obtain 



{3) 
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• 
P(A, Bd 

P(A 1. 1 Bd 

Inte rchanging B 1 and B 1. in (1) and (2) we obtain 

(4) 
P(A 1 1 B 1 B 1 ) 

P(A,_I B 1 Bl) 

P(A, 1 B 1 ) 

P(Ai 1 B 1 ) 

From (3) and (4) we have 

P(A1 1 B 1 ) P(A 1 1 B:2.) 
= 

P(Ati B 1 ) P(A,_ 1 B,_) 
...., 

Theorem 9. If C CB = ~ 
1<~1 

forf=fk(j,k= 1, 2, ••• )then, 

that C t: 53 

C>.<=> 

P{A l C) • :Z::: P(A 1 BkC)P(Bk 1 C), where it is supposed 
1<~ 1 

(k: 1 • 2. . .. ) 

This theorem corresponds to the total probability rule. 

Proof. By Axiom III we have 

P(A 1 BkC)P(Bk 1 C) -= P(ABk 1 C). 

Therefore 

"-"" 

= L P(ABkC 1 C), by Theorem I 
K=l 

~ 

= P{A L BkC 1 C), by Axiom II 
k-l 

= P{ABC 1 C). by hypothesis 

= P(AC 1 C), by hypothesis BC!!:. C 

= P {A l C). by Theorem 1 

Note. In proving Theo rem 9 we do not suppose that BE: P.J. 
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Remark. We mention the fotlowing consequences of 

Theorem 9. Let us suppose Bk G PJ and BjBk = 4' for j =f k, 
~ 

B • L Bk and B E Jb 
K:ol 

if P(A 1 Bk) ~ ).. P(A1 J Bk) for k = 1 , 2, • . • whe re ).. ~ 0 , we have 

P(A / B) ~ À P(A' 1 B) 

Proof. We have 

P{A 1 Bk) ~ À P(A' 1 Bk) 

so P(A 1 Bk)P(BkiB) ~ À P(A' 1 Bk)P(Bk 1 B) 

<>""' -
so L P(A 1 Bk)P(Bk 1 B) ~ \ L P(A' 1 Bk)P.(Bk 1 B) 

K~l 1<•1 ' · 

and applying Theo rem 9 on both si des with C = B 
.,.,:> .....,. 

P(A 1 B) • 2:. P(A 1 Bk)P(Bk) B) s. À L P(A' 1 Bk)P(Bk 1 B) = \P(A' 1 B) 
~-1 ~-1 

Therefore P(A 1 B) S A P(A' 1 B). 

Specifically a) if P(A 1 Bk) • À P(A1 
1 Bk) for k = 1, 2, ••• , 

we have P(A 1 B) = )., P(A1 l B) 

b) if P(A IBk) !!À for k = 1, 2, ••• , wehave 

P(A 1 B) = À 

""""" Proof of b) P(A 1 B) = L P(A 1 Bk)P(Bk / B), by Theorem 9. 
1(~1 

with C = B 

o...:> 

= L À P(Bk 1 B), tf P(A 1 Bk) = À 
K-1 

= 

= 

OC' 

À P( L Bk 1 B), by Axiom II 
l{c / 

À P(B 1 B) 

À , by Axiom I 
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2. 4. Connection with Kolmogorovrs Theory. If 

P{A) is a measure (i.e. a countably additive and non-negative set 

function) defined on the 6 -algebra a of subsets of the sets s' if 

further P{S) = 1, then the triple [_S, 8., P{A)1 is called a pro ba-

bility space in the sense of Kolmogorov. 

Theo rem 1 O. De fine ÔÎ * as the set of those sets 

B t- tt for which P{B) > 0 and put P{A 1 B) = 
P{AB) 

P{B) 

for A E: 6t , BE (ÇL*. Then [s, 6t, &t*, P{AI B)] is a 

conditional probability space which will be called the conditional 

probability spa ce generated by the probability spa ce [ S, &. , P(A)] . 

Pro of. 

since A f. ft , B ~ 

Axiom 1 is satisfied: P(A 1 B) = P{AB) ~ 0 P(B) 

Q:,* and so P(B) /" 0 ; further 

P(B 1 B) = 1 if B E &* since P(B 1 B) = 
P{BB) 

P{B) 

= P{B) : 
1, P(B) >a 

P(B) 

Axiom II is satisfied: If B ~ &*and AjAk = <fJ 

for j f k (j, k = 1 , 2, •.• ) we have P ( ~1 An ~ B ) = 

for any fixed B. 

Showing this : 

in [ S, &l , Gt*, P(A / B) 

oc> 

P{ L An !B) = 
t;J-1 

p 

P(B) 

= 

P(B) 
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P(B) 
7 P(A) being a (Q -additive set function 

= 
C>O 

P(AnB) 

~ P(B) n.•l 

ex:::> 

)' P(An 1 B) 
111~ 1 

Axiom III is satisfied. If A f: a_ , B é fl, CE çt*, and 

BC E: Q*, we have P(A 1 BC)P(B 1 C) = P(AB 1 C). 

For P(A 1 BC) = P(ABC) 
P(BC) 

P(B 1 C) = P(BC) 
P(C) 

and so P(A 1 BC) · P(B 1 C) -

also P(AB l C) = P(ABC) 
P(C) 

P(ABC) 
P(C) 

and so P(A 1 BC) P(B f C) = P(AB 1 C) 

Theorem II. If [ S, Q, Jb , P(A/ B}J is a conditional 

probability spa ce and C is an arbitrary element of 'P.J , putting 

Pc(A) e P(A 1 C), [s, ft, Pc(A)J will be a probability space in 

the sense of Kolmogorov for CE. jb fixed. 

Proof. Axioms I and II ip'lply that Pc(A) is a 6 -additive 

non-negative set function for which Pc(S) e 1 by Remark 1 to 

Theorem 1. 

Remark. Pc(A) = P(A 1 C) for A t;; be with C t: Jb 
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fixed as before; i.e. we have [s, 6t, Pc(A)] Define the 

conditional probability Pc(A 1 B) for B E: :fDfor which Pc (B) > 0, 

as usual in the theory of Kolmogorov, by Pc(A / B) -:. Pc(AB) 

Pc(B) 

If BC E PJ , then we have by Axiom III. 

Pc(A / B) = 
Pc(AB) 

Pc (B) 
= 

i.e. Pc(A 1 B) = P(A 1 BC) 

P(AB 1 C) 

P(B 1 C) 
= P{A 1 BC) 

Thus a conditional probability space is nothing else than a set of 

ordinary probability spaces (to each C f PJ there corresponds 

a probability space in the sense of Kolmogorov) which are connected 

with each other by Axiom III. This connection is such that it is in 

conformity with the usual definition of conditional probability de-

monstrated in this Remark. 

Theo rem 12. If S E .1J , th en [ S, Gt , Ps(A)J is a 

probability spa ce in the sense of Kolmogorov on putting as befo re 

Ps(A) • P(A 1 S) and Ps{A / B) = Ps(AB) 
Ps(B) 

,BE.gj 

Proof. Theorem 12 is a special case of Theorem II. 

Remark. In the sense of Theorem 10 [ S, & , Ps(A)J 

generates the conditional probability space [ S, 6t , Jb s, Ps(A 1 Bd, 

where :Ùs is defined - in the sense of Gl* of Theorem 10 - as the 
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set of tho se sets B E. ble- for which P s(B) > o , and 

Ps(A 1 B) = Ps(AB) 

Ps(B) 
for A E. Q 

It must be mentioned in this case that 

[ S, bt , 1b , P{A 1 B}3 may not be identical with the [ S, bt, :h s, Ps(A 1 B)] 

conditional probability space generated by [ S, Gt, Ps(A)]because J6 

may contain sets B for which Ps(B) = 0 and at the same time need 

not contain every set for which Ps{B) > 0 , i.e. the clas s .PJ s consist-

ing of all sets B f Gt for which Ps(B) > 0 need not be identical 

with JJ However, if Ps{A 1 B) = 
for 

A E ~, BE: Jh s, then by Axiom III and by definition of P s(A) 

Ps(A 1 B) = Ps(AB) 

Ps (B) 

provided that B E fl6. 

= P(AB 1 S) = 
P(B / S) 

P(A! BS) = P(A / B), 

2. 5. Conditional Independence of Events. The conditional 

probability of the event A with respe ct to the event B is given by 

P(A 1 B) • P(AB) 
P(B) 

for BE. tt a nd P(B) > o in the Kolmogor ov 

probability space [ S, GV , P(A>}. This formula is often used in the 

form P{AB) = P(A 1 B)P(B); this i s the so calle d theorem on compound 

p r oba bi lities. If P (A 1 B) = P(A) we s ay tha t Ais s tochas t ically inde -

pendent o r , simply, independent of B. The condition P(A / B) : P(A) 

can be v.n: itten i n the form P(AB) = P(A)P(B) and we use this as a 
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definition of independenc e of the events A ~ B. 

If we have the conditional probability space 

[ S, a_ , ~ , P(A \ B )1 th en for A E 8: BE ét , C E: JB 

and BC E Jd , we have P(AB 1 C) = P{A \ BC} · P{B 1 C} (Axiom III}. 

If we let Pc(AB) = P(AB 1 C}, Pc(A \ B) • P(A l BC) and Pc(B) • P(B 1 C) 

then.Axiom III reads Pc(AB) • Pc(A \ B} · Pc(B}. Writing Axiom III in 

this form it is indicated clearly that given the condition C Axiom III 

cor res ponds to P(AB) • P(A \ B) P(B) in [ S, a, P(A)] • It is just 

anothe r indication of the fa ct that for any gi ven C f. 23 , putting 

Pc(A} = P(A \ C), [S, a, Pc(A}] will be a probability space in the 

sense of Kolmogorov. Therefore, for any given CE. .:B we can 

define independence of the events A and B with respect to the events 

Con the same way as we did it in [s, a , P(A)] • We say that if 

P(A \ BC} = P(A \ C) then Ais stochastically independent or, simply, 

inde pendent of B with respect to the event C. This condition can 

be written in the form P(AB \ C) = P(A \ C)P(B l C) on using Axiom 

III, and we use this as a definition of independence of the events 

A and B with respect to the event C. This definition of conditional 

independence of events A ~ B readily extends to more than two 

events. 

2. 6. Representation of the conditional probability 

as a quotient. Sufficient conditions will be given here under which 
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the set function P(A 1 B} of two set variables can be re pre sented 

in 11quotient form11
, i.e. in the form P(A 1 B} • Q(tB} where the 

Q B} 

set function Q(A} is a measure on & and satisfies Q(B} / 0 if 

BE _2 . 

Theorem13. Let (s,8_,$,P(AIB}] bea 

conditional probability space. Let us suppose that there exists a 

sequence of sets Bn(n • 0, 1, ••• } all in .§ for which the follow-

ing properties hold: 

(n • 0, 1 , ••• } , 

b) P( B0 1 Bn) > 0 (n = 1 , 2, ••• ) , 

c) for any B ~ 2 there can be found a Bn for which 

Then there exists a finite measure Q(C} defined for 

c E: a * where a. >,~ is the ring of tho se sets c E.. a for 

which the re can be found a Bn with C C Bn, and this measure 

Q( C} has the fo llowing propertie s: 

D<} Q { B} / 0 if B E: $ , 

(3} P(A 1 B} = Q{AB} 
Q(B} 

If the sequence Bn satisfies besicles a}, b}, c·) also 

the following condition: 

d) 

then Q(C} can be defined for all C t: éi and is a bounded measure 
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on Ct. , and th us, putting P( C) = Q(C) -
Q(S) , we have P(S) I. 

Denoting by ~*the set of those sets B f. 9_ for which P(B) > 0 ) 

if .:8* is not identical with $ , we may extend the definition 

P(A 1 B) to all B E _fi * putting 

P(AB) 
P(A \ B) = P(B) 

the conditional probability space [ s, a , E *, P(AI B)] 

obtained in this wa y will be idential with the conditional probability 

space generated by the ordinary probability space [S, a , P{A)] . 

P r oof. F irst we suppose only that the s e quence 

Bn has the properties a), b) and c). 

Fir st w e are going to prove that é( * is a ·r i ng 

and vie have ;B ctt* c a - - . 
To show a* is a ring, let C1 f a_* and 

and C1 Ç B1. (for any 

C E éi* there ca n be found a Bn s u ch that C Ç Bn) . 

But C
1 

C B 1 

i.e. c, -C).. E:. 8 * 

Also c , + C :t. C B 1 + B 2 = B2 since by a ) B 1 C B z. 

i.e. c( +C !2. E:. 8:*; 

i.e. 8:* is a ring. 

Now, for a n y B E:. J3 w e have 
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> 
by c) 

therefore B E: ét * by definition of 8* 

i. e. 

Now, we proceed to prove statements o<) and (3 ). 

Let us considera set A f:. 9.*, choose an index n for which 

A C Bn and define Q (A) as follows: 

(5) Q(A) = 

The value of Q(A) doe s not depend on the choice 

of n. For if AC Bn and AC: Bm where n < m, we have by 

Theorem 8 

P(A 1 Bn) _ P(A 1 Bm) 

using this definition (6) of Q(A) we show that if 

BE:~ , Q(B) >O J we have 

{6) P{A \ B) = Q{AB) 

Q{B) 

This can be shown as follows: if B C. Bn and 

P(B 1 Bn) > 0 , we have by (5) and by Axiom III 

Q{AB) 

Q(B) 

= 
P(AB 1 Bn) . 

P(B0 1 Bn) 

As BBn = B, by c) 

P(B 1 Bn) P(B 1 Bn) 
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Q(AB) "' P{A \ B) and (6) is proved. 
Q{B) ' 

i.e. if Q{A) is a measure for A t. a* then statements .x) and 

;3) are proved. From {5) it can be seen that Q(A) is non­

negative since by b) P(B0 1 Bn) >O. Also Q{B) > 0 if BE 2 

by 2 c: a :O:c <.::::,a . Therefore sta tement t:><..) is proved. 

Since Q(A) is non-negative, to show that Q(A) is a measure, 

we are left only to prove that Q(A) is countably additive on 

8. *;i.e. if Ak ~ E{ >:c {k = 1, 2, ••• ) and AjAk ; ~ for 

010 

j :f k and = A E:. 8_ *, th en Q(A) = Z-_ Q{Ak). 
k=d 

This follows simply from the remark that if A C. Bn, we have 

B for n k = 1, 2, ••• and th us in the relations 

P(Ak 1 Bn) 

Q(Ak) = P(B
0 

\ Bn) , (k "' 1 , 2, ••• ) ; Q(A) = P(A 1 B ) n 

the same Bn may be used, and therefore the countable additivity 

of Q(A) follows from that of P(A 1 B) for fixed B E. :8 (Axiom IL.).-

This proves the first part of Theorem 13. 

Now suppose that the sequence Bn has also the 

property d). We need he re Theo rem A. of section 13 of Halmos, 

Measure Theory, which goes as follows: If ;-<-- is a 6 -finite 

measure on a ring R , then there is a unique measure )A- on 

the .EJ-ring S(R) such that, for E in R , f- (E) = f- (E) , 

the measure ji- is 6 -fini te (S{R) is the smallest E? -ring 
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containing R, generated by R). 

By this Theorem the definition of Q(A) can 

be extended to the smallest G -ring 9. ** containing 9 *, 

generated by a_* in such a manner that Q{A) remains count-

ably additive on a.**· 
00 

Put S* = L Bn. 
'Yl=O 

We will show that 8:. ** = a 5 * i.e. Q_ ** 
.) 

is identical with the set of all sets of the form AS* where A ~ a._ . 

First of all 8_ S* is a 6 -ring since tt is 

closed under complementation and on taking countable unions of 

the elements of a . As a matter of fact if A
1 

E: 8. and 

A 1 ~a_ then 

cO oO 

Al -Al ( a and '2:_ A· s * = S* ~ A · E &S*, \.. \. 
l=i i.-1 

oO 

sin ce 2:. 
i.=l 

A· fa 
l if Ai. E:. a 

) i = 1 ' 2, .... 
Therê!Ore aS* is a 6 -ring. 

To show ét ** C 8_ S* we have: 

if A E 8.. * then A C.. Bn and so AC. S* = Also A 

is in a . Therefore A ~ 9.. S* which implie s . 

éXS* and ,as it was just shawn, &S* 

is a b -ring. We have so far as a 6 -ring containing 
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é)_*. But 6.** being the smallest 6 -ring containing El_*, 

we have 

(a} 

On the other hand, if A E. a , we have 

Now ABn C: Bn , and th us ABn E: el*; 

i.e. AS* E d **, a** being the smallest 0 -ring 

containing a*; and therefore we have 

{b} a: s* c. a** 
By (a} and {b) we have 

étS* = ét**; i.e. a **, the smallest 

6 -ring containing a*, is the set of all sets of the form 

AS* where A E. a_ Thus the definition of Q(A) can be extended 

to allA E 8. S* by the quoted Tl1.eorem A in Halmos, Measure 

Theory and because of the identity just proved. 

We prove now that Q(A} is bounded on BS*. 

To show this it is sufficient to prove that Q(S*) is finite 

00 

since S>:< = 2::._ Bn is the set which take s part in the limiting 
'Yl.=O 

pro ce ss as n ------'> c.c> . But S* = Hm. 'Bn 
-rt-'><>0 

and thus Q{S*) = lim Q{Bn) where Q(Bn) 
'h -'> = 

is non-decreasing. But Q(Bn) = P(Bn 1 Bu) 

P(Bo [ Bn) 
= l 
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by (5) and by Axiom I, and lim 
n_.,.oo P(B0 1 Bn) > 0 by property 

d). Therefore d) implies that Q(S*) < + = . Defining 

Q(A) by Q(A) = Q(AS*) for A f: & , A tt ét S*, the 

definition of Q(A) is extended to the whole 6 -algebra &_ 

The final part of Theorem 13 concerning P(A) is obvious. 

Thus Theorem 13 is proved. 

2. 7. Random variables on a conditional pro-: 

bability space. Let [ S, ét , J3 , P(A 1 B)J be a 

conditional probability space. If ~ = ~(o.) denotes a real-

valued function defined for a_ E .S which is measurable with 

respect to 9: , i.e. if Ax denotes the set of those a.ES 

for which ~ (Q) < X , we have Ax E ét for a 11 rea 1 X , we 

shall caU ~ a. random variable on 

Vector-valued random variables are defined similarly. The 

(ordinary) conditional probability distribution function of a 

random variable ~ with respect to an event BE-.13 is 

defined by 

continuous, 

t (:Xl B) .. P(Ax} B); if T (x~ B) is absolutely 

t 1 (x 1 B) = f (x 1 B) is called the (ordinary) 

conditional probability density function of ~ with respect to 

B. The conditional mean value M ("'f 1 B) of ~ with respect 

to an event B é :J?; is defined as the abstract Lebesgue integral~ 
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M( J; 1 B) = f ~(a) d P (Axl B) 

s 
of ~ with respect to the measure defined onS by P{AI B) 

with B fixed. Higher conditional moments, the conditional 

characteristic function etc. are defined similarly. The 

random variables f and ~ are called independent with 

respect to an event C • if denoting by Ax the set of tho se 

a ~ S for which "f {a).( X and by By the set of those 

a f S for which 7l (a) < Y, we have P(~By l C) • P(~ 1 C)P(Byl C) 

for every real X. and y. 

As (S, a, P(A\ B)] is for any fixed 

BEJ3 a probability field in the sense of the theory of 

Kolmogorov, any theorem of ordinary probability theory re-

mains valid wh en ordinary probabilitie s, distributions, mean 

values, independence, etc. are replaced by conditional pro-

babilities, conditional distributions, conditional mean values, 

conditional independence, etc. with respect to the same 

B f_ ~ . 

Let us mention that if ~ is a random variable, 

and K 
0( 

denotes the set consisting of those elements a. ES 

for which for a 
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set X of intervals ( Q( J ~) J then the conditional proba­

bilitie s P{~ \ A!) can be considered for [ex J (3) E X and 

thus ~ generates a conditional probability space on the real 

axis R, as the space of elementary events, the 6 -algebra 

éi being the set of Borel subsets of 1L and Sf3 consist-

ing of the intervals [ex 1 (3) E X. • 

This conditional probability space wilL be 

called the conditional probability distribution gen erated by ~ 

on the real axis. 

Let T(.X) denote a non-decreasing function of X 

which is continuous to the left for c:;><:) < x <. + 00 

(i.e. t {X.) is defined he re by P(X < x ) and not by P(X ; 'X) ) . 

~ If the set Ao<. belongs to .13 whenever 

and we have for any subinterval 

+Cv) - TCx:) 
f(~) -'t(o<) 

we shall calt f C)(:) the generalized distribution function of ~ 

the functinn T (x.) is not uniquely determined, as together 

with T (ic}, G(x:) = ç. t ()() + a J where c.. )' 0 J is 

also a distribution function of ~ ; but as t (x') will be used 

only to calculate the conditional probabilitie" 7(a), this 

will never lead to a misunderstanding. If the distribution function 



-46-

l'" (x) of ~ is absolutely continuous, and T'Cx) -= f (X) J 

we shall caU f (X ) the generalized dene.ity function of ~ ; 

clearly f (x) is determined only up to a positive constant 

factor. If t ( X ) = X ( L. e . f (X} = 1 J for 

- 00 < x <. + c:>C> , we shall say that the distribution 

of ~ is uniform in (- ex:> 7 + C>O ). 

If f { X) is the generatiz.èQ.density function 

of "f , we have 

(><y J fcu.)du 

rb(~ 1 f (1l) ci \L 

The generalized distribution function re sp. density function 

of a random vector is defined similarly. 

2. 8. An alternative form of Axiom III 

Theorem 14. Axiom III can be stated in the 

following equivalent form: 

Axiom III 1 • If B E $ 7 C E. :f3 ; B Ç C 

and P(B 1 C) > 0 we have for any A E. B: 
) 

P(AIB)= P(AB 1 C) 
P{B 1 C) 

Proof. Clearly Axiom III1 is a special case of 

Axiom m. Since all the requirements of Axiom III are fulfilled 

and sin ce B C C we have 
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P(A \ B) P(B 1 C) • P(AB 1 C) 

P(A \ B) = P{AB 1 C) 
P(B 1 C) 

, P(B 1 C) -:> o 

Conversely, if Axiom III 1 is valid, Axiom III 

follows. This can be shown as follows: if 

(BE. 2 -.,>BE. &\CE:~and BC E. 2 

then two cases are possible: either P{B 1 C) = 0 or P(B 1 C) > 0. 

In the first case we have also P(AB 1 C) = O. To show this 

we quote Remark 2. to Theorem 7 which says: 

if A C A
1 

, we have P(A 1 B) .:; P(A1 1 B) and it is proved 

using Axioms I & II and Axiom III is not needed in proof. 

Therefore, we can apply that Remark 2. of Theo rem 7. he re 

when we wish to prove something in connection with Axiom III. 

Now to show P(AB l C) = 0 when P{B 1 C) = 0 

we note that ABC B. Therefore by that just quoted remark 

so 

and thus 

P(AB \ C) f P(B \ C) = 0 

P{AB 1 C) = 0 

P(A \ BC)P{B \ C) = P(AB 1 C) reduces to 0 = O. 

Now let us suppose P(B 1 C) > 0 . It is easy 

to see that Theorem 1: P{A 1 B) • P(AB \ B) follows already 

from Axioms I - III 1 
• As a matter of fact by Axiom III 1 

if C = B 
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P(AB lB) 
P(B 1 B) 

P(AB 1 B} by Axiom I and therefore 

Theorem I can be applied in the present proof where we suppose 

that Axiom Ill1is valid. But this means P(BC 1 C) = P{B 1 C) ? 0 

and th us the conditions of Axiom ill 1 are satisfied with BC 

instead of B, and it follows from Axiom III 1 that 

P(AlBC)= 

{8) P(A 1 BC)P{BC \ C) = 

P(ABC \ C) 
P(BC \ C} ' 

P(ABC \ C). 

i.e. 

As P(BC 1 C) = P(B \ C) and P{ABC 1 C) = P{AB 1 C) by Theorem I, 

it follows from {8) that 

P(A 1 BC)P(B 1 C) = P(AB 1 C). 

Thus Axiom III follows from Axiom III1 • 

Remark. It was already pointed out that our 

system of axioms can be characteri zed in the following man:aer : 

the setS, the 6 -algebra Et of subset s of S, the subset ~ of & 

and the set function of two set variables P(A 1 B) defined for 

A E: ét and B E: 2 form a conditional probability space 1.f 

PB = [ s, a , P{A 1 B > 1 is an ordinary probability space 

for every fixed B Ë. $ and if the probability spaces ~ and ~C 

are connected by Axiom III :if C E 2 and BC E $ . 

Thus diffe rent probability fie lds can be combined 
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to form a conditional probability field if they are "compatible" 

in the sense that they satisfy Axiom III which can be considered 

as the condition of compatability. 

Theorem 14 means that Axiom III contains a 

compatability condition for :J>B and ~ where J:)C C if 

and. only if P(B 1 C} > 0 if P(B 1 C} ~ 0, J5 and ~ are com-

patible without any restriction. This fact is the basis of a general 

principle by use of which conditional probability spaces can be 

constructed. 

2. 9. Extensions of a conditional probability 

space. If [s, ét , $ J P CAIB)} is a conditional probability 

space, it is natural to ask how could this space be extended, by in­

cluding into :.8 sets A E & which are not contained in !B 

The most simple way is suggested by Axiom III, and is contained in 

the following: 

Theorem 15. Let B, denote a set for which 

If there exists at least one 

setB 2 withthefollowingthreeproperties: o<) B 2 E. J.3 Jf3)B 1 C B.2J 

T) P ('D, 1 B2J "'7 0 , further if for any other set B 3 which 

also has the properties o<) , r) ) l), we have B 2 B 3 (. 7:5 

i he definition of P(A 1 B) can be extended for B = B 1 by putting 

(9) 
P(A \ B 1 } - -

P{AB 1 1 B2.) 

P(B 1 1 B:~.) 
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Proof. To verify (9) we have to show that Axioms 

I, II and III are satisfied. Axiom I is clearly satisfied since by 

hypothe sis 1) P(B1 \ B'l) > 0 and so P(A 1 B
1 

) = p (AB 1 1 B._) 
t' (B, 1 B,_) 

Also P(B
1 

1 B
1 

} = P(B1 1 B2.) 

P{B 1 1 B 2 ) 

Therefore, Axiom I is satisfied. 

=- 1 by (9) and by hypothesis '0' ). 

Axiom II is clearly satisfied for any B 1 E. a_ and 

for which there exists at least one set B 2 with the proper-

ties mentioned, because for any such B 2.. E:.. :Z Jixed, P(AB 1 1 B2.), 

the numerator of (9), is a countably additive set function of A E: ét_ . 

To verify Axiom III, three cases must be dis!inguished. 

a) If we put B 1 - C 1 and B 1 is a set for which 

B ' c' E Cf) t ·f J.) we mus ver1 y 

{1 0) P(A \ B 1 C 1 )P(B' 1 c'} = P (AB 1 
\ C 1} in order to verify 

Axiom III. Using C 1
-=: B 1 , this can be written as 

P{A 1 B, B 1 }P(B1 1 B,} -= P(AB1 
\ .BJ. By (9} we have 

P(B' \ B,} ::: P(B, B
1

\ B.d & P(AB' 1 B, } _ P(AB, B
1 

1 B2) 
P(B, 1 B2.) P(B 1 1 B

2 
} 

using these expressions (10) can be written as 

P(A \ B 1 B 1 
) P{B 1 B

1 
\ B 2 ) = P(AB1 B 1 

\ B 2 ) 

or P{A \ B 1 B
1 

B2. }P(B 1 B 1 
1 B 2 } ; P(AB1 B 1 

\ B2..} 

, , , êt'JB J3 for B 1 Ç B 'L byhyp. and so B 1 B 2= B
1

• But B
1 

B = B C E. JJ J 2 E. 7 

therefore the conditions of Axiom III are fulfilled and our last expression 
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is true by force of Axiom III., i.e. starting from {10) and using 

(9) we arrived to an expression which satisfies the conditions of 

Axiom III. Therefore {1 0) is true and Axiom III is satisfied in 

this case for expression (9). 

1 1 1 fü b) If B
1 

= B C where C ç_ JJ , we must 

verify 

( 1 1) P(A \ B 1 }P(B 1 1 c' ) "'P(AB 1 
\ C~ 

Substituting P(A 1 B 1 ) = P{AB, 1 B'l ) from (9) we have 
P(B1 1 B '2) 

P(B1 \C 1 )P(AB1 1Bt.) = P(AB
1

1 C 1
} P(B 1 \ B,_) 

whicb. re duces to 0 ::: 0 if P(B1 
\ c' ) ;:; 0 since, repeating the argu-

ment of Remark 2 to Theorem 7, P(B1 1 C
1 

) = 0 implies 

P(AB 1 1 c' ) :::- 0. If P(lf \ C 1 
) '> 0 

(1 2) P{AB,I B,_) 

P(B 1 \ B:t) 

we have 

P(AB
1 

\ C 1
) 

p (BI 1 d) 

But B 1 ;. B
1 

C
1 

and applying Theorem 1 {again repeating here the 

- 1 
argument that Theorem 1 follows from Axioms I-III , i.e. when 

P(B 1 1 C 1} > 0) on the right of (12) we have 

P(AB
1

1 C 1
) 

P(B1 \Cl) 

we find that (12} is equivalent to 

(l 3) P(AB, 1 B2) 
P(B, 1 B2.) 

P(AB1 C1 
\ C1

) 

P(B1 C' 1 d} 

P(AB, / C~ 
P (B1 1 C') 

P{AB, \ C 1
) 

- p {B, \ c') 
; i.e. 
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But (1 3) follows from Theo rem 8 by taking into account that 

imply that 

To have the conditions of Theorem 8 fulfilled we have to show 

B c' E: :tJ ')_ But we have here C E. J.3 and we have just 

shawn B 1 = B
1 
C 

1 
C c'; also P{B1 1 C 1

) ; P{B1 C 1 
\ C 1) = P{B

1 t C~ > 0) 

i .e. C 1 is su ch a se t that it satisfie s conditions o< ), (3) , 0 ) 

of the Theo rem. Therefore, for any other set, say B 2 J which also has the 

properties eX ) , 0J , T) 
7 

we have Bl-e ' f J3 

AB 1 +B1 C. B 2._ C 
1 E .573 

Summing up we have 

and further 

P{B 1 1 B 2 ) • P{B 1 \ c' )> o; i. e. the conditions of Theo rem 8 are fulfilled. 

Therefore by Theorem a {13) is true and that makes {Il) verified; i.e. 

Axiom III is verified in thi s case too for e x pression (9) 

1 1 1 1 
C) If B C ~ B1 and C = B 1 where B E êt , 

we have to ve rif y 

(14) P(AI B1 C' )P(B 1 
\ C 1) = P (AB 1 \ C 1) if we are to 

verify Axiom III for expression (9). This is equivalent to 

P{A\B1 )P (B '1 B 1 ) = P(AB 1 
\ B 1 ). Using ex p r ession (9) thi s can be 

w r itten as 

PlB' B, I ~,.) 

P Cf> , 1 ~ .. ) 
P (/\ B'B, \ E1.) 

p ('D , 1 ~:1-) 
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But the conditions B C -B and C B imply that B B - B 

Therefore our last equality can be written as 

P(AB,IB2..) P (B, \B2) P (AB1 IB;z.) 
-

P ( B, 1 B2./ -p lB, lB~} T' ( B 1 ID:tJ 

i.e. 
"P(AB, IB2) '"P (AB, IB2) 

and hence 
T->CB,IB2_) 'Pl ô , 11)2-) 

(1 4) is verified. 

The cases a), b)~ c) discussed above exhaust 

the possible ways for Axiom III to have terms extendable in the 

sense of Theorem 15. Therefore our proof is complete. 

It is easy to see that the definition of P(A 1 B 1) 

does not depend on the choice of B 2 ; as a matter of fact, if both 

B.2. and B 3 have properties o<) J(3) and 0 ) J it follows by 

Theorem 8 that 

1' (AB, 1 B:1./ 
1' ( B1 IB1.) 

""P(A'B,I53) 

""P l13 1 l 'B3) 

It is also clear that P(AB 1 \ B 3 ) cannot be defined otherwise as 

by {9) because if B 1 is included into J3 (9) must hold by force 

of Axiom III. 

Remark. If 6 1 C: A E a__ and B, $ ::8 

and is such that it satisfies conditions of Theorem 15 then 

'"P(B, 1 B:t) 
"P(B, \B:t) 

==1. 

Another possibility for including new sets into ~ 
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is yielded by passing to the limit; this procedure is described 

by the following 

Theo rem 16. Let us suppose that B n_ f: ~ 
7 

Bn. C B n.+l further P (B n \ Bn.+ i) > 0 ( n = o) ') -) and 

th at 
OC> 

TT P ( Bn.. IBn.+l) 
h= O 

converges. If 

doe s not be long to :E J the definition of P(A \ B) can be extended 

for B = B = by putting 

(15) P (A \ B = )= li rn P (A IBn) for any A provided that 
tJ.~DO 

the fo llowing condition is satisfied: 

ifB E :B _; 8 c B= and P ( B 1 B = ) > 0 th en 

for some N we have B C BN 

Proof. For an arbitrary A E ét we put 

Then ~k) ç: B n 

for and the sequence l P ( A \ k) 1 B n)} is, by 

Theo rem 7, Remark 1, monotonie non-increasing for --n. = k J k + 1) · · • 

and bounded below by O. Thus 

exists. 

Put 

{I 6) 
p '* ( Al Boo }= ~ ? ( A C. k) 1 B=) 

k:::o 

Doing this we have defined P*(A 1 B 00 ) for every A E:. B._ ; 

(k) 
for A was defined for an arbitrary A E: ét . To prove 



-55-

Theo rem 16, we are going to show that if P* (A \ Boa ) 

is defined by (16), Axioms l-Ill remain valid arrl further that 

Hm P (AIB n.î= PCA lB = ) exists for all A E & and is 
\'1.~ 00 

equal to P*(A 1 B oo ) , i.e. that {15) and (1 6) are equi valent. 

Regarding Axiom 1, i t is clear that P* (A\Boe) 2.0 

since P(A ( k ) \Boo ) =-litn P ( A(_k)\ Bn) exists and > o . 
-t'\-"> 00 

DO 

Therefore P *{A 1 B oe ) -: L_ P ( A ( k ) 1 B=<>} 2 0 
L( = O 

The validity of P* (Boo \ B o0) = 1 can be shown as follow s: 

if A == B o0 = L:._ B IL th en A =B = E. Cl} 
"'(l =o 

since a is a 6 -a lge br a 0 l B o and A = B o ex:> =- D o and 

using our 

previous notation for A0 and Â lk) above. Accordingly, (16) 

can be w ritten as fo llows : 

But 

- P l Bo + B, 'f>o+ B2.S 1 + ·-· + BN BN _1+ ··· \Bo<:,J 
B, 

=- 1 ün 
N ~oe> 
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To show this last result consider . • from the above expression, 

Th en 

P ( BNI Bn) = P(E>N P>Ntl 1 Bn.} 
7 

since B 1\l ç_ BN+ 1 

= P (BN IBN+IBn) P (BNtl \ Bh) by Axiom III. 

since N+ 1 ~ h. and 

so 'E:>N+ICBn. If N+l <.h th en we take P ( 5 N-t 1 1 B n \ 

the second factor of the LHS of the above expression; i.e. 

since B C B N - N+l 

by Axiom III. 

So far we have 

€ontinuing this pro cess up to N = n-1 we get 

and here the pro cess stops since if we take now P (B n. -1 1 B'tî. J 

th en 

by B n _, c 'bn. 

== PC'Dn_1 \ ~Bn)'P(Bh \Bn.)) byAxiomiii 

= P ( ~ n -1 l.B n) 

Therefore, we have 

P ( 5 N 1 Bco} = Li. rn P ( B N 1 B h.} 
\1~ 00 

'Y\•1 

=llm nP(B \1)' -n __, oa k.=N k \(tl) 

~ 

= n P (r\l Bk+,; 
I(..,N and thus 

P ~ ( E> oe 1 B oo) = lL m \1 P ( B (< 1 5 L< tt\ :::: 1 
N ~oC> K =-N ) 
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= 
be ca use TT P ( B \-\ 1 B L< + l) 

1<=0 
is convergent by hypothesis 

and the remainder-product of a convergent infinite product does 

alwa ys tend to I. 

To verify Axiom II we have to verify that 

defined by (16) is countably additive. Let us 

oc 

and A oo = L. An. 
11.. =-1 

( A oO ~ a s L ne.. e 8:. l.s il 6-i..l~ebra.) . Let 

us put A~-= Art B0 

(k) -
and Ah = A'fl E:>k ~l<.-t for k=\,'2J ···] 

lo) 
further A = A o0 5o 

00 
for k = l, '1 / 

Reasoning as above, for A C Bk ( we can, without 

loss of generality, suppose that AC Bk. because by 

by Theorem 5) we have 

00 

(1 7) P C 5 \ ~ oCl Î == PC A 1 Bk) ll P lB n \ B ~+1) 
'Yl !::.l< 

and P (A.\ \)k) is countably additive. Further 

and for sin ce 

n=t 
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This implies that 

(ra) P ( A~ \ B =) ~ P \ %,, A(:! 1 B de) = ~'? ( A~) 1 B =) . 

But by (16) we have 
00 (k) 

{19) p * (A= lB oc J -= L P (A= 1 B =) 
k=o 

From {18) and (19) it follows that 

{20) P * (AoolBC>d) =Y~ P (A~k)IBoa}= ~ L P(A~)(Boo) 
k. ""o fi. = l f\.::::1 k=o 

From (16) we have 
OC> 

L p ( A(td 1 B oOJ = p * (A \ B =) 
k.:::o 

and putting that expression into {20) we have 

{21) 
:1<. o<> "* 

P (Aoe\Boa)= ~' ~ (ArtiBc-e) 
oO 

But Ao0 was defined to be L_ A 11. and so (21) can 
-t'\.= 1 

be written as 
= 

P ~ (~~ Ân \ Bo0) = ~~ e~ (An\ B~) 

which means that P*( Al e:> =) is countably 

additive. So far we have Axioms I and 

II satisfied by {1 6) 

Before we proceed to Axiom III we are going to show that 

and that it is 

(22) P* (A 1 Boe) == t-i m P (A 1 BN J 
N----'> oo 

i. e. P* ( A 1 B oo) = P ( A 1 B oo) 
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for any A E:. a_ . If we can show that (22} is valid for any 

A ~ a then it also rneans that litn P (A 1 f) N) exists 
N~OO 

for allA fa because P*(A 1 f) o0) is defined 

by (16) for every A E: Et . To prove (22) we start with 

showing that 

{24) 

To verity (24)
1
consider 

P ( = ( k î \ - - -\f:,
0 

A \BN) ~ P(Al:>o+AE,1B..,+ A& 2 B,+ ···+AE>Ne,N_ 1+··· \BN) 

= P (A ('Bo+ 5(io+ ~:i>l + ··· + BN BN-1+ ·-)\ ~NJ 
L.-. T'" ' 

~N ··· sine e B N C: BN+l 

= P (A (B QCl) 1 B NJ 

= p (A (f>N +~o<:>-E>N) 1 BN) 
::: p (A ( ~ N + ~ N) \ B N) 

= p (A BN + AB N \ B N) 
= p (A 'B N \ B N) + p (A BN \ e:, NJ 
= P (A \ BN J + 0 for ( ABN \ 5N) Ls an \mpossible 

event, i.e. we have 

{25) A (k) 1 BN) = p ( A \ B N) 

= P (ABN \BN) 

= p ( i A(k) \ BN) 
k=<o 
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Therefore we have 

by l25) 

= Z P ( A(l<) 1 BN) 
1 

~y Axio 'm 11 
~=0 

1\1 
= L P (A (k) \ f>N) 'v y ( 25) ) L.e . we 

justified (24) here. Now by (17) 

p (À (k.) \1L,o} = p (A ( k) 1 & N) TIN p ( t n 1 B V\+ IJ 

and using this result we get 

(27) 

combining (24) and (27) we get 

It follows now immediately from (28) that . . 

OC> 

(29) lim P(A.IBN)=L P(A(k)IBo<:>) 
N_, oo k.=o 

for any A E:. 8t 

by (16) for every A E:. a 

Therefore (22) is proved. 
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To complete the proof of the theorem we still 

have to show that Axiom III is valid. We are going to show that 

Axiom III', the equivalent form of Axiom III, is valid. Axiom 

III' goesasfollows: IfB€: 13} (E: :8 7 BeC o..nd P(B\C)>o 

we have for any A E Q 

P(AIB)= 
P(ABlC) 

?(BIC) 

We distinguish three cases here. The first case is when 

and P ( B oo \ C ) > 0 

we have P ( B N 1 C J > 0 if N is sufficiently large and thus 

th en 

(30) 
? ( ABN \ C) 

'"PlBN \C) 
1 

since BN E 1J 

Pas sing to the li mit N -----'71 = and using (22), it fo llows 

th at 

(31) 

P(B = \ C) 

which is Axiom III 1 for this case specified above. 

The second case is when B E. ~ , 'B C: B= and P ( B \ B= J > 0 ; 

we have to prove that 

(32} P (A lB) = 
-p(_B\B oO) 

But when B f J3 J B C B 
00 

and P ( B 1 B oo) / 0 

then the re exists, by hypothe sis of the theo rem, an index N for 

which Then, by taking N sufficiently large> 
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and we havè 

- ? CAl B) , 

since ~N E 'B passing to the limit N ---7 e>0 {32) 

follows: 

The third case is when B= B = and C = B = in this 

case we have to prove that 

{33) 

But we have already shown that 

All we have to show now is that 

But by (I 7), for Ac Bk. (we can suppose this without loss 

of generality) we have 
= 

P(Al~oOJ= r(Al5K) ~~k P(5n\Bn+J 

Using this expression we have 

= 
{34) P(APJoe\e,oo) == P(A~oa\~k} ~~!{ P (bnBooiBn+l) 

But A C Bk and so A C B o<::> a nd therefore A Boa = A . 

Also and (34) can be written as 
oC 

P(Al)oé>\ Bo<>J = P(AfbkJ IT P (Bh lf>h+tJ which 
'hz k. 

simply says that {34) and (I 7) are equivalent, i.e. 

and this concludes the proof of Theorem 16. 



-63-

Remark. In his paper [2.1.] A. Rényi states 

this theorem (Theorem 11 in [l.'l] ) as it is stated here but instead of 

the condition: "if B E:: '!) 

for sorne N we have he puts down the condition 

which goes as follows: "if and 

for sorne N, we have .He uses this condition 

when he proves that Axiom III 1 is satisfied when B f. h J B C. B ~ 

and P ( B l 8 oa) > 0 by applying Theo rem 8. the re, i.e. 

in the case wh en expression (32) of this paper is to be verified. 

A Rényi distinguishes two cases there. Case 1 is the case when 

there exists an index N for which Be 5 N , and then we have 

P(ABI BNJ 
P (A lB)::: 

P(5\e>N) 
for N large enough and pas sing to the limit N --'> oO (32) 

fo llows. In fact, this is the case i:hat we have here as a condition 

to Theorem 16. The second case is the general case where he con-

siders two measures ;U 1 (A)., p (A \1)) and f--:l.(Aj = P (A 1 B =J 

and lets A E tl denote an arbitrary set, for which A Ç \:)NB 

for sorne N. Th en, by Theorem 8, taking N sufficiently large to 

en sure p ( f, 1 f:>N) > 0 , 
PCAIBH) 
p (B 1 BNJ 

:::. 
P(A \ B) 

p (~\ B) 
and from here the 

same expression as of (32) is derived. But to use Theorem 8 here, 

the following conditions are to be satisfied~ A+ 5 Ç, BN B -o--nd 
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But then A C BNB as it is supposed to be and 8 C BNB 

which is p.:>ssible only if and with that we 

are back in Case 1 where it is supposed that there exists an 

index N for which B C B N Therefore it seems that 

using Theorem 8 and, be cause of this, suppo sing that we have 

whenever f) E: J) 

for some N, we cannet achieve more than by suppo sing that if 

and 

then for some N we have That is the reason 

we used this latter statement as a condition to Theorem 16 in-

stead of the original condition used by A. Rényi in his paper [22] . 

Remark to Theorems 15 and 16. The assertion of 

Theorem 8 for the case A.,+ A1. C Bt B2 but without 
} 

the suppo stion can be considered as 

a stronger form o f Axiom Ill. For the proof of Theorem 8 we 

needed the supposition since it was 

used two times using Axiom III. Dropping the supposition 

we now u se the re sult, gaine d wh en it 

was a supposition, as an Axiom; it shall be called Axiom Ill*. 

Axiom III>!<. If A 
1 

E:. ét 

and B1- E. ~ 



we have 

P(A~~IP> 1 ) 

p (f\~t &,) 
= 
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P (A,\ B2.) 

As Theorem l is not a consequence of Axiom III*, 

in case we replace Axiom III by Axiom III*, we must suppose 

the validity of Theorem l as 

Axiom III** : P (A 1 B) == P(A ~~ B) for Ac& and. 5 é 1:>. 

Then Axiom III* and Axiom III** together imply Axiom III 1 

and thus Axiom III since Axiom III 1 and Axiom III are equivalent. 

To show this let and B 2 = C 

where 

and P ( & 1 C ) > 0 . (These are the conditions of 

Axiom III1 but we cannot say right now that Axiom III 1 holds. 

All we want to say is that if the above conditions are fulfilled 

then Axiom III 1 is implied by Axiom III* and Axiom III** · 

together}. The conditions of Axiom III>:~ are satisfied sin ce we 

have 

and so 

A 1 + A'l. = f\ 'b +- ~ = ~ 

'D, B:l. ::: BC = B 

A, + A ~ c B, B2 sin ce 

Therefore we have 
P(AB\B/ P(A~\ CÎ 

-
Pl~\~) 'P(~\CÎ 

Also P(AIB) = P(Atl 8.) , 

by Axiom III* 

by Axiom III** 

1 
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~0 P (1\IB) 'P ( A&IB) 
= 

Pl& l~) by Axiom I 

P(AB 1 C) 

P (~\ c) ) by above result; 

i.e. P (AIP>} P (Aelc) 
P(_ ~\C) 

and this is the assertion of Axiom III 

i. e. Axiom III is a consequence of Axiom III* and Axiom III**· 

But Axiom III* follows from Axiom III only in the special case 

wh en In that case Axiom UI* is 

Theorem 8 proved by using Axiom III. 

If Axioms III* and III** were suppo sed instead 

of Axiom III then in Theorem 15 the condition that for two sets 

with properties 

could be omitted. In the preceeding Remark we have already 

mentioned that A. Rényi uses the condition that if B E:- ~ 

and P ( B 1 b ~) ) 0 for sorne N, we have 

instead of the condition used he re to Theo rem 16 ( se e 

Theorem 11 in [ ] ) . Regarding that condition he notes that 

if Axioms III* and III** were supposed instead of Axiom ID then 

the requirement b f) N E. lJ could be omitted. But omitting 

this requirement the application of Axiom ill*, instead of the 

application of Theorem 8, would still require the condition 

discussed in the above Remark, which 
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leads us back to supposing that there exists an index N for which 

B c ~N i.e. to the condition that if !:> E:- }) 
1 
~ C f:> = 

and for sorne N we have B C. BN ) 

the condition used here to prove Theor.em 16. 

2. 1 O. Continuity properties of conditional 

probability. For any fixed B E: 78 P(Ale:,) is a 

countably additive set function of A E &._ {Axiom II). By 

"A. Continuity Theorem for Additive Set Functions" of M. Loeve 1s 

[ 16] Po 84~ p (A\&) is cmtinuous in A-, i.e. if An. f a 
and or An..~Ant-t for n = 1} 2) 

we have for 

Re garding the continuity of 'P (A 1 B} as a 

function of B, we have 

Theorem 17. If and 

= 
("tl= 11 '1 J ••· J further ~ t) n = t) E: 3 .; 

'1'\=l 

we have for AE:8: 

Llm P(A \~nJ ='PC A 1~) 
"r'\--7 oO 

But ~n. '0 = \jn and also ll m P ( ~'f\ \&} == P(b\ \:)J;::: 1 
'Y\-7 oO 

i.e. p l E:,ll 1 'D) / 0 for sufficiently large n. The re fore, for 

n Large enough, we have 
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P (A 1 ~tt)= 
P (A Bn 1 [j ) 

p ( 81L 1 t)) 

and thus 

Um PC AI[j1,) 
k~- P (A ~-n 1 ~) P (ABII?>) 

= P (A 1 B) 
lim P(B 1~) P(B/8) fl-> DO n-~""" n 

which prove s Theo rem 1 7. 

The situation is more complicated if we 

consider a decreasing sequence of conditions. In this case 

we have 

Theorem 18. If B E. :RJ 1 f) C '}[, E: PJ a. nd 
o.::> 

C 2 C 
1 

(n ~ 1 2..r.)
1
further if putting C = TI Cll1/ 

'11. lt+ 1 rvt. ~ 1 

we have {) C E JJJ and P ( C \ e, ) ? 0 1 it 

follows that 

lim P (AI~Cn)=P(AIBC) . 

Pro of. W e have by Axiom III 

P(ACn/o) f p(c 1~) p (A 1 B Cn ) = p ( Cn 1 B) 1 'YL > o. 

But P ( ( n 1 B ) ~ P ( C / fJ) 1 by Remark 2 to 

Theorem 7 ( c c: cl't. ) and P(ciB)>o 

by hypothesis, i.e. P (Cn 1 !j) > o for every n. It follows 

th at lirn P(A/8C ) ~ !'.-':'~P(ACnlb), P(AC/ b) ~ P(A/I'>C) 
n- <><~~ n 1i tn P ( C 1 ~) P (C 1 f) ) 

fl.-700 '11. 

which proves Theorem 18. 
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2. II. Products of conditional probability spaces. 

Given a finite sequence of conditional probability spaces 

1k): [ .S(kl '&_(k\ ~( k.) '\)(1~)) lk ~ 1' 2.) . .. ' NJ . 

The product of these conditional probability spaces is defined 

as follows: let 0 == SU) o S(2
) o • .. o S ( f..!) denote 

the Carte s-ian product of the sets S 0 ) , s (2.) 1 •• • ' ~/N/ i.e. , 

letS denote the set of all ordered N-tuples (a__W , 1>.5-'2.
1, . . . ) 

where ('2.) s ( 2.) 
0... f. . . . } 

a. C..N. ) E S ( t-.1 ) ) 

i.e. where Let ] denote the set of 

all sub sets B = e, (l) o ~( 'l.) o where e(k) E: :b(k) 

, N) . 

~(1\1)) 

Accordingly, B consists of thœ e N-tuples 

( 0..{1) Cl('l.) 
1 ) 

of S for which we have 

l k = 1/l,· ·· ;N J. For brevity, let us denote '1> 

] = 1> ( l) 0 'b (~) 0 • • • 0 1> (. 1\ll . 

as follows: 

Accordingly, A consi sts of tho se N -tuples ( (! ) (2) 
\_ 0-... ) ~ ) . • • J 

of S for which we have 

G.. ( N) J 

For brevity, let us denote a as follows: a== Et (il 0 ét ( '2.) 0 .. . 0 t(:CN) 

and let a denote the least 6 -algebra containing 8 . Let us 

de fine P(Aif::>) for 

A= AC'\A('l\ ··· 0 A (1\1) and B = t (11 ~ "& ( 2.) o .. . o B(NI 

by PCA\B) = p<n(Ac 11 1Bc 11 )Pc21 (AC2)/~c21 ) · .. -pCN)(A(N)I1C~)) 

N n P c~ ) c A ( k ) 1 ~(le~) 
k=l 
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(k) a_C.k'l nCkJ E 7J(~<.1 
if A f El 7 BE: ~ , i.e . L.f A E J v 

and extend the definition of P ( A.l5) for every fixed 

to all A € ct in the usual way described 

by Theorem A p. 54 in [ 8 J ~ 13. In other words, 

for any gi ven f, ~ 1J we obtain the product of the 

Kolmogorov probability spaces 

[ .slk1) a_Ckl) p Ck.)( A (k)l ~(ki)) (k= 1, 2., , . . JN) and 

perform this operation for every possible ~ E 1) . Thus 

we obtain a conditional probability space JJ = [ S J a_ J 131 P] 

which will be called the Cartesian product of the conditional 

pro bability spa ces 

denoted by 7J 

<p ( k") (k=l , 

N 
- TT 'Y ( le) 

\( =1 

2, . .. 7 N J and 

The Cartesian product of a denumerable sequence 

of conditional probability spaces 

? ( k) = (_ s (k.) ) a. (le.) ) 1) (K.) ) p ( k l ] 

is defined as fo llows: we denote by 
the (art e slah "t=~rdu.c.t or -lhe <;.et s 

the set of all se t s B =&Cl) o "&< 21 o ... 

( k === 1) '2.' - . . ) 

S-==- S(l)o S(l.) a --- o 

s (k.) ( k = l ) 2 1 - - . ) } 

0 ~ ( h) 0 • . . 

{?y J.; 
where 

and by & the set of all sets 

A of the form A ::: Aül o A ( 2.) o ... o A (n) o SC. "\'t+l ) o · T . 

where AC.k) E. Et ( k) (k = 1, 2.. , · · · J n) i.e. êt is the 

set of all J-cylinders of S. We dEf"ine P( A\~) for 
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A E: a and by 

and extend the definition of p CA lE>) in the usual way, 

for any fixed B (: ] to all sets A belonging to the least 

b -algebra E1 containing a . In this way we obtain a con-

ditional probability space ']J = [S}iJ '))-' P CAlE>)] which 

will be called the Carte sian product of the a:> nditional probability 

spa ces 
<?) (k) 
..r and denoted by 'P ,_ :P ( 1) 0 • - • 0 p ( k) ~ . - . 

To prove that defined that way, is a conditional pro ba-

bility space, we have oniy to verify the validity of Axiom III 

sin ce 
1
clearly

1 
for P(AI&) we have f(A 1 E>) ? o if 

A(:a and also i.e. Axiom I 

is satisfied. For any fixed '& J PCAIB} is a countably 

additive set function of À E: a ) i.e. Axiom II is also satis-

fied. To show the validity of Axiom III for 

wehaveto show P(f\[f)C) P(~\C) = P(A.~\C.} 

/\ E: fr 1 B E': Q J C ~ 1) and 'D C E ':5 . J) 

of all the sets B = 'f)U) o {) (2.) o •.. o B Cldo 

for 

consists 

where 

and BC f B) 

then they are of the form 

(35) c = c(l) • c (2..) 
0 •. - 0 

and 

'C' (2) ( \(kl 
( 36) BC = (BC)' 1 

o ( ~C) o · · · o B C 1 o • • • 
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where r o_ c_ , ( k 1 E /(). c k ~. 
and \_b J J.J Clearly, Axiom III 

is equivalent to 

(37) P (AI&C)'P(~C\CJ= P(A'DC \C) 

for A E a_ ) CE 16 and 1) C E 1j sin ce 

the statement of Theorem 1 is valid in the product space ']) too. 

The validity of Theorem 1 follows immediately from the unique-

ness of P(A.!B) if A is a J-cylinder. For if A is a 

J-cylinder we also have P (A"& 1 B} = P( A 1~) ; i.e. for 

any fixed B E: ':b 

we have, for every A E. a ( A. ..... A Cl) tl A (:1.), •.. o Ac .... ) .. s<1II+I)O···J, 
'""- l'Y\ 

PlAIBI==TI pCkJ (A(k)lt<•)}= PCA~\B)=TI pCk1 (ACk1 e/k1 1BC~<)). 
k=t l<==l 

To state it explicitly, we have got two countably additive set 

functions P (t\11)) and PC_ A~\ BÎ completely equivalent 

on a 
The definition of P (A\ 'e>) was extended for any fixed B E. '] 

to all sets A belonging to the least ~ -algebra f{ containing & 

in the usual sense; see for example Theorem A, p. 54, of [ 8] . 

If the set functions P(AIBJ} ~(Al)\B) were equivalent on a then 

they are also equivalent on the least 6 -algebra & containing 

& . Therefore the relation of (37} is justified. To prove the 

validity of Axiom III it suffices, therefore, to prove (37). To do 
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this~ let A be a J- cylinder, i.e. of the form 

A; A(l)o A (2.\ ... 0 AC~\ s('l'l+t) 0 ~ (,._+'1.)0 . . . 

Then by definition 

by {35) and (36) 

{39) PC5clc) =FIT, P(\<)(c~c)c~c ) \ cckJ)) 

by definition, {35) and {36) 
00 

{4o) P(A&C\c)= (\ pCk)(f\Ck1(&:Yk)\ eCk)) TI pC~<)(CP->ci<J \ C(k)) 
k:=-1 1<=11.+1 

Putting 

Pn = fJ pck'(e.&c)ck)lctk))' 

the sequence { Pn.} is non-negative, monotonically non-

increasing and thus lltn P 1'1. = f-> 
11.-'.> ~ 

exists. 

Two cases > r :: o ~ttd p > o ) are to be distinguished. 

If p-=-o then P( BC \ C J =: 0 by (39) and 

P (AbC1C)=o by (40), and so {37) is satisfied. 

If f.l > o th en by (38) and {39) 
-n. OQ 

{41) P(A\Bc.)PC1c\c)=TI p\k)(A(k)I(BC)<.k))1T P Ck)((BC)Ck)\ e,Ck)J 

1.<=1 k=l 

But p(k)(A(k)!(E>C)(l.:)) - P(k) ((E>C.)(k)l eCk)) 

pCk)(ACk)\(1)C)\1<1C(k1).pCk)(C~G)Ck)l c<.k)); (f>cfk)ccCI<) 

- pckî ( A(k)(~c)ck) 1 e Ck)) ) 
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by Axiom III which is satisfied by 
p (\<) 

Using this result 

(41} can be written as 

p (k) (A Ck) CBC) Ck) 1 c (_k.}) \1 p Ck)( (f,CJ k) \ c<-"-J) 
k= 11.+1 

l'Y\ 

~(A.t~c) PCbctc):::: TI 
k==l 

which is, by (40}, equal to -p (f\ &C 1 C) . This proves 

relation (37} and, by previous argument, Axiom III for every 

J-cylinder A E:. 8:_ and therefore, using the same argument 

as above for verifying P(A\B) =?(/\&\ &) for 

every A -tn a the least o -algebra containing a . 
We are going to examine now the special case 

when s ( k) is the real line and ét (k) is the _ctass of all 

('\K.) \ 
Borel sets of v U<=\1 !li··· J. Consider the space 

consisting of points x-:::: (x, )4) .. . ) xk.J"')) 

where and define the random variables 

~ 1< == ~ k lx) 

(k=l J 2_) ... ) 

as follows: ~klX)-= Xk 

If 

A= ACI)o A(2.\ ... 0 A(kJO ... and B = ~C.·1., ~(.2.) .. ... 0 B(k.)o ... } 

Where A(k) c Clr(k) B(_k),_ 'l)..(kÎ) . lk) Cl<) 
c v-- ~ J.J 1. e. A and B are ·_ 

7 

subsets of the real tine _s(kJwhich belong to a_(k) and '!>(k.) 

respectively. Then, clearly, 

P(~k fA!&):::: pCk) ( ACk) 1 B(k)) ) k~') 2.) -·-

i.e. 
P(~k <;A\5) = pCkî (~k~ A(k)l'B<.k))= plk)(ACk'l1:/k)) 
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s(kl p (\<) c A.(k) \ p_(l.<:} l If, therefore, is the real line then r\ u ) 

is the conditional distribution system on the real line of the 

random variables~ } k= 1, 2.~ ... .) 
k 

seen that 

defined above. It is 

'Y\ 

P (""fiE. A\1) ~ E A(2.) .• - -c E. A(n.) \l2.:>'=TI pck)(ACk)[B(k)) 
l ' l.t ) .J " t\. 1 ) k=l 

or
1
ifwe put ~= ( ~ 1 J ~"L J ••• ) ~"'- J > then 

p ("~~!\\&)=fr p<-k) (A(k) \ B (k1)) 
le== 1 

i.e. the random variables ~ 1 ,1 .. ) ... , ~n. are conditionally 

independent for every choice of 1> E; '}> with respect to B. 

We can say, therefore, that the random variables -ç- k = l,2.,3, .. -;n.. 
~k. ) 

are independent with respect to 1J. We generalize and summarize 

our results in the following 

Theorem 19. Let j)\k.)= [ s(k)) a_(lc)) B(k: p(k)(A(k)lB(k))] 
.} 

1<.=1)'2..) .•. where is the real line' a (k:.) 

is the class of all Borel sets of and ] (k) is a subclass of 

this class of sets. Then, forming in the spa ce S -- s(l) 0 s(:l..)o • . . 

the least 6-algebra a of a = a (1) 0 a ( 2.) 0 ..• 

and B = J)(l) o :h('l) o · · · there can be given a set function 

P(Al~)) AE.fl._) ~ E 1) su ch that [S ) tt, n] P (A 15) 1 
is a conditional probability space; let X = (X, 1 '1.']..) . •• ) stand 

for any element of S and define the random variables ~ k = 1 k (X) 
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then the random variables ~ 1 1 ~ L J • • • 1 are independent with 

respect to 
p}J)

0 

(l) 
and for any B of the form el o .. . in Jb 

the conditional probability distribution system of is given by 

In this case, therefore, we can 

[ c.'K 1
1 

"'fK
1
l 0-lK >

1 
pCK}(Af~<) j 0_{~<))] speak of the conditional probability space ..J D'V JJ u 

as a conditional distribution system. 

The ca se wh en the conditional probability system 

P110= (l") J Bfl-()) of ~ K 1 defined as above, does not 

depend on k , i.e. when the random variables ~ K have the 

same distribution, is of special interest. In this case we denote the 

conditional probability spa ce [ 5, ~ 1 ~ 1 P (A 1 B) J 

constructed in the sense of Theorem 19, for the sake of brevity, by 

If the conditional distribution systems 

are not the same then we use the 

notation 

[ s ~ :1J p (A 1 P>)] "'rr [ s(V.) Gt(l() :Jb(k,) pfK)(AlK) 1 B(~)) ) 
1 ) l 1--1 · 1 1 ) 1 

and say that the conditional probability s pace r SI&, Jb, p (A 1 ~) 1 
is the product of the conditional probability spaces 

[ S1"' ~dl< JI jJ_}K )! p'K J ct<J j l?(K) ) J . 

To conclude this chapter, the idea of imbedding 

conditional probability spaces will be introduced here. 

and P~ [ 5', 9'v
1
1 Jb '1 P'(A 1 8)] 

are two conditional probability spaces s uch that S ç;; S' 1 6t ç; &'
1 



-77-

and if 

we shall say that the conditional probability space is imbedded 

into the conditional probability space Theo rems I 5 and I 6 are 

special imbeddings of a conditional into a conditional probability 

space fiJ' for which t:t'=Gt and 

These imbeddings of :fJ were obtained by extension of Jb in the 

manners discussed there. If is imbedded into P' we shall 

write 
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CHAPTER III 

CONDITIONAL LA WS OF LARGE NUMBERS 

Conditional probability is in the same relation 

to conditional relative frequency as ordinary probability to ordinary 

relative frequency. This relation, which is well known as an 

empirical fact from everyday experience, is described mathemati-

cally by the laws of large numbers. 

The laws of large numbers concerning the be-

haviour in the limit of the conditional relative frequency (and 

generalizations concerning conditional means of observations) shall 

be called 11 conditional laws of large numbers 11 • It is emphasized that 

the conditional probability P{A 1 B) is considered as an objective 

characteristic of the random event A, under an objective condition B, 

and its value is the number in the near neighbourhood of which the 

conditional relative frequency KA12 will be found in general, if a 

sufficiently great number n of obs~~vations (experiments) is made, 

where kB denotes the number of those observations when condition 

B has been realised while making the n observations and 

the number of tho se observations where, besicles the condition B being 

realized, the event A has also occured. It is supposed that k B ) 0. 
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3. 1. Sorne laws of large numbers in ordinary 

probability space. In this section tYv1o , , theorems are presented, 

concerning random variables defined on an ordinary probability 

spa ce, which will be needed la ter on when proving a conditional law 

of large numbers. 

Theo rem I. Let ~ 1 > ~ 1 
1 

. . . ?S /)\.) . . be 

mutually independent random variables with mean values 

M ( ~n) :o Mn~ 0 and finite variances o:= D.x.. ( ~n). Put ,., 
~n" L ~K and A'lt"" M ( ~n) ~ M1 + M 2. + .. . + Mn 

K~l 

and suppose that the following conditions are fulfilled: 

a) 11 m An= + C><O 

n -> <><> 

~ 02. 
b) L n < + oO A'J. ne, 'YI. 

Then it follows that 

P (Um 
n-> """"' 

Proof. Theorem 1 is a consequence of the 

Kolmogorov inequality according to which, if 1)1 J 't) 1 ) . . . 'I)K). 

are mutually independent random variables with mean values 

- DJ.. - K 

( 1) 

and finite variances Dl ( t;K) = N ( '? ~ ) 
(K=I 1 1 1 . ) 

P ( rn d x J 1j, + ~ ?,_ + 
1 ~ K~fn 

we have , for any E ) 0 J 

m.. 

· · + ?K / ~ t) ~ ~~ [ 0~ 
K=l 

Instead of using {1) we present here an inequality, 
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found by J. Hajek in 1953, which is a generalization of Kolmogorov 1s 

inequality and can be used to prove directly Theorem 1 {see [ 10 J ). 

The following theorem will be proved: 

Theorem 2. Let 1), 1 ?;L 1 iJk ) . . . denote 

mutually independent random variables with mean values M (QK) = 0 

and fini te variances M ( 1')~) "' D~ and C k ( K= 11 1 1 · · · ) 

is a non-increasing sequence of positive numbers ( C k. ~ C K + 1 ) ; 

then we have for any positive integers n and rn (n <rn) and for any ~ > 0 

(2) P (max CK 1 ?, + f)t + · · · + ?K 1 ~ e:) ~ ll. (c~ t_ D~ + [ c~ D~) 
n~K~m E. K:=-1 K;n+l 

Proof. Put 
m-l ,_ i 2 

( 3) 0 % ~ Y1. ( ~ 1 +- ~ ,t + . . . t 1 K) ( c:- c~ +-1 ) + c m Cr; 1 + . . . 1 m ) 

th en 

(4) M (Y ) 

To show (4) consider (2) and write it as follows: 
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Taking the expectation of T the cross-product terms vanish 

since the random variables 1(7
1 

J lr(l'l- J • .. J -tz"k J .•. are 

mutually independent and 

Therefore 

tYYl -1 

M (o)= L: 
\(~h. 

k 'l. YY"I '2. 

cc.:- c.~t() L D~ + (_""" ~1 DL 
i.=l 

Writing out terms on R H S 

n. 'l. :z. 11+1 "). 

M(êî) = ( c~ L. Di.+ c.n+l ~ Di. 
(.-1 l =\ 

2 f ~ + C.rn . Di_ 
v::: 1 

Cancelling out terms we get 

J(L 'l '2. l. l. l. 

Mlc) -=c~ L Di.+ ct'ltiDrtti+C~+'lDI'lt'l+ ... 
L::::: 1 

"- 11. ')_ ~ 2. D~ = c_h. L D. + ç_ cl l 
è~l L t -::: h_fl 

Using indices k instead of L we get (4) 

Denoting by Ar ( "t =- h 1 1'1.tl) · · · > '\-'n} the 

event consisting in the simultaneous validity of the inequalities 

( h 5. s < r î c111.d c. ~ 1(1 + · · · + '11" ~ 2 t: 

only the second inequality is supposed), inequality (2) 
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can be written as 

""" To verify (5) we let A= L.. Ar . Then A and A are mutually 
'f-:o l't 

exclusive events. Therefore we have 

MCa)=%ttM (11At)P(Ar) +MC1\A)PC~) 
where M (~ ) '> o a nol M ( 1 1 A/ L o 

So we have 
yY\ 

(6a) M(l) L 2:_ M(11At}'P(AT) 
~--n 

By (3) we have 

M(11À.,..J= 1:_-' \V\ (c~,+--- +'1~c.)1.11\tÎ(c.~-c:+0+c~ M(C~,+ ·- - +1'Y\")'2-1 A1) 
k=n 

~~-lM l('l'}
1 

-r ... +'?IC.JI A-;) c._c~ -c.~+0 tC.~ tv\ ((<VJ 1 + · · · +17mliA~ 
k-='f-

where from definition of Ai n ~ 1" j i.e. we have 

(6b) M( 11A,.)2.~-~ M (l-YJ1 +---+1JkYIA 1)(c.~-èkt~+C'.~M(l1?t+-- +1JmY-IAt) 
k=l 

We also have 

To show this we note that according to the definition 



-83-

of AT c, 11/, +.-. + "'h- \ :z f: 

so 

i. e. 

therefore 

inequality of (6c). 

E.'l. 
/_ 
- c~ 

the second 

The first inequality in {6c) comes from the fact 

that the random variables V,>·- - J 1?.,, --- 1 1;/k are 

mutually independent and remain so under the condition Ar-

The re fore M (( iJ,+ ·-·+t7r+·" +-?K)
1
1 A,)= M c,~IA, )t ... + M('1; \Ar)+ .·- + M (v;:\ A1'J 

sin ce, be cause of independence, the (~) tv'\ ( '?<. t?j 1 A J = 0 > l ·* j 
Therefore, being each M ('Qi'- 1 At-} 2. 0 and 

't ~ k we have 

M(C~,+- - · +KJ~c}~IA-rJ :2.M((1,t+J,_+ -- - +171'")'-! A,)>~: 
,.. 

which is the required inequality of (6c). 

Inequality (5) is the consequence of (6a), (6b) 

and {6c). To show· this we write (6b) as follows 

M ( 1 1 AtÎ ~ C1r-MLC~t --- t~,..)'-l A rJ+ C:'T"+I M (Ct;,+ --- +'?HJ~I A1') + ·-- + C~_, M (C'?,+ -- -+"J'Y>I-01.1 A1-J 

- [ c.~+' M (C"'I,+ --- +tJi')l A~+ .. ·+ C:tv1-1 M((~,+ --- + '?'YY\-0'1 \A ~tc~M (c~,+ .. + ~rn-t\AtJ 1 
+ c~ M ( ( "?, +--- + i!lho! 'l. 1 A 1) 

~ (_ ~ M ( ( tj, + .. - + ' T) 'l. 1 A tt") l 
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since leaving the first + ve term of the R.H.S. of this inequality 

as it is and observing that each one of the remaining terms 

( + v Q. or - v e ) is ~ E. :l.. by (6c) and by the hypothes.is 

th at is a non-increasing sequence of positive integers, 

we can take each one of them to be equal to E. 1.. without disturbing 

the validity of the inequality. In that case they cancel each other 

and we are left with C; 1'1 ( Ç 1) 1 + · · t l')r }J. 1 Ar ) 

on R. H. S. of this inequality which is again > E '2. by (6c). 

I.e. (6a) by (6c) becomes 

M(Y1Ar).(t. 1 

The re fore 

the events Ar 

ma x 
-tU.K~m 

Using that result in (6a) we have 

M (r)~f M(riAr) P(Ar) 
r. Yl 

m. 

L_P(Ar)~-
(.1. 

M (Y) 1 which j s ( 5). 

where the union of 

means the realization of the event 

/ t,), + . . + 1)~ / ~ E 

p (rn a x 1 t;71 + 1j2 + .. . + ~1\ 1 ~ f ) 
nfK ~m 
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Remark 1. If we choose 'Yl=l and C.. 1 = c2= -· -= C"""= 1 J 

we obtain from (2) as a special case inequality (1). If we 

choose (_k. -= ~ ( k -::::: h , +1 + t 
1 

• .. 7 ~} we obtain the 

inequality 

(7) 

Remark 2. By me ans of pas sing to the limit 

it is easy to deduce from (2) the following inequality: 

( 8) 

since S'U.. t'J Ck \ ~~ + ·- · -t ~k.\ 
1 

i.e. the least upper 
rn ~ k 

bound of the sequence {Cie. \ ~1 -1- ~ft.+ · ·· +1Jkl J exists 

( k = tt, 'Yl. tl > · · · J. Ïor c k 1 ~1 -t . . . + '? k \ ~ c k ( 1 ~.1 + .. . + 1 '? k 1 ) 

i. e . for any k, the sequence { c.k \ "?, + .. . + '?k \ ) i s 

bounded above, i.e. we have a non-empty subset of Re.. which 

is bounded above. The re fore, it has a least upper bound. 

Now, if 

the inequality 

(9) p (s.u.p 
h ~ k 

= 1 we obtain 
k 
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Remark 3. It follows from (9) immediately , 

that the strong law of large numbers holds for the sequence of 

mutually independent random variables /,) A/)7- J --- ) ')k 

if the '9~ s have rnean values o > finite variances 

D~ = M( ~~) and 

(1 0) 

converges. 

As a matter of fact, it follows from (9) and {1 0) 

that for any ~ > o 

(li) 

and therefore we have 

(12) P (11m 1J, +- \?1- + -- + 1/'Y1 :::::- o \ == 1 
'lî~ o0 n ') 

Applying Theo rem 2, Theo rem 1 can be proved 

as follows: consider the result of (8) 

p ( ~ 'fJ' C,\ "}1 + + 1< \ :;> ('.) ~ ~ • ( c; t ~k t ~ M~k \l';_) 
Put 

a.:ncl ~o 

= sk-A&< 

clttd c\( =-~­
At: 

<;. 1 fJ1 + 1J'l + · ·· + "1~J = -
1 t 1 k - A k l 
Ak 
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Therefore we have 

<13l p (~~PK 1 ~: -l 1 ) t) ~ ~' (c~ ~~ D~ 1- ~n•• c~ D~) 
As a) and b) of Theorem 1 imply that 

(14) ::0 

it follows from (13) that 

(1 5) lim P ( .Sup / ~ -1 ( > t.)zo tor any E)o ancL so 
'11,-,7CX> n ~ K 4~ 

(1 6) p ( lim ~n = 1) "" 1 
n..., <><> An 

which is the assertion of Theo rem 1. 

3. 2. A conditional law of targe numbers. 

Theorem 3. Let [ 5, 6t 
1 

J3 
1 

P(A 1 B)] denote 

a conditionat probabitity space and ~ 1 1 ~ 1 1 •• . 1 ~n 1 . be 

random variables onS which are mutuatly independent with re-

spect to C E PJ . Let J denote the interval Q ~X < b (a < b) 

of the real axis. Let Bn. denote the set of those C\. E S 

for which ;n (Q) f J 

and ~n E. Jb let us 

and 02 (~n, 1 bn) " D\t 

and suppose that P>n C: C 

suppose that M ( ~n 1 f)n) ~ Mn> 0 

exists ( n" 1 1 J.. 1 . · · ) . 

Let us put P ( l\1 1 C ) " Pn- and suppose that the 

fo llowing conditions are satisfied: 
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oO 

(17) 2: tJn = + =.a 
"Yl.::-1 

OC> 

a.. Y\ d L.. t''f'l Mh. = + ex:> 
'1'1.=1 

(18) li m 
Y\~= 

exists; 

(19) <+ 

Then we have 

2_ Ste. 
(20) p [tm 

3 kE: "::1 
l.~k~'Yl V\ c ::=1 

'tl-"'> 00 2:1 
ÇIC.. t 'J 
1 f k~h. 

Proof. Let us define the random variable E K 

as follows: Ek=i if ~ ..... ?: :1 and ~k..=O if sk ~ J 

let us put I ~ = ~k. E: k Then we have: 

M (Ik* 1 c) = r~ ~k a-nd M (I;2 l c }= Fk (D2.k-\- M~) 
and thus 

To show this we have: 
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M ( -s: tc) - } ~: d P ( At: 1 c) 
s 

= ~ ~ S._ f."- d 'P (Aç, Ah \ C) 
s 

Now, if E:.~,c=-1 

~k = o othe rwise 

i . e . M (--s." \ c) = f ~1; < 1 d 'P (A ç .. P, " \ è) 

t)k_ s 

M(S.:Ic) = ~ 1 ~.cl P(A.,_, \t.c)dP(P:,.ic} 

~k s 

= \ d P(B,IL) j s, d f' (Ask 1 ~'>~<Î; ~:>,cc by ~r" 
bk s 

= P(B< 1 c) ~ S, d P(A 5" \Bk) 
s 

~ P~ Mk . 
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Also 

M(s:"l c J = J --rs:' cl PC "'-r" 1 c J 
s k. 

=- J j ~: "~ d F(AçkA.ck 1 cj 
s s 

= f j s~ td ?CA,._'Dk\c) 
Bk S 

= J J s: d P( 1'\ '" 1 B/) d 'P (e,. 1 c) 
!)k s 

= j d P(B. le) ~ s: d P CAs, ltkJ i B,cc 
tk s 
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and thus 

I.e. The random variables onS 

are mutually independent with respect to C ~ -:8 by hypothesis 

of the theorem and have mean values and variances as above. 

oc> 

We also have 2. rn. M'Yt = + 00 and 
'\'\=1 

= P~ (D~ + ( l- t<) M:) 2:_ <+ 
(ir· M-y-

corresponding 

k=l J=l J J 

to conditions a) and b} of Theorem 1. (All the conditions of 

Theorem 1 are satisfied) . 

Applying Theorem 1 to the sequence 

random variables on S with respect to C E. J3 it follows that 

of 
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(21} p 1 

On the other hand, let us apply Theo rem 1 to 

the sequence of randorn variables E.k on S with respect to 

As. 

M ( Ek \ c.) = I f_ l<. d p c AE.k \ c) 
s 

Now, ~1(_: 1 i.e. O.. E 1)k 

otherwise 

M ( E.." 1 c) ~ f d P ( B~c. 1 C} 
~k. 

= r~e } 

also M ( ~~ ( C. J - J (: d P (AEk.l c) 
s 

J d P(~k.\ c) 

e,k 

and E..~.:_= 0 
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l. e. M ( E: ~ [ c) _ P (Bk 1 c_) 

The."te.fot"e 

D 2. ( t~ 1 (_) ~ M ( é~ \ c) - M')_ cE~\(_) 

it follows that 

'Y\. 

L E L< 

Lim 
k.=t 

=. i {22) p 
Yl-'> oO 

"\'\. 

L. 'Pk 

c 1 

\( = 1 

Combining {22) and (21) and a lso {18) we have 

p 

'h -'h 

L.. ~je 'L P~c Mk k. 
lt.=\ k = t 

Li. 'YY\ -= L-\m "<'\. 'Y\ n_, oa 
L_ Pk ""'-"> OC> L. E L< 

I.e = \ k. = 1 

Taking into account that 

and L_ 1 

-s~ f:. 'f 
t f kf.\1. 

'Y\ 

= L Ek 
k. = i 

=M c = 1 
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we have 

p :::: M c 1 
which is 

the same as statement (20) which was to be proved. 

The statement of this theo rem can be expres sed 

in words as follows: the conditional empirical mean value of 

those of the variables ~ 1 J ~~ ) ~h which take on 

values lying in the lnterval 'J converges with conditional pro-

bability 1 with respect to C to the limit M defined by (18). 

In the special case, when Mn.= M /0 and 

Dt\.= D >o do not depend on n, the conditions (17), (18) and 

(19) reduce to the single condition that the series L (Jn. 
'V\=\ 

diverges. Let us suppose further that ~ is the closed interval 

[o J 1] and the only values in 'j which the variables 

1;1'1.. can take on 'S Yl are the values 0 and 1 (of course --s VL 

can take also other values outside J ). 

Suppose that 

and P "" P (An 1 ~f\.) > o 

A is the set on which 
h 

doe s not depend on n. 

IY1..=1 

In this case the events An and Bn can be in-
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terpreted as the events consisting in the realisation of sorne 

events A and B, respectively, at the nth experiment in a 

sequence of inde pendent experiments, and we ma y put 

1J =P( AIB) ) in this . case 

~1 
~ k = o o r- 'l , 1 ~ k f. n._ 

is the conditional relative frequency of the event A with respect 

to the event B in course of the first n observations. The state-

ment of the previous Theorem gives for this special case 

i.e. the conditional relative frequency of the event A with respect 

to the event B converges to the conditionalpr.d'A with respect to B 

with conditional probability I with respect to C. A special inter-

preta tion of the assertion {23) will be pres e nted on product spaces 

in the next paragraph (see Theorem 5 there). 

An important corollary of Theorem 3 of this 

chapter will be stated now: 

Corollary: Let [ S 1 a , '1 ; p ( A 1 B) J be a 

conditional probability space, l e t the random variables 5;) -sl-J · · · ;1n._ } · --
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be defined on it and let them be independent with respect to JJ ; 

let each of these random variables have the same conditional 

let ~ E J?} ) 

and let Bn E .J!J the set of those Cl E S for which 

~1)1 Ca ) E ~ . Let C t:c ~ and suppose that 

/jn c:: C ) j 

and suppose that ~ Pn = +""""" Let us suppose that 
n~1 

the conditional means M ( ~~ 1 ~K) = N (~!-\ 1 ~ K E \?l)" M > 0 

and the conditional variances D2('SK 1 ~K)o. D.L(~I-< 1 ~~ E ~) = 0.2. 

exist and so they are identical for each ~ K because of the 

identical distribution of the random variables 'S K ( K = 1, 1 , · ) . 

Th en 

p Li. m 
n~= 

Proof: When MK = M > 0 and OK = 0 > 0 

do not depend on k 
1 

the conditions {17), (18) and (19) of 
~ 

Theorem 3 reduce to the single condition that the series L 'PI'l. 
n.•l 

diverges which is the condition of this corollary. All the conditions 

of Theo rem 3. being satisfied, our result is verified. 

Remark 1. The supposition L Pn = ~ 
n~i 

C>o-0 

is a natural one since L fO n 
n~ i 

means the conditional 
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expected value of the number of occurrence of the events Bn with 

respect to C in the whole course of experiments. Therefore 

would mean that the events Bn on condition C 

occur on an average only finitely many times, and in this case it 

would be meaningless to speak about the limiting value of the 

relative frequency. 

t'he con-

ditional probability space of this corollary and of the theorem 

above is not specified at all, i.e. nothing is said about the con-

struction of it. Theorems with specifically constructed conditional 

probability spaces will be discussed in the next chapter. 

3. 3. Particular cases of Theorem 3 of section 3. 2. 

To demonstrate the generality of Theorem 3 of 

section 3. 2. and to show that such conditional probability spaces 

where the conditioms of conditional laws of large numbers are 

satisfied do exist , we are going to present here particular cases 

of Theorem 3 of section 3. 2 on probability spaces constructed in 

the sense of Theorem 19. of Chapter II. It is not necessary for 

Theorem 3 that the probability spaces that appear there have been 

constructed in this way; the reason we construct them in this way 

now is to verify the existence of conditional probability spaces in 

which the conditions of Theorem 3 of Section 3. 2 are satisfied. 
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Let E be an experiment which is performed 

and the possible results of it are observed K times J K = 1 1 2 , · 

At the k.th experiment the possible results of E. are represented 

(k) 
by certain subsets of 6t 1 the class of all Borel sets of the real 

line 5 (1.-<..) . Let 
l(l(K) Il-<) 
J:.; be a subclas s of 6t and let 

[ 
(KJ fkJ fil\KJ p CK) (A(KII o..CK)) J S 1 6t J JJ J u be a conditional probability 

[ 
CkJ (KJ r!J(X) p(K)(A(KJ/ f2:>(K))] 

space. Suppose that S 
1 

Dt ) J , is 

independent of k 1 i.e. that the conditions of the experime nt E are 

kept fixed for each performance of l . To indicate independence of 

k we write [ S( )' G{ J' J'be ) 
1 

pc ) (A 1 0) ] ( In P() ( · \ · ) 

we should, perhaps, use A() and B( ) instead of A~ B, but it 

will always be understood from the content whether we are talking 

( ) 
about events A o/ B be longing to & and 

!()_( ) - 'Ï}.. JJ or to 6t cf J:; of the 

product space defined below, respectively). We can construct, in 
) 

- ] ( ) ( ) 11.( ) ( ) ]= 
the sense of Theorem 19. ofCnar;J.ll ,( S,6t )b, P(Af B) =[ S 1 6t , J:.J ,P (Ali)) 

1 

the product of these identical conditional probability spaces and define 

in it the random variables z; 1{ such that they are independent with 

respect to P.> and the conditional distribution system of ~k is 

[S() C)~Clpi)(AIB)] 
'~ ) } } 

Any particular value of 

~K. then indicates the result of the Kt!? performance of the 

experiment E . Let ~N (A) denote the number of those random 

variables among ~ 1 1 ~ 1, · · · 1 ~ N which belong to the set A, 
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where Ais a subset belonging to ()_{ ) . Then 

(BE fOC)) 

denotes the conditional relative frequency of A with respect to 

B in the course of the first N experiments. ~ N (A) is, 

therefore, a number expres sing the frequency of the occurrence 

of the event which is represented by the set A. For the sake of 

brevity, the event which is represented by the set A can be 

identified with A and so we can say tha t ~N (A) stands for 

the frequency of the occurrence of the event A in the course of 

the first N experimente. The theorems which are to be proved 

here are the corollaries of Theorem 3 of paragraph 3. 2. but, 

be cause of the ir importance, will be pre sented as theo rems. 

Continuing the numbering of the previous paragraph, we have 

Theorem 4. Let the random variables 

~1) ~ll S n. ) . . . have identical distribution systems 

[ S( ) Re ) 1)1 ) P ( ) (A 1 )j)] and be defined on the conditional 
) ) ) 

probability space [S . R, J\ P (Al f))] ~ [ S(; fi )J :!?Je ~ P( )(A 1 B)] = 

in the sense of Theo rem 19 of Châp. II. and so they are independent 

with respect to Let BE-P}) and denote the identical 

conditional expectation va lue of the random variables 'l; 1< . (k= 11 2' · · ·) 

with respect to the condition B by M (s 1 f:>) i 

where CK \ PJ( ) 

let 

and, furthe r, let 

) . L e t PN = p ( B 1 c (N)) 
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~ 

and suppose the condition L 'PN = + ~ 
N:: l 

is satis fied. 

Denote by h N ( ~ j B ) the conditional empirical mean 

value of the random variables ~~ J <;; 2. ) . . . J ~ N 

to the condition B, i.e. let 

~~. + ~~.\, + .. . + ~ ~ n. 
n 

with respect 

where are those of the random variables 

whose values fall in B, and h. = ~N (E,) 

stands for the frequency of the occurrence of the event B in the 

cour se of the first N experiments (BE. f!J ( ) ) . Th en, if 

~ ( -r;; \ b) > 0 and D ( ~ 1 f)) exist, 

p ( ~i-~ ~ N ( s 1 f)) = N ( ~ ]l) ) 1 c ) : l 
Proof. According to the conditions of Corollary 

to Theorem 3 of secpton a. 2. we have 

f)NEJb) CEPJ 

[Sa ~ } P(AIB)] 
1 ) 

where 

and also 

~N C: C for 

is from 

Since, in Theo rem 4, we have an infinite product spa ce of identical 

conditional probability distribution systems, any set in :J!J of 

[ S, ~,56 , P (Al B)) B(l ) 0 o. ( l.) 
is of the form o 

If, in the Corollary mentioned, we had the conditional probability 

spa ce constructed as it is in Theorem 4, then we would 

have for tjN \ CE~ the forms e/ 1 ) "(l) 
0 0 .. C

( 1) 

) 0 

(2.) c 0 . . 
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re spectively. Accordingly, by Theo rem 19 of Chap.II. we have 

lN ) N ( n ( N) ( CN) E 11 ( ) ) . p ( ~N E B N 1 c ) '= p ( B 1 c ) ) [) ) JJ 

n( N ) = n_ 
According to the condition of Theorem 4, let o D 

and th en we have 

p (~NE e,N 1 C ) = p ( ~ 1 ( (N)) ~ fJN 

by Corollary to Theorem 3 of sect-ion 6. 2. But this is the 

of Theore m 4 . We also have L rN = + o.<:? 

N~/ 

by the same Corollary, which is 1 again, also the condition of 

Theorem 4. To put it in short, if we have the construction of 

Theorem 4 for conditional proba bility s paces, then the conditions 

of Corollary to Theorem 3 of (;)ec.t-ton 3. 2.-. become the conditions 

of Theo rem 4 . Therefore, the statem ent of this theo rem follows 

from the Co r ollary mentioned. 

Remark l. If, in Theorem 4, we let 

for then we get the ordi nary strong law 

of large numbers as a special case of T h e orem 4 . 

Remark 2. If ~N 

va lue s 1 and 0 and ~ n """ ~ ( Q, ) == 1 

can take on only the 

if a..E A 

w h ere then Theo rem 4 r e duce s to the foilowing : 

Theorem 5. L e t [ S R 16 P(AIB)] ~ 
1 ) 1 

be d e fin ed in the sense of 
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ch Ir A r ~( ) ) (l / Jifl ( ) 
Theorem 19 of âp. . Let o:: 1.7\.. r:> -= r:J and, 

(N) t;t() 
further, let B c. C E: J:J ( N = 1 1 J._ J · · · ) and C "' C 0~ C ( 1 ) (,) 

o . . . E 1-:>. 

( N) 
Also let P ( e, 1 C = JON ( N= l 1 2.. 1 . . . ) and suppose 

Define the random variables ~l< on 

S as in Theorem 19 of Chap. Il i.e. such that the conditional distri­

bution system of '!;K. is [ ~} \ ac )
1 

fJc ) , Pr )(A 1 !::>) 1 

and they are independent with respect to Denote by 

~ N (D) 

~1) 1; 2 J .•. 1 5N 
and let 

the number of those random variables from 

the values of which fall in D E 6t.C ) 

qN (A B) 

~N ( ~) 
the conditional relative 

frequency of the event A with respect to B in the course of the 

first N experimenta. Then 

p ( 1 i m fN (A 1 B) ~ P (A 1 B) 1 C ) = l . 
N ~:- """"' 

Again, if B = C we have the ordinary strong Law 

of large numbers. 
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