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CHAPTER 1

INTRODUCTION

FOUNDATIONS OF PROBABILITY

The calculus of probability is a branch of mathematics.
Its foundations have so far not been fully investigated. There are, per-
haps, many such branches of mathematics, but the calculus of proba-
bility is unique among them regarding the specific course of the
development of its fundamental principles. This is bound up with what
H. Steinhaus calls the '"tavern'" origin of probability., A theory of
gambling games at first, it gradually extended its range of applica-
bility, becoming finally a mathematical theory of great practical and
theoretical importance,

It was at a very early stage of development of the cal-
culus of probability that mathematicians felt the need of formulating
its foundations more precisely, The first attempt in this direction was
probably the definition of “'classical probability" given by Laplace.
However, it was the introduction of axiomatic methods, which made it
possible to investigate the principles of probability along new lines.

The first axiomatic treatment of probability was given
by Bohlmann L 2 1  about the year 1904, This viewpoint developed
in the twentieth century at the hands of such great probabilists as E.

Borel, H. Steinhaus, P, Lévy and A. Kolmogorov. The first systematic
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presentation of probability theory on an axiomatic basis was made in
1933 by A. Kolmogorov ['3].

In principle it is the aim of every axiomatic theory
of probability to answer the following two questions:

1) What are events, i.e. what are those objects
supposed to be probable?

2) What kind of a function of events should probability
be ?

Experience shows that, in answering these two questions,
certain parts of algebra (especially the theory of Boolean algebras)
and certain parts of the theory of functions (measure theory) control
the foundations of probability to such an extent that they almost absorb
them. J. Lo§ calls this (see [12 ] ) a useful process of complete
mathematization of the calculus of probability.

We proceed now to give a brief resumé of developme nts
in the axiomatic foundations of probability theory from the logical point
of view. All historical and philosophical problems connected with the
subject are omitted.

1. What should an axiomatic foundation for the theory

of probability be like? Suppose we are to choose a point at random

from the interval [0 ,! 1 . What is the probability of this point belonging

to a given set? Such a problem leads at once to the consideration of
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Lebesgue measure in the interval [0, Il and to the considera-
tion of a field of measurable sets. Let B be a subinterval of [0, | ]
It is natural to take the probability of any point belonging to this in-
terval as the length of the interval. Let this length of B be denoted
by P(B). If more generall? the set B is a Borel subset of [ 0, ! ]
the preceding choice leads us to take as the value of P(B) the Lebesgue
measure of B, We are given then the Lebesgue measurable Borel sets
of [O, ] to determine P(B) for any subinterval B of [ o, ]
Thus, in general, we have:

(a) a certain set S (e.g. interval [O, [] )s

(b) a certain algebra & of subsets of S (measurable

sets)

(c) a certain measure Pon & (e.g. Lebesgue measure).

The occurrence of the triplet [ S, 2 , P] is observ-
ed in nearly all problems of probability theory and none of its elements
is superfluous,

(ao) The set S, called the set of elementary events, is
necessary to define random variables as real functions on S measurable
with respect to the algebra .

(bo) The algebra a , called the algebra (field) of events,
is the set of those objects which are supposed to be probable. In this
class of sets the set - theoretical operations correspond to the classical

operations on events,
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(Co) The measure P on & is the probability at-
tributed to the events of &.

There are certainly many such triplets [ s, & , P]
to which the probabilistic reasoning may refer. The aim of the
axioms of probability is to select that class of them which is essential
for probabilistic problems, i.e. triplets (which will be called pro-
bability spaces) with which the calculus of probability is concerned.

While selecting probability spaces from the triplets
[ s, & , P] we must proceed as follows:

(1.1) Every such triplet that appears in the problems
of probability theory must be a probability space.

(1.2) The fundamental notions of probability theory
should be definable for every probability space (e.g. notions like
random variable, stochastic independence, mathematical expectation,
etc.) and the fundamental theorems of probability theory, for instance
the laws of large numbers, should be provable.

2. First interpretation of Kolmogorov's Axiomatic

Foundation of Probability Theory. A.N. Kolmogorov published his

"Grundbegriffe der Wahrscheinlichkeitsrechnung' in 1933, in which
he gave not only an axiomatic foundation of probability theory but
also showed how it satisfies the postulates (1.1) and (1. 2).

There is no need to emphasize the decisive meaning

of that work since, in order to avoid redundancy, we already adopted
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Kolmogorov's standpoint in Chapter 1 above. When reading older
textbooks and papers which deal with probability theory it becomes
clear that Kolmogorov's work has indeed given mathematical foun-
dations to this branch of knowledge. This has been achieved by an
exact formulation of assumptions, a precise definition of notions and
by establishment of the close connection of the calculus of probability
with other mathematical theories, namely the theory of measure and
integration which were already fully developed in those days by
Lebesgue and Fréchet.

Kolmogorov's set of axioms demand that probability
should be a normed measure (i.e. a non-negative and additive set
function normed by the condition P(S) = 1) on an algebra & of
subsets of S satisfying the axiom of continuity, i.e. for a decreasing
sequence of events.

A, 2 A= L AL L.
of @ , for which 1'*L=l Ay = O, the following equation holds:

lim P(Ap) = Oasn —> <% . This is equivalent to the condition
of denumerable additivity.

It is a consequence of the axiom of continuity that there
exists a unique extension of the measure P to the denumerably additive

measure on the smallest denumerably additive class of sets which

contains the algebra of sets & .




b
Therefore, we can always assume that Q is already a denumerably
additive class of sets (& -algebra) and that P is a denumerably ad-
ditive measure (8 -additive measure) on &.

We are not going to discuss in detail how different
probabilistic notions are defined on the basis of Kolmogorov's axioms.
It is suffice to note that every real function X on S measurable with
respect to the 2 ~algebra @  is called a random variable and the
integral of X on S with respect to the measure P is the expected value
of the random variable X.

From the intuitive point of view the essence of
Kolmogorov's axiomatic theory is that only one kind of events is
examined, namely those events which can be described as consisting
of random points (elementary events) a which belong to a subset
AofS(aé A %< S). It appears that such an interpretation is always

possible.

3. Objections against Kolmogorov's axioms of probability

Theory. Kolmogorov's axiomatic treatment of probability theory is
accepted by the great majority of mathematicians of today. It has also
been criticized and Kolmogorov has done this himself [ (4 I,

The first objection concerns the representation of every
event in the form a ¢ A, which may be considered as an impoverishment

of the formalism of probability theory, or at least of its intuitive side
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and as a deviation from its tradition.

The second objection points out that his axioms do
not admit the identification of almost identical events (i.e. events
which are such that their symmetric difference is of measure O),
or, which in fact is exactly.the same, that in most of the cases
considered, it does not permit the introduction of a strictly positive
measure (i.e. 2 measure which is equal to zero only on the empty set).

The third objection points out that there are certain
problems which give rise to probability spaces which cannot be norm-
ed; i, e. unbounded measures occur in them, while in the theory of
Kolmogorov probability is a bounded measure normed by the
condition P(S) = 1,

The first two objections are handled by introducing
Boolean algebras in the axiomatic treatment of probability theory and
by proving their isomorphism to an algebra of sets. This induced
Kolmogorov [14] to suggest a somewhat different attitude towards
the foundations of probability theory which is developed in paragraph
6 of this chapter.

The third objection was raised by A, Rényi in his
paper: "On a New Axiomatic Theory of Probability" [22]  where
he presented a new set of axioms which use conditional probability

as the fundamental concept.
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Boolean algebras and their isomorphism to an
algebra of sets,probability in Boolean algebras and Kolmogorov's
suggestions in this regard will be touched only briefly here. In re-
gard to A. Renyi's work, the whole thesis is devoted to presenting
his theory in detail.

4, Boolean algebras and fields of sets. By a

Boolean algebra we understand a class of objects furnished with
operations governed by the same laws as the operations on sets.

The notion of Boolean algebra is of essential importance for the
foundations of probability. A set of events is a Boolean algebra,

i.e. there is a correspondence between the operations of the Boolean
algebra and operations among events. For the latter we refer to the
first chapter of W. Feller's book. [ 5 ]. From the definition of
Boolean algebras it follows that an algebra of sets is its particular
case. M. H. Stone {26] has proved that the converse also holds and

so we have: every Boolean algebra is iSomorphic to an algebra of sets.

Thus denoting by Cb the impossible event, by C the certain event and

~ any other events by the capital letters A, B, D, ..., we are given
then a system of elements CP , A, B, D, ...., C and operations on
them governed by the same laws as the operations on sets, CP
playing the role of the empty set and C that of the entire space. Such
a system is referred to as a Bodlean algebra and denoted by B.

Stone's construction of an algebra of sets &
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isomorphic to a given Boolean algebra B consists of the subsets
of the space S the elements(pointd of which are the prime ideals
of the Boolean algebra B.

Algebraically a prime ideal is defined as such a
set of events J = B that fulfills the following three conditions:

(4.1)XecJ,Ye ] impliesX . Ye 7,

(4.2) X €7, Ye B implies X+Y ¢ J

(4. 3) from two complementary events X and X
one and only one belongs to 7.

In the above conditions the event X-Y occurs if
and only if both X and Y occur; the event X+Y occurs if and only
if at least one of them occurs and finally the event X occurs if
and only if the event X does not occur.

Suppose we carry out some trials on the occurrence
of a certain physical phenomenon. FEach trial in each case gives
actually a set of events, J , which have occurred in the given case.
It is never one event, because from the occurrence of an event X
certainly follows the occurrence of the event X + Y (Y is an arbi-
trary event) generally different from X (e.g. rolling a die we get
the number 1; it also means that the event "I or 3" has also been
realized) and so X + Y is also in J . The occurrence of the event X
may also mean the occurrence of XY, To continue with our previous

example,when rolling a die the realization of the event "I'" also e ans
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the realization of the event "odd", i.e. X.Y has also occurred and
so X-Y € 7. If X has occurred then X did not occur in a
certain trial of an experiment. Therefore each trial gives rise to
a set of events and this set of events is a prime ideal. This allows
the prime ideals to be considered as elementary events,.

The isomoxphism , constructed by Stone, maps
the Boolean algebra of events B on an algebra of sets & situated
in the space S of all prime ideals of B. This mapping makes the
event X € B correspond to the set CP(X) of all those prime ideals

J to which X belongs. If we consider a prime ideal as a result
of a trial, that is, in the role of an elementary event, then (P(X)
is the set of all those trials in which X occurs., The mapping thus
defined proves to be an isomorphism; the algebra @ of all sets

(?(X) is isomorphic to the Boolean algebra B, i.e. & consists of
all sets CP(X) and (P(X) consists of all those prime ideals

J  of B to which X belongs. The points of the set P(X) are
prime ideals of B and, therefore, if we consider the space S of all
the prime ideals of B and accept the sets of & as neighbourhoods
in S, then S becomes a compact topological space and & consists
of all the subsets of S and is isomorphic to the Boolean algebra B.

By a Boolean © -algebra we mean a Boolean
algebra which, besides the operations discussed, is furnished with

the operations of denumerable addition and multiplication. Similarly
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to the finite operations, the infinite operations are also governed
by the same laws as the infinite operations on sets. Two important
things must be kept in mind:

1) Not every Boolean algebra is a Boolean
6- algebra; if we assume that B is one (i.e. if we assume countable
additivity) then it is an essential restriction.

2) A Boolean © -algebra need not be isomorphic
toa © -algebra of sets.

However, Loomis and Sikorski [17,23] have shown
that each Boolean © -algebra is isomorphic to a quotient © -algebra
of subsets of some space S, i.e. a & -algebra of sets divided by a

S -ideal.

Here we shall briefly explain the operation of divid-
ing an algebra by an ideal, in particular a © -algebra by a & -ideal.

A subset J of a given Boolean algebra B is called
an ideal if it satisfies the conditions (4.1) and (4.2) (if it also satisfies
the condition (4. 3) it is called a prime ideal). For instance the set
of events of probability one is an ideal, As we shall see, in this
interpretation the construction of quotient algebra has a clear probabi-
listic meaning. In fact, this is the idea used by Kolmogorov in ( \4 1
to which we shall return later.

To continue the algebraic discussion of dividing
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an algebra by an ideal, let J be an ideal of the Boolean algebra
of events B . In the quotient algebra B | 7 two events
X, Y € B whose simultaneous occurrence or non-occurrence
is certain (i.e. the event X-Y belongs to J ) are treated as
identical.
An ideal J isa © -ideal (denumerably multipli-

cative ideal) if it satisfies in addition to (4.1) and (4. 2) the following

condition:
(4.4) if the events X, , X, , X5 , ... belong to b
w .
then the product ‘:_Cl X also belongs to J.

If J is a © -ideal of a Boolean G -algebra 15 ,
then the quotient algebra B 1Y is also a Boolean © -algebra.

5. Probability in Boolean algebras. The first two

objections against Kolmogorov's axiomatic treatment of probability,
mentioned above in 3., can be handled by omitting the assumption

that events supposed to be probable are sets and assuming only that
they form a Boolean algebra. Such an attitude towards probability
has been suggested by Glivenko [ 6 ] and Halmos [a ] . In
this sense the mathematical theory of probability consists of the

study of Boolean © -algebras and numerical probability is a measure

function, that is a finite, non-negative, and countably additive function
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P of elements in a Boolean © -algebra 5 , such that if the
null and unit elements of ® are CP and C respectively
then P(A) = O is equivalent to A = 43 and P(A) = 1 is
equivalent to A = C. This is a return to the classical traditions,
according to which events need not be sets and this also allows
the introduction of a strictly positive measure; i.e. that
P(A) = O if and only if A = ¢ .

However, such an attitude deprives the probability
fields of one element, namely of the space S. In a probability
field we shall now have only B , the Boolean & -algebra and a
measure P, in place of the triplet [ s, @, P] . This causes
difficulties in defining many probabilistic notions and, in the first
place, in defining random variables and their expected values.

Attempts have been made to eliminate this difficulty.
They all reduce the notion of a random variable to the notion of a

G -homomorphism of a field of Borel sets of the real axis into
a Boolean © -algebra. A unification of these attempts has been
developed by Sikorski [ 24 ]

Let X be an algebra of Borel sets situated on
the real axis. The mapping h of 2  into a Boolean algebra 5

is called a homomorphism if, for A, , A, € 3B
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h(A, +A,)= h(A)+h(A,),

h(A*A,) = h(A,) h(A,),

h(A,) =h(A )
Moreover, if ® is a Boolean & -algebra and
oo oo
h ( S A )= 2~ h(A;)
=1 L=l
forany A, A,, ... € 2 , thenh is calleda © -homomorphism
(2 denumerably additive homomozrphism).

In order to show how a homomorphism of an algebra
of Borel sets into an algebra of events may, for probabilistic pur-
poses, replace a random variable, we shall consider a real function
f on the space S measurable with respect to a certain © ~algebra

@  of subsets of S. & is regarded as an algebra of events, fis
regarded as a random variable; i.e. we are given a probability space
[ S, & , P ] , where P is a denumerably additive measure on &
and a random variable f on S defined above.

Let A be an arbitrary Borel set on the real axis.

Leth be a © ~-homomorphism of the algebra B of Borel sets

situatéd . on the real axis into ¢t Define h as

h(A) = {all X e S]f(ix)éA}=f-' (A) e &
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This homomorphism is closely connected with
the distribution function of f. If A is the interval [- oo, al
and a © -additive measure P is given on @ , then putting

\(’i (a) =P (h{A)) we obtain the distribution function of £
with respect to the measure P,

In order to define Lebesgue's integral of the
function f with respect to the measure P, it is not necessary
to know the function f itself, it suffices to know its distribution
function or the homomorphism h. This allows us to replace the
notion of a measurable function by the notion of homomorphism
in the foundations of probability constructed on Boolean algebras
provided the algebra in question is a © -algebra.

We thus obtain an equivalent to the usual descrip-
tion of random variables, in the form of these homomorphisms.
If we have a homomorphism h of the algebra 2%  of Borel sets
into a Boolean & -algebra B furnished with a © -additive mea-
sure P, then taking the integral in the Lebesgue sense, the in-
tegral of the homorphism h can be defined, which acts as the
expected value and has all the properties generally associated
with the expected value.

6. Making use of the connections of Boolean

algebras with algebras of sets. Kolmogorov's second interpretation.
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We have seen above that the introduction of Boolean algebras
into probability theory causes difficulties in defining the
random variable and its expected value. The attitude des-
cribed at the end of the former paragraph is possible, but
the same results may be obtained by making use of the con-
nections between Boolean algebras and algebras of sets. The
treatment by means of these connections is based on the fact
that each Boolean @ -algebra is isomorphic to a quotient
6] -algebra of sets proved by Loomis and Sikorski.

Using this fact Halmos [ 9 ] proposed the
following construction. If B is any Boolean © -algebra
and P is a probability measure on % , then there exists a

measure space S such that the system 8B is isomorphic to

a © -algebra &  of subsets of S reduced by identification
according to sets of measure zero, and the value of P for
any event A is identical with the val ue of the measure for the
corresponding subset of S,

Reduction by identification according to sets of
measure zero is meant as follows. P(A) = O should appear
if and only if A = CP . Itis proposed that we agree to

cors ider as identical two sets of S whose symmetrical difference
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has probability zero. Through this agreement we are com-
mitted in particular to identifying any set of probability zero
with the empty set 4) , and it follows therefore that in the
reduced & -algebra of sets @ all the axioms of pro-
bability, which were introduced at the beginning of paragraph
5 on Boolean © -algebras, are valid. We are also given
back the space S of which we were deprived when it was
supposed only that events form a Boolean © -algebra.
The above construction culminates therefore in

the same set of axioms as Kolmogorov's set of axioms,
when starting with a 6 -algebra of sets & and witha

© -additive measure P on & , but starting with a Boolean

© ~algebra isomorphic to a G -algebra @  of subsets
reduced by the suggested identification a strictly positive

@ -additive measure is introduced on events which need not
be looked upon as sets., It seems then that the first two
objections, mentioned in paragraph 3., were taken care of.

But making use of the connections of Boolean

algebras with algebras of sets more than that can be achieved,
In the above discussions we always started with a Boolean

& ~algebra furnished with a © -additive measure when
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making use of their isomorphism to algebras of sets to
get back the space S, or, when the notion of G - homo-
morphism was introduced to handle random variable
problems, though it is remarked in paragraph 4. above
that not every Boolean algebra is a Boolean o -algebra;
if we assume that ® is one (i.e. if we assume countable
additivity) then it is an essential restriction. In fact, we
do not need a Boolean © -algebra to start with.

We shall begin. here with the description given
by Kolmogorov [ 14 ] . He remarked, above all, that
it was easier to apply probability on Boolean algebras as
it allows us to assume that probability is a strictly positive
measure.

He then remarked that in the case of Boolean
algebras we did not have to assume the denumerable addi-
tivity of measure or the denumerable additivity of the
algebra because for every Boolean algebra Bo with a
strictly positive measure P, there exists a unique (with
an exactitude to the isomorphism) o ~algebra b with

strictly positive © -additive measure P such that
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B is an extension of B,

P is an extension of P,

B itself is the least 6—a1gebra of Bo which
contains B.

For a given algebra B, with a strictly positive
measure P, the algebra B and the measure P are con-
structed as follows:

As can be seen from Stone's construction, the
algebra By is isomorphic to an algebra of both closed and
open sets @ of a certain compact space S, By means
of this isomorphism the measure P, can be transferred to

@ . The measure P, in & satisfies the condition of
continuity which follows from the compactness of the space
S, and therefore it can be extended to a & -additive
measure on the least © -algebra of sets G * which in-
cludes & . The measure in (9,* need not be strictly
positive, whereas dividing @* by the ideal of sets whose
symmetric difference is of measure zero (i.e. by the ideal
of events whose simultaneous occurrence or non-occurrence is
certain) we obtain a quotient 6 -algebra of sets isomorphic to
a Boolean O -algebra B and a strictly positive @ -additive
measure P. This not only allows us to omit the condition of

denumerable additivity but also gives a convenient foundation for
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defining random variables as functions onhthe space S, the
elements of which are the prime ideals in By whose treatment
as elementary events has been justified. Interpreted that way
we can always start with the triplet fS, a, P} assuming that &
is already a denumerably additive algebra and that P is a denu-
merably additive measure on & . In what follows we shall always
use these triplets in the sense of Kolmogorov's second interpre-~
tation.

7. The problem of unbounded measures.,

Conditional probabilities.

This thesis as a whole is devoted to presenting
A, Rényi's axiomatic treatment of probability theory (21,22 }
which uses conditional probability as the fundemental concept.

A detailed discussion of his work follows in the next 2 chapters.
Here, we shall only give a brief account of those ideas which can
lead us to think about probability in his terms.

The theory of Kolmogorov furnished an ap-
propriate and mathematically exact basis for the rapid develop-
m ent of probability theory which took place in the last 30 years,
as well as for its fruitful application in a great number of branches
of science, including other parts of mathematics too. The second
interpretation of his theory given above is free of the first two

objections mentioned in paragraph 3 of this chapter. Nevertheless,
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in the course of development there arose some problems concerning
probability which cannot be fitted into the frames of the theory of
Kolmogorov.

The common feature of these problems is that
in theim unbounded measures occur, while in the theory of Kolmo-
gorov probability is a bounded measure normed by the condition
P (S) = 1. Unbounded measi res occur in statistical mechanics,
in some problems of mathematical statistics, in connection with
the applications of probability concepts in number theory etc. In
the theory of Kolmogorov, for instance, it has no sense to say
that we choose an integer in such a way that all integers (or all
non-negative integers) are equiprobable.

At the first glance it seems that unbounded
measurs can play no role in probability theory, because, in view
of the connection between probability and relative frequencey,
probability clearly cannot take on any value greater than 1. But
if we observe how unbounded measures are used in all cases
mentioned above, we see that unbounded measures are used only
to calculate conditional probabilities as the quotient of the values
of the unbounded measure of two sets (the first being contained in
the second) and in this way reasonable values (not exceeding 1) are
obtained. This is the reason why unbounded measures can be used

with success in calculating conditional probabilities. But wince
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the use of unbounded measures cannot be justified in the theory
of Kolmogorov, the necessity arises to generalize this theory.
Such an attempt was made by Rényi in his paper { 22 ).

In a theory of probability in which unbounded
measures are to be allowed, which are used to calculate con-
ditional probabilities anyway but their use cannot be justified in
the theory of Kolmogorov, we should perhaps take conditional
probability as the fundamental concept. Using conditional pro-
bability as the fundamental concept is also natural from another
point of view, namely, that probability of an event depends es-
sentially on the circumstances under which the event possibly
occurs, and it is a commonplace to say that in reality every
. probability is conditional.

This has been realized by several authors.
H. Jeffreys {11 }, H. Reichenbach {19 }, J. Keynes ( 12 1},
R. Koopman { 15 ], A.Copeland{ 3 }, G.A. Barnard{ 1 1},
and I J. Good { 7 }, are mentioned by A, Rényi. None of these
authors developed his theory on a measure theoretic basis.

The axiomatic theory developed by Rényi
combines the measure-theoretic treatment of Kolmogorov with
the idea proposed by the authors mentioned (and also by others)
to consider conditional probability as the fundamental concept.

This new theory should be considered as a generalization of that
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of Kolmogorov. In fact, it contains the theory of Kolmogorov
as a special case, but also includes cases which cannot be
fitted into the theory of Kolmogorov, namely cases in which
conditional probabilities are calculated by means of unbounded
measures. According to information given by B,V., Gnedenko
to A. Rényi in Prague in 1954, A.N. Kolmogorov himself has
put forward the idea, in a lecture held some years ago in
Moscow, to develop his theory in such a manner that conditional
probability should be taken as the fundamental concept, but did
not publish his ideas regarding this question. According to
this information Rényi's attempt follows the lines which have
been pointed out by Kolmogorov at that time. Some measure-
theoretic problems, which arose in connection with Rényi's
work, have been solved by A, Csdszdr ( 4 J; his results settle
the question under What conditions can the conditional probability,
introduced by A. Rényi as a set function of two set variables, be
expressed in quotient form by means of (one or more) set

functions of one variable.
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CHAPTER 1I

AXIOMS FOR CONDITIONAL PROBABILITY SPACES AND THEIR
IMMEDIATE CONSEQUENCES

2.1. Notations. In what follows if A and B are sets,
we denote by A + B the sum (union) of the sets A and B (i.e. the set
of those elements which belong to at least one of the sets A and B;

AB denotes the product (intersection) of the sets A and B (i.e. the

set of those elements which belong to both of the sets A and B); to
denote the sum and the product of a finite or infinite family of sets,
we also use the notations o— and 1| respectively, The empty
set will be denoted by q) ; A & B expresses the fact that A is a sub-
set of B; the subset of B consisting of those elements of B which do
not belong to A will be denoted by B-A. If a is an element of the set
A, this will be denoted by a € A. If a does not belong to the set A,
this will be denoted by a & A.

2. 2. Definitions and axioms. Let there be given

an arbitrary set S; the elements of S which will be denoted by small
letters a, b, ... will be called elementary events. Let &  denote
a & -algebra of subsets of S; the subsets of S which are elements
of @ will be denoted by capital letters A , B, C, ... and called
random events, or simply events. ( The supposition that & is
a ) -algebra of subsets of S means & isa non-empty class of

sets closed under the formation of complements and countable unions;
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i.e. 1. ifAne @ (n=1,2, ...) we have z:% A, e a )
2. if A6EX, wehave S-AEQ; 3. @ is not empty. This implies
that cj>e & and so S- (1) = Se&. Therefore a © -algebra is
a & -ring containing S) . Let us suppose further that a non empty
subset 5?) of & is given; we do not suppose any restrictions regard-
ing the set ﬁ)& . (It will be seen that our axioms imply that CP¢ %}
but it is possible that % contains all the elements of & except (P 5
it is also possible that % contains only one set). We suppose finally
that a set function P(A ’ B) of two set variables is defined for
Ae& andBeh ; pa | B) will be called the conditional probability
of the event A with respect to the event B. As the conditional probability
of the event A & & with respect to the event B is defined if and only if |
Be H , % may be called the class of possible conditions. We suppose
that the set function P(A l B)‘ satisfies the following axioms:

Axiom I. P(A | B) 20 ifAEQX  and Bc—_%;
further P(B | B) = 1, if B &%,

Akiom II. For any fixed B & @ , P(A | B) is a measure,
i.e. a countably additive set function of A & & , i.e. if
An €& (n=1,2,...)and AjAk = <p for j = k(j, k=1,2,...),

we have

3)- 5 P AR

Mn=}

P(iAn

m=|
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Axiom III. fAe& ,Be@& ,ceh ,andaBCed
we have

P(A|BC). P(B|C) = P(AB| C)

H

If the axioms I-IIT are satisfied, we shall call the set S,

together with the © -algebra @ of subsets of S, the subset D ot &

and the set function P{A | B) defined for A e & , Be H , a conditional

probability space and denote it for the sake of brevity by
[s, &. %, p(a]B)

2.3. Immediate consequences of the axioms. In what

follows, if P(A | B) occurs, it is always tacitly assumed that A € &
and B &€ Vs . We denote the set S-A by A,

Theorem 1. P(A| B) = P(AB|B)

Proof., Put C= B in Axiom III. Then we have
P(A|B) P(B|B) = P(AB|B) and so P(A |B)= P(AB |B) since by
Axiom I P(B |B) = 1.

Remark 1. It follows from Theorem 1 that P(S| B)= 1;
namely, by Theorem I P(S |B) =. P(SB|B)= P(B | B) and thus, by
Axiom I, P(S|B) = 1.

Remark 2. If we have

n
T A= S,allA €@ and AjA; =@ ifi4j, d.e.
K=l

if A1, A2,..., Ay are mutually extlusive and exhaustive events then

n n
f: P(Ax I1B) = P KZ| Ax | B) =] for every fixed Be J.
<} =

Remark 3. P(A|B) =1 if B A. By Theorem I
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P(AIB) = P(AB!B) = P(BIB) = 1. Note: From this remark the
result of Remark 1 automatically follows.

Theorem 2. If B B , then P(AB'| B) = P(A | B)

Proof. Applying Theorem 1 twice we get
P(AB'|B) = P(AB'B |B) = P(ABI|B) = P(AIB).

Theorem 3. P(A|B) % 1.

Proof. According to Axiom II we have
P(AB |B)+P(AB|B) = P(ABfAB IB) = P(BIB) = 1. Also
P(AB B) 20 by Axiom I. It follows then that P(AB |B) = P(A] B)4 1,

Remark. By Axiom I and by Theorem 3 we have:

04 P(A |B) ¢ 1.

Theorem 4. P((P | B) = O

Proof. According to Axiom IIP(A | B) =
=P($ +A[B) = P($ | B+P(A|B)and so ($ | B)=0.  Or,
P | B) = P(¢ +¢l B) = P(¢>IB)+P(4>I B) = 2 P({ | B) and thus
again P(§ | B) = O.

Remark, It follows from Theorem 4 that CP ¢ B
If (P belonged to \% , we should have P(Cb !(P } =1 by Axiom I and
P( (P / (i) ) = O by Theorem 4 ; thus the assumption Cb e H leads
to a contradiction.

Theorem 5. If AB = O, then P(A |B) = O.

Proof. P(A I B) = P(ABIB) = P CPI B) = O by Theorem 4.
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Theorem 6. P(AIBC)P(BIC) = P(BIAC)P(AIC),
if C, BC, AC belong to $.

Proof. Both expressions are equal to P(AB | C) by
Axiom III and thus to each other.

Theorem 7. If A=A & B <B', we have

P(AIB') £ PA' | B).

To prove this Theorem we need the following

Lemma. If E & A then, for any fixed B & ) , we have
P(A-E |B) = P(Al B) - P(E | B).

Proof, We have A = E + (A-E) and E, (A-E) are
disjoint. So P(A|B) = P(E+(A-E)| B)

= P(E |B}+P(A-E | B) by Axiom II.

Now on both sides any P( - | © ) issuchthatO & P(.]. ) £ 1
and therefore P(A-E |B) = P(A |B) - P(E | B)

Proof of Theorem 7. We have
P(AIB') = P(AA'BIB), AAB= A

P(AA' | BB') P(BIB'), Axiom III

£ P(AA' | B), since P{B|B )41 and BB' = B

P(A'"-AA' ] B) since A -AA = AA'

P(A'l B)-P(AA'| B), by AA S A and prev. Lemma.

< P(A' | B), since P(AA' I B)20 by Axiom I., i.e. we have
P(AIB')4 P(A' | B)

Remark 1. If A = A', we obtain the following special
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case of Theorem 7: If AC B & B', we have
P(A| B') £ P(A| B)

Remark 2. If B = B', we obtain the following special
case of Theorem 7.: If AC A, we have, without supposing that
ACB, P(A| B)< P(A'| B) and Axiom III is not needed in proof.

Proof of this remark. We have P(A|B) = P(AA | B),AA = A

= P(A -AA |B), A -AA = AA

= P(A | B)-P(AA | B), by AAC A' and prev. Lemma.

<P(A' | B), since P(AA'| B) >0 by Axiom I,and we did not use
Axiom III.

Theorem 8. If A +A,C B B,€ 73, further
P(A, | B) P(A,| B,)>0, we have

P(a,| B)  P(A] B,)

=

P(Aa_lB[) P(All Bg_)
Proof. According to Axiom III

(1) P(A, | B, B,) P(B, | B,) = P(A, B,| By)=PA,| B,)

and similarly

(2) A, | B, B,) P(B, ! B,) = P(A, B, | B,)= PA,|B,)

since A B, = A
and A, B = A, , for by hypothesis A, +A, & B, B, and this
implies A, & B, B, and so A, & B,

also A, & B, B, and so A, B,

Dividing (1) by (2) we obtain
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) P(a, | B, B,) P4, | B,)
P(A, | B, By) P(Ay | B,)

Interchanging B, and B4 in (1) and (2) we obtain

P(A, | B, B,) P(A, | B, )
(4) = —
P(A,!B, B,) P(ALIB,)

From (3) and (4) we have

P(A, | B, ) PA, | B,)

P(ALlB,) P(A, | By)

Theorem 9. If C&B = %‘::! Bk and ABjBKC = ¢
for jFk (j,k

1, 2, ...) then,
Palc) = ‘%’i‘] P(A | B C)P(By | C), where it is supposed
that Ce B  and BxCe S (k= 1, 2, ...)
This theorem cofresponds to the total probability rule.
Proof. By Axiom III we have
P(A I BC)P(Bk I c) = P(ABK | C).
Therefore
% P(A I Byc)P(By | C) = %’é P(AB C)

[t

= P(AByC |C), by Theorem I
= P(A iél BxC | C), by Axiom II
= P(ABC |C), by hypothesis

= P(AC!C), by hypothesis BCaC

= P(A ' C), by Theorem 1

Note. In proving Theorem 9 we do not suppose that B & )
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Remark. We mention the following consequences of
Theorem 9. Let us suppose By € ﬂb and B;Bk = (P for j#k,

e

B= > BrandBehH
if P(AIBy) ¢<AP(A' IBy) fork= 1, 2, ... where A20O , we have
P(AIB) < ) P(A' ) B)
Proof. We have
P(A IBx) € A P(A'] By)
so P(A ]| Bk)P(Bk/B) ¢ A P(A'] By)P(Bi! B)

l=id

so 2 P(AlBP(B |B) sx"i‘r P(a' | BY)R(BK | B)
and applying Theorem 9 on both sides with C = B
PA]B) = ; PA I Br)P(Bx IB) <€ A i:l P(A' | B)P(B, | B) = AP(A' | B)
Therefore PalB) £ A PA'lB).

Specifically a) if P(A |By) = A P(A' | Bx) fork= 1, 2, ...
we have P(A IB) = A P(a' | B)

b) if P(AIBy) =)\ fork= 1,2, ..., wehave

PAalB) = A

Proof of b) P(A ’ B) = :é PA | Br) P(By J B), by Theorem 9.

with C = B

>_ AP(BxlB), if P(A I By) = A

K=1

D

A 2 P(By | B)

A P( %:l Ble), by Axiom II

A\ P(B | B)

)\ , by Axiom I .
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2.4. Connection with Kolmogorov's Theory. If

P(A) is a measure (i.e. a countably additive and non-negative set
function) defined on the ©-algebra & of subsets of the sets S, if
further P(S) = 1, then the triple [ S, &, P(A)] is called a proba-
bility space in the sense of Kolmogorov.
Theorem 10. Define @ * as the set of those sets
P(AB)

Be @ for which P(B)>0 and put P(A | B) =
P(B)

forAe® ,Be @* Then [S, @, % PAlB)] isa

conditional probability space which will be called the conditional

probability space generated by the probability space [S, @, P(A)] .
P(AB)

Proof. Axiom I is satisfied: P(A | B) = B(5) 2 0
sinceAec &, Bc @* and so P(B) >0 ; further
P(BIB)= 1l if B € @%* since P(B [B) = P(BB) = P(B) = 1,P(B)>o
' P(B) P(B)

Axiom II is satisfied: If B € o and AjAk = cp

Pl

for jk(j, k=1, 2, ...)wehavep(2::l An,_B>= ?_ P(A, B)

for any fixed B.

Showing this:
o

P(an:l AnliB)= P ((Z_‘AJ B> mls, @, ax PalB)

P(B)

- P()_ A.B)
n=|

P(B)
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= ) P(ApB)
met , P(A) being a © -additive set function
P(B)
- %= P(B)
D
- Z P(A, | B)

3

Axiom III is satisfied. If A€ &, Be &, Ce @g*, and

BCe ¢*, we have P(A| BC)P(B!C) = P(AB]C).

For P(A|BC) = _DWABC)
B(BC)
P(BIC) = P(BC)
P(C)
P(ABC)
and so P(A |BC)-P(B|C) = “B(C)

also P(ABICV) = P&CJ?)C)

and so P(AlBC) P(B]C) = P(ABIC)

Theorem II. If [ S, @, H, P(AIB)] is a conditional
probability space and C is an arbitrary element of % , putting
Pc(A) = P(AIC), [S, a, PC(A)] will be a probability space in
the sense of Kolmogorov for C € $H fixed.

Proof. Axioms I and II imply that Pc(A) is a G -additive
non-negative set function for which P(S) = 1 by Remark 1 to
Theorem 1.

Remark. Pg(A) = PAIC)forAe & withce®D
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fixed as before; i. e. we have [S, @, PC(A)] Define the
conditional probability Pc(A | B) for B € Bfor which P, (B)>0,

as usual in the theory of Kolmogorov, by Pc(A ! B) = P.(AB)
Pc(B)

If BC € D , then we have by Axiom III, ‘

Pc(a I B) = EE(_APl = M = P(A,BC) ‘
Pc (B) P(B | C)

i.e. Po(AlB)= P(alBQ)

Thus a conditional probability space is nothing else than a set of
ordinary probability spaces (to each C ¢ L% there corresponds

a probability space in the sense of Kolmogorov) which are connected
with each other by Axiom III. This connection is such that it is in
conformity with the usual definition of conditional probability de-

monstrated in this Remark.

Theorem 12. If S eﬁ)) , then [ S, @, PS(A)]is a

probability space in the sense of Kolmogorov on putting as before

Pg(B)

if Pg(B) >0 ,Be@
Proof. Theorem 12 is a special case of Theorem 11.
Remark. In the sense of Theorem 10 [S, &, PS(A)J
generates the conditional probability épace [S, & , ) . Ps(A‘ B)] ,

where \[R)S is defined - in the sense of Q* of Theorem 10 - as the
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set of those sets B € & for which P (B)>0 , and

Pg(A IB) = Ps(AB)
Ps(B)

forae @ ,Bebyg.

It must be mentioned in this case that
[ s, &, o) , P(al B):l may not be identical with the [S, &, b s’Ps(AI B)]
conditional probability space generated by [S, a, PS(A)]because j?)

may contain sets B for which PS(B) =Q and at the same time need
not contain every set for which Pg(B)> (0 , i.e. the class V) g consist-

ing of all sets B € @  for which P (B)>0 need not be identical

with jb . However, if PS(A | B) = PS(AB) .
—_— for

Ps(B)
Acea, Be b 5, then by Axiom III and by definition of P_(A)

Pg(A | B) = _Fs(AB) . P(ABls) .
Ps (B) P(B]|S)

P(A I BS) = P(A | B),

provided that B € 5.

2.5. Conditional Independence of Events. The conditional

probability of the event A with respect to the event B is given by

P(A |B) = %%-BS)— for Be & and P(B)>0 in the Kolmogorov
probability space [S, X, P(A)] . This formula is often used in the
form P(AB) = P(A] B)P(B); this is the so called theorem on compound
probabilities. If P(A| B) = P(A) we say that A is stochastically inde-

pendent or, simply, independent of B. The condition P(A | B) = P(A)

can be wr itten in the form P{(AB) = P(A)P(B) and we use this as a
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definition of independence of the events A { B.
If we have the conditional probability space

(s,&, », P(AIB)l thenforAe& , Be & ,Cce B ,
and BC€ J3 , we have P(AB|C) = P(A|BC): P(B|C) (Axiom III).
If we let Pc(AB) = P(AB|C), Pc(A| B) = P(A| BC) and P¢(B) = P(B]| C)
thenAxiom III reads Pc(AB) = Pc(A| B) - Pc(B)., Writing Axiom III in
this form it is indicated clearly that given the condition C Axiom III
corresponds to P(AB) = P(A|B)P(B)in [S,&, P(A)] . Itis just
another indication of the fact that for any given C € B, putting
Pc(a) = PlA|C), [S, &, Pc(A)] will be a probability space in the
sense of Kolmogorov. Therefore, for any given C € B we can
define independence of the events A and B with respect to the events
C on the same way as we did it in [s,a, P(A)] . We say that if
P(A | BC) = P(A| C) then A is stochastically indepen'dent or, simply,
independent of B with respect to the event C. This condition can
be written in the form P(AB| C) = P(A |C)P(B| C) on using Axiom
III, and we use this as a definition of independence of the events
A and B with respect to the event C. This definition of conditional
independence of events A $ B readily extends to more than two
events.

2.6. Representation of the conditional probability

as a quotient. Sufficient conditions will be given here under which
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the set function P(A] B) of two set variables can be represented

in "quotient form'", i.e. in the form P(A| B) = QQ(?BE);) where the

set function Q(A) is a measure on & and satisfies Q(B) > O  if
Be A,

Theorem 13. Let [S, &, B, P(AIB)] bea
conditional probability space. Let us suppose that there exists a
sequence of sets B (n =0, 1, ...) allin /3 for which the follow-
ing properties hold:

a) Bng__ Bnit (n=0,1,...),

b) P(Bo|Bp)>0 (n=1, 2, ...),

¢) for any Be B there can be found a B, for which
B & Byand P(B [B,) > O .

Then there exists a finite measure Q(C) defined for
C e & * where & * is the ring of those sets C & & for
which there can be found a B, with C B,,, and this measure
Q(C) has the following properties:

x) Q(B) >0 if B ¢ .5,

. _Q(AB)
p) P(alB) =g el

If the sequence B satisfies besides a), b), ¢ also

the following condition:

d) lim P(Bg|Bp) > 0 ,

n s

then Q(C) can be defined for all C € & and is a bounded measure
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on & , and thus, putting P(C) = g%g)) , we have P(S) = 1.

Denoting by B* the set of those sets B € &  for which P(B) >0,
if B* is not identical with B , we may extend the definition
P(A|B) to all B € 3 * putting

P(AB)
P(A|B) = B(B) ;

the conditional probability space [S, Q , B*, PA]B)]
obtained in this way will be idential with the conditional probability
space generated by the ordinarir probability space [s, &, P(A)_—].
Proof., First we suppose only that the sequence
Bn has the properties a), b) and c).
First we are going to prove that &K * is a ‘ring
and we have BC a*c & "
To show g* isa ring, let C4e¢ & * and
C,e€ & * Suppose C, & B, and C, & B, (for any
C ¢ & there can be found a By such that C & B,),
But C, & B, implies C, -C, & B, &= B,
i.e, C, -C, € &x*
Also C, +C, & B, +B, = B, sincebya)B C B,
i.e. C, +C, € &*;
i.e. &* is a ring.

Now, for any B € /B we have
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B C B,  byc)
therefore Be Q* by definition of %
i.e. B a*o &
Now, we proceed to prove statements «) and [5).
Let us consider a set A ¢ &%, choose an index n for which
A C B, and define Q (A) as follows:
P(A|B

(5) QA) = ! ®n)
P(B, | Bp)

The value of Q(A) does not depend on the choice
ofn. Forif AC B, and A & B,, wheren < m, we have by

Theorem 8

P(A|Bn) _ P(A | Bm)

P(Bo‘ Bn) P (B, t Brn)
using this definition (5) of Q(A) we show that if
BeA , Q(B) >O , we have

Q(B)

This can be shown as follows: if BC B, and

P(B |B,) > O , we have by (5) and by Axiom III

Q(AB) P(ABIB,;) ©P(B,|B,) _ P(AB|B,) _P(Al BB,)

Q(B) P(Bo |By)  P(B|Bp) P(B | Bp)

As BB, = B, by c)
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g—fg‘;ﬂ = P(A| B) and (6) is proved,

i.e. if Q(A) is a measure for A € Q% then statements «) and
//3) are proved. From (5) it can be seen that Q(A) is non-
negative since by b) P(B,|B,) >0 . Also Q(B) >0 if BE€ A
by B & g * C & . Therefore statement oK) is proved.
Since Q(A) is non-negative, to show that Q(A) is a measure,
we are left only to prove that Q(A) is countably additive on

a* i.e. if Ay ¢ G*(k=z 1, 2, ...)and AjA = d) for

o0 O
j + k and % Ax = A€ Qx*, then QA)= 2. Q(Ay).
=) k=|

This follows simply from the remark that if A & B, , we have
A C B for k= 1,2,...andthus in the relations

P(Ay | By) . _ PAlB)
Qi) = BB, (B * K7 B nAM s o B
o n

the same B, may be used, and therefore the countable additivity
of Q(A) follows from that of P(A| B) for fixed B € B (Axiom IL) .
This proves the first part of Theorem 13,

Now suppose that the sequence B, has also the
property d). We need here Theorem A, of section 13 of Halmos,
Measure Theory, which goes as follows: If s« isa & -finite
measure on a ring R , then there is a unique measure /& on
the ¢-ring S(R) such that, for £ in R, /[,((E) = /L(E) :

the measure /J, is © -finite (S(R) is the smallest © -ring
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containing R, generated by R).
By this Theorem the definition of Q(A) can
be extended to the smallest 6 -ring & ** containing & *,
generated by & * in such a manner that Q(A) remains count-
ably additive on g *¥*,
O
Put S* = > B,
N=O
We will show that & %% = & S¥*  i.e. Q
is identical with the set of all sets of the form AS* where A ¢ & .
First of all & S*isa 6 -ring since & is
closed under complementation and on taking countable unions of
the elements of & . As a matter of fact if A€ & and
Al c & then
A S*-A, 5% = S*% (A -Ay)c 8&S*, since
O o0
A -A,e & and S AL S*® =z gx T A, € as*,

L= L=t

oo
SinCe Z A‘Lea if-A-‘Le.& 5 i: 1’ 2’ e e 0 @

.
=1

Therefore & $* is a & -ring.

To show & *%x (- & S* we have:

o0

if A€ Q*thenA C Bpandso AC_S* = 3  B,. AlsoA
n=0

is in & . Therefore A € & S* which implies.

&% &  S*and as it was just shown, &S*

isa © ~-ring. We have so far & S* asa O =-ring containing
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A*.  But @ ** being the smallest & -ring containing & *,

we have
(a) & ** . as*
On the other hand, if A € & , we have
ASx= > AB, € &S,
n=o
Now AB, & B, , and thus AB, € ©OX%;

i.e. AS* € Q*%, Q**being the smallest & -ring
containing & *; and therefore we have
(b) Qsx & & xx

By (a) and (b) we have
&Ss* = @%*; i.e. & **¥, the smallest

& -ring containing &%, is the set of all sets of the form
AS* where Ae & . Thus the definition of Q(A) can be extended
toall A €& & S* by the quoted THeorém A in Halmos, Measure
Theory and because of the identity just proved.

We prove now that Q(A) is bounded on  &S*.
To show this it is sufficient to prove that Q(S¥*) is finite

o0

since S% = Zﬂ Bn is the set which take s part in the limiting
O

process as n —> o< | But S* = %1_5205“
since B, (C Bp;j, and thus Q(S*) = qlli_rflmQ(Bn) where Q(B,)

is non-decreasing. But Q(B ) = P(Byl By) = 1
P(B, | B,) P(B, | B,)
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by (5) and by Axiom I, and lim P(B,| B,) >0 by property

n-»o0

d). Therefore d) implies that Q(S*) { + o= . Defining
Q(A) by Q(A) = Q(AS¥)for A ¢ & , A 4 &S*, the
definition of Q(A) is extended to the whole G -algebra & .
The final part of Theorem I3 concerning P(A) is obvious,
Thus Theorem13 is proved.

2.7. Random variables on a conditional pro-

bability space. Let [S, a, A, paj B)] be a

conditional probability space. If € = F(a) denotes a real-
valued function defined for a ¢ S which is measurable with
respect to & , i.e. if A_ denotes the set of those @€S

for which T (a)< X » wehave A, € & for all real X, we
shall call % a random variable on (s, @, B, PlA\B)] .
Vector-valued random variables are defined similarly. The
(ordinary) conditional probability distribution function of a
random variable € with respectto an event B € B is
defined by T (x|B) = P(AX‘B); if T (x| B) is absolutely
continuous, T'(x|B) = f(x1|B)is called the (ordinary)
conditional probability density function of %  with respect to

B. The conditional mean value M (¥ | B) of § with respect

to an event B & @ is defined as the abstract Lebesgue integral:
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M(Z | B) = J'{(a) d P (A ] B)
S

of & with respect to the measure defined on S by P(A| B)
with B fixed. Higher conditional moments, the conditional
characteristic function etc. are defined similarly, The
random variables 'g and n are called independent with
respect to an event C, if denoting by A, the set of those
a € S for which §(a)< X and by BY the set of those
a € S for which 9 (a) < Y, we have P(P&Byl C) = P(A, lC)P(_BY\ C)
for every real X and v.

As [s, &, pAl B)] is for any fixed
Be B a probability field in the sense of the theory of
Kolmogorov, any theorem of ordinary probability theory re-
mains valid when ordinary probabilities, distributions, mean
values, independence, etc. are replaced by conditional pro-
babilities, conditional distributions, conditional mean values,
conditional independence, etc, with respect to the same
B €S8,

Let us mention that if 'g is a random variable,
and Ai denotes the set consisting of those elements aehd

for which x 4 F(o) £ (5,;' and if Af( e B for a
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set X of intervals [« ,8) , then the conditional proba-
bilities P(A: \Ai) can be considered for [, ﬁ) ¢ X and
thus T generates a conditional probability space on the real
axis R, as the space of elementary events, the & -algebra
& being the set of Borel subsets of # and & consist-
ing of the intervals [« , pg) € X,

This conditional probability space will be
called the conditional probability distribution generated by %
on the real axis.

Let ¥(X) denote a non-decreasing function of X
which is continuous to the left for —~ o< < X <K + o<
(i.e. T (x) is defined here by P(X < x ) and not by P(X £X) )

If the set Ar; belongs to ‘B whenever

7{7((3) -F(x) » 0, and we have for any subinterval

of such an interval E*)(‘.\) (i.e. D‘;Y)-‘———-["()P)]

T — 1)
¥ -3

)

(7@) P [ A)

we shall call F(x) the generalized distribution function of ¥ ;
the function ¥ (X) is not uniquely determined, as together
with F(x), G(x) = ¢TW +d where ¢>0, is
also a distribution function of ¢ ; but as F(x) will be used
only to calculate the conditional probabilitie 5 7(a), this

will never lead to a misunderstanding. If the distribution function
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F X) of ¥ is absolutely continuous, and T '(x) = £ }
we shall call £ (x ) the generalized deunsity function of ¥ ;
clearly f (x) is determined only up to a positive constant
factor. If F(x)=x (ie fox)=1) for

—o0 { X L 4+ oo » we shall say that the distribution

of § isuniformin(— o0 , + o),

If {: ( x) is the generalizeddensity function

of 'g' , we have y

L {(u)du

ﬁ f(u)du.

The generalized distribution function resp. density function

(7)) P(A, IA%,J:

of a random vector is defined similarly.

2.8. An alternative form of Axiom III

Theorem 14. Axiom III can be stated in the
following equivalent form:
AiomIn'. EBe¢ B , Ce B, p= C

and P(B| C) > O we have for any A € &

P(AB| C)
P(B|C)

P(Al B) =
Proof, Clearly Axiom III' is a special case of

Axiom III. Since all the requirements of Axiom III are fulfilled

and since BE C we have
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P(A | B) P(B|C) = P(AB| C)

P(A|B) = E(ABIC)
i.e (A} B) BBE1O) , P(B|IC) >0

Conversely, if Axiom Im' s valid, Axiom III
follows. This can be shown as follows: if
Ac@Q, Be& (BeB—>—> Be & (ecBand BC € B
then two cases are possible: either P(B|C) = O or P(B|{C)>0O.
In the first case we have also P(AB|C) = O. To show this
we quote Remark 2. to Theorem 7 which says:
if AC A' , we have P(A] B) £ P(A' | B) and it is proved
using Axioms I & II and Axiom III is not needed in proof.
Therefore, we can apply that Remark 2. of Theorem 7. here
when we wish to prove something in connection with Axiom III,
Now to show P(AB|C) = O when P(B|C) = O
we note that ABC B. Therefore by that just quoted remark
P(ABIC)< P(B|C)= O
so P(AB|C) = O
and thus P(A|BC)P(B|C) = P(AB |C) reduces to O = O,
Now let us suppose P(B{C) >0 . Itis easy
to see that Theorem 1: P(A | B) = P(AB| B) follows already
from Axioms I - III' . As a matter of fact by Axiom III'

it C= B
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P(A |B) = i;g%

= P(AB| B) by Axiom I and therefore
Theorem I can be applied in the present proof where we suppose
that Axiom IIl'is valid. But thismeans P(BC|{C) = P(B|C) > O
and thus the conditions of Axiom III' are satisfied with BC

instead of B, and it follows from Axiom III' that

P(al BC) = HRABCIC)
P(BC1C)
(8) P(A|BC)P(BC|C) = P(ABC | C).

As P(BCIC) = P(B{C) and P(ABC|C) = P(AB| C) by Theorem I,
it follows from (8) that
P(A| BC)P(BIC) = P(AB| C).
Thus Axiom III follows from Axiom III'.
Remark, It was already pointed out that our
system of axioms can be characterized in the following mannmer:
the set S, the G-algebra & of subsets of S, the subset B of &
and the set function of two set variables P(A | B) defined for
A ¢ & andB € /7 form a conditional probability &pace if
?B = [ s, &, P(AIB)] is an ordinary probability space
for every fixed B € B and if the probability spaces ?C and ?BC

are connected by Axiom I fif C € J3 and BC ¢ 5.

Thus different probability fields can be combined



-49.-
to form a conditional probability field if they are ""compatible"
in the  sense that they satisfy Axiom III which can be considered
as the condition of compatability.

Theorem 14 means that Axiom III contains a
compatability condition for ?B and ?C where pCE C if
andonly if P(B|C) > 0 ; if P(B|C) =0 ?E) and ?C are com-
patible without any restriction. This fact is the basis of a general
principle by use of which _conditional probability spaces can be
constructed.

2.9. Extensions of a conditional probability

space. If [S, &, B, P(A®)] is a conditional probability
space, it is natural to ask how could this space be extended, by in-
cluding into B sets A € & which are not contained in B |,
The most simple way is suggested by Axiom III, and is contained in
the following:

Theorem 15, Let B, denote a set for which
B, € & and B, ¢ 3 If there exists at least one
set B, with the following three properties: o) B, € B [3) BT B.,,
T P (B\ IB,) > ©O , further if for any other set By which

also has the properties ), (), 7), we have B, B; & 2 ,

the definition of P(A | B) can be extended for B = B, by putting

(9) P(AB, | B,)
P(A)B,) -

P(Bl ‘ BL)
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Proof, To verify (9) we have to show that Axioms

I, II and IIT are satisfied. Axiom Iis clearly satisfied since by
PCABIB.)
P (Bl ‘ B:.)

1 by (9) and by hypothesis §).

hypothesis J) P(B, | B,) >0 and so P(A] B, )=
P(Bl l Bz)
P(B, | B,)

Therefore, Axiom I is satisfied.

Also P(B | B, ) -

Axiom II is clearly satisfied for any B, ¢ & and
B, ¢ V) for which there exists at least one set B, with the proper-
ties mentioned, because for any such B, & 7 ,fixed, P(AB, | B, ),
the numerator of (9), is a countably additive set function of A ¢ & .

To verify Axiom III, three cases must be distinguished.

a) If weput B, = C' and B' is a set for which
B'¢' € B we must verify
(10) P(A|B'C')P(B'IC') = P (AB' |C') in order to verify
Axiom III. Using c'= B, , this can be written as

P(A|B, B')P(B'| B) = P(AB'| B). By (9) we have

' !

P(By B, ) . P(B,| B, )
using these expressions (10) can be written as
P(AlB, B') P(B,B'|B, )= P(AB, B'|B,)
or P(a\B, B' B,)P(B, B' | B,) = P(AB, B'|B, )

for B,C B, byhyp. and so B, B=B,. But B,B' = B'Cc'e B,B,¢ B,

N

Yherefore the conditions of Axiom III are fulfilled and our last expression
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is true by force of Axiom III., i.e. starting from (10) and using
(9) we arrived to an expression which satisfies the conditions of
Axiom III. Therefore (10) is true and Axiom III is satisfied in

this case for expression (9).

b) If B, = B' C' where C' ¢ B , we must
verify
(11) P(A|B,)P(B'|C') = PAB'| C)
Substituting - P(al Bi) = _P(AB‘ | By ) from (9) we have
P(B, | B,)

P(B' | C')P(AB, |B,) = P(AB' | C') P(B,| B, )
which reduces to O = O if P(Bl \ ¢! ) = O since, repeating the argu-
ment of Remark 2 to Theorem 7, P(B' l c' ) = O implies

P(AB'\C‘):O. IfP(ﬁl‘C‘) >0 we have

(12) P(AB,| B, ) P(AB'[C )
P(B,[B,) ~ P@EIQ
But B, = B' C' and applying Theorem 1 (again repeating here the

argument that Theorem 1 follows from Axioms I-II1' , i.e. when

P(B'|C) >0) on the right of (12) we have

p(aB'lcY) _  PABCIC) _ PABICYH ;..
P(B' | C!) - P(B' C'|C) ~ P(B,|C)

we find that (12) is equivalent to

(13) P(AB, | B,) . PAB | C)
P(B, | By) ~ P(BIC)
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But (I 3) follows from Theorem 8 by taking into account that
AB( + B=BC B, and AB, +B, = B, = B'C' C C'which together
imply that
AB+B, ” B, (",
To have the conditions of Theorem 8 fulfilled we have to show
B?_ c'e B . But we have here C & B and we have just
shown B, = B'C'C C} also P(B,| C')=P(B' ¢' |C')=Pp(B'I C) >0,
i.e. C' is such a set that it satisfies conditions ), /a) s 7()
of the Theorem. Thsrefore, for any other set, say B, X which also has the
properties o()] [3) ) ]") , wehave B,_C' ¢ B . Summing up we have
AB, +B, (. B, c'le R and further
P(B,;|B,) - P(B,| C')>0; i.e. the conditions of Theorem 8 are fulfilled.
Therefore by Theorem (13) is true and that makes (11) verified; i.e.
Axiom III is verified in this case too for expression (9)
¢) B C'=B, and C' = B, where B' ¢ &,
we have to verify
(14) P(A| B C')YP(B'IC'y = P(AB'IC) if we are to
verify Axiom III for expression (9). This is equivalent to
P(A|B, )P(B'| B,) = P(AB' | B|). Using expression (9) this can be

written as

P(AB, | B.) P(B'B(IB,) P (AB'B,\B,)

P(B,18,) P(B,1B.) P (B 1B,)
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But the conditions B C -B and C B implythat B B - B

Therefore our last equality can be written as

P(ABI1B,) P(B/|B.) _ P(AB IB,)

P(B, | B,) P (& 1B,) P (B, |B,)

P(AB1B.) _ P(AB, [B)
ﬂP(B\‘B’L} P(B\ lB'L)

i.e. and hence
(14) is verified.

The cases a), b), ¢) discussed above exhaust
the possible ways for Axiom III to have terms extendable in the
sense of Theorem 15, Therefore our proof is complete.

It is easy to see that the definition of P(A| B))
does not depend on the choice of B, ; as a matter of fact, if both

B, and B; have properties =«),3) and ) , it folows by

2 )

Theorem 8 that

P(AB 1B _  P(ABIB)
P (B 1B) PIB.1Bs)

It is also clear that P(AB(| Bx) cannot be defined otherwise as
by (9) because if B, is included into J3 (9) must hold by force
of Axiom III.

Remark, If B, & A€ & and B, q: P
and is such that it satisfies conditions of Theorem 15 then

_ PARIBL) _ P IB),)
AR, = =
PAiB) P(B|B.) P (B |B.)

Another possibility for including new sets into A
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is yielded by passing to the limit; this procedure is described
by the following

Theorem 16. Let us suppose that B, & B )
Bn € Bt further P(B\Bpy) >0 (nr=0,1,.) and
that ﬁo P(Bn |Brsr) converges. If B o= %:;OBH
doe s not belong to 12 , the definition of P(A | B) can be extended
for B =B oo by putting
(15) P (A H_%OO): %1_)720 P (Aan) for any A provided that

the following condition is satisfied:

ifBER, BT B e and P (R|Bow) » O then
for some N we have B C BN

Proof. For an arbitrary A € & we put
A°=AB,, A¥ =AB, B, - Then AX S B,
for "+ 2Kk and the sequence { P (A B} s, by

Theorem 7, Remark I, monotonic non-increasing for = k, kvt

and bounded below by O. Thus
lim_ P (AR 1B = PAY [Boe)
exists,
Put
wo PH(ABy = P (AR
Doing this we have defined P¥(A | Bo) for every A € &,

k)
for A( was defined for an arbitrary A € & . To prove
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Theorem 16, we are going to show thatif P¥ (A [ B__)
is defined by (16), Axioms I-III remain valid ard further that
tim P(AIB)=P(AIR o) exists for all A ¢ & and is
n—> o0
equalto P*¥(A|{ B oo ), i.e. that (15) and (16) are equivalent.
Regarding Axiom I, it is clear that P* (A|Boe) 20
. (k) —1; .
since P( A | Boo ) -/]Y.‘(1_‘;noo P (A(k) { Bn) exists and Z O .
asg (k) >
Therefore P¥A | B ca )= 2 P CA | Boc> z0O
K=O
The validity of P* (B .o \Bm)z 1 can be shown as follows:
if A:BOO:/VLZ Bh then A=bBb.s € a)
=0
since & isa © -~algebra , and A9 = BoBoo = Do and
A(k):BOOE)K Et&l = Bz Bk—l (\&:\,Q)w ) using our

()

previous notation for A’ and A above. Accordingly, (16)

can be written as follows:

P*{ Boo |Boo) = P(Bo 1Beo) + z P(By By | Boo)

- P (Bo + B|Eo+ Bg_é,‘*‘"' +BN§N"l+.“ ‘Boc)
—_
By
- v

BN etc. since BGE BNy

= }\limoo P (BN \Boo)

But P (ByIBos)=1im P (ByI8,)

mn-1
= 1tm ‘[—T P(Bk \BK—F()

nN—eo k=N

o0

I —

P (BK \B“J

\
k=N
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To show this last result consider . , from the above expression,
P(BNlBh) and take N <n . Then
PCOBUIBR) =P@yByul Br) | since By &Bus:

=P (BB N+1BR) P (B4 1Bn)

5 by Axiom III,
:P(BN\BN_JP(BNH‘BVD ) since N+I £ R

and
so Byt &EBn .

If nN+Yvan then we take P(B,\H.MB.»J,

the second factor of the LHS of the above expression; i, e,

P(Byu!Bp) = PBus Bural B ) since B OB,
= P Buti I Buya Br) P(Byya IBy) by Axiom IIL.
= P (BNt Bura) P(Busa'Br) ,  since N424n & o Byio=Bn
So far we have

P(By1Ba)= P(ByIBne) P(Bru 1Byra) P(Byral Ba)

Continuing this process up to N = n-1 we get

P (bN \Bn) =P (BN\%N%D P(BN*\\%N-}-‘D?(%N*‘L\ BN‘\-g) P (B’n-f)_ \ Bh—7 PCB‘”‘"\ B h>

and here the process stops since if we take now PB -l Bn)
then

P (%ﬁn_'leD:p(Bn—; E)r\\Bh> by B~ S Bn
= P By, | ByBy) PR, 1B ), by Axiom II
= P (Bl Ba)

Therefore, we have
P(BylBoo) =Lt  P(By1Bn)
i

= i\lgoo’E(NP (E)k ‘ ?')KH)
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because ffo P(B!lBLsit) is convergent by hypothesis
and the remainder-product of a convergent infinite product does
always tend to 1.

To verify Axiom II we have to verify that
Px (AlB o) defined by (16) is countably additive. Let us

suppose that A € & and A]Ak:c’),b(j:{:k (Jok=42, )

and A og = S Ay (Ao c& since & is a G-alqebra) [ .
n=y
o (k) -
us put A, = A, Bo and Ah = A, By B for k=2,
(o)
further Aoo=A°OB° for k=42, ...
Reasoning as above, for A & B (we can, without
loss of generality, suppose that A C Bk because by

Remark 3 to Theorem I P(A[B.)=1« B A and PAIB, V=0

if AB, = b by Theorem 5) we have

(17) P(B[Boo) = PUAIBD) TT P (BniBn)

(k) e
and P (AlBy) is countably additive., Further A.oc = Z;__
(CORE
and Agq ~A:} = C‘? for n = m since
(k) =
Aoa = A”Bk Bk"(
= (7 An)Bu By
<= K
= > Aq
n=i
d () Am = f since Ap Am = CP for n == Mm
and A A = @ for ngm nAm = :

()
An
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This implies that ‘
we P (AN 1R = P(E A 1B =2 P(AYIBL) .
But by (16) we have _

(19) P*(AwlBow)=2 P (AL 1B

From (18) and (19) it follows that

(200 P*(AwolBow) =22 P(An [Bo)=2 2. P(AS(Boo)

k:o n=I

From (I16) we have

S P (A9 )= P* (A1)

k=0
and putting that expression into (20) we have
X — p¥*
(21) P (AeolBoo)= 2= P (A 1BL)
(o]
But A oo was defined to be 2 Ap and so (21) can
N={

be written as -

PH(E AnlB) = 5, P* (AnlBeo)
which means that P*( A| B o) is countably
additive. So far we have Axioms I and
II satisfied by (16) te. by P¥(AlBos) = 12(:0 P (A(k) | Boo).
Before we proceed to Axiom III we are going to show that
lim P (A |By) = P(AIBos) exists forall A ¢ &
and that it is
(22) P* (AlBoo) = Lim P (AlBy)
ivee P*(A|Boo)=P(AIRs)
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forany A € & | If we can show that (22) is valid for any

A € &  then it also means that lim P (A[B ) exists
N> o0

forall A € & because P¥*(A (B oo) is defined

by (16) for every A ¢ & | To prove (22) we start with

showing that

o0 N (k)
(29 P (AlBN) =2 P(A“‘)IBNW = EOPU\ ‘ | By) .

=0
To verity (24), consider

2 (1) ~ B ) )
Pbk::o A l6N> = P (AR +ARB+ AB,B 4+ AB B, t o ‘BN>

=P (A 8.+ E)‘H&°+ Baby 4 e By By-rt -l E)N)
S
B, -
—y

E)N"‘ Sinc e BN(;BN“’\

PAB o) I By)

P(A(By +PoBu) | By)
D(A(BN“’ EN)\BNB
PABy+ ABIBY)
P(ABNIBN) + P (A Bylby)

J

i

Il

il

i

=P (ABN)+ 0 dor (AEN\B,\D ls an impossible
event, i.e, we have
(25) P(oio A(k)\B@ = P(AIRY)
K=o
= P (ABy 1By

i

p (i A7 18,)
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Therefore we have

(26)  P(AlBy) = P(ii ARy, by (25)

P(AYIB,) , by AxiomTl

(0]

H
=Mz 7 M8

P (A(k)\B‘Q by (25), iLe. we

o]

justified (24) here. Now by (17)

and using this result we get

PAMIB o)
(27) P = = .
O TT P (Bl By
combining (24) and (27) we get
. NS At
280 P(AIBY =2 P(aAW 3—ZP W)= =3
k=0 TT P (BnlBny)

b
1

N

It follows now immediately from (28) that .

(29) lim P(AIR) = z PAYIB o) for any A € &

N-> oo

1

:P* (A\E)oo) : by (16) for every Ae

_ Therefore (22) is proved,
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To complete the proof of the theorem we still
have to show that Axiom III is valid. We are going to show that

Axiom III, the equivalent form of Axiom III, is valid. Axiom

III' goes as follows: If B ¢ B , Ce 3, P& C and P(RIC)>O0

we have for any A € &

P(ABLC)
P(AIR) = :

P(BIC)

We distinguish three cases here. The first case is when

(_g,@) Boct= C and PLBoolC) > O then

we have P(BN(C\)>O if N is sufficiently large and thus

P (ABy1C)
(30) P (A \BN)T— - N , since BNé b
Pk, Q)
Passing to the limitN — =< and using (22), it follows
that
P(AB)C)
(31) P(AIB) =
P(Peo | C)

which is Axiom III' for this case specified above.
The second case is when B € A , B S B_oand P (B ‘Boo> >0

we have to prove that

P(AB | Boo)
(32) P(AIB) = o 1E
Butwhen Be¢ B, BC BOO and P(B)Boo)>0

then there exists, by hypothesis of the theorem, an index N for

which BC B Then, by taking N sufficiently large
N . y g y ge,




'o=b2-

P(® \By\o > 0 and we have
P (ABIB W)

- N P
P(BIBY) (A1e),

since. B € B ; passing to the limit N-— oo, (32)
follows:

The third case is when BP=B_.o and C=0B _4 ; in this

case we have to prove that

P(AB oo | B o)

PURIBoo)

But we have already shown that P(B oo |Pos)=1

All we have to show now is that

P(AB)= P (AB o | Boo).

But by (17), for A C By (we can suppose this without loss
of generality) we have

Using this expression we have
(34) P(AB colBoo) = P(A?)oo\BQﬁk P (B, B (B
But AC B, andso AC B_.  andtherefore ABos = A.
Also B ®os=Bn and (34) can be written as

P(AB] B o) = P(AIBL) °T°r P (B, By which
simply says that (34) and (17) are equivalent, ;e

P(AB 6B o) = P(AIB o)

and this concludes the proof of Theorem 16,
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Remark. In his paper [21] A . Rényi states

this theorem (Theorem 44 in[22] ) as it is stated here but instead of

the condition: ™f B ¢ ® , RSB o and P(BIBs)>0
for some N we have BC E)N " he puts down the condition
which goes as follows: "if B ¢ A and P® \B N) >0
for some N, we have BB RIS B " . He uses this condition

when he proves that Axiom III' is satisfied when B & A , B& Boe
and p(ei® oo) > O by applying Theorem 8. there, i.e.

in the case when expression (32) of this paper is to be verified.

A Rényi distinguishes two cases there. Case 1l is the case when

there exists an index N for which B C E>N , and then we have

P (A B BN)
P (AIB) =
P(BlBy)
for N large enough and passing to the limit N — oo (32)

follows. In fact, this is the case that we have here as a condition

to Theorem 16. The second case is the general case where he con-

siders two measures M (A)= P (AR and /&1(/\] = P(A1Bo)

and lets A € & denote an arbitrary set, for which A & BNB

for some N. Then, by Theorem 8, taking N sufficiently large to

ensure P (Y)\E)}\D >0
P(AIBn)  P(ALR)

P(BIRy P@®IR)

same expression as of (32) is derived. But to use Theorem 8 here,

and from here the

the following conditions are to be satisfiedi A+ B & EDN B and
P(BIBY) P(BIB) > O.
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But then A C BNB as it is supposed to be and B BB
which is possible only if B < By and with that we

are baék in Case 1 where it is supposed that there exists an
index N for which B © B,, - Therefore it seems that

using Theorem 8 and, because of this, supposing that we have

BBy € ® whenever B & A and P(B\%N)>O
for some N, we cannot achieve more than by supposing that if
Bed B & B oo and P(BlBos) >0
then for some N we have B C E)N . That is the reason

we used this latter statement as a condition to Theorem 16 in-

gtead of the original condition used by A, Rényi in his paper [22],
Remark to Theorems 15 and 16, The assertion of

Theorem 8 for the case A + A2 & BB, , but without

the suppostion B,B, & A 5 can be considered as

a stronger form of Axiom IIl, For the proof of Theorem 8 we

needed the supposition B, B, & B since it was

used two times using Axiom III. Dropping the supposition

B B, € A we now use the result, gained when it

was a supposition, as an Axiom; it shall be called Axiom III*,

Axijom III*. If A € & A, e& |, B e 3

)

and B, € A

?

further A+ Ay S B By and P(AIR)P(A)B,) 0,

1
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we have

P (AR P (AR,
P (AlB) P A 1B

As Theorem 1 is not a consequence of Axiom III*,
in case we replace Axiom III by Axiom III*, we must suppose
the validity of Theorem 1 as

Axiom III¥* . P (AIR)= P(ARIBR) for Ac&l and Be R,
Then Axiom III* and Axiom III** together imply Axiom il
and thus Axiom III since Axiom III' and Axiom I are equivalent.
To show this let A= AB  A,=B, B =B and B, =C
where Ae& , Bc¢dD Cedb , B C
and P(RIC) > o. (These are the conditions of
Axiom III' but we cannot say right now that Axiom 1! holds.

All we want to say is that if the above conditions are fulfilled

then Axiom III' is implied by Axiom III* and Axiom III**.

together). The conditions of Axiom III* are satisfied since we

have
Al+ A'l = AB+B =17
B B, = BC = B
andso A, + A, & B, B, since DBPED .

P(ABIR)  P(ARIC)
P(RIB) ~ P(BIC)

Therefore we have , by Axiom III*

Also P(AR)= P(ABIB) |, by Axiom III%*
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PCARIB)

8o P (AlB) = —"'_—PLZ\%) , by Axiom I
P(AB Q)
P(BIQ) 4 by above result;

_ PUBICY
e P (AIR) = 3T

and this is the assertion of Axiom III ;
i. e. Axiom IIl is a consequence of Axiom III* and Axiom ILI¥%,
But Axiom III* follows from Axiom III only in the special case
when BI B, ¢ B | In that case Axiom III* is
Theorem 8 proved by using Axiom IIL
If Axioms III* and III*¥* were supposed instead

of Axiom III then in Theorem 15 the condition that for two sets
Bl) 153 with properties <), r;) and ’U) ,; Baba € B
could be omitted. In the preceeding Remark we have already
mentioned that A. Rényi uses the condition that if B ¢ B
and P(Ble) >0 for some N, we have BBN c A
instead of the condition used here to Theorem 16 ( see

Theorem 11 in [ ]5 . Regarding that condition he notes that
if Axioms III* and III** were supposed instead of Axiom III then
the requirement BBN e A could be omitted. But omitting
this requirement the application of Axiom III*, instead of the
application of Theorem 8, would still require the condition

A+B C E)NB ) discussed in the above Remark, which
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leads us back to supposing that there exists an index N for which
BC By i.e. to the condition that if ® ¢ B , BC Beoo
and p(%l&o@] >0 for some N we have BQBN ,

the condition used here to prove Theor.em 16.

2,10, Continuity properties of conditional

probability. For any fixed B ¢ B , PCALIB) is a

countably additive set function of A € & (Axiom II). By

"A., Continuity Theorem for Additive Set Functions' of M. Loeve's
Ciel , DP. 84, P (A\Eb is cantinuous in A; i.e. if A, € &

and An & Any or Apn=A n+ for M=1,2, -,

——-1

we have for b e A

tim P(A,\B) = P (Lim Ap | B)

h—> oo

Regarding the continuity of P (A|B) as a
fun ction of B, we have

Theorem 17. If B, ¢ B and
Bﬂg_BM\ (’h';‘,'l;"') further il E)nZBG?))
we have for A ¢ a

Lim _ P(AIBR) = P(AIR)

Proof. % (A\P—W\B7P(EMPDB‘: P(ABY\\%)
But En% = E)y\ and also l\t;noo P (B“\Ej = P(B\ F)): 1,
ie. P (&‘R \ED) 20 for sufficiently large n. Therefore, for

n large enough, we have
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_P(AB.IB)
P(AlB,) >(B15)

and thus

| lim P(AB.IB) P (ARID)
i P18.) - g T8Y T p(arny ! A8

n->

which proves Theorem 17.
The situation is more complicated if we
consider a decreasing sequence of conditions. In this case

we have
Theorem 18. If D 6%, BC,,LE % and

C% = le (n = I/Z,)...),further if putting C =TT Cm/

wn=\

we have BCE\% and P(C\B>7O) it

follows that

lim P (AIBC,)-P(AIBC)

11— oo
Proof., We have by Axiom III

P(AIRC,) = pé’*&’;’!%; if P(c,IB)>0.

But P(C%lg)z D(C’E))' by Remark 2 to
Theorem 7 (CECR) and D(CIB)>O

by hypothesis, i.e. P (Cfn |b) >0 for every n. It follows

lim P(AC,IB)  plac!®)
that . P (A BC - M=o " = = P A‘E)C
lim_ (AlnC,) fim pLC IR P(c|B) A1ec)

which proves Theorem 18.
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2.11, Products of conditional probability spaces.

Given a finite sequence of conditional probability spaces
Q! W@ ) U ok
- [89,8%, 39 P (k=i 1,0, W)

The product of these conditional probability spaces is defined

as follows: let S=S,3®, .. . g denote
the Cartesian product of the sets S(‘)J ¥ U st 3 i.e.,
let S denote the set of all ordered N-tuples (&, »&*' .. o™ )

where a‘¢ SG), oL ¢ S(m? oM e 50‘07

2

i.e. where a'® ¢ 3¢ Let B denote the set of

all subsets p=p. g, . . g ) where B ¢ 3™
(k=1, 2, .., NY) | Accordingly, B consists of thos e N-tuples
(a(') | of‘”) o of"O) of S for which we have o) < &Q‘Q
(k=012,-,N). For brevity, let us denote B as follows:

?) = ‘?)(‘-)o ,P.)CL-)O . o ])(N)
Let & denote the set of all subsets A= A, A@)O v o A(N) where A(k)g &(“’.
Accordingly, A consists of those N~tuples (0\(0 ) o\@) PR Q\(N))
of S for which we have k(k) € A(k) (k=1t,2, ... ,N).
For brevity, let us denote & as follows: S = a.a®... o §M

—_

and let & denote the least & -algebra containing & . Let us

define P(AIB) for
A - A(Dc A@-), P A(N) and B - B(D . B('z) . B(N)
by P AIR) = P(O(Am | B(O) P(fn ( A(ﬂlg(ﬂ) P(N)<A(N)IB(N))

N
=TT P (A™ 3@
k=1
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)
if Acll, Be B, ie A g% g™ B (x =1,2,--,N)

and extend the definition of P (AlB) for every fixed

Be D toall A€ & in the usual way described

by Theorem A p. 54 in L8 J 8 13. In other words,

)
for any given B € A we obtain the product of the
Kolmogorov probability spaces

[3(@) g« ) paa( A(k)| &(k))] (k=1 2, ... ,M) o
perform this operation for every possible B e B . Thus

we obtain a conditional probability space j) =L S, & ’ (B; P]

which will be called the Cartesian product of the conditional

pro bability spaces P (k) (k=1,2, .., N ) and
N

denoted by @ = TT‘ ? G
K= *

The Cartesian product of a denumerable sequence

of conditional probability spaces
k ~ k
?()= LS(M)&(L)) %(L),P()] (k = Vo2, )
Q) @ . Sy
is defined as follows: we denote by S= 8. 57 . °

the Cartesian prduct of 4dhe sets 8 (k=t,2,...) , by B
the set of all sets R =R, ,.. o R where

6(0 c {f))od (k =1,2, - ) and by &  the set of all sets
A of the form A.—-/\G)oA(ﬂo.., ° A(“)o S(“"“)o.-. R

k)
where A(k) e & (k=1,2, ..., ) ) ive. & is the

set of all J-cylinders of S. We define PCALR) for



=71 -

A e X and Be P by

POAIR) = TT PY (AL (299)

K=t

and extend the definition of P (A lB) in the usual way,

)

for any fixed B € B to all sets A belonging to the least

& ~algebra & containing & . In this way we obtain a con-
ditional probability space /P = \:S )é » D , P CA |?>7] which
will be called the Cartesian product of the oo nditional probability

3 (k>
spaces ?( ) and denoted by P~ ?(\)o e P

To prove that P , defined that way, is a conditional proba~

bility space, we have only to verify the validity of Axiom III
since clearly for P(AIB) we have PCAIB) =0 if

Ace& and Be B, also P(BIB)=1 i.e. AxiomI

is satisfied. For any fixed B , P(AIB) is a countably
additive set function of A € S 5 i.e. Axiom II is also satis-
fied. To show the validity of Axiom III for £ = E\i‘ P

we have to show P (A [BC) P(RICQ) =P(A&1C) for
Aea,\%éa) Ce R and BPCe®B® . B consists
of all the sets B = b(ﬂ B P o BRM. where

B(k)é% e=t,2,--) .1 Ce P and BC ¢ B)
then they are of the form
(35) C = CG) e C(l) o .- ° CL‘O © -- -

and

;
(36) 8C = ()" o (BC) o v o (BCY e
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where C(k) and (B C)(m S /b(m, Clearly, Axiom III
is equivalent to
(37) P (AR P(BCIC)=PLAaRCIC)
for Ac & , B , Ce B and BCe B since
the statement of Theorem 1 is valid in the product space P too.
The validity of Theorem I follows immediately from the unique-
ness of P (AIB) if A isa J-cylinder. ForifAis a
J-cylinder we also have P( ABIR) = P(AI®) ; i.e. for
any fixed B e B of the form BU. &8 ... o B™M . ...

we have, for every A ¢ & ( A = A(D o A(ﬂ, o A('")., s,

)

PLAmzﬁ PU (A0 ) = PUABID =TT P10 (A8 500).
= =

To state it explicitly, we have got two countably additive set
functions P (AlB) = and P(ARIR) completely equivalent
on & , the set of all sets of A of the form A= a0, A(ﬂo--- o AT, g0
The definition of P(AID) was extended for any fixed B ¢ B

to all sets A belonging to the least & -algebra Q containing &
in the usual sense; see for example Theorem A, p. 54, of [8 7] .
If the set functions P(AIB), P(ABI®) were equivalent on &  then
they are also equivalent on the least © -algebra g containing

& . Therefore the relation of (37) is justified. To prove the

validity of Axiom III it suffices, therefore, to prove (37). To do
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this, let A be a J-cylinder, i.e. of the form
A= A(‘.)o A(l‘)o e [ A(M30 S(fv“}-\)o %(M+q-_)o “a .

Then by definition
n
Gy PCARO=TI PX (AW 1(BO™)

= —

by (35) and (36)
(39) P(sctaj:E PO (RO )

by definition, (35) and (36)
0)  P(ABLIO)=TT PO (A% (&)™) QUQ)T’ P e\ )

K=1 K=+
Putting "
NS G~
= &
Pa= 11 P ()™ 1c™),
the sequence { PY\} is non-negative, monotonically non-
increasing and thus tim ph =1 exists,
n—> o
Two cases , P =0 gnd pP>o0 , are to be distinguished.
If p=0 then P(BC\C)=o0 by (39) and
P (ABC | C) =0 by (40), and so (37) is satisfied.
¥ f 20 , then by (38) and (39)

(41) P(ARC)PECIC) T‘ P“‘)(A(k)l(BC)“‘))TT P (B N

‘\—“ P 3 ( A(k) KB C)(k) )P ) (BQUO‘ C(k))'—" P(k)<@)©(k)\ C(k\)

=ttt
But P (A“"((BQ@B-P“" (B )

~ Pua( ACK| (BC)MC@}'PM <(bG)(“)l Cud} (B@ckgc(k)

= PUO(AM ()1 Y,
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P(k),

by Axiom III which is satisfied by Using this result

(41) can be written as
m =

P(MBQ P(BC\C) =T P (k)(A(k\ CBC)(&O‘ S > L\ m_P Ck)((&(:)( k) \ C(k))
k=1 =

which is, by (40), equal to P (ABC‘ C> . This proves

relation (37) and, by previous argument, Axiom III for every

J-cylinder A ¢ & and therefore, using the same argument
as above for verifying P(AIR) =P (AR B) for
every A in a , the least & -algebra containing & ,

We are going to examine now the special case
K
when S< ) is the real line and &“‘) is the .class of all

K
Borel sets of gt ) (k=1,2, ) . Consider the space

(@
S= SU)°S .. consisting of points X = (X\ Xy o xk?"') R
p)
where X € S(K and define the random variables
Ekzekbﬂ as follows: 'Ek()()z Xk
(k=t1,2, - ) . If

A=A A®, oA and B =B @, e B,

k e )
where /\( )e a(k)7 B(k)e :f)( ) i.e. Au< and B(k)are

P

)
subsets of the real line S(Mwhich belong to 8(( and %(‘O

respectively. Then, clearly,
PE € AIB) = PUI (A [RY) ke=t,a, .-
L e P(fk GAUB) - POO @kE AM\B(@)'—‘ Ptk)U\(o‘ ch)
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W)
If, therefore, S(m is the real line then P kD ( AUQ \ B( )

is the conditional distribution system on the real line of the

k=1, 2, ---, defined above. It is

random variables ?k ,

seen that

P (3 ¢ A('), 5, € A(zw) T e Am) \%>:EP(I<7(A(I<\lB(k))
or)ifwe put 7{’—:(?[ ) Sa 7 _gm) 5 then

P@' ¢ A \@ :E p Lo <A(k)\5(k)) .

i.e. the random variables T, ,§ ., %, are conditionally

2 ) "7
independent for every choice of B ¢ A with respect to B,
We can say, therefore, that the random variables 'EK ,k=12,3,..,1n
are independent with respectto B. We generalize and summarize
our results in the following
Theorem 19. Let /P(U:E S(k)} a&)) B(kz P(k)(A(k)lBCk))]
J
N
K=V, 2, 4 where Stk is the real line, &
(&) G |
is the class of all Borel sets of S and E is a subclass of
. . . - S(l) S(z)
this class of sets. Then, forming in the space OS= o o--
= (
the least &-algebra & of & = &( LIS Sl
O, ) _ . :
and B=P "B o ) there can be given a set function
P(AKBB )Aea-) B € % such that ES )a) 1)37 P(A\&)]

is a conditional probability space; let X = (X. > Xayo-- ) stand

for any element of S and define the random variables —Ek: 3 k(x)

as follows: _Ek()()= Xie (k=l) 2, ... }5
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then the random variables &, S, , --- ) are independent with
respect to o) and for any B of the form g(l)o (1)” oo in $
the conditional probability distribution system of % y is given by
P(K) (A(k) l %(K)>, K=1, 2, ... | In this case, therefore, we can
speak of the conditional probability space [ S{K; &(K: 5})“()1 P(K)(A(K)l %(K))]
as a conditional distribution system.

The case when the conditional probability system
P(K): (A(K)} B{K)) of f K, defined as above, does not
depend on K, i.e. when the random variables ?K have the
same distribution, is of special interest. In this case we denote the
conditional probability space {_- 3, 6{, ﬁb) P (A ’ E)) ]
constructed in the sense of Theorem 19, for the sake of brevity , by
[5( ), @L( 1) 35( )’ P( )(A | E))] - . If the conditional distribution systems

" :
[ S(k)] Q{K: %(K), p( )(A(K),B(K))] are not the same then we use the

notation

[S.&% P(18)]

= k) k) QK) plk) . 0, LK)
T LST a 07 PR 18 ]
and say that the conditional probability space [5] &) jb; P (A | E)> ]

is the product of the conditional probability spaces
{ K @) K A0 ()
[ $%6, &%, P (A1) ]
To conclude this chapter, the idea of imbedding
conditional probability spaces will be introduced here.

g P05, a,BPCAIR)] ana PL[ S, &) R P4 1B)]

) |
are two conditional probability spaces such that S&5 ) @<= (%/
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!
=% and P(ATR)-PAIB) i Aca, Bed,
we shall say that the conditional probability space jj is imbedded
I
into the conditional probability space j‘) . Theorems 15 and 16 are
special imbeddings of a conditional \@ into a conditional probability
! ] {
space ﬁ) for which 5'=5, X -a and jbc_:_@ .
. . 9 . . P
These imbeddings of were obtained by extension of in the

N
manners discussed there., If @ is imbedded into J )we shall

write @<< ‘(p'-
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CHAPTER III

CONDITIONAL LAWS OF LARGE NUMBERS

Conditional probability is in the same relation
to conditional relative frequency as ordinary probability to ordinary
relative frequency. This relation, which is well known as an
empirical fact from everyday experience, is described mathemati-
cally by the laws of large numbers.

The laws of large numbers concerning the be-
haviour in the limit of the conditioﬁal relative frequency (and
generalizations concerning conditional means of observations) shall
be called '"conditional laws of large numbers'. It is emphasized that
the conditional probability P(A | B) is considered as an objective
characteristic of the random event A, under an objective condition B,
and its value is the number in the near neighbourhood of which the
conditional relative frequency KA& will be found in general, if a
sufficiently great number n of obsKervations (experiments) is made,
where KB denotes the number of those observations when condition
B has been realised while making the n observations and L(AQ, is
the number of those observations where, besides the condition B being

realized, the event A has also occured. It is supposed that RB >0,
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3.1. Some laws of large numbers in ordinary

probability space. In this section twwo.. theorems are presented,

concerning random variables defined on an ordinary probability
space, which will be needed later on when proving a conditional law
of large numbers.
Theorem 1. Let _El)?l).,, '5%).., be

mutually independent random variables with mean values
M ( ?n) = Mné O and finite variances D:;= DL ( —{n) ) Put

"
Cas 2 %k ama A =MI(T,)-M+M,+.  +M,

K=]

and suppose that the following conditions are fulfilled:

a) 11m An=+°c

n—>oe
o 2

b) .D_"L <+ o
n=| An

Then it follows that

P(h’m Zn___1>=1

N> o Aﬂ

Proof. Theorem 1l is a consequence of the
Kolmogorov inequality according to which, if Ol ) 01 JEE OK)‘ .

are mutually independent random variables with mean values

M (0K> =0 and finite variances Dl (‘QK) -M (47]& )

:DlK (K=f)2)...) we have, for any € > O,
1’YVL

ny p +,+F . 264 S !

H S A A

Instead of using (1) we present here an inequality,
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found by J. Hajek in 1953, which is a generalization of Kolmogoro¥'s
inequality and can be used to prove directly Theorem 1 (see Lo ] ).
The following theorem will be proved:
Theorem 2. Let 4., 1, ... Y%y - denote

mutually independent random variables with mean values M (VK ) =0
2
and finite variances M (Of{) = DK and CK CK:I, 2) : )

is a non-increasing sequence of positive numbers ( CK 20y 41 );

then we have for any positive integers n and m (n < m) and for any €>0

{ LYL [44% s
(2) P (ma (,Klf?|+ 171+"‘+17K126)£€L ((‘n %; D:;JrZCk Di)

X
chem K=h+!

Proof. Put

(3) ¥ - }K:n, (‘7, + %Jr' T ?KY(CZ_“ wa )* Ciﬂ ("JIJF' ‘ '4?”‘)1

then
1o r & z
@ M (y)- Ct, Z Dt Oy D;
K=1 K=n4!
To show (4) consider (2) and write it as follows:
-1
7 - — o+ 2t ) (- ¢y, ) +CE (. 40 f
m-| . 2 K 2-_'_ Cl N .
= CC"CKH) th m AL:_I/OL

"
$
/’a
X o
[
X o~
x
T
s
6»\
+
=3
=
N——
+
.
3
SN
RN
3
M
+
¥ Ms
=3
~3
-,
S~—
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Taking the expectation of J the cross-product terms vanish
since the random variables 47‘ y oy o, /sz y e are
mutually independent and Mn)=0 , k=1,2, -
Therefore
-

K . . " 2
QC—TC‘C;H—)Z Di +Cm z b

(=1
n =\ L

M(¥)=

M3

m -~ K 3 m-~\ 0 S
= Z CtZ.D( —-Z C—KHZ
- ~

n =t k=1 =1\

Writing out terms on RHS we get
n o " m-t o
MOF) = (e 2D} + ey 2 0F 4 4 Cha 2 DO )
L=t (= (=

a noo, A N N .
_(Cﬂﬂz-D‘L ‘{"C—ln‘m_ Z D2(+~-'+Cm_(z DL‘*‘CW\Z\:—‘ DL)
L=l =

L=t
2 2 A
+C,, -LZmD'“
Cancelling out terms we get
& a2 R 2 pS 1 9 N
MO{) ‘—‘Crt 2 D+ C’;1+an+‘+CM+QDn+Q+ o 4 G Dot G DM
U=i

2 & A 2 2
= C’("L Z Di. +'LZ’;TL+{Ci Dk

L=l

Using indices k instead of L we get (4)
n . M . N
LURER
=| -

Denoting by A\, (t=n,A4ty -, M) the
event consisting in the simultaneous validity of the inequalities
CS“?|+“'+OS‘<Q (h¢SLr) and CH*?,—L-»-A—“’{,-\ZG

(if ¥v=1  only the second inequality is supposed), inequality (2)



-82-

can be written as

6 Z pea) < L M)

liaa _

To verify (5) we let A =T7_ A,_ ) Then A and A are mutually
T=1

exclusive events. Therefore we have

M(ﬂ=:i_nl\4 (V1A P(A) +MTIR) PCR)
where  M(7) 20 and M(YIA) 20

So we have

(6a) M) 2

7 M3

M(T1A ) PLAL) .

By (3) we have
MTIAY =3 M (it 4 )T AL) G =i S MG £ 1A

k=-

> %”; Mg+ +'7n>l| Ar) QC’L‘C’QH} +Cm M ((ﬂ'_l'”.)r%ﬂ) lA‘)

where from definition of AT n <t ; i.e. we have

(68) M (11As) 2T M (Wt 9 A (= Crd + oM (Ot 4 7m) 1A
k=1

We also have

(6) M (94 + ) A0 > M+ + 20" [Ar) Zg (7 <Kem)

To show this we note that according to the definition
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of Apx  Celm 4 +9:1 2¢

2
so (;;1(1?{4. ‘V?T) ze?
2 62
i.e. (47(""" +0'T> Z a2 )
Cr
2
therefore M ((9, +--- +9,) lA»,) > _i_i ) the second

2
inequality of (6c)

The first inequality in (6c) comes from the fact
that the random variables /T /Y are
mutually independent and remain so under the condition A, .

Therefore M ((17l+«—-+’7r+“' +’7¢<)2| Ar) = M(“?TlAJ-F S g M@?; mr) +--+M (?i\A")

since, because of independence, the (\‘9 M (’7-‘ s?l ‘AD =0 L"#j )

Therefore, being each M (17(1 !A¢) >o and
T <k we have
Mt 0 1A ZM(@ 4+ 4 0 [Ay) 2 Z—L (tékem)

which is the required inequality of (6c).
Inequality (5) is the consequence of (6a), (6b)

and (6c). To show this we write (6b) as follows

M (FIAL 2 CM@@ 90 TA N CaM @t 49, § 1AL+ +.C M@+ T AL)
= MU AT M4 4 o AFEM (o + T 1A))
G MU 11, 1A
> Ce MUt 4 9)M 1A,
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since leaving the first +ve term of the R.H.S. of this inequality
as it is and observing that each one of the remaining terms
(+ve or — ve ) is ¢t by (6c) and by the hypothesis
that {CK } is a non-increasing sequence of positive integers,
we can take each one of them to be equal to ¢*  without disturbing
the validity of the inequality. In that case they cancel each other
and we are left with Cﬁ M (C’?nJr" -+177“)1’Ar)
on R.H.S. of this inequality which is again 2 €" by (6c).
I.e. (6a) by (6c) becomes

MYIA) 2 €

Using that result in (6a) we have

M) 2S5 M(YTA) P(A)

» €7 P (AY)
Therefore Z P(A”>é éll M(X) , Which is (5)
r=n
Now Z P(Ar>: P(f A,.) ) where the union of
Fan —n

the events A, means the realizéition of the event

max In+.  +n l>¢
nakim

Therefore i P(Ar)=D(§:ﬂAr) = p(:ﬂ&émlﬁﬂpﬁr..,+17K12é)
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and so we have (2)

n ™
<\ e 2 pie 2 CuD >
b (it tm e 12 ) €hn-b s EonE e
Remark 1. If we choose n=1 and ¢, == -=Cm=1,
we obtain from (2) as a special case inequality (1). If we
choose Qk—_—ik (k:h,'h+\,.~ 740,\7 we obtain the
inequality
9 + %+ + | 2 o
7) Plmax ¥ lk - 2¢ <é1 §=(D 2 D
n<k<im n* K=n+i ®

Remark 2. By means of passing to the limit

"M —> o0  itis easy to deduce from (2) the following inequality:

(8 P(sur Celmt-+nl2€) e‘?( ZD +ZC D) 7

=N+t
since Sup C 19+ 4 M i.e. the least upper
m<k !
bound of the sequence {CK |9, + Mo t +47K[ 1} exists
(k':ﬂ)ﬂﬂ)-.'). Tor Ck[’%""” +’7k\éck((yl‘++‘?kl>
i. e. for any k, the sequence {Ck \’7' +. 4 /*7‘(\) is

bounded above, i.e. we have a non-empty subset of Qe_ which
is bounded above. Therefore, it has a least upper bound.

Now, if Ck:lk )<(<:()2)__. ) we obtain

the inequality

(9) = (Su}f) MZE) L E, " Z Dk
mn

hek k - T ©

IN
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Remark 3. It follows from (9) immediately.
that the strong law of large numbers holds for the sequence of

mutually independent random variables YRR PR Ve -
)

if the ’gk’ $ have mean values o, finite variances
D! = M(%Z) and

o= Q
(10) pagasr

k=1 ke

converges.
As a matter of fact, it follows from (9) and (10)

that forany ¢ >o

(11) i P(Slqo 9470 - + Dl Ze) =0

n—> oo <k ke

and therefore we have

(12) P ((H’Y\ Dttt Un _ O> —

n-> oo (45

Applying Theorem 2, Theorem 1 can be proved

as follows: consider the result of (8) ”
P(sup Clm+-- +”7K\ze) < 1 (c’h—z B+ 2 S le>
" e’ e =1 k= Nt
Put vx‘:’gk—Mk —> M(@A =0 and ¢ =--
Ak

Therefore, /2{-171 4o A= BT T R Ek__ (M‘% Mn+.., -H\/]k)

= Y;k‘_ AK
and so CKW,+%+-~-+“?;J:~{K lIk~Akl
= —gk
”1"1\
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Therefore we have

o PLERIR2 )<k (@t )

K
K= Ken+l

As a) and b) of Theorem 1 imply that

g 1
(14) [im . D

N — oo AL =0

it follows from (13) that

(15) lim P (Sup { Ck _ (Z g):o for any evo and so

n~>o00 n <K A_K
D 1z’m°o g_n_ 1) =1
(16) (Wl 2o 1)

which is the assertion of Theorem 1.

3.2. A conditional law of large numbers.

Theorem 3. Let [ 5: Q, (%, p(A l B)} denote
a conditional probability space and %, , %, ,.. ., &, ... be
random variables on S which are mutually independent with re-
spectto C€ D . Let J denote the interval O <¢x (b (Q <b)

of the real axis. Let Bn denote the set of those & € 5

for which %, (a) ¢ J and suppose that DBnS(

and Bn € D j let us suppose that M (anBn)=M%>o
ana D' (%, 1B,) D% exists (m=|, 1,. ).
Let us put P(Bn] C )= P and suppose that the

following conditions are satisfied:
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(17) %(Pﬂ: + =D a\hd “Z.:‘ T’n Mh = + o<

(18) fim Z{'m_:w\
n—» oo 7 P,
k=l
exists;
= De +(1-PI M,
a9 S 2e (Dx 4C MO
k=1 (?;IPJM_D
Then we have
Z E.
T
20) P lin 2Ek2T =M {Cl =1
N—=>oco0 > 1
e J
1<k é¢n y,

Proof. Let us define the random variable GK
as follows: Ek:1 if —Eke ™ and € =0 if "S'k ¢ U ;
let us put Et = Ekek ) Then we have:
X 2 — > 2
M(EX1O)= PeMu and M(EX | )= P (BL M, )

and thus

D*( ¢ [0)= 0 (DL + C-p)MY)

To show this we have:
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MEF1) = [ 55 dP(Agx ()
S
B g [gkede(Afk Aék\c3
s
Now, if &, =1 then §, € T and so a € By ,

QL: =0 otherwise

e MGENO = |5 1 P(agBO

B, S

By Axiom II P (A, \BKC>PCB»Q\L3 = P(Ag B V<)

therfore

Mg 10) =

P e

X Sy a PCA*gk |2,.C) a P (B, \Q
S

k

d P(B.1C) S T dP (Ag 1B) 5 B SC by we.

i
o

S

k

e, 1C) g 5, dP(Ag |BY)
S

= P M(EABQ

1

Py Mg .
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Also

ME? ) = fz*QdP(A x1CO)

ji <. dP(Ag A 1)
SN
|
B

=J jzﬁ d P(Ag, 1B, APR, |c)
S

By

g, 1d PCAg B 1O

k.

de(g gildP(AgleQ , BCC
B

k

- (8O MGLIB)

_ p, (PGB + M5 [B)

o (Df + M)
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and thus DjL ('gk* lC) = M(g.:kz[ C> - MQ(%': (C>
= P, CDQ(('*' M;B "(Pau MZ

=P (DL 4+ C=pIML)

fe. The random variables § T S on S
P > T
are mutually independent with respect to C € B by hypothesis

of the theorem and have mean values and variances as above,

<D
We also have > poMn = + o= and
=

D corresponding

Z_ kaDk’('("PK)‘V[n) < +

k=1 (jé;*?f h4j>1

to conditions a) and b) of Theorem 1. (Au the conditions of
Theorem 1 are sa,tisfied) .
Applying Theorem 1 to the sequence “5: of

random variables on S with respect to C &€ B it follows that
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"
X
2 S
. k=t — C 1
21y P jlim — =1 =
nee 2o My
k=\
On the other hand, let us apply Theorem 1 to
the sequence of random variables ék on S with respect to
Ce B3, As.

M€ lQ) = E ¢, d P(Aek\c

S
Now, €, =| if g .eJ | ie. a€ B, and €, =0
otherwise
Therfore
M(e,10) = | dP(B IO
B
= P(B, 10

also M (61 (C)

1

( )
Jse d P A

[ d P(R.1Q)
B




-93-

te. M(e|O) = P (B lO)

There fore

0 (e, lc) = MCer 10) =M™ Cewle)
= P — Px
it follows that
(22) P %i‘m 7\1———=1 Cl=1
2 P
=
Combining (22) and (21) and also (18) we have
n K 3 \
> s, > pe M
P | limn —;—\—-———:L&m = =M | C
n—» oo Z GK n— oo z 'r)k
k=1 =1 )

" " "
Z E-\c = Z_ g and Z‘l = Z ék
ghéj k=1 Ekéy k=1
1<k <n Lk Lh
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we have
> S
T J
14 k &R _
P A S =M C)=1 which is
Eke‘j
1<k <N

the same as statement (20) which was to be proved.

The statement of this theorem can be expressed
in words as follows: the conditional empirical mean value of
those of the variables & %, | ... |5 which take on
values lying in the interval 7 converges with conditional pro-
bability 1 with respect to C to the limit M defined by (18).

In the special case, when Mh. =M » O and
D.= D>o do not depend on n, the conditions (17), (18) and

oo
(19) reduce to the single condition that the series §=\ Pa
diverges. Let us suppose further that "J  is the closed interval
Lo, 1] and the only values in J  which the variables
£, can take on E)n are the values O and 1 (of course ¥,
can take also other values outside J ).

Suppose that A is the set on which g, =1

and P = P (/\n |P>n> v O does not depend on n,

In this case the events A, and B, can be in-
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terpreted as the events consisting in the realisation of some
events A and B, respectively, at the nth experiment in a

sequence of independent experiments, and we may put

P=P(A|B) ) in this case
z T S 1
'{:n (AlB} oosgken o EemlotTRER
> 1 St
el T =oorl, 14k En
1¢kin

is the conditional relative frequency of the event A with respect
to the event B in course of the first n observations., The state-

ment of the previous Theorem gives for this special case

(23) P (tm £oCAl®) =PCAIRYIQ =1, & P(BIQ) >0,

i.e. the conditional relative frequency of the event A with respect
to the event B converges to the conditionalped A with respect to B
with conditional probability 1 with respect to C. A special inter=-
pretation of the assertion (23) will be presented on product spaces
in the next paragraph (see Theorem 5 there).

An important corollary of Theorem 3 of this
chapter will be stated now:

Corollary: Let [S,&) %) P(A{B)] be a

conditional probability space, let the random variables § 'S, , ..., 5, ...
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be defined on it and let them be independent with respect to J?J'J

let each of these random variables have the same conditional

distribution system [5( ), QC( )) ‘b( >, pt )(A| B” ) let Pe J?)( )

and let Bné B the set of those O € S for which

§.(a) € B Let Ce D and suppose that

BHC;C (YL:I)L).,_)) let ?On:p<E)nlC)

and suppose that > Pa=+== . Let us suppose that
ne|

the conditional means M(EK / E)K>= M (2K [ €, € E)’ M>0

and the conditional variances Dz(EK [ By)e= Dl(gx | 5« € B)- D*
exist and so they are identical for each $ ) because of the
identical distribution of the random variables %y (K=1, L, ..)

Then

NP

"

AR
T <
P |lim il M| C| =1
n—=>o0 > g

[

r

T . B
14 ke

Proof: When MK - M»>o and DK =D>o
do not depend on K , the conditions (17), (18) and (19) of
Theorem 3 reduce to the single condition that the series ;il Py
diverges which is the condition of this corollary. All the conditions
of Theorem 3. being satisfied, our result is verified.

Remark 1. The supposition [ _ Py ===
n=|

is a natural one since Z }On means the conditional
na




-97-
expected value of the number of occurrence of the events B, with
respect to C in the whole course of experiments., Therefore
f pn { oo would mean that the events Bn on condition C

=]

occur on an average only finitely many times, and in this case it
would be meaningless to speak about the limiting value of the
relative frequency.

Remark 2, [ 5) (ﬁ,l % p<A \ E)) ] ) the con-
ditional probability space of this corollary and of the theorem
above is not specified at all, i.e. nothing is said about the con-
struction of it, Theorems with specifically constructed conditional
probability spaces will be discussed in the next chapter.

3.3, Particular cases of Theorem 3 of section 3.2.

To demonstrate the generality of Theorem 3 of
section 3.2. and to show that such conditional probability spaces
where the conditioﬂas of conditional laws of large numbers are
satisfied do exist , we are going to present here particular cases
of Theorem 3 of scction 3.2 on probability spaces constructed in
the sense of Theorem 19. of Chapter II. It is not necessary for
Theorem 3 that the probability spaces that appear there have been
constructed in this way,; the reason we construct them in this way
now is to verify the existence of conditional probability spaces in

which the conditions of Theorem 3 of Section 3.2 are satisfied.
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Let E be an experiment which is performed
and the possible results of it are observed K times ) K= ! ) 1 Yo
At the Kt—h experiment the possible results of E are represented
by certain subsets of 2 K) the class of all Borel sets of the real
line S(K)_ Let @(K) be a subclass of (%(k)and let
[ S(k)) QL(K)) %(K)} P(K) (A(ml B(K)) ] be a conditional probability
space. Suppose that [Scx)) 6!00) %(uz pm)(Acml B(K))] s
independent of k, i.e. that the conditions of the experiment E are
kept fixed for each performance of E . To indicate independence of
k we write [ 67 B P4 1p)] (1 POC 1)
we should, perhaps, use A() and B() instead of A4 B, but it
will always be understood from the content whether we are talking
about events A ¢ B belonging to &() and jb( ) or to & ¢ o of the
product space, defined below, respectively). We can construct, in
the sense of Theorem 19. of Chap, 11 )[5) inf)} P(A [ B)]{S(;&( ))J’b(3P( éAIB)]
the product of these identical conditional probability spaces and define
in it the random variables EK such that they are independent with
respect to $  and the conditional distribution system of ?K is
[ S( )’ &( )) ,/f?)( )) Dl ><M B)]) K=1,2,... . Anyparticular value of

EK then indicates the result of the K performance of the

experiment E. Let aN (A) denote the number of those random

variables among 2, ) i3 11 ) ’i/v which belong to the set A,

o
}
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(>
where A is a subset belonging to & °. Then

f,(a1p)- % y (Be B)

denotes the conditional relative frequency of A with respect to

B in the course of the first N experiments. (jN (A) is,
therefore, a number expressing the frequency of the occurrence
of the event which is represented by the set A, For the sake of
brevity, the event which is represented by the set A can be
identified with A and so we can say that (jN(A) stands for

the frequency of the occurrence of the event A in the course of
the first N experiments. The theorems which are to be proved
here are the corollaries of Theorem 3 of paragraph 3.2. but,
because of their importance, will be presented as theorems.
Continuing the numbering of the previous paragraph, we have

Theorem 4. Let the random variables

El ) ?l\ S ny -+ have identical distribution systems

[ S( )) QC( )) ﬁ)( >) P( ) (/.\ | B)] and be defined on the conditional
probability space [S,E;i, Jfbl P(A \ E)”[ S( ,) GL( )) %( )) p( )UHB)] -
in the sense of Theorem 19 of Chdp II. and so they are independent

()
with respect to D et Pe B and denote the identical

conditional expectation value of the random variables % K (k= I, )
with respect to the condition B by M (§1B) ; let C=

(1 () (K) ()
C o C7 0 € @) , where C "¢ % and, further, let

S (k=12 ). Let p-P(BIC™Y)
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o

and suppose the condition . Pn=+ = is satisfied.,
N=1

Denote by hN (%1 B) the conditional empirical mean

value of the random variables El ) _§2_ Yoo 5 N with respect

to the condition B, i.e. let

hN(E‘E})= Eb.+ {,%"}‘...'}"En N n (jN(B)

n
where gc, ) Eil N )Ein are those of the random variables
El ) 22,7 S EN whose values fall in B, and f = aN ()

stands for the frequency of the occurrence of the event B in the

course of the first N experiments (BE \%( )). Then, if
M(EH%)) >0 and D(%‘B) exist,
D (tim by (F1B) - M(51B)]C)-L

N— oo
Proof. According to the conditions of Corollary

to Theorem 3 of Sectton 3.2. we have By&C for

P)N € %) Ceh where b is fror:o
[SJG:)@MP(A'B)] and also P(BNIC)=)PN)%]1ON=+M'
Since, in Theorem 4, we have an infinite product space of identical
conditional probability distribution systems, any set in j?) of
[5'@’%) P(AIB)] is of the form B(I)o B(lo)...

If, in the Corollary mentioned, we had the conditional probability

space constructed as it is in Theorem 4, then we would

have for BN\ Ce )} the forms B(,)o Bmo...) cC . C,. ..
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respectively. Accordingly, by Theorem 19 of Chep.ll. we have

()
P (g, ebalC)- P(BMICY) (B Meh ).

. s (N =
According to the condition of Theorem 4, let B =B
and then we have
(N &
P(5pelyIC)=P(BICT)= Py
by Corollary to Theorem 3 of section 3.2. But this is the
PN of Theorem 4. We also have Z} PN =t oo
N=
by the same Corollary, which is, again, also the condition of
Theorem 4. To put it in short, if we have the construction of
Theorem 4 for conditional probability spaces, then the conditions
of Corollary to Theorem 3 of &ection 3.2. become the conditions
of Theorem 4. Therefore, the statement of this theorem follows
from the Corollary mentioned.
(ND )
Remark 1. If, in Theorem 4, we let C =
for N = }) 2 Yy then we get the ordinary strong law
of large numbers as a special case of Theorem 4.
Remark 2. If gN can take on only the
values I and O and ?n=2(0,)=1 if a €A
A ()
where €& then Theorem 4 reduces to the following:

Theorem 5. Let [S)GTC) @,P(A’E))] =

[ 5 )) a ﬁJ( )) p' )(A! B)] - be defined in the sense of
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()
Theorem 19 of Chdp. II. Let Ac & )% € %( ’ and,

am
further, let B—C—C(mé jb() (N=l72)"') and C=C 0 C(lo)...é%,

(N) .
Also let P (B1C = Py (N-\)27- ) and suppose
2,;_-_’ Py = +== . Define the random variables 3§y on

S as in Theorem 19 of Chdp. I i.e. such that the conditional distri-

)
bution system of &k is [ & )) o )} I )) P (A B) ]

and they are independent with respect to j)J Denote by
(jN (D) the number of those random variables from
E.) T, -,%N the values of which fallin D ¢ at’
and let
9In (A B)
f (A1B)- ) the conditional relative
In (B)

frequency of the event A with respect to B in the course of the

first N experiments. Then

P (tim fy(AIB) = PCAIBYIC) =1,
N

— O

Again, if B = C we have the ordinary strong law

of large numbers.
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