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Abstract 

The human brain is an incredibly complex organ that can be described and measured in 

many different ways. Whichever way we choose, no two brains are exactly the same. The 

general focus of this thesis will be to understand the causes of this inter-individual 

variability, how different aspects of the brain are affected, how these effects vary over 

time and space, and how this can ultimately further our understanding of cognition, 

behavior and neurological disorders. 

 In Chapter 1, a more detailed introduction to these concepts and to the structure 

of the thesis is provided. Chapter 2 first provides an overview of the anatomy of the brain 

from the perspective of structure and function, which introduces the measures that will be 

used to describe the brain in the following chapters. This is followed by a short account 

of the inter-species differences found, at the macroscopic level, between human and 

primate brains. This emphasizes that inter-individual variation in quantitative traits is most 

relevant and that genetic variation is necessarily an important cause of this inter-individual 

variability. The second section of Chapter 2 then provides an overview of the structure 

and function of the human genome along with the types of genetic variation that can be 

found within. Given the importance of quantitative variation, a complete account of how 

discrete genetic factors can account for the inheritance of quantitative traits is then 

provided, followed by a description of the methods used to estimate this effect and the 

definition of the specific parameters of interest for this thesis. 

Chapter 3 then takes a first look at the quantitative genetics of brain structure, 

specifically from the perspective of age-related changes in the genetic influences over 

cortical thickness. Chapter 4 then looks at the quantitative genetics of brain function from 
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the perspective of resting-state functional connectivity. This includes the complete 

mapping of heritability, age-related interactions and genetic correlations across the entire 

functional connectome. The results are then further analyzed and interpreted in view of 

the evolutionary history of the brain's functional systems. Finally, Chapter 5 moves 

beyond the analysis of structure and function to show how the results from the previous 

two chapters could be used to inform other traits related to cognition, behavior and 

disease. The focus is placed on the genetics of intelligence and the identification specific 

brain areas where measures of cortical structure are influenced by these same genetic 

factors. 

 Taken together, these results demonstrate that genetic variation is an important 

cause of inter-individual variation in measures of brain structure and function in the 

population. They also show that the detailed investigation and proper interpretation of 

these influences could offer valuable insight into the genetics of cognition, behavior, and 

neurological disorders, and perhaps even into the evolution of the human brain.  
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Résumé 

Le cerveau humain est un organe incroyablement complexe qui peut être décrit et mesuré 

de nombreuses façons. Peu importe le moyen choisi, aucun cerveau n’est identique. 

L’objectif général de cette thèse sera de comprendre les causes de cette variabilité 

interindividuelle, comment différents aspects du cerveau en sont affectés, comment ces 

effets peuvent varier spatialement et à travers le temps, et comment ceci pourra 

ultimement améliorer notre compréhension des processus cognitifs, comportementaux et 

des maladies neurologiques. 

 Le premier chapitre fournit une introduction plus détaillée de ces concepts et de la 

structure de cette thèse. Le second chapitre offre d’abord un survol de la neuroanatomie 

structurelle et fonctionnelle du cerveau, ce qui introduit les traits qui seront utilisées pour 

mesurer le cerveau dans les chapitres suivants. Ces sections sont suivies d’un court 

résumé des différences inter-espèces qui sont observées, au niveau macroscopique, 

entre le cerveau humain et celui des primates. Ceci met l’emphase sur l’importance de 

l’étude des traits quantitatifs au niveau interindividuel et sur le fait que des variations 

génétiques sont nécessairement une cause importante de cette variation 

interindividuelle. La seconde section de ce chapitre offre donc un survol de l’organisation 

structurelle et fonctionnelle du génome, ainsi que des types de variations génétiques qui 

peuvent y être trouvées. Vu l’importance des traits quantitatifs, une description détaillées 

des mécanismes par lesquels la variance des traits quantitatifs peut être héritée est 

fournie, suivie d’une description des méthodes statistiques qui permettent d’estimer cet 

effet et des paramètres d’intérêt qui en découlent. 
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 Ensuite, the troisième chapitre jette un premier regard sur la génétique quantitative 

de la structure du cortex cérébral, spécifiquement du point de vue des interactions entre 

l’âge et les influences génétiques sur l’épaisseur corticale. Le quatrième chapitre 

s’attarde aux influences génétiques au niveau fonctionnel, spécifiquement du point de 

vue de la connectivité fonctionnelle au repos. Ceci inclut la cartographie complète de 

l’héritabilité, de ses interactions avec l’âge et des corrélations génétiques à travers le 

connectome fonctionnel en entier. Les résultats sont ensuite analysés et interprétés en 

rapport à l’histoire évolutive des systèmes fonctionnels du cerveau. Finalement, le 

cinquième chapitre dépasse l’analyse seule des aspects structurels et fonctionnels pour 

démontrer comment les résultats des chapitres précédents peuvent être utilisés dans 

l’étude d’autres traits liés aux aptitudes cognitives, au comportement et aux maladies. Le 

focus est placé sur la génétique de l’intelligence et sur l’identification de régions du 

cerveau où les mesures corticales sont sous l’influences des mêmes facteurs génétiques. 

 Dans l’ensemble, ces résultats démontrent que la variation génétique est une 

cause importante de variation interindividuelle dans les mesures structurelles et 

fonctionnelles du cerveau. Ils démontrent aussi que l’étude détaillée et la juste 

interprétation de ces influences pourrait nous fournir d’importantes informations sur la 

génétique des traits cognitifs, comportementaux, des maladies neurodégénératives et 

peut-être même sur l’évolution du cerveau humain. 
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Chapter 1: Introduction. 

 

“They are in you and me; they created us, body and mind; and their 

preservation is the ultimate rationale for our existence. They have come a 

long way, those replicators. Now they go by the name of genes, and we 

are their survival machines. […] Survival machines that can simulate the 

future are one jump ahead of survival machines that can only learn of the 

basis of trial and error. […] The evolution of the capacity to simulate seems 

to have culminated in subjective consciousness. Why this should have 

happened is, to me, the most profound mystery facing modern biology.” 

 

Richard Dawkins, The selfish gene, 1976. 

 

This excerpt from one of the most famous contemporary works in evolutionary biology 

summarizes in its own way the topics and fields of research that the current thesis 

intersects with. First are the replicators, the genes, which have been hard at work for 

hundreds of millions of years. Second is this capacity to simulate, the ability to not only 

learn from what we have experienced but from what we imagine could happen. Functions 

which, unambiguously, belong to the brain. Last is the interplay between the two: the fact 

that over millions of years of replication the genes have evolved to encode, among other 

things, this wonderful organ that is the brain. 

Regarding the genes, it has been a relatively short 151 years since Mendel 

understood the rules of their inheritance (Mendel, 1866) and an even shorter 16 years 
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since we first sequenced the human genome in its entirety (Venter et al., 2001). 

Regarding the brain, though we have had access to it for centuries, studying it has 

historically been a rather invasive process. It has been less than 50 years since the 

introduction of CAT scans and NMR imaging allowed detailed images of the brain to be 

taken non-invasively (Filler, 2009). We therefore find ourselves at a historical crossroads, 

where we have finally gained access to these key parts of the human survival machine. 

We now have the opportunity to understand these intimately linked components, explore 

their structure and functioning, and unravel their evolutionary history. 

 The scientific study of the interplay between the genome and the brain is a doubly 

complicated endeavor. As will be detailed in Chapter 2, the organization of the brain must 

be understood not only in terms of its structure but also of its function (Sections 2.1.1 and 

2.1.2). Moreover, what is known of the evolution of the human brain indicates that it has 

relied mostly on the selection of alleles influencing quantitative traits (Section 2.1.3). 

Based on this, the second section of Chapter 2 begins by providing a description of the 

structure and function of the human genome (Section 2.2.1). This leads to a description 

of the different types of genetic variation that can be found therein and of the mechanisms 

through which they can affect the human phenotype (Section 2.2.2). Given the central 

role of the genetic contribution to quantitative traits, Section 2.2.3 then provides a detailed 

account of how discrete genetic factors inherited in a Mendelian fashion can ultimately 

account for the non-Mendelian inheritance of inter-individual variation in quantitative 

traits. This includes the definition of the concept of additive genetic variance, of the 

methods through which this variance can be estimated and of the population parameters 

of interest which rely upon it.  
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 The most common of these parameters is the heritability, which describes the 

contribution of additive genetic variation to the full variation observed in a trait (Falconer 

& Mackay, 1996). More advanced parameters can estimate the degree to which genetic 

influences are shared between traits and whether or not these genetic influences change 

depending on environmental conditions (Almasy, Dyer, & Blangero, 1997; Blangero, 

1993). The estimation and correct interpretation of these parameters is critical to improve 

our understanding of the quantitative genetics of the human brain, and to clarify the 

potential misunderstandings of these measures (Visscher, Hill, & Wray, 2008). In line with 

this, the specific goals of the three studies presented in the subsequent chapters are as 

follows: 

1. Chapter 3: (1) to replicate previous findings on the heritability of cortical thickness 

and (2) to extend our understanding of how these genetic influences may vary over 

adulthood and early ageing (i.e. GxA interaction). 

2. Chapter 4: (1) to provide a complete mapping the heritability of functional 

connectivity, (2) to map shared genetic influences across the functional 

connectome, and (3) to provide evidence supporting a reinterpretation of the 

heritability functional connectivity in line with the evolution of the brain’s functional 

systems. 

3. Chapter 5: (1) to map genetic influences on different measures of cortical structure 

and cognitive function and (2) to explore how the use of different quantitative traits 

can inform us about shared genetic influences between brain structure and 

cognition. 
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These results are then summarized and discussed in Chapter 6. The analyses reported 

in each Chapter are also discussed from a more general perspective as an analytical 

framework that could be applied to a great number phenotypes beyond those derived 

from Magnetic Resonance Imaging. Finally, although the emphasis is placed on evolution 

in terms of interpretation, discussion is also provided on the implications of this general 

framework for the study of common disorders and quantitative traits in human 

populations.  
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Chapter 2: Background. 

This chapter is divided into two main sections that summarize the core concepts behind 

the analyses presented in this thesis. The first focuses on the human brain and provides 

an overview of its structural and functional anatomy, which introduces the traits that will 

be used to measure the brain. Using these definitions, an overview of the evolutionary 

differences that characterize the human brain is then given, which helps to define the type 

of inter-individual variation we will focus on and introduces the following section. The 

second section focuses on the human genome and begins, as with the brain, with a short 

account of its structure and function. This provides some context for the definition of the 

concept of genetic variation and the mechanisms through which it can affect the brain. 

Finally, a detailed account is provided of how genetic variation can influence quantitative 

traits and how these influences can be measured. 

 

2.1 The human brain. 

Anatomy provides a natural starting point both for the definition of the traits that will be 

used in this thesis and the interpretation of the results. However, the following sections 

do not intend to provide a full account of structural and functional neuroanatomy. Instead, 

section 2.1.1 focuses on the definition of the main structural landmarks of the cortical and 

subcortical gray matter, while section 2.1.2 outlines the broad strokes of their functional 

organization. These definitions and examples are then used in section 2.1.3, which looks 

at the evolution of these areas and networks of the brain. This leads to the argument that 

most of the differences found between human brains and their closest relatives are 
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quantitative rather than qualitative in nature. This, in turn, stresses the importance of 

considering quantitative variation when looking at inter-individual variation in human 

populations. 

 

2.1.1 Structural neuroanatomy. 

It is difficult to reference each statement on the basics of human neuroanatomy in a 

detailed manner, in part because much of this knowledge can be traced back for hundreds 

of years (Eustachi, 1714). The Atlas of Human Anatomy by Frank H. Netter is therefore 

used as a general reference for this section (Netter, 2010). In practice, the contents of 

this section were learned in the classroom and dissection room under the tutelage of Dr. 

David Ragsdale, Dr. Edith Hamel, Dr. Fraser Moore and Dr. Geoffroy Noel. In turn, the 

more practical perspective of dissection offers a good starting point for the description of 

structural neuroanatomy. From the external aspect, once the brain has been removed 

from the cranial cavity and stripped of the meninges, the largest and most evident part is 

the cerebral cortex. The cortex is a sheet of gray-matter, ranging from two to four 

millimeters in thickness, that can be mapped according to its folds and fissures. The most 

prominent of these is the longitudinal fissure, which separates the left and right 

hemispheres. Each hemisphere can be further subdivided into four main lobes, each 

composed of multiple gyri, defined by the sulcal landmarks. 
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Figure 2.1: Sulcal landmarks of the lateral surface of the brain. 

Main landmarks of the lateral surface of the cerebral cortex as referred to in the text. Note 

the definition of the parieto-occipito-temporal junction at the bottom left. 

From: Netter, 2010. 
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The frontal lobe is delimited caudally by the central sulcus and ventrally by the 

lateral sulcus. It includes the precentral gyrus, located between the central and precentral 

sulci, as well as the superior, middle, and inferior frontal gyri, delimited by the superior 

and inferior frontal sulci. Located on the other side of the central sulcus is the parietal 

lobe. Rostrally, the parietal lobe includes the postcentral gyrus, which is delimited by the 

central and postcentral sulci. Caudally, it also includes the superior and inferior parietal 

lobules which are separated by the intraparietal sulcus. The inferior parietal lobule is 

further subdivided into the supramarginal and angular gyri. The aforementioned sulci and 

gyri can be seen in Figure 2.1.  

On the medial surface, the parietal cortex also includes the precuneus which is 

delimited rostrally by the marginal sulcus and caudally the parieto-occipital fissure. This 

fissure also forms the anterior boundary of the occipital lobe. The occipital lobe includes 

cuneus and the lingual gyrus, which are respectively located on the dorsal and ventral 

banks of the calcarine sulcus (see Figure 2.2). On the lateral surface, its anterior boundary 

is drawn as a line going from the termination of the parieto-occipital fissure down to the 

preoccipital notch. This is also the caudal boundary of the temporal lobe, while the lateral 

sulcus forms its dorsal boundary. On the lateral aspect, the temporal lobe is subdivided 

into the superior, middle and inferior temporal gyri by the superior and inferior temporal 

sulci (see Figure 2.1). On the ventral aspect, the inferior temporal gyrus is separated from 

the fusiform gyrus by the occipitotemporal sulcus, which is in turn separated from the 

parahippocampal gyrus by the collateral sulcus (see Figure 2.3). Two additional areas 

must be mentioned since they do not fall into the aforementioned categories: the cingulate 

gyrus, which is located on the medial surface, wraps around the corpus callosum and is 
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bordered dorsally by the cingulate sulcus (see Figure 2.2), and the insula, which is buried 

deep within the lateral sulcus (see Figure 2.1). 

 

 

 

 

Figure 2.2: Sulcal landmarks of the medial surface of the brain. 

Main anatomical landmarks of the medial surface of the human brain. In the text, the 

emphasis is placed on the cingulate gyrus, precuneus and occipital lobe. Note also that 

the thalamus and cerebellum are visible. 

From: Netter, 2010. 
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Figure 2.3: Sulcal landmarks of the ventral surface of the brain. 

Main anatomical landmarks of the ventral surface of the cerebral cortex. In the text, the 

emphasis is placed on the temporal lobe. Note that here the brainstem and cerebellum 

have been resected to expose these areas. 

From: Netter, 2010. 
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Sitting beneath the occipital lobe, the cerebellum is attached to the brainstem by the 

cerebellar peduncles and is completely dissociated from the cerebral hemispheres. As its 

name suggests, it forms a “small brain” that includes a very thin cortex, tightly folded into 

folia, as well as its own deep gray matter nuclei (see Figure 2.2). In addition, some gray-

matter structures also lie buried in the white matter of the cerebral hemispheres. The 

largest, which will be most relevant here, are the basal ganglia, the thalamus, the 

hippocampus, and the amygdala. The basal ganglia include the caudate nucleus, 

putamen and globus pallidus. The caudate nucleus forms the lateral wall of the lateral 

ventricles and follows their curvature from the anterior to the temporal horn. The putamen 

and globus pallidus are located approximately between the insula and the thalamus, 

slightly anterior to the latter. The thalamus is a rounded structure, located medially at the 

level of the third ventricle. The hippocampus is a medial structure of the temporal lobe 

which forms the floor of the temporal horn of the lateral ventricle (see Figure 2.4). Rostral 

to the hippocampus, the amygdala is a small “almond” shaped gray matter structure of 

the anterior temporal lobe. 

These structures form the main landmarks that will be used for the interpretation 

of the results found in the following sections, but their description also serves another 

important purpose. While (nearly) all human beings possess a cerebellum, basal ganglia, 

central sulcus, etc., there also exists a great amount of inter-individual variability in brain 

structure. These are readily found in MRI databases and some fairly common patterns 

including gyral duplications have been described, notably in the dorsal temporal lobe 

(Tzourio-Mazoyer & Mazoyer, 2017). Since the cortex is essentially a two-dimensional 
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sheet of tissue, such large-scale variations as well as more minute differences in the 

relative sizes of each area can both be captured by the same measures. Namely, these 

are the surface area, thickness and volume of the cortex. 

 

 

 

Figure 2.4: Subcortical gray matter structures. 

Coronal section showing the principal deep gray matter structures detailed in the text. 

Note that here the amygdala and thalamus are absent. It should be kept in mind that 

these form complex tridimensional structure beyond what is seen here. 

From: Netter, 2010. 
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2.1.2 Functional neuroanatomy. 

The anatomy of the brain can also be described in terms of its functional rather than 

structural organization. Functional areas tend to correspond fairly well to those defined 

based on cytoarchitecture, but functional subdomains are often still present within these. 

In addition, functional anatomy highlights the fact that all parts of the brain are 

interconnected and function as an integrated whole. This section provides a few examples 

to illustrate this point, which will also serve as a foundation for the next section and the 

work presented In Chapter 4. 

 A first example is the cortical motor system. Most areas that are involved in the 

generation of the motor output are housed in the precentral gyrus and the caudal part of 

the prefrontal cortex (Rizzolatti & Luppino, 2001). As can be seen in Figure 2.5, the 

organization of these areas is more complex and does not precisely follow the simple 

subdivisions made by the superior, middle and inferior frontal gyri. In addition, these areas 

are densely interconnected with somatosensory areas located in the postcentral gyrus 

and rostral parietal cortex. While this relationship is logically required for the proper 

generation and adjustment of motor response, it is interesting to note that these 

processes also involve the basal ganglia, thalamus and cerebellum (Apps & Garwicz, 

2005; Calabresi, Picconi, Tozzi, Ghiglieri, & Di Filippo, 2014). This functional relationship 

is highlighted notably by Huntington’s disease, where the degeneration of inhibitory 

connections from the striatum to the thalamus result in unwanted or uncontrolled motor 

outputs (Galvan, André, Wang, Cepeda, & Levine, 2012). 
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Figure 2.5: The cortical motor system. 

Overview of the cortical areas involved in motor function. Areas shown here are involved 

in the generation of the motor output, planning of the motor output and sensory feedback 

related to the generation and execution of the motor output. Note that while these are 

shown for the macaque brain, a homologous complement of areas is found in humans. 

From: Rizzolatti & Luppino (2001). 

	  

Neuron
890

Figure 1. Mesial and Lateral Views of the Monkey Brain Showing the Parcellation of the Motor Cortex, Posterior Parietal, and Cingulate
Cortices

The areas located within the intraparietal sulcus are shown in an unfolded view of the sulcus in the right part of the figure. For the nomenclature
and definition of motor, posterior parietal, and cingulate areas, see Rizzolatti et al. (1998). The parieto-dependent motor areas and the parietal
areas that are the source of their major cortical afferents are indicated with the same color. Prefronto-dependent areas are indicated in blue.
AI, inferior arcuate sulcus; AS, superior arcuate sulcus; C, central sulcus; Cg, cingulate sulcus; DLPFd, dorsolateral prefrontal cortex, dorsal;
DLPFv, dorsolateral prefrontal cortex, ventral; L, lateral fissure; Lu, lunate sulcus; P, principal sulcus; POs, parieto-occipital sulcus; ST, superior
temporal sulcus.

The prefronto-dependent motor areas receive higher impairment of individual finger movements (e.g., Schieber
and Poliakov, 1998; Fogassi et al., 2001; for early litera-order cognitive information, related to long-term motor

plans and motivation. On this basis, it appears logical ture, see Porter and Lemon, 1993). The second process
implies a transformation of the intrinsic properties of theto posit that these areas have a control function. It will

be proposed that they determine when and in which object, visually described, intomotor actions. Themotor
area crucially involved in this process is area F5.circumstances the activity generated in the parieto-

dependent areas—potential motor actions—becomes Area F5 is located in the rostral part of the ventral
premotor cortex. It consists of two main sectors: onean actual motor action. The functional properties of ar-

eas F5 and F6 will be discussed in the next sections as located on the dorsal convexity (F5c), the other on the
posterior bank of the inferior arcuate sulcus (F5ab). Bothexamples of the way in which the parieto-dependent

and fronto-dependent areas intervene in motor control. sectors receive a strong input from the second somato-
sensory area (SII) and area PF (Godschalk et al., 1984;
Matelli, et al., 1986). In addition, F5ab is the selectiveArea F5 and the Organization of Hand

Grasping Movements target of parietal area AIP (Luppino et al., 1999).
Electrical stimulation studies revealed that area F5In order to grasp an object, an individual must be able to

control hand and finger movements and shape precisely contains a movement representation of the hand and
the mouth (Rizzolatti et al., 1988; Hepp-Reymond et al.,his/her hand before touching the object. The first pro-

cess depends, to a large extent, on the precentral motor 1994). The two representations overlap to a consider-
able extent.cortex (F1). Lesions or inactivations of this area produce

force deficit, flaccidity and, most importantly, a severe Particularly important for understanding the function
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Another example is the visual network, which is centered around the occipital lobe (Gilbert 

& Li, 2013). The primary visual cortex (V1), which contains a retinotopic map of the 

information initially sensed by the eye, is located on the banks of the calcarine sulcus. 

From there, the processing of visual information is carried on through a chain of 

interconnected areas which initially surround V1 in the occipital cortex, but quickly diverge 

into the dorsal and ventral “streams”. These two pathways involve a number of areas 

found in the superior parietal lobule and the ventral temporal lobe (Figure 2.6). 

Conceptually, the dorsal stream decodes the “where” in terms of location and movement, 

while the ventral stream decodes the “what” in terms of recognized form and color. In 

addition, most of these areas also receive input from the frontal cortex, which are involved 

in the attentional control of visual information processing (Gilbert & Li, 2013). 

 Many more networks could be mentioned and all could be described in more detail: 

the dorsal temporal lobe includes many areas involved in auditory processing (Scott, 

2005), the medial temporal lobe includes structures involved in the processing of memory 

and emotions (Bird & Burgess, 2008), while more rostral frontal areas are involved in 

higher order cognitive processes including decision-making, working memory and 

attention (Miller & Cohen, 2001). What these examples show is that while functional 

organization overlaps in some ways with structural anatomy, it also offers a distinct 

perspective on the regional and network organization of the brain. This network 

organization can now be studied using resting-state functional Magnetic Resonance 

Imaging (rs-fMRI). Specifically, rs-fMRI allows these functional networks to be identified 

based on the degree of coherence of their functional timecourses, referred to as functional 
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connectivity. Inter-individual variation is readily found in functional connectivity, making 

this the fourth phenotype of interest of this thesis (Mueller et al., 2013). 

 

 

 

 

Figure 2.6: The cortical visual system. 

Overview of the cortical areas involved in visual function. This includes the perception 

and decoding of visual information as well as feedback mechanisms related to attention 

as well as the control of eye movements. 

From: Gilbert & Li (2013). 

 

 

	  

Figure 1. Feedback pathways carrying top-down information
Processing visual information involves feed forward connections across a hierarchy of
cortical areas (represented by the blue arrows) beginning in primary visual cortex (V1),
which in turn receives input from the lateral geniculate nucleus (LGN). The feed forward
connections extend through a ventral pathway into the temporal lobe and a dorsal pathway
into the parietal and prefrontal cortex. Matching these feedforward connections are a series
of reciprocal feedback connections (represented by the red arrows), providing descending
top-down influences that mediate “reentrant” processing. Feedback is seen in direct cortico-
cortical connections (those directed towards V1), in projections from V1 to the LGN, and in
interactions between cortical areas mediated by the pulvinar. Information about motor
commands, or efference copy, is fed to the sensory apparatus by a pathway involving the
superior colliculus (SC), medial dorsal nucleus of the thalamus (MD) and frontal eye fields
(FEF). In addition to direct reciprocal connections, for example from V2 to V1, feedback
can cascade over a succession of areas, for example PF to FEF to V4 to V2 to V1. As
outlined in this review, a diversity of information is conveyed across these pathways,
including attention, expectation, perceptual task and efference copy. (Adapted from Gilbert,
Figure 25-7B in Principles of Neuroscience, Kandel, Schwartz, Jessell, Siegelbaum and
Hudspeth).

Gilbert and Li Page 20

Nat Rev Neurosci. Author manuscript; available in PMC 2013 December 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



	 39 

2.1.3 On the evolution of the human brain and the nature of inter-individual 

differences. 

The previous sections defined some of the areas and networks that can be found in the 

human brain. Yet, as is reflected in figures 2.5 and 2.6, much of the underlying research 

has been carried out on non-human primates. This already suggests that there is a great 

degree of homology between the human and primate brains. Still, we would intuitively 

expect the human brain to have evolved some recent, defining characteristics that set it 

apart from its closest relatives. If we consider the brain as a set of interconnected areas, 

then perhaps we can expect to find new areas in the human brain to explain our distinctive 

cognitive and behavioral characteristics. 

In this regard, the visual and sensorimotor systems discussed above are a good 

starting point because they have been described and studied across a broad range of 

extant species. On the other hand, this hints at their older phylogenetic age and thus 

higher degree of conservation. Indeed, functional homologs can be found for most known 

areas of the cortical visual network in humans and primates. More specifically, this 

includes areas V1 and V2, which are also shared with the more distant tree shrews and 

rodents (Kaas, 2008) and Area V3, which forms the outer border of V2 in all primates 

(Lyon & Kaas, 2002). Higher order areas V4, V5 (MT), V6 (DM), MST, FST and IT also 

have their homologs in monkeys and even prosimians (Kaas, 2012). While this is based 

on cytoarchitectonic data, functional mapping using fMRI has also yielded a homologous 

set of visual areas in humans and macaques (Kolster, Peeters, & Orban, 2010). Thus, it 

seems safe to say that the architecture of the visual network is conserved in most 

primates, including humans (Kaas, 2005). The situation is similar for the sensorimotor 
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network: Brodmann areas 1, 2, 3a and 3b, which make up the postcentral gyrus, can be 

found in New World Monkeys, Old World Monkeys and Humans (Kaas, 2004). Area M1 

and the dorsal premotor cortex can also be identified in rodents and tree shrews (Remple, 

Reed, Stepniewska, & Kaas, 2006). The more recently evolved frontal eye fields, 

supplementary motor areas and cingulate areas can also be found in prosimians (Wu, 

Bichot, & Kaas, 2000). Thus, it again seems safe to say that the cortical architecture of 

the sensorimotor network has also been conserved in humans and primates. 

 

 

 

 

Figure 1.
Some of the cortical areas of (A) rats, (B) tree shrews, (C) galagos, and (D) owl monkeys. The
owl monkey cortex has been flattened so that areas in the lateral fissure and on the medial wall
can be shown. Rats, like many other small-brained mammals have few cortical areas, including
primary visual (V1), auditory (Aud or A1), somatosensory (S1) and motor (M1) areas. Other
somatosensory areas include a caudal somatosensory belt (SC) a distorted rostral belt (RC or
dys. for dysgranular cortex), a second area (S2), a parietal ventral area (PV) and a parietal
rostral area (PR). Motor cortex includes a dorsal premotor area (M2), and visual cortex includes
a second visual area (V2) and other visual areas (Visual). Some of the somatotopy of S1, PV,
S2, and M1 is indicated. Tree shrews have an expanded temporal lobe with visual functions.
Several temporal areas (TP, posterior; TD, dorsal; TA, anterior, and TI, inferior) have been
identified, but homologous areas in other mammals are unknown. TA and adjacent visual
cortex relay to motor cortex, as posterior parietal (PP) cortex does. Prosimian galagos have
more visual cortex, and many of the areas recognized in anthropoid primates (the dorsolateral
area, DL or V4; V3; the dorsomedial area, DM; the middle temporal area, MT; the middle
superiortemporal area MST; the fundal area of the superior temporal sulcus, FST; and inferior
temporal cortex, IT. Posterior parietal (PP) cortex includes a caudal sector with dense visual
inputs and projections to a rostral sector with somatosensory inputs and projections to motor
and premotor cortex. Motor cortex includes a primary area (M1), dorsal premotor cortex
(PMD), ventral premotor cortex (PMV), the frontal eye field (FEF), a supplementary motor
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Figure 2.7: Comparative anatomy of the sensory and motor areas of the cortex. 

This figure details the homology of the brain areas involved in various functional networks 

(i.e. mainly somatosensory, motor, visual and auditory) across four mammalian species. 

While more areas are visibly present in primates compared to rodents, most if not all 

areas found in the human brain have their homologs in primates. 

From: (Kaas, 2008) 

 

In contrast, frontal and parietal cortices are thought to have expanded significantly 

in humans, making them more likely candidates to house new areas (Kaas, 2004). In the 

case of the lateral prefrontal cortex however, the data does not seem to support this 

hypothesis. Using cytoarchitectonic mapping, (Petrides & Pandya, 2002) identified a full 

complement of homologous regions in both human and macaques. Also, regarding 

language more specifically, homologs have been found for Broca's area (Petrides & 

Pandya, 1999; Preuss & Goldman-Rakic, 1991) and Wernicke's area (T. M. Preuss & 

Goldman-Rakic, 1991a) in both monkeys and prosimians. Surprisingly, perhaps, there 

are therefore no new areas to be found in the prefrontal cortex. The one part of the brain 

that shows some promise for the identification of newly evolved brain regions is the 

parietal cortex. In monkeys, the parietal cortex is divided into Brodmann areas 5 and 7 by 

the intraparietal sulcus while in humans, these two areas are found together in the 

superior parietal lobule (Karnath, 2001). The regions of the inferior parietal lobule, 

Brodmann areas 39 and 40, are apparently virtually impossible to identify in non-human 

primates (T. M. Preuss & Goldman-Rakic, 1991a) and have been discussed as uniquely 

human (Karnath, 2001). Functional data has so far supported this claim and shown that 
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they are likely involved in complex “three-dimensional structure-from-motion processing” 

(Vanduffel et al., 2002). One interesting theory is that the evolution of the inferior parietal 

lobule could be related to the capacity to make and use tools (Frey, 2007). In spite of this, 

some authors argue that the inferior parietal lobule could simply be an expansion or 

specialization of the posterior temporal cortex rather than a novel area. 
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Figure 2.8: Comparative anatomy of the frontal cortex. 

This figure details the homology of cytoarchitectonic areas of the frontal cortex between 

humans (A) and macaques (B). Homologs are again found for all human areas. Note, 

however, the marked differences in the relative sizes and shapes of each area. 

From: (M. Petrides & Pandya, 2002) 

 

Thus, while some authors warn that large regions of the cortex remain to be 

explored (Preuss, 2011), the current data seems to show that nearly all human brain 

areas have non-human homologues (Striedter, 2005). How then can we explain the 

marked cognitive and behavioral differences between humans and primates? A few 

observations can help guide us in the right direction. In the case of language for instance, 

while areas seem to be conserved, humans exhibit direct cortical projections from tongue 

and larynx devoted areas to the brainstem nuclei involved in orofacial motor function 

(Jürgens & Alipour, 2002). This has been hypothesized to play a role in human “vocal 

dexterity” (Striedter, 2005). This shows that a reorganization of connectivity, rather than 

the addition of new regions, might explain some human specializations. 

From another point of view, the presence or absence of regions and connections 

represent qualitative differences between different brain. Such qualitative differences at 

the macroscopic level are visible few. That is not the case when it comes to differences 

in quantitative traits. The fossil record clearly shows that the size of the brain has 

increased markedly in the human lineage (Bruner, 2016). This was driven mainly by the 

expansion of the neocortex (Finlay & Darlington, 1995), hinting at the fact that many of 

the areas mentioned above have been differentially enlarged (Buckner & Krienen, 2013). 
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This brings us to a critical concept: most of the differences found between the human and 

primate brain, at the macroscopic level, seem to be quantitative rather than qualitative in 

nature. In some way, this is echoed in a citation by Charles Darwin, saying that “the 

differences in mind between man and the higher animals, great as it is, is certainly one of 

degree and not of kind” (Darwin, 1871). Since the process of evolution, which gave rise 

to these inter-species differences, relies on the selection of inter-individual differences, it 

follows that adopting a quantitative approach to their study is especially relevant. In turn, 

it must now be shown how genetic variation can influence such traits, so that the selection 

of quantitative traits can result in evolution. 

 

2.2 The human genome. 

In the previous section, we defined four phenotypes related to brain structure and function 

and emphasized the importance of using such quantitative traits. In this section, we will 

now move on the genome and again begin by defining its structure and function. This will 

then help to understand the different types of genetic variation and how they can result in 

inter-individual variation and disease. Finally, the last section will focus on the inheritance 

of these genetic variations and how this can account for the inheritance of quantitative 

traits. 

 

2.2.1 Deoxyribonucleic acid: structure and function. 

Although Mendel’s work in the 19th century led to the formulation of the laws of heredity, 

the molecular vector of this heredity was not known and for long it was assumed that the 

“genes” were in fact proteins (Voet & Voet, 2004). It was not until the mid-20th century 
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that a series of experiments would demonstrate, first, that DNA is the carrier of genetic 

information (Avery, MacLeod, & McCarty, 1944) and, second, that it is structured as a 

double helix (Watson & Crick, 1953). Though the nucleic acids themselves had already 

been identified, the elucidation of the structure of DNA marked the beginning of modern 

biology because it provided the starting point from which we could understand how 

genetic information is encoded and inherited. In short, it revealed to us the “replicator”, 

the central molecule of life. 

 The double helix structure of DNA is formed by two complementary molecules of 

deoxyribonucleic acid (DNA), which are long sequences of deoxyribonucleotides, better 

known as nucleic acids (Figure 2.9). The four nucleic acids that form DNA are: adenine 

(A), tymine (T), guanine (G) and cytosine (C). DNA itself is a single stranded molecule 

and its helical structure arises from a phenomenon known as “complementary base 

pairing”. Adenine always pairs exclusively with thymine and guanine with cytosine, such 

that any single stranded molecule of DNA is mirrored in its complementary strand and the 

two strands form the double helix. Within either of these strands, genetic information is 

encoded by the specific sequence of the nucleotides that form DNA (Voet & Voet, 2004). 
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Figure 2.9: The structure of deoxyribonucleic acid. 

Representation of the double helix structure of DNA. Note the nucleotides annotated near 

the middle of the helix and the complementary of the two strands, dictated by the pairing 

of the bases. 

From: Voet & Voet (2004). 
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The processes through which this information is preserved and used in any living 

organism is summarized in the central dogma of molecular biology: “DNA directs its own 

replication and its transcription to yield RNA which, in turn, directs its translation to form 

proteins” (Crick, 1970). The transcription of DNA into RNA is a precisely controlled 

process that is initiated when the RNA polymerase enzyme binds to a sequence of DNA 

known as the “promoter”. Promoter sequences are complex and highly variable across 

different genes, mainly because they contain numerous sites, “bar codes” of sorts, that 

can be recognized by proteins known as transcription factors that can stimulate or inhibit 

the binding of RNA polymerase (Voet & Voet, 2004). Once the RNA polymerase begins 

its work, however, it will read the sequence of the DNA and create an exact copy of this 

sequence until it reaches a termination sequence (Figure 2.10). The termination 

sequence is typically much simpler and common examples found in eukaryotes are 

sequence of 4 to 10 consecutive adenines or palindromic sequences of guanine and 

cytosine which will fold on themselves to form a “hairpin” structure, thereby terminating 

the transcription. It is through this process that the information contained in the genome 

is “expressed” and in cases where the transcribed sequence encodes for a protein, the 

product is known as a messenger RNA (mRNA) (Voet & Voet, 2004). 

Within mRNAs, the information is encoded in sequences of three nucleotides 

known as codons. This information is decoded through the action of ribosomes, complex 

cytosolic organelles that are part RNA part protein. On the ribosome, each codon will 

successively be recognized by a transfer RNA (tRNA) containing the complementary 

trinucleotide sequence known as an anticodon. Each tRNA carries an amino acid residue, 

such that the successive recognition of each codon by its corresponding tRNA results in 
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the assembly of the amino acids into resulting protein by the ribosome (Figure 2.11). The 

encoding of each amino acid by the codons is formally known as the genetic code (see 

Figure 2.12) and “its universality among all forms of life is compelling evidence that life 

on earth arose from a common ancestor” (Voet & Voet, 2004). 

 

 

 

 

Figure 2.10: The transcription of DNA into mRNA. 

Schematic representation of the process of transcription of the DNA into mRNA. Note 

how the two strands of DNA are temporarily separated in order to be read by the RNA 

polymerase. 

From: Voet & Voet (2004). 
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Figure 2.11: The translation of mRNA into a peptide. 

Schematic representing the translation the mRNA into an amino-acid sequence to form a 

peptide. Note the “reading” of the mRNA in sequences of three nucleotides the tRNA. 

From: Voet & Voet (2004). 

 

Protein translation is probably the best example of how the genome encodes 

information and how it is functionally expressed, but it is not the only one. RNA molecules 

can also be functional without the need of being translated into proteins. This is obviously 

the case for tRNAs, but also for other lesser known molecules such as microRNAs 

(Ambros, 2004; Bartel, 2004; Bentwich et al., 2005) and small interfering RNAs (Hamilton 

& Baulcombe, 1999; Piatek & Werner, 2014). Other DNA sequences, such as those found 

in promoters, are functional in of themselves by forming recognizable elements through 

which proteins exert their functions. The functionality of these sequences is not limited to 

gene expression as they can also “encode” important physical structures of the genome, 
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such as centromeres (Pluta, Mackay, Ainsztein, Goldberg, & Earnshaw, 1995) and 

telomeres (Blackburn & Gall, 1978). 

 

 

Figure 2.12: The genetic code. 

This figure details the genetic code, where codons (read clockwise around the edge) 

dictate which amino-acid is to be added or whether to stop the translation. 

From: Voet & Voet (2004). 
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Taken together, all these mechanisms provide an overview of how the sequences 

that form the genome express their functions. For any given organism, this information, 

contained in its entirety in the nucleus of every single cell, represents everything that is 

required for the development and functioning of an individual. This is a fact that was most 

convincingly demonstrated by the cloning of the sheep Dolly (Campbell, McWhir, Ritchie, 

& Wilmut, 1996). This historical experiment, as well as naturally occurring clones (i.e. 

monozygotic twins), highlights another important fact. If this was all there is to know about 

the human genome, then we would all be as similar as clones. 

 

2.2.2 Genetic variation. 

From a more philosophical standpoint, what we define as “the human genome” is 

very concretely a well formalized form of inductive reasoning (International Human 

Genome Sequencing Consortium, 2004). This is to say that “the human genome” cannot 

itself be observed in reality; there only exists specific observations of it, extant copies, 

and each of them is unique. The reason for this unicity is the presence of variations in its 

sequence. These can take many forms, but at their core they simply represent alterations 

in the linear sequence of nucleotides that is the genome. 

 The simplest and most prevalent of these are Single Nucleotide Polymorphisms 

(SNPs). As the name indicates, these are mutations where a single base in the nucleotide 

sequence has been altered. As of February 2017 (build 150 of the dbSNP database, 

www.ncbi.nlm.nih.gov/projects/SNP/), a total of 325,658,303 reference SNPs had been 

catalogued in the human genome. These mutations can be of three different types: (1) 

substitutions where a base is replaced with another, (2) deletions where a base is 
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removed, and (3) insertions where a base is added (see Figure 2.13). Though they are 

the most common, SNPs are not the only class of mutations and the same types of 

sequence alterations can affect more than base. One increment higher are 

microsatellites, repetitive sequences of DNA where two or three bases are repeated a 

variable number of time (Vieira, Santini, Diniz, & Munhoz, 2016). Another increment 

higher are Copy Number Variants (CNVs) where sequences ranging from 1000 bases to 

5 Megabases can be repeated (Eichler, 2008; McCarroll & Altshuler, 2007). Other types 

of mutations can be large insertions (or deletions) where a complete segment of DNA is 

inserted somewhere in the genome. A good example of this are Alu insertions, sometimes 

referred to as a “jumping gene”, where an entire well-defined sequence is inserted in the 

genome. These transposable elements can be found in excess of 500,000 copies 

throughout the genome and are, interestingly, specific to primates (Stoneking et al., 

1997). Rarer types of sequence alteration are inversions, where a given segment is 

reversed end to end on the same chromosome. Very large alterations can also occur, 

such as polysomy, chromosomal heteromorphism and fragile sites, but these are less 

relevant to topics discussed herein. 

 

 

Nature Reviews | Genetics

St
ru

ct
ur

al
 v

ar
ia

nt
s 

ATTGGCCTTAACCC---CCGATTATCAGGAT

ATTGGCCTTAACCCCCGATTATCAGGAT
ATTGGCCTTAACAGTGGATTATCAGGAT
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ATTGGCCTTCGGGGGTTATTATCAGGAT

ATTGGCCTTAGGCCTTAACCCCCGATTATCAGGAT
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ATTGGCCTTAACCTCCGATTATCAGGAT

ATTGGCCTTAACCCGATCCGATTATCAGGAT

Single nucleotide variant

Insertion–deletion variant

Copy number variant

Inversion variant

Block substitution

Figure 1 | Classes of human genetic variants. The nomenclature used to describe the 
various types of structural variants is not yet standard121. Here, the terminology used 
aims to describe the nucleotide composition of the variant and distinguish it from other 
types of variants. Single nucleotide variants are DNA sequence variations in which a 
single nucleotide (A, T, G or C) is altered. Insertion–deletion variants (indels) occur when 
one or more base pairs are present in some genomes but absent in others. They are 
generally composed of only a few bases but can be greater than 80 kb in length11. Block 
substitutions describe cases in which a string of adjacent nucleotides varies between 
two genomes. An inversion variant is one in which the order of the base pairs is reversed 
in a defined section of a chromosome. A well-characterized inversion variant that has 
been described in humans involves a section of chromosome 17 in which a ~900 kb 
interval is in the reverse order in approximately 20% of individuals with Northern 
European ancestry122. Copy number variants occur when identical or nearly identical 
sequences are repeated in some chromosomes but not others. The largest copy 
number variant identified in the Venter genome11 was almost 2 Mb in length.

Complex traits
Continuously distributed 
phenotypes that are classically 
believed to result from the 
independent action of many 
genes, environmental factors 
and gene-by-environment 
interactions.

Minor allele
The less common allele of a 
polymorphism.

Linkage disequilibrium
(LD). In population genetics,  
LD is the nonrandom 
association of alleles. For 
example, alleles of SNPs that 
reside near one another on  
a chromosome often occur  
in nonrandom combinations 
owing to infrequent 
recombination.

Here we unify the exciting discoveries of these two dis-
ciplines into a single Review to provide a comprehensive 
overview of our current knowledge of human genetic 
variation and where the key challenges lie for future 
research aimed at understanding the genetic architecture 
of complex traits.

Classes of human genetic variation
Human genetic variants are typically referred to as either 
common or rare, to denote the frequency of the minor 
allele in the human population. Common variants are 
synonymous with polymorphisms, defined as genetic 
variants with a minor allele frequency (MAF) of at least 
one percent in the population, whereas rare variants 
have a MAF of less than 1%. Genetic variants are also 
discussed in terms of their nucleotide composition. In 
the broadest sense, variants in the human genome can be 
divided into two different nucleotide composition classes: 
single nucleotide variants and structural variants10 (FIG. 1). 
The vast majority of genetic variants are hypothesized 
to be neutral21 (that is, they do not contribute to pheno-
typic variation), achieving significant frequencies in the 
human population simply by chance. However, the rela-
tive percentage of neutral, near-neutral22 and non-neutral 
variants remains to be empirically determined.

Single nucleotide variants. SNPs are the most prevalent 
class of genetic variation among individuals. On the basis 
of survey sequencing results it has been estimated that the 
human genome contains at least 11 million SNPs, with  
~7 million of these occurring with a MAF of over 5%23 and 
the remaining having MAFs between 1 and 5%. Analysis 
of the four fully sequenced individual genomes suggests 

that these original estimates are fairly accurate and that 
most SNPs have been identified and information about 
them deposited in the Single Nucleotide Polymorphism 
database (dbSNP) (BOX 1). In addition to SNPs there are 
innumerable rare and novel or ‘de novo’ single nucleotide 
variants, in some cases segregating only in a nuclear 
family or a single individual. For instance, any base pair 
that, when altered, is compatible with life is likely to be 
found in at least one of the ~6.7 billion people on Earth. 
However, it is important to note that in any given indi-
vidual the majority of variants are those that are com-
mon in the population as a whole (BOX 1). Furthermore, 
when the genomes of two individuals are compared, 
the majority of the base pairs that differ are at positions  
with variants that are common in the population.

The alleles of SNPs located in the same genomic inter-
val are often correlated with one another. This correla-
tion structure, or linkage disequilibrium (LD)24, varies in a 
complex and unpredictable manner across the genome 
and between different populations. The efforts of Phase I 
of the InternationalHapMapProject3, along with those of  
Perlegen Sciences5, paved the way for breaking the 
genome down into groups of highly correlated SNPs 
that are generally inherited together (known as LD bins). 
From Phase II of the International HapMap Project4 it 
was determined that the vast majority of SNPs with a 
MAF of at least 5% could be reduced to ~550,000 LD 
bins for individuals of European or Asian ancestry and 
to 1,100,000 LD bins for individuals of African ancestry 
(r2 ≥ 0.8). By genotyping the DNA sample of an individ-
ual with a ‘tagging’ SNP from each LD bin, knowledge 
regarding over 80% of SNPs present at a frequency above 
5% across the genome is gained25–28.

Structural variants. Structural variation, broadly defined, 
refers to all base pairs that differ between individuals and 
that are not single nucleotide variants. Such variation 
includes insertion–deletions (indels), block substitutions, 
inversions of DNA sequences and copy number differences 
(FIG. 1). Compared with single nucleotide variants, the  
technological ability to detect structural variants in  
the human genome has only recently emerged8,10,29–32. 
Hence our understanding of the locations and frequencies 
of structural variants, and our ability to assay their asso-
ciation with complex traits, is still maturing33–38. Analysis 
of the four fully sequenced human genomes (BOX 1) com-
bined with targeted sequencing of structural variants 
greater than 8 kb in length in eight human genomes9 has 
provided tremendous insight. These studies suggest that 
structural variation accounts for at least 20% of all genetic 
variants in humans and underlies greater than 70% of 
the variant bases. Altogether, for any given individual, 
structural variants constitute between 9 and 25 Mb of 
the genome (~0.5 to 1%), underscoring the important 
roles of this class of variation in genome evolution and 
in human health and disease.

LD patterns of common structural variants
There has been conflicting initial evidence regarding 
whether the alleles of structural polymorphisms are 
in LD with SNPs, and are therefore assayed by proxy 
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Figure 2.13: Classes of sequence variation in the human genome. 

Main types of sequence variation found in the human genome. Note that structural 

variants can affect much larger sequences than what is shown. 

From: (Frazer, Murray, Schork, & Topol, 2009). 

 

It is currently estimated that the genome of any individual differs from the reference 

sequence at 4 to 5 million sites. Of these more than 99.9% are SNPs, around 1000 are 

large deletions, around 1098 are insertions of specific elements such as Alu sequences, 

around 160 are CNVs and around 10 are inversions (The 1000 Genomes Project 

Consortium, 2015). Needless to say, all of these do not cause diseases. The impact of 

any given mutation on the phenotype of the individual will depend on the surrounding 

sequence in which it is found. Large scale mutations, such as CNVs and Alu insertions, 

can involve the sequence of entire genes and are therefore more likely to have a 

functional impact. A good example of this the salivary amylase gene, where copy 

numbers of the gene correlate positively with the level of expression of the gene (Perry 

et al., 2007). Yet, all types of mutation can also occur in non-coding parts of the genome 

and be functionally silent. In addition, the genomic size of the mutation (in base pairs) is 

not indicative of the size of its effect. The mutation of a single base can be sufficient to 

completely disrupt the expression of a protein and cause extreme phenotypes, or 

mendelian disorders. A good example of this are frameshift mutations, where the deletion 

of a base disrupts the reading of the codons in the coding sequence of a gene. These 

have notably been implicated in congenital leptin deficiency causing extreme and early 
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onset obesity (Funcke et al., 2014). In other cases, substitutions in specific codons can 

result in a change in the amino acid sequence of a protein affecting its function (Al-Haggar 

et al., 2012). Many other mechanisms including mutations in promoter sequences, splice 

site mutations or mutations of CpG sites could also be discussed, which can affect the 

level of expression of a gene or the functionality of the resulting protein(s).  

Together, these examples provide is an overview of the types of mutation that can 

be found in the human genome and how they can have an impact on the phenotype of 

an individual. In other words, how genetic variation can lead to inter-individual variation 

in the population. Yet, it should be noted that many of the examples given correspond to 

rare diseases which are usually all-or-none phenotypes that are not necessarily 

expressed in every generation of carriers. On the other hand, a lot of the inter-individual 

variation found in the population (i.e. variation in height, hair color, body shape, etc.) 

seems to be common, to follow a continuous distribution and to be found in every single 

generation. This apparent paradox brings us to the field of quantitative genetics. 

 

2.2.3 Quantitative genetics. 

When a mutation occurs in the genome, regardless of its type, two different copies of the 

DNA are created: an ancestral copy and a mutated copy. These are referred to as alleles 

and annotated as A1 and A2. By convention, the deleterious allele is referred to as A2. 

Since human beings are diploid organisms, any individual will carry two alleles. The 

specific combination of alleles carried by an individual is called the genotype, which can 

be homozygous (A1A1, A2A2) or heterozygous (A1A2). In some cases, where a mutation 

has a large effect on the phenotype, it is possible to infer the genotype of an individual 
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based on its phenotype and ancestry. This was the case in Mendel’s experiments, which 

allowed him to establish the rules of inheritance. However, although familial resemblance 

hints at a certain degree of inheritance, most quantitative traits do not follow a simple 

Mendelian pattern. This issue was at the core of the historic debate between Mendelians 

and Biometricians (Robert Plomin, Haworth, & Davis, 2009). The debate was settled by 

Sir Ronald A. Fisher in his paper on “The correlation between relatives on the supposition 

of Mendelian inheritance” (Fisher, 1918). In essence, the argument was that the summed 

influences of a large number of Mendelian factors, each accounting for a small portion of 

the variance, would result in the continuous normal distribution of the phenotype (Figure 

2.14). This section covers the theory behind the inheritance of quantitative traits and how 

it can be quantified in practice. 

 

 

 

 

 

 

Figure 2.14: From discrete genetic factors to continuous variation. 

(Next page) Schematic representation of how, by the addition of a great number of loci, 

a continuous normal distribution can be achieved. While the Y-axis here is the genotype 

frequency, which translates to the frequency of phenotypic values when a given trait is 

considered. 

From: Plomin et al. (2009). 
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Box 1 | Polygenic traits are quantitative traits

R. A. Fisher’s 1918 paper, ‘The correlation between relatives on the supposition of Mendelian 
inheritance’, resolved the often bitter conflict between biometricians and Mendelians, which 
raged for a decade following the rediscovery of Mendel’s work. Fisher showed that a complex 
quantitative trait could be explained by Mendelian inheritance if several genes affect the trait.

Because he crossed true-breeding plants, Mendel’s experiments showed that a single locus 
with two alleles of equal frequency results in three genotypes (see the figure, part a). If the 
allelic effects are additive, the three genotypes produce three phenotypes; in the case of 
Mendel’s qualitative traits, the allelic effects showed complete dominance, so only two 
phenotypes were observed. However, assuming equal and additive effects, 2 genes yield 9 
genotypes and 5 phenotypes (part b) and 3 genes yield 27 genotypes and 7 phenotypes (part 
c). With unequal and non-additive allelic effects and some environmental influence, three 
genes would result in a normal bell-shaped curve of continuous variation (part d). This logic 
assumes common alleles; rare alleles will skew the distribution. Genome-wide association 
research suggests that many more than three genes affect most traits, which underscores the 
expectation that polygenic traits are quantitative traits.
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These quantitative traits need not be limited 
to symptoms of the diagnosed disorder  
but can occur at any level of analysis, as  
discussed in the following section.

Identifying quantitative mechanisms
Once multiple genes are found to be asso-
ciated with a disorder, understanding the 
mechanisms by which each gene affects  
the disorder leads to quantitative traits being 
recognised at all levels of analysis: from gene 
expression profiles, to other ‘-omic’ levels 
of analysis, to physiology and often to the 
structure and function of the brain8.

For some traits, such as type 2 diabetes 
(T2D), a quantitative approach has already 
been embraced, with striking results9. 
Although the first T2D GWA studies were 
case–control studies (REF. 49, and subse-
quently other studies, for example, REF. 3), a 
wave of follow-up studies have focused on 
quantitative traits that are related to T2D, 
including levels of fasting glucose10 and 
C-reactive protein11, and glucose tolerance9. 
These studies are leading to refinements in 
the definition of T2D.

Recent studies of Crohn’s disease (CD)12 
have provided less well-known examples 
of how quantitative traits that are relevant 
to disease might arise from GWA studies. 
GWA studies have yielded several genes 
that are associated with CD susceptibility13. 
The search for the mechanisms by which 
these genes affect the disorder is leading to 
quantitative traits, such as inflammatory 
response14, bacterial survival and chronic 
inflammation15–18. Recently, GWA research 
has implicated autophagy as a previously 
unsuspected quantitative mechanism in 
CD pathogenesis19,20.

Other disorders are currently under 
GWA scrutiny; the mechanisms by which 
the identified genes affect the disorder are 
likely to lead to quantitative traits.

Weighting disease genes. GWA studies are 
revealing that several different quantitative 
mechanisms underlie disorders and are show-
ing that the sets of variants that are associated 
with each mechanism sometimes relate to 
the subtypes of a disease. For example, in the 
case of CD, nucleotide-binding oligomeriza-
tion domain-containing 2 (NOD2) variants 
are associated largely with CD of the ileum21, 
whereas interleukin 23 receptor (IL23R) 
variants are associated with all CD subpheno-
types22. This suggests the possibility of using 
weighted sets of variants to reflect the poly-
genic liability and to predict clinically useful 
features13, which is discussed in the following 
section on polygenic risk scores.
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For any specific phenotype (i.e. height, cortical thickness, etc.), the specific measure of 

that phenotype for an individual is called the phenotypic value ("). The phenotypic value 

can be divided into components attributable to different causes: the genotypic value ($) 

and the environmental deviation % . A good way to understand the genotypic value is to 

imagine a group of clones each bearing the same genotype. Under normal conditions, 

their mean environmental deviation will be 0 and their mean phenotypic value will equal 

the genotypic value (Falconer & Mackay, 1996). Then, if we consider a single mutated 

locus with two alleles, we can set the origin at the mid-point between the two homozygotes 

and express the genotypic values as &1&1 = ) and &2&2 =	– ). Here, the genotypic value 

of the heterozygote (-) depends on the degree of dominance of the alleles (see Figure 

2.15). 

 

 

 

 

Figure 2.15: Definition of the genotypic values. 

Theoretical definition of the genotypic values. Note that here both ) and - are defined 

relative to the midpoint between the genotypic values of the two homozygotes, which 

corresponds to the genotypic value of the heterozygote in the absence of dominance. 

From: Falconer & Mackay (1996). 
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Since the phenotypic values equal the genotypic values, it is now possible to express the 

mean (.) phenotypic value of the population based on the frequencies of the alleles. If 

we note the frequency of A1 as / and the frequency of A2 as 0, then the frequencies of 

the genotypes are &1&1 = 	/1, &1&2 = 2/0 and &2&2 = 01. The mean phenotypic value 

of the population is given by the sum of the genotypic values multiplied by their frequency: 

. = /1) + 2/0- − 01) 

Which simplifies to: 

. = ) / − 0 + 2-/0 

Note that based on the definitions above, . represents a deviation from the midpoint 

between the two homozygotes. If the origin is not corrected and the raw genotypic values 

are used, then this gives the population mean (Falconer & Mackay, 1996). This might 

seem somewhat convoluted because in reality the values of ) and - are not known and 

. can be estimated directly from the data. The usefulness of this theoretical definition is 

that it allows us to define the average effect (5) of an allele. This is critical because alleles 

rather than genotypes are inherited, so that defining the effects of the alleles is required 

for us to understand how quantitative variation can be inherited. By definition, the average 

effect of an allele corresponds to the deviation from the population mean of the genotypes 

it produces (Falconer & Mackay, 1996). If gametes carrying the A1 allele unite at random 

in the population, they will produce / homozygotes and 0 heterozygotes. Since the 

genotypic value of A1 homozygotes is ) and that of heterozygotes is -, their mean will be 

/) + 0- and their deviation from the mean will be: 

56 = /) + 0- − ) / − 0 + 2-/0  
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which reduces to: 

56 = 0 ) + - 0 − /  

In the same way, the mean value of the genotypes produced by A2 will be /- − 0) and 

its deviation from the mean will be: 

51 = −/ ) + - 0 − /  

From there, the average effect that comes from inheriting one allele versus the other (5) 

corresponds to the difference between the average effects of the two alleles: 

5 = 	0 ) + - 0 − / + / ) + - 0 − /  

Since / + 0 = 1, this reduces to: 

5 = ) + - 0 − /  

The average effect (5) is critical because it represents the amount of deviation from the 

population mean that is inherited with each allele from parent to offspring. Then, the sum 

of the average effects (5) of all the alleles that an individual carry over all loci of its genome 

is the definition of its breeding value. The average breeding value of the two parents is 

the average breeding value of their offspring and, consequently, their average phenotypic 

value (Falconer & Mackay, 1996). When a large number of alleles are involved, 5 will be 

relatively small compared to the total deviation from the mean in the population and the 

breeding values will assume a continuous normal distribution in the population, which 

forms the main mechanism for the inheritance of quantitative traits (Fisher, 1918). 

 Based on this theoretical formulation, the breeding value is defined as a property 

of an individual. As such, it contains both the additive ()) and dominance (-) deviations 

of the polymorphisms it carries. However, in practice, breeding values are estimated 

based on the resemblance among relatives. Since dominance reflects an interaction 
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between the alleles at one locus and only one allele is passed from parent to offspring, 

this leads to a disparity between the theoretical and practical definitions. The same 

principle applies to interactions between alleles at different loci (i.e. epistatic interactions). 

What this means is that dominance and interaction deviations will contribute differently to 

the resemblance among relatives (Falconer & Mackay, 1996). Therefore, it is more 

practical to express the genotypic value of an individual ($) as the sum of its additive 

effects (i.e. the breeding value: &), dominance deviations (7) and interactions deviations 

(8): 

$ = & + 7 + 8 

Since these values are expressed as deviations from the mean, the variances in the 

population correspond to the mean of their squares, and the total variation of the 

population can be decomposed in the same way as the phenotypic value of an individual: 

9: = 9; + 9< + 9= + 9> 

 One important concept here is that additive genetic variance (9;) corresponds to 

the variance of the breeding values in the population (Falconer & Mackay, 1996). Since 

offsprings inherit half their breeding value (i.e. one chromosome) from each parent, it can 

be shown that the genetic covariance of parents and offsprings equals half the additive 

genetic variance of the parental population. For two offsprings of the same parents (full 

siblings), each will inherit half the breeding value of each parent, such that their 

covariance will also be: 

?)@
1
2 &A + &B =

1
4 9; + 9; =

1
29; 
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However, since full siblings share both parents, there is also a 25% chance that they will 

inherit the same genotype from their parents. Thus, the expected covariance between full 

siblings is: 

DE?AF =
1
29; +

1
49< 

For half-siblings, since they only share half the breeding value of the parent they have in 

common, their genetic covariance is the variance of half the breeding value: 

DE?GF = ?)@
1
2& = 	

1
49; 

Then, for any given pair of relatives H6 and H1, the expression of the expected phenotypic 

covariance can be generalized to: 

DE?(H6, H1) = 2I9; + JK9< 

where I is the expected kinship coefficient and JK is the expected probability of sharing 

two alleles identical by descent (Almasy & Blangero, 1998). A summary of coefficients for 

first, second and third-degree relationships can be found in Table 2.1. 

 

Table 2.1: Coefficients of the additive and dominance variance components. 

 

From: Falconer & Mackay (1996). 
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These examples demonstrate that additive and dominance variance contribute differently 

to the resemblance among relatives. Therefore, when data including multiple degrees of 

relatedness beyond full sibs is available, it is possible to obtain an unbiased partitioning 

of 9: into 9; versus 9< + 9= + 9> (Falconer & Mackay, 1996). 

 Though this can be achieved in many different ways, the general method that will 

be used here relies on the restricted maximum likelihood estimation of parameters based 

on mixed linear models. The mixed linear model for the estimation of additive genetic 

variance is: 

ΩMN = 2ΦMNPQ1 + JMNPR1 

where ΩMN is the phenotypic covariance of subject S and T, ΦMN is their kinship coefficient, 

PQ1 is the observational additive genetic variance component, JMN is an identity matrix, and 

PR1 is the residual variance component (Almasy & Blangero, 1998). Then, the parameters 

can be estimated by maximising the ln-likelihood function: 

ln W(X, PQ1, PR1 , Y H, Z = −
[
2 ln 2\ −

1
2 ]^ Ω −

1
2Δ′Ω

a6Δ 

where X is the phenotypic mean, Y is the matrix of regression coefficients for the 

covariates, H is the vector of observed phenotypic values, Z is the matrix of covariates, 

and Δ = y − µ − Xβ (Almasy & Blangero, 1998). The null hypothesis can then be tested 

by comparing the likelihood of the model where the parameters (here PQ1) are estimated 

to the restricted model where they are constrained to 0. The test statistic from which we 

can assess significance corresponds to twice the difference between the ln likelihoods of 

the two models and is distributed as a 50:50 mixture of a chi-squared variable with one 

degree of freedom and a point mass at zero (Blangero, Williams, & Almasy, 2000; Self & 

Liang, 1987). 
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 This shows how the amount of additive genetic variance present in a trait can be 

estimated. Once it is estimated, several parameters can be computed. The first and most 

common is the heritability (ℎ1), which is the ratio of additive genetic variance to the full 

phenotypic variance of the trait (Falconer & Mackay, 1996). The second is the genetic 

correlation (gh), which quantifies the degree of overlap between the vectors of average 

effects (5) that influence two traits (Almasy et al., 1997). Lastly, it is also possible to test 

whether the amount of additive genetic variance found in a trait changes (ih), or if the 

vector of average effects contributing to a trait (jh) changes depending on environmental 

conditions (Blangero, 1993). All of these parameters provide valuable information 

regarding quantitative genetic influences on one or more traits. These will be described 

in more detail in the following chapters, as they are applied to the study of cortical 

thickness, surface area, gray matter volume and functional connectivity. 
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Chapter 3: Heritable changes in regional cortical 

thickness with age. 

 

Preface: 

At the onset of this first study, the heritability of cortical thickness had already been widely 

studied. As such, it was a good starting point to try replicate these findings in order to 

validate the preprocessing and quality control of the data which had just been carried out 

and provide a strong foundation on which subsequent studies could build upon. 

The novel aspects of this study are separated on two fronts. First is the use of a 

novel clustering method based on the works of Dr. Bellec (Bellec, Rosa-Neto, Lyttelton, 

Benali, & Evans, 2010). The rationale behind this approach was, first, to reduce the 

problem of multiple comparisons and increase our ability to detect the effects of interest. 

Secondly, the purpose was also to reduce the computational burden of this analysis, 

given that at the time the analysis software was not designed to natively handle the large 

number of tests require to derive a full surface map (i.e. >80 000 tests). While scripts were 

developed in house to perform such analyses in the following chapters, it is worth noting 

that significant developments have since been made on the SOLAR-Eclipse version of 

the software (http://solar-eclipse-genetics.org/) which now allows such analyses to be 

performed natively. 

More importantly, the second novel aspect of this study was to test for the presence 

of age-related interactions with the heritability of cortical thickness. Such interactions can 

be present in two non-exclusive forms. First, there can be an age-related change in the 
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amount of additive variance found in the trait, second there can be a change in the set of 

genetic loci that account for the additive genetic variance over age (i.e. incomplete 

pleiotropy over age). While a previous study had found age-related changes in additive 

variance during development (Lenroot et al., 2009), the test of incomplete pleiotropy over 

age had never been performed. In addition, the previous study was performed in pediatric 

twins (age: 5-18) while ours was performed over adulthood and early ageing (age: 18-

77), thus providing some degree of complementarity. These results were published in the 

journal Brain Imaging and Behavior, 2014;8(2):208-216. 
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Abstract 

It is now well established that regional indices of brain structure such as cortical thickness, 

surface area or grey matter volume exhibit spatially variable patterns of heritability. 

However, a recent study found these patterns to change with age during development, a 

result supported by gene expression studies. Changes in heritability have not been 

investigated in adulthood so far and could have important implications in the study of 

heritability and genetic correlations in the brain as well as in the discovery of specific 

genes explaining them. Herein, we tested for genotype by age (G´A) interactions, an 

extension of genotype by environment interactions, through adulthood and healthy ageing 

in 902 subjects from the Genetics of Brain Structure (GOBS) study. A “jackknife” based 

method for the analysis of stable cortical thickness clusters (JASC) and scale selection is 

also introduced. Although additive genetic variance remained constant throughout 

adulthood, we found evidence for incomplete pleiotropy across age in the cortical 

thickness of paralimbic and parieto-temporal areas. This suggests that different genetic 

factors account for cortical thickness heritability at different ages in these regions. 
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Introduction 

Regional indices of brain structure such as cortical thickness, surface area or grey matter 

volume exhibit spatially variable patterns of heritability. For instance, the highest 

estimates of heritability for these measures are commonly found in prefrontal and 

temporal areas (Hulshoff Pol et al., 2006; Joshi et al., 2011; Kremen et al., 2010; Lenroot 

et al., 2009; Rimol et al., 2010; Thompson et al., 2001; I. C. Wright, Sham, Murray, 

Weinberger, & Bullmore, 2002) Moreover, genetic correlation studies have shown that 

common genetic factors appear to influence distributed brain regions with mostly bilateral 

patterns. This organization is explained largely by the similarity of genetic influences in 

spatially adjacent regions and in homologous regions of the left and right hemispheres 

(C.-H. Chen et al., 2012, 2013; Rimol et al., 2010; J Eric Schmitt et al., 2010). 

Heritability, however, is an estimate that can change with age. In one study of 

pediatric development, Lenroot et al. (2009) found primary sensorimotor areas to exhibit 

decreasing genetic effect with age. Conversely, genetic variance increased in the dorsal 

prefrontal cortex and temporal lobes up to 18 years old, where regional patterns of 

heritability resembled those observed in adults. These results suggest higher initial 

heritability in regions developing earlier in childhood and increasing genetic effects in late-

developing regions associated with higher cognitive functions. Such genotype by age 

(G´A) interactions have not been investigated in adulthood so far and could have 

important implications in the study of heritability and genetic correlations in the brain as 

well as in the discovery of specific genes explaining them. Additionally, global measures 

of brain structure such as mean cortical thickness, intracranial volume or total gray matter 

volume are also highly heritable (Panizzon et al., 2009; Pennington et al., 2000; 
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Pfefferbaum, Sullivan, Swan, & Carmelli, 2000). These global effects can mask spatial 

variation in heritability at the regional level (J Eric Schmitt et al., 2010; U Yoon, Perusse, 

& Evans, 2012), which in turn can mask variation in heritability at the vertex or voxel level 

(Eyler et al., 2012). Thus, appropriate scale and global covariate selection is very 

important for the study of genetic effects in the brain. 

In this study, we tested for G´A interactions in regional cortical thickness by 

estimating age-related changes in additive genetic variance and regional decreases in 

genetic correlation with increasing age difference (Blangero, 1993). To reduce the 

computational load of these advanced variance component analyses, we used the 

validated approach of cortical thickness clustering based on correlated variations. In 

addition to efficient data reduction, this method has also been shown to exhibit features 

that have functional significance in healthy and diseased conditions (Bassett et al., 2008; 

Chen, He, Rosa-Neto, Germann, & Evans, 2008; Kelly et al., 2012). The stability of the 

clusters was assessed prior to the genetic analyses with a novel “jackknife” method for 

the analysis of stable cortical thickness clusters (JASC) and a silhouette analysis was 

also introduced to select the appropriate scale for data reduction. 
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Material & Methods 

Subjects 

The sample included 902 subjects from randomly selected families enrolled in the 

Genetics of Brain Structure and Function Study (GOBS) before December 31st 2012 (see 

Supplementary Table 1 for a summary of the pedigree structure). The GOBS study is a 

collaborative effort between Texas Biomedical Research Institute, University of Texas 

Health Science Center at San Antonio (UTHSCSA), Yale University School of Medicine 

and McGill University. Subjects were recruited if they were part of a large family of 

Mexican-American ancestry from the San Antonio, TX, area (see Olvera et al. 2011 for 

recruitment details). Exclusion criteria were MRI contraindications, history of neurological 

illness, stroke or another major neurological event. Mean age was 43±15 (mean±SD) with 

a range of 18 to 77 and 546 of the subjects were women. All participants provided written 

informed consent and the study was approved by the institutional review boards at the 

UTHSCSA, Texas Biomedical Research Institute, Yale University and McGill University. 

 

Image acquisition and analysis 

All MRI images were acquired at the UTHSCSA Research Imaging Center on a Siemens 

3T Trio scanner (Siemens, Erlangen, Germany). High-resolution (isotropic 800 $µm) 3D 

Turbo-flash T1-weighted images were acquired with the following parameters: TE/TR/TI 

= 3.04/2100/785ms, flip angle = 13°. Seven images were acquired consecutively using 

this protocol for each subject and the images were then co-registered and averaged to 

increase signal-to-noise ratio and reduce motion artifacts (Kochunov et al., 2006). Native 

averaged T1-weighted MRI scans were corrected for non-uniformity artifacts with the N3 
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algorithm (Sled, Zijdenbos, & Evans, 1998). The corrected volumes were then masked 

(Smith, 2002) and registered into stereotaxic space (Collins, Neelin, Peters, & Evans, 

1994). The registered, corrected images were segmented into gray matter (GM), white 

matter (WM), cerebrospinal fluid (CSF) and background using an advanced neural net 

classifier (Tohka, Zijdenbos, & Evans, 2004). The WM and GM surfaces were extracted 

using the Constrained Laplacian-based Automated Segmentation with Proximities 

algorithm (Kim et al., 2005; MacDonald, Kabani, Avis, & Evans, 2000) and were 

resampled to a stereotaxic surface template to provide vertex based measures and lobar 

segmentation (Lyttelton, Boucher, Robbins, & Evans, 2007). Cortical thickness was 

measured in native space using the linked distance between the two surfaces across 81 

924 vertices (Im et al., 2008). The processing pipeline was executed on the Canadian 

Brain Imaging Network (CBRAIN) platform, a network of five imaging centers and eight 

High Performance Computers for collaborative sharing and distributed processing of large 

MRI databases (Frisoni et al., 2011). 

 

Cortical surface parcellation and clustering 

The automatic anatomical labeling (AAL) atlas was used to parcellate the surface into 78 

cortical regions (N Tzourio-Mazoyer et al., 2002). Cortical thickness was averaged over 

all vertices in each region of interest for each subject (He, Chen, & Evans, 2007) and the 

effect of mean cortical thickness was regressed to allow for regional analysis (Eyler et al., 

2012). The residuals were clustered using a customized version of the Bootstrap Analysis 

of Stable Clusters (BASC) pipeline (Bellec et al., 2010). Briefly, a jackknife procedure was 

used to generate k subsamples where Pearson's correlation coefficients were computed 
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for each possible pair of the 78 regions of interest. This yielded a correlation matrix lMN 

(where S,T = 1, 2 ... 78) that was then clustered using a Hierarchical Agglomerative 

Clustering (HAC) algorithm based on Ward's criterion with m clusters (Batagelj, 1988). 

The resulting k adjacency matrices were averaged to generate a group stability matrix 

where each cell represented the proportion of time that regions S and T were considered 

as connected over the subsamples: 

 

(1)  nMN = "@ IMN H = 1|p
q
H  

 

This group stability matrix was itself entered into one last consensus HAC to build a final 

set of m group clusters (Fred & Jain, 2005), that captured the most stable associations of 

the cluster replications over k jackknife subsamples. A modified version of the silhouette 

criterion was then computed using the consensus clusters and the group stability matrix 

(Bellec et al., 2010; Rousseeuw, 1987). This criterion represents the difference of average 

within-cluster stability minus the maximal average between-cluster stability. In order to 

select the first stable scale of regional organization, we selected the lowest scale where 

an increase in the number of clusters stopped resulting in a substantial increase in the 

silhouette criterion. 

 

Quantitative Genetic Analyses 

The additive polygenic variance (PQ1) of a normally distributed trait can be estimated from 

familial data by modelling the covariance of two individuals as a function of kinship. This 

method assumes that the pedigree is drawn from a non-inbred population in Hardy-
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Weinberg equilibrium with random mating. The covariance between individuals S and T is 

expressed as: 

 

(2)  ΩMN = 2ΦMNPQ1 + JMNPR1 

 

where ΩMN is the phenotypic covariance of subject S and T, ΦMN is their kinship coefficient 

and JMN is an identity matrix. Here PR1 is a residual term containing all effects not accounted 

for by the additive component. Heritability (ℎ1) is obtained by expressing PQ1 as a 

proportion of the phenotypic variance (Falconer & Mackay, 1996). For all networks we 

used age, age2, sex, the product of age and sex and the product of age2 and sex as 

covariates. 

 

(3) ℎ1 = rst

rut
 

 

Blangero et al. defined genotype by environment interaction as a significant additive 

component of variance in response to the environment (Blangero, 1993, p. 199; David C 

Glahn et al., 2013). This additive genetic variance in response (Pvw1 ) is a function of the 

additive genetic variance of the trait expressed in the two environments and the additive 

genetic correlation between the trait's expression in the two environments: 

 

(4) Pvw1 = Pv6 − Pv1 1 + 2Pv6Pv1 1 − gh  
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The null hypothesis of no polygenic interaction, Pvw1 = 0, requires the additive variances 

to be equal Pv61 = 	Pv11 	and full pleiotropy gh = 1  between the two environments. 

Pleiotropy generally refers to a given gene influencing two or more traits. In the context 

of G´A interactions, the requirement of full pleiotropy means that the same set of genes 

must account for the observed additive variance of the trait across age. For a continuous 

environment (y), the first requirement can be tested by modelling the polygenic variance 

as an exponential function of the environment: 

 

(5)  Pvz = exp	(~h + ivz) 

 

where ivz determines the rate of change in Pvz. The second requirement can be tested 

by modelling the genetic correlation as a function of the difference between environmental 

indices: 

 

(6)  gh = exp	(−jh|yM − yN) 

 

where jh determines the rate of exponential decay in the genetic correlation as 

environmental difference increases. Using these variance functions, the phenotypic 

covariance between two non-inbred individuals S and T is given by: 

 

(7) ΩMN = 2ΦMNgh exp 5h + ih yM − y × exp 5h + ih yN − y 	

     +	ΙMN exp 5R + iR yM − y × exp 5R + iR yN − y  
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where ih and jh are the parameters of interest in the polygenic genotype by environment 

interaction test (Blangero, 1993). These parameters are estimated using Maximum 

Likelihood variance-decomposition methods and significance is tested by comparing the 

log-likelihood for the two restricted models (with ih or jh constrained to 0) with the log-

likelihood for the model where they were estimated. A significant test for Pvz	or gh	after 

Bonferroni correction for the number of clusters is considered as evidence for a polygenic 

variance component in response to age. For the current analyses, an inverse normal 

transformation was applied to all traits of interest to ensure normality of the data and sex 

was used as a covariate for the interaction analysis. All quantitative genetic analyses were 

carried out using the Sequential Oligogenic Linkage Analysis Routines (SOLAR) package 

(Almasy & Blangero, 1998). 
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Results 

Clustering and regional age effects 

The Silhouette Criterion peaked early (see Figure 1A) and scale 9 was chosen as the 

lowest scale at high stability to parcellate the cortical surface. The stability matrix, 

consensus clustering and surface representation of the clusters for this scale are shown 

in Figure 1B, C and D, respectively. Details on the attribution of each AAL region to each 

cluster can be found in Supplementary Table 2. Of interest for the G´A results, cluster 2 

included the cingulate gyrus, the medial orbital part of the superior frontal gyrus and the 

insula (all bilaterally). The stability of correlations within this cluster (nMÅÇÉQ), based on 

Equation 1, was very high with values of 0.99 to 1. Conversely, the stability of correlations 

with regions outside this cluster (nMÅÇRÉ) was very low, ranging from 0 to 0.003. Cluster 5 

included the parahippocampal, fusiform and inferior occipital gyri (nMÅÇÉQ= 0.66 to 0.91, 

nMÅÇRÉ = 0 to 0.29) and cluster 8 consisted of the superior and inferior parietal gyri, the 

supramarginal, angular and middle temporal gyri as well as the right superior temporal 

gyrus (nMÅÇÉQ = 0.47 to 0.81, nMÅÇRÉ = 0 to 0.37). Also of note, language-related areas 

formed a lateralized cluster (#7) involving the bilateral inferior frontal gyri (opercular and 

triangular parts), rolandic operculum and Heschl's gyrus, along with the left superior 

temporal gyrus (nMÅÇÉQ = 0.59 to 0.80, nMÅÇRÉ = 0 to 0.46). 

 

Genetic and age-related variance components 

Estimates of additive genetic heritability were significant for all clusters after Bonferroni 

correction (p < 1´10-5) and ranged from 0.36 to 0.6. Detailed results can be found in Table 

1. The highest values (ℎ1 > 0.5) were found in cluster 4 (inferior temporal gyrus and 
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temporal pole), cluster 7 (language-related areas), cluster 1 (frontal areas) and cluster 2 

(cingulate gyrus, insula and medial orbital part of the superior frontal gyrus). Significant 

age-related variance was found in four of the nine clusters, see Table 1, corresponding 

to parieto-temporal cortices, primary sensorimotor areas and language areas. The 

absence of age effects in five clusters is likely due to the removal of mean cortical 

thickness from the data and the four significant clusters thus represent regional effects of 

age, beyond those observed in the mean. Although not all regions showed fixed effects 

of age on phenotypic variance, it remains possible for anti-correlated effects on the 

additive and environmental variance components to be present. Also, different sets of 

genetic factors might explain an otherwise stable additive variance component. Hence, 

all networks were included in the G´A analysis. 

 

Genetic interaction with age 

Complete results for the G´A interaction test are shown in Table 2. For the test of additive 

genetic variance in response to age (Pvz), we found marginal significance in cluster 3 

(sensorimotor cortices), but this did not survive correction for multiple comparisons. 

Estimates of ih over all brain regions were thus not statistically different from 0 and we 

consider additive genetic variance to be stable over our age range. For the test of 

incomplete pleiotropy across age (gh) significant effects were found in cluster 2 (cingulate 

gyrus, insula and medial orbital part of the superior frontal gyrus), cluster 5 (fusiform, 

parahippocampal and inferior occipital gyri) and cluster 8 (parieto-temporal areas). These 

effects survived the Bonferroni corrected threshold (0.006) for nine tests at 5 = 0.05 and 

are shown in Figure 2. 
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Discussion 

Here we report the first evidence for incomplete pleiotropy across age in regional cortical 

thickness, showing that different sets of genetic factors contribute to heritability over 

healthy ageing. The strongest effects were observed in a network of paralimbic regions 

including the cingulate gyrus, the medial orbital part of the superior frontal gyrus and the 

insula (cluster 2). Significant effects were also found in a cluster of temporal paralimbic 

cortices (cluster 5) and in parieto-temporal areas (cluster 8). Human gene expression 

studies have shown that healthy ageing is accompanied by a reduction of gene 

expression levels and a diversification in gene expression patterns throughout the brain, 

a finding consistent with the notion of incomplete pleiotropy (Lu et al., 2004; Somel, 

Khaitovich, Bahn, Pääbo, & Lachmann, 2006). The heterogeneity of the set of expressed 

genes peaks around the ages of 40 to 70 years old, also consistent with the later end of 

our age range (Lu et al., 2004). This finding has important implications for the genetic 

analysis of cortical thickness, especially regarding methods based on pleiotropy such as 

genetic correlations. 

We also found estimates of additive genetic variance for regional cortical thickness 

to be constant over our age range. Such age-related changes have previously been 

investigated in a developmental study by Lenroot (2009). Although changes were found 

during childhood, they reported that by the age of 18 years old heritability patterns were 

similar to those reported in adults. Together with our results, this suggests that heritability 

reaches steadier values during early adulthood. This is also supported by gene-

expression studies showing more variance in expression levels before the age of 15 

(Sterner et al., 2012) while the set of expressed genes and expression levels then seems 
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to remain homogeneous until the age of 40 (Lu et al., 2004). Although heritability cannot 

be directly equated to the number of genes expressed and their expression levels, our 

findings agree in that they reach a steady state during adulthood. Similarly, the decline in 

expression levels from the ages of 40 to 70 might be offset by the diversification of 

expressed genes, yielding a similar total amount of genetic contributions. It is also 

interesting to note that expression patterns become more homogeneous again at ages 

above 70, where they correlate negatively with those observed during development (Lu 

et al., 2004; Somel et al., 2006). Therefore, heritability estimates might change again past 

this point. 

In agreement with previous studies, cortical thickness was significantly heritable in 

all clusters. The highest values were observed in temporal cortices (cluster 4), language 

areas (cluster 7) and prefrontal areas (cluster 3). This pattern is consistent with previous 

studies of brain structure where high heritability estimates were commonly found in 

prefrontal areas (Joshi et al., 2011; Kremen et al., 2010) as well as the anterior, superior 

and inferior temporal cortices (Hulshoff Pol et al., 2006; Lenroot et al., 2009; Thompson 

et al., 2001; I. C. Wright et al., 2002). Our finding of high heritability in a lateralized 

language-related cluster is also in agreement with (Thompson et al., 2001) who observed 

high heritability in language areas with significant lateralization in Wernicke's area. High 

heritability estimates have also been reported for the posterior cingulate gyrus and insula 

(Hulshoff Pol et al., 2006; Joshi et al., 2011; I. C. Wright et al., 2002). Other regions have 

shown more variable estimates, notably in parietal cortices, visual areas and the pre-post 

central gyri (Hulshoff Pol et al., 2006; Joshi et al., 2011; Kremen et al., 2010). These 

discrepancies could be due to differences in the structural traits used, such as gray matter 
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density, cortical thickness or surface area, since they are known to be affected by different 

sets of genes (Winkler et al., 2010). The most replicable findings of high heritability in 

prefrontal, temporal and language-related cortices could be attributed to the role of these 

regions in higher cognitive functions and their recent evolution in humans (Carroll, 2003; 

S. E. Fisher & Marcus, 2006). 

Finally, we report that regional cortical thickness based on an anatomical atlas can 

be clustered into highly stable networks. The high levels of stability observed for many 

clusters in the presents study are likely attributable to the large sample size and quality 

of the anatomical images. The clusters we identified were mostly bilateral, reflecting 

strong homotopic correlations, with the exception of the language network (\#7), which 

was lateralized to include the left superior temporal gyrus (Figure 1). The presence of a 

distinct language module in human cortical thickness data was previously reported by (Z. 

J. Chen et al., 2008). Although their network was not lateralized for the same regions we 

found, this discrepancy may be due to the optimization of network modularity rather than 

correlation stability as the criterion for network definition and to the use of different scales. 

Our finding is also in agreement with functional data showing left lateralization in language 

areas, notably in the superior and middle temporal gyri (Parker et al., 2005) and studies 

of left-right asymmetry showing higher heritability in language areas of the left hemisphere 

(Uicheul Yoon, Fahim, Perusse, & Evans, 2010). It is interesting to note that our coarse 

parcellation of the cortical surface yielded patterns of heritability similar to previous 

studies at the voxel-level (Hulshoff Pol et al., 2006; Lenroot et al., 2009; Thompson et al., 

2001; I. C. Wright et al., 2002), suggesting that clustering and silhouette analysis are an 

effective way to minimize redundant tests while retaining meaningful regional 
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organization. Finally, it is important to note that our analysis was restricted to cortical 

thickness and that results might differ for other indices of brain structure or function. 

Future work should extend these analyses to other traits such as surface area and resting-

state connectivity. The inclusion of measured genotypes for linkage analysis would also 

be of interest to uncover specific genetic loci interacting with age in the human brain. 

 

Acknowledgements 

Financial support for this study was provided by the National Institute of Mental Health 

grants MH0708143 (Principal Investigator [PI]: DCG), MH078111 (PI: JB), and 

MH083824 (PI: DCG & JB), Canadian Institutes of Health Research (CIHR) operating 

grant MOP 37754 (PI: ACE) and by the Natural Sciences and Engineering Research 

Council of Canada grant # 436141 (PI: PB). Theoretical development of the GxA model 

and its implementation in SOLAR is supported by National Institute of Mental Health Grant 

MH59490 (PI: JB). PB is supported by a salary award of the Fonds de recherche du 

Quebec – Sante (FRQS). Authors declare no competing financial interests in relation to 

the described work. 

	  



	 82 

Tables and Figures 
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Table 1 Cluster level age effects and heritability

Cluster pvalue(Age) h2 SE pvalue(h
2)

1 0.14 0.55 0.10 9.9 × 10−11

2 < 0.001 0.52 0.09 3.3 × 10−10

3 0.14 0.40 0.09 2.0 × 10−7

4 < 0.001 0.60 0.09 3.1 × 10−14

5 0.78 0.47 0.08 9.9 × 10−10

6 0.03 0.36 0.09 3.8 × 10−6

7 < 0.001 0.57 0.09 1.4 × 10−13

8 < 0.001 0.46 0.09 3.7 × 10−8

9 0.74 0.42 0.09 1.0 × 10−7

the stability of correlations with regions outside this clus-
ter (Sinter) was very low, ranging from 0 to 0.003. Cluster 5
included the parahippocampal, fusiform and inferior occipi-
tal gyri (Sintra = 0.66 to 0.91, Sinter = 0 to 0.29) and cluster
8 consisted of the superior and inferior parietal gyri, the
supramarginal, angular and middle temporal gyri as well
as the right superior temporal gyrus (Sintra = 0.47 to 0.81,
Sinter = 0 to 0.37). Also of note, language-related areas
formed a lateralized cluster (#7) involving the bilateral infe-
rior frontal gyri (opercular and triangular parts), rolandic
operculum and Heschl’s gyrus, along with the left superior
temporal gyrus (Sintra = 0.59 to 0.80, Sinter = 0 to 0.46).

Genetic and age related variance components

Estimates of additive genetic heritability were significant
for all clusters after Bonferroni correction (p < 1 × 10−5)
and ranged from 0.36 to 0.6. Detailed results can be found
in Table 1. The highest values (h2 > 0.5) were found in
cluster 4 (inferior temporal gyrus and temporal pole), clus-
ter 7 (language-related areas), cluster 1 (frontal areas) and
cluster 2 (cingulate gyrus, insula and medial orbital part
of the superior frontal gyrus). Significant age-related vari-
ance was found in four of the nine clusters, see Table 1,
corresponding to parieto-temporal cortices, primary senso-
rimotor areas and language areas. The absence of age effects
in five clusters is likely due to the removal of mean cortical
thickness from the data and the four significant clusters thus
represent regional effects of age, beyond those observed in
the mean. Although not all regions showed fixed effects of
age on phenotypic variance, it remains possible for anticor-
related effects on the additive and environmental variance
components to be present. Also, different sets of genetic
factors might explain an otherwise stable additive variance
component. Hence, all networks were included in the G×A
analysis.

Genetic interaction with age

Complete results for the G×A interaction test are shown
in Table 2. For the test of additive genetic variance in
response to age (σGz), we found marginal significance in
cluster 3 (sensorimotor cortices), but this did not survive
correction for multiple comparisons. Estimates of γG over
all brain regions were thus not statistically different from
0 and we consider additive genetic variance to be stable
over our age range. For the test of incomplete pleiotropy
across age (ρG) significant effects were found in cluster 2
(cingulate gyrus, insula and medial orbital part of the supe-
rior frontal gyrus), cluster 5 (fusiform, parahippocampal
and inferior occipital gyri) and cluster 8 (parieto-temporal
areas). These effects survived the Bonferroni corrected
threshold (0.006) for nine tests at α = 0.05 and are shown in
Fig. 2.

Discussion

Here we report the first evidence for incomplete pleiotropy
across age in regional cortical thickness, showing that dif-
ferent sets of genetic factors contribute to heritability over
healthy aging. The strongest effects were observed in a net-
work of paralimbic regions including the cingulate gyrus,
the medial orbital part of the superior frontal gyrus and
the insula (cluster 2). Significant effects were also found
in a cluster of temporal paralimbic cortices (cluster 5) and
in parieto-temporal areas (cluster 8). Human gene expres-
sion studies have shown that healthy aging is accompanied
by a reduction of gene expression levels and a diversifi-
cation in gene expression patterns throughout the brain, a
finding consistent with the notion of incomplete pleiotropy
(Somel et al. 2006; Lu et al. 2004). The heterogeneity of
the set of expressed genes peaks around the ages of 40 to
70 years old, also consistent with the later end of our age
range (Lu et al. 2004). This finding has important implica-
tions for the genetic analysis of cortical thickness, especially
regarding methods based on pleiotropy such as genetic
correlations.

We also found estimates of additive genetic variance for
regional cortical thickness to be constant over our age range.
Such age-related changes have previously been investigated
in a developmental study by Lenroot et al. (2009). Although
changes were found during childhood, they reported that by
the age of 18 years old heritability patterns were similar to
those reported in adults. Together with our results, this sug-
gests that heritability reaches steadier values during early
adulthood. This is also supported by gene-expression stud-
ies showing more variance in expression levels before the
age of 15 (Sterner et al. 2012) while the set of expressed
genes and expression levels then seems to remain homo-
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Table 2 Results for the test of G×A interaction

Test for σGz Test for ρG

Cluster γG χ2 pvalue λg χ2 pvalue

1 −0.007 0.04 0.83 0.006 0.28 0.30

2 0.007 0.74 0.39 0.057 16.31 2.7 × 10−5

3 0.042 3.88 0.05 0.010 0.74 0.20

4 −0.001 0.00 0.95 0.019 4.34 0.02

5 −0.003 0.09 0.77 0.050 8.74 0.002

6 0.023 2.16 0.14 0.020 1.28 0.13

7 0.014 2.28 0.13 0.010 2.96 0.43

8 −0.008 0.48 0.49 0.039 8.30 0.002

9 −0.006 0.25 0.62 0.000 0.00 0.50

geneous until the age of 40 (Lu et al. 2004). Although
heritability cannot be directly equated to the number of
genes expressed and their expression levels, our findings
agree in that they reach a steady state during adulthood.
Similarly, the decline in expression levels from the ages of
40 to 70 might be offset by the diversification of expressed

genes, yielding a similar total amount of genetic contribu-
tions. It is also interesting to note that expression patterns
become more homogeneous again at ages above 70, where
they correlate negatively with those observed during devel-
opment (Somel et al. 2010; Lu et al. 2004). Therefore,
heritability estimates might change again past this point.

Fig. 2 Test of incomplete
pleiotropy over age a Surface
representation of clusters 2, 5
and 8 where significant
estimates of λG were found. The
gray area of the color scale
marks the Bonferroni corrected
threshold for significance
(p = 0.006). b Genetic
correlation decay functions for
all clusters based on Eq. 6 and
estimates of λG. The asterisk is
set above the three functions
where the effects were
significant. The color coding of
networks in 2B corresponds to
the one used in Fig. 1d
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Figure 3.1: Clustering of Cortical Thickness Regions. 

(A) Changes in the silhouette criterion with increasing number of clusters, the vertical 

dashed line marks the scale shown in panels B, C and D. (B) Group matrix showing the 

stability of individual correlations between each cortical region over the jackknife 

subsamples. The matrix was reordered based on the consensus clustering to facilitate 

comparison with panel C. (C) Consensus clustering of the cortical regions based on the 

group stability matrix (D) Surface representation of the consensus clusters. Color scales 

are shared between panels C and D. 
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Figure 3.2: Test of incomplete pleiotropy over age. 

(A) Surface representation of clusters 2, 5 and 8 where significant estimates of jh were 

found. The gray area of the color scale marks the Bonferroni corrected threshold for 

significance (p = 0.006). (B) Genetic correlation decay functions for all clusters based on 

Equation 6 and estimates of jh. The asterisk is set above the three functions where the 

effects were significant. The color coding of networks in 2B corresponds to the one used 

in Figure 1. 
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Chapter 4: Additive genetic variance in the 

resting-state functional connectome. 

 

Preface: 

While many studies had already estimated the heritability of cortical thickness, much less 

work had been done on the heritability of resting-state functional connectivity. Most 

published findings had focused on connections within specific networks and many 

different operational definitions of the phenotype had been used, complicating the 

comparison of results across studies. Initially, this study therefore set out to provide a 

complete mapping of the heritability of resting-state functional connectivity using a well-

established definition of the phenotype. As with the previous study, this also included the 

investingation of GxA interactions. 

 The results of this first analysis created the opportunity to test whether these 

genetic influences were share across functional connections and to use this information 

to extract clusters of functional connections under shared genetic influence. This 

approach had previously been applied successfully to cortical thickness and surface area, 

but not yet to resting-state functional connectivity. The second aim of this manuscript was 

therefore to provide a complete mapping of shared genetic influences among functional 

connections. 

 Finally, resting-state functional connectivity also offered another unique 

opportunity. Based on two specific assumptions, it was possible to reconstruct an 

approximate phylogeny of this trait based published findings in comparative anatomy. 
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Specifically, this relied on the assumption that (1) the finding of homologous brain areas 

across species indicates homologous patterns of functional connectivity and (2) that this 

set of areas and its corresponding pattern of connectivity was also present in the last 

common ancestor of the species in which they are found. Based on this, it was possible 

to rank areas and connections based on their degree of conservation and to assess the 

relationship between this evolutionary ranking and the distribution of additive genetic 

variance in the connectome. Together, the results provide the most detailed mapping of 

genetic influences on resting-state functional connectivity so far and make a compelling 

argument regarding its interpretation.  
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Summary 

The human brain is a remarkably complex cellular network which's functional organization 

can now be probed non-invasively using resting-state functional magnetic resonance (rs-

fMRI). Here we propose a complete mapping of both heritability and genetic correlations 

in the functional connectome. Our results provide evidence that genetic influences on 

functional connectivity are much more widespread than previously thought, which has far 

reaching implications for their interpretation. In addition, given the importance of additive 

genetic variance for the response to selection, we assess the relationship between this 

parameter and the evolutionary history of the brain's functional systems. Our results not 

only suggest that functional connectivity could be a valuable endophenotype for the study 

of common disorders, but might also inform us about the evolution of the brain's functional 

organization. 
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Introduction 

The brain is an intricate cellular network, organized in modules and submodules, that has 

evolved over hundreds of millions of years (Striedter, 2005). This process requires that 

inter-individual variability caused by genetic variations be present in the population so 

that selection can operate. When it comes to quantitative traits, additive genetic variation 

is the main source of this inter-individual variability (R. A. Fisher, 1918). Consequently, 

the contribution of additive genetic variance to the total variance of a trait, defined as its 

heritability, reflects not only the degree of familial resemblance for a trait but how well it 

can respond to selection in a population (Falconer & Mackay, 1996; Houle, 1992). Though 

heritability can be estimated for any trait, resting-state functional connectivity offers 

unique opportunities for the study of the human brain. Notably, it allows us to probe its 

network architecture non-invasively and identify its functional modules and submodules 

based on the coherence of their activity over time (Yeo et al., 2011). In addition to this, 

variables describing cognition, behavior, and common disorders are themselves heritable 

quantitative traits (Robert Plomin et al., 2009; Turkheimer, 2000). Tracking these genetic 

influences through the functional connectome could therefore offer us an unprecedented 

window into their neurobiology. 

 Mapping the heritability of functional connectivity is then a required first step and 

a complex one for several reasons. For example, while the connectome is generally 

defined through a set of brain areas and the connections or interactions found between 

them (Craddock et al., 2013), most studies have so far focused on specific subnetworks 

(Fu et al., 2015; D C Glahn et al., 2010; Korgaonkar, Ram, Williams, Gatt, & Grieve, 2014; 

Sudre et al., 2017; Yang et al., 2016). Thereby, vast expanses of between-network 
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connectivity have been left unexplored. This underscores the importance of mapping 

heritability across the entire connectome. Another difficulty is that multiple operational 

definitions of functional connectivity are currently in use, which complicates comparisons 

across studies (Khalili-Mahani et al., 2017). This is particularly relevant because 

heritability is specific to the trait for which it is estimated and nearly all studies on 

functional connectivity so far have used different traits (Fornito et al., 2011; Fu et al., 2015; 

Ge, Holmes, Buckner, Smoller, & Sabuncu, 2017; D C Glahn et al., 2010; Korgaonkar et 

al., 2014; Sinclair et al., 2015; Sudre et al., 2017; Yang et al., 2016). Herein we will use 

the definition initially proposed by (Karl J. Friston, 1994) of functional connectivity as “the 

temporal correlation between spatially remote neurophysiological events”. Beyond the 

definition of the trait and the space in which it is mapped, several factors can also interfere 

with the estimation of heritability. Most relevant to functional connectivity is head motion, 

which is known to influence both long and short distance functional correlations (K. J. 

Friston, Williams, Howard, Frackowiak, & Turner, 1996; Jiang et al., 1995; Power, Barnes, 

Snyder, Schlaggar, & Petersen, 2012; Satterthwaite et al., 2012; Van Dijk, Sabuncu, & 

Buckner, 2012). The fact that head motion is heritable makes it an important confound to 

be addressed for the proper estimation of the heritability of functional connectivity (Couvy-

Duchesne et al., 2014; Engelhardt et al., 2017). It is also well known that heritability is 

prone to change depending on environmental conditions, which includes ageing 

(Blangero, 1993). Such gene-environment interactions should therefore be considered 

for the proper estimation and interpretation of heritability. 

 In the first section of this manuscript we present a mapping of the heritability of 

functional connectivity at the connection level across the whole connectome taking into 
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account the aforementioned considerations. Concurrently, we assess the presence of 

age-related changes in either additive genetic variance or in the set of genetic loci that 

influence functional connectivity over adulthood and early ageing. Since genetic factors 

can influence more than one trait at once, the second section focuses on shared genetic 

influences among functional connections. We provide a full map of genetic correlations 

among heritable functional connections and perform a genetic clustering to extract groups 

of connections under shared genetic influence. Finally, it is important to remember that 

heritability is a population parameter that can easily be misinterpreted (Visscher et al., 

2008). In the third section, we look at variations in heritability and additive genetic variance 

across the connectome and argue that these are better interpreted in an evolutionary 

context. We then present an analysis relating the evolutionary history of brain's functional 

systems to the amount of additive genetic variance found in their functional connections. 
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Results 

Mapping heritability across the functional connectome. 

Our mapping of the heritability of functional connectivity can be found in Figure 1. The 

data-driven parcellation with which we defined the functional connectome is shown in 

Supplementary Figure 1. The 30-cluster resolution was chosen because it provides the 

first degree of decomposition of RSNs into meaningful functional regions and affords a 

good trade-off between spatial resolution and multiple testing. Overall, out of 435 potential 

connections, 166 were significantly heritable and estimates ranged from 0.18 to 0.59 (See 

Figure 1c). As can be seen in Figure 1b, heritable functional connections were found 

throughout the connectome. The spatial distribution of heritability estimates was also not 

correlated with that of average functional connectivity (p>0.05) (see Figure 1d). Since 

RSNs are defined to exhibit high degrees of functional connectivity, this suggests that 

higher estimates of heritability are not found preferentially within RSNs. In fact, the 

negative quadratic association significant (p < 0.05), suggesting that higher estimates of 

heritability tend to be found for connections with more moderate degrees of coherence in 

the population. 

 Genetic influences on a trait can also change depending on their environmental 

context. This can be modeled as a change in amount of additive genetic variance found 

across environmental conditions, or a change in the set of genetic loci that account for 

additive variance across environments (See Equation 3 and Blangero, 1993). Such 

interactions have already been found for a number of traits including gene expression, 

cardiovascular risk factors, brain structure, and cognition, but have not yet been estimated 

for functional connectivity (Chouinard-Decorte et al., 2014; David C Glahn et al., 2013; 
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Havill & Mahaney, 2003; Kent et al., 2012; Kraft, Bauman, Yuan, Horvath, & Framingham 

Heart Study, 2003). Using the same methodology, we found no evidence of GxA 

interactions in functional connectivity. This suggests that the heritability estimates we 

present here are stable and reflect the influence of the same genetic loci over our age 

range. Detailed statistics for the heritability and G´A analyses as well as FDR-corrected 

p-values can be found in Supplementary Table 1. 

 

Shared genetic influences in the functional connectome. 

As mentioned in the previous section, heritability is not characterized only by its 

magnitude, but also by the specific set of genetic loci that account for it. Since genetic 

factors can influence more than one trait at once, a phenomenon known as pleiotropy, it 

is possible for two traits to covary in their additive genetic variance components. This is 

commonly referred to as “genetic correlation” or gh (Almasy et al., 1997; Falconer & 

Mackay, 1996). Regarding functional connectivity, genetic correlations have indeed been 

found between the first principal eigenvectors of connectivity of different regions involved 

in the DMN (D C Glahn et al., 2010). While this does suggest that shared genetic factors 

influence functional connections within that network, the rest of the functional connectome 

remains to be explored. Our next aim was therefore to provide a complete map of shared 

genetic influences across the functional connectome. 

 The resulting genetic correlation matrix of all heritable functional connections can 

be found in Figure 2d. All of the 166 heritable functional connections exhibited at least 1 

significant genetic correlation, with a maximum of 98 and an average of 37 per 

connection. In total 2974 genetic correlations, 14 of which were negative, were detected. 
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Estimates of gh ranged from 0.48 to 1 on the positive end and from -0.78 to -1 on the 

negative end (Figure 2a). The fact that we detected numerous genetic correlations and 

that parameter estimates were generally high indicates that it is possible to identify groups 

of functional connections under shared genetic influences. This “genetic clustering” 

approach has so far been applied successfully only to measures of brain structure (C.-H. 

Chen et al., 2012, 2013; J E Schmitt et al., 2008). As a proof of concept, we present the 

ordered genetic correlation matrix showing the 40-cluster solution along with the full 

dendrogram of the genetic clustering of functional connections (Figure 2c and d). These 

results, along with the large number of significant genetic correlations found for each 

connection, are indicative that shared genetic influences extend beyond the confines of 

RSNs to include numerous between-network connections. 

 

Variations in additive genetic variance across the functional connectome. 

Aside from shared genetic influences, it might also be interesting to look at the magnitude 

of genetic influences across functional connections. However, variations in heritability are 

difficult to interpret as they can arise through its numerator or denominator. It is therefore 

more meaningful to look at variations in the variance components themselves. In this 

regard, it is important to remember that the “environmental” component is always the 

residual term of the variance partitioning. As such, it contains non-additive genetic effects, 

environmental effects, and measurement error, which again confuses the interpretation. 

The additive genetic variance, because it is directly estimated from the kinship data, is 

therefore the one component that lends itself to interpretation. A simple model to explain 

the standing levels of genetic variance in a trait is to view them as the result of a balance 
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between the processes of mutation and selection (Lande, 1975; Turelli, 1984). In short, 

most forms of selection deplete genetic variance as long as they are maintained, while 

mutagenesis continually replenishes it. This underscores the fact that the sustained 

responses to selection that lead to evolutionary change depend on an input of mutational 

variability, which makes mutational variance “an attractive candidate for high heritabilities 

across diverse traits and organisms” (Barton & Keightley, 2002). Based on this, we could 

hypothesize that high heritability would be found for traits that have evolved recently in 

the human lineage, while lower heritability would be found for traits that have been 

conserved over extended periods of time. 

 In order to test this hypothesis, we established the degree of conservation or 

evolutionary recency of each brain area in our parcellation based on the comparative 

neuroanatomy literature (see Table 1). We opted to establish the degree of conservation 

of each area rather than connection because the published literature is comparatively 

scarce for connectivity. This allowed us to reorder and visualize the matrix of additive 

genetic variance according to the degree of conservation (Figure 3a). Visual inspection 

of this reordered matrix already suggests that higher estimates of additive variance tend 

to be found with areas that have evolved more recently. To test this formally, each 

functional connection was assigned the rank of the most recent area it involved and we 

used the Spearman rank-order correlation to assess the relationship between the degree 

of conservation and the amount of additive genetic variance found in each connection. 

We found a weak but significant positive association between the two (r2 = 0.0844, 

p<0.001, see Figure 3b). It is important to note, however, that the relationship was visibly 

more heteroscedastic than linear. Nevertheless, additive genetic variance tended to be 
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ubiquitously low for connections involving phylogenetically old areas of the brain while 

progressively higher estimates could be found with increasingly more recent areas. 

 

Discussion 

Herein we presented three experiments aimed at mapping and interpreting the heritability 

of functional connectivity. First, we demonstrate that functional connectivity can generally 

be considered as a heritable trait and, more importantly, that heritability is found 

throughout the functional connectome. In addition, we show that genetic influences are 

widely and strongly shared amongst functional connections. These findings have serious 

implications in the context where the most common interpretation of the heritability of 

functional connectivity has so far been that it represents a “genetic control” over RSNs. 

In light of the fact that heritability is found outside RSNs and that the same genetic factors 

can influence connections both within and between networks, it might be more accurate 

to say that the “genetic control” is exerted over the functional connectome itself. In 

parallel, this interpretation might seem at odds with recent evidence that brain regions 

involved in the same RSNs also share similar patterns of gene expression (Richiardi et 

al., 2015; Wang et al., 2015). However, the fact that gene expression is itself a heritable 

quantitative trait shows that it is fundamentally distinct from the concept of genetic 

variance and that these two lines of evidence should not simply be equated (Cheung et 

al., 2003; Schadt et al., 2003; F. A. Wright et al., 2014). 

 This obviously raises the question of what heritability actually means and what it 

does not. By far, one of the most pervasive misinterpretation of heritability is to see it as 

a measure of the genetic determination of a trait (Visscher et al., 2008). On the contrary, 
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considerable shifts in the population means of even highly heritable traits can be observed 

in response to changes in environmental conditions. Two historical observations of this 

phenomenon were made, in humans, with height (Cole, 2000; Komlos & Lauderdale, 

2007) and intelligence (Flynn, 1987). For the same reason, it would be erroneous to see 

low heritability, or rather high “environmental” variance, as an indication that a trait is more 

susceptible to environmental influences over the course of individual development. 

Simply put, heritability is a population parameter, specific to a realized phenotypic 

distribution, in a given environmental context. Thus, when looking at a mapping of 

heritability such as the one presented here, the first thing we should see is the fact that 

human populations are incredibly diverse and harbor millions of allelic variants of the 

sequences that form the human genome (The 1000 Genomes Project Consortium, 2015). 

Then, what the numerical value of heritability tells us is the relative importance of this 

genetic diversity for the phenotypic diversity observed for a trait in a specific population. 

 In this spite of this very specific meaning, the relevance of heritability and 

quantitative genetics in humans is obvious in the context where common disorders often 

represent the extremes of normally distributed quantitative traits (Robert Plomin et al., 

2009). The usefulness of intermediate measures, such as functional connectivity, is that 

they can not only provide valuable insight into the underlying biology of these traits, but 

also empower us to detect specific variants associated with increased liability to disease. 

However, it is also important to remember that the theoretical foundations of heritability 

came from the need to explain how the inheritance of discrete genetic factors could lead 

to familial resemblance on quantitative scales (R. A. Fisher, 1918). This is why at their 

core heritability and additive genetic variance are measures of great evolutionary 
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relevance (Houle, 1992). It is then not entirely surprising that we found an association 

between the evolutionary history of the brain’s functional systems and the amount of 

additive genetic variance found in their functional connections. In fact, such a relationship 

was also reported for gene expression, such that genes with recent evolutionary 

acceleration in the human and primate lineages also tended to have more heritable 

expression levels (F. A. Wright et al., 2014). In addition, it had already been shown that 

the spatial distribution of phenotypic variance in functional connectivity across the cortical 

surface was similar to the distribution of differences in cortical surface area between 

humans and macaques. This already suggested that evolution might be related to 

functional variability but, as the authors noted, “the spatial distribution of the heritability of 

functional connection strength across the entire brain is yet to be unveiled” (Mueller et al., 

2013). Our results show that the relationship between evolutionary history and functional 

variability is likely mediated, at least in part, through additive genetic variance. 

 Here again, we must consider the potential misinterpretations that come with this 

finding. The fact that we assigned a certain “degree of conservation” to each brain area 

does not mean that these stopped evolving that much time ago. On the contrary, there is 

evidence for human-specific characteristics even in some of the oldest and most 

conserved areas of the brain (Letinic & Rakic, 2001). Our assumption is that functional 

connectivity, specifically, has been maintained across the range of species in which 

homologous functional systems can be observed. So far, this seems to be supported by 

the literature available in macaques and marmoset monkeys (Belcher et al., 2013; 

Margulies et al., 2009; Shen et al., 2012). A consequent limitation of this assumption is 
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that the rough phylogeny we outlined is unlikely to be applicable to the study of other traits 

such as those quantifying brain structure. 

 The results presented here have wide-ranging implications for the genetic analysis 

of functional brain systems. For the first time, we present complete maps of both 

heritability and genetic correlations across the functional connectome. This leads us to 

reinterpret the classical view of a genetic control over RSNs, which fails to acknowledge 

that heritability and genetic correlations are also found for connections that lie between 

RSNs. The presence of strong and widespread pleiotropy also shows that genetic 

influences are exerted jointly over groups functional connections. Further studies aimed 

at better characterizing these could increase our understanding of how the genetic 

predisposition to certain diseases is mediated and empower us to discover disease 

associated variants. Finally, the demonstration of a relationship between the evolutionary 

history of the brain’s functional systems and the amount of additive genetic variance found 

in their connections is a reminder of the evolutionary relevance of these measures. This 

core perspective should not be lost as we apply these methods to an increasing number 

of traits. The quantitative genetic analysis of the human brain offers us a unique 

opportunity to not only better understand the genetic underpinnings of common disorders, 

cognition and behavior, but to better understand the evolution of this intricate cellular 

network. 
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Methods 

Subjects & Data Acquisition 

The analyses were performed using 653 subjects from extended pedigrees of Mexican-

American ancestry who participated in the GOBS study (Curran et al., 2013; Olvera et al., 

2011). Subjects were excluded if they had MRI contraindications, a history of neurological 

illness, stroke or another major neurological event. Age ranged from 18 to 85 (42.6±14.7) 

and the sample included 253 men and 400 women. All participants provided written 

informed consent and the study was approved by the institutional review boards at 

participating institutions. The MRI data was acquired on a Siemens 3T Trio Scanner with 

an eight-channel head coil at the Research Imaging Institute of the University of Texas 

Health Sciences Center at San Antonio. Seven high-resolution T1-weighted images were 

acquired consecutively for each subject with a 3D Turbo-FLASH sequence with an 

adiabatic inversion contrast pulse and the following parameters: 

TE/TR/TI=3.04/2100/785ms, flip angle=13°. The Resting-state functional data was 

acquired using a gradient-echo echo planar imaging sequence sensitive to the BOLD 

effect with the following parameters: TE/TR=30/3000ms, flip angle=90°, voxel 

size=1.72mm isotropic. Forty-three slices were acquired in the axial plane parallel to the 

anterior and posterior commissures. Resting-state data was acquired over 7.5 minutes 

and the subjects were instructed to lie in dimmed light with their eyes open and try not to 

fall asleep. 

 

Image processing and functional clustering 
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For each subject, the seven structural images were corrected for inhomogeneity, co-

registered and averaged (Kochunov et al., 2006). The resulting average T1 images were 

processed using the CIVET 1.1.12 pipeline on the CBRAIN computing platform (Frisoni 

et al., 2011). The non-linear deformations of each structural T1 image to the MNI ICBM 

152 template (Fonov et al., 2011) were then used for functional image preprocessing. 

Preprocessing of the functional data was carried out using the Neuro Imaging Analysis 

Kit version 0.7.2.2 (NIAK, http://niak.simexplab.org). For each dataset, the first three 

volumes were removed to allow the magnetisation to reach equilibrium. Corrections for 

inter-slice difference in acquisition time and rigid-body motion parameters were then 

applied for each time frame. The median volume of each functional dataset was co-

registered to its corresponding T1 structural image and the functional-to-T1 and T1-to-

template deformations were then combined to resample each dataset in MNI space. In 

order to minimize motion-related artifacts, volumes with a frame displacement greater 

than 0.5 mm were removed from each dataset (Power et al., 2012). Datasets with less 

than 90 remaining volumes, a maximal displacement greater than 2mm or maximal 

rotation greater than 2° were excluded from the analyses. The time-series were also 

corrected for slow time drifts, average signals in the white matter and lateral ventricles, 

as well as the first principal components (accounting for 95% energy) of the six rigid-body 

motion parameters and their squares (Giove, Gili, Iacovella, Macaluso, & Maraviglia, 

2009; Lund, Madsen, Sidaros, Luo, & Nichols, 2006). Each dataset was then smoothed 

using a 6mm isotropic Gaussian blurring kernel. 

 To define functionally relevant areas from which to define our functional 

connectome, we used the Bootstrap Analysis of Stable Clusters pipeline (Bellec et al., 
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2006). The general philosophy behind BASC is to replicate the clustering process a large 

number of times to define areas that exhibit stable functional relationships over time and 

are spatially stable across subjects. In short, a spatially constrained k-means clustering 

was first applied to the datasets concatenated across subjects and stopped when regions 

reached a threshold of 1000mm3, yielding a fine-grained parcellation of 1067 regions. 

This allowed the reduction of each individual dataset to a á×à array where á is the 

number of time samples and à is the number of regions. A Hierarchical Agglomerative 

Clustering (HAC) algorithm was then applied to each reduced dataset and replicated 1000 

times using a circular block bootstrap to yield an à×à individual stability matrix. This 

matrix represents the frequency with which a pair of regions fell in the same cluster for a 

given subject. The individual stability matrices were then averaged and a second HAC 

algorithm was applied to the resulting matrix. This process was again bootstrapped 

across subjects to yield a group stability matrix (à×à). A final hierarchical clustering was 

then performed on the group stability matrix to derive a consensus parcellation of brain. 

The number of clusters (â) used to generate the individual stability matrices, group 

stability matrices and consensus clustering was the same. 

 In order to select the number of clusters (â) with which to parcellate the brain we 

inspected the resulting clusters at several resolutions, keeping in mind that our goal was 

to map heritability at the connection level across the functional connectome. Coarse 

levels of parcellation (5-10 clusters) identified large ensembles corresponding to well-

known RSNs (see Supplementary Figure 2). At the next level of resolution, where these 

were decomposed into an average of two to three subclusters (â = 30), the parcellation 

contained easily recognizable functional neuroanatomical areas. We therefore decided to 
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use the 30 cluster parcellation for the current analyses because it provided the first level 

of decomposition of the RSNs into their constituent areas, allowing a mapping of the 

connectome at the connection level. 

 

Cluster labeling 

Each of the 30 clusters in the parcellation was visually inspected and attributed a short 

anatomical description and abbreviation (See Table 1). The only exception to this was 

cluster 20, which was labeled functionally as Supplementary Motor Areas (SMA) because 

its anatomical correspondences were too complex to describe succinctly. In all cases the 

clusters were in close agreement with known areas of functional neuroanatomy and 

decomposition patterns replicated those reported in previous clustering studies (Kelly et 

al., 2012; Yeo et al., 2011). One noteworthy exception was cluster 15, which clearly 

captured a residual motion artifact and was labeled as Superficial Prefrontal cluster 

(SUPF). Since we used average time courses for each cluster, we would expect that of 

cluster 15 to be closely related to those of the underlying clusters 17 and 19, only with a 

higher proportion of noise. Since the results obtained with cluster 15 did fit this pattern, 

we decided to include them in the current report in the interest of completeness. 

 

Phylogenetic annotation 

 Based on the labeling of the clusters we then searched the comparative 

neuroanatomy literature to identify the range of species across which homologs of a given 

area could be found. We then assigned the degree of conservation based on the most 

distant species for which homologs were found. This resulted in seven categories 
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depending on whether an area could be considered as conserved across all (1) 

vertebrates, (2) jawed vertebrates, (3) tetrapods, (4) eutherians, (5) primates, (6) simians, 

or (7) human specific. Although there is extent literature on the anatomy of the cat and 

dog brain, we refrained from including Carnivores as a category because the rapid 

cladogenesis that characterises the mammalian tree makes it difficult to establish an 

unambiguous ranking (Sims, Jun, Wu, & Kim, 2009). All details regarding the assigned 

categories and pertinent references can be found in Table 1. 

 

Quantitative genetic analyses 

All quantitative genetic analyses were carried out using mixed linear models implemented 

in the SOLAR software (Almasy & Blangero, 1998). An inverse normal transformation 

was applied to all traits prior to analysis and the effects of frame displacement (FD), age, 

age2, sex, age´sex and age2´sex interactions were covaried out. The three mixed linear 

models used in our analyses were as follows: 

 

Equation 1: ΩMN = 2ΦMNPQ1 + JMNPR1 

 

Equation 2: ΩMN = 	 2ΦMN PQ6PQ1 × -gh + ã + ΙMN PR6PR1 × -gR + ã × På6På1  

 

Equation 3: ΩMN = 2ΦMNexp	(−jh|yM − yN) exp 5h + ih yM − y ×

exp 5h + ih yN − y +	ΙMN exp 5R + iR yM − y × exp 5R + iR yN − y  
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In all equations ΩMN is the phenotypic covariance matrix and ΦMN is the kinship matrix. In 

equation 1 JMN is an identity matrix, PQ1 is the additive genetic variance component and PR1 

is the residual variance component. Narrow-sense heritability is then defined as the ratio 

of the additive genetic variance to the phenotypic variance. In equation 2 indices 1 and 2 

refer to the two traits for which the genetic correlation is estimated, gh is the genetic 

correlation and gR is the residual correlation. Equation 3 is used to assess G´A 

interactions so that ih is an estimate of the rate of change in additive variance across 

environments and jh	an estimate of the decay of pleiotropy across environments. All 

analyses were corrected for multiple comparisons using the FDR method (Benjamini & 

Hochberg, 2000). 
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Tables and Figures 

 

Figure 4.1: Heritability in the functional connectome 

(A) Average values of functional connectivity. (B) Heritability of functional connectivity. 

(C) Histogram showing the distribution of significant heritability estimates. (D) Distribution 

of heritability estimates in relation to average functional connectivity. (E) Circular graph 

of the heritability matrix showing individual areas of the parcellation. 
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Table 4.1: Anatomical labeling and annotation of the clusters. 

Cluster Anatomical Description Abbreviation Network Conservation References 
1 ventral Central Sulcus vCS Sensorimotor Mammals (Kaas, 2008) 
2 ventral Temporal Pole vTP Temporal Primates (Insausti, 2013) 
3 dorsal Central Sulcus dCS Sensorimotor Mammals (Kaas, 2008) 
4 Thalamus THAL Basal Ganglia Vertebrates (Striedter, 2005)  
5 Medial Prefrontal Cortex mPFC Default Mode Primates (Wallis, 2012)  
6 superior Temporal Cortex and Caudal Insula sTC Temporal Primates (Karnath, 2001) 
7 dorsal Occipital Cortex DOC Visual Primates (Kaas, 2012)  
8 Precuneus and Posterior Cingulate Cortex PREC Default Mode Primates (Margulies et al., 2009)  
9 Superior Cerebellum sCER Cerebellar Gnathostomes (Striedter, 2005)  
10 Superior Parietal Lobule sPL Fronto-Parietal Primates (Karnath, 2001) 
11 Superior Temporal Sulcus sTS Default Mode Primates (Ghazanfar et al., 2008)  
12 Paracentral Lobule PCL Sensorimotor Mammals (Kaas, 2008) 
13 Calcarine Cortex CALC Visual Mammals (Kaas, 2008) 
14 Right Inferior Frontal Gyrus rIFG Ventral Prefrontal Simians (Petrides and Pandya, 2002)  
15 Superficial Dorsal Prefrontal cluster SUPF Dorsal Prefrontal Primates (Petrides and Pandya, 1999)  
16 Medial temporal lobe and hippocampus mTL Temporal Tetrapods (Striedter, 2005)  
17 middle dorsolateral Prefrontal Frontal Cortex mdlPFC Dorsal Prefrontal Primates (Petrides, 2005)  
18 middle Cingulate Cortex and marginal sulcus mCC Fronto-Parietal Mammals (Vogt and Paxinos, 2014)  
19 anterior dlPFC and dorsal anterior cingulate 

cortex 
adlPFC Dorsal Prefrontal Primates (Petrides, 2005)  

20 posterior Superior and Middle Frontal Gyri SMA Dorsal Prefrontal Primates (Petrides, 2005)  
21 lateral Occipital Cortex lOC Visual Primates (Kaas, 2012; Kolster et al., 

2009)  
22 inferior Cerebellum iCER Cerebellar Gnathostomes (Striedter, 2005)  
23 middle Temporal Cortex mTC Temporal Primates  
24 middle Cerebellum mCER Cerebellar Gnathostomes (Striedter, 2005)  
25 posterior Occipital Cortex pOC Visual Mammals (Kaas, 2008) 
26 Striatum STRI Basal Ganglia Vertebrates (Grillner et al., 2013)  
27 Dorsal temporal pole and ventral Insula dTP Temporal Primates (Insausti, 2013) 
28 Inferior Parietal Lobule iPL Default Mode Humans (Karnath, 2001; Van Essen, 

2007)  
29 Left Inferior Frontal Gyrus and Right Inferior 

Frontal Gyrus pars orbitalis 
lIFG Ventral Prefrontal Simians (Petrides and Pandya, 2002)  

30 Orbitofrontal Cortex and Frontal Pole OFC Ventral Prefrontal Mammals (Wallis, 2012)  
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Figure 4.2: Genetic correlations in the functional connectome. 

(A) Histogram of the distribution of significant genetic correlations. (B) Graph of average 

silhouette width across clustering solutions. (C) Dendrogram of the hierarchical 

agglomerative clustering. (D) Matrix of absolute genetic correlation values. 
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Figure 4.3: Evolutionary association with additive genetic variance. 

(A) Matrix of additive genetic variance with brain areas reordered according to their 

phylogenetic ranking. (B) Distribution of additive genetic variance estimates for each 

connection according to their assigned phylogenetic ranks. 
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Supplementary Figure 4.4: 30-cluster parcellation of the GOBS dataset. 
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Figure 4.5: 10-cluster parcellation of the GOBS dataset. 
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Chapter 5: Shared genetic influences on brain 

structure and intelligence. 

 

Preface: 

The previous two chapters, were focused on providing detailed accounts and 

interpretations of genetic influences on brain structure and function. The third part of the 

equation was now to demonstrate how this could be used to provide information on other 

traits which are known to be under genetic influence and to involve the brain. The general 

idea was that by locating which areas of the brain and more importantly which measurable 

properties of these areas were under the influence of the same genetic factors as these 

other traits, some insight would be gained intro their underlying biology.  

Obviously, this is an approach that could be applied to many different phenotypes 

relevant to both health and disease. Here the choice to use data from that WASI-II test 

for this analysis was motivated by a number of factors. First, intelligence and cognitive 

function in general tend to display fairly high estimates of heritability, making them good 

targets for the identification of shared genetic influences with the brain. Second, most 

investigations of the genetic correlations between intelligence and brain structure had so 

far focused on gray matter volume. Since cortical gray matter volume, surface area and 

thickness are not influenced by the exact same sets of genes, mapping genetic 

correlations between intelligence and these various metrics could offer some better 

insight into the nature of the association. I was also already in collaboration with Dr. Sherif 

Karama, Canadian expert in the field of intelligence research, which greatly facilitated this 
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work and contributed to its quality. Finally, intelligence holds a special place in the 

evolution of the human being and felt like a natural candidate in the broader context of 

this thesis. Though this topic is too complex to be dealt with in a single chapter, these 

analyses lay a strong foundation upon which future work could be built. 

Finally, it is also important to consider this chapter as a proof of concept for an 

analytical framework that could be applied in many different contexts. As an example, 

these analyses could also be performed using body mass index, which could provide 

some valuable insight into the neurobiology of obesity. In fact, most common disorders in 

modern society are thought to lie at the extremes of quantitative traits, making this a 

potentially very valuable approach for the study of a great number of diseases. 
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Abstract 

Intelligence is a highly heritable trait in humans that correlates with the structural 

properties of numerous brain areas. It has been shown that this relationship can largely 

be explained by shared genetic influences on brain structure and cognition. However, 

most studies have so far focused only on gray matter volume and it has also been 

suggested that association patterns might differ among specific cognitive measures. 

Here, using a large extended familial pedigree, we test the hypothesis that patterns of 

genetic correlations observed between cognitive measures and cortical traits vary 

depending on which measures are used. We provide high resolution mappings of the 

genetic correlations of IQ, vocabulary and matrix reasoning with local cortical thickness, 

surface area and gray matter volume. While the areas involved tended to be similar, the 

lack of significant associations with some highlights the importance of trait selection in the 

investigation of the relationships between genes, brain and intelligence. 
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Introduction 

The first law of behavior genetics is that “all human behavioral traits are heritable” 

(Turkheimer, 2000). Accordingly, most measures of cognitive function do exhibit some 

degree of heritability (Robert Plomin, Fulker, Corley, & DeFries, 1997). In fact, there is 

mounting evidence that most measures of learning ability and cognitive function are under 

the influence of shared genetic factors (Robert Plomin & Kovas, 2005). This underscores 

the fact that general cognitive ability, or intelligence, is well established as a highly 

heritable trait in humans (Deary, Johnson, & Houlihan, 2009). In turn, this raises the 

question of how such genetic influences on cognition and behavior can be mediated. 

Arguably, if mutations are to influence intelligence, they must do so through the 

expression of their effects in specific cells and tissues.  

 An obvious candidate to bridge the gap between genes and cognitive function is 

the brain. Indeed, it is already well established that intelligence and total brain volume are 

correlated (Andreasen et al., 1993; McDaniel, 2005). Numerous studies have refined our 

understanding of this relationship by establishing the regional patterns of association 

between intelligence and brain structure (Colom et al., 2009; Haier, Jung, Yeo, Head, & 

Alkire, 2004; Karama et al., 2011; Narr et al., 2007). Overall, intelligence tends to be 

associated with a great number of areas distributed across the frontal, parietal, temporal, 

and occipital lobes (Jung & Haier, 2007). In addition, as is the case with behavior, most 

brain-related traits tend to show some degree of heritability. This is notably the case for 

global measures such as brain volume, total gray matter volume and average measures 

of cortical thickness and surface area (Panizzon et al., 2009; Pennington et al., 2000; 

Pfefferbaum et al., 2000). This also holds true for regional measures of cortical thickness, 
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surface area and volume (Eyler et al., 2012; Panizzon et al., 2009; J Eric Schmitt et al., 

2010; Winkler et al., 2010; U Yoon et al., 2012). Taken together, these observations lead 

to the hypothesis that intelligence and brain structure might be under the influence of the 

same genetic factors (Toga & Thompson, 2005). Formally, this phenomenon where 

genetic factors simultaneously influence more than one trait is referred to as pleiotropy 

and can be tested using bivariate quantitative genetic models, better known as genetic 

correlations (Almasy et al., 1997; Falconer & Mackay, 1996). 

 Initial support for hypothesis came from the observation that IQ and working 

memory are both genetically correlated with total gray and white matter volumes 

(Posthuma et al., 2002). Although the genetic correlation between intelligence and gray 

matter volume was fairly low (!" = 0.29), which indicates that the majority of their 

respective genetic influences are not shared, this was enough to account for more than 

95% of their observed phenotypic correlation (Posthuma et al., 2002). Yet, it remained 

unclear if this relationship would be shared equally by all areas of the brain. In line with 

what had been observed for phenotypic correlations, subsequent studies identified 

distributed patterns of genetic correlations between intelligence and gray matter volume 

in a number of frontal, parietal, temporal and occipital areas (Bohlken et al., 2016; 

Hulshoff Pol et al., 2006). An important point suggested by the most recent of these 

analyses, though not yet demonstrated, is that patterns of regional genetic correlations 

might differ among subtests of cognitive function (Bohlken et al., 2016). In the same vein, 

it has recently been shown that cortical thickness and surface area exhibit different 

trajectories of association with intelligence over age (Schnack et al., 2015), such that the 
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patterns of regional genetic correlations for a given cognitive component might differ 

depending on which measure of brain structure is used. 

 Specifically, we hypothesized that patterns of genetic correlations observed 

between cognitive and cortical traits might vary depending on which measures are used. 

To test this, we estimated genetic correlations between three cognitive measures derived 

from the WASI-II test (Vocabulary, Matrix Reasoning and Subscale IQ) and three 

measures of cortical gray matter (Thickness, Area and Volume). In addition, in order to 

improve on the anatomical precision of these associations, we provide high-resolution 

mappings of genetic correlations across 81924 points covering the whole cortical surface. 

 

Material and Methods 

Subjects 

The final analysis sample included 661 subjects from extended pedigrees of Mexican 

American ancestry who participated in the GOBS study (Curran et al., 2013; Olvera et al., 

2011). Notable advantages of the extended pedigree design in the context of this study 

include increased power to detect heritability and lesser confounding effects of shared 

environmental influences due to the inclusion of multiple households within pedigrees 

(Blangero, Williams, & Almasy, 2003). Subjects were excluded if they had MRI 

contraindications, a history of neurological illness, stroke or another major neurological 

event. The sample included 247 men and 414 women with ages ranging from 18 to 77. 

Cognitive measurements included the vocabulary, matrix reasoning and subscale IQ 

scores of the WASI-II test (see Wechsler Abbreviated Scale of IntelligenceTM). Descriptive 

statistics for the variables used in the current analyses can be found Table 1. All 
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participants provided written informed consent and the study was approved by the 

institutional review boards at participating institutions. 

 

Image acquisition and analysis 

The MRI data was acquired on a Siemens 3T Trio Scanner with an eight-channel head 

coil at the Research Imaging Institute of the University of Texas Health Sciences Center 

at San Antonio. Seven high-resolution (isotropic 800μm) T1-weighted images were 

acquired consecutively for each subject with a 3D Turbo-FLASH sequence with an 

adiabatic inversion contrast pulse and the following parameters: 

TE/TR/TI=3.04/2100/785ms, flip angle=13°. For each subject, each structural image was 

inspected manually for artifacts and the remaining images were then co-registered and 

averaged to increase signal-to-noise ratio and reduce motion artifacts (Kochunov et al., 

2006). The resulting average images were then processed using the CIVET pipeline1 

(v.2.0) to extract measure of local cortical thickness, surface area and gray matter volume 

sampled at 81 924 vertices across the cortical mantle. The processing pipeline was 

executed on the Canadian Brain Imaging Network (CBRAIN) platform, a network of five 

imaging centres and eight High Performance Computers for collaborative sharing and 

distributed processing of large MRI databases (Frisoni et al., 2011). 

 

Quantitative Genetic Analyses 

All quantitative genetic analyses were carried out using the SOLAR software (Almasy & 

Blangero, 1998). In order to ensure the normality of the data, an inverse normal 

																																																								
1	 http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET	
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transformation was applied to all traits prior to analysis. The effects of age and sex were 

regressed as covariates of no interest. For the estimation of heritability, we used the 

standard parameterization of the mixed linear model: 

Equation 1:  Ω)* = 2Φ)*,-. + 0)*,1. 

where Ω)* is the phenotypic covariance matrix, Φ)* is the kinship matrix, 0)* is an identity 

matrix, ,-. is the additive genetic variance component and ,1. is the residual variance 

component. Narrow-sense heritability is then defined as the ratio of the additive genetic 

variance to the phenotypic variance. For the estimation of genetic correlations, we used 

the bivariate mixed linear model:  

Equation 2:  Ω)* = 	 2Φ)* ,-3,-. × 5!" + 6 + Ι)* ,13,1. × 5!1 + 6 × ,83,8.  

where indices 1 and 2 refer to the two traits for which the genetic correlation is estimated, 

!" is the genetic correlation and !1 is the residual correlation. All analyses were corrected 

for multiple comparisons using the FDR method (Benjamini & Hochberg, 2000). 
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Results 

Heritability of cortical structure and intelligence 

Descriptive statistics and estimates of heritability for the cognitive measures can be found 

in Table 1. Surface maps displaying heritability estimates for cortical thickness, surface 

area and gray matter volume can be found in Figure 1. Significant heritability estimates 

were found for more than 98% of vertices for all three measures, which is indicative of the 

high power to detect heritability afforded by the current pedigree. For cortical thickness 

the estimates ranged from 0.13 to 0.78 with the strongest effects found predominantly in 

the ventral pre- and post-central gyri, superior temporal gyri, insula and posterior 

cingulate cortex. For surface area, the estimates ranged from 0.13 to 0.99 with the 

strongest effects found in the calcarine cortex, posterior cingulate, caudal insula and 

planum temporale. For gray matter volume, the estimates ranged from 0.13 to 0.92 with 

the strongest effects found in the same areas as for surface area. 

 

Correlations between cortical structure and intelligence 

Surface maps displaying significant phenotypic correlations between structural brain 

measures and the cognitive measures can be found in Figure 2. Correlations with gray 

matter volume were widespread, estimates of !8 ranged from 0.07 to 0.25 and followed 

very similar patterns across the cortex for IQ, Vocabulary and Matrix reasoning. In all 

cases the strongest associations were found with the superior temporal gyri, planum 

temporale, insula, right caudal middle frontal gyrus and isthmus of the cingulate cortex. 

Correlations with surface area were again widespread, with estimates of !8 ranging from 

0.05 to 0.23, but patterns differed slightly across cognitive measures. For IQ, the strongest 
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associations were found with the superior temporal gyri and were visibly stronger in the 

left hemisphere. For matrix reasoning, the strongest associations involved the dorsal 

aspect of anterior half of the temporal lobe, the left anterior half of the cingulate gyrus and 

the insula. For vocabulary, associations were similar to those observed for IQ with the 

strongest correlations found in the superior temporal gyri. In contrast, correlations with 

cortical thickness were much more focal and involved the posterior cingulate and 

precuneus for both IQ and matrix reasoning. Parameter estimates for  !8 ranged from 

0.12 to 0.20 and no significant correlations were found between cortical thickness and 

vocabulary. 

 

Pleiotropic influences on cortical structure and intelligence 

Surface maps displaying significant genetic correlations between measures of cortical 

structure and cognitive measures can be found in Figure 3. Overall, patterns of genetic 

correlations were much more focal and significant findings involved primarily the 

correlations of IQ and matrix reasoning with gray matter volume and surface area. For 

gray matter volume, the patterns were similar for both IQ and matrix reasoning with 

estimates of !"	ranging from 0.28 to 0.75. The strongest effects were found in the left 

dorsomedial prefrontal cortex and weaker but significant evidence of pleiotropy was also 

found with the left and right insula, right dorsal cingulate cortex as well as the 

parahippocampal and fusiform gyri. For surface area, estimates of !" ranged from 0.55 

to 0.72 and were found focally in the left dorsomedial prefrontal cortex for matrix 

reasoning only. We found no evidence of pleiotropy between surface area and IQ, nor in 

any correlation involving either vocabulary or cortical thickness. 
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Discussion 

Herein we have reported on the mapping of genetic correlations between traits describing 

cortical structure and intelligence. These analyses rest first on the replication of findings 

concerning the heritability of these variables. The heritability estimates we observed for 

cortical metrics were in agreement with previous surface-based studies both in terms of 

the range of parameter estimates and their spatial distribution (Eyler et al., 2012; Winkler 

et al., 2010). Our estimates of heritability for cognitive measures were also in close 

agreement with those typically observed in adulthood (Bouchard, 2013; Deary et al., 

2009). In fact, the higher heritability observed for the vocabulary versus the matrix 

reasoning subscale of the WASI-II is in agreement with the findings of Kan et al. showing 

that measures related to crystallized intelligences tend to exhibit both greater cultural 

influences and greater heritability (Kan, Wicherts, Dolan, & van der Maas, 2013). 

 This deserves to be discussed briefly because it leads to an apparent paradox: 

crystallized intelligence is heavily influenced by cultural factors over the lifespan, whereas 

life-history traits generally tend to exhibit lower heritability (Price & Schluter, 1991). One 

hypothesis reconciling these two observations is that gene-environment correlations 

inflate heritability estimates for measures of crystallized intelligence. Plomin et al. 

discussed this issue in some detail and defined three possible types of gene-environment 

correlations: passive, reactive and active (Plomin, DeFries, & Loehlin, 1977). In short, the 

replicability of heritability estimates in adoption studies leaves only the possibility of 

reactive correlations, where the environment reacts differently based upon genotype, and 

active correlations, where individuals bearing certain genotypes seek different 

environments depending on their propensity. The examples provided are that a teacher 
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might recognise a student’s abilities and furnish an enriched environment (reactive) or a 

gifted child might seek more stimulating environments that foster its cognitive 

development (active). Such positive correlations could indeed lead to an overestimation 

of the additive genetic variance component. However, it is also important to remember 

that correlations might be negative: teachers might recognise students in difficulty and 

provide them with enriched environments and gifted individuals might seek a more 

standard or even unfavorable environment because of normative pressure. In this case, 

variance components would instead be under-estimated. In both cases, gene-

environment correlations can distort estimates of each component, such that they will 

have less effect on their relative sizes. Also, the variance due to positive gene-

environment correlations cannot outweigh the individual genetic and environmental 

variances (Plomin et al., 1977). Therefore, the potential presence of gene-environment 

correlations should not obscure the fact that a substantial amount of genetic variance is 

present in most measures of intelligence (Deary et al., 2009). 

 Moving on to the relationship between intelligence and cortical structure, broad 

patterns of correlation were observed for gray matter volume and surface area, but not 

cortical thickness. These patterns were generally consistent with those previously 

reported in that they involved numerous areas of the frontal, parietal, temporal and 

occipital lobes (Colom et al., 2009; Haier et al., 2004; Jung & Haier, 2007; Karama et al., 

2011; Narr et al., 2007). Yet, the more restricted patterns we observed for cortical 

thickness might seem at odds with previous reports (Karama et al., 2011; Menary et al., 

2013). This could reflect two important properties of the interplay between genetic factors, 

brain structure and intelligence. First, it has been shown that the trajectory of changes 
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cortical thickness is more closely related to intelligence than cortical thickness per se 

(Shaw et al., 2006). Second, it is now well established that genetic influences on 

intelligence change over age (Bouchard, 2013). Thus, it is possible that patterns of 

phenotypic and genetic correlations between intelligence and brain structure might 

change over age. 

 Regarding genetic correlations, the one area in which strongest parameter 

estimates were found for all trait pairs was the right medial prefrontal cortex. This is in line 

with previous a previous report of genetic correlation between IQ and gray matter density 

in the right medial prefrontal cortex (Hulshoff Pol et al., 2006). The specificity of these 

results for IQ and Matrix Reasoning versus Vocabulary might reflect the importance of 

the medial prefrontal cortex for fluid intelligence (Gong et al., 2005) and the importance 

of the inhibitory control it exerts in order to provide accurate responses when faced with 

perceptual mismatch (Prado & Noveck, 2007). Our results also provide convergent 

evidence for genetic correlations between gray matter volume and both IQ and Matrix 

Reasoning in the parahippocampal and fusiform gyri (Bohlken et al., 2016; Hulshoff Pol 

et al., 2006). In addition to these, we also found significant genetic correlations with gray 

matter volume bilaterally in the insula. This might reflect the involvement of the insula, 

particularly its anterior division, in higher order in cognitive control and attentional 

processes (Menon & Uddin, 2010). It is also worth mentioning that we did not replicate 

genetic correlations for many previously reported areas including the superior temporal 

gyrus, precuneus, and occipital cortex. However, we did observe significant phenotypic 

correlations with all of these. These discrepancies in the patterns of genetic correlations 
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might be related to differences in the cognitive assessments, image processing 

techniques or statistical power. 

 From a broader perspective, it is also important to define exactly what the observed 

estimates of heritability and genetic correlation reflect and what they do not. The generally 

high parameter estimates (h2>0.5), observed notably for intelligence, indicate that genetic 

variants rather than differences in environmental conditions account for most of the inter-

individual variation observed in the population. This should be interpreted with care, 

specifically regarding the fact that heritability does not deal with the genetic determination 

of these traits, nor with their sensitivity to environmental factors. A classic demonstration 

of these two points is the Flynn effect, which shows that the population means of highly 

heritable traits can nevertheless exhibit strong responses to changes in environmental 

conditions (Flynn, 1987). In turn, this also shows that low heritability is not indicative of 

greater environmental sensitivity. Though it is arguably true that the conserved neural 

substrate of intelligence is genetically encoded and that educational environment affects 

intelligence scores, what heritability truly deals with is how variations in these variables 

results in inter-individual variation in intelligence across the population. In light of this, it 

might then be misleading to say that intelligence and brain structure share some of their 

genetic determinants based on the observed genetic correlations. Rather, what we see is 

that some of the genetic variants influencing intelligence also influence brain structure, 

and vice versa. 

 In summary, our results support not only the hypothesis that the neural substrate 

of intelligence involves several distributed areas of the brain (Jung & Haier, 2007), but 

also that genetic influences on intelligence are mediated through such distributed areas. 
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The fact that results varied widely depending on which measures of cognitive function 

and brain structure were used supports our initial hypothesis and suggests that studying 

different combinations of traits might better inform us on the genetic relationships between 

intelligence and the brain. The brain regions identified here provide valuable targets for 

future studies, notably for the investigation of the structural and functional impact, both at 

the macro and microscale, of new genetic variants found to influence human intelligence 

(Sniekers et al., 2017; Zabaneh et al., 2017). 
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Tables and Figures 

 

Table 5.1: Descriptive statistics and heritability of cognitive assessments. 

Trait Mean SD h2 SE P-value 
Age 40 13 - - - 

Vocabulary 38 11 0.75 0.08 1´10-22 

Matrix Reasoning 48 10 0.58 0.10 2´10-11 

IQ 89 14 0.76 0.08 4´10-21 
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Figure 5.1: Heritability of cortical morphology. 

Surface maps representing the relative contribution of additive genetic variance to the 

population variance of three measures of cortical morphology. Results are shown in the 

first row for Gray Matter Volume (GMV), in the second row for Surface Area (SA) and in 

the third row for Cortical Thickness (CT). 
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Figure 5.2: Phenotypic correlations between cortical structure and intelligence. 

Surface maps displaying significant correlations between measures of brain structure and 

intelligence. For each cortical trait, the rows correspond to Subscale IQ (IQ), Matrix 

Reasoning (MR) and Vocabulary (Voc). 
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Figure 5.3: Pleiotropic influences on brain structure and intelligence. 

Surface maps showing significant estimates of !" between measures of intelligence and 

brain structure. For each cortical trait, the rows correspond to Subscale IQ (IQ) and Matrix 

Reasoning (MR). 
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Chapter 6: Conclusions. 

This thesis described three studies aimed at better understanding the quantitative 

genetics of brain structure, function, and how this can be used to inform other quantitative 

traits related to normal cognition and disease. The specific goals that were achieved were 

to: (1) replicate previous findings on the heritability of cortical thickness, (2) to establish 

whether these genetic influences change over adulthood and early ageing, (3) to provide 

a complete mapping the heritability of functional connectivity and test for GxA interactions 

with this trait, (4) to map shared genetic influences across the functional connectome, (5) 

to demonstrate a link between the amount of genetic variance found in functional 

connectivity and the evolution of the brain’s functional systems, (6) to map genetic 

influences on additional measures of cortical structure and cognitive function and (7) to 

show how the use of different quantitative traits can inform us about shared genetic 

influences between brain structure and cognition. 

 The most significant scientific contribution of study presented in Chapter 3 was that 

it was the first to test statistically for changes in the amount of additive genetic variance 

and changes in the sets of genetic loci that influence cortical thickness. The study also 

introduced a novel method, based the works of Dr. Bellec, for the “jackknife”-based 

analysis of stable clusters in cortical thickness. This method proved to be an effective way 

to minimized the problem of multiple testing while retaining meaningful regional 

organization. The results demonstrated that while heritability estimates remained 

constant, different sets of genetic factors were contributing to heritability over early 

ageing. This effect was significant in cluster 2 which covered the cingulate gyrus, the 

medial orbital part of the superior frontal gyrus and the insula, cluster 5 which included 
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the parahippocampal and fusiform gyri, and cluster 8 which covered the lateral parietal 

cortex and the superior temporal cortex. 

 The study presented in Chapter 4 presented three different significant contributions 

to scientific knowledge. First, it provides a complete mapping of heritability and GxA 

interactions of the connection level in the resting-state functional connectome. Second, it 

provides a complete mapping of shared genetic influences among functional connections. 

Finally, it demonstrates a relationship between the distribution of additive genetic variance 

in the functional connectome and the evolutionary history of the brain’s functional 

systems. The complete mapping of heritability, the testing of GxA interactions and in the 

mapping of genetic correlations are important firsts and the study of genetic influences 

on functional connectivity. In addition, the demonstration of a relationship with evolution 

also helps to provide a clear context for the correct interpretation of these results. 

 The study presented in Chapter 5 looked at shared genetic influences between 

different measures of intelligence and brain structure. The results are consistent with 

previous findings on gray matter volume and extend these to show that surface area might 

also be a valuable endophenotype for the study of genetic influences on intelligence. The 

discrepancies observed in the patterns of genetic correlations for the vocabulary and 

matrix reasoning subscales also suggests that different brain-related traits might differ in 

their ability to detect shared genetic influences with different cognitive variables. 

Taken together these results have important implications. First, as might have 

been expected (Polderman et al., 2015; Turkheimer, 2000), all traits studied exhibited 

significant heritability. This indicates that genetic variation has an important impact on 

many different aspects of the human brain. Second, it is also clear that these genetic 
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influences are often shared between different brain areas and functional connections. 

These two facts indicate that the mapping of genetic influences on various phenotypes 

might reveal new properties of the organization of the human brain. The demonstration 

of shared genetic influences between brain structure and intelligence also shows that 

quantitative genetic analysis offers a unique opportunity to better understand the 

underlying neurobiology of many different traits related to cognition and neurological 

disorders (Glahn et al., 2012). In the context where brain-related traits can be used as 

endophenotypes for the identification of specific genetic factors influencing cognitive 

function and diseases, the demonstration of GxA interactions is also important (Blangero, 

1993). Specifically, it indicates that association studies might detect different genetic 

factors at different ages or in different environmental conditions. This concept is critical 

for the interpretation of results from genome wide association studies and the design of 

therapeutic approaches for common disorders.  

In the context where significant heritability paves the way for the identification of 

the underlying genetic factors, it is also important to remember the potential pitfalls of this 

approach. Very large sample sizes are typically required, at least in part because of the 

small effect sizes of the mutations and the very large number of tests being performed 

(McCarthy et al., 2008). In imaging-genetics, this is compounded by the greater number 

of traits that have to be tested due to the spatial nature of the data, the potential for a 

greater proportion of noise, which is often magnified in multi-site studies, and the greater 

cost and time-requirement associated with the acquisition of the data. The works 

presented in Chapter 4 demonstrate that leveraging the genetic correlations present in 

the data could be an effective way to increase statistical power in gene identification 
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studies by reducing dimensionality through genetic clustering, and incidentally also 

reducing the proportion of noise. 

Meanwhile, the difficulties associated with the process of gene identification should 

not deter us from using other complementary analysis methods. For example, it is 

possible to use results from well powered GWAS of various traits and diseases to 

generate polygenic risk scores that can then be used in regression analyses with brain-

related traits (Euesden, Lewis, & O’Reilly, 2015). This is analogous to a genetic 

correlation analysis, as in chapter 5, where the specific genetic factors contributing to the 

correlation are now known. To take the example of Alzheimer’s Disease or obesity, the 

identification of brain regions where gray-matter volume or cortical thickness is associated 

with polygenic risk score for the disease could provide valuable targets for further 

molecular analyses. Specifically, knowledge of target regions could dramatically reduce 

the search space, while knowledge of the trait of interest could help guide the choice of 

method (i.e. histochemical tract tracing, cytoarchitectonic analysis, functional recordings, 

proteomic analysis, etc). 

Finally, the results presented herein also highlight the relevance of additive genetic 

variance when it comes to the evolution of quantitative traits. The joint analysis of genetic 

variation and brain-related traits could offer valuable insight not only into cognition, 

behavior and neurological disorders, but also into the evolution of the human being.  
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