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Sommaire 

On traite un cas simple mais fondamental du probleme de la gestion d'un 

systeme de telecommunications a acd:s multiple. On suppose un ensemble fini 

de terminaux, un trafic aleatoire, un seul canal binaire et synchronise, et un 

eontrole centralise. Un message soumis au systeme lorsque le canal est occupe 

doit attendre. On suppose que J'ttat du systeme- soit le nombre et les origines des 

messages en attente - est connu du controleur. Le probleme est de determiner 

comment ordonner les transmissions et comment signaler au recepteur les origines 

et les delimitations des messages, tel que regler effi.cacement la duree moyenne 

d'attente. 

Dans ce memoire, on evalue et compare systematiquement une gamme de 

strategies de controle et de signalisation. La duree d'une trame - soit le temps 

ecoule entre deux instants consecutifs auxquels on peut commencer transmettre 

d'un terminal donne - peut etre fixe ou variable. Pour des modes d'acces 

fonctionnant a partir d'une repartition dans le temps a trames fixes, et pour de 

difi'erents codes signalant la presence d'une mcmoire tampon vide, on calcule 

les statistiques du nombre de messages en attente et du retard subi par un 

message. Pour des modes d'acces dont la dun~e d'une trame varie selon l'etat 

du systeme, on obtient le retard moyen a partir d'une combinaison d'analyse 

et de simulations. On presente la performance retard-debit pour les strategies 

optimales de chaque cla.sse, les parametres optimaux dependant en general du 

trafic. 
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Abstract 

The multi-access problem is considered in its simplest setting: a. set of 

sources obtain access to a. synchronous channel via. a. centralised arbiter with 

complete state information. The role of the arbiter is to select ·the next user to 

access the channel and to include along with the user-data. sufficient information 

for the receiver to determine the origin, beginning and end of the current 

transmission. 

The work consists of a. systematic evaluation and compa.rision of a. variety 

of fixed-frame strategies and variable-cycle schemes. The steady-state moment­

generating functions of queue size and virtual delay are derived for generalised 

TD M A systems employing different techniques for encoding underflow. Mean 

delay results a.re obtained, using a combination of simulation and analysis, for 

various state-dependent polling disciplines. The analytical work is based on the 

theory of Markov renewal processes. 
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Notation 

, 

A("l(t) - number of Poisson arrivals in the interval [0, t) of the nth frame or 

cycle. 

B(n)(t) total amount of work brought by the arrivals in the interval [0, t) of 

the nth frame or cycle. 

00 

E[zF] L ziPr{F = i} 

lzJ 

Wf 

. 
z 

i-O 

- steady-state moment-generating function of the discrete random 

variable F. 

- max(O,z). 

- integer portion of z. 

- nearest integer greater than or equal to z. 

_ ei2-;rlfK. 

- complex conjugate of z. 
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Chapter I: Introduction 

Whenever. there is more than one demand for a limited resource, a rationing 

policy is needed to assure the fair and efficacious distribution of the restricted 

quantity. The limited resource ofinterest here is channel bandwidth in a com­

munications network; demands for it are made by the subscribers. to the service, 

while the selection of the rationing policy forms the crux of what is known as 

the multi-access problem. 

Network access schemes can be categorized according to the quantity and 

utility of state information available to the decision-making process. If the state 

information is local, delayed or prohibitvely expensive to gather - as can be the 

case with a large, dispersed population of bursty users - then the access policies 

must operate at a distributed (local) level. On the other hand, if complete global 

state information is available at little or no cost and without significant delay, 

then centralised arbitration can be employed. 

The basic difference between the two types of policies is that a centralised 

algorithm grants access to only a single user at any given time, whereas, in 

a distributed system, access is open to all users, and consequently, conflicts 

between users will occur. Because of this difference, centralised control policies 

are aimed at finding efficient methods of selecting the next user to be granted 

access, while distributed algorithms seek to resolve conflicts, once detected, as 

soon as possible. 

Throughout this work we shall be concerned solely with centralised access 

schemes. The basic model will be that of a synchronous, bandlimited channel 
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accessed by a finite number of sources proximate to a central arbiter. The 

controller has complete state-information which can be used to schedule access 

to the channel and is obtained without affecting any of the system performance 

measures with which we shall be concerned. The role of the arbiter is to 

select the next user to be granted access to the channel and to determine the 

allotment for that user. Also, the controller must include along with the user­

data sufficient information t to enable the receiver 

i) to determine the origin and length of the current 

transmission; 

ii) and, because the channel is synchronous, to separate 

data transmissions.lrom channel idle periods. 

The inclusion of supervisory information requires a portion of the available 

capacity and, is therefore, the overhead in the system. 

The purpose of this thesis is to provide a systematic evaluation and com­

parision of a variety of reasonable access policies based on time division multiple 

access (TDMA) and polling strategies, with specific attention paid to the struc­

ture and effect of the overhead necessary to convey control information to the 

receiver. 

This thesis differs from most other work on multi-access for a combination 

of reasons. First, the control is centralised; thus, it is removed from the domain 

of the AWHA-type problem. Second, overhead is accounted for explicitly and its 

effects are the central focus; this distinguishes it from work on CPU-scheduling 

and from most of. the work on cyclic queuing systems. Finally, no special 

characters are reserved exclusively for control purposes in the manner of byte­

oriented protocols. 

In the remainder of this chapter we make precise our model and assump­

tions, review related literature and outline the work. 

t A qualitative discussion of some of the possible methods of achieving these goals is given in 
[UJ, which provides an in-depth introduction to t.he problem we consider. 
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1. Model 

As mentioned previously, the basic model employed in this work is that of 

a finite number of sources communicating with a single receiver via a common 

resource: the transmission medium. Access to the resource is determined by 

a central arbiter. The sources are independent of each other and all produce 

messages according to a Poisson process. Associated with each source is a buffer 

of infinite size. The average arrival rates are, in general, heterogeneous. Message 

lengths are de~erministic and have unit length, measured in bits or slots. 

The central arbiter, alternatively known as the concentrator, switch or 

server, allocates the resource to each source according to a fixed conflict-free 

strategy. Throughout this work we shall be concerned solely with cyclical chan­

nel allocation strategies; the quantity of bandwidth allocated to each source at 
. 

any given time may be either fixed or variable. The concentrator also inserts 

- before, after or within the user-data. - the overhead necessitated by the 

protocol. The arbiter may obtain perfect state information as to the contents 

of each buffer without cost. 

The channel is synchronous, errorless, has zero-propagation delay and is 

slotted. The capacity of the channel, measured in bits per slot (bfslot) is one. 

Finally, we shall assume that the interarrival times between messages arriv­

ing at a buffer are of no interest to the network or the receiver. Consequently, 

source idle periods can be ignored; this is not true of server idle periods. 

In summary, the assumptions we have made are as follows: 

i) independent, heterogeneous Poisson sources; 

ii) infinite buffers; 

iii) messages of length 1 bit; 

iu) perfect state information available to the controller; 

u) cyclic source-selection strategy; 
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vi) single destination; 

vii) error-free, zero-delay, synchronous channel with capacity 

1 bjslot; 

tJiii) source idle periods contain no information. 

Assumptions i) and ii) were made to facilitate analysis; iii) not only simplifies 

the analysis, it causes the role of the overhead to be emphasi~ed, due to the 

near parity of source message lengths and overhead. Number itJ) gives us the 

information necessary to employ adaptive or state-dependent service stategies. 

That the acquisition of this knowledge will not have any adverse effect on the 

performance or cost of the system is, in general, not the case. 

The reason for restricting ourselves to a cyclic service strategy is that of 

all the strategies one can imagine it is the "fairest", in that the buffer which. 

has been waiting longest for service is always served next. This eliminates the 

problem of one buffer being "frozen-out" of service by another. Also, by judi­

ciously employing the state information and transmitting it to the receiver, 

cyclic strategies are easily modified to "skip-over" certain buffers, thereby al­

lowing us to model other selection stategies. 

That we allow only one destination is not an insurmountable restriction if 

we consider only point-to-point exchanges; for any number of source-receiver 

pairs can modelled by an increased number of sources. However, increasing the 

number of sources cannot accomodate broadcast or multi-destination transmis-

sions. 

The penultimate assumption is in fact four: the channel being error-free 

and without delay implies that our problem is one of source coding, not channel 

coding. That the channel is synchronous forms the heart of our problem, since 

the protocol must communicate to the receiver not only the data, but also the 

location of server idle periods. A slotted channel is in accord with common 

practice. 
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Finally, that source idle periods are neglected has two implications. The 

first is that our work is not applicable to voice traffic, since idle periods contain 

information. The second is that the source itself must provide the receiver with 

sufficient information to delimit its bursts, if required. 

2. Related Work 

The body of work concerned with the systematic evaluation and comparision 

of the effects of state-dependent protocol overhead in multi-access systems iS 

exiguous. Most of the recorded work simply proceeds under the assumption that 

the overhead requires a portion of the channel capacity which is independent of 

the state of the system and accounts for the supervisory information either by 

increasing the message length or oy incorpol'ating a fixed or random 'switching' 

time into the model. As a result, there exists a vast amount of work which has 

as its central focus the calculation of system penalty functions (for example, 

delay) rather than the overhead required to implement the service protocols. 

Examples of this type of work can be found in (5,6,7 ,18,27], which are related 

to our work only in that they provide potential analytical techniques for the 

evaluation of system performance. 

The first inquiry to quantify the effects of protocol overhead was performed 

by Gallager [10]. He derived basic limits on the overhead necessary for the 

encoding of source busy and idle periods as a function of the service delay, as­

suming the user population is large and there is no queuing delay. and unlimited 

channel capacity. Futhermore, he observed that source addressing amounts to 

sorce coding the starting times of messages. Thus, by suitably delaying the 

transmission of messages, it is possible to reduce the average protocol overhead 

employed in the network. In Gallager's work the delay was a coding delay and 

did not include the inevitable queuing delays of a bandlimited and finite user 

system. 

Humblet [15] provided a. more detailed examination of source coding for 

concentrators under less restrictive assumptions. The problem he considered 

was the encoding of message beginnings, lengths and origins when the system 
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is comprised of a finite number of sources and a. bandlimited, synchronous 

channel. Humblet provided numerous contributions to the study of protocol 

overhead. One was to recognise that for a synchronous channel the average 

number of overhead bits (that is, those which are not data bits) per data bit is a 

meaningless measure: if idle bits are counted as protocol bits, this number is the 

same for all stable systems. Also, he was the first to treat comprehensively the 

issues involved in using flags to encode message length. However, his principal 

achievement was a study of source addressing using both information and 

queuing theoretic techniques. Using a simplified heavy-traffic model, Humblet 

demonstrated that employing state-dependent service strategies and overhead 

reduced the entropy of the addressing process, and hence, the average number 

of bits expended upon it. The second portion of his work on addressing overhead 
-

consisted of mean delay calculations for cyclic polling systems, from which he 

was able to conclude that, among the service strategies and protocols considered, 

exhaustive service yielded the lowest average delay. 

3. Thesis OutRne 

In this thesis we consider the joint encoding of message start/stop informa­

tion and source addresssing, as well as the more general issue of state-dependent 

overhead in cyclic systems. In Chapter 3, we examine fixed-frame strategies 

which require neither addressing nor message length overhead; it is simply neces­

sary to encode buffer underflows. In Chapter 4, we study two variable-cycle poll­

ing schemes employing state-dependent protocols which jointly encode origins 

and lengths of transmissions using flag-based overhead. Chapter 2, describing 

the structure and performance of flags and sets of flags, provides the necessary 

preliminaries to our study. 
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Chapter II: Flags 

This chapter is a study of the structure and performance of flags and sets of 

flags. Our aim is to determine conditions for flag sequences to be unambiguously 

decodable, and to calculate the equilibrium probability of insertion for such 

sequences. Some of the results contained within are well known, while others 

are new. The chapter has the merit that it presents in one place a comprehensive 

study of flags. 

1. Single Flag 

In many systems it is necessary Cor the transmitter to convey to the receiver 

the information that an event apart from data transmission has occurred. A 

simple and effective method of relaying this information is to place a known 

sequence of characters, a flag, into the data stream whenever the event occurs. 

In order that only the desired event be consistantly recorded by the receiver, 

the chance replication of the flag by the data must be avoided. This can be 

accomplished by inserting or 'stuffing' a bit into the data. stream in such a way 

as to destroy the similarity between the data. and the flag, while retaining the 

information content of the data.. The insertion rule that is usually employed is 

to insert the complement of the last (Fth) bit of the flag if the data. replicates 

the first F - I bits of the flag. 

A consequence of this convention is that certain sequences cannot be used as 
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flags because they are not unambiguously decodable (that is, given a sequence of 

bits there is a unique and unambiguous parsing of data, stuff and ftag bits in that 

sequence). To illustrate, consider the sequence S = (1,0,1,0) when it is used to 

encode idle characters. If the source produces (1,0,idle), the coder will generate 

(l,O,l,O,l,O), which the receiver will decode as (ic.;le,l,O); in this case the data is 

not lost, just misplaced in time. However, iC instead of inserting a 1 whenever 

the data is (1,0,1), a 0 is inserted after every occurance of (1,0), it is readily 

verified that the bit sequence arriving at the receiver will be unambiguously 
~., 

decodable. This decodability is obtained at a cost: an increased number of 

insertions. Since this is undesirable, we shall restrict our attention to sequences 

which are unambiguously decodable when the first insertion convention is in 

effect. 

It is known [15] that the featu:_e which distinguishes unambiguously decod­

able sequences of length F from others such as S is that the former contain no 

prefixes which are also suffixes w~thin the first F - 1 bits. In the case of S, the 

first and penultimate bits are identical, hence S has a prefi.x (1) which is also a 

suffix (1). This observation leads to the following proposition. 

Propoaition 2.1: 

Let Sp = (ft,h, ... ,fp) be a flag sequence, SF-1 = (h,f2, ... ,fp) be 

the B.ag root and 7 F be the complement of the last bit. If the 

insertion rule is to insert 7 F whenever the data replicates the flag 

root, $p_1 , and iC the sequence of bits is to be unambiguously 

decodable, then the flag root can contain no suffix which is also a. 

prefix. 

Proof: Let .:coy denote the concatenation of two sequences .:c and y, and 

assume to the contrary that Sp-1 = xoy = yoz for some z, y, and z; 

then the source sequence xoidle has an ambiguous decoding, since 

i) if Zt = f F then zoidle -+ zoyozo J F -+ idleoz1 , 112 · · ·, 

- 8-



0, .. 
ii) if z1 = 7 F then zoidle- zoyozofF - zoyoz2· .. , where 

z1 has been falsely decoded as a stuff bit. I 

Sequences which contain no prefixes which are also suffixes are known as 

'bifix-free.' They were first studied by Neilson [21], who calculated the number 

of bifix-free sequences of a given length. Since the last bit of the flag plays 

no role in the performance of the flag, it can be chosen arbitrarily. Thus, the 

number of allowable (unambiguously decodable) flags of length F is twice the 

number of bifix-free sequences of length F -1, as calculated in (21]. 

Although unambiguous decodability is a desirable feature of flags, a per­

formance measure of greater interest is the average time between insertions. 

It is this measure which will determine the efficiency of capacity utilization. 

For the purpose of examing this 1ssue, we consider a memoryless source which 

produces in each slot either a 0 or 1 with probability ~, or an idle character 

with probability 1-p. Futhermore, we denote by {X;} the number of consecutive 

source symbols up to time i which have replicated the flag root; thus, {Xi} is 

the memory of the insertion process. Since insertions are renewal points, {X;} 

is a finite Markov chain assuming values in C = {0, 1, .. . ,F- 1}, where F is the 

length of the flag and F - 1 is the insertion state. 

The two chains for the flags S1(F) =(1ooF-t) and S1(F) = (olF-2 ,0,0), (oz" = 
n-fold concatenation of z), are displayed in Fig. 2.1. The corresponding station­

ary distributions {"'}hec,i E {1,2}, are easily calculated [8] as a function of F. 

Once the distributions are known, it is a simple matter to compute the mean 

recurrence time between stuff bits Ci\,i E {1, 2}) for the two flags: 

1 (2)F-t T1 = -1- = - + 1, 
1C'F-1 P 

(2.la) 

- 1 (2)F-t T2 = -2- = - + 1, 
'~~'F-1 P 

(2.16) 

This shows that the average time between insertions is the same for both flags, 

even though the chains are quite different. Indeed, the mean recurrence time 
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·e p e 2 2 2 

• • • 8 
1-p 1-p 1-p 1-p 

• • • 

Figure 2.1a: Markov Chain Model for the Sequence 51 (F) = (1, ooF-t ). 

p 
1--
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~---~--... -----: 
p 

2 

1 

• • • 8 
1-p l-p 1-p 1 

......_ ______________ ... ___ ....__ ___ ..... 
Figure 2.1b: Markov Chain Model for the Sequence ~(F)= (oiF-2,00). 
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between stuff bits for any allowable sequence is identical to that given above. 

The reason for this is that the insertion state can only be reached from the 

zero state by progressively passing through each state in between; regardless 

of the interruptions along the way, it is always necessary that F - 1 data bits 

arrive consecutively so as to imitate the flag root. Since the probability of the 

source producing a particular data bit is ~, we have that 

( )

F-1 

Pr{insertion} = ~ , (2.2) 

with a mean recurrence time given by the inverse of the insertion probability. 

The additive factor of 1 in Eq. 2.1 accounts for the time to transmit the stuff 

bit. 

We close this section by poin!j.ng out that the probability of insertion which 

we have calculated is an equilibrium result for a memoryleu and &ynchronow source. 

The result does not apply if the source is not memoryless or if some of th~ 

characters are discarded. We shall have more to say on this issue in subsequent 

chapters. 

2. Multiple Flags 

Employment of a set of flags is indicated when there is more than one event 

to be encoded. Specifically, we are interested in using multiple flags to encode 

jointly both the end of a message and the address of the transmitting source. 

The simplest method of creating M flags is to select a single prefix (that is, 

an allowable flag of the last section) and to append to it fiog2 Ml bits to indicate 

the flag number. This effectively creates a set of codewords with a common 

prefix and at least one flag with a sub-prefix which is also a suffix of the flag; 

consequently, insertions must be made whenever the data replicates the prefix 

root (i.e., the first F- flog2 Ml- 1 bits), and not after replication of F- 1 flag 

bits. Thus, the equilibrium probability of stuffing is given by 

p(1t") = -..U. (p)F-flog 1 Ml-1 
• 2 I (2.3) 
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where F is the total length of a flag in the flag set (F =11 prefiz 11 +flog2 Ml). 

An alternative construction is t9 produce a set of flags which encode the 

flag number within the structure of the flag. In order to do this, we must first 

determine the criteria for multiple flags to be allowable. 

H all flags in a flag set are to be unambiguously decoda.ble then, each 

flag root m the set must be bifix-free. Furthermore, in order that certain data 

sequences concatena.ted with one flag not be decoded as another flag, there can 

be no flags in the set which have a. suffix of length 2 or more which is also a. 

prefix of another flag in the set. For example, the two sequences St = (0, O, 1,1) 

and S2 = (1, 1, 0,1) cannot both be members of the same flag set since, the data. 

sequence (0,0) conca.tenated with S2 would yield, when decoded, 

(0, 0, $2 ) .....-(0, 0,1,1, o, 1)- (St. o, 1), 

and undermine our intention of encoding message length and origin. 

In order to construct a flag set for a given length F, one could list all 

2, possibilities and strike from that list those not satisfying the admissibility 

criteria. However, the flag length is often not the deciding factor when forming 

a flag set; instead, the magnitude of the set is the constraint. For this reason 

we give a. method for the construction of M flags: 

Select a first flag bit ft, set the penultimate flag bit f F-t to the 

complement / 1 of / 1 , and set the last flag bit f F to ft. The ith 

flag is given by 

From this we conclude that the flag. length necessary to construct M fixed­

length flags is no longer than M+ 2. Figure 2.2 shows the structure of the flags 

when M= 5. Notice that the internal bits 12, /3, /4, / 5 , / 6 encode the flag number, 

not in its binary form, but by the number of l's within these bits. 
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Id h.hf.l!sh lh 

0!0000110 

010001110 

010011110 

0!0111110 

011111110 

Figure 2.2: Structure for 5 Flags. 

The insertion process for the flag set just described can be modelled, a.ssum-
. 

ing the source produces data without interruption, by the binary tree shown in 

Fig. 2.3. The numbers on the branches {0,1) indicate the bit value which will 

cause the transition to occur. The memory of the process is such that there is 

a single main path from which all address paths subtend. Once on an address 

path, only one of two possibilities can occur: 

i) a sufficient number of 1's are received to reach the insertion state; 

ii) return to the 1-memory state when a 0 is received. 

It is not possible to move from one address path to another without first 

returning to the 1-memory state. This indicates that the equilibrium probability 

of insertion for this set of flags is composed of the M disjoint probabilities of 

insertion for each flag in the set. Since the probability of receiving F - 1 bits in 

a specified order is (~ )F-l, we have that the time independent probability of 

insertion for the flag set is 

p~c) = M(~)F-l (2.4) 

Comparing this result with that obtained for the prefix plus flag number 

scheme (Eq. 2.3), we find that the likelihood of an insertion is less when the flag 

number is encoded within the flag; since, if we fix the flag length at M + 2 for 

both cases, 

for all M,p; 

with equality if and only if p = 1 and M = 2N for some integer N. 
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Figure 2.3: Insertion Model for a Multiple Flag Set. 
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0 Before closing, we mention that fixed-length flags are optimal in terms of 

the number of bits per flag number only in the case where the flags occur 

equiprobably. If the flag choice is made according to any other distribution, the 

structure of flag-plus-Hufi'man code would yield a lower average number of bits 

per flag number. However, because of the variable length, it is not possible to 

include the codeword for the flag number within the flag without reducing the 

probability of insertion below that of flags plus codeword. 

- 15 -
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Chapter m: Fixed-Frame Service Strategies 

In this chapter, we examine service: strategies which periodically allocate a 

fixed portion of channel capacitJ to each source. In all the schemes we shall 

analyse, the time axis is slotted. A constant number of consecutive slots forms 

a group and a constant number of consecutive groups constitutes a frame. 

The word sub-frame will be reserved for that portion of a frame allocated for 

transmission of data and overhead from a particular source. 

Since both frames and groups are of constant duration, the receiver, by 

simply counting slots, can determine the source currently transmitting. This 

eliminates the need to expend capacity on explicit source addressing. However, 

because the frame structure is inflexible, there will be occasions when slots are 

idle. This is due to the possibility that a source will not have the requisite 

amount of data to fill its sub-frame, a situation which must be conveyed to 

the receiver and requires overhead. In this chapter we examine three fixed­

frame strategies that encode underftow information and demonstrate a trade-off 

between the ratio of overhead-to-data and the delay. 
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LTDMA(K) 

TDMA(K) is a general form of time division multiple access (TDMA); it 

includes protocol overhead to indicate buffer underfiow and allows up to K 

units of work, from one source, to be served within a sub-frame. In this section, 

we describe the system, obtain the steady-state moment-generating functions 

(mg!) for various quantities of interest, and discuss the effects of the protocol 

overhead on system performance. 

The time axis is divided into frames of length T, each of which is partitioned 

into M sub-frames, where M is the number of sources. The length of a sub-frame 

is K + 1 slots .. In this strategy a group is identical to a sub-frame. The division 

of the time axis is shown in Fig. 3.1.1. 

If, at the instant the server arrives at a buffer there are K or more units 

of work queued, exactly K are removed and a 1 is appended to the beginning 

of the data before transmission. If instead, the server finds fewer than K units 

waiting, the buffer is emptied, and the data flanked by a 0 at the beginning and 

a 1 at the end; O's are used to pad the sub-frame. In the first case the 1 informs 

the receiver that a full sub-frame has been transmitted, and in the second case 

the first 0 indicates a partial sub-frame, while the trailing 1 marks the end of 

the data. 

Auumptlons: 

We require two assumptions other than those given previously: 

i) The sources are homogeneous: x, = >., i = 1,2, ... , M. 

This justifies using the same sub-frame lengths for all sources. 

ii) Source (i) work arriving within the i~h sub-frame must wait at least 

until the next frame before being served. Consequently, arrivals 



0 
which see a non-full sub-frame cannot be served within the empty 

portion. This is equivalent to saying that at the instant the server 

arrives, it removes up to K units of work and immediately departs 

to process them, becoming available to the next source K + 1 slots 

later. 

N(,.-11 T= M(K +1) 

t -K+l- t 
..... 1 ................... !1 .................. : .... 1 ____ ••• __ .... I..,......, ..... , .... , .._, ...... ~..~: ... I __ •• ·----·'·' .................. .._, ......... 1_ -

sub-frame 

Notation: 

1 data bits 

overhead bit . 

Figure 3.1.1: TDMA(K) Frame Structure. 

Throughout this section we shall focus on a single source and buffer; for 

convience, we shall assume that the first sub-frame of each frame is dedicated to 

the source of interest. Bearing this in mind, we now define the various symbols 

used in our analysis: 

N(n) - the number in the queue at the beginning of the nth frame. 

N("l(t) - the number in the queue t seconds into the nth frame, t E [0, T); note 

N(n) ;': N("l(o). 

A("l(t) - the number of arrivals in [0, t) of the n~h frame; A follows a Poisson 

distribution. 

The same symbols, without the time dependent superscripts, will be used for 

the equilibrium values or the above random variables. 
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StabJOtr-

Observing Fig. 3.1.1 and using assumption ii), the backlog at the n'h frame 

boundary, N(n), is given by 

Sufficient conditions for ergodicity of a Markov Chain [22] are 

i) Aperiodicity and irreduciblity; 

ii) E[N(n) I N(n-t) = i] < oo, Vi; 

iii) E[N(n) -N(n-l) I N(n=l) = i] < -0 Vi> N, for po1itive 

comtant1 C and N. 

(3.1.1) 

Conditions 1) and ii) are satisfied when A is a Poisson arrival process. Condition 

iii) is satisfied when i > K and >-. < K fT. Thus a sufficient condition for 

equilibrium is 

K 
X< T = >.m.=(K). (3.1.3} 

Equation 3.1.2 is also necessary for ergodieity [17]. 

D-el111 Analysis: 

Equation 3.1.1 is a variant of the classical bulk-departure problem [2]; thus, 

assuming that the :3ta.bHity condition is met, the steady-state mgf of the number, 

N, in the queue at frame boundaries is given by 

(3.1.4) 

If we let o,, i E {0,1, ... ,K -1}, denote the roots in unit disc, lzl ~ 1, of the 

characteristic equation 

(3.1.5) 
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with 00 = 1 , Eq. 3.1.4 can be rewritten as 

(

K-1 ) 
E[zA(Tl] II z = e~ (z- 1)(K -A) 

. l 1 fJ, 
E[rV] = ·-;K _ E[zA(TlJ (3.1.6) 

Within a. frame, the state equation for the backlog at time t, t E [0, t), is 

given by 

(3.1.7) 

Since (N(n-t) -K)+ = N(n) -A(nl, the stea.dy-state mgf of the number in the 

queue at time t, N(t), is given by 

E[ N(t)J = E[zN]E[zA{t)J 
z- E[zA(Tl] 

Substitution of Eq. 3.1.3 into 3.1.6 yeilds 

E[zA(tlJ(Krr-• z- fl')(.z- 1)(K- A) 
1- fl. 

E[zN(e)] = i-t ·' 
zK - E[zA(T)] 

We are now in a position to give the main result of this section. 

Theorem 9.1: 

i) The transmission delay, as seen by a test customer inserted into 

the system at time t, t e [0, T), of a. frame is given by 

D(t) = a:N(t)- j1N(t)mcaK + T- t + 2, 

where a=T/K and fJ=a-1. 

••) It (i21t'l) d h h d •• Wf = exp K ' an >. < >-maz(K) t en t e stea y-state mgf or the 

transmission delay for a test customer is 

(3.1.8) 

(3.1.9) 

(3.1.10) 

(3.1.11) 
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iis1 The expected value of the delay as seen by a test customer, 

averaged over all t, is defined by 

- 11T D = T 0 E[D(t)}dt, 

a.ndis 

J5 =n{>.T + ~ _1_ + (>.T)
2 
-K(K -1)} 

2 LJ 1 - 6 · K - >.T i-t • 

Proof: 

i) Figure 3.1.2 shows the components of the delay for a test customer 

arriving at timet. They are 1) the elapsed time from the instant 

of arrival until the n~xt frame {T- t); 2) the time to discharge the 

backlog the test customer observes (l !VJtl jT + 1 + N(t)m.odK); 3) the 

service time ( 1 ). Noting that 

lN(t)J = N(t) _ N(t)modK 
K K I< ' 

and summing the components of the delay yields the first conclu-

sion. 

{3.1.12-) 

-------- D(t) --------

T -
--lN(tlJT--- () - -t- /( -NtmodK-

--'----....11'------J....- ••• -----L.:..;...h::..J..--I ___ ~-1 1:..!...-\_ 
t 

arrival 

Figure 3.1.2: Delay for a Test Customer. 

departure 
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' ii) If the equilibrium condition is satisfied, then the mg J of the delay 

is well defined and given by 

In Appendix (1), we calculate the expectation on the right hand 

side; substitution of the result gives Eq. 3.1.11. 

iii) Assuming a stable system and taking expectations of both sides 

of Eq. 3.1.9 results in 

E[D(t)] = aE[N(t)J- ,BE[N{t)modK] + T- t + 2. 

The mean of the the backlog at t can be obtained by differentiating 

Eq. 3.1.8 and setting z = 1. The mean of the backlog modulo K is 

found in Appendix (1). The final result is obtained by interchang­

ing the order of integration and summation. I 

Remarks: 

If we eliminate the overhead (that is, if T = MK), we obtain the delay­

throughput curves of Fig. 3.1.3, from which one can see that the K = 1 curve is 

the lower bound for all stable values of throughput. This situation corresponds 

to conventional TDMA. If protocol overhead is included, the optimal value of K 

is no longer K = 1, but is determined by the trade-off between the fraction of 

channel capacity lost to overhead, which diminishes in K, and the fraction of 

channel capacity lost to idle bits, which increases in IC. The optimal compromise 

is represented by the envelope of the family of curves indexed by K, as evinced 

by Figure 3.1.4. 
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Figure 3.1.3: TD.MA(K) with No Overhead; M= 4,K: 1-+ 10. 

eo 

0 
•• L---~---.~.-2--~----.·.-.. --~----.~.6--~~--.~.~8------~. 
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Figure 3.1.4: TDAIA(K); M= 4,K: 1-+ 10. 
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2. TDMA(K, U) 

TDMA(K, U) is similar to TDMA(K) in that both strategies include protocol 

overhead to indicate buffer underflow and allow up to K units of work per 

source to be served in each frame. The difference between the two systems is 

in the location within a frame of the data slots assigned to each source. In 

TDMA(K), the K slots per frame allocated to each source are consecutive and 

service is gated; in TDMA(K, U), the K slots are distributed uniformly within 

the frame, and the restriction on channel access for new arrivals is relaxed. In 

this section, we describe the model precisely, and calculate the steady-state mgf 

for the number in the queue at sub-frame boundaries, from which we compute 

the average transmission delay. 

srstem: 

The time axis is divided into frames of length T, and each frame split into 

K + 1 groups of M consecutive slots each. The sub-frame corresponding to the 

slots in a frame allocated to Source (i) consists of the ith slot in each group. A 

sub-frame is thus a sequence of K + 1 equi-spaced slots in each frame. The last 

slot of each sub-frame is reserved for the overhead bit.The division of the time 

axis is shown in Fig. 3.2.1. 

The overhead bit is set to 1 when all K preceding slots of the sub-frame 

contain data, and set to 0 otherwise. In the event that a slot in a sub-frame 

cannot be filled with data, a 1 is inserted into that slot and the remainder of 

the sub-frame is padded with O's. The difference between the coding procedures 

employed in TDMA(K) and TDMA(K, U) is simply that in the former the 'sub­

frame full' bit precedes the data and in the latter the 'sub-frame full' bit follows 

the data. As a result the protocol overhead appended is indicative of the same 

events as described for TDMA(K). 

The advantage of the TDMA(K, U) service policy is that new arrivals have the 

possibility of obtaining service in the frame in which they arrive. For example, 

let the buffer contain only one unit of work when the server arrives. The buffer is 

- 24 -
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then depleted; however, if another unit of work arrives at that buffer before the 

server returns it will be ·transmitted in the next sub-frame slot. Thus, provided 

that the server never sees the buffer empty, an arrival need never be forced to 

wait for service until the next frame as in TDMA(K). 

frame 
T=M(K+l) 

t M-

__.L::!::::' ::::· :·::::' ::::' :':::::' :::' =' ... J I I I I I 
t 

... -~1 lr......L-j,.,...l-1.&...-

t group 1 

Assumptions: 

group 2 
j~h slot of 
sub-frame 1 

Figure 3.2.1: TDMA(K, U) Frame Structure. 

'overhead bit 
sub-frame 1 

We require two asr,umptions in addition to those given in Chapter 1: 

i) The sources are homogeneous: >., = ;.., i = 1,2, ... , M. 

This f:v;ilitates the r.hoice of the sub~frame size. 

ii) Arrivals to a buffer which occur after its sub-frame has been 

terminated must wait at least until tb~ next frame for service. This 

is necessary to insure the decodabiEty of the protocol overhead 

inserted within the data portion of a sub-frame, since termination 

can only be determined at the receiver by backtracking to the last 

1 contained in a sub-frame. 

Notation: 

We assume the source of interest is allocated the first slot in. each group of 



every frame. The following notation is used in this section. 

N}"l the number in the queue at the beginning of the ;th slot of a. sub­

frame in the nth frame. 

N}"l(t) - the number in the queue at time jM + t of the nth frame. 

A}"l - the number of arrivals in the interval [(i -l}M,jM) of the nth frame; 

A has a Poisson distribution. 

A}"l(t) - the number of arrivals in the interval [(j- l)M, t), t E [0, M), of the­

n~h frame; A}"l(t) also has a Poisson distribution. 

The above symbols without the frame superscripts will denote equilibrium 

values. 

StabUftJ: 

The number in the queue at frame boundaries constitutes a. Markov chain. 

From Figure 3.2.1, we see that the number in the queue at the beginning of the 

nth frame is given by 

N~n) = N~n-l) -[departures in (n- l)tk frame]+ A(n)(T). (3.2.1) 

Using the sufficiency conditions for ergodicity given previously, we find that 

K 
.>.. < T = .>..,..-(K), (3.2.2) 

is the requirement for the imbedded chain to be ergodie. 

The system is stable everywhere if it is stable at frame boundaries ([4], 

Theorem 6.6, p.124). 

Oela1 AnaiJsis: 

Because in any sub-frame the server's ability to serve depends on the content 

of preceding data slots within that sub-frame (assumption ii)}, the number in 

- 26 -
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the queue at sub-frame boundaries is not a sufficient descriptor of the system. In 

order to achieve a complete description of the system, we introduce a dependent 

binary random variable, u;"l, which characterizes the state of the server at the 

beginning of the ;jth sub-frame of the nth frame. A value of 1 enables the .server 

to remove one unit of work from the buffer and place it in the jth slot of the 

sub-frame. To indicate that the server is disabled, u~."1 is set to 0; this implies 

that the data portion of the sub-frame has been terminated. The introduction 

of this random variable expands the dimensionality of the system description 

in order to make the process Markov at sub-frame boundaries. 

From Figure 3.2.1, and using the augmented state description, we find that 

the evolution of the system is governed by the following set of equations: 

U(nl . [N!"l u<nl J i =mm ;-1• j-1 ' 

i= 1,2, ... ,K; 

j = 1,2, .. . ,K; 

The following theorem summarises the results. 

Theorem 9.2: 

Let P~l = Pr{N; = 0, U; = 1}. If>. < >-ma."'(K), 

i) The steady-state mg 1 of the number in the queue· at frame boun­

daries, No, is 

K-1 

L P&~~E[zA(-iM)J 
E[ N.] _ E[~(Tl] ~;-_o~~c-::--:=c--

z - zK- E[zA(TlJ 

-21-

(3.2.3) 

(3.2.4) 
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U) The steady-state mgf for the number in the queue at the beginning 

of the jth service slot, j e { 1, 2, ... , K} can be computed in terms of 

the mgf for N0 and the probabilities Pb'!u and is given by 

j-1 

E[zNJ] = E[zN6 ]z-iE[zA(jM)] + 2: P~~)1 E[z-A(M(j-i))](l- z-(i-•1). (3.2.5) 
i-O 

iii) The average number in the queue is given by 

E[N] ='=¥loT E[N(t)Jdt 

where 

:\M K 
=E[N .. ]-K(l- M)l) + - 2- + K + 1 

K-1 

E[N.,] = 2: P~i [K(K- 1) ~ j(j- 1)] 

K-1 

+ 2M>. 2: P~~ [(K - j)(K + 1 - i)]; 
j=-0 

K(K -1) + T>..2 

+ 2(K- T:\) 

Proof: See Appendix (2). 

(3.2.6) 

(3.2.7) 

The average transmission delay can be calculated by applying Little's Theorem 

to the average value of the number in the queue [19,26). 

Remarks: 

The TDMA{K, U) transmission delay versus throughput curves with K as a 

parameter are plotted in Fig. 3.2.2. As with TDMA(K), the performance lower 

bound is given by the envelope of a family of curves. This is again due to the 

trade-off between the fraction of capacity expended on overhead bits and the 

portion given over to idle bits. 
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Figure 3.2.3 compares the delay envelopes for TDMA(K,U) and TDMA(K) 

with the number of sources, M, as the control variable. One can see that the 

delay for TDMA(K, U) is always less than that of TDMA(K). In fact, TDMA(K, U) 

is at least margina.lly better than TDMA(K) for all values of K and throughput 

(compare Figure 3.2.2 with Figure 3.1.4). 

This result is valid only if the decoding delays are not included in the 

calculation of the mean delays. If on the other hand we were to assume that 

as a. resonable approximation, the mean decoding delay is half a sub-frame in 

TDMA(K) and half a. frame in TDMA(K, U) (that is, (K + 1)/2 and M(K + 1)/2, 

respectively), then TD MA(K) would yield the lower set of delay-throughput 

curves. However, because the total delay from the instant of transmission to the 

instant bits are declared data bits is influenced by many additional factors, we 

sha.ll restrict ourselves in the sequel to the comparision of transmission delays. 

As a final remark, we note that for K > 1, the TDMA(K, U) delay curves 

are not strictly non-decreasing. The reason for this is that by allowing some 

work arriving within a frame to be served within that frame, the delay must 

necessarily decrease with respect to the delay of a test customer inserted into 

a zero-throughput system. Since there does exist a minimum, one might be 

tempted to insert artificial work into the system when the throughput is less 

than that which extremises the delay for a particular value of K; however, 

additional protocol overhead would be required to separate the real data from 

the artificial. This would have an adverse effect on delay. 
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3. TDMA(K,F) 

In the previous two sections, message length information was encoded using 

a fixed portion of each sub-frame. An alternative is to transmit a flag whenever 

a buffer unde.rflows. In order for a flag to be consistently and correctly decoded 

at the receiver, the data must be inhibited t'rom imitating the flag sequence. If 

the flag is bifix-free, this can be accomplished by inserting the complement of 

the last bit into the data stream whenever the data. replicates the flag root. 

In this section we describe a fixed-frame system which uses a single flag to 

encode buffer depletions, discuss the effect of insertions on system performance, 

and using an independent-insertion model calculate the steady-state mgf for 

the number in the queue and for the delay. From the latter, we calculate the 

average transmission delay. 

System: 

The division of the time axis into frames and sub-frames is the same as 

for TDMA.(K). Each source is apportioned K consecutive slots per frame for 

data transmission. If t.he number of sources is M, the frame is composed of M 

sub-frames of length K. There are no dedicated overhead slots. 

Upon arriving at a buffer the server first determines if there are K or more 

units of work awaiting transmission. If there are, then K units are removed 

and sent. If there are fewer than K units buffered, then a flag of length F is 

appended to the end of the data.. A fla.g is sent each time the server sees the 

buffer empty. Due to the fixed sub-fra.me size, there will be occasions when a 

portion of the flag will require buffering. vVhenever this occurs, new arrivals 

from the source join the queue behind the buffered flag bits. 

'We now turn our attention to the issue of stuffing. Ideally, insertions should 

only be made when the data has replicated the flag root (that is, the first F - 1 

bits of the flag). However, an exact model of stuffing would introduce memory 

into the system description, since the probability of insertion at a particular 

instant of time is linked to past insertions or the lack thereof (13}. For example, 
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if the flag is bifix·free and an insertion has just been made, another insertion 

will not be necessary until at least F - 1 data bits have been processed. 

In order to simplify the analysis, we shall assume that the probability of an 

insertion at any point in time is independent of insertions at any other point in 

time. This can be achieved [23] by selecting the flag at each occurence and in 

i.i.d. fashion from the set of all 2F binary sequences of length F. In this case, the 

probability of an insertion is time independent and given by P. = 2-(F-tl. This 

approximation will give an upper bound for whatever measures of performance 

one wishes to calculate, since the independence assumption will result in more 

insertions than the exact procedure. 

Assumptions: 

i) The sources are homogeneous: X;=>., i = 1, 2, ... , M. 

This serves to simplify the selection of the sub-frame size. 

ii) Service is gated; that is, Source (i} customers arriving anywhere 

within a frame must wait until the next frame for service. This 

assumption simplifies the calculation and can be relaxed. 

iii) Each arrival brings with it either 1 or 2 units of work with probabilities 

(1- P.) and P., respectively, where P. = 2-IF-ll is the probability 

of an insertion, assuming independent decisions at each point 

in time. This models the approximate stuffing procedure out­

lined previously. 

Notation: 

The notation employed in this section is identical to that given in the section 

on TDMA(K), with the following additions: 
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i) forK~ F, 

"' { ~ 1 ([>.T(1 + P.)]
2 

+ 2>.TP.- K(K -1))} 
LIK";!F =M + ~~ 1- e, + 2[K- >.T(1 + P.)] ·-

M{>.T(l + P.) F- 1} 
+ 2 + 2 

ii) forK< F, 

- {>.T(l + P.) [>.T(l + P.)]2 + 2>-.TP.- K(K -1) 
DK<F, =M 2 + 2[K- >.T(l + P.)] 

K-F 

L [K(K -1)- i(i -1)] Pr{N,. = i} 
;-o 

+~----~2~[K~-7X~T~(1_+_P=.~)J ____ __ 

K-1 

L [F(F -1) + 2Fi] Pr{No = i} 
i-K-F+l } 

+ 2[K- >.T(1 + P.)] 

{
K- 1 1 K-1 foT E[w{"K<F(t)]dt} T 

-(M- 1) ----L . + - + 1. 
2 T 1-1 1- Wt 2 

Proof: The proof is identical in procedure to that given for TDMA(K) 

(see Appendix 1). 

Remarks: 

(3.3.6a) . 

(3.3.66) 

Figure 3.3.1 shows the throughput versus delay curves for TDMA(K,F = 2). 

In contrast to the previous two systems, the delay is lower-bounded by the case 

K = 1. This result is true for all values of F, M and >.. The explanation for this 
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is that for K > 1, the probability that a. sub-frame will not be full is greater 

than that for K = 1. As a result, flags occur with a. greater frequency in the 

systems with K > 1, which in turn causes the data backlog to be larger in these 

systems. 

100----~--~---------------------,,-~--------~----, 

.. 
l .. 

80 

o.e 

Arrival Rate 

Figure 3.3.1: TDMA(K,2): M= 4,K: 1-+10. 

Figure 3.3.2 displays the delay plots for TDMA(l,F), from which we see 

that as the total system throughput increases, so must the flag length in order 

that the delay remain bounded. This is due to the fact that as the flag is 

made larger, the frequency of stuff bits diminishes. It should also be noted that 

the TDMA(l,F) system approaches the maximum allowable throughput rate (1) 
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much faster than either TDMA(K) or TDMA{K,U) • 

.. ... .s .. 
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Figure 3.3.2: TDMA.(l,F) 



c 

c 

4: SummarJ and Conclusions 

The delay analyses in this chapter suggest several conclusions. 

First, in t.he absence of protocol overhead, the optimal sub-frame size for the 

standard TD.MA-type system is identical to the message length t ( TDMA(K = 

I)). 

Second, the protocol overhea.d is the deciding factor in determining the 

maximum allowable throughput rate of the system. In both TDMA(K) and 

TDMA(K, U) where there is a fixed allotmt:;nt of channel capacity per frame 

for protocol overhead, we have demonstrated that there is an optimal eom­

prom1se between the fraction of capacit.y expended on overhead (which deter­

mine3 ).,....,(Kl), and the fraction lost to idle bits (which contributes to the 

delay). On the other hand, in tlre TDMA(K, F) scheme, where the insertion of 

a flag occurs only if a buffer underflows, the optimal sub-frame size is unity, 

~ regardless of t.he flag length, and the limitin.g factor is the fraction of capacity 

given over to insertions. 

Third, we have seen that TDMA(K, U) has a lower average delay than TDM A(K) 

for all values of throughput and number of sctHces. Comparision of TD M A(K, U) 

and TDM,1(1, F) (Figure 3.4.1), ~hows that fo:- small to medium values of through­

put, both sytems have practically the sar.:!e delay performance; however, at 

higher levels of throughput the transmission time of TDMA(l, F) is markedly 

better th<tn that of TD M A(K, U). 

The reason for this is that the steady-state fraction of capacity expended on 

overhead dec:::eases exponentially in the flag scheme (O(P.)), and only propor­

tionately in the coding schemes. Therefore, TD M A.( 1, F) has a lower deb.y in the 

high throughput range. 

t If the messages are of random length with mean p., the analysis of TDMA(K), neglecting 
protocol, can be redone to show that the optimal S'Jb-rrame length is p. bits. 
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Chapter IV: Variable-Cycle Service Strategies 

The service strategies studied in the previous chapter do not share the 

resource dynamically. Since the capacity apportioned to each source is fi.xed 

for all time and is independent of the state of the system, a portion of the 

available channel capacity will occasionally be wasted on the transmission of 

idle bits, necessary to maintain synchronisation. This wastage can be reduced 

by allocating to each source a variable-length service period, which depends on 

the amount of work awaiting transmission at a buffer when its service period 

begins. 

The variable length of source transmissions makes it necessary for the 

transmitter to include overhead which enables the receiver to determine the 

beginning and the end of each burst. It is also necessary to encode the source 

addresses since the channel is synchronous and some, or all, of the buffers may 

be empty. Under a cyclic selection strategy, the encoding of message lengths and 

source addressing are not separate issues, since the longer a transmission from 

one source, the smaller the uncertainty as to the origin of the next transmission. 

In this chapter we study four protocols which provide the receiver with the 

information necessary to demarcate messages and determine their origin. The 

work focuses on two common service strategies: 'gated' and 'exhaustive.' Using 

a combination of analysis and simulation, we calculate the mean delay for these 

systems. 
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L Model 

There are M sources visited by the server in a cyclic manner. A cycle, T}"), 

is the length of time between the (n -l)'h and nth arrival of the server at the ith 

buffer. A cycle, as seen by the ith source, consists of a service period, s}"), and 

a vacation period, v}"). A service period is comprised exclusively of data and 

stuff bits from one source; the vacation period contains all the overhead of the 

cycle plus the service periods of the other M - 1 sources. 

We study two service strategies: gated, wherein only that work present in 

the ith buffer at the instant the server arrives to it is served during the ensuing 

cycle; and exhaustive, where the server remains at a buffer until the buffer has 

been depleted. Since the duration of the service periods in both strategies is 

contingent on the number in th; queue at the instant the server arrives, the 

service periods, and hence the cycles, will be of variable length. 

2. Protoc:ols 

All of the protocols considered in this chapter use at least one flag to 

terminate the transmissions from each source; consequently, the data must be 

inhibited from replicating the flag. This requires an insertion rule which we 

shall take to be the same as the one discussed in Chapters 2 and 3. 

The protocols differ according to the manner in which empty buffers are 

treated. Since information as to which buffers are empty is not in itself impor­

tant to the receiver, it is apparently undesirable to expend capacity on the 

encoding of this information. However, not conveying this information to the 

receiver causes the regularity of the polling order to be destroyed, which in turn 

necessitates some form of origin addressing. Futhermore, because the channel 

is synchronous, it becomes necessary to include message-start information so 

that message beginnings can be differentiated from channel idle characters. 

The following describes in detail the four protocols examined in this chapter 

which explore the interrelationship of the encoding of idle information and 

source addressing in variable-cycle strategies. In all cases the server visits the 
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buffers cyclically. 

Repeat Flag (RF): An empty buffer is considered to have a message of zero length. 

Service periods, including those which are null, are terminated with a single 

fixed length flag. This strategy, judging by the the length of the codewords 

assigned to each event, considers an empty buffer to be no more likely than a 

non-empty buffer. 

Flag + Address (FA): The server selects the next non-empty buffer in the cycle, 

disregarding any intervening empty buffers. Each service period is prefaced by 

flog2 Ml bits containing the absolute address of the source currently transmit­

ting. If all the buffers. are empty,_ O's are transmitted until there is an arrival to 

the system. In order to differentiate between an idle 0 and an address 0, each 

transmission begins with a 1. The end of a. mesage is terminated with a flag. 

Thls policy uses state information and explicit addressing. 

Rag + Unaey Code (FU): Service periods having non-zero length are terminated 

with a flag. If an empty buffer is encountered during a cycle, a 0 is transmitted. 

A 1 is transmitted at the beginning of each service period to indicate its start. 

The unary code consists of a string of consecutive O's terminated by a 1. In 

effect, message origins are signalled by unary coding of relative source addresses. 

Multiple Flags (MF): There is a set of flags which are used to encode jointly the 

end of a source transmission and the number of intervening empty buffers 

(alternatively, the next source to transmit). Since only M- 1 buffers can be 

examined without finding the system empty, the M'h flag is reserved to indi­

cate that the system is empty. After the transmission of the M'h flag, the sys­

tem generates a unary code (O's) until such time as the server encounters a 

non-empty buffer. At this point a 1 is transmitted, and the service period com­

mences. We note that the prefacing of a 1 to a message is only necessary after 

the transmission of the M'h flag, since message start information is contained 

implicitly within all of the other flags in the set. 
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a. Mean Oelar Computations 

A complete delay analysis (that is, computation of the distribution) for 

each of the protocols described. previously is beyond the scope of this work. The 

principal reason is the complexity introduced by incorporating a variety of state­

and data-dependent overhead into the systems. In order to simplify our task, 

we focus solely on the mean delay in each of the systems. While this statistic 

is less satisfactory than the complete delay distribution, it is nonetheless an 

important performance measure in systems where queuing occurs, and allows_ 

us to compare the various protocols. 

We begin. with a theorem which enables the delay to be calculated from 

the first two moments of the cycle time (vacation time) in a gated (exhaustive) 

system. The formulae contained -in the theorem are not new results; only the 

manner in 'Which they are obtained is novel. Equation 4.2b is given in (7] and 

Eq. 4.1 can be found in [14]. 

Theorem .l.1: 

Let E[T~], E(V~], and E[S11 be the Jth steady-state moment of the 

cycle time, vacation time, and service period as seen by Source 

(i). Also, let 1-'{ be the jt.h moment of Source (i) message lengths. 

Then the mean delay, E[D;], incurred in steady-state by a Source 

(i) customer, is 

i) in a gated system, 

E[Dg] - ( >. .1) E[11J . 
1 - l + •~-'• 2E[Tn' 

ii) in an exhaustive system, 

E[D<!] = (1 + >.,j;f)E[ViJ + (1 - >..-j;f)E[Si] 
' 2E[Tn 

>-sl-'i E[Vi] - +----
2(1 - >. 11-'f) 2E(V~]. 

(4.1) 

(4.2a) 

(4.2b) 
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Proof: 

· Assume that the system is in equilibrium. 

i) Gated System: 

Under the gated service policy, a customer arriving in one cycle must wait 

until the next for service. This means that the delay of a Source (i) customer 

is composed of two parts: the first is the time1 D{(t), from his arrival at time 

t until the next visit of the server to his buffer (or the end of the cycle), and 

the second is the time, D~(th he must wait on queue after the server has arrived· 

at his buffer. H we assume that customers in a buffer are served in the order 

in which they arrive, then this delay is identical to the total amount of work 

arriving at the Source (i) buffer before the arrival of the test customer. 

T(") • 
x(n+l) 

• 

Ui(t) ~-Di(t) D\(t)l 

t 
D; 

arrival departure 

Figure 4.1 Delay Components for Gated System. 

Referring to Figure 4.1, we see that 

E[D~] = E[Df (t) + D~(t)] = E[Df (t)] + E[D;(t)]. 

The expected amount of Source (i) work arriving before the tagged customer is 

Ai~-t~E[U'(t)], and since the test customer arrives according to a Poisson process 

and is chosen randomly, the two intervals, Dl(t) and U1(t), are identically dis­

tributed; therefore 
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Since, 

. ~[~] 
~[.Di (t)J = 2~[;~ 1, 

the proof is complete. 

ii) Exhaustive System: 

Referring to Figures 4.2a a.nd 4.2b, one can see that whether a test customer 

is served in the cycle in which he arrives or in the next cycle depends on when 

he arrives in the cycle. If a Source (i) customer arrives before the completion of 

a Source (i) service period, then he will be served during that period. If on the 

other hand he arrives during a vacation period, it will be necessary for him to 

wait until the next cycle. Letting Q denote the event that a Source (i) customer 

arrives during a Source (i) service period, and Qc the complementary event, we 

have 

~[D1] = E[D;IQ] Pr {Q} + E[D;IQ"] Pr {Q"}. 

The calculation of E[D;IQ"] is identical to that given for the gated system if 

the cycle time (T) is replaced by the vacation time (V) (compare Figur~ 4.1 and 

Figure 4.2a); thus 

'C'[D'IQ"] ( \ 1) E[Vil 
1!1 = 1 + AiJ.I.; 2~[V!J. 

In Figure 4.2b, the random variable B;(t) is the length of a busy period 

initiated by the remaining Source (i) work at time t plus the tagged arrival plus 

the necessary stuff bits. In order to find a relation between E[D;IQJ and E[B;(t)], we 

require a detailed knowledge of the arrival and insertion process. To overcome 

this difficulty, we shall assume that insertions are made independently at each 

point in time. This can be modelled by an increased service distribution as was 

done in Chapter 3, with JJ.} = (1 + P.,), and JJ.7 = (1 + 3P.,). 

This enables us to use the M/G/1 formula for the expected length of of a 

busy period initiated by E[D•IQ] customers; that is 

E[B.-(t)] = E[D;IQ] . 
1 - >.;JJ.~ 

- 48 -
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Figure 4.2a: Arrival in Vacation Period. 
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Figure 4.2b: Arrival in Service Period. 
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Since the arrival process is Poisson, the probability of an arrival occurring 

in a sub-interval of a larger interval can be calculated using a renewal-type 

argueDleut; therefore 

and 

p {Q"'} _ E[V} 1 
r - E[T!j' 

E[S~] 
Pr{Q} = E[T~r 

Rearranging terms and bringing all the components together yields 

-::r E[ViJ E[V~ 1 1 E[S}] 
E[D;] = (1 + AiJ~;) 2E[V}] E[Tt] + (1- AiJJ;)E[B;(t)]E[T}j' 

Using an arguement identical to that given for E[DHt)] in the gated systeDl, 

E[B;(t)] can be written as E[Si]/2E[S} ]. Substitution of this result and siDlplification 

gives Equation 4.2a. 

Noting that the length of a Scarce (i) service period is identical to the length 

of a busy period initiated by the nuDlber of Source (i) custoDlers arriving during 

a vacation period, we can compute E(Si] in terDls of E[V1], and obtain Equation 

4.2b. 

The results apply for systeDlS operating under all four protocols which we 

have described, and many others; however, protocols can be found where the 

theoreDl will not be applicable. The requireDlent is that an ergodic distribution 

of the cycle (vacation) tiDle exist. 

The utility of TheoreDl 4.1 is directly related to our ability to calculate the 

required moments. In systems where the overhead is independent of both the 

current state and the data, it is possible to calculate the distribution of the cycle 

or vacation time, from which the moments can be obtained [7]. An alternate 

approach used to calculate the moments of these siDlplified systeDlS is to solve 

a set of M 2 linear equations for the auto- and cross-correlation values of the 

system, as detailed in [15,25,27]. 

The systems we wish to analyse do not, however, possess the siDlplifying 

independence property. This makes the analysis difficult and protocol depen­

dent. In order that a wide variety of protocols can be compared, we obtain the 

required moments by siDlulation. 

- 48 -
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dent. In order that a wide variety of protocols can be compared, we obtain the 

required moments by simulation. 

The moments are computed using the Law of Large Numbers; that is 

1 N 
E[Ti] = N 2: T~") I 

n-l 

and 
N 

E[(Ti)2 j = ~ 2: (T~"))2 • 
n-1 

The duration of the simulation is increased, as the throughput is increased in 

order to assure a confidence interval of at least 85 percent in each run. 
I 

While it is true that we could simulate .the system. directly, Theorem 4.1 

simplifies the simulation considerably. First, it obviates tracking of individual 

customers; this facilitates the pregramming. Second, it reduces the CPU-time 

required for accurate results. 

The minimum delay envelopes for the various protocols and service strategies 

are shown graphically in the subsequent section. The delays were calculated 

using moments obtained by simulation. 

4. Observations 

Figures 4.3 to 4.6 show the minimum delay envelopes of the four protocols 

under both exhaustive and gated service. The conclusion one can draw from 

these curves is that regardless of the protocol, the delay under an exhaustive 

service policy is always less than that of a gated system operating under the 

same protocol. 

Initially, one might be tempted to attribute this to the fact that in an 

exhaustive system some customers will receive service in the cycle in which they 

have arrived, instead of being automatically forced to wait until the next cycle, 

as is the case in a gated system. However, upon reflection this alone cannot 

account for the improvement, since in the absence of protocol overhead both 

systms are conservative, and therefore, have the same mean delay [17]. 

The correct reason for the better performance is that less overhead is 

expended on source addressing in systems with exhaustive service than in:those 
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Figure 4.3: Delay Envelop~s for Repeat-Flag Protocol. 
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Figure 4.4: Delay Envelopes for Flag + Address Protocol. 
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with gated service. More explicitly, whenever the server encounters an empty 

buffer, the system is assessed a penalty in the form of addressing overhead. This 

overhead retards the entry into service of subsequent buffers in the polling cycle 

and, negatively affects the delay of each succeeding customer. We conjecture 

that the probability of a server encountering an empty buffer is smaller in 

an exhaustive system than in a gated system. This would result in addressing 

overhead being transmitted less frequently, since for cyclic polling, the encoding 

of idle buffers is a form of source addressing. 

The notion that addressing overhead adds to the delay can be further 

justified by comparing the performance of the various protocols (Figure 4. 7). 

The first piece of evidence is the performance of the Flag +Address protocol. 

This strategy has the worst mean delay of all the protocols considered, and 

as the number of sources is increased, the r.eparation between it and the other 

protocola grows. Since the addressing overhead increases as the number of 

sources increases, this demonstrates the negative effect of source addressing 

on delay. 

The second piece of supporting evidence is that, up to a certain point, the 

Flag+ Unary Code (FU) protocol outperforms the Multiple Flags (MF) protocol 

and then the reverse is true. This is also a result of source addressing and can 

be seen by considering the two protocols at various throughput levels. 

At low throughput, the MF and FU protocols operate similarly, except that 

due to source addressing, the flags in the MF scheme are longer than the flag in 

the FU strategy. This accounts for the better performance of the FU protocol 

in the low throughput range. In the medium range, the mean delay of the MF 

protocol approaches that of the FU protocol, since the flag lengths become 

comparable. In the higher throughput, range the MF strategy outperforms the 

FU protocol because it requires message start bits only when the system is 

empty, an event whose likelihood diminishes with increasing arrival rates. In 

contrast, the FU protocol requires a message start bit at the beginning of each 

message. 

Finally, the last piece of evidence is the performance of the Repeat-Flag 
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Figure 4.7: Delay for 4 Protocols, Exhaustive Service; M= 4. 

(RF) protocol, which uses no special overhead to encode either an address or 

idle buffers. This strategy yields the lowe:'3t mean delay of all the protocols 

considered, in all but the very low throughput region. 

Figure 4.7 indicates that for very low throughput a slight improvement in 

mean delay can be obtained by employing relative addressing (FU); however, 

the improvement is marginal at best. 
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5. Comp~slon or TDMA(K1F) and Exhaustlv•RF. 

Our final observation is based on a comparision of the best of the fixed-frame 

strategies and the best of the variable-cycle strategies (that is, T D M A(K, F) and 

exhaustive-RF). Referring to Figure 4.8, one can see that the mean delay en­

velopes for TDMA(K,F) are either equal to or lower than those for exhaustive­

RF. Since each protocol uses a single flag to mark the end of a source tra.nsmis­

sion, the difference in the performance must be due to the due to the differences 

in the two service strategies. 

In order to explain the improved performance of TDMA(K,F), we first con­

sider some known results for single source systems. In [H) it was shown that 

·for a single source using a repetition of a single flag to mark an empty buffer, 

the delay is proportional to log ( ~ ), where 1-p is the probability of the source 

producing an idle character. In later work [23], a new strategy was developed, 

which was demonstrated to have a delay proportional to log log ( r:!:p ). The new 

strategy improved the performance of the system by reducing the frequency 

at which flags are required. This was achieved by inserting artificial work into 

the system at periodic points in time. The purpose of the artificial work was 

to allow the queue to build so that it rarely underflowed, thereby reducing the 

frequency of flag use. 

In the case of TDMA(K,F), the artificial work is replaced by the fixed period 

when the server is away from any one buffer. This absent period allows time 

for arrivals to occur, so that upon the next visit it. is unlikely that the buffer 

will be empty, and therefore unlikely that a flag will be required. In contrast, 

the exhaustive-RF strategy uses a flag each time a buffer exhausts. This is the 

reason for the beter delay performance of TDMA(K,F). 



Figure 4.8: Comparision of TDM-A(K,F) and Exhaustive--RF. 



c 

Chapter V: Conclusion 

L Summary ot Work 

The intent of this work was to provide a comparative study of centralised, 

multiple access protocols. We were primarily interested in the interaction between 

service policies and the protocol overhead required to convey to the receiver 

information concerning source addressing and message length •. This interac­

tion was evaluated by comparing the mean delays for a variety of service 

strategies and protocols. 

We began by analysing a set of protocols in which each source was periodi­

cally allocated a fixed portion of channel capacity. These protocols, dubbed 

fixed-frame strategies, required that buffer under:llows be encoded, but did not, 

however, require any explicit overhead for the encoding of message origins. This 

was due to the periodic and immutable nature of the allocation policy. Of the 

three protoeols we analysed, two required one slot in each sub-frame to encode 

idle information, while in the third, a :Hag was used to mark buffer underflows. 

The analysis of fixed-frame strategies consisted of computing the distributions 

of the number in the queue and delay. Also, stability criteria were given. 

By noting that fixed-frame strategies apportion bandwidth independently 

of the current state of the system, we were led to examine service policies that 

shared the resource more dynamically. The two we studied were gated and 

- !'iR-
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exhaustive service. In these schemes, the length of the service period allotted 

to each source depended on the amount of work in a buffer when the server 

arrives to it, and had a variable length. Consequently, it was necessary to include 

message length information along with each transmission. For all the protocols 

we examined, this was accomplished by means of a flag. Also because one or 

more of the buffers could be empty and because the channel was taken to be 

synchronous, it was necessary to provide for source addressing. This accounted 

for the differences in the four protoeols we considered. A mean delay comparision 

of these variable-cycle protocols was made using a combination of analysis and 

simulation. 

Also included at the beginning of our work was a chapter on flags which 

provided the background for the flag based protocols. Necessary conditions for 

unambigious decodability of flags were given, as were the equilibrium probabilities 

of insertion for flags and sets of flags. 

2. Summary of Major Results 

In our study of fixed-frame service strategies, we found that in the low 

throughput r:mge all three policies had comparable mean delays; however, in 

the high throughput range, the encoding of buffer underflows by inserting a 

flag into the data stream (that is, TDMA(K,F)) resulted in a substantially lower 

mean delay than either TDMA(K) or TDMA(K, U). The reason for the better 

performance of the flag strategy was that as the throughput increased, the 

avera.ge fraction of capacity expended on overhead in. TDMA(K,F) could be 

diminished at a faster rate than in either of the other two fixed-frame protocols. 

Our comparision of gated and exhaustive service showed that, regardless of 

the protocol, exhaustive service always yielded a lower mean delay. We gave 

evidence that this was due to the lesser amount of source addressing overhead 

expended in exhaustive systems. Futhermore, we found that the Repeat-Flag 

protocol resulted in the lowest mean delay of the four protocols considered, ex­

cept for very low throughputs. This was also attributed to a smaller expenditure 

of capacity on source addressing. 
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A comparision of the best of the fixed-frame protoeols ( TD MA(K, F)) and the 

best of the variable-cycle strategies (exhaustive-RF) showed that TDMA(K,F) 

gave a lower mean delay for all throughput values. This result wa.s attributed to 

the reduced variability of the TDMA(K,F) strategy, and consequent reduction 

in the amount of protocol overhead required to convey the desired information 

to the receiver. 
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Appendix 1: 

Proof of Theorem 3.1 

In this section we calculate the quantities necessary to complete the proof 

of Theorem 3.1. 

Lemma A1: 

Proof: 

Let X be a discrete random variable, then the steady-state mgf 

of the random variable defined by 

Y = aX- fJX(modK) 1 a, {3 rational, · 

is given by 

where Wr is defined as ei2Jrr I K. 

Since 

oo K-1 

= I': I': z(ai-p;) Pr{X = i,X(motlK) = f} 
•-o ;-o 

oo K-1 

= I: I: z(a(tK+;)-Pi} Pr{X = lK + i} 
1-o ;-o 

K-1 
= I: z(a-P)m 

m-0 !-multiple K 

~ I: ei2JrlfK = ' K-1 {1 
r-0 0, 

if l = nK, n = 0, 1, 2, ... ; 

otherwise; 

(Al) 

(A2) 

(A3) 

(A4) 
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K-1 oc K-1 
E[zy] = ~ :E z(a-Jf)m :E :E zaleibrl/K Pr{X = l +m} 

m.-0 t-or-o 

K-1 K-1 oo . • 
= ~ 2: 2: z(a-/l)m. ,:E za(i-mle•2li'(J- m)/K Pr{X = j} 

,_o m.-o ,_,. 

{f: zCtriei2ll'rifK Pr{X = j} _I: zariei2ll'rjfK Pr{X = j}} 
i-0 , .... o 

K-1 K-1 X 
= ~ :E :E z-{Jm6i2ll'rJJt/ K E[(zaei2ll'r / K f ] 

r-o m.-o 

(A5) 

By examining the indices r and j, we find that the second term of {AS) is 

equal to 0. Therefore, we have 

K-tK-l X 
E[zY] = ~ L L z-Pmei2ll'rmf K E{(zaei2ll'r / K) ] 

r-o rn-o 
(A6) 

Summing over m and substituting w, for ei2lfr I K gives 

Noting that w~K = 1 completes the proof. I 

Note: The result shows that the transform of a random variable which is the 

modulus of some other random variable is given by the sum of filtered, equi­

spaced samples on the unit circle of the original random variable's transform. 

This is a discrete version of the Poisson Summation Formula (9] and the sam­

pling theorm. 
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Corollary A1: 

The mean of the random variable Y = X(m.oaK) is 

given by 

Proof: Set a= 0 and fJ = -1 in (Al), compute the deriva­

tive with respect to z, and evaluate the result at 

z = 1. Since the term corresponding to r = 0 is in­

determinate, it must be separated from the other 

terms in the sum and l'Hopital's rule applied. 1 

(A7) 
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Appendix 2: 

Proof of Theorem 3.2 

In this section, we demonstrate the validity of the results contained in 

Theorem 3.2. We begin by calculating the steady-state mgf of the number in 

the queue at the beginning of the ith slot of a sub-frame N;. For convenience we 

repeat the state equations given in (3.2): 

N (n) - N(n) + A(n) (M)· 
K+l- K K+l ' 

U(n) . [N(n) u<'!l] ; =mm i-1• i-1' 

u<n) = 1. 
a 

i = 1, 2, ... , K; (3.2.3a) 

(3.2.36} 

(3.2.3c) 

i=1,2, ... ,K; (3.2.3d) 

(3.2.3e) 

We assume that there exists an equilibrium distribution and remove the 

superscript n; then by conditioning on the value of the server-state variable, u,, 
we can write 

We first concentrate on the second term of the summand. If U; = o, then for 

some j, i E {0, 1, ... , i -1}, N; = 0 and U; = 1 (i.e., the buffer in question emptied). 

Consequently, the number in the queue at the ith slot of the sub-frame will be 

the number of arrivals in [i, i), thus 
i-1 

E[zN1 jU; = 0] Pr{U; = 0} = L: E[zA(M)](i-j) Pr{N; = 0, U; = 1}, (,A.2.2) 
;-o 

where we have assumed the arrival process is identical in each group; that is 

A.;,...., A, for all i. 

Turning to the first term of (A2.1) and employing (3.2.3a), we have, for 

i E {1,2, ... ,K}, 

(A2.3) 
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But if u. =I, then U;-t = 1 and Ni-t > o; therefore 

1) E[z(Ni-t-Uf-tl+jU; = 1] = E[z(N;_1_
1)IU•-t = 1,N;-t > 0]; 

2) Pr{U, = 1} = Pr{Ni-1 > 0, U;-1 = 1}. 

Substituting these results in (A2.3) yields 

E[zN1 IU• = 1}Pr{[Ti =I} =,z-1E[zN1- 1 1Ui-1 = 1,Ni-l > OJE[z-4(M)]• 

Pr{Ni-1 > 0, U;-1 = 1}. 

Noting that 

1) E[zN;-liUi-l = 1} =E[zN1-'IUc-t = l,N;-1 > O]Pr{N;-1 > OIUi-t = 1} 

+ Pr{Ni-1 = OIUi-1 =I}; 

2) Pr{Ui-1 = 1, N;-t > 0} = Pr{Ni-1 > OIU;-t = 1} Pr{Ui-t = 1}; 

yields, for i E {1, 2, ... ,K}, 

{E[zN1
-

1 IUs-1 = Ij Pr{U; -1 = 1}- Pr{Ni-1 = 0, U;-1 = 1} }· 

(A2.4) 

(A2.5) 

Letting Pi:'o = Pr{N1_ 1 = 0, Ui-1 = I} and using succesive substitution, we 

obtain 

i-1 

- 'l: (z-t E[zA(Mln•-i P~~t; 
j=O 

however, U0 = 1, ID.P.l (3.2.3e); therefore (A2.6) is equivalent to 

i-1 

(A2.5) 

E[zN11Ui = 1] Pr{U; = 1} = z-1E[zA(Ml]E[zN°]- L: (z- 1 E[~(M)])i-i P~~b· (A2.7) 
j=-0 

Combining (A2.7) and (A2.2), we have that the mgf of the number in the 

queue at the beginning of the ith slot of a sub-frame is 

i-1 

E[zN1] = z-•E[z-4(M)]E[zN°J- L (P~~bE[~(Ml])1-i(1- z-(i-il). (A2.8) 
i-0 
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Taking the transform of (3.2.3b), using (3.2.3c) and rearranging terms, we 

find 

(A2.9) 

Setting i = K in (A2.8), substituting the expression for E[zNK], (A2.9), and 

rearrangement yields 

(A2.10). 

which is the first conclusion of Theorem 3.2 if we note that E[zA(M)K+lJ = E[zA(Tl]. 

By inserting (A2.10) in (A2.8), we obtain the second conclusion. 1 

Equation (A2.10) contains K"" constants, (P~:t i E {0, 1, .. . ,K- 1}), which 

remain to be determined. Using Rouehts Theorem , together with the fact 

that the mgf of a probability distribution function is analytic in the unit disc, 

one can show that the unknown probabilities satisfy the following set of linear 

equations: 
K-l 

I: P~~~ E[Oi"(-iM)](Of- o1) = 0, i: 1,2 ... ,K -1; 
i-0 

K-1 

I: (K- j)P~~h =K-T>..; 
j=O 

where e,, i E {0, 1, .. . ,K -1}, is the i•a root of the characteristic equation, 

:!' - E[zA(T)] 

lying within the unit disc, lzl $ 1, with 00 = 1. 1 

Because the arrival process is an independent-increment process, we are 

able to interpolate between the ith and (i + l)th mgf. Performing the calculations 

(identical to those of§ 3.1) and defining Ni(t) as the amount of work awaiting 

transmission at an instant iM + t, t E [0, T), within a frame, gives 

Nl(t) - E[zN•+I(t)]E[zA(t)J. 
E[z ] - E[zA(MlJ ' i:O,I, ... ,K. (A2.14) 



c 

The average number in the queue, as seen by an average arrival, is computed 

according to the following formula: 

11T 1 K (M 
N = T 

0 
E[N(t)]dt = T f.; lo E[N,(t)]dt; (A2.15) 

where 

E[N,(t)J = i.[E[zN,(t)J] 
dz z =I. 


