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Abstract

The fol1owing generalization of Hardy's inequality is due to 1. Klemes (6] (1993);

"There is a constant c > 0 such that for any function f E LI (1'),

The proof was based on an elegant construction t (L. Pigno and B. Smith [11]), of a

certain bounded function whose Fourier coefficients have desired properties.

The chief object of this thesis is to record another proof of the above result by

using the construction that was originally used to prove the Littlewood conjecture [8].

In addition, a proof is given that the same generalization is equivalent to another one

involving the norm of the Besov space B;:/2 .
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Résumé

La généralisation de l'inégalité de Hardy obtenue par I. Klemes [6] (1993), est donnée

par

"n existe une constante c > 0 telle que pour toute fonction f E LI ('lr),

La démonstration de ce résultat repose sur l'élégante construction, ( L. Pigno et B.

Smith [11]), d'une certaine fonction bornée dont les coefficients de Fourier ont des

proprietés désirées.

L'objectif de cette thèse est de donner une autre démonstration du précédent

résultat utilisant cette fois une construction intervenant dans la démonstration de la

conjecture de Littlewood [8]. De plus, une équivalence entre l'inégalité ci-dessus et une

inégalité impliquant la norme de l'espace B;~/2 de Besov est donnée.
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•
Introduction

In 1927, G. H. Hardy proved in [3] that there is a constant c > 0 sucb that for any

function f E H1(T),

f. Ij~)1 ~ cil/lit·
n=l

Hardy's inequality, however, is not true for all functions f E LI Cf). A simple counter

example of that is the Fejér kemel. In view of the foregoing, many mathematicians are

trying to generalize it for the whole space LICIr). For instance, 1. Klemes in [6], where

he was referring to [13]-, remarked that the following generalization is a well-known

open problem:

f: Ij~ll ~ cil/III +f: Ij(:nll ,
n=l n=I

f E LI ('Ir). (0.1)

•

To the best of our knowledge, this is still an unsolved conjecture, at the time of writing.

On the other hand, many mathematicians succeeded to generalize the inequality

in other ways. As a good example, in 1981, the Littlewood conjecture, concerning

the LI-norm of exponential sums, was proved in [8] as a consequence of a special

generalization of Hardy's inequality. The proof of that generalization was based on a

very clever construction of certain bounded functions with desired Fourier coefficients.

Two years later, J. J. F. Fournier [2] gave three other constructions that play the same

role as the one given in [8}.

In 1993, 1. Klemes [6] proved, by using one of those constructions, what we caU

here the mixed-norm generalization of Hardy's inequality. It says: "There is a constant

·V. Peller and S. Khrushchev in [la, §3.6] is an earlier reference ta this conjecture.

1
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c > 0 such that for any function f E L l (1'),

2

•

He aIso remarked that, with some modifications, the other three constructions (includ­

ing the one in [8D would aIso work there.

In chapter 2 of this thesis, we have "re-proved" the mixed-norm generalization of

Hardy's inequaIity by using the construction established in [8], after some modifications

of course. There, we have proved aIso that the same generaIization is equivalent to

another one involving the norm of the Besov space B;~/2. Then, we have found that

there is a similarity between the mixed-norm generalization of Hardy's inequality and

a theorem due to V. Peller and S. Khrushchev [10] in the reconstruction problem on

Besov spaces (in case p = 2 only).

Chapter 1 contains a briefsurvey of two famous generaIizations of Hardy's inequality

that are "related" to the thesis' subject; one of them has been aIready mentioned in

this introduction. In addition, we have stated the construction used in [8] and the

other three constructions given in [2], for the sake of completeness.

Chapter 0 is devoted to recall and explain shortly some of the basic facts and the

preliminaries that we have used in this thesis.

"tVe should note here that throughout this thesis aIl the variables and indices are

assumed to he integers unless otherwise stated.
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The set of al! p-integrable functions on T.

={f E Lp(T) : j(n) = 0 Vn < o}.
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Chapter 0

Preliminaries

NIany basic facts and well-known concepts are used throughout this thesis. As a prepa­

ration, we explain them briefly in this chapter. Proofs and more detailed accounts of

these facts can be found in [5], [12] or [1].

Terminologies

As usual, let 'r = lR/21rZ be the unit circle. The functions on T are identified with

the 27r-periodic functions on IR; hence, the Lebesgue measure on T can be defined by

means of this identification.

The most important property of the Lebesgue measure on 'lr is its translation in-

variance, Le.

hf(t - Tl dt =hf(t) dt, TET.

Also the Lebesgue measure on T is a finite measure with total mass equal to 21r.

Lp-spaces on ']['.

For 1 ~ p < 00, and function f on 'r, set

5



The Lp-space on 'JI', denoted by Lp('Ir), is the set of all complex-valued functions 1 on

'JI' such that II/l1p < 00. Furthermore, the LOCI(T) is defined to be the set of all bounded

complex-valued functions on T with the norm

•
Preliminaries 6

•

11/1100 = sup I/(t)l·
tET

It is well-known that Lp(T), 1 ~ p ~ 00, with the norm defined above, is a Banach

space in which the functions are identified with almost every where equivalence. We

should aiso mention that L2 ('Ir) ç Li ('JI') , which follows from the Cauchy-Schwarz

inequality, and that the Lebesgue measure on T is finite.

Trigonometrie Polynomials.

A trigonometric polynomial on 'Ir is a finite sum of the fonn

N

I(t) = L aneint , t E 'JI',
n=-N

where an E C. Notice that the trigonometric polynomials are bounded functions;

consequent1y, they are in Lp ('JI') , 1 ~ p ~ 00.

Convolutions.

If /,y E L1(T), then the convolution of f and g, denoted by / * g, is defined by

f *9 (T) = 2~i f(T - t)g(t) dt, TET.

The convolution operation in Li (T) is closed, commutative, associative and distributive

(w.r.t. the addition).

Kernels.

A summability kemelon Tisa sequence {PN } of continuous functions on 'JI' such that:

1) 2~ JPN (t) dt = 1 'ri N;
T
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2) IIPN lIl:5 À 'ri N, for some constant À;

3) for all 0 < e5 < 'Ir,

1
21r- O

lim IPN(t)1 dt = o.
N-+oo 6

If 1 E LI (T), and kn is a kemel, then kn *1~1 in the LI-norm.
n

7

As far as we are concerned in this thesis, the best servant and the most usefui kemel

is the Fejér's kernel {KN } ~, which are trigonometric polynomials defined by

K (t) = {-. (1 - Inl ) eint t ET
N ~ N+1 ' .

n=-N

An important property of the Fejér kemel is that K N 2: 0 'ri N 2: 1; and hence,

IIKNlh = 1 'ri N 2: 1.

Fourier Series on 1f

For any 1 E LI (T), the Fourier coefficient of 1 at nEZ is defined by the formula

AIr . t
I(n) = 211" lT I(t)e-

m dt.

Notice now that for N 2: 1, 0 < KN(n) = (1 - .J~l) :5 1, -N :5 n :5 N, and

KN(n) = 0 elsewhere.

The set of all functions 1 E Lp (T) such that Î (n) = 0 'V n < 0 is the Hardy space

Hp(T).
00

The Fourier series of 1 E L1(T) is the trigonometric series I(t) ~ L: Î(n)e int •
n=-oo

The Riesz projections (P+ and lP_) of 1 E LI (T) are defined by

(P+/)(t) =L j(n)eint
,

n>O

and (P_/)(t) = L j(n)eint
,

n<O

t ET.

•
Next we state sorne remarkable properties of Fourier coefficients.

Proposition 0.1. Let 1, 9 E L1(T), and nEZ, then- ...1) (f + g)(n) = I(n) + yen).



•
Preliminaries

2) For a E C, (;j)(n) = aj(n).

3) If J(t) = f(t), then 1(n) = ~j(---n-). In particular, if f E L1('f) is a real­

valued function, then j(n) = Î( -n).

4) If mE Z, and h(t) = f(t)e imt
7 then ken) = j(n - ml .

..-... ..
5) (f *g)(n) = f(n) yen).

For a proof of the following theorems see [5, p. 29] or [12, p. 85].

8
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Theorem 0.1. If f E L2('f), then the Fourier series of f converges to f in the

L2 -norm.

Theorem 0.2 (Riesz-Fischer). If {en} is a sequence of complex numbers such that

n=-OC)

i.e. {en} E e2(z),' then there exists an f E L2 (T) such that j(n) = en V nEZ.

Theorem 0.3 (Parseval). If f, 9 E L2 ('r), then

2~1/(t) g(t) dt = f: Î(n)g(n);
T n=-oo

-in part'iC'ular,

(
OC)) 1/2

11/112 = n~<XlIÎ(nW = IIÎll t z(z)"

Conventions:

• It is worth-noting that throughout this thesis (and for convenience), we are going

ta use IIfll l 2(..7) instead of IIÎlI l :z(..7)7 whenever 3' is a set of integers; that is,



• If n and m are integers, then we let [n, ml to be the set of all integers k sucb that

n ~ k ~ m. Similarly, [n, m), (n, m] and (n, m).

• For f E LI CIr), the spectrum of j, denoted by spec(f), is defined by

•
Preliminaries 9

•

spec(f) = {n E Z : Î(n) -# a}.

The next lemma contains sorne well-known facts about the spectrum of f. The fifth

fact in this lemma is already stated in [8, p. 614], but without a proof; and since we

are going ta use it later to prove the main result of this thesis, we record its praof now.

Lemma 0.1. Let f,g E L2(T), then

1) spec(of) = spec(f), Ct E C, Ct -# o.
2) spec(f + g) ç spec(f) U spec(g).

3) spec(f *g) = spec(f) n spec(g).

4) spec(f g) ç spec(f) + spec(g).

5) Ij spec(f) ç (-00,0], and Rej E Loo(T), then spec (el) ç (-00,0].

Proo!. Remembering Proposition 0.1, (1), (2) and (3) become obvious.

(4) The strategy of the praof here is to find a sequence of functions {PM} snch that

and spec(PM ) ç spec(f) + spec(g) 'V 1\11. So if nEZ, and n ~ spec(g) + spec(f),

then n ~ spec(PM ) 'V kl. Consequently, (PM )(n) = 0 'V M, which implies that

(jg)(n) = 0; Le. n ~ spec(fg). We do that as follows.

First, by Proposition 0.1 (4), if mE Z, we have

n E spec(g(t)eimt ) {::::::} y(n - m) # a
{::::::} n - m E spec(g)

{::::::} n = n - m + m E spec(g) + {ml;

hence, spec(g(t)eimt ) = spec(g) + {ml .
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Next, let
M

SM(t) = L Î(m)eimt
, 1\;/ ~ l, tE 1r.

m=-M

Then, by the above result and (1) and (2) in this lemma, we get for Al ~ l,

spec(SM g) - spec C~M9(t)Î(m)e
imt

)

ç m=~M spec (g(t)Î(m)eimt
)

- m=~M spec (g(t)j(m)eimt
)

mEspec(f)

- t5 spec (g(t)eimt
)

m=-M
mEspec(f)

M
- U spec(g) + {ml

m=-M
mEspec(f)

- spec(g) + ~ {ml
m=-M

mEspec(f)

spec(g) + 00

{mlC U
m=-oo

mEspec(f)

- spec(g) + spec(f).

la

•

NoW', br Ineq. 4 (on pagc 16), the Cauchy-Schwarz incquality and Theorem 0.1,

So, by letting PM = SM g, the proof of (4) is done.

(5) Consider K N */, N ~ 1, where K N is the Fejér kemel of order N. First, note that

Re(KN*f) - Re(KN*(Ref+iImf))

- Re(KN*Ref+iKN*Imf)

- K N *Ref,

because K N are real-valued functions; in fact, they are ~ O.



•
Preliminaries

Now, since ReJ E Loo('Ir), then for N ~ l, and t E T,

Re(KN * f) (T) - K N *Rel (T) = 2~1KN(T - t)Re/(t) dt

(*) 1 r
< 27r fT KN(r - t)IIReflloo dt

- liRe/lice < 00,

where we have used in (*) the fact that K N ~ 0 V N ~ 1.

Consequently, since the e..xponential function is an increasing one,

Il

•

Now since f E L 2 ('Ir) ç LI ('Ir), then KN*f ----;(' f in the L1-norm; and hence there

exists a subsequence {KNI *1}:1 such that

K NI *1 (t) ---+ I(t) a.e (T).
l

Thence,

eKNI*f(t} --+ ef(t} a.e ('Ir).
t

Therefore, by (0.1) and the dominated convergence theorem, we obtain that

But since for nEZ,

then we have
~ -

(eKNI*/) (n) ---+ (ef)(n) 'ri nEZ.
l

Following the same idea as in (4), we need now only ta show that

To see that fix N > 1 and write en = KN(n)j(n), for canvenience. Since

spec(f) ç (-00,0], then

o
K N * f(t) = L eneint

, tE T.
n=-N
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From (4) in this lemma, we have for aIl N ~ l,

spec (eKN'/(I») = spec CgN ec••••• )

o
C L spec (ecneint) , tE ']l'.

n=-N

Now fix n E [-N, 0], and define for /vI ~ 0,

HM(t) = t (Cnei~l)m = t c::'e
inml

• t E T.
m=O m. m=O ml

12

(0.2)

Then, by (1) and (2) in this lemma and bearing in mind that n E [-N, 0], we have for

ail M ~ 0,

spec(HM ) ç tJ spec (c~ei~mt)
m=O m.

ç tJ spec(einmt
)

m=O
M

- m~o{nm} ç [niVI, O] ç (-00,0].

But since 0:5 Î<N(n) :5 l, then lenl:5 IÎ(n)l; hence

(0.3)

<

•

Therefore,

which yields that for ail k E Z,

IHM(k) - (~)(k)1 < IIHM(t) - eCneintlll

< IIH&[(t) - eCneint 110) &i O.

Using the strategy in (4), we get the following. If k rt. (-00,0], then (0.3) yields

that k ~ spec(HM) 'ri !vI ~ 0; and hence, by the last result, k rt. spec ( ecneint) .

Therefore, spec (eCneint) ç (-00, 0] .



Since n E [-1V,OJ is arbitrary, then spec (een
eint

) C (-oo,OJ V n E [-N,DJ.

Substitute back in (0.2), we obtain•
Preliminaries

By this we have proved more than enough.

Besov Spaces

13

Q.E.D.

Next we turn our attention to the definition of the Besov spaces, which play an essential

role in reformulating the main result of this thesis. The following description of the

Besov spaces is mentioned in the introduction of [10J.·

The definition involves convolutions with special kernels Wn , nEZ; and 50 we need

first to describe them. For n > 0, Wn is defined to be a trigonometric polynomial such

that Wn is a linear function on the intervals [2n - 1, 2n J and [2n , 2n+1], Wn (2n ) = 1,

and Wn =a outside (2n - 1, 2n+1). From that, l'Vn = W -n for all n < 0; and finally,

~Vo(t) = e-it + 1 + eit, t E T.

To be more precise, take for n > 0,

{

KA (2n k) k-2n
-

1
'ln-l_l - = ~:

Wn(k) = K2n_l(2R - k) = 2n~~-k;

0;

k E (2n - 1.2n
]

k E [2n ,2n +1] ,

otherwise

(DA)

•

let l'Vn = W -n for n < 0, and Wo(t) = e-it + 1 + eit, t E T.

Then, we record the following properties of Wn •

Proposition 0.2.

1) °$ Wn(k) $ 1, n, k E Z.

2) Wn(k) = Wn(k) = W-n(-k), n, k > O.

3) Wn(k) + Wn- 1(k) = 1, n > 0, and k E [2n - 1, 2n J.
-For other equivalent definitions and abstract results about the Besov spaces, see J. Peetre, New

thoughts on Besov spaces, (Duke Univ. Math. Ser. 1), Duke Univ., Durham, N.C., 1976.
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4) Wn(k) + Wn-1(k) = 1, n < 0, and k E [-2-n, _2-n
-

1
].

5) For n > 0, and k E [2n
-

1, 2n
],

14

•

Prao!. The first four properties are easy ta prove.

(5) Fix n > 0 and k E [2n - 1,2n ]. Let a = Wn(k) and b = Wn-1(k). Then ,by (3),

a + b = 1. If one of them is equal to zero or a = b = ~, then we are done; so we may

assume that 1 > a > ~ > b > O. Now, since a + b = ~ +~, then a - ~ = 4- b.

Since a > b, then a(a - ~) > b(t - b); hence a2
- ~a > ~b - b2

; and therefore,

a2 + b2 > t(a + b) = ~. Q.lE.D.

Definition 0.1. For p ~ 1, q < 00 and s E IR, the Besov space B;q is defined ta be

the set of aIl functions f E Lp (1') such that

It should be noted here that in the last chapter of this thesis, where we rnake use

of the Besov space Bi:rz
, we will be referring to this important section.

Useful Inequalities

Although we have already used sorne of them in this chapter, we find it more helpful

to state sorne of the well-known inequalities that we are going to use later in the proof

of many results in this thesis. The first four inequalities are proved; and references,

where proofs can he found, are given for the others.

Ineq. 1. If a and b are non-negative real numbers, then
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Prao!. Just notice that for a, b ;::: 0,

2Jab ~ (.;0. - v'b)2 + 2 Jab = a + b,

consequently,

Ineq. 2. Let x be any real number such that 0 :5 x :5 ~, then

In(l - x) ;::: -2x.

Prao!. This is easy. In fact, if 0 ~ x :5 t, then

oc xk x2 oc 2xk

-ln(l - x) = '" - - x + - "'--
f::k- 2~k+2

oc

< x+~Lxk
k=O

x 1
- x+-·_­

2 l-x
x

< x+2'.2=2x.

Another proof can be given by using the mean value theorem.

Ineq. 3. For aU zEe with Rez;::: 0,

15

Q.E.D.

Q.E.D.

•

Prao!. First the inequality is trivial if z = 0; sa assume that z i= O. Consider the

function fez) = e-:-l, Z i= O. Note that fez) is bounded on Rez;::: O. Indeed,

oc (_l)kZk-l .
fez) =L k' ,and lim fez) = o.

k=l' 1.:1-+00

Hence, the maximum modulus theorem applies on Rez;::: O. But if z = iy, then

leiy
- 11 = leiy

/
2

- e-iy
/
2

1 = 21 sin(y/2)1:5 2/y/21 = Iyl = liyl·



•

•

Preliminaries

Therefore, on Rez ~ 0,
lez -- 11 leiy -- 11

1 1
::; sup l' 1 ::; 1.z yeR ~y

Ineq. 4. If 1 E Li (T), then for aU nEZ,

IÎ(n)1 ::; II/l1b

moreover, if / is also bounded, then

IÎ(n)l ::; II/Ill ::; 11/1100'

Prao!. Just consider this

IÎ(n)1 < 2~ Ir I!(t)lleint
l dt

- 2~ Ir I/(t)1 dt = 1I/1i1

< 2~ Ir 11/1100 dt = 11/1100.

Ineq. 5 (Cauchy-Schwarz). 1/ l, 9 E L2 (T), then

Prao!. See [12, p. 63].

Ineq. 6. If /, 9 E L l (T),

III *glh ::; II/lh IIgllt·

Prao!. See [5, p. 4].

Ineq. 7 (Young). If f E LI ('11.') and 9 E Lp(T), 1::; p ::; 00, then

Prao!. See [l, p. 232].

16
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(1.1)

•

•

Chapter 1

Generalizations of Hardy's

Inequality

An inequality ofG. H. Hardy and J. E. Littlewood ([4],1948) states that if 1 < p :5 2,

f E Lp(T), and if

- - - - -
IÎ(O)I,IÎ(I)1, IÎ(-l)l, IÎ(2)1, IÎ(-2)1, ...

is the sequence of IÎ(n) 1 arranged in descending order of magnitude, then there is a

constant ap > 0 depending on p such that

(L (InIIJ~~~~_2) IIp ~ a" Ilfllp.
nEZ

It is reported aIso in the same paper that the inequality is not true for p = 1. However,

as we mentioned in the introduction, Hardy's inequality ([3], 1927) states that there is

a constant c > 0 sucb that for ail f E Hl (T) = {f E LI (T) : P_/ = o},

f: Ij~)1 ~ cll!I";
n=l

and it is well-known that this inequality is not valid for ail f E LI (T).

This chapter is devoted ta expose briefly two well-known generalizations of Hardy's

inequality that are ''related'' to the mixed-norm generalization (rheorem 2.1, p. 23).. The

17



two generalizations were actually stated in terms of finite complex Borel measures on

'Ir, but in order to serve the thesis' subject, we "restate" them for functions f E LI('Ir).•
Generalizations of Hardy's Inequality 18

•

The generalized Hardy's inequality of

McGehee, Pigno and Smith

The truth of the well-known Littlewood conjecture, concerning the LI-norm of expO­

nential sums, was established in 1981 by the team of Q. C. McGehee, L. Pigno and B.

Smith [8] as a special case of the following generalization of Hardy's inequality·.

Theorem 1.1. There is a real nv.mber c > 0 sv.ch that given any set of integers

S = {nt, n2'···} ç Z and f E LI ('Ir) sv.ch that nI < n2 < ..., and spec(f) ç S, then

f: IÎ(;t)1::; c II/lit-
k=1

The proof of the theorem was remarkably simple and was based on a clever con-

struction of bounded functions whose Fourier coefficients have "desired" properties. To

clariCy the idea, we explain here how the authors formed the construction.

Let {Sj};:l he the partition of S such that card(Sj) = 4j and So = {nI},

SI = {n2, n3, n4, ns}, S3 = {n6'···' n21}, and 50 on. Define trigonometric palynO­

mials fi' j = 0, 1,2,···, sucb that

1) Îj(n) =0, if n ~ Si;

2) IÎi(n)1 = 4-j if n E Sj;

3) Î i j ? o.
00

\Vrite Ifil = E aneint
, and define for j = 0, 1, 2, .. "

-00

hj(t) = ~ (aD + 2~a"eint), tE T.

-The Littlewood conjecture was aIso proved independently by S. V. Konjagin (S. V. Konjagin, On

a problem of Littlewood, l\iIath. U.S.S.R. Izvestia Vol. 18 (2) (1982), 205-225 [translation of Izvestia

Akad. Nauk U.S.S.R., Ser. Mat., 45 (2) (1981), 243-265D. However, according to [2}, it seems that

Konjagin's proof does not contain any generalization of Hardy's inequality.
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Then the construction was defined inductively as follows:

19

1
Fo - 5fo ;

F h' If- ·e- )+1 + - '+11 5} , j = 0,1,2", '. (1.2)

After that the authors pursued and showed that the above construction satisfies

the following crucial features:

1) IlFilloo:=; 1, j ~ O.

2) If n E Sj, 0 :=; j :=; m, then

l" 1" 1 1"
1Fm (n) - 5fj (n ) :=; 101fj (n) 1·

3) If nk E Sj, 0 :=; j :=; m, then

(
"") IÎ(nk)lRe Fm f (nk) 2: 30k .

In 1983, J. J. F. Fournier [2] reported three different constructions that play the

same raIe and satisfy the same properties as the construction (1.2). These constructions

are as follows

1) It should be mentioned that this construction was actually established by L. Pigno

and B. Smith in [11] for a related purpose. Let a< a < ~, and define inductively

Fo - 1;

(
2 2) - 2Fj+1 - afj+l + 1 - 4a Ifj+ll Fj - afj+1Fj ,

2) Let 0 < a < 1, and define the construction by letting

j = 0, 1,2,···. (1.3)

•

Fa - 0;

Fi + afj+l
Fi +1 - , j = 0,1,2" . '. (1.4)

1 +afj+1Fj

3) Let 0 < a < 1. Since the function log(l - alfj+d) is integrable, then there is an

outer function' Gj +1 such that IGj+tl = 1- alfj+d and

Gj+l(O) = exp (2~hlog(l- alli+d) dt) .
'For a definition of outer function see [12, p. 342].
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Then define the construction as follows:

Fo - 0;

Fi+l - Gi +1Fi + afj+b j = 0, 1,2, ....

20

(1.5)

The mixed-norm generalization of Hardy's inequality (Theorem 2.1, p. 23), as we

mentioned in the abstract, was already proved by 1. Klemes [6] in 1993. The proof

depends mainly on building a certain trigonometric polynomial F that satisfies the

following:

1) F E Loo(T).

2) There is a constant c > 0 such that

j ~ 1.

3) If fj, j = 1,2, .. " are defined by either fj = 0, if Î(n) = 0 'if n E [41- 1
t 4i ),

or otherwise by

then

Î(n)e int
, tET,

j ~ 1.

•

The trigonometric polynomial F was formed via using the construction (1.3); how­

ever, 1. Klemes remarked in the same paper that the other three constructions, we

mentioned above, and "with sorne modifications (such as convolving with Fejér kemel

at each step), each of them would also work here" .

It is well-known (as noted in [6]) that the mixed-norm generalization is much

stronger than Hardy's inequality if f E Hl (T), because
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for sorne constant b > O. In fact, via the Cauchy-Schwarz inequality, we have

n

hence,

This fact can also he infered from [9 7 p. 223].

Hardy's inequality and the Besov spaces

21

In [10, 53.6], V. V. Peller and S. V. Khrushchev treated the reconstruction problem in

the space of aIl finite complex Borel measures on 1'. The problem consists in finding

conditions on X such that if J.L is a finite complex Borel measure and lP-J.L EX, then

J.L EX. In this section, we are going to display another well-known generalization of

Hardy's inequality, which is stated in this paper as a corollary of a theorem on the

reconstruction problem. Again for the sake of the thesis' subject, we are going to

expose the results in terms of functions f E L l ('lI').

Theorem 1.2 (Peller-Khrushchev). Let 1 < P < 00 and f E L 1(1'). Then

•
lP f E B-l/p' ==> f E B-1/P'- pp pp ,

where p' = JL..p-l

(1.6)



Applying the definition of the Besov space B;i/p
' for p = 2, the theorem gives the

following generalization of Hardy's inequality.•
Generalizations of Hardy's Inequality

Corollary 1.1. If 1 E L 1(T), then

f IÎ(~nW < 00~ f IÎ~W < 00.

n=l n=l

In addition, it is remarked in the same paper that if s E Z, then

L
oc IÎ(_n)12

S Loc IÎ(n)12"
..;..;.....;.-~ < 00 ==> < 00.

n n
n=l n=l

22

(1.7)

•

It is an open problem to find numbers s ~ ~ for which (1.7) holds. For s = ~, (1.7)

becomes (0.1).

P. Koosis Uointly with S. Picorides) in [7] gave a new simple and elegant proof of

Corollary 1.1; in fact a stronger result.

oc - :z
Theorem 1.3 (Koosis). IllE L1(T), and L: If<:)1 < 00, then

n=l

It should be noted here that we will he referring to this crucial section at the end

of chapter 2.
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Chapter 2

Mixed-Norm Generalization of

Hardy's Inequality

The objects of this thesis are achieved here. The mixed-norm generalization of Hardy's

inequality, which is the main result, is proved first. In the next section, we prove that

the main result can be expressed using the norm of the Besov space B;~/2.

Main Result

Theorem 2.1 (Klemes). There is an absolute constant c > 0 such that for aU

functions f E LI (T),

(2.1)

•

Prao!. First, it is easy ta see that if the theorem is true for al! trigonometric polyno­

mials in L 1cr), then it is aIso true for aIl functions f E Ld'lr). Indeed, suppose the

inequality (2.1) is true for all trigonometric polynomials in L 1(T) with sorne absolute

constant c > 0 and let f E LI (T) he any arbitrary function.

23



Consider K N *1, N ~ 1, where K N is the Fejér kemel of arder N. Since for all

N~ 1,•
lvlixed-Norm Generalization of Hardy's Inequality

N

K N *1 (t) = L KN(n) j(n) eint
,

n=-N

and

then K N *1 is a trigonometric polynomial in Lielr) TI N 2: l.

Therefore, KN *1 satisfies the inequality (2.1) 'V N 2: 1; Le.

24

•

where I j = [4i - 1, 4i ).

Now, recall that 0 S Î<N(n) S l 'V N 2: 1, and 'V nEZ. Hence, for aIl M, N 2: 1,

we have

RM(NJ ._ t (4-i~ [kN(nJfIÎ(nW) 1/

2

< ~ (Çi~ [kN(nJfIÎ(nW) 1/2

< cllKN * Jill +c~ (4-i~ [kN(-nJf IÎ(-nW) 1/2

~ cllflll+ct (4-i~IÎ(-nW)1

/

2.

Since RM(N) is a finite SUIn for aIl N 2: 1 and [KN(n)] 2 ft 1 TI n E N, then

'V }.II 2: 1,
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Hence, our claim now follows directiy because

25

Having proved that, we can proceed naw to complete the proof of the theorem,

assuming that f E LI (1[') is a trigonometric polynomial. Say

4J -l

f(t) = L: j(n)eint
,

n=-4J +l

t E 1[',

where J is the smallest non-negative integer sucb that spec(f) ç (-4J , 4J ). Since

o~ cll!lll is true for c> 0, then there is nothing ta say when J = o. Hence, we can

assume also that J ~ 1.

For convenience, write an = j(n), nEZ.

Define trigonometric polynomials <Pi' j = 1,· .. , J ., by

o; if an = 0 V n E Ii

otherwise

tE T, (2.2)

•

where Ii still denotes the interval [41-1,41).

For the time being, assume that the following proposition and theorem are true.

Proposition 2.1. For nE N, define

where j is the unique integer such that n E Ii = [4i - l , 4i ), and K(f), /rom now

and on, denotes K 20 4l_3 , the Fejér kernel of order equal ta 2 ·4l - 3. Then Bn is

well-defined and Bn > 1/4.

-In this chapter, i is just an index which may have different limits in different occurrences.



Theorem 2.2. There exist absolute constants Cl, C2 > 0 and a trigonometric polyno­

mial F with the following properties:•
Mixed-Norm Generalization of Hardy's Inequaiity 26

(2.3)

(1) IIFlloo:5 Cl;

(2) (E IF(-n)l2) 1/2 :'> C24-i/2, j ;::: 1;
nEfj

(3) for 1:5 j :5 J, (E IF(n) - bn~i(n)12) 1/2 :'> k4-i/2,
nEfj

J ;,
where bn = fi K{l)(n), n E Ii = [4i - l

, 4i ).
l=i

Then the proof of the main theorem continues by using a standard duality argument

as follows.

Consider the function F obtained from Theorem 2.2. Sînce IIFlloo ~ Cl, then we

have

cdlflll ;::: I!FII"" Ilf(tH ::
T

> IIF(t)llf(t)1 ::
T

1- dt
> F(t)f(t) 21r •

T

Notice that since f and F are trigonometric polynomials, and 50 in L2 (T), then, by

Parseval's theorem, we have

1F(t)f(t) :: = f j(n)F(n).
T n=-oo

Recalling that an = j(n) and substituting in (2.3), we get

cdlflh > aoF(O) + L anF(n) + L anF(n)
n>O n<O

> LanF(n) - aoF(O) + L anF(n)
n>O n<O

• > LanF(n) - (IooF(o)1 + LanF(n) ), (2.4)
n>O n<O
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where we have used the triangle inequality in the last two steps.

Now notice that Ip(O)1 = IF(O)' :5 IJFlloc :5 Cl, and laol = Ij(O)1 ~ 11/111.
Hence, rewriting (2.4), by using the above information, we get

27

LanF(n) :5 cllI/lIl + 'aoF(O) ' + LanF(n)
n>O n<O

< cdlflh + cdl/lh + L lanllF(n) 1
n<O

oc
- 2clII/II1 + L L la-nIIF(-n)1

;=1 nElj

< 2cdlflll +~ [ (~la_nI2) 1/2 (~IF(-nw) 1/2]

( r/2
< 2cdlflll + C2~ 4-j~ la_nl

2 , (2.5)

where we have used the Cauchy-Schwarz inequality and Theorem 2.2 (2) in the last

two lines, respectively.

On the left-hand sicle of (2.5), we have

•

~ anF(n) - ~ (~ anF(n))

~ ~Re (~anF(n)) .
Now fix j ~ 1. If an = 0 't/ n E lb then

li an i= 0 for sorne n E Ii, then we next prove that

(2.6)

(2.7)



First, since for n E Ii' 0 < Kl(n) < 1 'V e~ j, then, by using Proposition 2.1,• we obtain that
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(2.8)

Also, notice that

(2.9)

Renee, using (2.8) and (2.9) t we get

L bncPi(n)cPi(n) = L bnlcpj(nW > ~1I'Pjll~ = ~4-j. (2.10)
nE/j nE/j

Therefore, we obtain

•

where we have used (2.10) and the Cauchy-Schwarz inequality in the last two lines,

respeetively. Using Theorem 2.2 (3) and (2.9), the last estimate becomes

Re (L epj(n)F(n)) > ~4-j - çi/2 . ~4-i/2 = ~4-j.
nEfj

Now, since
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then via using the last estimate

Re (L: anP(n))
nef;

From (2.6), (2.7) and (2.11), we get

29

(2.11)

(2.12)

Finally, collecting estimates (2.5) and (2.12), and recalling that an = Î(n), we have

Letting c = 8max(2cI, C2) = 1024, the proof is done. Q.E.D.

•

Now, we need only ta prove the above Proposition 2.1 and Theorem 2.2. Before we

do that, it is very useful ta compare the above proof and the original one given by 1.

Klemes in [6]. Both proofs have used the standard duality argument after constructing

a certain trigonometric polynomial F whose Fourier coefficients have desired properties.

One can notice that the difference between the two proofs is mainly due to the constants

bn in Theorem 2.2 (3), which lead us, naturally, to their definition. The Fejér kernels,

used to define bn , come from the construction of the trigonometric polynomial F and

this is the departure point ta the proof of Theorem 2.2.

I. Klemes in [6], as mentioned in chapter 1 page 20, constructed his F by using

the recursive sequence (1.3). However, we, in the following proof of the existence of

sucb F, are going to use another different construction, namely the recursive sequence

(2.14). This construction is just a version of (1.2), the one used to prove the Littlewood

conjecture [8]. The modification is mainly the convolution with Fejér kernels of certain

orders. One now can understand the reason behind the definition of bn .



The most important property of bn is their absolute lower boundedness, and here

comes the henefit of Proposition 2.1.

Praof of Proposition 2.1. Fix n ~ 1, choose j snch that n E [4i - 1
, 4i ), and

define

•
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L? j.
L

{3L(n) = IIK(l)(n),
l=j

since 0 < K(l)(n) < 1 'V e~ j, then {,8L(n)}~=i is a decreasing sequence, hence

Bn = Hm {3L (n) exists and is well-defined.
L-+oo

Since K(t)(n) > 0 "if e~ j, then we can write

fh(n) = exp (~In (K(t) (n)) ) .

Naw, we recall Ineq. 2 on page 15, that is for real x, 0 $ x $ ~,

•

In(l - x) ~ -2x.

Since far e~ j, K{l)(n) = (1- 2.4?-2)' and

n 4i -1 10< < _ -
- 2 ·4l - 2 - 2(41 - 1) - 2'

then for L ~ j, Ineq. 2 gives

L

L ln (K(l) (n)) =
l=j

>

(2.13)
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Since eX is an increasing function, then

Ih(n) = exp (tin (K(l) (n)) ) ~ e-4
/
3 > ~ If L ~ j.

Hence, we get Bn = Hm !3L(n) > -4
1

.
L-+oo

31

Q.lE.[]).

•

We should turn our attention now to the proof of Theorem 2.2, and for that we

need first to prove sorne prerequisite results.

Notation 2.1. For y E L2 (T), set
-1

y·(t) = y(O) + 2Ly(n)eint
, t E T.

-00

The next lemma is already mentioned in [8, p. 615].

Lemma 2.1. If 9 is a real-valued function in L2 (T), then y. has the following proper-

ties:

(1) g* E L2(T)j

(2) Re y* = y;

(3) g.(n) = 0, n > Oj

(4) 119* lb ~ 2119112·

Proo!. Since 9 E L2 (T); Le. {y(n)}~oo E i2 (Z), then {i*(n)} E i 2 (Z); consequently,

by Riesz-Fischer theorem, g* is weil defined and belongs to L2 (T). (3) is easily seen and

(4) is c1ear by Parseval's theorem. Now for (2), observe that yen) = g(-n), because

9 is a real-valued function, and hence

Re g*(t) - i (g*(t) + g*(t))

-1

- y(O) + L (g(n)eint + y(n)e-int
)

-00

00

- Lh(n)eint = g(t).
-00

Q.E.[]).



Next, we prefer to recall sorne of the information and terminologies we have already

used during the proof of the main result (Theorem 2.1). First we have f E LI('lr) is a

trigonometric polynomial, moreover,

•
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4J -l

f(t) = L Î(n)eint
,

n=-4J +l

tE T,

where J, which has been assumed to be ~ 1, is the smallest non-negative integer

such that spec(f) ç (-4J , 4J ). In addition, we have the trigonometric polynomials

'Pj, j = 1,· .. ,J, defined by

if an = 0 V n E I j

tE T,
otherwise

where an = ÎCn) and I j = [41- 1,41).

It should be noted, however, that J is fixed throughout the rest of this section.

Also, for future purposes, please keep the above information in mind.

Since <{Jj E L2 (T), then we can define hj = l<{Jil· for j = 1,· .. , J.

Now, define the following inductive sequence of trigonometric polynomials

K{l} * (CPle-fh1
) ;

KU+ I } * ([FJE) + cr'i+1] e-Ehj+l) , l~j~J, (2.14)

•

and put F{E) = F5E
), where 0 < f < 1 is a parameter to be decided later.

We daim that this F(E) has enough power to attain the desired end and achieve our

goal. First, we need to study the behaviour of the above inductive sequence. We start

with the next lemma.

Lemma 2.2.

(1) II F (E) 1100 ~ ~.

(2) For 1 ~ j ~ J, spec(F}E}) ç [-2· 4i + 3, 4i) .



Prao!. (1) Since F(f.) = F)E), it is more than enough ta show that for all 1 ~ j ~ J,

IFj')(t)1 $; 'V t E T,
•

MLyed-Norm Generalization of Hardy's Inequality 33

First, since for 1:5 j :5 J, hi = ICPil*, then by Lemma 2.1 (2), Re hi = ICPil. Hence,

le-Ehj(t) 1 = e-f.Re hj(t) = e-E1fPj(t)1 < l 'V t E T, (2.15)
- 1 + flcpi(t)l

where we have used the known inequality e-x :5 l~X' X ~ O.

Therefore, for 1:5 j :5 J, we have

(2.16)

Now consider the following mathematical induction. If j = 1 and t E T, we have

IFfE)(t) 1 - IK(l) * (CPle-fh1
) (t)1

< 1K(l)(t - T) !'Pl(T)e-<h1(T) 1
dT
21r

T11 dT:5 - Ks(t - r) -
f 211"

T11 dT 1- - Ks(r) - = -,
f 211" f

T

where we have used the fact that Lebesgue measure is translation invariant on T.

Suppose now that IFjf.)(t) 1 :5 ~ 'V t E T, for sorne fixed 1 ~ j < J. Then, by

using the induction assumption and (2.16), we pass to the last step as fol1ows. For

tE T, we have

IFJ~l(t)1 - !KU+1) * ([FJE) + CPi+1] e-Ehj+1
) (t)1

< 1K(j+l)(t - T) 1[Fj')(T) + 'Pj+l(T)] e-<hi+l(T) 1
dT-
21r

T

< 1K(j+l)(t - T) [/Fj<)(T)1 + l'Pj+l(T) 1] le-<hj+l(T) 1
dT-
211"

T

< !.I K, '+1 (t _ T) 1+ €1'Pj+l(T)1 dT 1

• -
f Ci) 1 + elcpi+l(T)1 21r f

T



(2) For 1 ~ j ~ J, we know that epi is a trigonometric polynomial and hence it

is in L2 (T). Aiso t from (2.15), and from the proof of (1) in this lemma, we have

e-Ehj and FJE) E Loo('f) ç L2(T). Therefore, we can use Lemma 0.1 in the following

mathematical induction.

For 1::; j ~ J, recall that spec(epi) ç [4i - 1,4i ); and it is clear by definition of hi

that spec(hi ) ç (-00,0]; hence also spec(e-thj ) ç (-00,0]. Therefore, we have

•
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spec (eple-th1) ç spec(epd + spec (e -Eh1 )

ç [1,4) + (-00, O} = (-00,4).

Then spec (FiE») - spec (K{I) * (eple-Ehl))

- spec(K{I») n spec(eple-thl)

C [-5,5] n (-00,4) = [-5,4).

Now, suppose that spec(FJE») ç [-2· 4i + 3,41) for fixed 1 ~ j < J. Then

spec (Fr) + epi+1) ç spec (FJE}) U spec(epi+d

ç [-2.41 + 3,41) U [41,4i +1
)

- [-2.41 + 3, 4i +1
).

Hence,

spec ([FJt) + 'Pi+ 1 ] e-Ehj+1
) ç spec (FJE) + CPi+1) + spec (e-Ehj+1

)

ç [-2.41 + 3, 4i +1
) + (-00,0]

_ (-00,41+1).
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Therefore, the final step completes the proof as follows

spec (FJ~l) - spec (KU+1) * ([FJE) + epi+1] e-Ehj
+1

) )

- spec (KÜ+1}) n spec ([FJE) + 'Pi+1] e-thj+l)

C [-2· 41+1 + 3, 2· 4i+1 - 3} n (-00, 4i +1)

_ [-2.41+1 + 3, 41+1) •

The proof is done. ((J.E.D.



As a consequence of the nature of the above construction (2.14), we set the following

notation, for convenience. First, note that if 9 E Li (T), then e-t,hj9 E L l (T) for all

1 ~ j $ J, because le-t,hj 1 ~ 1, by (2.15); hence we are allowed to do the fol1owing.

For 1 ~ m ~ ~f ~ J, and 9 E Li(T), set for "Convolution with Fejér kernels",

•
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CF[AtI,m,g] = K(M) * (e-t.h M (K(M-i) * (... (e-t.hm+l (K(m) * (e-t.hmg))) .. .))). (2.17)

For fi.~ed !vI and y E Li (T), the reader may regard CF[.I\tf, m, g] as a finite sequence

of functions on m. One can aIso think of it as an infinite sequence of functions on m,

via generalizing the notation for m =0 and m > Nf.

First note that

(1) Since K(m) = K 2.4m-3 m;::: 1, we can write K eo) = O.

(2) CF[J,J,g] = K(J) * (e-t.h J g).

(3) For indices m > J, we can define 'Pm = 0; and since hm - ICPml", then

Therefore, it makes sense ta set the fol1owing generalized notation.

Notation 2.2. For 1 ~ NI ::; J, m ;::: 0 and y E Ll(T), put

{

0; ifm = 0

CF[AtI,m,gJ = Formula (2.17); if 1 ~ m ::;lvf .

y; if m > }.JI

Next, we register the following easily-proved properties of the above notation.

Proposition 2.2. Let 1 <!vI::; J, m;::: 0, a.,/3 E C, and g,h E L1(l'), then

(1) CF[A'I, m, ag + ,Bh] = a.CF[NI, m, y] + ,BCF[!vI, m, hl;

(2) CF[M, m,y] = CF [M:m+ I,K(m) * (e-t.hmy)] , 0::; m ~ AtI;

(3) CF(M + 1, m, g] = K(M+l) * (e-EhM+1CF(.LltI, m, g]), 0::; m ~ M + 1 ::; J.

Now, we are ready ta show how the above notation plays the key role in many

results that will simplify the proof of Theorem 2.2.
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Lemma 2.3.

(1) For 1 ~ m ~ J, spec(CF[J, m, CPm]) ç [-2· 4J + 3, 4m ).

(2) For 1 ~ m ~ J + 1,

J

F(f) = CF [J,m-l,F~~2]+ L CF[J,p,cpp).
p=m-l

(Here, for convenience, put F:fl = FJf) = CPo = o.)

(3) For 9 E L1(T) and 1 ~ m ~ J,

CF[J, m, g] = CF [J,m + I,K(m) * ((e-fhm -1) g)]
J-l

+ L CF [J,p + 2, K(P+l) * ((e-fhp+l - 1) (K(p) * ... * K(m) *g))]
p=m

+K(J) * ... * K(m) *g.
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Prao!. (1) It is more than enough to prove that for all m and ]vI such that

1 ~ m ~ lYI ~ J, we have

spec (CF[M, m, CPm)) ç [-2· 4M + 3, 4m
).

We show that by mathematical induction on NI. If ]vI = 1, then

spec (CF(I, 1, cpd) - spec (K(l) * (e-(hicpI))

C spec (K{l») n {spec (e-fh1 ) + spec(cpr)}

ç [-5,5) n {(-00,0] + [1, 4)} = [-5,4).

Now, suppose that for fixed M ~ J - 1,

spec (CF [M, m, c,om]) ç [-2 . 4M + 3, 4m
) 'ri 1 ~ m ~ ]vI.

Then, from Proposition 2.2 (3), we have for all 1 ~ m ~ ]vI + 1,

CF[NI + 1, m, c,oml = K(A-f+l) * (e-EhM+lCF[M, m, 'PmI) .
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Hence, if r = spec (CF[M + 1, m, 'Pm)), then

r ç spec (K(M+l») n {spec (e-~hM+l) + spec (CF[M, m, 'Pm])}

C [-2· 4M+1 + 3,2· 4M+1 - 3] n {(-00,0] + [-2 . 4M + 3, 4m )}

_ [-2. 4M+1 + 3, 4m ).
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(2) Following the same idea, it is more than enough to show that for all m and 1\;1 such

that 1 ~ m ~ M + 1 ~ J + 1, we have

M

Fi~) =CF [M, m - 1, F~~2] + E CF [AtI, p, 'Pp].
p=m-l

Again we do it by mathematical induction on Ail. First, suppose NI = 1; and recall

that F~~l = FJE} = 'Po = o. Now, if m = 1, we get

1

CF [1, 0, F~(l] +E CF(I, p, <pp] = 0 + 0 + CF[I, 1, 'Pl] = [<(1) * (e-Eh1cpI) = FfE).
p=O

Similarly, if m = 2, we obtain

l

CF [1, 1, FJf)] + E CF[I, p, cpp] = 0+ CF[I, 1, 'Pl] = FfE}.
p=L

So, suppose that our daim is true for some fixed M ~ J. If m = NI + 2, then we

are done, because

Ft~l - K(M+l) * ([Ft) +'PM+l] e-EhM
+1)

- K(M+l) * (e-EhM+1Fi~») + K(M+L) * (e-EhM+l<pM+J

M+L

- CF [At! + 1, m -1, F~~2] + E CF[M + l,p, <pp].
p=m-l

So, assume that m ~ J.Vf + 1. Then by the induction assumption, we have

K(M+l) * ([Ft) + <PM+l] e-~hM+l)

- K(M+l) * (e-<h'HI { CF [M, m - l, F~~2] +P~l CF(M, p, 'Pp] } )
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+K(M+l) * (e-fhM+l'PM+l)

- K(M+l) * (e- fhM+1CF [M, m - 1, F~~2] )

M

+ E K(M+l) * (e-fhM+lCF[M,p, 'Pp])
p=m-l

+CF[.AtI + 1, kI + 1, 'PM+l]
M

- CF [Atl + 1, m - 1, FJ:~2] + E CF[A'! + 1, p, 'Pp]
p=m-l

+CF[kI + 1, kI + 1, 'PM+l]
M+I

- CF [NI + 1, m - I,FJ:~2] + E CF[NI + 1,p, <Pp],
p=m-l

38

•

Where we have used Proposition 2.2 (3) in the third step.

(3) Let 9 E LI (T) be any arbitrary function. First recall that for any 1 :5 j :5 J,

e-Ehig E LI(T); hence, KU) * (e-Ehig) and K(J) *9 E Li('r).

Consider the following mathematical induction on J - m. If m = J, then by using

the definition of CF[J, J, gl, we have

CF [J, J, g] - K(J) * (e-EhJg)

- K(J) * ((e- fhJ - 1) 9 + g)

- K(J) * ((e-thJ - 1) g) + K(J) *9

- CF [J, J + 1, K(J) * ((e- fhJ - 1) g)] + K(J) *9
J-l

+E CF [J,p + 2, K(P+l) * ((e-d1
P+l -1) (K(p) * ... * K(J) *g))] .

p=J

Now, suppose it is true for fixed m, 1 < m :5 J, and for any function 9 E LICE).

Then, by using Proposition 2.2 (2) and (1), we get

CF[J, m - 1, g] - CF [J, m, K{m-l) * (e-Ehm
-

1g)]

- CF [J, m, K(m-l) * ((e-Ehm
-

1
- 1) 9 + g)]

- CF [J,m,K(m-l) * ((e-fhm
-

1 -1)g)] +CF [J,m,K(m-l) *g] .



Using the induction assumption for CF [J,m,K(m-l) *g]; and letting, for eonve­

nience, CF = CF[J, m - 1, g], then we obtain that•
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CF = CF [J,m, Kem-l) * ((e-Ehm
- 1

- 1) g)]

+CF [J, m+ 1, K(m) * ((e-Ehm
- 1) (Kem- 1) *g))]

J-1

+ L CF [J,p+2,Kep+1) * ((e-E/1P+1 -1) (K(p) * ... * K(m) * K(m-l) *g))]
p=m

+K(J) * ... * K(m) * K(m-l) *9

- CF [J,m, Kem-1) * ((e-fhm
- 1 -1) g)]

J-1

+ L CF [J, p+ 2, K(p+l) * ((e-EhJl
+

1
- 1) (K(p) * ... * K(m-1) *g))]

p=m-1

+K(J) *... *K(m-l) *g.

Q.E.D.

Sinee Ij denotes the interval [41- 1,41), for sake of simplicity, we let -Ii denote

the interval (-41, _4i - 1].

Corollary 2.1.

(1) For 1 $ m $ J, II K (J) * ... * K(m-1) * F~~2I1t2(-Jm) = o.
J

(2) F(E) = E CF[J, i, cpd.
l=1

J

(9) F(O) = F(E)IE=O = L K(J) * ... * K(t) * CPt.
i=l

Prao/. (1) Fix m as above. From Lemma 2.2 (2), we have

Renee,

spee ( K(J) * ... * Kem-l} * F~:2) - pi-l spec(K(p») n spec ( F~:2)

- spec (F~~2) ç [-2· 4m
-

2 + 3, 4m
-

2
) •
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Therefore, we are done because -lm n [-2 . 4m - 2 + 3, 4m - 2 ) = 0.

(2) Put j = 2 in Lemma 2.3 (2).

(3) It is obvious.

40

«l.lE.II).

•

The next lemma gives approximations ta sorne terms involving the CF[·,·, .].

Lemma 2.4. Let 9 be a bounded function and 1 ~ m ~ J. Then

(1) Il CF[J, m, 'Pm] 112 :5 Il'PmIl2.
J

(2) Il CF[J, m, g] - K(J) *... * K(m) *9 1/2 :5 2€l/glICX) E Il'PpI12'
p=m

Proo/. Bearing in mind the facts that IIKNlh = 1 'V IV ~ 1, and for all1 :5 m :5 J,

le-fhm 1:5 l, consider the following.

(1) It is more than enough ta prove that for all m and kI such that 1 :5 m :5 !vI :5 J,

we have

Suppose Al = 1, then, via Young's inequality, we have

IICF[1, 1, 'Pd 112 - IIK(1) * (e-eh1'Pl) 112

< IIK(l)l!l lIe-ehl'P11l2 :51!'PlI!2.

Assume, if it is possible, that the daim is true for fixed NI < J and for al!

1 :5 m :5 M. Theo, by Proposition 2.2 (3) and again Young's inequality, we obtain for

aU 1 $ m ~ 1\;1 + 1,

Il CF[Atf + 1, m, 'Pm] 112 - IIK(M+l) * (e-EhM+lCF[M, m, 'Pm]) 112

< II K(M+l)11t Ile-ehM+1CF[M, m, 'Pm] 112

< Il CF [M, m, 'Pm] 112 < l/'PmIl2.

Observe that (in the last line) if m = Nf + 1, then CF[M, m, 'Pm] = 'Pm.

(2) FLx m, 1:5 m ~ J. By Lemma 2.3 (3), we have
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J-l

+ L CF [J,p + 2, K(P+l) * [(e-thp+l - 1) (K(p) * ... * K(m) *g)]] . (2.18)
p=m

We need here to record sorne cIear facts about the hm, 1:5 m :5 J. First, since

hm = l<Pm'-, then Rehm = 1<Pm 1 ~ O. Hence, by using Ineq. 3 on page 15 and Lemma

2.1 (4), we have

(2.19)

Now, for simplicity of writing, let x = CF [J, m + 1, K(tn) * ((e-thm - 1) g)].

Then, by using Young's inequality, and the facts mentioned at beginning of the praof,

we obtain

IIxll2 -

<

:5

<

<

<

<

<

:5

IIK(J) * (e- EhJ
(K(J-l) * ( (e-Ehm+l (K(m) * [(e-

Ehm -1) g])). ··)))112

IIK(J)lh Ile- thJ (K(J-l) * ( (e-Ehm+l (K(m) * [(e-Ehm -1) g])) .. ·))112

Ile-EhJ (K(J-l) * (... (e-Ehm+1 (K(m) * [(e-Ehm -1) g])). ··))112

IIK(J-L) * (e- EhJ
-

1 (K(J-2) * ( (e-Ehm+l (K(m) * [(e-Ehm
- 1) g])) ))) 112

IIK(J-l) III "e-EhJ - 1 (K(J-2) * ( (e-Ehm+1 (K(m) * [(e-
Ehm

- 1) g])) )) 112

lIe-EhJ-l (K(J-2) * (... (e-Ehm+l (K(m) * [(e-Ehm -1) g])). ··))112

IIK(J-2) * (... (e-Ehm+1 (K(m) * ((e-Ehm -1) gD)·· ·)!12
... :511 (e- Ehm

- 1) gl12

IIglloo lIe-Ehm
- 1112 :5 2€lIgllool/<PmIl2'

•

where we have used (2.19) in the last line.

Similarly, following the same idea of the above estimation, and letting

Yp = CF [J,p + 2, K(p+l) * [(e-Ehp
+1 - 1) (K(p) * ... * K(m) *g)]] ,

where m :5 p :5 J -1, we get that

IIYpll2 - IIK(J) * (... (e-Ehp+:l (K(p+l) * [(e-Ehp+l - 1) (K(p) * ... * K(m) *g)])) ...) 112

< ... :5 Il (e-Ehp
+! - 1) (K(p) * ... * K(m) *g) 112
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< II K (p) *... *K(m) *glloo lI e- Eh
p+1 - 1112

< 2ellgIl00 Ilcpp+11l2'
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where we have used the fact that IIK(p) *... *K(m) *glloo ~ IIglloo. Ta canfirm this fact

notice that for any baunded functian G and for all N ~ l,

IKN *G (r)1 ~ IrKN(r - t)IIGlloo :: = IIGlloo Vr E 11'.

This implies that IIKN * GI/oo ~ IIGlloo; consequently, the result follows by classical

mathematical induction.

Finally, back ta (2.18); apply the L2-norm and substitute by the last two estima­

tions.

J-l

/ICF(J, m,g] - K(J) * ... *K{m) * gl/2 - X+ LYp
p=m 2

J-l

< Ilx/l2 + L IIYpll2
p=m

J-l

< 2ellglloo llCPmll2 + L 2ellgIl001l'Pp+dI2
p=m

J

- 2ellgll oo L lI<pplb·
p=m

Q.E.D.

Corollary 2.2. Let 9 be a bounded junction, n E N and 1 < m < J. Then

J

IICF(J, m, g] IIt2rlri) ~ IIK(J) * ... * K(m) * g!lt2r1n) + 2ellglloo L lI<ppIl2,
p=m

Prao!. Remembering Parseval's theorem, this is easy. If x = CF(J, m, g], then

IIxlll2c-Tri) - IlCF(J, m, g] - K(J) * * K(m) * 9 + K(J) * ... * K(m) * glll2rln)

< Il CF(J, m, g] - K(J) * * K(m) * glll2(-ln) + II K (J) * ... * K(m) * g!ll2rln)
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< IICF[J, m, g] - K(J) *... *K(m) *gll2 + IIK (J) * ... *K(m) * gl!t2C-/fl)

J

< 2EIIglloo L lI<ppll2 + IIK(J) * ... * K(m) * gllt2(-/fl)'

p=m
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(J.E.n.

Finally, we can say that we are ready to prove Theorem 2.2.

Prao! 0/ Theorem 2.2. We have already claimed before that our F(!), built from the

inductive sequence (2.14), is the one that satisfies the three properties, after choosing

the E, of course. To show that consider the following.

(1) we have already proved that IIF(t)IIOCl ~ : in Lemma 2.2 (1). So, Cl = : > 0,

obviously.

(2) Fbc j 2:: 1. By Lemma 2.2 (2),

spec (F(e») = spec (FY» ç [-2· 4J + 3, 4J ).

Therefore, If j 2:: J + 2,

( )

1/2

L 1;W(-nW = O.
nE/l

So, assume 1 ~ j ~ J + 1.

Now, if we let m = j in Lemma 2.3 (2), then we have

J

CF [J,j -1,FJ~2] + L CF[J,p, <pp]

p=j-l t2C-Ij)

J

< IICF [J,j - 1, FJ~2] Il _. + L IICF[J,p, <PPll/l2(-Ij) .(2.20)
l'l( 11> . 1p=]-

From the proof of Lemma 2.2 (1), IIFJ~21Ioo < :' 1 <j ~ J + 1. Hence, Corollary

2.2 gives
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1 00

< 0 + 2E • - L IIcppll2
E p=j-1

00

- 2 L 4-p/ 2 = 8· 4-j / 2 ,

p=j-1

where we have used Corollary 2.1 (1) and (2.9) in the last two lines, respectively.

Also, from Lemma 2.4 (1), we have
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Substituting the last two estimates into (2.20), we get

J

$ 8· 4-j/2 + L 4-p/ 2

p=j-1

00

:5 8· 4- j
/
2 + L 4-p/

2

p=j-l

_ (8 + 4)4-i /2 = 12· 4-i /2 •

Hence, C2 = 12.

(3) First recall Corollary 2.1 (2) and (3). Since spec(cpt) ç I t , 1 :5 f. :5 J, then

J

F(Q)(t) = L (K(J) * ... :+; K(l) * 'Pt) (t)
l=1

J 00

- L L bn'tÔt(n)eint

l=1 n=-oo

J

- L L bnept(n)eint .
l=1 nElt

Sa, for fixed j, 1 ~ j ~ J, and n E Ii' we have

Hence, actually, we need to show that
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First, use Corollary 2.1 (2) and (3) to write

45

J J

F(t) - F(O) = E CF [J, i, CPt] - E K(J) * ... *K(t} * CPt
l=1 t=1

J

- E CF[J, i, cPt} - K(J) *... *K(t) *<Pl' (2.22)
l=1

Now, observe that

spec(K(J) *... *K(t) *CPl)

Sa, by using Lemma. 2.3 (1), we get

J
- n spec(K(p» n spec(CPl)

p=l

- spec(cpt) = [4t
-

1,4l
).

This means that for 1 $ i ~ j - 1 and for n E Ii = [4j -t, 4i ), we have

(CF[J, i, cPt} - K(J} *... *K(t) *CPif(n) = O.

Using this fact and (2.22), we obtain for n E I j

J

(F(f) - F(O)f(n) = E (CF[J,i,cpt}- K(J) * ... * K(l) * eptf(n).
l=j

Now notice that, by the Cauchy-Schwarz inequality,

IIcptlloo $ E le;Bt(n) 1~ 4l
/
211cpt1l2 = 1.

nE1t

The above facts, with Lemma 2.4 (2) and (2.9), imply that

J

E CF[J, i, cpt}- K(J) *... * K(t) *CPt

t=j

•
J

< E Il CF [J, i, cpt} - K(J) *... * K(t> * cptllt2(Ij)
l=j

J

< E Il CF [J, i, cpt} - K(J) * ... * K(l) * CPt Il 2

t=i
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J J

< E 2fllcptll00 E IIcppll2
l=j p=l

J 00
< 2fE E t!-p/2

t=j p=i
00

$ 4E E 4-t /2 = BE· 4-j
/
2•

t=j
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So, by choosing E = i.t; and hence Cl = 64, the proof is done; and now 1 can say

that it is my pleasure to type the welcome symbol Q.lE.ID.

Reformulation of the Main Result in B;~/2

In this section, we show that the mixecl-norm generalization of Hardy's inequality

(Theorem 2.1, p. 23) can be refomlulated in terms of the norm of the Besov space

B;~t:z. We start with the following proposition.

Proposition 2.3. There is an absolute constant a > 0 such that for aU functions

f E L 1er),

t (2-j 2l-~<2l iÎ(nw)1{2 ~ allfllt + at (2-j 2i-~<2i IÎ(-nW) 1{2 .

Instead of proving (directly) the above proposition, we are going to prove the fol­

lowing lemma.

Lemma 2.5. Proposition 2.3 is equivalent to Theorem 2.1, p. 23.

Prao!. For the sake of simplicity of writing, put Ï j = [2;-1, 2j ) and ~ = [41-1,41).

The strategy of the proof is to show that for any arbitrary function f E L l (T),
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Since the proof should be independent of f, then it is enough to prove only the first

equivalence.
00 00

Write A = L: Ai, and B = L: Bi, where
j=l j=l

•

J
Sînce Ai ;::: 0 'if j ;::: 1, then 5J := L: Aj is an increasing sequence; and hence its

j=l

limit as J ~ 00 exists (which may be 00). Therefore, any subsequence of {SJ} aIso

tends to the same limit as J ~ 00, in particular, 52J- However, since

2J J

52J = L Aj = L A2i- 1 + A2j ,

j=1 j=l

then
J 00

A = Hm 52J = Hm ~ ..42j- 1 + A 2i = ~ A 2j- 1 + A 2j .
J-+oo J-+oo L..J L..J

j=l j=l

Now we daim that A2j- 1 + A2j ~ B j 'if j ~ 1. Ta see that fix j ~ 1 and recall

Ineq. 1 on page 14, which is

Since all the terms here are non-negative real numbers, then, by using Ineq. 1, we

get

A2j- 1 + A2j _ (2-2i+1 ~ IÎ(n)12) 1/2 + (2-2i ~ IÎ(n)12) 1/

2

nEI~-l nEI~

< j2 (2-2i+1 ~ IÎ(n)l2 + 2-2j ~ IÎ(n)12) 1/2

nEhi-l nEI2i
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< v'2 (2. 2-2i ~ IÎ(n)12 + 2. 2-2i ~ IÎ(n)12) 1/2

nE[2j-l nE[2j

_ 2 (2-2j ~ IÎ(n)12 + 2-2j ~ IÎ(n)12) 1/2

nE[~-l nE[~

_ 2 (4- j
( ~ IÎ(n)12 + ~ IÎ(n)12)) 1/

2

=2Bj ,

nEl 2j-l nE[2j

because Ï2j- 1 U Ï2j = [22U- 1), 2j- 1) U [22i- 1, 22i ) = [22U- 1), 22j ) = Ïj .

Also, by Ineq. 1,

A2i- 1 + A2j > (2-2j+1 ~ IÎ(n)12 + 2-2j ~ IÎ(n)12) 1/2

nE[2j-l nE[2j

> (2-2i ~ IÎ(n)12 + 2-2j ~ IÎ(n)12
) 1/

2

= Bj •

nE[2j-l nE[2j
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Hence, we have Bi ~ A2j- 1 + A2i ~ 2Bj 'Vj 2:: 1. Consequently, B ~ A ~ 2B;

Le. A ~ B. Q.E.lD>.

•

For the next theorem, recall the Besov spaces section in chapter 0, in particular, the

definition of B;:,:l and the kernels Wn , and their properties (Proposition 0.2). Also,

recall that for f E LI ('r), the Riesz projections JED+ and JED_ are

(P+/)(t) = L Î(n)e int and (P_/)(t) =L Î(n)e int
, t E T.

n>O n<O

Theorem 2.3. Proposition 2.3 is equivalent to the /ollowing:

"There is an absolute constant b > 0 such that for aU functions / E LI (T),

IlJED+/118-1/ 2 ::; bllflll + bllJED-fil8- 1/ 2 ."
21 21

Proo!. Since, by the definition of Wn , spec(Wn ) = (2n - 1, 2n +1), n > 0, and

Wn(k) = 'W_n(-k) 'V k,n > 0, then for n < 0, we get spec(Wn) = (_2-n+1, _2-n - 1) •
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Therefore, for n < 0, we have

spec(Wn * P+/) = spec(Wn ) n spec(lP+/) ç spec(Wn ) n (0,00) = 0;

consequently, by Parseval's theorem, IIWn * lP+/112 = 0 'ri n < O. Renee,

IIP+/11 8 - 1/2 = L 2-ln1/
2 IlWn *P+/112 = L 2-n

/
2I1Wn *P+/112

'lI
nEZ n~O

<Xl

- L (2-n IlWn *P+/II~) 1/2 .

n=O

49

•

Now, since 0:5 Wn(k) :5 1 'ri n, k E Z, then, by Parseval's theorem, we obtain for

n> 0,

IIWn *p+fll~ - L IWn (k)12IlW(k)l2
kEZ

2n +1

< L IWn(k)IIÎ(k)l2.
k=2n - 1

AIso, since Wo(t) = e-it + 1 + eit , then

"Wo* P+fll~ - IWo(-1)12 IiJ(_1)1 2 + IWo(O)12 1i;J(O)12 + IWo(1)12 1i;J(1)12

- IÎ(l)12
•

For convenience, let x = llP+/11 8-1/2. Then by using Ineq. 1, (0.4) and the last
21

two estimations, we get

OC)

x - L (2-n llvVn *P+/II~) 1/2

n=O

_ (20 IlWo *P+/II~) 1/2 + (2- l IlW1 *p+/II~) 1/2 + (2-2 11W2 * p+fll~) 1/2

+ (2-3 I1 W3 *p+/II~) 1/2 + ...

~ (iÎ(lW) 1/2 + (2-1 (iÎ(2W+ ~lj(3W)) 1/2

+ (2-2 GIÎ(3W+ IÎ(4W + ~IÎ(5W + ~IÎ(6W + ~IÎ(7W) ) 1/2

(
3 (1 - 2 1 - 3 .. 1 _ ) ) 1/2+ 2- 41/(5)1 + 2"1/(6)12 + 41/(7)12 + ... + 81/(15)12 + ...



< (li(lW) 1/2 + (2-1 (ii(2W + ~li(3W) ) 1/2

+ (2-2 Gli(3W) ) 1/2 + (2-2 (ii(4W+~li(5W + ~li(6W + ~li(7W) ) 1/2

+ (2-3 (~li(5W + ~li(6W + ~li(7W) ) 1/2

+ (2-3 (li(8W+ ... + ~li(15W) ) 1/2 + ...

< (ii(lWt 2

+ (2-1 (ii(2W+ ~li(3)12)r2

+ (2-1 Gli(3W)) 1/2 + (2-2 (ii(4W+~li(5W + ~li(6W + ~li(7W) ) 1/2

+ (2-2n1i(5W+ ~li(6W + ~li(7W) ) 1/2

+ (2-3 (li(8W+ ... + ~li(15W) ) l/2 + ...

~ (A ) 1/2 r;; ( (A ")) L/2~ V 2 1/(1) 1
2 + V 2 2-L 1/(2)12 + 1/(3)12

(2-2 (ii(4W + li(5W + li(6W + li(7W)) 1/2

(2-3 (li(8W + ... + li(15W)) 1/2 + ...

_ 2V2~ (2-n 2n_~<2" li(kW) 1/2

•
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•

Sa, we have

( )
L~

Ill!"+111 8 ;;/2 ~ 2
3

/
2 f: 2-n L li(kW .

n=1 2n - 1~k<2n

Next, we daim that
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• We do this, again by using the above estimation and Ineq. 1, as follows; recall that

x = IIIP+/IIB-t/2.
:u

oc

X - L (2-n IlWn * IP+/II~) 1/2

n=O

- (20Il~Vo * IP+/II~) 1/
2 + (2- 1

I1 W1 *p+/II~) 1/2 + (2-21I W2* IP+/II~) 1/2

+ (2-3 I1 W3 * IP+/II~) 1/2 + ...

1/2 (( 1 ) f2- (li(I)12
) + 2-1 IÎ(2)12 + 22Ii(3)12

+ (2-2(;2IÎ(3) 1
2+ IÎ(4) 1

2+ ~: IÎ(S) 1
2+ ;2IÎ(6)j2 + :2IÎ(7)1

2) ) 1/2

( 3 (1. 2 1· 2 32 . 2 1· 2) ) 1/2+ 2- 421/(5) 1+ 221/(6) 1 + 421/(7)1 + ... + 821/(15)1 + ...

> (IÎ(lW) 1/
2
+ (2-1 (iÎ(2W+ ~IÎ(3W) ) 1/2 +~ (2-2OIÎ(3)j2) ) 1/2

+~ (2-2(iÎ(4W+ 1
9
6IÎ(S)12+ ~IÎ(6W + 1~IÎ(7W)) 1/2

+~ (2-3 C~ IÎ(s)j2 + ~IÎ(6)j2 + :6 IÎ(7W) ) 1/2

( ( )r2
1 3 A 2 1 A 2v'2 2- 1/(8)1· .. + 64 1/(15)1 + ...

> ~ (IÎ(1W) 1/2 +~ (2-1 (iÎ(2W+ ~IÎ(3W) ) 1/2

+~ (2-2 OIÎ(3W) ) 1/2

+~ (2-2(iÎ(4W+ :6 IÎ(SW + ~IÎ(6W + 1~IÎ(7)12) ) 1/2

+~ (2-3 (1~ IÎ(SW + ~IÎ(6W + :6 IÎ(7W) ) 1/2

( ( )r2
1 3 A 2 lA 2+V2 2- 1/(8)1... + 64 1/(15)1 + ...

> ~ GIÎ(1Wf2 +~ (2-1 GIÎ(2W+ i IÎ(3)j2) f2

• +~ (2-2GIÎ(4W+ iIÎ(SW + iIÎ(6W + i IÎ(7W)) 1/2
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Similarly, since Wn(k) = l-V-n(-k) V k, n > 0, and the ahove proof is independent

of f, we get

~ IIr-fil 8;11 / 2

< 23/2 ~ (2-n 2n-~<2n Ij(kW) 1

/

2.

Q.E.D.

Corollary 2.3. The mixed-norm generalization of Hardy's inequality can be reformu­

lated in terms of the norm of B;:/2 as follows:

"There is an absolute constant b > 0 such that for aU functions f E LI (T),

(2.23)

•

Notice the simiIarity between (2.23) and (1.6) when p = 2. Corollary 2.3 solves the

reconstruction problem for the Besov space B;:/2; that is,

-1/2 -1/2
JP-f E B21 => f E B2I •

Now it is natura! ta raise the following question: for which numbers p ~ 1,



•

•

Conclusion

From this thesis, it can be concluded that the mixed-norm generalization of Hardy's

inequality (Theorem 2.1) can be proved by using at least two different constructions

namely (1.3) and (1.2). In addition, reformulation of the mixed-norm generalization

can be presented in terms of the norm of the Besov space B;~/2. This reformulation

solves the reconstruction problem of the Besov spaces B;~/2. In addition, all of these

results can be restated in terms of finite complex Borel measures.

We conclude this study with the following questions, which may raise a suggestion

for pursuing this work in the same direction:

• Is there any relationship between the mixed-nonn generalization of Hardy's inequal­

ity and the open problem in (O.l)?

• Is it possible to rewrite the mixed-norm generalization of Hardy's inequality as

follows:

• For which numbers p ~ 1,

• Can the mixed-norm generalization he deduced from Theorem 1.2?

• Can the mixed-norm generalization be deduced from Theorem 1.3?

53
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