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Abstract

Speech corling algorithms have different dimensions of performance. Among them, speech

quality and average bit rate are the most important performance aspects. The purpose of

the research is to improve the speech quality within the constraint of a low bit rate.

Most of the low bit rate speech coders employ linear predictive coding (LPC) that

models the short-term spectral information as an alI-pole filter. The filter coefficients are

called linear predictive (LP) coefficients. The LP coefficients are obtained from standard

linear prediction analysis, based on blacks of input samples.

In transition segments, a large variation in energy and spectral characteristics can occur

in a short time interval. Therefore, there will be a large change in the LP coefficients in

consecutive blocks. Abrupt changes in the LP parameters in adjacent blacks can introduce

clicks in the reconstructed speech. Interpolation of the filter coefficients reswts in a smooth

variation of the interpolated coefficients as a function of time. Thus, the interpolation of

the LP coefficients in the adjacent blacks provides improved quality of the synthetic speech

without using additional information for transmission.

The research focuses on developing algorithms for interpolating the linear predictive

coefficients with different representations (LSF t Re, LAR, AC). The LP analysis has been

simulated; and its performance has been compared by changing the parameters (LP order,

frame length, window offset, window length). Experiments have been performed on the

subframe length and the choice of representation of LP coefficients for interpolation. Simu­

lation results indicate that speech quality can he improved by energy weighted interpolation

technique.
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La performance des algorithmes de codage de la parole peut être caractérisée sous plusieurs

aspects. De ceLLx-ci. la qualité de la parole ansi que le débit binaire moyen sont ées plus

importants. Le but de cette thèse sera alors d~améliorer la qualité de la parole tout en

considérant la contrainte d"tlll bas débit binaire.

La majorité des codeursbas débit binaire utilisent un codage à prévision linéaire. qui

représente rinformation spectrale court terme sous forme d~un filtre tout-pole. Les coef­

ficients de ce filtre sont obtenus par blocs déchantillons cl"entrée en utilisant une analyse

linéaire de prévision traditionnelle. Cependant. il peut y avoir de grands changements

entre les coefficients de blocs consécutifs due à une grande variation de rnéergie et des car­

actérk-tiques ~lJectrales qui peut se produire sur de courts intervalles de temps. Donc. ces

variations entre blocs peuvent engendrer une mauvaise reconstruction du signal original.

L"interpolation des coefficients de blocs adjacents peut améliorer la qualité de la parole

~1ïlthtéique sans exiger n'information additionelle en transmission.

• Cette recherche se concentre sur differents moyens d~interpolation des coefficients du

systém à pridirtion linéaire. L.analyse et la synthése de la parole en utilisant l'interpolation

sont simulées avec raide du logiciel :\Iatlab. Les résultats de cette simulation indiquent

que la qualité de la parole peut être grandement améliorée en utilisant une technique

d'interpolation modifiée.
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Chapter 1

Introduction

Speech coding is an important aspect of modern telecommunicatiollS. Speech coding is

the process of digitally representing a speech signal. The primary objective of speech cod­

ing is ta represent the speech signal with the fewest number of bits. while maintaining a

sufficient level of quality of the retrieved or synthesized speech with reasonable compu­

rational complexity. Ta achieve high quality speech at a low bit rate. coding algorithms

apply sophisticated methods ta reduce the redundancies. that ÎS. to remove the irrelevant

information frOID the speech signaL

In addition. a lower bit rate implies that a smaller bandwidth is required for trans­

mission. Although in wired communications very large bandwidths are now available as a

result of the introduction of optical fiber, in wireless and satellite communications band­

width is limited. At the same time. multimedia communications and sorne other speech

related applications need to store the digitized voice. Reducing the bit rate implies that

less memory is needed for storage. These two applications of speech compression make

speech coding an attractive field of research.

1.1 Speech Carling

.-\ speech coder consists of two components: the encoder and the decoder. Speech is a time

varying waveform. The analog speech signal s(t) is first sampled at the rate fs ~ 2frna:r,

where fma:z is the ma.\:Ïmum frequency content of s(t). The sampled discrete time signal is

denoted. by s(n). This signal is then encoded using one of several coding schemes snch as

PC~I (plÙSe code modulation) or predictive carling.
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In PC~I (pulse code modulation) coding, the discrete time signal s(n) is quantized to

one of the 2R Levels, where each sampLe s(n) is represented by R bits. The quantizer can be

uniform or non-uniform. scalar or vector. A typical uniform. quantizer uses 8 to 16 bits per

sample. The non-uniform quantizer uses fewer bits per sample. For example. quantizers

with JL-Law or A-Law companding use 8 bits per sample.

In predictive coding the encoder considers a group of samples at a time. extracts coeffi­

cients that can model those sampLes concisely, converts those coefficients ta binary bits and

transmits them. In this way the encoder encodes the speech signal in a compact form. using

fewer bits. The decoder reconstructs the speech signal from those transmitted parameters.

The whole process is illustrated in Fig. LI.

analogue AID discrete sample s(n) speech 1001 ......

converter encoder
speech S(l) 10110011.......64 k bitsls 8 k bits/s

~

transmission

retrieved DIA 10110011..... speech 1001 ......
1\ converter 1\ decoderspeech s(t) s(n) .64 k bitsls 8 k bitsls

Fig.. 1..1 Speech coding

1.2 Human Speech Production

Speech coding algorithms can be made more efficient by removing the irrelevant information

from speech signais. In arder to design a speech corling algorithm. it is thus necessary to

know about the production of human speech. its properties and human perception of the

speech signals. so that the redundancies and the irrelevant parts of these signais can he

identified.

A speech signal is produced in three stages: first of aIL air flo,,~ outward from the lungs;

• then the air flow is modified at the Iaryn.~; and, finally. further constriction of the airfiow
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occurs by varying the shape of the vocal tract [1]. Each sound has its own positioning of

the vocal tract articulators (vocal cords! tongue. lips. teeth. velum and jaw). In the case of

vowels. the airflow is unrestricted through the vocal tract while in the case of consonants the

airfiow is restricted at sorne points. Sounds can be classified further as voiced or unvoiced.

The vocal tract is modelled as a time varying filter. It amplifies certain sound frequencies

and attenuates other frequencies. The sound is produced when a sound source excites the

vocal tract filter. If the source is periodic! it produces voiced speech; and if the source is

apcriodic or noisy, it produces unvoiced speech. The sound source occurs in the larynx

and the base of the vocal tract, where the air flow can be interrupted by the vocal folds.

The periodic opening and closing of the vocal cord results in a periodic sound source or

excitation. In the case of unvoiced speech the air is forced through a narrow constriction

at some points in the vocal tract. and creates a turbulence. The excitation is noise-like and

typically has low energy.

The spectral domain representation of voiced speech cons~~s of harmonies of the fun­

damental frequencies (Fa) of the vocal cord vibration. The envelope of the spectrum of a

voiced sound is characterized by a set of peaks which are called formants. However. the

envelope of the spectrum far unvaiced speech is less important perceptually.

Each language has its awn set of abstract linguistic units to describe its sounds. They

are called phonemes. Phonemes are divided into different classes according to the place and

manner of articulation. Vowels and diphthongs are produced when the air flows directly

thraugh the pharyngeal and oral cavity. Fricatives such as /5/ and jz/ create a narrow

constrictian in the vocal tract. Stops such as Ibj. Id/ and /p/ include complete closure

and subsequent release of a vocal tract obstruction. ~asals~ snch as /m/ and /n/ attenuate

sound in the nasal cavity.

1.3 Speech Perception and Redundancies

One of the major performance measures of speech corling is determined by how weIl the code

speech is perceived. If the redundancies of the speech signal can be found adequately! and

if the perceptual properties of the ears are exploited properly! good audible performance

can be achieved at low bit rates.

The human hearing system acts like a filter bank and is most sensitive ta the 200-5600

• Hz frequency range in terms of perception (2}. Important perception features. for instance
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voicing, are determined from a harmonie structure which is present at low frequencies (the

harmonie structure cloes not go beyond 3 kHz). Voiced speech has a periodic or quasi­

periodie charaeter. Poorly reproduced periodicity in the reconstructed voiced segment

causes a major audible distortion [3]. Perceptual aspects. such as the amplitude envelope.

the amplitude and location of the first three formants and the spaeing between the harmon­

ies are found in the frequency domain. The first three formants are usually located below

3 kHz. The manner and place of articulation are other important pereeptual features. The

manner of articulation affects low frequencies. The place of articulation affects the second

formant region. above l kHz. An unvoiced speech segment cau he replaced by a noise-like

signal with a similar spectral envelope~ without significant auditory distortion.

Fig. 1.2 shows the time domain representation of a voieed signal (high energy) and an

unvoiced signal (low energy). Fig. 1.3 is the spectral representation of the voiced signal

and the unvoiced signal. The formants are very prominent in the spectral representation

of the voieed signal whereas the spectrum of the unvoiced signal is more fiat.

•

Fig. 1.2 Time domain representation of voice<! ta unvoiced speech transition

•
A speech signal is highly redundant in terms of perception. For example. human hearing

is more sensitive to the spectral peaks than the vaIleys. It is relatively less sensitive ta

phase. Hearing has a masking phenomenon; that is. the perception of one sound can he

ohscured by the presence of another sound [4]. Suppose a speech signal is reduced to a

binary waveform. C1early~ it is distorted since it dees not have any amplitude information!
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(a) Power spectrum of a voiced speech
signal

(b) Power spectrum of an unvoiced
speech signal

•
Fig. 1.3 Difference between power spectra of voiced and unvoiced signal

but still listeners can understand it due to the redundancies. If ail frequencies above 1.8

kHz are removed. 67% of ail syllables can still be correctly recognized [5}. The perception

of phonemes depends nat only on decoding the ClUTent auditory information but also on

the context. the listener!s expectation. the familiarity of the listeners with the speaker. the

subject of conversion and the presence of noise. The redundant cues of a speech signal help

perception in noisy conditions. They also help when a familiar speaker speaks rapidly in

informai conversation. Predictive coding can exploit the redundancies in a speech signal to

reduce the bit rate.

1.4 Performance Criteria of Speech Coding

There are different dimensions of performance of speech coders. To judge a particular speech

coder certain performance criteria should be considered. Some of the major performance

aspects of speech coders are discussed below:

•
• One of the major criteria is speech quality. Speech coders intend ta produce the least

audible distortion at a given bit rate. Naturalness and intelligibility of the produced

sounds are important and desired criteria. The speech quality can he determined

by listening tests which compute the mean opinion of the listeners. The quality of

speech can also he determined in sorne cases in terms of the objective measures sncb
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as prediction gain! log spectral distortion. and so on. Speech coders strive to make

the decoded or synthesized speech signal as close as possible to the original signal.

• Another important issue is bit rate. The bit rate of the encoder is the number of bits

per second the encoder needs to transmit. The objective of the coding algorithm is

ta reduce the bit rate but maintain the high quality of speech.

• In reality speech coding algorithms are executed on DSP chips. These chips have

limited memory (RA11) and speed (~/IIPS-million instructions per second). Couse­

quently. speech coding algorithms should not be 50 complex that their requirements

exceed the capacity of modem DSP chips.

• Often. speech coding algorithms process a group of sarnples together. If the number

of samples is too large. it introduces an additional delay between the original and

the coded speech. This is undesirable in the case of rea! time transmission. but it is

tolerable to a larger extent in the case of voice storage and playback.

• Bandwidth of the speech signal that needs to be encoded is also an issue. Typica!

telephony requites 200-3400 Hz bandwidth. \Videband speech coding techniques

(useful for audio transmission. tele-conferencing and tele-teaching) require 7-20 kHz

bandwidth.

• The speech coding algorithms must be robust against channel errors. Channel errors

are caused by channel noise. inter-symbol interference. signal fading~ and so on.

• \Vhile speech signaIs are transmitted in rea! applications. they are distorted by dif­

ferent types of background acoustic noises snch as street noise. car noise. and office

noise. Speech coding algorithms should be capable of maintaining a good quality

even in the presence of such background noises.

1.5 Objectives of the Research

Linear Predictive coding (LPC) is one of the common speech coding techniques. LPC

exploits the redundancies of a speech signal by modeIling the speech signal as a linear

filter. e.""<:cited by a signal called the excitation signal. The excitation signal is aIso called

the residual signal. Speech coders process a particular group of samples! called a frame
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or cL segment. The speech encoder finds the filter coefficients and the e.,"<citation signal for

each frame. The filter coefficients are derived in such a way that the energy at the output

of the filter for that frame is rninjmized. This filter is called an LP analysis filter. The

speech signal is first filtered through the LP analysis filter. The resulting signal is called

the residual signal for that particular frame. Actually for the decoder. the inverse of the LP

analysis filter acts as the LP synthesis filter, while the residual signal acts as the excitation

signal for the LP synthesis filter. The whole process is shawn in Fig. 1.4.

Input speech Residual signal Output speech- LP Analysis - LP Synthesis

LP coefficients

Fig. 1.4 LP analysis and synthesis

In order ta reduce the total bit rate. speech coders such as CELP (code excited linear

prediction) do not transmit the whole residual signaL because a vector codebook is used

ta code the excitation signal. This technique is called vector quantization (VQ) wherein

the coder selects one of the excitation signals from a predetermined codebook. and the

index of the selected excitation signal is transmitted. This codeboak is a finite set oÏ

excitation signaIs. known ta bath the encoder and the decoder. The excitation signal is

selected in such a way that the weighted distortion between the original speech frame and

the reconstructed frame is rninimized. The coder transmits only the index of the excitation

signal in the codebook as weIl as the filter coefficients.

Actually. in this speech corling technique. the short tenu correlation or spectral envelope

of a speech signal is modelled by the synthesis filter. Typically~ the sampling rate of the

A/D converter is 8 kHz. and the frame length is 20 IDS. This implies that there are 160

samples in each frame. It is found that a 10th arder filter is enough for modelling the

spectral envelope when the sampling rate is 8 kHz. That means the coder ends up with

twelve parameters (10 coefficients, filter gain and the index for the excitation signal) instead

of 160 speech samples in a single frame.
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In transition segments! there may be a large change in parameters (LP filter coefficients)

between the adjacent 20 ms frames. vVe may therefore hear a click in the synthesized speech

signal. One way of smoothing the spectra is updating the filter coefficients more frequently.

vVe can do 50 by making the frame shorter! but in that case we need to transmit the

parameters more frequentlYt which increases the bit rate. Our objective is to keep the same

bit rate but to increase the speech quality by updating the LP parameters more frequently.

In order ta achieve this. in this research we interpolate between the sets of parameters (LP

filter coefficients) for adjacent frames. The goal of this research is ta investigate the spectral

smoathing property in the transition segments by different interpolation techniques. and

thus to improve the speech quality without any change in the bit rate.

1.6 Organization of the Thesis

The objective of this thesis is to examine different methods for interpolating linear predic­

tive (LP) coefficients in terms of the following representations: line spectral frequencies.

reflection coefficients. log area ratios. and autocorrelation coefficients. The thesis has been

organized as follows: Chapter 2 reviews the method of linear predictive corling that is used

in most speech coders to model the short term spectral parameters. \Ve further discuss

other alternative parametric representations of linear predictive coefficients. For evaluat­

ing the performance "'ith and without interpolation. different objective distortion measures

are introduced. This chapter aIso provides an overview of interpolation of linear predictive

coefficients and their various representations. Chapter 3 describes the implementation of

linear prediction analysis. the effect of change of different parameters in linear prediction

analysis (snch as prediction order! frame length. window length! etc.) and interpolation of

linear prediction coefficients. This chapter aIso includes simulation results and performance

evaluation. Chapter 4 summarizes the thesis work and pravides suggestions for future work.
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Chapter 2

Linear Prediction of Speech

2.1 Linear Prediction in speech carling

The human speech production process reveals that the generation of each phoneme is

characterized basically by two factors: the source excitation and the vocal tract shaping.

In arder ta model speech production we have ta model these two factors. Ta understand

the source characteristics. it is assumed that the source and the vocal tract model are

independent [6]. The vocal tract model H(z) is excited bya discrete time glottal e.xcitation

signal u(n) to produce the speech signal s(n). During unvoiced speech. u(n) is a fiat

spectrum noise source modelled by a random noise generator. On the other hand. during

voiced speech. the excitation uses an estimate of the local pitch period to set an impulse

train generator that drives a glottal pulse shaping filter. The speech production process is

shawn in Fig. 2.1.

Glottal excitation
u(n) Vocal tract Madel

H(z)

Speech
s(n)

Fig. 2.1 ~Iodelling speech production

The most powerful and generallinear parametric model used ta model the vocal tract

is the autoregressive moving average (A.R1"IA) modeL In this model, a speech signal s(n)

• is considered to be the output of a system whose input is the excitation signal u(n). The



• 2 Linear Prediction of Speech 10

speech sample s(on) is modelled as a linear combination of the past outputs and the present

and past inputs [7]. This relation can be expressed in the following difference equation:

p q

s(n) = L aks(n - k) + GL bl'u(n -l)!
k=l l=O

bo = l, (2.1)

where G (gain factor) and {a~J! {hl} (filter coefficients) are the system parameters. The

number p implies that the past p output samples are being considered. wmch is aIso the

order of the linear prediction. The transfer function H(::) of the system is obtained by

applying ::-transform on Eq. (2.1):

H(z) = ~~:~

•
(2.2)

•

Clearly H(::) is a pole-zero model. The zeros represent the nasals. while the formants

in a vowel spectrum are represented by the poles of H (::). There are two special cases of

this model:

• \Vhen bl = O. for 1 ~ l :5 q, H(z) reduces ta an ail-pole model. which is also known

as an autoregressi-ue mode!.

• \Vhen ak = O. for 1 ~ k :5 p, H(z) becomes an alI-zero ormoving average mode!.

The ail-pole or autoregressive model is widely used for its simplicity and computational

efficiency. 1t can model sounds snch as vowels weil enough. The zeros arise only in nasals

and in unvoîced sounds like fricatives. These zeros are approximately modelled by the

pales. ~Ioreover. it is easy ta solve an aIl-pole mode!. Ta solve a pole-zero model, it is

necessary ta soLve a set of nonlinear equatiollS, but in the case of an aIl-pole model, onlya

set of linear equations need to be solved.
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The transfer function of the ail-pole model is

G
H(z)=--p--

1 - 2: ak.:-k

I.:=L

Il

(2.3)

Actually an ali-pole model is a. good estimate of the pole-zero modeL According to [6L any

causal rational system H(.:) can be decomposed as

where. G' is the gain factor. Hmin(z) is the transfer function of a minimum phase filter and

Hop ( .:) is the transfer function of an all-pass filter.

~ow. the minimum phase component can he expressed as an ali-pole system:

•
l

Hmm (.:) = --[---

1 - 2: aj.:-t

l=1

(2.4)

(2.5)

where 1 is theoretically Infinite but practically can take a value of a relatively small integer.

The all-pass component contributes only to the phase. Therefore. the pole-zero model can

be estimated by an ali-poLe modeI.

The inverse z-transform of Eq. (2.3) is given by:

p

s(n) = 2: aks(n - k) + Gu(n).
k=1

U the gain factor G = 1. then from Eq. (2.3)~ the transfer function hecomes

1
H(z)=--p--

1 - 2: akz- k

k=1

(2.6)

(2.7)

• where the polynomial (1-L~l akz-k) is denoted by ..4.(z). The filter coefficients {ak} are
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called the LP (linear prediction) coefficients.

The error signal e( n) is the difference between the input speech and the estimated

speech. Thus. the following relation holds:

p

e(n) = sen) - L aks(n - k).
k=l

In the .:-domain it is equivalent to

E(=) =S(.:)A(:).

(2.8)

(2.9)

~ow. the whole model can be decomposed into the following two parts. the analysis part

and the synthesis part (see Fig. 2.2).

error signal
e(n)

•
speech signal

s(n) Analysis filter
P------~

A(.::)

error signal
e(n)

Synthesis filter
[fAr:)

speech signal

sin)

•

Fig. 2.2 LP analysis and ~'ynthesis model

The analysis part analyzes the speech signal and praduces the errar signaL The synthesis

part takes the errar signal as an input. The input is filtered. by the synthesis filter 1/A(z)!

and the output is the speech signaL The error signal (e(n)) is sometimes called the residual

signal or the excitation signal. If the error signal from the analysis part is not use<! in

synthesis. or if the synthesis filter is not exactly the inverse of the analysis filter! the

synthesized speech signal will nat be the same as the original signal. Ta differentiate

between the two signais. we use the notation s(n) for the synthesized speech signal.
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2.2 Forward and Backward Adaptive Coder

13

•

•

The encoder does the speech analysis before transmission. After the LP analysis. the coded

error signal is transmitted to the decader. \Vhether the LP coefficients are transmitted

depends on the type of the coder. In sorne coders. the LP coefficients are not transmitted:

the decoder computes these coefficients. In bath cases. the decoder does the synthesis using

the caded error signal and the LP coefficients.

There are two types of coders based on linear prediction:

• Forward adaptive coder: The linear prediction is based on the past input speech

samples. The LP analysis is performed at the encoder. and then the LP coefficients

are transDÙtted.

• Backward adaptive coder: The LP coefficients are computed from the past recon­

structed speech samples. The LP analysis is re-done at the decoder. Thus. there is

no need ta tr~-mit the LP coefficients from the encoder.

In this research the fonvard adaptive coder is used.

2.3 Estimation of Linear Prediction Coefficients

There are two widely used. methods for estimating the LP coefficients:

• Autocorrelation.

• Covariance.

Bath methods choose the short term filter coefficients (LP coefficients) {ak} in such a

way that the residuai energy (the energy in the error signal) is minimized. The classical

least square technique is used for that purpose.

2.3.1 Windowing

Speech is a time varying signaL and sorne variations are random. Usually during slow

speech. the vocal tract shape and excitation type do not change in 200 ms. But phonemes

have an average duration of 80 ms. NIost changes occur more frequently than the 200 ms

time interval [2]. Signal analysis assumes that the properties of a signal usually change
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relatively slowly \\~th time. This allows for short term analysis of a signal. The signal is

clivided into successive segments! analysis is done on these segments! and sorne àynamic

parameters are extracted. The signal s(n) is multiplied by a fi.'Ced length analysis window

w(n) to extract a particular segment at a time. This is called windowing. Choosing the

right shape of window is very important! because it allows different samples to be weighted

differently. The simplest analysis window is a rectangular v.-indow of length ~Vw:

{

l. O<n<lY.w-l.w(n) = . - - .
O. otherwise.

(2.10)

(2.11)

A rectangular \\;ndow has an abrupt discontinuity at the edge in the time domain. As a

result there are large side lobes and undesirable ringing effects [8] in the frequency domain

representation of the rectangular window. To discard the large oscillations. we should use

a window without abrupt discontintùties in the time domain. This corresponds to low' side

lobes of the windows in the frequency domain. The Hamming \\indow of Eq. (2.11). used

• in this research. is a tapered window. lt is actually a raised cosine function:

{

a.54 - O.46cos( J~l)' 0 ~ n ~ .Vu: - l.
tLt(rl) = . w

O. otherwise.

There are other types of tapered windows. such as the Hanning! Blackman. Kaiser and the

Bartlett window. A window can aIso be hybrid. For example. in GSNI 06.90. the analysis

v.indow consists of two halves of the Hamming windows with different sizes [9].

2.3.2 Autocorrelation Method

A.t first the speech signal s(n) is multiplied by a windo\\· w(n) to get a windowed speech

segment su.-(n). where.

•
sw(n) = w(n)s(n). (2.12)
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The next step is to rninjmize the energy in the residual signaL The residual energy E is

defined as follows:

n=-oc
(2.13)

The values of {a,,} that minimize E are found by assigning the partial derivatives of E
with respect ta {ak} ta zeros. If we set :~ = O. for k = 1. .... p. we get p equations with

p unknown variables {ak} as shown below:

In Eq. (2.14). the windowed speech signal su,(n) = U outside the window w(n). The linear

equations cau be expressed in terms of the autocorrelation function. This is because the

autocorrelation function of the windowed segment SllJ (n) is defined as•
p x x

L ak L sw(n - i)sw(n - k) = L sw{n - i)sw(n).
"=1 n=-oc n=-oc

1 ~ i ~ p. (2.14)

,VfII-l

R(i) = L sw(n)su:(n - i). o~ i ~ p. (2.15)

where aVu; is the length of the window. The autocorrelation function is an even function.

where R(i) = R( -il. By substituting the values frOID Eq. (2.15) in Eq. (2.14). we get

p

L R(li - kl)ak = R(i).
k=1

1 ~ i ~ p. (2.16)

The set of linear equations can be represented in the following matrix farm.:

R(O) R(I) R(p - 1) al R(l)

R(I) R(O) R(p - 2) a2 R(2)
(2.17)-

R(p - 1) R(p - 2) R(O) l1p R(p)

•
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Eq. (2.17) can he expressed as

Ra=r.

16

(2.18)

•

The resulting matrLx is a Toeplitz matrLx where ail elements along a given diagonal are

equal. This al10\\"S the linear equations ta be solvOO by the Levinson-Durbin algorithm

[10] (ta be cliscussed in Section 2.3.4) or the Schur algorithm [111. Because of the Toeplitz

structure of R . .4(=) is minimum phase [12}. At the synthesis tilter H(=) = 1/.4(z). the

zeros of .4(::) become the pales of H(z). Thus. the minimum phase of .4(::) guarantees the

stability of H(::).

2.3.3 Covariance Method

The covariance method is very similar to the autocorrelation method. The basic difference

is the placement of the analysis window. The covariance method windows the error signal

înstead of the original speech signal. The energy E of the windowed error signal is

n=-oc
:oc

= L e2 (n)w(n).
n=-oc

(2.19)

If we assign the partial derivatives :~ to zero. for 1 ~ k $ p. \ve have the following p linear

equations:

p

L cp(i. k)ak = (])(i. 0).
k=L

1 ~ i $ p. (2.20)

•

where cZ>( i. k) is the CO\ar1ance function of s(n) wruch is defined as:

XI

tJ)(i. k) = L w(n)s(n - i)s(n - k).
n=-oc

(2.21)
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The equation above can be expressed in the following matrbc form:

17

o( 1. 1) (1)(1. 2) t1>(1. p) al ;(1)

0(2. 1) a>(2.2) lD(2.p) a:z ;(2)
(2.22)-

o(p.1) o(p.2) lD(p.p) ap ;(p)

where ,;(i) = o(i. 0) for i = 1. 2. ...p. Eq. (2.22) can be written as

cjJa = cp. (2.23)

•

•

cP is not Cl. Toeplitz matrbc. but it is symmetric and positive definite. The Levinson-Durbin

èÙgorithm cannot be used ta solve these equations. These equCl.tions can be solved by

using decomposition methad. which will be discussed in the ne.xt section. The covariance

method does not guarantee the stability of the synthesis filter. because li> does not possess

the Toeplitz structure.

2.3.4 Numerical Solution of LP Linear Equations

The follo\\ing two sections have discussed how to solve the set of LP linear equations

(Eq. (2.17) and Eq. (2.22)) to get the LP coefficients.

Levinson-Durbin Procedure: The Correlation Method

The Levinson algorithm salves Az = b. in which A is a Toeplitz matrix. symmetric and

positive definite: and b is an arbitrary vector. The autocorrelation equations are of the

above form. Durbin published a slightly more efficient algorithm and bis algorithm is

knO'wn as the Lem11Son-Durbin recursive aIgorithm. The Levinson-Durbi.n algorithm needs

a 5pecial farm of b. where b consists of sorne elements of A. The autocorrelation equations

also satisfy this condition.

Let ale ( m) be the kth coefficient for a particular frame in the mth iteration. The

Levinson-Durbin algorithm salves the follo~ing set of ordered equations recursively for
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m = L2.... . p:
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k(m) = R(m) - E~ll akCm -1)R(m - k). (2.24)

am(m) = k(m). (2.25)

ak(m) =ak(m - 1) - kCm)am-kem - 1)! 1 ~ k < m. (2.26)

E(m) = (1- k(m)2)E(m - 1). (2.27)

where initially E(O) = R(O) and a(O) = O. At each iteration. the mth coefficient ak(m)

for k = 1. 2..... m describes the optimalmth order linear predictor: and the minimum

error E(m) is reduced by a factor of (1 - k(m)2). Since E(m) (5quared error) is never

negative. Ik(m)l ::; 1. This condition on the refiection coefficient k(m) also guarantees

that the roots of .4.(.:) "ill be inside the unit circle [2]. Thus the LP synthesis filter H(z)

(where H (.:) = 1/..4.(.:)) will be stable. And therefore. the correlation method guarantees

the 5tability of the filter.

• Decomposition Method: The Covariance Method

The decomposition method is generally used for sohâng the covariance equations [61. The

covariance matrLx cP is decomposed into a Iower and an upper triangular matrbc L and U

50 that cP becomes

•

cP = LU.

If we substitute Eq. (2.28) in Eq. (2.23). we obtain

LUa = 'P.

If we cali

Ua=y!

Eq. (2.29) becomes

Ly = 'P.

(2.28)

(2.29)

(2.30)

(2.31)
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The second step is to solve for y from Eq. (2.31). That value of y is then used to solve

for a from Eq. (2.30). Ta solve the equations above. Cl simple algorithm snch ~ the one

described by Golub and Van Loan [10] can he used.

Now the problem is how ta decompose cP in LU. Due ta the symmetric and positive

definite nature of cP. it can he decomposed as

(2.32)

where C is Cl lower triangular matri~. the diagonal elements of whieh are ail positive. This

type of decomposition is ealled Cholesky Decomposition. Eq. (2.32) can now he written as

where C(i.j) are the elements of C. If \\"e rearrange Eq. (2.33) we obtain

•

;

lD(i.j) =L C(i. k)C(j. k).
k=l

;-1

C(i.j) = (J)(i~j) - ~ C(i. k)C(j. k)~
""""'-'
k=l

}-1

C(j.j) = ti>(j~j) - L GlU. k).
k=l

i > j.

(2.33)

(2.34)

(2.35)

•

Eq. (2.34) and Eq. (2.35) can be used to find the elements of the lower triangular matrLx.

Solution for a can then he found by using forward elimination and backward substitution

algorithm [101.

2.3.5 Bandwidth Expansion and Lag Window

LP analysis cannot accurately estimate the spectral envelope for high-pitch voiced sounds.

In the case of a periodic signal. the harmonies contain the spectral information. but the

high-pitch sounds have harmonie spacings which are large. It cannat pro\ide enough sam­

pling of the spectral envelope. which results in under estimation of the formant bandwidth.

Ta overcome this problem. each LP parameter ak is replace<! by ;kak. As a result~ aIl the

poles of H (::) move inward by a factor '"'( and this causes band-Ulidth expansion of all the pales

[13}. The problem can be solved in another way. In this procedure the autocorrelations are
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•

•

multiplied by a Lag window (usually a Gaussian shape). It is equivalent to convolving the

power spectrum with a Gaussian shape! and this widens the peaks of the spectrum.

2.3.6 High Frequency Correction

A lowpass filter is used before analog-to-digital conversion of speech signal. The missing

high frequency components in the sampled speech near the half sampling frequency produce

artificially low eigenvalues of the covariance matrLx (jJ corresponding to eigenvectors related

to such components. These low eigenvalues can resuIt in artificially large values of the LP

coefficients. Ta avoid these problems. it is necessary to fill out the missing high frequencies

in the digitized speech signal and this process is called the high frequency correction [141.
A. highpass filtered white noise is artificially added to the lowpass filtered speech signal.

One choice far the frequency response of this highpass filter is

(2.36)

2.4 Representations of LP Parameters

Linear predictive coefficients (LP coefficients) have other representations: line spectral fr~

quencies (LSF)! refiection coefficients (RC)~ autocorrelations (AC). log area ratios (LAR),

arcsine of reflectian coefficients (ASRC). impulse responses of LP synthesis filter (ffi)! etc.

They effectively have a one-to-one relationship with the LP coefficients. and they pr~

serve al! the information from the LP coefficients. Among them. some are computationally

efficient. Sorne of them have ~:ipecia1 features which make them attractive for different pur­

poses. That is why a good understanding of those representations and their features is

needed prior to further processing.

2.4.1 Line Spectral Frequency

Line spectral frequencies are an alternative representation ta the LP parameters. It was

found that the LP parameters have a large dynamic range of values.. sa they are not good

for quantization. The line spectral frequencies on the other hand.. have a weIl behaved

dynamic range. If interpolation is done in the LSF domain! it is easier to guarantee the

stability of the resulting synthesis filter. If the LP coefficients are encoded. as LSF's, we
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do not need ta spend the same number of bits for each LSF. This is because higher LSF's

correspond to the high frequency components and high frequency components have less

effect in speech perception. 50 higher LSF1s can be quantized using fewer bits than lower

LSF~s. This reduces the bit rate while keeping the speech quality almost the same. LSF's

have a frequency domain interpretation. Usually the LSF's are more concentrated around

formants. The bandwidth of a given formant is dependent on the closeness of corresponding

LSF's [15]. "Ve can see this in Fig. 2.3. ~Ioreover. spectral sensitivity of each LSF is

localized. A change in a LSF causes changes in power spectrum near its neighborhood.

:\nother property of LSF's is that the LSF's of order p are interlaced with those of order

p - 1. Proof of this property can be round in [16). This inter-model interlacing theorem

provides a tight bound on the fannant frequency region [17] .

•
-5

-10

400030002000
Frequency (Hz)

1000
-15 1--.L..-.-....I..I..._--I~_.....:-_-"-..&""I""",_--IoL--I._............_.I--I._----J

o

Fig. 2.3 Position of LSF's in LPC spectra: the vertical Unes indicate the
position of LSF's

•
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Computing Line Spectral Frequencies
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It has been mentioned previously that the prediction error filter or the LP analysis filter

.4(z) can be expressed in terms of the LP coefficients (direct form predictor coefficients)

{ak} in the following form:

p

.4.(z) = 1 - L ak=-k.
k=l

(2.3ï)

Clearly the order of .'"\.( z} is p. The (1+p)th order symmetric and antisymmetric polynomial

P(=) and Q(=) can be obtained from .4(z):

•
P(=) = .4(=) + Z-(p+1) A.(=-l).

Q(z) = A(=) - =-tp+l} A(=-l).

where.

1
A(=) = 2[P(=) + Q(=)J.

There are three important properties of P(=) and Q(=) [18}=

• AlI the roots of P(z) and Q(::) polynomials are on the unit circle.

• Roots of P(=) and Q(=) are interlaced.

(2.38)

(2.39)

(2.40)

•

• The minimum phase property of .4(::) can be preserved. if the first two properties are

intact after quantization or interpolation.

From the first property~ we see that the roots of P(::) and Q(z) can be expressed in terms

of Wt (as el:':'). These Wi are called the LSF's. The polynomials P(z) and Q(z) have two

roots at :: = 1.:: = -1. Let us define two new polynomials lVi (::) and lV2(z) which have
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the same roots as P(z) and Q(z)t except they do not have roots at z = 1. Z = -1.

23

for p even.

for p add.

for p even!

for p odd.

(2.41)

(2.42)

From Eq. (2.41) and Eq. (2.42)! it is obvious that bath .VL(=) and lV'],(Z) have even order!

and they are symmetric. The roots occU! as complex conjugate pairs. so only the roots on

the upper semi-circle are to be calculated. Let the order of LVL(=) and lV1.(Z) be 2m and

2n. respectively. Then

•
\Vhich implies.

{ ~
m= ;1 1

{ ~
n- -

2 21

for p even.

for p odd.

for p even.

for p odd.

(2...l3)

(2...l4)

~Vl(=) = 1+~VL(l)=-L+LVd2)=-2+ +.!V1(m)=-m+ +lVt (1)=-(2m-L)+=-2m. (2.45)

~V2(Z) = l+lV2(l).:-L+.:V2(2)z-2+ +lV2(n)=-n+ +.1V2(1}=-(2n-L)+z-2n. (2.46)

From Eq. (2...l5) and Eq. (2.46)

•

IVde1W
) = e-jwm LV~(W).

LV2 (e1W
) = e-]e..tnlV~(~)!

where.

~V~(uJ) = 2cosmw + 2Nr(1) cos(m - l)w + + IVt (m)t

lV~(W) = 2cosnw + 2N2(l) cos(n - l)w + + lV2(n).

(2.47)

{2.48}

(2.49)

(2.50)
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Soong and Juang [18, 19} proposed a numerical method with a direct calculation of the

discrete cosine transform ta find the roots of 1V~ (w) and 2V~(W). The roots of lV{(W) and

.V~(w) are the LSf's. Kabal and Ramachandran [20} use an expansion of the mth order

Chebyshev polynomial in x:

Trn(x) = cos(-mw).

~V~(x) = 2Trn(x) + 21Vt(1)Tm _ t(x) + + lV1(m).

~V~(x) = 2Tm(x) + 21V2(l)Tn_t(x) + + ~V2(n).

(2.51)

(2.52)

(2.53)

•
The roots of the expanded polynamials are determined iteratively by laoking at the sign

changes in t he range [-1. Il and then the LSF's are found by using w = cas- t(x).

2..4.2 Reflection Coefficients

From the Levinson-Durbin recursion (Eq. (2.24)-Eq. (2.27)) we obtain an intermediate set

of parameters k('m). These parameters can be equated ta the reflection coefficients of an

acoustic tube model of the vocal tract. If the order of the linear prediction is equal to the

number of the sections in the vocal tube modeL the reflection coefficients can be directly

computed by linear prediction analysis of the speech waveform: and they uniquely define

the area ratios of the acoustic tube model of the vocal tract [21]. Refiection coefficients

also provide the necessary and sufficient condition for stability of the synthesis filter. The

condition Ik(m)1 < l form = p,p - 1.... ! 1 guarantees that the synthesis filter will be

stable.

\vfien using the covariance method! the predictor coefficients need to be converted to

the reflection coefficients for checking the stability. We start by assigning Ok(P) = ak; then

for m = p. p - 1.. ' .. 2 we apply following equations:

If for any m. 1k(m) 1 > 1. the magnitude is reduced artificially below unity. It causes the

change in the speech spectrum, but assures the stability of the synthesis filter. Another•
adm - 1) = Cl:i(m)k(m)om-,(mL

k(m - 1) = am-dm - 1).

l~i~m-L (2.54)

(2.55)
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procedure is to replace the pole Zk by ::~ ~ which changes the phase.

2.4.3 Log Area Ratio

25

The refiection coefficients have a non-uniform sensitivity. They are very sensitive near the

unit magnitude. The reflection coefficient which bas the value close ta unity is very sensitive

to change. The tirst few refiection coefficients have a skewed distribution for many voiced

sounds. The higher ordered coefficients have more of a Gaussian-like distribution. The

first refiection coefficient kl has a value close to -1 and the second reflection coefficient k2

has a value close to 1. li a Low sampling frequency (~ 10 kHz) is used. the other reflection

coefficients have values less than 0.7. Linear quantization of reflection coefficients in [-l.I}
is wasteful. Due to the non-uniform sensitivity. non-Lînear quantization is useful. One such

transformation is the log area ratio:

The log area ratio can be converted back to the reBection coefficient by the following

equation:•
1- k(m)

lar(m) = ln 1 + k(m)"

1- e1ar(m)
k(m)----- 1+ e1ar(m) ~

2.4.4 Autocorrelation Fonction

l ~ m ~p.

l ~m '5 p.

(2.56)

(2.57)

The autocorrelation function R(n) is alternate representation to the direct form. predictor

coefficients. If we use the autocorrelation method for computing the filter coefficients. we

need ta calculate the sample correlation function fust. "vVe do not need extra calculations

to obtain those parameters. One important property of the autocorrelation function is that

the sample correlation functions of two consecutive frames of a signal are almost equal to

the average of the sample correlation functions of the two frames. The model obtained by

averaging the autocorrelation functions is close to that obtained by considering the two

consecutive frames as one frame [22). This is an attractive feature for interpolation in the

autocorrelation domain. and it will be discussed Iater. If the autocorrelation functions are

normalized by the frame energy R(O)! they are called the normalized. autocorrelation. When

• ru,ing the effect of the frame energy the autocorrelation is used as usual, where R(O) is the
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frame energy. The autocorrelations which are not normalized are called energy weighted.

autocorrelation coefficients (EAC).

2.5 Interpolation of Linear Prediction Parametric Representation

Linear prediction coefficients are widely used in many speech carling techniques to represent

short term spectral information of speech. These coefficients are obtained from the speech

signal by frame-by-frame analysis. They are quantized prior ta transmission. The frame

is approximately 20 ms ta 30 ms in length, since speech signais are considered to have the

same properties over this interval. The linear prediction based coders describe the envelope

of the speech spectrum by an autoregressive model within this time interval. In consecutive

frames. the LP based models can be very different in transition segments. To follow the

changes in spectra or ta smooth the spectral transition. linear predictive coefficients should

be updated more frequently! which amounts ta decreasing the frame length. However.

this increases the bit rate. To avoid the augmentation in bit rate. interpolation of linear

• predictive coefficients can be used in the consecutive analysis frames. With the proper

interpolation technique. the spectral envelope will he smoother at the transition segments

(see Fig. 2.-1). Thus. undesired transients due to a large change in the LP based model at

adjacent frames are avoided in the reconstructed or synthesized speech signal.

Usually. a frame is divided ioto severa! equally spaced time intervals called subframes.

and interpolation is done at this subframe level. Theoretically! interpolation can be done

on a sample by sampie basis (by making the length of the subframe equal to one sample).

But in that case. additional calculations are needed at the receiver. Nloreover! such fine or

smooth interpolation is not needed. In other previous studies! a 20 ms frame is used~ and

the frame is divided into four equal subframes of 5 ms [13}.

2.6 Optimal Interpolation Method and Distortion Measurement

Criteria

An optimal interpolation method cau be logically defined as the interpolated model for a

subframe that is as close as possible to the original model of that subframe; Le; the model

that would be calculated by LP analysis for the subframe.

• \Vhen the performance of any interpolation technique is evaluated. it needs to measure
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Fig. 2.4 Interpolation smoothes the LP spectra. The second subframe is
the result of interpolation between the first and third subframe. and the cor­
responding power spectra shows the smoothing effect•
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the ··c1oseness~· of the interpolated model with the true model. But. how can this "c1oseness:'

be measured'? There are two typical ways ta measure it:

• Subjective distortion measure.

• Objective distortion measure.

These t'wo measures are discussed below in details.

2.6.1 Subjective Distortion Measures

Subjective tests a.Ilow for a comparative assessment of alternative coders. In these tests

speech quality is usually measured by 'intelligibility~ typically defined as the percentage

of words or phonemes correctIy heard. The perceptuaIly significant aspects of the speech

signal are intelligibility and naturalness. Ta judge these qualities. we usually depend on

informallistening. There are two types of commonly use<! subjective àistortion measures

[23]:
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• NIean Opinion Score (NIOS): This involves a lengthy process. In NIOS testing, the

decision is divided into a tive-Ievel rating scale. The rating scale and its description

is presented in Table 2.1 [23}.

Table 2.1 Description in the NIean Opinion Score (~10S)

Rating Speech quality Level of Distortion

5
-t
3
2
l

E.."Ccellent
Good
Fair
Poor
Unsatisfactory

Imperceptible
.Just perceptible but Dot annoying
Perceptible and slightly annoying
Annoying but not objectionable
Very annoying and objectionable

•
The opinion or perceived level of distortion is mapped into either the descriptive

term ··excellent. good. fair. poor. unsatisfactori! or the numerical rating 5-L The

numerical rating has a mi"<ed effect. As it is cl combined result of ail different kinds of

distortions. 1t permits direct comparison with objective measures. but does not help

to understand the cause of distortion.

• Diagnostic Acceptability wleasure (DA~I): A highly descriptive measure. that is very

much suggestive about the kind of distortion observed. It is bath numeric and non­

numeric. For a comparative rating, all the descriptive measures must be reduced to

cl single parameter.

Subjective tests need dozens of listeners. They require proper training in listening and in

calibration. Theyalso need a proper environment for performing the test 50 that no other

sounds interfere. ~Ioreover. in DANI the listeners should be trained to recognize the type

of distortions and give a proper description of them. Overall. this is a costly and time

consuming procedure. There is no simple and reliable way to describe the quality of a

coder. Casuallistening is not a reliable measure of comparison.

2.6.2 Objective Distortion Measures

Due to the disadvantages of the subjective distortion measures. we need sorne objective

distortion measures that give an immediate and reliable estimate of the anticipated per­

ceptual quality during the development phase of a new algorithm. Objective distortion

• measures can he computed in two domains: time and frequency.
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Objective Distortion Measures in the Time Domain

The followings are the major types of time domain objective distortion measures:

29

• Signal to noise ratio (SNR): If s(n) is the original speech sample. s(n) is the coded

speech sample and the speech file has LVT samples! then the SNR is defined as:

NT-l

L s2(n)

SlVR(dB) = 10 loglO -NT-_-L-n=-O---­

L (s(n) - s(n))2
n=O

(2.58)

•

•

SNR makes a decision after listening ta the whole file. Thus. there is no scape to

judge when there are discrepancies at different times during the utterance of the

whore signal.

• Segmental SNR (SEGSNR): Segmental SNR takes the power ratio over short segments

and computes their geometric means. As it considers short segment SNR. it has better

correspondence ta the auditory experience. If the speech segment has LVF number of

frames and the length of each frame is ~Vs. then segmental SNR is defined as

Segmental SNR is a better measure than SNR. But it is nat a good measure when a

whale frame is almast silent. These types of frames cause large negative SNR. which

will bias the overall performance. Ta overcome this problem. threshold values can be

used to detect the near silent frames and ta discard them.

Other commonly used objective measures in the time domain are prediction gain, error

energy and statistîcal outliers. They will be discussed as they are applied in Chapter 3

(Section 3.1 and Section 3.2.4) .
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Objective Distortion Measures in the Frequency Domain
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In the frequency domain. the LPC spectrum of the original signal and the LPC spectrum of

the quantized or interpolated signal are compared. The distortion or difference between the

two spectra affects the perception of the sound. In the following situations. the perceptual

discrepancy ûf sound may cause a phonetical difference:

• If the fonnants of the original spectral envelope and the formants of the coded (quan­

tized or interpolated or both) spectral envelope have large frequency differences.

• If the handv-idth of the formants of these spectral envelopes are very different.

A brief description of different types of distortion measures in the frequency domain is

presented below.

• Log Spectral Distortion: Spectral distortion for a given frame is defined as the root

mean square difference between the original LPC log power spectnun and the quan­

tized or interpolated LPC log power spectrum. Usually the average of spectral dis­

tortion over a large number of frames is calcwated. and that is used as the measure

of performance of quantization or interpolation. A detailed description of spectral

distortion is given in Chapter 3 (Section 3.2.5).

• \Veighted Euclidean Distance: This measure is performed in the LSF domain~ because

LSF's have a very good correspondence to the spectral shape. the formants. and the

valleys. So~ to emphasize a particuIar portion of the spectrum. the LSF~s of that part

can be given more weight than the others. If f and Î are the two vectors of the

original and the coded LSF~s. respectively. then their Euclidean distance d(f ~ Î) is

defined as

•

d(/~ i) = III - i1l2 .

If pth order LP analysis is used. then Eq. (2.60) becomes

p

d{f~ Î) =L (fI - Îil 2
•

I=L

(2.60)

(2.61)
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li Wi is the weight BSSigned to the ith LSF~ then the weighted Euclidean distance is

p

d(tr Î) = L wi(fi - Îd 2
.

&=1

Pa1iwal and Atal [15} have defined

(2.62)

(2.63)

•

\Vhere S(f) is the LPC power spectrum. and r is an empirical constant that contraIs

the relative weights of the LSF's. It was found experimentally that 0.15 is a satisfac­

tory value for r. Thus. in this scheme the weight depends on the value of the LPC

power spectrum at that LSF; high amplitude formants are given more weight than

low amplitude farmants. Valleys are less weighted.

~[oreover. we know that the human ear can resolve differences at low frequencies

more precisely than at high frequencies. Ta exploit this feature. lower LSF's sholùd

be weighted more. Paliwal and Atal [15} have introduced a new term Ct in Eq. (2.62)

to redefine the weighted Euclidean distance:

where.

p

d(tri) = LC&wl(fi - Î&f.
&=1

1.0, 1 :5 i :S 8.

Ci = 0.8. i = 9.

0.9, i = 10.

(2.64)

(2.65)

•

One of the attractive features of LSF's is that they are uncorrelated. and thus the

covariance matri.."{ of LSF's is exactly diagonal [24}. Because of this statistical prop­

erty! the spectral distortion measure for LSF's is equivalent ta the weighted Euclidean

distance measure. whose weights are the inverse of the diagonal elements of the co­

variance matrLx [17}.
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Objective me&lll"es cannat replace subjective testing, but they can aid in the devel­

opment of a new aIgorithm. The objective measures that have a high correlation with

subjective measures like NIDS are more reliable. because the ultimate goal of any coding

is ta be qualified according ta the human auditory system. It is reasonable. therefore, ta

use an objective measure hased on the compact output of the auditory system ta deliver

ratings that are highly correlated with subjective testing results. \Vang, Sekey and Ger­

sho [23} have 5tudied the performance of sorne objective measures. They represented their

results in terms of the correlation of a specifie objective measure with ~IOS. The higher

the correlation jpl. the better the performance of that objective measurc. If p = 1 for

any objective measure, it implies that that measure is equivalent to the NIOS decision. If

p = O. then tbis indicates random guessing of the ~IOS. vVe have sumInarized their results

in Table 2.2.

Table 2.2 Comparison of performance of Objective Distortion Nleasure

Objective Distortion ~Ieasure Ipl (Correlation with ~IOS)

SNR 0.24
SEGSNR O.ii
Cepstral distance 0.63
Log spectral distortion 0.68

Objective distortion measures are used throughout this thesis to estimate the perceptual

quality of the coding algorithm. The following types of objective distortion measures are

used:

• Log spectral distortion.

• Prediction gain.

2.7 Interpolation of Different Representations of Linear

Predictive Coefficients

If the interpolation is implemented directly in the LP coefficients domain. the interpolated

filter does not guarantee the stability. The linear predictive coefficients are therefore con-

• verted into different parametric representations. which have a one-tcrone correspondence



2 Linear Prediction of Speech 33

•

with the linear predictive coefficients for stable filters. The interpolation is performed in

the corresponding domain. The representations are reflection coefficients~ log area ratios~

Une spectral frequencies, autocorrelation coefficients. impulse responses, arc sine refiection

coefficients and cepstral coefficients. Among these representations, the interpolation of log

area ratios. line spectral frequencies, arc sine of the refiection coefficients and autocorrela­

tion coefficients guarantee the stability of the synthesis filter. Some of them. like impulse

response representation and cepstral coefficient representation, may result in an unstable

LP synthesis filter after interpolation. If these representations of linear prediction coeffi­

cients are used for the purpose of interpolation. there must be a check for stability after

interpolation. If necessary, the LP parameters should be processed 50 as to make the syn­

thesis filter stable~ although this procedure is computationally expensive. Certain speech

coding techniques. described in sorne literature use the unstable LP coefficient representa­

tians in interpolation [25]. In the following sections we have described the interpolation of

various representations of LP coefficients with regard to their advantages, disadvantages

and other properties.

2.7..1 Interpolation of RC, LAR, ASRC

lt has been shawn that. asymptotically the autocorrelation method produces an ~ILE (ma.~­

imum likelihood estimator) of the LP coefficients [261. The asymptotic PDF (probability

density function) for the estimated LP coefficients (â) is Gaussian. Since. the transfor­

mation from the LP coefficients to the refiection coefficients is one-to-one. the refiection

coefficients estimator is aIso an ~ILE. Hence, the asymptotic PDF of reflection coefficient

estimator (k) is Gaussian. Let C â denotes the covariance matrix of â ([Câl ii is the covari­

ance between ~ and âj ) and C k denotes the covariance matrix of k ([Cklii is the covariance

between Â; and kj ). Then.

(2.66)

•
where. [Al ii = ~aa. [27].a,

This is because, if iJ.\lL is the NILE of 9 and 9' = g(9), then the asymptotic covariance
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matrL"{ of 8ML is defined as
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(2.67)

à .({})
where. [L]ij = ~6t .

J

Assuming Xe is an autoregressive process of order p. it has been shown that asymptoti-

cally [28}.

.)

C . = UËR-l
a :.V • (2.68)

where. (J~ is the variance of the white noise driving process! l.V is the number of observed

data and R is the autocorrelation matrL"{. The covariance matrL"{ for the third arder LP

coefficients can be calculated from Eq. (2.68)! which is

• (2.69)

A recursive means of computing C k from Eq. (2.66) and Eq. (2.68) hased on the

Levinson-Durbin algorithm is described in [27}. For a third order process the theoreti­

cal covariance matrL"{ Ck of the estimated reflection coefficients is as follows:

(1- kt)(l - k2 )(1 + 2k1k3 + k~)

(1 - ki)(1 + k2 )

-2k3(1 - kf1(1 - k2 )

(1- kil
o

-2k3(1 - kf)(l - k2 )

(1 - kil
(1 - /ci)(1 - 2k1k3 + kil

(1 - ki)
o

o

o

(1 - !ci)
(2.70)

•

In Eq. (2.70) 172 is the variance of the innovation process [29]. From Eq. (2.70) it is apparent

that if the third reflection coefficient k3 is very close ta plus or minus unity. the variance

and the covariance become very large. In generaL if the Iast reflection coefficient is very

close to plus or minus unity. the variance and the covariance of other refiection coefficients

become very large. It is also apparent from Eq. (2.70) that the third reflection coefficient is

uncorrelated with the first and the second refiection coefficients. In a pth order modeL the
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reflection coefficients ki (where i ~ p) are uncorrelated with other reflection coefficients.

However. if we consider LP coefficients~ from Eq. (2.69) it can he seen that the Iargest

value of the variance and the covariance are limited to ~! whereas in Eq. (2.70) they are

unbounded. As the estimated reflection coefficients have a large covariance and variance.

they differ a lot from their theoretical values.

Interpolation as described above averages the coefficient values. Averaging of the Re
yields inferior results in terms of prediction errar [29}. This can be explained by considering

the pracess with true parameter vector [1 0 0 -0.92}. From Eq. (2.iO)! the theoretical

covariance matrbc Ck of the estimated reflection coefficients for this process is as follows:

As can be seen. from the matri.x (Eq. (2.71)). the 1st and 2nd estimated reflection co­

efficients have a high variance and a strong positive correlation. This means that these

reflection coefficients can be very large at the same time. For example. if a reflection coef­

ficient 'lector [1 0.31 0.45 -0.89 l is estimated. prediction errorl equals 1.040-2 and if

a retlection coefficient vector of [1 -0.36 -0.25 -0.92 1is estimated prediction error

equals 1.010-2
• The average of these vectors is [1 -0.025 0.1 -0.905 J. The average

vector yields prediction errar 1.19q 2 t which is co~iderably large. So, it can he concluded

that this type of interpolation of reflection coefficients produces a large prediction error.

\Ve obtain LAR and ASRC by applying transformations to reflection coefficients. sa

bath of them suffer from the same disadvantage when interpolated. Umezaki and Itakura

[30J have studied the time fluctuating characteristics of L~!s and LSF's and compared

their interpolation performance. They have suggested that because LAR's are non-linearly

transfonned parameters and the lower arder parameters are more important than the higher

arder parameters (their experiment proved. that lower arder parameters produce more dis­

tortion when the frame rate is decreased), it is not efficient ta use a uniform frame rate

for all order parameters. It would he more efficient ta increase the frame rate for lower

arder parameters and decrease the frame rate for higher arder parameters. Their optimum

frame rate allocation method (non-uniform allocation) shows that the frame rate can be

lIn [291prediction error is defined as aT Ra.

•

•

.) [12.02 11.98 0 ]
Cie = ~ 11

0

.98 12

0

.02 0 .

0.15

(2.71)
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decreased by 10% compared to the uniform allocation for the same quality of synthesis

speech produced by LAR interpolation.

2.7.2 Interpolation of LSF's

In the same paper Umezaki and Itakura [30} showed that if the frame is not very large

(less than 30 msL the spectral interpolation distortion is almost the same for ail order

LSF's. As a result. there is a very Little difference in time fluctuating characteristics among

different order LSF~s. The uniform and non-uniform frame rate allocation have almost

the same performance in terms of speech quality. Besides. they found in the case of LSF

interpolation that the spectral distortion is 72% of that in interpolation of LAR.

The LSF·s are interlaced \\ith each other for a given LP analysis order. Kim and Lee [17}

called this property the intra-model interlacing theorem. The stability of the interpolated

LSF ~-ynthesis filter is satisfied oilly by presening the intra-model interlacing theorem of

the iuterpolated LSF!s.

AtaL Cox and Kroon [31} studied interpolation. and they combined some interpolation

schemes with quantization schemes and then compared their performances. They did sulr

jective testing. but did not conclude wwch one was best. They found that the LSF-LSF

quantizer-interpolator does not have the best performance in ail cases.

2.7.3 Interpolation of Autocorrelation Coefficients

The autocorrelation coefficient is another representation of the LP coefficients that preserves

the stability of the synthesis filter after interpolation. It has been observed that the matrix

produced by linear interpolation between the elements of two positive definite Toeplitz

matrices is aIso positive definite Toeplitz [31]. From Section 2.3.2 we know that the Toeplitz

structure assures the minimum phase of A(z)~ and thus the stability of the synthesis filter.

For that purpose. the autocorrelation coefficients shotùd not be quantized. Interpolation of

the autocorrelation coefficients of two adjacent frames misses only a few terms in comparison

to the autocorrelation of the two frames together [29). Let. the autocorrelation is defined

as

•
L-k-l

R(k) = L s(n)s(n + k)T
n=O

(2.72)
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where the frame length is L. the samples of the current frame are denoted by s(O), ... .s(L­

1). and the samples of the ne.."<t frame are denoted by 5(L), ... ,s(2L - 1). The autocorre­

lation of the next frame is

2L-k-1

R'(k) = L s(n)s(n + k),
n=L

(2.73)

[f these two frames are considered as a single frame. then the autocorrelation of the whole

frame \\till be

2L-k-l

R..Œ(k) = L s(n)s(n + k)
n=O

L-k-l L-1 2L-k-l

= L $(n)s(n + k) + L s(n)s(n + k) + L s(n)s(n + k) (2.74)

(.-L

=R(k) + L s(n)s(n + k) + Er(k) .
n=L-k•

n=O n=L-k n=L

•

From Eq. (2.74), it is apparent tha.t the average of R(k) and R!(k) misses k terms in

comparison ta the autocorrelation of the two frames together.

\Vhile computing autocorrelation from the LP coefficients, it is assumed that the resid­

uaI energy is the same for both frames. but in a voiced-unvoiced or an unvoiced-voiced

transition. this is not true. As a result. the normalized autocorrelation function should he

weighted by the frame energy. Erkelens and Broersen [32} have compared the interpolation

performance of the normalized and the energy weighted autocorrelation coefficients. They

conducted bath subjective and objective tests. In 61.4% cases. people preferred the speech

produced by the interpolation of the energy weighted autocorrelation coefficients. But the

results of the objective tests conflict with that of the subjective tests. The interpolation

of the normalized. autocorrelation bas a Lower spectral distortion and a Lower percentage of

outller frames (frames having spectral distortion more than 2 dB). This happens because

while using the energy in interpolation~ there is a bias towards the high energy frames.

In transitions. the Low energy part of the signal is modelled poorly. This causes a higher

number of outliers in the low energy part. and it aIso increases the average spectral distor­

tion. Yet these outliers do not negatively effect the decisions of the listeners. It also shows
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that low spectral distortion is a sufficient condition. but not a necessary condition, for high

quality speech.

2.7.4 Interpolation of Impulse Responses of the LP Synthesis Filter

Code excited linear prediction (CELP) is a commonly used speech coding technique. The

coding procedure is computationally very expensive. because it needs lot of computations

ta search for the optimum excitation code vector [33}. The basic operation is ta find

the LP synthesis filter for each segment of signal. Then a synthesized speech segment

is produced for each excitation code vector. The optimum excitation code vector is the

one that minimizes the perceptuaIly weighted distortion between the input speech and the

synthesized speech. The perceptually weighted square error is defined as

(2.i5)

where x is the perceptually weighted input speech vector. and Yi is the resulting synthesized

speech vector for the ith excitation code vector. VVhen interpolation is done! the LP filter

is updated for each subframe! which means for each subframe Yi should be recalculated:

this requires calculation of < x· Yi >2 and I!Yi11 2
. These calculations are computationally

intensive. Yang [25} has proposed tbat if interpolation is done in the domain of the impulse

response of LP synthesis filter. a lot of computations are saved. Let Hll)(z) and H(2)(z) be

the frequency responses of LP synthesis filters of the two consecutive frames! and h(l)(n)

and h(2l (n) be the corresponding impulse responses. If h,(n) denotes the impulse response

of LP synthesis filter of the interpolated frame. then

(2.76)

where ,J, = 1-Ql! and 0 $ Ol $ l~ Ql is actually the parameter that depends on the position

of the subframe and controis the relative weights of the two frames on the subframe. Yong

[251 showed that interpolation of impulse response leads to

•
(2.77)
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So~ for each subframe~ in calculating the energy term. we do not need to find the filtered

code vector (synthesized speech); instead we can use the energy term. of the filtered code

vector of two frames (in fact one is caIculated previously and can be stored). For each frame
r» .) (1) (2)

(not subframe) we need only to filter all code vectors to find IIYi-lI- and < Yi . Yi >
and then three mtùtiplications are needed per subframe for each code vector. The dot

product < .r . YiJ > can be found using the backward filtering approach. which also saves

sorne computations. This fast search algorithm reduces complexity by 66%. In (25) the

comparative experiments show that interpolation of IR and LSF has a better performance

than that of ,AERC and RC in term of spectral distortion~ outlier frames. SNR. SEGSNR.

WSNR (weighted SNR) and WSEGSNR (weighted segmental SNR). The disadvantage of

interpolating the imptÙse response is that the interpolation can produce unstable synthesis

filter. Therefore. ~tability should be checked each time. and. if an unstable filter occurs.

the uninterpolated filter coefficients (i.e. the coefficients extracted by the LP analysÎs of

the given frame) should be used.
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Chapter 3

Performance AnalysÎs

In this chapter. we start with a simple linear prediction analysis and synthesis simulation.

Various choices of parameters for LP analysis are discussed. Then we proceed to linear

interpolation with the different representations for the LP coefficients. The performances

for the different representations are compared in terms of prediction gain and spectral

distortion. \Ve further study sorne objective distortion measures for performance evaluation.

Finally. different methods of interpolation are explored and a new method is introduced.

3.1 Choice of Parameters in LP Analysis

In order ta perform the LP analysis. sorne basic parameters must be chosen. The variation

of these parameters results in varying performance. \Vhen the LP analysis is first simulated,

the following set of parameters are used in the original model:

• Sampling frequency: 8 kHz.

• LP arder or the arder of the filter: 10.

• Length of each frame: 160 samples. Le.~ 20 ms.

• Length of analysis window: 240 samples. i.e.. 30 ms.

• Type of analysis window: Hamming window.

• Nlethod for estimation of LP coefficients: A.utocorrelation method!
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• Bandwidth expansion: none!

• High frequency correction: none.

41

The center of the analysis window is aligned with the frame! 50 that the LP coefficients

represent the center of the frame. The analysis is explained in Fig. 3.1.

.. , ---~:K;-------~K:----------------

• -40 160

240

40

f----~KE__--+_--____l)(lE__-__+--------··························· .

frame 1 frame2

Fig. 3.1 Frame by frame LP analysis

The frame length is 20 ms and the LP coefficients are extracted frame by frame. so the

extraction rate is 50 frames/s. Ta evaluate the performance of the LP analysis. simulation

of the analysislsynthesis model is necessary and is described by a black diagram in Fig. 3.2.

Two measurement criteria are used:

• Prediction gain in dB (PgdB):

•
(3.1)
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Input short tenu
speech (s(n» prediction

analysis
predictor (LP) coefficient

d1! Output 1\

Inverse filteriog speech (s(n»
Filteringr (synthesis tilter)

,#'

residual signal (r(o»

Fig. 3.2 Block diagram of LP analysis and synthesis

where the speech tile has lVT samples. A high prediction gain implies that the LP

filtering is likcly to reflect the effect of the vocal tract more accurately 50 that the

residual will be doser to the true excitation [34] .

• Error energy (Eerr ):

where e(n) = s(n) - s(n).

Et!TT =

NT-l

L e2(n)
n=O

NT-l

L s2(n)
n=O

(3.2)

•

Sînce the same coefficients are used for filtering and inverse filtering, theoretically~ the

input speech and the output speech should be the same and the error signal (e(n)) should

be zero. Experimentally~ however~ we can expect the error signal to be very small due to

the data representation and precision in the computer simulations. Different prediction

gains and error energies are obtained for three speech files. and the results are summarized

in Table 3.1.

In order to obtain useful results with linear prediction and to apply it successfully~ it is

necessary to understand the relationship and the effect of the changes in parameters~such

as analysis window length. filter order~ frame length. and windowoffset. In this ~"<Periment~

one parameter is changed at a time. The effect on prediction gain due to the change of
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Table 3.1 Prediction gain of diHerent speech signals from the LP analysis

Input file PgdB

Filel, female speaker. 23808 samples 16.12
File2~ male speaker~ 30976 samples 17.35
File3, male speaker, 28416 samples 16.01
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that particular parameter is observed. The higher the prediction gain (PgdB ), the better

the performance. The value of a particular parameter which gives the highest prediction

gain (PgdB ) is the desired value for that parameter.

3.1.1 Filter Order

It is necessary to find the minimum order of the LP analysis required ta model the significant

features of the speech. \Vhen the speech spectrum is modelled. the vocal tract resonances

or formants are important. It has been shown previously in (211 that ta model the vocal

tract resonances the memory of filter A(z) must be at least twice the time required for the

sound wa'Je ta travel from glottis ta lips. This time interval is 2L/c. where L is the length

of the vocal tract (usually 17 cm) and c is the speed of the sound wave (340 mis). Sa. the

memory shotùd be at least 1 ms. When the sampling frequency is 8 kHz. 1 ms memory

means using 8 previollS samples. Thus~ the arder of the filter should be at least 8. Still.

in this moclel the glottal and the lip radiation characteristics have not been considered.

The spectral slope characteristics of glottis can vary from -10 to -18 dB/octave. The

lip radiation characteristics have a slope of approximately +6 dB/octave. wloreover. zeros

arise in nasalized and unvoiced sounds. As a resmt. the speech spectrum does not exactly

correspond ta an ail-pole system. Ta account for ail these factors we need to add more pales.

It was found from experîmental results that if the sampling frequency (Is) is expressed in

kHz then the number of pales should be Is plus 4 or 5 [21]. This agrees with the simmation

restÙts. Since the sampling frequency is 8 kHz! a very high prediction gain is found with a

12th order or a 13th order LP analysis.

Usually the LP arder is kept constant. but a smaller number of pales are needed ta

accurately model unvoiced speech. For example. four coefficients are sufficient ta model

the fricatives having at most one broad spectral peak. The goal of this experiment is ta

find the prediction order that gives a high prediction gain with reasonable computation.
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Fig. 3.3 Prediction order vs. prediction gain (male speech. 3.872 s)

The input is speech of 3.872 s duration(male speaker). and the LP analysis and synthesis

are performed on that input speech by varying the order of the LP analysis (all other

parameters are kept constant). The resulting prediction gains are plotted in Fig. 3.3. The

same experiment is done on different speech inputs. such as a file of length 21.43 s (three

male and three female speakers) and a file of length 2.976 s (a female speaker). ~Vhen the

results are plotted. all curves show the same tendency of increased prediction gain with

higher LP arder. But the increment in prediction gain is high at the lower orders. and it

stabilizes at a fairly high prediction gain around the IOth order. From Fig. 3.3 it is apparent

that we are getting a reasonably high prediction gain (around 16 dB) for a IOth arder filter.

As the choice of the order is a compromise among the spectral accuracy or quality of sound,

computation time, memory of filter and transmission bandwidth. we suggest using a IOth

arder filter for an 8 kHz sampling frequency.

3.1.2 Frame Length

The choice of the frame length basically depends on whether the analysis is done on a

transient speech segment or a quasi-periodic speech segment. The analysis should be done

in an interval where the vocaI tract movement is negligible. Usually, for most vowels, a

15-20 ms analysis frame is sufficient! but sorne glides may have significant movement in

that time period. For an unvoiced speech the length of the interval should be smaller than

• 15-20 ms. For example. a burst associated with the release of an unvoiced stop consonant
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in the initial position exists only for few ms. In order ta accommodate that change~ a

smaller intervallike 10 ms is needed. The frame length may be expressed in tenns of the

number of samples by multiplying the sampling frequency fs by the time interval.

20.....--------~----.,.....----....,....-----"'

010....----"--------&.----.0....----........------'
50 100 150

Frame Length (sample)
200

•

•

Fig. 3.4 Frame length vs. prediction gain

An experiment similar to the one in Section 3.1.1 was carried out. The input speech

files are same. but trus time the LP order is kept. constant (10th order). A 240 sample

window is used. The LP analysis and synthesis are done by varying the frame length. For

each input file the restÙting curve is almost fiat. Here one typical example (Fig. 3.4) is

presented. From Fig. 3.4, it is apparent that the prediction gain does not depend much

on the frame length. \Ve want ta make the frame length as large as possible ta make the

frame rate lower. Usually the speech signal is stationary in a short interval. such as 20 ms.

Consequently. we have taken a frame Length of 20 ms. which is 160 samples.

3.1.3 Window Length

Windowing means multiplying the speech signal s(n) by a window w(n)~ wmch allows us

ta weigh the speech samples in different ways. In practîce. windows have finite length. By

shifting that finite length window. different regians of the speech signal can be e..'Camined.

According ta (2) the choice of window size depends on a trade off among the following

factors:

• The length of window shouId he short enough 50 that the speech properties of interest

change minimally within the window.
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• The window length should be long enough to allow the calculations of the desired

parameters. If additive noise is present. a long window can average sorne of that

random noise and~ in this way may reduce the effects of the noise.

• \Vhen the analysis is periodically repeated. successive windows should oot be sa

short that the sections of s(n) are omitted. lt implies that the window length must

be greater than or equal to the frame length. otherwise sorne parts oÎ the signal will

not be analyzed. This problem is illustrated in Fig. 3.5.

•
Wln&ioW

•

wtndow

•

wmdow

•

--c
This section of sen) 15 nol :uudyud :md thus onutted

Fig. 3.5 Effect of non-overlapped short window

UsuaIly the frame length is about half the window length. so that the successive win­

dows overiap by 50%. which is logicaI. especially when w(n) has a shape that de-emphasizes

speech samples near its edges. Typically w(n) is smooth! because its values are the weight­

mg factor of s(nL and a priori all samples are equally relevant. :\Iany applications trade

off between window duration and shape. They use larger windows than aIlowed for by

stationary constraints. and to compensate they emphasize the middle of the window. The

size of the lookahead depends on the size of the analysis window. A smaller window needs

less lookahead. \Ve! have trade off between spectral accuracy and computation. Because

of the windowing distortion~ the LP window should mclude at least two pitch periods for

aceurate spectral estimates. Typically a 20-30 ms window includes two periods even at low
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FOl (fundamental frequency). The major difficulty with short windows arises from the un­

predictability of the speech excitation signal u(n). Vocal tract resonances are represented

by the poles of the LP mode!. but the poles aIso take care of the e..xcitation disturbances.

If the LP analysis is done pitch-asynchronously. the analysis vâth small window length

estimates the spectrum poorly. In that case sorne analysis frames are dominated by the

poody modelled excitation effect. The spectral accuracy improves if the window length is

large enough to inc1ude a few pitch periods.

20,.....,...--"""T"'""--~-_r---~----r--"'"'T""----,

800700300 400 500 600
Window Length (sample)

200
1OL.....I.---......I....--....I....-_-~_--..I. __---I-__........__...J

100• Fig. 3.6 Length of the window vs. prediction gain

The experiment (see Fig. 3.6) shows that the prediction gain increases after the window

length is increased above the frame length (160 sample)~ cl.Ild it reaches a fairly high value

when the window length is around 240 samples (30 ms). Note that this is an average value

which may be dominated by the steady-state regions at the expense of transients.

3.1.4 Window Offset

•

\Ve use a Hamming window. which is a tapered. symmetric window. It emphasizes the

speech samples in the middle of the window. In this analysis. the windows are ovedapped

by 33%.

The window offset is the parameter which defines the position of the first sample of

the window relative to the position of first sample of the speech frame. This parameter is

used to align the window with respect to the frame. Fig. 3.7 shows that for a 160 sample

frame and a 240 sample window1 if the window offset takes the value -40 (window starts

ITypical speech uses average Fo 132 Hz for male and 223 Hz for female respectively [351.
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40 samples before the first sample of the speech frame) then the center of the window is

aligned with the center of the frame. From Fig. 3.8 it is apparent that when the window

offset is -40 samples! the prediction gain is the highest; and this implies that the center of

the window should be aligned with the center of the frame.

< ··> Ee--------=------~..oE'E---~..

•
-40

3.2 Interpolation

160 40

Fig. 3.7 Effect of the window offset

•

In transition segments. large changes in energy and spectral characteristics cau occur in

a short time interval. Ta cope \\ith this problem without increasing the bit rate. the

LP model can be updated more frequently by interpolating the LP coefficients of the

consecutive frames.

3.2.1 Implementation of Linear Interpolation

This section studies the change in prediction gain by varying the number of subframes

per frame. Our goal is ta find the optimal number of subframes per frame. that is, haw

frequently the LP model should be llpdated by interpolating them ta obtain the highest

prediction gain. \Ve start with 2 subframes per frame. Let a(i) be the original LP coefficient

vector for the ith frame. where i runs from O....•1V-1 (lV is the total number of frames in

the speech signal). Let â U) be the interpolated LP coefficient vectar for the jth subframe!

where j runs from O•..••21V - 1. A common index can be used for both a and â to
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relate them through an equation. If we consider the numher of subframes to be 2. linear

interpolation is very simple. and it can he performed using the following formula:

This is shawn in Fig 3.9.

(0)
a

{

( '.1) ('-1)a -r +a ~
â(t) = 2

a(~)

(1)
a

for i odd.

for ·i even.

(2)
a

(3)
a

(3.3)

i-0) 1\ (1)
a " (2)a " (3)a " (4)a

1\ (5)a 1\ (6)a " (7)a

•
Fig. 3.9 Interpolation between consecutive frames

In Fig. 3.9! an ~X~ represents original LP coefficients~ and a ~O! represents interpolated
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coefficients. Among the â{i} 1 the even numbered. subframes are represented by the original

LP parameters of that frame; the odd numbered subframes are the result of the linear

interpolation between LP representation of that frame and the LP representation of the

following frame.

In order to be more general, consider the number of subframes per frame to be 1"1.

Then the linear interpolation can be impLemented using the formwa,

where

{

(..!..)
.. (i) _ a .\1

a - oa(LiïD + (1 _ a)a{LitJ+ll

Al - i mod i"[
0= Al

for i mod Al = O•

otherwise,
(3.4)

(3.5)

•

•

If the center of the window is aligned with the center of the frame. then the LP coeffi­

cients. for a frame. model the center of that frame. Consider that the number of subframes

per frame to be odd. say 3. That means the middle subframe is aIready modelled by the

original LP coefficients of that frame. We have to caIculate the LP coefficients for the

lst and the 3rd subframes. vVe do the interpolation with the current frame and previons

frame to get the LP coefficients for the lst subframe. and we do the interpolation with the

cUITent frame and the next frame to get the LP coefficients for the 3rd subframe. ShotÙd

the number of the subframes per frame be even. say 4. then the original LP coefficients do

not represent any subframe, because in that case the center of the frame aligns with the

border of the two middle subframes. Thus, we have to calculate the LP coefficients for all

subframes by interpolation. To treat both cases similarly, we cau use a different approach.

The center of the analysis window is aligned with the center of the first subframe of a

frame. As a result. the original LP coefficients actually represent the first subframe. The

LP coefficients of other subframes of any frame can be obtained by interpolating between

the LP coefficients of the current frame and the next frame. Eq. (3.4) and Eq. (3.5) are

used for interpolation.

\Vhen l~[ is even (let lvl = 4), the interpolation looks Iike Fig. 3.10. When ~V[ is odd

(let Al = 3)! the interpolation looks like Fig. 3.11.

To compare the prediction gain of the uninterpolated signal with the interpolated signal,

while generating the LP coefficients of the uninterpolated signal, the center of the window
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Fig. 3.10 Interpolation when the number of subframes per frame is 4

Fig. 3.11 Interpolation when the number of subframes per frame is 3•
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•

is aligned in such a way that it actually represents the center of the first subframe. Ta get

the proper residual. the data offset has ta be adjusted with respect to the center of the

window.

Another issue. is stability. which was discussed in the previous chapter. Ta guarantee

the stability. the interpolation is not done in the LP coefficient domain but in one of its

other representations. "vVe use the following steps:

• Generate a set of LP coefficient vectors a(i) for aIl frames Li = 0.2.... ~ N - 1 (with

the necessary adjustment of the window)

• Linear predictive coefficients are converted to another representation, such as.

1. Line Spectral frequency (LSF)

2. Reflection Coefficient (Re)

3. Log Area Ratio (LAR)

4. Autocorrelation (normalized AC)

5. Energy weighted autocorrelation (EAC)
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Call any of these r(i).

52

•

•

• Consider the number of subframes to he Al per frame. Compute fl/[ -1 interpolated

set of coefficients among consecutive frames using Eq. (3.4) and Eq. (3.5). In these

equations use r(i) instead of a(i) for the sake of stability.

• Couvert the LP coefficient representation r(i) to â(i).

• Compute prediction gains for a(i) and â(O. 50 that the performance before interpola­

tion and after interpolation cao be compared.

3.2.2 Optimal Number of Subframes

'vVe study the effect on the prediction gain due to the change of number of subframes per

frame. Increasing the number of subframes in interpolation means increasing the rate of

updating the LP parameters by interpolation. The bit rate does nat increase because of

interpolation. The input is a single speech file. Different prediction gains are obtained by

changing the representations for LP coefficients (LSF. Re. LAR. AC and EAC) and the

nwnber of the subframes per frame. In this simulation. the input file is a large composite

speech file (we concatenate three speech files used as input in the experiments in Section 3.!.

The resulting file is 10.4 s long with bath male and female voices). The same simulations

are done with the smaller individual files and similar results are obtained. Fig. 3.12 shows

the curves obtained from the simulation that uses the large composite speech file.

From Fig. 3.12. it is apparent that for any representation the prediction gain usually

increases with the number of subframes~ but it reaches the highest value when the number

of subframes per frame is about 5. It implies that the length of each subfrarne is 4 ms

(32 samples). In Fig. 3.12. one subframe per frame denotes that no interpolation is done.

Prediction gain increases with interpolation. because when the frame length is 20 ms (and

no interpolation is done). in transition segments there are large changes in LPC spectra. By

increasing the number of subframes per frame. the frame length is decreased. In this way

the LPC spectra is smoother. That is why~ the prediction gain is increasing with the number

of subframes per frame. However~ when the number of subframes per frame is greater than

5~ the subframes are tao short, the properties of the speech do not change much. As we are

considering the average of the prediction gain, it remains almost stable even the number

of subframes per frame is increased above 5. In this experiment~ the number of subframes
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is limited to 20 per frame (8 samples per subframe) ~ because substantially increasing the

number of subframes will increase the computational complexity.

3.2.3 Comparison Among Different Representations

The results above also provide the best choice of representation of the LP coefficient for

interpolation for a fixed number of subframes per frame. Table 3.2 summarizes the results

when the input speech file is the large composite file. and Table 3.3 summarizes the result

when the input is a small speech file (male voice~ 3.872 s). From Table 3.2 and Table 3.3.

it Carl he concluded that LSF is better than any other representation for any number of

subframes in terms of prediction gain.

Table 3.2 Prediction gain for different representations for LP coefficients
for different number of suhframes/frame. when the input file is a large file
consisting of male and female voices.

NI LSF Re L~ AC EAC

• l 16.45 16.45 16.45 16.45 16.45
2 16.47 16.44 16.45 16.44 16.45
-1 16.50 16.46 16.47 16.46 16.46
5 16.53 16.49 16.50 16.48 16.48
8 16.52 16.48 16.50 16.48 16.47
la 16.52 16.48 16.49 16.47 16.47
16 16.52 16.48 16.49 16.47 16.47
20 16.52 16.48 16.50 16.48 16.47

A high average prediction gain means that the LP filtering more accurately reflects the

effect of the vocal tract so that the residual may be closer ta a true excitation [34].

3.2.4 Statistical Outliers

Statistical outliers indicate the consistency of the analysis filter performance. This is mea­

sured frOID the short term prediction gain. which is actually calculated on a frame-by-frame

•
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Table 3.3 Prediction gain for different representations for LP coefficients
for different number of subframes/frame. when the input file is a short file
consisting of a male voice only.

~[ LSF Re LAR AC EAC

1 17.35 17.35 17.35 17.35 17.35
2 17.37 17.33 17.31 17.38 17.36
4 17.44 17.40 17.39 17.41 17.39
5 17.-16 17.42 17.-10 17.42 17.39
8 11.-14 17.41 11.40 17.4.0 17.37
10 17.45 17.41 17.-11 17.41 17.38
16 17.-17 17.44 17.-13 17.43 17.39
20 17.47 17.44 17.4.3 17.42 17.39

•
basis. The short term prediction gain (PgdB(s») is defined as [34].

(3.6)

where .Vs is the number of speech samples in a speech frame and lVF is the total number

of speech frames in the speech file. A threshold value (PgdB(th») is defined as

PgdB(th) = PgdB(s) - 3(dB) (3.7)

•

.;.\ny speech frame having a prediction gain lower than PgdB(th) is classified as an outlier.

Different representations of LP coefficients are used. for interpolation and the percentage

of outliers in terms of the prediction gain are calculated. Table 3.4 summarizes the results

for a female voice (length of the speech file is 2.976 5).

From Table 3.4. it is clear that the percentage of outliers is a poor measure for evaluating

interpolation techniques.
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Table 3.4 Short term prediction gain and %outliers for different represen-
tations for LP coefficients for different numbers of subframes per frame

PgdB(s) % Outliers

~I LSF RC LAR AC BAC LSF RC LAR AC EAC

l 16.3 16.3 16.3 16.3 16.3 32.1 32.1 32.1 32.1 32.1
2 16.3 16.2 16.2 16.2 16.2 33.3 33.3 33.3 33.1 33.3
4 16.1 16.0 16.1 16.0 15.9 34.0 34.7 34.2 34.3 34.8
5 16.0 16.9 16.0 15.9 15.8 34.7 35.1 34.7 34.7 3S.0
8 15.9 15.7 15.8 15.7 IS.7 35.8 3S.8 35.5 35.5 35.9
la 15.8 15.7 15.8 15.7 15.6 36.4 36.8 36.3 36.2 36.2
16 15.7 15.5 15.6 15.5 15.4 37.7 38.0 37.7 37.7 38.0
20 15.6 15.5 15.6 15.S 15.4 38.2 38.5 38.2 38.1 38.5

3.2.5 Spectral Distortion

Spectral distortion is another objective cnteriou for performance evaluation. Spectral dis-

• tortion is defined as the root mean square difference between the original LPC log power

spectrum and the interpolated LPC log power spectrum. The mathematical definition of

common spectral distortion for frame i is as foUows:

(3.8)

where. F$ is the sampling frequency. Si(f) and Si(f) are the LPC power spectra of the ith

frame given bYe

(3.9)

(3.10)

•
where .4i (z). .41 (z) are the original and the interpolated LPC palynomials (defined in

Section 2.1. Eq. (2.7)) .. r~llectively! for the ith frame. We study the spectral distortion

in the range 0 Hz ta 3 kHz. Instead of integration! we can use summation of the DFT
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(Discrete Fourier Transform) coefficients to calculate SDi • If a signal is sampled at 8 kHz.

and then filtered by a 3 kHz lowpass filter; the S Di is calculated as a summation over

uniformly spaced points from 0 Hz to 3 kHz. This can be ~"<Pressed as [36]

l ~l [1010g10
~(ej~)] 2 (dB)

nt - -no ~ S(e)bm)
n=no

(3.11)

li we use a 256 point DFT then no and nt correspond ta 0 and 95 respectively. The

frequency resolution between two points is 31.25 Hz (8 kHz/256).

Spectral distortion is often used in the performance evaluation of quantization. In (13}

Kleijn and Paliwal have introduced the me~l1rement of ·"transparency·!. By '~ransparenf!

quantization they mean that the two versions of the coded speech. one obtained by using

the un-quantized LP parameters and the other by using the quantized LP parameters! are

indistinguishable through listening. Previous üterature suggests that an average spectral

distortion of 1 dB or less is good enough for transparent quality (The spectral distortion

• is calculated for each frame and then their average represents the spectral distortion of

that scheme). Al5o. it has been observed that too many outlier frames (frames with large

spectral distortion) even though the average SO is less than 1 dB affects the quality. There

are two types of outlier frames:

• The frames having SD in 2-4 dB range (outlier type 1).

• The frames having SD greater than 4 dB (outlier type 2).

To achieve the transparent quality! the quantized signal must satisfy the following con­

ditions:

• The average 5D is less than or equal to 1 dB

• There are no outlier frames having spectral distortion greater than 4 dB.

• The percentage of outlier frames having spectral distortion in the range 2-4 dB should

not be greater than 2%.

It has been suggested that the criteria used ta measure the transparency of a quantized

• coder can be used to evaluate the performance for interpolation [37]. The interpolation
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performance of many parametric representations of LP coefficients is investigated by calcu­

lating their average SD and the percentage of the two types of outlier frames. The power

spectra of the interpolated LP parameters for a frame (actually subframe) is compared

with the the power spectra of original LP coefficients of that frame while caIculating the

spectral distortion. Bath are un-quantized. The interpolation performance for subframe

interval 5 ms and 4 ms are studied and the results are listed in Table 3.5 and Table 3.6. In

bath cases the input speech file is a 2.976 s long female vaice.

Table 3.5 Interpolation performance for different LP coefficient representa­
tions. The subframe Iength is 5 ms.

•

Parametric Representation Average sn
Line Spectral Frequency 1.57
Autocorrelation 1.73
ReBection Coefficient 1.83
Log area ratio 1.T8

2-4 dB

17.1%
17.9%
14.7%
16.1%

>4 dB

4.0%
5.9%
8.2%
6.8%

Table 3.6 Interpolation performance for different LP coefficient representa­
tions. The subframe length is 4 IDS.

Parametric Representation

Une Spectral Frequency
Autocorrelation
Reflection Coefficient
Log area ratio

Average sn
1.29
1.39
1.50
1..16

2-4 dB

18.5%
18.8%
17.8%
17.8%

>4 dB

3.9%
5.7%
7.6%
6.3%

Table 3.5 and Table 3.6 show that the LSF!s have the lowest average SD and the lowest

percentage of frames having SD greater than 4 dB (outlier type 2). Still. it is surprising

that the RC!s have the lowest percentage of frames having SD in the range 2-4 dB.

3.2.6 Introducing Frame energy

A. problem occurs when there is a low energy part followed by a segment with rapidIy

changing energy (snch as an onset) in a frame. To deal with this problem it is suggested

• in [38} that it is better to adapt the location of the analysis frame boundaries ta the signal
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characteristics. But in this research we use fixed boundaries (fi.xed length analysis frame).

50. we have ta deal with this problem differently. We want ta see where (especially in which

segments) the interpolation fails to model the intermediate frames. We want ta determine

the special feature of those frames in terms of frame energy. For this purpose we plot

t he frame energy for each frame. "Ve aIso piat the spectral distortion for each frame after

interpolation.
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Fig. 3.13 Effect of change in frame energy on spectral distortion

•

Fig. 3.13 shows that the spectral distortion is zero for those frames where the original

LP parameters are used. If we now concentrate on the high spectral distortion points. we

can easily see that the spectral distortions are comparatively high in the frames where the

energy is 10"'- and there are sudden changes in the energy (onset). This indicates that there

is a relation between interpolation error and change in frame energy! a relation that can be

used to mjnjmjze the spectral distortion of the interpolated frames.

The autoregressive model describes the autocorrelation function of a signal in the time

domain and the spectral envelope in the frequency domain. The autoregressive method
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uses the sample autocorrelation of the speech to compute the LP parameters. Thus, a good

interpolation is the one that gives the best approximation of the sample autocorrelation of

the intermediate frames. That is why a previous paper [32) suggested using autocorrelation

for interpolation. If the autocorrelation is not normalized, the Oth sample (R(O)) contains

the energy of the frame. The energy weighted autocorrelation (EAC) cau be ohtained

by multiplying the normalized autocorrelation by the frame energy. Interpolation cao he

done with this energy weighted autocorrelation to obtaïn the sample autocorrelation of the

intermediate frame. In this way the frame energy can he incorporated in the interpolation.

From the previous sections. we found that the LSF's have the best performance in

interpolation in terms of bath prediction gain and spectral distortion. l\Ioreover. based

on the above discussion we want ta incorparate the frame energy in interpolation. at least

in the transition frames. Sa. we try to find a scheme which considers the combination

of two representations of the LP parameters for interpolation. In sorne frames (those

withùut transition). we can use LSF's: and in frames having onsets we can use energy

weighted AC. To evaluate the alternatives we compare the SD frame-by-frame. This shows

t he performance of each interpolation scheme in each frame and aiso shows the changes

in energy. \Ve compare the interpolation performance of LSF's with the interpolation

performance of normalized AC (see Fig. 3.14). energy weighted .f4.C (see Fig. 3.15) and AC

weighted by JE (see Fig. 3.16). where E is the energy of the frame. In each of these figures

the top subtigure shows the change in frame energy~ the middle one shows SO per frame

when LSF interpolation is used. and the subfigure in hottom shows sn per frame when the

autocorrelations are weighted differently by frame energy and then used in interpolation.

Fig. 3.14~ Fig. 3.15~ Fig. 3.16 show that there are almost same number of outliers in aIl

interpolation schemes. In the case of LSF interpolation. the spectral distortion is Iess than

6.5 dB in aIl frames. For autocorrelation interpolation. the spectral distortion sometimes

reaches as high dS 8 dB. In energy weighted autocorrelation interpolation (Fig. 3.15) the

spectral distortion exceeds 8 dB in sorne frames. These outlier frames with high spectral

distortion aIso increase the average spectral distortion. In most cases the rms energy

weighted autocorrelation interpolation (Fig. 3.16) gives lower spectral distortion of the

outlier frames than the normalized autocorrelation interpolation (Fig. 3.14).
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Fig. 3.14 (a) Energy of a speech sentence. (b) SO for LSF interpolation.
(c) SO for normalized autocorrelation interpolation
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Fig.. 3.15 (a) Energy of a speech sentence. (b) sn for LSF interpolation.
(c) 50 for energy weighted autocorrelation interpolation
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Fig. 3.16 (a) Energy of a speech sentence. (b) sn for LSF Interpolation.
(c) sn for rms energy weighted autocorrelation interpolation
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3.2.7 New Interpolation Method
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From previons studies [321 we know that the frame energy can he nsed as a weighting factor

of parametric representations of the LP coefficients in interpolation. But, froID the previons

section, it is not clear. what the exact weighting factor for the LP parameters should he:

the frame energy or sorne weighting of the frame energy? Ta find the solution, we set up

an experiment. 'vVe want to vary the weighting factor in different exponents of the frame

energy gr, where 7 varies from 0 ta 1. Then the interpolation is done and the performance

of this interpolation is measured in terms of prediction gain and spectral distortion. To

introduce this weighting factor we use a new method as follows: let Rit) and R~2) he the

kth autocorrelation (normalized) samples for two consecutive frames and Ei R~) he the kth

weighted autocorrelation of the interpolated frame between them: a is the factor which

depends on the position of the subframe. that is. how close the subframe is to the tirst or

the second frame. The value of a is calculated frOID Eq. (3.5). El and E2 are the frame

energy of the tirst and the second frame. Hereby.

(3.12)

If k = 0 in Eq. (3.12). we get

•

since mt
). R~l). R~2) are each l respectively.. from Eq. (3.13)

FJl = Bio + E;(1- 0).

[f this value for Et is used in Eq. (3.12), it becomes

Rli) _ Ela R(l} ~(1 - a) R(2)
k -~ rY1 k +r.T'Y ~ le

LlO + L2(l- a) Lia + Li(l- a)

= (jR~l) + (1- a)R~2)

(3.13)

(3.14)

(3.15)



• 3 Performance Analysis

where

65

(3.16)

From equation Eq. (3.16)~ if , = O. then {3 = Q which is the interpolation without consid­

ering the energy. Again. if 1 = L then from Eq. (3.16) we get

(3.17)

which is an energy weighted interpolation. For any LP coefficient parametric representation

(r). we can generalize t he form.ula~

(3.18)

Prediction Gain

• vVe want to see the effect on the prediction gain due to the change in weighting factor B

by varying r from Eq. (3.15) and Eq. (3.16). Two types of LP coefficient representations

are considered:

• Autocorrelation.

• LSf.

Two input speech files are used; one is the big composite file of male and female voices used

in Section 3.2.2 and Section 3.2.3. and another is a short male speech (3.872 s). Both curves

have a very similar shape. Fig. 3.17 and Fig. 3.18 show the output when the composite

file is used. In Fig. 3.17(a), when ! is varied from 0 to l by step of 0.1; prediction gain

changes slightly. However~ prediction gain is the highest when i = 0.4 or 0.5. Thus~ the

normalized autocorrelation functions need to be weighted by EO.4 or gJ.s where E is the

frame energy. When the same experiment is done in the LSF domain~ the highest prediction

gain is obtained when "'f = 0.1 (see Fig. 3.17(b)). Although~ the prediction gain is almost

same for Î = 0.1 and "'[ = O. Thus, if we use LSF and want to maximize the prediction

gain. it should he weighted by E;O.l .

•
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Spectral distortion

The following experiments are similar to those of the previous section. but this time spectral

distortion is calculated instead of prediction gain. From Fig. 3.18(a)! it is obvious that.

in the case of autocorrelation. spectral distortion is mjnjmized when , = 0.2. Fig. 3.18(b)

shows that in case of energy weighted LSF interpolation! spectral distortion is minimized

when Î = O.

Table 3. j and Table 3.8 summarize the performance of partially energy weighted au­

tocorrelations and LSF!s in terms of spectral distortion and percentage of outliers. The

tables show that average spectral distortion is very low (near the transparent quality) in

ail cases.

3.4%
4.7%
·1.7%

>4 dB

~Iale speaker, 30976 samples 0.97 8.7%
Female speaker, 23808 samples 1.16 13.2%
NIale speaker, 28416 samples 1.17 10.i%

Table 3.7 Interpolation performance for different speech files. Autocorrela­
tians are weighted by E;O.2. and then are use<! for interpolation

Input file Average sn 2-4 dB

•
8.7%
13.7%
11.0%

Table 3.8 Interpolation performance for different speech files. LSF's are
weighte<! by El. and then are use<! for interpolation

Input file Average sn 2-4 dB >4 dB

~lale speaker! 30976 samples 0.89
Female speaker! 23808 samples 1.07
NIale speaker, 28416 samples 1.03

•
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Chapter 4

Summary and Future Work

Linear prediction analysis and synthesis have been simulated using Nlatiab programs! and

different interpolation techniques have been incorporated. The resulting speech quality has

been assessed objectively. In this chapter. Section 4.1 summarizes our work and Section

4.2 makes sorne suggestions for future research.

4.1 Summary of Our Work

In Chapter 1. we presented some background information about speech coding, which

included the properties of speech signais and the basic aspects of speech coders. The

objective and the motivation of our research were outlined.

Chapter 2 presented a review of linear prediction analysis of speech and an estima­

tion of linear predictive coefficients, as weil as the concepts of bandwidth expansion and

high frequency correction. Other alternative representations of LP coefficients such as line

spectral frequencies. reflection coefficients, log area ratios, autocorrelation functions were

discussed. The second part of Chapter 2 introduced the idea of interpolation for various

representations of LP coefficients. This part also described a numher of variations of objec­

tive distortion measures and subjective distortion measures. The chapter reviewed earlier

literature on interpolation of parametric representations of LP coefficients.

Chapter 3 began with the basic implementation of LP analysis. We discussed the effect

on the performance of LP analysis due to the change of different parameters (LP arder,

window length! frame length. window offset). The performance was measured in prediction

gain. which denoted the quality of speech. The resu1ts ofour experiments on the parameters
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of LP analysis can be surnmarized as follows:

• When 8 kHz sampling frequency was used, a lOth order filter gives a sufficiently high

prediction gain.

• The prediction gain does not depend much on the frame length. A 20 ms frame length

produces a slightLy higher prediction gain than other frame lengths.

• The prediction gain does not depend much on the window length. For a 20 ms frame

length. a 30 ms window length gives a good prediction gain.

• The window offset is a parameter specifying the position of the window with respect

to the frame. It affects the prediction gain. \Vhen the window offset aligned the

window center with the frame center, the highest prediction gain is obtained.

Incorporating the interpolation extends the basic model for LP analysis and synthesis.

Algorithms and mathematical derivations for implementing the interpolation were formu­

lated. The follo\\ing conclusions can be drawn from the resruts of our experiments with

interpolation:

• The prediction gain of LP analysis using the interpolation of the parametric repre­

sentations of LP coefficients is higher than the prediction gain of LP analysis without

any interpolation.

• In our expedments we used 20 ms frames. The experiments showed that for any

representation. we get the highest prediction gain when the number of subframes per

frame WclS 5. which implied that the length of each subframe was 4 ms.

• "vVe experimented with interpolation of line spectral frequencies, reflection coefficients.

log area ratios. normalized autocorrelation functions and energy weighted autocor­

relation functions. Among them, interpolation of line spectral frequencies produced

the highest prediction gain.

• Prediction gain outliers are a poor measure for interpolation performance.

• '-IVe also measured the performance using spectral distortion. LSF's show the best

performance (interpolation of LSF's gives the lowest spectral distortion and the low­

est percentage of outlier type 2 frames). However. the interpolation of reflection

coefficients produces the lowest percentage of outlier type 1 frames.
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• Our next e.xperiment focused. on the modification of the interpolation method by using

frame energy. vVe found that spectral distortion was high in the frames! which had

sudden changes of energy from low to high. This result indicates that frame energy

should he taken into account in interpolation to mjnimize the spectral distortion.

• vVe did sorne experiments with a new method of interpolation. where we used the

power of frame energy as a weighting factor of the parametric representation of lin­

ear predictive coefficients. Thus. we could vary the effect of the frame energy on

interpolation. The results of these e.."qJeriments indicates that when the normalized

autocorrelation functions are used for interpolation~ prediction gain is ma..ximized by

using the weighting factor F;O.4 (where E was the frame energy). and spectral distor­

tion is minimîzed by using the weighting factor f:Ü.2. vVhen line spectral frequencies

are used instead of the normalized autocorrelation functioIlS. prediction gain is ma..x­

imized by using the weighting factor E;O.l and spectral distortion is minimized by

using the weighting factor El.

4.2 Future Work

From our experiments we found that spectral distortion was high in the transition seg­

ments. In arder to minimize the spectral distortion in the transition segments. one should

use frame energy (actually some power of frame energy) as the weighting factor of the para­

metric representations of LP coefficients while doing interpolation. The proposed method

improved the performance. Still. we need more improvernent. Using the energy in the

interpolation improves the performance of a coder at rapid onset. It gives a Iess accurate

approximation for the models for the low energy parts of the transitions. because using

energy hiases the interpolation towards the frame with the highest energy. Ta overcorne

this problem. we have ta detect the transitions accurately. Phonetic classification proce­

dure can classify each subframe either as voiced. unvoiced. onset or offset. For Low energy

segments of the transitions (onset or offset), a different weighting factor can he used. This

indicates that two types of interpolation techniques can be used together.

Subjective tests are an unavoidable necessity for these experiments. In our research we

did not verify our results by formai subjective tests. Our previous discussion implies that

the energy weighted interpolation causes large spectral distortion in the lawenergy parts
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of the transitions. It increases average spectral distortion and the percentage of outliers.

These low energy outliers do not affect subjective quality much. This indicates that we

cannat totally rely on the objective distortion measure like spectral distortion; all results

must he verified by subjective tests. Our experiments can be extended and modified by

simultaneously doing subjective tests and objective measurement.
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