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In this thesis, a numerically efficient three-dimensional finite element scheme is used
to analyze arbitrarily-shaped discontinuities in inhomogeneous-dielectric-loaded
waveguides. Special emphasis is placed on discontinuity problems in finlines anc‘l.r
related structures. A simple but accurate recursive algorithm, the boundary-marching
method, for modeling uniform waveguides of arbitrarily-shaped cross-section is
developed for the analysis. This algorithm is used to generate the matrix
representations of various waveguides, including the unilateral finlines. It is shown
that, by using the substructure formulation and the matrix representation of the
uniform guide, the finite element mesh of the discontinuity problem can be truncated
to a proximity very close to the discontinuity without compromising with the result
accuracy. Finally, characteristics of inductive strips in unilateral finline are evaluated
using the finite element scheme. The scattering parameters of the inductive strips
obtained with the finite elérnent method agree with published measurements and other
numerical solutions to within a few per;:ent with a relatively small number of
elements. Various effects of the manufacturing process, such as the effect of mounting
grooves, finite metalization thickness and deflection of dielectric substrate, on the

discontinuity parameters are studied in detail using the finite element scheme.
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RESUMES

Dans cette thése, la méthode numérique tridimensionnelle des éléments finis est
utilisée pour analyser les discontinuités de formes arbitraires dans des guides d'ondes
chargés en diélectriques hétérogénes. Une attention particuliére a été accordée aux
problémes de discontinuité rencontrés dans des structures en ailettes et autres
structures du mé&me type. Un algorithme récursif simple mais précis, la méthode des
limites mobiles, modélisant des guides d’ondes de sections transversales de formes
arbitraires, a été développé pour la présente analyse. Cet algorithme est utilis¢ pour
produire la représentation matricielle de divers guides d’ondes, parmi lesquels les
structures unidirectionnelles en ailettes. Il est démontré que, par l'utilisation de la
formulation de base et de la représentation matricielle du guide uniforme, le maillage
d’éléments finis du probléme de discontinuité peut etre tronquée & une limitc trés
proche de la discontinuité sans mettre en cause la précision des résultats. Enfin, les
caractéristiques des bandes inductives dans les structures unidirectionnelles en ailettes
sont évaluées par application de la méthode des éléments finis. Les paramctres de
diffraction des bandes inductives obtenus avec la méthode des éléments finis
s'accordent avec les mesures publiées et autres solutions numériques a quelques
pourcents prés, avec un nombre d’éléments relativement limité. Les effets divers -
rayures d’assemblage, épaisseur de métalisation finie, déflection de la couche
diélectrique inférieure - que les procédés de fabrication des matériaux utilisés peuvent
avoir sur les parameétres de discontinuité sont étudiés en détails en utilisant la méthode
des éléments finis.

— 11—
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CLAIM TO ORIGINAL CONTRIBUTION

The major contributions of this thesis are:

(1) the development of a general recursive method, the boundary-marching algorithm,
for discontinuity analysis involving inhomogeneous dielectric-loaded guides, using finite
element method, where it permits truncation of the finite element mesh at a proximity

very close to the discontinuity without compromising result accuracy;

-~

- (ii) the characterization of discontinuities in unilateral.finlines including cffects of
finite metalization of the fin, the influence of the mounting groove, and the effect of
substrate bending.
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Summary

This thesis describes the development of a numerically efficient three-
dimensional finite element scheme for analysing the transmission/reflection
characteristics of discontinuities embedded in inhomogeneous wa‘veguides. The method
is then applied directly to characterize three-dimensional discontinuities in E-plane

circuits.

The purpose of this study, general scope of the thesis and the basic features of

E-plane circuits are briefly described in Chapter 1. In this Chapter, various analysis

" methods developed for E-plane circuits analysis, such as the homogeneous waveguide

approximation method, the transverse resonance technique, the spectral domain
method, the transmission line method, and the finite difference method are also

briefly described.

Chapter 2 lays the foundation for the three-dimensional finite element analysis.
Potential difficulties associated with the application of the vectorial finite element
formulation to the finline discontinuity analysis are discussed. Mathematical
formulation and the associated boundary conditions of the vectorial finite element

scheme are presented.

e
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In Chapter 3, the concept of the boundary-marching algorithm for modeling

waveguide structures is introduced. Mathematical formulation of the algorithm and its

applicability are described.

Chapter 4 describes the actual implementation of the numerical schemes used in
the analysis. Special emphasis is placed on the static condensation package, a

numerical procedure used in the boundary-marching process.

In Chapter 5, the algorithm of the analysis is examined by using known solutions.
First, the auxiliary matrix generated by the ballooning algorithm is used to simulate
the eigenmodes in a rectangular guide. Then, the field distribution in an dielectric-
loaded guide is calculated and compared to the known solution. The S-parameters of
capacitive windows are then evaluated by using the proposed algorithm. Results are

found to agree with the approximate analytical solution to within a few percent.

Chapter 6 illustrates finline discontinuity analvsis using the three-dimensional
finite element method. It begins with evaluation of electric field distributions in
unilateral finlines. The field distribution are generated using the houndary-marching
algorithm. Characteristics of inductive strips in unilateral finlines are evaluated using
the proposed algorithm. The S-parameters of a typical inductive strip in the unilateral
finline are computed and compared to the measured results and the results calculated
with other numerical techniques. The effects of manufacturing processes. including the
mounting grooves, metalization thickness and the substrate bending are studied in

detail.

—vi—
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Chapter 7 summarizes the thesis. The detailed derivations of the mixed-order
vectorial finite element scheme are given in Appendix 1. Gauss-Legendre quadrature
used in the derivations of the local matrices of the vectorial finite elements is briefly
described in Appendix II. Finally, Appendix III illustrates the extraction of the
admittance matrix of a discontinuity from the finite element solution. The details of

conversion of the scattering parameters from the admittance parameters are also given.
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Chapter 1

General Introduction

1.1 Analysis of E-Plane Integrated Circuit

E-plane circuits, including finline, shielded microstrip and suspended stripline,
belongs to a class of microwave transmission media called quasi-planar transmission
line. Figure 1-1 shows some typical E-plane structures. Among these structures,
finlines will be the main interest of this study. A finline can be viewed as a ridged
waveguide with a thin metallic fin backed by a dielectric substrate. For applications at
Ligher frequencies, especially at millimeter wavelengths, they are considered a better
alternative than their microwave counterparts, such as microstrip line and stripline.
The quasi-planar structure of E-plane circuits allows one to integrate the entire circuit
pattern on the planar surface of a dielectric substrate with the conventional MIC
(Microwave Integrated Circuit) technologies; yet, it reduces the radiation losses and
tolerance requirements on the waveguide housing. In practice, the design of the finline
circuit takes into account the effect of the metallic housing. The circuit is printed on a
thin diclectric substrate. The substrate, including the circuit pattern, is then inserted

into a precisely milled slit in a rectangular waveguide as shown in Figure 1-2,

~
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Typical E—plane transmission lines
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Figure 1-2
‘A practical unilateral finline
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The insertion of the dielectric substrate makes the E-plane transmission lines
inhomogeneous in nature. The electromagnetic waves propagating in the finline
structures are, therefore, hybrid waves because they are neither tramsverse electric
(TE) nor transverse magnetic (TM) types, as in the case of empty waveguides or
waveguides with uniform dielectric filling. The propagating modes in such structures
must be a combination of TE and TM waves which are coupled via the boundary and
interface conditions. This is because, in general, the inhomogencous boundary
conditions cannot be satisfied by pure TE or pure TM fields alone. It can be shown
that only a combination of both field types, a hybrid field, can satisfy all the boundary
conditions at once. By convention, the hybrid fields are denoted as either HE,,, or
EH,,, modes. The HE-mode designates the hybrid fields with a dominating TE mode
(or H wave), while EH-1node designates the hybrid fields with a dominating TM mode
(or E wave). The single-mode bandwidth in a finline is greater than the bandwidth of

the corresponding hollow waveguide.

The process of E-plane circuit design requires design information such as the
guide wavelength and the characteristic impedance of the transmission line in use, the
characteristics of various discontinuities in the given transmission line, and the
properties of the higher order modes. In finline design, understanding of the influence
of finite metalization thickness, effect of mounting grooves and substrate bending aids
in the accurrte design of circuits and assists in Prédictiou of their performances.
Several analytical and numerical techniques have beén developed for studying E-plane
circuits and their discontinuities. The presence of the sharp-edged metallic fin and the

dielectric loading make the E-plane circuit analysis a relatively difficult task. The



sharp edge of the metalization leads to difficulties in the accurate modeling of the edge
field and the surface currents on the thin fin. The dielectric loading causes the wave
propagation in the E-plane circuit to be hybrid in nature. The analysis technique,
therefore, very often involves rigorous full-wave analysis or some constrained
approximation methods. The approximation methods used for the analysis include
Cohn’s method [55], ridged waveguide model [42,43,54], empirical expressions [56).
Cohn’s method can be used to analyze E-plane circuits with certain types of symmetry
in cross-sectional geometry and it yields accurate results for finline of narrow slot
width, Based on the fact that finlines are essentially ridged waveguides with a
dielectric backing, Meier [42] introduced the fictitious ridged waveguide model,
uniformly filled with an equivalent dielectric constant. The equivalent dielectric
constant for a given finline configuration is determined experimentally or by other
numerical methods such as the transverse resonance method. The method works well

for relatively thin substrates with small dielectric constant.

For more accurate results, full-wave approaches such as the spectral domain
technique (SDM), mode matching method, method of lines (MOL), transmission line
method (TLM), transverse resonance method (TRM), finite difference method (FDM),
and finite element method (FEM) are employed. The spectral domain method was first
proposed by Itoh and Mittra [57] for the evaluation of the dispersion characteristics of
shielded microstrip lines. In this method, all field components are subject to a Fourier
transformation with respect to the direction perpendicular to the surface containing
the circuit pattern (the surface is sometimes referred to as the frequency selective
surface, or FSS). The analysis is then performed by studying the behavior of the

resulting spatial spectrum. SDM is considered one of the most popular methods in
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finline analysis for the idealized finline model with zero metalization thickness, zero
mounting groove depth [28,48,49,51,52]. It is very accurate and efficient for finline
analysis. However, it is also very restricted on the geometry of the problem. The
transverse resonance is another important tool in E-plane circuit analysis. It was one of
the well known procedures for analyzing dielectric-loaded waveguide in the 1950s and
1960s and has been extended to finline discontinuity analysis by Sorrentino and Itoh
[46]. The transverse resonance method was found well suited and computationally
efficient in providing either the propagation characteristics or the discontinuity
parameters of E-plane circuits. It has been applied to various discontinuity analyses
[29,46]). The transverse resonance method basically involves forming a resonant cavity
containing the discontinuity by placing electric or magnetic walls some distance away
from the discontinuity. The cavity is then modeled as a two-port network. The
propagation parameters or the discontinuity parameters of interest are then obtained
by computing the resonant frequencies of the cavity. The primary limitation of the
TRM 1is that it cannot include the higher order mode interactions between the
waveguide walls and the discontinuity. The modal analysis technique described by
Wexler [58] for solving waveguide discontinuities was first applied to finline
discontinuity analysis by Hennaway and Schunemann [44]. The mode-matching
technique is one of the most rigorous and powerful methods for E-plane discontinuity
analysis and it is applicable to a broad class of abrupt junction type of finline
discontinuities, such as abrupt transition between two finlines, impedance transformer
and inductive strip [44,47]. Transmission line method (TLM) is another often used
method in evaluating E-plane circuits. The method is founded on the modeling of the
spatial electromagnetic field in terms of a distributed transmission-line network.

Electric and magnetic fields are made equivalent to voltage and current in the



network. The impulse response of the equivalent two-dimensional or three-dimensional
network of transmission line is then evaluated, in a discrete time interval, by exciting
voltage or current pulses. The spectral response of the structure is found by performing
a Fourier transform on the impulse response. It has been used to characterize various
finline structures [40]. Numerous other numerical schemes, such as the method of lines
and finite difference method, have also been adopted for finline analysis. However, all
the above-mentioned methods are primarily restricted to problems of certain geometry,

such as rectangular shape.

Finite element method (FEM) has been adopted for solving a great variety of
boundary value problems of arbitrarily-shaped geometry. Its flexibility in physical
geometry of problems makes it an invaluable tool in solving many practical
engineering problems. However, it has not been applied in E-plane circuit analysis
until very recently [30,40,59]. Eswarappa, Costache, Hoefer [30,40] showed that two-
dimensional finite element method can be used to accurately derive the dispersion
characteristics of finline structures of arbitrarily-shaped cross sections, covering the
metalization thickness, substrate mounting grooves and bending of the substrate.
Picon, Hanna, Citerne [59] showed that three-dimensional finite element method using
conventional tetrahedron can be used to find the scattering parameters of a general
discontinuity problem. The major reason that finite element method remains

unpopular in this area can be attributed to the following facts.

1. Finite element method requires relatively large memory and computer time.
This is especially true for E-plane circuit analysis since a large number of

elements are required to model the sharp edges of the fin. For three-



dimensional discontinuity problems, the resultant matrix size is tremendously

large due to the fact that many more elements are needed to model the two

uniform waveguide sections attached to the discontinuity.

2. The existence of so called spurious modes in finite element solution makes it

an unreliable method for solving waveguide problems that requires vector

formulation.

3. Various numerical schemes can be used to reduce three-dimensional E-planc
circuit problems to equivalent two-dimensional problems. It is, therefore,
more efficient to apply other such numerical schemes, if an idealized model

(with zero fin thickness, zero mounting groove) is under consideration.

ki
&>
1.2 Dissertation Objectives
The primary purpose of this study is twofold:
l.to develop a finite element scheme for three-dimnensional discontinuity
analysis in inhomogeneously dielectric-loaded waveguides of arbitrary cross-
section,
2.to apply the three-dimensional finite element method to characterize finline
discontinuities, and to provide an accurate estimate of effects, such as mounting
grooves, metalization thickness and substrate bending, on the parameters of
finline discontinuities.



To make the three-dimensional finite element method attractive and practical for
waveguide discontinuity analysis, it is necessary to limit the overall size of the resultant
system matrix, that is, to reduce the required number of elements in the finite element
mesh. For most discontinuity problems, a large proportion of the elements are used not
to approximate the discontinuity, but to interpolate between the discontinuity and the
excitation planes in two uniform waveguide sections. This is because the distance
between the excitation planes and the discontinuity must be far enough to allow the
evanescent modes to decay significantly at the excitation planes. Evidently, if one can
find a means to terminate the mesh at the very close pr—oximity to the discontinuity and
yet model the waveguide correctly, the goal of reducing the resultant matrix size is
achieved. For discontinuity problems involving waveguides of regular cross-sectional

shape, such as rectangular or circular geometry, an equivalent boundary condition based
S

I3

on the expansion of normal modes of the guide can be found. However, when the
discontinuity is embedded in an inhomogeneous guide of irregular cross-section, which is
exactly the case here, the equivalent boundary condition for the waveguide cannot be
found since there is no analytic solution for the waveguide. It is the primary objective of

this study to develop a numerical scheme for this purpose.

It has been observed that pa.ramef;ers of manufacturing process, such as finite
metalization thickness of the fin and holding grooves to fix the inset, considerably
influence circuit behavior. The influence of these parameters on the propagation
parameters and dispersive characteristics of finline have been studied by several authors
[36,37,38]. A two dimensional finite element method using the longitudinal field

components, H. and E., has also been applied in the study of these phenomena [30].
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However, how these parameters affect a three-dimensional finline discontinuity Las not
yet been reported. It is the objective of this study to perform a full investigation of
these manufacturing effects, including the mounting grooves, finite metalization
thickness of the fin, and the substrate bending on the finline discontinuities. To achieve
this goal, it is necessary to use a three-dimensional numerical tool. The three-

dimensional finite element technique is considered one of the best candidates for the

task.



Chapter 2

Three-dimensional vectorial finite elements

2.1 Vectorial Finite Element

The finite element method, a numerical method based on the calculus of
variations, has become a very popular numerical procedure for solving physical and
mathematical problems governed by differential equations. In electromagnetic and
microwave engineering, it is particularly useful in solving boundary value problems
involving arbitrarily-shaped boundaries, and anisotropic or inhomogeneous materials.
For three-dimensional wave propagation problems, however, the well-developed finite
element methods in terms of scalar formulations are inadequate. The finite eiement
based on a variational expression in terms of the full electric field vector E or the full
magnetic field vector H must be used. The most serious difficulty in applying the
vectorial finite element method to three-dimensional inhomogeneous d:electric
waveguide problems is the appearance of undesirable nonphysical solutions, the so-called
spurious modes. As indicated in several papers .[9,10,11,12,13,15] that the spurious
solutions are a direct reﬁult of the fact that the constraint of V.D=0 or v.H=0 is not
satisfied. Extensive research efforts have been expended on finding a solution to
suppress or eliminate such spurious solutions. Recently, an orthospectral finite element

obtained by using mixed-order interpolation functions on hexahedra (3,6,7] has been
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shown to produce solutions free of spurious modes. The method is applicable to
variational formulations in terms of the full electric field vector E or the full magnetic
field vector H. Since the hexahedral mixed-order element is well suited for E-plane

transmission line problems, it is adopted for this application here.

The fundamental operations and procedures associated with the finite element
method are quite simple and similar to other numerical approximation processes.
However, the method also possesses two distinct and unique characteristics. They are
the utilization of the integral formulation technique to generate a system of algebraic
equations and the use of continuous piecewise-smooth functions to approximate the

unknown quantity. The finite element procedure can be summarized by the following

discrete steps:

1. discretising the problém domain into smaller sﬁB;;agions (finite elements),

2. interpolating the unknown quantity of interest with piecewise defined polynomial
functions in terms of some unknown scalar quantities (nodal values},

3. minimizing the corresponding functional of the governing differential equation
for all elements,

4. obtaining the system of equations of ;he problem by performing a global

assembly,

5. solving the resultant system of simultaneous equations.

2.2 Variational Formulation

The variational principle states that if there exists a functional ¥ in a domain 2

with boundary T such that

A,



HE)= | GE)d2 + [ gE) dr (1)

where G(E) is a valid differential equation in domain Q, g(E) is the given boundary
conditions on S, and E is the unknown function of interest, then the function E is the
solution of the differential equation G(E), if E is chosen such that it extremizes the
functional F(E). If this is the case, then, the differential equation G(E) is also said to be

the Euler equation of the functional . Webb {8] shown that the following functional
FHE) = %J‘n{ — i(v X E): (VX E) + k2,E- E}dﬂ + ,{I‘E x (VxE)-dl (2-2)
has the vector Helmolz equation,
FVxVxE-keE=0, (2-3)

as its Euler equation, subject to the following boundary conditions:

(VxE}x1,=0 (homogeneous Neumann on magnetic wall), (2-4)
Ex1,=0 (homogeneous Dirichlet on perfect electric conductors), (2-5)
Ex1,=E, (inhomogeneous Dirichlet on excitation planes). (2-6)

Here E is the electric field, u, is the relative permeability of the medium, ¢, is the
relative permitivity of the medium and &y, = w? (e p,) is the free-space wave constant.
The surface integral in eqn. (2-2) vanishes because of homogeneous boundary condition

described by eqn. (2-4). The eqn. (2-4) is therefore said to be a “natural boundary
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condition” to the functional & and need not be enforced in the finite element process.
However, the two boundary conditions described by eqns. (2-3) and {2-6) must be

imposed, whenever required. Finally, the functional ¥ for the lossless problem is
F(E) = %jn{ - LV xE)-(VxE)+ KB E} dn | @

In this study, only the lossless case will be considered. That is, all the materials,
including the dielectric substrates and the metallic enclosure and fin, are lossless. The

functional ¥ given by eqn. (2-2) is the basis of formulation of this study.

2.3 Finite Element Discretization

The first step of the finite element process is to subdivide the entire problem
domain into smaller subdomains. In order to avoid the appearance of spurious modes,
orthospectral (mixed-order hexahedral) finite elements cast in terms of the projection

components [6] are utilized. That is, within each element, the electric field vector E is

written
E=1E,+1'E_+1"E,, (2-8)
where 1%, 17, 1” are the reciprocal unitary vectors to the local coordinates, and E;, E,,

E, are the covariant projection components of E. Each component of the electric field E

in each element is approximated by element functions at,(€,n,v), alL(€,7, 1), a%(&n,v):

—]4—
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E¢= ) EfLab(&mv), (2-9)
m=1
36
En = Z Enmanm(£7n7y)a (2'10)
m=19
54
B,= Y. Enob(Env). (2-11)
m =37

Here E§, E7, EY are the nodal electric field values to be determined, of,(¢,7,v) is the
interpolation function for the £-component of E at local node m, linear in ¢ and
quadratic in 7 and v; o],(€,7, v) is the interpolation function for the g-component of E at
local node m, linear in 5 and quladra.ti:'-';‘.n § and v; o¥(€,n,v) is the interpolation
function for the v-component of E at Iocai node m, linear in v, and quadratic in £ and v
The numbering scheme of the first/second-order hexahedral element is shown in Figure
2-1 and Figure 2-2. Detail of these functions are given in Appendix I Substituting egn.
(2-8) to eqn. (2-11) into eqn. (2-7), and applying the standard finite element

minimization procedure to the functional [8,61] gives the following system of equations:
{ =~ {S]+ ke, (T] } [E]= (0). ’ (2-19)

Here [E] is a column matrix representing the nodal electric fields, [S] is the square
matrix that results from the curl-curl term in the functional, and [T] corresponds to the
dot-product term in the functional. Derivations of the [S] and [T] matrices are also

given in Appendix I.
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Figure 2-1
Numbering system of the geometric nodes of the
mixed—order hexahedral element
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2.4 System matrix of equations

As shown in Fig. 2-2, there are 54 local field nodes in each first/second-order
orthospectral element. Therefore, each element can be represented by a 54 x54 local
matrix, obtained by egn. (2-11). The system matrix of the problem can be obtained
by summing the effects from all elements, and enforcing the proper boundary

conditions. The essential boundary conditions that must be enforced are:

Ex1,=0 {homogeneous Dirichlet on perfect electric conductors),
Ex1,=E, {inhomogeneous Dirichlet on excitation planes),
(Ex1,);=(Ex1,) i ( continuity of tangential field components between any

two adjacent element ¢ and element j).

The entry of each global field node is formed by adding the contributions from the
related local field nodes of each element. All nodes subjected to Dirichlet boundary
conditions contribute to the right-hand-side of the system matrix. For deterministic
problems, the assembled global matrix represents the system of equations of the

problem in the form Ax=B.



Chapter 3

Boundary-marching method

3.1 Introduction

Finite elements formulated in terms of vector field components have been widely
used in characterizing arbitrarily shaped waveguides. Recently, the finite element
method has also been successfully applied in analyzing some subclasses of waveguide
discontinuity problems which are essentially two-dimensional, such as E-plane and H-
plane discontinuities. However, a general waveguide discontinuity is three-dimensional.
It joins two or more waveguides, possibly dissimilar; it has an arbitrary shape in all
directions, and may contain inhomogeneous materials, In such cases, a full three-
dimensional analysis is required. When using the finite element method, one also needs
to model the two infinite waveguides directly attached to the discontinuity section. The
most common way of dealing with such infinite guides is to truncate the guides at a
distance sufficiently far from the discontinuity, with a large number of mesh nodes.
Proper boundary conditions are then applied at the truncated surfaces, assuming that
the field decays significantly before reaching the truncations. This approach results in
an undesirably large mesh and therefore is not practical in many three-dimensional

problems. For some special cases, where the waveguide geometry is rectangular, circular
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or elliptical, an equivalent boundary condition, derived from analytically known guided
modes, may be used to truncate the mesh at a smaller distance from the discontinuity.
However, if the geometry of the waveguide structure is more general, therc is no
analytic solution for the waveguide and an equivalent boundary condition for the
infinite guide section cannot be found easily. This is especially truc in the casc of

inhomogeneously dielectric-loaded waveguides.

This Chapter presents a very general finite element scheme which can be used to
model an arbitrarily-shaped guide that may be inhomogeneous in the transversc
direction. The algorithm uses a simple recursive method to generate a submatyrix which
relates the field characteristics on the near-field surface to the field conditions on the
far-field surface. As a result, it can be used to truncate the finite element mesh at a
distance very close to the discontinuity without losing any gencrality, for any
arbitrarily-shaped guide. This procedure resembles the “roof-raising” process used in
static and Aiffusion fields by Kisak, Silvester and Telford [1], and the related but more
general two-dimensional “ballooning” algorithm applied to electrostatics problems by

Silvester, Lowther, Carpenter and Wyatt [2].

Waveguide analysis with the finite element method has long been troubled by
the appearance of spurious modes. Although these are commonly encountered in
eigenvalue problems, it has been shown that spurious modes can affect solutions to
deterministic problems also [3,4]. The orthospectral (“spectrally correct™) clements
obtained by using mixed-order approximating functions on hexahedra [3,6] have been
shown to produce solutions free of spurious modes. The boundary-marching algorithm
developed here is based on elements of this type and, as would be expected, no spurious-

maode corruption of solutions has been encountered.
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3.2 Vanational formulation

The general configuration of the class of discontinuity problems considered here
is illustrated in Fig. 3-1. The waveguide discontinuity or junctioﬁ region is viewed as
being composed of three subregions: (%) a uniform guide §2,, (i) the discontinuity region
proper, 24, and (%5) the second uniform guide §2,, not necessarily similar to £2,. All
medium nonuniformities are confined to the discontinuity region. The cross-sections of
the uniform guides are not restricted. They may be inhomogeneous and arbitrary in
geometry. In the upiform guides and in the discontinuity region 2, the electric field

must everywhere satisfy the vector Helmholtz equation
EV XV XE—keE=0, (3-1)

subject to boundary conditions of the follewing types:

(VxE}x1,=0 (homogeneous Neumann on magnetic wall), (3-2)
Ex1,=0 (homogeneous Dirichlet on perfect electric conductors), (3-3)
Ex1, =E, (inhomogeneous Dirichlet on excitation planes). {3-4)

As is well known [8], solving the Helmholtz equation for the electric field vector in the

lossless case is equivalent to extremizing the variational functional

FH(E) = -21-[”{ ~ (VX E)- (VX E)+ ke, E-EJdQ. (3-5)
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Discontinuity problem of a general waveguide
of arbitrarily—shaped cross—section
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The finite element methods contemplated here rely on this formulation. Discretizing the
entire region into finite elements and applying the standard finite element minimization
procedure to the functional, as described in chapter 2, gives the following system of

equations:

{—IS]+ ke [T } [El= [0). (3-6)

Here [E] is a column matrix representing the nodal electric fields, [S] is the square
matrix that results from the curl-curl term in the functional, and [T'] corresponds to the
dot-product term in the functional. For convenience in the subsequent developments of

the boundary-marching algorithm, eqn. (3-6) is simplified to the following expression:
[WIE] = (0] (3-7)

where [W}=-— ﬁl;[S |+ k2€,[T) .

—03

-



&

’

(.

5
)

3.3 Boundary-Marching Algorithm

The main interest here is placed on the modeling of the two uniform waveguide
sections. The primary objective is to generate matrix representations of the uniform
guides which can be used to interrelate the nodal field on a near-field planc to the
nodal field values on the far-field planes where the field distributions are known a priori.
The boundary-marching algorithm is proposed for this purpose. Four steps of the
boundary-marching process are illustrated in Fig. 3-2. As indicated, the far-ficld and
near-field planes are initially placed at the same location; then the far-ficld plane is
moved away step by step, with the distance at each step growing larger as the far-ficld
plane recedes. To develop the computational algorithm, let £2° be the volume of the
initial segment of a uniform guide; let I, and I'; be the two surfaces enclosing this
segment of the guide. Because the guide is uniform, Iy and I'y are congruent. The guide
segment is discretized into finite elements, with the following restriction on the manner
of subdivision: the placement of finite element nodes and edges must lecave I'; and I,
congruent, i.e., the element and node placement on I', must correspond exactly to that
on I';. On discretizing the segment into a number of finite elements and minimizing the

corresponding electric-field functional, the following set of simultancous equations is

obtained;

[W}l 1 [H;]li [w']n [E ]1 -
Wl Wl Wl. |{[ER|=0. (3-8)
Why [Whi W, {|[E]
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This matrix equation has been partitioned so that the submatrices identified by
subscript 1 correspond to finite element nodes located on plane 1 (the near-field plane),
those identified by subscript 2 correspond to finite element nodes located on plane 2,
and those identified by i are in the interior of the guide segment. {The superscripts arce
of no significance for the moment; they are introduced only for notational consistency
with further development.) Thus [E], represents the nodal electric ficlds on boundary
surface 1, [E], the nodal electric fields on boundary plane 2, and [E}? is the sct of all
nodal electric fields inside the region. Since any two transverse planes in the guide are
sufficient to describe the uniform guide, all additional nodes between the two planes,
the internal field nodes [E]?, are not of interest and are eliminated by a static
condensation scheme [61,62]. The system of equations for waveguide segment 29 is

thereby reduced to the more compact form

(ST (SR ||(ER|_ _
[[S}%’l [3132“[313}“0’ (3-9)

where the number of matrix rows and columns equals the number of nodal variables on
the bounding surfaces I, and I'; only; the subscript i has disappeared altogether. The
new submatrices [S]%,, are obtained from the nine submatrices [I¥],,, of the finite

element functional by A
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[SF1 = [Wh = W] (W)~ W] (3-10)

(872 = [Wha = (W ([W) " (W, (3-11)
(811 = Wy — [Whi([W]i) ' W], (3-12)
(512 = [Whe = [Whi((W)i) "W). (3-13)

The notation follows that for the full matrix representation: submatrix [S]2,,
interrelates field components associated with nodes on surface I',, of the condensed

element with those on surface I',,.

Now the coefficient matrix of eqn. (3-9) describes the interrelationship of electric
field components at the two ends of a fixed length of uniform guide, with no
assumptions as to the length (it need not be smaller than a wavelength). A section of
guide twice that length can therefore be modeled without loss of accuracy by cascading
two such matrices. The aéscription of a double-length segment of guide is thus obtained
by combining two identical segments as described by eqn. {3-9) and enforcing field

continuity on their common boundary:

(ST 1515, 0 |[ER
(ST ST+ [SE.  [SK: ||[ER{=0. (3-14)
0 [T, (5. || (B

As before, the electric field at the internal nodes is of no interest. It can be eliminated
from further consideration, removing [E]} by the same process of static condensation as
previously. What results is a description of a “super-element” twice as long as the

original one:
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S8, 188 |[i2E] 15
[5T1 (S ||[EL

‘where the superscript 1 indicates that one doubling of the guide length has taken place.

The four new submatrices are obtained much as before:

[Sh =[S —[SE(IS18) (ST, (3-16)
[She= ~[SB{(S1%)~1(SI%, (3-17)
[SE: = [SJQ,(IS}.)I (3-18)
[SB. =[S —[SB(IST)-[s (3-19)

The new super-element representing the guide section is twice as long, and therefore has

twice the volume of the original section: 2! = 202°,

Further lengthening of the guide segment is achieved by applying the same
procedure recursively. After each of n recursions, the matrix relating the excitation field
on boundary surface 1 to the field distribution on the far-field plane can be expressed in

terms of the submatrices of the previous recursion as follows:

(St =[5k ~[Sk(lsk) 1[51 (3-20)

[Sk+1= - [sk(IS1k)-s) (3-21)

[Skit= —[SK{1Sh) l[s (3-22)

[Sh* =[Sk, ~[SK(I8)) "SIk (3-23)
—_8
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At each recursion step, the length of the super-element (i.e., of the guide segment) is
augmented by a factor of 2. Consequently, in the course of N recursions, the length of
the uniform guide in the propagation direction grows by a factor of 2V, In effect the
procedure is equivalent to marching out the boundary of the uniform guide from the
excitation plane to the far-field plane, sufficiently far for all evanescent modes to decay
to a negligible level. The method therefore provides a simple way for simulation and
investigation of wave propagation in any arbitrarily-shaped guide. The advantage of the
algorithm becomes even more pron01.1nced in the case of inhomogeneously dielectric-
loaded guide, where any competitive method currently available (e.g., any integral

equation method) becomes too complicated, if not impossible.

To summarize the full computational algorithm: The finite element matrix for a
finite, generally quite short, length of guide is constructed using standard techniques. It
is partitioned into submatrices according to whether the node numbers refer to
bounding plane 1 (the near-field plane), plane 2 (the farther plane), or the interior i.

The nine submatrices are then manipulated in an N-step re:ursion as follows.
Step 1: initialize.

[S]h = (Whi = [Whi(IW]) ' [W],
(ST = (Wha = [W]u((W]i) = W],
(S = Wy — [WLi([W]a)~ ' [W],y
(S = [Wha — [WhLi([W)i )~ [W],.

—9G.—
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Step 2: march out, for k=10, ..., N-1.

[kt =181 —[S)(151%) 1Tk
[Shi= - [sK(ISI) 'Stk
(Shitt= - [Sk((sk) 18k
Sk =[Sl ~[SK((S1)ISTE.

Step 3: record result.

sy s fimn] _
(s 1sh ||~

The guide length grows as 2V, so only 20 recursion steps will turn an initial explicit

guide model millimeters long into the same number of kilometers.

3.4 Conclusions

A general recursive method has been proposed and validated for creating finite
element models of very great lengths (thousands of free-space wavelengths) of
arbitrarily-shaped waveguide. The method is valid for any guide, so long as a technique
is available for constructing a finite element model of a finite length of the guide. It is
particularly useful for analysis of waveguide components and discontinuit; regions,
where it permits truncation of the finite element mesh very close to the discontinuity

region without compromising result accuracy. It does not introduce any error beyond



the discretization error inherited from the finite element meshing; it is unconditionally
stable, except possibly at frequencies very close to the cut-off frequency of the lowest
eigenmode, where the ratio of free-space wavelength to guided wavelength approaches
the floating-point precision available. This algorithm appears to be particularly useful
for discontinuity analyses involving inhomogeneous dielectric-loaded guides, such as
finline and shielded microstrips, but further verifying work is needed to establish what

limits there may be to its use.
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Chapter 4

Software Implementation

4.1 Programming Language

All necessary software for the computations in this thesis are written in Ada.
Ada is a modern software engineering language designed to be used for large software
systems. It encompasses all the basic principles associated with modern software
engineering: structuring, modularity, data abstraction, information hiding, strong
typing and error handling [66, 67, 68, 69, 70, 71]. It makes modular program
development a reality. The primary advantage of Ada is that it allows construction of
small, functionally cohesive modules with clearly defined interfaces, and enables the
programming to piece them together into large, cohesive systems. Implementing with
Ada results in a design identical to the actual system itself. The software can therefore
be maintained the same way as maintaining the system itself. Furthermore, Ada

emphasizes program readability, and therefore eases program maintenance.

4.2 Program Structure

The programs of this thesis are divided into six main modules:



&

Mesh Generator -

Generates the 3-D finite element mesh, for a given waveguide structure. It is also
used to generate the finite element mesh for discontinuities.

Matrix Condenser

Assembles the global matrix of the waveguide structure, based on the information
given by the mesh generator, and condenses out all unwanted field nodes.
Boundary Expander

Performs the boundary-marching algorithrrrl; using the global matrix generated by
the Matrix Condenser, for a given number of recursions.

Substructure connector

Connects any two waveguide sections, and condenses out all the unwanted field
nodes. This program is also used to connect the two uniform waveguides to the
discontinuity section.

Admittance calculator

Computes the admittance of a discontinuity.

Eigenvector solver

Generates the eigenvector of a waveguide structure.

The most time-consuming part of all the computations here is to perform the static
condensation in the Matrix Condenser, Boundary Expander, and the Substructure
Connector modules. The static condensation is performed by a small Ada package.
Therefore, the speed of computations is dependent on the efficiency of the static
condensation package. An efficient node-by-node condensation scheme is being used in

this study.



. 4.3 Static Condensation Scheme

To condense a matrix, the static condensation processes make use of the
following recursive formula:
[SH =[St (ST (Ist) I8
[SH = —ISH(ISK) (ST
[Shitt= —ISK(IS)IsH
(S5 =[Sl 1S (IS) 18T
Implementing the static condensation scheme in the matrix format requires large
computer memory and storage. To improve the efficiency of computations, and to
.reduce the memory and storage requirements, the static condensation procedure is
implemented in a node-by-node condensation approach. The node-by-node static
:; condensation removes one field node at a time. Fig. 4-1 shows the node-by-node static

condensation scheme for a N x N matrix. To remove node 7 from the matrix, we need to

perform the following steps:

1. Compute new values for all row k& #1, and all columns j # 7 using,
a’kj = akj - ap; * a,-,71 ¥ a,-j .

The efficiency of computations can be improved by checking the values of ay;
and a;; The entry a,; needs to be updated only when neither a,; nor a;; is zero.

Furthermore, for a symmetric matrix, only the upper part of the matrix needs to

be computed.

3
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2. Remove column 7 and row : from the matrix by rearranging the entries as follow:

a'(k,j) = alk,), for all row k<i, column j<i,
a'(k,j) = a(k+1,j), for all row k>i, column j<i,
a'(kj) = a(k,J+1), for all row k<i, column j>i,

a'(k,j) = a(k+1,J+1), for all row k>i, column j>i.

The final matrix will be an {N-1) order matrix. Therefore, for the worst case
situation, assuming that the original N xN matrix is a full, symmetric matrix,

the number of operations required to condense it into an (N-1) order matrix is,

(N-1)2

5 subtractions,

(N-1)*> multiplications/divisions.

To reduce an NxN matrix into an MxM matrix, the procedure must be
repeated by (N-M) times. In each step, the matrix is one order smaller than the

previous matrix. Therefore, a maximum of

1)
( 0((1§ {_1 1))‘ ) ? subtractions,
AN
( % ) ? multiplications/divisions,

will be required to condense the matrix. In practice, the matrix to be condensed is not

full 100%. This is especially true when the condensation scheme is first applied to the
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global matrix which is relatively sparse. On the average, one would be able to improve
the number of computations by another 20% —40% by checking the values of the

entries ay; and a;;,

4.4 Gauss-Legendre Quadraturc

Evaluations of the [S] and [T) local matrices for each finite element involve
volumetric numerical integrations. To obtain good computational efficiency and
integration accuracy, Gauss-Legendre quadrature is used to evaluate such integral.

Appendix II gives the detail of the integration scheme.

4.5 Gaussian Elimination

Solving discontinuity problem with finite element method results in a set of
linear q;lgebraic equations, Ax=B. Since the proposed finite element scheme results in a
relatively small (in the order of a few thousands unknowns) but dense matrix, the
Gaussian elimination procedure is used here to solve the resultant system equations.
The matrix is first converted into a triangular upper matrix by using pivoting and
eliminating processes. The solution is then found by performing the back substitution

procedure.
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Chapter 5

Waveguide analysis by boundary-marching algorithm

5.1 Introduction

P

Chapter 3 showed how an accurate matrix representation for an infinitely long

waveguide can be generated by using the boundary-marching algorithm, This Chapterﬂ

: is intended to show how the matrix can be used for simulating wave propagations and
discontinuity analysis in wa\;eguir.le of arbitrary cross-sectional shape. The boundary-
marching technique has been extensively tested on guides of several different cross-
sectional shapes. All test programs used Crowley-type orthospectral elements [6] and
were written in the Ada language. Two computers were used: an 80386-based (MS-DOS)
machine for program development and debugging, followed by a Cray X-MP
supercomputer for subsequent production runs.



5.2 Wave propagation in Rectangular Waveguides

The ‘l-)oundary-marching algorithm is first tested here against the well-known
characteristics of the rectangular waveguide. The matrix representation of a rectangular
waveguide of width a=20.32mm and height of b=10.16mm is generated by using the
boundary-marching algorithm with 7 recursions. The operating frequency of the
simulation: is chosen such that at least the first four transverse electric eigenmodes,
TE;g. TEqg;, TEq;, TE;; are non-evanescent. A total of 25 elements are used to
approximate the cross-section of the waveguide. Applying homogeneous Neumann
conditions on the far-field plane, various propagation modes in the rectangular
waveguide can be simulated by exciting the guide with proper excitation field on the
near-field plane. First, the TEj; is simulated by using an z-polarized point source
located in the middle of the cross-section of the near-field plane. Figure 5-1 show;é ";the
comparison of the calculated TE,p mode field distributions with the idealized case,

Sin(y) distribution. With single-precision arithmetic, the maximum field strength error

-is less than 0.05%. Next, the TEj; propagation is simulated with a y-polarized point

source located in the middle of the cross-section of the near-field plane. In this case, one

gets a Sin(x) field distribution with a maximum field strength error of less than 0.1%.

The problem becomes more interesting when a dielectric slab is loaded into the
rectangular waveguide. The characteristics and approximate expressions of the
dielectric-slab-loaded waveguides have been well documented and can be found in
[60,65]. The basic mocies of propagation in such waveguides are longitudinal-section

electric (LSE) modes which can be represented by a single magnetic-type Hertzian

potential:

r_i:\
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O,=a;®,e” 7" . (5-1)
And the electric field is given by

E= —jopVxI . (5-2)
The scalar function ®, must satisfy the following relation:

vio, + [ + e(x) k2] @, =0, (5-3)

where ¢{x)=1 in the air-filled portion of the guide (y<d), and ¢(x)=¢, in the dielectric-
filled portion of the guide {d<y<a). A solution for &, which satisfies the boundary

conditions at both the dielectric interface and on the perfectly conducting walls is

A sin (kyy) cos(TF¥) , 0<y<d,
B sin (ko)) cos(BE),  d<ysa,
subject to the following relations:
krltan(ka[a’ - d]) = - k:r2ta'n(k.rld)a

Ko = + (.= 1k,
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< where A and B are amplitude constants, ., and k_, are the wave numbers in the air

and in the substrate, respectively. There are infinite number of solutions for the wave

numbers k;, and k., that satisfy the conditions. For the purpose of this investigation,

the special case of m=0 is used. In this case, both E, and H, vanish and the only non-

vanishing electric component is E,. This is also called the H,, modes. In this case, the

electric field becomes,

E= —juuy ¥, e 1%,

Therefore, for a given z value, the electric field can be described by,

A Siﬂ (kEIY)’-

E, = {

T B sin (k,5(a-y]),

A waveguide half-filled with dielectric slab with the dielectric constant of €,=2.22 1s

being considered here. By solving the conditions set by eqn. (5-5), it is found that the

wave numbers for the lowest mode H,, are:

(%) = 0.32055

- k., = 0.148406 ,

rl

k, = 0.228402.

The amplitude constants A and B are set to



]

1.064022
= 1.021225 .

Figure 5-2 gives the theoretical and the computed electric field distribution. The results
are computed with the identical finite element scheme as that of the empty waveguide

case (25 elements, 7 recursions). The maximum field strength error is less than 0.03%.

For the purpose of the discontinuity analysis, it is essential to understand how
the matrix responds to higher-order mode excitations. The algorithm is therefore tested
here by investigating the decay behavior of the evanescent modes, as the boundary of
the far-field plane is marched out from the excitation plane. Fig. 5-3 shows how the
reflected waves of the TE;,, TEy, and TE,, modes decay with guide length in a
typical rectangular waveguide. The operating frequency is chosen so that the TE, ,
mode is the only propagating mode in the waveguide. All computations were carried out
in 64-bit arithmetic, so that noticeable roundoff error accumulation in the fourteenth or
fifteenth digit is to be expected. In fact, the roundoff error falls substantially below that
level in two of the modes. The magnitude of the forward transmission of the scattering
coefficient of the propagating mode (TE, o mode), as a function of the length of the
waveguide is also shown in Fig. 5-3. Clearly, about 6 or 7 recursions are more than
adequate in this case to make the guide “infinite” for all practical purposes. Even quite
near cutoff, about 20 or 30 rec;zrsion steps suffice, yielding a waveguide length of 10°—

10® times guide width.
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5.3 Discontinuity analysis

To illustrate how the boundary-marching procedure can be incorporated into waveguide
discontinuity analysis, the scattering parameters of a zero-thickness asymmetric
capacitive window is evaluated here. The asymmetric capacitive window (zero-
thickness) can be modeled as a shunt susceptance. An approximate expression for the

normalized susceptance of the capacitive window was given by Marcurvitz [60],

Q, cos*(Y)

(%) = Log, [ csc (Y) ] + Tt Q, s (Y) + % X?[1 =3 sin? (Y) )? cos*(Y), (5-8)
where,

X= (1)

Y= (3

Qy= ﬁ -1,

s = T (2

For given waveguide dimensions and operating frequency, the normalized susceptance
can be computed according to eqn. (5-8). Fig. 5-4 shows the finite element scheme for
the solution of the zero-thickness capacitive window. The detail of the procedure for
computing S-parameters from finite element solution is described in Appendix III. First,
the prescribed field conditions on the far-field planes are generated using the matrix
representation for the uniform waveguide. For frequencies below the} cut-off frequency of
the second higher order mode, the TE,; field distribution ié:'%:f;/tairlecl for any field
excitation on the near-field plane. Once the prescribed field distributions on the far-field

planes are known, the reference plane of the transmission and reflection parameters can

be calibrated by using a
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matched “through” segment. The calibration also eliminates any error that may arise as
a result of signal loss or phase distortions in the waveguide segments. The scattering
parameters of the structure are first computed with the discontinuity section replaced
by a segment of empty waveguide of known finite length. Matching the boundary
conditions on the near-field planes, the scattering parameters of the structure can be
extracted from the functionals, for different excitation conditions on the far-field planes.
The calibration factors are determined by setting the magnitude of the forward
transmission of the scattering coefficients to unity and the phase to 0 degrees. Then the
scattering parameters of the structure including the discontinuity are computed by
replacing the “calibration segment” with the discontinuity. Dividing the transmission
and reflection parameters by the proper calibration factor, and subtracting the phase
offset from the phase angles of the parameters, one obtains the final scattering
parameters at the desired reference plane. By using the same segment length for the
calibration segment as for the discontinuity segment, the transmission and reflection
parameters are calibrated to the plane where the zero-thickness window resides. If
desired, the parameters could also be calibrated to some other reference plane, by

choosing different lengths for the calibration segment and the discontinuity segment.

Phase and amplitude of the forward transmission coefficient of the scattering
parameters of the capacitive window are shown in Fig. 5-5, for different frequencies. The
results agree with the analytical approximation given by Marcuvitz [60] to within 1-2
percent. Since the Marcuvitz solution is not exact, it cannot be used to establish firm
error bounds. However, the finite element solution and Marcuvitz’s approximation are
thought to incur errors of roughly similar magnitude, so their agreement is held to

confirm the validity of the boundary-marching technique.
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Chapter 6

Inductive strips in unilateral finlines

6.1 Introduction

The design of millimeter-wave components in finline technologies requires the
accurate characterization of various finline discontinuities. The inductive strip is one of
the most essential building blocks of common bandpass filters implemented with E-
plane circuit technologies. As a result, this type of di;continuity has been studied
extensively by using various approximate and rigorous approaches [28,29.32]. However,
all these analyses were based on the idealized finline model of zero fin thickness and
negligible effect from the mounting groove. Neglecting such effects results in a shift in
the desired range of operating frequencies in practical circuits. This phenomenon has
been well demonstrated by the responses of multi-resonator filters [33,34,35] where the
frequency responses of the theoretical results and the measured results are consistently
shifted by a few percent. It has been reported that the error of neglecting such effects
can go as high as 7 percent [31]. Fufthermore, due to the imperfection on the
mechanical fitting and thermal expansion on the metal enclosure, more errors can be

contributed from the bending of the substrate and the fin. Several authors [36,37,38]



have studied the effect of finite metalization thickness and influence of the mounting
grooves on the modal spectrum, propagation constants and the characteristic impedance
of the finline structure. However, the real interest in the design process is how these
parameters affect the parameters of a discontinuity in the finline structure. The purpose
of this study is to provide a sensitivity analysis on the inductive strip for various depths
of mounting grove, dﬁlifferent thicknesses of metalization and varying degrees of bending
of the substrate on the discontinuity parameters of an inductive strip in a unilateral
finline. The results allow one to predict and design a finline component such as filter

with a better accuracy.

Finline discontinuities are often analyzed by rigorous techniques, such as spectral-

B
=L -
L

domain approaches or the transverse resonance method, wlii_ch essentially reduce the
three-dimensional problems into two-dimensional problems by reducing one degree of
freedom in the transverse direction that is perpendicular to the substrate. These
methods provide accurate results, if the metalization thickness and the effect of the
mounting grooves are negligible. Recently, a two-dimensi'c();a“l. finite element method has
been applied to analyze the dispersion characteristics of finlines {30,40] of various cross-
sections. However, due to demanding requirements on computer memory and storage,
the three-dimensional finite element method has not yet been popular in finline
discontinuity analysis. This thesis shows an efficient approach of applying the full three-
dimensional finite element method in finline discontinuity analysis. The method allows
one to analyze E-plane discontinuities, including various manufacturing effects such as
the effect of the mounting grooves, influence of the metalization thickness and the effect

of substrate bending.
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6.2 Method of Analy:is

Fig.6-1 delineates the problem under consideration. The substructure formulation
has been incorporated into this algorithm. The problem domain is separated into three
subregions: (i) Uniform finline one, f2,, (%) Discontinuity region, £2,, (%) Uniform
finline two, 2,. The discontinuity region is subdivided into a number of mixed-order
curvilinear finite elements formulated in terms of the covariant projection compouents
as discussed in Chapter 2. The utilization of mixed-order finite elements eliminates the
possibility of the appearance of any spurious mode [3,6]. To model the two infinitely-
long, inhomogeneous waveguide sections, the boundary-marching algorithm is used.
Utilization of the boundary-marching algorithm allows truncation of the finite element

mesh in the discontinuity region at a distance very close to the discontinuity without

any compromise with the result accuracy.

The trial functions of the electric field components must also satisfy the following

boundary conditions at the boundary between element i and element j :
(Ex1,); = (Ex 1,,)j (Continuous tangential field across elements). (6-1)

However, no conditions are enforced on the normal field components. Letting the
norma!l field components free increases the number of degree of freedom and improves

the field approximation at the singularﬁies, the sharp edges of the zero thickness fin.

As indicated in [5] the uniform finline can be modeled more than adequately with just
n=6 recursions. A total number of recursions of n=35 is suitable for most of the

applications.
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6.3 Scattering Parameters of Idealized Model

Computer programs based on the mixed-order finite element and the boundary-
marching procedures have been developed and written in the Ada language. A Cray X-
MP supercomputer was used for the computations. Fig. 6-2 shows the d&nmnsious and
the equivalent circuit of the inductive strip under comsideration. The normalized
susceptances of an inductive strip of idealized finline model are computed using the
substructure method as shown in Fig. 6-1. 98 elements are used to approximate the field
distribution in the discontinuity region, ;. Before proceeding with the discontinuity
analysis, the prescribed fields on the far-field planes must first be determined. The
excitation field conditions on the far-field planes can be generated using the matrix
representation of the uniform finline obtained by the boundary-marching algorithm. For
operating frequencies lying within the single-mode b;a.ndwidth of the unilateral finline,
the field distribution of the lowest eigenmode of the line is obtained by excitingﬁthc
uniform finline with any non-trivial excitation on the near-field plaue. Fig. 6-3 ?o Fig. 6-
6 show an example of the transverse electric field distributions in a typical unilateral
finline. These field plots are obtained by exciting the uniform guide with a few z-
directed nodal fields on the near-field plane. The uniform guide was simulated with the
boundary-marching algorithm with only 5 recursions. Once the excitation fields for the
far-field planes are found, the scattering parameters of the structure can be extracted
from the functional, by applying various arrangements of the far-field conditions on the
far-field planes, and matching the boundary conditions on the near-field planes. The
reference plane of the transmission and reflection parameters can be calibrated by usiﬂg
a matched "through” segment. The calibration procedure also eliminates any error that

may arise as a result of signal loss or phase distortions in the waveguide segments.
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During the calibration phase, the scattering parameters of the strncture ave
computed with the discontinuity section replaced by a segment of the unilateral finline
of the same cross-sectional geometry as the two uniform guide sections. The length of
the "through” segment is determined by the location of the desired veference planes.
The calibraticn factors are determined by setting the magnitude of the forward
transmission of the scattering coefficients to unity and the phase to 0 degrees. Then the
scattering parameters of the structure including the discoutinuity are computed by
replacing the “calibration segment” with the actual discontinuity. Subtracting the
phase offset from the phase angles of the parameters, one obtains the final scattering
parameters at the desired planes. By using the same segmernt length for the calibration
segment as for the discontinuity segment, the transmission and reflection parameters
are calibrated to the center plane of the discontinuity. The parameters could be
calibrated to some other reference plane, by choosing different lengths for the
calibration segment and the discontinuity segment. Fig. 6-7 shows the comparison
between the results computed by Jansen and Koster {28] using the rigorous hybrid-mode
spectral domain approach, and the results obtained by the three-dimensional finite
element method. In this case, only 98 mixed-order elements are used to approximate the
electric field in the discontinuity region. The lengths of the initial segments of the
uniform finline sections are chosen such that the resolution of the uniform guide sections
is one-tenth of the wavelength of the operating frequencies. The total number of
recursions used in the boundary-marching algorithm is five. The finite clement results
agree with the spectral domain results to within a few percent, and hetter than 2% for
the strip width of s/b=0.1. It is possible to further improve the accuracy by increasing

the number of elements used in the discontinuity resion, for hisher operatin
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frequencies or larger strip width, s. Fig. 6-8 shows phase and amplitude of the forward
transmission coefficient of the scattering parameters of the inductive strip of strip-width
s/b=0.1, for various slot-widths and frequencies. The phases of the scattering
parameters are calibrated to the center of the discontinuity by using a through segment

of the same length as the discontinuity itself.

6.4 Effects of Mounting Grooves

In practice, finline construction starts by printing the circuit pattern on a piece
of thin substrate using the microwave integrated circuit technologies. The substrate
including the circuit pattern eventually will be inserted into a waveguide housing. To
support the substrate in the waveguide housing, a slit is precisely machined in the
middle, or at a location slightly offset from the m.iddle, of the metallic enclosure. Since
the design of the circuit pattern assumes a perfect rectangular waveguide housing, the
slit in the guide modifies the circuit parameters and circuit performance. The effect of
the mounting grooves is a function of many parameters such as the operating frequency,
dielectric constant, and the substrate thickness. The influence of mounting grooves on
the modal spectrum of a unilateral finline has been studied by several authors
[36,37,38,40]. It was found that, for small groove depths, the dominant mede is
unaffected. However, as the groove depth increases, the dominant mode interacts
strongly with the next higher order mode, resulting in an increase in the dominant
mode propagation constant. In general, the cut-off frequency of the higher order mode is
slightly lowered, thereby resulting in lower single-mode operating bandwidth. The
responses of several finline filters [33,34,35] show that the mt;ﬁnting grooves, in
general, result in a shift in the operating frequencies. However, these effects have not

pe o
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yet been quantified in terms of the discontinuity parameters of the circuits. Here, the
susceptances of the inductive strips of various slot-width are computed using the finite
element method, for various groove depths. Fig. 6-9 shows the error of the susceptance
of the inductive strip as a function of the groove depth, for several frequencies. It is seen
that the effect of the mounting groove is more severe at the higher end of the frequency
spectrum. These results also confirm [38] that the groove depth lowers the single-mode
operating bandwidth. Initially, the groove depth causes an increase in the susceptance of
the discontinuity. As the groove depth increases, the susceptance of the discontinuity is
slightly lowered as a result of the increase of interaction between the dominant mode
and the higher order modes. When the groove depth approaches a value where the
second order mode becomes a propagation mode, the susceptance of the'discontinuity
can no longer be predicted accurately. With reference to Fig. 6-9, it is evident that the
groove depth of a unilateral finline must not be made greater than 1/3 of the ilcigllt of

the waveguide housing, in order to keep the effect of the groove below 3% for most of

the usable operating frequencies. Fig. 6-10 shows the error in the susceptance of

unilateral finlines of, different slot widths and various subs’rate thicknesses. It is

observed that the susceptances of;%l-le inductive strip in finlines of smaller slot width is
altered slightly more by the présence of the groove. This is probably because the
dispersion characteristics of finlines with smaller slot-width are affected more severely
by the mounting groove. For the same reason, the deviation in the discontinuity
parameter is increased as the substrate thickness increases, for the same slot width.
From these results, ore may conclude that the effect of the mounting groove is in
general not negligible.. However, the effect is less than 1%, if the groove depth is
restricted to less than 0.15 of the height of the waveguide housing. In cases where the

groove depth rises as high as 1/3 of the height of the housing, the error in the

T
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discontinuity parameters can go as high as 3%. If the groove depths are greater than
2/5 of the height of the waveguide housing, it is expected that a large portion of the

single-mode operating bandwidth will be corrupted by higher order modes.

6.5 Effects of Metalization Thickness

A thit layer of conducting substance is deposited on the surface of the dielectric
to form the desired circuit pattern. At lower microwave frequencies, the thickness of the
metalization is relatively thin and negligible compared to the wavelength of the
operating frequency. However, as the frequency approaches the millimeter-wave range,
the thickness of the metalization of the circuit pattern becomes more and more visible
to the electrical signal. Therefore, the effect of metalization thickness becomes stronger
at the higher frequency range. The effect of the finite thickness of the fin is equivalent
to capacitive loading in the guide. Fig. 6-11 shows the effect of susceptance of inductive
strips versus the operating frequencies, for various slot widths, and different
metalization thicknesses. Fig. 6-12 gives the corresponding error plot with respect to the
metalization thickness. It is seen that the effect of the metalization loading is close to
2% for{-. metalization thickness of less tha::tlh'rr-(};:.:l% of the width of the waveguide housing,
when “a practical slot-width is considered. As indicated in Fig. 6-12, when the fin
thickness of the unilateral finlines rises to 0.3% of the width of the waveguide housing,
the error can go as high as nearly 7%. From these results, it is also quite evident that
the thickness of the fin affects the discontinﬁity parameters most severely when the slot
width of the finline is small. To keep the effect of metalization loading below 3%, the
thickness gf’the fin must be kept below 0.2%. Evidently; this condition is not a problem

: o (s il . . .
for most microwave applications; however, it is a factcr to be taken into consideration
S,
for applications in the millimeter-wave range. B
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6.6 Effects of Substrate Bending

For very high frequency applications, above E- or F-band operating frequencies,
fhe thickness of the dielectric substrate that the circuit pattern is printed on becomes
extremely thin, in the range of hundreds of microns (less than 1 millimeter). In such
cases, the substraté itself can be bended. The substrate bending can be a result of the
mechanical fitting, or a result of the thermal expansion when the finline component is
subject to an extreme thermal environment. Furthermore, for some applications, a soft
dielectric substrate is preferred. In these cases, the substrate including the circuit
pattern can be bent easily, especially in millimeter-wave applicatiors. Fig. 6-13 gives
the susceptance of the inductive strip for different values of deflection at different
frequencies, with the slot-width of w/b=0.125. The susceptance of the inductive strip is
also ploted in percentage error compared to the idealized model in Fig. 6-14. It is“seen
that substrate deformation can cause a significant amount of deviation in the
discontinuity parameter. The effect of the substrate bending can go as high as 4% — 5%

when the substrate is deformed by a distance of about 4% from the straight position,

_compared to the width of the metallic enclosure.

6.7 Conclusions

Three-dimensional finite elements in conjunction with the boundary-marching
a.l:gorithm are used to examine inductive strips in unilateral finlines, including all the
effects resulting from the limitations of manufacturing processes. By using mixed-order
finite elements, no spurious-mode problem is encountered in the solutions. The
boundary-marching algorithm is used to generate matrix representations of the uniform

finline sections, By using the matrix representation of the uniform finline to interrelate
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the electric field at the discontinuity to the propagation field on the far-field plane, one
may truncate the finite element mesh at a proximity very close to the discontinuity.
As a result, the system of equations of the three-dimensional problem is reduced to a
relatively small matrix size, in the order of a few thousands. The results obtained by
using the present method agree with the results computed with the hybrid-mode
spectral domain method to within 2%, with only 98 elements used in the discont.‘lnuity
region. The effects of manufacturing processes, including the mounting grooves,
metalization thickness, and the substrate bending, on the finline discontinuity are
examined with the finite element method. Various plots are provided for estim-a-tting

such effects.
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Chapter 7

Conclusions

7.1 Summary

This thesis describes the development of a finite element scheme for analyzing
three dimensional scattering problems in inhomogeneous-dielectric-loaded waveguide
structures. The algorithm 1is, in general, applicable to any arbitrarily-shaped
waveguiding structure. lTwo major techniques used and developed in this thesis are:
the ballooning method proposed by Silvester in 1977 (2], and the mixed-order

curvilinear finite element method proposed-by Crowley in 1988 [6].

The follo“;ilrig are the major contributions of this thesis.

{}) Boundary-marching algorithm for waveguides.

This algorithm is based on the previous work of Silvester [2] developed for static
problems with open boundaries. In this thesis, the ballooning algorithm is extended to
the wave equation, especially tailored for waveguide applications. It is shown that the
boundary-marching algorithm is a simple yet accurate technique to generate the
necessary auxiliary matrix for interrelating the field distribution in the near-field

region to the field distribution in the far-field region. In this thesis, the boundary-
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marching algorithin is first used to generate the far-field solution in a given waveguide

structure. The far-field solution is, in turn, used to terminate the waveguide.

(1) Three dimensional scattering problems in waveguides.

For many scattering problems, the scattering object under investigation is of relatively
large dimension compared to the operating frequency. For such cases, the three
dimensional finite element method requires very large storage and memory. By using
the static condensation technique, it is shown in this thesis that the problem can be
solved by subdividing the geometry into several subsections and therefore reduces the
storage and memory requirements. This a;ﬁproach not only improves the speed of
numerical computation by taking the advantage of the possibility of parallel
processing; most importantly, it eliminates the limitation previously set by the length

of the scattering object.

(ii1) Characteristics of finline discontinuities.

The transmission/reflection characteristics of inductive strips in unilateral finline are
studied by using the three-dimensional finite element scheme. It is shown that results
with satisfactory accuracy can be obtained by using the proposed approach with
relatively small number of elements. For the first time, the effects of the circuit
manufacturing processes, inrluding the effect of mounting grooves, influence of the
finite metalization thickness of the fin, and the effect of substrate deflection on the

finline discontinuities are studied in detail.
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Mixed-order curvilinear finite elements

1. Variational Formulation in Curvilinear Coordinates

The functional to be coﬁsidel‘ed here 1s,
FHE) =4[ {~H(VXE): (VXE)+heE- Bl (A-1)
“Jln He v '

where E is the electric field vector, g, is the relative permeability of the medium, e, is
the relative permitivity of the medium and &y = w? (e,,) is the frec-space wave
constant. The orthospectral (mixed-order hexahedral) finite clements, cast in terms of

the projection components {6], are used for the discretization. Within each element, the

electric field vector E is written
E=1'E,+1"E,+1"E,, (A-2)

where 1¢, 17, 1¥ are reciprocal unitaries of the local- curvilinear coordinates, and E. E,,

E, are the covariant projection components of E. The reciprocal unitaries can he

—T6—

P LTy
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written in terms of unitary vectors 1., 1,, 1, of the curvilincar coordinate system as

follows,

1£ = %'(lnx lu)’ (A'3)
1" = F(1,x 1), (A-4)
1¥ = _‘17'(1§x 17;)’ (A-S)

where V 1s the volume of the parallelepiped formed by the three unitaries,
V= L(1,x1) = 1,-(1,x 1) = 1,-(1;x 1) (A-6)

The geometrical properties of space with respect to any curvilinear system of
coordinates can be completely characterized by a set of coefficients called the metrical
coefficients, In this case, one can express the differential volume in terms“of the

metrical coefficients as follows,

Cde = V.dedndo, (A-T)
where
11 812 &3
Vo= g = £21 E22 B2z |» - (A-8)
£a1 B3z Eas
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and

] =
Bip = lgly = S54 4 Ay dzde (A-10)
g13 = Ll = £E 4+ g—g-j—ﬂ + d2.dz (A-11)
m = bl = SE Gt (A-12)
Bpp = Lol = Z& 4 %% + 4.4z, (A-13)
go3 = lpl, = gz g LU, dids (A-14)
gg1 = Lol = .94 % W4 dedz (A-15)
g30 = Lol = ﬂ—iﬂ—f} + %j—fj n ﬁ—j%,?—, (A-16)
g33 = Lol = dr o4 Py i (A-17)

Substituting eqns. (A-6) and (A-T) into eqn. (A-1), one obtains the functional for the

problem in terms of the covariant projection components of E as ~

F(E) =%In{—?%;(VxE)-(VxE)-H'%e,E-E} 7 - de dy dv . (A-18)

2. Geometric Interpolation Functions

The geometry of each curvilinear element can be fully described by 27 geometric
nodes interpolated by smooth functions. The metrical coefficients of the element can

then be-evaluated in terms of these geometric nodes and the interpolation functions.

. Fig. A-1 shows the ﬁﬁrribering’ scheme of the geometric nodes. The Cartesian

coordinates are approximated by three geometric interpolation functions, #.(¢, n, v), as

follows :

L

N
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Figure A-1

Numbering sheme of geometric nodes

e —
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& = :Ck ﬂk(53 Qo U)v '::\-19)

k=1
Z7 .

y = yk Bk(‘sv n, V)1 (A‘20)
k=1
27

2 = :k ﬁk(fq 7, l/), (A-21)
k=1

where the interpolation function satisfy the following criteria,

+1, if k=j,
ﬂk (57 7, ‘V) = 6kj = { (A-22)

0, else.
Notice that the coordinate sysiem is such that the origin (0,0,0) of the element is at the

center of i element and, -1<é<l, -l<n<l, -1<w<l.The geometric interpolation

functions are given explicitly in the following table:




Geometric Local Geometric Interpolation Functions
Node Coordinate By (& m, v)
1 (1,-1-1) 3 £+ 1)n(n-)v(v-1)
2 (1,-1,0) § E(e+)n(n-1) (1-7)
3 (1,1,1) § §(e+1)n(n-1)w(w+1)
4 (1,0-1) § €(e+1) (1- nz) (v-1)
5 (1,0,0) 3 £(6+1) (1-0%) (1)
6 . (1,0,1) §(et+l) 1,,2) v(v+1)
T (1,1,1) § &6+ 1)n(n+1)p(r-1)
8 ( 1,1, 0) %f(f"’l)’l(’?"'l) (1 v )
9 (1,1,1) 5 E(6+1)n(n+1)v(v+1)
10 ( 0,-1,-1) % (1-63)n(n-1)v(v-1)
1 ( 07'1: 0) % (1‘52)’?(’7'1) (1'”2)
12 (0,1, 1) -lg (1- 52)1;(11 Dw(v+1)
13 (0,0:1) (16 (1-)e(-1)
14 (0,0,0) 1(1-¢7) (1-n2) (1-2)
15 (0,0,1) $(1-€®) (1-nH)w(v+1)
16 ( 0, 1s'1) '!5( 52)77(’?'1'1)”(” 1)
17 (0,1,0) %(l Ez)n\r}-i-l) (1-02)
18 (0,1,1) 1 (1-€)n(n+1)u(+1)
19 (-1,1,-1) § £(&1)n(n-1)u(v-1)
20 (1-10), § £(&)n(n-1) (1-47)
21 (-1-1,1) 3 €(&)n(nL)u(v+1)
22 ('1? Ov'l) %E(& 1) (1 - )"’(’-’ l)
23 (-1,0,0) § £(&1) (1-0%) (1-07)
24 (-1,0,1) 1e(e-1) (1-n)w(v+1)
25 (-1,1,-1) 3 e(e-Din{np+1)p(v-1)
26 (-1,1,0) Lg(e-1)n(r+1) (1-7)
27 (1, 1,1) § £(6-1)n(n+1)w(v+1)
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Jacobian matrix for

18
" EE = Z Efﬂail(ﬁ? nﬁy)s
SIS m=1 e

36
E,= Y Enol(&nv),

dg
dx
d€
dy

dz

3. Field Igterpolation Functions

the coordinate transformation

coordinates and the curvilinear coordinates is given by

dy
dg
dy
dn
dy
dv

Each component of the electric field E

ﬁlement functions afu(&s UL V)s 021(65713 ")7 01:1"(6, 77!”):

ey S

I

/A,

=

cartesian

(A-24)

in each element is approximated by

(A-26)

(A-27)

P

et
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where the element functions of (&, 7,v), aL(&,n,v), a%(&,7,v) are the first/second-order
polynomials of the local coordinates £,7,». The numbering scheme for the field nodes of
of the first/second-order hexahedral element is shown in Fig. A-2 to Fig. A-4. Unlike

the conventional tetrahedron element, the three element functions are not the same

polynomial:
ot,(€,m,v) — Quadratic in 7, v ; Linear in ¢,
o (€,n,v) — Quadratic in €, v ; Linear in 5,
ay(é,mv) — Quadratic in £, 7 ; Linear in v.

The element functions are chosen according to the following criteria:

+1, ifm=j and l<mg?9
1. & - component, ab(& vy = { -1, ifm=j and 10<m<18

0. ifm#j

+1, ifm=j and 19<m<?27
2. 15 - component, al(é;.n;,v;) = { -1, ifm=j and 28<m<36

0, ifm#j

4+ 1, ifm=j and 37<m<45
3. v - componcnt, an(éi,m.v;) = { —1, ifm=] and 46<m<d4
0, fms)
Notice that the element functions are chosen such that all the unitaries are pointed

outward from the element.
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(1,-1,-1)

4 1 4
(1,-1,1) (1,0,1} {1,1.1)

(-1,1,1}

Numbering

Figure A-2 4
scheme of field component — é component
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(1.-1.1)

{1.1,1)

(0.-1,-1)

31

{~1,-1,0)
iff—
ad
('_:‘1"” (-1,1,-1)

(0,— 1 io)

(-1,~1,1)

0,1,-1)

22

34

Numbering scheme

Figure A-3
of field component - 77 component
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Figure A-4
Numbering scheme of field nodes — U component
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The element functions in their explicit forms are given ii the following tables:

1. Interpolation functions for the £ component.

Field Node Local Interpolation Function
Number Coordinate R IRD)
1 (1,1,1) 5 (E+1)n(n-1)(v-1)

2 (1-1,0) 3 (E+1)n(y-1)( 1-47)
3 (1,-1,1) & (E+D)n(n-Du(w+1)
4 (1,0,1) (e 1)(1-0?)w(-1)
5 (1,0,0) § (e+1)(1-9*)( 1-07)
6 (1,0,1) § (E+1)(1-v%)w(v+1)
7 (1,11) 3 (e+D)n(n+1)0(w-1)
8 (1, 1,0 & (eR1)n(n+1)( 1-47)
9 (1L, 1,1) L(e+D)n(n+1)u(v+1)
10 (-1-1-1) L (e-1)n(n1)u(s-1)
11 (-1,-1,0) g (&-1)n(n1)( 1-47)
12 (11, 1) L (&Dn(r1)u(v+1)
13 (-1, 0,:1) L (& 1) (L)1)
14 (-1,0,0) 5 (61)(1-?)( 1-+%)
15 (1,0, 1) L (e1)(1-2)ulr+1)
16 (-1, 1,-1) 5 (&1)n(n+1)w(v-1)
17 (-1,1,0) L(em(n+1)( 1-07)
18 (-1,1,1) 5 (&1)n(n+1)w(v+1)
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II. Interpolation functions for the 5 component.

Field Node Local Interpolation Function

Number Coordinate al(€; 115 ;)
1 (1,1,1) § S(E+1)(n+1)w(v-1)
2 (1,1,0) § (1) (n+1)( 17)
3 (1,1,1) 8 §(6+1)(n+1)u(v+1)
4 (0,1,1) 5 (1-6)(n+1)u(v-1)
5 (0,1,0) § (1-)(n+1)( 1-47)
6 (0,1,1) § (1-)(n+1)w(p+1)
7 (-1,1,-1) § &(&1)(n+1)r(-1)
8 (-1,1,0) § &6 1) (1) 17
9 (-1,1,1) 3 &(&1)(n+1)u(v+1)
10 (1,-1,-1) 5 e(e+1)(n-1)o(v-1)
11 (1-1,0) § &(e+1)(n-1)( 1-07)
12 (11,1 § E(6+1)(n-1)w(v+1)
13 ( 0,-1,-1) ‘g (1- E’)(n Du(v-1)
14 (0,-1,0) i (18117
15 (0,1, 1) 3 (3-)(n-Dw(v+1)
16 (-1,-1,1) § £(6-1)(n-1)w(v-1)
17 (-1-1,0) g §(61)(71)( 147
18 (-1-1,1) § £(&)(r1)v(v+1)
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III. Interpolation functions for the v component.

—

Field Node Local Interpolation Function

Number Coordinate am(&; \n;.v;)
1 (1-1,1) § (e+1)n(n-1)(v+1)
2 (1,0,1) § £(6+1)(1-v*)( 1)
3 (1,1,1) § E(e+)n(n+1)(v+1)
4 (0,1,1) 3 (-1} {v+1)
5 (0,0,1) g (1-8)(1-9%)( v+1)
6 (0,1,1) § (1-&mln+1)(v+1)
7 (-1-1,1) § £(&-Vn(-1)(v+1)
8 (-1,0,1) § £(&1)(1-")( vt1)
9 (-1,1,1) § E(&)n(n+1)(r+1)
10 (1,-1,-1) 3 (e )n(n-1)(w-1)
11 (1,0,1) § £(e+1)(1-9*)( v-1)
12 (1,11) § £(5+1)n(n+1)(0-1)
13 ( 0,-1,-1) b (1-)n(n-1)(#1)
14 (0,0,-1) 1 (1-e)(1-9)( »-1)
15 (0,1,-1) z (1-a(n+1)(»-1)
16 (-11'1,'1) § &6 1)n(n-1) (1)
17 (-1, 0,-1) L e(e-)(1-92)( v-1)
18 (-1, 1,-1) 5 E(&-D)n(n+1)(v-1)
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4. Functional in Matrix Form

The functional consists of two terms: the curl-curl term and the dot product

term. To find the matrix representation of the functional, we need to determine the

matrices for the curl-curl of the cofresponding vector and the dot product of the vector

in terms of the covariant projection components

(VxA)- (VxA) TERM

The curl of a vector A referred to a system of curvilinear coordinates can be expressed

in terms of the covariant projection components, Af, A,. A,. and the unitary vectors,
1, 1,, 1,, as follows

oA A BA 6A 3A
A\ - : bt S E

Therefore, the product of the curl of a vector A and the curl of a vector B

(VxA) .(VxB) =

(A-29)
A, 0A, 8B, 9B A, 0A, BB B
v n & _Yby £
7 a—n'"a—y')(a—n‘_a;") Lle-1e (a_:,'_)(ay 5)1’5 (ar] av )(TE on )le L,
A 8A, OB, 0B, A 9A, 0B, 9B, A, 8A, 0B, OB,
+(6u - 8Eu (% - )1 1+ (—‘“'—"“‘)(‘*""—)1 1 (W-_BE—)(B_E-W) lq‘lu
+(%-%)(?ﬁlf. OA, 0OA¢ 9B 4B
8¢ oy 0y

A, OA, OB, 0B
-0l 1 +('—_"r—])(W'6_£u) 1, Lt - =) (ot -
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6.4

Approximate the vectors A and B with the element functions described above:

18 18

Ag= Y ALab(&n.p), Be= ) Bhah(&mw), (A-30)
m=1 m=1
36 . 36
A= 3 AnanEens) B,= 3 Blal(fn). (A-31)
m=19 m=19
54 5 .
A, = AL an(é,nv), B, = Bhon(& ). o (A-32)
m=237 m =37 R

Substituting eqn. (A-30) to egn. (A-32), into eqn. (A-29), yiclds the matrix

representation of the product of the curl of A and the curl of B as follows

AR A
Y (AL AL ARIIKE KK || B, (A-33)
n=1 -’

KoL Kon Ko || By

mn

where,

605 aaf,, Bafl (?nm dat da Bt

£
Y — 1 6 m . O - -
I\'SHEH = 7 [822( B aq ) - &3 ( an ‘ a”) + 33( an : ar] ) ]'-

£ 7 Ial n £ § n
. 1 da}, do doy, dal da’, 80 da’, Oa)
Ko =~gleul52 52 — &l ) — Bl )+ el ) J;

Bu'fn Ba: aaf" 30'.: aum da® dat (')CI:

Li1]

v o= 2 —_m - —m 7 ny
I\mn = 3 [g21 v a_r]) g22( K aE) Es ( dn ()I]) + 32( ay af ) ]1

£ 7 £ " N
nt _ 1 dap, Bapy Gen dogy dal dat oy, da’
Khn = —3 [ &1 3y"W) E1al £ Bq) Eaol 7 d{ du) + Bal 57 38 Ty -2 1,
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7 K, = 3 leaGm 2 — g Gom 200 — g (Gom Bom) 4 g 20 ),
Kin == b el 0;,, a;n: 2(655 6;?&) - 531(622 aan") + 83a( % 3;6 )}
K, = b lenCpe 2o — gaCpnBoh) — g + g0 508 )
Ko =—3 [ gl 3 ,) %u,, 2 - 13(65:?"832 ) 821(%'%?72) + 823(%&‘9‘;—5) I
Ko = §lantpm 50 — golom Doy g (Oom 200y 1 g, (Oom 2oy
DOT PRODUCT TERM

A= A£15+A,,1"+A,,1",

A vector A can be resolved into covariant projection components with respect to the
reciprocal unitaries of the local coordinate system

where A, A,, A, are the covariant projection components of A, and 1¢,17, 1¥; are the

reciprocal unitaries of the local coordinate system. The product of two such vectors can

therefore be written as

A-B

AB 18 + AB K.I7
AB17.1¢ + A B, InI"

+ +

AB P 4+ AB, M7

—g2—

+ AB, E.I

+ A B, 1" (A-34)
+ AB 1.1V,



Substituting eqn. (A-30) to equ. (A-32) into eqn. (A-34), the matrix form of the dot

product follows

Lfnen Lfr?n Lﬁ:}n BPEJ

54 54
£ 1 v nE Tun v
Z [Ann Am! Am Lmn Lmn an B;S
m=1 n=1 v Tvn Tuw v
Lmn an Lmn Bﬂ

where,

—93—

L = g ah el
L. = g%, ol
Lin = g¥afal,
- L, = g ahaf,,
Lo = g*allal,.
Lo, = g% on an
Ly = &' anofy,
Lin, = g*ap, ol
L = g7 an o,
The reciprocal metrical coefficients can be determined using the relationship between
the unitary vectors and the reciprocal unitary vectors given by eqn.(A-3) to eqn.(A-3).
They can be explicitly expressed in terms of the metrical cocfficients as follows: |



g = 1KE = %[gzz £33 - €23 B32 ),
g? = K1 = %[823 g - B 83 s
gt = K1 o= %[ g21 832 - 822 &a1 |
g = 1M = % { 832 813 - 833 &n2 ],
g = 1M = %[ £33 &1 - &a Bz )
g2 = 1" o= %[531 812 - B3 B ),
g2 = ME = 'lg[gn €23 - 813 822 ),
g? = I o= %[813 g2 - En Bl
= Prr o= % [ &1 822 - 812 821 |-

Now, define a column matrix, [E|, representing the nodal electric field: a square matrix
[S} representing the curl-curl term in the functional; a [T] representing the dot-product

term in the functional, as follows

ES, Se€. sén Sév, T
El=|Ey |, [§)=|S&Sms® |, [T)= |TwTmTe |,
EZ, Sv&, Sum S T, Tun v,
where,
Shoo= | K nw=gn
T, = IQLL’:’. de ; T,k =61, 0.

The integrations can be carried out numerically by using the Gauss-Legendre

quadrature method given in Appendix IL



R

- By using the above definitions, one can establish the following relationships

J (VXE).-(VxE)da = [EJ[S] [E]. (A-36)
Q

J E.-E do = [ET] [g]. (A-37)
Q

Substituting eqn. {A-36) and eqn. (A-37) into eqri. (A-l),‘tf{e functional F is expressed

_in the matrix form in terms of the [S] and [T] matrix as follow:

F(E) = {,-Jn{ — -V xE) (Y xE) + ke, E-E}d

He

= —57- [EFIS) [E] + 5 AKe[E]T] [E]

!'1”

1

{

I

~ SB[ (8] + ke [T] JiE.

(A-38)

Applying the standard finite element minimization procedure to equ. (A-38) gives the

following system of equations:

{~ 7S]+ ke IT] } [E]= [0].

o [
A

¢
|
\Tl

(A-39)
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Appendix

Gauss-Legendre quadrature

Evaluations of the [S] and [T] matrices of Appendix I involve integrations of the

~ following form:

I = J-:-llJ._lljl f(€,7,v) dednpde.

To evaluate such integral, the Gauss-Legendre quadrature is used here. Gauss-Legendre
gquadrature provides twice the degree of precision compared to equally-spaced
integration methods. It-has varying weighting coefficients as well as node locations. As a
result, onc can achieve Gaussian quadrature formulas whose order is almost twice that
of a Newton-Cotes formula with the same number of function evaluations,

The numerical integration of the integral can be expressed as follows

3 3 3
v=1)3=11=1



X

£

With the Gauss-Legendre quadrature, the coefficients H;, H,, H; and the locations of

integrations &;, n;, v, must be chosen according to the following table

Location of Integrations Weighting Coefficients

?'/J'/k fi/ﬂj/”k Hi/Hj/Hk
1 £ = 0.774596669241483 20 = 0.555555555555556
2 0.000000000000000 50 = 0.883383338883889
3 3 = —0.774596669241483 3D = 0.555555555565556
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Appendix 1l

Determining S-parameters with finite element method

A description of circuit components can follow with equivalent voltage and
current waves. This description, and the derived equivalent resistance, lead to a
representation through distinct equivalent-circuit diagrams with concentrated circuit
components. However, representation of microwave networks by impedance or
admittance matrices is not very convenient since voltages, currents and impedances
cannot be measured in a direct manner at microwave frequencies. In microwave
engineering, a description of microwave circuits called scattering (S) parameters is
preferred. This is because the S-parameters are defined in terms of the quantities that
are directly measurable, both in amplitude and phase. These quantities are the incident
or reflected waves, or the reflection coefficient and the transmission coefficient. These

form the basis of the scattering matrix formulation.

Fig. A-5 shows the configuration of a discontinuity problem in a general two-port

waveguide. A scattering matrix represents the relationship between the parameters a,,
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A general two—port waveguide discontinuity
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proportional to the incident wave at port n, and the parameters b, proportional to the
outgoing waves at port n. The final objective is to determine the amplitudes and phases
of the S-parameters which fully describe the discontinuity region, with respect to the
two reference planes P, and P,. In matrix notation, the system of equations of the

circuit can be written as

byl [SuSi||a

- ' (A°1)
by Sz 55 || 2

where

S, = a la,=0 = Reflectivity at port 1 with port 2 terminated,

Sy = 3 la=0 = Forward transmission from port 1 to port 2

with port 2 terminated,

a,=0 = Reverse transmission from port 2 to port 1

with port 1 terminated,

o

Soy = @2 a,=0 = Reflectivity at port 2 with port 1 terminated.

These parameters are defined under the assumption that only the dominant mode can
propagate inside the waveguide. For multimode operation, a more general description,
called the general S-parameter method, must be used. Since the S-parameters measure
the transmission and reflection coefficients of a given wave pattern, they must be

calculated with respect to a known field distribution. This field distribution is
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introduced into the system by using the two far-field planes, J, and J,. Since the far-

i
field planes are placed at a distance sufficiently far away from the discontinuity for all
evanescent modes to have decayed, the field pattern on these planes is purely
determined by the eigenvector of the dominant mode. The total tangential field on the
two far-field planes can be expressed in terms of the incident and reflected waves as
follows
E} = V;e;,
{ (A-2)
H = Lb,
where e; and h; are the tangential field distributions of the dominant mode of the
given guide, and the voltage and current at port 7 are defined as
-

Vi=a; +b;,

A general admittance matrix [Y] can be defined for the two-port network as

I] \rll-{l') Vl
12 Y21.Y22 \fﬂ ’
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where
Y, = %;-1; V=0 = Short-circuit input admittance at port 1,
Y, = \I"Tzl' V=0 = Short-circuit forward transfer admittance,
Y,, = L = Short-circuit reverse transfer admittance
2= 7 |v,=0 = ort-circ  tr r admittance,
Y,, = L = Short-circuit admitt t port 2
2=y |v=0 = ort-circuit admittance at port 2.

It has been shown [8,16] that the Y-parameters can be expressed in terms of the

functional of the problem as follows
] = Ayl ). F(E. B )
{ Yy = i (eh)(pi) FEL B, (A-4)

where

E' = FEM solution when plane J ; excited with V.e,, and else shorted,

E/ = FEM solution when plane J i excited with V &5 and else shorted,

P; = J (e; x h;)-n dq,
. Q , .
F(E', E/} = Value of the functional with column matrices [E!] and [E’]

= [EI[W)[E?] ; [W]is the system matrix of the problem.

To characterize a two-port circuit, one needs to solve the problem with finite element

method twice: once for the [El], exciting port 1 with dominant mode field with port 2
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shorted, and once for the [E?], exciting port 2 with dominant mode field with port 1
shorted. When [E!] and [E*] are known, the Y-parameters of the two-port circuit can

be determined by using eqn.(A-4). The Y-parameters can then be converted to the

desired S-parameters, using the following expressions:

(Yo Y1, )(Yo +Y5) + YyoYy,

S = r r 4 r r I ’ ‘A_I.'

I (Yo FY01)(Yo +¥a2) = YrY2, (4-5)
_Y,.Y

S = T y ]2,'0 7 %" s A-6

12 (Yo +Y 1 (Yo +Ys) —Yi2Yy (4-0)
-Y.,. Y

S = k4 Ed Fd 21,' 0 r r + A"-

21 (Vo (Y +Y5) = VirVar (A7)

S‘)‘) = (\"O +.Y.11)(Y"O - Y22) + \"12\’21 . (A'S)
- (Yo +Y 1 HY o +Y22) —YioYy

So far, the procedure provides a set of S-parameters with the phase uncalibrated to any
specific plane of reference. The discontinuity is not fully characterized until the phase is
properly calibrated to a selected plane. To calibrate the phase, it is necessary to repeat
the procedure with the discontinuity section replaced by a uniform guide section of any
desired length. The length of this uniform guide section will determine the plane of
reference where the phase is calibrated to. If the length of the uniform section is the
same as that of the discontinuity itself, then the phase will be calibrated to the center of
the discontinuity. The Y-parameters of the two-port network with the discontinuity
region replaced by a uniform guide section are determined with eqn. (A-4). The
calibration factors are determined by setting the magnitude of the forward transmission

coefficient of the S-parameters to unity and the phase to 0 degrees. Then the scattering
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parameters of the structure including the discontinuity are computed by replacing the
calibration segment with the discontinuity. The calibrated S-parameters of the
discontinuity can then be obtained by subtracting the phase offset determined by the
calibration procedure. The calibration also eliminates any potential errors which may

arise from signal loss in the two uniform waveguides.
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