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[ Àbstract

In this thesis, a numerically efficient three-dimensional finite element scheme is used

to analyze arbitrarily-shaped discontinuities in inhomogeneous-dielectric-loaded

waveguides. Special emphasis is placed on discontinuity problems in finlines and

related structures. A simple but accurate recursive algorithm, the boundary-marching

method, for modeling uniform waveguides of arbitrarily-shaped cross-section is

developed for the analysis. This algorithm is used to generate the matrix

representations of various waveguides, including the unilateral finlines. It is shown

that, by using the substructure formulation and the matrix representation of the

uniform guide, the fini te element mesh of the discontinuity problem can be truncated

( to a proximity very close to the discontinuity without compromising with the result

accuracy. Finally, characteristics of inductive strips in unilateral finline are evaluated

using the fini te element scheme. The scattering parameters of the inductive strips

obtained with the finite element method agree with published measurements and other

numerical solutions to within a few percent with a relatively small number of

elements. Various effects of the manufacturing process, such as the effect of mounting

grooves, finite meta1ization thickness and deflection of dielectric substrate, on the

discontinuity parameters are studied in detail using the finite element scheme.
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, ,
RESUMES

Dans cette thèse, la méthode numenque tridimensionnelle des éléments finis est

utilisée pour analyser les discontinuités de formes arbitraires dans des guides d'ondes

chargés en diélectriques hétérogènes. Une attention particulière a été accordée aux

problèmes de discontinuité rencontrés dans des structures en ailettes ct autres

structures du même type. Un algorithme récursif simple mais précis, la méthode des

limites mobiles, modélisant des guides d'ondes de sections transversales de formes

arbitraires, a été développé pour la pl'ésente analyse. Cet algorithme est utilisé pOUl'

produire la représentation matricielle de divers guides d'ondes, parmi lesquels les

structures unidirectionnelles en ailettes. Il est démontré que, par l'utilisation de la

formulation de base et de la représentation matricielle du guide uniforme, le maillage

d'éléments finis du problème de discontinuité peut etre tronquée à une limite très

proche de la discontinuité sans mettre en cause la précision des résultats. Enfin, les

caractéristiques des bandes inductives dans les structures unidirectionnelles en ailettcs

sont évaluées par application de la méthode des éléments finis. Les paramètres dc

diffraction des bandes inductives obtenus avec la méthode des élémcnts finis

s'accordent avec les mesures publiées et autres solutions numériques à quelqucs

pourcents près, avec un nombre d'éléments relativement limité. Les effets divers ­

rayures d'assemblage, épaisseur de métalisation finie, déflection de la conche

diélectrique inférieure - que les procédés de fabrication des matériaux utilisés peuvcnt

avoir sur les paramètres de discontinuité sont étudiés en détails en utilisaut la méthode

des éléments finis.
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CLAIM TO ORIGINAL CONTRIBUTION

The major contributions of this thesis a.re:

(i) the development of a general recursive method, the boundary-marching algorithm,

for discontinuity analysis involving inhomogeneous dielectric-loaded guides. using finite

element method, where it permits truncation of the fini te element mesh at a proximity

very close to the discontinuity without compromising result accuracy;

(ii) the characterization of discontinuities in unilatera,lcfinlines including effects of

finite metalization of the fin, the influence of the mounting groove, and the effect of

substrate bending.
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c: Summary

This thesis describes the development of a numerically efficient three-

dimensional finite element scheme for analysing the transmission/reflection

characteristics of discontinuities embedded in inhomogeneous waveguides. The method

is then applied directly 1.0 characterize three-dimensional discontinuities in E-plane

circuits.

The purpose of this study, general scope of the thesis and the basic features of

E-plane circuits are briefly described in Chapter 1. In this Chapter, various analysis

( methods developed for E-plane circuits analysis, such as the homogeneous waveguide

approximation method, the transverse resonance technique, the spectral domain

method, the transmission line method, and the fini te difference method are also

briefly described.

Chapter 2 lays the foundation for the three-dimensional finite element analysis.

Potential difficulties associated with the application of the vectorial fini te element

formulation to the finline discontinuity analysis are discussed. Mathematical

formulation and the associated boundary conditions of the vectorial finite element

scheme are present.ed.
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In Chapter 3, the concept of the boundary-marching algorithm for modeli:lg

waveguide structures is introduced. Mathematical formulation of the algorithm and its

applicability are described.

Chapter 4 describes the actual implementation of the nUIll<'rical sch<'mes used in

the analysis. Special emphasis is placed on th<, static condellsation package. a

numerical procedure used in the boundary-marching process.

In Chapter 5, the algorithm of the analysis is examined by using \.;no\\'n solutions.

First, the auxiliary matrix generated by the balloonine algorithm is us<'d to simulate

the eigenmodes in a rectangular guide. Then, the field distribution in an dielectric-

loaded guide is ca1culated and compared to the known solution. Th<' S-parameters of

capacitive windows are then evaluated by using the proposed algorithm. Reslllts ar<'

found to agree with the approximate analytical solution to within a ff'w percent.

Chapter 6 illustrates finJine discontinuity analysis using the three-dimensional

fini te element method. It begins with evaluation of electric field distributions in

unilateral finlines. The field distribution are generated using the boundary-marching

algorithm. Characteristics of inductive strips in unilateral finlines are evaluated using

the proposed algorithm. The S-parameters of a typical inductive strip in the unilateral

finline are computed and compared to the measured results and the reslllts calculated

with other nllmerical techniques. The effects of manllfacturing processes, inclllding the

mounting grooves, metalization thickness and the substrate bending are studied in

detai1.
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Chapter 7 summanzes the thesis. The detailed derivations of the mixed-order

vectorial finite element scheme are given in Appendix 1. Gauss-Legendre quadrature

used in the derivations of the local matrices of the vectorial finite elements is briefly

described in Appendix II. Finally, Appendix III illustrates the extractio:J of the

admittance matrix of a discontinuity from the fini te element solution. The details of

conversion of the scattering parameters from the admittance parameters are also given.
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Chapter 1

General Introduction

1.1 Analysis of E-Plane Integrated Circuit

E-plane circuits, inc1uding finline, shielded microstrip and suspended stripline,

be10ngs 1,0 a c1ass of microwave transmission media called quasi-planaI' transmission

linc. Figure 1-1 shows some typical E-plane structures. Among these structures,

finlincs will be the main interest of this study. A finline can be viewed as a ridged

wavcguide with a thin metallic fin backed by a dielectric substrate. For applications al,

highcr frequencies, especial1y al, millimeter wavelengths, they are considered a better

alternative than their microwave counterparts, such as microstrip line and stripline.

Thc quasi-planaI' structure of E-plane circuits allows one 1,0 integrate the entire circuit

pattern on the planaI' surface of a dielectric substrate with the conventional MIC

(Microwave Integrated Circuit) technologies; yet, il, reduces the radiation losses and

t.olcrance requircments on the waveguide housing. In practice, the design of the finline

circuit takes into account the effect of the metallic housing. The circuit is printed on a

thin die1ectric substrate. The substrate, inc1uding the circuit pattern, is then inserted

into a precisely Iui1led slit in a rectangular waveguide as shown in Figure 1-2.
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Unilateral
finline

Antipodal
finline

Shielded
Microstrip

I~rIl
li

I~~

Bilateral
finline

Insulated
finline

Suspended
Stripline

Figure 1-1
Typical E-plane transmission lines

(Cross-sectional views)
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Isometric view

Cross-sectional view

t - Metalization thickness
s - Strip width
g - Depth of mounting groove
w Slot width
d Substrate thickness

Figure 1-2
A practical unilateral finline
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The insertion of the dielectric substrate makes the E-plane transmission lines

inhomogeneous in nature. The electromagnetic waves propagating in the finline

structures are, therefore, hybrid waves because they are ncither transverse elect.ric

(TE) nor transverse magnetic (TM) types, as in the case of empty waveguides or

waveguides with uniform dielectric filling. The propagating modes in such structures

must be a combination of TE and TM waves which are coupled via the boundary and

interface conditions. This is because, in general, the inhomogencolls boundary

conditions cannot be satisfied by pure TE 01' pure TM fields alone. It can be shown

that only a combination of both field t)1)es, a hybrid field, can satisfy ail the boundary

conditions al. once. By convention, the hybrid fields are denoted as either HEmu , 01'

EHmn modes. The HE-mode designates the hybrid fields with a dOluinating TE modc

(or H wave), while EH-mode designates the hybrid fields with a dominating TM mode

(or E wave). The single-mode bandwidth in a finline is great.er than thc bandwidth of

the corresponding hollo\\' waveguide.

The process of E-plane circuit design requires design information such as the

guide wavelength and the charaeteristic impedance of the transmission line in use, the

characteristics of various discontinuities in the given transmission line, and the

properties of the higher order modes. In finline design, understanding of the influencc

of finite metalization thickness, effect of mounting grooves and substrate bending aids

in the accurr.te design of circuits and assists in prediction of thcir performances.

Severa! analytica! and numerical techniques have been developed for studying E-plane

circuits and their discontinuities. The presence of the sharp-edged metallic fin and the

dielectric loading make the E-plane circuit analysis a relatively difficult task. The

-4-



sharp edge of the metalization leads to difficulties in the accurate modeling of the edge

field and the surface currents on the thin fin. The dielectric loading causes the wave

propagation in the E-plane circuit to be hybrid in nature. The analysis technique,

therefore, very often involves rigorous full-wave analysis or sorne constrained

approximation methods. The approximation methods used for the analysis include

Cohn's method [55J, ridged waveguide model [42,43,54J, empirical expressions [56].

Cohn's method can be used to analyze E-plane circuits with certain types of symmetry

in cross-sectional geometry and it yields accurate results for finline of narrow slot

width. Based on the fad that finlines are essentially ridged waveguides with a

dielectric backing, Meier [42] introduced the fictitious ridged waveguide model,

uniformly filled with an equivalent dielectric constant. The equivalent dielectrie

constant for a given finline configuration is determined experimentally or by other

numerical methods such as the transverse resonance method. The method works well

for relatively thin substrates with small dielectric constant.

For more accurate results, full-wave approaches such as the spectral domain

technique (SDM), mode matching method, method of lines (MOL), transmission line

method (TLM), transverse resonance method (TRM), finite difference method (FDM),

and finite element method (FEM) are employed. The spectral domain method was first

proposed by Itoh and Mittra [5iJ for the evaluation of the dispersion characteristics of

shielded microstrip !ines. In this method, all field components are subject to a Fourier

transformation with respect to the direction perpendieular to the surface containing

the circui t pattern (the surface is sometimes referred to as the frequency selective

surface, or FSS). The analysis is then performed by studying the behavior of the

resulting spatial spectrum. SDM is considered one of the most popular methods in

-5-



i:'fY' finline analysis for the idealized finline model with zero metalization thickness, zero
'''Ii>-

mounting groove depth [28,48,49,51,52], It is very accurate and efficient for finline

analysis, However, it is also very restricted on the geometry of the problem. The

transverse resonance is another important tool in E-plane circuit. analysis. It was one of

the weIl known procedures for analyzing dielectric-Ioaded waveguide in the 19505 and

1960s and has been extended to finline discontinuity analysi5 by Sorrentino and Itoh

[46]. The transverse resonance method was found weIl suited and computationally

efficient in providing either the propagation characteristics or the discontinuity

parameters of E-plane circuits. It has been applied to various discontinuity analyses

[29,46J. The transverse resonance method basically involves forming a resonant cavity

containing the discontinuity by placing electric or magnetic walls sorne distance away

from the discontinuity. The cavity is then modeled as a two-port network. The

propagation parameters or the discontinuity parameters of interest are then obtained

by computing the resonant frequencies of the cavity. The primary limitation of the

TRM is that it cannot include the higher order mode interactions between the

waveguide walls and the discontinuity. The modal analysis technique described by

Wexler [58J for solving waveguide discontinuities was first applied to finliue

discontinuity analysis by Hennaway and Schunemann [44]. The mode-matching

technique is one of the most rigorous and powerful methods for E-plane discontinuity

analysis and it is applicable to a broad class of abrupt junction type of finline

discontinuities, such as abrupt transition between two finlines, impedance transformer

and inductive strip [44,47]. Transmission line method (TLM) is another often used

method in evaluating E-plane circuits. The method is founded on the modeling of the

spatial electromagnetic field in terrns of a distributed transmission-line netwOl'k.

Electric and magnetic fields are made equivalent to voltage and current in the

-6-
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network. The impulse response of the equivalent two-dimensional or three-dimensional

network of transmission line is then evaluated, in a discrete time interval, by exciting

voltage or current pulses. The spectral response of the structure is found by performing

a Fourier transform on the impulse response. It has been used to characterize various

finline structures [40]. Numerous other numerical schemes, such as the method of lines

and finite difference method, have also been adopted for finline analysis. However, all

the above-mentioned methods are primarily restricted to problems of certain geometry,

such as rectangular shape.

Finite element method (FEM) has been adopted for solving a great variety of

boundary value problems of arbitrarily-shaped geometry. Its flexibility in physical

geometry of problems makes it an invaluable taol in solving many practical

engineering problems. However, it has not been applied in E-plane circuit analysis

c: until very recently [30,40,59]. Eswarappa, Costache, Hoefer [30,40J showed that two­

dimensional fini te element method can be used to accurately derive the dispersion

characteristics of finlinc structures of arbitrarily-shaped cross sections, covering the

metalization thickness, substrate mounting grooves and bending of the substrate.

Picon, Hanna, Citerne [59J showed that three-dimensional fini te element method using

conventional tetrahedron can be used to find the scattering parameters of a general

discontinuity problem. The major reason that finite element method remains

unpopular in this are'" can be attributed to the following facts.

1. Finite element method requires relatively large memory and computer time.

This is especially tme for E-plane circuit analysis since a large number of

elements are required to model the sharp edges of the fin. For three-

-7-



dimensional discontinuity problems, the resultant matrix size is tremelldously

large due to the fact that many more elements are needed to mode! the two

uniform waveguide sections attached to the discontinuity.

2. The existence of so called spurious modes in fini te element solution 1l1akes il.

an unreliable method for solving waveguide problems that requires vector

formulation.

3. Various numerical sche1l1es can be used to redure three-dimensional E-planc

circuit problems to equivalent two-dimensional problems. It is, therefore,

more efficient to apply other such numerical schemes, if an idealized model

(with zero fin thickness, zero mounting groovc) is under consideration.

1.2 Dissertation Objectives

The primary purpose of this study is twofold:

1. to develop a finite element scheme for three-dimensional discontinuity

analysis III inhomogeneously dielectric-Ioaded waveguides of arbitrary cross-

section,

2. to apply the three-dimensional fini te clement method to characterizc finline

discontinuities, and to provide an accurate estimatc of effects, such as mounting

grooves, metalization thickness and substrate bending, on the parametcrs of

finline discontinuities.

-8-
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To make the three-dimensional fini te element method attractive and practical for

waveguide discontinuity analysis, it is necessary to limit the overall size of the resultant

system matrix, that is, to reduce the required number of elements in the finite element

mesh. For most discontinuity problems, a large proportion of the elements are used not

to approximate the discontinuity, but to interpolate between the discontinuity and the

excitation planes in two uniform waveguide sections. This is because the distance

between the excitation planes and the discontinuity must be far enough to allow the

evanescent modes to decay significantly at the excitation planes. Evidently, if one can

find a means to termina.te the mesh at the very close proximity to the discontinuity and

yet mode! the waveguide correctly, the goal of reducing the resultant matrix size is

achieved. For discontinuity problems involving waveguides of regular cross-sectional

shape, such as rectangular or circular geometry, an equivalent Q0undary condition based
'!

011 the expansion of normal modes of the guide can be f01.l:~d. However, when the

discontinuity is embedded in an inhomogeneous guide of irregular cross-section, which is

exactly the case here, the equivalent boundary condition for the waveguide cannot be

found since there is no analytic solution for the waveguide. It is the primary objective of

this study to develop a numerical scheme for this purpose.

It has been observed that parameters of manufacturing process, such as finite

1l1etalization thickness of the fin and holding grooves to fix the inset, considerably

influence circuit behavior. The influence of these parameters on the propagation

parameters and dispersive characteristics of finline have been studied by several authors

[36,37,38J. A two dimensional fini te element method using the longitudinal field

components, H: and E:, has also been applied in the study of these phenomena [30].

-9-
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However, how these parameters affect a three-dimensional finline discontinuity li~s not

yet been reported. It is the objective of this study to perform a full investigation of

these manufacturing effects, inc1uding the mounting grooves, finite metalization

thickness of the fin, and the substrate bending on the finline discontinuities. To achicye

this goal, it is necessary to use a three-dimensional numcrical too!. The three­

dimensional finite element technique is considered one of the best candidates for the

task.

-10-
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Chapter 2

Three-dimensional vectorial finite elements

2.1 Vectoriai Finite Element

The finite e1ement method, a numerieai method based on the ealeulus of

variations, has beeome a very popular numerieal procedure for solving physieal and

mathematieal problems governed by differential equations. In electromagnetie and

microwave engineering, it is partieularly useful in solving boundary value problems

involving arbitrarily-shaped boundaries, and anisotropie or inhomogeneous material~.

For three-dimensional wave propagation problems, however, the well-developed fini te

e1ement methods in terms of sealar formulations are inadequate. The finite element

based on a variational expression in tenns of the full electrie field veetor E or the full

magnetie field veetor H must be used. The most serious diffieulty in applying the

vectorial finite element method to three-dimensional inhomogeneous dielectrie

waveguide problems is the appearanee of undesirable nonphysieal solutions, the so-ealled

spurious modes. As indieated in several papers[9,10,1l,12,13,15] that the spurious

solutions are a direct re~ult of the fact that the eonstraint of V . D=O or v· H=O is not,

satisfied. Extensive researeh efforts have been expended on finding a solution to

suppress or eliminate sueh spurious solutions. Recently, an orthospeetral finite element

obtained by using mixed-order interpolation functions on hexahedra [3,6,7] has been

-11-



shown to produce solutions free of spurious modes. The method is applicable to

....,. variational formulations in terms of the full electric field vector E or the full magnetic

field vector H. 5ince the hexahedral mixed-order element is weil suited for E-plaue

transmission line problems, it is adopted for this application here.

The fundamental operations and procedures associated with the fiuite element

method are quite simple and similar to other numerical approximation processes.

However, the method also possesses two distinct. and unique characteristics. They are

the utilization of the integr:>l formulation technique to geuerate a system of algebraic

equations and the use of continuous piecewise-smooth functious to approximate the

unknown quantity. The finite element procedure can be summarized by the followiug

discrete steps:

1. discretising the problem domain iuto smaller subregions (finite elements),

2. interpolating the unknown quantity of interest with piecewise defined polynomial

functions in terms of sorne unknown scalar quantities (nodal values),

3. minimizing the corresponding functional of the governing differential equation

for all elements,

4. obtaining the system of equations of the problem by performing a global

assembly,

5. solving the resu1tant system of simultaneous equations.

2.2 Variationa! Formulation

The variational principle states that if there exists a fllnctional ':f in a domain n
with boundary r such that '

-12-
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':F(E) = Jn G(E) dn + Jr g(E) dr (2-1)

where G(E) is a valid differential equation in domain n, g(E) is the given boundary

conditions on 5, and E is the unknown function of interest, then the function E is the

solution of the differential equation G(E), if E is chosen such that it extremizes the

functional ':F(E), If this is the case, then, the differential equation G(E) is also said to be

the Euler equation of the functional ':F, Webb [8] shown that the fol1owing functional

has the vector Helmolz equation,

( l\lx\lxE-k2a€ E=OPr r'

as its Euler equation, subject to the fol1owing boundary conditions:

(2-3)

(homogeneous Dirichlet on perfect electric conductors), (2-5)

(\1 x E) x 1" =0

Ex1,,=O

Ex 1" =Ba

(homogeneous Neumann on magnetic wall),

(inhomogeneous Dirichlet on excitation planes).

(2-4)

(2-6)

C'
"

Here E is the electric field, Ilr is the relative permeability of the medium, €r is the

relative permitivity of the medium and ka = w2 (€ollo) is the free-space wave constant.

The surface integral in eqn. (2-2) vanishes because of homogeneous boundary condition

described by eqn. (2-4). The eqn. (2-4) is thèl'efore said to he a "natural boundary

-13-



condition" to the functional ~ and need not be enforced in the finite element process.

However, the two boundary conditions described by eqns. (2-5) and (2-6) must be

imposed, whenever required. Finally, the functional ~ for the lossless prohlem is

(2-ï)

In this study, only the lossless case will be considered. That is, ail the materials,

including the dielectric substrates and the metallic enclosure and fin, are lossless. The

functional ~ given by eqn. (2-2) is the basis of formulation of this study.

2.3 Finite Element Discretization

The first step of the finite element process is to subdivide the entire problem

domain into smaller subdorr ains. In order to avoid the appearance of spurious modes,

..'"lt orthospectral (mixed-order hexahedral) finite elements cast in terms of the projection
4-

components [6] are utilized. That is, within each element, the electric field veetol' E is

written

(2-8)

where l', 1~, IV are the reciprocal unitary vectors to the local coordinates, and E" E,,,

Ev are the covariant projection components of E. Each component of the electric field E

in each element is approximated by element functions a;,.(ç, 1/, v), a~(ç, 1/, Il), (}:;.(ç, 1/, v):
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18

E{ = :E E~a~(ç,'1,V),
m =1

36

EO= :E E::' a::'(ç, '1, V),
m = 19

54

Ev = :E E:;'a:;,(ç"I,V).
m =37

(2-9)

(2-10)

(2-11)

Here E~, E~, E~, are the nodal electric field values to be determined, Q~,(Ç"I>V) is the

interpolation function for the ç-component of E at local node m, !inear in ç and

quadratic in '1 and Vj Q~,(Ç, '1, v) is the interpolation function for the '1-component of E at

local node m, !inear in '1 and quadratj")n ç and v; Q~,(Ç, '1, v) is the interpolation
I.~-'

function for the v-component of E at local node m, linear in v, and quadratic in ç and v.

t: The numbering scheme of the first/second-order hexahedral element is shown in Figure

2-1 and Figure 2-2. Detail of these functions are given in Appendix 1. 5ubstituting eqn.

(2-8) to eqn. (2-11) into eqn. (2-7), and applying the standard finite element

minimization procedure to the functional [8,61] gives the following system of equations:

{ - J.r5] +k~€r[TJ } [E]= [0]. (2-12)

Here [E] is a column matrix representing the nodal electric fields, [5] is the square

matrix that results from the curl-curl term in the functional, and [T] corresponds to the

dot-product term in the functiona1. Derivations of the [5] and [T] matrices are also

given in Appendix 1.

c
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2.4 System matrix of equations

As shown in Fig. 2-2, there are 54 local field nodes in each first/second-ordcr

orthospectral element. Therefore, each element can be represented by a 54 x 54 local

matrix, obtained by eqn. (2-11). The system matrix of the problcm can be obtained

by summing the effects from all elements, and enforcing the proper boundary

conditions. The essential boundary conditions that must bl? enforced are:

Ex ln = 0 (homogeneous Dirichlet on perfect electric conductors),

(inhomogeneous Dirichlet on excitation planes),

(E X ln) i = (E X ln) j ( continuity of tangential field components between any

two adjacent element i and l?lement j) .

.....

...... The entry of each global field node is formed by adding the contributions from the

related local field nodes of each element. Al! nodes subjected to Dirichlet boundary

conditions contribute to the right-hand-side of the system matl'ix. Fol' determillistic

problems, the assembled global matrix represents the system of equations of the

problem in the form Ax-B.
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Chapter 3

Boundary-marching method

3.1 Introduction

Finite elements formulated in terms of vector field components have been widely

used in characterizing arbitrarily shaped waveguides. Recently, the finite element

method has also been successfully applied in analyzing sorne subclasses of waveguide

discontinuity problems which are essentially two-dimensional, such as E-plane and H­

plane discontinuities. However, a general waveguide discontinuity is three·dimensional.

It joins two or more waveguides, possibly dissimilarj it has an arbitrary shape in ail

directions, and may contain inhomogeneous materials. In such cases, a full three­

dimensional analysis is requil'ed. When using the finite element method, one also needs

to model the two infinite waveguides directly attached to the discontinuity section. The

most common way of dealing with such infinite guides is to truncate the guides at a

distance sufficiently far from the discontinuity, with a large number of mesh nodes.

Propel' boundary conditions are then applied at the truncated surfaces, assuming that

the field decays significantly before reaching the truncations. This approach results in

an undesirably large mesh and therefore is not practical in many three·dimensional

problems. For sorne special cases, where the waveguide geometry is rectangular, circular

-19-



-:'f'" or elliptical, an equivalent boundary condition, derived from analytically known guided

modes, may be used to truncate the mesh at a smaller distance from the discontinuit.)'.

However, if the geometry of the waveguide structure is more general, there is no

analytic solution for the waveguide and an equivalent boundary condition for the

infinite guide section cannot be found easily. This is especiaily true in the case of

inhomogeneously dielectric-Ioaded waveguides.

This Chapter presents a very general finite element scheme which can be used 1.0

model an arbitrarily-shaped guide that may be inhomogeneous in the transverse

direction. The algorithm uses a simple recursive method to generate a suhmat.rix w1lic1l

relates the field characteristics on the near-fieJd surface to the field condi t.ions on t.he

far-field surface. As a result, il. can be used 1.0 truncate the finite clement. mes1l al. a

distance very close to the discontinuity without losing any generalit.y, for any

arbitrarily-shaped guide. This procedure resembles the "roof-raising" process used in

static and diffusion fields by Kisak, Silvester and Telford [1], and t.he relat.ed but. more

general two-dimensional "ballooning" algorithm applied to electrost.at.ics problems by

Silvester, Lowther, Carpenter and Wyatt [2J.

Waveguide analysis with the finite element method has long been t.rouhled by

the appearance of spurious modes. Although these are commonly encollnt.ered lrJ

eigenvalue problems, it has been shown that spurious modes can affect. solnt.ions 1.0

deterministic problems also [3,4]. The orthospectral ("spectrally correct") clement.s

obtained by using mixed-order approximating functions on hexahedra [3,6] have bcen

shown 1.0 produce solutions free of spurious modes. The boundary-marching "Igori t.hm

developed here is based on elements of this type and, as would he expect.ed, no spuriolls­

mode corruption of solutions has been encountered.
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3.2 Varia.tional formula.tion

The general configuration of the class of discontinuity problems considered here

is illustrated in Fig. 3-1. The waveguide discontinuity or junction region is viewed as

being composed of three subregions: (i) a uniform guide nl , (ii) the discontinuity region

proper, nd , and (iii) the second uniform guide n2, not necessarily similar to ni. Ali

medium nonuniformities are confined to the discontinuity region. The cross-sections of

the uniform guides are not restricted. They may be inhomogeneous and arbitrary in

geometry. In the uniform guides and in the discontinuity region nd the electric field

must everywhere satisfy the vector Helmholtz equation

(3-1 )

subject to boundary conditions of the following types:

('\7 X E) X ln = 0

Ex ln = 0

Exln=Eo

(homogeneous Neumann on magnetic wall), (3-2)

(homogeneous Dirichlet on perfect electric conductors), (3-3)

(inhomogeneous Dirichlet on excitation planes). (3-4)

As is well known [8], solving the Helmholtz equation for the electric field vector in the

lossless case is equivalent to extremizing the variational functional

(3-5)
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Figure 3-1

Discontinuity problem of a general waveguide
of arbitrarily-shaped cross-section

-22-



(
The finite eiement methods contempiated here reiy on this formuiation. Discretizing the

entire region into fini te eiements and appiying the standard fini te eiement minimization

procedure to the functionai, as described in chapter 2, gives the following system of

equations:

{ - JJ5] +k~€r[TJ } [E]= [OJ. (3-6)

Here [E] is a coiumn matrix representing the nodai eiectric fieids, [5] is the square

matrix that resuits from the curi-curi term in the functionai, and [T] corresponds to the

dot-product term in the functiona1. For convenience in the subsequent deveiopments of

the boundary-marching aigorithm, eqn. (3-6) is simplified to the following expression:

c

[W][EJ = [0]

where [W]= - JJ5] +k~€r[T] .

-23-
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3.3 Boundary-Marching Algorithm

The main interest here is placed on the modeling of the two uniform waveguide

sections. The primary objective is to generate matrix representations of the unifonn

guides which can be used to interrelate the nodal field on a near-field plane to the

nodal field values on the far-field planes where the field distributions arc kno\\'n a priori.

The boundary-marching algorithm is proposed for this pm·pose. Four steps of the

boundary-marching process are illustrated in Fig. 3-2. As indicated, the far-field and

near-field planes are initially placed at the same location; then the far-field plane is

moved away step by step, with the distance at each step growing larger as the far-field

plane recedes. To develop the computationai algorithm, let [la be the volnme of the

initial segment of a uniform guide; let ri and r2 be the two surfaces enc10sing this

segment of the guide. Because the guide is uniform, ri and r2 arc congrnent.. The guide

segment is discretized into finite clements, with the foIlo\\'ing restriction on the manner

of subdivision: the placement of fini te clement nodes and edges must leave ri and r 2

congruent, i.e., the clement and node placement on ri must correspond exactl)' t.o that

on r2' On discretizing the segment into a number of finite clements and minimizing the

corresponding electric-field functional, the following set of simult.aneotls c'luations is

obtained:

(3-8)
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Boundary-marching process
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••ry.

.......- This matrix equation has been partitioned 50 that the submatrices identified by

subscript 1 correspond to finite element nodes located on plane 1 (the near-field plane),

those identified by subscript 2 correspond to finite element nodes located on plane 2,

and those identified by i are in the interior of the guide segment. (The superscripts are

of no significance for the moment; they are introduced only fol' notational consistency

with further development.) Thus [Eh represents the nodal electric fields on boundary

surface l, [Eb the nodal electric fields on boundary plane 2, and [El? is the set of ail

nodal electric fields inside the region. Since any t\\'o transverse planes in the guide are

sufficient to describe the uniform guide, all additional nodes between the two planes,

the internal field nodes [El?, are not of interest and are eliminated by il st.at.ic

condensation scheme [61,62]. The system of equations fol' waveguide segment. fi" is

thereby reduced to the more compact form

(3-9)

where the number of matrix ro\\'s and columns equals the number of nodal vilriables 011

the bounding surfaces rI and r 2only; the subscript i has disappeared altogcthcr. The

new submatrices [5]?" are obtained from the nine submatrices [W] ..", of the finite

element functional by
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[5)?, = [W)l1 - [Whi([W]ii)-'[W]il

[5J?2 = [Wh2 - [W]li([W];;)-I[W]i2

[5]g, = [WJ21 - [Wb;([WJ;i)-I[W];1

[5]g2 = [Wb2 - [W]U([W]ii)-I[W]i2'

(3-10)

(3-11 )

(3-12)

(3-13)

The notation follows that for the full matrix representation: submatrix [5J~".

interrelates field components associated with nodes on surface Tm of the condensed

clement with those on surface T n"

Now the coefficient matrix of eqn. (3-9) describes the interrelationship of electric

field components at the two ends of a fixed length of uniform guide, with no

assumptions as to the length (it need not be smaller than a wavelength). A section of

guide twice that length can therefore be modeled without loss of accuracy by cascading

( two such matrices. The aescription of a double-Iength segment of guide is thus obtained

by combining two identical segments as described by eqn. (3-9) and enforcing field

continuity on their common boundary:

[5]?2
[5]?, + [5]g2

[5]g,
(3-14)

[

As before, the electric field at the internai nodes is of no interest. It can be eliminated

from further consideration, removing [El? by the same process of static condensation a.s

previously. What results is a description of a "super-element" twice as long as the

original one:
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[
[SnI [S]b ]f[En] = 0
[SHI [SHz l[EH ' (3-15)

w!lcre the superscript 1 indicates that one doubling of the guide length has taken placc.

The four new submatrices are obtained much as before:

[SnI = [S]~I

[S]jz =

[S]h =

[SHz = [S]gz

- [S]~i([SJ?i)-I[S]?I'

- [SWi([S]?;)-I[S]?Z'

- [S]gi([SJ?i) -I[S]?!,

- [S]gi([Sl?i)-I[S]?z.

(3-16)

(3-1 ï)

(3-18)

(3-19)

......
"

The new super-element representing the guide section is twice as long, and therefore has

twice the volume of the original section: œ = 2!]o.

Further lengthening of the guide segment is achieved by al'I'lying thc same

procedure recursively. After each of n recursions, the matrix relating the excitation field

on boundary surface 1 to the field distribution on the far-field plane can be expressed in

terms of the submatrices of the previous recursion as follows:

[Sltl+ 1= [SJtl

[SJt/ 1=

[S]~I+ 1 =
[SMI = [S]~2

- [S]t([S]~i)-I[S]~1

- [S]ti([S]~i )-I[S]~2

- [S]t( [S]~i)-I[S]~I

- [S]t(rS]~i)-I[SJf2'

-28-
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At each recursion step, the length of the super-element (i.e., of the guide segment) is

augmented by a factor of 2. Consequently, in the course of N recursions, the length of

the uniform guide in the propagation direction grows by a factor of 2N • In effect the

procedure is equivalent to marching out the boundary of the uniform guide from the

excitation plane to the far-field plane, sufficiently far for ail evanescent modes to decay

to a negligible level. The method therefore provides a simple way for simulation and

investigation of wave propagation in any arbitrarily-shaped guide. The advantage of the

algorithm becomes even more pronounced in the case of inhomogeneously dielectric­

loaded guide, where any competitive method currently available (e.g., any integral

equation method) becomes too complicated, if not impossible.

To summarize the full computational algorithm: The finite element matrix for a

fini te, generally quite short, length of guide is constructed using standard techniques. It

is partitioned into submatrices according to whether the node nnmbers refer to

bounding plane 1 (the near-field plane), plane 2 (the farther plane), or the interiOl' i.

The nine submatrices are then manipulated in an N-step rF;ursion as follows.

Step 1: initialize.

[51~1 = [W1II - [Wlli([1V];;)-I[W]il

[Sl~2 = [W]12 - [Wl1i([W]ii)-I[Wb

[5]gl = [Wbl - [Wbi([W]ii)-I[Wl il

[5m2 = [W]22 - [Wbi([W]ii )-I[W];z.

-29-
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"..,. Step 2: march out, for k = 0, ... , N-1.

[Sl~/ 1 = [S]~1

[Sj}2+ 1 =
[Sl~/1 =
[S]~2+ 1 =[S]~2

- [S]t([Slt.)-1[S]71

- [S]t([S]7; )-1[S]72

- [S]t([S]7;)- 'lS]71

- [S]~;([S]t )-1[S]72'

Step 9: record result.

[
[Sl~ [S]~] flE1tJ = o.
[S]21 [Sb ITE];

....,.. The guide length grows as 2N , so only 20 recursion steps will turn an initial explicit.

guide model millimeters long into the same number of kilometers.

3.4 Conclusions

A general recursive method has been proposed and validated for creating finit.e

element models of very great lengths (thousands of free-space wavelengths) of

arbitrarily-shaped waveguide. The method is valid for any guide, so long as a technique

is available for constructing a finite element model of a finite length of the guide. It is

particularly useful for analysis of waveguide components and discontinuit),' regions,

where it permits truncation of the finite element mesh very close to the discontinuit)'

region without compromising result accuracy. It does not introduce any erraI' beyond

,.\.'. -30-



("
the diseretization error inherited from the fini te element meshingj it is uneonditionally

stable, except possibly at frequeneies very close to the eut-off frequeney of the lowest

eigenmode, where the ratio of free-spaee wavelength to guided wavelength approaehes

the floating-point precision available. This algorithm appears to be partieularly useful

for diseontinuity analyses involving inhomogeneous dielectrie-loaded guides, sueh as

finline and shielded microstrips, but further verifying work is needed to establish what

limits there may be to its use.
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Chapter 4

Software Implementation

4.1 Programming Language

Ali necessary software for the computations in this thf'sis are writt.en in Ada.

Ada is a modern software engineering language designed to be used for large software

systems. It encompasses all the basic principles associated with modern software

engineering: structuring, modularity, data abstraction, information hiding, strong

typing and error handling [66, 6i, 68, 69, iO, il]. It makes modulaI' l'rogram

development a reality. The primary advantage of Ada is that it allows construction of

small, functionally cohesive modules with clearly defined interfaces, and enahles the

programming to piece them together into large, cohesive systems. Implementing with

Ada results in a design identical to the actual system itself. The soft.ware can therefore

be maintained the same way as maintaining the system itself. Furthermore, Ada

emphasizes program readahility, and therefore eases programmilintenilnce.

4.2 Program Structure.

The programs of this thesis are divided into six main modules:
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Mesh Gcnerator .

Generates the 3-D finite element mesh, for a given waveguide structure. It is also

used to generate the finite element mesh for discontinuities.

Matrix Condenser

Assembles the global matrix of the waveguide structure, based on the information

given by the mesh generator, and condenses out ail unwanted field nodes.

BOUlldary Expander

Performs the boundary-marching algorithm using the global matrix generated by

the Matrix Condenser, for a given number of recursions.

Substructure connector

Connects any two waveguide sections, and condenses out ail the unwanted field

nodes. This program is also used to connect the two uniform waveguides to the

discontinuity section.

Admittance calculator

Computes the admittallce of a discontinuity.

Eigenvector solver

Generates the eigenvector of a waveguide structure.

The most time-consuming part of ail the computations here is to perform the static

condensation in the Matrix Condenser, Boundary Expallder, and the Substructure

Connector modules. The static condensation is performed by a small Ada package.

Therefore, the speed of computations is dependent on the efficiency of the static

condensation package. An efficient node-by-node condensation scheme is being used in

this study.
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.,. 4.3 Static Condensation Scheme

To condense a matrix, the static condensation processes make use of the

following recursive formula:

[Sltl+ 1= [Sltl

[Slt2+ 1=

[Sl~l+ 1=

[Sl~/ 1 = [Sl~2

- [SJti([SJ~i)-1[5l~1

- [S]t.([SJ7i )-1[5172

- [SJ~i(rS]~i)-1[51~1

- [SJM[Sl~i)-1[51~2'

Implementing the static condensation scheme in the matrix format reqUlres large

computer memory and storage. To improve the efficiency of comput•.tions, and to

reduce the memory and storage requirements, the static condensation procedure is

implemented in a node-by-node condensation approach. The node-by-node static

condensation removes one field node at a time. Fig. 4-1 shows the node-by-node static

condensation scheme for a N xN matrix. To remove node i from the matrix, we need to

perform the following steps:

1. Compute new values for all row k f. i, and ail columns j f. i using,

The efficiency of computations can be improved by checking the values of aki

and aij. The entry akj needs to be updated only when neither aki nOr aij is zero.

Furthermore, for a symmetric matrix, only the upper part of the matrix needs ta

be computed.
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2. Remove column i and row i from the matrix by rearranging the entries as foUow:

a'(k,j) = a(k,j ), for aU row k<i, column j<i,

a'(k,j) = a(k+IJ), for aU row k>i, column j<i,

a'(k,j) - a(k,J+I ), for all row k<i, column j>i,

a'(k,j) = a(k+I,J+I), fol' allrow k>i, column j>i.

The final matrix will be an (N-I) order matrix. Thercfore, fol' the worst case

situation, assuming that the original N xN matrix is a fuU, symmetric matrix,

the number of operations required to condense it into an (N-I) order matrix is,

(N-I?
2 subtractions,

(N·I j2 multiplications/divisions.

To reduce an N x N matrix into an Mx M matrix, the procedure must he

repeated by (N-M) times. In each step, the matrix is one ordcr smaller than the

previous matrix. Therefore, a maximum of

( (N·I)! )2 subtractions,
2(M-I)!

( ~~~~~!! ) 2 multiplications/divisions,

will be required to condense the matrix. In praetice, the matrix to be condensed is not

full 100%. This is especially true when the condensation scheme is first applied to the
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global matrix which is relatively sparse. On the average, one would be able to improve

tÏ1e number of computations by another 20% - 40% by checking the values of the

entries aki and aij.

4.4 Gauss-Legendre Quadrature

Evaluations of the [5] and [T] local matrices for each finite element involve

volumetric numerical integrations. To obtain good computational efficiency and

integration accuracy, Gauss-Legendre quadrature is used to evaluate such integral.

Appendix II gives the detail of the integration scheme.

4.5 Gaussian Elimination

50lving discontinuity problem with finite element method results in a set of

linear a)gebraic equations, Ax=B. 5ince the proposed finite element scheme results in a

relatively small (in the order of a few thousands unknowns) but dense matrix, the

Gaussian elimination procedure is used here to solve the resultant system equations.

The matrix is first converted into a triangular upper matrix by using pivoting and

eliminating processes. The solution is then found by performing the'~back substitution

procedure.

..,..3;­
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Chapter 5

Waveguide analysis by boundary-marching algorithm

5.1 Introduction

Chapter 3 showed how an accurate matrix representation for an infinit.ely long

waveguide can be generated by using the boundary-marching algorithm. This Chapter
......
_ is intended ta show how the matrix canbe used for simulating waw propagations and

discontinuity analysis in waveguide of arbitrary cross-sectional shape. The boundary­

marching technique has been extensively tested on guides of several different cross­

sectional shapes. All test programs used Crawley-type orthospectral elements [6] and

were written in the Ada language. Two computers were used: an S0386-based (MS-DOS)

machine for program development and debugging, fol1owed by a Cray X-MP

supercomputer for subsequent production l'Uns.

-ry,
.~'

li 1

'"
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5.2 Wave propagation in Rectangular Waveguides

The boundary-marching algorithm is first tested here against the well-known

characteristics of the rectangular waveguide. The matrix representation of a rectangular

waveguide of width a=20.32mm and height of b=10.16mm is generated by using the

boundary-marching algorithm \Vith 7 recursions. The operating frequency of the

simulation: is chosen such that at least the first four transverse electric eigenmodes,

TEJO' TEo1 , TE21 , TEll are non-evanescent. A total of 25 elements are used to

approximate the cross-section of the waveguide. Applying homogeneous Neumann

conditions on the far-field plane, various propagation modes in the rectangular

waveguide can he simulated by exciting the guide with proper excitation field on the

near-field plane. First, the TEIO is simulated by using an x-polarized point ~')llrce

located in the middle of the cross-section of the near-field plane. Figure 5-1 shows'the

( comparison of the caiculated TEIO mode field distributions \Vith the idealized case,

Sin(y) distributioll. With single-precision arithmetic, the maximum field strength error

is less than 0.05%. Next, the TEol propagation is simulated with a y-polarized point

source located in the middle of the cross-section of the near-field plane. In this case, one

gets a Sin(x) field distribution \Vith a maximum field strength error of less than 0.1%.

The problem becomes more interesting when a dielectric slab is loaded into the

reetangular waveguide. The characteristics and approximate expressions of the

dielectric-slab-Ioaded w~yeguides have b~en well documented and can be found in.
[60,65]. The basic modes of propagation in such waveguides are longitudinal-section

electric (LSE) modes which can be represented by a single magnetic-type Hertzian

potential:
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Note: The six curves everlap te wilhin 0.05% accuracy.

Figure 5-1

Field slrenglh distribution in a

rectangular waveguide
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(5-1)

And the electric field is given by

(5-2)

The scalar function "'il must satisfy the following relation:

(5-3)

where «x)=l in the air-filled portion of the guide (y<d), and ,(x)='r in the .dielectric­

filled portion of the guide (d<y<a). A solution for "'h which satisfies the boundary

conditions at both the dielectric interface and on the perfectly conducting walls is

o::; y::; d,

(5-4)

d::;y::;a,

subject to the following relations:

(5-5)
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where A and B are amplitude constants, kr1 and kr2 are the wa'-e nnmbers in the air

and in the substrate, respectively. There are infinite number of solutions for the wave

numbers kr1 and kr2 that satisfy the conditions. For the purpose of this investigation,

the special case of m=O is used. In this case, both E, and Hr vanish and the only non-

vanishing electric component is Er. This is also called the Hno modes. In this case, the

electric field becomes,

E = - jWJlo-y <l>h e - -Y' .

Therefore, for a given z value, the electric field can be described by,

(5-6)

o::; y::; d,

d ::; y ::; a.

(5-7)

A waveguide half-filled with dielectric slab with the dielectric constant of f,.=2.22 is

being considered here. By solving the conditions set by eqn. (5-5), it is found that the

wave numbers for the lowesl mode HIO are:

UJ = 0.32955 ,
','

,

kr1 = 0.148406 ,-
kr2 = 0.228402.

The amplitude constants A and B are set to
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A = 1.064022,

B = 1.021225.

Figure 5-2 gives the theoretical and the computed electric field distribution. The results

are computed with the identical fini te element scheme as that of the empty waveguide

case (25 elements, 7 recursions). The maximum field strength error is less than 0.03%.

For the purpose of the discontinuity analysis, it is essential to understand how

the matrix responds to higher-order mode excitations. The algori thm is therefore tested

here by investigating the decay behavior of the evanescent modes, as the boundary of

the far-field plane is marched out from the excitation plane. Fig. 5-3 shows how the

(: reflected waves of the TEo,], TEo,2 and TE2,o modes decay with guide length in a

typical rectangular waveguide. The operating frequency is chosen so that the TE] °,
mode is the only propagating mode in the waveguide. A11 computations were carried out

in 64-bit arithmetic, so that noticeable roundoff error accumulation in the fourteenth or

fifteenth digit is to be expected. In fact, the roundoff error fa11s substantially below that

level in two of the modes. The magnitude of the forward transmission of the scattering

coefficient of the propagating mode (TE1,o mode), as a function of the length of the

waveguide is also shown in Fig. 5-3. Clearly, about 6 or 7 recursions are more than

adequate in this case to make the guide "infinite" for a11 practical purposes. Even quite

near cutoff, about 20 or 30 recursion steps suffice, yielding a waveguide length of 105_

108 times guide width.

(
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5.3 Discontinuity analysis

To illustrate how the boundary·marching procedure can be incorporated into waveguide

discontinuity analysis, the scattering parameters of a zero-thickness asymmetric

capacitive window is evaluated here. The asymmetric capacitive window (zero­

thickness) can be modeled as a shunt susceptance. An approximate expression for the

normalized susceptance of the capacitive window was given by Marcurvitz [60],

( B ) _ L [ (') ] Q2 cos
4
(y) 1 X2 [y - og. csc): + Q' 4(y') + 4" 1

o 1+ 2S111

where,

x= (1 ),
9

y= (~t),

Q2= 1 1,
~1 - 4X2

...... A - A

...... g- ~1-(~j2
Ac

- 3 sin2 (Y) ]2 cos"(Y), (5·S)

For given waveguide dimensions and operating frequency, the normalized sllsceptance

can be computed according 1.0 eqn. (5-S). Fig. 5-4 shows the finite element scheme for

the solution of the zero-thickness capacitive window. The detail of the procedure for

computing S-parameters from finite element solution is described in Appendix III. First,

the prescribed field conditions on the far-field planes are generated using the matrix

representation for the uniform waveguide. For frequencies below the eut-off frequency of,

the second higher order modl', the TE IO field distribution is=~i)tained for any field

excitation on the near-field plane. Once the prescribed field distributions on the far-field

planes are known, the reference plane of the transmission and reflection parameters can

be calibrated by using a
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matched "through" segment. The calibration also eliminates any error thal. may arise as

a result of signal 1055 or phase distortions in the waveguide segments. The scattering

parameters of the structure are first computed with the discontinuity section replaced

by a segment of empty waveguide of known finite length. Matching the boundary

conditions on the near-field planes, the scattering parameters of the structure can be

e)Ctraded from the functionals, for different excitation conditions on the far-field planes.

The calibration factors are determined by setting the magnitnd" of the fon...ard

transmission of the scattering coefficients 1.0 unity and the phase 1.0 0 degrees. Then the

scattering parameters of the structure including the discontinuity arc compnted by

replacing the "calibration segment" with the discontinuity. Dividing the transmission

and ref1ection parameters by the proper calibration factor, and snhtracting the phase

offset from the phase angles of the parameters, one obtains the final scattering

parameters al. the desired reference plane. By using the same segment length for the

calibration segment as for the discontinuity segment, the transmission and ref1ection

parameters are calibrated 1.0 the plane where the zero-thickness window resides. If

desired, the parameters could also be calibrated 1.0 some other reference plane, by

choosing different lengths for the calibration segment and the discontinuity segment.

Phase and amplitnde of the fOl·ward transmission coefficient of the scattering

parameters of the capacitive window are shown in Fig. 5-5, for diffen'lJt frequencies. Th"

results agree with the analytical approximation given by }'Iarcuvitz [60] 1.0 within 1-2

percent. Since the Marcuvitz solution is not exact, il. cannot be used 1.0 establish finll

error bounds. However, the fini te element solution and Marcuvitz's approximation are

thought 1.0 incur errors of roughly similar magnitude, 50 their agreement is held to

confirm the validity of the boundary-marching techniqne.
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Chapter 6

Inductive strips in unilateral finlines

6.1 Introduction

The design of millimeter-wave components in finline technologies reqUlres the

accurate characterization of various finline discontinuities. The inductive strip is one of

the most essential building blocks of common bandpass fiJt.ers implemented \Vith E-

plane circuit technologies. As a result, this type of discontinuity has been studied

extensively by using various approximate and rigorous approaches [28,29,32]. Ho\Vever,

all these analyses \Vere based on the idealized finline mode! of zero fin thickness and

negligible effeet from the mounting groove. Neglecting such effects rC'sults in a shift in

the desired range of operating frequencies in practical circuits. This phenomenon has

been \Vell demonstrated by the responses of multi-resonator filters [33,34,35] \Vhere the

frequency responses of the theoretical results and the measured results are consistently

shifted by a few percent. It has been reported that the error of negleeting such effects

can go as high as ; percent [31]. Furthermore, due to the imperfection on the

mechanical fitting and thermal expansion on the metal enclosure, more errors can be

contributed from the bending of the substrate and the fin. Several authors [36,3;,38J
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have studied the effect of finite metalization thickness and influence of the mounting

grooves on the modal spectrum, propagation constants and the characteristic impedance

of the finline structure. However, the real interest in the design process is how these

parameters affect the parameters of a discontinuity in the finline structure. The purpose

of this study is to provide a sensitivity analysis on the inductive strip for various depths

of mounting grove, different thicknesses of metalization and varyir.1:: .1egrees of bending

of the substrate on the discontinuity parameters of an inductive strip in a unilateral

finline. The results allow one to predict and design a finline component such as filter

with a better accuracy.

Finline discontinuities are often analyzed by rigorous techniques, such as spectral­

domain approaches or the transverse resonance method~'\~.lii~h essentially reduce the

three-dimensional prohlems into two-dimensional problems by reducing one degree of

freedom in the transverse direction that is perpendicular to the substrate. These

methods provide accurate results, if the metalization thickness and the effect of the

mounting grooves are negligible. Recently, a two-dimensional finite element method has

heen applied to analyze the dispersion characteristics of finlines [30,40] of various cross­

sections. However, due to demanding requirements on computer memory and storage,

the three-dimensional finite elemt)nt method has not yet heen popular in finline

discontinuity analysis. This thesis shows an efficient approach of applying the full three­

dimensional finite element method in finline discontinuity analysis. The method allows

one to analyze E-plane discontinuities, including various manufaeturing effeets such as

the effect of the mounting grooves, influence of the metalization thickness and the effect

of substrate bendillg.
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Fig.6-1 de1ineates the problem under consideration. The substruct.ure formulation

has been incorporated into this algorithm. The problem domain is separated into thl'ce

subregions: (i) Uniform finline one, nI, (ii) Discontinuity region, nd , (ii'i) Uniform

finline two, n2• The discontinuity region is subdivided into a number of mixed-ordcl'

curvilinear fini te e1ements formulated in terms of the covariant projection componcnts

as discussed in Chapter 2. The utilization of mixed-order finit<' clements eliminates the

possibility of the appearance of any spurious mode [3,6]. To model the two infinitc!y-

long, inhomogeneous waveguide sections, the boundary-marching algorithm is used.

Utilization of the boundary-marching algorithm allows truncation of the finite element

mesh in the discontinuity region al. a distance very close 1.0 the discontinuit.y without

any compromise with the result accuracy.

The trial fundions of the eleetric field components must also satisfy the following

boundary conditions al. the boundary between clement i and e1ement } :

(Ex1")i = (Exl,,)) (Continuoustangentialfieldacrosselements). (6-1)

However, no conditions are enfol'ced on the normal field components. Letting the

normal field cOIllponents free increases the number of degree of fl'eedom and improves

the field approximation al. the singularities, the sharp edges of the zero thickllCSS fin.

As indicated in [5J the uniform finline can be modeled more than adequately with just

n=6 recursions. A total number of recursions of n=5 is suitable for most of the

applications.
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6.3 Scattering Parameters of Idealized Model

Computer programs based on the mixed-order finit.c element and the boundary­

marching procedures have been developed and written in the Ada language. A Cray X·

MP supercomputer was used for the computations. Fig. 6-~ sho\l's the dimensions and

the equivalent circuit of the inductive strip under consideration. The normalized

susceptances of an inductive strip of idealized finline model are computed using th!'

substructure method as shown in Fig. 6-1. 98 elements are used 1.0 approximale the fiel,l

distribution in the discontinuity region, 0d' Before proceeding \l'ith the discontinu!ty

analysis, the prescribed fields on the far-field planes must first he determinec1. The

excitation field conditions on the far· field planes can be generated using the matrix

representation of the uniform finline obtained by the boundary-marching algoritlnll. For

operating frequencies lying within the single-mode balld\l'idth of the unilateral finline,

the field distribution of the lowest eigenmode of the line is obtained by exciting the

uniform finline with any non-trivial excitation on the near-field plane. Fig. 6-3 1.0 Fig. 6­

6 show an example of the transverse electric field distributions in a typical unilateral

finline. These field plots are obtained by exciting the uniform guide with a fe\l' l'­

directed nodal fields on the near-field plane. The uniform guide \l'as simulated with the

boundary-marching algorithm with only 5 recursions. Once the excitation fields for the

far-field planes are found, the scattering parameters of the structure can be extracted

from the functional, by applying various arrangements of the far-field conditions on the

far-field planes, and matchillg the boundary conditions on the near-field planes. The

reference plane of the transmission and reflection parameters can be calibrated by usirig

a matched "through" segment. The calibration procedure also eliminates any error that

may arise as a result of signalloss or phase distortions in the waveguide segments.
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Figure 6-2
Inductive strip in unilateral finline
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During the calibration pha,e, t.h" ,eat.t."ring parillllt'ter, of tht' ,truetu\'(' an'

cOllll'uted with the discontinuity section r"plac"d by a "'gnH'nt of tht' unilatt'ral lïnlinc'

of the same cross-sect.ional geonwtry as the two uuiform guide ,,·ction,. Thc' lengt.h of

the "through" segment is determined by t.he location of t.he desire,l rc.ferenre planes.

The calibrati<;~l factors are determincd by setting the magnitudc' of th" forward

transmission of the scattt'ring coefficients 1,0 unit.y and th" phas<' t.o 0 deg\'(·($. Then th,·

scattering parametcrs of t.he struetll1'C including t.he c1iseont.inuit.y are COlll]lIIt.c·d by

replacing the "calibration segment" with the actual c1iscontinuity. Subtracting t.Ile

phase offset l'rom the phase angles of the paramcters, one obt.ains the final scatl.ering

parameters al, the desired planes. By using the same segmeI:t lcngth for the calihrat.ion

segment as for the discontinuity segment, the transmission and rdkction parameters

are calibrated 1,0 the center plane of the discontinuity. The parmncters coult! be

calibrated 1,0 some other reference plane, by choosing different lengths for t.he

calibration segment and the discontinuity segment. Fig. G-Î shows the comparison

between the results computed by .Jansen and Koster [28] using the rigorous hybrid-mode

spectral domain appl'Oach, and the results obtained by t.he tlm'e-dimensional finite

clement method. In this case, only 98 mixed-order elements arc used 1,0 approximate the

electric field in the discontinuity rcgion. The lengths of the initia.l segments of the

uniform finline sections are chosen such that the resolution of the uniforlll guide sections

is one-tenth of the wavelength of the operating frequencies. The total nlllnber of

recursions used in the boundary-marching algoritlun is five. The finitc clement resnlts

agree with the spectral domain results 1,0 within a few percent, and better than 2% for

the strip width of s/b=O.1. It is possible to further improve the accmacy by increiL,ing

the number of elements used in the discontinuity region, for higlwr operating
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(
frequencies or larger strip width, s. Fig. 6-8 shows phase and amplitude of the forward

transmission coefficient of the scattering parameters of the inductive strip of strip-width

s/b=O.l, for various slot-widths and frequencies. The phases of the scattering

parameters are calibrated to the center of the discontinuity by using a through segment

of the same length as the discontinuity itself.

6.4 Effccts of Mounting Groovcs

ln practicc, finline construction starts by printing the circuit pattern on a piece

of thin substrate using the microwave integrated circuit technologies. The substrate

including the circuit pattern eventually will be inserted into a waveguide housing. To

support the substrate in the waveguide housing, a slit is precisely machined in the

middle, or at a location slightly offset from the middle, of the metal1ic enclosure. Since

the design of the circuit pattern assumes a perfect rectangular waveguide housing, the

slit in the guide modifies the circuit parameters and circuit performance. The effect of

the mounting grooves is a function of many paranleters such as the operating frequency,

dieleetric constant, and the substrate thickness. The influence of mounting grooves on

the modal speetrum of a unilateral finline has been studied by several authors

[36,37,38,40J. It was fotllld that, for small groove depths, the dominant mode is

unaffected. However, as the groove depth increases, the dominant mode interacts

strongly with the next higher order mode, resulting in an increase in the dominant

mode propagation constant. ln general, the cut-off frequency of the higher order mode is

slightly lowered, thereb)~ resulting in lower single-mode operating bandwidth. The

responses of several finline filters [33,34,35J show that the mounting grooves, in

gene~al, result in a shift in the operating frequencies. However, these effeets have not
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yet been quantified in terms of the discontinuity parameters of the circuits. Here, t.he

susceptances of the inductive strips of various slot-width are computed usillg the finite

element method, for various groove depths. Fig. 6-9 shows the error of the susccpt.ance

of the inductive strip as a function of the groove depth, for several frequencies. It is seen

that the effect of the mounting groove is more severe al. the higher end of the frequellcy

spectrum. These results also confirm [38] that the groove depth lowers the single-mode

operating bandwidth. Initially, the groove depth causes an increase in the sl1sceptance of

the discontinuity. As the groove depth increases, the susceptiUlce of the discontinl1ity is

slightly lowered as a result of the increase of interaction between the dominant mode

and the higher order modes. When the groove depth approaches a value where the

second order mode becomes a propagation mode, the susceptance of thê"discontinl1ity

can no longer be predicted accurately. With reference to Fig. 6-9, it is evident that the

groove depth of a unilateral finline must not be made greater than 1/3 of the IlCight of

:9"
4- the waveguide housing, in order to keep the effect of the groove below 3% for most of

the usable operating frequcncies. Fig. 6-10 shows the error in the susceptance of

unilateral finlines of. different 5101. widths and various subs~rate thicknesses. Il IS
'.'

observed that the susceptances of'ihe inductive strip in filllines of smaller slot width is

altered slightly more by the presence of the groove. This is probably becal1se the

dispersion characteristics of finlines with smaller slot-width are affected more severely

by the mounting groove. For the same reason, the deviation in the discontinuity

parameter is increased as the substrate thickness :ncreases, for the same slot width.

From these results, 0lie may conclude that the effect of the mounting groove is in

general not negligible. However, the effect is less than 1%, if the groove depth is

restricted to less than 0.15 of the height of the waveguide hOl1sing. In ca~es where the

groove depth rises as high as 1/3 of the height of the housillg, the error in the
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Effect of mounting grooves on the normalized susceptance

of inductive strips in idealized unilateral finline
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for applications in the mil1imeter-wave range.

diseontinuity parameters can go as high as 3%. If the groove depths are greater than

2/5 of the height of the waveguide housing, it is expected that a large portion of the

single-mode operating bandwidth will be corrupted by higher order modes.

6.5 Effects of Metaliza.tion Thickness

A thiil layer of conducting substance is deposited on the surface of the dielectric

to form thedesirecl.circuit pattern. At lower microwave frequencies, the thickness of the

meta1ization is relatively thin and negligible compared to the wavelength of the

operating frequency. However, as the frequeney approaches the millimp.ter-wave range,

the thickness of the meta1ization of the circuit pattern beeomes more and more visible

to the e1ectrical signal. Therefore, the effect of metalization thickness becomes stronger

at the higher frequeney range. The effect of the finite thickness of the fin is equiva1ent

to capaeitive loading in the guide. Fig. 6-11 shows the effect of susceptance of inductive

C strips versus the operating frequeneies, for various slot widths, and different

metalization thicknesses. Fig. 6·12 gives the corresponding error plot with respect to the

meta1ization thickness. It is seen that the effect of the metalization loading is close to

2% fo~ meta1iz3otion thickness of less thaIÎO.1% of the width of the waveguide housing,,.

when a pr3octic3ol slot-width is considered. As indicated in Fig. 6-12, when the fin

thickness of the unilateral finlines rises to 0.3% of the width of the w30veguide housing,

the error can go as high as nearly' 7%. Fro~n these results, it is 3olso quite evident th30t

the thickness of the fin affects the discontinuity paranleters mos! severely when the slot

width of the finline is small. To keep the effect otmetalization lo3oding below 3%, the. . -_.- ..----...•- ','

thickness br the fin must be kept below 0.2%. Evidently:; this condition is not a problem
ii

for most microwave applications; however, it is a factd,;· to be taken into consideration
.~

""-<,
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Normalized susceptance of inductive strips in unilateral finlines

of different metalization thickness

-68-



•

,1' '
il.

12,~~

ll.O~ ~1b=0.065

w.~~

9,~~
.../b = 0.065

s/b=O.1 w!b = 0.125

8.~~
"lb = 0.160

~ d/a=O.03125 wjb = 0.125

7.o~ "'lb = 0.160
----.

6.o~ç:ql~-- 5,0~!
l-< 4,00
0

3.0~l-<
l-<

2,0~
------- f=BGHz

~

LOO
f=13GHz

0,00
O,OOO~ O,OOW ~,~020 ~,O030 ~,0040 ~,OO50 ~,0060

if
Metalization Thickness ( t/a)

."".

Figure 6-12

Effect of Metalization thickness on the normalized susceptance
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6.6 Effects of Substrate Bending

For very high frequency applications, above E-or F-ballCl operating frequencies,

the thickness of the dielectric substrate that the circuit pattern is printed on becomes

extremely thin, in the range of hundreds of microns (Iess than 1 millimeter). In such

cases, the substrate itse1f can be bended. The su1Jstrate bending can be il result of the

mechanical fitting, 01' a result of the thermal expansion when the finlinc component is

subject 1.0 an extreme thermal environment. Furthermore, fol' some applications, a soft

dielectric substrate is preferred. In these cases, the substrate inc!uding the cil'cui 1.

pattern can be bent easily, especially in millimeter-wave applicatioi~s. Fig. 6-13 gives

the susceptance of the inductive strip for different values of deflection al. different

frequencies, with the slot-width of w/b=0.125. The suseeptancc of the inductive st.rip is

also ploted in pereentage error compared 1.0 the idealized model in Fig. 6-14. It is'seen

t.hat substrate deformation can cause a significant amount of deviatioll in the

6.7 Conclusions

Three-dimensional fini te elements in conjunction with t.he boundary-marching

algorithm are used 1.0 examine inductive strips in unilateral finlines, inc!uding ail the

effects resulting from the limit.ations of manufacturing proeesses. By using mixed-order

finite elements, no spurious-mode problem is encountered in the solutions. The

boundary-marching algorithm is used 1.0 generate matrix representations of the uniform

finline sections. By using the matrix representatioll of the uniforlll finline 1.0 interrelate
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the eleetrie field at the diseontinuity to the propagation field on the far·field plane, one

may truneate the finite element mesh at a proximity very close to the diseontinuity.

As a result, the system of equations of the three-dimensional problem is reduced to a

relatively small matrix size, in the order of a few thousands. The results obtained by

using the present method agree with the results eomputed with the hybrid-mode

spectral domain method to within 2%, with only 98 elements used in the diseontinuity

region. The effeets of manufacturing processes, including the mounting l~rooves,

metalization thiekness, and the substrate bending, on the finline diseontinuit,y are

examined with the fini te element method. Various plots are provided for estimating

sueh effeets.

"fi
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Chapter 7

Conclusions

7.1 Summary

This thesis describes the development of a finite element scheme for analyzing

three dimensional scattering problems in inhomogeneous-dielectric-loaded waveguide

structures. The algorithm is, in general, applicable 1.0 any arbitrarily-shapcd

waveguiding structure. Two major techniques used and developed in this thesis are:,

the ballooning method proposed by Silvester in 19ïi [2], and the mixcd-ordel'

curvilinear finite element method proposeeFby Crowley in 1988 [6J.

The follo~ing are the major contributions of this thesis.

(i) Boundary-marching algorithm for waveguides.

This algorithm is based on the previous work of Silvester [2] developed for static

problems with open boundaries. In this thesis, the ballooning algol'ithm is extended 1.0

the wave equation, especially tailored for waveguide applications. Il. is shown thal. the

boundary-marching algorithm is a simple yet accurate technique ta generate the

necessary auxiliary matrix for interrelating the field distribution in the near-field

region ta the field distribution in the far-field region. In this thesis, the boundary-
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marching algorithm is first used to generate the far·field solution in a given waveguide

structure. The far-field solution is, in turn, used to terminate the waveguide.

(ii) Thrcc dimensional scattering problems in waveguides.

For many scattering problems, the scattering object under investigation is of relatively

large dimension compared to the operating frequency. For such cases, the three

dimensional fini te element method requires very large storage and memory. By using

the static condensation technique, it is shown in this thesis that the problem can be

solved by subdividing the geometry into several subsections and therefore reduces the

storage and memory requirements. This approach not only improves the speed of

numerical computation by taking the advantage of the possibility of parallel

processing; most importantly, it eliminates the limitation previously set by the length

of the scattering object.

(iii) Characteristics of finline discontinuities.

The transmissionjreflection characteristics of inductive strips in unilateral finline are

studied by using the three-dimensional finite element scheme. It is shown that results

with satisfactory accuracy can be obtained by using the proposed approach with

relatively small number of elements. For the first time, the effects of the circuit

manufacturing processes, inrluding the effect of mounting grooves, influence of the

finite metalization thickness of the fin, and the effeet of substrate deflection on the

finline diseontinuities are studied in detai1.

-i~-:-
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Appendix 1

Mixed-order curvilinear finite elements

1. Variational Formulation in Curvilinear Coordinates

The functional to he considered here is,

(A-l)

where E is the electric field veetor, Ilr is th.. relative permeability of the medium, f r is

the relative permitivity of the medium and ka = W2 (follo ) is the frec-space wavc

constant. The orthospectral (mixed-order hcxahedral) finitc clements, cast in terrns of

the projection components [6], are used for the discretization. Within each element, the

electric field veetor E is ",ritten

(A-2)

where le, 1", 1" are reciprocal unitaries of the local curvilinear coordinates, and Ee, E",

El' are the covariant projection components of E. The reciprocal uni taries can he
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written in tcrms of unitary vectors 1~, 1", Iv of the curvilincar coordinatc system as

follows,

1~ = ~.(I"x Iv)' (A-3)

l" = ~·(1vx l~), (A-4)

F = ~.(l~x l,,), (A-5)

wherc Y is the volume of the parallelepiped formed by the three unitaries,

(A-5)

The geometrical properties of space with respect to any curvilinear system of

coordillates call be completely characterized by a set of coefficients called the metrical

il' coefficients. III this case, one call express the differential volume in terms "of the

metrical coefficients as fol1ows,

where

.dn = y. d~ d~ dv , (A-i)

y2 _ g =

-ï7-

(A-8)



and
...,..

gl1 = l~ .l~ = dx d,' + dy dy + dz dz (A-9)d~' d~ d~' d~ d~ . d~ ,

g12 = le lry = dx dx + dy d.v + dz dz (A-ID)d~ . dry d~' d'I d~ . d'I •

g13 = le Iv = dx dx + dy dy + dz dz (A-11)d~'dv d~'dv d~' dl' •

g21 = 1,1' l~ = dx dx + d.v dy + dz dz (A-12)dll' d~ dry . d~ d,,' d~ •

g22 = lry .lry = dx dJ- + dy dy + dz dz (A-13)d'I' dll dll' d'I d'I' d'l'

g23 = lry .lv = dx dx + dy dy + dz dz (A-14)
d'I' dv dry . dv d'I' dv •

g31 = Iv .l~ = dx d,' + dy dy + dz dz (A-15)dv' d~ dv'd~ dv' d~ •

g32 = Iv' 1'1 = dx dx + dy dy + dz dz (A-16)dv . dll dv . dll dv' d'l'

g33 = Iv ·lv = dx dx + dy dy + dz dz (A-1ï)dv'dv dv'dv dl" dv .

..,..

Substituting eqns. (A-6) and (A-ï) into eqn. (A·1), one obt"ins the f\lndional for the

pl'Oblem in terms of the covariant projection components of E as"

(A-18)

2. Geometrie Interpolation Functions

The geometry of each curvilinear element can be fully described by 2ï geometric

nodes interpolated by smooth functions. The metrical coefficients of the element can

then bl;. evaluated in terms of these geometric nodes and the interpolation functions .

. Fig. A-1 shows the n~mbering scheme of the geometric nodes. The Cartesian

coordinates are approximated by tluee geometric interpolation functiolls. {3k(~' ,!, v), as

follows :
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Figure A-1

Numbering sheme of geometric nodes

,

-79-



, ....". 2;
x = L xk 13k(Ç, 'l, v), (:\-19)

k=l

2ï
Y = L Yk ,Bk(ç, '/, v), (:\-20)

1:=1

2;

= = L =k I3k(ç, 7], v), (:\-21 )
k=l

where the interpolation function satisfy the fol1owing criteria,

I3k (ç, 7], v) = Ok' ='J {
+1, if k=j,

0, else,

(A-22)

Notice that the coordinate ,~y,~em is such that the origin (0,0,0) of th'? elcml?l1t is at the

center of (î:'element and, -l<ç<l, -1<,/<1, -l<v<1. The geomdric interpolation
" ,

functions are given explicitly in the fol1owing tabl'?:
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Geometrie Local

Node Coordinate

Geometrie Interpolation Funetions

Pk (~, ry, v)

1 ( 1,-1,-1) l ~(~+l)ry(ry-l)v(v-l)

2 ( 1,-1, 0) l ~(~+lMry-l) (1_1.'2)

3 ( 1,-1, 1) l €(~+lh(ry-l)v(lI+l)

4 ( 1,0,-1) k~(Hl) (1-ry2)v(v-l)

5 (1,0,0) l ~(~+l) (1_ry2) (1_1.'2)

6 . ( 1, 0, 1) l ~(Hl) (1-,,2)v(v+l)

7 ( 1, 1,-1) k~(~+lM'I+1)II(/,-l)

8 ( 1, 1, 0) l ~(~+1)7,(.,+1) (1_//2)

9 (1,1,1) k~(~+1 )ry( ry+1)v( 1.'+1)

10 ( 0,-1,-1) k(l-e)ry(.,-l)v(v-l)

11 ( 0,-1, 0) k(1-eh(7,-1) (1-1.'2)

12 ( 0,-1, 1) k(l-e).,(.,-l)v(v+1)

(
J.3 ( 0, 0;-1) k(I-e) (1-ry2)v(v-l)

14 ( 0, 0, '0) l (l-e) (1-.,2) (1_112)

15 ( 0, 0, 1) k(l-e) (l-,?)//(/'+l)

16 ( 0, 1,-1) k(l-e)ry(ry+l)v(v-l)

17 ( 0, 1, 0) k(1-e)ry;7,H) (1-1.'2)
<

18 (0,1,1) k(l-eMry+l)lI(v+l)

19 (-1,-1,-1) k~(nh(ry-l)/'(I,-l)

20 ( 1,-1, 0) . k~(~-l)ry(.,-l) (1_112)

21 (-1,-1,1) k~(nM,,-l)//(//+l)

22 (-1,0,-1) k~(~-l) (14)11(1.'-1)

23 (-1,0, 0) k~(~-l) (1_ry2) (1_112)

24 (-1,0,1) k~(n) (1-l,2H"+l)

25 (-1,1,-1) k~(nMl,+l)v(I,-l)

26 (-1,1,0) l ~(nh(l]+l) (1-1.'2)

27 (-1,1,1) l ~(~-lMry+lHv+l)
1{
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The Jacobian matrix for the coordinate transformation between the cartesian

coordinates and the curvilinear coordinates is givell by

l{ d,' dy do x
d~ d~ d~

1" = dx dy do y (A-23)
d" d" d"

Iv dx dy do Z
d" dv dv

or,

x d~ d'l dv l{dx dx dx

y d~ d" dv
1" (A-24)= dy dy dy

Z d~ d'l dv Ivdz dz dz

3. Field Interpolation Functions

Each component of the electric field E III each element 15 approximated by

f'lement funetions o~,(Ç,7),lI), o;:'(Ç,''''/), o~,(Ç,7),lI):

36

Ery = L E;:'o~,(ç, 7), li),
m =19

54

Ev = L E;;'o~n(ç,7),l1),
m=3i
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wherc the element fundions a;,,(ç,7],v), a;:'(ç,7], v), a:;'(ç,7],v) are the first/seconc!-order

polynomials of the local coordinates ç, TI, v. The numbering scheme for the field nodes of

of the first/second-order hexahedral element is shown in Fig. A-2 to Fig. A-4. Unlike

the conventionai tetrahedron element, the three element functions are not the same

polynomial:

a~,(ç, ,/, II)

a;:'(ç,7],v)

Quadratic in 7], v ; Linear in ç,

Quadratic in ç, v ; Linear in 7],

Quadratic in ç, 7] ; Linear in v.

The element functions are chosen according to the following criteria:

1. ~ - component,

+ 1 , if m=j and 1:51U:59

o~,(çj ,Tlj ,Vj) = { -1 , if m=j and 10:5 m :5 18

a. if m ;f j

+ l, if m=j nnd 19:5 lU :5 2i

2. 7J - component, o;:'(çj ,7]j ,Vj) = { -1 , ifm=j and 28:5 m:5 36

a , if m ;f j

+ l, if m=j anc! 3i:5 1U:5 45

3. v - componcnt, o:;'(çj ,,/j ,Vj) = { -1 , if m=j and 46:5 1U:5 54

0, if m ;f j

Notice that the element functions are chosen such that ail the uni taries are pointec!

outward from the element.
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Figure A-2
Numbering scheme of field component - ~ component
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Figure A-3
Numbering scheme of field component - r; component
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The element functions in their explicit forms are given in the fol1owing t.ables:

1. Interpolation funetions for the ~ component.

Field Node

Number

Local

Coordinate

Interpolation Funet.ioll

1 ( 1,-1,-1) ~ (e+llrJ(,,-lH,,-l)

2 ( 1,-1, 0) ~ (e+llrJ(,,-l)( 1_1'2)

3 ( 1,-1, 1) ~ (e+llrJ(r}"l),,(,,+l)

4 ( 1,0,-1) ~ (e+l)(l-,?)v(,,-l)

5 ( 1, 0, 0) ~ (e+l)(l-7?)( 1_/.'2)

6 (1,0,1) ~ (e+l)(l-'?Hv+l)

7 ( 1, 1,-1) ~ (e+l)'I(>,+lH,,·l)

~ 8 (1,1,0) ~ (e+l»,('I+l)( 1_,,2)
~

9 (1,1,1) ~ (e+llrJ(rl+IH,,+l)

10 (-1,-1,-1) ~ (e-l)r,(,,-l)v(,,-l)

11 (-1,-1, 0) ~ (OlrJ(rl-l)( 1_,,2)

12 (-l,-l, 1) k(0)'1('1-1),,(,,+1)

13 (-1,0,-1) ~ (e-l)(l-r?H,,-l)

14 (-1,0, 0) k(e-l)(1-,,2)( 1_,,2)

15 (-1,0,1) ~ (e- l )(1-,,2)v(dl)

16 (-1, 1,-1) ~ (e-llr7(,,+l),,(v-l)

17 (-1, 1, 0) ~ (Olr7(rl+l)( 1_1'2)

18 (-1,1,1) ~ (Olr7(r,+l)"(dl)

n,
~
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II. Interpolation functions for the 'f/ component.

Field Node

Number

Local

Coordinate

Interpolation Function

o~(Çi ,'f/i ,vi)

1 ( 1, 1,-1) ke(e+l)(7/+ l )v(v-l)

2 (1,1,0) ke(e+l)(ry+l)( 1_1'2)

3 (1,1,1) ke(e+l )(ry+l)v(v+1)

4 ( 0, 1,-1) 1 (1-e2)(ry+l )"(1'-1)il

5 ( 0, 1, 0) 1 (1-e2)(7/+ l )( 1_1'2)il

6 (0,1,1) 1 (1-e2)(ry+ 1)1'(1'+1)il

7 (-l, 1,-1) ke(Ç-l)(ry+l)v(v-l)

8 (-1, 1, 0) ke(e-l)(ry+l)( 1-1'2)

(: 9 (-1, 1, 1) ke(e-l)(ry+l)v(v+l)

10 ( 1,-1,-1) ke(e+1)(ry-l)v(v-l)

11 ( 1,-1,0) ke(ç+l)(ry-l)( 1_1'2)

12 ( 1,-1, 1) ke(e+l)(ry-l)v(V+l)

13 ( 0,-1,-1) 1 (l-e)( ry-l H 1'-1)il

14 ( 0,-1, 0) 1 (1-e2)(ry-l)( 1_1'2)il

15 ( 0,-1, 1) l (l-e)(7/-1 )1'(1'+ 1)il

16 (-1,-1,-1) ke(Ç-l)(ry-l)v(v-l)

17 (-1,-1,0) ke(e-l)(71-l)( 1_1'2)

18 (-1,-1,1) ke(e-l)(ry-l)v(v+l)

-88-



·1·," ,:.
m. Interpolation functions for the v component.

Field Node

Number

Local

Coordinate

Interpolation Function

1 ( l,-l, 1) k~(~+1h( 71-1)( v+1)

2 (1,0,1) k~(~+1)(1-7l)( ,,+1)

3 (1,1,1) k~(~+l)ryh+l)(v+l)

4 ( 0,-1, 1) J (H2)'I( '1" 1)("+ 1)il

5 (0,0,1) J (1-e)(1-712)( ,,+1)il

6 (0,1,1) 1 (1-eM71+ l )(v+l)il

7 (-1,-1,1) k~(~-l)'lh-l)(dl)

J 8 (-1, 0, 1) k~(~-1)(1-7l)( ,,+1)

9 (-1,1,1) k~(~-lh('I+l)(,,+l)

10 ( 1,-1,-1) k~(NlM'I-l)(v-l)

11 ( 1, 0,-1) k~(~+1)(1-712)( 1'-1)

12 ( l, 1,-1) k~(~+1)ry(71+l)(,,-1)

13 ( 0,-1,-1) 1 (1-~2)ry(ry-l)(v-l)il

14 ( 0,0,-1) 1 (1_~2)(1_ry2)( 1'-1)il

15 ( 0, 1,-1) 1 (1-~2M 71+ 1)(1'-1)il

16 (-1,-1,-1) k~(Ç-1M71-l)(".1)

17 (-1,0,-1) k~(~-1)(1-712)( ,,-1)

18 (-l, 1,-1) k~(Ç-1h('I+l)(v-l)
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4. Functional in Matrix Form

The functional consists of two tprms: the curl-curl term and the dot product

term. To find the matrix representation of the funetional, wc need to determine the

matric~s for the curl-curl of the corresponding veetor and the dot product of the veetor

in terms of the covariant projection eomponents.

(VxA). (VxA) TERM

The curl of a veetor A rderred to a system of curvilinear coordinates can be expressed

in terms of the covariant,' projeetion components, A~, A'I' Av. and the unitary veetors,

le' 1." 1", as follows

1[
(A-28)

(

Therefore, the product of the curl of a veetor A and the curl of a veetor B is
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Approximate the vectors A and B with the element functions d~scrib~d abov~:

18

A~ = L A~Q;"(ç, 7), Il),
m= 1

36

A,,= L A~.Q::,(ç,7),V),
m = 19

54

Av = L A~.Q~.(ç,7),V),
m =37

18

B~ = L B~no~,(Ç,71,;J),
m:!

54

Bv = L B:;,Q~.(ç,71,rl).
m =37

(A-3D)

(A-31 )

(A-32)

Substituting eqn. (A-3D) 1.0 eqn. (A-32), into eqn. (A-29), yiclds th~ matrix

representation of the product of the eud of A and the eud of B a" foliO\\'5

where,

54 54

LL
m=l n=l

[l "~~ K~'I K~V][ B~ ]~nl'l ,nn ni Il 71

e '1 11 .. "Je ... ""1 .. fl1J '1[Am' Am, Am] h;,." h.m" hm" Bu ,
l "V~ l"V" l"W BV
\.mrl "mn \.mn 11

(A-33)

a ~a'l "~a"=_1 [ (am.~) (va", a,,)
9 gZl ov av - gZ3 ov' a~ ( a,,~,. aQ~) + . (lJa~". a(l~) ]

g31 ih, Dv g33 ar, a~ ,

1 [ (aa~". a,,~) _
- 9 g21 av 01'

K"~mu
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D "D" D"D"K"" = l [ ("m. "n) _ (""
mn 9 g" Dv av g13 a::· at)

K"LImn
1 âo~ Bo'"= -- [gll(_·_n)
9 Dv DT/

DOT PRODUCT TERM

A vector A can he resolved into covariant projection components with respect to the

reciprocal uni taries of the local coordinate system,

where A~, A", Avare the covariant projection components of A, and lE ,1", Iv;·are the

rcciprocal uni taries of the local coordinate system. The produet of two such veetors can

therefore he written as,

A·B = A~B~ lE ·IE + A~B" ICI" + A~Bv lE.l"

+ A"B~ 1'l.IE + A"B" 1"·1" + AB 1"·1" (A-34)
" v

+ AvB~ 1" ·IE + AvB" 1" ·1" + A"Bv 1" ·1" .
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Substituting eqn. (A-3D) to equ. (A-32) into equ. (A-34), the matrix form of the dot

product follows

where,

[L~~ L~" L~"] [ B~ ]mIl mn mn 71

f f (Af1l' A~, A~,] L:~~n L:~~ L:~~, B~~ .
m=! n=\ L"~ L"" LW B"

mn mil Illn 71

(A-35 )

Lé' = Il ~ ~
n~1l g am Qm,

L~" = 12 ~"
mn g Qm am'

L~" 13 ~ "
mn - g 0m am ,

....,.
L"~ 21 '1 ~= g am a III ,

~
mn

Ln" = 22 '1 ri
mn g am am'

L~~, = 23 ri ,11g 0m am ,

L"~ = 3J v ~
mn g Qm 0m,

L~~ = 32 ,vtjg am am'

L~I
33 li Il= g am am·

The reciprocal metrical coefficients can be determiued US11lg the re1aliollship bctwcell

the unitary vectors and the reciprocal unitary vectors giveu by cqll.(A-3) to equ.(A-5).

They can be explicitly expressed in tenns of the metrical coefficients as follow,:
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gIl ICI' ~ [ gn g33 g23 g32 ],= =
g12 = l' ·1" = ~ [ g23 g31 g21 g33 ],

g13 = ICI" = ~ [ g21 g32 g22 g31 J,

g21 = 1" ·1' = ~ [ g32 gl3 g33 g12],

g22 = 1" ·1" = ~ [ g33 gll g31 g13 ],

g23 = 1" ·1" = ~ [ g31 g12 g32 gll J,
g31 = 1" .1' = ~ [ g12 g23 g13 g22J.

g32 = 1" ·1" = ~ [ g13 g21 gll g23 ],

g33 = 1" ·1" = ~ [ gIl g22 g12 g21 J.

Now, dcfine a eolumn matrix, [E], representing the nodal electrie field: a square matrix

[S] representing the eurl-eurl term in the functional; a [T] representing the dot-produet

( tcrm in the functional. as follows

[E] = [~~ 1,
Ern

whel'e,

[

S~;n S~"" s;:.. ]
[S] S·" S"" S""- mil mu mn ,

S"' S"" S""mrl mn mn

=

=

J l 'Th" dn \.mu n; T," = ç, 7/, V,

T," = ç, 7/, V.

<~

"::'î: The integrations ean he earried out numerically by using the Gauss-Legendre

quadrature method gi\'en in Appendix II.
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.....
By using the above definitions, one can establish the following relatlOnships

Jo(\7 x E)-(\7 x E) da = [E]e[s] [E]. (A-36)

(A-3i)

5ubstituting eqn. (A-36) and eqn. (A-3i) into eqn. (.'\-1 ),tiîe fllnctional':F is cxpresscd

in the matrix form in terms of the [5] and [T] matrix as follow:

(A-38)

Applying the standard finite element minimization procedure to eqn. (A-3S) giv!'s th!'

following system of equations:

"

{ - lUS] + k5f ,[T] } [EJ= [0].

-95-

(A-39)



(

Appendix Il

Gauss-Legendre quadrature

Evaluations of the [5] and [Tl matrices of Appendix 1 involve integrations of the

following form:

1 = J1 rr f(ç, 7), v) d~ d,} dv .
-1 -1 -1

To evaluate such integral, the Gauss-Legendre quadrature is used here. Gauss-Legendre

quadrature prO\'ides t",ice the degree of precision compared to equally-spaced

integration methocls. H. has varying weighting coefficients as well as node locations. As a

result, one can achie\'e Gaussian quadrature formulas whose order is almost twice that

of a Newton-Cotes formula with the same number of funetion e\'aluations.

The numerical integration of the integral Call he expressed as follows
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With the Gauss-Legendre quadrature, the coefficients H j , H j , Hk and the locations of

integrations ç;, '1j' Vk must be chosen according to the following table:

ifjfk

1

2

3

Location of Integrations

{F = 0.774596669241483

0.000000000000000

-{F = - 0.774596669241483

-97-

Weighting Coefficients

~:~ = 0.555555555555556

~:~ = 0.888888888888889

~:~ = 0.555555555555556



Appendix 1\1

Determining S-parameters with finite element method

A description of circuit components can follow with equivalent voltage and

current waves. This description, and the derived equivalent resistance, lead to a

representation through distinct equivalent-circuit diagrams with concentrated circuit

( components. However, representation of microwave networks by impedance or

admittance matrices is not very convenient since voltages, currents and impedances

cannot. be measured in a direct manner at microwave frequencies. In microwave

engineering, a description of microwave circuits called scattering (S) parameters is

prefcrred. This is because the S-parameters are defined in tenus of the quanti tics that

are directly measurable, both in amplitude and phase. Thesc quantities are the incident

or rel1ected waves, or the rel1eetion coefficient and the transmission coefficient. Thcse

form the basis of the scattering matrix formulation.

Fig. A-5 shows the configuration of a discontinuity problem in a gcneral two-port

wavcguide. A scattcring matrix reprcsents the relationship bctween the parameters an
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Figure A-5
A general two-port waveguide discontinuity
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proportional to the incident wave at port n, and the parameters bn proportional to the

outgoing waves at port n. The final objective is to determine the amplitudes and phases

of the S-parameters which fully describe the discontinuity region, with respect to the

two reference planes Pl and P 2. In matrix notation, the system of equations of the

circui t can be writ ten as

where

SIl = b) 1 0 = Refiectivity at port 1 with port 2 terminated,al 11.2=

S21 = b2
1 0 = Forward transmission from port 1 to port 2a, 11.2=

with port 2 terminated,

SI2 = ~~ 1al =0 = Reverse transmission from port 2 to port 1

with port 1 terminated,

(A-I)

= Refiectivity at port 2 with port 1 terminated.

These parameters are defined under the assumption that only the dominant mode can

propagate inside the waveguide. For multimode operation, a more general description,

called t,he general S-paramet.er method, must be used. Since the S-parameters measure

the transmission and refiection coefficients of a given wave pattern, they must be

calculated with respect to a known field distribution. This field distribution is

-100-
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introduced into the system by using the two far-field planes, JI and J2. Since the far-

field planes are placed al. a distance sufficiently far away from the discontinuity for all

evanescent modes ta have decayed, the field pattern on these planes is purely

determined by the eigenvector of the dominant mode. The tot.al tangential field on the

two far-field planes can be expressed in terms of the incident. and reflected waves as

follows

Ei = Vi ei ,t

{ (A-2)

Hi = Ii hi 't

where ei and hi are the tangential field distributions of the dominant mode of the

given guide, and the voltage and current at port. i are defined as

V·=a·+b·{'" '

A general admittance rnatrix [Y] can be defined for the two-port network as
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where

Yll = Il
Iv2=o = Short-circuit input admittance al. port 1,

VI

Y21 =
12

Iv2=o = Short-circuit forward transfer admittance,
VI

YI2 = Il
1 v1=O = Short-circuit reverse transfer admittance,

V2

y - 12
1v1=O = Short-circuit admittance al. port 2.22 - V2

It has been shown [8,16] that the Y-parameters can be expressed III terms of the

functional of the problem as follows

(

where

y ..
'J

(A-4)

Ei = FEM solution when plane Ji excited with Viei' and else shorted,

Ei _ FEM solution \Vhen plane Ji excited with Viei' and else shorted,

Pi = J (ei)( hi)·n dn,
., n . .

F(E', EJ) = Value of the functional with column matrices [E'] and [EJ]

= [Ei]"[W][Ei]; [W] is the system matrix of the problem.

Ta characterize a two-port circuit, one needs 1.0 solve the problem with finite element

methad twice: once far the [El], exciting port 1 \Vith dominant mode field with port 2
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shorted, and once for the [E2], exciting port 2 with dominaJ1t mode field with port 1

shorted. When [El] and [E2] are known, the Y-parameters of the two-port circuit can

be determined by using eqn.(A-4). The Y-parameters can then be converted to the

desired 5-parameters, using the following expressions:

511 =
(Yo- YIlHYo +Y22 ) + Y12Y21
(Yo+YIlHYo+Y22) -Y12Y21

,

512
- Y12YO- (Yo + YllHYo + Y22 ) - Y12Y21

,

521 =
- Y21 YO

(Yo +YIl)(Yo +Y22 ) y Y .- 12 21

522
(Yo +YIlHYo - Y22 ) + Y12Y21- (YO+YIl)(YO+Y22) -Y12Y21 .

(A-5)

(A-6)

(A- ï)

(A-S)

50 far, the procedure l'l'ovides a set of 5-parameters with the phase uncalibrated to any

specific plane of reference. The discontinuity is not fully characterized until the phase is

properly calibrated to a selected plane. To calibrate the phase, it is necessary to repeat

the procedure with the discontinuity section replaced by a uniform guide section of any

desired length. The length of this uniform guide section will determine the plane of

reference where the phase is calibrated to. If the length of the uniform section is the

same as that of the discontinuity itself, then the phase will be calibrated to the c"l1ter of

the discontinuity. The Y-parameters of the two-port network with the discontinuity

region replaced by a uniform guide section are determined with eqn. (A-4). The

calibration factors are determined by setting the magnitude of the forward transmission

coefficient of the 5-parameters to unity and the phase to 0 dc'grees. Then the scattcring
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parameters of the structure inc1uding the discontinuity are computed by replacing the

calibration segment with the discontinuity. The calibrated S-parameters of the

discontinuity can then be obtained by subtracting the phase offset determined by the

calibration procedure. The calibration also eliminates any potential errors which may

arise from signal loss in the two uniform waveguides.
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