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Ahstract

The complete design of many electromagnetic devices requires the solution of a

coupied problem. Typically, the coupling is in the l'mm of magnetic/thermal,

magnetic/structural, magnctic/electronic, or possibly a combination of severai disciplines.

Computer hased tools exist for many of these engineering specializations but they are

usually "stand-alone" and each requires an experienced designer to use it eff<:c'ivp.ly. This

rcquiremcnt for an expert user places a major constraint on the design cycle, and a lack

of communication hetween the various experts can result in major design errors.

This thcsis proposes a software architecture that is capable of providing loose

coupling between currently available design tools and of absorbing new tools in the future.

The structure provides an integration environment for a suite of design programs. The

environment automatically allows the iterative solution of coupled problems by loosely

coupling individual tools through a comprehensive database and organizing their execution

via a rule-based control program. In order ta effectively integrate a diverse set of tools

and to define the kind of coupling between the various analyses, it is necessary that the

input and output requirements of each tool be carefully defined. The BlackBoard for

Computational Analysis and Design (BBCAD) is a hybrid knowledge-based system which

uses the blackboard architecture, and generates a systematic method of integrating the

"stand-alone" design tools, together with an automatic method of ensuring that, if a change

is made ta the design, ail the relevant design tools are re-run.
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Résumé

L'l conception ...~ plusieurs appareils électromagnétiques requiert la solution d'un

problème couplé, Typiquement, le couplage est sous forme magnétique/thermiquc,

magnétique/structurelle, m'lgné,ique/électronique, ou parfois une combinaison d..,

nombreuses disciplines. Des outils informatiques existent dans plusieurs de ces cllamps

d'application, mais ils ne s'appliquent généralement qu'li une catégorie spécifique d..,

problèmes et chaque outils requièrent l'intervention d'un concepteur expérimenté. Ct.

besoin d'un spécialiste contraint le cycle de conception et un manque de communication

entre les différents experts peut être la cause d'erreurs de conception importantes.

Cette thèse propose une architecture pour logiciels, capable de fournir un

couplage sans contrainte entre les outils de conception présentement disponibles, ainsi

que d'intégrer de nouveaux outils à venir. La structure fournit un environnement

d'intégration pour une multitude de programmes de conception. Cct environnement

permet de résoudre automatiquement, par itérations, les problèmes couplés en joignant

sans contrainte les outils individuels à l'aide d'une base de données exhaustive et en

orchestrant leur exécution par un programme de contrôle basé sur des règles. Pour

intégrer efficacement un ensemble d'outils et définir le type de couplage entre les diverses

analyses, il est nécessaire de détailler soigneusement les entrées et les sorties de chaque

outil. La méthode "Blackboard" d'analyse par calculs et de conception automatique

(BBCAD) est un système hybride à base de connaissances qui utilise l'architecture

"Blackboard" et génère une méthode systématique d'intégration des différents outils de

conception. Simultanément, cette méthode garantie qu'une mndification à la conception

sera suivie par l'exécution des outils pertinents.
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CHAPTER 1

1ntroduction

1.1 IntroductioD

Many large, complex electrical engineering design tasks require the use of a

considerable number of existing inter-related design tools. They typically perforlll

computational functions such as simulation modeling, i.e. tht: process of exercising the

model and obtaining some results, dynamic analysis, and optimization. Many of these

design tools are "stand-alone" and require an experienced dt:signer to use tht:m erfectively.

Il is becoming more and more important that a systematic method of integrating these

design tools be developed, together with an automatic method of managing the design

process, and ensuring that, if a change is made to the design, ail the relevant tools are re­

nl/!. Thus integrating the different parts of the design process into a l'ully automated

system can often increase the quality of the results and avoid the need for human

intervention.

In order to integrate a diverse set of electrical engineering design tools elTcctivcly

and to provide a form of weak eoupling between the various analyscs, the input and

output requirements of each tool must be carefully defined. Becausc of the complcxity

of the interrelationships among the design tools, numerous delays and errors occur during

their integration. These delays and errors can increase costs, cause scheduling crises and

reduce design quality. The result is that the current approach for the solution of electrical

engineering design problems has been the combination of l'ully automated tasks, and a set

of symbolic or heuristic tasks, that are performed by the engineer.

Recent advances in knowledge.based system design have provided some of the tools

1 IlIlCAD
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nccessary ta overcome these difficulties, thus solving electrical engineering design

problems. A hybrid Knowledge-Based System (KBS) is most convenient for this purpose.

There is a large set of KBS architectures being developed and tested [Maher 88; Mittal

and Araya 86; Sriram et al. 89; pp.15-16 ofDym and Levitt 91], the most notable ofwhich

is a hybrid system known as The Blackbaard Madel Architecture. This thesis is intended

to investigate the application of this architecture to the integration problem in

electromagnetic device design. AC-core device model, shown in Figure 1.1, will be carried

right through the treatise to help ilIustrate the concepts.

1.2 The Engineering Design Process

Engineering design is the creative process which follows the identification of a need

for a device that satisfies the design requirements [Gregory 66], for example, an electrical

machine - motor, generator, transformer. The process varies widely depending on the size,

maturity and specification of a particular need. As shown in Figure 1.2, the traditional

subparts of the engineering design process are a combination of encoded routines, and

symbolic problem-solving. Thus, the process of designing requires the use of many

BBCAD
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Figure 1.2: Engineering Design Process

strategies. The general pattern in engineering design (Figure 1.2) consists of preparation,

gathering information, incubation, verification and finally communication [Gibson 68]. lt

is an iterative and incremental process as demonstrated in Figure 1.3. The design task

consists of generate-test-refine processes. It involves the modification, refincmcnt,

enhancement and combination of existing solutions into a new hybrid solution that satisfies

the given design device requirement [Gero et al. 88]. The designer uses a variety of

cognitive operators to generate a design, test it under specific conditions and refine it until

a stopping criterion is reached. The design process can be characterized as a cycle of

levels in which a new model of the design or a part of the design is generated at cach level

(Figure 1.4). Although the design process proceeds in stages (Chapter 1 of [Brett 90]),

these stages are not c1early delineated nor are they necessarily performed sequentially.

Thus, the design problem is formally a search problem in a large space for objects that

satisfy multiple constraints.

nnCAD
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Engineering design is a problem-solving activity of optimization but in an under­

specified system. It is inherently iterative and interactive, utilizing analysis, synthesis and

evaluation [Rychener 88]. In an interactive engineering design system, the program

module and the designer (user) work together on the design synthesis task which requires

methods of quantitative and qualitative reasoning [DeMori and Pragcr 90; Brett at al. 90].

This dictates that they share a common knowledge of the goal of the design task, the

strategy they are pursuing to achieve the goal, and the current state of their effort to

execute the strategy. For the development of such a program module, the designer must

have computer models of human thinking (cognitive model): what he or she knows, what

he or she is trying to find out, and what he or she is trying to do. AIso, a discourse must

be planned by which the program module may gain information l'rom the user, and relate

to the user the important knowledge developed. It is crucial for the success of this

BBCAO
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approach that the design strategy being employed by the program module he

comprehensible to the user. It is essential that there be a real-time critic of the design

being developed, and of the design strategy being employed by the user. The system

should also be capable of interactive justification and expianation of design decisions and

analysis results.

Design knowledge is dynamic. As a design progresses from the early stages of

requirement formulation towards the detailed design, the knowledge grows not just in

volume but in complexity. Growth in complexity means that dependencies, constraints and

interrelations missing at early stages are inserted throughout the design information.

Design knowledge also undergoes changes in status, quality and consistency. Status defines

knowledge by labels such as: assumed, factual, validated, proved, checked, etc. Quality

change means that the knowledge may pass through different levels of confidence, from

preliminary estimate to final analysis results. Consistency refers to the different sets of

constraints that the design must satisfy [Saldanha and Lowther 86; Brett et al. 90]. Thus,

engineering knowledge must meet a high standard of integrity and robustness. It must

satisfy constraints imposed by the laws of physies and chemistry, and must also conform

to the engineering standards specifie to eaeh discipline.

DDCAD
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makc signilïcant contrihutions toward the automation of electrical engineering design. A

description of KBS architectures can he found in Appendix A.
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1.3 Interdisciplinary Research and Development

More rcccntly, the formalization, representation, and manipulation of knowledge

in computers has made it possible to construct knowledge-based design systems [Coyne

et al. 90].

Over the last few years, many researchers in Artificial Intelligence (AI) have come

face to face with the task of trying to formalize problems in order to produce intelligent

problem-solvers. Design problems have proved especially difficult. Simon [Simon 69]

characterizes design as an iIl-structured problem, i.e. one which does not have a cIearly

delïned algorithmic solution, which is difficult to formalize and thus difficult to solve.

Advances in computers and engineering design methodologies led to an extensive use of

computers in Computational Analysis and Design (CAO). However, the involvement of

computers in engineering design has been very much limited to fast "number crunching",

i.e. to algorithmic solutions, such as finite-element methods. However, developments in

AI techniques, in particular the KBS technology, have made it possible for computer

programs to simulate human expertise during the problem-solving process. The KBS

intelligent behaviour is derived l'rom the incorporated reasoning capability, intelligent

search techniques, and the ability to monitor and evaluate performance and alter a course

of action to optimise a design. It is these capabilities, coupled with the heuristic and "non­

algorithmic" expertise knowledge, which offer a solution for ilI-structured design problems.

Research in knowledge-based systems and design tools has generated a large

number of systems. Among the first applications of knowledge-based systems in design

BBCAD
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84; 86; Maher 88; Dym and Levill 91]. While much of the work inthis area is currentlv

focused on single domain advisory systems, a small number of integrated computl,r-aided

design systems with coordinated multiple domain experts are emerging [Dym S5].
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The DARPA DICE [Snram et al. S9] project uses the blackhmml architecture

approach to achieve communication and coordination of problem-solving between

designers. DICE is oriented toward engineering design environments and is used to assist

experts l'rom several domains who need to collaborate in the design of new produets.

Once the experts agree on a particular design, the design is posted onto a database.

HOBS [Carter and MacCallum 91] is a software architecture based on a hlackboard model

with knowledge sources related in a hierarchy as a means of supporting design co­

ordination. COCASE [Gentilhomme 91] is a expert system based on the blackboard

architecture ta design magnetic relays.

1.4 A Role for Knowledge·Based Systems

Artificial intelligence has been used in knowledge-based systems as an interactive

means of gathering and controlling information with human operators [\-layes-Roth et al.

83]. It originated with the idea that if one could simulate most of the functions of the

human brain on a computer, then scientists might understand the human brain. KBSs

were the natural applications of such an activity.

KBSs employ human knowledge ta solve problems that ordinarily require human

intelligence [Simon 69]. They simulate expert human performance and present a human­

like facade ta the user. Human knowledge consists of elementary pieces of "know-how",

thus applying a significant amount of knowledge requires new ways of organizing decision­

making fragments into useful entities. Knowledge-based systems collect these fragments

DDCAD
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Al anù its suhfielù, KBS, are equippeù with the ability to represent kllow/edge in

ùifferent forms. Practical results can he attrihuteù to the design and use of KBS, in that

they can reach a level of performance comparable to that of human expert "know-how"

in sorne specialized domains such as Engineering Structural Design [Rychener 88; Kowalik

and Kilzmiller 88), Fault Diagnosis [Talukdar and Cardozo 88), Medicine [VanMelle et

al. 81), Science [Engelmore and Terry 79), etc. [Barr and Feigenbaum 81,82; Cohen and

Feigenbaum 83]. What distinguishes a KBS l'rom a conventional application program is

the moùel of problem solving [Newell and Simon 72]. Application programs make use of

specialized problem-solving knowledge and many of them reach high levels of

performance. The model of problem-solving in KBSs is based on a separate entity or

knowledge base, while in an ordinary application program it appears implicitly, as part of

the coding of the program. As a result, KBSs instead of being programmed to follow step­

by-step procedures, follow a few general procedures which are generally opportunistic

rather than deterministic. Facts, heuristics, models and other general knowledge about

solving a particular class of design problems are encoded and stored in the computer's

memory. In order to solve a specific design problem, the computer uses facts provided

by the user plus the design domain knowledge and general problem-solving procedures to

find and apply specific solutions. The domain knowledge is acquired l'rom a domain

expert who provides the key to expert performance.

The KBS paradigm has provided a whole realm of potentially usefui tools to

enhance the human-computer interface, but what is more important, its use as a controller

of complex engineering programs provides a way of using formalism and conventional

algorithms in a Computational Analysis and Design (CAO) system whilst keeping them

separate l'rom heuristic procedures representing informai knowledge about engineering

design. The criteria for improved CAO design include several complex notions: multiple
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levels of repœsentation of a design [Nicklaus et al. 88]. known as abstr.h:tion. facilities fm

meta-Ievel reasoning about design strateb'Y [Buchanan and Shortliffe 8-1]. et,'. l'hl'

structure that controIs this system will have to be versatile aml mbusl. One eamlidate

structure is the b/ackboard, a feature of the HEARSAY-II speech-understanding system

[Lesser et al. 75; Lesser and Erman 77; Erman et al. 80]. A background on the

blackboard architecture and an overview of variations in the architecture can be fmmd in

Appendix B.

•
Chaplcr 1. Introduction '1

•

•

1.5 A Role for Bluckbourd Architecture

The blackboard is a paradigm that allows for the llexible integration of modular

pieces of design code into a single problem-solving environment. It provides a way to

organize a large amount of knowledge into an intelligent program and is based on the

paradigm of several experienced designers working together on a problem. Each designer

can "see" the current state of the problem as it is described on the "blackboard" and can

make a contribution to the problem solution if his or her knowledge appHes to the current

state. In software terms, the "blackboard" becomes a shared memory area, and the expert

designers are replaced by computer based design tools. 1n practice, each tool monitors

only a small region of the blackboard and is activated only when entries are posted in that

region by another module. The central issues in any engineering design problem are: what

pieces of knowledge should be applied, and when and how to apply them. The blackboard

model answers these questions by separating the problem-solving framework into three

major components [Nii 86(a)]: the blackboard data structure, the knowledge sources (KSs),

and the blackboard control.

In the context of a CAO system for electromagnetics, entries on the blackboard

would be design modules suggested as refinements of a particular level of representation,

e.g. the analytical module, the finite element analysis tool, the structural module, the
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thermal module, etc., in the design of the C-core magnet. Entries can also be intermediate

rcsults generated during design problem solving [Hayes-Roth 85 (a)]. KllolV/edge Sources,

in the present terms, arc the design knowledge modules which govern the search for, or

design of, device units and their combinations into partial designs. The blackboard itself

serves a unique purpose in separating the different kinds of design modules l'rom each

other, whilst allowing them to communicate with, and influence, each other via blackboard

entries. The control mechanism which governs blackboard activities is basically a

scheduler which looks at a list of "knowledge source activation records" (KSAR) to decide

which action to invoke next. In this sense the system functions like an operating system

for a virtual machine. However, triggering a design module does not lead to the

immediate activation of the appropriate patterns in the design module. This allows the

control mechanism to explore the range of possibilities for action, construct a priority list,

and take a global view of the activities of the design process.

The implementations of blackboard systems vary considerably, but they aIl exhibit

the same major architectural constructs: an explicit global data base, i.e. blackboard, KSs

which affect and react to changes on the blackboard, and a control mechanism. The type

of control mechanism adopted depends on what it is intended to determine l'rom the

design system. Blackboard systems have been implemented for problem domains ranging

l'rom speech understanding [Erman and Lesser 75; Lesser et al. 75] and protein

crystallography, CRYSALIS [Terry 83], PROTEAN [Hayes-Roth et al. 86] to new

applications in model-based materials processing, DECADE [Banares-Alcântara et al. 87,

88(b)] and share the same components described above. However, they differ in the

details of their component structures and functions. Differences among blackboard

systems involve control regimes and mechanisms for determining when KSs are executable.

•

•

•
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1.6 Scope and Motivations of this Research

Il

•

•

The requirements for the design of a complex electrical engineering system are

diverse and often contain contlicting goals. The complete design of many electromagnetic

devices is a difficult problem which accounts for magnetic, structural and thermal aspects,

requiring the solution of a coupled problem. Typically, the coupling is in the form of

magnetic/thermal, magneticMructural, magnetic/electronic, or, possibly, a comhination of

several disciplines. Design tools exist for each of these stages and require trained

designers to use them effectively. Many of these prohlems may be described using

computational analysis methods coupled with knowledge-based design techniques, which

offer a simple and flexible way for introducing the diverse knowledge (e.g., gcometric

specification, material characteristics, problem specifications etc.), and an easy way for

evaluating the numerical solutions and post-processing them. Currently, a project is under

way to integrate tools into the design and analysis of magnetic devices in general, and into

the design of electrical machines in particular, to minimize the level of human expertise,

and to allow the production of designs with minimal, and preferably zero, hardware

prototyping.

These research efforts have been concentrated in the development of a framework

for integrating engineering design tools, ta provide a [oose coupling between the currently

available tools, and ta absorb new tools in the future. BBCAD (BlackBoard for

Computational Analysis and Design) is a hybrid KBS based on the blackboard architecture

model [Lesser at al. 75; Lesser and Erman 77]. The objective of BBCAD's development

has been ta investigate and evaluate the potential of KBS in machine design; ta make it

possible ta take full advantage of existing design tools; and ta allow the automation of a

larger portion of the design process.

Whilst the thesis sa far has centred on the use of the blackboard architecture ta

integrate high level software tools, it can also be applicable at a much lower level. For
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instanœ, the conventional architecture of a finite element magnetics analysis system usually

consists of a set of relatively large scale design modules, each of which is relatively difficult

to moditY. The BBCAD architecture allows each of these modules to be broken down

into their constituent parts, interacting through the common database. Thus an automatic

mesh generator might be a separate process in the pre-processing phase of a solution.

Changing the mesh generator would simply mean replacing that small module, or having

more than one module in the system, and depending on the design requirements, the

appropriate module will be invoked. Alternately, several mesh generators, each having

specific parameters in terms of the quality of the mesh generated and the cost of

generation, might co-exist in the blackboard environment. Thus the system leads to more

maintainable and more easily expandable software systems.

The following are sorne of the tools that exist:

- The Electromagnetic Design System (EDS) [Saldanha and Lowther 86] is a knowledge­

based expert system aimed at automating the computer-aided design of electromagnetic

devices such as transformers, actuators, and motors. EDS is a programming

environment, and considers the different categories of knowledge in design. The

mathematical model of a device provides one category of knowledge, and its

representation and function are implemented by a sub-system of EDS called the

Computer-Aided Design AIgebraic Constraint System (CADACS) [Saldanha 88].

Another sub-module of EDS is the interval mathematics package module (INTSYM)

[Brett 90]. It allows the user to put practicallimits on certain parameters enabling the

program to deduce the valid design space of the device.

•

•

•
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1.7 Approacb and Contributions (lf tbis Researcb

The emergingfields ofartificial intelligence and knowledge engineering (Genesereth

and Nilsson 87] offer means ta carry out qualitative reasoning on computers. These

techniques al10w us ta model the intuitive knowledge, judgement, and experiences that

expert designers use, and ta integrate them with the quantitative tools. What is needed

is a knowledge.based program that encompasses knowledge associated with not only our

understanding of the design tools and features of the product, but also the integration

issues of new design tools and the role of the tools in the design process.

The approach taken in this thesis is, first, ta design a blackboard software

arcbitecture, next ta develop several applications ta test the system, and finally, to examine

the integration of different electrical engineering design tools, to make sure that the system

is capable of providing a loose coupling between currently available design tools, while

absorbing a wide range of applications. The most important goal of this research study

is ta evaluate the feasibility of successful application of knowledge-based systems to the

engineering design area. This goal is two-fold: ta propose methods of solution for tasks

that traditional1y have been approached "by hand", and ta integrate those solutions with

the results of the algorithmic parts of the problem. Although the BBCAD uses the

blackboard model, the basic architecture, knowledge representation, and knowledgc

utilization techniques differ from other blackboard systems. The differences can be

attributed ta many factors: the nature of the problem (electromagnetic device design)j

implementation language; design constraints; quality and amount of available knowledgc;

and, last but not least, the designer's problem-solving strategy.

This research contributes ta:

a) The field of software engineering in general, as weil as ta

b) The application of the problem solving mechanism ta the domain of electrical machine

design.

BBCAD



BBCAD itself is a system consisting of a single problem-solving module. The major

contribution of BBCAD is not in any extension of the technology of the blackboard

architecture, but in the unification of blackboard technologies with a development system

for high-performance design applications. Thus, the focus is on generalizing control

capabilities to provide a means of integrating dramatically different systems via

blackboards.

•
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More general issues were investigated:

- Open-Ended integration (NumericallSymbolic integration).

- Integrating learning and problem-solving into a unified process.

- Maintaining consistency of data structures (Integrity).

- Identification of knowledge-based activities.

1.7.1 CIaims of Originality

In this thesis the following original contributions are made:

a) Software architecture which is founded on knowledge-based systems and the

blackboard model.

b) The architecture is capable of providing loose coupling between currently available

design taols.

c) The architecture is capable of absorbing new design tools into the system.

d) There is no restrictions on the kind of tools the architecture can handle.

e) The architecture provides a problem solver that can search the design space more

thoroughly in short time.

t) The search is guided by the knowledge of the problem space structure.
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g) A tree structure which identifies the many ways of slicing the knowledge in KBS in

design.

h) The architecture is capable of integrating KBS methl1lls with existing oplimizalilln

design tools used in other engineering disciplines.

i) The architecture automates the design process of an l~lectrllll1agnetic device.

j) A multilayer blackboard architecture that couId ht: used rccursivcly.

k) A software approach which executes tht: original t:xisting dt:sign tools as indcpt:ndt:1\1

processes.

1.8 Organization of this Thesis

This dissertation is organized as follows:

Chapter one sets the scope of this research thesis, and presents somt: rdated work

in engineering design. Chapter!Wo states the purpose of this rest:arch and its relation 10

electric machine design. It explores a frame-oriented approach ta design tool integration

for allowing coordination and communication. Il also demonstrates how the concepts of

KBS and blackboard architecture can be combined to develop a hybrid knowledged-based

system.

Chapter three presents the knowledge organization structure and the functionality

of the blackboard framework BBCAD. Each of the modules constituting BBCAD is

introduced along with an expl::.nation of the system's overall control, and internaI control

of the module. Chapter four discusses the decision adopted by the blackboard controller

on the next step to take in the design process.

Chapter five emphasizes the tool integration aspect. The development is initiated

by transmission of parameter specifications of the C-core magnet, constructing the design
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alternatives, Le. design synthesis, evaluating the design synthesis, i.e. design analysis, and

finally applying analysis optimization techniques to improve the design. Two different

optimization techniques arc presented in automating the design process of the C-core

device.

•
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Finally, the last chapter summarizes the most important facts. From these facts, a

set of remarks and conclusions is drawn from which the contribution of the work can be

judged. Also, sorne recommendati()ns and suggestions for future research in this and

related areas are given.

Appendix A attempts to provide a background on knowledge-based systems in

engineering design and cites the advantages of using such systems for performing symbolic

manipulation procedures that are used in BBCAD. Appendix B provides a background

on the blackboard architecture and reflects ils use in engineering design. An overview of

variations derived from the formai descriptions of a number of influential blackboard

architectures is also presented. Appendix C reviews many possible implementation

procedures which are available inside the KBS domain. They include general purpose

programming and representation languages, and skeletal systems. Appendix D

demonstrates how to calculate priority ratings of a design knowledge module. Rule

constructs that are generated from the design module are represented in Appendix E.

Appendix F deals with more specific details of the implementation of BBCAD. It also

describes the front-end user interface of the whole system.
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CHAPTER2

An Architecture for Engineering Design

The objective of this chapter is to state the purpose of this research and its relation

to electric machine design. It examines a frame-oriented approach to design too1

integration for permitting coordination and communication. It defines the design process

for the general class of electromagnetic devices and suggests that there are severai

hierarchicallevels of abstraction of the physical devicc. It also provides a hackground on

knowledge-based systems in engineering design, the blackboard architecture, and how

these concepts can be combined to develop a hybrid knowledge-based .;.tem for design,

such as the one on which BBCAD is based.
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Figure 2.2: C-core design architecture

2.1 A Coupled Problem in Electromagnetic Design

•

•

As in the design of most complex electric machines, the designer of the physically

simple C-core device attempts to satisfy a complex set of interrelated design constraints.

The designer starts with the specifications for the C-core and proceeds to compute the

other parameters to obtain a final design. Once ail the parameters for the initial C-core

have been assigned values, the designer executes an analysis tool in order to evaluate the

quality of the proposed design. The results are used as a basis for the design

modifications before beginning the next iteration of the synthesis procedure. If the

analysis parameters are within the admissible values and in sorne cases, if a cost fonction

is minimized, the design process terminates successfully. This rarely oecurs on the fust

iteration, since varying the physical dimensions of the C-core affects the magnetic

requirements, and in tum the thermal demands. Thus the complete design of the Ccore

requires the solution of a coupled problem. Coupled with experience, the designer allows

intelligent modifications to be made for the next phase of design. The designer decision­

making ability is usually Iimited to just the few designs he could produce by hand.

The design system is outlined in Figure 2.2, and contains a device model, a set of

design analysis tools, and the blackboard database which consists of a set of datastructures.
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These structures provide a uniform method for dealing with diverse forl11s of knowledge,

and contain information relevant to a particular design tool. For instance, the structure

contains the conditions under which the design tool (program) should he activated. These

conditions may be specified in two parts; the first is the context in which the tool is

relevant, the second is a set of pre-conditions which have to he satisfied. For exal11ple, the

context for a l11agnetics analysis tool includes the fact that a geol11etric description of the

device must be present, along with a specification of the materials used and excitations

expected. The context might be fairly specifie in that the problem definition might weil

indicate that the magnetostatic solver is applicable. A similar context might weil apply to

a thermal analysis system. Thus if the context matched that specified for the particulm

design tool, the program could be executed.

In the coupled problem scenario, the context might suggest that a magnetics

analysis problem could be executed because ail the relevant input data is present and the

program has not been executed previously. If the coupling is to a thermal analysis, its

context would require that a description of the losses be present. These might only he

generated by running a magnetics analysis. Thus the magnetics analysis would execute,

the losses needed by the thermal program would be written into the blackboard and the

thermal program might now execute. The result of running the thermal program might

be a change in the temperatures of the device leading to a change in the magnetic and

electric properties. This change might weil be one of the preconditions for executing the

magnetics analysis and thus it would re-execute.

By this process, an iterative Ioop can be set up without the user specifically

requiring that it occur. Eventually, the system should converge to the solution of the

coupled problem. However, it is possible that the process will be divergent and thus a

controller is required to monitor the changes happening on the blackboard and to ensure

that these are, indeed, leading to a convergent solution.

•

•

•
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2.2 Issues in Design

ln order to illustrate the notions that will be presented in this thesis, the simple

prnhlem of designing aC-core magnet, shawn in Figure 2.1, is carried right through this

dissertation. The complete design of the C-core device requires the solution of a coupled

prnhlem, where the coupling is a combination of several disciplines: magnetic, thermal,

electrical, etc. The goal is ta optimize the design of the C-core by altering certain

variables, e.g. the shape of the core at the air gap, such that the change of flux density in

the air gap is infinitesimal.

•
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The design process is an iterative mechanism of evaluation and modification, i.e.

analysis and refinement (refer ta Chapter 1). The iterative process continues until at least

the specification criteria of the design, or a stopping criterion for a design module, are

met, thus giving a final design. The goal of the design process is twofold: the first

objective is ta def:ne the full set of parameters which describe the structure and operation

of the C-core device, the second is to optimize the automatic design to most closely reach

the design goal. BBCAD uses the following problem solving strategy: "To run a design

module, if ail the inputs ta the module are present, execute the program module and

return the results. Otherwise find ail the required input variables whose values are not

known and consult the spaces of design for starting values. Then, if ail the needed inputs

are still not present but there is another design module, the output of which will provide

the missing inputs, run that module first." The design module must contain ail the

necessary information for it to integrate and to execute in the proper order.

As more and more design modules are added, the choice of which program to

execute next is not a simple task. A tool projected on the design space can increase the

dimensionality. The design space is the space of ail possible designs of the device and

their global parameters (e.g. structural which includes the core, the gap, and the windings,

magnetic which includes the flux density, electrical which includes the current, etc.)
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Figure 2.3: Design space of a current design

(Figure 2.3). The design ean be viewed as a search of a multi-dimensional space of

possible designs. In effect, it is a searching of a space of ail possible structures for the one

which most c10sely satisfies the specifications. The problem of design is to narrow the

search space as fast and as effectively as possible.

One basis on which to make the choice of which tool to run is the amount of new

knowledge which might be provided by a particular tool. If severaI tools can execute, then

the one adding the most new knowledge to the design space should be chosen. There is

no reason why ail the tools should be linearly independent; it is entirely possible that

several tools capable of doing the same, or a similar, job might be included in the design

space. Each tool would have its own cost in terms of resources needed, execution times,

and accuracy of results as weil as output information.

Lowther [Lowther 89] stated that design is the process by which the complete

structure of a device is defined such that it operates within the range detailed in the

specifications. In the issue of integrating diverse design tools into the life-cycle engineering

environment of the design process, two pragmatic requirements are placed on the

complete design:
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Figure 2.4: Simple abstraction of the design process

• Knowledge of the problem space structure, and the datastructure of the design module

and the device.

• Guiding the search in the design space.

The approach must therefore consider the large number of tools that support

various phases of the design process. The diversity of such tools makes them hard to

integrate into an environment in such a way that they can support design coordination and

can communicate with each other.

One simple abstraction of the design process for an electromagnetic device is

depicted in Figure 2.4. The objective is to provide effective automated support for the

design process. To determine requirements, models of reality/concept are constructed

from traditional design. These models are intended to abstract from the concept the

essence of one or more aspects of an existing or proposed design, and focus on the

knowledge architecture. Sorne of these models are general statements of the

requirements; others are very detailed. From models of design systems, one can extract

heuristic rules that should govem the design proce"' 3ased on these rules, one can plan

the design knowledge modules. These modules are precise statements of tool interactions,

of data relationships, and of constraints and conditions, and their architecture become the
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Figure 2.5: Vicws of knowlcdgc

foundations of knowledge-base oriented automated solutions. One measure of these

solutions is the extent to which they compromise reality. The truer the models that are

used in the design process, the lower the probability that the resultant device design

solution will force compromise.

2.3 A Framework for Integration

There are three distinct views of knowledge in the BBCAD architecture, shown

in Figure 2.5. The integration problem of the design of an electromagnetic device is

explored in the context of the following architectural characteristics:

• A knowledge storage and communication area serves as the repository for ail design

knowledge.

• The knowledge is organised in a way that allows easy representation of ail the existing

design tools involved in the problem solving process and their interrelationships, and

better cooperation among the too1s.

• The BBCAD environment allows diverse types of existing tools to be integrated

regardless of the idiosyncrasies of their operation. It also allows new tools to be added
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with minor modifications to the tools.

• The BBCAD environment has at least a primary notion of the new tool and its

functions in relation ta other tools such as scheduling, multilevel invocation, and

concurrency.

The decision ta integrate a design tool, i.e. design knowledge modules, is not merely

a data conversion issue. Integrating a tool involves resolving such issues as the nature of

the designer-tool interface, the tool's input and output, and the policies one wants to

enforce on tool usage. Ta interface a new tool to the BBCAD structure, requires that a

datastructure be created associated with the design knowledge module and describing its

contributions to the blackboard space, its context and its preconditions. This integration

process requires an understanding of the design and analysis variables, and functions of

the tool, i.e. mapping analysis space to design space. The analysis variables refer to the

variable values used in the analysis to calculate the analysis function values, and the design

variables are comprised of sorne subset of the analysis variables. AIso, sorne level of data

translation program is needed. An expert designer supplies qualitative descriptions of

variable parameter (input/output) dependencies, specifying which direction an input

parameter changes will yield in which direction the output parameter will change. A

usefui structure to use for the underlying datastructure of the blackboard, from a point of

view of magnetics design coupled with other analyses, is one of the neutral file structures

currently widely accepted, e.g. IGES [Smith et al. 83], where the object of standardization

is not only the data format for information storage, but (implicitly or explicitly) also the

command structure of the systems that access this information. This minimises the amount

of data translation needed since many numerical programs can read and write several

different neutral files. A neutral file provides a projection of the tools' 1/0 onto an

intermediate space. Thus aIl changes made to the parameters of the C-core device are

re-wriUen into a neutral data file, where data exchange is carried out. This neutral file

•
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contains the coordinates of the data model for this specifie C-core magnet. ln order ln

effectively integrate a diverse set of tools and ta provide a coupling between Ihe varinlls

analyses, it is necessary that the input and output reqllirements of each tool be careflilly

defined.

One effective approach ta design tool integration is based lIpon severai

assumptions:

• Different design taols need ta view the same data in different ways.

• It is necessary for design tools ta dictate or ta constrain the Iimils and types of data

entered by users.

• Since sorne data are interchangeable among tools and deviees, it is essential that the

data manipulated ought ta be stored externally in a standardized format.

• It is desirable ta maintain the independence and modularity of tools that already exist.

The effects of these assumptions will be discussed in more detail in the following

sections.

2.4 Hybrid KnowIedge-Based Systems

The knowledge-based approach to designing a system for any kind of task starts by

determining what knowledge, i.e. facts and reasoning abilities, is used by human experts

ta achieve a solution. This knowledge is then encoded in data structures and procedures

that represent the knowledge explicitly, and that are separate from the inference

procedures that apply it ta solve design problems. The inference procedures apply

knowledge about a domain to the current state of the design in order to narrow down the

design space, i.e. generate a new or "next" state, and draw conclusions. In aC-core device

design [Magnet 85; Lowther and Silvester 86], for example, one important category of

knowledge is factual data about the design that specifies the shape and sorne relationships,
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Le. a structural model and a simple algebraic mode!. Developing a knowledge-based

system for magnetic design involves constructing a set of rules that summarizes various

design tactics, as weil as a general rule interpreter that applies combinations of these rules

to solve individual design problems. A rule can be considered ta be declarative or

imperative knowledge of particular forms. AIthough the rules are often heuristic, and are

used ta search the design space, it is their application which reduces the size of the

solution space.

•
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In engineering design, there are knowledge modules that solve a part of a given

device design problem (e.g. simulation, optimization, etc.). However, it is often neither

convenient nor feasible to rewrite a program into another format only to make it

compatible with the overal1 system design. Hybrid knowledge-based systems make it

possible to take ful1 advantage of the existing programs, and to al10w the automation of

a larger portion of the design process. Engineering design problems are wel1 suited for

hybrid implementations. A hybrid knowledge-based design system may be characterized

by the fol1owing structures:

• Representa~jon of the knowledge domain, such as rules, frames, semantic networks,

object-oriented programs, or combinations of these.

• Pmblem-solving strategy: a control mechanism is general1y required in order to limit the

amount of searching in the design space and to point the process in the right direction.

Design is seen as a problem-solving process of searching through astate space [Simon

69; Newell and Simon 72], where the states represent the design solutions.

• The implementation tools, that is the expert system shel1s and/or the programming

languages used in the design, etc.

The components enumerated above are not completely independent. A choice of

problem-solving strategy may influence the choice of knowledge representation, and, in

turn, these two can determine the implementation utilized. In sorne other cases the
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implementation tools limit the choice of the œst of the factors. The fol\owillg

characteristics have resulted in the construction of the BBCAD systcm.•
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2.4.1 Knowledge Representation

The ultimate product of engineering design appears in the form of devices,

machines, services or structures, whilst the intermediate products are specifications,

software, reports, or graphies. Knowledge and integration play a salient role in the

engineering design process. Knowledge in engineering design can he descrihed as

interpreted statements about mappings between facts, specifical\y how new facts can he

derived from existing ones [Coyne et al. 90]. The most explicit way to represent such

relationships is as rules of the form A - B, i.e. "B is true if A is true". Sources and uses

of these facts, authorization for their use and their release, and dependencies among their

relationships are carried along with the knowledge itself. The need to operate on this

knowledge base is the most distinguishing feature of engineering design in KBSs.

There are several methods used to represent design knowledge in a KBS [Barr and

Feigenbaum 81, V.1, Chapter 3]. In [Coyne et al. 9o], the authors presented three

methods for defining design spaces other than rules. These comprise existing designs,

descriptions of generic design, and procedures. The representation may be selected from

various presentation methods developed for encoding facts and relationships that

constitute design knowledge. The following methods are those which were found to he

relevant in the development of BBCAD and are the most familiar:

• Frame: a data structure containing information relevant to a particular design module.

This formalism exploits several useful ideas pertinent to engineering design:

instantiations, inheritance, defaults, constraints, and attached procedures.

• Production rules: information about frames and instances can also be represented as IF·
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• < frame·name >
«optlons>-

<slot>

(:print-name {string})
(:Is {frame})
...)
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<slot>

<slot·facet>
«options> -

<slot·facet>

(:print-name {string})
(:explanation-slring {string})
(:delault·values {value})
(:constralnts

<option>. (:lisp·type {value})
(:instance..,l {value})
(:chlld·lrame..,l {value})
...)

(:when·modIIled {daemons})
(:when-accessed {daemons})
...)

•

•

Figure 2.6: Generic frame structure

THEN rules.

• Procedures: a set of Lisp functions and aIgorithmic procedures that cannot be defined

easily in production ruIes.

• Semantic network: a graphical analogy for representing design modules and relations,

and it couId be the basis for reasoning. This formalism can make it c1ear how the

properties of frames are inherited by subframes and instances.

Each of these will be looked at in more detail below.

2.4.1.1 Frames

BBCAD uses the frame-based representation approach in the design task, Le.

hierarchical abstraction and property inheritance [Minsky 75; Bobrow and Winograd 77;

Hayes 77; Fikes and Kehler 85; Brachman and Levesque 85]. The frame structure is

implemented to represent design modules, devices, and goals, as weil as explanation and
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information messages. A generic BBCAD frame is ilIustrated in Figure 2.0. In BBCAD.

the knowledge storage consists of a set of data structures usually rcferred to as GIV-jhl/ll",I'

[GoldWorks 87], each frame consisting of a set of .l'lots (Figure 2.6), a s\ot is a structure

that contains a variable-sized memory area. The s\ots represent functiona\ or dimensional

parameters of the design, or mOlY link to more detailed l'lame structures indicating

refinement of the design. Links mOlY allow information l'rom one frame to he passed to

and used in another frame; this is referred to as "inheritance" [Bohrow and Winograd 77;

Goldstein and Roberts 77]. Slots can contain rules ahout application area situations and

actions to take under certain conditions. The slot mOlY also have meta-slots, associated

with it such structures are known as facets and contain additional functionality, often

referred to as a daemoll [Hayes 77], when a slot is accessed or instantiated. Daemons,

alternatively known as the technique of "procedural attachment [Hewitt 69]", mOlY he

thought of as procedures which reside in a slot in a frame-based system. Such procedures

are usually Lisp functions, attached ta sorne data item and are typically used to perform

actions that are linked ta changes in a slot's value. In a sense, there is an equivalencc

between these structures and the background tasks or daemolLv in an operating system

[Peterson and Silberschatz 85]. In much the same way as an operating system daemon is

a suspended process waiting for an event, such as an interrupt, to occur before it activates,

a procedural attachment is "waiting" for a particular state of the design system to occur.

The daemon activates when the special event occurs, performs the job, and either

terminates or suspends while awaiting another event [Barr and Feigenbaum 81, V.l, p.219­

220; Winston 84, p.317-320]. These structures provide a uniform method for dealing with

many diver:;e hierarchical forms of knowledge. The problem-specific dimension represents

the frame or design module under investigation.
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< rule-name > «option>.

IF (anlecedenl)
<pattern>­

THEN (consequent)
<pattern>-

(:print·name {string})
(:prlorlty {number})
(:dlrectlon {:lorward : :backward : :bldlrectlonal})
(:sponsor {symbol}) ...)

«conàitlon> <conclltlon> ...)

«action> <action> ...)
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Figure 2.7: Gcncric IF-THEN rulc structure

2.4.1.2 Production Rules

A production rule is an ordered pair of symbols with a left hand (LHS) and a right

hand side (RHS), similar to the IF-THEN statement of Figure 2.7. The Iist of symbols on

the LHS constitutes the premises or the conditional part (the antecedent), whereas the

RHS symbols constitute the action part (the consequent). The conditions of a rule have

to be satisfied in order for the rule to fire. Satisfaction is determined by matching against

facts/assertions in the design space. The actions of a ruIe execute a series of operations

that modify the state of the design space, thus causing a change of state in the design.

Production ruIes are a fundamental part of aproductioll system [Hayes-Roth 85 (b)],

which aIso contains an inference mechanism (an interpreter), and a context.

2.4.1.3 Procedures

A proceduraI representation of a model is a set of instructions that, when carried

out, arrive at a result consistent with reality. Thus conventional equation solving maps in

a straightforward way into procedures. Specific procedures are used to solve specific

problems in the design space. Such procedures may, in fact, be complex analysis tools.

Procedures are also executed in the action part of a production rule and are also

implemented in the daemon formalism. Conventional programming techniques are very

effective in implementing procedures.
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action

Figure 2.8: A semantic networic for describing frames and instances of KS

2.4.1.4 Semantic Networks

A semantic network is a representation of knowledge that emphasizes relations

[Quillian 68; Hayes 77]. The network representation consists of nodes and labelled arcs.

Nodes usually represent objects, values, concepts, or situations, and the labelled arcs

represent the links that indicate the relationships between them. Il is a data structure that

represents the declarative knowledge of a device. The structure is a graph in which the

BBCAD



nodes represent concepts (e.g., design taols) [Dym and Levitt 91, Chapter 1], and the arcs,

which may he lahelled, represent relationships among concepts. In a frame formalism, the

idea of frames, instances and slots can be represented in a semantic network where

frames, instances and values are nodes, ami slot attributes are the labels attached to arcs

joining nodes. In Figure 2.8, the "ako" label, which stands for "a kind or', indicates links

hetween frames and child frames, while the "isa" Iink indicates that the object is an

instance of the frame to which it is connected. Semantic networks are a convenient and

natural way to represent descriptive knowledge about a device design, that is, design tools,

devices, their properties and their relations.

•
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2.4.2 KnowIedge Abstraction

Abstraction is the decomposition of knowledge about design into hierarchies of

design models (e.g., frames are abstractions of semantic network knowledge

representation). One of the ideas that emerges in the discussion of symbolic

representation is that of abstraction [QuiIlian 68; Goldstein and Roberts 77], in which the

goal is to look at descriptions at various design levels of detail and try to abstract at a

given level just that set of attributes which are needed to answer a certain question. It is

a cornmon practice to break down a complex design task into subtasks, each of which

could then be used to formalize specific problem-solving methods. Whilst more abstract

representations hold less information about the problem they are, however, easier to work

with. Diagnosis [Buchanan and Shortliffe 84] may be considered to be a type of

knowledge abstraction, in which specific knowledge patterns are classified as beIonging to

particular problem subclasses or classes. The representational abstractions, shown in

Figure 2.9, are related, perhaps hierarchically, and design can be considered as a process

in which there is free communications between systems abstractions, i.e. frames of design

description, and levels of representational abstractions.
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Figure 2.9: Multiple abstractions of c\ectromagnctic dcvice design

2.4.3 Problem-Solving Methods

As the name of this paradigm suggests, it contains the set of methods that can he

used when performing a design task [Newell 62]. The methods descrihe how to manage

the available knowledge and how to obtain the missing information in order to reach a

goal state. Problem-solving can be viewed as the process of starting in an initial state and

searching through the legal states, i.e. design solutions, for a device 100king for the goal

state. More detailed descriptions of a number of problem solving strategies can he found

in [Nilsson 80; Rich 83]. In a "well-structured" design problem one knows the initial state,

the goal state and the operators, which cause state transitions. From these one can

systematically generate ail the intermediate states, and hence one can theoretically develop

a map of the entire design process. Not ail engineering design problems are "well­

structured". II1l-structured" prohlems deal with heuristic programming [Newell 69] and

occur for several possible reasons: the goal state is not stated explicitly, the design prohlem

states are not discrete, the operators are not specified, the design space is unhounded, or

lime places additional constraints on the design. Using heuristic knowledge obtained from

experience, sorne of the above reasons can be voided, e.g. operators can be specified or

created, then the design process becomes well-structured.
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Figure 2.10: A problem solving strategy (Generate-Validate-Modify)
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Perhaps the most basic problem-solving strategy is "generate-and-test" (Figure 2.10),

where possible states are generated in a systematic manner, and then each one is tested

to see if it is a goal state. A number of problem solving strategies are currently used in

knowledge-based systems design. [Coyne et al. 90] propose several control tasks to model

a design, including search strategies, goal satisfaction, failure handling, constraint

manipulation, non-monotonie reasoning, multiple knowledge sources, multiple abstractions,

and multiple control levels. For further details on these, the Handbook of Artificial

Intelligence [Cohen and Feigenbaum 83] is recommended.

2.4.4 Conclusions

The above methods are by no means a complete set for building knowledge-based

systems for engineering design. They were studied for their appropriateness in the

development of BBCAD. Given the research interest in expanding engineering design to

include qualitative as weil as quantitative knowledge; the ability to use numbers, rules,

frames and object oriented programming approaches to express knowledge of varying

types of design is much needed. Thus, the ideal engineering programming environment
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would support ail of these representations in an integrated and convenient package. A

knowledge-based system using only a general purpose programming language could not

be easily modified or understood, and furthermore, ail the capabilities have to he created

by the programmer. A general purpose representation language was the most appropriate

for BBCAD (GWlI [GoldWorks 87]) coupled with a few of the general programming

languages (LISP, C, FORTRAN, and script files).

2.5 Electromagnetic Deviee Design

In designing a device one begins with a request to perform a certain function based

on numerous constraints such as basic structural (e.g., physical components) and

dimensional parameters, i.e. mathematical models, thermal demands, and magnetic and

electric requirements. Consider the problem of designing aC-core magnet, shawn in

Figure 2.1, where the mean core width is 1 centimetre, the mean core length is 26

centimetres, the air gap length is 1 centimetre, and a total of 400 amperes is injected in

the copper coils. The initial design stage starts from the above specification for the device,

and proceeds to the next levels of the design where constraints in a particular domain such

as physical dimensions, magnetic requirements, and structural demands, may be imposed

narrowing the search space to reach a final design. This is normally achieved through an

iteration procedure of refinement and analysis until at least the specification criteria for

the device are met.

In a hierarchical design system [Lawther and Saldanha 86], devices are represented

in a modular fashion as a combination of sub-parts. This is shown in Figure 2.11 which

depicts the structure of a simple C-core device. Aiso refer to Figure 1.2 of Chapter 1 in

[Brett 90], and Figure 2.1 of Chapter 2 in [Zhu 91] where the partial structure of a

stepping motor and the structure of DC machines are represented respectively. These

different structures iIIustrate the several levels of abstraction of physical devices.
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Figure 2.11: C-corc structure emphasizing hierarchy
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The structural model of the device consists of two or more independent sub-parts,

each sub-part has an electric and a magnetic circuit. The structure is drawn out as a kind

of tree, each independent sub-part is decomposed into constituent sub-parts and this tree

structure grows downward until the fundamental elements of the tree are reached. These

derived specifications form the basis of the structural knowledge about the device. The

function of each sub-part of the structure may be represented by parameters that are

usually related through a numerical model to other quantities such as the operational and

performance variables.

The creation of an initial design continues by determining values for the device

parameters using an improved model at each level down the tree hierarchy, and by

modifying constraints on parameters when backtracking through the tree. Thus operating

within the range detailed in the specifications provides bounds on the search space. Fine

tuning the search space may lead to a faster convergence to the device design.
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2.6 BBCAD Fmmework and Knowledge Architecture
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The blackboard architecture represents an approach to the prohlem of engineering

design in which an assembly of design tools are permitted to respond opportunistically, i.e.

interrupt driven, as the design develops. The BBCAD hlackhoard framework is a

problem-solving architecture based on the cooperation of severai logically independent

design knowledge modules, called Knowledge Sources (KSs), which are accessing the same

information on a global knowledge storage system. the blackboard. 1t specifies how

knowledge must be organized into independent tasks which read and write design objects

on the blackboard. The KSs have a condition/action construct, i.e. they include the

knowledge to be applied and the knowledge about when it should be applied. The

condition part looks for a particular object configuration on the blackboard and when such

a configuration is recognized, it creates a Kllowledge Source Activation Record (KSAR).

KSARs are instantiations of the KSs with contextual information. A control mechanism

is responsible for the characterization, comparison and selection between the KSARs.

When interrupts occur, a KSAR is triggered and modifications prescribed by the action

part are made to the blackboard.

As already has been shown in Figure 2.5, there are three different kinds of

knowledge category in the BBCAD environment: knowledge storage, design knowledge

architecture, and control architecture. They offer different facilities in the design process,

and each of these will be looked at in more detail below.

2.6.1 Knowledge Stomge

Knowledge storage refers to the knowledge space, i.e. the actual facts describing

the current design, of the design problem and how it is translated to build the design

space. As depicted in Figure 2.12 which is a more detailed view of Figure 2.5, knowledge
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Heurlstlc

Figure 2.12: Design tools projected on the knowledge space
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in the design process is divided into three basic classes:

• Deep or structural.

• Mathematical model or dimensional.

• ShalIow, surface, or heuristics.

Deep knowledge involves the key components which make up the device. It consists

of well-known facts, or refers to reasoning from basic principlesj that is, from basic laws

of structural and behavioral models, such as MaxwelI's equations and Newton's laws. It

is founded on frame-based systems [Minsky 75] where the intention is to incorporate

structural knowledge of a design problem into the knowledge space, i.e. by definition deep

knowledge is structured knowledge and can be represented in a weil defined data

structure.

The mathematical model is used to express knowledge relating the dimensional,

performance and functional parameters of a device to guarantee its operation [Saldanha

and Lawther 86j Lawther 89].
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The third term is the most abstract and is used to provide expertise. The term

Shallow kJlowledge is that heuristic, experiential knowledge that cornes l'rom having

successfully solved a large number of similar problems. It is usually a rule-based

[Buchanan and Shortliffe 84; Hayes-Roth 85(b)] inferential process, in which the rcasoning

requires a set of rules acquired l'rom an expert. These rules are based on experience, as

is the case in diagnosis systems [Talukdar and Cardazo 88].

Projecting design tools onto the knowledge space (Figure 2. 12), will lead to new

solutions, freeing off constraints, thus narrowing and fine tuning the search space. Thus,

knowledge provides the means by which designs progress l'rom known facts ta new facts.

It also embodies general descriptions of designs. In order to process knowledge, there

must first exist techniques to represent this knowledge and methods to control its

processing. The exact form and content of structure depends on the particular design

domain and its implementation. The requirements imposed on these structures are that

they support effective modes of communication, are adequate to represent the information

pertinent to the design domain, and allow for effective organization of the information

contained in the blackboard.

The BBCAD blackboard contains two types of knowledge: slatic and dYllamic.

Static knowledge is typically the domain-specifie knowledge that is relevant to the design

problem and that will have a relatively long life during the design process. It generally

consists of factual data relating to initial conditions, parameters, values, relationships, etc.

Dynamic knowledge is typically the knowledge that is generated during the execution of

a design module. It will consist of short-term communications such as goals to be pursued,

requests for data, and suggestions. The dynamic data will frequently be modified or

deleted after a short period of time.

In [Gero and Coyne 85; Coyne et al. 90], two other types of knowledge are

proposed. The first is semalltic kIIowledge which is concerned with the meanings of
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objects, and normally dcals with relationships between objects and among their attributes.

The second type of knowledge is SYlltacticallalowledge. It deals with the connection of an

object with its domain or with other objects, and with data which supports facts. This

object approach can be more formally extended in object-oriented systems [Stefic and

Bobrow 86]. Such systems organize information so that objects have associated with them

knowledge about how they behave. Knowledge in engineering design was viewed as the

tool whereby the designer conceptualises the semantic content of a certain domain, and

by which he or she represents his or her ideas about that domain as the syntactical

relations between the variables (facts) and the actions by which these variables and

relationships are manipulated (control knowledge). A tree structure of BBCAD

knowledge is shown in Figure 2.13.

2.6.2 Design Knowledge Architecture and KSs

Before knowledge can be represented, the type of knowledge involved must first

be identified and classified. The following discusses two types of BBCAD knowledge:
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• "Deviee Knowledge" represents the physical structure of a device, i.e. the full set of

specifications and parameters which describe the operation of a device.

• "Design Knowledge Mod'Jles" are objects which combine relational, hehavioral, and

procedural knowledge of design tools. Relalio/lal k/lowledge rt:presents design rules,

programs, and requirements to run the programs. BellClviortll kllowledge contains

information, i.e. data placed in the context of design needs, on how the parametcrs of

different tools affect each other, and how an input parameter of one design tool is

related to an output parameter of a previous tool. Procedurtll kllowledge represents the

algorithms that are concerned with the use of that knowledge in the design process.

The central data structure is the blackboard, through which the various design

modules communicate. The declarative knowledge is structured through the use of

hierarchies of frames. The representation has a hierarchy of abstraction levels which

contains different degrees of detail [Preiss 80]. The facilities of GoldWorks [GoldWorks

87] are used to define relationships and inheritance semanties between the design tools

of the device. The most commonly used relations are "15" and "INSTANCE". The "15"

relation defines hierarchies of classes where each higher level subsumes the lower level

classes. The "INSTANCE" relation declares that a particular object belongs to a class and

the description of the class serves as a prototype of the instances.

The design knowledge modules, i.e. KSs, contain information about when they are

applicable, they usually have sorne mechanism to maintain local context, and have specifie

kPowledge which, when invoked, changes information maintained in the blackboard. The

KSs are independent, event-driven processes which manipulate the global knowledge

storage.

In BBCAD, each KS represents sorne particular specialized existing tool pertaining

to the design problem being solved. The KSs are also implemented in a frame·based

fashion as an assembly of mies, functions and facts, thus representing an action, i.e. a

•
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•
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change ta the blackbaard, under appropriate conditions. Only the frames placed on the

blackboard affect other KSs; the internaI workings of a KS are invisible. In BBCAD each

knowledge module has the following two constituents: The condition and the action. The

cOllditioll part determines when the design knowledge module can be satisfied. The actioll

part specifies the actions, i.e. rule type structure, that are to be taken based on the global

knowledge base. They are similar to production rule-based systems [Hayes-Roth 85(b)],

in that they consist of two parts, an antecedent and a consequent Firing or executing the

rules is determined by the matching of patterns among entries in the design space. The

executable part of the rule can involve the modification of the design space and can

contain a collection of logical relationships, or fonctions programmed in a conventional

procedural programming language (e.g., C or Fortran). Thus KSs are a natural unit of

representation for domains requiring hybrid knowledge representation and where much

knowledge is procedural.
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2.6.3 Control Knowledge Architecture

The spaces of control contain a set of general control knowledge modules, Le.

control strategy, that operate on the design modules (Figure 2.14), and these control

modules are domain-independent. This space of knowledge uses the various control

modules to reason about the design process, and the notion of separate dOl/lll;1I and

comrol KSs has been preserved [Hayes-Roth 85(a)]. This knowledge is concerned with the

generation of appropriate action sequences (Figure 2.13), and leads to scheduling the

various design modules. The generative knowledge serves to define a space of designs.

These control knowledge modules deal with important issues, and they are:

• How to focus the search: this idea can be exploited explicitly by partitioning the design

space in certain ways and by using heuristics to decide the part of the design space to

which a tool should be applied to produce a new partial solution to the device design.

• How to deal with sub-design problems.

• How to integrate and coordinate multiple design tools.

• Goal satisfaction and failure handling in the device design.

The design process needs to be guided or controlled in its search of the design

space for a solution to the current device problem. Thus, a major component of a

blackboard architecture is the control mechanism. This mechanism determines which

design knowledge module can be activated in the event that several have been satisfied.

In BBCAD, the process is as follows:

1. Specify the design problem.

2. Post the goal on the blackboard: using the finite-element analysis tool [MagNet 85],

determine the flux density in the air gap of the C-core. The initial goal in the design

of the C-core is to run the drafting pre-processor, Draw2d, where the basic geometry

is entered from an initial design specification file.
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Figure 2.15: Control flow chart
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3. Select and validate the design knowledge module: this involves matching the condition

part of each design knowledge module to the global knowledge base.

4. Instantiate: a knowledge source activation record (KSAR) is created for each satisfied

design knowledge module.

5. Evaluate events: this involves the use of heuristic searches to assign priorities to events.

6. Focus Attention: evaluates the estimates received, and the best knowledge source

activation record is selected for firing, i.e. the design module with the highest priority.

7. Execute the event with the highest priority: the drafting module, Draw2d, is fired to

display the geometry of the design, and prepares the C-core for the next step which is

the mesh generation.

8. Verify the goal of the design: the next goal is to specify the finite element mesh for the

C-core problem. At each step of the design process different goal is posted and the

appropriate module is executed. The process continues until the goal of the specifie

design tool is reached, and the desired performance characteristics of the device are
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obtained.
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This is illustrated in the flow chart of Figure 2.15. Essentially, this proccss

continues until at least the requirements for the design are met, giving an initial design.

The design process is regarded as a search through a design space for a solution that

closely satisfies the specification~ of the device. The function of control in a hlackboard

system is to provide for focus of attention and optimal use of the available resources.

2.6.3.1 The Scheduler

The mechanism of control may be implemented by using an agenda·based

scheduler. At each level of the design process, a different representation of the device

may be necessary. The agenda Iists all pending knowledge source activities, and the

scheduler decides which of these activities to execute first. One basis for making the

choice is the amount of new information which might be provided by a particular tool.

The scheduler can calculate a priority for each waiting task and select for execution, for

example, the task with the highest priority, Le. a simple best·first strategy.

The scheduler has to <i"cide which of the currently applicable design tools is most

Iikely to make the largest contribution towards the final design. There are a number of

different scheduling techniques which can be implemented in the control knowledge

modules. Sorne of these are:

• Place design modules that produce the largest amount of new design information higher

up in the schedule.

• Place design modules affecting the least recently derived information higher up in the

schedule. This would tend to produce a breadth·first search.

• Place design modules that are implemented by the most recently fired action at the end

of the schedule.
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• Place the design module with the highest priority value at the end or at the top of the

agenda list.•
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At every cycle of the design process, several design modules may compete to fire

their action rules, the scheduler determines which module to execute and in what order.

2.6.4 Conclusions

The use of the blackboard as a single mechanism for data sharing and

communication, together with the gathering of knowledge and processes into independent

knowledge sources, provides a neat, conceptually c\ean framework for developing a

complex integrated engineering design system. AIso, the modularity of each knowledge

source localizes problems and simplifies the task of changing the module, expanding its

capabilities, or adding new modules to the system. Furthermore, additional executive

control expansion can be accomplished by making similar changes to the control level

knowledge sources and blackboard structures. BBCAD uses a frame structure to

represent design modules, goals, and explanation and information messages.

2.7 Implementation

There are many languages, operating systems, and processors that can be used to

program knowledge-based systems. These items are interrelated, but these relations are

Iimited to the specifie processors and operating systems used. The implementation step

involves encoding the design knowledge into the chosen tool. The development of

BBCAD required the selection of a programming environment (tool) for building the

knowledge-based system. The tools currendy available provide varying degrees of

assistance in the development task. Their choice depends on the basic approach taken

[Hayes-Roth et al. 83]. Appendix C reviews sorne of these languages.
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Apart from the approaehes deseribed in Appendix C, other considerations affect

the ehoiee of implementation in engineering design: the sort of design to he solved, the

desired eapabilities of the KBS, and the availability of the desired too1s. ln engineering

design, knowledge-based skeletal systems (Appendix C), have the advantage of allowing

one to ereate a new knowledge-based system in a very short time with relatively modest

effort. The main disadvantages with this approaeh are that many times the skcletons arc

unehangeable and diffieult to extend to deal with engineering design tasks not originally

mapped out by the tool designer. As weil, the generalization step (Appendix C) is nllt

eompletely suecessful and sorne domain-specifie eharaeteristies that eould interlere with

the new design task remain.

•

•

•
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CHAPTER3

Structure and Knowledge Organization

ln this chapter, the knowledge organization structure of the BBCAD framework is

described. Il explores the kinds of knowledge that are ta he used, the way they are

represented, and the methods by which the knowledge should be accessed. It also

discusses the dependencies between the various design modules and their parameters, the

rule inferencing approach, and a locking mechanism to focus on a specifie design module.
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l ,
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1 1
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1 1
1 1, ,... _------
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,
,

,•

Figure 3.1: Influences on BBCAD (Extension ta Nii [86(a)])
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Chapter 3. Structure and Knowledge Organilation

3.1 Charactcrizntion of BBCAD

For easy manipulation of the design space, BBCAD uses a comhinatioll of

knowledge representation schemes and multiple levels of knowledge ahstraction to help

and to facilitate the decision making process in designing electrical deviees.

BBCAD is a hybrid knowledge-based system environment with a hlacklmard

architecture, rule-based systems and frame-based structures utilised together in the

integration of design-dependent and design-specifie knowledge for solving electromagnetic

design problems, such as the C-core magnet. Figure 3.1 is an extension of the family tœe

of the various application and skeletal systems described by Nii in [Nii 86(a)] showing

BBCAD in the general development of blackboard systems (also refer to Appendix C).

BBCAD is not in any way an extension to the systems shown in Figure 3.1, it only retlects

its likeness to previous systems.

3.2 System Structure

The overall system structure of BBCAD is iIlustrated in Figure 3.2. It consists of

hierarchically organized categories of frames, a knowledge storage area, Le. a blackboard,

a control mechanism, a scheduler, and a user interface.

The design module frame, Le. the Knowledge Source, represents the characteristics

of the tools to be coupled and is structured so that the selection and the sequencing of the

modules is carried out effectively and efficiently. A tool can have more than one design

module, for example MagNet is a modular computer-aided design package, used to mode!

magnetic and electric field problems, with modules enabling geometric specification,

material modelling, problem specification, solution evaluation, and post processing

[MagNet 85]. Associated with each design module is a set of rules generated l'rom the

design module for checking the adequacy of the requirements and the use of the module
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Figure 3.2: System structure of BBCAD

(the rules generator in Figure 3.2). A set of strategies and heuristic control rules are also

generated from the domain control knowledge modules and used by the scheduler to

determine which of the executable design modules is most desirable at a particular cycle

of the design process. The scheduler places design alternatives in three queues (the

Scheduler of Figure 3.2): the invocable design queue <D, the triggered queue CID, and the

triggered and invocable queue <ID, the arder in which they are addressed.

•
The explanatory component is used to enable BBCAD to explain the fonctions and

actions of the design module, and to interpret the accomplished activities achieved by the

module. AIthough this module is not necessarily required to get BBCAD to do its task,

BBCAD



it is very important in terms of user acceptance and design transpan:ncy. The user

interface, discussed in more detail in Appendix F, is the communication medium hetween

the device designer and the BBCAD system. Within the interface, the user can enter

design specifications, and has facilities for viewing, adding, moditying, and de1eting design

modules, rules, and instances. A graphie abject approach is used to ddïne images, screen

layouts, popup menus, and other elements of the shell. A menu-driven user interface

presents default values for ail the requested variables and accepts user inputs, prompting

for re-entry of values that are out of range and supplying help as requested.

•
Chapter 3. Structure and Knowledge Organizalion S\

•

•

3.3 Structure and Types of Knowledge

The quality of knowledge-based systems depends heavily on the robustness, integrity

and amount of knowledge incorporated into the design space. For the BBCAD

architecture, various forms of knowledge are used, the structure is mainly based on two

types of knowledge (Figure 3.3):

1. Design independent knowledge represents the background knowledge of the design

tasks. It encompasses heuristics and general rules of thumb about specifie design tools,

and contains design knowledge, procedures and algorithms. It relates ta the physical

laws and general design strategies common to ail design problems. The design

independent knowledge is divided into two classes:

a. Domain specifie knowledge: KS frames and instances. In the design of the C-core

device, Magnet is used as the finite-element analysis package to determine the flux

density in the air gap. DRAW2D is a module of the Magnet package which defines

the basic geometry of the magnet. Thus, the DRAW2D frame, KS, should contain

ail the necessary information that satisfies the execution of the module, as weil as

other elements such as its relationships with other modules (e.g. priority factor, etc.).
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Design Knowledge

52

Domain Specifie
Knowledge

Domain Conlrol
Knowledge

DevIee Design

•

•

Figure 3.3: Different types of knowledge in BBCAO

b. Domain control knowledge: deals with domain dependent control knowledge (e.g.

competence, criterion, etc.) and general purpose control knowledge (e.g. number of

cycles, integration rules, policy rules, etc.).

2. Design dependent knowledge represents facts and relations of the specifie device design

to he soIved. It refers to the full set of parameters which describe the structure and

operation of a device, e.g. the C-core magnet, its material properties, and specifications.

The detailed description of the representation of the magnetic device will be carried out

in Chapter 5.
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3.4 Knowledge Representation

53

'.

•

BBCAD uses various knowledge representation mechanisms such as:

• Frames for the description of the modules characterizing the design application

problem, and for message-passing.

• Production rules for the representation of control and heuristics.

• Procedures for solving conventional device equations, expressions involving relations

between parameters from the same or different tools, and arithmetic functions.

Details of these representations are given subsequent to each type of knowledge.

3.4.1 Frame-based Representation

The BBCAD tree structure, shown in Figure 3.4, is founded on a frame-based

approach. Frames are nodes of the BBCAD tree that represent general classes of design

knowledge modules, where the tree is a network representation composed of frames,

"parent" and "child" frames, and instances. Each frame provides a level of abstraction

which reduces the size and complexity of the search space. lt can also be seen that the

"parent" frame of BBCAD is 'top-frame' (Figure 3.4). The frame 'data_structure' is the

sub-frame, called the "child" frame. A child frame inherits ail of the sJots from the parent

frame and can have specifie local slots of its own that describe any unique attribute of the

frame. Table 3.1 depicts the BBCAD levels of abstraction.

Frames are used as templates to organize and structure the various knowledge

components in the spaces of knowledge storage (Figures 2.5 and 2.12 of Chapter 2). Since

frames are templates for structuring information, slots in frames de not hoId values.

However, a copy of a frame in which the slots hold actuaJ values, Le. the factual

knowledge, is said to be instantiated and represents a specifie case of the object in the

design process.
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control db

policies

integration_rule
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ksItop-trame I~ Idata-structure I~ ~Iksar
'-------'

variable

cycles

•
I~ Top Level ~I

steps

1~ Flrst Level ~1 1~ Second Level ~1 1- ThIrd Level ~1
Figure 3.4: The BBCAD frame-based tree structure

Table 3.1: Basic BBCAD frames levels of abstraction

•

dst.....tructure
ks

controLdb

VSlisble
cycIss
steps

ChDd-~

lœsr

DelillilioZlll

Top levai data-struclure.
DesIgn knowledge module representlng the domaln specUle knowledge.
DesIgn knowledge activation record: each inatance of the design knowledge
module ptoduces a unique ksar.
Control knowledge module frame leadlng ta cillferent levais of abstraction of the
domaln dependent know1edge modules.
Frame structure IdentHylng ail pendlng Iœara on each cycle of the design
process and dlsllngulshlng the 'Invocable_tist', 'trlggered_tist', and
'trlg_andJnvoc_tisl' of pendlng Iœara.
Genersl purpose control frame IdentHylng the pendlng 'trlg_andJnvoc' Iœara.
Genersl purpose control frame IdentHylng the tists of welghts of the design
knowledge modules.
Genersl purpose frame tracldng down lhe aetlvIties of the control mechanJsm.
Genersl purpose frame IdentHylng the design cycle.
Genersl purpose frame IdentHylng the step wlthln a design cycle.
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(delIne-frame lœ (:prlnl·name 'lœ'
:doc-strlng 'Knowleclge Source....
:la data_structure)

(action :moltlvalued t ; ( (rulel prio (IF) (THEN))
:delaolt-values (true) ) ; (rule2 prio (IF) ('l'HEN)) )

(explaln_acllon :molllvalued t ; ( (rulel 'sll') (rule2 'st2") )
:explanatlon-atrlng 'This la the rule explanallon slrlng' )

(post_acllon :moltlvalued t ; (rulel prio (IF) ('l'HEN)) (rule2...
:delaoll·values (Irue)
:explanallon·strlng 'Speclllc Inlo why KSAR can not run' )

(actlonJ.....1 :constralnts (:Ilap-type Intllller)
:delaolt·values (0) )

(bb_type :constralnls (:one-ol (domaln control dlatributed)) )
(emclency :conslralnts (:Usp·type nosl)

:delaolt·values (0.0) )
(pre cond :moltlvalued t

:delaolt·values (Irue) )
(trigger_cond :moltlvalued t

:delaolt·values (!rue) ) ;end denne·lrsme

Figure 3.5: Frame structure of the design knowledge module (ks)

One interesting consequence of this, of course, is that the dimensionality and

structure of the search space is controlled by the frame structure. The two are c10sely

related. Thus by defining a frame one has defined the space.

3.4.1.1 Domain Specifie Knowledge

Domain specifie knowledge (DSK) is that which is relevant to the tools involved in

the design process of a particular device, e.g. the C-core magnet. DSK has knowledge

about each design tool, the conditions under which this tool is executed, what is needed

to run the computer programs, and relationships with other tools, ail of which are

embedded in a production rule structure, The two major frame structures of BBCAD

DSK are: the design knowledge module frame 'ks', and the design knowledge module

activation record frame 'ksar', These frame structures are shown respectively in Figure 3.5

and Figure 3.8. The 'ksar' frame is a child frame of 'ks', and inherits ail the slots of the

parent frame. Each of these will be looked at in more detail below.
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1. Design Knnwledge Module Frame (Figure 3.5): the module "draw2d", depicted in

Figure 3.6, of the analysis tool Magnet [MagNet 85] is described as being a specific

instance <D, of the design knowledge module frame 'ks'. It is defined by the following:

..... Precondition (pre_cond, ®) and trigger condition (trigger_cond, <ID): these are used to

monitor the BBCAD blackboard for elements matching the desired precondition and

trigger condition. They have the double purpose of instantiating a knowledge source

activation record (KSAR) of the design module that is appropriate for an action and

of invoking the module at the appropriate time. For each instantiated design module

a KSAR, is created and inherits the properties of the KS frame in addition to its own.

The above tenus do not correspond to the traditional blackboard definitions of BBI

[Hayes-Roth 85'(a)]. Generally, triggers are used in the conditions of KSs to specify

which state changes, or events, are of interest to the KS (i.e., the trigger declares when

the knowledge in a KS becomes solely relevant in Iight of what should happen in the

course of design). In order to capture a useful KS condition, the triggering mechanism

is augmented with an extra check on the blackboard state. This extra check is called

the precondition (that part of the condition of a KS that determines the applicability

of the blackboard by using its state information).

To facilitate the integration and the control of the tools, BBCAD places the design

modules in three different queues depending on the values of the pre_cond and

tigger_cond slots (Figure 3.2). Design modules with precondition terms to satisfy are

placed on the flrst queue, the second queue contains modules that have trigger

condition terms to satisfy. When the module contains precondition and trigger

condition terms to satisfy, the module is placed on the last queue. This strategy easily

implements the phases of the analysis tool of electromagnetic devices by the flnite

element technique [Lawther and Silvester 86]: preprocl'ssing, solving, and

postprocessing (Figure 2.9 of Chapter 2). For example, the preprocessing tool contains

•

•

•
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(clellne-Inatance draw2d (:print·name 'draw2d'
:dOC~Btring

'Draw2D Is the finit MagNet module. and Is deslgned la allow
the user ta GENERATE the oUlllne of problem GEOMETRY....

:1s \œ)
;<r_naml!!l r..Priorttv (tf'~rt) (than'Pllrt))

(acUon (rulel 600 ;anlecedenl
«instance draw2d Is \œ)
(instance ?\œar_draw2d lB \œar

wtth \œ_name draw2d) )
;consequenl
«oetf (Blol·value 'out_window 'd1splay)
(format nU "-&Runnlng Draw2d') )
(formaI °me_outO O-&Runnlng Draw2D 1°)
(run_draw2d)
(instance ?\œar_draw2d Is \œar

wtlh \œ_name draw2d
wtth Btate fired) ») ;rulel

(explaln_acUon (rulel "Draw2D Is the clraftlng pre-processor,
where the baelc geometry Is entered..) )

57

Figure 3,6: "draw2d" design knowledge module•

(poot ecUon
(ecUonJ.....1
(bb_type
(efficlency
(pre_cond
(trlgger_cond

((Irue))
la)
domaln)
.9)
(instance draw2d Is \œ)
(true» )

•

( (rule-l) (ruIe-3) ... (ruIe-n)) (a)

rule-n • ((rule-n...... priorily (antecedent-n) (consequent-n) ) (h)

Figure 3,7: Rules expression form

precondition terrns, the solving tool contains trigger condition terms, and the

postprocessing contains both precondition and trigger condition terms.

-+ Knowledge specifie module (action, ®a,b): this slot value contains rule patterns specifie

to the domain knowledge of the design module and the execution of these rules

depends solely on the slot values of the precondition and trigger conditions. The slot

value is a list of similar rule structures, as depicted in Figure 3.7 (a), and these ruIe
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patterns are defined hy the user when creating the design tool. Each rule structure is

of the fmm of Figure 3.7 (h) where the second term of the list is an integer indicating

the priority of this rule relative to other rules in the lisl. To add more flexibility to the

search space, BBCAD has extended the capability of this strategy by assigning different

values to the rule's priority when defining rules (e.g., rule! in Figure 3.6 ® has a value

of 600), i.e., different rule constructs can have different priority values. The rule

priority can change during a design process depending on the situation. The second

term of the antecedent part (®a of Figure 3.6), includes an identifier, i.e. ?ksar_draw2d.

Identifiers that begin with a "?" are pattern matching variables. The variable will be

boulld to the value of the item it matches againsl. The pattern matcher tries to find a

set of values and objects, which, when bound to the variable, match the instance that

has "draw2d" as sIot value in ks_name. When the rule fires, the binding made in the

antecedent holds in the consequent, Figure 3.6 ®b, so that the value "fired" is asserted

in the slot state of the ksar instance. The firing of the rules is subject to the result of

the FIFü strategy which will be discussed later in this chapter.

.... Explanation module (explain_action, <ID): this contains an explanation of the rules in the

action slol. This is to inform the user of the activity occurring at each step of the

design.

.... Meta-knowledge specific module (post_action, @): this slot is concerned simplywith the

relationship between clauses in the action slot, i.e. rules, and it holds a list of rule

patterns of the form: ( mie-name (if-part) (t/zell-part) ).

These rules are similar to the AND-THEN clause in "IF (a) THEN (b) AND-THEN

(c)". This is used to add a clause to the consequent that will be asserted when the

antecedent of the action rule is satisfied and the consequent is asserted. This is

demonstrated when using the solver in Magnet: IF the problem is magneto-statie, non­

linear, in a Cartesian geometry THEN eonclude that XYPM is the soIver to be used

•

•

•
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... Knowledge domain level (actioR_level, ®): the value of this slot is an integer number.

It is used by the meta-scheduler to execute the design module with the highest value,

in the case of conflict. If two or more design tools have an equal value, the decision

to invoke a design module is subject to the FIFO strategy. This term is used only if the

priority value, determined by the efficiency component <!>, of two or more design tools

is the same.

here to produce a magnetic vector potential solution AND-THEN execute the XYPM

solver. In the next cycle around, there is no need ta check the above rule if no changes

has been made to the problem specifications, thus converging faster 10 a solution state

by narrowing down the search space for the rule ta l'ire.

This slot can also be used as a run-time expIanation of what is happening wllen a design

module fires and detects misleading results in the action rules, in which case

information and an explanation are posted, and user intervention is imminent. For

example, in designing aC-core magnet a solver is needed ta produce a magnetic vector

potential solution. The exact combination of the coordinate system and material

properties determines the solver to be used. If the requirements are satisfied but the

solver program does not exist, the user is asked ta intervene and make a decision on

the solver type ta be used.

•

•

Chapter 3. Structure and Knowledgc Organi1.ation 59

•

... Knowledge type (bb_type, <ID): this slot is used ta indicate whether the design module

is "domain", i.e. the tool is located on the same machine, or "distributed", i.e. the tool

is on different machine. This feature is used ta expand the BBCAD ta include a

distributed environment.

... Knowledge efficiency (efficiency, <!»: a f10ating point number which is used ta calculate

the priority rating of a design module (refer to Appendix D). This value plays a salient

raie in scheduling the design tools. In the case of a conflict, the actionJevel ® will

assist in scheduling the tools.
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(:print-name 'lœar"
:doc·string 'Knowledge Source Jlcllvallon Record'
:IB ka) ; Dar lnherlla ail the eIota of ka frame

:multlvalued t)
:conslralnlS (:Usp-type Integer)
:deIBult·values (0) )
:constralnts (:Usp-type Inleger)
:delaull-values (0) )
:mulllvalued t
:delaull·values (0 none value)) ; cycIe# slot value
:when·modUled (cycle_update_when_modUled) )
:constralnls (:Usp-type number)
:default·values (0)
:when·modUled (priority_when_modUled) )
:multlvalued l) ;Ust of control_db (focus)
:multlvalued 1)
:constralnts (:one-of (new old llred narun none))
:delault·values (none)
:when·modlfied (slale_when_modUled) )
:constralnts (:one-of (yes no)) )
:default·values (no) ) )

(cycle

(rallngs
(status
(slale

(priortly
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•

Figure 3,8: ksar frame structure - child·frame of ks

•
Table 3,2: Basic slots of the ksar frame structure

ka_name
lœar_bbJevel
cycle
cycle_update
priority
ratlngs
statua
slale
slop_crileria

Name of the parent design knowledge module.
Level of BBCAD at whlch the design toolls belng preeeseee!.
Cycle number at wlùch the design module wae Involœd.
Keep !rack of the activllles at 88ch cycls.
Priority of design 1001 (calculated ln Appendlx D).
LIst of the conlrol knowledga modules to calculate the priority (Appendlx Dl.
Status of the design tool, Le. Invocable, trIggened, or trIggened_and_lnvocable.
State of the t001: new, old, lIred, or rerun.
Stopplng crilerion for the design preeees.

•

2. Knowledge Source Activation Record Frame (Figure 3.8): the 'ksar' frame represents

a unique triggering of a particular design knowledge module by a particular event and is

created at runtime. Each ksar is object-directed in that it monitors the blackboard for

data matching its precondition and trigger condition. It is a "child" of the frame 'ks', thus

inheriting ail the slots of the parent frame and has additional slots shown in Figure 3.8.
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Table 3.2 gives an overview of the slot definitions. When a ksar is chosen by the

scheduling mechanism (to be discussed in Chapter 4), its tool's action executes in the

context of its precondition and trigger condition, typically producing new information in

the knowledge space. When several design tools are competing for execution, the one

which can contribute the most information is fired first. The slots cycle and cycle_updute

are used to backtrack and resolve deadlocks among competing tools.

•
Chaptcr 3. Structurc and Knowlcdgc Organization 01

•

•

3.4.1.2 Domain control knowledge

This section deaIs with control domain dependent knowledge modules and general

purpose control knowledge modules (Figure 3.3). Details of these modules will be looked

at in more detail below.

1. Control Knowledge Modules: they primarily operate on the design knowledge modules

(KSs), and interpret and modify the design process activity and behaviour. The control

module is represented as a frame data structure, 'colltrol_db' shown in Figure 3.9, where

ail the instances of the frame are available for interpretation and modification

(Figure 3.10). AIl these instances respond to, generate, and modify solution elements in

the design space of BBCAD, under the control of a scheduling mechanism. BBCAD uses

two classes of control decision heuristics (levels of abstraction) to integrate and to schedule

design tools in designing a device: the locus and policy levels. These two decision levels

describe desirable actions, thereby determining which of the BBCAD's control heuristics

operate on a particular design knowledge module of the design process. Design solutions

at the control level, i.e. focus and policy, are decisions about what actions are desirable,

feasible, and actually performed at each step in the design process. Each control decision

is represented as an instance of the 'colllroCdb' frame where slot definitions and instances

are shown respectively in Table 3.3 and Figure 3.10.
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;end deftne-lrame

(status
(welght

(criterion
(decision_type
(goal
(llnit_cycle

(deftne.Iramo control_db (:print-name 'control_db'
:doc- tring 'Control Focus 1 PoUcy....
:Is data_stNcture)

(competence :constraJnts (:one-ol (domalnJcs_Iocus plannedJcs_Iocus
control_les_locus class_1 class_2 class_3 class_4» )

:multlvalued t )
:constraJnls (:one-ol (locus poUcy» )
:multlvalued 1)
:constraJnls (:Usp·type Integer)
:delault·vaIues (0) )
:constraJnts (:Usp·type Integer)
:delault·vaIues (0) )
:constraJnts (:one-ol (active inactive» )
:constraJnta (:Usp·type Integer)
:delault·vaIues (0» )

•

Figure 3.9: Control decision type frame (control_db)

Table 3.3: Basic slots of the control_db frame

• Competence
Criterion
Decision_type
Goal
Status
Welght
Ftrst_cycle
Last_cycle

Delhdtiun

Competence levaI 01 design module
Expiration condltlon (pattern)
Leval 01 abstraction (e.g., locus, poUcy)
Actions to be taken (Il-then lorm)
Stalus ln design process (e.g., active, inactive)
DesIgn module Importance
Ftrst executable cycle number
Lost executable cycle nurnber

•

Focus decisions eSlablish local design objectives to execute the ksar of a particular

design knowledge module. They operate independently of one another, and are used to

rate the design modules. As a consequence, they influence the scheduling decisions. At

the highest level, the default ordering of the agenda items, i.e. design modules, is a

breadth-first (FIFO) strategy only if none of the design knowledge modules has been fired.

If two or more modules are competing, the execution is altered if one of them has already

been fired and no new information is added to the spaces of knowledge. A typical

instance of a focus decision control type is shown in Figure D.1 of Appendix D.
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I~ Focus Decisions "1
Figure 3.10: The control db slots and instances

6.1

1

1

1

1

1

Hfocus_control

Hfocus_3

1..

Hfocus_4

first cycle
last cycle

weight
status

competence
criterion
decision type
goal

.. !control_èIb

1" policy Decisions "1

Ihigh-prio ~

Ihigh-prio_loW_CyCle ~

Irandom_high-prio ~

Ihigh-prio_high_CyCle~

IIOW-prio ~

Ilow-prio_high_CyCle ~

Ilow-prio_lOW_CYCle ~

Irandom_low-prio ~
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Policy decisions also influence the scheduling mechanism, are used to evaluate the

design modules and to converge to a new solution state. They initiate global scheduling

criteria favouring ksars with particular attributes and values, and carry no internai criterion

values. In contrast to focus decisions, policy decisions actually influence scheduling

decisions only if the executable agenda list contains design modules with the attributes and

values the policy decisions describe, and these policies ordinarily remain operative for the

whole design process. These typ'\ of decisions are implemented to resolve conflict

between the satisfied design modules, i.e., modules that are ready to he selected and

executed. The policy decisions of Figure 3.10 give the process further control over firing

design modules, thus influencing the decision of which ksar to fire first. Sorting the
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(:print-name 'h!gh"'prio'
:doc-string 'H!gh"'prio poUcy declsion type'
:Ia contratdb)

(decision_type poUcy)
(goal (blnd ?palrs (scrt"'priority_lrigJnvoc '> 'priority) )

(blnd ?lcsarl (csdr ?palrs))
(blnd ?priol (car ?palrs))
(vsriable-bound-p ?priol)
(Instance ?1œar2 la lcsar

w11h stalus lrig_andJnvoc
w1lh priority ?prio2)

(equal-Inslances ?lcsarl ?1œar2)
(= ?priol ?prio2) )

(slalUS acllve)
(welghl 10) ) ; end denne-Instance

Figure 3,11: Examplc of control decision high-prio instance
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Figure 3,12: Frames and instances of general purpose control knowledge
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modules in decreasing order of the priority value, calculated in the focus decision, is the

default policy. A specifie instance of this policy is shown in Figure 3.11, where the goal

is to find the ksar with the highest priority.

2. General Purpose Control Knowledge (Figure 3.12): this type of knowledge module is

used in the general control mechanism to keep track of various activities of the design

process such as identifying KSARs at each cycle, cycles performed, steps in each cycle,
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Figure 3.13: SIots in BBCAD frames that provide the production rules of the modules

(rnle-name ({option}·) {psllem}·
tI1en {psllem}·
[and-then {psttem}·)

RULE: DRAW2D_RULEI
Dcc String: 'action rules"
Exptanation String: "Draw2D Is tlle draftlng pre·prcc888Cr.

where the bdSlc geomelry la entered.1I

Prlorlty: 600 ;==> Ngllsat F1FO
cllrection: :FORWARD
depandency: nit
Sponser: ACTION_RULES ;==> FIFO

IF {patterns}·
THEN {patterns}·

Figure 3.14: (a) BBCAD ruIe structure, (b) Option definitions (draw2d)

(a)

(b)
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weight factors connecting the control modules to the design modules, and other internai

control manipulations such as the integration rule frame of Appendix D, Figure D.2.

These control knowledge are also used ta keep the user informed of what is going on by

providing run-time explanation and tracing of what is happening, what design modules, i.e.

processes, are being used, and what knowledge has been applied ta make indicated

decisions, thus making the design process transparent and easy to trace and comprehend.
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3.4.2 Rule·based Representation

The rules are embedded in the design knowledge module formulation. The raIe

of the design knowledge interpreter (DKI) (Figure 3.3) is ta interpret this formulation and

generate explicit rules corresponding ta the design modules. Not ail the knowledge

present in the design knowledge modules can he interpreted by the DKI. Only a few slots

of the design module frame, 'b', and the control module frame, 'colltrotdb', are translated

(Figure 3.13). In BBCAD, the production rules represent cause and effect relationships

using the "if-then" form, sa that if one combination of conditions is true, thell other

patterns become true as a consequence, i.e., "IF alltecedellt patterns, THEN cOllsequellt

patterns" (Figure 3.14(a)).

Rule antecedents may cali functions ta bind and assign local variables, compare slot

values or local variables, and check for facts in the spaces of design. Consequents can cali

functions and foreign programs, assign variables, assert or delete facts, modify slot values,

and change the BBCAD control states.

•

•
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3.4.2.1 Rule Inferencing

BBCAD uses forward chaining ta infer aIl possible information from the spaces of

knowledge that already exist in the design space. Figure 3.14(b) depicts a rule structure

of the design knowledge module "draw2d". A more detailed construct of this rule is shawn

in Figure E.1 of Appendix E, where the rule is presented as an example of a production

rule and it is the generated outcome of the slot action portrayed in Figure 3.6 and referred

ta as rule1. The forward chaining strategy is initiated when the antecedent, or "if" portion

of a forward rule matches a set of abjects in the design space. When the rule is matched

and ready ta fire, the inference engine creates an agellda item from the rule and its

matching abjects. An agenda item is a representation indicating that sorne event will
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Figure 3.15: BBCAD Sponsors
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Figure 3.16: Levels of Abstraction using MagNet modules
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happen if the design application is run. When the agenda item fires, the consequent of

the rule enters new assertions and values into the design space. These assertions, in turo,

cause more agenda items to be created, which eventually should lead to more information

about, for example, the C-core design problem. BBCAD fires the agenda items, i.e.

KSARs, according to the ordering of the agenda. The priority of an agenda item is

determined by the priority of its rule (Figure 3.14(b) <D). This feature is user defined (the
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action slot in Figure 3.6), the default is a first·in first-out (FIFO) ordering, i.e., breadth·

first strategy.•
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3.4.2.2 Breadth-First Search

In BBCAD, at the design module level, the default forward agendas are ordered

in a breadth·first manner, i.e., a prioritized queue. In this ordering, when ksars are added

to the agenda, they are placed at the end of ail other items sharing the same priority

(established by the priority of the rule in the agenda item Figure 3.14(b) <D and the

ordering of the agenda <ID). The rule's priority is assigned by the designer when defining

the module. During the design process, these values can be modified by the designer using

other rules to place the corresponding rules in different location on the agenda. In a

forward chaining strategy, this feature allows the designer to place more important

decision rules on the top of the agenda. Individual rules and design tools can be

controlled using sponsors, i.e., a locking mechanism. Sponsors are used to control the

resources allocated to the firing of BBCAD forward chaining rules and design modules or

to prevent specified rules from firing altogether. Each sponsor has a single agenda that

contains forward agenda items, i.e. forward rules, and astate, which determines if the

sponsor is active. A sponsor is designated, at run-time, for each design module and the

rules pertaining to the design module are c1ustered under the appropriate sponsor. Rules

are also created to control the sponsors, i.e., by enabling or disabling them. When a

sponsor is disabled, i.e. locked, the rules in its agenda cannot be fired.

A form of hierarchical locking, i.e. a sponsor, is used to control individual design

module and rules of the BBCAD tree-structured frame system. The BBCAD sponsors are

organized in different levels of abstraction with one top-Ievel sponsor called the "top·

sponsor', shown in Figure 3.15. In order to reduce the chances of interference between

the design modules, the design module selected for execution enables its sponsor, and
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disables the rest, i.e. locking the rest of the design modules, thus narrowing the search

space by firing ail of the agenda items of the selected module. The various levels of

knowledge locking using the Magnet modules [MagNet 85] in designing the C-core device

are depicted in Figure 3.16. It can be seen as a two dimensional abstraction and this

abstraction is extended from deep to shallow knowledge, i.e. from frames to rules. Rules

of individual design modules are also stored in a hierarchical tree structure (Figure 3.16),

and grouped in subtrees, i.e. knowledge partitioning, where only a certain subtree or

subtrees of rules are applicable in a current situation. This is useful when heuristics

controlling the focus of attention are utilized to achieve more efficient execution spaœ

search and speed.

•
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3.4.3 ProceduraI Representation

BBCAD represents procedurally, ail the knowledge which cannot be represented

easily by rules, as user-defined functions evoked by the antecedent or the consequent in

rules or daemons attached to frame slots. BBCAD has been developed to support design

expertise (existing algorithms and procedures) written in both FORTRAN and C

(Appendix F).

Certain procedures are programmed to solve specifie problems, e.g., equations.

Procedures are programs that know how to do things, or how to proceed in well-defined

situations. Traditional numerical formulae usually map into procedures in a

•

straightforward way. An example of a numerical formula is shown in equation (3.1), and

used to calculate the priority value in order to invoke the frame ('ks') of the design

module with the largest value. This procedure is attached to the priority slot of the 'ksar'

frame (Figure 3.8). h corresponds to the efficiency slot value, JJf, is the value of the

weight slot of an instance of the 'controCdb' frame (Figure 3.9), and CI, is the weight

factor that corresponds to the attribute of the sIot competence. The efficiency value of the
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design module is a real number between 0.0 and 1.0, and n in f. is the number of ail

possible focus control modules with efficiency less than or equal ta the '/cr' efficiency.

Appendix D demonstrates how the priority values are calculated for the "draw2d" Magnet

module. At each cycle of the design process, the priarity value of the active design

module is recalculatecJ. BBCAD gives the user the power ta reassign efficiency and weight

factors to control and manage the design modules.

•

•

•
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priority = .E Wft * Cft

ft·fI
where O.Osf,s1.0
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CHAP'fER4

Decision Analysis

This chapter concentrates on strategies which are utilised in the selection of the

design module to use as this is the kernel of the BBCAD system. It also disclIsses the way

the BBCAD controller makes a decision on the next step ta take in the design process.

,----------- ... ,

;' lommn~l~.
1 CONmOLK : ~1 .____ IJosIgn K

: Design Indepe~ / inlBIJ>lIèI

~ ~=r ,:
, 1

'------------

ommn D,p'flIl,nt

Speclllc Know1edIlO

Figure 4.1: Architectural layers of BBCAD

4.1 BBeAD Organizational Levels

In the BBCAD model, the notion of separate domain and control knowledge

sources has been preserved [Hayes-Roth 85(a); Prager et al. 89]. BBCAD is a knowledge­

based system, containing knowledge in various representations about the problem domain

and design process (Chapter 3). The problem domain consists of both problem data, i.e.
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design dependent and inde pendent knowledge (Figure 4.1), and control knowledge about

how to use the prohlem data.

The architectural abjects of BBCAD are organized into three layers, as shawn in

Figure 4.1. The lowest layer of BBCAO is the domain dependent level, Le. design

dependent knowledge, which contains the problem device knowledge (e.g., specifications,

requiremellts, guidelines, etc.). The middle layer is the design module tasks level which

contains the design modules and control knowledge sources, it also comprises rules of

thumh and problem solvers ta manipulate the design independent knowIedge. The highest

layer is the process control level, i.e. the kerneI. It contains the control mechanism for

executing and controIling the entire design process, as weIl as operators for initiating the

tasks of the KSARs. The mechanism of control differs depending on bath the structure

and the steps taken. The control mechanism is implemented by the use of an ag.mda­

based scheduler. The agenda lists aIl design modules that are ready ta be executed, and

the scheduler decides which of these modules ta execute first. The scheduler calculates

a priority for each waiting tool and selects the tool with the highest priority, for cxecution

(Chapter 3).

•

•

Chapter 4. Dcci~ion Analj'sL'i 72

•

The knowledge representation serves as a mechanism for assisting users in keeping

track of their goals and for supporting cooperation among design tools by providing a

central structure for knowIedge that otherwise would not he easily shared.

4.2 Organizati.~m of the BBCAD Problem Solver

The approach centres around a knowledge base containing a model of

representations and communications into which new design tools can be entered and

classified with respect ta preexisting design tools. The BBCAO blackboard inference engine

is the system's reasoning process (Figure 4.2), i.e. the kerneI. The kernel contraIs the
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Figure 4.2: BBCAD algorithm
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operation of the problem solver in the design space. The blackboard engine is a

comhination of LISP functions, precoded rules used to apply control decisions, and rules

generated from the design module declarations which are used to verify the specified

context and preconditions of these functions. Il also uses external design independent

knowlerlge modules, which contain search strategies, to guide an iterative cycle that tries

tn reach a final design state, i.e., an optimal design. The design solution is generated on

the blackboard incrementally by applying the design knowledge modules one at a time.

The first step is to generate production rules from the appropriate slot values of

the design knowledge modules and control knowledge sources (Figure 4.1). These

knowledge resources are sets of elements used and modified by the kerneI. They contain

the c1usters of knowledge required for the probJem solving process. They are action task

modules that contain information about when they are applicable, how their bindings are

set, and what action to perform on the design space. This knowledge must be maintained

in any implementation such that modifications to the knowledge can be undone and prior

states can be recovered, i.e. a history is maintained.

•
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4.2.1 BBCAD Design Module Classifications

The design modules or domain knowledge sources ('ks' t'rames), operate primarily

on the domain blackboard. The domain blackboard records solution elements for the

current design tools. Each design module contains knowledge about performing a

particular design task in the design process, together with a data structure describing the

action part, i.e. a descriptor which contains at Jeast an identification and a condition

describing the blackboard states for which that design module is defined as applicable

[Velthuijsen and Braspenning 91]. Descriptors are used to quantify the ability of a

particular design module to contribute to the design process; they allow the kernel unit to

identify that such a design module exists. The structure irnplemented and discussed in
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Chapter 3, allows the following information ta he provided to the kernel unit:

• Design module name and a description.

• Set of triggering condition patterns.

• Set of precondition patterns.

• List of variables, parameters and relationships related to the design tool goal.

7S
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• Features and properties such as type. competence, efficiency and weighting factms.

• Pre-actions, actions, and post-actions to be taken when executing the design modules.

Table 4.1: Design modules classification

PI&_ccmd

-1
1 1

SLOTS Pallern True
lIIggm_ccmd 1

Pallern lrlcJ_ud_1nvoa lrlcJue..w1

True lnVOClIhIe Don'l Care

Since the only means of communication between the design louis is through the

blackboard, a common representation scheme is implemented. Ta reduce the possible

communications bottleneck which may occur when tao many accesses ta the blackboard

are attempted, BBCAD decomposes these design modules inta three different queues

(Chapter 3), and design modules that operate on a particular level anly are selected. By

allowing multiple perspectives, the design knowledge modules cauld be structured ta

c10sely fit the design application. This decomposition allows the user ta have tighter

control over the execution of the design taols and ta limit the search to a smail portion

BBCAD



of tht: dt:sign space. Thus, hy appropriately ordering the activation of the design modules,

sorne of the excessive st:arches of the design space may be avoided, i.e., the system will

convt:rge faster to a solution state.

•
Chaptcr 4. Dcci,ion Analysi' 76

•

•

The BBCAD design module does not follow the traditional blackboard definitions,

discussed in Chapter 3, nor the control strategies. The traditional control cycle can be

summarized as follows [Hayes-Roth 85(a)]:

- When the triggt:r of a design module is matched, a KSAR is created and it is defined

as being "triggered".

- The KSAR is "invocable" if ail the precondition patterns of the triggered KSAR are

checked to be true.

- The control mechanism decides on which invocable KSARs to execute.

The three different types of module constructs, i.e. queues, shown in Table 4.1,

primarily depend on the precondition (pre_cond) and trigger condition (trigger_cond)

patterns of the frame 'ks', discussed in Chapter 3. A pattern is a Iist of one or more

terms, where a term can be either a value, an object, a variable, or Lisp relational

functions, i.e., predicates. These patterns are also used as predicates in rules. The

BBCAD control strategy cycle is summarised as follows:

- The KSARs of the design modules are created at run-time, and are defined as follows:

1. Tht: design module is of type invocable when it contains precondition patterns to

satisfy, but not when the patterns are satisfied.

2. When the trigger of a design module contains patterns to satisfy, the module is

defined as being triggered.

3. When the design module holds precondition and trigger patterns to satisfy, it is

defined as being trilLand_invoc.

4. "Don't Care": these types of modules can he used as general design tasks for control
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and verification of design activities. The Hiles generated l'rom these modules are

fired whenever the anteced<.nt part is satisfied.•
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• The above KSARs are placed on their appropriate lists. These li: ts are clements of the

'ta_da_set' frame structure, which is part of the general purpose control knowledge

(Figure 3.I2@) of Chapter 3), and they f\re: the invocable_list which is matched first,

then the triggerecUist, and last the trilLand_invoc_list.

• The above mentioned KSARs are "applicable" when ail their patterns are checked to

be true, i.e., matched and satisfied. AlI the applicable KSARs are then posted on the

execution_list of the 'ta_da_set' frame, and selected for execution in the following

sequence: invocable first, then triggered, and last triggered and invocable. While a

KSAR is being executed, the pattern of another applicable KSAR may become l'aIse.:,

i."". changing its state, thus forcing it out of the executable list. Howeve.:r, only the.:

KSARs on the executable list are scheduled for execution, i.e., placed on the.:

chosen_action slot of the 'to_do_set' frame.

• The scheduler selects and executes the KSAR based on the amount of data added to

the knowledge space, leading to a solution state.

The above formation makes it possible to control where certain design actions

direct their attention, i.e. focus of attention, that is, on which part of the design space they

operate to produce a solution. The scheduling is dynamic. With each firing the design

space changes and other design modules may become eligible. A design module may also

cease to be eligible once another event ahead of it in the schedule has been activated. By

decomposing the design modules into three categories, the degree of freedom in each

design cycle is Iimited ta only one category. Spatial partitioning is implemented by

ignoring ail satisfied design modules that are not part of a particular design tool. A design

tool can have more than one design module (e.g., the MagNet finite element tool consists

of preprocessing, solving, and postprocessing modules) and these modules could be in
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different module constructs. At any one cycle of the design process, several design

modules may he ready to execute, only the modules of the scheduled tool are executed if

the goal is not reached. This strategy is used to prevent conflict between modules of

different design tools.

•
Chapter 4. DecL,;on Analys" 78

•

•

4.2.2 Rule Generation

As discussed in Chapter 3, BBCAO supports a production rule knowledge

representation scheme which can generate hypotheses, examine and modify design

modules, deduce conclusions, execute external functions and programs, and dynamically

alter control strategies. The procedure which is called to automatically generate rules,

depends on the knowledge domain under consideration. A unique name is assigned to

each defined rule. Each rule created has optional keywords, discussed in Appendix E, to

assign attributes such as documentation string, priority of the role, rule direction, a sponsor

to which the rule is assigned, i.e. the locking mechanism discussed in Chapter 3, and a

string used to tailar the explanations that are generated when asked to explain why

something is true. In arder to reduce the chance of interference between the design

modules, the control mechanism Jocks onto one design module rather than the entire

space, i.e. operates on the generated roles of the design module. Since the blackboard

frame system is tree structured and provides an inheritance mechanism, a form of

hierarchical locking is used to Jock ail ancestars of a design module. There are two types

of rules which are being generated, and they are design knowledge modules and control

knowledge modules rules. Each of which is discussed in more detail below. The attributes

of a general role constroct and an example of a rule generated from a design module can

be found in Appendix E.
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Figure 4.3: Flow diagram of BBCAD design modules classification
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4.2.2.1 Design Knowlcdge Module Rules

The tlow diagram of the rules which are being generated for the design modules,

is shown in Figure 4.3. These rules get generated at startup and when design modules are

included. Rules are also stored in a hierarchical tree structure allowing them ta be

grouped into subtrees for design module partitioning. This is useful when heuristics

controlling the focus of attention are utilized ta achieve efficient execution speed. The

compile_ks procedure generates design module rules depending on the slot attributes of

the 'les' frames. The antecedent part of these rules consists of the pre_cond and/or

trigger_cond patterns (Figure 3.5 of Chapter 3). The patterns eonsist of calling functions,

assigning local variables, comparing slot variables or local variables, and checking for facts.

The consequent part of these rules calls funetions, invoke simulation tools, assigns

variables, asserts and deletes facts, and changes the BBCAD control states, etc. Each of

the design modules contains the following categories of rules:

•

•
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( (rule.I) (rule.E) ... (rule.n))

rule.n • ( (rule.n_ (antecedent.n) (consequent.n) )

Figure 4.4: Pre_action rules expression forrn

80

(a)

(h)
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1. KSAR rule generation: this type of rule produces the KSARs of the design modules,

and records are kept ta indicate the invocation and modification steps that are taken

at each cycle of the design process, for later use. General purpose control frames are

tallied whenever KSARs are created, changed or modified, i.e. a history is maintained

for the policy rules.

2. Pre action rule generation: these rules give more control over the design module, i.e.

actions ta complete before invoking the design module, they resemble the precondition
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of the traditional blackboard. The structure of the slot values of the pre_action

component, shawn in Figure 4.4, is a list of one or more patterns, where eaeh pattern

is a list of three elements which are the rule name, the anteeedent part, anè the

consequent part.

3. Action rule Ileneration: these rules deal with the patlt:rns of the action slot of the

design module and represent the core knowledge, i.e. strategy knowledge. These

production rules contain information on what is needed to invoke and run the various

simulation tools, and general rules of thumb on how to modily a design when the

constraints are not satisfied. The search in the design space is guided by these heuristic

rules. The sequence of rule firing is contained in the choice of the weight value, i.e.

priority, given ta different rules in the action sial. The structure of the slot value is in

the form of lists of rules as previously shawn in Figure 3.7 of Chapter 3. The slot

action can have one or several rules.

4. Post action rule Ileneration: this type of rule has the same structure as the pre_action

rules discusseci above. The post_action slot values are the meta-knowledge of the tool.

These rules will assist in the decision making of the next step, once ail of the current

action rules are fired.

5. Display rule Ileneration: this type of rule is used in assessing the execution of the design

modules. These rules help the user ta develop new insights that facilitate understanding

and help in solving the design problem, by giving explanations of the process ta date,

they are a history recap.

For each of the conditions there must be at least a rule in the module with that

condition as a conclusion. Such a rule may be translated: "If ail the input variables and

ail the constraints are present in the right sequence, and the script-file is executable, and

the computer program is executed, and its output variables are paired with the computed

values, and the computed values are asserted into the design space, then it is true that
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Figure 4.5: BBCAD control rule generation flow chart

results have been computed for the module." Since the rule for running the program

requires that ail required input values be present, the program of the module may fail to

execute on the first attempt.

4.2.2.2 Control Knowledge Module Rules

Control knowledge module rules are used to sequence the execution of design

modules for efficient design optimization under the control of the kernel. They operate

primarily on the BBCAD spaces of design knowledge, and are predefined heuristic control

modules. AIl solution elements for the control of the design process are recorded on the

BBCAD blackboard. The automatic generation of the BBCAD control knowledge

modules rules is depicted in Figure 4.5, and these rules are generated at the initialization

stage.

The frame structure of these control modules is defined in Figures 3.9 and 3.10 of
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Chapter 3. The generated rules use the dependency option and lire specifit'd as

dl~pendent rules, Le. logical (Appendix E). They are used to support retraction. so that

if the values and assertions that cause the rule to tire are retracted. the values and

assertions generated from that rule are also retracted (if they have no other logically

supporting values and assertions), Le. an entire branch of the tree is removed. Since the

rules are dependent and they l'un in a forward direction, they create a justification

structure for new assertions and the values they assel'!. The justification contains the rule

and the list of assertions and values used in matching the antecedent portion of the rule.

There are three types of generated rules which provide decision strategies of what needs

to he done to solve a design problem and they are:

1. Focus decision rules: the focus rules are generated by coding the patterns of the goal

slot of ail the control modules with "focus" as decision_type (Figure 3.9). These rules

are a set of search strategies used by the scheduler to determine which of the

executable KSARs is desirable at that cycle, Le. are used to calculate a priority for each

of the design modules.

2. Criterion rules: these rules reflect the slot value of the slot criterion. This criterion

causes the appropriate control decision to be selected in the decision making process

of rating the design modules. Processing will be halted when the design process has

exhausted ail of its resources without finding an adequate design solution, i.e. the design

does not converge to a final solution, and the numher of design cycles exceeds the

required predefined cycle number (*number_oOIS*).

3. Poliçy decision rules: the policy rule is created when the slot decision_type is of type

policy. These rules influence the scheduling decision and only operate on design

modules with particular attributes and values. This collection of executable rules is

called the "conflict set", and provides the user with several choices of tailoring the

conflict resolution strategy, thereby emphasizing the focus of attention.
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Figure 4.6: BBCAD kernel
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4.3 BBCAD Inference in the Design Process

The BBCAD is capable of reasoning opportunistically because the order of

executable design modules is dynamically determined based on the applicability of design

modules and the latest blackboard state. A design problem is posted on the design space

and the various design tools work in an opportunistic fashion to solve the problem. When

the design process has proceeded to a point where a certain tool has enough information

to make a contribution to the design space, that tool activates, and adds the appropriate

solution to the design space for other tools to work on. At each cycle of the blackboard

engine, a set of control decisions is used to select a design module for execution. The

kernel cycle iterates through a basic set of four steps as shown in Figure 4.6:

• Update, validate, and examine the current blackboard state to see if a final design

solution has been attained. At the beginning of every cycle, the kernel validates and

examines the general purpose control knowledge modules. The folIowing tasks are

performed:
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1. Cycle number update.

2. Check whether or not a final design solution has been reached.

3. Decide if there are any design modules to execute.

4. Remove ail KSARs for which no goals are applicable in the design space.

5. Change the state of KSARs.

- Search for a new design module ta work with: this is determined by satisfying,

instantiating, and interpreting the design knowledge modules. One design module in

the design space is consulted at every cycle of the design process, amI the limit on

design cycles is a function of the design modules and their execution. A design module

couId be executed several times, and its execution is determined by the following stages:

Instantiating: a KSAR is created for each design knowledge module on the

blackboard spaces of design.

Checking and satisfying: after the instantiating process, every KSAR precondition and

trigger condition are checked. Satisfied design modules are placed on the cxeclltion

agenda list of BBCAD, Le. agenda entries (Chapter 3 - Rule Inferencing).

- Scheduling the new design knowledge modules: a more detailed scheduling problem is

shawn in Figure 4.7. The BBCAD scheduler is a sophisticated mechanism that lises a

variety of criteria (e.g., design module competence, triggering information reliability,

design information credibility) to choose a KSAR for firing. Whilst the invocahle

KSARs are invoked first, then the triggered KSARs and iast the triggered and

invocable, the arder of execution of each one of these classes is determined by the

control knowledge modules (e.g., focus and policy). The focus decision rules set the

ratings of the design modules in each class depending on their efficiency fact()f and

their competence level. The policy decision rules act only on the triggered and

invocable rules. Every KSAR is rated, and the highest-rated KSAR is recommended

nnCAD



Chapter 4. Decision Ana~'si."

•
Initiai
souesl

Satlsfled

Agenda
Queue

(KSARs)

/";a"""aIüy-,.çm""p;;r.e=-\~
~ Ared

"

Focus of Mendon

Evaluats Prlorltles Ves Ign '---I:~'ï'i-;;;~I+---=( MadulllS r
q

•

•

Figure 4.7: More detailed scheduling Kernd

for firing. Ratings and priority factors are assigned to each design module and arc u5ed

for resolving deadlocks among competing design modules. Ratings arc nUl1lerical values

and a weighted sum of ratings is used to calculate a priority for each tool. An example

eXF1R;.ning how these ratings are calculated is discussed in Appendix D. Ali the KSAR

specific requirements for firing are tested again to verity that they relllain valid.

• Firing the design module: firing the chosen KSAR is in essence forward-chaining the

generated rules previously discussed, and implementing the locking mechanism, Le. the

sponsor discussed in Chapter 3, to Iimit the search of the design space. A more

sophisticated mechanism, Le. assigning a different priority value for each different ru le

construct, is utilized to control the invocation of the design tool rules and to resolve

conflict among competing rules. Rules with higher priorities willlïre before rules witl!

lower priorities and the result of firing the KSAR is posted back to the blackboard.

The above process repeats itself until the design problem is solved or a predefined

termination condition is reached.
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Conllict among the BBCAD design modules may arise when, after a goal is posted

on the hlackhoard, more than one design module suhmits an estima:e for the solution of

the device design. The iocus of attention acts as a manager resolving the~.e conflicts, and

also decides what to do in the event of a faHure. If more than one design module is

competing for execution, a priority value, based on the user experience and heuristics, is

used for resolving deadlocks among competing modules; the default is a FIFO. If, after

firing the tool, no new design solutions ar events have occurred on the blackboard space,

this tool will he deactivated and the next tool on the executable Iist will be fired. The

post_action slot plays a salient role in the decision making before leaving the design tool

if it is confronted with problems.

The scheduling mechanism in BBCAO is an example of planning. The scheduler

is able to decide, in a non-deterministic fashion, which design module should be executed

next in arder ta most effectively complete the design task. In addition, the scheduler is

able ta resolve conflicts between competing design tools, i.e. selects the design module that

converges most rapidly ta a solution, and initiate the necessary corrective action when a

particular design module was supposed ta be fired, but could not due to a missing

program. The action slot contains rules ta verify whether or not the simulation programs

and their appropriate data files exist. If the program does not exist, a message is displayed

pointing out the proper actions ta take.

BBCAO control cycle is summarized as follows:

• At run-time, for each design module that exists, a KSAR is created, and called

"instantiated", where the attributes and their values are largely inherited from the

parent design module.

• The KSAR is "satisfied" if aIl the precondition and/or trigger condition patterns of the

instantiated KSAR are checked ta he true.

• The scheduler decides on which Iist type of satisfied KSARs ta execute.

•

•

•
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In order to illustrate the ideas already presented in this thesis, the simple pmhlem

of designing aC-core magnet device is implemented using the BBCAD hyhrid system.

This example demonstrates the integration of a lïnite element analysis tool, i.e. MagNet,

in the field of electromagnetic device design with other analysis design tools, i.e. OPTDES.

An optimization analysis tool is to he integrated to assist the designer in the relïnement

process of the final design, that is if a change is made to the C-core design, ail relevant

tools are re-run. The design optimization process is also diseussed.

•

Figure 5.1: Ceore Magnet

• 88 DDCAD
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The goal of the C-core magnet design, depicted in Figure 5.1 [Fitzgerald et al. 83],

is ln lïnd a final design fulfilling a given requirement. Moreover, the last design should

he optimal in some respect, for example, the physical core layout must meet the

specifications and the !lux density in the C-core air gap should be uniform. These may

weil he conllicting criteria, and therefore loosening constraints is common in design tasks,

i.e. when one criterion is improved sorne other must he relaxed. Design knowledge can

he used concurrently with optimization techniques to generate new designs to be evaluated

and revised by the user, thus speeding up the design process and increasing the quality of

the design.

At present, packages and conventional programs for the computational analysis and

design of electromagnetic devices are in a noticeable state of growth. There are numerous

well-validated computer programs on the market for static, steady state, and transient

analysis. These programs are modular, with modules able to handle realistic geometries,

to model materials, ta provide valuable solution evaluation and pre- and post-processing

capahilities, such as MagNet, PE2D, and several others [Lowther and Silvester 86]. For

example, the conventiona! mchitecture of MagNet for the computer-aided design of

electromagnetic devices, consists of a set of relatively large scale modules, each of which

requires significant skill for its use. At each step in a design simulation using a finite

e1ement package, the user must know how ta set boundary conditions, generate an

appropriate mesh, select the best soIver, and manipulate the field solutions generated by

the solver ta calculate desired quantities such as impedances, inductances, and lasses, using

the post-processing module included in the package. However, depending on the overall

level of mesh refinement chosen by the user, an inaccurate solution may result. Should

this occur, there would be a need ta change the refinement and rerun the appropriate

modules.
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The design of electromagnetic devices has developed over the last two decalks

based on experience and analysis techniques [Lowther et al. S5; Rychener SS; chapter 10

of Dym and Levitt 91]. Each development in analysis techniques has allowed the designer

ta simulate reality more c10sely in testing a design. The intention in device design is 10

attempt ta unify the experienced designer's roll' and the mathematical model used for

analysis, i.e. design by analysis. Whilst, traditional design is based on heuristics and design

formulae, the final step in the design process, having narrowed down the design space is

ta close in on a final design by examining a numerical model. Analysis systems provide

feedback of information from the analysis ta compare with the initial specifications. The

results are examined in terms of these specifications and used in a feedforward fashion to

re-analyze the design if sufficient agreement is not reached. Based on the results of the

analysis, the designer then makes a judgement as to the acceptability of the design. Titus

analysis is an assistant ta design and not a replacement. It enahles the designer to predict

the performance of a proposed design. Design is the process of finding a solution hascd

on the values of the analysis results.

A finite element analysis tool such as MagNet, provides information on the

performance of the C-core device and operates in a space which consists of ail the

variables which describe the design, Le. the analysis space. The designer seeks to optimize

the C-core design by aItering the shape of the core, which is a function of the analysis

variables, and define a space within which an optimization is desired, Le. the design space.

Design is a search for an optimum in this space, subject to constraints which are placed

on certain device parameters. An optimization system, such as OPTDES, uses the analysis

package MagNet the same way the designer does: ta obtain feedback on a proposed

design and ta explore the design space by analytical techniques.

Ta buiId an effective knowledge-based system for aC-core device design problcm,

one must first identify the device and define its domain. The designer of the dcvice must
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Figure 5,2: Magnetic device frame structure

(DEFlNE·FRAME

(dovlce_name

(doslQ"n

(bh_matorlal

(bh_CUIVO_ oxIsl

(malerla!Jlrop

(excitations

(bound_cond

(h_froquency

(hlQ"h_order

• (poly_order

(veclor_scalar

(llnearity

(mode

(axis

(field

(typo

(data_file

(stale_dovlce
(rerun_dovlce

•

dovlce (:prinl·name 'device'
:doc-string "Dovice specification..:
:is data_st.zucture)

:multivaluod 1
:explanatlon·strinq 'Deviee explanatlon strinq' )
:constrainlB (:one-ol (none new old))
:oxplanatlon·s'.finq 'Design stale' )
:constrainlB (:one-ol (soft hard))
:whon-modifiod (bh malerla! modifiod)
:explanatlon-strinq ~/H Malerla!: SOFT or HARD' )
:constrainlB (:one-ol (yes no))
:explanatlon-strinq 'B/H curvo oxIslence in MACLIB file' )
:constrainlB (:one-ol (none air copper sleel))
:when-modifiod (malerlaIJllop_modifiod)
:explanatlon-strinq 'Malerla! Property' )
:constrainlB (:lIsp-typo inleqer)
:when-modllied (excitatlons modifiod)
:explanatlon-strinq 'Excitations in Amperes' )
:constrainlB (:one-ol (yes no))
:when-modifiod (bound cond modifiod)
:explanatlon·strinq 'Boundary-Conditions' )
:constrainlB (:one-ol (yes no»
:when-modi6ed (hlqh froquency modifiod)
:explanatlon-strinq 'HÏqh Froquency application problem ('{ or N)' )
:constrainlB (:one-ol (yes no»
:when-modifiod (hlqh order modifiod)
:explanatlon-strinq 'HÏ(zh Order problem ('{ or N)' )
:co.18trainlB (:lIsp-typo inleqer)
:when-modifiod (poly order modifiod)
:explanatlon-strinq 'PolynoniiaJ Order 01 the problem' )
:constrainlB (:one-ol (none veelor scalar»
:when-modifiod (veclor scalar modifiod)
:explanatlon-strinq 'VEëTor orSCALar problem' )
:constrainlB (:one-ol (none lInear non1lnear»
:when-modi6ed (llnearlty modifiod)
:explanatlon-strinq 'NONLinear or LINEar' )
:constrainls (:one-o! (none real complex»
:when-modifiod (mode modifiod)
:explanatlon-strinq 'REAL or COMPlex mode' )
:constrainlB (:one-ol(none carteslan cart axisym axisymmelIic axiperiodic»
:when-modi6ed (axis modifiod) -
:explanatlon-strinq 'ëoordinale syslem: CJlRTeslan or AlOSymmelIic' )
:constrainlB (:one-ol (none magnetic eleclIic»
:when-modifiod (field modifiod)
:explanatlon-strinq 'MAGNetic or ELECTric field' )
:constrainlB (:one-ol (none static harmonlc translenl non-translent)
:when-modifiod (stalus modifiod)
:explanation-strinq 'Stailla 01 the problem: STATIc HARMonlc TRllNslenl' )
:constrainlB (:one-ol (none oxIslB modifiod nochanqe»
:explanatlon-strinq 'Data Fne stalus' )
:multivaluod 1 :demull·valnes «0 none» ) ;; (cycJe# module)
:constrainlB (:one-o! (yes no» :defaull-va1ues (no)
:explanatlon-strinq 'Whether neod 10 rerun the application'» ;deline-frame
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know how to solve it and be able to ckarly express the data pertaining to the prohlcm and

its solution. The user's information l'an be thought of as p..ssive and active knmvledge.

A fact a user knows to be true is considered passive knowledge, while a methOlI a lISl'r

uses to make deductions or inferences about the design is considered active knmvledge.

Design knowledge of the C-core magnet (Figure 5.1), is c1assilïed into Iwo groups:

(i) The first is the device knowledge, which refers to the full set of parameters which

describe the structure and operation of the magnetic device. The C-eore device frame,

shown in Figure 5.2, possesses a specific set of properties based on the anatysis tool

MagNet that the designer has to specify. To add a new tool, e.g. PE2D, Ihis structure

could be incremented, or a new structure devised by the designer and the variable inpul

parameters of the new tool defined. Once the frame is loaded, a user inlerface l'an

assist in adding new slots to the frame structure or deleting old slots l'rom il.

<ID The second, the design knowledge module (e.g., the module "draw2d" of MagNet,

Figure 3.6 of Chapter 3), combines design rules, and procedural knowledge about the

domain module, i.e., the "function" type of knowledge in conventional programming.

A good understanding of the design tool is required to be able to supply ail the

knowledge needed.

In order to effectively integrate the existing tools and ta provide Ihe kind of

coupling between the various analyses, the designer carefully defines the input and outpUI

requirements of the tool, and their relationships with other tools, and gives it Ihe

appropriate ratings and weights. In which case, the tools are sequenced to completely

analyze and optimize the design.
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5.2 Design Example
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The simple problem of designing the C-core magnet, is considered to ilIustrate the

concepts of integrating design tools to solve a problem in the design of electromagnetic

devices. In this example, the problem is to redefine the physical structure, i.e. the shape,

of the C-core at the air gap, such that the magnetic flux density in the air gap is uniform,

i.e. Sm.. = Sml" (tesla or weber/m2), shown in Figure 5.1. A set of optimization analysis

tnols are integrated into the process to explore the design space in a controlled fashion.

These optimizers are relatively conventional design tools allowing multi-dimensional

analysis, where the results of the analysis tools can then be used to direct the optimization

procedure. One concern is that the optimization techniques involve primarily numerical

manipulation, and the computational procedure always starts from a point, and with

knowledge, specified by the designer. Thus, the greater the expertise of the designer, the

faster the design converges to a final solution, i.e. the process is to use design rules to get

near ta an optimum then optimize. The feedback loop of these optimisation analysis tools

can be improved by providing more accurate sets of initial design rules, thus a good design

can be achieved with minimal analysis effort. The initial design can be appropriately

modeled by the simple logical relationships of the rule-based system, where the rule is

used as a starting point in the design search, providing those component changes most

likely to improve a design. The use of heuristics in design optimization helps to decrease

the size of the design space searched and consequently leads to a decrease in the overall

time required to solve the design problem.

5.2.1 Design Dependent Knowledge

The frame 'device' (Figure 5.2), depicts the domain-specifie knowledge relevant to

the C-core device (e.g., geometry and material). Il holds the principle design components

of the magnet relevant to the finite element analysis tool MagNet, and these components
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Figure 5.3: MagNet Modules

contain information about variable inputs and outputs. Variable inputs are tbose which

can be changed to improve the design. Daemons (e.g., :when-mudilied, shown in

Figure 5.2) are widely used in the device model to track down changes ta the components.

Whenever a value is changed (asserted, retracted, or modified), the lisp function attachcd

to the facet is evaluated. The slot, data_liIe of Figure 5.2, alludes ta the data file that

contains the physical dimensions, e.g. nodal points, of the C-core. Limits on these nodal

dimensions are kept in a separate file which is accessed by the optimization tool.

5.2.2 The Design Knowledge Module

MagNet [MagNet 85] is a finite element based system which provides considerable

pre- and post-processing capabilities as weil as analysis functions. Each module of the

MagNet finite element package, shown in Figure 5.3, is stored in a separate design

module. These different design modules together allow BBCAO to design aC-core

device. An instantiation of the frame-based design knowledge module defines the various

modules of MagNet (Chapter 3).

The MagNet package which consists of pre and post-processing modules for setting

up and analyzing designs, contains the following modules:

- Draw2D: defines the basic geometry of the C-core magnet (e.g., points, lines and arcs),

elements and constraints. To speed up the process, the geometry is provided using an

BBCAD



•

•

Chaptcr 5. Application

(rule.xyprnh 300
;lF ((Instance ?ksar_solver lB ksar

w1th lœ_name solv2d)
(OR ; VECT RE!IL NONL CART VERT HARD

(instance ?device lB device
w1th devtce_name ?devtce
with vector_scalar veetor
w1th mocIe real
w1th lInearlty nonllnear
w1th axis cartesian
w1th cllrectlon ""rtlcal
w1lh bh_mater!al hard
w1lh data_me axlsts)

; VECT RE!IL LINE CART VERT HARD
(Instance ?devtce lB devtce ...)
; SCAL RE!IL NONL CART VERT HARD
(Instance ?devtce lB devtce ...)
; SCAL RE!IL LINE CART VERT HARD
(Instance ?devtce lB devtce •••) ) ;OR

(aqual ?devtce 'lnst_devtce_narnB'» ;IF
;THEN «set[ (alot·value 'out_wIndow 'dlsplay)

([ormat nll ,-%Running xyprnh') )
([ormat 'me_out' ,-&Runninq xyprnh - &')
(run_solv2d 'xyprnh)
(Instance ?ksar_solver lB ksar

w1th lœ_narnB soM!d
w1th stste lIred» ;THEN ) ;nJ1e_xyprnh

Figure 5.4: SOLV2D - an action rule
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input file, elements and constraiilts were defined using pre-defined verbs in MagNet,

i.e., commands. Drawings are stored in a text file (.SKT file) which can exist

independently of Draw2D and can be edited. With the help of other script files, the

automation of most of these design tools was accomplished. Upon completion of this

task, the user is asked to verify ail the device parameters (Figure 5.2), and whether any

changes are requested. Figure 3.6 of Chapter 3 shows the specifie Draw2D design

module with ail the sIot values defined.

.. Mesh: generates the finite element mesh of the problem specified in Draw2D. For this

module to be satisfied, the device that corresponds to the data file (.SKT file) obtained

from the previous module has to exist and the design module Draw2D has been fired.
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Figure 5.5: Magnctic field distribution (flux Hncs) or the C-core magnet

- Curv2D: builds a library of material properties that may be applied to the geomclry

specified by Mesh. If the material type is not in the Iibrary (e.g., table look-up), the

Curv2D module will be invoked to supply the magnetic eharacteristies of the material.

In this design problem, Curv2D was not implemented, even though it was included,

because the TR66 steel magnetic characteristic, i.e. B-H curve, is defined in the Iibrary.

- Prob2D: builds a problem file ready for solution. The geometry is the same for the

design, but may have differing boundary conditions, excitations, and materials in whieh

case Mesh and probably Curv2D have to re-run. The design module contains rules

related to the above conditions.

- Solv2D: solves the pre-defined problem of the C-core magnet. The solver chosen

depends on the coordinate system and problem type criteria. Figure 5.4 shows an

example of a rule in the action slot of the Solv2D design knowledge module.

Depending on the problem type and device characteristics a solver is chosen to producc

solutions.

- Post2D: derives, extracts and analyzes useful results from the solutions obtained in the

previous module. This post-processing module comains rules to verity if the goals of

the design are reached. The task of checking and veritying goals can be easily
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automateù using the MagNet verb ùefinition facility ta verify points of interest (e.g.,

magne tic !lux ùensity in the air rcgion of the core). The tlux plot for the simple C-core

inùuctor is shown in Figure 5.5, with a total current of 400 amperes (for hall' of the

problem) injecteù into the copper coils.

5.2.3 The Design Pnlcess

BBCAD is a hybrid system and is used to help automate the design process. To

represent a specifie abject module or an abject device, instances of the design module

frame and device frame are defined. The user interface, iIIustrated in Appendix F,

proviùes communications to support and to fulfil the designer's request for processing, and

ta fill in the appropriate information of the device. Using the front-end interface, the user

loads the device design and the appropriate knowledge design module into BBCAO. At

the initialization level, the user interacts with the BBCAO system to provide the necessary

information to create the C-core device parameters, and this information is significant in

invoking MagNet modules. This information can also be read l'rom a file that the designer

provides.

The kernel contains facilities that cause the BBCAO system to make inferences

about the data. The inference engine applies the deduced rules of the design modules to

the factual data in the design space when searching for a solution. It uses a pattem­

lIlatc/lillg facility [GoldWorks 87] and matches patterns in the antecedents of rules to

patterns representing facts in the BBCAO blackboard space, and to objects that represent

instances in the design space. A forward chaining, breadth-first (first-in, first-out) strategy

is used to infer solutions l'rom knowledge about the C-core device design that exists in the

spaces of BBCAO blackboard. Forward chaining is initiated when the antecedent, or "if,"

portion of a forward rule matches a set of objects in the blackboard. The inference

process is controlled so that it evaluates sorne ruIes before others, and this is qualified by
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assigning œrtainties and priorities to HIles. The ccrtainty of an assertion is dl'ri\'l'd ft"llllt

the œrtainty of the rule that ereated it and the ccrtainties of the assertions thatraml'" the

rule to fire.

Internai control rules of the design modules are generated for earh of the MagNl,t

modules (Appendix E). Draw2D is scheduled to fire lïrst, the geometry of the C-mre is

accessed from an input file. Upon completinB the devicc specifications, BBCAD will go

about scheduling the various knowledge modules in ortler to solve the C-mre design.

Scheduling these design knowledge modules depends on the "pre_cond" and "trigger_cond"

slots, as weil as on the "actionJevel" and "efficiency" slots, discussed in Chapter 3. The

latter IWO slots determine the priority values of the module which are relevant in

determining the order of modules. In every cycle of the BBCAD design proccss, the

module with the appropriate conditions, i.e. the highest priority value, will he chosen and

ail the internaI control rules associated with this particular module will fire, thus changing

and augmenting the design space of the C-core device, i.e. automating the design process.

The design continues carrying out the rules of each module; once the solving phase of

MagNet has been completed, the post-processing module, Post2D, is invoked to analyze

the results. The solver produces a solution for the C-core problem delïned in Prob2D

module. These solutions consist only of the value of the magnetic or c1ectric potential at

each node of the C-core mode!. Post2D is used to derive tbe magnetic tlux density in the

air gap. The C-core parameters, i.e. geometry at the air gap (segment AB of Figure 5.1,

A=(4.5,1.0) cm, 13=(5.5,1.0) cm and the air gap is 2.0 cm), are modified and the design

process is resumed till the final design goal is reached. Because of the symmetry ~bout

the X axis (Figure 5.1), it is sufficient to model only half of the C-core geometry.

The numerical analysis computations are performed through a cali to the Unix

sheIl. This cali creates a process executing the named script. Standard input and output

for the programs are temporarily assigned, so that the program reads its values from files
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which wen: written using Lisp routines. Program output values are read analogously. In

the device design, neutral input files were defined where data were read onto the

hlackboard, and changes at the end of every cycle were re-written to the file. The

interfaces useù allowed BBCAD ta load code that is written in computer languages other

than Lisp. Script files as separate processes were also used to rearrange and invoke most

of MagNet modules. Appendix F discusses in more details the implementation and

languages used, and the user interface.
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5.3 An approach for Design Optimization

Design optimization involves the searching of design space by analytical techniques

which allow a systematic search based on the variation of performance with the design

parameters [Balling et al. 85]. The optimal design process can benefit from the use of

heuristics, which are used to control sorne features of a design (e.g., complexity), based on

knowledge captured during the iterative process [Arara and Baezinger 86]. While analysis

software enables the designer to predict the performance of a design, optimization

algorithms tends to show him how to change the variables to improve il.

Many optimization algarithms have been developed to solve general engineering

design problems [Vanderplaats 84]. Careful implementation of the methods is needed,

however. Each method can be defined as a separate design module with its own

peculiarities and rules. Thus, heuristics can be used to accomplish the robust

implementation of algorithms, allowing different algorithms to be used at various stages

of the search to accelerate convergence. Knowledge of the design space and the analysis

functions involved can be integrated into the design process to narrow the search space,

i.e. find the best algorithm far the problem solution. Two different optimization

algarithms are used to investigate the integration methodology presented in BBCAD:

OPTDES and OPTMAG. Each of those will be looked at in more detail below.
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Figure 5.6: OPTDES design modules - MagNet is shown in Figure 5.3

5.3.1 OPTDES

•

•

The OPTDES [Balling et al. 85] optimization tool is a three module optimization

program written in Fortran, shawn in Figure 5.6. The three modules of OPTDES are

represented in BBCAD as three separate design knowledge modules, i.e. instances of the

d~vice 'ks', and these instances are loaded at the initialization leveI. The first module, Le.

CONVEN, is used ta interface ta the user's analysis tool, i.e. MagNet tool. CONVEN is

is part of the OPTDES tool and has the highest efficiency factor. It is defined as being

invocable, and the precondition patterns determine when ta invoke it. The three modules

of OPTDES are similar ta the three phases of MagNet. MagNet tool is written as a

routine which OPTDES can repeatedly cali. This routine contains in its argument list a

vector of the analysis variables, i.e. points aIong the AB segment of the core (Figure 5.1)

which are supplied ta the pre-processor, and a vector of analysis functions, Le. the max

and min flux density in the air gap which are returned by the post-processor. This routine

will Ioad the various design modules of the tool and invoke the appropriate ones. The

values of the local variables are read in when execution of the module begins. Also the

analysis functions are written ta a file ta be processed by the optimization algorithm. The

flux density of the original C-core is shawn in Figure 5.5.

The second module, i.e. SETUP, defines the optimization probJem of the ecore

BBCAO



hy spccifying the mapping hetween the design space and analysis space, i.e. the selection

of design variahies, analysis functions constraints, and objectives. This module needs the

input and output information of the previous module. Il is invoked after the CONVEN

module, and is defined as heing a triggerable module. In the example of the C-core

magnet, the optimization problem can be stated as:

- Define the constraints on the geometry of the C-core along the segment AB of

Figure 5.1, i.e. defining the degree of freedom where the point along the segment AB

can move, such that the magnetic flux density is uniform in the air gap (Figure 5.1).

This module defines the flux as a function of the geometry.

The third module, i.e. DESIGN, is used to optimize and explore the design space.

This module needs the results of the previous modules. Il is last for execution on the

OPTDES agenda items, and is being defined as triggered and invocable module. This

module repeatedly calls MagNet to reach a final design, i.e. locate an optimum. The

algorithm uses a variety of information, including derivatives, to determine how the design

variables should be adjusted. Once the variables have been changed, DESIGN calls

MagNet to determine the new values of the magnetic flux density. Over the course of the

optimization, DESIGN may need to cali MagNet a hundred of times or more, depending

on the number of degrees of freedom, i.e. the number of points and their constraints along

the AB segment (Figure 5.1). The algorithm used for the analysis of the C-core magnet

is the modified generalized reduced gradient (GRG) [Balling et al. 85; Press et al. 88;

Chapter V of Gill and Murray 74], which is a nonlinearly constrained programming

algorithm. The gradient is a vector of first partial derivatives. The GRG algorithms solve

the original problem by solving (perhaps only partially) a sequence of reduced problems.

These are usually solved by a method which uses the reduced gradient. The GRG

methods use the active constraints of a problem to express certain analysis variables in

terms of design variables (they are comprised of a subset of the analysis variables). The

•

•

•
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function of the design variables alone becomes the reduced function, its gradient is the

generalized reduced gradient. This gradient is used to determine a search direction for

the design variables, and a line search determines the step along this direction. During

the line search a design variable may equal or violate its constraints. If so, a new

partitioning of the variables is defined, and the process is repeated on the new reduced

function. If the algorithm is successful the reduced gradient will converge to minimum.

Once the analysis variables, i.e. points on the segment AB, have been changed, the

optimization algorithm caUs MagNet to determine the new values of the analysis functions,

i.e. Bm.. and Bml•• Figure 5.7 shows the error of the magnetic flux density in the air gap

relative to the nodal variation of the segment AB. Using the generalized reduced gradient

method, the final design of the C-core device and its flux distribution is shown in

Figure 5.8.

Under the same conditions but different starting point, i.e. point A (Figure 5.1)

starts at 4.25 cm instead of 4.5 cm as shown the previous example, there is a variation of

the final design which is shown in Figure 5.9. The segment AB (4.5 cm to 5.5 cm) is

divided into 4 equal parts.

•

•
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5.3.2 OPTMAG

OPTMAG, shown in Figure 5.10, is another example of optimization technique

written in C. It is a separate design knowledge module with its own condition and action

characteristics, and is integrated into the BBCAD to solve the above C-core device design

problem. OPTMAG is being defined as an invocable module with a high efficiency value

and is chosen first for execution. It repeatedly caUs MagNet modules which are used to

run the analysis and determine the flux density. OPTMAG uses the Simplex algorithm of

linear programming [Press et al. 88] to find the optimum values for the elements of the
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Figure 5.11: Using OPTMAG in optimizing the structure o[ the C-core

Figure 5.12: Flux lines using the Simplex Method
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analysis variables, i.e. 5 nodes equally divided on the AB segment (Figure 5.1), ta within

a tolerance n.nOOl. Il is assumed that the elements of the analysis variables are scaled

such that an initial step of 0.1 is reasonable. A simplex is the geometrical figure consisting,

in N dimensions, of N+l points (or vertices) and al1 their interconnecting line segments,

polygonal faces, etc. The simplex method starts with N+ 1 points defining an initial

simplex and then calls MagNet ta evaluate the flux density at the vertices of the initial

simplex (the x and y coordinates of the 5 nodes). The next step the algorithm takes is

moving the variable (point) of the simplex where the function is largest ("highest point")

through the opposite face of the simplex to a lower point, i.e. the reflection. This step is

repeated for each new simplex. When the newly constructed step conserves the volume

of the simplex, i.e., vertex persists for few iterations, the method expands the simplex in

one or another direction to take larger steps. When it reaches a local minimum, the

method contracts itself in the transverse direction and tries to rol1 down the minimum.

The method terminates when the vector distance moved in that step is fractional1y smal1er

in magnitude than sorne defined tolerance. In which case the simplex contracts itself in

ail directions and pul1s itself in around its lowest (best) point.

A data translator program was used to integrate the neutral data file to the

blackboard space, where al1 the constraints on the shape of the C-core are defined. In the

optimization search the direction of the search is constrained by the Iimits of the points

A and B of Figure 5.1. The point A is Iimited to ± 0.25 cm along the X direction, and

B to ± 0.50 cm along the Y axis (1/4 the distance of the air gap). The changes in the AB

segment are depicted in the error graph of Figure 5.11.

Figure 5.14 depicts the magnetic flux density of the final design of the C-core using

the simplex linear programming method, and shows the variation of the segment AB,

where the dash line is the original structure. The other points can move in both directions

in steps of ± 0.25 cm. The flux plot of the simplex method is shown in Figure 5.12.

•

•

•
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Table 5.1: Variations in optimization methods

•

Max a field Min a field (Y,~Error %Improvemenl

C-core 0.004524 0.004088 9.64 -
Simplex Mclhod 0.004436 0.004058 8.52 11.62

GRG Melhod 0.004054 0.003655 9.84 -0.41

GRG Method (4.25) 0.005548 0.004695 15.37 -59.44
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Figure 5.14: Half C-corc Magnctic using OPTMAG analysis - Simplex method

A9-1--
Figure 5.15: Half C-corc Magnctic using OPIDES analysis - GRG method

5.4 Variations

Two different optimization approaches are used in the solution of the C-core

device. Figure 5.13 shows the flux density in the centre of the air gap and a blown up of

the result between 4.50 cm and 5.50 cm, i.e. segment AB of Figure 5.1. Table 5.1 presents

the percent error, i.e. [(Bm.. -Bm,n)/Bm..], between maximum and minimum flux density and

the percent improvement relative to the original starting C-core. The Simplex method
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shows a 11.62% improvement on the starting design, and the final result is shown in

Figure 5.14. The GRG resulted in IWo different solutions depending on the starting

position of the node A The solution showed a 0.4% decrease, and gets worse when

moving the node A doser to the windings. The Figure 5.15 retlects the result of the GRG

method. The reason for the bad results in the GRG method is l1Ccause we did not let the

optimizer go far enough in the design process.

In terms of the C-core design problem, we need to point out two things:

a) The field is already fairly uniform when the design was started.

b) In real magnets, uniform fields are thought of in terms of one part in HP, and we have

not gone anywhere near that in the test we have run. The tests are illustration of the

method - not a full design.

Many researchers [Preis and Ziegler 90; Kasper 92] have reported that there is no

unique "optimal" solution for the design of electromagnetic devices, and it is dependent

on the method, the starting point, the degree of freedom, and the position of the nodal

points. The results, presented above, showed that the determination of the shapes, sizes,

and positions of the nodal points is not an easy task due ta the non-uniqueness of the

solution and ta the method used.
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CHAPTER6

Summary and Conclusions

This research is focused on the design and implementation of a hybrid knowledge­

based system founded on a blackboard architecture that is capable of providing a loose

coupling and coordination between available design tools as well as the absorption of new

tools in the process of designing electromagnetic devices. This chapter summarizes the

main thesis results achieved and presents suggestions for future research wode.

6.1 Thesis Summary

Solving the design problem of electrical machines is a complex activity involving a

number of analysis design tools and a number of choice methods potentially available for

each tool. SBCAD is a hybrid system that utilizes knowledge-based system (KBS)

technology for engineering design to integrate various design tools and to increase

robustness and integrity of the design process of magnetic devices. "Hybrid" is a concept

that is achieved in several dimensions: representation of the design as weil as the design

space, modeling knowledge of design and design activities, applying analysis tools to assist

in the design process, integration of several design tools as weil as the results of these

various tools, implementation languages, problem solving strategies, i.e., the scheduling

processes, etc. The design of aC-core magnet was used to demonstrate the integration

problem of electromagnetic device design.

Among the significant results of this thesis work are the models of knowledge

brought to bear on the structuring of the design modules, in the example used these were

the MagNet modules. A flexible structure for coupled systems is presented, based on the
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combination of the concept of frame-based systems and hlackhoard architecture. The

frame-based structure is used as the representational approach for the design-dependent

and independent knowledge modules. BBCAD employs the hlackhoard as a glohal

database through which cooperating design modules communicate \Vith each other. In

BBCAD, the various goals and intermediate results are stored on the blackhoard (e.g.,

domain and control), and implements a control mechanism and a scheduler which prompt

the firing of the design tool, the generation of new designs, and modification of knowledge

in the design space. The structure of BBCAD allows for an incremental implementation

of a coupled system, starting out with a shallow coupled prototype which can be generated

rapidly. As more design tools, i.e. design modules, are added the depth of the coupling

increases. The BBCAD structure provides for reliable rapid prototyping, tlexibility

concerning changes, as weil as extensions, and increase of coupling. The transparenL'Y of

the BBCAD system is improved by providing explanations and debugging facilities to

understand the design process. Thus, the use of a tlexible design representation has given

rise to a much better way to manage and manipulate the design space.

The core of the BBCAD architecture is the kernel, i.e. problem solver, whose main

functions are:

a. To provide a scheduling mechanism for firing and deletion of processes, i.e. design

modules. The scheduler's task is to examine ail executable design tool operations and

decide in which order they should fire. The scheduler uses many criteria to arbitrate

between design tools; it includes process priority, whether or not the expected execution

resources facilities are available, and whether the design module activation record

would satisfy a pending goal.

b. To provide synchronization among the design tools, i.e. a conflict resolver.

c. To provide communication tools, so that design modules can communicate with each

other.

•

•

•
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d. To develop design solutions through a generate-validate-modify paradigm, Le. design

hy analysis.

The BBCAD open-ended architecture utilized facilitates the development of the

design knowledge modules and their integration through the blackboard space. It

implements a way of ordering rules within the design knowledge modules, i.e. byassigning

rule priority, and provides a locking mechanism which makes it easy to search the design

space for design solutions. The BBCAD user interface developed provides the designer

with the facility ta change data and re-run.

The structure of the problem space for electromagnetic device design is

decomposed into three different levels, thus allowing the designer to have co;llrol over the

execution of the design modules and to Iimit the search to a small portion of the design

space.

Solving the design of a physically simple electromagnetic device, such as the C-core

inductor, seems to be relatively straightforward. However, its design parameters are

numerous, highly interrelated, and diverse, thus preventing a c1osed-form solution to the

design problem. For example, dimensions and shape of the core influence the flux density

in the air gap. Choosing an optimization algorithm to determine the shapes, sizes,

positions of the core, permanent magnet and windings which produce a uniform flux

distribution in the centre of the air gap is not a simple task, i.e., the problem of finding

a unique "optimal" solution. The result is dependent on the approaches used in the

solution.

The problem-solving of the C-core magnetic device integrates syrnbolic and

numerical computing and heuristics to solve the design task. Syrnbolic computing

techniques are used in design problem formulation and in the interpretation of results but

the actual design tools are written using numerical procedures, and heuristics are used as

a way to define performance criteria of the design. BBCAD demonstrates that the

•
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blackboard is an effective means for automatic execution of design lOols to mcct a

specified set of design requirements, i.e. automating and optimizing the design prohkm

of aC-core magnet. BBCAD is <ln implementation of an cxample of a hyhrid

environment.

A blackboard system is similar to an operating system. The hasic rcsources of a

blackboard system are provided by its control mechanism, knowledge module, and a glohal

database. The blackboard architecture provides the means for the propcr use of thes,~

resources in order to solve a particular kind of design prohlem. It can he noted that

blackboard architectures have many features and constructs which parallel the operarÎlIg

system paradigm [Peterson and Silberschatz 85]. The core of the blackhoard architecture

is the control mechanism which mediates between the subprocesses (global datahase and

design knowledge modules) competing for processing resources, and controls their

execution. Il is similar to the kemel whose main function is to provide file systems,

scheduling, synchronization, and communication mechanisms for the various processes.

Similar to "interrupt-driven" mechanisms in operating systems, the knowledge sources

respond opportunistically to the changes on the global database in a blackboard system.

Designing is an opportunistic process and is accomplished at various levels of

abstraction. BBCAD is an example of exploring the utility of the blackboard model in the

area of electrical machines design. Design problems have large solution spaces and

require many, diverse cooperating design tools. The major difficulty with these design

problems might lie in the designer's Iimited understanding of how to represent and reason

about spatial relationships. If the initial organization of the knowledge spaces is wrong,

then modifications result in a rapid deterioration of the design structure. Like any

architecture, the blackboard model is not without faults. For certain types of design

problems with c10sely coupled reJationships, the "advantage" of modularity becomes li

drawback. The separation of components encouraged by modularity can tend to mask

these relationships. AIso, the blackboard control architecture may probably be

DDCAD
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inappropriate to huild high-performance application systems, because its decision making

speed, which may he too slow.

BBCAD runs on a single computer, but it is conceivable that the integration of

several processors could be a very important factor in improving the performance of

knowledge-based systems in electrical machine design. The BBCAD structure lends itself

to a certain amount of parallelism and can greatly gain from the presence of several

distributed processors.

•
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6.2 Suggestions for Future Research

As future work in the field of integration of design problem-solving, the following

are suggested:

- Create and integrate more design knowledge modules to fully compete and test the

conflict resolution strategy and the scheduling mechanism adopted in BBCAD.

- Investigate ways to model organizational structures for distributed design problem­

solving [Smith and Davis 81; Yang et al. 85), e.g., parallel processing [Fennell and

Lesser 77].

- Develop an inferential generator to manipulate the use of heuristics based on

knowledge captured during the "':f:sign iterative process, i.e., a model for learning.

- Find a formulation for mapping design applications onto the blackboard architecture.

1t is necessary to be able to decide whether the blackboard architecture is appropriate

for a specifie design problem.

- Formulate a formaI description, i.e. a methodology, for the blackboard architecture

based on ils similarities and equivalence with operating systems.
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APPENDIXA

Knowledge-Based Systems

This appendix attempts to provide a background on knowledge-based systems

(KBS) in engineering design.

A.l Basic Architecture

Knowledge-based systems are computer programs in which an attempt is made to

capture and render operable human knowledge about sorne domain [Buchanan and

Shortliffe 84]. The goal is to represent knowledge in such a way that it is comprehensible

to human and machine. A typicai structure of a KBS consists of an inference engine, a

knowledge base, and a workspace , as shown in Figure Al.

The knowledge base contains the basic (dec\arative) knowledge of the specific

domain, inc\uding facts, beliefs and heuristics, i.e. rules of thumb. The workspace, or

working memory, contains the specific problem data (supplied by the user or inf:::rred from

the knowledge base during a consultation) that retlect the current state of the problem

solution. The knowledge base builds up dynamically during the solution process of a

particular problem. The use of that knowledge is governed by a control strategy stored

in a separate inference engine. The inference engine incorporates reasoning methods, and

acts upon the input data and the information in the knowledge base to solve the problem.

Thus, the inference engine mechanism acts as the executive that runs the design system.

It performs actions that lead to a solution of the design problem, and at the same time,

may change the knowledge base by adding to or modifying the information contained
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therein. The inference mechanism oCten uses rules to infer new information about the

current state of the design [Dym and Levitt 91]. An explanation module produces

explanations of the inferences used by the knowledge-based system, such as why a certain

fact is requested, or how a conclusion was reached. A know/edge acquisition facility allows

the system to acquire more knowledge about the problem domain from knowledge

engineers - experts. The user interface (1/0 facilities) allows the user to communicate with

the system. It usually provides a command language for directing the execution of the

system. It is responsible for translating the input as specified by the user into the form

used by the knowledge base.
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Knowledge-based systems are problem-solving programs whose performance

depends strongly on the use of facts thm express valid propositions, heuristics that expœss

rules of good judgement in situations where valid algorithms generally do not exist ­

norrnally performed by an expert, and beliefs Ihat express plausible propositions [Mitlal

and Araya 86]. KBSs reason 10 solve design problems by generating and lesting ail

possibilities until a solution is found. Usually, solutions involve applying heuristic mIes 10

given data in order to deduce logical or probable consequences and prove that these

consequences satisfy the goal. Sorne of them have been specifically developed to deal with

iII-structured problems (uncertain, incomplete, inexact and unformalized problems). In

contrast to algorithmic programs which follow step-by-step procedures, KBS are free to

search through and reason about the knowledge in order to reach a goal.

•
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A.I.I Advantages

Building a KBS to aid the design process can be approachl"d by building individual

modules to handle problems posed in the various components of the design. The resulting

modules are integrated so that results can be communicated and the overail process can

be repeated as designs are refined and improved. The following is a list of advantages

when using KBS for perforrning symbolic manipulation procedures in BBCAD:

• Ease of development and maintenance: the modular nature of the language used

[GoldWorks 87; Winston and Horn 84] allows f1exibility for exploring variations,

experimenting, etc., whilst the symbolic, interactive, and high-Ievel features of BBCAD

allow the designer to expand the design after the prototype stage.

• Friendly environment: due to the symbolic nature of the expert system shell used

[GoldWorks 87], implementation of an intelligent, friendly, and personalized user

interface for BBCAO was made possible and easier.
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• Rcpresentational advantages: knowledge is programmed explicitly. Self-understanding

and expianation are made possible to follow, e.g. rule justification. Meta-knowledge is

subject to easy change and modification. When improving the design process only the

knowledge is modified, not the inference mechanism.

• Rapid checking of design concepts allows more alternatives to he considered in a short

time period and permits easier incremental improvement to the design.

KBSs are also typified by a collection of other properties, many of which are

detailed in [Rychener 88]. The general techniques which have been developed in artificial

intelligence research [Barr and Feigenbaum 81, V.1] provide many of the basic tools

[Winston and Horn 84; Steele 84] necessary for KBSs in engineering design.

•
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•
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APPENDIxn

B1aekhoard Systems

This appendix attempts ta provide a background on the blacklmard architecturc

and reflects on the use of this architecture in engineering design. lt also prcscnts an

overview of variations derived l'rom the formai descriptions of a number of intlucnlial

blackboard architectures. Figure 1 of [Nii 86(a)], August 1986, shows a general chronology

and intellectuallineage of the various applications and skeletal systems. lt also includes

sorne of the "better-known" and documented systems.
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Figure B.I: A Typical Blackboard Madel
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The blackboard model [Lesser et al. 75; Nii and Aiello 79; Nii 86(a)] consists of

three major components, as shown in Figure B.1:

1. The Blackboard - knowledge storage and communication: the blackboard is the source

of ail the data structures on which design knowledge modules, i.e. knowledge sources,

operate, and the destination for ail conclusions l'rom knowledge modules, thus it

represents the task domain. The blackboard data structure is often referred to simply

as tire blackboard. It represents the channel through which the design modules

communicate their findings to each other. The data structures used for the blackboard

is influenced by the design problem.

2. Knowledge Sources (KS) - specialist: the KSs represent expertise about sorne aspect of

the design problem. They contain the knowledge of the task domain pertaining ta the

problem being solved. Each KS contributes information that leads ta the current state

of the design. Whatever form of representation (e.g., frame, rules, logical relationships,

etc.) is used within a KS, however, the knowledge reflects an action, i.e. a change ta the

bJackboard, under appropriate circumstances. By definition, KSs only modify the

blackboard data structure and cause state transitions.

3. Control - problem-solving strategy: the control component contains the mechanism that

influences the selection and execution, i.e. firing, of the KSs from among those qualified,

and allows the specialist to place numerous data on the blackboard. Il guides the

design process by choosing and then activating appropriate KSs. Control is based on

opportunistic reasoning that can apply KSs in either a forward or backward direction,

or a combination of both.

The blackboard model provides a way in connecti'lg individual separate pieces of

design tools into a large intelligent program. These design tools are stored in independent
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modules, each of which monitors a small region of the design space and is lIctivated on\y

when the tool is needed in the process. The blackboard model serves as an excellent

integration framework for combining diverse expertise (dissimilar pieces of code) lInd

problem-solving techniques in the design process. The model is analogous ta a committee

of designers standing around a blackboard; each is able ta read everything that is on it,

and ta decide when he or she has something worthwhile ta add ta the design space.

The blackboard paradigm is a powerful technique for implementing appiications

requiring multilevel reasoning, flexible control, or the inte&ration of diverse problem

solving expertise into a common framework [Nii 86(a)]. Thus, it is noted that some of the

blackboard architectures are used as blackboard frameworks (BBI [Hayes-Roth 85(a)],

GBB [Corkill et al. 86], and ATOME [Laâsri and Maître 89]), while others occur as

blackboard applications (HEARSAy [Lesser et al. 75; Lesser and Erman 77]; DECADE

[Banares-Alcântara et al. 87; 88(b)]. Typically blackboard frameworks allow more

variation of their components than blackboard applications, where for most aspects a

choice has been made for a specific option.

•

•

Appendilt B. Blaekboard Systems l~()

•

B.2 Options and Variations in Blackboard Systems

Although a blackboard concept was documented in Artificial Intelligence (AI)

Iiterature as early as 1962 by Newell [NeweIl62], it was implemented as a system a decade

later by people working on the HEARSAy speech-understanding project. This section

presents an overview of options and variations derived from the formai descriptions of

existing blackboard architectures. In [Velthuijsen and Braspenning 91], the authors

developed a formaI description of blackboard architectures and used this formalisation ta

describe a number of rather influential blackboard architectures. The Iist of examined

blackboard architectures is not complete. A complete analysis of ail existing blackboard

architecture is obviously beyond the scope of this thesis.
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B.2.1 Blackboon!
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ln early blackboard systems, the structure and organisation of blackboard contents

were subdivided into differel1t levels, i.e. dimensions, or ordered sets of levels, i.e. panels.

HEARSAy [Lesser and Erman 77] levels are ordered in a loose hierarchy (problem­

specifie), and are divided by time, representing the temporal order of the utterance being

examined [Erman et al. 80), and DVMT [Lesser and Corkill 83] uses an abstraction

hierarchy between the different panels. At a later implementation, this kind of

organisation was extended towards further specialization in the form of named structures

(such as de[slmets [Nii and Aeillo 79]), classes, i.e. frames/objects, in a c1ass hierarchy (e.g.,

GBB [Corkill et al. 86], ATOME [Laâsri and Maître 89], CAGE [Aiello 86], POLIGON

[Nii 86(b); Engelmore and Morgan 88, Chapter 25; Jagannathan et al. 89, Chapters 7 and

18]), and even a relational database (HEARSAY-III [Errnan et al. 81]). The basic units,

i.e. elements, containing the information on the blackboard are either dala types (e.g.,

HASP/SIAP [Nii et al. 82]), sets of allribute-value pairs (e.g., AGE [Nii and Aiello 79]), or

hierarchically ordered elements (GBB units are ordered according to dimensions according

to their attributes). Certain blackboard architectures provide facilities for representing

links as attributes of units, i.e. semantic nets. Explicit representation of direeted (AGE,

CAGE, and HASP/SIAP) or labelled (GBB, ATOME) links facilitate their use in

consistency maintenance and in event specifications.

B.2.2 Knowledge Sources (KS)

This section addresses the variation of KSs with respect to the following

components: KS descriptors, instantiations, condition parts, and action parts.

The mast simple information kept about a KS in a KS descriptor is a name (e.g.

BBCAD uses Idraw2d" as a design knowledge module descriptor). However, in most
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blackboard architectures more information about a KS is represented. This information

can he subdivided into knowledge about how the binding of a KS with the context in which

it œcame applicable occurs, and knowledge that can he used for control. Binding OCClIrS

upon instantiation and execution of immediate code, e.g. HEARSAY-III, or by the

precondition of a KS, e.g BBI. A precondition is that part of a KS that determines

applicability of the KS by using blackboard state knowledge solely. The results are stored

in special data structures representing an instantiation (stimulus frames and response

frames in HEARSAY-II, or KS activation records (KSAR) in BBl).

A subdivision of the condition part is made into a trigger (specifying evellts, lists of

tokens in the case of AGE and CAGE) and a precondition (specifying states, rules or

procedures as in BBCAD). Most blackboard architectures allow either rules or

procedures as the action part of KSs. The extensions here are BBCAD and HASP/SIAP

where rules, procedures and frames can he used for the action parts. In AGE, CAGE,

and BBI the way in which rules are fired can he specified by the user. CAGE went one

step further by allowing the user to specify when rules, clauses in rules, and statements

within clauses can he evaluated in parallel.

•
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B.2.3 Control Mechanism

The variation of the control mechanism addresses the following aspects: basic cycle

(control vs. KS), concurrency, matching, selection, and stopping criterion.

- Basic cycle: the control loop is formed by a cyclic recurrence of the following

steps: examination of the state of the blackboard, determination of applicability of KSs in

view of the current state, and execution of the applicable (if any) KSs. BBCAD, BB1,

AGE, HASP/SIAP, and GBB use a control cycle mechanism. The KS loop is formed

when the design modules perform a cycle of alternately monitoring the blackboard for

BBCAO



opportunities specified by activation-patterns, and contributing to the design process when

a situation has occurred. When such an activation-pattern occurs the associated function

is executed immediately. AGORA [Bisiani et al. 87] and POLIGON [Nii 86(b)], where

control is not an issue, are more reminiscent of the original blackboard metaphor than

many blackboard architectures in the sense that KS instantiations monitor the blackboard

for opportunities.

- Concurrency: the control becomes more complicated when dealing with

concurrent blackboard systems. The distinction is made here between paraI/el and

distributed blackboard architectures. Parallel blackboard architectures are characterized

by a shared-memory blackboard and concurrently executed KSs (e.g. CAGE and

POLIGON). In CAGE the execution of KSs can he synchronized. In a distributed

blackboard architecture, each node has a separate local blackboard containing objects

created locally as weil as copies of objects received from other processing nodes (Chapter

6 of [Jagannathan et al. 89]). Because of the independence of knowledge modules,

parallel processing can be achieved by having several triggered knowledge tasks ail

executing in parallel on separate processors. AIthough many of the same problems which

haunt other parallel and distributed applications are of concem here as weil, the overaIl

architecture of the blackboard model is at least supportive of a parallel processing

approach [Corkill and Lesser 83].

•

•

Appcndix B. Blackboard Systems 123

•

- Matching: a distinction is made hetween blackboard architectures which take

events and try to match these with the KSs in the system (event-based matching, e.g. BBl,

GBB, AGE) and blackboard architectures which consider KSs and search for events that

match (periodically) the KSs (KS·based matching, case of CAGE) for determining the

applicability of the KSs.

- Selection: the KS selection is a mapping determining a subset from an existing set

of KS instantiations. This is associated with the kind and amount of knowledge used for
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selecting activities for execution. BBCAD uses a priority calculation for ail KSARs based

on the ratings (strategy, JOCl/S, and po/icy levels [Hayes-Roth 85(a))) and a rule for

integrating these ratings. Examples of selection mapping with restricted domains are: (i)

select that KSAR whose corresponding KS has the highest priority, i.e. a simple best-firsl

strategy, (ii) select that KSAR most recently generated, i.e. a depth-first strategy, and (iii)

a select that KSAR generated earlier during the problem-solving process, i.e. breadth-first

strategy. HASP/SIAP, AGE, and CAGE employed a blackboarrl-based selection of

activities, i.e. event-driven, where events are changes to blackboard levels. Blackboard­

based selection uses mainly knowledge currently present on the blackboard.

- Stopping criterion: most blackboard architectures hait automatically when there

are no more applicable KSs and no KS is being executed. BBCAD includes li procedure

in the control cycle for deciding whether a certain stop criterion has been met. In AGE

and CAGE, this stop criterion is formulated in terms of the contents of the blackboard.

HEARSAY-II has a special KS that can discourage pending activities and is invoked when

an interpretation on the highest level emerges, effectively clearing the queues (KS lIctions)

and thus halting the problem-solving process.

•
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APPENDIXC

Language Review

There are many possible implementation procedures available inside the

knowledge-based system domain (also refer to [Baiiares-A1cântara et al. 87]). These may

be grouped into:

C.l General Purpose Programming Languages:

A knowledge-based system may be built using a general purpose programming

language. Although in principle any language can be used, only few are convenient

because of their tlexibility, appropriateness, availability, and portability:

• LISP and dialects [Winston and Hom 84] (e.g. FRANZ LISP, INTERLISP,

COMMONLISP, SUNLISP, etc.).

• PROLOG [Clocksin and Mellish 85].

• C+ + [Stroustrup 86], C [Kernighan and Ritchie 78].

• FORTRAN [Katzan 78].

• PASCAL [Jensen and Wirth 74], etc.

Lisp has been widely used for most the work in artificial intelligence. AIthough

terms (symbolic expressions) have no direct meaning in Lisp, the Lisp program can

manipulate such expressions. Most Lisp systems are interpreted and therefore provide an

interactive environment for the development of Lisp code, which greatly facilitates the

development of knowledge-based systems.
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C.2 General Purpose Representation Languages:

1~6

•

•

A general purpose representation language is a programming language developed

specifically for knowledge engineering. These languages provide constructs that aid in the

development of a knowledge-based system that do not exist in conventional progrumming

languages. Some of these are simply expert system shells (e.g. an inference mechanisll1

with an empty knowledge-base). Usually a knowledge acquisition module is available 10

assist in developing the knowledge-base and to structure the context for a particular

application domain Such examples as:

• GWII [GoldWorks 87]: hybrid knowledge-based expert system development tool based

on rules and frames built on the top of Common Lisp.

• OPS5 [Forgy 81]: rule-based representation language built on the top of LISP to

facilitate the use of production rules.

• Knowledge Craft [Knowledge Craft 85] by the Carnegie Group: frame-based knowledge

representation language with procedural attachment and inheritance.

• SRL [Wright and Fox 83]: the Schema Representation Language provides specialized

constructs for the representation knowledge.

• HEARSAY-III [Erman et al. 81]: programming tool designed for representing and

applying diverse sources of knowledge to a problem area. It provides primitives for

developing a blackboard data structure which would he accessed, and used by the

knowledge sources.

C.3 Skeletal Systems:

They are knowledge-based systems which originated from previously built systems

[Nii 86(a)]. One common practice is to generalize a successful knowledge-based system
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and to try to make it domain-independent, using this generalization in the construction of

a new system. Most knowledge-based systems were developed from domain dependent

syste.ms by stripping out the original knowledge base. In general their convenience is

directly proportiona1to the similarity of the original design and the proposed new concept.

These skcletal systems consist of the basic system module from which application systems

can he built by the addition of knowledge and the specification of control

(mctaknowledge) [Nii 86 (a)], i.e. expert system development tools. Examples include (...

indicates building application from skeletal system):

•
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• MYCIN [Davis et al. 77] ... EMYCIN [vanMelle et al. 81] ... PUFF [Feigenbaum 77]

• AGE·I [Nii and Aeillo 79] HANNIBAL [Brown and Buckman 82]

• AGE·I [Nii and Aeillo 79] BBI [Hayes-Roth 85(a)]

• BBI [Hayes-Roth 85(a)] ... PROTEAN [Hayes-Roth et al. 86]

• GBB [Corkill et al. 86] ... GBBI [Corkill et al. 87]

• BBI [Hayes-Roth 85(a)] ... ATOME [Laâsri and Maître 89]

The use of an available knowledge-based skeletal system can greatly facilitate the

development of new systems since many of the representation issues and control strategy

decisions are already incorporated in the modeI. The use of a such systems, as opposed

to a general programming or representation language, involves a certain loss of generality.

However, it provides the advantage of building a complete system with knowledge

acquisition and explanation facilities in relatively little time.
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APPENDIXD

Prionty Ratings

The Table D.1 below shows the various instances with the corresponding weight

values and the weight factor of the competence slots. Figure D.1 shows an instance of the

'colltroCdb' frame, where the slot-values of the slots weight, competence, and the goal

( /, ) are shown below in Table D.l. The 'ùltegratioll_rnle' frame, shown in Figure D.2,

binds the corresponding competence slot-value to a weighting factor that is used ta

calculate the priority value for a design module.

Table D.1: Weight table for priority calculation

1

Instance

1

/, Weight Competence Weight Factor

focus_1 ~ 0.25 10 c1ass 1 1

focus 2 ~ 0.45 20 c1ass 2 2

focus 3 ~ 0.65 30 c1ass 3 3

focus 4 ~ 0.85 40 c1ass 4 4

focus_action - 100 domain_ks_foeus 1

focus_control - 10 conlrol_ks_foeus 3
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To determine the priority value for the design knowledge module "draw2d"

(Equation 3.1 of Chapter 3), it is first necessary to find ail the instances of the frame

'controtdb' with the "focus" as the decision_type slot value, that are less than the efficiency

slot value 0.90. Once these are determined, the corresponding weight and weight factor

are multiplied, and then the results are added to determine the priority value for the

knowledge source.

•

•

•

Appendix D. Priority Ratings

Since 0.90 is greater than ail the J. , then the end result is:

priority for "draw2d" = (10xI) + (20x2) + (3Ox3) + (4Ox4) = 300

(delIne-lr1atance locus_1 (:prlnt·name 'locus_l'
:doc-etrlng .....
:Ia control_db)

(competence clasa_1l
(criterlon (Instance cunent_cycle la cycles wlth value ?cycle)

(= ?cycle 'number_oOcs') )
(declslon_type locus)
(goal (Instance ?ksar la ksar wlth emclency ?emc)

(> = ?emc .25) )
(stetus ective)
(welght 10) )

Figure D.I: Example of the decision_type focus_l instance

(deIIne-lrame Integration_rule (:prlnt·name ~lntegration_rule'

:doc-strlng 'Blndlng Integration_rule to welght factors'
:Ia dete_structure)

(l1st_ol_welghls :multlvelued t
:constrelnls (:Usp-type lIst» ) :end dellne·rrame

Figure D.2: Integration_fUIe frame
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Rule Constmcts

RULE: DRAW2D_RULEI
Doc String: 'action rulea'
Explanatlon String: 'Draw2D la the dran!ng pre,proce&llOr,

where the basic geometry la entered.'
Priority: 600 ;==> hlgheat FIFO
direction: :FORWARD
dependency: nU
Sponaor: ACTlON_RULES ;==> FIFO

IF (INSTANCE STEP IS STEPS WITH MODULE ll.7)
(UNKNOWN (INSTANCE DRAW2D IS KSlIR))
(INSTANCETO_DO_SET_RULE ISTO_DO_SETWlTHCHOOSEN_AC'I'IONKSlIR_DRAW2D)
(INSTANCE KSlIR_DRAW2D IS KSlIR WITH·UNKNOWN STATE FIRED)
(INSTANCE ?KSlIR_DRAW2D IS KSlIR WITH KS_NAME DRAW2D)
(INSTANCE DRAW2D IS KS)

THEN (INSTANCE RULE_KSlIR_C'iCLES IS VARIllBLE
WITH NAME KSlIR_DRAW2D
WITH CY_VALUE (E'lALUATE (SLO'r·VALUE 'CURRENT_C'iCLE 'VALUE)))

(E'lALUATE (SETF (SLOT·VALUE 'OUT_WINDOW 'DISPLltY)
(FORMAT NIL ,-&Runnlng Draw2d')))

(E'lALUATE (FORMAT 'FILrtOUT' ,-&Runnlng Draw2D l'))
(E'lALUATE (RUN_DRAW2D))
(INSTANCE ?KSlIR_DRAW2D IS KSlIR

WITH KS_NAME DRAW2D
WITH STATE FIRED)

Figure E,l: Example of a production rule (draw2d)

The rule name, DRAW2D_RULE1 of Figure E.1, is obtained by concatenating the

design module's name, DRAW2D, and the appropriate symbol of the rule's type, RULEl.

The following keywords are used to assign attributes:

- ":doc-string" is used to document the purpose of the rule and its relationships to other

rules in the design process. This string defaults to the rule's type•

• ":priority" is an integer between -1000 and +1000, inclusive, that indicates the priority
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• ":explanation-string" consists of the explanations that are generated when asking why

something is true. This string is user defined. It is put into the slot explain_action of

the frame 'ks', defined in Chapter 3.

The antecedent part of this rule construct has a multitude of conditions. For it to

Cire, ail the conditions set forth in the antecedent must be satisfied, thereby making the

consequent true. The generated rule is shawn in Figure E.l.

nf the rule relative tn nther rules in the design. In the BBCAD design system, the rules

default to a priority value, except for the action rules where the priorities are set by the

user. They are used to give different ranks ta different ruIes of the same design module.

• ":djrectjon" indicates ta the inference engine what kind of chaining ta do with this rule.

Its default value is defined as forward chaining.

• ":dependency" creates a justification structure for the new assertions a..d values it

asserts, if the rule runs in a forward direction. If the rule has dependency nil, then it

is astate rule, and is not part of the justification of values and assertions asserted in the

consequent.

• ":sponsor" refers ta the sponsor abject ta which this particular rule is assigned; its name

is unique and depends on the rule's type. They are used ta control the execution of the

rules by having different levels of abstraction.

•

•

•
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APPENDIXF

Implementation and User Interface

This appendix deals with more specific details of the implementation of the

BBCAO blackboard system for engineering design. A description of the computer

languages and of several alternative ways of communicating these languages that were

used is presented. The interaction with the user and a front·end facilities are also a

subject of this appendix.

F.l Implementation

There are many possible implementation approaches available in the knowledge·

based systems domain. Their choice depends on the basic approach taken. Aside from

the approaches described in Appendix C of Chapter 2, other elements affect the choice

of implementation, and these elements could prove to be even more important than those

aforementioned. They include the type of design problem to be solved, the desired

capabilities of the knowledge-based system, and the availability of the selected tools.

Three approaches are used for the implementation of BBCAO: GoldWorks, for the

implementation of frames, and rules; Golden Common Lisp (GCLlSP) the platform upon

which GoldWorks is based; and Sun Common Lisp.

F.2 Languages used

The following sections examine in sorne detail the languages used in implementing

the design of BBCAO, and the approaches needed to construct the design modules:
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F.2.1 GoldWorks

GoldWorks [GoldWorks 87] is a hybrid expert system development tool. It runs

in a windows environment and provides a set of advanced integrated software

development techniques which helped in the development of BBCAD. The information

in GoldWorks is structured in a network representation called a lattice. The lattice is

composed of frames and imlallces. Frames are the mechanism for structuring data and

are used ta describe a general class of abjects. Siots are used ta describe the attributes

of those abjects. Instances of a frame represent specifie abjects. They have the same slots

as the associated frame, but these instances hold values in the slots. The GoldWorks

lattice supports ù,lzeritallce, sa that a frame inherits ail slots from its parent frames and

ancestors, and passes on ail its slots ta its child frames. In addition, it gives the capability

ta define local slots for each frame ta be able ta define any attributes particular ta the

class of abjects the frame represents.

•
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F.2.2 Golden Common Lisp

The Golden Common LISP Developer (GCLISP Developer) [GoldWorks 87],

serves as the programming language platforrn for GoldWorks. Il can he used from within

GoldWorks, or function independently as a Lisp programming facility [Winston and Hom

84]. Il provides the power of a full Common Lisp [Steele 84]. Common Lisp is a

function, or applicable language; that is, it exchanges data by using retum values rather

than temporary storage. It has two salient features: a list·based representation of data and

an evaluator, or interpreter, that treats some lists as programs. Lisp functions are

equivalent to subroutines or procedures in other languages. In contrast to most other

languages, Lisp functions can create and retum arbitrary data objects as their values.

These data objects can then be passed as arguments to other functions.
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F.2.3 Sun Common Lisp

Sun Common Lisp [SCL 88] is a complete implementation of the Common Lisp

language. It includes ail the Common Lisp functions, constants, variables, macros, and

special forms. In addition, Sun Common Lisp provides many functions as extensions to

Common Lisp and as enhancements to the user environment. It also includes an extensive

set of advanced tools and features, such as the foreign function interface, and the function

run·program. BBCAD uses the run-program to cali executable programs l'rom Lisp. The

run-program runs UNIX programs l'rom inside the Lisp environment, and these progrmns

start up as separate processes. Thus, communication is limited to the standard input and

standard output streams, and files.

F.3 Communications among Languages

The use of an appropriate language for each design tool during the design process

of a problem is important. Since more than one language is used in the BBCAD design,

it is necessary to establish communication among them. This section addresses the

techniques and implementation issues that have been confronted in building BBCAD. 1t

is divided in two sub-sections: the communication among symbolic languages, and the

communication between symbolic and numerical languages.

F.3.1 Couplings among Symbolic Languages

The design modules and control knowledge sources (metaknowledge) are based on

the GoldWorks lattice structure. They both use the frame as the basic knowledge

definition. The slot values are lists of patterns and procedures which are defined in a

programming language, and that language is Common Lisp. The Common Lisp language

was useful for creating Lisp function relations, daemons, and handlers.
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(d8Iln&-lnBtanœ lowJ'rio
(:prinl·name 10wJ'rio'
:doc·string 'Control Knowledge Source'
:IB control_db)

(decision_type poUcy)
(goal (blnd ?ps1rB (sortJ'riority_trlgJnvoc '< 'prlorlty) )

(blnd ?ksarl (cadr ?ps1rB))
(blnd ?prlol (car ?ps1rB))
(varlable·bound·p ?prlol)
(Instance ?1œar2 lB ksar with stalus Irlg_and_1nvoc

wilh prlorlty ?prlo2)
(equal·lnslancee ?lœar2 ?ksarl)
(= ?prlo2 ?prlol) )

(status aCIIve)
(walght 5) ); end deDIte·lnslance

Figure F.I: A Policy decision type Control KS
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Lisp function relations are used as predicates in rules. The Iisp function relation

"(eqlla/-illslallces ?ksar2 ?ksarl)" of the slot goal in Figure F.I, verifies whether the two

variables are the same instance.

Daemons perform various operational activities when slot values change, i.e. take

care of procedural details and allow the overail program to be more c1early visualized.

Daemons are Iists of Lisp functions attached to the facet :when-modified of a slot (Figure

3.6 of Chapter 3). Whenever a value associated with a slot in an instance is changed (e.g.,

asserted, retracted, or modified), the when-modified daemon is only called once and the

Lisp functions are evaluated.

(serul-msg instance :handler larg}') (F.I)

•

Handlers are used to attach Lisp functions to frames for use in object-oriented

programming (see Chapter 3). The send-msg fonction, shown in statement (F.I), is used

to invoke the various defined handlers.
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F.3.2 Couplings between Symbolic and Numerical Languages

Most simulation tools are programs written in compiled languages (e.g., mainly

Fortran and C). It is essential ta communicate these programs with the BBCAD, which

is written in symbolic languages (e.g., Lisp and its dialects, and GoldWorks). Both

capabilities are necessary for engineering design; symbolic languages are extensively lIsed

ta represent heuristic expertise, while compiled languages are widely used for nllmerical

processing.

The problem in coupling languages consists of interfacing different pieces code.

The differences may consist of a combination of any of the following factors: parameter

structures, concepts, operating system, implementation language, physica! location of the

programs, and data transfer among programs. Since generally the tools that are ta be

coupled are already written, this may present a restriction in the integration. Il would be

desirable to make a minimum set of changes, preferably none, ta achieve the linkage. Sun

Common Lisp allows compiled versions of programs in other languages ta be treated as

callable functions.

F.4 User Interface

The user interface is the communication medium between the user and the

BBCAD blackboard system during the design process stages. An interactive interface

Iinked ta a knowledge representation and reasoning system will allow the user ta

cooperate with a knowledge-based system in a synergistic manner that utilises bath human

cognitive strengths and the abilities of computers to perform computation and display.

The BBCAD user interface consists of a graphical environment which contains multiple

scrollable pop-up windows, pull-down menus, dialog boxes and draggable icons. The user

input is through both the keyboard and the mouse. Although BBCAD has the capability
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reault_frame - user_information

- go switch

display_into - Result

•

•

- response
- comments 1+- INSTANCES --1

Figure F.2: Frames and instances of BBCAD user interface

of automating many phases of the design process, a user-friendly interface is very

importal1t in encouraging the user ta explore new alternative solutions and in visualizing

design layouts and results of analysis. The BBCAO system is implemented using the

GoldWorks Il shell on the SunOS 4/110 Release 4.1.1, running under X Windows

environment. A graphie front-end interface is implemented using the GoldWorks graphies

toolkit, ta make it easier for users ta load applications, ta enter the information that the

application requires, ta view activities, ta facilitate user interactions, ta pass information

messages between the design modules, and gives the power ta represent events occurring

in the application through various displays according ta the changes taking place.

Figure F.2 shows the top-Ievel frame and instances of the user interface system.

F.4.1 Front-End Interface

A graphie abject approach is used ta define images, screen layouts, popup menus,

and other elements of the BBCAO hybrid shell. The Graphies Toolkit of GoldWorks

includes predefined (generic) frames that define the different kinds of graphie abjects.

Instances of the generic frames, i.e. frames with valid data, produce the graphie abjects

in the BBCAO blackboard. The Graphies Toolkit handlers [GoldWorks 87] are used ta
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• IRunl 1Reset 1 IAPPlications

-Application Load:
.Qptlmlzer -MAGNET
-OPTDES -EXI
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-EXI

lEdit 1

KS:
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-Modlfy
·Delete

Rule:
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•

•

Figure F.3: BBCAO fronl-cnd pull·down menus

control the abjects while the design process is running.

The interface has the capabilities of editing (e.g., adding, modifying, and deleling),

viewing, saving, resetting, and clearing design modules, rules, instances, and frame

structures. Figure F.3 identifies ail the BBCAD front-end user interface pull·down menus,

and the last section of this Appendix details the user interface frame structures of the

BBCAD system.

F.4.2 User Interaction and Frame Structures

Interaction may occur directly between the user and events inside the BBCAD ­

design knowledge modules, and indirectly with the rest of the knowledge sources

comprising the BBCAD shell. The interaction may occur in many directions: the user

modifying the f10w of control of the design process by means of commands, prompting for

answers to questions, or popup menus from which to select choices; and the BBCAD

system informing the user oÏ important events or explaining decisions. The interaction

also arises in managing the initialization of the design process, the information on internai
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(a) Iscreen-layout 1 - bboard_screen
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[ screen_temp_display

(b) !screen-temPlate 1 -[WelCOme_form

screen_temp_modify

I+­
1 Frames ~l i+- Instances

Figure F.4: Screen layout and Screen template

.... 1
1

•

•

decisians of BBCAO, sueh as failure, success, and results of a design module. Design

modules are able ta provide explanations about their own structure and functionality. The

validity of the answer is checked and verified in the frame structure of the device, i.e.

through constraint facets.

The GoldWorks Graphies Toolkit which includes predefined frames that specify

different kinds of graphie abjects (e.g., screen layouts in Figure FA (a), images (e.g., screen

templates in Figure FA (b)), canvases in Figure F.s, and popup menus in Figure F.6), is

used ta build BBCAO.

BBCAO utilises a 'screen layout' window frame structure, shawn in Figure F.4 (a),

ta display the various canvases items and ta manage the user interface. The command

line items of the screen layout are utilized ta display the pull·down menus (Figure F.3),

ta cali functions or change slot values when selected. Instances of the frame image 'screen­

template' shawn in Figure FA (b), (e.g., IScreeIIJemp_display", IscreenJemp_modifY", and

"welcomeJorm"), are used ta arrange selectable items slat values and ta display ten

Ta display an image on a canvas, i.e. window abjects, the image must be attached

ta that canvas. Likewise, ta display a canvas on a screen layout, the eanvas must be

attaehed ta the sereen layout When a sereen layout is opened or c1osed, ail the eanvases
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popup-confirm
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popup-ask-user

_ c popu~- confirm_test
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- popup_choose_item
'---------~
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•
Frame ~I

1
1~
1 Child Frames ~I

1 Instances ~I
1

Figure F.6: Popup menus

attached to it are a1so opened or closed. Instances of the canvas frame, shown in

Figure F.S, are used to display user information and activities in the design process.

•

The popup menus (Figure F.6) prompts the user for more information and

instructions regarding the design knowledge modules. User inputs, i.e. values of instance

"ask_ks_name" (Figure F.6), are checked and verified against the constraints requirement.

BBCAD gives the user the choice of selecting one or more objects for processing, (e.g.,

''popup_choosejtem'' and ''popup_choose_objects'' shown in Figure F.6), and to confirm the

answer, (e.g. 'popup·con[um' frame of Figure F.6).
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BBCAD uses GoldWorks' specially defined handlers as the mechanism to

manipulate screen template, canvas, screen layout, and popup menu instances explained

above. Handlers are the named procedure that is attached to a frame. They are used to

scnd messages to instances of frames described. The message indicates the nature of

operation to perform on the instance. BBCAO implements the GoldWorks send.msg

function to send messages between the various deign modules. Its syntax is shown in

statement (F.I).

•

•

•
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