B4 National Library
E‘& of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions ol

Bibliographic Services Branch des services bibliographiques

395 Wellinglon Street
Otawa, Ontano
K 1A ON4 KA NS

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
RS.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rae Welington
Onawa {Ontanoy

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a laide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, ¢. C-30, et
ses amendements subséquents.

A Knowledge-Based System
for Integrating Design Tools

by

Raymond M. Sassine,
B.S.EE, M.S.EE, M.S.CS

A thesis submitted to the Facuity of Graduate Studies and
Research in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Computational Analysis and Design Laboratory

Department of Electrical Engineering
McGill University
Montréal, Québec, Canada
December, 1992

© Raymond M Sassine, 1992

Nationai Lib
Bl e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions el

Bibliographic Services Branch des services bibliographiques

335 Wellington Streel
Ottawa, Onlanio
K 1A ON4 K1A 0N

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or seli copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Welington
Ottawa (Ontano)

Your e Vot reIeee

(SR UL A AT

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
aufrement reproduits sans son
autorisation.

ISBN 0-315-87913-0

Canada

Abstract

The complete design of many electromagnetic devices requires the solution of a
coupled problem. Typically, the coupling is in the form of magnetic/thermal,
magnetic/structural, magnetic/electronic, or possibly a combination of several disciplines.
Computer based tools exist for many of these engineering specializations but they are
usually "stand-alone" and each requires an experienced designer to use it effeciively. This
requirement for an expert user places a major constraint on the design cycle, and a lack

ol communication between the various experts can result in major design errors.

This thesis proposes a software architecture that is capable of providing loose
coupiing between currently available design tools and of absorbing new tools in the future.
The structure provides an integration environment for a suite of design programs. The
environment automatically allows the iterative solution of coupled problems by loosely
coupling individual tools through a comprehensive database and organizing their execution
via a rule-based control program. In order to effectively integrate a diverse set of tools
and to define the kind of coupling between the various analyses, it is necessary that the
input and output requirements of each tool be carefully defined. The BlackBoard for
Computational Analysis and Design (BBCAD) is a hybrid knowledge-based system which
uses the blackboard architecture, and generates a systematic method of integrating the
"stand-alone" design tools, together with an automatic method of ensuring that, if a change

is made to the design, all the relevant design tools are re-run.

i BBCAD

Résumé

La conception ~2 plusicurs appareils électromagnétiques requiert la sofution d'un
probleme couplé. Typiquement, le couplage est sous forme magnétique/thermique,
magnétique/structurelle, magnélique/électronique, ou partois une combinaison de
nombreuses disciplines. Des outils informatiques existent dans plusicurs de ces champs
d’application, mais ils ne s’appliquent généralement qu’d une catégorie spéeifique de
problemes et chaque outils requierent l'intervention d’un concepteur expérimenté, Ce
besoin d’un spécialiste contraint le cycle de conception et un mangue de communication
entre les différents experts peut étre la cause d’erreurs de conception importantes.

Cette these propose une architecture pour logiciels, capable de fournir un
couplage sans contrainte entre les outils de conception présentement disponibles, ainsi
que d’intégrer de nouveaux outils & venir. La structure fournit un environnement
d’intégration pour une multitude de programmes de conception. Cet environnement
permet de résoudre automatiquement, par itérations, les problemes couplés en joignant
sans contrainte les outils individuels a I'aide d’'une base de données exhaustive ¢t en
orchestrant leur exécution par un programme de contrdle basé sur des regles. Pour
intégrer efficacement un ensemble d’outils et définir le type de couplage entre les diverses
analyses, il est nécessaire de détailler soigneusement les entrées et les sorties de chaque
outi. La méthode "Blackboard" d’analyse par calculs et de conception automatique
(BBCAD) est un systeme hybride & base de connaissances qui utilise Parchitecturce
"Blackboard” et génere une méthode systématique d’intégration des différents outils de
conception. Simultanément, cette méthode garantie qu'une medification & la conception

sera suivie par 'exécution des outils pertinents.

ii BBCAD

Acknowledgements

I am extremely grateful to Professor Dave A. Lowther, my research advisor, for his
[riendship, patience, encouragement, constructive criticism, and of course, technical support.
I am honoured to graduate under his guidance.

I wish to express grateful acknowledgement to Prof. P.P. Silvester for his inspiration,
the staff of Infolityca Inc. for their suppont, especially my ex-roommate the NewFoundlander
Craig Brett (alias Craigy), and Allan Kobelansky, the research director of Sun Canada
Microsystems Inc. in Montreal, for his willingness to provide software and other materials,
and of course, his friendship.

I wish to acknowledge two influential people in my life. My father, Maroun, departed
on February 4 1992, the time of writing up this thesis, and my uncle, Tannous, on January
2 1989, one month before my qualifier. I could not thank you enough for what you have
done for me.

To my mother, Souad, don’t worry; I will get you to this country. To my aunt, Salma,
I thank you for being a mother too.

The support of the Natural Sciences and Engineering Research Council of Canada,
Fonds pour la Formation de Chercheurs et I'Aide & la Recherche, the Centre de Recherche

Informatique de Montréal and Bell Northern Research is gratefully acknowledged.

i BBCAD

Table of Contents

Abstract i
RESUME i
Acknowledgements iii
Tableof Contents i i i, iv
CHAPTER 1
Introduction i i !
LI Introductiont ini it i e e e e 1
1.2 The Engineering Design Processvutiiiiii ittt ineennennnnn 2
1.3 Interdisciplinary Research and Development 6
1.4 A Role for Knowledpe-Based Systemsottt 7
1.5 A Role for Blackboard Architecture iiiiiiinn, 9
1.6 Scope and Motivations of this Research {
1.7 Approach and Contributions of this Research i3
171 Claims of Originality ittt i it e 14
1.8 Organization of this Thesis i i, 15
CHAPTER 2
An Architecture for Engineering Design 17
2.1 A Coupled Problem in Electromagnetic Design 18
22 Issues N DeSIEN .. e i ettt et 20
2.3 A Framework for Integration o i, 23
2.4 Hybrid Knowledge-Based Systems i, 25
2.41 Knowledge Representationcciiiiitiiieninnnnn 27
24 LT FIames .. .iii e e e e 28
2412 ProductionRules i e 30
2413 Procedures, e e 30
2.4.1.4 Semantic Networks it iiiniennnnn 31
2.4.2 Knowledge Abstraction it iiiineanrnnn. 32
2.43 Problem-Solving Methods i 33
244 Conclusions .. vuviint ittt e i e e e 34
2.5 Electromagnetic Device Designo, 35
2.6 BBCAD Framework and Knowledge Architecture 37
261 Knowledge Storageiiiiiii ittt e 37
2.6.2 Design Knowledge Architecture and KSs........................ 40

v BBCAD

Table of Contenis v

2.6.3 Control Knowledge Architecturet i, 43

2631 The Scheduler i i i e 45

264 ConclusionS i e e e 46

27 Implementation i i et e i e, 46
CHAPTER 3

Structure and Knowledge Organization 48

3.1 Characterization of BBCAD it i i it 49

3.2 System SIUCIUTE & o v i ittt ittt ettt se ittt 49

3.3 Structure and Typesof Knowledge 51

3.4 Knowledge Representation . ..o iiii ittt 53

3.4.1 Frame-based Representation oottty 53

3.4.1.1 Domain Specific Knowledge ooviiioi, 55

3.4.1.2 Domain control knowledge i i i 61

3.4.2 Rule-based Representationooiviin it ieai s 66

3.4.2.1 Rule Inferencingo ittt 66

3.42.2 Breadth-First Search it 68

3.4.3 Procedural Representationcooiiiiieeinnnnnsesiann 69
CHAPTER 4

Decision Analysis it i 71

4.1 BBCAD Orpganizational Levels00ttt iinnnanna, 71

4.2 Organization of the BBCAD Problem Solver oot 72

4.2.1 BBCAD Design Module Classifications vt 74

422 Rule Genmerationttt it e i i e e 78

4.2.2.1 Design Knowledge Module Rules 80

4.2.2.2 Control Knowledge Module Rulescoous, 82

4.3 BBCAD Inference in the Design Processcoiiiiiiiniiinnn. 84
CHAPTER 5

Application i, 88

5.1 An Implementation Definitiono il i, 89

S52Design Example e 93

5.2.1 Design Dependent Knowledge00 iiiuiennennn. 93

5.2.2 The Design Knowledge Moduleciiiiiiiniinnnn. 94

523 The Design Processvueeiiiiiiiiniiirieeeneneeneeannns 97

5.3 An approach for Design Optimization cooiiiia, 99

531 O0PTDES ...t i i it e e e e et e 100

53.20PTMAG ...t et et e 103

S 4 Variations . . .0t e e e et e 107

BBCAD

Table of Contents

vi
CHAPTER 6
Summary and Conclusions 109
6.1 Thesis SUMmMAryttt e i et e e {3
6.2 Suggestions for Future Researcho o o oo i 13
APPENDIX A
Knowledge-Based Systems i i L4
A1 Basic Architecturettt ittt i e ey 114
AL AVantages ...t iiiin i it i et e L6
APPENDIX B
Blackboard Systems i i e 118
B.1 Basic Architecture ittt ottt it 1Y
B.2 Options and Variations in Blackboard Systems 120
B2l Blackboard i i e et e 121
B.2.2 Knowledge Sources (KS) 121
B.2.3 Control Mechanism ittt it 122
APPENDIX C
Language Review i, 125
C.1 General Purpose Programming Languages oot vnnnn 125
C.2 General Purpose Representation Languages 126
C.3Skeletal Systems . oo v i ittt i e i e 126
APPENDIX D
Priority Ratings 128
APPENDIX E
Rule Construetscooiiiiiinniiiinrneiennnannns 130
APPENDIX F
Implementation and User Interface 132
F.lImplementationeiinniiiin ettt iennnnaeanesnns 132
F2Llanguagesusedciuitiiiniinnieiiiiniinnernnnnannnns 132
F21GoldWorksciiiiniiiiiiiiiniiiiiininennannnnnens 133
F.22 Golden Common Lispottt 133
F23S8un Common Lisp ..o oottt iie i e e e 134

BBCAD

Table of Contents vii

.3 Communications among Languages . ..o o it i i 134
F.3.1 Couplings among Symbolic Languages i 134
F.3.2 Couplings between Symbolic and Numerical Languages 136

Fid Userlnterface ..o it i i i i i i 136
F.4.1 Front-End Intertace N e ceeeee. 137
F.4.2 User Interaction and Frame Structureso o0t ... 138

References et 142

BBCAD

CHAPTER 1

Introduction

1.1 Introduction

Many large, complex electrical engineering design tasks require the use of a
considerable number of existing inter-related design tools. They typically perform
computational functions such as simulation modeling, i.c. the process of exercising the
model and obtaining some results, dynamic analysis, and optimization. Many of these
design tools are "stand-alone" and require an experienced designer to use them eftectively,
It is becoming more and more important that a systematic method of integrating these
design tools be developed, together with an automatic method of managing the design
process, and ensuring that, if a change is made to the design, all the relevant tools are re-
run. Thus integrating the different parts of the design process into a tully automated
system can often increase the quality of the results and avoid the need for human

intervention.

In order to integrate a diverse set of electrical engineering design tools efiectively
and to provide a form of weak coupling between the various analyses, the input and
output requirements of each tool must be carefully defined. Because of the complexity
of the interrelationships among the design tools, numerous delays and errors occur during
their integration. These delays and errors can increase costs, cause scheduling crises and
reduce design quality. The result is that the current approach for the solution of electrical
engineering design problems has been the combination of fully automated tasks, and a set

of symbolic or heuristic tasks, that are performed by the engineer.

Recent advances in knowledge-based system design have provided some of the tools

1 BBCAD

Chapter 1. Introduction

(3%

Windings Mr G

Figure 1.1: C-corc Magnet model

necessary to overcome these difficulties, thus solving electrical engineering design
problems. A hybrid Knowledge-Based System (KBS) is most convenient for this purpose.
There is a large set of KBS architectures being developed and tested [Maher 88; Mittal
and Araya 86; Sriram et al. 89; pp.15-16 of Dym and Levitt 91], the most notable of which
is a hybrid system known as The Blackboard Model Architecture. This thesis is intended
to investigate the application of this architecture to the integration problem in
electromagnetic device design. A C-core device madel, shown in Figure 1.1, will be carried

right through the treatise to help illustrate the concepts.

1.2 The Engineering Design Process

Engineering design is the creative process which follows the identification of a need
for a device that satisfies the design requirements [Gregory 66}, for example, an electrical
machine - motor, generator, transformer. The process varies widely depending on the size,
maturity and specification of a particular need. As shown in Figure 1.2, the traditional
subparts of the engineering design process are a combination of encoded routines, and

symbolic problem-solving. Thus, the process of designing requires the use of many

BBCAD

Chapter 1. Introduction Kl

COMPARE
START RECOGNIZE EVALUATE

ropose ral whatever basis Is resubts for
nlr)ed\g:s :ge::s;:tisfy possible choosen method

ITERATE

Wiﬂ:'eseneral method and results
defi ask If needs and methods
were correctly identified at first,
Correct these factors and reevaluate.
Cycle until further changs have
negligible effect. (Optimization)

Figure 1.2: Engincering Design Process

strategies. The general pattern in engineering design (Figure 1.2) consists of preparation,
gathering information, incubation, verification and finally communication [Gibson 68]. It
is an iterative and incremental process as demonstrated in Figure 1.3. The design task
consists of generate-test-refine processes. It involves the modification, refinement,
enhancement and combination of existing solutions into a new hybrid solution that satisfics
the given design device requirement [Gero et al. 88]. The designer uses a variety of
cognitive operators to generate a design, test it under specific conditions and refine it until
a stopping criterion is reached. The design process can be characterized as a cycle of
levels in which a new model of the design or a part of the design is generated at each level
(Figure 1.4). Although the design process proceeds in stages (Chapter 1 of [Brett 90]),
these stages are not clearly delineated nor are they necessarily performed sequentially.
Thus, the design problem is formally a search problem in a large space for objects that

satisfy multiple constraints.

BBCAD

Chapter 1. Introduction 4

[

-~ T

General '
(Information)
——____
/"’--—-N\\‘ '
Specific Design
Infgrmatlon y — Operation Cutcome
S e

Figure 1.3: Basic Module in the Design Process

Engineering design is a problem-solving activity of optimization but in an under-
specified system. It is inherently iterative and interactive, utilizing analysis, synthesis and
evaluation [Rychener 88]. In an interactive engineering design system, the program
module and the designer (user) work together on the design synthesis task which requires
methods of quantitative and qualitative reasoning [DeMori and Prager 90; Brett at al. 90].
This dictates that they share a common knowledge of the goal of the design task, the
strategy they are pursuing to achieve the goal, and the current state of their effort to
execute the strategy. For the development of such a program modaule, the designer must
have computer models of human thinking (cognitive model): what he or she knows, what
he or she is trying to find out, and what he or she is trying to do. Also, a discourse must
be planned by which the program module may gain information from the user, and relate

to the user the important knowledge developed. It is crucial for the success of this

BBCAD

Chapter 1. Introduction

Specification)___,| Generate __{ Test],A _____ ,‘ Refine ‘ Model
— e e Sl _../

Validate](__.________.__ e

Figure 1.4: The design cycle

approach that the design strategy being employed by the program module be
comprehensible to the user. It is essential that there be a real-time critic of the design
being developed, and of the design strategy being employed by the user. The system
should also be capable of interactive justification and explanation of design decisions and

analysis results.

Design knowledge is dvnamic. As a design progresses from the early stages of
requirement formulation towards the detailed design, the knowledge grows not just in
volume but in complexity. Growth in complexity means that dependencies, constraints and
interrelations missing at early stages are inserted throughout the design information.
Design knowledge also undergoes changes in status, quality and consistency. Status defines
knowledge by labels such as: assumed, factual, validated, proved, checked, etc. Quality
change means that the knowledge may pass through different levels of confidence, from
preliminary estimate to final analysis results. Consistency refers to the different sets of
constraints that the design must satisfy [Saldanha and Lowther 86; Brett et al. 90]. Thus,
engineering knowledge must meet a high standard of integrity and robustness. [t must
satisfy constraints imposed by the laws of physics and chemistry, and must also conform

to the engineering standards specific to each discipline.

BBCAD

Chapter 1. Introduction 6

Knawledge-based systems provide some of the capabilities outlined above, and can
make significant contributions toward the automation of electrical engineering design. A

description of KBS architectures can be found in Appendix A.

1.3 Interdisciplinary Research and Development

More recently, the formalization, representation, and manipulation of knowledge
in computers has made it possible to construct knowledge-based design systems [Coyne

et al. 90].

Over the last few years, many researchers in Artificial Intelligence (Al) have come
face to tace with the task of trying to formalize problems in order to produce intelligent
problem-solvers. Design problems have proved especially difficult. Simon [Simon 69]
characterizes design as an ill-structured problem, i.e. one which does not have a clearly
defined algorithmic solution, which is difficuit to formalize and thus difficult to solve.
Advances in computers and engineering design methodologies led to an extensive use of
computers in Computational Analysis and Design (CAD). However, the involvement of
computers in engineering design has been very much limited to fast "number crunching",
i.e. to algorithmic solutions, such as finite-element methods. However, developments in
Al techniques, in particular the KBS technology, have made it possible for computer
programs to simulate human expertise during the problem-solving process. The KBS
intelligent behaviour is derived from the incorporated reasoning capability, intelligent
search techniques, and the ability to monitor and evaluate performance and alter a course
of action to optimise a design. It is these capabilities, coupled with the heuristic and "non-

algorithmic” expertise knowledge, which offer a solution for ill-structured design problems,

Research in knowledge-based systems and design tools has generated a large

number of systems. Among the first applications of knowledge-based systems in design

BBCAD

Chapter 1. Introduction 7

has been the use of expert systems as design analysis and synthesis tools [Rychener et al.
84; 86; Maher 88; Dym and Levitt 91]. While much of the work in this area is currently
focused on single domain advisory systems, a small number of integrated computer-gided

design systems with coordinated multiple domain experts are emerging [Dym 85).

The DARPA DICE [Sriram et al. 89] project uses the blackboard architecture
approach to achieve communication and coordination of problem-solving between
designers. DICE is oriented toward engineering design environments and is used to assist
experts from several domains who need to collaborate in the design of new products.
Once the experts agree on a particular design, the design is posted onto a database,
HOBS [Carter and MacCallum 91] is a software architecture based on a blackboard model
with knowledge sources related in a hierarchy as a means of supporting design co-
ordination. COCASE [Gentilhomme 91] is a expert system based on the blackboard

architecture to design magnetic relays.

1.4 A Role for Knowledge-Based Systems

Artificial intelligence has been used in knowledge-based systems as an interactive
means of gathering and controlling information with human operators [Hayes-Roth et al.
83]. It originated with the idea that if one could simulate most of the functions of the
human brain on a computer, then scientists might understand the human brain. KBSs

were the natural applications of such an activity.

KBSs employ human knowledge to solve problems that ordinarily require human
intelligence [Simon 69]. They simulate expert human performance and present a human-
like facade to the user. Human knowledge consists of elementary pieces of "know-how",
thus applying a significant amount of knowledge requires new ways of organizing decision-

making fragments into useful entities. Knowledge-based systems collect these fragments

BBCAD

Chapter 1. Introduction 8
in a knowledge base, then access it to reason about specific problems,

Al and its subfield, KBS, are equipped with the ability to represent knowledge in
different forms. Practical results can be attributed to the design and use of KBS, in that
they can reach a level of performance comparable to that of human expert "know-how"
in some specialized domains such as Engineering Structural Design [Rychener 88; Kowalik
and Kitzmiller 88], Fault Diagnosis [Talukdar and Cardozo 88], Medicine [VanMelle et
al. 81), Science [Engelmore and Terry 79], etc. [Barr and Feigenbaum 81,82; Cohen and
Feigenbaum 83}, What distinguishes a KBS from a conventional application program is
the model of problem solving [Newell and Simon 72]. Application programs make use of
specialized problem-solving knowledge and many of them reach high levels of
performance. The model of problem-solving in KBSs is based on a separate entity or
knowledge base, while in an ordinary application program it appears implicitly, as part of
the coding of the program. As a result, KBSs instead of being programmed to follow step-
by-step procedures, follow a few general procedures which are generally opportunistic
rather than deterministic. Facts, heuristics, models and other general knowledge about
solving a particular class of design problems are encoded and stored in the computer’s
memory. In order to solve a specific design problem, the computer uses facts provided
by the user plus the design domain knowledge and general problem-solving procedures to
find and apply specific solutions. The domain knowledge is acquired from a domain

expert who provides the key to expert performance.

The KBS paradigm has provided a whole realm of potentially useful tools to
enhance the human-computer interface, but what is more important, its use as a controller
of complex engineering programs provides a way of using formalism and conventional
algorithms in a Computational Analysis and Design (CAD) system whilst keeping them
separate from heuristic procedures representing informal knowledge about engineering

design. The criteria for improved CAD design include several complex notions: multiple

BBCAD

Chapter 1. Introduction

levels of representation of a design [Nicklaus et al. 88], known as abstraction, tacilities tor
meta-level reasoning about design stratepy [Buchanan and Shortliffe 84], ete. The
structure that controls this system will have to be versatile and robust. One candidate
structure is the blackboard, a feature of the HEARSAY-II speech-understanding system
[Lesser et al. 75; Lesser and Erman 77; Erman et al. 80]. A background on the
blackboard architecture and an overview of variations in the architecture can be found in

Appendix B,

1.5 A Role for Blackboard Architecture

The blackboard is a paradigm that allows for the flexible integration of modular
pieces of design code into a single problem-solving environment. It provides a way to
organize a large amount of knowledge into an intelligent program and is based on the
paradigm of several experienced designers working together on a problem. Each designer
can "see" the current state of the problem as it is described on the "blackboard" and can
make a contribution to the problem solution if his or her knowledge applies to the current
state. In software terms, the "blackboard" becomes a shared memory area, and the expert
designers are replaced by computer based design tools. In practice, each tool monitors
only a small region of the blackboard and is activated only when entries are posted in that
region by another module. The central issues in any engineering design problem are: what
pieces of knowledge should be applied, and when and how to apply them. The blackboard
model answers these questions by separating the problem-solving framework into three
major components [Nii 86(a)]: the blackboard data structure, the knowledge sources (KSs),

and the blackboard control.

In the context of a CAD system for electromagnetics, entries on the blackboard
would be design modules suggested as refinements of a particular level of representation,

e.g. the analytical module, the finite element analysis tool, the structural module, the

BBCAD

Chapter 1. Introduction 10

thermal module, etc., in the design of the C-core magnet. Entries can also be intermediate
results generated during design problem solving [Hayes-Roth 85 (a)]. Knowledge Sources,
in the present terms, are the design knowledge modules which govern the search for, or
design of, device units and their combinations into partial designs. The blackboard itself
serves a unique purpose in separating the different kinds of design modules from each
other, whilst allowing them to communicate with, and influence, each other via blackboard
entries. The control mechanism which governs blackboard activities is basically a
scheduler which looks at a list of "knowledge source activation records" (KSAR) to decide
which action to invoke next. In this sense the system functions like an operating system
for a virtual machine. However, triggering a design module does not lead to the
immediate activation of the appropriate patterns in the design module. This allows the
control mechanism to explore the range of possibilities for action, construct a priority list,

and take a global view of the activities of the design process.

The implementations of blackboard systems vary considerably, but they all exhibit
the same major architectural constructs: an explicit global data base, i.e. blackboard, KSs
which affect and react to changes on the blackboard, and a control mechanism. The type
of control mechanism adopted depends on what it is intended to determine from the
design system. Blackboard systems have been implemented for problem domains ranging
from speech understanding [Erman and Lesser 75; Lesser et al. 75] and protein
crystallography, CRYSALIS [Terry 83], PROTEAN [Hayes-Roth et al. 86] to new
applications in model-based materials processing, DECADE [Bafiares-Alcantara et al. 87,
88(b)] and share the same components described above. However, they differ in the
details of their component structures and functions. Differences among blackboard

systems involve control regimes and mechanisms for determining when KSs are executable.

BBCAD

Chapter 1. Introduction 11

1.6 Scope and Motivations of this Rescarch

The requirements for the design of a complex electrical engineering system are
diverse and often contain conflicting goals. The complete design of many electromagnetic
devices is a difficult problem which accounts for magnetic, structural and thermal aspects,
requiring the solution of a coupled problem. Typically, the coupling is in the form of
magnetic/thermal, magnetic/structural, magnetic/electronic, or, possibly, a combination of
several disciplines. Design tools exist for cach of these stages and require trained
designers to use them effectively. Many of these problems may be described using
computational analysis methods coupled with knowledge-based design techniques, which
offer a simple and flexible way for introducing the diverse knowledge (e.g., geometric
specification, material characteristics, problem specitications etc.), and an easy way for
evaluating the numerical solutions and post-processing them. Currently, a project is under
way to integrate tools into the design and analysis of magnetic devices in general, and into
the design of electrical machines in particular, to minimize the level of human expertise,
and to allow the production of designs with minimal, and preferably zero, hardware

prototyping.

These research efforts have been concentrated in the development of a framework
for integrating engineering design tools, to provide a loose coupling between the currently
available tools, and to absorb new tools in the future. BBCAD (BlackBoard for
Computational Analysis and Design) is a hybrid KBS based on the blackboard architecture
model [Lesser at al. 75; Lesser and Erman 77]. The objective of BBCAD’s development
has been to investigate and evaluate the potential of KBS in machine design; to make it
possible to take full advantage of existing design tools; and to allow the automation of a

larger portion of the design process.

Whilst the thesis so far has centred on the use of the blackboard architecture to

integrate high level software tools, it can also be applicable at a much lower level. For

BBCAD

Chapter 1. Introduction 12

instance, the conventional architecture of a finite element magnetics analysis system usually
consists of a set of relatively large scale design modules, each of which is relatively difficult
to modify. The BBCAD architecture allows each of these modules to be broken down
into their constituent parts, interacting through the common database. Thus an automatic
mesh generator might be a separate process in the pre-processing phase of a solution,
Changing the mesh generator would simply mean replacing that small module, or having

more than one module in the system, and depending on the design requirements, the

appropriate module will be invoked. Alternately, several mesh generators, each having

specific parameters in terms of the quality of the mesh generated and the cost of
generation, might co-exist in the blackboard environment. Thus the system leads to more

maintainable and more easily expandable software systems.
The following are some of the tools that exist:

- The Electromagnetic Design System (EDS) [Saldanha and Lowther 86] is a knowledge-
based expert system aimed at automating the computer-aided design of electromagnetic
devices such as transformers, actuators, and motors. EDS is a programming
environment, and considers the different categories of knowledge in design. The
mathematical model of a device provides one category of knowledge, and its
representation and function are implemented by a sub-system of EDS called the
Computer-Aided Design Algebraic Constraint System (CADACS) [Saldanha 88].
Another sub-module of EDS is the interval mathematics package module (INTSYM)
[Brett 90]. It allows the user to put practical limits on certain parameters enabling the

program to deduce the valid design space of the device.

BBCAD

Chapter 1. Introduction 1

1.7 Approach and Contributions of this Research

The emerging fields of artificial intelligence and knowledge engineering [Genesereth
and Nilsson 87} offer means to carry out qualitative reasoning on computers. These
techniques allow us to model the intuitive knowledge, judgement, and experiences that
expert designers use, and to integrate them with the quantitative tools. What is needed
is a knowledge-based program that encompasses knowledge associated with not only our
understanding of the design tools and features of the product, but also the integration

issues of new design tools and the role of the tools in the design process.

The approach taken in this thesis is, first, to design a blackboard software
architecture, next to develop several applications to test the system, and finally, to examine
the integration of different electrical engineering design tools, to make sure that the system
is capable of providing a loose coupling between currently available design toals, while
absorbing a wide range of applications. The most important goal of this research study
is to evaluate the feasibility of successful application of knowledpe-based systems to the
engineering design area. This goal is two-fold: to propose methods of solution for tasks
that traditionally have been approached "by hand”, and to integrate those solutions with

the results of the algorithmic parts of the problem. Aithough the BBCAD uses the
blackboard model, the basic architecture, knowledge representation, and knowledge
utilization techniques differ from oilicr blackboard systems. The differences can be
attributed to many factors: the nature of the problem (electromagnetic device design);
implementation language; design constraints; quality and amount of available knowledge;

and, last but not least, the designer’s problem-solving strategy.
This research contributes to:
a) The field of software engineering in general, as well as to

b) The application of the problem solving mechanism to the domain of electrical machine

design.

BBCAD

Chapter 1. Introduction 14

BBCAD itself is a system consisting of a single problem-solving module. The major
contribution of BBCAD is not in any extension of the technology of the blackboard
architecture, but in the unification of blackboard technologies with a development system
for high-performance design applications. Thus, the focus is on generalizing control
capabilitiecs to provide a means of integrating dramatically different systems via
blackboards.

More general issues were investigated:

- Open-Ended integration (Numerical/Symbolic integration).

- Integrating learning and problem-solving into a unified process.

- Maintaining consistency of data structures (Integrity).

- Identification of knowledge-based activities.

1.7.1 Claims of Originality
In this thesis the following original contributions are made:

a) Software architecture which is founded on knowledge-based systems and the

blackboard model.

b) The architecture is capable of providing loose coupling between currently available

design tools,
¢) The architecture is capable of absorbing new design tools into the system.
d) There is no restrictions on the kind of tools the architecture can handle.

e) The architecture provides a problem solver that can search the design space more

thoroughly in short time.

) The search is guided by the knowledge of the problem space structure.

BBCAD

Chapter 1. Introduction 15

g) A tree structure which identifies the many ways of slicing the knowledge in KBS in

design.

h) The architecture is capabie of integrating KBS methods with existing optimization

design tools used in other engineering disciplines.
i) The architecture automates the design process of an clectromagnetic device.
J) A multilayer blackboard architecture that could be used recursively.

k) A software approach which executes the original existing design tools as independent

processes.

1.8 Organization of this Thesis
This dissertation is organized as follows:

Chapter one sets the scope of this research thesis, and presents some related work
in engineering design. Chapter two states the purpose of this research and its relation to
electric machine design. It explores a frame-oriented approach to design tool integration
for allowing coordination and communication. It also demonstrates how the concepts of
KBS and blackboard architecture can be combined to develop a hybrid knowledged-based

systemt.

Chapter three presents the knowledge organization structure and the functionality
of the blackboard framework BBCAD. Each of the modules constituting BBCAD is
introduced along with an explanation of the system’s overall control, and internal control
of the module. Chapter four discusses the decision adopted by the blackboard controller

on the next step to take in the design process.

Chapter five emphasizes the tool integration aspect. The development is initiated

by transmission of parameter specifications of the C-core magnet, constructing the design

BBCAD

Chapter 1. Introduction 16

alternatives, i.e. design synthesis, evaluating the design synthesis, i.e. design analysis, and
finally applying analysis optimization techniques to improve the design. Two different
optimization techniques are presented in automating the design process of the C-core

device,

Finally, the last chapter summarizes the most important facts. From these facts, a
set of remarks and conclusions is drawn from which the contribution of the work can be
judged. Also, some recommendations and suggestions for future research in this and

related areas are given.

Appendix A attemnpts to provide a background on knowledge-based systems in
engineering design and cites the advantages of using such systems for performing symbolic
manipulation procedures that are used in BBCAD. Appendix B provides a background
on the blackboard architecture and reflects its use in engineering design. An overview of
variations derived from the formal descriptions of a number of influential blackboard
architectures is also presented. Appendix C reviews many possible implementation
procedures which are available inside the KBS domain. They include general purpose
programming and representation languages, and skeletal systems. Appendix D
demonstrates how to calculate priority ratings of a design knowledge module. Rule
constructs that are generated from the design module are represented in Appendix E.
Appendix F deals with more specific details of the implementation of BBCAD. It also

describes the front-end user interface of the whole system.

BBCAD

CHAPTER 2

An Architecture for Engineering Design

The objective of this chapter is to state the purpose of this research and its relation
to electric machine design. It examines a frame-oriented approach to desigh tool
integration for permitting coordination and communication. It defines the design process
for the general class of electromagnetic devices and suggests that there are several
hierarchical levels of abstraction of the physical device. It also provides a background on
knowledge-based systems in engineering design, the blackboard architecture, and how
these concepts can be combined to develop a hybrid knowledge-based . stem for design,

such as the one on which BBCAD is based.

... Magnetic Flux Lines 'j,
. X tan Core
i i /\lengih
LI b Iron /| ()
o
D Alr Gap length
S Niums '?;a)
<
4 :
] D

Figure 2.1: C-core Magnet

17 BBCAD

Chapter 2. An Architcciure for Engincering Design 18

[Electromagnetic Device Design

Clrcult Analysls Magne[}cl}nalyslsl Structural Analysl=1 Thermal Analysls
00

Tool Too! Tool

Blackboard

Figure 2.2: C-core design architecture

2.1 A Coupled Problem in Electromagnetic Design

As in the design of most complex electric machines, the designer of the physically
simple C-core device attempts to satisfy a complex set of interrelated design constraints.
The designer starts with the specifications for the C-core and proceeds to compute the
other parameters to obtain a final design. Once all the parameters for the initial C-core
have been assigned values, the designer executes an analysis tool in order to evaluate the
quality of the proposed design. The results are used as a basis for the design
modifications before beginning the next iteration of the synthesis procedure. If the
analysis parameters are within the admissible values and in some cases, if a cost function
is minimized, the design process terminates successfully. This rarely occurs on the first
iteration, since varying the physical dimensions of the C-core affects the magnetic
requirements, and in turn the thermal demands. Thus the complete design of the C-core
requires the solution of a coupled problem. Coupled with experience, the designer allows
intelligent modifications to be made for the next phase of design. The designer decision-

making ability is usually limited to just the few designs he could produce by hand.

The design system is outlined in Figure 2,2, and contains a device model, a set of

design analysis tools, and the blackboard database which consists of a set of datastructures.

BBCAD

Chapter 2. An Architecture for Enginecring Design i

These structures provide a uniform method for dealing with diverse forms of knowledge,
and contain information relevant to a particular design tool. For instance, the structure
contains the conditions under which the design tool (program) should be activated. These
conditions may be specified in two parts; the first is the context in which the tool is
relevant, the second is a set of pre-conditions which have to be satisfied. For example, the
context for a magnetics analysis tool includes the fact that a geometric description of the
device must be present, along with a specification of the materials used and excitations
expected. The context might be fairly specific in that the problem definition might well
indicate that the magnetostatic solver is applicable. A similar context might well apply to
a thermal analysis system. Thus if the context matched that specified for the particular

design tool, the program could be executed.

In the coupled problem scenario, the context might suggest that & magnetics
analysis problem could be executed because all the relevant input data is present and the
program has not been executed previously. If the coupling is to a thermal analysis, its
context would require that a description of the losses be present. These might only be
generated by running a magnetics analysis. Thus the magnetics analysis would execute,
the losses needed by the thermal program would be written into the blackboard and the
thermal program might now execute. The result of running the thermal program migi;t
be a change in the temperatures of the device leading to a change in the magnetic and
electric properties. This change might well be one of the preconditions for executing the

magnetics analysis and thus it would re-execute.

By this process, an iterative loop can be set up without the user specifically
requiring that it occur, Eventually, the system should converge to the solution of the
coupled problem. However, it is possible that the process will be divergent and thus a
controller is required to monitor the changes happening on the blackboard and to ensure

that these are, indeed, leading to a convergent solution.

BBCAD

Chapter 2. An Architecture for Enginecring Design 20

2.2 Issues in Design

In order to illustrate the notions that will be presented in this thesis, the simple
problem of designing a C-core magnet, shown in Figure 2.1, is carried right through this
dissertation. The complete design of the C-core device requires the solution of a coupled
problem, where the coupling is a combination of several disciplines: magnetic, thermal,
electrical, etc. The goal is to optimize the design of the C-core by altering certain
variables, e.g. the shape of the core at the air pap, such that the change of flux density in

the air gap is infinitesimal.

The design process is an iterative mechanism of evaluation and modification, ie.
analysis and refinement (refer to Chapter 1). The iterative process continues until at least
the specification criteria of the design, or a stopping criterion for a design module, are
met, thus giving a final design. The goal of the design process is twofold: the first
obijective is to define the full set of parameters which describe the structure and operation
of the C-core device, the second is to optimize the automatic design to most closely reach
the design goal. BBCAD uses the following problem solving strategy: "To run a design
module, if all the inputs to the module are present, execute the program module and
return the results. Otherwise find all the required input variables whose values are not
known and consult the spaces of design for starting values. Then, if all the needed inputs
are still not present but there is another design module, the output of which will provide
the missing inputs, run that module first.” The design module must contain all the

necessary information for it to integrate and to execute in the proper order.

As more and more design modules are added, the choice of which program to
execute next is not a simple task. A tool projected on the design space can increase the
dimensionality. The design space is the space of all possible designs of the device and
their global parameters (e.g. structural which includes the core, the gap, and the windings,

magnetic which includes the flux density, electrical which includes the current, etc.)

BBCAD

Chapter 2. An Architecture for Enginecring Design

Figure 2.3: Design space of a current design

(Figure 2.3). The design can be viewed as a search of a multi-dimensional space of
possible designs. In effect, it is a searching of a space of all possible structures for the one
which most closely satisfies the specifications. The problem of design is to narrow the

search space as fast and as effectively as possible.

One basis on which to make the choice of which tool to run is the amount of new
knowledge which might be provided by a particular tool. If several tools can execute, then
the one adding the most new knowledge to the design space should be chosen. There is
no reason why all the tools should be linearly independent; it is entirely possible that
several tools capable of doing the same, or a similar, job might be included in the design
space. Each tool would have its own cost in terms of resources needed, execution times,

and accuracy of results as well as output information.

Lowther [Lowther 89)] stated that design is the process by which the complete
structure of a device is defined such that it operates within the range detailed in the
specifications. In the issue of integrating diverse design tools into the life-cycle engineering

environment of the design process, two pragmatic requirements are placed on the

complete design:

BBCAD

Chapter 2. An Architeciure for Enginecring Design 22

Traditional
Design

Figure 2.4: Simple abstraction of the design process

» Knowledge of the problem space structure, and the datastructure of the design module

and the device.

» Guiding the search in the design space.

The approach must therefore consider the large number of tools that support
various phases of the design process. The diversity of such tools makes them hard to
integrate into an environment in such a way that they can support design coordination and

can communicate with each other.

One simple abstraction of the design process for an electromagnetic device is
depicted in Figure 2.4. The objective is to provide effective automated support for the
design process. To determine requirements, models of reality/concept are constructed
from traditional design. These models are intended to abstract from the concept the
essence of one or more aspects of an existing or proposed design, and focus on the
knowledge architecture. Some of these models are general statements of the
requirements; others are very detailed. From models of design systems, one can extract
heuristic rules that should govern the design proce-* 3ased on these rules, one can plan
the design knowledge modules. These modules are precise statements of tool interactions,

of data relationships, and of constraints and conditions, and their architecture become the

BBCAD

Chapter 2. An Architecture for Enginecring Design 1

Control
Architecture |

Knowledge ”'6esign K
Storage | Architecture

Figure 2.5: Vicews of knowledge

foundations of knowledge-base oriented automated solutions. One measure of these
solutions is the extent to which they compromise reality. The truer the models that are

used in the design process, the lower the probability that the resultant device design

solution will force compromise.

2.3 A Framework for Integration

There are three distinct views of knowledge in the BBCAD architecture, shown
in Figure 2.5. The integration problem of the design of an electromagnetic device is
explored in the context of the following architectural characteristics:

» A knowledge storage and communication area serves as the repository for all design
knowledge.

» The knowledge is organised in a way that allows easy representation of all the existing
design tools involved in the problem solving process and their interrelationships, and
better cooperation among the tools.

» The BBCAD environment allows diverse types of existing tools to be integrated

regardless of the idiosyncrasies of their operation. It also allows new tools to be added

BBCAD

Chapter 2. An Architecture for Engincering Design 24

with minor modifications to the tools.

» The BBCAD environment has at least a primary notion of the new tool and its
functions in relation to other tools such as scheduling, multilevel invocation, and

concurrency.

The decision to integrate a design tool, i.e. design knowledge modules, is not merely
a data conversion issue. Integrating a tool involves resolving such issues as the nature of
the designer-tool interface, the tool’s input and output, and the policies one wants to
enforce on tool usage. To interface a new tool to the BBCAD structure, requires that a
datastructure be created associated with the design knowledge module and describing its
contributions to the blackboard space, its context and its preconditions. This integration
process requires an understanding of the design and analysis variables, and functions of
the tool, i.e. mapping analysis space to design space. The analysis variables refer to the
variable values used in the analysis to calculate the analysis function values, and the design
variables are comprised of some subset of the analysis variables. Also, some level of data
translation program is needed. An expert designer supplies qualitative descriptions of
variable parameter (input/output) dependencies, specifying which direction an input
parameter changes will yield in which direction the output parameter will change. A
useful structure to use for the underlying datastructure of the blackboard, from a point of
view of magnetics design coupled with other analyses, is one of the neutral file structures
currently widely accepted, e.g. IGES [Smith et al. 83], where the object of standardization
is not only the data format for information storage, but (implicitly or explicitly) also the
command structure of the systems that access this information. This minimises the amount
of data translation needed since many numerical programs can read and write several
different neutral files. A neutral file provides a projection of the tools’ 1/O onto an
intermediate space. Thus all changes made to the parameters of the C-core device are

re-written into a neutral data file, where data exchange is carried out. This neutral file

BBCAD

Chapter 2. An Architecture for Engincering Design

contains the coordinates of the data model for this specific C-core magnet. In order to
effectively integrate a diverse set of tools and to provide a coupling between the various

analyses, it is necessary that the input and output requirements of each tool be carefully
defined.

One effective approach to design tool integration is based upon several

assumptions:
» Different design tools need to view the same data in different ways.

» It is necessary for design tools to dictate or to constrain the limits and types of data
entered by users.

» Since some data are interchangeable among tools and devices, it is essential that the

data manipulated ought to be stored externally in a standardized format.

» It is desirable to maintain the independence and modularity of tools that already exist.

The effects of these assumptions will be discussed in more detail in the following

sections.

2.4 Hybrid Knowledge-Based Systems

The knowledge-based approach to designing a system for any kind of task starts by
determining what knowledge, i.e. facts and reasoning abilities, is used by human experts
to achieve a solution. This knowledge is then encoded in data structures and procedures
that represent the knowledge explicitly, and that are separate from the inference
procedures that apply it to solve design problems. The inference procedures apply
knowledge about a domain to the current state of the design in order to narrow down the
design space, i.e. generate a new or "next" state, and draw conclusions. In a C-core device
design [Magnet 85; Lowther and Silvester 86], for example, one important category of

knowledge is factual data about the design that specifies the shape and some relationships,

BBCAD

Chapter 2. An Architecture for Engincering Design 26

i.e. a structural model and a simple algebraic model. Developing a knowledge-based
system for magnetic design involves constructing a set of rules that summarizes various
design tactics, as well as a general rule interpreter that applies combinations of these rules
to solve individual design problems. A rule can be considered to be declarative or
imperative knowledge of particular forms. Although the rules are often heuristic, and are
used to search the design space, it is their application which reduces the size of the

solution space.

In engineering design, there are knowledge modules that solve a part of a given
device design problem (e.g. simulation, optimization, etc.). However, it is often neither
convenient nor feasible to rewrite a program into another format only to make it
compatible with the overall system design. Hybrid knowledge-based systems make it
possible to take full advantage of the existing programs, and to allow the automation of
a larger portion of the design process. Engineering design problems are well suited for
hybrid implementations. A hybrid knowledge-based design system may be characterized

by the following structures:

» Representaiion of the knowledge domain, such as rules, frames, semantic networks,

object-oriented programs, or combinations of these.

» Prublem-solving strategy: a control mechanism is generally required in order to limit the
amount of searching in the design space and to point the process in the right direction.
Design is seen as a problem-solving process of searching through a state space {Simon
69; Newell and Simon 72], where the states represent the design solutions.

» The implementation tools, that is the expert system shelis and/or the programming

languages used in the design, etc.

The components enumerated above are not completely independent. A choice of
problem-solving strategy may influence the choice of knowledge representation, and, in

turn, these two can determine the implementation utilized. In some other cases the

BBCAD

Chapter 2. An Architecture for Engineering Design 7

implementation tools limit the choice of the rest of the factors. The following

characteristics have resulted in the construction of the BBCAD system.

2.4.1 Knowledge Representation

The ultimate product of engineering design appears in the form of devices,
machines, services or structures, whilst the intermediate products are specifications,
software, reports, or graphics. Knowledge and integration play a salient role in the
engineering design process. Knowledge in engineering design can be described as
interpreted statements about mappings between facts, specifically how new facts can be
derived from existing ones [Coyne et al. 90]. The most explicit way to represent such

relationships is as rules of the form A —~ B, i.e. "B is true if A is true”. Sources and uses

of these facts, authorization for their use and their release, and dependencies among their
relationships are carried along with the knowledge itself. The need to operate on this

knowledge base is the most distinguishing feature of engineering design in KBSs.

There are several methods used to represent design knowledge in a KBS [Barr and
Feigenbaum 81, V.1, Chapter 3]. In [Coyne et al. 90], the authors presented three
methods for defining design spaces other than rules. These comprise existing designs,
descriptions of generic design, and procedures. The representation may be selected from
various presentation methods developed for encoding facts and relationships that
constitute design knowledge. The following methods are those which were found to be

relevant in the development of BBCAD and are the most familiar:

» Frame: a data structure containing information relevant to a particular design module.
This formalism exploits several useful ideas pertinent to engineering design:

instantiations, inheritance, defaults, constraints, and attached procedures.

» Production rules: information about frames and instances can also be represented as IF-

BBCAD

Chapter 2. An Architecture for Engincering Design 28

<frame-nama>
(<optiong>w (:print-name {string})
(:is {frame})
)

<sglot>
<slot-facet>
(<options> = (:print-name {string}}
(;explanation-string {atring})
(:default-values {value})
(:constraints
<option> = (:lisp-type {value})
(:instance-of {value})
(:child-frame-of {value})
)
(¢when-modified {daemons}
(:when-accessed {daemons})
il

<slot>

<sglot-facet>

Figure 2.6: Generic frame structure

THEN rules.

» Procedures: a set of Lisp functions and algorithmic procedures that cannot be defined

easily in production rules.

» Semantic network: a graphical analogy for representing design modules and relations,
and it could be the basis for reasoning. This formalism can make it clear how the

properties of frames are inherited by subframes and instances.

Each of these will be looked at in more detail below,

2.4.1.1 Frames

BBCAD uses the frame-based representation approach in the design task, i.e.
hierarchical abstraction and property inheritance [Minsky 75; Bobrow and Winograd 77,
Hayes 77; Fikes and Kehler 85; Brachman and Levesque 85]. The frame structure is

implemented to represent design modules, devices, and goals, as well as explanation and

BBCAD

Chapter 2. An Architecture for Engineering Design N

information messages. A generic BBCAD frame is illustrated in Figure 2.6, In BBCAD,
the knowledge storage consists of a set of data structures usually referred to as GW-frames
[GoldWorks 87], each frame consisting of a set of slots (Figure 2.6), a slot is a structure
that contains a variable-sized memory area. The slots represent functional or dimensional
parameters of the design, or may link to more detailed frame structures indicating
refinement of the design. Links may allow information from one frame to be passed to
and used in another frame; this is referred to as "inheritance” [Bobrow and Winograd 77,
Goldstein and Roberts 77). Slots can contain rules about application area situations and
actions to take under certain conditions. The slot may also have meta-slots, associated
with it such structures are known as facets and contain additional functionality, often
referred to as a daemon [Hayes 77], when a slot is accessed or instantiated. Daemons,
alternatively known as the technique of "procedural attachment [Hewitt 69]", may be
thought of as procedures which reside in a slot in a frame-based system. Such procedures
are usually Lisp functions, attached to some data item and are typically used to perform
actions that are linked to changes in a slot’s value. In a sense, there is an equivalence
between these structures and the background tasks or daemons in an operating system
[Peterson and Silberschatz 85]. In much the same way as an operating system daemon is
a suspended process waiting for an event, such as an interrupt, to occur before it activates,
a procedural attachment is "waiting" for a particular state of the design system to occur.
The daemon activates when the special event occurs, performs the job, and either
terminates or suspends while awaiting another event [Barr and Feigenbaum 81, V.1, p.219-
220; Winston 84, p.317-320]. These structures provide a uniform method for dealing with
many diverse hierarchical forms of knowledge. The problem-specific dimension represents

the frame or design module under investigation.

BBCAD

Chapter 2. An Architecture for Engincering Design 10

<rule-name> (<option>m Gprint-name {string})
(:priority {number})
(.directlon {:forward | :backward } :bidirectional})

Csponsar {symbol}))
IF (antecedant)
<pattem>s {<condition> <condition> ...)
THEN (consequent)
<pattern>= {<action> <action> ..)

Figure 2.7: Generic IF-THEN rule structure

2.4.1.2 Production Rules

A production rule is an ordered pair of symbols with a left hand (LHS) and a right
hand side (RHS), similar to the IF-THEN statement of Figure 2.7. The list of symbols on
the LHS constitutes the premises or the conditional part (the antecedent), whereas the
RHS symbols constitute the action part (the consequent). The conditions of a rule have
to be satisfied in order for the rule to fire. Satisfaction is determined by matching against
facts/assertions in the design space. The actions of a rule execute a series of operations

that modify the state of the design space, thus causing a change of state in the design.

Production rules are a fundamental part of a production system [Hayes-Roth 85 (b)],

which also contains an inference mechanism (an interpreter), and a context.

2.4.1.3 Procedures

A procedural representation of a model is a set of instructions that, when carried
out, arrive at a result consistent with reality. Thus conventional equation solving maps in
a straightforward way into procedures. Specific procedures are used to solve specific
problems in the design space. Such procedures may, in fact, be complex analysis tools.
Procedures are also executed in the action part of a production rule and are also
impiemented in the daemon formalism. Conventional programming techniques are very

effective in implementing procedures.

BBCAD

Chapter 2. An Architecture for Enginecring Design a1

TOP-FRAME

DATA-
STRUCTURE

Ins’aﬂcgof Al 0

8,

.
N/
W" -‘

¢ & Qf'o

SLOT VALUE , trigger-cond
DRAWZ2D

27 actlion
SLOT VALUE
{patterns)
SLOT VALUE
{pattems)

Figure 2.8: A semantic network for describing frames and instances of KS

2.4.1.4 Semantic Networks

A semantic network is a representation of knowledge that emphasizes relations
[Quillian 68; Hayes 77]. The network representation consists of nodes and labelled arcs.
Nodes usually represent objects, values, concepts, or situations, and the labelled arcs
represent the links that indicate the relationships between them. It is a data structure that

represents the declarative knowledge of a device. The structure is a graph in which the

BBCAD

Chapter 2. An Architecture for Engincering Design 32

nodes represent concepts (e.g., design tools) [Dym and Levitt 91, Chapter 1), and the arcs,
which may be labelled, represent relationships among concepts. In a frame formalism, the
idea of frames, instances and slots can be represented in a semantic network where
frames, instances and values are nodes, and slot attributes are the labels attached to arcs
joining nodes. In Figure 2.8, the "ako" labei, which stands for "a kind of", indicates links
between frames and child frames, while the "isa" link indicates that the object is an
instance of the frame to which it is connected. Semantic networks are a convenient and
natural way to represent descriptive knowledge about a device design, that is, design tools,

devices, their properties and their relations.

2.4.2 Knowledge Abstraction

Abstraction is the decomposition of knowledge about design into hierarchies of
design models (e.g, frames are abstractions of semantic network knowledge
representation). One of the ideas that emerges in the discussion of symbolic
representation is that of abstraction [Quillian 68; Goldstein and Roberts 77}, in which the
goal is to look at descriptions at various design levels of detail and try to abstract at a
given level just that set of attributes which are needed to answer a certain question. [t is
a common practice to break down a complex design task into subtasks, each of which
could then be used to formalize specific problem-solving methods. Whilst more abstract
representations hold less information about the problem they are, however, easier to work
with. Diagnosis [Buchanan and Shortliffe 84] may be considered to be a type of
knowledge abstraction, in which specific knowledge patterns are classified as belonging to
particular problem subclasses or classes. The representational abstractions, shown in
Figure 2.9, are related, perhaps hierarchically, and design can be considered as a process
in which there is free communications between systems abstractions, i.e. frames of design

description, and levels of representational abstractions.

BBCAD

Chapter 2. An Architecture for Engineering Design 3

P I - =

- wm wm ww we h mm hm Am de Ee i AN M e e R e

Figure 2.9: Multiple abstractions of clectromagnetic device design

2.4.3 Problem-Solving Methods

As the name of this paradigm suggests, it contains the set of methods that can be
used when performing a design task [Newell 62]. The methods describe how to manage
the available knowledge and how to obtain the missing information in order to reach a
goal state. Problem-solving can be viewed as the process of starting in an initial state and
searching through the legal states, i.e. design solutions, for a device looking for the goal
state. More detailed descriptions of a number of problem solving strategies can be found
in [Nilsson 80; Rich 83]. In a "well-structured” design problem one knows the initial state,
the goal state and the operators, which cause state transitions. From these one can
systematically generate all the intermediate states, and hence one can theoretically develop
a map of the entire design process. Not all engineering design problems are "well-
structured”. "[ll-structured" problems deal with heuristic programming [Newell 69] and
occur for several possible reasons: the goal state is not stated explicitly, the design problem
states are not discrete, the operators are not specified, the design space is unbounded, or
time places additional constraints on the design. Using heuristic knowledge obtained from
experience, some of the above reasons can be voided, e.g. operators can be specified or

created, then the design process becomes well-structured.

BBCAD

Chapter 2. An Architecture for Engincering Design 34

Initial
e > Generate

Validate
(deslgn space)

Modify <

Figure 2.10: A problem solving strategy (Generate-Validate-Modify)

Perhaps the most basic problem-solving strategy is "generate-and-test" (Figure 2.10),
where possible states are generated in a systematic manner, and then each one is tested
to see if it is a goal state, A number of problem solving strategies are currently used in
knowledge-based systems design. [Coyne et al. 90] propose several control tasks to model
a design, including search strategies, goal satisfaction, failure handling, constraint
manipulation, non-monotonic reasoning, multiple knowledge sources, multiple abstractions,
and multiple control levels. For further details on these, the Handbook of Artificial

Intelligence [Cohen and Feigenbaum 83] is recommended.

2.4.4 Conclusions

The above methods are by no means a complete set for building knowledge-based
systems for engineering design. They were studied for their appropriateness in the
development of BBCAD. Given the research interest in expanding engineering design to
include qualitative as well as quantitative knowledge; the ability to use numbers, rules,
frames and object oriented programming approaches to express knowledge of varying

types of design is much needed. Thus, the ideal engineering programming environment

BBCAD

Chapter 2. An Architecture for Engineering Design as

would support all of these representations in an integrated and convenient package. A
knowledge-based system using only a general purpose programming language could not
be easily modified or understood, and furthermore, all the capabilities have to be created
by the programmer. A general purpose representation language was the most appropriate
for BBCAD (GWII [GoldWorks 87]) coupled with a few of the general programming
languages (LISP, C, FORTRAN, and script files).

2.5 Electromagnetic Device Design

In designing a device one begins with a request to perform a certain tunction based
on numerous constraints such as basic structural (e.g., physical components) and
dimensional parameters, i.e. mathematical models, thermal demands, and magnetic and
electric requirements. Consider the problem of designing a C-core magnet, shown in
Figure 2.1, where the mean core width is 1 centimetre, the mean core length is 26
centimetres, the air gap length is 1 centimetre, and a total of 400 amperes is injected in
the copper coils. The initial design stage starts from the above specification for the device,
and proceeds to the next levels of the design where constraints in a particular domain such
as physical dimensions, magnetic requirements, and structural demands, may be imposed
narrowing the search space to reach a final design. This is normally achieved through an

iteration procedure of refinement and analysis until at least the specification criteria for

the device are met.

In a hierarchical design system [Lowther and Saldanha 86), devices are represented
in a modular fashion as a combination of sub-parts. This is shown in Figure 2.11 which
depicts the structure of a simple C-core device. Also refer to Figure 1.2 of Chapter 1 in
[Brett 90], and Figure 2.1 of Chapter 2 in [Zhu 91] where the partial structure of a
stepping motor and the structure of DC machines are represented respectively. These

different structures illustrate the several levels of abstraction of physical devices,

BBCAD

Chapter 2. An Architecture for Engincering Design 36

C-cora
R ol
wlnd@ Core AlrGap
k b 3
Matertal Malerlal Material

Figure 2.11: C-core structure emphasizing hierarchy

The structural model of the device consists of two or more independent sub-parts,
each sub-part has an electric and a magnetic circuit. The structure is drawn out as a kind
of tree, each independent sub-part is decomposed into constituent sub-parts and this tree
structure grows downward until the fundamental elements of the tree are reached. These
derived specifications form the basis of the structural knowledge about the device. The
function of each sub-part of the structure may be represented by parameters that are

usually related through a numerical model to other quantities such as the operational and

performance variables.

The creation of an initial design continues by determining values for the device
parameters using an improved model at each level down the tree hierarchy, and by
modifying constraints on parameters when backtracking through the tree. Thus operating
within the range detailed in the specifications provides bounds on the search space. Fine

tuning the search space may lead to a faster convergence to the device design.

BBCAD

Chapter 2. An Architccture for Engincering Design 17

2.6 BBCAD Framework and Knowledge Architecture

The blackboard architecture represents an approach to the problem of engineering
design in which an assembly of design tools are permitted to respond opportunistically, i.c.
interrupt driven, as the design develops. The BBCAD blackboard framework is a
problem-solving architecture based on the cooperation of several logically independent
design knowledge modules, called Knowledge Sources (KSs), which are accessing the same
informatior on a global knowledge storage system, the blackboard. It specifies how
knowledge must be organized into independent tasks which read and write design objects
on the blackboard. The KSs have a conditionfaction construct, i.c. they include the
knowledge to be applied and the knowledge about when it should be applied. The
condition part looks for a particular object configuration on the blackboard and when such
a configuration is recognized, it creates a Knowledge Source Activation Record (KSAR).
KSARs are instantiations of the KSs with contextual information. A control mechanism
is responsible for the characterization, comparison and selection between the KSARs.

When interrupts occur, a KSAR is triggered and modifications prescribed by the action

part are made to the blackboard.

As already has been shown in Figure 2.5, there are three different kinds of
knowledge category in the BBCAD environment: knowledge storage, design knowledge
architecture, and control architecture. They offer different facilities in the design process,

and each of these will be looked at in more detail below.

2.6.1 Knowledge Storage

Knowledge storage refers to the knowledge space, i.e. the actual facts describing
the current design, of the design problem and how it is translated to build the design

space. As depicted in Figure 2.12 which is a more detailed view of Figure 2.5, knowledge

BBCAD

Chapter 2. An Architecture for Engincering Design a8

Figure 2.12: Design tools projected on the knowledge space

in the design process is divided into three basic classes:
» Deep or structural.
» Mathematical model or dimensional.

» Shallow, surface, or heuristics.

Deep knowledge involves the key components which make up the device. It consists
of well-known facts, or refers to reasoning from basic principles; that is, from basic laws
of structural and behavioral models, such as Maxwell’s equations and Newton’s laws. It
is founded on frame-based systems [Minsky 75] where the intention is to incorporate
structural knowledge of a design problem into the knowledge space, i.e. by definition deep
knowledge is structured knowledge and can be represented in a well defined data

structure.

The mathematical model is used to express knowledge relating the dimensional,

performance and functional parameters of a device to guarantee its operation [Saldanha
and Lowther 86; Lowther 89].

BBCAD

Chapter 2. An Architecture for Engineering Design an

The third term is the most abstract and is used to provide expertise. The term
Shallow knowledge is that heuristic, experiential knowledge that comes from having
successfully solved a large number of similar problems. It is usually a rule-based
[Buchanan and Shortliffe 84; Hayes-Roth 85(b)] inferential pracess, in which the reasoning
requires a set of rules acquired from an expert. These rules are based on experience, as

is the case in diagnosis systems [Talukdar and Cardazo 88].

Projecting design tools onto the knowledge space (Figure 2.12), will lead to new
solutions, freeing off constraints, thus narrowing and fine tuning the search space. Thus,
knowledge provides the means by which designs progress from known facts to new facts.
It also embodies general descriptions of designs. In order to process knowledge, there
must first exist techniques to represent this knowledge and methods to control its
processing. The exact form and content of structure depends on the particular design
domain and its implementation. The requirements imposed on these structures are that
they support effective modes of communication, are adequate to represent the information

pertinent to the design domain, and allow for effective organization of the information

contained in the blackboard.

The BBCAD blackboard contains two types of knowledge: static and dynamic.
Static knowledge is typically the domain-specific knowledge that is relevant to the design
problem and that will have a relatively long life during the design process. It generally
consists of factual data relating to initial conditions, parameters, values, relationships, etc.
Dynamic knowledge is typically the knowledge that is generated during the execution of
a design module. It will consist of short-term communications such as goals to be pursued,

requests for data, and suggestions. The dynamic data will frequently be modified or

deleted after a short period of time.

In [Gero and Coyne 85; Coyne et al. 90], two other types of knowledge are

proposed. The first is semantic knowledge which is concerned with the meanings of

BBCAD

Chapter 2. An Architecture for Engincering Design 40

Knowledge

Davice K Design K Module Control K Module

Syntac&manﬂc / |
Syntactic|(Genemnve)

Relational Behavioral Procadural
Dynamic Statlc

Deep Shallow Dimenslonal

Heuristics

Figure 2.13: Tree structure of BBCAD knowledge

objects, and normally deals with relationships between objects and among their attributes.
The second type of knowledge is syntactical knowledge. 1t deals with the connection of an
object with its domain or with other objects, and with data which supports facts. This
object approach can be more formally extended in object-oriented systems [Stefic and
Bobrow 86]. Such systems organize information so that objects have associated with them
knowledge about how they behave. Knowledge in engineering design was viewed as the
tool whereby the designer conceptualises the semantic content of a certain domain, and
by which he or she represents his or her ideas about that domain as the syntactical
relations between the variables (facts) and the actions by which these variables and
relationships are manipulated (control knowledge). A tree structure of BBCAD

knowledge is shown in Figure 2.13.

2.6.2 Design Knowledge Architecture and KSs

Before knowledge can be represented, the type of knowledge involved must first

be identified and classified. The following discusses two types of BBCAD knowledge:

BBCAD

Chapter 2. An Archilecture for Engincering Design 4

» "Device Knowledge" represents the physical structure of a device, i.e. the full set of

specifications and parameters which describe the operation of a device.

» "Design Knowledge Modules" are objects which combine relational, behavioral, and
procedural knowledge of design tools. Relational knowledge represents design rules,
programs, and requirements to run the programs. Behavioral knowledge contains
information, i.e. data placed in the context of design needs, on how the parameters of
different tools affect each other, and how an input parameter of one design tool is
related to an output parameter of a previous tool. Procedural knowledge represents the

algorithms that are concerned with the use of that knowledge in the design process.

The central data structure is the blackboard, through which the various design
modules communicate. The declarative knowledge is structured through the use of
hierarchies of frames. The representation has a hierarchy of abstraction levels which
contains different degrees of detail [Preiss 80]. The facilities of GoldWorks [GoldWorks
87] are used to define relationships and inheritance semantics between the design tools
of the device. The most commonly used relations are "IS" and "INSTANCE". The "IS"
relation defines hierarchies of classes where each higher level subsumes the lower level
classes. The "INSTANCE" relation declares that a particular object belongs to a class and

the description of the class serves as a prototype of the instances.

The design knowledge modules, i.e. KSs, contain information about when they are
applicable, they usually have some mechanism to maintain local context, and have specific
krowledge which, when invoked, changes information maintained in the blackboard. The

KSs are independent, event-driven processes which manipulate the global knowledge

storage.

In BBCAD, each KS represents some particular specialized existing tool pertaining
to the design problem being solved. The KSs are also implemented in a frame-based

fashion as an assembly of rules, functions and facts, thus representing an action, i.e. a

BBCAD

Chapter 2. An Architecture for Enginecring Design 42

Spaces of Knowledge
e RN
¥ A"
! Spaces of Control \
] |
| |
1 |
| | l
| I
1 |
\ Design Tools I
] 1
1 1
1 |
1 |
1 |
\ Spaces of Design !
N /
~ ”,

Figure 2.14: Control knowledge spaces

change to the blackboard, under appropriate conditions. Only the frames placed on the
blackboard affect other KSs; the internal workings of a KS are invisible. In BBCAD each
knowledge module has the following two constituents: The condition and the action. The
condition part determines when the design knowledge module can be satisfied. The action
part specifies the actions, i.e. rule type structure, that are to be taken based on the global
knowledge base. They are similar to production rule-based systems [Hayes-Roth 85(b)],
in that they consist of two parts, an antecedent and a consequent. Firing or executing the
rules is determined by the matching of patterns among entries in the design space. The
executable part of the rule can involve the modification of the design space and can
contain a collection of logical relationships, or functions programmed in a conventional
procedural programming language (e.g., C or Fortran). Thus KSs are a natural unit of
representation for domains requiring hybrid knowledge representation and where much

knowledge is procedural.

BBCAD

Chapter 2. An Architecture for Engineering Design 43
2.5.3 Control Knowledge Architecture

The spaces of control contain a set of peneral control knowledge modules, ie.
control strategy, that operate on the design modules (Figure 2.14), and these control
modules are domain-independent. This space of knowledge uses the various control
modules to reason about the design process, and the notion of separate domain and
control KSs has been preserved [Hayes-Roth 85(a)). This knowledge is concerned with the
generation of appropriate action sequences (Figure 2.13), and leads to scheduling the
various design modules. The generative knowledge serves to define a space of designs.

These control knowledge modules deal with important issues, and they are:

» How to focus the search: this idea can be exploited explicitly by partitioning the design
space in certain ways and by using heuristics to decide the part of the design space to
which a too! should be applied to produce a new partial solution to the device design.

» How to deal with sub-design problems.

» How to integrate and coordinate muitiple design tools.

» Goal satisfaction and failure handling in the device design.

The design process needs to be guided or controlled in its search of the design
space for a solution to the current device problem. Thus, a major component of a
blackboard architecture is the control mechanism. This mechanism determines which
design knowledge module can be activated in the event that several have been satisfied.

In BBCAD, the process is as follows:
1. Specify the design problem.

2. Post the goal on the blackboard: using the finite-element analysis tool [MagNet 85],
determine the flux density in the air gap of the C-core. The initial goal in the design
of the C-core is to run the drafting pre-processor, Draw2d, where the basic geometry

is entered from an initial design specification file.

BBCAD

Chapter 2. An Architecture for Engincering Design 44

Intal Design e

¥

Poet Goal

e

Salect / Valldata

Deeign K Module
Y

Instantiate /
Evaluate DKM

Y Vary Design

Focus of
Attantion

Y
Exocute
OKM

NO

B M B (et B a0)

Figure 2.15: Control flow chart

3. Select and validate the design knowledge module: this involves matching the condition
part of each design knowledge module to the global knowledge base.

4. Instantiate: a knowledge source activation record (KSAR) is created for each satisfied

design knowledge module.
5. Evaluate events: this involves the use of heuristic searches to assign priorities to events.
6. Focus Attention: evaluates the estimates received, and the best knowledge source
activation record is selected for firing, i.e. the design module with the highest priority.
7. Execute the event with the highest priority: the drafting module, Draw2d, is fired to
display the geometry of the design, and prepares the C-core for the next step which is

the mesh generation.

8. Verify the poal of the design: the next goal is to specify the finite element mesh for the
C-core problem. At each step of the design process different goal is posted and the
appropriate module is executed. The process continues until the goal of the specific

design tool is reached, and the desired performance characteristics of the device are

BBCAD

Chapter 2. An Architecture for Enginecring Design 45

abtained.

This is illustrated in the flow chart of Figure 2.15. Essentially, this process
continues until at least the requirements for the design are met, giving an initiai design.
The design process is regarded as a search through a design space for a solution that
closely satisfies the specifications of the device. The function of control in a blackboard

system is to provide for focus of attention and optimal use of the available resources.

2.6.3.1 The Scheduler

The mechanism of control may be implemented by using an agenda-based
scheduler. At each level of the design process, a different representation of the device
may be necessary. The agenda lists all pending knowledge source activities, and the
scheduler decides which of these activities to execute first. One basis for making the
choice is the amount of new information which might be provided by a particular tool.
The scheduler can calculate a priority for each waiting task and select for execution, for

example, the task with the highest priority, i.e. a simple best-first strategy.

The scheduler has to ccide which of the currently applicable design tools is most
likely to make the largest contribution towards the final design. There are a number of

different scheduling techniques which can be implemented in the control knowledge

modules. Some of these are:

» Place design modules that produce the largest amount of new design information higher

up in the schedule.

» Place design modules affecting the least recently derived information higher up in the

schedule. This would tend to produce a breadth-first search.

» Place design modules that are implemented by the most recently fired action at the end

of the schedule.

BBCAD

Chapter 2. An Architecture for Engineering Design 46

» Place the design module with the highest priority value at the end or at the top of the

agenda list.

At every cycle of the design process, several design modules may compete to fire

their action rules, the scheduler determines which module to execute and in what order.

2.6.4 Conclusions

The use of the blackboard as a single mechanismm for data sharing and
communication, together with the gathering of knowledge and processes into independent
knowledge sources, provides a neat, conceptually clean framework for developing a
complex integrated engineering design system. Also, the modularity of each knowledge
source localizes problems and simplifies the task of changing the module, expanding its
capabilities, or adding new modules to the system. Furthermore, additional executive
control expansion can be accomplished by making similar changes to the control level
knowledge sources and blackboard structures. BBCAD uses a frame structure to

represent design modules, goals, and explanation and information messages.

2.7 Implementation

There are many languages, operating systems, and processors that can be used to
program knowledge-based systems. These items are interrelated, but these relations are
limited to the specific processors and operating systems used. The implementation step
involves encoding the design knowledge into the chosen tool. The development of
BBCAD required the selection of a programming environment (tool) for building the
knowledge-based system. The tools currently available provide varying degrees of
assistance in the development task. Their choice depends on the basic approach taken

[Hayes-Roth et al. 83]). Appendix C reviews some of these languages.

BBCAD

Chapter 2. An Architecture for Enginecring Design 4

Apart from the approaches described in Appendix C, other considerations affect
the choice of implementation in engineering design: the sort of design to be solved, the
desired capabilities of the KBS, and the availability of the desired tools. In engineering
design, knowledge-based skeletal systems (Appendix C), have the advantage of allowing
one to create a new knowledge-based system in a very short time with relatively modest
effort. The main disadvantages with this approach are that many times the skeletons are
unchangeable and difficult to extend to deal with engineering design tasks not originally
mapped out by the tool designer. As well, the generalization step (Appendix C) is not

completely successful and some domain-specific characteristics that could interfere with

the new design task remain.

BBCAD

CHAPTER 3
Structure and Knowledge Organization

[n this chapter, the knowledge organization structure of the BBCAD framework is
described. It explores the kinds of knowledge that are to be used, the way they are
represented, and the methods by which the knowledge should be accessed. It also
discusses the dependencies between the various design modules and their parameters, the

rule inferencing approach, and a locking mechanism to focus on a specific design module.

Production Systems

- mm oam mw owm omm oEm

--— e wm wm w oar ow ow

Figure 3.1: Influences on BBCAD (Extension to Nii [86(2)])

48 BBCAD

Chapter 3. Structure and Knowledge Organization K

3.1 Characterization of BBCAD

For easy manipulation of the design space, BBCAD uses a combination of
knowledge representation schemes and multiple levels of knowledge abstraction to help

and to facilitate the decision making process in designing electrical devices,

BBCAD is a hybrid knowledge-based system environment with a blackboard
architecture, rule-based systems and frame-based structures utilised together in the
integration of design-dependent and design-specific knowledge for solving electromagnetic
design problems, such as the C-core magnet. Figure 3.1 is an extension of the family tree
of the various application and skeletal systems described by Nii in [Nii 86(a)] showing
BBCAD in the general development of blackboard systems (also refer to Appendix C).
BBCAD is not in any way an extension to the systems shown in Figure 3.1, it only retlects

its likeness to previous systems.

3.2 System Structure

The overall system structure of BBCAD is illustrated in Figure 3.2. It consists of
hierarchically organized categories of frames, a knowledge storage area, i.e. a blackboard,

a control mechanism, a scheduler, and a user interface.

The design module frame, i.e. the Knowledge Source, represents the characteristics
of the tools to be coupled and is structured so that the selection and the sequencing of the
modules is carried out effectively and efficiently. A tool can have more than one design
module, for example MagNet is a modular computer-aided design package, used to model
magnetic and electric field problems, with modules enabling geometric specification,
material modelling, problem specification, solution evaluation, and post processing
[MagNet 85]. Associated with each design module is a set of rules generated from the

design module for checking the adequacy of the requirements and the use of the module

BBCAD

Chapter 3. Structure and Knowledge Organization 50

P e e S

I Scheduler
oo [Inoracs
i

Figure 3.2: System structure of BBCAD

(the rules generator in Figure 3.2). A set of strategies and heuristic control rules are also
generated from the domain control knowledge modules and used by the scheduler to
determine which of the executable design modules is most desirable at a particular cycle
of the design process. The scheduler places design alternatives in three queues (the
Scheduler of Figure 3.2): the invocable design queue @, the triggered queue @, and the

triggered and invocable queue @, the order in which they are addressed.

The explanatory component is used to enable BBCAD to explain the functions and
actions of the design module, and to interpret the accomplished activities achieved by the

module. Although this module is not necessarily required to get BBCAD to do its task,

BBCAD

Chapter 3. Structure and Knowledge Organization 51

it is very important in terms of user acceptance and design transparency. The user
interface, discussed in more detail in Appendix F, is the communication medium between
the device designer and the BBCAD system. Within the interface, the user can enter
design specifications, and has facilities for viewing, adding, moditying, and deleting design
modules, rules, and instances. A graphic object approach is used to detine images, screen
layouts, popup menus, and other elements of the shell. A menu-driven user interface
presents default values for all the requested variables and accepts user inputs, prompting

for re-entry of values that are out of range and supplying help as requested.

3.3 Structure and Types of Knowledge

The quality of knowledge-based systems depends heavily on the robustness, integrity
and amount of knowledge incorporated into the design space. For the BBCAD
architecture, various forms of knowledge are used, the structure is mainly based on two

types of knowledge (Figure 3.3):

1. Design independent knowledge represents the background knowledge of the design
tasks. It encompasses heuristics and general rules of thumb about specific design tools,
and contains design knowledge, procedures and algorithms. It relates to the physical
laws and general design strategies common to all design problems. The design

independent knowledge is divided into two classes:

a. Domain specific knowledge: KS frames and instances. In the design of the C-core
device, Magnet is used as the finite-element analysis package to determine the flux
density in the air gap. DRAW2D is a module of the Magnet package which defines
the basic geometry of the magnet. Thus, the DRAW2D frame, KS, should contain
all the necessary information that satisfies the execution of the module, as well as

other elements such as its relationships with other modules (e.g. priority factor, etc.).

BBCAD

Chapter 3. Structure and Knowledge Organization 52

Design Knowledge

Design Independent K Design Dependent K
Domal é{}[‘m |
R L

Figure 3.3: Different types of knowledge in BBCAD

b. Domain control knowledge: deals with domain dependent control knowledge (e.g.
competence, criterion, etc.) and general purpose control knowledge (e.g. number of

cycles, integration rules, policy rules, etc.).

2. Design dependent knowledge represents facts and relations of the specific device design

to be solved. It refers to the full set of parameters which describe the structure and
operation of a device, e.g. the C-core magnet, its material properties, and specifications.
The detailed description of the representation of the magnetic device will be carried out

in Chapter 3.

BBCAD

Chapter 3. Structure and Knowledge Organization 53

3.4 Knowledge Representation

BBCAD uses various knowledge representation mechanisms such as:

» Frames for the description of the modules characterizing the design application

problem, and for message-passing.
» Production rules for the representation of control and heuristics.

» Procedures for solving conventional device equations, expressions involving relations

between parameters from the same or different tools, and arithmetic functions.

Details of these representations are given subsequent to each type of knowledge.

3.4.1 Frame-based Representation

The BBCAD tree structure, shown in Figure 3.4, is founded on a frame-based
approach. Frames are nodes of the BBCAD tree that represent peneral classes of design
knowledge modules, where the tree is a network representation composed of frames,
"parent" and "child" frames, and instances. Each frame provides a level of abstraction
which reduces the size and complexity of the search space. It can also be seen that the
"parent" frame of BBCAD is ‘top-frame’ (Figure 3.4). The frame ‘data_structure’ is the
sub-frame, called the "child" frame. A child frame inherits all of the slots from the parent
frame and can have specific local slots of its own that describe any unique attribute of the

frame. Table 3.1 depicts the BBCAD levels of abstraction.

Frames are used as templates to organize and structure the various knowledge
components in the spaces of knowledge storage (Figures 2.5 and 2.12 of Chapter 2). Since
frames are templates for structuring information, slots in frames de not hold values.
However, a copy of a frame in which the slots hold actual values, ie. the factual
knowledge, is said to be instantiated and represents a specific case of the object in the

design process.

BBCAD

Chapter 3. Structure and Knowledge Organization 54

—control_db

— to_do_set

— policies

— integration_rule

top~frame |* data-structure |» [—ks » | ksar

—{ variable

— cycles
— steps
|- Top Level -| |- First Level ~| |- Second Level -| |~ Third Level ~|
Figure 3.4: The BBCAD frame-based tree structure
Table 3.1: Basic BBCAD frames levels of abstraction
Frames Child-frames Definitions
data-structurs Top level data-structure.
ks Designh knowledge module representing the domain specific kmowledge.
kmar Design knowledge activation record: each instance of the design knowledge
module produces a unique ksar.
control_db Control knowledge module ftamme leading to different levals of abstraction of the
domain dependent knowledge modules,
to_do_sat Frame structure identifying all pending kears on each cycle of the design
process and distinguishing the ‘invocable list', ‘“triggered list', and
"trig_and_invoc_list" of pending ksars.
policies General purposa control frame identifying the pending "trig_and_invoc" ksars.

Integration rule

varfable
cycles
steps

Generzl purpose control frame identifying the lists of weights of the design
knowledge modules.

General purpose frame tracking down the activities of the control mechanism.
General purpose frame identifying the design cycle,

General purpose frame identifying the step within a design cycle,

BBCAD

Chapter 3. Structure and Knowledge Organization S5

(define-frame ks (:print-name “ks*
:doc-string “Knowledge Source...!
:Is data_structure)

(action multivalued t i ((rulal prio (IF} (THEN)) W
:default-values (true)) v (nale2 prio (IF) (THEN)) ...)

(explain_action :multivalued t v (((ralel "st1") (rule2 "st2*) ...)
:explanation-string “This s the rule explanation string")

(post_action imultivalued t ; (mlel prio (IF) (THEN)) (rule2...

:default-values (true)
:axplanation-string “Specific info why KSAR can not run*)

:dsfault-values (irue))
(trigger cond :multivalued t
:default-values (true))) iend define-frame

(action_level :constraints (:lisp-type integer) @
:defanlt-values (0))
(bb_type :constraints (:one-of {domain control distributed))) @
(efficiency :constraints (;lisp-type float) @
‘default-values {0.0))
{pre_cond :multivalued t @
@

Figure 3.5: Frame structure of the design knowledge module (ks)

One interesting consequence of this, of course, is that the dimensionality and
structure of the search space is controlled by the frame structure. The two are closely

related. Thus by defining a frame one has defined the space.

3.4.1.1 Domain Specific Knowledge

Domain specific knowledge (DSK) is that which is relevant to the tools involved in
the design process of a particular device, e.g. the C-core magnet. DSK has knowledge
about each design tool, the conditions under which this tool is executed, what is needed
to run the computer programs, and relationships with other tools, all of which are
embedded in a production rule structure. The two major frame structures of BBCAD
DSK are: the design knowledge module frame ’ks’, and the design knowledge module
activation record frame *ksar’. These frame structures are shown respectively in Figure 3.5
and Figure 3.8. The ’ksar’ frame is a child frame of ’ks’, and inherits all the slots of the

parent frame. Each of these will be looked at in more detail below.

BBCAD

Chapter 3. Structure and Knowledge Organization 56

1. Design Knowledge Module Frame (Figure 3.5): the module "draw2d", depicted in

Figure 3.6, of the analysis tool Magnet [MagNet 85] is described as being a specific

instance @, of the design knowledge module frame ’ks’. It is defined by the following:

- Precondition (pre_cond, ®) and trigger condition (trigger_cond, ®): these are used to
monitor the BBCAD blackboard for elements matching the desired precondition and
trigger condition. They have the double purpose of instantiating a knowledge source
activation record (KSAR) of the design module that is appropriate for an action and
of invoking the module at the appropriate time. For each instantiated design module

a KSAR, is created and inherits the properties of the KS frame in addition to its own.

The above terms do not correspond to the traditional blackboard definitions of BB1
[Hayes-Roth 85(a)]. Generally, triggers are used in the conditions of KSs to specify
which state changes, or events, are of interest to the KS (i.e., the trigger declares when
the knowiedge in a KS becomes solely relevant in light of what should happen in the
course of design). In order to capture a useful KS condition, the triggering mechanism
is aupmented with an extra check on the blackboard state. This extra check is called
the precondition (that part of the condition of a KS that determines the applicability

of the blackboard by using its state information).

To facilitate the integration and the control of the tools, BBCAD places the design
modules in three different queues depending on the values of the pre _cond and
tigger_cond slots (Figure 3.2). Design modules with precondition terms to satisfy are
placed on the first queue, the second queue contains modules that have trigger
condition terms to satisfy. When the module contains precondition and trigger
condition terms to satisfy, the module is placed on the last queue. This strategy easily
implements the phases of the analysis tool of electromagnetic devices by the finite
element technique [Lowther and Silvester 86]: preprocessing, solving, and

postprocessing (Figure 2.9 of Chapter 2). For example, the preprocessing tool contains

BBCAD

Chapter 3. Structure and Knowledge Organization 87

(define-Instance draw2d (:print-name “*draw2d’
:doc-string
*Draw2D is the first MagNet module, and is designed to allow
the user to GENERATE the outline of problem GEOMETRY..."

iis ka) &
vir_nama 1_priority (H.pari) (then-part)}
(action (rulel 600 :antecedent Qa
{(instance draw2d is ka)

(instance ?ksar_draw2d is ksar
with ks_name draw2d))
:consequent b
((setl (slot-vaiue 'out_window 'display)
(format nil "~ &Running Draw2d"))
(format *fle_out* "~ &Running Draw2D ")
(run_draw?2d)
(instance ?ksar_draw2d is ksar
with ks_name draw2d
with atate fired)))) rulel

(explain_action (rulel "Draw2D is the drafling pre-processor, D
whare the baslc geometry is enterad"))
(post_action {(true)) @
(action_level 10} ®
(bb_type domain) @
(efficlency 9) v/}
(pre_cond (instance draw2d is ks)) (1.)
(trigger_cond (true))) [i2)]
Figure 3.6: "draw2d" design knowledge module
((rule-1)} {rule-8) ... (rule-n}) (a)
rule-n = ((rule-n,,,,, priority (antecedent-n) (consequent-n)) (b)

Figure 3.7: Rules expression form

precondition terms, the solving tool contains trigger condition terms, and the

postprocessing contains both precondition and trigger condition terms.

— Knowledge specific module (action, @a,b): this slot value contains rule patterns specific
to the domain knowledge of the design module and the execution of these rules
depends solely on the slot values of the precondition and trigger conditions. The slot

value is a list of similar rule structures, as depicted in Figure 3.7 (a), and these rule

BBCAD

Chapter 3. Structure and Knowledge Organization 58

patterns are defined by the user when creating the design tool. Each rule structure is
of the form of Figure 3.7 (b) where the second term of the list is an integer indicating
the priority of this rule relative to other rules in the list. To add more flexibility to the
search space, BBCAD has extended the capability of this strategy by assigning different
values to the rule’s priority when defining rules (e.g., rulel in Figure 3.6 @ has a value
of 600), i.e., different rule constructs can have different priority values. The rule
priority can change during a design process depending on the situation. The second
term of the antecedent part (®a of Figure 3.6), includes an identifier, i.e. ?ksar_draw2d.
Identifiers that begin with a "?" are pattern matching variables. The variable will be
bound to the value of the item it matches against. The pattern matcher tries to find a
set of values and objects, which, when bound to the variable, match the instance that
has "draw2d" as slot value in ks_name. When the rule fires, the binding made in the
antecedent holds in the consequent, Figure 3.6 @b, so that the value "fired" is asserted
in the slot state of the ksar instance. The firing of the rules is subject to the result of

the FIFO strategy which will be discussed later in this chapter.

- Explanation module (explain_action, @): this contains an explanation of the rules in the
action slot. This is to inform the user of the activity occurring at each step of the

design.

— Meta-knowledge specific module (post_action, ®): this slot is concerned simply with the
relationship between clauses in the action slot, i.e. rules, and it holds a list of rule
patterns of the form: (nde-name (if-part) (then-part)).

These rules are similar to the AND-THEN clause in "IF (a) THEN (b) AND-THEN
(c)". This is used to add a clause to the consequent that will be asserted when the
antecedent of the action rule is satisfied and the consequent is asserted. This is
demonstrated when using the solver in Magnet: IF the problem is magneto-static, non-

linear, in a Cartesian geometry THEN conclude that XYPM is the solver to be used

BBCAD

Chapter 3. Structure and Knowledge Organization 59

here to produce a magnetic vector potential solution AND-THEN execute the XYPM
solver. In the next cycle around, there is no need to check the above rule if no changes
has been made to the problem specifications, thus converging faster {0 a solution state

by narrowing down the search space for the rule to fire.

This slot can also be used as a run-time explanation of what is happening when a design
module fires and detects misleading results in the action rules, in which case
information and an explanation are posted, and user intervention is imminent. For
example, in designing a C-core magnet a solver is needed to produce a magnetic vector
potential solution. The exact combination of the coordinate system and material
properties determines the solver to be used. If the requirements are satisfied but the
solver program does not exist, the user is asked to intervene and make a decision on

the solver type to be used.

— Knowledge domain level (action_level, ®): the value of this slot is an integer number.
It is used by the meta-scheduler to execute the design module with the highest value,
in the case of conflict. If two or more design tools have an equal value, the decision
to invoke a design module is subject to the FIFO strategy. This term is used only if the

priority value, determined by the efficiency component @, of two or more design tools

is the same,

- Knowledge type (bb_type, ®): this slot is used to indicate whether the design module
is "domain", i.e. the tool is located on the same machine, or "distributed”, i.e. the tool
is on different machine. This feature is used to expand the BBCAD to include a

distributed environment.

- Knowledge efficiency (efficiency, @): a floating point number which is used to calculate
the priority rating of a design module (refer to Appendix D). This value plays a salient
role in scheduling the design tools. In the case of a conflict, the action_level ® will

assist in scheduling the tools.

BBCAD

Chapter 3. Structure and Knowledge Organization 60

(define-frame ksar (:print-name “ksar*
:doc-string "Knowledge Source Activation Record”
:is ks) : ksar inharits all the slots of ks tame
(ks_name :muitivalued 1)

(ksar_bb_level :constraints {:lisp-type integer)
;default-values (0))
(cycle :constraints (lsp-type integer)
‘default-values (0))
(cycle_update :multivalued t
:default-values ((0 none value)) ; cycle# slot value
rwhen-modified (cycle_update_when_medified))
(priority :constraints (:lisp-type number)
:default-values (0)
:when-modifled (priority_when_modified))

{ratings 'multivalued t) ;lst of control_db (focus)
(status :multivalued t)
(stater :constraints (:one-of (new old fired rerun none))

:default-values (nons)

:when-modified (state_when_modified))
(stop_criterla :constrainta (:one-of (yes no)))

:default-values (no)))

Figure 3.8: ksar frame structure - child-frame of ks

Table 3.2: Basic slots of the ksar frame structure

Slot Dedinition

ks_name Name of the parent design kmowledge module.

ksar_bb level Level of BRBCAD at which the design tool is being processed.

cycle Cycle number at which the design module was invoked.

cycle update Keap track of the activitles at each cycle.

proerity Priority of design tool {calculated In Appendix D).

ratings List of the control knowledgs mwdules to calculata the priority (Appendix D).
status Status of the design tool, Le. invocable, triggered, or triggered_and_invocable.
glate State of the tool: new, old, fired, or rerun.

slop_criteria Stopping criterion for the design process,

2. Knowledge Source Activation Record Frame (Figure 3.8): the ’ksar’ frame represents

a unique triggering of a particular design knowledge module by a particular event and is
created at runtime. Each ksar is object-directed in that it monitors the blackboard for
data matching its precondition and trigger condition. It is a “child" of the frame ’ks’, thus

inheriting all the slots of the parent frame and has additional slots shown in Figure 3.8.

BBCAD

Chapter 3. Structure and Knowiledge Organization ol

Table 3.2 gives an overview of the slot definitions. When a ksar is chosen by the
scheduling mechanism (to be discussed in Chapter 4), its tool’s action executes in the
context of its precondition and tripger condition, typically producing new information in
the knowledge space. When several design tools are competing for execution, the one
which can contribute the most information is fired first. The slots cycle and cycle_update

are used to backtrack and resolve deadlocks among competing tools.

3.4.1.2 Domain control knowledge

This section deals with control domain dependent knowledge modules and general

purpose control knowledge modules (Figure 3.3). Details of these modules will be looked

at in more detail below.

1. Control Knowledge Modules: they primarily operate on the design knowledge modules
(KSs), and interpret and modify the design process activity and behaviour. The control
module is represented as a frame data structure, ‘control_db’ shown in Figure 3.9, where
all the instances of the frame are available for interpretation and modification
(Figure 3.10). All these instances respond to, generate, and modify solution elements in
the design space of BBCAD, under the control of a scheduling mechanism. BBCAD uses
two classes of control decision heuristics (levels of abstraction) to integrate and to schedule
design tools in designing a device: the focus and policy levels. These two decision levels
describe desirable actions, thereby determining which of the BBCAD’s control heuristics
operate on a particular design knowledge module of the design process. Design solutions
at the control level, i.e. focus and policy, are decisions about what actions are desirable,
feasible, and actually performed at each step in the design process. Each control decision
is represented as an instance of the ‘control_db’ frame where slot definitions and instances

are shown respectively in Table 3.3 and Figure 3.10.

BBCAD

Chapter 3. Structure and Knowledge Organization 62

{define-frame control_db (‘print-name “control_db*
:doc- tring "Control Focus / Policy..
lis data_structure)
(compelence :constraints (:one-of (domain_ks_focus planned_ks focus
control_ks_focus class 1 class 2 class_3 class_4)))

(criterion ‘multivalued t)
(2eclslon_type :constralmts (rone-of (focus policy)))
(goal :multivalued t)

(first_cycle :constraints (:llsp-type integer)
:default-values (0))

(last_eycle :constraints (:lisp-type integer)
:delault-values (0))

(status :constraints (one-of (active inactive)) }
(weight :constraints ((lisp-type integer)
:default-values (0))) ;end define-frame

Figure 3.9: Control decision type frame (control_db)

Table 3.3: Basic slots of the control_db frame

Slot Definition

Competence Compelence level of design module

Criterion Explration condition (pattern)

Decision_type Leavel of abstraction (e.g., focus, policy)

Goal Actions to be taken (if-then form)

Status Status in design process (e.g., active, inactive)
Weight Design medule impaortance

First_cycle First executable cycle number

Last_cycle Last executable cycle number

Focus decisions eswablish local design objectives to execute the ksar of a particular
design knowledge module. They operate independently of one another, and are used to
rate the design modules. As a consequence, they influence the scheduling decisions. At
the highest level, the default ordering of the agenda items, i.e. design modules, is a
breadth-first (FIFO) strategy only if none of the design knowledge modules has been fired.
If two or more modules are competing, the execution is altered if one of them has already
been fired and no new information is added to the spaces of knowledge. A typical

instance of a focus decision control type is shown in Figure D.1 of Appendix D.

BBCAD

Chapter 3. Structure and Knowledge Organization

63
high_prio »
high prio low_cycle [| focus_1
random_high_prio B — focus_2
high_prio _high_cycleH - focus_3

~|control_db |~

low_prio | competence - focus_4
criterion
decision type
low_prio_high_cycle H gqoal - focus_action_level
status
weight L
low_prio_low_cycle [first cycle

last cycle

focus_control

random_low_prio —

|- Policy Decisions +«| |+ Focus Decisions «

Figure 3.10: The control_db slots and instances

Policy decisions also influence the scheduling mechanism, are used to evaluate the
design modules and to converge to a new solution state, They initiate global scheduling
criteria favouring ksars with particular attributes and values, and carry no internal criterion
values. In contrast to focus decisions, policy decisions actually influence scheduling
decisions only if the executable agenda list contains design modules with the attributes and
values the policy decisions describe, and these policies ordinarily remain operative for the
whole design process. These type of decisions are implemented to resolve conflict
between the satisfied design modules, i.e., modules that are ready to be selected and
executed. The policy decisions of Figure 3.10 give the process further control over firing

design modules, thus influencing the decision of which ksar to fire first. Sorting the

BBCAD

Chapter 3. Structure and Knowledge Organization 64

(define-instance high_prio (:print-name *high_prio®
:doe-string "High_prio policy decision type”
ils control_db)

{decision_typa policy)
(goal (kind ?pairs (sort_prlority_trig_invoe *> 'pricrity))
(bind ?ksarl (cadr ?pairae))
(bind ?priol (car ?pairs))
(variable-bound-p ?priol)
(Instance ?ksar? Is ksar
with status trig_and_Invoc
with prority ?prio?)
(equal-instances ?ksarl ?ksar2)
(= ?prol ?prio?))
(status active}
(welght 10)) ; end define-Instance

Figure 3.11: Example of control decision high_prio instance

® |ecycles |=~|current_cycle rule_ksars_cycles
®|variable -[

@ |steps |=|step watch_ksar_cycles

@ |policies|=|policies_rule| ®jto_do_set|=|to_do_set_ rule

@ |integration_rule|=|integ_rule_focus

Figure 3.12: Frames and instances of general purpose control knowledge

modules in decreasing order of the priority value, calculated in the focus decision, is the
default policy. A specific instance of this policy is shown in Figure 3.11, where the goal
is to find the ksar with the highest priority.

2. General Purpose Control Knowledge (Figure 3.12): this type of knowledge module is
used in the general control mechanism to keep track of various activities of the design

process such as identifying KSARs at each cycle, cycles performed, steps in each cycle,

BBCAD

Chapter 3. Structure and Knowledge Organization 65

pre_cond goal
< |Domain | [Control| »
trigger_cond criterion
pre_action "
action
DKI
post_action

Figure 3.13: Slots in BBCAD framcs that provide the production rules of the modules

(rule-name ({option}*) {pattern}* (@)
than {pattern}*
(and-then {pattern}*])

RULE: DRAW2D_RULE] (b)
Doc String: "action rules®

Explanation String: "Draw?2D is the drafting pre-processor,
where the baslc geometry Is entered.”

Priority: 600 ;==> highest FIFO O

direction: ‘FORWARD

dependency: nil

Sponsor: ACTION_RULES i==> FIFO @
F {pattemns}*

THEN ({patterns}*

Figure 3.14: (a) BBCAD rule structure, (b) Option definitions (draw2d)

weight factors connecting the control modules to the design modules, and other internal
control manipulations such as the integration rule frame of Appendix D, Figure D.2,
These control knowledge are also used to keep the user informed of what is going on by
providing run-time explanation and tracing of what is happening, what design modules, i.e.
processes, are being used, and what knowledge has been applied to make indicated

decisions, thus making the design process transparent and easy to trace and comprehend.

BBCAD

Chapter 3. Structure and Knowledge Organization 66

3.4.2 Rule-based Representation

The rules are embedded in the design knowledge module formulation. The role
of the design knowledge interpreter (DKI) (Figure 3.3) is to interpret this formulation and
generate explicit rules corresponding to the design modules. Not all the knowledge
present in the design knowledge modules can be interpreted by the DKI. Only a few slots
of the design module frame, *ks’, and the control module frame, *control_db’, are translated
(Figure 3.13). In BBCAD, the production rules represent cause and effect relationships
using the "if-then" form, so that if one combination of conditions is true, then other
patterns become true as a consequence, i.e., "IF antecedent patterns, THEN consequent

patterns" (Figure 3.14(a)).

Rule antecedents may call functions to bind and assign local variables, compare slot
values or local variables, and check for facts in the spaces of design. Consequents can call
functions and foreign programs, assign variables, assert or delete facts, modify slot values,

and change the BBCAD control states.

3.4.2.1 Rule Inferencing

BBCAD uses forward chaining to infer all possible information from the spaces of
knowledge that already exist in the design space. Figure 3.14(b) depicts a rule structure
of the design knowledge module "draw2d". A more detailed construct of this rule is shown
in Figure E.1 of Appendix E, where the rule is presented as an example of a production
rule and it is the generated outcome of the slot action portrayed in Figure 3.6 and referred
to as rulel. The forward chaining strategy is initiated when the antecedent, or "if" portion
of a forward rule matches a set of objects in the design space. When the rule is matched
and ready to fire, the inference engine creates an agenda item from the rule and its

matching objects. An agenda item is a representation indicating that some event will

BBCAD

Chapter 3. Structure and Knowledge Organization 67

invocable Tog-sTonsor

triggered

criterion_rules

trig_and_invoc

< |Domain Control| » |focus_rules

action_rules

policy_rules

post_action_rules

watch_ksar

Figure 3.15: BBCAD Sponsors

DRAW2D_INVOGABLE_1
DRAW2D_WATCH_KSAR_1

DRAW2D_1

SR DRAW2D_ACTION_RULES 1

CRITERIGN_RULES)

: | \DRAW2D_POST_ACTION_1
TOP-SPONSOR FOCUS_RULES |

POLICY_RULES | MESH_INVOCABLE_f

MESH_WATCH_KSAR_1
MESH_1

MESH_ACTION_RULES_1
MESH_POST_ACTION _1
Figure 3.16: Levels of Abstraction using MagNet modules

happen if the design application is run. When the agenda item fires, the consequent of
the rule enters new assertions and values into the design space. These assertions, in turn,
cause more agenda items to be created, which eventually should lead to more information
about, for example, the C-core design problem. BBCAD fires the agenda items, i.e.
KSARs, according to the ordering of the agenda. The priority of an agenda item is

determined by the priority of its rule (Figure 3.14(b) ®). This feature is user defined (the

BBCAD

Chapter 3. Structure and Knowledge Organization 68

action slot in Figure 3.6), the default is a first-in first-out (FIFO) ordering, i.e., breadth-

first strategy.

3.4.2.2 Breadth-First Search

In BBCAD, at the design module level, the default forward agendas are ordered
in a breadth-first manner, i.e., a prioritized queue. In this ordering, when ksars are added
to the agenda, they are placed at the end of all other items sharing the same priority
(established by the priority of the rule in the agenda item Figure 3.14(b} © and the
ordering of the agenda @). The rule’s priority is assigned by the designer when defining
the module. During the design process, these values can be modified by the designer using
other rules to place the corresponding rules in different location on the agenda. In a
forward chaining strategy, this feature allows the designer to place more important
decision rules on the top of the agenda. Individual rules and design tools can be
controlled using sponsors, i.e., a locking mechanism. Sponsors are used to control the
resources allocated to the firing of BBCAD forward chaining rules and design modules or
to prevent specified rules from firing altogether. Each sponsor has a single agenda that
contains forward agenda items, i.e. forward rules, and a state, which determines if the
sponsor is active. A sponsor is designated, at run-time, for each design module and the
rules pertaining to the design module are clustered under the appropriate sponsor. Rules
are also created to control the sponsors, i.€., by enabling or disabling them. When a

sponsor is disabled, i.e. locked, the rules in its agenda cannot be fired.

A form of hierarchical locking, i.e. a sponsor, is used to control individual design
module and rules of the BBCAD tree-structured frame system. The BBCAD sponsors are
organized in different levels of abstraction with one top-level sponsor called the "top-
sponsor", shown in Figure 3.15. In order to reduce the chances of interference between

the design modules, the design module selected for execution enables its sponsor, and

BBCAD

Chapter 3. Structure and Knowledge Organization 69

disables the rest, i.e. locking the rest of the design modules, thus narrowing the search
space by firing all of the agenda items of the selected module. The various levels of
knowledge locking using the Magnet modules [MagNet 85] in designing the C-core device
are depicted in Figure 3.16. It can be seen as a two dimensional abstraction and this
abstraction is extended from deep to shallow knowledge, i.e. from frames to rules. Rules
of individual design modules are also stored in a hierarchical tree structure (Figure 3.16),
and grouped in subtrees, i.e. knowledge partitioning, where only a certain subtree or
subtrees of rules are applicable in a current situation. This is useful when heuristics

controlling the focus of attention are utilized to achieve more efficient execution space

search and speed.

3.4.3 Procedural Representation

BBCAD represents procedurally, all the knowledge which cannot be represented
easily by rules, as user-defined functions evoked by the antecedent or the consequent in
rules or dacmons attached to frame slots. BBCAD has been developed to support design

expertise (existing algorithms and procedures) written in both FORTRAN and C
(Appendix F).

Certain procedures are programmed to solve specific problems, e.g., equations,
Procedures are programs that know how to do things, or how to proceed in well-defined
situations. Traditional numerical formulae usually map into procedures in a
straightforward way. An example of a numerical formula is shown in equation (3.1), and
used to calculate the priority value in order to invoke the frame (’ks”) of the design
module with the largest value. This procedure is attached to the priority slot of the 'ksar’
frame (Figure 3.8). f, corresponds to the efficiency slot value, W, is the value of the
weight slot of an instance of the ‘control_db’ frame (Figure 3.9), and C, is the weight

factor that corresponds to the attribute of the slot competence. The efficiency value of the

BBCAD

Chapter 3. Structure and Knowledge Organization 70

design module is a real number between 0.0 and 1.0, and » in f, is the number of all
possible focus control modules with efficiency less than or equal to the ks’ efficiency.
Appendix D demonstrates how the priority values are calculated for the "draw2d” Magnet
module. At each cycle of the design process, the priority value of the active design
module is recalculated. BBCAD gives the user the power to reassign efficiency and weight

factors to control and manage the design modules.

fn
priority = E W, x C4 where 0.0sf<1.0 KRY
feft

BBCAD

CHAPTER 4

Decision Analysis

This chapter concentrates on strategies which are utilised in the selection of the
design module to use as this is the kernel of the BBCAD system. It also discusses the way

the BBCAD controller makes a decision on the next step to take in the design process.

Dormain Dependent '
CONTROL K \:\
Design Independentk + | 9K

Dmdnmm/i/'mmm

Bpecfic K MODULE

o e -

L R e

Domaln Dependent
Specific Knowledge

Figure 4.1: Architectural layers of BBCAD

4.1 BBCAD Organizational Levels

In the BBCAD model, the notion of separate domain and control knowledge
sources has been preserved [Hayes-Roth 85(a); Prager et al. 89]. BBCAD is a knowledge-
based system, containing knowledge in various representations about the problem domain

and design process (Chapter 3). The problem domain consists of both problem data, ic.

71 BBCAD

Chapter 4. Decision Analysis 72

design dependent and independent knowledge (Figure 4.1), and control knowledge about

how to use the problem data.

The architectural objects of BBCAD are organized into three layers, as shown in
Figure 4.1. The lowest layer of BBCAD is the domain dependent level, i.e. design
dependent knowledge, which contains the problem device knowledge (e.g., specifications,
requirements, guidelines, etc.). The middle layer is the design module tasks level which
contains the design modules and control knowledge sources, it also comprises rules of
thumb and problem solvers to manipulate the design independent knowledge. The highest
layer is the process control level, i.e. the kernel. It contains the control mechanism for
executing and controlling the entire design process, as well as operators for initiating the
tasks of the KSARs. The mechanism of control differs depending on both the structure
and the steps taken. The control mechanism is implemented by the use of an agenda-
based scheduler. The agenda lists all design modules that are ready to be executed, and
the scheduler decides which of these modules to execute first. The scheduler calculates
a priority for each waiting tool and selects the tool with the highest priority, for execution

(Chapter 3).

The knowledge representation serves as a mechanism for assisting users in keeping
track of their goals and for supporting cooperation among design tools by providing a

central structure for knowledge that otherwise would not be easily shared.

4.2 Organization of the BBCAD Problem Solver

The approach centres around a knowledge base containing a model of
representations and communications into which new design tools can be entered and
classified with respect to preexisting design tools. The BBCAD blackboard inference engine

is the system’s reasoning process (Figure 4.2), i.e. the kernel. The kernel controls the

BBCAD

Chapter 4. Decision Analysis 73

[Ccomplle I <= Figure 4.3

Deslgn Modules

«— Flgura 4.4

L Conren Rs |

| INITIALIZATION]

.

Invocable
Invoke Rules Triggered
(CREATE / MODIFY) triggered and Invocable

toppling YES

Criteria

NO

Invoke
Focus Declision

Ratings Calculation
Sonting TO_DO_SET list

Invoke
Policy Declision

Choose / Exaecute . [Actlon

Design Module Post_action
Activation Record

TO_DO_SET
Vearification

Design
Verification

Figure 4.2: BBCAD algorithm

BBCAD

Chapter 4. Decision Analysis 74

operation of the problem solver in the design space. The blackboard engine is a
combination of LISP functions, precoded rules used to apply control decisions, and rules
generated from the design module declarations which are used to verify the specified
context and preconditions of these functions. It also uses external design independent
knowlerge modules, which contain search strategies, to guide an iterative cycle that tries
to reach a final design state, i.e., an optimal design. The design solution is generated on

the blackboard incrementally by applying the design knowledge modules one at a time.

The first step is to generate production rules from the appropriate slot values of
the design knowledge modules and control knowledge sources (Figure 4.1). These
knowledge resources are sets of elements used and modified by the kernel. They contain
the clusters of knowledge required for the problem solving process. They are action task
modules that contain information about when they are applicable, how their bindings are
set, and what action to perform on the design space. This knowledge must be maintained
in any implementation such that modifications to the knowledge can be undone and prior

states can be recovered, i.e. a history is maintained.

»

4.2.1 BBCAD Design Module Classifications

The design modules or domain knowledge sources (’ks’ irames), operate primarily
on the domain blackboard. The domain blackboard records solution elements for the
current design tools. Each design module contains knowledge about performing a
particular design task in the design process, together with a data structure describing the
action part, i.e. a descriptor which contains at least an identification and a condition
describing the blackboard states for which that design module is defined as applicable
[Velthuijsen and Braspenning 91]. Descriptors are used to quantify the ability of a
particular design module to contribute to the design process; they allow the kernel unit to

identify that such a design module exists. The structure implemented and discussed in

BBCAD

Chapter 4. Decision Analysis 75

Chapter 3, aliows the following information to be provided to the kernel unit:

» Design module name and a description.

v

Set of triggering condition patterns.

v

Set of precondition patterns.

v

List of variables, parameters and relationships related to the design tool goal.

v

Features and properties such as type. competence, efficiency and weighting factors.

v

Pre-actions, actions, and post-actions to be taken when executing the design modules,

Table 4.1: Design modules classilication

pre cond -
SLOTS Pattern True
trigger cond |
Pattern trig_and_invoc triggered
True fmvocabla Don't Care
—

Since the only means of communication between the design tools is through the
blackboard, a common representation scheme is implemented. To reduce tiic possible
communications bottleneck which may occur when too many accesses to the blackboard
are attempted, BBCAD decomposes these design modules into three different queues
(Chapter 3), and design modules that operate on a particular level only are selected. By
allowing multiple perspectives, the design knowledge modules could be structured to
closely fit the design application. This decomposition allows the user to have tighter

control over the execution of the design tools and to limit the search to a small portion

BBCAD

Chapter 4. Decision Analysis 76

of the design space. Thus, by appropriately ordering the activation of the design modules,
some of the excessive searches of the design space may be avoided, i.e., the system will

converge faster to a solution state.

The BBCAD design module does not follow the traditional blackboard definitions,
discussed in Chapter 3, nor the control strategies. The traditional control cycle can be
summarized as follows [Hayes-Roth 85(a)]:

- When the trigger of a design module is matched, a KSAR is created and it is defined
as being "trigpered".
- The KSAR is "invocable” if all the precondition patterns of the triggered KSAR are

checked to be true.
- The control mechanism decides on which invocable KSARs to execute.

The three different types of module constructs, i.e. queues, shown in Table 4.1,
primarily depend on the precondition (pre_cond) and trigger condition (trigger_cond)
patterns of the frame ’ks’, discussed in Chapter 3. A pattern is a list of one or more
terms, where a term can be either a value, an object, a variable, or Lisp relational
functions, ie., predicates. These patterns are also used as predicates in rules. The
BBCAD control strategy cycle is summarised as follows:

- The KSARs of the design modules are created at run-time, and are defined as follows:

1. The design module is of type invocable when it contains precondition patterns to

satisfy, but not when the patterns are satisfied.

2. When the trigger of a design module contains patterns to satisfy, the module is

defined as being triggered.

3. When the design module holds precondition and trigger patterns to satisfy, it is

defined as being trig_and_invoc.

4. "Don’t Care": these types of modules can be used as general design tasks for control

BBCAD

Chapter 4. Decision Analysis 11

and verification of design activities. The rules generated from these modules are

fired whenever the antecedent part is satisfied.

- The above KSARs are placed on their appropriate lists. These li:ts are elements of the
'to_do_set’ frame structure, which is part of the general purpose control knowledge
(Figure 3.12® of Chapter 3), and they are: the invocable_list which is matched first,
then the triggered_list, and last the trig_and_invoc_list.

- The above mentioned KSARs are "applicable” when all their patterns are checked to
be true, i.e., matched and satisfied. All the applicable KSARs are then posted on the
execution_list of the fo_do_set’ frame, and selected for execution in the following
sequence: invocable first, then triggered, and last triggered and invocable. While a
KSAR is being executed, the pattern of another applicable KSAR may become false,
i«z. changing its state, thus forcing it out of the executable list. However, only the
KSARs on the executable list are scheduled for execution, ie., placed on the

chosen_action slot of the r0_do_set’ frame.

- The scheduler selects and executes the KSAR based on the amount of data added to

the knowledge space, leading to a solution state.

The above formation makes it possible to control where certain design actions
direct their attention, i.e. focus of attention, that is, on which part of the design space they
operate to produce a solution. The scheduling is dynamic. With each firing the design
space changes and other design modules may become eligible. A design module may also
cease to be eligible once another event ahead of it in the schedule has been activated, By
decomposing the design modules into three categories, the degree of freedom in each
design cycle is limited to only one category. Spatial partitioning is implemented by
ignoring all satisfied design modules that are not part of a particular design tool. A design
tool can have more than one design module (e.g., the MagNet finite element taol consists

of preprocessing, solving, and postprocessing modules) and these modules could be in

BBCAD

Chapter 4. Decision Analysis 8

different module constructs. At any one cycle of the design process, several design
modules may be ready to execute, only the modules of the scheduled tool are executed if
the goal is not reached. This strategy is used to prevent conflict between modules of

different design tools.

4.2.2 Rule Generation

As discussed in Chapter 3, BBCAD supports a production rule knowledge
representation scheme which can generate hypotheses, examine and modify design
modules, deduce conclusions, execute external functions and programs, and dynamically
alter control strategies. The procedure which is called to automatically generate rules,
depends on the knowledge domain under consideration. A unique name is assigned to
each defined rule. Each rule created has optional keywords, discussed in Appendix E, to
assign attributes such as documentation string, priority of the rule, rule direction, a sponsor
to which the rule is assigned, i.e. the locking mechanism discussed in Chapter 3, and a
string used to tailor the explanations that are generated when asked to explain why
something is true. In order to reduce the chance of interference between the design
modules, the control mechanism locks onto one design module rather than the entire
space, i.e. operates on the generated rules of the design module. Since the blackboard
frame system is tree structured and provides an inheritance mechanism, a form of
hierarchical locking is used to lock all ancestors of a design module. There are two types
of rules which are being generated, and they are design knowledge modules and control
knowledge modules rules. Each of which is discussed in more detail below. The attributes
of a general rule construct and an example of a rule generated from a design module can

be found in Appendix E.

BBCAD

Chapter 4, Decision Analysis

Choose

Design Module

YES

RE_CONDY

e

NO \YES
Daflne-rule Deflne-rule Dellne-rule
Invocable Trig_and_lnvoc Trggered

Define-rule
Action
Daoflne-rula
Watch_ksar
YES /
9]
NO
Define-rule
Post_actlon

Return
(Flgure 4.2)

Figure 4.3: Flow diagram of BBCAD design modules classification

BBCAD

Chapter 4. Decision Analysis 20
4.2.2.1 Design Knowledge Module Rules

The flow diagram of the rules which are being generated for the design modules,
is shown in Figure 4.3. These rules get generated at startup and when design modules are
included. Rules are also stored in a hierarchical tree structure allowing them to be
grouped into subtrees for design module partitioning. This is useful when heuristics
controlling the focus of attention are utilized to achieve efficient execution speed. The
compile_ks procedure generates design module rules depending on the slot attributes of
the ks’ frames. The antecedent part of these rules consists of the pre_cond and/or
trigger_cond patterns (Figure 3.5 of Chapter 3). The patterns consist of calling functions,
assigning local variables, comparing slot variables or local variables, and checking for facts,
The consequent part of these rules calls functions, invoke simulation tools, assigns
variables, asserts and deletes facts, and changes the BBCAD control states, etc. Each of

the design modules contains the following categories of rules:

((rule.1l) (rule.2) ... (rule.n)) (a)

rulen = ((rule.n,,,, (antecedent.n) (consequent.n)) (b)

Figure 4.4: Pre_action rules expression form

1. KSAR rule generation: this type of rule produces the KSARSs of the design modules,
and records are kept to indicate the invocation and modification steps that are taken
at each cycle of the design process, for later use. General purpose control frames are
tallied whenever KSARs are created, changed or modified, i.e. a history is maintained

for the policy rules.

2. Pre_action rule generation: these rules give more control over the design module, i.c.

actions to complete before invoking the design module, they resemble the precondition

BBCAD

Chapter 4. Decision Analysis 81

of the traditional blackboard. The structure of the slot values of the pre_action
component, shown in Figure 4.4, is a list of one or more patterns, where each pattern
is a list of three elements which are the rule name, the antecedent part, and the

consequent part.

3. Action rule generation: these rules deal with the patterns of the action slot of the
design module and represent the core knowledge, i.e. strategy knowledge. These
production rules contain information on what is needed to invoke and run the various
simulation tools, and general rules of thumb on how to modify a design when the
constraints are not satisfied. The search in the design space is guided by these heuristic
rules. The sequence of rule firing is contained in the choice of the weight value, i.e.
priority, given to different rules in the action slot. The structure of the slot value is in
the form of lists of rules as previously shown in Figure 3.7 of Chapter 3. The slot

action can have one or several rules.

4. Post_action rule generation: this type of rule has the same structure as the pre_action
rules discussea above. The post_action slot values are the meta-knowledge of the tool.

These rules will assist in the decision making of the next step, ance all of the current

action rules are fired.

5. Display rule generation: this type of rule is used in assessing the execution of the design
modules. These rules help the user to develop new insights that facilitate understanding
and help in solving the design problem, by giving explanations of the process to date,

they are a history recap.

For each of the conditions there must be at least a rule in the module with that
condition as a conclusion. Such a rule may be translated: "If all the input variables and
all the constraints are present in the right sequence, and the script-file is executable, and
the computer program is executed, and its output variables are paired with the computed

values, and the computed values are asserted into the design space, then it is true that

BBCAD

Chapter 4. Decision Analysis 8

RETURN
(Fom 42)

Figure 4.5: BBCAD control rule generation flow chart

results have been computed for the module." Since the rule for running the program
requires that all required input values be present, the program of the module may fail to

execute on the first attempt.

4.2.2.2 Control Knowledge Module Rules

Control knowledge module ruies are used to sequence the execution of design
modules for efficient design optimization under the control of the kernel. They operate
primarily on the BBCAD spaces of design knowledge, and are predefined heuristic control
modules. All solution elements for the control of the design process are recorded on the
BBCAD blackboard. The automatic generation of the BBCAD control knowledge
modules rules is depicted in Figure 4.5, and these rules are generated at the initialization

stage.
The frame structure of these control modules is defined in Figures 3.9 and 3.10 of

BBCAD

Chapter 4. Decision Analysis 13

Chapter 3. The generated rules use the dependency option and are specified as
d:pendent rules, i.e. logical (Appendix E). They are used to support retraction, so that
if the values and assertions that cause the rule to fire are retracted, the values and
assertions generated from that rule are also retracted (if they have no other logically
supporting values and assertions), i.e. an entire branch of the tree is removed. Since the
rules are dependent and they run in a forward direction, they create a justification
structure for new assertions and the values they assert. The justification contains the rule
and the list of assertions and values used in matching the antecedent portion of the rule.
There are three types of generated rules which provide decision strategies of what needs

to be done to solve a design problem and they are:

1. Focus decision rules: the focus rules are generated by coding the patterns of the goal

slot of all the control modules with "focus" as decision_type (Figure 3.9). These rules
are a set of search strategies used by the scheduler to determine which of the
executable KSARs is desirable at that cycle, i.e. are used to calculate a priority for each

of the design modules.

2. Criterion rules: these rules reflect the slot value of the slot criterion. This criterion
causes the appropriate control decision to be selected in the decision making process
of rating the design modules. Processing will be halted when the design process has
exhausted all of its resources without finding an adequate design solution, i.e. the design
does not converge to a final solution, and the number of design cycles exceeds the

required predefined cycle number (*number_of_ks*).

3. Policy decision rules: the policy rule is created when the slot decision_type is of type
policy. These rules influence the scheduling decision and only operate on design
modules with particular attributes and values. This collection of executable rules is
called the "conflict set", and provides the user with several choices of tailoring the

conflict resolution strategy, thereby emphasizing the focus of attention,

BBCAD

Chapter 4. Decision Analysis 84

Design Space

Figure 4.6: BBCAD kernel

4.3 BBCAD Inference in the Design Process

The BBCAD is capable of reasoning opportunistically because the order of
executable design modules is dynamically determined based on the applicability of design
modules and the latest blackboard state. A design problem is posted on the design space
and the various design tools work in an opportunistic fashion to solve the problem. When
the design process has proceeded to a point where a certain tool has enough information
to make a contribution to the design space, that tool activates, and adds the appropriate
solution to the design space for other tools to work on. At each cycle of the blackboard
engine, a set of control decisions is used to select a design module for execution. The

kernel cycle iterates through a basic set of four steps as shown in Figure 4.6:

- Update, validate, and examine the current blackboard state to see if a final design
solution has been attained. At the beginning of every cycle, the kernel validates and
examines the general purpose control knowledge modules. The following tasks are

performed:

BBCAD

Chapter 4. Decision Analysis 48

1. Cycle number update.

£

. Check whether or not a final design solution has been reached.
3. Decide if there are any design modules to execute.
4. Remove all KSARs for which no goals are applicable in the design space.

5. Change the state of KSARs.

- Search for a new design module to work with: this is determined by satistying,
instantiating, and interpreting the design knowledge modules. One design module in
the design space is consulted at every cycle of the design process, and the limit on
design cycles is a function of the design modules and their execution. A design module

could be executed several times, and its execution is determined by the following stages:

. Instantiating: a KSAR is created for each design knowledge module on the

blackboard spaces of design.

. Checking and satisfying: after the instantiating process, every KSAR precondition and
trigger condition are checked. Satisfied design modules are placed on the execution

agenda list of BBCAD, i.e. agenda entries (Chapter 3 - Rule Inferencing).

- Scheduling the new design knowledge modules: a more detailed scheduling problem is
shown in Figure 4.7. The BBCAD scheduler is a sophisticated mechanism that uses a
variety of criteria (e.g., design module competence, triggering information reliability,
design information credibility) to choose a KSAR for firing. Whilst the invocable
KSARs are invoked first, then the trigpered KSARs and iast the triggered and
invocable, the order of execution of each one of these classes is determined by the
control knowledge modules (e.g., focus and policy). The focus decision rules set the
ratings of the design modules in each class depending on their efficiency factor and
their competence level. The policy decision rules act only on the triggered and

invocable rules. Every KSAR is rated, and the highest-rated KSAR is recommended

BBCAD

Chapter 4. Decision Analysis

N

Satisfied /Parﬂaﬂy Complefed ?1;.

R___”nlﬁa! 'genda Execuling
Saiest (Kgl-?\%z) {chosan KSAR)

\ Focus of Attention
"

g,

&

Evaluate Prioritles

Figure 4.7: More detailed scheduling Kernel

for firing. Ratings and priority factors are assigned to each design module and are used
for resolving deadlocks among competing design modules. Ratings are numerical values
and a weighted sum of ratings is used to calculate a priority for each tool. An example
explaining how these ratings are calculated is discussed in Appendix D. All the KSAR

specific requirements for firing are tested again to verify that they remain valid.

Firing the design module: firing the chosen KSAR is in essence forward-chaining the
generated rules previously discussed, and implementing the locking mechanism, i.e. the
sponsor discussed in Chapter 3, to limit the search of the design space. A more
sophisticated mechanism, i.e. assigning a different priority value for each different rule
construct,'is utilized to control the invocation of the design tool rules and to resolve
conflict among competing rules. Rules with higher priorities will fire before rules with
lower priorities and the result of firing the KSAR is posted back to the blackboard.
The above process repeats itself until the design problem is solved or a predefined

termination condition is reached.

BBCAD

Chapier 4. Decision Analysis 87

. Conflict among the BBCAD design modules may arise when, after a goal is posted
on the blackboard, more than one design module submits an estimate for the solution of
the device design. The focus of attention acts as a manager resolving these conflicts, and
also decides what to do in the event of a failure. If more than one design module is
competing for execution, a priority value, based on the user experience and heuristics, is
used for resolving deadlocks among competing modules; the default is a FIFO. If, after
firing the tool, no new design solutions or events have occurred on the blackboard space,
this tool will be deactivated and the next tool on the executable list will be fired. The
post_action slot plays a salient role in the decision making before leaving the design tool

if it is confronted with problems.

The scheduling mechanism in BBCAD is an example of planning. The scheduler
is able to decide, in a non-deterministic fashion, which design module should be executed
next in order to most effectively complete the design task. In addition, the scheduler is

. able to resolve conflicts between competing design tools, i.e. selects the design module that
converges most rapidly to a solution, and initiate the necessary corrective action when a
particular design module was supposed to be fired, but could not due to a missing
program. The action slot contains rules to verify whether or not the simulation programs
and their appropriate data files exist. If the program does not exist, a message is displayed

pointing out the proper actions to take.

BBCAD control cycle is summarized as follows:

- At run-time, for each design module that exists, a KSAR is created, and called
“instantiated", where the attributes and their values are largely inherited from the

parent design module.

- The KSAR is "satisfied" if all the precondition and/or trigger condition patterns of the
instantiated KSAR are checked to be true.

. - The scheduler decides on which list type of satisfied KSARs to execute.

BBCAD

CHAPTER 5
Application

In order to illustrate the ideas already presented in this thesis, the simple problem
of designing a C-core magnet device is implemented using the BBCAD hybrid system.
This example demonstrates the integration of a finite element analysis tool, i.e. MagNet,
in the field of electromagnetic device design with other analysis design tools, i.e. OPTDES.
An optimization analysis tool is to be integrated to assist the designer in the refincment
process of the final design, that is if a change is made to the C-core design, all relevant

tools are re-run. The design optimization process is also discussed.

om e
Y
: changes
2 LG
] ""r’fm i ArGap
B I+ P,
T TR Ee ey ey -n---rr!vlr-rnruru-‘;;-u.‘nyml
N 55
2| 1
1
2])
10 3
g] 4
1 8

Figure 5.1: C-corc Magnct

88 BBCAD

Chapter 5. Application

2]
Ys)

5.1 An Implementation Definition

The goal of the C-core magnet design, depicted in Figure 5.1 [Fitzgerald et al. 83],
is 1o find a final design fulfilling a given requirement. Moreover, the last design should
be optimal in some respect, for example, the physical core layout must meet the
specifications and the flux density in the C-core air gap should be uniform. These may
well be conflicting criteria, and therefore loosening constraints is common in design tasks,
i.e. when one criterion is improved some other must be relaxed. Design knowledge can
be used concurrently with optimization techniques to generate new designs to be evaluated
and revised by the user, thus speeding up the design process and increasing the quality of

the design.

At present, packages and conventional programs for the computational analysis and
design of electromagnetic devices are in a noticeable state of growth. There are numerous
well-validated computer programs on the market for static, steady state, and transient
analysis. These programs are modular, with modules able to handle realistic geometries,
to model materials, to provide valuable solution evaluation and pre- and post-processing
capabilities, such as MagNet, PE2D, and several others [Lowther and Silvester 86]. For
example, the conventiona! architecture of MagNet for the computer-aided design of
electromagnetic devices, consists of a set of relatively large scale modules, each of which
requires significant skill for its use. At each step in a design simulation using a finite
element package, the user must know how to set boundary conditions, generate an
appropriate mesh, select the best solver, and manipulate the field solutions generated by
the solver to calculate desired quantities such as impedances, inductances, and losses, using
the post-processing module included in the package. However, depending on the overall
level of mesh refinement chosen by the user, an inaccurate solution may result. Should
this occur, there would be a need to change the refinement and rerun the appropriate

modules.

BBCAD

Chapter 5. Application N

The design of electromagnetic devices has developed over the last two decades
based on experience and analysis techniques [Lowther et al. 85; Rychener 88; chapter 10
of Dym and Levitt 91]. Each development in analysis techniques has allowed the designer
to simulate reality more closely in testing a design. The intention in device design is to
attempt to unify the experienced designer’s role and the mathematical model used for
analysis, i.e. design by analysis. Whiist, traditional design is based on heuristics and design
formulae, the final step in the design process, having narrowed down the design space is
to close in on a final design by examining a numerical model. Analysis systems pravide
feedback of information from the analysis to compare with the initial specifications. The
results are examined in terms of these specifications and used in a fecdforward fashion to
re-analyze the design if sufficient agreement is not reached. Based on the results of the
analysis, the designer then makes a judgement as to the acceptability of the design. Thus
analysis is an assistant to design and not a replacement. It enables the designer to predict
the performance of a proposed design. Design is the process of finding a solution based

on the values of the analysis results.

A finite element analysis tool such as MagNet, provides information on the
performance of the C-core device and operates in a space which consists of all the
variables which describe the design, i.e. the analysis space. The designer seeks to optimize
the C-core design by altering the shape of the core, which is a function of the analysis
variables, and define a space within which an optimization is desired, i.e. the design space.
Design is a search for an optimum in this space, subject to constraints which are placed
on certain device parameters. An optimization system, such as OPTDES, uses the analysis
package MagNet the same way the designer does: to obtain feedback on a proposed

design and to explore the design space by analytical techniques.

To build an effective knowledge-based system for a C-core device design problem,

one must first identify the device and define its domain. The designer of the device must

BBCAD

Chapter 5. Application

(DEFINE-FRAME

{devico_name
{design

{bh_material

(bh_curve_eoxist

{material_prop

(oxcitations

(bound_cond

(h_frequency

(high_order

(poly_order

(vactor_scalar

(linearity

(mode

(axis

(field

(type

(data_file

(state_device
(rerun_device

91

device (print-name “device"
:doc-string "Device specification...”
:is data_structure)
rmultivalued t
:explanation-string "Device explanation string")
:constraints Gone-of (none new old))
:explanation-swring "Design state®)
:constraints (:one-of (sof hard))
:when-modified (bh_material_modified)
:explanation-string *‘B/H Material: SOFT or HARD")
:constraints (‘one-of (yes no))
:explanation-string "B/H curve existence in MACLIE file®)
:constrainis (one-of (none air copper steel))
:when-modified (material_prop_modified)
sexplanation-string "Material Property®)
:constraints (Clisp-type integer)
‘when-modified (excitations modified)
:explanation-string "Excitations in Amperes® }
:constraints (ione-of (yes no))
‘when-modified (bound_cond_modified)
:explanation-string 'Boundary Conditions")
:constraints {(one-of (yes no))
:when-modified (high_frequency_modified)
:explanation-string *High Frequency application problem (Y or N)")
:constraints (;one-of (yes no))
:when-modified (high_order_modifisd)
:explanation-string "High Order problem (¥ or N)*)
iconstraints (lisp-type integer)
:when-modified (poly_order_medified)
:explanation-string "Polynomial Order of the problem’)
:constraints (:one-of (none vector scalar))
swhen-modified (vector_gcalar modified)
:explanation-string "VECTor or SCALar problem®)
:constraints (:one-of (none linear nonlinear))
:when-modified (linearity _modified)
:explanation-string "NONLinear or LINEar")
:constraints (one-of (none real complex))
:when-modified (mode_medified)
:explanation-string "REAL or COMPlex mode"®)
:constraints (:ore-of (none cartesian cart_axisym axisymmetric axiperiodic))
:when-modified (axis modified)
sexplanation-string "Coordinate system: CARTesian or AXISymmetric")
:constraints (tone-of (none magnetic electric))
:when-modified (feld_modified)
:explanation-string *MAGNetic or ELECTric field®)
:constraints (one-of (none static harmonic transient non-transient))
'when-modified (status_modified)
:explanation-string *Status of the problem: STATic HARMonic TRANsient®)
:constraints (:one-of (none exists modified nochange))
:explanation-string ‘Data File status”)
:multivalued t :default-values ((0 none))) 1; (cycle# module)
:constraints (one-of (yes no)) :default-values (no)
:explanation-string "Whether need to rerun the application®)) ;define-frame

Figure 5.2: Magnetic device frame structure

BBCAD

Chapter 5. Application

TN

know how to solve it and be able to clearly express the data pertaining to the problem and
its solution. The user’s information can be thought of as passive and active knowledge,
A fact a user knows to be true is considered passive knowledge, while a method a user

uses to make deductions or inferences about the design is considered active knowledge,
Design knowledge of the C-core magnet (Figure 5.1), is classificd into two groups:

® The first is the device knowledge, which refers to the full set of parameters which
describe the structure and operation of the magnetic device. The C-core device frame,
shown in Figure 5.2, possesses a specific set of properties based on the analysis tool
MagNet that the designer has to specify. To add a new tool, e.g. PE2D, this structure
could be incremented, or a new structure devised by the designer and the variable input
parameters of the new tool defined. Once the frame is loaded, a user interface can

assist in adding new slots to the frame structure or deleting old slots from it

@ The second, the design knowledge module (e.g., the module "draw2d" of MagNei,
Figure 3.6 of Chapter 3), combines design rules, and procedural knowledge about the
domain module, i.e., the "function" type of knowledge in conventional programming,

A good understanding of the design tool is required to be able to supply all the

knowledge needed.

In order to effectively integrate the existing tools and to provide the kind of
coupling between the various analyses, the designer carefully defines the input and output
requirements of the tool, and their relationships with other tools, and gives it the

appropriate ratings and weights. In which case, the tools are sequenced to completely

analyze and optimize the design.

BBCAD

Chapter 5, Application 93
5.2 Design Example

The simple problem of designing the C-core magnet, is considered to illustrate the
concepts of integrating design tools to solve a problem in the design of electromagnetic
devices. In this example, the problem is to redefine the physical structure, i.e. the shape,
of the C-core at the air gap, such that the magnetic flux density in the air gap is uniform,
i.e. Bpno = B (tesla or weber/m?), shown in Figure 5.1. A set of optimization analysis
tools are integrated into the process to explore the design space in a controlled fashion.
These optimizers are relatively conventional design tools allowing multi-dimensional
analysis, where the results of the analysis tools can then be used to direct the optimization
procedure. One concern is that the optimization techniques involve primarily numerical
manipulation, and the computational procedure always starts from a point, and with
knowledge, specified by the designer. Thus, the greater the expertise of the designer, the
faster the design converges to a final solution, i.e. the process is to use design rules to get
near to an optimum then optimize. The feedback loop of these optimisation analysis tools
can be improved by providing more accurate sets of inijtial design rules, thus a good design
can be achieved with minimal analysis effort. The initial design can be appropriately
modeled by the simple logical relationships of the rule-based system, where the rule is
used as a starting point in the design search, providing those component changes most
likely to improve a design. The use of heuristics in design optimization helps to decrease
the size of the design space searched and consequently leads to a decrease in the overall

time required to solve the design problem.

5.2.1 Design Dependent Knowledge

The frame 'device’ (Figure 5.2), depicts the domain-specific knowledge relevant to
the C-core device (e.g., geometry and material). It holds the principle design components

of the magnet relevant to the finite element analysis tool MagNet, and these components

BBCAD

Chapter 5. Application 04

A A

> DRAW2D r Y

MESH

¥

CURV2D [—%™ PROB2D SOLV20 ™ posTD

Figure 5.3: MagNet Modules

contain information about variable inputs and outputs. Variable inputs are those which
can be changed to improve the design. Daemons (e.g., :when-modified, shown in
Figure 5.2) are widely used in the device model to track down changes to the components.
Whenever a value is changed (asserted, retracted, or modified), the lisp function attached
to the facet is evaluated. The slot, data_file of Figure 5.2, alludes to the data file that
contains the physical dimensions, e.g. nodal points, of the C-core. Limits on these nodal

dimensions are kept in a separate file which is accessed by the optimization tool.

5.2.2 The Design Knowledge Module

MagNet [MagNet 85] is a finite element based system which provides considerable
pre- and post-processing capabilitics as well as analysis functions. Each module of the
MagNet finite element package, shown in Figure 3.3, is stored in a separate design
module. These different design modules together allow BBCAD to design a C-core

device. An instantiation of the frame-based design knowledge module defines the various

modules of MagNet (Chapter 3).

The MagNet package which consists of pre and post-processing modules for setting

up and analyzing designs, contains the following modules:

- Draw2D: defines the basic geometry of the C-core magnet (e.g., points, lines and arcs),

elements and constraints. To speed up the process, the geometry is provided using an

BBCAD

Chapter 5. Application 95

{rule_xypmh 300
JIF ((instance ?ksar_saolver i3 ksar
with ks_name solvad)
({OR ; VECT REAL NONL CART VERT HARD
(instance ?device Is device
with device_name ?device
with vector_scalar veclor
with mode real
with linearity nonlinear
with axis cartesian
with direction vartical
with bh_material hard
with data_[ile exists)
; VECT REAL LINE CART VERT HARD
(instance ?davice is device ...)
; SCAL REAL NONL CART VERT HARD
(instance ?device Is device ...)
+ SCAL REAL LINE CART VERT HARD
(instance ?device isdevice ...)) OR
{equal ?davice *inst_device name*)) IF
;THEN ((setl (slot-value 'out_window 'display)
(format nil "~ %Running xypmh"))
{format *file_out* "~ &Running xypmh™ &)
(run_solvad "xypmh)
(Instance Pksar soclver is ksar
with ks_name solv2d
with state fired)) iTHEN) ;rule_xypmh

Figure 5.4: SOLV2D - an action rule

input file, elements and constraints were defined using pre-defined verbs in MagNet,
i.e., commands. Drawings are stored in a text file (SKT file) which can exist
independently of Draw2D and can be edited. With the help of other script files, the
automation of most of these design tools was accomplished. Upon completion of this
task, the user is asked to verify all the device parameters (Figure 5.2), and whether any
changes are requested. Figure 3.6 of Chapter 3 shows the specific Draw2D design

module with all the slot values defined.

Mesh: generates the finite element mesh of the problem specified in Draw2D. For this
module to be satisfied, the device that corresponds to the data file (.SKT file) obtained

from the previous module has to exist and the design module Draw2D has been fired.

BBCAD

Chapter 5. Application !

Figure 5.5: Magnctic ficld distribution (flux lincs) ol the C-corc magnet

- Curv2ZD: builds a library of material properties that may be applied to the geometry
specified by Mesh. If the material type is not in the library (e.g., table look-up), the
Curv2D module will be invoked to supply the magnetic characteristics of the material.
In this design problem, CurvZD was not implemented, even though it was included,

because the TR66 steel magnetic characteristic, i.e. B-H curve, 1s defined in the library.

- Prob2D: builds a problem file ready for solution. The geometry is the same for the
design, but may have differing boundary conditions, excitations, and materials in which
case Mesh and probably Curv2D have to re-run. The design module contains rules

related to the above conditions.

- Solv2D: solves the pre-defined problem of the C-core magnet. The solver chosen
depends on the coordinate system and problem type criteria. Figure 3.4 shows an
example of a rule in the action slot of the Solv2D design knowledge module.
Depending on the problem type and device characteristics a solver is chosen to produce

solutions.

- Post2D: derives, extracts ind analyzes useful results from the solutions obtained in the
previous module. This post-processing module conains rules to verify if the goals of

the design are reached. The task of checking and verifying goals can be easily

BBCAD

Chapter 5. Application 97

automated using the MagNet verb definition facility to verify points of interest (e.g.,
magnetic flux density in the air region of the core). The tlux plot for the simple C-core
inductor is shown in Figure 5.5, with a total current of 400 amperes (for half of the

problem) injected into the copper coils.

5.2.3 The Design Process

BBCAD is a hybrid system and is used to help automate the design process. To
represent a specific object module or an object device, instances of the design module
frame and device frame are defined. The user interface, illustrated in Appendix F,
provides communications to support and to fulfil the designer’s request for processing, and
to fill in the appropriate information of the device. Using the front-end interface, the user
loads the device design and the appropriate knowledge design module into BBCAD. At
the initialization level, the user interacts with the BBCAD system to provide the necessary
information to create the C-core device parameters, and this information is significant in
invoking MagNet modules. This information can also be read from a file that the designer

provides,

The kernel contains facilities that cause the BBCAD system to make inferences
about the data. The inference engine applies the deduced rules of the design modules to
the factual data in the design space when searching for a solution. It uses a pattemn-
matching facility [GoldWorks 87] and matches patterns in the antecedents of rules to
patterns representing facts in the BBCAD blackboard space, and to objects that represent
instances in the design space. A forward chaining, breadth-first (first-in, first-out) strategy
is used to infer solutions from knowledge about the C-core device design that exists in the
spaces of BBCAD blackboard. Forward chaining is initiated when the antecedent, or "if,"
portion of a forward rule matches a set of objects in the blackboard. The inference

process is controlled so that it evaluates some rules before others, and this is qualified by

BBCAD

Chapter 5. Application ag

assigning certainties and priorities to rules. The certainty of an assertion is derived from
the certainty of the rule that created it and the certainties of the assertions that caused the

rule to fire.

Internal control rules of the design modules are generated for each of the MagNet
modules (Appendix E). Draw2D is scheduled to fire first, the geometry of the C-core is
accessed from an input file. Upon completing the device specifications, BBCAD will go
about scheduling the various knowledge modules in order to solve the C-core design.
Scheduling these design knowledge modules depends on the "pre_cond” and "trigger_cond"
slots, as well as on the "action_level” and "efficiency" slots, discussed in Chapter 3. The
latter two slots determine the priority values of the module which are relevant in
determining the order of modules. In every cycle of the BBCAD design process, the
module with the appropriate conditions, i.e. the highest priority value, will be chosen and
all the internal control rules associated with this particular module will fire, thus changing
and augmenting the design space of the C-core device, i.e. automating the design process.
The design continues carrying out the rules of each module; once the solving phase of
MagNet has been completed, the post-processing module, Post2D, is invoked to analyze
the results. The solver produces a solution for the C-core problem defined in Prob2D
module. These solutions consist only of the value of the magnetic or electric potential at
each node of the C-core model. Post2D is used to derive the magnetic flux density in the
air gap. The C-core parameters, i.e. geometry at the air gap (segment AB of Figure 5.1,
A=(4.5,1.0) cm, B=(5.5,1.0) cm and the air gap is 2.0 cm), ar¢ modified and the design
process is resumed till the final design goal is reached. Because of the symmetry about

the X axis (Figure 5.1), it is sufficient to model only half of the C-core geometry.

The numerical analysis computations are performed through a call to the Unix
shell. This call creates a process executing the named script. Standard input and output

for the programs are temporarily assigned, so that the program reads its values from files

BBCAD

Chapter 5. Application 99

which were written using Lisp routines. Program output values are read analogously. In
the device design, neutral input files were defined where data were read onto the
blackboard, and changes at the end cf every cycle were re-written to the file. The
interfaces used allowed BBCAD to load code that is written in computer languages other
than Lisp. Script files as separate processes were also used to rearrange and invoke most
of MagNet modules. Appendix F discusses in more details the implementation and

languages used, and the user interface.

5.3 An approach for Design Optimization

Design optimization involves the searching of design space by analytical techniques
which allow a systematic search based on the variation of performance with the design
parameters [Balling et al. 85]. The optimal design process can benefit from the use of
heuristics, which are used to control some features of a design (e.g., complexity), based on
knowledge captured during the iterative process [Arora and Baezinger 86). While analysis
software enables the designer to predict the performance of a design, optimization

algorithms tends to show him how to change the variables to improve it.

Many optimization algorithms have been developed to solve general engineering
design problems [Vanderplaats 84). Careful implementation of the methods is needed,
however. Each method can be defined as a separate design module with its own
peculiarities and rules. Thus, heuristics can be used to accomplish the robust
implementation of algorithms, allowing different algorithms to be used at various stages
of the search to accelerate convergence. Knowledge of the design space and the analysis
functions involved can be integrated into the design process to narrow the search space,
i.e. find the best algorithm for the problem solution. Two different optimization
algorithms are used to investigate the integration methodology presented in BBCAD:

OPTDES and OPTMAG. Each of those will be looked at in more detail below.

BBCAD

Chapter 5. Application 100

Y
(=)
o
5
=
A
[72]
2
-
k 4
[
&
=}
=

Y

MagNet < MagNet <

Figure 5.6: OPTDES dcsign modules - MagNet is shown in Figure 5.3

5.3.1 OPTDES

The OPTDES [Balling et al. 85] optimization tool is a three module optimization
program written in Fortran, shown in Figure 5.6. The three modules of OPTDES are
represented in BBCAD as three separate design knowledge modules, i.e. instances of the
device ’ks’, and these instances are loaded at the initialization level. The first module, i.e.
CONVEN, is used to interface to the user’s analysis tool, i.e. MagNet tool. CONVEN is
is part of the OPTDES tool and has the highest efficiency factor. It is defined as being
invocable, and the precondition patterns determine when to invoke it. The three modules
of OCPTDES are similar to the three phases of MagNet. MagNet tool is written as a
routine which OPTDES can repeatedly call. This routine contains in its argument list a
vector of the analysis variables, i.e. points along the AB segment of the core (Figure 5.1)
which are supplied to the pre-processor, and a vector of analysis functions, i.e. the max
and min flux density in the air gap which are returned by the post-processor. This routine
will load the various design modules of the tool and invoke the appropriate ones. The
values of the local variables are read in when execution of the module begins. Also the
analysis functions are written to a file to be processed by the optimization algorithm. The

flux density of the original C-core is shown in Figure 5.5.

The second module, i.e. SETUP, defines the optimization problem of the C-core

BBCAD

Chapier 5. Application 101

by specifying the mapping between the design space and analysis space, i.e. the selection
of design variables, analysis functions constraints, and objectives. This module needs the
input and output information of the previous module. It is invoked after the CONVEN
module, and is defined as being a triggerable module. In the example of the C-core

magnet, the optimization problem can be stated as:

- Define the constraints on the geometry of the C-core along the segment AB of
Figure 5.1, ie. defining the degree of freedom where the point along the segment AB

can move, such that the magnetic flux density is uniform in the air gap (Figure 5.1).

This module defines the flux as a function of the geometry.

The third module, i.e. DESIGN, is used to optimize and explore the design space.
This module needs the results of the previous modules. It is last for execution on the
OPTDES agenda items, and is being defined as triggered and invocable module. This
module repeatedly calls MagNet to reach a final design, i.e. locate an optimum. The
algorithm uses a variety of information, including derivatives, to determine how the design
variables should be adjusted. Once the variables have been changed, DESIGN calls
MagNet to determine the new values of the magnetic flux density. Over the course of the
optimization, DESIGN may need to call MagNet a hundred of times or more, depending
on the number of degrees of freedom, i.e. the number of points and their constraints along
the AB segment (Figure 5.1). The algorithm used for the analysis of the C-core magnet
is the modified generalized reduced gradient (GRG) [Balling et al. 85; Press et al. 88;
Chapter V of Gill and Murray 74], which is a nonlinearly constrained programming
algorithm. The gradient is a vector of first partial derivatives. The GRG algorithms solve
the original problem by solving (perhaps only partially) a sequence of reduced problems.
These are usually solved by a method which uses the reduced gradient. The GRG
methods use the active constraints of a problem to express certain analysis variables in

terms of design variables (they are comprised of a subset of the analysis variables). The

BBCAD

2

Chapter 5. Application

0.60 i L [‘L‘l“ﬁ 7
é
0.58 4
£
a4}
~
P
€056 4
E
m 1
|]
x 0,54
= 3
3 B
@] L»«‘\ k
—t 3
052 TN N L ———ts L,

LA RaN el Lo R R ailan R a iR AR SaRintinslny]
(¥

0.50 1 Ty
000 1000 2000 J000 4000 3000 6000 7000 80.00
lteration

Figure 5.7: Using OPTDES optimizer in redefining the structure of the C-core

Figure 5.8: Magnetic ficld (flux lines) of the C-core device - GRG Mcthod

Figure 5.9: Flux distribution starting at 4.25 cm instead of 4.5 - GRG Method
BBCAD

Chapter 5. Application 103

function of the design variables alone becomes the reduced function, its gradient is the
generalized reduced gradient. This gradient is used to determine a search direction for
the design variables, and a line search determines the step along this direction. During
the line search a design variable may equal or violate its constraints. If so, a new
partitioning of the variables is defined, and the process is repeated on the new reduced

function. If the algorithm is successful the reduced gradient will converge to minimum.

Once the analysis variables, i.e. points on the segment AB, have been changed, the
optimization algorithm calls MagNet to determine the new values of the analysis functions,
i.e. By, and By, Figure 5.7 shows the error of the magnetic flux density in the air gap
relative to the nodal variation of the segment AB. Using the generalized reduced gradient
method, the final design of the C-core device and its flux distribution is shown in

Figure 5.8.

Under the same conditions but different starting point, i.e. point A (Figure 5.1)
starts at 4.25 cm instead of 4.5 cm as shown the previous example, there is a variation of
the final design which is shown in Figure 5.9. The segment AB (4.5 cm to 5.5 cm) is

divided into 4 equal parts.

53.2 OPTMAG

OPTMAG, shown in Figure 5.10, is another example of optimization technique
written in C. It is a separate design knowledge module with its own condition and action
characteristics, and is integrated into the BBCAD to sclve the above C-core device design
problem. OPTMAG is being defined as an invocable module with a high efficiency value
and is chosen first for execution. It repeatedly calls MagNet modules which are used to
run the analysis and determine the flux density. OPTMAG uses the Simplex algorithm of

linear programming [Press et al. 88] to find the optimum values for the elements of the

BBCAD

104

Chapter 5. Application

OPTMAG

MagNet -

Figure 5.10: OPTMAG dcsign module

1
- Opld! (.2 Zone)

]
Q.54
o o
Q
E
m
0,54
~—
R
£
[43)
1 0.54
>
a iy,
E
m 1
054 o
0.54 3
0.00 20.00 40.00 £0.00 40.00
Iteration

Figure 5.11: Using OPTMAG in optimizing the structure of the C-core

Figure 5.12: Flux lines using the Simplex Method
BBCAD

Chapter 5. Application 105

analysis variables, i.e. 5 nodes equally divided on the AB segment (Figure 5.1), to within
a tolerance (.0001. It is assumed that the elements of the analysis variables are scaled
such that an initial step of 0.1 is reasonable. A simplex is the geometrical figure consisting,
in N dimensions, of N+1 points (or vertices) and all their interconnecting line segments,
polygonal faces, etc. The simplex method starts with N+1 points defining an initial
simplex and then calls MagNet to evaluate the flux density at the vertices of the initial
simplex (the x and y coordinates of the 5 nodes). The next step the algorithm takes is
maving the variable (point) of the simplex where the function is largest ("highest point")
through the opposite face of the simplex to a lower point, i.e. the reflection. This step is
repeated for each new simplex. When the newly constructed step conserves the volume
of the simplex, i.e., vertex persists for few iterations, the method expands the simplex in
one or another direction to take larger steps. When it reaches a local minimum, the
method contracts itself in the transverse direction and tries to roll down the minimum.
The method terminates when the vector distance moved in that step is fractionally smaller
in magnitude than some defined tolerance. In which case the simplex contracts itself in

all directions and pulls itself in around its lowest (best) point.

A data translator program was used to integrate the neutral data file to the
blackboard space, where all the constraints on the shape of the C-core are defined. In the
optimization search the direction of the search is constrained by the limits of the points
A and B of Figure 5.1. The point A is limited to = 0.25 cm along the X direction, and
B to = 0.50 cm along the Y axis (1/4 the distance of the air gap). The changes in the AB

segment are depicted in the error graph of Figure 5.11.

Figure 5.14 depicts the magnetic flux density of the final design of the C-core using
the simplex linear programming method, and shows the variation of the segment AB,
where the dash line is the original structure. The other points can move in both directions

in steps of = 0.25 cm. The flux plot of the simplex method is shown in Figure 5.12.

BBCAD

Chapter 5. Application

106
' 0.0060 — & ¢
E g -
0.0040 1 e e
3 = 4 b
E 'Zoom in' is shown below
0.0020 4
] wwess Qrigingl C—core
. 0000 GRG Method
h oooed Simplex Method
81 . aartrers GRG Method (4.25)
cgo-oooo-IIIIIIIIIllllllllll]]||illlllllllliilllllllllllll]llilllllll
3.Q0 3.50 4.00 4.50 5.00 5.50 6.00
0.0055 - BTt t) " e
. xra",_ \&;;1
J et \\
: S
] “Mpx(0.004534) | Min{0.004695)
0.0045 7] o .] 1)&07164-:15—“ g-““?‘&u B e b—a 4 o u-:n R -
:..,.-‘ oo = - - U""‘t-.,‘_uﬂr_‘ 0.004088)
Min(dlooadsay oo b0 0B oy o 10— o4-0-do-
- 00|
: Hm”ﬁ’f:o 003655)
. 0-0035 LB T rr rrrrT T 1T T 7T L L LA 1T 1T 17 LIRS LR L LEL L II'II"l .
4.50 4.70 4.90 5.10 5.30 5.50
X (axis)

Figure 5.13: Flux distribution using different optimizing techniques

Table 5.1: Variations in optimization mcthods

Max B ficld Min B ficld “tError % Improvement
C-core 0.004524 0.004088 9.64 -
Simplex Method 0.004436 0.004058 8.52 11.62
GRG Method 0.004054 0.003655 0.84 -0.41
GRG Method (4.25) 0.005548 0.004695 _E7 -59.44)

BBCAD

Chapter 5. Application 107

Figure 5.14: Hall C-core Magnetic using OPTMAG analysis - Simplex method

--

Figure 5.15: Half C-core Magnetic using OPTDES analysis - GRG method

5.4 Variations

Two different optimization approaches are used in the solution of the C-core
device. Figure 5.13 shows the flux density in the centre of the air gap and a blown up of
the result between 4.50 cm and 5.50 cm, i.e. segment AB of Figure 5.1. Table 5.1 presents
the percent error, i.e. [(Bpu -Buin)/Brad, between maximum and minimum flux density and

the percent improvement relative to the original starting C-core. The Simplex method

BBCAD

Chapter 5. Application 108

shows a 11.62% improvement on the starting design, and the tinal result is shown in
Figure 5.14. The GRG resulted in two different solutions depending on the starting
position of the node A. The solution showed a 0.4% decrease, and gets worse when
moving the node A closer to the windings. The Figure 5.15 reflects the result of the GRG
method. The reason for the bad results in the GRG method is because we did not let the

optimizer go far enough in the design process.

In terms of the C-core design problem, we need to point out two things:
a) The field is already fairly uniform when the design was started.

b) In real magnets, uniform fields are thought of in terms of one part in 105, and we have

not gone anywhere near that in the test we have run. The tests are illustration of the

method - not a full design.

Many researchers [Preis and Ziegler 90; Kasper 92] have reported that there is no
unique “optimal” solution for the design of electromagnetic devices, and it is dependent
on the method, the starting point, the degree of freedom, and the position of the nodal
points. The results, presented above, showed that the determination of the shapes, sizes,

and positions of the nodal points is not an easy task due to the non-uniqueness of the

solution and to the method used.

BBCAD

CHAPTER 6

Summary and Conclusions

This research is focused on the design and implementation of a hybrid knowledge-
based system founded on a blackboard architecture that is capable of providing a loose
coupling and coordination between available design tools as well as the absorption of new
tools in the process of designing electromagnetic devices. This chapter summarizes the

main thesis results achieved and presents suggestions for future research work.

6.1 Thesis Summary

Solving the design problem of electrical machines is a complex activity involving a
number of analysis design tools and a number of choice methods potentially available for
each tool. BBCAD is a hybrid system that utilizes knowledge-based system (KBS)
technology for engineering design to integrate various design tools and to increase
robustness and integrity of the design process of magnetic devices. "Hybrid" is a concept
that is achieved in several dimensions: representation of the design as well as the design
space, modeling knowledge of design and design activities, applying analysis tools to assist
in the design process, integration of several design tools as well as the results of these
various tools, implementation languages, problem solving strategies, i.e., the scheduling
processes, etc. The design of a C-core magnet was used to demonstrate the integration

problem of electromagnetic device design.

Among the significant results of this thesis work are the models of knowledge
brought to bear on the structuring of the design modules, in the example used these were

the MagNet modules. A flexible structure for coupled systems is presented, based on the

109 BBCAD

Chapter 6. Summary and Conclusions 110

combination of the concept of frame-based systems and blackboard architecture. The
frame-based structure is used as the representational approach for the design-dependent
and independent knowledge modules. BBCAD employs the blackboard as a global
database through which cooperating design modules communicate with each other, In
BBCAD, the various goals and intermediate results are stored on the blackboard (e.g.,
domain and control), and implements a control mechanism and a scheduler which prompt
the firing of the design tool, the generation of new designs, and modification of knowledge
in the design space. The structure of BBCAD allows for an incremental implementation
of a coupled system, starting out with a shallow coupled prototype which can be generated
rapidly. As more design tocls, i.e. design modules, are added the depth of the coupling
increases. The BBCAD structure provides for reliable rapid prototyping, flexibility
concerning changes, as well as extensions, and increase of coupling. The transparency of
the BBCAD system is improved by providing explanations and debugging facilities to
understand the design process. Thus, the use of a flexible design representation has given
rise to a much better way to manage and manipulate the design space.

The core of the BBCAD architecture is the kernel, i.e. problem solver, whose main

functions are:

a. To provide a scheduling mechanism for firing and deletion of processes, i.e. design
modules. The scheduler’s task is to examine all executable design tool operations and
decide in which order they should fire. The scheduler uses many criteria to arbitrate
between design tools; it includes process priority, whether or not the expected execution
resources facilities are available, and whether the design module activation record

would satisfy a pending goal.
b. To provide synchronization among the design tools, i.e. a conflict resolver.

c¢. To provide communication tools, so that design modules can communicate with each

other.

BBCAD

Chapter 6. Summary and Conclusions 111

d. To develop design solutions through a generate-validate-modify paradigm, i.e. design
by analysis.

The BBCAD open-ended architecture utilized facilitates the development of the
design knowledge modules and their integration through the blackboard space. It
implements a way of ordering rules within the design knowledge modules, i.e. by assigning
rule priority, and provides a locking mechanism which makes it easy to search the design
space for design solutions. The BBCAD user interface developed provides the designer

with the facility to change data and re-run.

The structure of the problem space for electromagnetic device design is
decomposed into three different levels, thus allowing the designer to have control over the
execution of the design modules and to limit the search to a small portion of the design
space.

Solving the design of a physically simple electromagnetic device, such as the C-core
inductor, seems to be relatively straightforward. However, its design parameters are
numerous, highly interrelated, and diverse, thus preventing a closed-form solution to the
design problem. For example, dimensions and shape of the core influence the flux density
in the air gap. Choosing an optimization algorithm to determine the shapes, sizes,
positions of the core, permanent magnet and windings which produce a uniform flux
distribution in the centre of the air gap is not a simple task, i.e., the problem of finding
a unique "optimal" solution. The result is dependent on the approaches used in the

solution.

The problem-solving of the C-core magnetic device integrates symbolic and
numerical computing and heuristics to solve the design task. Symbolic computing
techniques are used in design problem formulation and in the interpretation of results but
the actual design tools are written using numerical procedures, and heuristics are used as

a way to define performance criteria of the design. BBCAD demonstrates that the

BBCAD

Chapter 6. Summary and Conclusions 112

blackboard is an effective means for automatic exccution of design tools to meet 2
specified set of design requirements, i.e. automating and optimizing the design problem
of a C-core magnet. BBCAD is an implementation of an example of a hybrid

environment.

A blackboard system is similar to an operating system. The basic resources of a
blackboard system are provided by its control mechanism, knowledge module, and a global
database. The blackboard architecture provides the means tor the proper use of these
resources in order to solve a particular kind of design problem. It can be noted that
blackboard architectures have many teatures and constructs which paraliel the operating
system paradigm [Peterson and Silberschatz 85]. The core of the blackboard architecture
is the control mechanism which mediates between the subprocesses (global database and
design knowledge meodules) competing for processing resources, and controls their
execution. It is similar to the kemel whose main function is to provide file systems,
scheduling, synchronization, and communication mechanisms for the various processes.
Similar to "interrupt-driven" mechanisms in operating systems, the knowledge sources

respond opportunistically to the changes on the global database in a blackboard system.

Designing is an opportunistic process and is accomplished at various levels of
abstraction. BBCAD is an example of exploring the utility of the blackboard maodel in the
area of electrical machines design. Design problems have large solution spaces and
require many, diverse cooperating design tools. The major difficulty with these design
problems might lie in the designer’s litnited understanding of how to represent and reason
about spatial relationships. If the initial organization of the knowledge spaces is wrong,
then modifications result in a rapid deterioration of the design structure, Like any
architecture, the blackboard model is not without faults. For certain types of design
problems with closely coupled relationships, the "advantage" of modularity becomes a
drawback. The separation of components encouraged by modularity can tend to mask

these relationships. Also, the blackboard control architecture may probably be

BBCAD

Chapter 6. Summary and Conclusions 113

inappropriate to build high-performance application systems, because its decision making
speed, which may be too slow.

BBCAD runs on a single computer, but it is conceivable that the integration of
several processors could be a very important factor in improving the performance of
knowledge-based systems in electrical machine design. The BBCAD structure lends itself
to a certain amount of parallelism and can greatly gain from the presence of several

distributed processors.

6.2 Suggestions for Future Research

As future work in the field of integration of design problem-solving, the following
are supgested:
- Create and integrate more design knowledge modules to fully compete and test the

conflict resolution strategy and the scheduling mechanism adopted in BBCAD.

- Investigate ways to model organizational structures for distributed design problem-
solving [Smith and Davis 81; Yang et al. 85), e.g., parallel processing [Fennell and
Lesser 77).

- Develop an inferential generator to manipulate the use of heuristics based on

knowledge captured during the uesign iterative process, i.e., a model for learning.

- Find a formulation for mapping design applications onto the blackboard architecture.
It is necessary to be able to decide whether the blackboard architecture is appropriate

for a specific design problem.

- Formulate a formal description, i.e. a methodology, for the blackboard architecture

based on its similarities and equivalence with operating systems.

BBCAD

APPENDIX A
Knowledge-Based Systems

This appendix attempts to provide a background on knowledge-based systems

(KBS) in engineering design.

A.1 Basic Architecture

Knowledge-based systems are computer programs in which an attempt is made to
capture and render operable human knowledge about some domain [Buchanan and
Shortliffe 84]). The goal is to represent knowledge in such a way that it is comprehensible
to human and machine. A typicai structure of a KBS consists of an inference engine, a

knowledge base, and a workspace , as shown in Figure A.1.

The knowledge base contains the basic (declarative) knowledge of the specific
domain, including facts, beliefs and heuristics, i.e. rules of thumb. The workspace, or
working memory, contains the specific problem data (supplied by the user or inferred from
the knowledge base during a consultation) that reflect the current state of the problem
solution. The knowledge base builds up dynamically during the solution process of a
particular problem. The use of that knowledge is governed by a control strategy stored
in a separate inference engine. The inference engine iﬁcorporates reasoning methods, and
acts upon the input data and the information in the knowledge base to solve the problem.
Thus, the inference engine mechanism acts as the executive that runs the design system.
It performs actions that lead to a solution of the design problem, and at the same time,

may change the knowledge base by adding to or modifying the information contained

114 BBCAD

Appendix A. Knowledge-Based Systems 115

. Knonggige
ule i A
:
A

¥ Workspace
4
User problem description
N .| Knowledge
Interface > > ACCIUBI‘HOI'I
‘l‘ problem status
User Knowledge
Engineer

Figure A.1: A Typical KBS Schematic

therein. The inference mechanism often uses rules to infer new information about the
current state of the design [Dym and Levitt 91). An explanation module produces
explanations of the inferences used by the knowledge-based system, such as why a certain
fact is requested, or how a conclusion was reached. A knowledge acquisition facility allows
the system to acquire more knowledge about the problem domain from knowledge
engineers - experts. The user interface (1/O facilities) allows the user to communicate with
the system. It usually provides a command language for directing the execution of the
system. It is responsible for translating the input as specified by the user into the form

used by the knowledge base.

BBCAD

Appendix A. Knowledge-Based Systems 116

Knowledge-based systems are problem-solving programs whose performance
depends strongly on the use of facts that express valid propositions, heuristics that express
rules of good judgement in situations where valid algorithms generally do not exist -
normally performed by an expert, and beliefs that express plausible propositions [Mittal
and Araya 86). KBSs reason to solve design problems by penerating and testing all
possibilities until a solution is found. Usually, solutions involve applying heuristic rules to
given data in order to deduce logical or probable consequences and prove that these
consequences satisfy the goal. Some of them have been specifically developed to deal with
ill-structured problems (uncertain, incomplete, inexact and unformalized problems). In
contrast to algorithmic programs which follow step-by-step procedures, KBS are free to

search through and reason about the knowledge in order to reach a goal.

A.1.1 Advantages

Building a KBS to aid the design process can be approaciied by building individual
modules to handle problems posed in the various components of the design. The resulting
modules are integrated so that results can be communicated and the overall process can
be repeated as designs are refined and improved. The following is a list of advantages

when using KBS for performing symbolic manipulation procedures in BBCAD:

» Ease of development and maintenance: the modular nature of the language used
[GoldWorks 87; Winston and Horn 84] allows flexibility for exploring variations,
experimenting, etc., whilst the symbolic, interactive, and high-leve! features of BBCAD

allow the designer to expand the design after the prototype stage.

» Friendly environment: due to the symbolic nature of the expert system shell used
[GoldWorks 87}, implementation of an intelligent, friendly, and personalized user

interface for BBCAD was made possible and easier.

BBCAD

Appendix A, Knowledge-Based Systems 117

» Representational advantages: knowledge is programmed explicitly. Self-understanding
and explanation are made possible to follow, e.g. rule justification. Meta-knowledge is
subject to easy change and modification. When improving the design process only the

knowledge is modified, not the inference mechanism.

» Rapid checking of design concepts allows more alternatives to be considered in a short

time period and permits easier incremental improvement to the design.

KBSs are also typified by a collection of other properties, many of which are
detailed in [Rychener 88). The general techniques which have been developed in artificial
intelligence research [Barr and Feigenbaum 81, V.1] provide many of the basic tools

[Winston and Horn 84; Steele 84] necessary for KBSs in engineering design.

BBCAD

APPENDIX B
Blackboard Systems

This appendix attempts to provide a background on the blackboard architecture
and reflects on the use of this architecture in engineering design. It also presents an
overview of variations derived from the formal descriptions of a number of influential
blackboard architectures. Figure 1 of [Nii 86(a)], August 1986, shows a general chronology

and intellectual lineage of the various applications and skeletal systems. It also includes

some of the "better-known" and documented systems.

(ks)---{ Blackboard

’a' I "',._
’a'— I ."4-...

Figure B.1: A Typical Blackboard Model

118 BBCAD

Appendix B, Blackboard Systems 119

. B.1 Basic Architecture

The blackboard model [Lesser et al. 75; Nii and Aiello 79; Nii 86(a)] consists of

three major components, as shown in Figure B.1:

1. The Blackboard - knowledge storage and communication: the blackboard is the source
of all the data structures on which design knowledge modules, i.e. knowledge sources,
operate, and the destination for all conclusions from knowledge modules, thus it
represents the task domain. The blackboard data structure is often referred to simply
as the blackboard. It represents the channel through which the design modules
communicate their findings to each other. The data structures used for the blackboard

is influenced by the design problem.

2. Knowledge Sources (KS) - specialist: the KSs represent expertise about some aspect of

the design problem. They contain the knowledge of the task domain pertaining to the

. problem being solved. Each KS contributes information that leads to the current state
of the design. Whatever form of representation (e.g., frame, rules, logical relationships,

etc.) is used within a KS, however, the knowledge reflects an action, i.e. a change to the

blackboard, under appropriate circumstances, By definition, KSs only modify the

blackboard data structure and cause state transitions.

3. Control - problem-solving strategy: the control component contains the mechanism that
influences the selection and execution, i.e. firing, of the KSs from among those qualified,
and allows the specialist to place numerous data on the blackboard. It guides the
design process by choosing and then activating appropriate KSs. Control is based on
opportunistic reasoning that can apply KSs in either a forward or backward direction,

or a combination of both.

The blackboard model provides a way in connecting individual separate pieces of

design tools into a large intelligent program. These design tools are stored in independent

BBCAD

Appendix B. Blackboard Systems 120

modules, each of which monitors a small region of the design space and is activated only
when the tool is needed in the process. The blackboard model serves as an excellent
integration framework for combining diverse expertise (dissimilar pieces of code) and
problem-solving techniques in the design process. The model is analogous to a committee
of designers standing around a blackboard; each is able to read everything that is on it,

and to decide when he or she has something worthwhile to add to the design space.

The blackboard paradigm is a powerful technique for implementing appiications
requiring muitilevel reasoning, flexible control, or the integration of diverse problem
solving expertise into a common framework [Nii 86(a)]. Thus, it is noted that some of the
blackboard architectures are used as blackboard frameworks (BBl [Hayes-Roth 85(a)),
GBB [Corkill et al. 86), and ATOME [Laésri and Maitre 89}]), while others occur as
blackboard applications (HEARSAY [Lesser et al. 75; Lesser and Erman 77); DECADE
[Bafiares-Alcantara et al. 87; 88(b)]. Typically blackboard frameworks allow more
variation of their components than blackboard applications, where for most aspects a

choice has been made for a specific aptian.

B.2 Options and Variations in Blackboard Systems

Although a blackboard concept was documented in Artificial Intelligence (Al)
literature as early as 1962 by Newell [Newell 62], it was implemented as a system a decade
later by people working on the HEARSAY speech-understanding project. This section
presents an overview of options and variations derived from the formal descriptions of
existing blackboard architectures. In [Velthuijsen and Braspenning 91}, the authors
developed a formal description of blackboard architectures and used this formalisation to
describe a number of rather influential blackboard architectures. The list of examined
blackboard architectures is not complete. A complete analysis of all existing blackboard

architecture is obviously beyond the scope of this thesis.

BBCAD

Appendix B. Blackboard Systems 121

B.2.1 Blackboard

In early blackboard systems, the structure and organisation of blackboard contents
were subdivided into different levels, i.e. dimensions, or ordered sets of levels, i.e. panels.
HEARSAY [Lesser and Erman 77] levels are ordered in a loose hierarchy (problem-
specific), and are divided by time, representing the temporal order of the utterance being
examined [Erman et al. 80], and DVMT [Lesser and Corkill 83] uses an abstraction
hierarchy between the different panels. At a later implementation, this kind of
organisation was extended towards further specialization in the form of named structures
(such as defstructs [Nii and Aeillo 79)), classes, i.e. frames/objects, in a class hierarchy (e.g.,
GBB [Corkill et al. 86], ATOME [Laésri and Maitre 89], CAGE [Aiello 86], POLIGON
[Nii 86(b); Engelmore and Morgan 88, Chapter 235; Jagannathan et al. 89, Chapters 7 and
18]), and even a relational database (HEARSAY-III [Erman et al. 81]). The basic units,
i.e. elements, containing the information on the blackboard are either data types (e.g.,
HASP/SIAP [Nii et al. 82]), sets of attribute-value pairs (e.g., AGE [Nii and Aiello 79]), or
hierarchically ordered elements (GBB units are ordered according to dimensions according
to their attributes). Certain blackboard architectures provide facilities for representing
links as attributes of units, i.e. semantic nets. Explicit representation of directed (AGE,
CAGE, and HASP/SIAP) or labelled (GBB, ATOME) links facilitate their use in

consistency maintenance and in event specifications.

B.2.2 Knowledge Sources (KS)

This section addresses the variation of KSs with respect to the following

components: KS descriptors, instantiations, condition parts, and action parts.

The most simple information kept about a KS in a KS descriptor is a name (e.g.

BBCAD uses "draw2d" as a design knowledge module descriptor). However, in most

BBCAD

Appendix B, Blackboard Systems

122

blackboard architectures more information about a KS is represented. This information
can be subdivided into knowledge about how the binding of a KS with the context in which
it became applicable occurs, and knowledge that can be used for control. Binding occurs
upon instantiation and execution of immediate code, e.g. HEARSAY-II], or by the
precondition of a KS, e.g BBi. A precondition is that part of a KS that determines
applicability of the KS by using blackboard state knowledge solely. The results are stored
in special data structures representing an instantiation (stimulus frames and response

frames in HEARSAY-II, or KS activation records (KSAR) in BB1).

A subdivision of the condition part is made into a trigger (specifying evenss, lists of
tokens in the case of AGE and CAGE) and a precondition (specifying states, rules or
procedures as in BBCAD). Most blackboard architectures allow either rules or
procedures as the action part of KSs. The extensions here are BBCAD and HASP/SIAP
where rules, procedures and frames can be used for the action parts. In AGE, CAGE,
and BB1 the way in which rules are fired can be specified by the user. CAGE went one

step further by allowing the user to specify when rules, clauses in rules, and statements

within clauses can be evaluated in parallel.

B.2.3 Control Mechanism

The variation of the control mechanism addresses the following aspects: basic cycle

(control vs. KS), concurrency, matching, selection, and stopping criterion.

- Basic cycle: the control loop is formed by a cyclic recurrence of the following
steps: examination of the state of the blackboard, determination of applicability of KSs in
view of the current state, and execution of the applicable (if any) KSs. BBCAD, BB]1,
AGE, HASP/SIAP, and GBB use a control cycle mechanism. The KS loop is formed

when the design modules perform a cycle of alternately monitoring the blackboard for

BBCAD

Appendix B. Blackboard Systems 1m

opportunities specified by activation-patterns, and contributing to the design process when
a situation has occurred. When such an activation-pattern occurs the associated function
is executed immediately. AGORA [Bisiani et al. 87) and POLIGON [Nii 86(b}], where
control is not an issue, are more reminiscent of the original blackboard metaphor than
many blackboard architectures in the sense that KS instantiations monitor the blackboard

for opportunities.

- Concurrency: the control becomes more complicated when dealing with
concurrent blackboard systems. The distinction is made here between parallel and
distributed blackboard architectures. Parallel blackboard architectures are characterized
by a shared-memory blackboard and concurrently executed KSs (e.g. CAGE and
POLIGON). In CAGE the execution of KSs can be synchronized. In a distributed
blackboard architecture, each node has a separate local blackboard containing objects
created locally as well as copies of objects received from other processing nodes (Chapter
6 of [Jagannathan et al. 89]). Because of the independence of knowledge modules,
parallel processing can be achieved by having several triggered knowledge tasks all
executing in paralle]l on separate processors. Although many of the same problems which
haunt other parallel and distributed applications are of concern here as well, the overall
architecture of the blackboard model is at least supportive of a parallel processing

approach [Corkill and Lesser 83].

- Matching: a distinction is made between blackboard architectures which take
events and try to match these with the KSs in the system (event-based matching, e.g. BB1,
GBB, AGE) and blackboard architectures which consider KSs and search for events that
match (periodically) the KSs (KS-based matching, case of CAGE) for determining the
applicability of the KSs.

- Selection: the KS selection is a mapping determining a subset from an existing set

of KS instantiations. This is associated with the kind and amount of knowledge used for

BBCAD

Appendix B. Blackboard Systems 124

selecting activities for execution. BBCAD uses a priority calculation for all KSARs based
on the ratings (strategy, focus, and policy levels [Hayes-Roth 85(a)]) and a rule for
integrating these ratings. Examples of selection mapping with restricted domains are: (i)
select that KSAR whose corresponding KS has the highest priority, i.e. a simple best-first
strategy, (ii) select that KSAR most recently generated, i.e. a depth-first strategy, and (iii)
a select that KSAR generated earlier during the problem-solving process, i.¢. breadth-first
strategy. HASP/SIAP, AGE, and CAGE employed a blackboard-based selection of
activities, i.e. event-driven, where events are changes to blackboard levels. Blackboard-

based selection uses mainly knowledge currently present on the blackboard.

- Stopping criterion: most blackboard architectures halt automatically when there
are no more applicable KSs and no KS is being executed. BBCAD includes a procedure
in the control cycle for deciding whether a certain stop criterion has been met. In AGE
and CAGE, this stop criterion is formulated in terms of the contents of the blackboard.
HEARSAY-II has a special KS that can discourage pending activities and is invoked when
an interpretation on the highest levei emerges, effectively clearing the queues (KS actions)

and thus halting the problem-solving process.

BBCAD

APPENDIX C

Language Review

There are many possible implementation procedures available inside the
knowledge-based system domain (also refer to [Bafiares-Alcantara et al. 87]). These may

be grouped into:

C.1 General Purpose Programming Languages:

A knowledge-based system may be built using a general purpose programming
language. Although in principle any language can be used, only few are convenient

because of their flexibility, appropriateness, availability, and portability:

w LISP and dialects [Winston and Horn 84] (e.gz FRANZ LISP, INTERLISP,
COMMONLISP, SUNLISP, etc.).

» PROLOG [Clocksin and Mellish 85].

m C++ [Stroustrup 86}, C [Kernighan and Ritchie 78].
= FORTRAN [Katzan 78].

» PASCAL [Jensen and Wirth 74], etc.

Lisp has been widely used for most the work in artificial intelligence. Although
terms (symbolic expressions) have no direct meaning in Lisp, the Lisp program can
manipulate such expressions. Most Lisp systems are interpreted and therefore provide an
interactive environment for the development of Lisp code, which greatly facilitates the

development of knowledge-based systems.

125 BBCAD

Appendix C. Language Review 126

C.2 General Purpose Representation Languages:

A general purpose representation language is a programming language developed
specifically for knowledge engineering. These languages provide constructs that aid in the
development of a knowledge-based system that do not exist in conventional programming
languages. Some of these are simply expert system shells (e.g. an inference mechanism
with an empty knowledge-base). Usually a knowledge acquisition module is available to
assist in developing the knowledge-base and to structure the context for a particular

application domain Such examples as:

= GWII [GoldWorks 87): hybrid knowledge-based expert system development tool based

on rules and frames built on the top of Common Lisp.

s OPS5 [Forgy 81]: rule-based representation language built on the top of LISP to

facilitate the use of production rules.

» Knowledge Craft [Knowledge Craft 85] by the Carnegie Group: frame-based knowledge

representation language with procedural attachment and inheritance.

= SRL [Wright and Fox 83]: the Schema Representation Language provides specialized

constructs for the representation knowledge.

s HEARSAY-III [Erman et al. 81]: programming tool designed for representing and
applying diverse sources of knowledge to a problem area. It provides primitives for

developing a blackboard data structure which would be accessed, and used by the

knowledge sources.

C.3 Skeletal Systems:

They are knowledge-based systems which originated from previously built systems

[Nii 86(a)]. One common practice is to generalize a successful knowledge-based system

BBCAD

Appendix C. Language Review 127

and to try to make it domain-independent, using this generalization in the construction of
a new system. Most knowledge-based systems were developed from domain dependent
systems by stripping out the original knowledge base. In general their convenience is
directly proportiona! to the similarity of the original design and the proposed new concept.
These skeletal systems consist of the basic system module from which application systems

can be built by the addition of knowledge and the specification of control
(metaknowledge) [Nii 86 (a)], i.e. expert system development tools. Examples include (-

indicates building application from skeletal system):

= MYCIN [Davis et al. 77] - EMYCIN [vanMelle et al. 81] - PUFF [Feigenbaum 77]
= AGE-I [Nii and Aeillo 79] -~ HANNIBAL [Brown and Buckman 82]

= AGE-I [Nii and Aeillo 79] -~ BB1 [Hayes-Roth 85(a)]

= BBI1 [Hayes-Roth 85(a)] - PROTEAN [Hayes-Roth et al. 86]

» GBB [Corkill et al. 86] ~ GBB1 [Corkill et al. 87]

BB1 [Hayes-Roth 85(a)] ~ ATOME [Laésri and Maitre 89]

The use of an available knowledge-based skeletal system can greatly facilitate the
development of new systems since many of the representation issues and control strategy
decisions are already incorporated in the model. The use of a such systems, as opposed
to a general programming or representation language, involves a certain loss of generality.
However, it provides the advantage of building a complete system with knowledge

acquisition and explanation facilities in relatively little time.

BBCAD

APPENDIX D
Priority Ratings

The Table D.1 below shows the various instances with the corresponding weight
values and the weight factor of the competence slots. Figure D.1 shows an instance of the

‘control_db’ frame, where the slot-values of the slots weight, competence, and the goal
(f;) are shown below in Table D.1. The ‘infegration_rule’ frame, shown in Figure D.2,

binds the corresponding competence slot-value to a weighting factor that is used to

calculate the priority value for a design module.

Table D.1: Weight table for priority calculation

| Instance ‘ 5 Weight Competence Weight Factor -l
focus_1 = 0.25 10 class_1 |
focus_2 = 0.45 20 class_2 2
| focus 3 > 0.65 30 class_3 3
focus_4 = 0.85 40 class_4 4
" focus_action - 100 domain_ks_focus 1
focus_control - 10 control_ks_focus 3

128 BBCAD

Appendix D. Priority Ratings 129

To determine the priority value for the design knowledge module "draw2d"
(Equation 3.1 of Chapter 3), it is first necessary to find all the instances of the frame
‘control_db’ with the "focus" as the decision_type slot value, that are less than the efficiency
slot value 0.90. Once these are determined, the corresponding weight and weight factor
are multiplied, and then the results are added to determine the priority value for the

knowledge source.
Since 0.90 is greater than all the f; , then the end result is:

priority for "draw2d" = (10x1) + (20x2) + (30x3) + (40x4) = 300

(define-Instance focus_l! (:print-name “focus_1*
doc-slring "..."
!is control_db)
(competence class 1)
(critarion (instance current_cycle is cycles with value ?cycle)
(= ?cycle *number_of_ks*))
(decision_type focus)

(goal ({instance ?ksar is ksar with efficlency ?effic)
{>= ?effic .28})

(status active)

(weight 10))

Figure D.1: Example of the decision_type focus_1 instance

(define-frame integration_rule (:print-name 'integration_rule"
' :doc-string "Binding Integration_rule to weight factors"
:is data_structure)
(list_ol_welghts ‘multivalued t

:canstraints (lisp-type list))) ;end define-frame

Figure D.2: Integration_rule frame

BBCAD

RULE:

APPENDIX E

Rule Constructs

DRAWZD RULE1
Doc String: “action rules"
Explanation String: "DrawaD ls the dralting pre-processor,
where the baslc geometry is entered.”

Priority: 600 ;==> highest FIFO
direction: :FORWARD

dependency: nil

Sponsor: ACTION_RULES i==> FIFO

(INSTANCE STEP IS STEPS WITH MODULE IL7)
(UNKNOWN (INSTANCE DRAW2D IS KSAR))
(INSTANCETO_DO_SET_RULE ISTO_DO_SETWITH CHOOSEN_ACTION KSAR_DRAW2D)
(INSTANCE KSAR_DRAW2D IS KSAR WITH-UNKNOWN STATE FIRED)
(INSTANCE ?KSAR_DRAW2D IS KSAR WITH KS_NAME DRAW2D)
(INSTANCE DRAW2D IS KS)
(INSTANCE RULE_KSAR_CYCLES IS VARIABLE

WITH NAME KSAR_DRAWZD

WITH CY_VALUE (EVALUATE (SLOT-VALUE 'CURRENT_CYCLE 'VALUE)))
(EVALUATE (SETF (SLOT-VALUE 'OUT_WINDOW 'DISPLAY)

(FORMAT NIL *~ &Running Draw2d"))

(EVALUATE (FORMAT *FILE_OUT* "~ &Running Draw2D 1)
(EVALUATE (RUN_DRAW2D))
(INSTANCE ?KSAR_DRAW2D IS KSAR

WITH KS_NAME DRAWZD

WITH STATE FIRED)

Figure E.1: Example of a production rule (draw2d)

The rule name, DRAW2D_RULE? of Figure E.1, is obtained by concatenating the

design module’s name, DRAW2D, and the appropriate symbol of the rule’s type, RULEL.

The following keywords are used to assign attributes:

- "doc-string" is used to document the purpose of the rule and its relationships to other

rules in the design process. This string defaults to the rule’s type.

- ":priority" is an integer between -1000 and 41000, inclusive, that indicates the priority

130 BBCAD

Appendix E. Rule Constructs 131

of the rule relative to other rules in the design. In the BBCAD design system, the rules
default to a priority value, except for the action rules where the priorities are set by the

user. They are used to give different ranks to different rules of the same design module.

- "direction" indicates to the inference engine what kind of chaining to do with this rule.

Its default value is defined as forward chaining.

- ":dependency” creates a justification structure for the new assertions a..d values it
asserts, if the rule runs in a forward direction. If the rule has dependency nil, then it
is a state rule, and is not part of the justification of values and assertions asserted in the

consequent.

- ":isponsor" refers to the sponsor object to which this particular rule is assigned; its name
is unique and depends on the rule’s type. They are used to control the execution of the

rules by having different levels of abstraction.

- ":explanation-string" consists of the explanations that are generated when asking why
something is true. This string is user defined. It is put into the slot explain_action of

the frame ’ks’, defined in Chapter 3.

The antecedent part of this rule construct has a multitude of conditions. For it to
fire, all the conditions set forth in the antecedent must be satisfied, thereby making the

consequent true. The generated rule is shown in Figure E.1.

BBCAD

APPENDIX F

Implementation and User Interface

This appendix deals with more specific details of the implementation of the
BBCAD blackboard system for engineering design. A description of the computer
languages and of several alternative ways of communicating these languages that were
used is presented. The interaction with the user and a front-end facilities are also a

subject of this appendix.

F.1 Implementation

There are many possible implementation approaches available in the knowledge-
based systems domain. Their choice depends on the basic approach taken. Aside from
the approaches described in Appendix C of Chapter 2, other elements affect the choice
of implementation, and these elements could prove to be even more important than those
aforementioned. They include the type of design problem to be solved, the desired
capabilities of the knowledge-based system, and the availability of the selected tools.
Three approaches are used for the implementation of BBCAD: GoldWorks, for the
implementation of frames, and rules; Golden Common Lisp (GCLISP) the platform upen

which GoldWorks is based; and Sun Common Lisp.

F.2 Languages used

The following sections examine in some detail the languages used in implementing

the design of BBCAD, and the approaches needed to construct the design modules:

132 BBCAD

Appendix F. Implemeatation and User Interface 133

F.2.1 GoldWorks

GaoldWorks [GoldWorks 87] is a hybrid expert system development tool. It runs
in a windows environment and provides a set of advanced integrated software
development techniques which helped in the development of BBCAD. The information
in GoldWorks is structured in a network representation called a lartice. The lattice is
composed of frames and instances. Frames are the mechanism for structuring data and
are used to describe a peneral class of objects. Slots are used to describe the attributes
of those objects. Instances of a frame represent specific objects. They have the same slots
as the associated frame, but these instances hold values in the slots. The GoldWorks
lattice supports inferitance, so that a frame inherits all slots from its parent frames and
ancestors, and passes on all its slots to its child frames. In addition, it gives the capability
to define local slots for each frame to be able to define any attributes particular to the

class of objects the frame represents.

F.2.2 Golden Common Lisp

The Golden Common LISP Developer (GCLISP Developer) [GoldWorks 87),
serves as the programming language platform for GoldWorks. It can be used from within
GoldWorks, or function independently as a Lisp programming facility [Winston and Horn
84]. It provides the power of a full Common Lisp [Steele 84]. Common Lisp is a
function, or applicable language; that is, it exchanges data by using return values rather
than temporary storage. It has two salient features: a list-based representation of data and
an evaluator, or interpreter, that treats some lists as programs. Lisp functions are
equivalent to subroutines or procedures in other languages. In contrast to most other
languages, Lisp functions can create and return arbitrary data objects as their values.

These data objects can then be passed as arguments to other functions.

BBCAD

Appendix I Implementation and User Interface 134

F.2.3 Sun Common Lisp

Sun Common Lisp [SCL 88] is a complete implementation of the Common Lisp
language. It includes all the Common Lisp functions, constants, variables, macros, and
special forms. In addition, Sun Common Lisp provides many functions as extensions to
Common Lisp and as enhancements to the user environment. It also includes an extensive
set of advanced tools and features, such as the foreign function interface, and the function
run-program. BBCAD uses the run-program to call executable programs from Lisp. The
run-program runs UNIX programs from inside the Lisp environment, and these programs

start up as separate processes. Thus, communication is limited to the standard input and

standard output streams, and files.

F.3 Communications among Languages

The use of an appropriate language for each design tool during the design process
of a problem is important. Since more than one language is used in the BBCAD design,
it is necessary to establish communication among them. This section addresses the
techniques and implementation issues that have been confronted in building BBCAD. It
is divided in two sub-sections: the communication among symbolic languages, and the

communication between symbolic and numerical languages.

F.3.1 Couplings among Symbolic Languages

The design modules and control knowledge sources (metaknowledge) are based on
the GoldWorks lattice structure. They both use the frame as the basic knowledge
definition. The slot values are lists of patterns and procedures which are defined in a
programming language, and that language is Common Lisp. The Common Lisp language

was useful for creating Lisp function relations, daemons, and handlers.

BBCAD

Appendix F. Implementation and User Interface 135

(defina-Instance low_prio
(:print-name “low_pric*
:doc-string "Control Knowledge Source®

:is control_db)
(decislon_type pollcy)
(goal (bind ?paims (sort_prority_trig_invoe '< ‘prierity))

(bind ?ksar] (cadr ?pairs)}

(bind ?priel (car ?paira))

(variable-bound-p ?priol)

(instance ?ksar2 is ksar with status trig_and_invoc
with priority ?prio2)

(equal-instances ?ksar2 Pksarl)
(= ?prio2 ?pricl))

(status active)

{welght §)) ; end define-instance

Figure F.1: A Policy decision type Control KS

Lisp function relations are used as predicates in rules. The lisp function relation
"(equal-instances ?ksar2 ?ksarl)" of the slot goal in Figure F.1, verifies whether the two

variables are the same instance.

Daemons perform various operational activities when slot values change, i.e. take
care of procedural details and allow the overall program to be more clearly visualized.
Daemons are lists of Lisp functions attached to the facer :when-modified of a slot (Figure
3.6 of Chapter 3). Whenever a value associated with a slot in an instance is changed (e.g.,
asserted, retracted, or modified), the when-modified daemon is only called once and the

Lisp functions are evaluated.

(send-msg instance :handler largl®) (F.1)

Handlers are used to attach Lisp functions to frames for use in object-oriented
programming (see Chapter 3). The send-msg function, shown in statement (F.1), is used

to invoke the various defined handlers.

BBCAD

Appendix F. Implementation and User Interface 136

F.3.2 Couplings between Symbolic and Numerical Languages

Most simulation tools are programs written in compiled languages (e.g., mainly
Fortran and C). It is essential to communicate these programs with the BBCAD, which
is written in symbolic languages (e.g., Lisp and its dialects, and GoldWorks). Both
capabilities are necessary for engineering design; symbolic languages are extensively used
to represent heuristic expertise, while compiled languages are widely used for numerical

processing.

The problem in coupling languages consists of interfacing different pieces code.
The differences may consist of a combination of any of the following factors: parameter
structures, concepts, operating system, implementation language, physical location of the
programs, and data transfer among programs. Since generally the tools that are to be
coupled are already written, this may present a restriction in the integration. It would be
desirable to make a minimum set of changes, preferably none, to achieve the linkage. Sun

Common Lisp allows compiled versions of programs in other languages to be treated as

callable functions.

F.4 User Interface

The user interface is the communication medium between the user and the
BBCAD blackboard system during the design process stages. An interactive interface
linked to a knowledge representation and reasoning system will allow the user to
cooperate with a knowledge-based system in a synergistic manner that utilises both human
cognitive strengths and the abilities of computers to perform computation and display.
The BBCAD user interface consists of a graphical environment which contains multiple
scrollable pop-up windows, pull-down menus, dialog boxes and draggable icons. The user

input is through both the keyboard and the mouse. Although BBCAD has the capability

BBCAD

Appendix F. Implementation and User Interface 137

result_frame| = user_information

- go_switch
top~-frame| »|data_results| »

display info| = Result

- response
- comments |+~ INSTANCES ~|

Figure F.2: Frames and instances of BBCAD user interface

of automating many phases of the design process, a user-friendly interface is very
important in encouraging the user to explore new alternative solutions and in visualizing
design layouts and results of analysis. The BBCAD system is implemented using the
GoldWorks I shell on the SunOS 4/110 Release 4.1.1, running under X Windows
environment. A graphic front-end interface is implemented using the GoldWorks graphics
toolkit, to make it easier for users to load applications, to enter the information that the
application requires, to view activities, to facilitate user interactions, to pass information
messages between the design modules, and gives the power to represent events occurring
in the application through various displays according to the changes taking place.

Figure F.2 shows the top-level frame and instances of the user interface system.

F.4.1 Front-End Interface

A graphic object approach is used to define images, screen layouts, popup menus,
and other elements of the BBCAD hybrid shell. The Graphics Toolkit of GoldWorks
includes predefined (generic) frames that define the different kinds of graphic objects.
Instances of the generic frames, i.e. frames with valid data, produce the graphic objects

in the BBCAD blackboard. The Graphics Toolkit handlers [GoldWorks 87) are used to

BBCAD

Appendix F. Implementation and User Interface 138

Run| |Reset | |Applications Edit Display Write
-Application Load: KS; -KS -KS
-Optimizer -MAGNET -Add -Frames -Ksars

-OPTDES -EX1 -Modify -Rules -Rules
-OPTMAG Compile/L.oad: -Delete -Instances -Instances
-MAGNET Rule:
-EX] -Add
-Modify
-Delete
Instance:
-Add
-Modity
-Delete

Figure F3: BBCAD {ront-cnd pull-down mcnus

control the objects while the design process is running,

The interface has the capabilities of editing (e.g., adding, modifying, and deleting),
viewing, saving, resetting, and clearing design modules, rules, instances, and frame
structures. Figure F.3 identifies all the BBCAD front-end user interface pull-down menus,

and the last section of this Appendix details the user interface frame structures of the
BBCAD system.

F.4.2 User Interaction and Frame Structures

Interaction may occur directly between the user and events inside the BBCAD -
design knowledge modules, and indirectly with the rest of the knowledge sources
comprising the BBCAD shell. The interaction may occur in many directions: the user
modifying the flow of control of the design process by means of commands, prompting for
answers to questions, or popup menus from which to select choices; and the BBCAD
system informing the user of important events or explaining decisions. The interaction

also arises in managing the initialization of the design process, the information on internal

BBCAD

Appendix F. Implementation and User Interface 139

(a) |screen-layout - bboard_screen

screen_temp_display

(b) |screen-template =—welcome_form

screen_temp_modify

l~ Frames -/ |~ Instances -]

Figure F.4: Screen layout and Screen template

decisions of BBCAD, such as failure, success, and results of a design module. Design
modules are able to provide explanations about their own structure and functionality. The
validity of the answer is checked and verified in the frame structure of the device, ie.

through constraint facets.

The GoldWorks Graphics Toolkit which includes predefined frames that specify
different kinds of graphic objects (e.g., screen layouts in Figure F.4 (a), images (e.g., screen
templates in Figure F.4 (b)), canvases in Figure F.5, and popup menus in Figure F.6), is
used to build BBCAD.

BBCAD utilises a ‘screen layout’ window frame structure, shown in Figure F.4 (a),
to display the various canvases items and to manage the user interface. The command
line items of the screen layout are utilized to display the pull-down menus (Figure F.3),
to call functions or change slot values when selected. Instances of the frame image ‘screen-
template’ shown in Figure F.4 (b), (e.g., "Screen_temp_display", "screen_temp_modify", and

"welcome_form"), are used to arrange selectable items slot values and to display text.

To display an image on a canvas, i.e. window objects, the image must be attached
to that canvas. Likewise, to display a canvas on a screen layout, the canvas must be

attached to the screen layout. When a screen layout is opened or closed, all the canvases

BBCAD

Appendix F. Implementation and User Interface 140

output-window|~ out_window

welcome_screen]
-

canvas j»

main_canvas
popup-canvas

l:m _popup_canvas

d_popup canvas

}+ Instances ~| |+ Frame -| |+~ Child Frames -=| !+~ Instances -|

Figure F.5: Canvas [ramcs and instances

| popup-ask-user = ask_ks_name

- popup-choose = popup_choose_item

popup-basic] »

popup-choose-saeveral|=- popup choose objects

popup_confirm_ test
— popup~confirm -I:
warning_popup
|+ Frame -| |« cChild Frames -} |~ Instances -/

Figure F.6: Popup menus

attached to it are also opened or closed. Instances of the canvas frame, shown in

Figure F.5, are used to display user information and activities in the design process.

The popup menus (Figure F.6) prompts the user for more information and
instructions regarding the design knowledge modules. User inputs, i.e. values of instance
“ask_ks_name" (Figure F.6), are checked and verified apainst the constraints requirement.
BBCAD gives the user the choice of selecting one or more objects for processing, (e.g.,
"popup_choose_item" and "popup_choose_objects" shown in Figure F.6), and to confirm the

answer, (e.g. popup-confirm’ frame of Figure F.6).

BBCAD

Appendix F. Implementation and User Interface 141

BBCAD uses GoldWorks’ specially defined handlers as the mechanism to
manipulate screen template, canvas, screen layout, and popup menu instances explained
above. Handlers are the named procedure that is attached to a frame. They are used to
send messages to instances of frames described. The message indicates the nature of
operation to perform on the instance. BBCAD implements the GoldWorks send-msg
function to send messages between the various deign modules. Its syntax is shown in

statement (F.1),

BBCAD

References

[Aiello 86] Aiello, N., "User-directed control of parallelism: The CAGE system," KSL 86-
31, Knowledge Systems Laboratory, Stanford University, Stanford, CA, 1986.

[Arora and Baezinger 86) Arora, J.S. and Baezinger, G., "Uses of Artificial Intelligence in
Design Optimization," Computer Methods in Applied Mechanics and Engineering,
Volume 54, No 54, pp. 303-323, March, 1986.

[Balling et al. 85] Balling, J.R., Parkinson, A., and Free, J., "OPTDES user’s manual,
version 3.0, Brigham Young University, Provo, UT, USA, 1985.

[Bafiares-Alcdntara et al. 87] Baiares-Alcantara, R., Westberger, AW, Ko, E.I. and
Rychener, M.D., "DECADE - A Hybrid Expert System for Catalyst Selection -1.
Expert System Consideration," Computer Chemical Engineering, Vol. 11, No. 3, pp.
265-277, 1987.

[Bafiares-Alcantara et al. 88(a)] Bafiares-Alcéantara, R., Westberger, A.W., Ko, E.I. and
Rychener, M.D., "DECADE - A Hybrid Expert System for Catalyst Selection -II.
Final Architecture and Results," Computer Chemical Engineering, Vol. 12, No. 9/10,
Pp- 923-938, 1988.

[Baiiares-Alcantara et al. 88(b)] Bafiares-Alcéntara, R., Westberger, AW., Ko, E.L. and
Rychener, M.D., "The DECADE Catalyst Selection System,” in [Rychener 88], pp.
53-91.

[Barr and Feigenbaum 81,82] Barr, A. and Feigenbaum, E.A., (Eds.) The Handbook of
Artificial Intelligence, Volumes 1 and II, Heuris Tech Press, Stanford, California,
1981, 1982,

[Bisiani et al. 87] Bisiani, R., Alleva, F., Forin, A., Lerner, R., and Bauer, M., "The
architecture of AGORA environment," in [Huhns 87), chapter 4, pp. 99-117, 1987.

[Bobrow and Winograd 77] Bobrow, D.G. and Winograd, T, "An Overview of KRL, a

Knowledge Representation Language," Cognitive Science, Vol. 1, No. 1, pp. 3-46,
1977.

142 BBCAD

References 143

[Brachman and Levesque 85] Brachman, R.J. and Levesque, H.J., (Eds.) Readings in
Knowledge Representation, Morgan Kaufmann Publishers, Los Altos, California,
1985.

[Brett 90] Brett, C.S., "An Interval Mathematics Package for Computer-Aided Design in
Electromagnetics," M. Eng. Thesis, McGill University, Montreal, Quebec, Canada,
1990.

[Brett et al. 90] Brett, C.S,, Saldanha, C.M., and Lowther, D.A., "An Interval Mathematics
for Knowledge-Based Computer-Aided Design in Magnetics," IEEE Transactions
on Magnetics, Vol. 26, No. 2, pp. 803-806, March, 1990.

[Brown and Buckman 82] Brown, H. and Buckman, J., "Final Report an HANNIBAL,"
Technical Report, ESL, Inc., 1982,

[Buchanan and Shortliffe 84] Buchanan, B.G. and Shortliffe, E.H., Rule-Based Expert
Systems, Addison-Wesley Publishing Co., New York, 1984.

[Carter and MacCallum 91] Carter, I.M. and MacCallum, K.J., "A software Architecture
for Design Co-ordination," in [Gero 91}, pp.859-881, 1991.

[Cohen and Feigenbaum 83] Cohen, P.R. and Feigenbaum, E.A., The Handbook of
Antificial Intelligence, Volume II, Heuris Tech Press, Stanford, California, 1983.

fCorkill and Lesser 83] Corkill, D.D. and Lesser, V.R., "The Use of Meta-Level Control
for Coordination in a Distributed Problem Solving Network," Proceedings of the
Eighth International Joint Conference on Artificial Intelligence (IJCAI-83), Vol. 2, pp.
748-756, Karlsruhe, West Germany, August 8-12, 1983.

[Corkill et al. 86] Corkill, D.D., Gallagher, K.Q. and Murray, KE., "GBB: A Generic
Blackbeard Development System," Proceedings of the Fifth National Conference on
Artificial Intelligence (AAAI-86), Vol. 2, pp. 1008-1014, Philadelphia, Pennsylvania,
August, 1986. (Also in [Engelmore and Morgan 88], pp. 503-517, 1988.)

[Corkill et al. 87] Corkill, D.D., Gallagher, K.Q. and Johnson, P.M., "Achieving Flexibility,
Efficiency, and Generality in Blackboard Architectures,”" Proceedings of the
National Conference on Antificial Intelligence (AAA1-87), Vol. 1, pp. 18-23, Seattle,
Waashington, July, 1987.

BBCAD

References 144

[Coyne et al. 90] Coyne, R.D., Rosenman, M.A., Radford, A.D., Balachandran, M. and

Gero, J.S., Knowledge-Based Design Systems, Addison-Wesley Publishing Company,
Inc., New York, 1990,

[Clocksin and Mellish 85] Clocksin, W.F. and Meltish, C.S., Programming in Prolog, Second
Edition, Springer-Verlag, Inc., Berlin, New York, 1985

[Davis et al. 77] Davis, R., Buchanan, B.J., and Shortliff, E., "Production Rules as a
Representation for a Knowledge-Based Consultation Program," Anificial
Intelligence, Vol. 8, pp. 15-45, 1977.

[DeMori and Prager 90] DeMori, R. and Prager, R., "Reasoning with Qualitative Linear
Models," Technical Report TR-SOCS-90.9, School of Computer Science, McGill
University, Montreal, Quebec, Canada, April, 1990.

[Dym 85] Dym, C.L., Expert Systems: New Approaches to Computer-Aided Engineering,
Engineering with Computers, Vol. 1, No.1, pp. 9-25, 1985.

[Dym and Levitt 91] Dym, C.L., and Levitt, R.E., Knowledge-Based Systems in Engineering,
McGraw-Hill Book Company, New York, 1991.

[Enderle et al. 84] Enderle, G., Kansy, K., and Pfaff, G., GKS-The Graphics Kernel
Standard, Heidelberg: Springer-Velag, 1984.

[Engelmore and Terry 79] Engelmore, R. and Terrey, A., "Structure and Function of the
CRYSALIS System,” Proceedings of the Sixth International Joint Conference on
Antificial Intelligence (NCAI-79), Vol. 1, pp. 250-256, Tokyo, Japan, August 20-23,
1979.

[Engelmore and Morgan 88] Engelmore, R.S. and Morgan, T., (Eds.) Blackboard Systenis,
Addison-Wesley, Publisher Workingham, England, 1988.

[Erman and Lesser 75] Erman, L.D. and Lesser, V.R., "A Multi-Level Organization for
Problem Sloving Using Many Diverse, Cooperating Sources of Knowledge,"
Proceedings of the Fourth Intermational Joint Conference on Antificial Intelligence
(ICAI-75), Vol. 2, pp. 483-490, Thilisi, Georgia, USSR, September 3-8, 1975.

[Erman et al. 80] Erman, L.D., Hayes-Roth, F., Lesser, V.R. and Reddy, D.R., "The

Hearsay-I1 Speech-Understanding System: Integrating Knowledge to Resclve
Uncertainty," Computing Surveys, ACM, Vol. 12, No. 2, pp. 213-253, June, 1980.. __

BBCAD

References 145

[Erman et al. 81) Erman, L.D., London, P.E. and Fickas, S.F., "The Design and an
Example Use of HEARSAY-III," Proceedings of the Seventh Intemational Joint
Conference on Artificial Intelligence (IICAI-81), Vol. 1, pp. 409-415, Vancouver,
British Columbia, Canada, August 24-28, 1981.

[Feigenbaum 77] Feigenbaum, E.A., "The Art of Artificial Intelligence: Themes and Case
Studies of Knowledge Engineering," Proceedings of the Fifth Intemational Joint
Conference on Artificial Intelligence (IJCAI-77), Vol. 2, pp. 1014-1029, MIT,
Cambridge, Massachussetts, August 22-25, 1977,

[Fennell and Lesser 77] Fennell, R.D. and Lesser, V.R. "Parallelism in Artificial
Intelligence Problem Solving: A Case Study of Hearsay Il, "IEEE Transactions on
Computers, Vol. C-26, No. 2, pp. 98-111, February, 1977.

[Fikes and Kehler 85] Fikes, R. and Kehler, T, "The Role of Frame-Based Representation
in Reasoning," Communications of the ACM, Vol. 28, No. 9, pp. 904-920,
September, 1985.

[Fitzgerald et al. 83] Fitzgerald, A.E., Kingsley, C. Jr, and Umans, S.D., Electric
Machinery, Fourth Edition, McGraw-Hill, Inc., New York, 1983.

[Forgy 81] Forgy, C.L., OPSJ5 Users’s Manual, Department of Computer Science, Carnagie-
Mellon University, Pittsburgh, PA 15213, 1981.

[Genesereth and Nilsson 87] Genesereth, M.R. and Nilsson, N.J., (Eds.) Logical

Foundations of Artificial Intelligence, Morgan Kaufman Publishers, Inc., Los Altos,
CA., 1987.

[Gentilhomme 91] Gentilhomme, A., "C.O.C.A.S.E: Un Systeme d’Aide la Conception
des Contacteurs," Thesis du Doctorat, Laboratoire d’Electrotechnique de Grenaoble,
Institut National Polytechnique de Grenoble, France, 1991.

[Gero 88] Gero, 1.S., (Ed.) Artificial Intelligence in Engineering: Design, Elsevier/CMP, New
York 1988.

[Gero 91] Gero, 1.S., (Ed.) Artificial Intelligence in Design '91, Butterworth-Heinemann,
Ltd., Oxford, London, 1991.

BBCAD

References 146

[Gero and Coyne 85] Gero, J.S. and Coyne, R.D. "Logic Programming as u means of
Representing Semantics in Design Languages," Environment and Planning B,
volume 12, pp. 351-369, 1985.

[Gero et al. 88] Gero, J.S,, Maher, M.L. and Zhang, W., "Chuncking Structural Design
Knowledge as Prototypes,” in [Gero 88), pp.3-21, 1988.

[Gibson 68] Gibson, J.E., Introduction to Engineering Design, Holt, Rinehat and Winston,
New York, 1968.

Gill and Murray 74] Gill, P.E. and Murray, W., (Eds.) Numerical Methods for Constrained
Y y
Optimization, Academic Press Inc., New York, 1974.

{Goldstein and Roberts 77) Goldstein, L.P. and Roberts, R.B., "NUDGE: A Knowledge-
Based Scheduling Program," Proceedings of the Fifth Intemational Joint Conference

on Arificial Intelligence (IJICAI-77), Vol. 1, pp. 67-76, MIT, Cambridge,
Massachussetts, August 22-25, 1977,

[GoldWorks 87] GoldWorks II, "Reference Manual, Graphics Toolkit, and GCLISP
Developer Reference Manual," Gold Hill Computers, Inc., Cambridge, MA., 1987.

[Gregory 66] Gregory, S.A., (Ed.) The Design Method, Butterwoth & Co. (publishers) Ltd.,
London, 1966.

[Hayes 77] Hayes, P.J., "On Semantic Nets, Frames and Associations," Proceedings of the
Fifth International Joint Conference on Antificial Intelligence (IJCAI-77), Vol. 1, pp.
99-107, MIT, Cambridge, Massachussetts, August 22-25, 1977.

[Hayes-Roth 85(a)] Hayes-Roth, B., "A Blackboard Architecture for Control," Antificial
Intelligence: an Intemational Journal, Vol. 26, No. 3, pp. 251-321, March, 1985.

[Hayes-Roth 85(b)] Hayes-Roth, F., "Rule-Based Systems," Communications of the ACM,
Vol. 28, No. 9, pp. 921-932, September, 1985.

[Hayes-Roth et al. 83] Hayes-Roth, F., Waterman, D.A. and Lenat, D.B., Building Expert
Systems, Addison-Wesley Publishing Co., New York, 1983.

BBCAD

References 147

[Hayes-Roth et al. 86] Hayes-Roth, B., Buchanan, B.J., Lichtarge, O., Hewett, M., Altman,
R., Brinkley, J., Cornelius, C., Duncan, B. and Jardetzky, O., "PRETEAN: Deriving
Protein Structure from Constraints," Proceedings of the Fifth National Conference
on Artificial Intelligence (AAAI-86), Vol. 1, pp. 904-909, Philadelphia, Pennsylvania,
August, 1986. (Also in [engelman and Morgan 88], pp. 417-431, 1988.)

[Hewitt 69] Hewitt, C., "PLANNER: A Language for Proving Theorems in Robots,"
Proceedings of the First Intemmational Joint Conference on Artificial Intelligence
(lJCAI-69), Vol. 1, Washington, D.C., May, 1969.

[Jagannathan et al. 89) Jagannathan, V., Dodhiawala, R. and Baum, LS., (Eds.)
Blackboard Architectures and Applications, Academic Press, Inc., New York, 1989.

[Jensen and Wirth 74] Jensen, K. and Wirth, N, PASCAL: User Manual and Repon,
Second Edition, Springer-Verlag, Inc.,, New York, 1974.

[Kasper 92] Kasper, M., "Shape Optimization by Evolution Strategy," IEEE Transactions
on Magnetics, Vol. 28, No. 2, pp. 1556-1560, March, 1992,

[Katzan 78] Katzan, H. FORTRAN 77, New York: Van Nastrand Reinhold Co., 1978

[Kernighan and Ritchie 78] Kernighan, B.W. and Ritchie, D.M., The C_Programming
Language, Englewood Cliffs, New Jersey: Prentice-Hall, 1978

[Knowledge Craft 85] Knowledge Craft, CRL Technical Manual, version 3.0, Carnagie
Group Inc., Pittsburgh, PA 15219, 1985.

[Kowalik and Kitzmiller 88] Kowalik, J.S. and Kitzmiller, C.T., (Eds.) Coupling Symbolic
and Numerical Computing in Expert Systems, II, Elsevier Science Publishers B.V.,
North-Holland, 1988.

[Ladsri and Maitre 89] Laésri, H. and Maitre, B., "Flexibility and Efficiency in Blackboards

Systems: Studies and Achievements in ATOME," in [Jagannathan et al. 89), pp.
309-322, 1989.

[Lesser at al. 75] Lesser, V.R., Fennell, R.D.,, Erman, L.D. and Reddy, D.Raj,
"Organization of the Hearsay II Speech Understanding System, "IEEE Transactions
on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, No. 1, pp. 11-24,
February, 1981.

BBCAD

References 148

[Lesser and Erman 77] Lesser, V.R. and Erman, L.D., "A Retrospective View of the
Hearsay-II Architecture," Proceedings of the Fifth International Joint Conference on
Artificial Intelhigence (IJCAI-77), Vol. 2, pp. 790-800, Cambridge, Massachussetts,
August 22-25, 1977.

[Lesser and Corkill 83] Lesser, V.R. and Corkill, D.D., "The Distributed Vehicle
Monitoring Testbed: A Tool for Investipating Distributed Problem Solving
Networks," AI Magazine, Vol. 4, No. 3, pp. 15-33, Fall, 1983. (Also in [Engelmore
and Morgan 88], pp. 353-386)

[Lowther 89] Lowther, D.A., "The Need for Multiple Paradigms in the Development of
a Knowledge-Based Electromagnetic Device Design System,", International Working

Conference on Expert Systems in Electrical and Power Systems, paper 1.2, Avignon,
France, 1989.

Lowther et al. 85] Lowther, D.A., Saldanha, C.M., and Choy, G., "The Application of
Y PP
Expert Systems to CAD in Electromagnetics," IEEE Transactions on Magnetics, Vol.
MAG-21, No. 6, pp. 2559-2562, November, 1985.

[Lowther and Saldanha 86] Lowther, D.A. and Saldanha, C.M., "A Frame-Based System
for the Design of Electromagnetic Devices," IEEE Transactions on Magnetics, Vol.
MAG-22, No. 5, pp. 814-816, September, 1986.

[Lowther and Silvester 86] Lowther, D.A. and Silvester, P.P., Computer Aided Design in
Magnetics, Springer-Verlag Inc., New York, 1986.

[MagNet 85] "The MagNet User’s Manual," Infolytica Corporation, Montreal, Quebec,
Canada, 1985.

[Maher 88] Maher, M.L., "HI-RISE: An Expert System for Preliminary Sructural Design,"
in [Rychener 88), pp.37-52, 1988.

[Minsky 75] Minsky, M., "A Framework for Representing Knowledge", in [Winston 75].

[Mittal and Araya 86] Mittal, S. and Araya, A., "A Knowledge-Based Framework for
Design," Proceedings of the National Conference on Antificial Intelligence (AAAI-86),
Vol. 2, pp. 856-865, Philadelphia, Pennsylvania, August, 1986.

[Newell 62] Newell, A., "Some Problems of basic organization in Problem-Solving
Programs," in [Yovits et al. 62], pp.393-423.

BBCAD

References 149

[Newell 69] Newell, A., "Heuristic Programming: Ill-Structured Problems," Progress in
Operations Research, New York: John Wiley, III, pp.360-414, 1969.

[Newell and Simon 72] Newell, A. and Simon, H. Human_Problem Solving, Englewood
Cliffs, Prentice-Hall, New Jersey, 1972,

[Nicklaus et al. 88] Nicklaus, D.J., Overton, K.S,, Tong, S.S. and Russo, C.J., "Knowledge
Representation and Technique for Engineering Design Automation,” in [Kowalik
and Kitzmiller 88], pp. 67-76, 1988.

[Nii and Aiello 79] Nii, H.P. and Aeillo, N., "AGE (Attempt to Generalize): A Knowledge-
Based Program for Building Knowledge-Based Programs," Proceedings of the Sixth
Intermational Joint Conference on Artificial Intelligence (IJCAI-79), Vol. 2, pp. 645-
655, Tokyo, Japan, August 20-23, 1979.

[Nii et al. 82] Nii, H.P., Feigenbaum, E.A., Anton, J.J. ans Rockmore, A.J., "Signal-to-
Symbol Transformation: HASP/SIAP Case Study," Al Magazine, Vol. 3, pp.23-35,
1982 and in [Engelmore and Morgan 88), pp. 135-157, 1988.

[Nii 86(a)] Nii, H.P., "Blackboard Systems," Al Magazine, Vol. 7, No. 3, pp.38-53, and Vol.
7, No. 4, pp. 82-106, Summer, 1986.

[Nii 86(b)] Nii, H.P., "CAGE and POLIGIN: Two frameworks for blackboards based
concurrent problem solving," KSL 86-41, Knowledge Systems Laboratory, Stanford
University, Stanford, CA, 1986.

[Nilsson 80] Nilsson, N.I., Principles of Artificial Intelligence, Tioga Publishing Co., Palo
Alto, California, 1980.

[Peterson and Silberschatz 85] Peterson, J.L. and Silberschatz, A., Qperating Systems
Concepts, Second Edition, Addison-Wesley Publishing Co., New York, 1985.

[Prager et al. 89] Prager, R., Belanger, P. and DeMori, R., "A Knowledge-Based System
for Troubleshooting Real-Time Models," in Widman, Loparo, and Nielson, (Eds.)

Anificial Intelligence, Simulation, and Modelling, pp. 511-543, John Wiley & sons,
Inc., 1989.

BBCAD

References 150

[Preis and Ziegler 90] Preis, K., and Ziegler, A., "Optimal Design of Electromagnetic
Devices with Evolution Strategies,” COMPEL-The International Joumal for
Computation and Mathematics in Electrical and Electronic Engineering, Vol. 9,
Supplement A, pp. 119-122, 1990.

[Preiss 80] Preiss, K., "Design Frame Model for the Engineering Design Process,” Design
Studies, Vol. 1, No. 4, pp. 231-243, April, 1980.

[Press et al. 88] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T,,
Numerical Recipes in C: The Art of Scientific Computing, Second Edition, Cambridge
University Press, Cambridge, UK, 1988.

[Quillian 68] Quillian, R, "Semantic Memory," in M. Minsky, (Ed.) Semantic Information
Processing, The MIT Press, Cambridge, MA., 1968,

[Rich 83] Rich, E., Artificial Intelligence, McGraw-Hill Book Company, New York, 1983.

[Rychener 88] Rychener, M.D. (Ed.) Expert Systems for Engineering Design, Academic
Press, Inc., New York, 1988.

[Rychener et al. 84] Rychener, M.D., Bafares-Alcdntra, R. and Subrahmanian, E., "A
Rule-Based Blackboard Kernel System: Some Principles in Design," IEEE
Workshop on Principles of Knowledge-Based Systems, pp. 59-64, Denver, Colorado,
December, 1984,

[Rychener et al. 86] Rychener, M.D., Farinacci, M.L., Hulthage, 1. and Fox, M.S,
"Integration of Muitiple Knowledge Sources in Aladin, an Alloy Design System,"
Proceedings of the National Conference on Antificial Intelligence (AAAI-86), Vol. 2,
pp. 878-882, Philadelphia, Pennsylvania, August, 1986.

[Saldanha 88] Saldanha, C.M., "An Algebraic Constraint System for CAD in Magnetics,"
M. Eng. Thesis, McGill University, Montreal, Quebec, Canada, 1988.

[Saldanha and Lowther 86] Saldanha, C.M. and Lowther, D.A., "Automating the Design
Process for Electromagnetic Devices," IEE Computer-Aided Engineering Journal,
Vol. 3, No. 5, pp. 173-179, October, 1986.

[Saldanha and Lowther 87] Saldanha, C.M. and Lowther, D.A., "Device Modelling in an

Electromagnetic Device System," IEEE Transactions on Magnetics, Vol. MAG-23,
No. 5, pp. 2644-2646, September, 1987.

BBCAD

References 151

[Saldanha and Lowther 88] Saldanha, C.M. and Lowther, D.A., "Knowledge-Based
Computation of Electromagnetic Device Parameters," IEEE Transactions on
Magnetics, Vol. 24, No. 1, pp. 334-337, January, 1988.

[Sassine and Lowther 91] Sassine, R.M. and Lowther, D.A., "Integrating Computer Based
Electromagnetic Device Design Tools to Solve Coupled Problems," COMPUMAG -
8th Conference on the Computation of Electromagnetic Fields, Vol. 1, pp. 279-282,
Sorrento, Italy, July 7-11, 1991.

[Simon 69)] Simon, H.A. The Sciences of the Artificial, MIT Press, Cambridge, MA, 1969.

[Smith and Davis 81] Smith, R.G. and Davis, R., "Frameworks for Cooperation in
Distributed Problem Solving,” IEEE Transaction on Systems, Man and Cybemnatics,
SMC-11, No. 1, pp. 61-70, January, 1981.

[Smith et al. 83] Smith, B.M., Brauner, K.M,, Kennicot, P.R., Liewald, M., and Wellington,
J., "Initial Graphics Exchange Specification (IGES) Version 2.0, NBSIR 82-
2631(AF), National Bureau of Standards, US Department of Commerce,
Washington, DC, USA, February, 1983.

[Sriram et al. 89] Sriram, D., Stephanopoulos, G., Logcher, R., Gossard, D., Groleau, N.,
Serrano, D. and Navinchandra, D., "Knowledge-Based System Applications in
Engineering Design: Research at MIT," AI Magazine, Vol. 10, No. 3, pp. 79-96,
Fall, 1989.

[Steele 84] Steele, G.L. Jr., (Ed.) Common Lisp: The Language, Digital Press, Burlington,
Massachussets, USA, 1984,

[Stefic and Bobrow 86] Stefic, M., and Bobrow, D.G., "Object-Oriented Programming -
Themes and Variations," Al Magazine, Vol. 6, No. 4, pp. 40-62, 1986.

[Stroustrup 86] Stroustrup, B., The C+ -+ Programming Language, Reading, Massachusetts:
Addison-Wesley Publishing Co., 1986.

[SCL 88 Sun Common Lisp 3.0, "User’s Guide, and Reference Guide," Sun
Microsystems,Inc. and Lucid, Inc., USA, 1988.

[Talukdar and Cardozo 88] Talukdar, S.N. and Cardozo, E., "Building Large-Scale
Software Organizations," in [Rychener 88], pp. 241-256, 1988.

BBCAD

Refercnces 182

[Terry 83] Terry, A., "The CRYSALIS Project: Hierarchical Control of Production
Systems," Technical Report HPP-83-19, Stanford University. Also in [Engelmore
and Morgan 88], pp. 159-188.

[Vanderplaats 84] Vanderplaats, G.N., Numerical Optimization Techniques for Engineering
Design: with Applications, McGraw-Hill, New York, 1984,

[VanMelle et al. 81] Van Melle, W., Shortliffe, E.H. and Buchanan, B.G. "EMYCIN: A

Domain-Independent System that Aids in Constructing Knowledge-based
Consultation Programs," Machine Intelligence, Vol. 9, No. 3, 1981,

[Velthuijsen and Braspenning 91] Velthuijsen, H. and Braspenning, P.J., "Results of
Formalising the Blackboard Architecture," Proceedings of the Fifth Annual AAAl
Workshop on Blackboard Systems, Anaheim, California, July 14, 1991.

[Winston 84]) Winston, P.H., Antificial Intelligence, Addison-Wesley Publishing Co., New
York, 1984.

[Winston and Horn 84] Winston, P.H. and Horn, B.K.P., LISP, Addison-Wesley Publishing
Co., New York, 1984.

[Wright and Fox 83] Wright, J.M. and Fox, M.S., SRL1.5 User Manual, Intelligent Systems

Laboratory, The Robotics Institute, Carnagie-Mellon University, Pittsburgh, PA
15213, 1683.

[Yang et al. 85] Yang, J.D., Huhns, M.N. and Stephens, LM., "An Architecture for
Control and Communications in Distributed Artificial Intelligence Systems," IEEE

Transactions on Systems, Man, and Cybernatics, Vol. SMC-15, No. 3, pp. 316-326,
May/June, 1985.

[Yovits et al. 62] Yovits, M.C,, Jacobi, G.T. and Goldstein, G.D. (Eds.), Conference on
Slef-Organizing Systems, Spartan-Books, Washington, D.C., 1962.

[Zhu 91] Zhu, Z., "An Intelligent CAD System for DC Machines,” M. Eng. Thesis, McGill
University, Montreal, Quebec, Canada, 1991.

BBCAD

