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Abstract 

This thesis formulates the state estimation and control problem for partially observed finite 

machines in terms of c1assical and logic-based approaches. First, in Part 1, we present a 

set operation based formulation of an observer (tree) and adynamie programming based 

controller. Then we provide the results of computational complexity of building and runing 

su ch classical observer and controllers. In Part Il, we introduce a notion of a loglc-based 

dynamical system, a new paradigm for controlling finite machines. In particular, we give 

concepts of a loglc-based dynamic observer, and a logie-based dynamic eontroller and 

demonstrate an equivalence between classical and logic-based systems. Then we intro­

duce a conditional observer and eontroller logie - COCOLOG for fi nite machines, which 

consists of a family of first order logics each corresponding to a node in the observer tree. 

Conditional control statements are formulated so that (closed loop) control actions occur 

when specified past measurable (i.e. past observation dependent) conditions are fulfilled. 

A semantics is supplied for each COCOLOG in terms of interpretations of controlled tran­

sitions on a tree of state estimate sets indexed by observation o( k). Consistency and 

completeness of the first order theories in a COCOLOG family are established. Further­

more, through a certain unique model property, we obtain the de dability result for each 

logical theory in a COCOLOG fami:y. Last, in Part III, a function evaluation based reso­

lution for COCO LOG theorems, called FE-resolution, is presented. Completeness results 

for the FE-resolution method is given in terms of relative truthfulness and validity. 
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Résumé 

Dans cette thèse sont formulés les problèmes de l'estimation r.le:i variables d'état et de la 

commande de systèmes partiellement observés et finis, en suivant à la fois la démarche 

classique et une nouvelle démarche basée sur une utilisation de systèmes logiques En 

première partie, opérant ~ur des ensembles et reposant sur une programmation dynamique, 

un observateur (arbre) et un contrôleur sont formulés, suivIs d'une évaluation de la com­

plexité de calcul nécessaire pour établir et exploiter ces modèles En deuxième partIe, un 

paradigme permettant de gouverner les systèmes finis, basé sur ie concept d'un système 

dynamique logique, est introduit En particulier, les fondements d'un observateur et 

d'un contrôleur dynamiques logiques, dont l'équivalence avec les systèmes claSSiques est 

démontrée, sont élaborés. Nous introduisons alors une logique définissant un observateur 

et un contrôleur conditionels, ou cOcOLOG, opérant sur des systèmes finiS. COCO LOG 

consiste en une famille de systèmes logiques de premier ordre, chacun correspondant à un 

noeud dans l'arbre de l'observateur classique. Des énoncés conditionels de g< IV'emablltté 

sont formulés, permettant une commande en boucle fermée lorsqu'un passé measurable 

est observé selon les conditions exigées. Pour chaque système logique de COCO LOG une 

sémantique interprétant l'action du contrôll~ur sur les déplacements dans l'arbre à partir 

des observation!; o(k) est détaillèe. La cohérence et la récursiVité de ces systèmes logiques 

de premier ordre sont démontrées. De plus, grâce à une propriété d'UnicIté du mo~èle, la 

détermination de chaque système logique de COCO LOG est démontrée. Finalement, une 

résolution appelée FE-resolution et basée sur une fonction d'évaluation est développée; 
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une preuve de la complétude de cette résolution est donnée en termes de véracité et de 

validité. 
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Claims of Originality 

ln this thesis the following original contributions are made 

• The structural properties of both the current and initiai state observer trees for 

partially observed input-~tate-output finite machines, together wlth assoCiated estl­

mates of the compiexity of the current and initial state observer trees are ~resented 

• A formulation of the state guidance control problem, for both the completely and 

partially observed input-state-output finlte machines. In terms of the backward re­

currence equations of dynamic programming is glven 

• Associated estimates of the computational complexlty of the generatlon of cortrol 

laws for completely and partially observed finite machines are presented 

• A logic-based paradigm for control theory is formulated thls Involves, ln partlcular. 

the conception of a logic-based dynamical system, or a dynamlcal system of loglcs. 

• cOcOLOG (a conditional observer and controller logic) IS presented, which 15 a 

family of iirst order logical theories for the state estimation and control of any fmlte 

machine. 

• The consisteny and completeness results are obtained for each logical theory ln a 

COCO LOG system. 
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• The concept of FE-resolution· a resolution based theorem proving methodology 

augmented with the function evaluation (FE-resolution) facility is introduced . 

• The completeness result for FE-resolution is established. 
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Chapter 1 

Introduction 

1.1 Discrete Event Dynamical Systems 

A dynamical system is generally understood to be a system that evolves with time, fur­

thermore, throughout this thesis we shall take the term system to refer to a dynamical 

system which possesses observed or unobserved inputs which may either be manipulated 

(called controls), not subject to su ch an influence (generally called disturbances), or be a 

collection of broad types of input. Conventional systems and control theory (SCT) has a 

long history of handling continuous controlled dynamical systems and their sampled data 

counterparts, su ch as aerospace vehicles and manufacture system~. Currently, however, 

the dosed-Ioop, control theoretic analyses are also emerging for the class of the so called 

discreie event dynamical systems, su ch systems are becoming increasingly complicated 

with the massive application of, and fast advances in, computer technology in our century. 

These human created systems appear to have particular artificia l properties that distin­

guish them from classical dynamical systems - despite the fact tha ( they are evidently 

manufactured from natural substances. For instance, the flow of statements of an auto­

matic theor~m proving algorithm or é:i machine translation algorithm for natural languages 

has many si&nificant features and properties beyond the physical flow of the events of 
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CHAPTER 1. INTRODUCTION 2 

the computation: in addition to the intrinsically discontinuous nature of the phenomena 

(a feature not exhibited by sampled version of continuous systems), such process may be 

conceivecl so as to exhibit semantical properties. 

The clélissical dynamical (deterministic or stochastic, linear or nonllnear, finite or in­

finite, discrete or continuous) systems often arise from systems modeled mathematically 

by differential or difference equations. Examples of such systems are those governed 

by classical mechanical laws and the laws of electromagnetism (Newtonian, Lagrangian, 

Hamiltonian and Maxwell), and indeed chemistry and physics in gen ~ral The concepts of 

controllability, observability, state space realization, etc were mtroduced in the late 50's 

as a part of the fruitful development of linear system theory and thls led to the successful 

application of the control theoretic results in the design of many modern systems. More­

over contemporary control theory is partly engaged in the generalizatlon and extension of 

such ideas to non-linear and stochastic systems. 

Discrete event (human creat('d) dynamlcal systems are not governed by the laws of 

classical mechanics or electromagnetism. These systems are drlven by and emit finite 

or infinite sequences of intrinsically discontin'!ous '!vents which can occur at posslbly 

unknown irregular spaced insta."'ts of time. 

Examples of discrete event system structures can be found in computer system soft­

ware/hardware design and verification, production or assembly lines, queuing systems, 

communication networks, traffic systems, robotics and expert systems etc, at least, at 

some level of system modeling. State transition in such astate space model of a system 

is often called an event. Typical evel1ts in a real system can be. time out, message sent, 

message received in a communication protocol; departure or aff/val of a transaction ln a 

data base; or switching between alternative rules in an expert system 

There is a vast range of studles of discrete event dynamical systems uSlng modeleds 

given by finite machines, automata theory, formaI languages and classlcal and modalloglc. 

Over at least the last twenty years, there has been a widespread effort t" give detalled 
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models and formai analyses of the complex systems generated by computer engineering, 

computer science and its associated technologies. Among the discrete models that de­

serve mention are communicating sequential processes [Hoa85, MM79, TW86], concurrent 

program modeling, semantics and correctness verification [Sha78, Pnu79, MP81, Pet81]; 

synchronization in operating systems [Oij74J; communication protocols, [RCV88, Kur86, 

Oku88]; digital circuit design and verification, see [GK87, RK87], data base concurrency 

control, [Laf88, LW85J. 

Recently, the problem has attracted the attention of many systems and control the­

orists and sorne significant results under the framework of supervisory control theory of 

discrete event dynamical system have been obtained by lv1.Wonham and P.Ramadge, 

[RW87, WR87]. ( ln the next section we give a brief review of this theory) 

Nerode has shown that for any non-anticipative input-output system there exists a 

dynamical state space realization via the constructiorl of the Nerode equivalence classes 

over the input space, for an expia nation of this, see [Cai88] Any dlscrete event input­

output system may generally be taken to be a non-anticipative input-output system and 

therefore has astate space realization. For such systems we often assu me that the 

dimension or the cardinality of the state space is fmite and that the state transition 

occurs at irregular, distinct discrete time instants. Furthermore the state value is often 

only symbolic, that is to say there is no topoJogy on the state space or the input-output 

spaces. Figure Il shows the classification over state space systems based on these three 

criteria, where known mathematical modeling of each class of the state spaee systems is 

given in the graph. 

ln this thesis we shall construct logie control systems for finite machines. We note 

however that there are clearly many different aspects of discrete event systems which are 

not modeled by finite machines. Finite machines model the orderly flow of events or states 

under partial or complete observation of a given system. The timing issue, i.e., when and 

how the state transition takes place, and the quantitative issue, i.e. those properties 
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modeled by queuing theory are examples of properties which are beyond the scope of the 

standard finite machine framework; for a survey of the modehng of these phenomena see 

[RW89, H087]. 

1.2 Past Work 

ln this st!ction we give a brief review cf the basic results of the supervisory control theory 

of Wonham and Ramadge and other related results. 

1.2.1 Supervisory Control Theory 

Wonham and Ramadge were the first to introduce the closed loop control theoretic frame­

work for the class of discrete event systems, [RW87, WR87]. They showed that the con­

cepts of controllability, observability, state feedback closed loop control, etc. can play 
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important roles in what they ca lied supervisory control problems for the discrete event 

systems. Recent development of supervisory control theory has been extended to include 

the issue of aggregation, decentralized, hierarchical, modular and distributed controls. 

Supervisory control problem is formulated in terms of automata and forméil language. 

A plant, i.e, a physical system lù be controlled, is modeled by :: formai language L(G), 

with alphabet or event set L, which represents ail possible .>ehaviors of the physical 

system. Some of these behaviors are undesirable. Then a control mechanism is introduced 

by the partition of the event set L into the set of controllable events Le and the set of 

uncontrollable events Luc, su ch that L == Le U Luc. A controllable event can be enabled 

or disabled. In order for a plant to behave as specified, a controller (or a supervisor) 

S is constructed to supervise the controllable events The controller is determined as a 

function of the current state of the plant and the specified behavior of the desired system. 

The f.:>rmal languages generated by the closed loop system with regulator S is denoted 

Le(S/C). To characterize the language that can be generated by a closed-Ioop structure, 

the concept of a controllable language is introduced. GIVen a language Lover an alphabet 

L, a prefix closure L of L is defined to be L = {u : uv E L for sorne v E t*}, where 

L* is the set of ail strings from L A language J( CLis control/able if it satisfies 

I\Lu n L c J{. The physical meaning cf this definitlon is that J( is controllable if each 

string from the prefix 1 losure concatenated with an uncontrollable event is in the language 

L should also be a string of the prefix closure of J(. 

One of the principal results of [RW87, WR87] is the following: a 'iupervisor S exists 

such that Le(S/G) == 1\ for sorne desirable behavior specified by J( if and only if !( is 

controllable and Lm(G) IS closed, i.e., J( is driven from any marked state of L(G) to 

some marked state of L( G). Where Lm (C) is a subset of L( C) denote~ the set of marked 

strings. Furthermore, the supervisor Scan be generated so as to give the maximum 

permissibJe behavior or, equivalently, the minimally disabled system that satisfies the 

given specifications. 
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1.2.2 Extensions ta Supervisory Control Theory 

The supervisory control framework has been extended since Wonham and Ramadge Inltl­

ated their study. In this subsection we mention sorne of these extensions 

The supervisory control framework depends on the complete ohservatlon of the events 

ln a plant for the supervisor to provide controls ln a d~centrallzed and hlerarchlcal 

situation, or with the presence of noise in the observations, a partial observation based 

control solution is necessary. Cieslak, et al [RCV88] introduce an observation functlon 

which maps the events into a set of output symbols. The supervisory control task IS then 

based on observations of the output string Lin and Wonham [LW87] also conslder the 

problem of constructing the supervisor based on the presence of an âent observer for a 

partially observed plant. 

Ostroff and Wonham [Ost89, OW89a, OW85) have extended the automata and formai 

language model to include a time window wlthln which each transition takes place. Havmg 

this time window, the automata model is then able to descnbe the timing of plant behavlor 

These augmented automata models were calledc extE'nded state machines Ostroff and 

Wonham have also adopted a temporal loglc framework, wlth its semantlcs deslgned to 

match a given extended state machine, so as to verlfy the behavior of the given machine 

It is worth pointing out that the role of temporal loglC 10 their modell~ restncted to that 

of a formai tool for verification of the correctness of a given extended state machine and 

its supervisor as a closed loop system. The correctness property IS used 10 t he sense of 

characterizing the desirable clo!)ed loop behavior. This behavlor includes tlme constralnts 

and such standard problems as liveness, safety, deadlock free, fairness etc addressed ln 

computer program correctness verification [MP81]. 

Other developments in supervisory control theory IOciude stablhty and stabillzabliity 

as introduced by Ozveren and Willsky [Ozv89, OW89b). They give conditions for findlng 

the supre..11al set such that the marked states are visited trom ail other states ln a fmite 

number of steps. Furthermore, Zhong and Wonham [ZW88] characterize the hlerarchlcal 
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control of discrete event systems. 

To summarize, supervisory control theory has provided, for the first time, a systematic 

synthesis of a closed loop solution to certain qualitative problems in discrete event system 

theory. Although these problems had previously been attacked in the fields of computer 

science and data communication, closed loop solutions were not generally obtained. 

ln the next section, the organization û~ this thesis along with its main contributions 

to and relations with current developments of control theoret:c solutions to discrete event 

system problems IS presented. 

1.3 Organization and Main Contribution 

As we illustrated in Figure 1.1, discrete event systems are generally modeled by finite state 

machines or equivalent mathematical tools. In the rest of this thesis, we shall take finite 

machines to be the mathematical mod~ls of the system in which we are interested. The 

control of a finite machine is realized through the input function and that of an automaton 

via its forced transitions. This is equivalent to the control mechanism which enables and 

disables events due to the application of the forced input. 

1.3.1 Observers and Controllers 

ln Part 1 of thls thesls, we present the basic framework in which our state estimation and 

control problem IS ;'1t )duced. State estirflal;ùn is the task of a (current or initial) state 

observer. In the formulation which we afJopt, a controller takes as input the output of 

a state observer and hence generate the next control to the plant in order to achieve a 

certain desired behavlor of the overall closed-Ioop system. 

We formulate the initiai and current state observers for a glven finite machine in 

ter ms of set-based operations realized by classical observers These observers can also 

be expressed as tree structures, which consequently are called initial and current state 
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observer trees. We give a set of results on the structural properties of these trees and the 

size of these trees. 

The COI.~tructlon of the controllers described in Part 1 is formulated ln terms of dynamlC 

programming applied to the set of state estlmate sets (eqUivalently the nodes) ln the 

observer trees of a given finite machine. First, the control problem is deflned to be that of 

steering astate (estimate) to a target st .. ~c:. The controller IS des'gned for both complete 

observation and partial observation cases. A concept of a good state (or state estlmate 

set) is mtroduced Then system controllabliity and the eXistence of a closed-ioop controller 

are determined via backward recurrence equatlons WhlCh, m the partlally observed case, 

will involve the state estimate sets Computatlonal complexlty of runnlng and constructlng 

such controllers is also presented. This work should be vlewed as foundatlonal for the rest 

of the the5is and as providing a mathematically weil defmed framework for the work that 

follows. 

1.3.2 logic-based Oynamical System and COCO lOG 

The formulation of the notion of a logic-based dynamlcal system and the condltlonal 

observer and controller loglC-COCOLOG, presented ln Part Il, 15 consldered to be the 

main contribution of this thesis. 

The procedural and declarative approaches are two baSIC formulations used for prob­

lem solving. These two approaches also draw a IIne between the methodologles used 

in computer science and those in artifiCial intelligence The fundamental feature of the 

declarative approach, or the logic-based approach, IS that of the Immense flexlbdlty of 

the underlying structure compared wlth that of the procedural approach This flexlblllty 

comes from the expressibillty, or richness, of loglco-hngulstlc methods ln general, and of 

first order languages ln particular; furthermore, withln loglc programmlng It follows from 

the relative separation of lagic and control, where a unlform control mechanlsm (ca lied 

an inference engine which often consl5t5 of unification and resolution algonthms) 15 ln 
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mechanlcal theorem proving techniques. In this thesis, we show that the control problems 

that arise from finite mdchines can be expressed in terms of those higher level descriptions 

in the sense that they can be generally described by families of flrst order logics indexed 

by tlme The evolution of such logics in time is descrlbed by our notion of logic-based 

dynamlcal systems, see Chapter 4 

Our conditional observer and control/er loglc, called COCOLOG, is then defined to 

express systems and control problems for finite machines and in particular to formulate 

the problem of designlng observers and controllers for a partially observed machines CO­

CO LOG IS formulated in terms of a tree of first order loglcs where each logic corresponds 

to a node in the observer tree. Among other results we show the consistency and com­

pleteness of each COCO LOG loglc, a unique model property and thus the decidability 

property 

1.3.3 Automated Reasoning with FE-Resolution 

ln Part III, we discuss the automated theorem proving for COCO LOG theorems. A function 

evaluation based resolutlon, called FE-resolution, IS presented for the conditional observer 

and controller logics FE-resolutlon can also be applied to other general systems. Finally, 

the completeness of FE-resolution is established. This connects the sernantical notion of 

relative truthfulnbs to the syntactic procedures of FE-resolution. 

1.3.4 On the Tractability of logic-8ased Control Theory for Fi­

nite Machines 

It IS evident that the question of the computational tractability of a formai system such 

as COCO LOG vltaly effects the realizability, the efficiency of any implementation and, in 

fact, the posslblhty of any computational implementation whatsoever. 

As we mentioned at the beginning of section 1.3.2, the procedural and declarative 

III 
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formulations are the two basic mechanisms for the Implementation of formai cornputational 

schemes. At one extreme AI systems are formulated using the declarative formai loglco­

linguistic systems as a modeling formalism. The cntical problem of havlng su ch flexibillty IS 

the issue of computational tractability assoclated wlth a general loglco -lingUistic systems 

It is almost invariably the case that the resuiting computations are intractable whenever 

a non-trivial problem is formulated in thls framework 

On the other hand, if a system is modeled wlthm the framework of conventlonal 

mathematics, that is ta say, by a procedure or a set of functions, it is often the case that 

the computational load is tractable but flexibility is lost This IS partlcularly slgnlflcant in 

the formulation of high level control, smce no general terms, 10gICai quantiflers or alterable 

axioms can enter the systems in this case Our intention here is to formulate a weil deflned 

logical construction for the system theory of finite machines whlch, ln partlcular, permit 

the analysis of the computational tractablhty of the solution of control problems posed 

at different levels of generality for more or less complex machines. In thls way we ,"tend 

to investigate a flexible, but highly structured, middle ground between the unstructured 

intractable systems on one hand, and totally structure, rigld and tractable systems on the 

other. 

i 



Part 1 

Classical Observation and Control 

Theory for Finite Machines 

11 
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ln this part of the thesis, we shall first, in Chapter 1, take the simple class of dynam­

ical systems represented by partially observed finite machines. We then pose the state 

estimation problem in terms of the problem of constructing a c1assical d.vnamical system 

which generates a sequence of state estimates. Following this, we present the design and 

complexity analysis of building such an observer for a given finite machine. In Chapter 3, 

we discuss the problem of constructing a classical dynamical system, which we cali a clas­

sical dynamical controller, that generates a sequence of controlled inputs. The controllers 

discussed here are obtained from controllaws that solve certain reachabihty dynamlc pro­

gramming problems: subject to certain conditions these will steer the state estimates to 

the desired targeted state when the underline finite machine is not completely observed. 

The question of the complexity of building and running such a controller is covered in the 

same chapter. 



( 

Chapter 2 

Dynarnical 0 bservers for Finite 

Machines 

ln this chapter, we take the class of dynamical systems represented by partially observed 

finite machines and then pose the state estimation problem in terms of the problem of 

constructing a classical dynamical system which generates a sequence of state estimates. 

We first introduce sorne system concepts which formulate the state observation problem. 

Then we present a set valued recursive formulation of the observation sets. A repre­

sentation of these observation sets in tree structures forms the so called observer trees 

for current and initial state observation tasks. Finally a complexity analysis and sorne 

structural aspects of the construction of these trees are presented. The contents of this 

chapter resulted from joint works with Dr. P.E. Caines and Dr. R. Greiner, reported in 

[CGW91). 

2.1 State Observation Problem 

A machine is taken to mean a deterministic input-state-output machine, a machine is 

termed finite when the input, state and output sets are of finite cardinality. (We will, 

13 
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in general, omit t~e input-state-output qualification.) The dynamical observers for finlte 

machines discussed in this section are themselves modeled by finite machines. 

Definition 2.1.1 (Finite Machine) A finite machine IS a quintuple M = (X, (l, )', 4>,1/) 

where 

X is a (finite) set of states, 

U is a (finite) set of inputs, 

y is a (finite) set of outputs, 

<1> : X x U -+ X is a transition function, 

1] : X -+ Y is an output function. o 

Concerning the notation used in this thesis, we shall sometirnes write (i) <P(.I',It) as 

<Pu(x), and (ii) u~ for the (n - i + l)-element sequence [U., U,+l, 11.,+2,"', /ln), where 

UJ E U denotes the input at the time instance j E Z+ (and where ?LJ is identified with 

[u))) and ljJu denotes the empty input; the same notation will be used for :r:~ and ]/;'. 

The dynamical evolution of a finite machine M = (X, U, }", <P, 1]) can be displayed by 

taking U· to be the set of ail finite sequence of inputs and by extending <1> : X x U -+ X 

to Cl> : X x U* -+ X, where for ail i,n E Z+" for ail u;' E IP and for ail x E X, 4> is 

recursively defined as: 

<P(x, ljJU)=x 

<P(x, ll~)=<I>(<P(x, Ua), U;+1) 
(2.1) 

Because 1] is not necessarily a one-to-one map, a finite machine will often be referred 

to as a partially Clbserved finite machine. (The finite machine set-up described above 

includes, as a special case, that of any conventional determinlstic finite machine with 

partial state transition function and state output function.) 

A finite machine can also be defined by a state transition diagram as shown in Fig­

ure 2.1 for a particular seven state machine M7. 
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2.1.1 Initial and Current State Observation 

The initial (respectively, current) state dynamical observer problem for a finite machine, 

M, is to estimate M's initial (respectively, current) state from observations on its inputs 

and outputs over a finite time period. An imtial state dynamical observer takes, as input, 

the observed behavior of a system, i.e., a sequence of input/output pairs, and outputs an 

estimate of the initial state of the system. 

We can state this formally by the following definitions: 

Definition 2.1.2 (N-consistency) The N-element state sequence xi" E X N is a N­

consistent statesequencewith respect to a given Input/Output sequence, [(uo, YI)' (UI' Y2), 

... , (UN-b YN)] E Y x (U X y)N-1 if the relation CS([(U,_I, Y')]~I' xf) defined as, 

Xk = cJ>(Xl' U~-l) and Yk = 77(Xk), for ail k E [1, ... ,N]. (2.2) 

is satisfied. The set of aIl su ch sequences is denoted C SS{of). 0 

(The diagram below iIIustrates how the x,s, U,s and y,s are related. 

1]: YI Y2 Y3 

Where Uo is usually taken to be the null element denoted by ifJ.) 

ln other words, an N-consistent state sequence with respect to the input/output 

sequence (U'-I, y,)J~I' if, a trajectory of states that satisfies the system dynamics and 

the observed output sequence from 1 up until time N. We denote by Pk as the projection 

operator over a sequence of elements defined by Pk{Zt, Z2,"', Zk, ZkH"") = Zk and 

0 ' ç U'-
I X yi , where o~ E 0 ' is an observation sequence [(U,-I, Y')]!=l of length 1 

generated by sorne x E X taken as the initial state together with the corresponding input 

sequence Uo,"', UI-1. 
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Notice that C S(·,·) is not a function, i.e., there can be many state sequences which 

are consistent with a given 1/0 sequence, o~ = [(lll-b YI)]~-l' and that each such ~t.1!p 

sequence, J X~=l' is uniquely determined by its first element, J .rl. We defme the Initial 

state estima te as the set of these possible initIai states. 

Definition 2.1.3 (Initial State Estimate) An initial state estimate set, wlth respect 

to the N-element observation sequence, of, wntten 1 S E(of) or (;;}(of), is the set of 

initial elements of the consis1:ent state sequences: 

( N) _ -}( N) { r X = P1(xr) for any ,rr } 1 S E 0 1 = {Xl Dl = X E X 
su ch that xf E C SS'(of) 

(2.3) 

o 

ln other situations, we may want an estimate of the current state of the device, given 

a sequence of N input/output pairs: or = [(UI-l, YI)]~1 

Definition 2.1.4 (Current State Estimate) A current state estimate set, with re­

spect to the N-element observation sequence, or, wriUen CSE(of) or {:;;;}(of), is 

the set of final elements of the consistent states: 

N - N { x = PN(xf) for any xf } 
CSE(ol ) = {XN }(ol ) = x E X 

such that xf E C SS(of) 
(2.4 ) 

o 

Astate-output finite machine will be taken to be an 1-5-0 finite machine where the 

input set only contains a single element, i.e., each input is taken to be the same, e.g., a 

dock tick, u. 

Example 2.1.1 We can illustrate these definitions with the state-output 7 state machine, 

M7, shown in Figure 2.1. Suppose the device begins in the state x2 Of course, our 
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dynamical observer cannot be a function of any information stating this. Instead, it has 

access only to the output sequence 

[yl, y2, yl, y2, ., .J 

Initially, at time T =0, the initial state observer must consider ail states, meaning 

- 0 lSE([J) == {Xd(Ol) = {xl, x2, x3, x4, x5, x6, x7} 

as a possible initial state estimate. 

x7 

u1 

Tl=y1 

Figure 2.1: The M7, astate-output finite machine 

At time T =1, the initial state observer would output 

lSE([yl]) == {;;}(oD = {xl, x2, x3}; 

at time T =2, it outputs the same 3-element set 

ISE([yl, y2]) == {;;}(oi) = {xl, x2, x3}. 
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However, at time T =3, it converges to the singleton 

ISE([yl, y2, yl]) == {-;;}(on -= {x2}, 

which is the same value that it o,Itputs at time T =4 

ISE([yl, y2, yi, y2]) == {~}(o1> = {x2}, 

and so on: 1 SE(n)[yl, y2, yl, y2, ... , ynJ = {x2}. 

A current state observer would give 

CSE([])=f;;}(o~) = {xl, x2,'" ,x7} 

CSE([yl])={-;;}(oD = {xl, x2, x3} 

CSE([yl, y2])={;;}(on = {x4, x5, x6 } 

CSE([yl, y"', .1 !])={-;;}(o~) = {x2} 

CSE([yl, y2, yi, y2])={-;;}(o1) = {x5 }. 

18 

o 

A finite machine is initial state observable if we can, eventually, determine its initiai 

state based on observations of its input/output sequence. Likewise, a fmite machine 

is current state observable if we can, eventually, determine its current state based on 

observations of its input/output sequence 

ln fact we have the following set of definitions of observability for finite machines. 

Definition 2.1.5 (Weakly Initial State Observable) A finite mach .. ~ M = (X, (J, Y, 

4>, TJ) is said to be weakly initial state observable if for an)' x E X there eXlsts a minimum 

length observation sequence o~(x) E O·, su ch that for ail N > J,;( x), the Initial state 

estimate set {-;;}(of) = {x} is a singleton. 0 

That is, whatever state the system starts from there always exists an (input-output) 

observation sequence such that the initial state estimate set contains a single value, after 

a finite time period. 
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Definition 2.1.6 (Non-Anticipatively Initial State Observable) A finite machine M 

= (X, U, Y, <J>, 1J) is said to be non-anticipatively initial state observable if there exists 

a sequence of non-anticipative input functions {UI : 0 1- 1 -+ V, 1 ~ 1} i.e., a (non­

anticipative) controllaw uNA
, and a constant J( E Z+, such that for ail x E X, and for 

ail N ~ J( the ;n;t;al state estimate {;;}(of) is a singleton, whenever of" is the output 

resulting from the input uNA . o 

ln other words, there exists a past-dependent control law which will force the initial 

state estimate to give a single value after a finite time period. 

Definition 2.1.7 (Strongly Initial State Observable) A finite machine M = (X, U, 

Y, $,1]) is said to be strongly initial state observable if there E::xists a J( E Z+, such that 

for ail N ~ K, and ail o~ E ON, the initial state estimate (x;}(o~) is a singleton. 0 

Whid is to say that the initial state estimate to be single valued, for any observations 

after finite time period, which is necessarily the correct initial state. 

Definition 2.1.8 (Weakly Current State Observable) A finite machine M = (X, U, 

Y, cS> , '1) is said to be weakly current state observable if for any x E X there exists 

o;(x) E 0* such that for ail N ~ k( x), the current state estimate {;;}( of") = 4>( x, uf -1) 

is a singleton . o 

Note here XN is the correct current state, i.e., the correct initial state propagated 

through the observed inputs. 

Definition 2.1.9 (Non-Anticipatively c,.rrent State Observable) A finite machine 

M = (X, V, F, <J>, 1]) is said to be non-anticipatively current state observable if for ail 

x E X, there exists a sequence of non-anticipative input functions {Ul : 0 1- 1 -+ U, 

l > 1}, i.e., a (non-anticipative) controllaw u NA and a constant J( E Z+, such that for 

ail N ~ 1<, the current state estimate {;;}(oi") = cS>(X,Uf-l) = {XN} is a singleton, 

whenever oi" is the output resulting from the input uNA . o 
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That is, there exists a past-dependent control law which will force the current state 

estimate to be single valued after a finite time penod. 

Definition 2.1.10 (Strongly Current State Observable) A finite machine M = (X, 

U, Y, 4», TJ) is said to be strongly current state observable if there exists a /\' E Z+, such 

that for ail N ~ K, and ail o~ EON, the current state estlmate {;;}(o~), IS a singleton 

o 

Theorem 2.1.1 (Weakly iff Non-Anticipatively Observable) For any input-state-output 

finite machine, M = (X, U, Y, 4», 17) we have: 

(i) If M is strongly initial (respectively CL ~nt) state observable Then M IS 

weakly initial (respectively cunent) state observable. 

(ii) M is weakly initial (respectively current) state observable if and only If M 

is non-anticipatively initial (respectively current) state observable. 

Proof 

(i) is self-evident; further, in (ii) the case of initial state estimation follows from a 

similar but simpler argument than that of current state estimation. Consequently we shall 

only prove (ii) here for the current state observable case. 

Consider the weakly current state observable finite machine M = (X, U, }", 4», '1), we 

need to find a family of input functions {u[ : 0 1- 1 ---+ V, 1 ~ 1}, whlch Will force the 

current state estimate is single valued after a finite time period. 

Such a past-dependent controllaw can be constructed in the following manner. 5lnce 

M is weakly current state observable, there exists o1(x) E O· for any x E X su ch that 

u(o~) will force {;;;}(o~) = 4»(x,u~-I) = {XN} for any N? k(x). Therefore we define 

the first segment of our input function uNA by taking the control actions u~(·-d E U* for 

sorne arbitrary Xl E X. This control sequence is used until (1) the current state estimate 

converges to the singleton in k(Xl) steps which is less than or equal to IXI (see Theorem 
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3.2.1 in Chapter 3), or (2) an output observation YP' 1 ~ p ~ k(xI) is obtained which is 

inconsistent with o;(,r.). 

ln the first case the non-anticipative control sequence uNA has given a sequence of 

estimates that has converged to a singleton, in the latter, a new control sequence in O~(X2) 

i5 initiated at Pl for sorne arbitrary X2 E X - 4>(XI 1 u~-l); and (part of) this will form the 

second selSment of uNA . Since X - <l>(XI, ui-1
) has IXI-1 elements there are at most 

IXI -1 elements in the image set 4>(X - 4>Pl(XbUil-I),U~!+k(X2)-I) under the newly 

chosen control sequence uPI +k(X2)-1 Pl • 

Continuing in this manner for X - {XI,X2}, etc, yields (one set of values of) a non­

anticipative Input function uN A which will take at most IXIO:I+l) steps before the current 

state estimate converges to a singleton. Performing this process for ail possible initial 

conditions for M yields a set of sets of values that constitute a non-anticipative control 

law uNA(o*) --+ u· satisfying Definition 2.1.6. o 

ln the rest 01 this thesis we shall restrict discussion solely to the situation where 

observabi/ity i5 taken in the strong sense 

The relationship between initial and current state observability among finite machines 

is described by the following example. 

Example 2.1.2 ln Figure 2.2, we show a two state, state-output finite machine is current 

state observable but not initial state observable. In general, initial state observability 

implies the current state observability in each of the classes of weak, non-anticipative and 

strong, but not vice versa. 

The general relationship of current and initial state observability among finite machines 

is shown in Figure 2.3 in ter ms of s~t containment among the set of ail possible finite 

machines. 

o 
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ut yI 

Figure 2.2: A two state machine M 2 is current but not Initial state observable 

FMs 

FMs=Finite Machines 

CSOFMs=Current State Observable Finite Machines 

ISOFMs=Initial State Observable Finite Machines 

Figure 2.3: A Nesting Wlth Respect to Observablhty Propertles 

22 

Theorem 2.1.2 A finite machine M = (X,U, Y, <l>,1]) is initial state observable If and 

only if the following holds: 

and M is current state observable if and only if 

X I - ,.11 o - wo 

Proof of this theorem is obtained directly from the Definitions 2.1.7 and 2.1.10. 
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Two states x~,.c~ E X of a finite machine M = (X,U, Y, <l>,7J) are said to be (ob­

servabi/ity) equivalent, denoted by x~ =ob x~, if and only if for ail u E U*, 17( 4>(x~, u» = 

TI(4)(X~,u)) 

The equlvalence relation =ob over the state space X of a finite machine M = 
(X, (J, Y, 4>, 7J) induces a partition over the equivalence classes of X / =ob which per­

mits us to define another property for finite machines. A finite machine is said to be in 

observability reduced form if and only if 

\Ix EX, [X)::ob = {x} 

Clearly a finite machine is in observability reduced form if and only if it is initial state 

observable. 

2.1.2 Recursive Set Formulas for State Estimation 

We can now give some interestmg and useful formulas for the initial and current sté,lte 

estimate sets It will be noted that the Equation 2.6 has the important predictor-corrector 

form of many recursive algorithms in systems and control theory. In fact, in this case, we 

may refer to the recursion as a predictor-refiner formula, since no error-correction in the 

usual sense of the words takes place. 

Theorem 2.1.3 ([CGW91] Observation Sets) Consider any finite machine M = (X, 

{l, }',4>,TJ), then for any observation sequence, of E ON, the following equations hold: 

These equations may be written as: 



-
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(2.7) 

(28) 

where 

• <l> has been extended to take a set of states as its flrst argument: 

<1>: P(X) x U* 1--+ P(X) where <I>(A, un = {x E Xix = <1>(.1",713) for some 

x' in A}, 

• <l>-l is the inverse of <1>: <l>-l : P(X) x U* 1-+ P(X) given by 

<I>-I(A, un = {x E XI <I>(x, un E A}. 

• 7]-1 is the inverse of 17: 7]-1 : y 1--+ P(X) given by 

17-1(y) = {.'I: E X 17](x) = y}, and 

• {~}(o~) is defined to be X. 

(Here, P is the power set operator: P( E) refers to the power set of the set /J ) 

Proof 

We first show how the N-consistent states are related to N + l-consistent states, then 

use this to derive the eql -',,:; shown above. Consider any N -element state seq uence, 

Jxf" = [JXl, JX2 , "', JXN , ], which is consistent with an N-Iong observation sequence, 

of", i.e., which satisfies C S( of, J xf"), as specified in Equation 2 2. Now conslder the 

effects on a new observation, (UN, YN+l). If <I>{lXN, UN) = J J;N+lo add It to the end 

of the Jxf" sequence, forming ) ..:;~+l. If 7](3xN+d = YN+l, then Equation 22 guarantees 

that CS(of"+I,Jxf"+l) must hold Notice, further, that this construction accounts for ail 

N +l-consistent state sequences. 5lnce, for any initial N -element subsequence /";);'( of any 

• 
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N + 1 state sequence I: x f+l which satisfies CS(of'+l, kx f'+l), the relation CS(of, kxf) 

must hold. 

We prove Equation 2.5 by induction. When N = 0, i.e., before any observations, any 

state is consistent with the empty observation, as CS([], [x]) is true for each x E X. 

Hence Equation 2.3 means ISE([J) = X, which is the value specified above. 

Now assume Equation 2.5 holds for ail k :::; N, and we observe ON+! = (UN, YN+!). 

We saw above that we can expand each N-consistent state sequence Jxf into an N + 1-

consistent state sequence Jxf+l. which will qualify as an N + l-consistent state only if 

1J( 4>(JXN, UN}) = YN+!. Hence, an initial element, 31:1, which qualified after N observa­

tions, i.e., for which JXl E ISE(of) will remain in ISE(of'+l) only if "l( 4>(1XN, UN» = 
YN+!. Re-expressing this condition in terms of J X1 and uf, gives J X1 E 4>-1( 1J-1(YN+!), uf"). 

This leads immediately to Equation 2.5. Repeated substitution for the term 1 SEC of') 

yields Equation 2.7. 

The proof of Equation 2.6 is similar. The N = 0 base step is identical. For the 

inductive part: Given that JXn is a member of CSE(of), we need only obs~rve that 

J.rN+! = 4>(JXN, UN) belongs in CSE(oi'+!) if and only if 1J(3XN+l) = YN+!. Hence, an 

x E X should be a member of CSE(of+l) if and only if x = 4>(x', UN) for sorne x' E 

CSE(of) i.e., xE 4>(CSE(of'), UN), and xE 1J-l(YN+!). This is exactly Equation 2.6. 

Equation 2.8 follows immediately. o 

The rest of the chapter deals with the design and in addition, a complexity analysis 

of the design, of a dynamical observer for finite machines. First, we provide the relevant 

type information: 

Definition 2.1.11 (Classical Observer System - Type Information) Given any finite 

machine M == (X, U, Y, 4>, .,,), a c1assical observer system of M is a finite machine 

M = (X,Û, Y,éP,~) su ch that Û = 0 = U x Y, XE P(X) and Y = X. 0 
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Notice the input to this M finite machine correspond to an input/output pair assocl­

ated with the M finite machine; and M's outputs corr€spond to M's states This output 

is intended to be an estimate of the state of the finite machine M, given the observed 

input/output. 

Definition 2.1.12 (Convergence) A classical dynamical observer system M is said to 

be initial-state-convergent in finite time, denoted by MI, if there exists f( E Z+, such 

that, for ail N > I< and for ail of E o· there exists Xl E X such that 

(2.9) 

where ~ = of and if we denote Xk = <l>(Xl, u~-l) for k = 1,2,···, N then the relation 

CS(of, xf) must hold. 

Similarly, a classical dynamical observer system Ni is said to be current-state-convergent 

in finite time, denoted by Mc if there exists a J( E Z+, such that, for ail N > K and 

for ail oi" E O· there exists a Xl EX, such that 

(2.10) 

where ~ = of and If we denote Xk = <l>(XI, U~-l) for k = 1,2,···, N th~n the relation 

CS(of, :cf) must hold. 0 

Notice this means that the current-state-convergent (mitial-state-convergent) observer 

finite machine, Mc (or Ml), can start from any state, and then observe the behavlor of 

die finite machine M, which, itself, can start in any state. Given enough observations, 

Mc (or MI) will be able to determine M's current (initiai) state, and will then stay 

locked on';.e., always giving M's state as output, for an)' given subsequent (sequence of) 

input/output pairs. 

For notation, we will often refer to a (dassical) dynamical observer fmite machine as 

a CDO, and the finite machine being observed as the base machine. 



CHAPTER 2. DYNAMICAL OBSERVERS FOR FINITE MACHINES 27 

2.2 Constructing Initial and Current State Observers 

This section first presents graphical representations of the observation sets in the forms of 

the tree structures. These trees-we shall later cali them initial or current state observer 

trees-present a graphical way of constructing classical dynamical observers. Then we 

prove an important property of observable machines: Theorem 2.2.1 states that notion 

of observability of a finite machine and the existence of a convergent c1assical dynamical 

observer are equivalent. 

2.2.1 Initial and Current State Observer Tre1!s 

ln the previous section, we presented an algebraic representation of the observation sets 

in terms of a recursive set operations. The information contained in these algebraic ex­

pressions can also be represented graphically, in terms of initial and current ~tate observer 

trees. Starting from an empty observation, corresponding to any moment before the base 

machine is initialized, Equations 2.5 or 2.7 gives ISE([]) = X. Thus X is the root of an 

initial (or a current) state observer tree. Now, at the initial state, the observer reads the 

first observation 01 = (4),y), and therefore the observer is able to improve its estirnated 

initial (or current) state estimates via Equation 2.5 or 2.7 to conclude: 

(or by Equations 2.6 or 2.8 to conclude: CSE([(4>,y))) = {-;;}(0I) = 7]-l(y)). 

Based on the value of y we may have different ISE's (or CSE's). This leads to a 

splitting from the root node into new subnodes. Carrying on these operations, we end up 

with an initial (or cur.-ent) state observer tree OT/(M) (or OTc(M)) hr a given finite 

machine M. In the following example, we show how to generate an initiai and a current 

state observer tree for a given finite machine. 
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Example 2.2.1 Figure 2.5 ,lnd 2.4 show the initial and the current state observer trees 

for the finite machi.le M7 giw~1" in Figure 2.1. 

U:::~~3' rZr~ 
ur2r~:' {x6, {x7, 

{x2} {x6} {x7} 

{x7} 

Figure 2.4: Current State Observer Tree for .M7 

{x1,x2,x3,x4,x5,x6,x7} 

ut/yI / l '" ul/y3 

rut/yi ) 
{x1,x2,x3} {x4,x5,x6} {x7} 

uIN1 UI~~ \q3 
ulNI j'i\'Ulf::s

, {x6, {x4' 

~t/y~ 'i 
{x2} {x3} {x1 } 

Figure 2.5: Initial State Observer Tree for M7 

An observer tree will stop expanding at any singleton node since a singleton node can 

only have singleton nodes as its subnodes. o 
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We can view any observer machine, M = (X, Û, Y, ~, 7j). as a directed, labeled 

graph, whose nodes correspond to the element set, X, and whose arcs correspond to the 

4> function: node Xi is c'lnnected to X2 by an arc labeled by û if and only if 4>(Xi, û) = X'2. 

An observer tree, i.e., a directed, labeled graph, will be called an observer dag, i.e., a 

directed, acyclic graph when the base machine is observable. 

Obviously, the most general node is the root, and the singleton nodes are the leafs. 

To show that observer dags are true to their name, we need to show that they can have 

no cycles. The proof is obvious: a cycle in this (sub )graph necessarily renders the base 

machine non-observable. 

Observer dags include exactly the traversais necessary to move from the most general 

node to the answer that is, to the correct set value of either the base machine's initial 

state, or its current state. This assumes that M begins in its most general node, and 

the data it receives is accu rate (that is, it is observing the appropriate finite machine, and 

perceives its actual input and output). o 

2.2.2 A System Is Observable Iff A Convergent CDO Exists 

This 'iubsection we prove that a finite machine is observable (initial or current state) if 

and only if there exists a convergent classical dynamical observer (initial or current state). 

Theorem 2.2.1 (Equivalence) For any input-state-output finite machine, M = (X, U, 

y', <1>,71), the following statements are equivalent: 

(i) M is initial (respectively current) state observable. 

(ii) There exists a convergent CDO(M) for the initial (respectively current) 

state value. 

Proof 

To show (i) implies (ii), it suffi ces to define an appropriate obsNver machine, MI 
and ~ respectively, for any given base machine M = (X, U, Y, <1>, Tf), such that by 
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Definition 2.12 they are initial state convergent and current state convergent respectlvely. 

This will be done by first constructing the initial and current state estimate dags, these 

correspond to the sets of initial and current state estimates and the transitions between 

them generated by the Equations 2.5 and 2.6 respectively. We then crea te the states and 

transitions of MI and Mc by identifying (1) the state of M: and Mc wlth the sets of 

state estimates in the appropriate dag, and (2) the transitions in Nt 1 and Nic: with the 

transitions in the appropriate dags. 

To prove (ii) implies (i) we shall show that not (i) implies not (ii). Suppose M was 

such that it was not initial (respectively current) state observable. Then there would 

exist initial states x, x' E X such that x =f. x' and for ail N we would have {;;}( o~) :2 

{x,x'} ({;;}(of);2 {XN = <t>(x,uf-I),XN = <t>(X','/l~-I)} respectively), where ()~ =---= 

(uf-l,yf(uf-t, x)) = (uf-l,yf(uf-l,x'» for ail NE Z+. 

But then no non-anticipative function and in particular n, . observer machine could rnap 

o(x)f into Xl (XN, respectively) in just those cases wh en Xl is the Initial state, (current, 

respectively) for ail sufficient large N. 

o 

2.3 Complexity of the Observability Dags 

This section provides theorems which describe the size of observer dags for fmite machines 

bounding both their maximal depth, and their total number of nodes, for both Initial and 

current state observer dags. 

First let us present the following lemma which descnbes an interesting structural 

property of initial state observer trees. 
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Lemma 2.3.1 (Push-Down Property) For any k E Z+ and for any ot E 0* the 

following relation holds: 

(2.11) 

for any initial state estimate set {-;;}( ot) of any finite machine M. 

Proof 

This is obvious from Equation 2.5 of Theorem 2.1.3, which sa ys that an initial state 

estimate set at k is always contained in the initial state estimate set at k - 1. 0 

This lemma simply states that any node in an initial state observer tree must be a 

subset of its parent node. 

Theorem 2.3.1 ([CGW91] Size of Initial State Observability Dags - 1) let M = 

(X, Y, <1>,.,,) be an initia/state observable state-output finite ffidchine with IXI states, and 

let MI be the initial state dag observer for M. Then we have: 

(i) MI has depth at most IXI before it converges to ail singleton nodes. 

(ii) ~ has at most 21XI - 1 distinct nodes. 

Proof 

Proof of (i). Let St be the set of 10ssible initial state estimates, at time t, i.e., 

St = {{;;)(yDlyf E Y*}. Notice, of course that, Sa = {X}, and ST = {{x}} if every 

element of X has been distinguished at time T; and IStl :::; IXI for ail t. Notice these 

StS include ail and only the nodes in the observer dag, i.e., the observer dag's nodes are 

exactly Ut St. 

We can use St to define nt C X x X to be the set of pairs of states which are 

indistinguishable at time t: nt (Xl,X2) ~ 3r E St,such thatxl,x2 E r. Sa = {X} 

means that no = X xX, i.e., before any observations, no pair is distinguishable. 
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We can define nt recursively: 

nt+l(X, x') ~ 1\:=0 17(<l>I(x» = 77(<l>I(.r'» 

~ 77(X) = q(x') /\ nt(<l>(x), <l>(:r'» 

The depth of the observer dag is the minimum t such that nt has converged. No­

tice that the nI sequence converges whenever nT+1 = nT It suffices to show that 

nT +2(X,X') {:} nT(X,X'); th en by simple induction, we have nT+k = nT for ail k ~ 0 

To show that nr+2(X,X') {::> nT(x, x'), observe: 

nr +2(x, x') ~ 7](x) = q(x') /\ nT+l(<l>(:r), <l>(x'» 

<=> 1l(x) = q(x') /\ nr(<1>(x), <1>(;r'» 

~ nT+l(X, x') 

{:=:} n7,(x, x') 

Notice that n"+l '# n" means that 18 .. +11 is strictly greater than 18 .. 1. by the Lemma 

2.3.1. As ISrl ::; IXI, this strict increase can happen at most IXI times. hence, we must 

have T::; IXI and hence the dag can have depth at most IXI. 

Proof of (ii). 

For any r c 2x . let r(r) be the observer dag rooted at r. (Hence r( X) is the observer 

dag for the entire finite machine M.) Let Ir(r)1 represent the number of distinct nodes 

in any su ch tree. 

We prove. by induction, that Ir(f)1 ::; 2 x Ifl-l. This Induction uses the <t>-order of 

If /. where the partial order 4>-order is defined as 

This cJ>; is the (initial state) observer machine's transition function, see Definition 2 2.1 

As we are dedling with initial state observable finite machine and (P-order is false for ail 

pairs of singleton sets and 4> - order is transitive. it follow that (P-order is a partial 

ordering, 
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Initialization of the induction: The minimal ~-order sets are singletons - i.e., when 

f = {x}. Here, the observer tree, T( {x}), contains only the single node, {x}. Hence, 

IT({X})I = 1$2*1-1 = 2*1f1-1. 

General induction s1.ep: Take any non-minimal f; these correspond to non-singleton sets, 

Ifl > 1. Using the superscript k to mean that the set r appeared at time k, we give the 

following diagrammatic representation for r(fk): 

where each r:+1 = {x E rk : Tf(<I>k+l(x» = YI} and YI E Y. (Notice éi>-order (rk , rf+1) 

holds for each i.) These r:+ls are distinct (i.e., i =f. j => rf+l ri r;+1 = cP), and their 

union is a subset of rk • As a final bit of notation, let 1 = {i 1 r:+l =f. {} }. 
There are three cases to consider: 

Case 1: 111= 1 and rk = r:+l for sorne i: 

Here, the T(rk) is of the form 

Yi 

Using the fact that Ir(L)1 is measuring the number of distinct nodes in the tree 

r(L) rooted at the node L, and that rk = r:+1, we see1 that IT(rk)1 = Ir(rf+l)l. As 

INotice the fmite machine may still be initial state observable(i s o.): Consider X = {xo •... X5} where 
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éî>-order(rk
, r~+l), we can inducti~.dy assume that Ir(rk)1 ~ 2 x !r~+ll- 1, which allows 

us to prove 

as desired. 

Case 2: III = 1 and r:+l c rk (or sorne i but r:+l :/:- rk: 
As ~-order(rk, r:+l), by inductive assumption Ir(r:+l)1 ~ 2 x W~+ll-l < 2 x 1 rA 1- 3, 

as Ir:+ll ::; !rkl- 1. Hence, Ir(rk)1 = 1 + Ir(r~+l)1 < 1 + 2 x !rJ.I- 3 < 2 x !rkl - 1 

Case 3: III ~ 2: 

By inductive assumption, Ir(r:+l)1 ::; 2 x Ir:+l1-1 for ail i E 1 (as $-order(rJ., r~-!l)) 

Notice that Ir(rk)1 = 1 + L.Ellr(r:+l)1 and Irkl ~ L.EI!r~+lI. 
From above, 

as III ~ 2. 

Ir(rk)1 1 + L.Ellr(r:+l)1 

< 1 + [.0(2 x Ir:+11- 1) 
< 1 + (2 x L1E/!r:+11) -III 
< (2xlrkl)+1-III 

< (2xlfkl)-1 

This proves the theorem. o 

Remark: we notice that in an initial state observer dag, those identicai nodes can only 

occur along an observation path in the consecutive layers Further a fiOite machine is an 

unsynchronized device and so those identical nodes can be merged into a single node 

This is explained in the following examplE'. 

<1>(:1:.) = :1:(.+2) mod 6 and 11{XO) = 11{Xl) = A. 11{X2) = 11(X3) = B. 11(X4) = c. f/(Xs) = IJ Notice this 
fmite machine is i 5 0 • and that. while X4 and Xs are indistinguishable at both time ] and time 2. they 
do eventually become distinguished (at time 3) 

• 
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Example 2.3.1 The merging of identical nodes in the initial state observer dag of Figure 

2.5 is iIIustrated in Figure 2.6. 

{x7} 

ullyl; ul/y2 ullyl j'O'fC:ly3 
L-lIY1 J 

ur2~2~:} {.6} {.4} 

{x2} {x3} {x1} 

Figure 2.6: Merged Initial State Observer Dag for M7 

By the above theorem there are at most 21XI- 1 such nodes and hence we conclude 

an initial state observer can be built with at most 21XI - 1 distinct states. o 

Theorem 2.3.2 (Size of Initial State Observability Dags - Il) Let M = (X, U, Y, 

<1>,7]) be an initialstate observable input-state-output finite machine with IXI states, and 

let MI be the initial state dag observer for M. Then we have: ~ has depth at most 

IXI before it cenverges to ail singlel'on nodes. 

Proof 

Proof is similar to that of the part (i) of Theorem 2.3.1 plus the facts of that Lemma 

2.3.1 and the merging of identical nodes stated above. o 

For the size of an initial state observer, the worst case, can reach the limit of 21l']-1(y,)I. 

This worst case is achieved by assuming that lUI = 2111-
1
(y,)I. Example 2.3.2 shows the 
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existence of su ch a class of initial state observable finite machines whose initial state 

observer tree can reach the upper bound of the size limit stated as above formula. For 

this class of initial state observable finite machines the correspondlng Initial state observer 

tree contains ail possible 3ubsets of 117-1(Ydl = IXI/3 as its nodes, i e., 21x1/3 distinct 

nodes. 

Example 2.3.2 Figure 2.7 shows the existence of a class of input-state-output flnite ma­

chines whose initial state observer tree has 211/-J(ydl distinct nodes and requires 21,/-1 ('11)1_ 

117-1(Yl)l- 2 controls. 

Xl ut 

\ V X4 

1 
u2 

X2 .... ul ~ 

~ ~ /X5 

X3 }/ u3 
'" '" YI X6 

ulo 

ulo 

ulCl 

Y2 

u20ru 

u20ru 

u20ru 

-'" 

X7 

"'" 
X8 

Y.9 
"'\ 

, , , 
~"". ... - ............... ..... ,,1 

Y3 

Y4 

Y5 

: For ail undcfincd 
"'---- conlrols 

Figure 2.7: A nine state machine Mg 

The initial state observer tree for this nine sté:lte machine will reach Its maximum 

number of nodes at the third layer which is 23 - 1 + 8 distinct nodes. In general, one can 

construct initial state observable finite machines with the stated number of controls to 

split into ail subsets of the preimage of Ir/-l(y,)1 = IXI/3 for sorne YI' I.e., 21x1/ 3 distinct 

nodes. o 

It has been noticed that the control set U plays an important roles in determining the 

size of the initial state observer dags The same is true for the current state observer 
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dags. Hence the following size theorems will be stated in terms of current state observer 

dags for state-output and input-state-output finite machines respectively. 

The following lemmas explain interesting features of current state estimate sets or the 

nodes in current state observer dags. 

Lemma 2.3.2 (Push-Up Property) For any k E Z+, for any {x-;';:-t}(ot+!), there exists 

a current state Estimate set {;,;) (o~k) such that: 

(or j E [1, ... , k] 

Proof 

The theorem can be proved by induction on k. 

For k = 1, take any o~ = [(4), YI)' (Ul' Y2)] = (01; D2) E 0 2 then 

{;;)(oD= 4>( {-;;}(od, Ul) n 7l- 1(Y2) 

= 4>( {-;;}( od, Ul) n {-;;}( D2) -ç {xt}(D2) 

= {-;;}(o~) 

Since 7l- 1(Y2) = {-;;}(D2) and the condition: o~ = D2. 

(2.12) 

o 

(2.13) 

Let us make the induction hypothesis that for k = n the required property is trLJe. 

Then for k = n + 1, take any oï+! = (oï; on+d Eon+!, where On+l = (Un, Yn+!) 

then 

{x-::d( oï+l)= 4>( {-;,:}( oï), Un) n 77-1(Yn+l) 

ç 4>( {X:=l}( o~n-l), Un) n 77-1(Yn+l) 

= {-;,:}( o~n) 

(by Thm 2.1.3) 

(by hypothesis) (2.14) 



CHAPTER 2. DYNAMICAL OBSERVERS FOR FINITE MACHINES 38 

By taking the induction hypothesis and the conditions: o~_l = 0); f01' J E [1, ",1/ + 
1]. 

Hence the theorem holds for any n 2:: 1. o 

The above lemma simply states that any Ciment state estimate {x-::d( oi+ 1
) with 

respect to ot+ l must be contained ln sorne other current state estlmate {;;}( ()~") with 

respect to o~k, where the observation sequence o~k equals to the observation sequence 

ot+! with 01 deleted. 

The next lemma states that if any two nodes on any layers in the current state dag 

observer Mc for M, are identical then ail the subsequent nodes generated by these two 

nodes will be identical. 

Lemma 2.3.3 (Same Sub-dag for Identical Nodes) Let M = (X, li, Y", 4>, 7/) be a 

finite machine, and let Mc denote the current state dag observer for M. Suppose for 

sorne n > m E Z+ and some oï', o'~ E 0* that 

then for ail 0 = (u, y) E 0 

Proof 

From Theorem 2.1.3 we have the following equation. 

{x::d( oi; o}= 4>( {;:}( oln ), u) n 7,-I(y) 

= 4>({;:}(0~n),u)n17-1(y) 

= {x::d(o~n, 0) 

(by Thm 2.1.3) 

(by hypothesls) 

(2 15) 

(2.16) 

o 

(2.17) 
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This proves the lomma. o 

The following corollary is an immediate consequence of the lemma above. The corol­

Jary sim ply states thaï there are no two identical layers in a current state observer dag 

M;; for a current state observable finite machine M. 

Corollary 2.3.1 (No Identical Layers) let M = (X, U, Y, cJ>, 1]) be a current state 

observable finite machine, and let Mc denote the current state dag observer for M. 

Then we have for ail m, n E Z+, with n =f m, and ail oi E am with 1{;:}(oi)1 =1 1 

then there exists uî E on such that 

(2.18) 

o 

Proof 

Suppose the contrary is true. 

Then we have for some m, n E Z+, with n =f. m, and for ail oi and {;:}( oi) there 

exists a {;:-}( o~n) such that 

{;:}( o;n) = {-;:) (o~n) (2.19) 

and for ail ol'n and {;:}(o~n), there exists a {;:}(oi) such that 

(2.20) 

Namely, the layer m and the layer n have exactly the same nodes. 

By lemma 2.3.2 just proved above, we know they wi:1 produce the same set of subn­

odes. Hence the Mc will never generate singleton nCJdes and this contradicts the acyclic 

property of Mc and hence the observability of M. 

The contradiction proves the corollary. o 

The following theorem gives the size of the current state observer dags for state-output 

finite machines: 
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Theorem 2.3.3 ((CGW91] Size of Current State Observability Dags - 1) Let M = 

(X, Y, 4>, 71) be a current state observable state-output finite machine and let M~, be the 

current state dag observer for M. Then we have: 

(i) Mc has depth at most IXI before it converges to a layer of singleton nodes 

(ii) Mc has at most IXl2 nodes. 

Proof 

Proof of (i). We now let St refer to the set of possible current state estimates at time 

t, i.e., St = {{;;-}(yDly~ E yi}. Once again, the nodes in the observer dag are exactly 

Ut St; furthermore, ISt! ~ N for ail i, and ST = {{.r}} if every element of X has been 

distinguished at time T. 

As before, we let the indistinguishability dass of sets nt C X x X represent the set 

of pairs of states which are (current-state) indistinguishable at time l, i.e 1 ntCrl, .1"2) Ç:} 

3r E St, Xl E r A X2 E r. We can recursively define 

ni = ker(71) 

n 2 = ker(71)n<Ï>(nI) 

where 

and 

We determine the maximum depth of this observer dag by finding the l such that nt 
has converged. As before, we have converged whenever nT+! = nT. 
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Suppose nT+l = nT and consider n T +2: 

nT+2 = ker("7) n CÏ>(nT+d 

= ker("7) n CÏ>(nT) 

By simple induction. this means that nT+k = nT Vk ~ O. 

(let T denote the time at which our current state observer Mc converges.) 

41 

By the lemmas 2.3.2 and 2.3.3 and the Corollary 2.3.1 it suffices to show that n"+l =l­

n., means that IS.,+11 is strictly greater than IS.,i. Then. as ISTI < IXi. the depth of the 

dag can be no greater than IXI. 
We need only prove that 

(2.21) 

holds for ail t. The prûof is by induction: 

The base case. t = 0, is trivial. as no is always true. 

Assume Equation 2.21 holds for ail t ~ J(; we need only to show that for ail Xl, X2 E 

X, nK+l(XI,X2) => nK(XI,X2). Take any (XI, X2) pa:" su ch that nT<+1(XI,X2) holds. 

By definition, this means 

By inductive assumption, we know that nT<-l(X~,X~) must hold for this (x~, x~) pair. 

Hence, nh'-I(:r~,X;) 1\ :rI = cS>(xD A X2 = cS>(x;) holds. which is sufficient to guarantee 

that nJ., (XI, X2) holds. 

Proof of (ii). We know from (i) that this observer dag can have at most depth IXI. As 

the number of nodes at any given depth can be at most IXI, the total dag can have at 

most 1.\'12 nodes. 0 
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(This relationship is not necessarily true for current state observer dags of input-state· 

output finite machines since even singleton nodes can split under different inputs. In that 

case ISal ::; IXI does not hold and this is the source of Increa'jed complexity for the case 

of input-state-output finite machines). 

Next we present the theorem which states the size hmit of current state observer dags 

for input-state-output finite machines. 

Theorem 2.3.4 (Size of Current State Observability Dags - Il) Let M = (X, (1, 

Y, cJ>,.,,) be a current state observable input-state-output finite machine and let M~/ be 

the current state dag observer for M. Then we have: Mc has depth of O( 1 X 12 ) before 

it converges to a layer of singleton nodes. 

Proof 

We extend the cunent state indistinguishability relation, nk , defined in Theorem 2.3.3 to 

include the inputs as follows: 

nI ker(71) 

n2 = ker(.,,)n<Ï>(nt} 

where 

and 

Now by Lemma 2.3.3 we know within any single path of a current state observer dag 

there exist no identical nodes, since otherwlse a cycle would eXlst and observabihty would 

be lost. Therefore the maximum number of possible indlstinguishable pairs of states will 

be limited by CJxl = IXII;-ll ::; IXI2• This proves the limit on the maximum depth. 
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o 

The size of a current state observer, in the worst case, can reach the limit of 2111-
1
(y.)I. 

This worst case is achieved by assuming that lUI = 2111-
1
(y.)I. Example 2.3.3 shows the 

existence of such a class of current state observable finite machines whose current state 

observer tree can reach the upper bound of the size limit stated in the above formla. 

For this class of current state observable fin;- machines 11]-l(ydl = IXI/2 where the 

corresponding current state observer tree contains ail possible subsets of 11]-l(Yl)1 as its 

nodes. 

The case of that lUI is bounded by a polynomial function of IXI is still not clear. 

Example 2.3.3 shows how to construct su ch an input-state-output finite machines whose 

current state observer dags have 21x1/ 2 number of nodes. 

These bounds are tight as is shown by the following example. 

Example 2.3.3 The depth of the current state dag observer for the class of finite ma­

chines achieves the upper bound IXI2 due to the fact that the longest indistinguishable 

path will include ail possible state pairs. Figure 2.8 is a 12 state m~chine which is current 

state observable and whose current state observer dag will have the maximum depth as 

specified by the result stated in part (i) of the above theorem. In this case the state output 

function 1] is defined by: 17(xd = 1](X2) = .. " = 17(XlO) = yi and 1](Xl1) = 1](12) = y2. 

The longest path in the current state observer dag for the twelve state machine tra­

verses the elements above the main diagonal of the X x X matrix, in the following 

sequence of state pairs: 

{Xl' X2}, {X2, X3},'" ,{X9, XIO}, 

{Xl' X3}, {X2' X4},"', {X8' XlO}, 

{Xl, x.}, {X2, xs},"" {X7,XlO}, 
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/ 
\······For ail the undenned con trois 

Figure 2.8: A twelve state machine 

Due to the following controls: 

This twelve state machine can be extended to a N state machine. The extension IS 
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by adding appropriate state elements to the YI group to the right c:i XIO and reassign the 

state transitions in a decreasing order of the u:s on top and reassign new controls to the 

left most (i.e., with highest index) state element in the YI group as illustrated by Figure 

2.8. 

An example of another class of current state observable finite machines which achieve 

the upper limit of the number of nodes in their current state observer dags is given in 

Figure 2.9. This gives a representative of a 6 state machine whose current state observer 

dag has the number of nodes in the range as specified. 

ul 

, 
1 
1 

\' ....... For all Wldefined 

controls 

Figure 2.9: A six state machine 

The current state observer dag for this six state machine will split into two nodes in 

the first layer since IYI = 2. Then for 1J = yI group, there are 211]-I(yl}1 subnodes in the 

second layer which reaches the upper limit. In general one can construct current state 

observable finite machines with the stated number of controls to split into a" subsets of 

the preimage of 1,,-I(y,)1 = IXI!2 for sorne YI' i e., 21xl/2 distinct nodes. o 

Next theorem connects the initial state estimate set with the current state estimate 

set by pushing forward the initial state estimate via the given observation sequence. The 
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theorem shows that this forwarded image of an initial state estima te set is always contained 

in the corresponding current state estimate set. 

Theorem 2.3.5 Given an observation sequence of = (1li"-1, yi') E ON for a finlte state 

machine M = (X, V, Y, Cl>, ." ), the followi ng relation holds: 

Proof 

We prove this by induction over N as follows: 

Case N=l: 

LHS -- 0 --<1>( {xd(ot), uI ) = {xd(o') 

.,,-I(YI) 

- {;;}(o.) 

- RHS. 

The following two facts are used in the inductive derivation of the result given below, 

let A and B be two sets and <!> a mapping, then 

and 

The inductive proof the" goes as follows: 

Case N=2: 

2 

LHS = <!>(n <I>-l(.,,-I(Yk),U~-I),'lLI) 
k=l 
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- ~(71-1(yt) n cSI-1(q-l(Y2), Ul), Ul) 

c ~ (71-1(yt), Ul) n 4» ( 4»-1(q-l(Y2)' Ul), Ul) 

C ~(71-1(Yl),Ul) nq-l(Y2) 
2 

- n<J>(q-l(Yk),uf-1) 
k=l 

- RHS. 

Induction hypothesis: 

n n 

~(n 4»-l(q-l(Yk), U~-l), U~-l) C n 4» (71-1(Yk), ui:-1) 
k=l k=l 

Case N=n+l 

n+l 
LII S = ~ (n (~-1(71-1(Yk), U~-l), u~) 

k=l 
n 

= ~(4)>-l(q-l(Yn+d,u~)n n <l>-l(q-l(Yk),U~-l),u~) 
k=l 

n 

C ~ ( <l>-l( q-l(Yn+t), u~), u~) n <l> (n <l>-I( q-l(Yk), u~-l), u~) 
k=l 

C q-l(Yn+dn<J>({;:}(on,un ) 

= {;':d(o~+l) 

This proves the theorem. 
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o 

Furthermore, a sufficient condition is that when a finite machine is both initial state 

observable and that <l> is invertible for each state x then the subset relation becomes 

equality in Theorem 2.3.5. 

Lemma 2.3.4 Given a finite machine M = (X, U, Y,~, 71), the following relation holds: 

~(A n IJ) = <l>(A)n <l>(B) for any A, B ç X, if M is initial state observable. 

Proof 

We need only to show that <l>(A)n4»(B) ç 4»(AnB). Take any x E <l>(A)n~(B), 

there exist XA E A and XB E B such that <l>(XA) = ~(XB) = x. 
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Now there are following cases to be considered: 

Case 1. XA = Xn E An B. Obviously x E <I>(A n B) in this case. 

Case 2. XA -=1 XB there are three more cases to consider here: 

48 

Case 2.1. XA ~ AnB but XB E An B. Now Obviously we can take J'H and push Il by 

<1> i.e., x = <I>(X8) E <I>(A n B). 

Case 2.2. XA E AnB but X8 ri Ar.B. In the same manner, we can take .L'A and push 

it by <1> i.e., x = «I>(XA) E «I>(A n B). 

Case 2.~. XA ~ An Band XB ~ An B. This will violate the Initial state observablhty 

of M for state XJt and XB, since under the same control, if two states are driven mto a 

single state x then these two states will never be able to be separated again 

This proves the lemma. 

[J 

We conclude this chapter with the following theorem. 

Theorem 2.3.6 Given an initial state observable finite machine M = (X, (l, V, «1>, 1/) and 

<1> is invertible for each state x EX, then for any observation sequence o~ = ('/l~ -1, !If) E 

ON the following relation holds: 

-- N NI -- N 
«1>( {Xd(OI ), U I - ) = {XN HOI ) 

Proof 

Proof of this theorem is obtained from the proof of the Theorem 235 and Lemma 

2.3.4 and the fact that <I>(x,u) is invertible for each state elemenl x E X. o 
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Chapter 3 

Controllers for Finite Machines 

The problem of steering the state of a partially observed finite machine (i.e., a partially 

observed deterministic finite input-state-output system) M to a desired terminal state 

is considered in this chapter. Using the framework described in the previous chapter we 

provide necessary and sufficient dynamic programming conditions for the controllability of 

M. These conditions are stated in terms of backward recurrence equations involving the 

state estimate sets generated by classical dynamical current (or initial) state observers as 

we defined in Chapter 2. Early version of this work has been reported in [CW89a] as a 

joint work with Dr.P.E.Caines. 

3.1 State Feedback Control 

To steer a finite machine M from an initial state to a target state, using either complete 

or partial state observations, a standard close loop control approach, see Figure 3.1, is to 

build a controller, or a regulator, Reg(M) which is fed with estimate of the state of M, 

generated by a state observer, Ob(M), and which then produces control inputs for M. 

The controller we discuss below will be constructed via a dynamic programming tech­

nique It turns out that Reg(M) itself is representable by an input-state-output finite 

49 
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Uk(~) 
M=(X,U,Y,<P,l1 ) 

(JI-l, Ytk) 

1\ 
1\ Xk k·I k Reg(xjJ OB(UI 'YI) 

Figure 3.1: A closed loop controller 

machine. Now let us start from basic definitions. 

Definition 3.1.1 Let M = (X, U, Y, 4>,1]) be a finite machine and :r E X be a state of 

M. Then Rk(X), k ~ 1 is said to be the set of reachable states from .l· in less than or 

equal to k steps if it satisfies the following relations: 

{X}v<!>O(X,U) for ". = 0 

Ro(x)U{x': 3u E U,x' = <!>(x,u)}V4>(.r,U) for ". = 1 

k 

Rk - 1(X)U4>(R k - 1(X),U)V U 4>S(x,U) for k> 1 
~=O 

[J 

We write R(x) = Uk:l R},(x) and the symbol R to denote the reachablhty relation 

for xRx' if and only if x' E R(x). In general Ris transitive but not symmetnc 

Definition 3.1.2 A finite machine M = (X, U, Y, 4>,7]), is said to be control/able (rom 

x if there exists k = k(x) ;::::: 1 such that Rk(X) = X and is said to be controlJable if M 

is controllable from x for every state x EX. o 
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Theorem 3.1.1 A finite machine M = (X, U, y, <1>,77) is controllable if and only if for 

ail x, x' EX, there exists uî E U·, where n depends on x and x', and n < IXI such that 

<P(x, uï) = x'. 

Proof 

First we observe that 

Mis controllable {:::::} Vx E X, 3k = k(x) ;::: 1 s.t. Rk(X) = X 

{:::::} Vx, x' E X, 3u~ E U*, 

where n < max{k~x)} such that <I>(x,u~) = x' 
xEX 

50 we need to show that if n ~ IXI then there exist uï' E U* such that n' < IXI 
and <1>( x, uï') = x'. But this is clea r, since if there exists u~t such that <1>( x, uï) = x' and 

n ~ IXI then there exist XI and XJ in the state trajectory from x to x' induced by uï 
su ch that XI = x J' i.e. there exists a loop in the state trajectory. ElimÎnate ail such loops 

by choosing a new control sequence u( The state trajectory from x to x' resulting from 

uï' is loop free and so ni < IXI 0 

Corollary 3.1.1 If a finite machine M = (X, U, Y, <P, 7]) is controllable, then for ail 

x EX, there exists a k = k(x) < IXI su ch that Rk(X) = X 0 

Proof 

This follows directly from Definition 3.1.2 and Theorem 3.1.1 o 

Theorem 3.1.2 Let M = (X, U, Y, <1>, 77) be a controllable finite machine. Then for 

ail .r E X and k ~ 1, the sequence of sets of reachable states from x, i.e., for ail 

k E Z+l {Rk(X) : ~. ~ 1}, is strictly monotonically increasing if Rk(X) =F X, I.e., 

lh(.r) C Rk+l(X) with Rk(.r)"f: Rk+l(X), if Rk(X) =F X. 
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Proof 

Assume this is not true, then we have some x E X and sorne 1 > 1 for wlllch 

RI(x) =1= X and RI(x) = Rltl(X), But this implies 

RI+2(X) <1>(R!+l(X),U)URI(x) 

= <1>(RI(x),U)URI(x) 

Rl+l(X), 

and hence we have RI+k{X) = RI{x) C X with R/{x) f. X for ail k > 1 whlch 

contradicts the controllability of M. LI 

3.2 Construct State Feedback Controllers 

ln this section we describe how astate feedback controller for a fmite machine (either a 

completelyor partially observed finite machine) can be designed Our solution provlded 

here is based on the dynamic programming princlple. 

3.2.1 Controllers for Completely Observed Finite Machines 

Let us first examine the issue of how to control a completely observed finite machine, i e. 

a finite machine M for which TI is 1 - 1. To steer an initial state x lOto a target state 

x', one method for generating su ch astate dependent control sequence, 1 e., astate 

dependent controllaw, 1t : X -t U, is to apv1y the dynamlc prograrnrning technique (see 

for instance [Ber87, Cai88]). We may calculate astate dependent control law that steers 

the system between any two states by using a notion of the ktl. control pre-image of a 

target state. 

Definition 3.2.1 Let M = (X, U, Y, <1>, TI) be a competely observed fmite machine, th en 

the kth control pre-image R;k(xT) of a target state xT E X is defrned by the following 
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recursive scheme: 

~(XT) = {xT} for k = 0 

R;k(xT ) = U {x : CS>(x, u) E R;(k-l}(xT ) 1\ x t/. R;S(xT
) for k? 1 

.. eu 

for 0 ~ 8 < k -1} 

o 

Notice R;k(xT) represents ail the nodes which can be steered to home in exactly k 

steps. 

Definition 3.2.2 A set of good states at the stage k, denoted by G~(xT) with respect 

to a t-irget state xT E X of a completely observed finite machine M will be defined by 

G~(xT) = U!=o R;IJ(xT) 0 

That is a state x is a good state at the stage k with respect to x T then x can be 

steered home in less than or equal to k steps. 

Theorem 3.2.1 The completely obseryed finite machine M = (X, U, Y, <1>,17) is control­

lable from x if and only if for ail x T EX, there exists k = k(xT , x) ~ IXI such that 

x E R;k(x1'). Furthermore the following are equiyalent: 

(i) M is control/able. 

(ii) For each xT E X there exists k = k(xT ) < IXI such that G~(xT) = X. 

(iii) G~(xT) c G~+l(xT) with G~(xT) f. G~+l(xT) for 1 ? 0 unless G~(xT) = 

X. 

Proof 

Here we only proye (i) implies (iii) since the remaining implications are obvious. 
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M is controllable ~ V:r T E X, 3k = k(xT ) < IXI such thdt C:;(J.T ) = x. 
Suppose G~(xT) = G~+l(xT) =1- X for sorne l, then by the definltion of (,'~H(.r'/') = 

U/+l R-a(xT) we have 
a=O c ' 

R~(/+l)(XT) = U {x : 4>(x, u) E R~I(J:J') I\.r ~ U;:"(:r'l') 
uEU 

for 0 :::; s ::; I} 
= 4>. 

and hence R~(/+J)(xT) = 4> for ail j ~ 1, which yields a contradiction to (1) 0 

Theorem 3.2.2 (The Oynamic Programming Principle) Let M = (X, 1 " )', <t>, '/) 

be a completely observed fmite machine. M is controllable if and only If for any target 

state x T E X, there exists a control law UrT' X ~ (! that steers any state .r E X to 

the target state x T E X of M, I.e., there eXlsts a control law whlch is only current state 

dependent. 

Proof 

We only prove =} direction here since the other direction can be obtained easlly 

By Theorem 3.2.1, M controllable implies that for ail .,.1' E X, there eXlsts l· < IXI 
su ch that G~(xT) = X. By the construction of the sequence of the control pre-Images 

R~a(xT) of the target state xT , we see that a controllaw taklng any given .r E H,-'(./'/') 

to xT in s steps IS given by the sequence of contrais ui where Ul takes any state J' ( 

R~a(xT) to sorne state x' E R~S+l(xT) and U2 takes any state / E H;:'+I(.I'1') to sorne 

x" E R~,,+2(xT), and 50 on, until u" takes any state in the resultlng IÇl(.rT) to J''/' Now 

G~(xT) = X for sorne k, and the sets R;"(xT ) are constructed recursively beglnnlng only 

with the data x T . Hence we see that there exists a control law, taklng the state ./' to .rT 

whose values at any instant between ., = 1 and s = k, depend only on the current state 

and the desired target state xT . o 
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Example 3.2.1 Assume Xl is the target state in the following completely observed, 7 

state finite machine, ca lied M 7c 

y3 6 

Figure 3 2: A completely observed finite machine M7c 

The following is a control pre-image of the target state Xl 

~(X3) FÇ(x3) Ç(x3) ~(x3) F{{x3) 

Figure 3.3: The control pre-image of the target state X3 in M7c 

Since G~(:r3) = X and then by checking each state for the controllability and the 

Theorem 3.2.2 we know that M 7c is controllable and the control law is defined by the 
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above graph. o 

Next we will turn to the more complex situation where the fimte machine is partially 

observed. 

3.2.2 Controllers for Partially Observed Finite Machines 

Our first theorem on partially observed finite machines is as follows 

Theorem 3.2.3 (Initial State Observable and Controllable - 1) Let M = (X, 1 l, } , 

<1>,11) be a partially observed initial state observable and controllable flnlte machine. Then 

for any x, x T E X there exists n ~ 21X 1 and a control sequence U~I E II" such that 

<I>(x, uï) = xT 

Proof 

The above theorem sim ply states that for an initial state observahle and controllable 

finite machine, any state can be steered into any other state ln at most 2N steps, where 

N = IXI. The control sequence is constructed by flrst chooslng arbltrary control Inputs 

until the state estimate set converges to a singleton This will happen in less than or 

equal to N steps by Theorem 2.3.1 Then a control sequence IS constructed accordlng 

to Theorem 3 2 1 for a completely observed finite machme whlch will steer the singleton 

{;;}(o~) to the target xT in at most N steps. 0 

We have the following similar result for cu rrent state observa ble case 

Theorem 3.2.4 (Current State Observable and Controllable - 1) Let M = (X, li, 

Y, <J>, "1) be a partially obsep:ed current state observable and, .Introllable fmite machine. 

Then for any :r,xT E X there exists n ~ IXI2 + IXI and a control sequence ui' E IJ" 

such that <I>(:r, uî) = xT 
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Proof 

The above theorem simply states that for a current state observable and controllable 

fmite machine, any state can be steered into any other state ln at most N 2 + N steps, 

where N = IX 1. The control sequence is constructed by first choc,.:ing arbitrary control 

inputs until the state estimate set converges to a singleton. This will happen in less than 

or equal to N2 steps by Theorem 2.34. Then a control sequence is constructed according 

to Theorem 3.2.1 for a completely observed finite machine which will steer the singleton 

{;;}(o~) to the target x T ln at most N2 + N steps. 0 

A more challenging question is how to generate a control law which can be applied 

before the state estimate set has converged to a singleton. 

We shall see that an answer to the question is obtained by applying the dynamic pro­

gramming technique to the sequence of state estimate sets generated in the corresponding 

observer tree Let us first define a notion of a set of good est;mate states wlth respect to 

a target state x T E X among ail the estlmate states ln a current state observer tree ln 

the complete observation case, an estimated state can be specifled simply as an element 

of the state set X; in the present case, however, we wish to indicate the position of 

a particular estimate state (i e., a subset of X) in the observer tree for M. Since an 

estimate state (in particular, the singleton x T ) may appear at layers of the tree with a 

depth greater than any given value, we have to take a union over an infinite number of 

layers in the definition of the good estimate state sets. 

Definition 3.2.3 An estimate state of a finite machine M is said to be a good estimate 

state at the stage k with respect to a given target state x T EX, if it satisfies the 

following recursive scheme: 

1. Let {;;}(of) be an estimate state in the N-th layer of the current state observer 

treefor )\,1. If {;;}(of) = {xT}, then {;;}(of) is called a goodestimatestate 

(at the stage 0). The set of ail good estimate states at the stage 0, HO(x1'), is 
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the union of these estimate states, i.e., 

00 

HO(xT
) = U {{;;}(o~) : {;;}(of) = {.rT

}} 

N=l 

2. For k ~ l, any estirnate state {;;}( o~) is a good estimate state at the stage 

k if there exists u E U, such that for ail y E r, <l>( {~}(o~), u) r, 1( l(y} = 

{x-;:d(of+l) and {x~d(o~+l) is itself a good estÎmate state at the stai." 

k - 1, or if {;;}(o~) itself lies in Hk-1(xT), i.e., 

00 

llk(xT
) = lJk-I(:rT) U{ U U {{;;}(o~) . Vy E }' 

uEU N=l 

<f>({;;}(o~),u) n1,-I(y) E IIJ.-I(.r'/')}} 

o 

ln particular, we set X E Jlk(xT) for sorne k if for ail J' E X, 1,-1(1/(J:}) E 1I1.(.rT }. 

The following theorem states that an estimate state is good at the layer 1.. of the 

observer tree if and only if it is good whenever it appears any where ln the observer tree 

Theorem 3.2.5 let M = (X,U, Y, <f>,17) be a finlte machine f:;}(oD = {.rd(on for 

any 1 and l', then {-;;-}(oi) E Jlk(xT), for sorne k, if and only if {:;;}( oi) E Jlk(.!"I') 

Proof 

This is proved by the use of lemrna 2.3 3 and the Definition 323. o 

Since state information is not directly obtainable, an observation based controllaw for 

a partially observed finite machine will be a function of observation sequences, which we 

shall write as UI : 0 ' -+ U. We will see that the notion of a good estlmate state plays a 

key role in generating an observation based control law from the correspondlng observer 

tree. 

Next we give a definition of controllability under the observation based output feed­

back con troIs. 



( 

( 
.... 

CHAPTER 3. CONTROLLERS FOR FINITE MACHINES 59 

Definition 3.2.4 A partially observed finite machine M = (X, U, }", 4>, 'Tl) is partially 

observably control/able in less than or equal ta N steps if for ail xT EX, there exists 

an observation based feedback control law, UI : 0 1 
-t U, for N 2: 1 2: 1 such that 

for ail XI EX, there exists k = k( Xl, xT ) ~ N and such that observation sequence 

ok+! - (uk yk+l) E Ok+! and nk+! cJ>(n-l(y ) uk) - {x- }(ok+l) = {xT }. Since 1 - l' l ')=1 ./ )') - k+l 1 

o 

Now we can prove that controllers are markovian with respect to state estimates. 

Theorem 3.2.6 Let M = (X, U, Y, 4>, TJ) be a partially observed finite machine. M is 

partially observably control/able in less than or cqual to N steps jf and only if for any 

fi)."ed 3'1' E X there exists a k ~ N su ch that X E Hk(xT), i.e., for ail XI EX, there 

exists a k = k(xJ) ~ N such that 7]-I(7](XI» E Hk(xT ). Furthermore, the observation 

based control law can be expressed as astate estimate based control law. 

Proof 

Consider a fixed x T E X and a fixed N E Z+. 

==> 

Suppose M is partially observably controllable in less than or equal to N steps. Then 

3uI : 0 1 
-t U for N ~ 1 ~ 1 such that VXI E X,3q = q(xt) S; N and oî+l = 

(u~,yitl) E Oqtl such that n~;~cJ>(7]-l(y;),u~) = {xT }. 

For any fixed Xl apply the above argument to every xE TJ-I('Tl(Xt), we have for any 

:r E 7/- 1(1/(:rl» there eXlsts a Cf = q(.r) S; N such that n~;~<1>(7]-l(y;),u~) = {xT
}. This 

implies that the estimate state set 7]-I(TJ(xd) can be steered to xT in less than or equal 

to A· = maxXEIJ-I(,,(rt))(q(x)) S; N Hence by Definition 3.2.3, 7]-l(TJ(XI» E Hk(xT
). 

<= 

Suppose for ail Xl EX there exists a k = k(xt) ~ N such that 7]-I(TJ(XI» E Jlk(xT). 

We need to show the existence of a control law UI : 0 1 ~ U su ch that for ail Xl E X 

there exists a q = q(:rl) ~ N su ch that n~;~ cJ>(7]-I(TJ(XI),tJ~(o~» = {xT } . 
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This can be proved by working forwards from 11- l(11(:rl)) E J/k(.rT ) Assume for 

some q::; k ::; N, 1]-1(1](1'1)) E lIq(x1'). By the definitlon of II q (.I'T), for sorne Ul E If, 

<I>(1]-l(1](Xl)), Ul) n 1]-I(y) E lI q
-

l (XT). Set Ul(Ol) = Ul, where 01 = <1> x 11(.l'd. Then 

for ail y = 11(cJ>(X, ut}) as x varies over l,-1(11(:rd), {;;'}(oO = cJ>(l/- I (ll(.rtl), ud il 

1]-l(y) and D2 = Ul X y satisfles {-;;}(on E IIQ-l(1'1') Hence it 15 clear there ex' 

ists U2( on, U3( on, ... , Uq( on that c;~eers {-;;) (on home. And 50 obviously there exists 

() ( 2) (Q) h -l( ()) T '1+1 (-l( ) '1) {T} Ul 01 , U2 0 1 ,"', U q 01 t at steers 1] '1 Xl to.r, 1 e , n;=l 4> " !h, U J = .1' 

as required. 

To prove the state estimate dependency of the controls we notice the fact that the con­

trois are computed directly by use of the observer trees and as we move down througl-- an 

observer tree, the state estimates are given by our basIc recursive formulas of observation 

sets expressed in Equations 2.6 and 2.8 

N+l n cJ>(17- 1(Yk), u~) 
k=l 

4>( {-;-;} (o~), UN) n T,-l(y N ) 

(2.8) 

(2.6 ) 

The Equation 2.8 clearly states that the estimated state {J;~d«()~+l) is a functlon 

of yf and uf and the Equation 26 simply says that f~'N }(()~) plays the same role as 

yi'-l and ui"-l do in Equation 2.8. This proves the stated property II 

Theorem 3.2.7 (Initial State Observable and Controllahle - Il) If M = (X, (l, Y, 

<1>,1]) is initial state observable and control/able, then there eXlsts a n ~ 21X 1 su ch that 

for ail x}, xT E X, 1J-l(1](xd) E nn(xT ), and hence M IS partially observably controllable 

in less than n steps. 
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Proof 

The inttial state observable implies that any state estimate will converge to a singleton 

after at most IXI steps by Theorem 2.3.1. Controllability implies that any target state 

can be reached from any other state in less than IXI steps as stated in Theorem 3.2.1. 

Hence the theorem is established. o 

We have the following similar result for the current state observable case. 

Theorem 3.2.8 (Current State Observable and Controllable Systems- Il) If M = 

(X, (f, Y, ct> , 71) is current state observable and control/able, then there exists a n ~ 

IXI2 + IXI such that for ail X., xT E X, 7]-l(71(Xl)) E Hn(J?), and hence M is partially 

observably controllable in less than n steps. 

Proof 

The current state observable implies that any state estimate will converge to a sin­

gleton after at most IXI2 steps by Theorem 2.3.4. Controllability implies that any target 

state can be reached from any other state in less than IXI steps as stated in Theorem 

3.2.1. Hence the theorem is established. 0 

Definition 3.2.5 Let M = (X, V, Y, ct> , 7]) be a partially observed finite machine, (M)f 

be the current state observer dag for M with on/y the nodes in the first N layers. A 

fimte collection aN (xT ) of a set of good estimate states with respect to a target state 

.r'/' E X is defined to be : 

o 

This eN (xT ) simp/y gives rise to the set of good sets in the first N layers of the 

current state observer dag of M. 
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Theorem 3.2.9 A partially observed finite machine M is partially observably contrdlable 

in less than or equal to N steps if and only If for ail xl' EX. X E eN (rT ). 

Notice the use of the notion of a finite collection of a set of gool' estimate states an thls 

theorem will give rise to an implementable criterion for testing the partially observably 

controllability in less than or equal to N steps fer a partlally observed finite machine. 

Furthermore, we can see that wh en the output function 71 in a given fmite machine becomes 

one to one, then a good estimate state will be simply a good state, i e , (,'1. (.rT ) = 

G!(xT ). 

Example 3.2.2 We take the same finite machine as m Figure 3.2 but without the as­

sumption that it is completely observed. The output function is given in the graph below, 

see Figure 3.4. It is a partially observed finite machine We can see this fanite machine is 

observable and controllable in less than 7 steps via the observation tree based output(or 

estimated state) feedback controls. 

To support this daim, next we first generate a part of the current state observer tree, 

in Figure 3.5 for this finite machine given in Figure 3.4 Assume our target state is /'3 

again. Then we have the control pre-Image or a collection of good sets wlth respect to 

the target state X3 as shown in the Figure 3.6 

[J 

The network generated by the dynamic programming technique, i e here we cali 1t as 

a collection of good sets with respect to the target state, defines the control functlons 

These control functions can also be glven in the form of a finite machine whlch can be 

transformed from the network. We may cali such a (finite) machine as a regulator (mite 

machine. 

i 
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Figure 3.4: A partially observed finite machine M7p 

3.3 Complexity of Classical Controller Design 

ln this section we address the complexity problem of designing classical controllers based 

on the algorithms presented in the previous section. 

3.3.1 Complexity of Controller Design for Completely Observed 

Finite Machines 

As we mentioned before, a completely observed finite machine is an input-state-output 

finite machine for which the output function .,., is taken to be one-to-one. 50 the c:ontroller 

has complete observation on the finite machine's state. The design of a controller based 

on the dynamic programming technique for such a finite machine is characterized by the 

notion of a set of good states with respect to a given target state as described in Definition 

3.2.2 and the Theorems 3 2.1 and 3.2.2. In the following we analyze the complexity issue 

of the design of such a classical controller. 
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{x1,x2,x3,x4,xS,x6,x7} 

yI ~ \ _y_3 __ -------

~-- ~ 
{x4,x5,x6} u2/y2 {x7} 

, '1/Y~ ~\Ul/Y2 
{x2} {x1,x2} {x7} {x4} 

.1/Y~ '1~ 

ully 

{x7} {x2} {xS} {x6} {x3} {xS} 

u~1 \1N2 

{x3} {xS} 
{x3} {xS} 

{x3} {xS} 

Figure 3.5: A part of the current state observer tree for M7J) 
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Figure 3.6: A part of the collection of the good sets w.r.t. the target state X3 in M 7p 

We first define a cost function c(x, x') on the state pairs by 

o if x = x' or 

c(x, x') = 1 if :lu E U S.t. 1>(x, u) = x' 

00 otherwise 

(3.1) 

c(.,·) can be thought of as an one step distance between any two states. Then the 

distance d(·, " .) between any two states x, x' along a path x(O) = x, x(I), ... ,x(k+l) = x' 

generated by the control sequence u~ is defined by 

d(x x' u k
) -, , 1 -

o if x = x' 

L~=OC(X('),X(,+I) if x(i+l) = <l>(X(I),U,) with x(O) = x 

and x(k+I) = x' for u~ E Uk 

00 otherwise 

(3.2) 

Clearly the reachability relation given in Definition 3.1.1 can be redescribed in terms 

of d(·,·,·) via 

00 

{x' E U Rk (x) } iff 
k=1 

iff 

xRx' 

3u~ E Uk
, such that d(x, x', u~) < 00 

(3.3) 

(3.4) 
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We shall define the minimum distance d(x, x') between .1' and .1" via 

d(x, x') = min min {d(x, J.I, u~)} (3.5) 
ke Z 1 uteuk 

Evidently, x' is reachable from x if it is reachable in less than IXI = N steps Hence 

the minimization in Equation 3.5 is over finite time (N) and a finite number of controls 

An algorithm for designing a classical controller to steer .l's to .1"/' IS given by the 

dynamic programming technique for the solution of Equation 3.5 Speclflcally we solve 

this by a backward iteration of 

dJ+1(x', XT) = min {c(x', x") + dJ(x", :e'r)} 
xI/eX 

(3.6) 

with doC-) = c(.,-) and d(Xs,XT) = dAxs,XT) for the smallest value of J such that 

dJ(xs, XT) < 00. The resulting state-dependent control law IS given imphcltly as the 

sequence of controls that generate a sequence of states ylelding the value li(.r" ./"r) 

ln considering the computational complexity of the evaluation of Equation 3 5 for ail 

source and target states we shall specifying the following costs of elementary computa­

tional steps. 

1. An evaluation of <I>(x,u) shall be counted as costing 1 unit of computation 

2. The verification of the inclusion x E S ç X shall count for 181 units of computa­

tion. 

3. The merging AU B or the intersection An n of two subsets A, H ç X counts 

for max{IAI, IBI} units of computation. 

Theorem 3.3.1 The computational complexity of the algorithm given by Equation 3.5, 

evaluated for ail Xs, XT EX, is 0(1U1 X IXI4). 
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Proof 

First, we fix IT and calculate d(xa, XT) for each Xa EX. We assume X be indexed 

by X = {Xl,X2,···,XN}. The following staged diagram illustrates the argument. 

Stage 
N·I 

" ......... 
, 

• 1 
• 1 
• 1 ......... ~ .. , 

l '. 1 • : ' .. 
1 

,,_ ... 

Stage 
1 

Figure 3.7: Staged Diagram 

We assume N = IXI in the following calculation. At stage 0, we need to make the 

following calculation' compute the cost of a transition from each of the N - 1 nodes at 

stage 1 (excluding :1:1' itself) to XT. This requiresthe evaluation of4>(·,·) over (N-1)x lUI 
tlmes, see Equation 32. Using the elementary computational cost table listed above, this 

costs (N - 1) x lU 1 un its of com putation . 

At stage ~. + 1, for each target node :r:" =f XT we need to calculate the costs for N - 2 

transitions from x f ri. {x",:rd to ;r". Therefore the computation required for stage k+ 1 is 

(N - 2)(N -1) x lUI units. By Theorem 3.1.1, if two states x, x' E X satisfy XRX', then 

d(,r, .r') < N, Hence we need to consider the calculation up to at most stage N -1. 50 for 

each fixed J'T E X we need to perform [(N -2)2(N -l)+(N -l)]x lUI unit of calculations, 

Therefore the complexity of desigmng a classical controller via the dynamic programming 

Equation 3.5 is bounded by O(IU! x N[(N - 2)2(N -1) + (N -1)]) = O(IUI x N4
). 0 
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x1 x8 

x2 x7 

x3 x6 

x4 x5 

Figure 3.8: A Cychc Fmite Machine 

Example 3.3.1 Consider a cyclic finite machine given in Figure 3 8 

Take X5 E X as the target state, th en the staged dlagram is glven ln Figure 39 

,-- .... , , .. -..... ,""'''''--''' , , , , , , , , 
1 1 , , . , . , 

• . , , , 

. 
1 : x1. ,------ ""---_ .... 

..... -... -- ... 
1 • 

1 , 

x8 

. . ,,-- ....... 

. . , 
-- ...... -.. ' 

Figure 3.9: The Staged Diagram 

and the compL:tational cost for X5 is' (7 + 62 
X 7) x 1. 

~ 
x5 

68 

o 

The Tollowing calculation shows that the good set iteration of the Definition 3.2 2 has 

the same complexity as the dynamic programming calculation just descnbed 

_. --------
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Flrst we rewrite the formula given in the Definition 3.2.2: 

Gk_1(XT)U{ x E X - Gk_1(XT
) ::lu E U, 

<I>(x, u) E Ck_1(XT
)} k > 1 

Consider the computational cost required for the above recursive iterations, the cost 

for the merging of two sets can be ignored compare to the cost of creating new elements. 

Assume 

no = IGo(xT)1 

n} = IC1(xT)1 -IGo(xT)1 

Where L:;:=onl == IXI = N and k < N. The units of computation required for 

calculating each Cl ( ::/) are listed be/ow: 

o 

(N - no) x lUI )( no 

(N - (no + n d) X lU 1 x (no + nt) 

k-l k-} 

(N - Ln,) x lUI x Ln, 
,=0 ;=0 

To sum up the above, we have for each xT E X: 

j=O 

j = 1 

j = 2 

j = k 

(3.7) 
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Therefore the worst case computational complexity for ail .r'/' E X is obtained by 

taking the max of the above formula over k < N and 1/. where 1 = 0,1,2,· '. k and 

E~=o ni = INI, i.e. 

J.. )-1 )-1 

C =maXk<NmaXnJ.J=o, .k{IUI x N x L[N X LU, - (L/,f]) (38) 
):1 .:0 .=0 

Evidertly, by ignoring the negative part in the Equation 3 8 and taking note of 

E:;~ n, ~ N for any J < k, we get an upper bound on Equation 38, 1 e 

On the other hand, we can find a lower bound for this formula by ta king a speCifie 

instance of Equation 3.8, i.e. ta king n, = 1 for 1 = 0,1, ... , ~', we get 

N-l N-l N-l 

C ~ lUI x N I:)N x j -l) lUI x N(N L J - L /) 
J=l 

Hence we have C = O(IUI X N4
). ( 1 

3.3.2 Complexity of Controller Design for Partia!ly Observed Fi­

nite Machines 

ln the case of partially observed finite machines, we use the good est/mate state Iteration 

algorithm based on the Definitions 3.2.3 and 3 2.5 given in Section 3 2.2. Here we will 

first rewrite the algorithm and then the analysis of its computatlonal complexlty 

Assume M = (X, U, Y, <1>,1]) is partially observably controllable 111 less than N steps 

The calculation of good estlmate states at the stage k with respect to a target state 

xT E X is as follows: 
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G~(XT) {{;;}(of) : {;;;}( of) = {xT
} } k=O 

N T r:dx ) { - N-k {xN-d(ol ) : :lu EU, Vy E Y, s.t. 

4>({x;:k}(of-k ),u)n71- I{y) E Cf_l(XT) 

- N kT} or {xN-d(OI - ) = {x } 

We assume the I-YI is the width of the observer tree in the following calculation. The 

units of computation required for calculating each cf (:r T ) for a fixed xT E X are listed 

below' 

O(IXI) k=O 

lUI x IYI x O(IXI3
) 

By Theorem 3.2.7, an initial state observable and controlJable finite machine is partially 

observably controllable in less than N :::; 21XI steps. Hence the complexity of designing 

a classical controller for such a partially observably controllable finite machine will be 

O(l{11 x IVI x IXPIXI 2
). 
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Part II 

ALogie Based Control Theory for 

Finite Machines:COCOLOG-A 

Conditional Observer and 

Controller Logic 
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ln part 1, we defined observer al"d controller problems for finite machines and showed 

how to construct observers and controllers directly in terms of finite machines. Ali of this 

discussion was in terms of the classical functional (or procedural) approach of building 

dynamical systems ln this part of the thesis, we show alogie based (or declarative) 

approach can also be adopted ta the same control tasks by introducing a new control 

theoretic paradigm, i.e., a framework of a logic-based dynamical system (LDS) which 

generates a sequence of propositions that correctly describe properties of the state of the 

given finite machine ln particular, we are interested in those cases where the classical 

dynamical observer system estimates converge to the correct values of the systems state 

and the logic-based dynamical system statements converge (in an appropriate sense) to 

true characterizations of the system state. When such convergent observer systems exist 

we shall cali the base finite machine observable or logically observable and similarly for 

control/able or logically control/able respectively. 

To be more concrete, in order for alogie based system to be an embedded real time 

observer and controller we introduce a certain sequence of conventional logical systems. 

This sequence of structures constitute our main contribution of this thesis: COCO LOG -

a conditional observer and controller logic. This is a precisely formulated control theoretic 

logic system, in which it is possible to express a large range of control problems and to 

find their solution by Automated Theorem Proving (ATP) method. 
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Chapter 4 

Logic-Based Dynamical Systems 

Previous two chapters presented the state estimation and control problems for system 

modeled by finite machines, in terms of classical functional (procedural) approach Here we 

introduce a logic-based framework for modehng and control of the same control problem'i 

4.1 Logic-based System Modeling 

Stated informally, alogie is a formalism capable of representing and reasoning about a 

world or worlds. It is usually viewed as a language - that is a set of weil formed formulas 

(or wffs) and a set of worlds or models with respect to whlch the formulas are interpreted 

and a truth funetion, whlch assigns a truth value (usually true, false or unknown) to each 

wff. 

The language together with its formai grammar is referred to as the syntax of the 

logic and the set of models and truth function as its semantles. A useful loglC is able 

to encode the truth assignments of a large (possibly IOfinite) number of wffs in relatlvely 

few symbols, by employing a derivation or inferenee process ln general. a denvatlon 

process is a symbolic manipulation process which maps one set of wffs lOto another set 

For notation, we write L f-- a (J to mean that the wff a is derivable wh en applymg the 

74 



CHAPTER 4. LOGIC-BASED DYNAMICAL SYSTEMS 75 

derivation process 1- lX to the set of wffs I: ln this case the a is called a theorem of L 

and the denvation is called a proof. Standard introductions to mathematical logic are 

[Men64, End72]. 

Syntax 

Samantlcs 

Loglc Thaory 
of 

Th.orama 

Logic Madel 

Plant 
ln 

RealWorld 

Laws of Physlcs 

Mathematlcal 
Modelof 

the Plant 

Figure 4 1. Logic-based Modeling 

Logic as a formalism can be used to represent (or to model) a system. Figure 4.1 

iIIustrate how a logic is used to model a plant, where a plant is usually modeled math­

ematically according to certain laws of physics. A logical theory determined by a set of 

axioms Land its associated derivation process is characterized by the set of ail theorems. 

These theorems are constructed 50 that they are exactly the set of formulas which are 

true in every model of the logical theory. Properties of the plant are formulated in terms 

of the true formulas of the logic and therefore can be generated by the derivation process. 

Mathematical models of the plant are connected with the logic models of the logical the­

ory so that one can formally say that truth values of formulas are characterizations of the 

properties of the plant. 

Logic has been used, in the past, as a formai tool in computer science [Hoa85] to 
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model program behaviors and thence to reason the correctness of the concerned program 

To model a dynamical system, e.g, the behavior of a concurrent program, Manna and 

Pnueli [MP81] proposed the use of temporal/og/C A temporalloglC IS a modal logic where 

a necessity and a possibility operators are introduced ln the syntax and an accesslbllity 

relation among possible worlds is Introduced ln the semantics Ostroff and Wonham 

[OW85) have adopted the temporallogic to the modeling and reasonlng of the correctness 

of the closed-Ioop behaviors of systems modeled by extended state machine (a n extension 

of finite state machine). 

4.2 Logic-based Control System 

A logic-based control system here we mean an embedded logic system whlch provldes, If) 

reêil time, the control signais to the plant. 

As we treated in Part " a plant is taken to be an input-state-output flnlte machine 

An observer and a control/er is a dynamlcal system which takes onservatlons from the 

plant and outputs control/ed inputs to the plant. These input and output data will flow ln 

as new axioms and out as newly proved theorems of a logic-based control system Loglcs 

used to model and reason about plants cannot dlrectly used to be as a loglc-based control 

system since first axioms are fixed and hence no new axioms can be accepted ln (dlserete) 

realor system time Second, no control/ed inputs can be generated as theorems s'ace the 

only theorem that can be proved are hypothetlcal statements whlch are adequate for the 

correctness proof but not for controls 

Most eXlsting formai systems share a common feature, namely, they are ail static or 

time-invariant with respect to the system tlme Even the 50 called temporal logie, see 

[Go187] and its use in verifying '.ne correctnessof concurrent programs, see [MP81] cannot, 

as it stands, deal with a situation where new aXloms are accepted at each system (1 e 

real) time dock instant. Moreover, temporal logic is a modal loglc wherein a statement 
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is true at a given instant will be true at ail system time clock instants and hence no error 

correction is permitted or possible. 

ln contrast to the notion of system time, we shall take (discrete) logic time to be the 

time that is measured between two system time dock instants and which is such that 

each inferential step taken in (or by) the logical deduction process consumes one unit of 

logic time. The following figure 4.2 shows the relationship between the logie time and the 

system time as we mentioned above. 

System Time (or Real Tirne) 

2 3 4 

2 3 4 1 2 3 4 ...... 2 3 4 ...•.. 

Logical Tirne (or Irnaginary Tirne) 

Figure 4.2 Loglc Time and System Time 

ln the following, we give definitions of the concepts of time invariant and time varying 

properties of a logic system, which will be the first step towards a definition of a logic 

based dynamical system. 

We take 1.J to denote a set of wffs, ( to be a set ofaxioms in Land we assume the 

set of inference rules be fixed. Intuitively, we rnay say a logic is (system) time invariant if 

the set ofaxioms is fixed, and henee the set of theorems is time independent. Aetually, 

this condition is only sufficient not necessary. We may further exploit a necessary and 

sufficient condition for this definition by considering the equivalence classes over the set 

of ail possible axioms as follows. 

Th( () = {w . w E L, ( 1- w} IS the set of ail theorems (or the range of the deductive 

closure operator) derivable in L from (. This deductive closure operator Th:2L -+ 2L 

gives rise to an equivalence rela ~ion =Th over the power set 2L of L. This relation =Th 

can be defined for any (t, (2 E 2L , sueh that (1 =Th (2 if and only if Th((t) = Th((2)' 

Furthermore, the equivalence dass of ( induced by =Th will be denoted by l(] rh. In the 
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following, we define a time Invariant property for a logic system as follows 

Definition 4.2.1 A logic L is said to be time invariant, W.r.t system time if and only if 

the set ofaxioms (of L is invariant. w.r.t. system time up to the equlvalence c1ass [C!Jh 

L will be said to be a time varying loglc if otherwise [J 

Most c1assical and contemporary logie systems have the time invariant property slnce 

theyall have a fixed set ofaxioms and a fi..<ed set of inference rules Examples are given 

by the logics used ln computer sCience for reasoning abcut program behavlors (I.e the 

correctness of a sequential or concurrent program) su ch as Dynamic LoglC, or Temporal 

Logic see [GoIS7. LloS4. MP8I] and forformal systems su ch as Petn-Net. Communlcatmg 

Sequential Processes, see [HoaS5. PetSI]. 

ln contrast to this, adaptive control problems addressed in SeT, and reasonlng wlth 

uncertaintyand machine learning in AI .ue ail based on the systematlc change of control 

laws or axioms and ru/es of inference. These systems shall be modeled by logic systems 

that actually vary with time or in the sense we shall discuss ln this part of the thesis Wlthin 

AI, these issues have been addressed formally by the construction of formai systems such 

as default logic see [Rei80]. or non-monotonlc loglcs in general, see [MDSO, Moo8S] 

These are intended to capture certain features of common sense reasonlng or reasonmg 

u nder u ncertainty. 

4.3 Logic Rased Dynanlical Systems 

The general idea of a logic based dynamical system (LDS), is Insplred by that of a dynam­

ical system, that is a non-antlclpative mapping ç from the input (tlme) functlon space U 

to the output (time) function spa ce y 

We denote Q(t) to be a set of wffs in L at the time l, they may represent a set of 

objects we are interested in. 
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Definition 4.3.1 Alogie based dynamical system (LDS) consists of a septuple (FR(L), 

LA, OyA, DaA, linf, Dinf, Q) given by a set of formation rules FR(L), axioms (lA, DyA, 

OaA) and rules of inference (Linf, Dlnf) such that the output map is given by the query 

map Q. 0 

Namely, a LDS consists of a sequence of the following axiomatic scheme: 

1. Formation Rules - FR(L) 

2. Axioms 

2.1 Logical Axioms - LA 

2.2 Dynamical Axioms - OyA 

2.2 Data Axioms - DaA 

3. InferencE: Rules 

3.1 Logical Inference Rules - Lint 

3.2 Dynamical Inference Rules - Dinf 

A base level query map of Q(t) to a LDS at the time t is defined to be a time 

dependent set Y(t) such that Y(t) = {w EL: w E Th t and w E Q(t)}, (or Y(t) = 

{w EL: w E PTh t and w E Q(t)}), i.e., the intersection of Th t (or PThtl with Q(t). 

The key point here is that a base level query map is a matching process not a deduction 

pro cess. Hence we have the following definition on the output function of a LDS. 

Definition 4.3.2 An output funct/On Y(t) of a LDS Le is a base level query map of 

QU) to Lf.. 0 

The formulation of the concept of a logic based dynamical system (LOS) led to the 

construction of Input/Output spa ces, defined as a set of time functions on the power set 
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of a set of wffs of a time varying logic L, and a mappÎng from the Input spa ce li to the 

output space y. So for a gÎven time varying loglc L, we have the following deflnltlon 

Definition 4.3.3 An input-output logie bàsed dynamical system Lf. of the tlme varying 

logie is a triple Le = (U, y, el where 

which can also be wrÎtten as ç, U~ f- Y~. o 

From the input-output system point of vÎew, we have the schema as shown În Figure 

4.3. 

U(tJ---.l.[ L ç=(U,Y, ç) t----~ y(tJ 

Figure 4.3: Logic 8ased Dynamical System 

Where the input function U( t) denotes a sequence of data aXloms or dynamical aXloms 

received by LE. up to the time t and the output functlon Y(l) will represent a base level 

query of sorne Q(t) to Le. 

4.4 Classical and Logic 8ased Observability 

This subsection first introduces the concepts of alogie. based dynamlcal observer LDO 

and a convergent LDO and th en proves that a fmÎte machine /\11 IS observable If and only 

if the logic-based dynamical observer LIJO(M) converges ln fÎnlte time. Flrst we neecl 
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to give a mathematically precise definition of what we mean by a logic-based dynamical 

observer (LDO). 

Definition 4.4.1 (Logic-based Oynamical Observer) Let M = (X, U, \",<1>, 1/) be a 

finite machine, a logic-based dynamical observer LDO(M) = {F01o(M)(on : J.. E 

Z+} of M is a tree of families of first order theori~s indexed by time J.., where a membel of 

a family with index k isdenoted by a 4-tuple FOTo(M)(on = (FH(M), LA, l)yA(M), 

ObA( o~» where: 

FR(M) /:). The formation (i.e., syntactic) rules of LDO(M) specifying the 

weil formed formulas (wffs) of FOT{M)(on. 

LA /:). The logical axioms of Predicate Calculus see [Men64] 

DyA(M) 6. The dynami(.JI axioms which describe the state trdnsitlon functlon <1> 

and the output function '" of M. 

ObA(on 6. A set of observation axioms (specifying a sequence of Input-output 

pairs ot = [(Ut-l, Y,)I~=1 E (<fJ x Y) x (U X yY·-l). 

o 

ln the following, we take L(M) as the language, defined by FH(M) the formatIon 

rules for the tree of families of first order theories in a logic-based dynamical observer 

LDO(M) for a given fmite machine M We daim L should at least contaln the followrng 

predicates (with or without variables, since a finite machine can be fully expressed by a 

propositional calculus but for the flexibility of the language we shall take predicate calculus 

instead of proposition al calculus). 

Eq( <1>( x, u), x') 

Eq(rj(x), y) 

Eq(Uk,U') 

Eq(Yk, y') 

eISE(x i ) 

: stands for <I>(x, u) = x' 

: stands for 1J(x) = y 

: stands for the control at the instance k is u(k) = u, 

: stands for the observation at the instance k is y( k) = 1/, 

: stands for x' is a member of initial state estimate 
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(~cs R(XI) : stands for Xl is a member of current state estimate 

Consider any member of a tree of families of first order theories, i.e., FOTo(M)(ot), 

a first order logical theory in a logic-based dynamical observer LDO(M). It is uniqueiy 

determined by the given finite machine M and the observation sequence o~ in terms of the 

corresponding predicates. Since these observation sequences cunstitute a tree structure, 

see Chapter 2, and hence we have a tree of families of flrst order theories associate with 

a LDO(M). 

Definition 4.4.2 (Initial State Convergent LDO(M» A logic-based dynamical ob­

server LDO(M) is said to be initia/state convergent if there exists a NE Z+ for ail x E 

X, for ail observation sequences of, where k ~ N, such that eISE(x') E FOTo(M)(of) 

and --.cISE(xJ ) E FOTo(M)(of) with each j and j f:. i. Or FOTo(M)(ot) contains 

every wff. o 

Definition 4.4.3 (Current State Convergent LDO(M» A logic-based dynamical ob­

server LDO(M) is said to be current state convergent if there exists an N E Z+ su ch 

that for any observation spquence o~, with aily k > N, there exists a Xl E X su ch that 

eCSE(x l
) E FOTo(M)(on and ""eCSE(xJ ) E FOTo(M)(on with each j and j f. i. 

Or FOTo(M)(o~) contains every wffs. o 

The above definitions probably require explanation because at first sight it appears 

contradictory: if the system M is initial state observable how can contradictory statements 

possibly be proved about the state? The answer is that in this definition the observation 

sequences ot, for any k E Z+, that form a part of the axiomatic system of FOTo(M)( ot) 

do not necessarily give a consistent logical theory when taken together with the other 

axioms of FOTo(M)(on. Ifthey do give a consistent logical theory then one can prove 

in F01à(M)( on true statements about the values of the states of M that could generate 
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oL if they do not give consistent logical theory, then in F07o(M)( oD ail statemellts 

(including their negations) can be established. Either way, the situation (for Initiai state 

estimates) is that for k < N, one cannot, in general, prove the predicate cl S J~'(.I') and 

..,eI S E( x') for ail x' i: x. But for k ;::: N, ail sequences o~ reveal themselves to be either 

(i) logically consistent when taken together with the observ:.tlon axioms of Forie) (./\-1)( oi ) 
(this intuitively corresponds to them being generated by M with sorne initial state .1') or 

(ii) logically inconsistent. Notice that wh en FOTo(M)(on is logi.:::tily consistent we are 

able to prove that some sequence x~ of state is a consistent state sequence (wlth respect 

to on in the sense of Definition 2 2. 

Finally, in this connection, we remark that the motivation for defining an I,J)()(M) 

that can operate on inconsistent observation strings lies in the fact that we wlsh to defme 

observers (classical or logical) on their own - independent of the existence of a system 

generating the observations This idea is famihar in SC T (see e g. [(aI88]), where a 

Kalman fllter may be used to process signais emitted by a system for whlch the fllter was 

not designed. The curious differellce between the SCT and AI situations IS that the SeT 

filter (observer, etc.) will contin ue to operate in su ch circu mstances, but Will generate 

inaccurate (in the sense of suboptimal) estlmates, on the other hand. a logic-based system 

may generate a contradiction and - unless otherwise deslgned - Will jam in the sense 

that it can then prove ail statements. These problems are the source of the stuOjes of 

robustness in SCT and reas(ming under uncertamty in AI. 

By use of the natural interpretation of the finite machine M = (X, U, V, <1>, 1J) wlth 

initial state Xo and observation sequence o~, we obtain a model (xo, M, (,~) for the flrst 

order logical theory FOTo(M)(ot). An extremely important fact about thls construction 

is that unless FOTo(M)(on is a consistent logical theory tt.ere will not r.,c;t a set of 

models {(xo,M, on: Xo E X' C X} for the logical theory On the other hand, startmg 

from a model (xo, M, on, where o~ is generated by M with initiai state :1:0, the resultl:!g 

logical theory FOTo(M)( on will always be consistent. In the followrng, we shall show 

• 



( 

{ 
'1.. 

CHAPTER 4 LOGIC-BASED DYNAMICAL SYSTEMS 84 

the equivalence between observability and the existence of a convergent LDO for a finite 

machme M, by exploiting the notion of a modt.l. 

Theorem 4.4.1 (M is Ob~ervable iff LDO(.I\It) is Convergent) Let M = {X, U, y. 

4>, rll be a finite machine and let LDO(M) be the logic-based dynamical observer of M. 

The following statements are equivalent: 

(i) M is initial (respectively current) state observable. 

(ii) LDO(M) is initial (respectively current) state convergent. 

Proof 

For simplicity we only deal with the initial case since the current case is identical. 

(=» 

If M = (X,U, Y, <1>,77) is initial slélte observable then there exists N = IXI2 E Z+ 

such that for ail x' E X there exists an observation sequence o~ with k ~ N, the initial 

state estimate {;;}( on = {x'} is a singleton. Hence for any x E X the predicate 

-,c 18 E( x) is true but in particular the predicate el S E( x') will be true within the model 

(x', M, on for which the logic FOTo(M)(on is based on. However by the completeness 

of the first order logical theory FOTo(M)(on, we can prove every true formula (but, by 

consistency, not every formula), and so LDO(M) is initial state convergent. 

Consider M = (X, U, Y, <1>, 77) starting from any initial state x· E X and consider 

o~(:r·) for ~~ ~ N = IXI2
• The hypothesis that LDO(M) is initial state convergent 

implies that either el SE(x*) and ..,el SE(x') E FOTo(M)(ot) with x* =/: x', for ail x', 

or FO'lo(Nf)(on contains every wffs. 

Notice o~(:r·) is generated by M. Hence a model (.e*, M, on existsfor FOTo(M)(o}). 

This elimil1ates the possibility that FOTo(M)( on contains every wffs. Moref'lver, we see 

that fiS E( 3.') must be true within (x*, M, on for some x EX, namely for x = X*. 
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Since the model (x·, M, on exists for FOTo(A1)(on, inference in FO'/cAM)(o}) IS 

sound, i.e., only true statements with respect to Li.e model can be proved in thls loglcal 

theory. Hence we can prove eISE(x) and .cISE(.r') for ail x':f- .1', in FO'lcAM)(()~) 

Further we note that (i) if -,eI S E( x) IS provable for ail .z: EX, we obtain the 

falsehood eISE(x*) within the model (x",M,on of the logical theory F()'/()(M)«(/~) 

(which contradicts soundn~ss) and (ii) if el S E(xO) is provable for sorne .ro EX, l' [.'-1' F(./') 

cannot be proved for any x E X if x f:. xO, (since FOTo(M)( on is consistent by the 

existence of a model). 

We conclude that exactly one predicate of the form cl.','/~'(x),.1· E X, IS provable J'ld, 

hence by soundness, true; let thls hold for the unique state:ro E X. But FO'/()(A1)(lJ}) 

is a first order logical theory with the model (x·, }vt, on and hence the only consistent 

state x E X satisfying x E {;;}( on is the singleton X
O which satisfies .1'0 = .r" ThiS 

shows M is initial state observable as required. o 

Similarly we can define notions of a logic-based dynamical controller (lDC), a com­

pletely observed controllable LDC or a partially observably controllable LOC and a theorem 

which connects the notions between logic-based system and their counterpart of classlCal 

dynamical system. 

Next chapter we shall introduce a system and control theoretlc loglc, céllled, a con­

ditional observer and controller logic (COCOLOG) for finite machines. ThiS COCOlOG 

explicitly further exploit the concepts introduced in this chapter. 
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Chapter 5 

COCOLOG for Finite Machines 

At; introduced in Chapter 2, a c/assical dynamical observer (hereafter called a classical 

observer) is a finite machine for wltich observations of the input and outputs of an observed 

machine are taken as inputs and which generates st,tte estimates as outputs. In Chapter 

2, we developed general results on the construction and properties of su ch observers for 

current state and initial state estimates for State-Output and Input-State-Output finite 

machines. 

Similarly, a c1assical dynamical controller (or regulator) is a finite machine for which 

state estimates from a classical observer are taken as inputs, and controls generated by the 

classical regulator constitute the outputs. We recall that our basic Theorem 3.2 6. showed 

that controllers are Markovian with respect to state estimates, that is to say the statE' 

estimate contains ail the information in past observations needed for ail (non-anticipative) 

control tasks and, of course, this information is gellerated by an input-state-output system. 

Furthermore, in Chapter 3, we presented results on the construction and complexity of 

such controllers for completely and partially observed finite machines. 

ln Chapter 4, we introduced the concept of a logic-based dynamical system, which 

included the notion of a logic-based dynamical observer and a logic-based dynamical 

c.ontroller. We showed, at the meta-Ievel, that a system is observable or control/able if 

86 
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and only if its corresponding logic-based system is convergent (Iogically observable) or 

logical/y control/ab/e. 

ln this chapter, we present a theory of certain families of first arder loglcs, called con­

ditional observer and control/er logics (COCOLOGs), for describmg and reasonlng about 

the state estimation and controlled evolutlon of a given fmite machine M We supply 

a semantics for each COCO LOG in terms of interpretations of controlled transltI0;1~ on 

the tree of state estimate sets for M. Conditional control statements (CCSs) are for­

mulated so that (closed loop) control actions occur when speclfled past measurable (1 e , 

past observation dependent) conditions are fulfilled. In partlcular, condition al statements 

will include commands that steer the system state from a current partlally observed state 

(estimate) to a target state (if such a sequence of controls can be proven to eXlst) 

There is strong motivation to use higher level or logic based contr'.>lIers ln situations 

where time varying and adaptive control problems arise. Let us suppose tht: observer states 

of an observer tree Mc have been steered to the state estlmate {~} en route to rI' 

Next, suppose the dynamics of M change to M' and the current state observer tree M(, 

ct'langes to M'c. For a COCO LOG system the description of thls change mvolves a trivial 

rewriting-plus a consistency verification-of the axioms of the COCO LOG Tht!1 one must 

recompute the observer sub-tree leading to xT and the associated (new) controlled state 

trajectories to xT . However, ir, order for a classical controller to respond to thls SltLI'!tlon 

it is necessary for a set of xT-homing feedback controllers to be precomputed for ail 

possible dynamics of M. A similar (dually related) situation occurs with the specification 

of sequences of control objectives (i e., control problems) 

We regard our formulation of logic based control to be original to our work on the 

subject, however, it should be noted that there exists a certain commonallty of vleWpolnt 

between the work described here and the literature concerned with the loglCal verification 

of program correctness [MP81], the application of these ideas to systems and control 

theory [Ost87, 05t89, OW89aJ and logic programlnlng [U084J. 
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5.1 COCOLOG: Syntax and Semantics 

A COCO LOG logic system consists of a partially ordered set, or family, of first order 

logics. Each of these logics corresponds to a node in the observer tree of a given finite 

machine. The family of these indlviduallogic systems constitutes a logic-based dynamical 

system (see Chapter 4) which evolves with its environ ment and updates its structure as 

time proceeds. 

To be more precise, each of the 10gICs IS equipped with the observed input and output 

as the data axioms of the corresponding node in the observer tree and is able to make ail 

logical inference steps based on data axioms We present thls family of first order logics 

in terms ofaxiomatic theories (For an introduction to axiomatic systems see [Men64].) 

ln the theory presented in this chapter, we say that we let our cOCOlOG system run 

in ,eal time with the observation and control tasks, meaning that we assume ail sound 

inferences following from a given set ofaxioms are available Instantaneously before the 

next dock instant. The issue of automatic theorem proving will be addressed later in part 

III 

ln this section, we start with an introduction of the COCO lOG language and then 

we will pre!lent the syntax and semantics of the "static" part of the cOcOLOG, i.e., the 

log': corresponding to the root node in the observation tree. 

5.1.1 COCO lOG language L 

The cOCOLOG language consists of a set of symbols S(L) and specified formation rules 

(or syntax). The concerning subJect of COCO LOG language is the finite machine given as 

M = (X M , {fM, yM, <1>, 1] )1, where X M is the set of ~tates, U./vl is the set of contro/s, 

}' J ..... is the set of output, cp is a state transition function, <1> : X./vI X UM --t X./vI and 1] 

lWe use "'Jperscrip to denote the relevant flnite machine, e g X M denote the set of states of machine 
M 
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is a state output function, 77: X M -+ yM. 

We first define S(L) as follows: 

The component sets of S(L) are defined as follows: 

Constant Symbols 

where k(N) is the upper 'Jound on time 2 

Variable Symbols 

VarL = {x, x', 3''', ... , } U{ y, yi: y", ... , } U{ U, 1[1, u", ... , } U{ 1, l', . .. , }. 

89 

Where the variables are intended to be varying in different sorts or domains, e g . 

variables x, x', x", . " will be interpreted to represent elements ln the set of states.\'. 

variables y, yi, . .. will be interpreted to represent elements ln the set of state output }~. 

and so on. 

Function Symbols 

where the sort of each function symbol is defined as the follows. 

U( a): a is a symbol either in {u1, ... , um , u*} or in {11 1 11.', ... , } 

}'(a): a is a symbol either in {yI, ... , yP} or ln {y, yi, ... , }. 

4>(a,b): a is a symbol either in {x 1, ••• ,xN } or in {.1:,.r',.··,}; and bIS a symbol 

. h . {1 m *} . { 1 } elt er ln U,"', 'il ,U or ln u, u , ... , 

2k(N) is taken to be an arbitrary large number, for example IX 1 or IX 12 since as we can see from the 
results presented in Chapter 2 \'hat an initiai or current stati!! observer dag can have at most 1 X 1 or 1.'< 12 

non-singleton layers before it split into singleton nodes 
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q(a): a is a symbol either in {Xl, ... ,xN } or in {x, x', ... ,}. 

+da, b) and -L(a, h): a, b are symbols either in {l, 2,···,} or in '), l',,"'}' 

Terms 

(i) Each constant and variable symbol is a term, i.e., ConsL U VarL ç TermL 

(ii) If t is a term and f is a function symbol then J(t) is a term 

(iii) TcrmL are constructed only by steps (i) and (ii) above. 

Atomic Predicate Symbols 

AprL = {Eq(.,.),Rbl(.,.,.)}. 

Quantifiers 

LogÎc Connectives 

5.1.2 Synt~x of COCOLOG L 

Any weil formed formula of L is given by the Backus-Naur syntactic rule, see [GoI87]: 

t 17 ••. , tn E T erm 

and the set of such formulas will be denoted FmaL. 

The other logical connectives (-', V, A, +--+) and quantifier (3) are defined as fo"ows 

where ( and) are used \' herever the meaning of the formula can be made clearer: 

-,A "- A --. ..1 
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3vA 

"­,.-

- (V'v.A). 
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We observe that, as introduced here, L is a multl-sort language, where variables ma\{ 

vary within different domains. This complication can easlly be reml'ved by using a sort 

predicate for each variable, and by replacing each quantlfied formula via the followmg 

equivalence operation' 

VxA(x) = V.r(X(x) --t A(x)), 

3xA(x) = 3.r(X(.r) --t A(.l')), 

where X(x) is the sort predicate for variable .1', indlcating the membershlP relation of 

x E X. This rewriting will allow variables to vary freely wltnm a single domaln and nence 

we get a single-sort language. In the rest of the thesls, we will not dlstmgUlsh between a 

formula and its rewritten version {or reasons of slmpllclty. 

5.1.3 Semantics of COCOlOG L 

AL-structure UL = (D,1) is a pair, where D = X U y U u U Ik(N) IS the domaln of 

interest and 1 is an interpretation functlon defined as follows 3 

1(4) ) 4>:XxU--+X 

1(r;) Tj:X--+Y 

1(+d +k(N) : Ik(N} x Ik(N) --+ Ik(N) 

1(-r.} -k(N) . Ik(N) X Ik(N) --+ Ik(N) 

l(c) cE 0 

3We distinguish symbols used in COCOLOG language and ln the base flnite machine M by the con­
vention that bold face letters denote constant and variable symbols ln the base flnite machine COCOlOG 
function symbols will be denoted by a bar over the corresponding function symbols '" the base machine 
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J(Ea) 

J( HM) 

{(t, t/) 1 t, t ' E D, t = t/} ç 0 2 

{(X,X/, k) 13u~ E Uk, <S>(X,Un = X'} ç X2 X Ik(N) 
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Where the addition. +k(N). and subtraction. -k(N). over finlte integers {l, 2,"', k(N) 

+ l} are defined by the following expressions.4 

a +k(N) b = 
{

a + b 

k(N) + 1 

if a + b < k(N) 

if a + b > k(N) 

{

a - b if a - b > 1 
a -k(N) b = -

k(N) + 1 if a - b < 1 

These finite rnteger anthmetical operations are necessary to express control properties 

ln terms of integer number of steps. 

A UI,-valuatlon is a function V: VarL -+ D satisfying 

X if v = x 

V(v) E 
y if v = y 

U if v = u 

Ik(N) if v = k 

and can be extended to V : Tt:rniL -. 0 by 

V(t) = 
V(t) 

l( t) 

ift E VarL 

if t E ConsL 

We take \/ "'\1 V' to mean that V and V' are identical except in the value they assign 

to /' and 

V(ujx) = Vi iff V l'Vu V' and V'(v) = x 

4Here we follow the convention that +L and -L are used in logie language to den ote addition and 
subtraetion funetion symbols. +k(N) and -k(N) denote the function symbols in the finite machine or in 
the semanlic mode!, + and - denote the standard integer arithn.etic.al operations 
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The satisfaction relation UL 1= AI\!). which sta nds for the property that a formula A 

satisfies a structure Ur. under the v,3luation V, is defined recuisively by: 

UL 1= Eq(t, t')[V1 iff vtt) ::= vtt'), 

UL 1= Rbl(x, x', k)[V] iff (V(x), V(x'), V(k)) E [(HM), 

UL 1= (Al ~ A2)[V] iff UL 1= AdV] implles U1J F= A2[V], 

Ul. ~ 1. [V), 

UL F \lvA[V] iff for ail x E D, it is the case that Ur, 1= A[V( lJ lx)]. 

A formula A is true, written UL F= A. in the structure UL is defmed by 

UL F= A Iff for ail V, it is the case that UL F= A[F). 

conversely. A is false. written UL l;t= A. is defined by' 

UL ~ A iff for ail V, it is the célse that U/, IF Il [V] 

A formula A is called va/id if it is true in ail structures UL , i.e, A is valid If and only 

if for ail UL, UL F= A. A formula A is satisftable if there eXlsts sorne structure lit, and 

sorne UL valuation V such that the satisfaction relation UT. F= A[V] holds Obviously a 

formula Ais valid if and only if -.A is unsatisfiable. 

5.1.4 Axiomatic Theory of Tho 

A formai logic theory of a language L consists of a set ofaxlOms, that IS to say a set 

of formulas from FmaL, which shall be required to hold in the intended models and a 

set of relations on FmaL, i.e which are called the set of inference ru/es, t0gether with 

concepts of a proof and theoremhood. 

A general theory of finite machines is given by simply charactenzing the fUllet/onal 

property and the semi-group property on the state transition function ct> and the output 

function Ti. as explained below. 
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For any u E U, and any x,x',x" E X, and:. \. YI,Y2 E Y 

<I>(x, u) = Xl and <I>(x, u) = x" then x' = x" 

77(X) = YI and 77(X) = Y2 then YI = Y2 

We write a sequence UI, U2, ... ,Un by u~ then we can express the semi-group property 

as follows: 

for any x E X and for any sequence u~ E un. 

A general theory will be a theory true to every finite machine or a theory which can 

deduce formu'as true for every finite machine. This general theory can be specialized 

when the transition function and the output function properties are given specifically. 

The sequence of specialized theories will be discussed in this and next sections. In which 

we discuss how a sequence of theories are formed to describe and to reason about the 

obsel/,,·;Qn and control tasks We first present an axiomatic COCO LOG theory of Tho, 

i.e., a logical theory able to make inferences based on the knowledge possessed by the 

root node in an observation tree for a given finite machine. The crucial topic of further 

specializations of this theory, obtained by observations on the finite machine as time 

proceeds, are discussed in Section 5.2. 

TherE: are two sets ofaxioms in Tho, one is the logical axioms which are a set of valid 

formulas (i.e., true in ail models) which together with the rules of inference generate ail 

valid formulas; the other is a set of special axioms which specify the true facts concerning 

the subJect that logic describes. Correspondingly Th(ot) is a logical tneory that has the 

input and output data as data axioms added to the l''gical theory Tho. 

We include logical axioms and equality axioms in Tho shown as follows: 
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LOGICAL AXIOM SCHEMATA 

ln the following logical axiom scnemata, A,B,C are any wffs, i.e., A,B,C E "'1I/(//.. 

(i) A- (8 -t A) 

(ii) (A -+ (8 .-; e)) -t «A -t B) - (A - C» 

(iii) (-,B -t -.A) -t «-,8 -t A) - B) 

(iv) \lvA(v) -t A(t) 

(v) \lv(A ~ 8) - (A - \lv8) v not free in A. 

AXM10K 

Any formula having the same form as one of these logical axiom schemata will be called 

a logical axiom. Hence the logital axiom schemata will give rise to an infinite number of 

aXloms. 

EQUALITY AXIOM SCHEMATA 

ln the following equalityaxiom schemata, A is any wff, i.e., A E FmaJ" x, ;[;', :r" E 

VarL and JE FunL is any function symbols in COCO LOG. 

(i) Eq(x, x) 

(ii) Eq(x, x') -t Eq(X', x) 

(iii) Eq(x, x") 1\ Eq(X', x") -t Eq(x, x') 

(iv) Eq(x, x') -t Eq(f(x),f(x/» for each function symbols f in L 

(v) Eq(x, x') -t (P(x) -t P(x'» for each of the predicate symbols /) in l, 

Any formula having the same form as one of these equality axiom schemata will be 

ca lied an equality axiom. Hence the equality axiom schemata will glve rise to an infinlte 

number ofaxioms. 

The special axioms for a given finite machine Mare describt:d as follows' 
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FINITE MACHINE AXIOMS 

For any pair of constants xi,xj E XM,Ui E ljM, if xj = <I>(xi,ui) is satisfied by the 

given finite machine M then we have the following dynamic axiom: 

The dynamic axioms state the facts specifying the state transition function of the given 

finite machine M. We note that the number of dynamic axioms is equal to IXMIIUMI. 

For any pair of constants xi E XM,yi E yM satisfying the relation .,,(xi) = yi, we 

have the following output axiom: 

Eq(r;(.c:'), yI) 

The output axioms state the facts specifying output function of M. The number of 

output axioms is equal to IXMI. 

The finite machine axioms given above correspond to an infinite number of models. 

We get a unique model (up to name change isomorphism) when we further make the spec­

ifications of IXI = N, IYI = p and lUI = m in terms ofaxioms. Moreover, we also need 

to specify addition and subtraction functions for the finite domain {l, 2,"', keN) + l} 

of integers. These will be addressed in the Subsection 5.4. 

REACHABILITY AXIOMS 

We define recursively the relation of reachability by the following reachability axioms: 

1 Rbl(x',x",l-r, l)AEq(<l>(x,u),x') -? Rbl(x, x", 1) AXMrbl(L) 

2 Eq(<I>(x,u),x') -? Rbl(x, x', 1) 

Rezchability a).ioms specify 1 step reachability relation among any pair of states, i.e., 

Rhl(x, :r', 1) specifies x' is reachable from x in 1 steps. 

""--~---------- --------~-
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Rules of Inference: 

RI. MODUS paNENS 

A,A~B 

B 

R2. GEN ERALIZATION 

A 
"vA 

where A, B E F71HlL 

; wherc v E Val' l, 
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We write AX A-fspe(L) to denote the set of special axioms of L, i.e., AX M"p( (q = 

{AXMdyn(L), AX Mout(L), AX .Mrb/(L)}. We sometimes use L to denote AX M!'/"'( q 
for simplicity. 

A proof in L is a seGuence of formulas Ab' .. , Ak in FnwL where AI is either an 

axiom or a direct consequence of previous formulas via RI or R2. The la st formula AI. 

in the sequence is called a theorem and Ab'" , Ak - 1 is a proof of theorem Ak 

A formula A is a theorem of a first order theory with equahty, written 1- /, A, If ln 

a proof of A only logical axioms and equahty axioms have been invoived On the other 

hand, A is ca lied a consequence (or theorem) of L, written L h, A, if ln a proot uf A 

axioms in L may also have been involved. 

For brevity we write Tho for Tho(L) which stands for the set of theorems of L, hence 

we have Tho = {A: L I-L A} and we shall use the standard notation Tho 1- A which IS 

customarily read as A is a theorem of or provable (derivable ) in the theory Tito. 

A structure UL of theory Tho is called a modelof the theory if and only if ail the 

axioms of Tho are interpreted tru·e in UL. 

Example 5.1.1 We give a simple example to illustrate a logic based control system ln 

terms of the COCO LOG axiomatic theory Tho. 

Thefinite machine M = (XM,UM ,yM,Cl>,77) isgiven in Figure 5.1 

Where X = {x1,x2,x3},U = {u1,u2},V = {yl,y2}, 77(X1) = 77(X2) = yl,.,,(.:3) = 

y2 and Cl> is given explicitly in the graph above. 
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Figure 5.1: A Three State Finite Machine 

The COCOLOG control system for this finite machine M consists of a sequence of first 

order theories Tho, Th(ol), Th(oD, . " as introduced in Chapter 4. Here we concentrate 

on the theory Tho only. 

The logical axioms, the equality axioms, the axioms of reachability and the rules of 

inference arc the same as those given earlier in this subsection, and 50 we will not repeat 

them here. In the present case, the axioms of the automaton are given explicitly as follows: 

Eq( <J>( x3
, u l ), Xl) 

Eq(<J>(x l
, u 2

), x2
) 

Eq( <J>(x2
, u 2

), x2
) 

Eq(<J>(x l
, u l

), x3
) 

Eq( <P( x2, U 
1
), x3

) 

Eq( <J>(X3
, u 2

), x3
) 

Eq(11(x1), yI) 

Eq(l1( x2), yI) 

Eq(11(x3), y2). 

The set of theorems of Tito ;s exactly the set of true formulas of L, as is guaranteed 

( by the ~eneral completeness result proved later in this chapter. The theorems include, as 

, 
, . 
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we can verify from Figure 5.1, Rbl(x\x2
, 1), Rbl(x2 ,x3,1), Rbl(a·1,:r3 ,2),··· etc 

To iIIustrate i ~ical deduction in COCO lOG we shall give a proof of the theorem 

Rbl(x l
, x3

, 2) in theory Tho, which states that the state xl is controllable to the state x 3 

in t'NO steps. The proof goes as follows: 

l. Eq( <l>( x2, u1
), x3) Finite Machine Axiom 

2. :lu, Eq( <l>(x2, u), x3
) 1 and Rule !:4 see [Men64] 

., Rbl(x2, x3
, 1) 2 and AX }\frb/(IJ) 1 and MP .. 

4. Eq( <l>( xl, u2), :z.2) Finite Machine Axiom 

5. - 1 2 :lu, Eq(<l>(x ,u),x) 4 and Rule R4 

6. :lu, Rbl(x2, xl, 1) /\ Eq(<l>(xI, u), x2) 3 alld 5 

7. Eq(I,2- L l) Arithmetic Axiom 

8. :lu,Rbl(x2,x3,2 -L 1) /\ Eq(<l>(x\u),x2) 6, 7 and Equality Axiom 

9. Rbl ( x l , x3 , 2) AX Mrb/( L), 2, alld M P 

The proofs of theorems of theory Tho can also be generated mecl,anically by the 

resolution refutation based theorem prover which is the subject of Part III of this thesis 

o 

5.2 Observation Dependent COCOLOGs: Th( of) 

A COCO lOG system is a family of first order conditional observer and controller logies, and 

we defined a syntax, a semanties and an axiomatic theory for Tho. This family of logics (or 

logical theories) is intended to be used to reason and control the behavior of observers and 

controllers for a given finite machine. Corresponding to the set of paths in an observation 

tree, such a family of logical theories forms partially ordered set. We notf.. that an ordered 
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sequence of such logical theories may be viewed as being generated by a loglc-based 

dynamical system, see Chapter 4, where a meta-Ievel agent (i.e., a logic-based dynamical 

system) accepts an observation sequence o~ = {( </>, YI), (UI, Y2), ... , (Uk-l' Yk)} and 

gellerates a sequence of logical theories Th(ot}, Th(oD,"" Th(on with each subsequent 

theory Th(on being generated after the receipt of a (Uk-bYk) observation pair. Since 

these logical theories are observation dependent, we cali them observation dependent 

COCOLOGs. The sequence of theories so constructed is in fact a single path in the tree 

of the COCO LOG family of logical theories as displayed in Figure 5.2. 

y 

~.Y1 ,' . 
...• 

Th (07) 
~ . 

... 

l 
...... \ ... 

.... 
..... 

. " ...... . 

Th (O~+l) 
:"'. 

: ... 
.... 
" . 

.... 
' . 

... 

" Figure 5.2: A Tree of Logics 

The interaction between the finite machine and the logic-based dynamical system (or 
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U k ( )= 1f1 
M=(X,U,Y,<I>,l1 ) 

(U 1 , Yi ) 

Interface Setween Plant and Logic Controller 
__ •••••••••••• K •••••••••••••••••••••• __ •••••••••••••••••• __ •••••• 

Eq(U(k), u., Eq(Y(k), yi) 
oglc-Based Dynamlcal System 

Eq(U(k-l), ui
) 

Figure 5.3: A Closed Loop Logie-Based Control System 

COCOLOG ta be more specifie) is displayed as in Figure 5.3. Where the Interface between 

the plant (i.e., modeled by the finite machine) and the eontroller (i e" the COCO LOG 

logies) will transform the observation sequence into new aXloms and the control theorems 

(see below) into new control sequences. 

5.2.1 COCOLOG language L( on and Syntax 

The language L(ot) is an extension of the language L obtalned by adding new atomic 

predicates in the fol:owing way: 

k 

S(L(01)) - S(lJ)U APl'n 

where {cCSE;(.)}. 

We define FmaLo = FmaL. The set of weil tormed formulds Frna/,(()~) is then defined 

by: 

A ::= eCSEk(x) 1 B 1 A' -+ A"i V'vA' 

where B E FmaL(o~-t), and A', Ali E FmaL(ot). 

• 
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5.2.2 Semantics of COCOLOG L(ot) 

As before, a L( on-structure, UL(on = (D, hl, is a pair, where the interpretation function 

h is an extension of J by' 

The satisfaction relation of UL(o~) F= A[V] is an extension of UL(o~-l) ~ A[V] obtain('; 

by adding the following definitions: 

UL(o~) ~ eCSEk(x)[V] iff V(x) E {;;}(o~) where 0(1) = y(I), 

0(2) = (u(I),y(2»,· ",oCk) = (u(k -1),y(k» 

Again the properties true and fa/se for a formula and the concept of a model for 

a theory Th(o~) are defined in analogy as those in Section 5.1.3. Next we present an 

axiomatic theory for this logic. 

5.2.3 Axiomatic Theory of Th(ot) 

We assume that, at each instant k, the observer will observe u(k - 1) and y(k), and 

for each ui and yi su ch that ui = u(k - 1) and yi = y(k), the following formulas, as 

observation axioms, will be used to form the axiomatic theory Th(on of L(ot). 

OBSERVATION AXIOMS 

Eq(Y(k), yi) 

Eq(U(k - 1), u i ) 

AXMout(ob, L(o~» 

AXMcntl(ob, L(o~» 
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STATE ESTIMATION AXIOMS 

The following is the general form of a set of Axioms of Conditional State EstI­

mation. where C,(-, -) is a conditional formula expressible ln terms of F1I1tL1.«l~-I) and 

AX Jl,fout(ob, L(o~)). 

Modus Ponens and generalization are also taken to be the rules of inference for any 

logieal theory Th(on. 

Example 5.2.1 Here we take the specifie state estimation strategy (whicil corresponds 

to the set theoretic state estimator given in equations 2.5 to 2.1.3 see Chapter 2). We 

represent it in the following axiomatic form: 

ln case k > 1 : 

AXMest(ob, L(o~), +) 

::lx, eCSEk_1(X) /\ Eq(<l>(x, U(k - 1», xl)" Eq(1j(x1), }/(k)) 

-+ eCSEk(x1
) 

3x, eCSEk_1(X) /\ Eq(<l>(x, U(k -1», xN
)" Eq(1j(x N

), }"U,» 

-+ eCSEk(xN
) • 

...,(3x,eCSEk _ 1(X) A Eq(<l>(x, U(k - 1»,x1
)/\ Eq(1j(x 1

), Yd) 

-+ ...,eCSEk(x1 ) 
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..., (3x, eC SEk-l(X) 1\ Eq(<I>(x, U(k - 1)), xN) 1\ Eq(7j(xN), Y(k))) 

--+ ...,eCSEk(xN ). 

ln case k = 1; 

AXMe't( ob, L{ 01), +) 

AXMe't( ob, L( 01), - ) 

--+ 

--+ 

104 

o 

As defined at the end of Section 5.1.3, we denote [ as AX Mspe( L) and here we denote 

[k as [U;=dAXArut(ob,L(o~)),AX.i\fcntl (ob,L(o~)), AXMest(ob,L(on), We define 

an Observation Theory, ThO(on of [k' ~t the instant k by ThO(of) = {A : [1; rL A}. 

Next we consider a control theory at th.! i.d; .lt k. 

CONTROL AXIOMS 

The fo"owing is the general form of a set of Conditional Control Axioms, where CJ (.) 

is a conditional formula expressible in terms of FmaL(o~). 

AXMass
( cntl, L( o~)) 
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m-l 

1\ (""CAFmaqon) /\ Cm(FmaL\~~)) -+ Eq(U(k), U lrl
) 

)=1 
m 

1\(...,C;(FmaL(oO)) -+ Eq(U(I.·),u*}. 
;=1 

[J 

This set ofaxioms is central to the whole construction of COCOLOG They have the 

following interpretation: If the condition Cl(Fma/,(o~») is provable in the theory 'f'h(o}). 

then invoking the first axioms. we obtain the deflned constant value 111 as the value of 

the control function U(k); if not. but if C2 (Fma/'(o7») can be proved, then the second 

axiom gives the defined value u2 to the control functlon (!(I\'). and so on If none of the 

conditions Cl, C2 , ••• , Cm hold. then the last axiom sets the control equal to the arbltrary 

constant u". This procedure uOiquely determine~ tl.E: value of (!(I\') When 1.. -> 1.. + 1. 

we make the rneta logical step of passing to the theory Th( ui+ 1
) carrymg the constant 

value ut chosen above. Then the observation aXloms AXMcntl(oh, IJ«()~·t1)) state that 

Eq(U(k), ut). Hence. in the new Th(oi+1
), the observed control action [1(1.') IS precisely 

the constant value u l determined in Th(oD. 

Example 5.2.2 A set of Control AXloms which display a speclfic controllaw. see [CW89bj 

and Chapter 3, is the following: 

ln case of 1 > 1; 

AXMass( cntl, l( o~)) 

C, = Vx,31,eCSEk(x)I\Rbl(x,x',I)(\Jlbl(ct>(x,u' ),x',I- 1) 

ln case of 1 = 1; 

C, - Vx, eCSEk(x) 1\ Eq(4)(x,u'),x') 
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Where 1 ~ i ~ m. 

These control axioms state that if reachability from x E {;;)( on to x T holds, then, by 

evaluating $( {;;}( on, ui ), we reduce the number of steps required to reach the predefined 

target state x T by one. In this case by an extra-Iogical rule we assign the state feedback 

control function u( {;;}(on, x T) to be equal to one of the calculated values of ui . 0 

The past measurable (provable in terms of past data) requirement of these conditional 

aXloms are impliCltly glven by the fact that the condltlonal statements Ck(FmaL(o~» are 

expressed in terms of the language L( o~). The existence of the control law is forced 

to be true by choosing an ,:(bitrary control u* wh en other meaningful control cannot be 

selected. 

Example 5.2.3 Continued from Example 5.2.2, we assume xT = x3 ,1 = 1 and Th(od = 
ThoU{Eq(Yl' '1/), AX Afa88(cntl, L(od), AX Mest(ob, L(od, +), AXMest(ob, L(o!), -)}. 

Then there is one and only one u l su ch that Eq(ut,ul) is a theorem of Th(ol). This fact 

is stated by the above existence and uniqueness axioms. 

o 

As we mentioned in Example 5.2.3, logical theory Th(ot) is defined by the axioms 

E U{ AX AJout(ob: L( o~», AX Ment/(ob, L(o~», AX Mau(cntl, L(ot», AX Mest(ob, L(on, 

+), AX AfclIt(ob, L(on, - n, denoted by '[K. The concepts of proof and theorem (con­

sequence) in L( on are defined in the same manner as those for L. The set of ail theorems 

of E/\ is denoted by Th(on. 

5.3 Consistency and Completeness of COCO LOG 

We show that the COCOLOG theory Tho is consistent and then prove a generalized 

completeness theorem stating that the set of theorems of Tho are exactly the set of true 
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formulas in the dass of models of AX.MSPt(L). 

These results for observation dependent theories Th(ot) can be obtained ln a same 

manner. 

We say a set of formulas T is consistent wlth respect to the axiomatic theory of flfst 

order logic wÎth equality if there does not exist any formula A where A anu ...,A are both 

derivable from T. 

The completeness of the axiomatic theory presented at Section 5 1.4 can be established 

by use of the following dassical result on the completeness of a first order theory with 

equality as follows: 

Theorem 5.3.1 (Henkin 1949) Every consistent set of first order formulas 'J' has a 

model MT. 

A proof of this theorem can be found in any standard book on mathematical logle, 

here we reference [Men64]. 

A first order theory with equality is any flrst order theory which has the equahty 

axioms. The following theorem states a known result whlch states that an equahty theory 

is complete. 

Theorem 5.3.2 If a formula Ais true in a model with equality MI = then it is provable 

in the first order logic with equality, i.e., 

MI = 1= A implies f- LA. 

A proof of this theorem can be found in any standard book on mathematic.al logic, 

here we reference [Men64]. 

Next consider the following generalized form of completeness theorem for the theory 

Tho. As before, wc denote by [ = {AX Mdyn(L), AX MOUI(!,), AX MTb/( L)} the set of 

special axioms of Tho; if A is a c.onsequence of [ under a first order theory wlth equahty 

then this is written as L f- [ A, and ML will denote any model for [ 
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Theorem 5.3.3 (Soundness) For any formula A E J'maL we have: 

r r- L A implies Ml: F 4. 

Proof 

Soundness follows from the facts that axioms are true formulas and the rules of infer­

ence preserve truthfulness, hence ail consequences or theorems of the axioms will be true 

in any model of the given axioms. c 

A set of formulas T is abso/utely consistent with respect to a first order theory with 

equality if and only if there exists some formula which is not derivable from T, i.e., 

3A,T'iL A. 

Theorem 5.3.4 (Equivalence) For any first order theory with equality where Modus 

Ponens is a ru le of inference, the following are equivalent: 

(i) T is consistent, i.e. TilL .l. 

(ii) T is absolutely consistent, i.e. 3A, T IfL A. 

Proof 

(i) ==} (ii) 

(i) is equivalent to the statement that for any A, T r-L A semantically implies T If L ...,A 

(since otherwise one has T r-L A and T r-L -.A which is A~.l. and so T r-L.L by Modus 

Ponens). 

This implies there exists a formula A suth that T'iL A and hence (i) implies (ii). 

(i) <== (ii) 

(i) is false if and only if for sorne formula A, T r-L A and T r-L ...,A. 

Now take any formula B E FmaL. Then we have r- L -.A --+ (....,B --+ -.A) and 

Th, ...,A. Hence, by Modus Ponens, we have T r-L -.B --+ -.A. 
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ln the same way, we have I-L A -+ (..,B -+ A) and T I- L A, hence we have'/' h. 

-.B -+ A. Again by Modus Ponens and the third logical axiom we get T 1- L Band hence 

we get the negation of (ii) as required. 0 

Theorem 5.3.5 (Consistency) L is consistent with respect to the first order theory 

with equality, i.e., 1: ~L 1... 

Proof 

This follows from the existence of the model Ml: for the carefully selected set of 

axioms 1:. Since we know any finite machine compatible with L will be a model of L 

Then by the soundness theorem we will get what we want. 

Take any formula A E L which is an axiom of Tho. Then we have Ml: ~ ,A. 

By tht' soundness theorem, this irnplies r ilL ..,A. By the Theorem 5.34, this imphes 

1: ~L 1.. and hent:e L i~ consistent. o 

Now we come to the generalized completeness theorem which connects the concepts 

between syntax and semantics of COCOLOG theory. 

Theorem 5.3.6 (Generalized Completeness) A formula A E PTr/.aJ. is true in every 

model Ml: of L if and only if A is a consequence of L under the first order theory with 

equality, i.e. 

Proof 

We only prove the completeness part of the theory here, the soundness part follows 

from the Theorem 5.3.3. 

Suppose r ifL A, we need to show there exists a model Ml: such that Mr ~ A. 

ru{ -.A} is consistent since ris consistent and the assumption that L ~/, A. Hence 

by Henkin '5 theorem there exists a model MI: U{-.,A} for r U{ -,A}. Notice this model 
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is also a model for 1:. Therefore we can write MrU{--,A} as Mr with the additional 

condition M r 1= ....,A. This proves MI: ~ A as required. 0 

From the generalized completeness theortm we see that each theorem A E Tho will be 

true in every model of 1:. There are infinitely many such models. How can we determine 

the truthfulness of a given formula wh en there exists a possibly infinite number of models? 

By the generalized C'ompleteness theorem we know truthfulness can be identified with 

theoremhood. Any proof of a theorem is, by definition, a finite sequence of formulas, and 

in many cases the length 1 of the sequence is bounded by a polynomial function of the 

length of the theorem and axioms. However, it is known that in the worst case, a proof 

can be intractable (i.e., of length at least exponential in 1). Specifically, Haken [Hak85] 

has shown recently that there are families of propositional formulas whose minimal length 

of resolution proofs will be bounded below by an exponential function of the number of 

clauses in the formulas. Moreover, the cost of searching for a proof of a true formula is 

greater than the length of the proof itself because no existing strategy for a mechanical 

theorem proyer can avoid generating useless unifications or resolvents. T 0 minimize such 

a cost via different strategies becomes the key issue in the subject of mechanical theorem 

provmg. 

Next, we construct the unique model property for rand therefore we get decidability 

of the theoremhood for COCO LOG theorems. 

5.4 The Unique Model and Decidability Properties 

As we mentioned before, we can get a unique model by adding additional axioms to 

specify sizes of XM • UM , yM. Otherwise, there can be infinitely many different models. 

For example, any finite or infinite machine M' = (XM',UM', yM', <P', 7]') satisfying 

X M ç XM', UM ç UM', yM ç yM' and such that <P' and rl are compatible with <J> 

and '1 up to X M , yM and UM , can be a model of the given machine axioms. Hence the 
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machine axioms alone cannot uniquely characterize a given finite machine. In fact, one 

cannot determine a unique model by any given set ofaxioms. The most one can achieve 

by axiomatization is a set of equivalent models up to isomorphism. Hence uniqueness is 

only used in this sense. 

Suppose IXMI = N, IUMI = m and IYMI = p, we first consider the size axioms 

for X M , then we can derive the size axioms for UM and yM respectlvely ln a similar 

manner. 

The Size Axiom of X M 

xt:: -,eq(xI,x2 ) A -.Eq(X1 ,X3
) 1\ Eq(xI,x4

) /\ ••• /\ -.Eq(Xl,xN) 

/\-'Eq(x2 ,x3) /\ -'Eq(x2 , x4) 1\ ... /\ -.Dq(x2,xN ) 

/\-.Eq(x3 , x4 ) 1\ ... 1\ -.Eq(x3, xN ) 

X'ff specify the fact that there are at least N distinct constant symbols in the state 

space XM of the finite machine M, i.e., IXM 1 ~ N. 

Next we specify the fact there are at most N elements in the intended model by 

-.X~+l' 

By adding x'ff and -.X~+1 to the originally proposed machine axioms the only models 

one can get will be the models that have exactly N distinct states. That IS the set of 

N-state machines in which CI> and TJ are given as specified. Further, if we add restrictions 

on the size of UM and yM we get a unique model for M. 

ln the following we denote M and M'as finite machines and we also use them 
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to denote the sets of elements in eaeh machine as M = XM UUM UyM and M' = 

KM'UUM'UyM'. 

Definition 5.4.1 (Homomorphism) If M and M' are two finite machines. then a map 

h from M to M' is ealled a homomorphism if 

h(<S>(x, u)) <S>'(h(x), heu)) 

h(7](x)) - 7]'(h(x» 

h( +k(N)(I, l')) +~(N)( h(I), h(I'» 

h( -k(N)(I, l')) - -~(N)( h(I), h(I')) 

0 

Next we show the unique model property of the theory Tho when together with the 

size axioms of X M • UM and yM. we define 

as the set ofaxioms for the given finite machine M. at the instant zero. 

Theorern 5.4.1 (Unique Model Property) The logieal theory defined by L~ has a 

unique model up to isomorphism. 

Proof 

The proof of this theorem depends on the existence of a homomorphie mapping for 

any given pair of models of r~. 

Now consider any two models M and M' where M = (XM, yM, UM, 4>,7]) and 

M' = (XM',yM',UM ', <S>',q'). By the size axioms we have IXMI = IXM'I = N, 
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lyMI == lyM'1 = p and IUMI = IUM'I = m. Then ~)' the machine axioms we have 

<1> : X M X UM -+ X M and 4>' : X M ' x UM' -+ XM'; 1] : XM -+ },·M and ,,' : 

XM ' x UM' -+ X M '. Nowan one-to-one and onto mapping h : M -+ M' can be 

defined, where Mhere is also taken as the union of X M , UM and FM and M' is also 

taken as the union of XM', UM' and yM'. 

Let L denote the set of symbols of logical theory for a finite machine, 1 : L --+ M 

and l' : L -+ M' be the interpretation functions correspond to the model M and M' 

re~pectively. Construct a mapping h : M -+ M' such that the followlng relation IS 

satisfied: 

hem) = l'(I-I(m)) for any m E M 

The relations among the s~t of L, M, M'and the mappings of l, l'and Il are shown 

as follows: 

L 

:/~ 
M h ~M' 

We need to show that h is a bijective mapping. This property is guaranteed by the 

bijective mappings of 1 and l'. 

First, onto can be shown by taking any m' E M', then we have l'-I(m') = 1 for sorne 

1 ELand l(l) = m for some m ElA. We can show that this mis the preimage of the 

m' under h. 

hem) = 1'(I-I(m)) 

- 1'(I-l(I(!'-l( m'»» 
1'( l'-le m'» 

- m' 
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Second, the one-to-one property '.an be shown by ta king any ml, m2 E M, assume 

that 

The following arguments will produce a contradiction as desired: 

This shows that the mapping h as constructed is a bijective mapping. 

Now if we denote hem) = m' for any m E M and m' E M'and take any for­

mula Eq( <1>( x', u'), x1 ) from the language L. Interpretation I will map this formula 

to <I>{l(x l
), l(u'» = l(x1) which is 4>(x!n, u~) = xÏm and the interpretation l' will 

map the formula to <I>'{l'(x'),I'(u'» = l'(x1 ) which is <I>'(x!n" U~/) = ~m/. Now since 

hem) = l'U-I(m» we have the following relationship between the two models: 

<1>( i i) - j Xml Um - Xm iff <1>' (X~/ U!n/) = xÏml 

77(X~) = Y~ iff '( i) i 77 Xm' = Ym, 

+k(N)(lml I~) = I~I iff +~(N)(lm" I~/) = I~I 

-k(N)(lml I~) = I~I iff -~(N)('m' , I~/) = I~I 

From this it follows immediately that the mapping h so defined is a homomorphism, 

i.e., h satisfies the following relationships: 

h(<I>(xi , ui» 

h(7](xi )) 

h( +k(N)(I, 1')) 

h( - k(N)(I, 1')) 

<I>'(h(xi ), h(uï» 

- 77'(h(xi» 
+~(N)(h(I), h(I'» 

-~(N)(h(I), h(I')) 
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Since for each dynamic axiom of the form 

Eq(4)(x', ut), I J ) 

We have <S>(xi , ul
) - xj 

ln model M. Then the image nf xj under Il IS h(xj ) =­

h(4)(xi , ui» = x,j. Hence we have 

Thus 

Similarly we have 

h( +k(N)(I, l'» - +~(N)(h(I), h(I')) 

h( -k(N)(I, l'» = -~(N)(h(I), h(I'» 

Therefore L~ has a unique model up to isomorphism. o 

Definition 5.4.2 (Proper Formula) A formula P is a proper formula with respect to 

a set of formula r if P contain neither any predicate symbols nor function symbols which 

do not appear in any formulas in r o 

Definition 5.4.3 (Complete Axiomatization) A set of formulas r is sald to be com­

plete if either P or -.p is a consequence of r for any proper formula P with respect to r 
o 

It is known result that if a set ofaxioms has a unique model then that set of axioms 

is complete. We state this in the following theorem. 

Theorem 5.4.2 The axiomatization defined by L~ is a complete axiomatization of M. 
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We just sketch the proof as follows. 

Proof 

To prove that r~ is a complete axiomatization of M, we need to show that for any 

formula A E L either L~ 1- A or r~ 1- ...,A is true. We know r~ is consitent since the 

existence of the models for r?w. By Lindenbau's lemma, see [Men64] if r~ is consistent 

first order theory, then there is a consistent complete extension of L~. But since we 

know r~ has a unique model, see Theorem 5.4.1, this implies the complete extension of 

r~ is r~ and hence L~ is complete since otherwise r~ cannot have unique model. 0 

ln the following, by provable we mean, first, at least, one proof of P exists and second, 

the search for any proof will always terminate. 

Theorem 5.4.3 (Decidable Theoremhood) The logical theory as generated by L~ 

for any given finite machine M is decidable. 

Proof 

By the generalized completeness of first order logic in general and COCO LOG in 

particular, see the previous sections we know that for any formula P, 'P is provable if P 

is a consequence of r~. Now for any formula l' we start a search for ail possible proofs 

for both P and ...,1'. One of these two searches will terminate since L~ is a complete 

axiomatization, i.e., either P or ...,p will be a consequence of L~. Thus we can conclude 

that the axiomatic theory generated by L~ is decidable. 

o 

Now if we denote r,X, = r~ U rI. as the axioms of the theory Th(ot) with the size 

axioms then the above results on the r~ can be generalized to any logical theory in a 

COCO lOG family. 
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5.5 Extra-Logical Transitions Between logical Theo-

• 
t'les 

A realization of a COCO LOG is a sequence of first order theories generated by a given 

sequence of observations. It corresponds to a path in the COCOLOG tree structure (see 

Figure 5.2). The true formulas in the nodes of this tree can be captured by a possible 

world interpretation of a modallogie, see [GoIS7] Instead of modalloglc, we use a famlly 

of classical first order logics to codify the state observation and control problem slnce 

we believe a modal logic representation would be too restnctive The word restrictive IS 

used in the following two senses: First, it can easily represent a statie world ln other 

words, a modal logic cannot handle unknowns or the changes in the dvnamlCs or the 

environment of the system and this prohibit the use of the loglC for real time control 

tasks. Second, it is not necessary to code ail the paths of an observation tree into a loglC 

since a physical system cannot realize ail su ch possibihties. Therefore the extra codlng 

of modallogic system will simply further delay its response time. For more discussion on 

this set> [CWG88]. 

ln order for the family of logics in a COCO LOG to work coherently, certain requirements 

have to be met. These requirements can be viewed as requirements on the transitions 

between logical theories which cannot be represented in these theories themselves. Hence 

the extra-Iogical feature of the transitions must be described at a meta-Ievel ln the 

following, we represent the meta-Ievel requirement as meta-Ievel axioms and the meta­

level properties as meta-Ievel rules of inference. 

Meta-Ievel axioms will be used to describe the assumption that there are no errors 

on the observation channel and the control actions sent from the logic controller will 

be implemented instantly and correctly. Hence there will not eXlst any conflict between 

observation and control axioms and reality. 

We write r~'c as L% U;=dAXMa65(cntl,L(ot»)} and deflne an Observation and 
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Control Theory ThO,C(on of l:%'C as ThO,C(o~) = {A : l:%'C rL A}. From this definition 

we deduce the following rule of inference to connect theories at different instants along a 

trajectory of observations and control actions for a finite machine. 

NESTING OF THEORIES (Meta-Level Rule of Inference) 

A E ThO(on implies A E ThO,C(on, A E ThO,C(on implies A E ThO(of), for any 

k' > k. 

The sequence of theories satlsfying the following condition 

We see that this sequence of COCOLOGs combined with the meta-Ievel requ:rements 

constitute a c/osed loop feedback logical control system as displayed in Figure 5.4 

M=(X,U,Y,<I>,l1 ) 

Int.rface Between Plant and Loglc Controller 

Eq<\ ,yi) 

Eq(Uk_1 ' U') 

Worldol 
MlthematlCiI 

Modellng 

LoglcWorki 

Figure 5.4: A Closed Loop Logic Control System 

Example 5.5.1 Continuing with the example in Section 5_1.4, we consider here a se­

quence of theories Th(Ol), Th(oD," . ,Th(o~). The observation dependent theories 

T h( on for k ~ 1 will contain observation dependent axioms as discussed in Section 5.2. 

Here we assume an observation is given as y(l) = yi, the target state is chosen as 

;rT = xl and the control task is stated as: if every state x in the current state estimate 
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(x';}(oD can be steered into the target state xT by sorne control in three steps then take 

the first control. Otherwise take the control u* which will lead the machine into an ,die 

state. 

A meta-Ievel agent will then add observation axiom Eq(Y(l),l/) and the followmg 

control axioms to theory Tho to generate theory Th(Ol) 

Cl -+ Eq(U(1),u1
) 

--Ct!\C2 ~ Eq(lJ(1),u2) 

--(Cl V C2 ) ---+ Eq(U(l), u*) 

Where C, is an abbreviation ofVx, 3u', u", eC8E(x) A Eq(<l>(<l>(<1>(x.u'). '/t"), u').,l'T) 

The theorems of the theory Th(od include: eC SEl(Xl), cCS Et{.r2) , -,('(,'881(J,J). 

Eq(U(l), u l ), ... , etc. 

The control of u(l) = ul will be implemented as a result of the theorem J~q( (J(l), Ill) 

proved in Tho. The meta-Ievel agent will then proceed to continue to build theory 

Th(oD,"" Th(o~),.... 0 
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Part III 

An A utomated Reasoning 

Methodology for COCOLOG 
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ln Chapter 5, we introduced the families of first order theories which we cali candltlonal 

observer and control/er logie and we gave the acronym COCO LOG to any such a famlly 

of theories. This system of theories was created for the purpose of designing observers and 

controllers for partially observed input-state-output flnite state machines. The realizabllity 

of a logic-based control framework, as presented in Chapters 4 and 5, is based on the 

assumption that, at each dock instant k, the logieal theory 'J'h(on can be generated 

instantly, or, at least, any theorem P of the theory Th( on can be generated Instantly 

This is indeed an idealizatlon, Further there is the crucial implernentation question of 

the computational complexity of ATPs (Automatic Theorem Provlng)' the automatlcal 

generation of a proof for a given theorem in the proposition al calculus, by resolutlon, can 

be of exponentiallength as a function of the length of the theorem statement (p,geonhole 

formula) (see [Hak85]). It is to be stressed that thls statement is specifie to resolutlon 

proofs. Bibel [Bib90] has shown that the connection method glves quadratlc proofs of the 

pigeonhole formulas. The situation is even worse in the first order, seml-deC"idable, case, 

see [Men64]. 

ln this part, we present a function evaluation based resolution, called FE-resolutlon, 

for the sets of conditional observer and controller logies. FE-resolution is, essentlally, 

extensions of the Resolution Principle which was invented by Robinson [Rob65], and the 

Para modulation technique, see [RW69, CL73] for logies wlth equahty Completeness of 

the FE-resolution proof method is given, in Chapter 6, in terms of relative truthfulness 

and validity. 

There are certain similarities between the funL .. ,m evaluation based resolutlon, pre­

sented in Chapter 6 and the procedural attachment, semantic attachment and theor~1 

resolution etc. in AI literature, see [GN87, CL73]. Recently, Myers (see [Mye91]) has 

presented an universal attachment technique to unify and to extend the various attach­

ment techniques. The differences between various attachments and the FE-resolution are 

compared and discussed at the end of Chapter 6. 
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Chapter 6 

Reasoning in COCOLOG with 

FE-Resolution 

6.1 Concepts of Automated Theorem Proving 

Automated theorem proving is the subject that has had the broadest and deepest impact on 

almost every aspects of the subject of Artificiallntelligence. Finding an effective approach 

to mechanically generate proofs of logical theorems has been a dream for centuries in 

human history. Resolution Principle invented by Robinson, see [Rob65], in 196,1), is thefirst 

computer implementable theorem proving mechanism. Since then, many improvements of 

resolution principle have been proposed in the direction of improving the effectiveness. In 

this section, we present basic concepts and results related with resolution based theorem 

proving technique. 

ln Chapter 5. we present a COCOLOG system in the form of a sequence of logical 

theories. Each logical theory is given in the form of an axiomatic system which consists 

ofaxioms and rules of inference. In Example 5.1.1, we gave a proof of a theorem in a 

simple theory. It is difficult, if not impossible, to automatically generate this type of proof 

for a theorem of any first order theory. Since the use of Modus Panens (from A and 

122 
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A -+ B, infer B) requires proving A and A --+ B first. There can be infinltely many 

clauses of the form A, A --+ B to be tested and this cannot be done in fmite time by a 

machine. This situation is in analogy with the fact that in order for a human to prove a 

mathematical theorem it is quite often necessary to first prove sorne lem mas as building 

blocks. However, there is no effective way to teach a machine how to discover useful 

lem mas. 

Consider a formula A of a logical theory characterized by a set ofaxioms L ln order 

to prove A is a theorem by a resolution based automatic theorem provmg procedure, r 
is first transformed into its da usai form (this can be done efFectively and automatically 

[CL73]), denoted by /\1:, which can be viewed as a conjunction of clauses A clause IS 

defined to be a disjunction of atomic predicates or negatlon of atomic predicates whlCh 

are called literaIs (or atom), consider, for example, Eq(x, x') V -.Rb/(x, ,r', 1) is a clause 

where Eq(x, x') and -.Rbl(x, x', 1) are literais. A ground clause is a clause where variable 

are replaced by constants. The same for ground literai, ground term, etc. By the 

Deduction Theorem [Men64], we have that A is a theorem of r: if and only if I\L: -+ A 

is a v~!id formula, and this holds if and only if -.(I\L: --+ A) is unsatisfiable, i e., if and 

only if 1\[ Â -.A is unsatisfiable. The unsatisfiability property has to be verifled under 

ail interpretations. Herbrand showed that there exists a special class of interpretations, 

called Herbrand interpretations, su ch that a formula is unsatisfiable If and only If it IS 

false in ail Herbrand interpretations. A Herbrand interpretation for a glven set of clause 

S is considered to be the minimum interpretation possible It is constructed by building 

an interpretation over the set of possible ground terms (Herbrand universe) of the set of 

clauses S. For example, S = {Eq(x, Xl), Rbl(x, 4>(x, u), 1)}, then one Herbrand universe 

for Sis H = {xl, 4>(xl, ul), 4>(41(xl, u l), u1), ... ,} Herbrand interpretation ln this case 

could be 1 = {Eq(xl,XI),Rbl(xl,xl,I), ... ,}. A ground predicate in an Herbrand 

interpretation is intended to be interpreted as true in that interpretatlon Hence a Herbrand 

interpretation will contain either P or -,P, where P is any ground predicate. Formai 

1 
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definitions of the notions of Herbrand universe and Herbrand interpretation Cdn be found 

in most logie textbooks, and, in particular, for their use in meehanieal theorem proving, the 

reader is referred to [Cl73]. Herbrand interpretations makes it possible to systematically 

generate proofs based on the verifications of ail Herbrand interpretations. The complete, 

possibly infinite, set of Herbrand interpretations can be organized in the form of a semantic 

tree. A semantic tree is a systematic structure of Herbrand interpretations. One version 

of th~ Herbrand Theorem states that a set offormulas is unsatisfiable if and only if a finite 

c/osed semantic tree exists, where a closed semantic tree gives rise to a set of Herbrand 

interpretations in which the given set of clauses will be unsatisfiable. (see [Cl73]). There 

is a direct eorrespondence between a finite closed semantic tree and a resolution proof 

for a theorem. Completeness of resolution principle can therefore be established by this 

correspondence. As we pointed out before, Haken [Hak85) showed that there is a set of 

propositional formulas for which the length of a resolution proof can be exponential, with 

respect to the length of the formulas. Furthermore, in the first order case, a search for 

a proof of a formula can be non-terminating due to the semi-Jecidable property of first 

order logic. This corresponds to the existence of a possibly infinite number of Herbrand 

interpretations over which a verification can be infinite. 

From the construction of a Herbrand universe and the Herbrand intel pretations it may 

be S('en that infiniteness of the set of interpretations is inevitable if a funetion symbol 

is introduced. Our proposed approach is to remove the logical descriptions of functions 

and then add the facility of function evaluation to the resolution based proof procedure. 

Function evaluation restricts the interpretation of the function, and hence a", unique 

up to isomorphism, interpretations will apply. Since by functio:1 evaluation, the model 

will be restricted to the constants and functions that constitute the evaluation proeess. 

We assume functions are defined deterministic211y and therefore only one upto isomorphie 

interpretation to the funetions and constants is p\lssible. Therefore the extended resolution 

based proof procedure will th en generate only valid formulas relative to the functions, or 
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in other words, will verify only the set of unsatisfiable formulas relative to the functions. 

Furthermore, this evaluability of functions actually extends to predicates and this enable 

us to adopt our proof pmcedure to formula p.valuation. 

It is commonly thollght that function definition and evaluation constitllte essential 

parts of ~:'assical, or functional programming and that in such a setting the close rela­

tionship between specification and control of data flow makes it impossible for these two 

parts to be separated from each other. On "~e other hand, the development of logie 

programming (PRO LOG) suggests that the issue of problem solving ean be viewed as 

a process of logical theorem proving, where the programming is deeomposed into logle 

and control, complementary activities, see [Kow79]. The bridge cOllneeting funetlonal and 

logical programming is to be found in the way one chooses the representations of functions 

versus predicates. However, we shall not discuss the issue of systematically choosing such 

representations so as to give optimal performance in any given sense. Instead, we shall 

consider only the general issues of consistency and completelless of the proposed reso­

lution proof technique al d shall make sorne remarks concerning its eomplexity reduction 

properties. 

As we pointed out earlier, the appearance of function symbols is the source of the 

existence of infinitely many Herbrand interpretations and hence a source of computa­

tional complexity. There.ne two types of function symbols in a COCO lOG. denoted 

Fun = SF UDF, the disjoint union of SF and DF, where SF denotes the set of 

Skolem Functions which are introduced in the proeess of transforming formulas into thelr 

equivalent (with respect to unsatisfiability) clausal forms and J) F is the set of Domain 

Functions which are given by the special axioms of the axiomatic systerl1 under consider­

ation. 

Furthermore, we consider a partition of predieate symbols. We wrlte Apr = 8Apr U 

N EApr to denote eva/uable atomic predicate symbols, EApr , and non-evaluable atomic 

predicate symbols, N EApr • An evaluable predicate is a predicate for whlch one !:'an 

L ________ _ 



CHAPTER 6. REASONING IN COCOLOG WITH FE-RESOLUTION 126 

effectively calcu\.ne its truth value, otherwise a predicate will be called non-evaluable. 

Since in a finite domain, one can always evaluate the truth value for any given atomic 

predicate, but one can not always do so effective/y. Effective is, used here to mean (i) 

a mechanical procedure exists to evaluated any given predicate; and (ii) the mechanical 

procedure will terminate within a polynomial ti.i,e of the input predicate length. The 

concepts of evaluable and non-evaluable atomic predicates can be extended in a natural 

way to evaluable and non-evaluable formulas, as discussed in Section 6.3. 

6.2 Resolution with Equality Theory 

The Resolution Principle introduced by Robinson [Rob65] has been widely used in me­

chanical theorem proving. In this section we discuss mechanical theorem proof methods 

for COCOLOG theorems in terms of an extension, called paramodulation, of the original 

resolution principle for logic with equality. This is clearly of value since in a COCOLOG 

theory the equality predicate Eq(·,·) is one of the atomic predicates used for expressing 

the machine axioms. 

T 0 prove a theùrem in which the equality predicate is involved one way is to adopt 

the direct approach of introducing extra axioms to describe the equality relations in the 

logica! theory. An alternative to this, which is often more efficient, can be achieved by 

introducing extra inference rules. 

We first review how to describe an equality relation. We know that an equality is 

an equivalence relation and by the axioms one can substitute an equal for an equal, i.e., 

one can make an identity substitution. For more discussion of this see [Men64, CL73]. 

Truth for an equality predicate of a set of clauses Scan be axiomatized in the manner of 

Chapter 5 and for reader's convenience we list them here de/loting them /(=(S): 

The Equality Axiom Schemata /(=(8) 

(1) Eq(x,x) 
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(2) Eq(x,y) --+ Eq(y,x) 

(3) Eq(x,y)t\Eq(y,z)-+ Eq(x,z) 

(4) Eq(x,y) --+ Eq(J(x),f(y» 

(5) Eq(x,y) --+ (P(x) --+ P(y» 

for each function symbol f in S 

for each predicate symbol P in S 
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For a resolution based theorem proving procedure, thes.'! extra axioms will certainly 

reduce the speed of a search or increase the size of the search space, since the number 

of attempted unifications during the search of a resolution proof is often an exponential 

function of the number of the input axioms. The number of equality axioms is a linear or 

at most a polynomial function of the number of function and predicate symbols T 0 avold 

such a dramatic increase in the size of the search space for resolutlon proofs, Robinson 

and Wos [RW69, Rob68] proposed a generalized resolution principle or paramodulatlOn 

as an inference rule in addition to the res/)Iution principle and we shall briefly review thls 

idea in the following paragraphs. 

To understand paramodulation, the key concepts are those of a class of equality in­

terpretations, denoted E-interpretation and the notion of un ... tisfiability in the class of 

equality models, denoted E-unsatisfiablhty. These are formally defined ln terms of Her­

brand interpretation. 

Definition 6.2.1 (E-Interpretation) An E-interpretation of a set of clauses Sis a Her­

brand interpretation 1 which satisfip.s the following conditions. 

1. Eq(x, x) E 1 

2. Eq(x,y) El implies Eq(y,x) E f 

3. Eq(x,y), Eq(y,z) E f implies Eq(x,z) El 

4. Eq(x,y) E I,L[x] E 1 implies L[yJ E 1 

where x, y, z are elements in the Herbrand universe of Sand L is an atomic predicate or 

a negation of an atomic predicate, i.e. a literai in I. 0 
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Definition 6.2.2 A set of clauses S is called E-satisfiable if there is an E-interpretation 

that satisfies ail the clauses in S. Otherwise S is called E-unsatisfiable. 0 

An E-interpretation is an interpretation that satisfies equality axioms, i.e. that is a 

model of an equality theory. Next we give a theorem which states that E-interpretations 

indeed charaderize the equality axioms. 

Theorem 6.2.1 ([CL73]) Let S be a set of clauses and K=(S) be the equality axioms 

of S. Ther. Sis E-unsatisfiable if and only if the set of SUK=(S) is unsatisfiable 

Furthermore, 

Theorem 6.2.2 ([CL73)) A finite set S of clauses is E-unsatisfiable if and only if there 

is a finite set S'of ground instances of clauses in S such that S' is unsatisfiable. 

Proofs of the above two theorems can be found in [CI.73]. 

Next we define paramodulation and then state the result that by using both resolution 

and paramodulation, we can deduce the empty clause 0 from an E-unsatisfiable set 

of clauses. Thus the combination of paramodulation and resolution is complete for E­

unsatisfiabie set of clauses. 

Definition 6.:' J (t-Jaramodulation) Let Cl and C2 be two cla uses with no varia bles in 

common. If Cl = L[t] U q and C2 = Eq(r', 8) U C~, where L[t] is a teral containing the 

term t and C~ and Cl are clauses, and if t and r have a most general unifier u, th en the 

clause 

Lu[su] U C~(7 U C~u, 
where Lu[su] denotes the result obtained by replacing single occurrence of tu in Lu by 8U, 

is ca lied a binary paramodulant of Cl and C2• We also say that we apply paramodula:ion 

from C2 into C1• 0 
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We denote F(S) as a set of reflexive functional axioms, whlch are any formulas in the 

form of either (1) or (4) of the equality axiom schemata in [C(S), from a given set of 

clauses S. In particular the clause Eq(x, x) is in F(S). Now we define that a deductlon 

of resolution and paramodulation of a set of clauses S shall be applications of resolution 

plus para modulation to the clauses in SU F(S). Next we state the known completeness 

result of paramodulation. 

Theorem 6.2.3 (Completeness of Paramodulation) Given a set of clauses S, S is 

E-unsatisfiable if al ..... ' 'J"'Y If there is a deduction of resolution and paramodulatlon of the 

empty 0 clause from S. 

Proof of the completeness of paramodulation can be found in [RW69]. 

Consider the machine axioms in a COCO LOG theory; they are expressed ln terms 

of equality predicate, state transition function and output function. like the equallty 

predicate these functions can also be expressed either by extra axioms or they can be 

embedded into a set of new inference rules and therefore the efficiency of the proof 

procedure can be improved. In our formulation the inference rules corresponding to these 

functions will be designed such that they can deduce the empty clause 0 from any set of 

clauses which are unsatisfiable in any models due to the given finite machine M defined 

by state transition and output functions. We will cali su ch models as M-unsatisfiablE. 

More of these will be discussed in the next section. 

6.3 FE-Resolution in a COCOLOG Theory 

Inspired by the concepts of an E-interpretation, E-satisfiability and paramodulation for 

equality predicates, we propose here similar concepts for functions in a cOcOLOG theory 

The result!> derived in this section can be generalized to extend to other logical theories. 

The key idea is to restrict the size of the Herbrand universe of a glven set of clauses 
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Recall that a Herbrand universe of a set of clauses S is a minimum set of ground terms 

of S. The minimality is defined in the sense that for any interpretation III of S, there 

exists a Herbrand interpretation 1; of S from defined Herbrand universe such that a clause 

CES is true in 1. implies that C is true in 1;. Therefore S is unsatisfiable if and only 

if S is false in ail Herbrand interpretations. The point here is that a Herbrand universe 

is designed so that one can construct Herbrand interpretations within which the validity 

of a formula can be verified. In fact what we want to characterize here is a concept of 

relative validity with respect to the given finite machine. To be more precise, we want 

to define a pseudo-Herbrand universe from which we can construct interpretations and 

verify the validity of a formula with respect to the finite machine. Relative validity is used 

in the sense that a formula is valid relative to a finite machine M if it is interpreted as 

true in any model of the finite machine M. These are semantical constructions. The 

corresponding syntactical counterpart will be called FE-resolution. The idea is to add a 

function evaluation procedure to the resolution principle and paramodulation. The syntax 

and the semantics will be connected by the completeness result of FE-resolution. FE­

resolution can then be extended to the predicates in EApr : the set of evaluab'e atomic 

predicates at the predicate level and therefore evaluable valid formulas with respect to the 

models of the given finite machine can be eliminated at the formula level. 

Definition 6.3.1 CM-Universel Given a finite machine M = (XM,UM ,yM,<I>,7]) 

and a set of clauses S, an M-universe is defined as the union of the following sets: 

Mo {a : a is a constant in S}, 

Ml = {<I>(ax,au),7](ax),+k(N)(a/,al),-k(N)(aJ,a~): 

ar E MonXM au E MonUM, and al,a~ E Mon Ik(N)} 

Mk+! - {4'>(ar,au),7](ax),+k(N)(al,a~),-k(N)(aJ,a~): 

ar E MknXMU E MknUM
, and aJ,a~ E Mkn1k(N)} 



CHAPTER 6. REASONING IN COCOLOG WITH FE-RESOLUTION 131 

Thus M-universe is defined as 

if Mo i <P 

in case Mo = <P 

o 

Now we say a set A is an atom set (or a M Base) of S if A consists of only ground 

atoms occurring in Sand where terms are elements of an M-universe of S. 

We define an interpretation on an M-universe of S to be a pseudo-Herbrand inter­

pretation where the Herbrand universe has been replaced by an M-universe. To be more 

specifie, let A = {Al' A2,"', An""} be the atom set of S, then 

is an interpretation if m, is either A, or -.A,. An E-interpretation over an M-universe 

will be defined as given in Definition 6.2.1 where the Herbrand Universe being replaced 

by the M-universe. Next we define an M-interpretation as follows. 

Defin;tion 6.3.2 (M-Interpretation) Given a set of clauses S and a fmite machine 

M, an M-interpretation is an E-interpretation which in addition satisfles the following 

conditions: 

1. Eq(4)(a,b),a') El if 4>(a,b) = a' 

2. Eq(Tj(a),c) E 1 if 17( a) = c 

3. Eq( +L(l, l'), 1") E 1 if +k(N) (l, l') ::. 1" 

4. Eq(-L(l, 1'),1") El if -k(N) (l, l') = 1" 

For any a a' E X M b E UM C E yM and 1 l' 1" E lM , " , , k(JIi o 

ln fact an M-interpretation is a pseudo-Herbrand interpretation where ail machine 

axioms will be interpreted true and Eq(.,·) is interpreted as the identity relation. A set of 
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clauses S is said to be satisfiable in an interpretation l, denoted 1 F6 S, if and only iffor 

any clause C in S there exists sorne ground clause C' of C such that C'is interpreted true 

in 1. Truthfulness of first order formulas can be defined by the standard Tarski semantics 

(see [Men64] for reference). Next we define M-validity and M-unsatisfiability. 

Definition 6.3.3 (M-Relative Validness) A formula Ais said to be M-re/ative va/id, 

or M-va/id if Ais interpreted true in every M-interpretation, i.e. for each M-interpretation 

lM we have lM FA. 0 

Correspondingly we have: 

Definition 6.3.4 (M-Relative Unsatisfiability) A formula Ais said t~ be M-re/ative 

unsatisfiab/e, or M-unsatisfiab/e if A is interpreted false in every M-interpretation, i.e. 

for each M-interpretation lM we have lM ~ A. 0 

Obviously we have A is M-relatively valid if and only if -.A is M-relatively unsat­

isfiable. Next we show that an M-interpretation characterizes the class of models for 

the given finite machine M defincd by the set ofaxioms L~. But before we do 50, we 

first give two lemmas. It is a known result that if a set of clauses S is satisfiable in an 

interpretation 1 then S is also satisfiable in any Herbrand interpretation ]* corresponding 

to 1 (see lemma 4.1 in [CL73]). Now we extend this result from Herbrand interpretations 

to E-interpretations and M-interpretations respectively. 

Lemma 6.3.1 Let IC(S) be the equality axioms for a set of clauses S, then if a Herbrand 

interpretation 1* satisfies [(=(S) then 1* is also an E-interpretation. 

Proof. By the converse of Theorem 6.2.2, 1* F ](=(S) implies that for any axiom 

A E I<=(S) each ground instance A' of A su ch that 1* F A'. But since each axiom 

ln K=(S) is assumed to be quantified universally it follows that any ground instance A' 

of any axiom A in /(=(S) is satisfied by 1*. Therefore r meets the conditions for an 

E-interpretation and 50 1* is also an E-interpretation. 0 
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Lemma 6.3.2 Let r~(S) be the machine axioms for a set of clauses S, then .\.Ir any 

E-interpretation JE satisfying r~(S) it is the case that lE is also an M-interpretation 

Proof. The proof is similar to that of the previous lemma. lE ~ r~(8) implies that for 

any axiom A E r:~(S) there exists a ground instance A' of A such that lE ~ A'. Since 

each axiom A in r~(S) is universally quantified it follows the h; F A. This imphes 

lE ~ A' for any ground instance A' of A in r~(S) and hence ail the conditions for h: 

as an M-interpretation are met. We conclude that ls is an M-interpretation 0 

Theorem 6.3.1 let S be a set of clauses, and let r~(8) and /\=(8) be the set of 

machine axioms and equality axioms respectively. Then S IS M-unsatisfiable If and only 

if S U r~ U /(=(S) is unsatisfiable. 

Proof. Suppose Sis M-unsatisfiable but Sur~(S)UJ(=(S) is satisfiable. The latter 

implies that 

This is equivalent to 

1 po Sand 1 ~ r~(8) and l ~ K={s) 

This implies for any Herbrand interpretation r corresponding to 1 we have 

r F Sand r ~ r~{S) and 1* ~ /(=(5') 

By lemma 6.3.1 we have 

By lemma 6.3.2 we known that S is satisfied by an M-interpretation, that is to say 

lM F= S, which contradicts the fact that S is M-unsatisfiable and hence the result is 

proved. 
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The other direction of the proof is simple. Suppose SUL~(S)U1<=(S) is unsatis­

fiable but S is M-satisfiable. The latter statement implies there is an M-interpretation 

lM 1= S. Clearly we have lM 1= L~(S) and lM 1= 1<::(S) since lM is also an E­

interpretation. Therefore we have lM 1= S U L~(S) U /(=(S) which contradicts to the 

assumption that SU L~(S) U 1<::(S) is unsatisfiable. This completes the proof. 0 

6.3.1 FE-Resolution and Its Completeness 

ln the following we denote j(XI,··· ,xn ) as a n-ary function with n variables Xl, X2,' .. ,Xn , 

and b == j(al,'" ,an) shall denote function j evaluated at constant, al,"', an is b. Now 

we define rules for function evaluation based resolution, also called FE-resolution. We will 

show that these rules combined with rules of standard resolution and paramodulation are 

complete. In particular, an empty clause will be getlerated from a set of M-unsatisfiable 

set of clause by applying these extended resolution. Function evaluation can be done 

either at constant level or at variable level, i.e., f can be partially evaluated at al etc to 

give the function j(aI,'" ,am-l, Xm,' .. ,.en)' Thus FE-resolution should also be define 

for constant and variable cases respectively. 

Definition 6.3.5 (Constant FE-resolution) Let Cl be a clause which is in the form of 

Cl = L[J(al,'" ,an)] V CL where L[j] is a literai containing the function symbol j in 

its ground form j(al, "', an), C~ is a subclause of Cl, then infer the inferential step 

Cl = L[j(al,"" an)] V Cf 
C = L[b] V Ci 

where b = j(ab' . " an), is called constant FE-resolution and the inferred clause C is 

called a constant FE-resolvent of Ci 0 

Applying constant FE-resolution will result in the generation of ail equivalent clause to 

those which contain ground terms but not ground function terms. Constant FE-resolution 

can be extended to variable FE-resolution as follows: 
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Definition 6.3.6 (Variable FE-Resolution) let Cl be a clause which is in the form 

where L[J] is a literai containing the function symbol J which is in a semi-ground 

form, f(al!"" ak,Xk+l,'" ,Xn, Yb" " YI), Cl is a subclause of Cl and C~ has shared 

variables Xk+l,''', Xn with L[j]. If b = f(al' a2,''', an, Cl," . ,CI) for any constants 

ak+b ak+2, ... ,an, Cl! ••. ,CI, then the inferential step 

L[J(al!'" ,ak, Xk+l,' ", Xn, YI,'" ,YI)] V Cf 
C = La[b] V C~O" 

where 0" = {Xk+l/ak+b Xk+7/ak+2"", Xn/an, yI/Cl"", yI/cd is a substitution, IS called 

variable FE-resolution. The inferred clause C is called a variable FE-reso/vent of C't 

Therefore the reso/vent is given in the following form: 

o 

A variable FE-resolution will generate a ground instance of the function and a semi­

ground instance of the original clause which are logically implied by the original clause. We 

define a FE-resolution step is an inference step of either variable or constant FE-resolutlon 

by which a FE-resolvent is produced. Next we prove that both constant FE-resolution 

and variable FE-resolution are complete, i e , an empty clause 0 will be derived by using 

the standard resolution, para modulation and FE-resolution to a glven set of clauses 8, if 

S is M-unsatisfiable. This is stated in the next theorem. 

ln the following, we denote O"re, a rp and O"Je as deduction rules of resolution, resolutlon 

and paramodulation, resolution and paramodulation and function evaluation respectively. 

Wh en the empty clause 0 is deducible from a base clause set S by a sequence of deductions 

using rules from the set 0" we write by S 1- q o. A deduction of the empty clause 0 from 
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a base clause set S by a fI deduetion rule shall be denoted by D[S r-u 0]. Again, '=' 

and '=' are used as symbols of meta-Ievel language to denote functÎon eva/uation and 

represent respeetive!y. That is d == f(a, b,c) denotes: f evaluated at a, b, c is d and 

C = Eq(J(x,y),z) denotes: C represents clause Eq(f(x,y),z). 

Theorem 6.3.2 (Completeness of FE-Resolution) Given a set of clauses S, Sis M­

unsatisfiable, for a finite machine M, if and only if there is a deductiol1 of the empty 

clause 0 from S using rules of resolutioli, paramodulation and FE-resolution. 

Proof 

By Theorem 6.3.1 we know that Sis M-unsatisfiable if and only if SU [(=(S) U L~(S) 

is unsatisfiable. By Theorem 6.2.1 SU ](=(S) u L~(S) is unsatisfiable if and only if 

SU L~(S) is E-unsatisfiable. Furthermore, by the eompleteness of the para modulation 

and Theorem 6.2.3 we have S U r~(S) r-Ur" 0 and therefore there exits a deduetion 

of resolution and para modulation of the empty 0 clause from SU L~(S), denoted by 

D[S U r~(S) r-Ur" 0]. 

Now we need to show S l-uJe 0, that is, 0 is dedueible from S by using the deduetion 

rules from (Ife. It is enough to show the existence of a deduction D[S r-UJe 0]. It 

will be seen that this deduction ean be obtained directly from the existing deduction, 

D[S U r~(S) r-Ur" 0] and that the changes ofthe base clause set from SU L~(S) to S 

will be eompensated for by the additional syntactie inference rules of funetion evaluatlons. 

According to our earlier definition, L~(S) eonsists of two set of clauses which spec­

if y: (1) functions, i.e., in the form of <I>(Xi, Ui) = Xj,17(Xi) = Yi, +k(N)(I, l') = 1" and 

-k(N)(I, 1') = 1" and (2) variable size clauses whieh specify the facts Xl f. X2, Xl f. X3, •• '. 

We need only consider to eonvert the first set of clauses to FE-resolution since th e set 

(2) is implied by the use of funetion evaluation and funetion definition. 

Consider a clause Eq(f(a, b), c) in LM(S) (the same is truefor unary-funetion Eq(f(a), 

h), a state output function in L~(S». If this clause, denoted Cl is one of the parent 
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clauses in the given deduction process, the other parent clause must be the form of 

C2 = -.Eq(f(x, u), y) 1\ C~(x, u, y), where C~(x, u, y) is a subclause of C2. In this deduc­

tion the letters x, u, y will either take the variable -type values- which we denote x, u, yor 

they take constant values which in this proof are denoted a, b, c, i.e., we are deahng with 

variable or semi-variable FE-resolutiorl as defined in Defmitions 63.6 and 63.5 Takrng 

the element x to have the generic variable letter form x or the generic constant letter form 

a, we get the first line of the following table where eight cases need to be considered 

Var Cases 

x a a x a x x a x 

u b b b x b y x y 

y c y c c y c y z 

ln the following, we show this case by case: 

Case 1. If C2 = -.Eq(f( a, b), c) V CH a, b, c) then the resolvent prod uced by t he use of 

the resolution principle to this and the clause Eq(f(a,b),c) in LM(S') is C = (,'~(a,b,c). 

Consider the application of function evaluation to f(a, h) in C2, we shall have -,/~'q( c, c) 

VCHa,b,c) if c == f(a,b). This clause can then be further resolved with '';q(:r,.r) to 

the final resolvent C' = C2(a,b, c) = C. The case c =f c' = f(a,IJ) will not occur since 

function evaluation will be consistent with the axiom of Eq(f(a,b),c). 

Case 2. If C2 = -.Eq(f(a,b),y)VC~(a,b,y), then the resolvent is G = ()~(T«(L,b,y(}"). 

where fI is a substitution defined as (]' == {cjy}. 

Consider the application offunction evaluation to J(a, h) in 0 21 again we get -.Hq( c, y) 

Vq(a, b,y) if c = f(a, b). Furthermore, we may resolve this with Bq(x,x), and we have 

the final resolvent C' = C2u( a, b, yu) where (]' = {cl a;, cj?} }. Obvlously C' = c. 

Case 3. If C2 = -.Eq(J(x, b), c) V q(x, b, c) then the resolvent is G = C~(T(xa, h, c), 

with (T = {ajx}. 
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Consider the application of function evaluation to c = J(x, b). We shall find sorne a' 

such that c == J(a', b) and define u = {a'/x}. Now this function evaluation wililead us to 

....,Eq(c, c) V C~u(xO', b,c). Again resolve this with Eq(x, x) we get C' = C~u(xu, b, c) == 

C. 

Case 4. C2 = -.Eq(j(a,x),c)VCHa,x,c) is treated in a similar manner as in Case 3. 

Case 5. If C2 = ....,Eq(J(x,b),y)VCHx,b,y) then the resolvent is C = C~u(xu,b,yu), 

with u = {a/x,e/y}. 

Consider the application of function evaluation to y == j(x, b) we ~hall find sorne 

a',c' such that c' = J(a',b) and define u = {a'/x,c'/y}. Now this function evaluation 

will result -'Eq(c',c:)VC~O'(xu,b,yO'). Further resolve this with Eq(x,x) and get C' = 
C~u(xu, b, yu) = C. 

Case 6. C2 = -.Eq(j{x,y),c)VC2(x,y,c) is treated in a similar manner as in Case 5. 

Case 7. C2 = -.Eq(f(a,x),y)VC~(a,x,y) is treated in a similar manner as in Case 5. 

Case 8. If C2 = -.Eq(J(x,y),z)VC2(x,y,z) then the resolvent is C = C~u{xu,yO',zu) 
with u = {a/x,b/y, c/z}. 

An application of function evaluation to z = J(x, y) may lead us to any a', b', c' su ch 

that c' == j( a', Il), but not necessarily with a' = a and b' = band c' = c. 

This completes our case by case analysis and hence we can conclude that the existence 

of a deduction of the form D[SU L~(S) I-O'rp 0] implies the existence of a deduction of 

the form D[S 1-O'/e 0] and hence we conclude that FE-resolution is complete. 

o 

ln cases, except in Cases 1 and 2, trial and error steps are inevitable in order to get a 

substitution identical to the resolvent produced by the resolution and paramodulation. 
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6.3.2 Literai and Formula Evaluation 

This subsection extends the FE-resolution introduced in previous subsection to literai and 

subclause evaluation respectively. 

To evaluate literais or subclauses, one shall expect to rec~ive logical truth values as 

the result of evaluation. These truth values can be varying from true, false or unknown 

depending on the nature of the literai or the subclause to be evaluated. For example, 

Eq(x,x) will be evaluated to be logical true and -'Eq(T,X) will be evaluated to be 

logically false in any models in which Eq(·,·) is interpreted as equahty relation. Whlle 

sorne predicate may result in an unknown truth value especlally when infinite model is 

the case. We know, in particular, that COCO lOG has unique model and is decldable 

Therefore, any formula in a COCO LOG languag( ,11111 have a deterrninistic truth value 

and the same for the evaluation process. Here, 'iVe only consider the evaluation being 

applied to the ground literais which could be resultect from sorne FE-resolution step, or a 

FE-resolvent. 

Definition 6.3.7 (literai Evaluation) Let Cl be a clause which is in the form of 

C't = L(J(x)) V C~(:r) 

or 

where L does not contain any other shared variables with C; except in the first case that 

variable x is shared through the function symbol f. Then If L[b) or l, IS evaluated to be 

false, where b == f( a) for some a, the i nferentia' step 

L[J(x)) V C~(x) 

C = Caa) 
or 

LVC~(x) 

C = CHx) 

is called the literaI evaluation or LE-resolution C IS called LE-resolvent. o 
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This is obviously a sound inference step, since false in disjunction with any formula 

does not change the truth value of that formula, i.e., 1. vC is logically equivalent to C. 

The completeness of this step can be seen through the following argument. If J.. VC can 

produce an empty clause 0 (or 1.) through 1. vC with oC then C with oC can also 

produce the empty clause 0, according to resolution principle. 

The COCO LOG system equipped with FE-resolution c.onstituts a function -Iogic­

function closed loop framework as shown i" Ç"ig.6.1. 

M=(X,U,Y,cI>,1l ) 
(if.-l, Ytk) 

Interface Between Plant and Logic Controller 

k 

•• T~ / Eq(Yk ,yi) 

T~ 1 / t---Eq-(......;Uk~_I-'-u-:i~)~ 
'------"\ lI:' __ A 

Th.. L, / COCOLOG 
." V Regulator 

System 

r--------- -------------- ------------
I~ ~ ... " .. " ."i~.... .. ..... ~ ............. :;.. ...... ~ .... ..: .. '> .... ~~ 

I~~!:~!(~-F~!t~' 
.. t. .... 

1 f:undlon Ev.'uilt~on ~ 

Functlon Evaluation ..:-

Figure 6.1: FE-Resolution for COCO LOG Theories 

Worldof 
Mathematical 

Modellng 

LogicWorld 

Function World 

Where each evaluable functlon symbol f in L will have a corresponding evaluation 

function. The interface between logic-based dynamical system, i.e., logic controller and 
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the set of evaluation functions will map each evaluable function symbol to the correspond­

ing evaluation function with corresponding constants. 

6.4 FE-Resolution and Other Attachment Techniques 

ln this section, we compare FE-resolution with previous attachment techniques the reader 

is referred to [8MBl, RusB5, Gre91] for procedural attachment, [Wey77 , WeyBO] for 

semantic attachment, [Sti85] for theory resolution, and the recent work by Myers [Mye911 

for universal attachment. Myers [Mye91] has compared unrversal attachment wlth previous 

attachment techniques and with theory resolution. Here we shall concentrate on the 

comparisons of univE'rsal attachment with FE-resolution. 

It is known that procedural attachment is the simplest attachment method and ,et 15 

also a powerful technique lin king logical function and relation symbols to programs We 

referred the reader to [8MBI, RusB5, Gre9l) fo: a technical presentation of the notion of 

procedural attachment. 

Semantic attachment provides a more explicit attachment to data than procedural 

attachment by lin king the constant symbols to data ~tructures and function or predlcate 

symbols to programs. Procedural attachment and semantic attachment are not motivated 

by the idea of removing the corresponding logical descriptions (axioms) as a benefit result 

of the addition of evaluation programs. It has been shown [Mye90] that both procedural 

attachment and semantic attachment are inherently incomplete. 

Theory resolution and umversal attachment are both complete Theory resolutlon 

shares the viewpoint that unsatisfiability is defined relative to glven models or restncted 

by a given theory. Theory resolution evaluates formulas by checking the restricted unsat­

isfiabilities while FE-resolution evaluates a function to a value Further, theory resolutlon 

is restrictive because the test of unsatisfiability greatly increases the search space. ThiS 

does not happen to the FE-resolution since unsatisfiability is checked by the search of the 
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empty clause via resolution and function evaluation. 

FE-resolution is motivated by (i) the fact that many control problems can be expressed 

in terms of functio'ls and (ii) the fact that of logical treatment of function symbols is 

highly inefficient due to the creation of infinite Herbrand universe. Universal attachment 

is an extension of previous attachment techniques. It puts emphasis on the evaluation of 

ground or quantified formulas and provides truth values for the attachable formulas, not 

every formula is attachable since not every formula is evaluable, to the logic language. 

The possible truth value for a quantified formula can be either true, false or unknown. 

The shared variable between an attachable literai and ét subformula makes the attachment 

process unable to be completely independent of the subformula. Therefore this dependency 

will further limit the attachability. These issues are addressed in [Mye91). The reason for 

this dependency is the fact that universal quantification does not distribute over disjunction 

(of literais within a clause). For example, suppose VxP(J(x» is evaluated to be false, 

in that case Vx(P(f(x»VQ(x)) does not permit us to get Q(x), since Vx(P(f(x)) V 

Q(x» 't VxP(x) V VxQ(x). On the other hand, in FE-resolution, we may allow the 

shared variable case to be processed. We evaluating at the function level, i.e., if b = I(a) 

for sorne a then we can resolve P(b) V Q(a). Obviously, P(J(x» V Q(x) 1= P(b) V Q(a) 

and P(J(x» V Q(x) 't P(b) V Q(a). But we daim, theoretically, multiple (probably 

infinite if necessary) number of inference steps will make the inference step to be logically 

equivalent, i.e., P(f(.T))VQ(x) == {P(bl)VQ(a}): i,j E I}. In most cases, this logically 

equivalence is not necessary. Moreover, we have shown that this FE-resolution is complete 

in Section 6.3. 

Complexity reduction analysis and experiments 011 automatic theorem proving in CO­

(OLOG by the use of FE-resolution are currently under study. 



Chapter 7 

Conclusion 

7.1 Main Results and Contributions 

ln the following we shall summarize our main results and contributions in the order of 

their apparences in this thesis. 

Constructing Observers 

ln Chapter 2 we presented modeling of discrete state, discrete time and finlte dimen­

sional systems by input-state-output finite machines. Then we obtamed the procedures 

to construct a current or an initial state observer. The complexlty of the size of sllch 

observers measured by the number of states and input/output spaces are glven in terms 

of initial or current state observability dags. Our results1 about the complexity of the size 

of the observability dags are summarized in the Table 7.1: 

Constructing Controllers 

We presented procedures to construct controllers which take output from obserliers 

and generate controls for the next steps to steer the state estimate to a target state. By 

lWe assume X, U and Y denote the set of the states, controls and outputs, in the base fmite machine 
M = (X, U, Y,~, ,,) respectively 
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( 

CHAPTER 7. CONCLUS/ON 144 

Upper Bound lUI = 1 lUI = 21" ·'(y,)1 

initial observer current observer initial observer current observer 
Oepth IXI IXI IXI IXI;//2 
Width IXI IXI O(2IXIl3 ) O(2IX1/2) 

Size 21XI-1 IXl2 O(2 IX1/3) O(2IXI/2) 

Table 7.1: Size of the Observability Dags 

Computational 
Complexity Completely Observed Partially Observed 
Initial State 
Observable O(lUIIXI4

) O(IUIIYIIXI2 IXI3
) 

Current State 
Observable O(IUIIXI5

) O(IUIIYIIXI 3 IXI3
) 

Table 7.2: Computational Complexity of Constructing Controllers 

the observer and controller framework, we provide a closed loop solution to the control 

of systems modeled by finite machines. The dynamic programming principle has been 

extended to handle the partially observered control problems in the form of generating 

such controllers for both completely observed and partially observed initial or current 

state observable finite machines. The computational complexity of consturcting these 

cotnrollers are summarized in the Table 7.2: 

Logic-based Oynamical Systems-LOS 

ln part Il of this thesis, we presented a new paradigm to design and to implement 

control systems that are modeled by finite state machines. The logic-based dynamical 

system consist of a family of logical theories. It distinguishes itself from other logic 

systems by nesting a sequence (or a tree) of logics to represent the (every possible) 

path of the interactions of the controlled system and the environment. A specifie LOS, a 

conditional observer and controller logics-COCOLOG is given, in Cha pter 5 for the problem 

of designing observers and controllers for a partially observed input-state-output finite 

machine. A semantics is supplierl for each COCO LOG theory in terms of interpretations 
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of controlled transitions on a tree of state estimate sets. Then we obtamed conslstency 

and completeness result of COCO LOG theories. Furthermore, through the unique model 

propertyof COCOLOG theories we established the decidability though tl-:" is not totally 

surprised since each COCOLOG theory is intended to characterize a snapshot of a glven 

finite machine. 

FE-Resolutio" 

last, in Chapter 6, we introduced an extension of resolution technique to mc/ude 

function evaluation capabilities. This is by replacing the logical descriptions of function 

symbols and hence their appar~nce in a deduction system with evaluated values From 

the construction of Herbrand universe we know that function symbols are the source of 

complexity. We have shown that FE-resolution is complete, in the sense that an empty 

clause 0 is derivable from a set of clauses LM U F by the standard resolution princlple If 

and only if the empty clause is de.ivable by the FE-resolution from LM where LM IS a 

set of clauses and Fis a set of clauses that describe the functlon symbols ta be replaced 

by the corresponding function evaluations in FE-resolution. It has been shown in Chapter 

6 that the FE-resolution is complete. 

7.2 Future Work 

The framework and approaches presented in this thesis have opened many problems to 

be studied in the future. This section we ju~t list sorne of the immediate questions as a 

direction of future works after this thesis. 

Size of the Observability Dags 

ln Chapter 2 we have shown that size of the initial or clurent state observer tree 

can reach up to the power set of the state space. This is true when the input space of 

the base machine has the size of the power set of the state space of the base machine. 



-

CHAPTER 7. CONCLUSION 146 

Furthermore we know that when the input space shrinks into a singleton set then the size 

of the observer tree will reduce to the square of the state space of the base machine. 

A challenging question will be what happens wh en the size of input space of the base 

machine is limited by a polynomial function of the size of the state space of the base 

machine. Or more directly what is the size limit in terms of IXI, lUI and IYI if they in 

fact affect the size limit u nder concern. 

Oynamic Programming and Supervisory Control Framework 

We present in Chapter 3 a dynamic programming based control solution to steer state 

estimate sets into a desired target state. This closed loop control provides a tube of 

state trajectories from the current state estimate to the target state wh en the system 

state is not completely observed. It will be interesting to know that the relationships 

between the solutions provided by this dynamic programming formulation and provided 

by the supervisory control framework under partial state information. 

Oracle-Functional vs Logic-based Solutions to Control Problems 

For a classical controller to provide a solution to each control problem Wp E np , 

a set of feedback control laws of cardinality card(f2p ) must be precomputed and an 

oracle must then "switch on" the appropriate controller Cp = c(wp ). Obviously card(np ) 

can be extremely large even for close time horizons. Consider, for instance, problems 

of the form: Steer the (unobserved initial) state of M at ko into the set X~ at kl 

(if possible), then steer the (unobserved) state in X~ into X~ at k2 (if possible), 

then ... at km (if possible). In comparison, the logic controller does not solve each of 

the problems in np, but, at the cost of the complexity of automatic theorem proving 

procedures ln COCOLOG, only solves the given problem w; E f2p-whose complexity can 

be taken to be some function of the length of w;. Moreover, at an arbitrary time instant 

A',~'o ::; k ~ km, the control problem w; can be changed to w;* E np and the same 

complexity considerations outlined above still apply. A systematic comparisons of these 
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two frameworks are considered to be an interesting and important subject for the future 

research. 

Logic-based Adaptive Control 

logic-based dynamical system provides a declarative description to the control prob­

lem. The flexibility and expressiveness of logic language opens new dimensions to the 

challenging problems like adaptive control and machine learning. 

The adaptive feature of the logic-based control system IS apparent. let us suppose 

the observer states of a observer tree Mc have been steered to the good state {.";} (()~). 

Then suppose the dynamics of M changes to M'and the current state observer tree 

Mc changes to Mc. The description of this change is trivial in the loglC-based system 

We must now recompute the observer sub-tree leading to the target state .rT and the 

associated (new) good states. It is evident that {;:)(on can only be steered to .r'I' under 

the new dynamics if {;;)( ot> is in the new set of good states defi ned for the new observer 

tree M'c. 
Appropriate formulation of the adaptive control problem in terms of logic-based control 

system and comparisons between the classieal formulation and logie based formulation are 

expected to provide more insights to the foundations of system and control science and 

artificial intelligence. 

Comp!exity of FE-Resolution 

The complexity of using FE-resolution to prove COCO LOG theorems is expected to 

be effective. A formai analysis of complexity reduction of FE-resolution over the standard 

theorem proving techniques, standard resolution and para modulatIOn ln particular. is con­

sidered to be an important and ehallenging subject to be carned out. This also includes 

efficieney comparisons between function evaluation, i.e., FE-resolution and predicate eval­

uation, i.e., Universal Attachment. 

levesque [H.L86, H.l89) has classified the set of clauses according to their syntactlc 
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forms. The class of vivid clauses consist of a collection of ground, function-free atomic 

sentences with unique name assumption to each constant symbols and closed world as­

sumption over domain and over each predicate, and axioms of equality. To this class of 

clauses, KS, it is known that ]( B 1= QI,'" ,Qna has an o(mn+llal) algorithm. Further, 

a clause is ca lied a Horn clause if it has the form of 

n, k > 0, PI is atomic 

For a variable-free set of Horn clauses, KB, it is known that I< B 1= a has on O(IK BilaI) 

algorithm, [WJ84]. It is interesting to know the complexity of proving theorems in CO­

(OlOG with FE-resolution since a theorem in COCO LOG can be expressed generally as 

a clause with variables and functions. 
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