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Abstract

This thesis formulates the state estimation and control problem for partially observed finite
machines in terms of classical and logic-based approaches. First, in Part |, we present a
set operation based formulation of an observer (tree) and a dynamic programming based
controller. Then we provide the results of computational complexity of building and runing
such classical observer and controllers. In Part |, we introduce a notion of a logic-based
dynamical system, a new paradigm for controlling finite machines. In particular, we give
concepts of a logic-based dynamic observer, and a logic-based dynamic controller and
demonstrate an equivalence between classical and logic-based systems. Then we intro-
duce a conditional observer and controller logic — COCOLOG for finite machines, which
consists of a family of first order logics eack corresponding to a node in the observer tree.
Conditional control statements are formulated so that {closed loop) control actions occur
when specified past measurable (i.e. past observation dependent) conditions are fulfilled.
A semantics is supplied for each COCOLOG in terms of interpretations of controlled tran-
sitions on a tree of state estimate sets indexed by observation o(k). Consistency and
completeness of the first order theories in a COCOLOG family are established. Further-
more, through a certain unique model property, we obtain the de dability result for each
logical theory in a COCOLOG famiiy. Last, in Part lll, a function evaluation based reso-
lution for COCOLOG theorems, called FE—resolution, is presented. Completeness results

for the FE-resolution method is given in terms of relative truthfulness and validity.
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Résumé

Dans cette thése sont formulés les problémes de I'estimation des variables d'état et de la
commande de systémes partiellement observés et finis, en suivant & la fois la démarche
classique et une nouvelle démarche basée sur une utlisation de systémes logiques En
premiére partie, opérant sur des ensembles et reposant sur une programmation dynamique,
un observateur (arbre) et un contréleur sont formuiés, suivis d'une évaluation de la com-
plexité de calcul nécessaire pour établir et exploiter ces modeles En deuxieme partie, un
paradigme permettant de gouverner les systémes finis, basé sur ie concept d'un systeme
dynamique logique, est introduit En particulier, les fondements d'un observateur et
d'un contrdleur dynamiques logiques, dont |'équivalence avec les systémes classiques est
démontrée, sont élaborés. Nous introduisons alors une logique définissant un observateur
et un controleur conditionels, ou COCOLOG, opérant sur des systemes fims, COCOLOG
consiste en une famille de systemes logiques de premier ordre, chacun correspondant a un
noeud dans I'arbre de I'observateur classique. Des énoncés conditionels de gou-rernabilité
sont formulés, permettant une commande en boucle fermée lorsqu'un passé measurable
est observé selon les conditions exigées. Pour chaque systéme logique de COCOLOG une
sémantique interprétant I'action du contrdleur sur les déplacements dans l'arbre a partwr
des observations o(k) est détaillee. La cohérence et la récursivité de ces systemes logiques
de premier ordre sont démontrées. De plus, grice a une propriété d'unicité du modele, la
détermination de chaque systéeme logique de COCOLOG est démontrée. Finalement, une

résolution appelée FE-resolution et basée sur une fonction d’'évaluation est développée;




une preuve de la complétude de cette résolution est donnée en termes de véracité et de

validite.
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Claims of Originality

In this thesis the following original contributions are made

e The structural properties of both the current and initial state observer trees for
partially observed input-state-output finite machines, together with associated esti-

mates of the compiexity of the current and initial state observer trees are presented

o A formulation of the state guidance control problem, for both the completely and
partially observed input-state-output finite machines, in terms of the backward re-

currence equations of dynamic programming is given

o Associated estimates of the computational complexity of the generation of control

laws for completely and partially observed finite machines are presented

o A logic-based paradigm for control theory is formulated this involves, in particular,

the conception of a logic-based dynamical system, or a dynamical system of logics.

e COCOLOG (a conditional observer and controller logic) 1s presented, which 1s a

family of {irst order logical theories for the state estimation and control of any finite

machine.

o The consisteny and completeness results are obtained for each logical theory in a

COCOLOG system.
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e The concept of FE-resclution - a resolution based theorem proving methodology

augmented with the function evaluation (FE-resolution) facility is introduced.

e The completeness result for FE-resolution is established.

vi
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Chapter 1

Introduction

1.1 Discrete Event Dynamical Systems

A dynamical system is generaily understood to be a system that evolves with time, fur-
thermore, throughout this thesis we shall take the term system to refer to a dynamical
system which possesses observed or unobserved inputs which may either be manipulated
(called controls), not subject to such an influence (generally called disturbances), or be a
collection of broad types of input. Conventional systems and control theory (SCT) has a
long history of handling continuous controlled dynamical systems and their sampled data
counterparts, such as aerospace vehicles and manufacture systems. Currently, however,
the closed-loop, control theoretic analyses are also emerging for the class of the so called
discrete event dynamical systems, such systems are becoming increasingly complicated
with the massive application of, and fast advances in, computer technology in our century.
These human created systems appear to have particular artificial properties that distin-
guish them from classical dynamical systems - despite the fact thac they are evidently
manufactured from natural substances. For instance , the flow of statements of an auto-
matic theorem proving algorithm or s machine translation algorithm for natural languages

has many significant features and properties beyond the physical flow of the events of
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the computation: in addition to the intrinsically discontinuous nature of the phenomena
(a feature not exhibited by sampled version of continuous systems), such process may be
conceived so as to exhibit semantical properties.

The classical dynamical (deterministic or stochastic, linear or nonlinear, finite or in-
finite, discrete or continuous) systems often arise from systems modeled mathematically
by differential or difference equations. Examples of such systems are those governed
by classical mechanical laws and the laws of electromagnetism (Newtonian, Lagrangian,
Hamiltonian and Maxwell), and indeed chemistry and physics in gen2ral The concepts of
controllability, observability, state space realization, etc were introduced in the late 50's
as a part of the fruitful development of linear system theory and this led to the successful
application of the control theoretic results in the design of many modern systems. More-
over contemporary control theory is partly engaged in the generalization and extension of
such ideas to non-linear and stochastic systems.

Discrete event (human created) dynamical systems are not governed by the laws of
classical mechanics or electromagnetism. These systems are driven by and emit finite
or infinite sequences of intrinsically discontinizous events which can occur at possihly
unknown irregular spaced instasts of time.

Examples of discrete event system structures can be found in computer system soft-
ware/hardware design and verification, production or assembly lines, queuing systems,
communication networks, traffic systems, robotics and expert systems etc , at least, at
some level of system modeling. State transition in such a state space model of a system
is often called an event. Typical events in a real system can be. time out, message sent,
message received in a communication protocol; departure or arnval of a transaction in a
database; or switching between alternative rules in an expert system

There is a vast range of studies of discrete event dynamical systems using modeleds
given by finite machines, automata theory, formal languages and classical and modal logic.

Over at least the last twenty years, there has been a widespread effort t~ give detailed
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models and formal analyses of the complex systems generated by computer engineering,
computer science and its associated technologies. Among the discrete models that de-
serve mention are communicating sequential processes [Hoa85, MM79, TW86], concurrent
program modeling, semantics and correctness verification [Sha78, Pnu79, M P81, Pet81];
synchronization in operating systems [Dij74]; communication protocols, [RCV88, Kur86,
Oku88]; digital circuit design and verification, see [GK87, RK87], database concurrency
control, [Laf88, LW85].

Recently, the problem has attracted the attention of many systems and control the-
orists and some significant results under the framework of supervisory control theory of
discrete event dynamical system have been obtained by M.Wonham and P.Ramadge,
[RW87, WR87]. (In the next section we give a brief review of this theory )

Nerode has shown that for any non-anticipative input-output system there exists a
dynamical state space realization via the construction of the Nerode equivalence classes
over the input space, for an explanation of this, see [Cai88] Any discrete event input-
output system may generally be taken to be a non-anticipative input-output system and
therefore has a state space realization. For such systems we often assume that the
dimension or the cardinality of the state space is finite and that the state transition
occurs at irregular, distinct discrete time instants. Furthermore the state value is often
only symbolic, that is to say there is no topology on the state space or the input-output
spaces. Figure 1 1 shows the classification over state space systems based on these three
criteria, where known mathematical modeling of each class of the state space systems is
given in the graph.

in this thesis we shall construct logic control systems for finite machines. We note
however that there are clearly many different aspects of discrete event systems which are
not modeled by finite machines. Finite machines model the orderly flow of events or states
under partial or complete observation of a given system. The timing issue, i.e., when and

how the state transition takes place, and the quantitative issue, i.e. those properties




-2

CHAPTER 1. INTRODUCTION 4

State Space Systems
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Figure 1.1: Classification of State Space Systems

modeled by queuing theory are examples of properties which are beyond the scope of the
standard finite machine framework; for a survey of the modeling of these phenomena see

[RW89, Ho87].

1.2 Past Work

In this section we give a brief review cf the basic results of the supervisory control theory

of Wonham and Ramadge and other related results.

1.2.1 Supervisory Control Theory

Wonham and Ramadge were the first to introduce the closed loop control theoretic frame-
work for the class of discrete event systems, [RW87, WR87]. They showed that the con-

cepts of controllability, observability, state feedback closed loop control, etc. can piay
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important roles in what they called supervisory control problems for the discrete event
systems. Recent development of supervisory control theory has been extended to include
the issue of aggregation, decentralized, hierarchical, modular and distributed controls.

Supervisory control problem is formulated in terms of automata and formal language.
A plant, i.e , a physical system o be controlled, is modeled by = formal language L(G),
with alphabet or event set I, which represents all possible vehaviors of the physical
system. Some of these behaviors are undesirable. Then a control mechanism is introduced
by the partition of the event set L into the set of controllable events 2. and the set of
uncontrollable events ¥ ., such that ¥ = Z.|J X ,.. A controllable event can be enabled
or disabled. In order for a plant to behave as specified, a controller (or a supervisor)
S is constructed to supervise the controllable events The controller is determined as a
function of the current state of the plant and the specified behavior of the desired system.
The formal languages generated by the closed loop system with regulator $ is denoted
L.(S/G). To characterize the language that can be generated by a closed-loop structure,
the concept of a controllable language is introduced. Given a language L over an alphabet
L, a prefix closure L of I is defined to be L = {u : uv € L for some v € £*}, where
Y * is the set of all strings from L. A language K C L is controllable if it satisfies
KY,NL C K. The physical meaning cf this definition is that K is controllable if each
string from the prefix  iosure concatenated with an uncontrollable event is in the language
L should also be a string of the prefix closure of K.

One of the principal results of [RW87, WR87] is the following: a supervisor S exists
such that L.(S/G) = K for some desirable behavior specified by K if and only if K is
controllable and L,,(G) 1s closed, i.e., K is driven from any marked state of L(G) to
some marked state of L((7). Where L,,(G) is a subset of L(G) denotes the set of marked
strings. Furthermore, the supervisor S can be generated so as to give the maximum

permissible behavior or, equivalently, the minimally disabled system that satisfies the

given specifications.
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1.2.2 Extensions to Supervisory Control Theory

The supervisory control framework has been extended since Wonham and Ramadge imiti-
ated their study. In this subsection we mention some of these extensions

The supervisory control framework depends on the complete observation of the events
in a plant for the supervisor to provide controls In a decentralized and hierarchical
situation, or with the presence of noise in the observations, a partial observation based
control solution is necessary. Cieslak, et al [RCV88] introduce an observation function
which maps the events into a set of output symbols. The supervisory control task 1s then
based on observations of the output string Lin and Wonham [LW87] also consider the
problem of constructing the supervisor based on the presence of an cvent observer for a
partially observed plant.

Ostroff and Wonham [Ost89, OW89a, OW85] have extended the automata and formal
language model to include a time window within which each transition takes place. Having
this time window, the automata model is then able to describe the timing of plant behavior
These augmented automata models were calledc extended state machines Ostroff and
Wonham have also adopted a temporal logic framework, with its semantics designed to
match a given extended state machine, so as to venfy the behavior of the given machine
It is worth pointing out that the role of temporal logic in their model 1s restricted to that
of a formal tool for verification of the correctness of a given extended state machine and
its supervisor as a closed loop system. The correctness property is used in the sense of
characterizing the desirable closed loop behavior. This behavior includes time constraints
and such standard problems as liveness, safety, deadlock free, fairness etc addressed in
computer program correctness verification [MP81].

Other developments in supervisory control theory include stability and stabilizability
as introduced by Ozveren and Wilisky [Ozv89, OW89b]. They give conditions for finding
the supremal set such that the marked states are visited trom all other states in a finite

number of steps. Furthermore, Zhong and Wonham [ZW88] characterize the hierarchical
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control of discrete event systems.

To summarize, supervisory control theory has provided, for the first time, a systematic
synthesis of a closed loop solution to certain qualitative problems in discrete event system
theory. Although these problems had previously been attacked in the fields of computer
science and data communication, closed loop solutions were not generally obtained.

In the next section, the organization cf this thesis along with its main contributions

to and relations with current developments of control theoretic solutions to discrete event

system problems i1s presented.

1.3 Organization and Main Contribution

As we illustrated in Figure 1.1, discrete event systems are generally modeled by finite state
machines or equivalent mathematical tools. In the rest of this thesis, we shall take finite
machines to be the mathematical models of the system in which we are interested. The
control of a finite machine is realized through the input function and that of an automaton
via its forced transitions. This is equivalent to the control mechanism which enables and

disables events due to the application of the forced input.

1.3.1 Observers and Controllers

In Part | of this thesis, we present the basic framework in which our state estimation and
control problem 1s int >duced. State estiriauun is the task of a (current or initial) state
observer. In the formulation which we adopt, a controller takes as input the output of
a state observer and hence generate the next control to the plant in order to achieve a
certain desired behavior of the overall closed-loop system.

We formulate the initial and current state observers for a given finite machine in
terms of set-based operations realized by classical observers These observers can also

be expressed as tree structures, which consequently are called initial and current state
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observer trees. We give a set of results on the structural properties of these trees and the
size of these trees.

The coi.struction of the controllers described in Part | is formulated in terms of dynamic
programming applied to the set of state estimate sets (equivalently the nodes) in the
observer trees of a given finite machine. First, the control problem is defined to be that of
steering a state (estimate) to a target si..c. The controller 1s des'gned for both complete
observation and partial observation cases. A concept of a good state (or state estimate
set) is introduced Then system controllability and the existence of a closed-ioop controller
are determined via backward recurrence equations which, in the partially observed case,
will involve the state estimate sets Computational complexity of running and constructing
such controllers is also presented. This work should be viewed as foundational for the rest
of the thesis and as providing a mathematically well defined framework for the work that

follows.

1.3.2 Logic-based Dynamical System and COCOLOG

The formulation of the notion of a logic-based dynamical system and the conditional
observer and controller logic-COCOLOG, presented in Part Il, 1s considered to be the
main contribution of this thesis.

The procedural and declarative approaches are two basic formulations used for prob-
lem solving. These two approaches also draw a line between the methodologies used
in computer science and those in artificial inteligence The fundamental feature of the
declarative approach, or the logic-based approach, is that of the immense flexibility of
the underlying structure compared with that of the procedural approach This flexibility
comes from the expressibility, or richness, of logico—linguistic methods in general, and of
first order languages n particular; furthermore, within logic programming 1t follows from
the relative separation of logic and control, where a uniform control mechanism (called

an inference engine which often consists of unification and resolution algorithms) is in
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mechanical theorem proving techniques. In this thesis, we show that the control problems
that arise from finite machines can be expressed in terms of those higher level descriptions
in the sense that they can be generally described by families of first order logics indexed
by time The evolution of such logics in time is described by our notion of logic-based
dynamical systems, see Chapter 4

Our conditional observer and controller logic, called COCOLQG, is then defined to
express systems and control problems for finite machines and in particular to formulate
the problem of designing observers and controllers for a partially observed machines CO-
COLOG 1s formulated in terms of a tree of first order logics where each logic corresponds
to a node in the observer tree. Among other results we show the consistency and com-

pleteness of each COCOLOG logic, a unique model property and thus the decidability

property

1.3.3 Automated Reasoning with FE-Resolution

In Part I, we discuss the automated theorem proving for COCOLOG theorems. A function
evaluation based resolution, called FE-resolution, 1s presented for the conditional observer
and controller logics FE-resolution can also be applied to other general systems. Finally,
the completeness of FE-resolution is established. This connects the semantical notion of

relative truthfulness to the syntactic procedures of FE-resolution.

1.3.4 On the Tractability of Logic-Based Control Theory for Fi-
nite Machines

It 1s evident that the question of the computational tractability of a formal system such
as COCOLOG witaly effects the realizability, the efficiency of any implementation and, in
fact, the possibility of any computational implementation whatsoever.

As we mentioned at the beginning of section 1.3.2, the procedural and declarative
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formulations are the two basic mechanisms for the implementation of formal computational
schemes. At one extreme Al systems are formulated using the declarative formal logico-
linguistic systems as a modeling formalism. The cnitical problem of having such flexibility is
the issue of computational tractability associated with a general logico -linguistic systems
It is almost invariably the case that the resulting computations are intractable whenever
a non-trivial problem is formulated in this framework

On the other hand, if a system is modeled within the framework of conventional
mathematics, that is to say, by a procedure or a set of functions, it is often the case that
the computational load is tractable but flexibility is lost This 1s particularly significant in
the formulation of high level control, since no general terms, logical quantifiers or alterable
axioms can enter the systems in this case Our intention here is to formulate a well defined
logical construction for the system theory of finite machines which, in particular, permit
the analysis of the computational tractability of the solution of control problems posed
at different levels of generality for more or less complex machines. In this way we intend
to investigate a flexible, but highly structured, middle ground between the unstructured
intractable systems on one hand, and totally structure, rigid and tractable systems on the

other.
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Classical Observation and Control

Theory for Finite Machines
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In this part of the thesis, we shall first, in Chapter 1, take the simple class of dynam-
ical systems represented by partially observed finite machines. We then pose the state
estimation problem in terms of the problem of constructing a classical dvnamical system
which generates a sequence of state estimates. Following this, we present the design and
complexity analysis of building such an observer for a given finite machine. In Chapter 3,
we discuss the problem of constructing a classical dynamical system, which we call a clas-
sical dynamical controller, that generates a sequence of controlled inputs. The controllers
discussed here are obtained from control laws that solve certain reachability dynamic pro-
gramming problems: subject to certain conditions these will steer the state estimates to
the desired targeted state when the underline finite machine is not completely observed.
The question of the complexity of building and running such a controller is covered in the

same chapter.



Chapter 2

Dynamical Observers for Finite

Machines

In this chapter, we take the class of dynamical systems represented by partially observed
finite machines and then pose the state estimation problem in terms of the problem of
constructing a classical dynamical system which generates a sequence of state estimates.
We first introduce some system concepts which formulate the state observation problem.
Then we present a set valued recursive formulation of the observation sets. A repre-
sentation of these observation sets in tree structures forms the so called observer trees
for current and initial state observation tasks. Finally a complexity analysis and some
structural aspects of the construction of these trees are presented. The contents of this
chapter resulted from joint works with Dr. P.E. Caines and Dr. R. Greiner, reported in

[CGW91).

2.1 State Observation Problem

A machine is taken to mean a deterministic input-state-output machine, a machine is

termed finite when the input, state and output sets are of finite cardinality. (We will,

13
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in general, omit the input-state-output qualification.) The dynamical observers for finite

machines discussed in this section are themselves modeled by finite machines.

Definition 2.1.1 (Finite Machine) A finite machineisa quintuple M = (X,U,Y,®, )
where

X is a (finite) set of states,

U is a (finite) set of inputs,

Y is a (finite) set of outputs,

®: X xU — X is a transition function,

n: X — Y is an output function. a

Concerning the notation used in this thesis, we shall sometimes write (i) ®(x, 1) as
®.(x), and (ii) u} for the (n — ¢ + 1)-element sequence [u,, w41, %42, , 1), Where
u, € U denotes the input at the time instance j € 2, (and where w«, is identified with
[4,]) and ¢* denotes the empty input; the same notation will be used for =™ and y".

The dynamical evolution of a finite machine M = (X, U, Y, ®,7) can be displayed by
taking U™ to be the set of all finite sequence of inputs and by extending ® : X x 1/ — X
tod : X x U* — X, wherefor all i,n € Z,, for all u} € U* and forall z € X, ® is
recursively defined as:

o(z, ¢")=x
O(z, u?)=0(d(z, w), ufyy)

(2.1)

Because 7 is not necessarily a one-to-one map, a finite machine will often be referred
to as a partially observed finite machine. (The finite machine set-up described above
includes, as a special case, that of any conventional deterministic finite machine with
partial state transition function and state output function.)

A finite machine can also be defined by a state transition diagram as shown in Fig-

ure 2.1 for a particular seven state machine Mj.
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2.1.1 [Initial and Current State Observation

The initial (respectively, current) state dynamical observer problem for a finite machine,
M, is to estimate M s initial (respectively, current) state from observations on its inputs
and outputs over a finite time period. An initial state dynamical observer takes, as input,
the observed behavior of a system, i.e., a sequence of input/output pairs, and outputs an
estimate of the initial state of the system.

We can state this formally by the following definitions:

Definition 2.1.2 (N-consistency) The N-element state sequence z)) € XV is a N-
consistent state sequence with respect to a given Input/Output sequence, [(uo, y1), {(u1, ¥2),

vy {un-t, yn)] € Y x (U x Y)V=1if the relation CS([{ui-1, y.)J¥,, z1) defined as,
zp = Oz, ub 1) and yp = (i), forall ke [1,---,N]. (2.2)
is satisfied. The set of all such sequences is denoted C.SS(ol). ]

(The diagram below illustrates how the z,s, u,s and y,s are related.

¢ B 2 B 2, B8 z3
! ! {
n: N Y2 Y3

Where wg is usually taken to be the null element denoted by ¢.)

In other words, an N-consistent state sequence with respect to the input/output
sequence [(u,_1, ¥,}]V,,, is a trajectory of states that satisfies the system dynamics and
the observed output sequence from 1 up until time N. We denote by P, as the projection
operator over a sequence of elements defined by Pi(Z1, 2y, -+, Zi, Zk41,-+*) = Zi and
O' C U xY!, where o) € O'is an observation sequence [(u,_1, 3,)]'~, of length [
generated by some z € X taken as the initial state together with the corresponding input

sequence ug, -+, Uj_1.
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Notice that C'S(-,") is not a function, i.e., there can be many state sequences which
are consistent with a given /O sequence, of = [(1,-1, %.)]*_,, and that each such siate
sequence, ‘z¥_,, is uniquely determined by its first element, 7r;. We define the mitial

state estimate as the set of these possible initial states.

Definition 2.1.3 (Initial State Estimate) An initial state estimate set, with respect
to the N-element observation sequence, o, wrtten IS E(ol) or {z;}(ol), is the set of

initial elements of the consistent state sequences:

x = P(z)) for any &

ISE(o}) = {m}(e]') = {z € X
such that z¥ € CSS(o})

(2.3)
]

In other situations, we may want an estimate of the current state of the device, given

a sequence of N input/output pairs: ol = [(u,_y, 1.)]¥,

Definition 2.1.4 (Current State Estimate) A current state estimate set, with re-
spect to the N-element observation sequence, o, written CSE(o)) or {zy}(o}), is

the set of final elements of the consistent states:

. = Pn(zN)f y
CSE(oY) = {an} (o)) ={z e X T ~(zy') for any z} (2.4)
such that z{¥ € CSS(o))

]

A state-output finite machine will be taken to be an 1-5-O finite machine where the
input set only contains a single element, i.e., each input is taken to be the same, eg., a

clock tick, u.

Example 2.1.1 We can illustrate these definitions with the state-output 7 state machine,

Mz, shown in Figure 2.1. Suppose the device begins in the state x2 Of course, our
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dynamical observer cannot be a function of any information stating this. Instead, it has

access only to the output sequence
[y1, ¥2, y1,¥2, .. ]
initially, at time T=0, the initial state observer must consider all states, meaning
ISE([]) = {E}(o‘:) = {x1, x2, x3, x4, x5, x6, x7 }

as a possible initial state estimate.

ut ut
x7
xt x4 —
ul
ut

/N
.2<:L>é
x3 ul x6

] | ] J l

n=y1 n=y2 =y3

Figure 2.1: The My, a state-output finite machine
At time T=1, the initial state observer would output
ISE([y1]) = {Z}(oi) = {x1, x2, x3};
at time T=2, it outputs the same 3-element set

ISE([y1,y2]) = {z1}(e?) = {x1, x2, x3}.
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However, at time T=3, it converges to the singleton

ISE([yt, y2, y1]) = {z1}(e}) = {x2},

which is the same value that it o.tputs at time T=4

ISE(ly1, y2, y1, y2]) = {@:1}(o}) = {x2},

and so on: ISE(n)[y1, y2, y1, y2,...,yn] = {x2}.

A current state observer would give
CSE()={zo}(e3) = {x1, x2,- -, x7}
CSE(lyt))={z}(o}) = {x1, x2,x3}
CSE([yt, y2))={z2}(o?) = { x4, x5, x6 }
CSE(lyt, y~. , N)={zs}(o}) = {x2}

CSE(ly1, y2, y1, y2)={zs}(o}) = {x5 }.
|

A finite machine is initial state observable if we can, eventually, determine its initial
state based on observations of its input/output sequence. Likewise, a finite machine
is current state observable if we can, eventually, determine its current state based on
observations of its input/output sequence

In fact we have the following set of definitions of observability for finite machines.

Definition 2.1.5 (Weakly Initial State Observable) A finite mach.. : M = (X, U,Y,
®,7n) is said to be weakly initial state observable if for any z € X there exists a minimum
length observation sequence o’f(x) € O, such that for all N > £&(z), the initial state

estimate set {E}(o{v) = {z} is a singleton. 0

That is, whatever state the system starts from there always exists an (input-output)
observation sequence such that the initial state estimate set contains a single value, after

a finite time period.
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Definition 2.1.6 (Non-Anticipatively Initial State Observable) A finite machine M
= (X,U,Y,®,n) is said to be non-anticipatively initial state observable if there exists
a sequence of non-anticipative input functions {u, : O'' —» U, [ > 1} ie. a (non-
anticipative) control law V4, and a constant K € Z,, such that for all z € X, and for
all N > K the initial state estimate {Z}(o{v) is a singleton, whenever ol is the output

resulting from the input u™4. 0

In other words, there exists a past-dependent control law which will force the initial

state estimate to give a single value after a finite time period.

Definition 2.1.7 (Strongly Initial State Observable) A finite machine M = (X, U,
Y, ®,7) is said to be strongly initial state observable if there exists a K € Z,, such that

for all N > K, and all o) € OV, the initial state estimate {z;}(0} ) is a singleton. O

Whizh is to say that the initial state estimate to be single valued, for any observations

after finite time period, which is necessarily the correct initial state.

Definition 2.1.8 (Weakly Current State Observable) A finite machine M = (X, U,
Y, ®,7) is said to be weakly current state observable if for any z € X there exists
of®) € O* such that forall N > k(z), the current state estimate {zy}(olV) = ®(z, uN~)

is a singleton . O

Note here zx is the correct current state, i.e., the correct initial state propagated

through the observed inputs.

Definition 2.1.9 (Non-Anticipatively C irrent State Observable) A finite machine
M = (X,U,Y,0,7n) is said to be non-anticipatively current state observable if for all
x € X, there exists a sequence of non-anticipative input functions {u; : O'"* — U,
I > 1}, i.e., a {non-anticipative) control law u™+ and a constant K € Z,, such that for
all N > K, the current state estimate {;;}(Ozlv) = ®(z,u"1) = {zn} is a singleton,

whenever o} is the output resulting from the input uV4. ]
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That is, there exists a past-dependent control law which will force the current state

estimate to be single valued after a finite time period.

Definition 2.1.10 (Strongly Current State Observable) A finite machine M = (X,
U,Y,®,n) is said to be strongly current state observable if there exists a k' € Z,, such

that for all N > K, and all o) € OV, the current state estimate {ry}(o¥), 1s a singleton

]

Theorem 2.1.1 (Weakly iff Non-Anticipatively Observable) For any input-state-output

finite machine, M = (X, U, Y, ®,7) we have:
(i) U M is strongly initial (respectively cu ent) state observable Then M s

weakly initial (respectively current) state observable.
(i) M is weakly initial (respectively current) state observable if and only if M

is non-anticipatively initial (respectively current) state observable.

Proof

(i) is self-evident; further, in (ii) the case of initial state estimation follows from a
similar but simpler argument than that of current state estimation. Consequently we shall
only prove (ii) here for the current state observable case.

Consider the weakly current state observable finite machine M = (X, U,Y,®,), we
need to find a family of input functions {u; : O'"' — U, | > 1}, which will force the
current state estimate is single valued after a finite time period.

Such a past-dependent control law can be constructed in the following manner. Since
M is weakly current state observable, there exists of(z) € O* for any z € X such that
u(o}’) will force {;;}(of’) = O(z,ul 1) = {zn]} for any N > k(z). Therefore we define
the first segment of our input function V4 by taking the control actions u'f("‘) € U for
some arbitrary z; € X. This control sequence is used until (1) the current state estimate

converges to the singleton in k(z;) steps which is less than or equal to | X| (see Theorem
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3.2.1in Chapter 3), or (2) an output observation y,, 1 < p < k() is obtained which is

inconsistent with of ("),

In the first case the non-anticipative control sequence u¥4 has given a sequence of
estimates that has converged to a singleton, in the latter, a new control sequence in oke2)
is initiated at py for some arbitrary z, € X — ®(z;,ul™"); and (part of) this will form the
second segment of u™4. Since X — ®(z;,ul™"!) has | X| — 1 elements there are at most
|X| — 1 elements in the image set ®(X — ®7(zy,u}* "), u1 +*(=2)-1) under the newly
chosen control sequence u?i +k(z2)-1,

Continuing in this manner for X — {z,,z,}, etc, yields (one set of values of) a non-
anticipative iput function uV4 which will take at most J&K%lﬂ) steps before the current
state estimate converges to a singleton. Performing this process for all possible initial
conditions for M yields a set of sets of values that constitute a non-anticipative control
law uN4(0*) — u* satisfying Definition 2.1.6. o

In the rest o. this thesis we shall restrict discussion solely to the situation where
observability is taken in the strong sense

The relationship between initial and current state observability among finite machines

is described by the following example.

Example 2.1.2 In Figure 2.2, we show a two state, state-output finite machine is current
state observable but not initial state observable. In general, initial state observability
implies the current state observability in each of the classes of weak, non-anticipative and
strong, but not vice versa.

The general relationship of current and initial state observability among finite machines

is shown in Figure 2.3 in terms of set containment among the set of all possible finite

machines.
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ul yl

f X2

x1

ul

Figure 2.2: A two state machine M3 is current but not itial state observable

CSOFMs

FMs

FMs=Finite Machines
CSOFMs=Current State Observable Finite Machines
ISOFMs=Initial State Observable Finite Machines

Figure 2.3: A Nesting With Respect to Observability Properties

2?2

Theorem 2.1.2 A finite machine M = (X,U, Y, ®,7) is initial state observable \f and

only if the following holds:
3K € Z,4, YN > K, Vz§,zl € X, Yul¥ € UV,
N i S(zoud)) = 9( (g, u))] = 25=15
and M is current state observable if and only if
K € Z,, VN > K, Vzb,zi ¢ X, Yud € UV,

ALy n(®(zg,ul)) = n(®(zg,u}))] = O(ag,ul) = O(zg,u))

Proof of this theorem is obtained directly from the Definitions 2.1.7 and 2.1.10.
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Two states zi,ch € X of a finite machine M = (X,U,Y, ®,7) are said to be (ob-

servability) equivalent, denoted by z{ = z§, if and only if for all u € U*,n( ®(xg,u)) =

n(®(zg, u))
The equivalence relation =, over the state space X of a finite machine M =

(X,U,Y,®,5) induces a partition over the equivalence classes of X/ =, which per-
mits us to define another property for finite machines. A finite machine is said to be in

observability reduced form if and only if
vz € X, [z, = {z)

Clearly a finite machine is in observability reduced form if and only if it is initial state

observable.

2.1.2 Recursive Set Formulas for State Estimation

We can now give some interesting and useful formulas for the initial and current state
estimate sets It will be noted that the Equation 2.6 has the important predictor-corrector
form of many recursive algorithms in systems and control theory. In fact, in this case, we

may refer to the recursion as a predictor-refiner formula, since no error-correction in the

usual sense of the words takes place.

Theorem 2.1.3 (JCGW91] Observation Sets) Consider any finite machine M = (X,

U,Y,®,n), then for any observation sequence, o) € O, the following equations hold:

ISE(oY ™) = {z1} (o *?) = {1} (o} ) 0~ (0 ywn), ') (2.5)
CSE(o)*) = {ya} (o) = o({zn} (o)), un) 17 (yn1) (2.6)

These equations may be written as:
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- N
ISE(o)) = {z1}(o)) = kﬂ O~ k), uy ™) (27)
=]
- N
CSE(o)) = {zn}(o}) = D o(n~ (x), up ) (28)

where

o ® has been extended to take a set of states as its first argument:
®:P(X) xU* — P(X) where ®(A,uf) = {z € X|z=®(s',u}) for some
' in A},

o &1 is the inverse of ®: &1 : P(X) x U* — P(X) given by
O~ (A, uf) = {z € X|®(z,uf) € A},

e 771 is theinverse of n: n71 : Y s P(X) given by
17 y) = {e€ X |n(z) =y}, and

o {z1}(o) is defined to be X.

(Here, P is the power set operator: P(B) refers to the power set of the set /3 )

Proof

We first show how the N-consistent states are related to NV + 1-consistent states, then
use this to derive the eqt  ...s shown above. Consider any /V-element state sequence,
12V =[xy, 229, - - -, YzN, |, which is consistent with an N-long observation sequence,

o, ie., which satisfies CS(ol, 7z}’), as specified in Equation 22. Now consider the

effects on a new obsemation, (un, yn1). If ®(‘zn, un) = “on,41, add it to the end
of the 'zl sequence, forming 7=V *1. If 5(?zn41) = yn41, then Equation 2 2 guarantees

that CS(of/“,’xiV“) must hold Notice, further, that this construction accounts for all

N +1-consistent state sequences. Since, for any initial N-element subsequence *z¥¥ of any
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N + 1 state sequence “z¥*! which satisfies CS(o¥*1, £z{'*+1), the relation C S(of, ¥z¥)
must hold.

We prove Equation 2.5 by induction. When N = 0, i.e., before any observations, any
state is consistent with the empty observation, as C'S([], [z]) is true for each z € X.
Hence Equation 2.3 means ISE([]) = X, which is the value specified above.

Now assume Equation 2.5 holds for all £ < N, and we observe on4+1 = (un, Yn+1).
We saw above that we can expand each N-consistent state sequence 7zl into an N + 1-
consistent state sequence ‘z*!, which will qualify as an IV + 1-consistent state only if
2 ®(*zN, un)) = yn4+1. Hence, an initial element, 7 v;, which qualified after N observa-
tions, i.e., for which 7z, € ISE(ol)will remain in ISE(o)*) only if 5( ®(*zn, un)) =
yn+1. Re-expressing this condition in termsof ’zy and u¥, gives 'z; € O~} (n~Y(yn41), ul).
This leads immediately to Equation 2.5. Repeated substitution for the term ISE(ol)

yields Equation 2.7.

The proof of Equation 2.6 is similar. The N = 0 base step is identical. For the
inductive part: Given that ‘z, is a member of CSE(0)), we need only obszrve that
Izn41 = O(zw, uy) belongs in CSE(o)*!) if and only if n(*zyn41) = yn41. Hence, an
z € X should be a member of CSE(o}*!) if and only if z = ®(z’, uy) for some z’ €
CSE(ol) ie, x € ®(CSE(0)), ux), and z € = (yn41). Thisis exactly Equation 2.6.

Equation 2.8 follows immediately. o

The rest of the chapter deals with the design and in addition, a complexity analysis

of the design, of a dynamical observer for finite machines. First, we provide the relevant

type information:

Definition 2.1.11 (Classical Observer System — Type Information) Given any finite
machine M = (X,U,Y,®,9), a classical observer system of M is a finite machine

M= (X,0,7,0,f)suchthat T =0=UxY,XeP(X)and ¥ = X. u
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Notice the input to this M finite machine correspond to an input/output pair associ-
ated with the M finite machine; and M's outputs correspond to M's states This output
is intended to be an estimate of the state of the finite machine M, given the observed

input/output.

Definition 2.1.12 (Convergence) A classical dynamical observer system M is said to
be initial-state-convergent in finite time, denoted by M;, if there exists K € Z,, such

that, for all N > K and for all o} € O* there exists z; € X such that

vii e X, i(®(7,u)) = u (29)

——

where 4} = o) and if we denote xx = ®(zy,uf™?) for k=1,2,---, N then the relation
CS(o}, V) must hold.

Similarly, a classical dynamical observer system M is said to be current-state-convergent
in finite time, denoted by Mec if there exists a K € Z,, such that, for all N > K and

for all 0¥ € O* there exists a z; € X, such that
1

vz € X, 7(8(z1, ul)) = O(ay,uf ) (210)

mre—

where u¥ = oV and if we denote z; = ®(zq,u¥"!) for k=1,2, -, N then the relation
1 =0 1

CS(ol, x)) must hold. 0

Notice this means that the current-state-convergent (initial-state-convergent) observer
finite machine, ./Dl\c (or ./T/l\l) can start from any state, and then observe the behavior of
the finite machine M, which, itself, can start in any state. Given enough observations,
Mg (or M;j) will be able to determine M's current (initial) state, and will then stay
locked on,i.e., always giving M's state as output, for any given subsequent (sequence of)
input/output pairs.

For notation, we will often refer to a (classical) dynamical observer finite machine as

a CDO, and the finite machine being observed as the base machine.
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2.2 Constructing Initial and Current State Observers

This section first presents graphical representations of the observation sets in the forms of
the tree structures. These trees—we shall later call them initial or current state observer
trees—present a graphical way of constructing classical dynamical observers. Then we
prove an important property of observable machines: Theorem 2.2.1 states that notion

of observability of a finite machine and the existence of a convergent classical dynamical

observer are equivalent.

2.2.1 Initial and Current State Observer Treas

In the previous section, we presented an algebraic representation of the observation sets
in terms of a recursive set operations. The information contained in these algebraic ex-
pressions can also be represented graphically, in terms of initial and current state observer
trees. Starting from an empty observation, corresponding to any moment before the base
machine is initialized, Equations 2.5 or 2.7 gives ISE([]) = X. Thus X is the root of an
initial (or a current) state observer tree. Now, at the initial state, the observer reads the
first observation o, = (¢,y), and therefore the observer is able to improve its estimated

initial (or current) state estimates via Equation 2.5 or 2.7 to conclude:

ISE([{¢,3)]) = {z1}(01) = X\ (¥)

(or by Equations 2.6 or 2.8 to conclude: CSE([(¢,v)]) = {z1}(01) = n~Y(¥)).

Based on the value of y we may have different ISE’s (or CSE’s). This leads to a
splitting from the root node into new subnodes. Carrying on these operations, we end up
with an initial (or current) state observer tree OT;(M) (or OT¢(M)) for a given finite
machine M. In the following example, we show how to generate an initial and a current

state observer tree for a given finite machine.




L3

CHAPTER 2. DYNAMICAL OBSERVERS FOR FINITE MACHINES 28

Example 2.2.1 Figure 2.5 and 2.4 show the initial and the current state observer trees

for the finite machine Mj; giver in Figure 2.1.

{x1,x2,x3,x4,x5,x6,x7}
ul/yl ul/y3
ul/y2
L
{x1,%x2,x3} {x4,x5,x6} {x7}
uljy2 ul/yl ul/y3
ul/y2

Y
{x4,x5,x6} (x2) {x&i} {x7}

ul/yl ul/y3
ul/y2

{x2} (XG} {x7}

Figure 2.4: Current State Observer Tree for M-

{x1,x2,x3,x4,x5,x6,x7}

ul/yl ul/y3
u1/y2

{x1,x2,x3} x5 X6} {x7}

ul/yl ul/y3
ul/y?

{x1,x2,x3} (x5} (x'G} {x4}

ully

ul/yl ul/y3
ully

{x2} {x3} {x1}
Figure 2.5: Initial State Observer Tree for M

An observer tree will stop expanding at any singleton node since a singleton node can

only have singleton nodes as its subnodes. 0
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We can view any observer machine, M = (,/X\, 0,70, 7), as a directed, labeled
graph, whose nodes correspond to the element set, X, and whose arcs correspond to the
® function: node 77 is connected to T; by an arc labeled by @ if and only if (f)(é}, u) = 13

An observer tree, i.e., a directed, labeled graph, will be called an observer dag, i.e., a
directed, acyclic graph when the base machine is observable.

Obviously, the most general node is the root, and the singleton nodes are the leafs.
To show that observer dags are true to their name, we need to show that they can have
no cycles. The proof is obvious: a cycle in this (sub)graph necessarily renders the base
machine non-observable.

Observer dags include exactly the traversals necessary to move from the most general
node to the answer that is, to the correct set value of either the base machine’s initial
state, or its current state. This assumes that M begins in its most general node, and
the data it receives is accurate (that is, it is observing the appropriate finite machine, and

perceives its actual input and output). o

2.2.2 A System Is Observable Iff A Convergent CDO Exists

This subsection we prove that a finite machine is observable (initial or current state) if

and only if there exists a convergent classical dynamical observer (initial or current state).

Theorem 2.2.1 (Equivalence) For any input-state-output finite machine, M = (X, U,

Y, ®,5), the following statements are equivalent:

(i) M is initial (respectively current) state observable.

(i} There exists a convergent C Z7O(M) for the initial (respectively current)

state value.

Proof
To show (i) implies (ii), it suffices to define an appropriate chserver machine, M;

and Mc¢ respectively, for any given base machine M = (X, U,Y,®,7), such that by
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Definition 2.12 they are initial state convergent and current state convergent respectively.

This will be done by first constructing the initial and current state estimate dags, these
correspond to the sets of initial and current state estimates and the transitions between
them generated by the Equations 2.5 and 2.6 respectively. We then create the states and
transitions of M and Jﬁc by identifying (1) the state of M and M with the sets of
state estimates in the appropriate dag, and (2) the transitions in M; and M with the
transitions in the appropriate dags.

To prove (it) implies (i) we shall show that not (i) implies not (ii). Suppose M was
such that it was not initial (respectively current) state observable. Then there would
exist initial states z,2’ € X such that z # 2’ and for all N we would have {IIT}(()iV) D
{z,z'} ({;;}(of’) 2 {an = O(z,ul ), 2y = ¢(z',ul ")} respectively), where o =
(L yN () 2)) = () Ly N (w1, 2')) forall N € 2,

But then no non-anticipative function and in particular n.. observer machine could map

o(z)Y into z; (xn, respectively) in just those cases when z; is the initial state, (current,

respectively) for all sufficient large V.

2.3 Complexity of the Observability Dags

This section provides theorems which describe the size of observer dags for finite machines
bounding both their maximal depth, and their total number of nodes, for both itial and
current state observer dags.

First let us present the following lemma which describes an interesting structural

property of initial state observer trees.
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Lemma 2.3.1 (Push-Down Property) For any k € Z, and for any of € O* the
following relation holds:

{z1}(o})  {z1} (o) (2.11)

for any initial state estimate set {?c?}(o’f) of any finite machine M.

Proof

This is obvious from Equation 2.5 of Theorem 2.1.3, which says that an initial state

estimate set at £ is always contained in the initial state estimate set at k — 1. 0

This lemma simply states that any node in an initial state observer tree must be a

subset of its parent node.

Theorem 2.3.1 {[CGWHY1] Size of Initial State Observability Dags — I) Let M =
(X, Y,®,7) be an initial state observable state-output finite machine with | X| states, and
let ./\//ﬂ be the initial state dag observer for M. Then we have:

(i) Mj has depth at most |X| before it converges to all singleton nodes.

(i1) M has at most 2|X| — 1 distinct nodes.

Proof

Proof of (i). Let S, be the set of -ossible initial state estimates, at time ¢, i.e.,
S, = {{z1}(y})lyt € Y*}. Notice, of course that, S; = {X}, and St = {{z}} if every
element of X has been distinguished at time T'; and |S;] < |X| for all . Notice these
Sis include all and only the nodes in the observer dag, i.e., the observer dag's nodes are
exactly (J, S;.

We can use 5; to define I, C X x X to be the set of pairs of states which are
indistinguishable at time t: M,(z1,2;) <« 3 € Sy, such thatzy,z, €. S, = {X}

means that My = X x X, i.e., before any observations, no pair is distinguishable.
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We can define I, recursively:

Nen(z,2) = Aon(9'(z)) = n(®'(+))
<= n(z) = (') AN((z), &(c"))
The depth of the observer dag is the minimum ¢ such that I, has converged. No-
tice that the [, sequence converges whenever My = Ny It suffices to show that
MNz4a(z,2') & Np(z,2'); then by simple induction, we have Ny =My forall &k >0

To show that Ny yy(z,2') & N(x,z'), observe:

Mraalz,a) <= 7(z) = 1(2') A Mga(®(c), O(c))
= q(z) = (') ANz(®(z), ®(a'))
<= Nrulz,z’)
< MNy(z,z)
Notice that M,,; # N, means that |S,,;| is strictly greater than |S,|, by the Lemma
2.3.1. As |S7| < |X]|, this strict increase can happen at most | X| times, hence, we must

have T < | X| and hence the dag can have depth at most |X|.

Proof of (ii).

Forany ' C 2%, let 7(T') be the observer dag rooted at . (Hence 7(X) is the observer
dag for the entire finite machine M.) Let |7(I')| represent the number of distinct nodes
in any such tree.

We prove, by induction, that |7{F'}| <2 x |['| — 1. This induction uses the d-order of

IT|, where the partial order ®-order is defined as
o-order (I,T;) <= || >1and Jy o(ry,y) =T,

This ®; is the (initial state) observer machine’s transition function, see Definition 2 2.1
As we are dealing with initial state observable finite machine and ®-order is false for all
pairs of singleton sets and ® — order is transitive, it follow that ®-order is a partial

ordering.
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Initialization of the induction: The minimal ®-order sets are singletons — i.e., when
I = {z}. Here, the observer tree, 7({z}), contains only the single node, {x}. Hence,
[r({z})] = 1<2%1 -1 = 2« ]|l -1

General induction step: Take any non-minimal I'; these correspond to non-singleton sets,
[F| > 1. Using the superscript k& to mean that the set [ appeared at time &, we give the

following diagrammatic representation for 7(I'*):

rk
Y1 Y Ym

(M) ) ()

where each ! = {z € [* : n(®*+!(z)) = ,} and y, € Y. (Notice ®-order (I'*, ¥+
holds for each i.) These [**!s are distinct (i.e., i #j => ¥ NI = ¢), and their
union is a subset of . As a final bit of notation, let I = { ¢|I*! #£ {} }.

There are three cases to consider:
Case 1: |I| =1 and * = '**! for some i:

Here, the 7(I'*) is of the form
rk
Yi

(M)

Using the fact that |7(L)| is measuring the number of distinct nodes in the tree

7(L) rooted at the node I, and that I* = '**! we see! that |7([*)| = |r([¥*!)]. As

!Notice the finite machine may still be initial state observable(i s 0.): Consider X = {o,...z5} where
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®-order(IT'*, T5*1), we can inductively assume that |r(I*)| < 2 x |I*+!| — 1, which allows

us to prove
[r(FF)] = |7(M*M)] < 2x M —1 = 2x || -1
as desired.

Case 2: |I| =1 and T%*! C T* for some i but ! £ T*:
As ®-order(T*, [k+1), by inductive assumption |7(M*+1)| < 2x M+ -1 < 2x|M*|-3,
as |F¥*1 < |T*| — 1. Hence, T(MA) =14 |7(M*Y) <142 x T -3 <2 x |T¥] -1

Case 3: |I| > 2:
By inductive assumption, |7(I**})| < 2x |M**!|=1forall i € I (as ®-order([*, [*11))
Notice that |7(I'¥)] = 1+ X,ef|r(I¥*1)| and |[¥| > LM,

From above,
I7(M) = 1+ Eeqlr(T7*)]
< 14 Ler(2 x| -1)
< 14 (2x L) = ||
< @x ) +1-11]
< (@x|rf)-1
as |I| > 2.
This proves the theorem. O

Remark: we notice that in an initial state observer dag, those identicai nodes can only
occur along an observation path in the consecutive layers Further a finite machine is an
unsynchronized device and so those identical nodes can be merged into a single node

This is explained in the following example.

O(x,) = 2(142) mod 6 and 7(x0) = n(z1) = A, 9(z2) = n(z3) = B, n(z4) = C. n(zs) = D Notice this
finite machine is i s o, and that, while z4 and zs5 are indistinguishable at both time 1 and time 2, they
do eventually become distinguished (at time 3)
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Example 2.3.1 The merging of identical nodes in the initial state observer dag of Figure
2.5 is illustrated in Figure 2.6.

{x1,x2,x3,x4,x5,x6,x7}

ul/y3
ul/y2
{x4,x5,x6} {x7}
wiiLuly2] YA ully3
ul/y2

{x1,x2,x3} {x&} {x6} {x4}

ul/yl ul/y3
ul/y.

{x2} {x3} ({x1}
Figure 2.6: Merged Initial State Observer Dag for M5

By the above theorem there are at most 2| X| — 1 such nodes and hence we conclude

an initial state observer can be built with at most 2| X| — 1 distinct states. O

Theorem 2.3.2 (Size of Initial State Observability Dags — Il) Let M = (X,U,Y,
®,n) be an initial state observable input-state-output finite machine with | X| states, and
let M be the initial state dag observer for M. Then we have: M; has depth at most

|X'| before it ccnverges to all singleton nodes.

Proof
Proof is similar to that of the part (i) of Theorem 2.3.1 plus the facts of that Lemma

2.3.1 and the merging of identical nodes stated above. o

For the size of an initial state observer, the worst case, can reach the limit of 207wl

This worst case is achieved by assuming that |U| = 21" (), Example 2.3.2 shows the
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existence of such a class of initial state observable finite machines whose initial state
observer tree can reach the upper bound of the size limit stated as above formula. For
this class of initial state observable finite machines the corresponding initial state observer
tree contains all possible subsets of |n~!(y1)] = |X|/3 as its nodes, i e., 21¥1/3 distinct

nodes.

Example 2.3.2 Figure 2.7 shows the existence of a class of input-state-output finite ma-
chines whose initial state observer tree has 2"~ (1)l distinct nodes and requires 21" ™" (vl —

[n71(y1)| — 2 controls.

X1 ul R 171:)] u2 or uJ .o
/ X4 X1

X2

X3

ul ofu2or u’J X9
-Q

INVAVa
N
) \ﬁ‘/

u3
Y1 X6 Y2 \ Y5
For all undefined
aaeet controls

Figure 2.7: A nine state machine M,

The initial state observer tree for this nine state machine will reach its maximum
number of nodes at the third layer which is 23 — 1 + 8 distinct nodes. In general, one can
construct initial state observable finite machines with the stated number of controls to
split into all subsets of the preimage of |~(y,)| = | X|/3 for some y,, 1.e., 21X1/3 distinct

nodes. 0

It has been noticed that the control set U plays an important roles in determining the

size of the initial state observer dags The same is true for the current state observer
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dags. Hence the following size theorems will be stated in terms of current state observer

dags for state-output and input-state-output finite machines respectively.

The following lemmas explain interesting features of current state estimate sets or the

nodes in current state observer dags.

Lemma 2.3.2 (Push-Up Property) Forany k € Z,, for any {z/k:,}(o’f“), there exists

a current state estimate set {z, }(o}*) such that:
{Ter}(05) € (e} (of) if opu=0), forjell,--, k]  (212)

a

Proof
The theorem can be proved by induction on k.

For k = 1, take any 0? = [(#, y1), (u1,¥2)] = (01: 02) € O? then

{z2}(03)= O({z1}(01), 1) N7 (32)

= O({z1}(01), 1) N {71} (02) (2.13)
C {z1}(02)

= {21}(0})

Since 7 Y(y2) = {;:T}(oz) and the condition: o = 0.

Let us make the induction hypothesis that for & = n the required property is true.

Then for k = n + 1, take any o}*! = (0F; 0,41) € O™, where op11 = (Un, Yn+1)

then

{Zas1} (07 )= O({2}(0}), un) N1 (tns1) (by Thm 2.1.3)
< ¢({1':1}(0'1n—1),un)ﬂ’?"l(ynﬂ) (by hypothesis) (2.14)

= {za} (o)
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By taking the induction hypothesis and the conditions: o _, = o,; forj €[l, - ,n+
1].

Hence the theorem holds for any n > 1. 0

The above lemma simply states that any current state estimate {rrl;zl}(o’l‘“) with

e

respect to of*! must be contained in some other current state estimate {r;}(o}}) with

respect to o}, where the observation sequence o}* equals to the observation sequence

o"*1 with o deleted.

The next lemma states that if any two nodes on any layers in the current state dag
observer M¢ for M, are identical then all the subsequent nodes generated by these two

nodes will bz identical.

Lemma 2.3.3 (Same Sub-dag for Identical Nodes) Let M = (X,U,Y,®,7) be a
finite machine, and let Mc denote the current state dag observer for M. Suppose for

some n > m € Z, and some of*, 0’7 € O* that

{zn}(07) = {za}(o}" (2 15)

then for all 0 = (u,y) € O
{Zms1}(0]': 0) = {Tas1}(o]'; ) (2.16)
]

Proof

From Theorem 2.1.3 we have the following equation.

{Em1}(0F:0)= O({Zm}(o7), u) N7~ (y) (by Thm 2.1.3)
= ¢({;:}(0‘1n)’ w)Nn~(y) (by hypothesis) (2.17)

= {Zns1}(07, 0)
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This proves the Lemma. a

The following corollary is an immediate consequence of the Lemma above. The corol-
lary simply states that there are no two identical layers in a current state observer dag

./Ci\c for a current state observable finite machine M.

Corollary 2.3.1 (No Identical Layers) Let M = (X,U,Y,®,5) be a current state
observable finite machine, and let .A,A\c denote the current state dag observer for M.
Then we have for all m,n € Z,, with n # m, and all o € O™ with |[{z}(o™)| # 1

then there exists ul € O™ such that

{zmHo) # {za}(o]"). (2.18)

O

Proof
Suppose the contrary is true.

Then we have for some m,n € Z,, with n # m, and for all of* and {:;,:}(0’1") there
exists a {;:}(o’{‘) such that
{zm}(o") = {za} (o (2.19)
and for all 0,'n and {;::}(0'1"), there exists a {;;}(0’1") such that

{2 }(o]") = {zn}(oT") (2.20)

Namely, the layer m and the layer n have exactly the same nodes.

By Lemma 2.3.2 just proved above, we know they wiii produce the same set of subn-
odes. Hence the M will never generate singleton noudes and this contradicts the acyclic
property of Mg and hence the observability of M.

The contradiction proves the corollary. 0O

The following theorem gives the size of the current state observer dags for state-output

finite machines:;
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Theorem 2.3.3 (JCGW91] Size of Current State Observability Dags — |) Let M =
(X,Y,®,n) be a current state observable state-output finite machine and let M be the
current state dag observer for M. Then we have:

(i) Mg has depth at most | X| before it converges to a layer of singleton nodes

(i) Mg has at most | X|? nodes.

Proof
Proof of (i). We now let S, refer to the set of possible current state estimates at time
t,ie, St = {{z:}(y')lyl € Y'}. Once again, the nodes in the observer dag are exactly
U, S;; furthermore, |S;| < N for all ¢, and Sy = {{x}} if every element of X has been
distinguished at time T'.

As before, we let the indistinguishability class of sets [, C X x X represent the set
of pairs of states which are (current-state) indistinguishable at time ¢, i.e, N,(ry, ;) &

AresS,, r1 €l A z; € I'. We can recursively define

M, = ker(n)
N, = ker(n)nd(Ny)

nt+1 = ke'f'(n) N &’)(nc)

where

ker(n) ¥ {< zy,20>€ X x X | n(z:) = 5(22) }
and
S(N)E {(z1,72) |32, 24,3 N(2h, 2 A = O(z) A ;= &(z}) )

We determine the maximum depth of this observer dag by finding the ¢ such that 1,

has converged. As before, we have converged whenever 34, = (1.
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Suppose M1, = M7 and consider M74,:
Nry = ker(n) N &(Nryy)
= ker(n) N &(Nz)
= nT+1

=My
By simple induction, this means that Nry, = My V& >0.
(Let T denote the time at which our current state observer ./\//i\c converges.)
By the Lemmas 2.3.2 and 2.3.3 and the Coroliary 2.3.1 it suffices to show that IM,,; #
M, means that |S,;1] is strictly greater than |S,|. Then, as |[S7| < |X|, the depth of the
dag can be no greater than | X|.

We need only prove that
V1,22 € X, Na(z1, 22) = Ni(z1,22) (2.21)

holds for all . The proof is by induction:

The base case, t = 0, is trivial, as g is always true.

Assume Equation 2.21 holds for all ¢ < K; we need only to show that for all z4,2, €
X, Ngsi(z1,z7) = Ng(zy,z;). Take any (xy, 27) pair such that Mg ii1(zy,z2) holds.

By definition, this means
n(x1) = n(r2) A Jay,3, Mi(zy, 23) A 21 = O(a1) A 72 = O(x))

By inductive assumption, we know that My _;(z},25) must hold for this (2}, z5) pair.
Hence, Mu_1(a],25) A 21 = ®(z]) A 2, = O(z}) holds, which is sufficient to guarantee

that My (z1, ;) holds.

Proof of (ii}. We know from (i) that this observer dag can have at most depth [ X|. As

the number of nodes at any given depth can be at most |X/|, the total dag can have at

most | X|? nodes. o
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(This relationship is not necessarily true for current state observer dags of input-state-
output finite machines since even singleton nodes can split under different inputs. In that
case |S,| < |X| does not hold and this is the source of increased complexity for the case
of input-state-output finite machines).

Next we present the theorem which states the size imit of current state observer dags

for input-state-output finite machines.

Theorem 2.3.4 (Size of Current State Observability Dags — 11) Let M = (X, U/,
Y,®,n) be a current state observable input-state-output finite machine and let M¢: be

the current state dag observer for M. Then we have: Mc has depth of O(| X?) before

it converges to a layer of singleton nodes.

Proof
We extend the current state indistinguishability relation, Iy, defined in Theorem 2.3.3 to
include the inputs as follows:

M = ker(n)

N, = ker(y)N®(N,)

N1 = ker(n)N®(N,)
where
ker(n) ¥ {< 21,72 >€ X x X|n(z1) = n(z2) }
and

O(N) Y {(z1,72) |32}, 2y N(ah, ) Ay = (2}, u) A xy = O(ah, u) for some u € U}

Now by Lemma 2.3.3 we know within any single path of a current state observer dag
there exist no identical nodes, since otherwise a cycle would exist and observability would
be lost. Therefore the maximum number of possible indistinguishable pairs of states will

be limited by CJ¥1 = J—‘&”#I < | X|% This proves the limit on the maximum depth.
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a

The size of a current state cbserver, in the worst case, can reach the limit of 217~ (w)I,
This worst case is achieved by assuming that |U| = 2""®). Example 2.3.3 shows the
existence of such a class of current state observable finite machines whose current state
observer tree can reach the upper bound of the size limit stated in the above formla.
For this class of current state observable fin" machines [p—1(y1)| = [X|/2 where the
corresponding current state observer tree contains all possible subsets of [77(y1)| as its
nodes.

The case of that |U] is bounded by a polynomial function of |X| is still not clear.
Example 2.3.3 shows how to construct such an input-state-output finite machines whose
current state observer dags have 21X1/2 number of nodes.

These bounds are tight as is shown by the following example.

Example 2.3.3 The depth of the current state dag observer for the class of finite ma-
chines achieves the upper bound | X|? due to the fact that the longest indistinguishable
path will include all possible state pairs. Figure 2.8 is a 12 state machine which is current
state observable and whose current state observer dag will have the maximum depth as
specified by the result stated in part (i) of the above theorem. In this case the state output
function 7 is defined by: 7(z;) = 9(z2) = - -+, = n(z10) = y1 and p(z11) = 7(12) = y2.
The longest path in the current state observer dag for the twelve state machine tra-
verses the elements above the main diagonal of the X x X matrix, in the following

sequence of state pairs:

{3«'11, T2y,
{321, .’172}, {1:27 .’L‘3}, Ty {239,.’1310},
{171, 233}, {1:2, .'124}, T {1'8, 1'10}’

{mla -T4}1 {3:21 35}7 Tty {1:7"'310}7
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Figure 2.8: A twelve state machine

{1:1,-175}, {$2, mG}s Y {1"6’3:10}’

Due to the following controls:

Uy,

Upy s vy Uy,
Uz, Uy, s - -, UL,
U3, Uy, ", Uy,
Ug, Uy, -0, U,

This twelve state machine can be extended to a N state machine. The extension 1s




CHAPTER 2. DYNAMICAL OBSERVERS FOR FINITE MACHINES 45

by adding appropriate state elements to the y; group to the right cf z10 and reassign the
state transitions in a decreasing order of the u!s on top and reassign new controls to the
left most (i.e., with highest index) state element in the y, group as illustrated by Figure

2.8.

An example of another class of current state observable finite machines which achieve
the upper limit of the number of nodes in their current state observer dags is given in
Figure 2.9. This gives a representative of a 6 state machine whose current state observer

dag has the number of nodes in the range as specified.

) )

X1 ul x4

ul and u2

*+~-* For all undefined
controls

Figure 2.9: A six state machine

The current state observer dag for this six state machine will split into two nodes in
the first layer since |Y| = 2. Then for 5 = y1 group, there are 21" W1l subnodes in the
second layer which reaches the upper limit. In general one can construct current state
observable finite machines with the stated number of controls to split into all subsets of

the preimage of |~1(y,)| = | X|/2 for some y,, ie., 21¥1/2 distinct nodes. 0

Next theorem connects the initial state estimate set with the current state estimate

set by pushing forward the initial state estimate via the given observation sequence. The
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theorem shows that this forwarded image of an initial state estimate set is always contained

in the corresponding current state estimate set.

Theorem 2.3.5 Given an observation sequence ol = (1!, y¥) € O for a finite state

machine M = (X, U,Y, ®,7), the following relation holds:

O({z1} (), uf ) C {zn}(o})

Proof
We prove this by induction over N as follows:

‘ Case N=1:

LHS = o({z1}(01),«0) = {z1}(on)

= 77_1(3/1)
{z1}(o)
= RHS.

The following two facts are used in the inductive derivation of the result given below,

let A and B be two sets and ® a mapping, then

O(ANB) S O(A)6(5)
and

o0-1(A) C A

The inductive proof then goes as follows:

Case N=2:

2
LHS = ¢(ﬂ ¢‘1(n_l(yk),uf'l),ul)
k=1

[t N
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¢

¢( )N ¢ (07 (w2), ul),ul)
O(n(31), ua) @ (O~ Hn (), ), wa)
O(n~ ) wr) N1~ (2)

2

n ( —l(yk)v ui\l—l)

RHS

iNn

IN

Induction hypothesis:
o(N o7 (7 (wa)ub ), ul ™) € ne (n~ (), up ™)
k=1 k=1

Case N=n+1

n+l

LHS = ¢(Q(V‘(n"‘(yk)n/f'l),ﬂ)
(6 (1 (nsr) ) N p O (), ), )

¢(®_1("7-1(yn+1)’ up), u;‘) n o (k(’jl O~ (n7 (yr), u’f_l)’ u;‘)
17 W)V ({22} (07), un)

= {$n+1}(01+1)

N

N

This proves the theorem. 0o

Furthermore, a sufficient condition is that when a finite machine is both initial state

observable and that ® is invertible for each state z then the subset relation becomes

equality in Theorem 2.3.5.

Lemma 2.3.4 Given a finite machine M = (X,U,Y, ®,7), the following relation holds:
(AN D)= d(A)N®(B) forany A,B C X, if M is initial state observable.

Proof
We need only to show that ®(A)N®(B) C ®(AN B). Take any z € d(A)N$(B),
{ there exist 74 € A and xg € B such that ®(z,4) = ¢(zp) = z.
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Now there are following cases to be considered:
Case 1. 4 = 25 € A B. Obviously z € (A B) in this case.
Case 2. z4 # zp there are three more cases to consider here:
Case 2.1. z4 € ANB but z5 € AN B. Now Obviously we can take rg and push it by
die.,z=(zp) e ®(ANB).
Case 22. 24 € ANB but 25 € A B. In the same manner, we can take .r 4 and push
it by ®ie., z =0(z4) € (AN B).
Case 25. 4 ¢ AN B and xg € AN B. This will violate the initial state observability
of M for state 4 and xg, since under the same control, if two states are driven into a
single state = then these two states will never be able to be separated again

This proves the lemma.

We conclude this chapter with the following theorem.

Theorem 2.3.6 Given an initial state observable finite machine M = (X, (/, Y, ®,y) and
@ is invertible for each state z € X, then for any observation sequence off = (uy ™!, yV) €

ON the following relation holds:

O({z1}(o} ), u ) = {zn}(ol)

Proof
Proof of this theorem is obtained from the proof of the Theorem 235 and Lemma

2.3.4 and the fact that ®(z,u) is invertible for each state element = € X. 0




Chapter 3
Controllers for Finite Machines

The problem of steering the state of a partially observed finite machine (i.e., a partially
observed deterministic finite input-state-output system) M to a desired terminal state
is considered in this chapter. Using the framework described in the previous chapter we
provide necessary and sufficient dynamic programming conditions for the controllability of
M. These conditions are stated in terms of backward recurrence equations involving the
state estimate sets generated by classical dynamical current (or initial) state observers as
we defined in Chapter 2. Early version of this work has been reported in [CW89a] as a

joint work with Dr.P.E.Caines.

3.1 State Feedback Control

To steer a finite machine M from an initial state to a target state, using either complete
or partial state observations, a standard close loop control approach, see Figure 3.1, is to
build a controller, or a regulator, Reg(M ) which is fed with estimate of the state of M,
generated by a state observer, Ob(M), and which then produces control inputs for M.
The controller we discuss below will be constructed via a dynamic programming tech-

nique It turns out that Reg(M) itself is representable by an input-state-output finite
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-1 k
W& exuvem U

kil k

A
Reg(x) OB(u; ;)

Figure 3.1: A closed loop controller

machine. Now let us start from basic definitions.

Definition 3.1.1 Let M = (X,U,Y, ®,7) be a finite machine and = € X be a state of
M. Then Ri(z), k > 1is said to be the set of reachable states from . in less than or

equal to k steps if it satisfies the following relations:

Ro(z) = {z}yo°(z,U) for k=0

Ri(z) = Ro(z)|J{z':3u € U,2' = &(z,u) }T0(z, V) for k = 1
k

Ri(z) = Rioi(z)|JO(Rio1(z),U)v | ¢°(z,U) for k> 1

W]

We write R(z) = (2, Ri(z) and the symbol R to denote the reachability relation

for Rz’ if and only if 2’ € R(z). In general R is transitive but not symmetric

Definition 3.1.2 A finite machine M = (X, U,Y,®, ), is said to be controllable from
z if there exists £ = k(z) > 1 such that Ri(z) = X and is said to be controllable if M

is controllable from z for every state z € X. O
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Theorem 3.1.1 A finite machine M = (X,U,Y, ®,7) is controllable if and only if for

all z, 2’ € X, there exists u? € U*, where n depends on z and 2, and n < | X| such that

&(z,u}) =1’

Proof

First we observe that

M is controllable <= Vze X,3k =k(z) >1s.t. Ri(z) =X
< Vaz,2' € X,qu] € U,

where n < mea}({k:m)} such that ®(z,u}) = 2’

So we need to show that if n > |X| then there exist u}’ € U* such that n' < |X]|
and O(x,u}’) = z'. But this is clear, since if there exists u} such that ®(z,u}) = 2’ and
n > | X| then there exist z, and z;, in the state trajectory from z to z’ induced by u?
such that z, = z,, i.e. thereexists a loop in the state trajectory. Eliminate all such loops
by choosing a new control sequence ul'. The state trajectory from 2 to z' resulting from

u]' is loop free and so n’ < |X| o

Corollary 3.1.1 If a finite machine M = (X,U,Y, ®,n) is controllable, then for all

x € X, there exists a k = k(z) < | X| such that Re(z) =X O
Proof
This follows directly from Definition 3.1.2 and Theorem 3.1.1 a

Theorem 3.1.2 Let M = (X,U,Y,9,n) be a controllable finite machine. Then for
all r € X and k£ > 1, the sequence of sets of reachable states from z, i.e., for all
k€ Z¢,{R(x) : k > 1}, is strictly monotonically increasing if Ri(z) # X, i.e.,
Ri(r) C Riua(z) with Re(z) # Riqa(z), if Ri(z) # X.

.
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Proof
Assume this is not true, then we have some z € X and some [ > 1 for which

Ri(z) # X and Ri(z) = Ryy1(x). But this implies

Riaz) = O(Rin(e),U)URi(a)
= O(R(z), V) R(z)
= Ripi(z),

and hence we have Ry (z) = Ri(z) € X with R(x) # X for all k > 1 which

contradicts the controllability of M. U

3.2 Construct State Feedback Controllers

In this section we describe how a state feedback controller for a finite machine (either a
completely or partially observed finite machine) can be designed Our solution provided

here is based on the dynamic programming principle.

3.2.1 Controllers for Completely Observed Finite Machines

Let us first examine the issue of how to control a completely observed finite machine, 1 e.
a finite machine M for which n is 1 — 1. To steer an initial state z into a target state
z!, one method for generating such a state dependent control sequence, 1 e., a state
dependent control law, w : X — U, is to apply the dynamic programming technique (see
for instance [Ber87, Cai88]). We may calculate a state dependent control law that steers
the system between any two states by using a notion of the k,, control pre-image of a

target state.

Definition 3.2.1 Let M = (X, U,Y,®,7n) be a competely observed finite machine, then

the ky, control pre-image R;*(zT) of a target state 27 € X is defined by the following
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recursive scheme:

R(z7) = {27} fork=0
R*=") = U {m : O(z,u) € R7ED(TY\z & R (=7T) for k> 1
uel

forOSsSk—l}

O

Notice R_¥(zT) represents all the nodes which can be steered to home in exactly k

steps.

Definition 3.2.2 A set of good states at the stage k, denoted by G*(zT) with respect

to a target state z7 € X of a completely observed finite machine M will be defined by

G¥(T) = Ui R:*(2T) =

That is a state z is a good state at the stage k with respect to =7 then z can be

steered home in less than or equal to k steps.

Theorem 3.2.1 The completely observed finite machine M = (X, U, Y, ®,7) is control-
lable from z if and only if for all T € X, there exists k = k(z7,z) < |X| such that
x € R7*(zT). Furthermore the following are equivalent:
(i) M is controllable.
(i) For each 2T € X there exists k = k(zT) < |X| such that G¥(zT) = X.
(i) GY(zT) c G+ (2T) with G'(zT) # G'+'(aT) for 1 > 0 unless G.(zT) =
X.

Proof

Here we only prove (i) implies (iii) since the remaining implications are obvious.
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M is controllable <=> V2T € X, 3k = k(zT) < |X]| such that G*(27) = X.
Suppose GL(zT) = GI+(aT) # X for some [, then by the definition of (71 H(+") =
U R7(2T), we have

R;#0(2T) = U {x :O(z,u) € RITYA\x g B72(2T)

uclU
for 0 <s Sl}

=¢,

and hence R7(*7)(2T) = ¢ for all j > 1, which yields a contradiction to (1) 0

Theorem 3.2.2 (The Dynamic Programming Principle) Let M = (X,{/,Y,0,y)
be a completely observed finite machine. M is controllable if and only if for any target
state 7 € X, there exists a control law u,r -+ X — U/ that steers any state «+ € \ to
the target state 7 € X of M, 1.e., there exists a control law which is only current state

dependent.

Proof

We only prove = direction here since the other direction can be obtained easily

By Theorem 3.2.1, M controllable implies that for all 7 € X, there exists k < |.\|
such that G*(zT) = X. By the construction of the sequence of the control pre-images
R:*(2T) of the target state 27, we see that a control law taking any given . € [¢7*(r")
to 77 in s steps Is given by the sequence of controls u] where u; takes any state r ¢
Rz*(x™) to some state 2’ € R7*+(zT) and u; takes any state o' € 127" (+7) to some
z" € R7°**(zT), and so on, until u, takes any state in the resulting /#7(r") to 47 Now
G*(zT) = X for some k, and the sets I27°(x") are constructed recursively beginning only
with the data 7. Hence we see that there exists a control law, taking the state .« to 7

whose values at any instant between s = 1 and s = k, depend only on the current state

and the desired target state z7. 0
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u2)

Figure 3 2: A completely observed finite machine M,

The following is a control pre-image of the target state z3

RYx3)

Figure 3.3: The control pre-image of the target state x3 in My,

55

Example 3.2.1 Assume ;3 is the target state in the following completely observed, 7

Since G*(z3) = X and then by checking each state for the controllability and the

Theorem 3.2.2 we know that Mj. is controllable and the control law is defined by the
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above graph. 0

Next we will turn to the more complex situation where the finite machine is partially

observed.

3.2.2 Controllers for Partially Observed Finite Machines

Our first theorem on partially observed finite machines is as follows

Theorem 3.2.3 (Initial State Observable and Controllable — 1) Let M = (X', (/,},
®,77) be a partially observed initial state observable and controllable finite machine. Then
for any z, 2T € X there exists n < 2|X| and a control sequence u! € {/" such that

®(z,u}) = 27

Proof

The above theorem simply states that for an initial state observable and controllable
finite machine, any state can be steered into any other state in at most 2/V steps, where
N = |X|. The control sequence is constructed by first choosing arbitrary control inputs
until the state estimate set converges to a singleton This will happen in less than or
equal to N steps by Theorem 2.3.1 Then a control sequence 1s constructed according
to Theorem 3 2 1 for a completely observed finite machine which will steer the singleton

{zn}(0}) to the target 27 in at most N steps. 0
We have the following similar result for current state observable case

Theorem 3.2.4 (Current State Observable and Controllable - 1) Let M = ( X,/
Y, ®,n) be a partially obser:ed current state observable and - untrollable finite machine.
Then for any r,z7 € X there exists n < |X | + |X| and a control sequence u} € /"

such that ®(z,u?) = z7
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Proof

The above theorem simply states that for a current state observable and controllable
finite machine, any state can be steered into any other state in at most N2 + N steps,
where N = |X|. The control sequence is constructed by first choc:ing arbitrary control
inputs until the state estimate set converges to a singleton. This will happen in less than
or equal to N? steps by Theorem 2.3 4. Then a control sequence is constructed according
to Theorem 3.2.1 for a completely observed finite machine which will steer the singleton

{zn}(0V) to the target =T in at most N2 + N steps. 0

A more challenging question is how to generate a control law which can be applied
before the state estimate set has converged to a singleton.

We shall see that an answer to the question is obtained by applying the dynamic pro-
gramming technique to the sequence of state estimate sets generated in the corresponding
observer tree Let us first define a notion of a set of good estimate states with respect to
a target state 7 € X among all the estimate states in a current state observer tree In
the complete observation case, an estimated state can be specified simply as an element
of the state set X; in the present case, however, we wish to indicate the position of
a particular estimate state (ie., a subset of X) in the observer tree for M. Since an
estimate state (in particular, the singleton z7) may appear at layers of the tree with a
depth greater than any given value, we have to take a union over an infinite number of

layers in the definition of the good estimate state sets.

Definition 3.2.3 An estimate state of a finite machine M is said to be a good estimate
state at the stage k with respect to a given target state 7 ¢ X, if it satisfies the

following recursive scheme:
1. Let {;;}(of’) be an estimate state in the N-th layer of the current state observer
tree for M. If {;;}(of’) = {27}, then {;;}(O{V) is called a good estimate state

(at the stage 0). The set of all good estimate states at the stage 0, H%(z%), is
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the union of these estimate states, i.e.,

H") = U{{zn)(e]) : ando]) = ("} }
N=1
2. For k > 1, any estimate state {;;}(of’) is a good estimate state at the stage
k if there exists u € U, such that for all y € Y, ®({rn}(o]¥),u) (" }(y) =
{zn41} (0N ) and {zn+1}(0V*Y) is itself a good estimate state at the sta; =
k—1,or if {zn}(ol) itself liesin H*~1(zT), i.e.,

H @)= 1Ty J{U U {{en}(o) vy ey

uelU N=1

O({zn}(o]),u) 0y~ (y) € 11T}

]

In particular, we set X € II¥(zT) for some k if for all + € X, y~'(n(x)) € H*(+T).
The following theorem states that an estimate state is good at the layer & of the

observer tree if and only if it is good whenever it appears any where in the observer tree

—

Theorem 3.2.5 Let M = (X, U, Y, ,7) be a finite machine {}(0}) = {1} (o!) for
any l and I', then {z,}(}) € H*(zT), for some k, if and only if {z}(o}) € 11*(x7)

Proof
This is proved by the use of Lemma 2.3 3 and the Definition 32 3. 0O

Since state information is not directly obtainable, an observation based controf law for
a partially observed finite machine will be a function of observation sequences, which we
shall write as u; : O' — U. We will see that the notion of a good estimate state plays a
key role in generating an observation based control law from the corresponding observer

tree.

Next we give a definition of controllability under the observation based output feed-

back controls.
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Definition 3.2.4 A partially observed finite machine M = (X,U,Y,®,7) is partially
observably controllable in less than or equal to N steps if for all zT € X, there exists
an observation based feedback control law, u; : O' — U, for N > | > 1 such that
for all z; € X, there exists k = k(x1,z7) < N and such that observation sequence
of+l = (ub,yf*!) € O, and NFE O(77'(y,),ub) = {Ter1}(05*1) = {zT}. Since

z1 € 37 Y(n(z1)), it follows immediately that ®(z,,uf) = 27. 0

Now we can prove that controllers are markovian with respect to state estimates.

Theorem 3.2.6 Let M = (X,U,Y,®,7) be a partially observed finite machine. M is
partially observably controllable in less than or equal to N steps if and only if for any
fived 27 € X there exists a k < N such that X € H*(zT), i.e., for all z; € X, there
exists a k = k(z;) < N such that n~*(5(z,)) € H¥(zT). Furthermore, the observation

based control law can be expressed as a state estimate based control law.

Proof

Consider a fixed 2T € X and a fixed N € Z,.

=

Suppose M is partially observably controllable in less than or equal to N steps. Then
Ju; : 0 — U for N > 1 > 1 such that Vz; € X,3¢ = g(z1) < N and it =
(ud,yi*") € O such that N7E] O(n~*(y,),u?) = {zT}.

For any fixed z; apply the above argument to every x € ~1(5(z;)), we have for any
r € 5~ (n(x1)) there exists a ¢ = g(r) < N such that N7F] &(n~*(y,),u?) = {«T}. This
implies that the estimate state set ~}(5(z;)) can be steered to =7 in less than or equal

to k = maxge,-1(nz))(4(z)) < N Hence by Definition 3.2.3, n~!(n(z1)) € H*(zT).

—
Suppose for all £, € X there exists a k = k(x;) < N such that p7(n(z1)) € H*(z7).

We need to show the existence of a control law u; : O' — U such that for all z; € X

there exists a ¢ = g(x1) < N such that (72} ®(n~(n(z1)),ul(0?)) = {zT}.
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This can be proved by working forwards from 4~!(5(z1)) € H*(+") Assume for
some ¢ < k <N, n7Y(n(z1)) € H(zT). By the definition of H(+"), for some u; € U/,
O (n Y (n(z1)),u1) Ny~ (y) € H7'(aT). Set uy(0;) = uy, where 0, = ¢ x (). Then
for all y = 5(®(z,u;)) as z varies over 5~ (5(r}1)), {/l';}( 2) = (= (n(x1)) ) N
77 (y) and o, = uy x y satisfies {x2}(c?) € I171(27) Hence it is clear there ex-
ists u5(02), u3(0}), - - -, uy(0]) that c.eers {;';}(o}) home. And so obviously there exists
ui(01),u2(03), - - , ug(of) that steers n~'(5(z1)) to 7, 1e, N/Z1 ©(n~*(y,),u’) = {27}

as required.

To prove the state estimate dependency of the controls we notice the fact that the con-
trols are computed directly by use of the observer trees and as we move down through an
observer tree, the state estimates are given by our basic recursive formulas of observation

sets expressed in Equations 2.6 and 2.8

N+1

= ﬂ“’ (Jk “k) (2.8)
= ({xN}(Ol un) (07 (yw) (2.6)

{$N+1}( ARS )

The Equation 2.8 clearly states that the estimated state {J:;:l}(()l *1) is a function
of yl' and ul and the Equation 2 6 simply says that {;/;}(ol ) plays the same role as

y{v'l and ul~! do in Equation 2.8. This proves the stated property 0

Theorem 3.2.7 (Initial State Observable and Controllable — ll) If M = (X, /.Y,
®,n)is initial state observable and controllable, then there exists a n < 2|X| such that
for all z;, 27 € X, n~Y(n(z1)) € H"(xT), and hence M s partially observably controllable

in less than n steps.
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Proof

The initial state observable implies that any state estimate will converge to a singleton
after at most | X| steps by Theorem 2.3.1. Controllability implies that any target state
can be reached from any other state in less than |X| steps as stated in Theorem 3.2.1.
Hence the theorem is established. O

We have the following similar result for the current state observable case.

Theorem 3.2.8 (Current State Observable and Controllable Systems- 1) If M =
(X,U, Y,®,n) is current state observable and controllable, then there exists a n <
| X2+ |X

observably controllable in less than n steps.

such that for all z,,z7 € X,n~!(y(z1)) € H™(zT), and hence M is partially

Proof

The current state observable implies that any state estimate will converge to a sin-
gleton after at most | X|? steps by Theorem 2.3.4. Controllability implies that any target
state can be reached from any other state in less than |X| steps as stated in Theorem

3.2.1. Hence the theorem is established. |

Definition 3.2.5 Let M = (X, U,Y,®,7) be a partially observed finite machine, (A)N
be the current state observer dag for M with only the nodes in the first NV layers. A

finite collection GN(xT) of a set of good estimate states with respect to a target state

r’ € X is defined to be :

GN") = HY ") (M)Y

This GV (2T) simply gives rise to the set of good sets in the first N layers of the

current state observer dag of M.
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Theorem 3.2.9 A partially observed finite machine }M is partially observably contrcllable

in less than or equal to NV steps if and only if for all 27 € X, X € GV («7).

Notice the use of the notion of a finite collection of a set of goor’ estimate states in this
theorem will give rise to an implementable criterion for testing the partially observably
controllability in less than or equal to NV steps for a partially observed finite machine.
Furthermore, we can see that when the output function 7 in a given finite machine becomes

one to one, then a good estimate state will be simply a good state, ie, (:*(u7) =

G*(=T).

Example 3.2.2 We take the same finite machine as in Figure 3.2 but without the as-
sumption that it is completely observed. The output function is given in the graph below,
see Figure 3.4. It is a partially observed finite machine We can see this finite machine is
observable and controllable in less than 7 steps via the observation tree based output(or

estimated state) feedback controls.

To support this claim, next we first generate a part of the current state observer tree,
in Figure 3.5 for this finite machine given in Figure 3.4 Assume our target state is r3
again. Then we have the control pre-image or a collection of good sets with respect to

the target state =3 as shown in the Figure 3.6

[l

The network generated by the dynamic programming technique, i e here we call it as
a collection of good sets with respect to the target state, defines the control functions
These control functions can also be given in the form of a finite machine which can be
transformed from the network. We may call such a (finite) machine as a regulator finite

machine.
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Figure 3.4: A partially observed finite machine My,

3.3 Complexity of Classical Controller Design

In this section we address the complexity problem of designing classical controllers based

on the algorithms presented in the previous section.

3.3.1 Complexity of Controller Design for Completely Observed

Finite Machines

As we mentioned before, a completely observed finite machine is an input-state-output
finite machine for which the output function 7 is taken tc be one-to-one. So the controller
has complete observation on the finite machine's state. The design of a controller based
on the dynamic programming technique for such a finite machine is characterized by the
notion of a set of good states with respect to a given target state as described in Definition
3.2.2 and the Theorems 3 2.1 and 3.2.2. In the following we analyze the complexity issue

of the design of such a classical controller.
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Figure 3.6: A part of the collection of the good sets w.r.t. the target state z3 in My,

We first define a cost function c(x, z’) on the state pairs by

0 fz=a2"or
c(z,z')=¢ 1 ifIuelUst d(z,u)=2a (3.1)

oo otherwise

c(-,+) can be thought of as an one step distance between any two states. Then the
distance d(-, -, -) between any two states z,z' along a path z(® = z,z(1) ... z(k+1) = g/
generated by the control sequence u} is defined by

4

0 if z =a’
Z:‘=0 C(.’D('),SE(H’I)) if ZE(H'I) = ¢(x('), u') with m(O) =z

3.2
and z*k+) = g’ for uk € U* (3.2

d(z,2',uf) =

fo's] otherwise

\

Clearly the reachability relation given in Definition 3.1.1 can be redescribed in terms
of d(-,-,-) via
{'e URi(z)} ff  aR (3.3)
k=1

iff Ju € U*, such that d(z,z’,u") < 0o (3.4)
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We shall define the minimum distance d(z, z") between x and 2’ via

d(z,z') = ,:nlzr: u?éilt}k{d(m,.l", u'f)} (3.5)

Evidently, z’ is reachable from z if it is reachable in less than |X| = N steps Hence

the minimization in Equation 3.5 is over finite time (V) and a finite number of controls

U™

An algorithm for designing a classical controller to steer xr; to xry is given by the
dynamic programming technique for the solution of Equation 3.5 Specifically we solve
this by a backward iteration of

dya(z',z7) = zrlrllérzl\'{c(m', ") + d, (2", .1;1')} (3.6)

with do(-, ) = ¢(+,-) and d(z,,27) = d,(z5, T7) for the smallest value of j such that

d,(zs,zT) < 00. The resulting state-dependent control law 1s given implicitly as the

sequence of controls that generate a sequence of states yielding the value d(x,,.r7)

In considering the computational complexity of the evaluation of Equation 3 5 for all
source and target states we shall specifying the following costs of elementary computa-
tional steps.

1. An evaluation of ®(z,u) shall be counted as costing 1 unit of computation

2. The verification of the inclusion z € S C X shall count for || units of computa-

tion.

3. The merging A U B or the intersection A N B of two subsets A, 3 C X counts

for max{|A|,|B|} units of computation.

Theorem 3.3.1 The computational complexity of the algorithm given by Equation 3.5,
evaluated for all z,,z7 € X, is O(|U| x | X|*).
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Proof
First, we fix zr and calculate d(z,,z7) for each z, € X. We assume X be indexed

by X = {r;, 2, --,zn}. The following staged diagram illustrates the argument.
’& %\ AN
AT XOR

" ™

>f i

T

N4

A Xi+1 \\7(‘);:
AN \or
'

XN \x_NJ — S
Stage Stage Stagcz Stage Stagco

Figure 3.7: Staged Diagram

We assume N = |X| in the following calculation. At stage 0, we need to make the
following calculation: compute the cost of a transition from each of the N — 1 nodes at
stage 1 (excluding vy itself) to z7. This requires the evaluation of ®(-,-) over (N —1)x |U|
times, see Equation 3 2. Using the elementary computational cost table listed above, this

costs (N —1) x |U] units of computation.

At stage k + 1, for each target node ="/ # zr we need to calculate the costs for N —2
transitions from z’ & {x”, 1} to z”. Therefore the computation required for stage k+1 is
(N —2)(N —1) x |U| units. By Theorem 3.1.1, if two states z,z' € X satisfy zRz', then
d(r,r') < N. Hence we need to consider the calculation up to at most stage /V —1. So for
each fixed 77 € X we need to perform [(N —2)(N —1)+(N —1)]x|U| unit of calculations.

Therefore the complexity of designing a classical controller via the dynamic programming

Equation 3.5 is bounded by O(JU| x N[(N —2)%(N —1)+ (N -1)]) = O({U| x N*). O
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Example 3.3.1 Consider a cyclic finite machine given in Figure 3 8

X as the target state, then the staged diagram is given in Figure 39

Take z5 €

Figure 3.9: The Staged Diagram

and the compttational cost for z5 is* (7 +6% x 7) x 1.

The vollowing calculation shows that the good set iteration of the Definition 3.2 2 has

the same complexity as the dynamic programming calculation just described
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First we rewrite the formula given in the Definition 3.2.2:

Golz™) = (=T
Gi(z¥) = Gk_l(xT)U{:z €X —Gra(zT) : e U,
®(z,u) € Gk_l(:vT)} k>1

Consider the computational cost required for the above recursive iterations, the cost
for the merging of two sets can be ignored compare to the cost of creating new elements.
Assume
no = |Go(z")|
T T
ny = |Gi(a")] = |Go(=")]

n, = |Gy(e")| =[G (a")]

Where Z;‘zonJ = |X| = N and k < N. The units of computation required for

calculating each G7,(=) are listed below:

0 j=0
(N—no)X‘U,XTJo ]=1
(N—(n0+n1))x|U|x(no+n1) ]’—‘—‘2

k-1 k-1
(N—Zn,)x|U|xZn, j=k
1=0 1=0

To sum up the above, we have for each 27 € X:

U] x§[Nx§n.~(2;n.)2} (3.7)
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Therefore the worst case computational complexity for all 7 € X is obtained by
taking the max of the asbove formula over & < N and n, where : = 0,1,2,- -. A and

Zf=0n|' - INI, i.e.

C = mazrcnmazn, ‘k{|U| x N x zk:[N X Jin, — (]—Zl 71‘)2]} (38)
=1 =0 =0

Evidertly, by igroring the negative part in the Equation 3 8 and taking note of

SiZon, < N for any 7 < k, we get an upper bound on Equation 38,1 e
C <|U) x N = O(JU] x N*)

On the other hand, we can find a lower bound for this formula by taking a specific

instance of Equation 3.8, i.e. taking n, =1 for . =0,1,--- &, we get

N-=1 N-1 N-1
CRWIxNI(Nxj—)3) = [UxNNY ;-39
1=1 =1 =1
= O(U] x N*)

Hence we have C = O(|U| x N*). )

3.3.2 Complexity of Controller Design for Partially Observed Fi-

nite Machines

In the case of partially observed finite machines, we use the good estimate state 1teration
algorithm based on the Definitions 3.2.3 and 3 2.5 given in Section 3 2.2. Here we will
first rewrite the algorithm and then the analysis of its computational complexity

Assume M = (X,U,Y, ®,7) is partially observably controllable i less than /V steps
The calculation of good estimate states at the stage & with respect to a target state

zT € X is as tollows:
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GY") = {{zn)ol) : {zn)(o]) = {7}} k=0
GY(z") = {{-’Elfvtk]((){v_k) JuelVyey, st
O({zn-i}(o} ™)) N7'(y) € GiL,(=")
or {zn-k}(o) *) = {27}} 1<k<N

We assume the | X is the width of the observer tree in the following calculation. The

units of computation required for calculating each G (27) for a fixed 27 € X are listed

below:

o(X1) k=0
U] x Y| x O(IXP) 1<k<N

By Theorem 3.2.7, an initial state observable and controllable finite machine is partially
observably controllable in less than N < 2|X| steps. Hence the complexity of designing

a classical controller for such a partially observably controllable finite machine will be

O] x [¥] x [XPIX]).




Part 11

A Logic Based Control Theory for
Finite Machines:COCOLOG—A

Conditional Observer and

Controller Logic
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In part |, we defined observer and controller problems for finite machines and showed
how to construct observers and controllers directly in terms of finite machines. All of this
discussion was in terms of the classical functional (or procedural) approach of building
dynamical systems |In this part of the thesis, we show a logic based (or declarative)
approach can also be adopted to the same control tasks by introducing a new control
theoretic paradigm, i.e., a framework of a logic-based dynamical system (LDS) which
generates a sequence of propositions that correctly describe properties of the state of the
given finite machine [n particular, we are interested in those cases where the classical
dynamical observer system estimates converge to the correct values of the systems state
and the logic-based dynamical system statements converge (in an appropriate sense) to
true characterizations of the system state. When such convergent observer systems exist
we shall call the base finite machine observable or logically observable and similarly for
controllable or logically controllable respectively.

To be more concrete, in order for a logic based system to be an embedded real time
observer and controller we introduce a certain sequence of conventional logical systems.
This sequence of structures constitute our main contribution of this thesis: COCOLOG -
a conditional observer and controller logic. This is a precisely formulated control theoretic
logic system, in which it is possible to express a large range of control problems and to

find their solution by Automated Theorem Proving (ATP) method.
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Chapter 4

Logic-Based Dynamical Systems

Frevious two chapters presented the state estimation and control problems for system
modeled by finite machines, in terms of classical functional (procedural) approach Here we

introduce a logic-based framework for modeling and control of the same control problems

4.1 Logic-based System Modeling

Stated informally, a logic is a formalism capable of representing and reasoning about a
world or worlds. It is usually viewed as a language — that is a set cf well formed formulas
(or wifs) and a set of worlds or models with respect to which the formulas are interpreted
and a truth function, which assigns a truth value (usually true, false or unknown) to each
wif.

The language together with its formal grammar is referred to as the syntax of the
logic and the set of models and truth function as its semantics. A usetul logic is able
to encode the truth assignments of a large (possibly infinite) number of wffs in relatively
few symbols, by employing a derivation or inference process In general, a dervation
process is a symbolic manipulation process which maps one set of wffs into another set

For notation, we write L F , o to mean that the wff o is derivable when applying the
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derivation process b, to the set of wffs X In this case the o is called a theorem of L

and the denivation is called a proof. Standard introductions to mathematical logic are

[Men64, End72].

Logic Theory Plant
Syntax of in
Theorems

Real World

"

Derivations Laws of Physics

*
.
U Mod
- 3]
Rl
h ”

. ) Mathematical
Modal ¢ Model of
Semantics of |~ > the Plant
Logic Theory

-----------------------------------------

Figure 4 1. Logic-based Modeling

Logic as a formalism can be used to represent (or to model) a system. Figure 4.1
ilustrate how a logic is used to model a plant, where a plant is usually modeled math-
ematically according to certain laws of physics. A logical theory determined by a set of
axioms ¥ and its associated derivation process is characterized by the set of all theorems.
These theorems are constructed so that they are exactly the set of formulas which are
true in every model of the logical theory. Properties of the plant are formulated in terms
of the true formulas of the logic and therefore can be generated by the derivation process.
Mathematical models of the plant are connected with the logic models of the logical the-
ory so that one can formally say that truth values of formulas are characterizations of the
properties of the plant.

Logic has been used, in the past, as a formal tool in computer science [Hoa85] to
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model program behaviors and thence to reason the correctness of the concerned program

To model a dynamical system, e.g, the behavior of a concurrent program, Manna and
Pnueli [MP81] proposed the use of temporal logic A temporal logic 1s a modal logic where
a necessity and a possibility operators are introduced in the syntax and an accessibility
relation among possible worlds is introduced in the semantics Ostroff and Wonham
[OW85] have adopted the temporal logic to the modeling and reasoning of the correctness
of the closed-loop behaviors of systems modeled by extended state machine (an extension

of finite state machine).

4.2 Logic-based Control System

A logic-based control system here we mean an embedded logic system which provides, in
real time, the control signals to the plant.

As we treated in Part |, a plant is taken to be an input-state-output finite machine
An observer and a controller is a dynamical system which takes observations from the
plant and outputs controlled inputs to the plant. These input and output data will flow in
as new axioms and out as newly proved theorems of a logic-based control system Logics
used to model and reason about plants cannot directly used to be as a logic-based control
system since first axioms are fixed and hence no new axioms can be accepted in (discrete)
real or system time Second, no controlled inputs can be generated as theorems siace the
only theorem that can be proved are hypothetical statements which are adequate for the
correctness proof but not for controls

Most existing formal systems share a common feature, namely, they are all static or
time-invariant with respect to the system time Even the so called temporal logic, see
[Gol87] and its use in verifying “ne correctnessof concurrent programs, see [MP81] cannot,
as it stands, deal with a situation where new axioms are accepted at each system (i e

real) time clock instant. Moreover, temporal logic is a modal logic wherein a statement
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is true at a given instant will be true at all system time clock instants and hence no error
correction is permitted or possible.

In contrast to the notion of system time, we shall take (discrete) logic time to be the
time that is measured between two system time clock instants and which is such that
each inferential step taken in (or by) the logical deduction process consumes one unit of
logic time. The following figure 4.2 shows the relationship between the logic time and the

system time as we mentioned above.

System Time (or Real Time)

Logical Time (or Imaginary Time)

Figure 4.2 Logic Time and System Time

In the following, we give definitions of the concepts of time invariant and time varying
properties of a logic system, which will be the first step towards a definition of a logic
based dynamical system.

We take L to denote a set of wffs, ( to be a set of axioms in L and we assume the
set of inference rules be fixed. Intuitively, we may say a logic is (system) time invariant if
the set of axioms is fixed, and hence the set of theorems is time independent. Actually,
this condition is only sufficient not necessary. We may further exploit a necessary and
sufficient condition for this definition by considering the equivalence classes over the set
of all possible axioms as follows.

Th(¢) = {w . w € L,¢ I w} 1s the set of all theorems (or the range of the deductive
closure operator) derivable in L from (. This deductive closure operator Th:2l — 2L
gives rise to an equivalence relation =v, over the power set 2& of L. This relation =1,
can be defined for any (;,(; € 2L, such that {; =1, ¢, if and only if Th((;) = Th(().

Furthermore, the equivalence class of ( induced by =y, will be denoted by [(]r,. In the
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following, we define a time invariant property for a logic system as follows

Definition 4.2.1 A logic L is said to be time invariant, w.r.t system time if and only if
the set of axioms ( of L is invariant, w.r.t. system time up to the equivalence class [(]

L will be said to be a time varying logic if otherwise 0

Most classical and contemporary logic systems have the time invariant property since
they all have a fixed set of axioms and a fixed set of inference rules Examples are given
by the logics used in computer science for reasoning abcut program behaviors (1.e the
correctness of a sequential or concurrent program) such as Dynamic Logic, or Temporal
Logic see [Gol87, Llo84, MP81] and for formal systems such as Petri-Net, Communicating
Sequential Processes, see [Hoa85, Pet8l].

In contrast to this, adaptive control problems addressed in SCT, and reasoning with
uncertainty and machine learning in Al are all based on the systematic change of control
laws or axioms and rules of inference. These systems shall be modeled by logic systems
that actually vary with time or in the sense we shall discuss in this part of the thesis Within
Al, these issues have been addressed formally by the construction of formal systems such
as default logic see [Rei80], or non-monotonic logics in general, see [MD80, Moo85]
These are intended to capture certain features of common sense reasoning or reasoning

under uncertainty.

4.3 Logic Rased Dynamical Systems

The general idea of a logic based dynamical system (LDS), is inspired by that of a dynam-
ical system, that is a non-anticipative mapping ¢ from the input (time) function space
to the output (time) function space )

We denote Q(¢) to be a set of wffs in L at the time {, they may represent a set of

objects we are interested in.
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Definition 4.3.1 A Jogic based dynamical system (LDS) consists of a septuple (FR(L),
LA, DyA, DaA, Linf, Dinf, Q) given by a set of formation rules FR(L), axioms (LA, DyA,

DaA) and rules of inference (Linf, Dinf) such that the output map is given by the query

map Q. O

Namely, a LDS consists of a sequence of the following axiomatic scheme:

1. Formation Rules - FR(L)
2. Axioms

2.1 Logical Axioms — LA
2.2 Dynamical Axioms — DyA

2.2 Data Axioms - DaA
3. Inference Rules

3.1 Logical Inference Rules - Linf

3.2 Dynamical Inference Rules — Dinf

A base level query map of Q(t) to a LDS at the time t is defined to be a time
dependent set Y(t) suchthat Y(i) = {w € L : w € Thy and w € Q(1)}, (or Y(2) =
{w e l:wePTh and w € Q(t)}), i.e., the intersection of Th, (or PTh,) with Q(2).
The key point here is that a base level query map is a matching process not a deduction

process. Hence we have the following definition on the output function of a LDS.

Definition 4.3.2 An output function Y (t) of a LDS L is a base level query map of
Q([) to [JE. a

The formulation of the concept of a logic based dynamical system (LDS) led to the

construction of Input/Qutput spaces, defined as a set of time functions on the power set
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of a set of wifs of a time varying logic L, and a mapping from the input space (i to the
output space ). So for a given time varying logic L, we have the following defintion

[

Definition 4.3.3 An input-output logic based dynamical system L of the time varying

logic is a triple L, = (U, ), £) where
UN{U : 2, — 2"} = input space
IAY 2, — 21) = output space

€ : Uy = (uour, - ) v— ¥ = (y0, 41,7+ 91)

which can also be written as {,U{ F Y. ]

From the input-output system point of view, we have the schema as shown in Figure

43.

Ut)—— L §=(U,Y, &) —Y(t)

Figure 4.3: Logic Based Dynamical System

Where the input function U(t) denotes a sequence of data axioms or dynamical axioms

received by L, up to the time ¢ and the output function Y'(¢) will represent a base level

query of some Q(!) to L.

4.4 Classical and Logic Based Observability

This subsection first introduces the concepts of a logic based dynamical observer LDO
and a convergent LDO and then proves that a finite machine M 1s observable if and only

if the logic-based dynamical observer LIDO(M) converges in finite time. First we need
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to give a mathematically precise definition of what we mean by a logic-based dynamical

observer (LDO).

Definition 4.4.1 (Logic-based Dynamical Observer) Let M = (X, U,Y,®,7) be a
finite machine, a logic-based dynamical observer LDO(M) = {I'OTo(M)(o%) : k €
24} of M is a tree of families of first order theories indexed by time k, where a member of
a family with index k is denoted by a 4-tuple FOTo(M)(o}) = (FR(M), LA, Dy A(M),
ObA(o%)) where:
FR(M) A The formation (i.e., syntactic) rules of LDO(M) specifying the
well formed formulas (wffs) of FOT(M)(o}).

LA A The logical axioms of Predicate Calculus see [Men64]

DyA(M) A The dynamical axioms which describe the state transition function
and the output function n of M.

ObA(o¥) A A set of observation axioms (specifying a sequence of input-output

pairs of = [(u_1, y)]E, € (dx Y) x (U x Y)*-1).
a

In the following, we take L(M) as the language, defined by I'R(AA1) the formation
rules for the tree of families of first order theories in a logic-based dynamical observer
LDO(M) for a given finite machine M We claim L should at least contain the following
predicates (with or without variables, since a finite machine can be fully expressed by a
propositional calculus but for the flexibility of the language we shall take predicate calculus

instead of propositional calculus).

Eq(®(z,u),z') : stands for ®(z,u) = 2’

Eq(7(z),y) : stands for n(z) =y

Eq(ug,u') : stands for the control at the instance £ is u(k) = u,
Eq(yt,y°) : stands for the observation at the instance & is y(k) =y,

el SE(c') : stands for z* is a member of initial state estimate
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cCSFE(z") : stands for z* is a member of current state estimate

Consider any member of a tree of families of first order theories, i.e., FOTo(M)(0f),
a first order logical theory in a logic-based dynamical observer LDO(M). It is uniqueiy
determined by the given finite machine M and the observation sequence of in termsof the
corresponding predicates. Since these observation sequences cunstitute a tree structure,

see Chapter 2, and hence we have a tree of families of first order theories associate with

a LDO(M).

Definition 4.4.2 (Initial State Convergent LDO(M)) A logic-based dynamical ob-
server L DO(M) is said to be initial state convergent if there exists a N € Z, forall z €
X, for all observation sequences of, where k > N, such that eISE(z') € FOTo(M)(o%)
and —~cISE(x’) € FOTo(M)(of) with each j and j # i. Or FOTo(M)(0%) contains
every wif. 0

Definition 4.4.3 (Current State Convergent LDO(M)) A logic-based dynamical ob
server LDO(M) is said to be current state convergent if there exists an N € Z, such
that for any observation sequence o, with any k > N, there exists a z* € X such that
eCSE(z') € FOTo(M)(of) and —eCSE(z?) € FOTo(M)(of) with each j and j # 3.
Or FOTo(M)(of) contains every wifs. : O

The above definitions probably require explanation because at first sight it appears
contradictory: if the system M is initial state observable how can contradictory statements
possibly be proved about the state? The answer is that in this definition the observation
sequences of, for any k € Z,, that form a part of the axiomatic system of FOTo(M)(o%)
do not necessarily give a consistent logical theory when taken together with the other
axioms of FOTo(M)(0}). If they do give a consistent logical theory then one can prove

in FOTo(M)(0¥) true statements about the values of the states of M that could generate
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of; if they do not give consistent logical theory, then in FOTp(M)(}) all statements
(including their negations) can be established. Either way, the situation (for initial state
estimates) is that for & < N, one cannot, in general, prove the predicate ¢/.517(r) and
—eISE(z') for all z' # x. But for k > N, all sequences of reveal themselves to be either
(i) logically consistent when taken together with the observation axioms of F'O'1o(M)(0})
(this intuitively corresponds to them being generated by M with some initial state r) or
(ii) logically inconsistent. Notice that when FOTo(M)(of) is logicaily consistent we are
able to prove that some sequence z¥ of state is a consistent state sequence (with respect
to of) in the sense of Definition 2 2.

Finally, in this connection, we remark that the motivation for defining an 1.DO(M)
that can operate on inconsistent observation strings lies in the fact that we wish to define
observers (classical or logical) on their own — independent of the existence of a system
generating the observations This idea is familiar in SCT (see e g. [Cai88]), where a
Kalman filter may be used to process signals emitted by a system for which the filter was
not designed. The curious difference between the SCT and Al situations i1s that the SCT
filter (observer, etc.) will continue to operate in such circumstances, but will generate
inaccurate (in the sense of suboptimal) estimates, on the other hand, a logic-based system
may generate a contradiction and — unless otherwise designed — will jam in the sense
that it can then prove all statements. These problems are the source of the stuases of
robustness in SCT and reasoning under uncertanty in Al

By use of the natural interpretation of the finite machine M = (X,l/,Y,®,7) with
initial state zo and observation sequence of, we obtain a model (zo, M, ¥) for the first
order logical theory FOTo(M)(0¥). An extremely important fact about this construction
is that unless FFOTo(M){0f) is a consistent logical theory there will not ~«:st a set of
models {(zo, M, 0f) : 2o € X' C X} for the logical theory On the other hand, starting
from a model (o, M, 0f), where of is generated by M with initial state zo, the resulting

logical theory FOTo(M)(of) will always be consistent. In the following, we shall show
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the equivalence between observability and the existence of a convergent L DO for a finite

machine M, by exploiting the notion of a model.

Theorem 4.4.1 (M is Observable iff LDO(M) is Convergent) Let M = {X,U,Y,
®, 7} be a finite machine and let LDO(M) be the logic-based dynamical observer of M.
The following statements are equivalent:

(i) M is initial (respectively current) state observable.

(i) LDO(M) is initial (respectively current) state convergent.

Proof

For simplicity we only deal with the initial case since the current case is identical.

(=)

If M = (X,U,Y,®,n) is initial state observable then there exists N = |X|? € Z,
such that for all z’ € X there exists an observation sequence of with & > N, the initial
state estimate {Tc:}(o’f) = {z'} is a singleton. Hence for any z € X the predicate
—elSE(x) is true but in particular the predicate e/ SE(z’) will be true within the model
(z', M, of) for which the logic FOTo(M)(of) is based on. However by the completeness
of the first order logical theory FOTo(M)(0f), we can prove every true formula (but, by

consistency, not every formula), and so LDO(M) is initial state convergent.

(=)

Consider M = (X,U.Y,®,7) starting from any initial state z* € X and consider
of(z*) for k > N = |X|%. The hypothesis that LDO(M) is initial state convergent
implies that either e/SE(z*) and —eISE(z') € FOTo(M)(of) with z* # 2/, for all 2/,
or FOTo(M)(of) contains every wffs.

Notice of (") is generated by M. Hence a model (c*, M, of) exists for FOTo(M )(o}).
This eliminates the possibility that FOTo(M)(of) contains every wifs. Morenver, we see

that e/SE(a) must be true within (z*, M, o) for some z € X, namely for z = z*.
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Since the model (z*, M, of) exists for FOTo(M)(of), inferencein FOTo(M)(0})1s
sound, i.e., only true statements with respect to wie model can be proved in this logcal
theory. Hence we can prove eISE(z) and ~eISE(2') for all 2’ # r, in FOTo( M) 0})

Further we note that (i) if ~e/SE(x) 1s provable for all r € X, we obtain the
falsechood eI SE(z*) within the model (z*, M, of) of the logical theory IO (M )(0})
(which contradicts soundnass) and (ii) if .S E(z°) is provable for some .r® € X, e 1S5 E(r)
cannot be proved for any z € X if x # z°, (since FOTo(M)(of) is consistent by the
existence of a model).

We conclude that exactly one predicate of the form ¢/Sk(x), » € X, 1s provable and,
hence by soundness, true; let this hold for the unique state 2% € A". But 1'OT(M)(o})
is a first order logical theory with the model (z*, M, 0}) and hence the only consistent
state ¢ € X satisfying z € {;;}(oi) is the singleton z° which satisfies % = o= This

shows M is initial state observable as required. ]

Similarly we can define notions of a logic-based dynamical controller (LDC), a com-
pletely observed controllable LDC or a partially observably controllable LDC and a theorem
which connects the notions between logic-based system and their counterpart of classical
dynamical system.

Next chapter we shall introduce a system and control theoretic logic, called, a con-

ditional observer and controller logic (COCOLOG) for finite machines. This COCOLOG

explicitly further exploit the concepts introduced in this chapter.



Chapter 5

CCCOLOG for Finite Machines

As introduced in Chapter 2, a classical dynamical observer (hereafter called a classical
observer) is a finite machine for which observations of the input and outputs of an observed
machine are taken as inputs and which generates state estimates as outputs. In Chapter
2, we developed general results on the construction and properties of such observers for
current state and initial state estimates for State-Output and Input-State-Output finite
machines.

Similarly, a classical dynamical controller (or regulator) is a finite machine for which
state estimates from a classical observer are taken as inputs, and controls generated by the
classical regulator constitute the outputs. We recall that our basic Theorem 3.2 6. showed
that contirollers are Markovian with respect to state estimates, that is to say the state
estimate contains all the information in past observations needed for all (non-anticipative)
control tasks and, of course, this information is generated by an input-state-output system.
Furthermore, in Chapter 3, we presented results on the construction and complexity of
such controllers for completely and partially observed finite machines.

In Chapter 4, we introduced the concept of a logic-based dynamical system, which
included the notion of a logic-based dynamical observer and a logic-based dynamical

controller. We showed, at the meta-level, that a system is observable or controllable if

86
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and only if its corresponding logic-based system is convergent (logically observable) or
logically controllable.

In this chapter, we present a theory of certain families of first order logics, called con-
ditional observer and controller logics (COCOLOGs), for describing and reasoning about
the state estimation and controlled evolution of a given finite machine M We supply
a semantics for each COCOLOG in terms of interpretations of controlled transiticiic on
the tree of state estimate sets for M. Conditional control statements (CCSs) are for-
mulated so that (closed loop) control actions occur when specified past measurable (1 e,
past observation dependent) conditions are fulfilled. In particular, conditional statements
will include commands that steer the system state from a current partially observed state
(estimate) to a target state (if such a sequence of controls can be proven to exist)

There is strong motivation to use higher level or logic based controllers in situations
where time varying and adaptive contiol problems arise. Let us suppose the observer states
of an observer tree M have been steered to the state estimate {;-:} en route to r'
Next, suppose the dynamics of M change to M’ and the current state observer tree M,
changes to M. For a COCOLOG system the description of this change involves a trnivial
rewriting-plus a consistency verification-of the axioms of the COCOLOG Then one must
recompute the observer sub-tree leading to =7 and the associated (new) controlled state
trajectories to z7. However, ir. order for a classical controller to respond to this situation
it is necessary for a set of z7-homing feedback controllers to be precomputed for all
possible dynamics of M. A similar (dually related) situation occurs with the specification
of sequences of control objectives (i e., control problems)

We regard our formulation of logic based control to be original to our work on the
subject, however, it should be noted that there exists a certain commonality of viewpoint
between the work described here and the literature concerned with the logical vertfication

of program correctness [MP81], the application of these ideas to systems and control

theory [Ost87, Ost89, OW89a] and logic programining [Lio84).
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5.1 COCOLOG: Syntax and Semantics

A COCOLOG logic system consists of a partially ordered set, or family, of first order
logics. Each of these logics corresponds to a node in the observer tree of a given finite
machine. The family of these individual logic systems constitutes a logic-based dynamical
system (see Chapter 4) which evolves with its environment and updates its structure as
time proceeds.

To be more precise, each of the logics 1s equipped with the observed input and output
as the data axioms of the corresponding node in the observer tree and is able to make all
logical inference steps based on data axioms We present this family of first order logics
in terms of axiomatic theories (For an introduction to axiomatic systems see [Men64].)
In the theory presented in this chapter, we say that we let our COCOLOG system run
in real time with the observation and control tasks, meaning that we assume all sound
inferences following from a given set of axioms are available instantaneously before the
next clock instant. The issue of automatic theorem proving will be addressed later in part
i

In this section, we start with an introduction of the COCOLOG /anguage and then
we will present the syntax and semantics of the “static” part of the COCOLOG, i.e., the

log - corresponding to the root node in the observation tree.

5.1.1 CCCOLOG Language L

The COCOLOG language consists of a set of symbols S(L) and specified formation rules
(or syntax). The concerning subject of COCOLOG language is the finite machine given as
M = (XM UM YM 0 5), where XM is the set of ctates, UM is the set of controls,

Y M is the set of output, ® is a state transition function, & : XM x UM — XM and 9

1We use ruperscrip to denote the relevant finite machine, e g X denote the set of states of machine

M
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is a state output function, 5 : XM — YM,

We first define S(L) as follows:

S(L) = Aprp, |J Funp | Var | Consy, | Quar, | Leor, (L)

The component sets of S(L) are defined as follows:

Constant Symbols

Cons;, = {xl,---,J,'N}U{yl,m,yp}U{ul, e W™ }U{O 1, A(N}

where k(N) is the upper sound on time 2

Variable Symbols

Var, = {:r,:c',a‘", .- -,}U{y,y',y", . --,}U{u,u',u", ‘e ,}U{l,l',-- ., }

Where the variables are intended to be varying in different sorts or domains, e g,
variables z,z', 2", .- will be interpreted to represent elzments in the set of states .X,
variables y,y’,- - - will be interpreted to represent elements in the set of state output Y,

and so on.

Function Symbols

Fun, = {U(-), Y (),8(, 1), +2() =)}

where the sort of each function symbol is defined as the follows.
U(a): ais a symbol eitherin {u!,---,u™ u"} orin {u,u’, .-}
Y(a): ais a symbol eitherin {y!,---,y"} orm {y,y',- -, }.

’

®(a, b): ais a symbol either in {z!,---, 2"} or in {z,.t’,---,}; and bis a symbol

either in {ul,---,u™u*} orin {u,u’,---,}

2K(N) is taken to be an arbitrary large number, for example | X | or |.X |2 since as we can see from the
results presented in Chapter 2 vhat an initial or current state observer dag can have at most | .X|or | X|?

. non-singleton layers before it split into singleton nodes
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7(a): @ is a symbol either in {z',---,zV} orin {z,2’,---,}.

+1(a, b) and —1(a,b): a, b are symbols eitherin {1,2,.--,} orin L, I,---  }.

Terms

(i)  Each constant and variable symbol is aterm, i.e., Cons UVary C Term,
() Wtisatermand fis a function symbol then f(t) is a term

(i) Termy, are constructed only by steps (i) and (ii) above.

Atomic Predicate Symbols
Apry, = { Eq(-,-), RbI(:, -, -)}.

Quantifiers
Quap, = {V}
Logic Connectives

Leor = {——)}

5.1.2 Syntax of COCOLOG L

Any well formed formula of L is given by the Backus-Naur syntactic rule, see [Gol87]:

A = ol i) | Al — A2 | L | VWA v where (i1, --,t,) € Apry,

ty,---,t, € Term

and the set of such formulas will be denoted F'may,

The other logical connectives (-, V, A, +——) and quantifier (3) are defined as follows

where ( and ) are used v herever the meaning of the formula can be made clearer:

A 1= Ao L

Al A A2 = ’W(Al - Az)




CHAPTER 5. COCOLOG FOR FINITE MACHINES 91
Al*-—)Ag = (Al —)Ag)/\(/‘g—) /‘1)
A1 \Y A2 = ‘1A1 - Az
JuA = -(Yv-A).

We observe that, as introduced here, L is a multi-sort language, where vanables may
vary within different domains. This complication can easily be remcved by using a sort
predicate for each variable, and by replacing each quantified formula via the following
equivalence operation’

VzA(z) = V(X (z) — A(2)),
JzA(z) = Fo(X(x) — A(r)),

where X (z) is the sort predicate for variable r, indicating the membership relation of
z € X. This rewriting will allow vanables to vary freely within a single domain and hence
we get a single-sort language. In the rest of the thesis, we will not distinguish between a

formula and its rewritten version for reasons of simplicity.

5.1.3 Semantics of COCOLOG L

A L-structure Uy, = (D,I) is a pair, where D = XUYUUU ln) 15 the doman of

interest and [ is an interpretation function defined as follows *

%) = ¢:XxU—-X
IM) = n: XY
I(+L) = +evy hny < gy — legny
I(=2) = =y Iny < Bgn) = ln)
Ilc) = ce€D
3We distinguish symbols used in COCOLOG language and in the base finite machine M by the con-

vention that bold face letters denote constant and variable symbols in the base finite machine COCOLOG
function symbols will be denoted by a bar over the corresponding function symbols in the base machine

i
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I(Eq) = {(t,¥)|tt € D,t=1v}CD?
I(Rbl) = {(x,x’, k)| Fuf € U", &(x,uf) = x'} € X2 x lyny

Where the addition, +(v), and subtraction, — (), over finite integers {1, 2,---, k(N)

+1} are defined by the following expressions.*

a+b  ifat+b <k(N)
k(N)+1 ifa+b > k(N)

a—b fa—-b>1
a—-ymb= _
k(N)+1 ifa—b <1

atymb = {

These finite integer anthmetical operations are necessary to express control properties
in terms of integer number of steps.

A Uj-valuation is a function V : Vary, — D satisfying

(X ifu=z

Y if v=
V(v)GJ vy
U fo=u
\|k(N) ifv=k

and can be extended to V : T'erm, — D by

V(t) ifte Vary,
V() =4 I(t) ift € Consy,
I (V(t1),V(12)) ift= f(t1,t2) and [ € Fung

We take V' ~, V' to mean that V and V' are identical except in the value they assign

to v and

V(v/x)=V' iff V~,V' and V'(v)=x

*Here we follow the convention that + and —, are used in logic language to denote addition and
subtraction function symbols, +4n) and —k(n) denote the function symbols in the finite machine or in
the semantic model, + and — denote the standard integer arithn.etical operations
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The satisfaction relation Uy, |= A[V'], which stands for the property that a formula A

satisfies a structure Uy, under the valuation V, is defined recursively by:

U, = Eqt,VEEE V()= V()

U, = Rz, K)V] it (V(z),V(z'), V(k)) € I(Rbl),

U, | (A V] i Uy = AlV] imples Uy | AV,

U, = L[V},

Uy, = VoA[V] iff for all xe D, itis the case that Uy k= A[V(n/x)].

A formula A is true, written Uy, | A, in the structure Uy, is defined by

U= A ff for all V, it is the case that ), = A[V],

conversely, A is false, written U, - A, is defined by

U = A iff forall V, it is the case that U, £ A[V]

A formula A is called valid if it is true in all structures 2y, i.e, A is valid if and only
if for all Uy, UL, = A. A formula A is satisfiable if there exists some structure I{;, and
some U, valuation V such that the satisfaction relation 2, = A[V] holds Obviously a

formula A is valid if and only if —.A is unsatisfiable.

5.1.4 Axiomatic Theory of Thy

A formal logic theory of a language I consists of a set of axioms, that is to say a set
of formulas from Fmay, which shall be required to hold in the intended models and a
set of relations on 'may, i.e which are called the set of inference rules, together with
concepts of a proof and theoremhood.

A general theory of finite machines is given by simply charactenizing the functional
property and the semi-group property on the state transition function ® and the output

function 7, as explained below.
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Forany u € U, and any x,x',x" € X, and : :. y1,y2 €Y

®(x,u) = x’ and O(x,u) = x" then x' = x”

7(x) = y1 and 7(x) = y2 theny; =y,

We write a sequence uy, up, - -+, u, by u then we can express the semi-group property

as follows:

d)(x7u'l‘) = ¢(¢(x’ utl‘_l)vuﬂ)
for any x € X and for any sequence uf € U".

A general theory will be a theory true to every finite machine or a theory which can
deduce formu'as true for every finite machine. This general theory can be specialized
when the transition function and the output function properties are given specifically.
The sequence of specialized theories will be discussed in this and next sections. in which
we discuss how a sequence of theories are formed to describe and to reason about the
obsei sation and control tasks We first present an axiomatic COCOLOG thecry of T hy,
le., a logical theory able to make inferences based on the knowledge possessed by the
root node in an observation tree for a given finite machine. The crucial topic of further
specializations of this theory, obtained by observations on the finite machine as time
proceeds, are discussed in Section 5.2.

There are two sets of axioms in Thg, one is the logical axioms which are a set of valid
formulas (i.e., true in all models) which together with the rules of inference generate all
valid formulas; the other is a set of special axioms which specify the true facts concerning
the subject that logic describes. Correspondingly T'h(o}) is a logical tneory that has the
input and output data as data axioms added to the lcgical theory T hj.

We include logical axioms and equality axioms in Thg shown as follows:
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LOGICAL AXIOM SCHEMATA
In the following logical axiom schemata, A,B,C are any wffs,ie., A,B,C € I'mu,..

(i) A—(B— A) AXMlog
(i) (A—-(B-C))—((A4—B)—(A-C))

(i) (-8 — -A)— ((-8 — A) - B)

(iv) YvA(v) — A(t)

(v) Yo(A— B)— (A— VuB) v not free in A.

Any formula having the same form as one of these logical axiom schemata will be called
a logical axiom. Hence the logical axiom schemata will give rise to an infinite number of

axioms.

EQUALITY AXIOM SCHEMATA

In the following equality axiom schemata, A is any wff, i.e., A € Fmay,z,2',2" €
Vary, and f € Funy is any function symbols in COCOLOG.
() Eq(z,z)
(i) Egq(z,z") - Eq(z', )
(i) Eq(z,z") A Eq(z’,2") - Eq(z,z')
(iv) Eq(z,z') — Eq(f(z), f(z")) for each function symbols [ in I
(v) FEq(z,z') — (P(z) — P(z")) for each of the predicate symbols I’ in I,

Any formula having the same form as one of these equality axiom schemata will be

called an equality axiom. Hence the equality axiom schemata will give rise to an infinite

number of axioms.

The special axioms for a given finite machine M are described as follows:
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FINITE MACHINE AXIOMS
For any pair of constants xi,xi € XM ul € UM, if X} = O(xi, ul) is satisfied by the

given finite machine M then we have the following dynamic axiom:
Eq(®(z,v"), ") AXMP"(L)

The dynamic axioms state the facts specifying the state transition function of the given
finite machine M. We note that the number of dynamic axioms is equal to | XM||UM,|.
For any pair of constants xi € XMyl € YM satisfying the relatior (x') = y', we

have the following output axiom:
Eq(7(2'),y") AXM°“(L)

The output axioms state the facts specifying output function of M. The number of

output axioms is equal to | XM|.

The finite machine axioms given above correspond to an infinite number of models.
We get a unique model (up to name change isomorphism) when we further make the spec-
ifications of | X| = N,|Y| = p and |U| = m in terms of axioms. Moreover, we also need
to specify addition and subtraction functions for the finite domain {1,2,--- k(N) + 1}

of integers. These will be addressed in the Subsection 5.4.

REACHABILITY AXIOMS

We define recursively the relation of reachability by the following reachability axioms:

1 Rb(z',z",1-1 1)\ Eq($(a:, u), ') — Rbl(z,z",1) AXMrbI(L)
2 Eq(®(z,u),z') — Rbl(z,2',1)

Reachability axioms specify [ step reachakility relation among any pair of states, i.e.,

Rbl(z,a',1) specifies z' is reachable from z in [ steps.
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Rules of Inference:

R1. MODUS PONENS

ﬁ’AB——’Bt . where A, B € Fmay,
R2. GENERALIZATION
%4 . where v € Vary,

We write AX M*P¢(L) to denote the set of special axioms of [, i.e., AXM" (L) =
{AXM¥ (L), AXM°“(L), AXM™(L)}. We sometimes use ¥ to denote AX M“*(].)
for simplicity.

A proof in L is a sequence of formulas A;,---, Ax in F'ma;, where A, is either an
axiom or a direct consequence of previous formulas via R1 or 2. The last formula A,
in the sequence is called a theorem and A,,---, A;_; is a proof cf theorem A,

A formula A is a theorem of a first order theory with equality, written ; A, if in
a proof of A only logical axioms and equality axioms have been invoived On the other
hand, A is called a consequence (or theorem) of L, written L F;, A, if in a proot uf A
axioms in L may also have been involved.

For brevity we write T'hq for T'ho(L) which stands for the set of theorems of ¥, hence
we have Thg = {A: L F; A} and we shall use the standard notation T'hg I A which s
customarily read as A is a theorem of or provable (derivable ) in the theory T'hq.

A structure Uy, of theory T'hy is called a model of the theory if and only if all the

axioms of Thy are interpreted truein Uj,.

Example 5.1.1 We give a simple example to illustrate a logic based control system in
terms of the COCOLOG axiomatic theory Thg.

The finite machine M = (XM, UM YM &, 7) is given in Figure 5.1

Where X = {x,x2,x*},U = {ul,u?},Y = {y!,y2}, n(x!) = n(x?) = y!,(:®) =
y2 and ® is given explicitly in the graph above.
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Figure 5.1: A Tkree State Finite Machine

The COCOLOG control system for this finite machine M consists of a sequence of first

order theories Thg, Th(o;), Th(0?),- - - as introduced in Chapter 4. Here we concentrate

on the theory Thg only.
The logical axioms, the equality axioms, the axioms of reachability and the rules of
inference are the same as those given eatlier in this subsection, and so we will not repeat

them here. In the present case, the axioms of the automaton are given explicitly as follows:

Eq(®(2% u'),2")

Eq(®(z", u?),2")

Eq(®(z?, u*),2")

Eq(o(z', u"),2°)

Eq(®(2?, u'), 2%

Eq(®(X*, u?),2")

Eq(7(z"),y)

Eq(i(z?),9")

Eq(i(=),y").

The set of theorems of T/ s exactly the set of true formulas of L, as is guaranteed

{ by the general completeness result proved later in this chapter. The theorems include, as
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we can verify from Figure 5.1, Rbi(z?,2?,1), Rbi(z?, 2% 1), Rbl(2?,23,2), -- - etc
To illustrate i gical deduction in COCOLOG we shall give a proof of the theorem
Rbl(z*, z3,2) in theory T ho, which states that the state x! is controllable to the state x3

in two steps. The proof goes as follows:

1. Eq(®(a?,ut), z%) Finite Machine Axiom

2. Fu, Eq(®(2?,u), z°) 1 and Rule £4 see [Men64]
2, Rbl(z?,2%,1) 2and AXM™(L)1and MP
4 Eq(®(a',u?), 2?) Finite Machine Axiom

5. Fu, Eq(®(2?, u), 2?) 4 and Rule )4

6.  Ju, Rbi(x%,2%,1) A Eq(®(c",u),22) 3 and 5

7 Eq(1,2 -1 1) Arithmetic Axiom

8. Ju, Rbl(z2,2%2 —1 1) A Eq(®(x!,u),2?) 6,7 and Equality Axiom

9. Rbl(z',25,2) AXM™I(LY, 2, and M P

The proofs of theorems of theory Thy can also be generated mechanically by the
resolution refutation based theorem prover which is the subject of Part Ili of this thesis

(W]

5.2 Observation Dependent COCOLOGs: Th(o})

A COCOLOG system is a family of first order conditional observer and controller logics, and
we defined a syntax, a semantics and an axiomatic theory for T'hq. This family of logics (or
logical theories) is intended to be used to reason and control the behavior of observers and
controllers for a given finite machine. Corresponding to the set of paths in an observation

tree, such a family of logical theories forms partially ordered set. We note that an ordered
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sequence of such logical theories may be viewed as being generated by a logic-based
dynamical system, see Chapter 4, where a meta-level agent (i.e., a logic-based dynamical
system) accepts an observation sequence of = {(¢,y1),(u1,¥2), ", (uk-1,yx)} and
generates a sequence of logical theories Th(o,), Th(0?),- - -, Th(of) with each subsequent
theory Th(o}) being generated after the receipt of a (ux—1,yx) observation pair. Since
these logical theories are observation dependent, we call them observation dependent
COCOLOGs. The sequence of theories so constructed is in fact a single path in the tree

of the COCOLQCG family of logical theories as displayed in Figure 5.2.

Figure 5.2: A Tree of Logics

The interaction between the finite machine and the logic-based dynamical system (or

’
= 8
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uk(gﬁ)z u '—'(X,U,Y,(D,n ) (ul ) Yi )

Interface Between Plant and Logic Controiler

--------------------------------------------------------------------------------

Eq(U(k), u") Eq(Y(k), y")

ogic-Based Dynamical System -
Eq(U(k-1), u')

Figure 5.3: A Closed Loop Logic-Based Control System

COCOLOG to be more specific) is displayed as in Figure 5.3. Where the interface between
the plant (i.e., modeled by the finite machine) and the controller (i e., the COCOLOG
logics) will transform the observation sequence into new axioms and the control theorems

(see below) into new control sequences.

5.2.1 COCOLOG Language L(o}) and Syntax

The language L(o}) is an extension of the language I obtained by adding new atomic

predicates in the foliowing way:

k
S(L(O’f)) = S(L) UA]n'],
=1
where Apr, = {cCSE()}.

We define Fmay, = Fmar. The set of well formed formulas I'ma, 4 is then defined

by:
A:u=eCSE(z) | B| A" — A" | VA’

where B € FmaL(of-x), and A', A" € Fray )
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5.2.2 Semantics of COCOLOG L(o%)
As before, a L(of)-structure, Uy ox) = (D, Ix), is a pair, where the interpretation function
I, is an extension of [ by-

1{=CSE) = {x:x¢€ {m}(})} € X.

The satisfaction relation of Uy (1) |= A[V] is an extension of Upor-1y = A[V] obtaine.

by adding the following definitions:
Uyory | eCSE()V]ff V(z) € {zi}(of) where o(1) = y(1),
o(2) = (u(1),9(2)),- -+, o(k) = (u(k — 1), 3(F))

Again the properties true and false for a formula and the concept of a model for

a theory Th(o¥) are defined in analogy as those in Section 5.1.3. Next we present an

axiomatic theory for this logic.

5.2.3 Axiomatic Theory of Th(of)

We assume that, at each instant k, the observer will observe u(k — 1) and y(k), and
for each u' and yi such that u' = u(k ~ 1) and yi = y(k), the following formulas, as

observaiion axioms, will be used to form the axiomatic theory T'h(o%) of L(o}).

OBSERVATION AXIOMS

Eq(Y(k),y") AXM°*(ob, L(of))
Eq(U(k - 1),u") AXM(ob, L(0%))




CHAPTER 5. COCOLOG FOR FINITE MACHINES 103

STATE ESTIMATION AXIOMS
The following is the general form of a set of Axioms of Conditional State Esti-

mation, where C(-,-) is a conditional formula expressible in terms of Fma -1y and
‘A%

AX M(0b, L(o})).

Cu(Fmay i1y, Eq(Y(k),y)) — cCSEx(x') AXM**(ob,L(o}))
: . :

CN(FmaL(O;:-z), Eq(Y(k),y)) — eC S Ex(z).

Modus Ponens and generalization are also taken to be the rules of inference for any

logical theory Th(o}).

Example 5.2.1 Here we take the specific state estimation strategy (which corresponds
to the set theoretic state estimator given in equations 2.5 to 2.1.3 see Chapter 2). We
represent it in the following axiomatic form:

Incasek>1:
AXME“(ob, L(o'x‘), +)

Az,eCSEx_1(z) A Eq(®(z, U(k — 1)), ') A Eq(7(2), Y (k)
— eC SEx(z?)

Jz,eCSEr1(z) A Eq(®(z,U(k - 1)), zV) A Eq(i(z"), Y (k)
— eCSE(z™).

AXMe*(ob, L(0%), )

~(32,eCS Exar(w) A Eg(®(z, U(k — 1)), 2") A Eq(i(z*), Vo))
— —eC SEi(z?)
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~(3z,eCSEv-r(z) A Bq(®(z, U(k — 1)),zV) A Eq(7(z"), Y (k)))
— =eCSE(zV).

In case k = 1;

AXM*t(ob,L(0;), +)

Eq(ii(z"),Y (k) — eCSE\(z')

Eq(ii(z"), Y(k)) — eCSEy(z").

AXMe*(ob, L(0), —)

~(Eq(a(="), Y(k)) — eCSEx(z")

~(Eq(@(z"), Y (k))) — eCSEy(a").

O

As defined at the end of Section 5.1.3, we denote ¥ as AX M*?¢(L) and here we denote
I as DU { AX M (0b, L(o})), AX M (ob,L(o0f)), AXMe*(0b, L(o})), We define
an Observation Theory, Th°(of) of £, 2t the instant k by Tho(of) = {A : X3+, A}.

Next we consider a control theory at the in-i7at k.

CONTROL AXIOMS

The following is the general form of a set of Conditional Control Axioms, where C,(-)

is a conditional formula expressible in terms of Frnay ).

C(Fmayy) — Eq(U(k),u') AXM*(cntl, L(o%))
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ﬁCl(F‘maL(o;:))AC2(Fm(lL(o::)) 4 Eq(U(k), Uz)

l

m-1
A (<C)(Fmay ) \ Cu(Fma, 1)) — Eq(U(k),u")

J=1

>3

("CJ(FT”‘IL(O;))) —  Eq(U(k),v").
1

J
{3

This set of axioms is central to the whole construction of COCOLOG They have the

following interpretation: If the condition Cy(F'may, ) is provable in the theory Thioh),

! as the value of

then invoking the first axioms, we obtain the defined constant value «
the control function U(k); if not, but if Co(#'ma;.)) can be proved, then the second
axiom gives the defined value u? to the control function l/(/'), and so on If none of the
conditions Cy,Ch, ---,C,, hold, then the last axiom sets the control equal to the arbitrary
constant u*. This procedure uniquely determines tl.e value of (/(I') When kb — k 41,
we make the meta logical step of passing to the theory T'h(04*!) carrying the constant
value u* chosen above. Then the observation axioms AXM"!(oh, I(0*!)) state that
Eq(U(k),«"). Hence, in the new T'h(0}*"), the observed control action l/(k) 1s precisely

the constant value u' determined in Th(o¥).

Example 5.2.2 A set of Control Axioms which display a specific control law, see [CW89b]

and Chapter 3, is the following:
In caseof I > 1;
AXM5(cntl, L(o}))
C. = Vz,3,eCSEyz) \ Rbl(z,z’,1) \ RO(®(x, '), 2’1 - 1)
In case of | = 1;

C, = Vz,eCSE(z) \ Eq(®(z,u'),z')




CHAPTER 5 COCOLOG FOR FINITE MACHINES 106

Where 1 <: < m.

These control axioms state that if reachability from x € {?c:}(o’f) to xT holds, then, by
evaluating ¢({;;}(of), u'), we reduce the number of steps required to reach the predefined
target state x' by one. In this case by an extra-logical rule we assign the state feedback

control function u .Tr: 0¥),xT) to be equal to one of the calculated values of u'. O
1

The past measurable (provable in terms of past data) requirement of these conditional
axioms are implicitly given by the fact that the conditional statements Ck(FmaL(of)) are
expressed in terms of the language L(of). The existence of the control law is forced

to be true by choosing an rbitrary control u* when other meaningful control cannot be

selected.

Example 5.2.3 Continued from Example 5.2.2, we assume z7 = 23,/ = 1 and T'h(o0;) =
ThoU{Eq(y1,y), AX M**(cntl, L(01)), AX M®**(0b, L(01),+), AX M***(0b, L(01),—)}.
Then there is one and only one u! such that Eq(uy,u') is a theorem of T'h(0;). This fact
is stated by the above existence and uniqueness axioms.
0
As we mentioned in Example 5.2.3, logical theory T'h(o}) is defined by the axioms
Y U{AXM“(ob, L(0*)), AX M (0b, L(0})), AX M***(cntl, L(o})), AX M°*(0b, L(0}),
+), AX Me*t(ob, L(0¥), —)}, denoted by LX. The concepts of proof and theorem (con-
sequence) in I.(o}) are defined in the same manner as those for L. The set of all theorems

of ¥ is denoted by Th(of).

5.3 Consistency and Completeness of COCOLOG

We show that the COCOLOG theory Thg is consistent and then prove a generalized

completeness theorem stating that the set of theorems of T'hg are exactly the set of true
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formulas in the class of models of AX M*(L).

These results for observation dependent theories Th(o%) can be obtained in a same
manner.

We say a set of formulas T is consistent with respect to the axiomatic theory of first
order logic with equality if there does not exist any formula A where A ano —A are both
derivable from T'.

The completeness of the axiomatic theory presented at Section 5 1.4 can be established
by use of the following classical result on the completeness of a first order theory with

equality as follows:

Theorem 5.3.1 (Henkin 1949) Every consistent set of first order formulas 7' has a
model M.

A proof of this theorem can be found in any standard book on mathematical logic,
here we reference [Men64].
A first order theory with equality is any first order theory which has the equahty

axioms. The following theorem states a known result which states that an equality theory

is complete.

Theorem 5.3.2 If a formula A is true in a model with equality M/ = then it is provable

in the first order logic with equality, i.e.,
M/- = A implies +, A.

A proof of this theorem can be found in any standard book on mathematical logic,

here we reference [Men64].

Next consider the following generalized form of completeness theorem for the theory
Tho. As before, we denote by ¥ = {AXM#¥"(L), AX M (L), AXM™(L)} the set of
special axioms of T'ho; if A is a consequence of X under a first order theory with equality

then this is written as L F; A, and My will denote any model for L




iy

CHAPTER 5. COCOLOG FOR FINITE MACHINES 108

Theorem 5.3.3 (Soundness) For any formula A € Fmar we have:
Lz A implies My = 4.

Proof
Soundness follows from the facts that axioms are true formulas and the rules of infer-
ence preserve truthfulness, hence all consequences or theorems of the axioms will be true

in any model of the given axioms. (o

A set of formulas T is absolutely consistent with respect to a first order theory with
equality if and only if there exists some formula which is not derivable from T, i.e.,

JA T, A

Theorem 5.3.4 (Equivalence) For any first order theory with equality where Modus

Ponens is a rule of inference, the following are equivalent:
(i) T is consistent, i.e. T/ L

(i) T is absolutely consistent, i.e. 34, T/}, A.

Proof

(1) == (i)

(i) is equivalent to the statement that for any A, T' -1, A semantically implies T' t/, A
(since otherwise one has 7' t1, A and T'+ —A which is A— 1 and so T' ;L by Modus

Ponens).

This implies there exists a formula A such that T' t/, A and hence (i) implies (ii).
(i) <= (ii)
(i) is false if and only if for some formula A, T'ty, A and T+ -A.

Now take any formula B  Fmajy. Then we have -, ~A — (=B — —A) and

Tt —~A. Hence, by Modus Ponens, we have T+, =B — —A.
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In the same way, we have -;, A — (=B — A) and T' 1 A, hence we have 7',
-~ B — A. Again by Modus Ponens and the third logical axiom we get T" I, B and hence

we get the negation of (ii) as required. O

Theorem 5.3.5 (Consistency) ¥ is consistent with respect to the first order theory

with equality, i.e., Xt/ L.

Proof

This follows from the existence of the model Mg for the carefully selected set of
axioms X. Since we know any finite machine compatible with X will be a model of L
Then by the soundness theorem we will get what we want.

Take any formula A € X which is an axiom of T'hg. Then we have My [~ ~A.
By the soundness theorem, this irnplies T I/, ~A. By the Theorem 5.3 4, this implies

Y I/, L and hence ¥ is consistent. a

Now we come to the generalized completeness theorem which connects the concepts

between syntax and semantics of COCOLOG theory.

Theorem 5.3.6 (Generalized Completeness) A formula A € I'mnay, is true in every

model Myx of ¥ if and only if A is a consequence of ¥ under the first order theory with

equality, i.e.

Mz = A iff TH, A

Proof

We only prove the completeness part of the theory here, the soundness part follows

from the Theorem 5.3.3.
Suppose I I/;, A, we need to show there exists a model My such that My [~ A

LU{—.A} is consistent since L is consistent and the assumption that 2_ I/, A. Hence

by Henkin's theorem there exists a model My 4) for LU{—A}. Notice this model
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is also a model for L. Therefore we can write My j;_4) as Mz with the additional

condition My k= —.A. This proves My [~ A as required. O

From the generalized completeness theorem we see that each theorem A € Tho will be
true in every model of L. There are infinitely many such models. How can we determine
the truthfulness of a given formula when there exists a possibly infinite number of models?
By the generalized completeness theorem we know truthfulness can be identified with
theoremhood. Any proof of a theorem is, by definition, a finite sequence of formulas, and
in many cases the length | of the sequence is bounded by a polynomial function of the
length of the theorem and axioms. However, it is known that in the worst case, a proof
can be intractable (i.e., of length at least exponential in ). Specifically, Haken [Hak85]
has shown recently that there are families of propositional formulas whose minimal length
of resolution proofs will be bounded below by an exponential function of the number of
clauses in the formulas. Moreover, the cost of searching for a proof of a true formula is
greater than the length of the proof itself because no existing strategy for a mechanical
theorem prover can avoid generating useless unifications or resolvents. To minimize such
a cost via different strategies becomes the key issue in the subject of mechanical theorem
proving.

Next, we construct the unique model property for L ard therefore we get decidability

of the theoremhood for COCOLOG theorems.

5.4 The Unique Model and Decidability Properties

As we mentioned before, we can get a unique model by adding additional axioms to
specify sizes of XM, UM, YM. Otherwise, there can be infinitely many different models.
For example, any finite or infinite machine M’ = (XM, UM YM ¢’ ') satisfying
XM C XM UM C UM YM C YM and such that &’ and 4 are compatible with ®

and 7 up to XM, Y™ and UM, can be a model of the given machine axioms. Hence the
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machine axioms alone cannot uniquely characterize a given finite machine. In fact, one
cannot deterimine a unique modei by any given set of axioms. The most one can achieve
by axiomatization is a set of equivalent models up to isomorphism. Hence uniqueness is
only used in this sense.

Suppose | XM| = N, |[UM| = m and |YM| = p, we first consider the size axioms
for XM, then we can derive the size axioms for UM and YM respectively in a similar

manner.

The Size Axiom of XM

X ~Eq(z',2?) A -Eq(z!,2®) A Eq(z',z*) A+ A =Eq(2*, x™)
A-Eq¢(z?,z%) A =Eq(2?,z*) A-- - A =Eq(2?,2V)

A-Eq(z®, z*)A--- A=Eq(z? z")

/\ﬂE'q(:I:N‘l,wN)

X specify the fact that there are at least NV distinct constant symbols in the state
space XM of the finite machine M, i.e., |XM| > N.
Next we specify the fact there are at most N elements in the intended model by

M

-~ X Vw(Vf‘;l E'q(:v,x’)).

By adding X#! and -~ X#., to the originally proposed machine axioms the only models
one can get will be the models that have exactly N distinct states. That is the set of
N-state machines in which ® and 5 are given as specified. Further, if we add restrictions

on the size of UM and YM we get a unique model for M.

In the following we denote M and M’ as finite machines and we also use them
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to denote the sets of elements in each machine as M = XMUJUMUY™M and M’ =
XM yuMyrM.

Definition 5.4.1 (Homomorphism) If M and M’ are two finite machines, then a map

h from M to M’ is called a homomorphism if

h(®(x,u)) = O(h(x), h(u))
h(n(x)) = n'(h(x))
h(+mL)) = +im(R(1), A())
h(=m(L)) = —iw(R(1), 2(1))

O

Next we show the unique model property of the theory T'ho when together with the

size axioms of XM, UM and YM. we define

T = TUXYU-Xih
UU::' U-’Urlr‘zﬁ-l
UYpMU“'Y;'Tl

as the set of axioms for the given finite machine M, at the instant zero.

Theorem 5.4.1 (Unique Model Property) The logical theory defined by L%, has a

unique model up to isomorphism.

Proof

The proof of this theorem depends on the existence of a homomorphic mapping for

any given pair of models of X9,.
Now consider any two mcdels M and M’ where M = (XM, YM, UM, ®,7) and
M' = (XM ¥yM UM ¢ 9). By the size axioms we have | XM| = |[XM'| = N,
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[YM| = |[YM| = p and |UM| = |[UM'| = m. Then by the machine axioms we have
¢ XMx UM o XM and ¢ : XM x UM 5 XM 5 0 XM o YM and o -
XM x UM — XM, Now an one-to-one and onto mapping h : M — M’ can be
defined, where M here is also taken as the union of XM, UM and Y™ and M’ is also
taken as the union of X', UM’ and YM'.

Let L denote the set of symbols of logical theory for a finite machine, [ : . - M
and I’ : L — M’ be the interpretation functions correspond to the model M and M’
respectively. Construct a mapping h : M — M’ such that the following relation 1s

satisfied:

h(m) = I'(17}(m)) for any m € M

The relations among the set of L, M, M’ and the mappings of /, /' and h are shown

N

We need to show that % is a bijective mapping. This property is guaranteed by the

as follows:

bijective mappings of I and I'.
First, onto can be shown by taking any m’ € M’, then we have I'~}(m’) = [ for some
[ € L and I(l) = m for some m € M. We can show that this m is the preimage of the

m' under h.

bm) = I(I7(m)
= (I )
= I(I"Hm))

:m'




CHAPTER 5. COCOLOG FOR FINITE MACHINES 114

Second, the one-to-one property ~.an be shown by taking any m;,m; € M, assume
that
h(my) = h(m,p) but my # m;y

The following arguments will produce a contradiction as desired:

h(ml) = h(mg) iff I'(I‘l(ml)) = I’(I—l(mg))

ift my = mp
This shows that the mapping h as constructed is a bijective mapping.

Now if we denote h(m) = m' for any m € M and m’ € M’ and take any for-
mula Eq(®(z',u'),z’) from the language L. Interpretation I will map this formula
to O(I(z'), I(w')) = I{z?) which is ®(xi,,ul) = xky and the interpretation I' will
map the formula to &'(I'(z*), I'(w*)) = I'(x?) which is ®'(x\,.,ul,) = x';n,. Now since

h(m) = I'(I7'(m)) we have the following relationship between the two models:

o(xi, uiy=x iff ¥(x,,ul)=x
N(Xin) = Yin 7/ (Xhy) = Y
Fiv) (s ) = e i iy (b Vo) = B

_k(N)(lm,':n) = ::‘1 lff _;c(N)(‘m"':n') = :;‘,

From this it follows immediately that the mapping h so defined is a homomorphism,

i.e., h satisfies the following relationships:

h(o(x,u')) = @'(h(x), h(u'))
h(n(x')) = 7'(h(x))
h(+xm(L 1)) = +im(B(1), A(1))
h(=kmy(L¥)) = —im)(A(1), A(1)
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Since for each dynamic axiom of the form
Eq(®(z', u'), 2)

We have &(x|,u’) = xi in model M. Then the image of x} under h is h(xi) =
R(®(x, w)) = xJ. Hence we have

o' =o' (x,u') = &' (h(x), h(u})).
Thus

A0, ) = ©'(h(x), h(ul).
Similarly we have
hn(x)) = '(h(x))
h(+xm(L1)) = +im(R(1), A(I'))
h(—k(N)(L")) = *Z(N)(W)’h("))

Therefore X9, has a unique model up to isomorphism. 0

Definition 5.4.2 (Proper Formula) A formula P is a proper formula with respect to
a set of formula ' if P contain neither any predicate symbols nor function symbols which

do not appear in any formulas in [ ]

Definition 5.4.3 (Complete Axiomatization) A set of formulas I is said to be com-
plete if either P or =P is a consequence of I for any proper formula P with respect to I

a

It is known result that if a set of axioms has a unique model then that set of axioms

is complete. We state this in the following theorem.

Theorem 5.4.2 The axiomatization defined by X%, is a complete axiomatization of M.
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We just sketch the proof as follows.
Proof

To prove that ¥, is a complete axiomatization of M, we need to show that for any
formula A € L either L9, F A or X%, —Ais true. We know LY, is consitent since the
existence of the models for £S,. By Lindenbau’s lemma, see [Men64] if LS, is consistent
first order theory, then there is a consistent complete extension of Ef'M. But since we
know L), has a unique model, see Theorem 5.4.1, this implies the complete extension of

19, is 2%, and hence X9, is complete since otherwise L, cannot have unique model. O

In the following, by provable we mean, first, at least, one proof of P exists and second,

the search for any proof will always terminate.

Theorem 5.4.3 (Decidable Theoremhood) The logical theory as generated by 9,

for any given finite machine M is decidable.

Proof
By the generalized completeness of first order logic in general and COCOLOG in

particular, see the previous sections we know that for any formula P, P is provable if P
is a consequence of L,. Now for any formula P we start a search for all possible proofs
for both P and —P. One of these two searches will terminate since L}, is a complete
axiomatization, i.e., either P or ~P will be a consequence of L,. Thus we can conclude

that the axiomatic theory generated by X9, is decidable.
O

Now if we denote L5, = £, UL" as the axioms of the theory T'h(o%) with the size
axioms then the above results on the IS, can be generalized to any logical theory in a

COCOLOG family.




{3

CHAPTER 5. COCOLOG FOR FINITE MACHINES 117

5.5 Extra-Logical Transitions Between Logical Theo-

ries

A realization of a COCOLOG is a sequence of first order theories generated by a given
sequence of observations. It corresponds to a path in the COCOLOG tree structure (see
Figure 5.2). The true formulas in the nodes of this tree can be captured by a possible
world interpretation of a modal logic, see [Gol87] Instead of modal logic, we use a family
of classical first order logics to codify the state observation and control problem since
we believe a modal logic representation would be too restrictive The word restrictive 1s
used in the following two senses: First, it can easily represent a static world In other
words, a modal logic cannot handle unknowns or the changes in the dvnamics or the
environment of the system and this prohibit the use of the logic for real time control
tasks. Second, it is not necessary to code all the paths of an observation tree into a logic
since a physical system cannot realize all such possibilities. Therefore the extra coding
of modal logic system will simply further delay its response time. For more discussion on
this see [CWG88].

In order for the family of logics in a COCOLOG to work coherently, certain requirements
have to be met. These requirements can be viewed as requirements on the transitions
between logical theories which cannot be represented in these theories themselves. Hence
the extra-logical feature of the transitions must be described at a meta-level In the
following, we represent the meta-level requirement as meta-level axioms and the meta-
level properties as meta-level rules of inference.

Meta-level axioms will be used to describe the assumption that there are no errors
on the observation channel and the control actions sent from the logic controller will
be implemented instantly and correctly. Hence there will not exist any conflict between
observation and control axioms and reality.

We write X3¢ as L UL {AXM***(cntl, (0f))} and define an Observation and
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Control Theory Tho“(of) of L as Tho(o}) = {A: L;° b1 A}. From this definition
we deduce the following rule of inference to connect theories at different instants along a

trajectory of observations and control actions for a finite machine.

NESTING OF THEORIES (Meta-Level Rule of Inference)
A € Tho(o*) implies A € Tho*(o¥), A € Th*(o¥) implies A € Th(o}'), for any
k' > k.

The sequence of theories satisfying the following condition
.+ € Tho(o}) C Th*(o}) S Th(ot*!) C ---

We see that this sequence of COCOLOGs combined with the meta-level requirements

constitute a closed loop feedback logical control system as displayed in Figure 5.4

u XR)=1d" W, )
k & M=(X,U,Y,®n) : World of
Mathematical
Modeling
............. interface Betwean Plant and Loglc Controller | ...
k Loglc World
Eq(uk N lln) ‘o’m Eq(& 'Y' )
™, A Eq(uy, , u')
Th D7 Gagtlator
System

Figure 5.4: A Closed Loop Logic Control System

Example 5.5.1 Continuing with the example in Section 5.1.4, we consider here a se-
quence of theories T'h(o,), Th(o?),---,Th(of). The observation dependent theories
Th(o}) for k > 1 will contain observation dependent axioms as discussed in Section 5.2.
Here we assume an observation is given as y(1) = yl, the target state is chosen as

xT = x3 and the control task is stated as: if every state x in the current state estimate
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{zx}(0}) can be steered into the target state =7 by some control in three steps then take

the first control. QOtherwise take the control u* which will lead the machine into an idle

state.

A meta-level agent will then add observation axiom Eq(Y(1),y') and the foliowing

contiol axioms to theory Tho to generate theory T'h{o;)

Cy, — Eq(U(1),u?)
=C1 ACy — Eq(U(1),u?)
—(C1V C2) — Eq(U(1),u)

Where C, is an abbreviation of Yz, 3u',u”, eCSE(x) A Eq(®(®(d(x '), "), u*) ¢ T)

The theorems of the theory Th(o,) include: eCSEy(z!), eCSE(x?), —cC S Ey(s%),
Eq(U(1),u?), -, etc.

The control of u(1) = ul will be implemented as a result of the theorem Fq({/(1), u!)

proved in Thy. The meta-level agent will then proceed to continue to build theory

Th(d?),- -+, Th(of),---. 0
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An Automated Reasoning

Methodology for COCOLOG
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In Chapter 5, we introduced the families of first order theories which we call conditional
observer and controller logic and we gave the acronym COCOLOG to any such a family
of theories. This system of theories was created for the purpose of designing observers and
controllers for partially observed input-state-output finite state machines. The realizability
of a logic-based control framework, as presented in Chapters 4 and 5, is based on the
assumption that, at each clock instant k, the logical theory ’I'h(of) can be generated
instantly, or, at least, any theorem P of the theory Th(of) can be generated instantly
This is indeed an idealization, Further there is the crucial implementation question of
the computational complexity of ATPs (Automatic Theorem Proving): the automatical
generation of a proof for a given theorem in the propositional calculus, by resolution, can
be of exponential length as a function of the length of the theorem statement (pigeonhole
formula) (see [Hak85]). It is to be stressed that this statement is specific to resolution
proofs. Bibel [Bib90] has shown that the connection method gives quadratic proofs of the
pigeonhole formulas. The situation is even worse in the first order, semi-decidable, case,
see [Men64].

In this part, we present a function evaluation based resolution, called FE-resolution,
for the sets of conditional observer and controller logics. FE-resolution is, essentially,
extensions of the Resolution Principle which was invented by Robinson [Rob65], and the
Paramodulation technique, see [RW69, CL73] for logics with equality Completeness of
the FE—resolution proof method is given, in Chapter 6, in terms of relative truthfulness
and validity.

There are certain similarities between the func..on evaluation based resolution, pre-
sented in Chapter 6 and the procedural attachment, semantic attachment and theorv
resolution etc. in Al literature, see [GN87, CL73]. Recently, Myers (see [Mye91]) has
presented an universal attachment technique to unify and to extend the various attach-
ment techniques. The differences between various attachments and the FE-resolution are

compared and discussed at the end of Chapter 6.




Chapter 6

Reasoning in COCOLOG with
FE-Resolution

6.1 Concepts of Automated Theorem Proving

Automated theorem proving is the subject that has had the broadest and deepest impact on
almost every aspects of the subject of Artificial Intelligence. Finding an effective approach
to mechanically generate proofs of logical theorems has been a dream for centuries in
human history. Resolution Principle invented by Robinson, see [Rob65], in 1965, is the first
computer implementable theorem proving mechanism. Since then, many improvements of
resolution principle have been proposed in the direction of improving the effectiveness. In
this section, we present basic concepts and results related with resolution based theorem
proving technique.

In Chapter 5, we present a COCOLOG system in the form of a sequence of logical
theories. Each logical theory is given in the form of an axiomatic system which consists
of axioms and rules of inference. In Example 5.1.1, we gave a proof of a theorem in a
simple theory. It is difficult, if not impossible, to automatically generate this type of proof

for a theorem of any first order theory. Since the use of Modus Ponens {from A and

122
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A — B, infer B) requires proving A and A — B first. There can be infinitely many
clauses of the form A, A — B to be tested and this cannot be done in finite time by a
machine. This situation is in analogy with the fact that in order for a human to prove a
mathematical theorem it is quite often necessary to first prove some lemmas as building
blocks. However, there is no effective way to teach a machine how to discover useful
lemmas.

Consider a formula A of a logical theory characterized by a set of axioms L. In order
to prove A is a theorem by a resolution based automatic theorem proving procedure, ¥
is first transformed into its clausal form (this can be done effectively and automatically
[CL73]), denoted by AL, which can be viewed as a conjunction of clauses A clause s
defined to be a disjunction of atomic predicates or negation of atomic predicates which
are called literals (or atom), consider, for example, Eq(z, ')\ —~Rbl(z, x’,1) is a clause
where Eq(x, ') and = Rbi(z, 2',1) are literals. A ground clause is a clause where variable
are replaced by constants. The same for ground literal, ground term, etc. By the
Deduction Theorem [Men64], we have that A is a theorem of X if and only if AL — A
is a valid formula, and this holds if and only if (AL — A) is unsatisfiable, i e., if and
only if AL A —A is unsatishable. The unsatisfiability property has to be verified under
all interpretations. Herbrand showed that there exists a special class of interpretations,
called Herbrand interpretations, such that a formula is unsatisfiable if and only f it 1s
false in all Herbrand interpretations. A Herbrand interpretation for a given set of clause
S is considered to be the minimum interpretation possible It is constructed by building
an interpretation over the set of possible ground terms (Herbrand universe) of the set of
clauses S. For example, S = {Eq(z, =), Rbl(z, ®(z,u), 1)}, then one Herbrand universe
for S is H = {z!,®(z!,u!), ®(®(z*, u'),u?),---,} Herbrand interpretation in this case
could be I = {Eq(z!,2'), Rbi(z',2%,1),---,}. A ground predicate in an Herbrand
interpretation is intended to be interpreted as true in that interpretation Hence a Herbrand

interpretation will contain either P or =P, where P is any ground predicate. Formal
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definitions of the notions of Herbrand universe and Herbrand interpretation can be found
in most logic textbooks, and, in particular, for their use in mechanical theorem proving, the
reader is referred to [CL73). Herbrand interpretations makes it possible to systematically
generate proofs based on the verifications of all Herbrand interpretations. The complete,
possibly infinite, set of Herbrand interpretations can be organized in the form of a semantic
tree. A semantic tree is a systematic structure of Herbrand interpretations. One version
of the Herbrand Theorein states that a set of formulas is unsatisfiable if and only if a finite
closed semantic tree exists, where a closed semantic tree gives rise to a set of Herbrand
interpretations in which the given set of clauses will be unsatisfiable. (see [CL73]). There
is a direct correspondence between a finite closed semantic tree and a resolution proof
for a theorem. Completeness of resolution principle can therefore be established by this
correspondence. As we pointed out before, Haken [Hak85] showed that there is a set of
propositional formulas for which the length of a resolution proof can be exponential, with
respect to the length of .he formulas. Furthermore, in the first order case, a search for
a proof of a formula can be non-terminating due to the semi-decidable property of first
order logic. This corresponds to the existence of a possibly infinite number of Herbrand
interpretations over which a verification can be infinite.

From the construction of a Herbrand universe and the Herbrand inteipretations it may
be seen that infiniteness of the set of interpretations is inevitable if a function symbol
1s introduced. Our proposed approach is to remove the logical descriptions of functions
and then add the facility of function evaluation to the resolution tased proof procedure.

Function evaluation restricts the interpretation of the function, and hence all, unique

up to isomorphism, interpretations will apply. Since by function evaluation, the model

will be restricted to the constants and functions that constitute the evaluation process.
We assume functions are defined deterministically and therefore only one upto isomorphic
interpretation to the functions and constants is possible. Therefore the extended resolution

based proof procedure will then generate only valid formulas relative to the functions, or
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in other words, will verify only the set of unsatisfiable formulas relative to the functions.
Furthermore, this evaluability of functions actually extends to predicates and this enable
us to adopt our proof procedure to formula evaluation.

it is commonly thought that function definition and evaluation constitute essential
parts of <lassical, or functional programming and that in such a setting the close rela-
tionship between specification and control of data flow makes it impossible for these two
parts to be separated from each other. On *he other hand, the development of logic
programming (PROLOG) suggests that the issue of problem solving can be viewed as
a process of logical theorem proving, where the programming is decomposed into logic
and control, complementary activities, see [Kow79]. The bridge connecting functional and
logical programming is to be found in the way one chooses the representations of functions
versus predicates. However, we shall not discuss the issue of systematically choosing such
representations so as to give optimal performance in any given sense. Instead, we shall
consider only the general issues of consistency and completeness of the proposed reso-
lution proof technique a1 d shall make some remarks concerning its complexity reduction
properties.

As we pointed out earlier, the appearance of function symbols is the source of the
existence of infinitely many Herbrand interpretations and hence a source of computa-
tional complexity. There are two types of function symbols in a COCOLOG, denoted
Fun = SF U DF, the disjoint union of SF and DF, where SI" denotes the set of
Skolem Functions which are introduced in the process of transforming formulas into their
equivalent (with respect to unsatisfiability) clausal forms and DF is the set of Domain
Functions which are given by the special axioms of the axiomatic system under consider-
ation.

Furthermore, we consider a partition of predicate symbols. We wnte A,, = KA, U
N EA,, to denote evaluable atomic predicate symbols, £ A,,, and non-evaluable atomic

predicate symbols, NEA,.. An evaluable predicate is a predicate for which one can
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effectively calcuiate its truth value, otherwise a predicate will be called non-evaluable.
Since in a finite domain, one can always evaluate the truth value for any given atomic
predicate, but one can not always do so effectively. Effective is used here to mean (i)
a mechanical procedure exists to evaluated any given predicate; and (ii) the mechanical
procedure will terminate within a polynomial tiie of the input predicate length. The
concepts of evaluable and non-evaluable atomic predicates can be extended in a natural

way to evaluable and non-evaluable formulas, as discussed in Section 6.3.

6.2 Resolution with Equality Theory

The Resolution Principle introduced by Robinson [Rob65] has been widely used in me-
chanical theorem proving. In this section we discuss mechanical theorem proof methods
for COCOLOG theorems in terms of an extension, called paramodulation, of the original
resolution principle for logic with equality. This is clearly of value since in a COCOLOG
theory the equality predicate Eq(-,-) is one of the atomic predicates used for expressing
the machine axioms.

To prove a theorem in which the equality predicate is involved one way is to adopt
the direct approach of introducing extra axioms to describe the equality relations in the
logical theory. An alternative to this, which is often more efficient, can be achieved by
introducing extra inference rules.

We first review how to describe an equality relation. We know that an equality is
an equivalence relation and by the axioms one can substitute an equal for an equal, i.e.,
one can make an identity substitution. For more discussion of this see [Men64, CL73].
Truth for an equality predicate of a set of clauses S can be axiomatized in the manner of
Chapter 5 and for reader’s convenience we list them here denoting them K_(S):

The Equality Axiom Schemata K_(S)

(1) Eq(z,z)
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(2) Eq(z,y) - Eq(y,)

(3) Eq(z,y)A Eq(y,z) — Eq(z,2)

(4) Eq(z,y) — Eq(f(z), f(¥)) for each function symbol f in S
(5) Eq(z,y) — (P(z) — P(y)) for each predicate symbol P in &

For a resolution based theorem proving procedute, thes: extra axioms will certainly
reduce the speed of a search or increase the size of the search space, since the number
of attempted unifications during the search of a resolution proof is often an exponential
function of the number of the input axioms. The number of equality axioms is a linear or
at most a polynomial function of the number of function and predicate symbols To avoid
such a dramatic increase in the size of the search space for resolution proofs, Robinson
and Wos [RW69, Rob68] proposed a generalized resolution principle or paramodulation
as an inference rule in addition to the resnlution principle and we shall briefly review this
idea in the following paragraphs.

To understand paramodulation, the key concepts are those of a class of equality in-
terpretations, denoted E-interpretation and the notion of un .tisfiability in the class of
equality models, denoted E-unsatisfiability. These are formally defined in terms of Her-

brand interpretation.

Definition 6.2.1 (E-Interpretation) An E-interpretation of a set of clauses .S is a Her-

brand interpretation I which satisfies the following conditions.

1. Eq(z,z)el

2.  Eq(z,y) € I implies Eq(y,z) € |

3.  Eq(z,y), Eq(y,z) € I implies Eq(z,z) € |
4. Eq(z,y) € I,L[z] € I implies L[y} € /

where z, y, z are elements in the Herbrand universe of S and L is an atomic predicate or

a negation of an atomic predicate, i.e. a literal in I. O
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Definition 6.2.2 A set of clauses S is called E-satisfiable if there is an E-interpretation

that satisfies all the clauses in S. Otherwise S is called E-unsatisfiable. O

An E-interpretation is an interpretation that satisfies equality axioms, i.e. thatis a

model of an equality theory. Next we give a theorem which states that E-interpretations

indeed characterize the equality axioms.

Theorem 6.2.1 (JCL73]) Let S be a set of clauses and K-(.S) be the equality axioms
of S. Ther § is E-unsatisfiable if and only if the set of S{JK-(S) is unsatisfiable

Furthermore,

Theorem 6.2.2 ([CL73]) A finite set S of clauses is E-unsatisfiable if and only if there

is a finite set 5’ of ground instances of clauszs in S such that S’ is unsatisfiable.

Proofs of the above two theorems can be found in [CL73].

Next we define paramodulation and then state the result that by using both resolution
and paramodulation, we can deduce the empty clause D from an E-unsatisfiable set
of clauses. Thus the combination of paramodulation and resolution is complete for E-

unsatisfiabie set of clauses.

Definition 6.” » (Paramodulation) Let C; and C, be two clauses with no variables in
common. If Cy = L[t]JUC] and C; = Eq(r,s) U C3, where L[t] is a teral containing the
term t and C{ and Cj are clauses, and if ¢t and r have a most general unifier o, then the

clause

Lolsa]| JCio | Cao,

where Lo[so] denotes the result obtained by replacing single occurrence of to in Lo by so,

is called a binary paramodulant of C; and C;. We also say that we apply paramodulation

from C, into (. o
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We denote F(S) as a set of reflexive functional axioms, which are any formulas in the
form of either (1) or (4) of the equality axiom schemata in K_(S), from a given set of
clauses S. In particular the clause Eq(z,z) is in F(S). Now we define that a deduction
of resolution and paramodulation of a set of clauses S shall be applications of resolution
plus paramodulation to the clauses in S{J F(S). Next we state the known completeness

result of paramodulation.

Theorem 6.2.3 (Completeness of Paramodulation) Given a set of clauses S, S is
E-unsatisfiable if ai.. w.iy if thereis a deduction of resolution and paramodulation of the

empty O clause from S.
Proof of the completeness of paramodulation can be found in [RW69].

Consider the machine axioms in a COCOLOG theory; they are expressed in terms
of equality predicate, state transition function and output function. Like the equahty
predicate these functions can also be expressed either by extra axioms or they can be
embedded into a set of new inference rules and therefore the efficiency of the proof
procedure can be improved. In our formulation the inference rules corresponding to these
functions will be designed such that they can deduce the empty clause O from any set of
clauses which are unsatisfiable in any models due to the given finite machine M defined
by state transition and output functions. We will call such models as M-unsatisfiable

More of these will be discussed in the next section.

6.3 FE-Resolution in a COCOLOG Theory

Inspired by the concepts of an E-interpretation, E-satisfiability and paramodulation for
equality predicates, we propose here similar concepts for functions in a COCOLOG theory
The results derived in this section can be generalized to extend to other logical theories.

The key idea is to restrict the size of the Herbrand universe of a given set of clauses
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Recall that a Herbrand universe of a set of clauses S is a minimum set of ground terms
of S. The minimality is defined in the sense that for any interpretation I, of S, there
exists a Herbrand interpretation I of S from defined Herbrand universe such that a clause
C € Sis true in I, implies that C is true in I7. Therefore S is unsatisfiable if and only
if S is false in all Herbrand interpretations. The point here is that a Herbrand universe
is designed so that one can construct Herbrand interpretations within which the validity
of a formula can be verified. In fact what we want to characterize here is a concept of
relative validity with respect to the given finite machine. To be more precise, we want
to define a pseudo-Herbrand universe from which we can construct interpretations and
verify the validity of a formula with respect to the finite machine. Relative validity is used
in the sense that a formula is valid relative to a finite machine M if it is interpreted as
true in any model of the finite machine M. These are semantical constructions. The
corresponding syntactical counterpart will be called FE-resolution. The idea is to add a
function evaluation procedure to the resolution principle and paramodulation. The syntax
and the semantics will be connected by the completeness result of FE-resolution. FE-
resolution can then be extended to the predicates in EA,,: the set of evaluable atomic
predicates at the predicate level and therefore evaluable valid formulas with respect to the

models of the given finite machine can be eliminated at the formula level.

Definition 6.3.1 (M-Universe) Given a finite machine M = (XM, UM, YM, 0, 7)
and a set of clauses S, an M-universe is defined as the union of the following sets:
My = {a:aisaconstantin S},
My = {®(as,a.),n(az), +k(N)(al’a,I)7_k(N)(alva’I) :
az € Mo[) XM, € Mo[) UM, and a;,d} € Moﬂlf(‘,v)}

Min = {®(as,a.),n(az), +ry(ar a), —my(aral) :
a; € MkﬂXMu € M[YUM, and aj,a) € Mkﬂl,f("N)}
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Thus M-universe is defined as

M= Ukzo Mk if Mo # ¢
XMUUMUY’ in case Mg = ¢

Obviously M C XMUUMUY™M holds. 0

Now we say a set A is an atom set (or a M Base) of S if A consists of only ground
atoms occurring in S and where terms are elements of an M-universe of S.

We define an interpretation on an M-universe of S to be a pseudo-Herbrand inter-
pretation where the Herbrand universe has been replaced by an M-universe. To be more

specific, let A = {A;, As,--+, Ay, -} be the atom set of .S, then
I = {mlam%""nlna"'}

is an interpretation if m, is either A, or —=A,. An E-interpretation over an M-universe
will be defined as given in Definition 6.2.1 where the Herbrand Universe being replaced

by the M-universe. Next we define an M-interpretation as follows.

Definition 6.3.2 (M-Interpretation) Given a set of clauses S and a finite machine

M, an M-interpretation is an E-interpretation which in addition satisties the following

conditions:
1. Eq¢(%(a,bd),d)e I if ¢(a,b) =a’
2. Eq(q(a),c) €1 if n(a)=c
3. Eq(+L(,1),1") el if +x(n) wry=r
4, Eq(—[,(l, I’), l") el if —k(N) (l,l’) =1
Forany a,a’ € X", be UM, ceYMand LI € I{{} O

In fact an M-interpretation is a pseudo-Herbrand interpretation where all machine

axioms will be interpreted true and Eq(-,-) is interpreted as the identity relation. A set of
R 4
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clauses S is said to be satisfiable in an interpretation I, denoted I |=, S, if and only if for
any clause C in S there exists some ground clause C' of C such that C’ is interpreted true
in /. Truthfulness of first order formulas can be defined by the standard Tarski semantics

(see [Men64] for reference). Next we define M-validity and M-unsatisfiability.

Definition 6.3.3 (M-Relative Validness) A formula A is said to be M-relative valid,
or M-valid if Ais interpreted true in every M-interpretation, i.e. for each M-interpretation

Irq we have Iy = A. o
Correspondingly we have:

Definition 6.3.4 (M-Relative Unsatisfiability) A formula A is said tc be M-relative
unsatisfiable, or M-unsatisfiable if A is interpreted false in every M-interpretation, i.e.

for each M-interpretation I, we have Iy }= A. a

Obviously we have A is M-relatively valid if and only if = A is M-relatively unsat-
isfiable. Next we show that an M-interpretation characterizes the class of models for
the given finite machine M defincd by the set of axioms '):9‘,,. But before we do so, we
first give two lemmas. It is a known result that if a set of clauses S is satisfiable in an
interpretation / then S is also satisfiable in any Herbrand interpretation I* corresponding
to / (see Lemma 4.1 in [CL73]). Now we extend this result from Herbrand interpretations

to E-interpretations and M-interpretations respectively.

Lemma 6.3.1 Let K_(S5) be the equality axioms for a set of clauses S, then if a Herbrand

interpretation /* satisfies K_(S) then I* is also an E-interpretation.

Proof. By the converse of Theorem 6.2.2, I* = K_(S) implies that for any axiom
A € K_(S) each ground instance A’ of A such that I* |= A’. But since each axiom
in K_(S) is assumed to be quantified universally it follows that any ground instance A’
of any axiom A in K.(S) is satisfied by I*. Therefore I* meets the conditions for an

E-interpretation and so I* is also an E-interpretation. o
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Lemma 6.3.2 Let I%,(.S) be the machine axioms for a set of clauses S, then .ur any

E-interpretation Iy satisfying £9,(.S) it is the case that I is also an M-interpretation

Proof. The proof is similar to that of the previous Lemma. I }= T%,(S) implies that for
any axiom A € ¥9,(S) there exists a ground instance A’ of A such that I;; = A’. Since
each axiom A in L3,(S) is universally quantified it follows the I |= A. This implhes
Ig |= A’ for any ground instance A’ of A in I$,(S) and hence all the conditions for /,;

as an M-interpretation are met. We conclude that 7g is an AM-interpretation )

Theorem 6.3.1 Let S be a set of clauses, and let ¥9,(S) and K-(S) be the set of
machine axioms and equality axioms respectively. Then S 1s M-unsatisfiable if and only

if SUL% U K=(S) is unsatisfiable.

Proof. Suppose S is M-unsatisfiable but S JX%,(S)U K=(S) is satisfiable. The latter

implies that
1= SUDWS)UK(S)
This is equivalent to
I'E=Sand I=X5,(S)and T = K_(s)
This implies for any Herbrand interpretation I* corresponding to / we have
Ik Sand I" =X5,(S) and I" |= K_(S)

By Lemma 6.3.1 we have
Iz = S and Ig = T5,(5)

By Lemma 6.3.2 we known that S is satisfied by an M-interpretation, that is to say
Im = S, which contradicts the fact that S is M-unsatisfiable and hence the result is

proved.
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The other direction of the proof is simple. Suppose SUL%,(S)U K-(S) is unsatis-
fiable but S is M-satisfiable. The latter statement implies there is an M-interpretation
Irm | S. Clearly we have Ty = £%(S) and Iy = K-(S) since Iaq is also an E-
interpretation. Therefore we have Iny = SUZX,(S)U K=(S) which contradicts to the
assumption that S I%,(S)U K-(S) is unsatisfiable. This completes the proof. 0

6.3.1 FE-Resolution and Its Completeness

In the following we denote f(z1,---,z,) as a n-ary function with n variables z;, x5, - -, z,,
and b= f(ay, - ,ay) shall denote function f evaluated at constant, a;,---,a, isb. Now
we define rules for function evaluation based resolution, also called FE-resolution. We will
show that these rules combined with rules of standard resolution and paramodulation are
complete. In particular, an empty clause will be geuerated from a set of M-unsatisfiable
set of clause by applying these extended resolution. Function evaluation can be done
either at constant level or at variable level, i.e., f can be partially evaluated at a; etc to
give the function f(ay,  «,am—1,%m,---,&n). Thus FE-resolution should also be define

for constant and variable cases respectively.

Definition 6.3.5 (Constant FE-resolution) Let C; be a clause which is in the form of
Ci1 = L[f(a1,--,a,)] V C}, where L[] is a literal containing the function symbol f in

its ground form f(ay,---,a,), Cj is a subclause of C1, then infer the inferential step

Cl = L[f(al)"'aan)] v Cl’g
C=1L}vC,

where b = f(ay,---,a,), is called constant FE-resolution and the inferred clause C is

called a constant FE-resolvent of C; 0

Applying constant FE-resolution will result in the generation of all equivalent clause to
those which contain ground terms but not ground function terms. Constant FE-resolution

can be extended to variable FE-resolution as follows:
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Definition 5.3.6 (Variable FE-Resolution) Let C; be a clause which is in the form

Cl = L[f(ala Ty By Thg1yt 3 Ty YLy o '1y1)] \% C{(Ik+17 oy Ty Tyt 7y ‘Tu+m)

where L[f] is a literal containing the function symbol f which is in a semi-ground
form, f(a1,- -, akTk41," " Tny Y157+, W), C1 is a subclause of C) and (] has shared
variables x4y, -,z, with L[f]. If b = f(a1,a2,---,an,c1,--+, ;) for any constants

Qkt1, Bk42y° * * 4 Qn, €1, -« + , €1, then the inferential step

L[f(al-;"',akamk+la'"’mn’yla"'ayl)]VC{
C=Lo[f|v Clo

where 0 = {Zr41/ak+1, Thaa/ k12, s Tufan, Y1 /C1, -+, y1/ i} is a substitution, 1s called
variable FE-resolution. The inferred clause C is called a variable FE-resolvent of ()

Therefore the resolvent is given in the following form:

C = Lo[b] V Ci(@k+1y """ yCny Tnt1,** * ) Tngm)

a

A variable FE-resolution will generate a ground instance of the function and a semi-
ground instance of the original clause which are logically implied by the original clause. We
define a FE-resolution step is an inference step of either variable or constant FE-resolution
by which a FE-resolvent is produced. Next we prove that both constant FE-resolution
and variable FE-resolution are complete, i e , an empty clause O will be derived by using
the standard resolution, paramodulation and FE-resolution to a given set of clauses .S, if

S is M-unsatisfiable. This is stated in the next theorem.

In the following, we denote o,., 0,, and o,, as deduction rules of resolution, resolution
and paramodulation, resolution and paramodulation and function evaluation respectively.
When the empty clause 1 is deducible from a base clause set S by a sequence of deductions

using rules from the set o we write by S+, O. A deduction of the empty clause O from
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a base clause set S by a o deduction rule shall be denoted by D[S I, 0O]. Again, ‘=’
and ‘=" are used as symbols of meta-level language to denote function evaluation and
represent respectively. That is d = f(a,b,c) denotes: f evaluated at a,b,c is d and

C = Eq(f(z,y),z) denotes: C represents clause Eq(f(z,y),z).

Theorem 6.3.2 (Completeness of FE-Resolution) Given a set of clauses S, Sis M-
unsatisfiable, for a finite machine M, if and only if there is a deduction of the empty

clause O from S using rules of resolutior,, paramodulation and FE-resolution.

Proof

By Theorem 6.3.1 we know that S is AM-unsatisfiable if and only if SUK_(S)UI%(S)
is unsatisfiable. By Theorem 6.2.1 SUUK_(S)UZX%(S) is unsatisfiable if and only if
SUZTS4(S) is E-unsatisfiable. Furthermore, by the completeness of the paramodulation
and Theorem 6.2.3 we have SUZX3,(S) Fo,, O and therefore there exits a deduction
of resolution and paramodulation of the empty O clause from S|JX%,(S), denoted by
D[S U LS(S) Fo,, O).

Now we need to show S Fq,, O, that is, O is deducible from S by using the deduction
rules from oy.. It is enough to show the existence of a deduction D[S ., O]. It
will be seen that this deduction can be obtained directly from the existing deduction,
D[S U T%(S) Fo,, O] and that the changes of the base clause set from SUL%,(S) to S
will be compensated for by the additional syntactic inference rules of function evaluations.

According to our earlier definition, £((S) consists of two set of clauses which spec-
ify: (1) functions, i.e., in the form of ®(x;,u;) = x;,9(x;) = yi, +xwy(l,¥) = 1" and
—yn)(L V) =1 and (2) variable size clauses which specify the facts z; # 5,1 # 23, - -
We need only consider to convert the first set of clauses to FE-resolution since the set
(2) is implied by the use of function evaluation and function definition.

Consider a clause Eq( f(a,b), ¢)in I,(S) (the sameis true for unary-function Eq(f(a),

b), a state output function in I9,(S)). If this clause, denoted C; is one of the parent
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clauses in the given deduction process, the other parent clause must be the form of
Cy = ~Eq(f(z,u),y) A Cj(z,u,y), where Cj(z,u,y)is a subclause of C,. In this deduc-
tion the letters z, u,y will either take the variable -type values- which we denote x, u, y or
they take constant values which in this proof are denoted a, b, ¢, i.e., we are dealing with
variable or semi-variable FE-resolution as defined in Definitions 6 3.6 and 6 3.5 Taking
the element x to have the generic variable letter form x or the generic constant letter form

a, we get the first line of the following table where eight cases need to be considered

Var Cases

r jajajXja|x|xjaj|x

v [blb|b|x|b|ylx]|y
v |clylelelyl|lclyl|z

In the following, we show this case by case:
Case 1. If C; = =Eq(f(a,b),c)V Cy(a, b, c) then the resolvent produced by the use of
the resolution principle to this and the clause Eq(f(a,b),¢) in T3,(S) is C = CY(q,b, ).
Consider the application of function evaluation to f(a,b) in C,, we shall have ~/¢(c, ¢)
VCy(a,b,c) if ¢ = f(a,b). This clause can then be further resolved with [<¢(r,r) to
the final resolvent C' = Cj(a,b,¢) = C. The case ¢ # ¢ = f(a,b) will not occur since

function evaluation will be consistent with the axiom of Eq¢( f(4,b),c).

Case 2. If C; = ~Eq(f(a,b),y)V Cy(a,b,y), then the resolvent is C' = (0(a,b,y0o),
where o is a substitution defined as o = {c/y}.

Consider the application of function evaluation to f(a,b) in C, again we get —/ig(c, y)
V Ci(a, b,y) if c = f(a,b). Furthermore, we may resolve this with E¢(z,z), and we have

the final resolvent C' = Cy0(a, b, yo) where o = {c/z,c/y}. Obviously (' = C'.

Case 3. If C; = —Eq(f(z,b),c) VCi(z,b,c) then the resolvent is C' = Cyo(xa,b,c),

with o = {a/z}.




CHAPTER 6. REASONING IN COCOLOG WITH FE-RESOLUTION 138

Consider the application of function evaluation to ¢ = f(z, b). We shall find some o’
such that ¢ = f(a’, b) and define o = {a’/z}. Now this function evaluation will lead us to
- Eq(c,c) V Cyo(xo,b,c). Again resolve this with Eq(x, x) we get C' = Cjo(z0, b,c) =
C.

Case 4. C; = ~FEq(f(a,z),c)VCy(a,z,c)is treated in a similar manner as in Case 3.

Case 5. If C; = ~FEq(f(z,b),y)VCy(z,b,y) then the resolvent is C = Cjo(za, b,y0),

with ¢ = {a/z,¢/y}.

Consider the application of function evaluation to y = f(z,b) we shall find some
a’,c such that ¢ = f(d',b) and define 0 = {a'/z,c//y}. Now this function evaluation
will result —Eq(c’, ')V C3o(z0,b,yo). Further resolve this with Eg(z,z) and get C' =

Cio(za,b,yo)=C.
Case 6. C2 = ~Eq(f(z,y),c)VCy(z,y,c)is treated in a similar manner as in Case 5.
Case 7. C; = ~Eq(f(a,z),y)VCi(a,z,y) is treated in a similar manner as in Case 5.

Case 8. If C; = ~Eq(f(z,y),2z)V Cj(z,y,z) then the resolvent is C = Cjo(za,yo, 20)
with o = {a/z,b/y, c/z}.
An application of function evaluation to z = f(z,y) may lead us to any o',¥', ¢’ such

that ¢’ = f(d',V'), but not necessarily with ' =aand &' =band ¢ =c.

This completes our case by case analysis and hence we can conclude that the existence
of a deduction of the form D[SUX%,(S)+t,,, O] implies the existence of a deduction of

the form D[S +,,, O] and hence we conclude that FE-resolution is complete.
0

In cases, except in Cases 1 and 2, trial and error steps are inevitable in order to get a

substitution identical to the resolvent produced by the resolution and paramodulation.
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6.3.2 Literal and Formula Evaluation

This subsection extends the FE-resolution introduced in previous subsection to literal and
subclause evaluation respectively.

To evaluate literals or subclauses, one shall expect to receive logical truth values as
the result of evaluation. These truth values can be varying from true, false or unknown
depending on the nature of the literal or the subclause to be evaluated. For example,
Eq(x,z) will be evaluated to be logical true and ~Eq(x,r) will be evaluated to be
logically false in any models in which Eq(,-) is interpreted as equality relation. While
some predicate may result in an unknown truth value especially when infinite model is
the case. We know, in particular, that COCOLOG has unique model and is decidable
Therefore, any formula in a COCOLOG languagr will have a deterministic truth value
and the same for the evaluation process. Here, we only consider the evaluation being
applied to the ground literals which could be resultea from some FE-resolution step, or a

FE-resclvent.
Definition 6.3.7 (Literal Evaluation) Let C; be a clause which is in the form of

Cy = Lf (=)l v Ci(z)

¢y = LV Ci(z),

where L does not contain any other shared variables with C] except in the first case that
variable z is shared through the function symbol f. Then if L[b] or I, is evaluated to be

false, where b = f(a) for some q, the inferential step

Lif(=) Vv Ci(=z) LV Cile)

C=Ci(a) O CU=Ci)

is called the fiteral evaluation or LE-resolution C 1s called LE-resolvent. O
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This is obviously a sound inference step, since faise in disjunction with any formula
does not change the truth value of that formula, i.e., L VC is logically equivalent to C.
The completeness of this step can be seen through the following argument. If L VC can
produce an empty clause O (or L) through L VC with -C then C with ~C can also
produce the empty clause O, according to resolution principle.

The COCOLOG system equipped with FE-resolution constituts a function -logic-
function closed loop framework as shown in Fig.6.1.
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Figure 6.1: FE-Resolution for COCOLOG Theories

Where each evaluable function symbol f in L will have a corresponding evaluation

«{ function. The interface between logic-based dynamical system, i.e., logic controller and
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the set of evaluation functions will map each evaluable function symbol to the correspond-

ing evaluation function with corresponding constants.

6.4 FE-Resolution and Other Attachment Techniques

In this section, we compare FE-resolution with previous attachment techniques the reader
is referred to [BM81, Rus85, Gre91] for procedural attachment, [Wey77, Wey80] for
semantic attachment, [Sti85] for theory resolution, and the recent work by Myers [Mye91)
for universal attachment. Myers [Mye91] has compared universal attachment with previous
attachment techniques and with theory resolution. Here we shall concentrate on the
comparisons of universal attachment with FE-resolution.

It is known that procedural attachment is the simplest attachment method and yet 1s
also a powerful technique linking logical function and relation symbols to programs We
referred the reader to [BM81, Rus85, Gre91] fo: a technical presentation of the notion of
procedural attachment.

Semantic attachment provides a more explicit attachment to data than procedural
attachment by linking the constant symbols to data structures and function or predicate
symbols to programs. Procedural attachment and semantic attachment are not motivated
by the idea of removing the corresponding logical descriptions (axioms) as a benefit result
of the addition of evaluation programs. It has been shown [Mye90] that both procedural
attachment and semantic attachment are inherently incomplete.

Theory resolution and universal attachment are both complete Theory resolution
shares the viewpoint that unsatisfiability is defined relative to given models or restricted
by a given theory. Theory resolution evaluates formulas by checking the restricted unsat-
isfiabilities while FE-resolution evaluates a function to a value Further, theory resolution
is restrictive because the test of unsatisfiability greatly increases the search space. This

does not happen to the FE-resolution since unsatisfiability is checked by the search of the
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empty clause via resolution and function evaluation.

FE-resolution is motivated by (i) the fact that many control problems can be expressed
in terms of functions and (ii) the fact that of logical treatment of function symbols is
highly inefficient due to the creation cf infinite Herbrand universe. Universal attachment
is an extension of previous attachment techniques. It puts emphasis on the evaluation of
ground or quantified formulas and provides truth values for the attachable formulas, not
every formula is attachable since not every formula is evaluable, to the logic language.
The possible truth value for a quantified formula can be either true, false or unknown.
The shared variable between an attachable literal and a subformula makes the attachment
process unable to be completely independent of the subformula. Therefore this dependency
will further limit the attachability. These issues are addressed in [Mye91]. The reason for
this dependency is the fact that universal quantification does not distribute over disjunction
(of literals within a clause). For example, suppose Vo P(f(z)) is evaluated to be false,
in that case VYz(P(f(z)) V Q(z)) does not permit us to get Q(z), since Vz(P(f(z))V
Q(z)) # VxP(z) vV VrQ(z). On the other hand, in FE-resolution, we may allow the
shared variable case to be processed. We evaluating at the function level, i.e., if b = f(a)
for some a then we can resolve P(b) V Q(a). Obviously, P(f(x))V Q(z) E P(b)V Q(a)
and P(f(z)) v @Q(z) £ P(b)V Q(a). But we claim, theoretically, multiple (probably
infinite if necessary) number of inference steps will make the inference step to be logically
equivalent, i.e., P(f(z))vQ(z) = {P(b)VQ(a,):%,7 € I}. In most cases, this logically
equivalence is not necessary. Moreover, we have shown that this FE-resolution is complete
in Section 6.3.

Complexity reduction analysis and experiments on automatic theorem proving in CO-

COLOG by the use of FE-resolution are currently under study.




¢ 3

Chapter 7

Conclusion

7.1 Main Results and Contributions

In the following we shall summarize our main resuits and contributions in the order of

their apparences in this thesis.

Constructing Observers

In Chapter 2 we presented modeling of discrete state, discrete time and finite dimen-
sional systems by input-state-output finite machines. Then we obtained the procedures
to construct a current or an initial state observer. The complexity of the size of such
observers measured by the number of states and input/output spaces are given in terms
of initial or current state observability dags. Our results' about the complexity of the size

of the observability dags are summarized in the Table 7.1:

Constructing Controllers

We presented procedures to construct controllers which take output from observers

and generate controls for the next steps to steer the state estimate to a target state. By

1We assume X, U and Y denote the set of the states, controls and outputs, in the base finite machine
M =(X,U,Y,®,n) respectively

143
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Upper Bound Ul =1 [U] = 27wl
initial observer | current observer | initial observer | current observer
Depth X X X] [XT/2
Width X X O(21X13) O(2X177)
Size 2| X|-1 | X]| 0(2X1R) O(27F172)

Table 7.1: Size of the Observability Dags

Computational
Complexity | Completely Observed | Partially Observed
Initial State
Observable o(U|IX1) O(IUNIYIX 121 XPP)
Current State
Observable O(|U||X %) O(UIYIIX B1XP)

Table 7.2: Computational Complexity of Constructing Controllers

the observer and controller framework, we provide a closed loop solution to the control
of systems modeled by finite machines. The dynamic programming principle has been
extended to handle the partially observered control problems in the form of generating
such controllers for both completely observed and partially observed initial or current
state observable finite machines. The computational complexity of consturcting these

cotnrollers are summarized in the Table 7.2;

Logic-based Dynamical Systems-LDS

In part Il of this thesis, we presented a new paradigm to design and to implement
control systems that are modeled by finite state machines. The logic-based dynamical
system consist of a family of logical theories. It distinguishes itself from other logic
systems by nesting a sequence (or a tree) of logics to represent the (every possible)
path of the interactions of the controlled system and the environment. A specific LDS, a
conditional observer and controller logics—COCOLOG is given, in Chapter 5 for the problem
of designing observers and controllers for a partially observed input-state-output finite

machine. A semantics is supplied for each COCOLOG theory in terms of interpretations
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of controlled transitions on a tree of state estimate sets. Then we obtained consistency
and completeness result of COCOLOG theories. Furthermore, through the unique model
property of COCOLOG theories we established the decidability though t“*. is not totally
surprised since each COCOLOG theory is intended to characterize a snapshot of a given

finite machine.

FE-Resolution

Last, in Chapter 6, we introduced an extension of resolution technique to include
function evaluation capabilities. This is by replacing the logical descriptions of function
symbols and hence their apparence in a deduction system with evaluated values From
the construction of Herbrand universe we know that function symbols are the source of
complexity. We have shown that FE-resolution is complete, in the sense that an empty
clause O is derivable from a set of clauses ¥ x4 {J F' by the standard resolution principle (f
and only if the empty clause is deiivable by the FE-resolution from ¥ where Lo 1s a
set of clauses and F is a set of clauses that describe the function symbols to be replaced
by the corresponding function evaluations in FE-resolution. It has been shown in Chapter

6 that the FE-resolution is complete.

7.2 Future Work

The framework and approaches presented in this thesis have opened many problems to
be studied in the future. This section we just list some of the immediate questions as a

direction of future works after this thesis.

Size of the Observability Dags
In Chapter 2 we have shown that size of the initial or current state observer tree
can reach up to the power set of the state space. This is true when the input space of

the base machine has the size of the power set of the state space of the base machine.
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Furthermore we know that when the input space shrinks into a singleton set then the size
of the observer tree will reduce to the square of the state space of the base machine.
A challenging question will be what happens when the size of input space of the base
machine is limited by a polynomial function of the size of the state space of the base

machine. Or more directly what is the size limit in terms of |X|,|U| and |Y| if they in

fact affect the size limit under concern.

Dynamic Programming and Supervisory Control Framework

We present in Chapter 3 a dynamic programming based control solution to steer state
estimate sets into a desired target state. This closed loop control provides a tube of
state trajectories from the current state estimate to the target state when the system
state is not completely observed. It will be interesting to know that the relationships
between the solutions provided by this dynamic programming formulation and provided

by the supervisory control framework under partial state information.

Oracle-Functional vs Logic-based Solutions to Control Problems

For a classical controller to provide a solution to each control problem w, € ,,
a set of feedback control laws of cardinality card(f,) must be precomputed and an
oracle must then “switch on” the appropriate controller ¢, = ¢(w,). Obviously card(£2,)
can be extremely large even for close time horizons. Consider, for instance, problems
of the form: Steer the (unobserved initial) state of M at ky into the set X[ at k
(if possible), then steer the (unobserved) state in X into XT at ky (if possible),
then - - - at k,, (if possible). In comparison, the logic controller does not solve each of
the problems in 2, but, at the cost of the complexity of automatic theorem proving
procedures in COCOLOG, only solves the given problem w> € Q,-whose complexity can
be taken to be some function of the length of w>. Moreover, at an arbitrary time instant
k,kp < k < ky,, the control problem w, can be changed to wy € Q, and the same

complexity considerations outlined above still apply. A systematic comparisons of these
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two frameworks are considered to be an interesting and important subject for the future

research.

Logic-based Adaptive Control

Logic-based dynamical system provides a declarative description to the control prob-
lem. The flexibility and expressiveness of logic language opens new dimensions to the
challenging problems like adaptive control and machine learning.

The adaptive feature of the logic-based control system is apparent. Let us suppose
the observer states of a observer tree M have been steered to the good state {TL}(o})
Then suppose the dynamics of M changes to M’ and the current state observer tree
M changes to M’c. The description of this change is trivial in the logic-based system
We must now recompute the observer sub-tree leading to the target state " and the
associated (new) good states. It is evident that {z;}(o*) can only be steered to " under
the new dynamics if {?c:}(o’f) is in the new set of good states defined for the new observer
tree ﬁc.

Appropriate formulation of the adaptive control problem in terms of logic-based control
system and comparisons between the classical formulation and logic based formulation are

expected to provide more insights to the foundations of system and control science and

artificial intelligence.

Complexity of FE-Resolution

The complexity of using FE-resolution to prove COCOLOG theorems is expected to
be effective. A formal analysis of complexity reduction of FE-resolution over the standard
theorem proving techniques, standard resolution and paramodulation in particular, is con-
sidered to be an important and challenging subject to be carried out. This also includes
efficiency comparisons between function evaluation, i.e., FE-resolution and predicate eval-
uation, i.e., Universal Attachment.

Levesque [H.L86, H.L89] has classified the set of clauses according to their syntactic
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forms. The class of vivid clauses consist of a collection of ground, function-free atomic
sentences with unique name assumption to each constant symbols and closed world as-
sumption over domain and over each predicate, and axioms of equality. To this class of
clauses, KB, it is known that KB |= @y, -, Q.a has an O(m™*!|a|) algorithm. Further,

a clause is called a Horn clause if it has the form of
Vzy, - Vau, (P )2 [) Pe) = Pes) n,k > 0, P, is atomic

For a variable-free set of Horn clauses, KB, it is known that KB |= a has on O(| K B||e|)
algorithm, [WJ84]. It is interesting to know the complexity of proving theorems in CO-
COLOG with FE-resolution since a theorem in COCOLOG can be expressed generally as

a clause with variables and functions.
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