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ABSTRACT 

 

Ecosystem services (ES) are the benefits that flow from ecosystems to people, contribu9ng to 

human well-being. The ES concept provides an important framework, or star9ng place, for 

quan9fying, analyzing, and managing these benefits that flow from ecosystems to humans. Yet 

the capability to assess provision of these services accurately across large spa9al and temporal 

extents remains limited. Therefore, spa9al modelling and regular monitoring approaches of ES 

are a cri9cal tool for evalua9ng their state across space and 9me. Many current ES spa9al 

models rely on representa9ons of land-use and land-cover (LULC), with the assump9on that 

most ecosystem proper9es within a LULC type are iden9cal. To represent ecosystem 

heterogeneity more precisely, there have been calls within the ES community to explore 

modelling approaches that incorporate Earth Observa9on (EO) data that are able to capture 

ecosystem proper9es beyond LULC, such as pa+erns of vegeta9on density or age structure of 

forests. It has also been suggested that EO can increase the spa9al extent of ES models while 

maintaining fine temporal and spa9al resolu9ons.  

 

In the manuscript chapter of my thesis, I systema9cally reviewed the use of EO data in ES 

models over ten years (2012-2021), highligh9ng which EO datasets, at which geographical 

extents and spa9al/temporal resolu9ons, have been used in ES models; inves9ga9ng whether 

the claims for use of EO to improve ES models are generally borne out in the literature. This 

review of 39 paper and 138 individual models, spans all categories of ES models and shows the 

direct linkages between individual EO datasets and ES models. For example, MODIS Normalized 

Difference Vegeta9on Index was the most used EO data input found in this review process and 

was used as a proxy for live vegeta9on cover in 58% of all ES models, and 83% of regula9ng 

service models (e.g., flood regula9on, sediment reten9on, heat mi9ga9on). This study shows 

that there have been changes in the last ten years in the sensors that are capturing EO data, the 

indicators that are being created from these data, and the breadth of services being modelled 

using these remotely sensed indicators. While the promise of increased informa9on resolu9on 

has been par9ally realized for some ES models, there are more opportuni9es s9ll for the ES field 
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to evolve; with a cri9cal need during this period of methodological explora9on for more 

transparent and common defini9ons, valida9on schemes, and documenta9on of emerging 

methodologies. 

 

RÉSUMÉ 

 

Les services écosystémiques (SE) sont les avantages que les écosystèmes procurent aux humains 

et qui contribuent à leur bien-être. Le concept de SE fournit un cadre important ou un point de 

départ pour la quan9fica9on, l'analyse et la ges9on de ces avantages qui découlent des 

écosystèmes pour les humains. Cependant, la capacité d'évaluer avec précision la fourniture de 

ces services sur de vastes étendues spa9ales et temporelles reste limitée. Par conséquent, la 

modélisa9on spa9ale et les approches de suivi régulier des SE cons9tuent un ou9l essen9el 

pour évaluer leur état dans l'espace et dans le temps. De nombreux modèles spa9aux actuels 

des SE reposent sur des représenta9ons de l'u9lisa9on et de la couverture des sols (LULC), en 

partant du principe que toutes les propriétés des écosystèmes au sein d'un type de LULC sont 

iden9ques. Pour représenter plus précisément l'hétérogénéité des écosystèmes, des voix se 

sont élevées au sein de la communauté des SE pour explorer des approches de modélisa9on 

intégrant des données d'observa9on de la terre (OT) capables de capturer les propriétés des 

écosystèmes au-delà de l'UTCL, telles que les schémas de densité de la végéta9on ou la 

structure d'âge des forêts. Il a également été suggéré que l'observa9on de la terre pouvait 

augmenter l'étendue spa9ale des modèles d'SE tout en maintenant des résolu9ons temporelles 

et spa9ales fines.  

 

Dans le premier chapitre de ma thèse, j'ai procédé à une revue systéma9que de l'u9lisa9on des 

données d'OT dans les modèles d'SE sur une période de dix ans (2012-2021), en soulignant 

quels ensembles de données d'OT, à quelles étendues géographiques et à quelles résolu9ons 

spa9ales/temporelles, ont été u9lisés dans les modèles d'SE ; j'ai cherché à savoir si les 

alléga9ons d'u9lisa9on de l'OT pour améliorer les modèles d'SE sont généralement confirmées 

dans la li+érature. Ce+e revue de 39 ar9cles et de 138 modèles individuels couvre toutes les 
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catégories de modèles d'SE et montre les liens directs entre les ensembles de données d'OT et 

les modèles d'SE. Par exemple, l'indice de végéta9on par différence normalisée de MODIS a été 

l'entrée de données d'observa9on de la Terre la plus u9lisée dans ce processus de revue et a 

servi de subs9tut à la couverture végétale vivante dans 58 % de tous les modèles d'écosystèmes 

et 83 % des modèles de services de régula9on (par exemple, régula9on des inonda9ons, 

réten9on des sédiments, a+énua9on des effets de la chaleur). Ce+e étude montre qu'il y a eu 

des changements au cours des dix dernières années dans les capteurs qui capturent les données 

d'observa9on de la Terre, les indices qui sont créés à par9r de ces données et l'étendue des 

services modélisés à l'aide de ces indices. Si la promesse d'une meilleure résolu9on de 

l'informa9on s'est par9ellement concré9sée pour certains modèles d'SE, le domaine de l'SE a 

encore d'autres possibilités d'évoluer, avec un besoin cri9que, pendant ce+e période 

d'explora9on méthodologique, de défini9ons plus transparentes et communes, de schémas de 

valida9on et de documenta9on sur les méthodologies émergentes. 
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PREFACE 

 

This thesis is manuscript based. The two main chapters represent a literature review and a 

research-based systema9c literature review manuscript. Within these two chapters, I aim to 

inves9gate the evolving use of earth observa9on, or remotely-sensed, data in landscape-scale 

ecosystem service models. Chapter 1 is a comprehensive literature survey that is not meant for 

publica9on at this 9me. Chapter 2 is prepared as a manuscript for submission to the journal 

Ecological Indicators. 
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collec9on, analyses, and wri9ng of both chapters of this thesis. 

 

The supervisors and co-authors of the manuscript (Chapter Two), Dr. Elena Benne+ and Dr. 

Klara Winkler, were involved in all steps of the research process and aided in the original 

conceptualiza9on, refining the research ques9ons, reviewing the methods, and gave advice on 

the data analysis and edi9ng of the thesis wri9ng. 
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INTRODUCTION 
 

Ecosystems have the capacity to provide benefits that support human well-being, including 

water purification, sense of place, food production, among many other direct and indirect 

contributions of nature to people (Daily 1997). These benefits that people obtain from nature 

are commonly referred to as Ecosystem Services (ES) (MA 2005) or Nature’s Contributions to 

People (NCP) (IPBES 2017). In the decades since ES was first introduced as a concept, there has 

been continual exploration and development of tools and methods for modelling and 

monitoring multiple ES (Burkhard et al. 2018; Carpenter et al. 2009; Chaplin-Kramer et al. 2023; 

Cheng et al. 2019; Costanza et al. 2017; Malinga et al. 2015; Willcock et al. 2023). With this 

growing toolbox for understanding, studying, and communicating about ES, there has also been 

a growing number of choices for ES researchers and practitioners who want to design studies to 

better understand ES in specific locations. Among these varied tools and methods, there are 

unique data requirements, verification schemes, accuracies, and relevancies to specific places, 

ecosystems, and environmental management decisions (Bagstad et al. 2013). 

 

Accurately understanding the conditions and dynamics within ecosystems that lead to ES 

requires a considerable understanding of ecosystem structure and processes (Fu et al. 2013; 

Notte et al. 2022). However, appropriate data and methods linking biophysical properties and 

processes of ecosystems to ES over large spatial extents are often lacking or overly simplified 

(Lavorel et al. 2017). To represent these ecologically meaningful linkages between ecosystem 

properties and ES more precisely over larger spatial and temporal extents, the ES community 

has called for exploration of ES modelling incorporating earth observation (EO) data that 

capture information on a variety of ecosystem properties across large temporal and spatial 

extents (Braun et al. 2018; Cord et al. 2017; Galaz García et al. 2023; Ramirez-Reyes et al. 2019).  

 

At the time (2015) of the last review of EO (e.g. satellite or airborne data) technologies used in 

ES modelling, LULC was found to be the most used EO-derived data to represent ecosystem 

processes across ES models, used as the sole data product in 56% of studies (De Araujo Barbosa 

et al. 2015). This LULC-based modelling approach has its benefits as it is relatively easy to 
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implement where LULC maps exist (Burkhard et al. 2009); however, LULC-based approaches to 

ES modelling might mask important heterogeneity within and across LULC types that is driven 

by the underlying biophysical properties of ecosystems, such as properties related to an 

ecosystems’ structure (e.g. ecosystem configuration, habitat structure) or processes/function 

(e.g. ecosystem phenology, primary productivity, disturbance level). This means that the spatial 

variability of potential ES supply within landscape patches consisting of a single LULC type will 

be underestimated and, in many cases, missing all together (Eigenbrod et al. 2010). Not having 

information about how ES varies within landscape patches is a critical gap, as that is a level of 

information particularly relevant to local and regional scales for land management and 

engagement with land stewards (Ziter et al. 2013). 

 

ES studies integra9ng EO data into models over the last ten years have shown promising results 

that EO is enabling greater inclusion of data rela9ng to diverse ecosystem proper9es as inputs in 

modelling ES across broader extents with finer resolu9on outputs, but this work is s9ll in its 

early stages. There remain many ques9ons in the ES community about the scale to which EO 

data can be used in monitoring and modelling ES (Anderson 2018), which EO are appropriate to 

model which services (de Araujo Barbosa et al. 2015), and how much can be gained, in terms of 

accuracy and finer resolu9on (temporal and spa9al) outputs, from developing increasingly 

complex EO-based models (Ayanu et al. 2012; Braun et al. 2017; Hamolová et al. 2014). My 

thesis will contribute to the growing body of literature addressing some of these ques9ons (Fig. 

1.1). 
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Figure 1.1. Outline of MSc Thesis key research topics and ques=ons 

 

The general outline of my thesis is as follows: 

  

Introduc?on will provide a brief introduc9on to the thesis topic, overview the state-of the 

science in the ES modelling field, and present overall thesis objec9ves and research ques9ons. 

 

Chapter One of my thesis expands on this introduc9on through a comprehensive literature 

survey, examining in greater depth: A) the current state of ES modelling and its applica9ons 

within longer term ES monitoring schemes, B) what the ES community is calling for in terms of 

advancements in use of EO data, and C) what has been achieved so far and what gaps remain in 

EO use for ES purposes.  

 

Chapter Two of my thesis focuses on: A) the growing use of EO to measure proper9es of 

ecosystem structure and ecosystem func9on in landscapes, and B) how the availability of 



14 
 

ecosystem structure and func9on EO data has been integrated into ES modelling studies. 

Through a systema9c literature review of the last ten years of ES modelling papers, I have 

examined: 1) which EO-derived indicators of ecosystem structure and func9on are currently 

available at appropriate scales for assessing ES, and 2) which ES modelling studies have used EO-

derived ecosystem structure and func9on data to model which services. 

  

Comprehensive Scholarly Discussion and Conclusion that will summarize and discuss the main 

findings of the thesis, discuss implica9ons of the work within the field, and provide a concluding 

summary of the work with poten9al future research direc9ons. 
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CHAPTER ONE 

 

Advancing the Use of Earth Observa?ons of Ecosystem Structure and Func?on in Ecosystem 

Service Modelling and Monitoring: Current Trends and Research Direc?ons 

 

1.1 Ecosystem services – a concept linking people to nature 

  

Ecosystems provide benefits that contribute to human well-being, including water purifica9on, 

recrea9on opportuni9es, flood protec9on, and food produc9on (Daily 1997). These benefits 

that people obtain from nature are commonly referred to as Ecosystem Services (ES) or Nature’s 

Contribu9ons to People (NCP). The publica9on of the Millennium Ecosystem Assessment (MA 

2005) spurred a rapidly growing field of study on the subject that had con9nued to the present 

(see Carpenter et al. 2009; Costanza et al. 2017 for reviews). As first defined by the MA in 2005, 

ES can take many forms and are broadly grouped into three categories: provisioning services, 

regula9ng services, and cultural services. Provisioning services are goods and resources from an 

ecosystem, such as food supply, 9mber, and freshwater; regula9ng services occur due to the 

regula9on of ecosystem processes, such as erosion preven9on, heat reduc9on, and air quality 

regula9on of par9culate ma+er; and cultural services are non-material benefits that people can 

gain from ecosystems, such as recrea9on opportuni9es or connec9on to place. 

 

Human-induced changes to ecosystems impact their ability to provide services, for be+er (e.g., 

the use of fer9lizers to improve agricultural produc9on) and for worse (e.g., the eutrophica9on 

caused by runoff from those fer9lizers). These human-induced changes – which can include land 

use degrada9on and conversion, climate change, and pollu9on – affect ecosystems and their 

services at both global and local scales (Folke et al. 2016; MA 2005). Understanding and 

monitoring how these changes affect ecosystem proper9es, processes, and ul9mately the 

provision of ES is cri9cal to assessing the impacts of these changes on human well-being; in 

addi9on to effec9vely implemen9ng management and policy strategies to establish and meet 

targets for a more sustainable future (Tallis et al. 2012). As such, the populariza9on of the ES 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Sy2jdHIAAAAJ&citation_for_view=Sy2jdHIAAAAJ:eJXPG6dFmWUC
https://doi.org/10.1073/pnas.0808772106
https://doi.org/10.1016/j.ecoser.2017.09.008
http://dx.doi.org/10.5751/ES-08748-210341
https://doi.org/10.1525/bio.2012.62.11.7
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concept has been founda9onal to advancing monitoring efforts aimed at capturing informa9on 

about ecosystem changes and the implica9ons of those changes for human well-being 

(Balvanera et al. 2022; Karp et al. 2015).  

 

1.2 Ecosystem services – opera?onalizing monitoring schemes to evaluate mul?ple ES over 

space and ?me 

  

Major global monitoring and assessment efforts linking ecosystems, ES, and human well-being 

have included the Millennium Ecosystem Assessment (MA 2005), the Intergovernmental 

Plaporm on Biodiversity and Ecosystem Services (IPBES) global assessment reports (IPBES 2019), 

and the United Na9ons (U.N.) System of Environmental-Economic Accoun9ng Ecosystem 

Accoun9ng (SEEA EA) framework (United Na9ons 2021). Beyond the intrinsic value of these 

monitoring ini9a9ves providing important measurements that allow for tracking change in 

ecosystem condi9on and human well-being through 9me, formalized global agreements (e,g., 

the Global Biodiversity Framework, U.N. Climate Accords, Sustainable Development Goals) 

mean that there is an extrinsic requirement in many countries to monitor and report regularly 

on mul9ple ES. 

 

Implementa9on of the ES concept in these assessments is spa9al by nature (Andrew et al. 2015; 

Mar�nez-Harms & Balvanera 2012), evalua9ng both where ecosystems are present to supply 

services and where people are present to receive the benefits of those services. Broadly, a 

dis9nc9on is made between ES poten9al, the biophysical amount of a service produced by an 

ecosystem, and ES flow, which is the amount of a service received by people (Hein et al. 2016; 

Braun 2017). ES poten9al and ES flow have unique spa9al contexts. The spa9al pa+erns of ES 

poten9al are linked to the spa9al heterogeneity of underlying environmental proper9es of 

structure and func9on, which could also be seen as proper9es of an ecosystem condi9on, such 

as vegeta9on cover, soil moisture, topography, water quality, and landscape connec9vity, among 

many other poten9al factors depending on the par9cular ES (No+e 2022; Schröter et al. 2015). 

The spa9al pa+ern of ES flow is determined both by the loca9ons of ES poten9al and the 

https://doi.org/10.1016/j.cosust.2022.101152
https://doi.org/10.1016/j.gloenvcha.2015.07.014
https://doi.org/10.1080/15481603.2015.1033809
https://doi.org/10.1080/21513732.2012.663792
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loca9ons of the beneficiaries who will receive the ES. Furthermore, both ES poten9al and ES 

flow are affected and mediated by human influences that also have a spa9al component, such 

as the spa9al variability of different management systems or built infrastructure. For example, 

transporta9on networks in many cases are necessary to bring food from agricultural lands to 

people. 

 

These variable spa9al contexts are important to consider when designing ES monitoring 

schemes of both ES poten9al and ES flow. ES poten9al can spa9ally overlap with ES flow; for 

example, in the case of a recrea9onal walking trail located within a neighborhood that people 

live, which can provide outdoor recrea9on to local residents. However, the loca9on of ES 

poten9al and ES flow do not always overlap. Water regula9on services o�en depend on 

movement of water and the extent of rivers, streams, and wetlands. For example, flood 

regula9on poten9al of a property is not only determined by the storage capacity of the nearest 

body of water, but of the capacity of the connected water system. Furthermore, there are cases 

where the spa9al distribu9on of an ES flow is not clearly defined or occurs at a different scale of 

from that of the ES poten9al, such as the benefits of carbon sequestra9on in forests, where the 

ES poten9al is limited to the extent of the forest, but the benefit of reduced carbon dioxide in 

the atmosphere is global. 

 

ES assessments have been carried out across the planet at various spa9al scales (Malinga et al. 

2015), from single river basins (Vargas et al. 2019) to na9onal and con9nental efforts to global 

mapping (Chaplin-Kramer et al. 2019). As an example of the diverse efforts happening at just 

the con9nental and na9onal scale, presently there are advancements in and funding allocated 

to Canada’s Census of Environment, the European Union’s Mapping and Assessment of 

Ecosystems and their Services, and the United States’ Na9onal Nature Assessment. The 

designa9on and communica9on of clear spa9al boundaries and scale is cri9cal for designing 

effec9ve monitoring schemes relevant for the stated decision-making and tracking purposes. 

The outputs of the most well-designed monitoring scheme may not be transferable to other 

contexts or spa9al scales. Due to the complicated nature of spa9al dynamics of ES poten9al and 

http://dx.doi.org/10.1016/j.ecoser.2015.01.006
http://dx.doi.org/10.1016/j.ecoser.2015.01.006
https://doi.org/10.1007/s00267-018-1110-x
https://doi.org/10.1007/s00267-018-1110-x
https://doi.org/10.1126/science.aaw3372
https://www.statcan.gc.ca/en/subjects-start/environment/census
https://www.statcan.gc.ca/en/subjects-start/environment/census
https://publications.jrc.ec.europa.eu/repository/handle/JRC120383
https://publications.jrc.ec.europa.eu/repository/handle/JRC120383
https://publications.jrc.ec.europa.eu/repository/handle/JRC120383
https://doi.org/10.1002/fee.2583
https://doi.org/10.1002/fee.2583
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flow, there is o�en limited the transferability of informa9on across assessments at different 

scales and ques9ons around scaling the informa9on derived from ES assessments remains a key 

gap in the ES field (Benne+ et al. 2021). 

 

Monitoring refers to repeated assessment over 9me, and the temporal aspects of an 

assessment or monitoring scheme is just as important a considera9on as the spa9al aspects. In 

the cases men9oned above, such repeated use of assessment is used to track change in ES 

poten9al, flow, and related human well-being outcomes. Beyond tracking and quan9fying ES, 

these monitoring schemes o�en aim to assess and iden9fy the underlying drivers of change 

through 9me, from impacts on ecosystem structural characteris9cs and func9ons to subsequent 

consequences in the flow of ES  

 

Temporal mismatches affect ES poten9al and flow over 9me that might otherwise be 

overlooked in one-off assessments (Winkler et al. 2021). For example, shi�s in bird popula9ons 

due to clima9c changes may have consequences on the flow of certain cultural services, like 

bird watching or connec9on to iconic species; while at the same 9me clima9c shi�s may affect 

(for be+er and worse, depending on crop type and loca9on) agricultural produc9vity over 9me. 

A one-off assessment, or longer-term monitoring scheme, that does not track clima9c drivers 

through 9me could poten9ally miss early warning signs of a change in ES flow. Furthermore, 

these shi�s in ES flow are likely to occur at different rates depending on a variety of factors, 

such as the variable response rates of different species to clima9c changes. Therefore, 

monitoring schemes that track only dras9c changes, such as when an ecosystem shi�s from one 

type to another (e.g., a forest is converted to agricultural field), are insufficient and may miss 

underlying drivers of changes in ES poten9al and flow through 9me (Wilcock et al. 2021).  

 

Finally, in addi9on to considera9on of both spa9al and temporal ES dynamics, analysis of ES 

interac9ons, such as trade-offs and synergies, is another cri9cal component of effec9ve 

monitoring (Reib et al. 2017). Within ecosystems, there is poten9al for not only individual ES, 

but mul9ple connected ES. A trade-off between ES occurs when an increase in one ES results in 

https://doi.org/10.1080/26395916.2021.1995046
https://link.springer.com/article/10.1007/s40823-021-00063-2
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a decrease in another (Benne+ et al. 2009). For example, if a forest patch is converted to an 

agricultural patch, there will be an increase in food provisioning, but a reduc9on in shading and 

heat reduc9on from the loss of canopy. A synergy between ES occurs when an increase in one 

ES aligns with an increase in another (Benne+ et al. 2009). For example, a growing forest 

understory has the poten9al to regulate water flow and air quality. Understanding and studying 

ES together to examine how they interact each other in an ecosystem is cri9cal for making 

management decisions and reducing poten9al trade-offs across space and 9me (Willemen et al. 

2012).  

 

Cri9cally, these three choices of spa9al scale, temporal scale, and ES considered interact with 

one another and will shape the dynamics captured by an assessment. For example, 

understanding and assessment of ES interac9ons has been shown to be dependent on the 

spa9al scale of assessment (Raudsepp-Hearne and Peterson 2016), yet most studies to-date 

examine ES interac9ons at just one scale (Lee and Lautenbach 2016). Furthermore, the 

temporal scale of a study will also affect the synergies and trade-offs iden9fied. For example, in 

Quebec’s Montérégie the flow and interac9ons of mul9ple important ES, such as maple syrup 

produc9on, crop produc9on, outdoor recrea9on, and deer hun9ng, vary significantly depending 

on the season; an assessment of ES over a year’s period would provide a different 

understanding of the ES across the landscape than an assessment done over just the summer 

months.  

 

In ES monitoring, choices of spa9al scale, temporal scale, and the set of ES considered have 

major implica9ons for decision-making recommenda9ons and overall understanding of the 

linkages between ecosystems and human well-being. Transparency and reflexivity around these 

choices in designing ES monitoring approaches is cri9cal to understanding the fit of different 

assessments to addressing unique ques9ons in individual places. An assessment that can 

accurately track informa9on across mul9ple spa9al and temporal scales would be ideal. Further, 

in designing ES assessments, it is important to consider the underlying frameworks and data 

https://doi.org/10.1111/j.1461-0248.2009.01387.x
https://doi.org/10.1111/j.1461-0248.2009.01387.x
http://dx.doi.org/10.5751/ES-08605-210316
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that serve as the star9ng place because those early choices have implica9ons for what drivers of 

ES change are ul9mately considered and tracked through 9me. 

 

1.3 Ecosystem services – the ES cascade, ecosystem structure, and func?on 

 

To ensure a sustainable future of the planet, it is not only important to assess ES flow outcomes 

at a single point in 9me, but to also monitor and iden9fy the underlying ecosystem proper9es 

driving ES change over 9me, but also the synergies and tradeoffs between these ecosystem 

proper9es in geographic space. Monitoring only outcomes and not tracking condi9on can 

eventually lead to mismanagement, and eventual loss of ES (No+e et al. 2022). Across 

frameworks and monitoring schemes, understanding underlying ecosystem proper9es, 

processes, and condi9ons is essen9al to understanding ES poten9al (Mace et al. 2012). That is, 

we cannot really know what services a forest is providing unless we know something about the 

condi9on of that forest - for example, the age structure of trees in a forest - and the processes 

occurring in and around it - such as photosynthesis and carbon sequestra9on that are 

influenced by age structure. A small beech forest (condi9on: type of forest is beech) in the 

Montérégie might be performing the process of absorbing excess water and therefore provide 

the service of regula9ng flooding, while a maple forest (a different condi9on) could provide the 

opportunity to produce maple syrup, a different ES.  

 

In thinking about certain ES, such as wheat produc9on, it might be possible to assess the ES 

flow without knowing anything about an ecosystem’s condi9on. For example, in the Montérégie 

and many other agricultural landscapes, informa9on is reported by the tons produced of wheat 

every season. However, knowing the condi9on of an ecosystem is useful for managing 

ecosystems for future poten9al ES. In an agricultural se�ng, understanding how soil moisture 

and nutrient levels are changing can lead to a more holis9c understanding (and thus be+er-

informed management prac9ces) of that ecosystem and the proper9es that ma+er for 

maintaining ES flow into the future. Furthermore, if we don’t understand whether wheat is 
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increasing because of fer9lizer use or because of something else (e.g., changing climate), then 

we haven’t really assessed sustainability. 

 

The ES cascade framework of Haines-Young and Potschin (2010) provides a useful way to think 

about the rela9onships between condi9on (what they call biophysical structure), processes 

(which they call func9ons), and the flow of ES. The ES cascade framework is central to the 

Common Interna9onal Classifica9on of Ecosystem Services (CICES) and other European 

assessments of ES. In the ES cascade framework (Haines-Young and Potschin 2010), the 

biophysical ecosystem structure and related processes are included as the star9ng point from 

which to quan9fy ES. Take the example of water quality regula9on of phosphorus-rich runoff 

from an agricultural field into a nearby waterbody. The distance that the runoff passes through 

a wetland, riparian forest buffer, or other vegetated patch of land (ecosystem structure) will 

impact the amount of nutrients being taken out of the runoff, but so too will the produc9vity of 

the vegeta9on in those patches (ecosystem func9on). 

 

Other frameworks are organized around the rela9onships between ecosystem structure, 

func9on, and ES. In the UN SEEA EA framework, ecosystem condi9on is included as one of five 

core accounts, drawing a link between the quality of an ecosystem’s abio9c and bio9c 

characteris9cs and an ecosystem’s capacity to supply ES (United Na9ons 2021). And in the 

Essen9al Ecosystem Service Variables (EESVs) framework, a direct connec9on is drawn between 

the Ecological Supply Variable, represen9ng an ecosystem’s poten9al for ES, and the Essen9al 

Biodiversity Variables (EBVs), which include metrics of biodiversity such as ecosystem structure 

and func9on (Balvanera et al. 2022; Pereira et al. 2013). 

 

Returning to the ES cascade of Haines-Young and Potschin, this framework highlights the key 

linkages in the steps to ES flow, in which the structure, or biophysical components, of an 

ecosystem interact with ecosystem func9ons, or dynamic biophysical processes, to produce 

services that people receive. Expanding the defini9ons further, ecosystem structure refers to the 

biophysical configura9on and spa9al pa+erns of ecosystem components, and ecosystem 
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func9on refers to the performance of chemical and biological processes within ecosystems that 

maintain life and are essen9al for the produc9on of ES (No+e, et al. 2017; Turkelboom et al. 

2013). Within a patch of forest, for example, structure would refer to the pa+ern and biomass 

of the stranding vegeta9on and func9on would include the net primary produc9vity of the 

vegeta9on in a forest; one ES linked to these ecosystem proper9es in the forest patch is air 

quality regula9on. 

 

While nearly all ES frameworks highlight the complex role of ecosystem structure on func9on, 

processes, and, ul9mately, ES, these linkages tend to get simplified in most ES assessments done 

over large scales. Usually, the various components of an ecosystem’s structure and func9oning 

are simplified and masked by using land-use/land-cover (LULC), which has established methods 

of being used to model ES (ES Matrix, NatCap InVest Modelling Suite) across broad spa9al 

extents. 

 

2.1 Ecosystem service modelling – overview (approaches) 

 

It is resource intensive (in terms of both 9me, money, and people power) to assess and measure 

ES data in the field for assessments over large landscapes, whole countries, or the en9re planet. 

For that reason, efforts to assess ES across broad areas at fine resolu9on rely on a growing sub-

field within ES research that is ES modelling (Andrew et al. 2015; Hamann et al. 2020; 

Neugarten et al. 2018).  

 

There are now a wide variety of established and emerging tools and methods that can be used 

to spa9ally assess ecosystem proper9es, processes, and services (Bagstad et al. 2013; Hamann 

et al. 2020; Lavorel et al. 2017); with different approaches requiring that the researcher or 

prac99oner make determina9ons and choices in regards to data requirements, spa9al scale, 

temporal scale, accuracy tes9ng, and relevancy to specific ques9ons (Cole et al. 2023; Malinga 

et al. 2015; Mar�nez-Harms and Balvanera 2012). Modelling approaches range from models 

with limited primary inputs, such as modelling ES poten9al based on LULC maps in combina9on 

https://doi.org/10.1016/j.ecolind.2016.11.030
https://doi.org/10.1016/B978-0-12-419964-4.00018-4
https://doi.org/10.1016/B978-0-12-419964-4.00018-4
https://doi.org/10.1080/15481603.2015.1033809
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=bSTs1l4AAAAJ&sortby=pubdate&citation_for_view=bSTs1l4AAAAJ:7PzlFSSx8tAC
https://doi.org/10.1016/j.ecoser.2013.07.004
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=bSTs1l4AAAAJ&sortby=pubdate&citation_for_view=bSTs1l4AAAAJ:7PzlFSSx8tAC
https://doi.org/10.1016/j.ecolind.2016.11.015
https://www.sciencedirect.com/science/article/abs/pii/S2212041615000078#:~:text=https%3A//doi.org/10.1016/j.ecoser.2015.01.006
https://doi.org/10.1080/21513732.2012.663792


26 
 

with expert es9ma9ons of services per LULC class (Campagne et al. 2020; Jacobs et al. 2015), to 

increasingly complex models that incorporate field observa9ons with ecosystem data (e.g. plant 

surveys, weather data, soil proper9es) and earth observa9on/remote-sensing data (e.g. 

vegeta9on produc9vity indices, water quality indices) (del Río-Mena et al. 2020; Lavorel et al. 

2011). 

 

ES modelling approaches range from simpler to increasingly complex, depending on data 

requirements, computa9onal resources, and exper9se needed (Mar�nez-Harms and Balvanera 

2012; Schröter et al. 2015). Different ES modelling requires different types of data. These input 

data requirements for ES models are one factor determining the spa9al resolu9on and accuracy 

of the modelled ES outputs. LULC is the most commonly used proxy variable to represent 

ecosystem processes in ES modelling through look-up tables (de Araujo Barbosa et al. 2015), a 

simplified approach that is rela9vely easy to implement where LULC maps exist (Burkhard et al. 

2009). However, this LULC-driven approach to ES modelling has the poten9al to mask important 

heterogeneity within and across LULC types that is driven by underlying characteris9cs of the 

ecosystem, such as its structure (e.g., ecosystem configura9on, habitat structure) or func9on 

(e.g., ecosystem phenology, primary produc9vity, disturbance level).  

 

Furthermore, by focusing primarily on the LULC composi9on of an ecosystem, other important 

factors are o�en ignored such as the configura9on of the landscape as a whole or the ways that 

the func9ons of an ecosystem can vary due to human factors, such as management prac9ces. 

This means that the spa9al variability of poten9al ES supply within LULC blocks can be 

underes9mated and, in many cases, missing all together (Eigenbrod et al. 2010). Not having 

informa9on about how ES supply varies within LULC patches is a cri9cal gap as that is a level of 

informa9on relevant at local and regional scales for land management decision-making (Maes 

et al. 2012; Ziter et al. 2013). 

 

Further s9ll, a reliance on LULC maps can mask the importance of an ecosystem’s condi9on 

(No+e et al. 2022). Not only do models using LULC miss spa9al variability of ES outcomes, it 

https://doi.org/10.3897/oneeco.5.e51103
https://doi.org/10.1016/j.ecolmodel.2014.08.024
https://doi.org/10.1016/j.ecolind.2020.106182
https://doi.org/10.1016/j.ecolind.2020.106182
https://doi.org/10.1111/j.1365-2745.2010.01753.x
https://doi.org/10.1111/j.1365-2745.2010.01753.x
https://doi.org/10.1890/ES13-00135.1
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simplifies cri9cal causal links, such as: 1) weakening, or missing altogether, the connec9on that 

can be made between individual components of an ecosystem’s structure and/or func9on and 

ES poten9al, 2) preven9ng analysis on the impact of different management approaches that 

may be happening within a type of LULC (i.e., preven9ng cross-comparisons of forests under 

different management plans), and 3) LULC models only allow for monitoring of dras9c shi�s in 

ecosystems, but not intermediate changes in ecosystem proper9es and subsequently ES. A key 

research fron9er in ES modelling, and the ES field more generally, is developing models and 

understanding that considers these complex interac9ons and linkages between ES and mul9ple 

drivers of change (Gilman and Wu 2023; Theirry et al. 2021). 

 

2.2 Ecosystem service modelling – the growing use of earth observa?on 

 

Earth Observa9on (EO; e.g. satellite, spaceborne, or airborne data) is informa9on on the Earth’s 

physical, chemical, and biological systems captured via remote sensors such as satellites and 

other measuring devices not in direct contact with the object being measured (Us9n and 

Middleton 2021). EO measures the surface proper9es of Earth, and it has been applied to 

studying a range of ecosystem proper9es, including indicators of structure and func9on 

(Pe+orelli et al. 2014; Skidmore et al. 2015; Vyvlečka and Pechanec 2023). Benefits of EO use in 

ES assessments include that EO provides (1) spa9ally con9nuous informa9on about the 

structure and func9on of ecosystems over large extents; (2) repeated and long-term temporal 

informa9on, which enables repeated assessment (monitoring), and (3) the rela9vely fine 

resolu9on of EO allows for the EO informa9on to be used at mul9ple-scales, and verified 

through field observa9ons (Braun 2017; Braun et al. 2018; Cord et al. 2017; de Araujo Barbosa 

et al. 2015; Pe+orelli et al. 2014; Rose et al. 2015). 

 

Despite the myriad proper9es that EO can be used to assess, LULC is the most used EO-derived 

data used in ES assessments (Campagne et al. 2020; de Araujo Barbosa et al. 2015). However, 

EO measurements can also capture addi9onal data on ecosystem proper9es and processes, 

such as vegeta9on density, water availability, eleva9on, produc9vity, and other biophysical 

https://link.springer.com/article/10.1007/s10113-023-02060-z
https://doi.org/10.1139/facets-2020-0116
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informa9on over large areas that could be used in more refined ES models (Andrew et al. 2014; 

Pe+orelli et al. 2018; Wang and Gamon 2021; Vyvlečka and Pechanec 2023).  

 

 

EO-derived informa9on, beyond LULC, that has been used for assessing ES is o�en associated 

with vegeta9on (e.g., Leaf Area Index (LAI), NDVI and Net Primary Produc9vity (NPP)), 

geomorphological indicators (e.g., slope and eleva9on), disturbance/damage impacts (e.g., fire, 

human disturbance), water quality indicators (e.g., NDWI, chlorophyll concentra9ons), and 

seasonal 9ming (e.g., phenology). Ground-based EO systems (such as weather sta9ons) also 

provide important informa9on that can support assessment and development of ecosystem 

informa9on (e.g., with respect to water availability/precipita9on, surface temperature, 

evapotranspira9on). And there may remain several ecosystem proper9es (e.g., species diversity, 

soil quality) that require some level of in-situ monitoring and valida9on data. With the growing 

accessibility of varied EO data, there is growing opportunity for methodological explora9on by 

the ES modelling community that preserves linkages between mul9ple ecosystem proper9es 

and ES poten9al. 

 

To summarize, the use of EO in ES models has the poten9al to advance ES modelling in several 

ways. Expanding the use of EO in ES modelling work can lessen the reliance on LULC as the 

primary input in most models, moving the modelling field towards more integrated approaches 

that capture effects of ecosystem proper9es, processes, and condi9ons to the poten9al supply 

of ES. Further s9ll, because EO provides consistent measures across greater extents and at finer 

spa9al and temporal resolu9ons, there is hope that EO can make ES assessment more scalable 

across space and 9me; moving the field away from either one-9me na9onal assessments that 

don’t provide granular informa9on relevant to local contexts or localized field-based 

assessments that can’t be scaled up to larger landscape contexts (Cord et al. 2017, 2015; Galaz 

García et al. 2023; Pe+orelli et al. 2016; Ramirez-Reyes et al. 2019; Rose et al. 2015; Skidmore et 

al. 2021, 2015). 
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For further informa9on on the growth of EO use in related fields, and the variety of ecosystem 

proper9es that can be captured by EO and linked to ES, there have been several excellent 

reviews completed recently. Previous reviews have focused on documen9ng overall use of EO 

data in ES modelling (Ayanu et al. 2012; De Araujo Barbosa et al. 2015), with more focused 

reviews in the last few years focusing on EO use in ES assessment in grasslands (Masenyama et 

al. 2022) and urban vegeta9on (Taveras et al. 2019; García-Pardo et al. 2022), and EO use 

among other emerging technologies in ES assessments (Schirpke et al. 2023). Furthermore, 

there have been reviews of how EO data align with different ecosystem monitoring frameworks, 

such as Common Interna9onal Classifica9on of Ecosystem Services (CICES; Grimma et al. 2023), 

EBVs (Skidmore et al. 2021), and the Sustainable Development Goals (Cochran et al. 2020). In 

closely related fields, there have been recent reviews of EO use in urban planning (Wellmann et 

al. 2020),inland water quality (Topp et al. 2020), and environmental jus9ce (Sayyed et al. 2024) 

studies. 

 

2.3 Ecosystem service modelling – towards the cascade 

 

While the EESVs framework, the ES Cascade framework, and the ES concept more generally 

suggest that ES poten9al, and eventual flow, is based on ecosystem proper9es of structure and 

func9on, most ES modelling studies (56 %) use only LULC data to derive ES es9mates (de Araujo 

Barbosa et al. 2015). However, several studies (Braun et al. 2017; del Río-Mena et al. 2020; 

Hamolová et al. 2014; Vaz et al. 2020) have found promising results of incorpora9ng addi9onal 

EO data in ES modelling to be+er reflect ecosystem processes and proper9es and their effects 

on services. Braun et al. (2017) paired EO-data (Sun-Induced chlorophyll Fluorescence; a 

measure of photosynthe9c ac9vity) with in situ data to model gross primary produc9on (GPP) 

maps. With the GPP data as an indicator for ecosystem func9oning, they used GPP to derive 

es9mates of two ES (carbon dioxide regula9on and food supply). A�er valida9ng their model 

results with field measurements, they found that the EO models captured heterogeneity in 

pa+erns of ES, both within and across land use patches. Hamolová et al. (2014) used five EO-

derived ecosystem proper9es (green biomass, li+er mass, crude protein content, species 

https://doi.org/10.1016/j.ecoser.2023.101558
https://doi.org/10.1016/j.landurbplan.2020.103921
http://dx.doi.org/10.3390/w12010169
https://doi.org/10.1016/j.ecolind.2017.06.045
https://doi.org/10.1016/j.ecolind.2017.06.045
https://doi.org/10.1016/j.ecolind.2020.106182
https://doi.org/10.1016/j.ecolind.2020.106182
https://doi.org/10.1890/ES13-00393.1
https://doi.org/10.1890/ES13-00393.1
https://doi.org/10.1111/conl.12704
https://doi.org/10.1111/conl.12704
https://doi.org/10.1016/j.ecolind.2017.06.045
https://doi.org/10.1890/ES13-00393.1
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diversity and soil carbon content) to model three ES (agricultural produc9on, aesthe9c values, 

and carbon sequestra9on).They then compared this EO-based modelling approach with a 

second modelling approach that modeled ES from LULC and abio9c and plant trait data. 

Similarly to Braun et al. (2017), Hamolová et al. (2014) found that the EO-proper9es model 

provided more accurate insights into the spa9al distribu9on of ES within land use patches, 

where the more tradi9onal LULC and trait-based modelling approach over emphasized the 

effects of land use on ES. 

 

Methodologically, there is an explora9on happening in the ES modelling literature that 

recognizes that changes in ES should not only be linked to dras9c ecosystem shi�s (i.e. the 

conversa9on of an area from one LULC to another LULC type), but also to change in ecosystem 

condi9ons that affect ecosystem structure, func9ons, and ES (Braun et al. 2018; No+e et al. 

2022). Modelling and monitoring that overly relies on LULC maps provides only individual 

snapshots in 9me (Karp et al. 2015). To summarize, EO has the poten9al to fill a current gap in 

ES modelling by providing con9nues ecosystem informa9on across 9me and space (Braun et al. 

2018; Cord et al. 2017; Pe+orelli et al. 2016); bringing the ES field closer to the ecological 

founda9ons of the ES concept and capturing the varied spa9al and temporal dimensions of 

human-nature interac9ons (Fig. 2.1.).  

 

https://doi.org/10.1890/ES13-00393.1
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Figure 2.1. Earth observa=on contributes to ecosystem service modelling and monitoring. At the 

top of the figure, the three aspects of how EO data is contribu=ng to ES understanding examined 

in this thesis are shown. Theis refers to EO use in (i) collec=ng data on ecosystem proper=es 

(structure and func=on) across space and =me, (ii) the inclusion of EO data as an input in models 

of mul=ple ecosystem services, and (iii) the contribu=on of EO in studies that examine 

interac=ons and tradeoffs of mul=ple ecosystem services over space and =me. The informa=on 

from these assessments will ideally make its way to decision-makers who then influence 

management and policy choices that shape landscapes and ecosystem proper=es, while this is 

visualized on the right-hand side of the figure above, this thesis does not focus on those aspects 

of the system. Figure adapted from Braun 2017, with landscape illustra=on from Mitchell et al. 

2015, ES modelling figure from Reib et al. 2023, and ecosystem service and decision-making 

symbology from Benne\ et al. 2021. 

http://dx.doi.org/10.5751/ES-07927-200415
https://doi.org/10.1080/26395916.2023.2281483
https://doi.org/10.1016/bs.aecr.2021.01.001
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CONNECTING STATEMENT 
 

The comprehensive literature review of ES modelling and EO revealed that there hasn’t been a 

review of EO use in ES models that addresses the calls from the ES community to incorporate EO 

indicators of ecosystem structure and func9on in ES models. In Chapter Two, I take a systema9c 

review approach to examine ten years (2012-2021) of ES models. In par9cular, I aim in Chapter 

Two to examine: 1) which EO-derived indicators of ecosystem structure and func9on are 

currently available at appropriate scales for assessing ES, and 2) which ES modelling studies 

have used EO-derived ecosystem structure and func9on data to model which services. 
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CHAPTER TWO 

Note: Manuscript prepared in anticipation of being submitted to Ecological Indicators 

  

Earth Observation of Ecosystem Properties in Ecosystem Service (ES) Models: A Systematic 

Review of ES Literature (2012-2021) 

  

David Ferguson*1, Klara Winkler1,2, Elena Bennett1, 
 1 Department of Natural Resource Science, McGill University, Ste. Anne de Bellevue, Québec 

H9X 3V9, Canada; david.ferguson@mail.mcgill.ca; 
2 Federal Environment Agency, Dessau-Roßlau, Germany 

  

Abstract: Ecosystem services (ES) are one way to quantify, analyze, and manage the benefits 

that flow from ecosystems to humans. Yet the capability to assess provision of these services 

accurately across large spatial extents remains limited. Many current ES models rely on 

categorical typologies of land-use and land-cover (LULC), with the assumption that all 

ecosystem properties within a LULC type are identical, and that therefore any area of that LULC 

type provides the same mix of ES in the same amounts as any other same-sized area of the 

same LULC. To represent ecosystem heterogeneity more precisely, there have been calls within 

the ES community to explore modelling approaches that incorporate earth observation (EO) 

data that are able to capture some ecosystem properties that might vary within a single LULC 

type. EO might also be able to increase the spatial extent of ES models while maintaining fine 

temporal and spatial resolutions. In this paper, we systematically reviewed the use of EO data 

in ES models over ten years (2012-2021), highlighting which EO datasets, at which geographical 

extents and spatial/temporal resolutions, have been used in ES models, and investigating 

whether the claims that EO might improve ES models are generally borne out in the literature. 

Our review of 38 papers, spans all categories of ES models and shows the direct linkages 

between individual EO datasets and ES models. For example, MODIS Normalized Difference 

Vegetation Index was the most used EO data input and was used as a proxy for live vegetation 

cover in 58% of all ES models, and 83% of regulating service models. Our study shows that, 
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while the promise of increased information resolution has been partially realized for some ES, 

there are more opportunities still for the ES field. 

  

Keywords: Ecosystem services; earth observation; remote sensing; indicators; social-ecological 

systems; ecosystem service modelling 

  

 1. Introduction 

Ecosystems provide benefits that support human well-being and economies, including water 

purification, sense of place, flood protection, and food production, among many other direct 

and indirect contributions of nature to people (Daily 1997). These benefits that people obtain 

from nature are commonly referred to as Ecosystem Services (ES) (MA 2005) or Nature’s 

Contributions to People (NCP) (IPBES 2017). In the decades since ES was first introduced as a 

concept, continual exploration and development of tools and methods for modelling and 

monitoring diverse sets of ES (Burkhard et al. 2018; Carpenter et al. 2009; Chaplin-Kramer et al. 

2023; Cheng et al. 2019; Costanza et al. 2017; Malinga et al. 2015; Willcock et al. 2023). With 

this growing ES toolbox, has come a growing number of choices for ES researchers and 

practitioners who want to design studies to better understand the ES in a place. Among these 

varied tools and methods, there are unique data requirements, verification schemes, and 

accuracies/relevancies to specific places and ecosystems (Bagstad et al. 2013). 

 

Despite increasingly publicly available ES information and familiarity with the ES concept more 

generally, data and information related to ES is still used limitedly in decision-making processes 

(Mandle et al. 2021). One potential reason for this is a lack of clear consensus around the best 

data for understanding the relevant social and ecological structure and functions underlying ES 

at multiple temporal and spatial scales (Lock et al. 2021; Polasky et al. 2015); along with a lack 

of commonly understood and available approaches and tools for analyzing ES (Ruckelshaus et 

al. 2015). Understanding, monitoring, and communicating how ecosystem properties and 

processes affect and underly the provision of ES is critical to assessing the impacts of changing 

ecosystems, due to natural and human drivers, and the associated impacts of these shifts on 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Sy2jdHIAAAAJ&citation_for_view=Sy2jdHIAAAAJ:eJXPG6dFmWUC
https://doi.org/10.1073/pnas.0808772106
https://doi.org/10.1016/j.ecoser.2017.09.008
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human well-being. Further, it is essential to effectively implementing management and policy 

strategies to establish and meet targets for a more sustainable future (Tallis et al. 2012). 

 

Accurately understanding the dynamics that lead to ES requires a considerable understanding 

of ecosystem structure and processes (Fu et al. 2013; Notte et al. 2022). However, appropriate 

data and modelling methods linking biophysical properties and processes of ecosystems to ES 

over large spatial extents are often lacking (Lavorel et al. 2017). To represent these ecologically 

meaningful linkages between ecosystem properties and ES more precisely over larger spatial 

and temporal extents, the ES community has called for exploration of modelling approaches 

that incorporate Earth Observation (EO) data that are able to capture a variety of ecosystem 

properties (Cord et al. 2017, 2015; Galaz García et al. 2023; Ramirez-Reyes et al. 2019). For 

example, different EO technologies, such as the Sentinel-2 constellation of satellites, have the 

capacity to capture information related to the photosynthetic activity of vegetation in an 

ecosystem, which in turn can then be related to productivity of vegetation in an ecosystem, 

which then relates to multiple ES, such as carbon sequestration or air quality regulation (Vargas 

et al. 2017). 

 

Currently, many ES modelling approaches oversimplify the intrinsic link between ecosystem 

properties and ES, instead relying on look-up tables that match expert assigned ES value per 

area of land-use, land-cover (LULC) to LULC maps to quantify service provision (De Araujo 

Barbosa et al. 2015). These ES modelling methodologies driven by linking LULC to constant ES 

values miss important linkages between ES and ecosystem properties (Egoh et al. 2012; 

Martínez-Harms & Balvanera 2012), such as when all forests in a region are assigned a common 

value for carbon storage per hectare, no matter what type of forest, the age structure of the 

trees, or how the forest managed, all factors known to impact carbon storage (Ziter et al. 2013; 

Crockett et al. 2021). Assigning a constant ES value over an entire patch of land, even if it has 

heterogenous patterns of vegetation or other ecosystem properties within it, runs the risk of 

over emphasizing the importance of LULC composition while underplaying, or missing 

altogether, the role of dynamic biophysical processes such as Net Primary Productivity (NPP), 

https://doi.org/10.1525/bio.2012.62.11.7
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that can be derived from EO technologies and are widely understood to contribute to ES 

potential. While these modelling approaches using a constant value are still used in many ES 

studies today, new methods have been developed for understanding specific ES by both the ES 

and EO/RS communities, including precise mapping of services like carbon storage (Pascual et 

al. 2021). 

 

At the time (2015) of the last review of EO (e.g. satellite, spaceborne, or airborne data) 

technologies used in ES modelling, LULC was found to be the most used EO-derived data to 

represent ecosystem processes across ES models, used as the sole remotely sensed data 

product in 56% of studies (De Araujo Barbosa et al. 2015). This LULC-based modelling approach 

has its benefits as it is relatively easy to implement where LULC maps exist (Burkhard et al. 

2009); however, LULC-based approaches to ES modelling might mask important heterogeneity 

within and across LULC types that is driven by the underlying biophysical properties of 

ecosystems, such as properties related to an ecosystems’ structure (e.g. ecosystem 

configuration, habitat structure) or processes/function (e.g. ecosystem phenology, primary 

productivity, disturbance level). This means that the spatial variability of potential ES supply 

within landscape patches consisting of a single LULC type will be underestimated and, in many 

cases, missing all together (Eigenbrod et al. 2010). Not having information about how ES and 

drivers or ES vary within landscape patches is a critical gap, as that is a level of information 

particularly relevant to local and regional scales for land management and engagement with 

land stewards (Maes et al. 2012). 

 

EO technologies are one important and useful tool for closing the data gap in the assessment of 

ecosystem properties, processes, and ES across temporal and spatial scales. EO provide a broad 

view of Earth’s properties with regular and repeated observations over time that are cost 

effective for monitoring across large (remote and inaccessible) areas (Anderson 2018; Us9n and 

Middleton 2021). EO information is collected from remote sensors, such as the Sentinel-2 

constellation of satellites, and then raw data from a satellite is processed through established 

and tested algorithms to develop EO-derived indices, such as NDVI. This processing of 
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information from EO sensors can produce maps of ecosystem properties and processes, such as 

NPP. As well, with many of these EO ecosystem indicators, there has been a shift over the last 

decade away from the transformation of “raw” imagery to the provision of analysis ready data 

and data products.  

 

The expanding range of EO sensors and information that can be derived from remote sensors 

provide unique opportunities for ES research to explore methods that might fill existing 

knowledge gaps in the linkages between structure, function, and ES across large spatial and 

temporal extents. Different remote sensors capture information with different levels of detail 

(from the spatial and temporal resolution to the number of bands that can be used to derive 

information) and different algorithms can be used for mapping ecosystem properties and 

functions (that range from LULC categorization to vegetation indices, such as NPP, to water 

quality indicators and other earth surface properties (Pfiefer et al. 2011)). Once EO information 

is processed, this transformed data of EO-derived indicators have been used to quantify 

through ES models, which encompass a range of services from food and freshwater 

provisioning, climate regulation, erosion regulation, outdoor recreation, and many more (De 

Araujo Barbosa et al. 2015). 

 

EO-derived indicators relating to ecosystem properties are most often used to assess the 

capacity of an ecosystem to provide ES through use as an input in spatially explicit models of 

individual ES. These ES models and assessments typically provide a snapshot of ES dynamics; 

with assessments typically undertaken at one spatial scale and at a single location. Because EO 

technologies can observe at relatively fine resolution regularly over large areas, they provide an 

opportunity to overcome data limitations, including by complementing field surveys and less 

regularly updated spatial datasets, such as national LULC maps (Andrew et al. 2015; Crossman 

et al. 2013). Given that EO can provide quality assured regular and repeatable coverage of 

spatial information that is consistent over both space and time, there is great potential for it to 

support ES modelling across a range of spatial and temporal resolutions. Furthermore, there is 

hope EO can make ES assessment more scalable across space and time; moving the field away 
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from either one-time national assessments that don’t provide fine scale results relevant to local 

contexts or localized field-based assessments that can’t be scaled up to larger landscape or 

national contexts. 

 

Braun et al. (2018) identified four key gaps in the ES field that could be better addressed with 

EO information integrated into ES models. First, the authors pointed to a lack of studies in the 

ES field that consider the dynamics of multiple ES together across multiple scales of space and 

time. Second, a large proportion of ES studies that do integrate observations of ecosystem 

properties and processes are undertaken at small scales and are not being scaled up to larger 

(e.g. national or global levels). Third, a large proportion of ES studies are mono-temporal, or 

cover 10 years or less, providing limited understanding of dynamics through time. And finally, in 

ES studies that do span larger temporal and spatial scales, ES estimates are most often derived 

from LULC estimates, contributing to a lack of understanding to the mechanisms that drive ES 

dynamics at these larger scales and masking local heterogeneity. 

   

A systematic review that encompasses the many new EO sensors and ES models launched and 

created in the last 10 years to understand ES is lacking. Thus, we have undertaken a review of 

the last ten years of multi-service ES modelling papers that are incorporating EO-derived 

indicators of ecosystem properties. Through a review of ten years (2012-2021) of ES modelling 

papers, we have coded 38 publications (with 138 included models of individual ES within them) 

to show: 1) what EO sensors and derived indicators of ecosystem structure and function are 

currently used for assessing ES, 2) what ES modelling studies have used EO indicators of 

ecosystem structure and function to model which services, and 3) at what spatial-temporal 

scales is this work currently being done. This paper aims at providing a synthesis of both 

established and emerging linkages between EO technologies and ES models over the last 10 

years (2012–2021). 

 

2. Methods 
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To examine the current state of EO integration in ES modelling studies, we conducted a 

systematic review (Figure S3.1). To start, we searched for peer-reviewed publications in the 

Scopus and Web of Science databases. We used the search string (“ecosystem service*” OR 

“ecological service*” AND “model*” OR “map*” OR “assessment*” AND “earth observation*” 

OR “remote sensing”) to search for peer-reviewed publications in English, with the search 

keywords found in the title, abstract, or keywords. We limited the search to articles published 

between 2012 and 2021 to capture the latest trends in how ES are being modelled. The initial 

search produced 1831 publications (Figure S3.1.).  

 

Next, we screened titles and abstracts of the initial collection of publications. Publications were 

excluded from inclusion from this review if they (1) were not related to ES modelling, (2) were 

not original research papers (i.e. reviews, conference papers and abstracts), (3) focused on 

methodological developments of a single ES model rather than application of EO indicators 

across models of multiple ES, or (4) did not include at least one ES within the publication that 

was modeled with an EO-derived indicator of ecosystem structure or ecosystem function as an 

input (beyond LULC) (see supplemental text for description of how we defined ecosystem 

structure and function). This resulted in 274 eligible articles that were downloaded in PDF 

format.  

 

Finally, we screened the full texts of the narrowed down publication list, applying the same 

selection criteria as above, resulting in 38 publications included in the final review 

(supplementary material Fig S3.1.). The final publications included in this review were not 

evenly distributed over the review period (Fig 3.1.), with 82% of the publications used in this 

review being published in the last five years of the review period. 
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Fig 3.1. Frequency of publications (black), included models within publications (gray), and 

included EO-derived model inputs (light gray) per year. Note that no publications from 2012 met 

our inclusion criteria and figures throughout the rest of publications will start at 2013. 

 

From these publications, we extracted three levels of information related to the: 

publication/study, ES models within each publication, and EO-derived input within each model. 

At the publication level, we coded variables, such as geographic location/extent of study, 

ecosystem types covered, resolution of ES models (e.g. 100m), and temporal dimensions of 

study (e.g. frequency and range of ES modelled). We then coded the models that used an EO-

derived indicator of ecosystem structure and function as an input. At the individual model level, 

we then coded variables such as individual ES modelled, ES category of the model, 

methodological approach, and listed all model inputs/sources. Finally, at the ES model input 

level, we coded resolution of the EO indicators, data source and EO sensor, and indicator class 

(using ecosystem structure and function categorization described above and in Skidmore et al. 

2022). We then synthesized the findings of the review, providing a snapshot of how EO is being 

integrated with ES, along with discussing important questions moving forward for the ES 

community that have emerged from undertaking this review. 

3. Results  

In this section, we first give an overview of the ES-EO literature included in this review before 

presenting an overview of which EO sensors are being used to derive indicators related to 

ecosystem structure and function and, in turn, which ES models are being developed to use these 

0
5

10
15
20
25
30
35
40
45

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Included publications

Included models within publications

Included EO-derived model inputs
(ecosystem structure and function indices)



53 
 

indicators of ecosystem structure and function. Finally, we discuss the spatial and temporal 

aspects of how the literature and ES models reviewed. 

 

3.1 Literature characteris?cs 

We found that EO data and methods used for ES modelling in various journals and across a variety 

of geographical se�ngs. Our review contains publica9ons from 24 journals covering a range of 

research topics, although generally journals were focused more on ecological rather than remote 

sensing/earth observa9on topics. The most common journals were Ecological Indicators (7 

papers) and Ecosystem Services (6 papers), with no other journals publishing more than two 

publica9ons included in this review. 

 

Studies included in this review addressed ES on six con9nents and 19 countries, with one global 

and three mul9-country studies. China was the most commonly appearing study country; and 

Asia was the most common con9nent of study, followed closely by Europe. Africa was the most 

underrepresented con9nent in the review, with three studies included from South Africa and one 

from Ethiopia. Studies were nearly evenly split between those that used ecological boundaries 

(e.g., a watershed) (56%) versus administra9ve boundaries (e.g., a country boundary) (44%) in 

designing their ES models. 

 

3.2 Sensor technologies and derived indicators of ecosystem structure and func?on 

We found that a variety of EO sensors were used to derive indicators used in ES models (Fig. 

3.2.).  The most frequent source of EO data in this review is data from satellite sensors, making 

up 97% of the reviewed data. Airborne imagery from aircra�s and drones made up the 

remaining 3% of data sources we found in our review. Our review, which focuses on mul9-

service literature, is likely biased towards studies that use satellite data which capture 

informa9on over wider extents that contain mul9ple ecosystem types and thus a varied set of 

ES.  
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In terms of specific sensors, MODIS sensors were the most widely used, represen9ng 33% of all 

sensors, followed by Sen9nel sensors (22%), with Landsat sensors (e.g. OLI, TM) represen9ng 

14% of all sensors in the review. Landsat and MODIS were the two most consistent sensor, 

showing up in every year of reviewed papers. However, the rela9vely recently launched (in 

2015) and released data from the European Sen9nel satellites showed a significant uptake in 

studies published star9ng in 2019 and was the most frequently occurring data source over the 

last two years of the review. New sensors bring new possibili9es, likely explaining the growth of 

Sen9nel-2 constella9on data, which has a finer spa9al resolu9on and temporal frequency than 

many historically popular satellite sensors, such as Landsat. However, the long-term consistency 

(and exis9ng verifica9on schemes) of older, popular sensors (Landsat, MODIS) means that they 

may remain commonly used for a longer period of 9me (although MODIS end of life is 

December 2025), as exis9ng ES models and pre-processed datasets are already established and 

readily available. Ini9a9ves, such as NASA’s Harmonized Landsat and Sen9nel-2 program, may 

increase the speed at which transi9ons occur to using data from newly launched sensors. 
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Figure 3.2. EO sensors used to derive inputs in ES models between 2011 and 2021. Different 

colors refer to different EO sensors and frequency refers to number of =mes informa=on derived 

from the sensor appeared in a reviewed ES publica=on. A sensor can be counted mul=ple =mes 

per ES model. For example, if a MODIS sensor was used to derive NDVI and canopy gap width 

and both indicators were used together to model water regula=on, it would appear twice under 

one year. 

 

Raw, or unprocessed, data from EO sensors is then processed (through established algorithms 

and calibration/validation schemes) into indicators. In this review we do not focus on the 

methodological details of index development, but on the broader picture of which indicators 

are derived from which sensors, and then subsequently how these indicators are being used 

within ES models. Taking Skidmore et al. 2022’s publication and organization of EO indicators 

into ecosystem structure and ecosystem function categories as a reference (see Supplemental 

Table S3.1.), we organized the indices developed from EO sensors into ecosystem structure and 

function indicator classes, with three sub-indicator classes for both structure and function 

(Table 3.1.).  
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Table 3.1. EO-derived indicators of ecosystem structure and func=on used within ES models 

reviewed. From le^ to right, we show the class of indicators (ecosystem structure/ecosystem 

func=on), the sub-class of indicators, the EO sensor used to derive the indicators (colors 

Indicator class  Indicator  
sub-class

EO-sensor EO-derived indicator Times found 
in ES models

Landsat Bare Soil Index 1
Sentinel-2 Crown Cover 5
Sentinel-2 Gap Width 1

AISA Green Biomass 1
Landsat Green Vegetation 2

AISA Litter Mass 1
MRLC Tree Cover 2

Sentinel-2 Vegetation Type 4
Sentinel-2 Colour Diversity 3
Landsat Colour Intensity 1

Sentinel-2  Landscape Heterogeneity 2
AISA Species Diversity 1

Sentinel-1 Vegetation Structural Diversity 1
Sentinel-2 Canopy Height 3
Sentinel-2 NDI45 1

MODIS NDVI 23
Landsat NDVI 11

Sentinel-2 NDVI 9
SPOT NDVI 19

Worldview-2 NDVI 13
AISA Crude Protein Content 1

Sentinel-1 Ecosystem soil moisture 1
MODIS EVI 2
MODIS FPAR 1
APEX GPP 2

Sentinel-2 IRECI 2
MODIS LAI 7

Sentinel-3 LAI 1
Sentinel-2 MTCI 3

MODIS NPP 14
AISA Soil Carbon Content 1

Ecosystem 
phenology MODIS Phenology

1
Landsat Burn Ratio 1
Landsat NDWI 8

Sentinel-2 NDWI 4
DMSP-OLS Nighttime Stable Lights 2

Ecosystem 
structure

Live Cover 
Fraction

Ecosystem 
distribution

Ecosystem 
Vertical Profile

Ecosystem 
function

Primary 
productivity

Ecosystem 
disturbance
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correspond to the sensor colors from Fig 3.2.), the =tle of the indicators used in an ES model, and 

the number of =mes that each specific indicator was found in the ES models reviewed. 

Our review found that EO-derived indicators of ecosystem structure were used nearly 2.5 9mes 

more frequently than indicators of ecosystem func9on, with 102 occurrences of ecosystem 

structure indicators found used in reviewed studies as opposed to 40 occurrences of ecosystem 

func9on indicators. Broken down further, ecosystem ver9cal profile as a sub-indicator of 

ecosystem structure, or the standing biomass in an ecosystem (e.g. NDVI), was the most used 

data input in ES models and relates to the vegeta9on structure. While indicators related to 

primary produc9vity (e.g. NPP, LAI, GPP), made up the majority of ecosystem func9on indicators. 

The vast majority of the indicators highlighted in this review (Table 3.1.) are associated with 

assessing vegeta9on presence, condi9on, and func9oning (86% of indicators found in this review; 

e.g. LAI, NDVI and NPP). NDVI, the most popular indicators found in this review, accounted for 

52% of all indicators reviewed in total. 

 

Within the indicators sub-classes of ecosystem structure, we also found, in addi9on to ecosystem 

ver9cal profile men9oned above, mul9ple indicators used to model ES using informa9on on 

ecosystem distribu9on (all related to heterogeneity and diversity of biophysical structures) and 

live cover frac9on (all related to vegeta9on coverage or lack thereof). In terms of ecosystem 

func9on sub indicators, we found only one study that used phenology to map seasonal ES change, 

while water quality indicators (8% of indicators found in this review; e.g. NDWI) and damage 

impacts (3% of indicators found in review; e.g. fire, human disturbance) were used to address the 

effects of ecosystem disturbance on ecosystem func9on and thus ES poten9al of a par9cular area. 

Most ecosystem func9on indicators related to primary produc9vity, as men9oned above. 

 

Interes9ngly, the majority of primary produc9vity indicators were derived from MODIS, which has 

a larger spectral range as compared to Landsat, however these data are at a coarser resolu9on 

(250, 1000m as opposed to 10, 30m with Landsat or Sen9nel-2). Landsat (TM, OLI) and Sen9nel-

2 data was most commonly linked to sub-indicator classes of ecosystem structure and 
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configura9on (e.g, live cover frac9on, ecosystem distribu9on, ecosystem ver9cal profile) and one 

sub-class of ecosystem func9on, ecosystem disturbance, through the NDWI index. 

The reviewed studies did not exclusively use EO-derived indicators as the sole source of 

informa9on used to models ES, and a variety of non-EO data was used alongside EO-derived 

data in the analyzed studies including social, physical, and ecological datasets. Common data we 

found paired with EO-derived indicators to assess ES included: LULC and built infrastructure 

data, social-demographic and socio-economic data, and meteorological data. Other key data 

sources that were used to validate (or ground truth) EO indicators rela9ons to specific ES 

included in-situ biological data, such as plant traits, soil measurements, and species maps. 

Carbon sequestra9on, carbon storage, and 9mber produc9on models were the only cases we 

found of an ES being modelled exclusively using EO indicators as input data. 

 

3.3 Earth observa?on indicators used to model ecosystem services  

EO-derived indicators of structure and function (Table 3.1.) have been used in models of 

cultural, regulating, and provisioning ES (Fig. 3). NDVI was by far the most frequently occurring 

index, used as an input in 52% of models overall and 70% of the regulating service models 

(Table 3.1.). This was followed by other vegetation indices (LAI, EVI) used in 12% of models and 

water quality measures (NDWI) used in 6% of models. The use of different individual indicators 

was not found to be proportional within models of different ES (Fig. 3.3.). For example, models 

of cultural services were the only category of models to include ecosystem distribution 

indicators, while we found a high propor9on of primary produc9vity indicators used to model 

provisioning services, rela9ve to its propor9on in cultural and regula9ng service studies. 

Breaking Figure 3.3 down from right to le�, with the excep9on of ecosystem distribu9on and 

phenology, EO data rela9ng to all sub-classes of ecosystem structure and func9on are used to 

model all three types of services (cultural, regula9ng, provisioning). 
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Figure 3.3. Earth observa=on indicators used to model ecosystem service models by type, the 

numbers refers to the count of individual EO-derived data-products that are found with single ES 

models. From le^ to right this figure shows the indicator class of EO-derived model inputs, then 

the indicator sub-class, then the category of ES service it was used to model. 

 

Breaking down the ES that are being modelled with EO indicators further, we found that 30 

unique ES were mentioned in the included articles, with a total of 138 models of an ES that 

utilized at least one EO-derived indicator of ecosystem structure or function to model these 30 

ES (Figure 3.4.). Most of the ES models reviewed (61%, 15 unique services) were modelling 

regulating services, including the top three most frequently modelled individual ES, which were 
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carbon sequestration (14%), soil retention (13%), and water flow regulation (10%). Provisioning 

services made up 23% (9 unique services modelled) of the total ES models reviewed, followed by 

cultural services, which accounted for 17% of the models reviewed (6 unique services modelled). 

The most common provisioning service and cultural services modelled were food production and 

outdoor recreation, respectively. 

 

Figure 3.4. The frequency of =mes that an ES was modelled using an EO indicator to assess in 

reviewed papers. For example, we found that outdoor recrea=on was modelled in 8 of the 

reviewed papers using an EO indicator as an input, but this does not mean that we found 8 

unique models (e.g. InVest, ARIES, …) used to model outdoor recrea=on. Cultural services are 

presented in pink, provisioning services in blue, and regula=ng services in yellow. 

 

With linkages between individual EO-sensors used to derive specific indicators used to model 

individual ES (Fig. 3.5.), we have started to iden9fy less frequently appearing and poten9ally 

emerging methodologies from the literature. In Figure 5, we iden9fy the connec9on between 
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ecosystem structure and func9on indicator classes, individual indicators derived from EO sensors, 

and three sets of models for individual ES (outdoor recrea9on, food produc9on, and soil 

reten9on). We iden9fied a dispropor9onately high use of ecosystem distribu9on indicators (i.e. 

the spa9al configura9on of elements of an ecosystem) to model cultural services, which could be 

due to the geographic proximity between people and nature that needs to occur for cultural 

services to be realized. Food produc9on models were the only type of model that used drone 

imagery to derive EO indicators, which may relate to drones as an emergent tool in smart 

agriculture prac9ces. Finally, in soil reten9on models, all but one EO indicator used was NDVI, 

which might point towards a more established methodology that has emerged to model sediment 

reten9on.  
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Figure 3.5. Earth observa=on indicators found in ES models of outdoor recrea=on, food 

produc=on, and soil reten=on. From le^ to right, we highlight the connec=on between 

ecosystem structure and func=on indicators classes, individual indicators derived by EO sensors, 

and three sets of ES service models (outdoor recrea=on, food produc=on, and soil reten=on). 

 

3.4 Spa?al and temporal resolu?on of ES models 

Despite many of the most commonly used EO sensors (i.e., Landsat, Sen9nel-2, and MODIS) 

having worldwide coverage at mul9-annual 9me steps, few ES studies included in our review were 

carried out at the na9onal (20%) or global scale (1 study). Further, only 32% of studies were 

carried out across mul9ple 9me steps (32%). We addi9onally found that ES model results were 
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o�en aggregated to coarse spa9al and temporal resolu9on, even though most EO data inputs  

have fine temporal and spa9al resolu9on. For example, although Landsat data has a 30m spa9al 

resolu9on and temporal image frequency of ~16 days, the final ES models were o�en 1 km models 

at an annual 9mestep. The literature consistently points to the advantage of EO sensors providing 

an opportunity to have finer resolu9on informa9on in which to understand ES, yet we’ve found 

that most papers are taking that finer resolu9on input data and not using it to deliver finer 

resolu9on results. 

 

3.5 Trends through 2012-2021 

The variety of ES modelled u9lizing EO technologies is ever evolving. Figure 3.6 highlights how 

the propor9on of ES models from cultural, provisioning, and regula9ng service categories 

changed over 9me in the literature iden9fied for this review. The last three years (2019, 2020, 

2021) had the most even distribu9on of ES service models of the en9re study period, indica9ng 

a poten9al increased explora9on of EO applica9ons to different service types. This, alongside 

the changes in sensors being used in these studies throughout the last ten years (Figure 3.2.), 

indicate that the ES field is s9ll in a period of methodological tes9ng and development, 

exploring what data can be linked to ES through which models. 
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Figure 3.6. The propor=on of cultural, provisioning, and regula=ng ES models that u=lized earth 

observa=on to assess ecosystem services per year (2013-2021) of review.  

4. Discussion and conclusion 

In this review, we have iden9fied a growing body of ES modelling literature demonstra9ng that 

EO is being used integrate informa9on on ecosystem proper9es, including proper9es of 

ecosystem structure and func9on, into ES models. We found that an increasingly diverse set of 

EO sensors are being used to derive informa9on that is being used in ES models; with 

historically popular sensors (Landsat, MODIS) being consistently used over the last ten years, 

while emerging sensors (Sen9nel-2 constella9on) are star9ng to play an increasingly important 

role in providing informa9on. EO indicators derived from these sensors highlighted in this 

review are associated with highly-tested indicators of vegeta9on structure  and func9on (86% of 

indicators found in review; e.g. LAI, NDVI and NPP), water quality func9on indicators (8% of 

indicators found in review; e.g. NDWI), ecosystem disturbance (3% of indicators found in review; 

e.g. fire, human disturbance), and changes in ecosystem func9on across seasons (1% of 

indicators found in review; e.g. phenology). These EO indicators were found to be most used in 

models of regula9ng services across the en9re review period; yet we found EO indicators 

applied across ES models of cultural, provisioning, and regula9ng services. 

 

There is a link between developments in the EO and ES fields. One example highlighted by this 

paper is the shi� in 2019 to the use of Sen9nel-2 data in ES models, just as this satellite 

constella9on’s data was first made available publicly. As the breadth of EO data publicly and 

privately available con9nues to expand, it is expected that there will con9nue to be addi9onal 

EO indicators that are tested and used across varying ES models. These shi�s in the ES field 

driven by shi�ing EO technology are important to con9nually “take stock” of through 9me. 

Furthermore, an open library of tested and verified EO-indices of ecosystem structure and 

ecosystem func9on across specific loca9ons and ecosystem types is cri9cal going forward. That 

is, the accuracy of an NDVI measure is going to be different in forests in China and Canada, and 

the accuracy will vary by shi�s in forest types, from beech forests to hardwoods. 
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With many in the ES field concerned with monitoring of environmental trends through 9me, it is 

important for ES modelers to consider which new EO informa9on is consistent with exis9ng EO 

data. Furthermore, clear communica9on in the literature is cri9cal moving forward. Research 

projects that are explicit about which component of the system is being proxied with EO data, 

and subsequently which ES is then being modelled from the data is key for improving the 

consistency and replicability of how ES are modelled into the future (Pe+orelli et al. 2017). 

Furthermore, in reading papers for this review there was o�en a lack of specificity in model 

design and EO, such as TM or OLI Landsat not being specified in mul9ple studies. This lack of 

specificity makes reproducibility difficult and might even point to a gap in understanding on the 

part of ES research community using EO data and technologies. 

 

One goal of this review was to test whether EO indicators could be organized into structure and 

func9on classifica9ons, which we found to clarify certain trends in the field, such as finding that 

advancements in EO indicators of ecosystem spa9al distribu9on has been par9cularly important 

in advancing the latest cultural service models over the period of review. Communica9on of the 

linkages the authors were making between the data used to model ES and its relevancy to the 

produc9on of each par9cular service was not always clearly communicated. Expanding on that 

point further, communica9on in the literature review of tes9ng, calibra9on, and valida9on of EO 

data to ES models was rarely presented in the papers or associated supplemental materials. 

 

It is important to note that EO data is only just one component of the shi�s in the sources of 

data being used to understand interac9on between nature and people. While LULC remains an 

important data source, EO indicators of structure and func9on are increasingly becoming key 

data sources used in assessing ES as well, both with and without LULC; roughly 30% of studies in 

this review did not use LULC in their models. Shirpke et al.’s review (2023) addi9onally shows 

that the use of data collected from mobile devices (e.g. smartphones and tablets) is 

prolifera9ng in ES studies, especially those focused on cultural ES (in which EO use was found 

least frequently, as found in this review). This incorpora9on of mul9ple data sources (including 
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EO, but also data from mobile technologies, field surveys, and social-economic datasets) is key 

for understanding the spa9al varia9on and drivers of ES from both ecological and social 

processes. 

 

While the primary research ques9on addressed by this review related to whether EO is being 

used as a tool to incorporate linkages from the biological processes that influence the capacity 

of ecosystems to provide ES over broad scales, this is just one of the key gaps that EO can 

poten9ally address. Another promise of using EO for ES assessments is to allow the ES 

community to increase the spa9al extent of work while maintaining fine temporal and spa9al 

resolu9ons (in addi9on to maintaining informa9on resolu9on about ecosystems by avoiding loss 

through classifying to LULC). This study shows that while the promise of expanded extent has 

been par9ally realized for some ES, there are more opportuni9es s9ll to be realized, as only 10% 

of studies u9lized EO to examine ES over a wide extent (e.g. global or na9onal scale) and over 

mul9ple 9me steps; as opposed to 58% of studies which assessed ES at a limited spa9al extent 

and at a single point in 9me. One limi9ng factor in these cases may be the use addi9onal 

datasets to model ES, such as socio-demographic data, which are not available at the same fine 

resolu9on as EO. Finally, while it is an9cipated that EO will allow for analysis of interac9ons 

between mul9ple ES across spa9al and temporal extents in which there has not previously been 

the capacity to run those types of analyses, we saw limited uptake of these large-scale analyses 

in the literature that looked at interac9ons between the mul9ple ES modelled at a global, or 

even na9onal scale. 

 

We recognize that at the current stage of ES modelling research, there are tradeoffs in the 

aspects of complexity that a single study can truly account for. For example, to look at how ES 

changes across 9me, a study might simplify the modelling process to run the model based on 

current, past, and simulated future LULC maps. Or, in a study that does comprehensive field 

surveying to calibrate and verify EO indicators used for modelling ES, the researchers may limit 

the number of ES considered. We generally found in our review there was a tradeoff between 

the complexity of the data sources/modelling approach used, the range of ES considered, and a 
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mul9-scale examina9on of study outputs over space and 9me. To this point, one key limita9on 

of this review is that it includes only studies assessing mul9ple ES and the most advanced work 

on EO integra9on may be found in literature that is focused on modelling development of a 

single ES, such as the growing body of literature around heat mi9ga9on in urban areas or 

es9ma9ng carbon stocks within single forest stands. Further s9ll, many of the EO indicators that 

came up in this study may be missing where the EO field is currently, and perhaps there could 

be major gains to be made if more modern EO data and approaches were to be applied in the 

ES context; this would require increased dialogue between ES and EO scholars and prac99oners. 

 

While the increasingly fine spectral, temporal, and spa9al resolu9on of EO indicators is 

expanding the opportuni9es for integra9on into ES models, other research fron9ers in ES 

modelling exist and should con9nue to be explored as well; including mixed-data studies that 

incorporate EO data with socio-economic data (Hodbod et al. 2019). ES assessment is ul9mately 

of a place and there should not be an abandonment of par9cipatory approaches and ecological 

field surveys that compliment remote assessments, allowing researchers can get an on-the-

ground understanding of the social-ecological systems that they are located within. There is no 

‘one right method’ to model ES in every place and to answer every research/policy/decision-

making ques9on. There is exci9ng new research on using “model ensembles” that opens the 

possibility of a future in which diverse modelling techniques are used together to improve our 

measurements and understanding of ES as well (Willcock et al. 2020, 2023). EO technologies will 

remain an important tool for the ES community moving forward and should be used in 

conjuncture with mul9ple methods and knowledge systems for understanding the human-

nature rela9onship (Cole et al. 2023). 

 

The literature analysis presented here illustrates that the ES modelling field is con9nuing to 

evolve, u9lizing exis9ng and emerging EO technologies to ES models across a range of cultural, 

regula9ng, and provisioning services. As new technologies emerge and con9nue to increase the 

capacity of the ES community to study and understand dynamic processes across greater 
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extents of 9me and geographic space, some of the most pressing ques9ons that have emerged 

from undertaking this review are: 

 

• How can the ES community most effec9vely keep up with changing EO technology, while 

maintaining consistency required for long-term monitoring of ecosystems across large 

temporal and spa9al extents? 

 

• At what scale and resolu9on of assessment do EO technologies provide the most 

“accuracy improvement”? As opposed to using coarser datasets, such as LULC, across 

large extent studies or more place-based field observa9ons applied to local studies. 

 

• How can the ES community test and validate emerging EO indicators of ecosystem 

structure and func9on across different geographic loca9ons and ecosystem types? Is 

there an effec9ve way that field observa9ons and remote EO can be used together 

across larger extents? 

 

• How can we facilitate and improve communica9on between ES modelling experts and 

EO/remote-sensing experts to increase adop9on rates of EO use to improve ES 

modelling studies going forward? 

 

• How can the ES community leverage the use of other forms of informa9on (e.g., 

par9cipatory maps, social survey data) and other emerging technologies (e.g., mobile 

data, AI) with EO technologies to provide more holis9c understanding of ES in the 

future? 
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Table S3.1. Terminology transla=on table lis=ng EO products and their rela=onship with the GEO 
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Supplemental text on defining indicators of ecosystem structure and func=on: 

Building on Skidmore et al. (2022) in this publication helps demonstrate how existing literature 

can be synthesized and organized within a standardized and monitorable framework aimed at 

providing guidance around potential data sources for this future ES model development. In 

EBV class Candidate EBVs 
(GEO BON)

Example of the candidate EBVs (GEO 
BON)

Typical remote sensing 
enabled biodiversity variable 

name
Remote sensing biodiversity products

land surface peak (max of season)
land surface green-up (start of season)

land surface senescence (end of season)

gross primary productivity gross primary productivity
net primary productivity net primary productivity

leaf area index
specific leaf area
foliar N/P/K content
evapotranspiration
fraction of absorbed 
photosynthetically active radiation
ecosystem soil moisture
carbon cycle (sequestration)
carbon cycle (below ground biomass 
and carbon)
biological effects of fire disturbance 
(direction, duration, abruptness, 
magnitude, extent, frequency)
biological effects of pest and disease 
outbreak

presence-absence of ecosystem types ecosystem structural variance

fraction of horizontal cover per 
ecosystem type

ecosystem fragmentation

land cover (vegetation type)
fraction of vegetation cover

Plant area index plant area index profile (canopy cover)
above-ground biomass
leaf area index
urban habitat
ice cover habitat
deadwood habitat
vegetation habitat
habitat structure
biological effects of fire disturbance 
(direction, duration, abruptness, 
magnitude, extent, frequency)
biological effects of irregular 
inundation

Ecosystem 
Structure

Ecosystem 
Function

ecosystem 
phenology

primary 
productivity

ecosystem 
disturbance

ecosystem 
distribution

live cover 
fraction

Ecosystem 
Vertical Profile

ecosystem phenology

ecosystem physiology

ecosystem disturbance

spatial configuration

habitat structure
biomass (e.g. in kg/m2) at different 

heights or depths

cover fraction of living forms

pulse rate, recovery rate, pulse 
magnitude

net ecosystem exchange

timing, such as day of year of onset of 
ecosystem energy pulses
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synthesizing these findings using this existing framework, we hope to contribute to efforts 

being developed to establish common definitions in the ES monitoring field, such as the current 

efforts to select Essential Ecosystem Services Variables (EESVs) by the GEO BON initiative. The 

raw coded data from this review, not organized around structure and function, showing direct 

links from EO sensor to EO-derived indicators to ES models. 
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SCHOLARLY DISCUSSION and CONCLUSION 

 

The ES modelling field has evolved rapidly since the concept was first introduced. In that 9me, 

there has been considerable tes9ng and developments of methods for modelling and 

monitoring multiple ES (Burkhard et al. 2018; Carpenter et al. 2009; Chaplin-Kramer et al. 2023; 

Cheng et al. 2019; Costanza et al. 2017; Malinga et al. 2015; Willcock et al. 2023). As this ES 

toolbox for understanding, studying, and communicating about ES has grown, there has also 

been a growing number of choices for ES researchers and practitioners who want to design 

studies to better understand ES in specific locations. Among these varied tools and methods, 

there are unique data requirements, verification schemes, accuracies, and relevancies to 

specific places, ecosystems, and environmental management decisions (Bagstad et al. 2013). 

 

Chapter One of this thesis aimed to synthesize much of the work that has been done in the 

landscape-scale ES modelling field over the past 20 years and connec9ng these developments to 

ES monitoring schemes around the globe, from Canada’s Census of the Environment to 

GEOBON’s work developing Essen9al Ecosystem Service Variables. In par9cular, Chapter One 

focused on three of the most cri9cal choices in modelling and monitoring design for ES: 1) the 

choice of input data and, subsequently, model complexity, 2) the spa9al dimensions of ES 

considered, and 3) the temporal dimensions of ES considered.  

 

This comprehensive literature survey shows that EO data has since the beginning played a 

cri9cal role in ES modelling and monitoring design because it impacts these three choices 

men9oned above. EO can influence the complexity of models because it is used to produce 

indicators related to a wide range of proper9es of ecosystem structure and func9on. EO can 

influence the spa9al dimensions of a study because many EO indicators can be created at 

rela9vely fine resolu9on spa9al grain across broad spa9al extents. And EO can contribute to 

tracking change through 9me because many EO sensors, such as satellites, provide informa9on 

over regular, repeated intervals. However, con9nued advancements have occurred in EO 

technologies, and, over the last ten years, there have been numerous calls from the ES 
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community to con9nue exploring the diverse poten9al uses of EO data in ES models (Braun et 

al. 2018; del Río-Mena et al. 2019; Ramirez-Reyes et al. 2019). 

 

Chapter Two iden9fied, through a systema9c review, a growing body of ES modelling literature 

demonstra9ng how EO is being used integrate informa9on on ecosystem proper9es, including 

proper9es of ecosystem structure and func9on, into ES models. Chapter Two shows that an 

increasingly diverse set of EO-sensors are being used to derive informa9on related to various 

proper9es of ecosystem structure and func9on that are then being used in ES models. 

Historically popular sensors (Landsat, MODIS) have remained consistently used over the last ten 

years, while emerging sensors (Sen9nel-2) are star9ng to play an increasingly important role in 

providing informa9on for ES models. EO indicators derived from these sensors highlighted in 

this review were associated with highly-tested indices of vegeta9on structure and func9on (86% 

of indicators found in review; e.g. LAI, NDVI and NPP), water quality func9on indicators (8% of 

indicators found in review; e.g. NDWI), ecosystem disturbance (3% of indicators found in review; 

e.g. fire, human disturbance), and changes in ecosystem func9on across seasons (1% of 

indicators found in review; e.g. phenology). These EO indicators were found to be most used in 

models of regula9ng services across the en9re review period; yet we found EO data used in ES 

models across all three categories (cultural, provisioning, and regula9ng services). 

 

Many of the recommenda9ons that emerged from Chapter Two involve the need for clear 

communica9on and knowledge brokering between disciplines, as illustrated by the open 

ques9ons at the end of the manuscript, restated here: 

 

• How can the ES community most effec9vely keep up with changing EO technology, while 

maintaining consistency required for long-term monitoring of ecosystems across large 

temporal and spa9al extents? 
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• At what scale and resolu9on of assessment do EO technologies provide the most 

“accuracy improvement”? As opposed to using coarser datasets, such as LULC, across 

large extent studies or more place-based field observa9on applied to local studies. 

 

• How can the ES community test and validate emerging EO-indices of ecosystem 

structure and func9on across different geographic loca9ons and ecosystem types? Is 

there an effec9ve way that field observa9ons and remote EO can be used together 

across larger extents? 

 

• How can we facilitate and improve communica9on between ES modelling experts and 

EO/remote-sensing experts to increase adop9on rates of EO use in ES modelling studies 

going forward? 

 

• How can the ES community leverage the use of other forms of informa9on (e.g., 

par9cipatory maps, social survey data) and other emerging technologies (e.g., mobile 

data, AI) with EO technologies to provide more holis9c understanding of ES in the 

future? 

 

Some recommenda9ons related to these ques9ons that have emerged from studying and 

thinking about this topic for my MSc, include the need for con9nued: 

 

• Development of generalizable ES models that can produce results over large spa9o-

temporal extents. These types of models need to be able to incorporate data from 

mul9ple EO sensors, in addi9on to incorpora9ng socio-economic data and other forms 

of data relevant to understanding ES dynamics. 

 

• Communica9on in models and data dashboards about where ES occur, but also the 

dynamic processes of ecosystem change that underpin ES, such as, tracking of Net 
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Primary Produc9vity of different ecosystems across seasons and changing clima9c 

condi9ons. 

 

• Dialogues between EO and ES experts are needed to be+er understand how the 

technology is changing and what opportuni9es may emerge in the future as a result. 

 

• Emphasis on science communica9on from the ES community to increase uptake of the 

use of these ES data in decision-making, from the local level to global agreements. 

 

As a researcher, my background is rooted in the landscape ecology discipline as opposed to EO, 

and, therefore, much of the search terms and literature analysis in this thesis is biased towards 

the ecological aspects of EO applica9on. This precludes much of the EO literature, for example 

developments of EO to monitor and study species diversity, soil proper9es, wildfire, and many 

more specific use cases. However, by limi9ng the search in this way, it is clear that some of the 

more modern approaches and outcomes of EO research are not showing up in ES work at a 

landscape-scale, and the ES field may be disconnected, or “falling behind,” from where the EO 

community is. While there is a poten9al danger in promo9ng outdated methods, there is also 

poten9al danger in moving forward with new EO data and models without strong understanding 

of the technology. Breaking down disciplinary barriers and increasing dialogues between those 

working on ES and those working on EO could facilitate major gains in the uptake in use of more 

modern data and modelling approaches being used in ES work, while reducing errors that can 

be caused by misunderstanding the data and technologies (Alix-Garcia and Millimet 2023). 

 

In addi9on to these limita9ons caused by a disconnect between the ES and EO fields, there are 

limita9ons caused by silos within the larger ES community. For example, review papers have 

shown major advancements in urban ES studies using EO (Wellmann et al. 2020) and water 

quality studies using EO (Topp et al. 2020) over the last decade, but many of these 

advancements were not mirrored in (or scaled up to) the macro-scale, mul9-service ES studies 

examined in Chapter Two that include water quality or urban ES models. Within studies on 
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localized places or on modelling single ES there are o�en more advanced data sources being 

explored, such as LiDAR, yet these EO data rarely appeared in the literature 9ed to large-scale 

studies. This lack (or lag-9me) in the scalability of these advancements might be the cause of 

macro-scale ES models being “behind the 9mes,” further causing a disconnect between ES 

researchers and poten9al partners in the EO community, but also showing a disconnect 

between silos of the larger ES community. Increased dialogue is impera9ve between ES 

researchers working across scales and places. 

 

When taking the two chapters of this thesis together, a key takeaway is that assessing ES 

involves people making choices around the indicators and data that are used. The results of this 

MSc project help to document what EO-derived indicators and proxies are currently being used 

to assess ES and how these choices are incorpora9ng ecological connec9ons between 

ecosystem structure, func9on, and ES across broad scale assessments. This work also points to a 

lack of standardiza9on currently present in ES models, from a lack of transparency in valida9on 

and clear defini9ons of how EO data was being used. This is all part of a larger current 

conversa9on around developing common frameworks for monitoring ecosystems in a 

con9nuous, consistent manner, whilst filling gaps in the spa9al and temporal coverage of field-

based observa9ons. Larger projects and networks that this work closely aligns with, include 

NSERC ResNet, GEOBON, and StatsCan Census of Environment, which are all networks of 

researchers and prac99oners coming together with aims to create more systema9c monitoring 

schemes for ES. This thesis has shown that early choices made about the data used in designing 

an ES model or monitoring scheme influence: 1) the components and drivers of ES that can be 

linked to final ES, 2) the spa9al extent and resolu9on of outputs and the ability for those 

outputs be used across different scales of decision-making, and 3) the temporal extent and 

resolu9on outputs used to track trends through 9me. To ensure a sustainable future of the 

planet, it is cri9cal to not just look at outputs, but to understand that data choices need to be 

made with cri9cal thought and considera9on. 
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