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Three-point statistics and the anisotropy of a turbulent passive scalar

L. Mydlarski® and Z. Warhaft
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853

(Received 6 May 1998; accepted 20 July 1998

The mixing of passive scalaftemperaturg fluctuations produced by the action of a mean
temperature gradient in decaying isotropic grid-generated turbulence is studied experimentally for
the range 208 R, <500. Previously, the observed anisotropy of the small s@aktial range

scalar fluctuation statistics has been described in terms of two-point structure functions. Here we
map the three-point cross-correlation and structure functions. We show that they exhibit universal
characteristics. These are related to the ramp-cliff morphology that is ubiquitous to all flows with
mean gradients of a passive scalar. 1898 American Institute of Physics.

[S1070-663(98)01211-7

I. INTRODUCTION onel®®22The measurements, both in shear fld%¥ and
isotropic turbulenc® extend to high Reynolds numbeRy(
In 1941, Kolmogoro¥? predicted(in the limit of infinite  ~10%). Local isotropy(in the high-Reynolds-number linjit

Reynolds numberthe scaling of the structure functions of predicts that the skewness should be zero. These, and obser-

velocity for the inertial subrange, i.e., the range of scalewations of the anomalous behavior of the odd-order structure

between the largegenergy containingand smallestdissi-  functions’?°to be discussed below, constitute a serious flaw

pation scales. The predictions rely on the hypothesis of locato the most widely accepted theory of the turbulent mixing of

isotropy, i.e., that the statistics of the turbulence are invariand passive scalar and are therefore of particular interest.

to rotations and reflections of the coordinate system. At the The flaw in basic Kolmogorov phenomenology is best

level of second order statistics, the local isotropy assumptiodescribed in terms of the third-order structure function of the

has been very successful. Thus it has been fotitidht if the  scalar

Reynolds number is high enough to provide a substantial 3 3

inertial subrange, then the ratio of transverse to longitudinal (A6(r)%)={(6(r)= 6(0))*), @D

velocity variances are consistent with local isotropy both inwhere 6 is the fluctuating passivé temperaturéabout a lo-

the inertial and dissipation ranges. For higher order statistics;al meanT) and the difference is taken in the direction of the

the Kolmogorov 1941(K41) theory had to be modified in mean temperature gradie®). [In the experiment to be de-

order to take internal intermittency into account. This is thescribed here, the flow is in thedirection,y is transverse to

subject of the refined similarity hypotheqRSH) (Refs. 5, xandB=dT/dy. Moreover,B is constan{or approximately

6) that has received much attention, and as yet does not haw®; see Sec. Jland the velocity field is approximately iso-

a theoretical closure(For summaries, see Frischand tropic. This is the simplest realization of a scalar field in

Nelkin®) Like K41, the RSH assumes local statistical isot-turbulent flow] For larger (i.e., on the order of an integral

ropy, yet there is strong evidericé! that for statistical mo- scalg, the existence ofl) is expected. Its valuécaused by

ments of higher order than two, small-scale anisotropy per8) would be a perturbation about the isotropic background

sists at least to moderately high Reynolds numbers. Whethetate. As the separation decreages)(r)®) should approach

this tendency extends to the highest Reynolds numbers iero if there is sufficient separation between the integral and

still unclear. dissipation scaleqi.e., if the Reynolds number is large
Extension of the Kolmogorov 1941 theory to the mixing €nough. If we assume to first order thé 6(r)°) is propor-

of a passive scalar by a turbulent flow was done bytional to g, then the Kolmogorov mixing argument suggests

Oboukho¥? and Corrsif® and the RSH has also been ex- that

tended to the sc_alétf‘:15 Scaling arguments, similar to those (AO(1Y3)= Bl (ereyr), 2

for the velocity field, were derived assuming local isotropy

of the scalar field. Yet this assumption has been found to bashere the separationis taken in the direction of a mean

contradicted (experimentally and numerica)lyby many temperature gradient, ardand e, are the dissipation rate of

researcherf-??The violation is primarily observed by non- turbulent kinetic energy and smearing rate of temperature

zero odd-order statistics in both the inertial and dissipativdluctuations, respectively. Dimensional considerations then

ranges. In particular, the skewness of the scalar derivativeecessitate that

(along the mean gradignhas been found to be of order (AO(r)3) o Be Ve 55 3

. 2 . . .
Present address: Department of Mechanical Engineering, McGill UniverNOte th_at sincee > B, th|5 expression chles .a&?’_, as |F
sity, Montral, Qudec, Canada. must, since the convective-diffusive equation is lineaw.in
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T — gradientt®=22They persist even as the Reynolds number in-

creases, and the sharp cliffs affect the small scale statistics.
Since they manifest themselves in thi@@hd higher order
statistics, their morphology must be examined in terms of
three-point structure and correlation functions. There have
been no previous experimental attempts along these lines.
Recent theoretical and numerical work by Shraiman, Siggia,
] % and Pumif*~?" on the three-point correlations indicate that
the anisotropic scalar structure seems to have universal char-
acteristics that appear to be independent of the nature of the
random velocity field. It is the purpose of this paper to ex-
perimentally examine this problem.
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FIG. 1. Normalized transverse temperature skewness structure functions The experiments were conducted in our two low-speed,
((A,0)*)/((A,6)%)* plotted as a function of the separation scaled by the [ow-background-turbulence open circuit wind tunnels. The
Kolmogorov length scaley=(v%€)¥*. Apart from the solid circles, the vertical wind tunnel is 40.68 40.65 cm? in cross section and
data is from Mydlarski and Warhafii998 (Ref. 20. Open ci.rcle's are for 45 m Iong while the horizontal wind tunnel is 91.44
R, =99. Squares are fdr, =222. Crosses are f&, =461. Solid circles are : : . :
for the experiments to be described beldRy;= 247 (horizontal tunnel, syn- X 91.44 cnf in cross section and 9.1 m long. They are, re-
chronous mode Note that the scaling rangéorizontal regioh does not  spectively, described, with sketches, in Refs. 28 and 29.
occur for the lowR, case. The turbulence was generated by means of an active grid
following the design of Makitd® The active grid is com-

) o _ posed of rotating grid bars to which are attached triangular
The argument leading t®) is similar to that used to predict 4gitator wings. Stepper motors, located at the end of each
the form of the Reynolds stress spectrum by Lunffeyhere grid bar outside of the tunnel, rotate the bars. The speed of
it is assumed that the anisotropic perturbation caused by thge grid bar rotation is determined by a square-wave fed to
Reynolds stress is proportional to the velocity gradient.  {he motor. Detailed descriptions of the grids used in each

The third-order structure function can be normalized byy;nnel can be found in Refs. 4 and 20.

the second-order structure functio 6(r)?). Using (3) and Nearly all of the experiments described here were con-
Kolmogorov form for the second order structure function, gycted in our vertical wind tunnel. The data set which was

((6(r)— 6(0))?)x ™ *%€,r?%, the prediction for the skew- ost analyzed was fdR, = 213 with the active grid operat-

ness structure function is ing in synchronous mode—all grid bars rotated at a constant
(AG(r)%) 6 112 21 speed and a bar'éconstant direction of rotation was re-
Saomn = (A0 2 Be Yoey 2B, (4)  versed from bar to bar so as not to add net vorticity to the

flow. The initial condition for the grid in the vertical tunnel
Figure 1, which includes data from Mydlarski and Warhaft,was set so that all wings on bars oriented in the North—South
1998 (Ref. 20 (from here on referred to as M&Wshows  direction were vertical and all of the East—West wings were
Sae(yy for wind tunnel turbulence experiments in close to horizontal. The relative orientation of the grid bars in syn-
isotropic grid turbulence with a mean temperature profile. ltchronous mode did not change over the measurement period.
is quite evident that the scaling exponéfarr high Reynolds  Measurement of the three-point correlation at the higer
number$ is close to zero; not 2/3 as predicted B). A of 469 was done with the grid in what we call random mode,
similar departure from Kolmogorov scaling was earlier re-where the direction of rotation of an individual grid bar ran-
ported by Antonia and Van AttA for the third-order struc- domly changes[Some three-point structure functiofigig.

ture function in shear flows. As mentioned above, M&W 10, below were also measured in our horizontal wind tunnel
also showed that the skewness of the temperature derivativg R, =564] Though the random mode generated a higher

along the mean temperature gradient, turbulent Reynolds number for a given mean velodiy
((3619y)°) increasing both the turbulence intensity?)¥%U [whereu
Sovray= (0I5 (5)  is the fluctuation in the longitudinalx-direction velocity

about the mean longitudinal velocity)] and the integral

is of order one and does not decrease with Reynolds numbdength scalel}, it resulted in a significant decay in the mean
Kolmogorov reasoningin the same vein as presented abovetemperature gradient, due to the large scalar integral scale,
for the third-order structure functiprpredicts thatS,,, ~ which approached that of the tunnel widthit will be
ocRgl, whereR,, is the turbulent Reynolds number based onshown, however, that the mode of operation of the grid pro-
the Taylor-microscale. It is these pronounced departureduced similar results, be it in synchronous or random mode.
from expected phenomenology that motivate the present The mean cross-stream temperature gradient was pro-
work. duced by atoaster a set of parallel, differentially heated

The anomalous scalar behavior is due to ramp-cliffribbons at the entrance to the settling chamber of the tunnel.
structures of the scalar that align themselves with the mea®nce the flow has passed through the screened plenum and
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contraction, the wake®f both momentum and temperatyre 10° g
created by the toaster elements are smoothed out. This re- L
sults in a mean temperature profile in tt@mos} laminar 10'22_
region upstream of the grid. The flow then passes through the <~ L

active grid and thermal fluctuations are produced by the tur- o~ 1¢ 4k
bulence acting against the temperature profile. E

The velocity and temperature fluctuations were mea- g“ 108
sured using TSI 1210 probes. For the velocity measurements, | -
tungsten wires of 3.0um diam with a length to diameter 1078
ratio of approximately 200 were operated at an overheat of
1.8 using Dantec 55M01 constant-temperature anemometers ¢ 10 £ i . sl
Tunnel and electronic noise were subtracted from the spectra 10°° 1078 10"
on a mean-square basis. Spatial resolution corrections for K
wire length were made using the_methOd _Of Wyngéférlébr G. 2. Power spectra of the longitudinal velocity fluctuatidngs lower
temperature measurements, platinum resistance wires of 0-5 ve) and temperature fluctuationig, upper curvigfor R, =247 (horizontal
um diam were used. Their length to diameter ratiégd,, , tunnel, synchronous mojlé; is the longitudinal wave number2#f/U. 7
wherel, is the etched length of the wire aug, is the wire  is the Kolmogorov length scate(v*/ €)™
diameter, varied between 500-600. The minimum prong

Ezztt:(mrgol\;ve aiurrcr):r?th 2’ %ol?rﬁztgergaggf :sta?n?r;ilfgvch?r- the intermittency exponent is higfh(u,~0.2—0.25) and the
P bp y conditional statistics are similar to those observed at higher

tamination by velocity. Our fast-response DC temperatureheynolds numbers in the atmosphere. A key requirement of

bridges were based on the design of Haughdal an(tihe analysis to follow is that there must be a sufficiently

Lienhard®? Electronic and ambient thermal noise were sub- ) .
. . broad scaling range in the temperature spectrum so that the
tracted from the spectra on a mean-square basis. Spatial res

lution corrections for wire length were made using thescfatlstlcs are independent of both the small s¢aieearing

method of Wyngaard® Further details can be found in or dissipation of the scalpand the large scale forcmg. Fig-
M&aW. 20 ure 2 shows the temperature spectrum at the positidi (

For cold-wire lengths ofL/d, <1500, Browne and =62) where the two and three-point statistics were obtained.

Antonia®* show that heat conduction between a coId-wireThe Reynolds numbeR, , is 247. The Pelet number, Pe

. X o ‘= (v/k)R, (wherek is the thermal diffusivity is 173. Also
and its stubs and/or prongs is a significant source of error in . Lo .

> oo shown is the longitudinal velocity spectrum at the same po-
the moments of temperature and its time derivative. Unfor-

R . .~ sition. Note that the temperature and velocity spectra have
tunately, minimization of this error by use of a longer wire

g : . . well developed scaling regions. The slope of the velocity
results in an increase in error from the reduced spatial reso-

. . : spectrum in the inertial subrange is1.52 and that of the
lution of the wire. It was concluded in M&WRef. 20 that temperature spectrum is1.55, i.e., both are close to the

for this ﬂOV\./’ the wire Ieng?hs used were appropriate, giVenKoImogorov value of-1.67.(TheR, and Pg dependence of
the competing effects of wire-prong conduction and reduce(ghe spectral slope is discussed m” M&AR. The bulk of the

spatial resolution. o - : :
All signals were high and low pass filtered and digitized analysis will be done foR, =213, but in Sec. IV we wil

with a 12 bit A/D converter. X 10°—4x 10° samples were

taken (i.e., 750—1000 blocks each composed of 4096TABLE I. Shown are the flow parameters for the primary cases for which

sample} for each data record at intervals roughly on theresults are presented in this paper. The two-point statistics were determined

order of a Kolmogorov time period to ensure both a ﬁnefrom the horizontal tunnel data for which the range of transverse separations
. . . extended to an integral scale. The three point statistics were mostly deter-

temporal resollutlor) of the &gp&ind the_refore a signal well mined from the vertical tunnel data. The kinematic viscositywas 15

resolved spatially in the longitudinal directipand conver-  x10-6 m#s. The thermal diffusivityx, was 22.5 10~¢ m?s.

gence of the three-point statistics. The only exception to thi

[ow] ()’

LUmBLL AL mElL maL e

is for some data included in Figs. () and 1@b) measured Speedm/s 6.0 12.5 13.3
in our horizontal wind tunnel where 150—200 blocks of dataL'\r/'Ode Synchronous - Synchronous Random
. .. unnel Horizontal Vertical Vertical
were recorded. A 10° data points were sufficient for the 62 68 68
power spectra in Fig. 2 where the data were sampled at ovey k/m) 3.7 3.9 2.6
twice the Kolmogorov frequency. (u?) (m%s?) 0.100 0.329 1.38
(YU (%) 5.3 2.6 10.4
e(=15vf5K3F 14(kq)dk) (MPSS) 0.164 2.39 8.64
Ill. RESULTS [(=0.9(u?)®?)/€) (m) 0.17 0.071 0.17
_ . . Ry (={(u?){15/(ve)}¥? 247 213 469
A remarkable aspect of passive scalars in grid-generateg|(=(u?¥4/v) 3600 2700 13300
turbulence is that their statistics are well developed at lows(=(»*€)") (mm) , 0.38 0.19 0.14
Reynolds numberS»?° Thus even by a Reynolds number, € [se€ Eq(8) of M&W ] (K%/s) 0.581 0.173 0.136
R,=u\/v~100 (whereu is the r.m.s. of the longitudinal (6% (%) 0.336 0.0405 0.0414
A -M.S. 9 | (=(6)2B) (m) 0.16 0.052 0.078

velocity fluctuations\ is the Taylor microscale, andis the  Transverse probe separationgl) 0.012-0.75 0.014-0.13  0.043
kinematic viscosity, the spectrum has a clear scaling region
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.2 1 0 1 FIG. 4. Schematic and definitions of the labels and coordinates used in the
10 10 10 10 discussion of three-point scalar statistiosis the mean velocity of the air in
X /¢ the wind tunnel.d are the fluctuations in temperatui@) about their mean,

T=T(y). There are two temperature probes placed) and (0y). The
FIG. 3. The third order diagonal structure function of temperatur®at  coordinate system itb) is introduced in Sec. Il B.

=247 (horizontal tunnel, synchronous mc)de(Ax,yf))3), plotted as a func-
tion of x/I, wherex=Ut andl is the integral length scale. Different symbols

correspond to different transverse separatiofs;y/|=0.012; [,y/I .
=0.024; ©,y/I=0.047; x,y/l=0.094; +,y/1=0.19; A,y/I=0.38; Thus, the “ramp-cliff’ structures are large-scale features,

0,y/1=0.75. yet as we have shown above, they are also manifested at the
small scales. It appears that for the smallest separatitgs
o ) 3), the ramp-cliff structures are less wide than for the largest
show tha}t similar results are obtained When. the Reyn°|d§eparations since the vaIue(oifAX,ye)?’} is constant up to a
number is doubled R, =469). Further, we will vary the gajier value ok/I. In fact, this might be expected since, at

spacing of the probes and show that the results are indepepgge y/y the diagonal structure function becomes experi-
dent of the inertial-convective spacing. The flow parameterg,eniajly indistinguishable from the longitudinal structure

are listed in Table . , . function and the transverse component of the signal may be
Before we discuss the results of the three-point Stat'St'CBrematurely “lost.”

of ?he temperature f_ield, we \{viII summarize the salient prop- Although the temperature profile is roughly linear and
erties of the two-point statistics. (almos} constant® the turbulence is decaying in the down-
. o stream(x) direction. In ideal, homogeneous flow, the third-

A. Two-point statistics order statistics should be evensiri® As a test of the effects

In Fig. 1, we showed that the transverse skewness stru&f inhomogeneity, the third-order diagonal structure function
ture function violates Kolmogorov scaling. Its lack gf IS plotted as a function of and —x (Fig. 5) for a subset of
dependence implies that the derivative skewness is constafite data of Fig. 3. For scales less than the integral length
with Reynolds number and this has been verified by M&wscale, the collapse is good implying that the statistics are
for the constant mean temperature gradient case address@¢en in thex-direction. In the work to follow, we only con-
here.

To help bridge the gap between two-point, one-

dimensional statisticésuch as the transverse structure func- 04— A I
tion) and three-pointand therefore two-dimensionastatis- A g ]
tics, we first present two-point, two-dimensional statistics, or N o 0.2[ * s a é 7]
what we call the diagonalthird-orde) structure function, T ° o o o o 4 o é’
defined as =) ?2’ 0F 8 8 8 & § .
< *
(Axy0)®=([6(x=Ut,y)— 6(0,01%)=([ 6o~ 0c]%). N e . ]
(6) = E'O 2r ]
It is plotted in Fig. 3 for various separationg,as a function ?;i z i o]
of x/I, wherel is the integral length scale defined &s V.o V-0.4r o
=0.9u?¥%e [Eq. (12) of Mydlarski and Warhaff] A i 1
sketch of the coordinate system is shown in Fi¢g) 4x -0.6 > "‘_1 ] , 1
=X, here. (Point B and its corresponding coordinate;, 10 10 . 10 10

will be used later when discussing three-point statistics.
Data are shown for values gfl ranging from 0.012 to 0.75 FiG. 5. The effect of a coordinate reflectionsiron the third order diagonal
for R,=247. In the limit of zero separation in thg structure function of temperaturg(A, ,8)%) and{(A_, ,6)*) are plotted as
direction, this p|0t simply shows the transverse third-ordef@ function ofx/I for various spacings &, =247 (horizontal tunnel, syn-

. . . hronous mode Different symbols correspond to different transverse sepa-
structure function of temperature. Smcg the data of Fig. 3 aréaﬂons. In the positivecdirection, O,y/l = 0.012: [1,y/1 =0.047: © ./l
constant up to a value of/l ~1, the width(x-exten) of a  —g.19; A,y/1=0.75. In the negativecdirection, x,y/l =0.012; +,y/I

“ramp-cliff” structure is on the order of an integral scale. =0.047; —,y/1=0.19;|,y/|=0.75.
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1 T T T Our objective is to arrive at the three-point correlation
function or the equivalent “three-point structure function.”
(These are two equivalent ways of expressing the same in-

| «~————>» formation) We will consider what we call “three-point
| o MO go M, | structure functions” rather than three-point correlations since
© & @A we found that drift and inhomogeneity in the direction of the
r O AT temperature gradient introduced error in the three-point mea-
< surements that was of the same order as the magnitude of the
| O

] three-point correlationForcing even symmetry ir and odd
symmetry iny does not eliminate all inhomogeneities; the
field may have inhomogeneities with these symmeiries.
0.1 L L However, the size of the error amounted to a much smaller
"0.01 0.1 1 fraction of the signal in the three-point structure function.
This might be expected since there exists inherent filtering in
the calculation of a structure functidgdue to the fact that a
FIG. 6. The component of the diagonal third order structure function ofsubtraction is performe@dThe effect of drift on correlations
temperature which is even inand odd iny, (A, y,.)) Plotted as a  js discussed in Lumley and Panofsiyp. 44. They show
function of r/l, wherer =(x?+y?)%? and scaled by/| for inertial range that the effect of alinean trend (in time) in the data results

separations of. R, =247 (horizontal tunnel, synchronous mogdend dif- in th t lati havi hich i f ti f
ferent symbols correspond to different transverse separatiGngy/| In the autocorrelation having an error which 1S a function o

=0.024; O,y/l =0.047; ¢ ,y/1=0.094 andA,y/I=0.19. The horizontal the averaging timgT) squared. When consideririgecond-
arrow indicates the extent of the inertial-convective subrange determinedrden structure functions, the error term resulting from the
from the second order longitudinal structure function. trend is now only a function of the time |agr) squared
(which is much more acceptable sing€r<1).

We begin by considering one of many possible three-

8(x,,, Y ) - 8(0,0°>/(y/ 2)

ri/y

sider the components of the statistics which are eventm ) i
improve scaling. This precludes contamination from the Iargpomt structure functions,

est, mhomogeneoug spales which are odd ifhe even irx S1=((0a— 00)%( 65— ). 7
component of a statistic was calculated as folldwkere we

use the diagonal third-order structure function as an exit is emphasized that local isotropy predicts tBashould be
ample: (A, y0)*)=3(((Axy0)*)+((A_«y6)%)). Simi-  zero at small scales for high Reynolds numbers. Gigen
larly, the third-order statistics should be oddyi® [If you  one can deduce the three-point correlatiofn 05 6c). Con-

flip the direction of the gradierthotter air belowthe sign of ~ sider the algebraic expansion of this three-point structure
the third-order statistics must chanpA. similar test of the ~ function into a sum of one-point, two-point, afttie desired
odd symmetry iny was performed. It verified that the data three-point third-order correlations,

was indeed odd ity for separations up to an integral scale.

Still, we will onlyzonside? the compgnent of thg statistics ~ ((0a~ 0c)%(0p= 08))=(0a) = 2(Ia0c) +(Oa0C)

which is odd iny (and even inx) to prevent contamination _<020 )—(026 )
. . AYB cYB
from large scale inhomogeneitiésuch as small curvatures
in our ideally linear gradient Calculation of the component +2(056g6¢). (8)

which was odd iry was done in an analogous manner to the i . . .
calculation of the component which was everxin The correlations can also be divided in two types; those in-

In Fig. 6, we show the component of the third-orderVOIVing a separation iy and those which do not. The latter

. . . 3
diagonal structure function of temperature which is evex in (0N€S which involve only one point, e.g.¢a), and ones

. . 2 .
and odd iny. It is shown to be approximately independent of Which only involve 65 and 6c, e.g.,(6c0g)), having no
r(=[x2+y2]Y?) when scaled by. This graph is the same as transverse component, should ideally be zero. Those involv-

in Fig. 18a) of M&W. 20 \we will return to it below. ing 65 and g or 6, and A, can simply be re-expressed in
terms of the third-order, two-point diagonal structure func-

B. The three-point statistics tion, since it can be expanded as follows:

We begin our discussion of three-point statistics by de-  ((6a— 0c)%)=(62) —(62) +3((0a08) —(026c)).  (9)
fining the variables used to describe the orientation of the ) , .
three points. We consider three points, to be caleB, and Assgmlng homogeneity qf the temperature stat|§t|cs and as-
C, and we give them the coordinate\=(xy,y), suming even symmetry ix and odd symmetry iry, one
B=(x,,0), andC=(0,0) (see Fig. 4 In fact, only two cold- °Ptains
wires are used to measure temperatiigeand T are deter- 3 _ 2\ _ 2

Op— 6 =6(0p02)=—6(626c), 10

mined from the same temperature signal in conjunction with ((0a= 00) "), y=6(0a0C) (0a6c) (10
Taylor's hypothesis to convert temporal increments into spa-
tial ones. We note that Taylor's hypothesis should hold well

in this low turbulence intensity((1?)*%U<0.1) isotropic ) )
velocity field. =6(0p05)=—6(0206R). (12)

<( Op— t9B)3>:<( Op— 0C)3>|xl—x2,y
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One can therefore estimate the three-point correlation,
(6p6056c), from S; and a curve fit to the diagonal structure
function (Fig. 6) for the two-point, third order correlations
[Egs.(10) and(11)]. Thus,

<0A680C>|X1,X2,y: %[(( 0/_\_ HC)Z( 0A_ GB)>|Xl,x2,y
_%«HA_ 90)3>|x1,y
_%«HA_ HC)3>|xl—x2,y]- (12

There also exists many alternate structure function defini-
tions, €.9.S,=((0a— 0c)%(6c— 0g)) from which( 6,0560c)
can be deduced; has been computed and will be discussed
in the appendix. There, we will show th@i,6z6c) derived
from S; lacks the correct symmetry properties and shows
unacceptable probe spacing dependence.

Here, following a suggestion of Shraiman, we choose the X' /y
somewhat unusual combination

xé/y

S= %(3(95"' Oc—260,)(0g— 90)2 FIG. 7. Contour plot of the three-point triple correlatioff,fg6c), in
1 3 (X1 ,%5) space as deduced from the three-pdihird-ordey scalar structure
—3( Og+ 0c— 29A) > (13 function for combinatiorS. The transverse separation is 3.6 niim., y/|

=0.05) and R, =213 (vertical tunnel, synchronous modeThe data are

To explain this choice, we expariglas follows: normalized by—(6,656c)(0,0) at the given transverse separation.

S=(6abs0c)+ 3{Ga+ 05+ 62) — 5 (6a+ 0g)° e , |
5 s point A is located midway between those of poiBt&ndC.
+(0at 0c)°+(0c+ 0p)°). (149 In other words, the pointé, B, and C form an isosceles

Note thatS is permutationally symmetric, i.e., exchanging trlangle. We therefore choosgonsistent with Mydlarski
any two points(e.g., 0, with g, 6, with 6., etc) does not €t al’’) to plot our contour plots in a_modlfled c_oordlnate
change the function. The triple correlatiqa 0g0c), is also ~ SYSIEM, &].X3)=(X1—3X2,X;), see Fig. 4b). This new
obviously permutationally symmetric. Therefore, in addition choice of coordinates results in thg=2x, line of symmetry
to the imposed even symmetry srand the odd symmetry in being transformed to the verticalxy), axis (i.e., the line
y, we are now alsgimplicitly) imposing permutational sym- x;=0).

metry by use of combinatioS These three symmetries are ~ Figure 7 shows the three-point third-order correlation,
all consistent with the required theoretical behavior of(fafsfc), calculated from combinatio for a transverse
(0050c). [We remark that combinatio; is not permuta-  spacing ofy=3.6 mm. Itis plotted as a function &f/y and
tionally symmetric, see Eq8). Though the left-hand side of X2/Y. This plot is shown for the ranges 5<x;/y<5 and
Eq. (12) is, the individual terms we measure on the right-0<X3/y<5. (Since the statistics are evennit is unneces-

hand side are ndt. sary to show the range 5<x5/y<0, which will be identical
Simplifying (14) by use of(10) and (11), we obtain to what is shown. Additionally(60g6c) is even inx;,*
1,3 3 3 therefore we only need to show data in the rangex/y

S=(0p0s0c) + 5(Oa+ O+ 62). (19 <5 and 0<x}/y<5. However, we show both halves of the

We observe that the structure functiris equivalent to the Plot to emphasize this latter symmelrithe nondimension-

third-order three-point correlatioffafs6c), to within the  alization is by —(6af80c)|x;=0x3=0=—(0abE)|x =0

scalar(signa) skewnesgwhich should be zepo Therefore, Therefore, the triple correlation must be equal+d for

we measure a permutationally symmetric structure functiorfx; ,x;)=(0,0). In addition,(6,0z6c) must be zero when

to obtain the(permutationally symmetrjctriple correlation.  the three points form an equilateral triangféTherefore, the
Note that combinatiors does not require two-point sta- triple correlation must be equal to zero whexy/f/,x5/y)

tistics (such ag(#,02) or (#,63)) to be added or subtracted =(0,2#3)~(0,1.15).(Whenx} =0, the triangle is isosceles.

to obtain(#,0s6c) as was the case with, in Eq. (12). In I x,=2W3 the triangle is then also equilatejdive observe

addition, the assumption thatfg02)=(#360c)=0 is no  this to be the case. For values xf=0 andx,>2A3 the

longer required. This was found to introduce error for largertriple correlation becomes positive. Further elucidation of the

separations in the calculation ¢#,6056c) from other com-  nature of these three-point statistics and their relationship to

binations. the ramp-cliff structures is more easily done in terms of the
As for many physical phenomena, the laboratory coordi-structure function, and thus is addressed in the Appendix.

nates, namelyx;,X,,y), are not the optimal choice for rep-

resentation of the three-point structure functions. When plotlV: PROBE SEPARATION AND REYNOLDS NUMBER

ted as a function ofx,/y and x,/y, the contour plots DEPENDENCE

exhibited symmetries about the likg=2x,. This is physi- The principal result of this paper is the third-order cor-

cally reasonable since whery=2x,, the x-coordinate of relation function shown in Fig. 7. It is the most general sta-
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(0a056c)=0 when &;/y,x5/y)=(0,2/3)) is very consis-
tent. Some differences should be expected at the larger spac-
ing considering that an intermediate distance in FigoB
say, Jy=3X9mm=27 mm is close to an integral scale,
which for this flow was 71 mnfand therefore ~0.4)).

Finally, we examine the effects of varying the Reynolds
number. The triple correlation,0,6g6c) determined from
combinationS is shown in Fig. 9 aR, =469 obtained by
operation of the active grid in the random mdd@he ma-
jority of our runs in this paper have been performed with the
grid in the synchronous mode for the reasons given in Sec.
II. In that mode, the Reynolds number was 218ere the
transverse separation was 7.35 niffihe integral scale for
this case], was 170 mm and the Kolmogorov microscaig,
was 0.14 mm). The results are very consistent with those of
Fig. 7 indicating their lack of sensitivity to the Reynolds
number. We notgM&W (Ref. 20] that in the random mode
there is a significant weakening of the mean temperature gra-

FIG. 8. The effect of a larger transverse separation on the contour plot of thelient with downstream distancg, As a result, this dimin-

three-point triple correlation,6,60g6c), in (x;,X3) space as deduced from
combinationS. The transverse separation is 9 nfne., y/ =0.13 andR,
=213 (vertical tunnel, synchronous modeThe data are normalized by
—(6A056c)(0,0) at the given transverse separation.

tistical descriptior(at the third orderof the ramp-cliff struc-

tures that appear to be ubiquitous to all scalars mixed against

ished the value of the transverse derivative skewffess,

Sse19y - However, the triple correlation appears to be unaf-
fected, thus providing strong confirmation for the robustness
of these results.

V. CONCLUSIONS

a mean gradient by turbulence. In this section, we consider We have computed the third-order three-point correla-

the effects of probe spacing) and Reynolds number.

In Fig. 8, we show 6,656¢), calculated from combina-
tion Sfor a transverse spacing =9 mm. (Figure 7 was
calculated fory=3.6 mm) There do exist some differences,
such as the “opening up” of the V-shageonsider, for ex-
ample, the—0.2 contour ling or the reduction in the maxi-
mum value achieve@from ~0.6 fory=3.6 mm to~0.3 for
y=9mm). The overall result(including the constraint of

tion, {6,6056c), for a linear temperature profile in decaying
grid turbulence. We show that is has a characteristic V-shape
that is independent of Reynolds number over the range 213
<R, <469 (2706<R;<13300) and for probe separations
less than an integral scale. Because the scalar skewness per-
sists to very high Reynolds numbéf<®it may be reason-
ably inferred that so too will be the V-shaped three-point
correlation, since it represents the ramp-cliff structures that
are responsible for the skewness. We note that since the
ramp-cliff structures have been observed in both sfig

and shear-frég flows, and that the third-order two-point
structure function scales similarly for both types of
flows 1”29 this suggests that our results may indeed be uni-
versal to all turbulent flows with a mean temperature gradi-
ent.

In another papet’ our measurements will be compared
with the predictions of Shraiman, Siggia, and Pdfhit’
who determine the same three-point functions using the Hopf
equation as the basis for their model. In the present work, it
has been our objective to describe the way in which we have
arrived at the three-point statistics, and what variation they
exhibit with various parameters, rather than to compare with
predictions.
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T e o . . structure function for combinationS; and S, for a wide
_ i @X@’ I variety of transverse separationgA discussion of the right-
Cu"_ 0.8 X*é-% ® 7] angle three-point structure function is more reasonably done
0 in the laboratory coordinate system. We therefore return to it
£ 06 ] temporarily) Th in Fig. 10 coll I. Th
= porarily) The curves in Fig. collapse very well. The
e 1 few data points which do not follow the general trend are
~ 0.4 F . :
Z found to be for the smallest and largest transverse spacings,
ke which are well out of the inertial range. Here we have in-
o 02 o ] )
(@) cluded data from the vertical tunnel as well as some data
0 Lovrwd vvvd wuvl vvvl il recorded in our horizontal tunnéfor which the data records
102 10° y 10° 10 were not as long as for those measured in the vertical tiinnel
2y In addition, these figures show no dependence on the mode
0 of operation of our active grifviz., synchronous or random
. r 1 and therefore no dependence on Reynolds number.
‘ﬁF 0.2 1 7] In these figures, the ordinate is normalized by the value
x of the transverse third-ordetwo-poinf structure function
g 04r ] for the given transverse spacing,Consequently, the right-
= 3 * ] angle three-point structure functions for combinatiBn
5 06 . ] must tend to 1 in the limit ok,—0 since, in this limit,dg
x 0.8 ° —#60c, and therefore combinatiors; becomes((@NX o
ot VT ] I _— L4
(b) — 6¢c)?%), which is the definition of the transverse third-order
-1 T R e— structure function. The fact thalz— 6- asx,—0 also ex-
10 10 10 10

plains why the right-angle three-point structure function for

combinationS, tends to zero in the limit,— 0. The abscissa
is normalized byy so that the triangle&efined by the three
positions at which the temperature is measured in these
structure functionsare all similar(in the geometrical senge

At large separations, the data asymptotes to 0.5 in Fig.
10(a) and—0.5 in Fig. 1@b). These can be predicted from an
(algebraig expansion ofS; and S, which shows that there

' , are some terms which do not go to zeroxagy—« (i.e.,

=0.016; open trlgngles e_ivys’l=0.029; plus signs arg/l=0.p42; crosses the third-order correlations which do not contaify,
arey/1=0.052; circles with dots arg/l =0.068; squares with slashes are !

2 . . P
y/1=0.27 and squares with plus signs awé=0.53. The data are normal- €.0., <0A|X1:000>)- Recall that we are nondimensionalizing
ized by the value of the transverse third-order structure function for their, 3 ; : 2

by <(0A\x1:o_ 0c)°) which is equal to 66A‘X1:09C>

respective transverse separation.
(=—6¢ 6,2_\‘ 00c>). The asymptote quantifies the contribu-
Xy =

FIG. 10. The right-angle three-poifthird-orde) scalar structure functions
(i.e., three-point scalar structure functions wxth=0) plotted againsk, /y

for combinationsS; (a) andS, (b). Solid symbols are foR, =213 (vertical
tunnel, synchronous moglevhich correspond to different transverse separa-
tions; solid circles arg//l =0.014; solid squares asgl=0.051; solid dia-
monds arey/l=0.085, and solid triangles angl =0.13. Remaining sym-
bols are forR, =564 (horizontal tunnel, random mogleopen circles are
y/l=0.0026; open squares arg/l=0.0092; open diamonds arg/l

tion to the structure function from correlations independent
Given the triple correlation(6,0fc), one can extract o 0$He next step is to remove tixg=0 restriction. Instead,
any'possible third—order_structure fupctiqn. R_ather thap estige letx, be a third independent variablalong withx, and
mating these from the triple correlation, in this appendix wey) The resulting three-point structure functiofisr a given
will present some(directly measuredthree-point structure  ¢ompination must then be plotted as contour plots as a func-
functions. We examinéwo possible combinations pthird- tion of x, /y andx, /y for a given transverse spacing,Here

order three-point structure functions. These combinations, I%e also return to the coordinate system denoted by primes.
beledS; andS,, were mentioned in Sec. Ill B and are rede- Figures 11a) and 11b) show the three-point structure

fined below, functions for combination§; andS, for a transverse spac-
S1={(0p— 0c)%(0p— 0p)), (A1) ing of y=3.6 mm. These plots are shown for the ranges
_ ) —5<x;/y<5 and 0<x,/y<5. (Since the statistics are even
S2=((6a=0c)*(6c—0s)). (A2) X, it is unnecessary to show the rangeb<x;/y<O0,
We emphasize, as a generalization®f thatS, andS,  which will be identical to what is shownThe nondimen-
should be zero at small scales for high Reynolds numbersionalizations are the same as for the right-angle three-point
Many other possible combinations exist, but they can all bestructure functions shown in Fig. 10. Combinati§p must
expressed in terms @&, and/orS,. be equal to 1 atxj/y,x5/y) = (x1/y,X,/y) =(0,0). Since we
The first type of three-point structure function we con-only consider the component which is everxjrihe statistics
sider is the “right-angle three-point structure function” in are even inx; when looking at the line;/y=0. In addition,
which the three points form a right angle by enforcing thatcombinationS, must also be zero along this line. We also
x1=0 [i.e., onlyx, andy will be allowed to vary, Fig. &)].  remark that all the informatioffor a given transverse spac-
Figures 10a) and 1Q@b) show the right-angle three-point ing) shown in Fig. 10 can be found in the, more general,

APPENDIX: THREE-POINT STRUCTURE FUNCTIONS
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(@) (a)

0.2

h

xé/y

X\ /y X7y

FIG. 11. Contour plots of the three-poiihird-orde scalar structure func- ~ FIG- 12. The contour plot of the three-point triple correlatiofy 6 6c), in
tions in (x} ,x3) space for combination$, (a) andS, (b). The transverse (X1 ,%5) space as deduced from combinat®n The transverse separation
separation is 3.6 mnfi.e., y/| =0.05]) and R, =213 (vertical tunnel, syn- s (&) 3.6 mm(i.e.,y/I=0.051 (b) 9 mm(i.e.,y/I=0.13. R, =213(vertical
chronous mode The data are normalized by the value of the transversetunnel, synchronous mogieThe data are normalized by(6,0g6c)(0,0) at
third-order structure function for the given transverse separation. the given transverse separation.

plots of Fig. 11 (for values ofx,/y<5. The right-angle function] In this same limit,S,—0 sinceB and C become
three-point structure functions of Fig. 10 correspond to andistinguishable. This is observed in Figs.(dland 11b).
cross section of the contour plots of Fig. 11 along the lineThe limit |x;|/|x5|— can be considered the one in which
given byx;/y=— 3x,/y. (This corresponds to a vertical line the triangle given by the three points is maximally skewed.
given byx, /y=0 in the laboratory coordinates. In this limit, S; has a maximuntabsolutg value andS, has
The magnitudes of the contour lines in Figs(dlland a minimum(absolutg value. The opposite limit occurs when
11(b) can be explained when one considers horizontal ( thex-coordinate of poinA is located midway in between the
=constant) cross sections of the plots. WHe{j/|x;| -,  x-coordinates of point® and C, and the triangle given by
i.e. when pointA is very far away from point8 and C,  these three points is then isoscelg@g., x;=0). This ar-
points B and C become coincident. In this limi$; reduces rangement results in a minimugabsolutg value ofS; and a
to the third-order diagonal structure functiof( ¢x— 6c)*)) maximum (absolute¢ value of S,. The transition between
and should therefore be roughly fiFor subintegral scale these two limits, which results in V-shaped contour lines, is
separations, the diagonal structure function shows liktle observed in Fig. 11. In Fig. 14), the contour lines for
dependencéFig. 6), and is therefore roughly equal to the smaller x;, overturn and depart from the predominant V-
value by which we are normalizing, the transverse structurahape. We attribute this to large-scale effects. This does not
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