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Three-point statistics and the anisotropy of a turbulent passive scalar
L. Mydlarskia) and Z. Warhaft
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853

~Received 6 May 1998; accepted 20 July 1998!

The mixing of passive scalar~temperature! fluctuations produced by the action of a mean
temperature gradient in decaying isotropic grid-generated turbulence is studied experimentally for
the range 200,Rl,500. Previously, the observed anisotropy of the small scale~inertial range!
scalar fluctuation statistics has been described in terms of two-point structure functions. Here we
map the three-point cross-correlation and structure functions. We show that they exhibit universal
characteristics. These are related to the ramp-cliff morphology that is ubiquitous to all flows with
mean gradients of a passive scalar. ©1998 American Institute of Physics.
@S1070-6631~98!01211-2#

I. INTRODUCTION

In 1941, Kolmogorov1,2 predicted~in the limit of infinite
Reynolds number! the scaling of the structure functions of
velocity for the inertial subrange, i.e., the range of scales
between the largest~energy containing! and smallest~dissi-
pation! scales. The predictions rely on the hypothesis of local
isotropy, i.e., that the statistics of the turbulence are invariant
to rotations and reflections of the coordinate system. At the
level of second order statistics, the local isotropy assumption
has been very successful. Thus it has been found3,4 that if the
Reynolds number is high enough to provide a substantial
inertial subrange, then the ratio of transverse to longitudinal
velocity variances are consistent with local isotropy both in
the inertial and dissipation ranges. For higher order statistics,
the Kolmogorov 1941~K41! theory had to be modified in
order to take internal intermittency into account. This is the
subject of the refined similarity hypothesis~RSH! ~Refs. 5,
6! that has received much attention, and as yet does not have
a theoretical closure.~For summaries, see Frisch7 and
Nelkin.8! Like K41, the RSH assumes local statistical isot-
ropy, yet there is strong evidence9–11 that for statistical mo-
ments of higher order than two, small-scale anisotropy per-
sists at least to moderately high Reynolds numbers. Whether
this tendency extends to the highest Reynolds numbers is
still unclear.

Extension of the Kolmogorov 1941 theory to the mixing
of a passive scalar by a turbulent flow was done by
Oboukhov12 and Corrsin13 and the RSH has also been ex-
tended to the scalar.14,15 Scaling arguments, similar to those
for the velocity field, were derived assuming local isotropy
of the scalar field. Yet this assumption has been found to be
contradicted ~experimentally and numerically! by many
researchers.16–22The violation is primarily observed by non-
zero odd-order statistics in both the inertial and dissipative
ranges. In particular, the skewness of the scalar derivative
~along the mean gradient! has been found to be of order

one.16,18–22The measurements, both in shear flows,16,18 and
isotropic turbulence20 extend to high Reynolds number (Rl

;103). Local isotropy~in the high-Reynolds-number limit!
predicts that the skewness should be zero. These, and obser-
vations of the anomalous behavior of the odd-order structure
functions17,20to be discussed below, constitute a serious flaw
to the most widely accepted theory of the turbulent mixing of
a passive scalar and are therefore of particular interest.

The flaw in basic Kolmogorov phenomenology is best
described in terms of the third-order structure function of the
scalar

^Du~r !3&[^~u~r !2u~0!!3&, ~1!

whereu is the fluctuating~passive! temperature~about a lo-
cal meanT! and the difference is taken in the direction of the
mean temperature gradient~b!. @In the experiment to be de-
scribed here, the flow is in thex-direction,y is transverse to
x andb[dT/dy. Moreover,b is constant~or approximately
so; see Sec. II! and the velocity field is approximately iso-
tropic. This is the simplest realization of a scalar field in
turbulent flow.# For larger ~i.e., on the order of an integral
scale!, the existence of~1! is expected. Its value~caused by
b! would be a perturbation about the isotropic background
state. As the separation decreases,^Du(r )3& should approach
zero if there is sufficient separation between the integral and
dissipation scales~i.e., if the Reynolds number is large
enough!. If we assume to first order that^Du(r )3& is propor-
tional to b, then the Kolmogorov mixing argument suggests
that

^Du~r !3&5b f ~e,eu ,r !, ~2!

where the separationr is taken in the direction of a mean
temperature gradient, ande andeu are the dissipation rate of
turbulent kinetic energy and smearing rate of temperature
fluctuations, respectively. Dimensional considerations then
necessitate that

^Du~r !3&}be21/3eur 5/3. ~3!

Note that sinceeu}b2, this expression scales asb3, as it
must, since the convective-diffusive equation is linear inu.

a!Present address: Department of Mechanical Engineering, McGill Univer-
sity, Montréal, Québec, Canada.
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The argument leading to~3! is similar to that used to predict
the form of the Reynolds stress spectrum by Lumley.23 There
it is assumed that the anisotropic perturbation caused by the
Reynolds stress is proportional to the velocity gradient.

The third-order structure function can be normalized by
the second-order structure function^Du(r )2&. Using ~3! and
Kolmogorov form for the second order structure function,
^(u(r )2u(0))2&}e21/3eur 2/3, the prediction for the skew-
ness structure function is

SDu~r ![
^Du~r !3&

^Du~r !2&3/2}be21/6eu
1/2r 2/3. ~4!

Figure 1, which includes data from Mydlarski and Warhaft,
1998 ~Ref. 20! ~from here on referred to as M&W! shows
SDu(y) for wind tunnel turbulence experiments in close to
isotropic grid turbulence with a mean temperature profile. It
is quite evident that the scaling exponent~for high Reynolds
numbers! is close to zero; not 2/3 as predicted by~4!. A
similar departure from Kolmogorov scaling was earlier re-
ported by Antonia and Van Atta17 for the third-order struc-
ture function in shear flows. As mentioned above, M&W
also showed that the skewness of the temperature derivative
along the mean temperature gradient,

S]u/]y[
^~]u/]y!3&

^~]u/]y!2&3/2 ~5!

is of order one and does not decrease with Reynolds number.
Kolmogorov reasoning~in the same vein as presented above
for the third-order structure function! predicts thatS]u/]y

}Rl
21, whereRl is the turbulent Reynolds number based on

the Taylor-microscale. It is these pronounced departures
from expected phenomenology that motivate the present
work.

The anomalous scalar behavior is due to ramp-cliff
structures of the scalar that align themselves with the mean

gradient.16–22 They persist even as the Reynolds number in-
creases, and the sharp cliffs affect the small scale statistics.
Since they manifest themselves in third~and higher order!
statistics, their morphology must be examined in terms of
three-point structure and correlation functions. There have
been no previous experimental attempts along these lines.
Recent theoretical and numerical work by Shraiman, Siggia,
and Pumir24–27 on the three-point correlations indicate that
the anisotropic scalar structure seems to have universal char-
acteristics that appear to be independent of the nature of the
random velocity field. It is the purpose of this paper to ex-
perimentally examine this problem.

II. APPARATUS

The experiments were conducted in our two low-speed,
low-background-turbulence open circuit wind tunnels. The
vertical wind tunnel is 40.65340.65 cm2 in cross section and
4.5 m long while the horizontal wind tunnel is 91.44
391.44 cm2 in cross section and 9.1 m long. They are, re-
spectively, described, with sketches, in Refs. 28 and 29.

The turbulence was generated by means of an active grid
following the design of Makita.30 The active grid is com-
posed of rotating grid bars to which are attached triangular
agitator wings. Stepper motors, located at the end of each
grid bar outside of the tunnel, rotate the bars. The speed of
the grid bar rotation is determined by a square-wave fed to
the motor. Detailed descriptions of the grids used in each
tunnel can be found in Refs. 4 and 20.

Nearly all of the experiments described here were con-
ducted in our vertical wind tunnel. The data set which was
most analyzed was forRl5213 with the active grid operat-
ing in synchronous mode—all grid bars rotated at a constant
speed and a bar’s~constant! direction of rotation was re-
versed from bar to bar so as not to add net vorticity to the
flow. The initial condition for the grid in the vertical tunnel
was set so that all wings on bars oriented in the North–South
direction were vertical and all of the East–West wings were
horizontal. The relative orientation of the grid bars in syn-
chronous mode did not change over the measurement period.
Measurement of the three-point correlation at the higherRl

of 469 was done with the grid in what we call random mode,
where the direction of rotation of an individual grid bar ran-
domly changes.@Some three-point structure functions~Fig.
10, below! were also measured in our horizontal wind tunnel
at Rl5564.# Though the random mode generated a higher
turbulent Reynolds number for a given mean velocity$by
increasing both the turbulence intensity,^u2&1/2/U @whereu
is the fluctuation in the longitudinal~x-direction! velocity
about the mean longitudinal velocity,U# and the integral
length scale,l%, it resulted in a significant decay in the mean
temperature gradient, due to the large scalar integral scale,
which approached that of the tunnel width.20 It will be
shown, however, that the mode of operation of the grid pro-
duced similar results, be it in synchronous or random mode.

The mean cross-stream temperature gradient was pro-
duced by atoaster, a set of parallel, differentially heated
ribbons at the entrance to the settling chamber of the tunnel.
Once the flow has passed through the screened plenum and

FIG. 1. Normalized transverse temperature skewness structure functions
^(Dyu)3&/^(Dyu)2&3/2 plotted as a function of the separation scaled by the
Kolmogorov length scale,h5(n3/e)1/4. Apart from the solid circles, the
data is from Mydlarski and Warhaft~1998! ~Ref. 20!. Open circles are for
Rl599. Squares are forRl5222. Crosses are forRl5461. Solid circles are
for the experiments to be described below;Rl5247 ~horizontal tunnel, syn-
chronous mode!. Note that the scaling range~horizontal region! does not
occur for the lowRl case.
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contraction, the wakes~of both momentum and temperature!
created by the toaster elements are smoothed out. This re-
sults in a mean temperature profile in the~almost! laminar
region upstream of the grid. The flow then passes through the
active grid and thermal fluctuations are produced by the tur-
bulence acting against the temperature profile.

The velocity and temperature fluctuations were mea-
sured using TSI 1210 probes. For the velocity measurements,
tungsten wires of 3.05mm diam with a length to diameter
ratio of approximately 200 were operated at an overheat of
1.8 using Dantec 55M01 constant-temperature anemometers.
Tunnel and electronic noise were subtracted from the spectra
on a mean-square basis. Spatial resolution corrections for
wire length were made using the method of Wyngaard.31 For
temperature measurements, platinum resistance wires of 0.63
mm diam were used. Their length to diameter ratio,L/dw ,
whereL, is the etched length of the wire anddw is the wire
diameter, varied between 500–600. The minimum prong
spacing was roughly 3L. They were operated at low over-
heat~probe current approximately 250mA! to minimize con-
tamination by velocity. Our fast-response DC temperature
bridges were based on the design of Haughdal and
Lienhard.32 Electronic and ambient thermal noise were sub-
tracted from the spectra on a mean-square basis. Spatial reso-
lution corrections for wire length were made using the
method of Wyngaard.33 Further details can be found in
M&W. 20

For cold-wire lengths ofL/dw,1500, Browne and
Antonia34 show that heat conduction between a cold-wire
and its stubs and/or prongs is a significant source of error in
the moments of temperature and its time derivative. Unfor-
tunately, minimization of this error by use of a longer wire
results in an increase in error from the reduced spatial reso-
lution of the wire. It was concluded in M&W~Ref. 20! that
for this flow, the wire lengths used were appropriate, given
the competing effects of wire-prong conduction and reduced
spatial resolution.

All signals were high and low pass filtered and digitized
with a 12 bit A/D converter. 33106– 43106 samples were
taken ~i.e., 750–1000 blocks each composed of 4096
samples! for each data record at intervals roughly on the
order of a Kolmogorov time period to ensure both a fine
temporal resolution of the signal~and therefore a signal well
resolved spatially in the longitudinal direction! and conver-
gence of the three-point statistics. The only exception to this
is for some data included in Figs. 10~a! and 10~b! measured
in our horizontal wind tunnel where 150–200 blocks of data
were recorded. 43105 data points were sufficient for the
power spectra in Fig. 2 where the data were sampled at over
twice the Kolmogorov frequency.

III. RESULTS

A remarkable aspect of passive scalars in grid-generated
turbulence is that their statistics are well developed at low
Reynolds numbers.19,20 Thus even by a Reynolds number,
Rl[ul/n;100 ~where u is the r.m.s. of the longitudinal
velocity fluctuations,l is the Taylor microscale, andn is the
kinematic viscosity!, the spectrum has a clear scaling region,

the intermittency exponent is high20 (mu;0.2– 0.25) and the
conditional statistics are similar to those observed at higher
Reynolds numbers in the atmosphere. A key requirement of
the analysis to follow is that there must be a sufficiently
broad scaling range in the temperature spectrum so that the
statistics are independent of both the small scale~smearing
or dissipation of the scalar! and the large scale forcing. Fig-
ure 2 shows the temperature spectrum at the position (x/M
562) where the two and three-point statistics were obtained.
The Reynolds number,Rl , is 247. The Pe´clet number, Pel
[(n/k)Rl ~wherek is the thermal diffusivity! is 173. Also
shown is the longitudinal velocity spectrum at the same po-
sition. Note that the temperature and velocity spectra have
well developed scaling regions. The slope of the velocity
spectrum in the inertial subrange is21.52 and that of the
temperature spectrum is21.55, i.e., both are close to the
Kolmogorov value of21.67.~TheRl and Pel dependence of
the spectral slope is discussed in M&W.20! The bulk of the
analysis will be done forRl5213, but in Sec. IV we will

FIG. 2. Power spectra of the longitudinal velocity fluctuations~u, lower
curve! and temperature fluctuations~u, upper curve! for Rl5247~horizontal
tunnel, synchronous mode!. k1 is the longitudinal wave number52p f /U. h
is the Kolmogorov length scale5(n3/e)1/4.

TABLE I. Shown are the flow parameters for the primary cases for which
results are presented in this paper. The two-point statistics were determined
from the horizontal tunnel data for which the range of transverse separations
extended to an integral scale. The three point statistics were mostly deter-
mined from the vertical tunnel data. The kinematic viscosity,n, was 15
31026 m2/s. The thermal diffusivity,k, was 22.531026 m2/s.

Speed~m/s! 6.0 12.5 13.3
Mode Synchronous Synchronous Random
Tunnel Horizontal Vertical Vertical
x/M 62 68 68
b ~K/m! 3.7 3.9 2.6
^u2& (m2/s2) 0.100 0.329 1.38
^u2&1/2/U ~%! 5.3 2.6 10.4
e(515n*0

`k1
2F11(k1)dk1) (m2/s3) 0.164 2.39 8.64

l (50.9^u2&3/2)/e) ~m! 0.17 0.071 0.17
Rl(5^u2&$15/(ne)%1/2) 247 213 469
Rl(5^u2&1/2l /n) 3600 2700 13300
h(5(n3/e)1/4) ~mm! 0.38 0.19 0.14
eu @see Eq.~8! of M&W # ~K2/s! 0.581 0.173 0.136
^u2& (K2) 0.336 0.0405 0.0414
l u(5^u2&1/2/b) ~m! 0.16 0.052 0.078
Transverse probe separations (y/ l ) 0.012–0.75 0.014–0.13 0.043
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show that similar results are obtained when the Reynolds
number is doubled (Rl5469). Further, we will vary the
spacing of the probes and show that the results are indepen-
dent of the inertial-convective spacing. The flow parameters
are listed in Table I.

Before we discuss the results of the three-point statistics
of the temperature field, we will summarize the salient prop-
erties of the two-point statistics.

A. Two-point statistics

In Fig. 1, we showed that the transverse skewness struc-
ture function violates Kolmogorov scaling. Its lack ofy-
dependence implies that the derivative skewness is constant
with Reynolds number and this has been verified by M&W
for the constant mean temperature gradient case addressed
here.

To help bridge the gap between two-point, one-
dimensional statistics~such as the transverse structure func-
tion! and three-point~and therefore two-dimensional! statis-
tics, we first present two-point, two-dimensional statistics, or
what we call the diagonal~third-order! structure function,
defined as

^~Dx,yu!3&[^@u~x5Ut,y!2u~0,0!#3&5^@uA2uC#3&.
~6!

It is plotted in Fig. 3 for various separations,y, as a function
of x/ l , where l is the integral length scale defined asl
50.9̂ u2&3/2/e @Eq. ~12! of Mydlarski and Warhaft.4# A
sketch of the coordinate system is shown in Fig. 4~a! ~x
5x1 here!. ~Point B and its corresponding coordinate,x2 ,
will be used later when discussing three-point statistics.!
Data are shown for values ofy/ l ranging from 0.012 to 0.75
for Rl5247. In the limit of zero separation in thex-
direction, this plot simply shows the transverse third-order
structure function of temperature. Since the data of Fig. 3 are
constant up to a value ofx/ l;1, the width~x-extent! of a
‘‘ramp-cliff’’ structure is on the order of an integral scale.

Thus, the ‘‘ramp-cliff’’ structures are large-scale features,
yet as we have shown above, they are also manifested at the
small scales. It appears that for the smallest separations~Fig.
3!, the ramp-cliff structures are less wide than for the largest
separations since the value of^(Dx,yu)3& is constant up to a
smaller value ofx/ l . In fact, this might be expected since, at
large x/y the diagonal structure function becomes experi-
mentally indistinguishable from the longitudinal structure
function and the transverse component of the signal may be
prematurely ‘‘lost.’’

Although the temperature profile is roughly linear and
~almost! constant,20 the turbulence is decaying in the down-
stream~x! direction. In ideal, homogeneous flow, the third-
order statistics should be even inx.35 As a test of the effects
of inhomogeneity, the third-order diagonal structure function
is plotted as a function ofx and2x ~Fig. 5! for a subset of
the data of Fig. 3. For scales less than the integral length
scale, the collapse is good implying that the statistics are
even in thex-direction. In the work to follow, we only con-

FIG. 3. The third order diagonal structure function of temperature atRl

5247 ~horizontal tunnel, synchronous mode!, ^(Dx,yu)3&, plotted as a func-
tion of x/ l , wherex5Ut andl is the integral length scale. Different symbols
correspond to different transverse separations:s,y/ l 50.012; h,y/ l
50.024; L,y/ l 50.047; 3,y/ l 50.094; 1,y/ l 50.19; D,y/ l 50.38;
:,y/ l 50.75.

FIG. 4. Schematic and definitions of the labels and coordinates used in the
discussion of three-point scalar statistics.U is the mean velocity of the air in
the wind tunnel.u are the fluctuations in temperature~U! about their mean,
T5T(y). There are two temperature probes placed at~0,0! and (0,y). The
coordinate system in~b! is introduced in Sec. III B.

FIG. 5. The effect of a coordinate reflection inx on the third order diagonal
structure function of temperature.^(Dx,yu)3& and^(D2x,yu)3& are plotted as
a function ofx/ l for various spacings atRl5247 ~horizontal tunnel, syn-
chronous mode!. Different symbols correspond to different transverse sepa-
rations. In the positivex-direction, s,y/ l 50.012; h,y/ l 50.047; L,y/ l
50.19; n,y/ l 50.75. In the negativex-direction, 3,y/ l 50.012; 1,y/ l
50.047; 2,y/ l 50.19; u,y/ l 50.75.
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sider the components of the statistics which are even inx to
improve scaling. This precludes contamination from the larg-
est, inhomogeneous scales which are odd inx. The even inx
component of a statistic was calculated as follows~where we
use the diagonal third-order structure function as an ex-
ample!: ^(Dxeven,yu)3&[ 1

2(^(Dx,yu)3&1^(D2x,yu)3&). Simi-
larly, the third-order statistics should be odd iny.35 @If you
flip the direction of the gradient~hotter air below! the sign of
the third-order statistics must change.# A similar test of the
odd symmetry iny was performed. It verified that the data
was indeed odd iny for separations up to an integral scale.
Still, we will only consider the component of the statistics
which is odd iny ~and even inx! to prevent contamination
from large scale inhomogeneities~such as small curvatures
in our ideally linear gradient!. Calculation of the component
which was odd iny was done in an analogous manner to the
calculation of the component which was even inx.

In Fig. 6, we show the component of the third-order
diagonal structure function of temperature which is even inx
and odd iny. It is shown to be approximately independent of
r ([@x21y2#1/2) when scaled byy. This graph is the same as
in Fig. 18~a! of M&W. 20 We will return to it below.

B. The three-point statistics

We begin our discussion of three-point statistics by de-
fining the variables used to describe the orientation of the
three points. We consider three points, to be calledA, B, and
C, and we give them the coordinatesA5(x1 ,y),
B5(x2,0), andC5(0,0) ~see Fig. 4!. In fact, only two cold-
wires are used to measure temperature.TB andTC are deter-
mined from the same temperature signal in conjunction with
Taylor’s hypothesis to convert temporal increments into spa-
tial ones. We note that Taylor’s hypothesis should hold well
in this low turbulence intensity (^u2&1/2/U,0.1) isotropic
velocity field.

Our objective is to arrive at the three-point correlation
function or the equivalent ‘‘three-point structure function.’’
~These are two equivalent ways of expressing the same in-
formation.! We will consider what we call ‘‘three-point
structure functions’’ rather than three-point correlations since
we found that drift and inhomogeneity in the direction of the
temperature gradient introduced error in the three-point mea-
surements that was of the same order as the magnitude of the
three-point correlation.~Forcing even symmetry inx and odd
symmetry iny does not eliminate all inhomogeneities; the
field may have inhomogeneities with these symmetries.!
However, the size of the error amounted to a much smaller
fraction of the signal in the three-point structure function.
This might be expected since there exists inherent filtering in
the calculation of a structure function~due to the fact that a
subtraction is performed!. The effect of drift on correlations
is discussed in Lumley and Panofsky,36 p. 44. They show
that the effect of a~linear! trend~in time! in the data results
in the autocorrelation having an error which is a function of
the averaging time~T! squared. When considering~second-
order! structure functions, the error term resulting from the
trend is now only a function of the time lag~t! squared
~which is much more acceptable sincet/T!1!.

We begin by considering one of many possible three-
point structure functions,

S1[^~uA2uC!2~uA2uB!&. ~7!

It is emphasized that local isotropy predicts thatS1 should be
zero at small scales for high Reynolds numbers. GivenS1 ,
one can deduce the three-point correlation,^uAuBuC&. Con-
sider the algebraic expansion of this three-point structure
function into a sum of one-point, two-point, and~the desired!
three-point third-order correlations,

^~uA2uC!2~uA2uB!&5^uA
3&22^uA

2uC&1^uAuC
2 &

2^uA
2uB&2^uC

2 uB&

12^uAuBuC&. ~8!

The correlations can also be divided in two types; those in-
volving a separation iny and those which do not. The latter
~ones which involve only one point, e.g.,^uA

3&, and ones
which only involve uB and uC , e.g., ^uC

2 uB&), having no
transverse component, should ideally be zero. Those involv-
ing uA anduB or uA anduC , can simply be re-expressed in
terms of the third-order, two-point diagonal structure func-
tion, since it can be expanded as follows:

^~uA2uC!3&5^uA
3&2^uC

3 &13~^uAuC
2 &2^uA

2uC&!. ~9!

Assuming homogeneity of the temperature statistics and as-
suming even symmetry inx and odd symmetry iny, one
obtains

^~uA2uC!3&ux1 ,y56^uAuC
2 &526^uA

2uC&, ~10!

^~uA2uB!3&5^~uA2uC!3&ux12x2 ,y

56^uAuB
2&526^uA

2uB&. ~11!

FIG. 6. The component of the diagonal third order structure function of
temperature which is even inx and odd iny, ^(Dxeven,yodd

u)3&, plotted as a
function of r / l , wherer 5(x21y2)1/2 and scaled byy/ l for inertial range
separations ofy. Rl5247 ~horizontal tunnel, synchronous mode! and dif-
ferent symbols correspond to different transverse separations;s,y/ l
50.024; h,y/ l 50.047; L,y/ l 50.094 andn,y/ l 50.19. The horizontal
arrow indicates the extent of the inertial-convective subrange determined
from the second order longitudinal structure function.
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One can therefore estimate the three-point correlation,
^uAuBuC&, from S1 and a curve fit to the diagonal structure
function ~Fig. 6! for the two-point, third order correlations
@Eqs.~10! and ~11!#. Thus,

^uAuBuC&ux1 ,x2 ,y5 1
2@^~uA2uC!2~uA2uB!&ux1 ,x2 ,y

2 1
2^~uA2uC!3&ux1 ,y

2 1
6^~uA2uC!3&ux12x2 ,y#. ~12!

There also exists many alternate structure function defini-
tions, e.g.,S2[^(uA2uC)2(uC2uB)& from which^uAuBuC&
can be deduced.S1 has been computed and will be discussed
in the appendix. There, we will show that^uAuBuC& derived
from S1 lacks the correct symmetry properties and shows
unacceptable probe spacing dependence.

Here, following a suggestion of Shraiman, we choose the
somewhat unusual combination

S[ 1
16^3~uB1uC22uA!~uB2uC!2

2 1
3~uB1uC22uA!3&. ~13!

To explain this choice, we expandS as follows:

S5^uAuBuC&1 1
3^uA

31uB
31uC

3 &2 1
12^~uA1uB!3

1~uA1uC!31~uC1uB!3&. ~14!

Note thatS is permutationally symmetric, i.e., exchanging
any two points~e.g.,uA with uB , uA with uC , etc.! does not
change the function. The triple correlation,^uAuBuC&, is also
obviously permutationally symmetric. Therefore, in addition
to the imposed even symmetry inx and the odd symmetry in
y, we are now also~implicitly ! imposing permutational sym-
metry by use of combinationS. These three symmetries are
all consistent with the required theoretical behavior of
^uAuBuC&. @We remark that combinationS1 is not permuta-
tionally symmetric, see Eq.~8!. Though the left-hand side of
Eq. ~12! is, the individual terms we measure on the right-
hand side are not.#

Simplifying ~14! by use of~10! and ~11!, we obtain

S5^uAuBuC&1 1
6^uA

31uB
31uC

3 &. ~15!

We observe that the structure functionS is equivalent to the
third-order three-point correlation,^uAuBuC&, to within the
scalar~signal! skewness~which should be zero!. Therefore,
we measure a permutationally symmetric structure function
to obtain the~permutationally symmetric! triple correlation.

Note that combinationS does not require two-point sta-
tistics ~such aŝ uAuC

2 & or ^uAuB
2&! to be added or subtracted

to obtain^uAuBuC& as was the case withS1 in Eq. ~12!. In
addition, the assumption that̂uBuC

2 &5^uB
2uC&50 is no

longer required. This was found to introduce error for larger
separations in the calculation of^uAuBuC& from other com-
binations.

As for many physical phenomena, the laboratory coordi-
nates, namely (x1 ,x2 ,y), are not the optimal choice for rep-
resentation of the three-point structure functions. When plot-
ted as a function ofx1 /y and x2 /y, the contour plots
exhibited symmetries about the linex252x1 . This is physi-
cally reasonable since whenx252x1 , the x-coordinate of

point A is located midway between those of pointsB andC.
In other words, the pointsA, B, and C form an isosceles
triangle. We therefore choose~consistent with Mydlarski
et al.37! to plot our contour plots in a modified coordinate
system, (x18 ,x28)5(x12 1

2x2 ,x2), see Fig. 4~b!. This new
choice of coordinates results in thex252x1 line of symmetry
being transformed to the vertical, (x28), axis ~i.e., the line
x1850!.

Figure 7 shows the three-point third-order correlation,
^uAuBuC&, calculated from combinationS for a transverse
spacing ofy53.6 mm. It is plotted as a function ofx18/y and
x28/y. This plot is shown for the ranges25,x18/y,5 and
0,x28/y,5. ~Since the statistics are even inx, it is unneces-
sary to show the range25,x28/y,0, which will be identical
to what is shown. Additionally,̂uAuBuC& is even inx18 ,35

therefore we only need to show data in the range 0,x18/y
,5 and 0,x28/y,5. However, we show both halves of the
plot to emphasize this latter symmetry.! The nondimension-
alization is by 2^uAuBuC&ux

1850,x
285052^uAuC

2 &ux
1850 .

Therefore, the triple correlation must be equal to21 for
(x18 ,x28)5(0,0). In addition,^uAuBuC& must be zero when
the three points form an equilateral triangle.37 Therefore, the
triple correlation must be equal to zero when (x18/y,x28/y)
5(0,2/))'(0,1.15).~Whenx1850, the triangle is isosceles.
If x2852/) the triangle is then also equilateral.! We observe
this to be the case. For values ofx1850 and x28.2/) the
triple correlation becomes positive. Further elucidation of the
nature of these three-point statistics and their relationship to
the ramp-cliff structures is more easily done in terms of the
structure function, and thus is addressed in the Appendix.

IV. PROBE SEPARATION AND REYNOLDS NUMBER
DEPENDENCE

The principal result of this paper is the third-order cor-
relation function shown in Fig. 7. It is the most general sta-

FIG. 7. Contour plot of the three-point triple correlation,^uAuBuC&, in
(x18 ,x28) space as deduced from the three-point~third-order! scalar structure
function for combinationS. The transverse separation is 3.6 mm~i.e., y/ l
50.051! and Rl5213 ~vertical tunnel, synchronous mode!. The data are
normalized by2^uAuBuC&(0,0) at the given transverse separation.
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tistical description~at the third order! of the ramp-cliff struc-
tures that appear to be ubiquitous to all scalars mixed against
a mean gradient by turbulence. In this section, we consider
the effects of probe spacing~y! and Reynolds number.

In Fig. 8, we shoŵ uAuBuC&, calculated from combina-
tion S for a transverse spacing ofy59 mm. ~Figure 7 was
calculated fory53.6 mm.! There do exist some differences,
such as the ‘‘opening up’’ of the V-shape~consider, for ex-
ample, the20.2 contour line! or the reduction in the maxi-
mum value achieved~from ;0.6 for y53.6 mm to;0.3 for
y59 mm!. The overall result~including the constraint of

^uAuBuC&50 when (x18/y,x28/y)5(0,2/))! is very consis-
tent. Some differences should be expected at the larger spac-
ing considering that an intermediate distance in Fig. 8~of
say, 3y5339 mm527 mm! is close to an integral scale,
which for this flow was 71 mm~and therefore 3y;0.4l !.

Finally, we examine the effects of varying the Reynolds
number. The triple correlation,̂uAuBuC& determined from
combinationS, is shown in Fig. 9 atRl5469 obtained by
operation of the active grid in the random mode.4 ~The ma-
jority of our runs in this paper have been performed with the
grid in the synchronous mode for the reasons given in Sec.
II. In that mode, the Reynolds number was 213.! Here the
transverse separation was 7.35 mm.~The integral scale for
this case,l, was 170 mm and the Kolmogorov microscale,h
was 0.14 mm.! The results are very consistent with those of
Fig. 7 indicating their lack of sensitivity to the Reynolds
number. We note@M&W ~Ref. 20!# that in the random mode
there is a significant weakening of the mean temperature gra-
dient with downstream distance,x. As a result, this dimin-
ished the value of the transverse derivative skewness,20

S]u/]y . However, the triple correlation appears to be unaf-
fected, thus providing strong confirmation for the robustness
of these results.

V. CONCLUSIONS

We have computed the third-order three-point correla-
tion, ^uAuBuC&, for a linear temperature profile in decaying
grid turbulence. We show that is has a characteristic V-shape
that is independent of Reynolds number over the range 213
<Rl<469 (2700<Rl<13300) and for probe separations
less than an integral scale. Because the scalar skewness per-
sists to very high Reynolds numbers,18,20 it may be reason-
ably inferred that so too will be the V-shaped three-point
correlation, since it represents the ramp-cliff structures that
are responsible for the skewness. We note that since the
ramp-cliff structures have been observed in both shear16–18

and shear-free21 flows, and that the third-order two-point
structure function scales similarly for both types of
flows,17,20 this suggests that our results may indeed be uni-
versal to all turbulent flows with a mean temperature gradi-
ent.

In another paper,37 our measurements will be compared
with the predictions of Shraiman, Siggia, and Pumir24–27

who determine the same three-point functions using the Hopf
equation as the basis for their model. In the present work, it
has been our objective to describe the way in which we have
arrived at the three-point statistics, and what variation they
exhibit with various parameters, rather than to compare with
predictions.
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FIG. 8. The effect of a larger transverse separation on the contour plot of the
three-point triple correlation,̂uAuBuC&, in (x18 ,x28) space as deduced from
combinationS. The transverse separation is 9 mm~i.e., y/ l 50.13! andRl

5213 ~vertical tunnel, synchronous mode!. The data are normalized by
2^uAuBuC&(0,0) at the given transverse separation.

FIG. 9. The effect of Reynolds number on the contour plot of the three-point
triple correlation,̂ uAuBuC&, in (x18 ,x28) space as deduced from combination
S. The transverse separation is 7.35 mm~i.e., y/ l 50.043! and Rl5469
~vertical tunnel, random mode!. The data are normalized by2^uAuBuC&
3(0,0) at the given transverse separation.
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APPENDIX: THREE-POINT STRUCTURE FUNCTIONS

Given the triple correlation,̂uAuBuC&, one can extract
any possible third-order structure function. Rather than esti-
mating these from the triple correlation, in this appendix we
will present some~directly measured! three-point structure
functions. We examine~two possible combinations of! third-
order three-point structure functions. These combinations, la-
beledS1 andS2 , were mentioned in Sec. III B and are rede-
fined below,

S1[^~uA2uC!2~uA2uB!&, ~A1!

S2[^~uA2uC!2~uC2uB!&. ~A2!

We emphasize, as a generalization of~3!, thatS1 andS2

should be zero at small scales for high Reynolds numbers.
Many other possible combinations exist, but they can all be
expressed in terms ofS1 and/orS2 .

The first type of three-point structure function we con-
sider is the ‘‘right-angle three-point structure function’’ in
which the three points form a right angle by enforcing that
x150 @i.e., onlyx2 andy will be allowed to vary, Fig. 4~a!#.
Figures 10~a! and 10~b! show the right-angle three-point

structure function for combinationsS1 and S2 for a wide
variety of transverse separationsy. ~A discussion of the right-
angle three-point structure function is more reasonably done
in the laboratory coordinate system. We therefore return to it
temporarily.! The curves in Fig. 10 collapse very well. The
few data points which do not follow the general trend are
found to be for the smallest and largest transverse spacings,
which are well out of the inertial range. Here we have in-
cluded data from the vertical tunnel as well as some data
recorded in our horizontal tunnel~for which the data records
were not as long as for those measured in the vertical tunnel!.
In addition, these figures show no dependence on the mode
of operation of our active grid~viz., synchronous or random!
and therefore no dependence on Reynolds number.

In these figures, the ordinate is normalized by the value
of the transverse third-order~two-point! structure function
for the given transverse spacing,y. Consequently, the right-
angle three-point structure functions for combinationS1

must tend to 1 in the limit ofx2→0 since, in this limit,uB

→uC , and therefore combinationS1 becomes^(uAux150

2uC)3&, which is the definition of the transverse third-order
structure function. The fact thatuB→uC as x2→0 also ex-
plains why the right-angle three-point structure function for
combinationS2 tends to zero in the limitx2→0. The abscissa
is normalized byy so that the triangles~defined by the three
positions at which the temperature is measured in these
structure functions! are all similar~in the geometrical sense!.

At large separations, the data asymptotes to 0.5 in Fig.
10~a! and20.5 in Fig. 10~b!. These can be predicted from an
~algebraic! expansion ofS1 and S2 which shows that there
are some terms which do not go to zero asx2 /y→` ~i.e.,
the third-order correlations which do not containuB ,
e.g., ^uAux150

uC
2 &!. Recall that we are nondimensionalizing

by ^(uAux150
2uC)3& which is equal to 6̂uAux150

uC
2 &

(526^uAux150

2 uC&). The asymptote quantifies the contribu-

tion to the structure function from correlations independent
of uB .

The next step is to remove thex150 restriction. Instead,
we let x1 be a third independent variable~along withx2 and
y!. The resulting three-point structure functions~for a given
combination! must then be plotted as contour plots as a func-
tion of x1 /y andx2 /y for a given transverse spacing,y. Here
we also return to the coordinate system denoted by primes.

Figures 11~a! and 11~b! show the three-point structure
functions for combinationsS1 andS2 for a transverse spac-
ing of y53.6 mm. These plots are shown for the ranges
25,x18/y,5 and 0,x28/y,5. ~Since the statistics are even
in x, it is unnecessary to show the range25,x28/y,0,
which will be identical to what is shown.! The nondimen-
sionalizations are the same as for the right-angle three-point
structure functions shown in Fig. 10. CombinationS1 must
be equal to 1 at (x18/y,x28/y)5(x1 /y,x2 /y)5(0,0). Since we
only consider the component which is even inx, the statistics
are even inx18 when looking at the linex28/y50. In addition,
combinationS2 must also be zero along this line. We also
remark that all the information~for a given transverse spac-
ing! shown in Fig. 10 can be found in the, more general,

FIG. 10. The right-angle three-point~third-order! scalar structure functions
~i.e., three-point scalar structure functions withx150! plotted againstx2 /y
for combinationsS1 ~a! andS2 ~b!. Solid symbols are forRl5213 ~vertical
tunnel, synchronous mode! which correspond to different transverse separa-
tions; solid circles arey/ l 50.014; solid squares arey/ l 50.051; solid dia-
monds arey/ l 50.085, and solid triangles arey/ l 50.13. Remaining sym-
bols are forRl5564 ~horizontal tunnel, random mode!; open circles are
y/ l 50.0026; open squares arey/ l 50.0092; open diamonds arey/ l
50.016; open triangles arey/ l 50.029; plus signs arey/ l 50.042; crosses
are y/ l 50.052; circles with dots arey/ l 50.068; squares with slashes are
y/ l 50.27 and squares with plus signs arey/ l 50.53. The data are normal-
ized by the value of the transverse third-order structure function for their
respective transverse separation.
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plots of Fig. 11 ~for values of x28/y,5.! The right-angle
three-point structure functions of Fig. 10 correspond to a
cross section of the contour plots of Fig. 11 along the line
given byx18/y52 1

2x28/y. ~This corresponds to a vertical line
given byx1 /y50 in the laboratory coordinates.!

The magnitudes of the contour lines in Figs. 11~a! and
11~b! can be explained when one considers horizontal (x28
5constant) cross sections of the plots. Whenux18u/ux28u→`,
i.e. when pointA is very far away from pointsB and C,
pointsB andC become coincident. In this limit,S1 reduces
to the third-order diagonal structure function (^(uA2uC)3&)
and should therefore be roughly 1.@For subintegral scale
separations, the diagonal structure function shows littlex-
dependence~Fig. 6!, and is therefore roughly equal to the
value by which we are normalizing, the transverse structure

function.# In this same limit,S2→0 sinceB and C become
indistinguishable. This is observed in Figs. 11~a! and 11~b!.
The limit ux18u/ux28u→` can be considered the one in which
the triangle given by the three points is maximally skewed.
In this limit, S1 has a maximum~absolute! value andS2 has
a minimum~absolute! value. The opposite limit occurs when
thex-coordinate of pointA is located midway in between the
x-coordinates of pointsB and C, and the triangle given by
these three points is then isosceles~i.e., x1850!. This ar-
rangement results in a minimum~absolute! value ofS1 and a
maximum ~absolute! value of S2 . The transition between
these two limits, which results in V-shaped contour lines, is
observed in Fig. 11. In Fig. 11~a!, the contour lines for
smaller x28 overturn and depart from the predominant V-
shape. We attribute this to large-scale effects. This does not

FIG. 11. Contour plots of the three-point~third-order! scalar structure func-
tions in (x18 ,x28) space for combinationsS1 ~a! and S2 ~b!. The transverse
separation is 3.6 mm~i.e., y/ l 50.051! and Rl5213 ~vertical tunnel, syn-
chronous mode!. The data are normalized by the value of the transverse
third-order structure function for the given transverse separation.

FIG. 12. The contour plot of the three-point triple correlation,^uAuBuC&, in
(x18 ,x28) space as deduced from combinationS1 . The transverse separation
is ~a! 3.6 mm~i.e.,y/ l 50.051! ~b! 9 mm~i.e.,y/ l 50.13!. Rl5213~vertical
tunnel, synchronous mode!. The data are normalized by2^uAuBuC&(0,0) at
the given transverse separation.
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occur in Fig. 11~b! since the geometrical constraints imposed
on combinationS2 ~being zero along thex2850 line! render
this impossible.

We remark that combinationsS1 andS2 arenot even in
x18 ~unlike the triple correlation̂uAuBuC&! though they ap-
pear to be very close. In fact, the component ofS1 and S2

which is odd inx18 can be shown to be small,35 but nonzero.
Finally, following the method of Eq.~12! and fitting a

power law ~of the form ^(uA2uC)3&ux1 ,y5Cy/(r a)! to the
inertial range of the third-order diagonal structure function
~Fig. 6!, we calculate the three-point triple correlation,
^uAuBuC&, deduced fromS1 . ~The r a term is a correction37

to the assumed linear dependence of the third-order structure
function ony. Since Fig. 6 is almost flat in the inertial range,
a will be close to zero. Our experiments indicated values of
a between 0.05 and 0.15. The small value of alpha is another
way to show that the above mentioned asymmetry inx18 of
S1 andS2 is small. The component which is odd inx18 dis-
appears ifa50 ~Ref. 35!—this is not the case here.! In Figs.
12~a! and 12~b!, we shoŵ uAuBuC&, for a transverse spacing
of y53.6 mm andy59 mm, respectively. Figure 12~a! is
qualitatively similar to Fig. 7, though it can be observed that
Fig. 7 ~deduced from combinationS! is in better accord with
some of the theoretical requirements of^uAuBuC& ~i.e., it
must be even in x18 , it must be zero for
(x18/y,x28/y)5(0,2/)), etc.!. A quick examination of Fig.
12~b! will lead one to conclude that combinationS1 is much
more sensitive to large-scale inhomogeneities than combina-
tion S. The similarity between Figs. 12~a! and 12~b! is much
less than the similarity between Figs. 7 and 8. The more
universal results obtained with combinationS are attributed
to the permutational symmetry implicit in its definition.
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